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Abstract 

An efficient inexact-Newton-Krylov algorithm is presented for the computation of steady 

compressible aerodynamic flows on structured grids. The spatial discretization consists of a 

second-order centered-difference operator with the second and fourth-difference dissipation 

model of Jameson et al. The Baldwin-Lomax algebraic model is used for turbulent flows. 

The t hin-layer Navier-S tokes equations are linearized using Newton's met hod. Precondi- 

tioned restarted GMRES in matrix-kee form is used to solve the linear system arising at 

each Newton iteration. The precondit ioner is formed using an incomplete factorization of 

an approximate-Jacobian matrix after applying a reordering technique. 

An optimization study is presented to obtain an efficient parameter-free solver for 

a wide range of flows. An inexact-Newton strategy that avoids oversolving is established. 

Comparison between different preconditioners of the incomplete-lower-upper factorization 

family is presented. The best performance/memory ratio was obtained for the Block-Fill 

ILU(2) precondit ioner. A parametric optimization of the approximate-Jaco bian used to 

produce well-conditioned LU factors is aIso shown. Different reordering techniques are 

considered: results show that the Reverse Cut hill-McKee is the most efficient technique. 

The algorithm has been successfully applied to a wide range of test cases which 

include inviscid, laminar, and turbulent aerodynamic flows. In all cases except one, conver- 

gence of the residual to lo-'* is achieved with a CPU cost equivalent to fewer than 1000 

function evaluations. The sole exception is a low Mach number case where some form of 

local preconditioning is needed. Several other efficient implicit solvers have been applied to 

the same test cases? and the matrix-free inexact-Newton-GMRES dgorithm is seen to be 

the fastest and most robust of the methods studied. 
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Chapter 1 

Introduction 

1.1 Background 

Prior to the mid 60's. different mathematical formulations had been developed to 

guide the design process in aerodynamics. Well known examples are the airfoil the- 

ory of Kutta and doukowski. the wing and b o u n d a ~  layer theories of Prandtl. and 

Hayes' theory of linearized supersonic flow. These methods. which require significant 

simplifying assumptions. could not be used for quantitative studies of complex flows 

and configurations. Therefore. the development of aerodynamics had to rely heavily 

on experimental work. The primary tool in aerodynamic design was the wind tunnel. 

where shapes were tested and modified before building flying prototypes. However. 

experimental design is quite expensive. For example. 20.000 hours of wind tunnel 

testing were expended in the development of the General Dynamics F l l l  and the 

Boeing 7-47 [I]. 

The computer opened a new avenue for the development of more sophisticated 

mathematical models that could simulate flows of interest to a much higher level of 

accuracy. This development has made of computational fluid dynamics (CFD) a key 

tool in aerodynamic design. 

In the last 30 years, a great effort has been made to come up with compu- 

tational methods that can predict a wide range of complex flows. Unfortunately, in 

many cases they require a great amount of computer time, which limits their use in 



practical applications. The purpose of our study is to find an efficient algorithm to 

compute inviscid and viscous solutions for steady Bows around airfoils. 

Section 1.2 consists of an overview of the most efficient numerical methods 

that have been developed over the years. The following section is a review of Newton- 

Krylov methods. the specific type of methods that we are interested in. -4 section 

discussing the objectives of the thesis closes the present chapter. The main portion 

of the thesis follows. divided into five chapters. The governing equations. including 

the turbulence model and boundary conditions, are presented in chapter 2. Chapter 

3 contains a detailed description of the numerical algorithm. Optimization of the 

algorithm for airfoil calculations is presented in chapter 4. In chapter 5. algorithm 

efficiency and performance comparison with other solvers are discussed. The last 

chapter includes conclusions~ main contributions and recommendations of our study. 

1.2 Review of some classic iterative methods for 
steady flows 

Many algorithms have been proposed for efficient computation of steady aero- 

dynamic flows. Their development has followed two distinct paths: explicit met hods 

and implicit methods. Modern implicit and explicit codes show similar performance 

with regard to total computational time. In fact. it is hard to draw a clear line be- 

tween the two approaches: most explicit methods have some sort of implicit scheme 

built-in to accelerate convergence such as  implicit residual smoothing, and many im- 

plicit methods have some sort of approximation added to make iterations cheaper or 

to ensure convergence. 

Explicit methods are easier to code and less computationally intensive. but 

they present stability limits. They can be traced back to  the early work of MacCor- 

mack [2] who, in 1969, introduced a predictor-corrector algorithm that for a number 

of years remained as one of the most efficient algorithms. For large problems and for 

stiff turbulent flow problems, the convergence rates of these methods degrade rapidly. 



The development of multigrid techniques dramatically accelerated the convergence 

of explicit algorithms. This technique was introduced for transonic potential flows 

in the late 70's [3. 4. Xi [5] and Jameson [6] extended the application of multigrid 

to  the Euler equations. Application to the Navier-Stokes equations was done a few 

years later by Martinelli et al. [i]. Mavriplis [8] and other researchers have developed 

similar schemes. Jameson's approach generally includes an explicit multi-stage iter- 

ative method. local time-stepping, and implicit residual smoothing. This approach 

has received considerable use for aerodynamic Bows [l]. 

Implicit met hods permit larger time steps. computing the solution in far less 

iterations. On the other hand. the cost per iteration can be significantly higher. since 

a large linear system of equations has to be solved a t  each time step. The  earli- 

est implicit methods were based on the .Uternating Direction Implicit (ADI) scheme 

pioneered by Douglas and Gunn [9] and Peaceman and Rachford [lo]. Stone [I 11 intro- 

duced the Strongly Implicit Procedure (SIP) in 1968. The Approximate Factorization 

methods (AF). which are among the most popular and efficient implicit solvers. were 

introduced for the Euler and Navier-Stokes equations by Beam and Warming [I?] and 

Briley and McDonald (131 in the mid 70's. Steger [14] used this algorithm. which re- 

duces the work of a two-dimensional implicit operator to that of two one-dimensional 

implicit operators. in the well-known flow solver ARC2D. The computational work of 

this algorithm was further decreased by introducing a diagonalizat ion of the blocks 

in the implicit operators as developed by Pulliam and Chaussee [IS]. ARCZD mas 

further developed by Pulliam (161 with the addition of local time-stepping. and grid 

sequencing. Recently. mu1 tigrid acceleration has been added [17: 181. increasing the 

convergence rate by factors of three to six, making this approach a very efficient one. 

Another class of implicit solvers, named Upwind Relaxation solvers. was in- 

troduced in the mid-80's. They were studied by several authors: Chakravarthy [19]. 

Van Leer and Mulder [ZO], Thomas and Walters [21], and PValters and Dwoyer (221 to 

name some. Jameson and Yoon [23] developed a Lower-Upper Implicit scheme which 

they proved to  be related to the family of Upwind Relaxation solvers. h multigrid 

method was combined with this scheme to speed up convergence. The scheme was 



eventually replaced by an e-uplicit scheme. the Lower-Upper Svmrnetric-Gauss-SeideI 

met hod [%I. increasing convergence by 30%. 

Many of the fastest available iterative methods rely on the multigrid acceler- 

at ion technique to achieve good convergence performance. Unfortunately. mult igrid 

convergence can slow down if high aspect ratio cells are present. In the late 80's. 

several authors have considered using Newton's method as a possible alternative for 

steady flows due to its property of quadrat,ic convergence. At each Newton step. a 

large linear system of equations has to  be solved. Some examples of Newtonk method 

using a direct solver for the linear systems of equations can be found in Refs. [25] to 

[30]. This approach was found to be robust. but memory and the CPC time required 

to reach steady state are not competitive with the methods mentioned earlier. On 

the other hand. quasi-Newton methods have shown promise. Quasi-Newton methods 

can be classified as inexact-Newton met hods or approximate-Xewton met hods. In an 

inexact-Newton method. the large linear system arising at each Newton step is solved 

approximately. using an iterative solver. Dembo et al. [3 11 presented theoretical re- 

sults regarding the precision to which the linear system must be solved to preserve 

superlinear or quadratic convergence of the Newton process. In an approximate- 

Newton met hod. the functional Jacobian is simplified. thus producing an approximate 

linearization. The linear system is again solved iteratively. Newton-like schemes have 

great potential for becoming very efficient solvers but the challenge is to significantly 

reduce the cost per iteration. A new family of iterative methods called Kqlov meth- 

ods. opened the door to advances in solvers based on Newton's method. An overview 

of Newton-Krylov schemes is presented in the following section. 

1.3 Newton-Krylov methods 

Krylov subspace methods are iterative methods to solve linear and non linear sys- 

tems of equations, searching for the solution within a Krylov subspace. The Conjugate 

Gradient method of Hestenes and Stiefel [32] is the oldest and best known method of 

this class. It is applicable only to  Hermitian positive definite matrices, which greatly 

limits its use in CFD applications. Fortunately, many Krylov methods have been 



developed for non-Hermitian matrices. Some examples are the Full Orthogonaliza- 

tion Met hod (FOM) [33j. ORTHORES [ 3 4  ORTHOMIN [35]. Generalized Minimal 

Residual (GIIRES) [36], Bi-Conjugate Gradient (BCG) [37. 381, Conjugate Gradi- 

ent Squared (CGS) (391. Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) [-LO] and 

Quasi-Minimal Residua1 (QMR) [41]. A summary of these methods can be found 

in Refs. [42] and [43]. These methods are typically used to solve the linear system 

of equations at each Newton step. The use of a preconditioner. which transforms 

the linear system into one that is better conditioned and thus easier to solve by the 

iterative solver. is necessary in many practical applications. 

The use of Krylov iterative methods in CFD started in the early 80's with 

the work of Wong and Hafez [44], Wong [45] and Prince [46]. with applications to 

the potential flow equations. Since then. a number of authors have applied these 

methods to different Row problems. We are particularly interested in the research 

done on Krylov methods combined with Xewton's method to  solve the Euler and 

Navier-Stokes equations. 

Wigton et al. [47] were the first to solve the Yavier-Stokes equation using 

a Krylov subspace method. They made use of nonlinear GMRES. which can be 

viewed as a Xewton linearization in which GMRES is used to solve the linear system 

of equations at each Newton step. and where the matrix-vector multiplications are 

replaced by a Frechet derivative. Instead of using a preconditioner to improve GMRES 

convergence. as is usually done. they solved a set of already preconditioned equations. 

The Euler equations were preconditioned using existing solvers, such as ARCLD [16] 

and FLO53P [48]. In our view. it is a very relevant work, not only because they were 

the first to apply a Krylov method to the Euler equations, but also because they 

were the Erst to  use a matrix-free implementation of the Krylov solver and to the 

precondit ioner. 

Venkatakrishnan 1491 developed an approximate-Newton-Krylov method b r  

structured grids, with emphasis on vector performance issues. He concluded that  his 

method was competitive with other existing methods. Together with Mavriplis [SO] : 

he extended the work to  unstructured grids. They tested the solver with inviscid as 



well as with laminar and turbulent viscous flows. The approximations that they in- 

troduced in Yewton's linearization are at the level of the artificial dissipation and the 

viscous fluxes. They only used first-order artificial dissipation on the  left-hand side 

due to storage considerations. Regarding the viscous fluxes. the laminar viscosities. 

computed with Sutherland's law. and the turbulence model. which was nondifferen- 

tiable. were not linearized. Therefore. quadratic convergence was not attained. In 

order to reduce the stiffness of the Jacobian. they also added a time step term to the 

diagonal. The time-step was taken to be inversely proportional to the L2 norm of 

the residual: it also had an upper limit. The approximations introduced in the lin- 

earization make the linear systems easier to solve for GMRES. which requires fewer 

iterations to converge. but the number of Newton-iterations increases substantially. 

The linear systems were solved to a moderate degree of precision. They tested three 

preconditioners: block-diagonal. Incomplete Lower-Upper Factorization with no-fill 

(IL L(0)) and Symmetric Successive Over-Relaxat ion (SSOR) . They concluded that 

GIIRES/ILC'(O) was the best approach. This conclusion was particularly evident as 

the size and the stiffness of the problem increased. They found their strategy corn- 

petit ive with explicit multigrid solvers. Further development of the met hod as well 

as considerat ions on parallelizat ion are discussed in Ref. [5 I]. 

At about the same time. Dutto [52] used nonlinear GMRES to solve the sys- 

tem of equations that results from applying implicit time-marching methods to the 

Xavier-Stokes equations. to solve inviscid and laminar viscous flows. The advantage 

of this approach is that it is applicable to unsteady calculations. For steady-state 

calculations. the time step provides a may of controlling the stiffness of the problem. 

She used a restarted version of GMRES in order to control memory usage. At each 

restart, she not only updated the residual vector to build a new Krylov subspace, 

but she also updated the solution used as the reference state in the Frechet deriva- 

tives, which is similar to modifying the Jacobian in the equivalent linear system that 

is solved. Therefore, a complete new linear system was solved a t  each restart of 

GMRES. This can be seen a s  doing several Newton iterations at  each time step as  



GMRES restarts. Therefore, there are three levels of iterations: the implicit time- 

marching method. several Newton steps to converge each time step and GMRES to 

solve the Newton-linearized system. Other related works of the same author include 

a study of the impact that the ordering of t he  unknowns bas on the performance 

of GSIRES [53] and a study of parallelizable block diagonal preconditioners [XI. 
Lately. Dutto et al. [S5] have developed an efficient two-level parallelizable precon- 

clitioner which consists of two independent approximations of the system matrix: a 

block-diagonal preconditioner combined with a coarser matrix built using algebraic 

mu1 t igrid met hods. 

Johan et al. [56] developed a solution algorithm for implicit time-marching 

schemes. The basic algorithm is similar to that  of Dutto. They use matrix-free 

GhIRES(20) with block diagonal preconditioning. In order to increase robustness. 

they use linesearch backtracking and an automatic time-increment algorithm. The 

CFL number is always kept relatively low to improve the condition number of the 

linear systems. The solver was applied to inviscid and laminar viscous flows. 

Aj mani et al. (57, 581 used an approximate-Newton linearization. solving the 

linear system with preconditioned GhIRES. They compared Block ILLV(O) (BILU(0)) 

and Lower-Upper SSOR (LUSSOR) as preconditioners. concluding than the latter 

was more efficient. The new solver was compared to the conventional implicit line 

Gauss-Seidel solver and an Approximate Factorization solver in the context of laminar 

flows around a hypersonic cylinder and a transonic turbine cascade. They found that 

the Newton-Krylov approach was much faster than the two classical solvers. Even if 

we take into account that the Approximate Factorization solver did not include the 

diagonal form. which considerably speeds up the  algorithm, their results proved that 

Sewton-Krylov methods are competitive with standard algorithms. In more recent 

years. Ajrnani and Liou [59] compared GMRES. Bi-CGSTAB and QMR in parallel 

architectures. Results indicated that GMRES seems to be the solver of choice. 

