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1 Introduction 

The object of this thesis is to establish an important step towards a global metaplectic 

correspondence. The origin of this correspondence lies in the theory of modular forms. 

Let k be an odd, positive integer, and let N be a positive integer divisible by 4. The space 

Sk12(rO(N), x), of CUSP forms of weight k/2 and character x for the congruence subgroup 

ro(N), is less manageable than the space of cusp forms of integral weight. As a partial 

remedy to this difficulty, Shimura ([28]) constructed a map 

for 12 2 5, which behaves nicely with respect to the L-functions of the forms in the 

above spaces. Shimura suggested that representation-theoretic methods be used to further 

clarify the nature of this map. 

Gelbart and Piatetski-Shapiro conceived the spaces &-I(I'~(N), x2) and Sk12(ro(N),x) 

as automorphic representations of GL(2) and z ( 2 )  respectively. Here G ( 2 )  is a meta- 

plectic covering of GL(2). The first global metaplectic correspondence was established by 

Flicker ([13]). He proved that for each genuine automorphic representation ii of G ( 2 ) ,  

there exists a unique automorphic representation n of GL(2) such that 

for certain related functions f and f in the respective Hecke algebras. His proof was 

accomplished using the Selberg trace formula and followed Langlands' proof of cyclic 

base change for GL(2) ([25]). 

Arthur and Clozel gave a proof of cyclic base change for GL(T) by using the invariant 

trace formula of Arthur ([lo], [6], [7]). More specifically, they effected a global corre- 

spondence by proving a term-by-term identity between the invariant trace formulas of 

GL(T) and its restriction from a cyclic extension. This thesis proves such a term-by-term 

identity between GL(T) and its n-fold metaplectic covering under the assumption that n 

is relatively prime to all positive integers less than or equal to T 2 2. 

We now give a slightly more detailed overview of the results. The following two sections 

are essentially paraphrases of the local metaplectic results of Flicker and Kazhdan ([15]). 



Flicker and Kazhdan prove a local metaplectic correspondence by using the "simple" trace 

formula. The novelties which appear in sections two and three arise from the assumption 

made on n and T.  The local and global n-fold metaplectic coverings, G(F~)  and G(A) 

respectively, of G = GL(T) are defined in section two; as are the maps 

which preserve conjugacy classes. These maps are referred to as orbit maps. They are 

our means of comparing objects defined from G and 8. 
In the third section we define the sets of representations relevant to the metaplectic 

correspondence, namely the genuine representations. We then describe the function spaces 

pertinent to the trace formula. These are the Hecke and Paley-Wiener spaces. We will 

assume the nonhchimedean trace Paley-Wiener theorem to hold for metaplectic coverings 

of GL(T). The notion of matching functions, that is functions with matching orbital 

integrals, is given. The local metaplectic correspondence is exploited to define a map of 

which maps a function in the domain to a matching function in the image. The local 

metaplectic correspondence may then be described as a map of representations 

such that 

h ( f )  = trr'(f.), f E Xmet(G(Fs)). 

The fourth section is rather more technical and is concerned with the normalization of 

intertwining operators of induced representations. This normalization is essential for the 

definition of the invariant trace formula. Our method of normalization follows the ideas 

of [lo] and is obtained through the comparison of matching functions and the Plancherel 

formula. The Plancherel formula of Harish-Chandra is not proved for metaplectic cov- 

erings. To compensate for this, we list the properties of G requisite for the proof of the 

Plancherel formula. 



We enter the heart of the matter in section five. This is where we introduce the 

expected form of the invariant trace formula for 6, 

Due to the great number of details that must be verified, this formula remains conjectural 

and is assumed to be true in this thesis. In other words, we assume that most of the 

results of the papers of Arthur listed in the bibliography, with the exception of [3], hold 

for metaplectic coverings of the general linear group. This formula is rewritten in a more 

suggestive form as 

= x x I W ~ ~ I W , ~ ~ - '  1 a M I M ( r ) ~ a ( ~ * ,  Y)d+, 
t MEC ~ " ( M 9 t )  

( c f .  Proposition 9.1 and Proposition 15.1), before it is compared to the invariant trace 

formula of G. The two main theorems of this thesis are Theorem 9.1 and Theorem 12.1. 

Their statement and proof is the focus of the remaining sections. For a synopsis of these 

sections the reader should turn to section five. Very loosely stated, Theorem 9.1 and 

Theorem 12.1 posit the following equalities between the terms of the two trace formulas 

of G and G. 

aMvM ( T )  = aM ( r )  . 

It is the final equality which bears the information we seek for a global metaplectic 

correspondence for GL(T). If one considers the specific case M = G, one obtains an 



identity of traces (cf. 54 [7]), 

where the sums range over certain global unitary representations of GL(T) and &(r) 

respectively, and a$,,(x) and a$,,(%) are constants. One should be able to isolate the 

trace of cuspidal representations occurring in the above sums by choosing f appropriately, 

using strong multiplicity one for GL(T), using the local metaplectic correspondence and 

using the linear independence of characters. For a more detailed discussion of such matters 

the reader is referred to $28 [15], where a global metaplectic correspondence is achieved 

for a smaller set of representations. 

For the reader familiar with cyclic base change, it may be helpful to bear in mind that 

the structure of the proofs of the main theorems follow chapter two of [lo] very closely. 

The results of this thesis which have counterparts in chapter two of [lo] have references 

to these counterparts in parentheses immediately following their own numbering. All 
citations from [lo] will be from chapter two unless otherwise stated. 

2 The Groups 

In this section we establish some notation and describe the metaplectic coverings of the 

general linear group. Many definitions for the metaplectic group apply for the general 

linear group as well, if one considers the case of a trivial covering. If this happens to 

be the case, the definitions for the general linear group are not made separately. Haar 

measures are fixed after the above groups are defined so that we may perform harmonic 

analysis on them without any ambiguity. We also introduce some vector spaces which 

play an important role in the representation theory of these groups. 

Unless otherwise stated, we assume r to be an integer greater than one and n to be a 

positive integer such that 

gcd(n,i) = 1, 1 < i  <r. 

Let F denote a number field containing the group p,, of nth roots of unity. Since n is 

greater than two, F is totally imaginary. The completion of F at  a valuation v is denoted 



by F, and its absolute value (determined by Haar measure) is denoted by I . I,. If u is 

nonArchimedean, we let R, be the ring of integers of F,. We write A for the adele ring 

of F. 

The general linear group of rank T ,  GL(T), is denoted by G .  Thus, for instance, G(F)  

stands for GL(T, F ) ,  and G ( A )  stands for GL(T, A ) .  Throughout, S signifies a finite set 

of valuations of F.  We define G(Fs) to be nvEs GL(T, F,). 

We recall the description of the metaplectic coverings of G by following 52 [15]. For 

each valuation v there are 2-cocycles 

for 0 5 m 5 n, which yield central extensions 

called n-fold metaplectic coverings of G(F,). We only consider the case m = 0 and set 

6(F, )  = Go(F,). One can define the n-fold metaplectic covering of G(Fs) by way of 

the cocycle 7s = nUEsrov.  It is denoted by E ( F ~ ) .  Similarly, the n-fold metaplectic 

covering of G ( A )  is defined by way of the cocycle 7- =  TO, and is written as 6 ( A ) .  

The aforementioned coverings are also equipped with maps 

1 + pn A G(A) G(A)  + I. 
S 

Elements of ~ ( F s ) )  are of the form ( 7 , ( ) ,  where y E G(Fs) and C E p,. The maps in 

the above sequence may be expressed more concretely by i(C) = (1, C), p ( (y ,  C ) )  = y and 

s (7)  = ( 7 , l ) .  Multiplication in B ( F ~ )  may be described by the equality 

Parallel statements are true for G(A) .  

Given a subgroup H of G ,  we write fi for p-'(H). We say that G splits over a 

subgroup H of G if fi is groupisomorphic to H x p,. The group G(F,) splits over G(F,) 



if v is a complex valuation of F. The splitting homomorphism is s. Consequently the 

representation theory of G(F,) for complex valuations v of F essentially reduces to the 

representation theory of G(C).  The upshot of this is that all of the local Archimedean 

assertions made in this paper will be simple to prove. 

It is also shown in $2 [15] that G(A) splits over G(F).  The splitting homomorphism 

of G(A) over G ( F )  is denoted by so. 

There is a map 

(1) W?") A G(FJ 
which preserves conjugacy classes ($8 [15]). This map will be referred to as the orbit map. 

Since n is assumed to be odd, this map is given by 

This map extends to maps G(Fs) G ( F ~ )  and G ( A )  A G(A) in an obvious manner. 

The orbit map allows us to compare conjugacy classes, and ultimately the trace formulas, 

of G and 8. 
For the remainder of this thesis 13 will denote the set of Levi subgroups of G containing 

a fixed minimal Levi subgroup Mo of G. Without loss of generality, we take Mo to be 

the diagonal subgroup. Let Po = MoUo be the upper triangular subgroup and Uo be its 

unipotent radical. We will denote a generic element of L by M ,  until it is fixed in $16. 

Note that 
t 

(2)  M = 11 M(i) ,  
i=l 

where M ( i )  r GL(ri) and c:=, ri = T .  The set of Levi subgroups of M containing Mo is 

denoted by tM. Set K, to be GL(T, R,,) if v is nonArchimedean, and U(T, C )  otherwise. 

In addition set Ks = n,,, I(,. Fix a Haar measure on M(F,) so that the measure of 

the compact group M(F,) I-I K, is one. This fixes a Haar measure on M(F,)\~(F,), and 

consequently also on M(F,), by way of the map 

Unless otherwise specified, given subgroups H C H' of G with fixed Haar measures, 

we define the measure on the quotient space l?\F via the pull-back of the apparent 



homeomorphism 

fi\F + H\HJ. 

Let Ac(F,) denote the centre of G(F,). The centre of G(F,) is %(F,) (Proposition 

0.1.1 [19]), where 

A;(&) = (7" : 7 E Ac(F,)). 

For nonArchimedean valuations v,  we fix Haar measures on AG(F,) and &F.) so that 

the quotient measures on G(F,)/AG(F,) and G(F,)/%(F,) are related as prescribed in 

824 [IS]. 

Since F  embeds diagonally into Fs = n,,, F, and A ,  we may define the groups of 

rational characters X ( M ( F ~ ) ) F  and X ( M ( A ) ) F  of M(Fs) and M ( A )  respectively. Let 

us agree to suppress the notation Fs and A  for the rest of the section. This will allow 

us to define objects over both of these rings at  the same time. We define the real vector 

space aM as H o m ( x ( M ) ~ ,  R). We define the group X ( M ) F  as {cop : c E X ( M ) F ) ,  and 

the real vector space a g  as H O ~ ( X ( M ) F ,  R). The obvious isomorphism between X ( M ) F  

and x ( M ) F  leads to an isomorphism between a g  and aM. On occasion, we identify a g  

with ahf by means of this isomorphism. 

The map G  i 6 induces a homomorphism x ( M ) F  i X ( M ) F  such that 

for all 7 E M and ,$ E X ( M ) F .  This map in turn induces an isomorphism, 

aM 4 a g ,  

such that X  I+ n X ,  for all X  E a ~ .  Define the adjoint map 

by X' = n-'A, for X E ahpc (with apologies for the double usage of the symbol *). Note 

that x ( M ) F  embeds in aksc as a lattice. 

As customary, AM denotes the centre of M .  Fix a Euclidean norm on aMo which is 

invariant under Wf, the Weyl group of (G,   AM^). We endow a ~  C aM0 with the Euclidean 



measure obtained from an,o by restriction. The measure on a a  is taken to be the measure 

on a ~ .  

The maps HM : M -f a , ~  and H a  : M -t afi are defined by the respective relations 

In the adelic context, these maps produce Haar measures on M(A)' = ker(HM(A)) and 

M ( A ) ~  = ker(Ha(A)). 

3 The Local Metaplectic Correspondence 

The purpose of this section is to describe the local metaplectic correspondence of [15]. We 

must first define suitable representations of the groups discussed in the previous section. 

Thereafter we define function spaces of these groups and their representations. The reader 

will be assumed to be familiar with the notation of $1 181. 

Fix a unitary character 3 of A%Fs). We set w to be the unitary character of Ao(Fs) 

defined by w(7) = 3(yn) for all 7 E AG(Fs). An representation ii of M(F~)  is admissible 

if 

(7 E M((F~) : ?i(j)v = v) 

is open for all v in the vector space V of ii, and the subspace formed by the elements of 

V fixed by ii(Ks ~ A ? ( F ~ ) )  is finite dimensional. Let II(M(Fs)) be the set of (equivalence 

classes of) irreducible admissible representations n of M(Fs) such that n(7) = w(7) for 

all 7 E AG(Fs). Let IIt,,,(M(Fs)) and II,,it(M(Fs)) be the subsets of II(M(Fs)) which 

are respectively tempered and unitary. 

A representation ii of f i ( ~ s )  is said to be genuine if 



Let lI(&'(Fs)) be the set of (equivalence classes of) genuine irreducible admissible reprz- 

sentations ii of M(F~) such that 

Again, I I ~ ~ ~ ~ ( M ( F ~ ) )  and II,~,(M(F~)) denote the subsets of II(M(F~)) which are re- 

spectively tempered and unitary. 

Let Ml E L" and let Pl be the unique parabolic subgroup of M containing M n Po. 

Given ii E ~ I ( M ~ ( F ~ ) ) ,  the unitarily induced representation 1ndZii is denoted by irM. 

If ii belongs to ~I (M(F~))  and X E then the representation ii;\ given by 

belongs to ~ ( M ( F ~ ) )  as well. The set of genuine standard representations E(M(&)) of 

M(F~)  is defined to be the set of representations of the form iif , where ii E ~ I ~ ~ ~ , ( M ~ ( F ~ ) ) ,  

Ml E LM and X E a>,,c. The set C(M(Fs)) is defined analogously. 

We now discuss spaces of functions on our groups and on the set of tempered repre- 

sentations. A function f : M + C is said to be antigenuine if 

The Hecke space X(M(F~)) is the space of antigenuine smooth compactly supported 

functions on M(F~) which are ( k s  fl M(Fs))-finite under left and right multiplication. 

We may compare functions in the Hecke algebras of M(F~) and M(Fs) using the orbit 

map and the notion of orbital integrals. Let be a smooth compactly supported function 

on M(F~) and j E M(F~) such that p ( j )  is semisimple in M(Fs). Let M+(F~) denote 

the centralizer of j in M(F~). We define 

where 

DM(7) = J-Jdet(l - Ad(7"))lrn"lm,., 
vES 

and m, and n~,,  are the Lie algebras of M(F,) and M,,(F,) respectively. This integral 

converges (56 [15], $2 [8]) and is called an orbital integral. 



Two functions, h E % ( M ( F ~ ) )  and h E 31(M(Fs)), are said to match if 

for all semisimple elements 7 E M(Fs)  such that 7" is G-regular. 

The other important function space needed for the invariant trace formula is the 

Paley-Wiener space. Given f E X ( M ( F ~ ) )  and MI E &"I, we d e h e  a map 

by fa,(?) = t r ( i rM( f ) ) .  As assumed in [15], we assume that the trace Paley-Wiener 

theorem holds for M ([17]). We may then take the Paley-Wiener space to be 

Let V be a topological vector space and suppose that a continuous map 

satisfies B(K) = 0 whenever &,Q = 0. Then 0 is said to be supported on characters. 

Moreover we can define a continuous linear map 

such that 8 (K f i )  = ~( i )  for all k E X ( M ( F ~ ) ) .  This construction will be used later on 

for the invariant maps occurring in the trace formulas. 

The set of valuations S is said to have the closure property if 

is a closed subgroup of an<(~,). If S contains an Archimedean valuation it has the closure 

property. If not, S has the closure property if and only if it is comprised entirely of 

valuations which divide a fixed rational prime. For the remainder of this paper S is 

assumed to have the closure property unless otherwise specified. 

Put 

iah,, = inkvs = iak (Fs) / iHom(a~,s ,  Z). 



The group ias,, inherits a measure from the Euclidean measure defined previously on 

aM. Similarly iaLSs inherits a measure from the measure which was designated for afi. 

We identify any 4 E Z(M(Fs)) with its Fourier transform, 

Likewise, we identify z(M(F~))) with a space of functions on ~ L ~ ( M ( F ~ ) )  x afiSS. 

The local metaplectic correspondence on tempered representations is an injection 

such that trii(h) = tra(h) for any matching functions h E x(M(F~)) and h E X(M(Fs)); 

or equivalently such that 

where f, E ~ ( F S ) / A ~ ( F S )  (see Lemma 10.7), and @+ and 0, are the characters of ii 

and n respectively (Proposition 27.3 [15]). It follows from 4 and the equalities 

that nx corresponds to iix. for any X E 

The image of this correspondence is characterised in terms of matching functions. 

A representation a E lItemp(M(Fs)) is called metic if there exist matching functions 

E x(M(F~)) and h E X(M(Fs)) such that trn(h) # 0. The image of (3) is the subset 

of representations in lTtemP(M(Fs)) which are metic. We may extend the definition of 

metic to apply to all admissible representations in the following way. A representation 

n E lI(M(Fs)) is called metic if it is the Langlands quotient of n l , ~ ,  where MI E LM, 

nl E ~ I ~ ~ ~ ~ ( M ~ ( F ~ ) )  is metic, and X lies in a fixed Weyl chamber of air,,,. An admissible 

representation p of M(Fs)) is defined to be metic if all of its irreducible subquotients are 

metic. Our definition of metic coincides with the definition of metic in [15] for tempered 



representations. (cf. $27.3 [15]). Set IIrAp(M(Fs)) and IImet(M(Fs)) to be the subsets 

of metic representations in IItemP(M(Fs)) and II(M(Fs)) respectively. 

We now extend the local metaplectic correspondence to II(M(F~)). By using the 

Jacquet modules introduced in $14 1151, and following the proof of [29], it can be shown 

that the Langlands quotient theorem holds for M(F~). More precisely, every ir E ~ ( M ( F ~ ) )  

may be written uniquely as the quotient of some induced representation i r z ,  where 

irl E II,,,,(M~(Fs)), X is in a fxed positive Weyl chamber of aa,,= and Ml E t M .  

