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Abstract

In this thesis we study coverings and designs with good covering properties; that is,
designs in which the size of the maximum intersection between any two blocks is small.
The first chapter contains some basic facts that are used throughout the thesis.

In chapter two we give many new constructions of coverings. We focus on coverings
on a reasonably small set of points as they can be directly applied. An interesting
“competition” to improve the upper bounds on the sizes of coverings started in 1993
when Nurmela and Ostergard used simulated annealing to obtain good coverings for
up to 13 points. In 1995, Gordon, Kuperberg and Patashnik obtained good coverings
for up to 32 points using somewhat less precise, but faster algorithms and that same
year Chang, Etzion and Wei made improvements using combinatorial constructions
based on previous results of Etzion. In this chapter we improve many of the bounds
in the works of these authors; most of the improvements are accomplished by purely
combinatorial arguments, while others are assisted by computer searches.

In chapter three we describe three new families of minimal (¢t + 1)-coverings ob-

tained from ¢-designs. These coverings produce new covering numbers for an infinite

iii



number of parameters. Aside from t-designs (which are also t-coverings) prior to this
work only three infinite families of coverings were known; those obtained by Ray-
Chaudhuri, and Abraham, Ghosh and Ray-Chaudhuri in 1968, and Todorov in 1984.

In chapter four we prove the existence of 22 new simple 3-designs on 26 and 28
points. The base of the constructions is two designs in each of which the size of the
intersection of any two blocks is small. We also use methods introduced in previous
work and a new approach based on designs obtained via Driessen’s Theorem and its
corollaries. The designs on 26 points are obtained from the inversive geometry of order

5. The designs on 28 points are obtained from a code of van Lint and MacWilliams.
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Chapter 1

Some basic facts

In this chapter we establish the notation to be used throughout the thesis and present

some basic facts and definitions.

1.1 Design theory

Let D = {B, B,,..., By} be a finite family of k-subsets (called blocks) of a v-set X(v)
= {1,2,...,v} (with elements called points). Then D is a t-(v, k, A) design if every

t-subset of X(v) is contained in exactly A blocks of D. Next, define

p= lsrrilg;(SblB.-ﬂle.

We call p the maximal intersection number of D.

Given a point z in X(v), the blocks of D that contain z, after removing z from
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each of these blocks, form a (¢ — 1)-(v — 1,k — 1, A) design D* on X\{z} called the
derived design of D with respect to z. The blocks of D that do not contain =
forma (t—1)-(v—-1, k, E%ff-l—z\) design D, on X\{z} called the residual design of D
with respect to z. We say also that D and D, form a matching pair of designs.

If every t-subset of X(v) is contained in at most A blocks of D, then D is a ¢-
(v, k, A) packing design (or packing). If every t-subset of X(v) is contained in at
least A blocks of D, then D is a t-(v, k, A) covering design (or covering). Given a
covering, the number of blocks is the size of the covering, and the minimum size of a
t-(v, k, A) covering is called the covering number, denoted C\(v, k,t). A covering of
size Cy(v, k, t) is called a minimal covering. When A = 1 we write C(v, k, t) instead
of Cy(v, k,t), and we say a (v, k,t) covering instead of a t-(v, k,1) covering. We also
say a (v, k,t) packing instead of a t-(v, k, 1) packing. A Steiner system S(v, k,t) is
a (v, k, t) covering in which every ¢-set is covered exactly once.

A general lower bound on C)(v, k,t) is due to Schénheim [43].

THEOREM 1.1.1

Cr(v, k,t) > [%C,\(U k-1t 1)] .

Proof. The total number of points involved in all blocks of a ¢-(v, k, A) covering design
of the minimum possible size b = C\(v, k, t) is bk. On the other hand, removing a point

from all blocks that contain it produces a (¢—1)-(v—1, k—1, A) covering. Consequently,
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each point is in at least Cx(v—1,k—1,¢—1) blocks. Thus bk > vC(v—1,k—1,¢—1),
sO

bz[%nw—hk-Lt-nL

By iterating the inequality of Theorem 1.1.1 we obtain the following.
Corollary 1.1.2

ot [g [ [rzeb] ]

A well-known necessary condition for the existence of a t-(v, k, A) design D is that

the A\, 1 < ¢ <t, defined by

k—q+1

/\0 =b= |.DI, and /\q = m

Aq-lv

be integers. Obviously, A; = A and the number of the blocks of the design is

v(v—1)...(v—-t+1)

%=b=kw—nmw-t+n

A

Let D = {By, By, ..., By} be a t-(v, k, A) design. 1t is known [34] that D, = {X(v)\
B:BeD}isat- (v,v -k, z\(":k) / (’:)) design called the supplemental design of
D. So we need only be concerned with designs having block-size at most [%J . The
set of all k-subsets of X (v) will be denoted by X*)(v). (We will use X(*) instead of

X®)(v) whenever the value of v is clear from the context.)
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Consider the set X{*)(v) = X%}, where t + 1 < s < |.§J .
The intersection numbers of an s-subset S of X(v) with respect to the

blocks of a t-(v, k, A} design D are defined by
n=n(S)=|{B:Be D,|BnS|=i},i=0,1,..,s.

So n; is the number of blocks of D that intersect S in 7 points. The intersection

equations for S are then given by

> (i)m:(s),\m for m=0,1,..,min(s,£) [52].

The last equation is obtained by counting in two ways the pairs (M, B) such that
MCSNB, BeD,and |M|=m.

The spectrum of A € X under D is the ordered (m — t)-tuple

Specp(A) = (Reg1, Ret2y oy m),

where m = min{k,s} and n;, ¢ = t + 1,...,m, are intersection numbers of A with
respect to the blocks of the design D.

The spectral set of X*) under D is the collection of all possible spectra of the
elements of X*) under D.

The equivalence relation R on X(? is defined by A;RA; if and only if Specp(4,;) =
Specp(A;). Therefore R partitions X} into equivalence classes X\, X{7, ..., X{ and
we write Specp(A) = Specp(X ) for all A € X ¢ X, It turns out that some of

. ’ .
these classes, or unions of some of these classes, are t -designs for some t'.
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A design without repeated blocks is called a simple design. Given two simple
designs D, and D, on X we say that D; is isomorphic to D, if there exists a
permutation 7 : X — X such that x(B) € D, for every B € D,. The permutation =
is called an isomorphism from D, to D;. When D, = D;, the permutation = is
called an automorphism of D,.

The set of all automorphisms of a design D form a group, Aut(D), called the
automorphism group of D. This group acts as a permutation group on the points
and also as a permutation group on the blocks.

A t-(v, k, A) design on X (v) is said to be cyclic if whenever B is a block, {z+1:
z € B} is also a block, where addition is performed modulo v. In this case Z,, the

cyclic group of order v, is a subgroup of Aut(D).

1.2 Coding theory

Given a vector space V = V,(K) of dimension n < oo over the field K, a code C is
a subset of V. The vectors in the code are called codewords or simply words. The
(Hamming) distance between two codewords x = (z1,...,z,) and ¥y = (y1, ..., Yn) is

the number of places in which they differ; that is,

d(x,y)=[{i:1 i< n,z #y}l.
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The (Hamming) weight of a vector x = (z;,...,z,) is the number of nonzero co-
ordinates, and is denoted by wt(x); that is, wt(x) = d(x,0) where 0 is the all zero

vector. More generally, wt(x — y) = d(x,y). The minimal distance of a code is

d =min{d(x,y):x € C,ye C,x #y}.

The support of a codeword is the set of positions of nonzero coordinates.
A code is linear if it is a subspace of V. Given a code C, and a vector v € V| the
set

v+C={v+c:ce(}

is called a translate of the code C by the vector v. A translate of a code is also

a code with the same minimal distance as the original.



Chapter 2

New Upper Bounds on the size of a

covering

2.1 Introduction

In this chapter we give many new constructions of coverings. Constructions for specific
sets of parameters are typical for this research area and, in fact, there is no general
theory behind obtaizing good coverings. Computer searches have been made but the
existing computer algorithms either produce coverings of poor quality in a reasonable
amount of time or coverings of good quality but at a very large cost (CPU time).
An interesting “competition” to improve the upper bounds on the sizes of coverings

started in 1993 when Nurmela and Ostergird used simulated annealing to obtain
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good coverings for up to 13 points. In 1995, Gordon, Kuperberg and Patashnik
obtained good coverings for up to 32 points using somewhat less precise, but faster
algorithms and that same year Chang, Etzion and Wei improved some of the results
of Gordon et al. by using combinatorial constructions based on previous results of
Etzion. Continuing in the spirit of this competition we improve many of the bounds
in the works of these authors; most of the improvements are accomplished by purely
combinatorial arguments, while others are assisted by computer searches. Some of
the results presented in this chapter have been published in [10].

We focus on coverings on a reasonably small set of points as they can be directly
applied; for example, in error-trapping decoding. In this particular case the complex-
ity of the decoding procedure depends on the size of the covering {16], and thus we are
interested in finding coverings of the smallest size possible. Further applications are
to data compression (see [19] and [27]) and in strategies for selecting lottery tickets
(see [38],[40] and [41]).

