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1 Introduction

The object of this thesis is to establish an important step towards a global metaplectic
correspondence. The origin of this correspondence lies in the theory of modular forms.
Let & be an odd, positive integer, and let N be a positive integer divisible by 4. The space
Si2(Co(N), x), of cusp forms of weight k/2 and character y for the congruence subgroup
To(N), is less manageable than the space of cusp forms of integral weight. As a partial
remedy to this difficulty, Shimura ([28]) constructed a map

Sk/2(F0(N)s X) - Sk—l(FD(N/z)’ Xz))

for k > 5, which behaves nicely with respect to the L-functions of the forms in the
above spaces. Shimura suggested that representation-theoretic methods be used to further
clarify the nature of this map.

Gelbart and Piatetski-Shapiro conceived the spaces Si_1(To(V), x*) and Si/2(To(V), x)
as automorphic representations of GL(2) and c‘;i(z) respectively. Here éf;(2) is a meta-
plectic covering of GL(2). The first global metaplectic correspondence was established by
Flicker ([13]). He proved that for each genuine automorphic representation # of GL(2),
there exists a unique automorphic representation 7 of GL(2) such that

tri(f) = ten(f),

for certain related functions f and f in the respective Hecke algebras. His proof was
accomplished using the Selberg trace formula and followed Langlands’ proof of cyclic
base change for GL(2) ([25]).

Arthur and Clozel gave a proof of cyclic base change for GL(r) by using the invariant
trace formula of Arthur ([10], [6], [7]). More specifically, they effected a global corre-
spondence by proving a term-by-term identity between the invariant trace formulas of
GL(r) and its restriction from a cyclic extension. This thesis proves such a term-by-term
identity between GL(r) and its n-fold metaplectic covering under the assumption that n
is relatively prime to all positive integers less than or equal to r > 2.

We now give a slightly more detailed overview of the results. The following two sections

are essentially paraphrases of the local metaplectic results of Flicker and Kazhdan ([15]).

1



Flicker and Kazhdan prove a local metaplectic correspondence by using the “simple” trace
formula. The novelties which appear in sections two and three arise from the assumption
made on n and . The local and global n-fold metaplectic coverings, G(Fs) and G(A)

respectively, of G = GL(r) are defined in section two; as are the maps
G(Fs) = G(Fs), G(A) 5 G(A),

which preserve conjugacy classes. These maps are referred to as orbit maps. They are
our means of comparing objects defined from G and G.

In the third section we define the sets of representations relevant to the metaplectic
correspondence, namely the genuine representations. We then describe the function spaces
pertinent to the trace formula. These are the Hecke and Paley-Wiener spaces. We will
assume the nonArchimedean trace Paley-Wiener theorem to hold for metaplectic coverings
of GL(r). The notion of matching functions, that is functions with matching orbital
integrals, is given. The local metaplectic correspondence is exploited to define a map of
local Hecke algebras

H™(G(Fs)) = H(G(Fs)),

which maps a function in the domain to a matching function in the image. The local

metaplectic correspondence may then be described as a map of representations

*

Trr T

such that
tra(f) = trn* (%), f € H™(G(Fs)).

The fourth section is rather more technical and is concerned with the normalization of
intertwining operators of induced representations. This normalization is essential for the
definition of the invariant trace formula. Our method of normalization follows the ideas
of [10] and is obtained through the comparison of matching functions and the Plancherel
formula. The Plancherel formula of Harish-Chandra is not proved for metaplectic cov-
erings. To compensate for this, we list the properties of G requisite for the proof of the

Plancherel formula.



We enter the heart of the matter in section five. This is where we introduce the

expected form of the invariant trace formula for G,

S WRHWER Y oSG D,

MeL FE(so(M(F)) s
= 5 W / (@) Iy, fdr.
t Mec (ML)

Due to the great number of details that must be verified, this formula remains conjectural
and is assumed to be true in this thesis. In other words, we assume that most of the
results of the papers of Arthur listed in the bibliography, with the exception of (3], hold
for metaplectic coverings of the general linear group. This formula is rewritten in a more

suggestive form as

a S WMWE Y ™S s (™)) a(r £),

MeL YE(M(F))m,s/pdf
= S [ el ),
t Mel M (M)

(¢f. Proposition 9.1 and Proposition 15.1), before it is compared to the invariant trace
formula of G. The two main theorems of this thesis are Theorem 9.1 and Theorem 12.1.
Their statement and proof is the focus of the remaining sections. For a synopsis of these
sections the reader should turn to section five. Very loosely stated, Theorem 9.1 and
Theorem 12.1 posit the following equalities between the terms of the two trace formulas
of G and G.

Ia(r ) = Loepre g In (v, ), v € M(Fs),
aM(S,50(v")) = aM(8,7), v € M(F),
Iyg(m*, £*) = In(m, f), m € It (M(A)),
aMM(x) = aM(x).

It is the final equality which bears the information we seek for a global metaplectic

correspondence for GL(r). If one considers the specific case M = G, one obtains an
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identity of traces (cf. §4 [7]),

3 aGee(mtrn(f) = Y o (R (),

where the sums range over certain global unitary representations of GL{r) and éi(r)
respectively, and a$, (v) and a§_ (%) are constants. One should be able to isolate the
trace of cuspidal representations occurring in the above sums by choosing f appropriately,
using strong multiplicity one for GL(r), using the local metaplectic correspondence and
using the linear independence of characters. For a more detailed discussion of such matters
the reader is referred to §28 [15], where a global metaplectic correspondence is achieved
for a smaller set of representations.

For the reader familiar with cyclic base change, it may be helpful to bear in mind that
the structure of the proofs of the main theorems follow chapter two of [10] very closely.
The results of this thesis which have counterparts in chapter two of [10] have references
to these counterparts in parentheses immediately following their own numbering. All
citations from [10] will be from chapter two unless otherwise stated.

2 The Groups

In this section we establish some notation and describe the metaplectic coverings of the
general linear group. Many definitions for the metaplectic group apply for the general
linear group as well, if one considers the case of a trivial covering. If this happens to
be the case, the definitions for the general linear group are not made separately. Haar
measures are fixed after the above groups are defined so that we may perform harmonic
analysis on them without any ambiguity. We also introduce some vector spaces which
play an important role in the representation theory of these groups.

Unless otherwise stated, we assume 7 to be an integer greater than one and n to be a
positive integer such that

ged(n, i) =1, 1<i<n

Let F' denote a number field containing the group p, of nth roots of unity. Since n is

greater than two, F is totally imaginary. The completion of F' at a valuation v is denoted
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by F, and its absolute value (determined by Haar measure) is denoted by |- |,. If v is
nonArchimedean, we let R, be the ring of integers of F,. We write A for the adéle ring
of F.

The general linear group of rank r, GL(r), is denoted by G. Thus, for instance, G(F)
stands for GL(r, F'), and G(A) stands for GL(r, A). Throughout, S signifies a finite set
of valuations of F. We define G(Fs) to be [],.s GL(r, F%).

We recall the description of the metaplectic coverings of G by following §2 [15]. For
each valuation v there are 2-cocycles

Tmw + G(Fy) X G(F) = pin,
for 0 < m < n, which yield central extensions
1= pn = G(F) = G(F) =1

called n-fold metaplectic coverings of G(F,). We only consider the case m = 0 and set
G(F,) = Gy(F,). One can define the n-fold metaplectic covering of G(Fs) by way of
the cocycle 75 = J],eg70v- It is denoted by (;'(Fs) Similarly, the n-fold metaplectic
covering of G(A) is defined by way of the cocycle 7 = [], 7o, and is written as G(A).
The aforementioned coverings are also equipped with maps

- P
1 - p, 5 G(Fs) 2 G(Fs) = 1,

PO P
1 pn 5 G(A) 2 G(A) = L.
s

Elements of G(Fs)) are of the form (7, ¢), where v € G(Fs) and ¢ € - The maps in
the above sequence may be expressed more concretely by i(¢) = (1,¢), p((7,¢)) =7 and
s(v) = (7,1). Multiplication in G(Fs) may be described by the equality

(91, €1)(92: o) = (9192, 7(g1, 92)Ca2), (91, 1)y (921 Co) € G(Fs).

Parallel statements are true for G(A).
Given a subgroup H of G, we write H for p~Y(H). We say that @G splits over a
subgroup H of @ if H is group-isomorphic to H X y,. The group G(F,) splits over G(F,)
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if v is a complex valuation of F. The splitting homomorphism is s. Consequently the
representation theory of G(F,) for complex valuations v of F essentially reduces to the
representation theory of G(C). The upshot of this is that all of the local Archimedean
assertions made in this paper will be simple to prove.

It is also shown in §2 [15] that G(A) splits over G(F). The splitting homomorphism
of G(A) over G(F) is denoted by so.

There is a map
1 G(R) 5 G(R)
which preserves conjugacy classes (§8 [15]). This map will be referred to as the orbit map.

Since n is assumed to be odd, this map is given by
Y= (7a 1)"r vE G(Fu)'

This map extends to maps G(Fs) = G(Fs) and G(A) 5 G(A) in an obvious manner.
The orbit map allows us to compare conjugacy classes, and ultimately the trace formulas,
of G and G.

For the remainder of this thesis £ will denote the set of Levi subgroups of G containing
a fixed minimal Levi subgroup M, of G. Without loss of generality, we take M, to be
the diagonal subgroup. Let Py = MyUp be the upper triangular subgroup and Uj be its

unipotent radical. We will denote a generic element of £ by M, until it is fixed in §16.
Note that

3
2 M =] M),
i=1

where M (i) = GL(r;) and Ef=l r; = . The set of Levi subgroups of M containing M, is
denoted by £M. Set K, to be GL(r, R,) if v is nonArchimedean, and U(r, C) otherwise.
In addition set Ks = [],.g Ky. Fix a Haar measure on M(F,) so that the measure of
the compact group M(F,) N K, is one. This fixes a Haar measure on M (F,)\G(F,), and
consequently also on M (F,), by way of the map

M(F\G(F,) = M(F)\G(F,).

Unless otherwise specified, given subgroups H C H' of G with fixed Haar measures,

we define the measure on the quotient space H \E’ via the pull-back of the apparent
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homeomorphism
A\HF - H\H'.

Let Ag(F,) denote the centre of G(F,). The centre of G(F,) is X’CT;(F.,) (Proposition

0.1.1 [19]), where

A(F) ={7": 7 € Ae(F)}.
For nonArchimedean valuations v, we fix Haar measures on Ag(F,) and Z’é(F.,) so that
the quotient measures on G(F,)/Ag(F,) and é(F.,)/;lE(F,,) are related as prescribed in
§24 {15].

Since F' embeds diagonally into Fs = ], F, and A, we may define the groups of
rational characters X (M (Fs))r and X(M(A))r of M(Fs) and M(A) respectively. Let
us agree to suppress the notation Fs and A for the rest of the section. This will allow
us to define objects over both of these rings at the same time. We define the real vector
space apr as Hom(X(M)g, R). We define the group X(M)p as {€op : £ € X(M)r}, and
the real vector space a,; as Hom(X (M) g, R). The obvious isomorphism between X (M)
and X (1\7[ )r leads to an isomorphism between a,; and ap. On occasion, we identify ag
with aar by means of this isomorphism.

The map G - & induces a homomorphism X (M)z = X(M)r such that

&) =&(r") = &s(v™) = Es(n)),
for all v € M and §- eX (1\71' ). This map in turn induces an isomorphism,
an ¥ g,
such that X — nX, for all X € aps. Define the adjoint map
ah,c = Homg(ay, C) O

by A* =n72), for A € ajy,c (with apologies for the double usage of the symbol ). Note
that X (M)r embeds in aj, o as a lattice.

As customary, A denotes the centre of M. Fix a Euclidean norm on ap, which is

invariant under W, the Weyl group of (G, Ap,). We endow aps C apy, with the Euclidean
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measure obtained from ayz, by restriction. The measure on az; is taken to be the measure
on das.

The maps Har : M — ap and Hyy : M- az; are defined by the respective relations
M08 = TTIg,(w)le, % € M(F), §=T] 6 € X(M)r

and
a8 = TT 1, (Flr 5 € B(F,), €= T[& € X(31)p.

In the adelic context, these maps produce Haar measures on M(A)' = ker(Hps(A)) and
M(A)! = ker(Hz(A)).

3 The Local Metaplectic Correspondence

The purpose of this section is to describe the local metaplectic correspondence of [15]. We
must first define suitable representations of the groups discussed in the previous section.
Thereafter we define function spaces of these groups and their representations. The reader
will be assumed to be familiar with the notation of §1 [8].

Fix a unitary character & of A%(Fs). We set w to be the unitary character of Ag(Fs)
defined by w(y) = &(7") for all ¥ € Ag(Fs). An representation 7 of M(Fs) is admissible
if

{5 € M((Fs) : #(7)v = v}
is open for all v in the vector space V of #, and the subspace formed by the elements of
V fixed by #(Ks N M(Fs)) is finite dimensional. Let TI{M(Fs)) be the set of (equivalence
classes of) irreducible admissible representations m of M(Fs) such that x(y) = w(y) for
all v € Ag(Fs). Let Miemp(M(Fs)) and Iy (M(Fs)) be the subsets of II{(M(Fs)) which
are respectively tempered and unitary.

A representation 7 of M(Fs) is said to be genuine if

#(1,)) = CR((1, 1)), (1,¢) € M (Fs).



Let TI(M(Fs)) be the set of (equivalence classes of) genuine irreducible admissible repre-
sentations # of M(Fs) such that

i'r(('y", 1)) = ‘D('yn)v 7€ AG(FS)

Again, Miemp(M (Fs)) and My (M(Fs)) denote the subsets of II(M(Fs)) which are re-
spectively tempered and unitary.

Let M; € £ and let P; be the unique parabolic subgroup of M containing M N Fp.
Given 7 € II(M:(Fs)), the unitarily induced representation Indf,:f # is denoted by 7.

If # belongs to II(M(Fs)) and A € a;;t’c then the representation 75 given by

#5(3) = #FSHED, 5 € M (Fs)

belongs to II(M(Fjs)) as well. The set of genuine standard representations S(M(Fs)) of
M (Fs) is defined to be the set of representations of the form ﬁ'f{’ , where ¥ € Ht,mp(Ml (Fs)),
MyeLMandie %, The set L(M(Fs)) is defined analogously.

We now discuss spaces of functions on our groups and on the set of tempered repre-

sentations. A function f : M — C is said to be antigenuine if

For.Q) = ¢ (n 1), (1,0) € M.

The Hecke space H(M(Fs)) is the space of antigenuine smooth compactly supported
functions on M(Fs) which are (Kg N M(Fs))-finite under left and right multiplication.

We may compare functions in the Hecke algebras of M(Fs) and M(Fs) using the orbit
map and the notion of orbital integrals. Let % be a smooth compactly supported function
on M(Fs) and 5 € M(Fs) such that p(J) is semisimple in M(Fs). Let M;(Fs) denote
the centralizer of 4 in M(Fs). We define

BERH =@ [ k@,
M3(Fs)\M(Fs)
where
D¥(y) = T det(1 ~ Ad(3)lmajms
ves

and m, and m., are the Lie algebras of M(F,) and M. (F,) respectively. This integral
converges (§6 [15], §2 [8]) and is called an orbital integral.
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Two functions, i € H(M(Fs)) and h € H(M(Fs)), are said to match if
I (1) = L', B),

for all semisimple elements v € M(Fs) such that y* is G-regular.
The other important function space needed for the invariant trace formula is the
Paley-Wiener space. Given f € H(M(Fs)) and M; € LM, we define 2 map

Fir, * eemp(M3) = ©

by fM, (# = te(#(f)). As assumed in [15], we assume that the trace Paley-Wiener
theorem holds for M ([17]). We may then take the Paley-Wiener space to be

T (Fs)) = {hug : h € HUT(FS)}.
Let V be a topological vector space and suppose that a continuous map
0: H(M(Fs) >V

satisfies O(k) = 0 whenever ﬁM = 0. Then @ is said to be supported on characters.
Moreover we can define a continuous linear map

§:I(M(Fs)) =V,

such that 6(hg) = 0(R) for all b € H(M(Fs)). This construction will be used Iater on
for the invariant maps occurring in the trace formulas.

The set of valuations S is said to have the closure property if
ars = {Hu(m) : m € M(Fs)}

is a closed subgroup of apsry). If § contains an Archimedean valuation it has the closure
property. If not, S has the closure property if and only if it is comprised entirely of
valuations which divide a fixed rational prime. For the remainder of this paper S is
assumed to have the closure property unless otherwise specified.

Put

i s ,
inyy ¢ = iiss = 103y /iHom(ap,s, Z).
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The group iaj; ¢ inherits 2 measure from the Euclidean measure defined previously on
ay. Similarly ia}, o inherits a measure from the measure which was designated for az.
We identify any ¢ € Z(M(Fs)) with its Fourier transform,

¢mX)= [  $(m)eXd), 7 € Meemp(M(Fs)), X € aps.
a5
Likewise, we identify Z(M(Fs))) with a space of functions on Myemp(M(Fs)) % Qr.s-

The local metaplectic correspondence on tempered representations is an injection
(3) Htemp(M(Fs)) s Htemp(M(FS))y

T,

such that tr#(h) = trm(h) for any matching functions k € H(M(Fs)) and k € H(M(Fs));
or equivalently such that

@  IDME)es(v) =nflnl”? > ¢IDM(M)[*0x(8),
{6eMy(Fs)/Am(Fs):5*¢=7"}

where { € Zﬁ;(Fs)/A;\,,(Fs) (see Lemma 10.7), and ©; and ©, are the characters of #

and = respectively (Proposition 27.3 {15]). It follows from 4 and the equalities

5 Hy(v*) = Hy((v",1)) = nHu(v) = (Hu(7))", v € M(Fs),

that my corresponds to 7. for any A € a}; .

The image of this correspondence is characterised in terms of matching functions.
A representation 7 € Iiemp(M(Fs)) is called metic if there exist matching functions
h € H(M(Fs)) and h € H(M(Fs)) such that trr(h) # 0. The image of (3) is the subset
of representations in Hiemp(M(Fs)) which are metic. We may extend the definition of
metic to apply to all admissible representations in the following way. A representation
7 € TI(M(F5)) is called metic if it is the Langlands quotient of m,, where M; € LM,
T € Htemp(Ml(Fs)) is metic, and A lies in a fixed Weyl chamber of a};, . An admissible
representation p of M(Fs)) is defined to be metic if all of its irreducible subquotients are

metic. Our definition of metic coincides with the definition of metic in [15] for tempered
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representations. (cf. §27.3 [15]). Set IIfer,(M(F5)) and II™*(M(Fs)) to be the subsets
of metic representations in Iemp(M (Fs)) and II(M(Fs)) respectively.

We now extend the local metaplectic correspondence to II(M(F5s)). By using the
Jacquet modules introduced in §14 [15], and following the proof of [29], it can be shown
that the Langlands quotient theorem holds for M{Fs). More precisely, every # € II(M(Fs))
may be written uniquely as the quotient of some induced representation 'l'r{"{\, where
711 € Themp(Mi(Fs)), A is in a fixed positive Weyl chamber of yp,,c and M; € LM,
With the Langlands quotient theorem in place, we may extend injection (3) by assigning
the Langlands quotient of a representation 7'1'{? to the Langlands quotient of 7}/, where =
is the image of # € H.emp(Ml(Fs)) under (3), A € aj;, ¢ and M € LM, Broadly stated,
this prescribes an injection

(6) TI(M (Fs))—TH(M (Fs)).-

This extension is compatible with (3) by Proposition 26.2 [15] L.
It is natural to seek further criteria characterizing the image set of (3) or (6). In order
to describe such criteria we define a family of important finite groups which are indexed

by the elements of £. Recall decomposition (2),

Under this isomorphism we find that

Au = HZ;',

where Z; is the subgroup of scalar matrices in GL(r;). Let u be the finite subgroup of
Ay corresponding to those matrices in each Z; whose entries lie in p,. Notice that u is
the kernel of the map a — a" defined on Ay.

An implicit feature of the local metaplectic correspondence is that the central character
of any 7 € I (M(Fs)) is trivial on . The converse is in general not true. It is

however true for essentially square integrable representations (Theorem 26.1 [15]) and

!There seems to be an error in the method of induction described in §26.2 [15]. Nonetheless, this
method is valid under our assumption on » and r. See Appendix 19.
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(5). In other words ) is metic for any square integrable representation © € II(M(Fs)
and A € ajc.

