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Abstract

Frames of Orthogonal Projections
Edward Poon

Doctor of Philosophy, 2001

Graduate Department of Mathematics

University of Toronto

The primary aim of this thesis is to find and compare appropriate notions of
distances on frames which arise from different contexts. A frame £ is a collection
{E),..., E;} of mutually orthogonal projections in M, whose sum is the identity
matrix [. A frame may be identified with the pinching operator A + Y . | E;AF; in
B(M.), or with the coset of a certain subgroup of U, (i.e., as a point in a generalized
flag manifold).

Angles, analogous to those between a pair of subspaces (equivalently, projections),
are defined between a pair of frames to measure the distance between them: O is
precisely the set of canonical angles between two pinchings (considered as projections
in B(M,)), and ®q, D, are derived from the union of the canonical angles between the
constituent projections of two frames. Norm inequalities in both directions are found
between these sets of angles. By viewing a frame as a coset, and the arguments of the
spectrum of a unitary representative for the coset as angles, some additional relations
are derived. The question of when frames are antipodal with respect to a certain

natural metric is also addressed; results are obtained for dimensions n =2, 3,4.
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Chapter 1

Introduction

To any direct sum decomposition of C* into orthogonal subspaces one can associate,
via the correspondence between subspaces and projections, a collection of orthogonal
projections which sum to the identity. The space of these resolutions of the identity,
in the case where the projections are ordered in some predetermined fashion, has
been studied extensively by both Kovarik and Sherif [15, 16, 17, 25, 26], and I shall
essentially follow their notation in referring to these objects as frames. A particularly
attractive feature of frames is that a frame can be viewed from a variety of other
perspectives as well, ranging from a special subalgebra of the set of n x n matrices
M, [5], to a point in a complex flag manifold (28], to a quantum measurement; this
last interpretation is one which particularly intrigues me, and served as the motivation
for this work.

A natural question is how should one define the distance between a pair of frames?
As might be expected from the plethora of different viewpoints, there is no single
‘best’ candidate for a metric; a number of different alternatives exist, each with
their respective strengths and weaknesses. These can be roughly grouped into three
categories, depending on whether we interpret a frame as an object based in C*, M,,,
or B(M,). The main thrust of this work will be to compare the different notions of
distance between frames.

The first chapter deals with preliminaries such as notation and a more detailed
elaboration of some various interpretations of frames. A short section on majorization
collects results which will be used later on. The next two chapters introduce distances
based on the viewpoints of frames as measurements and cosets. The idea of defining
angles between two frames is introduced in the fourth chapter, and with distances and
angles based in C", M, and B(M,) in place, a number of relations and inequalities
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Q]

comparing the different quantities are derived. Finally, the last chapter closes with
a discussion of when frames are maximally far apart (in a certain sense), and how
spread out they are.

1.1 Notation

Three vector spaces will be of particular interest in this thesis: the n-dimensional
complex (real) vector space C* (R"), the space of n x n complex matrices M,, and
B{M,). the space of (bounded) linear maps on M,. Throughout this thesis n will
always refer to the dimension of C*. We will generally use lowercase italic, uppercase
italic, and seript letters to denote elements of C*, M,,, and B(M,) respectively.

1.1.1 Notation on C" and R*

Let ¢; be the vector in C" whose only nonzero coordinate consists of a one in the ith
position. Let e =" e; =(1,1,...,1) and for any = € C*, define Trr = e‘z. The
inner product of two vectors z,y € C* will be written (z,y) = y*z.

Ifz=(zy,...,2,) € R*, zt = (z},...,z}) and 2T = (z[,...,z]) will denote the
vectors obtained by rearranging the coordinates z; of r in decreasing and increasing
order, respectively. Thus a:{ > we- >zl and 3:{ <---< gl

Let z,y € R®. We will write z < y if z; < y; for all i. Recall that z is weakly
majorized by y (written z<,y) if

k k
Yozt<duh  1<ks<n (1.1)
i=1 i=l
If in addition . .
Yoat=> "¢ (1.2)
i=1 i=1

holds, z is majorized by y (written £ < y}. We will say £ < y strictly if z < y and =
is not a permutation of y.

A vector z € R is a probability vectorif z > 0 and Trz = 1. Finally,if f: R - R
and = = (x4, ...,2,), we will write f(z) for the vector (f(zy),..., f(za))-

1.1.2 Notation on M,

Let J, be the n x n matrix which has each entry equal to % If U is a unitary matrix,
let 0s(U) denote the associated orthostochastic matrix whose (i, j)-entry is [Uy[2. If
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P € M, is positive (semidefinite), that is, (Pz,z) > 0 for all z € C*, we will write
P > 0. If P is a projection, P+ will denote the complementary projection I — P.

The set of permutation, hermitian, skew-hermitian, and unitary matrices in M,
will be denoted by S,, M#, iM" and U, respectively. The set of n x n density
matrices (i.e., the set of positive semidefinite matrices of trace 1) will be denoted by
A,. (We will also use the same symbol to denote the set of probability vectors in R?;
the context should eliminate any confusion.)

Let A € M,. We write s(A) for the vector listing the singular values of A in
decreasing order (so 51(A) > -+ > 5,(A)). If A,B € M* then A\(A) will similarly
denote the vector listing the eigenvalues of A listed in decreasing order, and we will
write 4 <, B (respectively A < B) if A\(A) <, A(B) (respectively A(A) < A(B)).

The Schatten p-norm of A will be denoted by || A||, and the Ky Fan k-norm of A
by | A|lky. In particular, we refer to the co-norm, 2-norm, and 1-norm as the bound
norm, Frobenius norm, and trace norm, respectively. We use the same notation for
the corresponding norms on C".

1.1.3 Notation on B(M,)

The set of n x n (complex) matrices M, is also a Hilbert space (called the Hilbert-
Schmidt space) when given the inner product (4, B) = Tr B*A. Thus all the usual
conventions for operators on a Hilbert space apply to B(M,) as well.

The identity map in B(M,) will be denoted by id. For each U € M, we define a
map ¢y € B(M,) by ¢y(A) = UAU* for any A € M,,. If P € B(M,,) is a projection,
P+ will denote the complementary projection id — P.

Let ¢ € B(M,). If ¢ is a positive operator on the Hilbert space M, (i.e.,
(#(A),A) > 0 for all A € M,) we will write ¢ > 0. If ¢ preserves the positive
elements of the C*-algebra M, (i.e., #(A) > 0 whenever A > 0), we will say ¢ is
positivity-preserving.

1.2 Realizations of Frames

In this section we will define what a frame is, introduce some related terminology,
and elaborate on the various descriptions of frames mentioned in the introduction.

Definition 1.2.1. A frame £ on C" is an unordered finite collection {F,, ... E.} of
projections E; € M, which satisfy:
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1. E,'Ej =5;'J'Ei,
2. Y, E=1

FASEE) R

If the ordering of these projections is important, we will speak of the ordered frame
E=(E,....E.). (Notethat ordered frames will be distinguished by ordinary capital
letters and round parentheses instead of script letters and curly braces.} If the number
of projections in £ is important we will call £ an r-frame.

For even mare precision, suppose the rank of F; is n;, where, purely for conve-
nience, we will always assume wolog that n; > --- > n,. In this case we shall say £
is a frame of type (n,...,n,). Two frames are said to be isomorphic if they are of
the same type. The special frames of type (1,...,1) will be called minimal frames.

The manifold of ordered frames was examined by Kovarik {15} in the more gen-
eral setting of idempotents on a Banach space instead of projections on a Hilbert
space; together with Sherif, they compared the geodesics on this manifold to ancther
naturally arising path [17]. We will speak more of this in chapter 3.

As already alluded to, frames can also be perceived in a number of other ways. In
addition to the natural geometric interpretation of r-frames as direct sum decompo-
sitions of C" into r orthogonal subspaces, we can view frames as objects more or less
living in M, or B(M,), instead of in C™.

1.2.1 Frames as Pinchings

Let £ = {Ey,...,E.} be a frame. We can identify £ with an operator in B(M,,)
(which will be denoted by the same symbol £) by defining

EA=) EAE;
i=1

for ail A € M,. Following the notation of Davis [5], we shall call the map € a pinching.
(This terminology arises because if we write A in block matrix form with respect to
the direct sum decomposition C* = &7_; Ran E; then £A is just the block diagonal
of A). Davis has shown that pinchings are precisely those projections on M,, whose
range is a (self-adjoint) subalgebra containing its commutant; thus pinchings, and
hence frames, are characterized by these special subalgebras of M,. We therefore
identify a frame £ with its associated pinching and also with the subalgebra that
is the range of this pinching, and use the same symbol £ for all three objects—the
context will indicate the appropriate interpretation.
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This illuminates some of the terminology in Definition 1.2.1; two frames are iso-
morphic if and only if their associated subalgebras are, and a frame is minimal if and
only if its associated subalgebra has minimal dimension. A few other concepts will
prove useful.

Definition 1.2.2. A frame £ refines another frame F if the associated subalgebras
satisfy € C F.

Definition 1.2.3. If A € M, is normal, frame(A) is the frame associated to the
subalgebra A’, where A’ is the commutant of A. (Thus frame(A) consists of the
minimal projections of A'.) If frame(A) = £ we will say that A is adapted to £. Note
that this is a special case of £A = A, which is itself a (weaker) notion that A is
particularly well-suited to £.

1.2.2 Frames as Quantum Measurements

A vast number of papers have been written in the physics literature about the question
of just what exactly happens during the measurement process iz quantum mechanics,
and how a measurement should be interpreted. Despite the long history of the prob-
lem, there is certainly no clear consensus and much remains unresolved. However,
if one is not so much interested in the details of the measurement but only in the
physical state of the system before and after the measurement (as will be in our case
in avoiding the philosophical questions of what constitutes a quantum measurement),
experimental evidence teils us unambiguously what happens to the system. It turns
out that the effect of a measurement on a system is the same as that of a pinching,
and it is thus that we will identify a frame with a measurement.

We give a brief review of the measurement process based on the well-known Copen-
hagen interpretation and von Neumann’s idea of a reduction of the state [20]; however,
we are mainly interested in what happens to the state of the system (since that is
how a pinching relates to a measurement) and not so much how or why.

In quantum mechanics, the state of a physical system is represented by a unit
vector v in some Hilbert space H, which, as our results are primarily of a finite-
dimensional nature, we will take to be C" for simplicity. Since the phase of v is
not physically observable (i.e., both v and e®v represent the same physical state), it
is convenient to work instead with the density matrix vv* which contains the same
information, but without the phase arbitrariness.

More generally, one could prepare a statistical ensemble of states v;u? with the
ith state forming a fraction p; of the whole. For obvious reasons, the density matrix
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3. pavivf s called a mized state, in contrast to the rank one projections vu* which
are called pure states.

Physical observables, such as the spin of a particle, are represented by self-adjoint
operators on H. The possible values which can be measured for such an observable
are given precisely by its spectrum. By the spectral theorem, we can write a phys-
ical observable H as }::;1 AP, where the eigenvalues A; of H are distinct, and for
simplicity we suppose first that each projection P; is rank one.

Then if one measures H for a pure state A, one obtains the result \; with prob-
ability equal to Tr PA. After the measurement, the system is found to be in the
state P;. [f we consider performing a measurement on a large ensemble of identical
states A, a fraction Tr P, A will be found in the state P; after the measurement, so as
a whole, we obtain an ensemble given by the density matrix

Y (TrRAP. =Y PAP,

3

which is just the pinching of A by the minimal frame of projections {F,..., P}
The foregoing clearly also applies to general ensembles represented by mixed states
and holds even when the projections P; are not necessarily rank one.

Thus we can identify a pinching A — Y |_ E;AE; with respect to a frame
& = {Ey,...,E.} with a quantum measurement of an observable whose spectral
projections are given by £. Note that the measured values of the observable (i.e., the
eigenvalues) play no role in determining the ensemble output by a measurement, so
we may speak of a measurement with respect to the frame €. (In the case where the
frame £ is minimal, we shall say that the measurement is complete.) For the most

part, we shall henceforth identify pinchings with quantum measurements.

1.2.3 Frames as Cosets

An ordered frame E = (E,,..., E;) of type (ny,...,n,) can be viewed as a sequence
of nested subspaces 0 C M} C --- C M, = C*, where M, is the range of Zf:l E;
from this vantage point, the space of all ordered frames of a fixed type (ni,...,n,)
is a complex flag manifold. These manifolds are homogeneous spaces which have
been studied quite extensively in the literature; the presence of a natural Riemannian
metric on these manifolds provides an obvious candidate for a distance function on
ordered frames.

To obtain the space of all unordered frames of a fixed type, it is in general necessary
to mod out the action of the symmetric group. We show how to identify cosets in the
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resulting coset space with frames.