With the Langlands quotient theorem in place, we may extend injection (3) by assigning 

the Langlands quotient of a representation ir$ to the Langlands quotient of n f ,  where n 

is the image of ir E II~~,,,~(M~(F~)) under (3), X E ab,,c and MI E t M .  Broadly stated, 

this prescribes an injection 

(6) WM(FS))-WWS)). 

This extension is compatible with (3) by Proposition 26.2 [15] '. 
It is natural to seek further criteria characterizing the image set of (3) or (6). In order 

to describe such criteria we define a family of important finite groups which are indexed 

by the elements of L. Recall decomposition (2), 

Under this isomorphism we find that 

where Zi is the subgroup of scalar matrices in GL(ri). Let p: be the finite subgroup of 

AM corresponding to those matrices in each Zi whose entries lie in p,. Notice that &' is 

the kernel of the map a H an defined on AM. 

An implicit feature of the local metaplectic correspondence is that the central character 

of any n E I I ~ ~ , ( M ( F s ) )  is trivial on p:. The converse is in general not true. It is 

however true for essentially square integrable representations (Theorem 26.1 [15]) and 

'There seems to be an error in the method of induction described in 526.2 1151. Nonetheless, this 
method is valid under our assumption on n and r. See Appendix 19. 



(5). In other words ? r ~  is metic for any square integrable representation n E II(M(Fs) 

and X E ah,,. 
The set of genuine standard representations c ( M ( F ~ ) )  of M ( F ~ )  is defined to be the 

set of representations of the form ir,"("), where Ti E I I , , , , ( M ~ ( F ~ ) ) ,  Ml(Fs) is a Levi sub- 

group of M(Fs) and X E akl,,. We wish to extend the local metaplectic correspondence 

to standard representations. Before we indicate how this is done we fix some notation 

from [22]. A segment A is an ordered m-tuple of representations, 

where u is an irreducible supercuspidal representation of GL(b, F,), for some positive 

integers b and m, and a nonArchimedean valuation v of F .  The unique irreducible quotient 

of the representation induced from A is denoted by Q ( A ) .  Given segments, Al ,  . . . , Ak 

(which do not precede each other), the unique irreducible quotient of the representation 

induced from @ g l Q ( A i )  is denoted by Q(@='=,Q(Ai)). 

Lemma 3.1 Suppose nl E IItemp(M1(Fs)), MI E .CM, X E ahl,, and p = n$. Then p 

is metic if and only if nl is metic. 

Proof. Since the local metaplectic correspondence is stable under twists by X E aL,,, and 

n?; = ( n y ) ~  for Mz E LM1 and nz E II(M2(Fs)), we may assume X = 0 without any loss 

of generality. Moreover, it suffices to prove the lemma in two separate cases. In the first 

case we assume S to consist of a single complex valuation and in the second we assume 

S to consist of a single nonArchimedean valuation v.  

We prove the complex case first. In this case we may take Ml = A4 as the irreducible 

tempered representations of M l ( C )  are principal series representations (Theorem 14.91 

[20]). Thus a1 = @Llwir where w l , .  . . ,w, are quasi-characters of CX satisfying the 

irreducibility criteria of Theoreme 4.4 [12]. The irreducible representation p is metic if 

and only if there exists P E ~ T ( M ( c ) )  which corresponds to p. We may represent f i  as 

where 31, .  . . , & are again quasi-characters of C X .  Following the arguments 

of 52.1 [13], we find that P corresponds to p if and only if @b1Gi corresponds to @Llwi 

and wi = G:. This proves the complex case of the lemma. 



Proposition 2.2.1 [22] specifies that a1 = I ~ ~ ~ ( Q ( A ~ ) B . .  @&(A&)) for some segments 

Ai, 1 5 i 5 k, Pz E PM1(M2) and MZ E LM1. By transitivity of induction we have 

p = 1 n d g ( & ( ~ l )  8 -.. 8 &(A&)) for PI E 'PM(M2) with PI n MI = 4. Let i~ be an 

arbitrary subquotient of p. By Theorem 1.2.5 (c) (221, the irreducible subquotient ?r 

equals &(&(A:) 8. . . 8 &(A;,)) for some segments A:, 1 5 i 5 kt. According to Theorem 

7.1 of [33] (see also Theoreme 5 of [26]), the segments A:, . . . , Akt are obtained from the 

segments Al, . . . , Ak by "elementary operations". In other words, A: is either the union 

of two linked segments in {Ailel ,  the intersection of two linked segments in {Ai)$=, 

or equal to one of the segments in {A,)!=,. In any event, the central characters of the 

supercuspidal representations occurring in the segments A:, . . . ,A;, are identical to those 

occurring in Al,. . . , Ak. 

Suppose that a1 is metic. This means that there exist matching functions A E 
XM(F,)) and h E X(M(F,)), such that tml(h) # 0. Using the Weyl integration for- 

mula, it can be shown (524 [15]) that ihi, and hM, correspond to matching functions in 

X(M~(F,)) and X(M2(F,)) respectively. h t h e r m o r e  

Hence 8f=,Q(Ai) is metic. The identification of representations described in the appendii 

and the remarks immediately preceding Theorem 27.3 [5, FKImply that each Q(AJ is 

metic for 1 5 i 5 k. Suppose Ai = [ui, ui(si)], where the ui are supercuspidal and the si 

are non-negative integers for 1 5 i 5 k. Let wi be the restriction of the central character 

of ui to p,. The restrictions of the central character of &(Ai) to p, is then seen to be 

w:. As &(A,) is metic, w: is trivial. Since 1 5 si 5 T we have gcd(si,n) = 1 and so 

wi must be trivial. Fkom the earlier description of A:, 1 5 i 5 kt, it  follows that the 

restrictions to /I, of the central characters of the supercuspidal representations occuring 

in A: must be trivial as well. This implies that the central character of &(A:) is trivial on 

p,. According to Theorem 1.2.2 (ii) [22], the induced quotient &(A:) is essentially square 

integrable. Once again we appeal to Theorem 26.1 [15] and (5) to conclude that &(A:) 

is metic. We refer to the appendix again to conclude that 8fllQ(A:) is metic. Since a is 

the Langlands Quotient of this representation, it is metic. 



Conversely suppose p is metic. This means that n is metic. By definition @&Q(A:) 

is metic. As earlier, we may conclude that A: and its supercuspidal factors are metic 

for 1 5 i 5 k'. As a result, the central characters of these supercuspidal representations 

are trivial on p,. As before this implies that Ai and in turn that Q(Ai)  are metic for 

1 5 i 5 k. This implies that ni is metic by definition (cf. 26.2 [15] as  well). 0 

The induction arguments of Proposition 26.2 [I51 combined with Lemma 3.1 yield an 

injection 

(7)  @ W s ) )  3 W w s ) ) ,  

whose image is the subset Zmet(M(Fs)) of metic representations in C(M(Fs)) .  

Having specified the images of injections (6)  and (7)  we are free to define bijections 

and 

(9) z m e t ( ~ ( ~ $ ) )  4 c ( M ( F ~ ) ) .  

We define IIYAp(M(Fs)) and ll;$k(M(Fs)) to be the subsets of metic representations in 

&emp(M(F.)) and II,,it(M(Fs)) respectively. 

We may now use (8) to  define subspaces of Z(M(Fs) )  and 31(M(Fs)) which pertain 

to IImet(M(Fs)). Set 

and 

3tmet(M(Fs))  = {h E 31(M(Fs)) : h~ E Zmet(M(Fs))). 

We identify functions in Zmet(M(Fs)) with their restrictions to IIYip(M(Fs)) .  These 

sets of functions may be compared to the corresponding sets of functions derived from 

the metaplectic coverings. Explicitly, If 4 belongs to Zmet(M(Fs)), define 

This definition produces a function in z ( M ( F ~ ) )  by virtue of the trace Paley-Wiener 

theorem ([17]). This is a transfer map of Paley-Wiener functions which is adjoint to 

bijection (8). As such, it is seen to be bijective as well. 



The trace Paley-Wiener theorem and the Weyl integration formula suggest that a 

transfer map for Paley-Wiener spaces ought to yield a transfer map for Hecke spaces 

which is adjoint to map (1) .  Indeed, by using the trace Paley-Wiener theorem and the 

bijectivity of (10) we can define a map 

h e  h*, 

such that h and h* match (cf. Corollary 27.3 [15]). 

In order to show that this map is compatible with ( l o ) ,  let h E 31met(M(Fs)) and 

T E IIr&(M(Fs)).  Then 

as to be desired. The second from last equality follows from dX' = n - ( d i m A ~ ) d A .  

We remark that the functions h E 31met(M(Fs)) are invariant under &{. This implies 

a certain invariance of the map 0 : 31(M(Fs)) + V mentioned above. Indeed if we define 

qh and W by 

'h (7 )  = h ( ~ 7 ) ,  7 E M(F.1,  D E pr;', 

"(h)  = B('lh), 

then 

qB(h) = 0(") = B(h). 
A 

It follows that '0  = 0 if 0 vanishes outside of 31met(M(Fs)). Under this condition, qB = 0 

as well. 



The foregoing sets of representations and function spaces may easily be recast for 

groups over the ad8les. We therefore write lI(&(A)), %!(&(A)), z(&(A)), Pe t (G(A))  

etc. without explanation. 

Henceforth, the functions f and f will be taken to belong to either local or global 

versions of Xmet(G) and 'A!(&) respectively. 

4 The Normalization of Intertwining Operators and 
the Plancherel Formula 

Our goal here is to normalize the intertwining operators between induced representations. 

This is necessary for the definition of the inwiant  trace formula. In this section n and T 

are arbitrary positive integers and v is a nonArchimedean valuation. 

What this normalization amounts to is the definition of functions 

which satisfy the conditions of Theorem 2.1 [9]. These functions are called normalizing 

factors. Such normalizing factors exist for general linear groups (1271, $4 [9]). We define 

candidates for normalizing factors of metaplectic coverings by setting 

for all n E Pet(M(Fs))  and X E ahsc. In order to show that these proposed normalizing 

factors actually do satisfy Theorem 2.1 [9], we follow Lemma 2.1 [lo]. This lemma relies on 

the Plancherel formula for reductive algebraic groups. As nontrivial metaplectic covering 

groups are not algebraic, we must justify the use of the Plancherel formula in the following 

lemma. This is done immediately afterwards. 

Lemma 4.1 The normalizing factors ~G~p(n;.) defined by (11) satisfy the properties of 

Theorem 2.1 [9]. 

PTOO~. In $4 [9] it is explained that all of the properties of Theorem 2.1 [9] are satisfied if 



where P E P ( M ) ,  n E II;".CAp(M(F,)), X E ahsc and pfi is the Harish-Chandra p-function 

for the metaplectic group M. The normalizing factors for M ,  as defined in [27], already 

satisfy (12). That is 

T P ~ P ( ~ A ) V ~ P ( ~ X )  = PM(TA)-', 

for all P E P ( M ) ,  ?r E IItemp(M(F,)), and X E ah,,. Therefore it suffices to show that 

Let ndise(M(~,)) be the subset of representations in rrtemP(M(~,))  which are square- 

integrable modulo %(F,) and IIF:t(M(F,,)) be the subset of metic representations in 

IIdhc(M(Fu)). AS mentioned in Proposition 27 [15], any ii E I I ~ ~ ~ , ( M ( F ~ ) )  is equal to 

i f f f ,  where iil E I I ~ ~ ~ ( M ~ ( F ~ ) )  and Ml is a Levi subgroup of M. By definition 

so it suffices to show (13) for a E IIF:t(M(F,)). This is achieved by means of the 

Plancherel formula. Let f E 3lmet(G(F,)) be such that 

It follows from the Plancherel formula that 

where T M  is a constant defined in terms of an integral over 0, P = MU is a stan- 

dard parabolic, dM(n)  is the formal degree of n E IIgit(M(F,)), and the measure on 

IIF::(M(F,)) is a product measure of inlinitely many copies of the measure on iab,(,). It 

follows easily from the definition of orbital integrals and Lemma 9.5 that 

By the local metaplectic correspondence and the properties of f ,  we know that f i  

vanishes on any tempered representation which is not induced from some n' where 

n E IIg:t(M(F,)) and that 

f g n * )  = f ~ ( 4 .  



The equality of 7~ with -ygf will be argued in the discussion on the Plancherel formula 

immediately following this lemma. By varying f as specified above and using the trace 

Paley-Wiener theorem we find that 

If M = G then p~ = pe = 1 and so dG(r) = dG(n). I t  then follows that 

in the notation of Appendix A, whence the lemma.0 

We now list the properties of reductive algebraic groups which are used in Harish- 

Chandra's proof of the Plancherel formula ([16]) and show that they also hold for meta- 

plectic coverings. 

Let P = M U  be a standard parabolic subgroup of M. Then G(F,) splits over U (52 

(151). The splitting homomorphism is s. In other words, 

s(U) = {(u, 1) : u E U) 

forms a subgroup of G(F,). Every Q E P ( M )  is of the form PW = w-'Pw for some 

representative w of the Weyl group W(aM). It is easy to check that G(F,) splits over 

Uw = w-'Uw with splitting homomorphism sw defined by 

w-'uw rt s(w)-'s(u)s(w). 

Clearly FW = MS~(U) as M is stable under conjugation by s(w). 

We define the Jacquet module of an admissible Hilbert space representation (5, V) of 

finite length with respect to U W  in the following way. Let Vuy be the linear span of 

{ii(s,(w-'uw))v - v : u E U, v E V ) .  

It is a consequence of (2.2) (151 that M normalizes s,(U). Thus M stabilizes VUW. We 

define the Jacquet module of ii with respect to U W  to be the representation obtained by 



twisting the quotient representation V/Vuw with the modular function 6$. We denote 

this representation by ifuY. This is a mild generalization of 514 [15]. One may check that 

this definition yields the expected properties of Jacquet modules. 

Another consequence of the splitting of G(F,) over Uw is the Iwasawa decomposition, 

The associated integration formula follows in the usual fashion. 

Suppose for this paragraph that w is the representative of W(aM) such that = UW. 

Then we obtain the Gelfand-Naimark decomposition. This is a decomposition of an open 

dense subset of G(F,) as 

s ~ ( u ~ ) M ( F ~ ) s ( U ) .  

Its associated integration formula is given by 

.ii = up(a)mp(a)kp(i i) ,  up@) E U ,  mp(4)  E M(FJ and kp(12) E K,. The results of this 

paragraph do not rely on the assumption that P is standard. 

Observe that since M(F,) normalizes sw(UW) and Z(F,) is an abelian subgroup of 

M(F,), we may obtain a root space decomposition of sw(Uw). Using this root space 

decomposition we may define a subset z- of z as in 54 [ll]. In fact all one needs to 

prove the remaining results concerning the asymptoticbehaviour of matrix coefficients in 

54 [ll] is the Iwahori decomposition for arbitrarily small compact open subgroups. These 

Iwahori decompositions exist in G(F,) because there exists a compact open subgroup K: 

of G(F,) over which G(FJ splits (§[15]), and the Iwahori decomposition holds for G(F,). 

The only decomposition which still needs to be addressed for G(FJ is the Cartan 

decomposition. This may be recast as 



where 7 runs over a set of representatives of A~~(F,)/A~~(F,). This union is finite and 

disjoint. It is the finiteness which allows us to restrict our attention to K,A~~(F,)K, 

when proving the convergence of integrals or bounds of certain functions. 

We make one further remark concerning bounding functions on &(F,). If h is a genuine 

or antigenuine function on &(F,) then clearly 

Therefore, in cases where one is interested in finding uniform bounds of such functions, 

the techniques of the non-metaplectic groups may be used. 

This concludes the discussion of the properties necessary for the proof of the Plancherel 

formula. The proof may now be imitated after making some apparent dehitions. 

5 The Invariant Trace Formula 

The purpose of this section is to present the metaplectic version of the invariant trace 

formula of Arthur ([6], [7]), and to serve as a more detailed introduction to the following 

sections. 

Without further delay, we set forth the invariant trace formula of a function f E 

x(&(A)) as the equality of 

with 

(15) 

It will be convenient to denote (14) as ~(f), and I(f*) as IM(f). This trace formula is 

extrapolated from the trace formula given in [7] for algebraic groups. Since nontrivial 

metaplectic coverings of algebraic groups are not algebraic, one ought to verify the results 

of Arthur for metaplectic groups in order to rigorously assert the existence of a trace 

formula as we have done above. There are unfortunately too many results that need to 

be checked to be included in this thesis. Those results which have been checked (54 for 



example) follow in a straightforward manner. There is no reason to doubt that the other 

results do not follow in the same way. We will therefore be assuming that the invariant 

trace formula is correct as stated. 

Expansion (14) is known as the geometric side of the trace formula, as its terms depend 

on (in our case) conjugacy classes in M(F). It will be further elaborated on in 59. The 

other sum, (15), is known as the spectral side of the trace formula, as its terms depend 

on representations of M(A). It will be further elaborated on in 512. Both the geometric 

and spectral sides of the trace formula contain terms which are local, i.e. determined by 

f i(Fs) ,  and global, i.e. determined by the subgroup so(M(F)) of M(A). 

In sections 6 and 9 we examine and compare the local geometric terms of the trace 

formulas of 6 and G. In Theorem 9.1, we state the precise fashion in which the geometric 

terms of these trace formulas are equal. The proof of Theorem 9.1 is completed in the 

final section. Its proof is inductive and involves the spectral side of the trace formula as 

well as the geometric side. Theorem 12.1 is the spectral analogue of Theorem 9.1 and is 

also completed in the final section. It is shown to partially follow from Theorem 9.1. The 

remaining sections are all steps in the inductive proof of Theorem 9.1 (i). 

6 The Local Geometric Terms 

The local geometric terms of (14) have the form Ifi(j, f), where j is a conjugacy class in 

M(F~) and f E x(M(F~)). For a fixed function f ,  these terms are derived from weighted 

orbital integrals (cf. 52 [6]). On the other hand, if ;j. is fixed then Ifi(j.) may be viewed as 

an invariant distribution on X(&'(&)). Both points of view are valuable. We will abuse 

notation from time to time by identifying an element of M(F~)) with its conjugacy class. 

