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The Constraint Satisfaction Problem (CSP) is an NP-cornplete problem. which allows 

flexible and intiiit ive representation of real-world problems. 

In this thesis, we present a consistent view of existing search algorithms and variable 

ordering heuristics. We t hen examine several aspects of building a CSP solver to accom- 

modate t heir requirements in a generic way. We demonstrate the feasibility of using t his 

solver to  perform experiments in common problems. Finally, we present and examine the 

performance of a new heuristic method to  manipulate existing CSP models by conjoin- 

ing constraints in order to improve their performance when used with the GAC search 

algori t hm. 
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Chapter 1 

Introduction 

1.1 The constraint satisfaction problem 

A Constraint Satisfaction Problem P is a tuple (V, D, C), where 

V is a set of variables 

D is a set of domains indexed by variable 

0 C is a set of constraints, where each constraint is over a set of variables. denoted 

VarsOf(C). 

We can assign to a variable V a value x from its domain, which we denote C. c x. 

An assignment A is a set {& c r l ,  . . . , V;, t x,), such that C.; # V;.  i # j. This 

means that no variable can be assigned more than one value. Mie define C'orsOf (A) to 

be {K, ..., Vm}. 

A constraint C is a set of assignrnents to VarsOf(C). Each tuple that belongs to 

the constraint is said to satisfy it. A constraint is fully instantiated by an assignment 

A if VarsOf(C) C VarsOf (A). Moreover A satifies C if the subset A' of A that has 

VarsOf (C) = VarsOf (A), satisfies C. 



The ardy  of a constra.int is 11 VarsOf(C)[l. The arity of a problem is the maximum 

arity of its constraints. Therefore, a binary CSP is one that only has biuary or unary 

constraints. 

Often binary CSPs are represented by a constraint graph. In it, vertices represent 

variables of the CSP and edges represent constraints between variables. This represen- 

tation has no information about the structure of the individual constraints, but it lends 

itself to an analysis of the problem using a graph theoretic approach. Yon-binary CSPs 

can be represented using a hypergraph. 

A solution to a CSP is an assignrnent of values to al1 the variables. such that it 

sat isfies a11 constraints. 

The sat isfiabili ty problem is a speciai case of the couetraint satisfaction problern. 

where the domains of ail the variables are {O, 11, even though there are other ways to 

encode a SAT problem as a CSP [34,%]. A polynomial translation can be performed from 

CSP to SAT, as well [34, 151. Therefore? the CSP is an NP complete problem. Hocvever. 

there are instances of the problem that are solvable and useful. In fact. CSPs are widely 

applicable, as we will see in the next section. 

1.2 Applications 

1.2.1 Optimal Golomb Ruler 

A golornb ruler is a set of n numbers, called marks, such that the n(n - 1)/2 differ- 

ences between every pair of them is unique. An optimal golornb ruler is one such that 

max, - min, is minimal, where max, and min, are the maximum and minimum 

marks, respectively. 

I t  has been noted that finding an optimal golomb d e r  is very hard [31]. even for 

s m d l  numbers of marks. However, it has applications in many areas of engineering, such 

as wireless communications. 



This probtem will be discussed in more detaif tater, when we wiH examine how it can 

best be represented and solved as a CSP. 

1.2.2 Assembly line sequencing 

The problem of assembly line sequencing [BI involves finding a sequence that items will 

be placed on an assembly lines, while not exceeding the capacity of various resources in 

the line and a t  the sarne tirne completing the sequence in the srnallest time possible. 

This problem obviously has wide applications in rnanufacturing environment S. In 

addition, it is possible to come up with numerous variations on the basic problem. such 

as: 

a Variety for the workers on the line, to maintain their interest and ski11 sets. 

Limitations can be set on the possible transitions between items. For example. 

for a painting machine, an item that must be painted white should not be placed 

immediately after one that should be painted red, so that it does not end up with 

a pink color. 

1.2.3 Scheduling 

The car sequencing problem is a special case of t he scheduling problem [IO], which involves 

assigning jobs to machines. There are many constraints that limit the possible solutions 

to this problem, including what kinds of jobs each machine can handle and in what 

succession, what jobs need to be completed and so on. 

In addition, scheduling is a problem that can have a vast nurnber of solutions, al1 

acceptable given the  constraints. However, only some of them may be desirable. 

Therefore, scheduling is suitable for the use of techniques in optimization, as well 

as hard and sofi constraints (hard constraints need to be satisfied for a solution to be 



reported, whereas soff constraints, when vioIated, increase a penalty value for the solution 

and the goal is to minimize the penalty [29]. ) 

1.3 Research in CSPs 

Research in the area of CSPs is very experimentally intensive. This is because there is 

usually no way to completely determine how a new algorithm or dynamic variable order- 

ing heuristic will work wit hout actually trying it in real world problems. Moreover. the 

performance characteristics of each algorithm can Vary widely between different prob- 

lems. The best way to solve a given problem generally involves choosing a combination 

of algorit hm, heuristic and representation. The best representat ion for one algorit hm 

may not be the best for another. 

1.3.1 Algorit hms and Heuristics 

As will be discussed in chapter 2, there are many different approaches to solving CSPs. 

The main aspects that affect the efficiency of solving a CSP. given a specific repre- 

sentation, are 

0 The choice of algorithm 

0 The heuristic for choosing which assignment to make next. 

Even though theoretical comparisons of algorithms and heuristics are possible. the 

actual performance of an algorit hm is a function of the tradeoffs t hat it rnakes and how 

effective they are for a given problem. In chapter 2, we will discuss these tradeoffs and 

examine how they affect performance. 



By far the most challenging aspect of CSPs is coming up with an efficient representation 

to solve a CSP. These are the most important features of a representation: 

a Number of variables 

a Size of domains 

a Uniformity of domain sizes 

a Number of constraints 

a Arity of constraints 

a Distribution of constraints in the constraint graph 

O Pruning strength of constraints 

Al1 the above characteristics influence the effectiveness of a representation. Moreover, 

we have to balance other characteristics, depending on the algorithm used. For example. 

intelligent backtracking algorithms can deduce better backjumps with certain type of 

constraints. Also, we may be able to do more efficient constraint propagation by taking 

advantage of domain knowledge. Finally, adding redundant constraints, although it 

increases the cost of consistency checks, can prove beneficial by enabling the constraint 

propagation algorit hms to perform more pruning. 

Consider the example of the n-queens problem [23]. One possible representation is to 

represent each square with a variable whose domain is {O, 11, which means that there is 

or there is not a queen in that square, respectively. In addition, there will be a constraint 

between every pair of variables, that only allows a queen to be placed in both squares if 

they do not "see" each other. So, for the Cqueens problem, there will be 16 variables 

and 120 binary constraints. In ot her words, t his represent at ion needs 0(n2) miables 

and 0 ( n 4 )  constraints. 



On the other hand, me cm represent the probkm using one variable for each cotumn 

of the chess board. The domain of each variable will be { 1 . . . n), representing the row 

where a queen will be placed on that column. We also post a constraint between every 

two variables, which will be true if the placement of the queens in the corresponding 

columns is such that they do not -seeu each other. In other words, we use O(n j variables 

and O (n2)  const raints. This representat ion uses much fewer variables and const raints, 

by taking advantage of the knowledge that there can be only one queen at each column 

of the board. 

One common benchmark problem, t hat is much more difficult and realistic t hat the 

n-queens problern discussed above, is the Optimal Golomb Ruler problem. Smith et 

al. [31] study various represeritations and find that a good representation is one that 

has 0 ( m 2 )  variables, instead of O(m),  but uses a more efficient constraint propagation 

algorit hm. It  also uses ternary constraints and one constraint of very !arge arity. whereas 

the original representat ion uses quaternary const raints. A t heoretical cornparison showed 

that either representation used could, in different situations, be better t han the ot her. 

Their empirical results, however, show t hat the representation with ternary constraints 

was consistently much better. Moreover, this paper shows that, contrary to comrnon 

practice, the  Brélaz variable ordering heuristic actually performs worse than a static 

lexicographie heuristic for this problem. We will discuss these results again in chapter 4. 

1.4 Contributions 

It becomes clear that research in the field of CSPs is heavily dependent on access to  an 

experimental tool. However, there is a wide array of available algorithms, heuristics, as 

well as transformations that can be done on  a model, so that it is not obvious how to  

implement them al1 in a consistent and extensible way. 

In this thesis, we present a consistent view of existing dgorithms and heuristics in 



chapter 2, examine s d  aspects of buitding a CSP soiver to  accommodate these and 

address them al1 in a generic way in chapter 3. We then demonstrate the feasibility of 

using this solver to solve some common benchmark problems, in chapter 4. 

The purpose of this work is to provide a framework for supporting the empirical 

investigations required to do research in this area. 



Chapter 2 

Previous Work 

Backt racking 

One way to  generate al1 solutions for a CSP is to generate al1 the possible sets of assign- 

ments and discard those that fail to satisfy al1 the coostraints. 

The idea behind backtracking [SI is that instead of generating an assignment to the 

variables and then checking it, we can check it as we create it. .A backtracking algorithm 

assigns a value t o  a variable, then tries to assign another variable and so on. With each 

assignment that it makes, it makes sure that ail the fully instantiated constraints are 

satisfied. It continues until there are no more variables left, in which case it has found a 

solution, or  a constraint that has been falsified. In the first case it reports the solution 

found and continues as if it had failed. In the second case, it tries another value for the 

current variable. When al1 values in the variable's domain are exhausted, i t tries the next 

value for the previous variable. The search is over when al1 values of the first variable 

have been exhausted. 

Checking sets of assignments as we build them can Save an exponential amount of tirne 

in solving the problem. Consider the case of a problem with n variables, ail of which have 

the same domain size d. Consider, furt her, that the backtracking algorithm instantiates 



k variabtes when it Ends that this partial assignrnent falsifies some constraint. ft witt now 

backtrack, trying other values for the k variables that it has instantiated. The number 

of assignments that it has avoided considering is (n - k ) d .  