The set of genuine standard representations Z(M(Fs)) of M(Fs) is defined to be the
set of representations of the form ﬁf\a(FS), where T € Htemp(Ml(Fs)), M, (Fs)is 2 Levi sub-
group of M(Fs) and X € a;th. We wish to extend the local metaplectic correspondence
to standard representations. Before we indicate how this is done we fix some notation

from {22]. A segment A is an ordered m-tuple of representations,
lo,o(m)] = (0,0] - oy .-, 0] - 1770,

where o is an irreducible supercuspidal representation of GL(b, F,), for some positive
integers b and m, and a nonArchimedean valuation v of F. The unique irreducible quotient
of the representation induced from A is denoted by Q(A). Given segments, Ay, ..., Ak
(which do not precede each other), the unique irreducible quotient of the representation
induced from ®% ,Q(A;) is denoted by Q(®%,Q(A:)).

Lemma 3.1 Suppose 7y € Miemp(M1(Fs)), My € LM, X € e and p = r{‘:f\. Then p

is metic if and only if my is metic.

Proof. Since the local metaplectic correspondence is stable under twists by A € ajy, ¢ and
WQ:I,\‘ = (7)), for My € LM and 7, € TI(My(Fs)), we may assume A = 0 without any loss
of generality. Moreover, it suffices to prove the lemma in two separate cases. In the first
case we assume S to consist of a single complex valuation and in the second we assume
S to consist of a single nonArchimedean valuation v.

‘We prove the complex case first. In this case we may take M; = Mj as the irreducible
tempered representations of M;(C) are principal series representations (Theorem 14.91
[20]). Thus m = ®}_,w;, where wy,...,w, are quasi-characters of C* satisfying the
irreducibility criteria of Théoréme 4.4 [12]. The irreducible representation p is metic if
and only if there exists 5 € II(M(C)) which corresponds to p. We may represent 5 as
(®,T=1£J.~)“?, where @,...,w, are again quasi-characters of C*. Following the arguments
of §2.1 [13], we find that 5 corresponds to p if and only if ®{_;@; corresponds to ®f.,w;

and w; = @?. This proves the complex case of the lemma.
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Proposition 2.2.1 [22] specifies that m, = Ind¥*(Q(A;)®- - -®Q(Ax)) for some segments
A, 1< i<k, P, € PM(M,) and M, € LY. By transitivity of induction we have
p = Ind¥(Q(A1) ® -+~ ® Q(Ay)) for P, € PM(M,) with PN M; = P;. Let 7 be an
arbitrary subquotient of p. By Theorem 1.2.5 (c) [22], the irreducible subquotient =
equals Q(Q(A})®---® Q(A})) for some segments Al, 1 < i < k'. According to Theorem
7.1 of [33] (see also Théoréme 5 of [26]), the segments A},..., Ay are obtained from the
segments A,,..., A by “elementary operations”. In other words, A} is either the union
of two linked segments in {A;}%,, the intersection of two linked segments in {4},
or equal to one of the segments in {A;}£,. In any event, the central characters of the
supercuspidal representations occurring in the segments A}, ..., A}, are identical to those
occurring in Ay, ..., Ag.

Suppose that s, is metic. This means that there exist matching functions hoe
HM(F,)) and h € H(M(F,)), such that trm;(h) # 0. Using the Weyl integration for-
mula, it can be shown (§24 [15]) that R 21, and Ay, correspond to matching functions in
H(M,(F,)) and H(My(F,)) respectively. Furthermore

haty (@81 Q(A:)) = trInd B (@K1 Q(A:))(R) = trmy (k) # 0.

Hence ®%_,Q(A;) is metic. The identification of representations described in the appendix
and the remarks immediately preceding Theorem 27.3 [5, FK]mply that each Q(A;) is
metic for 1 < ¢ < k. Suppose A; = [0, 0:(s:)], where the o; are supercuspidal and the s;
are non-negative integers for 1 < i < k. Let w; be the restriction of the central character
of o; to p,. The restrictions of the central character of Q(A;) to uy, is then seen to be
wi. As Q(4A;) is metic, wf’ is trivial. Since 1 < s; < r we have ged(s;,n) = 1 and so
w; must be trivial. From the earlier description of A}, 1 < ¢ < ¥/, it follows that the
restrictions to p, of the central characters of the supercuspidal representations occuring
in A} must be trivial as well. This implies that the central character of Q(A}) is trivial on
fin. According to Theorem 1.2.2 (ii) [22], the induced quotient Q(A}) is essentially square
integrable. Once again we appeal to Theorem 26.1 [15] and (5) to conclude that Q(A!)
is metic. We refer to the appendix again to conclude that ®¥, Q(A!) is metic. Since 7 is

the Langlands Quotient of this representation, it is metic.
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Conversely suppose p is metic. This means that 7 is metic. By definition ®¥,Q(A%)
is metic. As earlier, we may conclude that A} and its supercuspidal factors are metic
for 1 <7 < k'. As a result, the central characters of these supercuspidal representations
are trivial on u,. As before this implies that A; and in turn that Q(A;) are metic for
1 <4 < k. This implies that ; is metic by definition (cf. 26.2 [15] as well). O

The induction arguments of Proposition 26.2 [15] combined with Lemma 3.1 yield an
injection
™ (M (Fs)) < T(M(Fs)),
whose image is the subset Z™*(M(Fs)) of metic representations in T(M (Fs)).

Having specified the images of injections (6) and (7) we are free to define bijections

®) 1™ (M (Fs)) = TI(M(Fs))
and
) et (M(Fs)) 5 S(M(Fs)).

We define IIfe: (M (Fs)) and TS5 (M(Fs)) to be the subsets of metic representations in
Tiemp(M(Fs)) and Iyn (M (Fs)) respectively.

We may now use (8) to define subspaces of Z(M(Fs)) and H({M(Fs)) which pertain
to II™(M(Fs)). Set

I7(M(Fs)) = {¢ € Z(M(F5)) : ¢(m) = 0,7 € Tlemp(M(F5)) but 7 ¢ Ie (M(Fs))}
and
H™H(M(F5)) = {h € H(M(Fs)) : har € T™(M(F5))}.
We identify functions in Z™**(M(Fs)) with their restrictions to I (M(Fs)). These

temp
sets of functions may be compared to the corresponding sets of functions derived from

the metaplectic coverings. Explicitly, If ¢ belongs to IT™°(M(Fs)), define
(10) ¢*(x", X*) = n~dmAMg(r X), m € It (M(F5)), X € ays.

This definition produces a function in Z(M(Fs)) by virtue of the trace Paley-Wiener
theorem ((17]). This is a transfer map of Paley-Wiener functions which is adjoint to

bijection (8). As such, it is seen to be bijective as well.

15



The trace Paley-Wiener theorem and the Weyl integration formula suggest that a
transfer map for Paley-Wiener spaces ought to yield a transfer map for Hecke spaces
which is adjoint to map (1). Indeed, by using the trace Paley-Wiener theorem and the
bijectivity of (10) we can define a map

HT(M(Fs)) = H(M(Fs)),

hes

such that k and h* match (¢f. Corollary 27.3 [15]).
In order to show that this map is compatible with (10), let b € H™*(M(Fs)) and
m € [I55% ,(M(F5s)). Then

(hae)* (7" X*) = n-@mApy (. X)
(@i Ase) / tr((ma(R))e~®VdA

iajy,s

n—(dimAM)/ hk[((ﬂ',\)‘)e_'\.(x.)d/\.
ioyes

[ glase oy

1,5

By (=", X*),

il

as to be desired. The second from last equality follows from d\* = n~(dimAsr)g)

We remark that the functions h € ™t (M(Fs)) are invariant under . This implies
a certain invariance of the map 6 : #(M(Fs)) — V mentioned above. Indeed if we define
7h and "0 by

"h(v) = h(n), 1 € M(Fs), n€ p',
"6(h) = 6("R),
then
"9(h) = 6("h) = 8(h).

It follows that "0 = 6 if 6 vanishes outside of H™*(M(Fs)). Under this condition, 70 = 6

as well.
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The foregoing sets of representations and function spaces may easily be recast for
groups over the adéles. We therefore write II{G(A)), H(G(A)), Z(G(A)), I™*(G(A))
etc. without explanation.

Henceforth, the functions f and F will be taken to belong to either local or global

versions of H™(G) and #£(G) respectively.

4 The Normalization of Intertwining Operators and
the Plancherel Formula

Our goal here is to normalize the intertwining operators between induced representations.
This is necessary for the definition of the invariant trace formula. In this section n and r
are arbitrary positive integers and v is a nonArchimedean valuation.

‘What this normalization amounts to is the definition of functions
(11) rgp : (M (Fs)) x af o = C, Q,P € P(M),

which satisfy the conditions of Theorem 2.1 (9]. These functions are called normalizing
factors. Such normalizing factors exist for general linear groups ([27], §4 [9]). We define

candidates for normalizing factors of metaplectic coverings by setting
rgp{m3e) = rqip(ma)s

for all € TI™*(M(F5s)) and A € a}c. In order to show that these proposed normalizing
factors actually do satisfy Theorem 2.1 [9], we follow Lemma 2.1 [10]. This lemma relies on
the Plancherel formula for reductive algebraic groups. As nontrivial metaplectic covering
groups are not algebraic, we must justify the use of the Plancherel formula in the following

lemma. This is done immediately afterwards.

Lemma 4.1 The normalizing factors rg (m3.) defined by (11) satisfy the properties of
Theorem 2.1 [9].

Proof. In §4 [9] it is explained that all of the properties of Theorem 2.1 [9] are satisfied if
12) (T Iy (m3e) = (i),
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where P € P(M), 7 € II% (M(F,)}, A € aj;c and gy is the Harish-Chandra p-function
for the metaplectic group M. The normalizing factors for M, as defined in [27], already
satisfy (12). That is

reyp{ma)rap(ma) = pa(ma) ™

for all P € P(M), 7 € Miemp(M(F,)), and A € a3, c. Therefore it suffices to show that
(13) byr(m") = pa (), ™ € T (M(Fy)).

Let Mysc(M(F,)) be the subset of representations in Iyemp(A(F,)) which are square-
integrable modulo Z’,E;(F.,) and P M(F,)) be the subset of metic representations in
Mgee(M(F,)). As mentioned in Proposition 27 [15], any # € Iiemp(M(F)) is equal to

o , where 71 € Iy 1\7[1 F,)) and M, is a Levi subgroup of M. By definition
1
[ (7-) = M1y (7‘-1):

so it suffices to show (13) for 7 € TIR(M(F,)). This is achieved by means of the
Plancherel formula. Let f € H™*(G(F,)) be such that

trfr(n) =0, 7 € IEHL(F,), Le L, L# M.

It follows from the Plancherel formula that
£ = [ &M (m)ae () foe ),
s (M(F)
where 3 is a constant defined in terms of an integral over I, P = MU is a stan-
dard parabolic, d¥(r) is the formal degree of w € IIR(M(F,)), and the measure on
met(M(F,)) is a product measure of infinitely many copies of the measure on (LR

follows easily from the definition of orbital integrals and Lemma 9.5 that
f) =16(1, f) = Ie(1, f*) = f*(1).

By the local metaplectic correspondence and the properties of f, we know that f%
vanishes on any tempered representation which is not induced from some wm* where
7 € IIFSE(M(F,)) and that

Fa(@®) = fulm).
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This implies
o= [ & (1 gy () faa ().

RHM(F))
The equality of ya with -y will be argued in the discussion on the Plancherel formula
immediately following this lemma. By varying f as specified above and using the trace
Paley-Wiener theorem we find that

A (1) g () = dM (m) e (), 7 € TIESUM(FS))-

If M = G then pg = pg = 1 and so d¥(w) = d6(x). It then follows that

dM(r) = id’"ﬁ)(m) = thd""“"(vr:) = d¥(z"),

i=1 i=1
in the notation of Appendix A, whence the lemma.

We now list the properties of reductive algebraic groups which are used in Harish-
Chandra’s proof of the Plancherel formula ([16]) and show that they also hold for meta-
plectic coverings.

Let P = MU be a standard parabolic subgroup of M. Then G(F,) splits over U (§2
[15]). The splitting homomorphism is s. In other words,

s(U) ={(v,1) :u € U}

forms a subgroup of G(F,). Every Q € P(M) is of the form P¥ = w™!Pw for some
representative w of the Weyl group W(ay). It is easy to check that G(F,) splits over
U¥ = w~'Uw with splitting homomorphism s,, defined by

wluw v« s{w) " Ls(u)s(w).

Clearly Pv = Ms,,(U) as M is stable under conjugation by s(w).
We define the Jacquet module of an admissible Hilbert space representation (7, V) of
finite length with respect to U* in the following way. Let Vy» be the linear span of

{F(sw(lvuw)lv~v:velUve V]

It is a consequence of (2.2) [15] that M normalizes s,,(U/). Thus M stabilizes Vyo. We
define the Jacquet module of 7 with respect to U* to be the representation obtained by

19



twisting the quotient representation V/Vyw with the modular function 5;.1./ %, We denote
this representation by #yw. This is a mild generalization of §14 [15]. One may check that
this definition yields the expected properties of Jacquet modules.

Another consequence of the splitting of G(F,) over U™ is the Iwasawa decomposition,
G(F,) = M(F,)s,(U")K, = M{F,)s{w) *s(U)s(w) K.

The associated integration formula follows in the usual fashion.

Suppose for this paragraph that w is the representative of W(ayr) such that I = Uv.
Then we obtain the Gelfand-Naimark decomposition. This is a decomposition of an open
dense subset of G(F,) as

su(UYM(F,)s(U).

Its associated integration formula is given by

[, 7@ = /U . /M /U Flsu(@)s())dudmda,

where
it =T = /U 5p(mp(@))da,

@& = up(@)mp(@)kp (%), up(t) € U, mp(@) € M(F,) and kp(G) € K,. The results of this
paragraph do not rely on the assumption that P is standard.

Observe that since M(F,) normalizes s,,(U™) and ZT‘A;(F.,) is an abelian subgroup of
M (F,), we may obtain a root space decomposition of s, (U*). Using this root space
decomposition we may define a subset E‘A;_ of Zﬂ as in §4 [11]. In fact all one needs to
prove the remaining results concerning the asymptotic behaviour of matrix coefficients in
§4 [11] is the Iwahori decomposition for arbitrarily small compact open subgroups. These
Iwahori decompositions exist in G(F,) because there exists a compact open subgroup K/,
of G(F,) over which G(F,) splits (§[15]), and the Iwahori decomposition holds for G(F,).

The only decomposition which still needs to be addressed for G(F,) is the Cartan

decomposition. This may be recast as
é(FV) = UKv'Ym(Fv)Kw
v
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where 7y runs over a set of representatives of Ay, (F,) /.:1";—,; (Fy). This union is finite and
disjoint. It is the finiteness which allows us to restrict our attention to K.,Z?‘A:,;(F‘,)K,,
when proving the convergence of integrals or bounds of certain functions.

We make one further remark concerning bounding functions on G(F,). If h is a genuine
or antigenuine function on G(F,) then clearly

sup |a(Y)| = sup [h(p(7),1)|= sup [h(s(7))-
5G6(F.) 5€G(F) ~€G(Fy)

Therefore, in cases where one is interested in finding uniform bounds of such functions,
the techniques of the non-metaplectic groups may be used.
This concludes the discussion of the properties necessary for the proof of the Plancherel

formula. The proof may now be imitated after making some apparent definitions.

5 The Invariant Trace Formula

The purpose of this section is to present the metaplectic version of the invariant trace
formula of Arthur ([6], {7]), and to serve as a more detailed introduction to the following
sections.

Without further delay, we set forth the invariant trace formula of a function fe
H(G(A)) as the equality of

(14) ny WHWET S @Sl f),
Mel FE(so(M(F))py,s

with

(15 > WWS [ a @
t MeC TI{(M,t)

It will be convenient to denote (14) as I(f), and I(f*) as I*(f). This trace formula is
extrapolated from the trace formula given in [7] for algebraic groups. Since nontrivial
metaplectic coverings of algebraic groups are not algebraic, one ought to verify the results
of Arthur for metaplectic groups in order to rigorously assert the existence of a trace
formula as we have done above. There are unfortunately too many results that need to
be checked to be included in this thesis. Those results which have been checked (§4 for
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example) follow in a straightforward manner. There is no reason to doubt that the other
results do not follow in the same way. We will therefore be assuming that the invariant
trace formula is correct as stated.

Expansion (14) is known as the geometric side of the trace formula, as its terms depend
on (in our case) conjugacy classes in M(F). It will be further elaborated on in §9. The
other sum, (15), is known as the spectral side of the trace formula, as its terms depend
on representations of M (A). It will be further elaborated on in §12. Both the geometric
and spectral sides of the trace formula contain terms which are local, i.e. determined by
M(Fs), and global, 4.e. determined by the subgroup so(M(F)) of M(A).

In sections 6 and 9 we examine and compare the local geometric terms of the trace
formulas of G and G. In Theorem 9.1, we state the precise fashion in which the geometric
terms of these trace formulas are equal. The proof of Theorem 9.1 is completed in the
final section. Its proof is inductive and involves the spectral side of the trace formula as
well as the geometric side. Theorem 12.1 is the spectral analogue of Theorem 9.1 and is
also completed in the final section. It is shown to partially follow from Theorem 9.1. The

remaining sections are all steps in the inductive proof of Theorem 9.1 (i).

6 The Local Geometric Terms

The local geometric terms of (14) have the form Iy (3, f), where 7 is a conjugacy class in
M(Fs) and f € H(M(F5s)). For a fixed function f, these terms are derived from weighted
orbital integrals (cf. §2 [6]). On the other hand, if ¥ is fixed then Iy;(¥) may be viewed as
an invariant distribution on H(G(Fs)). Both points of view are valuable. We will abuse
notation from time to time by identifying an element of M(Fs)) with its conjugacy class.

These distributions satisfy two useful properties. The first of these is the descent
property (Theorem 8.1 [6]). This implies that if M; € £ is a subgroup of M and § €
M;(Fs) such that My 5 = My then

(16) Ly H= Y d§ (M D)% 3, f;).

LeLl{M)

See [6] for the definition of dfy, (M, L).
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The second property satisfied by these distributions is one of splitting. That is, if S is
a disjoint union of nonempty sets S; and Sy, and f = fif2, 5 = %1% are the corresponding
decompositions, then
(1) Li®@H =Y 5Ly, L2 G, £.0)12 G, for)-

L1, Lael(M)

Let, us speculate on how the local geometric terms of the trace formula for G might
match up with those of the trace formula of &. Our means of relating conjugacy classes
of these groups is the transfer map (1). The restriction of this map to M(Fjs) is invariant

under pM. We prove this as a lemma.

Lemma 6.1 Suppose v € M(Fs) andn € uM. Then

(m) ="

Proof. 1t is sufficient to prove the lemma in the case that S consists of a single valuation
v. Let
(v)r t GX G = i
be the nth Hilbert symbol of F,. The cocycle 7y, is given by
T0,(8',6) = H (62’6j)Fvﬁv(7)nv(a)/KV(‘sla)v
18i<j<r

where §',8 € Ay, (F,), 6! and §; are the respective diagonal entries of ¢’ and §, and &, is

a map taking values in u, (§2 [15]). It may be shown by induction on n that

(my) (. )"
n—-1

(1, 75(m, ) D 20, (3, )" =02) o, T | 00, ) (5 1)
k=1

n-1

(0 T L ) o) o () ™))y
k=1i<j

(0 TT e )2 o

~*.0
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Thus, if we wish to compare Iz (y*) with the invariant distributions from M(Fs), we had

best group the latter into 4¥ invariant sums. An obvious such grouping would be

S Iulmn. f), f € H™(M(F)).

nepdt

This grouping has only ore shortcoming. If M = G then

> Ielmn, ) # Io(n ) = Is(r", £°).

neng

‘We can correct this shortcoming if we take into account that

(18) Int(nn F) = I, £, m € S,

Indeed this invariance follows from the uG-invariance of the functions in H™*(G(Fs)). It

then makes sense to define

mA= > Iu(m ), v € M(Fs).

neult /g
As we shall see in Theorem 9.1, this is the sought-after grouping of invariant distributions.
Notice that if L € £L(M) then

L= Y, i fu),

neplt fuf
for all ¥ € M(Fs).
Before examining the properties of I(7), let us reconsider (18), that is the uS-

invariance of Ins(y). It is a direct consequence of the inductive definition of Iy that
In(my, £) = Tn(v, "f) = I (1, £), 7 € M(Fs), ninps§.
In the notation of §3 this becomes
Iu(my) = "In(v) = In ().
It is useful to note the reformulation in terms of Paley-Wiener functions, namely

Trelovs £ae) = "aa(, Fae) = Ty, far).

We now show that the distributions I (7) satisfy descent and splitting properties as

well.
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Lemma 6.2 Suppose M and M, belong to L and My C M. Suppose further that L €
L(My) such that d§y, (M, L) # 0. Then the map

P S % k=
given by (mug,n2uS) = mnap§, is an isomorphism.

