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Abstract 

Rames of Orthogonal Projections 

Edward Poon 

Doctor of Philosophy, 2001 

Graduate Department of Mathematics 

University of Toronto 

The prirnary aim of this thesis is to find and compare appropriate notions of 

distances on fiames which arise Erom different contexts. A hame E is a collection 

( E l , .  . . , Er) of mutually orthogonal projections in ~,i, whose sum is the identity 

matri-- 1. A kame may be identified with the pinching operator A n CI=, EiMi in 

B(M,.,), or with the coset of a certain subgroup of Un (Le.: as a point in a generalized 

flag manifold). 

Angles, andogous to those between a pair of subspaces (equivaientiy, projections), 

are defined between a pair of frames to measure the distance between them: 8 is 

precisely the set of canonical angles between two pinchings (considered as projections 

in B(ibfn)), and a+ are derived fiom the union of the canonical angles between the 

constituent projections of two frames. Nom inequalities in both directions are found 

between these sets of angles. By viewing a hame as a coset, and the arguments of the 

spectrum of a unitary representati~ for the coset as angles, some additional reIations 

are derived. The question of when Erames are antipodal with r q e c t  to a certain 

natural metric is also addressed; resdts are obtained for dimensions n = 2,3,4. 
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Chapter 1 

Introduction 

To any direct surn decomposition of Cn into orthogonal subspaces one can associate, 
via the correspondence between subspaces and projections, a coiiection of orthogonaI 
projections which sum to the identity. The space o l  these resohtions of the identity, 
in the case mhere the projections are ordered in some predetermined fashion. has 
been studied extensively by both Kovarik and Sherif [15, 16: 17, 25, 261, and 1 s h d  
essentiaily follow their notation in referring to these objects as hames. A particularly 
attractive feature of frames is that a kame c m  be viewed from a variety of other 
perspectives a s  weii, ranging from a specid subdgebra of the set of n x n matrices 
LU,, [SI, to a point in a cornplex flag manifold [28], to a quantum measurement; this 
1 s t  interpretation is one which particularly intrigues me, and served as the motivation 
for this work. 

A nat ural question is hoiv should one define the distance between a pair of frames? 
As might be expected ffom the plethora of different viewpoints, there is no single 
'best' candidate for a metric; a number of merent  alternatives esist, each Nith 
their respective strengths and weaknesses. These can be roughly grouped into three 
categories, depending on whether we interpret a hame as an object based in Cn, ii/l,? 
or B(11.1,). The main thrust of this work will be to compare the different notions of 
distance between hames. 

The hst chapter deah with preliminaries such as notation and a more detailed 
elaboration of some various interpretations of fiames. A short section on majorbation 
coiiects results which will be used later on- The next two chapters introduce distances 
based on the viewpoints of kames as measurements and cosets. The idea of dehing 

between two kames is introduced in the fourth chapter, and nrith distances and 
based in Cn, rCT,, and B(&) in phce, a number of reIations and inequaIities 
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comparing the diEerent quantities are derived. Findy, the last chapter closes with 
a discussion of when frames are maximaily far apart (in a certain sense), and how 
spread out they are. 

1.1 Notation 

Shree vector spaces wiil be of particdar interest in this t hesis: the n-dimensionai 
cornplex (red) vector space Cn (IRR), the space of n x -n complex matrices M,,, and 
B(!i/r,), the space of (bounded) linear maps on M,,. Throughout this thesis n 
always refer to the dimension of C". Ive wiii generdy use lowercase itaiic, uppercase 
italic, and script letters to denote elements of en, Ma, and B(M,.,) respectively. 

1.1.1 Notation on C" and Rn 

Let ei be the vector in Cn whose only nonzero coordinate consists of a one in the ith 
position. Let e = CL, ei = ( i , l , .  . . , 1) and for any x E Ca, define Trx = eLx. The 
imer product of two vectors xt y E Cn wiU be written (x, y) = y * ~ .  

L If x = (xi , .  . . ,xn) E Rn, xl = (xL,. . . ,zA) and zT = (XI:. . . ,x%) wiil denote the 
vectors obtained by rearran,ag the coordinates xi of x in decreasinp and increasing 

1 T T order, respectively. Thus x, 2 --- >_ xi and x, 5 . -- 5 x,. 
Let x,y E Rn. We wili write x 5 y if xi 5 gyi for all i. R e c d  that x is weakIy 

majorized by y (written xi,y) if 

If in addit ion 

holds, x is majorized by y (written x 4 y). We dl Say x 4 y strictly if x 4 y and x 
is not a permutation of y. 

A vector x E Rn is a probability vector if x 2 O and Trx = 1- Fhaiiy, if f : W -, R 
and x = (xl, . . . , xn), we will write f (x) for the vector (f (xr) - - . , f (XJ ) . 

1.1.2 Notation on 11/1, 

Let J, be the n x n matrk  which has each entry equd to  $. If U is a unitary m a t e ,  
let os(U) denote the associated orthostochastic matrix whose (i, j)-entry is [U,I2. If 
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P f M,, is positive (semidehite), that is, (Px, x) > O for dl x E Cn, we will mite 
P 1 O. If P is a projection, PL will denote the complementary projection 1 - P. 

The set of permutation, hermitian, skew-hermitian, and unitary matrices in il.I, 
will be denoted by S,,, Mn, iibl,h, and Un respectively. The set of n x n density 
matrices (i-e., the set of positive semidebite matrices of trace 1) niill be denoted by 
A,. (Vie di also use the same symbol to denote the set of probability vectors in Rn; 
the context shodd eliminate any confusion.) 

Let A E LCI,. PVe mite s(A) for the vector Listing the singular values of A in 
decreasing order (so si(A) 2 +.+ 2 sn(-4)). If A, B E M .  then ,\(A) wiil similarly 
denote the vector listing the eigenvalues of A listed in decreasing order, and we NiI1 
mite -4 4, B (respectively A 4 B) if ,\(A) 4, X(B) (respectively X(A) 4 X(B)). 

The Schatten pnorm of A dl be denoted by llAllp and the Ky Fan k-norm of A 
by lIAll(k). In particuiar, we refer to the cm-nom, h o r m ,  and 1-nom as the bound 
norm, Frobenius norm, and trace norm, respectively. We use the same notation for 
the corresponding noms on Cn. 

1.1.3 Notationon B(!iLI,) 

The set of n x n (complex) matrices LCI, is also a Hilbert space (called the Hilbert- 
Schmidt space) when given the inner product (A, B )  = Tr B'A. Thus a l l  the usual 
conventions for operators on a Hilbert space apply to B(LI,) as welL 

The identity map in B(iLI,) wiil be denoted by id. For each U E we d e h e  a 

map E B(ll/I,) by $rr(A) = UAU* for any A E LW,,. If P E f3(Mn) is a projection, 
PL denote the complernentary projection id - P. 

Let & f B(Mn). If 9 is a positive operator on the Hilbert space Mn (i.e., 
($(A),  A) 2 O for all A E LCI,) we will mite $ 2 O. If 4 presemes the positive 
elements of the C*-algebra hl,, (i.e., $(A) >_ O whenever A 2 O), we di say 4 is 
positivity-preserving. 

1.2 Realizations of Rames 

in this section we wilI define what a hame is, introduce some related terminobgy, 
and eIaborate on the various descriptions of hames mentioned in the introduction. 

Definition 1.2.1. A hame E on Cn is an unordered h i t e  collection {El,. . .Er) of 
projections Ei E 11;1, which satisfy: 



If the ordering of these projections is important, we wiil speak of the odered frame 
E = (EL,. . . , E,). (Note that ordered frames wiü be distinaPuished by o r d i n q  capital 
letters and round parentheses instead of script Ietters and culy  braces.) If the number 
of projections in E is important we will c d  E an r-frame. 

For even more precision, suppose the rank of Ei is ni, mhere, purely for conve- 
nience: we nrill aiways assume wolog that nl 3 - - - 2 n,. In this case we s h d  Say E 
is a frame of type (q,. . . , G). Two kames are said to be zsomorphzc if they are of 
the s m e  type. The speciai frames of type (1, . . . ,1) MU be c d e d  minimal frames. 

The manifold of ordered frames was euamined by Kovarik 1151 in the more gen- 
eral setting of idempotents on a Banach space instead of projections on a Hilbert 
space; together with Sherif, they compared the geodesics on this manifold to another 
naturally arising path [17]. We will speak more of this in chapter 3. 

As already alluded to, frames can aIso be perceived in a number of other ways. in 
addition to the natural geometric interpretation of T-fiames as direct sum decompe 
sitions of C" into T orthogonal subspaces, we c m  view frames as objects more or Iess 
iil-ing in Mm or B(L~&), instead of in C", 

1.2.1 Frames as Pinchings 

Let & = (El , .  . . , Er) be a hame. We can i den t e  E rvith an operator in B(iCI,) 
(which dl be denoted by the same symbol E) by defining 

for aU A E hf,,. FoIlowing the notation of Davis [fi], we shail c d  the map E a pinching. 
(This terminoIogy &ses because if we mite  A in block rnatrix form with respect to 
the direct sum decomposition Cn = 8L, Ran Ei then &A is just the bIock diagonal 
of A). Davis has shom that pinchings are precisely those projections on Mn whose 
range is a (self-adjoint) subalgebra containing its commutant; thus pinchings, and 
hence Frames, are characterized by these specid subdgebras of We therefore 
ident* a hame E Nith its associated pinching and also with the subdgebra that 
is the r u g e  of this pinching, and use the same symbol E for all three ob jects-the 
context NIU indicat e the appropriate interpretation. 
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This iliurninates some of the terminology in Definition 1.2.1; two hames are iso- 
morphic if and only if their associated subalgebras are, and a frarne is minimal if and 
only if its associated subalgebra has minimal dimension. A few other concepts wiil 
prove useful. 

Definition 1.2.2. A frame E refines another Erame 3 if the associated subalgebras 
satisFy E c F. 

Definition 1.2.3. If A E M,, is normal, frame(A) is the hame associated to the 
subaigebra A', where A' is the cornmutant of A. (Thus frame(A) consists of the 
minimal projections of A'.) If Tame(A) = E we w i i l  Say that A is adapted to E. Note 
that this is a speciai case of &A = A, which is itseif a (weaker) notion that A is 
particularly weii-suited to E.  

1.2.2 Rames as Quantum Measurement s 

A vast number of papers have been mitten in the physics iiterature about the question 
of just what exactly happens during the measurement process in quantum mechanics, 
and how a measurement shouId be interpreted. Despite the long history of the prob- 
lem, there is certainly no clear consensus and much remains unresolved. However, 
if one is not so much interested in the details of the measurement but only in the 
physical state of the system before and after the measurement (as will be in our case 
in avoiding the phiiosophicai questions of what constitutes s quantum measurement)? 
experimentai evidence tells us unambiguousIy what happens to the system. It turns 
out that the effect of a measurement on a system is the same as that of a pinching, 
and it is thus that we wiil i d e n t e  a frarne with a measurement. 

We give a brief review OF the measurement process based on the wefl-known Copen- 
hagen interpretatioo and von 3eumann's idea of a reduction of the state [20]; however, 
we are mainiy interested in what happens to the state of the system (since that is 
how a pinching reIates to a measurement) and not so much how or why. 

In quantum mechanics, the state of a physicai system is represented by a unit 
vector v in some HiIbert space 'H, which, as our resuIts are primarily of a finite- 
dimensional nature, we dl take to be Cn for simpIiciSr, Since the phase of v is 
not physicaily observabIe (Le., both u and eiev represent the same physical state), it 
is convenient to work instead with the density matrix vu* which contains the same 
information, but without the phase arbitrariness. 

More generdy, one could prepare a statistical ensemble of states uiu;' with the 
ith state forming a fiaction pi of the whole. For obvious reasons, the density matrix 
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C,piuiuf is called a mïxed state, in contrast to the ranù one projections vu' which 
are c d e d  pure states. 

Physical observables, such as the spin of a particle, are represented by self-adjoint 
operators on 'H. The possible values which can be measured for such an observable 
are given precisely by its s p e c t m .  By the spectral theorem, we can mite a phys 
ical observable H as C;=l Aipi, where the eigenvalues Xi  of H are distinct, and for 
simplicity we suppose hst that each projection Pi is rank one. 