Let us illustrate the last application. A k/n lottery is a game where players
initially buy tickets each containing a chosen k-subset of the set {1,2,...,n} and then
a k-subset is drawn randomly from the same n-set. A player gets an s-win if the
intersection between the k-subset chosen and the k-subset drawn is s. Suppose a
player or a group of players (called a syndicate) wants to play a 6/49 (or any 6/n for

n > 14) lottery by choosing only tickets with 6-sets from a particular size 14 subset of
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the n-set. If the syndicate chooses to play with tickets that correspond to the blocks
of a (14,6,4) covering then they will get at least one 4-win whenever any 4 of their
14 numbers are drawn. Thus the syndicate will secure a certain guarantee. Since any
(14, 6,4) covering gives the same guarantee, they should choose the most “economical”
covering; that is, the covering with the smallest known number of blocks, which is
currently 80, and hence they purchase the fewest number of tickets.

Naturally, one can ask: What is the advantage of playing for such a guaranteed
win? If we compare playing with 80 random tickets against 80 tickets forming a

(14,6,4) covering we see that the probability of a 6-win (“hitting the jackpot”) is the

49

-1
6) . However, if any 4 of the numbers drawn are

same for each ticket; namely (
among the 14 numbers chosen by the syndicate, then the 80 tickets of a (14,6,4) cov-
ering guarantee at least one 4-win while 80 random tickets (on the same 14 numbers)
guarantee nothing! This property of the coverings is attractive to some lottery play-
ers and there are many books (see, for example, [32] or [46]) and computer software
available describing coverings. In this application, the coverings are often referred to
as wheels or lottery systems.

There is an extensive literature on the covering numbers C(v, k,t) and [48], [28]
and [36] provide excellent surveys. Techniques for finding good coverings (that is,

coverings of size as small as possible for fixed v, k,t) are discussed in [28], [40], [16]

and [27].



CHAPTER 2. NEW UPPER BOUNDS ON THE SIZE OF A COVERING 10

Table 2.1: Comparison between the old and new bounds

v\(k,2) | (5,3) (6,4) (7,5) | (54) (6,5) (6,3)
13 78(88)

14 43(47) | 80(87) | 143(154) | 232(235) | 377(385)

15 57(60) | 118(134) | 203(224) | 303(313) | 609(620)

16 65(68) | 160(178) | 321(358) | 416(437) | 808(840)

17 188(243) | 408(506) | 492(558) | 1215(1277)

18 236(258) | 596(696) | 671(732) | 1547(1791)

19 113(114) | 330(352) | 707(930) | 850(926) | 2175(2501) | 63(66)
20 138(145) | 400(456) | 1037(1239) | 1095(1165) | 2900(3297) | 72(75)

This chapter is concerned with new constructions of coverings and hence presents
many new upper bounds on the covering number C(v, %, t).

The Table 2.1 shows a comparison between the new and the old bounds on the
covering number C(v, k, t) in the same range as given in the tables in the recent CRC
Handbook of Combinatorial Designs [48]. The old bounds from [48] are given in
parentheses. A complete account on the improvements done in this chapter over the
(more extensive) tables in [28] is given in Tables 2.3 and 2.4.

The blank spaces in Tables 2.1, 2.3 and 2.4 correspond to parameters for which
we have not found a new bound. In some cases this is due to the fact that the
covering number is known. For example, C(17,5,3) = 68, because there exists a
Steiner system S(17,5,3). The covering number C(18,5,3) = 94 follows from the fact
that C(17,4,2) = 26 [36] and the following sequence of results [36].

Let

ok [L[ih 2] |
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(note that this is the expression in the right hand side of the inequality of Corol-

lary 1.1.2 for A = 1).

Lemma 2.1.1 [f there ezists a Steiner system S(v,k,t), then

Liv+1,kt) = EZ—IL(u,k—1,t—1)+% = L(v,k,t) + L(v, k= 1,6 —1).

THEOREM 2.1.2 (SCHONHEIM) If there ezists a Steiner system S(v,k,t), then

Clv+1,kt)=L{v+ 1,k,t).
Corollary 2.1.3 If there exists a Steiner system S(v, k,t), then

Clv+1,kty=C(v,k,t)+C(v, k- 1,t = 1).

There is no general method for finding good coverings although many constructions
are based on the study of particular properties of designs and codes. The techniques
presented in this chapter might be described as “combining smaller coverings”. We
also use a “partitioning construction” similar to the one used by Etzion and Van

Pul [26] for constructing constant weight codes (also see [13] and [27]).
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2.2 Preliminary results

First we discuss some facts and notation that will be used throughout the chapter.

We begin with three simple constructions.

Construction 2.2.1 Given a (v,k,t) covering design D and a point z € X(v), the

blocks of D that contain z form a (v— 1,k — 1,t — 1) covering on X(v)\ {z}.

A covering of the smallest size among those obtainable from D is produced by

choosing z to be a point that occurs in the fewest blocks of D.

Construction 2.2.2 Given a (v, k,t) covering and a (v,k—1,t — 1) covering on the
same set X(v), we obtain a (v + 1,k,t) covering on X(v)U {z} by adding the new
point z to all the blocks of the (v,k —1,t — 1) covering and taking the union of these

blocks with those of the (v, k,t) covering.

The size of the (v + 1,k,t) covering is the sum of the sizes of the initial two

coverings. Thus we get the following.
Corollary 2.2.3 C(v+1,k,t) < C(v,k,t) + C(v,k—=1,t —1).

Construction 2.2.4 (SIDORENKO - TURAN [28]) Given a (v, k,t) covering, let = €
X(v). Choose two new points z' and z". If a block B does not contain z, replace it by

the two blocks, BU {z'} and B U {z"}; if B contains z, replace it by the single block
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(B\ {z})u {z',2"}. Finally, add a (v — 1,k + 1,t + 1) covering on X(v)\ {z}. The

result is a (v+ 1,k + 1,t + 1) covering on (X(v)\ {z})U {«',2"}.

Corollary 2.2.5 [f the number of the blocks in a (v, k,t) covering is b, and b, is the
number of blocks in which z occurs, then the size of the new covering obtained by
Construction 2.2.4 is b, + 2(b — b;) + s, where s is the size of the (v~ 1,k +1,t +1)

covering.

Note that by choosing z to be a point in the largest number of blocks, we minimize
the size of the resulting (v + 1,k + 1,t + 1) covering.

A slightly weaker bound follows on averaging the occurrence of a point.

Corollary 2.2.6

Clo+ 1L k+1L,t+1)< [(Q—S)C(v,k,t)J +Cw—1,k+1,t+1).

Proof. Using the pigeon-hole argument, there is a point £ which is in at least
[gC(v,k,t)] blocks of a (v,%,t) covering of size C(v,k,t). Therefore we can as-
sume b, = [fC(v, k,t)] . Then the size of the (v + 1,k + 1,t + 1) covering from
Construction 2.2.4 is
2%—b+s = 2C(v,k,t)— [EC(v,k,t)] +5
= |2~ 5)C(v,k t)| +s,

which implies the result. o
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We continue with various structures that will be used to produce coverings. A
large set of mutually disjoint Steiner systems LS(v, k, ¢) is a partition of X*)(v)

into Steiner systems. Two important results are the {ollowing.

THEOREM 2.2.7 (TIERLINCK [49]) An LS(v,3,2) ezists if and only ifv =1 or 3

(mod 6), v > 9.

THEOREM 2.2.8 (BARANYAI [4]) An LS(v, k,1) ezists if and only if k divides v.

We will use a particular instance of this theorem, namely, the existence of an
LS(v,2,1) for v even ( that is, a 1-factorization of the complete graph K, v-even).

In some cases we use a union of (v, k,t) coverings which produce a (v,k,t + 1)
covering or a union of (v, k,t) coverings and k-sets which together form a (v, k,t +1)
covering. The following example is due to Griggs and Rosa [30] and should be read

in reference to Theorem 2.2.7.

THEOREM 2.2.9 (GriGGs AND RosA [30])There ezist siz (7,3,2) coverings of

size T whose union is a (7,3,3) covering.
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Proof. Each column in the array below contains one of the coverings.

123 123 124 125 126 127
145 146 137 136 135 134
167 157 156 147 147 156
246 247 235 234 237 236
257 256 267 267 245 245
347 343 346 357 346 357

356 367 457 456 567 467

The next theorem [2] can be used to extend the coverings of Theorem 2.2.9.

THEOREM 2.2.10 (ALLTOP [2}) Let D be a t-(2k + 1,k, ) design with t even.
Then

{B':B'=X\B,Be D}u{B":B"=BU{2k+2},Be D}
isa(t+1)-(2k+2,k+1,A) design.

THEOREM 2.2.11 There ezist siz (8,4,3) coverings of size 14 whose union is an

(8,4,4) covering.

Proof. The result follows by applying Theorem 2.2.10 to each of the (7,3,2) coverings
defined in Theorem 2.2.9. O

Below is a particular case of a result obtained by Etzion [24].
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THEOREM 2.2.12 (ETZION [24]) There ezist four (6,4,3) coverings of size 6 whose

union is a (6,4,4) covering.

Proof. Each column contains one of the coverings.

1234 1234 1234 1234
1235 1245 1256 1256
1236 1246 1345 1356
1456 1356 1346 1456
2456 2356 2356 2345

3456 3456 2456 2346

The following are small minimal coverings that will be used in later proofs.

THEOREM 2.2.13 C(6,5,3) =4, C(8,5,3) =8, C(9,5,3) = 12, C(7,5,4) = 9.
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Proof. Each column contains the corresponding covering.

