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Abstract 

In this thesis we study coverings and designs with good covering properties; that is, 

designs in which the size of the maximum intersection between any two blocks is small. 

The first chapter contains some basic facts that are used throughout the thesis. 

In chapter two we give many new constructions of coverings. We focus on coverings 

on a reasonably srnall set of points as they can be directly applied. An interesting 

"cornpetition" to improve the upper bounds on the sizes of coverings started in 1993 

when Nurmela and &terglrd used simulated annealing to obtain good coverings for 

up to 13 points. In 1995, Gordon, Kuperberg and Patashnik obtained good coverings 

for up to 32 points using somewhat less precise, but faster algorithms and that same 

year Chang, Etzion and Wei made improvements using combinatorial constructions 

based on previous results of Etzion. In this chapter we improve many of the bounds 

in the works of these authors; most of the improvements are accomplished by purely 

combinatoriai arguments, while others are assisted by computer searches. 

In chapter three we describe three new families of rninimd (t + 1)-coverings ob- 

tained frorn t-designs. These coverings produce new covering numbers for an infinite 



number of parameten. Aside from t-designs (which are also t-coverings) pnor to  this 

work only three infinite families of coverings were known; those obtained by Ray- 

Chaudhuri, and Abraham, Ghosh and Ray-Chaudhuri in 1968, and Todorov in 1984. 

In chapter four we prove the existence of 22 new simple 3-designs on 26 and 28 

points. The base of the constnictions is two designs in each of which the size of the 

intersection of any two blocks is small. We also use methods introduced in previous 

work and a new approach based on designs obtained via Driessen's Theorem and its 

corollaries. The designs on 26 points are obtained from the inversive geometry of order 

5. The designs on 28 points are obtained from a code of van Lint and MacWilliams. 
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Chapter 1 

Some basic facts 

In this chapter we establish the notation to be used throughout the thesis and present 

sorne basic facts and definitions. 

1.1 Design theory 

Let D = { B I ,  B2, . .. , Bb) be a finite farnily of k-subsets (called blocks) of a v-set X(v) 

= {1,2, ..., v) (with elements called points). Then D is a t - (v ,  k, A )  design if every 

t-subset of X ( v )  is contained in exactly X blocks of D. Next, d e h e  

We cal1 p the maximal intersection number of D. 

Given a point x in X ( v ) ,  the blocks of D that contain x ,  after removing x from 
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each of these blocks, form a (t - 1)-(v - 1, k - 1, A) design Dx on X\(x) called the 

derived design of D with respect to x.  The blocks of D that do not contain x 

form a (t - 1 ) - ( u -  1, k, &A) design D, on X\{x} called the residuai design of D 

with respect to x .  We Say also that Dr and D, form a matching pair of designs. 

If every t-subset of X(v) is contained in at most X blocks of D, then D is a t- 

(v, k, A )  packing design (or packing). If every t-subset of X ( u )  is contained in at  

least X blocks of D, then D is a t-(v, k, A) covering design (or covering). Given a 

covering, the number of blocks is the size of the covering, ând the minimum size of a 

t-(v, k, A) covering is called the covering number, denoted C,\(v, k, t ) .  A covering of 

size Cx(v, 6, t) is called a minimal  covering. When X = 1 we write C(v, k, t) instead 

of Ct(v,  k, t ) ,  and we Say a (v, k, t )  covering instead of a t-(v, k, 1) covering. We ais0 

Say a (v, k, t )  packing instead of a t-(v, k, 1) packing. A Steiner system S(u,  k, t )  is 

a (v, k, t )  covering in which every t-set is covered exactly once. 

A generai lower bound on Cx(v, k, t) is due to Schijnheim [45]. 

THEOREM 1.1.1 

Proof. The total number of points involved in al1 blocks of a t-(v,  k, A) covering design 

of the minimum possible size b = Cx(v, k, t )  is bk. On the other hand, removing a point 

from al1 blocks that contain it produces a (t - 1)-(v- 1, k- 1, A )  covering. Consequently, 
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each point is in at least CA(v - 1, k - 1, t - 1) blocks. Thus bk 3 vC(u - 1, k - 1, t - 1), 

SO 

V 
b 2 C k ~ * ( v  - 1, k - l , t  - l)] . 

By iterating the inequality of Theorem 1.1.1 we obtain the following. 

Corollary 1.1.2 

A well-known necessary condition for the existence of a t-(TI, k, A) design D is that 

the A,, 15 q 5 t ,  defined by 

A o : = b = l D ( ,  and A,= k-q+l 
Xq-1, 

v - q + l  

be integers. ObviousIy, At = X and the number of the blocks of the design is 

Let D = {BI,&, .-., B b )  be a t-(v, k,X) design. It is known 1341 that D, = {X(v)\ 

B : B E D} is a t- ( v ,  v - k, X ("ik) / (:) ) design called the supplemental design of 

D. So we need only be ccncerned with designs having block-size at most [fj . The 

set of al1 k-subsets of X(v) will be denoted by X ( k ) ( ~ ) .  (We will use x ( ~ )  instead of 

X(*)(v) whenever the value of u is clear £rom the context.) 
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Consider the set x ( ' ) ( v )  = XI*), where t + 1 < s 5 . 

The intersection numbers of an s-subset S of X(v) with respect to the 

blocks of a t - (u ,  k, A) design D are defined by 

So n; is the number of blocks of D that intersect S in i points. The intersection 

equations for S are then given by 

2 (:)ni= (:)Am for m=O,l, ..., min(s,t) [XI. 
t=m 

The last equation is obtained by counting in two ways the pairs (M, B) such that 

M C S n B ,  B ~ D , a n d I M / = r n .  

The spectrum of A E x(') under D is the ordered ( m  - t)-tuple 

where m = min{k, s) and ni, i = t + 1, ..., m, are intersection nurnbers of A with 

respect to the blocks of the design LI. 

The spectral set of X(") under D is the collection of al1 possible spectra of the 

elements of x(") under D. 

The equivalence relation 91 on x(') is defmed by A;PA, if and only if SpecD(A,) = 

SpecD(Aj). Therefore 92 partitions x(') into equivalence classes xi"), x?), .. ., x;') and 

we wnte SpecD(A) = ~ ~ e c ~ ( ~ ! ' ' )  for dl A E x!') C ~ ( ' 1 .  It  turns out that some of 

these classes, or unions of some of these classes, are t'-designs for some t'. 
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A design without repeated blacks is called a simple design. Given two simple 

designs Dl and D2 on X we say that Dl is isomorphic to D2 if there exists a 

permutation R : X -, X such that K ( B )  E D2 for every B E D l .  The permutation K 

is called an isomorphism from Dl to D2. When Dl = Dz, the permutation x is 

called an automorphism of D l .  

The set of al1 automorphisms of a design D form a group, Aut(D) ,  called the 

automorphism group of D. This group acts as a permutation group on the points 

and also as a permutation group on the blocks. 

A t-(v,  k, A )  design on X ( u )  is said to be cycIic if whenever B is a block, {x + 1 : 

x E B) is also a block, where addition is performed modulo v. In this case Z,, the 

cyclic group of order u, is a subgroup of Aut(D).  

1.2 Coding theory 

Given a vector space V = Vn(K)  of dimension n < ou over the field K ,  a code C is 

a subset of V. The vectors in the code are called codewords or sirnply words. The 

(Hamrning) distance between two codewords x = ( 2 1 ,  ..., x,)  and y = ( y l ,  ..., y,) is 

the nurnber of places in which they differ; that is, 
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The (Harnming) weight of a vector x = ( x l ,  ..., x,) is the number of nonzero co- 

ordinates, and is denoted by wt(x); that is, wt(x )  = d(x, O )  where O is the ail zero 

vector. More generaily, wt(x - y) = d(x, y). The minimal distance of a code is 

d = min{d(x,y) : x E C,y E C,x # y). 

The support of a codeword is the set of positions of nonzero coordinates. 

A code is linear if it is a subspace of V. Given a code C, and a vector v E V, the 

set 

is called a translate of the code C by the vector v. A translate of a code is aiso 

a code with the same minimal distance as the original. 



Chapter 2 

New Upper Bounds on the size of a 

covering 

2.1 Introduction 

In this chapter we give many new constructions of coverings. Constructions for specific 

sets of parameters are typical for this research area and, in fact, there is no general 

theory behind obtaishg good coverings. Cornputer searches have been made but the 

existing computer algorithms either produce coverings of poor quality in a reasonable 

amount of time or coverings of good quality but at a very Iarge cost (CPU time). 

An interesting "cornpetition" to improve the upper bounds on the sizes of coverings 

started in 1993 when Numiela and 6 s t e r g ~  used simulated annealing to  obtain 
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good coverings for up to 13 points. En 1995, Gordon, Kuperberg and Patashnik 

obtained good coverings for up to  32 points using somewhat less precise, but faster 

algorit hms and that same year Chang, Etzion and Wei improved some of the results 

of Gordon e t  al. by using combinatorial constructions based on previous results of 

Etzion. Continuing in the spirit of this cornpetition we improve many of the bounds 

in the works of these authors; most of the improvements are accomplished by purely 

combinatorial arguments, while others are assisted by computer searches. Some of 

the results presented in this chapter have been published in [IO]. 

We focus on coverings on a reasonably s m d  set of points as they can be directly 

applied; for exarnple, in error-trapping decoding. In this particuIar case the cornplex- 

ity of the decoding procedure depends on the size of the covering [16], and thus we are 

interested in finding coverings of the smailest size possible. Further applications are 

to data compression (see [19] and [27]) and in strategies for selecting lottery tickets 

(see [3S] #O] and (411 ). 

Let us illustrate the last application. A k / n  lottery is a g m e  where players 

initially buy tickets each containing a chosen k-subset of the set (1,2, ..., n )  and then 

a k-subset is drawn randomly from the same n-set. A player gets an s-win if the 

intersection between the k-subset chosen and the k-subset drawn is S.  Suppose a 

player or a group of players (called a syndicate) wants to play a 6/49 (or any 6 / n  for 

n 2 14) lottery by choosing only tickets with &sets from a particular size 14 subset of 
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the n-set. If the syndicate chooses to play with tickets that correspond to the blocks 

of a (14,6,4) covering then they will get a t  least one Cwin whenever any 4 of t heir 

14 numbers are drawn. Thus the syndicate will secure a certain parantee.  Since any 

(14,6,4) covering gives the same guarantee, they shodd choose the most "economical" 

covering; that is, the covering with the smallest known number of blocks, which is 

currently 80, and hence they purchase the fewest number of tickets. 

Naturally, one can ask: What is the advantage of playing for such a guaranteed 

win? If we compare playing with 80 random tickets agaïnst 80 tickets forming a 

(14,6,4) covering we see that the probability of a 6-win ("hitting the jackpotn) is the 

sarne for each ticket; namely ?:)-'. However, if any 4 of the numbers drawn are 

among the 14 nurnbers chosen by the syndicate, then the 80 tickets of a (14,6,4) cov- 

ering guarantee àt least one 4 4 1 1  while 80 random tickets (on the same 14 numbers) 

guârantee nothing! This property of the coverings is attractive to sorne lottery play- 

ers and there are rnany books (see, for example, [32] or [46]) and computer software 

available describing coverings. In this application, the coverings are often referred to 

as wheels or lottery systems. 