Backtracking can be seen as a search in a tree, where each node is a partial assignment 

and its children are nodes whose corresponding assignment is the same except th- have 

one more assigned variable. The leafs of the tree are complete assignments or assignrnents 

that fail to falsify some constraint. 

Seen this way, the benefit of backtracking over generate-and-test is that it reduces 

the size of the explored search tree by avoiding searching sorne subtrees t hat contain no 

solut ion. These subtrees can be of exponential size. 

Constraint Propagation 

2.2.1 Local consistency 

Using any of the algorithms that we will discuss later, the tirne t hat it takes to find a 

solution for a CSP depends on the size of the search tree. which is? in the worst case, the 

size of the product of the domains of al1 the variables in the problem. CVe can reduce the 

size of the search tree by examining the constraints individually and pruning values that 

are locally inconsistent . 
Local inconsistency is the inverse of local consistency. We will consider the following 

three types of local consistency. 

0 Node consistency 

A problem is node consistent when al1 the values in the domains of its variables 

satisfy d unary constraints. 

a .4rc consistency [19] 



A vdue is arc consistent for a binary constraint when there is a satisfying set of 

assignments to the variables of the constraint that contains t his value. A constraint 

is said to be arc-consistent when al1 of the vaLues of its variables are arc-consistent. 

A problern is arc-consistent when al1 its binary const raints are arc-consistent . 

O Generalized arc consistency (201 

A value is arc consistent for a constraint when there is a satisfying set of assignments 

to the variables of the constraint t hat contains this value. A constraint is said to be 

arc-consistent when al1 of the values of its variables are arc-consistent. A problem 

is arc-consistent when al1 its constraints are arc-consistent . 

When enforcing these forms of local consistency, we find inconsistent values and prune 

thern. 

Node consistency is easier to implement , as we only have to consider unary const raints. 

Therefore, finding node inconsistent values has time complexi ty only O(d) for the domain 

of one variable, where d is the size of the variable's domain. Since arc consistency (AC) 

deals with binary constraints, it has to examine d2 pairs of values, therefore its complexity 

is O(&). Similarly, generalized arc consistency (GAC) has complexity O(dk) ,  where k is 

the arity of the constraint being checked. 

On the other hand, since node consistency only considers unary constraints, it can 

generate lit t le, if any. pruning. AC considers binary constraints. while G AC considers 

all constraints. Each is more powerful and can generate more prunings. 

Another thing to note is that AC and GAC have cascading effects. This rneans 

that when a value is pruned from the domain of one variable, aII the constraints in 

which this variable participates must be reexunined for AC (or GAC). Consider three 

variables VI, b, with domains {l, 2,3) and constraints ClV2 = {{1,2), (2,311 and 

Czv3 = {{2,3)). Enforcing AC on ClS2 will prune Vi t 3 and L$ t 1. Similarly making 

CZJ arc consistent will prune 1/2 + 1, & t 3 and L$ t 1,113 c 2. If, however, we 



enforce AC on both of them, pruning & + 3 wiII force reexamination of and that 

will cause VI t 2 to be pruned as well. 

What we see is a trade-off between processing time for enforcing different types of 

local consistency and how much pruning (therefore reduction in the size of the search 

tree) t hey achieve. 

CVe can further reduce the size of the search subtree below the current node by en- 

forcing some form of local consistency at each node [14, %]. 

When we make an assignment, we effectively reduce the arity of al1 constraints that 

this variable participates in by 1. The new constraints are satisfied by the subset of 

tuples from the original constraints that contain the value we just assigned. This means 

that each assignment can potentially generate new binary and unary constraints, so that 

we can apply NC and AC on the subproblem. 

The above techniques allow us to view enforcing local consistency as a dynamic pro- 

cedure rather than a static one that only occurs before we start solving the problem, 

therefore enabling us to reduce the size of the search subtree lurther at each node that 

we visit. 

Similarly, when we make an assignment, it can be viewed as reducing its current do- 

main to a singleton domain. This means that the rest of its values get pruned. Therefore. 

rve now have a set of prunings that GAC can propagate. 

Note, however, that when a constraint propagation algorithm prunes a variable, it has 

done so because it has discovered a reason for its pruning. Therefore, when this reason no 

longer exists, these values should be restored to the domain of its variable. That reason 

can be cornplex, but invariably contains the assignment that was made when that value 

was pruned. Therefore, we introduce the notion of the prune letle1 of a value. When 

the assignment made at level I causes a value to be pruned, its prune level is set to i. 

When the algorithm backtracks aad undoes the assignment made at 1, al1 values that 

nere pruned to level 1, are restored to their original domains. 



On the other hand, constraint propagation at each node can rnean that we end up 

doing more work than is necessary. This can happen when a constraint propagation 

algorithm prunes the dornain of a variable that is never assigned in the  subtree below. 

In this case, al1 the checks that were made to prune the domain of this variable were 

wasted. 

2.2.2 Forward Checking (FC) 

Forward checking [17] is an algorithm that tries to enforce node consistency at each node 

that it visits. 

After it makes an assignment t x, it goes over a11 the constraints C in which i( 

participates that only have one uninstantiated variable left (after the assignment t x). 

For every =lue y of the unassigned variable V,, it takes the current assignment A and 

checks the constraint against the assignment A u V, t y. If the check fails, the value y 

is pruned from the dornain of V,. 

2.2.3 Maintaining Generalized Arc Consistency(MGAC) 

MGAC [19] does exactly what its name implies: it enforces generalized arc consistency 

at each node ?-kited by the search procedure. 

To enforce GAC on a constraint, the algorithm goes over al1 the variables participating 

in this constraint. For every value of each variable, it checks to see that there is a tuple 

that contains t his value and satisfies the constraint. This is called a supporting tuple for 

the value, or simply support. If there is no supporting tuple for a valueo it gets pruned 

from the domain of its variable. 

To keep the problem GA consistent, the algorithm has to go over al1 the constraints 

at least once. When it prunes a value, however, it can mean that another value has lost 

its supporting tuple. So, it has to make sure again t hat al1 the values t hat may have had 

support on it still have some support, otherwise they must be pruned. 



A naive way to do that woufd be to go through al1 the constraints and ensure that 

each value in every ciornain has a supporting tuple and repeat the  process until no more 

values get pruned. This method is called AC-O. 

A significantly better way to do that is to rnaintain a queue of pairs < C'V >. 

Initially, al1 such pairs are inserted into the queue. The algorithm repeatedly removes 

pairs from the queue and checks the GA consistency of the values of V with respect 

to C. Whenever a value gets pruned from the domain V, al1 < Cf,  Vf > pairs such 

that Cr # C, V t  E VarsOf(Cf) and V t  # V are inserted into the queue if they are not 

already there. This way, if a value x of variable V gets pruned and it is possibly part of 

a supporting tuple for value x' of variable V', al1 values of Vf are going to be reexamined 

for al1 constraints that constrain both V and V t .  This method, called AC-3 [19] enforces 

GAC much faster than AC-O. 

It should be noted that other structures can be used instead of the queue, such as a 

stack or a priority queue. That is, the algorithm does not depend on the FIFO property 

of the queue. 

There are even better ways to keep track of supporting tuples and further improve 

AC-3. AC-4 [22] has been proposed and has been proven to be optimal in time cornplexity. 

Variations u p  to AC-7 have also been proposed (AC-5 [18], AC-6 [4], AC-; [SI, lazy AC- 

7 [30]) but they only improve the running time hy a constant factor and have a significant 

space cornplexity. 

2.2.4 Maintainhg Arc Consistency (MAC) 

MAC [19] is just a specid case of MGAC, where only constraints that have two unin- 

stantiated variables left are inserted into the queue. 



2.3 Intelligent Backtracking 

Whereas constraint propagation tries to reduce the size of the search tree, intelligent 

backtracking tries to reduce the size of the esplored search tree. That is, it tries to 

reduce the number of nodes that it actually visits, even though it does not necessarily 

prune any values. 

An intelligent backtracking algorithm tries to discover a reason why the current sub- 

tree fails to contain a solution. The search can then backtrack far enough to invalidate 

this reason. To understand how this can be accomplished, we introduce the concept of 

nogoods. 

A nogood is a set of assignments that is not part of any solution. Note that any 

superset of a nogood is also a nogood. 

There are an exponential number of nogoods that an algorithm can learn. The a lge  

rithms that we discuss associate each assignment with the level of the search tree where 

it was made. The nogoods that they learn are then represented as sets of levels. This 

representation restricts the set of nogoods that are learned to subsets of the current 

assignment . 
In fact, these algorithms learn two kinds of nogoods: 

0 A nogood t hat directly violates a constraint . 

These are encountered whenever the search finds a value t hat violates a constraint. 

They consist of al1 the assignrnents made to variables that belong to the constraint 

that was violated. 

0 A nogood t hat results from the unioning of ot her nogoods. 

We will discuss the following two types of unioning nogoods 

- Unioning nogoods that cover the domain of a variable. When we have a set of 

nogoods that cover the domain of a variable V, we can union these nogoods 



minus the assignments to V and get a new nogood. 

In other words, when we exhaust the domain of V and discover a reason for 

each of its values to not be a part of any solution, the union of the nogoods 

discovered presents a reason why the rest of the assignments made so far 

cannot be extended to a solution. This is because a solution has to contain 

an  assignment to every variable and we have found a reason why there exists 

no solution that extends the current assignment with an assignment to V. 

- Constraint-filtered unioning. When we have a constraint CvIv2 and a set of 

nogoods that cover the support (as defined for GAC) of & t x on V2, we can 

get a new good from the union of these nogoods minus the assignments to \$ 

plus 6 t x. If, for example, the supports of V, c r on 1/2 are t y1 and 

V2 + y*, and we have discovered the nogoods 

then w e  learn the nogood 

htuitively, this means that if we have discovered a reason why the current 

set of assignments cannot be extended to a solution that contains the set of 

supports of t x on 112, then this is also a reason why t h e  current set of 

assignments cannot be extended to a solution that contains k; t x. This can 

be explained by noting that any solution that contains C.; t x also has to 

contain its support ing values. 



