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Wave based solutions of noise barrier gametries accurately model the 

complex direct, reflected and di8j:acted sound field interactions. However, 

these solutions are very cornputer intensive and thus are not practical as 

a design tooL hproved difEaction based methods, that include phase, 

now yield mve-like accuracy with trivial calcdation times. Mensions of 

these methods are made to consider two dimemional geometries, pardel 

barria geometries, the &ect of finite ground impedance and the consid- 

eration of threedhensional coherent aad inwherent line sources. Good 

agreements were obsemed with both finite element and boundary element 

models. These results, however accurate, typicdy over-predict the actual 

performance of noise barria, because atmospheric effects such as wind, 

temperature gradients and turbulence have not been considered. 

To overcome this limitation, a new amustic modeling tool is propased 

that combines an improved =action-bd sound bama performance 

model with a heuristic atmospheric model. Cornparisons with the Par- 

abolic Equation (PE), a wave - technique, show good agreements and 

preliminary applications of this model yield the ~cpected sound ba,rrier 

performance degradation due to the amustic medium non-homogeneity. 
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T r a c  noise is a major concem to the general public, especidy to those who live in 

close prcWmity to major highways or t horoughfares. To attenuate the noise generated 

by krge t r a c  volumes, rads ide  barriers and berms are constmcted. Howeva, these 

noise at tenuat ion structures cost in the order of one million dollars per kilometer [l. 11. 

In designing and irnplementing these barriers, it is therefore critical to understand 

the parameters which dominate their effectiveness. 

This chapter presents a brief discussion on the road noise problem, dinaent bar- 

r i a  types and cmen t  techniques that are used to predict barrier performances. Lim- 

itations of the current methods are discussed and motivation is given to extend a 

promising method for road noise modeling. 

It has often been noted though that the actual performance of barriers is usu- 

ally overpredicted by such techniques. This is because a homogeneous atmosphere is 

assumed in their formulations, thus ignoring atmospheric effects. Several initiatives 

have been undertaken to study the effects of atmospheric inhomogeneities on =und 

propagation, and as a result, various rnodels have been developed for modeling out- 

door sound propagation. However, a major limitation with these models is that they 

requ ire excessive computat ional times. This mot ivated the developmen t of a heurist ic 

atrnospheric model, based on geometrical ray theory, to mode1 outdoor =und propa- 

gation with small computational times. A discussion on the limitations of this model 



and its promising aspects are presented. 

To model atmospheric &ects on barrier performance, a novel combined approach 

is outlined. In this approach, m e n t  diakaction based techniques for modeling bar- 

riers is combinecl with the heuristic atmospheric model. 

1.1 Background 

1.1.1 The Road Noise Problem 

The study of road noise problem and its attenuation is a multi-faceted problem. The 

subject can be broken down into three areas: (i) noise generation, (ii) propagation or 

transmission, and (iii) perœpt ion. 

Noise generation depends highly on the type of vehicle, speed of vehicle and 

the trafic volume. The primary sources of noise are the engine, for low-speed 

traffic, and the t i r e - rd  contact, for high speed t r a c .  This area has been 

st udied expriment d y  and several empirical relat ionships have been derived 

which are used to model the source [1.2] and its hequency content [Ml. 

The propagation or transmission of the genaated noise is affectecl by many 

factors including: geometric spreading, ground impedance or absorption and 

at mospheric effects which include wind, temperat ure gradients, turbulence and 

atmospheric absorption. The other major iduencing factor in noise propaga- 

tion is that due to the scattering and diffraction of the sound waves over objects 

and noise control measures such as barriers and berms. 

The perception of the received noise is the final factor in determining its annoy- 

ance. This is prirnarily a psycheacoustic problem and factors that are consid- 

ered include the noise levels, their h.equency content and the time of day that 

they occur. 



This thesis focuses on the second area, namely the propagation of sound. In 

particular, the focus wilI be on noise barrier analysis and the effects of atmosphere 

on noise barriers. 

1.1.2 Noise Barriers 

Noise barners are used to shield the direct Iine-O f-sight between the noise source and 

the listener as shown in Figure 1.1. Several configurations of noise baniers have been 

implemented, sorne of which are shown in Figure 1.2. These include: 

single barriers - thin walls p l a d  on one side of a highway that is next to a 

resident i d  area. 

pardel barriers - thin w a h  placed on either side of a highway passing through 

a residential area. 

variable geometry barriers - examples are T-shaped barriers and angied barriers. 

absorptive barriers - barriers with =und absorbing panels (on the traf£ic side) 

abôorb the sound energy kom the incident wave. 

depressed roadways - may be used in combinations with conventional barriers. 

earth berms - mouds  of earth covered usually with g ras  and sometirnes has a 

conventional barrier at the top. 

vegetative barriers - barriers that are in part, or totally, made up of naturd 

vegetation such as trees and bushes. 

The bulk of barrier modeling techniques assume rigid thin walls for suigle/parallel 

barrier geornetries. As such, this thesis will focus on barriers modeIIed as rigid thin 

w&. 



1.2 Techniques for Andysing Noise Barriers 

1.2.1 Difbction Based Methods 

Traditional methods for analysing noise barners are based on geometrical ray theory 

which treats -und as a series of rays emitted from a source. These rays are reflected 

off the ground and difbacted off the top and sides of the barrier, as they make their 

way fiom the source t o  the receiver. This is depicted in Figure 1.3. 

Current literature contains a wide variety of these methods [1.4, 1.5, 1.6, 1.7, 1.8, 

1.91. These methods are difTraction based, which extend the optical geometric theory 

of diffraction to that of amustic waves. One of the simplest and most widely used in 

the engineering comrnunity, is that of Maekawa [l A]. He introduced an empirically 

based difiaction model that provides the insertion loss due to  a thin-wded barrier 

in terms of the Fresnel nurnber. Maekawa then sugggted that the insertion loss for a 

hite-length bamier could be detennined by multiple application of this curve to the 

diffraction paths around the barrier and then summing the energy contributions of 

these paths. By doing this, the phase information between the diffraction paths was 

lost, and thus lead to poor approximations of the sound field behind the barrier. 

1.2.2 Wave B a d  Met hods 

More exact approaches for est imating barrier insertion loss are perforrned with wave 

based methods such as the Boundary Element Method (BEM), and the Finite Ele- 

ment Method and in particular the I d h i t e  Wave Envelope Method (IFEM). These 

methods solve the goveming Helmholtz wave equation and exactly model the r&- 

tion, diffkaction and the phase interferences in the sound field around the ba.rrier. 

1.2.2.1 Boundary Elernent Methals (BEM) 

The boundary element method in acoustics is formulated by applying Green's the- 

orem to the Helmholtz integral equation. This has the effect of wnverting a three 



dimensional volume integral of the acoustic domain to  a two dimensional surface 

integral. This means that  only a description of the radiating or scattering body is 

required rather than a complete, and often inadequate, description of the surrounding 

domain. The boundary element method is well suited for idhite domains, and thus 

for exterior problems as the radiation condition is inherently satisfied through the 

Green function kernels. 

When applying this method, the surface of the body is subdivided, or discretid, 

into nodes and elements. The Helmholtz integral equation, which relates the acoustic 

pressure and velocity on the body, is applied to each node. This has the effect of 

linking it to  all ot  her elements (and nodes) on the body. This technique t hus generates 

a Fully populated, cornplex, non-symmetric matrix for each analysis kequency. 

For two dimensional and a x i m e t n c  geornetries, boundaq element rnethods 

yield excellent resdts in very reasonable calculation times. However, when consider- 

ing a real-life geometry of a h i t e  length barrier (i.e. an exterior three-dimensional 

problem with large geometry (barier lengths greater than 500 m) and analysis fie- 

quencies up to  20ûû Hz), BEM methods quickly becorne impractical to m. Typical 

ba,rrier geometries at road noise kequencies prove to  be computationdy intensive 

and take in the order of hours, and for some cases days, to  solve for one fiequency on 

an engineering workstation. Another limitation of the boundary element method, is 

t hat the Green huiction kernels, which are b a s i d y  the solution of a point source in 

the acoustic medium, assume a homogeneous propagation medium. 

1.2.2.2 Finite Element Methods (FEM) wing In-nite Wave Envelope Elements (IFEM) 

Amustic finite element solutions typically make use of a variational or Galerkin resid- 

ual formulation for s01ving the HelmhoItz equation. An enclosed volume (for three 

dimensional problems) is divided into a se& of smaller subregions or h i t e  elements 

connected at discrete nodes. The variation of the acoustic variabks within an element 

is described by shape functions (usually simple polynomials). Governing equations 



are written for each element and these are asembled into a global matrix. Boundary 

conditions are applied and the unknowns are determinecl. 

Due to the formulation of this method, the resulting matrices are banded because 

each node is only related to its surrounding neighbors. This is in contrast to the 

boundary element method where each node is related to d other nodes. Of murse 

the penalty with the finite element method is that a much larger number of nodes are 

required because of the volume discretization. Another problem is that for modeling 

unbounded domains a large, but finite size of mesh is required to appraximate this 

infinite domain. The tri& is to corne up with appropriate boundary conditions to  

simutate t h i .  case. 

One method to deal with unbounded domains using finite element methodology 

is wit h the use of infinite elements, and in part icular, infinite wave envelope methods 

[1.12, 1.131. Recent work has shown that is it possible to very acient ly model 

both radiation and scattering phenornena with these elements. When applying these 

elements to a body, it is oRen necessary to surround the body with several layers of 

conventional elements to permit the near field to be accounted for, while the far field 

is rnodeled with the &ite elements. With the use of higher order infinite elements, 

it is possible to reduce and even eliminate this conventional element layer [l. 131. 

This type of modeling is very attractive because it has many of the advantages of 

the finite element methodology (banded matrices and qui& kequency sweeps), while 

still being able to accurately model unbounded problems. The major limitation of 

this method is that only low &equency/small size geometries can be studied. Once 

the problem approaches ka = 20 (where k is the wave number (2?r/X), and a is a 

typical body dimension), the results begin to deteriorate [1.13]. This limits the use 

of this method for many practical geometries. 



1.2.2.3 I n w t e  Boundaqj Element Methods (IBEM) 

To overcome the above mentioned limitations of the boundary element method (namely 

the large matrix size and slow solution times) and the infinite h i te  element method 

(lirnited to low hequency solutions), hybrid infiate boundary element schemes have 

been de+ [l . 14, 1-15]. This approach m h  use of boundary element met hodology 

but, relies on subdomaining to divide the W t e  radiation region into s m d  sub- 

regions. This has the &ect of adding bandedness to the boundaq element method, 

which is good to keep memory storage problems to a minimum. Accurate modeling 

is t hus insured wit h good implementation characteristics. 

The subdomaining of the acoustic fluid is not without its &fEculties however. 

The efFect of subdomaining with the boundary element method is to  localize the 

application of the radiation condition. This affects the radiation of higher order mul- 

tiples which are fundamental to more complicated radiation and scattering problems 

[l. 151. In addition, testing has shown that it is necessary to include awustic windows 

to permit proper modeling of the acoust ic near field (1.151. 

1.2.3 Irnproved Dif£raction B d  Met hods 

The multitude of problems associated with BEM, FEM/IF'EM and IBEM methods 

are hirther underlined when considering typical ba.rrier geometries a t  typical road 

noise fkquencies. This rnotivated the search for a quicker, more practical means for 

modeling the acoustic performance of roadside barriers. 

Recently, Lam [1.9] improved on Maekawa's method by surnming cornplex pres- 

sures, instead ofenergies, of each diffraction path around the barrier. This was done to 

incarporate the phase interaction and interference between the paths, the absence of 

which, Lam suggested, was the cause of poor agreement between MaRkawals method 

and experimental results. By incorporat ing phase interaction, srcellent agreement 

was observed with experimental and wave-based BEM results. 

This mode1 was seen as an important contribution in modehg noise barriers as 



it was then possible to obtain results with wave-based accuracy in df iact ion based 

caldation tirnes. As such, Lam's method was implemented and extended to  mode1 

real-life bamer geometries, such as single and pardel  barrier geometries, and also 

take the effects of ground impedance into account. 

1.3 Atmospheric Effects 

Barrier insertion losses predicted by current methods have often been noted to be 

different hom the actual performance of barriers. This is thought to be because the 

atmosphere is assumed to be perfectly homogeneous in these methods. In actuality, 

the atmosphme consists of several inhornogeneities such as wind and temperature 

gradients, and turbulence. These inhomogeneities greatly affect the way in which 

sound energy is transmit ted. 