C(6,53)=¢ C(8,53)=8 C(9,53)=12 C(7,54)=9

12345 12378 12348 12347
12346 12468 12567 12357
12356 12567 12589 12367
12456 13467 13456 14567
13458 13479 24567
23457 13578 34567
23568 15689 12345
45678 23459 12346
23679 12356

24678

34689

45789

O

A t-(v,{ki, k2, ...,ks}, ) design (covering design) is a pair (X(v), D), where
X(v} = {1,2,...,v} is a set of points and D is a subset of X*1){v) U Xk)(v) U ...U
X(ka)(v) with elements called blocks (of size ky, k2, ..., ks) so that every t-set of X(v)

is contained in exactly (at least) A blocks.
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Let the set X be the disjoint union of the sets X; and X, of sizes »; and n,,
respectively. We define an [m;, m,}-set to be an (m; + m;)-subset of X with m, of
its elements in X and the remaining m, elements in X,.

It is convenient to represent a covering by a b x k matrix whose rows are the blocks

of the covering. Let

{ a1 412 --- a1n \ by b2 ... blq \
azn Qaz2 ... Qa2 byy by ... bzq
A= and B=
\ aAm1 QQm2 ... Gpmn ) \ bpl bpg ees bpq /

be a set of m blocks of size n and a set of p blocks of size ¢, respectively. We use the

notation AB to represent the following set of mp blocks:

{{ailyaﬂ!"'aain!bjlabj21"'squ} D= 1127'"1m; .7 = 1721"'11’}'

A design is said to be resolvable if there exists a partition of its set D of blocks
into subsets called resolution classes each of which in turn partitions the set X(v).
In particular, a Steiner system S(v,k,1) is a (v, k,t) covering, and if it is resolvable,
each resolution class is a (v, k, 1) covering.

We use the following variation on the greedy algorithm (see {7]) for finding other
partitions; in particular, a partition of the blocks of a design into designs with smaller

numbers of blocks.
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Input: Design D with blocks arranged in random order and a number p’, the
maximal intersection number of the design being searched for. (Obviously, we should
take p’ < p, where p is the maximal intersection number of the input design.)

Description: Take the first block of D to be the first block of D', say B,. Having
chosen blocks B, Bs, ..., By of D', | > 1, choose the next, B, to be the first block
of D that meets the conditions |Bi41 N Bs| < p/, s =1,2,...,{. When the process ends
we have a collection D’ of blocks of D. If IV’ is not a design we select another random
ordering of the blocks of D and start again. Continue until a design is found or we
run out of time and stop.

Output: D', which is a design.

Suppose we have obtained a design D’. Consider D \ D'. We can apply the same
algorithm to D\ D' to (possibly) produce a new design D” and so on. It is clear that
if D/, D".... are designs, obtained consecutively from D, D \ D’,... by the algorithm

and D= =D\ {D'U D" U...} is nonempty, then D* must be a design as well.

THEOREM 2.2.14 (a) There exists a 3-(4™,6, (4™ —4)) design D withp = 3. The
family of all 4-subsets of X (4™) that are not covered by any block of D is a Steiner
system S(4™,4,3).

(b) When m = 2, the S(16,4,3) constructed in (a) can be partitioned into seven

5(16,4,2).
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The existence of the design D described in Theorem 2.2.14 and the corresponding
S(4™,4,3) is discussed in [3]. It is clear that the union of these two designs is a
4-(4™, {6,4},1) design.

The partitioning of an S(16,4,3) into seven S(16,4,2) is mentioned in [15]. An
alternative way of obtaining a 3-(16,6,4) design with p = 3 is described in [7]. The
application of the aforementioned algorithm to the 5(16,4,3) corresponding to the
3-(16,6,4) design with p = 3 described in [7] produces the partitioning in (b).

These designs are given below. To avoid listing all blocks of the designs we use the
following compressed notation. Suppose the k-subsets of X (v) are arranged in lexico-
graphical order (for example, if v = 4 and & = 3, then the order is 123,124,134,234).
We encode the design according to the following rule: Let the blocks of the design
have positions ¢, ¢z, ...,c; in the lexicographical ordering of X(*)(v). Now, form the
sequence {a;}}_, by a1 = ¢, @i = ¢i —ci_1, i = 2,3,...,b. Given the sequence
a1, as,...,a the n-th block of the design can be recovered as the (3 7, a:)-th k-set

from the lexicographical ordering of X(¥)(v), where 1 < n < b.

D: 28, 58, 69, 108, 65, 31, 84, 144, 56, 55, 36, 65, 151, 13, 107, 116, 1, 37, 151, 3, 85, 65,
14, 82, 135, 13, 38, 97, 154, 33, 114, 53, 32, 61, 121, 72, 174, 11, 89, 45, 17, 58, 101, 115,
22, 84, 27, 113, 30, 99, 119, 66, 2, 128, 138, 17, 39, 20, 57, 173, 12, 61, 97, 5, 139, 30, 131,

106, 22, 92, 38, 59, 23, 93, 70, 22, 201, 72, 103, 60, 42, 77, 135, 47, 113, 1, 42, 15, 184, 81,
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49, 100, 53, 55, 10, 138, 19, 147, 7, 112, 9, 9, 133, 18, 188, 29, 39, 24, 135, 34, 129, 63.

A; : 60,32,217,43,103,56,68,37,77,253, 88, 53, 88, 45, 97, 37, 55, 68, 150, 133.

Az @ T75,89,22,63,129, 100,82,116, 73, 107, 109, 31, 137, 181, 25, 145,42,95, 150, 27.
Az : 26,106,79,180,34,95,77,110, 58,114, 44,27,177, 36,234, 58,138, 15,39, 79.
A4: 25,117,119, 36,139, 67,125, 53,47, 116,47, 213,51, 28, 67,141,153, 70, 166, 13.
As: 9,215,43, 34,67, 196, 86, 8, 140,69, 29, 87, 77,55, 118,223,110,77,92, 11.

Ag : 48,88,82,66,47,126, 163,189, 1,106, 104, 58,45, 143, 10, 82, 136,66, 101, 52.

A7: 79,45,67,81,141,78,49,130,111,81,67,111,152, 113, 22,106, 149,96, 13,4.

Corollary 2.2.15 There ezists a 2-(15,5,4) design with p = 2 so that the family of
all 3-subsets of X(15) that are not covered by any block of this design form a resolvable

Steiner system S(15,3,2).

Proof. Take the derived designs of all the designs in Theorem 2.2.14 when m =2. O
Observe that taking the union of the blocks of the 2-(15,5,4) and the S(15,3,2) of

Corollary 2.2.15 results in a 3-(15,{5,3},1) design.

2.3 New Upper Bounds on C(v,k, )

It is known that C(v,4,3) = L(v, 4, 3) for all values of v except forv =7 (mod 12) [36].

We start our discussion with the covering numbers C(v, 5,3).
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2.3.1 Bounds on C(v,5,3)

In this section we improve upper bounds on C(v, 5, 3) for seven values of v in the range
14 < v < 24. At present, the best upper bound on the size of a (14, 5,3) covering is 43
and the corresponding covering was found by the program cover [39]. A compressed

description of such a covering is given in the appendix.
THEOREM 2.3.1 C(15,5,3) < 57.

Proof. Let N, = (37 — 2,37 — 1,37), 7 = 1,2,...,5. Partition X(15) into two sets,

Xy =1{1,2,...,6} and X, = {7,8,...,15}. Then

7 11 15 7 12 14 7 10 13 N
I'=118 12 13 J=18 10 15 K=|8 11 14 L=1{ N,
9 10 14 9 11 13 9 12 15 N

are the resolution classes of a 2-(9,3,1) design on X,. Let

( ) ( ) ( ) ( ) ( )

4 13 1 10 1 4 1 5 1 6
5 14 2 11 2 5 2 6 2 4
6 15 3 12 3 6 3 4 3 5
A= B = C = D= E=
7 10 7 13 10 13 7 13 7 10
8 11 8 14 11 14 8 14 8 11
\9 12) \9 15} \12 15/ \9 15) \9 12}
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1 4 13 16

3 5 3 6 3 4
We claim that the 57 blocks

123 A FI
456 B GJ
N3C HK
ND
NsE

form a (15,5,3) covering.

23

To see this observe that the [2,1]-sets in which the 2-component is a subset of N,

7 = 1,2, are covered by the blocks of 1 23 A and 4 5 6 B. Further, the blocks of

123 Aand 456 B contain as subblocks Ny N and N;I‘NQ which constitute a (6,4, 3)

covering on Xj, and therefore all of the [3,0]-sets are covered.

The [2,1]-sets in which the 2-component is neither a subset of N; nor N», and the

[1,2]-sets are covered by the blocks of

14 15 16 14 15 16
2 |1 2 |J 25 | K Na| 25 Nl 26 Ns| 24

35 36 34 36 34 35
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Finally, the [0,3]-sets are contained in the blocks

N3C FI
ND GJ

NsE HK.

THEOREM 2.3.2 C(20,5,3) < 138.

Proof. Partition X(20) into the two sets X; = X(16) and X, = {17,18,19,20}. The
base of the construction is the unique 3-(17,5,1) design D on X, U {17} [53]. Without
loss of generality, assume that 13 14 15 16 17 is a block of D. Let D', i = 14,15,16
be the derived design of D with respect to i:. Let D(z) be the design obtained from D’
by replacing the point 17 by the point :. Simple counting shows there is a collection
A of 12 blocks of D such that each of these 12 blocks contains exactly two of the three
points 14, 15 and 16. Let D’ = D\ A. Let B be a 1-factor of the complete graph K,

on {1,2,...,12} and let C = (12 ... 16)T. We claim that the 138 blocks of

DG) (i +4), i=14,15,16
B 141516

C 171819 20

D

form a (20,5,3) covering.
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The [2,1]-sets a b (i +4), where a, b € X, ¢ = 14,15, 16, are covered by D(i) (:+4).
The {2,1]-sets a b 17 are covered by D’ (the 12 blocks of A do not contain the point
17 as 13 14 15 16 17 is a block of D).