Then if one measures H for a pure state A, one obtains the result & with prob- 
ability equal to Tr PiA. M'ter the measurement, the system is found to be in the 
state Pi. if we consider performing a measurement on a large ensemble of identical 
states A, a Fraction Tr Pi44 will be foiind in the state Pi after the measurement, so as 
a whole, we obtain an ensemble given by the density matrk 

which is just the pinching of A by the minimal Frame of projections {PL: . . . P,). 
The foregoing clearly also applies to general ensembles represented by mked states 
and holds even when the projections Pi are not necessarily rank one. 

Thus we can i d e n t e  a pinching A ++ Cl=, E i U i  with respect to a frarne 
E = {El,. . . , Er) with a quantum measurement of an observable whose spectral 
projections are given by E. Note that the measured values of the observable (Le., the 
eigenvalues) play no role in determinhg the ensemble output by a measurement, so 

we may speak of a measurement with respect to the £rame E. (In the case where the 
hame E is minimal, we s h d  say that the measurement is camplete.) For the most 
part, we s h d  henceforth identib pinchings with quantum measurements. 

1.2.3 Frames as Cosets 

An ordered Erame E = (EL,.  . . , Er) of type (nl,. . . , n,) c m  be viewed as a sequence 
of nested subspaces O C C C iCI, = Cny ahere is the range of Ei; 
Erom this vantage point, the space of d ordered frames of a fked type (nl?.  . . ,n,) 
is a complex flag manifold. These manifolds are homogeneous spaces which have 
been studied quite extensively in the iiterature; the presence of a natural Riemannian 
metric on these manifolds provides an obvious candidate for a distance function on 
ordered frames. 

To obtain the space of aiI unordered frames of a k e d  type, it is in generd necessary 
to mod out the action of the symmetric group. We show how to identifjr cosets in the 



resdting coset space with frames. 
Let iid be the space of dl h m e s  of a fixed type (nl,. . . , n,), where as usual, we 

assume nl 1 . . . > ,&. Fk a hame E = {El? .  . . , Er) in M. We wilI view E as 
the subdgebra of d block diagond matrices in hin, and mite E = Mn, 8 -. - 8 !LI,,. 
Shus il1 c m  be viewed as the space of subdgebras isomorphic to E.  

Then for U E Un, A E M, the map 

is a transitive group action of the Lie group Un on hi. The isotropy goup 6xing E 
is readily seen to be the Lie subgroup H generated by block diagonal unitaries and 
block permutations, that is, 

H = (Uunitary : UEjU' = Egbl for some permutation o on r elements) 

= {(G 8 EI Ur)p : Uj E LW,,, is unitary, p is a block permutation). 

By a block permutation we mean a block matriv which has precisely one non-zero 
block (which di be an identity matrix) in each block row and column. Note that a 
block permutation ody permutes blocks of the same size. Equidently, H is the nor- 
marizer of the subgroup of block diagond unitaries. In any case, !LI c m  be identified 
with the coset space IT,/H, as follows. 

Given a frame F = (FL,. . . , Fr) in M, where r d  Fi = ni, let U be a unitary 
such that = UEiU'. We c m  then identify F with the coset of N in Un represented 
by U. In particular, our fked frame E can be represented by the identity matrk 
I. Conversely, given a representative U of a coset in U J H ,  we identify the coset 
containhg Ii with the hame consisting of the projections Fi = UEiU8. 

To sum up, a frame F in ibI c m  be represented as: 

1. a coUection of orthogonal projections {FI,. . . , Fr) summing to the identity, 

2. the pinching (or quantum rneasurement) FA = z, FiMi,  

3- the subdgebra of matrices in the range of the pinching 3, 

4. the coset of a unitary U mhich satidies EU = UEm(il for some permutation o. 
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1.3 Some results concerning majorization 

We collect here some theorems about majorization which di prove useful later on. 
A classic and e-xhaustive reference for majorization is [18], although the subject dates 
much further back to Hardy, Littlewood, and Polya [IO]. A more recent introduction 
is Ando's excellent survey article [21. Many books on matrix analysis will also devote a 
chapter or more to the topic-see for example [4, 121. For a treatment of majorization 
From a physicist's viewpoint, see [l] (note that they use the reverse notation x + y to 
denote that x is majorized by y). A s w e y  of more recent results is @en in [3]. 

We begin by quoting a standard result relating majorization to doubly stochastic 
matrices. Note that this and d other r e d t s  in this section may be found in [2]. 

Definition 1.3.1. A matrk S f i, is doubly stochastic if 

Sij 2 0 for al1 i , j? 
R 

These three conditions are equivdent, respectively, to the conditions that S is positivity- 
preserving (Sx 3 O whenever x 2 O), trace-preseming (TrSx = Trx for aiI vectors 
x), and unital (Se = e). If there exists a unitary U such that Si, = 1 UijI2 for all i, j 
then S is cailed orthostochastic. 

Theorem 1.3.2. Let x, y E Rn. The following statements are equiualent: 

2. x lies in the convex hull of (oy : a E Sn). 

3. x = Sy for some doubly stochastic mat* S. 

This theorem can be generalized. 

Definition 1.3.3. A Linear map 4 : kIn -, LW= is doubly stochastic if it is positivity- 
preserving (Le., 4(A) > A whenever A > O): unitai (i.e., $( I )  = i), and trace- 
presei-ving (i.e., Tr Q(A) = Tk A for a l l  A € LI&)- 

Theorem 1.3.4. Let A, B E M,h. The following staternents are equiualent: 
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2. There exàst unitary ,matrices Uj and positive nurnbers t j  > O such that 

t j  = 1 and A = C~,U,BU;. 

3. A = @(B) for a do,ubly stochastic map 4. 

Remark 1.3.5. The preceding theorem is particularly usefd for us because aii pinch- 
ings are doubly stochastic maps, so &A 4 A for any pinching & and any hermitian 
A. 

Majorization relations are particularly usefd due to their intimate relation to 
norm inequalit ies. 

Definition 1.3.6. A permutation-invariant norm ik' on Cn which also satisfies 9 (x )  = 
@(lx[) for ail x E Cn is cailed a symmetn'c gauge function. A norm 1 1 .  I I  on 1LI, which 
satisfies I l  CAVII = [ 1  A11 for any unitaries U, V is c d e d  a unitady inuariant nonn. A 
unitarily invariant n o m  I I  - I I  is c d e d  a Q-nom if there eiasts a unitarily invariant 
norm I I I  I I I  for which IIAl12 = IIIA'AIII holds for ail A E Ad,,. 

Theorem 1.3.7. 1. Let x, y E Cn. Then ik'(x) 5 9(y )  for euerg symmetric gauge 
finction ik' if 1x1 4U: Iyl. 

2. Let .A( B E Mn. Then IlAl1 5 llBl1 for euery unitady inuan'ant nonn [ I  - I[ ifl 
4.4) 4, s(B) .  

Convex Functions are also useful in that they essentidy preserve the majorization 
relation. 

Theorem 1.3.8. Let x, y E Rn and let f : W -t W be a conuexjùnction. Then we 
have 

2- If in additzon f is increaszng, x +, y =S f (x) f (y). 

Finaily, we state a proposition which shows that majorization is preserved mhen 
vectors are combined. 
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Proposition 1.3.9. If 

and 

u = (uL, - .  - . uq) + v = (vy,  . . . , u*) 

The result aiso holds if d l  rnajorizations < are changed tu veak majorizatzons 4,. 



Chapter 2 

Distance based on Majorizat ion 

When one performs a measurement E on a pure state A, the resulting state &A need 
not be pure; indeed, &A will usuaily be a mked state. In general, measuring any 
state il with respect to a frame E results in a more mked up state, in the sense that 
&A is majorized by -4 (see remark 1.3.5). For exampIe, consider the simple case of 
E = {eiei ,  ene;) and A = .UV' where .v = cos Bel + sin den. In this case, 

cos" 

is a mked state for any 6 E (O,;). Note that as 0 increases Erom O to :, the 
orthonormal basis containhg u moves farther and farther from the standard basis 
{el, e2) while &A becomes more and more 'mixed up', in the sense of majorization; 
at B = 2: Erame(A) is as far as possible fiom E while &A = $1 is as mked up as 
possible. 

We would iike to utilize this correlation to d e h e  a distance between two Erames 
& and 3. Suppose A is a state unaffected by measurement with respect to E,  so 
&A = A. If 3 is close to E one would expect that measuring A  wrt 3 does not mess 
A up too much. The farther 3 is from E ,  the more mixed up one would expect 3 A  
to be. In order to use this idea to quantify how far apart E and 3 are, ive need a waj- 
to measure how badly a state is mked up. 

A natural measure of the degree of disorder inherent in a state A is the (von 
Neumann) entropy - Tr A ln A of the state. Entropy has long been used to reflect 
the uncertainty or randomness of a system (think of the eigenvalues of a state A 
as probabilities) in many contexts; von Neumann's approach [201 was motivated by 
quantum mechanics. Shannon [24] viewed entropy fiom an information theoretic 
vienrpoint; for him, the uncertainty in the state meames the amount of information 
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carried by the state. A nice reference on entropy as it relates to quantum mechanics 
is 1211. 

Since the entropy function f ( t )  = -tint is concave and &A 4 A, it foliows by 
Theorem 1.3.8 that Tr f (&A) 2 Trf(A), that is, the entropy increases after perform- 
ing a measurement, as one wouid expect. It would be ideai if such a natural measure 
of disorder yielded a distance on the space of Erarnes. Couid the mavimum increase 
in entropy, 

give a distance between E and 3? 
To answer this question, it wiii be usehi to introduce the following lemma. 

Lernma 2.0.10. Let E be the minimal hame {El, &, . . . , En) where Ei = ce:. Let 
3 = {Fr : . . . :Fn)  and Ç = {GL ,..., G,) where Fi = UEiU* and Ci = VEiV8 
for some unitaries U? V .  Let A = Cp, ,\iGi, so ÇA = A. Then the spectrum of 
3-4 is giuen by SA where S = os(U8V) is the orthostochastic matrü with entries 
Sij = I(UwV)ijI' and X = (XI,. . . ,A,). 

Proof. We have 
n n 

This says that the spectnim of FA is {C:=, I(V*U)iji2& : j = 1,. . . , n) as clairned. 
n 

For the special case = E in the lemma, the spectrum of FA is given by os(U*)A. 
Thus if E and T are minimal Erames as in the lemma, 

The foliowing proposition shows that in this case, the supremum is given by the 
maximai entropy of the row vectors of os(U), nameIy 

n 
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Proposition 2.0.11. Let S be a doublg stochastic matriz and f ( x )  = -xinx. Define 
H : Et.+ + EU+ by H(p)  = B( f (Sp) - f (p)). Then H attains its maximum on A,, ut 

some extreme point ei. 

Proof. Suppose p E A, is not an extreme point. Then there are two indices j, k for 
which p i ,  pk # O ;  wolog assume j = lt k = 2, and pj >_ pk. Let q  = el - e2. Note 
that for each x E [-pi,p2J the vector p(x} = p + xq lies in A,, and that both p -plq, 
p  + p l q  have (at least) one more zero coordulate than p. I will show that the function 
g(x) = H(p(x)) attains its maximum on [-plr p21 at an endpoint; hence H(r )  2 H ( p )  
for some r E A,, with more zero coordinates than p, and the proposition follows. 