The variation of wind and air temperature with height, and the presence of tur- 

bulence, results in an effective sound speed that varies not only with location, but 

alço with tirne. As sound waves travel in a medium with a sound speed that varies 

with height, parts of the wave &ont travel at dilferent speeds. As a result, the sound 

rays, which are nomals to wave fronts, are curved as shown in Figure 1.4. 

During typical daytime or upwind conditions, the speed of sound decreases with 

height. This is known as  an upward refmcting atmosphere because sound rays curve 

upwards as depicted in Figure 1.5. This condition results in a shadow some 

distance away fiom the source where the sound pressures are minimal. 

Also shown in Figure 1.5 are sound rays in typical nighttime or downwind con- 

ditions. During these conditions, the sound speed increases with height, and the 

atmosphere is referred to as domwurd rehcting. It is during these conditions that 

the effectiveness of noise bariers is degraded. This is because the direct ray, which 

was previously dong the line-of-sight and was shielded by the barrier in homoge- 

neou  conditions, now curves over top the barriers, as shown in Figure 1.6, thereby 

increasing the sound pressures within the shielded, or shadow regions. 



1.4 Sound Propagation in the Presenœ of Atmospheric Effects 

1.4- 1 Wave Solutions 

The srea of outdoor sound propagation has ben reviewed by many researchers in 

the past [1.16, 1-17, 1.18, 1.191. Some state-of-theart prediction schernes have k e n  

developed to model long range sound propagation in a medium with an arbitrary 

sound speed prome. These techniques include the Fast Field Program (FFP) [l. 20, 

1.211 and the Parabolic Equation (PE) [l.22, 1.231 techniques. A surnmary of these 

and other computational techniques can be found in a review by Attenborough et al. 

[LN]. 

Although these techniques can acwunt for mrious types of sound speed profiles 

and atmospheric turbulence [1.25, 1.261, they are generdy restncted to flat ground 

propagation and can only model avisymmetrk geometrie. Moreover, these models 

require excessive comput at  ional t imes. 

1.4.2 Heuristic Atmospheric Model 

To counter the problems of excessive computational times associated with the wave 

methods, L'Espérance et UL recently developed a mode1 based on geometrical ray 

theory to predict outdwr sound propagation [1.28]. This heuristic model assumes a 

linearly varying sound speed profile for the atmosphere which pennits a closed-form 

solution of all the rays, and the associated parameters. 

The cases for upward and downward refkacting profiles are handled separately in 

this model. For upward reh-acting profdes, the sound pressures within the shadow 

region are determined using a di.Eia.ction t heory based on residual series solution. For 

downward rekacting profles, the mots of a fourth order polynomid aids in determin- 

ing the multitude of rays, each having multiple ground r k t i o n s ,  that can appear 

between a source and receiver above ground [1.29]. 

This model provides a good fi& appraximation for predicting outdoor sound 



propagation in light of the complacities associated with the FFP and the PE. However, 

it was developed for Bat ground propagation and cannot readily predict dects of a 

scattering body such as a barrier. 

1.5 Investigations into Atmospheric Eneds on Barrier Performance 

Erperirnental studies have been conducted to study the &ects of wind on the acoustic 

performance of barriers [le%, 1.311. Both studia mncluded that wind does affect the 

bamer performance and that it k during downwind conditions that barrier perfor- 

mance is degraded. In a separate study, Daigle investigated the dects of turbulence 

over the top of barriers [l.32]. The overd effect was to scatter some of the sound 

energy down to the shadow regions close to the barriers thaeby reducing the shieldhg 

effet of the barrier in these regions. Cornparisons with experimental results showed 

that this was the case especially at higher fkquencies. 

Salomons recently developed a model, based on geometrical ray theory, to include 

atmospheric rekaction in barrier performance calcdations [1.34. Cornparisons were 

made with a FE technique inaorporating a thin ScTeen [1.27], and good agreements, 

in general, wae  o k e d .  This work only included downwind conditions and was 

considered for long range sound propagation. It excludes the rays that undergo mul- 

tiple refletions off the ground under the notion that these rays are absorbed in the 

presence of an absorbing ground. The only rays considered are the rays that travel 

fkom the source to the barrier top and hom the bamer top to the receiver. In the 

presence of absorbing ground, the efkcts of the curved rays due to the rehactive pro- 

file are wmidered in barrier insertion loss calcdations, however, in the presence of a 

perfect ly reflect ing ground, these rays are assumed to be straight. Another weakness 

in this formulation is that, in the presence of a downward rebacting atmosphere and 

at large distances away h m  the barna, it is possible to have some sound rays pas* 

ing over the barrier unattenuated [l.34], the effects of which were not discussed by 

Salornons. 



This motivated the developement of a ray based model which, not only takes into 

account the multiple rays that c m  appear between a source, shielded by a barrier, 

and a receiver, but also accounts for the rays that can p a s  over the barrier. In this 

manner, a more accurate representation of the efFkcts of atmosphere on noise barriers 

can be provided. 

The fi& part of this thesis studies the current techniques for predicting barrier in- 

sertion los. These techniques assume a homogeneous atmosphere, and as a remit, 

the acoustic performance of barriers is usually overpredicted. The later part of this 

thesis investigates the effects of atmosphere on barrier performances, and a model 

is proposed that inchdes this mking link in an effort to accurately predict barrier 

insertion losses. 

In particular, Chapter 2 focuses on extensions of Lam's principles to a wider range 

of source and barrier geornetries, and cornparisons were made to the wave-based BEM 

and FEM. The preliminary work of Lam was extended to include the modehg of two 

dimensional geornetries, the cornparison of two and three dimensional modeling, the 

consideration of parde l  barriers, modeling the effect of finite ground irnpedance and 

the consideration of three-dimensional coherent and incoherent line sources. The work 

was a h  extended to include the difbact ion models of Kurze and Anderson [l. 51, and 

Pierce [l .IO]. 

In Chapter 3, the heuristic atmosphenc model is combined with Pierce's difkaction 

equations for a thin screen [1.10] to provide a more accurate means of barrier inser- 

tion 105s predict ions wit h the benefit of the trivial calculation times associatecl wit h 

geometrical and diffraction based techniques. The model, referred to as the combined 

mode& includes the contributions of the many possible rays with multiple rdections 

on the ground and also the passible rays that pass over the barrier unattenuated. Also 

included are the effects of ground, atmospheric absorption and turbulence. In this 



work, only the case for the positive sound speed gradients (downwind or nighttime 

conditions) are considered. The results fkom the combined mode1 are compared to 

the PE formulation incorporating a thin screen [Mi']. 

Finally, a çummary and the major oonclusions of this thesis are outlined in Chap 

ter 4. Also provided are some recornmendations for future research work. 

Chapters 2 and 3 are written as separate stand-alone papas. Chapter 2 has been 

accepted for publication in Applied Acoustics, while Chapter 3 has been submitted 

for review. At the end of the t hesis, more detail is presented on certain topics. Appen- 

dix A summarks the principles behind geometrid theory of diffkaction. Appendix B 

describes the modeling of atmosphenc absorption. Appendix C outlines the formu- 

lation for the spherical r&tion coetficient used for modehg the décts of ground 

impedance. Appendix D provides brief descriptions on the Fast Field Program (FFP) 

and the Parabolic Equation (PE). 
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L Direct line-of-sight 

Figure 1.1: The direct line-of;right between noise sources and receiver is shielded by the 
barrier. 
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Figure 13: Various noise bamier configurations. 



Figure 13: Sound rays emitted from source refle-ct and diffract on the way to receiver. 



Figure 1.4: Sound rays are curved as parts of wave h n t s  move at different speeds. 



Figure 1.5: Sound rays present in typical atmospheric conditions [ 1.341. 



Figure 1.6: The direct ray c w e s  over the top of the barrier due to atmospheric 
refiaction. 
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A STUDY O F  2D AND 3D BARRIER INSERTION LOSS 

USING IMPROVED DIFFRACTION BASED METHODS~ 

2.1 Introduction 

Current literature contains a wide vaxiety of methods for evaluating the attenuation 

due to a barria of h i t e  length [2.1, 2.2, 2.3, 2.4, 2.5, 2.61. These methods are all 

diffraction based, which extend the optical geometric theory of cliffiaction to that 

of acoustic waves. One of the sirnplest and most widely used in the engineering 

community, is that of Maekawa [2.1]. He introduced an empiricdy based dfiaction 

model that provides the insertion loss due to a thin-wded barrier in t m s  of the 

Fkesnel number. Maekawa then suggested that the insertion loss for a hite-length 

barrier could be determineci by multiple application of this curve to the deact ion 

paths around the barrier and then summing the energy contributions of these paths. 

There exkt more sophisticated mathematical models for detennining barrier dif- 

kaction coefficients. One model is Pierce's work for diffraction due to a semi-infinite 

wedge of arbitrary angle with ideal (rigid) boundary conditions [2.7]. This model 

c m  determine the dEaction field for both 2D and 3D geornetries, and involves the 

evaluation of Airy h c t i o n s  and Remel integral hinctions. Another model is that 

of K m  and Anderson's for sound attenuation by semi-infinite barriers [2.2]. This 

'A version of this chapter hss b e n  accepteci for publication in Applàed Awustics. 



mode1 also addresses both 2D and 3D gmmetries. In a p a p a  by b y e k  [2.8], other 

difEaction models are diçcusçed. These include the diEraction due to  a half plane and 

a wedge, with either ideal boundary conditions or impedance boundary conditions on 

either face of the plaae/wedge. 

The more exact approach to estimating the insertion 1oss of a barri- is with 

wave-based methods such as the Boundary Element Method (BEM) [2.9, 2-10] and 

Finite Element Methods (FEM) [2.11]. These methods solve the wave equation and 

thus mode1 the phase interaction and the =action field around the barrier. Since 

the probIern of the M e r  is an exterior threedimensional (3D) pmblem with large 

geometry, the BEM/FEM met hods necessitate unreasonable calculat ion t imes. Typ- 

ical barrier geometries at road noise hequencies prove to  be mmputational intensive 

and take in the order of hours, and for some cases days, to solve for one hequency on 

a workstation. This makg  it impossible to conduct typical barrier design tests such 

as frequency sweeps to hi& bequencies, broad band tests, and parametric studies on 

barrier gmmetries wit h the BEM/FEM met hods. 

More recently, Lam (2.61 improved on Maekawa's met hod by surnrning complex 

pressures, instead of energies, of each diffraction path around the barrier. This was 

done to incorporate the phase interaction and intaference between the paths, the 

absence of which, Lam suggested, was the cause of the poor agreement between 

Maekawa's method and experimental renilts. By incorporating this phase interaction, 

excellent agreement was obsewed with experimental and wave-based BEM results. 

With this method t hen, it was possible to obtain wave-baçed accuracy with difEiact ion- 

based calculat ion t ime. 

Due to the initial success of Lam, it was decided to extend the principles of Lam to  

a wider range of source and barrier gwmetries and compare the results to  the wave- 

b a s 4  BEM and FEM. The work described in this paper implements and compares 

the diffraction models of Maekawa, Kurze and Anderson and Pierce. This work a h  

considers and compares both 2D and 3D gametrical modelling, single and parallel 



barrier configurations, h i te  impedance plane considerations and a study of coherent 

and incoherent line sources. 

2.2.1 Background 

For d8iaction based models, the pressure a t  the reoeiver is determinecl by summhg 

the contribution from each diflkacted path as it pmpagates from the source. Fig- 

ures 2.1 and 2.2 illustrate the different diflkaction paths azound a ba,rrier present in 

both two dimensional and three dimemional cases. The presnue due to the diiE-acted 

path a' is 

where Ai, ci and di are the amplitude change at difhaction, phase shift at difkaction 

and the path length of the ditfrxted wave, respectively. The h c t i o n ,  G, is the 

geometric spreading for the source being considered. The total pressure at the receiver 

is the sum of the individual paths, 

where n is the total number of paths being considered. 

For 2D geometries, n = 4 and G = ~ t ) ( k d i ) ,  which is a Hankel function of the 

fint kind of order zero (Figure 2.1). It is used to determine the scattering due t o  

a cyhdrical source. For the 3D case, n = 8 and G = e-jw/di (Figure 2.2). Note 

that there are ten possible paths for the 3D geometry, however only eight of which 

are applicable for any source-receiver configuration. When the receiver is closer to  

the ground, paths 7 and 8 are r e p l a d  with paths 9 and 10 which consider ground 

reflections on the receiver side. 

In this Chapter, Lam's principles incorporating various diûkaction models will 

be compared. For 2D geometries the diffraction models mnsidered are Kune and 



Anderson's equation, and Pierce's equations, while for 3D geometries the f i a c t i o n  

modeIs considered are Maekawa's curve, K m  and Anderson's equation, and Pierce's 

qua  t ions. 