There is an extensive literature on the covering numbers C ( v ,  k, t )  and [48], [28] 

and (361 provide excellent surveys. Techniques for finding good coverings (that is, 

coverings of size as small as possible for fixed v ,  k, t )  are discussed in [28], [40], [16] 

and [27]. 
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This chapter is concerned with new constructions of coverings and hence presents 

Table 2.1: Cornparisan between the old and new bounds 

many new upper bounds on the covering number C ( u ,  k, t ) .  

The Table 2.1 shows a cornparison between the new and the old bounds on the 

v\(k, t )  1 (573) 
13 

covering nurnber C ( v ,  k, t )  in the same range as given in the tables in the recent CRC 

Handbook of Combinatonal Designs [48].  The old bounds from [48] are given in 

(795) 
78(88) 

(694) 

parentheses. A complete account on the improvements done in this chapter over the 

(more extensive) tables in [28] is given in Tables 2.3 and 2.4. 

The bIank spaces in Tables 2.1, 2.3 and 2.4 correspond to parameters for which 

we have not found a new bound. In some cases this is due to the fact that the 

(594) 

covering number is known. For example, C(17,5,3) = 68, because there exists a 

Steiner system S(17 ,5 ,3 ) .  The covering number C ( 1 8 , 5 , 3 )  = 94 follows from the fact 

that C ( 1 7 , 4 , 2 )  = 26 [36] and the following sequence of results [36].  

Let 

(6,5) (673) 
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(note that this is the  expression in the right hand side of the inequality of Corol- 

lary 1.1.2 for X = 1). 

Lemma 2.1.1 If there ezists a Steiner system S(u, k, t), then 

v + l  k - t 
L(v + 1, k,t) = -L(ü, k - 1, t - 1) + - = L(v, k, t) + L(v, k - 1, t - 1). 

k k 

THEOREM 2.1.2 (SCHONHEIM) If there ezists a Steiner system S(v,  k, t),  then 

C(v + 1, k, t )  = L(v + 1, k, t). 

Corollary 2.1.3 If there ezists a Steiner system S(v ,  k, t),  then 

There is no general method for finding good coverings aithough many constructions 

are based on the study of particular properties of designs and codes. The techniques 

presented in this chapter might be described as "combining smaller coveringsn. We 

also use a "partitioning construction" sirnilar to the one used by Etzion and Van 

Pu1 [26] for constructing constant weight codes (dso see [13] and [27]). 
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2.2 Preliminary results 

First we discuss some facts and notation that will be used throughout the chapter. 

We begin with three simple constructions. 

Construction 2.2.1 Given a ( v ,  k ,  t )  couering design D and a point x E X ( v ) ,  the 

blocks of D that eontain x form a ( v  - 1, k - 1, t - 1) covering on X ( v )  \ (2). 

A covering of the smallest size among those obtainable from D is produced by 

choosing x to be a point that occurs in the fewest blocks of D. 

Construction 2.2.2 Given a (v, k ,  t )  couen'ng and a (v, k - 1, t - 1) couen'ng on the 

same  set  X ( v ) ,  tue obtain a ( a  + 1, k ,  t) covering on X ( V )  U { x }  b y  adding the neuv 

point x to al1 the blocks of the ( v ,  k - 1, t - 1) covering and taking the union of these 

6Zocks with those of the (v, k ,  t )  covering. 

The size of the (v  + 1, k, t )  covenng is the sum of the sizes of the initial two 

coverings. Thus we get the following. 

Construction 2.2.4 (SIDORENKO - TURAN [28]) Given a ( v ,  k ,  t )  covering, let x E 

X ( v ) .  Choose two new points x' and XI'. If a block B does not contain x, replace it b y  

the two blocks, l3 u { X I }  and B u { x " } ;  if B contains x, replace it b y  the single block 
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(B \ {x)) U {x', x"). Finally, odd a  ( v  - 1 ,  k  + 1 ,  t + 1 )  covering on X ( v )  \ { r ) .  The 

result is a ( v  + 1 ,  k  + 1, t + 1 )  covering on ( X ( v )  \ {x)) U {x', tu). 

Corollary 2.2.5 I f  the number of the blocks in a ( v ,  k ,  t )  covering is bt and 6, is the 

number of blocks in which x occurs, then the size of the new covering obtained by 

Construction 2.2.4 is 6, + 2(b - 6,) + s ,  where s is the size of the ( v  - 1, k + 1, t  + 1 )  

covering. 

Note that by choosing x to be a point in the largest number of blocks, we minimize 

the size of the resulting (v  + 1 ,  k + 1, t  + 1 )  covering. 

A slightly weaker bound follows on averaging the occurrence of a point. 

Corollary 2.2.6 

Proof. Using the pigeon-hole argument, there is a point x which is in a t  least 

[$(v, k, t ) ]  blocks of a ( v ,  k ,  t )  covering of size C ( v ,  k, t). Therefore we can as- 

sume b, = [$(v ,  k , t ) ]  . Then the size of the ( v  + l , k  + 1.t + 1 )  covering frorn 

Construction 2.2.4 is 

2b - 6. + s = 2C(u ,  k ,  t )  - [ $ " ( v ,  k, t ) ]  + s 
= [(2 - !)C(V, k, t ) ]  t s, 

which implies the result. 
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We continue with various structures that will be used to produce coverings. A 

large set of mutually disjoint Steiner systems LS(v, k, t )  is a partition of X(k)(v) 

into Steiner systems. Two important results are the following. 

THEOREM 2.2.7 (TIERLINCK [49]) An LS(v, 3,2) erists if and only i f v  1 or 3 

(mod 6), v 2 9. 

THEOREM 2.2.8 (BARANYAI [4]) An LS(v,  k, 1) exists if and only if k divides v. 

W e  will use a particular instance of this theorem, namely, the existence of an 

LS(v, 2 , l )  for v even ( that is, a 1-factorization of the complete graph K,, u-even). 

In some cases we use a union of (v, k, t )  coverings which produce a (v,  k, t + 1) 

covering or a union of (v, k, t )  coverings and k-sets which together form a ( v ,  k, t + 1) 

covering. The following example is due to Griggs and Rosa [30] and should be read 

in reference to Theorem 2.2.7. 

T H E O m M  2.2.9 (GRIGGS AND ROSA [30]) There ezist six (7,3,2) coverings of 

size 7 whose union is a (7,3,3) covering. 
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Proof. Each column in the array below contains one of the coverings. 

The next theorem [3] can be used to extend the coverings OF Theorem 2.2.9. 

THEOREM 2.2.10 (ALLTOP [SI) Let D be a t - (2k + 1 ,  k, A) design with t euen. 

Th en 

{ B ' :  B ' = X \ B , B E D ) U { B " : B " = B U { ~ ~ + ~ } , E ~ E  D} 

is a ( t  + 1)-(2k + 2, k + 1, A) design. 

THEOREM 2.2.11 There ezist six (8,4,3)  couen'ngs of size 14 whose union is  an 

(8,4,4) covering. 

Proof. The result follows by appIying Theorem 2.2.10 to each of the (7,3,2) coverings 

defined in Theorem 2.2.9. D 

Below is a particular case of a result obtained by Etzion 1241. 
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THEOREM 2.2.12 (ETZION [24]) There ezist four (6,4,3) coverings of sire 6 whose 

union is a (6,4,4) covering. 

Proof. Each column contains one of the coverings. 

The following are small minimal coverings that will be used in later proofs. 

THEOREM 2.2.13 C(6,5,3) = 4, C(8,5,3) = 8, C(9,5,3) = 12, C(7,5,4) = 9. 
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Proof. Each column contains the corresponding covering. 

A t-(v,  {kl, k2, ..-, kn}, A) design (covering design) is a pair ( X ( t . ) ,  D), where 

X ( v )  = {l, 2, ..., v }  is a set of points and D is a subset of X(kl ) (v)  U X ( ~ ) ( V )  U .-. U 

X(kn")u) with elements called blocks (of size kl, kz, ..., kn) so that every t-set of X ( v )  

is contained in exactly (at least) X blocks. 
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Let the set X be the disjoint union of the sets X1 and X2 of sizes nl and nz, 

respectively. We define an [ml, m&et to be an (ml + m2)-subset of X with ml of 

its elements in X1 and the rernaining m2 elements in X2. 

It is convenient to represent a covering by a b x k matrix whose rows are the blocks 

of the covering. Let 

be a set of m blocks of size n and a set of p blocks of size q, respectively. We use the 

notation AB to represent the following set of rnp blocks: 

A design is said to be  resolvable if there exists a partition of its set D of blocks 

into subsets called resolution cIasses each of which in turn partitions the set X(v). 

In particular, a Steiner systern S(v, k, t) is a ( v ,  k, t) covering, and if i t  is resolvable, 

each resolution class is a (v, k, 1) covering. 

We use the foilowing variation on the greedy algorithm (see [7]) for finding other 

partitions; in particular, a partition of the blocks of a design into designs with smaller 

numbers of blocks. 

and B = 

( 1 

A = 

ail ai2 - - aïn 

a21 a22 - - - a2n 

... ... . . *  ... 

am1 am2 S . -  amn / 
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Input: Design D with blocks arranged in random order and a number p', the 

maximal intersection number of the design being searched for. (Obviously, we should 

take p' < p, where p is the maximal intersection number of the input design.) 

Description: Take the first block of D to be the first block of D', Say BI.  Having 

chosen blocks BI ,  B2, ..., Bl of D', I 2 1, choose the next, Bi+i, to be the first block 

of D that meets the conditions 1 n Bsl 5 p', s = 1,2, ..., 1. When the process ends 

we have a collection D' of blocks of D. If D' is not a design we select another random 

ordering of the blocks of D and start again. Continue until a design is found or we 

run out of time and stop. 

Output: D', which is a design. 

Suppose we have obtained a design D'. Consider D \ D'. We can apply the same 

algorithm to D \ D' to (possibly) produce a new design D" and so on. It  is clear that 

if D', D", ... are designs, obtained consecutively from D, D \ D', ... by the algorithm 

and D* = D \ {Dl U D" U . .. ) is nonempty, t hen D' must be a design as well. 

T H E O R E M  2.2.14 (a) There ezists a3-(4",6, i(4"-4)) design D with p = 3. The 

family of al1 4-subsets of X(4") that are not covered by any block of D i s  a Steiner 

systern S(4m, 4 ,3) .  

(b) M e n  nt = 2,  the S(16,4,3) constructed in (a) can be partitioned into seuen 

s( l6 ,4 ,2) .  
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The existence of the design D described in Theorem 2.2.14 and the corresponding 

S ( P ,  4,3) is discussed in [3]. It is clear t hat the union of t hese two designs is a 

4-(dm , {6,4), 1 ) design. 

The partitioning of an S(16,4,3) into seven S(16,4,2) is mentioned in [Ki]. An 

alternative way of obtaining a 3-(16,6,4) design with p = 3 is described in [7]. The 

application of the aforementioned algorithm to the S(16,4,3) corresponding to the 

3-(16,6,4) design with p = 3 described in [7] produces the partitioning in (b). 

These designs are given below. To avoid listing 41 blocks of the designs we use the 

following compressed notation. Suppose the k-subsets of X ( v )  are arranged in lexico- 

graphical order (for example, if v = 4 and k = 3, then the order is 123,124,134,234). 