These distributions satisfy two useful properties. The first of these is the descent 

property (Theorem 8.1 [6]). This implies that if MI E L is a subgroup of M and j E 

M ~ ( F ~ )  such that MI,? = M? then 

See [6] for the definition of dg1(M, L). 



The second property satisfied by these distributions is one of splitting. That is, if S is 

a disjoint union of nonempty sets Sl and S2, and f = flf2, y = ;yl% are the corresponding 

decompositions, then 

Let us speculate on how the local geometric terms of the trace formula for G might 

match up with those of the trace formula of 6. Our means of relating conjugacy classes 

of these groups is the transfer map (1). The restriction of this map to M(Fs) is invariant 

under pf. We prove this as a lemma. 

Lemma 6.1 Suppose y E M(Fs) and q E pf. Then 

Proof. It is sufficient to prove the lemma in the case that S consists of a single valuation 

be the nth Hilbert symbol of F,. The cocycle 70, is given by 

where 6', 6 E AMo(F,), 6: and Jj are the respective diagonal entries of 6' and 6, and K, is 

a map taking values in pn (52 [15]). It may be shown by induction on n that 



Thus, if we wish to compare I f i (7*)  with the invariant distributions from M(Fs),  we had 

best group the latter into pf invariant sums. An obvious such grouping would be 

C I M ( v ~ ,  f ) ,  f E xmet(M(FS)) .  
'€4' 

This grouping has only one shortcoming. If M = G then 

C IG(V79f) #IG("Y,f)  =I~(? '*r f ' ) .  
' E P ~  

We can correct this shortcoming if we take into account that 

Indeed this invariance follows from the  inva variance of the functions in 31met(G(Fs)). It 

then makes sense to define 

I,$(r,f) = C I M h n f ) ,  7  E M(Fs). 
' € K Y / P P  

As we shall see in Theorem 9.1, this is the sought-after grouping of invariant distributions. 

Notice that if L E L ( M )  then 

%c(7, fd = C iii(V7, fd ,  
wkf /p f  

for all 7 E M(Fs).  

Before examining the properties of I:(7), let us reconsider (18), that is the pf- 

invariance of Ihf(7) .  It is a direct consequence of the inductive definition of I* that 

In the notation of 53 this becomes 

It is useful to note the reformulation in terms of Paley-Wiener functions, namely 

We now show that the distributions I g ( 7 )  satisfy descent and splitting properties as 

well. 



Lemma 6.2 Suppose M and MI belong to 13 and Ml C M. Suppose further that L E 

L(M1) such that d&,(M, L) # 0. Then the map 

given by (g&, g&) H q1q2&, is an isomorphism. 

Proof. If d&,(M, L) # 0 as above, then by definition, a$, @akl E a% (57 161). The vector 

spaces a& and af may be regarded as the respective orthogonal complements of aG1 and 

a&, in aff,. As a consequence we also have a& $ af E a&. Consider the homomorphism 

It is readily verified that it passes to a homomorphism Hbl : AM1/Ac -t a&l such that 

H b l ( A ~ / A c )  c a:* and Hb1(A~/Ac) C af. Accordingly 

H ~ , ( ( A M  n AL)/AG) c a 5  n a: = {o}. 

In other words, 1t(r)l = 1 for all 7 belonging to the split torus AMnAL, and all characters 

< E X ( M 1 ) ~  which are trivial when restricted to G. This implies that AL n AM C AG. 

As a result, the multiplication map 

is injective. It now follows from the commutative diagram, 

that the map of the lemma is injective. The surjectivity of the map can be seen from the 

following equalities. 

~ ~ ; / ~ f  ,&& = ndimaffndimaf = ndima%, = IP,"I/P:P 

Lemma 6.3 Let M, Ml and L be as in Lemma 6.2. The map 

P?/P: + P,"I/P~? 

given by gPf H gPk for q E p,", is an isomorphism. 
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Proof. The proof of this lemma follows from arguments similar to those of Lemma 6.2.17 

The following proposition proves a descent property !or I$ir). For this we need the 

notion of an induced conjugacy class. Given 7 E M(Fs) define the induced conjugacy 

class of 7, -ye, to be the union of the G(Fs)-conjugacy classes which intersect 7U in an 

open set. Here P = MU and P E P(M) is arbitrary. This definition is well-defined (56 

[8]) and in our case 7G is always a single G(Fs)-conjugacy class. 

Proposition 6.1 Suppose M and MI belong to & with MI C M. Moreover suppose 

7 E Ml(Fs). Then 

Proof. Let q E p r .  Since q lies in the centre of M(Fs), qyM = {qd : d E is 

a conjugacy class in M(Fs). Let U be the unipotent radical of some P E PM(Ml). 

Clearly, left multiplication by q is a homeomorphism between yU and qyU. It follows 

that qyM is a conjugacy class of M(Fs) which intersects qyU in an open set. In other 

words q7M = ( ~ 7 ) ~ .  

The descent property for IM(7) (Theorem 8.1 [6]) together with Lemma 6.3 yield 



Proof. It follows from rational canonical form that -ynr is equal to the conjugacy class of 

7 in M(Fs).O 

Proposition 6.2 Suppose S is the disjoint union of nonempty sets Sl and Sz,  and that 

f = f i f2,  7 = 7172 E M(Fs) are corresponding decompositions. Then 

Proof. We begin by applying the splitting property to the summands of Ifi(7). 

Suppose the expression dZ(L1, L2) of these sums is not zero. By using arguments similar 

to those of the proof of Lemma 6.2, it may be established that 

P,M/Pf g P ? / P :  x P?/Pf3 

and ~ f ; '  n ~2 = From ~ k ~ l f ; ~  n ~ f ; l  = p: it follows that the homomorphism 

given by qp: i-+ 1 7 ~ 2 ,  is injective. Thii homomorphism is also surjective as 

It may be deduced in the same manner that ~ f ; l / ~ :  S #/&.  
Thus the previous sum is equal to 



7 A Fundamental Lemma 

We may already prove a specific, yet crucial identity between the local geometric terms 

of C and G. For the duration of this section we fix v to be a valuation of F such that 

Inl, = 1. Define f: to be the product of the characteristic function of K, with the scalar 

vol(K,)-'. Define f: to be the unique antigenuine function such that f: o p = f:. The 

following proposition is a type of weighted fundamental lemma, as it is an identity of 

weighted orbital integds deiined in [a]. 
We first prove a technical lemma which concerns the weight vfi of the weighted orbital 

integrals (cf. p. 36 [I], $51-2 (8)). 

Lemma 7.1 Suppose y E M(F,). Then 

Proof. The (C?, M )  family from which v,,? is derived is defined as 

where P E 'P(M) and X E iah. In particular 

By definition then 



where AM is the set of simple roots of (P, A M )  ($6 [I]) .  Since the measures on a~ and 

a* are identical, we have 

Moreover X'(ctV*) = X(aV). Hence 

In what follows, an element E M ( F ~ ) )  is said to be F,,-elliptic in M if 7 E M~(F,,) 

for some regular element 8 E M(F,) and M ~ ( F , ) / ~ ( F , , )  is compact. 

Proposition 7.1 Suppose 7 E M(F,) such that y" is semisimple and G-regular. Then 

Proof. We first focus our attention on J2(7*, f:). Without loss of generality y E K,. By 

Lemma 1.1.2 [13], we have 6,. = p-'(G,). In consequence of this and the normalization 

of measures in 53, 6,:,n(~y)\e(~,,) and G,(F,,)\G(F,) are identified as measure spaces. 

We retain the notation of the latter space. It now follows that 

Let Ac,(F,) be the maximal split component of the centre of G,. The centralizer of 

Ac,(F,) in G(F,) is a Levi subgroup. Let MI denote this Levi subgroup and let Nl be 

its unipotent radical. The inclusion MI c M follows from the fact that the centre of M ,  

which is a split torus, is contained in Ac,, the centre of MI.  Observe also that MI > G, 

and that 7 is F,-elliptic in Ml(F,). If we apply the Iwasawa decomposition, G = M I N I K ,  

to Jfi(-yWr P), we obtain the product of ndim(AMIAc) with 



(with apologies for the double usage of n). By taking into account that f,, is bi-invariant 

under s(K,) and that V M  is right K,-invariant ($2 [S]), we may ignore the above integral 

over K, to arrive at 

Define a map p,,, : Nl + Nl by p,,,(n) = mi'n-'man, where mo = m-'rnm, m E MI 

and n E Nl. It is not hard to show that rpm is injective from the fact that 7" is G- 

regular. By Proposition 7 [15], the last integral may be expressed as the product of 
n d i m ( A ~ / A ~ )  ( D M  (y)(t/2 with 

6?(m-'T'm) ?(s(rn-')7*s(mn))v~(mrp;'(n))dndm, 

where Nz is the image of cp,, dpl is the modular function of the parabolic subgroup 

PI = MINI ,  and DM' is the Weyl discriminant for the group MI. 

It is obvious that f~(s(m-1)7's(mn))vM(mrp;1(n)) vanishes unless 

lies in K,. Now observe that if mon lies in K,, then so do ma and n. Indeed, since MINI 

may be taken to be a standard parabolic subgroup, the entries of mon lie in R, if and 

only if the entries of mo and n iie in R. If mo E K then Jp,(rno) = 1 and our integral 

becomes 

The latter equality arises from the left M-invariance of vj,, (52 [8]). The preceding calcu- 

lation can easily be adapted to J M ( ~ ,  f:) by setting n = 1. Consequently, 

We now follow the arguments of 512 [15]. We may decompose MI as ni;, Ml(i) ,  where 

Ml(i)  r GL(bi, F,) and C~L, bi = T .  Let su be the topological Jordan decomposition of 



7 ($3 Lemma 2 [18]). Then snun is the topological Jordan decomposition of 7". We will 

show that Ml,,n(Fv) = MI,*. Since 7 is semisimple, F,-elliptic in M I ,  and commutes with 

s, s itself is semisimple and F,-elliptic in Ml(F,). Thus Ml,,n(Fv) is a reductive group 

isomorphic to n$, GL(b:, F,'), where F,' is a field extension of F, and C:L,[F,' : F.]b: = r. 

Since it contains the elliptic torus Ml,,,(F,), we must have = el and [F,! : F,]b: = bi. 

In particular sn may be regarded as an element of nfi, F,'. Let F t  be the field obtained 

from F,' by adjoining an nth root of sn. Then F: is a field extension of F,! whose degree 

divides n (cf. proof of Lemma 9.1). However [q : F,'] < r, so we must have [F; : 4'1 = 1, 

that is F: = F,!. Since Ml,,(F,) is isomorphic to n:~, GL(b:, F:), where b:[F: : F,'] = b:, 

we may conclude that Mlsn(F,) = Ml,.(F,,). 

We now reduce the earlier weighted orbital integrals over Ml(F,) to weighted orbital 

integrals over M1+(F,). Indeed according to $3 Lemma 3 [18], if m-'ym E K, for m E 

Ml(F,,), then m E Ml,,(F,)K,. We set 

in order to render the ensuing computations more readable. With this notation we find 

In the following we identify M1JF,) with GL(b:,F,!). We may replace s* and u' 

with (sn, 1) and (un, 1)  respectively since K, splits over G(F,) (52 [IS]). We will abuse 

notation slightly by suppressing the second coordinate. By a variation Proposition 0.1.5 

[191, 

where m E n;;, GL(b:, F,'), mi is the image of m in GL(b:, F,') and (., .) is the nth Hilbert 

symbol of the field following it in subscript. Since the Hilbert symbol is trivial on nth 

powers, the above expression is easily seen to be the identity. Hence (19) becomes 



By following the arguments of the Proposition of 512 [I51 verbatim, we can show this to 

be equal to 

Working backwards from this integral, we obtain the proposition. 

Proposition 7.2 Suppose 7 E M(F,). Then 

(20) I d 7 * ,  f9 = m 7 ,  f3.  

Proof. Once again, without loss of generality, we may assume that 7 is in K,. By 

Proposition 7.1 and Lemma 6.1, it is apparent that 

TZ-~~"'(*MI~C) ~,,3(7*, f:) = J M ( ~ ~ ,  f:), q E pf;l. 

According to Lemma 2.1 [6] 

Thus 

if 7 n  is G-regular. 

I f  7" is not assumed to be G-regular, let 7 = au be the Jordan decomposition of 

7 E M. By the definition of r p ( v * , ~ * , a * )  (3.4 [8]), we have 



In consequence, 

ndim(A~lAc)~M(y, fyO) 

= lim ~ i ( y * ,  a*)(ndim(A"lA")~L(arI f:)) 
o-il 

LEL(M) 

= lim x r:,(-yg, a8)If(ay, f:) 
0-11 

L€C(M) 

= lim x &(ye, a8)Ii((ay)*, it) 
a-11 

LEC(M) 

The lemma now follows from an application of Lemma 6.1.0 

We close this section with two partial results that are true for arbitrary positive integers 

n and T 2 2. We stress that n need not be relatively prime to any number in Lemma 7.2 

and Lemma 7.3. 



Lemma 7.2 Suppose y E M(F,) such that 7" is diagonal and G-regular. Then 

Proof. The first portion of the proof of Proposition 7.1 does not rely on any assumptions 

between n and r, and so we may mite 

and 

as before. Since 7 is diagonal, Ml is the diagonal Levi subgroup Mo and so q, is, despite 

appearances, independent of m E Mo. Moreover M0,JF,) = Mo(F,). Hence 

The desired equality follows from 

Lemma 7.3 (Flicker, Kazhdan, Waldspurger) Suppose y E G(F,) such that 7" is 

G-regular. Then 

Jdr', f , )  = Jc(7, f:). 

Proof. This is proven in Proposition 12 of [15] modulo an assertion which is proven in 

[32]. See the first appendix of [14] for details.0 



8 A Vanishing Property 

Given that the orbit map, ( I ) ,  is our means of relating conjugacy classes of G to conjugacy 

classes G, we should hope that the distributions Ini(Y, f )  of (14) vanish unless 7 lies in 

the image of (1). This is referred to as a vanishing property. Note that by 53 [15], we 

have that & ( j ,  f )  vanishes unless p(q) = 7" for some 7 E G(Fs). Thus we already 

have a local vanishing property for the case M = G. The formulation and proof of 

the vanishing property for arbitrary M are somewhat roundabout and require a several 

additional definitions and lemmas. This section follows $10 [6] closely. 

Let v be a nonArchimedean valuation and let M(F,),II be the set of F,-elliptic elements 

in M(F,). By rational canonical form, a y  6 E G(F,) is in some induced conjugacy class 

T', where T E L(Fu)ell and L E L. The pair (L ,T)  is uniquely determined by b up to 

G(F,)-conjugacy. Let 8 E G(FJ such that p(8) = 6 as above. We define G(F,)c c G(F,) 
by specifying that 8 E G ( F , ) ~  if and only if E ( T )  E FyXn for all E E X ( L ( F V ) ) ~ .  We 

also define G' (F , )~  by specifying that 8 E G ( F , ) ~  if and only if J ( T )  E FyXn for all 

[ E X(G(F,))p. It follows from X(G)F C X ( L ) F  that G ( F , ) ~  C G(F& Clearly, we 

may define M ( F , ) ~  and M ( F , ) ~  as above by replacing G with M. 

Lemma 8.1 Let EIF, be an extension of degree t such that t 5 n, and gcd(n, t) = 1. If 

x E E X  such that NEIFV(x) E FyXn then x E EX".  

Proof. We first show that E X / E X n  2 FyX/FyXn and that we may take coset representatives 

of E X / E X n  to be in FyX. The homomorphism 

given by z F t n  H zEXn,  for z E FyX, is injective. Indeed, suppose z does not belong to 

F X n ,  but does belong to EX". Then [F(zlln) : F,] divides n by Theorem 10 (b) VIII 56 

[23]. Moreover z1In E E ,  so 

t = [ E  : F,] = [ E  : F,(zlln)][~,(z'In) : F,], 



which contradicts gcd(n, t )  = 1. The surjectivity of this map follows at  once from the fact 

that (Corollary I1 53 [24]) 

The enunciation of the lemma amounts to showing the injectivity of the homomor- 

phism 

NEIF, : E X / E X n  -t F t / F t n  

given by 

x E X n  +) ( N E I ~ v ( x ) ) F ~ n  = xtFtn,  

where x E F t .  If xtFz" = Fz" and x $ Ft",  then t must divide n2/lnl, by (2l),  thereby 

contradicting gcd(t,n) = 1. Thus this map is injective. 

Proposition 8.1 Let j E M(F,). Then j E fi(~,)~ i f  and only i f p ( j )  = 6" for some 

6 E M(F,). 

Proof. The proposition may plainly be deduced from the case that M = G ,  if decomposi- 

tion (2 )  is kept in mind. Let 7 E B(F,) such that p ( j )  = 6" for some 6 E G(F,). Suppose 

6 E rc,  where T E L(F& and L E L. Then 6" E ( T " ) ~  and T" E L(F,),II. Clearly, 

t(?) = (((7))" E F t n  for all t E X ( L ) p  Consequently j E &(F,)G. 

Conversely, suppose 6 E p ( B ( ~ , , ) c )  and 6 E T~ for T and L as above. We must show 

that 6 = u" for some u E G(F,). Suppose that L has a decomposition L = n:=, L(i) ,  

where L;(i)(F,) GL(ki, F,). Let (ti):=, be a base for X ( L ) p  We identify L(i)  with 

G L ( 4 )  by the above isomorphism, take ti = detlL, and set T = (ri)L,, where ~i E 

G L ( 4 ,  F,). Since T is F,-elliptic in L(F,), there exist elliptic tori Ti c L(i)  and extension 

fields Ei/F,, such that [Ei : F,] = ki and Ti Z E,X. If we consider ~i E Ei to be the image 

of T under these isomorphisms then 

Thus, by Lemma 8.1, ~i E E,Xn, i.e. ~i = By, where pi E E,X E Ti c Li(F,),u. This 

implies that T = p", where /3 = E L(F,),n. As a result 6 E (pn)G, and so there 

exists u E PC C G(F,) such that 6 = on.O ' 

This next proposition establishes a local vanishing property (cf. 810 [7]). 