2.2.2 Lam's method using Maekawa's curve 

In Lam's paper, the equation for the h i t e  barrier insertion lass is given by 

where Ni is the f isnel  number for the ith path, and M is the insertion loss value 

h-om Maekawa's curve. The subscript O refers to the direct path (kom the source to 

receiver) and the subscript r refers to the ground reflected path (kom the source image 

to receiver) . Maekawa's 

The Resnel number 

curve can be represented by the following two equations 

is given by 

where (A + B - d) is the path length difference as shown in Figure 2.3, and X is the 

wavelengt h. 

Lam's equation for finite barrier insertion 1- can be broken down to determine 

the pressure due to each of the diffkacted path in the form of Equation 2.1 

where A. is an amplitude term and can be determined by 



using Maekawa's difbaction equations. In this equation, do is the direct path length 

from the source (image) to receiver (image) depending on what path is king consid- 

ered. 

Note that Lam's method incorporating Maekawa's c w e  only acwunts for the 

amplitude change at the difkaction edge (Ai in Equation 2.5). The phase shift (7r/4) is 

included in Equation 2.5 based on Lam's suggestion that the phase shift a t  diffraction 

(for 3D gecmetries) reaches an asymptotic limit of 1~/4 at hi& kequencies, in the far 

field and the shadow zone [2.6]. Note that Equation 2.5 appears to predict a phase 

shift, however, this phase shiR is not unique in that it is applied to d the paths. The 

unique difEaction effects for each path reside in the amplitude term of Equation 2.5. 

2.2.3 Lam's method using Kune and Anderson's equations 

2 . 3 1  30 - Point source 

K m  and Anderson formulateci an equation that determines the reduction of sound 

pressure level due to the insertion of a semi-idhite basrier between a point source 

and receiver [2.2]. A slight ly m&ed version of their equation is 

d ( ï  - cot $(O - a)) 
IL(dB) = -201og 

2x(A + B )  

See Figure 2.4 for an explanation of the synibols. Note the 6/X term in the denom- 

inator. The symbol, 6, is the path length ciifference between the d3Eracted and the 

direct pat h ((A + B - d) from Figure 2.4). For receivers close to the Zim-of-sight of the 

source, 6 is s m d ,  and the equation diverges. Same can be said for large wavelengths 

A, or low frequencies. Thus it would be reasonable to assume that this equation is 

more applicable for high &equencies and for receivers in the deep shadow region. 

The pressure for each diffraction path in the form of Equation 2.1 for the 3D 

geometry implementing K m  and Anderson's formulation can then be detennined 



This equation has the same properties as Lam's method implementing MaRkawa's 

curve in that it only accounts for the amplitude change at the diffraction edge. Also 

note that the phase shift at difkaction edge is assumed to be the asymptotic b i t  of 

7r/4 folIowing Lam's suggestion for d.î&action for 3D pmetr ies .  Using Kurze and 

Anderson's &action model, it is once again seen that the dfiaction for each path is 

really only an amplitude adjustment, as all paths receive the same phase adjust ment. 

2.232 2D - Line source 

Kuxze and Anderson's equation for the 2D line source and semi-inhite barrier is 

similar to the one for the point source, except for a few variable changes. 

d(1- cot $ (O  - a)) 
IL(dB) = -20 log 

See Figure 2.4 for an explanation of the symbols. Noting the sunilarity between this 

equation and the one for the point source, it csn also be said that this equation is 

valid for high fiequencies and for receivers deep in the shadow region. 

The idea of an amplitude change at difbction for the 3D case is adended for 

the 2 0  line source case. The pressure for the i" diffiraction path in the form of 

Equation 2.1 for the 2D geometry is determined by 

d(i  - cot i (0  - a)) 
pi = ) (- j~Al ) (kd i ) )  

( q ~ t  + BI, 

Note that a phase shift of n/4 was not introduced in this equation, as it was in 

Equation 2.8, since there was no justification to do so. Lam's suggestion was in the 

context of 3D gometries, whereas Equation 2.10 is for 2D geometiies. However, 

tests were wnducted with the phase shift of r/4 introduced in Equation 2.10 and 

were compareci to the case for without this phase shift and there was little difference 

between the two cases. 



2.2.4 Lam's method using Pierce's equation for f i a c t i o n  

Pierce fomulated an apprcncimate solution to the wave equation for the s i n g l d g e  

diffraction by a semi-infinite wedge [2.7]. nis solution considers cases where the 

source and receiver are at  large distances h m  the barrier in terms of wavelength. 

Figure 2.5 shows the geometry wnsidered. Dfiaction due to a semi-intùllte thin 

screen is a special case where the angle is equal to 27r. 

2.2.4.1 30 - Point source 

Pierce's equation reduces to the following for a 3D point source 

where 

The hinctions f and g are series representation of Fkesnel integrah and AD is the Airy 

hinction. Since the Airy hinctions are complex hinctions, the diffkaction effect for each 

path is a complex numerical value. Hence, Pierce's diffraction mode1 determines a 

phase shift at  the *action edge in addition to the amplitude change. 

2.d4.d 2D - Line source 

In modifyuig Pierce's equation for a cylindrical source, the only change introduced is 

the term for cylindrical spreading. 



2.2.5 2D knpedance Plane 

Chandler-Wilde and Hothersall studied 2D amustic propagation above a homogenous 

impedance plane [2.12]. In addition to the direct and the ground rdected pressures, a 

pp  term is introduced. This is a correction term to adjust the pressure at the receiver 

due to the presence of the irnpedance plane. The pressure a t  the receiver in Figure 2.6 

is thus given by 

Note that the factor of 4 in hont of the pg t e m ~  is due to the fom of the kernel 

bc t ions  used for cylindrical spreading. The correction term pp depends on the wave 

number k, the path length of the ground rdected wave r', the angle of incidence 4, 
and the relative impedance of the ground P. M h a  details on the mrrection term 

pa can be obtained fiom [2.12]. 

The rnanner of the impedance plane application to barrier dculations is best 

described by illustration. Take, for a m p l e ,  path number 2 fkom Figure 2.1. This 

path is shown on an impedance plane in Figure 2.7. For hard ground, the presure 

at the receiver would be 

pz = A@z(- j ~ ( ' ) ( k & ) )  

where At and C2 are the amplitude and phase change at difFraction. With the intre 

duction of the impedance plane, the pressure at the receiver is 

where dt is the path length of path 2. However, for path 4 from Figure 2.1, t h e  

are two ground reflections present. For this path, the pressure at the receiver is 

determined by (as shown in Figure 2.8): 



A source placed between two paralle1 barriers was modelled using the multiple image 

method with the diffraction based methods. Figure 2.9(a) shows pardel barriers of 

separation of d. A source is placed a distance xi fkom barrier number 1, x2 from 

b d e r  number 2, and a height of h, above ground. A receiver is placed on the far 

side of barrier number 2. This scenario would involve several refiections between the 

barriers. This can be modelled by replacing barrie number 1 with an infinite series 

of sources, in theory, as shown in Figure 2.9(b) [2.13]. The total pressure at the 

receiver is then determined by summing the pressure contributions kom a large, but 

h i t e  number of source. images. In testing, it was found that anywhere &om 50 to 200 

images were required to achieve convergence. Note that such large number of image 

needed for convergence was verifid by using the multiple image method with BEM 

to model pardel barriers. 

2.3 Applications 

The results for the dfiaction methods are c u m p a d  to their wave-based counter- 

parts, which will çave as the benchmark cases. The wmmercial software SYSNOISE 

[2.14], which uses both the boundary element and finite element methods to model 

acoust ic problems, was used to provide mve-based results for cornparison (2.151. Con- 

vergence tests for each of the modek was conducted to ensure sufncient number of 

nodes/elements were used in rnodelling of the barriers. 

The diffraction results were calculated for both the shsdow mgion, where the 

receiver is hidden from the source, and the illumination region, or the bright zone. The 

paths involved when the receiver is in the illumination region is shown in Figure 2.10 

for the single ba.rrier case. The coherent sum of the pressures hom each path then 

provides the total pressure at the receiver location. For the pardel barria case, the 



sum of the pressure contributions hom all of the source images from both barriers 

provides the total pressure when the receiver is in between the bamers (illumination 

zone). 

The following results are provided as insertion lm. This is the difference in sound 

pressure levels with and without the bama(s). 

2.3.2.1 Single Ban-ier 

The first test is that of a tw~dinaensiona.1 line source placed in kont of a single infinite 

barrier. The barrier is 3 m high and the source is placed 0.5 m kom the ground (rigid) 

and 7.5 m fkom the b d .  Figure 2.11 shows a cornparison of the insertion loss at 

250 Hz along a line that runs 1.5 m off the ground and 50 m on either side of the 

source. This cornparison shows the 2D boundary element method modeling and the 

2D Larn/Pierce and LamlKune and Anderson (K&A) formulations. A remarkably 

good agreement is seen throughout the range, even though we might expect otherwise 

for receivers that are close to the barrier based on the assuinptions for both Pierce's 

and K&A's rnodels. 

Figure 2.12 compares the same three methods for a directivity plot of the acoustic 

pressures at a radius of 10 m fkom the base of the barrier a t  a kequency of 250 Hz. 

Good agreement is observed over m a t  of the angular range sccept in the lineof-sight 

region where the Lam/K&A method breaks down as expected. It should be noted 

that we could have made use of a special equation that Pierce developed for receivers 

close to this the lineof-sight region. However, it was not pursued owing to the good 

agreement in Figure 2.12 in this region with his original formulation. 

The &al test case for the single b& is a fkequency response. The same source 

and barrier positions are used, but now a receiver is placed 30 rn fiom the source and 

3 m kom the ground. Figure 2.13 shows the cornparison of the fiequency response 

fimctions over a range of 2000 Hz. The three methods are nearly indistinguishable 



sccept in the lower fiequency range, where the Lam/K&A method begins to deviate 

slightly. This is expected as based on the hequency conditions of K&A's model and 

the fact that the receiver is not in the deep shadow region, leaving 6 to be small. 

A line source is placed in between a set of 2D pardel bazriers. The source is 0.5 m 

bom the ground and the barriers are 3 m t d .  Two different spacings of the  barriers 

are considered: 15 m and 30 m. Figures 2.14 and 2.15 show a cornparison of the 

insertion loses for barrier separations of 15 m and 30 m respectively. The source 

Erequency is 1000 Hz and a line of receivers is placed 1.5 m kom the ground running 

50 m on either side of the source. This rnodeling scenario proves to be more of a 

challenge for the Lam/Pierce and Lam/K&A methods due to the multiple r h t i o n s  

between the barriers that take place. &th of the difbaction methods generdy agree 

within 5 dB for the 15 m case and within 3 dB for the 30 m case. The 30 m separation 

exhibits better agreement due to the less e n d d  setting and thus fewer reflections. 

The multiple image method was alço implemented with BEM. This yielded results 

that were close to the difkaction method results but different fkom the p a r d e l  barrier 

BEM model. This is thought to  be because wave based methods, in addition to 

modeling multiple sound reflections between barriers, also mode1 other, more cornplex, 

wave behaviom that may be occuring for a source in between parde l  barriers. 

Figures 2.16 and 2.17 compare the pressures at a 30 rn radius fkom a 1OOO Kz 

source with the barriers separated by 15 rn and 30 m respectively. In both cases, the 

LamIPierce method shows much improved performance over the Lam/K&A model. 

This is especially tnie in the shadow regions of the barriers, where the difEraction 

of the multiple image sources is occurring. With the inability of K&A's model to 

account for phase shiR a t  diffraction, the compounded error is large. 

Figure 2.18 compares the hequency response for a point located 30 m fiom the 

source at a height of 3 m fkom the ground for the 30 m separation case. I t  is observeci 



that the Lam/K&A method exhibits large shortcomings over much of the fiequency 

range, while the LarnfPierce method is quite close. In these multiple rdection cases, 

we see the advazltage in using the Pierce dEaction model due to its ability to be 

able to mode1 both the amplitude and ph- change at the bamer edge. 

The 2D irnpedance plane r d t s  are comparecl with a 2D acoustic finite dement model 

[Z. M] so that the effects of h i t e  ground irnpedmce could be considered. Figure 2.19 

shows the sound pressure levels for hard ground and for relative gound admittances 

of p = O. 1 and p = 0.5. The LamIPierce n;ff;.action r d t s  agree well with the f i t e  

element rnodels over the tested range. 

Figure 2.20 shows a kequency response over the range of 10,000 Hz for the im- 

pedance plane without taking a barrier into consideration. The heights of source and 

receiver are 0.5 m and 1.5 m, respectively, and d is the distance between the source 

and receiver. The familiar insertion dips due to the irnpedance plane are observed at 

apprmimately NO Hz for P = 0.5 for all source-receiver distances shown. 

