
AN EFFICIENT NEWTON-KRYLOV
METHOD FOR THE EULER AND

NAVIER-STOKES EQUATIONS

-1 thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering
University of Toronto

@ by Alberto Pueyo, February 26, 1998

National Library 1+1 0 f C ~ d a
Bibliothhue nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Sbwt 395, rue Wellington
OttawaON K 1 A W OttawaON K I A W
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distmicbute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts tiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distriiuer ou
vendre des copies de cette these sous
la forme de microfiche/fh, de
reproduction stir papier ou sur format
electronique .

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent &re imprimes
ou autrement reproduits sans son
autorisation.

-IN EFFICIEKT NEWTON-KRYLOV METHOD FOR THE EULER -4ND

NAL'IER-STOKES EQU-ATIONS

Doctor of Philosophy, 1998

Alberta Pueyo

Graduate Department of Aerospace Science and Engineering

University of Toronto

Abstract

An efficient inexact-Newton-Krylov algorithm is presented for the computation of steady

compressible aerodynamic flows on structured grids. The spatial discretization consists of a

second-order centered-difference operator with the second and fourth-difference dissipation

model of Jameson et al. The Baldwin-Lomax algebraic model is used for turbulent flows.

The t hin-layer Navier-S tokes equations are linearized using Newton's met hod. Precondi-

tioned restarted GMRES in matrix-kee form is used to solve the linear system arising at

each Newton iteration. The precondit ioner is formed using an incomplete factorization of

an approximate-Jacobian matrix after applying a reordering technique.

An optimization study is presented to obtain an efficient parameter-free solver for

a wide range of flows. An inexact-Newton strategy that avoids oversolving is established.

Comparison between different preconditioners of the incomplete-lower-upper factorization

family is presented. The best performance/memory ratio was obtained for the Block-Fill

ILU(2) precondit ioner. A parametric optimization of the approximate-Jaco bian used to

produce well-conditioned LU factors is aIso shown. Different reordering techniques are

considered: results show that the Reverse Cut hill-McKee is the most efficient technique.

The algorithm has been successfully applied to a wide range of test cases which

include inviscid, laminar, and turbulent aerodynamic flows. In all cases except one, conver-

gence of the residual to lo-'* is achieved with a CPU cost equivalent to fewer than 1000

function evaluations. The sole exception is a low Mach number case where some form of

local preconditioning is needed. Several other efficient implicit solvers have been applied to

the same test cases? and the matrix-free inexact-Newton-GMRES dgorithm is seen to be

the fastest and most robust of the methods studied.

Acknowledgments

These few years that I have spent at UTIM have been a wonderful academic and

human experience to which many people have contributed in different ways. I deeply

thank each and everyone for their contribution.

I am grateful in a very special way to my supervisor Professor D. W- Zingg

for his gentle and demanding guidance during my doctoral studies. His constant

motivation. his comments. suggestions and insights while respecting my own initiative.

have been very inspiring. In spite of having a large research group. his total availability

and dedication for each one of his students has been greatly appreciated. I finally

thank him for sharing so many good moments of discussion, which gave me the

opportunity to learn a great deal from him, both academically and humanly.

I would like to thank the members of my Doctoral Advisory Committee. Pro-

fessor Gottlieb and Professor Hansen for their various suggestions and insights that

have helped me throughout my research.

There is a good researcher and friend to whom I am particularly thankful too.

Dr. Laura Dutto. I appreciate her patience when I have bombarded her with ques-

tions. The many interesting discussions that we have had have been very enlightening

for me. I'm also thankful to her for providing me the necessary subroutines to test

certain reordering algorithms.

I would like to thank Dr. Maryse Page, a friend and colleague. for haking

pointed me to some good literature at the beginning of my research.

Stan DeRango deserves a special place in my gratitude. His true friendship.

his constant good humour and the fact that he has always been ready to give a hand

has greatly facilitated my work and made it very enjoyable.

There are three other guys in the CFD group whose help has been very pre-

cious. I am referring to the three Linux gums, Jason, Todd and Mike, who have

helped me constantly since I switched to this operating platform.

A big thanks also to everyone at UTIAS. particularly to the directors and

s t d . the people in the CFD group, the soccer team and those working in the ASA.

for making my staying at UTL4S so enjoyable.

M y parents and family. as well as many friends and colleagues. deserve my

gratitude in a special way for their constant support and encouragement.

Finally. I am c-ery grateful to those who supported me financially during these

years: the Government of Quebec, the Government of Ontario. the University of

Toronto. my supervisor and my parents.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
. 1.1 Background 1

1.2 Review of some classic iterative met hods for steady flows 3
. 1.3 Newton-Krylov methods 4

. 4 Objectives 13

2 Governing equations 15
. 2.1 The Navier-Stokes equations 15

. 2.2 Generalized curvilinear coordinate transformation 17
. 2.3 Thin-layer approximation 19

. 2.4 Turbulence model 20
-2 9 . 2.5 Boundary conditions --

. 2.5.1 Body surface 23
. 2-52 Far-field boundaries '25

. 5 . 3 Circulation correction 26
2.5.4 Wakecuts . 27

Algorithm description 28
. 3.1 Spatial discretization 28

. 3.1.1 Finite differencing 29
. 3.12 Artificial dissipation 30
. 3.1.3 Boundary conditions 32

. 3.2 Linearization: Newton's method 34
3.2.1 Linearization of the interior scheme - . . 35
3.2.2 Linearization of the boundary conditions 37

. 3.3 S ta r tup 42
. 3.4 Solvers for the linear problem 43

. 3.4.1 GkIRES 44
. 3.4.2 Matrix-free GhIRES 46

. 3.5 Preconditioners 48
3.5.1 Incomplete LU factorization preconditioners 53

. . 3-52 Level of El!-in: ILU(p) . m

. . 3.5.3 Threshold strategies . ILUT(P.r) ao
3.5.4 BFILC'(p) . 56

3.6 Ordering of unknowns . 38
3.6.1 Natural ordering . 58
3.6.2 Orderings based on domain decomposition 68
3.6.3 Double bandwidth . 60
3.6.4 Reverse Cut hill-McKee . 60
3.6.5 bf inimum neighbouring . 61

4 Algorithm optimization
. . 4 1 Test cases

4.2 Units for comparing efficiency .
4.3 Inexact-Xewton solver .
4.4 Preconditioning strategies .

4.4.1 Comparing precondit ioners .
4 -42 Preconditioners from the first-order and the second-order .Ja co-

bians .
4.43 Parametric study .
4.4.4 Freezing the preconditioner

4 Ordering of unknowns .
4.6 Optimized algorithm .

5 Results 80
5 1 Performance of the algorithm . 80

. 5.2 Comparison to other solvers 83

. 52.1 Description of solvers 83
. 5-22 Performance comparison 85

5.2.3 Memory comparison . 85

6 Conclusions. Contributions and Recornendations 92
. 6.1 Conclusions 92
. 6.2 Contributions 94

. 6.3 Recommendations 95

References 98

A F l w Jacobians for the t hin-layer Navier-St okes equations 111

B Flow solution for the eight cases 113

List of Figures

"C" grid for a N.4C.A 0012 airfoil. - 18
Generalized curvilinear coordinate transformation. (Supplied by Tom
Pulliam. YASA Ames.) . 18
Normal and tangential directions at the boundaries. 24

Algorithm for the restarted GhIRES(m) iterative method. 47
Eigenvalues of a non-preconditioned matrix A and of the matrix pre-
conditioned from the left with an ILU-type preconditioner MY'A. . . 50
The preconditioned GMRES(m) algorithm. 31
Algorithm of the incomplete factorization IL L(p) 56 - - Algorithm of the incomplete factorization ILU(P. T) ;J 1

Schematical distribution of zones in orderings DD1 and DD2. 39
Matrix that arises from using the natural ordering. NAT. 62
Matrix that arises from using the domain decomposition ordering DD1. 62
Slatriu that arises from using the domain decomposition ordering DD2. 63
Slatriu that arises from using the double bandwidth ordering. DB. . . 63
Matrix that arises from applying the RCM reorderings to an initial
double bandwidth ordering. 64
!vIatriu that arises from applying the minimum neighbouring reordering
to an initial double bandwidth ordering. - . . 64

Convergence history for different levels of reduction of the inner resid-
ual using the matriu-free Newton-GMRES. 69
Illustration of oversolving with a reduction of the linear residual F(Q) +
A(Q)AQ of five orders of magnitude: i) = The nonlinear residual
F(Q + A&) shows no reduction for an important number of GMRES
iterations. , 69
Convergence histories for case 1 in a 143 x 20 nodes grid. using three
preconditioners: BFILU(0) formed from the first-order Jacobian Al,
BFILU(0) using the second-order Jacobian d2 and BFILC'(2) from the
first-orderJacobian.. 73
Total number of GMRES iterations required to converge to machine
zero, for different values of a for various cases. - . . 75
Total number of GMRES iterations required to converge to machine
zero, for different values of dto for cases 1 to 6. 75

vii

Number of GhLRES iterations at each Yewton iteration freezing the
preconditioner (bars) and updating the preconditioner a t each Newton

. iteration (impulses) for case 2.
Convergence history for case 2. freezing the preconditioner and updat-

. ing the precondit ioner a t each Newton iteration.
Convergence h i s toe for the six orderings for case 3. using BFILU(2)

. as precondit ioner.
Convergence history for the six orderings for case 8. using BFILC(2)
as precondi t ioner.

Residual history for PROBE for the 8 cases described in Table 4.1. .
CPC time in function evaluations required to converge to machine zero
as a function of the grid size. for PROBE and hRC2D using case 1. .
Cases 1 and 2: convergence history for the inexact-Newton-Krylov
met hod (PROBE). the approximately-factored met hod (ARC1D). the
approximately-factored met hod with t hree-level rnultigrid (ARC'D-
MG). the incomplete factorization method (BFILL(2)). and the approximate-
Newton method (approx. Newton). 87
Cases 3 and 4: convergence history for the inexact-Newton-Krylov
met hod (PROBE). the approximately-factored method (ARC2D). the
approximately-factored method with three-level multigrid (ARCSD-
MG). the incomplete factorization method (BFILL(S)). and the approximate-
Newton method (approx. Newton). 88
Cases 5 and 6: convergence history for the inexact-Newton-Krylov
method (PROBE). the approximately-factored met hod (ARC2D). the
approximately-factored method with three-level multigrid (ARCSD-
MG). the incomplete factorization method (BFILU(2)). and the approximate-

. Newton method (approx. Newton). 89
Cases 7 and 8: convergence history for the inexact-Newton-Krylov
method (PROBE). the approximately-factored met hod (ARC?D), the
approximately-factored method with three-level multigrid (ARC2D-
LIG). the incomplete factorization method (BFILL'(2)). and the approximate-

. Newton method (approx. Newton). 90

. Mach contours and Cp plot for case 1, described in Table 4.1. 114

. Mach contours and C, plot for case 2, described in Table 4.1. 115

. Mach contours and C, plot for case 3, described in Table 4.1. 116
Mach contours and Cp plot for case 4, described in Table 4.1. 117
Mach contours and Cp plot for case 5 , described in Table 4.1. 118

. Mach contours and Cp plot for case 6, described in Table 4.1. 119
Mach contours and C, plot for case 7, described in Table 4.1. 120
Mach contours and Cp plot for case 8, described in Table 4.1. 121

List of Tables

1.1 Summary of published Newton-Krylov methods for the Euler and Navier-
Stokesequations. ,. 14

2.1 Subsonic inflow and outflow boundary conditions: d u e s of the Rie-
mann invariants. entropy and tangential velocity are set to free-st ream
values (00) or are extrapolated from the interior (int.) depending on

. the sign of C,. 25

4.1 Parameters for the eight flows studied. The column tr. up is the transi-
tion point a t the upper surface of the airfoil and tr.low is the transition

. point at the lower surface. 66
4.2 Memory. CPU cost and effectiveness to reduce the inner residual by

two orders of magnitude for diiferent preconditioners. 71
4.3 Frobenius norm of the error matrix and of the preconditioned error

matrix for the first- and second-order preconditionen. . . . 7.3

5.1 Statistics for the Xewton-Krylov algorithm for the cases studied: o-
it: outer iterations. Xi-it: total number of inner iterations. i-it/o-
it: average number of inner iterations per outer iteration: CPU/f.e.:
CPu time in equivalent function calls to reduce the residual by twelve

. orders of magnitude. 81
5.2 Comparison in performance between PROBE and ARC2D to reduce

. the initial residual by twelve orders of magnitude. 9 1
5.3 Comparison of the storage requirements between the five solvers. in

. words per node and relative to ARC2D. 91

B.1 Lift. drag and pitching moment coefficients for the eight cases described
. in Table 4.1. 113

Nomenclature

Alp hanumeric

upper wake
lower wake
coefficient of lift
coefficient of pressure
second-difference dissipation (in the <-direction)
fourth-difference dissipation (in the {-direction)
inviscid flux in x-direction
viscous flux in x-direction
inviscid flux in y-direct ion
viscous flux in y-direction
ent halpy
metric .Jacobian
Krylov subspace of dimension m
Mach number
transformation matrix given by Eq. (3.41)
number of equations. equal to four times the number of nodes
matrix defined by Eq. (3.46)
parameter in the ILUT factorization
vector of conservative variables
set of independent variables used at the boundaries
Riemann invariants
entropy
viscous flux in the t hin-Iayer approximation
cont ravariant velocity
cont ravariant velocity
:V x m matrix containing the basis of the Krylov subspace
normal component of the velocity
tangential component of the velocity

speed of sound
left-hand-side of the linear system solved by GMRES
chord of the airfoil
specific heat a t constant pressure
total energy
internal energy
elements of the Hessenberg matrix
node coordinate in computational domain
j-coordinate of upper trailing edge
j-coordinate of lower trailing edge
node coordinate in computational domain
size of the Krylov subspace

mi,
n

L'j

"c

elements of the matrix M
normal dist.ance from the wall
pressure
level of fill-in in ILL
residual of the linear system after m GMRES-iterations
x-component of the velocity
friction velocity
y-component of the veIocity
j t h vector of the basis of the Krylov subspace
coordinate in the physical domain
vector of unknowns of the linear system
mth iterate of the linear system
coordinate in the physical domain
preconditioned direct ions in preconditioned GMRES

.Jacobian matrix of 3
an approximation of A
preconditioned Jacobian
firs t-order Jacobian
second-order Jacobian
discret ized boundary conditions equations
error matrix
discret ized system of equations. Right-hand-side
identity matrix
lower factor in LC factorization
preconditioning matrix
Prandtl number
turbulent Prandtl number
R e l ~ o l d s number
upper factor in LU factorization

Greek

At local time step; Eq. (3.42)
Ato local time step constant; Eq. (3.42)
r circulation around the airfoil

cr angle of at tack
y ratio of specific heats

scalar used to perturb state quantities in matrix-free GSIRES: Eq. (3.70)
second-difference dissipation coefficient (in <-direction)
fourt h-difference dissipation coefficient (in <-direct ion)
coordinate in the computational domain
relative reduction of residual in the nth Xewton step
thermal conductivity
dynamic viscosity
eddy viscosity
coordinate in the computational domain
density
artificial dissipation constant in dl: Eq. (3.41)
spectral radius (in the c-direction)
parameter in the ILCT factorization
shear stress at the wall
~ o r t ici ty

Abbreviations

AD1 Alternating Direction Implicit
AF Approximate Factorization
BCG Bi-Conjugate Gradient
Bi-CGSTAB Bi-Conjugate Gradient Stabilized
BILK
BFILC'
CFD
CFL
CG
CGS
CPL
CSR
DB
DDl
DD2
FOM
GMRES
GS
ILU
ILC'T
LGS
LUSSOR
MN
MSR
X AT

Block Incomplete Lower-Upper factorization
Block-Fill Incomplete Lower-Upper factorization
Comput a t ional Fluid Dwynamics
Courant-Friedrich-Lewy number
Conjugate Gradient
Conjugate Gradient Squared
Central Process Unit
Compressed Sparse Row storing format
Double Bandwidth ordering
Domain Decomposition ordering 1
Domain Decomposition ordering 2
Full Ort hogonalization Met hod
Generalized Minimal Residual
Gauss-Seidel
Incomplete Lower-Upper factorization
Incomplete Lower-Upper factorization with threshold
Line Gauss-Seidel
Lower-Upper Symmetric Successive Over-Relaxation
Minimum Neighbouring reordering
Modified Sparse Row storing format
Natural ordering

xii

QhIR
RCM
SIP
SSOR
TFQhfR

f.e.
i-it
rnf
nnz
o-it
tm

Quasi-hlinimal Residual
Reverse Cut hill-McKee reordering
Strongly Implicit Procedure
Spmmet ric Successive Over-Relauat ion
Transposed Free Quasi-Minimal Residual

function evaluations
inner-iterat ions or GMRES-iterations
matrix free
number of nonzeros
outer-iterations or Xewton-iterations
time marching

.*.
Xlll

Chapter 1

Introduction

1.1 Background

Prior to the mid 60's. different mathematical formulations had been developed to

guide the design process in aerodynamics. Well known examples are the airfoil the-

ory of Kutta and doukowski. the wing and b o u n d a ~ layer theories of Prandtl. and

Hayes' theory of linearized supersonic flow. These methods. which require significant

simplifying assumptions. could not be used for quantitative studies of complex flows

and configurations. Therefore. the development of aerodynamics had to rely heavily

on experimental work. The primary tool in aerodynamic design was the wind tunnel.

where shapes were tested and modified before building flying prototypes. However.

experimental design is quite expensive. For example. 20.000 hours of wind tunnel

testing were expended in the development of the General Dynamics F l l l and the

Boeing 7-47 [I].

The computer opened a new avenue for the development of more sophisticated

mathematical models that could simulate flows of interest to a much higher level of

accuracy. This development has made of computational fluid dynamics (CFD) a key

tool in aerodynamic design.

In the last 30 years, a great effort has been made to come up with compu-

tational methods that can predict a wide range of complex flows. Unfortunately, in

many cases they require a great amount of computer time, which limits their use in

practical applications. The purpose of our study is to find an efficient algorithm to

compute inviscid and viscous solutions for steady Bows around airfoils.

Section 1.2 consists of an overview of the most efficient numerical methods

that have been developed over the years. The following section is a review of Newton-

Krylov methods. the specific type of methods that we are interested in. -4 section

discussing the objectives of the thesis closes the present chapter. The main portion

of the thesis follows. divided into five chapters. The governing equations. including

the turbulence model and boundary conditions, are presented in chapter 2. Chapter

3 contains a detailed description of the numerical algorithm. Optimization of the

algorithm for airfoil calculations is presented in chapter 4. In chapter 5. algorithm

efficiency and performance comparison with other solvers are discussed. The last

chapter includes conclusions~ main contributions and recommendations of our study.

1.2 Review of some classic iterative methods for
steady flows

Many algorithms have been proposed for efficient computation of steady aero-

dynamic flows. Their development has followed two distinct paths: explicit met hods

and implicit methods. Modern implicit and explicit codes show similar performance

with regard to total computational time. In fact. it is hard to draw a clear line be-

tween the two approaches: most explicit methods have some sort of implicit scheme

built-in to accelerate convergence such as implicit residual smoothing, and many im-

plicit methods have some sort of approximation added to make iterations cheaper or

to ensure convergence.

Explicit methods are easier to code and less computationally intensive. but

they present stability limits. They can be traced back to the early work of MacCor-

mack [2] who, in 1969, introduced a predictor-corrector algorithm that for a number

of years remained as one of the most efficient algorithms. For large problems and for

stiff turbulent flow problems, the convergence rates of these methods degrade rapidly.

The development of multigrid techniques dramatically accelerated the convergence

of explicit algorithms. This technique was introduced for transonic potential flows

in the late 70's [3. 4. Xi [5] and Jameson [6] extended the application of multigrid

to the Euler equations. Application to the Navier-Stokes equations was done a few

years later by Martinelli et al. [i]. Mavriplis [8] and other researchers have developed

similar schemes. Jameson's approach generally includes an explicit multi-stage iter-

ative method. local time-stepping, and implicit residual smoothing. This approach

has received considerable use for aerodynamic Bows [l].