We encode the design according to the following rule: Let the blocks of the design 

have positions cl, c*, .. ., cb in the lexicographical ordering of x ( ~ ) ( v ) .  Now, form the 

sequence {ai)!==, by al = cl, ai = q - q - 1 ,  i = 2,3, ..., 6. Given the sequence 

al, a*, . . . , ab, the n-th block of the design can be recovered as the (C:'.'=, ai)-th k-set 

from the lexicographical ordering of x ( ~ ) ( v ) ,  where 1 5 n < 6. 
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Al : 60,32,217,43,103,56,68,37,17,253,88,53,88,45, 97-37, 55, 68, 150,133. 

Az : 75,89,22,63,129,100,82,116,73,107,109,31,137,181,25,145,42,95,150,27. 

A j  : 26,106,79,180,34,95,77,110,58,1I4,44, 27, 177,36,234, 58, 138,15,39,79. 

Aq : 25,117,119,36,139,67,125,53,47, 116,47,213,51,28,67, 141,153,70,166, 13. 

As : 9,215,43,34,67,196,86,8,140,69,29,87,77,55,118,223,110,77,92, I l .  

As : 48,88,82,66,47,126,163,189,1,106,104,58,45,143,10,82,136,66,101,52. 

A7 : 79,45,67,81,141,78,49,130,111,81,67,111,152,113,22,106,149,96,13,4. 

Corollary 2.2.15 There ezists a 2-(15,5,4) design with p = 2 so that the family of 

al1 3-subsets o fX(15)  that are not couered by any block of this design fonn a resoluable 

Steiner system S(15 ,3 ,2 ) .  

Proof. Take the derived designs of al1 the designs in Theorem 2.2.14 when m = 2. 0 

Observe that taking the union of the blocks of the 2-(15,5,4) and the S ( l 5 , 3 , 2 )  of 

Corollary 2.2.15 results in a 3-(15,(5,3),1) design. 

2.3 New Upper Bounds on C(v,  k, t )  

It is known t bat C ( v ,  4,3) = L(v ,  4,3)  for dl values of v except for v G 7 (mod 12) [36]. 

We start Our discussion with the covering numbers C(v, 5,3). 
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2.3.1 Bounds on C(v,5 ,3)  

In this section we improve upper bounds on C ( v ,  5,3) for seven values of v in the range 

14 5 v 5 24. .4t present, the best upper bound on the size of a (14,5,3) covering is 43 

and the corresponding covering was found by the program cover [39]. A compressed 

description of such a covering is given in the appendix. 

THEOREM 2.3.1 C(15,5,3) 5 57. 

Proof. Let N j  = ( 3 j  - 2,3j  - 1,3j), j = 1,2, ..., 5. Partition X(15) into two sets, 

X1 = {l,2,  ..., 6)  and X2 = {7,8, ..., 15). Then 

are the resolution classes of a 2-(9,3,1) design on X2. Let 
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We claim that the 57 blocks 

1 2 3 A  FI 

form a (15,5,3) covering. 

To see this observe that the [2,l]-sets in which the 2-component is a subset of N j ,  

j = 1,2, are covered by the blocks of 1 2 3 A and 4 5 6 B. Further, the blocks of 

1 2 3 A and 4 5 6 B contain as subblocks N ~ G  and NrN2 which constitute a (6,4,3) 

covering on XI, and therefore al1 of the [3,0]-sets are covered. 

The [2,1]-sets in which the 2-component is neither a subset of NI nor N2, and the 

[l,2]-sets are covered by the blocks of 
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Finally, the [0,3]-sets are contained in the blocks 

THEOREM 2.3.2 C(20,5,3) 5 138. 

Proof. Partition X(2O) into the two sets XI = X(16) and Xz = {17,18,19,20). The 

base of the construction is the unique 3-(17,5,1) design D on XI U (17) (531. Without 

loçs of generality, assume that 13 14 15 16 17 is a block of D. Let Di,  i = 14,15,16 

be the derived design of D with respect to i. Let D( i )  be the design obtained from Di 

by replacing the point 17 by the point i. Simple counting shows there is a collection 

A of 12 blocks of D such that each of these 12 blocks contains exactly two of the three 

points 14, 15 and 16. Let D' = D \ A. Let B be a 1-factor of the cornplete graph K12 

on {1,2 ,..., 12) and let C = (1 2 ... 1 6 ) ~ .  We claim that the 138 blocks of 

form a (20,5,3) covering. 
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The [2,1]-sets a b (i+4), where a, b E XI, i = 14,15,16, are covered by D( i )  (i+4). 

The (2,ll-sets a b 17 are covered by D' (the 12 blocks of A do not contain the point 

17 as 13 14 15 16 17 is a block of D). 

The [1,2]-sets and the [0,3]-sets are covered by C 17 18 19 20. 

It remains to show that al1 of the [3,0]-sets are covered. Consider a partition of 

Xl into two sets: X' = {1,2, ..., 13) and X" = {14,15,16). In what follows, the 

[a, b] notation is applied on X' U XI1. The [0,3]-sets and the [1,2]-sets are covered by 

B 14 15 16. 

The collection D' covers al1 of the triples of XI with the exception O€ those con- 

tained in the blocks of A. Let xyzij  be a block of A. Then s, y, z f X' and i, j € X". 

But then xyzi is a block of D ( j ) ,  and z y z j  is a block of D(i). Therefore, the [3,0]-sets 

and the [2,1]-sets are covered by the blocks of D' and D(i) ( i  + 41, i E XI'. 0 

Several good coverings with block size 5 c m  be obtained using the designs given 

in Corollary 2.2.15. 

THEOREM 2.3.3 C(23,5,3) S 190. 

Proof. Partition X(23) into the twu sets XI = X(15) and X2 = (16,17, ..., 23). Let 

D be the 2-(15,5,4) design on XI from Corollary 2.2.15. Let Al ,  A2, ..., A7 be the 

resolution classes of the 2-(15,3,1) design formed by the 3-sets that are not covered by 

D. Let BI, B2, ..., Bi be the 1-factors of a 1-factorization of the complete graph Kg 
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on X Î .  Let C be an (8,5,3) covering of size 8 on X2. We clairn that the 190 blocks of 

D 

A;&, i = l , 2  ,..., 7 

C 

form a (23,5,3) covering. 

Since these blocks contain as subblocks the blocks of a 3-(15,{5,3),1) design on 

Xi (see Corollary 2.2.15 and the comment following it ) al1 the [3,O]-sets are covered. 

The p,l]-sets and the [1,2]-sets are covered by the blocks of AiBi, i = 1,2, ..., 7. 

O The [0,3]-sets are covered by t h e  blocks of C. 

THEOREM 2.3.4 C(24,5,3) 5 234. 

Proof. Using the notation from the previous theorem, let 

Let Cr be a (9,5.3) covering of size 12 on X2 U {24} (Theorem 2.2.13). Then the 234 

blocks of 

D 

A&, i = 1,2, ..., 7 

Cf 

form a (23,5,3) covering. 
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THEOREM 2.3.5 C(21,5,3) 5 151. 

Proof. Repeat the proof of Theorem 2.3.3, but take instead X2 = (16,17, ..., 21) and 

let Bi, i = 1,2, ..., 5 be the 1-factors of a 1-factorization of the cornplete graph & on 

X2. Let B6 = B7 = (note that B6 and BT couid also be any two 1-factors of & 

on Xz). Take C to be a (6,5,3) covering of size 4 on X2 (Theorem 2.2.13). 0 

THEOREM 2.3.6 C(19,5,3) 5 113. 

Proof. Repeat the proof of Theorem 2.3.3, but take X2 = {16,17,18,19) and Bi, i = 

1 ,1 ,3  to be the 1-factors of the 1-factorization of hT4 on Xz. Let B4 = B5 = B6 = 

Bi = Bi. Take C to be the block 1 16 17 18 19. 0 

The results of this section are surnmarized as follows. (The value in parentheses 

indicates the best previously known upper bound on C(v, 5,3).) 

C(14,5,3) 5 43(47), C(lk5.3)  5 57(60). C(19.5,3) 5 113(114), C(20,5:3) 5 

138(145), C(21,5,3) 5 151(171), C(23,5,3) 5 190(227), C(24,5,3) 5 234(260). 

2.3.2 Bounds on C(v, 5 ,4 )  

In this section we improve the upper bounds on C ( v ,  5,4) for v = 14,15,16,29 and 

give some general upper bounds on C(v, 5 , 4 ) .  In particular, we observe that some 

of the  upper bounds on C(v,5,4) found by Etzion e t  al. [27] can be improved or 

generalized. 
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THEOREM 2.3.7 G(15,5,4) 5 303. 

Proof. Partition X(15) into the two sets X1 = {1,2, ..., 7} and Xz = {8,9, ..., 15}. 

Let Al ,  A*, ..., A6 be the (7,3,2) coverings on Xi from Theorem 2.2.9, and A7 = Al. 

Let Bi, B2, ..., B7 be the 1-factors of a 1-factorization of the complete graph Ks on X2. 

The blocks of AiBi, i = 1,2, ..., 7 cover each of the [3,1] and [2,2]-sets of X(15). Let 

Cl, C2, ..., Cg be the (8,4,3) coverings on X2 from Theorem 2.2.11, and C7 = Cl. Then 

the blocks of ici, i = 1,2, . . . ,7, cover each of the [1,3] and [0,4]-sets of X(15). Add 

a (7,5,4) covering on Xi to cover the [4,0]-sets of X(15). Thus we obtain a (15,5,4) 

covering. Since C(7,5,4) = 9 we get C(l5 ,5 ,4 )  5 (7)(7)(4) + (7)(14) + 9 = 303. 

We should mention that, in what follows, whenever we use an upper bound for 

an application of the constructionç 2.21,  2.2.2 and 2.2.4, it is either one obtained in 

the present thesis, or it is from [28] or [27]. When it is from [28] or (271 this will be 

indicated. 

The following is a generdization of a result in [27]. 

THEOREM 2.3.8 Ifv  = 1 o r  3 (mod 6), v 1 9, then 

Proof. Partition X(2v - 1) into the two sets Xl = {l, 2, ..., v )  and X2 = {v + 
1, v + 2, ..., 2v - l}. According to Theorem 2.2.7 there exists an LS(v, 3,2). Let 
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A,, Al, ..., be the designs of the systern on XI. Let B1, B2, ..., Bv-2 be the 1- 

factors of a 1-factorkation of the complete g a p h  &-1 on X2. Then the biocks of 

AiBi! i = 1,2, ..., v - 2, cover exactly once each of the [3,1] and [2,2]-sets of X(2v- 1). 

The number of blocks of AiBi, i = 1,2, ..., v - 2, is 

The union of the blocks of AiBi, i = 1.2, ..., v - 2, with a ( v ,  5,4) covering on XI, 

( u  - 1,5,4) covering on X2, and iC, i = 1,2, ..., v ,  where C is a (v - 1,4,3) covering 

on X2, produces a (2v - 1,5,4) covering on X(2u - 1). Thus the upper bound is 

obtained. 

For example, in [%], it is shown that C(29,5,4) 5 5427, whereas Theorem 2.3.8 

produces the bound C(29,5,4) 5 5085, which is a significant improvement. The 

bounds needed for the  calculâtion are C(14,5,4) 5 232 (see the Appendix), and 

C(14,4,3) = 91 (because there exists a Steiner system S(I4,4,3)). As described in 

the next t heorem slightly better bounds can be obtained under certain conditions. 

