
-4 FRXMEIirORK FOR EXPERIMEXTS IS CSPS

George Katsirelos

A thesis submitted in conformity with the requirements
for the degree of MSc

Graduate Department of Cornputer Science
University of Toront O

Copyright @ 2001 by George Katsirelos

National Library Bibliothéque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Wellington Street 395, nie Wellington
OttaweON K1AON4 Ottawa ON K1 A W
Canada -da

The author has ganted a non- L'auteur a accordé une licence non
exclusive licence aiiowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distrilmte or seil reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fome de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantid extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission, autoisation.

A framework for experiments in CSPs

George Kat sirelos

iL1 Sc

Graduate Department of Cornputer Science

University of Toronto

200 1

The Constraint Satisfaction Problem (CSP) is an NP-cornplete problem. which allows

flexible and intiiit ive representation of real-world problems.

In this thesis, we present a consistent view of existing search algorithms and variable

ordering heuristics. We t hen examine several aspects of building a CSP solver to accom-

modate t heir requirements in a generic way. We demonstrate the feasibility of using t his

solver to perform experiments in common problems. Finally, we present and examine the

performance of a new heuristic method to manipulate existing CSP models by conjoin-

ing constraints in order to improve their performance when used with the GAC search

algori t hm.

Contents

1 Introduction 1

. 1.1 The constraint satisfaction problem 1

1.2 Applications 2 .

1.2.1 OptirnalGolombRuler 2 .

. 1.2.2 Assembly line sequencing 3

. 1.2.3 Scheduling 3

. 1.3 Research in CSPs 3

. 1.3.1 AIgorithms and Heuristics 4

1.3.2 Representations . 5

. 1.4 Contributions 6

2 Previous Work 8

. 2.1 Backtracking Y

. 2.2 C0nstra.int Propagation 9

. 2.2.1 Localcoosistency 9

. 2.2.2 Forward Checking (FC) 12

. 2.2.3 Maintaining Generalized Arc Consistency(MGAC) 12

. 2.2.4 Maintaining Arc Consistency (MAC) 13

. 2.3 Intelligent Backtracking 14

. 2.3.1 Backjumping(BJ) 16

2.3.2 Conff kt directed Backjumpingf CBJ) t 7

2.3.3 Value specific Cooflict directed Backjurnping (vsCBJ) 18

. 2.4 Combining Constraint Propagation with Intelligent Backtracking 19

. 2.4.1 FCCBJ, GACCBJ 20

. 2.4.2 CFFC,CFGAC 21

39 . 2.4.3 A unified view --
. 2.5 Heuristics 23

. 2.5.1 Why heuristics work (or not) 25

3 Implementation 27

. 3.1 Basic Infrastructure 27

. 3.1.1 Variables :30

. 3.1.2 Consiïaints 32

. 3.2 Algorithms 35

. 3.3 Keuristics 41

4 Experiments 44

. 4.1 Overview 44

. 4.2 Automatic conjunction of constraints 44

. 4.2.1 Why conjoining causes more pruning -15

. 4.2.2 When to conjoin constraints 46

. 4.3 Optimal Golomb Rulers 47

. 4.3.1 Represent at ions 47

. 4.3.2 Results 49

. 4.4 Random 3-SAT instances 56

. 4.4.1 Representations 56

. 4.4.2 Results 56

. 4.5 Conclusions 5s

5 Conciusions 59

5.1 Future Work. 59

A Availability

Bibliography

Chapter 1

Introduction

1.1 The constraint satisfaction problem

A Constraint Satisfaction Problem P is a tuple (V, D, C), where

V is a set of variables

D is a set of domains indexed by variable

0 C is a set of constraints, where each constraint is over a set of variables. denoted

VarsOf(C).

We can assign to a variable V a value x from its domain, which we denote C. c x.

An assignment A is a set {& c r l , . . . , V;, t x,), such that C.; # V;. i # j. This

means that no variable can be assigned more than one value. Mie define C'orsOf (A) to

be {K, ..., Vm}.

A constraint C is a set of assignrnents to VarsOf(C). Each tuple that belongs to

the constraint is said to satisfy it. A constraint is fully instantiated by an assignment

A if VarsOf(C) C VarsOf (A). Moreover A satifies C if the subset A' of A that has

VarsOf (C) = VarsOf (A), satisfies C.

The ardy of a constra.int is 11 VarsOf(C)[l. The arity of a problem is the maximum

arity of its constraints. Therefore, a binary CSP is one that only has biuary or unary

constraints.

Often binary CSPs are represented by a constraint graph. In it, vertices represent

variables of the CSP and edges represent constraints between variables. This represen-

tation has no information about the structure of the individual constraints, but it lends

itself to an analysis of the problem using a graph theoretic approach. Yon-binary CSPs

can be represented using a hypergraph.

A solution to a CSP is an assignrnent of values to al1 the variables. such that it

sat isfies a11 constraints.

The sat isfiabili ty problem is a speciai case of the couetraint satisfaction problern.

where the domains of ail the variables are {O, 11, even though there are other ways to

encode a SAT problem as a CSP [34,%]. A polynomial translation can be performed from

CSP to SAT, as well [34, 151. Therefore? the CSP is an NP complete problem. Hocvever.

there are instances of the problem that are solvable and useful. In fact. CSPs are widely

applicable, as we will see in the next section.

1.2 Applications

1.2.1 Optimal Golomb Ruler

A golornb ruler is a set of n numbers, called marks, such that the n(n - 1)/2 differ-

ences between every pair of them is unique. An optimal golornb ruler is one such that

max, - min, is minimal, where max, and min, are the maximum and minimum

marks, respectively.

I t has been noted that finding an optimal golomb d e r is very hard [31]. even for

s m d l numbers of marks. However, it has applications in many areas of engineering, such

as wireless communications.

This probtem will be discussed in more detaif tater, when we wiH examine how it can

best be represented and solved as a CSP.

1.2.2 Assembly line sequencing

The problem of assembly line sequencing [BI involves finding a sequence that items will

be placed on an assembly lines, while not exceeding the capacity of various resources in

the line and a t the sarne tirne completing the sequence in the srnallest time possible.

This problem obviously has wide applications in rnanufacturing environment S. In

addition, it is possible to come up with numerous variations on the basic problem. such

as:

a Variety for the workers on the line, to maintain their interest and ski11 sets.

Limitations can be set on the possible transitions between items. For example.

for a painting machine, an item that must be painted white should not be placed

immediately after one that should be painted red, so that it does not end up with

a pink color.

1.2.3 Scheduling

The car sequencing problem is a special case of t he scheduling problem [IO], which involves

assigning jobs to machines. There are many constraints that limit the possible solutions

to this problem, including what kinds of jobs each machine can handle and in what

succession, what jobs need to be completed and so on.

In addition, scheduling is a problem that can have a vast nurnber of solutions, al1

acceptable given the constraints. However, only some of them may be desirable.

Therefore, scheduling is suitable for the use of techniques in optimization, as well

as hard and sofi constraints (hard constraints need to be satisfied for a solution to be

reported, whereas soff constraints, when vioIated, increase a penalty value for the solution

and the goal is to minimize the penalty [29].)

1.3 Research in CSPs

Research in the area of CSPs is very experimentally intensive. This is because there is

usually no way to completely determine how a new algorithm or dynamic variable order-

ing heuristic will work wit hout actually trying it in real world problems. Moreover. the

performance characteristics of each algorithm can Vary widely between different prob-

lems. The best way to solve a given problem generally involves choosing a combination

of algorit hm, heuristic and representation. The best representat ion for one algorit hm

may not be the best for another.

1.3.1 Algorit hms and Heuristics

As will be discussed in chapter 2, there are many different approaches to solving CSPs.

The main aspects that affect the efficiency of solving a CSP. given a specific repre-

sentation, are

0 The choice of algorithm

0 The heuristic for choosing which assignment to make next.

Even though theoretical comparisons of algorithms and heuristics are possible. the

actual performance of an algorit hm is a function of the tradeoffs t hat it rnakes and how

effective they are for a given problem. In chapter 2, we will discuss these tradeoffs and

examine how they affect performance.

By far the most challenging aspect of CSPs is coming up with an efficient representation

to solve a CSP. These are the most important features of a representation:

a Number of variables

a Size of domains

a Uniformity of domain sizes

a Number of constraints

a Arity of constraints

a Distribution of constraints in the constraint graph

O Pruning strength of constraints

Al1 the above characteristics influence the effectiveness of a representation. Moreover,

we have to balance other characteristics, depending on the algorithm used. For example.

intelligent backtracking algorithms can deduce better backjumps with certain type of

constraints. Also, we may be able to do more efficient constraint propagation by taking

advantage of domain knowledge. Finally, adding redundant constraints, although it

increases the cost of consistency checks, can prove beneficial by enabling the constraint

propagation algorit hms to perform more pruning.

Consider the example of the n-queens problem [23]. One possible representation is to

represent each square with a variable whose domain is {O, 11, which means that there is

or there is not a queen in that square, respectively. In addition, there will be a constraint

between every pair of variables, that only allows a queen to be placed in both squares if

they do not "see" each other. So, for the Cqueens problem, there will be 16 variables

and 120 binary constraints. In ot her words, t his represent at ion needs 0(n2) miables

and 0 (n 4) constraints.

On the other hand, me cm represent the probkm using one variable for each cotumn

of the chess board. The domain of each variable will be { 1 . . . n), representing the row

where a queen will be placed on that column. We also post a constraint between every

two variables, which will be true if the placement of the queens in the corresponding

columns is such that they do not -seeu each other. In other words, we use O(n j variables

and O (n2) const raints. This representat ion uses much fewer variables and const raints,

by taking advantage of the knowledge that there can be only one queen at each column

of the board.

One common benchmark problem, t hat is much more difficult and realistic t hat the

n-queens problern discussed above, is the Optimal Golomb Ruler problem. Smith et

al. [31] study various represeritations and find that a good representation is one that

has 0 (m 2) variables, instead of O(m), but uses a more efficient constraint propagation

algorit hm. It also uses ternary constraints and one constraint of very !arge arity. whereas

the original representat ion uses quaternary const raints. A t heoretical cornparison showed

that either representation used could, in different situations, be better t han the ot her.

Their empirical results, however, show t hat the representation with ternary constraints

was consistently much better. Moreover, this paper shows that, contrary to comrnon

practice, the Brélaz variable ordering heuristic actually performs worse than a static

lexicographie heuristic for this problem. We will discuss these results again in chapter 4.