Proof. If Sy, (M, L) # 0 as above, then by definition, a}f, &af,, = af; (§7[6]). The vector
spaces a; and af may be regarded as the respective orthogonal complements of aﬁl and

afy, in a§,. As a consequence we also have a5y @ af 2 afy,. Consider the homomorphism
HMl H M1 a7

It is readily verified that it passes to a homomorphism Hjy, : Ay, /A — ufﬁ such that
Hjp, (Au/Ag) C oy and Hiyy (Ap/Ag) C af. Accordingly

Hig ((An N AL)/Ag) € o naf = {0}

In other words, [£(7)]| = 1 for all y belonging to the split torus Ay N AL, and all characters
& € X(M;)r which are trivial when restricted to G. This implies that AL N Ay C Ag.
As a result, the multiplication map

AM/AG X AL/AG - AMl/AG
is injective. It now follows from the commutative diagram,
#ﬁd/liff BE/pE — AM/AiG x ApfAc

/"71‘1/’1//"'7? s AMx/AG

1

that the map of the lemma is injective. The surjectivity of the map can be seen from the

following equalities.
12 /G % pE [uS| = ndmofipdimed = péimey = b /4610
Lemma 6.3 Let M, My and L be as in Lemma 6.2. The map
bl g = vz,
given by quS — nuk forn € uM, is an isomorphism.
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Proof. The proof of this lemma follows from arguments similar to those of Lemma 6.2.00

The following proposition proves a descent property for I3;(7y). For this we need the
notion of an induced conjugacy class. Given v € M(Fs) define the induced conjugacy
class of v, 9%, to be the union of the G(Fs)-conjugacy classes which intersect 4U/ in an
open set. Here P = MU and P € P(M) is arbitrary. This definition is well-defined (§6

[8]) and in our case /€ is always a single G(Fs)-conjugacy class.

Proposition 6.1 Suppose M and M, belong to £ with My C M. Moreover suppose
v € My(Fs). Then
(™)=Y df (M LG, fu).
LeL(My)

Proof. Let n € pM. Since n lies in the centre of M(Fs), ny™ = {nd : § € yM} is
a conjugacy class in M(Fs). Let U be the unipotent radical of some P € PM(M,).
Clearly, left multiplication by # is a homeomorphism between 4U and nyU. It follows
that 7y™ is a conjugacy class of M(Fs) which intersects 7yU in an open set. In other

words 1y = (my)M.
The descent property for Ins(-y) (Theorem 8.1 [6]) together with Lemma 6.3 yield

A = Y Inlm™ )

nend /uS

= > Iulm™.f)
nepd! [ug

= > &Ly S I )
LeL(m) neud [pg

= ) L) > IE G fi)
LeL(a) neun’t [uk

= 3 d (M L)%y f)0
LeL{M)

Corollary 6.1 Suppose M and M, belong to L with My C M. Moreover suppose ¥ €
M(Fs). Then

mH =Y M L)Ig5 0, fr).
LeL(M)
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Proof. It follows from rational canonical form that v is equal to the conjugacy class of
~ in M(F5).0

Proposition 6.2 Suppose S is the disjoint union of nonempty sets Sy and S, and that
f = fife, v =717 € M(Fs) are corresponding decompositions. Then

II\L/;(% f)= Z d}?/l(LhL2)j1{l{h2(711fl‘Lx)jIIl:lz’E(’Ym fZ.Lz)-
Ly, L2€L(M)

Proof. We begin by applying the splitting property to the summands of I, ()

IE ) = Y. Inlmf)
nepl /u§
= Z dﬁ"l(Ll,Lz) Z f]l‘?(”]'}'lyfl,Lx)IAﬁ[’(n')'erZLz)'
L1,LaeL(M) nepdl ug

Suppose the expression d$(L1, L2) of these sums is not zero. By using arguments similar

to those of the proof of Lemma 6.2, it may be established that

M fuG =l fuls x pl fug?,

[ = gt [l % g 13
and pbr 0 pkz = €. From plt N pks = S it follows that the homomorphism
g = [,
given by nu§ ~+ nul?, is injective. This homomorphism is also surjective as
Ikt /G| = mimed ~dimafy — pdimelf — |y} /la.

It may be deduced in the same manner that uZ2/u§ = pM /uls.

Thus the previous sum is equal to

Z dz?!(-[’hh) Z Z f/’t}l(ﬂmﬂl,fl.L;)leff(ﬂlﬂz’)’z»fz,L:)

Ly, La€L(M) menbt /unt mend /ug?

= > dill,Ly) > > I, fue) I mmye, fa)

L L2€L(M) mEu?/ug mepnt [u§
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> d§(Lr, L) Z I mmen, fur,) Z I (mmev2, fota)

LuLaeL(M) mens? /ug na€urd [u§
= Y (Il Y, IRmmhw) D, IR fan)
Li,L2€L(M) meud [ut maeud! [ur?

S d§( Ly, L) (o, fue) 5 (v, Fo,0,).0
LiLogL(M)

[}

7 A Fundamental Lemma

‘We may already prove a specific, yet crucial identity between the local geometric terms
of G and G. For the duration of this section we fix v to be a valuation of F such that
[n]y = 1. Define f? to be the product of the characteristic function of K, with the scalar
vol(K,)~. Define f° to be the unique antigenuine function such that f0 o p == f9. The
following proposition is a type of weighted fundamental lemma, as it is an identity of
weighted orbital integrals defined in [8].

We first prove a technical lemma which concerns the weight vy, of the weighted orbital
integrals (¢f. p. 36 [1], §§1-2 [8]).

Lemma 7.1 Suppose ¥ € M(F,). Then
vy (s(m)) = nfmAnldelyy ().
Proof. The (G, M) family from which v, is derived is defined as

(X, Hgls(y))) = & (uleOD)
= M (nHg(s()

= MHM),
where P € P(M) and A € ia},;. In particular

vp(A",8(7)) = vp(A,7)-

By definition then

vjr(s(7)) = lim > v s()vol(a/Z(A%)7) T] (@)
PecP(M) aElp
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where Ay is the set of simple roots of (P, Apr) (§6 [1]). Since the measures on ap and

ar are identical, we have
vol (a5 /Z(AY,)*) = nimAslac)yo] (ap /Z(AY,)) -
Moreover A*(a¥*) = A(e"). Hence

va(s(n) = lim > wp(A N =A/ivol (ay/2(AY)) TT (Ma*)™)
PeP(M) a€Ap

= ndim(AM/AG)vM (y)o

In what follows, an element 7 € M(Fs)) is said to be F,-elliptic in M if ¥ € M;(F,)
An

for some regular element § € M(F,) and M;(F,)/ A% (F,) is compact.
Proposition 7.1 Suppose v € M(F,) such that 4" is semisimple and G-regular. Then

T (7", £7) = nmAnlA0) Jy (o, £7).

Proof. We first focus our attention on Jg (v, f,‘,’). Without loss of generality v € K,,. By
Lemma 1.1.2 [13], we have G, = p~}(G,). In consequence of this and the normalization
of measures in §3, Gy (F,)\G(F,) and G, (F,)\G(F,) are identified as measure spaces.
‘We retain the notation of the latter space. It now follows that
Tl 1) = nimtwtsc Dy [ s (e s (o).
G (F\G(Fy)

Let Ag,(F,) be the maximal split component of the centre of G,. The centralizer of
Ag,(Fy) in G(F,) is a Levi subgroup. Let M, denote this Levi subgroup and let N; be
its unipotent radical. The inclusion M; C M follows from the fact that the centre of M,
which is a split torus, is contained in Ag,, the centre of M;. Observe also that M; D G,
and that « is F-elliptic in M (F,). If we apply the Iwasawa decomposition, G = MiN, K,
to J (7", f%), we obtain the product of ndim(4m/46) with

DG [

/ Pk~ 0 Yy s(mnk) Juar (mnk)dk dn dm
My (FO\ML(FY) I N1(F) Y Ky
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(with apologies for the double usage of n). By taking into account that ff,’ is bi-invariant
under s(K,) and that vps is right K,-invariant (§2 [8]), we may ignore the above integral
over K, to arrive at

ndim(Am/Aa) |D(7")||l;/2 /
My (F)\Mi(Fo)

/ F(s(n~ 'm 1)y s(mn))ups (mn)dn dm.

M (Fy)

Define a map @, : Ny = N1 by ¢n(n) = myln~'mon, where mp = m™~!9"m, m € M,
and n € N;. It is not hard to show that ¢,, is injective from the fact that 4" is G-
regular. By Proposition 7 [15], the last integral may be expressed as the product of
ndim(As/Ac) | DM (4 ltllﬂ with
5Y2(mym) /

Ny

/ Fstm= " s(mm)ose(migz()n i,
My (F\M1(Fy) (Fv)

where N; is the image of ¢m, p, is the modular function of the parabolic subgroup
P, = MiNy, and DM! is the Weyl discriminant for the group M;.

It is obvious that fO(s(m™1)y*s(mn))uss (mp;}(n)) venishes unless
mon = m™y*mn

lies in K,. Now observe that if mgn lies in K, then so do mg and n. Indeed, since My N,
may be taken to be a standard parabolic subgroup, the entries of mon lie in R, if and

only if the entries of mp and n lie in R. If mg € K then p (mg) = 1 and our integral

becomes
nintAulA0) D ) [ Bstmyrsm) [ oumppi(m)dndm
My (Fo\M1(Fo) N2 (Fo)NKy
= plim(4ar/4c)| DM () |72 Fs(m™)y"s(m)) vy (g5 (n))dn dm.
My A (Fo \M1(Fy) Na(Fu)NKy

The latter equality arises from the left M-invariance of up (§2 (8]). The preceding caleu-
lation can easily be adapted to Ja(7, f°) by setting n = 1. Consequently,

Il £8) = 10" [

Fo(mym) / u (5 (n))dn dm.
M+ (F)\M1(F) Na(Fo)NKy

We now follow the arguments of §12 [15]. We may decompose M; as Hf;l M, (2), where
M, (5) = GL(b;, Fy)) and T2 b; = r. Let su be the topological Jordan decomposition of
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7 (§3 Lemma 2 [18]). Then s*u" is the topological Jordan decomposition of ™. We will
show that My ,(F,) = M. Since v is semisimple, F,-elliptic in M, and commutes with
s, § itself is semisimple and F,-elliptic in M;(F,). Thus My ,~(F,) is a reductive group
isomorphic to Hf’;l GL(Y}, F}), where F] is a field extension of F, and Zfl‘ﬂ [Fi:F b, =r.
Since it contains the elliptic torus M ,(F,), we must have £} = ¢, and [F] : F,}b = b;.
In particular s™ may be regarded as an element of [, F!. Let F¥ be the field obtained
from F] by adjoining an nth root of s™. Then F}' is a field extension of F; whose degree
divides n (¢f. proof of Lemma 9.1). However [F}’ : F{] < r, so we must have [F}' : F{] =1,
that is F! = F!. Since My ,(F,) is isomorphic to [[%, GL(b!, F!"), where ¥/[F} : F}] = b,
we may conclude that My . (F,) = My ,(F,).

We now reduce the earlier weighted orbital integrals over M;(F,) to weighted orbital
integrals over M ,(F,). Indeed according to §3 Lemma 3 [18], if m™ym € K, form €
M, (F,), then m € M, (F,)K,. We set

wm)= [ oulei(n)dn, m & M(R)
Na(Fo)NKy
in order to render the ensuing computations more readable. With this notation we find

D () 2 / (s s(m)p(m)dm

M4 (R \MI(FY)

v Ky N My (F) My gnym) 12 70 ~Lyors(m) Vb (m
(195 vol (2Pl ) DMl | ey T Sy

In the following we identify My (F,) with [T, GL(b}, F}). We may replace s* and u*
with (s7,1) and («",1) respectively since K, splits over G(F,) (§2 [15]). We will abuse
notation slightly by suppressing the second coordinate. By a variation Proposition 0.1.5
9],

4
m~1s"m = (1, (det(s"), det(m))r,/ ] [ (s7, det(ms)) ),

i=1

where m € [J2, GL(¥,, F!), m; is the image of m in GL(b}, F!) and (-, ) is the nth Hilbert
symbol of the field following it in subscript. Since the Hilbert symbol is trivial on nth
powers, the above expression is easily seen to be the identity. Hence (19) becomes

Kvan(Fv)) My (,ny1/2 70/l —=1Y,m
vol (—“—Kli,,(m DM ()] /n . rougry TS,
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By following the arguments of the Proposition of §12 [15] verbatim, we can show this to
be equal to

K, N M(F,) ) M, 1 /
vol [ 220} | DMua ()| /2
((KuﬂMl,a(Fu) l Sl T4, PGL(E, !

i=1

) £2(m um)p(m)dm.
Working backwards from this integral, we obtain the proposition. (Il
Proposition 7.2 Suppose v € M(F,). Then

(20) Lu(Y 1) = Ia(v, £))-

Proof. Once again, without loss of generality, we may assume that v is in K,. By

Proposition 7.1 and Lemma 6.1, it is apparent that
n” GnlAulAe) Ju (o, £3) = Tulon, £), m € 3t
According to Lemma 2.1 (6]
Iy, £3) = T, £2).

Thus

Jar )
n_dim(AM/AG)JM('Y‘,f,?)
nepdt /ug

Z JM("’% fo)

neph! /u§

S Inlrn £

neudt /ug

I ),

Ig(v', )

1l

it

if 4™ is G-regular.
If 4™ is not assumed to be G-regular, let v = ou be the Jordan decomposition of
v € M. By the definition of r5(v*,v*,a*) (3.4 [8]), we have

o e} = JLH@Y = (@) ey
B
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[

H [(a™)Pm — (@=™)P/m |plBlmu™)35)nBY)
8

H @ — (a~1)FjPBa5)(8Y)
8
= re(v,7,0),

where a € Apfzeg(Fy), P € P(M), and the products are taken over the roots of (P, Aas, ).
From the definition of (G, M) families, we have

ri(ne) = Im > rE@ma)(vol (af/Z((A5)Y) [T v@)™)

PePL(M) acAf,

= lm 3 kel (/2 a5)Y) T vey™
PePL(M) A

= lm > k) A (vol (o /2((A5))) T] v
PePL(M) acA

= n- dim(A,.,/A,,)rf_l(,Y.,a.)
In consequence,
AN 40 (o, )

= limn®™An/de) N7 ol (y,a)In(ay, £7)

a—1 LeL(M)
o dim(An/Ac)-dim(An/AL), L (o o3 0
— ,I,IP,{ Z ndim(As/Ag)-dim(An /. L)TM('Y e ) (ay, f2)
LeL(M)
= ‘111_13 Z rﬁ‘;,('y',a‘)(ndi'"(A"/AG)IL(a’Y,fg))
LeL(M)
= ‘111_13 Z Tllé[('Y‘:a‘)If(a’vaz?)
LeL(M)
= lm > k0@, £)
LeL(M)
= Iu(r. 7))

The lemma now follows from an application of Lemma 6.1.00

‘We close this section with two partial results that are true for arbitrary positive integers
n and r > 2. We stress that n need not be relatively prime to any number in Lemma 7.2
and Lemma 7.3.
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Lemma 7.2 Suppose y € M(F,) such that 4™ is diagonal and G-regular. Then
Tir(7, £3) = nimlaul4o) Jy (y, £7).

Proof. The first portion of the proof of Proposition 7.1 does not rely on any assumptions

between n and r, and so we may write

T 1)
— dim(AM/AG)iDMl (’Y")Ll;/z/

Rsmrsm) [ wlyzi)dnam
My (Fo\M1(Fo) NnK,

and

Tl £9) = 1D )2 [

$m~ym) [ onelp)ndm
My (Fo\M1(Fu) NanK,
as before. Since v is diagonal, M is the diagonal Levi subgroup M, and so ¢, is, despite
appearances, independent of m € My. Moreover My, (F,) = My(F,). Hence
Tyl ) = ntentac) pio(ymy s [

v (5 (n))dn,
NanK,

and
I, 19) = 1D% @2 [ oulyrim)in
N

2NKy

The desired equality follows from
|DM°(7")!U = |DMo(y)], = 1.0

Lemma 7.3 (Flicker, Kazhdan, Waldspurger) Suppose v € G(F,) such that 4" is
G-regular. Then

Te(r" F2) = Ja(1, £3)-

Proof. This is proven in Proposition 12 of [15] modulo an assertion which is proven in
[32]. See the first appendix of [14] for details.(3
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8 A Vanishing Property

Given that the orbit map, (1), is our means of relating conjugacy classes of G to conjugacy
classes G, we should hope that the distributions Iz (%, f) of (14) vanish unless 7 lies in
the image of (1). This is referred to as a vanishing property. Note that by §3 {15}, we
have that I5(3, f) vanishes unless p{§) = 4" for some v € G(Fs). Thus we already
have a local vanishing property for the case M = G. The formulation and proof of
the vanishing property for arbitrary M are somewhat roundabout and require a several
additional definitions and lemmas. This section follows §10 [6] closely.

Let v be a nonArchimedean valuation and let M(F,)en be the set of F,-eHiptic elements
in M(F,). By rational canonical form, any § € G(F,) is in some induced conjugacy class
76, where 7 € L(F,)ey and L € L. The pair (L,7) is uniquely determined by & up to
G(F,)-conjugacy. Let & € G(F,) such that p(8) = & as above. We define G(F,)¢ C G(F,)
by specifying that § € G(F,)¢ if and only if £(1) € F*» for all £ € X(L(F,))r. We
also define G(F,)¢ by specifying that § € G(F,)¢ if and only if £(r) € FX* for all
€ € X(G(F,))r. It follows from X(G)r C X(L)r that G(F,)¢ c G(F,)g. Clearly, we
may define M(F,)p and M(F,) as above by replacing G with M.

Lemma 8.1 Let E/F, be an extension of degree t such that t < n, and ged(n,t) = 1. If
z € E* such that Ngyr,(z) € F)™ then ¢ € E*™.

Proof. We first show that E* /E*" = FX /F*" and that we may take coset representatives
of E*/E*™ to be in F. The homomorphism

FuX/F"Xn - E)( /Exﬂ

given by zF™ — 2E*®, for z € F, is injective. Indeed, suppose z does not belong to
F*m_but does belong to E*". Then [F(z¥/"} : F,] divides n by Theorem 10 (b) VIII §6
[23]. Moreover z'/" € E, so

t=[E: F)=[E: F,(Y)[F,(z"") : F},
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which contradicts ged(n, t) = 1. The surjectivity of this map follows at once from the fact
that (Corollary II §3 [24])

(21) |E*/E**| = |Fy [F™| = n?/|n,.
The enunciation of the lemma amounts to showing the injectivity of the homomor-
phism
Ngyr, : BX|E*™ — F)Y [F;"
given by

zE*™  (Ngyr, (2))FS™ = 2t FX™,
where z € FX. If ¢tF*™ = FX™ and ¢ ¢ F", then t must divide n?/|n|, by (21), thereby
contradicting ged(f,n) = 1. Thus this map is injective. [

Proposition 8.1 Let ¥ € M(F,). Then 5 € M(F,)y if and only if p(3) = & for some
§ € M(F,).

Proof. The proposition may plainly be deduced from the case that M = G, if decomposi-
tion (2) is kept in mind. Let § € G(F,) such that p(§) = &" for some 6 € G(F,,). Suppose
8 € 76, where 7 € L(F,)es and L € £. Then é* € (r*)€ and 7 € L(F,)en. Clearly,
(™) = (&(r))" € F* for all £ € X(L)p. Consequently 7 € G(F,)qg.

Conversely, suppose § € p(C-v’(F.,)G) and § € 7€ for 7 and L as above. We must show
that § = o™ for some o € G(F,). Suppose that L has a decomposition L = T[], L(i),
where L(i)(F,) = GL(k;, F,). Let {&}%, be a base for X(L)r. We identify L(i) with
GL(k;) by the above isomorphism, take & = detjy, and set 7 = ()i, where 1; €
GL(k;, F,). Since 7 is F,-elliptic in L(F,), there exist elliptic tori T} C L(¢) and extension
fields E;/F,, such that {E; : F,) = k; and T; & E*. If we consider 7; € E; to be the image
of 7 under these isomorphisms then

Neyr, (1) = det(n) = &(7) = &(1) € B
Thus, by Lemma 8.1, r; € EX", i.e. 7, = (7, where §; € EX 2 T; C Ly(F,)ar. This
implies that 7 = §7, where 8 = (8;)%_; € L(F,)en- As a result § € (6")°, and so there
exists ¢ € % C G(F,) such that § = "0
This next proposition establishes a local vanishing property (cf. §10 [7]).
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Proposition 8.2 Suppose § € M(F,)M. Then I;(3,f) = 0 for all f € H™G(F,))
unless & € M(F,)u.

