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Abstract 

Nonlinear Phenomena and Chaos in Periodically Driven Classical 

Systems 

by Slaven PeleS 

Chairperson of S u p e ~ s o r y  Cornmittee: Dr. Randal Kobes 

Department of Physics and Ast ronomy 

We study in this thesis the behavior of a periodically driven nonlinear mechanical 

system. Bifurcation diagrams are found which locate regions of quasiperiodic, peri- 

odic and chaotic behavior within the parameter space of the system. We also conduct 

a symbolic analysis of the model, which demonstrates that the symbolic dynamics of 

two-dimensional maps can be applied effectively to the study of ordinary dserential 

equations in order to gain global knowledge about them. We also study some as- 

pects of nonlinear system control. We show how one can utilize some of the methods 

developed in recent years for the study of nonlinear equations of motion to improve 

some aspects of traditional control design. We demonstrate these ideas for the case 

of an inverted double pendulum, which is a commonly used mode1 in robotics, and 

compare the results to  those found with traditional methods. 



Chapter 1 

INTRODUCTION 

Although most phenomena occwring in the physical world are nonlinear in their 

nature, contemporary science still has very limited success in providing a mathe- 

matical description of them. Physical processes are usudy  described by differential 

equations. Except for some special cases, there are no exact analytical methods for 

obtaining general solutions of nodinear differential equations. Anaiytical solutions 

for nonlinear problems are usually obtained using perturbation methods, i.e. in the 

way that nonlinear terms in the equation are treated as a perturbation to the solution 

of an otherwise linear equation. This approach is valid only if the linear part of the 

equation is dominant, which may not always be the case. Also, some purely nonlinear 

phenomena may be lost in a perturbative model. The other way of solving nonlinear 

problems are numerical methods. In these methods differential equations are reduced 

to a discrete map such that iterations of the map stay close enough to the trajectory 

of the solution. Numerical methods can be successfulIy used for solving a variety of 

nonlinear problems, however they usually require a lot of time consiimiIig calculations 

before they give convergent results. 

Rapid development of information technologies over the last 20 years reduced 

computation time for numerical methods significantly. More sophisticated and more 

accurate techniques have been implemented, and, as a result, many new features of 

nonlinear systems were discovered. 

One of the moût interesting nonlinear phenomena is deterministic chaos. It man- 



ifests itself as a high sensitivity to a change in initial conditions. For chaotic systems 

arbitrary small changes in initial conditions will result in a large difference in the so- 

lution after some h i t e  amount of time, thus making any long term prediction about 

a system's behavior impossible. This is popularly called a butterfiy effect - a fiip of 

butterfly's wiugs a t  one place may cause a hurricane a t  the other side of the G1ob.e. 

The fact that the solution of the equation of motion of a deterministic systern may 

stiU not d o w  long term prediction of its future behavior came as a bit of a surprise. 

The concept of a single orbit solution, which suited linear systems very well, became 

insufficient to describe behavior of nonlinear ones. Instead, the distribution of orbits 

acd invariant limit sets in a system's phase space has to be studied. 

In our research we studied periodically driven nodinear systems, and we analyzed 

their chaotic behavior. In Chapter 2 we study the logistic map, which is a simple one- 

dimensional mode1 that exhibits chaos. We use it  to introduce some basic concepts 

of chaos and nonlinear dynamics, and to define terminology we are to use throughout 

t his t hesis. 

In Chapter 3 we discuss chaos in dynamical flows using the example of a simple 

pendulum. We also elaborate the difference between chaotic and simply divergent 

systems. Both are characterized by exponential divergence of two nearby trajectories 

in phase space; however chaotic systems are bounded. 

The focus of our research was a propulsion device [49, 731, which consists of two 

gears and a rod (Chapter 4). We detect chaotic behavior in the system and locate 

regions in the parameter space where the system is chaotic, periodic and quasiperi- 

odic. Since the system we study is dissipative, most of the information about its 

dynamics is obtained by studying its attractor. We anaIyze the geometry of the sys- 

tem's attractor for different values of the system's parameters and we calculate the 

attractor's dimensions. We also observe creation of coexisting attractors and crisis 

phenomena in our system. The most interesting feature we obtained was coexistence 

of the chaotic attractor and a limit cycle in the phase space, meaning that the system 



would exhibit chaotic or periodic behavior, respectively, depending on the choice of 

initial conditions. 

We extend our study by developing a symbolic dynarnic analysis for our model. 

Such an analysis provides almost the only rigorous approach to study chaotic motion 

of dynarnical systems, as it enables one to find and count al1 ingredients of chaos - 

unstable periodic orbits embedded in a chaotic attractor. Up until recently chaos 

has been treated in a similar fashion as a random noise, and it was considered as 

an undesirable physical behavior. with symbolic dynamics we can study chaotic 

behavior in detail and use some of its properties. Applying this concept we may, for 

example, reformulate some aspects of statistical mechanics without any probabilistic 

assurnptions, and calculate thermodynamic averages with high accuracy- SO far, 

symbolic dynamics analysis techniques have been developed for 1- and Zdimensional 

maps only, and so we reduced our system to a 2-dimensional map by suitable choice 

of the Poincaré section. 

We have also looked into some problems related to automatic control of robotic 

systems. In particular, in this thesis we discuss the problem of stabilizing an inverted 

double pendulum with perturbed base point around its upright position. This model 

has been studied extensively in robotics engineering literature as it is used to model 

a human walk. We showed that some of the above mentioned techniques may be 

used for optimization of controllers designed for this model using Lyapunov's Direct 

Method, which is the standard method in control theory. In chapter 5 we show the 

results which we obtained working with our collaborators from the Department of 

Mechanical and Industrial Engineering at the University of Manitoba, when we used 

calculation of the Lyapunov exponents to he-tune control parameters of a double 

pendulum system [87]. 

In the Conclusions we discuss prospects for some more sophisticated applications 

of chaotic dynamics in control theory. 



Chapter 2 

THE LOGISTIC MAP 

2.1 Prototype Mode1 

The logistic map is maybe the simplest model that exhibits chaotic behavior. There- 

fore, it is very convenient for illustrating some general chaotic features, and is often 

called a prototype model of chaos. We will use it to define certain terms and to 

describe some tools that are used in chaotic dynamics. 

The logistic map was first used in biology for estimation of a population growth 

in a closed environment. According to this model, the number of species, p,+i, in 

year n+ 1 is proportional to their number, p,, in the year before n and to the amount 

of free space. Specifically, this is dehed as the Merence between maximum number 

of species that can coexist in the closed environment, P, and their current number 

p,. If we introduce some constant of proportionality rn, that depends on, say, the 

fertility of the population we can mite it altogether as a logistic equation: 

For our calculation it is more convenient to use another form of the equation where 

the maximum number of species is normalized to unity: 

Here xn = p J P ,  and p = mP. The logistic equation (2.2) is defined for x E [O, 11, 

as  the number of species is expressed as a fraction of their maximal number in given 

environment. 



Figure 2.1: Cobweb diagram for the logistic map at p = 0.8. 

Assuming that the logistic map is a good enough approximation for certain bi* 

logical systems, e.g. the number of fish in a lake, we would believe that with knowing 

the initial number of fish xo, and parameter p, we could estimate the number of fish 

after an arbitrarily long perïod of time. We will show that this is not always the 

case. Although it is described by a simple mathematical relation, the logistic map 

exhibits fairly complex behavior, and for certain values of p long-term prediction is 

impossible. 

For p 5 1, x, would tend to zero after a sufncient number of iterations (usually, 

it is just a few of them) for any initial condition xo E [O, 11. We Say that the segment 

[O, 11 is mapped to zero. The solution to the logistic rnap can be very vividly descrïbed 

graphically, using the cobweb plot (Fig. 2.1). Once the logistic map is found at  a 

point xn = O it remains there for al1 subsequent iterations. This is something that we 

would expect from the real biological system - there is no more natural growth of a 

population after its extinction. We say the point zero is a fixed point of the logistic 

map. More generaiiy, for any one-dimensional rnap 



Figure 2.2: At p = 2.8 intersection of diagonal and mapping function is a stable h e d  

point. 

every point x. for which x, = f (xe) is called a fixed or equilibrium point. For one- 

dimensional systems there are two types of equilibrium points: stable equilibrium 

points, or sinks, which attract all orbits starting in their vicinîty; and unstable equi- 

librium points or sources, which repel al1 orbits in their vicinity. In our case zero is a 

point of stable equilibrium. Iterations starting from any initial condition xo E [O, 11 

will eventually end up in x, = O. We Say that the point zero is the attractor and 

segment [O, 11 is its basin of attraction. We denote the attractor by x, = O. Generally, 

stability of a fixed point for a one-dimensional map is determined fiom the derivative 

of the mapping function f (x) [2]. If x, is a fixed point and [ f1(z,) 1 < 1, then x, is 

a stable equilibrium point or sink. In cases when 1 f'(xe) [ = O, the equilibrium point 

is called superstable. If 1 ff(xe)l > 1, then xe is an unstable equilibrium point or 

source. Finally, in a special case when 1 f '(x.) 1 = 1, the equilibrium point is said to 

be marginally stable. 

As we increase the parameter p fiom 1 up to 3 we obtain a similar situation. The 

attractor of the map is still a fixed-point, only it is shifted from zero to sa = 1 - 1/p 

(Fig. 2.2). The basin of attraction is the interval (O, 1) rather than the segment 



Figure 2.3: At p = 3.1 the attractor for the logistic map is a period-2 orbit. 

[O, 11. The point x = O is still a fixed point itself, however it is now unstable, since 

1 ft(0) 1 = p. The point x = 1 is mapped to zero by a single iteration, and it is called 

a pre-image of the unstable h e d  point x = 0. 

So far, behavior of the logistic map was quite predictable. It mas s a c i e n t  to 

know only the parameter p in order to predict value of x,, for n large enough. Since 

ft(l - 1/p)  = 2 - p, the fixed point x, = 1 - 1 / p  becomes unstable as p increases over 

3. Iterates x, do not tend to a single value any more, but rather alternate between 

two values xal and 2.2 when n is large enough (Fig.2.3 ). 

The attractor now consists of these two points, and we say that attractor is stable 

period-2 orbit. This means that certain values will occur every second instead of 

every single iteration. This is called period doubling. The previous attractor loses 

its stabiliw and becomes a repeller, which we will denote as xr. The numerical value 

of the repeller point is always in between those of attraction points x,l c x, < 2,~. 

Therefore, period doubling is a consequence of an increase of a system's parameter, 

resulting in creation of a period-2 orbit attractor and an unstable fixed-point. This 

phenomenon is also called a pitchfork bifurcation. 

Stability of a periodic orbit can be straightforwardy derived fiom the fixed point 



Figure 2.4: At p = 3.48 the attractor for the logistic map is a period-4 orbit. 

stability criteria. Every point xfi of a period-n orbit of a map (2.3) is a k e d  point 

of a map 

where f is a composition of n mapping functions (2.3) 

or written in more convenient notation 

Therefore: the periodic orbit xpl, . . . , xm of a map (2.3) is stable if any point of that 

orbit xe is a stable fixed point of the map (2.4): 

Applying the chah rule for the derivatives we obtain the stabiliQ criteria for a peri- 

odic orbit to be: 

Ift(xpl)l Ift(xp2)l ' Ift(xpi)l < 1 (2.8) 



Figure 2.5: Chaotic logistic map for p = 3.6 (left) and p = 3.95 (right). 

Superstable and unstable orbits are defined accordingly. 

As for the single-point attractor, a change in initial condition xo will not change 

points xO1 and x,2. A change in the initial condition may actually reverse the order of 

appearance of these two values during consecutive iterations. For example, a change 

in the initial condition may cause x, tu be found in x,l for every odd instead of every 

even iteration, for sufficiently large n. Information about this we obtain from the 

initial condition. There are two regions within the basin of attraction that would 

lead to one or another order, separated by repeller x,. In order to predict the future 

state of the system xn, we still do not need to h o w  the exact initial value xo, but 

only which part of the basin of attraction it belongs to. 

For p = 3.4494.. . another period doubling occurs, so Zn now goes through a cycle 

of four different values, i.e. the attractor is now stable period-4 orbit (Fig. 2.4). The 

period-2 orbit becomes unstable, and dong with the period-one orbit divides the basin 

of attraction into four subintervals. In order to make a prediction we have to locate the 

initial condition for one of them. The next period doubling occurs a t  p = 3.5440 . . ., 

then at p = 3.5644.. ., and so forth. Finally, at p = Pm = 3.5699456.. . we reach an 

infinite number of period doublings, and the system becomes chaotic. The attractor 

is now an infinite set of points, within the basin of attraction. With every iteration 

x, is found in a different point a t  the attractor, and since there is an iniînite number 



Figure 2.6: Bifurcation diagram for the logistic map 

of these points, behavior of the system is not periodic any more. Furthermore, ail 

unstable orbits generated by period doublings are still embedded in the attractor. 

Such an object is called a chaotic attractor. Unstable orbits divide chaotic attractor, 

and therefore the basin of attraction as well, into an infinite number of subinte~als, 

each containing initial conditions which leads to a diEerent pattern of going over the 

attractor. Obviously, arbitrarily small changes in the initial condition xo would place 

it in another s u b i n t e ~ d ,  which will cause the system to be found in a quite different 

point x,, after a sufficiently large number of iterations n. Hence, in order to make 

predictions it is necessary to determine initial condition Mth absolute precision. 

If we stick to the fish example, though, prediction still seems possible, because 

we simply count the fish in the lake, and we have a sharp initial condition for our 

model. The problem occurs when we do calculations. In order to make a long term 

prediction we have to  keep an infinite number of digits. The smallest round off error 

would shift us onto another orbit, leading us to a quite different result after a finite 

number of iterations. In other words, long-t erm prediction is inherently impossible 

for a chaotic system. 

It is important to note that although this behavior is unpredictable it is still 



Figure 2.7: Period doubhg route to chaos for logistic map 

deterministic, because it is completely described by the logistic equation (2.2). 

We can sumrnarize the previous discussion in diagram 2.6. This diagram shows 

possible values of x, (for n large) where the system can be found for particular p, 

and is called a bifurcation graph. It actually describes evolution of the logistic map's 

attractor with change of parameter p. Bifurcation diagrams are an important tool 

for examining chaotic properties of dynamical systems, and are often used to locate 

chaotic regions within the parameter space. Obviously, the name cornes fiorn the 

fact that curve x, vs. p bifurcates for every period doubling. The bifurcation that 

corresponds to a period doubling is called a pitchfork bifurcation. 

We wiil now use the bifurcation diagram to show the behavior of the logistic map 

when p > poo. Beyond pitchfork chaos the system suddenly becomes periodic again 

for certain values of p, with a period n which is difFerent fkom any power of two. The 

chaotic attractor is then replaced with a non-chaotic one. This phenomenon is called 

subduction [29]. As p increases further, the system will get back to chaos through 

another sequence of period doublings, similar to the initial one. At the bifurcation 

diagram subductions are obsewed as narrow "windows" of periodic behavior within 

an otherwise chaotic region. Periodic windows starting with 3-, 5-, 6-, and 7-point 



Figure 2.8: Period-3 window enlarged. 

cycles are cIearly visible in figure 2.7. Subduction occurs as a consequence of a tangent 

bifurcation, which is preceded by intermittent chaos or intermittency [62]. 

Tangent bifurcation ' creates a pair of stable and unstable period-n orbits. As we 

further increase the parameter p the stable orbit goes through a cascade of period 

doublings, similar to the initial pitchfork cascade, leading back toward chaos, and 

stable orbits of period 2n, 4n, 8n, etc. subsequently occur (fig. 2.8). 

To understand this phenomenon, let us observe creation of a period-3 stable- 

unstable orbit pair. We plot the f function (2.4) of a logistic map for p (Fig. 2.9). 

We notice that as we increase p the cuve touches the diagonal z,+l = x, at three 

points, creating in that way a marginally stable period-3 orbit, as f3(x)' = 1 at  

tangent points. With a further increase in p, the curve crosses the diagonal thus 

creating stable-unstable pair of orbits (Fig 2.9). Similar analysis can be done for any 

-4 caution in the use of tenninology is needed here. The word bifurcation refers to a doubling 

of the stable orbit at the pitchfork bifurcation, whiie at tangent bifurcation refers to creation of 

a stable-unstable pair of orbits. In that regard, a tangent bifurcation that results in a period 

triplication is calleci '%rifurcation" in some articles (e-g, [Il]), or in more general case, when it 

results in n-point orbit, "n-furcation". 



Figure 2.9: Creation of a penod-3 orbit. Mapping function f is plotted for p = 3.825 

(left) and p = 3.841 (right). 

other odd order tangent bifurcation. 

It should be noted here that chaos is not merely a Lunit case of period-2" orbit 

when k -t oo. Every tangent bifurcation creates a new infinite set of unstable orbits 

that are embedded within a chaotic attractor. There occurs infinitely many tangent 

bifurcations when p changes £iom p, to 4, so every value of p at that interval 

corresponds to a different "kind" of chaos. The order a t  which unstable periodic 

orbits occur in a logistic map is prescribed by the theorem of A. N. Sharkovskii 

[70, 77, 781. With the decrease of p orbits are ordered as: 

Sharkovskii's theorem is actually valid not only for a logistic map, but for any uni- 

modal map, Le. any map on a unit intemal which mapping function has a single 

supremum value on that intemal. 

For p 2 4 the size of attractor exceeds that of the basin of attraction, and the 

attractor, along with its basin, suddenly disappears. Almost any initial value xo, 

either in or out of the former basin, is then mapped toward -00. We Say that the 

system has come to cisis a t  /I = 4 [28]. Such a phenomenon is called a boundary 



crisis and it occurs when an attractor "coliides" with boundaries of its basin. The 

geornetrical structure, made of an infinite number of periodic orbits, is still there, 

though it does not act as an attracting set. Apart £rom a boundary crisis, there is 

another type of crisis that is observed - the interior crisis. An interior crisis results in a 

sudden change in the size of an attractor, and it occurs when an attractor coilides with 

an unstable orbit. Most of the periodic windows end by an interior cnsis when period 

doubling cascade collides with its respective repeller. For example, at p = 3.855 the 

logistic map exhibits chaos, and its attractor is contained within three finite segments 

in its basin of attraction (fig. 2.8). At p = 3.857 the attractor coilides with unstable 

period-3 orbits and suddenly increases in size, occupying the most of the basin of 

attraction. 

The "direction" of evolution of the Logistic map's attractor is here chosen quite 

arbitrarily, and it depends only on how we define the system's parameter. There- 

fore, a penod doubling sequence ieading to chaos is equivalent to a period halving 

sequence leading fiom chaos to periodicity. Also, it is equally legitimate to state that 

intermittent chaos occurs for p = 3.828, (fig. 2.8) where stable and unstable period-3 

orbits amihilate, as to say that a tangent bifurcation converts a chaotic attractor 

into stable-unstable period-3 orbit pair. In more complex systems that we are going 

to describe these transitions occur in both directions within the same bifurcation 

diagram. 

2.2 Route to Chaos 

Period doubling as observed at the logistic map mode1 is at present the most com- 

monly known route to chaos. With the increase of the parameter p the logistic map 

goes through a sequence of period doublings before it becomes chaotic. Points pi for 

which bifurcations occur make an array {p i )  that converge to some finite accumula- 

tion point p,. 



Figure 2.10: Distances between neighboring bifurcation points 

Physicist MitcheIl J. Feigenbaum set certain rules that characterize this route to 

chaos. As well, he showed that these rules have a universal nature and do not depend 

on properties of a particular map. According to Feigenbaum, a bifurcation route to 

chaos occurs for a map 

Xn+l = ~f (4 (2.9) 

defined over the segment [O, 11, when f (x) has a single differentiable maximum x,, 

on that segment [18]. This is a weak condition, and a large number of functions 

satisfi it with proper scaling. Feigenbaum further showed that the route to chaos 

is characterized by two constants - the scaling ratio a, and the convergence ratio 6, 

which are d s o  called Feigenbaum numbers, or in some literature Feigenvalues [41]. 

The scaling ratio is defined by: 

4 3 - 1  a = lim - 
n-00 dn 

(2.10) 

where d, is the vertical distance between a bifurcation point and the maximum point 

of the mapping function at pn (Fig. 2.10). The convergence ratio b describes the 

convergence of the array (pi ) ,  and it is defined by: 

Pn-1 - Pn-2 6 = lim 
n300 Cln - Pn-i 



Feigenbaum numbers for a logistic map are calculated to be 

These numbers are the same for any other one-dimensional map (2.9) when the func- 

tion xmm has a simple quadratic maximum on [O, 11, Le. when f ' (xma) = O and 

f "(x,,) < O. Feigenbaum defined whole classes of maps characterized by the same 

CY and 6. All maps defùied by (2.9) whose mapping functions satisfy 

belong to the same class which is determined only by z [l8]. Obviously, for the logistic 

map z = 2. 

This means that the Feigenbaum numbers depend only on the behavior of the 

mapping function around the maximum point, and not on any other particular prop- 

erties of the function. Hence, the mapping function f (x) will determine only local 

scaling, while a period doubling transition to chaos in a qualitative sense will be gov- 

erned by some universal function. Every function £kom class 2.13 renormalized by a 

would thea resemble a universal function in a vicinity of xm, [19]. 

A period doubling sequence starting off fiom a tangent bifurcation inside a window 

of periodic behavior will be described by different Feigenbaum numbers, depending on 

the particular period multiplication pattern in it. For example, Feigenbaum numbers 

in windows that contain period triplication routes are calculated to be cr = 9.277 and 

6 = 55.26 [Il]. 

At this point a digression is necessary in order to introduce the concept of îractals. 

Ract  als are geometrical forms generated by replicating a certain pattern infinitely to 

a smaller and smaller scale. Therefore, an arbitrarily small part of a fractal magnified 

would resemble the shape of a whole fiactal. This is called self-similarity. As a con- 

sequence, fractals are non-differentiable at every point. The main feature of fractals 

and the reason they got their name is that their dimension is a fractional number. 



Figure 2.11: Further magnification of the part of bifurcation diagram 



Figure 2.12: Generating a Cantor set. 

The Cantor set is an ïliustrative example of a fiactal. It is generated from a 

straight line of h i t e  length. First, the middle third of the line is erased, so that we 

are left with two new, shorter lines. Then the middle thirds of these new lines are 

erased, and we are left with four even shorter lines. As we proceed we are left with 

more lines of lesser length after every step. If we repeat this pattern infinitely, the 

final result will be an infinite set of dirnensionless points. This is the Cantor set. 

We can immediately see that its dimension is greater than 0, and less than 1. In 

order to estimate an exact numerical value for the fractal dimension of the Cantor 

set we have to generalize the concept of Euclidian dimension, which considers only 

nonegative integer values. For example, we might use the definition of capacity fractal 

dimension as given in Ref. [4]. 