1.4 Contributions

It becomes clear that research in the field of CSPs is heavily dependent on access to an

experimental tool. However, there is a wide array of available algorithms, heuristics, as

well as transformations that can be done on a model, so that it is not obvious how to

implement them al1 in a consistent and extensible way.

In this thesis, we present a consistent view of existing dgorithms and heuristics in

chapter 2, examine s d aspects of buitding a CSP soiver to accommodate these and

address them al1 in a generic way in chapter 3. We then demonstrate the feasibility of

using this solver to solve some common benchmark problems, in chapter 4.

The purpose of this work is to provide a framework for supporting the empirical

investigations required to do research in this area.

Chapter 2

Previous Work

Backt racking

One way to generate al1 solutions for a CSP is to generate al1 the possible sets of assign-

ments and discard those that fail to satisfy al1 the coostraints.

The idea behind backtracking [SI is that instead of generating an assignment to the

variables and then checking it, we can check it as we create it. .A backtracking algorithm

assigns a value t o a variable, then tries to assign another variable and so on. With each

assignment that it makes, it makes sure that ail the fully instantiated constraints are

satisfied. It continues until there are no more variables left, in which case it has found a

solution, or a constraint that has been falsified. In the first case it reports the solution

found and continues as if it had failed. In the second case, it tries another value for the

current variable. When al1 values in the variable's domain are exhausted, i t tries the next

value for the previous variable. The search is over when al1 values of the first variable

have been exhausted.

Checking sets of assignments as we build them can Save an exponential amount of tirne

in solving the problem. Consider the case of a problem with n variables, ail of which have

the same domain size d. Consider, furt her, that the backtracking algorithm instantiates

k variabtes when it Ends that this partial assignrnent falsifies some constraint. ft witt now

backtrack, trying other values for the k variables that it has instantiated. The number

of assignments that it has avoided considering is (n - k) d .

Backtracking can be seen as a search in a tree, where each node is a partial assignment

and its children are nodes whose corresponding assignment is the same except th- have

one more assigned variable. The leafs of the tree are complete assignments or assignrnents

that fail to falsify some constraint.

Seen this way, the benefit of backtracking over generate-and-test is that it reduces

the size of the explored search tree by avoiding searching sorne subtrees t hat contain no

solut ion. These subtrees can be of exponential size.

Constraint Propagation

2.2.1 Local consistency

Using any of the algorithms that we will discuss later, the tirne t hat it takes to find a

solution for a CSP depends on the size of the search tree. which is? in the worst case, the

size of the product of the domains of al1 the variables in the problem. CVe can reduce the

size of the search tree by examining the constraints individually and pruning values that

are locally inconsistent .
Local inconsistency is the inverse of local consistency. We will consider the following

three types of local consistency.

0 Node consistency

A problem is node consistent when al1 the values in the domains of its variables

satisfy d unary constraints.

a .4rc consistency [19]

A vdue is arc consistent for a binary constraint when there is a satisfying set of

assignments to the variables of the constraint that contains t his value. A constraint

is said to be arc-consistent when al1 of the vaLues of its variables are arc-consistent.

A problern is arc-consistent when al1 its binary const raints are arc-consistent .

O Generalized arc consistency (201

A value is arc consistent for a constraint when there is a satisfying set of assignments

to the variables of the constraint t hat contains this value. A constraint is said to be

arc-consistent when al1 of the values of its variables are arc-consistent. A problem

is arc-consistent when al1 its constraints are arc-consistent .

When enforcing these forms of local consistency, we find inconsistent values and prune

thern.

Node consistency is easier to implement , as we only have to consider unary const raints.

Therefore, finding node inconsistent values has time complexi ty only O(d) for the domain

of one variable, where d is the size of the variable's domain. Since arc consistency (AC)

deals with binary constraints, it has to examine d2 pairs of values, therefore its complexity

is O(&). Similarly, generalized arc consistency (GAC) has complexity O(dk) , where k is

the arity of the constraint being checked.

On the other hand, since node consistency only considers unary constraints, it can

generate lit t le, if any. pruning. AC considers binary constraints. while G AC considers

all constraints. Each is more powerful and can generate more prunings.

Another thing to note is that AC and GAC have cascading effects. This rneans

that when a value is pruned from the domain of one variable, aII the constraints in

which this variable participates must be reexunined for AC (or GAC). Consider three

variables VI, b, with domains {l, 2,3) and constraints ClV2 = {{1,2), (2,311 and

Czv3 = {{2,3)). Enforcing AC on ClS2 will prune Vi t 3 and L$ t 1. Similarly making

CZJ arc consistent will prune 1/2 + 1, & t 3 and L$ t 1,113 c 2. If, however, we

enforce AC on both of them, pruning & + 3 wiII force reexamination of and that

will cause VI t 2 to be pruned as well.

What we see is a trade-off between processing time for enforcing different types of

local consistency and how much pruning (therefore reduction in the size of the search

tree) t hey achieve.

CVe can further reduce the size of the search subtree below the current node by en-

forcing some form of local consistency at each node [14, %].

When we make an assignment, we effectively reduce the arity of al1 constraints that

this variable participates in by 1. The new constraints are satisfied by the subset of

tuples from the original constraints that contain the value we just assigned. This means

that each assignment can potentially generate new binary and unary constraints, so that

we can apply NC and AC on the subproblem.

The above techniques allow us to view enforcing local consistency as a dynamic pro-

cedure rather than a static one that only occurs before we start solving the problem,

therefore enabling us to reduce the size of the search subtree lurther at each node that

we visit.

Similarly, when we make an assignment, it can be viewed as reducing its current do-

main to a singleton domain. This means that the rest of its values get pruned. Therefore.

rve now have a set of prunings that GAC can propagate.

Note, however, that when a constraint propagation algorithm prunes a variable, it has

done so because it has discovered a reason for its pruning. Therefore, when this reason no

longer exists, these values should be restored to the domain of its variable. That reason

can be cornplex, but invariably contains the assignment that was made when that value

was pruned. Therefore, we introduce the notion of the prune letle1 of a value. When

the assignment made at level I causes a value to be pruned, its prune level is set to i.

When the algorithm backtracks aad undoes the assignment made at 1, al1 values that

nere pruned to level 1, are restored to their original domains.

On the other hand, constraint propagation at each node can rnean that we end up

doing more work than is necessary. This can happen when a constraint propagation

algorithm prunes the dornain of a variable that is never assigned in the subtree below.

In this case, al1 the checks that were made to prune the domain of this variable were

wasted.

2.2.2 Forward Checking (FC)

Forward checking [17] is an algorithm that tries to enforce node consistency at each node

that it visits.

After it makes an assignment t x, it goes over a11 the constraints C in which i(

participates that only have one uninstantiated variable left (after the assignment t x).

For every =lue y of the unassigned variable V,, it takes the current assignment A and

checks the constraint against the assignment A u V, t y. If the check fails, the value y

is pruned from the dornain of V,.

2.2.3 Maintaining Generalized Arc Consistency(MGAC)

MGAC [19] does exactly what its name implies: it enforces generalized arc consistency

at each node ?-kited by the search procedure.

To enforce GAC on a constraint, the algorithm goes over al1 the variables participating

in this constraint. For every value of each variable, it checks to see that there is a tuple

that contains t his value and satisfies the constraint. This is called a supporting tuple for

the value, or simply support. If there is no supporting tuple for a valueo it gets pruned

from the domain of its variable.

To keep the problem GA consistent, the algorithm has to go over al1 the constraints

at least once. When it prunes a value, however, it can mean that another value has lost

its supporting tuple. So, it has to make sure again t hat al1 the values t hat may have had

support on it still have some support, otherwise they must be pruned.

A naive way to do that woufd be to go through al1 the constraints and ensure that

each value in every ciornain has a supporting tuple and repeat the process until no more

values get pruned. This method is called AC-O.

A significantly better way to do that is to rnaintain a queue of pairs < C'V >.

Initially, al1 such pairs are inserted into the queue. The algorithm repeatedly removes

pairs from the queue and checks the GA consistency of the values of V with respect

to C. Whenever a value gets pruned from the domain V, al1 < Cf, Vf > pairs such

that Cr # C, V t E VarsOf(Cf) and V t # V are inserted into the queue if they are not

already there. This way, if a value x of variable V gets pruned and it is possibly part of

a supporting tuple for value x' of variable V', al1 values of Vf are going to be reexamined

for al1 constraints that constrain both V and V t . This method, called AC-3 [19] enforces

GAC much faster than AC-O.

It should be noted that other structures can be used instead of the queue, such as a

stack or a priority queue. That is, the algorithm does not depend on the FIFO property

of the queue.

There are even better ways to keep track of supporting tuples and further improve

AC-3. AC-4 [22] has been proposed and has been proven to be optimal in time cornplexity.

Variations u p to AC-7 have also been proposed (AC-5 [18], AC-6 [4], AC-; [SI, lazy AC-

7 [30]) but they only improve the running time hy a constant factor and have a significant

space cornplexity.

2.2.4 Maintainhg Arc Consistency (MAC)

MAC [19] is just a specid case of MGAC, where only constraints that have two unin-

stantiated variables left are inserted into the queue.

2.3 Intelligent Backtracking

Whereas constraint propagation tries to reduce the size of the search tree, intelligent

backtracking tries to reduce the size of the esplored search tree. That is, it tries to

reduce the number of nodes that it actually visits, even though it does not necessarily

prune any values.

An intelligent backtracking algorithm tries to discover a reason why the current sub-

tree fails to contain a solution. The search can then backtrack far enough to invalidate

this reason. To understand how this can be accomplished, we introduce the concept of

nogoods.

A nogood is a set of assignments that is not part of any solution. Note that any

superset of a nogood is also a nogood.

There are an exponential number of nogoods that an algorithm can learn. The a lge

rithms that we discuss associate each assignment with the level of the search tree where

it was made. The nogoods that they learn are then represented as sets of levels. This

representation restricts the set of nogoods that are learned to subsets of the current

assignment .
In fact, these algorithms learn two kinds of nogoods:

0 A nogood t hat directly violates a constraint .

These are encountered whenever the search finds a value t hat violates a constraint.

They consist of al1 the assignrnents made to variables that belong to the constraint

that was violated.

0 A nogood t hat results from the unioning of ot her nogoods.

We will discuss the following two types of unioning nogoods

- Unioning nogoods that cover the domain of a variable. When we have a set of

nogoods that cover the domain of a variable V, we can union these nogoods

minus the assignments to V and get a new nogood.

In other words, when we exhaust the domain of V and discover a reason for

each of its values to not be a part of any solution, the union of the nogoods

discovered presents a reason why the rest of the assignments made so far

cannot be extended to a solution. This is because a solution has to contain

an assignment to every variable and we have found a reason why there exists

no solution that extends the current assignment with an assignment to V.