It thus suffices to prove that g is convex. Let I denote the set of indices i for 
wbich (SP)~ > O. Note that if x i: (-pL,p?),  then ( S P ( X ) ) ~  > O as iveil. Let 1' be the 
set of indices i E I for which not both Sil: Si2 are zero. Then 

DifFerentiating twice gives 

1 
1- 

1 1 I +------ -0 
P L + X  Pz-x pi+x pz-x 

where the Iast inequality holds because '&, Sv 5 1- ThuS g is convex as desired. Cl 

As an aside, note that o d y  the concavity of the entropy function f is required 
to show that Tr f(EA) 1 'I'r f (A) ,  so one might use some other concave function 
înstead of entropy to measure how much more mixed a state is after a measurement. 
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In fact, if g is an operator concave function, the much stronger operator inequality 
g(E-4) 2 Eg(A) (see [4, Theorem V.2.11) holds, so one might wonder if the preceding 
proposition holds for any operator concave b c t i o n  instead of just for the entropy 
Function. That this is not the case may be seen by the following example. 

r k2 Example 2.0.12. Let g(x) = ,, p = (;,O, ;,O), and 

for any index i. Thus the Function Tr(g(Sp) - g(p)) on A, need not be maximized 
at an extreme point, even though g is operator concave. 

Proposition 2.0.11 shows that if E and F are minimal frames, the quantity in (2.1) 
is just maYi Sr f(3Ei) and so is very easy to cornpute. However, it is not in general 
symrnetric in & and 3; consider & and 3 as in Lemma 2.0.10 with 

and V = I .  Moreover, even the symmetrized version maxi (Tr(FEi), T r ( E F , ) )  f d s  to 
satisfy the triangle inequality; it d c e s  to consider the simple case n = 2 and any 
three hames reasonably close together. 

One might consider using an average instead to obtaiu a distance on minima1 
frames: 

n 

zTrf(3~J, or L - T r f ( 3 & ~ )  -Trf(&A)dA. 
i=l 

These candidates have the advantage of distinguishing betnreen frames much better 
than (2.1) but also fail to satisfy the triangle inequality. 

We can tweak the first candidate to 



so that it satisfies the triangle inequality locdy for p 5 i. 
However this tweaked version is not particularly nice; if E(t) is a smooth path 

through E(0) = E and S( t )  = d(E, E(t)j+d(E(t), Ç)-d(E, Ç), then #(O) is idmite. The 
entropy Function, though a naturd measure of the disorder of a state, is problematic 
as a progenitor for a distance on hames; its behaviour a t  the origin seems to preclude 
any possibdity of using it to obtain a reasonabIe metric for frames. 

Faced with this difticulty, yet still wishing to use the increase in disorder of 3 E A  
over &A as a distance, we consider replacing the entropy function -t ln t by some 
other concave b c t i o n  f (t). We wodd like f (A)  = O for pure States A; this imposes 
the condition f(0) = f (1) = O. Probably the simplest such concave function is 
j ( x )  = x - s? In this case! if E, 3 are minima1 frames. 

= 1 1 - {FE,. FEi} 

since El, .  . . , En can be extended to an orthonormal basis for Mn, and any rnatriv in 
such a bais  which is not one of the matrices Ei Lies in the kernel of Fi£. 

But, v i e h g  E and 3 as projections on Mn, 

when written in bhck rnatrix form with respect to the direct sum decomposition 
Mn = Ei,I, $ Eiitl,. Hence 

since EL3 and FLE have the same singular values if E and 3 are projections of the 
same rank (see [4, p.201])- 
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Thus using the concave function x - x2 to measure how &ed a state is leads to 
a very natural distance for minimal Frames: 

l 

Two obvious questions are: 

1. For generai frarnes E and 3 ,  mi11 I I &  - 3112 ais0 reflect the idea that the more 
a rneasurement 3 messes up a state adapted to E ,  the further 3 is Erom E? 

2. Do we retain the 'messing up' idea if we replace the 2-nom of E - 3 by an 
arbitrary unitariiy invariant norm? 

The answer is yes to both questions, as we show in the following theorem. 

Proposition 2.0.13. Suppose E ,  3: Ç are isomorphic frames satisfjling ÇEA 4 3 E A  
for al1 density matrices A. Then IlÇ - El1 2 113- El1 for al1 unitarily invariant noms. 

Proof. It is easy to see that if A? B are tnro hermitian matrices then 

Since âny hermitian matrk B may be written B = xA  + y1 for some density matrix 
A and real numbers x, y it follows that 

ÇEB =xÇEA+yI 4 x3EA+yI =3EB,  

and so for a11 B E we have 

*I[ÇEBII- 5 II=BII:! by Theorems 1.3.7'1.3.8 

*(EÇEB? B) 5 (EFEB, B)  

*(&(.F - Ç)EB, B )  1 0. 

Since E ( F  - Ç ) E  is self-adjoint and preserves Mn, it has an orthonormal basis of 
eigenvectors which are hermitian matrices. Thus the eigenvalues of E ( 3 -  Ç)t' are ail 
positive, so E(F - Ç ) E  >_ O. Thus 

tvhere the Ia s t  inequality follows from [4, Ex VII-l-ll]. 
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We conclude that II& - 311 is a good distance to measure how far apart h o  
frames are, based on the idea of a subsequent measurement 3 messing up an earlier 
measurement &. However, nice as this distance is, it is stili not ideal; for instance, 
it does not arise Erom any Riemannian metric and need not have any geodesics. 
Moreover, it is quite removed Erom our intuition of Frames as a collection of orthogonal 
subspaces in Cn; it would be nice to have a distance which reflects this intuition. in 
the next two chapters we will address these issues by considering other distances. 



Chapter 3 

Geomet ry of Isornorphic Fkames 

In this section we identify the space of al1 hames of a h e d  type with a coset space, 
which, as noted in section 1.2.3, is essentially a complex flag manifold. This aUows us 
to apply some basic Lie theory, so we can foUow the prescription of any of a number of 
texts 111, 141 to introduce a natural Riemannian metric and its associated distance on 
t his space of iso~norphic frames. We note that the geometry obtained in this manner 
coincides with that found by Kovarik [15], and describe the geodesics and how to 
compute the distance betiveen two Erames. 

We be,@ by Luing some notation (which is mostly standard and generally follows 
[Ill) and quoting some general results of Lie theory Let G be a Lie group with 
identity e and let H be a closed Lie subgroup. Let g and denote the Lie algebras 
of G and H respectively. If x E G. let L,, R, : G -, G denote the Ieft and right 
transIations by x respectively, that is, L,(y) = xy, &(y) = yx for aii y E G. Let R be 
the quotient map from G onto G/H and give G/H the quotient topology. If g E G 
we nrili mite ij = ~ ( g )  = gH for the (left) coset of H represented by g. For each 
x E G, L, induces a rnap L, : G / H  - G/H defined by iz(y~)  = W H  (here y E G). 

Note that 
L , O T = T O  L, for a q z ~ ~ .  (3-1) 

By [Il, Theorem 11-4-21 G / H  has a unique analytic structure such that G is a Lie 
transformation goup  of G/ H; that is, the map (x, yH) - xyH (x, y E G) is an 
analytic map of G x G/H onto G/H. We will always endow G/H with this analytic 
structure. Note in particular that both T and î, are analytic. 

For each 3: E G we define an automorphisrn 4, : G + G by &(g) = X ~ X - ~ .  This 
induces a mapping Ad : G + GL(g), Ad(%) = d(&),, the adjoint representation of 
G. The adjoint representation of g will be denoted by the lowercase symbol ad; here 



ad : g t GL(g) maps an element X E g into the function adx : g + g defmed by 
adx(Y) = [-Y, Y]. 

For our particular situation where we identiQ the space LU of isomorphic Erames 
of type (nl,. . . , n,) with a coset space as in section 1.2.3, we take G to be Un and 
H to be the subgroup defined in section 1.2.3. Thus g is just the set of n x n skew- 
hermitian matrices, and consists of the block diagonal skew-hermitian matrices. 
Note that throughout this chapter E is a fked Erarne. 

3.1 Riemannian metric 

We now proceed to define the natural Riemannian metric on 1Vf derived From that on 
u n  - 

The embedding Un c @"' r IR2"' induces a bi-invariant Riemannian rnetric on 
Un; if V E Un and X ,  Y lie in the tangent space TvUn = Vg of Un at V, t hen 

(X. Y) = Re 'Tl Y ' X .  (3-2) 

(Recall that a metric is bi-invariant if for any a, b E G and X, Y E ïi,G we have 

that is, both La and Ra are isometries for any a E G). 
The geodesics through a unitary U € Un are given by the curves U e-xp(tX), where 

X is skew-hermitian. The arclength distance d( I ,  U) between 1 and U is the distance 
dong the shortest geodesic crx(t) = e-xp(tX) kom I to U, that is, 

where { A k )  are the eigenvalues of U and arg takes values in the interval (-R, R I -  
This metric on G gives an inner product on T,G = g, so we cm dehne 

One can ver* that m is invariant under Ad(H) (in particular [b, m] c m), so G/H 
is a reductive homogeneous space with respect to the decomposition g = $ m (see 
[22: p.3431 or [14, p.1901). 



From [22, p.1511 it foliows that ker dr ,  = fi (or more generally, ker d?rv = dLv(b) 
by (3.1)) andso to each Y E z~b1 there exists a unique X E m such that dre(X)  = Y. 
CVe denote this isomorphism by p : T&I + m, that is, P(Y) = X. Note that dn, 0 p 
is the identiw map on Té ICI, and 

The metric on Ir, induces the following Riemannian metric on M. Let V be a 
unitary representing V E and let XL, X2 E T O M ;  we define an inner product on 
the tangent space of M at Gr in terms of the metric on Un by 

One c m  check that this gives a well-defmed Un-invariant metric (that is, 2~ is an 
isometry for any Li f Un). 

3.2 Geodesics and distance 

CVith the metric defined by (3.6), one naturally wonders what the geodesics on Iti are, 
and how to compute the Riemannian distance between any two m e s .  By [Il, p.2261, 
the geodesics through Û E G/H are precisely the cuves aX(t) = ci(Uexp(tX)),  X E 
m. Translating back into the language of frames, this says that a smooth cume E( t )  
with £(O) = E is a geodesic i££ E ( t )  = exp(tX)E exp(-LX) for some X E m, which is 
precisely KovariIi's criterion for geodesics [17]; that is, this coset space geometry and 
Kovarik's geometry coincide. 

The following theorem gives the Iength for these geodesics and for other paths in 
M. 

Theorem 3.2.1. Cet rr(t), t E [a,b], be a smooth path in M wzth a lift U(t) in Un. 
The length of a is giuen by 

where 11 - 2s the Ebbenius n o m .  

Remark 3.2.2. 1. Observe that, since the Iength of U ( t )  in U, is 

and I[ELA1I2 5 f l  A1I2 for any A E iMp, the projection r is a contractive map. 



2. By [14, Vol I,p.691, for each V in the coset a(0) there exists a unique horizon- 
tal iift V( t )  in Un such that V(O) = V .  (Here a cuve V( t )  is horizontal ifE 
V*(t)Vr(t) E m, that is, E(V'(t)Vr(t)) = O). Thus the length of a(t)  is equal to 
the length of its horizontd lift in Un. 

3. In particular, for the special case where a(t) ,  t E [O, 11, is a geodesic in LW, we 
can LiFt a(t)  to a geodesic U(t) = errp(tX) in Un where X E m; thus the length 

With this proposition in hand, we can compute the distance between any two 
points of !LI* 

Theorem 3.2.3. Let d denote the arclength distance on Un and let dg denote the 
arclength distance on Un/H (the 'gr is for geodesic). If Û and P are two points in 
Un/H then 

d,(Û, V )  = inf d(U, Vh) 
LEH 

where the branch cz~t of ln is the negadive .rad &. 



dJÛ.  P) I inf{l(a(t)) : a( t )  E Un/X k a path joining O and V} 
5 inf inf{l(P(t)) : B(t) E Un is a path joining U and V h )  .: 7r is contractive 

 EH 

= inf d(U, Vh).  
 EH 

But d,(Ù: Y) is ais0 quai to the length of the minimal geodesic joining Ü and V ,  
and ive had shoivn (see Remark 3.2.3) that this geodesic has the same length as a Lift 
in Un joining U and V h  for some h E H. Thus we can conclude that 

dg(Û, V) = id d(ü ,  Vh)  
hE H 

= inf d ( I ,  U'Vh) since the metric on Un is bi-invariant 
hEH 

Remark 3.2.4. One can optimize the real-valued function on R given by x ++ 

&(U: Veù) using techniques fiom elementary caicuius to see that the above infi- 
mum is necessarily attained at a unitary ho E H for which det UUVho = 1 and -1 # 
g(U"Vh0). Moreover. the geodesic joining I and II8Vha in Un has the same Iength 
as the geodesic joining the cosets of H represented by I and U'V, so U*Vho = e.xp X 
for some X E m. In this case we shall Say e'cp X is a geodesic rotation between 0 
and Y:  Kovarik [17] uses the term 'direct rotation' instead. 