Proof. Assume Iz (3, f) # 0 for some § € M(F,)™ and f € H(G(Fs)). Let Ly € LM and
7 € Ly(F,)en such that p(8) € 7M. Fix & € X(L1)r. We must show that &(r) € Fxn.
By the descent descent property (§6)
Ig@. /)= Y. dE(M, L), fy,) #0.
La€L(L)
Hence there is some L, € £(L;) such that df, (M, L) i’:‘:(T, fi,) # 0. Since df (M, Lp) #
0, we may decompose &1 as £ + &2, where £ € X(M)r and & € X(Ly)p. The distribution
I f" (7) is in the closed linear span of {I f: (m)}, where 7 ranges over the G-regular points
in Ly(F,) such that &(7) = &(n) (cf. Proposition 10.2 [6}). Therefore there exists such
an 77 with
e, fz,) = Im ) # 0.

From the remark at the beginning of this section, this implies that & (1) = &(n) € F™.
By assumption £(7) € FX". Consequently &,(r) = £(7)&(7) € F)™, and the proposition
follows.d

We transfer this local vanishing property to a global vanishing property by using
splitting and some local-global results on n-th roots in F and G(F).

Lemma 8.2 Let 2 € F* such that x € F)" for almost all valuations v. Then x € F*".

Proof. We will prove this lemma by contradiction. To this end, let o be a non-trivial
element in the Galois group of the abelian extension F(z}/). Observe that F(z/") is
well-defined since p, C F. It is immediate from the hypothesis of the lemma that the
density of the valuations for which o is the Frobenius automorphism is zero. However
the Tchebotarev density theorem (VIII, §4 Theorem 10 [24]) tells us that this density is
1/[F(z*™) : F|.O

Lemma 8.3 Let F be any field containing p,. Let v € GL(r, E) be such that v is E-
elliptic in some Levi subgroup L of GL(r,E). If v* is in the cenire of GL(r, E) then
v € AL(E).
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Proof. Suppose first that « is E-elliptic in GL(r, E). Then we may view + as an element
of E{, where F is a field extension of F such that [E; : E] divides r. The minimal
polynomial of 7 over E divides the polynomial g{(X) = X™ — 4. From this it is clear
that the norm of v is 4##El¢ € E, for some ¢ € p,. Since { € p, C E we have
488 ¢ B, Writing 7 = yEvEly? for some integers k and 0 < b < [Ey : E], we find
4? = 4"y~ME:El ¢ B, This implies that b = 0 and n = k[E, : E]. Since we are assuming
ged(n, ) = 1, we must have [E; : E] = 1. In particular, 7 belongs to E*. In the context
of the group GL(r, E), this means that + lies in the centre.

The proof of the lemma for arbitrary v may be obtained by combining the above
argument with the fact that  is E-elliptic in some Levi subgroup L = [[_, GL(k;) of
GL(r).00

Lemma 8.4 Let § be an element of M(F) such that § = 4* for some -y, € M(F,) and
almost all valuations v of F. Then § = 4" for some v € M(F).

Proof. This lemma follows easily from the case M = G. Suppose first that § € G(F)
is semisimple. We may then, by rational canonical form, take § to be a diagonal block

matrix of the form
(51 0

0 O
where §; € GL(m;, F) generates a field extension F;/ F of degree m;, and appears b; times.
The centralizer Gs(F) of § in G(F) is isomorphic to 1'[:;1 GL(b;, F;). It is not difficult to
see that this lemma can be solved for the semisimple case if it is solved for the case k = 1.
Let us then restrict our proof to this case. If Fi = F we may identify § with §, € F*. By
Lemma 8.3, +, belongs to Ag(F,), so we may identify it with a scalar in F*. Thus we
are in the same circumstance as Lemma 8.2 with z = §;. Next let F}/F be an arbitrary

finite field extension. Let wy,...,wq be the valuations of F; which divide v. Then §, is
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conjugate to

in GL(my, F,), where §y; generates Fy,, over F,. This implies that

d
Gs(F,) = [[ GL(ry, Fiw,)

i=1

Clearly, 4, € G5(F,). Via this last isomorphism, we may decompose 7, = (7,,:)%,, where
Yoi € GL(r1, Fluw;), 1 < ¢ < d. Observe also that the map §; — &;; corresponds to an
embedding F} < Fy,,, which in turn yields an embedding GL(ry, F;) < GL{r1, F1u,),
1 £i < d. With respect to these embeddings, we have 7}; = §, 1 <14 < d. This places us
once more in the same circumstance as Fy = F, which has been taken care of.

For general § € G(F) let § = ou be the Jordan decomposition where o is semisimple
and u is unipotent. Similarly let o,u, be the Jordan decomposition of v, € G(F,). It
follows clearly from 47 = § that o} = ¢ and u} = u. We first assume that ¢ is a
scalar matrix in G(F). Then, once again by Lemma 8.2, there exists a scalar matrix
o1 € Ag(F) such that 67 = 0. Let u; = exp(Llog(u)). Then u} = u and oyuy = woy
together imply that (o1u1)* = ou = 4. For arbitrary semisimple ¢ € G(F) we may follow
the decomposition of G,(F) as before since u € G,(F). This decomposition allows us
once more to restrict our proof to the case that ¢ is a scalar matrix and we may argue as

above to complete the proof.(]

Proposition 8.3 Let S be a large set of valuations containing the Archimedean valuations
and § € so(M(F)) N M(Fs). Then Ig(6, f) = 0 for all f € H(G(Fs)) unless p(8) = v
for some v € M(F).

Proof. We may assume by §3 [15] that the proposition holds for L € £(M) such that
L # G. Suppose Iy (3, f) # 0. We first show that § € M(Fs)M = Moes M(F,)™. Sup-
pose the contrary, i.e. suppose that £(5) does not belong to F" for some £ € X (M(Fs))r
and vy € S. Then 5—(5) does not belong to F*". By Lemma 8.2 there is another place vz,
which we may assume to be in S, such that £(5) does not belong to Fj". The sets 51 =
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S — {v,} and S; = {;} both have the closure property, as they contain Archimedean val-
uations. Decompose f € H(G(Fs)) into fi f such that fi € H(G(Fs,)), fo € H(G(Fs,)).
Applying the splitting property (6), we obtain

@)= Y, IR0 h) A0
Ly, L2eL(M)
Thus there is a pair Ly, Ly € £(L) such that dg(fq, L2) # 0and fg‘“(&, fi,i;) #0,i=1,2.
As in Proposition 8.2

&(8) = &1(0)&(5), & € X(Lu(Fs))r, i=1,2.

Suppose that £(§) € F**, Then it belongs to F** for all valuations v of F so we must
have §(8) ¢ F". It follows by induction that I f‘; (5, fz,i,) = 0 and this is a contradiction.
On the other hand if £,(6) ¢ F*", then we may assume as we did before for S that
£(5) ¢ Fx for some valuation vy € §;. This implies I f; (8, fl.iq) = 0. This is also a
contradiction. Consequently § € M(Fs)™.

Now we may apply Proposition 8.2 to conclude that

de M(FS)M = HM(Fv)M

veS

According to Proposition 8.1, there exist , € G(F,) such that 4* = p(é) for allv € S.
Since S can be made arbitrarily large, we may assume that p(d) is an nth power at all of
the valuations of F'. Therefore we may apply Lemma 8.4 to p(d) and conclude that there
exists an element v of G(F) such that 4" = p(§).0

9 The Geometric Side of the Trace Formula

Before giving the details of the geometric sides of the trace formulas, we give some mo-
tivation. According to §2 [19], the map sy of §2 is a homomorphism of G(F) into G(A).
In particular G(F) splits over G(A). Let L2(so(G(#))\G(A)) be the space of square-
integrable functions on G(A), which are genuine and left-invariant under so(G(F)). We

can now form a theory of automorphic representations on G(A) by examining the (right)
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regular representation R on L2(so(G(F))\G(A)). The geometric side of the trace formula
originates from the following calculation. Let ¢ € L¥(so(G(F)\G(A)). Then

(R(Fe)w)

/ F(=)(R)0)@)do

G(A)

/_ Fl@)o(yo)ds
G(A)

=n /“ R On O

=n / _ fy'a)e(e)de
(uaN\G(A)

n / Y fa'na)e(ya)ds
H{pn)so(G(FI\G(A) ~€s0(G(F))

nf , ( > f(;rwz)) pla)ds

i(pn)50(C(FING(A) \ eso(G(F))
Roughly speaking, the trace of the operator R(f) is obtained by integrating the integral
kernel

@y~ Y, f ')
v€30(G(F))

over the diagonal. The only novelty in this calculation is the coefficient n in front of the
integral. This justifies its appearance in (14).

If n is prime let S(») be the set of nonArchimedean valuations v of F' such that |n|, # 1.
If n is not prime let Spn) be the set of nonArchimedean valuations such that |n|, # 1
together with a single Archimedean valuation. In either case S(s) has the closure property.
Suppose S contains S(ny and the Archimedean valuations of F, and f e H(G(Fs)). We
may embed f into #(G(A)) by taking its product with [logs 79, where f0is as in §7. If
S satisfies some additional properties, which are given in §3 [7), then I( ) equals

YWY M )
MecL Fe(s0(M(F)) 1.5

The set (so(M(F)))z,s denotes the set of (M, 8)-equivalence classes in so(M(F)) (§8
[4]), which in the present case are just the conjugacy classes of so(M(F)). The coefficient
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a™(S,7) requires more explanation. Let ou be the Jordan decomposition of p(¥) € M(F).
Set iM(S,0) = 1 if o is F-elliptic in M(F), and the M(F,)-orbit of o meets K, N M(F,)
for every valuation v ¢ 5. Otherwise set 7¥(S,a) = 0. It follows from the nature of the
conjugacy classes of M(F) and 3.2 [7] that

(22) a™(S,9) = iM(8, o)aeot)(S, ).

For a description of a™o(=) (S, u) see §7 [4].
Consider the summand of (14) indexed by M = G, namely
PR O )]
4€(s0(G(F)))g,s

If we are to have any hope in comparing this term with its counterpart,

Y G5l

1€(G(Fa,s

by using the orbit map (1), then we must eliminate those ¥ from the former sum such that
4 # " for some v € G(F). In doing this we could index the relevant conjugacy classes of
G(F) with conjugacy classes of G(F). Unfortunately the orbit map is not injective. The
aim of the following lemma is to measure the extent to which it is not injective on the

elliptic set.
Lemma 9.1 Ifv; and v, are F-elliptic in M(F), and 4} = ¢, then 11v;' € pi.

Proof. We restrict the proof to the case M = G with assurances that the general case
follows easily from this one. Suppose 7, and 7, are F-elliptic in G(F). Then there exist
elliptic tori T; and T, containing ; and 7, respectively. There are isomorphisms T; & E7*,
where E; is a field extension of F for ¢ = 1,2. We may therefore view ~; as field elements
of B;,i=1,2. Let E = E) N E; and let f;(X) € E[X] be the minimal polynomial of ~;
for i = 1,2. Clearly f;(X) divides X™ — 47. Furthermore [E; : E] divides [E; : F] =r.
We may use the argument of Lemma 8.3, replacing E, with E; and £ with F to conclude
that By = E; = E. In E the equality 77 = 43 implies (y,7;1)" = 1, and this clearly
implies that 11731 € g, C F. Translated back to the context of the group G(F), this
means 1y, € . O

42



Suppose 71 and 7, belong to the same conjugacy class of M(F). Then since p is in
the centre of M(F), 711 and 7y, also belong to the same conjugacy class of M(F) for all
n € p. This fact allows us to define the quotient set (M(F))u,s/p} in an obvious way.

Proposition 9.1 (5.1) The expansion for I(f) may be expressed as

oy WHWE Y Sy B
MeL VE(M(F))ar,s/ulf
Proof. According to Proposition 8.3, the distribution I (6), with § € so(M(F)), vanishes
unless p(d) = 4™ for some v € M(F). From the previous lemma we see that the map

yuM 5 4" is injective on the F-elliptic set of M(F"). Thus the map of conjugacy classes,

(M(F))aa,s/eat = (so(M(F))jr,50
given by
7 (1 1) = (0 )7L, 8(M)" = so(7)" = se(7"),
is injective. The proposition now follows from the fact that a(S,5) vanishes if § €
sp(M(F)) is not F-elliptic in M(F).0
The trace formula for G, which we expect to match I(f*), is

I(f) = D WEIWER > ™S iu(rn f)

MeL 1E(M(F))m,s
STWHIWET ST Y MS ) Il ).
Mec YE(M(F))pr,s/ vt nend!

As earlier, we have the decomposition

(23) aM(5,7) = M(S, 0)a (S, ),

for ¥ = ou € M(F). Since every element of M is F-elliptic in M and also lies in
K, N M(F,) for all valuations v, it is not difficult to verify that i (S, 7o) = i(S, o) for
all n € pM and semisimple ¢ € M(F). This implies that a*(S,7v) = ¢™(S,7) in the

previous sum. Explicitly,

5 = S wWwert > Sy Y Intm )
MeL YE(M(F))as, s/l LET
= 2 ) WwWE Y QM NIEM ).
MeL YE(M(F))pt,5/uM
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The present forms of the two trace formulas and Theorem A of [10] suggest the fol-
lowing definition and theorem. We define

I}\A;(% )= IA?{('Y')f‘)y v € M(Fs).
Theorem 9.1 (A) (i) Suppose that S is a finite set of valuations containing Sgn). Then

Iin f) = B (n £),

for all vy € M(Fs).

(ii) Suppose v € M(F). Then aM (S,50(7™)) = a™(S,v) for any suitably large finite set
S.

This theorem will be proved in §18.

Continuing in the same vein as [10], we make an induction hypothesis. Namely, that
the theorem holds if G is replaced by G;, where G, is a product of general linear groups
over field extensions of F and dimp G(F) < dimp G(F). The relevance of this induction
hypothesis lies in the following observations. Given a semisimple element o in M(F), the
centralizer M,(F) & f=1 GL(b;, F;), where F;/F is a finite field extension for 1 <4 < k,
and 3% B[F, : F] = r. Thus M,(F) falls into the class of groups described in the
induction hypothesis as long as dimp M, < dimpG. This last condition is satisfied as
long as M # G or o is not in the centre of G.

By combining this induction hypothesis with the descent property ((16), Corollary
6.1) and splitting property ((17), Proposition 6.2), we obtain the following two lemmas.
The reader is referred to pages 109-110 of [10] for the proofs.

Lemma 9.2 Suppose M; and M are in L such that My G M. If v € My(Fs) such that
4" is G-regular, then I{f (v, f) = IG (v, f)-

Lemma 9.3 Suppose Theorem 9.1 (i) holds. Furthermore suppose S is a disjoint union
of Sy and Sy, where So has the closure property and contains Sin), and Sy consists of a
single nonArchimedean valuation. If f = fofy and v = o1 € M(Fs) are decompositions
corresponding to that of S, then Iff (1, f1) = I&(m, fi)-
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If we apply our induction hypothesis to (14) and the expansions (22) and (23), we
obtain the following lemma.

Lemma 9.4 (5.2) The distribution, IM(f) — I(f) is the sum of
ooy WIWEI YD MU - IR 6)
MeL,M#£G YE(M(F))m,s/pdf
and

n Y Y (@S - a8(S,u)IE (0u, f).
§€Ag(F) ueUs(F)la,s

One useful restriction that we may make in showing the first assertion of Theorem 9.1

is given by the following lemma.

Lemma 9.5 (3.6) Suppose

Ig(n f) = Iif(n. )
for every element v € M(Fs) such that v* is G-regular and semisimple. Then the same
formula holds for any element v € M(Fs).

Proof.See Lemma 3.6 [10).0

In light of Lemma (9.5), we define the set Gyeg(Fs) to be the set of elements y € G(Fs)
such that 4™ is G-regular. Clearly, the elements of G.eg(Fs) are the ones whose image
under the transfer map (1) are G-regular.

10 Comparison of the Local Geometric Terms

The goal of this section is to establish a rough comparison between I*(y, f) and I§;(7, f)
under the assumption that Theorem 9.1 (i) is true, and then to compare their germ
expansions. The comparison of germ expansions is a technical point whose ultimate
purpose is to establish a comparison between I*(y, f} and I3 (v, f) which no longer
requires Theorem 9.1 (i) (Proposition 16.1).

The first assertion of Theorem 9.1 has a restriction on S, namely that S must contain
Stn)- If one were to assume this assertion to be true, one could still ask whether something

like it would remain true for arbitrary S. This is the content of the next theorem.
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Theorem 10.1 (6.1) In the special case that § D Si,), we suppose that
N =If(n ),
for any v € L(Fs) and L € L(M). Then there are unique constants
er(S) =€Z(S), L L(M),

such that

Bt =Y Li¥(neuS)fi), v € M(Fs).
LeL(M)

The constants have the descent property
em(S)= Y, (M, L)y (8), Myc M,
LeL(M:)

and the splitting property

em(S)= D df(Ln, La)efH(S)eR}(S), §= 51U Sy
Ly, La€L(M)

Proof. This theorem follows from the proof of Theorem 6.1 [10], with I, replaced by Ity
and Iy replaced by I5.00

Now we begin the comparison of germ expansions of I*(y, f) and I (7, ). This
is a local comparison in another sense of the word local. That is, it is a comparison of
Iu(v, f) and I§ (7, f) over neighbourhoods of v € M. Lemma 10.4 and Proposition 10.1
will be the stepping stones used in Proposition 16.1.

Let H™*{G(Fs))? be the subspace of H™*(G(Fs)) spanned by functions

f=T1# fo e H™(GCR)),
ves
which satisfy the following condition. For each finite valuation v € S, § € Ag(F,), and
u, € Ug(F,), we have
I6(6ouy, f) =0

unless u, = 1. Such functions exist by §3.3 [31] and Corollary 27.3 [15]. The motivation

for the definition of this subspace comes from the second sum of Lemma 9.4.
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We will show that for any f € H™*(G(F,))°, there exist germ expansions for I;(7, f)
and I{f(v, f), and that these germ expansions are in some sense equivalent. First we
make this notion of equivalence precise.

Let & be a semisimple element of M (Fs), and let ¢; and ¢ be functions defined on
an open subset ¥ of &M};(Fs), whose closure contains an M;-invariant neighbourhood of
5. We say ¢, is (M, &)-equivalent to ¢, and write

313) "% 9,(3), for 7€ 3,

if there exists 2 compactly supported smooth function & on M (Fs) and a neighbourhood
U of & in M(Fs) such that

$1(7) - 6a(7) = I (1), for € 2N
If M = M then we make the additional stipulation that i € H™t(M(Fs)).
For the remainder of this section v is a2 nonArchimedean valuation of F, and ¢ is a
semisimple element in M(F,) which is also F,-elliptic in M(F,).
Lemmas 10.1-10.3 allow us to derive a germ expansion for I}(7, f) from the known

germ expansion of In(y, f).

Lemma 10.1 Let L € L{M) and suppose that 6" is F,-elliptic in L. Then there exists
nr € pM such that Ly, = Lon. In particular npo is Fy-elliptic in L.

Proof. For the sake of convenience we suppose that L = G. Recall decomposition (2),

4
M(F,) =[] GL(r;, F.).

i=1
For the duration of this lemma we will identify M{F,) with this direct product of general
linear groups. Since ¢ is Fy-elliptic in M(F,), it has rational canonical form

a1 0
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where 0; € GL({m;, F,) generates a field extension F}/F, of degree m;, m; divides r;, and

o; appears 7;/m; times. The rational canonical form of o™ is

where o} is the rational canonical form of ¢? in GL{m;, F,). Since ¢” is F-elliptic in
G(F,), it also has rational canonical form

where o' € GL(m, F,) generates a field extension F'/F, of degree m, m divides r, and
o' appears r/m times. Since rational canonical form is unique up to permutation of the
companion matrices, we must have g} = ¢’ forall 1 <i < 4.

Let us return to the elements o; € GL(m;, F,,). We may view them as elements of the
fields F}, 1 < ¢ < £ Let E; = F,(o}). By replacing E; with F; and F with E; in Lemma
8.3, it follows that [F; : B;] = 1. That is, o7 generates the same field extension of F, as
does ;. This implies that

Fy = Fy(01) = F(0]) = Fy(o) = F(0}) = Fu(o3) = F,

for 1 <7 < £. In particular m; = m, for 1 <1 < 4. By viewing o3, 0; and o' as elements

of Fi, we find o} = ¢} = ¢'. Since F contains yy, it follows that 7;01 = o; for some
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7 € Up. In other words o is equal to

a3 0
0 0
0 (251
7201 0
0 ..
0 201
o1 0
0 0 ‘..
0 Me01
Let
1 0
0 0
0 1
N 0
— O .
m = 0 77;1
et 0
0 0
0 U
Then
(51 0
o = .. )
0 a1
and

Gyuo(Fy) = GL(r/m, F1) = Gon(F,).
Since Gp,o(F,) C Gon(F,), we have Gy, o(F,) = Gon(F,) as well.O

Lemma 10.2 Suppose o is F,-elliptic in Ly, Ly € L(M). Then there exists L € L(M)
such that L D Ly, Ly and o is F,-elliptic in L.

49



Proof. Let L be the centralizer in G of the split torus T' = Ay, N Ar,. Then L € L(M)

contains Iy and L. Furthermore it may be verified that
AL = Ala n 141,2 = ALl.v n ALz‘, = A[,,.