- Constraint-filtered unioning. When we have a constraint CvIv2 and a set of

nogoods that cover the support (as defined for GAC) of & t x on V2, we can

get a new good from the union of these nogoods minus the assignments to \$

plus 6 t x. If, for example, the supports of V, c r on 1/2 are t y1 and

V2 + y*, and we have discovered the nogoods

then w e learn the nogood

htuitively, this means that if we have discovered a reason why the current

set of assignments cannot be extended to a solution that contains the set of

supports of t x on 112, then this is also a reason why t h e current set of

assignments cannot be extended to a solution that contains k; t x. This can

be explained by noting that any solution that contains C.; t x also has to

contain its support ing values.

A conflict set for a value x of a variable V is a set of assignrnents A, such that

AU {V t r) is a nogood.

We can also add pruning to an algorithm that maintains conflict sets. Whenever we

discover a conflict set for V i- x, we can prune that value to the deepest level where

a n assignment of the conflict set was made. In other words, when the search discovers

a conflict set C F for V t x' it means that CF U { V e x) is a nogood. As long as all

the reasons for this being a nogood are valid, the algorit hm does not need to try this

assignment, since it wiil fail. Therefore, x can be pruned from the domain of V and

remain pruned until at least one of the assignments in CF is undone. This tvill occur at

level rnax(levelo/(V')), V' E C F ; and this will be the prune level of x.

BJ [141 maintains one conflict set for each variable.

When it attempts to assign a value to a variable, it finds the earliest level 1 that this

assignment becomes inconsistent. The conflict set that i t discovers at t his point consists

of ail the assignments at level 1 and above in the tree. Since the structure of al1 the

conflict sets is always the same (al1 the levels from 1 to l) , it simply stores 1.

As an example, consider that BJ tries to make the assignment V t x, but this

assignment fully instant iates and violates coostraints Cv, J , , ~ and Ci;,v, ,v. while mriables

VI, V2, V3, CS are instantiated a t level 1, 2, 3 and 4 respectively. In this case, the earliest

point where the assignment to V is inconsistent with the prior assignments is 3, therefore

the conflict set BJ discovers for V c x consists of the assignment at levels {1.2,3).

The conflict set for a variable is the maximum level 1 discovered for al1 of its values.

BJ can jump back t o 1 when it exhausts the domain of that variable.

Suppose that, in the above example, BJ tries a11 values in the domain of V and finds

t hat i is the level it should jump back to. By doing this, it has discovered a new set of

nogoods of the form:

where b$ is the variable that has been assigned at level i.

By unioning these nogoods, since they cover the domain of V . it gets a new nogood

Therefore, the new conflict set for L$ t XI is the one that consists of al1 the âssign-

ments made at Ievels I . . . 1 - 1.

This rneans that BJ is only able to jump back only once. To jump back further? it

first has to explore another subtree. In other words, it can only jump back from leafs.

not from interna1 nodes of the tree.

2.3.2 Conflict directed Backjumping(CBJ)

CBJ [24] improves on BJ by learning better nogoods. Instead of learning a nogood that

only consists of al1 the assignments made at Ievels 1 . . .l, it takes advantage of the specific

information provided by a failed coustra.int. Specifically, when the assignrnent I.* t x

fails to satisfy a coostra.int Cvkl,...,vkm,v, the conflict set that CBJ learns for x consists of

the assignments made t o the variables Vk, , . . . , Vkm. This conflict set is unioned into the

conflict set for the entire variable.

After iterating over the entire domain of the variable, the conflict set discovered for

the variabIe is the union of the c o d i c t sets for dl its values. In other words, it is the

union of a set of nogoods that cover its domain, minus the assigoments to this variable.

Therefore, this conflict set is itself a new nogood.

CBJ can now jump back to the deepest level where an assignment in the conflict set

of the variable was made. It is safe to do so, because as long as none of the assignments

in the nogood are undone, t here is no solution.

The nogood discovered minus the assignment at the level CBJ jumps back to is a

conflict set for the assignment made at that level. Therefore, this conflict set can be

unioned into the conflict set for the variable a t the jurnpback level.

Because CBJ maintains finer-grained conflict sets than BJ. it is possible for it to jump

back not only from leafs, but also from interna1 nodes.

For example, suppose that variables Vil b, have been instantiated at levels 1,

2, 3 and 5 , respectively. Further, the algorithm has reached level 10, where i t instantiates

variable V wit h domain {a, 6) . The assignment V t a violates the constraint Cr;,v,,v5,~.

while the assignment V t b violates the constraint Cv,,v,,v5,v. The conflict set for V t a

will be {1,2,5) and the one for V t b will be {%,3,5). The conflict set for V is the

union of these, which is { 1,2.3,5} and t herefore CBJ jumps back to level 5 and sets the

tentative conflict set for & to {1,2,3}. Now, the algorithm assigns other values to 1.;.

Suppose that the other nogoods that it finds for are subsets of its current conflict

set, therefore the conflict set after CBJ exhausts K's domain is still {1 .2 ,3) . Now it

wili jump back to tevel 3. In contrast, BJ would aiso jump back to Ievei 5. but it would

then only be able to step back to level4. CBJ is able to jump further back because it

maintains more detailed conflict sets than BJ.

2.3.3 Value specific Confiict directed Backjumping (vsCB J)

vsCBJ [Il improves upon CBJ by maintaining a conflict set for each mlue of a variable.

When it discovers a conflict set for a value, it simply keeps it for this value and does

not union it into a single conflict set for the variable.

This aIIows it to take advantage of constraint-fiItered unioning of nogoods to discover

more powerful nogoods on backtrack. It produces the constraint-filtered nogood for the

value assigned to the variable at the jumpback level, using either a constraint between

the current variable and the jumpback variable or the universat constraint. It can also

use a constraint which has al1 of its variables, except the two in question, assigned at

levels above the jumpback level.

As an example. consider the case of a CSP, where the assignment V t x is made

at level f i , V' +- t' is made at level I I > f i and at level l3 > i2, the domain {a. 6, c) of

variable V" is exhausted, without finding a solution in the subtrees. kloreover. t h e solver

determines that it is safe t o jump back to level 1 2 . Using CBJ, it will now set the conflict

set of V' t x' to be the union of the conflict sets for V +- a, V t 6, V t c. Consider

however, if there is a constraint Cv,vI,p and the tuple {V t x, C.' t x'. V" t c) does

not satisfy it. This means that as long as there exists a reason for V" t a and V" t b

to be inal id and the assignrnent V + x is not reverted, the assignment V' t x' will

also be invalid, regardless of the status of V" t c. In other words. the conflict set for

V' t x' can be set to be union of the nogoods of the values of variable V". filtered by

the constraint Cv,vt,vlc

2.4 Combining Constraint Propagation with Intelli-

gent Backt racking

Constraint propagation and intelligent backtracking utilize two different techniques to

speed up the seuch. Constraint propagation tries to reduce the size of the search tree

below the current node, while intelligent backtracking tries to reduce the size of the

explored t ree.

We can combine the two approaches to achieve even greater speed ups. Intenigent

backtracking algorithms discover nogoods for values in two points in the search:

a When checking that the current assignrnent is consistent

a When backtracking

Constraint propagation discovers nogoods only when enforcing some form of local

consistency after making an assignment. The nogood that it discovers for the values that

it prunes consists only of the level at which they were pruned. In other words, it is the

same type of nogood that BJ discovers: one that consists of al1 the assignrnents made

until the current level. CVe can apply the same reasoning as we did for BJ and improve

FC and GAC first to FCCBJ and GACCBJ and then to CFFC and CFGAC.

2.4.1 FCCBJ, GACCBJ

FCCBJ [24] and GACCBJ [25] perform the same kind of pruning as FC and GAC. The

only difference is that when they prune a value From the domain of a variable, they use

the constraint that caused the pruning to generate a conflict set for that value and union

it into the conflict set of the corresponding variable.

FCCBJ can simply set the conflict set of the pruned value to be the set of assignments

made to the rest of the variables of the constraint that caused the pruning. When

doing GACCBJ, however, it is not as simple to know exactly what caused the pruning.

Therefore, the cod ic t set for the pruned value is set to be the set of assignments made

to variables of the constraint being checked unioned with the conflict sets of the rest of

the pruned values in the variables of the constraint.

T o demonstrate t his, consider enforcing GAC on the constraint Cv, ,v,,v,. wit h al1 t hree

variables having the original domain {1 ,2 ,3) , after having pruned & i, b and d + c

and making the assignment Vi t 6. The constraint has the following satisfying tuples:

At this point, V2 t a should be pruned. Its conflict set h a to include. besides the conflict

set derived from the previously assigned variables of the constraint , the conflict set for

V, t a . e b and L$ i C. This is because if any of these values were not pruned,

.i a would still have support and would not be pruned. Therefore, the conflict set

has to include the reason for these prunings as well. In fact, it should be the union of

the conflict sets of the pruned values that appear at least once in any of its supporting

tuples for the constraint Cv, ,v,,v,. This knowledge, however, requires t ime exponent ial in

the arity of t be constraint to figure out. ' Using the union of the conflict sets of the rest.

of the pruned values in the variables of the constraint can produce less powerful conflict

sets, but it is rnuch easier to compute.

When the search reaches a leaf, i t rneans t hat it has reached a variable t hat has had

its domain wiped out by pruning done at previous levels. It can then use the nogood

t hat i t has learned to jurnp back furt her than the previous level. *
These two algorithms propagate the nogoods that they have discovered to previous

levels in the same way as CBJ: by unioning them into the conflict set of the variable they

jump back to. This rneans that they are also able to jumpback from interna1 nodes.

CFFC, CFGAC

Similar to FCCBJ and GACCBJ, CFFC and CFGAC [l] are versions of FC and GAG

that use constraint filtered unioning of nogoods.

'Actudly, this knowledge is available when using GAC4, which explicitly stores al1 the supports for
every value. It still requires time exponential in the arity of the constraint to cornpute, however (albeit
oniy a t the beginning of the search) and aiso requires a lot of space, which can be Iimiting for larger
CSPs*

'Actually, the reason that a variable has had its domain wiped out has to contain the assignment
made at the previous [evel. Therefore, neither algorithm will jump back more than 1 level from a leaf.
It is possible, however, t o jump back more than 1 level from intemd nodes.

The nogoods that these aigorithms Iearn from constraint propagation are the same

that FCCBJ and GACCBJ learn. They differ only in the backtracking algorithrn, where

the CF versions perform const raint filtered unioning of the per-value nogoods.