Proposition 8.2 Suppose B E M(F,)". Then I f i (B , f )  = 0 for all f E W'""'(G(F,)) 

unless B E M(F, )M.  

Proof. Assume 1 ~ ( 8 , f )  # 0 for some E M ( F , ) ~  and f E ' fl(G(&)). Let L1 E LM and 

r E Li(F,),n such that p(8) E r M .  Fi E X(LI )F .  We  must show that &(T) E Fzn. 

By the descent descent property ($6) 

Hence there is some L2 E L(L1) such that d f , ( ~ ,  L ~ ) ~ ; : ( T ,  fia) # 0. Since ~ R ( M ,  L2) # 
0, we may decompose & as E + &, where 6 E X ( M ) F  and (2 E X ( L 2 ) p  The distribution 

i k ( r )  is in the closed linear span of where q ranges over the G-regular points 

in Lz(F,) such that <2(r) = &(q) (cf. Proposition 10.2 161). Therefore there exists such 

From the remark at the beginning of this section, this implies that &(r)  = &(q) E Fzn. 

By assumption J ( r )  E Fzn. Consequently &(T) = C(r)&(r) E F:", and the proposition 

follows.0 

We transfer this local vanishing property to a global vanishing property by using 

splitting and some local-global results on n-th roots in F and G(F).  

Lemma 8.2 Let x E F X  such that x E Ftn for almost all valuations v. Then x E FXn.  

Proof. We will prove this lemma by contradiction. To this end, let u be a non-trivial 

element in the Galois group of the abelian extension F(xl/"). Observe that F(x'ln) is 

well-defined since pn C F. It is immediate from the hypothesis of the lemma that the 

density of  the valuations for which u is the Fkobenius automorphism is zero. However 

the Tchebotarev density theorem (VIII, $4 Theorem 10 [24]) tells us that this density is 

l / [F(x l /" )  : Fl.0 

Lemma 8.3 Let E be any field containing p,,. Let 7 E GL(r, E )  be such that 7 is E-  

elliptic in some Levi subgroup L of GL(r, E) .  If 7" is in the centre of GL(r, E )  then 

r E A L W .  



Proof. Suppose first that 7 is E-elliptic in GL(r, E). Then we may view 7 as an element 

of E;, where El is a field extension of E such that [El : El divides r. The minimal 

polynomial of 7 over E divides the polynomial g ( X )  = Xn - 7". From this it is clear 

that the norm of 7 is -yLE1:El~ E E, for some 6 E p,,. Since C E p,, C E we have 

71E1:EI E E. Writing 7" = y"E1:El-yb for some integers k and 0 5 b < [El : El, we find 

7* = 7n7-k[El:El E E. This implies that b = 0 and n = k[El : El. Since we are assuming 

gcd(n,r) = 1, we must have [El : E]  = 1. In particular, 7 belongs to E X .  In the context 

of the group GL(r, E ) ,  this means that 7 lies in the centre. 

The proof of the lemma for arbitrary 7 may be obtained by combining the above 

argument with the fact that 7 is E-elliptic in some Levi subgroup L = ni=, GL(k) of 

GL(r).O 

Lemma 8.4 Let 6 be an element of M(F) such that 6 = 7," for some y, E M(F,) and 

almost all valuations v of F. Then 6 = 7" for some 7 E M(F). 

Proof. This lemma follows easily from the case M = G. Suppose first that 6 E G(F) 

is semisimple. We may then, by rational canonical form, take 6 to be a diagonal block 

where bi E GL(mi, F )  generates a field extension Fi/F of degree mi, and appears bi times. 

The centralizer Gs(F) of 6 in G(F) is isomorphic to nf=,  GL(bi, Fi). It is not difficult to 

see that this lemma can be solved for the semisimple case if it is solved for the case k = 1. 

Let us then restrict our proof to this case. If Fl = F we may identify 6 with 61 E FX. By 

Lemma 8.3, y, belongs to Ac(F,), so we may identify it with a scalar in F:. Thus we 

are in the same circumstance as Lemma 8.2 with x = 61. Next let Fl/F be an arbitrary 

finite field extension. Let wl, . . . , wd be the valuations of F, which &vide v .  Then 61 is 



conjugate to 

in GL(m1, F,), where 61i generates FlSwi over F,. This implies that 

Clearly, 7,  E Ga(F,). Via this last isomorphism, we may decompose 7"  = (.y,,i)$l, where 

7u , i  E GL(r1, F I , ~ ~ ) ,  1 6 i 5 d. Observe also that the map 61 H 61i corresponds to an 

embedding Fl v Fl,,, which in turn yields an embedding G L ( T ~ ,  Fl) v GL(r1, F1,,,,J, 

1 6 i 6 d. With respect to these embeddings, we have xi = 6, 1 6 i 6 d. This places us 

once more in the same circumstance as Fl = F ,  which has been taken care of. 

For general 6 E G ( F )  let 6 = uu be the Jordan decomposition where u is semisimple 

and u is unipotent. Similarly let uVu, be the Jordan decomposition of 7, E G(F,). It 

follows clearly from -/," = 6 that u: = u and u: = u. We first assume that u is a 

scalar matrix in G ( F ) .  Then, once again by Lemma 8.2, there exists a scalar matrix 

ul E A@) such that u; = u.  Let u1 = exp(i log(u)). Then uy = u and ulul = u1u1 

together imply that (ulul)" = u u  = 6. For arbitrary semisimple u E G ( F )  we may follow 

the decomposition of G,(F) as before since u E G,(F)  This decomposition allows us 

once more to restrict our proof to the case that u is a scalar matrix and we may argue as 

above to complete the proof.0 

Proposition 8.3 Let S be a large set of valuations containing the Archimedean valuations 

and 6 E so(M(F))  f l  M ( F ~ ) .  Then ILf(6, j) = 0 for all f E ' f l (6 (Fs) )  unless p(6) = 7" 

for some 7 E M ( F ) .  

Proof. We may assume by 53 [15] that the proposition holds for L E t ( M )  such that 

L # G.  Suppose Ifi(6, f )  # 0. We first show that 6 E M(F# = nYEs M ( F , ) ~ .  Sup- 

pose the contrary, i.e. suppose that $(6) does not belong to F F  for some $ E X(M(F& 

and vl E S. Then [(J) does not belong to FXn. By Lemma 8.2 there is another place v2, 

which we may assume to be in S, such that $(a) does not belong to FGn. The sets Sl = 



S - {vz) and S2 = {VZ) both have the closure property, as they contain Archimedean val- 

uations. Decompose f E 31(G(Fs)) into jlfi such that f1 E 31(e(Fs,)), f2 e 31(8(Fs,)). 
Applying the splitting property (6) ,  we obtain 

Thus there is a pair L1, L2 E L(L) such that df(L1, i 2 )  # 0 and @(6, iVLi) # 0, i = 1,2. 

As in Proposition 8.2 

Suppose that &(6) E FX". Then it belongs to F:" for all valuations v of F so we must 

have &(6) $ FGn. It follows by induction that ik(6, f2,j,,) = 0 and this is a contradiction. 

On the other hand if &(6) $ FXn, then we may assume as we did before for S that 

&(6) $ Fc for some valuation v3 E S1. This implies fi(6, fl,il) = 0. This is also a 

contradiction. Consequently 6 E M ( F ~ ) ~ .  

Now we may apply Proposition 8.2 to conclude that 

6 E M(F& = M(F&. 
uES 

According to Proposition 8.1, there exist y, E G(F,) such that y," = p(6) for all v E S. 

Since S can be made arbitrarily large, we may assume that p(6) is an nth power at all of 

the valuations of F. Therefore we may apply Lemma 8.4 to p(6) and conclude that there 

exists an element .y of G(F) such that yn = p(6).0 

9 The Geometric Side of the Trace Formula 

Before giving the details of the geometric sides of the trace formulas, we give some mo- 

tivation. According to $2 [19], the map so of $2 is a homomorphism of G(F) into G(A). 

In particular G(F) splits over G(A). Let L~(s~(G(F))\G(A)) be the space of square- 

integrable functions on (?(A), which are genuine and left-invariant under so(G(F)). We 

can now form a theory of automorphic representations on E(A) by examining the (right) 



regular representation R on L'(s~(G(F))\&(A)). The geometric side of the trace formula 

originates from the following calculation. Let p E L ~ ( ~ O ( G ( F ) ) \ ~ ( A ) ) .  Then 

Roughly speaking, the trace of the operator ~ ( f )  is obtained by integrating the integral 

kernel 

( x > Y )  +, C f (y - '74  
-rEso(G(F)) 

over the diagonal. The only novelty in this calculation is the coefficient n in front of the 

integral. This justifies its appearance in (14). 

If n is prime let S(,) be the set of nonArchimedean valuations v of F such that lnlv # 1. 

If n is not prime let S(,) be the set of nonArchimedean valuations such that lnlY # 1 

together with a single Archimedean valuation. In either case St,) has the closure property. 

Suppose S contains S(,) and the Archimedean valuations of F ,  and f E %(C(FS)). We 

may embed f into %(&(A)) by taking its product with nues f , ,  where f: is as in 57. If 

S satisfies some additional properties, which are given in $3 [7], then ~ ( f )  equals 

The set (so(M(F)))@,,  denotes the set of (M, S)-equivalence classes in so(M(F))  (58 

[4]) ,  which in the present case are just the conjugacy classes of so(M(F)) .  The coefficient 



afi(s, 7) requires more explanation. Let uu be the Jordan decomposition of p(y) E M(F). 

Set ihf(S, o)  = 1 if u is F-elliptic in M(F),  and the M(F,)-orbit of o meets K, n M(F,) 

for every valuation v $ S. Otherwise set iM(S, u) = 0. It follows from the nature of the 

conjugacy classes of M(F) and 3.2 (71 that 

For a description of a'%(a)(~, u) see 87 [4]. 

Consider the summand of (14) indexed by M = G, namely 

If we are to have any hope in comparing this term with its counterpart, 

by using the orbit map (I), then we must eliminate those 7 from the former sum such that 

7 # 7' for some 7 E G(F). In doing this we could index the relevant conjugacy classes of 

G(F) with conjugacy classes of G(F). Unfortunately the orbit map is not injective. The 

aim of the following lemma is to measure the extent to which it is not injective on the 

elliptic set. 

Lemma 9.1 If 71 and are F-elliptic in M(F), and 7 ;  = 7;, then 717;' E pf;'. 

Proof. We restrict the proof to the case M = G with assurances that the general case 

follows easily from this one. Suppose 71 and 72 are F-elliptic in G(F). Then there exist 

elliptic tori TI and T2, containing 71 and 72 respectively. There are isomorphisms Ti % E: , 
where Ei is a field extension of F for i = 1,2. We may therefore view 7i as field elements 

of Ei, i = 1,2. Let E = El n E2 and let fi(X) E E[X] be the minimal polynomial of 7; 

for i = 1,2. Clearly fi(X) divides X n  - yy. Furthermore [Ei : E] divides [Ei : F] = r. 

We may use the argument of Lemma 8.3, replacing El with Ei and E with F to conclude 

that El = E2 = E. In E the equality 7 ;  = 7; implies = 1, and this clearly 

implies that 717;1 E pn c F. Translated back to the context of the group G(F), this 

means 717;' E pf. 



Suppose 71 and 7 2  belong to the same conjugacy class of M(F) .  Then since pf;' is in 

the centre of M(F) ,  771 and 772 also belong to the same conjugacy class of M ( F )  for all 

q E pf;'. This fact allows us to define the quotient set (M(F))M,S/% in an obvious way. 

Proposition 9.1 (5.1) The expansion for ~ ( f )  may be expressed as 

Proof. According to Proposition 8.3, the distribution I f i (6) ,  with 6 E so(M(F)) ,  vanishes 

unless p(6) = yn for some 7 E M(F).  From the previous lemma we see that the map 

?pf;' I+ 7 ,  is injective on the F-elliptic set of M(F) .  Thus the map of conjugacy classes, 

given by 

'Y b+ (79 1)" = (72 1)"/(1, d'Y))" = so(7)" = sO('Yn)s 

is injective. The pr~position now follows from the fact that aa(s,6)  vanishes if S E 

so(M(F))  is not F-elliptic in M(F).O 

The trace formula for G, which we expect to match I(f'), is 

As earlier, we have the decomposition 

(23) a"(s,-y) = i"(s, u)aMr(s,  u ) ,  

for 7 = uu E M(F) .  Since every element of pf;' is F-elliptic in M and also lies in 

K, n M(F,) for all valuations v ,  it is not difficult to verify that iM(S ,  qu) = iM(S ,  u )  for 

all q E pkJ and semisimple u E M(F) .  This implies that aM(S,  g7) = abf ( S ,  7 )  in the 

previous sum. Explicitly, 



The present forms of the two trace formulas and Theorem A of [lo] suggest the fol- 

lowing definition and theorem. We define 

Theorem 9.1 (A) (i) Suppose that S is a finite set of valuations containing S(,). Then 

for all 7 E M(Fs). 

(ii) Suppose r E M(F) .  Then ani(s,so(-yn)) = aM(S , r )  for any suitably large finite set 

S .  

This theorem will be proved in $18. 

Continuing in the same vein as [lo], we make an induction hypothesis. Namely, that 

the theorem holds i f  G is replaced by G I ,  where G1 is a product of  general linear groups 

over field extensions of F and  dim^ G l (F)  < dimF G(F) .  The relevance of  this induction 

hypothesis lies in the following observations. Given a semisimple element u in M(F) ,  the 

centralizer M,(F) riel GL(bi, Fi), where Fj/F is a finite field extension for 1 < i < k ,  

and xLl bi[Fi : F] = T .  Thus M,(F) falls into the class of  groups described in the 

induction hypothesis as long as dimF M, < dimF G. This last condition is satisfied as 

long as M # G or u is not in the centre o f  G. 

By combining this induction hypothesis with the descent property ((16), Corollary 

6.1) and splitting property ((17), Proposition 6.2), we obtain the following two lemmas. 

The reader is referred to pages 109-110 o f  [lo] for the proofs. 

Lemma 9.2 Suppose Ml and M are in & such that Ml $ M.  If y E MI(&) such that 

rn is G-regular, then I$(r, f )  = I i ( r ,  f). 

Lemma 9.3 Suppose Theorem 9.1 ( i )  holds. firthennore suppose S is a disjoint union 

of So and S1, where So has the closure property and contains Sg),  and S1 consists of a 

single nonArchimedean valuation. I f f  = f o f l  and 7 = -yo71 E M(Fs) are decompositions 

corresponding to that of S ,  then f l )  = I$(%, f l ) .  

44 



If we apply our induction hypothesis to (14) and the expansions (22) and (23), we 

obtain the following lemma. 

Lemma 9.4 (5.2) The distribution, IM(f) - I ( f )  is the sum of 

and 

One useful restriction that we may make in showing the first assertion of Theorem 9.1 

is given by the following lemma. 

Lemma 9.5 (3.6) Suppose 

G h f )  = m 7 ,  f) 
for every element 7 E M(Fs) such that 7" is G - T ~ ~ u ~ u T  and semisimple. Then the same 

formula holds for any element 7 E M(Fs). 

Proof.See Lemma 3.6 [10].0 

In light of Lemma (9.5), we define the set G.,,,(Fs) to be the set of elements 7 E G(Fs) 

such that 7" is G-regular. Clearly, the elements of G.,,,(Fs) are the ones whose image 

under the transfer map (1) are G-regular. 

10 Comparison of the Local Geometric Terms 

The goal of this section is to establish a rough comparison between IM(7, f )  and I i ( 7 ,  f )  

under the assumption that Theorem 9.1 (i) is true, and then to compare their germ 

expansions. The comparison of germ expansions is a technical point whose ultimate 

purpose is to establish a comparison between IM(7, f )  and I$(7, f )  which no longer 

requires Theorem 9.1 (i) (Proposition 16.1). 

The first assertion of Theorem 9.1 has a restriction on S,  namely that S must contain 

S(,). If one were to assume this assertion to be true, one could still ask whether something 

like it would remain true for arbitrary S. This is the content of the next theorem. 



Theorem 10.1 (6.1) In the special case that S > S(,), we suppose that 

for any 7 E L(Fs) and L E L(M).  Then there are unique constants 

such that 

The constants have the descent property 

and the splitting property 

E M ( S )  = x d $ ( ~ ~ ,  L ~ ) E ~ ( s ~ ) E ~ ( s ~ ) ,  S = S1 U SZ. 
LI,L~EL(A~) 

Proof. This theorem follows from the proof of Theorem 6.1 [lo], with I$ replaced by I# 

and IM replaced by I2.O 

Now we begin the comparison of germ expansions of IM(7 ,  f )  and I$(r, f). This 

is a local comparison in another sense of the word local. That is, it is a comparison of 

IM(7,  f )  and f )  over neighbourhoods of 7 E M. Lemma 10.4 and Proposition 10.1 

will be the stepping stones used in Proposition 16.1. 

Let 31met(G(Fs))0 be the subspace of 31met(G(Fs)) spanned by functions 

f = fYI fY E '+WG(Fv)), 
vES 

which satisfy the following condition. For each finite valuation v E S ,  S E Ao(F,), and 

u, E Uc(Fv), we have 

Ic(6,uV, f )  = 0 

unless u, = 1. Such functions exist by 53.3 [31] and Corollary 27.3 [15]. The motivation 

for the definition of this subspace comes from the second sum of Lemma 9.4. 



We will show that for any f E 31met(G(F,))0, there exist germ expansions for I;(?, f )  

and I#(?, f ) ,  and that these germ expansions are in some sense equivalent. First we 

make this notion of equivalence precise. 

Let B be a semisimple element of M ( F ~ ) ,  and let 41 and 4 2  be functions defined on 

an open subset E of ~ M ~ ( F ~ ) ,  whose closure contains an  pinv variant neighbourhood of 

3. We say 41 is ( M ,  3)equivalent to d2 and write 

(%) - 
2 h ) ,  for T E E, 

if there exists a compactly supported smooth function on M ( F ~ )  and a neighbourhood 

U of 3 in M ( F ~ )  such that 

4 l ( j )  - 4 2 (  j )  = I$(;Y, h), for j E En U. 