The {1,2]-sets and the [0,3]-sets are covered by C 17 18 19 20.

It remains to show that all of the [3,0]-sets are covered. Consider a partition of
X, into two sets: X’ = {1,2,...,13} and X" = {14,15,16}. In what follows, the
[a, b] notation is applied on X’ U X”. The [0,3]-sets and the [1,2]-sets are covered by
B 1415 16.

The collection D’ covers all of the triples of X with the exception of those con-
tained in the blocks of A. Let zyzij be a block of A. Then r,y,z2 € X"and 7,5 € X".
But then zyzi is a block of D(), and zyzj is a block of D(z). Therefore, the [3,0]-sets

and the [2,1]-sets are covered by the blocks of D' and D(¢) (i +4), : € X". o

Several good coverings with block size 5 can be obtained using the designs given

in Corollary 2.2.15.

THEOREM 2.3.3 C(23,5,3) <190.

Proof. Partition X(23) into the two sets X; = X(15) and X, = {16,17,...,23}. Let
D be the 2-(15,5,4) design on X, from Corollary 2.2.15. Let A;, As,..., A7 be the
resolution classes of the 2-(15,3,1) design formed by the 3-sets that are not covered by

D. Let By, B,,..., B; be the l-factors of a 1-factorization of the complete graph Kp
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on X,. Let C be an (8,5,3) covering of size 8 on X;. We claim that the 190 blocks of

D

AB;, 1=1,2,...,7

form a (23,5,3) covering.
Since these blocks contain as subblocks the blocks of a 3-(15,{5,3},1) design on
X1 (see Corollary 2.2.15 and the comment following it) all the [3,0]-sets are covered.
The (2,1]-sets and the (1,2]-sets are covered by the blocks of A;B;, ¢+ = 1,2,..., 7.

The [0,3]-sets are covered by the blocks of C. =]
THEOREM 2.3.4 C(24,5,3) < 234.

Proof. Using the notation from the previous theorem, let

B
B;
B =

1

\ for ¢=1,2,..,6 and B;=| 29 94
1+15 24 }

23 24
Let C’ be a (9,5, 3) covering of size 12 on X> U {24} (Theorem 2.2.13). Then the 234

blocks of

form a (23,5,3) covering. o
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THEOREM 2.3.5 C(21,5,3) < 151.

Proof. Repeat the proof of Theorem 2.3.3, but take instead X, = {16,17,...,21} and
let B;, 1 =1,2,...,5 be the l-factors of a 1-factorization of the complete graph A’s on
X,. Let Bg = B; = B, (note that Bs and B7 could also be any two 1-factors of A

on X3). Take C to be a (6,5,3) covering of size 4 on X, (Theorem 2.2.13). 0
THEOREM 2.3.6 C(19,5,3) <113.

Proof. Repeat the proof of Theorem 2.3.3, but take X, = {16,17,18,19} and B;, : =

1,2,3 to be the 1-factors of the 1-factorization of Ky on X,. Let By = Bs = Bg =

B; = B,. Take C to be the block 1 16 17 18 19. 0
The results of this section are summarized as follows. (The value in parentheses

indicates the best previously known upper bound on C(v,5,3).)

C(14,5,3) < 43(47), C(15,5,3) < 57(60). C(19,5,3) < 113(114), C(20,5.3) <

138(145), C(21,5,3) < 151(171), C(23,5,3) < 190(227), C(24,5,3) < 234(260).

2.3.2 Bounds on C(v,5,4)

In this section we improve the upper bounds on C(v,5,4) for v = 14, 15,16,29 and
give some general upper bounds on C(v,5,4). In particular, we observe that some
of the upper bounds on C(v,5,4) found by Etzion et al. [27] can be improved or

generalized.
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THEOREM 2.3.7 C(15,5,4) < 303.

Proof. Partition X(15) into the two sets X; = {1,2,...,7} and X, = {8,9,...,15}.
Let Ay, Az, ..., Ag be the (7,3,2) coverings on X, from Theorem 2.2.9, and A7 = A,.
Let By, Bs, ..., B be the 1-factors of a 1-factorization of the complete graph K5 on Xa.
The blocks of A;B;, i = 1,2,..., T cover each of the [3,1] and [2,2]-sets of X(15). Let
C1,Cs, ..., Cs be the (8,4,3) coverings on X, from Theorem 2.2.11, and C7; = Cy. Then
the blocks of iC;, 1 = 1,2, ...,7, cover each of the [1,3] and [0,4]-sets of X(15). Add
a (7,5,4) covering on X, to cover the [4,0]-sets of X(15). Thus we obtain a (15,5,4)
covering. Since C(7,5,4) =9 we get C(15,5,4) < (T)(7)(4) +(7)(14) +9=303. O

We should mention that, in what follows, whenever we use an upper bound for
an application of the constructions 2.2.1, 2.2.2 and 2.2.4, it is either one obtained in
the present thesis, or it is from [28] or [27]. When it is from [28] or [27] this will be
indicated.

The following is a generalization of a result in [27].

THEOREM 2.38 [fv=1o0r3 (mod6), v=>9, then

C(2v—1,5,4) < C(v,5,4) + C(v ~ 1,5,4) + vC(v — 1,4,3) + — ; ! (;)

Proof. Partition X(2v — 1) into the two sets X; = {1,2,...,v} and X; = {v +

1,v + 2,...,2v — 1}. According to Theorem 2.2.7 there exists an LS5(v,3,2). Let
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A, Az, ..., A,—2 be the designs of the system on X;. Let B, B,,..., B,_; be the 1-
factors of a l-factorization of the complete graph K,_; on X;. Then the blocks of
AB;, 1 =1,2,...,v — 2, cover exactly once each of the [3,1] and [2,2]-sets of X(2v—1).

The number of blocks of A;B;, 1 =1,2,...,v—2,is

(v_2)v(1;; l)v;I =v;1(;)‘

The union of the blocks of A;B;, : = 1,2,...,v — 2, with a (v,5,4) covering on X|,
(v—1,5,4) covering on X3, and :C, = 1,2,...,v, where C is a (v — 1,4, 3) covering
on X,, produces a (2v — 1,5,4) covering on X(2v — 1). Thus the upper bound is
obtained.

For example, in [28], it is shown that C(29,5,4) < 5427, whereas Theorem 2.3.8
produces the bound C(29,5,4) < 5085, which is a significant improvement. The
bounds needed for the calculation are C(14,5,4) < 232 (see the Appendix), and
C(14,4,3) = 91 (because there exists a Steiner system S5(14,4,3)). As described in

the next theorem slightly better bounds can be obtained under certain conditions.

THEOREM 2.3.9 Letv =1 or3 (mod6), v > 9. If there exists a family of at

most v (v — 1,4,3) coverings so that their union is a (v — 1,4,4) covering, then

C(2v —1,5,4) < C(v,5,4) + vC(v —1,4,3) + ";1(‘3’)
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Proof. We basically follow the proof of the previous theorem, defining X, X3, A; and
B; as was done there. Let Cy,Cy,...,Cy, be the (v—1,4, 3) covering on X2, m < v, and
let Cnit = Cmg2 = ... = Cy = Cy. Now for the covering, use the blocks of a (v, 5,4)

covering on X;, the blocks A;B;, 1 <t < v — 2 and the blocks :C;, 1 =1,2,...,v,. O

For example, Theorem 2.3.9 yields C(17,5,4) < 492 (determined earlier in [27]),
which is the best known bound. The best bounds C(14,5,4) < 232 and C(16,5,4) <
416 were established by the program cover [39]. A compressed description of these
coverings is given in the appendix.

Aside from the general results in this section, we have made the following improve-

ments:

C(14,5,4) < 232(235), C(15,5,4) < 303(313), C(16,5,4) < 416(437), C(29,5,4) <
5085(5427),

where the value in parentheses indicates the previously best known upper bound on

C(v, 3, 4) for the particular value of v.

2.3.3 Bounds on C(v,6,4)

In this section we improve the bounds on C(v, 6,4) for certain values of v in the range

14 < v <24,

THEOREM 2.3.10 C(14,6,4) < 80.



CHAPTER 2. NEW UPPER BOUNDS ON THE SIZE OF A COVERING 31

Proof. Partition X(14) into the two sets X; = X(10) and X, = {11,12,13,14}. Let
C:;, i =1,2,3, be the 1-factors of a 1-factorization of the complete graph K4 on X,.

Let D' be a 2-(10,4,2) design on X, as given below (we write 0 instead of 10):

D
1489 1235 2678
1670 1280 3460
2369 1347 3789
2457 1569 4568
3580 2490 5790.
Let D' be the supplemental design of D’. The design D" has the following interesting
properties. (Properties (2) and (3) may be tediously verified.)
1) No block of D" covers a block of D' as any two blocks of D’ have at least one
point in common.
2) There are exactly 15 4-sets of X; each of which is covered by precisely three
blocks of D. These 15 sets form a 2-(10,4,2) design, denoted D”, such that D' U D"
is a 3-(10,4,1) design.