In the h t  part of this pper, we explainecl three ways for calcdating 3D amustic 

pressures/insertion losses h m  diffraction methods: Lam/Maekawa, LamfPierce and 

Lam/K&k These will now be cornpared against the 3D boundary element method. 

Figure 2.21 shows the insertion los  dong a receiver line running perpendicular to a 

30 m wide barrier. The source is placed 0.5 m fiom the ground (rigid) and 7.5 m 

kom the bamier. Figure 2.21 compares the insertion loss of the four methods a soume 

kequency of 250 Hz. All the diffraction rnodels provide results that are close to the 

BEM results. There does not appear an advantage of one diikaction method over 

another in this case. 

A polar plot of sound pressure at a distance of 30 m and a fkequency of 250 Hi is 



shown in Figure 2.22. In this figure it is seen that all methods yield good r d t s  at low 

angles and apprcWmate r d t s  in the illumination areas above the source. Figure 2.23 

shows a frequency response cornparison for the three Lam methods. This figure shows 

the response h m  O to 2000 Hz for a point that is 30 m away kom the barrier and 1.5 m 

fkom the ground. The three methods agree well over most of the bquency range, 

however the Lam/K&A method does deviate over the central kequency region. BEM 

r d t s  were not included in this test as large me& sizes were required to satisfy the 

convergence criterion of 6 nodes per wavelength in the fkequency range considered. 

As such, the comput ational requirements acceeded current iy available comput ational 

abait ies. 

2.3.3.1 Two and Thme Dimemional ComparWm 

Having developed and verified efficient 2D and 3D barrier insertion loss calculational 

schemes, it is now possible to examine an k e  of paramount importance; that beiig, 

how well do 2D prediction methods work for truly 3D geometries? Daumas [2.16] 

and subsequent authors cornpareci insertion 1- between 2D and 3D geometries 

and found close agreements between the two. The r d t s  can now be verified using 

BEM and the *action techniques discussed in this paper. However, for a.ll of the 

preceding tests, the difiaction technique of Larn/Pierce was used. Figure 2.24 depicts 

the fkequency response function of (i) a 2D line source and infinite M e r ,  (ii) a 3D 

point source and infinite barrier and h d y  (iii) a 3D point source and a 400 m hi te  

length barrier. In all cases, the source is 0.5 m fkom the ground and 7.5 rn korn 

the b d e r .  The receiver point 30 m away from the source and 3 m off the ground. 

For this test, very little dXerence is observeci between the three c w e s .  The close 

cornparison of the 3D point source in fiont of an infinite barrier and a h i t e  length 

barrier is not surprising owing to the fact that the contribution of the side diflTaction 

paths is srnd for the long bsrrier considered. The other aspect of this cornparison 

is the inmerence in the results between the point and line sources for the infinite 



barrier model. 

Figure 2.25 taddes this question fiom a slightly different point of view. Here a 

receiver location is selected 50 rn fkom the barri- and the barrier width is changed 

fiom 10 to 2,000 m. This figure compares the insertion loss of a 2D geornetry (i.e. 

line source, infinite bama geornetry) to that of a point source in hont of a h i t e  

width barrier. For both the 250 Hz and 1ûûû Wi c m  it is obsenred that aRer the 

barrier becornes about 300 rn long that there is very little ciifference between the finite 

(3D) and inlinite (2D) rnodeIling. Figure 2.26 is more representative of when a finite 

barrier can effectively be considered infinite. For 6 different combinations of3D murce 

and receiver geometries, the octave average insertion losses for 250, 500 and 1MM Hz 

center fkequencies were calculated (with Lam/Pierce mode1 for 3D geometries) and 

normalized (source locations - 7.5, 15, and 30 m away fkom the barrier, a t  a height of 

0.5 m; receiver locations - 50 and 100 m away kom the barfer, at a height of 1.5 m). 

It is obçerved that, fiom aJl the cases, barri- widths in excess of 300 m can effectively 

be assumed to be inhite. 

2.3.3.2 Point and Line Souîces 

A series of 3D point sources were used to model a 3D line source. Various test cases 

were mnsidered for the source spacing and the line source lengths. It was init idy 

determined that there must be at least four sources per smdest  wavelength consid- 

ered. Additiondy, the length of the apprcDcimated line source was i n c d  until 

convergence was achieved. As an example, Figure 2.27 compares the 2D boundary 

element method fiequency response (from Figure 2.12) to that apprhated  by a 

400 m line source with a source spacing of 0.05 m. The receiver is 30 m hem the 

source and 3 m above the ground. A good agreement is seen thus indicating that the 

length and spacing of the line source closely apprmimates an ideal line source for the 

kequency range considered. 

Figure 2.27 considered a wherent line source, whereas, an incoherent line source 



is of more interest hom a t r a c  noise point of view [2.17]. With the possibility 

of apprcWmating a line source as a series of point sources, this test is possible by 

assigning, at random, a phase shift to each point source. Figure 2.28 compares the 

onethird octave averages for s 2D mherent line source and a 3D inaoherent line 

source for the same source, receiver and barrier geometries as in Figure 2.27. There 

is a signifiant dinerence between the two cases. However, the clifferences depend on 

the relative positions of source and receiver, and, as Figure 2.28 indicates, on the 

frequency content of the source. It should be noted that for a 3D incoberent line 

source, source spacings between 0.05 m and 20 m were tested to find Little dinerence 

between t hem for the geometry considered in Figure 2.28. 

Current limitations are that o d y  coherent line sources can be taken into acwunt 

in 2D techniques and the only way to  mode1 an incoherent Line source is with a series 

of point sources. A worthwhile test would be to  develop correction factors that could 

be factored into 2D coherent source results to transform the results to those for an 

inooherent line source (for t r a c  flow pur-). 

2.4 Conclusions 

To overcome the limitations of traditional wavebased modeling, the diffraction based 

modeling principles of Lam were extended to include the diffraction models of Pierce 

and K m  and Anderson, modeling of 2D geometries, the consideration of parallel 

barriers, modeling the &ect of finite ground impedance, and the consideration of 

3D cohaent and incoherent line sources. In generd, cornparisons with the BEM 

showed that the difiaction models agreed weIl for bot h the single and paralle1 banier 

geornetries. However it was noted that the Lam/K&A rnethod fell short when the 

receivers were in the proximity of the line-of-sight, and when pardel geometries in 2D 

were considered. This is due to  the fact that this method does not predict a unique 

phase shifk at the dfiaction edge for each path. 

A b i t e  Mpedance ground plane was incorporateci into the 2D modeling scheme 



using the work of Chandler-Wdde et al. Single b&er tests on an impedance plane 

compared w d  with the FEM. 2D and 3D modeling strategies where also compared. 

It was found that barriers longer than 300 m could be well appraaimated by a simple 

2D model with a line source. Findy, 3D coherent and inmherent line sources were 

compared to the 2D model. Our testing showed large ciifferences in the 2D line model 

compared to  the 3D incoherent line source case. 

The major conclusion of this work is that iniproved difEsction based models, Like 

those presented in this paper, compare well with and can indeed be used in place 

of the computational intensive wave based modeling methods like the BEM. As an 

example, consider the frequency response c w e  in Figure 2.13. BEM calculations on 

an IBM RS 6000 machine took several hours, whereas the difiaction based models 

produced the same results in a few seconds on the same machine. The wave based 

accuracy and a a c t  ion based calculat ion t imes of t hese modeling enhancements now 

permit fast, accurate predictions of large-sale environmental noise problems. 

2.5 Future work 

The insertion losses reported in this papa are rarely equaled in full-scale experirnen- 

tal tests. This is due to  the fact that the modehg  assumes a stationary, uniform 

acoustic fluid. This is in contrast to real life, where temperature gradients and wind 

greatly affect the transmission of =und energy. The focus of the current research is 

to model these non-uniform atmospheric effects. This research is k i n g  undertaken in 

much the same fashion as it developed for this paper: first to work with and under- 

stand the exact solutions to simple problems of this type using methods like the Fast 

Field Program and Parabolic equation solution and to  then later adapt a ray-based 

approach to give similsr results for a fraction of the calculation tirne. 
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Figure 2.1: Diffraction paths for a 2D b&r geometry. 

xeiver 

Figure 2.2: Diffraction paths for a 3D finite length banier geometry. 



Figure 2.3: Definition of symbols used to determùie the Fresnel number, N. 



Figure 2.4: Defuiition of symbols used in Kune and Anderson's 2D and 3D diffraction 
models. 



Wedge 

Figure 2.5: Dennition of symbols used in Pierce's dBhction model. 
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Figure 2.6: Source and receiver above ground with fini= impedance. 
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Figure 2.7: Path 2 for the 2D barrier geometry with impedance plane. 
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Figure 2.8: Path number 4 for the 2D barrier geometry with impedance 
p Iane. 
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Figure 2.9: The multiple image method used to mode1 2D parallel banier geometry. 
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Figure 2.10: Paths considered when the receiver is in the illumination zone for single 
barrier geornetry. 
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Figure 2.11: Single barrier insertion loss dong a line at 250 Hz. 
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Figure 2.12: Polar plot of sound pressures for single barrier at 250 Hz. 
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Figure 2.13: Single barrier frequency response. 
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Figure 2.14: 15 m separated paraHel banier insertion loss dong a line at 1000 Hz. 



Figure 2.15: 30 m separated paralle1 bamier insertion loss dong a line at 1OOO Hz. 
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Figure 2.16: Polar plot of sound pressures for 15 m apat pardel barriers at 1Oûû Hz. 
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Figure 2.17: Polar plot of sound pressures for 30 m apart parallel M e r s  at 1ûûû Hz. 
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Figure 2.18: 30 rn parallel bmier fkequency response. 
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Figure 2.19: 2D Single barrier with irnpedance plane at 125 Hz. The relative ground 
admittance - Beta. 
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Figure 220: The occurrence of the iinpedance dip as a function of source-receiver 
separation. 
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Figure 221: 3D Single barrier insertion loss at 250 Hz. 



Figure 2.22: Polar plot of sound pressures for singie barrier in 3D at 250 Hz. 
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Figure 223: 3D Single M e r  fkequency response. 
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Figure 2.24: Cornparisons between ZD, 3D infinite and 3D finite barrier width cases. 
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Figure 2.25: Cornparisons between 2D and 3D M e r  geometry by varying 3D barrier 
Width. 



Figure 2.26: Normalized octave average insertion losses at various source-receiver 
locations for varying 3D banier width. 
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Figure 2.27: Line source approximation in 3D with a series of point sources. 
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Figure 2.28: 'Ihird octave results for 2D coherent and 3D incoherent line sources. 



2.1 Maekawa, Z., Noise reduction by screens, Appl. Acowt., 1 (1968) 157-173. 

2.2 K m ,  U. J. & Anderson, G. S., Sound attenuation by barriers, Appl. Acow~., 

4 (1971) 35-53. 

2.3 L'Esperance, A., The insertion l m  of finite length barriers on the ground. J. 

Acowt. Soc. Am., 86 (1989) 174183. 

2.4 Kawai, Y. & Serai, T., The application of integral equation methods to the 

calculation of =und attenuation by basriers. Appl .  Acoust., 31 (1990) 101-117. 

2.5 Pirinchieva.. R, Mode1 study of the sound propagation behind barriers of h i t e  

length, J. Acoust. Soc. Am., 87 (1990) 21042013. 

2.6 Lam, Y. W., Using Maekawa's chart to calculate finite length bémier insertion 

l m ,  Appl. Acowt., 42 (1994) 2440. 

2.7 Pierce, A. D., DZbction of sound aromd corners and over wide barriers. J. 

Awwt. SOC. Am., 55 (1974) 941-955. 

2.8 Hayek, S., Mathematical modeling of absorbent highway noise barriers. Appl. 

Awwt., 31 (1990) 77-10. 

2.9 H o t h e d ,  D.C. Chandler-Wilde, S.N. & Hajminae, M.N., Eaiciency of single 

noise barners. J. Sound Vib., 148 (2) (1991) 303-322. 

2.10 Fyfe, K.R. & Harrison, C. C., Modeling of road noise and optimal ba.rrier design, 

CMHC report #6585/F039 (1995). 

2.11 Cremers, L. & Fyfe, KR., On the use of variable order infinite wave envelope 

elements for acoustic radiation and scattering, J. Acoust. Soc. Am., 97 (4) (1995) 

2028-2040. 



2.12 Chandler-Wilde, S. N. & Hothersall, D. C., On the green function for t n  

dimensional acoustic propagation above a homogeneous irnpedance plane. RE- 

search project, Department of Civil Engineering, University of Bradford. UK. 

(1991). 