2.4.3 A unifled view

We can now group the algorithms discussed according to the nogoods that t hey learn

because of constraint propagation and during the search.

.4n algorithm can learn these types of nogoods because OF constraint propagation:

Nogoods from forward checking

Nogoods from enforciog GAC

Similarly, it can learn these types of nogoods during search

O BJ-style nogoods (1 . . . 1)

O Nogoods resulting from the union of a set of nogoods covering the domain of variable

r Const raint filtered unioning of nogoods

This way, we can create a grouping of the algorithms as shown in figure 2.1.

Each problem might produce more powerful nogoods in only one of the dimensions.

It is worthwhile to explore different ways of solving it by trying to do more work in one

of t hese dimensions or balancing t hem.

3So much so, that the pruning routines used in the implementation discussed in chapter 3 are the
same for FCCBJ and CFFC and for GACCBJ and CFGAC.

Figure 2.1 CTassificatioa of algorithm by Ievel of nogoods learned

Nogoods from search

Nogoods from constraint propagation

None

2.5 Heuristics

FC

GAC

The backtracking algorithms discussed in previous sections al1 center around the notion

of exploring a search tree and using techniques to minimize its size.

One factor that affects the size of the search tree and tiiat these algorithms do not

address is the order in which the variables of the problern are instantiated. The only

constraints that they place on which variable should be instantiated next are

BJ

BJ

O If a variable has had its domain wiped out, it should be selected next for instan-

tiation. When a domain is wiped out, it means that no solution can exist in the

subtree below the current node. Therefore, there is no reason to search it anymore.

In addition, we need to select the wiped out variable for the next level, so that an

appropriate jumpback level can be computed.

FC

GAC

0 If a variable has been reduced to a singleton variable, it should be instantiated

next. This is just an opt imi~at ion.~

CBJ

CBJ

By finding a better order in which variables are instantiated the algorithm can Save

an exponential amount of time in learning some nogoods.

There are two main strategies for selecting the next variable. We can either use a

static ordering or a dynamic ordering.

vsCBJ

vsCBJ

FCCBJ

GACCBJ

41t can however be critical to the performance of the algorithm, like in [Il].

CFFC

CFGAC

The static ordering can resuit from processing the probiem before the search has

begun.

A dynarnic ordering, on the other hand, examines the state of the problem each

time if tries to instantiate a new variable and then uses a heuristic to select which one to

instantiate. Using a dynamic variable ordering can have dramatic effects on the efficiency

of problem solving.

Minimum Remaining Values The most commonly used heuristic is currently the

"minimum remaining va,luesW heuristic, or dom [l i] . Aside from the constraints mentioned

earlier, the variable it chooses to instantiate next is the one with the srnailest remaining

dornain size. This heuristic attempts to minimize the size of the search tree below the

current node.

Moreover, we hope that by instantiating variables with smaller domain sizes. ive can

cause more pruning when using a constraint propagation algorit hm.

Minimum Remaining Values with tie-breaking by degree The drawback of dom

is that it treats the constraint hypergraph as a complete graph. This means that in a

sparse graph, the next variable will be chosen arbitrarily among those that have an equal

(minimum) domain size, with no regard to the connectivity of the variable. This is not

desirable, because even though two variables c m have the same domain size, when one

of them is more constrained that the other, it can potentially cause much more pruning

when we make an assignment to it.

Therefore, we can create a new heuristic, MRV with tie breaking by degree, or

dom+deg [9]. The degree of a variable is number of active constraints (i.e. constraints that

have not yet been fuily instantiated) on that variable. MRV with tie breaking chooses

the next variable among those with minimum dornain size and among t hose and selects

the one with maximum degree.

Maximum degree CVhen the constraint graph is sparse, the size of the variables'

domains can be less important than their degree in choosing the next variable. So, we

c m use the heuristic deg [12] for such CSPs.

Ratio of domain size over degree Bessière and Régin [7] have observed that de-

pending on how constrained a CSP is, di fferent heurist ics perform opt imally. Speci fically,

when the constraint graph (or hypergraph) is sparse (small number of constraints), the

heuristic deg perlorms better than either dom or dom+deg. On the other hand, when the

constraint graph is dense, dom and dom+deg perform better.

They proposed that a better heuristic to use would be dom/deg, where the variable

chosen for instantiation next would be the one with the minimum ratio domainsize/degree.

In experiments they performed, using ranclom CSPs, dom/deg perforrned at least as

well as either of the other heuristics, but never significantly better than the second best.

This indicates that although this heuristic does not produce better results that what was

possible with the other heuristics, it does provide a way to get the best results without

having to make a choice.

It should be noted, however, that their results only apply to randomly generated

CSPs. They may not be applicable to other classes of problems.

2.5.1 Why heuristics work (or not)

The reason why each heuristic works for a specific problem has not been determined. It

has been suggested that the reason that dom in particular works is that it tries to fail in

higher levels of the seatch tree. It has been proven, however, t hat t his is not the case [33],

as heuristics that try to fail early generate search trees with many branches, which slow

down the search.

Instead, it seems that a heuristic should try to achieve a balance between failing early

and generating trees wit h few branches. How to rneasure the difference and est imate the

qudity of a heuristic without actualty sotving the probiem is a problem that has not been

addressed yet .

Finally, it should be noted that finding the optimal variable ordering for a problem

is itself an NP-hard problem, therefore the closest we can get is using heuristic approxi-

mations (321.

Chapter 3

Implementat ion

3.1 Basic Infrastructure

Al1 algorithms discussed in the previous chapter can be viewed as specializations of the

algori t hm in figure 3.1.

This is a recursive algori t hm. It is called by the user prograrn for level 1. In line 2, i t

goes through al1 the uninstantiated variables and uses a heuristic to choose one.

In line 3, it checks if no uninstantiated variables remain. in which case it has found a

solution, which it processes in line 4.

In lines 6-17, it tries to assign each value in the current domain of the selected variable

and thcn recursively calls itself for the next level. This reqcires going through al1 the

unpruned values of the current variable and assigning t hem to it .

In line 7 it makes the assignment. In line S it makes sure that this assignment is

consistent with the rest of the assignments made so Far. In effect , it has to go through al1

the constraints in which this variable participates. For each constraint that has become

fully instantiated, it checks that it is satisfied.

If the assignment is consistent, then it does any constraint propagation needed in line

9. Constraint propagation generally has to go over dl the constraints t hat the variable

Figure 3.1 An abstraction of the atgorithms discussed
Algorithm genericBT(leve1)

Choose next variable V

if no variables l e f t then

so lut ion f ound

endif

for each value u i n the domain of I/'

make assignment V t v

if assignment i s consistent then

do constraint propagation

backt rackleuel = genericBT(leve1 + 1)

undo current assignment

i f backtracklevel < leuel then

return backt rackleuel

endif

endif

endfor

unselect(V)

backtracklevel = computebacktrackleve1(~ewe~)

updateconf lictsets,atletreïs(backtrackleuel, level - 1)

return backt rackleucl

22 end genericBT

participates in. For each constraint. it goes over the current domain of future variables

and determines which values no longer have support on the domains of the rest of the

variables. Forward checking will only do t his for constraints wi t h only one uninstant iated

variable, while GAC will do that for al1 constraints and will cascade any removals.

Only after t hese steps does the algorit hm call itself recursively in line 10. The recursive

call will either return the current level to indicate that the search should continue in this

level or something less than level to either signal a jump back or temination of the

search (when backtracklevel == 0) .

Undoing the current assignment in line 11 means that the values that have been

pruned because of it need to be restored to their original domains. Therefore? the dg*

rithm aiso needs to keep track of which vahes have been pruned at each LeveI.

Lines 19-20 use the nogoods discovered during search to determine to what level the

program should jump back to and t o update the conflict sets of the d u e s assigned

to variables at intermediate levels. This involves determining the maximum level in a

conflict set (Iine 19) and unioning the conflict sets of values at the current level and levels

between the current and the jumpback level.

Note that the actual implementation of some parts of this abstract algorithm (lines

8, 9, 19 and 20) may be empty for some of the algorithrns. For example, the FC and

GAC variants only have consistent values in the current domains of Future variables and

therefore do not need to do any consistency checks. Similarly, algorithms that do not

maintain conflict sets - and t herefore only step back, as opposed to jumping back - do

not need to do anything for lines 19 and 20, other than:

backt rackleuel = level - 1

return backtrackleuel

To implement these algorithms we want to provide representations for each of the

following problem elements. as well as methods for manipulating those:

a Variables

a Variable domains

a Confiict sets

a Constraints of arbitrary arity.

Moreover, we will discuss other aspects of the algorithms that need to be provided

for by our implementat ion.

3.1.1 Variables

Variables are objects of ciass Var. Each object contains information about the variable's

current domain size and degree, as well as the values in its initial and current domain.

They also contain information about the membership of t his variable in the const raints

of the problem. Internally, the variable objects are identified by a numeric id. In the

graph coloring problem, for enample, each vertex would correspond to a variable. but

would be referenced by its id.

The framework maintains a global array of such objects, called thevars. This allows

constant t ime access to the variables by indexing.

In addition, there is an array of uninstantiated variables, which is initialized to con-

tain al1 the variables before the solver begins. This array allows us to iterate over the

uninstantiated variables only, instead of iterating over al1 of t hem and skipping those

that are already instantiated. This can Save time. especially at deeper levels of the tree.

The relevant methods for the above manipulation are provided by the methods

Solver: :selectNxtVar (which corresponds to line 2 of figure 3.1) and unselectvar

(line 13 of figure 3.1).

Variable domains

The generic algorithm discussed earlier deals with variable domains in the following ways:

It iterates over dl the values of a variable, when manipulating conflict sets (line

16).

0 It iterates over al1 the unpruned values of the variable (lines 513). It is preferable

if it does this without having to go through and discard those that are pruned.

a The pnuiing routines (line 8) need to remove values from anywhere on the list of

unpruned values in constant time.

O The backtracking part of the aIgorithrn (line IO) needs to add values back to their

We use an object of cïass Val to represent a value of a variable.

Internally, d u e s are identified by their numeric id. The user part of the program is

responsible for treating the numeric id as the corresponding value in the problem domain.

A value object also knows whether it has been pruned and at what I~vel, what its

conflict set is and what its variabIe is,

For each variable, its values are kept in an array indexed by value id. which is simply

its numeric value. In addition, each object in the array contains next and prev pointers

to link these objects in a list, as shown in figure 3.2. Only unpruned values remain in

this iist. This dual structure is used to faciIitate the types of access that the algorithms

need over the domain of a variable, as mentioned above.