3) The blocks of D™ cover exactly once any 4-set of X; except those of D".
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D"
1368 1246 2560
1450 1279 3459
2370 1390 3567
2589 1578 4780

4679 2348 6890

1

<~

34

Let B=| 56 |- There are exactly 5 blocks that do not contain any of the pairs of

78

\ 90
B in each of the designs D' and D”. These blocks are given in the first column of

blocks for each of the designs D’ and D”. Let A, be the collection of these 10 blocks.

Let A; = D'\ A, and A3 = D"\ A,. We claim that the 80 blocks of

AC;, i=1,2,3
B111213 14
DIII

form a (14,6,4) covering.
Now, the [0,4]-sets and the [1,3]-sets are covered by the blocks of

B 111213 14.
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The [4,0]-sets are covered because the union of I’ and D covers all of the 4-sets
of X,.

The [3,1]-sets are covered by the blocks of A;C;, i = 1,2,3, since D’ U D" is a
3-(10,4,1) design.

To prove that all of the [2,2]-sets are covered, we note that each pair from X, (with
the exception of the pairs of B) is in a collection of blocks with each of the 1-factors
Ci, i = 1,2,3. Therefore, the [2,2]-sets are covered by either A;C;, ¢ = 1,2,3, or
B 11 12 13 14, which completes the proof. m]

Now we introduce a particular construction for some well-known designs. The
constructions leads to a design that proves to be useful in in the building of a (15, 6,4)

covering.

Lemma 2.3.11 Arrange the points of X(9) in a 3 x 3 matriz A = (a;;) with the
entries of row ¢ designated by r;, i = 1,2,3 and column j by ¢;, j = 1,2,3. Consider

two sets on X(9):
Mi; = (riUc;) \ {a;;} and N;; = X(9) \ (ri U ;).

Then:

(a) The collection of blocks M;; and N;;, 1 < i < j <3, is a 2-(9,4,3) design,
denoted D(A);

(b) The union of D'(A) = {M;; U {a;;}] ¢,7 € {1,2,3}} and D"(A) = {N;; U

{ai;} 4,5 € {1,2,3}}, is @ 2-(9,5,5) design; and
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(c) The triples given by the three rows, three columns and siz diagonals of A form

a 2-(9,3,1) design.

Proof. The verification of all three parts (a), (b) and (c) is straightforward. a

Lemma 2.3.12 The 2-(9,3,1) design and the 2-(9,4,3) design from Lemma 2.3.11

form a matching pair of designs. Thus we obtain a 3-(10,4,1) design.

THEOREM 2.3.13 C(15,6,4) < 120.

Proof. Partition X(15) into the two sets X; = {1,2,...,9} and X2 = {a,b,¢,d,e, f}.

Let
123 1 4 7 159 168
S=l4s56|T=l2s58|U=267| V=249
789 369 3 4 8 357

{abe\ (abc\
(acf\ (ace\ a b f a b d
a d e a d f a ¢ d a e f

S = T = U = V' =
b ¢ e b ¢ f b ¢ d b e f
\bdf} \bde) c e c d e
\def) \cdf/
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be a partition of X-f”. Note that U’ and V' are (6, 3,2) coverings, while S* and T are
“almost coverings”, each leaving only the three pairs ab, cd, and ef uncovered. Let

( 1 2 45 )
1 3709
W=12234%6

2 478

\5689/

noting that the blocks of W cover all pairs contained in the blocks of S U T. Using
the notation from Lemma 2.3.11, we claim that the 120 blocks of

S5" D(U)ab Wef

TT' D(V)cd abcdef

vu' D'(T)e

VvV’ D"(T)f

form a (15,6,4) covering.

The [0,4]-sets are covered by the block abcdef.

The [1,3]-sets are covered by the union of the blocks of SS', TT', UU’, and VV'.
The same blocks cover the [2,2]-sets with the exception of the {2,2]-sets zypq, where
T,y is a pair in the blocks of SU T, and pgq is either ab, ¢d or ef. The remaining
[2,2]-sets are covered as follows. The [2,2]-sets zyab, where z,y € X, are covered by
D(U)ab. The [2,2)-sets zycd are covered by D(V )ed. The [2,2]-sets zye f are covered

by the blocks of Wef.
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The [3,1]-sets zyzp, where zyz is a block of the 2-(9,3,1) design on X, are covered
by the union of the blocks of S§', TT', UU’, and VV'. The triples of X, that are
not blocks of the 2-(9,3,1) design, are covered by each of the designs D(U) and D(V)
(cf. Lemma 2.3.12), as well as by each of the collections D'(T) and D"(T). Therefore,
the remaining [3,1]-sets are covered by the union of the blocks of D(U)ab, D(V)cd,
D'(T)e and D"(T)f.

It is easy to check (although tedious) that the designs D(U) and D(V') are disjoint.
Moreover, the union D(U) U D(V)U D/(TYu D*(T) is a 4-(9,{4,5},1) design on X;.
Therefore, the [4,0]-sets are covered by the union of the blocks of D(U)ab, D(V)cd,

D'(T)e and D”(T)f, which completes the proof. o

Remark 2.3.14 The covering described in Theorem 2.3.13 was further transformed
and reduced by local search to 118 blocks. The blocks of a (15,6,4) covering of size 118

are given in the appendiz.

The next constructions are based, in one way or another, on the two designs
described in Theorem 2.2.14 (a) when m = 2. As mentioned there, the union of these

two designs is a 4-(16,{6,4},1) design.

THEOREM 2.3.15 C(16,6,4) < 160.

Proof. The 140 4-sets of X(16) that are not covered by the 112 blocks of the 3-

(16,6,4) design D with p = 3 (Theorem 2.2.14, part (b)) can be covered by 48 6-sets
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of X(16). To find these 6-sets we used a greedy algorithm described in [28], but acting
on the 140 4-sets arranged randomly rather than on the entire family X(*)(16). Below
is the compressed description (defined in Chapter 1) of the 48 blocks that should be
added to the design D from Theorem 2.2.14, part (b), in order to obtain a (16,6,4)

covering:

177, 41, 117, 182, 94, 213, 183, 189, 233, 160, 65, 110, 64, 370, 230, 169, 105, 290, 91, 193,
66, 223, 64, 272, 188, 109, 210, 152, 156, 28, 488, 126, 89, 65, 171, 488, 230, 89, 60, 121, 78,

460, 30, 289, 30, 292, 23, 85. a

THEOREM 2.3.16 C(4™ +2,6,4) < (%) ©EY.

Proof. Let D be the 3-(4™,6, 3(4™ —4)) design with p = 3 from Theorem 2.2.14 and
D~ be the corresponding S5(4™,4,3). [t is easy to see that the blocks of

D
D= (4™ +1) (4™ +2)
form a (4™ + 2,6,4) covering of size the sum of sizes of D and D*, which produces

the desired bound. m]
THEOREM 2.3.17 C(17,6,4) < 188.

Proof. Let D be the unique 3-(17,5,1) design [53] on X(17). Let D' and Dy; be

the derived and residual designs of D with respect to the point 17. Consider the set

D'={B' e X®(16): |B'NB| <3 VB € Dy7}.
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Spectral set | Number of || Spectral set | Number of
of X€}(16) 6-sets of X(4)(16) 4-sets
under D,7 | in the class || under D’ |in the class
(10,0,1) 18 (0,6) 30
(8,0,1) 480 (8,2) 120
(6,3,0) 640 (14,1) 960
(10,2,0) 2400 (12,1) 480
(9,2,0) 1920 (16,0) 240
(8,2,0) 240
(13,1,0) 960
(12,1,0) 240
(11,1,0) 960
(16,0,0) 120

This is an appropriate place to illustrate how the spectral sets can be used for finding
designs and studying covering properties of designs. First we find by computer the
spectral set of X(®)(16) under D,; (Table 2.2). The blocks of D’ correspond to the
spectrum (16,0,0).

As was mentioned in Chapter 1, some of the classes or union of these classes can be
designs. In particular, D' is a 2-(16, 6, 15) design with p = 4. (In fact, all ten classes
are 2-designs, and some unions are 3-designs [7].) Now we compute the spectral set
of X)(16) under D’ (Table 2.2). It is clear that no block of D’ covers a quadruple
contained in a block of Dj7. The number of such quadruples is 48 (2) = 240 (because
D)7 has p = 2). On the other hand, from the spectral set of X(*/(16) under D' we
see that there are exactly 240 quadruples that are not covered by any block of D'.

Therefore the blocks of D’ cover all quadruples of X(16) except for those covered by
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the blocks of Dy7. Consequently, the blocks of DU D7 cover all elements of X(*)(16).
The blocks of D' U Dy cover all elements of X)(16).

Now, adding the point 17 to each block of D7 U D;7, we get 20 blocks of size 5
and 48 blocks of size 6 whose union covers all quadruples on X(17) that contain the

point 17. Therefore, the blocks of

DY 17

Dy 17

DI
form a 4-(17,{6,5},1) covering design in which 168 blocks have size 6 and the re-
maining 20 - size 5. We now arbitrarily add points to the blocks of size 5 to increase

their size. This completes the proof. a

Corollary 2.3.18 (C(16,5,3) < 65.

Proof. Count the number of occurrences of each point in the preceding construction.
The point 17 is in 68 blocks and each of the remaining points is in 65 blocks. The
result follows by applying Construction 2.2.1. ]

The bound C(18,6,4) < 252 from Theorem 2.3.16 can be further improved in the

smallest non-trivial case m = 2, where we had C(18,6,4) < 252.