2.13 Raymond Panneton, Andre L7Esperance, Jean Nicolas, & Gilles A. Daigle, De- 

velopment and validation of a mode1 predicting the pedormance of hard or 

absorbent pardel noise barriers. J. Acoust. Soc. Jpn. (E) 14, 4 (1993) 251-258 

2.14 SYSNOISE acoustic modeiing software, LMS/NT Belgium, ver 5.3 (1996). 

2.15 R. Seznec, Diffraction of sound around barriers: use of boundary element tech- 

niques. J. Sound and Vib. 73(2), 1980, 195-209 

2.16 A. Damas, 1978 Acustica 40, 213-222. Etude de la *action par un ecran 

mince dispose sur le sol. 

2.17 D. Duhamel, EBicient calculôtion of the three-dunensional sound pressure field 

around a noise barrier. Journal of Sound and Vibmtion (1996) lW(5) ,  547571. 



ACCURATE BARRER MODELING IN THE PRESENCE OF 

ATMOSPHERIC EFFECTS' 

3.1 Introduction 

There are numerous techniques for determining the performance of noise barriers. 

The more commonly used techniques in practice are difkaction based because of 

their calculational &ciency [3.1, 3.2, 3.3, 3.4, 3.51. These techniques are baçed on 

geornetrical ray theory and extend the theory of optical diffraction to that of amustic 

waves. These techniques are prirnarily energy based and thus ignore phase. The 

more exact approach to estimating barrier insertion l o s  is with wave based methods 

such as the Boundary Element Method, BEM [3.7, 3.81, and the Finite Elernent 

Met hod, FEM, and in particular the infinite wave envelope met hod (IFEM) [3.9,3.10]. 

Wave based methods solve the governing wave equation and thus model stactly the 

reflection, diffraction and the phase interferen- in the sound field around the barrier. 

However, wave based methods require excessive wmputational times with increased 

geometry dimensions and analysis frequency. 

Lam recently introduced an improved diffraction based method that included 

phase interference [3.6]. Muradali and Fyfe extended this work to  include the model- 

ing of two dimensional geometries, the cornparison of two and three dimensional rnod- 



eling, the mnsideration of pardel barriers and modeling the effect of hi te  &round 

impedance [3.14. Cornparisons with the wave based methods demonstrated good 

agreements, with the diffraction based methods taking only a fraction of the calcu- 

lation times. The quick calculation times dowed for a series of barrier tests such as 

kequency sweeps, octave averaging and varying barrier width tests. 

Although these techniques for evaluating b-er performance have received wide 

acceptame, it has been w m o n l y  noted that the actud acoustic performaace of 

barriers is diffkrent h-om what is predicted by these modeling tools. This is because 

ail the above mentioned techniques assume a homogeneous, stationary atmosphere. In 

actuality, the atmosphere consists of wind and temperature gradients, and turbulence, 

all which affect the -und speed profile. These inhomogeneities greatly &ect the way 

in which the sound energy is transmitted. 

Several techniques have been developed to model sound propagation in non- 

homogeneous medium conditions. These include the Fast Field Program (FFP) 

[3.12, 3.131 and the Parabolic Equation (PE) (3.14, 3.15, 3.161, to name a few. These 

techniques can take into account various types of sound speed profiles, and the PE 

formulations can also mode1 the effects of turbulence [3.17]. However, these tech- 

niques are generally restricted to  flat ground propagation and only model axisym- 

metric gametries. Moreover, these models requke acessive amputational times 

and a detailed understanding of the controlling parameters to provide reu l t s  t hat are 

representative of the atmospheric conditions king considered. 

To counter the problems associated with excessive computational times for mod- 

eling atmospheric inhomogeneities, L'Esp6rance et d recently developed a mode1 

based on geometrical ray thwry to predict outdwr sound propagation [3.18]. This 

model, hereby r e f d  to as the heuristic model, assumes a linearly varying sound 

speed profile which d o w s  an analytical determination of a l l  the possible rays between 

a source and receiver, and the associated ray parameters. The curvature of the rays 

is based on Snell's law which states that the direction of the sound ray changes in the 



presence of a sound speed gradient [3.18]. For a linear sound speed profile, the result- 

ing sound rays are circular. As the sound speed increases with height (downwind or 

nighttime conditions), the rays curve badc towards the grand. For upwind or day- 

tirne conditions, where the sound speed decreases with height, the sound rays cuve 

t o m &  the W. These rays are depicted in Figure 3.1. The heuristic model handles 

the two sound speed gradient cases separately. For the downwind conditions (posi- 

tive =und speed gradient), many rays can appear between a source and a receiver 

with multiple r h t i o n s  on the ground [3.19]. For the upwind conditions (negative 

=und speed gradient), a shadow zone emerges past which the sound premires are 

determined using a difkact ion theory based on a residue series solut ion. The heurist ic 

model also includes the effects of ground, atmospheric absorption and turbulence. 

Experirnental studies have been conducted to study the effets of wind on acoustic 

b& performance [3.20,3.21]. Both studies concludecl that the wind does affect the 

barrier performane and that it is the case for downwind mnditions (positive sound 

çpeed gradient) that the performance of the b& is degraded. In a separate study, 

Daigle investigated the dects  of turbulence over top the barriers [3.22]. The overd 

effect was to scatter some of the sound energy down to the shadow regions close 

to the barriers thereby reducing the shielding &ect of the barrier in these regions. 

Cornparisons with experimental results showed that this was the case especially at 

higher fiequemies. 

Salomons recently developed a model, based on gametrical ray thwry, to include 

at mospheric r&xt  ion in b& performance calculat ions [3.23]. Corn parisons wit h 

the PE technique, with a thin screen incorporatecl, showed good agreements [3.24]. 

This work only included downwind conditions and was considered for long range sound 

propagation. Moreover, it excludes the rays that undergo multiple rdections off the 

ground unda the notion that these rays are absorbed in the presence of absorbing 

ground. The only rays considered are the rays that travel from the source to the 

barrier top and hom the barrier top to the receiver. In the presence of absorbing 



ground, the curvature due to the refkactive profile are included in barrier insertion 

Iohs calculations, howwer, in the presaice of a perfectly reflecting ground, these rays 

are assumed to be straight. Another weakness in this formulation is that, in the 

presenœ of a d o w n m d  refiacting atmosphere and at large distances away fiom the 

b&, it is possible to have sbme sound rays passing over the barrier unattenuated 

[3.25], the effets of which m e  not discussed by Salomons. 

For this present study, the heuristic atmoepheric model is combined with Pierce's 

difEaction equations for a thin screen [3.26] to provide a more accurate means of 

bamer insertion loss predictions with the ben& of the trivial calculation times asso- 

ciated with geometrical and difhction based techniques. The model, hereby referred 

to as the combine. model, includes the contributions of the many ~ i b l e  rays with 

multiple reflections on the ground and a h  the possible rays that p a s  o v a  the bar- 

rier unattenuated. Also included are the effets of ground absorption, atmospheric 

absorption and turbulence. Li this work, only the case for the positive sound speed 

gradients (downwind or nighttime conditions) are mnsidered. The  results fiom the 

combined model are compared to the PE formulation incorporating a thin screen 

[3.24]. Some preliminary applications of the mmbined model are also presented. 

3.2 Model Descriptions 

First, classical barrier modeling in homogeneous atmospheric conditions using the 

method of Lam [3.6] with Pierce's difEaction mode1 [3.26] will be described. Then a 

short description of the heuristic model developed by L'EsPQIance et al [3.18] will 

be presented for sound propagation in the presence of atmospheric oonditions. The 

combination of the heuristic mode1 with Pierce's diffkaction equations for modeling 

barria insertion loss in the presence of atmospheric conditions (a linear sound s@ 

profile) will then be described. 



3.2.1.1 The Method of Lam Imrpomting Pieme's Equations for Dimction 

For diffraction based methods, the pressure at the receiver is deterrnined by surnming 

the contribution from each difEracted path as it propagates from the source to  the 

receiver. Figures 3.2 and 3.3 illustrate the different difkaction paths amund a barrier 

present in both two dimensional and three dimensional geometries. The pressure due 

to the di&acted path i is 

pi = ~ i e ' C t ~ ( k d i )  

where A, Çi and di are the amplitude change at diffraction, phase shift at difbaction 

and the path length of the difhcted wave, respectively. The hinction, G, is the 

geometric spreading for the source being oonsidered. The total pressure at the receiver 

is the sum of the individual paths, 

where n is the total number of paths being considered. 

For 2D geometries (Figure 3.2), ta = 4 and G = ~ f ) ( k d i ) ,  which is a Hankel 

Eunction of the h t  kind of order zero. It is used to determine the scattering due 

to a cylindrid source. For the 3D case with a barria of lînite width ( F i e  3.3), 

n = 8 and G = e-jM</di. Note that t h a e  are ten possible paths for the 3D geometry, 

however only eight of which are applicable for any source-receiver configuration. When 

the receiver is closer to  the ground, paths 7 and 8 are r e p W  with paths 9 and 10 

which consider ground rdections on the receiver side. 

For the =action effects at the barrier edge, Pierce's formulation, which is an 

appraximate solution to the wave equation for the single-edge diEraction by a semi- 

infinite wedge [3.26], is d. Hi solution considers cases where the source and 

receiver are at  large distances fkom the bamer in terms of wavelength. Figure 3.4 

shows the gmrnetry considad. Deact ion  due to a semi-infinite thin screen is a 

special case where the angle P is equal to 2n. 



Pierce's equations for barrier edge eff'ts reduce down to the following for both 

2D and 3D geometries: 

where 

In the above equations, f and g are series representations for the Etesne1 integral 

functions, and AD is the Ajr function. Rom this point forward A& will be denoted 

as the coefficient for difEaction, Cd. 

3.2.2 Banier Modeling Including Atmospheric Effects 

3 . 2 1  The Heuristic Model 

The heuristic model described below assumes a linear sound speed profile which per- 

mits an analytical determination of all the rays (and the associated parameters) be- 

tween source and reeiver location on a Bat, idhite half-space [3.18]. The discussion 

below is intended to supplement the heuristic model description offered in L'EspQance 

et cd's respective publication. 

Sound Speed Proflle Under typical conditions, the air temperature and wind vary 

with height , and thus so does the effective sound speed. The heuristic mode1 assumes 

a linear relationship between the speed of sound, c, and height, y, in the form 



where cg is the speed ofsound on the ground in m/s, and o is referred to as the sound 

speed gradient, which has the units of m-l. For barrier performance predictions, the 

sound rays curving t o m &  the ground are of particular interest, as edier d i s c d .  

This occurs when a > 0. 

The following table associates mmmon atmospheric conditions with some values 

of a. Positive values of a refer to nighttime conditions, whereas negative d u e s  refer 

to daytime conditions. 

a (m-') 

0.00001 

0.0001 

Table 3.1: Common atmospheric conditions associated with sound speed gradients. 

-- 

Common atmospheric conditions 

Cloudy conditions, no wind. 

Calm, semi-cloudy, light breeze condit ions. 

0.00 1 

0.01 

Sound Rays in the Presence of a Positive Gradient Under a positive gradient, 

more than 2 rays may appear between a source and a receiver as shown in Figure 3.5. 

The following 4th order equation haa been shown to determine all of these rays, 

S trong inversion, clear skies, breezy condit ions. 

Strong winds. 

where b: = (2 + agi) (R/u)  for i = s (source) and r (receiver) , and n = 1,2,3 ,  . . . is the 

number of rdections on the ground [3.19]. 

This equation determines the locations, x ,  of the first refiection for rays that 

undergo n reflections on the ground. Sinœ this is a fourth order equation, it is 

possible to get up to 4 rays for each n 2 2. For n = O (i.e. no reflections on the 

ground) there is only one ray that appears, that is from the source to the receiver, and 

is always present. For each additional n, aU of the real rwts  pertain to the valid rays 



betwen the source and receiver. This equation must be solved for all n until there 

are no real mots (or until the appearance of wmplex amjugate mots). Figure 3.6 

shows these x locations for rays with 1 and 2 &round reflections. Figure 3.6(a) is for 

n = 1 (i.e. each ray having single p u n d  reflection). The x locations for the first 

rdections, a3 deterrnizled by Equation 3.5, are xi and x2 for both of the rays shown. 

Note that only 2 rays are shown for n = 1, however it is poasible to obtain up to 3 

rays for the case of single ground rdection. Figure 3.6(b) shows two rays undergohg 

2 ground refkctions (n = 2), with xi and 22 King the locations of first re£lections. 

However, for this and higher values of n, it is possible to obtain up to 4 rays. 