A conflict set for a value x of a variable V is a set of assignrnents A, such that 

AU {V t r )  is a nogood. 

We can also add pruning to an algorithm that maintains conflict sets. Whenever we 

discover a conflict set for V i- x, we can prune that value to the deepest level where 

a n  assignment of the conflict set was made. In other words, when the search discovers 

a conflict set C F  for V t x' it means that CF U { V  e x) is a nogood. As long as all 

the reasons for this being a nogood are valid, the algorit hm does not need to try this 

assignment, since it wiil fail. Therefore, x can be pruned from the domain of V and 

remain pruned until at least one of the assignments in CF is undone. This tvill occur at 

level rnax(levelo/( V')), V' E C F ;  and this will be the prune level of x. 

BJ [141 maintains one conflict set for each variable. 

When it attempts to assign a value to a variable, it finds the earliest level 1 that this 

assignment becomes inconsistent. The conflict set that i t discovers at  t his point consists 

of ail the assignments at level 1 and above in the tree. Since the structure of al1 the 

conflict sets is always the same (al1 the levels from 1 to l ) ,  it simply stores 1. 

As an  example, consider that BJ tries to make the assignment V t x, but this 

assignment fully instant iates and violates coostraints Cv, J , , ~  and Ci;,v, ,v. while mriables 

VI, V2, V3, CS are instantiated a t  level 1, 2, 3 and 4 respectively. In this case, the earliest 

point where the assignment to V is inconsistent with the prior assignments is 3, therefore 

the conflict set BJ discovers for V c x consists of the assignment at levels {1.2,3).  

The conflict set for a variable is the  maximum level 1 discovered for al1 of its values. 

BJ can jump back t o  1 when it exhausts the domain of that variable. 

Suppose that, in the above example, BJ tries a11 values in the domain of V and finds 

t hat i is the level it should jump back to. By doing this, it has discovered a new set of 

nogoods of the form: 



where b$ is the variable that has been assigned at level i. 

By unioning these nogoods, since they cover the domain of V .  it gets a new nogood 

Therefore, the new conflict set for L$ t XI is the one that consists of al1 the âssign- 

ments made at  Ievels I . . . 1 - 1. 

This rneans that BJ is only able to jump back only once. To jump back further? it 

first has to explore another subtree. In other words, it can only jump back from leafs. 

not from interna1 nodes of the tree. 

2.3.2 Conflict directed Backjumping(CBJ) 

CBJ [24] improves on BJ by learning better nogoods. Instead of learning a nogood that 

only consists of al1 the assignments made at Ievels 1 . . .l, it takes advantage of the specific 

information provided by a failed coustra.int. Specifically, when the assignrnent I.* t x 

fails to satisfy a coostra.int Cvkl,...,vkm,v, the conflict set that CBJ learns for x consists of 

the assignments made t o  the variables Vk, , . . . , Vkm. This conflict set is unioned into the 

conflict set for the entire variable. 

After iterating over the entire domain of the variable, the conflict set discovered for 

the variabIe is the union of the c o d i c t  sets for dl its values. In other words, it is the 



union of a set of nogoods that cover its domain, minus the assigoments to this variable. 

Therefore, this conflict set is itself a new nogood. 

CBJ can now jump back to the deepest level where an assignment in the conflict set 

of the variable was made. It is safe to do so, because as long as none of the assignments 

in the nogood are undone, t here is no solution. 

The nogood discovered minus the assignment at the level CBJ jumps back to is a 

conflict set for the assignment made at that level. Therefore, this conflict set can be 

unioned into the conflict set for the variable a t  the jurnpback level. 

Because CBJ maintains finer-grained conflict sets than BJ. it is possible for it to jump 

back not only from leafs, but also from interna1 nodes. 

For example, suppose that variables Vil b, have been instantiated at levels 1, 

2, 3 and 5 ,  respectively. Further, the algorithm has reached level 10, where i t instantiates 

variable V wit h domain {a, 6 ) .  The assignment V t a violates the constraint Cr;,v,,v5,~. 

while the assignment V t b violates the constraint Cv,,v,,v5,v. The conflict set for V t a 

will be {1,2,5)  and the one for V t b will be {%,3,5). The conflict set for V is the 

union of these, which is { 1,2.3,5} and t herefore CBJ jumps back to level 5 and sets the 

tentative conflict set for & to {1,2,3}.  Now, the algorithm assigns other values to 1.;. 

Suppose that the other nogoods that it finds for are subsets of its current conflict 

set, therefore the conflict set after CBJ exhausts K's domain is still {1 .2 ,3) .  Now it 

wili jump back to tevel 3. In contrast, BJ would aiso jump back to Ievei 5. but it would 

then only be able to step back to level4. CBJ is able to jump further back because it 

maintains more detailed conflict sets than BJ. 

2.3.3 Value specific Confiict directed Backjumping (vsCB J) 

vsCBJ [Il improves upon CBJ by maintaining a conflict set for each mlue of a variable. 

When it discovers a conflict set for a value, it simply keeps it for this value and does 

not union it into a single conflict set for the variable. 



This aIIows it to take advantage of constraint-fiItered unioning of nogoods to discover 

more powerful nogoods on backtrack. It  produces the constraint-filtered nogood for the 

value assigned to the variable at the jumpback level, using either a constraint between 

the current variable and the jumpback variable or the universat constraint. It can also 

use a constraint which has al1 of its variables, except the two in question, assigned at 

levels above the jumpback level. 

As an example. consider the case of a CSP, where the assignment V t x is made 

at level f i ,  V' +- t' is made at  level I I  > f i  and at level l3 > i2, the domain {a. 6, c )  of 

variable V" is exhausted, without finding a solution in the subtrees. kloreover. t h e  solver 

determines that it is safe t o  jump back to level 1 2 .  Using CBJ, it will now set the conflict 

set of V' t x' to be the union of the conflict sets for V +- a, V t 6, V t c. Consider 

however, if there is a constraint Cv,vI,p and the tuple {V t x, C.' t x'. V" t c) does 

not satisfy it. This means that as long as there exists a reason for V" t a and V" t b 

to be inal id and the assignrnent V + x is not reverted, the assignment V' t x' will 

also be invalid, regardless of the status of V" t c. In other words. the conflict set for 

V' t x' can be  set to be union of the nogoods of the values of variable V". filtered by 

the constraint Cv,vt,vlc 

2.4 Combining Constraint Propagation with Intelli- 

gent Backt racking 

Constraint propagation and intelligent backtracking utilize two different techniques to 

speed up the seuch. Constraint propagation tries to reduce the size of the search tree 

below the current node, while intelligent backtracking tries to reduce the size of the 

explored t ree. 



We can combine the two approaches to achieve even greater speed ups. Intenigent 

backtracking algorithms discover nogoods for values in two points in the search: 

a When checking that the current assignrnent is consistent 

a When backtracking 

Constraint propagation discovers nogoods only when enforcing some form of local 

consistency after making an assignment. The nogood that it discovers for the values that 

it prunes consists only of the level at which they were pruned. In other words, it is the 

same type of nogood that BJ discovers: one that consists of al1 the assignrnents made 

until the current level. CVe can apply the same reasoning as we did for BJ and improve 

FC and GAC first to FCCBJ and GACCBJ and then to CFFC and CFGAC. 

2.4.1 FCCBJ, GACCBJ 

FCCBJ [24] and GACCBJ [25] perform the same kind of pruning as FC and GAC. The 

only difference is that when they prune a value From the domain of a variable, they use 

the constraint that caused the pruning to generate a conflict set for that value and union 

it into the conflict set of the corresponding variable. 

FCCBJ can simply set the conflict set of the pruned value to be the set of assignments 

made to the rest of the variables of the constraint that caused the pruning. When 

doing GACCBJ, however, it is not as simple to know exactly what caused the pruning. 

Therefore, the cod ic t  set for the pruned value is set to be the set of assignments made 

to variables of the constraint being checked unioned with the conflict sets of the rest of 

the pruned values in the variables of the constraint. 

T o  demonstrate t his, consider enforcing GAC on the constraint Cv, ,v,,v,. wit h al1 t hree 

variables having the original domain {1 ,2 ,3) ,  after having pruned & i, b and d + c 

and making the assignment Vi t 6. The constraint has the following satisfying tuples: 



At this point, V2 t a should be pruned. Its conflict set h a  to include. besides the conflict 

set derived from the previously assigned variables of the constraint , the conflict set for 

V, t a .  e b and L$ i C. This is because if any of these values were not pruned, 

.i a would still have support and would not be pruned. Therefore, the conflict set 

has to include the reason for these prunings as well. In fact, it should be the union of 

the conflict sets of the pruned values that appear at least once in any of its supporting 

tuples for the constraint Cv, ,v,,v,. This knowledge, however, requires t ime exponent ial in 

the arity of t be constraint to figure out. ' Using the union of the conflict sets of the rest. 

of the pruned values in the variables of the constraint can produce less powerful conflict 

sets, but it is rnuch easier to compute. 

When the search reaches a leaf, i t rneans t hat it has reached a variable t hat has had 

its domain wiped out by pruning done at previous levels. It can then use the nogood 

t hat i t has learned to  jurnp back furt her than the previous level. * 
These two algorithms propagate the nogoods that they have discovered to previous 

levels in the same way as CBJ: by unioning them into the conflict set of the variable they 

jump back to. This rneans that they are also able to jumpback from interna1 nodes. 

CFFC, CFGAC 

Similar to FCCBJ and GACCBJ, CFFC and CFGAC [l] are versions of FC and GAG 

that use constraint filtered unioning of nogoods. 

'Actudly, this knowledge is available when using GAC4, which explicitly stores al1 the supports for 
every value. It still requires time exponential in the arity of the constraint to cornpute, however (albeit 
oniy a t  the beginning of the search) and aiso requires a lot of space, which can be Iimiting for larger 
CSPs* 

'Actually, the reason that a variable has had its domain wiped out has to contain the assignment 
made at the previous [evel. Therefore, neither algorithm will jump back more than 1 level from a leaf. 
It is possible, however, t o  jump back more than 1 level from intemd nodes. 