Implicit met hods permit larger time steps. computing the solution in far less

iterations. On the other hand. the cost per iteration can be significantly higher. since

a large linear system of equations has to be solved a t each time step. The earli-

est implicit methods were based on the .Uternating Direction Implicit (ADI) scheme

pioneered by Douglas and Gunn [9] and Peaceman and Rachford [lo]. Stone [I 11 intro-

duced the Strongly Implicit Procedure (SIP) in 1968. The Approximate Factorization

methods (AF). which are among the most popular and efficient implicit solvers. were

introduced for the Euler and Navier-Stokes equations by Beam and Warming [I?] and

Briley and McDonald (131 in the mid 70's. Steger [14] used this algorithm. which re-

duces the work of a two-dimensional implicit operator to that of two one-dimensional

implicit operators. in the well-known flow solver ARC2D. The computational work of

this algorithm was further decreased by introducing a diagonalizat ion of the blocks

in the implicit operators as developed by Pulliam and Chaussee [IS]. ARCZD mas

further developed by Pulliam (161 with the addition of local time-stepping. and grid

sequencing. Recently. mu1 tigrid acceleration has been added [17: 181. increasing the

convergence rate by factors of three to six, making this approach a very efficient one.

Another class of implicit solvers, named Upwind Relaxation solvers. was in-

troduced in the mid-80's. They were studied by several authors: Chakravarthy [19].

Van Leer and Mulder [ZO], Thomas and Walters [21], and PValters and Dwoyer (221 to

name some. Jameson and Yoon [23] developed a Lower-Upper Implicit scheme which

they proved to be related to the family of Upwind Relaxation solvers. h multigrid

method was combined with this scheme to speed up convergence. The scheme was

eventually replaced by an e-uplicit scheme. the Lower-Upper Svmrnetric-Gauss-SeideI

met hod [%I. increasing convergence by 30%.

Many of the fastest available iterative methods rely on the multigrid acceler-

at ion technique to achieve good convergence performance. Unfortunately. mult igrid

convergence can slow down if high aspect ratio cells are present. In the late 80's.

several authors have considered using Newton's method as a possible alternative for

steady flows due to its property of quadrat,ic convergence. At each Newton step. a

large linear system of equations has to be solved. Some examples of Newtonk method

using a direct solver for the linear systems of equations can be found in Refs. [25] to

[30]. This approach was found to be robust. but memory and the CPC time required

to reach steady state are not competitive with the methods mentioned earlier. On

the other hand. quasi-Newton methods have shown promise. Quasi-Newton methods

can be classified as inexact-Newton met hods or approximate-Xewton met hods. In an

inexact-Newton method. the large linear system arising at each Newton step is solved

approximately. using an iterative solver. Dembo et al. [3 11 presented theoretical re-

sults regarding the precision to which the linear system must be solved to preserve

superlinear or quadratic convergence of the Newton process. In an approximate-

Newton met hod. the functional Jacobian is simplified. thus producing an approximate

linearization. The linear system is again solved iteratively. Newton-like schemes have

great potential for becoming very efficient solvers but the challenge is to significantly

reduce the cost per iteration. A new family of iterative methods called Kqlov meth-

ods. opened the door to advances in solvers based on Newton's method. An overview

of Newton-Krylov schemes is presented in the following section.

1.3 Newton-Krylov methods

Krylov subspace methods are iterative methods to solve linear and non linear sys-

tems of equations, searching for the solution within a Krylov subspace. The Conjugate

Gradient method of Hestenes and Stiefel [32] is the oldest and best known method of

this class. It is applicable only to Hermitian positive definite matrices, which greatly

limits its use in CFD applications. Fortunately, many Krylov methods have been

developed for non-Hermitian matrices. Some examples are the Full Orthogonaliza-

tion Met hod (FOM) [33j. ORTHORES [3 4 ORTHOMIN [35]. Generalized Minimal

Residual (GIIRES) [36], Bi-Conjugate Gradient (BCG) [37. 381, Conjugate Gradi-

ent Squared (CGS) (391. Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) [-LO] and

Quasi-Minimal Residua1 (QMR) [41]. A summary of these methods can be found

in Refs. [42] and [43]. These methods are typically used to solve the linear system

of equations at each Newton step. The use of a preconditioner. which transforms

the linear system into one that is better conditioned and thus easier to solve by the

iterative solver. is necessary in many practical applications.

The use of Krylov iterative methods in CFD started in the early 80's with

the work of Wong and Hafez [44], Wong [45] and Prince [46]. with applications to

the potential flow equations. Since then. a number of authors have applied these

methods to different Row problems. We are particularly interested in the research

done on Krylov methods combined with Xewton's method to solve the Euler and

Navier-Stokes equations.

Wigton et al. [47] were the first to solve the Yavier-Stokes equation using

a Krylov subspace method. They made use of nonlinear GMRES. which can be

viewed as a Xewton linearization in which GMRES is used to solve the linear system

of equations at each Newton step. and where the matrix-vector multiplications are

replaced by a Frechet derivative. Instead of using a preconditioner to improve GMRES

convergence. as is usually done. they solved a set of already preconditioned equations.

The Euler equations were preconditioned using existing solvers, such as ARCLD [16]

and FLO53P [48]. In our view. it is a very relevant work, not only because they were

the first to apply a Krylov method to the Euler equations, but also because they

were the Erst to use a matrix-free implementation of the Krylov solver and to the

precondit ioner.

Venkatakrishnan 1491 developed an approximate-Newton-Krylov method b r

structured grids, with emphasis on vector performance issues. He concluded that his

method was competitive with other existing methods. Together with Mavriplis [SO] :

he extended the work to unstructured grids. They tested the solver with inviscid as

well as with laminar and turbulent viscous flows. The approximations that they in-

troduced in Yewton's linearization are at the level of the artificial dissipation and the

viscous fluxes. They only used first-order artificial dissipation on the left-hand side

due to storage considerations. Regarding the viscous fluxes. the laminar viscosities.

computed with Sutherland's law. and the turbulence model. which was nondifferen-

tiable. were not linearized. Therefore. quadratic convergence was not attained. In

order to reduce the stiffness of the Jacobian. they also added a time step term to the

diagonal. The time-step was taken to be inversely proportional to the L2 norm of

the residual: it also had an upper limit. The approximations introduced in the lin-

earization make the linear systems easier to solve for GMRES. which requires fewer

iterations to converge. but the number of Newton-iterations increases substantially.

The linear systems were solved to a moderate degree of precision. They tested three

preconditioners: block-diagonal. Incomplete Lower-Upper Factorization with no-fill

(IL L(0)) and Symmetric Successive Over-Relaxat ion (SSOR) . They concluded that

GIIRES/ILC'(O) was the best approach. This conclusion was particularly evident as

the size and the stiffness of the problem increased. They found their strategy corn-

petit ive with explicit multigrid solvers. Further development of the met hod as well

as considerat ions on parallelizat ion are discussed in Ref. [5 I].

At about the same time. Dutto [52] used nonlinear GMRES to solve the sys-

tem of equations that results from applying implicit time-marching methods to the

Xavier-Stokes equations. to solve inviscid and laminar viscous flows. The advantage

of this approach is that it is applicable to unsteady calculations. For steady-state

calculations. the time step provides a may of controlling the stiffness of the problem.

She used a restarted version of GMRES in order to control memory usage. At each

restart, she not only updated the residual vector to build a new Krylov subspace,

but she also updated the solution used as the reference state in the Frechet deriva-

tives, which is similar to modifying the Jacobian in the equivalent linear system that

is solved. Therefore, a complete new linear system was solved a t each restart of

GMRES. This can be seen a s doing several Newton iterations at each time step as

GMRES restarts. Therefore, there are three levels of iterations: the implicit time-

marching method. several Newton steps to converge each time step and GMRES to

solve the Newton-linearized system. Other related works of the same author include

a study of the impact that the ordering of t he unknowns bas on the performance

of GSIRES [53] and a study of parallelizable block diagonal preconditioners [XI.
Lately. Dutto et al. [S5] have developed an efficient two-level parallelizable precon-

clitioner which consists of two independent approximations of the system matrix: a

block-diagonal preconditioner combined with a coarser matrix built using algebraic

mu1 t igrid met hods.

Johan et al. [56] developed a solution algorithm for implicit time-marching

schemes. The basic algorithm is similar to that of Dutto. They use matrix-free

GhIRES(20) with block diagonal preconditioning. In order to increase robustness.

they use linesearch backtracking and an automatic time-increment algorithm. The

CFL number is always kept relatively low to improve the condition number of the

linear systems. The solver was applied to inviscid and laminar viscous flows.

Aj mani et al. (57, 581 used an approximate-Newton linearization. solving the

linear system with preconditioned GhIRES. They compared Block ILLV(O) (BILU(0))

and Lower-Upper SSOR (LUSSOR) as preconditioners. concluding than the latter

was more efficient. The new solver was compared to the conventional implicit line

Gauss-Seidel solver and an Approximate Factorization solver in the context of laminar

flows around a hypersonic cylinder and a transonic turbine cascade. They found that

the Newton-Krylov approach was much faster than the two classical solvers. Even if

we take into account that the Approximate Factorization solver did not include the

diagonal form. which considerably speeds up the algorithm, their results proved that

Sewton-Krylov methods are competitive with standard algorithms. In more recent

years. Ajrnani and Liou [59] compared GMRES. Bi-CGSTAB and QMR in parallel

architectures. Results indicated that GMRES seems to be the solver of choice.

Habashi et al. [60] used an approximate-Newton strategy combined with CGS

to solve laminar viscous flows. They used ILU(0) as a preconditioner. -4 finite time

step was used in the Jacobian matrix to improve its condition number. They showed

that the performance of the algorithm scales well with the number of unknowns.

Hkon and Sankar [61] applied Wigton's approach to unsteady calculations.

At each time step. the system of nonlinear equations is preconditioned by an AD1

algorithm. The preconditioned system of equations is solved by nonlinear G5IRES.

When multigrid was also added. the code speeded up for steady calculations but no

appreciable gain was noticed for unsteady calculations.

Orkwis [62] did a very interesting evaluation of the performance of an exact

Newton met hod and several quasi-Newton met hods: an inexact-Newton met hod, an

approximate-Xenrton method solving the linear systems exactly. and an approsimate-

Sewton method solving the linear systems inexactly. CGS was used for the inexact

matrix inversions. The quasi-Newton methods were preconditioned with ILU(0) a p

plied to the corresponding Jacobian and allowing fill-in within the 4 x 4 blocks .
He used a supersonic turbulent viscous flow over a flat plate as test case. He con-

cluded that inexact matrix inversions with large subiterate convergence tolerances

were faster in terms of CPU time. For the same level of tolerance. the approximate-

Newton method and the inexact-Newton method were equally fast. He reported that

CGS failed to converge for a problem with a strong shock.

Lin et al. [63] used an approximate-Newton algorithm to test three Krylov

salvers. CGS. Bi-CGST-4B and TFQMR. in the context of turbulent auisymmetric

flows. They incorporated the k - 6 two-equation turbulence model. They concluded

that Bi-CGSTAB and TFQMR were slightly faster than CGS. The Newton-Kwlov

met hod was more efficient than an Approximate Factorization met hod.

Knoll and McHugh [64,65] compared the performance of standard and matrix-

free implementations of an inexact-Newton-Krylov method. CGS, TFQMR, Bi-CG

and GMRES were included in their study. They used a incompressibIe steady flow in a

cavity as test case. They concluded that the matrix-free implementation was strongly

dependent upon grid size and the choice of Krylov method. GMRES appeared to be

superior to the other three solvers in the mat rix-free implementation.

Degrez and Issman [66] developped an inexact matrix-free Newton-Kqlov

solver for the Navier-Stokes equations. The preconditioner for the Krylov solver was

based on an Approximate Directional Factorization (ADF) or an .Approximate Lu

factorization of a first-order approximation of the inviscid B w c balance. Comparisons

with the ADF algorithm were made for a Bow in a chanel. a flow over a flat plate

and a How over a hypersonic ramp. The Yewton-GbIRES algorithm was consider-

ably faster. Recently. they have used a multigrid algorithm as preconditioner for the

mat riu-free G4IRES 1671.

Following Wigton's approach. Hager and Lee [68.69] tested ADI. ILU(0) and a

four-stage Runge-Kut ta solver. with and without multigrid. as precondit ioners for the

Euler equations for nonlinear GMRES. They used a supersonic flow over a ramp as test

case. They concluded that GMRES does not consistently improve the convergence of

the three schemes when they were used with rnultigrid.

Luo et al. [69] used a classical approximate-Xewton approach with BILC(0)

as preconditioner to solve 2D inviscid and laminar viscous flows. as well as some

3D inc-iscid flows. .Jorgenson and Pletcher [70] tested three different K v l o v solvers

preconditioned with ILL as an alternative to the implicit Gauss-Seidel scheme used

in their laminar viscous flow solver. Local preconditioning was added to handle low

Mach number laminar viscous flows. GhICIRES was significantly faster than the other

solvers.

Rogers [71] wrote an approximate-Newton-GMRES solver for incompressible

flows. He compared this approach with Point- Jacobi Relaxation. Gauss-Seidel Re-

laxation and BILU(0). He used these solvers as preconditioners for GlIRES. He

concluded that GbIRES preconditioned with BILU(0) outperformed all other meth-

ods by at least a factor of 2.

Bart h and Linton [72] developed a matrix-free Newton-GblRES met hod pre-

conditioned with ILU(0) for compressible 2D and 3D turbulent viscous flows. They

presented a new technique for constructing matrix-vector products which is an exact

calculation of the directional derivatives. For 3D calculations. their code was imple-

mented on a parallel architecture using a message protocol with favorable scalability

characteristics.

Forsyth and Jiang 1731 compared different standard quasi-Newton methods in

the context of inviscid two-dimensional flows. The linear systems were solved using

CGSTAB preconditioned with ILU. Fill-in within the 4 x 4 blocks was allowed in the

factorization. Several levels of fill-in were tested. The preconditioner was built from

the same matrix used in the linear systems. They concluded that the approximate-

Newton method failed to converge for supersonic flows with strong shocks. and that

it was slower than the inexact-Newton method for the other cases. However. the

inexact-Xewton method required a fill-in level of 2 or more in the ILL factorization to

converge. Considering that they used the high-order Jacobian for the factorization.

the storage required by the preconditioner was quite high. They reached similar

conclusioos when they extended their work to laminar viscous flows [a].
Cai et al. [i s] developed a Newton-Krylov method. preconditioned with an

overlapping Schwarz domain decomposition which relies primarily on local informa-

tion for data parallel concurrency. They claimed that this strategy was well suited for

solving nonlinear elliptic systems in high-latency. distributed-memory environments.

They applied their solver to incompressible inviscid flows. .LIcHugh et al. [76] also de-

veloped a Schwarz-preconditioned matrix-fkee Newton-Krylov algorithm for low speed

combustion flows.

Nielsen et al. [77] applied a Newton-Krylov scheme to an unstructured Euler

code for two and three dimensions. The implicit-Euler time marching method was

used, gradually increasing the the time step until Newton convergence was obtained.

They evaluated three different methods to define the increasing time step. They also

presented an effective choice for the perturbation constant used in the finite difference

used in matrix-free GMRES. Comparisons with Barth and Linton's [72] matrix-free

method showed that both methods have similar convergence in terms of CPU time.

They compared the Newton-Krylov method with a Gauss-Seidel 3-level CV-multigrid

method. The Newton-Krylov method required more computer time, but if mesh

sequencing was used for the first two orders of magnitude. their performance was

comparable.

Anderson et al. [781 presented a comparison of different quasi-Newton-Kplov

methods with a multigrid GaussSeidel scheme for incompressible inviscid flows. The

quasi-Newton methods were used to solve the nonlinear equations resulting from em-

ploying the implicit Euler time marching method. The approximate-Newton met hod

and the matrix-free Newton-GLIRES method preconditioned with a BILC(0) fac-

torization of the approximate-Jacobian. had a similar performance in terms of CPU

time. Both methods converged faster when mesh sequencing or multigrid was added.

Xevertheless. the Gauss-Seidel scheme with multigrid was faster and required less

memory than the quasi-Sewton Krylov methods.

Choquet et al. [79] solved the Yavier-Stokes equations for laminar Rows over

airfoils and for a hypersonic reactive two-dimensional viscous Row. They applied

mat riu-free GMRES to an implicit- time marching met hod. Diagonal preconditioning

was used for GMRES. 25 to 50 search directions were required. Search backtracking

combined with a moderate CFL number ensured robustness. Their solver showed

comparable performance and CPU time with a point Jacobi solver. Choquet [80] also

developed a matrix-free preconditioner for the matrix-free Newton-GMRES method.

The main idea was to reuse the Krylov subspace information to build a preconditioner

that can be used across the Newton iterations and the time steps. Experimental

results showed that the preconditioner was effective across the time steps and only

slightly effective across the Newton iterations. Tests were done on inviscid and laminar

viscous unsteady and steady flows using a low CFL number.

Delanaye et al. [81, 821 used a matrix-free Newton-GMRES method in the con-

text of a new quadratic reconstruction finite-volume scheme. For steady flows, they

employed the implicit Euler time marching method in order to control the stiffness of

the matrix with the time step parameter. For unsteady calculations, they used the

trapezoidal implicit method or the three-point backward implicit method. BILU(1)

and BILU(2) applied to the approximate Jacobian were as efficient preconditioners

for GMRES as BILU(0) applied to the exactly-linearized Jacobian.

Ollivier-Gooch [83] used Wigtois approach to solve the Euler equations pre-

conditioned locally via block Jacobi. The totally matrix-free Newton-GSIRES solver

was applied to the change in solution over a multigrid cycle driven by a three-stage

Runge-Kut t a scheme. Matrix-free GMRES was applied after the maximum-residual

had dropped four or five orders of magnitude using the multigrid scheme.

In the context of inviscid calculations on unstructured grids. Blanco and

Zingg [84] made some comparisons between an approximate-Sewton met hod and two

inexact-Newton methods. one building the high-order Jacobian and the other with a

matrix-free implementation of the Krylov solver. In all cases. an ILL factorization

of the lower-order Jacobian was used to build the preconditioner. Results showed

the superiority of the inexact-Newton method over the approximate-Newton method.

The matrix-free implementation was also faster than the standard implementation.

It was suggested that for transonic flows. the approximate-Newton method should be

used to reduce the initial residual by three orders of magnitude. before switching to

the inexact-Newton method. A level of fill-in equal to 4 was found to be optimal for

this method.

Mavriplis 1851 applied Wigton's approach to his low-Mach number precondi-

t ioned direct ional-coarsening line-implicit smoother mult igrid scheme. He employed

20 or 30 search directions for GhIRES. The addition of GlLfRES to his solver nearly

doubled the convergence rate in some of the cases tested.

-1 summary of the above research efforts is shown in Table 1.1. We indicate

the earliest reference to the work of that particular author and. occasionally. another

relevant reference. What appears as a matrix-free implementation of G41RES. i.e.

mf. is often called nonlinear GMRES by other authors; mf-tm means a matrix-free

implement at ion applied to an implicit time-marching met hod; A2 means that the

exact Jacobian is used for standard matrix-vector products, while an approximate

Jacobian is used when indicated by A,; mi-dl indicates that a matrix-free approach is

used but with a some modification to the function evaluation that makes the algorithm

an approximate-Newton method. The applications consist of compressible turbulent

flows unless otherwise specified.

1.4 Objectives

The previous section discussed a wide variety of Newton-Krylov schemes. Some of

them appear to be very promising. For example. Venkatakrishnan and Mavriplis [SO]

found their approximate-Newton strategy to be competitive with their state of the

art multigrid solver. However. we believe that the full potential of quasi-Newton

methods has not been realized. Thus our objective is to develop and optimize a

highly efficient Newton-Krylov solver for aerodynamic calculations. and to compare

it with well-established solvers. such as the approximate factorization solver ARCSD

used at N-4S.k

A n important aspect of Newton-Krylov solvers is that. since there is a wide

range of options available in simplif?ring the system Jaco bian mat riu. preconditioning

the system. and iteratively solving the system. there are several parameters that need

to be chosen. It is not possible to predict an optimal set for a particular problem.