If M = M then we make the additional stipulation that h E 31met(M(Fs)). 

For the remainder of this section v is a nonArchimedean valuation of F ,  and u is a 

semisimple element in M(F,) which is also F,-elliptic in M(F,). 

Lemmas 10.1-10.3 allow us to derive a germ expansion for I$(?, f )  from the known 

germ expansion of Inn(?, f ) .  

Lemma 10.1 Let L E f.(M) and suppose that an is F,-elliptic in L. Then there exists 

qr. E % such that L,, = Lon. In particular q ~ u  is F,,-elliptic in L. 

Proof. For the sake of convenience we suppose that L = G. Recall decomposition (Z), 
# 

M(F,) 2 G L ( T ~ ,  F,). 
i=l 

For the duration of this lemma we will identify M(F,) with this direct product of general 

linear groups. Since cr is F,-elliptic in M(F,), it has rational canonical form 



where ui E GL(mi, F,) generates a field extension Fi/Fv of degree mi, mi divides ri, and 

ui appears ri/mi times. The rational canonical form of on is 

where ui is the rational canonical form of u: in GLjmi, F,). Since on is F,-elliptic in 

G(F,), it also has rational canonical form 

where u' E GL(m, F,) generates a field extension F1/F, of degree m ,  m divides T ,  and 

u' appears r / m  times. Since rational canonical form is unique up to permutation of the 

companion matrices, we must have ui = o' for all 1 5 i 5 e. 
Let us return to the elements ui E GL(mi, F,). We may view them as elements of the 

fields Fi, 1 5 i 5 e. Let Ei = F,(u?). By replacing El with Fi and E with Ei in Lemma 

8.3, it follows that [E : Ei] = 1. That is, u: generates the same field extension of F, as 

does ui. This implies that 

for 1 5 i 5 e. In particular mi = m ,  for 1 5 i 5 2. By viewing ul ,  ui and u' as elements 

of 4, we find u; = or = u'. Since Fl contains p,, it follows that qiul = ui for some 



qi E p,,. In other words u is equal to 

Let 

qL = 

Then 

and 

since G,,,(F,) C G,n(F,,), we have G,,(F,) = G,.(F,) as we1l.O 

Lemma 10.2 Suppose u is F,-elliptic in L1, L2 E .C(M). Then there exists L E L ( M )  

such that L > L1, L2 and u is F,-elliptic in L. 



Proof. Let L be the centralizer in G of the split torus T = ALl n AL2. Then L E t ( M )  

contains L1 and L2. Furthermore it may be verified that 

It follows that u is F,-elliptic in L.0 

A simple result of this lemma is the existence of a unique maximal Levi subgroup, 

L' E L(M), such that an is F,-elliptic in L'. For the remainder of this section we assume 

that qp E p: of Lemma 10.1 is the identity. As a consequence, u is F,-elliptic in 

L E L(M) if and only if un is F,-elliptic in L. 

Lemma 10.3 Suppose that L E L(M), u is F,-elliptic in L, and q E pf;'. Then qu is 

F,-elliptic in L if and only if q E pk. 

Proof. If q E pf; then L,, = L,, so qu is clearly seen to be F,-elliptic in L. 

Conversely suppose qu is &elliptic in L and, for the sake of simplicity that L = G. 

Since u is F,-elliptic in G and u E M(F,), by rational canonical form, it may be written 

where u' E GL(m, F,) generates a field extension F1/F, of degree m, m divides r ,  d 

appears r /m times and 6 E M(F,). Consequently 

where the scalar matrices of the form qi are the projections of q into GL(m, F,). In order 

for qu to be F,-elliptic in G, we must have qiu' = q j d  for 1 5 i ,  j 5 rim. This implies 

that q E p$ CI 

The following lemma yields a germ expansion for I i ( y ,  f). 



Lemma 10.4 Let 7 E M,(F,) T, G.,,, and f E 'Xmet(G(F,)). Then there ezid functions 

y e gh(7, 6) such that 

Proof. Let 7 E pr;'. Then qu is a semisimple element and by formula 2.5 [6], we have 

It follows from a remark on p 272 [8], that (M, 70)-equivalence of functions of -y is the 

same as  (M,, u)-equivalence of functions of 7. As M, = M, the above expansion may be 

written in the form 

Consequently 

Now if y = 071 and 6 = ~ U U ,  where u E UL,,,(F,), then by 9.2 of [6] we have 

g$l(71ru), if 7~ is F,-elliptic in L 
otherwise 

By Lemma 10.1, if un is not F,-elliptic in L then neither is 7u for any 7) E pf;'/,u:, so 

g,$(q7,6) = 0. On the other hand if un is F,-elliptic in L then, by Lemma 10.3, 

{ g$l (71, u) 3 if 7 E P:/P: gh(vrl  6) = O, otherwise 



Combining these last two observations, we find that 

The next lemma shows that there is a similar germ expansion for the distribution 

I$'(% f). 

Lemma 10.5 There exist jhctions j H g;(j, 6') such that 

Pmof. Proposition 9.1 [S] translates into the metaplectic context as 

for j E o*~:. (F,) n &. Lemma 9.2 [S] translates as 

(yl, u), if u* is F,-elliptic in 1 
otherwise 

1 

where j = ~'71, and 8 = O'U, for u E Ui;. ( F v )  By definition, 0' is F,-elliptic in if 

p(u*) = on is F,-elliptic in L. It is easily shown that c 1,. C z. Therefore, if un is 

F,-elliptic in L, we have that L, = L,. by our assumption from Lemma 10.1 and in turn 

that - - -  
L,. = L, = L, ... 

Consequently, { ( u )  if u is F.-elliptic in L s:{ (=hi) = 
otherwise 

By taking these facts into consideration, we obtain the expansion 



for ;y E U*M:.(F,) n &,. Proposition 8.2 and Proposition 8.1 together tell us that 

Ii(8, f') vanishes unless p(8) = 6" for some 6 E G(F,). The set u(UL,(F,)) maps 

bijectively onto the set u * ( U ~ ( F , ) )  under the map *. This can be deduced from 

~ " ( u u ,  U U )  = T,,(uu, uu) = ~ " ( u ,  a), u E UL, (F,) 

(see (2.2) [15]). Hence 

for 7 E u'M:. (F,) n&,. Once again, by the local vanishing property, Ifi(;y, f') vanishes 

unless p(T) = y" for some y E G.,,. We claim that for each L E L(M)  and 6 E 

~ ( U L , ( F , ) ) ,  the function g;(j ,b')  has the same vanishing property. We may assume 

inductively that this is true for L # G. Fix 61 E U(UL,(F,,)). According to 83.3 [31] we 

may choose jl E x m e t ( G ( ~ , ) )  such that 

I,(& a) = { 1, if 6 = 6; 
0, otherwise ' 

for b E u*(UEo. (F,)). In particular 

1, ifS.=6;  
0, otherwise ' 

for 6 E u(Uc,(FV)). It is easily shown in this instance that 6' = 6; if and only if 6 = 6i. 

Thus 
1 6 = 6 1  
0 otherwise ' 

for 6 E u(Uc,(F,)). If we substitute fl into our last germ expansion, the desired vanishing 

property for g;(y*,6') follows. Our germ expansion now has the form 

for E ~ ( F J  n G.,,. 

Finally, as noted in 53, the orbital integral of any function in z(M(F,,)) is equal to the 

orbital integral of a matching function in 31met(M(Fv)). Therefore ( M ,  8)-equivalence 



may be taken to be ( M ,  u)-equivalence. The proof of the lemma now follows from this 

observation.0 

In what is left of this section we show the ( M ,  u)-equivalence of gh(7,6) and g;(-y, 6). 

Lemma 10.6 (7.1) Suppose Theorem 9.1 holds for G.  Then for each u E Uc(F,) we 

have 

gf,(r, U )  ('A1) g$(y*,u*),r E M(FJ n G .,,. 
Proof. We may assume by induction that 

for all L E L ( M )  such that L # G. We may equate the germ expansions of Lemmas 

10.4 and 10.5 since we are assuming Theorem 9.1 to hold. Together with the induction 

assumption, this yields 

C (g$(r*,u*) - s $ ( ~ , u ) ) I & * , ~ . )  (S1) 0, 
UE(UG(F.)) 

for y E M(F,) n G.,=,. As in Lemma 10.5, for a a iixed element ul E (Uc(F,)), we may 

choose f; E x(C?(F,)) such that 

MU*. A) = { 1, 21 = 211 

0, otherwise ' 

for u E (Uc(F,)). The lemma now follows by replacing f* with fl in the last ( M ,  1)- 

equivalence. 0 

Lemma 10.7 (7.2) Assume that the main theorem of [5] holds for G(F,). Then 

Proof. Choose a E II;",&(G(F,)) such that a is supercuspidal. By Theorem 26.1 [15] 

and Corollary 26.1 [15], we know then that a' exists and is supercuspidal. Let f be a 

matrix coefficient of the contragredient representation of a. Since f has compact support 

modulo the centre of G, it may easily be shown that f E 31Et(G(F,)). For a definition of 



31a,(G(F,)) see 811 [9]. We may assume that f' is a matrix coefficient of n*. The main 

theorem of [5] asserts that 

where y E M(F,) nG,, and 0, is the character of n. The right hand side of this equation 

is taken to be zero if y is not F,-elliptic in M. The Haar measure on AM(F,) is normalized 

by 

vol(A~(F") n Kv) = ~ ~ ~ ( ~ M / H M ( A M ( F " ) ) )  

(cf. 52 [5]). If y E M(F,) n G,,,, then 

for all q E pr;', and so it follows that 

for y E M ( F 3  n G.,,,. 

In the metaplectic context the Theorem of [5] becomes 

where y E M(F,) n G.,.,, and the Haar measure on z is normalized by 

Once again, the right hand side of equation (25) is interpreted to vanish if y is not F,- 

elliptic in M. In order to establish equality between the left hand sides of equations (24) 

and (25), we may therefore restrict our attention to the case that 7 E M(F,) n G,,, is 

F,-elliptic in M. 

The first step towards establishing this equality is to show that 



where d = l n l ~ ' ~  is the normalizing factor of $24 [15]. We have already normalized the 

Haar measures d5ldl  on &(F,)/$(F,) and dzldz on G(F,)/AG(Fv) so that 

c'vol(I?,,/(&(F,) ill?")) = vol(K,/(AG(Fy) n K,)). 

The Haar measures on c(F,)/e,.(F,) and G(F,)/G,(F,) are normalized so that 

Taking the quotient of these last two equalities yields Haar measures on &,.(F,)/$(F,) 

and G(F,)/AG(Fv) which are normalized so that 

The Haar measure on ~(F , ) /&(F, )  is normalized by (cf. 52 [5]) 

vol (%(&I !u) = vol((aG/I-IM(z(FU))) + aG) 
A",(F,) n K, 

= v~~((~M/HM(AM(Fu)) )  -k ac) 

By taking the quotient of this last equality with (27), we obtain equation (26). Thus, 

The representations n and n' are related by the equalities 

and (Definition 26.1 [15]) 

where C E $(F,)/A~(F,) and Ab = (6; : 61 E AG(F,)). Observe that $(F,)/. 'IE(F.) 

may be identified with a subset of p,. Now let 6 E GJF,), C E i ( k )  and suppose that 



6'C = 7'. This implies that 6" = -j". In this case both 6 and 7 are F,-elliptic in M ,  so 

according to Lemma 9.1 there exists some q E pf;' such that 6 = 77. Conversely, if 6 = 7.y 

for some E pr;' then 6' = 7' by Lemma 6.1. In other words 

A simple consequence of this and equations (28) and (29) is the equality 

for 7 E M(F,) n G.,,,. By Lemma 9.5, equation (30) is true for arbitrary 7 E M(F,). In 

particular, 

(31) G ( 1 , f )  = I iY(1 , f ) .  

Let 7 be an element in M(F,) n GIreg which is close to the identity. Then 

by Lemmas 10.4 and 10.5. Now suppose that u E (UL(F,)) such with u # 1. Then u can 

be represented as an induced unipotent conjugacy class u f ,  where u1 E (ULl(F,,)) and L1 

is a proper Levi subgroup of L. The descent property of Proposition 6.1 and the descent 

property for the metaplectic group respectively yield 

and 

IP(u, f )  = C $(L ,  ~~)ii;%,, fL,). 
LlEC(L1) 

However, f is a supercusp form on G(F,) so f ~ ,  = 0 for any proper Levi subgroup Lz of 

G. Hence both I ~ ( u ,  f )  and I p ( u ,  f )  vanish. Equation (30) may now be written as 



We assume inductively that gh(y, 1) = g;(y*, 1) for all L E &(M) such that L # G. 

Observe that equation (31) implies that If(1, f )  = I c ( 1 ,  f )  for L E &(M). As a result, 

the previous (M, 1)-equivalence reduces to 

(51) i: 
9 Z h  WG(L f 1 9&*, WG(h f 1. 

The lemma now follows from the fact that IG(l, f )  # 0.0 

Proposition 10.1 (7.3) Let f E 31met(G(F,))0. Then 

PTOO~. Suppose 6 = nu, where u E UL,(F,), and y = uyl, where yl E M,(F,). Then 

according to Lemma 9.2 [8] and the proof of Lemma 10.5, 

g$n(yl,u), if u is F,-elliptic in L 
otherwise 

2nd 

g;(y8, 6') = { ; F ( y i , d ) ,  if u is F"-elliptic in L 
otherwise 

3:. h e  germ expansion of Lemma 10.5, it suffices to show that 

&((r,u) (M+ gg(r* ,u*) ,  

when u is F,-elliptic in L, and L E L(M). 

Suppose that u is F,-elliptic in L and that L, # G. Then, by the induction hypothesis 

at the end of $9, Theorem 9.1 holds for L,. We may therefore apply Lemma 10.6 with 

L, in place of G to obtain 

g k ( % , u )  'Mzl' g z ( ^ ~ ; , u * ) .  

By Lemma 2.1 of [S], it follows that (Me, 1)-equivalence of these germs as functions of 71 

is that same as (M, u)-equivalence as functions of 7. That is 

G 
&(r, 6)  = 9$m(71,~) s ~ ( Y ; ,  u*) = 9;(7*, 0. 



Since f E 3lmet(G(F,))O, we have that Ic(6, f )  vanishes in the above sum unless 6 = u. 

Since o is central 

by Lemma 9.2 [8] and Lemma 10.7. Hence 

and the lemma is completed.0 

11 The Local Spectral Terms 

Leaving the terms of the geometric side of the trace formulas behind, we take an excursion 

to the spectral sides of the trace formulas. The spectral sides are partially composed of 

invariant distributions, 

I,&, f ) ,  ? E ~ ( M ( F s ) ) ,  

which are sums of traces that are weighted by normalized intertwining operators. These 

distributions are introduced in $3 [6]. We assume that the reader is to some degree familiar 

with this introduction and recall some of it below. 

Given p E Cmet(M(Fs)), we define 

for all X E aM,s and f E 31met(G(Fs)). I f  L E L ( M )  and A E is in general 

position, then the induced representation pi belongs to Cmet(L(Fs)). When p i  appears 



as an argument of IL(.) or I f ( : ) ,  we will often suppress the superscript L. For n E 

ITmet(M(Fs)), we define 

where P, L and p are summed over P ( M ) ,  L ( M )  and Cmft(M(Fs))  respectively. For 

definitions of rf, and the constant w p  see 56 [9] and 53 [6]. 

As on p 127 of [lo], we identify representations n in IImet(M(Fs)') with orbits (nA : 

X E aM) in IImet(M(Fs)) if n is not unitary. If n belongs to IIF;i(M(Fs)'), then we 

identify it with the orbit ( n ~  : X E in>) in IIF;k(M(Fs)). We make similar identifications 

for representations in IImet(M(A)') and II:;i(M(A)'). If n E IIF;k(M(Fs)'), set 

for any X E in>. It may be verified that these definitions are indeed well defined. Both 

of these definitions are independent of S, if S is large, and therefore may be extended 

to representations in IT;;i(M(Ajlj. In complete analogy with the expressions of the 

geometric side of the trace formula, we hope to identify IM(T,  f )  with the terms IM(ii, f') 

occurring in the spectral side of the trace formula of 6. 
We may draw analogies between the local geometric and the local spectral terms of the 

trace formulas. In order to compare the local geometric terms of the trace formulas for G 

and G, we use the transfer map (1). One might surmise that the analogous transfer map 

for the local spectral terms might be (8). Unfortunately, this map does not intrinsically 

relate the traces of the representations to each other. In what follows we define certain 

constants which relate representations in ~ ( M ( F ~ ) )  to representations in ITmet(M(Fs)) 

in a fashion that is compatible with their traces. 

By the Langlands quotient theorem and 55 [9] there exist constants A(*, P )  and r ( j ,  ir) 

for arbitrary P E ~ ( A ? ( F S ) )  and ii E ~ I ( M ( F ~ ) ) ,  such that 



and 

tr(ir)= C A(ir,j')tr(P1). 
FEZ(WS)) 

Two consequences of Lemma 3.1 are the identities 

and 

t r b )  = C A h  pl)tr(p'), 
#EEmet(M(Fs)) 

for any n E IImet(M(Fs)) and p E Cmet(M(Fs)). 

Suppose ir E II(M(F~)), p E Cmet(M(Fs)) and set 

For ?F E IImet(M(FS)) we set 

As can be seen from the next proposition, the map, 

is the transfer map which allows us to compare traces of representations. 

Proposition 11.1 (8.2) For any f E 3tmet(M(Fs)) and ir E II(M(F~)) we have 

Proof. By our assumptions 



Corollary 11.1 (8.3) Suppose S consists o j  one place v for which lnl., = 1, and that 

T E IImet(M(F,)) is an un~amijed representation. Then for any ir E ~(M(F,)) 

1, if E = r* 
a(*, r )  = 

0, otherwise ' 

Proof. Take f to be an arbitrary function in 3tmet(M(F,)) which is bi-invariant under 

K, n M(F,). Theorem 16 [15] tells us that tm*(f') = tm(f). The corollary now follows 

from the proposition and the linear independence of characters. 0 

This corollary allows us to define an map 

for adelic representations ir = 8°C E ~ ( M ( A ) )  and r = @,r, E IImet(M(A)). All of the 

above formulas remain valid in the adelic formulation as well. If ir E nmet(M(A)') and 

a E IImet(M(A)l) we define 

for arbitrary E ah,=. This definition may be verified to be well-defined. 