Let M be the space of all frames of a fixed type (ni,...,n,), where as usual, we
assume n; > ... 2 n.. Fixaframe&={E,,...,E.} in M. We will view £ as
the subalgebra of all block diagonal matrices in M, and write £ = M, &---@ M,,.
Thus M can be viewed as the space of subalgebras isomorphic to £.

Then for U/ € U,, A€ M, the map

(U, A) — 6y (A) = {¢p(A) = UAU" : A € A}

is a transitive group action of the Lie group U, on M. The isotropy group fixing £
is readily seen to be the Lie subgroup H generated by block diagonal unitaries and
block permutations, that is,

H = {Uunitary : UE;U" = Eq(;) for some permutation o on r elements}
={(U,®---®U,)p:U; € My, is unitary, p is a block permutation}.

By a block permutation we mean a block matrix which has precisely one non-zero
block (which will be an identity matrix) in each block row and column. Note that a
block permutation only permutes blocks of the same size. Equivalently, A is the nor-
malizer of the subgroup of block diagonal unitaries. In any case, M can be identified
with the coset space U,/ H, as follows.

Given a frame F = {F},...,F.} in M, where rank F; = n;, let U be a unitary
such that F; = UE;U*. We can then identify F with the coset of H in U, represented
by U. In particular, our fixed frame £ can be represented by the identity matrix
I. Conversely, given a representative U/ of a coset in U,/H, we identify the coset
containing U/ with the frame consisting of the projections F; = UE;U™.

To sum up, a frame F in M can be represented as:

L. a collection of orthogonal projections {Fj, ..., F,} summing to the identity,
2. the pinching (or quantum measurement) FA =3[ | FiAF;,

3. the subalgebra of matrices in the range of the pinching F,

4. the coset of a unitary U which satisfies F;/ = UE,; for some permutation o.
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1.3 Some results concerning majorization

We collect here some theorems about majorization which will prove useful later on.
A classic and exhaustive reference for majorization is {18], although the subject dates
much further back to Hardy, Littlewood, and Polya [10]. A more recent introduction
is Ando’s excellent survey article {2]. Many books on matrix analysis will also devote a
chapter or more to the topic—see for example [4, 12]. For a treatment of majorization
from a physicist’s viewpoint, see [1] (note that they use the reverse notation £ > y to
denote that z is majorized by %). A survey of more recent results is given in [3].

We begin by quoting a standard result relating majorization to doubly stochastic
matrices. Note that this and all other results in this section may be found in [2].

Definition 1.3.1. A matrix § € M, is doubly stochastic if
Si; 20 for all 4, j,

ZS;,» =1 foralli
=1

Zn:sij =1 fora.llj.

j=t

These three conditions are equivalent, respectively, to the conditions that S is positivity-
preserving (Sz > 0 whenever > 0), trace-preserving (Tr Sz = Trz for all vectors
z), and unital (Se = e). If there exists a unitary U such that S;; = |U;;|? for all 4,
then S is called orthostochastic.

Theorem 1.3.2. Let z,y € R". The following statements are equivalent:
I.z=<y.
2. T lies in the convez hull of {cy: 0 € S,.}.
3. = = Sy for some doubly stochastic matriz S.
This theorem can be generalized.

Definition 1.3.3. A linear map ¢ : M,, — M, is doubly stochastic if it is positivity-
preserving (i.e., #(A) > A whenever A > 0), unital (ie., ¢(I) = I), and trace-
preserving (i.e., Trd(A) =Tr A for all A € M,).

Theorem 1.3.4. Let A, B € M*. The following statements are equivalent:
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1. A=< B.

2. There ezist unitary matrices U; and positive numbers t; > 0 such that

N N
Y ti=land A=) t,U;BU;.
j=1

i=t
3. A= ¢(B) for a doubly stochastic map ¢.

Remark 1.3.5. The preceding theorem is particularly useful for us because all pinch-

ings are doubly stochastic maps, so €A < A for any pinching £ and any hermitian
A

Majorization relations are particularly useful due to their intimate relation to
norm inequalities.

Definition 1.3.6. A permutation-invariant norm ¥ on C" which also satisfies ¥(z) =
U(|z]) for all z € C is called a symmetric gauge function. A norm | - || on M, which
satisfies ||UAV|| = ||A| for any unitaries U,V is called a unitarily invariant norm. A
unitarily invariant norm || - || is called a @-norm if there exists a unitarily invariant
norm ||| - ||| for which ||A||* = |||A* All] bolds for all A € M,,.

Theorem 1.3.7. 1. Let z,y € C*. Then ¥(z) < U(y) for every symmetric gauge
function U iff |z| <, |y|-

2. Let A,B € M,. Then |A|| < ||B|| for every unitarily invariant norm || - || iff
s(A) <y s(B).

Convex functions are also useful in that they essentially preserve the majorization
relation.

Theorem 1.3.8. Let z,y € R" and let f : R — R be a convez function. Then we
have

L z<y= f(z) <w fly)-
2. If in addition f is incregsing, T <y ¥ = f(z) <w f(y)-

Finally, we state a proposition which shows that majorization is preserved when
vectors are combined.
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Proposition 1.3.9. If

and
= (U, ... U) <V ={vy,...,7)

then
(z.u) = (mlt'“axp,ulr‘“?uq) <{yv)= (yly--wypyvla---:vq)

The result also holds if all majorizations < are changed to weak majorizations <.



Chapter 2

Distance based on Majorization

When one performs a measurement £ on a pure state A, the resulting state £A need
not be pure; indeed, £4 will usually be a mixed state. In general, measuring any
state A with respect to a frame £ results in a more mixed up state, in the sense that
£A is majorized by A (see remark 1.3.5). For example, consider the simple case of
& = {eie],ese3} and A = vv" where v = cosfle; + sin fes. In this case,

£ = (cos%? 0 )

0 sin%d

is a mixed state for any 6 € (0,5). Note that as 6 increases from 0 to %, the
orthonormal basis containing v moves farther and farther from the standard basis
{ey,ea} while £A becomes more and more ‘mixed up’, in the sense of majorization;
at § = %, frame(A) is as far as possible from £ while £4 = 4I is as mixed up as
possible.

We would like to utilize this correlation to define a distance between two frames
& and F. Suppose A is a state unaffected by measurement with respect to &, so
EA=A. If Fis close to £ one would expect that measuring A wrt F does not mess
A up too much. The farther F is from &, the more mixed up one would expect FA
to be. In order to use this idea to quantify how far apart £ and F are, we need a way
to measure how badly a state is mixed up.

A natural measure of the degree of disorder inherent in a state A is the (von
Neumann) entropy — Tr Aln A of the state. Entropy has long been used to reflect
the uncertainty or randomness of a system (think of the eigenvalues of a state A
as probabilities) in many contexts; von Neumann’s approach [20] was motivated by
quantum mechanics. Shannon [24] viewed entropy from an information theoretic
viewpoint; for him, the uncertainty in the state measures the amount of information

11
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carried by the state. A nice reference on entropy as it relates to quantum mechanics
is [21].

Since the entropy function f(t) = —tInt is concave and €A < A, it follows by
Theorem 1.3.8 that Tr f(€A) > Tr f(A), that is, the entropy increases after perform-
ing a measurement, as one would expect. It would be ideal if such a natural measure

of disorder yielded a distance on the space of frames. Could the maximum increase
in entropy,

sup{Tr(f(FA) - f(A)) : EA= A, A € A} = sup Te(f(FEA) - f(EA)), (2.1)
AED,
give a distance between £ and F?
To answer this question, it will be useful to introduce the following lemma.

Lemma 2.0.10. Let € be the minimal frame {E\, Es, ..., E,} where E; = e;e}. Let
F={R.....F.} and G = {Gy,...,G.} where F; = UEU" and G; = VEV"
for some unitaries U, V. Let A = Z?___l MGi, so GA = A. Then the spectrum of
FA is given by S\ where S = os(U*V) is the orthostochastic matriz with entries
S,;j = [(U'V)gj[g and A\ = (,\[, .. .,1\n).

Proof. We have

FA=Y UEU () NVEV)UEU
=t i=1
= z ,\,-Ueje]'-U’Ve,—e}‘V”Ueje;U"
4
=Y\
ij
This says that the spectrum of FA is {d_ o, (V*U)i{*N : 7 = 1,...,n} as claimed.
a

For the special case G = £ in the lemma, the spectrum of FA is given by os(U*)\.
Thus if £ and F are minimal frames as in the lemma,
sup Tr(f(FEA) — f(EA)) = sup Tr(f(os(U™)p) - f(p))-
A€l PeAu

The following proposition shows that in this case, the supremum is given by the
maximal entropy of the row vectors of 0s(U), namely

(V*0)iI*(Ue;)(Ue;)*.

9}321‘([%?)-

j=1
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Proposition 2.0.11. Let S be ¢ doubly stochastic matriz end f(z) = —zlnz. Define
H: R} — R, by H(p) =Tx(f(Sp) — f(p)). Then H attains its mazimum on A, at
some extreme point e;.

Proof. Suppose p € A, is not an extreme point. Then there are two indices j, k for
which p;, pr # 0; wolog assume j = 1.k = 2, and p; > pr. Let ¢ = e, —es. Note
that for each = € [—p, pa| the vector p(x} = p+ zq lies in A,, and that both p —pig,
p + paq have (at least) one more zero coordinate than p. I will show that the function
g(z) = H(p(z)) attains its maximum on [—p;, ps| at an endpoint; hence H(r) > H(p)
for some r € A\, with more zero coordinates than p, and the proposition follows.

[t thus suffices to prove that ¢ is convex. Let I denote the set of indices i for
which (Sp); > 0. Note that if x € (—p, p2}, then (Sp(z)): > 0 as well. Let I’ be the
set of indices i € I for which not both S;;, Sia are zero. Then

o(z) = Te(f(Sp(=) — Floie))) = 3 F(Splz Zf i+ 26).
i€l

Differentiating twice gives

g'(z) = Zf"((Sp(I)))( i1 = Sa)* = f'(pr +2) — ["(p2 — 2)

iel

I 1
= +
Z Z,_L qu(x pL+E pp—g

el
5 S S f?l + 5%
RIS S S+ S5
Tntr p-z o Sup(z)1 + Siap(z)s

2 2

> L + 1 _ Sa " i )

pts p-z o Sa(pr+z)  Swlp: — 1)

1 1 1 1
+ - - =0

Ttz p-z ptT pp—z
where the last inequality holds because }_..» Si; < 1. Thus g is convex as desired. O

As an aside, note that only the concavity of the entropy function f is required
to show that Tr f(£4) > Tr f(A), so one might use some other concave function
instead of entropy to measure how much more mixed a state is after a measurement.
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In fact, if g is an operator concave function, the much stronger operator inequality
g(EA) > Eg(A) (see [4, Theorem V.2.1]) holds, so one might wonder if the preceding
proposition holds for any operator concave function instead of just for the entropy
function. That this is not the case may be seen by the following example.

Example 2.0.12. Let g(z) = =& p= (3.0,%,0), and

A ?
1100
1{1 100

5‘50011
0011

If A € (0, 5) then
Tr(g(Sp) — g(p)) > Tr(g(Se;:) — g(e:))

for any index i. Thus the function Tr(g(Sp) ~ g(p)) on A, need not be maximized
at an extreme point, even though g is operator concave.

Proposition 2.0.11 shows that if £ and F are minimal frames, the quantity in (2.1)
is just max; Tr f(FE;) and so is very easy to compute. However, it is not in general
symmetric in £ and F; consider £ and F as in Lemma 2.0.10 with

and V = I. Moreover, even the symmetrized version max;(Tr(FE;), Tr(€ F})) fails to
satisfy the triangle inequality; it suffices to consider the simple case n = 2 and any
three frames reasonably close together.
One might consider using an average instead to obtain a distance on minimal
frames: .
Y T f(FE), or f Tc f(FEA) — Tr f(EA)dA.
=1 ln
These candidates have the advantage of distinguishing between frames much better
than (2.1) but also fail to satisfy the triangle inequality.
We can tweak the first candidate to

d(€. F) = () Tx f(FE)Y

i=l
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so that it satisfies the triangle inequality locally for p < %

However this tweaked version is not particularly nice; if £(t) is a smooth path
through £(0) = £ and §(t) = d(&, £(t))+d(E(t), G)—d(E, G), then §'(0) is infinite. The
entropy function, though a natural measure of the disorder of a state, is problematic
as a progenitor for a distance on frames; its behaviour at the origin seems to preclude
any possibility of using it to obtain a reasonable metric for frames.