Therefore. another main objective in our research is to find an optimized set of pa-

rameters and strategies which will make t he resulting quasi-Newton met hod able to

efficiently handle a great variety of flows. without having to readjust those choices.

These issues are addressed here in the content of inviscid. laminar. and tur-

bulent flows over airfoils using a centered finite-difference operator with non-linear

artificial dissipation.

85

90

90

91
 lo& -p

T m E s -s-
[ST. 581 BILU(0) of At -p

LUSSOR -p-
T- 7 x 3 -s-

quasi-Yewton
Xpprox. Factom.

Jac.

4

mf-tm

mf-trn

Wigton. L.B. et al.
[4 71

4Iavriplis. D- [49, 501
Uutto. L.C. 152, 531

Johan. 2. et al.

Standard vs.
mf

inv. and laminar
hypersomc cylrnder
turbine cascade
laminar
How on d f i s e r
Re = 1000
airfoils. unsteady
~iscous
flat plate
supersonic. viscous
axisymmet nc.
viscous

flow in cavity
incornpr.

channeI. ff at plate.
hypers. ramp.

601 of Al -p
92 - L Y O ~ .

, 1611 1 Precond. Eqs.

Approx. Uirectional
Factorization

Solver -5- &
Preconditioner -p
GbRlZS(20) -s-
Precond. Eqs.

-s- 1

&!;fAL -p
G1 -s-
B&L& Al -p

I

Line Gauss beidel
-4pprox. Factoriz.

93

93 - -

93

94

I 1 I A -P I viscous I
94 I Hager. J.O. S(k) -s- I wedge: intiscid

Application

airfoils
inviscid

oils, inlet:
Gteady lamioar
2U bodies

Orkwis. Y.D. [62]

H. et al.

'- Knoll, U.X.
4IcHugh. P.R. [641

Degrez. G .
Issman. E. [66]

Performance
comparison
without GSIRES

adaptive C hebychev
SSOR, E C ' (O) , S1G
several orderin s
CG-S. ~ i - C G S ~ B

94

Al,A2

Al

A2 ,mf

94

95

9a

CLS -s- 1

BFILU(0) of A -p
several Krylov
solvers
BILE of dl -p
several Krylov
solvers
ILU(0) of A2-p-

L@ K.D. 1681
7 uo. H. et al.

95

95

95

93 -
95

U
- . I [8q I I Precond. Eqs. I viscous I

of ,

[691

Jorgenson. P.C.E.
Pletcher. R.H. [TO]

- Rogers. S.E. [r 1]

Barth, T.J.

95

97

97

9'i

Table 1.1: Summary of published Newton-Krylov methods for the Euler and Navier-
Stokes equations.

14

A I

Linton, S.W. [72]
hrsyth, P.X.
Jiang, H. 1731
Yielsen, E.J. et aI. -"
[r r] '.r-
[75]

nderson. 5V.K. et al.

Choquet, K.
1801
Uelanaye, Ad, et d.

~recond: E ~ S .
--

i12

-4

mf. A2

ls 11
Onivler-GOO&, C .F.
1831
Blanco, $1.
Zingg, D.W. [EM]
Dutto, L.C. et aI.
[55]
Mavriplis, U.J.

- 4 1 4 2

rnf

et

BILU(0) of At -p

several Krylov
solvers
ILU -p
GMRES -s-
several precond.
G-3 IRhS -s- T .

BILU(1) -p laminar
G

L U 0) of Al -p
-5-

&u","f A, -p
'S(20) -s-
of -dl -p-

Schwarz +
BILU(0) -p-

Precond. Eqs.

Two-level precond.

laminar 2D
inviscid 3D
internal, laminar
compressible and
incompr.
airfoils and channel
incompr. viscous
arfolls and wlngs

point and block
Gauss-Seidel

.lacobi. Line-GS.
BILU(0)

-

viscous
a r fo~ls
inviscid
airfoils. aircrafts
inviscid

rnf

mf-tm

til&IKEs -s-

and iaminar
airfoils
inviscid
airfoils, 3D cavity
laminar

approx, hewton
levels of fill-in
point GS with
mu1 t igrid

airfoils, inviscid
& viscous, incompr.
2D & 3D

laminar matrix-free -p
GhIRES -s-

standard vs. rnf
levels of filI-in

&
incompr..
inviscid

point GS with
multigrid

Chapter 2

Governing equations

In this chapter we present the governing equations of air Boas around airfoils.

in non-dimensional form. A brief description of the transformation into generalized

curvilinear coordinates follows in Section 2.2. The thin-layer approximation is de-

scribed in Section 2.3. and the Baldwin-Lomax turbulence model in Section 2.4. -4

description of the boundary conditions closes this chapter.

2.1 The Navier-S t okes equations

The governing equations for aerod-ynamic flows are the Savier-Stokes equations. We

write them as a function of the non-dimensional Cartesian conservative variables given

b_v

where we scale the dimensional variables. density (P) , velocity (G. 5) and total energy

(G),

where cc refers to free-stream quantities and a is the speed of sound, which for ideal

fluids is a2 = -{p/p. The ratio of specific heats, y, is taken as 1.4 for air. The total

energy per unit volume is given by the internal energy and the kinetic energy

Csing the equation of state for a perfect gas. pressure is related to the conservative

flow variables as follows:

With this set of variables. the conservative form of the Yavier-Stokes equations

for a steady two-dimensional flow is:

a,E + ayF = MJZ~- ' (&E, + ayFu)

The inviscid and the viscous flux terms are

E =

with

where p = P / j i , is the non-dimensional dynamic viscosity, pt is the non-dimensional

turbulent eddy viscosity, 'Re is the Reynolds number, Pr is the Prandtl number and

Prt is the turbulent Prandtl number. The Prandtl number is defined by

where rct is the thermal conductivity and c, the specific heat at constant pressure.

The Prandtl number is taken constant with values set to Pr = 0.72 and Prt = 0.90.

Using the chord of the airfoil c as the reference length. we define the Reynolds number

The Euler equations are obtained by setting the right hand side of Eq. (2.5) equal to

zero.

2.2 Generalized curvilinear coordinate t ransforma-
tion

We solve the Navier-S tokes equations numerically using a structured C-grid

such as the one shown in Figure 2.1. The equations are first transformed From Carte-

sian coordinates to generalized curvilinear coordinates. As shorn in Figure 2.2. the

resulting computational space is a rectangular domain. The transformation. given by

is chosen so that the grid spacing in the computational space is uniform and equal

to one. It should be noted that there is a one to one correspondence between grid

points in the original physical space and the ones in computational space, except for

the nodes at the wakecut and the trailing edge, which map into two nodes in the

computational space.
The details of the transformation can be found in [16]. Eq. (2.5) becomes

Figure 2.1: T' grid for a NACA 0012 airfoil.

Figure 2.2: Generalized curvilinear coordinate transformation. (Supplied by Tom
Pulliam, NASA Ames.)

OUTER
PHYSICAL DOMAIN F

COMPUTATIONAL DOMAIN

E

€ = €(x.v+l--- I
!

Aq = t #k !

WAKE CUT

/ D
A

/ v - dx.r*tl-

J / r = t -

F,

a=1

\ omFLow
BOUNDARY I 3

A B QnY///////////. ///.C D

where the vector of unknowns is

and

The variable J represents the metric Jacobian of the transformation:

E = / - I

The viscous flux terms are E~ = J-'(<,E, +<,F.) and k;, = .J-l(rl,E, + qgFu). The

stress terms are

r
PCr

P ~ Z L + LP
puv + &p

- (e +PP-

2.3 Thin-layer approximation

with the contravariant velocities

In flows with high Reynolds numbers where the flow is attached or just mildly s e p

arated, the viscous terms associated with derivatives along the body are negligible.

For this reason. and in order to save storage and CPU time. highly stretched grids

are used to resolve the normal gradients of the flow near the rigid surfaces. without

resolving the diffusion terms involving derivatives parallel to those surfaces. If we

drop all the viscous derivatives in the < direction in Eq. (2.11). we obtain the thin-

layer Xavier-Stokes equations. Unlike in the b o u n d w layer equations. the normal

momentum equation is solved and no assumptions are made regarding the pressure.

The t hin-layer equations are

where

with

2.4 Turbulence model

The effects of turbulence can be approximated by adding an eddy viscosity term pt

to the dynamic viscosity p in the fashion shown in Eqs. (2.7), (2.16) and (2.19).

Turbulence models differ in the way that pt is calculated. In our study. we use

the Baldwin-Lomau [86] two-layer algebraic eddy viscosity model which is patterned

after that of Cebeci and Smith [87]. The modifications introduced avoid the need for

finding the edge of the boundary layer. The eddy viscosity is given by

where n is the normal distance from the wall and n, is the smallest value of n at

which values from the inner and outer formulas are equal.

In the inner region. the Prandtl-Van Driest formulation is used

\v here

The magnitude of the vorticity is given by

and the Law-of-the-wall coordinate nt is

The subscript w denotes values at the wall. u, is the friction velocity. Jz. and

r, is the shear stress at the wall.

For the outer region,

where K is the Clauser constant, C, is an additional constant, and

%n(12. Fm,
Fwakc = min

C"k Y ~ U i i I / F m m

The values of F,, and g,, are determined from the function

In wakes. the exponential term of Eq. (2.27) is set equal to zero. The value n,, is

the value of n at which F (n) reaches its maximum F,, in a profile. The function

FklCb (n) is the k'lebanoff intermit tency factor

The value of ud+ the difference between maximum and minimum total velocity in

the profile. is given by

maz

mar min

in boundary layers

in wakes

The constants that appear in the above equations were determined by Baldwin and

Lomav by requiring agreement with the Cebeci formulation for const ant pressure

boundary layers a t transonic speeds. They are

2.5 Boundary conditions

The computational domain for an external flow around an airfoil described in Fig-

ure 2.2 presents three types of boundaries: body surface boundaries, far-field bound-

aries and the wakecut. Properly speaking, the wakecuts are not boundaries. They are

just interior nodes that need a different consideration. This point will be discussed

in Sect ion 2-54 . The interior differencing scheme requires the solution at the bound-

aries. Where this solution is not provided by boundaq conditions. it is determined by

extrapolation from the interior of the domain. These additional equations are often

called "numerical boundary conditions." They cannot be imposed arbitrarily: they

have to be based on stability and accuracy considerations.

Before describing the boundary conditions. we need to define the tangent and

normal directions at each boundary. FVe define the tangent t in the positive sense of
-

at the surfaces ABCD and FE, and in the positive sense of v at the surfaces DE
-

and AF. Since the grid is not orthogonal. the normal does not have. in general. the

same direction as the corresponding 7 or < direction: the normal n is perpendicular

to the tangent and positive in the same sense of the numbering of the nodes. This

is illustrated in Figure 2.3. The resulting normal and tangential components of the

velocity are

v* " + vg -
= q++fj,c I a t k = 1 and k =k,,

2.5.1 Body surface

a t j = 1 and j = j,,

At the body surface (line k = 1 between points B and C in Figure 2.29, tangency

must be satisfied for inviscid Bows and the no-slip condition must be satisfied for

viscous flows. Since the interior scheme requires four boundary conditions, we need

Figure 2.3: Normal and tangential directions a t the boundaries.

to impose three more conditions for inviscid flows and two more for viscous flows. For

inviscid flows. the four equations that we impose are

velocity tangent to the body surface. C, = 0.

extrapolation of the tangential component of the velocity 1; from the interior.

extrapolation of the pressure from the interior.

stagnation enthalpy. (e + p) / p , set to free-stream value. H, (steady Row).

For viscous flows. the four equations are

two equations from imposing the no-slip condition. zl = 0 and u = 0.

gradient of p normal to the wall set to zero.

either adiabatic or isothermal condition of the surface. We use adiabatic con-

ditions in all calculations.

The ext,rapolation scheme used in each case will be discussed in Section 3.2.2.

boundaq I inflow outflow

j = 1

Table 2.1: Subsonic inflow and outflow boundary conditions: values of the Riemann
invariants. entropy and tangential velocity are set to free-stream values (x) or are

=
k=k , ,

extrapolated from the interior (int.) depending on the sign of I ,.

c, R+ R- S 1;
> 0 x int. oo oc

2.5.2 Far-field boundaries

C, R+ R- S 1;
< 0 x int. i t int.

< O int. oo x oo
< O int. m x cm

Inviscid flows

> O int. cx, int. int.
> O int. x int. int.

For inviscid flows. locally one-dimensional Riemann invariants as well as I.; and en-

tropy S = 1n(p/pf) are used a t the far-field boundaries. These four values are set to

free-stream values or they are e-xtrapolated from the interior flow variables depending

on the slope of the corresponding characteristic. For the Riemann invariants

the slopes of the corresponding characteristics are C, - a and L', + a. and for the

other two variables. I,', . For svpersonic conditions. the four characteristics travel in

the same direction. Therefore. the four variables are set to free-stream conditions

for a supersonic inflow and they are extrapolated from the interior a t a supersonic

outflow. The same pattern holds for and S in the subsonic regime because the

slope of the corresponding characteristic has the same sign as for supersonic flows.

The Riernann invariants require more careful attention in the subsonic regime. The

way we have defined the normal and the tangent at each boundary, the logic for the

Riernann invariants does not change whether it is an inflow or an outflow condition.

The logic for applying the subsonic boundary conditions is shown in Table 2.1.

Viscous flows

At the k = k,, boundary. the conditions for viscous inflow and outflow are deter-

mined in the same fashion as for inviscid flows. At the two downstream boundaries.

j = 1 and j = j,,. the entropy gradients associated with convection of the wake

make the characteristic analysis used for inviscid flows inappropriate. Experience

indicates that simple zeroth-order extrapolation of p. pu. pv and p can be used. pro-

vided that non-reflective conditions are applied at other far-field boundaries in the

domain.

2 -5.3 Circulation correction

For lifting airfoils. the far-field boundary may affect the solution. unless it is placed

very far away. which would require more nodes in the grid. In order to minimize

the effect of the far-field boundary. Pulliam [16]. following Salas et al. [88]. added a

compressible potential vortex solution as a perturbation to the free-stream velocity

giving
3r~ in (B)

Uf = k c +
27ir[l - Af&sin2 (8 - a)]

(2.32)

where r = $\f,cCl. - c is the chord of the airfoil, Cl the coefficient of lift. Mx the

free-stream Mach number. a the angle of attack, B = 41 - Af& and r and 6 are the

polar coordinates to the point of application on the far-field boundary relative to the

quarter-chord point on the airfoil chord Line. The speed of sound is also corrected to

enforce constant free-stream enthalpy at the boundary:

Pulliam [16] shows that with the far-field vortex correction, the lift has virtually no

variation with the distance to the outer boundary for subcritical flows, and very small

variation for transonic Bows. Zingg's [89] grid studies confirm that an outer boundary

position of 12 chords introduces virtually no error in lift and and small errors in drag

relative to a far-field boundary set a t 96 chords.

Points B and C in Figure 2.3 represent the trailing edge of the airfoil. They correspond

to nodes (j t l . 1) and (jt2, 1) in the grid. The wakecut that appears in the physical
-

domain in Figure 2.2 corresponds to two wakecuts. -4B and CD. in the computational

domain. Therefore there are two sets of grid-nodes in the computational domain which

correspond to only one set of nodes in the physical domain. The wakecuts are defined

as

-
I < j < j t l k = Z wakecut .4B

nodes (j . k) such that - (2.34)
j < j < j k = 1 wakecut CD

Sodes a t wakecuts are not boundary nodes. They are interior nodes whose neighbours

are not nearby in the database. For example. when nodes from wakecut C D need

information from k - 1 we get it from across the wakecut:

-
At wakecut -4B. we just impose that values of Q are equal to the ones computed

-
at wakecut C D . In other words, a t wakecut -4B the Savier-Stokes equations are

replaced by

Qj.1 = Qjn.r-j-+l.l (2.36)

Chapter 3

Algorithm description

We begin this chapter by describing the spatial discretization use(i in the interior of the

domain. This is followed by a description of the linearization of the resulting equations

using Newton and approximate-Newton methods. The linear system of equations that

arises a t each Newton step is solved using GMRES. a Krylov iterative solver that is

introduced in Section 3.4. The matrices that result from Newton linearization are

very ill-conditioned and are not diagonally dominant. These characteristics make the

linear systems hard to solve without preconditioning. Preconditioning techniques are

discussed in Sect ion 3.5. and reordering techniques that affect the preconditioner are

introduced in the last section of this chapter.

3.1 Spatial discretization

The aerodynamic problems that we intend to solve have been modeled by the set

of equations (2.17) to (2.19): together with the turbulence model and the boundary

conditions. -1s a first step in solving this set of non-linear partial differential equations.

we have to transform them into a system of algebraic equations. The second-order

centered-difference operator used to approximate the differential operators and

is described in Section 3.1.1. The second and fourt h-difference dissipation model of

Jameson et al. [go] is added to maintain stability and to prevents oscillations a t shocks;

it is described in Section 3.1.2. The resulting scheme is second-order accurate in space,

except in the vicinity of shocks, where it is first-order. The spatial discretization is

thus identical to that in ARCBD, the implicit 6nite difference Euler and Navier-Stokes

solver for structured grids developed by Steger [14] and PulIiam [16].

3.1.1 Finite differencing

Let us recall that the computational domain described in Section 2.2 has a uniform

grid spacing equal to unity. The variable at a grid point j. k is represented by

The finite difference operators that we use in this Section are defined as follows:

b < q j , k = (q j + l . k - q j - 1 7 k) / 2 second-order central difference

v< q j , k = q j + l . k - qj ,k first-order forward difference 1 (3.2)

& Qj* = Pj.k - q j - 1.k first-order backward difference

The partial derivatives of the inviscid fl~xes in Eq. (2.17). E and a, F. are

approximated by the second-order difference operator

The viscous terms in the equation take the form

The derivative is approximated by a central difference at half nodes; the second

derivative is approximated by a central difference at the grid nodes using the values

computed at half nodes. Therefore, we can approximate Eq. (3.4) by

Values of CY at half nodes are computed by averaging the values at the closest

grid nodes.

3.1.2 Artificial dissipation

It is well-known that central difference schemes experience odd and even point de-

coupling. Therefore. the high frequency modes have to be damped using artificial

dissipation in order to achieve convergence. The elimination of oscillations in the

neighborhood of shock waves also requires the use of artificial dissipation. There are

several suitable schemes. such as the scalar second and fourth-difference dissipation

model of Jameson et al. (901, the scalar model with scaling based on Mach number and

vorticity of Hall [91]. the scalar model with scaling based on the cell Reynolds number

of Frew and Zingg [92] and the matrix dissipation model of Swanson and TurkeI [93].

We use the first one in order to converge to the same solutions as ARC2D.

The description of the scheme is done for the terms in the E direction. Similar

formulas can be written for the 1) direction. Written as difference operators. the

second and fourt h-difference dissipation terms are

The second-difference dissipation coefficients are

where a(c) is the spectral radius scaling of the flux Jacobian matrix a ~ / a $ (matrix

~ F I ~ Q in the direction)

The pressure gradient coefficient Y is used to scale the second-difference dissipation

so that its value is increased near shocks in order to avoid overshoots. The pressure

gradient coefficient is defined as

The fourt h-difference dissipation coefficients are

To avoid oscillations near shocks. this logic switches E'") off when the second-difference

dissipation coefficient is larger than a certain value. In the present work. the values

of n2 in Eq. (3.11) and ~4 in Eq. (3.13) are h e d to 0.5 and 0.01 respectively.

Csing Eq. (3.7). and noting that JQ = Q. we obtain the following expression.

Similarly, Eq. (3.8) becomes,

(. + ! , - (3+&k + &(!) ,-t ,k) Qj- 1.k + - - (4) - I kQj-P ,k I - : .

The stencil of Eq. (3.15) cannot be used at the first interior node (i.e., j = 2 and

j = j,, - 1); it has to be modified to a one-sided second-order stencil. For example,

at j = 2,

Similar stencils are used a t the other boundaries. In the direction. at rvakecut CD

and at nodes located one row above both wakecuts. Qj,k-2 and QjVh-l have to be

replaced by the corresponding d u e s across the wakecut. as shown in Section 2.5.4.