T H E O R E M  2.3.9 Let v = 1 or  3 (mod 6), v 2 9. i f  there ezists a family of at 

most v (u - I ,4 ,3)  coverings so that their union is a (v - 1,4,4) covering, then 
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Proof. We basically follow the proof of the previous theorem, defining Xi, X2, Ai and 

Bi as was done there. Let Cl, C2, ..., Cm be the (v-  l ,4 ,3)  covering on Xz, m 5 v ,  and 

Iet Cm+r = Cm+2 = ... = Cv = Ci. Now for the covering, use the blocks of a (v, 5,4) 

covering on XI, the blocks AiBi, 1 5 i 5 v - 2 and the blocks ici, i = 1,2, ..., v,. O 

For exarnple, Theorem 2.3.9 yields C(17,5,4) 5 492 (determined earlier in [27]), 

which is the best known bound. The best bounds C(14,5,4) 5 232 and C(16,5,4) 5 

416 were established by the program cover [39]. -4 compressed description of these 

coverings is given in the appendix. 

Aside from the general results in this section, we have made the following improve- 

ments: 

C(l4,5,4) 232(235), C(15,5,4) 5 303(313), C(l6,S,  4) 5 416(437), C(29,5,4) 5 

5085(5427), 

where the value in parentheses indicates the previously best known upper bound on 

C(v, 5,4) for the particular value of u. 

2.3.3 Bounds on C(v,6,4) 

In this section we improve the bounds on C(v, 6,4) for certain values of v in the range 

14 v 5 24. 

THEOREM 2.3.10 C(l4,6,4) 2 80. 
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Proof. Partition X(14) into the two sets XL = X(10) and .Y2 = (11,12,13,14). Let 

Ci, i = 1,2,3, be the 1-factors of a 1-factorization of the complete graph & on X2. 

Let D' be a 2-(10,4,2) design on XI as given below (we write O instead of 10): 

D' 

1489 1235 2678 

1670 1280 3460 

2369 1347 3789 

2457 1569 4568 

3550 2490 5790. 

Let D"' be the  supplement aJ design of D'. The design D"' has the following interesting 

properties, (Properties (2) aad (3) may be tediously verified.) 

1) No block of D"' covers a block of D' as any two blocks of D' have at  least one 

point in cornmon. 

2) There are exactly 15 4-sets of XI each of which is covered by precisely three 

bIocks of D'". These 15 sets form a 2-(10,4,2) design, denoted D", such that D' U D" 

is a 3-(10,4,1) design. 

3) The bIocks of DM' cover exactly once any 4-set of XI except those of D". 
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Let B = There are exact ly blocks that do not contain any of the pairs of 

B in each of the designs D' and D". These blocks are given in the first column of 

blocks for each of the designs D' and Du. Let Al be the collection of these 10 blocks. 

Let Az = D' \ Al and A3 = D" \ Ai. We daim that the 80 blocks of 

AiCi, i = l , 2 , 3  

B 11 12 13 14 

DU' 

form a (14,6,4) covering. 

Now, the [O$]-sets and the [1,3]-sets are covered by the blocks of 

B 11 12 13 14. 
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The [4,0]-sets are covered because the union of Dr and D'" covers al1 of the 4-sets 

of Xi. 

The [3,1]-sets are covered by the blocks of AiCi, i = 1,2,3, since D' U D" is a 

3-(10,4,1) design. 

To prove that al1 of the [2,2]-sets are covered, we note that each pair from XI (with 

the exception of the  pairs of B) is in a collection of blocks with each of the 1-factors 

Ci, i = 1,2,3. Therefore, the [-,a]-sets are covered by either AiCi, i = 1,2,3, or 

B 11 12 13 14, which completes the proof. 0 

Now we introduce a particular construction for some well-known designs. The 

constructions leads to a design that proves to be  useful in in the building of a (15,6,4) 

covering. 

Lemma 2.3.11 Arrange the points of X ( 9 )  in a 3 x 3 matriz A = (a , )  with the 

entries of row i designated by ri, i = 1,2 ,3  and column j b y  cj? j = 1,2,3. Consider 

two sets on X(9): 

Mij = (ri LJ c j )  \ {aij} m d  Nij = X(9) \ (ri LJ c j ) .  

Then: 

(a) The collection of blocks MM, and N,, 1 5 i < j 5 3, is a 2-(9,4,3) design, 

denoted D(A);  

(b) The union of D'(A) = {Mij U {a i j } l  i, j E {1,2,3)) and Drt(A) = { N ,  U 

{aij)l i, j E {1,2,3)), is a 2-(9,5,5) design; and 
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(c) The triples given b y  the three rows, three columns and siz diagonals of A form 

a 2-(9,3,1) design. 

Proof. The verification of al1 three parts (a), (b) and (c) is straightiorward. O 

Lemma 2.3.12 The 2 - ( 9 , 3 , 1 )  design and the 2- (9 ,4 ,3)  design from Lemma 2.3.11 

form a matching pair of designs. Thus we obtain a 3-(10,4,1)  design. 

THEOREM 2.3.13 C ( 1 5 , 6 , 4 )  5 130. 

Proof. Partition X(15) into the two sets XI = {1,2, ..., 9 )  and Xz = { a ,  6, c ,d ,  e ,  f ) .  

Let 

be the resolution classes of a 2 - ( 9 , 3 , 1 )  design on XI. Let 

a c f  

a d e  

b c e  

b d f  

a  b e' 

a b f  

a c d  

b c d  

c e f  

d e f /  

3 5 7  

a b c  

a b d  

a e f  

b e f  

c d e  

c d f  
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be a partition of x?). Note that U' and V' are (6,3,2) coverings, while S' and T' are 

"almost coverings", each leaving only the three pairs ab, cd, and e f uncovered. Let 

noting that the blocks of W cover al1 pairs contained in the blocks of S IJ T. Using 

the notation h m  Lemma 2.3.11, we claim that the 120 blocks O €  

SS' D(U)ab Wef 

TT' D(V)cd abcde f 

UU' Df(T)e 

VV' D1'(T) f 

form a (15,6,4) covering. 

The [0,4]-sets are covered by the block abcde f .  

The [1,3]-sets are covered by the union of the blocks of SSr, TT', VU', and VV'. 

The same blocks cover the [2,2]-sets with the exception of the [2,2]-sets xypq, where 

x, y is a pair in the blocks of S LJ T, and pq is either ab, cd or e j .  The remaining 

[2,2]-sets are covered as follows. The [2,2]-sets xyab, where x ,  y E XI, are covered by 

D(U)ab. The [2,2]-sets xycd are covered by D(V)cd. The [2,2]-sets xye f are covered 

by the blocks of We f. 
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The [3,1]-sets xyzp, where xy r is a block of the 2-(9,3,1) design on XI, are covered 

by the union of the blocks of SS', TT', U V ,  and VV'. The triples of XI, that are 

not blocks of the 2-(9,3,1) design, are covered by each of the designs D ( U )  and D ( V )  

(cf. Lemma 2-3-12), as well as by each of the collections Dt(T) and Dit(T). Therefore, 

the remaining [3,1]-sets are covered by the union of the blocks of D(U)ab,  D(V)cd, 

D'(T)e and D"(T) f .  

It is easy to check (although tedious) that the designs D(U)  and D ( V )  are disjoint. 

Moreover, the union D(U) U D ( V )  U Df(T) U Dtt(T) is a 4-(9,{4,5),1) design on Xi. 

Therefore, the [4,0]-sets are covered by the union of the blocks of D(U)ab, D(V)cd, 

Dt(T)e and D"(T)  f ,  which completes the proot 13 

Rernark 2.3.14 The covering descn'bed in Theorem 2.3.13 was further transformed 

and reduced by  local search to 118 blocks. The blocks of a (15,6,4) covering of size 118 

ore giuen in the appendiz. 

The next constructions are based, in one way or another, on the two designs 

described in Theorem 2.2.14 (a) when m = 2. As rnentioned there, the union of these 

two designs is a 4-(16,{6,4),1) design. 

THEOREM 2.3.15 C(l6,6,4) 5 160. 

Proof. The 140 esets of X(16) that are not covered by the 112 blocks of the 3- 

(16,6,4) design D with p = 3 (Theorem 2.2.14, part (b)) can be covered by 48 6-sets 
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of X( 16). To find these 6-sets we used a greedy algorit hm described in [%], but acting 

on the 140 Csets arranged randomly rather than on the  entire farnily ~ ( ~ ) ( 1 6 ) .  Below 

is the compressed description (defined in Chapter 1) of the 48 blocks that should be 

added to the design D from Theorem 2.2.14, part (b), in order to obtain a (16,6,4) 

covering: 

THEOREM 2.3.16 C(4m + 2,6,4) 5 (!m) W. 

Proof. Let D be the 3-(4", 6, i(4" - 4)) design with p = 3 from Theorem 2.2.14 and 

D' be the corresponding S(4", 4,3). It is easy to see that  the blocks of 

D 

D' (4" + 1) (4rn + 2) 

form a (4" + 2,6,4) covering of size the sum of sizes of D and D', which produces 

the desired bound. O 

THEOREM 2.3.17 C(17,6,4) < 188. 

Proof. Let D be the unique 3-(17,5,1) design [53] on X(17). Let Dl7 and Dl? be 

the derived and residual designs of D with respect to the point 17. Consider the set 

D' = {B' E ~ ( ~ ~ ( 1 6 )  : IB'n BI 5 3 V B  E Dl,}. 
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Table 2.2: 
Number of 

6-sets 
in the class 

48 
480 
640 

2400 
1920 
240 
960 
24 0 
960 
120 

pectral sets 
Spectral set 1 Number of ! 

This is an appropriate place to illustrate how the spectral sets can be used for finding 

designs and studying covering properties of designs. First we find by cornputer the 

spectral set of X(6)(16) under D17 (Table 2.2). The blocks of D' correspond to the 

spectrum (16,0,0). 

As was mentioned in C hapter 1, sorne of the classes or union of these classes can be 

designs. In particular, D' is a 2-(16,6,15) design with p = 4. (In fact, al1 ten classes 

are 2-designs, and some unions are 3-designs [7].) Now we compute the spectral set 

of X(4)(16) under D' (Table 2.2). It is clear that no block of D' covers a quadruple 

contained in a block of D17. The nurnber of such quadruples is 48(:) = 240 (because 

D17 has p = 2). On the other hand, from the spectral set of X(4)(16) under D' we 

see that there are exactly 240 quadruples that are not covered by any block of D'. 

Therefore the blocks of D' cover al1 quadruples of X(16) except for those covered by 
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the blocks of 0 1 7 .  Consequently, the blocks of DIU DIT cover aii elements of X('I(16). 

The blocks of DL7 U D17 cover al1 elements of ~ ( ~ ) ( 1 6 ) .  

Now, adding the point 17 to each block of Dl7 U 017, we get 20 blocks of size 5 

and 48 bIocks of size 6 whose union covers al1 quadruples on X(17) that contain the 

point 17. Therefore, the blocks of 

Dl7 17 

Dl7 17 

Dr 

form a 4-(17, { 6 , 5 ) ,  1) covering design in which 168 blocks have size 6 and the re- 

maining 20 - size 5. Vie now arbitrarily add points to the blocks of size 5 to increase 

their size. This completes the proof. CI 

Proof. Count the number of occurrences of each point in the preceding construction. 