Faced with this difficulty, yet still wishing to use the increase in disorder of FEA
over £A as a distance, we consider replacing the entropy function —tin¢ by some
other concave function f(t). We would like f(A) = 0 for pure states A; this imposes
the condition f(0) = f(1) = 0. Probably the simplest such concave function is
f(z) =z ~ 2% In this case, if £, F are minimal frames,

Y T f(FE) =Y TFE - (FE))
i=1

i=1

= z 1 - (FE, FE)
i=1

= i(Eb E) - ({FE, E)
i=l

= i(ﬁL(‘:E{, E;)

i=1

= |FHEl

since E|, ..., E, can be extended to an orthonormal basis for M,, and any matrix in
such a basis which is not one of the matrices E; lies in the kernel of F-&.
But, viewing £ and F as projections on M,

(2.2)

el el [EFE O
(€ ~ Ff = EF* + FE _( o eiret

when written in block matrix form with respect to the direct sum decomposition
M, =EM, & E+M,. Hence
1€ = Fliz = | F-El3 + [EXFI3 = 2 FEll2

since £+F and FL£ have the same singular values if £ and F are projections of the
same rank (see [4, p.201]).
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Thus using the concave function z — z2 to measure how mixed a state is leads to
a very natural distance for minimal frames:

J 2) " Tr f(FE) = ||€ = Fla.

i=1
Two obvious questions are:
1. For general frames £ and F, will ||€ — F||» also reflect the idea that the more
a measurement F messes up a state adapted to &, the further F is from £7
2. Do we retain the ‘messing up’ idea if we replace the 2-norm of £ — F by an
arbitrary unitarily invariant norm?
The answer is yes to both questions, as we show in the following theorem.

Proposition 2.0.13. Suppose €, F,G are isomorphic frames satisfying GEA < FEA
for all density matrices A. Then ||G—E&|| > | F —£&|| for all unitarily invariant norms.

Proof. It is easy to see that if A, B are two hermitian matrices then
A<B &< zA+yl <zB+yl Vr,yeR,z#0.

Since any hermitian matrix B may be written B = zA + y/ for some density matrix
A and real numbers z, y it follows that

GEB=zGEA+yl <zFEA+yl = FEB,
and so for all B € M"* we have
GEB < FEB
=>||GEB||: < || FEB2 by Theorems 1.3.7,1.3.8
=(EGEB, B) < (EFEB, B)
=(E(F -G)EB,B) > 0.
Since £(F — G)€ is self-adjoint and preserves M*, it has an orthonormal basis of

eigenvectors which are hermitian matrices. Thus the eigenvalues of £(F - G)& are all
positive, so £(F — G)€ > 0. Thus

0<EGELSEFELE
=E2EGEZEFE2D
=5(GLE) > s(FLE)
=[G -&|| 2 |F-E€||, forall ui norms,
where the last inequality follows from [4, Ex VIL.1.11]. O
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We conclude that ||€ — F|| is a good distance to measure how far apart two
frames are, based on the idea of a subsequent measurement F messing up an earlier
measurement £. However, nice as this distance is, it is still not ideal; for instance,
it does not arise from any Riemannian metric and need not have any geodesics.
Moreover, it is quite removed from our intuition of frames as a collection of orthogonal
subspaces in C*; it would be nice to have a distance which reflects this intuition. In
the next two chapters we will address these issues by considering other distances.



Chapter 3

Geometry of Isomorphic Frames

[n this section we identify the space of all frames of a fixed type with a coset space,
which, as noted in section 1.2.3, is essentially a complex flag manifold. This allows us
to apply some basic Lie theory, so we can follow the prescription of any of a number of
texts [11, 14] to introduce a natural Riemannian metric and its associated distance on
this space of isomorphic frames. We note that the geometry obtained in this manner
coincides with that found by Kovarik [15], and describe the geodesics and how to
compute the distance between two frames.

We begin by fixing some notation (which is mostly standard and generally follows
[11]) and quoting some general results of Lie theory. Let G be a Lie group with
identity e and let H be a closed Lie subgroup. Let g and h denote the Lie algebras
of G and H respectively. If z € G, let L;,R; : G — G denote the left and right
translations by z respectively, that is, L.(y) = zy, R.{y) =yz forally € G. Let w be
the quotient map from G onto G/H and give G/H the quotient topology. If g € G
we will write § = w(g) = gH for the (left) coset of H represented by g. For each
£ € G, L, induces a map L, : G/H — G/ H defined by L (yH) = zyH (here y € G).

Note that

Lom=mol,foranyz € G (3.1)

By [11, Theorem [1.4.2] G/H has a unique analytic structure such that G is a Lie
transformation group of G/H; that is, the map (z,yH) — zyH (z,y € G) is an
analytic map of G x G/H onto G/H. We will always endow G/H with this analytic
structure. Note in particular that both 7 and L, are analytic.

For each z € G we define an automorphism ¢, : G — G by ¢.(g) = zgz~!. This
induces a mapping Ad : G — GL(g), Ad(z) = d(¢:)., the adjoint representation of
G. The adjoint representation of g will be denoted by the lowercase symbol ad; here

18



CHAPTER 3. GEOMETRY OF ISOMORPHIC FRAMES 19

ad : ¢ — GL(g) maps an element X € g into the function ady : g — g defined by
adx(Y) = [X,Y].

For our particular situation where we identify the space M of isomorphic frames
of type {ni,...,n,) with a coset space as in section 1.2.3, we will take G to be U, and
H to be the subgroup defined in section 1.2.3. Thus g is just the set of n x n skew-
hermitian matrices, and § consists of the block diagonal skew-hermitian matrices.
Note that throughout this chapter £ is a fixed frame.

3.1 Riemannian metric

We now proceed to define the natural Riemannian metric on M derived from that on
UmThe embedding U, € C* = R?” induces a bi-invariant Riemannian metric on
Up if V €U, and X,Y lie in the tangent space Ty U, = Vg of U, at V, then
(X.Y)y =ReTrY'X. (3.2)
(Recall that a metric is bi-invariant if for any a,b € G and X,Y € TG we have
(X.Y) = ((dLa)o X, (dLa)sY )ab = ((dRa)sX, (dRa)sY Yias (3.3)

that is, both L, and R, are isometries for any a € G).

The geodesics through a unitary U € U, are given by the curves U exp(tX), where
X is skew-hermitian. The arclength distance d(I, U) between [ and U is the distance
along the shortest geodesic ax(t) = exp(tX) from [ to U, that is,

d(f,U) = inf{/1 V(@ (t), &y (t))dt : X € g and exp(X) = U}

= inf{||X[}2 : X € g and exp(X) = U} (3-4)

=[S (g
k

where {A«} are the eigenvalues of U and arg takes values in the interval (—m, 7.
This metric on G gives an inner product on T.G = g, so we can define

m =gt ={K €iM": EK =0}.

One can verify that m is invariant under Ad(H) (in particular [, m] C m), so G/H
is a reductive homogeneous space with respect to the decomposition g =h & m (see
[22, p.343] or [14, p.190]).
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From {22, p.151] it follows that kerdr. = h {or more generally, ker dry = dLv(h)
by (3.1)) and so to each ¥ € T; M there exists a unique X &€ m such that dn(X) =Y.
We denote this isomorphism by g : T:M — m, that is, u(Y) = X. Note that dr. o p
is the identity map on T: M, and

podr, =E . (3.5)

The metric on U/, induces the following Riemannian metric on M. Let V be a
unitary representing V' € M and let X,, Xo € Ty M; we define an inner product on
the tangent space of M at V in terms of the metric on U, by

(X1, Xo)y = (u(dLy-1 X1), p(dLy-1 Xa)).. (3.6)

One can check that this gives a well-defined U,-invariant metric (that is, Ly is an
isometry for any U € Uy).

3.2 Geodesics and distance

With the metric defined by (3.6), one naturally wonders what the geodesics on M are,
and how to compute the Riemannian distance between any two frames. By [11, p.226],
the geodesics through U € G/H are precisely the curves ax(t) = n(Uexp(tX)), X €
m. Translating back into the language of frames, this says that a smooth curve £(¢)
with £(0) = £ is a geodesic iff £(t) = exp(t-X)E€ exp(—tX) for some X € m, which is
precisely Kovarik’s criterion for geodesics [17]; that is, this coset space geometry and
Kovarik’s geometry coincide.

The following theorem gives the length for these geodesics and for other paths in
M.

Theorem 3.2.1. Let a(t), t € [a,b], be a smooth path in M with a lift U(t) in U,.
The length of a is given by

b
o) = [ IEHT U EIe )
where || - |2 is the Frobenius norm.

Remark 3.2.2. 1. Observe that, since the length of U(t) in U, is

b
1) = [ 1T~ (6)]2 de

and [|€-Alls < ||A|2 for any A € iM?, the projection 7 is a contractive map.
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2. By [14, Vol L,p.69], for each V in the coset ¢(0) there exists a unique horizon-
tal lift V'(t) in U, such that V(0) = V. (Here a curve V(t) is horizontal iff
V*(t)V'(t) € m, that is, E(V*(t)V'(t)) = 0). Thus the length of a(t) is equal to
the length of its horizontal lift in U,.

3. In particular, for the special case where a(t), t € [0,1], is a geodesic in M, we

can lift a(t) to a geodesic U(t) = exp(tX) in U, where X € m; thus the length
of a(t) is

i
/0 IEXT U)Xk dt = [ X

which is just the length of the curve U(t) in U,.
Proaf.

b i
le) = [ (@ (0D et

b L

- / (dr U(), dr U'(e) b
b

= [ tudlo-spdn U0, e dlomrndn U el by (3.6)
b L

= / ([.L dmw dLU—x(t)U,(t),[.LdTr dLu-l(g)U!(f))gdt by (31)

b 1

= [ (@ OV O) Ean O QU by (9
b

= [ EXUOU ). dt

a

With this proposition in hand, we can compute the distance between any two
points of M.

Theorem 3.2.3. Let d denote the arclength distance on U, and let d; denote the

arclength distance on U,/H (the ‘g’ is for geodesic). If U and V are two points in
U./H then

d (U, V) = inf d(U,Vh)
= jnf [ 1n(U"Vh)(2

where the branch cut of In is the negative real azis.
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]
(3%

Proof.

dg(U, V) = inf{l(a(t)) : a(t) € U,/H is a path joining U and V}
< '}2{{ inf{l(B(t)) : B(t) € U, is a path joining U and Vh} - = is contractive

= inf d(U, Vh).
heH

But dg(ff .V) is also equal to the length of the minimal geodesic joining U and V,
and we had shown (see Remark 3.2.2) that this geodesic has the same length as a lift
in U, joining U and Vh for some h € H. Thus we can conclude that

dy(U,V) = inf d(U, Vh)
9 heH
= }}2{{ d(I,U"Vh) since the metric on U, is bi-invariant

= jnf [n(U"Vh)]l2 by (3.4)

a

Remark 3.2.4. One can optimize the real-valued function on R given by = —
d*(U,Ve=) using techniques from elementary calculus to see that the above infi-
mum is necessarily attained at a unitary kg € H for which det U*Vhg =1 and ~1 ¢
a(U*V'hg). Moreover, the geodesic joining [ and U*Vhg in U, has the same length
as the geodesic joining the cosets of H represented by [ and U*V, so U*Vhy =exp X
for some X € m. In this case we shall say exp X is a geodesic rotation between [
and V; Kovarik [17] uses the term ‘direct rotation’ instead.

Note that an obvious generalization of d, is obtained if one replaces the Frobenius
norm of In U*Vh by some other unitarily invariant norm.



Chapter 4

Angles between Frames

Although our primary objective is to compare different distances between a pair
of frames, we now change our focus slightly and consider sets of angles between
two frames. The motivation for this originates from the problem of comparing two
subspaces: no matter what distance one uses to measure how far apart two subspaces
are, it is but a single number, and so cannot convey the same amount of information
contained in the canonical angles between the two subspaces. As for relations between
different distances, one can obtain an infinite number of inequalities in one stroke by
proving weak majorization relations between different sets of angles. Clearly there is
a great deal of potential in such an approach. Moreover, the angles ®(E, F) that we
shall define between two ordered frames E and F should be more amenable to our
geometric intuition of frames as objects based in C".

4.1 Definitions of Angles

We begin by investigating quantities which are more closely related to the realization
of frames as direct sum decompositions of C* into orthogonal subspaces. Let us
first consider the case where £ = {ee},...,eq.e5} and F = {fif],..., fufl} are two
minimal frames, so £ and F can be more or less thought of as unordered orthonormal
bases, although they are not so much bases of vectors as bases of lines.

One way of measuring the distance between two lines in C" is to use the Fubini-
Study distance [13] derived from the usual Euclidean distance; if u, v are unit vectors
in C*, the Fubini-Study distance drs between the two lines Cu and Cu is defined by

dps(Cu,Cv) = inf lu — ve®||s.

23
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We can use this to define an optimal matching distance dy between £ and F by

=1

do(E, F) = ,iélsfn \j Zd%'s(cei, Cfa(i})' (4.1)

Note that if U = (e,|...|es) and V = (fy|...|fa) then
2 _ _UhI2
B(E,F) = Juf U - VA3

This can clearly be generalized to other unitarily invariant norms and to more general
frames.

Proposition 4.1.1. Let M be the space of isomorphic frames of a fized type. If €
and F are two frames in M which are identified with the cosets of H represented by
U and V respectively, then for any unitarily invariant norm || - ||,

d(€,F) = inf [U —Vhii = inf |/ - U"Vh]| (4.2)
defines a metric on M.