It follows that o is Fy-elliptic in L.OJ

A simple result of this lemma is the existence of a unique maximal Levi subgroup,
I’ € L(M), such that ¢® is F,-elliptic in L'. For the remainder of this section we assume
that ny € M of Lemma 10.1 is the identity. As a consequence, o is F,-elliptic in
L € L(M) if and only if o™ is F,-elliptic in L.

Lemma 10.3 Suppose that L € L(M), ¢ is F,-elliptic in L, and p € uM. Then no is
F,-elliptic in L if and only if ) € pk.

Proof. If n € pk then Ly, = L, so 1 is cleatly seen to be F,-elliptic in L.

Conversely suppose 7o is Fy-elliptic in L and, for the sake of simplicity that L = G.
Since ¢ is Fy-elliptic in G and o € M(F,), by rational canonical form, it may be written
as

a 0

6—1 . (5,

0 a
where ¢’ € GL(m, F,) generates a field extension F'/F, of degree m, m divides r, ¢’
appears r/m times and § € M(F,). Consequently

mo' 0

no =61 ‘.. 0
0 Nrejm0

where the scalar matrices of the form 7; are the projections of n into GL(m, F,). In order
for no to be F-elliptic in G, we must have 7,6’ = n;0’ for 1 < 4,j < r/m. This implies
that n e pS. O

The following lemma yields a germ expansion for I (7, f).
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Lemma 10.4 Let v € Mo(F,) N Gareg and f € H™(G(F,)). Then there exist functions
v gk (7,6) such that

FaN% Y g OIEG )

LeL(M) seolliy, (Fy))

Proof. Let n € p. Then 70 is 2 semisimple element and by formula 2.5 [6], we have

Mo,
WD Y GO £), 7€ Myo(F) 1 G,
LeL(M) de(nollp,, (Fo))

It follows from a remark on p 272 (8], that (M,70)-equivalence of functions of -y is the
same as {M,, o)-equivalence of functions of 7. As M, = M, the above expansion may be

written in the form

M,
N Y S G OLE ), ¥ € Mo(F) N Cureg.
LeL(M) d€(nolip,, (Fu))
Consequently

IE ) = ) Inlmf)

neuhl /u§

M) Z Z Z gy, )16, £).

LeL(M) neplt /ug s€no(Uey, (Fo)

Now if v = gy and § = nou, where u € Uy, , (F,), then by 9.2 of [6] we have

Los . . e s
L _ | 97 (n,u), ifno is Fy-elliptic in L
9 (m7:9) { 0, otherwise ’

By Lemma 10.1, if o™ is not F-elliptic in L then neither is no for any 7 € M /uS, so
9% (77,8) = 0. On the other hand if o™ is F,-elliptic in L then, by Lemma 10.3,

Lo . L, G
L _ 9uts ('yl,u), ifne l‘n/“n
907, 6) { 0, otherwise
_ gﬁ’,;;(’yl,u), ifnepl/uS
0, otherwise
95 (7,8), ifne pk/uS
0, otherwise
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Combining these last two observations, we find that
(M,
Brnn T dtne S nme
Lec(M)sea(Us, (Fu)) neuk/ug

a1 OIEE )0
LeL(M) seo(Us, (Fu))

The next lemma shows that there is a similar germ expansion for the distribution
I (v ).

Lemma 10.5 There ezist functions 7 — 91{"4('7’ 6*) such that
(M,0) A
LI R DD DR (X ST A CF)
LeL(M) dea(Ur, (Fu))

for v € M(F,) N Gureg and f € H™HG(F,)).
Proof. Proposition 9.1 [8] translates into the metaplectic context as

LmM ) Y @G )

LeL(M) deo* Uy, (F))

for 4 € 0* M. (F,) N Grey. Lemma 9.2 [8] translates as

’

Lz 5= G (71,u), if o™ is Fy-elliptic in L
95(%,9) { 0, otherwise
where 5 = o™y, and § = o*u, for u € U;a (F,). By definition, o* is F-elliptic in Lif
p(c*) = o™ is F,-elliptic in L. It is easily shown that L, C L - C L. Therefore, if o™ is
F,-elliptic in L, we have that L, = L,» by our assumption from Lemma 10.1 and in turn
that
f’a" = Z; = z;-
Consequently, _
I . . PR
L~ 22 (yy,u), if ois F,-elliptic in L
ok 3,8 = GElww) ol Belipicin L
R otherwise
By taking these facts into consideration, we obtain the expansion
P L3 (M o) Lyr 7 T o
FAAG R DD S A C AV |
LeL(M) beo(Up=(Fo))
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for ¥ € 0*M2.(F,) N Greg. Proposition 8.2 and Proposition 8.1 together tell us that
I;(8, f*) venishes unless p(§) = 6" for some § € G(F,). The set (U, (Fy)) maps
bijectively onto the set o* (U= (F,)) under the map *. This can be deduced from

Ty(ou, ou) = 1y(uo, ou) = 1,(0, o), v € U, (F,)

(see (2.2) [15]). Hence

Lnf) ™ Y Y dhGenE, )
LeL(M) seo(Ur,(Fv))
for 7 € o* MY, (Fo) né,eg. Once again, by the local vanishing property, I (%, f*) vanishes
unless p(¥) = " for some ¥ € G,g. We claim that for each L € £(M) and § €
o (U, (Fy)), the function gf-l(’y,ﬁ‘) has the same vanishing property. We may assume
inductively that this is true for L # G. Fix 6 € o(Uy, (F,)). According to §3.3 [31] we
may choose fi € H™(G(F,)) such that

i1, ifé=8
158, £1) _{ 0, otherwise ’
forde o*(Ug,.(F,)). In particular
e Fy_ f 1, if 0" =4
L&, h) = { 0, otherwise ’

for § € o(Ug,(F,)). It is easily shown in this instance that §* = 4} if and only if § = &;.

Thus
1 5 = 51

0 otherwise °’

16", ) = {

for § € o(Ug,(F,)). If we substitute f) into our last germ expansion, the desired vanishing

property for gf-l('y‘, §*) follows. Our germ expansion now has the form
« gy (Mo®) L \I: (5%, f*
L V7 % Y gy e )

LELM SealUiy, (Fa))

for y € M,(F,)n Glareg-
Finally, as noted in §3, the orbital integral of any function in # (M (F,)) is equal to the
orbital integral of a matching function in H™*(M(F,)). Therefore (i,c")-equivalence
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may be taken to be (M, o)-equivalence. The proof of the lemma now follows from this
observation.3

In what is left of this section we show the (M, o')-equivalence of gk (v, §) and gf;‘-,('y, d).

Lemma 10.6 (7.1) Suppose Theorem 9.1 holds for G. Then for each u € Ug(F,) we

have

M) &, a -
9% (r,w) "B & v, "), v € M(F) N Careg.

Proof. We may assume by induction that

M,1)

gha(y,u) & 95 (1", u),7 € M(F) N Gureg,

for all L € £{M) such that L # G. We may equate the germ expansions of Lemmas
10.4 and 10.5 since we are assuming Theorem 9.1 to hold. Together with the induction
assumption, this yields

G % . ey (M1
3 (6G0ru) - gglm s, 1) R0,
ueUc(Fo))

for ¥ € M(F,) N Gueg. As in Lemma 10.5, for a a fixed element u, € (Ug(F,)), we may
choose f, € H(G(F,)) such that

e iv_J L u=w
Is(u ,fl)—{ 0, otherwise ’

for u € (Ug(F,)). The lemma now follows by replacing f* with f; in the last (M,1)-
equivalence. O

Lemma 10.7 (7.2) Assume that the main theorem of [5] holds for G(F,). Then
& 1w a4y (M1
g5 ) " G, 1), 7 € M(F) N Gureg.

Proof. Choose 7 € Il (G(F,)) such that 7 is supercuspidal. By Theorem 26.1 [15]
and Corollary 26.1 [15], we know then that #* exists and is supercuspidal. Let f be a
matrix coefficient of the contragredient representation of w. Since f has compact support
modulo the centre of G, it may easily be shown that f € HZ2*(G(F,)). For a definition of
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Hac(G(F,)) see §11 [9]. We may assume that f* is a matrix coefficient of #*. The main
theorem of (5] asserts that

In(n, ) = (-1) Al Aedvol(G, (Fo) Au (F)) ™ tr(x (F)I DI04 (1),

where v € M(F,)NGieg and O, is the character of x. The right hand side of this equation
is taken to be zero if vy is not F,-elliptic in M. The Haar measure on Aps(F,) is normalized
by

vol(Au(Fy) N K,) = vol(aps/Hpr (Ane(Fy)))
(cf. §2 {5]). I v € M(F,) N Gareg then

an(Fv) = G‘y"(Fv) = G..,(F.,)
for all p € pM, and so it follows that

(29 Iii(n f)
= (-L)mAnlAvol(G,(F)/Au(F) M ux(n(£) Y, [DEmR/*O«(m),

neult [u§
for v € M(Fv) n G-mg-
In the metaplectic context the Theorem of [5] becomes
(25)  nlif(n )
= (—1)8mUR/ Aol (G, (F,) [ An(F) ™ e(m (F NI DO 20 (4°),
where 7 € M(F,) N Greqy and the Haar measure on ;1;; is normalized by

vol((An (Fu) N K,) i(n)) = vol(ags/ Hyy(Ana (F))-

Once again, the right hand side of equation (25) is interpreted to vanish if - is not F,-
elliptic in M. In order to establish equality between the left hand sides of equations (24)
and (25), we may therefore restrict our attention to the case that v € M(F,) N Gureg is
F-elliptic in M.

The first step towards establishing this equality is to show that

(26) Vol(Go (o) /Ant(Fo)) ™ = vol(Gor () (AT (F)) 7,
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where ¢ = |n|f,/ ? is the normalizing factor of §24 [15]. We have already normalized the

Haar measures d3/d% on G(F,)/AL(F,) and dz/dz on G(F,)/Ac(F,) so that
dvol(K,/(AZ(F) N K.)) = vol(Ku/(Ag(F) N K.))-
The Haar measures on G(F,)/G.(F,) and G(F,)/G.(F,) are normalized so that
vol(K, /(G (F) N Ky)) = vol(K,/(Gy N K.)).-

Taking the quotient of these last two equalities yields Haar measures on G.-(F,) /;fé(F.,)
and G(F,)/Ag(F,) which are normalized so that

R IATY AN vol (CABINK,
27 c'vol (Xé(F‘,) nf{,,) = vol <AG(F.,) ﬂKv) .
The Haar measure on Ay (F,) /Z’é(F.,) is normalized by {cf. §2 [5])
AB)NRY | e )
ol ( AL I'{u) = vol((ay/Hy(An(F))) +ag)
= vol({as/Hu(Am(F))) + 6g)
_ Au(F)NK,
= w(Zmar)

By taking the quotient of this last equality with (27), we obtain equation (26). Thus,
(O8YLH (7, £) = ()18 ATl () A (F)) e (FDID ()20 (7).
The representations 7w and #* are related by the equalities
tra(f) = tra™(f7)

and (Definition 26.1 [15])

* * n
(29) 1D 0m (1) = () > (ID(8)1/*0x (),
{8€G(F)/Ag(Fo):d* ="}
where ¢ € A%(F,)/A5(F,) and AL = {8} : & € Ac(F,)}. Observe that A%(F,)/.14(F,)
may be identified with a subset of y,. Now let § € G,(F,), ¢ € i(p.) and suppose that
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d*¢ = «*. This implies that §* = «™. In this case both § and v are F,-elliptic in M, so
according to Lemma 9.1 there exists some 7 € M such that § = #y. Conversely, if § = 7y

for some 7 € p¥ then 6* = 4* by Lemma 6.1. In other words
{0 € G4(F)/Ac(F) : 8¢ = 7'} = {n1 € Ac(F) 1 n € ! [}
A simple consequence of this and equations (28) and (29) is the equality

(30) Iia(n, ) = Bt (v, £,

for ¥ € M(F,) N G.reg- By Lemma 9.5, equation (30) is true for arbitrary v € M(F,). In
particular,

(31) Ii(, fy = B (L, ).
Let «y be an element in M(F,) N G.eg which is close to the identity. Then
(M,1)
A= 3 > ghnwIE, f)

LeL(M) uc(Ur(F))

and
M,1 L * %
A O RS DI DGRV 0%

LeL(M) ue(UL(F))
by Lemmas 10.4 and 10.5. Now suppose that u € (UL(F,)) such with u # 1. Then u can
be represented as an induced unipotent conjugacy class uf, where u; € (Us, (F,)) and L,
is a proper Levi subgroup of L. The descent property of Proposition 6.1 and the descent
property for the metaplectic group respectively yield

Fwf= Y, L L)% w, f,)

LaeL(L1)

and
)= Y, df (L L) u, fr,).

LaeL(Ly)
However, f is a supercusp form on G(F,) so fi, = 0 for any proper Levi subgroup L of
G. Hence both If (u, f) and I#*(u, f) vanish. Equation (30) may now be written as

M1 P
> E0DEGLH R S gk I, ).

LEL(M) LeL(M)
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We assume inductively that g§;(7,1) = gf,,('y‘,l) for all L € £(M) such that L # G.
Observe that equation (31) implies that I (1, f) = IM(1, f) for L € L(M). As a result,
the previous (M, 1)-equivalence reduces to

M1) &, .
ain VIs(, 1) % G, DIs(1, 1),
The lemma now follows from the fact that Ig(1, f) # 0.0

Proposition 10.1 (7.3) Let f € H™(G(F,))°. Then

B Y gk OIMG, 5,

LeL(M) sea(Uy, (Fv))
for v € Mg(F,) N Gureg.

Proof. Suppose § = ou, where u € UL (F,), and v = g7;, where 1, € M,(F,). Then
according to Lemma 9.2 [8] and the proof of Lemma 10.5,

I _ gMg('yl,u), if ¢ is F,-elliptic in L
9aa(7,0) = { 0, otherwise

L 5= 93 (11,u*), if o is Fy-elliptic mL
957" 57) {0 otherwise

D2y ihe germ expansion of Lemma 10.5, it suffices to show that

. Mo1) Eo
gk (1) Y%V oo (7", u"),

when ¢ is Fy-elliptic in L, and L € L(M).

Suppose that o is Fy-elliptic in L and that L, # G. Then, by the induction hypothesis
at the end of §9, Theorem 9.1 holds for L,. We may therefore apply Lemma 10.6 with
L in place of G to obtain

Me)) B ou o
u) " gre (o, ut).

By Lemma 2.1 of [8], it follows that (M, 1)-equivalgnce of these germs as functions of 4,

g5 (n,

is that same as (M, o)-equivalence as functions of . That is

o) .
aki(1.6) = gk (m,0) "% gl (01,0%) = gh (7, 67).
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The remaining possibility is that ¢ € Ag(F,) and L = G. Suppose this is the case.
Then

S GG H= Y oS0 6 e f).

S€o(U(Fy)) seo(Uc(Fv))
Since f € H™(G(F,))?, we have that I(5, f) vanishes in the above sum unless § = o.
Since o is central
5 (ke ot G (o M1
g0 = g3 (r, 1) ¥ g (1) = g (1, 0)
by Lemma 9.2 {8] and Lemma 10.7. Hence

glcv;f(% U)IG(U: f)

S G 66 f)

Seo(Uc(Fv))

S a6 )

seo(Uc(Fy))

and the lemma is completed.[J

11 The Local Spectral Terms

Leaving the terms of the geometric side of the trace formulas behind, we take an excursion
to the spectral sides of the trace formulas. The spectral sides are partially composed of
invariant distributions,
Ii(#, £), 7 € (M (Fs)),
which are sums of traces that are weighted by normalized intertwining operators. These
distributions are introduced in §3 [6]. We assume that the reader is o some degree familiar
with this introduction and recall some of it below.
Given p € Z™(M(F5s)), we define

Lo, X, £) = I (p" X", £),
for all X € ays and f € H™HG(Fs)). If L € L(M) and A € aj,¢ is in general

position, then the induced representation p¥ belongs to E™e(L(Fs)). When p} appears
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as an argument of Ip(-) or I{M(7), we will often suppress the superscript L. For 7 €
et (M (Fs)), we define

Hmx =YY Y [ P (30 o) (o, i (X), £ 0,

P L p Veptinjgfing s

where P, L and p are summed over P(M), L(M) and Z™(M(Fs)) respectively. For
definitions of %, and the constant wp see §6 [9] and §3 [6].

As on p 127 of [10}, we identify representations 7 in IT™*(M(Fs)!) with orbits {my :
A € ay} in TI™(M(Fs)) if 7 is not unitary. If = belongs to TN (M (Fs)'), then we
identify it with the orbit {ms : A € ia},} in TIZ% (M (Fs)). We make similar identifications
for representations in II™*t(M(A)) and IT™e (M(A)). If m € TImt (M (Fs)?), set

unit unit

In(m, £) = Ing(m3,0, £),
and

Li(m, £) = Iif(m,0, f),
for any A € ia);. It may be verified that these definitions are indeed well defined. Both
of these definitions are independent of S, if § ié large, and therefore may be extended
to representations in 1T (M(AJ%). In complete analogy with the expressions of the
geometric side of the trace formula, we hope to identify Ip(mr, f) with the terms Iy (%, F*)
occurring in the spectral side of the trace formula of G.

‘We may draw analogies between the local geometric and the local spectral terms of the
trace formulas. In order to compare the local geometric terms of the trace formulas for G
and G, we use the transfer map (1). One might surmise that the analogous transfer map
for the local spectral terms might be (8). Unfortunately, this map does not intrinsically
relate the traces of the representations to each other. In what follows we define certain
constants which relate representations in II(M(Fj)) to representations in II™**(M(Fys))
in a fashion that is compatible with their traces.

By the Langlands quotient theorem and §5 [9] there exist constants A(#, ) and I'(3, #)
for arbitrary 5 € £(M(Fs)) and % € II(M(Fs)), such that

(@)=, T(p#)te(#),
# €T M(Fs))
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and

(@)= D AW
FER(M(Fs))
Two consequences of Lemma 3.1 are the identities

ap)= Y (o))
wellmet(M(Fg))

and

tr(m)= Y. Almp)u(o),

P'em(M(Fs))
for any = € TI™**(M(Fs)) and p € T™(M(Fs)).
Suppose 7 € II(M(Fs)), p € Z™(M(Fs)) and set

A(#,p) = AR, p%).
For 7 € T™**(M(F5s)) we set

6(F,m) = Z A7, p)T{p, ).

pET™t(M(Fs))

As can be seen from the next proposition, the map,

(32) g Y. W&m),

meNmet(M(Fs))
is the transfer map which allows us to compare traces of representations.
Proposition 11.1 (8.2) For any f € H™*(M(Fs)) and # € (M (Fs)) we have
tri(f*) = Z (&, m)trm(f).

wellmet (M(Fs))

Proof. By our assumptions

wi(f?) = Y A

FET(M(Fs))
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> A@Gp(f)

PET™(M(Fs))

A(#, p* )0 (p, mtrn(f)
pEEH(M(F5)) wETIms:(M(Fs))

> §(& man(f).0

wellmet (M(Fs))

Corollary 11.1 {8.3) Suppose S consists of one place v for which |nl, = 1, and that
m € TI™(M(F,)) is an unramified representation. Then for any & € I(M(F.))
§(F,m) = { L, fa=x

0, otherwise '

Proof. Take f to be an arbitrary function in H™*(M(F,)) which is bi-invariant under
K, N M(F,). Theorem 16 [15] tells us that trx*(f*) = tra(f). The corollary now follows
from the proposition and the linear independence of characters. {0

This corollary allows us to define an map
§(,m) = [ | (v, )
v

for adelic representations # = ®,#, € II(M(A)) and 7 = ®,m, € [I*(M(A)). All of the
above formulas remain valid in the adélic formulation as well. If # € II™*(M(A)') and
7 € II™(M(A)*) we define

§mm) =Y §(F5,m)

A€ays e

for arbitrary A € ajr,c- This definition may be verified to be well-defined.

12 The Spectral Side of the Trace Formula

Now that we have a spectral transfer map, we can compare the spectral sides of the trace
formulas of G and G. Recall that the spectral side of the trace formula for G is of the

form

I(f) =L,

20
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where

(33) i) = 3 s [ (

oM@ (R, .

froy (M.t

Once again, it is convenient to denote I;(f*) as J{M(f). A detailed discussion of the terms
occurring in this formula may be found in §4 [7]. The definition of TI(M, ) is repeated
here (p 132 [10]), as we will often have recourse to it in the sequel. Let M; € £ and
t be a positive real number. We are obliged to first define two other sets, IL{M(A)!,¢)
and Iec(Mi,2), before we define II(A, ). Given a representation % € II(M(A)), let vz
be the infinitesimal character of the Archimedean factor of #. The set II(M(A)!,¢) is
defined to be the set of (equivalence classes) of representations 7 € TI(M(A)) such that
|IIm(vs)|| = ¢. Similarly, we set

IHM(A)',2) = INM(A)', £) NTI™*(M(A)}).