The nogoods that these aigorithms Iearn from constraint propagation are the same 

that FCCBJ and GACCBJ learn. They differ only in the backtracking algorithrn, where 

the CF versions perform const raint filtered unioning of the per-value nogoods. 

2.4.3 A unifled view 

We can now group the algorithms discussed according to the nogoods that t hey learn 

because of constraint propagation and during the search. 

.4n algorithm can learn these types of nogoods because OF constraint propagation: 

Nogoods from forward checking 

Nogoods from enforciog GAC 

Similarly, it can learn these types of nogoods during search 

O BJ-style nogoods (1 . . . 1 )  

O Nogoods resulting from the union of a set of nogoods covering the domain of variable 

r Const raint filtered unioning of nogoods 

This way, we can create a grouping of the algorithms as shown in figure 2.1. 

Each problem might produce more powerful nogoods in only one of the dimensions. 

It is worthwhile to explore different ways of solving it by trying to  do more work in one 

of t hese dimensions or balancing t hem. 

3So much so, that the pruning routines used in the implementation discussed in chapter 3 are the 
same for FCCBJ and CFFC and for GACCBJ and CFGAC. 



Figure 2.1 CTassificatioa of algorithm by Ievel of nogoods learned 

Nogoods from search 

Nogoods from constraint propagation 

None 

2.5 Heuristics 

FC 

GAC 

The backtracking algorithms discussed in previous sections al1 center around the notion 

of exploring a search tree and using techniques to minimize its size. 

One factor that affects the size of the search tree and tiiat these algorithms do not 

address is the order in which the variables of the problern are instantiated. The only 

constraints that they place on which variable should be instantiated next are 

BJ 

BJ 

O If a variable has had its domain wiped out, it should be selected next for instan- 

tiation. When a domain is wiped out, it means that no solution can exist in the 

subtree below the current node. Therefore, there is no reason to search it anymore. 

In addition, we need to select the wiped out variable for the next level, so that an 

appropriate jumpback level can be computed. 

FC 

GAC 

0 If a variable has been reduced to a singleton variable, it should be instantiated 

next. This is just an opt imi~at ion.~  

CBJ 

CBJ 

By finding a better order in which variables are instantiated the algorithm can Save 

an exponential amount of time in learning some nogoods. 

There are two main strategies for selecting the next variable. We can either use a 

static ordering or a dynamic ordering. 

vsCBJ 

vsCBJ 

FCCBJ 

GACCBJ 

41t can however be critical to the performance of the algorithm, like in [Il]. 

CFFC 

CFGAC 



The static ordering can resuit from processing the probiem before the search has 

begun. 

A dynarnic ordering, on the other hand, examines the state of the problem each 

time if tries to instantiate a new variable and then uses a heuristic to select which one to 

instantiate. Using a dynamic variable ordering can have dramatic effects on the efficiency 

of problem solving. 

Minimum Remaining Values The most commonly used heuristic is currently the 

"minimum remaining va,luesW heuristic, or dom [ l i ] .  Aside from the constraints mentioned 

earlier, the variable it chooses to instantiate next is the one with the srnailest remaining 

dornain size. This heuristic attempts to minimize the size of the search tree below the 

current node. 

Moreover, we hope that by instantiating variables with smaller domain sizes. ive can 

cause more pruning when using a constraint propagation algorit hm. 

Minimum Remaining Values with tie-breaking by degree The drawback of dom 

is that it treats the constraint hypergraph as a complete graph. This means that in a 

sparse graph, the next variable will be chosen arbitrarily among those that have an equal 

(minimum) domain size, with no regard to the connectivity of the variable. This is not 

desirable, because even though two variables c m  have the same domain size, when one 

of them is more constrained that the other, it can potentially cause much more pruning 

when we make an assignment to it. 

Therefore, we can create a new heuristic, MRV with tie breaking by degree, or 

dom+deg [9]. The degree of a variable is number of active constraints (i.e. constraints that 

have not yet been fuily instantiated) on that variable. MRV with tie breaking chooses 

the next variable among those with minimum dornain size and among t hose and selects 

the one with maximum degree. 



Maximum degree CVhen the constraint graph is sparse, the size of the variables' 

domains can be less important than their degree in choosing the next variable. So, we 

c m  use the heuristic deg [12] for such CSPs. 

Ratio of domain size over degree Bessière and Régin [7]  have observed that de- 

pending on how constrained a CSP is, di fferent heurist ics perform opt imally. Speci fically, 

when the constraint graph (or hypergraph) is sparse (small number of constraints), the 

heuristic deg perlorms better than either dom or dom+deg. On the other hand, when the 

constraint graph is dense, dom and dom+deg perform better. 

They proposed that a better heuristic to use would be dom/deg, where the variable 

chosen for instantiation next would be the one with the minimum ratio domainsize/degree. 

In experiments they performed, using ranclom CSPs, dom/deg perforrned at  least as 

well as either of the other heuristics, but never significantly better than the second best. 

This indicates that although this heuristic does not produce better results that what was 

possible with the other heuristics, it does provide a way to get the best results without 

having to make a choice. 

It should be noted, however, that their results only apply to randomly generated 

CSPs. They may not be applicable to other classes of problems. 

2.5.1 Why heuristics work (or not) 

The reason why each heuristic works for a specific problem has not been determined. It 

has been suggested that the reason that dom in particular works is that it tries to fail in 

higher levels of the seatch tree. It has been proven, however, t hat t his is not the case [33], 

as heuristics that try to fail early generate search trees with many branches, which slow 

down the search. 

Instead, it seems that a heuristic should try to achieve a balance between failing early 

and generating trees wit h few branches. How to rneasure the difference and est imate the 



qudity of a heuristic without actualty sotving the probiem is a problem that has not been 

addressed yet . 

Finally, it should be noted that finding the optimal variable ordering for a problem 

is itself an NP-hard problem, therefore the closest we can get is using heuristic approxi- 

mations (321. 



Chapter 3 

Implementat ion 

3.1 Basic Infrastructure 

Al1 algorithms discussed in the previous chapter can be viewed as specializations of the 

algori t hm in figure 3.1. 

This is a recursive algori t hm. It is called by the user prograrn for level 1. In line 2, i t 

goes through al1 the uninstantiated variables and uses a heuristic to choose one. 

In line 3, it checks if no uninstantiated variables remain. in which case it has found a 

solution, which it processes in line 4. 

In lines 6-17, it tries to assign each value in the current domain of the selected variable 

and thcn recursively calls itself for the next level. This reqcires going through al1 the 

unpruned values of the current variable and assigning t hem to it . 

In line 7 it makes the assignment. In line S it makes sure that this assignment is 

consistent with the rest of the assignments made so Far. In effect , it has to go through al1 

the constraints in which this variable participates. For each constraint that has become 

fully instantiated, it checks that it is satisfied. 

If the assignment is consistent, then it does any constraint propagation needed in line 

9. Constraint propagation generally has to go over dl the constraints t hat the variable 



Figure 3.1 An abstraction of the atgorithms discussed 
Algorithm genericBT(leve1) 

Choose next variable V 

if no variables l e f t  then 

so lut  ion f ound 

endif 

for each value u i n  the domain of I/' 

make assignment V t v 

if assignment i s  consistent  then 

do constraint propagation 

backt rackleuel = genericBT(leve1 + 1 ) 

undo current assignment 

i f  backtracklevel < leuel then 

return backt rackleuel 

endif 

endif 

endfor 

unselect(  V ) 

backtracklevel = computebacktrackleve1(~ewe~) 

updateconf lictsets,atletreïs(backtrackleuel, level - 1) 

return backt rackleucl 

22 end genericBT 

participates in. For each constraint. it goes over the current domain of future variables 

and determines which values no longer have support on the domains of the rest of the 

variables. Forward checking will only do t his for constraints wi t h only one uninstant iated 

variable, while GAC will do that for al1 constraints and will cascade any removals. 

Only after t hese steps does the algorit hm call itself recursively in line 10. The recursive 

call will either return the current level to indicate that the search should continue in this 

level or something less than level to  either signal a jump back or temination of the 

search (when backtracklevel == 0) .  

Undoing the current assignment in line 11 means that the values that have been 

pruned because of it need to be restored to their original domains. Therefore? the dg* 



rithm aiso needs to keep track of which vahes have been pruned at  each LeveI. 

Lines 19-20 use the nogoods discovered during search to determine to what level the 

program should jump back to and t o  update the conflict sets of the d u e s  assigned 

to  variables at  intermediate levels. This involves determining the maximum level in a 

conflict set (Iine 19) and unioning the conflict sets of values at the current level and levels 

between the current and the jumpback level. 

Note that the actual implementation of some parts of this abstract algorithm (lines 

8, 9, 19 and 20) may be empty for some of the algorithrns. For example, the FC and 

GAC variants only have consistent values in the current domains of Future variables and 

therefore do not need to do any consistency checks. Similarly, algorithms that do not 

maintain conflict sets - and t herefore only step back, as opposed to jumping back - do 

not need to do anything for lines 19 and 20, other than: 

backt rackleuel = level - 1 

return backtrackleuel 

To implement these algorithms we want to provide representations for each of the 

following problem elements. as well as methods for manipulating those: 

a Variables 

a Variable domains 

a Confiict sets 

a Constraints of arbitrary arity. 

Moreover, we will discuss other aspects of the algorithms that need to  be provided 

for by our implementat ion. 



3.1.1 Variables 

Variables are objects of ciass Var. Each object contains information about the variable's 

current domain size and degree, as well as the values in its initial and current domain. 

They also contain information about the membership of t his variable in the const raints 

of the problem. Internally, the variable objects are identified by a numeric id. In the 

graph coloring problem, for enample, each vertex would correspond to a variable. but 

would be referenced by its id. 

The framework maintains a global array of such objects, called thevars. This allows 

constant t ime access to the variables by indexing. 

In addition, there is an array of uninstantiated variables, which is initialized to con- 

tain al1 the variables before the solver begins. This array allows us to iterate over the 

uninstantiated variables only, instead of iterating over al1 of t hem and skipping those 

that are already instantiated. This can Save time. especially at deeper levels of the tree. 