To demonstrate the stages for determining the ray parameters, consider the case 

shown in Figure 3.7. This is the case for n = 1 (each ray having one reflection on 

the ground). For this case the 4th order equation containeci two real mots for the 

source-receiver geometry and the gradient King considered. Thus there are two rays 

that appear for n = 1, with the locations of the h t  rdection k i n g  Da, and D, . 
The ray parameters needed for further calculations are the length of the ray, ha,, 

the angle of incidence to the ground, T&, and the time of travel from the source to 

the receiver, T, .~ .  These parameters are determinecl with the help of the following 

equations, 

where 

and 

These equations pertain to Figure 3.8 where the source is on the ground and the 

receiver is at a height of y,. Note that the ray is curved, however it has not passed 



the point of maximum height. When the receiver h a p p a s  to be at the location of 

maximum height for the ray, y,, the following equations apply, 

The length and travel tirne of the rays with multitude of reflections on the ground 

can be determined by simple additions and deductions using the above equations. 

Consider again the case shown in Figure 3.7. The ray lengths and travel times for 

both of the rays are determined using the results b m  Equations 3.6-3.13 in the 

following fom: 

Note that the component of ray #1 going bom the ground to the receiver passes its 

maximum point. Thus, the latta part of Equat ions 3.14 and 3.15 is s correction for 

this length. The same can be said for ray #2, except now for the component going 

from the source to the ground. 

In general, the parameters for a ray undergohg n reflections can be determined 

using the following expressions: 



Note that R(y,) , R(y,) , ~(y.), and ~(y,) should be correcteci if the maximum height 

has been passed (D > Dm). 

Once the parametma for aU rays between the source and the reoeiver have been 

determineci, the pressure at the receiver can be detetrnined by the following Bcpres- 

where A(&,) is the atmospheric absorption coefficient and Q is the spherical wave 

reflection coefficient detemineci as shown in the Appendices. I t  is important to note 

that the phase interference between the rays is determineci using the hequency and 

the travel times instead of the wave number and the length of the rays, because the 

wave number changes with height in the presence of a varying sound speed profile. 

3.2.2.2 Applicatim of Pierce's Equations in Non-Homogenww Medium 

Pierce's formulations describeci earlier are for homogeneous medium conditions. In 

the presence of a varying sound speed profile, the wavelength changes with height. 

This d c t s  the equation for X(6) in Ekpation 3.3, and is thus modifiecl to, 

X(0)  = [y] [-2 CU (y 
where r. is the travel time fÏom the source to the barrier top, r is the travel time 

fiom the barrier top to the receiver, and f is the hequency of the spherical source. 

To demonstrate the applications of Pierce's equations for non-homogeneous medium 

conditions, consider a single ray going h m  the source to the receiver, via a barrier 

edge as shown in Figure 3.9. The ray parameters are determineci by considering the 

barrier top both as a source and a receiver. With the heuristic model, the length 



of the rays on either side of the barrier, as well as the associated t r a v e l - t h  are 

determined, and the parameters for the single ray going h.om the source to receiver 

are given by 

R a v  = R, + Rm (3.22) 

Howwa, to determine the d c i e n t  for diffraction, Cd, b m  Pierce's equations, 

the angles incident on the b& top are required. Ekpressions for these angles 

are not given in the heuristic model, but with some geometrical manipulations, the 

following expression can be shown to determine these angles relative to the horizon, 

Figure 3.10 shows this angle. Note that a minor correction to the angle would be 

necessary in the went the ray passes its maximum height (D > Dm). In addition, 

$J~ ,  for any ray incident upon the b& top must be adjusted to the angles 0 and 8, 

for input into Pierce's equations depending on what side of the barrier the ray &ts. 

The coetfcient for =action for the single ray in Figure 3.8 is then determined 

by 

C d  = Pierce(&vj Tr, rr, , ~ r o ~  1 f 9 8,eo) (3.26) 

where the parameters in the brackets are used in Pierce's equations. 

3.2.2.3 T h e  Combined Mode1 

When considering ail of the rays between a source and receiver separated by a barria, 

numerous rays can appear and disappear depending on p m e t r y  and the sound speed 

gradient. The case shown in F i e  3.11, a point source in fiont of an infinitely wide 

barrier, is that for a = 0.1, h m  the sound speed - height relationship given in 

Equation 3.4. The heuristic model detemined 2 rays between the source and the 



barrier top, and 4 rays between the barrier top and the receiver. Thus the total 

number of rays that difbact off the e e r  is 8. The parameters associateci with 

these 8 rays are determined as shown in the previous section. 

In addieion, all the rays between the source and the receiver that pass over the 

barrier must slso be considerd For the case shown in Figure 3.11, there are 5 

such rays. Since these rays are not attenuated by difbcting off the barrier top, 

the diffraction d c i e n t  for these rays are assigneci the value of 1 (Cd = 1 + jO). 

However, it should be noted that this may not be the case for some of these rays as 

they may pass close to the barri- edge and, as a r d t ,  be difhcted down to the 

shadow region. This &8ct has not been included in the current combined model. 

Once the parameters for all the rays are determined, the pressure a t  the receiver 

point can be determined by the following equation: 

(ri - + Arg (g) + ("1 
where N = 13 for the case shown in Figure 3.11. 

3.2.2.4 Modeling the e fféc ts of turbulence 

The atmosphere is neither homogeneous nor is it associateci with a single sound speed 

gradient throughout the entire travel of any particular ray. Several inhomogeneities 

occm in the atmosphere within any time period. As air moves past vegetation, or 

as s m d  m e t s  of air rise and descend, atmosphgic tubules are generated which 

cause fluctuations in the wind velocity gradients. Fluctuations in the temperature 

gradients can be caused, for example, by the intermittent heatiag of the ground by 

the sun in the presence of a band of moving clouds. Such conditions r e d t  in a sound 

speed gradient that fluctuates with tirne. 



In a recent study by L'Espérance et al., the &ts of atmospheric turbulence were 

modelled using the Fast Field Program by conducting a weighted average of the sound 

pressures due to the instantaneous sound speed promes rneasured within a specified 

t h e  period (3.271. The results cornpared w d  with field measurements made under 

the same atmospheric conditions. 

For this study, the &ects of turbulence m e  modeUed dong the sazne lines as 

L'Espérance et al. The sound pressures due to single linear profiles within a speciûed 

range, as shown in Figure 3.12, were averaged as shown by the following expression 

2 
C P: 
i d  

Pave = - m 

where 2 is the pressuresquared due to the ith profile, of a total of rn profiles con- 

sidered. 

The proposed model is k t  comparecl with the Parabolic Equation (PE) formulation 

inmrporating a thin srseen [3.24]. The controlling parameters used for this study are 

the same as thme used by Salomons for the 100 and 1000 Hz aises. It should be 

noted that the results in the illumination region are not accurate as both the PE and 

the combined model do not amount for r k t i o n s  off the bamer. However, it is the 

r d t s  in the shadow region that are of most interest. 

The results for the model verifimtion are shown as relative sound pressure levels. 

This is the sound pressure relative to hee field geometrical spreading. All other results 

are ahown as insertion loeses (IL). 

For computations, the speed of sound at the ground, cg, was assigned the value of 

343 m/s. For ground properties, hard ground was assigned an effective flow resistivity 

value of 10,000 cgs Rayls, md soft ground was assigned a value of 300 cgs Rayls [3.28]. 



3.3.2 Model Vedcat  ion 

3.3.2.1 The Heuristic Model Vm&ation and Observations 

Figure 3.13 shows the PE model and the heuristic model results at 100 Hz for the 

source and receiver, both st a height of 2 rn, above rigid ground. This figure demon- 

strates the tme nature of the heuristic model. The PE levelç increase wntinuously and 

the heuristic model levels schibits step changes. The locations of these step changes 

inaicate that additional rays appear, as determined by Ekpation 3.5. However, it is 

o k e d  that the heuristic model approucimates the PE solution. 

The case for çoft ground for the same conditions as in the prevîous figure, is 

shown in Figure 3.14. Here, it is noted that the rays that appeared at about 220 m 

and 250 m do not contribute greatly to the sound field as they are a b r b e d  due to 

multiple r&tions on the soR ground. 

Figure 3.15 shows the results a t  1OOO Ki  for a source and receiver above soft 

ground. Once again, the source and receiver are 2 m above the ground. The results 

for both techniques agree well. Additional rays do not appear for the range considered. 

However, the resdts are merent  than the case for still air and this can be attributed 

to the curvature of the rays. 

3.3.2.2 The Conrbined Model Verificutaon 

Figure 3.16 shows results with a barrier, at  100 Hz above soft ground for the same 

source and r e ~ i v e r  heights as the previous figures. The barrier is 4 m high and 30 rn 

away kom the source. Additional rays appear at  about 160 m and 260 m that result in 

the step changes at  these locations. However, it is observed that the wmbined model 

resuits, once again, appmxixnate the PE results. The spurious oscillations in the PE 

results originate from the numer id  integration used in the calculational procedure 

[3.24]. 

Figure 3.17 shows the case at 1000 Hk for the same source-barrier-receiver geom- 



etry as in Figure 3.16. Again, good agreement between the two models is observed. 

3.3.3 Applications 

Figure 3.18 shows insertion loss (IL) vs. receiver position for 2 gradients, namely the 

strong (a = 0.01) and moderate (a = 0.001) gradients at 500 Hz. Also shown are 

results that for an averaged gradient field and the homogeneous case. The source is 

0.5 m above the ngid pund and 10 m away hom the 3 m high rigjd barrier. The 

receiver positions are 1.5 m above ground and extend up to 300 m away h m  the 

barrier. It is o k e d  that the results vary wildly when considering only a single 

gradient. However, due to turbulence and local deviations, the atmospheric sound 

speed gradient changes constantly, and as such, averaged d t s  over a range of sound 

speed profiles better depict reality. The averaged results, hereby designated as the 

turbulent condition, for this and all of the subsequent figures, were conducted lineaxly 

over 10 sound speed profiles ranging from a strong gradient (a = 0.01) to a moderate 

gradient (a = 0.0001). 

Figure 3.19 shows the same test case as the previous figure, except now the tur- 

bulent and homogeneous conditions are mrnpared for both hard and soft ground at 

500 Hz. Fit, it is observed that the insertion loss is lower for the soft ground case 

as the soft ground itself akeady contributes a great deal to the sound absorption. 

Secondly it is seen that for either case, the barrier insertion loss greatly deteriorates 

after about 75 m. AEter this distance, the rays that walk over the ba;rrier, negate most 

of the barrier shielding. Figure 3.20 shows the same turbulent test cases, except now 

a kequency average is perfomed between 100 and 2000 Hz instead of just a single 

kequency. Simila responses are obçerved. 

Figures 3.21 and 3.22 show the bequency response a t  2 receiver locations for the 

same source - M e r  geometry as in the previous figures. The receiver locations are 

50 m (Figure 3.21) and 100 m (Figure 3.22) away hom the barrier. Shown are the 

homogeneous and turbulent cases for both hard and soft ground. A relatively flat 



response is obsenred for the turbulent conditions as mrnpared to the homogeneaus 

condit ions. 

The applications shown up to  this point have considerd a single barrier height 

of 3 m. Figure 3.23 demonstrates the effect of the varying the ba.rrier height. Shown 

are the bequency averaged insertion losses, for both homogeneous and turbulent 

conditions, as a h c t i o n  of barrier height at three receiver locations; 50 m, 100 m 

and 150 m away h m  the barrie.. The source is 0.5 m above the rigid ground and 

10 rn away fkom the M e r .  The results are weighted fresuency averages for both 

homogeneous and turbulent conditions. The first thing to note is that the top three 

c w e s  are very nearly mincident. This implies that there is no signifiant distinction 

between the homogeneous solutions at the three receiver positions. However it is 

observecl that when considering atmospheric effects the insertion losses decrease as 

the receiver moves away fkom the bamer. This is consistent with the response shown 

in Figure 3.20. 

In 1971, Scholes et d conducted some field measurernents to study the d e c t  

of wind on bamer performance [3.20]. The experimental conditions were not well 

documented to permit valid cornparisons with the combinecl model. As such, educated 

guesses were made for the parameters needed for wmputations with the combined 

model. The ground, which was gras  covered, was assigned an EFR value of 150 cgs 

Rayls (based on the irnpedance dip chasacteristic provided wit h the experimental 

results) and the temperature near the ground was assurneci to  be room temperature 

(i.e. cg = 343 mis). Shown in Figure 3.24 is the data collected for downwind 

conditions on a 4 9  rn high barrier and the results mmputeà using the c o m b i i  

model. Good agreements are obsaved. 