Note that an obvious genedization of dg is obtained if one replaces the Frobenius 
n o m  of in U'Vh by some other unitariiy invariant nom. 



Chapter 4 

Angles between Fkames 

Although our p r i m q  objective is to compare different distances between a pair 
of kames, we now change our focus slightly and consider sets of angles between 
two hunes. The motivation for this originates from the pïoblem of comparing two 
subspaces: no matter what distance one uses to measure how far apart two subspaces 
are, it is but a single number, and so cannot convey the same amount of information 
contained in the canonical angles between the two subspaces. As for relations between 
difFerent distances, one can obtain an infinite number of inequdities in one stroke by 
proving weak majorization relations between different sets of angles. Clearly there is 
a great deai of potential in such an approach. Moreover, the angles Q(E,  F) that we 
shall defhe between two ordered frames E and F should be more amenable to our 
geometric intuition of frames as objects based in Cn. 

4.1 Definitions of Angles 

We begin by investigating quantities which are more closely related to the reahation 
of Erames as  direct sum decompositions of Cn into orthogonal subspaces. Let us 
first consider the case where E = {ele;, . . . , %el) and 3 = { fl fi, . - . , fnfi) are tFYO 
minimal Erames, so E and T can be more or less thought of as unordered orthonormal 
bases, aithough they are not so much bases of vectors as bases of lines. 

One way of measuring the distance between two h e s  in Cn is to use the Fubini- 
Study distance il31 derived from the usuai Euciidean distance; if u, v are unit vectors 
in Cnr the Fùbini-Study distance dFs between the two lines Cu and Cu is defined by 



LVe can use this to define an optimal matching distance d,, bettveen E and T by 

Note that if U = ( e l l . .  . le,) and V = . If,,) then 

This can dearly be generalized to other unitarily invariant norms and ta more general 
fremes. 

Proposition 4.1.1. Let iLf be the space of isornorphic fmmes of a f i e d  type. IfC 
and 3 are two jrames in 1bt which are identified un'th the cosets of H represented by 

U and V respectiuely, then for any unitarily invariant n o m  I I  . I l ,  

d (E,F)  = inf [IU - Vh[l = inf 111 - U'Vhll (4.2) 
h f  H LEH 

defines a metric on M. 

ProoJ. CIearIy d is non-degenerate. To see that d is symmetric and that the triangle 
inequality hoIds, note that, due to the unitasy invariance of the norm and the fact 
that H is a group, 

Remark 4.1.2. The infimm is in generai at tained at Merent values of h E H for 
d8erent unitarily invariant norms; in the particulas case when the norm in (4.2) is the 
Robenius nom, Davis [6] showed that the infimiim is attained when EiU*VhEi 1 0  
for each i, or equivaiently, E(VVh)  2 0. For more, see section 4.2. 

Note that this f d y  of distances depends on the spectra of U*Vh, and so is 
bmed in &fn, as opposed to our intent of finding a &tance based in C*. Retumhg to 
the special case of minimal frames, an alternative approach to using the Fubini-Study 
metric to rneasure the distance betrveen two h e s  is to use the angle betnreen the lines. 
One would probabIy argue that this approach is better because it is a more intrinsic 
measure of how far apart two lines are, and d o m  the pussibility of geodesics, just as 
the arcIength distance on the sphere instead of the Euclidean distance is preferable. 
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To use this idea for frarnes which are not necessarily minimal, we need to generalize 
the notion of an angle between a pair of lines to a set of angles between a pair of 
subspaces. It is well knom that for any pair of subspaces of the same h i t e  dimension 
k, there is a naturai set of canonicd angles between them (see for example [4, 71). 

Definition 4.1.3. Let P and Q be projections of the same rank k. The canonical 
angles between the subspaces Ran P and R m  Q di be denoted by O(P, Q) and are 
given by 

@(P,Q) = U C S ~ S ( Q ~ P I ~ ~ ~ ~ )  = ~ ~ C S ~ ~ S ( P ' Q ( ~ ~ ) .  

Remark 4.1.4. Noce that the definition is symmetric in P and Q,  and the canonical 
angles al1 lie in the intervd [O, 51. Ive may also characterize the canonical angles by 

Henceforth, we nrill abuse notation by having @(Pl Q) represent both a set of k 
elements and also a vector of k angles, arranged in decreasing order. (In fact, ail 
sets of angles in this work wilI suffer from this dual personality; the context shodd 
elirninate any confusion). 

Since an ordered frarne is just a collection of projections in some predetermined 
order, we can define a set of angles @(El F )  between two ordered Frames E, F by 
using the angles between pairs of correspondhg projections. The quantity II@(E, F) I I  
(for each symmetric gauge Function) shouid then serve as a usefui measure of how far 
apart E and F are. 

Definition 4.1.5. Let E = (EL, . . . ? Er) and F = (FL,. . . , Fr) be two ordered frames 
of the same type (nl,.. . , .n,). (Thus rank Ei = rank Fi = ni and Cl=, ,ni = n.) We 
define a set of angles @(E, F) between E and F by 

Remark 4.1.6. Since E and F are isomorphic, there exists a unitary U which inter- 
tnrines E and F ,  Le., UEi = EU for ail i- T ~ U S  EiF,Ei = EiCrEiU*Ei, so cos8(Eil &) 
consists of the singdar values of EiUEiIRanEi. if we mite U in block matrix form 
with respect to @" = 8:=, Ran Ei so that U has (i, j)-block-entry Uij = EiUEj[RanEj, 
it follows that 

COS @(Et F) = uLLs(Uii) = s(EU)- 



One mipht wonder if the definition of @(E, F) can be extended to unordered 
Frames; unfortunately, there is no a priori pairing of the constituent projections of two 
unordered Frames in generai, and there seems to be no way to resolve this difficulty. 
For examples iilustrating the problem, see the next section. 

However? one can stiii define a set of angles between E and 3 ,  albeit From 
a rather different viewpoint; since E and 3 cm &O be viewed as projections in 
B(li&), it makes sense to speak of the canonical angles @(ET 3) (so cos' Q(E, 3) = 
,\(&3EIRanE)). Note that the number of angIes in 8(&, 3), if rank Ei = ni, is equal 
to dimE = C:=, n:. In order to compare Q(E,  F) with 8 ( £ , 3 ) ,  the two sets should 
have the same number of elements; however, @(E,  F) ody  contains n angles. To this 
end we introduce the following variants of @(E,  F). 

Definition 4.1.7. Let E = (Er,. . . , Er) and F = (FI,.  . . , Fr) be two ordered frames 
of the same type (.ni, . . . , n,). (Thus rank Ei = rank 6 = ni and CI='=, ni = n.) 
Denote the angles in @(Ei, Fi) by # i j 7  1 5 j 5 ni. Thus 

ÇVe define two new sets of angles ao(E,  F) and cP+(E, F) by 

Note that we shail simply mite O for 8 ( E ,  F) when there is no chance of confusion 
(and similarly for @, @O, a+). 

Having introduced ail the main phyers, let us summarize the quantities we wish 
to compare. 

1. Frames are viewed as pinchings in B(i t l , ) .  We hâve angIes 8 ( E , 3 )  associated 
with the distance II&-311 = 1[sin88sin81j. (See (2.2) or [4] for the preceding 
equality.) 

2. Frames are viewed as cosets of H in Un- ive have the distance i d h a  I I  U - Vhll 
and idhEH I I  h v V h l [  (a generabzation of the Riemannian distance); if the 
eigenvalues of U*Vh are e%, we c m  think of aj as angles between the hames 
represented by U and V. 

3. Frames are viewed as collections of orthogonal subspaces. We have angIes 
a ,  a0 ,  a+ ;  the symmetric gauge functions applied to these angles wiU measme 
how far apart two fiames are. 



We conclude this section by noting the foUowi~g fact. 

Proposition 4.1.8. @+(El F) 4 2@0(E1 F). 

Proof. By Proposition 1.3.9 it sdüces to show that, for each i, 

Thus we wish to show that 

Let x, be the vector in IRn2 whose jth coordinate is xu/.l + xl mod ., and let zo 
be the vector in Iln2 whose jth coordinate is 3+/.1. Here j nuis Erom O to n' - 1, 
k/n] is the geatest integer less than or equal to j/n, and j mod n takes values in 
{O, 1 ,..., n - 1). We wish to show x+ 4 2x0. 

Define a permutation a on the n' etements {O, 1,. . . , n2-1) by a(a.n+b) = a+nb, 
where a. b E {O, 1,. . . . n - 1). bVe identiFy a with the n' x n2 matrix which has 
(i + 1, j + 1) e n t ~  equal to one if j = o(i) and zero othenvise. Let S = $(l+ o). 
Then S is doubly stochastic and Sxa = fx,, so x, 4 2xo, as desired. 

O 

4.2 Unitaries intertwining fiames 

This rather pessimistic section contains examples which illustrate two negative results: 
there is no canonical best way to pair the projections of two isomorphic (unordered) 
frarnes in general, and there is no canonical best way to rotate Erom one Frame to 
ano t her. 

Note that the angles @(E, F) are only defined between ordered Erames E = 
(EL,. . . , Er) and F = (Fr,. . . ,Fr); one may wonder if it is possible to extrapolate the 
definition oE (E, F )  to d e h e  angles between the unordered Erames E = {El, . . . , Er) 
and 3 = {FI, . . . , Fr) by finding a 'best' pairing of the projections Ei with c, in the 
sense of making the associated angles s m d ?  More precisely, @en a permutation 
a E Sr, let Fu be the ordered Erame (Fu(Lli . . . , Fu(q) and mite @, for @(El Fm) (note 
that a must permute projections of the same rank). Can we h d  a permutation a such 
that Qu 4, @, (or maybe even @, 5 a,) for d permutations p? If ll@(E, F)llm I 2 
then the answer is yes (to the strong assertion); otherwise the answer is no in general. 

Proposition 4.2.1. r f  IIQ(E, F )  I[,5 2 then @(El F) 5 a, fo r  all p e m t a t i o n s  p. 
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Proof. Let U be a unitary which satisfies UEiW = Fi for ail i. FoIlowing the notation 
in Remark 4.1-6 we can mi te  iY as a block matrix with (i, j)-block-entry Uij. Since 
cos@(E, F )  = U ~ = ~ S ( U ~ ~ ) ,  the hypothesis II@(E, F)( l ,  5 implies that for each i, ali 

of the singular values of Uii are Iarger than A, or equivalently, UiiUi 2 >E~- Since 
II is unitary, it foIlows that 

for each i. 
Now suppose p E Sr permutes projections of the same rank. Let V be the uni- 

tary with (i, j)-block-entry equal to UipCi); it foUows that VEiV* = Fp(i). Thus 
COS@(E, F p )  = u:=~s(U~~(~))- But (4.3) says rhat Ui,(qU$(i) 5 UiiU', for each i, so 
COS @(Et Fp) 5 cos @(El F). Hence Q(E! F) < <Pp as claimed. 

O 

This shows that if al1 the angles of Q(E! F) are Iess than 2, then any other pairing 
results in larger angles. The foUowing example shows that the bound of is necessary 
for the above proposition. 

Example 4.2.2. Let r = 2 so we can write El = P ,  E2 = PL. Similarly, we mite 
FL = Q,& = QL. LVe assume rank P = rank PL, so that there are exactly two 
ways to pair the projections of & and E that is, we can compare E = (P, PL) to 
F = (Q, QL) and ais0 to F = (QL, Q)- 

Suppose the canonical angles 8 ( P ,  Q) between P and Q consist of k angles of 
= -1 - 6 and I angles of + E ,  where O < d < E < :. Thus the canonicai &es between 
P and QL comprise k angles of + 6 and 1 angles of - É. 