Proof. Clearly d is non-degenerate. To see that d is symmetric and that the triangle
inequality holds, note that, due to the unitary invariance of the norm and the fact
that H is a group,

f |V - Vhll = inf |Ug - V.

a

Remark 4.1.2. The infimum is in general attained at different values of h € H for
different unitarily invariant norms; in the particular case when the norm in (4.2) is the
Frobenius norm, Davis (6] showed that the infimum is attained when E;U*VAE; >0
for each i, or equivalently, £(U*V k) > 0. For more, see section 4.2.

Note that this family of distances depends on the spectra of U*V'h, and so is
based in M,, as opposed to our intent of finding a distance based in C*. Returning to
the special case of minimal frames, an alternative approach to using the Fubini-Study
metric to measure the distance between two lines is to use the angle between the lines.
One would probably argue that this approach is better because it is a more intrinsic
measure of how far apart two lines are, and allows the possibility of geodesics, just as
the arclength distance on the sphere instead of the Euclidean distance is preferable.
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To use this idea for frames which are not necessarily minimal, we need to generalize
the notion of an angle between a pair of lines to a set of angles between a pair of
subspaces. It is well known that for any pair of subspaces of the same finite dimension
k, there is a natural set of canonical angles between them (see for example [4, 7]).

Definition 4.1.3. Let P and @ be projections of the same rank £. The canonical
angles between the subspaces Ran P and Ran @ will be denoted by ©(P, Q) and are
given by

O(P, Q) = arcsin (Q" P|ran p) = aresin s(P*Qlranq)-

Remark 4.1.4. Note that the definition is symmetric in P and @, and the canonical
angles all lie in the interval [0, 5]. We may also characterize the canonical angles by

cos’ O(P, Q) = MPQP|ranp) = MQPQ|Ran0)-

Henceforth, we will abuse notation by having O(P, @) represent both a set of k
elements and also a vector of k£ angles, arranged in decreasing order. (In fact, all
sets of angles in this work will suffer from this dual personality; the context should
eliminate any confusion).

Since an ordered frame is just a collection of projections in some predetermined
order, we can define a set of angles ®(E, F) between two ordered frames E, F by
using the angles between pairs of corresponding projections. The quantity ||®(E, F)||
(for each symmetric gauge function) should then serve as a useful measure of how far
apart E and F are.

Definition 4.1.5. Let £ = (Ey,..., E,) and F = (F},..., F,) be two ordered frames
of the same type (ny,...,n,). (Thus rank E; =rank F; =n; and Y ";_,n; =n.) We
define a set of angles ®(FE, F) between E and F by

&(E, F) = U_,0(E;, F).

Remark 4.1.6. Since E and F are isomorphic, there exists a unitary U which inter-
twines E'and F', i.e., UE; = F}U for all i. Thus E;F;E; = E;UE;U*E;, so cos ©O(E;, F:)
consists of the singular values of E;U E;[pang,. If we write U in block matrix form
with respect to C* = &[_| Ran E; so that U has (¢, j)-block-entry Uj; = E;UEj|pang;,
it follows that

cos®(E, F) =U_;s(Usz) = s(EV).
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One might wonder if the definition of ®(E, F) can be extended to unordered
frames; unfortunately, there is no a priori pairing of the constituent projections of two
unordered frames in general, and there seems to be no way to resolve this difficulty.
For examples illustrating the problem, see the next section.

However, one can still define a set of angles between £ and F, albeit from
a rather different viewpoint; since £ and F can also be viewed as projections in
B(M,), it makes sense to speak of the canonical angles @(€, F) (so cos? ©(&,F) =
MEFE|Rane))- Note that the number of angles in &(E, F), if rank E; = n;, is equal
todim& = Y_._, n}. In order to compare &(E, F) with ©(£, F), the two sets should
have the same number of elements; however, ®(E, F) only contains n angles. To this
end we introduce the following variants of $(E, F).

Definition 4.1.7. Let E = (E},..., E.) and F = (F},..., F}.) be two ordered frames
of the same type (n),...,n,). (Thus rank E; =rank F; =n; and }.._ n = n.)
Denote the angles in ©(Ej, ;) by ¢i;, 1 < j € n;. Thus

(I)(E.F)z {(ﬁ"j 1< <nl<j Sni} € R"™
We define two new sets of angles ®q(£, F) and ®,(F, F) by

®(E. F) = {¢y; with multiplicity n; : 1 <i<r,1<j<n}eRE™M,
(I’+(E,F) = {éij +op:1<i<r1 SjakSﬂi} c st‘"’%‘

Note that we shall simply write © for ©(€, F) when there is no chance of confusion
(and similarly for @, ®q, ®..).

Having introduced all the main players, let us summarize the quantities we wish
to compare.

1. Frames are viewed as pinchings in B(M,). We have angles ©(&, F) associated
with the distance [|€ — F|| = || sin © ®@sin Of|. (See (2.2) or [4] for the preceding
equality.)

2. Frames are viewed as cosets of H in U,. We have the distance infrey [|[U — Vh||
and infreq || InU*VhA|| (a generalization of the Riemannian distance); if the
eigenvalues of U*Vh are €™, we can think of o; as angles between the frames
represented by U and V.

3. Frames are viewed as collections of orthogonal subspaces. We have angles

®, &g, P; the symmetric gauge functions applied to these angles will measure
how far apart two frames are.
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We conclude this section by noting the following fact.
Proposition 4.1.8. ¢ (E, F) < 28y(E, F).
Proof. By Proposition 1.3.9 it suffices to show that, for each i,
(@i + dir - 1 £ J, k < ni} < {2¢;; with multiplicity n; : 1 < j < ng}.
Thus we wish to show that
{z; +z:0 < j,k <n—1} < {2z; with multiplicity n: 0 < j<n-1}.

Let z.. be the vector in R"* whose Jth coordinate is I(j/n] + T; mod n, and let zo
be the vector in R™ whose jth coordinate is Z[jjn. Here j runs from 0 to n* — 1,
[7/n] is the greatest integer less than or equal to j/n, and j mod n takes values in
{0,1,...,n —1}. We wish to show £, < 2z,.

Define a permutation o on the n? elements {0, 1,...,n? -1} by o(an+b) = a+nb,
where a.b € {0,1,....n — 1}. We identify ¢ with the n? x n? matrix which has
(i + 1,j + 1) entry equal to one if j = o(i) and zero otherwise. Let § = }(I +0).
Then § is doubly stochastic and Szq = iz, so z, < 2zq, as desired.

|

4.2 Unitaries intertwining frames

This rather pessimistic section contains examples which illustrate two negative results:
there is no canonical best way to pair the projections of two isomorphic (unordered)
frames in general, and there is no canonical best way to rotate from one frame to
another.

Note that the angles ®(E, F') are only defined between ordered frames £ =
(Eyr,...,Er) and F = (Fy,..., F.); one may wonder if it is possible to extrapolate the
definition of ®(E, F') to define angles between the unordered frames £ = {Ej, ..., E.}
and F = {F},..., F.} by finding a ‘best’ pairing of the projections E; with F}, in the
sense of making the associated angles small? More precisely, given a permutation
o € S,, let F; be the ordered frame (F(yy, ..., Fo(ry) and write @, for ®(E, F,) (note
that o must permute projections of the same rank). Can we find a permutation ¢ such
that @, < P, (or maybe even @, < ®,) for all permutations p? If |®(E, F)|l < £
then the answer is yes (to the strong assertion); otherwise the answer is no in general.

Proposition 4.2.1. If||®(E, F)|lc < X then ®(E, F) < &, for all permutations p.
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Proof. Let U be a unitary which satisfies UE;IU* = F; for all i. Following the notation
in Remark 4.1.6 we can write U as a block matrix with (4, j)-block-entry U;;. Since
cos ®(E, F) = Ui, s(Us), the hypothesis |®(E, F)|lw < T implies that for each 4, all
of the singular values of U;; are larger than %, or equivalently, U;;Uj > éE,-. Since
U is unitary, it follows that

Y UyU; = E: - UsU; < Ei — %E,- = %Ei < UsUs (4.3)
j# - N
for each i.

Now suppose p € S, permutes projections of the same rank. Let V' be the uni-
tary with (1, j)-block-entry equal to Uj,g;; it follows that VE;V* = F,;. Thus
cos®(E, F,) = Ui_;8(Uiy(p))- But (4.3) says that Usy)Upy, < UsUj for each i, so
cos®(E, F,) < cos ®(E, F). Hence ®(E, F) < ®, as claimed.

a

This shows that if all the angles of ®(E, F') are less than %, then any other pairing
results in larger angles. The following example shows that the bound of § is necessary
for the above proposition.

Example 4.2.2. Let r = 2 so we can write £, = P, E; = P*. Similarly, we write
F = Q,F; = Q*. We will assume rank P = rank P, so that there are exactly two
ways to pair the projections of € and JF; that is, we can compare E = (P, P1) to
F =(Q, Q%) and also to F = (Q+,Q).

Suppose the canonical angles ©(P, Q) between P and @ consist of k& angles of
T — 6 and [ angles of T +¢, where 0 < d < € < . Thus the canonical angles between
P and Q* comprise k angles of T+ § and ! angles of § —e.

Note that since rank P = rank P%, (P,Q) = O(P+,Q*) and O(P, QL) =
O(P+, Q). It follows that

|8(B, F)llw ~ 1#(E, F)ow = (7 +€) = ( +6) >0

while for each p € [1, 00),

182, F)|Ip ~ 1 2(E, F)ll5

T T e T
21— P e (e — )P _ — MNP (.. p
(T +eF - (el + (G — O — (F +
which can be made less than zero by an appropriate choice of k and (.

This shows that if |®(E, F)[l > §, one does not have ®(E, F) <, ®(E, F}) in

general. In particular, any ‘best’ choice of pairing projections will depend in general
on which unitarily invariant norm we use to measure how big the angles are.
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The same difficulty exists for minimal frames.

Example 4.2.3. Let £, F be two minimal frames with F; = UE;U*, where U is the
(n+1) x (n + 1) orthogonal matrix with entries

71;, ifi=n+lorj=n+1andi#j;
0, ifi=j=n+1;
2
=, fi=j<n+l;
—L1. otherwise.
In matrix form,

n=l _1 _L 1
n n vn
L - Do
n

U= : 2L
_1 _L ot o1
n o n n 7;
L 1 0
% PR fray %

If p is a permutation in Sy, then cos ®(E, F,) = {|Uip(y| : 1 < @ < n+1}. Thus,
there are clearly only two candidates for an optimal pairing of projections (in the sense
of minimizing the angles): p is either the identity permutation or the transposition
switching n and n+1. Let v and § denote the angles corresponding to these two cases
respectively; thus cos~ is given by the diagonal entries of U, and, if V' is the unitary
obtained by switching the last two columns of U, cosd is given by the diagonal entries
of V. Hence

n—1 n—1

cosv=(T,---, —,

(=]

)1

n—1 n—1 1
cosd = (—,..., y Ty
n n n Vn

).

=

Clearly for any p € [1,00) one can make

81z > llvlte
by choosing n sufficiently large; however
[léllee < llvlle

for any choice of n, so once again a ‘best’ pairing depends on the choice of norm used
to measure the size of the angles.
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Due to the lack of a natural way to match the projections of two frames, one would
suspect that there is not a uniformly best way to rotate from one frame to another.
First let us clarify what is meant by rotating from one frame to another.

Definition 4.2.4. Let E = (E,,...,E,) and F = (F,..., F,) be two isomorphic
ordered frames, and let £ and F denote the corresponding unordered frames. A
unitary U is said to intertwine E and F if UE; = FiU for all i. We say U intertwines
£ and F if there exists a permutation ¢ € S; for which UE; = FyuU for all ¢
(equivalently, oy (&) = F).

A natural question is which unitary, of all those intertwining two frames, is closest
to the identity. The prototype of the type of result we would ideally like is the
following proposition from (7]:

Theorem 4.2.5 (Davis). Let P and Q be two projections of the same rank. Let U
be a unitary satisfying:

1. UP=QU.
9. IfU is written in block matriz form with respect to the direct sum decomposition

H=PH& PH as
Co —=Si
Sa Ci

(The unitary U is called a direct rotation from P to Q).
Then for every unitarily invariant norm, the minimum of ||([ - V*)({ = V)| over
all unitaries V satisfying VP = QV is attained when V =U.

then C() > 0, 01 > 0, 31 = 56

Remark 4.2.6. The result is equivalent to saying that for every Q-norm, the mini-
mum of ||/ — V|| is attained when V' =U.