The point 17 is in 68 blocks and each of the remaining points is in 65 blocks. The 

result follows by applying Construction 2.2.1. O 

The bound C(18,6,4) 5 252 from Theorem 2.3.16 cm be further improved in the 

smallest non-trivial case m = 2, where we had C(18,6,4) 5 252. 

THEOREM 2.3.19 C(l8,6,4) 5 236. 
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Proof. Using the notation from Theorern 2.3.17 we claim that the blocks of 

Dl7 17 18 

Dl7 18 

0 1 7  17 

LIf 

form a (L8,6,4) covering of size 236 on X(18). 

The design described above "extendsn the design of Theorem 2.3.17, and t herefore 

it covers dl the elements of ~ ( ~ ) ( 1 7 ) .  The quadruples a b 17 18, where a, b E X(16), 

are covered by the blocks of Dl7 17 18 because Dl7 is a %( l6 ,4 , l )  design. The 

quadruples a b c 18, where a, 6 ,  c E X(16), are coverrd by the blocks of Dl7 17 18 

and Dl: 18 since Dl7 17 U Dl; is a 3-(17,5,1) design on X(17). This completes the 

proof. Cl 

Proof. The result follows by applying Construction 2.2.2 to the covering obtained in 

Theorem 2.3.19 and a (18,5,3) covering with 94 blocks (discussed in Section 2.1) 

THEOREM 2.3.21 C(24,6,4) 5 784. 

Proof. Partition X(24) into the two sets XI = X(16) and X2 = {17,18, ..., 24). Let 

D be the 3-(16,6,4) design on XI (described in Theorem 2.2.14), and D' be the corre- 

sponding S( l6 ,4 ,3 ) .  Let Ai, A2, ..., AI be the partition of D' into seven S(16,4,2)'s. 
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Let BI, B2, ..., Bi be the 1-factors of a 1-factorization of the cornplete graph & on 

XZ. Let Fi, i = 1,2, ..., 6, be the (8,4,3) coverings on X2 from Theorem 2.2.1 1 whose 

union is an (8,4,4) covering, and let F7 = F8 = FI. We daim that the 784 blocks of 

D 

A; Bi , i = 1,2, --., 7 

i (i + 8) Fi, i = 1,2, ..., 8 

form a (24,6,4) covering. 

Al1 the [4,0]-sets are covered because the set of blocks contains a 4-(16,{6,4),1) 

design. 

The [3,1]-sets and the [2,2]-sets are covered by the blocks of AiBi, i = 1,2, ..., 7. 

The [l ,SI-sets and the [0,4]-sets are covered by the blocks of i ( i  t 3) Fi, i = 1, 2, . .., 8. 

O 

THEOREM 2.3.22 C(22,6,4) 5 580. 

Proof. Repeat the proof of Theorem 2.3.21, but instead take X2 = (17, ..., 22) and 

BI ,  &, ..., B5 to  be the 1-factors of a 1-factorization of the complete graph KG on X2. 

Let B6 = B7 = B5. Take Fi, i = 1,2,3,4, to be the four (6,4,3) coverings of size 6 on 

X2 frorn Theorem 2.2.12, and let Fi = FI ,  i = 5,6,7,8. O 

THEOREM 2.3.23 C(20,6,4) < 400. 
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Proof. This is again similar to  the proof of Theorem 2.3.21. Take X2 = {17,18, ..., 20) 

and let Bi, i = 1,2,3, be the l-factors of the l-factorization of the complete graph 

h', on X2. Let Bi = B I ,  i = 4,5,6,7. Let F be the 4-set 17 18 19 20. Then the 400 

blocks of 

i ( i + 8 )  F, i =  1,2 ,..., 8 

form a (20,6,4) covering. 

Summarizing the results of this section, we have made the following irnprovements: 

where the old bounds are given in parentheses. 

2.3.4 Bounds on C(v,  k, t), t 2 5 

In this section we improve the bounds on the covering number C ( v , T , S )  for some 

values of v in the range 13 5 v 5 25. The results lead to improvements on the 

covering number C ( v ,  k + 2, k) for k = 6,7,S (sec Table 2.4). 

The best currently known bound on the size of a (14,6,5) covering is 377. The cor- 

responding covering was found by the program cover described in [39]. A compressed 

description of a covering that attains this bound is given in the appendix. 
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THEOREM 2.3.24 C(13,7,5) 5 78. 

Proof. Start with a projective plane of order 3; that is, with a 2-(13,4,1) design D, 

generated by the block [l ,2,4,10] (mod 13). The set of blocks 

is a 2-(13,7,21) cyclic design whose blocks cover al1 elements of X(5)(13) and is there- 

fore a ( 13,7,5) covering design. The representatives of the orbits of the blocks under 

the cyclic group of order 13 are 

Proof. Morley [37] has proved C(12,8,6) < 51. The result follows by applying 

Construction 2.2.4 to the covering of Theorem 2.3.24. 0 

Several upper bounds on the covering numbers C(v, 7,5) are based on the follow- 

ing. 
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Proof. We use a computer to verify most of the steps of the proof (cf. Theo- 

rem 2.3.17.) Let X = X(17) and D' be the unique 3-(17,5,1) design [53]. The size of 

the spectra set of x(?) under D' is 4. The equivalence class D' corresponding to the 

spectrum (0J) has 408 blocks and is a 4-(17,7,6) design with p = 5. Similady, the 

size of the spectra set of x@) under D' is 6. The equivalence class D. corresponding 

to the spectrum (10,O) has 510 blocks and is a 4-(17,8,15) design with p = 6. 

The two designs D' and D. prove to be a matching pair of designs, thus producing 

a 5-(18,8,6) design D with p = 6 where Dl8 = Dm and Dis = D.. Further computer 

investigation shows that the design D is also an (18,8,6) covering. The compressed 

descriptions of representatives of the orbits under the cyclic group of order 17 are: 

018: 19, 71, 87, 5, 64, 36, 19, 123,8, 46, 27, 19, 15, 113, 19, 18, 21, 71,26, 33, 71, 111, 100, 

13, and 

D I S :  30, 7, 6, 83, 27, 97, 35, 101, 59, 3, 41, 91, 38,40, 9, 71, 65, 79, 28, 4, 72, 60, 85, 23, 

24, 35, 108, 30, 4, 22. 0 

Proof. To the (18,8,6) covering in Theorem 2.3.26 apply Construction 2.2.1 and 

delete the point 18. O 

We next study some properties of the Steiner systems S(24,8,5) and S(23,7,4) 
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and use them to construct a (19,7,5) covering. It is known that these two Steiner 

systems are unique [5]. The proof of the following lemma is also given in [5], p. 207. 

Lemma 2.3.28 Let A and C be blocks of the Steiner system S(24,8,5) where IA n 

CI = 4. Then (A U C )  \ ( A  n C )  is also a block. 

Lemma 2.3.29 Let B be a block of the Steiner system D = S(23,7,4). Removing 

each point of B from al1 blocks that contain it gfves a collection of blocks 01 sizes 4 

and 6 forming a Steiner system S(16,4,3) and a 3-(16,6,4) design. 

Proof. Without loss of generality, let D be defined on the set X(23) and B = 

1 2 3 4 5 6 7. Noting that n4 = n~ = ne = O and n;. = 1 the intersection equations for 

B with respect to D become 

no + ni + n2 + n3 = 252 

nl + 2nz + 3n3 = 532 

n2 + 3n3 = 420 

n3 = 140 

which yield nl = 112, n3 = 140 and no = n2 = O. So, on deleting the points of B, we 

get 112 blocks of size 6 and 140 blocks of size 4 on X = X(23)  \ X ( 7 ) .  Let us denote 

the collection of blocks of size 6 by SI. 

We first prove that SI is a 3-(16,6,4) design. Since the initial design D has p = 3, 

any two blocks of S' meet in a t  most three points. Let T be an arbitrary 3-subset of 
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X. Then T is covered by at most 4 blocks of S' (otherwise p would be more than 3). 

Therefore, the maximum number of triples that can be covered by the blocks of S' is 

4(?) = 2240. However, the number of triples covered by the blocks of S' is exactly 

l l2(3 = 2240. This shows that each triple of X is covered by exactly 4 blocks of S'. 

That is, S' is a 3-(16,6,4) design. 

Now, let us denote the collection of blocks of size 4 by Q. Consider again the 

3-subset T. There are 16 - 3 = 13 different quadruples of x ( ~ )  containing T .  The 

intersection of a block of Q and a block of S' has size at most 3 because the initial 

design D has p = 3. Since T is covered by exactly 4 blocks of Sr, there are exactly 

4 - 3 = 12 quadruples covering T that are subsets of blocks of S'. Therefore, T is 

contained in 13 - 12 = 1 quadruple that is not a subset of a bIock of S'. This 

quadruple must therefore be a block of Q. Thus any triple T E xP) is contained in 

exactly one block of Q, which completes the proof. 0 

Proof. It is known [21] that an S(24,8,5) can be obtained by a variation on the 

greedy algorithm as follows. Take 1 2 3 4 5 6 7 8 to be the first block. Then the block 

Bi, 2 < i 5 759, is the first block in the lexicographical ordering of ~ ( ' ) ( 2 4 )  such 

that (Bi n Bi( 5 4 V j  E X ( i  - 1). 

We wilZ need some information on the block intersections of the Steiner system 

S(24,8,5). Let U with jUI = u < t ,  be a subset of a block B of a Steiner system 
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D = S(u,  k, t ) .  It is shown in (51, pp. 199-200, that the number of blocks Y E D with 

Y n B = U depends only on IUI; that is, it is independent of both the choice of B 

and U. Hence we may set 

By counting, we get the recurrence 

t - 1  k - u  
m u = " - l -  m i ( i - u ) .  

k u + l  

(The ournbers A,, i = O, 1, ..., t, were defined in Chapter 1. Also, by definition, xj = O 

if i > j .)  For any block of the Steiner system S(24,8,5) we obtain 

m~ + 8ml + 2Sm2 + 56m3 + ?Om4 = 758 

ml + 7m2 + 21m3 + 35m4 = 252 

m2 + 6m3 + 15m4 = 76 

m3 + 5m4 = 20 

m4 = 4 

which gives ml = 4, m3 = O, m2 = 16, ml = 0 ,  and mo = 30. This shows in particu 

that there are exactly 16 blocks having two fixed points in cornmon with B I .  

Consider the intersection equations for BI. Since 725 = n6 = n~ = O and ns = 1 
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Removing each point of BI from al1 blocks that contain it we obtain a collection 

of blocks of sizes 4,6, and 8 on X = X(24) \ X(8).  

We daim that Lemmas 2.3.28 and 2.3.29 imply that the 280 blocks of size 4 form 

two identicd S(16,4,3). More explicitly, if a is a point of X ( 8 ) ,  t hen by Lemma 2.3.29, 

is an S(16,4,3). Applying Lemma 2.3.23, it is easy to check that 

has the same blocks as Q. 