Habashi et al. [60] used an approximate-Newton strategy combined with CGS 

to solve laminar viscous flows. They used ILU(0) as a preconditioner. -4 finite time 



step was used in the Jacobian matrix to improve its condition number. They showed 

that the performance of the algorithm scales well with the number of unknowns. 

Hkon and Sankar [61] applied Wigton's approach to  unsteady calculations. 

At each time step. the system of nonlinear equations is preconditioned by an AD1 

algorithm. The preconditioned system of equations is solved by nonlinear G5IRES. 

When multigrid was also added. the code speeded up for steady calculations but no 

appreciable gain was noticed for unsteady calculations. 

Orkwis [62] did a very interesting evaluation of the performance of an exact 

Newton met hod and several quasi-Newton met hods: an inexact-Newton met hod, an 

approximate-Xenrton method solving the linear systems exactly. and an approsimate- 

Sewton method solving the linear systems inexactly. CGS was used for the inexact 

matrix inversions. The quasi-Newton methods were preconditioned with ILU(0) a p  

plied to the corresponding Jacobian and allowing fill-in within the 4 x 4 blocks . 
He used a supersonic turbulent viscous flow over a flat plate as test case. He con- 

cluded that inexact matrix inversions with large subiterate convergence tolerances 

were faster in terms of CPU time. For the same level of tolerance. the approximate- 

Newton method and the inexact-Newton method were equally fast. He reported that 

CGS failed to converge for a problem with a strong shock. 

Lin et al. [63] used an approximate-Newton algorithm to test three Krylov 

salvers. CGS. Bi-CGST-4B and TFQMR. in the context of turbulent auisymmetric 

flows. They incorporated the k - 6 two-equation turbulence model. They concluded 

that Bi-CGSTAB and TFQMR were slightly faster than CGS. The Newton-Kwlov 

met hod was more efficient than an Approximate Factorization met hod. 

Knoll and McHugh [64,65] compared the performance of standard and matrix- 

free implementations of an inexact-Newton-Krylov method. CGS, TFQMR, Bi-CG 

and GMRES were included in their study. They used a incompressibIe steady flow in a 

cavity as test case. They concluded that the matrix-free implementation was strongly 

dependent upon grid size and the choice of Krylov method. GMRES appeared to be 

superior to the other three solvers in the mat rix-free implementation. 



Degrez and Issman [66] developped an inexact matrix-free Newton-Kqlov 

solver for the Navier-Stokes equations. The preconditioner for the Krylov solver was 

based on an Approximate Directional Factorization (ADF) or an .Approximate Lu 

factorization of a first-order approximation of the inviscid B w c  balance. Comparisons 

with the ADF algorithm were made for a Bow in a chanel. a flow over a flat plate 

and a How over a hypersonic ramp. The Yewton-GbIRES algorithm was consider- 

ably faster. Recently. they have used a multigrid algorithm as preconditioner for the 

mat riu-free G4IRES 1671. 

Following Wigton's approach. Hager and Lee [68.69] tested ADI. ILU(0) and a 

four-stage Runge-Kut ta  solver. with and without multigrid. as precondit ioners for the 

Euler equations for nonlinear GMRES. They used a supersonic flow over a ramp as test 

case. They concluded that GMRES does not consistently improve the convergence of 

the three schemes when they were used with rnultigrid. 

Luo et al. [69] used a classical approximate-Xewton approach with BILC(0) 

as preconditioner to solve 2D inviscid and laminar viscous flows. as well as some 

3D inc-iscid flows. .Jorgenson and Pletcher [70] tested three different K v l o v  solvers 

preconditioned with ILL as an alternative to the implicit Gauss-Seidel scheme used 

in their laminar viscous flow solver. Local preconditioning was added to handle low 

Mach number laminar viscous flows. GhICIRES was significantly faster than the other 

solvers. 

Rogers [71] wrote an approximate-Newton-GMRES solver for incompressible 

flows. He compared this approach with Point- Jacobi Relaxation. Gauss-Seidel Re- 

laxation and BILU(0). He used these solvers as preconditioners for GlIRES. He 

concluded that GbIRES preconditioned with BILU(0) outperformed all other meth- 

ods by at  least a factor of 2. 

Bart h and Linton [72] developed a matrix-free Newton-GblRES met hod pre- 

conditioned with ILU(0) for compressible 2D and 3D turbulent viscous flows. They 

presented a new technique for constructing matrix-vector products which is an exact 



calculation of the directional derivatives. For 3D calculations. their code was imple- 

mented on a parallel architecture using a message protocol with favorable scalability 

characteristics. 

Forsyth and Jiang 1731 compared different standard quasi-Newton methods in 

the context of inviscid two-dimensional flows. The linear systems were solved using 

CGSTAB preconditioned with ILU. Fill-in within the 4 x 4 blocks was allowed in the 

factorization. Several levels of fill-in were tested. The preconditioner was built from 

the same matrix used in the linear systems. They concluded that the approximate- 

Newton method failed to converge for supersonic flows with strong shocks. and that 

it was slower than the inexact-Newton method for the other cases. However. the 

inexact-Xewton method required a fill-in level of 2 or more in the ILL factorization to 

converge. Considering that they used the high-order Jacobian for the factorization. 

the storage required by the preconditioner was quite high. They reached similar 

conclusioos when they extended their work to  laminar viscous flows [a]. 
Cai et al. [ i s ]  developed a Newton-Krylov method. preconditioned with an 

overlapping Schwarz domain decomposition which relies primarily on local informa- 

tion for data parallel concurrency. They claimed that this strategy was well suited for 

solving nonlinear elliptic systems in high-latency. distributed-memory environments. 

They applied their solver to incompressible inviscid flows. .LIcHugh et al. [76] also de- 

veloped a Schwarz-preconditioned matrix-fkee Newton-Krylov algorithm for low speed 

combustion flows. 

Nielsen et al. [77] applied a Newton-Krylov scheme to an unstructured Euler 

code for two and three dimensions. The implicit-Euler time marching method was 

used, gradually increasing the the time step until Newton convergence was obtained. 

They evaluated three different methods to define the increasing time step. They also 

presented an effective choice for the perturbation constant used in the finite difference 

used in matrix-free GMRES. Comparisons with Barth and Linton's [72] matrix-free 

method showed that  both methods have similar convergence in terms of CPU time. 

They compared the Newton-Krylov method with a Gauss-Seidel 3-level CV-multigrid 

method. The Newton-Krylov method required more computer time, but if mesh 



sequencing was used for the first two orders of magnitude. their performance was 

comparable. 

Anderson et al. [781 presented a comparison of different quasi-Newton-Kplov 

methods with a multigrid GaussSeidel scheme for incompressible inviscid flows. The 

quasi-Newton methods were used to solve the nonlinear equations resulting from em- 

ploying the implicit Euler time marching method. The approximate-Newton met hod 

and the matrix-free Newton-GLIRES method preconditioned with a BILC(0) fac- 

torization of the approximate-Jacobian. had a similar performance in terms of CPU 

time. Both methods converged faster when mesh sequencing or multigrid was added. 

Xevertheless. the Gauss-Seidel scheme with multigrid was faster and required less 

memory than the quasi-Sewton Krylov methods. 

Choquet et al. [79] solved the Yavier-Stokes equations for laminar Rows over 

airfoils and for a hypersonic reactive two-dimensional viscous Row. They applied 

mat riu-free GMRES to an  implicit- time marching met hod. Diagonal preconditioning 

was used for GMRES. 25 to 50 search directions were required. Search backtracking 

combined with a moderate CFL number ensured robustness. Their solver showed 

comparable performance and CPU time with a point Jacobi solver. Choquet [80] also 

developed a matrix-free preconditioner for the matrix-free Newton-GMRES method. 

The main idea was to reuse the Krylov subspace information to build a preconditioner 

that can be used across the Newton iterations and the time steps. Experimental 

results showed that the preconditioner was effective across the time steps and only 

slightly effective across the Newton iterations. Tests were done on inviscid and laminar 

viscous unsteady and steady flows using a low CFL number. 

Delanaye et al. [81, 821 used a matrix-free Newton-GMRES method in the con- 

text of a new quadratic reconstruction finite-volume scheme. For steady flows, they 

employed the implicit Euler time marching method in order to control the stiffness of 

the matrix with the time step parameter. For unsteady calculations, they used the 

trapezoidal implicit method or the three-point backward implicit method. BILU(1) 

and BILU(2) applied to  the approximate Jacobian were as efficient preconditioners 

for GMRES as BILU(0) applied to the exactly-linearized Jacobian. 



Ollivier-Gooch [83] used Wigtois  approach to solve the Euler equations pre- 

conditioned locally via block Jacobi. The totally matrix-free Newton-GSIRES solver 

was applied to the change in solution over a multigrid cycle driven by a three-stage 

Runge-Kut t a  scheme. Matrix-free GMRES was applied after the maximum-residual 

had dropped four or five orders of magnitude using the multigrid scheme. 

In the context of inviscid calculations on unstructured grids. Blanco and 

Zingg [84] made some comparisons between an approximate-Sewton met hod and two 

inexact-Newton methods. one building the high-order Jacobian and the other with a 

matrix-free implementation of the Krylov solver. In all cases. an ILL factorization 

of the lower-order Jacobian was used to build the preconditioner. Results showed 

the superiority of the inexact-Newton method over the approximate-Newton method. 

The matrix-free implementation was also faster than the standard implementation. 

It was suggested that for transonic flows. the approximate-Newton method should be 

used to reduce the initial residual by three orders of magnitude. before switching to 

the inexact-Newton method. A level of fill-in equal to 4 was found to be optimal for 

this method. 

Mavriplis 1851 applied Wigton's approach to his low-Mach number precondi- 

t ioned direct ional-coarsening line-implicit smoother mult igrid scheme. He employed 

20 or 30 search directions for GhIRES. The addition of GlLfRES to his solver nearly 

doubled the convergence rate in some of the cases tested. 

-1 summary of the above research efforts is shown in Table 1.1. We indicate 

the earliest reference to the work of that particular author and. occasionally. another 

relevant reference. What appears as a matrix-free implementation of G41RES. i.e. 

mf. is often called nonlinear GMRES by other authors; mf-tm means a matrix-free 

implement at ion applied to an implicit time-marching met hod; A2 means that the 

exact Jacobian is used for standard matrix-vector products, while an approximate 

Jacobian is used when indicated by A,; mi-dl indicates that a matrix-free approach is 

used but with a some modification to the function evaluation that makes the algorithm 

an approximate-Newton method. The applications consist of compressible turbulent 

flows unless otherwise specified. 



1.4 Objectives 

The previous section discussed a wide variety of Newton-Krylov schemes. Some of 

them appear to be very promising. For example. Venkatakrishnan and Mavriplis [SO] 

found their approximate-Newton strategy to be competitive with their state of the 

art multigrid solver. However. we believe that the full potential of quasi-Newton 

methods has not been realized. Thus our objective is to develop and optimize a 

highly efficient Newton-Krylov solver for aerodynamic calculations. and to compare 

it with well-established solvers. such as the approximate factorization solver ARCSD 

used at N-4S.k 

A n  important aspect of Newton-Krylov solvers is that. since there is a wide 

range of options available in simplif?ring the system Jaco bian mat riu. preconditioning 

the system. and iteratively solving the system. there are several parameters that need 

to be chosen. It is not possible to predict an optimal set for a particular problem. 

Therefore. another main objective in our research is to find an optimized set of pa- 

rameters and strategies which will make t he resulting quasi-Newton met hod able to 

efficiently handle a great variety of flows. without having to readjust those choices. 

These issues are addressed here in the content of inviscid. laminar. and tur- 

bulent flows over airfoils using a centered finite-difference operator with non-linear 

artificial dissipation. 
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Chapter 2 

Governing equations 

In this chapter we present the governing equations of air Boas around airfoils. 

in non-dimensional form. A brief description of the transformation into generalized 

curvilinear coordinates follows in Section 2.2. The thin-layer approximation is de- 

scribed in Section 2.3. and the Baldwin-Lomax turbulence model in Section 2.4. -4 

description of the boundary conditions closes this chapter. 

2.1 The Navier-S t okes equations 

The governing equations for aerod-ynamic flows are the Savier-Stokes equations. We 

write them as a function of the non-dimensional Cartesian conservative variables given 

b_v 

where we scale the dimensional variables. density ( P ) ,  velocity (G. 5 )  and total energy 

(G), 

where cc refers to  free-stream quantities and a is the speed of sound, which for ideal 

fluids is a2 = -{p/p.  The ratio of specific heats, y,  is taken as 1.4 for air. The total 



energy per unit volume is given by the internal energy and the kinetic energy 

Csing the equation of state for a perfect gas. pressure is related to the conservative 

flow variables as follows: 

With this set of variables. the conservative form of the Yavier-Stokes equations 

for a steady two-dimensional flow is: 

a,E + ayF = MJZ~- ' (&E,  + ayFu) 

The inviscid and the viscous flux terms are 

E =  

with 

where p = P / j i ,  is the non-dimensional dynamic viscosity, pt is the non-dimensional 

turbulent eddy viscosity, 'Re is the Reynolds number, Pr is the Prandtl number and 

Prt is the turbulent Prandtl number. The Prandtl number is defined by 



where rct is the thermal conductivity and c, the specific heat at constant pressure. 

The Prandtl number is taken constant with values set to Pr = 0.72 and Prt = 0.90. 

Using the chord of the airfoil c as the reference length. we define the Reynolds number 

The Euler equations are obtained by setting the right hand side of Eq. (2.5) equal to 

zero. 

2.2 Generalized curvilinear coordinate t ransforma- 
tion 

We solve the Navier-S tokes equations numerically using a structured C-grid 

such as the one shown in Figure 2.1. The equations are first transformed From Carte- 

sian coordinates to generalized curvilinear coordinates. As shorn in Figure 2.2. the 

resulting computational space is a rectangular domain. The transformation. given by 

is chosen so that the grid spacing in the computational space is uniform and equal 

to one. It should be noted that  there is a one to one correspondence between grid 

points in the original physical space and the ones in computational space, except for 

the nodes at  the wakecut and the trailing edge, which map into two nodes in the 

computational space. 
The details of the transformation can be found in [16]. Eq. (2.5) becomes 



Figure 2.1: T' grid for a NACA 0012 airfoil. 

Figure 2.2: Generalized curvilinear coordinate transformation. (Supplied by Tom 
Pulliam, NASA Ames.) 
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where the vector of unknowns is 

and 

The variable J represents the metric Jacobian of the transformation: 

E = / - I  

The viscous flux terms are E~ = J-'(<,E, +<,F.) and k;, = .J-l(rl,E, + qgFu).  The 

stress terms are 

r 
PCr 

P ~ Z L  + LP 
puv + &p 

- ( e  +PP- 

2.3 Thin-layer approximation 

with the contravariant velocities 

In flows with high Reynolds numbers where the flow is attached or just mildly s e p  

arated, the viscous terms associated with derivatives along the body are negligible. 