3.4 Summary and Chnclusions 

A major limitation of conventional wave based and difhction based techniques is 

t hat both formulations assume homogenmus atrnospheric condit ions. As a result , the 



acoustic performance of barriers is usudy overpredicted. For this study, a heuristic 

model based on the gwmetncal ray theory, and Pierce's equations for difi6:action, 

are combined to introduce the atmospheric element in barrier performance prediction 

with the ben& of qui& calculation t h  associated with geornetric and diifraction 

based models. The model accounts for the various rays that diffract oE the top of 

the barrier and those rays that simply wu& over the barrier in the presence of a 

linearly varying sound speed profile. Cornparisons with the Pazabolic Equation (PE) 

formulations have shown good agreements for receivers in the short to medium range 

of sound propagation in the shadow of a barrier. 

Calculations made with just a single sound speed gradient, however, do not ade- 

quately model actual atmoephere conditions as the gradient at any location changes 

with tirne due to atmospheric turbulence. Thus the sound pressures for sound speed 

gradients ranging bom moderate to strong were averaged to better depict reality. 

Rom tests that were mnducted in this work, it was obsenred that, past a certain 

distance, the shielding &ect of the barrier was greatly reduced (or nearly eliminated), 

in downwind conditions, due to rays that wak over the barrier. It was also seen that 

the averaged gradient, or turbulent, results showed a relatively Bat freguency response 

as wrnpared to the homogeneous results. Finally, good agreements were observed in 

the preliminary cornparisons with the scperimental data collected by Scholes et ui. 

3.5 hture  work 

The good agreement obsenred in the preliminary cornparisons with experimental data 

shows promise for the combined mode1 in modehg the atmospheric conditions with 

barrier calculations. However, the modeling technique n d  &ha validation with 

experimental measurements made under weU documenteci conditions. This will help 

judge the usefulnes of a linear sound speed profile in short and medium range bamer 

studies. To take into account longer range sound propagation studies, an Mproved 

sound speed profde model will need to be dweloped. This rnight include a more 



realistic logerithrnic profile and a profile that might change from source to receiver. 

Other improvements include the rnodeling of upwind conditions (negative sound 

speed gradient) and the diffraction of the rays that pass over, but close, to the barrier. 

As well, the work to date has only considerd the resulting pressure field in the shadow 

zone of the b-er; work should be carried out to consider the dections off the 

barrier, for bright region considerations. 
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authors would also like to thank Dr. Gilles Daigle at the National -ch Council 
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figure 3.1: Sound rays present in typical atmospheric conditions 13.251. 



Barrier 

Figure 32: Diffraction paths for a 2D barrier geometry. 

Barrier 

Figure 33: Diffraction paths for a 3D nnite length barrier gwmetry. 



Figure 3.4: Semi-infinite wedge diEraction for Pierce's diffraction model. 
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Figure 35: Sound rays between a source and a receiver present in homogeneous and 
strong positive gradient conditions. 



Figure 3.6: Locations of first reflections for sound rays with single(a) and double@) 
ground reflec tions. 
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Figure 3.7: GeometicaI parameters of curved sound rays. 

Fipre 38: Figure pertaining to Equations 3.6 - 3.13. 
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Figure 3.9: Single ray going from source to receiver, via the barrier top. 

Figure 3.10: The angle, vd, needed for diffraction coefficient calculations. 



Figure 3.11: Example of sound rays in stmng gradient conditions passing and diffracting 
over the M e r  top. 
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Fipre  3.12: Individual profies, and range, averaged for modeling the effects of 
turbulence. 
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Figure 3.13: Cornparisons with PE at 100 Hz; no barrier and over hard ground. 
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Figure 3.14: Cornparisons with PE at 100 Hz; no b e r  and over soft ground. 
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Figure 3.15: Cornparisons with PE at 1000 Hz; no barrier and over soft ground. 
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Figure 3.16: Cornparisons with PE at 100 Hz; with M e r  and over soft ground. 
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Figure 3.17: Cornparisons with PE at 1OOO Hz; with barrier and over soft ground. 
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Figure 3.18: Insertion Ioss as a function of receiver position for single gradients and an 
averaged gradient field. 
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Figure 3.19: Insertion loss as a function of receiver position for hard and soft gound at 
500 Hz. 
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Figure 3.20: Averaged results between 100 - 2000 Hz. 
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Figure 321: Frequency response at receiver 50 m away nom bamtr. 
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Figure 3.22: Frequency response at receiver 100 m away fkom bmier. 
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Figure 323: Insertion loss as a function of m e r  height at 3 receiver locations over rigid 
ground. 
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Figure 3.24: Cornparisons with experimental data collected by Scholeset al. 
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4.1 Summary and Conclusions 

Noise barriers are commonly used to shield residential areas fkom tr&c noise. How- 

ever, these barriers are costly in nature and, as such, it is critical to understand the 

underlying puameters that govern their performance. 

4.1.1 Barrier Performance Models 

There are several techniques in current literature for modeling the performance of 

noise barriers. These techniques fa11 into two main clases: (i) diifkaction baseci 

methods and (ii) wave based methods. Diftiaction based methods are based on the 

geometric theory of diffraction, and are widely used in the engineering community. 

The more recent wave-based methods such as Boundary Element Methods (BEM) 

and the Finite Element Methods (FEM) , solve the governing wave equation, and thus, 

mode1 exact ly the re8ect ion, dZkaction and the phase interferences in the sound field 

around the barrier . Kowever, the excessive cornput at ional requirements associated 

wit h these met hods make t hem impract ical design tools for modeling typical noise 

barrier geometries at typical r d  noise hequencies. 

Rom the diffraction based clas4 of methods, Maekawa's method is the simplest 

and thus widely used in the engineering community. However, Laan recently irnproved 



on Maekawa's energy summation of the d8kaction paths, by taking into account the 

phase interference between these paths. As a result, better agreements were observed 

with expaMental and wave-based results. 

In Chapter 2, Lam's prelirninary work was extendecl to include the difkaction 

models of Pierce, and Kurze and Anderson7 the modeling of twcdimensional geome- 

tries, finite ground impedmce, and the consideration of paralle1 M e r  gwmetries. 

Cornparisons with the BEM results showed good agreements for both single and par- 

d e l  b& geometries. However, predictions using the difbaction model of Kune 

and Anderson fell short in regions close to the difhaction boundaxy layer, and when 

parauel barrier geometries were considerd in 2D. This was sttributed to the fact that 

the diffraction model diverges as receivers get close to the d.if£raction boundary layer, 

and also to the fact that this model only predicts an amplitude change (i.e. phase is 

assumed to be unaffectecl) at the diffraction edge. Some other conclusions Evrived at 

in this chapter are as follows: 

0 Cornparisons with FEM showed good agreements for hi t e  impedance consid- 

erations in 2D modeling demes. 

In comparing 2D and 3D geometries, it was found that barriers longer than 

3ûûm could be well apprcaimated by a simple 2D model with a line source. 

0 Large dZEerences were observed between a 2D line source to a 3D inmherent 

line source. 

The major conclusion for this chapter was the advantage of diffraction based 

techniques over the wave basxi met ho& in terms of calculat ion t imes. The diffiact ion 

based met hods took only a fiaction of the calculation times and provided wave-based 

accurate results. This then made it possible to conduct typical barrier tests such 

as hequency sweeps, octave averaging and varying M e r  width tests in reasonable 

calculat ions t irnes. 



41.2 Atmospheric Consideration 

A major limitation of the techniques discussed thus far is that a homogenwus at- 

mosphere is assumed, and as such, the predicted barrier insertion losses are different 

kom the actual barrier insertion losses. The atmosphere consists of several inh- 

mogeneities such as wind and temperature gradients, and turbulence, which greatly 

affect the way sound energy is transmitted. 

Thae are various prediction schemes for modeling the propagation of sound out- 

dwrs. Two mve-based formulations are the Fast Field Program (FFP) and the 

Parabolic Equation (PE) . Recently, a heurist ic stmoapheric model based on geomet- 

ric ray theory, was developed as an alternative to the wav~solutions due to their 

excessive calculational times. This model assumes a linearly varying sound speed 

profile, whereas the wave solutions can amount for arbitrary profles. 

These prediction schemes, however, are generally restricted to Bat ground propa- 

gation and cannot readily account for the screening a e c t s  of a barier. Ekperimental 

studies have been done to investigate the dec t s  of atmoaphere on barriers, and it was 

concluded that the basrier effectiveness was reduced when they are downwind hom 

the source. Also, turbulence over the top of ba.rriem scattered sound energy fiom the 

source into the shadow regions t hereby reducing the barrier's shielding effed. 

In Chapter 3, a mode1 was proposed for introducing the atrnospheric element into 

barriez calculat ions. The heurist ic atmospheric model, for the downward rehact ing 

profiles, was combined with the difkaction d c i e n t  equations of Pierce. Cornpar- 

isons with the PE model inwrporating a thin screen showed good results. 

It was found that calcdations made with a single sound speed gradient resulted 

in wildly varying insertion l o s  values in the shadow region of the barrier. This does 

not adequately represent the atmospheric d e c t  on barriers. In tum, an average over 

a number of sound speed gradient reduced the wild variation of results, and instead 

showed the expected degradation of noise barriers in the presenœ of atmospheric in- 

homogeneities. It was seen that pst a certain distance behind a banier, the insertion 



los decreased considerably. This is attributed to the rays thut w& over the M e r .  

Also preliminary cornparisons with experimental data collecteci by Scholes et al. 

were conducted. However, the experhental conditions were not well documented and 

messes had to be made on the ambient temperature and the effective flow resistivity of 

the grotmd. In despite of this, @ agreements were observed between the pro@ 

model and the BFperimental data. 

4.2 fiture Work 

The preliminary cornparisons with the experimental data shows promise for the com- 

bined model for predicting barrier performance in the presence of atmaspheric con- 

dit ions. However, furt her validations with Bcperimentd measurements made under 

weIl documented conditions is required. This wiu heIp judge the usefulness of the 

linear sound speed profile, and its averaging, in short and medium range M e r  stud- 

ies. For longer range barrier studies, a more general sound speed profile and a more 

representative averaging of sound speed profiles for modeling atmosphaic conditions 

will need to be developed. 

Other improvements include the modeling of upwind conditions (negative sound 

speed gradients) and the difEaction of the rays that pass over, but close to, the barrier 

edge. To make the mode1 more complete, considerations for predictions in the bright 

zone by modeling m d  reflections off the M e r  will need to  be made. 



A.1 Introduction 

A principle branch in amustical theory d e d  geometncal awustics or roy awwtics, 

describes the spreading of sound in terms of rays. The path of a ray is traced out 

when o m g  the time travel history of a single point on a wavefkont. This theory 

is very similar to that of geomet~cal optics, the oldest and most widely ursed theory of 

light propagation. Geometrical theory explains the behaviour of rays as they rdec t  

off of various surfaces or as they are trsnsmitted through opaque surfaces. However, 

the behaviour of rays as they hit edges and corners remains unexplained by ordinary 

geometricd t heory [l .35]. 

As rays corne acrass these edges and corners, new rays called di,sncted rays are 

generated [1.35]. Vasious theories on =action have been developed such as those 

by Ftesnel, Kirchhoff and Keller, to name a few. These theories wver ciifkaction for 

various conditions such as diffraction through appertures and edges. However, edge 

diffraction is of more interest for noise barrier applications since most barriers are 

modelled as thin meens. 

To explain the physics behind edge diffraction, the following discussion d l  focus 

on Huygens-Ftesnel principle leading to Kirchhoff's difkaction theory [l.36]. Kirch- 

hoff's theory explains diffkaction in tems of waves. Keller's d i a c t i o n  theory, on 

the other hand, describes edge dfiaction in t m s  of rays and associates these dif- 



fracted rays with a diffraction coefficient multiplied to the field incident to an edge 

[1.35]. The notion of a diffraction coefficient played a œntrd role in the formulation 

of diffraction path equations in Chaptas 2 and 3 (Equations 2.1 and 3.1). 

A. 2.1 Huygens-Fresnel Principle 

According to Huygensy wave construction, every point on a wavefiont can be con- 

sidered the source of secondary spherical wavelets. The envelope of these seoondary 

wavelets then describe a wavehnt at a later instant. b e l  postulatecl that these 

secondary wavelets mutudy interfere. The combination of the two notions is thus 

known as Huggens-&srad Princàple [1.36]. 

A depiction of a wavefkont and the secondary wavelets is shown in Figure A.1. 

The amplitude of the secondary wavelets m o t  be unifonri in all directions simply 

because this would produce an equdy strong wavefiont travelling backwards. The 

contribution to the light disturbance at some point P kom a point Q on a wawfiont 

S, shown in Figure A.2, can be expresseci as fobws: 

where s = Q P and K (x) is referred to as the inclination factor describing the varia- 

tion of secondary wavelet amplitude with the angle X, often referred to as the angle 

of d@zction 

An expression for the inclination factor was not given by Fkesnel, however he 

assumed that the amplitude of the secondary wavelet was at  its maximum in the 

direction of propagation (i.e. x = O) rapidly decreasing to zero in the direction 

tangentid to propagation (i.e. x = n/2). Kirchhoff later proved that this was not 

true. 