12 The Spectral Side of the Trace Formula 

Now that we have a spectral transfer map, we can compare the spectral sides of the trace 

formulas of G and c. Recall that the spectral side of the trace formula for 6 is of the 

form 

I(P, = Cm, 
t >o 



where 

Once again, it is convenient to denote I t ( f )  as  I p ( f ) .  A detailed discussion of the terms 

occurring in this formula may be found in $4 [7]. The definition of n ( ~ , t )  is repeated 

here (p 132 [lo]), as we will often have recourse to it in the sequel. Let MI E C and 

t be a positive real number. We are obliged to f i s t  define two other sets, n ( M ( ~ ) l , t )  

and I I ~ b c ( ~ l r t ) ,  before we define ll($f,t). Given a representation ii E ~ ( M ( A ) ) ,  let vi, 

be the infinitesimal character of the Archimedean factor of 5. The set n ( M ( ~ ) l , t )  is 

defined to be the set of (equivalence classes) of representations ir E ~ ( M ( A ) )  such that 

IIIm(v%)ll = t. Similarly, we set 

We write IIdi,,(~l, t) for the subset of K , ~ ~ ( M ( A ) ~ , ~ )  consisting of irreducible con- 

stituents of induced representations 

in which eA satisfies the following two conditions: 

2. There is an element s E WM1(a&, such that saA = =A. 

Then II(M, t) is defined as the disjoint union over MI E CM of the sets 

We define the sets IIE::(M, t), IIM, (M, t) and nmet(M, t) as above, except that n,;,(M(A)', t) 

and n,,it(L(A)',t) are replaced by IIFz;(M(A)', t) and IIFz;(L(A)',t). 

Let us recollect $9, where we examined the geometric sides of the trace formulas. In 

Proposition 9.1, the geometric side of the trace formula for G was expressed in a manner 

that was compatible with the orbit map. We will be compelled to follow suit and express 



the spectral side of the trace formula for in a manner that is compatible with the 

anectral transfer map (32). This will be carried out in 815. 

For the the time being, we set up the appropriate grouping of representations for the 

global datum, afi( i i ) .  In other words, we define the global datum, aMvM(n), which ought 

to correspond to the global datum, afi( i i ) ,  occurring in the trace formula for G. This is 

similar in spirit to the grouping of the local geometric terms in §6. 

Set 

IImet(M(A)') = { n  E IImet(Id(A)l) : nx E IImet(M(A)) for some X E aLSc). 

We first define a::;M for Ml E LM. Set 

MI ,M adSc ( X I )  = a k ( M * , n l )  
i r€n(Ah(~)~)  

for any n1 E IImet(M1(A)l). This sum may be shown to be finite using the arguments of 

Lemma 9.1 [ lo] .  For n = n l , ~ ,  where X E a;fl,c/a&,,, we set 

a"," (n)  = a$;" (n1)rzl (n1,x). 

The function r&(xl,x) is not defined for arbitrary nl E IImet(M1(A)l), and so the defini- 

tion of aM1sM(n) is not valid as it now stands. The obstacle stems from the fact that the 

global map r z l  is derived from the adelic version of the normalizing factors of intertwining 

operators (cf. $4 and $14). As such it is defined in terms of an infinite product, indexed 

by the valuations of F, and might not converge. One expects such normalizing factors to 

converge and have analytic continuation for automorphic representations. This borne out 

from the theory of Eisenstein series (cf. 54 [9]). 

In order to rectify this situation, we make the following induction hypothesis. We 

assume that for any Ml E L with Ml # G, that 

for all a1 E IImet(Ml(A)l) .  In this case a::;M(al) vanishes unless nl belongs to IIrzi(Ml, t ) .  

If MI E LM,  T I  E lT:z:(Ml, t )  and X E iaLl,c/iaL,c then the function r z ,  is defined and 

the earlier definition of aM,M(nl,x) makes sense. 



The global datum, aM*M(?rl), suggests the definitions of new sets of representations 

along the same lines a s  the definitions of I I c ~ ~ ( M ~ , ~ ) ,  IIM,(M, t )  and II(M,t) above. 

We define the sets cf (equivalence classes of) representations IIh",,(Ml,t), IIg1(M,t) and 

nM(M, t) as above, except that a' is replaced with a"zM. 

We are now in the position to state the spectral analogue of Theorem 9.1. 

Theorem 12.1 (B) (i) Suppose that S is a finite set of valuations which has the closure 

property and contains S(,). Then 

we have 

aM,M (n) = aM(?r) , 

This proof of this thecwm will be completed at  the end of $18. 

13 Comparison of the Local Spectral Terms 

The purpose of this section is to show that (i) of Theorem 9.1 implies (i) of Theorem 12.1. 

We achieve this with help from the maps ek, and "Oh defined in $4 [6]. These maps are 

defined on Aac(L(Fs)) and take values in Z,(M(F~)) for every pair of Levi subgroups 

M c L in L. The spaces '??,(L(Fs)) and T a C ( ~ ( F s ) )  contain X(L(Fs)) and Z(M(Fs)) 

respectively and are defined in $11 191. They also satisfy the following properties: 



and 

(36) 

for y E M(Fs)  and f  E '&,(G(Fs)). For the definition of "IM see 54 [6].  Set 

=e,$(f) = C q c e ~ ( f ) .  
r)EPFlPP 

Here W M ( f )  is defined as 'Jhw if h E 31(M(Fs)) such that hM = e ( f )  (cf. $3) .  

Properties (35) and (36) may be adapted to the distributions of the form If , .  We 

may mimic the arguments of $6 to arrive at  the equality cIM(qy,  f )  = ' I M ( y ,  f )  for all 

y E M(Fs)  and q E pz. Thus, imitating the definition of I;, we set 

for all y E M(Fs)  and f  E % F ~ ( G ( F S ) ) .  The analogue of property (36) for "If ,  is then 

seen to be 

After a similar computation we may conclude that the analogue of property (35) is 

Part of our assumption concerning the existence of the invariant trace formula for 6 
(cf .  $5) is the existence of maps, e;, ~6':~ and C I ; ( ; ~ ) ,  satisfying properties corresponding 



to (34) - (36). Let f E * E t ( ~ ( F s ) ) ,  n E I IE , (M(Fs) ) ,  X E a ~ , s  and 7 E G.,nM(Fs). 

Define 
c M I ~ ( 7 , f )  = = I d 7 * , f * ) ,  

and 

V f ( f ,  A, X )  = ndimAM M - ( f * , ~ * , x * ) .  

Lemma 13.1 (10.1) Let 7 E M(Fs)  and f E ~ z ' ( G ( F ~ ) ) .  Then the following proper- 

ties hold. 

Proof. Let A F: IIYAp(M(FS)), X E a ~ , s ,  L E L ( M )  and h E 2 E t ( ~ ( F s ) ) .  Observe that 

That is, eif(h') = n d i m ( A ~ l A ~ ) ~ $ M ( h ) * .  

We may now apply this equation to prove (38). 



The second half of (38) follows in a similar fashion. 

Property (40) is also easily deduced. 

Property (39) follows accordingly.0 

Theorem 13.1 (10.2) Assume that 

for each L E L ( M ) ,  y E L(Fs) and f E Xm"(G(Fs)), in the special case that S > S(,). 
Then for any f E '??F~(G(F~))  and X 6 a*,,~ we have 

Proof. The proof of this theorem is identical to Theorem 10.2 [lo],  if one replaces I&, 

I M ( ~ ) ,  OM and Q& of that proof with I$, I;(?), 6'5 and B$ respectively. The only 

portion of the proof where there is a difference worth noting in on p 140, where it is 

shown that 

'GAf, n, X )  - = e M ( f ,  f f ,  X )  

is compactly supported in X E aM,s. We therefore take the trouble to write out the 

analogue of this part of the proof, which is to show that 



is compactly supported in X E aM,M,s. 

We assume inductively that the theorem holds if G is replaced by L E I: such that 

L # G or if M is replaced by L E I: such that L 2 M. Let y E M(Fs)  and consider the 

expression 

By properties (40) and (37), we may write this as 

By Theorem 10.1 and the induction hypothesis, we have 

x ~ k ( ~ ) i : i ' ( 7 ,  ' @ ( f ) )  = &"(7, 'e : ( f ) )  = i iM('Yl  ' e P ( f ) ) .  
L1cCL(M) 

Therefore the sum over L 2 M on the right-hand side of (42) vanishes and we are left 

with 

(43) C I f ( 7 >  f )  - x =If1 (7 ,  f = iMM(7, =mf) - = G c f ) ) .  
L I W M )  

Since f  is taken to belong to 'flmet(G(Fs)),  Lemma 4.4 (61 tells us that the left-hand side 

of (43) has bounded support as a function of y in the space of conjugacy classes of M(Fs) .  

The same is therefore true for the right-hand side of (43). For a given X E aM,s, the 

restriction of (43) to 

( 7  E M(F.1  : H M ( ~ )  = x) 

is the orbital integral of a function, hX E 3 tEt (M(Fs) ) ,  with support in 

M ( F ~ ) ~  = (6  E M(Fs)  : HM(6) = X). 

The function hX vanishes for X outside of a compact set of aM,s, as the support of (43) 

is bounded in y. Furthermore, the equality, 



follows from an application of Fourier inversion on aM,s (cf. (7.3) [9]).0 

Corollary 13.1 (10.3) Under the assumption of Theorem 13.1, we have 

for any 7 E GIreg and f E 'I?$(G(Fs)). 

Proof. In the proof of Theorem 13.1, which follows by the same arguments as that of 

Theorem 10.2 [lo], one shows that (41) is equal to (43) and that (43) vanishes. The 

corollary f0110ws.0 

With Theorem 13.1 in place, the proof of (i) of Theorem 12.1 follows mutatis mutandis 

from the argument on p 145 of [lo]. We include it here for the sake of continuity. We 

wish to show that 

The above distributions are defined by 

where P, L and j are summed over P(M) ,  L(M) and z(M(F~)) respectively. By our 

assumptions on the normalization of intertwining operators in 55, we have 

(see 56 [9]). Therefore it suffices to prove 

for all L E &(M), X E aM, X E ahsc and p E Zmet(M(Fs)) with A(p,n) # 0. By 

using the splitting property for these distributions (Proposition 9.4 161) it suffices to prove 

(44) for S = (v ) .  Suppose then that p E Cmet(M(F,)) and that A(p,*) # 0 for some 

?r E II:li(M(F,)). Then the central character of p must be unitary. From the definition 



of standard representations, it follows that p is either tempered or induced from a proper 

parabolic subgroup of M(F,). Suppose first that p is tempered. Then by the proof of 

Lemma 3.1 [6], we have 

0 L # G   PA, h ~ ( x ) , f )  = I L ( P A ? ~ L ( ~ ) * ~ )  = { io (PA,ho(X)) ,  L = G . 

Now suppose that p = p p ,  where pl E Cmet(M,(Fv)) and MI is a proper Levi subgroup 

of M .  We apply the descent property (Corollary 8.5 161) to (44) and find that it suflices 

to show 

(45) G ~ ' ? P I , A ,  Xlr f L J  = & l ( ~ l , X j  X I ,  fLA, 

for XI E aMl and L1 E &(MI) with L1 # G .  The induction hypothesis of 59 allows us to 

apply Theorem 13.1, with G replaced by L1, in order to obtain (45). The proof is now 

complete. 0 

14 More on Normalizing Factors 

This section is devoted to the construction of a few additional (G,  M) families which we 

will need in order to compare the spectral sides of the trace formulas. We will return to 

the actual comparison of the trace formulas in the following section. 

The normalizing factors r 0 , p  of 54 are meromorphic functions of a&,c defined in terms 

of functions 

T,. : ~ ( M ( F ~ ) )  x c -t C ,  a E xq n zp  

which are meromorphic in C. In fact the following equalities hold: 

Let 5 = @,5" and n = @,?r, be representations in ~ ( M ( A ) )  and I I r n e ' ( ~ ( A ) )  respec- 

tively, and assume that 

6(5, n )  = 6(&, G )  
V 



does not vanish. Define 

If Be and nu are unramiiied representations and In(, = 1 then 5, = nt by Corollary 11.1 

and so 

We may thus define the infinite product 

where P E P ( M )  and v E ia',. 

Lemma 14.1 (11.3) (a) Take B and a as above. Then for each L E C ( M ) ,  Th(BX.,aA) 

is independent of Po and is also a rational junction of the variables {A(aV),q~X(aV)),,E.,-, 

where S is a finite set of valuations outside of which B and a are unramified, and q, is 

the order of the residue field of F,. 

(b)  Suppose in  addition that 5 E &,,(M, t )  and a E IIg;(M, t ) .  Then 

In particular, for each L E L ( M ) ,  the junction Fir(&, aA) is regular for X E ia',. More- 

Over, 

T:~(T ,~)  = 7Ldim(A~tAL1)T$ (c~.)?;, , aA). 
L1€CL(M)  



Proof. Part (a) of the lemma follows from the computations on page 149 of [lo]. Under 

the hypotheses of part (b), r R l & ( 5 ~ . )  and ~ p , ~ ~ ( a ~ )  are regular functions in X E iab  (56 

[2]). Thus, if one unravels the definition of fp , l~(EA. ,ax) ,  one obtains the &st equality 

and the the regularity on ia;,. The last equality follows from an application of Lemma 

6.5 [I] to 

TP(V ,  Po) = fp(v, hr P o ) T ~ ( v / %  *A;\., 61.0 
We may define further (G,  M )  families along the same lines as the definition of the 

previous one. If we replace a in the above discussion with some p E Cmet(M(A))  such 

that A(5 ,p)  # 0, we obtain the (G,  M )  family 

We define yet another (G,  M )  family for representations Bl,52 E E(M(A) )  such that 

6(5;, a )  # 0 for i = 1,2 and some a E Ilmet(M(A)). Set 

This (G,  M )  family is independent of a.  Lemma 6.5 of [I] applied to this last (G,  M )  

family yields 

(46) f f f ( ~ 1 , ~ ~  T A )  = e ( h , ~  9 52,P ) f i x  (52,A.j T A ) .  

L l € C L ( M )  

For arbitrary B E II(M(A)),  p = @,p, E Cmet(M(A))  and a E IImet(M(A)). Set 

In the following lemma we compare the last (G,  M )  family to another via map (8). 

Lemma 14.2 (11.4) For each L E L(M)  we have 



Proof. According to Lemma 6.2 [ I ] ,  

The other (G, M )  families defined in this section satisfy versions of Lemma 14.2 as well. 

These versions are proven similarly. 

15 A formula for IF 
As announced in 512, the object of this section is to express the spectral side of the trace 

formula for 6 in a manner that is compatible with (32). This amounts to expressing the 

spectral side in terms of the global datum a'*sM and the set of representations IIM(M, t). 
At the end of this section, we apply these results to a comparison of the spectral sides of 

the trace formulas. 

We first deal with the local spectral terms of 6. 

Lemma 15.1 (12.1) Suppose that B E II,,it(&'(~)'). Then the distribution 

Proof. This proof is almost identical to the proof of Lemma 12.1 [lo]. It is included so 

that the reader may feel a sense of continuity. Any statements which seem unjustified 

may be compared to the analogous statements in Lemma 12.1, where the detail are given. 

To begin, relabel the summation index L by L1. We then replace I&'(nx, f )  with the 



expression 

We deform the contour of integration in /I so that (47) is equal to the sum over L1, L E 

L ( M ) ,  with L1 c L, of 

Taking the sums over Ll and n inside the integral we find that 

The right-hand side of equation (47) is now of the form 

By Lemma 14.2 we have 

Substituting back into (48) and noting that dX = n d i m ( A ~ / A ~ ) d X . ,  we obtain 



Since B is unitary this last expression is equal to Ia(B, f').O 

Before considering the spectral side of the trace formula for 8, we define 

for L E L ( M ) ,  B E lTF::(M,t) and A E ab,c. Observe that Lemma 14.1 part (b) may be 

rewritten as 

~ h ( d  = C T,?; ( B A . ) ~ ,  X A ) .  
L l€LL(M)  

This definition will make some impending computations tidier. 

Proposition 15.1 (12.2) Suppose that t  > 0 and f  E Xmet(G(Fs)). Then 

mf)  = MEL C lw~llwo"~-'~~(~,~)a~f~~(.~I,M(.>f)d*. 
Proof. Fkom previous formulas we know that I p ( f )  equals 

We replace (h.) with ndim(A"'t/A~)rgl ( 5 ~ - )  and I f i ( B p ,  f') with the expression de- 

rived in Lemma 15.1 in order to obtain the equality of r g l ( B ~ . ) I f i ( B ~ . ,  f ')  with 

Using the identity dX' = n-dim(Abfl /A")d~,  and deforming the contour of integration 

appropriately we find that I p ( f )  equals the sum over MI C M C L E L, and ?rl E 

nmet(Ml(A)' ,  t )  of 

The term r k ( B ~ . , ? r l , ~ )  in the above sum vanishes unless 6(B,r1)  # 0. Fix some B1 E 

n d i s c ( ~ l ( ~ ) l r t )  such that 6(B1 ,~1)  # 0. Then for any other B with 6(B,nl)  # 0 we may 



We substitute this expression into (50) and deform the contour of integration from EM + 
iab, / iai  to EL, + iaL,/iai for some small regular point EL, in a;,. We then bring the 

sum over M inside the integral. Notice that 

Now (50) may be written in the form 

If hi1 = G then (51) reduces to 

If Ml + G then the induction hypothesis stated after the definition of a 2 i M  yields 

for nl E lTme'(Ml, t ) .  It is immediate from this equality that a z i M ( n l )  vanishes unless 

n E IIz$(Ml, t ) .  By a variant of Lemma 14.1, the integrand of (51) is analytic for X near 

iab,, we may deform the contour of integration from EL, + iab, / iai  to i a h l i a i .  This 

allows us to take the sum over L1 inside the integral. It is a simple exercise in (G,  M) 

families to show that 

Thus (51) is e q ~ a l  to 



for Ml # G. Combining this expression with (52) we obtain 

If we turn our attention to the spectral side of the trace formula of G,  then we 

must show that it may be expressed exclusively in terms of represeiltations belonging 

to P e t ( M ( F s ) ) .  This is essential if we wish to compare it to the expansion of Lemma 

15.1 and may be regarded as a spectral vanishing property. 