Note that since rank P = rank P', e(P,Q) = Q(PL,QL) and O(PIQs) = 
@(PL, Q). It foIIows that 

while for each p E 11, m), 

which can be made Iess than zero by an appropriate choice of k and 1. 
This shows that if [I@(E, F) 11, > :, one does not have @(Et F) 4, @(E, F,) in 

generd In particular, any 'best' choice of pairing projections WU depend in general 
on which unitarily invariant n o m  we use to measure how big the angles are. 



The same difEculty exists for minimal Erames. 

Example 4.2.3. Let E, 3 be two minimal Erames with F, = UEiU', where U is the 
(n + 1) x (n + 1) orthogonal matrix with entries 

- othenvise. 

If p is a permutation in Sn+i, then cos@(E, Fp) = {IUi,(il( : 1 5 i 5 .n + 1). Thus, 
there are clearly only two candidates for an optimal pairing of projections (in the sense 
of minimizing the angles): p is either the identity permutation or the transposition 
switching n and n + 1. Let y and 6 denote the angles correspondhg to these two cases 
respectively; thus cos-/ is &en by the diagond entries of U, and, if V is the unitary 
obtained by switching the last two columns of U, cos 6 is given by the diagonal entries 
of V.  Hence 

n - 1  n - 1 
cosy = (-, ..., 

n -7 017 n 

Clearly for any p E [l, oo) one can make 

by choosing n d c i e n t l y  large; however 

for any choice of n, so once again a 'best' pairing depends on the choice of n o m  used 
to measure the size of the angles. 
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Due to the lack of a natural way to match the projections of two frames, one would 
suspect t hat there is not a uniformly best way to rotate from one frame to another. 
First let us clarify what is meant by rotating from one frame to another. 

Definition 4.2.4. Let E = (EL,. . . , Er) and F = (FI , .  . -, Fr) be tryo isomorphic 
ordered frames, and let & and 3 denote the correspondhg unordered hames. A 
unitary Lr is said to zntertwine E and F if UEi = EU for ail i. We Say U intert-tnrines 
E and 3 if there exists a permutation u E Sr for which UEi = Fc(ilU for ali .i 
(equivalently, bu(&) = 3). 

A natural question is which unitary, of ail those intertwining two frames, is closest 
to the identity. The prototype of the type of result we wouid ideaily Like is the 
followbg proposition from [î]: 

Theorern 4.2.5 (Davis). Let P and Q be two projections of the same rad.  Let U 
be a vnitan~ satisfying: 

1. UP = QU. 

2. If U is written in block matrixfonn wzth respect to the diwxt sum decomposition 
'H= P7i@PL'H as 

(2 2) 
(The unitay U is called a direct rotation jrom P to Q). 

Then for eue y unitady invariant n o m ,  the mznimum of II([- V')(I  - V)I[ over 
all unitaries V satisfying V P  = Q V  is attained when V = U. 

Remark 4.2.6. The result is equivalent to saying that for every Q-nom, the mini- 
mum of [II - VI[ is attained when V =  U. 

One may weli wonder if we could extend this result about subspaces to an and- 
ogous result about frames. Can one h d  a unitary U uitertwining tivo £cames & and 
3 for which 

inf (111 - VI1 : V intertwines E and 3) 

is attained at U for ail Q-nom? The follom-ing example shows that such a generd- 
ization is unlikely. 
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Example 4.2.7. Let U = I - 3Jn, so U is the n x n symmetric orthogonal matrk 

The only eigenvalues of U are 1 (with multiplicity n - 1) and -1 (with multiplicity 
1). Let E be the minimal frame comprising the projections ejef ,  and let 3 be the 
minimd kame of projections Ueief U*. 

Note that the set of unitaries intertwining E and F is precisely {Uh : h E H}, 
where H consists of those unitaries which are products of a diagonal unitary and a 
permutation. 

Since 
III - ~ h 1 E  = Tr(I - Uh)*(I - Uh) = 2 - 7 ReTrUh, 

III - Uhl12 is minimized when 1 ll Uhl is maximized. As 1 Tr Uhl is clearly mêximized 
over h E H when h = I it follows that 

On the other hand 

This shows that ive cannot find a unitary intertwining & and 3 which minimizes 
[ [ I  - V I I  for a,ii Q-noms. This is in spite of the fact that E and 3 are quite dose; the 
angles between & and 3 are ail arccos 5, which tend to zero as n becomes large. 
Thus the non-existence of an optimal unitary for alI Q-noms occurs for ordered 
Erames as weU. 

Remark 4.2.8. in general, the minimum of 111 - VI12 over unitaries V intertwining 
two Ecames E and 3 is attained at a unitary U which satisfies 

This unitary was investigated by Davis in [6] and aIso by Kovarik and S h d  in 
[16, 25, 261; ive s h d  foiIow Kovarik's notation and c d  U a bakanced transfomation 
between E and F. SimilarIy, if U intertwines two ordered kames E and F, and 
EU 2 O, we sas U is a baIanced transformation between E and F. 



4.3 Some Inequalities 

Proposition 4.3.1. Let U be a unita y with ezgenualues eiQl . Let & be a pinching, and 
let cos 4 denote the singular values of EU, where O < q5 < f. Then sin2 $4, sin' q. 
Proof. Recd  that X(ReA) 5 s(A) for any matrk A (for instance, see [4, Chapter 
31). Taking A = EU gives 

4 1 - cos4 1 - s(EU) sin- - = - - 
2 2 2 

1 - X(ReEU) 1 
I 2 

= - X ( I  - Re EU) 
2 

1 1 

= LA(& Re(I - U)) 4 f h ( ~ e ( 1 -  U)) 
3 - 

Remark 4.3.2. 1. We do not have sin" oW sin2 ct in general. Xor do we have 
sin O - 4, sin f .  This is regardless of any bounds we might impose on 4 or a. 
To see this, consider the unitary 

where d E [O, 11, and take E to be the pinching onto the diagonal with respect 
to the standard basis. Note that the eigenvalues of Cr are @en by 

with correspondhg orthogonal eigenvectors (O, 1, 0, l),  (1,0,I, O), (i, -LI -2, I), 
and (4, -1, il 1). 

2. Since the function (arcsin f l P  is convex and increasing for any p 2 2, it foUows 
by Theorem 1.3.8 that @ 4, a p  for any p 2 2. That this does not necessariiy 
hold for p < 2 may be seen by considering the unitary U above with d diiciently 
close to 1. 



Corollary 4.3.3. Let E and F be ordered frames of the same type. Then 

I I  sin I I  5 inf{ll~ - Ull : U intertwines E and F )  
2 - 

for any Q-nom. 
ALso 

II@(E, F)llp 5 inf(l1 InUllp : U intertwines E and F )  

for al1 p 2 2. 

Proof Wolog represent E and F by the unitaries I and V respectively. Then a 
unitary U intertwines E and F 8 U = V h  for some block diagonal (with respect to 
3 Ran Ei3-1) unitary h. if the eigenvalues of U are eiaj, then the singuiar vaiues of 
I - U and In U are 2 sin % and laj[,  respectively. Since 

by Remark 4.1.6, the assertions foilow from the preceding proposition and remark. 17 

Rernark 4.3.4. CVe can minimize over ali possible pakings of projections to obtain 
a sirnilar result for unordered fiames. 

Proposition 4.3.5. Let V be a ,unitay matriz. Then 

for a q  unitarily inuan'ant nom. 

Proof. Tt suffices to show that Il 1-UII 5 I I  in Ull for any unitary U. Let W be a unitary 
with eigenvalues eiaj . The singular values of In U are lajl, while the singular values 
of I - U are 21 sin Tl. Since 2[sin 31 5 2131 - = lql, the propositioo follows. O 

Rernark 4.3.6. Since the difference between 2sing and a is oE order a3, the proof 
shows that the di£ierence between idhEH III - Vhll and iûfhEH I I  in Vhll is of order 

( i n f h ~ ~  111 - vh11)~- 
In the particular case of the F'robenius nom,  the inhum on the left hand side 

of (4.4) is attained when V h  is a balanced transformation, whiIe the infimurn on 
the right hand side is attained when Vh  is a geodesic rotation, so we essentiaHy 
recover the estimate of Kovarik and Sherif [l?, 251 which asserts that the balanced 
transformation and geodesic rotation are cubicdy close. 



In the speciai case where &, 3 are isomorphic Zframes we possess considerably more 
information than in the general case; thus it is fniithi to examine this case separately. 
For this section, we wiii write E = (P, PL) and F = (Q, QL), and we dl assume 
wolog rank P = rankQ = k 5 :. The following proposition gives us @(El 3) in terms 

of @(P, Q). 
Proposition 4.4.1. Let BI 2 - - - 2 Bk be the canonical angles between P and Q. 

Then the angles i n  O(&, 3) consist of: 

1. Bi w i h  ~multiplicity 2(n - 2k) for each i = 1,. . . , k 

2. IOi -Oj [  !or each i, j = 1, ...? k 

3. min(& + Oj, ( 5  - di) + ($ - 8,)) for each i, j = lt . . . , k 

4. O with multiplicity (n - 2k)' 

Remark 4.4.2. Note that if n = 2k, the above Iist of angles remains unchanged if 
we substitute 5 - - Oi for Bi. This is not surprising, for n = 2k Mplies that rank P 
= rank Qi, so we could just as well pair P with QL and ask for 0(&, 3) in terms 
of Q(PTQL). Since the angles in @(P. QL) are precisely {' - O : 0 E @(PT Q)}, this 
explains the noted invariance. 

ProoJ We can choose an orthonormai basis (for example: see [4, Chapter 71) such 
that, Nith respect to this basis, the block matrices of P and Q are 

where C, S are the diagonal matrices 

respectively. Note that the diagond bIock entries of P and Q have dimensions k,k, 
and n - 2k. 

Since the canonical angies betnreen E and 3 satisfy sin2 Q(E, 3) = X(&FL&Ibng), 

it suffices to compute the eigenvalues of EFLE (as an operator on RanE). Note 



Let A E RanE; writing aii matrices in block form, we have -4 = O LV x . 
A straightfomard computation shows that 

(:: I) 

Let CJ = eie; be the matrix with a one in the (i, j) position and zeros eisewhere. 
It follows that E3'E has the foilowing eigenvectors in RanE: 

1. (O 0 cl ) with eigenvalue O for each 1 < i,  j < n - 2k. 

2. (O O $ 1 )  with eigenvalue sin' Bi for each 1 < i 5 k,  1 5 j < n - 2k. 

3. (O Fi with eigenvalue sin2 6, for each 1 < i < n - 2k, 1 < j < k. 

5 -  -cl ) Nith eigenvalue sin2(& + O,) for each 1 5 i, j 5 k. 
O 

The eigenvalues for (4) and (5) are evident iF we note that 

COS' Bj + cos2 Bi - 2 cosQi z i  2 sin Bi COS Bi sin Oj cos Bj 

=COS? ej(l - COS? O,) + COS* ei(l - COS? 0,) * 2 sin 8, COS ei sin 8, COS O, 

=COS' 8, sin2 Bi + cos2 Bi sin2 Oj f. 2 sin di cos Bi sin dj COS Bi 

=(cos Bj sin Bi * cos Bi sin Oj)' 

=sin"-(si k e j ) .  

By noting t hat sin' O(&, 3) = a(EFIE) and t hat ail angles in B(E, 3) are between 
O and $, the proposition foilows. 

nl 

Since @(E,  F )  = @(P, Q )  u 8(PL, QL), and @(PL, Q1) just consists of the same 
as 9(P, Q )  together with n - 2k zeros (recail that we've assumed k 5 $1, this 

proposition alIows us to derive a number of relations between @(E, F) and Q(E,F). 

Theorem 4.4.3. If E and F are isomorphic ordered 2-frames, 0(&, 3) 5 @+(Et F )  . 
more ove^, if II@(E, F)II 5 f for the bound n o m  II - 11, then Qo(E, F) +,8(E,  F) + 



Proof. Let al,. . . , al, denote the angles between P and Q. As noted, the angles 
between PL and QL are just Q(P, Q) together with n - 2 1  zeros. Hence @+(E, F )  is 
the union of the four sets of angles 

3. {ai with multiplicity 2(n - 2k)  : 1 5 i 5 k), 

4. {O with multiplicity (n - 2k)'), 

mhereas, by Proposition 4.4.1, 8 ( E ,  3) is the union of the four sets of angles 

3. {ai with multiplicity 2(n - Sk) : 1 ' i < k), 

4. {O with multiplicity (n  - 2k)2).  