The relevant methods for the above manipulation are provided by the methods 

Solver: :selectNxtVar (which corresponds to line 2 of figure 3.1) and unselectvar 

(line 13 of figure 3.1). 

Variable domains 

The generic algorithm discussed earlier deals with variable domains in the following ways: 

It iterates over dl the values of a variable, when manipulating conflict sets (line 

16). 

0 It iterates over al1 the unpruned values of the variable (lines 513). It is preferable 

if it does this without having to go through and discard those that are pruned. 

a The pnuiing routines (line 8) need to remove values from anywhere on the list of 

unpruned values in constant time. 



O The backtracking part of the aIgorithrn (line IO) needs to add values back to their 

We use an object of cïass  Val to represent a value of a variable. 

Internally, d u e s  are identified by their numeric id. The user part of the program is 

responsible for treating the numeric id as the corresponding value in the problem domain. 

A value object also knows whether it has been pruned and at what I~vel,  what its 

conflict set is and what its variabIe is, 

For each variable, its values are kept in an array indexed by value id. which is simply 

its numeric value. In addition, each object in the array contains next and prev pointers 

to link these objects in a list, as shown in figure 3.2. Only unpruned values remain in 

this iist. This dual structure is used to faciIitate the types of access that the algorithms 

need over the domain of a variable, as mentioned above. 

Figure 3.2 Storing the values in a variable's domain 

Vax 

vals 0 1 2 3 4  

hdval s 

In addition, pruned values are kept in lists, one per level. This is to facilitate adding 

them back to their domains, ivhen we undo the assignments that pruned them. 

Access to the unpruned values of a variable v is provided by the con- 

tainer ValListOfVar(v). Similarly, the array of al1 values is accessed using 

AllValListOfVar(v). 



Values get pruned using the method Undo : :removeVaI(val, I e v e l ) ,  which removes 

v a l  from the domain of its variable and places it on the pruned values list for that level. 

When backtracking, the met hod Undo : : restoreVals(leve1) restores al1 the vari- 

ables pruned a t  a l e v e i  to their original domains. 

Conflict sets We also maintain conflict sets for each value. This is used by the intel- 

ligent backtracking algorit hms. ' 
T h e  following operations are performed on conflict sets: deriving a conflict set from 

a constraint (lines 7,s); unioning two conflict sets during backtracking (line L6); and 

figuring out the maximuni level that an assignment in a conflict set was made (line 15). 

These conflict sets are maintained as sorted linked lists of ranges of levels. Each node 

of this list is a class Cfcel i .  It has members h i  and 10. So, the conflict set 1.2,4,5,6,9 

would be represented as a list of 3 nodes: [1,2] ,[4,6],[9,9]. Lists of this type can be easily 

merged, in linear time. Moreover, we can easily figure out the jumpback level for an  

intelligent backtracking algorithm, by examining the h i  member of the last node of the 

list. To make this operation constant tirne, we also store a pointer to the  last node of 

the list. 

This class, besides the data members t hat it keeps, also provides convenience met hods 

that perform unioning or constraint filtered unioning of the conflict sets. 

3.1.2 Constraints 

Conceptually, a constraint C over k variables is simply a set of tuples of length k. such 

that each tuple is an assignment to the k variables constrained by 

'We do not maintain a conflict set for the variables, despite the fact that 

C. Each tuple is an 

they are needed by the 
aigorïthms that learn CBJ-style nogoods during search. This is because the conffict set for the variable 
is implicitly the union of the conflict sets of ail its values. We do not suffer a loss of efficiency for not 
maintaining a conflict set for a variable, because either way the dgorithm learns conflict sets for a value 
and unions them into the variable's conflict set. There is only a space inefficiency, which cannot be 
avoided, since we also irnplement algorithms that Iearn value specific nogoods. 



assignrnent that satisfies C. The size of the set can be exponential in k. Therelore, the  

only useful operations that  CM be performed with a constraint are: 

a query it on whether it constrains a variable 

a given an assignment to the variables it constrains. find out  whether  it satisfies the 

constraint . 

The first item can further be refined to checking whet her a single variable is con- 

strained and whether a pair of variables is constrained. 

In general, constraints are accessed in loops of the following form: 

Algorithm constraintAccess(Var v )  

foreach constraint C 

if C constrains u 

A = CreateAssignment CC) 

i f d  E C 
// do something 

end constraintAccess 

or, alternatively : 

Algorithm constraiatAccess2(Var v 1, Var u2)  

foreach constraint C 

if C constrains v l  A C constrains v 2  

A = CreateAssignment (Cl 

i f d  E C 
// do something 

end constraintAccess2 

Checking constraint membership 

The first operation mentioned actually has two facets. The one is having an object 

Var *v and an object Cons *c and checking whether c constrains v. This is done by 

simply checking that c->constrains (v) is true. The supporting structure is little more 

thm a bit vector. 



The other facet of this operation is finding, and iterating over, the constraints that 

constrain a variable or a pair of variables. This is done by accessing the container 

~ons~ist~fVar(v) or CvarListOfVar(v1, v2) respectively. 

These containers are simply wrappers around lists that are maintained for the variable 

objects. Each such variable object v contains a Iist of al1 the constrains that constrain 

this variable. In addition an array of lists is kept. For each variable v2. the list at index 

v2->id contains al1 the constrains the constrain both v and v2. This arrangement is 

shown in figure 3.3. 

In this figure, w e  see the data structures maintained for variable Pi .  This variable 

participates in the constraints Cv,,v,,v,,  CL;,^, , Cc; y, The list cons contains pointers to 

each of these constraints. In addition, a list of per-variable constraints is kept in cvar. 

The list for Vl is always empty, while the list for points to Cv,,if2,~; and CVltv2 and 

the list for 113 points to Cv,,v,,v, and CV,,~, .  The same structures are kept for each of the 

other variables, but are not shown in the figure. Pointers from the constraints back to 

the variables are also kept, but not shown in the figure. 

These lists are filled when completing the initialization of the CSP. 

Figure 3.3 Associating a variable with the constraints it participates in - 



Checking const raint satisfaction 

The actual reason that constraints exist at al1 is to check whether or not assignments 

satisfy t hem. 

However, the representation of a constraint is not easily abstracted. One common 

abstraction is the extensional representation, where a boolean value is used to indicate 

whether an assignment satisfies a constraint. For a constraint of arity n. we store these 

boolean values in an n-dimensional array, where the index For dimension k is the id of 

the value assigned to the kth variable of the constraint. 

This representation, however, can be very space-inefficient for problems with con- 

straints of large arity or large domains, as the space complexity of this structure is 

O(nd), where n is the arity of a constraint and d is maximum of the sizes of the variable 

domains. Not only that, but the construction of this array also has time cornplexity 

O ( n d ) .  On the other hand, a procedural representation for the same constraint might 

have constant initialization time complexity and constant space complexity 

Therefore, we need a way for thc user of the framework to provide a procedural 

representation of their own, or  use the extensional representation if this is convenient. 

To provide for this, we define a base class ConsRep, which abstracts the functionality 

of the constraint representation. This class provides a virtual function checkAssgn, which 

must be overridden by derived classes to return the truth value of an assignment. Thus. 

a ConsRep* can be an interface to any kind of constraint checking mechanism. 

The framework provides two builtin classes, ExtensionalConsRep and 

Libfntent ionalconsRep. The former provides the O ( n d )  extensional representa- 

tion discussed abave. The latter d o w s  the user to define constraint checking functions 

in a shared library, load this library dyuarnically at  runtirne and forward the checking 

to the functions in the shared library. 

Given d l  that, objects of c l a s s  Cons ac tudy  do not do any checking. Instead, 

they maintain a list of objects of cl ass ConsRep. When calling c->checkAssgn() for 



a constraint c, what it actudly does is go through every ConsRep object in its list and 

ask them whether the assignment satisfies them. It returns the conjunction of the  results 

that it gets. 

The reason we use a list of ConsRep objects for each constraint is that the framework 

supports posting only one constraint over one set of a variables. This is not a limitation 

on what kinds of problems can be represented, since a constraint t hat is the conjunction 

of several constraints over the same variables is equivalent to them (but can cause more 

pruning when doing GAC propagation). It can, however, be inconvenient for the user 

to have to manually conjoin two constraints that are logically separate in the mode1 of 

the CSP she is trying to solve. Therefore, ive provide a way for the user to define tivo 

logically distinct constraints over the same set of variables and have them automatically 

conjoined by the framework. 

Propagators 

The final aspect of constraint checking that we have to address is constraint propagation. 

Constraint propagation can be in the form of forward checking, enforcing various 

forms of arc consistency checking or sornethiog more elaborate. It could be argued that 

whether we do forward checking or arc consistency is actually a matter of the which 

algorithm we chowe (a variant of FC or of GAC). However, a unified view of constraint 

propagation helps to better structure the code. Moreover, some types of constraints can 

have a speciai structure, such that an algorithm can be developed for doing constraint 

propagation wit h a time complexity significantly smaller t han that of standard const raint 

propagation. This type of const raint propagation could be used by al1 types of algori t hms. 

Consequently, each constraint maintains a list of appropriate propagators. When 

an algorithm makes an assignrnent, it can choose to cal1 these propagators and take 

advantage of their domain knowledge. The difference between VSCBJ, FC and GAC is 

that the first two will just accept the results of the propagation, while GAC d l  regard 



it as just a more efficient way of enforcing GAC on a constraint. 

Like constraint representations, there is no generic way to implement a constraint 

propagator. The implernentation has to be abstracted to a base class propagator that 

provides the interface for propagation. The derived classes have t O provide im p lement a- 

tions for virtual functions related to initialization, propagation, backtracking and man- 

agement of the queue for GAC. Specifically, when doing propagation, t h e  derived class is 

notified of which values have b e n  pruned? so it can update its interna1 representation (if 

any). Each propagator has to return a list of values that it has decided should be pruned 

and the  variables that are affected by this pruning. 