Figure 3.2 Storing the values in a variable's domain

Vax

vals 0 1 2 3 4

hdval s

In addition, pruned values are kept in lists, one per level. This is to facilitate adding

them back to their domains, ivhen we undo the assignments that pruned them.

Access to the unpruned values of a variable v is provided by the con-

tainer ValListOfVar(v). Similarly, the array of al1 values is accessed using

AllValListOfVar(v).

Values get pruned using the method Undo : :removeVaI(val, I e v e l) , which removes

v a l from the domain of its variable and places it on the pruned values list for that level.

When backtracking, the met hod Undo : : restoreVals(leve1) restores al1 the vari-

ables pruned a t a l e v e i to their original domains.

Conflict sets We also maintain conflict sets for each value. This is used by the intel-

ligent backtracking algorit hms. '
T h e following operations are performed on conflict sets: deriving a conflict set from

a constraint (lines 7,s); unioning two conflict sets during backtracking (line L6); and

figuring out the maximuni level that an assignment in a conflict set was made (line 15).

These conflict sets are maintained as sorted linked lists of ranges of levels. Each node

of this list is a class Cfcel i . It has members h i and 10. So, the conflict set 1.2,4,5,6,9

would be represented as a list of 3 nodes: [1,2] ,[4,6],[9,9]. Lists of this type can be easily

merged, in linear time. Moreover, we can easily figure out the jumpback level for an

intelligent backtracking algorithm, by examining the h i member of the last node of the

list. To make this operation constant tirne, we also store a pointer to the last node of

the list.

This class, besides the data members t hat it keeps, also provides convenience met hods

that perform unioning or constraint filtered unioning of the conflict sets.

3.1.2 Constraints

Conceptually, a constraint C over k variables is simply a set of tuples of length k. such

that each tuple is an assignment to the k variables constrained by

'We do not maintain a conflict set for the variables, despite the fact that

C. Each tuple is an

they are needed by the
aigorïthms that learn CBJ-style nogoods during search. This is because the conffict set for the variable
is implicitly the union of the conflict sets of ail its values. We do not suffer a loss of efficiency for not
maintaining a conflict set for a variable, because either way the dgorithm learns conflict sets for a value
and unions them into the variable's conflict set. There is only a space inefficiency, which cannot be
avoided, since we also irnplement algorithms that Iearn value specific nogoods.

assignrnent that satisfies C. The size of the set can be exponential in k. Therelore, the

only useful operations that CM be performed with a constraint are:

a query it on whether it constrains a variable

a given an assignment to the variables it constrains. find out whether it satisfies the

constraint .

The first item can further be refined to checking whet her a single variable is con-

strained and whether a pair of variables is constrained.

In general, constraints are accessed in loops of the following form:

Algorithm constraintAccess(Var v)

foreach constraint C

if C constrains u

A = CreateAssignment CC)

i f d E C
// do something

end constraintAccess

or, alternatively :

Algorithm constraiatAccess2(Var v 1, Var u2)

foreach constraint C

if C constrains v l A C constrains v 2

A = CreateAssignment (Cl

i f d E C
// do something

end constraintAccess2

Checking constraint membership

The first operation mentioned actually has two facets. The one is having an object

Var *v and an object Cons *c and checking whether c constrains v. This is done by

simply checking that c->constrains (v) is true. The supporting structure is little more

thm a bit vector.

The other facet of this operation is finding, and iterating over, the constraints that

constrain a variable or a pair of variables. This is done by accessing the container

~ons~ist~fVar(v) or CvarListOfVar(v1, v2) respectively.

These containers are simply wrappers around lists that are maintained for the variable

objects. Each such variable object v contains a Iist of al1 the constrains that constrain

this variable. In addition an array of lists is kept. For each variable v2. the list at index

v2->id contains al1 the constrains the constrain both v and v2. This arrangement is

shown in figure 3.3.

In this figure, w e see the data structures maintained for variable Pi . This variable

participates in the constraints Cv,,v,,v,, CL;,^, , Cc; y, The list cons contains pointers to

each of these constraints. In addition, a list of per-variable constraints is kept in cvar.

The list for Vl is always empty, while the list for points to Cv,,if2,~; and CVltv2 and

the list for 113 points to Cv,,v,,v, and CV,,~, . The same structures are kept for each of the

other variables, but are not shown in the figure. Pointers from the constraints back to

the variables are also kept, but not shown in the figure.

These lists are filled when completing the initialization of the CSP.

Figure 3.3 Associating a variable with the constraints it participates in -

Checking const raint satisfaction

The actual reason that constraints exist at al1 is to check whether or not assignments

satisfy t hem.

However, the representation of a constraint is not easily abstracted. One common

abstraction is the extensional representation, where a boolean value is used to indicate

whether an assignment satisfies a constraint. For a constraint of arity n. we store these

boolean values in an n-dimensional array, where the index For dimension k is the id of

the value assigned to the kth variable of the constraint.

This representation, however, can be very space-inefficient for problems with con-

straints of large arity or large domains, as the space complexity of this structure is

O(nd), where n is the arity of a constraint and d is maximum of the sizes of the variable

domains. Not only that, but the construction of this array also has time cornplexity

O (n d) . On the other hand, a procedural representation for the same constraint might

have constant initialization time complexity and constant space complexity

Therefore, we need a way for thc user of the framework to provide a procedural

representation of their own, or use the extensional representation if this is convenient.

To provide for this, we define a base class ConsRep, which abstracts the functionality

of the constraint representation. This class provides a virtual function checkAssgn, which

must be overridden by derived classes to return the truth value of an assignment. Thus.

a ConsRep* can be an interface to any kind of constraint checking mechanism.

The framework provides two builtin classes, ExtensionalConsRep and

Libfntent ionalconsRep. The former provides the O (n d) extensional representa-

tion discussed abave. The latter d o w s the user to define constraint checking functions

in a shared library, load this library dyuarnically at runtirne and forward the checking

to the functions in the shared library.

Given d l that, objects of c l a s s Cons ac tudy do not do any checking. Instead,

they maintain a list of objects of cl ass ConsRep. When calling c->checkAssgn() for

a constraint c, what it actudly does is go through every ConsRep object in its list and

ask them whether the assignment satisfies them. It returns the conjunction of the results

that it gets.

The reason we use a list of ConsRep objects for each constraint is that the framework

supports posting only one constraint over one set of a variables. This is not a limitation

on what kinds of problems can be represented, since a constraint t hat is the conjunction

of several constraints over the same variables is equivalent to them (but can cause more

pruning when doing GAC propagation). It can, however, be inconvenient for the user

to have to manually conjoin two constraints that are logically separate in the mode1 of

the CSP she is trying to solve. Therefore, ive provide a way for the user to define tivo

logically distinct constraints over the same set of variables and have them automatically

conjoined by the framework.

Propagators

The final aspect of constraint checking that we have to address is constraint propagation.

Constraint propagation can be in the form of forward checking, enforcing various

forms of arc consistency checking or sornethiog more elaborate. It could be argued that

whether we do forward checking or arc consistency is actually a matter of the which

algorithm we chowe (a variant of FC or of GAC). However, a unified view of constraint

propagation helps to better structure the code. Moreover, some types of constraints can

have a speciai structure, such that an algorithm can be developed for doing constraint

propagation wit h a time complexity significantly smaller t han that of standard const raint

propagation. This type of const raint propagation could be used by al1 types of algori t hms.

Consequently, each constraint maintains a list of appropriate propagators. When

an algorithm makes an assignrnent, it can choose to cal1 these propagators and take

advantage of their domain knowledge. The difference between VSCBJ, FC and GAC is

that the first two will just accept the results of the propagation, while GAC d l regard

it as just a more efficient way of enforcing GAC on a constraint.

Like constraint representations, there is no generic way to implement a constraint

propagator. The implernentation has to be abstracted to a base class propagator that

provides the interface for propagation. The derived classes have t O provide im p lement a-

tions for virtual functions related to initialization, propagation, backtracking and man-

agement of the queue for GAC. Specifically, when doing propagation, t h e derived class is

notified of which values have b e n pruned? so it can update its interna1 representation (if

any). Each propagator has to return a list of values that it has decided should be pruned

and the variables that are affected by this pruning.

Each constraint has a list of associated propagators with it. The reason for having

a list, instead of a single propagator is, as with constraint representation, the ability to

have logically separate implementations and have the frarnework take care of conjoining

their results, instead of having to manually do it.

Propagator example: the AIlDiff propagator The AllDiff constraint is a special

type of constraint. It dictates that the value of its variables are al1 different. In a

CSP, it can be implemented either by a clique of binary not-equals constraints for al1

the concerned variables or as a constraint of arity n. Either of t hese will find the same

solutions.

However, when doing GAC propagation, their effects are quite different. Consider the

example of an AllDiff constraint among the variables hl hl with domains (1.21, {1,%)

and {1,2,3} respectively. Enforcing GAC on the binary not-equals representation will

not prune any variables. Doing it on the constraint of arity n however will prune values 1

and 2 from the domain of K. The complexity of enforcing GAC on a constraint of arity

n, however, has time complexity O(nd), which is prohibitively expensive.

J.C. Règin [26] has proposed a special purpose propagator for this type of constraint,

which allows us to have stronger arc consistency with small complexity. The idea is that

we transforrn the constraint into a bipartite graph. The vertices in one partition, X,

represent variables and the vertices in the other partition, Y, represent values. An edge

between two vertices means t hat the value is in the dornain of the variable.

Next, we find a matching on the bipartite graph. A rnatching is a set of edges such

that each vertex is adjacent to at most one of the edges comprising the rnatching. A

matching that covers a set of vertices is simply a matching such that all vertices are

adjacent to exactly one of the edges in the matching.

Given that, finding an assignment that satisfies the constraint translates to finding a

bipartite matching that covers the partition .Y.

We can use this idea to also do constraint propagation. Specifically, given a matching

that covers .Y, we can decide whether thcre is any matching that contains a given edge.

The conditions for this are that the edge either belongs to the current matching, or to

an alternating path of even length, or an alternating cycle.

The complexity for this, for the worst case that the propagator gets called to remove

the values of each variable one by one is 0 (n2d2) . If we make the crude assumption that

the time spent in the propagator is equally divided among the nodes along the pat h to

a leaf of the search tree, then the complexity at each node is O (n 8) . In contrast, the

cornplexity for generic GAC enforcing for t his coustra.int tvould be O(dnd) at each node.

The routines described in (261 map exactly to the virtual functions that the class

we derive from Propagat o r has to implement . Therefore, the implementation is rather

straightforward.