3.1.3 Boundary conditions

Body surface

The boundary conditions at the body surface are described in Section 2.Ll . For an

inviscid Bow. we use a first-order extrapolation for C; and for the pressure. Note that.

in order to reduce errors in extrapolation? the velocities used in Eqs. (2.30) do not

contain the term J-': they are the velocities in the physical domain. In order to

eliminate e from the stagnation enthalpy, we make use of Eq. (2.4). the equation of

state. Thus. the boundary conditions are given by

For uiscovs flows. the boundary conditions are

where Eq. (3.21) represents the adiabatic condition a t the wall.

Far-field boundary

At k = km, the boundary conditions are common for viscous and inviscid flows.

Following the logic shown in Table 2.1. and using a zeroth-order extrapolation in

space. the first two equations are

For an inflow condition. the other two equations are

For an outflow condition. Eqs. (3.27) and (3.28) are replaced by

For an inviscid Bow. boundary conditions at j = 1 and a t j = j,., are very similar

to the one at k = k,,: we just need to keep in mind the logic shown in Table 2.1.

The boundary conditions at j = 1 and j = j,, for a vzscous flow consist of a

zeroth-order extrapolation of p, pu, pu and p. At j = 1, they are given by

To take into account the circulation correction. the values of u. u and a at x as well

as the corresponding C; and I.-, should be replaced by the values given by Eqs. (2.32)

and (2.33).

3.2 Linearization: Newton's method

The spatial discretization of the nonlinear partial differential equations and the bound-

ary conditions leads to a nonlinear system of algebraic equations of the form

In the introduction. we discussed a number of schemes that could be used to solve this

set of equations. We also justified the use of quasi-Xewton methods based on their

great potential to become efficient solvers. These methods are based on Newton's

linearization in which

j dn+ l i r;: p n) + ~ (n) l Q (n) = 0 (3.36)

where

A(") is the Jacobian matrix of 7. which is given by

evaluated at Q". The nonlinear system of equations has been replaced by a series of

systems of linear equations of the form

If A corresponds to an exact linearization of 3, Eq. (3.36) represents a true

Newton linearization. We will refer to this Jacobian as A2. If the functional Jacobian

is simplified. thus producing an approximate-linearization. we get an approximate-

Newton met hod. The motivation for using an approximate- Jacobian is the possibility

of using far less storage and/or building a Jacobian that is better conditioned and

that is more diagonally dominant. which will benefit the iterative solver. as we will

see.

It should be noted that. for the present algorithm. an exact analytical lineariza-

tion of the equations cannot be obtained, due to the impossibility of linearizing terms

such as the spectral-radius in Eq. (3.9). the switch between the second-difference and

the fourt h-difference artificial dissipation that appears in Eq. (3.13) and the t urbu-

lence model. .As we will see. the linearization of the far-field circulation correction

poses some problems a s well. It is possible to freeze all these terms. but. in that case.

second-order convergence can no longer be reached. Nevertheless we will still refer to

this approximat ion as the second-order Jacobian A*. A1 ternatively. the second-order

.Jacobian can be computed numerically, overcoming the difficulties mentioned earlier.

3.2.1 Linearization of the interior scheme

The functional F at the interior nodes consists of

Second-order Jacobian

The linearization of Eq. (3.39) leads to nine 4 x 4 blocks in the rows corresponding

to the interior nodes. The location of the blocks within the matrix depends on the

chosen ordering for the nodes. Ordering schemes will be discussed in Section 3.6. The

nine blocks are given by

The coefficients of the artificial dissipation, as well as p and pt are treated as constants

in the linearization. The Jacobians of the artificial dissipation are 1 x 4 diagonal ma-

trices. easy to compute from Eqs. (3.14) to (3.17). The flu Jacobians corresponding

to E. F and s are shown in Appendix -4.

-4 simple approximation to A2 with fax fewer nonzero entries: which we designate A[,

is obtained by using only second-difference dissipation in forming the matrix. The

new matrix is more diagonally dominant because we are adding a large amount of

first-order dissipation with stencil (1,-2.1). whereas .-I2 has second-order dissipation

with stencil (-1 .-l.-6.4.-1). The coefficient of the second-difference dissipation is given

where the superscript r denotes values on the right-hand side and 1 on the left. An

optimal value of the constant o will be determined through numerical experiments.

Since blocks B:: do not exist anymore, the resulting matrix has five blocks per node

instead of nine.

-4 second approsirnation is introduced to make the rnatriv more diagonally

dominant by adding a term to the diagonal. If we had used the implicit Euler time-

marching met hod with a suitable linearization applied to the unsteady Navier-Stokes

equations instead of Newton's method applied to the steady equations. we would

have obtained the same functional Jacobian except for an extra term l /At in the

diagonal. In other words. the implicit Euler time-marching method reduces to New-

ton's method when using an infinite time step (941. The smaller the time step. the

more diagonally dominant the Jacobian. which improves the convergence of the inner

iterations. Therefore. we add the equivalent of a local time step term to the diagonal

of dl. Saleem et al. [95] have shown that. in the context of ARC2D. the time step

based on the metric Jacobian is the optimal strategy and it is the one that we adopt.

with At given by.

where Ato is a constant that will be chosen experimentally to maximize convergence.

3.2.2 Linearization of the boundary conditions

To achieve Newton convergence, the boundary conditions have to be treated implic-

itly Implementation of the far field circulation correction in an implicit manner is

difficult since the vortex strength is proportional to the lift coefficient. This leads to

coupling between every point in the far field and the ones on the airfoil surface, which

adds more non zeros outside of the banded structure. Therefore. we introduce an a p

proximat ion similar to the one introduced for the turbulence model and the artificial

dissipation: when computing the Jacobian ~~~~~yticaik we treat the vortex strength

as a constant. This difficulty can also be overcome by numerically computing the

.Jacobian.

The boundary conditions were introduced in Sect ion 2.3 and the discret ized

form has been presented in Section 3.1.3. The discretized equations can be written

as

where R is the set of variables chosen to write the equations. We found it convenient

to use

Applying Newton's linearization to Eq. (3.43). we obtain

where

Since the unknowns in the global system are AQ, we have to change variables in

Eq. (3.45). The Jacobian matrix M = d Q / d R of the transformation between the

variables AQ and AR is defined by

Therefore. Eq. (3.45) becomes

pA\1-L J I Q = -@n)

where

Body surface

For an znozscid flow. boundary conditions at the body surface are given by Eqs. (3.17)

to (3.20). Since we are using a first-order extrapolation at the body surface, Eq. (3.48)

takes the form

where

For a viscous flow. Eq. (3.48) is now given by

Since Eqs. (3.21) to (3.23) are expressed in terms of the conservative variables. the

product PjVI is the identity matrix for the first three rows. Thus.

where [m4.1. rn4.2. rn4.3, rn4,4] is the last row of ill-' given in Eq. (3.49).

Far-field boundary

We show the linearized equations a t k,,, which are the same for viscous and inviscid

Bows. but they apply also at j = 1 aod j = j,, for inviscid flows. AFter the

linearization. we obtain an equation similar to (3.54) where PJ,km,, is the same for

inflow and outflow conditions: it is given by:

The last two rows of P,,kma,-l depend on whether it is an

outflow condition. For an inflow condition.

inflow condition or an

and for an outflow condition, the last two rows axe given by the last two rows of (3.57),

but evaluated a t (j , kmm - 1).

The linearization of the boundary condition equations a t j = 1 and j = j,,

for a vzscous flow gives an equation similar to (3.54) where the products P ~ , ~ I ' L I I , ~ and

P~,&T: are equal to the matrix shown in (3.55).

Scaling the equations

The coefficients of AQ in Eq. 3.48 are not of the same order of magnitude as the

coefficients at the interior nodes. This causes some of the eigenvalues of the Jacobian

to become extremely large and slows down the convergence of GSIRES. which may

even stagnate. An appropriate scaling of the equations at the boundaries overcomes

the problem. After pivoting within the diagonal block to place the biggest element

of each column in the diagonal. we normalize each equation by the diagonal element.

3.3 Start up

For some flow cases. especially those with shocks. the early Newton iterations can

diverge. Different relaxation techniques have been suggested to overcome this diffi-

culty. One way to relax the solution is to damp the Newton updates to prevent the

calculation of non-physical variable values 1631. For example.

where 0 takes init id ly small values and increases gradual1 y towards unity.

An alternative to this technique is to use the unsteady form of the Savier-

Stokes equations which can be written as

and to apply implicit Euler time-differencing. -4s mentioned in Section 3.2.1: this is

equivalent to adding a term to the diagonal of the Jacobian A. A finite time step can

be used initially and, as At + m, the Newton method is obtained. This strategy is

used by many authors, e-g., Mulder and Van Leer [96], Orkwis 1621 and Barth [76] t o

name a few. In our experience 1971, it is more efficient to use an approximate Jacobian

for the first two orders of magnitude reduction in outer residual.

However. when a finite time step must be used. a cheaper relaxation algorithm

can be employed [77. 981: significantly reducing computing time. This is particularly

true for transonic flows. where many outer iterations at low At can be needed be-

fore fast convergence can be achieved. This can be computationally expensive even

when using an approximate-Newton method. In the present study. we replace the

approximate-Xewton met hod used in Ref. [9 i] by an approximately- factored algo-

rithm of ARCPD in diagonal form with two levels of grid sequencing. It is also used

for the first two orders of magnitude residual reduction. but limiting the number of

iterations for cases where the approximately-factored algorithm shows slow conver-

gence. Limiting the number of iterations to 150 on the coarse grid. and five on the

fine grid seems to give good performance. This strategy reduces the CPU time of the

start up by a factor of two to three compared to the approximate-Newton stratea;.

3.4 Solvers for the linear problem

Direct solvers are more robust than iterative solvers and require fewer parameters.

The drawback is the higher computational complexity and the need of significantly

larger storage capacity. For these reasons, we do not consider them in the present

work. For further discussion of direct solvers in CFD applications. we refer the reader

to pa] .
The alternative is to use iterative solvers. There are several effective iterative

solvers for non-symmetric linear systems available. as reviewed by Dutto [Q]. Barret t

et al. [43] and Page [99]. among others. It is very difficult to establish general rules

about which one is the best method. This depends on the particular problem one is

attempting to solve. Nevertheless, for the type of systems arising in CFD applica-

t ions. preconditioned K ~ l o v met hods have shown better convergence properties than

classical stationary methods such as Jacobi, GaussSeideI or SOR. Among Krylov

solvers, GMRES, developed by Saad and Schultz [36], is the most popular one, being,

on average, faster than other Krylov solvers. We have not done a systematic study

of different Krylov solvers. but in a few tests comparing GMRES with bi-CGSTAB

and CGS. we found GSIRES faster for our applications.

3.4.1 GMRES

For any linear system of equations of the form.

GMRES has the property of finding. a t every step. the iterate x, E {xo + hh} that

minimizes the L2 norm of the residual r, = b - Am. where xo is an initial guess in

the iterative process and h;, is a Krylov subspace of the form

The vector vl is defined as

GlIRES has three basic steps. First. from an initial guess to. it computes the vector

vl. Second. using AmoIdi's method it forms an orthogonal basis of the subspace Km:

every new direction vector Avj is made orthogonal to all the previous ones and it is

normalized:

From the above process, it is easy to show that

where C , is a :V x m matrix with column vectors q. urn and H~ is a (m + 1) x rn

Hessenberg matrix containing the h i j coefficients computed by Amoldi's algorithm.

Any given vector x E {xo + K,) can be written as

where y is a vector of dimension m. Making use of Eqs. (3.65) and (3.66). the La

norm of the residual can be mitten as a function of y:

where 3 = llroll and e l is the first column of the m x m identity matrix. Since the

column-vectors of I. ',+ are ort honormal.

The third step. consisting of finding the x that minimizes the residual. is reduced to

finding the y,,, such that the function I&) 1 1 2 is minimized. This is quite inexpensive.

since it is a (m + 1) x m least-squares problem with rn v e q small compared to .V.

It should be noted that. given the structure of Rrn+ the least-squares probleni can

be solved very inexpensively by applying simple rotations to the Hessenberg matrix

to transform it into an upper triangular matrix. Once we have y,, we form x, using

Eq. (3.66).

Another important property of GMRES is that the norm of the residual is

directly available. if we apply the rotations every time that we compute a new column

of the Heissenberg matrix, which means, after adding a new vector uj to the base.

Therefore, there is no need to form xj, the corresponding residual, rj = b - .hi, and

evaluate its L2 norm in order to check convergence. If the rotations transform the

vector 3el of Eq. (3.68) into - . - , m l j + l) T . it is easy to prove that

For the proof. we refer the reader to Ref. [100]. pages 29 and 30.

GlIRES is guaranteed to converge in a t most k = .V steps. This is impractical

because -V is large and it is not possible to find a short vector recursion when build-

ing the orthonormal basis of K,. which means that work and storage requirements

increase at e v e e new search direction vj. Storage increases linearly with the number

of search directions and CPU time increases quadratically. To overcome this problem.

we can use the algorithm iteratively: we can restart it after rn < .V. and use x, as

the initial guess when we restart. This is the restarted version of GMRES denoted

by GhIRES(m). If A is nearly positive definite. m does not have to be too large

for convergence of GMRES(m). But for indefinite problems. such as the ones solved

here. GSIRES(m) may stagnate (i.e., not converge). This can be overcome by using

a preconditioner. which will be discussed in the next section. The pseudocode for the

restarted GMRES(m) is described in Figure 3.1.

In our applications. A is the (N x N) matrix in Eq. (3.38). with .V = 4 x

j,, x kma,. b = -7 and z = AQ. \ire choose lo = ilQo = 0 in all cases. After

testing different values of m, we found that. for our applications. limiting its value to

20 does not significantly degrade the convergence rate.

Since GMRES requires only matrix-vector products, the algorithm can be imple-

mented without forming the Jacobian matrix explicitly: second-order centred-difference

as well as first-order forward-difference of the fluxes can be employed to approximate

the matrix-vector products. It was already shown in [97] that such a matrix-free

approach can be advantageous, from the point of view of both performance and stor-

age. Since we do not need to linearize the Jacobian analytically and we use only

1. Start: Choose xo and compute ro = b - dzO and ul = ro/ 1 1 rolls

2. Iterate: For j = 1. . . . , rn do

UJ; =
h i j = (w,. ui). i = 1.2 , . . . , j
htl xi =I h- Z.J -v- 3

h j + ~ . j = iIfij+l I 1
p:j+l = L>+1/hj+l.j

Perfom rotation to H ~ + ~ ,j and to rhs.
if 11,; (I 2 small enough, then stop

3. Form the approximate solution:

Solve for y,
Form x, = x0 + b m y ,

Compute r, = b - h,; if convergence is satisfied then stop
else compute ro t I,, ul t rm/llrm 1 1 2 and go to 2

Figure 3.1: Algorithm for the restarted GMRES(rn) iterative method.

evaluations of the 0mes. the switch between second and fourt h-difference artificial

dissipation. the turbulence model and the use of a far-field circulation correction can

easily be included in the Jacobian.

We use the forward-difference. which requires only one right-hand side evalu-

ation per iteration instead of two when using centred-difference. Therefore.

where 5 is a small scalar used to perturb the state quantities Q in the direction of

c . The performance of this technique is very sensitive to E . especially when using

fonvard differencing [95]. A large value of E can result in an unstable process due to

an inaccurate approximation. while a very small d u e can lead to difficulties with

round-off error. An effective strategy proposed by NieIsen et al. [77] involves choosing

s such that

E ~ P ,& (3.71)

where fi is the root mean square of v and E , is the value of "machine zero" for the

hardware being used. We use the La norm of u. which gives identical results.

In order to make a distinction between the Sewton iterations on the non-linear

problem and the GhIRES iterations on the linear one. the terms "outer iterations''

and *;inner iterations". respectively, will be used.

Preconditioners

-4 weakness of iterative solvers, relative to direct solvers. is their lack of robustness.

Preconditioning is an effective technique to improve both efficiency and robustness.

It consists of transforming the linear system into one that is easier to solve by an

iterative solver. The convergence rate of a solver like GMRES is determined by the

spectrum of the matrix that we are inverting. The ideal spectrum is to have all the

eigenvalues equal to one, which is the identity matrix spectrum. This suggests that a

good preconditioner should transform the original matrix into another one that is as

close as possible to the identity matrix To illustrate this point. we show in Figure 3.2

how the original eigenvalues of a typical matrix A that arises in our applications are

clustered around 1 when a preconditioner is applied to it.

In the most general case. known as right and left precondztionzng o r precondi-

tioning by both sides. the original system dx = b is transformed into

where AP = M;'AM;' should approximate Z. The condition number of A, is

smaller than that of A and the iterative solver will produce a better convergence

rate.

Many authors insist on the fact that one of the conditions that a good precon-

ditioner given by

M = d - E (3.73)

with E being an error matrix. should be that M is as close to A as possible. Some

studies have shown that the number of iterations is related to the norm of the error

matrix E [101. 331. But. as we will see. this is not always the case. If we have a look

a t Eq. (3.72). it is easy to see that, if we use a one side (right or left) preconditioning,

a good preconditioner is such that the matrix M;' or M;l approximates A-'. The

fact that M is a good approximation of A does not guarantee that M-' is a good

approximation of A-I. This is particularly true for incomplete factorizations of non-kf

matrices [102].

One of the advantages of using right preconditioning is that the residual of the

preconditioned system is the same as the residual of the unpreconditioned system.

This is important considering that stopping criteria should be based on the residual of

the unpreconditioned system. Thus we use right preconditioning in our application.

When dropping left preconditioning from Eq. (3.72), it becomes

Figure 3.2: Eigenvalues of a non-preconditioned matrix A and of the matrix precon-
ditioned from the left with ao ILU-type preconditioner M ; 'A.

1. Start: Choose ro and compute ro = 6 - Azo and v l = ro/llrol12

2. Iterate: For j = I, m do

Preconditioning: zj = M-'vj
u, = Azj
hiSj = (w , , u i) i = 1.2.. . . . j
t ~ ~ - ~ = U> - h i j v j
hj+[. , = I I f i j + ~ I I
c j + l = fij-l/hj+l.j
Perform rotation to Hj+lj and to rhs.
if llrj 1 1 2 small enough. then stop

3. F o m the approximate solution:

Solve for y,
Solve (I, = M-I (I Ly,)
Form x, = xo + u,

4. Restart:

Compute r , = 6 - A,: if satisfied then stop
else compute zo t X , ; U ~ t rm/llrml12 and go to 2

Figure 3.3: The preconditioned GMRES(m) algorithm.

The preconditioned GSLRES(m) algorithm is shown in Figure 3.3: it can be observed

that we do not need to form the matrix AM-L. which would be very costly: we

multiply the vector uj by M-' and then by A.

We should note that applying the preconditioner

is equivalent to solving

Mzj = Ltj

Therefore. we do not need to compute and store M-'. which may be a dense matrix

even though M ma?; be sparse: we just need to solve Eq. (3.76) by either

i) finding a matrix M such that it is easier to invert than A while M-I remains

a good approximation of A-l. or

ii) using an iterative method. with M = A or some good approximation of it for

which the iterative solver converges.

In the first case. since we are exactly inverting M . the preconditioner is the

same a t each step and in computing the solution. we only need to apply M-' to

the linear combinat ion L kgrn. Approximate factorization (AF) and the incomplete

upper-lower factorization (ILU) family are among the most efficient preconditioners

of this type.

On the second t-ype of preconditioners. using an iterative solver to inexactly

invert M means that we have a different ~ j l at each step. Therefore. we cannot

use the expression

x, = so + M-'t& (3.77)

It has to be replaced by

xm = q, + Zm ym

where 2, is the matrix containing the m vectors zj = hl;'vj. Therefore, not only

the vectors vj need to be stored, as in the standard GMRES implementation, but

the preconditioned vectors z, need to be stored as well: they are used to update the

solution. This variant of GMRES, introduced by Saad [103]. where the preconditioner

may be different a t each iteration is known as flexible GMRES (FGMRES).

Some of the most popular iterative solvers used as preconditioners are the

point. line and block versions of Jacobi. Gauss-Seidel and SSOR (successive over-

relauation) iterative methods. but many other solvers can be used as preconditioners.