There are 448 blocks of size 6. We will denote this collection by S. There is a 

collection E of 30 blocks of size 8. The union S U E is a 5-(16, {8,6), 1)  design on 

X = X(24) \ X(8) because the initial design D is a 5-design on X(24) and (y )  = 

448(5) + 30@. Let Si C S, i E X(8) be the collection of 6-tuples obtained from the 
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blocks containing the point i in the initial S(24,8,5), that is, 

Si = { B  \ {i, j )  : B E D, i, j f B, j E X(8) \ {il) .  

The maximal intersection number of the initial design D is 4 which implies that the 

maximal intersection number of S does not exceed 4. Now, Si C S ,  and Si is obtained 

from blocks of the initial design D containing the common point i. Therefore, any 

two blocks of Si intersect in at  most 3 points. 

LVe claim that the same is valid for any pair U, V :  where U is a block of Q and 

V is a block of S. For suppose IU n VI = 4. Then, in fact, U c V. Now, U and V 

originate from different blocks, say A and C ,  of the initial design D where U = A \ BI 

and V = C \ B1, IA B1l = 4 and IC n Bll = 2. Since [ U n  VI = /UI = 4 we have 

1 A n  Cl 2 4. On the other hand, IAn C[ 5 4 because the maximal intersection number 

of an S(24,8,5) is 4. Thus IA Ti CI = 4 and, in fact, A n C = U. By Lemma 2.3.28, 

( A  U C) \ ( A  n C )  is a block of D. But this is impossible as it has precisely 6 points 

in common with BI. 

Thus any two blocks of Si have at most three points in comrnon, and the size of 

the intersection of a block of Q with a block of Si is at most 3. On the other hand, 

= l{B \ {i, j }  : B € D, i ,  j E B, j € X ( 8 )  \ {i}}l 

= m2(7) = 16(7) = 112. 

Therefore, the blocks of Si cover 112(:) = 1680 different quadruples on X. The 

blocks of Q constitute an additional 140 distinct quadruples on X. Consequently, the 
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blocks of Si U Q cover any elernent of of X(') exactly once (1680 + 140 = ( y )  ); that 

is, Si U Q is a 4-(16, {6,4}, 1) design (cf .  Theorem 2.2.14). 

Let xl,xz, 13 be three new points. Now, it is easy to check that the blocks of 

form a 5-(19, {8,7,6), 1) covering design, where IS \ S,l = 160 blocks have size 6, 

140 + 112(3) = 476 have size 7, and 30 have size 8. (The equality IS \ Si1 = 160 

follows by inclusion-exclusion from [SI = 448, [S2I = IS3( = ISdl = 112, ISi fi S j [  = 

16, 2 5 i < j < 4, and ISz n S3 n Sq[ = O.) In order to obtain a (19,7,5) covering 

of size 707 it suffices to cover the 5-tuples contained in the 160 blocks of size 6 and 

the 30 blocks of size 8 by 231 blocks of size 7. The Iast step has been completed by 

cornputer. A compressed description of the 231 blocks of size 7 is given below: 
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Corollary 2.3.31 C(20,7,5) 5 1037. 

Proof. The result follows from Construction 2.2.2, Corollary 2.3.20 and Theo- 

rem 2.3.30. tl 

Corollary 2.3.32 C(21,7,5) 5 1359. 

Proof. There is a point, for example 20, in the (20,6,4) covering constructed in 

Theorem 2.3.23 which is in 148 blocks. The result follows from Construction 2.2.4 

and Theorern 2.3.30. 0 

The application of Construction 2.2.4 for obtaining coverings of small size does not 

necessarily require the initial covering to be of the smallest known size. In other 

words, we can start with initial covering designs of sizes si and sz, where si < s*, to 

obtain covering designs of sizes si and si, where si > si, provided the second design 

had a point which was in many blocks. The next lemma and theorem illustrate this 

fact . 

Lemma 2.3.33 There ezists a (21,6,4) covering of size 565 with a point occurring 

in 293 blocks. 
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Proof. Let D, A;, Bi, i = 1,2, ..., 7 be the same as in Theorem 2.3.22 except that the 

pair 21 22 is contained in Bi. Replace the point 22 with a point from Xa \ (21,221 

in Bi, and change 22 to 21 in the  remaining 1-factors Bi, i = 2,3, ..., 7. A (5,4,3) 

covering F of size 4 on Xz \ (22) such that the point 21 is in al1 4 blocks is easily 

constructed. Let C be the block a 17 18 19 20 21, where a E Xi. It is easy to check 

that the blocks of 

D 

form a (21,6,4) covering of size 565 such that the point 21 is in 260 + 32 + 1 = 293 

blocks. O 

Although this result is useful in the next theorern, it does not yield the best upper 

bound on C(21,6,4). Belit (personal communication) has obtained C(21,6,4) 5 502. 

He has also found C(23,6,4) 5 723. 

THEOREM 2.3.34 C(22,7,5) 5 1874. 

Proof. To obtain the covering apply construction 2.2.4 and Corollaries 2.3.33 and 2.3.31. 

O 

THEOREM 2.3.35 C(23,7,5) 5 2342. 
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Proof. First we prove that C(23,7,5) 5 2347. There is a point, Say 22, in the (22,6,4) 

covering constructed in Theorem 2.3.22 which is in 140 + 32 = 172 blocks. The proof 

now follows from Construction 2.2.4. 

The covering described above was further reduced by local computer search to 

2342 biocks. Thus C(23,7,5) 1 2342. 0 

So far, we have proved the following new upper bounds: 

C(l3,7,5) 5 78(88), C(M, 8,6) 5 165(179), C(l8,8,6) 5 918(1240), C(17,7,5) 5 

408(506), C(19,7,5) 5 707(930), C(20,7,5) 5 1037(1239), C(21,7,5) 5 1359(1617), 

C(22,7,5) 5 1871(2088), C(23,7,5) 5 2342(2647), 

where the value in parentheses indicates the best previously known upper bound. 

Sorne other new bounds on C(v, k, t )  are obtained by local search or by direct ap- 

plications of Constructions 2.2.2 and 2.2.4 or Corollary 2.2.6 (see Tables 2.3 and 2.4). 

In the tables the superscript a indicates the covering is given in the appendix; e 

indicates the result is obtained in [27]; b indicates the result is found by R. Belit and 

o that it is found by F. Oats (personal communication). The coverings of Belit and 

Oats can be found in the La Jolla Covering Repository, a website maintained by Dan 

Gordon at http://sdcc12.ucsd.edu/œ~3dg/cover.html 

The coverings of the last two authors are found via computer local search. The 

entries with superscripts c2 and c3 are obtained by Constructions 2.2.2 and 2.2.4. 
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Table 2.3: New Upper Bounds on C(v, k 
(594) -mm- 

Table 2.4: New Uppt 
(6 93 

Bounds 
(876) 
161' 

304c2 
443b 
718~ 
918 

1507~ 
2042& 
3 0 w 2  
425 ld 
6125c2 
8124" 
11 l8gC2 
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The entries in italics are old bounds from [2S] needed to calculate bounds obtained 

by Construction 2.2.2. The (v,  k,t) coverings with less than 6000 blocks obtained 

by Construction 2.2.4 are explicitly constmcted after finding the point which is in 

the largest number of blocks in an appropriate (v  - 1, k - 1, t - 1) covering. For 

coverings with more than 6000 blocks the upper bounds on C ( v ,  k, t )  are calculated 

by Corollary 2.2.6. The remaining entries are explained in the text . 

2.4 Comparative and asymptotic results 

Let L'(u, k, t )  denote the best possible lower bound which can be obtained by succes- 

sive application of Theorem 1.1.1 and cal1 it the Schijnheim bound. Given a (v, k, t )  

covering C' of size b, define the deviation 6 by 

6 = 6(CS) = 
b 

L1(v, k, t ) '  

It seems natural to use this definition to estimate how good a covering is: the 

closer the deviation to 1, the better the covering. However, given t hat t here are cases 

where the Schonheim bound cannot be attained, for example, C(8,4,3) = 14 (there 

exists a Steiner system S(8,4,3)) and by Theorem 1.1.1, we obtain C(9,5,4) 2 26 = 

L1(9,5,4), whereas it is known that C(9,5,4) = 30 [14], it may be that b is far from 

1 and yet we do have the best covering. There are also cases where the Schonheim 

bound is the size of the best covering; for example C(10,6,5) 2 ryC(9,5,4)1 = 50, 
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Table 2. 
1 Lower 1 New 

bound uPPe= 
bound 

5: Bounds on C(v,6,4) 
1 Previously 1 
i known upper 

bound 1281 
New uppet bound 

Lower b a n d  

which is, in fact, the exact value of C(10,6,5) [14]. 

In Table 2.5 we give a cornparison between the bounds on the covering number 

C(v, k, t )  for the third column of Table 2.3. 

The next lemma gives a general upper bound on the covering number C(v ,  k, k - 1). 

k-i v Lemma 2.4.1 C ( v ,  k, k - 1) 5 (k!l) - Y (k). 

Proof. First we form ( v ,  k, k - 1)  packings defined by 

k 

Pj = { { a l l a *  ,... ,ak) : a i E X ( v ) ,  C a i =  j (mod k)),  j =  1 , 2  ,..., v 1291. 
i=l 

It is clear that 
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and so x:=, JPjl = ( )  Therefore, at least one of these packings h a  size at  least 

( )  tJ k '  The blocks of the packing cover at  least a(:) (k - 1)-subsets of X(v). At 

rnost ((k!l) - (L)) (k - 1 )-subsets remain and in the worst case can be covered by 

((k~i) - f ( ~ ) )  k-sets. Thus we obtain 

O 

This lemma does not produce good bounds for small values of v, but it implies a 

general bound which asymptotically produces coverings of deviation 1. More precisely, 

we have the following. 

THEOREM 2.4.2 Let 6 be f i e d .  Then 

lim ( k L )  - ++ (i) 
u-.. C(v, k, k - 1) 

k l v  

1 5 ( k ~ l )  - e ( k )  C(V, k, k - 1) 
k l u  

5 
( L I )  - P ( k )  

1: 12 ... ["] ...Il 
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where 

and the result follows. 0 

Lemrna 2.4.1 and Theorem 2.4.2 provide an easy constructive proof of a particulitr 

instance of the famous Erd6s-Hanani conjecture [23] that for fixed t and k ,  t < k ,  

C h  k ,  t )  

lim iii 
= 1 

Our result provides a direct proof for the case t = k -  1. The Erdos-Hanani conjecture 

was proved in 1985 by V. R6dl [44] ,  and shortly after that, Spencer [47] simplified the 

proof. Both proofs make use of probabilistic methods. 

2.5 O t her generalizat ions 

After studying the paper of Zaitsev et al. [54] we noticed that it contains (although 

not explicitly stated) the following result which is an extension of Theorem 2.2.14. 

T H E O R E M  2.5.1 There ezists a 3-(4",6, f(4" - 4 ) )  design D with p = 3 so that 

the family of ail 4-subsets of X(4") not couered by any block of D is a Steiner system 

S(4", 4 , 3 ) .  This Steiner system can be partitioned into (22m-1 - 1 )  S(4", 4 , 2 )  3. 