If we cover a fractal with a grid of hypercubes of size E ,  which are volume elements 

of the space in which the fractal lies, and if the number of hypercubes needed to cover 

the whole attractor, N(c),  grows like 

when E + O, then the number D is called the capacity fracta1 dimension. 

Using this definition we can calculate the fiactal dimension as 



Substituting values for a Cantor set we obtain D = log 2/ log3. One should note 

that the capacity dimension of a non fiactal object equals its Euclidian dimension. 

For example, the capacity dimension of a straight line is D = 1, and for a h i t e  

set of disconnected points (2.15) becomes zero. However, the generalization of the 

Euclidian dimension is not unique. Apart fiom the capacity dimension, there are 

several other fractal dimensions d e h e d  [14, 16; 17, 24, 25, 261, and their numerical 

values may differ for certain fiactals. 

The way how a chaotic attractor for the logistic map at the onset of chaos is 

created indicates that this attractor has a fractal nature as well. An infinite sequence 

of bifurcations, which become self-similar after a large number of iterations, generates 

a Cantor-like fractal. Its dimension D is estimated to be 0.53763 < D < 0.53854 

[23]. The attractor is called a strange attractor because of its fractal properties. 

Furthemore, the bifurcation graph also has a fractal form, and self-similazi~ is 

observed (Fig. 2.11). The fractal geometry of the bifurcation diagram for the logistic 

map is simply a reflection of the existence of Feigenbaum numbers. This is one 

example why fractals are so convenient for describing chaotic systems. Most chaotic 

attractors have a fiactal structure, and exploring their geometncal properties helps us 

obtain important information about the system's dynamics. However, not al1 chaotic 

attractors are strange and vice versa. The chaotic logistic map attractor for certain 

values of p consists of a finite number of disjoint intervals [45] within the basin of 

attraction, i.e. it is not strange. In Ref. [30] examples of strange attractors that are 

not chaotic are given. 

2.3 Lyapunov Exponents 

Lyapunov characteristic exponents are quantitative measure of chaos. Lyapunov ex- 

ponents help us describe behavior of a system when it becomes chaotic, and also helps 

us distinguish chaotic fkom random motion. The number of exponents corresponds 



Figure 2.13: Lyapunov exponent for the logistic map 

to the number of independent variables necessary to uniquely define the state of the 

system. Calcdating Lyapunov exponents is a complex task, however it is fairly sim- 

ple to estimate a Lyapunov exponent for systems that have only one, like it is the 

case for the logistic map. For any one-dimensional map (2.3) the state is determined 

by a variable x, and the corresponding Lyapunov exponent is defined as an average 

stability of an orbit when the number of iterations goes to infinity. 

Particularly, for the logistic map it is: 

Here we take logarithms of mapping function derivatives just to get more convenient 

numerical values. Alternatively, we can drop logarithm and d e h e  equally useful 

dynamical average, L ycrpunov numbers, as: 

n 

L = lim n 
n+oQ 



For a periodic orbit a Lyapunov exponent can be estimated after a finite number of 

steps. Obviously, for a period-N orbit limit (2.16) becomes 

For a stable periodic orbit the value of Lyapunov exponent is the same for any initial 

condition from its basin of attraction, because contribution £rom transient iterations 

in average (2.16) becomes negligible as n + oo. Transient iterations does not af- 

fect value of the Lyapunov exponent when the motion is chaotic, either. Therefore, 

although it is estimated for an orbit starting fiom a particular initial condition Lya- 

punov exponent can be understood as a property of the phase space, rather than 

the orbit itself. Its value depends on geometrical properties of the attractor for the 

system, and in most cases we can obtain a good enough approximation after finite 

number of iterations. 

The average Lyapunov exponent characterizes the separation rate for two orbits 

starting fiom infinitesimally close initial conditions xo and xo + €0, which are after 

a large number of iterations found in x, and xn + en respectively. Hence, we may 

alternatively define X as: 

As long as the limit above exists, A does characterize sensitîvity to the initial con- 

ditions of a one-dimensional map. From (2.20) it follows that for positive Lyapunov 

exponent iterations starting from two infinitesimally close initial conditions would 

diverge exponentially. For a large number of iterations n, the separation E, will grow 

approximately like: 
An en = eoe 

That means no matter how small the separation between two initial conditions is, it 

will become finitely large after sufkient number of iterations. Therefore, the system 

is chaotic. In the limit case X + oo the system becomes random. For X < O iterations 



converge and the system exhibits regular behavior. It is easy to show that definitions 

(2.16) and (2.20) are equivalent. We may write en as 

en = f n ( x + ~ 0 )  - fn(x), (2.22) 

where f n  denotes the nt" iteration of the mapping function f .  If we substitute (2.22) 

in (2.20) and, since €0 is defined as an arbitras. small value, take the limit -+ O we 

get: 

Applying the chain rule for the derivative we finally obtain 

which is equivalent to the expression (2.16). Definition (2.16) 

ping function f is known, while (2.20) is more suitable for 

is used when the m a p  

estimating Lyapunov 

exponents from experimental data, 

Since the attractor for the logistic map lies in a bounded region, i.e. within seg- 

ment [O, 11, it is obvious that besides stretching of the distance between two nearby 

initial conditions €0, some other process must take place. It appears that the distance 

E,  ni11 be reset to some smailer value before it exceeds the size of attractor. Actually, 

the orbit of the logistic map folds whenever value of Zn crosses over the critical point 

x, = 0.5 [85]. Sepaxation between nearby orbits then keeps stretching, but in the 

opposite direction. Therefore relation (2.21) holds only for as long as the orbit is not 

folded, and E, is much smaller than size of the attractor. Stretching and folding pat- 

terns are characteristic of any chaotic motion, and it is more emphasized for systems 

wi t h more than one dimension. Lyapunov exponents, however, contain information 

about stretching only, and for their estimation it is necessary to circumvent folding 

effects. 

If we plot the Lyapunov exponent for the logistic map versus the parameter p 

(Fig. 2.13) we find that for p > p ,  A increases smoothly with p [43], apart from the 



interceptions due to the windows of penodic behavior. It can be shown that in that 

region 
In 2 

X(P) = &(P - ~ m ) ~  (2.25) 

where Xo is constant, and 6 is the Feigenbaum number for a quadratic map. This 

result tells us that chaotic behavior has certain universal properties, and indicates 

that the bifurcation route to chaos contains information about the system's behavior 

once it becomes chaotic. On the other hand, in a deterministic non-chaotic region in 

parameter space ( p  < p,) the system is unstable at the bifurcation points, and the 

Lyapunov exponent there is zero, uniike the rest of the region where it is negative. 

2.4 Kolmogorov Entropy 

For deterministic periodic systems, we are able to predict their future behavior if given 

initial conditions. On the other hand, when the system becomes chaotic we are not 

able any more to predict its behavior after a certain period of time. In other words, 

the information about system's behavior is lost when it becomes chaotic. Loss of 

information is generally characterized by entropy, so it seems reasonable to introduce 

entropy to rneasure loss of information due to chaotic behavior. In analogy with 

statistics we define the information entropy to be 

where the summation is done over al1 possible states i where the system can be 

found. pi is the probability of finding the system in the ith state when we know its 

equation of motion but not the initial condition(s) [16,24]. For the logistic map, when 

the attractor is a single point, the state in which the system is found after several 

iterations can be predicted regardless of the initial condition xo, so the information 

entropy S = O. After period doubling, when the attractor consists of two points, the 

system can be found in any of these with equal probability, and hence S = ln 2. This 



is the amount of information that we would obtain with the initial condition. For 

random motion a l l  states are accessible with equal probability, and the entropy has 

its maximal value S = lmV where N is number of states. This nurnber is infinite if 

the system is defked over a continuous segment like the logistic map is. 

Similar to the random systems the number of states in which a chaotic system can 

be found is generally infinite so in (2.26) we have to circurnvent somehow the problem 

of an infinite surnmation. Therefore, in order to calculate entropy for one-dimensional 

iterated maps we usually first divide the basin of attraction of the system in N small 

subintervals of size e. Then we count n of those subintervals in which the system can 

be found, and assuming they are equally probable assign them probability p = l/n. 

Other subintervals obviously have zero probability. This assumption is valid for the 

limiting case E + O, N -, oo, when the subintervals approximate well states in which 

the system can be found. The entropy then takes the simple form: 

Information entropy, however, is not the best tool for describing chaotic systems. 

For example, entropy of an n-periodic system initially acquires its maximum value 

S Inn, and remains constant thereafter. On the other haad, entropy of a chaotic 

system will increase with every iteration, because every t h e  the system will be found 

in a new state. Therefore it seems more reasonable to use the change in entropy, rather 

than entropy itself, for describing chaotic systems. That is why the Kolmogorov 

entropy is introduced. For iterated rnaps the Kolmogorov entropy is defined as an 

average change in statistical entropy over a large number of iterations: 

In the last equation So and Sr are the initial entropy and entropy after I iterations, 

respectively, and E is the size of subintervals dividing the basin of attraction. The 

nurnber of iterations should be chosen so that the whole attractor is covered. Ap- 

parently K = O for any periodic motion, K > O for a chaotic motion. For a random 



system for any given initial condition all states are equally probable already with a 

next iteration, therefore, K + m. 

Let us estimate now the K-entropy for a chaotic system. If we assume that the 

size of of subintervals within the basin of attraction is some very s m d  value E,, 

then according to (2.21) its size would after 1 iterations expand to E, eu, where X is 

the Lyapunov exponent for the map, and X > O. Since the size of the subinterval is 

proportional to the number of states within it, we conclude that if in i t idy the system 

is found in no states, after I iterations the system may be found in no eU Merent  

states. For a large number of iterations we may estimate the K-entropy using (2.27) 

h(no eu) - ln no 
K = lim lim 

1 
= A  

€+O I + w  

so, when the logistic map exhibits chaotic behavior its Kolmogorov entropy equals its 

Lyapunov exponent, which is positive in that case. For the system with multidimen- 

sional phase space, K-entropy approximately equals the sum of al1 positive Lyapunov 

exponents. Sherefore, positive Lyapunov exponents describe information loss rate for 

a chaotic system. 

Equation (2.29) tells us that maps exhibits chaos only if two iterations starting 

from nearby points diverge exponentially- O t h e d s e ,  the K-entropy equals zero in 

the limit 1 + W. Especially interesthg is the case when the iterations diverge, but 

slower than e~ponen t i a l l~  The behavior is not periodic, but we are able, at Ieast in 

theory, to make predictions since the Kolmogorov entropy vanishes for a large number 

of iterations. Such a behavior is called quasiperiodic, and it will be discussed later in 

Chapter 3. 

2.5 Symbolic Dynamics of a One-Dimensionai Map 

For a long time chaotic motion was considered to be undesirable in dynamical systems, 

and chaos was treated in a similar manner as a random noise. The reason for that was 



that up to recently there were no tools for a generai analysis of chaotic motion. On the 

other hand, Sharkovskii showed that with the change of parameter p in any unimodal 

map (2.3) periodic orbits occur in a certain sequence. Therefore it is possible to count 

al1 periodic orbits that exist in the phase space of an iinimodal map, even if there are 

infinitely many of them, like i t  is the case in chaos. 

Symbolic dynamics provides a general frarnework for finding periodic orbits in 

phase space, which are the main "ingredients" of chaos. The characteristic of chaotic 

dynamics is high sensitiv-ity to change in initial conditions. It is, therefore, very diffi- 

cult to characterize chaotic trajectories numerically, since small errors in calculation 

may shift our results from one trajectory to another. The idea behind symbolic dy- 

namics is to make a suitable partition of phase space into a finite number of subspaces, 

and follow the motion of the system not by numerical values of its phase space co- 

ordinates, but by the sequence at which a trajectory visits different partitions. Each 

partition is assigned a character, and subsequently any trajectory is encoded by a 

sequence of characters, or itinerary, which describes the order in which a trajectory 

visits different partitions. If the partitioning is done properly, every periodic orbit is 

uniquely defined by a finite number of letters or a word. Furthermore, by o b s e ~ n g  

sequences starting from partition lines we rnay derive pruning rules, which tell us what 

are the admissible and what are inadmissible words. In this way we may determine 

and count al1 unstable periodic orbits ernbedded in a chaotic attractor. Symbolic 

dynarnic analysis may also help us find parameter locations of periodic windows. We 

shdl describe these ideas using the example of a logistic map. 

The fkst step of symbolic analysis of a dynamical system is to  partition the phase 

space properly. We can intuitively conclude that the phase space of a logistic map 

can be divided in two partitions, sepaxated by the maximum or critical point of the 

mapping function, since it is the only "special" point in the phase space. It is also 

called a critical point of the logistic map. In fact, the general rule for partitioning 

the phase space of 1-D maps is to split it into regions where the mapping function is 



rnonotonic. The two regions of an unirnodal map are usuaUy denoted with letters L 

and R, which stand for left and rîght of the critical point, respectively. We, hence, 

encode a trajectory of a logistic map with a binary sequence of letters L and R. 

We denote the critical point with letter C. Every orbit of a logistic map is determined 

by the initial condition xo. We can order itineraries by the numerical value of the 

initial condition. Obviously, for one letter sequences it is: 

We c m  also immediately see that Lw is the smdlest itinerary as it corresponds to 

xo = O, and RL" is the largest as it starts from xo = 1. Analyzing itineraries further, 

we find that LL < LR, but RI, > RR because the second iteration is mapped fiom 

a monotonically decreasing function. In order to make this point clear, let us recall 

here some properties of monotonic functions. 

A monotonically decreasing function g(x) inverts the order of its arguments 

such that xl < x2 C'L g(xZ1) > g(x2)  , while a monotonically increasing function 

function preserves the order of its arguments so it is XI < 1 2  @ g(x1) < g(x& 

0 The inverse of a monotonically increasing (decreasing) function is also a mon* 

t onically increasing (decreasing) function. 

A composition of n monotonic functions is monotonically increasing (decreas- 

ing) if there is an even (odd) number of monotonically decreasing functions in 

the composition 

Now, let us observe two iterations starting from two initial conditions xo and xd, 

which belong to the same monotonic segment of mapping function f: 



In other words both xo and xh are denoted with the same symbol so. Now we take 

the inverse f-' on both sides of (2.32) to obtain: 

The inverse hinction f -' is not uniquely defined unless we know whether xo is left or 

right of the critical point. Therefore, we put a lower index so to f -' in order to avoid 

arnbiguity. If so = L, then the inverse function is monotonically increasing, since the 

original function f (x) is monotonic~y  increasing for those values of x. If s o  = R, 

the inverse fùnction is monotonically decreasing. If we take xl + L and x i  + R, so 

that xl < xi, knowing properties of monotonic functions, we conclude that 

or, in other words, LL < LR < RR < RL. We can e,upand tbis reasoning to an 

itinerary of an arbitrary length. Let us take two points xo and xh that would lead to 

two itineraries of length n with first n - 1 letter same: 

Taking the inverse function f -' on 

where si = L, R. If there is an 

both sides of (2.34) n times we get: 

odd number of letters R within the itinerary 

sosl s2 . . . s,-l, then the composite function on the right hand sides of equations (2.36) 

is monotonically decreasing. O therwise, it is monotonically increasing. Therefore, if 

we assigning again x,, :, L and xk + R so that xn < xk, then xo > xb for odd 

number of letters R, and x0 < xb otherwise. 



LL LR RR RL -------- 
LLL LLR LRR LRL RRL RRR RLR RLL 

Figure 2.14: Mapping function for the logistic map at p = 4. Below are denoted 

segments of initial conditions which generate itineraries starting with 1-, 2- and 3- 

letter words. 



We may define, hence, a general rule for ordering itineraries for a unimodal map: 

Let us have two itineraries WL and W2 which have a common part W = sosls~ - - . s,-1 
such that: 

Then, if W contains an even number of Rs Wl < W2 if SI < tl. If W contains odd 

number of Rs Wl > W2 if SI < tl- 

It is convenient to defme a parameter a which describes the order of the symbolic 

sequence. We may interpret characters R and L as binary digits of a number O < 
CY < 1 in such a way that a(Wl) < a(W2) whenever Wl < W2, and vice versa. Thus 

for itinerary (2.30) we define a binary nurnber 

where ai, i = 1,2,3 ,  . . . are binary digits determined as 

and 

Here ~i is an auxiliary parameter, which has value = 1 for si = L, and E i  = -1 for 

Si = R. 

In Figure 2.14 are shown segments of initial conditions that generate itineraries 

which start with a certain string of letters. As the string gets longer, the segments 

become smaller and smaller, until they become points in the limit case. Therefore, 

itineraries of infinite length describe uniquely a single orbit. More importantly, pe- 

riodic orbits are uniquely described by words of finite length. A periodic orbit c m  

be described by any cyclic permutation of its letters. As a representative word for a 

perïodic orbit we choose the maximal word. For example a period-3 orbit (RLR)= 



can be written as (RRL)= or (LRR)=. Since RLR > RRL > LRR, we use the first 

word to describe the orbit. 

The next question is whether any combination of these letters makes an admissible 

word or there are some pruning rules that explicitly forbid certain words. We can 

see that the critical point x, is mapped to the largest, or if one prefers the leftmost, 

value of x that logistic map can reach. The itinerary starting off with the critical 

point is called a kneading sequence, and for the logistic map (except for dynamicdy 

uninteresting case when p 5 2) it looks like: 

Since R in the expression above corresponds to the largest value of x for the map, no 

periodic orbit may contain point beyond that value. Therefore we obtain a pruning 

rule [IO, 36, 661: 

(tlt2 - . . t n ) O O  < RLs3s4s5 - - . (2.4-2) 

Now it becomes more clear why we represent orbits by their maximal words. A cyclic 

permutation of the maximal word may satisfy the pruning mle and still contain a 

point which camot be reached by the map for given p. Rigorous mathematical proof 

of the pruning mle for a unimodal map is first presented in 1973 by Metropolis a t  al. 

WI. 
We shall illustrate usefulness of the symbolic dynamics in analysis of a dynamical 

system on a simple example. Let us first state the periodic windows theorem [37]- 

Theorem. If CC, where C = s l s2 . .  . s,+ and si = L, R, is a maximal word 

describing a superstable orbit, then both, CL and CR, are maximal words too- 

Superstable periodic orbits are obtained from the kneading sequence, and they 

represent periodic windows in bifurcation diagrams. We use superstable orbits in 

order to find al1 admissible words of certain length. For example, there is only one 

period-3 orbit which contains the critical point: RLC, and three period-5 orbits 

RLLLC, RLLRC and RLRRC. Al1 the other combinations of characters do not 



make an admissible word. We obtain all possible orbits by changing the last letter 

L -+ C + R. Let us check which of these orbits are embedded in the chaotic attractor 

of a logistic map for p = 3.8. The kneading sequence for this attractor is: 

Period three orbits are larger than the kneading sequence, as well as RLLLR and 

RLLRL. Two period-5 orbits RLRRR and RLRRL are embedded in the attractor. 

We check t h s  result by cdculating values of p at which periodic orbits occur. Let 

us substitute values for superstable period-3 and perïod-5 orbits into equation (2.36), 

and write for simplicity fcL(z) = s i (x) .  For period-3 orbit we get: 

By taking the inverse of the mapping h c t i o n  f (z) for the logistic map we obtain 

and further 

We put (2.47) into (2.44) and substitute x, = 0.5, so we get: 

-4s suggested in Ref. [37] we solve this equation by iteration as 

where po can be any value fiom interval (3.5,4). This gives us the value for pmc = 

3.8323 . . .. Similarly, we get ~ R L L L C  = 3.7524. . ., ~ R L L R C  = 3.8706 . . ., and ~ R L R R C  = 



3.9854. . .. Only the last periodic window occurs before p = 3.8, therefore we confirm 

that only RLRRR and RLRRL orbits are present at that value of parameter p. 

Symbolic dynamics can be used to rigorously prove some mathematical properties 

of unimodal maps, such as Sharkovski's theorem and Feigenbaum ~niversality~ Here 

we presented just a simple example in order to introduce some basic concepts of 

symboiic dynamics analysis . 



Chapter 3 

THE PENDULUM. 

3.1 Dynarnical Flows 

Chaotic behavior is a characteristic of non-hear dynamical systems, i.e. systems 

that may be described by non-linear equations of motion. There are many dinerent 

types of such systems, which are not necessarïly physical, and dinerent methods are 

employed for describing their behavior. The logistic map was one example. From 

now on we will limit our discussion to chaotic systems in classical dynamics, and use 

the basic example of a pendulum to describe some tools and techniques employed. 

When we speak about dynamical systems that exhibit chaos we may generally 

divide them in two groups - conservative and dissipative systems. The former are 

characterized by some physical value - usually the energy - that is conserved through- 

out the motion. According to the principle of classical determinism the state of the 

sÿstem is determined by its position and velocity. The state of a conservative sys- 

tem may be described by Lagrange's function, or Lagrangian L = L(q, q, t), which is 

defined as the difference between the system's kinetic and potential energy. The vari- 

able q stands for a set of s generalized coordinates pl (t), ..., q, (t) , where s is number 

of degrees of freedom of the system. The motion of the system is determined by the 

Euler-Lagrange equations, which are the mathematical equivalent of the principle of 

least action, the fundamental principle of classicd mechanics [53]. These equations 

are written as: 

Solving these equations for some initial conditions qa(0) and qa(0) gives us solutions 



q,(t) and q,(t) that represent trajectories of the system's motion in tirne. 

An equivalent way to express the equations of motion for a consemative system 

is through Hamilton's formalism. If we define generalized momenta and Hamilton's 

function as: 

respectively, me rnay write instead of s second-order difîerential equations (3.1) s pairs 

of first-order Hamilton's equations: 

Hamilton's function, or the Hamiltonian, equals the total energy of the system. When 

it is constant in tirne, i.e. dH/dt  = O, energy is consemed. By taking the total time 

derivative of H@, q, t) and substituting (3.3) in it  we get dH/dt  = aH/ô t .  Therefore, 

the energy is consemed whenever the Hamiltonian does not depend explicitly on tirne. 

Since conservative systems can be fully described by Hamilton's formalism they are 

frequently called Hamiltonian systems. 

Dissipative systems are those which interact with their environment in a way that 

they give up their energy to it. This energy is converted into some other form and 

is permanently lost for the system, The motion of a dissipative systems may be 

described by the slightly modified equation (3.1) : 

Here L is the Lagrangian of the system without dissipation, and Qa are generalized 

dissipative forces [22]. Dissipative forces in this context characterize energy loss rate, 

rather than describe the interaction of the system with its environment. 

It is convenient to define a state space for a particular system where every state can 

be represented by one point. For the logistic map the state space was one-dimensional, 

and the state of the system was detennined only by the dimensionless variable x that 

stands for a number of species in a closed environment. As we rnentioned before, the 



state of the classical system is M y  determined by its space coordinates and their 

first derivatives. Therefore, we can define the phase space as having coordinates 

q, (t) and qa (t) , dthough an equally good choice of coordinates are q, (t) and pa (t) . 