Comparing corresponding sets of angIes of @+(E, F) and Q(E,F) gives the h s t  
statement. 

For the second statement, note that ao(E,  F) comprises n copies of (Yi, 1 < i < k, 
together with (n  -2k)(n - k )  zeros. Wk can rewrite a0(E,  F) as the union of the four 
sets of angles 

1. {ai FVith mdtipiicity k : 1 5 i 2 k), 

2. {a, FVith mdtiplicity k : 1 5 i 5 k), 

3. {ai wïth mdtiplicity n - 2k : 1 5 i 5 k) u {O with multipiicity (n  - 2k)k), 

4. {O with mdtipiicity (n  - 2k)'). 

Note that the condition IlQ(E, F)I[ 5 impiies aj < $ for all i, so min(ai +aj, T- 

ai - ai) = O!i + 1Yj. 

Since 
@ f aj f [ai - C t j [  = 2 max(ai, aj), 



it foliows that 

for al1 1 5 i, j 5 k. Combining these k' weak rnajorizations in the rnanner of 
Proposition 1.3.9 shows that the union of the k s t  two sets of angles of QO(E,  F) 
is weakly majorized by the union of the first two sets of angles of Q(&,T). Since 
the third set of angles of Qo(E, F) is weakiy majorized by the third set of angles of 
O(&, F), and the fourth sets of angles are identical. another application of Proposition 
1.3.9 yields the latter h d f  of the proposition. O 

Remark 4.4.4. The condition IIQ(E, F) 11 5 a is necessary and cannot be eliminated 
by pairing the projections Ei and F; more efficiently. For example, consider the case 
where 

P =  O O O a n d Q =  O 1 0  6 O O) (U O O) 
Here ao(E ,  F) = (g, $, $,O? 0) whereas Q(E, 3) = (%, $,O, 0, O), so the conclusion of 
the proposition fails in this case where there is only one possible pairing. 

That the constant $ is the best possible c m  be seen in the simple example where 

cos' a sin a cos a 
sin ai cos a cos2 a 

Here @(E, F) = (a,  ai) while O(&, F)  = (min(Sa, li-2a), 0); thus if a > %, @(E,  F) +, 
O(&, F). This example also shows that we do not have Qo(E, F) < O(&, F). 

The preceding proposition shows that if 8(P, Q) is small, then so is O(&, 3). If 
Q(&,F) is s m d ,  it is too much to ask that Q(P, Q) be small; however, a reasonable 
request is that one of Q(P, Q) or 8(P,  QI) be s m d .  

Proposition 4.4.5. Let L = Il@(E,F)II and 111 = min(llB(P, &)Il, I[B(P, QLJII). 
(Here (1 - I I  is the bound n o m . )  Then M 5 L; i f  L < f, we in fact have M = L / 2 .  

Before proving this proposition we remark that the minimum over the choice of 
pairing P with Q or QL ody  arises when rank P = 8. 
Proof. We nrrite B1 1 - - -  1 Bk for the angIes between P and Q. We have either 

81  +dk  5 or BI + û k  > $. In the former case, 
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for d i. In the iatter case, 

for ali i. Thus we have either llO(P,Q)II i [lQ(E,3)11 or llQ(P,QL)II L II@(E,-T)II, 
so hi < L as claimed. 

Now suppose L < 5 ,  so each angle in @(El 3) is less than 5. By Proposition 4.4.1, 
it foiiows that for each il either 28, 5 L or ?Bi > a - L > F. Suppose there are two 
different indices i, j for which 0, 5 k and 19, > f. Then 

Thus min(& + Bj, R - di  - Bj) > L which contradicts llO(&, 3 )  II = L. Therefore 
we must have Oi < L / 2  for all i or 8, > - - & - (that is, 5 - Bi < 6 )  for d il  and so 
1i.r 5 $ - < g. 

Finaliy, wolog suppose 1LI = ]le( P, Q) 11, so Bi 5 a for aii i. It follows that 
Il@(&, 3 )  II = mLyi 2Bi = 3 M  as required. O 

Remark 4.4.6. Note that L = f does not irnply M 5 $; consider the evample where 

@(PIQ) = {f ,O) .  

4.5 General Frames 

We non. turn our attention to the generd situation of two isomorphic ordered kames 
E = (EL,. . . ,Er) and F = (F I : .  ..:Fr), where rankEi = rank Fi = ni. Let E and 
3 denote the unordered kames correspondhg to E and F respectively. We begin 
by introducing an operator S which will be usefd in proving some of the subsequent 
propositions. 

Suppose U is a u n i t q  which intertwines E and F, so there is a permutation 
a E Sr such that UEi = F,(illf for each 1 5 i 5 r. We d e h e  a map S : E -+ E by 
S(A) = W(3A)U. Note that 

so &p O 3 = E O T ~ U S  S = &p 0 FIRanE = E O +U- IRanE - Of course th% map S 
depends on the choice of the unitary U: if there is a possible ambiguity as to what 
this choice of u n i t q  is, we will write Su instead. 



Since we can write S = $u.F&IRnnEl we See that S'S = E3&lbE, so the sin- 
gdar values of S are precisely cos @(&, 3). Moreover, S is a doubly stochastic map 
(positivity-preserving, unital, and trace-preserving) on E ,  so S A  4 A for any her- 
mitian A E E .  

We shaIl finci it convenient to utilize the block stmcture of the subdgebra E. To 
this end, we NiIl wr i te  U in block form with respect to the cùrect sum decomposition 
'H = E17-L d - . .  8 E,H as 

u=  (:L *.:: y)  
U r  . U;, 

svhere Uij = L ~ U L ~  and l j  : Ej'FI -. 'FI is the inclusion map. Since U is unitary, we 
have U'U = ï and UU* = I: using block notation, it foilows that 

ï16H=C((i.)ij~ji=C~;i~ji, and 
j=L j= 1 

for a11 1 5 i 5 r. 
Let A f RanE, so .4 is bbck diagonal and tve may tvrite 

where Ai is an operator on Ran Ei. 
Since S A  = E(U'iiCr) and EB is just the bIock diagonal of B, it foiiows that 

We can &O Nnte  S in a bIock mat& form with respect to the decomposition 
E = $ - - - 9  !LI,,, so that 
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where SijAi = U;,AjUji for Aj E Mnj. Cleariy (S'), = S;i. Note &O tbat in the 
case where E is a minimal frame, S is just the orthostochastic rnatrk os(U'). 

Our Fust proposition partly generalizes the fkst inequality in Prop. 4.4.3. 

Proposition 4.5.1. el(&, F) < 2 0 : ( ~ ,  F) for eaeh k = 1,. . . , n. 
Proof. Let U be a balanced transformation intertwining E and F, that is, UEi = EU 
and EiUEi 2 O for each i. In this case, the eigenvalues of B = Cr=, EiUEi are given 
by cos 4. Let {Rk : 1 5 k 5 n) be a set of orthogonal rank one spectral projections 
for B, where Ri, corresponds to the eigenvalue (cos O):. Thus 

RkURk = (cos $ ) ; R ~ .  (4.6) 

Let ck : Sean(& : 1 5 i 5 k) -+ RanE be the inclusion map; we Nill mite Sr, = 

i& for the compression of S to the subspace of RanE spanned by the orthonormal 
ba is  {R ,  : 1 5 i < k). With respect to this bais,  the (il j)-entry of SI, is equal to 

which is non-negative. In particuiar, if i = j ,  (4.6) implies 

(SE, El)  = (cos' O)!. (4.7) 

h o  note that Sk is symmetric, and that sirmming the entries of the j th column 
of  Sk gives 



Recali the Gershgorin Disk Theorem [4, Problem VIII.6.31 says that for a k x k 

In pmicular, if B is self-adjoint, it foliows that the smallest eigenvalue Xk(B) of B 
is greater than min~=,(bji - '&, jbij'jl). With this in mind, we prove the proposition: 

(cos @)L = si(S) 2 x:(R~s) [4, IIIS.l]  

2 Ai ( r i  ( R ~ s )  rc) [4, 111.1.51 
I 

= X,(ReSk) 

= A:(&) since SI, is self-adjoint 
k-1 

> (& Rk, Rk) - {& R*, Q) by Gershgorin Disk Theorem 
i=l 

2 (CO$ (3): - (1 - (cos2 O):) by (4.7) and (4.8) 
1 =   COS^^,. 

Hence (cos Br)L 2 (cos2@):, and so 8: < 2@[ for each k = 1,. . . n, as desired. 
0 

Remark 4.5.2. If E and 3 are minimal hames, then both @ and iP consist of n angles, 
so we have @(E,  3) 5 L>Q:(E? F )  for aU k; however, this does not hold in generai. 
(Consider the example where n = 4 and E,P are 2-hames with @(E, F) = (a ,  O) and 
O! > O). 

Proposition 4.5.3. I l @ ( & ,  F) 11 5 [I@+(E, F)lli 

Proof. As in Proposition 4.5.1, Let U be a baIanced transformation intertwining E 
and F; thus, ~ i n g  block matrk forrn, Uii 2 O and SiiA = UiiAUii- I f  we denote the 
block diagonal of S by 2)  = SL1 8 - - @Sv, then 'D 2 O and, since the block diagonal 
of S and Re S coincidel 

Since the eigenvalues of D are given by 
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Applying Theorem 1.3.8 to the convex increasing function - arccos x gives 

We now attempt to generaiize the second inequaiity in Prop. 4.4.3. 
Note that, shce arcsin x is convex increasing on [O, 11 and sin' x is convex increas- 

ing on [O, g], Theorem 1.3.8 implies that 

sinx 4, sin y =+ x +, y =+ sin2 x 4, sin2 y, 

provided the coordinates of x, y lie in [O, t]. IdeaIiy, we would üke to show that 
sin ao(E,  F) 4, sin O(&, 3). This does not occur in general, however: regardles of 
how we bound Qo(E, F);  consider the simple case where n = r = 2. 

Thus, a first step towards showing ao(E,  F) +,8(&,3) would be to show that 
sin2 Qo(E, F)  4, sin2 @(ET 3) if IIQo(E, F )  II 5 f . The next proposition is a partial 
result in that direction. 

Proposition 4.5.4. If& and 3 are minimal fiames then 

2 sin' Qo(E, F )  cos%o(E, F)  +, sin2 8(E, 3). 

Before beginning the proof, we introduce a short lemma. 

Lemma 4.5.5. If a = (al , .  . . 4) and b = (b l , .  . . ,b,) are probability ~uectors (that 
is, alb coordinates are non-negatiue and sum to 1), then 

for all 1 < i 5 r. 

Proof of Lemm a. Ive have 

for any index i. 'ïhus 

for all i, as required. 



Proof of Proposition. Let U be a balanced transformation intertwining E and F, so 
UEi = F,U and EiUEi 2 O for each i. In particular, we may assume that Uii is 
diagonal for each i and write 

COS ( . O ) .  
COS 

Writing RanE = A&,@- - .$Ad,,,, we let ?; : Mni -t !hi denote the compressionof 
EF& = S'S to LW,,,; t h ~  if A E hfq, ?;(A) = Ili,U{AUijU{. Let Cij = ULli,Ui. 
LVe compute the diagonal entries of ?; with respect to the standard orthonormal basis 
{eke;} on LU&: 

r r 

(.l;(eke;). ere;) = 'II eie; C C'ijekei~ij = C(Cij)kk(Cij)li- (4.11) 
j=l j=l 

But since Cij 2 O and xi=, Cij = I by (4.5): - - (Ci,)o) is a probability 
vector for each i and k. Tt follows hom (4.11) and (4.9) thcit 

for any i k, 1. 
Thus if Pi is the projection onto i1/I,, we have 

Ui,k,~ cos2 sir? mil + cos2 @a sin2 Qir 5 ~L~diag(idl,\~,,, - 7J) 
4 uL,A(id - Z) 

r 

= X(Z P ~ & F ~ & P ~ )  
i= 1 

4 ~ ( & 3 ~ & )  

= sin' @(El 3 )  

But if&, 3 are minimal then the Ieft hand side is just 2 sin2 (Po(E, F) cos2 iPo(E, F), 
and the proposition folIows. 17 

Remark 4.5.6. if Il@(E, F)II 2 f then we have 



where E and F need not be minimal. In particular, this shows that II@(E, F)II < 
llO(&,F)II. If E and F are minima1 we have sin2a0(E, F) +, sin2@(E,F). 