Note that the extension of Theorem 2.2.14 is the decomposition of the S(4m, 4,3) 

into S(4", 4 , 2 ) ' s  for every rn 2 2, a result of Zaitsev et al. [55]-  This result is based 
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on the cemarkable proof of Preparata [42] that the binary Hamming code decomposes 

into translates of the Preparata code. The design D is obtained frorn the codewords of 

weight 6 of the Preparata code. The partition of the Steiner system S(4",4, 3) (formed 

by the codewords of weight 4 in the Hamming code) into (22m-1 - 1) S(4m,4,2)7s is 

described in [55].  Taking the derived designs of the designs given in Theorem 2.5.1 

we obtain the following. 

Corollary 2.5.2 There exists a 2-(4" - 1,5, i(4" - 4)) design D with p = 2. The 

family of al1 3-subsets of X(4m - 1) that are not couered b y  any block of D form a 

resolvable Steiner system S(4" - 1,3,2)- 

The result of Zaitsev et al. leads to the following general upper bound. 

T H E O R E M  2.5.3 Let O 5 d 5 LZm-2 - 3. Then 

C(3(2'"-') - 2d, 6,4) 

< (3 (~ (4m-1  - 1) + (47-2 - f)] + 22"-lC(22m-1- 2 4  4,3) 

+C(22"-1 - 2d, 6,4). 

Proof. Partition X(3(S2"-') - 2d) into two sets, XI = {1,2, ..., 4m} and X2 = 

14' + 1, 4m + 2, ..., 3(22m-1) - 2d} .  Let D be the 3-(4", 6, ! (4" - 4)) design on XI 

from Theorem 2.5.1, and D' be the correspondhg S(4", 4,3). Let AI, Az, ..., Azam-i-i 
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be the partition of D' into (22m-L - 1) S(4m, 4,2)'s. Let BI ,  B2, .-., 

be the 1-factors of a 1-factorization of the cornpiete graph &2m-i-2d on X2. Let 

B22m-~-2d = B22m-~-2d+l = ... = B p m - ~ - ~  = BI. Let E be a 1-factor of the complete 

graph Ksm on X1 and F a (22m-' - 2d, 4,3) covering of size C(22m-' - 2d, 4,3) on 

X2- Let H be a (22m-' - 2d, 6,4) covering of size C(22m-' - 2d, 6,4) on X2. We claim 

that the blocks of 

D 

AiBi, i = 1,2, ..., 22m-' - 1 

E F 

H 

form a (3(22m-') - 2d, 6,4) covering. 

Al1 of the [4,0]-sets are covered because the blocks contain as subblocks the blocks 

of the 4-(4", {6,4), 1) design formed by the union of the design D and the Steiner 

system S(4m, 4,3) .  

The [3,1]-sets and [2,2]-sets are covered by the blocks of AiBi, i = 1,2, ..., 22m-1- 1. 

The [1,3]-sets are covered by the blocks of EF.  

The [0,4]-sets are covered by the bIocks of H .  

Finally, it is easy to check that the number of blocks of this covering is exactly 

the right hand side of the inequaiity of the theorem, which completes the proof. 

A slightly better bound can be obtained under the condition given in the next 

theorern which generaiizes Theorems 2.3.21, 2.3.22, and 2.3.23. 
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THEOREM 2.5.4 Let O 5 d 5 22m-2 - 2. If there ezist 22m-' (Z2"-' - 2d,4,3) 

couen'ngs each of size C(22m-' - Zd, 4,3) uihose union is a (2'"-' - 2d, 4,4) covering, 

then 

Proof. We basically follow the proof of the preceding theorem. The difference is 

in the covering of the [1,3] and [0,4]-sets. Let Fi, i = 1,2,...,22m-', be the (22m-1 - 

2d, 4,3) coverings on -Y2 whose union is a (22m-1 - 2d, 4,4)  covering. Instead of using 

the union of the blocks of EF and H we use the blocks of E Fi, i = 1,2, ..., 2*"-' , to 

cover the [1,3] and [0,4]-sets. 17 

For example, if m = 2 and d = 1, Theorem 2.5.3 gives C(22,6,4) 5 581 while 

Theorem 2.5.4 gives C(22,6,4) < 580 which is the best known bound (both use 

Theorem 2.2.12). Corollary 2.5.2 leads t O the following generalization. 

THEOREM 2.5.5 Let O 5 d 5 22m-2 - 3. Then 

C(3(Z2"-' ) - 2d - 1,5,3) 

5 ('1') [&(22m-1 - 2 )  + f(4--l - d)] +C(22m-1-2d,5,3). 
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Proof. Partition X(3(22m-') - 2d - 1) into the two sets X1 = {1,2, ...,4m - 1) and 

Xz = {4", 4m + 1, ..., 3(22m-1) - 2d - 1). Let D be the 2-(4m - 1 5,  9(4m - 4)) design 

on XI from Corollary 2.5.2. Let Al, Az, ..., Apm-r -i be the resolution classes of the 

Steiner system S(4m - 1,3,2). Let Bi, Bz, ..., B22m-l-l-2d be the 1-factors of a 1- 

factorization of the cornpiete graph K22m-1 -2d on X2 and B22m-l-2d = B22m-i-2d+l = 

... = Bpm-1 = BI. Let C be a (22"-1 - 2d, 5,3) covering of minimum size on X2. We 

claim that the blocks of 

form a (3(22m-') - 2d - 1,5,3) covering. 

Since the blocks contain as subblocks the blocks of the 3-(4" - 1, {5,3), 1)  design 

formed by the union of the design D and the Steiner system S(4" - 1.3:3), al1 of the 

[3,OI-sets are covered. 

The [2,1]-sets and [1,2]-sets are covered by the blocks of AiBi, i = 1,2, ..., 22m-'-1. 

The [0,3]-sets are covered by the blocks of C. 

Again, the number of blocks of the constructed covering is exactly the right hand 

of the desired inequality, which cornpletes the proof. O 



Chapter 3 

Three infinite families of minimal 

coverings 

3.1 Introduction 

In this chapter we prove that certain t-designs are minimal ( t  + 1)-coverings, thus 

finding some new covering numbers. The results of this chapter have been published 

in [Il]. 

It is clear that any t-(v, k, A) design is a minimal t-(v, k, A )  covering. Aside from 

this, little is known about the covering number Cx(v, k, t ) ,  X 2 2. 

There are some generai results on Cx(v,  k, 2) [36] but for t 1 3, o d y  a few sporadic 

values are known. Two generai results which have been obtained from finite geometries 
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are: 

where q is a prime power. The corresponding coverings are 2- and 3-designs. In fact, 

the only other known infinite family producing coverings with t 2 3 is 

a generalization of the result in [43] and found by Todorov [50], [51]. In a recent paper, 

Chee and Ling [!8] determined several covering numbers C.\(v, k, 3) and in particular 

showed that C3r(15, 6,3) = 70X, for A = 1,2,3. The corresponding covering designs 

also arise from results in [7] and are, in fact, 2-(15,6,10X) designs, X = 1,2,3. These 

results suggest that there might be other designs that are minimal coverings and the 

results of a search for such designs are presented in this chapter. We find three new 

infinite families of minimal coverings with t 2 3. 

3.2 Minimal 4-Coverings 

THEOREM 3.2.1 Let v s 2 or  4 (mod 6), v > 8, and m = &(v - 4)(v2 - 150 + 

62) - 1. Then C,(v,v - 4,4) = &v(v - l)(v - 2) = C(v, 4,3). 

Proof. There exists a 3-(v,4,1) design D for any u 2 or 4 (mod 6) [31]. The 

number of blocks of D is U v ( v  - 1) (u - 2) = C(u, 4,3). The supplemental design D of 
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D is a 3-(v ,  v-4, !("id)) design with A. = &TI("- l ) (v -2) ,  Al = & ( v - l ) ( v - 2 ) ( v - 4 ) ,  

A? = i ( (~  - 2 ) ( ~  - 4 ) ( ~  - 5 ) .  A3 = -L ,,(u - 4 ) ( ~  - 5 ) ( ~  - 6 ) .  

Consider an arbitrary 4-subset S of X ( v ) .  The intersection equations of S with 

respect to D are 

no f nl + n2 + n3 + n4 = .\O 

nl + 2n2 + 3n3 + 4n4 = 4X1 

n2 + 3n3 + 6n4 = 6X2 

n s + 4 n 4  =4X3. 

An essentid step of the proof is to  show that this system has only two distinct solutions 

in non-negative integers no, nl, na, n3 and n4. To prove this, we find bounds on n4.  

From the last three equations we obtain 

Since n~ > O we get 

On the other hand, solving the system for no, nl, nz and n3, we have 
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A lower bound on n4 now follows from no 3 O: 

Thus n4 can take only two values, either m or n + 1, wbere m = &(v - 4)(v2 - 

15v + 62) - 1. It is easy to check that both values produce a non-negative integral 

solution to the intersection equations for S. So, we proved that ecch Csubset of X ( v )  

is contained in either m or m + 1 blocks of D; that is, D is a 4411, v - 4, m )  covering. 

To prove that D is a minimal covering, we show that the number Xo of blocks of D 

meets the Schonheim lower bound (Corollary 1.1.2). Thus we clairn 

Let u = 6k + 4, for k > 1. Then m = 5(18k3 - 21k2 + 9k - 2 ) .  We obtain 

and the claim follows after simple arithmetic. 

If v = 6k + 2, for k > 2, then m = i ( 1 8 k 3  - 39k2 + 29k - 8). We have 

and the claim follows analogously. 
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The existence of many minimal covering designs without repeated blocks follows 

£rom this result. The following result illustrate this. 

Corollary 3.2.2 Suppose there exist  1 disjoint 3-(v,4,1) designs, where v > 8 and 

1 < u - 8 ,  and let m = &(v - 4)(v2 - l5v  +62) - 1. Then there r r i r ts  a 4-(u, v -4, ms) 

minimal covering without repeated blocks for 1 5 s 5 1. 

Proof. Let D be the 3-(v, 4, s )  design formed by s disjoint 3-(v, 4 , l )  designs. 

Then D is the desired covering. The Schonheim lower bound argument works for 

l < s < v - 8 .  0. 

For example, there exist five non-intersecting 3-(10,4,1) designs [33]. Therefore, 

there exists a 4-(10,6,2s) minimal covering without repeated blocks for s = 1,2. There 

exis t at least four non-intersecting 3-(14,4,1) designs [25]. Therefore, there exists a 

4-( 14,10,19s) minimal covering without repeated blocks for s = 1,2,3,4. Similar 

extensions are possible for many other sets of parameters. For a survey of the results 

on finding non-intersecting 3-(v, 4 , l )  designs we refer the reader to [25]. 

THEOREM 3.2.3 Let q 2 4 be a prime power and X = q(q - l ) ( q  - 3 )  + 2 .  Then 

G ( q 2  + 1, q2 - q, 4) = q(q2 + 1). 

Proof. The proof is similar to the proof of the preceding theorem. Let D be 

the supplemental design of a 3-(q2 + 1, q + 1 , l )  design D (for exarnple, the inversive 

geometry of order q). The design D is a 3-(q2 + 1, q2 - q, (q - 2)(q2 - q - 1)) design 
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with Ac = ~ ( ~ ~ + 1 ) ,  XI = q 2 ( q - l ) ,  A? = ( q - l ) ( q 2 - q - 1 )  and Ag = ( q - 2 ) ( q 2 - q - 1 ) .  