THEOREM 2.3.19 C(18,6,4) < 236.
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Proof. Using the notation from Theorem 2.3.17 we claim that the blocks of

D' 1718

Dy 18

Dy7 17

D
form a (18,6,4) covering of size 236 on X(18).

The design described above “extends” the design of Theorem 2.3.17, and therefore

it covers all the elements of X(*)(17). The quadruples a b 17 18, where a,b € X(16),
are covered by the blocks of D' 17 18 because D!7 is a 2-(16,4,1) design. The
quadruples a b ¢ 18, where a,b,c € X(16), are covered by the blocks of D*7 17 18
and D)7 18 since D'7 17 U D7 is a 3-(17,5,1) design on X(17). This completes the

proof. a

Corollary 2.3.20 C(19,6,4) < 330.

Proof. The result follows by applying Construction 2.2.2 to the covering obtained in

Theorem 2.3.19 and a (18,5,3) covering with 94 blocks (discussed in Section 2.1) O

THEOREM 2.3.21 C(24,6,4) < 784.

Proof. Partition X(24) into the two sets X; = X(16) and X, = {17,18,...,24}. Let
D be the 3-(16,6,4) design on X; (described in Theorem 2.2.14), and D" be the corre-

sponding S5(16,4,3). Let Ay, Ay, ..., A7 be the partition of D~ into seven S(16,4,2)’s.
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Let By, By, ..., B; be the 1-factors of a 1-factorization of the complete graph K3 on
X,. Let F;, i =1,2,...,6, be the (8,4,3) coverings on X; from Theorem 2.2.11 whose

union is an (8,4,4) covering, and let F; = F3 = F). We claim that the 784 blocks of

D
A;B;, 1=1,2,...,7
i(i+8) F, i=12,..,8
form a (24,6,4) covering.
All the [4,0]-sets are covered because the set of blocks contains a 4-(16,{6,4},1)
design.
The [3,1]-sets and the [2,2]-sets are covered by the blocks of A;B;, i =1,2,...,T.

The [1,3]-sets and the [0,4]-sets are covered by the blocks of :(:+8)F;, i = 1,2,...,8.

THEOREM 2.3.22 C(22,6,4) < 580.

Proof. Repeat the proof of Theorem 2.3.21, but instead take X, = {17,...,22} and
By, By, ..., Bs to be the 1-factors of a 1-factorization of the complete graph Ks on X,.
Let B¢ = By = Bs. Take F;, i = 1,2, 3,4, to be the four (6,4,3) coverings of size 6 on

X5 from Theorem 2.2.12, and let F; = F}, t =5,6,7,8. ]

THEOREM 2.3.23 C(20,6,4) < 400.
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Proof. This is again similar to the proof of Theorem 2.3.21. Take X, = {17,18,...,20}
and let B;, i = 1,2,3, be the 1-factors of the 1-factorization of the complete graph

Kyon X,. Let B; = By, i = 4,5,6,7. Let F be the 4-set 17 18 19 20. Then the 400

blocks of
D
A;B;, 1=1,2,...,7
i{(i+8) F, :1=12..,8
form a (20,6,4) covering. o

Summarizing the results of this section, we have made the following improvements:
C(16,5,3) < 65(68), C(14,6,4) < 80(87), C(15,6,4) < 118(134), C(16,6,4) <
160(178), C(17,6,4) < 188(243), C(18,6,4) < 236(258), C(19,6,4) < 330(352),
C(20,6,4) < 400(456), C(22,6,4) < 580(721), C(24,6,4) < 784(1035),

where the old bounds are given in parentheses.

2.3.4 Bounds on C(v,k,t), t>5

In this section we improve the bounds on the covering number C(v,7,5) for some
values of v in the range 13 < v £ 25. The results lead to improvements on the
covering number C(v,k + 2,%) for & = 6,7,8 (see Table 2.4).

The best currently known bound on the size of a (14,6,5) covering is 377. The cor-
responding covering was found by the program cover described in [39]. A compressed

description of a covering that attains this bound is given in the appendix.
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THEOREM 2.3.24 C(13,7,5) < 78.

43

Proof. Start with a projective plane of order 3; that is, with a 2-(13,4, 1) design D,

generated by the block [1,2,4, 10]

{B,;UB_,‘ : B,',BjGD, 15i<j_<_13}

(mod 13). The set of blocks

is a 2-(13,7,21) cyclic design whose blocks cover all elements of X®)(13) and is there-

fore a (13,7,5) covering design. The representatives of the orbits of the blocks under

the cyclic group of order 13 are

1

1

N

o

o

o
N
-1

Corollary 2.3.25 C(14,8,6) < 165.

10

10

11

10

I1

10

11

12.

Proof. Morley [37] has proved C(12,8,6) < 51. The result follows by applying

Construction 2.2.4 to the covering of Theorem 2.3.24.

a

Several upper bounds on the covering numbers C(v, 7,5) are based on the follow-

ing.
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THEOREM 2.3.26 C(18,8,6) < 918.

Proof. We use a computer to verify most of the steps of the proof (cf. Theo-
rem 2.3.17.) Let X = X(17) and D’ be the unique 3-(17,3,1) design [53]. The size of
the spectra set of X(7) under D’ is 4. The equivalence class D* corresponding to the
spectrum (0,1) has 408 blocks and is a 4-(17,7,6) design with p = 5. Similarly, the
size of the spectra set of X(® under D' is 6. The equivalence class D. corresponding
to the spectrum (10,0) has 510 blocks and is a 4-(17,8,15) design with p = 6.

The two designs D~ and D. prove to be a matching pair of designs, thus producing
a 5-(18,8,6) design D with p = 6 where D® = D" and D;g = D.. Further computer
investigation shows that the design D is also an (18,8,6) covering. The compressed
descriptions of representatives of the orbits under the cyclic group of order 17 are:
D'8: 19, 71, 87, 5, 64, 36, 19, 123, 8, 46, 27, 19, 15, 113, 19, 18, 21, 71, 26, 33, 71, 111, 100,
13, and
D,s: 30,7, 6, 83, 27, 97, 35, 101, 59, 3, 41, 91, 38, 40, 9, 71, 65, 79, 28, 4, 72, 60, 85, 23,

24, 35, 108, 30, 4, 22. a

Corollary 2.3.27 C(17,7,5) < 408.

Proof. To the (18,8,6) covering in Theorem 2.3.26 apply Construction 2.2.1 and
delete the point 18. a

We next study some properties of the Steiner systems S(24,8,5) and 5(23,7,4)



CHAPTER 2. NEW UPPER BOUNDS ON THE SIZE OF A COVERING 45

and use them to construct a (19,7,5) covering. It is known that these two Steiner

systems are unique [5]. The proof of the following lemma is also given in [5], p. 207.

Lemma 2.3.28 Let A and C be blocks of the Steiner system 5(24,8,5) where [AN

C|=4. Then (AUC)\ (ANC) is also a block.

Lemma 2.3.29 Let B be a block of the Steiner system D = 5(23,7,4). Remouving
each point of B from all blocks that contain it gives a collection of blocks of sizes 4

and 6 forming a Steiner system S(16,4,3) and a 3-(16,6,4) design.

Proof. Without loss of generality, let D be defined on the set X(23) and B =
123456 7. Noting that ngy = n5 = ng = 0 and n; = 1 the intersection equations for

B with respect to D become

no + n; + no + nz = 252

ny + 2ng + 3n;z = 532

ng + 3nz = 420

n3y = 140
which yield ny = 112, n; = 140 and ng = n, = 0. So, on deleting the points of B, we
get 112 blocks of size 6 and 140 blocks of size 4 on X = X(23) \ X (7). Let us denote
the collection of blocks of size 6 by S'.

We first prove that S’ is a 3-(16,6,4) design. Since the initial design D has p = 3,

any two blocks of S’ meet in at most three points. Let T be an arbitrary 3-subset of
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X. Then T is covered by at most 4 blocks of S’ (otherwise p would be more than 3).
Therefore, the maximum number of triples that can be covered by the blocks of §’ is
4(‘:) = 2240. However, the number of triples covered by the blocks of 5’ is exactly
112(5) = 2240. This shows that each triple of X is covered by exactly 4 blocks of §'.
That is, S" is a 3-(16,6,4) design.

Now, let us denote the collection of blocks of size 4 by @. Consider again the
3-subset T. There are 16 — 3 = 13 different quadruples of X* containing T. The
intersection of a block of @@ and a block of 5’ has size at most 3 because the initial
design D has p = 3. Since T is covered by exactly 4 blocks of S’, there are exactly
4 -3 = 12 quadruples covering T that are subsets of blocks of S§’. Therefore, T is
contained in 13 — 12 = 1 quadruple that is not a subset of a block of S’. This
quadruple must therefore be a block of Q. Thus any triple T € X is contained in

exactly one block of @, which completes the proof. w
THEOREM 2.3.30 C(19,7,5) < 707.

Proof. It is known [21] that an S(24,8,5) can be obtained by a variation on the
greedy algorithm as follows. Take 1 234 5 6 7 8 to be the first block. Then the block
B, 2 <1 <1759, is the first block in the lexicographical ordering of X (®)(24) such
that [B;N B;| <4Vje X(i-1).