Solutions of the equations (3.1) or (3.3) then can be cornprehensively described by 

a trajectory in the phase space. The dimension of a phase space appears to be 

2s. Nevertheless, in classicd dynamics we sometimes do not take into consideration 

coordinates which correspond to variables that are constant or change trivially in 

time, so for a phase space we may choose a system with dimension smaller than 2s. 

Analysing trajectories of a system's motion in a phase space proves to be a very 

convenient method for explorhg properties of the system, and this is even more true 

when the system exhibits chaotic behavior. 

According t O Liouville's t heorem, for conservative systems the volume element in 

the phase space is conserved during the motion. As a consequence, ail trajectories 

wilI lie on "surfaces" within the phase space characterized by a constant of motion. 

If Hamilton's function H @ ,  q)  does not depend on time explicitly, then the energy E 

is a constant of motion, and all paths in the phase space will lie on a constant-energy 

"surface" H ( p ,  q) = E. The term "surface" should not be taken too literally, because 

its dimension is 2s - 1, and is often different than two. 

Trajectories of a dissipative system in a phase space will converge toward the 

attractor(s) of the system. Therefore, a volume element in the phase space will not 

be consert-ed, but rather will shrink in time. A dissipative force actuaUy determines 

the rate at  which the volume element shrinks or, equivalently, the rate at  which 

a trajectory leaves the initial-energy "surface" H@,  q)  = Eo and approaches the 

attractor. For larger Q the trajectory will reach the attractor sooner. In the limiting 

case Q -+ O the trajectory wiii remain in the vicinity of the surface H(p,  q)  = Eo for 

an infinitely long time. 

Most of information t hat we can infer about a chaotic dissipative sys tem we obtain 

by investigating geometrical properties of a system's attractor. In this way, instead 



of analysing trajectorïes in a multi-dimensional phase space, we reduce our task to 

exploring properties of a lower dimensional fractal. Even infinite dimensional dy- 

namical systems, i.e. t hose described by partial differential equations, may have a 

finite dimensional attractor. Similarly to the logistic map, for most cases periodic 

systems d l  have integer-dimensional attractors, while attractors of chaotic systems 

will be fractal structures. In this work we will focus ourselves primarily on the topic 

of dissipative systems. 

Let us take the simple pendulum as an example of conservative system. The 

penduhm ha. only one degree of fieedom, so its dynamical state wili be characterized 

by only one coordinate and its respective derivative. It is convenient to choose for 

this coordinate the angle of inclination Fom the equilibrium position O. Therefore, 

states of the pendulum can be represented in a 2-dimensional phase space (O,  9). The 

pendulum's Lagrangian, which is defined as the difference between its kinetic and 

potential energy, is then L = $m1292 + mg1 cos 0. Substituting L(0, b )  in (3.1) gives 

us the equation of motion for pendulum 

which has periodic solutions 0 ( t )  and 9(t) .  The Lagrangian, and hence the Hamilto- 

nian, of the pendulum is not dependent on time explicitly, so the pendulum's energy 

is conserved. The pendulum will perform motion along a closed curve $rnl2é2 + 
mg1 cos 6 = E in phase space, i-e. the motion of the pendulum will be confioed to a 

constant energy path. 

In the previous discussion we neglected friction that the pendulum experiences 

during its motion. Due to friction, part of the pendulum's kinetic energy is transferred 

to its environment in a form of heat, and oscillations are damped. We may assume 

that dissipative friction force acts on the pendulum, and we rnay take it to be simply 

proportional to the pendulum's velocity Q or 0. This is a rough approximation, 

but it is quite sufficient for describing general properties of dissipative systems. The 



Figure 3.1: Trajectory of a damped pendulum in phase space. (a) X = 0.25, (b) 

X = 0.02 

dissipative force is then Q = -q 0 (7) > O), where the minus sign indicates that fnction 

resists the motion (otherwise, the system would acquire energy instead of losing it). 

If we substitute this into equation (3.4), dong with the Lagrangian of the undamped 

pendulum we will get the equation of motion to be: 

The trajectory in phase space now spirals toward the origin, which is in this case the 

attractor of the system. The dissipative coefiicient A determines how fast a trajectory 

will reach the attractor. One can see fkom fig. (3.1) that for a fnction coefficient 

A = 0.25 the trajectory reaches the attractor after just several cycles, whiie after the 

same tirne, for X = 0.02, the trajectory is still very close to the path of the undamped 

pendulum. The motion from the initial condition toward an attractor is called the 

phase transient. Neither damped nor undamped pendula exhibit chaos. 

For the case of a damped pendulum the attractor is a fixed point, as it was for 

the logistic rnap when p < 3. Once the phase-space trajectory gets to a fked point it  

stays there for the rest of the motion. Unlike the Iogistic map there are infinitely many 

attractors for a pendulum - an equally legitimate attractor for a damped pendulum 

is any fixed point (2k7r, O), where k = 0,1,2, .. ., because the pendulum may perform 

several full rotations before it settles down to its stable equilibrium position. Each 





Saddle points have their unstable invariant manifold as well. An unstable manifold 

is a set of initial conditions that would bring the system to the saddle point when 

integrated backward in time. In Figure 3.2 unstable manifolds are shown as curves 

spiraling around stable equilibria. One should note that attractors are part of the 

unst able manifold. 

Because they have both, stable and unstable invariant manifolds saddle points are 

very important for studying dynamics of a system. Later, in Section 4.5 we shall use 

them to partition phase space in order to develop two-dimensional symbolic dynamics. 

3.2 Strange Attractors 

The main characteristic of chaotic systems is a sensitivity to initial conditions. Small 

changes in the initial conditions will eventually result in significant changes in the 

system's behavior later on. Therefore, initially close trajectories in a phase space 

should diverge if a system exhibits chaos. As a rule, trajectories in a phase space 

are restricted to some bounded region, either a "surface" of constant energy or to 

an attractor. Trajectories that diverge toward infinit-y usually do not represent any 

physical process. 

A very important consequence of classical determinism is that trajectories in phase 

space must not intersect. Otherwise, a dynamical system with initial conditions in 

an intersection of a trajectory could be found in two or more different states later, so 

the system would be indeterministic. It should be noted that this is fundamentally 

different fiom period doubling as observed for the logistic map. Penod doubling is 

a completely deterministic phenomenon, and lack of predictability is due to the high 

sensitivity to the initial conditions. 

It seems impossible to satisf!y d l  of these conditions in a 2-dimensional phase 

space. Indeed, the Poincaré-Bendixon's theorem 1421 says that the attractor of a 

dynamical system with a 2-dimensional phase space can be either single point - like 



for damped pendulum - or a limit cycle (e.g. figure 3.3). Hence, any motion in the 

phase plane eventually becomes either stationary or penodic. It appears that the 

mlliimal dimension of phase space where chaos c m  occur is 3. 

Let us get back to the pendulum. If we drive a damped pendulum with some 

harmonic force F(t)  = Fo coswDt its equation of motion will take the form: 

This is equivalent to adding a term OF (t) to the pendulum's potential energy [53], so 

now the Lagrangian is explicitly time-dependent. That means that points in phase 

space ( O , @  do not uniquely represent states of the system, but rather stand for a 

number of difïerent states where the system can be found at different times t. In order 

to define an appropriate phase space we introduce a new generalized coordinate q5 = 

wDt,  and substitute it into the Lagrangian. The Lagrangian is now time-independent, 

and each point of the 3-dimensional phase space (O,  8, $) represents only one state 

in which the pendulum can be found. This is not just a mathematical way to mite 

Lagrange's function in a more convenient form. The driven pendulum has to consist 

of a simple pendulum coupled with some driving device, which has one degree of 

freedom relevant to the pendulum's motion. Therefore, a driven pendulum has 2 

degrees of freedom, and its motion can be described in a Pdimensional phase space 

(O,  el+,  di), where 8 and $ are position coordinates of a simple pendulum and the 

driving device respectively. At the beginning we assumed that the motion of the 

driving device is constant, so trajectories of the system will lie in a phase subspace 

d, = w o ,  where w~ is constant. Hence, the %dimensional phase space (8, è, 9) is 

sufficient and necessary for describing the motion of a driven penddum. However, 

projections in (8,8) plane still remain a useful tool for exploring its properties. 

Equation (3.7) is a non-linear second-order differential equation, that has to be 

solved numerically. Therefore, we may want to write this equation in a dimensionless 

form, which is more suitable for numerical calculation. If we express time in units 



Figure 3.3: Trajectory of a driven damped pendulum in phase space. After the initial 

transient trajectory settles d o m  a t  the attractor 

l /wo, and introduce a dimensionless time-variable T = wot, (3.7) will take the form: 

1 - + -0 + sin B = f COS(W~T), 
Q 

2 2 where Q = wo/X, f = Fo/(rnl w, ), and wd = wo/wo are three dimensionless parame- 

ters that correspond to the friction coefficient, drive force amplitude, and drive force 

frequency, respectively. Of course, it is a mere coincidence that the parameter space 

for this driven pendulum has the same dimension as its phase space. 

Let us choose parameters to be Q = 1-48> f = 1.72, and wd = 2/3. The trajec- 

tory of the driven pendulum in phase space (0, e)  spirals towards and asymptotically 

reaches the attractor (fig.3.3), like for the case of a damped pendulum (fig.3.l). The 

difference is that now the attractor is a limit cycle, not a single point. The lirnit cycle 

is actually a closed curve in a 3-dimensional phase space, as is shown in figure (3.4a). 

It takes some imagination though to see this figure as a closed curve. One has to bear 

in mind that the phase space fkom 4 = 27r continues in q5 = 0, and frorn 0 = 7r/2 in 

0 = - 4 2 .  

For a finite value of Q the trajectory will get arbitrarily close to the attractor after 



Figure 3.4: Attractor for the driven pendulum: (a) lirnit cycle, (b) after period 

doubling, (c) after period quadnipling, (d) chaotic attractor. 

Figure 3.5: Projections of pendulum's attractors (Fig. 3.4) in (O, 8) plane respectively. 



Figure 3.6: Poincaré sections at q5 = O of pendulum's attractors (Fig. 3.4) respectively. 

Points representing limit cycles are enlarged for clarity. 

a sufficiently long time. In practical numerical calculations the trajectory usually 

reaches the attractor within the Iimits of uncertainty after just several drive cycles. 

We may therefore assume that the motion wiIl be performed dong the attractor. 

For our choice of parameters it means that pendulum's trajectory eventualiy "gets 

caught" at  the attractor and retracts itself every drive cycle. The pendulum hence 

exhibits periodic motion in time with p d o d  2?r/wd. 

NOW, if we increase the dissipative parameter to q = 1.52 the attractor changes 

its shape (figures 3.4b and 3.5b) so that the limit cycle is closed after two drive cycles 

instead of one, Le. the trajectory now retracts itself every second drive cycle. The 

motion is still periodic, but its period has doubled to 4?r/wd. For q = 1.544 there 

is another period doubling (figures 3.4c, 3.5c), and the period of the limit cycle is 

now 8 r / w d  Indeed, here we observe a period doubling route to  chaos for a driven 

pendulum that is the analog to the period doubling route for a logistic map. 



Figure 3.7: Top sheet of a chaotic attractor in Figure (3.6d) enlarged. 

Finally, at  q = 1.56 the system is chaotic. Regardless of the initial conditions the 

pendulum's traject ory  asymptoticaLIy reaches a bounded region in the phase space 

and goes dong it contuiuously, never repeating itself. The bounded region is called 

the chaotic attractor. The trajectory will pass through any point of the attractor 

after a sufkiently long time. In other words, for an hfinitely long period of time the 

trajectory will cover the whole attractor. This fact has great practical importance, 

because plotting the trajectory in the phase space for a long time d l  give us the 

shape of the attractor. However, neither its 3-dimensional picture (Fig. 3.4d), nor its 

2-dimensional projection (Fig. 3.5d) gives us a lot of information about the attractor's 

geometry. Apparently, the chaotic attractor has a fairly complex structure, and it is 

due to the demanding conditions the attractor has to sa t i sk  

Since the system is dissipative, a volume element in phase space is not conserved 

during the motion, and in fact vanishes after a very long time. Therefore the volume 

of the attractor has to be zero, or in other words its dimension has to be smaller 

than the dimension of the phase space itself. Furthermore, trajectories starting fkom 



infinitesimally close points will diverge, because the system exhibits chaos, and after 

a sufficiently long time will be found in two macroscopically distant points on the 

attractor. This means that if the trajectory approaches the chaotic attractor in a 

slightly different way it will later go dong it in quite a different fashion. Finally, 

the trajectory must not intersect itself nor with any other trajectory starting from 

different initial conditions, which is a fundamental property of a phase space. 

It is obvious that it is impossible to satis@ al1 the above mentioned conditions if 

the chaotic attractor is some 2-dimensional surface. However, its dimension has to be 

smaller than 3, hence we may conclude that chaotic attractor has to have fractional 

dimension, Le. it is fractal. 

A very useN tool for exploring chaotic attractors are Poincaré sections. Poincaré 

sections provide us with images of the attractor in a (d - 1)-dimensional hyperplane 

of d-dimensional phase space. The hyperplane should be chosen so that it is ap- 

proximately perpendicular to the trajectories in phase space. Sections pa rde l  to 

the trajectories or those which are crossed by the same trajectory more than once 

will not give us useful information about the attractor and are not Poincaré sections. 

Poincaré sections of 3-dimensional phase spaces are of particular use, because they 

are easily readable 2-dimensional graphs. A correct choice for Poincaré section of 

a driven pendulum is a section in # = C plane, C E [O, 27r). While the motion is 

periodic with a period of the drive force, a trajectory crosses this plane always at 

the same point, so the Poincaré section is just one dot (Fig. 3.6a). After period 

doubling the trajectory crosses the plane a t  two different points, and the Poincaré 

section is pair of dots (Fig. 3.6b). The next period doubling will be represented by 

a four-dot Poincaré section like in Figure (3.6c), and so on. Since the attractor of 

the pendulum that exhibits chaos is a fracta1 with a dimension between 2 and 3 its 

Poincaré section will be a fractal with a dimension between 1 and 2. With a Poincaré 

section we actually chose to observe the geometric form of a smaller dimension that 

contains the same amount of information about the motion. Unlike Figures (3.4d) 



and (3.5d), the fractal structure and repeating patterns can be revealed by scanning 

a Poincaré section of the chaotic attractor. Figure 3.7 shows an enlarged top sheet of 

the chaotic attractor in Figure (3.6d). One can see that chaotic attractor of a drïven 

pendulum is formed by an &ite sequence of stretching and folding of a surface 

in the pendulum's tdimensional phase space. This stretching and folding pattern 

is sometimes calIed Baker's transformation because of its similarity with kneading 

a dough. This is cornmon for chaotic attractors, and it is the way to reconcile at 

first glance contradictory conditions imposed - trajectories have to be confined to a 

bounded region and to diverge exponentially at the same time. 

3.3 Basins of Attraction 

In Section 3.1 we found that a simple damped pendulum has an infmite number 

of attractors at points (2k7r, O), where k = O, f 1, &2, . . . (Fig. 3.2). Phase space 

of a ciamped pendulum is two-dimensional, and basin boundaries are smooth, oae- 

dimensional stable manifolds of saddle points ((2k + l ) ~ ,  O). Infinite number of co- 

existing attractors is a consequence of a pendulum's periodic potential energy, and 

occasional jumps from one to another basin correspond to the pendulum making full 

turns around its suspension point. However the actual position of the pendulum 

does not change when it moves from one basin to another, and we can define slightly 

different, but equally valid phase space, by changing pendulum position coordinate 

like û + 0 mod 2n. With such a representation we remove multiple basins and are 

able to describe the pendulurn's behavior within a single basin of attraction. There- 

fore coexistence of attractors in the case of a damped pendulum depends on how we 

choose phase space coordinates and does not depend on system's parameters X and 

wo. Nevertheless, creation and destruction of coexisting attractors with the change of 

sys tem's pararnet ers does indeed occur for nonlinear systems under certain circum- 

stances. We shall describe these phenomena in the example of a driven pendulurn. 



Since phase space of a driven pendulum is 3-dimensional, basins of attraction are 

also 3-dimensional regions in the phase space. Same for attractors, it is convenient to 

study basins of attractions in a Poincare section 4 = const. The shape of a Poincare 

section of the basin of attraction for a driven pendulum resembles the shape of the 

basin of a simple damped pendulum as long as the driving force amplitude is smaIl. 

The attractor for the system is a penod-one limit cycle, which is represented by a 

single dot, and basin boundaries are smooth sheets, which appear as a smooth lines 

in the Poincare section. 

As the drive force amplitude increases the pendulum performs fuil rotations during 

its motion. For certain parameter symmetry breaking occurs [13, 34, 43, 611 in the 

sense that the average angular velocity (0) becomes different than zero, i.e. the 

pendulum starts "winding" in one direction. Symrnetry breaking usually precedes 

a period doubling cascade that leads to pitchfork chaos [13]. Since the pendulum 

is symrnetric with respect to the winding direction, and so is the driving force (see 

Equation 3.8), along with symmetry breaking the limit cycle spiits into two - one 

winding in positive and other in negative direction. The two new attractors are 

created with their respective basins (Fig. 3.8a). Separatrix between the basins is 

fractal in nature, showing a characteristic stretch and fold pattern. The fractal nature 

of basin boundaries, i.e. stable manifolds, indicate the presence of an infinite number 

of saddle orbits, which could not be detected using simple simulations like in Figures 

3.4a-3.6a. Therefore, although the motion of the driven pendulum described in Figure 

3 -8a is relatively simple, the underlaying dynamics is fairly complex. 

With the increase of parameter Q, the driven pendulum goes through a sequence 

of period doublings (Figs. 3.43.6) and becomes eventually chaotic. At the same time 

the number of new unstable orbits increases, and basins become more interwoven, i-e. 

fractal dimension of basin boundaries increases (Fig.3.8b). 

For q = 1.559. . . a crisis occurs, as attractors expand in their size and collide with 

basin boundaries. The two chaotic attractors cease to exist separately, and conjoin 



Figure 3.8: Evolution of basins of attraction with change of system's parameter. 

Two coexisting limit cycles at Q=1.48 (top left). Points representing limit cycles are 

enlarged for clarity. Two chaotic attractors a t  the verge of crisis at q=l.555 (top 

right ) . Two chaotic attractors conjoin after crisis at Q=1.56 (bottom). 



into a single attractor. The newly created attractor expands suddenly in size, as it 

includes now al1 of unstable orbits w-hich were previously lying a t  basin boundaries. 

Note on Numerical Methods. It is possible to determine basins of attraction for the 

driven pendulum by exploring its phase locked modes [34]. After symmetry breaking 

occurs the angular velocity of the pendulum becomes locked to one of two lockïng 

values. Each of these values correspond to the motion over one of two attractors, hence 

by distinguishing initial conditions that Iead to one or another average angular speed 

we can determine the basin of attraction. We used this algorithm in our research, 

however figures showing basins of attraction are plotted using package Dynamics 2 

[68]. This package uses more general, but a bit slower "BA method. We used it 

because the quality of figures was better than with any other software tool available 

to us at the time. 

3.4 Bifurcation Graphs 

A bifurcation graph of the logistic map shows evolution of the logistic map7s attractor 

with the change of parameter p (fig. 2.6). We are able to give such a comprehensive 

description of the system's behavior by a 2-dimensional diagram since this simple sys- 

tem is characterized by only one parameter, and its state is determined by only one 

variable x. It is much more difficult to describe evolution of an attractor for the system 

with more than one parameter or 6 t h  multi-dimensional state-space. For the driven 

pendulum we have a 3-dimensional state space as weU as 3-dimensionai parameter 

space. It seems hardly possible to construct a diagram that would describe relations 

among a11 of these six values. Usually bifurcation graphs for multi-dimensional dy- 

namical systems are done as a plot of one variable against one parameter, while other 

parameters are kept constant. Combining bifurcation graphs for dSerent variable- 

parameter pairs help us determine chaotic regions in parameter space for a particular 

system. Bifurcation graphs dso show us routes to chaos, periodic windows and crisis 



Figure 3.9: Period doubling cascade of the driven pendulum. 

that occurs with change of parameters of a dynamical system. 

For the bifurcation diagram of a driven pendulum it is usually angular velocity b 
that is plotted against a parameter. Here we actually plot the projection of a Poincaré 

section to the 8-axis for each parameter value. In that way the diagram stiil gives us 

basic qualitative information about evolution of the pendulum7s attractor wi th  the 

change of a parameter. 

A period-doubling cascade of the driven damped pendulum is always pteceded 

by symmetry breaking [34] that results in creation of a pair of attractors from a 

single attractor. Correspondingly, the basin of attraction of the single attractor gets 

divided in two. Since the two basins are interwoven, with the change of parameter Q 

over wider range of values, we occasionally switch from one basin to another, which is 

rnanifested in sudden changes in the bifurcation diagram. The generally accepted way 

to avoid this inconvenience is to superpose bifurcation diagrarns for two or if necessary 

more sets of initial conditions and therefore obtain a diagram that describes evolution 

of both attractors simultaneously. A caution in interpretation of these diagrams is 

then needed. For example, a t  Q = 1.48 we do not have a period-2 limit cycle, but 

two coexisting period-l cycles. 



The route to chaos descnbed in Section 3.2 can be presented by the bifurcation 

diagram in figure 3.9. Each period doubling corresponds to a pitchfork bifurcation 

in the graph. In the case of a driven pendulum such a route is the exception than 

a rule. Period doubling routes are usually intercepted by intermittent chaos [13], 

and cascades are incomplete. Bifurcation diagrarns equally well describe intermittent 

chaos and sudden changes in attractors due to crises. An interior crisis in the driven 

pendulum for Q = 1.56 is clearly seen in bifurcation diagram 3.9. 

3.5 Power Spectra 

Spectral analysis is used in nonlinear dynamics to distinguish between chaotic and 

very complex forms of periodic motion. Sometimes periodic motion with a long 

penod seems quite irregular, and it is virtually impossible to figure out a qualitative 

difference with chaotic motion from their respective time evolutions. Power spectra of 

these two motions are on the other hand significantly different. \Vhile periodic motion 

usually consists of just a few harmonies, the power spectrum of chaotic motion is a 

broad band of frequencies. 