We write I'Idisc(Ml,t) for the subset of ITym(M (A)}, ) consisting of irreducible con-
stituents of induced representations

5, Le L™, 5 € Mu(L(A), 1), X € ialy fialy,,
in which &, satisfies the following two conditions:
L af (5) #0.
2. There is an element s € WM‘(cu,)res such that sG) = G3.
Then II(M, t) is defined as the disjoint union over M; € £M of the sets
Oy, (M,t) = {ft = 7y : 71 € Tawe(M1,8), A € ia;,-,x/iaM‘}.

We define the sets IS M, t), Iy, (M, t) and I™Y(M, t) as above, except that My, (M (A)?, £)
and Iy {L(A), ) are replaced by 1Mt (M(A)L, ¢) and TIZ& (L(A), ¢).

Let us recollect §9, where we examined the geometric sides of the trace formulas. In
Proposition 9.1, the geometric side of the trace formula for G was expressed in a manner

that was compatible with the orbit map. We will be compelled to follow suit and express
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the spectral side of the trace formula for G in a manner that is compatible with the
snectral transfer map (32). This will be carried out in §15.

For the the time being, we set up the appropriate grouping of representations for the
global datum, o (#). In other words, we define the global datum, e (r), which ought
to correspond to the global datum, oM (%), occurring in the trace formula for G. This is
similar in spirit to the grouping of the local geometric terms in §6.

Set

O™ (M(A)Y) = {m € I™(M(A)') : my € IT™*(M(A)) for some A € aj; o}

We first define aji™ for My € LM, Set
afpMm)y = Y i (®)a(7,m)
REMM(AN)
for any m € II™*(M;(A)!). This sum may be shown to be finite using the arguments of

Lemma 9.1 [10]. For 7 = m 5, where A € ajy, /a3 ¢, we set
My, M
M M(7) = agige™ (m)rif, (m10)-

The function rjf (m,,) is not defined for arbitrary m; € II™**(M;(A)!), and so the defini-
tion of a®*M(x) is not valid as it now stands. The obstacle stems from the fact that the
global map rﬂl is derived from the adglic version of the normalizing factors of intertwining
operators (cf. §4 and §14). As such it is defined in terms of an infinite product, indexed
by the valuations of F, and might not converge. One expects such normalizing factors to
converge and have analytic continuation for automorphic representations. This borne out
from the theory of Eisenstein series (cf. §4 [9]).

In order to rectify this situation, we make the following induction hypothesis. We
assume that for any M; € £ with M, # G, that

MM
adislt; (7!'1) = agi‘slc(”rl)x

for all my € TI™t(M;(A)Y). In this case a}1™ () vanishes unless 7 belongs to ITRt (Mj, £).
If My € LM, m; € TISS(My, t) and A € iajy, o/ia}yc then the function r}f, is defined and
the earlier definition of @™ (r;,;) makes sense.
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The global datum, a™*(m;), suggests the definitions of new sets of representations
along the same lines as the definitions of Iguc(M,t), g (M,t) and TI(M,t) above.
We define the sets of (equivalence clusses of) representations IT{ (M, t), I} (M, t) and
TIM(M, t) as above, except that a™ is replaced with a*™M,

‘We are now in the position to state the spectral analogue of Theorem 9.1.

Theorem 12.1 (B) (i) Suppose that S is a finite set of valuations which has the closure
property and contains Sg,). Then

i (m, f) = In(m, ), 7 € TIEE(M(A)Y), f € H™(G(F5)).

(ii) For any given
T=ma, m € I™NM(A)), A € ajy, c/aheo

we have

This proof of this thecrem will be completed at the end of §18.

13 Comparison of the Local Spectral Terms

The purpose of this section is to show that (i) of Theorem 9.1 implies (i) of Theorem 12.1.
We achieve this with help from the maps 8%, and °0%; defined in §4 [6]. These maps are
defined on H,.(L(Fs)) and take values in Z,.(M(Fs)) for every pair of Levi subgroups
M C L in £. The spaces Ho(L(Fs)) and Z,.(M(Fs)) contain H(L(Fs)) and Z(M(Fs))
respectively and are defined in §11 [9]. They also satisfy the following properties:

(34) ST o) = Y. G0 =0,
Lel(M) LeL(mM)
(35) =Y By 6u(f)),
LeL(M)
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and

(36) In(v, f)= > Iy, 0u(f)),

LeL(M)
for ¥ € M(Fs) and f € Hao(G(Fs)). For the definition of Iy see §4 [6]. Set

=D "Oulf).

nendl /ug

Gl = Y, "Oulf).
nepdt /ug
Here "6p(f) is defined as "hyy if b € H(M(Fs)) such that by = 6(f) (cf. §3).
Properties (35) and (36) may be adapted to the distributions of the form Ij. We
may mimic the arguments of §6 to arrive at the equality *Ip (v, f) = Ip{7, f) for all
v € M(Fs) and n € pC. Thus, imitating the definition of I3, we set

TinH= Y. Inlm £

LI

for all v € M(Fs) and f € H™(G(Fs)). The analogue of property (36) for ¢I% is then
seen to be

I (v f) > Halmr on(s))

nepld! [uG LeL(M)

S L, 6us)

LeL(M)nepk/uG

S 5, ()

LeL(M)nepk/ng

S BE(, c62(5)).

LeL{M)

i

(37)

il

After a similar computation we may conclude that the analogue of property (35) is

I =Y 8.

LeL(M)

Part of our assumption concerning the existence of the invariant trace formula for G

(cf. §5) is the existence of maps, 91‘;‘-4, "0{;‘-, and °J; f;‘;!("/), satisfying properties corresponding
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to (34) - (36). Let f € AZH(G(Fs)), ™ € TIEL (M (Fs)), X € aps and ¥ € GuregNM(Fs).
Define

CI#(% .f) = CIM(’Y‘yf.);
0%(]‘1 ™, -X) = ndimAMell?(f.)"r‘aX‘):
and

O (f,m X) = ni™ A G (f, 7%, X*).

Lemma 13.1 (10.1) Let v € M(Fs) and f € H2(G(Fs)). Then the following proper-
ties hold.

(38) STogMee Y = Y e =0,
LeL(M) LeL(M)
(39) BhH= 3 TMel (),
LeL(M)
(40) I =Y, T o)
LeL(M)

Proof. Let n & TIet (M(F5s)), X € ays, L€ L(M) and h € Hmet(L(Fs)). Observe that
oM (R (nt, X)) = nodmAMgEM(R, 7, X)
= —dimAMndimAugfi (h",’l('*,X')
= 6k 5 (R {=", X7).
That is, 8% (h") = ndm(4s/An)gEM ().
We may now apply this equation to prove (38).

I

ST oM e () X) ST ndimaw cgk (6M(f)", 74, X*)
LeL(M) LeL(M)

Z pdim A ‘Bf;,(Gf,(f‘),vr‘,X’)
LeL(M)

— dlmAM Z ceL(eL(f W',X‘)

LeL(M)

il

= 0

67



The second half of (38) follows in a similar fashion.

Property (40) is also easily deduced.

B = Ty )
= > ThO" 0 ()

LEL(M)

= 3 IE(y, 0

LeL(M)

= Y Moot

LeL(M)

Property (39) follows accordingly.0]

Theorem 13.1 (10.2) Assume that
B H =I5
for each L € L(M), v € L(Fs) and f € H™*(G(Fs)), in the special case that S D Sy).
Then for any f € HPH(G(Fs)) and X € ap,s we have
o1 () = 63 (5),
637 () = 63 (¥,
IAA;(pl X: f) = IM(ptyx‘) f‘): pe 2met('Ikr('z;‘.‘i))y
and
Iﬁ(ﬂ,X, f) = IM(W‘)X‘y f‘)) wE HmEt(M(FS))'

Proof. The proof of this theorem is identical to Theorem 10.2 [10], if one replaces I,
Ine(%), Om and 0%, of that proof with I{f, I&(7), 6% and 6§} respectively. The only
portion of the proof where there is a difference worth noting in on p 140, where it is
shown that

ceﬁ,,(f,ﬂ‘,X) - CGM(f,W,X)
is compactly supported in X € ap,s. We therefore take the trouble to write out the
analogue of this part of the proof, which is to show that

‘0{\‘,,"(f,1r,X) - °0f,(f,7r,X)
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is compactly supported in X € ap,s.

‘We assume inductively that the theorem holds if G is replaced by L € £ such that
L # G or if M is replaced by L € £ such that L 2 M. Let v € M(Fs) and consider the
expression

(41) T H~ Y S I -
LieL(M)
By properties (40) and (37), we may write this as
(42) Y LM - Y Y eI, g ()
LeL(M) L1€L(M) LaeL(Ly)
I P a8 (AR /A ) R S ) el ()
LM LieLt(M)

+ I (v, 03 (5) — 63 ()
By Theorem 10.1 and the induction hypothesis, we have
Y OLT(r 6E () =T, 6E(N) = I (v, *0(£)).
Lieck(M)
Therefore the sum over L 2 M on the right-hand side of (42) vanishes and we are left
with
@) BN - Y eHO) T ) = i 6i(f) - on(h)-
LieC(M)
Since f is taken to belong to H™*(G(F5s)), Lemma 4.4 [6] tells us that the left-hand side
of {43) has bounded support as a function of 4 in the space of conjugacy classes of M(Fs).
The same is therefore true for the right-hand side of (43). For a given X € aps, the
restriction of (43) to
{7 € M(Fs) : Hu(y) = X}

is the orbital integral of a function, A% € H(M(F5s)), with support in
M(Fs)X = {6 € M(Fs) : Hu(6) = X}.

The function ¥ vanishes for X outside of a compact set of aps, as the support of (43)

is bounded in «. Furthermore, the equality,

WX (m, X) = 037 (f,m, X) = Ou(f, 7, X), ™ € Iigin, (M(Fs)),

temp

69



follows from an application of Fourier inversion on a5 (cf. (7.3) [9]).0
Corollary 13.1 (10.3) Under the assumption of Theorem 13.1, we have

Ti = Y. eqS)IEmf)
LeL(M)

for any v € Gy and f € HIHG(Fs)).

Proof. In the proof of Theorem 13.1, which follows by the same arguments as that of
Theorem 10.2 {10], one shows that (41) is equal to (43) and that (43) vanishes. The
corollary follows.Od

With Theorem 13.1 in place, the proof of (i) of Theorem 12.1 follows mutatis mutandis
from the argument on p 145 of [10]. We include it here for the sake of continuity. We

wish to show that
B (w,0, f) = Inn(m,0, F), = € I (M(Fs)).

The above distributions are defined by

IM(ﬁ-vX: f) = Z‘UP Z Z/ viat Tf}(ihﬁ»\)fi(ﬁ:\)hf,(x)?f)e~A(x)d)‘)
P L 5 Yeptiay

it
r,s/0%,s

where P, L and j are summed over P(M), £(M) and S(M(Fs)) respectively. By our

assumptions on the normalization of intertwining operators in §5, we have
ri (e £5) = (. p2)

(see §6 [9]). Therefore it suffices to prove

(44) It (px he(X), £) = In(or, (X)), f)

for all L € L(M), X € ap, X € ajyc and p € Z™(M(Fs)) with A(p,m) # 0. By
using the splitting property for these distributions (Proposition 9.4 [6]) it suffices to prove
(44) for § = {v}. Suppose then that p € Z™*(M(F,)) and that A(p,7) # 0 for some
m € IIT (M(F,)). Then the central character of p must be unitary. From the definition
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of standard representations, it follows that p is either tempered or induced from a proper
parabolic subgroup of M(F,). Suppose first that p is tempered. Then by the proof of
Lemma 3.1 [6], we have

0 L#£G
IM(pa, b (X = I hr(X = ) .
2 (o2, hi(X), £) = I(pa, hi(X), f) { feleamhe(X)), L=G
Now suppose that p = pM, where p; € Z™(M,(F,)) and M; is a proper Levi subgroup
of M. We apply the descent property (Corollary 8.5 [6]) to (44) and find that it suffices
to show

(45) ff'tllM(pl.z\;le le) = f]f/!l,(pl,z\!le fL1)1

for X, € apr, and Ly € L(M;) with L; # G. The induction hypothesis of §9 allows us to
apply Theorem 13.1, with G replaced by Ly, in order to obtain (45). The proof is now
complete. O

14 More on Normalizing Factors

This section is devoted to the construction of a few additional (G, M) families which we
will need in order to compare the spectral sides of the trace formulas. We will return to
the actual comparison of the trace formulas in the following section.

The normalizing factors rg s of §4 are meromorphic functions of a3 ¢ defined in terms
of functions

Tor : I(M(F5)) x C = C, a € ZgNZp

which are meromorphic in C. In fact the following equalities hold:
Tae (7%, 8) = 1o(m, 8), ® € I™*(M(F5)), s € C;

Top = H e (n*, A (0¥?)), A € ajy e
a€ZonZp
Let & = @5, and 7 = ®,, be representations in II(AM(A)) and TI™t(M(A)) respec-
tively, and assume that

§(G,7) = HJ(&‘,,W,,)
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does not vanish. Define
im(l-Tt.n Ty s) =Ta* (&vy 3)—17'a(7rw 5)'

If &, and 7y are unramified representations and |n|, = 1 then &, = #, by Corollary 11.1
and so

Tar (71';, s)—lru(7r07 S)

Tas (&vr S)—l’l‘a('lr,,, 3)
Ta(Ty; 8) " '7a(m, 5)

1.

it

We may thus define the infinite product
Fo(8,m ) = Hf‘,(&,,,m,, s).
v

Set

Fpl|p2(5')‘-,7f,\) = H fa((_f, K )\(av)).
aEEplﬁE-;;?

We define a (G, M) family
Fo(v, 80272, Po) = Fpipy (F3es T2) 7710y (e 400, Tagw )y
where P € P(M) and v € iaj},.

Lemma 14.1 (11.3) (a) Take & and 7 as above. Then for each L € L{M), 5 (G, ™)
is independent of Py and is also o rational function of the variables {A\(aV),qv Aa) }oes,
where S 1s o finite set of valuations outside of which & and w are unramified, and g, is
the order of the residue field of F,.
(b) Suppose in addition that & € Ty (M,t) and 7 € TImet(M,t). Then

ru1p(Exe, T2) = TRyR(O3) M reym (M), Pr, Py € P(M).
In particular, for each L € L{M), the function 75 (G-, ms) is regular for A € ia};. More-
over,

ri(m) = D ntmAALr G )R (B, m).
Lielb(p)
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Proof. Part (a) of the lemma follows from the computations on page 149 of [10}. Under
the hypotheses of part (b), 75,5 (5x+) and 75 g, () are regular functions in X € iaj, (§6
[2]). Thus, if one unravels the definition of #p,jp, (G-, 7»), one obtains the first equality
and the the regularity on Za};. The last equality follows from an application of Lemma
6.5 [1] to
Tp(Vy T, Py) = Fp(v, G, Tr, Po)r (v, G2e, Po).0

We may define further (G, M) families along the same lines as the definition of the
previous one. If we replace m in the above discussion with some p € Z™*(M(A)) such
that A(G, p) # 0, we obtain the (G, M) family

Fp(¥, G,y Pry Po) = Foipy (8, P2) " FpiRy (Fasoss Prto)-
We define yet another (G, M) family for representations &y,5, € II(M(A)) such that
8(;,m) # 0 for i = 1,2 and some = € II™*(M(A)). Set

7oy, G1a0, G20, Po) = Fo(v, 10, T, Po)Fp (v, Gape, wa Po) 1.

This (G, M) family is independent of w. Lemma 6.5 of [1] applied to this last (G, M)
family yields

(46) Fa@anm) = Y FHE1ae, G200 )L (Gope, ™).
Liect(M)

For arbitrary & € II{M(A)), p = ®,p, € E™(M(A)) and 7 € II™(M(A)). Set
TP(”:\)/)/\) = A(7I', p)FP(WA) PA)’

TP(V1 5}\-,7!‘,\) = 6(&7W)FP(V) 6',\'17‘3\))
and
rp(V, @, p2) = A(G, p)Fp(V, Gar, pa)-

In the following lemma we compare the last (G, M) family to another via map (8).

Lemma 14.2 (11.4) For each L € L(M) we have
rfr(Bar, pa) = nImANALL (5, p3.).
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Proof. According to Lemma 6.2 [1],

T}%{(&A'yp;.')

= aem]lim 3 s miavel (ak/2(a5)") TT @)™
v PePL(M) acAl,

= AEm[[hm > 70 due,malvol (ak/2(a5)™) T (@)™
v PePL(M) acak,

= A(a,w)Hy_% > B Guan mop )i AN Aol (ab /2 ((A5)Y)) ] (V)
v PePL(M) agAf,

= ndim(A"’/A")A(&, TV (G, Ta)

= pfmAMIARL (G5, m).0

The other (G, M) families defined in this section satisfy versions of Lemma 14.2 as well.

These versions are proven similarly.

15 A formula for IM

As announced in §12, the object of this section is to express the spectral side of the trace
formula for G in a manner that is compatible with (32). This amounts to expressing the
spectral side in terms of the global datum a**™ and the set of representations II™(M, ¢).
At the end of this section, we apply these results to a comparison of the spectral sides of
the trace formulas.

We first deal with the local spectral terms of G.

Lemma 15.1 (12.1) Suppose that & € Ty (M(A)Y). Then the distribution
@ Lem=3 3 / k@ ), £,
LeL{M) nellmet(M(A)) ep-ting, fing

Proof. This proof is almost identical to the proof of Lemma 12.1 [10]. It is included so
that the reader may feel a sense of continuity. Any statements which seem unjustified
may be compared to the analogous statements in Lemma 12.1, where the detail are given.

To begin, relabel the summation index L by L;. We then replace Iff(w,\, f) with the
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expression

Y we

/ I 7Ly (Txtr Pk L (Prr Fdps.
QEP(L1)  LEL(Ly) pellmet(p(ay) v €QHSE, [in},

We deform the contour of integration in p so that (47) is equal to the sum over Ly, L €
L(M), with L, C L, of
/ i@, m)TE, (o, pa) IE (o, £
nelImet (M(A)1) peSmet(M(A)L) £ag-Hiag, fia]
Taking the sums over L; and r inside the integral we find that
DI D NG ACHN
weTImet(M(A)!) Ly €CL(M)

= HEem) Y. 8FmAMmp)

nElmet (M(A)?)
= (B, ) Z A, p1) Z T{p1, m)A(m, p)
pLESTE(M(A)L) rEMmes(M(A))
= (G, 02)A(G,p)
= Tﬁ,,(&,\.,p,\).

The right-hand side of equation (47) is now of the form
(48) S > [ ke e i
LEL(M) peEmet(M(A)) Y e Hisje/ing
By Lemma 14.2 we have
> G, os f)
PEEmL(M(A))

= - dimtdults) rh(@xe, 03503, )
pESmEL(M(A))

= Y k@b SMor )

PEE(M(A))

Substituting back into (48) and noting that dA = nd™An/AL)d\*  we obtain

[ kGl rax
LEL(M) sen(At(A)) ¥ M Tidhe/i0L
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Since & is unitary this last expression is equal to I (7, f*).0

Before considering the spectral side of the trace formula for &, we define

5 (Fae) = nfimAulAnkl (5,.)

for L € L(M), & € II%4(M, t) and A € 6}, . Observe that Lemma 14.1 part (b) may be
rewritten as
ri(m) = Y (6 )L, (Gae ).
LieLk(M)
This definition will make some impending computations tidier.

Proposition 15.1 (12.2) Suppose thatt > 0 and f € H™(G(Fs)). Then

(49) () = Y W / MM\ [, f)dr.