We will need some information on the block intersections of the Steiner system

5(24,8,5). Let U with |U| = u < t, be a subset of a block B of a Steiner system
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D = S(v, k,t). It is shown in [5], pp. 199-200, that the number of blocks Y € D with
Y N B = U depends only on |U|; that is, it is independent of both the choice of B

and U. Hence we may set
m,=m(U,B)=|{Y €D : YNB=U}]

By counting, we get the recurrence

t—1 _
mu=)\u—1— Zm,(k u).

i=u+l t—u
(The numbers \;, i = 0, 1,..., t, were defined in Chapter 1. Also, by definition, Z{ =0

if £ > j.) For any block of the Steiner system 5(24,8,5) we obtain

mo + 8my + 28my + 56ma + 7T0m, = 758

my 4+ Tmy + 21lma + 35m, = 252

mq + 6ms + 15m4 =76

ma+ 9my = 20

my=4
which gives myq = 4, m3 = 0, m; = 16, m; = 0, and mq = 30. This shows in particular
that there are exactly 16 blocks having two fixed points in commmon with By.

Consider the intersection equations for B;. Since ns = ng =n; =0and ng =1
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we get

ng +ny +ns+nz+ng =758
ny + 2n; + Inz + 4ny = 2016
ny + 3nz + 6ng = 2128

n3 +4ng = 1120

ng = 280
which yield ny = n3 =0, ng = 30, ny = 448, and ns = 280.

Removing each point of B from all blocks that contain it we obtain a collection
of blocks of sizes 4,6, and 8 on X = X(24) \ X(8).
We claim that Lemmas 2.3.28 and 2.3.29 imply that the 280 blocks of size 4 form

two identical 5(16, 4, 3). More explicitly, if a is a point of X(8), then by Lemma 2.3.29,
Q={B\{ijk,a} : BeD, i,j,k,a€ B, 1,5,k € X(8)\ {a}, i <j <k}
is an 5(16,4,3). Applying Lemma 2.3.28, it is easy to check that
P={B\ {5k} : BeD,ijkleB, ijklecXB)\{a},i<j<k<l}

has the same blocks as Q.

There are 448 blocks of size 6. We will denote this collection by S. There is a
collection E of 30 blocks of size 8. The union SU E is a 5-(16, {8,6},1) design on
X = X(24) \ X(8) because the initial design D is a 5-design on X(24) and (156) =

448 (g) +30 (g) Let S; C S, : € X(8) be the collection of 6-tuples obtained from the
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blocks containing the point i in the initial S(24,8,5), that is,
Si={B\{i,j} : B€ D, i,j€B, je X(8)\ {i}}.

The maximal intersection number of the initial design D is 4 which implies that the
maximal intersection number of S does not exceed 4. Now, S; C S, and S; is obtained
from blocks of the initial design D containing the common point i. Therefore, any
two blocks of 5; intersect in at most 3 points.

We claim that the same is valid for any pair U, V, where U is a block of Q and
V is a block of S. For suppose | N V] = 4. Then, in fact, U C V. Now, U and V
originate from different blocks, say A and C, of the initial design D where U = A\ B,
and V=C\ By, |[ANB,| =4 and |[CN By| = 2. Since [UNV| = |[U| = 4 we have
[ANC| > 4. On the other hand, | ANC| < 4 because the maximal intersection number
of an 5(24,8,5) is 4. Thus [ANC| = 4 and, in fact, ANC = . By Lemma 2.3.28,
(AUC)I\N(ANC) is a block of D. But this is impossible as it has precisely 6 points
in common with B5;.

Thus any two blocks of S; have at most three points in common, and the size of
the intersection of a block of @ with a block of S; is at most 3. On the other hand,

15 = {B\{:j}: BeD,i,je B, jeX@®)\{i}}
= my(7) = 16(7) = 112.
Therefore, the blocks of S; cover 112(2) = 1680 different quadruples on X. The

blocks of Q constitute an additional 140 distinct quadruples on X. Consequently, the
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blocks of S; U Q cover any element of of X} exactly once (1680 + 140 = (146)); that
is, S UQ is a 4-(16, {6,4}, 1) design (cf. Theorem 2.2.14).

Let z,,z3, 73 be three new points. Now, it is easy to check that the blocks of

Q12223

Siq1 zi, t=1,2,3

S\UL. S

E
form a 5-(19, {8,7,6},1) covering design, where |S\ U, Si| = 160 blocks have size 6,
140 + 112(3) = 476 have size 7, and 30 have size 8. (The equality |5 \ UL, Si| = 160
follows by inclusion-exclusion from |S| = 448, |S2| = [S3] = |S4l = 112, |Si 0 S;] =
16, 2 <1< j <4, and |S2N S3N Sy =0.) In order to obtain a (19,7,5) covering
of size 707 it suffices to cover the 5-tuples contained in the 160 blocks of size 6 and
the 30 blocks of size 8 by 231 blocks of size 7. The last step has been completed by

computer. A compressed description of the 231 blocks of size 7 is given below:

42, 37, 40, 38, 81, 26, 34, 1, 4, 85, 14, 14, 9, 22, 48, 76, 5, 18, 36, 42, 17, 27, 124, 90, 73, 138,
12, 45, 12, 95, 8, 130, 32, 56, 38, 109, 32, 61, 15, 11, 155, 75, 29, 13, 41, 31, 60, 3, 107, 16,
93, 27, 5, 69, 18, 35, 53, 136, 7, 52, 1, 26, 134, 31, 24, 70, 18, 5, 39, 5, 52, 60, 111, 8, 102, 3,
7,77, 65, 1, 19, 9, 175, 63, 71, 76, 157, 51, 86, 29, 48, 15, 27, 141, 13, 13, 39, 23, 135, 174,
39, 38, 7, 25, 67, 15, 10, 18, 45, 9, 144, 39, 8, 32, 8, 26, 49, 33, 43, 50, 67, 38, 178, 81, 4, 26,

61, 33, 29, 19, 42, 48, 93, 36, 4, 110, 62, 41, 12, 98, 123, 44, 29, 226, 24, 56, 37, 98, 13, 126,
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42, 15, 35, 42, 48, 43, 41, 13, 153, 35, 53, 22, 7, 11, 41, 35, 7, 55, 64, 38, 64, 29, 39, 26, 48,
19, 20, 77, 40, 44, 2, 31, 135, 10, 93, 32, 9, 44, 43, 3, 73, 48, 12, 3, 43, 3, 36, 5, 9, 5, 103, 1,
26, 138, 150, 28, 34, 7, 94, 23, 15, 121, 160, 14, 101, 51, 142, 9, 20, 31, 26, 47, 1, 107, 109,

23, 18, 335, 66, 2, 2. o

Corollary 2.3.31 C(20,7,5) < 1037.

Proof. The result follows from Construction 2.2.2, Corollary 2.3.20 and Theo-

rem 2.3.30. O

Corollary 2.3.32 C(21,7,5) < 1359.

Proof. There is a point, for example 20, in the (20,6,4) covering constructed in
Theorem 2.3.23 which is in 148 blocks. The result follows from Construction 2.2.4

and Theorem 2.3.30. ]

The application of Construction 2.2.4 for obtaining coverings of small size does not
necessarily require the initial covering to be of the smallest known size. In other
words, we can start with initial covering designs of sizes s, and s;, where s; < s9, to
obtain covering designs of sizes s] and sj, where s] > s, provided the second design
had a point which was in many blocks. The next lemma and theorem illustrate this

fact.

Lemma 2.3.33 There ezists a (21,6,4) covering of size 565 with a point occurring

tn 293 blocks.
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Proof. Let D, A;, B;, 1 = 1,2,...,7 be the same as in Theorem 2.3.22 except that the
pair 21 22 is contained in B,. Replace the point 22 with a point from X, \ {21,22}
in By, and change 22 to 21 in the remaining 1-factors B;, 1 = 2,3,...,7. A (5,4,3)
covering F of size 4 on X, \ {22} such that the point 21 is in all 4 blocks is easily
constructed. Let C be the block a 17 18 19 20 21, where a € X;. It is easy to check

that the blocks of

form a (21,6,4) covering of size 565 such that the point 21 is in 260 + 32 + 1 = 293
blocks. @]
Although this result is useful in the next theorem, it does not yield the best upper
bound on C(21,6,4). Beli¢ (personal communication) has obtained C(21,6,4) < 502.

He has also found C(23,6,4) < 723.

THEOREM 2.3.34 C(22,7,5) < 1874.

Proof. To obtain the covering apply construction 2.2.4 and Corollaries 2.3.33 and 2.3.31.

a

THEOREM 2.3.35 C(23,7,5) < 2342.
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Proof. First we prove that C(23,7,5) < 2347. There is a point, say 22, in the (22,6,4)
covering constructed in Theorem 2.3.22 which is in 140 + 32 = 172 blocks. The proof
now follows from Construction 2.2.4.
The covering described above was further reduced by local computer search to
2342 blocks. Thus C(23,7,5) < 2342. a
So far, we have proved the following new upper bounds:
C(13,7,5) < 78(88), C(14,8,6) < 165(179), C(18,8,6) < 918(1249), C(17,7,5) <
408(506), C(19,7,5) < 707(930), C(20,7,5) < 1037(1239), C(21,7,5) < 1359(1617),
C(22,7,35) < 1874(2088), C(23,7,5) < 2342(2647),
where the value in parentheses indicates the best previously known upper bound.
Some other new bounds on C(v, k,t) are obtained by local search or by direct ap-

plications of Constructions 2.2.2 and 2.2.4 or Corollary 2.2.6 (see Tables 2.3 and 2.4).