3.2 Algorithms

The implementation of the dgorithms discussed is relatively straightforward, once t 6e

rest of the framework is in place.

They are simply translations of the pseudocode in figure 3.1, calling functions to do

consistency checking (t h e 81, constraint propagation (iine 9) and conffict set rnaniputat ion

(Iines 19 and 20, as well as inside the functions for consistency checking and constraint

propagation).

CSP : :assgnConsistent checks whether the latest assignment made is consistent with

the previous assignments and returns the first constraint that is inconsistent or NULL if

the assignment is still consistent.

The following functions do conflict set manipulation:

C f c e l l : : setConsConfï ict - sets the conflict set of a value to be the set of lev-

els where assignments where made to the variables of a constraint. excluding the

current variable.

0 C f c e i l : : setconf l ictSet - sets the conflict set of a value to be the union of the

conflict sets of al1 the values t hat are compatible with it in the domain of another

variable.

0 Cf ce11 : : setCBJConflictSet - sets the conflict set of a value to be the union of

the conflict sets of al1 the values in the domain of another variable

O Cf ce11 : : rnergecf s - unions two conflict sets.

Finally, the functions t hat need to be called for pruning:

O FCPrune - forward checking, without conflict set manipulation

FCCf P ~ n e - forward checking, set t ing conflict sets for pruned mriables.

FCCf LookBackPrune - forward checking, setting the conflict set of the pruned vari-

able to be the union of the conflict sets of al1 the values t hat support at the current

level.

GACPrune - maintains arc consistency at the current node, using a flag for whether

to use confiict sets.

GACPrnne GACh-une is the oniy function that is not trivial to imptement using the

underlying framework.

GACPrune has to use propagators t o enforce GAC as efficiently as possible. As de-

scribed in chapter 2, AC-3, the version of AC that we implement, stores pairs < C: C >

in a queue. Whenever it processes one such pair, it makes sure that al1 the values of V

are GA consistent with respect to C. Processing a pair involves invoking the propagator

for that pair and pruning the values that the propagator decides are GA-inconsistent.

After that, it determines which variables have had their domain pruned. For each such

variable V', it finds al1 variables V" that are constrained with V' via a constraint C" and

inserts every pair < V", C" > into the queue. The reasoning for this is that since V' has

had its dornain pruned, then some of the values of VI' may have lost their support for

const raint CM.

However, it is not always desirable to insert every possible pair into the queue. There

are two reasons why this is so:

0 The user may have requested that GAC is not enforced for some constraints under

specific circumstances:

- Because it is too expensive t o do so a t that point (for example, we may want

to enforce GAC on a 10-ary constraint oniy when at least 7 of the variables

are instantiated. This is equiualent in time complexity to enforcing GAC on

a 3-ary constraint)

- Because there is a cheaper way to do perform the same task (When ive use

redundant constraints)

a The propagator may examine dl the variables of a constraint at once. Such an

example is the AllDiff propagator, which needs to have its constraint inserted into

the queue only once each time that sorne of the variables it constrains have their

domain pruned.

Therefore, before inserting a pair < C > into the queue, the algorithm asks the

constraint representation for this if it wants to be inserted into the queue. This is user

controllable and corresponds to the first of the items listed above. If this succeeds, it

then asks the appropriate propagator if it wants to be inserted into the queue. This is not

user controllabie, but rather intrinsic to t h e propagator. For example. a general purpose

GAC propagator will need to be inserted into the queue For every pair, but an AllDiff

propagator should not be in the queue more than once a t any given moment.

Currently, GACPrune uses a queue, but it really only needs a structure that supports

the properties of a set:

a Insert an item in the set if it is not already there

a Remove an item from the set

Therefore, we might use a stack or a priority queue instead of a queue. Depending

on the problem currently being solved, it can benefit the speed of enforcing GAC.

3.3 Heuristics

Current ly, the only heuristics supported by the framework are D VO (dynamic variable

ordering) heuristics.

The user program selects what kind of DVO heuristic should be used. The frarnework

provides some heuristics, but it is fairly easy to write other ones as needed.

The user program has to cd1 the algorithm like this:

fnpt (1, heuristic) ;

Where heuristic is an object of a subclass of class Heuristic with operator()

defined. When the algorithm needs to select the next variable to assign. The operator

needs to get Solver: :unasgnVars, which is an array of unassigned variables and return

an index into this array. The user program passes this on to the seIectNxtVar to do df

the bookkeeping work of selecting this variable.

Using objects like this allows us to implernent heuristics that are more easily cus-

tomized to the needs of the specific problern. The obvious alternative, using pointers to

functions does not allow this without using non-obvious means of communication between

the problem setup code and the heuristic code, such as global variables.

To make this clear, consider the case of two common heuristics: dom and rdom. The

first one simply selects the variable with the smallest remaining domain size, while the

second one only considers some of the variables of the problem and applies dom to the

selection and considering the rest of the variables only after al1 the first variables have

a11 been assigned to. This can be used in problems where we use auxiliary variables to

enlorce stronger constraints, but we do not want to initialize those variables earlier than

the primary ones.

Implementing dom with either method should be trivial. However. we cannot im-

plement rdom using pointers to lunctions, without using a global variable (or global

structure) to indicate which variables are considered auxiliary. Using objects, on the

other hand, makes this easy, as we simply incorporate this information into the subclass

which we use to compute the heuristic.

As a convenience. three heuristics are provided by the framework: dom+deg,

lexicographie and dom/deg.

One thing that is not enforced by the framework is the fact that if t here are variables

whose domains have been wiped out, one of these should be returned by the heuristic.

This is required for better performance, since t here is no solution in a subtree where one

variable has had its domain wiped out. It is however also required for ail the constraint

propagating dgorithms to work correctly. Similady, if no variable has had a domain

wipeout, the heuristic should prefer a variable that has a singleton domain. This is a

CHAPTER 3. IMPLEMENTATION 43

mat ter of performance having no impIications on the correctness of the aIgorithms.

'As rnentioned, this optimization can be critical to the performance for algorithms like Davis-
Putnam Ill]-

Chapter 4

Experiments

4.1 Overview

In this chapter, we will demonstrate how the framework that we described allows us to

easily perform experiments to evaluate the performance of algorit hms and heuris t ics on

different problems. We will present an automatic method of manipulating a mode1 and

potentially improve it when using the GAC family of algorithms. We mil1 test this method

in two problems: the optimal golomb ruler problem and the random 3SAT problem. In

addition, we will examine the results of [31] on the optimal golomb d e r problem and

compare the results obt ained.

4.2 Automatic conjunction of constraints

Bessière and Régin suggested in (61 that it is possible to use GAC on conjunctions of

constraints to increase pruning and therefore reduce the size of the search tree. They

asserted that models in practical application are usudly created by identifying constraints

as a conjunct ion of subconstraints and using the subconstraints to mode1 the problem.

However, GAC on the subconstraints is not as powerful, in terms of pruning, as GAC on

the original constraint .

Bessière and Régin dso suggested that it is possibIe to conjoin constraints that are

not semant ically related.

In addition, they prove that it is possible to enforce GAC on a conjunction of the

constraints in O(dllua (cs)ll), as opposed to O(d 11 (c,)II) for each const raint i.

Finally, they present experimental results to prove that it can be beneficial in terrns

of cpu time as well as well as number of backtracks performed, even though the benefits

in terms of cpu time only exist in harder problems.

In this chapter, we wil1 examine the reason why conjunctions of constraints afford

more pruning and develop a heuristic for choosing constraints that shouid be conjoined.

4.2.1 Why conjoining causes more pruning

The set of assignments that satisfy the conjunction CI A C2 of two constraints is the set

Where Ac, is the projection of A on the VarsOf(Cl). This implies that A is the

union of two satisfying tuples For Ci and C2? such that the assignments to t heir cornmon

variables are the same. In other words, not every pair of tuples satisfying the original

constraints will satisfy the conjoined constraint.

This means that for a value of a variable to not be pruned when enforcing GAC on

the conjoined constraint, we have to find a satisfying tuple for the conjoined constraiot.

which depends o n a stronger condition being satisfied than simply that a satisfying tuple

exists for each of the constraints Ci, C2.

In addition, the condition becomes stronger as the two constraints have more variables

in common. Consider the following cases:

In this case, a satisfying tuple for Cl A C2 is sirnply the union of any supporting

tuple of Cl and C2. This is no stronger than GAC on Cl and C2 individually.

In this case, when checking whether the assignment V t x, where V is the common

variable, is GA-consistent, ail the GAC algorithm has to do is find a supporting

tuple for V t x in both Ci and Cz, without any additional constraints. This is

what GAC on the original constraints does as well, so t his case is also no s t ronger

t han GAC on the original constraints.

In this case, the tu ples t hat sat isfy the conjunct ion are no longer simply the union of

any two satisfying tuples of the original constraints. Instead, the number of tuples

that can be unioned to create a satisfying tuple for the conjunctive constraint

becomes smaller. as they have to have more common assignments. The relative

strength of GAC in the conjunction increases as well.

This reasoning can be extended to the case when we conjoin n constraints, by applying

pairwise conjunct ions.

4.2.2 When to conjoin constraints

Based on the above observations, we can develop a heuristic method to determine which

sets of constraints shouId be conjoined and create the set CS of a11 such sets:

1. initialize the set CS to be the set {{Ci}Vz), which means that each constraint is

placed in a set by itself.

2. If Ci E CS A Cj E CS A II VarsOf (Ci u Cj)II - maxcec,uc, II VarsOf(C)II 5 !CI, then

remove Ci and Cj from CS and insert Ci U Ci. Ci 'i Cj is the conjunction of the

constraints in Ci and C,. In other words, if the arity of the constraint that results

from conjoining the constraints in Ci and Cj is no more than M greater than the

axity of any of the original constraints, then conjoin ail the constraints in Ci and

Cj .

3. Repeat 2 until no more conjunctions can be made.

The parameter M limits the constraints that can be conjoined. When il1 = 0, two

constraints will only be conjoined when one is over a subset of the variables that the other

covers. In this case, the complexity of GAC does not increase at all. since the constraints

of higher arity are not created, while the advantages of conjoining constraints remain.

As M increases, the complexity of GAC increases as well. It depends on the problem

at hand what the value of M should be. In the following sections, we will examine two

such problems.

4.3 Optimal Golomb Rulers

A golomb ruler is a set of non negative integers, ma, m,, called marks, such that the

distances mi - mj, i > j ,V i , j are distinct.