One may well wonder if we could extend this result about subspaces to an anal-
ogous result about frames. Can one find a unitary U intertwining two frames £ and
F for which

inf{||I - V|| : V intertwines £ and F}

is attained at U for all Q-norms? The following example shows that such a general-
ization is unlikely.
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Example 4.2.7. Let U = [ — 2J,, so U is the n X n symmetric orthogonal matrix

n—2
n

W

3
o B

..
A
=|

n—2
n

The only eigenvalues of U are 1 (with multiplicity n — 1) and -1 (with multiplicity
1). Let £ be the minimal frame comprising the projections e;e}, and let F be the
minimal frame of projections Ue;ef U*.

Note that the set of unitaries intertwining E and F is precisely {Uh : h € H},
where H consists of those unitaries which are products of a diagonal unitary and a
permutation.

Since

N[ — Uh|j? = Te(I = UR)*(I = Uh) =2 — 2ReTr Uh,
I|{ — Uhl|2 is minimized when | Tr Uh| is maximized. As |Tr Uh| is clearly maximized
over h € H when h = [ it follows that

| = Ulla = fa |1 = Ul

On the other hand
2= -Ul| =sup|[{ - Uhl.
heH

This shows that we cannot find a unitary intertwining £ and F which minimizes
|I = V| for all Q-norms. This is in spite of the fact that £ and F are quite close; the
angles between £ and F are all arccos “T‘r", which tend to zero as n becomes large.

Thus the non-existence of an optimal unitary for all Q-norms occurs for ordered
frames as well.

Remark 4.2.8. In general, the minimum of ||/ — V||, over unitaries V' intertwining
two frames £ and F is attained at a unitary U which satisfies

oy(€) =F, and
EU > 0.

This unitary was investigated by Davis in [6] and also by Kovarik and Sherif in
[16, 25, 26|; we shall follow Kovarik’s notation and call U a balanced transformation
between £ and F. Similarly, if U intertwines two ordered frames E and F, and
EU >0, we say U is a balanced transformation between E and F.
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4.3 Some Inequalities

Proposition 4.3.1. Let U be a unitary with eigenvalues e’i. Let € be a pinching, and
let cos¢ denote the singular values of EU, where 0 < ¢ < %. Then sin® 3 <,, sin® §.

Proof. Recall that A(ReA) < s(A) for any matrix A (for instance, see [4, Chapter
3]). Taking A = EU gives

2@ l—cosg 1-s(EV)
sin’ o = ——— = 5
< 1;*(_21’5@= I\ - Re€U)
= IA(ERe(I = 1)) < SA(Re(l - 1))
_i—cosa_ g0 )
= 5 = sin 5
as required. !

Remark 4.3.2. 1. We do not have sin®¢ <, sin?a in general. Nor do we have
sin § <y, sin§. This is regardless of any bounds we might impose on ¢ or o
To see this, consider the unitary

d —Vd-d&# 1-d vd - &
vd - d? d —d-d* 1-d
1—-d d— d? d —Vd —d?
-Vd-d* 1-d vd - d* d

where d € [0, 1], and take £ to be the pinching onto the diagonal with respect
to the standard basis. Note that the eigenvalues of U are given by

(1,1,2d — 1 — 2iv/d(1 — d),2d — 1 + 2i/d(1 — d)),

with corresponding orthogonal eigenvectors (0, 1,0,1), (1,0, 1,0), (i, —1,—%,1),
and (—i,-1,7,1).

U=

X

Since the function (aresin \/z)? is convex and increasing for any p > 2, it follows
by Theorem 1.3.8 that ¢” <,, a® for any p > 2. That this does not necessarily
hold for p < 2 may be seen by considering the unitary U abave with d sufficiently
close to 1.
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Corollary 4.3.3. Let E and F be ordered frames of the same type. Then
<I>(E F)

”’

for any Q-norm.
Also

| < mf{[l[ —U|| : U intertwines E and F'}

®(E,F)|l, < inf{||lnU]|, : U intertwines E and F'}
forallp > 2.

Proof. Wolog represent E and F by the unitaries I and V respectively. Then a
unitary U intertwines £ and F iff U = V'h for some block diagonal (with respect to
& Ran E;H) unitary h. If the eigenvalues of U are €', then the singular values of
[ - U and InU are 2sin 3 and |a;|, respectively. Since

s(EU) = s(E(Vh)) = s((EV)R) = s(EV) = cos ®(E, F)
by Remark 4.1.6, the assertions follow from the preceding proposition and remark. 0

Remark 4.3.4. We can minimize over all possible pairings of projections to obtain
a similar result for unordered frames.

Proposition 4.3.5. Let V' be a unitary matriz. Then
inf ||/~ Vh| < inf || InVh| (4.4)
heH heH

for any unitarily invariant norm.

Proof. It suffices to show that ||/ —U|| < || InU|| for any unitary U. Let U be a unitary
with eigenvalues €. The singular values of InU are [a;|, while the singular values
of [ — U are 2|sin 2|. Since 2{sin 3| < 2|%| = oy, the proposition follows. a

Remark 4.3.6. Since the difference between 2sin § and a is of order o®, the proof
shows that the difference between infuecy ||[I — Vh|| and infresr || In VA|| is of order
(infrer I = VAI)%.

[n the particular case of the Frobenius norm, the infimum on the left hand side
of (4.4) is attained when V'h is a balanced transformation, while the infimum on
the right hand side is attained when V'h is a geodesic rotation, so we essentially
recover the estimate of Kovarik and Sherif [17, 25] which asserts that the balanced
transformation and geodesic rotation are cubically close.
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4.4 2-frames

In the special case where £, F are isomorphic 2-frames we possess considerably more
information than in the general case; thus it is fruitful to examine this case separately.
For this section, we will write E = (P, P*) and F = (Q,Q*), and we will assume
wolog rank P = rank @ = k < 3. The following proposition gives us ©(£, F) in terms
of ©(P,Q).

Proposition 4.4.1. Let 6, > ---> 8) be the canonical angles between P and Q.
Then the angles in ©(E, F) consist of:

1. 0; with multiplicity 2(n — 2k) for eachi=1,...,k

. 16; — 6| for eachi,j=1,....k

[

3. min(f; +6;, (5 — 6:;) + (5 —6;)) for eachi,j=1,....k
4. 0 with multiplicity (n — 2k)?

Remark 4.4.2. Note that if n = 2k, the above list of angles remains unchanged if
we substitute 5 — 6; for 6;. This is not surprising, for n = 2k implies that rank P
= rank Q*, so we could just as well pair P with @+ and ask for ©(€, F) in terms
of O(P,Q"). Since the angles in ©(P, Q) are precisely {5-6:0€0(P,Q)}, this
explains the noted invariance.

Proof. We can choose an orthonormal basis (for example, see [4, Chapter 7]) such
that, with respect to this basis, the block matrices of P and @ are

100 c?sco
P=(000) =( )
000 Q@ 506'5:8 !

where C, S are the diagonal matrices

cosfy sinfy
cos fa sinfly
C = ) S = R
" cos O " sin6i

respectively. Note that the diagonal block entries of P and @ have dimensions k,k,
and n — 2k.

Since the canonical angles between £ and F satisfy sin? ©(&, F) = A(EFLE|rane),
it suffices to compute the eigenvalues of EFLE (as an operator on Ran€). Note

FrA=A-FA=QA+AQ -2QA0.
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Let A € Ran&; writing all matrices in block form, we have A = (
A straightforward computation shows that

oo
~Fe

e
—

C?Z+ZC*-2C%2C?-2SCWSC 0 0
EFEA= ( 0 s‘-’w+ws“l-zs'-'snzvs2-2sczsc s?x) )
0 Y, o

Let E¥ = e;e; be the matrix with a one in the (4, j) position and zeros elsewhere.
It follows that EF*€ has the following eigenvectors in Ran£:

1. (0 0 . ) with eigenvalue 0 for each 1 <i,7 <n —-2k.

(S

. (0 0 Eow') with eigenvalue sin§; foreach 1 <i<k,1<j<n—2k.

3. (0 Eou 0) with eigenvalue sin® f; foreach1<i<n-2k1<j<k

=

(EU Ev 0) with eigenvalue sin®(§; — 6;) for each 1 <4, < k.

5. (E‘J -Ev o) with eigenvalue sin*(8; + §;) foreach 1 <4,j < k.
The eigenvalues for (4) and (5) are evident if we note that

cos® 8; + cos® §; — 2 cos® §; cos® §;  2sin ; cos ; sin §; cos b;
=cos® §;(1 — cos® ;) + cos? 8;(1 — cos® 6;) + 2sinb; cos b; sin 6, cos 6;
=cos 8;sin® §; + cos® f; sin® 8, + 2sin b; cosb; sin §; cos §;
=(cos 6, sin 6; =+ cos 6; sin §;)"
=sin*(g; £ 6;).

By noting that sin® ©(£, F) = ¢(§F*€) and that all angles in ©(E, F) are between
0 and %, the proposition follows.

O

Since ®(E. F) = O(P,Q) U O(P+,Q4), and ©(PL, Q1) just consists of the same
angles as O(P, Q) together with n — 2k zeros (recall that we've assumed &k < %), this
proposition allows us to derive a number of relations between ®(E, F) and O(E, F).

Theorem 4.4.3. If E and F' are isomorphic ordered 2-frames, ©(E,F) < ®.(E, F).
Moreover, if |®(E, F)|| < T for the bound norm || - ||, then ®o(E, F) <, O(E, F).
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Proof. Let oy,...,q; denote the angles between P and Q. As noted, the angles
between P+ and Q" are just ©(P, Q) together with n — 2k zeros. Hence &, (E, F) is
the union of the four sets of angles

k
k},

. {o; with multiplicity 2(n —2k) : 1 <i <k},

L{ai+o:1<4,j

IN
gt

2. {ai+a;:1<4,j

IN

[J%]

4. {0 with multiplicity (n — 2k)*},
whereas, by Proposition 4.4.1, (€, F) is the union of the four sets of angles

1. {min(czi -’:—aj,rr—(a,- +aj) 1< l,j < k}v

{6

Alei —eg 14, j <k},
3. {o; with multiplicity 2(n —2k) : 1 <i <k},
4. {0 with multiplicity {(n — 2k)2}.

Comparing corresponding sets of angles of ®..(E, F) and ©(&, F) gives the first
statement.

For the second statement, note that $4( £, ') comprises n copies of a;, 1 <7 < k,
together with (n —2k)(n — k) zeros. We can rewrite ®q(E, F) as the union of the four
sets of angles

Pt

. {a; with multiplicity & : 1 <i < k},

b

. {o; with multiplicity & : 1 <7 < k},

[&)

. {@; with multiplicity n — 2k : 1 < { < k} U {0 with multiplicity (n — 2k)k},
4. {0 with multiplicity (n — 2k)}.

Note that the condition ||®(E, F)|| < % implies a; < X for all 7, so min(a; +a;, 7 —
Q; — C!j) = Q; +a,-.
Since
o; + a5 + | — | = 2max(ey, o),
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it follows that
(0, ;) <y (mine; + 05,7 — a; — @), | — @)

for all 1 < i,j < k. Combining these k> weak majorizations in the manner of
Proposition 1.3.9 shows that the union of the first two sets of angles of ®y(E, F)
is weakly majorized by the union of the first two sets of angles of ©(&, F). Since
the third set of angles of ®y(E, F) is weakly majorized by the third set of angles of
©(&,F), and the fourth sets of angles are identical, another application of Proposition
1.3.9 yields the latter half of the proposition. 0

Remark 4.4.4. The condition ||®(E, F)|| < I is necessary and cannot be eliminated
by pairing the projections £; and F; more efficiently. For example, consider the case

where
100 000
P=10 00| and@=]|0 1 0
00090 000

Here ®o(£. F) = (, , 5,0.0) whereas &(&, F) = (§,5,0,0,0), so the conclusion of
the proposition fails in this case where there is only one possible pairing.
That the constant % is the best possible can be seen in the simple example where

10 cos’a  sinacosa
P= (0 0) 20d Q = (sinacoscx cos? o )
Here ®(E, F) = (a, a) while ©(€, F) = (min(2a, #—2¢), 0); thus if @ > T O(E,F) Aw
©(€, F). This example also shows that we do not have ®o(E, F) < O(€, F).

The preceding proposition shows that if ©(P, Q) is small, then so is O(&, F). If
©(€, F) is small, it is too much to ask that O(P, Q) be small; however, a reasonable
request is that one of O(P, Q) or O(P,@*) be small.

Proposition 4.4.5. Let L = ||9(£,F)|| end M = min(||O(P, Q)|}, |6{P, Q1))-
(Here || - || is the bound norm.) Then M < L; if L < %, we in fact have M = L/2.

Before proving this proposition we remark that the minimum over the choice of
pairing P with @ or Q" only arises when rank P = 5.
Proof. We write 8, > --- > 8 for the angles between P and Q. We have either
01 + 6k < 5 or 0y + 6, > 5. In the former case,

9{S9i+gks01+9kee(£1f)
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for all Z. In the latter case,
w T m
5—0,' S5—9;+§—91S7{—9k—01€@(8,f.)

for all i. Thus we have either ||O(P, Q)| < |8, F)|l or |©(P, Q)| < IO, F),
so M < L as claimed.