We can use power spectra to observe a period doubling route to chaos. Simple 

periodic motion will show only one peak in the power spectrum at frequency v = 1/T, 

and perhaps peaks at integer multiples of u. In figure 3.10 we show the power spectra 

for a driven pendulum. Frequency is expressed in units of drive frequency wd. When 

the pendulum exhibits periodic behavior (fig. 3.10a) the power spectrum has peaks at 

integer multiples of drive frequency only. The peak at u = O indicates that symmetry 

is broken, and that a period doubling cascade follows. With the change of system 

parameters, period doubling occurs and integer multiples of wd/2  are present in the 

power spectrum (fig. 3. lob). The next period doubling will bring peaks at frequencies 

that are multiples of f&/4 (fig. 3.10~) in the power spectrum and so on. Findly, at 

the onset of chaos we obtain a band of frequencies (fig. 3.10d). Although the chaotic 



Figure 3.10: Period doubling cascade seen through power spectra. (a) Q = 1.48, (b) 

Q = 1.52, (c) Q = 1.544, (d) Q = 1.56. 

spectrurn looks like some kind of "pink" noise it is not continuous, like it is the case 

for a random system. The way it is created - through a sequence of period doublings - 

indicates it has Cantor-like structure. It should be noted that the peak corresponding 

to the drive frequency can be distinguished even in a chaotic spectrurn. 

Spectral analysis is of particular use when we deal with systems that exhibit 

quasiperiodic motion. Quasiperiodic behavior occurs, for example, when the motion is 

a superposition of two or more periodic motions whose frequency ratio is an irrational 

number, Le. whose frequencies are incommensurate. The trajectory for the system 

then never retracts itself, and the motion is not periodic. In figures 3.11a and 3 .11~ 

two time series of apparently aperiodic functions are presented. However, the former 

represents relatively simple motion consisted of two incommensurate harmonies (fig. 

3. l lb ) ,  while the latter is a very complex, chaotic solution of a driven pendulum (figs. 

3.11d and 3.10d). 



Figure 3.11: Power spectra of chaotic and quasiperiodic motion. 

Although a broad power spectrum is not proof of chaos it is usually a reliable 

indicator of whether or not the motion is chaotic. Spectral analysis is widely used 

in the theory of chaos because it is equally well appIicabIe to both experimental and 

numerical data. 

3.6 Lyapunov Exponents 

We introduced concept of Lyapunov exponents in Section 2.3 at the example of a 

logistic map. We demonstrated that Lyapunov exponents measure the average rate 

at which initially close trajectories in phase space diverge r o m  each other. They 

are used to characterize stability of a dynamical system with respect to a small 

perturbation of its phase space trajectory. In the same way like for a discrete map 

Lyapunov exponents for a dynamical flow are defined as an exponential growth rate 



of an infinitesimal perturbation of the initial condition: 

Here 6xi(t)  denotes the separation of two trajectones, and the index i stands for 

the direction of growth in phase space or Lyapunov direction [84]. The number of 

Lyapunov directions correspond to the dimensionality of phase space. A set of Lya- 

punov exponents for a multidimensional dynamical system is also c d e d  a Lyapunov 

spectrum. 

Let us elaborate on Lyapunov exponents for one-dimensional dynamical flow first. 

We write the equation of motion for a one-dimensional dynamical flow as: 

and denote its solution with z* (t, xo) , where xo = ~'(0) is the initial condition. 

Since this is one-dimensional problem there is only one Lyapunov exponent. From 

expression (3.9) we may conclude that a negative Lyapunov exponent indicates an 

exponentialiy stable steady state solution. A positive exponent indicates an expo- 

nential instability. Any other type of solution x*(t, xo) would be attributed to a 

zero Lyapunov exponent. Unlike 1-dimensional maps, 1-dimensional flow cannot ex- 

hibit chaos. Numerical values of the exponent specifies the exponential rate at which 

trajectory converges to or diverges from equilibrium point. 

Estimation of Lyapunov exponents for a one-dimensional case is straightfomard. 

If we Vary equation (3.10) around its solution x* by some bx(t) we get 

From the equation above we obtain: 

After substituting this result in definition of Lyapunov exponent (3.9) we get: 



Here we allow the Lyapunov exponent to be dependent on the initial condition for the 

solution x*( t ) .  As we discussed in Section 2.3 Lyapunov exponents are a property of 

the phase space rather than the particular trajectory. Therefore, when we use them 

we may drop the initial condition dependence entirely, provided we stay within the 

same basin of attraction. 

For the multidimensiond case, estimation of Lyapunov exponents is a bit more 

complicated, since in our calculations we cannot use expression (3.9) directly any 

more. We mi t e  system of Fst-order ODES in a vector form 

and we denote its solution with x*(t ,  w )  By varyîng this equation we get: 

bk( t )  = A[x (t)  ] ,,,- 6~ (t ) (3.15) 

where A is defined as Aij = af i (x) /ax j .  Formaily we can integrate (3.15) for b x ( t ) ,  

so we obtain [IO, 771: 

6x( t )  = J(t)6x(O) (3.16) 

Here T stands for time ordering operator as matrices A(t) do not commute at difEerent 

times. Matrix J is called Jacobi matrix of the flow, and is a solution of the equation 

j ( t)  = A [~(t)]., .  J ( t )  (3.18) 

for the initial condition J(0) = 1. Rom (3.9) and (3.16) we h d  that eigenvectors of J 

point to Lyapunov directions and Lyapunov exponents are estimated fkom magnitudes 

of eigenvalues of J as: 
1 xi = lim -ln& (t,x,,)l 

t+ao t 

where 3 stands for the diagonalized Jacobi matrix of the flow. Therefore, in order to 

estimate Lyapunov spectrum for a n-dimensional system we have to integrate n x n 



equations (3.18) along with n equations (3.10), and then solve the eigenvaiue problem 

for J. 

This is not a trivial task, though. From expression (3.16) we can see t hat Lyapunov 

directions in a general case are not constant in time. Furthermore, all Lyapunov 

directions tend to collapse along the direction of the largest exponent, since that 

component of vector bx(t) is dominant. Also, exponential divergence (convergence) 

of neighboring trajectories in phase space may relatively soon exhaust our computing 

power, so we can not obtain estirnôtes for stlfficiently long time intervals. These 

problems were studied in works of Benettin at al. [5], and Shimada and Nagashima 

[go], where an algorithm for calculation of Lyapunov spectrum is presented. It was 

shown that it is possible to perform suitable re-orthonormalization of eigenvectors of 

J after each integration step so that the limit 3.9 remains unchanged. In this project 

we use implementation of that algorithm as given in Ref. [Ml. 

In the case when all Lyapunov exponents are negative trajectories converge from 

al1 directions of phase space, and hence terminate eventually at  a stable equilibrium 

point. We Say that the attractor of the system is a fixed point. If one exponent is zero 

and other negative then £rom (3.19) it follows that trajectones always converge from 

al1 but one direction in phase space. The attractor for the system in this case is one- 

dimensional curve. If the system is hrther bounded, the attractor is a closed loop, 

meaning that the system performs periodic motion. Two zero Lyapunov exponents 

would mean that system's attractor is a two-dimensional surface in phase space, 

indicating quasiperiodic motion. If at least one Lyapunov exponent is positive, then 

trajectories of the system separate at exponential rate and we Say that the system is 

unstable. If an unstable system is furthermore bounded we cal1 such a system chaotic. 

There is a couple of constraints on Lyapunov exponents values. Haken's theorem 

[35], states that unless there is an equilibrium point in the phase space, a t  least one 

Lyapunov exponent must equal zero. This means that  Lyapunov exponents are either 



al1 negative ' or one or more of them are equal to zero. Another constraint tells us 

that the sum of al1 expûnents of system (3.14) must equal the expectation value for 

the dissipation, 

If we take determinant of 3 in the expression (3.17) we obtain: 

Since detJ = jll&Z - - - jiir by taking the loganthm of both sides of the equation 

above and letting t -+ oo we get: 

Therefore, for a dissipative system the sum of al1 Lyapunov exponents must have a 

negative value, while for a conservative system all exponents have to add up to zero. 

From the equation of motion (3.8) we find that for a driven pendulum sum of al1 

three Lyapunov exponents must equal Ci Xi = -1/Q. 

A Lyapunov spectrum helps us interpret phase space diagrams as it tells us what 

kind of attractor exists in phase space. It is especially useful for systems with dimen- 

sion farger than 3, because we can only observe Zdimensional projections or sections 

in phase space, so we need some initial guidance how to choose them. It is impor- 

tant to understand that the Lyapunov exponent methods does not provide ngorous 

mathematical proofs, because we can calculate exponents only for a finite amount of 

time [2]. We are usually able, though, to interpolate information about a system's 

stability fiom finite-time Lyapunov exponent estimation. 

3.7 Parametric Resonance 

Parametric resonance is a phenornenon that occurs in various cosmological and high 

energy physics models. It manifests itself as a rapid growth of a physicd field a t  an 

According to Haken's theorem it is aiso allowed to have ail exponents positive. However this 

situation seldorn occurs in a physical system, if at aU 



exponential rate. Recently this phenornenon has been used to explain some physical 

processes such as reheating in the early universe [50, 461 and in phase transitions 

in disordered chiral condensates [47]. At the same time a lot of attention has been 

given to the study of chaotic systems, i-e. systems whose trajectories in phase space 

diverge exponentially, but at the same time remain within a bounded region. As 

both types of systems are described by an exponential type of instability one might 

expect a relationship between the two, and here we investigate quantitatively just 

such a relationship. We show that for a system exhibiting pararnetric resonance it 

is possible to construct an equivalent chaotic system, although the converse is not 

guaranteed. 

3.7.1 Floquet Index 

From the general theory of differential equations we know that any second-order linear 

differential equation 

will have two linearly independent solutions. According to Floquet's theorern [67] if 

f ( t )  and g ( t )  are hnctions penodic in t with a period T, then those solutions will 

have the form: 

y (t) = ePt P (t) , (3.23) 

where P(t)  is periodic function with period T, as well. Therefore, stability of the 

solution (3.23) is entirely determined by the exponent p, which is also called the 

Floquet exponent or Floquet index. There is no general procedure for estimating the 

Floquet exponent; however, there are a lot of particular cases such as the Mathieu 

equation where an extensive anaiysis of the Floquet indices has been done. 



3.8 Mathieu Equation 

Perhaps the simplest mode1 that exhibits parametric resonance is the Mathieu equa- 

tion (3.24), which was originally used to describe small oscillations of a pendulum 

with a vertically driven base. 

Y" + (A - 2q cos 2t) y = 0 (3.24) 

This is a Floquet type equation with two parameters A and q, and it has a solution of 

the form of Eq. (3.23). The value of the Floquet index p depends on the equation7s 

parameters. For certain values of A and q (e.g. A = 2.5 and q = 1) Floquet exponents 

would be purely irnaginary, meaning that the solutions of Eq. (3.23) will both be 

periodic. Therefore, the solution will be stable, and its trajectory in phase space 

will remain within a bounded region (see Fig. 3.12a ). Otherwise, both Floquet 

exponents will be purely real, and one of them hence positive. A solution with a 

positive Floquet exponent is unstable and grows exponentially (see Fig. 3.12b). In 

some physical models such growth of the field y can be interpreted as a massive 

production of certain particles. This is also referred to as parametric resonance. 

The rate of exponential growth of the solution (Le. a positive Floquet exponent) 

can be determined from the g a p h  for log 1 plotted against t h e  t. Since the term 

in the solution containing a positive exponent is dominant, the dope of envelope 

of the graph will yield numerical value of 2p .  From Figure 3.13 it is found that 

p = 0.453 f 0.003, where the parameters are chosen to be A = 1 and q = 1. Regions of 

stability in parameter space of the Mathieu equation have been very well studied (see, 

for example, Ref. [l]) . There are bands of stability and instability in the parameter 

space, and their boundaries are continuous curves. 

In analogy with interpreting y as an angle, we impose suitable "winding" con- 

ditions on the solution of Eq. (3.24) so that it always stays within segment [-1,1]. 

We assume that at 1 y1 = 1 the magnitude of the field starts to decrease and the 

velocity y' changes direction: y' + -yJ. This condition is rather artscia1 within 



Figure 3.12: Phase space trajectory for the Mathieu equation. (a) A = 2.5 and q = 1, 

(b) A = 1 and q = 1. 



Figure 3.13: Exponential growth of the solution for the Mathieu equation. The 

Floquet exponent is estimated from the slope to be p = 0.453 3~ 0.003 

the context of parametric resonance as described in Ref. [50, 461. However, we can 

think of interpreting this winding condition in terms of a one-dimensional billiard 

bal1 whose motion in between bounces is governed by the Mathieu equation (3.24). 

There is no physical motivation to interpret y as an angle though, since the small 

angle approximation is not vaiid for the resonant case. 

With this additional nonlinear condition imposed, both stable and unstable so- 

lutions are bounded, so parametric resonance does not occur. The stable solution 

remains periodic and exhibits the same behavior as before (see Fig. 3.14a). The un- 

stable solution, on the other hand, instead of pararnetric resonance, exhibits chaotic- 

like behavior (see Fig. 3.14b) which manifests in high sensitivity in change of initial 

conditions. For this solution we estimated the Lyapunov spectmm, and found the 

positive Lyapunov exponent to be XI = 0.453 d~ 0.001, which is the same as the Flo- 

quet exponent. This result could be anticipated because the first Lyapunov direction 

always point to the direction of the fastest growth in phase space. For the Mathieu 

equation this growth is entirely described by the solution with a positive Floquet 

exponent. The linearization procedure in the algorithm for the Lyapunov exponents 

calculation will in a sense "unwind" the trajectory, so that the exponential diver- 



Figure 3.14: Phase space trajectory for the Mathieu equation with appropriate wind- 

ing condition. The penodic solution (a), A = 2.5 and q = 1, remains unchanged, 

while the unstable solution (b), A = 1 and q = 1, becomes chaotic. 



gence measured by the L.yapunov exponent has to be the same as that described by 

the Floquet index. 

3.9 Parametric Resonance Mode1 

If the parameters of the Mathieu equation Eq. (3.24) are not constant, but rather 

some functions of time, then the solution will eventually switch between regions of 

stability and instability in parameter space, and therefore phases of quasiperiodicity 

and exponential growth wiU interchange during that tirne. Here is a somewhat sim- 

plified system of equations which illustrates such a behavior. Eqs. (3.25, 3.26) may 

be used to describe the decay of +particles into X-particles. 

Eq. (3.25) is a Floquet-type of equation, with parameters m and g set near the bound- 

ary between the stability and instability regions. Eq. (3.26) is a Mathieu equation 

which is coupled to Eq. (3.25). If we set the parameters A and q so that Eq. (3.26) 

has a periodic solution, then the term g42 will periodically drive Eq. (3.25) between 

its stability and instability regions, and therefore its Floquet exponent will change 

periodically in time. This is shown in Fig. 3.15, where log lx[* is plotted versus t h e .  

Although the Floquet exponent changes periodically in time, the system spends more 

time in a region of instability, and parametric resonance occurs. The average value 

of the Floquet exponent has a positive real part, and its numerical value can be 

estimated directly from Fig. 3.15. 

Now, let us impose the same 'arinding" conditions like that for the Mathieu equa- 

tion, so that x E [-1,1]. As before, pararnetrïc resonance will not occur, but the field 

x will exhibit chaotic-like behavior instead. In order to find the Lyapunov exponent 

spectrum for this system we need to perform our calculation in 5-dimensional phase 



Figure 3.15: Plot of log l x I 2  vs. t shows how the Floquet exponent changes during 

the time. The average Floquet exponent is estimated from the graph to be p, = 

0.0973 & 0.0007. 

Figure 3.16: Phase space projection of the chaotic pseudo-attractor of Eq. (3.25). 



space (2, X, Q>,q5, t). We found two exponents in the spectrum to be positive, and their 

sum to be AL + X2 = 0.096 f 0.002, which agrees with the value for average Floquet 

exponent. 

Again, this is an expected result, considering the algorithm for estimation of the 

Lyapunov exponents. The sum of al1 positive Lyapunov exponents is an average rate 

of exponential divergence of the solution of Eq. (3.25). This should be the same as 

the rate estimated kom Fig. 3.15, as the slope there is determined by the average 

value of Floquet exponent. 

If we, however, substitute a chaotic solution of the Mathieu equation into Eq. (Us) ,  
the system will exhibit a very complex behavior. The system will chaoticaily switch 

between stability and instability regions so it will be impossible to predict any kind 

of resonant behavior due to a hi& sensitivity to change in initial conditions. Fur- 

thermore, Eq. (3.25) will not be a Floquet equation any more, and its solution will 

not have the simple form of Eq. (3.23). 

3.1 O Conclusion 

We demonstrated here that parametric resonance and chaos are two types of exponen- 

tial instability which are mutually exclusive but related. Starting from a model that 

satisfies Floquet's theorem and is in a region of parameter space which is exponen- 

tially unstable (with a positive Floquet index), we showed that imposing a "winding" 

type of boundary condition on the field to restrict it to lie within a certain range Leads 

to a model exhibiting chaos, and hence with at least one positive Lyapunov exponent. 

A quantitative measure of the exponential divergence rate in the two related models 

of the cases we studied shows that the Floquet exponent is equal to the Lyapunov 

exponent . Some extensions and applications of this correspondence between t hese 

two types of instabiiities are currently being studied. 



Chapter 4 

THE TWO GEARS AND THE ROD 

4.1 The Equation of Motion 

The system we study consists of two gears and a rod. The first one, the solar gear, 

has radius RI, and is k e d  so neither its center of mass can move nor caa it rotate 

around its axis. The second, the planetary gear, is of radius R and is attached to the 

first gear so when it rotates around its axis a t  the same time it goes around the fixed 

gear. We assume that the movable gear is powered by some device which keeps it 

moving with constant angular velocity wd. When the planetary gear rotates for the 

angle 4 around its axis it moves around the solar gear for an angle 4' (Fig. 4.1). The 

relation between two angles is 

R1& = Rq5 ( 4 4  

A uniformly dense rod of length L is at  one end joined to the h g e  of the movable 

gear. The rod can rotate around the joint, assumed without friction. Both gears and 

the rod lie in a horizontal plane so the potential energy of the system is constant 

during the motion. We choose a coordinate system with origin at  the center of 

the fixed gear. The system has two degrees of freedom, and a convenient choice of 

coordinates are q5', the angle that the second gear makes with the x-axis, and 29, the 

angle that the rod makes with the x-axis. Since the potential energy for the system 

is constant as well as the angular velocity of the planetary gear, the Lagrangian for 

the system is determined by the kinetic energy of the rod only. A general expression 

for the lanetic energy for the ngid body that moves in two dimensions is 



Figure 4.1: Two 

We may express the position coordinates 

q5 and 6 as 

x = (RI+ R)cos$' - 

y = ( R ' + R ) ~ i n # -  

gears and the rod 

for the mass elernent dm over coordinates 

R cos (4' + #) + 1 cos 8 . , 
Rsin(4' + 4) + 1 sin 8 

where 1 is position of the mass element dm at the rod. Deriving x and y over time 

and eliminating 4' rather than 4, using (4.1) , we get : 

x = -(l + r ) ~ & i n r d +  ~ ( 1  +r)$sin[(1 + r )  $1 - l&inz9 
y = (1 + r )  R$ COS ~4 - ~ d >  (1 + 7 )  COS [(1+ r)  41 + EB cos 8 

(4-4) 

where r = R/Rt. Our initial assurnption was that angular velocity of the planetary 

gear was constant 4 = ud. For simplicity, we will assume that the initial condition is 

chosen so that 4 = w d t  Substituting derivatives (4.4) into (4.2) and integrating over 

the whole rod, assuming its linear mass is constant, we get the kinetic energy, and 

therefore the Lagrangian, to be: 

Here I is the moment of inertia of the rod, and we dropped terms that can be written 

as a total time derivative of some function and therefore do not contribute to the 



Lagrangian. Substituting this Lagrangian into the generd expression for the Euler- 

Lagrange equations of motion of dissipative systems 

and choosing 6 and # for coordinates we obtain the equation of motion to be 

1 + r  18 + 2- rn~w (r sin(z9 - rq5) - (1 + r )  sin [d - (1 + r)q5]} = Qe 

where Qe is some fiction force that acts upon the rod, and I is its moment of inertia. 

If we assume that the friction, as is commonly done for a pendulum, has the simple 

form Qe = -$ (7 > O), we may write the equations of motion as 

where 

If we introduce now a new variable O = 6 - rq5 we can bnng the equations of motion 

to the arguably simpler form: 

This equation is nonlinear with a coupled term, and must be solved numerically. 

Therefore, for convenience we wiU mite it in a dimensionless form by introducing the 

dimensionless time variable T = w o t  Equation (4.10) then becomes 

where 



and 

Equation (4.11) has a similar form to that of the equation of motion for the driven 

pendulum, as well as to  the Mathieu equation; however, there are some essential 

differences. The virtual drive frequency a in the normalized equation (4.11) does not 

depend upon the drive frequency wd - the angular velocity of the moving gear - as it 

is constant which depends only on the dimensions of the rod and gears. On the other 

hand, the "quality" factor Q is proportional to wd, so a change of drive frequency will 

eventually appear as a change of dissipation in the system. 

4.2 Bifurcation Diagrams 

Our system has two degrees of freedom, and generally such a systern can be descnbed 

in a four dimensional phase space. For example, we may choose to  observe the system 

in phase space (O ,  e,  4, d), where 0 and # are the angular position coordinates of the 

rod and planetary gear respectively. Kowever, since we assume that the planetary 

gear moves with constant angular velocity wd, the attractor for the system lies io 

the phase subspace 6 = ~ d .  Therefore, the three dimensional phase space (O,  é, #), 

where we take O E (-T,T) and 4 E (0,27r), is sufficient to describe the behavior 

of our system. From the fact that 4 depends linearly on time we may infer that 

the attractor will be LLsmooth" in the 4 direction, and that al1 chaotic features, if 

any, can be observed in the Poincaré section 4 = const. In this way the problem of 

analyzing this three dimensional dynamical system is reduced to the analysis of a two 

dimensional map. 

In order to explore properties of Our system it is necessary t o  locate regions of 

chaotic and regular behavior within the parameter space. Bifurcation diagrams show 

the evolution of the attractor for a dissipative system with a change of the system's 

parameters. Such diagrams are a convenient tool for a qualitative examination of a 
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Figure 4.2: Bifurcation diagrams show that periodic motion is dominant over a range 

of Q for the choice of parameters (a) a = 0.7, r = 0.6, (b) a = 0.7, r = 0.9, (c)  

a = 0.9, 7 = 0.6, (d) a = 0.9, r = 0.9. 



Figure 4.3: Bifurcation diagrams. Broad chaotic regions are found for (a) a = 0.9, 

r = l , ( b ) a = l , r = 0 . 9 ,  ( c ) a = l , r = l ,  ( d ) a = 1 . 2 , ~ = 0 . 9 .  

system's behavior, and help us determine regions within the parameter space where 

the system has a chaotic attractor, i.e. where it exhibits chaos. 

The simplest way to generate a bifurcation diagram is to observe a change of a 

system's attractor with respect to a change in one parameter while others are kept 

constant. We choose to observe a change of angular velocity of the rod é with a 

change of the quality factor Qy while parameters a and r are kept constant. We could 

Vary any of the other two parameters, but this does not give us any significantly 

different qualitative results. 