Let S be a 4-subset of X ( q 2  + 1) and ni, i = 0,1,2,3,4,  be the intersection numbers 

of S with respect to D. As in Theorem 3.2.1, 

n4 5 XI - 3A2 + 3A3 = q(q  - l ) ( q  - 3) + 3, 

n4 2 4X3 - 6X2 + 4 X 1  - XO = q(q  - l ) ( q  - 3) + 2, 

and both bounds produce a solution in non-negative integers to the intersection equa- 

tions for S. Thus any 8-subset of X(q2 + 1) is covered by either X or A + 1 blocks of 

- 
D. SO, D is a 4-(q2 + 1, q2 - q, A)  covering. Furthermore, 

and the equality 

follows directly. Therefore, the nurnber of blocks of B meets the Schonheim bound, 

which completes the proof. O. 

Similarly, we obtâin the following generalization of Theorem 3.2.3. 

Corollary 3.2.4 Suppose there ezist 1 disjoint 3-(q2 + 1, q  + 1,1) designs, where 1 5 q, 

q 2 4 is a prime power, and let X = q(q - l ) ( q  - 3) + 2. Then there ezist a 4- 

( Q ~  + 1, q2 - q,  AS) minimal coven'ng taithout repeated blocb for 1 5 s 5 1. 
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Proof. Let D be the 3-(q2+ 1, q + l ,  s) design formed by s disjoint 3-(q2+ 1, q+ 1,1) 

designs. Then D is the desired covering because the Schonheim lower-bound argument 

works for < 1; that is, for s 5 g. O. 

For example, there are at  least three disjoint 3-(17,5,1) designs [17]. Therefore, 

there exists a minimal 4-(17,12,14s) covering without repeated blocks for s = 1,2,3. 

3.3 Minimal bcoverings 

The next theorem provides the third of the infinite families referred to in the intro- 

duction. 

THEOREM 3.3.1 Let n = 4k - 1, k 2 2. Then 

Proof. Let D be the 3-(n + 1,6, in - 1) design (with maximal intersection nurn- 

ber p = 3) obtained from the Preparata code [15], p. 185-193 and described in 

Theorem 2.5.1. Let Dr be the derived design of D with respect to a point x; which 

is a 2-(n, 5, in - 1) design with p = 2. 

For completeness we need a direct proof to part of Corollary 2.5.2 which we now 

present. We prove that the 3-subsets of X ( n )  that are not covered by any block of 
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Dr form a 2-(n,3,1) design D* . 4 2-subset T of X ( n )  is contained in ( n  - 2) of the 

3-subsets cf X ( n ) .  On the other hand, T is contained in 3(5n - 1) = n - 3 of the 

3-subsets that are subsets of blocks of Dr. Since Dr has p = 2, al1 these subsets are 

distinct. Therefore, T is contained in exactly ( n  - 2) - (n - 3) = 1 3-subset of X ( n )  

t hat is not covered by any biock of Dr. 

Now, consider the residual design Dr of D with respect to the same point x. It 

1 is a 2-(n, 6, =(n - 3)(n - 5)) design with p = 3. Any 3-subset of X ( n )  that is not 

a block of D' is contained in exactly ( t n  - 2) blocks of D. and any block of Dœ is 

contained in exactly ( i n  - 1)  blocks of D,. Thus Dr is a 3-(n, 6, i n  - 2) covering. To 

prove that D, is a minimal covering we note that 

(because (n - 3 ) ( n  - 5) is divisible by 12). Further, n(n-1)(n-31(n-5) 23.32 .5 is an integer, as 

one of (n - 11, (n - 3) and (n - 5) is divisible by 5 and n = 4k - 1 irnplies n 3 

(mod 6). Then the equality 

is immediate. This completes the proof that Dr meets the Schonheim bound. 0. 



Chapter 4 

New Simple 3-Designs on 26 and 

28 Points 

4.1 Introduction 

The most recent tables of the known simple designs have b e n  published in [34]. In 

this chapter we prove the existence of 22 new simple 3-designs on 26 and 28 points. 

The base of the constructions are two designs in which the maximum size of the 

intersection of any two blocks is small. The work of this chapter has been published 

in [12]. 

The following theorem, proved in [22], and its corollaries given in 191, [a], can be 

used to  obtain new designs from designs with sufficiently small maximal intersection 
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number p. 

THEOREM 4.1.1 (DRIESSEN'S THEOREM [22]) If D is a t-(v,  k ,  A) design with a 

maximal intersection number p 5 k - m - 1 - 1 ,  for Jized integers m,  1 2 0 ,  ther. 

design. 

Corollary 4.1.2 Designs obtained b y  Dn'essen's Theorem for pairs mi, II and m2, 12, 

where mi # m2, but mi - I l  = r n z  - 1 2 ,  haue the same block size, and are simple and 

disjoint. 

Corollary 4.1.3 If the designs produced 6y Driessen's Theorem are simple and non- 

trivial, then rn 5 k - t - 1, and the initial design is  not trivial. 

4.2 New 3 - (26, k ,  A) designs 

Let D be the unique 3-(26,6,1) design. We will prove the existence of a 3-(26,8,14) 

design D' with p = 5. W e  use the method illustrated in Theorem 2.3.17. The size 

of the spectral set of x ( ~ )  under D is 13. One of the equivalence classes is D' with 
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1 D'I = 650 and SpecD(Dt) = (12, O, O). It is a 3-(26,8,14) design with p = 5. Thus we 

have the following. 

THEOREM 4.2.1 The 8-subsets of X(26) that intersect each block of the unique 

3 - (26,6,1) design D in ut most 4 points and ezactly 12 of the blocks of D in 4 

points, f o m  a 3 - (26,8,14) design with p = 5. 

The application of Driessen's theorem and Corollaries to D and D' produces 

amongst ot hers the following designs: 

Dlel : 3 - (26,6,12O) Dzp0 : 3 - (26,6,14O) 

DO,l : 3 - (26,7,35) Di,o : 3 - (26,7,7O) 

: 3 - ('26,ï ,  1995) Div1 : 3 - (26,8,2016) 

D0,2 : 3 - (26,8.532) Do,o u Di,,  : 3 - (26,8,2030) 

: 3 - (26,9,4788) Dovl : 3 - (26,9,378) 

DOv2 : 3 - (26,10,4590). 

The designs from the first column are mentioned in [9]; whereas the designs from the 

second column are new (wit h the exception of Rimo). 

THEOREM 4.2.2 The follo.wing are sets of pairwise disjoint designs: D ,  and 

D',.,; Do,i, 0 1 , 2  and Di,,; D0.2, D' and D'l.1; Dos and Dg,, . 

Proof. We investigate the intersections of the designs with the initial design D. 

In what iollows, we essentially use the condition of Driessen's theorern. 
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Consider the designs D, Dl,* and Di,,. The maximal intersection number of D is 

2. Each block B of Dl,l has an intersection of size 5 with some block B' of D and 

an intersection of size less than 5 with each of the remaining blocks of D (because 

B is obtained frorn B' by removing a point and adding a new point from the set 

X(26) \ B.). Any block of Di,, is a 6-subset of a biock of D' and any block of D' has 

at  rnost 4 points in common with a block of D. Therefore, any block of Di,, has at 

most 4 points in cornmon with a block of D. On the other hand, each block of Dl,l 

has 5 points in common with a block of D and consequently, the designs D, Dr,1 and 

Di,, are pairwise disjoint. 

Consider the designs Do,r, Dlv2 and Di,,. A- block of Dovl contains a block of D. 

Any block of DI,2 has an intersection of size 5 with a block of D and an intersection 

of size less than 5 with each of the rernaining blocks of D. So, it has at  most 5 points 

in common with a block of Do,i. The blocks of Di,, are the 7-subsets of the blocks of 

Di. Therefore, any bIock of Di,, has intersection of size a t  most 4 with each of the 

blocks of D and thus at most 5 with the blocks of Dovl and 6 with the blocks of Dl,*. 

Consequently, the designs Do,i, Dlq2 and Di,, are pairwise disjoint. 

Consider D' and Di,,. Any block of DOv2 contains a block of D. Any block of 

D' has at  most 4 points in cornmon with each of the blocks of D, so blocks of D' and 

4 2  have a t  most 6 points in common. Any block of Di,, is obtained by removing a 

point frorn a block of D' and adding a point from the supplement of the sarne block. 
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Therefore, a block of Dil1 cannot have more than 5 points in common with a block 

of D and hence 7 with a block of Do,z- The designs D' = Dolo and Dil, are disjoint 

by Corollary 4.1.2. Consequently, the three designs Do,2, D' and Dil, are painvise 

disjoint. 

Findly, consider DoV3 and Do,,. Any block of Doa contains a block of D. Any 

block of Dk, contains a b!ock of D' and one more element. Consequently, a block of 

Do,, cannot have more than 5 points in common with a block of D and hence at  rnost 

8 points with a block of DoS. Therefore, the designs DOl3 and 

The observations made so far lead to the following result. 

proofs. ) 

D~llaredisjoint.  o. 

(See Table 4.1 for the 

Corollary 4.2.3 There ezist designs with the following parameters: 

3-(26,6,m) f o r  m=141,260,261; 

3 - (26,7,35m) for  m = 2,3,59,60; 

3 - (26,8,7m) f o r  rn = 2,78,288,290,364,368; 

3 - (26,9,2lm) f w  rn = 18,246; 

3-(26,10,3m) f w  m = 1530. 

Note that the designs are given in the form t-(v, k, Xminm), where Amin is the minimum 

value of X for which a t-(v, k, A )  design could exist (cf. [34]). 
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4.3 New 3 - (28, k, A) designs 

Van Lint and MacWilliams [35] have constructed a 3-(28,9,28) design D" from the 

subsets of coordinate places hoIding codewords of weight 9 in a linear code of length 

28 over GF(4). The code has minimal distance 9 (equal to the minimal weight of a 

codeword). We prove that the design D" has p 5 6. There are three non-zero elements 

in GF(4) and the code is linear, so there are three codewords for each support. Since 

the minimal distance of the code is 9, any other word of the code must be a t  a distance 

at Ieast 9 from each of these three. If p > 6, consider three codewords, cl, ca and c3 

with the same support. There must be a codeword c' which has at least 7 non-zero 

elements in the support positions. At least three of these eIements must be the sarne 

as the corresponding elements in one of the three codewords, Say cl.  This gives two 

codewords, cl and c', at distance at rnost 8, which is a contradiction. Thus p 5 6 for 

the 3-(23,9,28) design D" obtained in [35]. 

The application of Driessen's theorem and corollaries, as shown in Table 4.1, now 

proves the following. 

THEOREM 4.3.1 There e z k t  designs with the parameters 3 - (28,7,420); 3 - 

(28,8,168); 3 - (28,9,28m), rn = 171,172; 3 - (28,10,760) and 3 - (28,11,9405). 

The results of Corollary 4.2.3 and Theorem 4.3.1 are summarized in Table 4.1. Of 

particular interest are the two designs with parameters 3-(26,8,14) and 3-(26,9,378) 
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Pararnet ers 
3-(26,6,m) 

v designs 
Construction 

as they have the smallest h o w n  X when the other three parameters are fixed. 



CHAPTER 4. NEW SIMPLE 3-DESIGNS ON 26 AND 28 POINTS 78 

Appendix 
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