Now suppose L < ¥, so each angle in @(&, F) is less than 3. By Proposition 4.4.1,
it follows that for each ¢, either 26; < Lor 20, >7—L > 3} Suppose there are two
different indices 1, j for which ¢; < % and 6; > %. Then

T L =« 2w
L<§<9j595+9j_<_§'+§<?<11’—[1.

Thus min(f; + 8;,7 — 6; — ;) > L which contradicts ||©(€, F)|| = L. Therefore
we must have 6; < L/2 for allior 6; > 5 — % (that is, § —6; < :[,_‘-) for all 4, and so

M< % <5
Finally, wolog suppose M = [[©(P,Q}|, so 8 < % for all i. It follows that
1©(€. F)|| = max; 26; = 2M as required. a

Remark 4.4.6. Note that L = % does not imply M < -gi; consider the example where
O(P,Q) = {50}

4.5 General Frames

We now turn our attention to the general situation of two isomorphic ordered frames
E=(E,....E.) and F = (F,,...,F.), where rank E; = rank F; = n;. Let £ and
F denote the unordered frames corresponding to £ and F respectively. We begin
by introducing an operator S which will be useful in proving some of the subsequent
propositions.

Suppose U is a unitary which intertwines £ and F, so there is a permutation
o € S, such that UE; = Fy)U foreach 1 <i <r. We definea map §: £ — € by

S(A) =U*(FA)U. Note that

U (FA)U = U‘(Z FopyAF o) )U = Z EUAUE; = E(UTAU),
i=l i=1
s0 @y o F = E o ¢y-. Thus S = dy- © Flrane = € © dy+|rane. Of course this map §
depends on the choice of the unitary U; if there is a possible ambiguity as to what
this choice of unitary is, we will write Sy instead.
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Since we can write § = @y-FE|Rang, We see that $*S = EFE|rane, s0 the sin-
gular values of S are precisely cos@(E, F). Moreover, S is a doubly stochastic map
(positivity-preserving, unital, and trace-preserving) on £, so SA < A for any her-
mitian A € £.

We shall find it convenient to utilize the block structure of the subalgebra £. To
this end, we will write I in block form with respect to the direct sum decomposition
H=EHE --®EHas

U ... U,
where U;; = {Uy; and +; : E;H — M is the inclusion map. Since U is unitary, we
have U*U = [ and UU* = [ using block notation, it follows that

lew=) (U)5Us=3_ Uils end
j=1

=l
Hew =Y UglU); =Y UUs,
j=1l =l
foralll1<i<r.
Let 4 € Ran&, so A is block diagonal and we may write
A 0
A= .
0 A,

where A; is an operator on Ran E;.
Since SA = E(U*AU) and £B is just the block diagonal of B, it follows that

Al 0 2=t Ut AUy 0
S T, = t-
0 A, 0 S Un AU
We can also write § in a block matrix form with respect to the decomposition

E=M, &---8 M, so that
Su S ... S\ [Al Dot S1i4;

7

S Sa Sir | | A2 i1 S A5

S S ooon S) \A)  \XL w4y
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where §;;A; = UjA;Uj; for A; € My;. Clearly (87);; = Sj;. Note also that in the
case where £ is a minimal frame, S is just the orthostochastic matrix os(U*).

Our first proposition partly generalizes the first inequality in Prop. 4.4.3.
Proposition 4.5.1. QL(£, F) < 20L(E, F) for eachk=1,...,n.

Proof. Let U be a balanced transformation intertwining £ and F', that is, UE; = F;U
and E;UE; > 0 for each i. In this case, the eigenvalues of B = Y., E;UE; are given
by cos®. Let {R:1 < k < n} be a set of orthogonal rank one spectral projections
for B, where Rj. corresponds to the eigenvalue (cos ®):. Thus

RLURy = (cos ®) Ry. (4.6)

Let ¢t : Span{R; : 1 < i < k} — Ran€ be the inclusion map; we will write S; =
tx Sty for the compression of S to the subspace of Ran £ spanned by the orthonormal
basis {#; : 1 <i < k}. With respect to this basis, the (¢, j)-entry of S is equal to

(SuR;, R) = (SusRj,uRy)
= (SR;, R:)
= (E(U"R;U), R:)
= (U"R;U,ERy)
=TrR,U'R;U
=Tt RUR;R;UR;
=Tr(R;UR:)"(R;UR;)

which is non-negative. In particular, if i = j, (4.6) implies
(SkRi, R:) = (cos® @);. (4.7)

Also note that & is symmetric, and that summing the entries of the jth column
of S;. gives

k k
Y (ScRj R) =) TrR:SR;
i=1l

=1

<) TrRSE; (4.8)

i=L
= T‘IRJ = 1.
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Recall the Gershgorin Disk Theorem [4, Problem VIII.6.3] says that for a k x &k
matrix B,

MB) Ut {z: ]z — by <) Ibyl}-
i#]
In particular, if B is self-adjoint, it follows that the smallest eigenvalue A\.(B) of B
is greater than minf_,(b;; — ¥ 4 |bi]). With this in mind, we prove the proposition:

(cos @)t = sp(S) > AL(ReS) [4, [T1.5.1]
> Ab(¢f (ReS)u) [4, [I1.1.5]
= \i(ReSy)
= \L(Sk) since S is self-adjoint

k—L

> (SR, Ri) = Y (SeRi, Ri) by Gershgorin Disk Theorem

i=1

> (cos®* @)t — (1 - (cos® D)}) by (4.7) and (4.8)
(cos 20)}.

Hence (cos ©)' > (cos2®)}, and so Of < 28] for each k = 1,...,n, as desired.
a

Remark 4.5.2. If £ and F are minimal frames, then both © and & consist of n angles,
so we have @,{.(8,?) < 2<I>,£(E, F) for all k; however, this does not hold in general.
(Consider the example where n = 4 and £ F are 2-frames with ®(E, F) = (e, 0) and
a > 0).

Proposition 4.5.3. ||[©(&, F)|l1 £ {|®+(E, F)|1

Proof. As in Proposition 4.5.1, let U/ be a balanced transformation intertwining F
and F; thus, using block matrix form, U;; > 0 and S;;A = U;;AUj;. If we denote the
block diagonal of S by D = 8§}, & -+ - & S+, then D > 0 and, since the block diagonal
of S and Re S coincide,

A(D) < A(ReS) < s(S) =cosO.
Since the eigenvalues of D are given by

{cosdyjcosdi 1 1 <i<r 1< j,k<n},
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and since cos(di; + i) < c0s @i; + oS Py, it follows that
{cos(¢:j + dix)} <w cosO.
Applying Theorem 1.3.8 to the convex increasing function — arccos z gives
{—(ij + 0ur)} <w -6,
so in particular — Tr ¢, < —Tr©, as required. O
We now attempt to generalize the second inequality in Prop. 4.4.3.

Note that, since arcsin z is convex increasing on [0, 1] and sin® r is convex increas-
ing on [0, §], Theorem 1.3.8 implies that

SINT <y, SINY = T <y ¥ = sin’ ¢ <, sin’y,

provided the coordinates of z,y lie in [0,%]. Ideally, we would like to show that
sin ®o(E, F) <, sin©(E, F). This does not occur in general, however, regardless of
how we bound ®q(F, F); consider the simple case where n =r = 2.

Thus, a first step towards showing ®¢(E, F') <, ©(€,F) would be to show that
sin® ®g(E, F) <, sin* ©(E, F) if || ®(E, F)|| < E. The next proposition is a partial
result in that direction.

Proposition 4.5.4. If £ and F are minimal frames then
2sin® ®g(E, F) cos® Bg(E, F) <y, sin® O(E, F).
Before beginning the proof, we introduce a short lemma.

Lemma 4.5.5. [fa = (ay,...,a,) and b = (by,...,b,) are probability vectors (that
is, all coordinates are non-negative and sum to 1), then

l-a-b2a;(l-b)+b(1l-a) (4.9)
foralll1<i<r.
Proof of Lemma. We have
a-b=Y ab; <abi+ () a;)(O_b;) = aib + (1 —a:)(1 - by) (4.10)
J#

=1 i#i
for any index i. Thus

l—a-b>a;+b; —2ab; = a;(1—b;) +b:;(1 —a;)

for all ¢, as required. |
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Proof of Proposition. Let U be a balanced transformation intertwining E and F), so
UE; = F,U and EUE; > 0 for each i. In particular, we may assume that Uj; is
diagonal for each 7 and write

0 CoS C,bin,-

Writing Ran€ = M, ®--- @M, , welet T, : M, — M, denote the compression of
EFE = 8°S to My, thus if A € My, Ti(A) = 37_, UU5 AU U Let Cyj = UU3;.
We compute the diagonal entries of 7; with respect to the standard orthonormal basis
{exer} on M, :

(Ti(exer). exe]) = Trege;, Z Cijere;Cij = Z(Cij)kk(cij)ll- (4.11)
i=1 j=1
But since Cyj > 0and )7, Ci; = [ by (4.5), ((Cut)kks - - - - (Cir)ir) is 2 probability

vector for each ¢ and . It follows from (4.11) and (4.9) that

((id = T:)(exer), eer) 2 (Ciadrr(l — (Ciu) + (Cia)u(1l — (Ciidir)
= 05> &y sin” ¢y + cos” @y sin” Py

for any ik, [.
Thus if P; is the projection onto M, we have

Ui et cos® @y sin® ¢y + cos® gy sin® gy < UL diag(id|y,, — T2))
< U_ \(id - T;)

=\)_PEFLEP)
i=1

< o(EFLE)
= sin? ©(€, F)

But if £, F are minimal then the left hand side is just 2sin® ®q(E, F) cos® ®q(E, F),
and the proposition follows. a

Remark 4.5.6. If |®(E, F)|| < T then we have

1 2
{5(sin’ g +sin® 8q) : 1 < < 131 < k, [ S mi} <y, sin O(E, F)
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where £ and F need not be minimal. In particular, this shows that ||®(E, F)|| <
|©(€,F)||. If E and F are minimal we have sin® &;(E, F) <,, sin?©(&, F).

The 2-frame example where &(F, F) = (o,0,...,0), rank E = rank E*, and o is
sufficiently small shows we do not have 2sin® ®y(E, F) cos® ®y(E, F) <, sin’ O(£, F)
in general.

The next result generalizes Proposition 4.4.5; it says that if {|©(€,F)|| is small,
then there is a way to pair the projections of £ and F so that ||®(E, F)|| is small.

Proposition 4.5.7. Let £ = {Ey,...,E.},\F = {F,...,F.} be two isomorphic
frames. Suppose ||O(E, F)|| = a < . Then there exists a unique permutation o
such that all angles ¢;; between the ordered frames (Ey, ..., E;) and (Fyq), ..., For)
are less than a.

Proof. The case ¢ =0 is trivial so assume & > 0. The hypothesis implies that for all
angles 6, € ©(&,F), cos?8; > cos® o, so EFE > cos’ a . In particular, for any index
i=1,...,r the compression 7; of EFE to M, defined in Prop. 4.5.4 must satisfy

(TA A) > cos’a (4.12)

for any A € M, with norm [[4], =1.
Fix a unit vector z € Ran E;. Letting A = zz* in (4.12) gives

cos’ a < Trzz"Ti(zz")

=Trzz" Z ngII’Cij

i=l
:
= Z(z‘C’ijx)z,
i=1
where, as in PIOp. 454, ng = U;JU:J
Suppose, by way of contradiction, that 2*Cyz < cos?« for all 5. It follows that
(z°Caz,...,z°Cirz) < (1 — cos® a,co8° &, 0, . ..., 0),

so, by applying Theorem 1.3.8 with the convex function f(¢) = &2,

Z:(a:‘C'ij:z:)2 < (cos? @)? + (1 — cos? @)

=1
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This implies
cos® a < (cos®a)? + (1 — cos® a)?
P . 9 -7 ]
= cos” @ + sin” a(sin” a — cos® @)

< cos’ @ since0 < a < —,

which is a contradiction. Thus there must be some index j for which z*Ci;z > cos® a.
Wolog assume j = 1.

Let y be a unit vector in Ran E; and write A = z°Cj z and p = y*C;,y. Letting
A =zy" in (4.12) implies

cos’ a < Tryz"Ti(zy")

= Tryz® z Cijzy"Cij

i=t

=Y (&Cyz)(y"Cisy)
i=1
<A+ (1= A1 —p),

where we have used (4.10) applied to the probability vectors (z*Cyz,...,z°Ciz),
(y*Cay, ...,y Ciry) for the last inequality. The last quantity is a convex combination
of p and 1 — p; since A > 1, it must lie between x and 3. Since cos’a > £, the
inequality can only occur if z > cos?a. Since y was arbitrary, we conclude that
Ciy > cos*a E;.