Even GMRES could be used as preconditioner as in the nested GNRES method pro-

posed by \ i n der Vorst and Vuik [104]. For further discussion about these techniques

and preconditioning in general. we refer the reader to the papers of .luelsson [I051

and Saad [106].

The costs associated with a preconditioner are

i) Forming the preconditioning matrix M

ii) Solving the system given by Eq. (3.76)

iii) Additional storage to store M

Therefore, in choosing a preconditioner. we should try to minimize these costs. while

significantly reducing the number of iterations required by GXIRES compared with

the unprecondit ioned system.

In this work, we use preconditioners of the ILU-type which have proven to be

reliable in CFD applications. Two of them are described in the following sections.

3.5.1 Incomplete LU factorization preconditioners

Incomplete LG factorizations are ohen regarded as efficient preconditioners for Kwlov

solvers. In an incomplete factorization, we approximate the matrix A by a matrix M

such that

where L is a lower-triangular matrix and U is an upper-triangular matrix. The factors

are computed using a Gaussian elimination process or any other alternative process

applied to the matrix A or to some reasonable approximation of it. The factorization

may be mare or less accurate. depending on how many new non-zero entries we

retain in the factorization compared to the original matrix. The cost of forming the

preconditioner and storage goes up when we allow more fill-in in L and U: on the other

hand. increases in robustness and efficiency often justifv more accurate factorizations.

particularly when memory is not an issue and when the preconditioner is going to be

used in solving several systems. since the cost of forming the preconditioner is going

to be amortized.

ILL- factorization preconditioners were originally developed for SI-matrices.

Even if they have been successfully used in much more general cases. we should be

aware of the possible problems that we may face. For example. in the case of nonsym-

metric matrices. such as the ones arising in our applications. the incomplete factors

13 and U may be more ill-conditioned than the original matriv and the long recur-

rences associated with backward and forward solves may be unstable [102. 107. 1081.

Since diagonally dominant matrices tend to produce well conditioned factors [100],

one possible way to improve the preconditioner M = t U is to compute it from

a matrix d which is more diagonally dominant than A while remaining a reason-

able approximation of it. Numerical experiments shown in Section 4.4.1 confirm this

thesis.

ILU preconditioners have also been applied to indefinite matrices. However.

they may present even more severe problems than the ones mentioued above:

1. Inaccuracy due to very small pivots

2. Unstable triangular solves, which may or may not be related to smali pivots

For further discussion of these problems, we refer the reader to reference [102].

The difficulties that we face in devising an efficient preconditioner using an

ILL factorization, make particularly important the choice of the matrix d, as well as

the strategy used during the factorization. There have been two distinct strategies

to forming such incomplete factorizations: level of fill-in and threshold strategies.

3.5.2 Level of fill-in: ILU(p)

The first approach. named ILU(p). uses only the graph of the matrix to determine

which entries to keep in the factorization. -1 level of fill-in is attributed to each

element that appears in the factorization. During the Gaussian-elimination process.

the element is dropped if its level exceeds a certain threshold p. The way this is done

in practice consists of assigning a level of fill-in equal to 0 to the nonzero elements of

the original matrix d used to build the preconditioner. When a new nonzero element

is created in the factorization. the level of fill-in assigned to it is defined as

level (mi,) = level (mi,k) + level (mk,) + 1 (3.80)

When p = 0. the nonzero pattern of the preconditioner M corresponds to that of

the original matrix A. For other values of p. it is difficult to predict the amount of

fill-in that will be generated. For a diagonally dominant matrix. the higher the level

of fill-in of an element. the smaller its magnitude [loo]. which suggests that this is

an appropriate strategy for this kind of matrix. Unfortunately. this may not be the

case for more general matrices. The algorithm corresponding to ILL*(p) is shown in

Figure 3.4.

3.5.3 Threshold strategies. ILUT(P,r)

In other incomplete factorization techniques, the dropoff rule is based on the nu-

merical value of the elements introduced in the factorization rather than on their fill

levels. These are known as threshold strategies. Unfortunately. the amount of fill-in

is also hard to predict for this approach, and this preconditioner is far more expensive

to form than ILU(p).

ILUT(P,T)? developed by Saad [log], is a class of LU factorization that lies

between the level of fill-in strategy and the threshold strategy. Two rules are used to

For all nonzero elements 4,- do

ui, = di and lev(uij) = 0

For i = 2. :V do

For k = 1.. . . . i - 1 and if Ui* # 0 do

Compute liak = u ~ . ~ / z ~ ~ . ~ and l € ? ~ (l ~ . ~) = l e V (~ ~ . ~)
For j = 1.. . ..:V do

-
Ui.j - ui,j - k.kuk,j
lev(ui,) = min {kv(Uij), l e ~ (l ~ , ~) + Z ~ , V (U ~ ~) + l }

Replace av element in row i with lev(uiej) > p by a zero

Figure 3.4: Algorithm of the incomplete factorization ILK(p)

determine which elements should be dropped in a given row. The first rule consists of

dropping any element smaller than a relative tolerance determined by r and a norm

of the original matrix The second rule is controlled by the parameter P: if PI and P,

are the numbers of non-zeros on the lower and upper part of a given row of the original

matrix d. at most the largest P + 8 and P+ P, are kept in the lower and upper part

of the preconditioning matrix. This rule allows us to control the maximum number

of elements per row and thus the memory usage. Figure 3.3 shows the pseudocode

corresponding to [LC(P. r) .

The matrices arising from the linearization of the Navier-Stokes equations present a

block structure, with blocks of size 4 x 4. That is why block versions of ILU(p) are

quite popular in this type of application. -4s a matter of fact. in cases where a low

level of fill-in is used, i.e., p = 0 or p = 1, the iterative solver may fail with the scalar

version and converge with the block version.

For i = l.....-V do

Ilk 112 Compute average norm of elements in row i: ai = -
nnz

For k = 1 . N do

I G i k I else if - > r then
ai

If k < i then li,k =
If k > i then Ui*k = GiJ:

For k = 1.. . . . i - 1 and if liVk # 0 do

1i.k = l i . k / ~ k . k

If I l i k I Qk > T then
ai

For j = k + l : N a n d if u k j # O do

Keep the P + PI biggest elements in L

Keep the P + P, biggest elements in U

Compute new oi using all nnz except for the diagonal

Figure 3.5: Algorithm of the incomplete factorization ILL(P. r) .

An alternative approach is to use the scalar version. but treat the zeros within

the 4 x 4 blocks as if they were nonzeros. in other words. allowing fill-in in those

positions. We call this strategy Block-Fill ILU(p) (BFILC: (p)) . Orkwis (621 reports

than in his application, CGS (Conjugate Gradient Squared) did not converge with

ILU(0) but it did converge with BFILU(0). Because of the storing format that we use

namely Compressed Sparse Row, CSR [110], we find this approach more convenient

than block ILU(p).

3.6 Ordering of unknowns

The ordering of the unknowns plays an important role in the convergence of the

preconditioned iterative solver [5O, 531. It can greatly affect the quality of the incom-

plete factorization. We have considered a number of ordering algorithms. The most

significant ones are described in the following paragraphs.

3.6.1 Natural ordering

The first one (referred to as NAT) is the classical jkordering described in [16]: the loop

in k is inside the loop in j. This ordering produces the smallest bandwidth (4 x k,, for

a second order matrix) since for our applications k,, << j,,.,,. Looping the indices in

the inverse order (j-loop within the k-loop) leads to very slow convergence and higher

CPL' in the factorization due to a much bigger bandwidth (I x j,,,). Therefore. the

k3Ioop is not considered here.

In applications like ours where C-grids are used. like the one shown in Fig-

ure 2.1, the nodes at the wakecut need some special attention. In the case of

approximate-factored algorithms such as hRC2D, they require some shuffling in the

data before solving in the normal direction to keep the banded structure of the ma-

trix. -4 less computationally intense alternative is not to solve a t those nodes. and to

compute the average values of the primitive variables at both sides of the wakecut.

When Newton convergence is sought, either approach has to be exactly linearized.

which will add some nonzeros to the matrix outside of the diagonals. These nonzeros

create a fair amount of nonzeros during the factorization which may not be retained

in an incomplete factorization, reducing the quality of the precondit ioner.

3.6.2 Orderings based on domain decomposition

To overcome the difficulty of the nonzeros that appear outside of the main diagonals,

a second ordering, labeled DD1 (domain decomposition I), was devised. It is shown

schematically in Figure 3.6 that the computational domain is divided in two zones,

one that contains the wakecut nodes and another one that contains the rest of the

nodes. The numbering pattern is similar to the one used in NAT: we number the

nodes of zone A following the jk-loop, followed by the nodes of zone a. This ordering

leads to a decoupling of both zones across the wakecut. The matrix presents. for the

most part. a similar block banded structure as before. with a bandwidth of -I x km,-

Zone acovers = 1 : jtl - t . k = 1 : 3] ~ [j = jn+l : j m a 2 . k = 1 : 21.

h o t her ordering based on domain decomposition that avoids the problems

introduced in the band-structure by the wakecut is also shown in Figure 3.6. This

ordering, that we name DD2, is based in two zones A and B divided by the separators

a and 6. The separators are two cells wide. This ordering leads to a two totally

independent computational zones A (of bandwidth 2 x 4 x k,,) and B (of bandwidth

4 x k,,). The off-diagonal blocks. which are few in number. are produced by the

separator zones: they may affect the factorization but to a lesser degree than in the

case of the natural ordering.

3.6.3 Double bandwidth

h o t her alternative consists in numbering the nodes across the wakecut. We designate

it DB (double bandwidth). The downside is that the bandwidth is twice as large.

which can affect the quality of the factorization.

3.6.4 Reverse Cuthill-McKee

In order to obtain more consistent performance. we test two of the reordering algo-

rithms typically used for unstructured grids. Note that the difference between the

reordering algorithms and the previous ordering algorithms is that the reordering al-

gorithms need to assume an initial ordering. The final ordering depends on the initial

ordering that is provided to the algorithm. The first reordering algorithm that we

will test is the Reverse Cuthill-McKee (RCM) strategy [Ill], a =ell-known bandwidth

reduction algorithm.

3.6.5 Minimum neighbouring

The minimum neighbouring algorithm [112] (MN) is a modification of the minimum

degree reordering of George and Liu [113]. The minimum degree algorithm was de-

signed to minimize the fill-in produced in a factorization. However. this does not

guarantee that. in an incomplete factorization. we are not throwing away important

terms. The modifications introduced with the minimum neighbouring algorithm aim

at keeping in the factors L and U those nonzeros that account for more operations

during the factorization. In other words, the algorithm tries to minimize the amount

of informat ion that is thrown away during the incomplete factorization. This is equil--

alent to saying that it is trying to decrease the norm of the matrix E that appears

in Eq. (3.73). But. as was pointed out earlier. for matrices that are not diagonal

dominant. this does not ensure that the norm of EM-' is going to be reduced too.

In Figures 3.7 to 3.9. we show the structure of the matrices that arise from

using the natural ordering as well as the domain decomposition orderings DD1 and

DD2 for a 36 x 7 mesh with implicit boundary conditions and implicit wake cut.

Figure 3.10 shows the mat riv resulting after using the double bandwidth ordering.

And Figures 3.1 1 and 3.12 show the structure of the matrix after applying RChI and

minimum neighbouring methods respectively to the matrix shown in Figure 3.10.

Figure 3.7: Matrix that arises from using the natural ordering. NAT.

Figure 3.8: Matrix that arises from using the domain decomposition ordering DD1.

62

Figure 3.9: Matrix that arises from using the domain decomposition ordering DD2.

Figure 3.10: Matrix that arises from using the double bandwidth ordering, DB.

63

Figure 3.11: hlatriu that arises from applying the RCM reorderings to an initial
double bandwidth ordering.

Figure 3.12: Matrix that arises from applying the minimum neighbouring reordering
to an initial double bandwidth ordering.

Chapter 4

Algorithm optimization

We have seen that there are several parameters and choices that have to be

optimized regarding the reordering algorithm, the precondit ioner. the iterative solver

and the inexact-Newton approach. It is a very tedious task. not to say an impossible

one. to try to find the ideal set of parameters, since the choice of one influences the

others. Also they may change from case to case and from grid to grid. Nevertheless.

attempts can be made to choose a set that makes the code efficient and robust. After

introducing the cases that we use in our study and a commentary on the units used

for comparison. a detailed study of the optimization of the code is presented.

4.1 Test cases

A total of eight cases are considered in order to optimize the algorithm described in

the previous chapter. as well as to study its performance and compare it to other well

established solvers. The chosen cases include a wide variety of flows around airfoils:

two inviscid flows, one laminar: and five turbulent. The turbulent cases include one

in the incompressible regime, two other subsonic cases at a higher Mach number and

two transonic flows. In ail cases except for one transonic turbulent case, we use the

NAC... 0012 airfoil. For the last case, we use the R4E 2822 airfoil. The parameters

defining the test cases are given in Table 4.1. The transonic turbulent Bow conditions

listed as case 6 are used for the comparisons unless stated otherwise. The initial

condition is freestream flow.

case airfoil ~ b l Q Re tr-up tr-low grid nodes
1 1 0 0 1 0.63 2.00 invisc - - 971 1
2 X1C-A 0012 0.80 1.25 invisc - - 971 1
3 NAC-4 0012 0.80 5.00 5.00e2 - - 12201
4 A 0012 0.30 0.00 2.88e6 0 . 4 3 ~ 0 . 4 3 ~ 16881
5 C 0012 0.30 6.00 2.88e6 0 . 0 5 ~ 0 . 8 0 ~ 16881
6 5-4C.1 0012 0.70 149 9.00e6 0 . 0 5 ~ 0 . 0 5 ~ 16881
i N,AC-A 0012 0.16 1'2.00 2.88e6 0 . 0 1 ~ 0-95c 16881
8 RAE 2822 0.729 2.31 6.50e6 0-03c 0 . 0 3 ~ 15729

Table 4.1: Parameters for the eight flows studied. The column t r a p is the transition
point at the upper surface of the airfoil and t d o w is the transit ion point at the lower
surface.

For the inviscid cases. the grid has 249 x 39 nodes with the wall spacing set to

2 x lo-' chords. For the laminar case. the grid has 219 x 49 nodes and a wall spacing

of 3 x lo-" chords. h 331 x 51 grid with the wall spacing set to 1 x 10-' chords is used

for the XAC-1 0012 turbulent cases. For the RAE airfoil case. the grid has 321 x 49

nodes with similar wall spacing. These grids provide reasonable numerical accuracy

for the flows considered. Slach contours. surface pressure coefficients. as well as lift

and drag for the eight cases, are presented in Appendix B.

4.2 - Units for comparing efficiency

When comparing the speed of different algorithms, CPU time is the appropriate unit.

However. this is dependent on the computer. the compiler, and the coding details.

Although it is by no means perfect, the number of function evaluations (or right-

hand-side evaluations) required to reduce the residual by a given amount is a useful

unit for assessing the speed of an iterative algorithm [114]. This unit allows the

relative performance of different algorithms to be compared across various platforms,

compilers, and flu evaluation methods. Shortcomings of this choice are that it tends

to favour expensive flux evaluation methods (overhead appears smaller) and there

is some arbitrariness as to what is included in a function evaluation. For example,

local time stepping and the circulation correction are optional. It is also important to

notice that the memory bandwidth of the computer. which may differ substantially

from one machine to another. can have an important effect on the relative cost of

an inner iteration to a function evaluation, since not all the operations are equally

affected by the speed of the access to memory.

For most of our comparisons. we will use the number of function evaluations

as our basic unit. In the function evaluation we include the flux evaluation. pressure

field update. the computation of the artificial dissipation coefficients. the computa-

tion of the molecular and eddy viscosity and the evaluation of the right-hand-side a t

the boundaries. This permits comparison with other solves. Since all of the methods

compared in this work use the same right-hand-side. the number of function evalu-

ations translates directly into CPU time on a given computer. -111 the solvers and

cases are run on a Pentium Pro 180.

4.3 Inexact-Newton solver

Newton's met hod. which we have described in sect ion 3.2. approximates the non-linear

system of equations by a succession of linear systems of equations. A n inexact-Newton

method is an extension of Newton's method where. a t each step n. we solve the

linear system. given by Eq. (3.38). in an inexact fashion. using an iterative solver. -4

decision has to be made regarding how accurately we need to solve the linear systems

of equations.

An inexact-Xewton method applied to Eq. (3.38) can be written as

which implies finding a AQ(") such that the initial residual T(") is reduced by a

factor of in. If in = 0: we recover Newton's method. The local convergence of

the inexact-Newton method is controlled by ij,,. Dembo et al. [31] showed that,

under certain assumptions. 1) linear convergence with an asymptotic rate constant

no greater than il,, is obtained if 0 5 ij, 5 Q),, < 1 for each ij,. 2) superlinear

convergence is obtained if Eim,,,ij,, = 0, and 3) quadratic convergence is obtained

if G,, = 0 (1 1 Pn) 1 1) .
There is a second issue associated with ij,,. To illustrate it. several levels of

reduction of the residual of the linear problem arising at each quasi-Sewton step

have been tested. The convergence histories for siu values of ij are shown in Figure

4-1- Strict inner tolerances reduce the number of outer iterations. but there is an

increased number of inner iterations. giving an overall increase in total CPU time

needed to converge. The results indicate that strict inner tolerances reduce the speed

of the solver. To understand the reason let us recall that we are making the following

approximation to the non-linear system

During the first few iterations. the solution is far from the converged solution. and

thus the linear approximation of 3 can be very inaccurate. The use of a strict

tolerance (i.e.. a small value of ijn) during these early iterations is thus not beneficial

to the rate of convergence and wastes CPU time. This is known as oversolving [l 151.

To illustrate this fact. in Figure 4.2 we show the logarithms of the norms of 3 and

its linear approximation versus the number of GMRES iterations when reducing the

inner residual by five of orders of magnitude. At each new inexact-Newton step.

there is a point where further reduction of the residual in the linear problem does not

reduce the outer residual. -411 the GMRES iterations done to reduce the inner residual

below that point represent wasted effort, oversolving the linear system: at the next

inexact-Kewton step, the inner residual jumps up. The oversolving disappears as we

approach the solution.

Strategies for choosing a sequence of in's leading to an efficient local rate of

convergence of the inexact-Newton method, have been developed by several authors

and are described in Refs. [I 151 to [I 181. The proposed strategies show superlinear and

0 200 400 600 800 1000 1200
CPU time in hction evahations

Figure 4.1: Convergence history for different levels of reduction of the
using the matrix-free Newton-GMRES.

inner residual

Noniinear residual
Linear residual

0 100 200 300 400 500 600 700
gmres(20) iterations

Figure 4.2: Illustration of oversolving with a reduction of the linear residual F(Q) +
A(Q)AQ of five orders of magnitude: fi = The nonlinear residual F(Q + AQ)
shows no reduction for an important number of GMRES iterations.

quadratic convergence but they may not be able to avoid oversolving in some practical

applications. For that reason: Eisenstat and Walker [113] introduced safegards to

prevent ijn from becoming too small too quickly. We find that choosing

with 7 E [O. 11.6 E (1.21. and fi0 E [O, 1) is an effective strategy when used with

a safeguard. However. for our applications. we have found the following approach

to giw slightly better efficiency. We use ijk = 0.5 for the first 10 outer iterations.

which guarantees no oversolving for most problems. and we then use ijk = 0.1 for the

remaining outer iterations. This approach results in linear convergence. but savings

in not having to compute ijk and better behaviour regarding oversolving make it more

efficient in terms of CPL time than the other approaches. It should be noted that

"undersolving" at each Newton step is not particularly wasteful. while oversolving

should be avoided.

4.4 Preconditioning s t rat egies

The purpose of this section is to compare the performance of the solver with the

two main preconditioners that we have described in Section 3.5. BFILL(p) and

ILLT(P. T) : in order to determine the most efficient one for our applications. Differ-

ent values of fill-in are considered to establish optimum performance at a limited cost

of memory and CPC.