The 2-frame example where Q(E, F) = (a, 0,. . . , O), rank E = rank EL, and a is 
suEEiciently s m d  shows we do not have 2  sin%^(^, F) cos'@o(~, F) 4, sin' O(&, 3) 
in general. 

The next result generalizes Proposition 4.4.5; it says that if flO(E,F)(I is srnaii, 
then there is a way to pair the projections of E and F so that [I@(E, F)II is smaii. 

Proposition 4.5.7. Let E = {EL,. .. , Er) ,3  = {FI , .  .. , Fr) be two isomorphic 
framea Suppose IIO(E,3)II = a < $. Then there exists a unique permutation CT 

such that al1 angles dij  betveen the ordered frames (El,. . . , Er) and . . , Fm(,)) 
are less than a. 

PI-OOJ The case a = O is trivial so assume a > O. The hypothesis implies that for aii 

angles d j  E 8(EI  F), COS' B j  3 COS' a, so &FE 2 COS' a &. In particular, for any index 
i = 1,. . . , r the compression ?; of &FE to Mn, dehed in Prop. 4.5.4 must satisfy 

(TA, A) 2 cos' a (4.12) 

for any A E fi&, with n o m  llA1I2 = 1- 
Fk a unit vector x E Ran Ei. Letting A = xx* in (4.12) @es 

= ïk xx* Cijn*C+ 

where, as in Prop. 4.5.4, CG = U&. 
Suppose, by way of contradiction, that x8Cijz 5 cos2 a! for ail j. It foiiows that 

so, by applying Theorem 1.3.8 with the convex function f (t) = t', 



This Mplies 

cos" 5 (COS' a)' + (1 - cos2 al2 

= coi2 a + sin' &(sin? a - cos' a)  

< cos' a 

which is a contradiction. Thus there m u t  be some index j for which x'Cijx > cos2a. 
Wolog assume j = 1. 

Let y be a unit vector in Ran Ei and rvrite X = x'Ci l~  and p = y'Cily. Letting 
.A = xy* in (4.12) implies 

where we have used (4.10) applied to the probability vectors (x*Ciix?. . . , x*Ci,x), 
(y'Cily,.  . . , yuCiru) for the last inequality. The 1st quantity is a convex combination 
of p and 1 - p; since X > &, it m u t  lie between p and ). Since cos2 u > the 
inequality can only occur if p 2 cos'a. Since 3 WWBS arbitrary, we conclude that 
Cil 2 COS" Ei. 

Thus we have shom that for each indev i there exists an index j such that 
Cij > cos'a E, > !Ei. Since Cij = 1, this index j is unique, and so we can 
write j = a(i) for some permutation IT E Sr. 

Since (I,u(i)Uz(i, = Cidi) > cos2 ai Ei, Ci.(, is invertible and so Li;, : Ran Ei - 
Ran E,(i) has zero kernel, so rank Ei 5 r d  Ec(i)- Thus rank E k  is constant for all 
indices k belonging to the same cycle of a ,  that is, c permutes bIocks of the same 
sue. 

Thus we can pair Ei with and the cosines of the angIes between these Wo 
projections are given by the singular d u e s  of a l l  of which are greater than 
cos a. But the arccos of these singuiar values are just the angIes between the ordered 
hames ( E l , .  . . , Er) and (FI,. . . , Fr), proving the proposition. O 



CHAPTER 4. ANGLES BETWEEN FRACIES 

4.6 Summary 

For the speciai case of Zframes, we obtained our strongest result: 

where we require IlG(E, F)II 2 for the weak majorization. Vie conjecture that this 
holds in general; here we summarize the resdts we have tbus far. 

For minimai frames, note that @(E, F }  = Qo(E,  F )  = $D+(E, F) .  Our best 
results here are 

note that for 11911 < $ we have 

sin' 3 4, sin2 O.  

For frames in general, much less is knom. LVe do have 

2. I l @ ( [  5 Il3+ll = 112@011. This is obtained by almost the exact same argument as  
in Proposition 4.5.1. 

3. TrO 5 Tr@+ = Tk2Q0. This is just Proposition 4.5.3. 

LVe also have a negative result: we do not have sin@o 4, sin@ in general, even 
for 2-frames or minimal hames, regardless of any bounds we rnight impose on IIQoll 
(see the simple case where n = 2, r = 2). 



Chapter 5 

Ant ipodal Frames 

ive r e t m  to the idea that if A lies in the range of E and if E and 3 are close, one would 
e q e c t  that 3-4 is only slightly more messed up than il. Conversely, if Ç E A  -i 3 E A  
for al1 hermitian A then surely is farther bom E than T is. From this vïewpoint, 
a frame 3 should be maximally distant hom E precisely if F E - 4  = (i 73 A) I for a- 
A. 'CVe s h d  pursue this idea further in this chapter, asking which pairs of Erames 
possess this property, and how many are there. First we introduce some notation. 

Definition 5.0.1. We Say two frames E and 3 are antipodal if &FA = (+ 'It -4)I for 
dl -4 € Mn* 

Xote that, since the map Q(4) = ( i ' I t -4) I  is a projection in B(i14,), E 3  = if 
and only if 3& = 9. Thus the definition is symrnetric in & and 3. The dehition also 
d o m  the possibility that E and F are non-isomorphic; the foilowing lemma shows 
that this never occurs. 

Lemrna 5.0.2. Let E = {EL, -. . , Er) and 3 = {Fl, .  . . , Fs) be turo (not necessadg 
isomorphic) b m e s .  Then E and 3 are antipodal i f  and only if 60th & and 3 are 
minimal frames and TrEiFj = for al1 i, j. 

Proof. For the 'if' part, write Ei = ~ e f ,  4 = fj f; for some orthonormal bases 
(ei), (fj) of P. Then since 'It E i 4  = er fjJj'ei, it ~ O ~ ~ O W S  that 



for any matriv A, as required. 
For the 'only if' part, let P be a rank one projection in the range of E, so 

This implies that 
1 

4 P F j  = -4 
n 

for each j. Since the left hand side has rank at most one, it foilows that rank F, = 1 for 
each j. Due to the symmetry in the definition of antipodal frames, we can reverse the 
roles of E and 3 to conclude rank Ei = 1 for each i. Thus E and 3 are both minimal 
Erames. Finally. setting P = Ei in (5.1) and taking the trace implies Tr EiFj = for 
each i, j, as required. O 

From the notation used, one might wonder if two antipodal frames r e d y  are 
maximaily Far apart with respect to some natutal metric. The following proposition 
shows that this is indeed the case. 

Proposition 5.0.3. Let 1 5 p < w and deJine the distance between two minimal 
frames &,F by I I &  - 311, (here E and F are vieved as operators on the Hilbert- 
Schmidt space lLln). Then E and 3 are antipodal i f  and only i f  (IE - FI\, is the 
maximum distance between any two minimal frames. 

Proof. Let E and 3 be two minimal fiames. Since E and 3 are projections on LW,, of 
the same rank, [4* p.3OlI shows that 



for any unitarily invariant norm. Since I lies in the range of both E and 3, at  least 
one of the angles in O(E,3)  is zero; hence I I £  - 311, is maximized 8 aii the other 
angles in B(E, F) are 5. Since cas' @(Er 3) consists of the eigenvaiues of &FE, t his 
is equivalent to requiring that the spectnim of IF& has o d y  one nonzero eigenvalue. 
Thus II& - 311, is m a e i z e d  iff &FE has rank one 8 3& has rank one. Since 
both & and F &Y I and are trace-presening, it foilows that I I &  - 311, is maximal 8 
3EA = (L n RA) I ,  as required, D 

Remark 5.0.4. Note that the proof in fact show more; if E and 3 are antipodd, 
then they are maximaiiy distant with respect to any unitarily invariant norm. The 
converse is not true in general; two hames E and 3 may be maximdy distant with 
respect to the bound norm, but not be antipodal. 

To avoid any possible confusion, 1 shali use the term antipodai only in the sense 
of the above proposition; for a generai metric p on the space of minimal frames 1 dl 
speak of two frames being mavimally distant with respect to p. 

A naturai question is to find all frames F antipodal from a given fiame E. Lemma 
5.0.2 shows that for this to occur, both E , 3  m u t  be minima1 frames, so E = {eief), 

3 = {fif,') for some orthonorma1 bases (G), {fi) of Cn. If U = (el1 ...l en) and 
V = (f 1 . . . 1 f,), then E, 3 cm be identified with the (left) cosets [U], [VI E Un/H 
respectiveIy (here H is the subgroup of Un generated by the permutation matrices 
and diagonal unitaries). Since Tr EiS = 1 f;ei12, the condition TF EiF, = for aii 
i, j is equivalent to the requirement that os(Y"X) = J, for some (any) choice of 
representatives X of [U] and Y of [Vj; in particular, 

[U] and [VI are antipodd e os(V'U) = Jn (5.2) 

jrecaii os(U) is the mat& whose (i, 3)-entry is IUij12)- It folionrs that [U] and [VI are 
antipodal if and only if [VU]  and [Il are, so it suffices to find aii hames antipodal 
fiom [II; that is, we wish to find ail unitaries U for which os(U) = Jn- Note that if 
os(U) = Jn then os(U1) = J, for any unitary Ur in the same doubIe coset of H as U, 
so we may restrict our search to those unitaries U for which ail the entries in the first 
row and column are equai to h. 
Proposition 5.0.5. Suppose U is unztay and os(U) = Jn. i fn  = 2,3, or  4 then U 
rnust lie in the same double coset as 



respectiuely, where w = e3"'I3 and a! is a complex number of modulus one. 

Proof. The n = 2 case is trivial, For the other cases, it is helpful to view complex 
numbers as vectors in the plane. For n = 3, note that a triple (aL ,  a.>, a3) of complex 
numbers satisfies al + a2 + as = O and )ail = 1 for each i only if the triple denotes 
the sides of an equilateral triangle. The result follows almost irnniediately by noting 
that the rows of U are orthonormal. For ,n = 4, note that a quadruple (bi, b2, b3, b4) 
of complex numbers satisfies bl + b2 + bJ + 64 = O and lbil = 1 for each i only if the 
quadruple denotes the sides of a rhombus, in which case one may assume wolog that 
b2 = -bL m d  b4 = -b3. Noting that the rows of U are orthonormal and considering 
the various possibilities entailed by this argument gives the result for n = 4. O 

Remark 5.0.6. Note that there is a unique double coset of unitaries with associated 
orthostochastic matri.-.- J,, for n = 2,3 but not for n = 4; in fact F(a) and F(B)  lie 
in the same double coset if and only if 0 = ka (in which case they actuaiiy Lie in the 
same coset). This relative abundance of double cosets with associated orthostochastic 
matrix for n = 4 is representative of the situation where .n is composite. 

Proposition 5.0.7. Let Fp denote the p x p finite fou'er transfon,  so (FP)jk = 
'exp(y(j - l ) ( k  - l ) ) ,  1 5 j, k < p. Let D E LCI, be the block matrix fi 

where for each j, Dj E !;L[, is a diagonal unitary with (1 ,  1)-enty equal to one. Let o 

denote the block Hadamard product, so i f  A and B are block matrices: 

Then the pq x pq matrix (Fp@ Fq) O D is unita y with associated orthostachastic m a t k  

Jpn - 

Proof. Let r/ = (Fp 8 F,) o D. The (i, j)-block of U is given by the q x q matrix 
Uij = (Fp)ij  FqDj- The modulus of each entry in this block is $5, which shows that 



os(U) = J,. To see that U is unitary, note that the (i, k)-block of U*U is given by 

Remark 5.0.8. The number of double cosets of unitaries with associated orthosto- 
chastic matriv J, is related to the 2-transitivity of the action of Un on antipodal pairs. 
(Recall that a unitary U acts on a frame [A] via U[A] = [UA].) Here we Say that 
the action of Un is 2-transitive if, whenever ([Ar], [A2]) and ([BI], [&]) are antipodal 
pairs of frames, there exists a unitary U for which U[&] = [Bi], i = 1,2. 