Moreover, the length O/ a golomb ruler is defined as max(mi - m j) , Yi, j . The first

mark is typically O, so the length of the ruler is actually max(mi)Vi. An optimal golomb

ruler is one such that no ruler of smaller lengt h wit h the same number of marks exists.

Smith e t al. in [3t] have studied various alternative representations? heuristics and

extra constraints that one can add to make solving the problem more efficient. We wiIl

try to reproduce some of their results here.

4.3.1 Representations

This problern can be represented as a Constraint Satisfaction Problem, by posting a

constraint mi - mj # mk - ml,Vi > j, k > 1. This also implies that we post ternary

constraints, for the special case when i = I. To limit the number of symmetric solutions,

we d s o post the constraints mi < mj, tli < j and also 7722 - ml < m, - m,-~ to etiminate

symmetric solutions. Using this representation, we post the iollowing constraints over

every set of 4 variables:

The first 3 constraints are quaternary constraints, while the other 4 are ternary.

It should be noted that these are not al1 the constraints that the formula mi - m, $

r n k - ml, V i > j, k > 1 irnplies. There are many constraints that are essentially duplicated

(e.g xi - x0 f $3 - 52 is equivalent to x3 - 32 # X I - xo) or otherwise redundant

(x2 - xg # XI - x0 is impIied by the fact that xo < xl < x?).

Smith et al. [31] assert that the obvious representation is not optimal. They propose

an alternate representation, where each mark is a variable in the CSP, as well as m(m -

1112 auxiliary variables. For every two mark variables, an auxiliary variable is used to

represent their difference and a constraint to that effect is posted among these three

variables. In addition, we post a not-equals constraint between every two auxiliary

variables. The aut hors prove t hat t his representation will generate more pruning t han

the one with quaternaxy constraints in every case except when the quaternary constraint

is actually a ternary constra.int of the form Cv.,v,,v,,vk.

This representation can be further improved if a single dldiff constraint is posted over

a11 the auxiiiary variabres instead of a clique of binary const raints. '
Moreover, different dynamic variable ordering strategies are compared for the best

representation, comparing a static lexicographie ordering, the dom heuristic and the rdom

heuristic (dom rest ricted to the mark variables).

4.3.2 Results

Since we use different software, as well as hardware, from what Smith et al. used, the re-

sults are not directly comparable. It should also be noted that they used an optimization

leature to discover the optimal golomb ruler, something rvhich is not currently provided

by Our framework. CVe can, however, reproduce their comparative results.

Comparing representations

In addition to the representations studied by Smith et al., we study an additional repre-

sentation, which is automatically derived from the one using quaternary constraints by

applying the heuristic discussed earlier with the parameter M set to iCI = 0.

We count the nurnber of recursive cails made to find a ruler of the given length (or

prove that none exists). The results are s h o w in figure 4.1. In this table, the first two

columns show the size of the problem tested, the fint being the nurnber of marks and

the second the length of the d e r . After that, we have two colurnns for each of the four

representations tested: the original one using quatemary constraints, the conjunctive

one which d s o uses quaternary constraints and the two representations using ternary

constraints Smith et al proposed. The first column for each representation shows the

number of backtracks performed by the solver and the second shows the cpu t ime it used

to solve the corresponding problem.

Note that the representation using conjunctive quaternary constraints fares much

'Régin [26] discusses the advantage of a single aiidiff constraint over a clique of binary not-equals
constraints as weil as a way to efficiently irnplement it.

better than the originaI quaternary representation. TIie resuIting singIe conjunctive con-

stra.int generates much more pruning when doing GAC propagation.

Figure 4.1 Backtracks perforrned and cpu tirne to find (F) a golomb ruler of a given size

and prove (P) its optimality. "-" indicates that the solver was unable to find a solution

after z3' consi

1 size length

8 34 (F)

8 33 (P)

9 44 (F)

9 43 (P)

10 55 (F)

10 54 (P)

11 72 (F)

11 71 (P)

aint checks

Quaternary Conj Quat Ternary

We notice that the conjunctive quatemary representation is approximately as powerful

as the temary+not-equals representation, while enjoying rnuch bet ter t imes due to the

simplicity and smaller number of constraints *.
We c m also see that the representation that used the A l l D i f fpropagator does not

perform as well as the one in the commercial product ILOG Solver that was used in 1311,

but its relative performance compared to the representation using a clique of not-equds

constraints is what is expected.

' ~ c t u a l l ~ , both representations have 0(m4) constraints, but the representation with conjunctive
quaternary representations has O(m) variables as opposed to 0(m2) variables

In generd, the higher times produced here can be attributed to the impiementation

of the GAC-enforcing algorithrn, which is based on AC-3. In contrast, ILOG Solver uses

an algorithrn based on AC-7, which scales better than AC-3.

In addition to this test, we performed a test using different levels of conjoining for

the quaternary represent at ion, shown in figure 4.2.

Figure 4.2 Backtracks and cpu time to find (F) a golomb ruler of a given size or prove (P)

its optimality. "-" indicates that the solver was unable to find a solution after reaching

10' leafs

size goal 1 I I I

The first colurnn in that table shows the original quaternary representation. while

the last columns show the conjoined representations. In the second column, we show

the results for an intermediate representation (which was not generated automatically) ,

which consists of a conjunction of the quaternary constraints, but without the ternary

const raints.

The results are not surprising, other than the fact that the first two representations

perform the exact sarne number of backtracks in every case. This can be explained by

the fact that the 3 quateniary constraints posted every set of 4 variables are actually

Conj Quat only Conj Quat + Tern Problem Quat + Tern

CHAPTER 4. EXPERIMENTS

equivafent. The constraints are:

It turns out that we only need to post the first of these constraints. as the others are

implied. In particular, we can add x2 - x l to 4.1 to get 4.2, while 4.3 is implied by the

order constraints between the variables (x, < x,, i < j) .

This demonstrates the fact that conjoining constraints is not only an automatic way

to improve a model, but also good for analysis. Aspects of the rnodel which ivere not

previously clear can be revealed by analyzing the behavior of the derived models.

From this point on, al1 results wiI1 report on the conjoined quaternary representation

instead of the original quaternary representation.

Comparing variable ordering strategies

We will compare two orderings for this problem: a static lexicographic and the dom+deg

heuris t ic.

Surprisingly, the lexicographic ordering turns out to be the best strategy for this

problem, as shown in figure 4.3.

We actuaily see a different behavior for the two heuristics, depending on whether ive

use the representation with quaternary constraints or the one with ternary constraints

and the -4lldiff propagator.

The lexicographic ordering gives better results in d l cases when using ternary con-

straints. The reason for this is that selecting the variable wit h the minimum remaining

domain size can often select one of the auxiliary variables. The value of these variables,

however, depends entirely on the value of the mark variables it is constrained with- When

Figure 4.3 Kurnber of backtracks (ieafs) to find (F) a goIomb d e r of a given size and

prove (P) its optimality using different DVO heuristics

1 size length

Ternary+ Alldiff
r

7 25 (F)

7 24 (P)

Problem

dom+deg lexicographic

90 90

824 594

8 34 (F)

S 3 3 (P)

Quaternary

dom+deg lexicographic

491 492

6231 7131

9 44 (F)

9 43 (P)

4947 4920

42844 52568

10 55 (F)

10 54(P)

none of the other two variables have been assigned, it will cause minimal pruning. Be-

cause the total number of auxiliary variables is relatively high (O(m2)), there is a high

probability that this will happen often. Therefore. the system spends much time doing

work that does not gain anything.

Instead, the lexicographic ordering makes sure that the mark variables are assigned

first.

We also notice t hat when using quaternary constraints, the dom+deg heurist ic does

not significantly improve the performance of the solver. This cm be attributed to the

nature of the problem and the representation. In the original definition of the problem,

al1 mark variables are equivalent. Therefore, there are many syrnmetric solutions. When

solving this problem, the dom+deg heuristic would be expected to perform much better

than the lexicographic heuristic.

30962 36666

250822 373375

11 72 (F)

11 71 (F)

183960 234069

- -

However, we do not want to report a11 symmetric soIutions. Therefore, we impose the

Following constraints to break symmet ries:

a mi < m,, i < j. This constraint eliminates an exponential number of symmetric

solut ions.

rn mz - mi < mk - mi-1, where k is the length of the ruler. This constraint only

eliminates one symrnetric solution.

Of these, the first type of constraint is the one that makes the difference. Because of

it, al1 mark variables are no longer equivalent. In fact, the optimal ordering should almost

always be very close to the lexicographic ordering of the variables. This is because, al1

other things being equal, as more variables become instantiated in lexicographic order.

the tighter the constraints become for the next variables and therefore more values get

pruned from domains.

Comparing algorithms

The authors of [31] used ILOG's Solver for their experirnents. This solver uses AC-; to

enforce GAC, instead of AC-3 used by our implementation. This causes their results to

show GAC stronger in terms of time than ours. However, they do not consider FC and

conflict filtered backt racking algorithms at all.

The table in figure 4.4 shows that using CFFC instead of GAC type algorithms can

dramatically improve the performance of finding a solution. Similarly, CFGAC performs

better that GAC, both in terms of time and number of recursive caIls.

From this table, we can see that CFGAC is better than GAC at finding a solution

both in the nurnber of backtracks performed, as well as in cpu time. CVhen proving the

optimality of a given d e r , it is better in terms of recursive calls and comparable in terms

of cpu time. This means that maintainhg the conflict sets is an overhead that pays off

when finding the optimal d e r but not when proving that it is optimal.

Figure 4.4 Number of backtracks and cpu time to find (FI a golomb ruier of a given

1 size length 1 1 1 1

size and prove (P) its optirndity using different dgorithms

CFFC is significantly better than both GAC and CFGAC in terms of time. As

expected, the number of backtracks performed is higher, but only by a factor of Less than

2 when fmding the optimal d e r and less than an a factor of 3 when proving optimality.

The factor gets better as the size of the problem increases and it reaches fewer leaves

than GAC (but more than CFGAC) when finding the optimal ruler with 11 marks. The

fact that it does so much less work at each node makes it faster overall, usually around

an order of magnitude better.

What this shows is tbat the codic t sets discovered by CFFC allow the algorithm to

jump approximately back to the point where GAC would reach a leaf. Not only that.

but after that point, any jumps further back are almost the same ones performed by

CFGAC. In other words, CFFC explores approximately the same portion of the search

space as CFGAC, only it has to reach a deeper level before performing each backtrack.

Problem GAC CFGAC CFFC

The size, however, of the subtree that CFFC explores and CFGAC does not is Iinear in

size, as opposed to exponential for the general case.

4.4 Random 3-SAT instances

We will use the CSP representation to solve random instances of the 3-SAT problem.