Mec nM(Myt)

Proof. From previous formulas we know that IM(f) equals

)OI VA S I KOV AC NI MO TS
{My,MeL:MDOM} FeMae(it,t) Y o 5
We replace rgl (6»-) with ndim(Aan/Aardd (5,)) and Ijy(5»e, f*) with the expression de-

rived in Lemma 15.1 in order to obtain the equality of r}f (Gx+)I;(5x-, f*) with

pdim(Aar /As) / @iy T IR (Mo, £)dp
LEL(M) meTmet(My(A) 1) ¥ EarHg} fiay

Using the identity dA\* = n~9m{4sm/4a)d) and deforming the contour of integration

appropriately we find that IM(f) equals the sum over My C M C L € £, and m; €

e (M (AL, ) of
(50) |Wéw‘||WoG|“1/ > ol (&)l (@re )iy (Gaey M) [P (L, £
eariagy fing, FeManc(AT )

The term 75 (+,71,2) in the above sum vanishes unless §(5,m) # 0. Fix some &; €
Mgse(Mi(A)?, £) such that §(51,7) # 0. Then for any other & with 8(&,m) # 0 we may
write

T (Ex) = Z Tﬁz’, (G1,3 )R (1,005 Fe).
{Li:MiCLCM)}
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We substitute this expression into (50) and deform the contour of integration from es +
ia}y, /103, 10 £g, - iajy, [iag for some small regular point £z, in a},. We then bring the
sum over M inside the integral. Notice that

ST M1 G )rk(Gae, ) = 85, m)FE, (Gae, Ta0)
{M:L;cMcL}
by equation (46). Observe also that
Y ahik(8)5,m) = ajie™(m).
F€Myie(M,t)
Now (50) may be written in the form
(51) Z . (1.{::12‘5“"'('irl)'rf(,,‘l (oﬁ.)ifjl(&,\-,ﬁllA)IfA(Wl,A, FldA.
{La:MyCLycL} Y Ly Hihy, fiog

If My = G then (51) reduces to

(52) 3 af w5

m el (G.t)

If M, # G then the induction hypothesis stated after the definition of a2 yields

disc
a‘g{sxc’M("rl) = acnlgc(ﬂ-l)
for m € II™(M),t). It is immediate from this equality that a}i*(m;) vanishes unless
« € IR (M, t). By a variant of Lemma 14.1, the integrand of (51) is analytic for A near
i@}y, we may deform the contour of integration from ey, + iaj}y, /in}, to ia}y, /iaj. This

allows us to take the sum over L, inside the integral. It is a simple exercise in (G, M)

families to show that
> G )L (Bre, ) = rhy (T1a).
{Li:MiCLiCL}
Thus (51) is equal to

[ amr, mama, D
ia}, N fia}
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for M; # G. Combining this expression with (52) we obtain
B = S WA [ Mg fanD
Let nM(Lt
If we turn our attention to the spectral side of the trace formula of G, then we
must show that it may be expressed exclusively in terms of represeitations belonging
to TI™*(M(Fs)). This is essential if we wish to compare it to the expansion of Lemma

15.1 and may be regarded as a spectral vanishing property.

Lemma 15.2 Suppose f € H™(G(Fs)), X € ay,s and p € Z(M(Fs)), such that p has
unitary central character. Then Ing(p, X, f) = 0 unless p € ™M (Fs)).

Proof. Suppose In(py, X, f) # 0. We first prove the lemma for the case M = G. In this
case

Io(p X, 1) = folp X) = [ tx(pa(f)e @,
ag.s

Hence tr(px(f)) # 0 for some A € iags, and so by definition py € I (G(Fs)) C
(G (Fs)). Since Z™*(G(Fs)) is stable under twists by elements in iag g, p also belongs
to Zmt(G(Fs)).

We may now assume inductively that I (p, X, h) = 0 unless p € Z™(M(F5s)), given
p € S(M(Fs)), X € ams, b € H™*(L(Fs)) and L € L(M) with L # G. Suppose
In(p, X, f) # 0 and p =z} for some 1 € Myermp(My(F5)), ) € ajy, ¢ 2nd Levi subgroup
My of M. If My = M, then p is tempered, since it has unitary central character. Moreover

by Lemma 3.1 of [6],

_ fG(p1X)r fM=G
Iu(p, X, f) = { 0, otherwise °

This case has already been taken care of. Now suppose that M, is a proper Levi subgroup
of M. According to Corollary 8.5 [6], with II(M(Fs)) replaced by Z(M{Fs)), we have
Iu(p X, fy= 3 df (M, L)y, (m, X, fu).
LeL(dMy)
This implies that [ ,f‘,,’ (w2, X, f1,) # 0 for some L, € L(M;). By the induction assumption,
I% (72, X, f1,) vanishes unless m, € Z™%(M;(Fs)). Hence p = wM € T™(M(Fs)) by
transitivity of induction.l
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Corollary 15.1 Letw € Iy (M(Fs)), f € H™(G(Fs)) and X € ap,s. ThenIy(m, X, f) =
0 unless w € IIT%t (M (Fs)).

Proof. Suppose Ips(m, X, f) # 0. Then by definition

Da(m, X, 1) = D Jwp D > riglma, oaMu(pas o (X), Hle XX # 0,
P L p

where P, L and p are summed over P(M), £(M) and Z™(M(Fs)) respectively. In
particular

el Aoy, hi(X), £) #0,
for some p’' € T (M (Fs)). It follows from

rlt‘l'f (774\1175\) # 0
that A(m, p') # 0, where

trr = Z A(m, p)trp
PEE(M(Fs))

(¢f. 6.4 [9]). Since 7 is unitary, p' must have unitary central character. As a result p'*
also has unitary central character. Since Ir(p}, hr(X), f) # 0, Lemma 15.2 implies that
0 € &7 M(Fs)). Thus « also belongs to II%%(M(Fs)) by Lemma 3.1.0

Proposition 15.2 Suppose thatt > 0 and f € H™*(G(A)). Then
B(f)= S WS [ M), f)am.
MeL et (M)
Proof. As II(M, ) C I,n(M(A)), we know from Corollary 15.1 that In(r, f) vanishes
for any 7 € II(M,t) unless = € TI™*(M(A)!). The lemma now follows as TI™*(M,¢) =
II(M,t) nTI™(M(A)H).O
‘We can now apply Proposition 15.1 and Proposition 15.2 to obtain a striking simpli-

fication in the comparison between the spectral sides of the trace formulas.

Lemma 15.3 (12.3) Suppose thatt > 0 and f € H™(G(A)). Then

N -1 = Y (efn) —aase(m)tx(f),

reilme(G(A)L,2)

where f1 is the restriction of f to G(A)*.
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Proof. This proof is almost identical to Lemma 12.3 [10] and is included solely for the
sake of continuity. Consider the difference of (49) and

= S WS [ M, i

MeL
If M, € L and M; g M C G then the induction hypothesis of §12 implies that

aM'M("r) = aM(ﬂ'): e Hanelt(M» t):

and IT3f (M, t) = IIEE(M, t). If = is not unitary both a™*M(x) and o™ (w) vanish. When
7 is unitary we know from §13 that

IAA;(ﬂ-If) =IM(7r)f)'

Therefore, the only terms which remain in the difference, IM(f) — I(f), are the ones
indexed by M; = M = G. These terms are of the form

() = o (F)) = ten(f) = Io(m, ),
where 7 € [I2%(G, ¢).00

disc
16 The map ¢y

Having simplified the comparison of the spectral sides of the trace formulas, we attempt to

do the same for the geometric sides. We may lighten the burden of this task considerably

by making further restrictions on f and by adding yet another induction hypothesis.
Let H™*(G(A), M) be the subspace of H™*(G(A)) spanned by functions

f=1l# foeH™ G(R))
v
which have the following property. For two finite places v, and v;, which are not in S,
fu.-,L = 0, Le c, i= 1,2,

unless L contains a conjugate of M. If S is a finite set of places with the closure property,
which contains S(n) and at least two other finite places, we define H™*(G(Fs), M) the

same way.
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From this point on we fix M € L such that M # G. The additional induction
hypothesis is that

' =IE ),
for all ¥ € L(Fs), S containing S’ and L € L(M) with L # M.
The proof of Lemma. 13.1 [10] may be imitated to obtain the following lemma.

Lemma 16.1 (13.1) For f € H™*(G(A), M), the distribution

M) - I(f)
equals the sum of
AW Y SN D - Ik )
YE(M(F))as,s/ bt

and

S 0Y (@MSw - oS, w)e(u, f).

SeAg(F)ueUs(Flle,s

Proof. The lemma follows from the splitting properties (Lemma 6.2, (17)) and the prop-
erties of f. See Lemma 13.1 [10] for details.0]

It was indicated in §10 that a version of Theorem 10.1 would be proven. This new
version is the content of the following proposition. It is more general in that the hypoth-
esis,

I£A(7yf) = If(% f)y for § > S(n):

is omitted. However, the map replacing f > e3¢(S) f of Theorem 10.1 is more complicated.
Proposition 16.1 (13.2) There are unique maps

er : H™H(G(Fs))? = L (L(Fs)), L€ L(M),
such that

o hH= . IP(relf), v€ M(Fs), f € H™G(Fs))".
LeL(M)
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The maps have the descent property

EM(f)M: = Z dgl;(Ml L)ékh(fL)v Ml [ M1
LeL(My)

and the splitting property

em(H)= Y. df(Ly, LR (fr)eR (fors)s

Ly, L€L(M)
for f = fifz as in Proposition 6.2.

Remark. It follows from the first equality of Proposition 16.1, the induction hypothesis
of §9, and the induction hypothesis of this section that

B H =I5 f) = BrP (v en (),

for ¥ € M(Fs)) and f € H™(G(Fs)). See (13.1%*) [10] for details.
Proof. Define

en(n Y = 1) = Y P (ren(8)fe), v € M(Fs).
LM

Following the proof of Proposition 13.2 [10], we need only show that (7, f) is the orbital
integral of a function in HE(M (Fs)) for v € M(Fs) N G.eg and § = {v}. Define

en(, f) = L (n £) = D ei(S)IE (1, f)

PEYY

for v € M(Fs) N Gureg. By Lemma 4.4 [6], “ear(7, f) has bounded support as a function
of 7 in the space of conjugacy classes in M(Fs). The following lemma relates °cp(7, f)
to ep (7, f).

Lemma 16.2 (13.3) Suppose that v belongs to M(Fs) N Greg. Then

em(1, £) = “en(y, F) = I (. 031 (F) — 05(F) = I (v, 6% f) — 04 ().
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Proof. We may apply the descent properties of both I Il{,’z and £57(.5) to the sum

> I (reu®)fz)

LM
occurring in the definition of € (7, f) to obtain
em(n = mH~ Y eHOILm -
{L16L(M):L1#G}

1t follows from (37) and (39) that

EM('Y:f) - CEM(A/yf)
Cr O T IR 9) D S 71 ) 0 A N R FACH )]

i

{L1€L(M):L1£G}
= SR - Y eRS) L (L))
L#G LieLL(pM)

We may apply the induction hypothesis at the beginning of this section to the terms in
the above sum for which L # M. Theorem 13.1 and Corollary 13.1 hold in this case and
so
TEM,80(F) = BN 0E() = 3 eB(S)TEZ (v, 65(1)).
LyeLi(M)
Thus, the summands indexed by L 2 M vanish.
The remaining term is
0385 = 63(5))-

The second equality of this lemma follows from
031 (F) = 617 (F) = G (F) — O3 (F),

which in turn follows from (34), (38), Theorem 13.1 and our induction hypothesis.00

‘We now return to the proof of Proposition 16.1. Suppose v is a nonArchimedean
valuation of F. Let f € H™(G(F,))° and ¢ be a semisimple element in M(F,). We will
show that

(53) en(r, £) &0,
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for v € M,(F,) N Gyeq. Notice that we may assume that 7y, as defined in §10 for ¢, may
be taken to be the identity. Indeed

em(m, f) = en(7, f)

and
I (no, £1) = Iif (0, f1)
for any € pM, v € M(F,) and f; € H™(M(F,)). Since n: € pM, it follows that (53)
holds for arbitrary semisimple o € M(F,) if it holds for those & with g = 1.
If ay, # aar then M,(F,) is contained in a proper Levi subgroup M; of M. We may
then apply descent to ep(, f) to obtain

EM('Y) f) = EM,M (U)fnng,l (71 fMl)

(cf (13.2)* [10]). Clearly ep(7, f) is the orbital integral of a function in H™*{(M(F,)) in
this case.

On the other hand, if ap, = ap then the germ expansions of Lemma 10.4 and Propo-
sition 10.1 yield the (3, o’)-equivalence of

euln, f)=HinH - > L¥men(h)
LM

with
oo g Hn- Y, IPPGen)].
LeL(M)dea(Up, (Fv)) {L1eL(L):Li#M)}

We may disregard the summand for which L = M as g}(y,6) = 0. If L 2 M we may
take the sum over all subgroups L; € £{L) and the difference in parentheses vanishes as
well. As a result (53) holds in general.

By Lemma 16.2, ex(7, f) is the sum of %ep(«, f) and

Iy, <05 (F) — B}(F)).

The latter term is an orbital integral of a function in ZB®(M(F,)). The former term,

em(7, f), has bounded support as a function of conjugacy classes in M(F,). By using
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this fact, equivalence (53) and a partition of unity argument on the space of semisimple
conjugacy classes under the quotient topology, we may conclude that cx(7, f) is every-
where an orbital integral. This means that there exists a function °pr(f) in Z%%(M(F,))
such that

en(7, £) = Bf (v, ent(f))-
Hence the function

em(f) = em(F) + 6u(f) — “637(f)
satisfies the requirements of the proposition.

In order to complete the proof of Proposition 16.1, it remains to be shown that it
holds when S consists of a single Archimedean, and hence complex, valuation. This will
not be very taxing, as G(C) splits over G(C). For any f € H(G(C)) and 7 € Gueg(C)
set

1) = [P/ DI F ().
It should be noted that the complex norm is taken to be |z|¢ = 2Z for z € C. The

function f extends to a smooth function on G(C) with compact support. Moreover

rém(A/42) gy (y, )

= wie D [ fae)ula)ds
G(C)/GA(C)

DO [ 1Dy D) ey e (a)de
G(C)/G4(C)

D [ e (e
&(C)/G+(C)
Ja(r

where v € M(C) such that M, (C) = G,(C). In particular, f and f have matching orbital
integrals. Consequently f € H™(G(C)), and f* may be taken to be equal to f.
We wish to show that

(54) Iﬁ('?'vf):Il‘El('Yaf)r 'YEM(C)'

85



By the inductive definition of Ins(7, f) ((2.1) [6]),

h = Y dmmH- Y, HiPemeén(f)
neuR! /ug LELo(M)
= Y JumN- Y L Y mal).
nepdl /1§ LeLo(M) mepk/ug

It is easy to show that
Z JM(”)‘Y': f) = JM(’Y‘»f‘)a Y€ A/I(C)
nepll /uf

Indeed, by our previous calculation for Jy (v, f) and Lemma 6.1,

S dulm ) > nmdmAnlAc) g ((m)”, f7)

nepdf/ug nepudl [u§

n- dim(AmlAa)JM (')", f.)
nepdf/ug

In(r"s £7)-

Thus equation (54) foillows from a simple induction argument if we can show that
Ponentug "0L(f) matches ¢z (f*) for L € Lo(M). Let us focus on 3, v/, "éu(f) first.
According to the Archimedean trace Paley-Wiener theorem ([3]), there exists a function
h € H(L(C)) such that hy, = ¢.(f). By definition (§3),

> tounm = ¥ u JRORCE

neuk/u§ nepk/ug

Z tr/L(C) w(z)h(nz)dz

nepk/u§

( Z w(n'l)) tr/L(C) w(z)h(z)dz

enk/u§

( > W(ﬂ")) (@) (m),

nenk/png

I

I

for 7 € Weemp(L(C)). Now 7 € Ifi (L(C)) if and only if its central character is triv-

ial on uZ (This follows from the fact that tempered representations are principal series
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representations (Theorem 14.91 [20]) and the arguments of §2.1 {13].). Consequently
dim(Az/Ac) s mef
Z (o (F))(m) = { g’, (e(MN(m), if w € M5, (L(C))

otherwise
neuk/ug
As a result, in order to show (54) by induction, it suffices to show that nd™4z/4c)g, (f) &

Imet(L(C)) matches ¢z (f*) € Z(L(C)) for L € Lo(M). In other words, it suffices to show
"dim(AL/AG)(ﬁL(f: ) = ¢5(f‘,7l"), S H::::p(L(C))'

By definition (§7 [9]), this equality is one and the same as

(55) néim(An/Ac)yy / Rau(m, PyrC(z)f(a)de = tr / Ry, B)(n*)6 (@) f* ()de,
G(C) G(C)

where Rr(+,P), P € P(L) is a (G, M) family obtained from normalized intertwining
operators. Since all irreducible admissible tempered representations of G(C) are principal
series representations {Theorem 14.91 [20]), it suffices to prove (55) for I = Mp. In this
case, 7 may be represented by ®7._,w;, where each w; is a quasi-character of C*, and
7 = Q[_,w! (cf. §2.1[13]). It is a tedious, but straightforward, task to justify the following
computation.

ndimlAsig/Ac) iy / Rt (m, Po)wC(z) f(z)dz
G(O)

i [ Rgg(n, B @) (D) Do)
G(C)

af Rt Bo)(7*)3 (@ 2°) (" 2")| D)/ D(e) [z
Ag(C) JG(C)/Ac(C)

tr/ / _ 'R(ﬂ",Po)(w‘)é(z'z‘)f‘(z‘z‘)da:‘dz
Ac(C) JG(C)/A%(C)

i

r /_ f  Rg(n, B () ("2) (a2 et
%(C) JE(C)/AE(C)

o [ Ryl BN o)
G(C)

The coefficient nd™4s0/46) in the first equality is absorbed by Ry, (7%, By) (cf. Lemma
14.2). In the third equality we claim that the change of variable produced by the map

G(C)/Ac(C) = G(C)/A%(C),
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zAg(C) ~ 2" 4%(C),

is |D(z™)/ D(:z:)|g 2, We give an idea of the proof of this claim. Let g be the complex Lie
algebra of G(C) = GL(r, C). Recall that the exponential map

exp: g — G(C),

is surjective and a local diffeomorphism. The Haar measure on G(C) is equal to the
inverse of the differential of the exponential map applied to a differential form on g which
yields Lebesgue measure on g. Suppose ¢ € G(C) and X € g such that exp(X) = z.
Then the following diagram commutes.

X = nX =Y Ad(z)FX

{

1
z R § o

From the earlier remarks, it follows that the change of variable resulting from the lower
map is equal to the Jacobian of the upper map. The Jacobian of the upper map is
| det 7=} Ad(z)*|¢/2. The claim now follows from the equality

1— Ad(z)" = (1 — Ad(=z)) nZ_IAd(x)"
k=0

and the definition of D(z) (§3).
We find that for L € L(M)

fy fL=G
0, otherwise *

(56) ef(n = {
The proof of Proposition 16.1 now follows as in the proof of Proposition 13.2 [10].0
Corollary 16.1 Let S be a set of Archimedean valuations of F. Then

Iin ) = I(v, ) = 0, f € H™(G(Fs)).

Proof. This follows from Proposition 16.1 and (56). O
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17 Comparison for f € H™(G(A), M)

We now give a sketch of the proof that IM(f)—I(f) = 0, for a certain subset H™*(G(A), M)
of functions in H™*(G(A). The train of reasoning in this section relies entirely on §15
and §16 [10]. We will outline the arguments found there and leave it to the reader to
confirm the details.

There are a few definitions in {10] which must be transcribed before we may appeal to
the arguments of §15 [10].

Let H™*(G(A), M) be the space of functions f in

H™H(G(A), M) N H"(G(A))°

which satisfy one additional condition. Namely f vanishes at any element in G(A) whose
component at each finite place v belongs to Ag(Fy).

The remark after Proposition 16.1 is used to great effect in the following lemma.

Lemma 17.1 (15.1) Suppose that f € H™(G(A), M)®. Then

M(f) = I(f) = (W ap) |7 F¥ (enn(F)),
where IM is the analogue for M of I = IS.
Proof. By the properties of f and the remark after Proposition 16.1, we see that I*(f)—
I(f) equals
W™ > a(SNLE(rem(f),

Fe(M(F))ar,s
for a large set of valuations S. By the cuspidality conditions on f (¢f. Lemma 15.1 [10]),
it follows that

jg;S(v’ EM(f))r Y€ Ml(F))
for any M; such that M 2 M;. Thus by (14),

Z aM (S, NIME (y,e0(F))

Ye(M(F)m,s
= > Wt Y MR (hem()
MiecM YE(MA(F)) My .5

i

Men(F)O
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It is our intention to apply the method of separation of variables to Lemma 17.1.
This method relies on the Archimedean factors of f € H™*(G(A), M)°. Some necessary
notation is given before this method is sketched.

Let S, denote the set of Archimedean valuations of F. Then G(Fs,_ ) may be regarded
as a real Lie group. Let h¢ denote the standard Cartan subalgebra of its complexified
Lie algebra. Let h be the real form of hc associated to the split real form of G(Fgs,).
Then § is isomorphic to ap, as a vector space and therefore contains all vector spaces
of the form ays. Let ' be the orthogonal complement of ag in §. We recall the theory
of multipliers. Let a belong to £(§)", the convolution algebra of compactly supported,
WoC-invariant distributions on h!. Then there is an action, f +— f., on H™(G(A))
such that fou(7) = &(vg)fu(r) for all # € I™*(M(A)). As usual, v, is taken to be
the infinitesimal character of the Archimedean factor of 7. This action of £(§')" on
H™*(G(A)) affects only the Archimedean factor of f.

Lemma 17.2 Let « € E(H)W and f € H™(G(Fs)). Set a*(v) = ndmMa(nv). Then
fo € HPHG(Fs)) and (fo)* = fir.