Thus we have shown that for each index i there exists an index j such that
Cy 2 cos’a E; > L1E;. Since z;=1 C;; = I, this index j is unique, and so we can
write j = o(¢) for some permutation ¢ € ;.

Since Uia(i)U,':,-(i) = Cia(i) > COS20! Ei, C,-,,(i) is invertible and so U::r(i) : Ran Ei —
Ran Fq(;) has zero kernel, so rank E; < rank E;). Thus rank Ej is constant for all
indices k£ belonging to the same cycle of ¢, that is, ¢ permutes blocks of the same
size.

Thus we can pair E; with Fy(;) and the cosines of the angles between these two
projections are given by the singular values of Uz, all of which are greater than
cosa. But the arccos of these singular values are just the angles between the ordered
frames (Ey,..., E;) and (Fy,..., F}), proving the proposition. a
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4.6 Summary
For the special case of 2-frames, we obtained our strongest result:
Do(E, F) <w O(E,F) S O (E, F) < 28¢(E, F)

where we require [|[®(F, F}| < % for the weak majorization. We conjecture that this
holds in general; here we summarize the results we have thus far.

For minimal frames, note that ®(E, F) = ®(E,F) = %@.,.(E, F). Our best
results here are

2sin® ® cos® d <, sin®© < §, < 20:
note that for ||®]] < I we have

sin? ® <, sin>©.

For frames in general, much less is known. We do have

—

- |[%oll < IO} (if [|®ol| < §)- This follows from Remark 4.5.6.

(V]

1€l £ [|®+]| = ||2®o]|- This is obtained by almost the exact same argument as
in Proposition 4.5.1.

3. Tr® < Tr®, = Tr2d,. This is just Proposition 4.5.3.

We also have a negative result: we do not have sin®y <, sin® in general, even
for 2-frames or minimal frames, regardless of any bounds we might impose on |||
(see the simple case where n = 2,r = 2).



Chapter 5

Antipodal Frames

We return to the idea that if A lies in the range of £ and if £ and F are close, one would
expect that F A is only slightly more messed up than A. Conversely, if GEA < FEA
for all hermitian A then surely G is farther from £ than F is. From this viewpoint,
a frame F should be maximally distant from &£ precisely if FEA = (% Tr A)I for any
A. We shall pursue this idea further in this chapter, asking which pairs of frames
possess this property, and how many are there. First we introduce some notation.

Definition 5.0.1. We say two frames £ and F are antipodal if EFA = (+ Tr A)/ for
all A e M,.

Note that, since the map ¥(A4) = (2 Tr A)/ is a projection in B(M,), EF =V if
and only if F€ = ¥. Thus the definition is symmetric in £ and F. The definition also
allows the possibility that £ and F are non-isomorphic; the following lemma shows
that this never occurs.

Lemma 5.0.2. Let £ = {E,...,E.} and F = {F,,...,F,} be two (not necessarily
isomorphic) frames. Then £ and F are antipodal if and only if both £ and F are
minimal frames and Tr EiF; = % foralli,j.

Proof. For the ‘if’ part, write E; = e€], F; = f;f; for some orthonormal bases
{e:}, {f;} of C". Then since Tr E;F; = €] f; f7e;, it follows that

47
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FEA=Y) fifjeciAeieifif;
ij=1l

1j=1

(s
n

for any matrix A, as required.
For the ‘only if’ part, let P be a rank one projection in the range of £, so

s 1 3 1
lePFJ-—J-'P-J:EP-;I-ZEF}.

= j=1

This implies that .

FPF;=-F, (5.1
for each j. Since the left hand side has rank at most one, it follows that rank F; = 1 for
each j. Due to the symmetry in the definition of antipodal frames, we can reverse the
roles of £ and F to conclude rank E; = 1 for each i. Thus £ and F are both minimal
frames. Finally, setting P = E; in (5.1) and taking the trace implies Tr E;F; = L for
each i, j, as required. a

From the notation used, one might wonder if two antipodal frames really are
maximally far apart with respect to some natural metric. The following proposition
shows that this is indeed the case.

Proposition 5.0.3. Let 1 < p < oo and define the distance between two minimal
frames €, F by | — Fllp (here £ and F are viewed as operators on the Hilbert-
Schmidt space M,). Then € and F are antipodal if and only if ||€ — F|; is the
mazimum distance between any two minimal frames.

Proof. Let € and F be two minimal frames. Since £ and F are projections on M, of
the same rank, [4, p.201] shows that

I€ — Fll = |isin ©(£, F) & sin©(, F)
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for any unitarily invariant norm. Since [ lies in the range of both £ and F, at least
one of the angles in ©(&, F) is zero; hence ||£ — FJ|, is maximized iff all the other
angles in ©(&, F) are §. Since cos® ©(€, F) consists of the eigenvalues of EFE, this
is equivalent to requiring that the spectrum of £F£ has only one nonzero eigenvalue.
Thus ||€ — F||, is maximized iff EFE has rank one iff 7€ has rank one. Since
both £ and F fix I and are trace-preserving, it follows that ||€ — F||, is maximal iff
FEA = (Tr A)l, as required. ®

Remark 5.0.4. Note that the proof in fact shows more; if £ and F are antipodal,
then they are maximally distant with respect to eny unitarily invariant norm. The
converse is not true in general; two frames £ and F may be maximally distant with
respect to the bound norm, but not be antipodal.

To avoid any possible confusion, I shall use the term antipodal only in the sense
of the above proposition; for a general metric p on the space of minimal frames [ will
speak of two frames being maximally distant with respect to p.

A natural question is to find all frames F antipodal from a given frame £. Lemma
5.0.2 shows that for this to occur, both £, F must be minimal frames, so £ = {e;e}},
F = {fif;} for some orthonormal bases {e;}, {fi} of C*. If U = (ey]...|e,) and
V = (fil...|fa), then €, F can be identified with the (left) cosets [U],[V] € U./H
respectively (here H is the subgroup of U, generated by the permutation matrices
and diagonal unitaries). Since Tr E;F; = |fje:|?, the condition Tr E;F; = & for all
i,J is equivalent to the requirement that os(Y*X) = J, for some (any) choice of
representatives X of (U] and Y of [V]; in particular,

[U] and [V] are antipodal <= os(V*U) = J, (5.2)

(recall os(U) is the matrix whose (%, j)-entry is |U;(®). It follows that [U] and [V] are
antipodal if and only if (V*U] and [I] are, so it suffices to find all frames antipodal
from [/]; that is, we wish to find all unitaries U for which os(U) = J,. Note-that if
0s(U) = J, then os(U’) = J, for any unitary U” in the same double coset of H as U,
so we may restrict our search to those unitaries I for which all the entries in the first
row and column are equal to 71:

Proposition 5.0.5. Suppose U is unitary and os(U) = Jo. Ifn =123, or 4 then U
must lie in the same double coset as

1 1 1 1
—l- 11 L }.c}};} o'rF(ct)—E 11 -1 -
v\l -1 @\ oo 9|1 -1 a -a

1 -1 —a o
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respectively, where w = ¢*™/* qnd « is a complez number of modulus one.

Proof. The n = 2 case is trivial. For the other cases, it is helpful to view complex
numbers as vectors in the plane. For n = 3, note that a triple (a;, as, a3) of complex
numbers satisfies ¢ + as + a3 = 0 and |e;| = 1 for each i only if the triple denotes
the sides of an equilateral triangle. The result follows almost immediately by noting
that the rows of U are orthonormal. For n = 4, note that a quadruple (by, ba, b3, by)
of complex numbers satisfies b; + by + b3 + by = 0 and |b;] = 1 for each 7 only if the
quadruple denotes the sides of a rhombus, in which case one may assume wolog that
by = —b; and by = —bs. Noting that the rows of I are orthonormal and considering
the various possibilities entailed by this argument gives the result for n = 4. a

Remark 5.0.6. Note that there is a unique double coset of unitaries with associated
orthostochastic matrix J, for n = 2,3 but not for n = 4; in fact F(a) and F(3) lie
in the same double coset if and only if § = +a (in which case they actually lie in the
same coset). This relative abundance of double cosets with associated orthostochastic
matrix for n = 4 is representative of the situation where n is composite.

Proposition 5.0.7. Let F, denote the p x p finite fourier transform, so (Fy)j =
Zexp(Z(j - 1)(k—1)), 1 <5, k S p. Let D € My be the block matriz

I Dy ... Dyy
[ Dy ... Dy

where for each j, D; € M, is a diagonal unitary with (1,1)-entry equal to one. Let o
denote the block Hadamard product, so if A and B are block matrices,

An ... Ap By ... Bn AuBy ... ApBn
- c o] o | = . .

App oo Ap) \Bp ... By ApBpr - ApBp

Then the pg x pq matriz (F,® F;) o D is unitary with associated orthostochastic matric
Joq-

Proof. Let U = (F, ® F,) o D. The (i, j)-block of U is given by the ¢ x ¢ matrix

U = (Fy);jFyD;. The modulus of each entry in this block is Z5—==, which shows that
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08{(U) = Jpq- To see that U is unitary, note that the (¢, k)-block of U*U is given by

P p
Y (U)5Un = Y (Us)"Use
j=1 j=1
P

Y ((Fp)isFo D) (F)nFy D

<
Il

[
.M" i

I
A

(Fp)ji(Fp)jkD;F;Fqu

*

J
=(Fp

Fp)ikDi‘Dk = ikD:Db
|

Remark 5.0.8. The number of double cosets of unitaries with associated orthosto-
chastic matrix J, is related to the 2-transitivity of the action of U, on antipodal pairs.
(Recall that a unitary U acts on a frame [A]| via U[A] = [UA].) Here we say that
the action of U, is 2-transitive if, whenever ([A;], [As]) and ([B,},{Ba]) are antipodal
pairs of frames, there exists a unitary U for which U[4;] =[Bi], i = 1,2.

Since A7Y([A4], [A2]) = ([I],[A7 42]), U, is 2-transitive if and only if whenever
[A] and [B] are antipodal from [[] there exists a unitary U for which U[/} = [I] and
U[A| = [B]. Since U[I] = [I] iff U € H, the condition U[{A] = [B] says that A and B
lie in the same double coset. Thus U, is 2-transitive if and only if all frames antipodal
from [I] lie in the same double coset. In particular, we have 2-transitivity when n = 2
or 3 but not when n is composite.

Beyond this, not much is known. An obvious question is what happens when n
is prime. For n =5, Drury (9] has recently shown numerically that the only double
coset of unitaries with associated orthostochastic matrix Js is that containing the
finite fourier transform. However, Drury (8] has also shown that for n = 7, there
is at least one dimension worth of double cosets of unitaries which have associated
orthostochastic matrix J7. It is not clear what happens for larger primes.

5.1 Maximal Antipodal Sets

In the previous section we asked which frames are farthest apart from each other. In
this section we want to obtain an idea of how ‘spread out’ the space of frames is; in
particular, how many frames can be antipodal to each other?
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Definition 5.1.1. A mazimal antipodal set is a set of frames {[Ai],...,[Ak]} satis-
fying:
1. [4;) and [A;] are antipodal whenever i # j.

2. Any strictly larger collection containing {[Ai], ..., [Ak]} does not have the above
property.

Remark 5.1.2. Note that (5.2) shows that {[A],...,[A]} is a set of mutually an-
tipodal frames if and only if {[UA,],...,[UAx]} is for any unitary U, so in searching
for maximal antipodal sets one may assume wolog that A; = I and that A, is one of
the unitaries listed in Proposition 5.0.5.

Proposition 5.1.3. Forn = 2, the mazimal antipodal sets are obtained by the action
of U, on sets of the form

w50 OLGEY

Proof. By Remark 5.1.2, it suffices to find all maximal antipodal sets containing /]

and (U], where
1 /1 1
v=5( L)

If a frame [V] is antipodal from (I], Proposition 5.0.5 implies that [V] is represented
by hU for some h € H. But both U and ¢U (here ¢ is the permutation J — I)
represent the same coset since

C0=0 56 2%

Since A and e A represent the same coset, it follows that we may write

V:%C‘ -lu)

for some y of modulus one. If [V] is also antipodal from [U] we must have os(U*V) =
Ja. That the (1,1) entry of os(U*V) equals £ implies that

1 1
Z(2+2 Re p) = = = p=+i.

2
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Hence we can represent {V] by

proving the proposition. O

Proposition 5.1.4. Forn = 3, the mazimal antipodal sets are obtained by the action
of U, on sets of the form

1 11 1_ 1 1 1 l_ 1 1 1 1-
wlalt 2 sl Al 2 )

where w is a primitive cube root of unity.

Proof. By Remark 5.1.2, it suffices to find all maximal antipodal sets containing (/]

and (U], where
11
U=|1 w .
l o w

If a frame [V'] is antipodal from {/], Proposition 5.0.5 implies that [V] is represented
by hU for some h € H. But both U and oU represent the same coset for any
permutation ¢ € S3 since we can choose p € S3 and a diagonal unitary d such that
oU = Udp. As A and e A represent the same coset, it follows that we may write

1 1 1 1
Ve—7I7 w 1|.
V3\s 6o 6w
where [y| = |§] = L. If [V] is also antipodal from [U] we must have os(U*V) = J;.
That the modulus of the (1,1) and (1,2) entries of 0s(U*V) is L gives

€1 =

|14+~ +4] = V3,
Il +wy +@d| = V3.