4.4.1 Comparing preconditioners

In order to compare BFILC:(p) and ILUT(P, r) with different levels of fill-in, we solve

the linear system of the first Newton iteration. The preconditioners are computed

from the first-order matrix. Results for case 1 are presented in Table 4.2. Similar

results are obtained for other cases. Memory requirements for each preconditioner are

Precondit ioner nnz/K cpu-form i-it cpu-total
BFILU(0) 19.41 0.6 360 204.4
BFILU(1) 26.45 3.4 57 33.8
BFILU (2) 33.66 5.2 44 2'7.8
BFILU(3) 40.90 7.4 44 29.5
BFILU(4) 44.10 8.1 43 29.7
ILCT (7.0.1) 25.13 5.2 155 9 1.3
ILUT (7.0.01) 27.78 8.0 94 36.3
ILCT (7.0.) 32.39 13.5 92 57.4
ILUT(l2.0.1) 33.63 7.2 62 33.6
ILCT(12.0.01) 37.12 10.9 63 41.4
ILUT(15.0.3) 31.09 5.9 276 172.0
ILCT(lS.O. 1) 37.93 8.3 51 33.5
ILUT(l5.O.Ol) 42.67 13.6 57 38.7
ILCT(18.0.1) 41.74 9.3 46 32.0
ILUT(18.0.2) 36.53 7.3 68 36.5

Table 4.2: SIemory, CPU cost and effectiveness to reduce the inner residual by two
orders of magnitude for different preconditioners.

shown as nonzeros per equation of the preconditioning matrix (nnz/N) . Under - ~ p u -

form" we indicate the CPU time (in seconds) required to compute the preconditioning

matrix. The last two columns indicate the number of GMRES(20) iterations and total

cpu time to reduce the initial inner residual by two orders of magnitude. Since the

ordering of the unknowns has a big impact on the performance of the preconditioner.

for each case we have chosen the best among the ones considered in this study. For

this test case, our experience is that the optimum reordering with BFILU is RCSI

and that ILUT performs much better with the >IN reordering than with any of the

other orderings.

Results show that the ILUT preconditioners are more expensive to form than

the BFILU ones. This is due to the comparison of numerical size that we have to do

between the elements of the rows in order to keep the largest ones.

BFILU(p) shows a clear improvement in the performance of the solver as we

allow more fill-in, up to p = 2. Further increase in fill-in, does not reduce the number

of inner iterations, while substantially increases the memory requirements.

It seems that optimum values for the fill-in parameters are around P = 1.5

and T = 0-1. But. for the same amount of nonzeros per row. BFILC factorizations

perform better than the ILUT ones.

The choice of the preconditioner has t o balance computational efficiency and

memory requirements. For this case. we observe that. overall. BFILU(2) is the best

choice.

4.4.2 Preconditioners from the first-order and the second-
order Jacobians

We have seen in section 3.5.1 that we can build the preconditioner from the

same matrix A used for the Sewton linearization. or that we can use a reasonable

approximation of it which could potentially produce a more efficient preconditioner.

For instance. we can use the first-order Jacobian AL described in section 3.2.1 to form

a preconditioner. M I . and compare it to the preconditioner M2. formed from --i2.

which is closer to the matrix produced by the exact linearization.

Figure 4.3 shows the convergence histories obtained with three different pre-

conditioners for case 1 on a coarse grid with 143 x 20 nodes: BFILC(0) formed from

the first and second-order Jacobians. and BFILU(2) formed from the first-order Ja-

cobian. It should be noted that for this inviscid subsonic flow case. the matrix d2

is very close to being the exact linearization of the flu Jacobian. The number of

nonzeros given by BFILC'(2) using AL is about the same as the number of nonzeros

given by BFILU(0) using d2. BFILU(2) applied to d2 requires excessive storage and

is not considered here.

The results in Figure 4.3 show that the preconditioners M I built from dL

are more efficient than M 2 built from the second-order Jacobian A*. This is exam-

ined in more detail with BFILU(0). If we multiply Eq. (3.79) by the inverse of the

precondit ioner, we obtain the preconditioned matrices given by:

0 500 1000 1500 2000 2500
CPU time in fiction evaluations

Figure 4.3: Convergence histories for case 1 in a 143 x 20 nodes grid. using three
preconditioners: BFILU(0) formed from the first-order Jacobian dl. BFILL(0) using
the second-order Jacobian A2 and BFILCI(2) from the first-order Jacobian.

Table 4.3: Frobenius norm of the error matrix and of the preconditioned error matrix
for the first- and second-order preconditioners.

Since we are solving the preconditioned system, the matrix E is not as important as

the preconditioned error matrix E M-l. As discussed in sect ion 3.6.1 : non-diagonally

dominant matrices produce factors with inverses t - I and U - I which may have veqy

large norms, causing E L4-lL-l to be very large and thus adding large perturbations

to the identity matrix. In that case, the eigenvalues of A M-' will not be nicely

clustered around unity and the iterative solver will show slower convergence.

In Table 4.3, the Frobenius norms of the error matrices are presented. The

results confirm that M1 produces an error matrix E that has a bigger norm than the

one from M P . but the norm of its preconditioned error matrix is much smaller than

the one from M 2 .

4.4.3 Parametric study

The results from the previous section confirm that the best factorization is not

necessarily the one obtained from the matrix used at each Newton step. but from

an approximation that shows better characteristics. The matrix dl described in

section 3.2.1 has two parameters that allow us to optimize. in some sense. the a p

proximat ion.

The optimization criterion that we use is to minimize the sum of the GSIRES

iterations over the Newton iterations. which is equivalent to minimizing the CPU time

to convergence. For this optimization process, BFILU(2) is used as precondit ioner.

with RCZiI ordering.

The parameter a controls the amount of second-difference dissipation added

to dl. I s we increase its value. the matrix is less non-diagonally dominant and more

symmetric. which will benefit the factorization. But on the other hand. the matrix will

be a less accurate representation of A. Figure 4.4 shows the total number of GSIRES-

iterations required to converge to machine zero for the seven compressible cases, as

we vary the value of a. -1s expected. there is an optimum value: for all cases. with

the exception of case 4. it is equal to 5. For bigger values, the number of G4IRES-

iterations increases gradually and for smaller values. it increases sharply. In most

cases. the code does not converge for a 5 3. Case 7, which is a nearly incompressible

flow. behaves somewhat differently and will be discussed in section 5.1.
The other parameter, Ato which appears in Eq. (3.42): is used to enhance the

diagonal dominance of A1, which should improve the factorization properties of the

matrix. Figure 4.5 shows that the influence of this parameter is, in general, much less

beneficial than that of a. Only cases 2 and 5 show some improvement in convergence

when using a finite Ato. Values under 200 seriously affect the performance of the

solver. Thus we consider lo4 to be an optimum value for our applications.

case3 - G - - -

case 4 x- .>'

case 5 -& -.-

100 -

50 -
0 I I I I 1 I I I L 1

0 2 4 6 8 10 12 14 16 18 20
sigma

Figure 4.4: Total number of GMRES iterations required to converge to machine zero.
for different values of a for various cases.

case 1 +-

case 2 -+---

case3 .G- - -

case 4 x
case 5 - & - -
case 6 -= -

Figure 4.5: Total number of GMRES iterations required to converge to machine zero,
for different values of dto for cases I to 6.

Figure 4.6: Number of GMRES iterations at each Newton iteration freezing the
preconditioner (bars) and updating the preconditioner at each Newton iteration (im-
pulses) for case 2.

4.4.4 Freezing the preconditioner

Since we are using an approximation to A to build the preconditioner. we may consider

using the same preconditioner for all the Mewton steps. In other words. we could

compute the preconditioner once. at the first Newton iteration. and then freeze it.

To see how this strategy affects the performance of the solver. we run one of the

cases which has strong initial nonlinearities, case 2. with and without updating the

precondit ioner.

In Figure 4.6 we show that the number of GMRES iterations at each Newton

iteration does not increase when we freeze the preconditioner. In other words, there is

no gain in updating the preconditioner at each Newton iteration. .At the same time:

Figure 4.7 shows that there are substantial CPU savings when we do not update the

precondit ioner.
This is due to the fact that we have used a relaxation technique for two orders

of magnitude to eliminate the most significant transients, and the flow changes do not

affect the matrix in a significant way compared to the approximations that we have

0 200 400 600 800 1000 1200 1400
CPU time in kction evaluations

Figure 4.7: Convergence history for case 2, freezing the preconditioner and updating
the preconditioner at each Newton iteration.

introduced. Therefore. computing the preconditioner only once produces important

savings in CPC.

4.5 Ordering of unknowns

The sis different orderings described in section 3. 6. including the natural ordering

(XAT), two orderings based on domain decomposition techniques (DD1 and DD2).

double bandwidth (DB), Reverse Cuthill-McKee (RCM) and minimum neighbouring

(JAN). have been tested for cases 3 and 8. Since the optimum parameters that we

have found for RCM are not necessarily the same for the other orderings, we haw

followed a similar process of optimization for each one of the orderings using case 3.
Convergence history plots for cases 3 and 8 are shown in Figures 4.8 and 4.9

respectively. The benefits of applying reordering techniques such as RCM and MN

are clearly shown. In our experience, the performance of MN is virtually independent

of the initial ordering fed to the algorithm. In contrast, the performance of RCM

depends greatly on the initial ordering, with double bandwidth preferred. RCLI is

0 500 1000 1500 2000 2500 3000
CPU time in function evaluations

Figure 4.8: Convergence history for the six orderings for case 3. using BFILU(2) as
precondit ioner.

0 500 1000 1500 2000 2500
CPU time in function evaluations

Figure 4.9: Convergence history for the six orderings for case 8, using BFILU(2) as
precondi t ioner.

significantly faster than any other ordering for these two cases. We have compared

with SIN in other cases and results are generally in favour of RCM [119]. The double

bandwidth algorithm and DD2 behave quite similarly to each other. The natural

ordering and DD1 are the slowest ones.

4.6 Optimized algorithm

Our solver. known as PROBE, was presented in Ref. [I191 and later on. in an improved

version. in Ref. [120]. Here. we present an improved optimization. The following are

the main strategies and parameters of this version:

inexact-xewton strategy

matrix-free GSIRES(20)

BFILL(2) preconditioner based on the first-order Jacobian formed using Ato =

10" and o = 5

Reverse Cut hill-McKee reordering

preconditioner computed at first iteration and not updated

inner tolerance (8) set to 0.5 for the first ten outer iterations. 0.1 for the

remainder

approximate factorization algorithm used for 150 iterations on coarse grid or to

reduce the residual two orders of magnitude initially, whichever happens first:

for most cases. Ato = 5 is used with the local time step definition given in

Eq. 3.42.

Chapter 5

Results

In the first section of this chapter, we show the performance of PROBE for

the eight cases. as well as a study of the variation of the CPU cost with the number

of nodes in the grid. The second section consists of a comparison of the performance

and the storage requirements of PROBE with other efficient solvers. .Ul parameters

of PROBE were fixed for all of the results presented in this chapter.

5.1 Performance of the algorithm

Ideally. a code should be able to handle different flow conditions on varying grids with

relatively consistent performance. In this section. we present convergence results ror

all the cases. They have been run with the same parameters with the esception of

case 8 because it converged only six orders of magnitude. In order to converge to

machine zero, it was enough to set Ato = 1 in the AF relaxation method for the

coarse grid: its usual value is 5. Similar behaviour has been observed with ARC3D.

This may be due to the turbulence model.
Table 5.1 gat hers some statistics of the convergence histories for the eight cases

that we have studied. The table includes the number of inner and outer iterations

required to reduce the residual norm by twelve orders of magnitude (to machine

zero): and the average number of inner iterations per outer iteration. The outer

iterations include only those done using the Newton-Krylov solver and not those

of the approximately-factored algorithm. CPU/f.e. time gives the total run time

o-it K i t i - i tb i t CPC-/f,e. CPC (min. sec.)

Case 2 18 190 10.6 743.8 2' 17.6"
Case 3 18 129 7.2 490.7 9' - 27.2"
Case 4 1 324 19.1 910.1 8' 06.0"
Case 5 19 370 19-5 990.8 8' 49.1"
Case 6 18 227 12.6 642.9 5' 43.3"
Case 7 34 1116 32.8 2824.9 25' 08-5"
Case8 22 354 16.1 953.5 7. 4;.27g

Table 5.1: Statistics for the Newton-Krylov algorithm for the cases studied: o-it:
outer iterations. Ci-it: total number of inner iterations. i-it /o-it: average number
of inner iterations per outer iteration: CPU/f.e.: CPC time in equivalent function
calls to reduce the residual by twelve orders of magnitude.

case 1 A

case 2 -+---

case3 -=- - -
case 4 x ..,

case 5 -L-

case6 -= -
case 7 --+---
case 8 --+-- -

0 500 1000 1500 2000 2500 3000
CPU time in function evaluations

Figure 5.1: Residual history for PROBE for the 8 cases described in Table 4.1.

Figure 5.2: CPU time in function evaluations required to converge to machine zero
as a function of the grid size. for PROBE and XRC2D using case 1.

normalized by the CPU time of a function evaluation. Figure 5.1 shows the residual

histories for the cases studied.

The results show that. except for the low Mach number case. convergence is

achieved in less than 1000 function evaIuations. Case 7. in which the freestream Mach

number is 0.16. shows a slower convergence. The number of inner iterations goes up

dramatically for this case. In order to minimize oversolving in cases like this one. we

always limit the maximum number of inner iterations at each quasi-Newton step to

40.

Another important consideration in the performance of a solver is how the

CPU time increases with the size of the problem. To this end, we have tested case 1

using different grids. The results for PROBE and for ARCPD, which is included as

a reference, are plotted in Figure 5.2. We can approximate the points in the plot by

the expression

w = dB

where w is the CPU time in function evaluations. and K and (3 are constants. Ideally

,3 should be zero, which would mean that the CPU cost would be linear with respect

to the grid size. since the cost of a function evaluation varies linearly with N. For

ARC2D. 3 = 0.73 and for PROBE 3 = 0.325. Thus. the scalability of PROBE

appears to be very good.

5.2 Comparison to other solvers

We compare PROBE with other efficient solvers. namely the approximate factoriza-

tion algorithm of Beam and Warming as implemented in ARCSD [16]. the same

solver ARCZD enhanced by multigrid (XRC2D-klG) . an incomplete factorization

solver (BFILU(2)) and an approximate-Newton solver (approx. Newton). The spatial

discretization for all the solvers is identical.

Not all the grids defined in Section 4.1 are suitable for the rnultigrid solver.

The reason being that coarsening is done by removing every other interior node: this

requires that. in order to be able to extract two coarser grids. j,., - 1 and k,,,, - 1

have to be divisible by 4. Therefore. for cases 1 and 2. we modified the grid to have

249 x 41 nodes: and for cases 4 to 7. we modified the grid to have 329 x 49 nodes.

5.2.1 Description of solvers

Approximate factorization (ARCZD)

The approximate factorization algorithm in diagonal form. as used in ARCPD, is

explained in detail in Ref. [16]. In ARC2D, the wakecut can be treated implicitly or

explicitly. In this work we consider only the explicit treatment of the wakecut, which

is faster for our present test cases. XRC2D provides a useful reference because of its

wide availability.

Approximate factorization with multigrid (ARC2D-MG)

Other authors [17. 181 have already shown that multigrid can substantially increase

the convergence rate of the approximate factorization algorithm. For our study. we

use a three level sawtooth-cycle. Four AF iterations a t each level produces optimum

convergence in terms of CPL time [MI.

Incomplete factorization (BFILU(2))

BFILC(2) has proven to be an efficient preconditioner for our applications. It can

also be used as a solver. with the same strategy as used for the preconditioner: the

factorization is calculated from the first-order Jacobian at the first iteration and it is

not updated. After testing different values of o and Ato. we have chosen 5 and 50

respectively. which produce a good convergence rate.

Approximate-Newton (approx. Newton)

Some of the most popular approximate-kewton methods use a first-order .lacobian

on the left-hand side. One of the original reasons is that this matrix requires less

storage than the second-order Jacobian. Another reason for using a first-order .Jam-

bian is that it is better conditioned than the second-order Jacobian: hence the inner

iterations can converge faster. The penalty is an increased number of outer iterations.

Approximate-Newton solvers which use a first-order Jacobian are typically precondi-

tioned with a BILU(0) or a BFILU(0) factorization. With this preconditioner, the

solver requires approximately the same amount of storage as our matrix-free inexact-

Yewton solver. The parameters (T and Ato that appear in the matrix dl have been

optimized using case 1, following a similar process to the one used for PROBE. Values

of o = 9 and Ato = 20 minimize the CPU t.ime required to converge to machine zero.

The inner residual is reduced by a factor of 5 x lo-'. An efficient strategy which

helps to reduce the overall CPU time without harming the convergence rate consists

of freezing the left-hand-side and the preconditioner after the first iteration, as we do

for PROBE and the BFILU(2) factorization.

5.2.2 Performance comparison

The residual convergence histories of PROBE are compared with the other four solvers

in Figures 5.3 to 3.6.

For the eight cases. PROBE is substantially faster than the reference solver.

ARC2D. With this set of grids, PROBE does not converge to machine zero for case 5

and ARCPD does not converge for cases 4 and 7. Therefore. we use the convergence

histories obtained with the grids of Section 5.1 to calculate the relative speedup factors

to converge to machine zero. Results are given in Table 3.2.

Consistent with results presented by other authors. multigrid is very effective

in accelerating the approximate factorization algorithm by a factor of 3 to 6. Thus.

ARC2D-IIG performs quite well. with the exceptions of cases 3 and 4. Nevertheless.

PROBE remains a faster solver in dl of the cases studied.

Excluding case 8 for which it diverged. BFILU(2) shows very good convergence

properties. For the inviscid cases and for case 5 . it performs as well as ARC2D-MG.

being faster than the multigrid solver for the rest of the cases. For case 7. it is as fast

as PROBE: for cases 1 to 6. PROBE is between 20% and 60% faster.

Finally. the approximate-Newton strategy preconditioned with BFIL L'(0) is.

on average. five or six times slower than PROBE. If the preconditioner is upgraded

to BFILU(2). its performance increases but the solver uses more memory than the

matrix-free inexact-Newton approach and is still substantially slower.

5.2.3 Memory comparison

Two of the main needs for storage for PROBE come from the preconditioner. and

the search directions to form the Krylov subspace. The preconditioner is stored in

Modified Sparse Row (31SR) format [110], which requires a real and an integer array

of lengths equal to the number of nonzeros and another integer array of length equal

to four times the number of nodes in the grid. With BFILU(2), the number of

nonzeros per node is on the order of 136. Since a red number represents one word

(8 bytes) and an integer half a word, the total amount of memory required for the

preconditioner is on the order of 206 words per node. The Krylov subspace with 20

search directions adds 80 words per node. which brings the total to 286 words per

node. This is just a very conservative estimate of the memory needs. Work arrays

and variable arrays. which depend on the particular implementation of the algorithm.

have also a n important impact on the amount of memory required.

In order to have an idea of the relative needs of memory of the solvers that we

are considering. we use the numerical experiments of case 6. comparing the amount

of resident memory that the codes occupy in the computer. This is not a perfect

measure. since i t depends on many factors foreign to the algorithm. but it serves as

a reference. We show in Table 5.3 the words per node and the amount of memory

relative to ARC2D for each solver. The high storage required by the Newton-Krylov

methods and the BFILU(2) method is partially due to a not too careful allocation of

memory on our part. Nevertheless. these met hods require substantially more memory

than the traditional solvers.

case 1
I I I I I I

PROBE
ARC2D

ARC2D-MG
LU(2)

approx. Newton

--. - - --_ -. -- -.
-%
%.