Each constraint has a list of associated propagators with it. The reason for having 

a list, instead of a single propagator is, as with constraint representation, the ability to 

have logically separate implementations and have the frarnework take care of conjoining 

their results, instead of having to manually do it. 

Propagator example: the AIlDiff propagator The AllDiff constraint is a special 

type of constraint. It dictates that the value of its variables are al1 different. In a 

CSP, it can be implemented either by a clique of binary not-equals constraints for al1 

the concerned variables or as a constraint of arity n. Either of t hese will find the same 

solutions. 

However, when doing GAC propagation, their effects are quite different. Consider the 

example of an AllDiff constraint among the variables hl hl with domains (1.21, {1,%) 

and {1,2,3} respectively. Enforcing GAC on the binary not-equals representation will 

not prune any variables. Doing it on the constraint of arity n however will prune values 1 

and 2 from the domain of K. The complexity of enforcing GAC on a constraint of arity 

n, however, has time complexity O(nd), which is prohibitively expensive. 

J.C. Règin [26] has proposed a special purpose propagator for this type of constraint, 

which allows us to have stronger arc consistency with small complexity. The idea is that 



we transforrn the constraint into a bipartite graph. The vertices in one partition, X, 

represent variables and the vertices in the other partition, Y, represent values. An edge 

between two vertices means t hat the value is in the dornain of the variable. 

Next, we find a matching on the bipartite graph. A rnatching is a set of edges such 

that each vertex is adjacent to at most one of the edges comprising the rnatching. A 

matching that covers a set of vertices is simply a matching such that all vertices are 

adjacent to exactly one of the edges in the matching. 

Given that, finding an assignment that satisfies the constraint translates to finding a 

bipartite matching that covers the partition .Y. 

We can use this idea to also do constraint propagation. Specifically, given a matching 

that covers .Y, we can decide whether thcre is any matching that contains a given edge. 

The conditions for this are that the edge either belongs to the current matching, or to 

an alternating path of even length, or an alternating cycle. 

The complexity for this, for the worst case that the propagator gets called to remove 

the values of each variable one by one is 0 (n2d2 ) .  If we make the crude assumption that 

the time spent in the propagator is equally divided among the nodes along the pat h to 

a leaf of the search tree, then the  complexity at each node is O ( n 8 ) .  In contrast, the 

cornplexity for generic GAC enforcing for t his coustra.int tvould be O(dnd) at each node. 

The routines described in (261 map exactly to the virtual functions that the class 

we derive from Propagat o r  has to implement . Therefore, the implementation is rather 

straightforward. 

3.2 Algorithms 

The implementation of the dgorithms discussed is relatively straightforward, once t 6e 

rest of the framework is in place. 

They are simply translations of the pseudocode in figure 3.1, calling functions to do 



consistency checking ( t h e  81, constraint propagation (iine 9) and conffict set rnaniputat ion 

(Iines 19 and 20, as well as inside the functions for consistency checking and constraint 

propagation). 

CSP : :assgnConsistent  checks whether the latest assignment made is consistent with 

the previous assignments and returns the first constraint that is inconsistent or NULL if 

the assignment is still consistent. 

The following functions do conflict set manipulation: 

C f c e l l  : : setConsConfï ict  - sets the conflict set of a value to  be the set of lev- 

els where assignments where made to the variables of a constraint. excluding the 

current variable. 

0 C f  c e i l  : : setconf  l ictSet  - sets the conflict set of a value to be the union of the 

conflict sets of al1 the values t hat are compatible with it in the domain of another 

variable. 

0 Cf ce11 : : setCBJConflictSet - sets the conflict set of a value to be the union of 

the conflict sets of al1 the values in the domain of another variable 

O Cf ce11 : : rnergecf s - unions two conflict sets. 

Finally, the functions t hat need to be called for pruning: 

O FCPrune - forward checking, without conflict set manipulation 

FCCf P ~ n e  - forward checking, set t ing conflict sets for pruned mriables. 

FCCf LookBackPrune - forward checking, setting the conflict set of the pruned vari- 

able to be the union of the conflict sets of al1 the values t hat support at the current 

level. 

GACPrune - maintains arc consistency at the current node, using a flag for whether 

to use confiict sets. 



GACPrnne GACh-une is the oniy function that is not trivial to imptement using the 

underlying framework. 

GACPrune has to use propagators t o  enforce GAC as efficiently as possible. As de- 

scribed in chapter 2, AC-3, the version of AC that we implement, stores pairs < C: C > 

in a queue. Whenever it processes one such pair, it makes sure that al1 the values of V 

are GA consistent with respect to C. Processing a pair involves invoking the propagator 

for that pair and pruning the values that the propagator decides are GA-inconsistent. 

After that, it determines which variables have had their domain pruned. For each such 

variable V', it finds al1 variables V" that are constrained with V' via a constraint C" and 

inserts every pair < V", C" > into the queue. The reasoning for this is that since V' has 

had its dornain pruned, then some of the values of VI' may have lost their support for 

const raint CM. 

However, it is not always desirable to  insert every possible pair into the queue. There 

are two reasons why this is so: 

0 The user may have requested that GAC is not enforced for some constraints under 

specific circumstances: 

- Because it is too expensive t o  do so a t  that point (for example, we may want 

to enforce GAC on a 10-ary constraint oniy when at least 7 of the variables 

are instantiated. This is equiualent in time complexity to enforcing GAC on 

a 3-ary constraint) 

- Because there is a cheaper way to do perform the same task (When ive use 

redundant constraints) 

a The propagator may examine dl the variables of a constraint at once. Such an 

example is the AllDiff propagator, which needs to have its constraint inserted into 

the queue only once each time that sorne of the  variables it constrains have their 

domain pruned. 



Therefore, before inserting a pair < C > into the queue, the algorithm asks the 

constraint representation for this if it wants to be inserted into the queue. This is user 

controllable and corresponds to the first of the items listed above. If this succeeds, it 

then asks the appropriate propagator if it wants to be inserted into the queue. This is not 

user controllabie, but rather intrinsic to t h e  propagator. For example. a general purpose 

GAC propagator will need to be inserted into the queue For every pair, but an AllDiff 

propagator should not be in the queue more than once a t  any given moment. 

Currently, GACPrune uses a queue, but it really only needs a structure that supports 

the properties of a set: 

a Insert an item in the set if it is not already there 

a Remove an item from the set 

Therefore, we might use a stack or a priority queue instead of a queue. Depending 

on the problem currently being solved, it can benefit the speed of enforcing GAC. 

3.3 Heuristics 

Current ly, the only heuristics supported by the framework are D VO (dynamic variable 

ordering) heuristics. 

The user program selects what kind of DVO heuristic should be used. The frarnework 

provides some heuristics, but it is fairly easy to write other ones as needed. 

The user program has to cd1 the algorithm like this: 

fnpt (1, heuristic) ; 

Where heuristic is an object of a subclass of class Heuristic with operator() 

defined. When the algorithm needs to select the next variable to assign. The operator 

needs to get Solver: :unasgnVars, which is an array of unassigned variables and return 



an index into this array. The user program passes this on to the seIectNxtVar to do df 

the bookkeeping work of selecting this variable. 

Using objects like this allows us to implernent heuristics that are more easily cus- 

tomized to the needs of the specific problern. The obvious alternative, using pointers to 

functions does not allow this without using non-obvious means of communication between 

the problem setup code and the heuristic code, such as global variables. 

To make this clear, consider the case of two common heuristics: dom and rdom. The 

first one simply selects the variable with the smallest remaining domain size, while the 

second one only considers some of the variables of the problem and applies dom to the  

selection and considering the rest of the variables only after al1 the first variables have 

a11 been assigned to. This can be used in problems where we use auxiliary variables to 

enlorce stronger constraints, but we do not want to initialize those variables earlier than 

the primary ones. 

Implementing dom with either method should be trivial. However. we cannot im- 

plement rdom using pointers to lunctions, without using a global variable (or global 

structure) to indicate which variables are considered auxiliary. Using objects, on the 

other hand, makes this easy, as we simply incorporate this information into the subclass 

which we use to compute the heuristic. 

As a convenience. three heuristics are provided by the framework: dom+deg, 

lexicographie and dom/deg. 

One thing that is not enforced by the framework is the fact that if t here are variables 

whose domains have been wiped out, one of these should be  returned by the heuristic. 

This is required for better performance, since t here is no solution in a subtree where one 

variable has had its domain wiped out. It is however also required for ail the constraint 

propagating dgorithms to work correctly. Similady, if no variable has had a domain 

wipeout, the heuristic should prefer a variable that has a singleton domain. This is a 
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mat ter of performance having no impIications on the correctness of the aIgorithms. 

'As rnentioned, this optimization can be critical to the performance for algorithms like Davis- 
Putnam Ill]- 



Chapter 4 

Experiments 

4.1 Overview 

In this chapter, we will demonstrate how the framework that  we described allows us  to 

easily perform experiments to evaluate the performance of algorit hms and heuris t ics on 

different problems. We will present an automatic method of manipulating a mode1 and 

potentially improve it when using the GAC family of algorithms. We mil1 test this method 

in two problems: the optimal golomb ruler problem and the random 3SAT problem. In 

addition, we will examine the results of [31] on the optimal golomb d e r  problem and 

compare the results obt ained. 

4.2 Automatic conjunction of constraints 

Bessière and Régin suggested in (61 that it is possible to use GAC on conjunctions of 

constraints to increase pruning and therefore reduce the size of the search tree. They 

asserted that models in practical application are usudly created by identifying constraints 

as a conjunct ion of subconstraints and using the subconstraints to mode1 the problem. 

However, GAC on the subconstraints is not as powerful, in terms of pruning, as GAC on 

the original constraint . 



Bessière and Régin dso suggested that it is possibIe to conjoin constraints that are 

not semant ically related. 

In addition, they prove that it is possible to enforce GAC on a conjunction of the 

constraints in O(dllua (cs)ll), as opposed to O(d 11 (c,)II) for each const raint i. 

Finally, they present experimental results to prove that it can be beneficial in terrns 

of cpu time as well as well as number of backtracks performed, even though the benefits 

in terms of cpu time only exist in harder problems. 