Writing £ = € = v and y = €/ = §, this translates into

Rez+Rey+Rezj=0,

54
Re wz + Re @y + Re wzfj =0, (54)



CHAPTER 5. ANTIPODAL FRAMES 54

or equivalently,

cos(#) + cos(¢) = —cos(f — ¢),
—sin(@) + sin(¢) = —sin(d — ¢).

Squaring both equations and summing implies cos(f + ¢) = —%, SO Ty = w Or &,
that is, 4 = e 7 Z. But equations (5.4) say that

Re(Z +y+zj) =Rew(ZT+y+z7) =0,

which implies that Z + y + z§ = 0. Multiplying this equation by x and substituting
for y implies that z* = 1. Thus z = 1,w, or @, with the corresponding values for y
given by noting ry = w or @. Consideration of all possible choices of r and y shows
that V must lie in the same coset as one of

1

Wy

)

1 11 1
i 1l w @ ori 1
‘/§ w 1 @ \/E @

One can verify that the two cosets represented by these two matrices are antipodal
to [{], (U] and to each other, and so the proposition follows. a

£ & ~

Proposition 5.1.5. If v € C*, let diag(v) denote the diagonal matriz whose jth
diagonal entry is v;. For n =4, the mazimal antipodal sets are obtained by the action
of U, on sets of either the form:

{l}, Flal, [diag(a, a.c, <) F(8)]}
if @ # £1 (here a,c, 3 are arbitrary complez numbers of modulus one}, or
{1, [F )], e (L)), (o F (DL (s F (L]}
where by = diag(1, 1,1, 1), ho = diag(l,1, —1,1), and hy = diag(1, —i, 1,7).
Before proving this proposition two lemmas are needed.
Lemma 5.1.6. Let a,b,c,d be complex numbers of modulus one. Then
la+b+c+dl=lat+b—c—d =2 (6.5)

if and only if two of a,b,c,d are equal and the other two sum to zero.
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Proof. The ‘if’ part is easy to verify. For the ‘only if’ part, note that if one regards
two complex numbers z,y as vectors in the complex plane, then

lz+yl=lz—-yl=>z Ly

(that is, Rey"z = 0). Let z =a+b,y =c+d toseethat a +b L c+d. Applying
Pythagoras gives
d=|a+b)+(c+d)>=la+b+]|c+d
= 0 = 2Re(ab + cd) since a, b, ¢, d have modulus 1
= Recd = Re(—a)b.
Geometrically, this says that the angle between ¢ and d equals the angle between —a
and b. Let k = —ba, so kb = —a; that is, applying k rotates b onto —a. It follows

that either kd = c or kd =c.
Case 1. First consider kd = c¢. In this case
a+blc+d=>a—-ka Lc+ck
= 0 = Rec(1 +k)a(l — k) = Reca(—2iImk)
= Imk=0o0rca=+l1
Thus either ¢ = +a or £ = £1, in which case b = +a. Together with (5.5) this gives
the desired conclusion.
Case 2. Now consider kd = c. In this case
a+blc+d=>a—ka Ldk+d
= 0 = Red(1 + k)a(l — k) = Reda(-2iImk)
= Imk=0orda==+l1.

Thus either d = +a or k = &1, in which case 6 = +a. Together with (5.5) this gives
the desired conclusion.

a

Remark 5.1.7. Note that the preceding lemma asserts that {a, b, ¢, d} can be grouped
into two pairs of parallel vectors.

Lemma 5.1.8. Suppose a, b, ¢, d satisfy the hypotheses of Lemma 5.1.6. Suppose also
la—b+yc—vd| =2 (5.6)

for some complez number v of modulus one. Then either a || b (that is, a = £b} or
v ==£l.
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Proof. Suppose a } b. We wish to show v = +1. Applying Lemma 5.1.6 shows that

a is parallel to one of b, ¢, d; since the conditions are symmetric in ¢ and d (we don't

care whether we have v or ~7), wolog assume a || ¢, so @ = ¢ or a = —c. Suppose
= ¢, S0 necessarily b = —d. Then

a-b+yc—yd=a-b+va+vb=(a—-b)+~(a+0)

has norm 2. Since (a — b) + (a +b) and (a - b) — (@ + b) both have norm 2 and since
the set {(a —b) +e(a+b) : 8 € [0, 27|} can intersect the circle of radius 2 in at most
two places (unless ¢ = b, which is ruled out by a } &), it follows that v = +1. The
case a = —c is similar. a

Proof of Proposition 5.1.5. By Remark 5.1.2, it suffices to find all maximal antipodal
sets containing [I] and [U], where U = F{a) for some « of modulus one. If a frame [V]
is antipodal from [[], Propasition 5.0.5 shows that V may be written as V = ochF(8)
for some 3 € U}, diagonal unitary h, and permutation ¢ € S;. Furthermore, we may
assume that o fixes e;. (This is because for any permutation + € Sy, there exists
a diagonal unitary g and a permutation p € S; which fixes e; such that 7F(8) =
pF(7)g, where v = 3 or f).

If {V] is also antipodal from [U] then we must have os(U*V) = J;, so if h =
diag(a, b, ¢, d), the matrix given by

1 1 1 1 a a a a
1 1 -1 -1 b b —b b
1 -1 a -al%e —c cd —-cf
1 -1 -&a a d —d —df df

has entries of modulus 2.
If the (j, k) entry of chF(() is dencted by a;s, it follows that
[a[j + az; +as; +a4j| =2

|azj + as; — az; — a4 (5.7)

2
|a1j — Qg; + C_!aaj - &&;jl =2
Ial_,- —ag; —Qaz; + &a4j| 2

for all column inaices j =1,...,4.
The first equation with j = 1,2 shows that a,b,c,d satisfy the hypotheses of
Lemma 5.1.6, while setting j = 3 gives exactly the equation in Lemma 5.1.8 if we set

4 = . Thus eithera || b or § = £1.
There are now three cases to consider.
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1. o(es) =eq

The third and fourth equations in (5.7) with j = 1 show that |a—b+ac—ad| = 2.
Applying Lemma 5.1.8 with ¥ = & shows that a || b or & = 1.

(]

. 0'(63) =€9

The third and fourth equations in (5.7) with j = 1 show that |a—c+&b—ad| = 2.
Lemma 5.1.8 applies with ¥ = & to show that a | cor a = £1.

3. oles) = ey

The third and fourth equations in (5.7) with j = 1 show that |a—d+é&b—ac} = 2.
Lemma 5.1.8 applies with ¥ = & to show that ¢ || d or a = £1.

If @ # +1 then, after checking the various possible cases, [V] can be represented
by diag(a, a,c, —c) F({8) for some a, ¢, 3 of modulus one.

Otherwise, o = £1. [n this case, [V]| may still be represented by diag(a, e, ¢, —c)
F(3) for some a. ¢, 8 of modulus one, but, it could also be represented by diag(a, b, ¢, @)
F'(1) where two of a, b, ¢, d are equal and the other two sum to zero.

One can readily verify that in both cases, the possibilities touted for [V] are
indeed antipodal from both [/] and [F(a)]. Can we extend {[{],[F(a)],[V]} to a
larger collection of mutually antipodal frames?

First suppose @ # 1, and suppose [V] and [W] are antipodal from [I] and [F{a)];
thus [V] and [W] can be represented by

V =diag(a, a, ¢, —¢)F(G), W = diag(b, b,d, ~d) F(7),

respectively. [f {V] and (W] are antipodal then os(W*V) = J;; this implies that
the frames represented by F(v) and diag(ba, ba, dc, dc) () are antipodal. Note the
second frame is also antipodal from [/]. But we have just seen that for a frame
to be antipodal from both [/] and F(7v), it must have the form diag(p, ¢,r,s)F(d)
where two of p,q,1, s are equal and the other two sum to zero. Since (ba, ba. dc, dc)
does not satisfy this condition it follows that [V] and [W] cannot be antipedal, so
{Z], [F(a)], [diag(e, a,c, —c) F{8)]} is a maximal antipodal set. This proves the first
assertion of the proposition.

For the second assertion, suppose & = +1 (since [F(1)} = [F(~1}] we can assume
a = 1). Suppose {V] and (W] are antipodal from each other and from both (I] and
[F(a)] = [F(1)]; thus [V] and [W] can be represented by

V =diag(a, b, c,d) F(1), W = diag(w, Z,7, 2) F(1),
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respectively, where two of a,b,c,d are equal and the other two sum to zero (and
similarly for w, z,y, z). (The case of {V] represented by diag(a, a, ¢, —c) F(8) for some
8 # £l need not be considered, since that has already been covered by the first
assertion of the proposition.)

That [V] and [W] are antipodal implies os(W*V') = Jy, whence the frames repre-
sented by F'(1) and diag(wa, zb, ye, 2d) F(1) are antipodal. Thus two of wa, zb, yc, zd
are equal and the other two sum to zero.

Consideration of all possible cases shows that [V], [W] must be represented by one
of diag(1, 1,7, —7) F(1), diag(1,, —1, 1)F(1), or diag(1, -, 1, %) F(1). Since all three of
these unitaries represent frames which are antipodal from both [I],[F(1)] and from
each other, the second assertion of the proposition follows. |



Bibliography

[1] P. M. Alberti and A. Uhlmann, Stochasticity and Partial Order, D. Reidel,
Boston, 1982.

[2] T. Ando, Majorization, Doubly Stochastic Matrices, and Comparison of Eigen-
values, Linear Algebra Appl. 118 (1989), 163-248.

[3] T. Ando, Majorizations and Inequalities in Matriz Theory, Linear Algebra Appl.
199 (1994), 17-67.

[4] R. Bhatia, Matriz Analysis, Springer-Verlag, New York, 1997.

[5] C. Davis, Various Averaging Operations onto Subalgebras, Ilinois J. Math
3 (1959), 538-553.

[6] C. Davis, The Rotation of Eigenvectors by a Perturbation, J. Math. Anal. Appl.
6 (1963), 159-173.

[7] C.Davis and W. M. Kahan, The Rotation of Eigenvectors by a Perturbation III,
SIAM J. Numer. Anal. 7 (1970), 1-46.

[8] S. W. Drury, Image 18 (Winter/Spring 1997), p.32.
9] S. W. Drury, Image 25 (October 2000), p.2.

(10] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University
Press, 1934.

[11] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Acad-
emic Press, New York, 1978.

[12] R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press,
1985.

59



BIBLIOGRAPHY 60
[13] M. Hiibner, Ezplicit computation of the Bures distance for density matrices,
Phys. Lett. A 163 (1992), 239-242.

[14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience
Publishers, New York, 1963-1969.

[15] Z. V. Kovarik, Manifolds of Frames of Projectors, Linear Algebra Appl.
31 (1980), 151-158.

(16] Z. V. Kovarik and N. Sherif, Characterization of Similarities between two n-
Frames of Projectors, Linear Algebra Appl. 57 (1984), 57-69.

[17] Z. V. Kovarik and N. Sherif, Geodesics and Near-Geodesics in the Manifolds of
Projector Frames, Linear Algebra Appl. 99 (1988), 259-277.

[18] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Ap-
plications, Academic Press, New York, 1979.

[19] E. Merzbacher, Quantum Mechanics, John Wiley & sons, 1970.

[20] J. von Neumann, Mathematical Foundations of Quantum Mechanics, English
translation by E. T. Beyer, Princeton University Press, Princeton, 1955.

[21] M. Ohya and D. Petz, Quantum Entropy and its use, Springer-Verlag, Berlin-
Heidelberg, 1993.

[22] A. A. Sagle and R. E. Walde, Introduction to Lie Groups and Lie Algebras,
Academic Press, New York, 1973.

[23] S. Schreiber, On a Result of S. Sherman Concerning Doubly Stochastic Matrices,
Proc. Amer. Math. Soc. 9 (1958), 350-353.

{24] C. E. Shannon, Mathematical theory of communication, Bell System Tech. J. 27,
379-423.

[25] N. Sherif, Transformation and Perturbation of Subspaces of a Banach Space,
Ph.D. thesis, McMaster University, 1980.

[26] N. Sherif, On Transformations and Perturbations of Orthogonal r-Frames, Z.
angew. Math. Mech. 73 (1993), no. 1, 47-54.



BIBLIOGRAPHY 61
[27] S. Sherman, A Correction to “On a Conjecture Concerning Doubly Stochastic
Matrices”, Proc. Amer. Math. Soc. 5 (1954), 998-999.

(28] D. Wansbrough, What are flag manifolds end why are they interesting, Aust.
Math. Soc. Gazette 24 (1997).