For this reason. and in order to save storage and CPU time. highly stretched grids 

are used to resolve the normal gradients of the flow near the rigid surfaces. without 

resolving the diffusion terms involving derivatives parallel to  those surfaces. If we 

drop all the viscous derivatives in the < direction in Eq. (2.11). we obtain the thin- 

layer Xavier-Stokes equations. Unlike in the b o u n d w  layer equations. the normal 

momentum equation is solved and no assumptions are made regarding the pressure. 

The t hin-layer equations are 

where 

with 

2.4 Turbulence model 

The effects of turbulence can be approximated by adding an eddy viscosity term pt 

to the dynamic viscosity p in the fashion shown in Eqs. (2.7), (2.16) and (2.19). 

Turbulence models differ in the way that pt is calculated. In our study. we use 

the Baldwin-Lomau [86] two-layer algebraic eddy viscosity model which is patterned 

after that of Cebeci and Smith [87]. The modifications introduced avoid the need for 



finding the edge of the boundary layer. The eddy viscosity is given by 

where n is the normal distance from the wall and n, is the  smallest value of n at 

which values from the inner and outer formulas are equal. 

In the inner region. the Prandtl-Van Driest formulation is used 

\v here 

The magnitude of the vorticity is given by 

and the Law-of-the-wall coordinate nt is 

The subscript w denotes values at the wall. u, is the friction velocity. Jz. and 

r, is the shear stress at the wall. 

For the outer region, 

where K is the Clauser constant, C, is an additional constant, and 

%n(12. Fm, 
Fwakc = min 

C"k Y ~ U  i i I / F m m  



The values of F,, and g,, are determined from the function 

In wakes. the exponential term of Eq. (2.27) is set equal to zero. The value n,, is 

the value of n at which F ( n )  reaches its maximum F,, in a profile. The function 

FklCb ( n )  is the k'lebanoff intermit tency factor 

The value of ud+ the difference between maximum and minimum total velocity in 

the profile. is given by 

maz 

mar min 

in boundary layers 

in wakes 

The constants that appear in the above equations were determined by Baldwin and 

Lomav by requiring agreement with the Cebeci formulation for const ant pressure 

boundary layers a t  transonic speeds. They are 

2.5 Boundary conditions 

The computational domain for an external flow around an airfoil described in Fig- 

ure 2.2 presents three types of boundaries: body surface boundaries, far-field bound- 

aries and the wakecut. Properly speaking, the wakecuts are not boundaries. They are 



just interior nodes that  need a different consideration. This point will be discussed 

in Sect ion 2-54 .  The interior differencing scheme requires the solution at the bound- 

aries. Where this solution is not provided by boundaq conditions. it is determined by 

extrapolation from the interior of the domain. These additional equations are often 

called "numerical boundary conditions." They cannot be imposed arbitrarily: they 

have to be based on stability and accuracy considerations. 

Before describing the boundary conditions. we need to define the tangent and 

normal directions at each boundary. FVe define the tangent t in the positive sense of 
- 

at  the surfaces ABCD and FE, and in the positive sense of v at  the surfaces DE 
- 

and AF. Since the grid is not orthogonal. the normal does not have. in general. the 

same direction as the corresponding 7 or < direction: the normal n is perpendicular 

to the tangent and positive in the same sense of the numbering of the nodes. This 

is illustrated in Figure 2.3. The resulting normal and tangential components of the 

velocity are 

v* " + vg - 
= q++fj,c I a t  k = 1 and k =k,, 

2.5.1 Body surface 

a t  j = 1 and j = j,, 

At the body surface (line k = 1 between points B and C in Figure 2.29, tangency 

must be satisfied for inviscid Bows and the no-slip condition must be satisfied for 

viscous flows. Since the interior scheme requires four boundary conditions, we need 



Figure 2.3: Normal and tangential directions a t  the boundaries. 

to impose three more conditions for inviscid flows and two more for viscous flows. For 

inviscid flows. the four equations that we impose are 

velocity tangent to the body surface. C, = 0. 

extrapolation of the tangential component of the velocity 1; from the interior. 

extrapolation of the pressure from the interior. 

stagnation enthalpy. (e + p ) / p ,  set to  free-stream value. H, (steady Row). 

For viscous flows. the four equations are 

two equations from imposing the no-slip condition. zl = 0 and u = 0. 

gradient of p normal to the wall set to zero. 

either adiabatic or isothermal condition of the surface. We use adiabatic con- 

ditions in all calculations. 

The ext,rapolation scheme used in each case will be discussed in Section 3.2.2. 



boundaq I inflow outflow 

j = 1  

Table 2.1: Subsonic inflow and outflow boundary conditions: values of the Riemann 
invariants. entropy and tangential velocity are set to free-stream values (x) or are 

= 
k=k , ,  

extrapolated from the interior (int.) depending on the sign of I ,. 

c, R+ R- S 1; 
> 0 x int. oo oc 

2.5.2 Far-field boundaries 

C, R+ R- S 1; 
< 0 x int. i t  int. 

< O  int. oo x oo 
< O  int. m x cm 

Inviscid flows 

> O  int. cx, int. int. 
> O  int. x int. int. 

For inviscid flows. locally one-dimensional Riemann invariants as well as I.; and en- 

tropy S = 1n(p/pf ) are used a t  the far-field boundaries. These four values are set to 

free-stream values or they are e-xtrapolated from the interior flow variables depending 

on the slope of the corresponding characteristic. For the Riemann invariants 

the slopes of the corresponding characteristics are C, - a and L', + a. and for the 

other two variables. I,', . For svpersonic conditions. the four characteristics travel in 

the same direction. Therefore. the four variables are set to free-stream conditions 

for a supersonic inflow and they are extrapolated from the interior a t  a supersonic 

outflow. The same pattern holds for and S in the subsonic regime because the 

slope of the corresponding characteristic has the same sign as for supersonic flows. 

The Riernann invariants require more careful attention in the subsonic regime. The 

way we have defined the normal and the tangent at each boundary, the logic for the 

Riernann invariants does not change whether it  is an inflow or an outflow condition. 

The logic for applying the subsonic boundary conditions is shown in Table 2.1. 



Viscous flows 

At the k = k,, boundary. the conditions for viscous inflow and outflow are deter- 

mined in the same fashion as for inviscid flows. At the two downstream boundaries. 

j = 1 and j = j,,. the entropy gradients associated with convection of the wake 

make the characteristic analysis used for inviscid flows inappropriate. Experience 

indicates that simple zeroth-order extrapolation of p. pu. pv and p can be used. pro- 

vided that non-reflective conditions are applied at other far-field boundaries in the 

domain. 

2 -5.3 Circulation correction 

For lifting airfoils. the far-field boundary may affect the solution. unless it is placed 

very far away. which would require more nodes in the grid. In order to minimize 

the effect of the far-field boundary. Pulliam [16]. following Salas et al. [88]. added a 

compressible potential vortex solution as a perturbation to the free-stream velocity 

giving 
3r~ in (B)  

Uf = k c  + 
27ir[l - Af&sin2 (8  - a)] 

(2.32) 

where r = $\f,cCl. - c is the chord of the airfoil, Cl the coefficient of lift. Mx the 

free-stream Mach number. a the angle of attack, B = 41 - Af& and r and 6 are the 

polar coordinates to the point of application on the far-field boundary relative to the 

quarter-chord point on the airfoil chord Line. The speed of sound is also corrected to 

enforce constant free-stream enthalpy at the boundary: 

Pulliam [16] shows that with the far-field vortex correction, the lift has virtually no 

variation with the distance to the outer boundary for subcritical flows, and very small 

variation for transonic Bows. Zingg's [89] grid studies confirm that an outer boundary 



position of 12 chords introduces virtually no error in lift and and small errors in drag 

relative to a far-field boundary set a t  96 chords. 

Points B and C in Figure 2.3 represent the trailing edge of the airfoil. They correspond 

to nodes ( j t l .  1) and ( jt2, 1)  in the grid. The wakecut that appears in the physical 
- 

domain in Figure 2.2 corresponds to two wakecuts. -4B and CD. in the computational 

domain. Therefore there are two sets of grid-nodes in the computational domain which 

correspond to only one set of nodes in the physical domain. The wakecuts are defined 

as 

- 
I < j < j t l  k = Z  wakecut .4B 

nodes ( j .  k)  such that - (2.34) 
j  < j < j  k = 1 wakecut CD 

Sodes a t  wakecuts are not boundary nodes. They are interior nodes whose neighbours 

are not nearby in the database. For example. when nodes from wakecut C D  need 

information from k  - 1 we get it from across the wakecut: 

- 
At wakecut -4B. we just impose that values of Q are equal to the ones computed 

- 
at wakecut C D .  In other words, a t  wakecut -4B the Savier-Stokes equations are 

replaced by 

Qj.1 = Qjn.r-j-+l.l (2.36) 



Chapter 3 

Algorithm description 

We begin this chapter by describing the spatial discretization use( i in the interior of the 

domain. This is followed by a description of the linearization of the resulting equations 

using Newton and approximate-Newton methods. The linear system of equations that 

arises a t  each Newton step is solved using GMRES. a Krylov iterative solver that is 

introduced in Section 3.4. The matrices that result from Newton linearization are 

very ill-conditioned and are not diagonally dominant. These characteristics make the 

linear systems hard to solve without preconditioning. Preconditioning techniques are 

discussed in Sect ion 3.5. and reordering techniques that affect the preconditioner are 

introduced in the last section of this chapter. 

3.1 Spatial discretization 

The aerodynamic problems that we intend to solve have been modeled by the set 

of equations (2.17) to (2.19): together with the turbulence model and the boundary 

conditions. -1s a first step in solving this set of non-linear partial differential equations. 

we have to transform them into a system of algebraic equations. The second-order 

centered-difference operator used to  approximate the differential operators and 

is described in Section 3.1.1. The second and fourt h-difference dissipation model of 

Jameson et al. [go] is added to maintain stability and to prevents oscillations a t  shocks; 

it is described in Section 3.1.2. The resulting scheme is second-order accurate in space, 

except in the vicinity of shocks, where it is first-order. The spatial discretization is 



thus identical to  that in ARCBD, the implicit 6nite difference Euler and Navier-Stokes 

solver for structured grids developed by Steger [14] and PulIiam [16]. 

3.1.1 Finite differencing 

Let us recall that the computational domain described in Section 2.2 has a uniform 

grid spacing equal to unity. The variable at a grid point j. k is represented by 

The finite difference operators that we use in this Section are defined as follows: 

b < q j , k  = ( q j + l . k - q j - 1 7 k ) / 2  second-order central difference 

v< q j , k  = q j + l . k  - qj ,k  first-order forward difference 1 (3.2) 

& Qj* = Pj.k - q j -  1.k first-order backward difference 

The partial derivatives of the inviscid fl~xes in Eq. (2.17). E and a, F. are 

approximated by the second-order difference operator 

The viscous terms in the equation take the form 

The derivative is approximated by a central difference at  half nodes; the second 

derivative is approximated by a central difference at  the grid nodes using the values 

computed at half nodes. Therefore, we can approximate Eq. (3.4) by 



Values of CY at  half nodes are computed by averaging the values at the closest 

grid nodes. 

3.1.2 Artificial dissipation 

It is well-known that central difference schemes experience odd and even point de- 

coupling. Therefore. the high frequency modes have to be damped using artificial 

dissipation in order to achieve convergence. The elimination of oscillations in the 

neighborhood of shock waves also requires the use of artificial dissipation. There are 

several suitable schemes. such as the scalar second and fourth-difference dissipation 

model of Jameson et al. (901, the scalar model with scaling based on Mach number and 

vorticity of Hall [91]. the scalar model with scaling based on the cell Reynolds number 

of Frew and Zingg [92] and the matrix dissipation model of Swanson and TurkeI [93]. 

We use the first one in order to converge to the same solutions as ARC2D. 

The description of the scheme is done for the terms in the E direction. Similar 

formulas can be written for the 1) direction. Written as difference operators. the 

second and fourt h-difference dissipation terms are 

The second-difference dissipation coefficients are 

where a(c) is the spectral radius scaling of the flux Jacobian matrix a ~ / a $  (matrix 

~ F I ~ Q  in the direction) 



The pressure gradient coefficient Y is used to scale the second-difference dissipation 

so that its value is increased near shocks in order to avoid overshoots. The pressure 

gradient coefficient is defined as 

The fourt h-difference dissipation coefficients are 

To avoid oscillations near shocks. this logic switches E'") off when the second-difference 

dissipation coefficient is larger than a certain value. In the present work. the values 

of n2 in Eq. (3.11) and ~4 in Eq. (3.13) are h e d  to 0.5 and 0.01 respectively. 

Csing Eq. (3.7). and noting that JQ = Q. we obtain the following expression. 

Similarly, Eq. (3.8) becomes, 

( . + ! , - ( 3+&k + &(!) ,-t ,k ) Qj- 1.k + - - (4)  - I kQj-P ,k  I - : .  

The stencil of Eq. (3.15) cannot be used at the first interior node (i.e., j = 2 and 

j = j,, - 1); it has to be modified to a one-sided second-order stencil. For example, 

at j = 2, 



Similar stencils are used a t  the other boundaries. In the direction. at rvakecut CD 

and at nodes located one row above both wakecuts. Qj,k-2 and QjVh-l have to be 

replaced by the corresponding d u e s  across the wakecut. as shown in Section 2.5.4. 

3.1.3 Boundary conditions 

Body surface 

The boundary conditions at the body surface are described in Section 2.Ll .  For an 

inviscid Bow. we use a first-order extrapolation for C; and for the pressure. Note that. 

in order to reduce errors in extrapolation? the velocities used in Eqs. (2.30) do not 

contain the term J-': they are the velocities in the physical domain. In order to 

eliminate e from the stagnation enthalpy, we make use of Eq. (2.4). the equation of 

state. Thus. the boundary conditions are given by 

For uiscovs flows. the boundary conditions are 

where Eq. (3.21) represents the adiabatic condition a t  the wall. 



Far-field boundary 

At k = km, the boundary conditions are common for viscous and inviscid flows. 

Following the logic shown in Table 2.1. and using a zeroth-order extrapolation in 

space. the first two equations are 

For an inflow condition. the other two equations are 

For an outflow condition. Eqs. (3.27) and (3.28) are replaced by 

For an inviscid Bow. boundary conditions at j = 1 and a t  j = j,., are very similar 

to the one at  k = k,,: we just need to keep in mind the logic shown in Table 2.1. 

The boundary conditions at j = 1 and j = j,, for a vzscous flow consist of a 

zeroth-order extrapolation of p, pu, pu and p. At j = 1, they are given by 



To take into account the circulation correction. the values of u. u and a at x as well 

as the corresponding C; and I.-, should be replaced by the values given by Eqs. (2.32) 

and (2.33). 