For every value of Q we plot 30 values of 8. The angular velocity of the rod is 

calculated after every full rotation of the planetary gear. The first 70 rotations are 

omitted in order to d o w  the trajectory of the system in phase space to reach the 



Figure 4.4: Bifurcation diagrams for the choice of parameters (a) a = 1.1, r = 1.2, 

(b) a = 1.4, r = 1.2, (c) a = 1.1, T = 1.4, (d) a = 1.4, r = 1.4. quasiperiodic behavior 

is dominant over the range of Q. 

attractor. In this way, for every control parameter value we create a corresponding 

projection of the Poincaré section of the attractor to the 8-axis in the phase space. 

For our system, we observe three chsracteristic regions in the bifurcation diagrams 

- quasiperiodic, periodic and chaotic. With the increase of Q from zero onwards, the 

motion of the system is quasiperiodic, which is o b s e ~ e d  as a smeared region in the 

bifurcation graph. For certain values of Q the motion suddenly becomes periodic, 

and with further increase of the quality factor the system reaches chaos through a 

sequence of period doublings. For the parameters a, r < 0.5, the quasiperiodic region 

is relatively short, and chaos is found only in a narrow region of Q values. 

The richest chaotic structure is found for the choice of parameters a, T - 1. Broad 



chaotic regions intercepted by various windows of periodic behavior with complex 

structure are then found. At the same tirne, the quasiperiodic region becomes wider 

with an increase of r and a, so chaos is found only for relatively large values of Q. 

As a mle of thumb we fmd that the sum a + r has to be equal or slightly larger than 

about 2 in order to have a broad chaotic region. Figures 4.2-4.4 show how bifurcation 

diagrams plotted against Q change with a change of other two parameters. 

Finally, for both a, r > 1 quasiperiodic motion becomes dominant over the range 

of Q, and periodic and possible chaotic behavior are found only in narrow isolated 

regions. 

Let us consider the bifurcation diagram for a = 0.9 and r = 1.1 (Fig. 4.3a). 

The smeared region in the bifurcation diagram that is obsewed for the values O < 
Q < 0.6 corresponds to a quasiperiodic behavior of the system. Although it is 

generally possible to notice differences between chaotic and quasiperiodic regions 

in a bifurcation graph, it is necessary to employ other methods in order to have solid 

evidence of a system's behavior. Analyzing the power spectra is one of the methods 

that is particularly suitable for examining quasiperiodic motion. f ower spectra for 

Q = 0.2 and Q = 0.4 (Fig. 4.5a and 4.5b) shows that the motion of the system is a 

superposition of a h i t e  number of harmonic modes, and therefore is not chaotic. The 

motion is not periodic though, since frequencies of harmonies are incommensurate, 

and the trajectory in phase space never retracts itself. The motion is rather performed 

over a smooth surface in phase space [70], and that is why it is difficult to distinguish 

it from chaotic motion in the bifurcation diagram. 

For values of 0.6 < Q < 1.02 it is clear from the bifurcation graph that the 

system's behavior is periodic with period that is equal to the virtual drive period 

27rla. We can confirm this by making a spectral analysis of the solution of the 

equation of motion (Fig. 4.52). The trajectory in the phase space retracts itself with 

every full rotation of the planetary gear, so the attractor of the system is a simple limit 

cycle. With an increase of Q over 1.02 we observe a pitchfork bifurcation sequence 



Figure 4.5: Power spectra for different values of quality factor Q: (a) Q = 0.2 and 

(b) Q = 0.4, motion is quasiperiodic, (c) Q = 0.8, motion is periodic with period 

one, and (d) Q = 1.08, motion is chaotic. 8(u) is the Fourier transforrn of é ( t ) .  The 

frequency on the x-axis is expressed in terms of the virtual drive frequency a. 



Figure 4.6: (a) Enlarged chaotic region of bifurcation diagram 4.3a. (b)Period dou- 

bling route to chaos, enlarged from figure a. a = 0.9, r = 1.0 

(Fig. 4.6b) similar to that of the logistic map. Each pitchfork bifurcation corresponds 

to a penod doubling of the limit cycle. 

At Q = 1.08 the system is chaotic. The power spectrum does not consist of a 

finite number of harmonies and their integer multiples any more, but it is rather a 

broad band over the frequency axis. Yet, the virtual drive Çequency is stili visible 

as a distinct pealc within the continuous spectmm (Fig. 4.5d). The smeared region 

in the bifurcation diagram indicates that the attractor for the system has a complex 

structure in that region of the parameter space. The power spectrum also shows 

complexity of the system's behavior and indicates chaos in that region of parameter 

space. In order to obtain a solid evidence of chaos one has to show that at least one 

Lyapunov exponent for the system is positive in that region [2]. Indeed, at Q = 1.08 

the largest Lyapunov exponent is found to be Al = 0.049 d~ 0.001. 

M e r  the system becomes chaotic a number of windows of periodic behavior occur 

(Fig. 4.6a). Periodic behavior is restored by tangent bifurcations [62] or through a 

sequence of period hdving. Penod halving is actualiy an identical process to period 

doubling, and whether we observe one or the other depends only on how we define 

parameters. For Q = 1.9047.. . chaotic behavior ends by a single tangent bifurcation 



Figure 4.7: (a) Bifurcation graph showing broad chaotic region over segment of Q. 

a = 1.2, r = 0.9. (b) Correspondhg change of the largest Lyapunov exponent. 

(Fig. 4.6), and the system's behavior becomes periodic again. The system remains 

periodic with a further increase of Q. On the other hand, for slightly different choices 

of parameters a = 1.2 and r = 0.9, once the system becomes chaotic it remains so, 

apart for the windows of periodic behavior (Fig. 4.7). 

4.3 Lyapunov Exponents, Dimensions and Coqject ures 

Solid proof of chaos is the existence of at least one positive Lyapunov exponent. The 

spectrum of Lyapunov exponents gives us, besides qualitative information about a 



system's behavior, dso a quantitative measure of the system's stability. 

Evolution of the Lyapunov exponent spectnim with a change of parameters gives 

us additional information about the system's behavior to t hat from bifurcation graphs. 

Bifurcation diagrams are easier to construct though, because determining the Lya- 

punov spectrum for a single value of parameter requires plotting virtually the whole 

attractor [84], while a bifurcation diagram is, in our case, a plot of the projection 

of the Poincaré section to the ë-axis against the parameter. Combined, these two 

methods are reliable tools for examïning a system's behavior and routes to chaos. 

Figure 4.7 gives a comparison of the bifurcation diagram and Lyapunov spectrum 

evolution for a range of Q. Since the system is represented in 3 dimensional space it 

is sufficient to determine only the largest Lyapunov exponent. The other two c m  be 

inferred from Haken's theorem [35], and the fact that the system is dissipative with 

dissipation coefficient 1/Q, so the sum of Lyapunov exponents must be (Sec. 3.6): 

The chaotic attractors, for certain values of parameters, have a non-integer dimen- 

sion, i-e- they have a fractal form. This is observed as an infinite kneading sequence 

which results in the attractor showing an interwoven structure a t  an arbitras. small 

scale. In the quasiperiodic region the attractor has dimension 2, as motion is per- 

formed over a smooth surface, while the limit cycles have dimension 1. Since motion 

takes place in 3-dimensional phase space it is reasonable to expect that strange at- 

tractors have dimension between 2 and 3. We can use the fact that the attractor 

is always smooth in the 4 direction, so in order to estimate its dimension we can 

estimate the dimension of its Poincaré section and obtain the attractor's dimension 

simply by adding one to it. We shdl calculate the dimensions of the attractor at 

some characteristic points in the parameter space and establish certain conjectures 

with Lyapunov exponents. 

In order to estirnate the dimension of an attractor lying in n-dimensional phase 



Figure 4.8: (a) Poincaré section of the quasiperiodic attractor is a smooth line. a = 

1.2, r = 0.9, Q = 0.5. (b) Poincaré section of the chaotic attractor reveals a kneading 

sequence. Q = 1.8. (c)  Higher dimensional chaotic attractor. Q = 6.5. 



space, the attractor, first, has to be covered by a grid of n-dimensional hypercubes of 

size E, and then the probabiiity of finding a point of the attractor in each hypercube 

Pi has to be determined. The index i here refers to a particular cube. In our case we 

consider a 2-dimensional Poincaré section, so the hypercubes are actually squares. A 

general expression for the dimensions of the qth-order attractor is then given by: 

where the summation is over all hypercubes where Pi > O [26]- The parameter q 

ranges from -00 < q < oo, and for ql > q2 we have D,, 5 D,. The most comrnonly 

used dimensions are Do, Dl,  and 4, or the capacity, information, and correlation 

dimension, respectively. We will limit ourseives to estimating these three dimensions 

only. 

In the Kaplan-Yorke conjecture the Lyapunov dimension of the attractor is dehed  

as: 

where j is the largest integer for which Al + X2 + . . . + Xj 2 O [48]. The Lyapunov 

dimension represents an upper limit to the information dimension, i.e. DL 2 Dl 

[54]. However, it is to be expected that numerical values of these four dimensions fa11 

pretty close to each other [lî]. 

In the bifurcation diagram 4.7 we observe a region of quasiperiodic behavior at 

Q = 0.5. The attractor is a smooth surface, and its Poincaré section is a smooth 

curve (Fig. 4.8a). -4s a check we may estimate the dimensions of this attractor. As 

expected, we obtain the capacity, information and correlation dimension to be equal 

to 2 within numerical limits of uncertainty. The Lyapunov spectrum is calculated to 

be Al = 0.000f 0.000, A2 = 0.000~0.000, and X3 = -2.000*0.001. Since the largest 

exponent is zero within the limits of uncertain@, the Lyapunov dimension is dso two. 

In this case the Kaplan-Yorke conjecture becomes an equality (table 4.1). At Q = 1.8 

the system exhibits chaos. Characteristic chaotic patterns of stretching and folding 



Table 4.1: Various dimensions of the attractors. 

are clearly visible in the Poincaré section (Fig. 4.8b). At larger values of the quality 

factor the dimension of the chaotic attractors is generally larger. A highly interwoven 

structure can be found in the chaotic attractors that occur for large values of Q, like 

the one in Fig. 4.8c, where Q = 6.5. The Kaplan-Yorke conjecture in both cases is an 

inequality with various dimensions having fairly close numerical values. An overview 

of estirriates of the various dimensions is given in Table 4.1. 

4.4 Coexisting Attractors and Crisis 

For a certain range of parameters the mode1 shows coexisting attractors- Bifurcation 

diagram 4.9a indicates that a t  Q = 1.0105. . . a tangent bifurcation occurs which 

creates a pair of stable and unstable limit cycles in the phase space. The basin of 

attraction splits accordingly into a basin of the stable limit cycle and a basin of the 

chaotic attractor. Basin boundary is the stable manifold of the saddle limit cycle, 

which is s h o m  as a black dot in the Poincaré section in Figure 4.10. The basin 

boundary is, therefore, a smooth surface with no fkactal features present. Creation of 

a new, phase-locked limit cycle may also be observed if we plot the average angular 



Figure 43: (a) Bihrcation diagram indicating coexisting attractors. Dashed line 

shows unstable limit cycle. (b) Corresponding plot of average angular velocity. 



Figure 4.10: Poincaré section of the chaotic attractor a t  the verge of crisis, shown 

within its basin of attraction. White dots represent a stable, and black dots an 

unstable, limit cycle. Q = 1.1. 

velocity of the rod (e)  against Q (fig.4.9b). 

It  is interesting to note that the behavior of the system in this parameter range 

will be determined by the initial conditions. Thus, merely by changing the initial 

position of the rod we might move the system from one basin of attraction in phase 

space to another. The system will then exhibit periodic or chaotic behavior depending 

on whether it is found in a basin of attraction of a limit cycle or a chaotic attractor, 

respectively. 

With an increase of the control parameter Q the basin of attraction for the limit 

cycle expands until the unstable limit cycle, which lies on its boundary, collides with 

the chaotic attractor (Fig. 4.10). The chaotic attractor experiences a boundary crisis 

[29] and disappears along with its own basin. The basin of the limit cycle then 

suddenly expands, occupying the whole phase space. 

This phenomenon is also known as the escape fiom the potential well [82]. When 



Figure 4.11: (a) Two-dimensional projection of a chaotic attractor a t  Q = 1.1. (b) 

Two-dimensional projection of the limit cycle at Q = 1.2 dong with its transient. 

Both simulations were done for 200 time units. 

chaotic attractor crosses the stable manifold of the saddle orbit it will eventually eject 

every trajectory from its own potential well into the potential well of the stable limit 

cycle. Of course, when it happens, the chaotic attractor ceases to be an attractor. 

A more accurate statement wodd be that system's trajectory can move fiom white 

into gray basin (Fig. 4.10) only if the unstable manifold (and the attractor is a part 

of the unstable manifold) in the white basin crosses the stable manifold of the saddle 

orbit. Once found in the vicinity of the stable limit cycle, the system's trajectory will 

reach it asyrnptotically and stay there for the rest of the motion. Therefore, the only 

attracting set in the phase space is the limit cycle, but all of the unstable orbits that 

were embedded in the chaotic attractor are still present, as well. This results in very 

long transient behavior of the system when initialized in the region of phase space 

where unstable orbits lie (Fig. 4.11). 

With a further increase of the control parameter the lirnit cycle evolves into a 

chaotic attractor through a sequence of period doublings. The newly created chaotic 

attractor expands in size as the parameter Q increases, and eventually collides with 

the unstable limit cycle. The system comes to a crisis again, but since the unstabIe 

orbit is not at the basin boundary any more the crisis is internal, and the attractor 



Figure 4.12: Bifurcation diagram shows creation of coexisting attractors. 

suddenly expands its size [29]. This expanded attractor contains features of the 

chaotic attractor destroyed in the boundary crisis, indicating that information about 

the system's behavior at lower values of Q has "survived" the crisis. In fact, the 

unstable manifold, which was previously contained within the gray area of Figure 

4.10, now intersects the stable manifold of the saddle orbit. Hence, trajectories can 

move in both ways - from one potential well to another. As a result, unstable orbits 

of the chaotic attractor, which previously disappeared in boundary crisis, are now 

embedded into a new attractor. 

As we increase the control parameter Q further, we observe another occurrence 

of coexisting attractors (Fig. 4.12). There is another tangent bifurcation at Q = 

3.2398 . . . that creates a stableunstable pair of period one orbits. Penod three and 

period one limit cycles coexist there, but there is also an infinite number of unstable 

orbits in the phase space. This means that the stable manifold must have very 

complex geometry, and as a consequence basin boundary is a locally disconnected 



Figure 4.13: Three coexisting attractors. Period-three limit cycle (black points) and 

period-one limit cycle (white point) are enlarged for clarity- Q = 3.515. 

fractal curve [65]. At Q = 3.4177. . . another tangent bifurcation creates a period 

3 orbit, so there are three coexisting attractors in that region. Basins of attraction 

are highly interwoven in this region, and it is dBcult  to determine initial conditions 

that would lead to a particular attractor. The newly created period 3 orbit quickly 

evolves to chaotic attractor with an increase of the control parameter (Fig. 4.13), 

and disappears in a boundary crisis. The former period 3 attractor becomes chaotic 

also through a penod doubling cascade, and gets to a boundary crisis itself at Q = 

5.4200 . . . (Fig. 4.14). For Q > 5.43 the system's attractor is a period-one limit cycle, 

the only one that "survives" the crisis. 

Similar occurrences of coexisting attractors are found a t  many other places within 

the parameter space of Our system. 



Figure 4.14: Basin of attraction for Q = 5.3. 

4.5 Symbolic Dynamics 

In Section 2.5 we demonstrated basic concepts of symbolic dynamics analysis using 

the example of a unimodal map. Symbolic dynamics of one dimensional maps is 

well understood, and so far these techniques have been extended to that of two- 

dimensional maps. Two much-studied 2D models are the Hénon map [40] and its 

piecewise linear version, the Lozi map [59, 911. However, there is still no extension of 

symbolic dynamics to higher dimensional maps. This is indeed a serious limitation, 

but still there are a lot of physical models which can be reduced to a two-dimensional 

map by suit able choice of Poincaré section or by exploithg their symmetry properties. 

There are no guarântees, though, that symbolic dynamics can be constructed for an 

arbitrary map. There are even some one-dimensional models for which full symbolic 

dynamic has not been developed [37]. This opens up a wide research area. 

It has been convincingly demonstrated that a properly constructed two-dimensional 

symbolic dynamics provides a powerful tool to  capture global, topological aspects of 

low-dimensional dissipat ive systems of ordinary differential equations (ODES) [55, 56, 



Figure 4.15: Bifurcation graph taken against parameter Q with parameter a varying 

as a = 0.8 + 0.3Q. 

89, 92, 57, 38, 39, 901. However, at this time only a few dynamical flows have been 

anaIyzed this way. To the best of our knowledge, the symbolic dynamics has been 

applied to the analysis of the NMR-laser chaos mode1 [92, 571, the two-well Dufihg 

equation [89], the Lorenz system [38] and the forced Brusselator [55, 561. 

We develop symbolic dynamics for our system, consisting of two gears and a 

rod. We observe evolution of system dynamics with the change of system parameters 

described by a = 0.8 + 0.3Q, where Q varies from 0.5 to 2. Parameter r is kept at 

fked value r = 1.088. Bifurcation diagram (4.15) reveals complex dynamics in that 

region of parameter space. The pattern shown in the bifurcation diagram, when chaos 

occurs as a perturbation on a quasiperiodic attractor, is common for our system, and 

was described before in this thesis. 

For convenience we shall choose a slightly different phase space by substituting 

x = 8/2x, y = 5 in the equation of motion (4.11), and write the equation of motion 

in its nonautonomus form: 



We study the evolution of the system's attractor in detail at five characteristic 

points of the bifurcation diagram (4.15). We plot Poincaré sections of the attractors, 

first return map x, + xn+l, and Poincaré section in polar coordinates p-v, where 

p = 1 - (0.4 + y) cos(2~x) and v = 1 - (0.4 + y) sin(2~x). The former gives us a 

section of a torus which is natural description of a quasiperiodic attractor. One can 

clearly see chaotic kneading pattern occu-g as a perturbation on a quasiperiodic 

torus. While the motion of the system is quitsiperiodic, its dynamics can be described 

by a one-dimensional map. On the other hand, the h t  retum map does not describe 

chaotic dynamics of the system uniquely, as there is an infinite number of kneading 

branches - a feature of a chaotic two-dimensional map. 

As for the logistic map, we fkst create an appropriate partition of the phase space, 

and assign a letter to each partition. That way we can encode any orbit in phase 

space with a sequence of letters, or itinerary, which describes the sequence at which 

that orbit visits specïfic partitions. Next we investigate whether any sequence of 

Ietters is allowed, or there are some sequences which are inadmissible. 

4.6 Partitionhg of the Poincaré section 

For a unirnodal map partition of "phase space" is done at the critical point of the 

mapping function. When iteration moves the system across that point, Say from the 

left to the right, stretching of the orbit changes its direction, i.e. the fold occurs. 

There is no such an obvious choice in a 2-D map. In partitioning phase space we used 

ideas proposed by Grassberger and Kantz [27], later more elaborated by Zheng (See 

for example Ref. [56]). 

Eigenvectors of a Jacobi matrix of a 2-D rnap each create fields. We plot field lines 

of stable and unstable eigenvectors, so we obtain forward and backward foliations, 

respectively. These are actually generalizations of a stable and unstable manifold 

of the system. Stable manifolds are a subset of forward foliations, and unstable 



Figure 4.16: Attractors shown in the x - y, x, - x,+l, and p - v planes at Q = 

0.57,0.76,1.2577,1.68, and 2.0 fkom top to bottom for r = 1.088, and a = 0.8 + O.3Q. 



Figure 4.17: Attractor (dots) and forward foliations (dash curves) for Q = 0.57. 



manifolds, including attractor, are a subset of backward foliations. Tangent points of 

those field lines correspond to points in phase space where both fields are equal. Since 

it is a dissipative map we study, this means that a t  these points both eigenvaiues 

must be srnaller than one, so there is no stretch accross these points. Since the 

system is chaotic we conclude that a fold must occur whenever an orbit passes beyond 

tangencies. By connecting tangency points between forward and backward foliations 

we obtain phase space partition lines that divide 2-dimensional space into monotonic 

regions analog to those for 1-dimensional maps. 

We draw forward and backward foliations in phase space x-y, and by connecting 

tangency points between them we find partition lines at parameter values Q = 0.76 

and Q = 1.2577. As a check we also draw foliations a t  Q = 0.57, where the system 

exhibits quasiperiodic motion. The quasiperiodic attractor and forward foliations at 

Q = 0.57 are shown in Figure 4.17, from which one can see clearly that there is no 

tangency between the attractor, which is part of backward foliations, and the for- 

ward foliations. When Q increases over that value the tangencies begin to appear, 

and correspondingly the first return map xn+l - x,, assumes the form of a critical 

circle or annular map [37]. As Q keeps increasing, the map becomes supercritical. 

With further increase of Q motion becomes quasiperiodic again. There are no tan- 

gencies and the map becomes subcritical again (see Fig. 4.16). This shows the close 

c o ~ e c t i o n  between the geometric properties of an attractor, such as tangencies, and 

the dynarnical behavior of a system like quasiperiodicity and chaos. 

Let us now observe phase space partitions a t  Q = 0.76. In Figure 4.18 we show 

the chaotic attractor and a family of forward foliations. For better clarity we do 

not show any backward foliations other than the attractor itself. By connecting 

tangency points we find two primary partition lines, marked with OB and OC, and 

partition line oA, which is the pre-image of OB. We divide the phase space, and 

accordingly the attractor, into three regions, which we denote by letters L, R and N. 

We also plot a return map, and sketch partition lines on it (Fig. 4.19). We notice that 



Figure 4.18: The Poincaré map (dots) and forward foliations (dash curves) at Q = 

0.76. The primary partition lines OB, aC, and the pre-image aA of OB divide the 

attractor into three parts labeled by the letters L, R and N. 



Figure 4.19: The x,+l-  x, h t  return map at Q = 0.76. 



Figure 4.20: The chaotic attractor (dots), forward foliations (dashed lines), and par- 

tition lines *A, *B, and *C at Q = 1.2577. 



Figure 4.21: The x,+l - xn first return map constructed from Fig. 4.20. 



partition lines divide return map into three monotonie parts. This is confirmation that 

the partitionhg is done properly. The three monotone segments in Figure 4.19 are 

assigned the ietters L, R, and N, in accordance with the two-dimensional partitions 

in Figure 4.18. 