Given .N and C, the number of variables and the number of clauses, we generate instances

by randornly selecting 3 Iiterals out of the 21V (positive and negative) Iiterais. discarding

tautologies. \Ne then construct the clause ii v i2 v Z3.

Using CSPs to solve SAT problems is not optimal, since CSP search algorithms do

not take advantage of the special structure of SAT constraints (i.e. 3-clauses). SAT can.

however, be used as an interesting benchmark to compare CSP algorithms. It has been

shcwn [I I that CFFC is the best algorithm for solving this type of problems, if we use a

CSP soiver.

lnstead, we will focus on GAC and the use of conjunctive constraints.

4.4.1 Represent at ions

The first representation we use is one where we simply post a ternary constraint for each

clause.

The second representation is derived from the first one, by applying the heuristic

described wi th the parameter LM = 1. The resuiting mode1 contains a mix of ternary and

quaternary constraints.

4.4.2 Results

We ran the Solver for both representations at the crossover point c /n = 1.26 [31] for a

number of variables ranging from 60 to 100 with a step of 10. We count the average

cpu tirne and average number of backtracks performed by the soIver, using the GAC

algorithm. The results are shown in figure 1.5.

Figure 4.5 Average number of backtracks and cpu time to prove whether a problem is

satisfiable or not. The last colurnn indicates the percentage of instances where the solver

performed better if constraints were conjoined

avg leafs

original w/conj perc T-Tl 1 # Variables

It is worthwhile noting in this case that there were instances where the solver ac-

Instances (original 1 iv/conj

tually performed more backtracks when using conjoined constraints than it did in the

original problem. This anomaly can be attributed to the fact that 3-SAT has a special

structure, which is not accounted for in the DVO heuristic used. Therefore, even t hough

the conjunctive constraints cause more pruning, they end up making the search slower.

This anomaly can probably be eliminated by using one of the heuristics that have been

developed for SAT solvers.

In the instances where the solver performed fewer backtracks with conjunctive con-

straints, the cpu time used is at most 10% worse t han the time used to solve the problem

using the original model. This shows that the overhead of performing GAC on the con-

joined constraints is alleviated by the extra pmning that it causes. The refined results

are shown in figure 4.6.

Figure 4.6 Average number of backtracks and cpu time to prove whether a probtem is

satisfiable or not. The last column indicates the percentage of instances where the solver

performed better if constraints were conjoined. Only instances for which conjoining

straints did not interfere with the behavior of the DVO heuristic are counted

avg leafs avg time

1 # Variables 1 # Instances (original

4.5 Conclusions

In this chapter, we demonstrated the ability of the framework described in chapter 3 to

support experiments in the field of CSPs. CVe tested it on two widely used benchmark

problerns, the optimal golomb ruler problem and the random 3SAT problem.

In addition, we proposed a simple technique to automatically improve the efficiency of

a mode1 when using the GAC algorithm. We demonstrated the ability of the frarnework

t o support this new technique and used it to show that it can indeed produce better

models. We did note possible problems that it can introduce by interfering with the

DVO heuristic used, but overall the results were encouraging.

Chapter 5

Conclusions

In this thesis, we have examined existing CSP search algorithms in a consistent rnanner

which allows for their implementation in a common frarnework. Specifically, we found t h e

algorithms examined differ only in the Ievel of constraint propagation that they perform

and in the granularity of the conflict sets that they maintain. This enables us to treat

them uniformly, at least from the point of view of what they require to work and how to

provide t hat .

Similarly, we provided an overview of commonly used variable ordering heuristics and

showed how t hey can be treated consistently.

The CSP solver that was implemented based on these findings is a general-purpose,

flexibie solver that not only can be extended to accommodate new algorithms and new

variable ordering heuristics, but also allows for experimenting with models, special pur-

pose propagators and extensions of the CSP modei.

5.1 Future Work

The framework that was developed for this thesis can be used to facilitate research in

the following oreas:

fntegration of CSP algorithms with other search techniques. One example of this

might be integrating a CSP solver with integer programming algorithms.

Modeling. We havealready demonstrated (in chapter 4) that it is possible to use the

framework developed here not only to test alternative representations to solve the

same problem, but also to automatically aply transformations to an existing model

as a way to improve solver performance. Not only that, but pre-existing known

transformations (e.g. frorn a non-binary problem to a binary one. using either the

dual [13] or the hidden variable [2î] transformation) are hard to apply manually.

Instead, it is easier to define a mode1 and have a routine do the transformation.

This allows us to perform experiments on a wide array of problems to test the

efFect iveness of di fferent model ing techniques.

Search algorithms. We have implemented here several of the most popular a l g e

rithms used for solving CSPs and implementing new ones in an efficient manner

should be straightforward.

0 Dynamic variable and value ordering heuristics. As rnentioned, little is understood

about the implications of dynarnic variable ordering heuristics on the performance

of the search algorithms discussed. It would be interesting to study the behavior

of known heuristics in problems other than random CSPs [î, 33, 161.

Extension of the CSP model. It has been proposed to extend the CSP model to

allow the use of hard and soft constraints (e.g VSCP [29]) or other approaches to

optimization. This field, however, has not been explored in depth.

Availability

The resiilt of the work described in this thesis can be obtained online a t

http://vvw.cs.toronto.edu/~gkatsi/efc.tar.gz

Bibliography

[Il Fahiem Bacchus. Extending forward checking. In Pn'nciples and Practice of Con-

straint Prograrnming, pages 35-5 1, 2000.

[2] H. Bennaceur. The sat isfiability problem regarded as a const raint satisfaction prob-

lem. In Proceedings of the 12th ECA I, pages 155-159, 1996.

[3] Michael E. Bergen, Peter van Beek. and Tom Carchrae. Constraint-based vehicle as-

sembly line sequencing. In Proceedings of the 14th Cnnadian Con ference on A rtificial

Inteliigence, pages 88-99, Ottawa, Ontario, 200 1.

141 C. Bessière. Arc-consistency and arc-consistency again. In Artzficial Intelligence 65.

pages 179-190, 1994.

[5] C. Bessière, E.C. Freuder, and J.C. Régin. Using inference to reduce arc-consistency

computation. In Proceeding of the 14th IJCAI, Montréal, Canada, 1995.

[6] C. Bessière and J.-C. Régin. Local consistency on conjunctions of constraints.

In Proceedings of the ECAI'98 Workshop on Non-binary const raints, pages 53-59,

Brighton, UK, 1998.

[7] Christian Bessière and Jean-Charles Régin. MAC and combined heuristics: Two

reasons to forsate FC (and CBJ?) on hard problems. In Principles and Practice of

Constraint Prograrnming, pages 61-75, 1996.

[8] J. R. Bitner and E. M. Reingoid. Backtrack programming techniques. Comm. .4C%f,

18:651-656. 1975.

[9] D. Brélaz. New methods to color the vert ices of a graph. In Communications O/ the

ACM, 22, pages 251-256. 1979.

[IO] P. Burke and P. Prosser. The distributed asynchronous scheduler. In M. Zweben

and M. S. Fox, editors, Intelligent Scheduling, pages 309-339. Morgan Kaurmann

Publisbers, 1994.

[11] W. Davis. G. Logeman, and D. Loveland. A machine program for theorem proving.

Communication of A CM, ,5394-397, 1962.

[12] R. Dechter and 1. Meiri. Experimental evaluation of preprocessing techniques in

constraint satisfaction problems. ArtiJieial Intelligence, 6521 1-242, 1994.

[13] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-

gence, 35:353-366, 1989.

1141 J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-

rithms for satisficing assignment problerns. In Proceedings of the Second Canadian

Conference on ArtiJicial Intelligence, pages 268-277, Toronto, Ont.. 1975.

[15j R Genisson and P. Jegou. Davis and putnam were already fortvard checliing. Ln

Proceedings of the 12th ECAI, pages 180-184, 1996.

(161 1. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An enipirical study

of dynamic variable ordering heuristics for the constraint satisfaction problem. In

E. C. Freuder, editor, Principles and Practice of Constraint Progmmrning, pages

179-193. Springer, 1996.

[l?] R. M. Haralick and G . L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[18j P.van Henteryck, Y. DeviHe, and C. Teng. A generic arc consistency aigorithm and

its specializations. In Artificial Intelligence 57, pages 291-321, 1992.

[19] A. Mackworth. Consistency in networks of relations. In Artificial Intelligence 8,

pages 99-118, 1977.

[20] A. K. Mackworth. On reading sketch maps. In Proceedings of lhe Fifth International

Joint Con ference on Artificial Intelligence, pages 595-606, Cambridge. Mass.. 1977.

[%II D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT

problems. In Proceedings ojthe Tenth National Conference on Artijkial Intelligence,

pages 459-465, San Jose, Calif., 1992.

(221 R. Xohr and T.C. Henderson. Arc and path consistency revisited. In rlrti/icial

Intelligence 28, pages 225-233, 198 6.

[231 B. A. Nadel. The consistent labeling problem and its algorithms: Towards exact-case

complexi t ies and t heory-based heuristics, 1986.

[24] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational

Intelligence, 9268-299, 1993.

[25] P. Prosser. MAC-CBJ: Maintaining arc consistency with conflict-directed backjump

ing. Research Report 177, University of Strathclyde, 1995.

pz61 J. Règin. A filtering aigorithm for constraints of difference in csps. 1994.

[2î] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction

problems. Technical Report ACT-AI-222-89, MCC, Austin, Texas, 1989. A shorter

version appears in ECAI-90, pages 550-556.

[28] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint sat-

isfaction. In Proceedings of the I I th Eumpean Conference on Artificial Intelligence,

pages 125-129, Amsterdam, 1994.

[29j T. Schiex and G. Verfaillie. VaIued constraint satisfaction problems: hard and

easy problems. In Proeeedings O/ the Fourteenth International Joint Con ference on

Artifieial Intelligence, pages 63 1-639, Mont real, 1995.

[30] Thomas Schiex, Jean-Charles Régin, Christine Gaspin, and Gérard Verfaillie. Lazy

Arc Consistency . In Proceedings of A A A 196, pages '16-221 Portland, Oregon. USA.

1996.

[31] B. Smith, K. Stergiou, and T. Walsh. Modelling the golomb ruler problem, 1999.

1321 Barbara M. Smith. The brlaz heuristic and optimal static orderings.

[33] Barbara M. Smith and Stuart A. Grant. Trying harder to faii first. In European

Conference on A rtificial Intelligence, pages 249-253, 1998.

1341 Toby Walsh. Sat vs csp. In Proeeedings of Cf-2000, pages 441-456, 2000.