Since A;'([A~], [Az]) = ([II, [A;'A~]), Un is 2-transitive if and only if whenever 
[A] and [BI are antipodal from [Il there exists a unitary U for which U[I] = [II and 
U[A] = [BI. Since U [Il = [II iff U E H, the condition U[A] = [BI says that A and B 
Lie in the same double coset. Thus Un is 2-transitive if and only if al1 frames antipodal 
from [Il lie in the same double coset. In particulas, we have 2-transitivity when n = 2 
or 3 but not when n is composite. 

Beyond this, not much is known. An obvious question is what happens when n 
is prime. For n = 5, Drury [9] has recently shown numericdy that the ody doubIe 
coset of unitaries with associated orthostochastic matrix J5 is that containhg the 
6nite fourier transform. However, Drury [8] has also shom that for n = 7, there 
is at Ieast one dimension worth of double cosets of unitaries which have associated 
orthostochastic matri.. J7. It is not c1ea.r what happens for larger primes. 

5.1 Maximal Antipodal Sets 

In the previous section we asked which frarnes are farthest apart from each other. In 
this section we want to obtain an idea of how 'spread out' the space of frames is; in 
particdar, how many kames can be antipodal to each other? 



Definition 5.1.1. A muaimal antipodal set is a set of Erames {[Al], . . . , [Akl) satis- 
fying: 

1. [A,] and [Aj] are antipodd whenever i # j. 

2. Any strictIy larger collection containing {[Al], . . . , [Ak]) does not have the above 
pro perty. 

Remark 5.1.2. Note that (5.2) shows that {[A1], . . . , [Ak]) is a set of mutudy an- 
tipodai frames if and o d y  if ([UAL], . . . , [UAk]) is for any unitaq U, so in searching 
for maximal antipodal sets one may assume wolog that AL = 1 and that A? is one of 
the unitaries listed in Proposition 5.0.5. 

Proposition 5.1.3. For n = 2, the maximal antzpodal sets are obtained by the action 
of Un on sets of the f o m  

ProoJ By Remark 5-12: it suffices to find ail maximai antipodal sets containing [II 
and [U], where 

If a frame [VI is antipodal from [Il, Proposition 5.0.5 implies that [VI is represented 
by hU for some h E H. But both U and UU (here a Ïs the permutation J - 1) 
represent the same coset since 

Since A and eieA represent the same coset, it foUom that we may mi te  

for some p of modulus one. If [VI is also antipodal Fom [U] we must have os(U*V) = 
A. That the (IJ) entry of os((l'V) equalr 4 implies that 



Hence we can represent [VI by 

proving the proposition. 

Proposition 5.1.4. For n = 3, the marimal antipodal sets are obtained by the action 
of Un on sets of the f o m  

where w is a primitive cube root of unity. 

ProoJ By Remark 5.1.2, it suffices to find al1 mêuimai antipodai sets containing [II 
and [U], where 

K a  fiame [VI is antipodal kom [Il, Proposition 5.0.5 irnplies that [VI is represented 
by hU for some h E H. But both U and aU represent the same coset for my 
permutation u E S3 since we c m  choose p E S3 and a diagonal unitary d such that 
ou = Udp. As -4 and eieA represent the same coset, it follows that we may write 

where [y[ = 161 = 1. if [VI is also antipodal from [Uj we m u t  have os(ll*V) = J3. 

That the modulus of the (1,l) and (1,2) entries of o s ( V V )  is $ gives 

. . 
Writing x = eie = y and y = et@ = 6, this trandates into 



Squaring both equations and siimming implies cos(6 + Q) = -;, so q = w or W, 
that is? 3 = e'Fi?i. But equations (5.4) say that 

which implies tbat 3 + 9 + f = O- Multiplying this equation by x and substituting 
for y impiies that x3 = I. Thus s = 1, w ,  or LS, wit h the correspondhg values for y 
given by noting zy = w or 13. Consideration of d possible choices of x and y shows 
thai; V must Iie in the same coset as one of 

One c m  ver@ that the two cosets represented by these two matrices are antipodd 
to [Il, [U] and to each other, and so the proposition foilows. O 

Proposition 5.1.5. If u E Cn, let diag(v) denote the diagonal m a t k  urhose jth 
diagonal entnj is uj .  For n = 4 ,  the muximal antipodal sets are obtained by the action 
of Un on sets of either the fonn: 

if cr # &I (here a ,  c, @ are arbitmy cornplex numbers of modzllzls one), or 

{III, [F(l)I, Eh~F(1)ll [Ft-F(1)11 Ih3F(l)l) 

,where hl = diag(l,l,i, -i), ha = diag(l,i, 4, l), and h3 = diag(1, -i! 1,i). 

Before proving this proposition two Lemmas are needed. 

Lemma 5.1.6. Let a, 6: c, d be cornplex nztmbe~s of mudulus one. Then 

i f  and only i f  h o  of a, b, cl d are equczl and the other two sum to zero. 



Prooj. The ;if' part is easy to verify For the 'only if? part, note that if one regards 
two cornplex numbers x, y as vectors in the cornplex plane, then 

(that is, ReyWx=O). L e t x = a + b , y  = c + d t o s e e  that a + b I c + d .  Applying 
Pythagoras gives 

4 = I(a + b) + (c+d)12 = la + b12+ Ic+d12 

=+ O = ? ~ e ( a b + c d )  since a, b, c, d have moddus 1 

=+ ~e cd = Re(-a)& 

Geometricaily, this says that the angle between c and d equals the angle between -a 
and b. Let k = -bu, so kb = -a; that is, applying k rotates b auto -a. It follonrs 
that either kd = c or i d  = c. 
Case 1. Fust consider kd = c. In this case 

Thus either c = f a  or k = &1, in which case b = f a .  Together with (5.5) this gives 
the desired conclusion. 
Case 2. Now consider kd = c. In this case 

Thus either d = iza or k = k1, in which case b = f a .  Together with (5.5) this gives 
the desired conclusion. 

Remark 5.1.7. Xote that the preceding lemma asserts that {a, b, c, d )  c m  be grouped 
into two pairs of psrrallel vectors. 

Lemma 5.1.8. Suppose a, b, c,d satZsfy the hypotheses of Lemma 5.1.6. Suppose ais0 

Jar some complex number y of modulus one. Then either a I I  b (that is, a = id) or 
y = &1. 



Proof. Suppose a Y( b. We wish to show = kl. Applying Lemma 5.1.6 shows that 
a is parallel to one of b, c, d; since the conditions are symmetric in c and d (we don't 
care whether we have y or -y), wolog assume a I I  c, so a = c or a = -c. Suppose 
a = c, so necessarily b = -d. Then 

has norm 2. Since (a - b) + (a + b)  and (a - b)  - (a + b) both have norm 2 and since 
the set { (a  - b) + ei8(a + b) : B E [O, 2x1) can intersect the circle of radius 2 in at most 
two places (unless a = b, which is ruled out by a YI b), it foiiows that 7 = k1. The 
case a = -c is similar. O 

Proof of Proposition 5.1.5. By Remark 5.1.2, it d c e s  to find aii maximal antipodal 
sets containing [Il and [U], where U = F(a) for some CI of modulus one. If a frame [VI 
is antipodai from [Il, Proposition 5.0.5 shows that V may be d t t e n  as V = ahF(P) 
for some E UL, diagonal unitary h, and permutation a E S4. Furthemore, we may 
assume that CT fkes el. (This is because for any permutation T E S4, there exists 
a diagonal unitary g and a permutation p E S4 which fkes el such that rF(P)  = 
pF(y)g,  where 7 = P  or f i ) .  

If [VI is aIso antipodd from [U] then we must have os(U*V) = JI, so if h = 
diag(a, b? c, d), the matrix given by 

has entries of moduius 2. 
if the ( j ,  k) entry of ohF(B) is denoted by ajk ,  it foUom that 

larj + - a3j - aqj[ = 2 

larj - a2j + - fia4jl = 2 

lalj - a2j - 6a3j + &adj[ = 2 

for aii column inàices j = 1,. . - ,4. 
The fkst equation with j = 1,3 shows that a, b, c, d satisfy the hypotheses of 

Lemma 5.1.6, while setting j = 3 gives exactly the equation in Lemma 5.1.8 if we set 
y = 0. Thus either a 1 1  b or B = stl. 

There are now three cases to consider. 



The t h d  and fourth equations in (5.7) with j = I show that la-bfaic-oid\ = 2. 
Applying Lemma 5.1.8 with y = à shows that a I I  b or ar = kl. 

The third and fourth equations in (5.7) with j = 1 show that la-cfaib-6d[ = 2. 
Lemma 5.1.8 applies with y = a to show that a I I  cor a = il. 

3. a ( 4  = el  

The third and fourth equations in (5.7) with j = 1 show that [a-d+6b-&cI = 2. 
Lemma 5.1.8 applies with y = fi to show that a I[ d or a = F1. 

If cr # hl then, after checkhg the various possible cases, [VI can be represented 
by diag(a, a?  c, -c) F(P) for some a: c, 0 of modulus one. 

Ot herwise, cr = il. In this case, [VI may stiil be represented by diag(a, a, c, -c) 
F ( )  for some a. c. of moduius one: but it could aIso be represented by diag(a, b, c, d) 
F(1) where two of a, b, c: d are equal and the other two sum to zero. 

One can readily veriSr that in both cases, the possibilities touted for [VI are 
indeed antipodal from both if] and [l'(a)]. Can we extend {[I l ,  [F(a)] ,  [VI) to a 
Iarger coIIection of mutualiy antipodal Frames? 

Firçt suppose ai # f l? and suppose [VI and [WI are antipodd Erom [Il and [F(a)]; 
thus [VI and [LV] can be represented by 

respectiveLy. If [VI and LW] are antipodal then os(WV) = J4; this implies that 
the frames represented by F (y) and diag(ba, ba, &, Zc) F(B) are antipodal. Xote the 
second kame is aIso antipodal from [Il. But we have just seen that for a frame 
to be antipodal from both [Il and F ( y ) ,  it must have the Eorm diag(p, q, r, s)F(d) 
where two of p .q ,  r, s are equal and the other two sum to zero. Since (ba,baz&,dC) 
does not sati* this condition it follows that [VI and [W] cannot be antipodal, so 
{[II, [Ff a)], [diag(a, a, c, -c) F(P) ] )  is a maximal antipodd set. This proves the ûrst 
assertion of the proposition. 

For the second assertion, suppose a = &I (since [F(I)] = [F(-111 we cm assume 
a = 1). Suppose [Vl and [TV[ are antipodal fiom each other and fiom both [II and 
IF(.)] = [F(I)]; thus [VI and [tq c m  be represented by 



respectively, where two of a, b, cl d are equai and the other two sum to zero (and 
similady for .w, x, y, 2 ) .  (The case of [VI represented by diag(a, a,  cl -c) F(P) for some 
0 # Il need not be considered, since that has already been covered by the hst 
assertion of the proposition.) 

That [VI and [W] are antipodal implies o s ( W V )  = J4, whence the frames repre- 
sented by F ( l )  and diag(wa, xb, gc, rd) F ( l )  are antipodal. Thus two of wu, xb, yc, zd 
are equaI and the other mo sum to zero. 

Consideration of aii possible cases shows that [VI, [W] must be represented by one 
of diag(l,l, i, -i)F(l): diag(1, i, -i. l ) F ( l ) ,  or diag(1, -il 1, i)F(l).  Since ail three of 
these unitaries represent frarnes which are antipodai From both [I],[F(l)] and from 
each other, the second assertion of the proposition foilows. O 
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