%

0 500 1000 1500 2000 2500 3000 3500
CPU time in hction evaluations

case 2
2 [I I I I 1 I 1

PROBE -
ARC2D '

ARC2D-MG -+---

ILU(2) -
approx. Newton -=---

-

-

-

-14 I I ¶ I 1 I 1

0 500 1000 1500 2000 2500 3000 3500
CPU time in function evaluations

Figure 5.3: Cases 1 and 2: convergence history for the inexact-Newton-Krylov
method (PROBE), the approximately-factored method (ARCZD), the approximately-
factored method with three-level multigrid (ARC2D-MG), the incomplete factoriza-
tion method (BFILU(2)), and the approximate-Newton met hod (approx. Newton).

case 3
I 1 I r I

PROBE
ARC2D

ARC2D-MG
ILU(2)

approx. Newton

-14 ' I I I I 1

0 1000 2000 3000 4000 5000
CPU time in fimctioa evaluations

case 4
2

0

- -2
u
a approx. Newton -a-
2 cn -4
t!
>s
c. . - -6
$
u -8
=O
0
4 -10

-12 Y

- 14 I I I I

0 1000 2000 3000 4000 5000
CPU time in function evaluations

Figure 5.4: Cases 3 and 4: convergence history for the inexact-Newton-Krylov
met hod (PROBE) : the approximately-factored method (4RC2D), the approximately-
factored method with three-level multigrid (ARCZD-MG), the incomplete factoriza-
tion method (BFILU(Z)), and the approximate-Newton method (approx. Newton).

case 5
3
I

PROBE ++
O ARC2D ------

ARC2D-MG -+---

-2

-4

-6

-8

- 10

- 12

- 14
0 500 1000 1500 2000 2500 3000 3500 4000

CPU time in bction evaluations

case 6
3

I I I I I I I

0 500 1000 I500 2000 2500 3000 3500 4000
CPU time in hction evaluations

Figure 5.5: Cases 5 and 6: convergence history for the inexact-Nen?on-Krylov
method (PROBE), the approximately-factored method (ARCZD), the approximately-
factored method with three-level multigrid (ARCLD-MG), the incomplete factoriza-
tion method (BFILU(2)), and the approximate-Newton method (approx. Xewton).

case 7
I I I i 1 I

PROBE +
0 ARC2D ------ '

ARC2D-MG -+---

............ -2 KU(7) - -
approx. Newton -w--

-4 -

-6

-8

-10

- 12
I

-

0 2000 4000 6000 8000 10000
CPU time in b c t i o n evaluations

case 8
3

PROBE +
ARC2D ------

ARC2D-MG -4---

ILU(7) -
approx. Newton -G-.-

0 500 1000 1500 2000 2500 3000
CPU time in firnction evaluations

Figure 5.6: Cases 7 and 8: convergence history for the inexact-Newton-Krylov
met hod (PROBE), the approximately-factored method (.4RC2D), the approximately-
factored method with three-level rnultigrid (ARCPD-b1 G), the incomplete factoriza-
tion method (BFILU(2)), and the approximate-Newton method (approx. Xewton).

PROBE ARC2D speedup
(CPU in funct. evaL)

Case 1 613.5 5329.2 8- 7
Case 2 743.8 3810.6 3.1
Case 3 490.7 13630.0 2'7.8
Case 4 910.1 10877.9 12.0
Case 9 990.8 -.- . c I -

13ar . i 7.6
Case 6 642.9 4298.5 6.7
Case 7 2824.9 16558.2 5.9
Case 8 953.5 3892.6 -1.1

Table 5.2: Comparison in performance between PROBE and ARCPD to reduce the
initial residual by twelve orders of magnitude.

Solver words/node rel. to ARCSD
PROBE 528.04 9.69
BFILU(2) 518.76 9.51
approx. Xewton 509.86 9.34
-4RC2D-hIG 148.00 2-71
ARC2D 54.56 1 -00

Table 5.3: Comparison of the storage requirements between the five solvers. in words
per node and relative to ARC2D.

Chapter 6

Conclusions, Contributions and
Recornendat ions

6.1 Conclusions

An efficient matrix-free inexact-Newton-GMRES algorithm has been developed for

steady aerodynamic flows. The thin-layer approximation is used for viscous flows.

The effects of turbulence are simuIated with the Baldwin-Lorna- turbulence model.

Spatial discretization is done using second-order centered-differences. The second and

fourth-difference dissipation model of Jameson et al. [go] is added. The discretized

equations are linearized using Newton's method. Preconditioned restarted GMRES

in matrix-free form is used to solve the linear system arising at each Newton iteration.

The preconditioner is formed using an incomplete factorization of an approximate-

Jacobian matrix after applying a reordering technique. For some flow cases. especially

those with shocks. the early Newton iterations can diverge and a relaxation technique

has to be used to overcome this difficulty. In the present solver. an approximately

factored algorithm is used to reduce the residual two orders of magnitude before

switching to Newton-Krylov. The algorithm, has been successfully applied to a wide

range of test cases which include inviscid, laminar, and turbulent flows.

A thorough study has been done to optimize the solver. The first part of

the study consists of determining an efficient inexact-Newton strategy that avoids

oversolving. This is followed by a comparison between different preconditioners of the

incomplete-lower-upper factorization family. The matrix used for the factorization is

carefully chosen in order to produce well-conditioned factors. Reordering techniques

that improve the factorization are compared. The main conclusions of this study can

be summarized as follows:

Oversolving is avoided and optimum performance is obtained by setting the

inner tolerance to 0.5 for the first ten iterations. and to 0.1 for the remainder.

once the transients are less severe. -4s a safeguard. the total number of GMRES

iterations at each Newton iteration is limited to 40.

For the same storage requirements. Block-Fill ILU(p) factorizations (BFILU(p))

is a more efficient preconditioner than ILUT(P.r) . The best performance/memory

ratio was obtained for BFILU(2).

It is possible to produce better conditioned factorizations with a well chosen

approximate- Jaco bian matrix than with the exact-Jacobian matrix.

TWO parameters were used in the approximation of the dacobian matrix. The

first one. which corresponds to a local time stepping, has little beneficial influ-

ence in the quality of the preconditioner: for small values. it actually degrades

the convergence of GM RES. The parameter that controls the amount of artificial

dissipation in the mat riv shows an optimum value that significantly improves

the efficiency of the preconditioner. The behavior of these parameters and their

optimum values differ from the above when the factorization is used as a solver.

The use of a fixed preconditioner does not adversely affect convergence of the

inner iterations. Therefore, the factorization is computed only once, which

reduces the CPU cost substantially.

Reverse Cuthill-McKee reordering applied to the double bandwidth ordering

produces the fastest convergence of the six ordering strategies that have been

studied.

The performance of the solver with optimum parameters has been tested for a

wide range of flow conditions. In most cases, the solver reduces the initial residual by

twelve orders of magnitude in 300 to 1000 function evaluations. The most significant

exception occurs for low Mach numbers (i.e.. !\fm = 0.16) for which convergence is

around 2800 function evaluations. The code is quite robust: with the optimized set

of parameters it is capable of handling very different flow conditions and grids. some

with cells which have aspect ratios on the order of lo4. However. in certain cases.

convergence may not reach machine zero, probably due to the turbulence model: a

modification in the parameters of the approximate-Jacobian or on the time step of

the relaxation method often overcomes the problem. Scalability has been tested for

one of the cases. giving good results: the CPC' cost is proportional to the size of the

problem to the power of 1.325.

The solver has been compared with four other efficient algorithms including

an approximate-factorization solver. a rnultigrid solver. a Block-Fill incomplete LC-

factorization solver and an approximate-Newton solver. It has been shown that the

new solver is in general more robust and significantly faster than the others. For most

of the cases considered here. the speedups over the baseline approximate-factorization

solver (ARC2D) are between 6 and 9. Surprising convergence results have been shown

for the BFILU(2) factorization of our approximate-Jacobian matrix when used as a

solver. Although less robust than the Newton-K~lov method for flows with strong

shocks. it is in general very efficient. performing in some cases as well as the Newton-

K ~ i o v solver.

6.2 Contributions

Our primary contribution lies in developing a very efficient and robust Newton-Krylov

method for a wide range of aerodynamic calculations. The new solver is competitive

with the fastest existing solvers. This has been achieved through a careful optimiza-

tion and selection of strategies a t different levels of the solver.

An important contribution of our study is showing that there are approximate-

Jacobian matrices that produce better conditioned factors in an ILU process, and thus

better preconditioners, than the exact-Jacobian matrix. We have shown too that the

approximation used in the Jacobian has a key role in the efficiency of the solver.

We have presented an efficient approximation to the Jacobian. consisting of a sim-

ple modification of the artificial dissipation. The modification includes a parameter

that provides some possibility of optimization. A single value of this parameter was

shown to be effective for all cases studied. The quality of the preconditioner that is

produced is such that it can be frozen (i.e.. not updated) without deterioration in the

performance of GMRES.

We have demonstrated that the reordering techniques commonly used in the

context of unstructured grids. can be applied to structured grids. contributing signif-

icantly to the overall efficiency of the solver.

Finally. we have shown the potential of BFILL(2) as a solver.

6.3 Recommendat ions

The algorithm that we have developed constitutes a useful tool for practical aero-

dynamic calculations and a good platform to continue research on Newton-Krylov

solvers. We suggest here some modifications t h a t could be introduced to improve

the accuracy and versatility of the solver. We propose as well some possible research

avenues to make the algorithm more efficient and to reduce its storage requirements.

;\ccuracy could be improved in boundary layers by replacing the scalar dissi-

pation with matrix artificial dissipation. Its impact on the condition of the LL-factors

of the approximate-Jacobian matrix should be evaluated. Possible ways of optimizing

the new approximate-Jacobian should be defined. If matriv dissipation reduces the

quality of the preconditioner. scalar dissipation could be used for the approximate-

Jacobian, while matrix dissipation would be used on the right-hand-side and in the

matrix-vector products.

The turbulence model that is currently implemented in PROBE is the Baldwin-

Lomax turbulence model, which is most appropriate to attached and mildly separated

boundary layers. For high-lift calculations, a field-equation turbulence model should

be implemented. Godin et al. [121] have shown tha t the one-equation turbulent model

of Spalart--Illmaras [I221 is quite accurate in attached Bows and wakes. including

merging boundary layers and wakes. while the tw*equation turbulence model of

Slenter [I231 is preferred for separated flow regions. The flow equations and the

turbulence model equations have to be solved simultaneously as we are using Sewton's

method. Therefore. the 4 x 4 blocks of the Jacobian matrix will be replaced by

5 x 5 blocks for a one-equation model and 6 x 6 blocks for a two-equation model.

Impact introduced by this modification on the efficiency of the preconditioner and on

convergence would need to be evaluated.

In order to solve multi-element airfoil configurations. the solver should be

extended to handle multiblock-grids [I241 and its performance evaluated. Reordering

techniques become even more relevant for these type of grids. due to the fact that the

connectivity between different blocks of the grid will introduce many more non-zeros

outside the main bandwidth of a natural ordering. The performance of the two main

reordering techniques considered in our study. namely Reverse Cut hill-SlcKee and

minimum neighbouring should be re-evaluated.

In terms of efficiency. it has been shown that convergence of the Sewton-

Krylov solver is significantly slower for lower Mach number flows than for flows in the

compressible range. The use of local preconditioning could overcome the problem.

Ideally. the solver should show the same level of performance for all Mach numbers.

Another way to increase the efficiency would be to give consideration to the

parallelization of the solver. In this case. more research needs to be done to de-

velop parallelizable preconditioners (see Dutto et al. [54. 35. 1251 for some results in

shared-memory computers). Classical preconditioners as ILU factorizations. do not

parallelize well. both during the factorization and the backward-forward subst it ut ion.

On the other hand. more scalable preconditioners, such as a diagonal preconditioner,

are not very robust, and even if the system can be solved in parallel, the total saving

in computational time compared with a better sequential preconditioner could be

very small.

In addition to speed, memory use is also an important consideration in algo-

rithm development. We have seen that PROBE requires significantly more storage

than some other current solvers. This fact presently restricts the use of the solver to

applications where memory use is not a dominant concern. such as two-dimensional

flows. Development of an effective matrix-free preconditioner would be a significant

advance.

Finally. we have shown that BFILG(2) performs very well as a solver. We

think that it merits further development. perhaps in conjunction iVit h rnultigrici.

References

[I] Jameson -4.. *-Computational Aerodynamics for Aircraft Desi gn.^ Science.

vol. 215. pp. 361-371. 1989.

[2] WacCormack. R.W.. T h e Effect of Viscosity on Hypervelocity Impact Crater-

ing." I I A A Paper 69-0354. April 1969.

[3] South. .LC.. and Brandt. .I., "Application of a Multi-Level Grid Method to

Transonic Flow Calculations." Proc. of Workshop on Transonic Flow Problems

in Turbomachinery Monterey. 1976, edited by T.C. Adamson and S1.F. Platzer.

Hemisphere. pp. 180-206. 1977.

[4] Jameson. A.. "lcceleration of Transonic Potential Flow Calculations on Arbi-

trary Meshes by the .LluItigrid Method." Proc. AIAA 4th Computational Fluid

Dynamics Conference, Williamsburg. 1979. pp. 122- 146.

[5] Xi. R.H., "-4 Multiple Grid Scheme :x Solving the Euler Equations. Proc.

hI.4.A 5t h Computational Fluid Dynamics Conference. 198 1. pp. 267-264.

[6] Jameson. -1.. ;'Solution of the Euler Equations for Two Dimensional Transonic

Flow by a Sfultigrid Method," Applied Mathematics and Computation. vol. 13,

pp. 327-356. 1983.

[7] Martinelli, L.? Jameson, A., and Grasso, F., "A Multigrid Method for the

Navier-Stokes Equations." AIAA Paper 86-0208, January 1986.

[8] Mavriplis, D.J., "Multigrid Solution of the Two-Dimensional Euler Equations

on Unstructured Triangular Meshes," AIAA J., vol. 26, pp. 824-831, July 1988.

[9] Douglas. J . . and Gunn. J.E.. "A General Formulation of Alternating Direction

Met hods." .Numerische Mathemat2k. vol. 6. 1964.

[lo] Peaceman. D. W.. and Rachford H.H.. "The Numerical Solution of Parabolic

and Elliptic Differential Equations.'' SIAY J.. vol. 3. no. 1. pp. 28-41. 1955.

[l l] Stone. H.L.. "Iterative Solution of Implicit Approximations of Mult idimensional

Partial Differential Equations." SIAM J. Num. Anal.. vol. 5 . no. 3. 1968.

[I?] Beam. R.. and CIirming, R.F.. "An Implicit Finite-Difference Algorithm for

Hyperbolic Systems in Conservation Law Form." .J. Conrp. Phys.. vol. 22.

pp. 87-110. 19'76.

[13] Briley. W.R.. and hIcDonald, H.. "Solution of the hlult i-Dimensional Com-

pressible Navier-S tokes Equations by a Generalized Implicit Met hod .- J. Comp.

Phys.. *oL 74. 1977.

[l4] Steger. J.L.. "Implicit Finite Difference Simulation of Flow About Arbitrary

Geometries with Application to Airfoils." ;\I.-\A Paper 77-665. June 197'7.

[15] Pulliam. T.H.. and Chaussee, D.S.. "A Diagonal Form of an Implicit Approxi-

mate Factorization Algorithm." J. Comp. Phys.. vol. 39. p. 347. 1981.

i16] Pulliam. T.H., -'Efficient Solution !vIethods for the Navier-Stokes Equations."

Lecture Sotes For The Von Karrnan Institute For Fluid Dynamics Lecture

Series. January 1986.

[17] despersen D.. Pulliam T., and Buning P., "Recent Enhancements to OVER-

FLOW." .U4A Paper 97-0644, January 1997.

[18] Chisholm, T.. and Zingg, D.W., "Multigrid Acceleration of an Approximately

Factored Algorithm for -4erodynamic Flows." 44th -4nnual Conference of the

Canadian Aeronautics and Space Institute, April 1997.

[19] Chakravart hy, S. R., "Relaxation Met hods for Infactored Implicit Upwind

Schemes." AIAA Paper 84-0165, January 1984.

[201 Van Leer. B.. and Llulder. W A . "Relaxation Methods for Hyperbolic Equa-

tions." Tech. Rep. 84-20, Delft University of Technology. 1984.

[el] Thomas, J.L.. and Waiters, R.W.. "Upwind Relaxation Algorithm for the

Navier-S tokes Equations." .UAA Paper 85-1 301. July 1985.

[22] Walters. R . K . and Dwoyer, "An Efficient Iteration Strategy Based on C-pwind

Relaxation Schemes for the Euler Equations." AIAA Paper 86-1529. July 1985.

[23] Jameson. A.. and kbon. S.: "Lower-Upper Implicit Schemes with SIultiple Grids

for the Euler Equations.'' A I A 4 J.. vol. 25. no. 7. pp. 929-935. 2987.

[241 Yoon. S.. and Jameson. .I., "Lower-Upper Symmetric-Gauss-Seidel Slethod for

the Euler and Navier-Stokes Equations," AIA.4 J.. vol. 26. no. 9. pp. 1025-1026.

1988.

[X] Wigton. L.B.. . "Application of MACSYSI A and Sparse Matrix Technology to

!vIultielement -Airfoil Calculations." AIAX Paper 87-1 142. June 1987.

[26] Venkatakrishnan. V.. *Newton Solution of Inviscid and Viscous Problems.''

.-\I.-\;\ Paper 88-0413. J a n u a ~ 1988.

[27] Hafez. M.. Palaniswamx S., and Mariani. P.. 'Calculations of Transonic Flows

with Shocks using Newton's Method and a Direct Solver. Part 11." AIAA Paper

88-0226, January 1988.

[28] Venkatakrishnao, V.. and Barth. T.J., "Application of Direct Solvers to Cln-

structured Meshes for the Euler and Xavier-S tokes Equations Using Cpnrind

Schemes." AIAA Paper 89-0364, January 1989.

1291 Onvis, P.D., "A Newton's Method Solver for the Two-Dimensional and .k-

isymmet ric Navier-S tokes Equations." Ph. D. Thesis, Dept . of Mechanical and

-4erospace Engineering, North Carolina State University, 1990.

[30] Bailey. H.E., and Beam, R.M.. "Newton's Met hod Applied to Finite-Difference

;\pproximatioos for the Steady-State Compressible Navier-Stokes Equations.'

J. Comp. Phys., vol. 93, pp. 108-127, 1991.

[31] Dembo. R.S.. Eisenstat, S.C., and Steihaug, T.? "Inexact Newton Methods."

SIAM J. Num. Anal.. vol. 19. no. 2. pp. 400-408. 1982.

[32] Hestenes. 4I.R.. and Stiefel. E.. "Met hods of Conjugate Gradients for Solving

Linear Systems of Equations,? J. Res. Nut. Bur. Stand.. no. 49. pp. 409-436.

1952.

[33] Saad. Y.. -'Krylov Subspace Methods for Solving Large Losymmetric Linear

Systems." Math. Comput., vol. 37. pp. 105-126. 1981.

[34] Young. D.M.. and Jea, K.A., "Generalized Conjugate Gradient Acceleration of

Sonsymmetrizable Iterative Met hods," Linear Algebra Appl . . vol. 34. pp. 159-

194. 2980.

[35] Vinsome P.K.W.. .'Orthornin. An Iterative Method for Solving Sparse Sets of

Simultaneous Linear Equations." Proceeding of the Fourth Symposium of Reser-

voir Simulation. Society of Petroleum Engineers of AIME.

[36] Saad. Y.. and Schultz, M.H., "GMRES: A Generalized Minimal Residual .iIgo-

rithm For Solving Nonsymmetric Linear Systems," SIAM J. Sci. Stat. Cornput..

vol. 7. no. 3. 1986.

[37] Lanczos C.? '*Solution of Systems of Linear Equations by Winimized Iterations,"

J. Res. Nath. Bur. Stand., no. 49, pp. 33-53, 1952.

(381 Fletcher, R., "Conjugate Gradient Methods for Indefinite Systems." Numerical

Analysis Dundee 1975, G. Watson, ed., Berlin, New York, 1976, Springer Verlag.

1391 Sonneveld, P., "CGS, a Fast Lanczos Type Solver for Nonsymmetric Linear

Systems," SIAM J. Sci. Stat. Comput., vol. 10, no. 1, pp. 36-52, 1989.

[-LO] van der Vorst. HA.. "Bi-CGSTAB: a Fast and Smoothly Converging Variant of

Bi-CG for the Solution of Sonsymmetric Linear Systems." SIrlM J. Sci. Stat.

Comp., vol. 13. pp. 631-644. 1992.

[11] Freund. R. W.. and Nachigal. XSI .. "QUR: a Quasi-lfinimal Residual Method

for Non-Hermitian Linear Systems." Numer. !Math.. vol. 60. pp. 313-339. 1991.