3.2 Linearization: Newton's method 

The spatial discretization of the nonlinear partial differential equations and the bound- 

ary conditions leads to a nonlinear system of algebraic equations of the form 

In the introduction. we discussed a number of schemes that could be used to solve this 

set of equations. We also justified the use of quasi-Xewton methods based on their 

great potential to become efficient solvers. These methods are based on Newton's 

linearization in which 

j dn+ l i  r;: p n )  + ~ ( n ) l Q ( n )  = 0 (3.36) 

where 

A(") is the Jacobian matrix of 7. which is given by 

evaluated at  Q". The nonlinear system of equations has been replaced by a series of 

systems of linear equations of the form 

If A corresponds to an exact linearization of 3, Eq. (3.36) represents a true 

Newton linearization. We will refer to this Jacobian as A2. If the functional Jacobian 



is simplified. thus producing an approximate-linearization. we get an approximate- 

Newton met hod. The motivation for using an approximate- Jacobian is the possibility 

of using far less storage and/or building a Jacobian that is better conditioned and 

that is more diagonally dominant. which will benefit the iterative solver. as we will 

see. 

It should be noted that. for the present algorithm. an exact analytical lineariza- 

tion of the equations cannot be obtained, due to the impossibility of linearizing terms 

such as the spectral-radius in Eq. (3.9). the switch between the second-difference and 

the fourt h-difference artificial dissipation that appears in Eq. (3.13) and the t urbu- 

lence model. .As we will see. the linearization of the far-field circulation correction 

poses some problems a s  well. It is possible to freeze all these terms. but. in that case. 

second-order convergence can no longer be reached. Nevertheless we will still refer to 

this approximat ion as the second-order Jacobian A*. A1 ternatively. the second-order 

.Jacobian can be computed numerically, overcoming the difficulties mentioned earlier. 

3.2.1 Linearization of the interior scheme 

The functional F at the interior nodes consists of 

Second-order Jacobian 

The linearization of Eq. (3.39) leads to nine 4 x 4 blocks in the rows corresponding 

to the interior nodes. The location of the blocks within the matrix depends on the 

chosen ordering for the nodes. Ordering schemes will be discussed in Section 3.6. The 



nine blocks are given by 

The coefficients of the artificial dissipation, as well as p and pt are treated as constants 

in the linearization. The Jacobians of the artificial dissipation are 1 x 4 diagonal ma- 

trices. easy to compute from Eqs. (3.14) to (3.17). The flu Jacobians corresponding 

to E. F and s are shown in Appendix -4. 

-4 simple approximation to A2 with fax fewer nonzero entries: which we designate A[,  

is obtained by using only second-difference dissipation in forming the matrix. The 

new matrix is more diagonally dominant because we are adding a large amount of 



first-order dissipation with stencil (1,-2.1). whereas .-I2 has second-order dissipation 

with stencil (-1 .-l.-6.4.-1). The coefficient of the second-difference dissipation is given 

where the superscript r denotes values on the right-hand side and 1 on the left. An 

optimal value of the constant o will be determined through numerical experiments. 

Since blocks B:: do not exist anymore, the resulting matrix has five blocks per node 

instead of nine. 

-4 second approsirnation is introduced to make the rnatriv more diagonally 

dominant by adding a term to the diagonal. If we had used the implicit Euler time- 

marching met hod with a suitable linearization applied to the unsteady Navier-Stokes 

equations instead of Newton's method applied to the steady equations. we would 

have obtained the same functional Jacobian except for an extra term l /At  in the 

diagonal. In other words. the implicit Euler time-marching method reduces to New- 

ton's method when using an infinite time step (941. The smaller the time step. the 

more diagonally dominant the Jacobian. which improves the convergence of the inner 

iterations. Therefore. we add the equivalent of a local time step term to the diagonal 

of dl. Saleem et al. [95] have shown that. in the context of ARC2D. the time step 

based on the metric Jacobian is the optimal strategy and it is the one that we adopt. 

with At  given by. 

where Ato is a constant that will be chosen experimentally to maximize convergence. 

3.2.2 Linearization of the boundary conditions 

To achieve Newton convergence, the boundary conditions have to be treated implic- 

itly Implementation of the far field circulation correction in an implicit manner is 

difficult since the vortex strength is proportional to the lift coefficient. This leads to 

coupling between every point in the far field and the ones on the airfoil surface, which 



adds more non zeros outside of the banded structure. Therefore. we introduce an a p  

proximat ion similar to the  one introduced for the turbulence model and the artificial 

dissipation: when computing the Jacobian ~~~~~yticaik we treat the vortex strength 

as a constant. This difficulty can also be overcome by numerically computing the 

.Jacobian. 

The boundary conditions were introduced in Sect ion 2.3 and the discret ized 

form has been presented in Section 3.1.3. The discretized equations can be written 

as 

where R is the set of variables chosen to write the equations. We found it convenient 

to use 

Applying Newton's linearization to Eq. (3.43). we obtain 

where 

Since the unknowns in the global system are AQ, we have to change variables in 

Eq. (3.45). The Jacobian matrix M = d Q / d R  of the transformation between the 



variables AQ and AR is defined by 

Therefore. Eq. (3.45) becomes 

pA\1-L J I Q  = -@n) 

where 

Body surface 

For an znozscid flow. boundary conditions at the body surface are given by Eqs. (3.17) 

to (3.20). Since we are using a first-order extrapolation at the body surface, Eq. (3.48) 

takes the form 



where 

For a viscous flow. Eq. (3.48) is now given by 

Since Eqs. (3.21) to (3.23) are expressed in terms of the conservative variables. the 

product PjVI is the identity matrix for the first three rows. Thus. 



where [m4.1. rn4.2. rn4.3, rn4,4] is the last row of ill-' given in Eq. (3.49). 

Far-field boundary 

We show the linearized equations a t  k,,, which are the same for viscous and inviscid 

Bows. but they apply also at j = 1 aod j = j,, for inviscid flows. AFter the 

linearization. we obtain an equation similar to  (3.54) where PJ,km,, is the same for 

inflow and outflow conditions: it is given by: 

The last two rows of P,,kma,-l depend on whether it is an 

outflow condition. For an inflow condition. 

inflow condition or an 

and for an outflow condition, the last two rows axe given by the last two rows of (3.57), 

but evaluated a t  ( j ,  kmm - 1). 

The linearization of the boundary condition equations a t  j = 1 and j = j,, 

for a vzscous flow gives an equation similar to (3.54) where the products P ~ , ~ I ' L I I , ~  and 

P~,&T: are equal to the matrix shown in (3.55). 



Scaling the equations 

The coefficients of AQ in Eq. 3.48 are not of the same order of magnitude as  the  

coefficients at  the interior nodes. This causes some of the eigenvalues of the Jacobian 

to become extremely large and slows down the convergence of GSIRES. which may 

even stagnate. An appropriate scaling of the equations at the boundaries overcomes 

the problem. After pivoting within the diagonal block to place the biggest element 

of each column in the diagonal. we normalize each equation by the diagonal element. 

3.3 Start up 

For some flow cases. especially those with shocks. the early Newton iterations can 

diverge. Different relaxation techniques have been suggested to overcome this diffi- 

culty. One way to relax the solution is to damp the Newton updates to prevent the  

calculation of non-physical variable values 1631. For example. 

where 0 takes init id ly  small values and increases gradual1 y towards unity. 

An alternative to this technique is to use the unsteady form of the Savier- 

Stokes equations which can be written as 

and to apply implicit Euler time-differencing. -4s mentioned in Section 3.2.1: this is 

equivalent to adding a term to the diagonal of the Jacobian A. A finite time step can 

be used initially and, as At + m, the Newton method is obtained. This strategy is 

used by many authors, e-g., Mulder and Van Leer [96], Orkwis 1621 and Barth [76] t o  

name a few. In our experience 1971, it is more efficient to use an approximate Jacobian 

for the first two orders of magnitude reduction in outer residual. 



However. when a finite time step must be used. a cheaper relaxation algorithm 

can be employed [77. 981: significantly reducing computing time. This is particularly 

true for transonic flows. where many outer iterations at  low At can be needed be- 

fore fast convergence can be achieved. This can be computationally expensive even 

when using an approximate-Newton method. In the present study. we replace the 

approximate-Xewton met hod used in Ref. [ 9 i ]  by an approximately- factored algo- 

rithm of ARCPD in diagonal form with two levels of grid sequencing. It is also used 

for the first two orders of magnitude residual reduction. but limiting the number of 

iterations for cases where the approximately-factored algorithm shows slow conver- 

gence. Limiting the number of iterations to 150 on the coarse grid. and five on the 

fine grid seems to give good performance. This strategy reduces the CPU time of the 

start up by a factor of two to three compared to the approximate-Newton stratea;. 

3.4 Solvers for the linear problem 

Direct solvers are more robust than iterative solvers and require fewer parameters. 

The drawback is the higher computational complexity and the need of significantly 

larger storage capacity. For these reasons, we do not consider them in the present 

work. For further discussion of direct solvers in CFD applications. we refer the reader 

to pa] .  
The alternative is to use iterative solvers. There are several effective iterative 

solvers for non-symmetric linear systems available. as reviewed by Dutto [Q]. Barret t 

et al. [43] and Page [99]. among others. It is very difficult to establish general rules 

about which one is the best method. This depends on the particular problem one is 

attempting to solve. Nevertheless, for the type of systems arising in CFD applica- 

t ions. preconditioned K ~ l o v  met hods have shown better convergence properties than 

classical stationary methods such as Jacobi, GaussSeideI or SOR. Among Krylov 

solvers, GMRES, developed by Saad and Schultz [36], is the most popular one, being, 

on average, faster than other Krylov solvers. We have not done a systematic study 



of different Krylov solvers. but in a few tests comparing GMRES with bi-CGSTAB 

and CGS. we found GSIRES faster for our applications. 

3.4.1 GMRES 

For any linear system of equations of the form. 

GMRES has the property of finding. a t  every step. the iterate x, E {xo + hh} that 

minimizes the L2 norm of the residual r, = b - Am. where xo is an initial guess in 

the iterative process and h;, is a Krylov subspace of the form 

The vector vl  is defined as 

GlIRES has three basic steps. First. from an initial guess to. it computes the vector 

vl.  Second. using AmoIdi's method it forms an orthogonal basis of the subspace Km: 

every new direction vector Avj is made orthogonal to all the previous ones and it is 

normalized: 

From the above process, it is easy to show that 



where C ,  is a :V x m matrix with column vectors q. .... urn and H~ is a (m + 1) x rn 

Hessenberg matrix containing the h i j  coefficients computed by Amoldi's algorithm. 

Any given vector x E {xo + K,) can be written as 

where y is a vector of dimension m. Making use of Eqs. (3.65) and (3.66). the La 

norm of the residual can be mitten as a function of y: 

where 3 = llroll and e l  is the first column of the m x m identity matrix. Since the 

column-vectors of I. ',+ are ort honormal. 

The third step. consisting of finding the x that minimizes the residual. is reduced to 

finding the y,,, such that the function I&) 1 1 2  is minimized. This is quite inexpensive. 

since it is a ( m  + 1) x m least-squares problem with rn v e q  small compared to .V. 

It should be noted that. given the structure of Rrn+ the least-squares probleni can 

be solved very inexpensively by applying simple rotations to  the Hessenberg matrix 

to transform it into an upper triangular matrix. Once we have y,, we form x, using 

Eq. (3.66). 

Another important property of GMRES is that the norm of the residual is 

directly available. if we apply the rotations every time that we compute a new column 

of the Heissenberg matrix, which means, after adding a new vector uj to the base. 

Therefore, there is no need to  form xj, the corresponding residual, rj = b - .hi, and 



evaluate its L2 norm in order to check convergence. If the rotations transform the 

vector 3el of Eq. (3.68) into - .  - , m l j + l ) T .  it is easy to prove that 

For the proof. we refer the reader to Ref. [100]. pages 29 and 30. 

GlIRES is guaranteed to converge in a t  most k = .V steps. This is impractical 

because -V is large and it is not possible to find a short vector recursion when build- 

ing the orthonormal basis of K,. which means that  work and storage requirements 

increase at e v e e  new search direction vj. Storage increases linearly with the number 

of search directions and CPU time increases quadratically. To overcome this problem. 

we can use the algorithm iteratively: we can restart it after rn < .V. and use x, as 

the initial guess when we restart. This is the restarted version of GMRES denoted 

by GhIRES(m). If A is nearly positive definite. m does not have to be too large 

for convergence of GMRES(m). But for indefinite problems. such as the ones solved 

here. GSIRES(m) may stagnate (i.e., not converge). This can be overcome by using 

a preconditioner. which will be discussed in the next section. The pseudocode for the 

restarted GMRES(m) is described in Figure 3.1. 

In our applications. A is the ( N  x N )  matrix in Eq. (3.38). with .V = 4 x 

j,, x kma,. b = -7 and z = AQ. \ire choose lo = ilQo = 0 in all cases. After 

testing different values of m, we found that. for our applications. limiting its value to  

20 does not significantly degrade the convergence rate. 

Since GMRES requires only matrix-vector products, the algorithm can be imple- 

mented without forming the Jacobian matrix explicitly: second-order centred-difference 

as well as first-order forward-difference of the fluxes can be employed to approximate 

the matrix-vector products. It was already shown in [97] that such a matrix-free 

approach can be advantageous, from the point of view of both performance and stor- 

age. Since we do not need to linearize the Jacobian analytically and we use only 



1. Start: Choose xo and compute ro = b - dzO and ul  = ro/ 1 1  rolls 

2. Iterate: For j = 1. . . . , rn do 

UJ; = 
h i j  = (w,. ui). i = 1.2 , .  . . , j  
htl  xi =I h- Z.J -v- 3 

h j + ~ . j  = iIfij+l I 1  
p:j+l = L>+1/hj+l.j 

Perfom rotation to H ~ + ~  ,j and to rhs. 
if 11,; ( I 2  small enough, then stop 

3. Form the approximate solution: 

Solve for y, 
Form x, = x0 + b m y ,  

Compute r, = b - h,; if convergence is satisfied then stop 
else compute ro t I,, ul t rm/llrm 1 1 2  and go to 2 

Figure 3.1: Algorithm for the restarted GMRES(rn) iterative method. 



evaluations of the 0mes. the switch between second and fourt h-difference artificial 

dissipation. the turbulence model and the use of a far-field circulation correction can 

easily be included in the Jacobian. 

We use the forward-difference. which requires only one right-hand side evalu- 

ation per iteration instead of two when using centred-difference. Therefore. 

where 5 is a small scalar used to perturb the state quantities Q in the direction of 

c .  The performance of this technique is very sensitive to E .  especially when using 

fonvard differencing [95]. A large value of E can result in an unstable process due to 

an inaccurate approximation. while a very small d u e  can lead to difficulties with 

round-off error. An effective strategy proposed by NieIsen et al. [77] involves choosing 

s such that 

E ~ P  ,& (3.71) 

where fi is the root mean square of v and E ,  is the value of "machine zero" for the 

hardware being used. We use the La norm of u. which gives identical results. 