In this chapter, we wil1 examine the reason why conjunctions of constraints afford 

more pruning and develop a heuristic for choosing constraints that shouid be conjoined. 

4.2.1 Why conjoining causes more pruning 

The set of assignments that satisfy the conjunction CI A C2 of two constraints is the set 

Where Ac, is the projection of A on the VarsOf(Cl). This implies that A is the 

union of two satisfying tuples For Ci and C2? such that the assignments to t heir cornmon 

variables are the same. In other words, not every pair of tuples satisfying the original 

constraints will satisfy the conjoined constraint. 

This means that for a value of a variable to not be pruned when enforcing GAC on 

the conjoined constraint, we have to find a satisfying tuple for the conjoined constraiot. 

which depends o n  a stronger condition being satisfied than simply that a satisfying tuple 

exists for each of the constraints Ci, C2. 

In addition, the condition becomes stronger as the two constraints have more variables 

in common. Consider the following cases: 

In this case, a satisfying tuple for Cl A C2 is sirnply the union of any supporting 

tuple of Cl and C2. This is no stronger than GAC on Cl and C2 individually. 



In this case, when checking whether the assignment V t x, where V is the common 

variable, is GA-consistent, ail the GAC algorithm has to do is find a supporting 

tuple for V t x in both Ci and Cz, without any additional constraints. This is 

what GAC on the original constraints does as well, so t his case is also no s t  ronger 

t han GAC on the original constraints. 

In this case, the tu ples t hat sat isfy the conjunct ion are no longer simply the union of 

any two satisfying tuples of the original constraints. Instead, the number of tuples 

that can be unioned to create a satisfying tuple for the conjunctive constraint 

becomes smaller. as they have to have more common assignments. The relative 

strength of GAC in the conjunction increases as well. 

This reasoning can be extended to the case when we conjoin n constraints, by applying 

pairwise conjunct ions. 

4.2.2 When to conjoin constraints 

Based on the above observations, we can develop a heuristic method to determine which 

sets of constraints shouId be conjoined and create the set CS of a11 such sets: 

1. initialize the  set CS to be the set {{Ci}Vz), which means that each constraint is 

placed in a set by itself. 

2. If Ci E CS A Cj E CS A II VarsOf (Ci u Cj)II - maxcec,uc, II VarsOf(C)II 5 !CI, then 

remove Ci and Cj from CS and insert Ci U Ci. Ci 'i Cj is the conjunction of the 

constraints in Ci and C,. In other words, if the arity of the constraint that results 

from conjoining the constraints in Ci and Cj is no more than M greater than the 



axity of any of the original constraints, then conjoin ail the constraints in Ci and 

Cj . 

3. Repeat 2 until no more conjunctions can be made. 

The  parameter M limits the constraints that can be conjoined. When il1 = 0, two 

constraints will only be conjoined when one is over a subset of the variables that the other 

covers. In this case, the complexity of GAC does not increase at all. since the constraints 

of higher arity are not created, while the advantages of conjoining constraints remain. 

As M increases, the complexity of GAC increases as well. It depends on the problem 

at hand what the value of M should be. In the following sections, we will examine two 

such problems. 

4.3 Optimal Golomb Rulers 

A golomb ruler is a set of non negative integers, ma, .... m,, called marks, such that the 

distances mi - mj, i  > j ,V i ,  j are distinct. 

Moreover, the length O/ a golomb ruler is defined as max(mi - m j ) ,  Yi, j .  The  first 

mark is typically O, so the length of the ruler is actually max(mi)Vi. An optimal golomb 

ruler is one such that no ruler of smaller lengt h wit h the same number of marks exists. 

Smith e t  al. in [3t] have studied various alternative representations? heuristics and 

extra constraints that one can add to make solving the problem more efficient. We wiIl 

try to  reproduce some of their results here. 

4.3.1 Representations 

This problern can be represented as a Constraint Satisfaction Problem, by posting a 

constraint mi - mj # mk - ml,Vi > j, k > 1. This also implies that we post ternary 

constraints, for the special case when i = I. To limit the number of symmetric solutions, 



we d s o  post the constraints mi < mj,  tli < j and also 7722 - ml < m, - m,-~ to etiminate 

symmetric solutions. Using this representation, we post the iollowing constraints over 

every set of 4 variables: 

The first 3 constraints are quaternary constraints, while the other 4 are ternary. 

It should be noted that these are not al1 the constraints that the formula mi - m, $ 

r n k  - ml, V i  > j, k > 1 irnplies. There are many constraints that are essentially duplicated 

(e.g xi - x0 f $3 - 52 is equivalent to x3 - 32 # X I  - xo) or otherwise redundant 

(x2 - xg # XI - x0 is impIied by the fact that xo < xl < x?). 

Smith et  al. [31] assert that the obvious representation is not optimal. They propose 

an alternate representation, where each mark is a variable in the CSP, as well as m(m - 

1112 auxiliary variables. For every two mark variables, an auxiliary variable is used to 

represent their difference and a constraint to that effect is posted among these three 

variables. In addition, we post a not-equals constraint between every two auxiliary 

variables. The aut hors prove t hat t his representation will generate more pruning t han 

the one with quaternaxy constraints in every case except when the quaternary constraint 

is actually a ternary constra.int of the form Cv.,v,,v,,vk. 

This representation can be further improved if a single dldiff constraint is posted over 



a11 the auxiiiary variabres instead of a clique of binary const raints. ' 
Moreover, different dynamic variable ordering strategies are compared for the best 

representation, comparing a static lexicographie ordering, the dom heuristic and the rdom 

heuristic (dom rest ricted to the mark variables). 

4.3.2 Results 

Since we use different software, as well as hardware, from what Smith et al. used, the re- 

sults are not directly comparable. It should also be noted that they used an optimization 

leature to discover the optimal golomb ruler, something rvhich is not currently provided 

by Our framework. CVe can, however, reproduce their comparative results. 

Comparing representations 

In addition to the representations studied by Smith et al., we study an additional repre- 

sentation, which is automatically derived from the one using quaternary constraints by 

applying the heuristic discussed earlier with the parameter M set to iCI = 0. 

We count the nurnber of recursive cails made to find a ruler of the given length (or 

prove that none exists). The results are s h o w  in figure 4.1. In this table, the first two 

columns show the size of the problem tested, the fint being the nurnber of marks and 

the second the length of the d e r .  After that, we have two colurnns for each of the four 

representations tested: the original one using quatemary constraints, the conjunctive 

one which d s o  uses quaternary constraints and the two representations using ternary 

constraints Smith et al proposed. The first column for each representation shows the 

number of backtracks performed by the solver and the second shows the cpu t ime it used 

to solve the corresponding problem. 

Note that the representation using conjunctive quaternary constraints fares much 

'Régin [26] discusses the advantage of a single aiidiff constraint over a clique of binary not-equals 
constraints as  weil as a way to efficiently irnplement it. 



better than the originaI quaternary representation. TIie resuIting singIe conjunctive con- 

stra.int generates much more pruning when doing GAC propagation. 

Figure 4.1 Backtracks perforrned and cpu tirne to find (F) a golomb ruler of a given size 

and prove (P)  its optimality. "-" indicates that the solver was  unable to find a solution 

after z3' consi 

1 size length 

8 34 (F)  

8 33 (P) 

9 44 (F) 

9 43 (P)  

10 55 (F) 

10 54 (P)  

11 72 (F) 

11 71 (P)  

aint checks 

Quaternary Conj Quat Ternary 

We notice that the conjunctive quatemary representation is approximately as powerful 

as the temary+not-equals representation, while enjoying rnuch bet ter t imes due to the 

simplicity and smaller number of constraints *. 
We c m  also see that the representation that used the A l l D i f  fpropagator does not 

perform as well as the one in the commercial product ILOG Solver that was used in 1311, 

but its relative performance compared to the representation using a clique of not-equds 

constraints is what is expected. 

' ~ c t u a l l ~ ,  both representations have 0(m4) constraints, but the representation with conjunctive 
quaternary representations has O(m) variables as opposed to 0(m2) variables 



In generd, the higher times produced here can be attributed to the impiementation 

of the GAC-enforcing algorithrn, which is based on AC-3. In contrast, ILOG Solver uses 

an algorithrn based on AC-7, which scales better than AC-3. 

In addition to this test, we performed a test using different levels of conjoining for 

the quaternary represent at  ion, shown in figure 4.2. 

Figure 4.2 Backtracks and cpu time to find (F) a golomb ruler of a given size or prove (P)  

its optimality. "-" indicates that the solver was unable to find a solution after reaching 

10' leafs 

size goal 1 I I I 

The first colurnn in that table shows the original quaternary representation. while 

the last columns show the conjoined representations. In the second column, we show 

the results for an intermediate representation (which was not generated automatically ) , 

which consists of a conjunction of the quaternary constraints, but without the ternary 

const raints. 

The results are not surprising, other than the fact that the first two representations 

perform the exact sarne number of backtracks in every case. This can be explained by 

the fact that the  3 quateniary constraints posted every set of 4 variables are actually 

Conj Quat only Conj Quat + Tern Problem Quat + Tern 
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equivafent. The constraints are: 

It turns out that we only need to post the first of these constraints. as the others are 

implied. In particular, we can add x2 - x l  to 4.1 to get 4.2, while 4.3 is implied by the 

order constraints between the variables (x, < x,, i < j ) .  

This demonstrates the fact that conjoining constraints is not only an automatic way 

to improve a model, but also good for analysis. Aspects of the rnodel which ivere not 

previously clear can be revealed by analyzing the behavior of the derived models. 

From this point on, al1 results wiI1 report on the conjoined quaternary representation 

instead of the original quaternary representation. 

Comparing variable ordering strategies 

We will compare two orderings for this problem: a static lexicographic and the dom+deg 

heuris t ic. 

Surprisingly, the lexicographic ordering turns out to be the best strategy for this 

problem, as shown in figure 4.3. 

We actuaily see a different behavior for the two heuristics, depending on whether ive 

use the representation with quaternary constraints or the one with ternary constraints 

and the -4lldiff propagator. 