[4P] Dut to. L C . . **On Iterative SIet hods for Solving Linear Systems of Equations."

Revue europkenne des Biments finis. vol. 2. 1993.

[43] Barrett. R.. Beny. M.. Chan. T.. Demmel. J.. Donato. .J.. Dongarra. J - . Ei-

jkhout. V.. Pozo. R.. Romine. C.. and van der Vorst. H.. '-Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods.- S U M .

1993.

[41] CVong, Y.S.. and Hafez. >I.. "Application of Conjugate Gradient Methods to

Transonic Finite Difference and Finite Element Calculations." ALL4 Paper 81-

1032. June 1981.

[45] Wong. Y.S.. --Calculations of Transonic Potential Flows by a Parameter Free

Procedure." AIAA Paper 83-1886. June 1983.

[46] Prince. T.C.. "Conjugate Gradient Methods for Solution of Finite Element and

Finite Difference Flow Problems." -41-4-4 Paper 83- 1923. dune 1983.

[47] Wigton. L.B.. Yu. N.J.. and Young, D.P.. "GMRES Acceleration of Computa-

tional Fluid Dynamics Codes." AIAA Paper 85-1494, July 1985.

[48] Jameson. I.. "Transonic Flow Calculations," Tech. Rep. MAE 1651. Depart-

ment of Mechanical and Aerospace Engineering, Princeton University, 1983.

[49] Venkatakrishnan, V., "Preconditioned Conjugate Gradient Methods for the

Compressible Yavier-Stokes Equations." AIAA Paper 90-00586, January 1990.

[50] Venkatakrishnan, V., and Mavriplis, D.J., "Implicit Solvers for Unstructured

Meshes." AIAA Paper 91-1537, June 1991.

[31] Venkatakrishnan. V.. "Implicit Schemes and Parallel Computing in Lnstruc-

tured Grid CFD." ICASE report 95-28 CR-195071. NASA. 1995.

[52] Dutto, L C . "Etude de pr6conditionnements pour la r6solution. par la methode

des elements finis. des equations de Navier-Stokes pour un fluide compressible."

T h k e de Doctorat. t'niversit6 Pierre et hlarie Curie. Paris \'I. France. 1990.

[53] Dutto. LC.. 'The Effect of Ordering on Preconditioned GMRES Algorithm.

for Solving the Compressible Navier-Stokes Equations.'' International Journal

/ o r lVunterical Methods in Engineering, vol. 36. pp. 457-497. 1993.

[54] Dutto. L.C.. Habashi. W.G., and Fort in. 11.. "Parallelizable Block Diagonal

Precondit ioners for the Compressible Navier-Stokes Equations." Comput. Meth-

ods App l . Mech. Engrg.. vol. 117. pp. 15-47. 1994.

[55] Dutto. L.C.. Habashi. W.G.. and Fortin. 41.. 'An Algebraic Slultilevel Par-

allelizable Preconditioner fcr Largescale CFD Problems." Paper to appear in

Cornput. Methods Appl . Mech. Engrg, Special issue in honor of Tinsley Oden.

Edited b y J. N. Reddy and Leszek Demkowicz. 1997.

[56] Johan. 2.. Hughes. T.J.R.. and Shakib. F., '-A Globally Convergent Matrix-

Free Algorithm for Implicit Time-Marching Schemes Arising in Finite Element

Analysis in Fuids," Comput. Methods Appl. Mech. Engrg.. vol. 87. pp. 281-304.

1991.

[X] Ajmani. K.. "Preconditioned Conjugate Gradient Methods for the Savier-

Stokes Equations." Ph.D. thesis, Virginia Polytechnic Institute and State Uni-

versity: 199 1.

[58] Ajmani; K.. Ng, W., Liou, M., "Preconditioned Conjugate Gradien Met hods

for the Navier-Stokes Equations," J. Comp. Phys., vol. 110, pp. 68-81, 1994.

[59] Aj mani, K., and Liou, M., "Implicit Conjugate-Gradient Solvers On

Distri buted-Memory Architectures." A1.4.4 Paper 95-1695: 1995.

[60] Habashi. W.G.. Robichaud. M.. Nguyen.V-N-. Ghaly. W.S.. Fortin. 11.. and Liu.

.I. W.H.. "Large-Scale Computational Fluid Dynamics by the Finite Element

Method.'' AI-4-1 Paper 91-0120. January 1991.

[61] Hiuon. R.. and Sankar. L.X. "Application of a Generalized Minimal Residual

Method to 2D Lnsteady Flows." AIAA Paper 92-0422. January 1992.

1621 Orknris. P.D.. "Comparison of Xewton's and Quasi-Newton's !det hod Solvers

for the Savier-Stokes Equations." A M A J.. vol. 31. pp. 832-836. May 1993.

(631 Lin. H.. ling, D.Y.. Chieng, Ch.. " W a n t Bi-Conjugate Gradient Methods for

the Compressible Navier-Stokes Solver with a t Twu-equation Model of Turbu-

lence." -41-AA Paper 93-3316. June 1993.

[64] Knoll. D.A.. and 4IcHugh. P.R.. "Inexact Yewton's Method Solutions to the In-

compressible Yavier-Stokes and Energy Equations Using Standard and hlatrix-

Free Implementations." AIAA Paper 93-3332, June 1993.

1651 McHugh. P.R.. and Knoll. DA., "Comparison of Standard and iIatriu-Free Im-

plementations of Several Newton-Krylov Solvers." A IAA J.. vol. 12. pp. 2394-

2400. December 1994.

1661 Degrez. G.. and Issmnn. E.. ;'-4cceleration of Compressible Flow Solvers by

Krylov Subspace Methods." Lecture Notes For The Von Karman Institute For

Fluid Dynamics Lecture Series 1994-05, 1994.

1671 Degrez. G. . and Issman. E.. "Multilevel Newton Iterative Solution of

EulerINavier-Stokes Equations on Unstructured Grids." .\Ir\A Paper 97-2

June 2997.

[68] Hager, J.O., and Lee, K.D., "The Behavior of Some Solution Acceleration Tech-

niques in CFD." .4IAA Paper 940175, January 1994.

[69] Luo, H-, Baurn, J.D., Lohner, R., and Cabello, J., "Implicit Schemes and

Boundary Conditions for Compressible Flows on Unstructured Meshes." AIAA

Paper 94-0816, January 1994.

[TO] Jorgenson. P.C.E.. and Pletcher. R.H.. ''An Implicit Xumerical Scheme for the

Simulation of Internal Viscous Flows on Unstructured Grids." 1 Paper

940306. January 1994.

[T I] Rogers. S.E.. 54 Comparison of Implicit Schemes for the Incompressible Navier-

Stokes Equations with Artificial Compressibility.'' XIAA Paper 980567. .June

199.5.

[72] Barth. T.J.. and Linton. S.W.. "An unstructured Mesh Newton Solver for Com-

pressible Fluid Flow and Its Parallel Implementati~n.~ AIAA Paper 95-021.

.January 1995.

[T3] Forsyth. P A . and Jiang, H., "Iterative Methods for Full Newton Solution of

the Euler Equations." Sixth International Symposium on Computational Fluid

Dynamics. pp. 318-323. September 1995.

[T-L] Forsyt h. P.A.. and Jiang. H.. "Xonlinear Iteration Method for High Speed Lami-

nar Compressible Navier-Stokes Equations." Computers & Fluids. vol. 26. no. 3.

pp. 2-49-268. 1997.

[T5I Cai. X.. Keyes. D.E., and Venkatakrishnan. V.. b*Newton-Krylov-Schwarz: an

Implicit Solver for CFD." Tech. Rep. No. 95-87, ICASE. December 199.5.

[76] McHugh. P.R.. Knoll. D.A.: Keyes. D.E.. "Schaarz-Preconditioned Newton-

Krylov Algorithm for Low Speed Combust ion Problems." .-\IAA Paper 96-09 11.

January 1996.

[77] Nielsen. E.J., Anderson, W.K., Waiters, R.W., and Keyes. D.E.. "Application

of Newton-Krylov Methodology to a Three-Dimensional Unstructured Euler

Code." AL4A Paper 95-1733, June 1995.

[78] Anderson. W.K., Rausch, R.D., and Bonhaus, DL.: "Implicit/~Iultigrid Al-

gorithms for Incompressible Turbulent Flows on Unstructured Grids." -4IAA

Paper 95-1740. June 1995.

[79] Choquet. R.. Leyland. P., and Teb. T.. -'GSIRES Acceleration of Iterative

Implicit Finite Element Solvers for Compressible Euler and Navier-S tokes Equa-

tions.' International Journal for Numerical Methods in Fluids. vol. 20. pp. 957-

967. 1995.

[SO] Choquet. R.. "-1 Matrix-free Preconditioner Applied to CFD." Tech. Rep. No.

2605. IXRIA. Institut National de Recherche en Informatique et en Automa-

tique. June 1995.

[81] Delanaye. M.. Geuzaine, Ph.. Essers; J.A.. and Rogiest. P.. '0.4 Second-Order

Finite-Volume Scheme Solving Euler and Navier-Stokes Equations on Unstruc-

tured Grids.' AGARD 77th Fluid Dynamics Panel Symposium on Progress and

Challenges in CFD Methods and Algorithms. Seville, Spain. 2-5 October. 1995.

[82] Delanaye. 11.: Rogiest . P.. and Essers, d.. "Implicit Quadratic Reconstruct ion

Finite Volume Scheme for Compressible Flows." Third ECCOMAS CFD Con-

ference. Paris.

[83] Ollivier-Gooch. C.F.. "Towards Problem Independent SIultigrid Convergence

Rates For Unstructured Mesh Met hods I: Inviscid and Laminar Viscous Flows."

In Proceedings of the Sixth International Symposium on Computational Fluid

Dynamics. September 1995.

1841 Blanco. 51., and Zingg, D.W., "A Fast Solver for the Euler Equations on Cn-

structured Grids Using a Newton-GMRES Method." hIA.4 Paper 97-0331.

January 1997.

[85] hlavriplis, D.J., "Multigrid Strategies for Viscous Flow Solvers on Anisotropic

Unstructured Meshes." AI.4A Paper 97-1952, June 1997.

[86] Baldwin, B.S., and Lomax, H., 'Thin Layer -4pproximation and Algebraic

Model for Separated Turbulent Flows." .4IAA Paper 78-257, June 1978.

(871 Cebeci, T., "Calculation of Compressible Turbulence Boundary Layers with

Hear and Mass Transfer." AIAA Paper 70-741, June 1970.

[88] Salas. Sf.. Jameson. -4.. and Melnik. R.. ".A comparative Study of the

Nonuniqueoess Problem of the Potential Equation." AIAA Paper 83-1888. .June

1953.

[89] Zingg, D. W.. 'Grid Studies for Thin-Layer Yavier-Stokes Computations of Air-

foil Flowfields." ,41A14 ./.: vol. 30. pp. 2561-2564, October 1992.

[go] Jameson. -4.. Schmidt. W.. and Turkel. E.. "Numerical Solutions of the Eu-

ler Equations by Finite Volume Methods Using Runge-Kut ta Time-Stepping

Schemes." AIAA Paper 81- 12-59. June 198 1.

[91] Hall. K G . . *On the Reduction of Artificial Viscosity in Viscous flow Solutions."

Frontiers of Computational Fluid Dynamics. D.A. Caughey and 51 .M. Hafez.

eds.. W l e ~ 1994.

[92] Frem. K.. and Zingg, D. W.. "On Artificial Dissipation Models for Viscous Airfoil

Computat ions.: -41-AA Paper 96- 1970. June 1996.

[93] S wanson. R.C.. and Turkel. E.. *On Central-Difference and Cpwind Schemes."

.I. Comp. Phys.. vol. 101. pp. 292-306, 1992.

[94] Pulliam. T.H.. "Implicit Methods In CFD." The Institute of Mathematics and

Its Publications Conference Series. Proceeding of the ICFD 1988 Conference on

Xumerical Methods for FIuid Dynamics, June 1988.

[95] Saleem, M., Pulliam. T.H., and Cheer, A X , %cceleration of Convergence and

Spectrum Transformation of Implicit Finite Difference Operators Associated

with Navier-Stokes Equations," J. Comp. Phys., no. 104: pp. 1-13, 1993.

[96] >Iulder, W.A.: and Van Leer, B., "Implicit Upwind Methods for the Euler

Equations." ALA.4 Paper 83- 1930, June 1983.

[971 Pueyo, A. and Zingg, D.W., "Airfoil Computations Using a Newton-GMRES

Method." CFD96, Proceedings of the Fourth Annual Conference of the CFD

Society of Canada, June 1996.

[98] Ajmani. K.. Ng, W.. and Liou, W.. "Preconditioned Conjugate Gradient Met h-

ods for the Navier-Stokes Equations." J. Comp. Phys.. vol. 110. pp. 68-81.

1994.

[99] Page. 31.: * ' ~ t u d e de hI4thodes Iteratives pour la R6solution des ~ ~ u a t i o n s de

Savier-Stokes." These de doctorat (Ph.D.) . ~ c o l e Polytechnique de UontrCal.

Quebec. Canada. June 1995.

[lo01 Saad. Y.. "Krylov Subspace Techniques. Conjugate Gradients. Preconditioning

and Sparse Matrix Solvers." 199405, von Karman Institute for Fluid Dynamics.

March 1994.

[loll Duff. IS.. and Meurant. G.A., "The Effect of Ordering on Preconditioned Con-

jugate Gradients." BIT. vol. 29. pp. 635-657, 1989.

[lo21 Chow. E.. and Saad. Y., "Experimental Study of ILL Preconditioners for

Indefinite Matrices." Tech. Rep. UMSI 97/95. University of Slinnesota Super-

computing Institute Research, June lWf.

[103] Saad. Y .. *'.A Flexible Inner-outer preconditioned GSIRES Algorit hrn." S U M

J . Sci. Stat. Comp.. vol. 14, pp. 461-469, 1993.

[lo41 Van der Vorst, HA.. and Vuik, C., "GMRESR: a Family of Sested GbIRES

Slethods," Numerical Linear Algebra with Applications. vol. 1 . pp. 1-7. 1993.

[I051 ;Luelsson, 0.. ;'A survey of preconditioned iterative met hods for linear systems

of algebraic equations," BIT, vol. 25, pp. 166-187, 1986.

[I061 Saad, Y., "Preconditioning techniques for indefinite and nonsymmetric linear

systems." Journal of Computational and Applied Mathematics, vol. 24, pp. 89-

105, 1988.

[lo?] Elrnan, H.C., "4 Stability Analysis of Incomplete LU Factorizations," Math.

Comp., no. 47, pp. 191-217, 1986.

[108] Bruaset.. A.M.. Tveito. A., and Winther. R.. "On the Stability of Relaved

Incomplete LC Factorizations." Math. Comp.. no. 54. pp. 701-719. 1990.

[log] Saad. Y.. "ILUT: -4 Dual Threshold Incomplete LU Factorization..' Tech. Rep.

LA1 SI 92/38. University of Minnesota Supercomputer Institute. March 1992.

[I101 Saad. Y.. "SPARSKIT: -4 Basic Tool Kit for Sparse Matrix Computations.

version '2." June 1994.

[I 111 Cuthill. E.H.. and 4IcKee. J.M., "Reducing the bandwidth of sparse symmetric

matrices.'- Proc. 24th National Conference of the Association for Computing

Machinery, Brondon Press.

[1 121 Martin. G.. 9fLIBthodes des preconditionnement par factorisat ion incompihte."

Slbmoire de Maitrise. Cniversit6 de Laval. Qukbec. Canada. 1991.

[113] George. A., and Liu. J.W.H.. "The Evolution of the SIinimum Degree Ordering

Algorithm." SIAM Rev.. no. 31. pp. 1-19. 1989.

[I l-L] Ollivier-Gooch. C. F.. "Improved Asymptotic Convergence Rates For An Cn-

structured Multigrid Solver." submitted to AIAA J.. 1996.

[lls] Eisenstat. S.C.. and Walker, H.F.. "Choosing the Forcing Terms in an Inexact

Newton Method." SIAM J. Sci. Comput., vool. 17. no. 1. pp. 16-32. 1996.

[I161 Brown. P.N.. and Saad, Y.. "Hybrid Krylov methods for nonlinear systems of

equations." SIAM J. Sci. Stat. Comput.. no. 11. pp. 450-481. 1990.

[117] Dembo, R.S.. and Steihaug, T., 'Truncated Newton r\lgorithms for Large-Scale

Optimizations," Math. Programming, vol. 26, pp. 190-2 12, 1983.

[118] Cai, X., Gropp, W.D., Keyes, D.E., and Tidriri, M.D., "Newton-Krylov-

Schwarz methods in CFD." Proceedings of the International Workshop on the

Navier-Stokes Equations, R. Rannacher, ed., Notes in Numerical Fluid Mechan-

ics, Braunschwieg, 1994.

[I191 Pueyo. A.. and Zingg, D.W.. ;Progress in Newton-Krylov Methods for Aerody-

namic Calculations." AI;\.-\ Paper 97-0877. January 1997.

[EO] Pueyo. -1.. and Zingg. D.W.. "An Efficient Newton-GSIRES Solver for Aerody-

namic Computations." -11.4-4 Paper 97-1955. June 1997.

[12 11 Godin. P.. Zingg, D. W.. and 4elson. T.E.. Wgh-Lift Aerodmarnic Cornpu-

tations with One- and Two-Equation Turbulence Models.'' A I M J. . vol. 33.

pp. 16-32. February 1997.

[122] Spalart . P.R.. Allmaras. S.R.. *A One-Equat ion Turbulence Model for Aerody-

namic Flows." -41-1-4 Paper 92-0439. J a n u a q 1992.

[I231 Sfenter. F.R.. *Zonal Two-Equation k - .J Models for Aerodynamic Flows."

AIAA Paper 93-2906. July 1993.

[I241 Nelson. T. E.. fiurnericai Solution of the Navier-Stokes Equations for High-Lift

Airfoil Configurations.'? Ph.D. thesis. Institute for Aerospace Studies. Univer-

sity of Toronto. 1994.

[125] Dutto. LC.. Habashi. W.G.. Robichaud, M.P.. and Fortin. 11.. .*I Method for

Finite Element Parallel Viscous Compressible Flow Calculations." International

Journal for Numerical Methods in Fluids. vol. 19. pp. 275-291. 1994.

Appendix A

Flux Jacobians for the thin-layer
Navier-St okes equations

The inviscid flux Jacobians are given by (from Ref. [16]):

where K = E for E and K = q for F. The other entries are

The viscous 0 ~ u Jacobian is

(A. 1)

with

and the a parameters given by

Appendix B

Flow solution for the eight cases

This appendix contains some flowfield results for the eight cases. In Table B. 1

we show lift. drag and pitching moment coefficients. Figures B.1 to B.8 show the Mach

number contours and the pressure coefficient distribution over the airfoil's surface.

case airfoil M a a Re
1 C 0 0 0.63 2.00 invisc
2 NAC-4 0012 0.80 1.25 invisc
3 XACA 0012 0.80 5.00 5.00e2
4 U C . 4 0012 0.30 0.00 2.88e6
5 YAC.4 0012 0.30 6.00 2.88e6
6 XACA 0012 0.70 1.49 9.00e6
7 NACA 0012 0.16 12.00 2.88e6
8 RAE 2822 0.729 2.31 6.50e6

Table B.1: Lift, drag and pitching moment coefficients for the eight cases described
in Table 4.1.

Case 0 1

Figure B.1: Mach contours and C, plot for case 1, described in Table 4.1.

Case 02

Figure B.2: Mach contours and C, plot for case 2, described in Table 4.1.

115

Case 03

Figure B.3: Mach contours and C, plot for case 3, described in Table 4.1.

Case 04

Figure B.4: Mach contours and C, plot for case 4, described in Table 4.1.

Case 05

5

Figure B.5: Mach contours and C, plot for case 5, described in Table 4.1.

Case 06

r----

Figure B.6: Mach contours and Cp plot for case 6, described in Table 1.1.

Case 07

Figure B.7: Mach contours and C, plot for case 7, described in Table 4.1.

Case 08

Figure B.8: Mach contours and C, plot for case 8, described in Table 4.1.

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED A IMAGE. inc
a 1653 East Main Street