In order to  make a distinction between the Sewton iterations on the non-linear 

problem and the GhIRES iterations on the linear one. the terms "outer iterations'' 

and *;inner iterations". respectively, will be used. 

Preconditioners 

-4 weakness of iterative solvers, relative to  direct solvers. is their lack of robustness. 

Preconditioning is an effective technique to  improve both efficiency and robustness. 

It consists of transforming the linear system into one that is easier to  solve by an 

iterative solver. The convergence rate of a solver like GMRES is determined by the 

spectrum of the matrix that we are inverting. The ideal spectrum is to  have all the 

eigenvalues equal to one, which is the identity matrix spectrum. This suggests that a 

good preconditioner should transform the original matrix into another one that is as 



close as possible to the identity matrix To illustrate this point. we show in Figure 3.2 

how the original eigenvalues of a typical matrix A that arises in our applications are 

clustered around 1 when a preconditioner is applied to it. 

In the most general case. known as right and left precondztionzng o r  precondi- 

tioning by  both sides. the original system dx = b is transformed into 

where AP = M;'AM;' should approximate Z. The condition number of A, is 

smaller than that of A and the iterative solver will produce a better convergence 

rate. 

Many authors insist on the fact that one of the conditions that a good precon- 

ditioner given by 

M = d - E  (3.73) 

with E being an error matrix. should be that M is as close to A as possible. Some 

studies have shown that the number of iterations is related to the norm of the error 

matrix E [101. 331. But. as we will see. this is not always the case. If we have a look 

a t  Eq. (3.72). it is easy to see that, if we use a one side (right or left) preconditioning, 

a good preconditioner is such that the matrix M;' or M;l approximates A-'. The 

fact that M is a good approximation of A does not guarantee that M-' is a good 

approximation of A-I. This is particularly true for incomplete factorizations of non-kf 

matrices [102]. 

One of the advantages of using right preconditioning is that the residual of the 

preconditioned system is the same as the residual of the unpreconditioned system. 

This is important considering that stopping criteria should be based on the residual of 

the unpreconditioned system. Thus we use right preconditioning in our application. 

When dropping left preconditioning from Eq. (3.72), it becomes 



Figure 3.2: Eigenvalues of a non-preconditioned matrix A and of the matrix precon- 
ditioned from the left with ao ILU-type preconditioner M ;  'A. 



1. Start: Choose ro and compute ro = 6 - Azo and v l  = ro/llrol12 

2. Iterate: For j = I, . . . . m do 

Preconditioning: zj = M-'vj 
u, = Azj 
hiSj = (w , ,  u i )  i = 1.2.. . . . j  
t ~ ~ - ~  = U> - h i j  v j  
hj+[ . ,  = I I f i j + ~  I I  
c j + l  = fij-l/hj+l.j 
Perform rotation to Hj+lj and to rhs. 
if llrj 1 1 2  small enough. then stop 

3. F o m  the approximate solution: 

Solve for y, 
Solve (I, = M-I ( I  Ly,) 
Form x, = xo + u, 

4. Restart: 

Compute r ,  = 6 - A,: if satisfied then stop 
else compute zo t X , ; U ~  t rm/llrml12 and go to 2 

Figure 3.3: The preconditioned GMRES(m) algorithm. 



The preconditioned GSLRES(m) algorithm is shown in Figure 3.3: it can be observed 

that we do not need to form the matrix AM-L. which would be very costly: we 

multiply the vector uj by M-' and then by A. 

We should note that applying the preconditioner 

is equivalent to solving 

Mzj = Ltj 

Therefore. we do not need to compute and store M-'.  which may be a dense matrix 

even though M ma?; be sparse: we just need to solve Eq. (3.76) by either 

i )  finding a matrix M such that it is easier to invert than A while M-I remains 

a good approximation of A-l. or 

ii) using an iterative method. with M = A or some good approximation of it for 

which the iterative solver converges. 

In the first case. since we are exactly inverting M .  the preconditioner is the 

same a t  each step and in computing the solution. we only need to apply M-'  to 

the linear combinat ion L kgrn. Approximate factorization ( AF) and the incomplete 

upper-lower factorization (ILU) family are among the most efficient preconditioners 

of this type. 

On the second t-ype of preconditioners. using an iterative solver to inexactly 

invert M means that we have a different ~ j l  at each step. Therefore. we cannot 

use the expression 

x, = so + M-'t& (3.77) 

It has to be replaced by 

xm = q, + Zm ym 

where 2, is the matrix containing the m vectors zj = hl;'vj. Therefore, not only 

the vectors vj need to be stored, as in the standard GMRES implementation, but 



the preconditioned vectors z, need to be stored as well: they are used to  update the 

solution. This variant of GMRES, introduced by Saad [103]. where the preconditioner 

may be different a t  each iteration is known as flexible GMRES (FGMRES). 

Some of the most popular iterative solvers used as preconditioners are the 

point. line and block versions of Jacobi. Gauss-Seidel and SSOR (successive over- 

relauation) iterative methods. but many other solvers can be used as preconditioners. 

Even GMRES could be used as preconditioner as in the nested GNRES method pro- 

posed by \ i n  der Vorst and Vuik [104]. For further discussion about these techniques 

and preconditioning in general. we refer the reader to the papers of .luelsson [I051 

and Saad [106]. 

The costs associated with a preconditioner are 

i)  Forming the preconditioning matrix M 

ii)  Solving the system given by Eq. (3.76) 

iii) Additional storage to store M 

Therefore, in choosing a preconditioner. we should try to minimize these costs. while 

significantly reducing the number of iterations required by GXIRES compared with 

the unprecondit ioned system. 

In this work, we use preconditioners of the ILU-type which have proven to be 

reliable in CFD applications. Two of them are described in the following sections. 

3.5.1 Incomplete LU factorization preconditioners 

Incomplete LG factorizations are ohen regarded as efficient preconditioners for Kwlov 

solvers. In an incomplete factorization, we approximate the matrix A by a matrix M 

such that 

where L is a lower-triangular matrix and U is an upper-triangular matrix. The factors 

are computed using a Gaussian elimination process or any other alternative process 

applied to the matrix A or to some reasonable approximation of it. The factorization 



may be mare or less accurate. depending on how many new non-zero entries we 

retain in the factorization compared to  the original matrix. The cost of forming the 

preconditioner and storage goes up when we allow more fill-in in L and U: on the  other 

hand. increases in robustness and efficiency often justifv more accurate factorizations. 

particularly when memory is not an issue and when the preconditioner is going to be 

used in solving several systems. since the cost of forming the preconditioner is going 

to be amortized. 

ILL- factorization preconditioners were originally developed for SI-matrices. 

Even if they have been successfully used in much more general cases. we should be 

aware of the possible problems that we may face. For example. in the case of nonsym- 

metric matrices. such as the ones arising in our applications. the incomplete factors 

13 and U may be more ill-conditioned than the original matriv and the long recur- 

rences associated with backward and forward solves may be unstable [102. 107. 1081. 

Since diagonally dominant matrices tend to produce well conditioned factors [100], 

one possible way to improve the preconditioner M = t U is to compute it from 

a matrix d which is more diagonally dominant than A while remaining a reason- 

able approximation of it. Numerical experiments shown in Section 4.4.1 confirm this 

thesis. 

ILU preconditioners have also been applied to indefinite matrices. However. 

they may present even more severe problems than the ones mentioued above: 

1. Inaccuracy due to  very small pivots 

2. Unstable triangular solves, which may or may not be related to smali pivots 

For further discussion of these problems, we refer the reader to reference [102]. 

The difficulties that we face in devising an efficient preconditioner using an 

ILL factorization, make particularly important the choice of the matrix d, as well as 

the strategy used during the factorization. There have been two distinct strategies 

to forming such incomplete factorizations: level of fill-in and threshold strategies. 



3.5.2 Level of fill-in: ILU(p) 

The first approach. named ILU(p). uses only the graph of the matrix to determine 

which entries to keep in the factorization. -1 level of fill-in is attributed to each 

element that appears in the factorization. During the Gaussian-elimination process. 

the element is dropped if its level exceeds a certain threshold p. The way this is done 

in practice consists of assigning a level of fill-in equal to 0 to the nonzero elements of 

the original matrix d used to  build the preconditioner. When a new nonzero element 

is created in the factorization. the level of fill-in assigned to it is defined as 

level (mi,) = level (mi,k) + level (mk,) + 1 (3.80) 

When p = 0. the nonzero pattern of the preconditioner M corresponds to that of 

the original matrix A. For other values of p. it is difficult to predict the amount of 

fill-in that will be generated. For a diagonally dominant matrix. the higher the level 

of fill-in of an element. the smaller its magnitude [loo]. which suggests that this is 

an appropriate strategy for this kind of matrix. Unfortunately. this may not be the 

case for more general matrices. The algorithm corresponding to ILL*(p) is shown in 

Figure 3.4. 

3.5.3 Threshold strategies. ILUT(P,r) 

In other incomplete factorization techniques, the dropoff rule is based on the nu- 

merical value of the elements introduced in the factorization rather than on their fill 

levels. These are known as threshold strategies. Unfortunately. the amount of fill-in 

is also hard to predict for this approach, and this preconditioner is far more expensive 

to form than ILU(p). 

ILUT(P,T)? developed by Saad [log], is a class of LU factorization that lies 

between the level of fill-in strategy and the threshold strategy. Two rules are used to 



For all nonzero elements 4,- do 

ui, = di and lev(uij) = 0 

For i = 2. .  . . . :V do 

For k = 1.. . . . i - 1 and if Ui* # 0 do 

Compute liak = u ~ . ~ / z ~ ~ . ~  and l € ? ~ ( l ~ . ~ )  = l e V ( ~ ~ . ~ )  
For j = 1.. . ..:V do 

- 
Ui.j  - ui,j - k.kuk,j 
lev(ui,) = min {kv(Uij), l e ~ ( l ~ , ~ )  + Z ~ , V ( U ~ ~ )  + l } 

Replace av element in row i with lev(uiej) > p by a zero 

Figure 3.4: Algorithm of the incomplete factorization ILK(p) 

determine which elements should be dropped in a given row. The first rule consists of 

dropping any element smaller than a relative tolerance determined by r and a norm 

of the original matrix The second rule is controlled by the parameter P: if PI and P, 

are the numbers of non-zeros on the lower and upper part of a given row of the original 

matrix d. at most the largest P + 8 and P+ P, are kept in the lower and upper part 

of the preconditioning matrix. This rule allows us to control the maximum number 

of elements per row and thus the memory usage. Figure 3.3 shows the pseudocode 

corresponding to [LC(P. r) .  

The matrices arising from the linearization of the Navier-Stokes equations present a 

block structure, with blocks of size 4 x 4. That is why block versions of ILU(p) are 

quite popular in this type of application. -4s a matter of fact. in cases where a low 

level of fill-in is used, i.e., p = 0 or p = 1, the iterative solver may fail with the scalar 

version and converge with the block version. 



For i =  l.....-V do 

Ilk 112 Compute average norm of elements in row i: ai = - 
nnz 

For k = 1 . N  do 

I G i k I  else if - > r then 
ai 

If k < i then li,k = 
If k > i then Ui*k = GiJ: 

For k = 1.. . . . i - 1 and if liVk # 0 do 

1i.k = l i . k / ~ k . k  

If I l i k  I Qk > T then 
ai 

For j = k + l  : . . . . N a n d  if u k j  # O  do 

Keep the P + PI biggest elements in L 

Keep the P + P, biggest elements in U 

Compute new oi using all nnz except for the diagonal 

Figure 3.5: Algorithm of the incomplete factorization ILL( P. r )  . 

An alternative approach is to use the scalar version. but treat the zeros within 

the 4 x 4 blocks as if they were nonzeros. in other words. allowing fill-in in those 

positions. We call this strategy Block-Fill ILU(p) (BFILC: (p) ) . Orkwis (621 reports 

than in his application, CGS (Conjugate Gradient Squared) did not converge with 

ILU(0) but it did converge with BFILU(0). Because of the storing format that we use 

namely Compressed Sparse Row, CSR [110], we find this approach more convenient 

than block ILU(p). 



3.6 Ordering of unknowns 

The ordering of the unknowns plays an important role in the convergence of the 

preconditioned iterative solver [5O, 531. It can greatly affect the quality of the incom- 

plete factorization. We have considered a number of ordering algorithms. The most 

significant ones are described in the following paragraphs. 

3.6.1 Natural ordering 

The first one (referred to  as NAT) is the classical jkordering described in [16]: the loop 

in k is inside the loop in j. This ordering produces the smallest bandwidth (4 x k,, for 

a second order matrix) since for our applications k,, << j,,.,,. Looping the indices in 

the inverse order (j-loop within the k-loop) leads to very slow convergence and higher 

CPL' in the factorization due to a much bigger bandwidth (I x j,,,). Therefore. the 

k3Ioop is not considered here. 

In applications like ours where C-grids are used. like the one shown in Fig- 

ure 2.1, the nodes at  the wakecut need some special attention. In the case of 

approximate-factored algorithms such as hRC2D, they require some shuffling in the 

data before solving in the normal direction to keep the banded structure of the  ma- 

trix. -4 less computationally intense alternative is not to solve a t  those nodes. and to 

compute the average values of the primitive variables at both sides of the wakecut. 

When Newton convergence is sought, either approach has to be exactly linearized. 

which will add some nonzeros to the matrix outside of the diagonals. These nonzeros 

create a fair amount of nonzeros during the factorization which may not be retained 

in an incomplete factorization, reducing the quality of the precondit ioner. 

3.6.2 Orderings based on domain decomposition 

To overcome the difficulty of the nonzeros that appear outside of the main diagonals, 

a second ordering, labeled DD1 (domain decomposition I), was devised. It is shown 

schematically in Figure 3.6 that the computational domain is divided in two zones, 

one that contains the wakecut nodes and another one that contains the rest of the 





nodes. The numbering pattern is similar to the one used in NAT: we number the 

nodes of zone A following the jk-loop, followed by the nodes of zone a. This ordering 

leads to a decoupling of both zones across the wakecut. The matrix presents. for the 

most part. a similar block banded structure as  before. with a bandwidth of -I x km,- 

Zone acovers = 1 : jtl - t . k =  1 : 3 ] ~ [ j  = jn+l : j m a 2 . k =  1 : 21. 

h o t  her ordering based on domain decomposition that avoids the problems 

introduced in the band-structure by the wakecut is also shown in Figure 3.6. This 

ordering, that we name DD2, is based in two zones A and B divided by the separators 

a and 6. The separators are two cells wide. This ordering leads to a two totally 

independent computational zones A (of bandwidth 2 x 4 x k,,) and B (of bandwidth 

4 x k,,). The off-diagonal blocks. which are few in number. are produced by the 

separator zones: they may affect the factorization but to a lesser degree than in the 

case of the natural ordering. 