The lexicographic ordering gives better results in d l  cases when using ternary con- 

straints. The reason for this is that selecting the variable wit h the minimum remaining 

domain size can often select one of the auxiliary variables. The value of these variables, 

however, depends entirely on the value of the mark variables it is constrained with- When 



Figure 4.3 Kurnber of backtracks (ieafs) to find (F) a goIomb d e r  of a given size and 

prove (P)  its optimality using different DVO heuristics 

1 size length 

Ternary+ Alldiff 
r 

7 25 (F) 

7 24 (P) 

Problem 

dom+deg lexicographic 

90 90 

824 594 

8 34 (F) 

S 3 3 ( P )  

Quaternary 

dom+deg lexicographic 

491 492 

6231 7131 

9 44 (F) 

9 43 ( P )  

4947 4920 

42844 52568 

10 55 (F) 

10 54(P) 

none of the other two variables have been assigned, it will cause minimal pruning. Be- 

cause the total number of auxiliary variables is relatively high (O(m2)), there is a high 

probability that this will happen often. Therefore. the system spends much time doing 

work that does not gain anything. 

Instead, the lexicographic ordering makes sure that the mark variables are assigned 

first. 

We also notice t hat when using quaternary constraints, the dom+deg heurist ic does 

not significantly improve the performance of the solver. This cm be attributed to the 

nature of the problem and the representation. In the original definition of the problem, 

al1 mark variables are equivalent. Therefore, there are many syrnmetric solutions. When 

solving this problem, the dom+deg heuristic would be expected to perform much better 

than the lexicographic heuristic. 

30962 36666 

250822 373375 

11 72 (F) 

11 71 (F) 

183960 234069 

- - 



However, we do not want to report a11 symmetric soIutions. Therefore, we impose the 

Following constraints to break symmet ries: 

a mi < m,, i < j. This constraint eliminates an exponential number of symmetric 

solut ions. 

rn mz - mi < mk - mi-1, where k is the length of the ruler. This constraint only 

eliminates one symrnetric solution. 

Of these, the first type of constraint is the one that makes the difference. Because of 

it, al1 mark variables are no longer equivalent. In fact, the optimal ordering should almost 

always be very close to the lexicographic ordering of the variables. This is because, al1 

other things being equal, as more variables become instantiated in lexicographic order. 

the tighter the constraints become for the next variables and therefore more values get 

pruned from domains. 

Comparing algorithms 

The authors of [31] used ILOG's Solver for their experirnents. This solver uses AC-; to 

enforce GAC, instead of AC-3 used by our implementation. This causes their results to 

show GAC stronger in terms of time than ours. However, they do not consider FC and 

conflict filtered backt racking algorithms at all. 

The table in figure 4.4 shows that using CFFC instead of GAC type algorithms can 

dramatically improve the performance of finding a solution. Similarly, CFGAC performs 

better that GAC, both in terms of time and number of recursive caIls. 

From this table, we can see that CFGAC is better than GAC at finding a solution 

both in the nurnber of backtracks performed, as well as in cpu time. CVhen proving the 

optimality of a given d e r ,  it is better in terms of recursive calls and comparable in terms 

of cpu time. This means that maintainhg the conflict sets is an overhead that pays off 

when finding the optimal d e r  but not when proving that it is optimal. 



Figure 4.4 Number of backtracks and cpu time to find (FI a golomb ruier of a given 

1 size length 1 1 1 1 

size and prove (P)  its optirndity using different dgorithms 

CFFC is significantly better than both GAC and CFGAC in terms of time. As 

expected, the number of backtracks performed is higher, but only by a factor of Less than 

2 when fmding the optimal d e r  and less than an a factor of 3 when proving optimality. 

The factor gets better as the size of the problem increases and it reaches fewer leaves 

than GAC (but more than CFGAC) when finding the optimal ruler with 11 marks. The 

fact that it does so much less work at each node makes it faster overall, usually around 

an order of magnitude better. 

What this shows is tbat the codic t  sets discovered by CFFC allow the algorithm to 

jump approximately back to the point where GAC would reach a leaf. Not only that. 

but  after that point, any jumps further back are almost the same ones performed by 

CFGAC. In other words, CFFC explores approximately the same portion of the search 

space as CFGAC, only it has to reach a deeper level before performing each backtrack. 

Problem GAC CFGAC CFFC 



The size, however, of the subtree that CFFC explores and CFGAC does not is Iinear in 

size, as opposed to exponential for the general case. 

4.4 Random 3-SAT instances 

We will use the CSP representation to solve random instances of the 3-SAT problem. 

Given .N and C, the number of variables and the number of clauses, we generate instances 

by randornly selecting 3 Iiterals out of the 21V (positive and negative) Iiterais. discarding 

tautologies. \Ne then construct the clause ii  v i2 v Z3. 

Using CSPs to solve SAT problems is not optimal, since CSP search algorithms do 

not take advantage of the special structure of SAT constraints (i.e. 3-clauses). SAT can. 

however, be used as an interesting benchmark to compare CSP algorithms. It has been 

shcwn [I I  that CFFC is the best algorithm for solving this type of problems, if we use a 

CSP soiver. 

lnstead, we will focus on GAC and the use of conjunctive constraints. 

4.4.1 Represent at ions 

The first representation we use is one where we simply post a ternary constraint for each 

clause. 

The second representation is derived from the first one, by applying the heuristic 

described wi th  the parameter LM = 1. The resuiting mode1 contains a mix of ternary and 

quaternary constraints. 

4.4.2 Results 

We ran the Solver for both representations at the crossover point c /n  = 1.26 [31] for a 

number of variables ranging from 60 to 100 with a step of 10. We count the average 



cpu tirne and average number of backtracks performed by the soIver, using the GAC 

algorithm. The results are shown in figure 1.5. 

Figure 4.5 Average number of backtracks and cpu time to prove whether a problem is 

satisfiable or not. The last colurnn indicates the percentage of instances where the solver 

performed better if constraints were conjoined 

avg leafs 

original w/conj perc T-Tl 1 # Variables 

It is worthwhile noting in this case that there were instances where the solver ac- 

# Instances ( original 1 iv/conj 

tually performed more backtracks when using conjoined constraints than it did in the 

original problem. This anomaly can be attributed to the fact that 3-SAT has a special 

structure, which is not accounted for in the DVO heuristic used. Therefore, even t hough 

the conjunctive constraints cause more pruning, they end up making the search slower. 

This anomaly can probably be eliminated by using one of the heuristics that have been 

developed for SAT solvers. 

In the instances where the solver performed fewer backtracks with conjunctive con- 

straints, the cpu time used is at most 10% worse t han the time used to solve the problem 

using the original model. This shows that the overhead of performing GAC on the con- 

joined constraints is alleviated by the extra pmning that it causes. The refined results 

are shown in figure 4.6. 



Figure 4.6 Average number of backtracks and cpu time to prove whether a probtem is 

satisfiable or not. The last column indicates the percentage of instances where the solver 

performed better if constraints were conjoined. Only instances for which conjoining 

straints did not interfere with the behavior of the DVO heuristic are counted 

avg leafs avg time 

1 # Variables 1 # Instances ( original 

4.5 Conclusions 

In this chapter, we demonstrated the ability of the framework described in chapter 3 to 

support experiments in the field of CSPs. CVe tested it on two widely used benchmark 

problerns, the optimal golomb ruler problem and the random 3SAT problem. 

In addition, we proposed a simple technique to automatically improve the efficiency of 

a mode1 when using the GAC algorithm. We demonstrated the ability of the frarnework 

t o  support this new technique and used it to show that it can indeed produce better 

models. We did note possible problems that it can introduce by interfering with the 

DVO heuristic used, but overall the results were encouraging. 



Chapter 5 

Conclusions 

In this thesis, we have examined existing CSP search algorithms in a consistent rnanner 

which allows for their implementation in a common frarnework. Specifically, we found t h e  

algorithms examined differ only in the Ievel of constraint propagation that they perform 

and in the granularity of the conflict sets that they maintain. This enables us to treat 

them uniformly, at  least from the point of view of what they require to work and how to 

provide t hat . 

Similarly, we provided an overview of commonly used variable ordering heuristics and 

showed how t hey can be treated consistently. 

The CSP solver that was implemented based on these findings is a general-purpose, 

flexibie solver that not only can be extended to accommodate new algorithms and new 

variable ordering heuristics, but also allows for experimenting with models, special pur- 

pose propagators and extensions of the CSP modei. 

5.1 Future Work 

The framework that was developed for this thesis can be used to facilitate research in 

the following oreas: 



fntegration of CSP algorithms with other search techniques. One example of this 

might be integrating a CSP solver with integer programming algorithms. 

Modeling. We havealready demonstrated (in chapter 4) that it is possible to use the 

framework developed here not only to test alternative representations to solve the 

same problem, but also to automatically aply transformations to an existing model 

as a way to improve solver performance. Not only that, but pre-existing known 

transformations (e.g. frorn a non-binary problem to a binary one. using either the 

dual [13] or the hidden variable [2î] transformation) are hard to apply manually. 

Instead, it is easier to define a mode1 and have a routine do the transformation. 

This allows us to perform experiments on a wide array of problems to test the 

efFect iveness of di fferent model ing techniques. 

Search algorithms. We have implemented here several of the most popular a l g e  

rithms used for solving CSPs and implementing new ones in an efficient manner 

should be straightforward. 

0 Dynamic variable and value ordering heuristics. As rnentioned, little is understood 

about the implications of dynarnic variable ordering heuristics on the performance 

of the search algorithms discussed. It would be interesting to study the behavior 

of known heuristics in problems other than random CSPs [î, 33, 161. 

Extension of the CSP model. It has been proposed to extend the CSP model to 

allow the use of hard and soft constraints (e.g VSCP [29]) or other approaches to 

optimization. This field, however, has not been explored in depth. 



Availability 

The resiilt of the  work described in this thesis can be obtained online a t  

http://vvw.cs.toronto.edu/~gkatsi/efc.tar.gz 
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