A more interesting case is encountered at Q = 1.2577, where two dimensional 

features of the attractor are more emphasized. In Figure 4.20 we plot the attractor, 

three forward foliations passing tangencies and partition lines. As in the previous case 

we have three partition lines, and t herefore we establish similar three-letter symbolic 

dynamics. We also separately plot in Figure 4.21 the x,+1 - Sn first return map 

constructed fiom Figure 4.20 by using the x coordinates in order to c o n k n  validity 

of the partition we made. 

4.7 Ordering rules and admissibiiity conditions 

After we determine phase space partitions we may encode any point at the attractor 

with a sequence of three letters R, L and N. Unlike for the 1-dimensional map 

(Section 2.5) we need a doubly infinite sequence of characters in order to uniquely 

encode the point at 2-dimensional chaotic attractor [9, 101: 

Letter s, is the code for the n-th point of the forward orbit, and sz the code for 

the m-th point of the backward orbit. The "present" position is indicated by a solid 

dot, which divides the doubly infinite sequence into two semi-idhite sequences, Le., 

the backward sequence - SE- 5.y and the forward sequence osls2 - Sn - -. A 

forward sequence determines the position at the x-axis of the return map (Figs. 4.19 

and 4-21), while the backward sequence determines the sheet on the chaotic attractor 

a t  which the point lies [9]. 

A metric representation for symbolic sequences can be introduced by assigning 

numbers in [O, 11 to forward and backward sequences in a sirnilar fashion which we 



used for the logistic map in Section 2.5. Since we have one monotonically decreasing 

region in phase space, N, we first assign an integer i = -1 or 1 to the symbol when 

it is the letter N or otherwise. Then we assign to the forward sequence eslsz s, - 
the number 

where 

Similarly, the B assigned to the backward sequence s ~ -  - s ~ s p  is defmed by 

where 

According to the definition we have 

In this representation a bi-infinite symbolic sequence with the present dot specified 

corresponds to  a point in the unit square of the CY - p plane, the so-called symbolic 



plane. In the plane, forward and backward foliations become vertical and horizon- 

tal lines, respectively. We may d e h e  the ordering rules of forward (or backward) 

sequences according to their a (or P )  values. Fkom Eqs. (4.19-4.24) we then have 

and 

where the finite strings E and O consist of letters L, R and N and contain an even 

and odd nurnber of letters N, respectively. This ordering rule is similar to that for 

sequences of the dissipative standard map at some values of the parameters [56]. 

The following task is to find pruning rules, which would tell us if there are any in- 

admissible sequences among al1 possible combinations of letters L, R and N. For 

the logistic map we derived a simple pruning nile from its kneading sequence (2.42). 

In a similar fashion, a doubly infinite sequence originating fiom the tangency point 

between chaotic attractor and a forward foliation imposes restriction on allowed sym- 

bolic sequences. A point on the partition iine C o  (image of mC) may symbolically 

be represented as QC P. The rectangle enclosed by the lines QNm, QRo, aP, and 

*NLm forms a forbidden zone (FZ) in the symbolic plane. Therefore, a symbolic 

sequence IJ  with I m  between QNe and QRm, and at the same time .J > OP must 

be forbidden by the tangency QC a P. In the symbolic plane the sequence I J corre- 

sponds to a point inside the forbidden zone of QG l P. Similarly, UB V stands for a 

tangency on the partition line Be (image of aB). The lines ULa, UN., e V  and .La 

enclose a rectangle FZ in the symbolic plane. Any sequence KT with K .  between 

ULo and UN. while eT < .V is forbidden by the UB l V. 



Each tangency point on a partition line rules out a rectangle in the symbolic 

plane. But, for a 2-dimensional map there are infinitely many such points. Altogether 

they create a pruning front [9, 10, 361 in the symboiic plane. The pruning &ont is 

a curve which is nonsmooth at every point, and it encloses fundamental forbidden 

zone (FFZ), a set of all points in the symboiic plane representing forbiden sequences. 

Consider a finite set of tangencies {QiC a f i )  (or {UjB a y-)). If the shift of a 

sequence . sk-qsk-1  a s k s k t l V  satisfies the condition that the backward sequence 

-~k-2~*-1a is not between QiNa and QiRm (or UjNa and UjL.), and a t  the same 

time *Pi > asks*+1. . (or .If < a s ~ s * + ~  - - -) for some i (j), then this shift is not 

forbidden by any tangencies of Ca or Ba,  owing to  the property of well-ordering of 

foliations. Thus, we may Say that the shift is allowed according to that tangency. 

A necessary and sdicient condition for a sequence to be allowed is that al1 of its 

shifts are allowed according to the two sets of tangencies. To check the admissibility 

condition, we consider again the two cases Q = 0.76 and Q = 1.2577, and draw 10000 

points representing real sequences generated from the Poincaré map together with 

the FFZ in the symbolic plane, as seen in Figs. 4.22 and 4.23. One can see that 

the FFZ indeed contains no point of allowed sequences. A blow-up of the right-hand 

side pruning front in Fig. 4.23 is displayed in Fig. 4.24. The structure means a two- 

dimensional feature, related to the two tangent points in the upper part of attractor 

on the partition iine aC (see Fig. 4.20). We shall use the two tangencies to make 2D 

analysis of periodic sequences later on (see T3 and T4 in the next section). 

4.8 Unstable periodic orbit sequences 

Pruning rules tell us which orbits are frobidden rather than which are ailowed a t  

certain point in system's parameter space. Therefore, in order to to find unstable 

periodic orbits embedded in a chaotic attractor, we have to start looking a t  al1 possible 

combinations of letters, and then eliminate those words which violate pruning rules 



Figure 4.22: The symbolic plane at Q = 0.76. 10000 points of real orbits generated 

from the Poincaré map are aIso shown together with the FFZ in which no point falis. 



Figure 4.23: The symbolic plane at Q = 1.2577. Together with the FFZ, 10000 points 

representing real orbits are drawn. None of them falls inside the FFZ. 



FFZ 

Figure 4.24: A blow-up of the symbolic plane Fig. 4.23 in the intervals a = 

[0.8794,0.87965] and j9 = [O, 0.651. 



ênd those which are just shifts of some other admissible words. Considering that 

there is, for example, a total of 38 = 6561 possible eight-letter words that can be 

made of three letters, this looks like very time consiiming task. In order to develop 

more efficient way to find and count all admissible orbits, we use the fact that our 

system can be to a certain extent approximated by a 1-dimensional supercritical circle 

map. In that way we can use some of methods for constructing admissible words 

developed for one-dimensional maps. The one-dimensional rnap puts less restrictions 

to admissible orbits than a hm-dimensional, so the only thing left after we develop 

symbolic dynamics for a 1-D mode1 is to "prune out" those orbits forbidden by its 

2-D counterpart . 

The attractor at Q = 0.76 does not show much two-nimensional nature, so the 

reduction to symbolic dynamics of one-dimensional circle rnap may capture much of 

the essentials. We start fiom this simple case. The attractor resembles that of a 

one-dimensional circle rnap except for a segment with two sheets, one of which is 

without an N part (see Figures 4.18 and 4.19). Rom the two primary partition lines 

rC and rB in Figure 4.18, we get the following sequences for attractor points: 

Ti : N N  - N N A B  LRRLNLNLNLRRRLLRRR , 

Ta : N N  - - NNLC RRLRLNLRRRLRLNRLNL . 

In order to reduce the two-dimensional attractor to a one-dimensional return map, 

we need to determine two kneading sequences KB and Kc. They are the forward 

sequences of Tl and T2, respectively. 

Kg = LRRLNLNLNLRRRLLRRR , 
(4.28) 

Kc = RRLRLNLRRRLRLNRLNL . 

Compared with the original 2D map, the 1D circle rnap given by these Kg and Kc 

puts less constraints on allowed orbits. Since the attractor has only one sheet crossing 

each primary partition line nearly no Merence between the 1D and 2D maps can be 

recognized if the sequences of short periodic orbits are concerned. 



The knowledge of the two kneading sequences (4.28) determines everything in the 

symbolic dynamics of the circle map [go]. For example, one may define a rotation 

nzmber W, also called a winding number, for a symbolic sequence by counting the 

weight of letters R and N in the total number n of al1 letters: 

1 
W = lim -(Number of R and N). 

n+ao n 

A chaotic regime is associated with the existence of a rotation interval, a closed 

interval in the parameter plane [44]. Within a rotation interval there must be well- 

ordered orbits. We can construct some of these well-ordered sequences explicitly, 

knowing the kneading sequences Ks and Kc. 

In our case it c m  be verified that the ordered periodic orbits (RL) and (RRL)OO 

are admissible. These two sequences have rotation numbers 1/2 and 2/3, so the 

rotation interval of the circle map contains [1/2, 2/31, inside which there are rational 

rotation numbers 315, 417 and 5/8 with denominators up to 8. Their corresponding 

ordered orbits are ( R ~ L R L ) ~ ,  [ R * L ( R L ) * ] ~  a d  [(R2L)2RL]". A very easy way 

to construct a longer well-ordered periodic sequence with a given rational rotation 

number from two shorter well-ordered periodic sequences can be found in ReE[37]. 

Take, for example W = 3/5, 

RRLRL = RRL + RL. 
We can further construct not-well-ordered sequences from well-ordered ones by 

the following transformation. One notes that in Figure 4.19 the lower limit of .A is 

the greatest point on the subinterval L, while the upper limit of .A is the smallest 

R. When .A is crossed by a continuous change of initial points the corresponding 

symbolic sequences must change as follows: 

greatest LN + smallest RL . 



Similady, on crossing OC another change of symbols takes place: 

greatest R + smallest N. 

Neither change has any effect on rotation numbers. As an example, starting with the 

ordered period 7 orbit [R2(LR)*L]" we obtain 

RRLRLRL -+ NRLRLRL -, NRLRLNL + NRLNLNL + NNRVRLL 

+ NRRLRLL + RRRLRLL + RRRLLNL + NRRLLNL + NNRLLNL 

and 

NRLRLNL -+ NRLRRLL + RRLRRLL 

as candidates for the fundamental strings in not-well-ordered sequences of period 7. 

Among these sequences, (NNRLLNL)= and (RRLRRLL)= are forbidden by Kc 

and Kg, respectively. 

In this way we have determined al1 periodic sequences up to penod 8, allowed by 

the two kneading sequences (4.28). The result is summarized in Table 4.2. We have 

examined the admissibility of all these sequences by checking if all their shifts fa11 

into the FFZ in the symbolic plane of Fig. 4.22. They al1 turn out to be allowed. In 

fact, by determining the symbolic sequence of every point in the attractor, we have 

nurnerically found al1 these orbits easily and listed the coordinate of the first letter 

in a sequence in Table 4.2. 

For the more interesting case Q = 1.2577, based on Figure 4.20 we list the following 

five tangencies along the Bo and Co lines: 

TI : - L - LLAB LRNNRLLNNNNNRLRLLN - , 

Ta : - N NNRC O NRLLRNNNNRLRLRNNRN - , 
TS : - L LLNC NRLLNNNRNRNNRNRNNR - , 
T4 : - N - NNNC O NRLLNNNRLRNNNNRLLN - , 
Tg : N NRLC O NNNNRLRLNRNRLNNNRN . 



Table 4.2: Allowed unstable periods up to 8 for Q = 0.76. Only non-repeating strings 

of the sequences are given. P denotes the period and W the rotation number. 

P W Sequence 

RL NL 

RLR RLN 

NRLL 

RRLRL NRLRL NRLNL 

NRRLL RRRLL RRLNL 

NRLRLL NRLLNL 

RRRLRL NRRLRL RRLNRL 

RRLRLRL NRLRLRL RRLLNRL 

NRLRLNL NRLLNRL NLNLNRL 

RRRLLNL NRRLLNL RRRLRLL 

NRRLRLL 

NRLRLRLL NRLRLLNL NRLLNLNL 

RRLRRLRL NRLRRLRL NRLNRLRL 

NRRLRLRL RRRLRLRL NRLNLNRL 

NRLNRRLL NRLRRRLL RRLNLNRL 

RRLNRLRL NLNRRLRL NCRRRLRL 



F ~ o m  TI and T2 whose fornrard sequence is the greatest among the tangencies dong 

C o ,  we get 

Kg = LRNNRLLNNNNNRLRLLN , 

Kc = NRLLRNNNNRLRLRNNRN - . 

For the ID circle map, we have determined all allowed periodic sequences up to 

period 7, which are listed in Table 4.3. We have examined their admissibility by 

using the tangencies of the 2D Poincaré map and found that ten of these cycles are 

now forbidden by the tangency Tg. An asterisk denotes those forbidden sequences in 

Table 4.3. The allowed periodic orbits have been located numerically. 

4.9 Conclusions 

We successfully developed symbolic dynamics for this model, consisting of two gears 

and a rod. We fhd that by constructing the proper Poincaré section in the phase 

space for a system of ODEs, the symbolic dynamics can be constructed based on 

the appropriate partiiioning of the phase portrait, and it turns out to be an efficient 

and powerN way to explore the global properties of the system both in the phase 

and parameter spaces. Along a certain direction in the parameter space this model 

exhibits various properties, such as, periodicity, quasiperiodicity, chaos, 1D and 2D 

features, and so forth. In some other directions or regions of the parameter space 

the model would also display more or less similar behavior. We have established the 

3-letter symbolic dynamics for the model and found that the ordering rules of se- 

quences, the forced Brusselator in the regime of annular dynamics and the dissipative 

standard map at  some parameters are the same. As a matter of fact, the NMR- 

laser chaos model, the forced Brusselator in the regime of interval dynamics and the 

Hénon map with a positive Jacobian also have sirnilar 2-letter symbolic dynamics 

and share the same ordering d e s  of sequences. It therefore is meaningful in a sense 

to classi@ the systems of ODEs according to their ordering rules of sequences. The 



Table 4.3: AUowed unstable periods up to 7 for Q = 1.2577 in the 1D case; those 

with an asterisk are forbidden by 2D tangency Tg. 

P W Sequences 

R N  

RN 

RL N L  

NRR RNN 

RLR RLN 

RRR-N RRNN RNNN 

NRLL 

RRRL NRRL NNRL* 

RRRRN RRRNN RRNNN RNNNN RNNRN RRNRN 

RRLRL NRLRL NRLNL NRRLL NNRLL* 

RRRRL NRRRL NNRRL NNNRL RNRRL RNRLN RNRLR 

RRRRRN RRRRNN RRRNNN RRNNNN RNNNNN 

RRRNRN RRNNRN RNNNRN NNRRNR 

RLRLLN RLLNLN 

RRRLRL RLNRRL RLNNRL* NLNNRL* RLRRLN RRLNLN 

RRRRRL NRRRRL NNRRRL NNNRRL NNNNRL* 

RNRRRL NRNRRL RRNRRL NNRNRL* RNRNRL* 

RRRNRL RRNNRL RNNNRL* 

RRRRRRN RRRRRNN RRRRNNN RRRNNNN RRNNNNN 

RNNNNNN RRRRNRN RRRNNRN RRNNNRN RRNRNRN 

RNNNNRN RNNRNRN RRNRNNN RNNRRRN 



Table 4.4: Table 4.3 cont'd. 

P W Sequences 

RRLRLRL NRLRLRL RRLLNRL NRLRLNL NRLLNRL 

NLNLNRL RRLLNLN RRLRLLN NRLLNLN* 

RRLRRLR RRLRRLN RRLNRLN NRLNRLN 

RRLNLNN* NRLNLNN 

RRRRRRL NRRRRRL NNRRRRL NNNRRRL 

NNNNRRL NNNNNRL RNRRRRL NRNRRRL 

RRNRRRL NNRNRRL RNRNRRL RRRNRRL 

NNNRNRL NRNRNRL NRRRNRC RRRRNRL 

NRRNRRL RNNNNRL RNNRNRL RRNRNRL 

ODES investigated under the guidance of symboiic dynamics to date are quite limited 

though. 



Chapter 5 

CONTROL THEORY 

5.1 Lyapunov~s Direct Method 

Lyapunov's Direct method has been for a long time the main tool in control engi- 

neering and robotics. The method does not require solving equations of the motion 

for observed system, but it does provide a rigorous mathematical proof of stability. 

Before we describe the method let us first state some usefûl mathematical definitions 

[93l- 

Definition. A scalar function V ( x ) ,  whose argument is a vector x = (xlr x ~ ,  - . . , xn), 
is positive dehi te  if V ( x )  = O for 1x1 = O, and V(x)  > O for 1x1 # O. The function 

V(x) is negative definite if -V(x) is a positive definite function. 

Definit ion. A scalar fûnction V ( x )  is positive semidefinite if V(x) = O for 1x1 = O, 

and V ( x )  > O for 1x1 + 0. 

Definition. Assume a system of ODES 

i = f ( x )  (5-1) 

has a solution in x = O. We Say that the solution is stable in the sense of Lyapunov, 

or marginally stable, if for any E > O and to 2 O there exists 6 > O such that for 

Ix(O)I < 6 it is Ix(t)l < E when t 2 to. 

Definition. The solution x = O of system (5.1) is asymptotically stable if it is 

stable in the sense of Lyapunov and Ix(t)l + O as t + W. 

Lyapunov's direct method is based upon the Second Theorem of Lyapunov, which 

we state here. 



Theorem. The sdution x = O of system (5.1) is marginally stable if there exists 

a positive definite scalar function V(x), such that its tirne derivative 

is negative semidefinite. If ~ ( x )  is negative definite the solution is asymptotically 

stable. Any function which satisfies the marginal or asymptotic stabiliw criteria is 

called a Lyapunov b c t i o n .  

Note that this theorem provides a sufficient condition only, and the Lyapunov 

function is not unique. If one cannot h d  a function that satisfies the above condi- 

tions, one cannot draw any conciusions about stability of the system either. 

Lyapunov's Direct Method is constructive, and it can be used not only as a check 

to ensure that system is stable, but also as a tool to build a controiler for the system. 

If it is obvious that the system (5.1) does not have a stable solution in x = O, some 

extemal force g(x) has to be applied to  the system in order t o  obtain the desired 

stability. This procedure consists of finding a good Lyapunov function candidate first, 

and get as close as possible to meeting cnteria of the Second Theorem of Lyapunov. 

Then, we add a function g(x) to the right hand side of (5.1), which would cancel al1 

remaining nonegative terms in (5.1). This is a nontrivial task, and finding the rïght 

Lyapunov function candidate and right controller sometimes entails a lot of trial and 

error effort. Also, such a strategy leaves a lot of room for optimization, because the 

Lyapunov function is not unique, and there is a possibility that a better candidate 

may be found which would require a simpler controller g(x). 

5.1. i Dzscontznuous problems 

The proof of the Second Theorern of Lyapunov assumes that the right hand side 

of system (5.1) is a continuous hnction. Paden and Sastry [71], and later Shevitz 

and Paden [79], extended Lyapunov's theory to systems of ODES with a discontin- 

uous right hand side, using Fillipov's theory of differential inclusion [20, 211. It is 



beyond the scope of this thesis to discuss the stability theory of discontinuous sys- 

tems. Instead, we shall point out a very important consequence of it. If we are able 

to prove stability for a system of discontinuous equations, we are then also able to 

use a disccntinuous controller g(x) .  In a number of instances [86, 88, 871 it appears 

that it is much easier to find a discontinuous controller which satisfies this rigorous 

mathematical proof of stability. 

5.2 Application to the Double Pendulum 

The inverted double pendulum is a model often used in robotics to study the human 

walk. The lower link of the pendulum approxhates legs and the upper link the 

toms of a person. Although it is a very crude approximation it still addresses some 

of the main stability concerns in robotics. The goal is to keep the pendulum in its 

upright position when gravity acts downward. Also, when a person walks with each 

step she or he adds some acceleration to her or his body. In a double pendulum 

model this manifests itself as a mild perturbation of the base point. Let us observe a 

two dimensional double penddum model as shown in Figure 5.1. For simplicity, we 

assume that motion of the system is in a 2-dimensional plane. 

Moments of inertia for lower and upper link are loi = 2.256 kg m2 and IO2 = 2 -71 

kgm2, respectively; their masses axe ml = 30 kg and r n 2  = 45 kg; distances from 

suspension point to their centers of mass are al = 0.5 m and a2 = 0.45 rn, and the 

length of the lower link is l1  = 0.95 m. The base point is perturbed so it acquires 

vertical acceleration g (t) and horizontal acceleration f (t) . We allow functions f (t) and 

g (t) to be axbitrary, but bounded functions in time such that 1 f (t) 1 < f, lg(t)  1 < g, 

where f, g =con&. 

Let us first derive the equation of motion for the system. We denote vertical 

inclination of the lower link as Oi, and the angle between two links as 02 (Fig. 5.1). 



Figure 5.1: An inverted double penddum. Base 

horizontally and g (t) vertically. 

The kinetic energy of this system is then given as: 

point rnoves with acceleration f (t) 

where v c l  and vc2 are velocities of the centers of mass for the lower and upper link, 

respectively In polar coordinates the positions of respective centers of mass are given 

and 

By taking first derivatives and squaring expressions above we get 



and subsequently the kinetic energy is found to be: 

where 11 = 101 + mta: + m21f, and & = IO2 + m2a2. The effective potential energy 

for the system is found as  a sum: 

Substituting (5.3) and (5.4) into (5.8) and writing the Lagrangian as L = T - V we 

obtain: 

Equations of motion are then derived as 

where are control torques. Finally we get the equations of motion as: 

ël = ~ ( e ~ ) { p s i n e ~ [ ~ ~ ( e ~ + e ~ ) ~ + p ~ ~ ~ e ~ é :  

+[go + g(t)][I2(mlal+ 772211) sin& - p cos B2m2a~ sin(& + O*)] 

+ f (t) [Iz(mial + m211) cos O1 - ,B COS 02m2a2 COS(& + & ) ]  

+ r 2 ~ ~  - (r2 + p COS oz) RZ } (5.10) 



where ,B = m2Zla2, and 

In the series of articles Wu at al. [86, 881 developed a discontinuous Lyapunov 

controller for this system of equations. 

Stability proof is conducted for linear control gains k, and kdi set to zero, but they 

are included in the controller for '%ne-tuning" in simulations. The main advantage 

of such a control technique is that it provide us with a rigorous mathematical proof 

for any bounded hnctions g (t) and f (t). On the other hand, it is very difticdt to 

implement discontinuous control torque in a real engineering system. The solution 

proposed by Wu at al. was to smooth the discontinuous controller by substituting 

The idea is to use the discontinuous controller as a guide towards a reliable srnooth 

controller. However, it is very difficult to obtain a rigorous proof of stability when 

using a smooth controller. We propose calculating the Lyapunov spectnun in order 

to study the transition from discontinuous to smooth controller [87]. The Lyapunov 

spectrum gives us a qualitative description of system's stability. A positive exponent 

indicates that system is unstable - either chaotic or divergent. Any combination of 

negative and zero exponents suggests periodic or quasiperiodic motion (Section 3.6). 