3.6.3 Double bandwidth 

h o t  her alternative consists in numbering the nodes across the wakecut. We designate 

it DB (double bandwidth). The downside is that the bandwidth is twice as large. 

which can affect the quality of the factorization. 

3.6.4 Reverse Cuthill-McKee 

In order to obtain more consistent performance. we test two of the reordering algo- 

rithms typically used for unstructured grids. Note that the difference between the 

reordering algorithms and the previous ordering algorithms is that the reordering al- 

gorithms need to assume an initial ordering. The final ordering depends on the initial 

ordering that is provided to the algorithm. The first reordering algorithm that we 

will test is the Reverse Cuthill-McKee (RCM) strategy [Ill], a =ell-known bandwidth 

reduction algorithm. 



3.6.5 Minimum neighbouring 

The minimum neighbouring algorithm [112] (MN) is a modification of the minimum 

degree reordering of George and Liu [113]. The minimum degree algorithm was de- 

signed to minimize the fill-in produced in a factorization. However. this does not 

guarantee that. in an incomplete factorization. we are not throwing away important 

terms. The modifications introduced with the minimum neighbouring algorithm aim 

at keeping in the factors L and U those nonzeros that account for more operations 

during the factorization. In other words, the algorithm tries to minimize the amount 

of informat ion that is thrown away during the incomplete factorization. This is equil-- 

alent to saying that it is trying to decrease the norm of the matrix E that appears 

in Eq. (3.73). But. as was pointed out earlier. for matrices that are not diagonal 

dominant. this does not ensure that the norm of EM-' is going to be reduced too. 

In Figures 3.7 to 3.9. we show the structure of the matrices that arise from 

using the natural ordering as well as the domain decomposition orderings DD1 and 

DD2 for a 36 x 7 mesh with implicit boundary conditions and implicit wake cut. 

Figure 3.10 shows the mat riv resulting after using the double bandwidth ordering. 

And Figures 3.1 1 and 3.12 show the structure of the matrix after applying RChI and 

minimum neighbouring methods respectively to the matrix shown in Figure 3.10. 



Figure 3.7: Matrix that arises from using the natural ordering. NAT. 

Figure 3.8: Matrix that arises from using the domain decomposition ordering DD1. 
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Figure 3.9: Matrix that arises from using the domain decomposition ordering DD2. 

Figure 3.10: Matrix that arises from using the double bandwidth ordering, DB. 
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Figure 3.11: hlatriu that arises from applying the RCM reorderings to an initial 
double bandwidth ordering. 

Figure 3.12: Matrix that arises from applying the minimum neighbouring reordering 
to an initial double bandwidth ordering. 



Chapter 4 

Algorithm optimization 

We have seen that there are several parameters and choices that have to be 

optimized regarding the reordering algorithm, the precondit ioner. the iterative solver 

and the inexact-Newton approach. It is a very tedious task. not to say an impossible 

one. to try to find the ideal set of parameters, since the choice of one influences the 

others. Also they may change from case to case and from grid to grid. Nevertheless. 

attempts can be made to choose a set that makes the code efficient and robust. After 

introducing the cases that we use in our study and a commentary on the units used 

for comparison. a detailed study of the optimization of the code is presented. 

4.1 Test cases 

A total of eight cases are considered in order to optimize the algorithm described in 

the previous chapter. as well as to study its performance and compare it to other well 

established solvers. The chosen cases include a wide variety of flows around airfoils: 

two inviscid flows, one laminar: and five turbulent. The turbulent cases include one 

in the incompressible regime, two other subsonic cases at a higher Mach number and 

two transonic flows. In ail cases except for one transonic turbulent case, we use the 

NAC... 0012 airfoil. For the last case, we use the R4E 2822 airfoil. The parameters 

defining the test cases are given in Table 4.1. The transonic turbulent Bow conditions 

listed as case 6 are used for the comparisons unless stated otherwise. The initial 

condition is freestream flow. 



case airfoil ~ b l  Q Re tr-up tr-low grid nodes 
1 1 0 0 1  0.63 2.00 invisc - - 971 1 
2 X1C-A 0012 0.80 1.25 invisc - - 971 1 
3 NAC-4 0012 0.80 5.00 5.00e2 - - 12201 
4 A 0012 0.30 0.00 2.88e6 0 . 4 3 ~  0 . 4 3 ~  16881 
5 C 0012 0.30 6.00 2.88e6 0 . 0 5 ~  0 . 8 0 ~  16881 
6 5-4C.1 0012 0.70 149 9.00e6 0 . 0 5 ~  0 . 0 5 ~  16881 
i N,AC-A 0012 0.16 1'2.00 2.88e6 0 . 0 1 ~  0-95c 16881 
8 RAE 2822 0.729 2.31 6.50e6 0-03c 0 . 0 3 ~  15729 

Table 4.1: Parameters for the eight flows studied. The column t r a p  is the transition 
point at the upper surface of the airfoil and t d o w  is the transit ion point at the lower 
surface. 

For the inviscid cases. the grid has 249 x 39 nodes with the wall spacing set to 

2 x lo-' chords. For the laminar case. the grid has 219 x 49 nodes and a wall spacing 

of 3 x lo-" chords. h 331 x 51 grid with the wall spacing set to 1 x 10-' chords is used 

for the XAC-1 0012 turbulent cases. For the RAE airfoil case. the grid has 321 x 49 

nodes with similar wall spacing. These grids provide reasonable numerical accuracy 

for the flows considered. Slach contours. surface pressure coefficients. as well as lift 

and drag for the eight cases, are presented in Appendix B. 

4.2 - Units for comparing efficiency 

When comparing the speed of different algorithms, CPU time is the appropriate unit. 

However. this is dependent on the computer. the compiler, and the coding details. 

Although it is by no means perfect, the number of function evaluations (or right- 

hand-side evaluations) required to reduce the residual by a given amount is a useful 

unit for assessing the speed of an iterative algorithm [114]. This unit allows the 

relative performance of different algorithms to be compared across various platforms, 

compilers, and flu evaluation methods. Shortcomings of this choice are that it tends 

to favour expensive flux evaluation methods (overhead appears smaller) and there 

is some arbitrariness as to what is included in a function evaluation. For example, 



local time stepping and the circulation correction are optional. It is also important to 

notice that the memory bandwidth of the computer. which may differ substantially 

from one machine to another. can have an important effect on the relative cost of 

an inner iteration to a function evaluation, since not all the operations are equally 

affected by the speed of the access to memory. 

For most of our comparisons. we will use the number of function evaluations 

as our basic unit. In the function evaluation we include the flux evaluation. pressure 

field update. the computation of the artificial dissipation coefficients. the computa- 

tion of the molecular and eddy viscosity and the evaluation of the right-hand-side a t  

the boundaries. This permits comparison with other solves. Since all of the methods 

compared in this work use the same right-hand-side. the number of function evalu- 

ations translates directly into CPU time on a given computer. -111 the solvers and 

cases are run on a Pentium Pro 180. 

4.3 Inexact-Newton solver 

Newton's met hod. which we have described in sect ion 3.2. approximates the non-linear 

system of equations by a succession of linear systems of equations. A n  inexact-Newton 

method is an extension of Newton's method where. a t  each step n. we solve the 

linear system. given by Eq. (3.38). in an inexact fashion. using an iterative solver. -4 

decision has to be made regarding how accurately we need to  solve the linear systems 

of equations. 

An inexact-Xewton method applied to Eq. (3.38) can be written as 

which implies finding a AQ(") such that the initial residual T(") is reduced by a 

factor of in. If in = 0: we recover Newton's method. The local convergence of 

the inexact-Newton method is controlled by ij,,. Dembo et  al. [31] showed that, 



under certain assumptions. 1) linear convergence with an asymptotic rate constant 

no greater than il,, is obtained if 0 5 ij, 5 Q),, < 1 for each ij,. 2) superlinear 

convergence is obtained if Eim,,,ij,, = 0, and 3) quadratic convergence is obtained 

if G,, = 0 ( 1 1  Pn) 1 1 ) .  
There is a second issue associated with ij,,. To illustrate it. several levels of 

reduction of the residual of the linear problem arising at each quasi-Sewton step 

have been tested. The convergence histories for siu values of ij are shown in Figure 

4-1- Strict inner tolerances reduce the number of outer iterations. but there is an 

increased number of inner iterations. giving an overall increase in total CPU time 

needed to converge. The results indicate that strict inner tolerances reduce the speed 

of the solver. To understand the reason let us recall that we are making the following 

approximation to the non-linear system 

During the first few iterations. the solution is far from the converged solution. and 

thus the linear approximation of 3 can be very inaccurate. The use of a strict 

tolerance (i.e.. a small value of ijn) during these early iterations is thus not beneficial 

to the rate of convergence and wastes CPU time. This is known as oversolving [l 151. 

To illustrate this fact. in Figure 4.2 we show the logarithms of the norms of 3 and 

its linear approximation versus the number of GMRES iterations when reducing the 

inner residual by five of orders of magnitude. At each new inexact-Newton step. 

there is a point where further reduction of the residual in the linear problem does not 

reduce the outer residual. -411 the GMRES iterations done to reduce the inner residual 

below that point represent wasted effort, oversolving the linear system: at the next 

inexact-Kewton step, the inner residual jumps up. The oversolving disappears as we 

approach the solution. 

Strategies for choosing a sequence of in's leading to an efficient local rate of 

convergence of the inexact-Newton method, have been developed by several authors 

and are described in Refs. [I 151 to [I 181. The proposed strategies show superlinear and 
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Figure 4.1: Convergence history for different levels of reduction of the 
using the matrix-free Newton-GMRES. 

inner residual 

Noniinear residual 
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Figure 4.2: Illustration of oversolving with a reduction of the linear residual F(Q) + 
A(Q)AQ of five orders of magnitude: fi = The nonlinear residual F(Q + AQ) 
shows no reduction for an important number of GMRES iterations. 



quadratic convergence but they may not be able to avoid oversolving in some practical 

applications. For that reason: Eisenstat and Walker [113] introduced safegards to 

prevent ijn from becoming too small too quickly. We find that choosing 

with 7 E [O. 11.6 E (1.21. and fi0 E [O, 1) is an effective strategy when used with 

a safeguard. However. for our applications. we have found the following approach 

to giw slightly better efficiency. We use ijk = 0.5 for the first 10 outer iterations. 

which guarantees no oversolving for most problems. and we then use ijk = 0.1 for the 

remaining outer iterations. This approach results in linear convergence. but savings 

in not having to compute ijk and better behaviour regarding oversolving make it more 

efficient in terms of CPL time than the other approaches. It should be noted that 

"undersolving" at  each Newton step is not particularly wasteful. while oversolving 

should be avoided. 

4.4 Preconditioning s t  rat egies 

The purpose of this section is to compare the performance of the solver with the 

two main preconditioners that we have described in Section 3.5. BFILL(p) and 

ILLT(P. T ) :  in order to determine the most efficient one for our applications. Differ- 

ent values of fill-in are considered to establish optimum performance at a limited cost 

of memory and CPC. 

4.4.1 Comparing preconditioners 

In order to compare BFILC:(p) and ILUT(P, r) with different levels of fill-in, we solve 

the linear system of the first Newton iteration. The preconditioners are computed 

from the first-order matrix. Results for case 1 are presented in Table 4.2. Similar 

results are obtained for other cases. Memory requirements for each preconditioner are 



Precondit ioner nnz/K cpu-form i-it cpu-total 
BFILU(0) 19.41 0.6 360 204.4 
BFILU(1) 26.45 3.4 57 33.8 
BFILU (2) 33.66 5.2 44 2'7.8 
BFILU(3) 40.90 7.4 44 29.5 
BFILU(4) 44.10 8.1 43 29.7 
ILCT (7.0.1) 25.13 5.2 155 9 1.3 
ILUT (7.0.01) 27.78 8.0 94 36.3 
ILCT (7.0.) 32.39 13.5 92 57.4 
ILUT(l2.0.1) 33.63 7.2 62 33.6 
ILCT(12.0.01) 37.12 10.9 63 41.4 
ILUT(15.0.3) 31.09 5.9 276 172.0 
ILCT(lS.O. 1) 37.93 8.3 51 33.5 
ILUT(l5.O.Ol) 42.67 13.6 57 38.7 
ILCT(18.0.1) 41.74 9.3 46 32.0 
ILUT( 18.0.2) 36.53 7.3 68 36.5 

Table 4.2: SIemory, CPU cost and effectiveness to reduce the inner residual by two 
orders of magnitude for different preconditioners. 

shown as nonzeros per equation of the preconditioning matrix (nnz/N) . Under - ~ p u -  

form" we indicate the CPU time (in seconds) required to compute the preconditioning 

matrix. The last two columns indicate the number of GMRES(20) iterations and total 

cpu time to reduce the initial inner residual by two orders of magnitude. Since the 

ordering of the unknowns has a big impact on the performance of the preconditioner. 

for each case we have chosen the best among the ones considered in this study. For 

this test case, our experience is that the optimum reordering with BFILU is RCSI 

and that ILUT performs much better with the >IN reordering than with any of the 

other orderings. 

Results show that the ILUT preconditioners are more expensive to form than 

the BFILU ones. This is due to the comparison of numerical size that we have to do 

between the elements of the rows in order to keep the largest ones. 

BFILU(p) shows a clear improvement in the performance of the solver as we 

allow more fill-in, up to p = 2. Further increase in fill-in, does not reduce the number 

of inner iterations, while substantially increases the memory requirements. 



It seems that optimum values for the  fill-in parameters are around P = 1.5 

and T = 0-1. But. for the same amount of nonzeros per row. BFILC factorizations 

perform better than the ILUT ones. 

The choice of the preconditioner has t o  balance computational efficiency and 

memory requirements. For this case. we observe that. overall. BFILU(2) is the best 

choice. 

4.4.2 Preconditioners from the first-order and the second- 
order Jacobians 

We have seen in section 3.5.1 that we can build the preconditioner from the 

same matrix A used for the Sewton linearization. or that we can use a reasonable 

approximation of it which could potentially produce a more efficient preconditioner. 

For instance. we can use the first-order Jacobian AL described in section 3.2.1 to form 

a preconditioner. M I .  and compare it to the preconditioner M2. formed from --i2. 

which is closer to the matrix produced by the exact linearization. 

Figure 4.3 shows the convergence histories obtained with three different pre- 

conditioners for case 1 on a coarse grid with 143 x 20 nodes: BFILC(0) formed from 

the first and second-order Jacobians. and BFILU(2) formed from the first-order Ja- 

cobian. It should be noted that for this inviscid subsonic flow case. the matrix d2 

is very close to being the exact linearization of the flu Jacobian. The number of 

nonzeros given by BFILC'(2) using AL is about the same as the number of nonzeros 

given by BFILU(0) using d2. BFILU(2) applied to d2 requires excessive storage and 

is not considered here. 