Lemma 15.2 Suppose f E Xmet(G(Fs)), X E aM,s and p E C(M(Fs) ) ,  such that p has 

unitary central character. Then I M ( ~ ,  X ,  f )  = 0 unless p E Cmet(M(Fs)). 

Proof. Suppose I M ( ~ A ,  X ,  f )  # 0. We first prove the lemma for the case M = G. In this 

case 

Hence t r ( p ~ ( f ) )  # 0 for some X E ia&,s, and so by definition p~ E I IEp(G(Fs) )  c 
Cmet(G(Fs)). Since Cmet(G(Fs)) is stable under twists by elements in ia&., p also belongs 

to Cmet(G(Fs)). 

We may now assume inductively that I h ( p ,  X ,  h )  = 0 unless p E Cmet(M(Fs)), given 

p E C(M(Fs) ) ,  X E aM,s, h E Xmet(L(Fs))  and L E L ( M )  with L # G. Suppose 

I&,X, f )  # 0 and p = ?rtf for some n E IItemp(M1(Fs)), X E and Levi subgroup 

Ml of M. If MI = M ,  then p is tempered, since it has unitary central character. Moreover 

by Lemma 3.1 of [6], 

f c ( p , X ) ,  if M = G 
otherwise ' 

This case has already been taken care of. Now suppose that MI is a proper Levi subgroup 

of M. According to Corollary 8.5 [6], with II(M(Fs)) replaced by C(M(Fs)) ,  we have 

This implies that 12 (TA ,  X ,  f ~ ~ )  # 0 for some L1 E L(M1). By the induction assumption, 

i h 1 ( n ~ , x ,  f ~ ~ )  vanishes unless n~ E Cmet(Ml(Fs)). Hence p = ni f  E Cmet(M(Fs)) by 

transitivity of induction.0 



Corollary 15.1 L e t s  E II,,ib(M(Fs)), f E 31met(G(Fs)) and X E aMJ. Then IM(T,  X ,  f )  = 

0 unless n E I I z i ( M ( F s ) ) .  

Proof. Suppose IM(a ,  X ,  f )  # 0. Then by definition 

where P, L and p are summed over P ( M ) ,  L ( M )  and Cmet(M(Fs)) respectively. In 

particular 

&(m, P;)IL(P;, hL(X) ,  f )  + 0, 

for some p' E Cmet(M(Fs)). It follows from 

that A(n ,  p') # 0,  where 

t m  = x A(n,p)trp 
pEE(M(Fs)) 

(cf. 6.4 [9]). Since n is unitary, p' must have unitary central character. As a result pIL 

also has unitary central character. Since IL(pi, h L ( X ) ,  f )  # 0, Lemma 15.2 implies that 

p' E Cmet(M(Fs)). Thus n also belongs to IIE:i(M(Fs)) by Lemma 3.1.0 

Proposition 15.2 Suppose that t 2 0 and f E 31met(G(A)). Then 

Proof. As n ( M , t )  c nU,it(M(A)'), we know from Corollary 15.1 that IM(T,  f )  vanishes 

for any s E II(M,t)  unless n E IImet(M(A)'). The lemma now follows as IImet(M,t) = 

n ( ~ , t )  n nmet(~(A)l).n 
We can now apply Proposition 15.1 and Proposition 15.2 to obtain a striking simpli- 

fication in the comparison between the spectral sides of the trace formulas. 

Lemma 15.3 (12.3) Suppose that t 2 0 and f E 31met(G(A)). Then 



Proof. This proof is almost identical to Lemma 12.3 [lo] and is included solely for the 

sake of continuity. Consider the difference of (49) and 

If Ml E L and MI 5 M C G then the induction hypothesis of $12 implies that 

aMvM(a) = aM(a) ,  a E I I g t (M,  t ) ,  

and IIc,(M, t )  = IIEt(M, t ) .  If a is not unitary both aMsM(a) and aM(n)  vanish. When 

?r is unitary we know from $13 that 

Ii%n,f) = I ~ ( n , f ) .  

Therefore, the only terms which remain in the difference, I p ( f )  - I t ( f ) ,  are the ones 

indexed by MI = M = G. These terms are of the form 

I F ( a , f )  = t rn*( ( f l )*)  = t r a ( f l )  = Ic(a, f), 

where a E IIg;(G, t).O 

16 The map EM 

Having simplified the comparison of the spectral sides of the trace formulas, we attempt to 

do the same for the geometric sides. We may lighten the burden of this task considerably 

by making further restrictions on f and by adding yet another induction hypothesis. 

Let 31met(G(A), M) be the subspace of 31met(G(A)) spanned by functions 

which have the following property. For two finite places vl and vz, which are not in S:,,), 

unless L contains a conjugate of M. If S is a finite set of places with thz closure property, 

which contains S(,) and at least two other finite places, we define 31met(G(Fs), M )  the 

same way. 



From this point on we fix M E C such that M # G. The additional induction 

hypothesis is that 

~ f ( . y , f )  =I;(.y,f), 

for all .y E L(Fs), S containing S' and L E L(M) with L # M. 

The proof of Lemma 13.1 [lo] may be imitated to obtain the following lemma. 

Lemma 16.1 (13.1) For f E 31met(G(A),M), the distribution 

equals the sum of 

Proof. The lemma follows from the splitting properties (Lemma 6.2, (17)) and the prop- 

erties off .  See Lemma 13.1 [lo] for detai1s.O 

It was indicated in 810 that a version of Theorem 10.1 would be proven. This new 

version is the content of the following proposition. It is more general in that the hypoth- 

is omitted. However, the map replacing f t+ -tM(S) f of Theorem 10.1 is more complicated. 

Proposition 16.1 (13.2) There are unique maps 

such that 



The maps have the descent property 

 EM(^ ) M ~  = x d & ( ~ ,  ~ ) & , ~ ( f ~ ) ,  MI c M, 
LEL(M1) 

and the splitting property 

for f = fl f2 as in Proposition 6.2. 

Remark. It follows from the first equality of Proposition 16.1, the induction hypothesis 

of 59, and the induction hypothesis of this section that 

for 7 E M(Fs) )  and f E 3Cmet(G(Fs))0. See (13.1**) [lo] for details. 

Proof. Define 

~ M ( 7 , f )  = I f i ( 7 , f )  - i i c ( r , ~ L ( s ) f L ) ,  r E M(Fs).  
L?M 

Following the proof of Proposition 13.2 [lo] ,  we need only show that E M ( - / ,  f )  is the orbital 

integral of a function in 3CFt(M(Fs)) for y E M(Fs)  n G.,,, and S = {v). Define 

for -/ E M(Fs) n G,,,,. By Lemma 4.4 [6], 'EM(? ,  f )  has bounded support as a function 

of 7 in the space of conjugacy classes in M(Fs). The following lemma relates C ~ j & ,  f )  

to ~ ~ ( 7 9  f ) .  

Lemma 16.2 (13.3) Suppose that 7 belongs to M ( F s )  n G,,,. Then 



Proof. We may apply the descent properties of both I? and E M ( S )  to the sum 

occurring in the definition of ~ ~ ( 7 ,  f )  to obtain 

It follows from (37) and (39) that 

We may apply the induction hypothesis at the beginning of this section to the terms in 

the above sum for which L # M. Theorem 13.1 and Corollary 13.1 hold in this case and 

SO 

"GM(7,@'(f)) = = G M ( % m f ) )  = C ~ f i ( S ) = i y ( 7 , m f ) ) .  
L l € C L ( M )  

Thus, the summands indexed by L 2 M vanish. 

The remaining term is 

f 3 - b  O , M ( f )  - G(f)) .  
The second equality of this lemma follows from 

which in turn follows from (34), (38), Theorem 13.1 and our induction hypothesis.0 

We now return to the proof of Proposition 16.1. Suppose v is a nodrchimedean 

valuation of F. Let f  E 31met(G(F,))o and u be a semisimple element in M(F,). We will 



for 7 E M,(F,) n G.,,,. Notice that we may assume that q ~ t ,  as defined in 810 for u, may 

be taken to be the identity. Indeed 

and 

G(7.l f i )  = G ( ~ , f l )  

for any q E #, 7 E M(F,) and f i  E 31met(M(F,)). Since q ~ ,  E %, it follows that (53) 

holds for arbitrary semisimple u E M(F,) if it holds for those u with q p  = 1. 

If aM, # a~ then M,(F,) is contained in a proper Levi subgroup MI of M. We may 

then apply descent to ~ ~ ( 7 ,  f )  to obtain 

(cf. (13.2)* [lo]). Clearly ~ ~ ( 7 ,  f )  is the orbital integral of a function in 31met(M(F,)) in 

this case. 

On the other hand, if aM, = aM then the germ expansions of Lemma 10.4 and Propo- 

sition 10.1 yield the (M, u)-equivalence of 

We may disregard the summand for which L = M as gE(.y, 6) = 0. If L 2 M we may 

take the sum over all subgroups L1 E L(L) and the difference in parentheses vanishes as 

well. As a result (53) holds in general. 

By Lemma 16.2, ~ ~ ( 7 ,  f )  is the sum of ' & ~ ( r ,  f )  and 

The latter term is an orbital integral of a function in C",e(M(F,)). The former term, 

  EM(-^, f ) ,  has bounded support as a function of conjugacy classes in M(F,). By using 



this fact, equivalence (53) and a partition of unity argument on the space of semisimple 

conjugacy classes under the quotient topology, we may conclude that 'EM(?, f )  is every- 

where an orbital integral. This means that there exists a function  EM(^) in Zme"M(F,,)) 

such that 

' w ( n f )  = ~ , M ( - Y ,  C ~ ~ d f ) ) .  

satisfies the requirements of the proposition. 

In order to complete the proof of Proposition 16.1, it remains to be shown that it 

holds when S consists of a single Archimedean, and hence complex, valuation. This will 

not be very taxing, as G ( c )  splits over G(C) .  For any f E x ( ~ ( c ) )  and 7 E Glreg(C) 

It should be noted that the complex norm is taken to be lzlc = zZ for r E C .  The 

function f extends to a smooth function on G(C)  with compact support. Moreover 

where 7 E M(C)  such that M,(C) = G,(C). In particular, f and f have matching orbital 

integrals. Consequently f E 31met(G(C)), and f' may be taken to be equal to f. 
We wish to show that 



By the inductive definition of IM(7 ,  f )  ((2.1) [6]), 

I f  = x J d m f )  - x & E ( ~ 7 , 4 ~ ( f ) )  
rlerflrf LELO(Y) 

= x J M ( w , ~ ) -  x & - ( Y ,  x " 4 ~ ( f ) ) .  
~Gr l l rP  L€Co(M)  rl~GrtlrP 

It is easy to show that 

x J d m f )  = J d r * , f * ) ,  Y E W C ) .  
rleaFlrP 

Indeed, by our previous calculation for JM(Y,  f )  and Lemma 6.1, 

x J ~ ( o - y ,  f )  = x n-dim(A"lAc) ~ ~ ( ( q - y ) * ,  f.) 
rler2 IrP r lecl~l~:  

- - x n-dim(A~lAc) J ~ ( ~ * ,  f.) 
VGPPI~P 

= J d r ' ,  f.). 

Thus equation (54) foilows from a simple induction argument if we can show that 

&E,;l,g n $ ~ ( f )  matches +i(f.) for L E & ( M )  Let us focus on &,tl,P " + ~ ( f )  first. 

According to the Archimedean trace Pdey-Wiener theorem ( [3 ] ) ,  there exists a function 

h E N ( L ( C ) )  such that hL = + ~ ( f ) .  By definition (§3) ,  

for n E II,,,,(L(C)). Now .rr E II;",;,(L(C)) if and only if its central character is triv- 

ial on pk (This follows from the fact that tempered representations are principal series 



representations (Theorem 14.91 1201) and the arguments of 52.1 1131.). Consequently 

As a result, in order to show (54) by induction, it suffices to show that n d i m ( A ~ I A ~ ) h ( f )  E 

Pet (L(C))  matches di(f) E z ( ~ ( c ) )  for L E Lo(M). In other words, it suffices to show 

ndim(ALlAc)q5~(f, n) = dE(f', n*), n E IIEp(L(C)). 

By definition ($7 [9]), this equality is one and the same as 

(55) ndimcALIAc)tr RL(A, P)T'(X) f (x)dx = t r  ~ ~ ( n * ,  ~) (n*) ' (x )~(x)&,  L) J,) 
where 'EL(., P), P E P(L) is a (G, M)  family obtained from normalized intertwining 

operators. Since all irreducible admissible tempered representations of G(C) are principal 

series representations (Theorem 14.91 [20]), it suffices to prove (55) for L = Mo. In this 

case, n' may be represented by @b,wi ,  where each wi is a quasi-character of C X ,  and 

n = @ t , w ;  (cf. 82.1 1131). It is a tedious, but straightforward, task to justify the following 

computation. 

The coefficient ndim(A~olAc) in the first equality is absorbed by Rfio(n', &) (cf. Lemma 

14.2). In the third equality we claim that the change of variable produced by the map 



xAG(C) e x*&(c), 

is 10(xn) /O(x) l~ .  We give an idea of the proof of this claim. Let g be the complex Lie 

algebra of G(C) = GL(T, C). Recall that the exponential map 

is surjective and a local diffeomorphism. The Haar measure on G(C) is equal to the 

inverse of the differential of the exponential map applied to a differential form on g which 

yields Lebesgue measure on g. Suppose x E G(C) and X E g such that exp(X) = x. 

Then the following diagram commutes. 

From the earlier remarks, it follows that the change of variable resulting from the lower 

map is equal to the Jacobian of the upper map. The Jacobian of the upper map is 

I det Ad(x)'1?. The claim now follows from the equality 

n-1 

I - A ~ ( x ) "  = (I - A ~ ( x ) )  C A ~ ( X ) ~  
k=O 

and the definition of D(x) ($3). 

We find that for L E L ( M )  

f ,  i f L = G  
0, otherwise ' 

The proof of Proposition 16.1 now follows as in the proof of Proposition 13.2 [10].0 

Corollary 16.1 Let S be a set of Archimedean vahations of F .  Then 

Proof. This follows from Proposition 16.1 and (56). 



17 Comparison for f E Xmet(G(A), M) 

We now give asketch of the proof that I M ( f ) - ~ ( f )  = 0,  for acertain subset Xmet(G(d),  M )  

of functions in 31met(G(A). The train of reasoning in this section relies entirely on $15 

and $16 [lo]. We will outline the arguments found there and leave it to the reader to 

confirm the details. 

There are a few definitions in [lo] which must be transcribed before we may appeal to 

the arguments of $15 [lo]. 

Let 31met(G(A), M)' be the space of functions f in 

which satisfy one additional condition. Namely f vanishes at  any element in G ( A )  whose 

component at  each finite place v belongs to Ac(FV). 

The remark after Proposition 16.1 is used to great effect in the following lemma. 

Lemma 17.1 (15.1) Suppose that f E 31met(G(A), M)'. Then 

I M ( f )  - I ( f )  = I ~ ( a M ) I - l f ~ ( ~ d f ) ) ,  

where I M  is the analogue for M of I = IO. 

Proof. By the properties of f  and the remark after Proposition 16.1, we see that I M ( f )  - 

I ( f  equals 

I -  C a M ( s , 7 ) f Y ( y ,  & M ( f  11, 
~ € ( W ~ A I . S  

for a large set of valuations S.  By the cuspidality conditions on f (cf. Lemma 15.1 [ lo]) ,  

it follows that 

i;;%,~m, 7 E M ~ ( F ) ,  

for any Ml such that M 2 MI.  Thus by (14), 



It is our intention to apply the method of separation of variables to Lemma 17.1. 

This method relies on the Archimedean factors o f f  E 31met(G(A), M)O. Some necessary 

notation is given before this method is sketched. 

Let S, denote the set of Archimedean valuations of F .  Then G(Fs,) may be regarded 

as a real Lie group. Let bc denote the standard Cartan subalgebra of its complexified 

Lie algebra. Let be the real form of bc associated to the split real form of G(Fs,). 

Then 3 is isomorphic to a ~ ,  as a vector space and therefore contains all vector spaces 

of the form ah,. Let 3' be the orthogonal complement of ac in 3. We recall the theory 

of multipliers. Let a belong to the convolution algebra of compactly supported, 

We-invariant distributions on 3'. Then there is an action, f H fa, on 31met(G(A)) 

such that f, ,M(n) = & ( u , ) f ~ ( ? ~ )  for all n E IImet(M(A)) .  As usual, u, is taken to be 

the infinitesimal character of the Archimedean factor of n.  This action of &(bl)" on 

31met(G(A)) affects only the Archimedean factor of f .  

Lemma 17.2 Let a E E(bl)" and f E 31met(G(Fs)). Set a*(u)  = ndim('J'fa(nu). Then 

fa E 31met(G(Fs)) and (f,)' = f:.. 

Proof. Let a E and n E l l ~ & ( G ( F . ) .  Then 

It follows from Proposition 27.3 [15] that fa and f:. match. In particular we may take 

f, E 31met(G(Fs)) and set (f,)' = f:..O 

Corollaries 14.2 and 14.3 [lo] follow without difficulty in the metaplectic context. 

Corollary 14.4 has a much simpler proof in our case. 

Lemma 17.3 (14.4) Let f E Rmet(G(Fs)), and a E &(bl)". Then ~ y ( f , )  =  EM(^),. 