This approach is particularly useful for systems whose phase space has more than 



Figure 5.2: Leading Lyapunov exponent plotted against control parameters crl and 

Q2 - 

three dimensions, and visualization of the dynamics is difficult. However, caution is 

necessary, since a particular Lyapunov spectrum tells us that there is an attractor in 

the phase space, but it does not tell us if it is around the desired position. 

In order to be able to calculate Lyapunov exponents we have to mi te  system 

(5.10-5.11) in an  autononous form, adding equation t = 1 to the system, and hence 

formally using time as a fifth state space coordinate. However, any perturbation of 

time coordinate would result in a time shift that would remain unchanged throughout 

the motion. This means that there is always at  least one Lyapunov direction with 

associated zero exponent, regardless of what continuous controller we use. Therefore 

we cannot expect to have a stable equilibrium point in our state space. The best we 

can achieve is a marginal stability when there is an asymptotically stable limit cycle 

around the desired position. If the limit cycle is small enough we can in this way 

obtain the desired behavior of our system. 

We make the substitution (5.14) into controller (5.13), and plot the Ieading Lya- 

punov exponent against parameters ai and q (Fig. 5.2). The leading Lyapunov 

exponent is the largest nonzero exponent, and it should give us a good idea as to what 



Figure 5.3: Position of Iower link (left), and control torque exerted upon it (right) 

for discontinuous and smoot h controlier, respectively. 

Figure 5.4: Position of upper link (left), and control torque exerted upon it (right) 

for discontinuous and smooth controller, respectively. 



is the Lyapunov spectnun. In Figure 5.2 the leading exponent is strictly negative, 

so the attractor for the system is a limit cycle. Furthermore, there is no indication 

of bifurcations meaning that the limit cycle remains stable for a wide range of pa- 

rameters ai. Finally, we observe a saturation of the leading Lyapunov exponent for 

al, > 30. This implies that the attractor will not change significantly with the 

further increase of cul and a*: and therefore stability with the smooth controller is 

similar to that achieved with the discontinuous one. 

Our simulations (Figs. 5.3 and 5.4) show that we do have satisfactory stabiliza- 

tion of the double pendulum around its upright position. Both links oscillate with 

slightly larger amplitudes, but they are stiU within 0.01 rad. However, we use a 

smooth control torque with up to three times a smaller amplitude than that of the 

discontinuous controller. This numerical result gives us a very strong indication that 

there indeed exists an asymptotically stable Limit cycle in 5-dimensional state space 

of the system (5.10-5.11) with its associated basin of attraction. This means that the 

system exhibits an overall stable behavior, and diagrams in Figures 5.3 and 5.4 may 

be interpreted as 2-dimensional projections of its limit cycle. 

The Lyapunov exponents calculation gives us an indication about the system's 

local stability. It can be shown though [?O] that Lyapunov exponents are the same 

almost everywhere within a basin of attraction, i.e. they can be viewed as a property 

of the phase space rather than an individual trajectory. Therefore we have to examine 

the basin of attraction of the limit cycle in order to find its region of stability. For our 

numerical study of the basin of attraction we utilized a simple algorithm, motivated 

by the technique presented in Ref. [68]. We divide the region of interest in phase 

space into boxes of size 0.1, starting fiom the box whose center is in the ongin of 

our state space. Since a stable limit cycle lies in this box we assume that if the state 

space trajectory stays within it for 20 seconds, the trajectory will eventually end up 

on the limit cycle. We started state space trajectories systematically from neighboring 

boxes, and checked if they would get into the central box within 15 seconds and then 



if they would stay there for next 20 seconds. If this criterion is met, the whole box 

is tagged as a part of basin of attraction for the limit cycle. Applying this algorithm 

we have not found any box within the range O1 E (-n/2,?r/2), e2 E (-1, l ) ,  and 

bl ,  è2 E (-1/2,1/2) which does not belong to the basin of attraction. This indicates 

that this whole region lies within the region of stability of interest. 

This is a very crude technique and it is far from being a rigorous mathematical 

proof. However, we can increase the test time for which the trajectory has to stay 

in the central box, use a fher grid of boxes, or further improve our algorithm for 

tracking attractors (Ref. [68]). In this way we can at the expense of computation 

time achieve accuracy which is sufEcient for practical purposes. With the higher 

resolution algorithm, even if we miss a few points which do not belong to the basin 

of our desired attractor, these are most likely to be wiped off as soon as we add some 

random noise signal to our solution for the system (5.10-5.11). 

5.3 Conclusion 

In this project we demonstrated some prospects for the use of Lyapunov exponents 

analysis in control design. Lyapunov's direct method, though very powerful, requires 

us to reduce a nonlinear problem to a steady state problem first, i-e. we need to 

define a phase space which contains an equilibrium point in it. On the other hand, the 

Lyapunov exponents calculation is more suited for dynamical systems where existence 

of equilibrium points is not necessary. However, Lyapunov exponent analysis does 

not enable us to construct a controller fiom scratch, it only help us test and fine 

tune an already given controller. In that regard, we may view it as a complement 

rather than an alternative for Lyapunov's direct method. In this project we proposed 

a way to combine the two approaches in order to design an optimal controller. We 

suggested designing a discontinuous controller first, because it is relatively easy to do 

it using Lyapunov's direct method. The next step is to "smooth-out7' a discontinuous 



controller ut ilizing the Lyapunov exponent analysis, and obtain a suitable continuous 

controller. We beiieve that our method may prove very efficient especiaily for systems 

with a large number of degrees of fieedom. 



Chapter 6 

CONCLUSION 

In chapter 5 we demonstrated a detailed analysis of the dynamics of penodically 

driven nonlinear system. We showed that chaotic behavior, being a purely deter- 

ministic phenomenon, may be analyzed and decomposed into its "building blocks" - 

unstable periodic orbits. With such a comprehensive knowiedge about a system's dy- 

namics it is reasonable to ask if we can take advantage of a chaotic behavior, instead 

of treating it like random noise and tryïng to avoid it. 

There are two control techniques proposed which exploit chaotic properties of a 

dynamical system. The first one is so called "OGY" (Ott-Grebogi-Yorke) algorithm 

[69]. It is shown that by a small periodic variation of a control parameter it is possible 

to lock onto a single periodic orbit embedded in a chaotic attractor. Since there are 

infinitely many periodic orbits embedded, the assumption is that the desired motion 

can be e.utracted from the chaotic attractor. This means that chaotic systems require 

less control force, and therefore are easier to control. Furthemore, locking onto dif- 

ferent orbits requires only a small change in the way the control parameter is varied, 

so stabilizing a chaotic system also enables us to switch between different periodic 

modes easily. This technique has been extensively studied, and experirnentally ver- 

ified [8, 121 over the past ten years. The remaining issue to address is that systems 

stabilized in this manner may exhibit very long transient motion. 

The other technique is the targeting algorithm [51, 52, 71. Instead of locking the 

system onto a single trajectory we try to keep i t  on desired path by slightly pushing 

it from one unstable orbit to another, by a sequence of time dependent parameter 

variations. The idea of hopping from one trajectory to another is not compietely 



new. In celestial mechanics scientists have been using gravitational assistance to get 

spacecraft to the destination point for a long time. 

Detailed knowledge about specific chaotic behavior, such as that provided by sym- 

bolic dynamics analysis, is absolutely essential for designing efficient control mecha- 

nisms, using both of these techniques. We need to be able to identi& all low period 

orbits within the attractor, or if necessary to modify chaos by suitable change of 

system parameters in order to obtain orbits we need. Let us further elaborate these 

ideas using the example of a double pendulum control fiom Chapter 5. 

6.1 Double Penduium Control Revisited 

Instead of using a Lyapunov controller (5.13) let us apply a simple h e a r  controller 

to the double pendulum system: 

We set the control gains kdl = kd2 = 20, and Vary the other two, kpl and kp2 £rom 

zero onwards. We study the evolution of the dynamics for such a system by observing 

the change of leading Lyapunov exponent with the change of control parameters. We 

notice (Fig. 6.1) that for low values of control parameters the leading Lyapunov 

exponent is negative, therefore the attractor for the system is a stable limit cycle. 

With a relatively small increase of control gains such a b i t  cycle changes its stability, 

and at some places in parameter plane kpl-kpp it evolves into a chaotic attractor. AS 

we further increase the control gains, motion along a stable limit cycle is restored. 

To have a closer look at these processes we plot phase space diagrams in 81-81 and 

82-è2 planes (Fig. 6.2). For s m d  control gains, the torque created by the controller 

is smaller than the torque due to gravity, so the limit cycle we obtain lies left or right 

of the desired position, depending on the initial condition. For control torques that 



Figure 6.1: Leading Lyapunov exponent plotted against control parameters kpl and 

a p 2  - 



are relatively close, but stiU smaiier than, the torque of gravity, perturbation of the 

base point causes the system to occasionally escape fiom one potential well and get 

caught by another, so the motion becomes chaotic. By increasing control gains over 

t hese values we eventuaUy obtain satisfactory stability around the desired position 

such as one shown in Figures 6.2e and 6.2f. 

It appears from Figure 6.1 that if we are able to control the double pendulum 

system when it exhibit chaos we would need much smaller control gains than if we 

use a linear or Lyapunov controller. Since algorithms for controlling chaos require 

a miniscule control torques we infer that we can stabilize this system with control 

torques which total less than the gravity torque acting upon it. This means that 

controlling a chaotic double penduhm with base point perturbation requires less 

control torque than controlling one with fixed base point. This is in agreement with 

experiment which every one of us can easily conduct. Try to stay still, without moving 

your feet at all for, Say, ten minutes, and try to  walk slowly for the same amount of 

time. The more exhausting task is undoubtedly to  stand still, meaning that our body 

spends more energy in keeping our balance when we stand than when we walk slowly. 

Although the double pendulum is a very crude model of human walk we shall go one 

step further and assume that some sort of chaos control is indeed what helps us keep 

our balance. The fact that our body is a highly nonlinear system, and that torques 

produced by our muscles are much closer to those of a chaotic controller than those 

produced by a Lyapunov controller make our assumption credible. It is, therefore, 

quite possible that by studying chaos control in this model we may learn more about 

the dynamics of a human body. Such research may be applied, for example, towards 

design of prosthetic devices. 



Figure 6.2: Phase plane projections for lower and upper link respectively at kpl = 900 

kpl = 260, (a)  and (b);  hl = 1050 kpl = 270, (c )  and (d ) ;  kpl = 3000 kpi = 800, (e)  

and (f). 



6.2 fiture Prospects 

Chaos control of a double pendulurn mode1 of human waik is indeed a very promising 

research topic. However there are a few obstacles along the way. Both the OGY 

and targeting algorithm are at their early stages of development, and there are some 

serious issues to be addressed such as long transient behavior and robustness of con- 

trollers. Also, symbolic dynamîc theory is developed for 1- and 2-dimensional maps 

only, and extending it to more than two dimensions is not a simple task at ail. A l l  

of these problems are currently studied by numerous scientists worldwide, and for 

some of those there may not be a solution. In this thesis we studied some fundamen- 

ta1 problems along this h e  of research. We demonstrated that symbolic dynamics 

analysis can be successfully extended to a dynamical flow describing a penodically 

driven mechanical system, and we improved "conventional" control theory and sta- 

bility analysis by applying methods of chaotic dynamics. 



BIBLIOGRAPHY 

[l] M. Abramovitz and 1. A. Stegun, "Handbook of Mathematical Functions", p. 727, 

(New York, Dover, 1965). 

[2] Alligood, K. T., Sauer, T. D., Yorke, J. A. (1997). Chaos, an Introduction to 

Dynamical Systems. Springer-Verlag New York, Inc. 

[3] Arneodo, A., Coullet, P., Tresser, C., Libchaber, A., Maurer, J. and d'Humieres, 

D. (1983). "On the observation of an Uncompleted Cascade in a Rayleigh-Bénard 

Experiment" , Physica, 6D, 385-92. 

[4] Baker, G. L. and Gollub, J. P. (1996). Chaotic Dynamics. Cambridge University 

Press. New York 

[5] Benettin, G., Galgani L., Giorgilli A. and Strelcyn J. (1980) "Lyapunov Charac- 

teristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; 

A Method for Computing ,411 of Them" . Meccanica, Vol. 15, No. 1, 9-19 

[6] Binruo, W., Zhou-jing, Y., Blackburn, J. A., Vik, S., Smith, H. J. T. and Neren- 

berg, M. A. H. (1988). "Analog simulation of coupled superconducting weak 

links: Locking and chaos", Phys. Rev. B, Vol. 37, No. 7, 3349-58. 

[7] Boccaletti, S., Farini, A., Kostelich, E. J. and Arecchi, F. T.(1997). "Adaptive 

targeting of chaos", Phys. Rev. E55, no. 5, part A, R4845-R4848. 

[8] Cristini, D. J. and Collins, J.  J. (1995). Phys. Rev. Lett. 75, p. 2782. 



[9] Cvitanovié, P., Gunaratne, G. H. and Procaccia, 1. (1988)- "Topological and 

rnetric properties of Hénon-type strange attractors", Phys. Rev. A38, p. 1503- 

20 - 

[IO] Cvitanovié, P., Artuso, R., Mainieri, R., Tanner, G. and Vattay, G. (2001). 

"Classical and Quantum Chaosy7, w u  .nbi. dk/ChaosBook/, Niels Bohr Institute, 

Copenhagen. 

[Il] Delbourgo, R., Hart, W. and Kenny, B. G. (1985). "Dependance of Universal 

Constants Upon Multiplication Period in Nonlinear Maps" Phys. Rev. A, Vol. 

31, N o l ,  5146. 

[12] Ditto, W. L., Rauseo, S. N. and Spano, M. L. (1990). Phys. Rev. Lett. 65, p. 

3211- 

[13] D'Hurnieres, D., Beasley, M. R., Huberman, B. A. and Libchaber, A. (1982). 

"Chaotic States and Routes to Chaos in the Forced Pendulum" , Phys. Reu. A, 

Vol. 26, NO. 6, 3483-96. 

[14] Ding, M., Grebogi, C., Ott, E., Sauer, S. and Yorke, J. A. (1993). "Estimat- 

ing correlation dimension fiom a chaotic time series: when does plateau onset 

occur?" , Physica, D 69, 40424. 

[15] Myers, M., Wicklin, R. and Worfolk, P. (1992). "Computer Assisted Exploration 

of Dynamical Systems" , Notices of the American Mathemtical Society, 39, p. 

303-9. URL: http://ww.cam.cornell.edu/guckenheimer/dstool.html 

[16] Farmer, J. D. (1982). "Chaotic Attractors of an Infinite-Dimensional Dynamical 

System7', Ph ysica, 4D: 366-393 



[17] Fumer, J. D., Ott, E. and Yorke, J. A. (1983). "The Dimension of Chaotic 

Attractors" , Physica, 7D, 153-180 

[18] Feigenbaum, M. J. (1978). "Quantitative Universality for a Class of Nonlinear 

Transformations", J. Stat. Phys., Vol. 19, No. 1, 25-52 

[19] Feigenbaum, M. J. (1978). "The Universal Metric Properties of Nonhear Trans- 

formations", J. Stat. Phys., Vol. 21, No. 6, 669-706 

[20] Filippov, A. F. (1960). "Differential equations with discontinuous right-hand 

side" , Math Sbornik, Vol. 51, p. 99-128. (English translation: Amer. Math. Soc. 

Translations, 1964, Vol 42, p. 191) 

[21] Filippov, A. F. (1979). "Differential equations with second members discontinu- 

ous on intersecting surfaces7', Differentialnye Urauneniya, Vol. 15, p. 1814. (En- 

glish translation: Differential Equations, 1980, Vol 15, p. 1292-99) 

[22] Goldstein, H. (1965). Classical Mechanic. Addison-Wesley Publishing Company, 

Inc. 

[23] Grassberger, P. (1981). "On the Hausdorf Dimension of Fractal Attractors" , J. 

Stat. Phys., Vol. 26, No. 1, 173-179 

[24] Grassberger, P. and Procaccia, 1. (1983). "Measuring the Strangeness of Strange 

Attractors" . Physica, 9D, 189-208 

[25] Grassberger, P. and Procaccia, 1. (1983). "Characterization of Strange Attrac- 

tors", Phys. Rew. Letters, Vol. 50, No. 5, 346-9. 

[26] Grassberger, P. and Procaccia, 1. (1984). "Dimensions and Entropies of Strange 

At tractors fkom a Fluctuating Dynamics Approach" , Physica 13D, 34-54. 



[27] Grassberger, P. and Kantz, H. (1985). "Generating Partitions for the Dissipative 

Hénon Map", Phys. Lett. 113A, p. 235. 

[28] Grebogi, C., Ott, E. and Yorke, J. A. (1983). "Chaotic Attractors in Crises", 

Phys. Rev. Lett., Vol- 48, No. 22, 1507-10 

[29] Grebogi, C., Ott, E. and Yorke, J. A. (1983). "Crises, Sudden Changes in Chaotic 

-4ttractors and Transient Chaos", Physica, 7D, 181-200 

[30] Grebogi, C., Ott, E., Pelikan, S. and Yorke, J. A. (1984). "Strange Attractors 

That -4re Not Chaotic" , Physica, 13D, 261-268 

(311 Greene, J. M. and Kim, J. S. (1987). "The Calculation of Lyapunov Exponents" , 
P h  ysica, 24D, 213-25. 

[32] Gu, Y. (1987). Phys. Lett. A124, p. 340. 

[33] Gwinn, E. G. and Westervelt, R. M. (1985). "Intermittent Chaos and Low- 

Frequency Noise in the Driven Damped Pendulum", Phys. Rew. Letters, Vol. 54, 

NO. 15, 1613-6 

[34] Gwinn, E. G. and Westervelt, R. M. (1986). "Fractal Basin Boundaries and 

Intermittency in Driven Damped Pendulum , Phys. Rev. A, Vol. 33, No. 6 

[35] Haken, H. (1983). "At Least One Lyapunov Exponent Vanishes If the Trajectory 

of an Attractor Does Not Contain a Fked Point", Physics Letters, Vol. 944, No. 

[36] Hansen, K. (1986). Ph. D. Thesis, University of Copenhagen, Denmark. 

[37] Hao Bai-lin, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, 

( World Scientific, Singapore, 1989). 



[38] Hao, B.-L., Liu, J.-X. and Zheng, W.-M. (1998). "Symbolic dynamics analysis 

of the Lorenz equations", Phys. Rev. E57, p. 5378-96. 

[39] Hao, B .-L. (1998). UApplied S ymbolic D ynamics" , Chao-dyn/9806025. 

[40] Hénon, M. (1976). Commun. Math. Phys. 50, p. 69. 

[41] Hilborn, R. C .  (1994). Chaos and Nonlinear Dynamics. Oxford University Press, 

Inc. New York 

[42] Hirsch, M. W. and Smale, S. (1974). Dzfferential Equations, Dynamical Systems, 

and Linear Algebra, Academic Press, Inc. New York 

[43] Huberman, B. -4. and Rudnick, J. (1980). LLScaling Behavior of Chaotic Flows" , 
Phys. Rew. Letters, Vol. 45, 1546 

[44] Ito, R. (1981). Math. Proc. Camb. Phil. Soc. 89, p. 107. 

[45] Jakobson, M. V. (1981). "Absolutely Continuous Invariant Measures for One- 

Parameter Families of One-Dimensional Maps" , Comm. Math. Phys. 81, p. 39. 

[46] Kaiser, D. (1997). Phys. Rev. D56, p. 706. 

[47] Kaiser, D. (1999)- Phys. Rev. D59, p. 117901. 

[48] J. L. Kaplan and J. A. Yorke, Lecture Notes in Mathematics, Vol. 730, 204-227, 

Springer-Verlag, Berlin (1979). 

[49] Kobes, R., Liu, J-. X. and Peld, S. (2001). "Analysis of a Parametrically Driven 

Pendulum7' , Phys. Rev. E63, p. 036219. 

[50] Kohan,  L., Linde, A. and Starobinsky, A. (1994). Phys. Reu. Lett. 73, p. 3195. 



[51] Kostelich, E. J., Grebogi, C., Ott, E. and Yorke, J. A.(1993). "Higher- 

dimensional targeting", Phys. Reu. E47, no. 1, p. 305-315. 

[52] Kostelich, E. J. and Barreto, E. (l997). "Targeting and control of chaos", Math. 

Model. 8, Control and chaos (Honolulu, HI, l995), p. 158-169, Birkhuser Boston, 

Boston, MA, 1997. 

[53] Landau, L. D. and Lifshitz, E. M. (1976). Mechanics, Volume 1 of Course of 

Theoretical Physics. Pergamon Press Ltd. New York 

[54] F. Ledrappier, Commun. Math. Phys. 81, 229-238 (1981). 

[55] Liu, J.-X. and Zheng, W.-M. (1995). Commun. Theor. Phys. 23, p. 315. 

[56] Liu, J.-X., Zheng, W.-M. and Hao,B.-L.(1996). "From Annular to Interval Dy- 

namics: S ymbolic Analysis of the PeriodicaJly Forced Brusselat or", Chaos, Soli- 

tons and Fractals 7 ,  p. 1427-53. 

[57] Liu, J.-X., Wu, 2.-B. and Zheng, W.-M. (1996). Commun. Theor- Phys. 25, p. 

149. 

[58] Lorenz, E. N. (1984). "The Local Structure of a Chaotic Attractor in Four Di- 

mension" , Physica 13D, 90-104. 

[59] Lozi, R. (1978). J. de Physique 39C, p. 9. 

[60] Lundqvist , S. (1988). "Chaos, Order, Patterns, Fractals - An OverviewY7 , in Order 

and Chaos in Nonlznear Physical Systems, ed. Lundqvist, S., blarch, N. H., Tosi, 

M. P. Plenum Press, New York 



[61] MacDonald, A. H. and Plischke, M. (1983). "Study of the Driven Pendulum: 

Application to Josephson Junction and Charge- Density-Wave Systems" , Phys. 

Rev. B27, No. 1, 201-11. 

[62] Manneville, P. and Pomeau, Y. (1979). "Intermittency and the Lorenz Model", 

Physics Letters, Vol. 7 5 4  No. 1,2, 1-2 

[63] McCauley, J. L. (1988). ccShift Maps and Chaos in Consemative Systems" , Phys- 

ica Scripta, Vol. 20, 21-33- 

[64] McDonald, S. W., Grebogi, C., Ott, E. and Yorke, J. A. (1985). "Structure and 

Crises of Fractal Basin Boumdanes", Physics Letters, Vol. IOTA, No. 2, 51-54. 

[65] McDonald, S. W., Grebogi, C., Ott, E. and Yorke, J. A. (1985). "Fractal Basin 

Boumdaries", Physica 17D, 125-153. 

[66] Metropolis, M., Stein, M. L. and Stein P. R. (1973). J. Comb. Theo. A15, p. 25. 

[67] Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, Part I, 

McGraw-Hill, New York, p. 557. 

[68] Nusse, H. and Yorke, J. A. (1998). Dynamics: Numericul Exploration, Springer- 

Verlag New York, Inc. 