Proof. Let a € £(h")Y and & € 1T (G(F5s). Then

It

o) = Fwef3n)
= & (vs/n)fo(n)
= &(v)fe(m)
= fas(m)
1t follows from Proposition 27.3 [15] that f, and fi. match. In particular we may take
fa € H™(G(Fs)) and set (fo)* = f2..0
Corollaries 14.2 and 14.3 [10] follow without difficulty in the metaplectic context.

Corollary 14.4 has a much simpler proof in our case.

Lemma 17.3 (14.4) Let f € H™*(G(Fs)), and a € E(0))". Then exr(fa) = eae(f)a-
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Proof. Let S be the disjoint union of S, and Sp. Let f = foofo be the corresponding
decomposition of f. Note that by the splitting property of Theorem 10.1,

em(S)= Y. d§(L1, La)er} (Swo)erd (S0)-
Ly, LaeL(M)

It follows from the fact that G(Fs,) splits over G(Fs,.), that £52(fu,z,) = 0 unless
Ly =M. Also,

G _ 1, L1 = G
(L1, M) = { 0, otherwise °
Consequently the splitting formula above reduces to
em(f) = en(fo)eht(foonr)
= eum{folfoous-
Therefore
em{(fla = (Efd(fﬂ)foo,M)a
= EI?I(fO)(fm,M.a)
= 51?!(f0)(fw.a.M)
= EM(fu).D
Let h; be the set of points v in hg/iag such that » = —sv for some element s €

W€ of order two. The Archimedean infinitesimal character of v, associated to any 7 €
12t (G(A)?) belongs to bE.

The background for the method of separation by infinitesimal characters is settled.
The object of the application of this method is the following lemma. There is but one bit
of notation left to give. For vy € b}, define

I2(G(A)Y) = {r € I™(G(A)*) : v = s, for some s € Wg}.
Lemma 17.4 (15.4) For each f € H™(G(A), M)° end v, € b}, we have

(adt (7} — agisc(m)tra(f1) = 0.
melIf(G(A))
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Now, on to the description of the method of separation by infinitesimal characters.
First we choose v; € b and o € E(§) as in Lemma 15.2 [10]. Given T > 0 it follows
from Lemma 6.3 {7] and Lemma 15.2 [10] that

VD B (fap) = Llfap) — W (aa)| " P (eae(fap)| < Ce™H™
t<T
for some positive constants C, &k and N. Thus
(57) DI (fap) = Ifo) = W (aan)| 7 E¥ (ene (Fap)
t<T
approaches zero as m approaches infinity. On the other hand, we may write

(58) ST M (fup) — L(fap)

t<T

Yo Y (ahhn) - agse(m)tr(f)of

t<T wellmet(G(A)1,t)
by Lemma 15.3 and the theory of multipliers. Moreover by Lemma 15.3 [10], we may
write

(59) S W) M (e (Fap)

t<T

as a finite sum,

W@n)ld>. Y ehn) em(f'm, N)a (ve + A)"dA,

¢<T melImet (M) iak/ing

for some Schwartz function
Ao ey(flym, ), A€ dajy/iag.
The multiplier a; was chosen so that
0<dav+A) <],

for all but finitely many A € iaj,/iay in the above integral. Thus, by the dominated

convergence theorem, the integral approaches zero as m approaches infinity. Thus (59)
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and (57) both approach zero as m approaches infinity. Since (57) is the difference of (58)
and (59), we see that (58) has this property as well. Once again by our choice of a;, the
inequality,

0<élva) < 1,

holds for 7 € II™*{G(A)',t) unless = € IIP*(G(A)!), in which case &;(v,) = 1. This

vy
yields Lemma 17.4 and ends our discussion of the method of separation by infinitesimal
characters.

The following Proposition is essentially an extension of Lemma 17.4 to functions in
H™(G(A), M), and an application of Lemma 15.3. If follows mutatis mutandis from §16
[10].

Proposition 17.1 (16.2) For any f € H™*(G(A), M), we have
M(f) = I(5).
18 Proofs of Theorem 9.1 and Theorem 12.1

At long last, we prove Theorem 9.1 and Theorem 12.1. We begin with Theorem 9.1 (i).

First we establish a certain degree of freedom at the Archimedean valuations.

Lemma 18.1 Suppose S; is a finite set of valuations with the closure property and Sy D
Sin)- Suppose further that v is a valuation of F not contained in S and set § = S U
{v}. If f = Afs € H™(G(Fs,)) and v = 111w € M(Fs) N G.eg are corresponding
decompositions, then )

IACIA(7= f) - IIfI('Yy f) = (III\"IA(’YIa fl) - Ilfl("/l: fl))IG(7v1 fv)
+ (I[J:{A('Yvy fu) - II\L/;("/W fv))IG('Yl)fl)'

If v is Archimedean, then

Iﬁ(’)’r f) - II‘EI(’Y: f) = (IA/A;('YIY fl) - I}ﬁ(’)’lw fl))IG(7v: fu)

93



Proof. We may apply the splitting properties ( (17), Lemma 6.2) to obtain

> o, L) (HeMms Fusad M s Fu) = T2 70 Frt) I (s Fua)) -
Lo, Ln€L(M)

According to the induction hypothesis of §9, the summands above, for which either Ly or
L, is not equal to G, vanish. By the properties of d$;(Lo, L1) (¢f Lemma, §7 [6]), the
lemma follows.
For v Archimedean, the second equality follows from the first and Corollary 16.1.0
The following lemma is a tool which allows us to derive local results from the global
result of Proposition 17.1.

Lemma 18.2 Suppose w is an Archimedean valuation and S is a large, finite set of

valuations containing Si,) and the Archimedean valuations of F. Furthermore, suppose

=511 £ e H==(G(A), M)
vEw

such that IM(f') — I(f') equals the sum of

W)™ D, aMSEL ) - e )

YE(M(F))n,s/pb!
and

(@(S,u) ~ a(S,u)) s (5u, f)
seAg(F)ueUa(F)e,s

as in Lemma 16.1. Then for each v € M(F) N G, which is F-elliptic in M(F), there

exists a function f,, € #H™*(G(C)) such that f = fu .z, fy belongs to H™*(G(A), M)
and

() = I(f) = vol(My(FINMy(AY NI (v, Fs) = Iz (v, fs))

0.

Proof. If the image of v in M(F,)) does not belong to the support of f/, then by the

second equation of Lemma 18.1, I"(f') — I(f') must vanish and we are done. Suppose
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then that the image of v above does lie in the support of f!. The set of valuations S has
been chosen so that f’ € H™*(G(Fs), M). In other words,

=5 11 #II%

veS—{w} vgS

where f0 are the functions defined in §7. The support of f' is contained in a compact open
subset, Uy, X [T,e5—(wp Us X [Togs Ko, of G(A). Since G(F) is a discrete subgroup of G(A),
we may choose f,, € H™*(G(C)) to be supported on a sufficiently small neighbourhood
U, C U, such that v is the only element of G(F’) contained in Uy X[ ], cs_ g UvxTlogs Ko
The function f, obtained by replacing fi, with f,, is clearly also in H™*(G(Fs), M). It
is also not necessary to increase the size of S in the expansion of I™(f) — I(f) as in
Lemma 16.1 (c¢f. §4 [7]). By construction then, the only summand of this expansion
which survives is

aM(S, I (1, fs) — Ig (1 £s))-

Proposition 17.1 tells us that this expression vanishes. By Theorem 8.2 [4] we may
conclude that

aM(5,7) = vol(M, (F)\ My (A)Y),
for S sufficiently large.00

Lemma 18.2 has an immediate application. Namely,

I#('Yy f) - IA);I('Yy f)a vE M(FS) n Gcregy
may be compared to the orbital integral I (v, f).

Lemma 18.3 Suppose that V is a finite set of valuations with the closure property such
that either V' O S(ny or V consists of a single valuation not contained in Siny. Then for
every function fy € H™(G(Fy)) there ezists a smooth complez-valued function epr such
that

B, ) = Ig(w, fv) = em(w)le(w, fv), v € M(Fy).

Proof. Suppose first that V' contains S(;,). Lemma 18.1 allows us to restrict to the case

that there exists an Archimedean valuation w of F which does not belong to V. Let

95



¥ € M(F) be as in Lemma 18.2. It is straightforward task (¢f. p193 of [10]) to choose a
finite set of valuations

S=VU{w,v1,...,vk}

containing the Archimedean valuations, V' and at least two other nonArchimedean valu-

ations, and a function

k
f=fvfo]] £ € H™(G(Fs), M)

i=1

such that Ig(v, fi) # 0, Ig(7, fu) # 0. Then

Bt H -5

has the expansion of Lemma 16.1. Thanks to Lemma 18.2, we may assume that

Ll f) - IE f) =o.

A repeated application of Lemma 18.1 to this equation yields

k
I v, ) = Iiglows o)) e (s fu) T Ta(r, £3)
=1

k

+ > I £ - Il B e, f)la(r, fu) T Te(n £7)
i=1 i

= 0.

From this equality and our choice of functions we can readily see that if Ie(y, fv) = 0,
then
I, fv) = I(w, fv) =0

as well. As a result, there exists a constant &ys(7y) such that

(60) B ws fv) = IE(w, fv) = e Ia(n fv).

We may prove (60) in much the same fashion if V' consists of a single valuation not
contained in Sn).
Since both

I#(r fV) - IAZ':I(r fV)
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and Ig(:, fv) are smooth functions of M(Fy) N G,.eg and the image of the set of F-elliptic
elements in M(F) NG is dense in M(Fy) N Greq, We may clearly extend the definition
of ey to obtain a smooth function on M(Fy) N Gueg.0

It is not too hard to see that Theorem 9.1 (i) follows if the function ey vanishes.
Indeed, if ep vanishes then the induction argument begun in §16 is complete. This in
turn implies that M may be taken to be Mj and since

H™HG(Fs), Mo) = H™(G(F5)),

Theorem 9.1 (i) follows after an application of Lemma 9.5. We will show that e5s vanishes
by showing that it vanishes on some subgroups whose product generates M, and then
showing that e is 2 homomorphism. First we show that the values of €37 do not depend
on the Archimedean valuations Se.

Lemma 18.4 Suppose V is a finite set of valuations with the closure property and con-

taining Sg). Let Voo = Soo NV Then gy is invariant under M(Fy,) N Gureg.

Proof. Suppese first that V. contains at least two Archimedean valuations, v; and vs.
Let V! =V — {v;} and let v = yym1 € M(Fy) N Guregy fv = firfi € H™*(G(Fy)) be
corresponding decompositions. Then V" has the closure property and V' > Sny. Therefore

we may combine Lemma 18.1 with Lemma 18.3 to find that

If;(’)’v, fV) - IIf](’YVy fV)
= em(w) ey, fr)le(n, fi)
em(wv)lelwv, fv)-

em(w)lc(w, fv)

In other words, ea(yv) = em(Yv+), and so ) is independent of ;. This argument may
be repeated with any other Archimedean valuation in place of vy, so the lemma follows
for this choice of V.

Now if V N S, consists of a single Archimedean valuation vy, then let V! =V U {w,},
where v, is an Archimedean valuation not contained in V. The above argument then
yields

emlw) =en(w), 1w = W72 € M(Fv) N Gureg.
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By the earlier argument, exr(yv) is independent of the factor of 4y« corresponding to the
valuation v;. The last equation implies that €pr(yy) must have this independence as well.

The Lemma is now complete.]

Lemma 18.5 SupposeV is as in Lemma 18.3, f € H™(G(Fy)), andy € My(Fy)NGareg
where My € £ and My G M. Then ey(y) =0.

Proof. Lemma 9.2 tells us that

i ) - Intr.f) =0

Since gp7 is smooth on M(F,) N Gueg, it is easily seen that we may choose &5 in Lemma
18.3 so that it vanishes on some open neighbourhood of v € M(F,) N Geg.0
Recall decomposition (2),

[4
M =] M),

i=1
where M (i) = GL(r;) and Zf=l r; = r. For the sake of simplicity, we will identify the
subgroup []5., SL{r;) of [-, GL(r;) with its image in M via the above isomorphism.

Lemma 18.6 Suppose V' is as in Lemma 18.4. Then the function €y vanishes on
TT&. SL(rs, Fy).
Proof. Let fy € H™(G(Fyv)) and vy € [T, SL(7s, Fy)NGareg. Fix two nonArchimedean

valuations, v, and v, not contained in V. Choose

14
7 € [ SL(rs, Fiy) 0 Gureg, 5 =1,2,

i=1

such that v; is F;-elliptic in M(F,,). By strong approximation ([21]) on [T5, SL(rs, A),
there exists v € Hf=1 SL((7i, F') N Gureg satisfying the following properties:

o 7 is F-elliptic in M(F).
® The image of 7y is M(Fy) is close to y at the nonArchimedean valuations of V.
® The image of v in M(F,;) is close to 7;, for j = 1,2.
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o The image of ¥ in M(F,) belongs to K, for all nonArchimedean valuations v such
that v ¢ Vu {‘Ul, 112}.
Let Sp be the set of Archimedean valuations of F' not contained in V. Choose fy €
H™*(G(Fs,)) so that the image of v in M (Fs, ) lies in its support. Choose f; € H™*(G(F,,))
supported on small F,,-elliptic sets of M(F,;), such that Ie(y;, f;) #0, 7 = 1,2, and
f=hhikfr ] £ eH™(G(A),M).
vEVUSU{n1va}

After a possible application of Lemma 18.2, we obtain

M) = 1(f) = vol(My(F\My(AY)IH (7, fs) — Tz (v, Fs))
= 0.

If we substitute the expansion of Lemma 18.3 into this equation, apply Lemma 18.1

repeatedly, use the invariance of Lemma 18.4 and use Lemma 7.2, we end up with

em(w) +em(n) +em(r2) =0.

Now v; and v, were chosen to be arbitrary nonArchimedean valuations not contained in
V. Therefore the whole argument may be repeated with a different pair of valuations, v}
and v, with the final result,

em(1v) +em(n) +en(rz) =0,
for some

[
7 € [T SLrs Fg) 0 Gueeg, 5 =1,2.
i=1
This implies that &y (7yy) is constant for all vy € [[5, SL(rs, Fy) N Gureg. Since ear(7v)
vanishes for 7y belonging to a proper Levi subgroup of M, this constant must be zero.[J
Observe that M = My []¢_, SL(r;) and that & vanishes on both My and T15., SL(r).
As stated before, the following lemma completes the proof of Theorem 9.1 (i).

Lemma 18.7 Let V be a finite set of valuations with the closure property and containing
S(n). Suppose fy € H™*(G(Fv) and exr is as in Lemma 18.3. Then ey is a homomor-
phism from M(Fy) to C.
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Proof. Let 11,72 € M(Fy) N Gueq. By weak approximation, we may choose v € M(F) n
G\yreg to be an F-elliptic element in M{(F) such that the image of v in M(Fy) is close to
7. Embed 7, into M(A) in the obvious way and let §; = vy € M(A). Then the factors
81,5 of 8, at the valuations v € V are close to the identity. Let V) denote the finite set
of valuations {v,..., v} at which the factors of 81; of 6 do not liein K,;, 1 < j < k.
By construction, V' and V) are disjoint sets. We may use an argument similar to that of
Lemma 18.6 to conclude that
0=em(?) =em(@im) = Y em(drs) +em(m)-
veW

‘We repeat this argument for 7, to obtain a finite set of valuations V3, disjoint from V,
and an element §, € M(A) such that

D en(Ba) +n(12) = 0.

veVz
Weak approximation allows us to assume that V; is disjoint from V] as well.

Once again we use an argument similar to the one in Lemma 18.6 on the product
amd272 = 17120162 € M(F) N Garegs

to arrive at

O=eml(nm)+ I en(Gio) + D eml(B20) = em(mr) = £ae(m) — ena(2).
veW veVy
Otherwise stated, €js is a homomorphism.[]
All that remains to be done now is to prove the rest of Theorem 9.1 and Theorem
12.1.

Proof of Theorem 9.1 (ii). We wish to show that
a™(8,7") = (5,7, v € M(F).

Suppose first that ¥ € M(¥) has Jordan decomposition v = ou, where the semisimple
element o is not in Ag(F) if M = G. Then

dimp(My(F)) < dimp(G(F)),
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so we may apply the induction hypothesis of §9 to decompositions (22) and (23) and the
lemma follows.

On the other hand, if M = G and o € Ag(F) then
a%(8,7) = (5, w")

and
a%(8,7) = a%(8,),

by (22) and (23) respectively. It follows from Theorem 9.1 (i) and Lemma 16.1 (where we
may now take M = Mp) that

> > (@S - aS,u)slow f) =0,
c€AG(F) ue(U(F))
for any f € H™*(G(A)). We may choose f € H™*(G(A)) above so that for a fixed
element u; € Ug(F), we have

_J1, fo=landu=n
Ig(ou. f) = { 0, otherwise

(§3.3 [31]). This clearly implies that a(S,u}) = o(S,u;).0

Theorem 12.1 (i) follows from Theorem 9.1 (i) and §13. This leaves us with a single
proof to be completed.
Proof of Theorem 12.1(ii). By the induction hypothesis of §12, we need only show that

al(7) = agise(), ™ € IPHG(A)Y).

Let 1, be the infinitesimal character of the Archimedean factor of some fixed representation
w in II™*(G(A)"), and let X; be a compact open subgroup of [ g¢ X, such that =
is bi-Kj-invariant. Let II™%. (G(A)') be the set of bi-Ki-invariant representations in
IImet(G(A)!) with infinitesimal character 1. In the process of proving Proposition 17.1
(¢f. (16.6) [10]), one obtains

Z (aﬁc("r) - adisc("r))tr(fl) =0,

renzme, (G(A))
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for any f € H™*(G(A.)') which is bi-K;-invariant. This sum is finite by Lemma 4.2 [7],
and the linear forms,

e ton(f), m e I, (G(A)),

on the space of bi-K)-invariant functions in #™*(G(A)) are linearly independent. The
result follows.[J

19 Appendix. Tensor Products of Metaplectic Rep-
resentations

In §26.2 [15) a method of induction from parabolic subgroups of G(F,) is delineated.
Recall decomposition (2), ,
M =T] MG).
i=1

This method of induction relates tensor products of representations of M (?) to represen-
tations of M. We describe this relation and prove all of the claims made in §26.2 [15]
concerning it. It seems that the claims are not true in general ([30]). The assumptions
made on n and 7 in §2 remain in force.

Let (+,+)s, : FX x F* — p, be the nth Hilbert symbol on F, and let B be a maximal
subgroup of F* with respect to the property that (z,2')r, = 1 for all z,z’' € B. Let
1< i< {andset

ME()(F,) = {7 € M()(F,) : det(p(7)) € B}.

It is a simple matter to check that A53(:) is a normal subgroup of M(3) of finite index.
Let j; be a genuine irreducible AnNt (i)-module whose restriction to so(A™) the central
character @ of §3. Let ! be the restriction of ; to AR NI(3). The AN (i)-module 7! is a

sum of conjugates of some irreducible A" #(:)-module 5, Otherwise stated,
Bl=3 A
v
where the sum runs over representatives « of certain cosets in M (5)/M5(3).

102



Lemma 19.1 If v is as above then f) is not equivalent to 5’ unless M (i) = GL(1) or
5 € MB(3).

Proof. If M(i) = GL(1) then M(i) = F* x p,. In particular M(i) is abelian and
A=i
representatives of M (i)/MB(i) may be taken to be diagonal matrices. Let

. Suppose that r; > 2. By using the Iwasawa decomposition, it is easy to see that

N 0
v= ..
0 Tre
be such a representative. Suppose that 57 is equivalent to 5!. More precisely, suppose
that there exists a linear isomorphism T such that

Top (%) = A7) T,

for all § € AnMfB(7). Let = € B and choose § € MB(i) such that

1t may be verified by following 0.1.1 {19] that ¥ is in the centre of ARNIB(3). Thus, we
have,

Top!(7)o T
Tof(riimeT™
((det(), det(@()r/ [[(3,2)R)T 0 Bi(H) 0 T,

i=1

p()

[}

by Proposition 0.1.5 {19] and the multiplicativity of the Hilbert symbol. By Schur’s lemma

BL() is a nonzero scalar operator. Consequently this last equality may be rewritten as
(det(y),2)" " = L.

Since ged(n, 7; — 1) == 1 (§1), we have that (det(y),z) = 1. The element z € B was chosen
arbitrarily so this means that v € M3(3).0
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Continuing with the discussion on tensor products, we set 5’ to be the Anit B_module,
®{_,p.. This module is irreducible and, from arguments similar to those in the proof
of Lemma 19.1, we find that it is inequivalent to any of its conjugates by elements in
M — AnMB. Mackey's criterion then yields that the M-module, p, induced from p;
is irreducible. This process may be reversed without difficulty. Thus every irreducible

M-module corresponds to a unique set of Anjt (¢)-modules.
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