The results in Figure 4.3 show that the preconditioners M I  built from dL 

are more efficient than M 2  built from the second-order Jacobian A*. This is exam- 

ined in more detail with BFILU(0). If we multiply Eq. (3.79) by the inverse of the 

precondit ioner, we obtain the preconditioned matrices given by: 



0 500 1000 1500 2000 2500 
CPU time in fiction evaluations 

Figure 4.3: Convergence histories for case 1 in a 143 x 20 nodes grid. using three 
preconditioners: BFILU(0) formed from the first-order Jacobian dl. BFILL(0) using 
the second-order Jacobian A2 and BFILCI(2) from the first-order Jacobian. 

Table 4.3: Frobenius norm of the error matrix and of the preconditioned error matrix 
for the first- and second-order preconditioners. 

Since we are solving the preconditioned system, the matrix E is not as important as 

the preconditioned error matrix E M-l. As discussed in sect ion 3.6.1 : non-diagonally 

dominant matrices produce factors with inverses t - I  and U - I  which may have veqy 

large norms, causing E L4-lL-l to be very large and thus adding large perturbations 

to the identity matrix. In that  case, the eigenvalues of A M-' will not be nicely 

clustered around unity and the iterative solver will show slower convergence. 

In Table 4.3, the Frobenius norms of the error matrices are presented. The 

results confirm that M1 produces an error matrix E that  has a bigger norm than the 



one from M P .  but the norm of its preconditioned error matrix is much smaller than 

the one from M 2 .  

4.4.3 Parametric study 

The results from the previous section confirm that the best factorization is not 

necessarily the one obtained from the matrix used at each Newton step. but from 

an approximation that shows better characteristics. The matrix dl described in 

section 3.2.1 has two parameters that allow us to optimize. in some sense. the a p  

proximat ion. 

The optimization criterion that we use is to minimize the sum of the GSIRES 

iterations over the Newton iterations. which is equivalent to minimizing the CPU time 

to convergence. For this optimization process, BFILU(2) is used as precondit ioner. 

with RCZiI ordering. 

The parameter a controls the amount of second-difference dissipation added 

to dl. I s  we increase its value. the matrix is less non-diagonally dominant and more 

symmetric. which will benefit the factorization. But on the other hand. the matrix will 

be a less accurate representation of A. Figure 4.4 shows the total number of GSIRES- 

iterations required to converge to machine zero for the seven compressible cases, as 

we vary the value of a. -1s expected. there is an optimum value: for all cases. with 

the exception of case 4. it is equal to 5. For bigger values, the number of G4IRES- 

iterations increases gradually and for smaller values. it increases sharply. In most 

cases. the code does not converge for a 5 3. Case 7, which is a nearly incompressible 

flow. behaves somewhat differently and will be discussed in section 5.1. 
The other parameter, Ato which appears in Eq. (3.42): is used to enhance the 

diagonal dominance of A1, which should improve the factorization properties of the 

matrix. Figure 4.5 shows that  the influence of this parameter is, in general, much less 

beneficial than that of a. Only cases 2 and 5 show some improvement in convergence 

when using a finite Ato. Values under 200 seriously affect the performance of the 

solver. Thus we consider lo4 to  be an optimum value for our applications. 
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Figure 4.4: Total number of GMRES iterations required to converge to machine zero. 
for different values of a for various cases. 
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Figure 4.5: Total number of GMRES iterations required to converge to machine zero, 
for different values of dto for cases I to 6. 



Figure 4.6: Number of GMRES iterations at each Newton iteration freezing the 
preconditioner (bars) and updating the preconditioner at each Newton iteration (im- 
pulses) for case 2. 

4.4.4 Freezing the preconditioner 

Since we are using an approximation to A to build the preconditioner. we may consider 

using the same preconditioner for all the Mewton steps. In other words. we could 

compute the preconditioner once. at  the first Newton iteration. and then freeze it. 

To see how this strategy affects the performance of the solver. we run one of the 

cases which has strong initial nonlinearities, case 2. with and without updating the 

precondit ioner. 

In Figure 4.6 we show that the number of GMRES iterations at each Newton 

iteration does not increase when we freeze the preconditioner. In other words, there is 

no gain in updating the preconditioner at each Newton iteration. .At the same time: 

Figure 4.7 shows that there are substantial CPU savings when we do not update the 

precondit ioner. 
This is due to the fact that we have used a relaxation technique for two orders 

of magnitude to eliminate the most significant transients, and the flow changes do not 

affect the matrix in a significant way compared to the approximations that we have 
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Figure 4.7: Convergence history for case 2, freezing the preconditioner and updating 
the preconditioner at each Newton iteration. 

introduced. Therefore. computing the preconditioner only once produces important 

savings in CPC. 

4.5 Ordering of unknowns 

The sis different orderings described in section 3. 6. including the natural ordering 

(XAT), two orderings based on domain decomposition techniques (DD1 and DD2). 

double bandwidth (DB), Reverse Cuthill-McKee (RCM) and minimum neighbouring 

(JAN). have been tested for cases 3 and 8. Since the optimum parameters that we 

have found for RCM are not necessarily the same for the other orderings, we haw 

followed a similar process of optimization for each one of the orderings using case 3. 
Convergence history plots for cases 3 and 8 are shown in Figures 4.8 and 4.9 

respectively. The benefits of applying reordering techniques such as RCM and MN 

are clearly shown. In our experience, the performance of MN is virtually independent 

of the initial ordering fed to the algorithm. In contrast, the performance of RCM 

depends greatly on the initial ordering, with double bandwidth preferred. RCLI is 
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Figure 4.8: Convergence history for the six orderings for case 3. using BFILU(2) as 
precondit ioner. 
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Figure 4.9: Convergence history for the six orderings for case 8, using BFILU(2) as 
precondi t ioner. 



significantly faster than any other ordering for these two cases. We have compared 

with SIN in other cases and results are generally in favour of RCM [119]. The double 

bandwidth algorithm and DD2 behave quite similarly to each other. The natural 

ordering and DD1 are the slowest ones. 

4.6 Optimized algorithm 

Our solver. known as PROBE, was presented in Ref. [I191 and later on. in an improved 

version. in Ref. [120]. Here. we present an improved optimization. The following are 

the main strategies and parameters of this version: 

inexact-xewton strategy 

matrix-free GSIRES(20) 

BFILL(2) preconditioner based on the first-order Jacobian formed using Ato = 

10" and o = 5 

Reverse Cut hill-McKee reordering 

preconditioner computed at  first iteration and not updated 

inner tolerance (8) set to 0.5 for the first ten outer iterations. 0.1 for the 

remainder 

approximate factorization algorithm used for 150 iterations on coarse grid or to 

reduce the residual two orders of magnitude initially, whichever happens first: 

for most cases. Ato = 5 is used with the local time step definition given in 

Eq. 3.42. 



Chapter 5 

Results 

In the first section of this chapter, we show the performance of PROBE for 

the eight cases. as well as a study of the variation of the CPU cost with the number 

of nodes in the grid. The second section consists of a comparison of the performance 

and the storage requirements of PROBE with other efficient solvers. .Ul parameters 

of PROBE were fixed for all of the results presented in this chapter. 

5.1 Performance of the algorithm 

Ideally. a code should be able to handle different flow conditions on varying grids with 

relatively consistent performance. In this section. we present convergence results ror 

all the cases. They have been run with the same parameters with the esception of 

case 8 because it converged only six orders of magnitude. In order to converge to 

machine zero, it was enough to set Ato = 1 in the AF relaxation method for the 

coarse grid: its usual value is 5. Similar behaviour has been observed with ARC3D. 

This may be due to the turbulence model. 
Table 5.1 gat hers some statistics of the convergence histories for the eight cases 

that we have studied. The table includes the number of inner and outer iterations 

required to reduce the residual norm by twelve orders of magnitude (to machine 

zero): and the average number of inner iterations per outer iteration. The outer 

iterations include only those done using the Newton-Krylov solver and not those 

of the approximately-factored algorithm. CPU/f.e. time gives the total run time 



o-it K i t  i - i tb i t  CPC-/f,e. CPC (min. sec.) 

Case 2 18 190 10.6 743.8 2' 17.6" 
Case 3 18 129 7.2 490.7 9' - 27.2" 
Case 4 1 324 19.1 910.1 8' 06.0" 
Case 5 19 370 19-5 990.8 8' 49.1" 
Case 6 18 227 12.6 642.9 5' 43.3" 
Case 7 34 1116 32.8 2824.9 25' 08-5" 
Case8 22 354 16.1 953.5 7. 4;.27g 

Table 5.1: Statistics for the Newton-Krylov algorithm for the cases studied: o-it: 
outer iterations. Ci-it: total number of inner iterations. i-it /o-it: average number 
of inner iterations per outer iteration: CPU/f.e.: CPC time in equivalent function 
calls to reduce the residual by twelve orders of magnitude. 
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Figure 5.1: Residual history for PROBE for the 8 cases described in Table 4.1. 



Figure 5.2: CPU time in function evaluations required to converge to machine zero 
as a function of the grid size. for PROBE and XRC2D using case 1. 

normalized by the CPU time of a function evaluation. Figure 5.1 shows the residual 

histories for the cases studied. 

The results show that. except for the low Mach number case. convergence is 

achieved in less than 1000 function evaIuations. Case 7. in which the freestream Mach 

number is 0.16. shows a slower convergence. The number of inner iterations goes up 

dramatically for this case. In order to  minimize oversolving in cases like this one. we 

always limit the maximum number of inner iterations at each quasi-Newton step to  

40. 

Another important consideration in the performance of a solver is how the 

CPU time increases with the size of the problem. To this end, we have tested case 1 

using different grids. The results for PROBE and for ARCPD, which is included as 

a reference, are plotted in Figure 5.2. We can approximate the points in the plot by 

the expression 

w = dB 



where w is the CPU time in function evaluations. and K and (3 are constants. Ideally 

,3 should be zero, which would mean that the CPU cost would be linear with respect 

to the grid size. since the cost of a function evaluation varies linearly with N. For 

ARC2D. 3 = 0.73 and for PROBE 3 = 0.325. Thus. the scalability of PROBE 

appears to be very good. 

5.2 Comparison to other solvers 

We compare PROBE with other efficient solvers. namely the approximate factoriza- 

tion algorithm of Beam and Warming as implemented in ARCSD [16]. the same 

solver ARCZD enhanced by multigrid (XRC2D-klG ) . an incomplete factorization 

solver (BFILU(2)) and an approximate-Newton solver (approx. Newton). The spatial 

discretization for all the solvers is identical. 

Not all the grids defined in Section 4.1 are suitable for the rnultigrid solver. 

The reason being that coarsening is done by removing every other interior node: this 

requires that. in order to be able to extract two coarser grids. j,., - 1 and k,,,, - 1 

have to be divisible by 4. Therefore. for cases 1 and 2. we modified the grid to have 

249 x 41 nodes: and for cases 4 to 7. we modified the grid to have 329 x 49 nodes. 

5.2.1 Description of solvers 

Approximate factorization (ARCZD) 

The approximate factorization algorithm in diagonal form. as used in ARCPD, is 

explained in detail in Ref. [16]. In ARC2D, the wakecut can be treated implicitly or 

explicitly. In this work we consider only the explicit treatment of the wakecut, which 

is faster for our present test cases. XRC2D provides a useful reference because of its 

wide availability. 



Approximate factorization with multigrid (ARC2D-MG) 

Other authors [17. 181 have already shown that  multigrid can substantially increase 

the convergence rate of the approximate factorization algorithm. For our study. we 

use a three level sawtooth-cycle. Four AF iterations a t  each level produces optimum 

convergence in terms of CPL time [MI. 

Incomplete factorization (BFILU(2)) 

BFILC(2) has proven to be an efficient preconditioner for our applications. It can 

also be used as a solver. with the same strategy as used for the preconditioner: the 

factorization is calculated from the first-order Jacobian at the first iteration and it is 

not updated. After testing different values of o and Ato. we have chosen 5 and 50 

respectively. which produce a good convergence rate. 

Approximate-Newton (approx. Newton) 

Some of the most popular approximate-kewton methods use a first-order .lacobian 

on the left-hand side. One of the original reasons is that this matrix requires less 

storage than the second-order Jacobian. Another reason for using a first-order .Jam- 

bian is that it is better conditioned than the second-order Jacobian: hence the inner 

iterations can converge faster. The penalty is an increased number of outer iterations. 

Approximate-Newton solvers which use a first-order Jacobian are typically precondi- 

tioned with a BILU(0) or a BFILU(0) factorization. With this preconditioner, the 

solver requires approximately the same amount of storage as our matrix-free inexact- 

Yewton solver. The parameters (T and Ato that appear in the matrix dl have been 

optimized using case 1, following a similar process to the one used for PROBE. Values 

of o = 9 and Ato = 20 minimize the CPU t.ime required to converge to machine zero. 

The inner residual is reduced by a factor of 5 x lo-'. An efficient strategy which 

helps to reduce the overall CPU time without harming the convergence rate consists 

of freezing the left-hand-side and the preconditioner after the first iteration, as we do 

for PROBE and the BFILU(2) factorization. 



5.2.2 Performance comparison 

The residual convergence histories of PROBE are compared with the other four solvers 

in Figures 5.3 to 3.6. 

For the eight cases. PROBE is substantially faster than the reference solver. 

ARC2D. With this set of grids, PROBE does not converge to machine zero for case 5 

and ARCPD does not converge for cases 4 and 7. Therefore. we use the convergence 

histories obtained with the grids of Section 5.1 to calculate the relative speedup factors 

to converge to machine zero. Results are given in Table 3.2. 

Consistent with results presented by other authors. multigrid is very effective 

in accelerating the approximate factorization algorithm by a factor of 3 to 6. Thus. 

ARC2D-IIG performs quite well. with the exceptions of cases 3 and 4. Nevertheless. 

PROBE remains a faster solver in dl of the cases studied. 

Excluding case 8 for which it diverged. BFILU(2) shows very good convergence 

properties. For the inviscid cases and for case 5 .  it performs as well as ARC2D-MG. 

being faster than the multigrid solver for the rest of the cases. For case 7. it is as fast 

as PROBE: for cases 1 to 6. PROBE is between 20% and 60% faster. 

Finally. the approximate-Newton strategy preconditioned with BFIL L'(0) is. 

on average. five or six times slower than PROBE. If the preconditioner is upgraded 

to BFILU(2). its performance increases but the solver uses more memory than the 

matrix-free inexact-Newton approach and is still substantially slower. 