[69] Ott, E-, Grebogi, C. and Yorke, J. A. (1989). ccControlling Chaos7', Phys. Rev. 

Letters 64, No. 11, p. 1196. 

[70] Ott , Edward (1993). Chaos in D ynamzcd Systerns. Cambridge University Press, 

New York 

[Tl] Paden, B. E. and Sastry, S. S. (1987). "A Calculus for computing Filippov's 

differential inclusion with application to the variable structure control of robot 



manipulat ors" , IEEE Transactions on Circuits and Systems, Vol. CAS-34, No. 

1, p. 73-82. 

[72] Peitgen, H., Jurgens, H. and Saupe, D. (1992). Chaos and Fractab, New fmntiers 

of Science. Sprïnger-Verlag New York, Inc. 

[73] PeleS, S (2000). "Analysis of a Periodically Driven Mechanical System", Prog. 

The. Phys. Sup. 139, p. 49ô-506. 

[74] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). 

Numerical Recipes in C, The Art of Scientific Computing. Cambridge University 

Press, New York 

[75] Rowlands, G. (1988). "An introduction to  the Properties of One-Dimensional 

Difference Equations", in Order and Chaos in Nonlinear Physical Systems, ed. 

Lundqvist, S., Mmch, N. H., Tosi, M. P. Plenum Press, New York 

[76] Russell, D. A., Hanson, J. D. and Ott, E. (1980). "Dimension of Strange -4ttrac- 

tor7', Phys. Rev. Letters, Vol. 45, No. 14, 1175-8. 

[77] Schuster, H. G. (1995) DeterminOstic Chaos. VCH Verlagsgesellschaft mbH. 

Weinheim, Germany 

[78] Sharkovskii, A. N. (1964). "Coexistence of Cycles of a Continuous Map of a Line 

Into Itself", Ulcr. Mat. 2. 16, p. 61. 

[79] Shevitz, D. and Paden, B. (1994). "Lyapunov stability theory of nonsmooth 

systems" , IEEE Transactions on Automatic Control, Vol. 39, No. 9, p. 1910-14. 

[80] Shimada, 1. and Nagashima, T. (1979). "A Numerical Approach to Ergodic Prob- 

lem of DissipativeDynamical Systems" , Prog. The. Physics, Vol. 61, No. 6, 1605- 

16. 



[81] Smith, H. T. J. and Blackburn, J. A. (1994). "Multipenodic Orbits in a Pendu- 

lum with a Vertically Oscillating Pivot", Phys. Rev. E, Vol. 50, No. 1. 

[82] Thompson, J. M. T. (1989). "Chaotic phenornena triggering the escape £kom 

potential well", Proc. R. Soc. Lond. A 421, p. 195-225. 

[83] Vetterling, W. T., Teukolsky, S. A., Press, W. H. and Flannery, B. P. (1992). 

Numerical Recipes, Example Book (C), Cambridge University Press, New York 

[84] Wolf, A., Swift-, J. B., Swuiney, H. L., and Vastano, J. A. (1984). "Determining 

Lyapunov Exponents Çom a Time Series". Phys2ca, 16D, 285-317 

[85] Wolf, A. (1986). "Quantifying Chaos with Lyapunov Exponents", in Chaos, ed. 

Holden, A. V. Princeton University Press, Princeton, New Jersey 

[86] Wu, Q. and Thornton-'Ihunp, A. B. (19%'). 'cControl of base excited inverted 

pendulum with two degrees of rotational freedom", J. Franklin Inst., Vol. 3348, 

NO. 1, p. 63-92. 

[87] Wu, Q., Sekhavat, P., Peles, S., Abeshanab, R.F., and Sepehri, N. (2001). 

"An Improved Design Procedure of Lyapunov Feedback Control" , Accepted for 

IEEE International Symposium on Computational Intelligence in Robotics and 

Automation (IEEE CIRA 2001). 

[88] Wu, Q., Thornton-?himp, A. B. and Seperi, N. (1998). "Lyapunov stability 

control of inverted pendulums with general base point motion", Int. J. Non- 

Linear Mechanics, Vol. 33, No. 5, p. 801-818. 

[89] Xie, F.-G., Zheng, W.-M.and Hao, B.-L. (1995). Commun. Theor. Phys. 24, p. 

43. 



[go] Zhcng, W.-M. (1991); Int. J. Mod. Phys. 5B, p. 481. 

Zheng, W.-M. (1994). Chaos, Solitons and Fractals 4,  p. 1221. 

[91] Zheng, W.-M. and Liu, L X .  (1994). Phys. Rzv. E50, p. 3241. 

[92] Zheng, W.-M. and Liu, J.-X. (1995). Phys. Rev. E51, p. 3735. 

[93] Zubov, V. 1. (1964). Methods of A. M. Lyapunov and Their Application. P. 

Noordhoff Ltd., Groningen, Net herlands 



SOURCE CODE FOR NUMERICAL EXPERIMFNTS 

A.l Note on Numerical Methods 

Numerical experiments have been essentid part of o u  research. In order to ensure 

that our results are not a aumerical artifact we used dserent software for the numer- 

ical analysis, such as commercial package Dynamics 2 [68] or a fiee software package 

DsTool [15], and utilized dinerent algorithms and numerical integrators. We also de- 

veloped Our own software, using Numerical Recipes library [74, 831. Al1 numerical 

results presented in this thesis were obtained and codimed using at least two differ- 

ent methods. Here we present source code of the software we developed for internd 

use within our research group. 

A.2 Program for Creating Bifùrcation Graphs 

# inchde  Kstdio . h> 

# inchde  <math. h> 

Xinclude "nr.hW 

#include "mut  il. h" 

#define P i  3.1415927 

#define N 3 

#define NKOR 500 

#def ine a 1.1 



float dxsav=O.O, *xp, **yp, q, qlz3.2, q2=3.8, korak; 

int kmax=O, kount; 

void derivs (f loat x, f loat y , f loat dydxn ) 

C 

dydx Ci] = -y Ci] /q-sin(y [2] ) -r*a/q+(l . O+r) /r*sin (y C21 -y Cal ) ; 
dydxC21 = y D 1  ; 

dydxC31 = a; 

1 

int main (vo id) 

int i, j ,nbad,nok; 

float eps=l.Oe-4, hl=0.1, hmin=0.0, xl=O.O, x, *ystart. step; 

FILE *tocke, *f open0 ; 

korak = (q2-ql) /NKOR; 

q=q1; 

for (i=l ; i<=NKOR; i++) ( 



ystart[i]=3.0; /* 3 or O */ 
ystartC21=3.0; 

ystart c33 =o. O; 
x=xl ; 

step = 2.O*Pi/a; 

for (j=l; j<=200; j++) < 
odeint(ystart,N,x,x+step,eps,hl,hmin,énok,~bad,derivs.rkqs); 

if (ystart [31>2*Pi) ystart C31 -= 2*Pi ; 

if (f abs (ystart [2] ) >Pi) 

ystart [21=ystart~2]-2.O*Pi*fabs(ystartC2])/ystart[21; 

if (j>170) fprintf (tocke. "%f Xf\n",q,ystart[l] ; 

x += step; 

3 

q += korak; 

f ree,matrix(yp, l,lO, 1,501 ; 

free,vector(xp,l,SO); 

f ree-vector (ystart , 1 , N) ; 

f close (tocke) ; 



A.3 Program for Calculating Power Spectrum 

#define P i  3.1415926 

#define N 3 

#define NSTEP 2048 

f l o a t  dxsav, *xp, **yp; 

int kmax, kount ; 

vo id  derivs (f l o a t  x ,  f loat y u  , f loat dydx ) 

dydx C l ]  = -y C l ]  /q-sin(y [2] ) -omegaD+r/q+ (1 .O+r) /r*sin(y[2] -y C31) ; 

dydx C21 = y Cl1 ; 

dydx[3] = ornegai); 

void f af ut (f loat *glava, long NN, f loat Delta) 

< 



long i; 

i n t  isign; 

float t,*data,*dcmp,*dfft; 

FILE *f open0 , *tocke , *tacke, *macke; 

datavector (1, NN*2) ; 

dcmp=vector(l,NN*2); 

dfftvector(l,NN*S) ; 

data = glava; 

for (i=1; i<NN*2 ; i+=2) { 

dcmp Ci] = dff t; [il = data [il ; 

dcmp[i+l] = dfft [i+lJ = data[i+l] ; 

isign = 1; 

fouri(data,NN,isign); 

fourl(dfft,NN,isign); 

isign = -1; 

fourl(data,NN,isign) ; 

fprintf(rnacke,"%f %f\nU,O-O,-lO.O); 

for (i=l ; i<NN; i+=2) < 



fprintf (tacke. "%f Xf \n" . ci-1 .O) /l.O*Delta. dcmp Ci] ) ; 

fprintf(to~ke,~'Xf Xf\n'1.(i-1.0)/2.0*Delta, data[i]/NN); 

f printf (macke, "%f %f \nl'. Pi* (i-1 . O) / (NN*Delta)  /omegaD, 

log(sQR(dfft Cil /NN)+SQR(dfft Ci+1] /NN) /log(10.0) ; 

3 

f close (tacke) ; 

f close (tocke) ; 

f close (macke) ; 

free-vector (dcmp, 1, NN*2) ; 

free-vectorcdata, 1,NN*2) ; 

free,vector(dfft,l,NN*2); 

int main (void) 

< 
int nbad, nok; 

float eps=l.Oe-4, hl=O.i, hmin=O.O; 

long i; 

float *data, *ystart ,  delta, x,  xl=O.O, x2=256.0*Pi/omegaD; 

data = vector(1,NSTEP) ; 

ystart = vector(1 ,NI ; 

xp = vector(1,lOO) ; 

yp = matrix(1,10,1,~00); 



kmax=lO ; 

delta = (x2-xi) /NSTEP ; 

dxsav = delta/4.0; 

x = xl; 

for(i=l;i<NSTEP*2;i+=2)( 

odeint ( y s t a r t  , N, x. .+delta, eps ,hi. hmin. h o k ,  Onbad, derivs ,bsstep) ; 

if (i>NSTEP) ( 

/*printf (I1%4ld %41d fr.12.6f \nW , i , i-NSTEP, yp [2] ikountl ) ; */ 
data Ci-NSTEP] = ystart 111 ; 

data [~+~-NSTEP] = 0.0 ; 

x += delta;  



A.4 Program for Calculating Lyapunov Spectrum 

#inchde <stdio.h> 

# inchde  <math. h> 

#inchde "m. hl' 

# inchde  "mut il. h" 

#define P i  3.1415926 

#def ine N 3 

#define NN 12 

#define NSTEP 40000 

#define omegaD 1 . 2  

#define r 0 -9 

#def ine q 1 .8  

f l o a t  dxsav, *xp, **yp; 

int kmax, kount ; 

void derivs (f loat x, f loat y u  , f loat  dydx n ) 
< 

int i; 

dydx Cl] = -y[1] /q-sin(yc2J ) -r*omegaD/q+ (l+d /r*sin(yc33 ) ; 

dydx C23 = y ; 

dydxC31 = yC11-omegaD; 

for  (i=0 ; i<=2 ; i++) ( 



int  main (void)  

C 

i n t  i, j ,k,l,nbad,nok; 

f l o a t  eps=i.Oe-5, hl=0.1, hmin=0.0, xi=O.O, x 2 ;  

f l o a t  step,+ystart,*GSC,*lambda,*lyap,*Norm; 

F I L E  *tocke , *f open0 ; 



for (i=l ; i<=N ; i++) ( 

ystart[(~+l)*i] = 1.0; 

lambda[i] = 0 . 0 ;  

for (i=i ; i<=NSTEP ; i++) ( 

odeint (ystart ,NN,xl, xi+step ,  eps ,hl ,hmin,&nok ,&nbad,derivs ,rkqs) ; 

/*if (ystart [3] >2*M,PI) ystart [3] -= S*M-PI; */ 
if Cf abs (ystart C21) >M,PI) ( 

ystart C23 =ystart C21-2.0*M-PI*f a b  (ystart C21) /ystart C21; 

fprintf (tocke, "\n") ; 

> 

fprintf (tocke,"%f %f\n",ystart(2] ,ystartCl]); 

for (j=l;j<=N;j++) ( 

if (j>l> i 

for (k=l;k<j;k++)C 

GSC[k] = 0.0; 

for (l=i;l<=N;l++) 

GSC [k] += ystart [N*l+ j] *ystart CN*l+k]; 

for (l=l ; l<=N ; 1++) 



for (k=1; k< j ; k++) 

ystart[N*l+j] -= GSC[k]*ystart[N*l+k]; 

> 

Norm[jl=O.O; 

for (k=i;k<=N;k++) 

NorrnCjl += SQR(ystart CN*k+jl) ; 

NormCjl = sqrt(Norm[j]); 

for (k=l;k<=N;k++) 

ystart [N*k+j] /= NormCj] ; 

for (j=l; j<=N; j++) 

lambda[j] += log(NormCjl); 

for (j=l; j < = N ;  j++) lyap [j]=lambda[j] /(xl+step) ; 

if (i%1000 == 0) printf("X12.2f X12.6f X12.6f X12.6f X12.6f Xl2.6f\nM, 

XI. ïyap Cl1 . lyap C21. lyap C31, lyap Dl +lyap C21 +lyap Cs1 , l/q) ; 
xi += step; 

1 

printf("Lyapunov dimension is: %f\nM. 

2.0+ (lyap El1 +lyap C21) /f abs (lyap C31)) ; 

free,rnatrix(yp,l,20,1,100); 

free,vector(xp,1,100); 

free,vector(ystart , 1 ,NN) ; 
free-vector (GSC, 1 , E l )  ; 

free-vector (Nom, 1 ,N) ; 



free,vector(lambda,l,N); 

free-vector (lyap, 1 ,NI ; 

f close (tocke) ; 



A. 5 Program for Finding Basins of Attraction 

#define N 3 

#define NKOR 100 

#define NSTEP 1000 

#define Pi 3.1415927 

f l o a t  dxsav=O.O, *xp, **yp; 

int kmax=O, kount; 

void derivs (f loat x ,  f loat y , f loat dydx ) 

< 
dydx Cl] = -y[l] /q-sin(yC21) -omega~*r/q+(l+r) /r*sin(yC23 -y C31) ; 

dydx C23 = y Cl] ; 

dydxC31 = omegaD; 

1 

float dotplot ( f loat  u, float v) 



C 

int i,j,nbad,nok; 

f loat  eps=l.Oe-4, hl=O.l ,  hmin=0.0, xl=O.O, x; 

f loat  *ystart, step, w; 

ystart Cl] =v; 

ystart C21 =u; 

ystart C31 =O. 0 ; 

w=o ; 

step = 2.0*Pi/omegaD/iO.O; 

x=xl ; 

f o r ( j = i ;  j<=ISTEP; j++) < 
o d e i n t ( y s t a r t , N , x , x + s t e p , e p ~ , h l , h m i n , ~ ~ ~ ~ ~ , r k q ~ ) ;  

if (j > 500) w += ystart  Cl] ; 

x += step; 

3 

f ree,matrix(yp, 1,10,1,50) ; 

f ree-vector (xp, l,5O) ; 

free,vector(ystart , 1  ,NI ; 

return w/(NSTEP-500.0); 



void main(void) 

€ 

float u,v, VI=-3.0, ~2~3.0, stepu, ut=-Pi, u2=Pi, stepv; 

int i,j; 

FILE *tocke , 4f openo ; 

tocke = f~pen(~~basin.dat","w"); 

for(i=O;i<=NKOR;i++)( 

for(j=O; j<=NKOR; j++)( 

/*printf (l'%f \nu' , dotplot (u, v) ) ; */ 
if (dotplot(u,v) > -0.05) /* 0.545 */ 

fprintf (tocke,"%f %f \nu ,u,v) ; 

u += stepu; 

1 
v += stepv; 

u = ul; 

1 

f close (tocke) ; 



A.6 Program for Finding Phase Locked Modes 

#define N 3 

#define NKOR 200 

#define NSTEP 100 

#def ine P i  3.1415927 

float dxsav, *xp, **yp, q, ql=0.8, q2=1.5, korak; 

i n t  kmax, kount; 

void derivs (f l o a t  x. f loat y , f loat  dydx ) 

C 

dydx [il = -y C l ]  /q-sin(y C2] ) -omegaD*r/q+ ( l+r )  /r*sin (y C21 -y 131 ) ; 

dyàx C21 = yC11 ; 

dydxC31 = omegaD; 

> 

f loat phaselock(void) 



int i, j,nbad,nok; 

float eps=l.Oe-4, hl=0.1, hmin=0.0. x1=0.0. x2=360.0*Pi/omegaD; 

float *ystart, step, a; 

ystart Cl1 =3.0; 

ystart C23 =O. 0; 

ystart C3l=O.O; 

w=o ; 

step = (x2-xl) /NSTEP ; 

dxsav=step/4.0; 

f o r ( j = i ;  j<=NSTEP; j++) { 

odeint (ystart ,N,xl ,xl+step,eps ,hl ,hmin,&nok,&nbad,derivs ,rkqs) ; 

if (j > 50) w += ystartC11; 

xi += step; 

3 



void rnain(void1 

< 
int i , j ;  

FILE *tocke , *f o p e n o  ; 

tocke = f ~ p e n ( ~ l o c k . d a t ~ , ~ w ~ ) ;  

for (i=l; i<=NKOR; i++) ( 

fprintf  (tocke, "%f %f \n" ,q, phaselocko ) ; 

q += korak; 

1 

f close(tocke) ; 

> 



A. 7 Program for Calculating Capacity Dimension 

#def ine Pi 3,1415927 

double capacity(char imea, float maxvalue, float minvalue, float epsilon) 

€ 

int i,j,k,l,n=O,**grid; 

long nbox,npoints=O; 

float x, y; 

double S=O.O,p; 

FILE *f open() , *tocke ; 

nbox = l+(int)((maxvalue-minvalue)/epsilon); 

printf ("nbox=%ld\nU , nbox) ; 



npoints++; 

k = I+ (int) ((x-minvalue) /epsilon) ; 

1 = l+ (int) ( (y-minvalue) /epsilon) ; 

grid [k] Cl] ++ ; 

3 

printf ("Broj tocaka u fajlu je Xd\ntl.npoints) ; 

for(i=l;i<=nbox;i++) 

for(j=l; j<=nbox; j++) 

if (gridci] [j] != O) n++; 

free-imatrix(grid,l,nbox.l.nbox); 

return log( (double) n) /log(2.0) ; 

> 

vo id main (vo id) 

€ 

int i; 

double eps,t,tl=-?.0,t2=-2.O.step; 

char ime [li] ="pcr330. datu ; 

FILE *f open () *macke ; 

macke=f open ( I1capa03 . dat II , I1w1I ; 
step=f abs (t2-t  1) /GO. 0 ; 

t=tl; 

for (i=l ; i<=6O ; i++) ( 

eps=exp(t*log(2. O) ; 

fprintf (macke,"Xf Xf\n14,-log(eps)/log(2.0) ,capacity(ime,~i,-~i~eps)) ; 

printf (I1eps=%lf \nu' , eps) ; 



t += step; 

3 

f close (macke) ; 

3 



A. 8 Program for Calculating information Dimension 

double informat ion (char ime O , f loat maxvalue , f loat minvalue, f loat epsilon) 

< 
int i,j,k,l,n=O,**grid,npoînts=O; 

long nbox; 

float x,  y; 

double S=O.O,p; 

FILE *fopen(),*tocke; 

nbox = l+(int)((maxvalue-minvalue)/epsilon); 

printf ("nbox=%ld\nl' ,nbox) ; 

grid=imatrix (1, nbox, 1 ,nbox) ; 

tocke=f opedime , ' Y )  ; 



npoints++; 

k = l+(int)((x-minvalue)/epsilon); 

1 = l+(int)((y-minvalue)/epsilon); 

grid [k] Cl] ++ ; 

1 

printf ("Bro j tocaka u f ajlu je Xd\nI1 ,npoints) ; 

for (i=l; i<=nbox; i++) 

for(j=i; j<=nbox; j++) 

if (grid[i][j] != O ) {  

p = gridci]  CjJ/((double) npoints); 

s -= p*log(p) /log(2 O) ; 

1 

f ree,imatrix(grid, 1, nbox, 1, nbox) ; 

return S; 

> 

void maincvoid) 

€ 

int i; 

double eps,d,t,t1=-7.0,t2=-2.0,step; 

char ime Ci 11 ="pcr330. dat " ; 

FILE *f open 0 , *macke ; 

macke=f open (lu infoO3. dat I' , "VI') ; 

step=(t2-tl) /60 .O; 

t=tl; 

for (i=l; i<=6O ; i++) ( 



eps=exp (t*log(2 0 )  1 ; 

fprintf(macka,uxf xf\nfll,-log(eps)/ïog(2.0) ,information(ime,~i,-~i,eps)); 

t += step; 

3 

f close (macke) ; 

1 



A. 9 Program for Calculating Correla tion Dimension 

#include <stdio .  h> 

t include <math. h> 

# inchde  "m. h" 

# inchde  "mut i l .  h" 

f l o a t  *x,*y; 

double correlation<double epsi lon,  long int NPoints) 

C 

long i n t  n=O; 

i n t  i , j ;  

f l o a t  u,v; 

for (i=l; i<=NPoints ; i++) ( 

j=O; 

while(++j < i) 

if (sqrt (SQR(x Ci3 -x Cjl) +SQR(yCil -y C j 3 )  ) <= epsilon) n++; 

3 

printf ("n=%d\nU , n) ; 

retuni -log((double) n/(((NPoints-1. O) *NPoints)/2. O)) / log(2 .O) ; 

3 

int main (void) 

< 



i n t  i ;  

long i n t  NPoints; 

f l o a t  u,v; 

double eps , t , t 1=-7.0 , t2=-2. O ,  step ; 

FILE *f open0 , *macke , *tocke ; 

tocke=f open(Itpcr330. dattr , ItrIt) ; 

macke=f open ("corr . dat II , IIw'') ; 

x=vector(l ,#)  ; 

y=vector(l,N) ; 

while (f scanf (tocke , I t % f  %f I l ,  &u, &v) ! = EOF) < 
NPoints++; 

x [NPointsl =u; 

y [NPoints] =v; 

> 
printif (ItBro j tacaka u fajlu je: Xd\nIt ,NPoints) ; 

for ( i= i ; i<=30; i++) (  

eps=exp (t*log(2.0)) ; 

printf  ( eps=Xlf \n" , eps) ; 

fprintf (maclce, "W %f \ d l ,  -log(eps) /log(2.0) , correlat ion(eps , NPoints) ) ; 

t += s tep;  



f ree-vector (x, 1, NI ; 

f ree-vector (y, 1, N) ; 

f close (macke) ; 

f close (tocke) ; 

return O; 

3 