A.2.2 Kirchhoff's Diffraction Theory 

Upon applying Green's t harem to the HeImh01tz equation, Kirchhoff fornulahi  the 

integral theorem of Helmholtz und Kimhhos One form of this theorem is 

where S represents the boundary of the region of inkgration, and s is the distance 

between the source and a point (x ,  y, z)  [1.34. 

Kirchhoff appïed this theorem to the cMkaction of light through a srnall opening 

in a plane opaque screen, and with sorne appraximations he derived an expression for 

the inclination factor to be 

This confirms that the amplitude is a maximum in the direction of propagation (i.e. 

x = O). This also shows that FtesneI's assumption that the amplitude is the weakest 

in the direction tangentid to propagation (i.e. x = n/2) is not tme, and that the 

amplitude is the weakgt in the oppi te  direction of propagation (i.e. x = n). Kirch- 

hoff also showed that the interference of wavelets around the envelope was mutually 

destructive, thus leaving a wave travelling away &om the source. 

In the event of a wave encomtering an edge, the spherical wavelets close to the 

edge, shown in Figure A.3, spread some of the light into the shadow region. The 

inclination Eactor for the amplitude of the spherical wavelet suggests the amount 

of light that is diffractecl into this region. In the region imrnediately next to the 

screen, the least amount of light is observed. The brigheness gradudy increases 

upon reaching the line-of-sight (this corresponds to x = O) where the amplitude of 

the spherical wavelet at  the tip of the edge is a maximum. 



Although Kirchhoff's difbction theory explains the physical aspects behind edge 

dif£raction, Keller's th- scplains the behaviour of rays that corne into contact 

with the edge of a serni-infinite screen [1.35]. For a plane wave that is n o m d y  

incident on a straight edge, the diffracted wave spreads in a cylindrical fashion with 

the straight edge as its axis. In terms of rays, this suggests that an incident ray normal 

to a straight edge gives rise to n;ffi.acted rays that leave the edge in all directions. 

Figure A.4 depicts both the wave and ray representations of diffraction. 

In geometrical optics, rays that are incident upon a s~~ and are rdected or 

transmit ted, are mult iplied wit h a reflect ion or transmission coefficient, respectively. 

Keller followed this andogy and prenimed that difiactecl rays are associated with 

a *action coefficient that is mul t ipM to the incident ray. For a ray normdy 

incident upon an edge shown in Figure A.5, the field for a difEa.cted ray can be 

represented by 

u, = hir-+eib (A-4) 

where D is the diffraction coefficient, is the incident field at the edge and r is 

the distance fkom the edge. In cornparhg this expression with Sommerfeld's exact 

solution for dif6.action of a plansr wave for large values of kr ,  the difbxtion coefficient 

tends to 
@ / 4  

O = -  
2 (27rk) f sin B 

Here p is the angle between the incident ray and the edge, which for this case is */2 

since the ray is normdy incident to the edge. 

A.4 Diffraction Modeling in 2D and 3D 

The notion of a difkaction coeEcient by Keller played a central role in formulating 

the diffi-action equations in Chapters 2 and 3. For this thesis, diffraction coefficients 

were deterrnined using the semi-empirical modeIs of Maekawa [1.4], and Kurtz and 



Anderson [l.5], and the apprmcimate solution to the wave equation for wedge dif- 

fiaction p r o p d  by Pierce [1.10]. These models are p r o p d  for both 2 and 3 

dimensional considerations, with the acception of Maekawa which was only applied 

For 2D applications, the incident field is that produced by a cylindrical source 

and the difhacted field spreads in a cylindrical fashion with the edge as its 6. This 

is an extension to the case for a plane mve incident upon a straight edge in Keller's 

theory, and can easily be e~cplained with Huygens' wave constmction. The sound 

horn a source S on one side of a semi-infinite screen, detected by a receiver R on the 

other side, travels along the path shown in Figure A.6. In Chapter 2, this path is 

referred to as the d w c t i o n  path The sound pressure at  receiver R is then 

where ~ t ) ( k ~ )  is the Hankel function of the k t  kind of order zero and D is the 

cU3?action coefficient as determined by the diffraction models. This diffraction coef- 

ficient is a change in both the amplitude and the phase of the incident ray as it is 

difEacted towards the receiver R. Thus, Equation A.6 is modifieci to 

where A is the amplitude change, C is the phase shifk at f i a c t i o n  and 

Figure A.7 shows a semi-infinite screen between a spherical point source S and 

a receiver R. For such 3D applications, the incident field is spherical, however the 

diEracted field is not obvious. According to  Huygens' wave construction, the sec- 

ondary point sources would &t along the edge. These secondary sources, however 

do not lie on the same wavefkont. In accordance with Huygens-fiesne1 principle, con- 

tributions kom these secondary sources to  the receiver R, other than the one at SE, 



are negligible as secondary wavelets interfere destructively in directions other than 

that of propagation. This is reiterated by Keller's law of edge difE&ction (based on 

Férmat's principle for minimum path travel times), which states that the Waction 

path between S and R is the shortest distance that goes hom the source to the edge, 

and then to the receiver [1.35]. Also, the incident and dïfEacted rays make the same 

angle y with the difbacting edge. SÙnilar to Equation A.7, the mund pressure at the 

receiver R for 3D geometries can be represented by 



Figure A.l: Sources of secondary disnubances on a wavefront by Huygens' wave 
construction. The amplitude of the spherical wavelets however cannot be uniforni in all 
directions or an equaily saong wave will travel backwards. 

Figure A.2: Derivation of directional variation for a secondary sphericd wavelet 



Figure A.3: Light diEfr;icts into the shadow region with the aid of the spherical sources 
close to the tip of the edge. 
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Figure A.4: 2D projection of plane wave difhction by a thin screen and the associated 
ray representation. 



Figure AS: Incident and difnacted rays with the associated angles. 

Figure A.6: Diffraction path in 2D. 
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Figure A.7: Diffraction path in 3D. 



As sound waves p a s  through the atmosphere, çome of the energy is lost to the 

air due to viscosity effects and thermal ditfusion. This is m a t  apparent at large 

distances, and for high hequencies. The atmospheric absorption coefficient, A(R), 

from Equation 3.20 is determined as follows: 

where R is the distance of propagation, and AT( f )  is the atmospheric absorption 

coefficient, in dB/lûûm, for frequency f determinecl using the Standard ANSI S1.26 

[3.28]. 



Under homogeneous conditions, there are 2 sound rays between a source and a receiver 

above ground as depicted in Figure C. 1. One ray travels directly from the source to 

the receiver and the other rdects off of the ground with an angle of incidence Gg. 

The acoustic pressure at the receiver is then the surnmation of the contributions of 

both the rays. For 3D geometries we obtain, 

where k, Ri and Rz are the wave nurnber and the path lengths of the direct and the 

rekted sound rays. 

The spherid reflection coetticient Q for the ground of finite impedance 2, is 

determined as follows [3.30,3.31]: 

F ( u )  = 1 + j ~ ' / ~ u t  exp (-w2) erfc(- jw)  



where o is the effective flow resistivity. 

Under a strong positive gradient, any single ray between the source and receiver 

may undergo multiple rdections on the ground as shown in Figure C.2. The efkctive 

spherical r&tion d c i e n t  is t hen 

where Q is the spherical r k t i o n  for the angle of incidence qg, and n is the number 

of reflections on the ground for the respective ray. 



source Ri receiver 

Figure C.l: Sound rays between a source and receiver above ground under homogeneous 
conditions. 

Figure C3: Multiple ground reflections for any sound ray under strong positive gradients. 



THE FAST FIELD PROGRAM (FFP) AND THE 

PARABOLIC EQUATION (PE) 

D.l Introduction 

The FFP and the PE models begin with the classical wave equation for the acoustic 

cornes the Helmholtz equat ion, 

where c (2) is the sound speed as a fimction of height z, 6 represents a delta function 

source of unit strength located at height x;. 

Assuming simple harmonic time dependance exp (-wt), the above equation be- 

where k = w/c(z )  is the wave number. Witing this equation in cylindrical coordinates 

and assuming no variation with 8, the Helmholtz equation becornes 

where the source is assumed to be at r = 0. 

Rdection fkom a porous ground can be described by the boundary condition 



where p is the nomalized surface admittance. 

Rom this point, both the FFP and PE models ditfer. The following sections 

describe each in more detail. 

D.2 FFP models 

FFP models were o r i g i ~ d y  developed for undenvater saund propagation predictions 

and have since been adapted to mode1 sound propagation through the atmosphere. 

D. 2.1 Basic formulation 

By taking the Hadel transform of Equation D.3, the r dependance can be dropped. 

The zero order Hankel transform of p is 

where K is the horizontal wrnponent of the wave number, JO is the h l  hinction 

and P(K,  z) 

FFP models 

sat isfies 

perform a direct numerical integrat ion on Equat ion D.5. 

D.2.2 hplementations 

With the notion of axial symmetry about the source, FFP models assume the at- 

mosphere is a layered medium in the xz plane with source and receiver bounded by 

impedance surfaces. This is depicted in Figure D. 1. Each layer is associateci with a 

single value for the sound speed and the =und speed value can vary fiom layer to 

layer . 
FFP models are restricted to Bat ground propagation and cannot readily account 

for the scattering effects of a barrier. Therefore they were not used in the preparation 

of this thesis. For k h e r  details on FFP models, refer to [3.12,3.13]. 



PE modeIs have been used for various wave propagation problems. Some areas in- 

clude optics, electromagnetics, undemater acoustics, and more recently, atmospheric 

sound propagion. The modeIs asnune that sound is always directed away hom the 

source and very little backattering accurs. The main advantange fkom making this 

assumption is that a boundary value problem is reduced to an inàtid boundary value 

problem, permitt ing much simpla solut ions of the result h g  di££'erential equat ion. 

D.3.1 Basic formulation 

By making a change of variables U = and a h-field assurnption (kr >> l), 

By denoting Q as the operator such that 

then Equation D.6 can be written as 

This represents the incorning waves and the outgoing waves. If only the outgoing 

waves are considered, Equation D.8 reduces down to 

This equation is solved numerically by implicit stepping on a 2D grid in the xz 

plane. The resulting equation is as follows: 

where Ml and M2 are tridiagonal matrices. The vectors #(x) and $(x+ AI) represent 

neighboring grid arrays. These vectors are proportional to the sound pressure p as 



where ka is the wave number at z = O. Note that k ( z )  = 2 r f / c ( z ) .  A more detded 

description of the variables is provideci in [3.15, 3.231. 

The 2D acoustic field through which the PE steps is shown in Figure D.2. The 

medium is bound by surhces of finite impedance as in FFP implementations. Ground 

impedaace is enforced on the bottom swfkce, whereas pc boundary condition is en- 

forced on the top s u r f "  to minimize the re8ection of sound energy back into the 

field. However, this boundary condition absorbs completely only plane mves with 

normal incidence to the surfaoe. Therefore, an absorbing layer is added directly below 

the top surface to dampen sound waves. This layer, shown in Figure D.2, is added 

by introducing an imaginary term iA[(t  - &)/(zM - zm)I2 to the wave number. A 

is a constant, and r, is the height of the bottom of the absorbing layer as  shown in 

Figure D.2. The boundary cunditions, and the absorbing layer are all acwunted for 

in the formulation of matrices Ml and M2. 

A tutorial on use of the PE mode1 provides guidelines for variables pertaining 

to the absorbing layer and hieght of the acoustic medium [3.15]. However, these 

parameters vary for the fiequency of analysis. It was found to be tirne co11suming 

to obtain these parameters for the consideration of a positive linear sound speed 

profile and large propagation ranges (up to 500 m) for various frequencies as this 

involved a trial and error p r d u r e .  Therefore, the same parameters were used 

for analysis hequencies of 100 an 1ûûû Hz as those determined by Salomons [3.24]. 

The only diEerence was the specification of a lin- sound speed profile instead of 

a logarithmic sound speed profde. Convergene tests were conducted to con.6r-m the 

validity of t hese paramet ers. 

The parameters used for andysis kequency of 1Oûû Hz were: Ax = Az = 0.05 ml 



M = 8000, rn = 7700, and A = 1. Similady, for the andysis kequency of 100 Hz 

the following parameters were used: Az = At = 0.04 m, M = 200 ,  m = 1600, and 

A = 0.3. 
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Figure D.l: Layered atmosphere for FFP irnplementations. 
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Figure D3: Field for PE implementations. 