5.2.3 Memory comparison 

Two of the main needs for storage for PROBE come from the preconditioner. and 

the search directions to form the Krylov subspace. The preconditioner is stored in 

Modified Sparse Row (31SR) format [110], which requires a real and an integer array 

of lengths equal to the number of nonzeros and another integer array of length equal 

to four times the number of nodes in the grid. With BFILU(2), the number of 

nonzeros per node is on the order of 136. Since a red number represents one word 

(8 bytes) and an integer half a word, the total amount of memory required for the 



preconditioner is on  the order of 206 words per node. The Krylov subspace with 20 

search directions adds 80 words per node. which brings the total to 286 words per 

node. This is just a very conservative estimate of the memory needs. Work arrays 

and variable arrays. which depend on the particular implementation of the algorithm. 

have also a n  important impact on the amount of memory required. 

In order to have an idea of the relative needs of memory of the solvers that we 

are considering. we use the numerical experiments of case 6. comparing the amount 

of resident memory that the codes occupy in the computer. This is not a perfect 

measure. since i t  depends on many factors foreign to the algorithm. but it serves as 

a reference. We show in Table 5.3 the words per node and the amount of memory 

relative to ARC2D for each solver. The high storage required by the Newton-Krylov 

methods and the BFILU(2) method is partially due to  a not too careful allocation of 

memory on our part. Nevertheless. these met hods require substantially more memory 

than the traditional solvers. 
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Figure 5.3: Cases 1 and 2: convergence history for the inexact-Newton-Krylov 
method (PROBE), the approximately-factored method (ARCZD), the approximately- 
factored method with three-level multigrid (ARC2D-MG), the incomplete factoriza- 
tion method (BFILU(2)), and the approximate-Newton met hod (approx. Newton). 



case 3 
I 1 I r I 

PROBE 
ARC2D 

ARC2D-MG 
ILU(2) 

approx. Newton 

-14 ' I I I I 1 

0 1000 2000 3000 4000 5000 
CPU time in fimctioa evaluations 

case 4 
2 

0 

- -2 
u 
a approx. Newton -a- 
2 cn -4 
t! 
>s 
c. . - -6 
$ 
u -8 
=O 
0 
4 -10 

-12 Y 

- 14 I I I I 

0 1000 2000 3000 4000 5000 
CPU time in function evaluations 

Figure 5.4: Cases 3 and 4: convergence history for the inexact-Newton-Krylov 
met hod (PROBE) : the approximately-factored method (4RC2D), the approximately- 
factored method with three-level multigrid (ARCZD-MG), the incomplete factoriza- 
tion method (BFILU(Z)), and the approximate-Newton method (approx. Newton). 
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Figure 5.5: Cases 5 and 6: convergence history for the inexact-Nen?on-Krylov 
method (PROBE), the approximately-factored method (ARCZD), the approximately- 
factored method with three-level multigrid (ARCLD-MG), the incomplete factoriza- 
tion method (BFILU(2)), and the approximate-Newton method (approx. Xewton). 
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Figure 5.6: Cases 7 and 8: convergence history for the inexact-Newton-Krylov 
met hod (PROBE), the approximately-factored method (.4RC2D), the approximately- 
factored method with three-level rnultigrid (ARCPD-b1 G), the incomplete factoriza- 
tion method (BFILU(2)), and the approximate-Newton method (approx. Xewton). 



PROBE ARC2D speedup 
(CPU in funct. evaL) 

Case 1 613.5 5329.2 8- 7 
Case 2 743.8 3810.6 3.1 
Case 3 490.7 13630.0 2'7.8 
Case 4 910.1 10877.9 12.0 
Case 9 990.8 -.- . c I  - 

13ar . i  7.6 
Case 6 642.9 4298.5 6.7 
Case 7 2824.9 16558.2 5.9 
Case 8 953.5 3892.6 -1.1 

Table 5.2: Comparison in performance between PROBE and ARCPD to reduce the 
initial residual by twelve orders of magnitude. 

Solver words/node rel. to ARCSD 
PROBE 528.04 9.69 
BFILU(2) 518.76 9.51 
approx. Xewton 509.86 9.34 
-4RC2D-hIG 148.00 2-71 
ARC2D 54.56 1 -00 

Table 5.3: Comparison of the storage requirements between the five solvers. in words 
per node and relative to ARC2D. 



Chapter 6 

Conclusions, Contributions and 
Recornendat ions 

6.1 Conclusions 

An efficient matrix-free inexact-Newton-GMRES algorithm has been developed for 

steady aerodynamic flows. The thin-layer approximation is used for viscous flows. 

The effects of turbulence are simuIated with the Baldwin-Lorna- turbulence model. 

Spatial discretization is done using second-order centered-differences. The second and 

fourth-difference dissipation model of Jameson et al. [go] is added. The discretized 

equations are linearized using Newton's method. Preconditioned restarted GMRES 

in matrix-free form is used to solve the linear system arising at  each Newton iteration. 

The preconditioner is formed using an incomplete factorization of an approximate- 

Jacobian matrix after applying a reordering technique. For some flow cases. especially 

those with shocks. the early Newton iterations can diverge and a relaxation technique 

has to be used to  overcome this difficulty. In the present solver. an approximately 

factored algorithm is used to reduce the residual two orders of magnitude before 

switching to Newton-Krylov. The algorithm, has been successfully applied to a wide 

range of test cases which include inviscid, laminar, and turbulent flows. 

A thorough study has been done to optimize the solver. The first part of 

the study consists of determining an efficient inexact-Newton strategy that  avoids 

oversolving. This is followed by a comparison between different preconditioners of the 

incomplete-lower-upper factorization family. The matrix used for the factorization is 



carefully chosen in order to produce well-conditioned factors. Reordering techniques 

that improve the factorization are compared. The main conclusions of this study can 

be summarized as follows: 

Oversolving is avoided and optimum performance is obtained by setting the 

inner tolerance to 0.5 for the first ten iterations. and to 0.1 for the remainder. 

once the transients are less severe. -4s a safeguard. the total number of GMRES 

iterations at each Newton iteration is limited to  40. 

For the same storage requirements. Block-Fill ILU(p) factorizations (BFILU(p) ) 

is a more efficient preconditioner than ILUT(P.r) .  The best performance/memory 

ratio was obtained for BFILU(2). 

It is possible to produce better conditioned factorizations with a well chosen 

approximate- Jaco bian matrix than with the exact-Jacobian matrix. 

TWO parameters were used in the approximation of the dacobian matrix. The 

first one. which corresponds to a local time stepping, has little beneficial influ- 

ence in the quality of the preconditioner: for small values. it actually degrades 

the convergence of GM RES. The parameter that controls the amount of artificial 

dissipation in the mat riv shows an optimum value that significantly improves 

the efficiency of the preconditioner. The behavior of these parameters and their 

optimum values differ from the above when the factorization is used as a solver. 

The use of a fixed preconditioner does not adversely affect convergence of the 

inner iterations. Therefore, the factorization is computed only once, which 

reduces the CPU cost substantially. 

Reverse Cuthill-McKee reordering applied to the double bandwidth ordering 

produces the fastest convergence of the six ordering strategies that have been 

studied. 

The performance of the solver with optimum parameters has been tested for a 

wide range of flow conditions. In most cases, the solver reduces the initial residual by 



twelve orders of magnitude in 300 to  1000 function evaluations. The most significant 

exception occurs for low Mach numbers (i.e.. !\fm = 0.16) for which convergence is 

around 2800 function evaluations. The code is quite robust: with the optimized set 

of parameters it is capable of handling very different flow conditions and grids. some 

with cells which have aspect ratios on the order of lo4. However. in certain cases. 

convergence may not reach machine zero, probably due to the turbulence model: a 

modification in the parameters of the approximate-Jacobian or on the time step of 

the relaxation method often overcomes the problem. Scalability has been tested for 

one of the cases. giving good results: the CPC' cost is proportional to the size of the 

problem to the power of 1.325. 

The solver has been compared with four other efficient algorithms including 

an approximate-factorization solver. a rnultigrid solver. a Block-Fill incomplete LC- 

factorization solver and an approximate-Newton solver. It has been shown that the 

new solver is in general more robust and significantly faster than the others. For most 

of the cases considered here. the speedups over the baseline approximate-factorization 

solver (ARC2D) are between 6 and 9. Surprising convergence results have been shown 

for the BFILU(2) factorization of our approximate-Jacobian matrix when used as a 

solver. Although less robust than the Newton-K~lov method for flows with strong 

shocks. it is in general very efficient. performing in some cases as well as the Newton- 

K ~ i o v  solver. 

6.2 Contributions 

Our primary contribution lies in developing a very efficient and robust Newton-Krylov 

method for a wide range of aerodynamic calculations. The new solver is competitive 

with the fastest existing solvers. This has been achieved through a careful optimiza- 

tion and selection of strategies a t  different levels of the solver. 

An important contribution of our study is showing that there are approximate- 

Jacobian matrices that produce better conditioned factors in an ILU process, and thus 

better preconditioners, than the exact-Jacobian matrix. We have shown too that the 



approximation used in the Jacobian has a key role in the efficiency of the solver. 

We have presented an efficient approximation to the Jacobian. consisting of a sim- 

ple modification of the artificial dissipation. The  modification includes a parameter 

that provides some possibility of optimization. A single value of this parameter was 

shown to be effective for all cases studied. The  quality of the preconditioner that is 

produced is such that it can be frozen (i.e.. not updated) without deterioration in the 

performance of GMRES. 

We have demonstrated that the reordering techniques commonly used in the 

context of unstructured grids. can be applied to structured grids. contributing signif- 

icantly to the overall efficiency of the solver. 

Finally. we have shown the potential of BFILL(2) as a solver. 

6.3 Recommendat ions 

The algorithm that we have developed constitutes a useful tool for practical aero- 

dynamic calculations and a good platform to continue research on Newton-Krylov 

solvers. We suggest here some modifications t h a t  could be introduced to improve 

the accuracy and versatility of the solver. We propose as well some possible research 

avenues to make the algorithm more efficient and to reduce its storage requirements. 

;\ccuracy could be improved in boundary layers by replacing the scalar dissi- 

pation with matrix artificial dissipation. Its impact on the condition of the LL-factors 

of the approximate-Jacobian matrix should be evaluated. Possible ways of optimizing 

the new approximate-Jacobian should be defined. If matriv dissipation reduces the 

quality of the preconditioner. scalar dissipation could be used for the approximate- 

Jacobian, while matrix dissipation would be used on the right-hand-side and in the 

matrix-vector products. 

The turbulence model that is currently implemented in PROBE is the Baldwin- 

Lomax turbulence model, which is most appropriate to attached and mildly separated 

boundary layers. For high-lift calculations, a field-equation turbulence model should 

be implemented. Godin et al. [121] have shown tha t  the one-equation turbulent model 



of Spalart--Illmaras [I221 is quite accurate in attached Bows and wakes. including 

merging boundary layers and wakes. while the tw*equation turbulence model of 

Slenter [I231 is preferred for separated flow regions. The flow equations and the 

turbulence model equations have to  be solved simultaneously as we are using Sewton's 

method. Therefore. the 4 x 4 blocks of the Jacobian matrix will be replaced by 

5 x 5 blocks for a one-equation model and 6 x 6 blocks for a two-equation model. 

Impact introduced by this modification on the efficiency of the preconditioner and on 

convergence would need to be evaluated. 

In order to solve multi-element airfoil configurations. the solver should be 

extended to handle multiblock-grids [I241 and its performance evaluated. Reordering 

techniques become even more relevant for these type of grids. due to the fact that the 

connectivity between different blocks of the grid will introduce many more non-zeros 

outside the main bandwidth of a natural ordering. The performance of the two main 

reordering techniques considered in our study. namely Reverse Cut hill-SlcKee and 

minimum neighbouring should be re-evaluated. 

In terms of efficiency. it has been shown that convergence of the Sewton- 

Krylov solver is significantly slower for lower Mach number flows than for flows in the 

compressible range. The use of local preconditioning could overcome the problem. 

Ideally. the solver should show the same level of performance for all Mach numbers. 

Another way to increase the efficiency would be to give consideration to the 

parallelization of the solver. In this case. more research needs to be done to de- 

velop parallelizable preconditioners (see Dutto et al. [54. 35. 1251 for some results in 

shared-memory computers). Classical preconditioners as ILU factorizations. do not 

parallelize well. both during the factorization and the backward-forward subst it ut ion. 

On the other hand. more scalable preconditioners, such as a diagonal preconditioner, 

are not very robust, and even if the system can be solved in parallel, the total saving 

in computational time compared with a better sequential preconditioner could be 

very small. 

In addition to speed, memory use is also an important consideration in algo- 

rithm development. We have seen that PROBE requires significantly more storage 



than some other current solvers. This fact presently restricts the use of the solver to 

applications where memory use is not a dominant concern. such as two-dimensional 

flows. Development of an effective matrix-free preconditioner would be a significant 

advance. 

Finally. we have shown that BFILG(2) performs very well as a solver. We 

think that it merits further development. perhaps in conjunction iVit h rnultigrici. 
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Appendix A 

Flux Jacobians for the thin-layer 
Navier-St okes equations 

The inviscid flux Jacobians are given by (from Ref. [16]): 

where K = E for E and K = q for F. The other entries are 

The viscous 0 ~ u  Jacobian is 

(A.  1) 



with 

and the a parameters given by 



Appendix B 

Flow solution for the eight cases 

This appendix contains some flowfield results for the eight cases. In Table B. 1 

we show lift. drag and pitching moment coefficients. Figures B.1 to B.8 show the Mach 

number contours and the pressure coefficient distribution over the airfoil's surface. 

case airfoil M a  a Re 
1 C 0 0  0.63 2.00 invisc 
2 NAC-4 0012 0.80 1.25 invisc 
3 XACA 0012 0.80 5.00 5.00e2 
4 U C . 4  0012 0.30 0.00 2.88e6 
5 YAC.4 0012 0.30 6.00 2.88e6 
6 XACA 0012 0.70 1.49 9.00e6 
7 NACA 0012 0.16 12.00 2.88e6 
8 RAE 2822 0.729 2.31 6.50e6 

Table B.1: Lift, drag and pitching moment coefficients for the eight cases described 
in Table 4.1. 



Case 0 1 

Figure B.1: Mach contours and C, plot for case 1, described in Table 4.1. 



Case 02 

Figure B.2: Mach contours and C, plot for case 2, described in Table 4.1. 
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Case 03 

Figure B.3: Mach contours and C, plot for case 3, described in Table 4.1. 



Case 04 

Figure B.4: Mach contours and C, plot for case 4, described in Table 4.1. 



Case 05 

5 

Figure B.5: Mach contours and C, plot for case 5, described in Table 4.1. 



Case 06 

r---- 

Figure B.6: Mach contours and Cp plot for case 6, described in Table 1.1. 



Case 07 

Figure B.7: Mach contours and C, plot for case 7, described in Table 4.1. 



Case 08 

Figure B.8: Mach contours and C, plot for case 8, described in Table 4.1. 



IMAGE EVALUATION 
TEST TARGET (QA-3) 

APPLIED A IMAGE. inc 
a 1653 East Main Street 