Proof. Let S be the disjoint union of S, and So. Let f = fmfo be the corresponding 

decomposition o f f .  Note that by the splitting property of Theorem 10.1, 

E M ( S )  = &Li, LZ)E!$[SM)&(SO). 
L,.LzEC(M) 

It follows from the fact that ~ ( F s , )  splits over G(Fs,), that 2$(fmSL,) = 0 unless 

LP = M .  Also, 

~ c , ( L ~ .  M )  = { 1, L1= G 
0, otherwise ' 

Consequently the splitting formula above reduces to 

Therefore 

Let b: be the set of points v in l&/iab such that D = -sv  for some element s E 

WC of order two. The Archimedean infinitesimal character of v,, associated to any n E 

lTFzi(G(A)') belongs to b:. 
The background for the method of separation by infinitesimal characters is settled. 

The object of the application of this method is the following lemma. There is but one bit 

of notation left to give. For vl E 3: define 

n T t ( G ( ~ ) ' )  = (n E nmet(G(A)')  : v,, = s y  for some s E Wc). 

Lemma 17.4 (15.4) For each f E XmCt(G(A) ,  M)O and vl E b:, we have 



Now, on to the description of the method of separation by infinitesimal characters. 

First we choose y E t)t and crl E as in Lemma 15.2 [lo]. Given T 1 0 it follows 

from Lemma 6.3 [7] and Lemma 15.2 [lo] that 

approaches zero as m approaches infinity. On the other hand, we may write 

by Lemma 15.3 and the theory of multipliers. Moreover by Lemma 15.3 [lo], we may 

write 

(59) 

as a finite sum, 

for some Schwartz function 

The multiplier al was chosen so that 

for all but finitely many X E iahlia; in the above integral. Thus, by the dominated 

convergence theorem, the integral approaches zero as m approaches inhity. Thus (59) 



and (57) both approach zero as m approaches infinity. Since (57) is the difference of (58) 

and (59), we see that (58) has this property as well. Once again by our choice of a l ,  the 

inequality, 

0 l hi(ur)  < 1, 

holds for n E lT"et(G(A)l,t) unless n E I IY t (G(A) ' ) ,  in which case &l(u,) = 1. This 

yields Lemma 17.4 and ends our discussion of the method of separation by infinitesimal 

characters. 

The following Proposition is essentially an extension of Lemma 17.4 to functions in 

31met(G(A), M), and an application of Lemma 15.3. If follows mutatis mutandis from $16 

[lo]. 

Proposition 17.1 (16.2) For any f E Xmet(G(A),  M ) ,  we have 

18 Proofs of Theorem 9.1 and Theorem 12.1 

At long last, we prove Theorem 9.1 and Theorem 12.1. We begin with Theorem 9.1 (i). 

First we establish a certain degree of freedom at the Archimedean valuations. 

Lemma 18.1 Suppose Sl is a finite set of valuations with the closure property and Sl > 
S(,). Suppose firther that v is a valuation of F not contained in  S and set S = S1 U 

{v ) .  If f = f l f v  E 3lmet(G(Fs1)) and 7 = 71% E M ( F s )  n G.,, are corresponding 

decompositions, then 

If v is Archimedean, then 



Proof. We may apply the splitting properties ( (17), Lemma 6.2) to obtain 

According to the induction hypothesis of 59, the summands above, for which either Lo or 

L1 is not equal to G ,  vanish. By the properties of d$(LO, L1) jcf. Lemma, $7 [6]), the 

lemma follows. 

For v Archimedean, the second equality follows from the first and Corollary 16.1.0 

The following lemma is a tool which allows us to derive local results from the global 

result of Proposition 17.1. 

Lemma 18.2 Suppose w is an Archimedean valuation and S is  a large, finite set of 

valuations containing S(,) and the Archimedean valuations of F .  firthennore, suppose 

such that I M ( f ' )  - I ( f ' )  equals the sum of 

as in  Lemma 16.1. Then for each 7 E M ( F )  n Gareg, which is  F-elliptic in  M ( F ) ,  there 

ezists a function f, E Xmet(G(C))  such that f = f, flu+, f: belongs to Xmet(G(A),  M )  

and 

Proof. If the image of 7 in M(F,) does not belong to the support of fh, then by the 

second equation of Lemma 18.1, I M ( f ' )  - I ( f ' )  must vanish and we are done. Suppose 



then that the image of 7 above does lie in the support of fh. The set of valuations S has 

been chosen so that f' E 'Hmet(G(Fs), M). In other words, 

where f,O are the functions defined in $7. The support off'  is contained in a compact open 

subset, Uh x n ,,,-, ,, U,, x n,,, K,,, of G(A). Since G(F) is a discrete subgroup of G(A), 

we may choose fw E 'Hmet(G(C)) to be supported on a sufficiently small neighbourhood 

Uw c Uh such that 7 is the only element of G(F) contained in Uw xn,,eS-Iwl U, x n v d S  Ky. 
The function f ,  obtained by replacing fl, with fw, is clearly also in 'Hmet(G(Fs), M). It 

is also not necessary to increase the size of S in the expansion of IM(f) - I ( f )  as in 

Lemma 16.1 (cf. $4 [7]). By construction then, the only summand of this expansion 

which survives is 

aM(s,Wn";'(n f s )  - G ( r , f s ) ) .  

Proposition 17.1 tells us that this expression vanishes. By Theorem 8.2 [4] we may 

conclude that 

a M ( s , 4  = vol(M,(F)\M,(A)'), 

for S sufficiently 1arge.O 

Lemma 18.2 has an immediate application. Namely, 

may be compared to the orbital integral Ic(7, f). 

Lemma 18.3 Suppose that V is a finite set of valuations with the closure property such 

that either V > S(,) or V consists of a single valuation not contained in S(,). Then for 

every finction fv E 'Hmet(G(Fv)) there exists a smooth complex-valuedfinction EM such 

that 

In"; '(~v, f v )  - I;(7vy fv)  = ~ ~ ( 7 v ) J c ( r v , f v ) ,  ^IV E M(Fv). 

Proof. Suppose first that V contains S(,). Lemma 18.1 allows us to restrict to the case 

that there exists an Archimedean valuation w of F which does not belong to V. Let 



7 E M ( F )  be as in Lemma 18.2. It is straightforward task (cf. p193 of [lo])  to choose a 

finite set of valuations 

~ = ~ U { W , V ~ , . . . , V ~ )  

containing the Archimedean valuations, V and at least two other nonArchimedean valu- 

ations, and a function 

has the expansion of Lemma 16.1. Thanks to Lemma 18.2, we may assume that 

A repeated application of Lemma 18.1 to this equation yields 

From this equality and our choice of functions we can readily see that if Ic(7, fv) = 0, 

then 

In";l(rv,fv) - I f , ( r v , f v )  = 0 

as well. As a result, there exists a constant EM(?) such that 

We may prove (60) in much the same fashion if V  consists of a single valuation not 

contained in S(,). 

Since both 



and IG(., f v )  are smooth functions of M(Fv) nG,,, and the image of the set of F-elliptic 

elements in M(F)  n G.,, is dense in M(Fv) n Gereg, we may clearly extend the definition 

of E M  to obtain a smooth function on M(FV) n G.,,,.O 

It is not too hard to see that Theorem 9.1 (i) follows if the function EM vanishes. 

Indeed, if E M  vanishes then the induction argument begun in $16 is complete. This in 

turn implies that M may be taken to be Mo and since 

xmet (G(Fs), Mo) = 3tmet(G(Fs)), 

Theorem 9.1 (i) follows after an application of Lemma 9.5. We will show that EM vanishes 

by showing that it vanishes on some subgroups whose product generates M ,  and then 

showing that EM is a homomorphism. F i s t  we show that the values of E M  do not depend 

on the Archimedean valuations S,. 

Lemma 18.4 Suppose V is a finite set of valuations with the closure property and con- 

taining St,). Let V, = S, n V .  Then EM is invariant under M(FV,) n G,,,. 

Proof. Suppcse first that V, contains at least two Archimedean valuations, vl and q. 

Let V' = V - {q) and let 7 v  = 7vq1 E M(Fv) n G.,,, fv = fv , f l  E 3tmet(G(Fv)) be 

corresponding decompositions. Then V' has the closure property and V' > S(,). Therefore 

we may combine Lemma 18.1 with Lemma 18.3 to find that 

In other words, E M ( ~ V )  = ~ ~ ( y y , ) ,  and so EM is independent of 71. This argument may 

be repeated with any other Archimedean valuation in place of vl, so the lemma follows 

for this choice of V .  

Now if V n S, consists of a single Archimedean valuation q, then let V' = V U {vz), 

where vz is an Archimedean valuation not contained in V .  The above argument then 

yields 

~ ~ ( r v r )  = E M ( Y V ) ,  Y V ~  = rvrz E M ( F v ~ )  n G.,,,. 



By the earlier argument, ~ ~ ( y v t )  is independent of the factor of yv, corresponding to the 

valuation vl. The last equation implies that ~ ~ ( y v )  must have this independence as well. 

The Lemma is now complete.0 

Lemma 18.5 Suppose V is as in Lemma 18.3, f E Xmet(G(Fv)), and y E M ~ ( F v ) ~ G . , , ~  

where MI E L and Ml 5 M .  Then ~ ~ ( 7 )  = 0. 

Proof. Lemma 9.2 tells us that 

Since E M  is smooth on M(F,) n G.,,, it is easily seen that we may choose EM in Lemma 

18.3 so that it vanishes on some open neighbourhood of y E M(F,) n G.,.O 

Recall decomposition (2) ,  
t 

M = n ~ ( i ) ,  
i=l 

where M ( i )  2 GL(ri) and ri = T .  For the sake of simplicity, we will identify the 

subgroup nf=,  SL(ri) of nf=,  GL(ri) with its image in M via the above isomorphism. 

Lemma 18.6 Suppose V is as in Lemma 18.4. Then the function EM vanishes on 

ntl SL(ri, Fv). 

Proof. Let fv E 3Cmet(G(Fv)) and yv E SL(r;, Fv)nG.,,,. FLU two nonArchimedean 

valuations, vl and vz, not contained in V. Choose 

such that yj is F,,j-elliptic in M(FVj) .  By strong approximation ( [ Z l ] )  on nfEl SL(ri, A), 

there exists y E ntl SL((ri, F )  n G,,, satisfying the following properties: 

The image of 7 is M ( F v )  is close to yv at the nonArchimedean valuations of V. 

The image of 7 in M(Fuj )  is close to yj, for j = 1,2. 



The image of 7 in M(F,) belongs to K, for all nonArchimedean valuations v such 

that v @ V u {a, 9). 

Let So be the set of Archimedean valuations of F not contained in V. Choose fo E 

3Lmet(G(Fso)) so that the image of 7 in M(Fso) lies in its support. Choose fj E 31meL(G(Fuj)) 

supported on small Fuj-elliptic sets of M(F,), such that Ic(yj, fj) # 0, j = 1,2, and 

f = fofififv ft E Zmet(G(A),M). 
u$VUSoUb,,vl} 

After a possible application of Lemma 18.2, we obtain 

If we substitute the expansion of Lemma 18.3 into this equation, apply Lemma 18.1 

repeatedly, use the invariance of Lemma 18.4 and use Lemma 7.2, we end up with 

Now vl and v2 were chosen to be arbitrary nonhchimedean valuations not contained in 

V. Therefore the whole argument may be repeated with a different pair of valuations, v; 

and v;, with the final result, 

for some 
f 

7; E f l s ~ ( r i ,  F";) n G.,,, j = ~ 2 .  
i=l 

This implies that EM(-~v) is constant for all -yv E n f = l  SL(ri, Fv) n G,,,,. Since E M ( ~ V )  

vanishes for yv belonging to a proper Levi subgroup of M,  this constant must be zero.0 

Observe that M = MO n;=, SL(ri) and that EM vanishes on both Mo and n:=, SL(ri). 

As stated before, the following lemma completes the proof of Theorem 9.1 (i). 

Lemma 18.7 Let V be a finite set of valuations with the closure property and containing 

S(,). Suppose fv E 3Lmet(G(Fv) and EM is as in Lemma 18.3. Then EM is a homomor- 

phism from M(FV) to C. 



Proof. Let n, 7 2  E M(Fv)  n G,,. By weak approximation, we may choose 7  E M ( F )  n 
G.,, to be an F-elliptic element in M ( F )  such that the image of 7  in M(Fv)  is close to 

71. Embed 71 into M ( A )  in the obvious way and let 61 = 7 5 '  E M ( A ) .  Then the factors 

6 1 ,  of 61 at  the valuations v E V are close to the identity. Let Vl denote the finite set 

of valuations { v l ,  . . . , v k )  at  which the factors of 61,wj of 61 do not lie in Kvj, 1 5 j 5 k. 

By construction, V and Vl are disjoint sets. We may use an argument similar to that of 

Lemma 18.6 to conclude that 

We repeat this argument for 72 to obtain a finite set of valuations V2, disjoint from V ,  

and an element 62 E M ( A )  such that 

x EM(&+) + ~ ~ ( 7 2 )  = 0. 
vsv2 

Weak approximation allows us to assume that Vt is disjoint from Vl as well. 

Once again we use an argument similar to the one in Lemma 18.6 on the product 

to arrive at  

Otherwise stated, E M  is a homomorphism.O 

All that remains to be done now is to prove the rest of Theorem 9.1 and Theorem 

12.1. 

Proof of Theorem 9.1 (ii). We wish to show that 

Suppose first that 7  E M ( F )  has Jordan decomposition 7  = ou, where the semisimple 

element u is not in Ac(F) if M = G. Then 



so we may apply the induction hypothesis of 59 to decompositions (22) and (23) and the 

lemma follows. 

On the other hand, if M = G and u E AG(F) then 

by (22) and (23) respectively. It follows from Theorem 9.1 (i) and Lemma 16.1 (where we 

may now take M = Mo) that 

x x (a(S,u*) - 45, ~ ) I G ( ~ u ,  f )  = 0, 
OEAC(F) uE(Uc(F)) 

for any f E 3Cmet(G(A)). We may choose f E 3Cmet(G(A)) above so that for a k e d  

element u1 E UG(F), we have 

IG(W f )  = { 1, if u = 1 and u = u1 
0, otherwise 

(53.3 1311). This clearly implies that a(S, u;) = a(S, u1).0 

Theorem 12.1 (i) follows from Theorem 9.1 (i) and 513. This leaves us with a single 

proof to be completed. 

Proof of Theorem 12.l(ii). By the induction hypothesis of 512, we need only show that 

Let ul be the infinitesimal character of the Archimedean factor of some b e d  representation 

?r in IImet(G(A)'), and let 1(1 be a compact open subgroup of Kv such that r 

is bi-Kl-invariant. Let IIKL1(G(A)') be the set of bi-Kl-invariant representations in 

IImet(G(A)') with infinitesimal character y. In the process of proving Proposition 17.1 

(cf. (16.6) [lo]), one obtains 



for any f E Xmet(G(A)') which is bi-Kl-invariant. This sum is finite by Lemma 4.2 [7], 

and the linear forms, 

f ++ tr*(fl), * E n:L,(G(A)l), 

on the space of bi-Kl-invariant functions in Xmet(G(A)) are linearly independent. The 

result fo1lows.O 

19 Appendix. Tensor Products of Metaplectic Rep- 
resentations 

In 526.2 [15] a method of induction from parabolic subgroups of QF,) is delineated. 

Recall decomposition (2), 
P 

This method of induction relates tensor products of representations of ~ ( i )  to represen- 

tations of M. We describe this relation and prove all of the claims made in 526.2 [15] 

concerning it. It seems that the claims are not true in general ([30]). The assumptions 

made on n and T in 52 remain in force. 

Let (., .)F, : F: x F: + pn be the nth Hilbert symbol on F, and let B be a maximal 

subgroup of F: with respect to the property that (X,X')F, = 1 for all z,x' E B. Let 

l < i < e a n d s e t  

MB(i)(~,)  = (j E M(i)(F,) : det(p(j)) E B). 

It is a simple matter to check that MB(i) is a normal subgroup of ~ ( i )  of finite index. 

Let pi be a genuine irreducible z ~ ( i ) - m o d u l e  whose restriction to so(An) the central 

character CJ of 53. Let fiy be the restriction of pi to z ~ ( i ) .  The z ~ ( i ) - m o d u l e  fiy is a 

sum of conjugates of some irreducible z ~ ( i ) - m o d u l e  fii.  Otherwise stated, 

where the sum runs over representatives y of certain cosets in M(i)/MB(i). 



Lemma 19.1 If 7 is as above then fi: is not equivalent to py unless M(i) = GL(1) or 

7 E MB(i). 

Proof. If M(i) = GL(1) then ~ ( i )  = F: x p,. In particular ~ ( i )  is abelian and 

pi = ff.  Suppose that ri 2 2. By using the Iwasawa decomposition, it is easy to see that 

representatives of M(i)/MB(i) may be taken to be diagonal matrices. Let 

be such a representative. Suppose that 57 is equivalent to j:. More precisely, suppose 

that there exists a linear isomorphism T such that 

for all ? E Z M B ( i ) .  Let x E B and choose 7 E MB(i) such that 

It may be verified by following 0.1.1 [19] that 7 is in the centre of Z M B ( i ) .  Thus, we 

have, 

pi(?) = T 0 p;y;y) 0 T-I 

= T 0 p:(.y-'?.y) 0 T-I 

= ((det(.y), det(p(?)))~,/U('~i, X)F.)TO Pi(?) oT-', 
j=l 

by Proposition 0.1.5 [19] and the multiplicativity of the Hilbert symbol. By Schur's lemma 

pi(?) is a nonzero scalar operator. Consequently this last equality may be rewritten as 

Since gcd(n, ri - 1) = 1 (§I), we have that (det(.y), x) = 1. The element x E B was chosen 

arbitrarily so this means that .y E MB(i).O 



Continuing with the discussion on tensor products, we set to be the 5MB-module, 

This module is irreducible and, from arguments similar to those in the proof 

of Lemma 19.1, we find that it is inequivalent to any of its conjugates by elements in 

M - 5 M B .  Mackey's criterion then yields that the M-module, P, induced from ,5: 

is irreducible. This process may be reversed without difficulty. Thus every irreducible 

M-module corresponds to a unique set of z ~ ( i ) - m o d u l e s .  
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