[n the tables the superscript @ indicates the covering is given in the appendix; e
indicates the result is obtained in [27]; b indicates the result is found by R. Beli¢ and
o that it is found by F. Oats (personal communication). The coverings of Beli¢ and
Oats can be found in the La Jolla Covering Repository, a website maintained by Dan
Gordon at http://sdccl2.ucsd.edu/~xm3dg/cover.html
The coverings of the last two authors are found via computer local search. The

entries with superscripts ¢2 and ¢3 are obtained by Constructions 2.2.2 and 2.2.4.
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Table 2.3: New Upper Bounds on C(v, &,t) (A)

v\(k,t) | (5.3) | (5:4) | (64) | (6,5 | (7.5)
13 78
14 43% | 232 80 377° 1432
15 57 303 118* | 609 | 2033
16 65 | 416° 160 808 | 321°2
17 492¢ 188 1215° 408
18 671¢ 236 1547% | 596°2
19 113 | 850° 330 2175 707
20 138 | 1095° | 400 2900 | 1037
21 151 | 1251¢ | 502° | 3995 | 1359
22 179° | 1573¢ | 580 4692° | 1874
23 190 723% | 6197° | 2342
24 234 784 30652
25 1018<2 37143
29 5085 23711

30 60352 28796°2

Table 2.4: New Upper Bounds on C(v, &,t) (B)

v\(k.t) [ (6,3) | (8,6) (9,7)
14 161°

15 304<2 291%
16 443° 5952
17 718° 937%
18 918 1586°
19 63 | 1507° | 2335
20 72¢ | 20423 | 3841°
21 3079 | 55843
22 4251 | 8663¢2
23 61252 | 124563
24 8124 | 18581¢
25 111892 | 25770
26 36959°2

54
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The entries in italics are old bounds from [28] needed to calculate bounds obtained
by Construction 2.2.2. The (v, k,t) coverings with less than 6000 blocks obtained
by Construction 2.2.4 are explicitly constructed after finding the point which is in
the largest number of blocks in an appropriate (v — 1,k — 1,t — 1} covering. For
coverings with more than 6000 blocks the upper bounds on C(v, &, £) are calculated

by Corollary 2.2.6. The remaining entries are explained in the text.

2.4 Comparative and asymptotic results

Let L'(v, k,t) denote the best possible lower bound which can be obtained by succes-
sive application of Theorem 1.1.1 and call it the Schénheim bound. Given a (v, k,¢)

covering C* of size b, define the deviation é by

b
6=8(C") = prtp

It seems natural to use this definition to estimate how good a covering is: the
closer the deviation to 1, the better the covering. However, given that there are cases
where the Schonheim bound cannot be attained, for example, C(8,4,3) = 14 (there
exists a Steiner system S(8,4,3)) and by Theorem 1.1.1, we obtain C(9,5,4) > 26 =
L'(9,5,4), whereas it is known that C(9,5,4) = 30 [14], it may be that & is far from
1 and yet we do have the best covering. There are also cases where the Schonheim

bound is the size of the best covering; for example C(10,6,5) > [LC(9,5,4)] = 50,
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Table 2.5: Bounds on C(v,6,4)

Lower | New Previously
v | bound | upper | known upper | New upper bound
bound | bound [28] Lower bound
14 75 80 87 1.07
15 93 118 134 1.27
16 144 160 178 1.11
17| 173 188 243 1.09
18 | 205 236 258 1.15
19 | 298 330 352 1.11
20| 344 400 456 1.16
21 434 502 594 1.16
22 | 539 580 721 1.08
23 | 625 723 871 1.16
24 [ 720 784 1035 1.09
25 | 921 1018 1170 1.11

which is, in fact, the exact value of C(10,6,5) [14].
In Table 2.5 we give a comparison between the bounds on the covering number
C(v, k,t) for the third column of Table 2.3.

The next lemma gives a general upper bound on the covering number C(v, k, k—1).

Lemma 2.4.1 C(v,k,k—-1) < (kjl) — k=L ").

v

Proof. First we form (v, k, k — 1) packings defined by

k
PJ = {{0.1,112, ceny dk} tag € X(U), Zai E] (mOd k)}1 J = 1321 ooy U [29]’

=1
It is clear that

UP=X*v), POP;=0, i#j

=1
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and so Y7, || = (:) Therefore, at least one of these packings has size at least

-'-(:) The blocks of the packing cover at least f(Z) (k — 1)-subsets of X(v). At

u

most ((kil) -

(( ’ ) - f(:)) k-sets. Thus we obtain

k—1
C(U,k,k—l) < %(Z) + (kil) _S(Z) = (kil) -—E—;——I(Z)

k(v k — 1)-subsets remain and in the worst case can be covered b
v \k Y

O
This lemma does not produce good bounds for small values of v, but it implies a
general bound which asymptotically produces coverings of deviation 1. More precisely,

we have the following.

THEOREM 2.4.2 Let k be fized. Then

Proof.

() = 54()

= Clo, k k—1)

< . _(kil)_%i(z)

[t =22 -]

=l
(k:1) - k_:l'(Z)
S Tl vkez

Fe—1'"" 2
a vt a4 L
bv*—l 4 byv*-2 4 .’
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where

1 _ k-1
a1 (k-1)! k! =1
[ S

1 K

and the result follows. ]

Lemma 2.4.1 and Theorem 2.4.2 provide an easy constructive proof of a particular

instance of the famous Erd6s-Hanani conjecture [23] that for fixed ¢ and k, ¢ < k,

C(v,k,t)

}i‘&,'%

Our result provides a direct proof for the case t = k~1. The Erdos-Hanani conjecture

=1

was proved in 1985 by V. R&dl [44], and shortly after that, Spencer [47] simplified the

proof. Both proofs make use of probabilistic methods.

2.5 Other generalizations

After studying the paper of Zaitsev et al. [54] we noticed that it contains (although

not explicitly stated) the following result which is an extension of Theorem 2.2.14.

THEOREM 2.5.1 There ezists a 3-(4™,6, 3(4™ — 4)) design D with p = 3 so that
the family of all 4-subsets of X(4™) not covered by any block of D is a Steiner system

S5(4™,4,3). This Steiner system can be partitioned into (2°™"! — 1) S5(4™,4,2) .

Note that the extension of Theorem 2.2.14 is the decomposition of the S(4™, 4, 3)

into S(4™,4,2)’s for every m 2> 2, a result of Zaitsev et al. [55]. This result is based
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on the remarkable proof of Preparata [42] that the binary Hamming code decomposes
into translates of the Preparata code. The design D is obtained from the codewords of
weight 6 of the Preparata code. The partition of the Steiner system S(4™,4, 3) (formed
by the codewords of weight 4 in the Hamming code) into (2?™~! — 1) 5(4™,4,2)’s is
described in [55]. Taking the derived designs of the designs given in Theorem 2.5.1

we obtain the following.

Corollary 2.5.2 There exists a 2-(4™ — 1,5, 5(4™ — 4)) design D with p = 2. The
family of all 3-subsets of X(4™ — 1) that are not covered by any block of D form a

resolvable Steiner system S(4™ —1,3,2).
The result of Zaitsev et al. leads to the following general upper bound.
THEOREM 2.5.3 Let 0 < d <2?™-2 —3. Then

C(3(2*™1) — 24,6, 4)
< () Bt -+t - 9] + 20 - 2d,4,3)

+C(22™1 — 2d, 6, 4).

Proof. Partition X(3(2?™"1) — 2d) into two sets, X; = {1,2,...,4™} and X; =
{4™ +1,4™ +2,..,3(2>""!) — 2d}. Let D be the 3-(4™,6, (4™ — 4)) design on X;

from Theorem 2.5.1, and D~ be the corresponding S(4™,4,3). Let Ay, A,, ..., Agam-1_4
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be the partition of D* into (22™~! — 1) S(4™,4,2)’s. Let By, Bs,..., Bjam-1_;_qy4
be the 1-factors of a l-factorization of the complete graph Kjim-1_54 on X,. Let
Baam-1_p4 = Byam-1_g441 = ... = Bpam-1_y = By. Let E be a l-factor of the complete
graph Kym on X, and F a (22™~! — 2d,4,3) covering of size C(22™~! — 2d,4,3) on
X,. Let H be a (22™~1 —2d, 6, 4) covering of size C(2*™~! —24,6,4) on X;. We claim

that the blocks of

A;B;, i=12,..,22""1
EF
H

form a (3(22™"!) — 2d,6,4) covering.

All of the [4,0]-sets are covered because the blocks contain as subblocks the blocks
of the 4-(4™, {6,4},1) design formed by the union of the design D and the Steiner
system 5(4™,4,3).

The [3,1]-sets and [2,2]-sets are covered by the blocks of A;B;,1 = 1,2,...,22™~1 ],

The [1,3]-sets are covered by the blocks of EF.

The [0,4]-sets are covered by the blocks of H.

Finally, it is easy to check that the number of blocks of this covering is exactly
the right hand side of the inequality of the theorem, which completes the proof. @

A slightly better bound can be obtained under the condition given in the next

theorem which generalizes Theorems 2.3.21, 2.3.22, and 2.3.23.
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THEOREM 2.5.4 Let 0 < d < 22™~2 — 2. [f there ezist 2™~ (22m~! — 2d,4,3)

22m-l

coverings each of size C(2*™ ! —2d,4,3) whose union is a ( —2d,4,4) covering,

then

C(3(22™1) —2d,6,4)

< (%) [BE™t - 1)+ (a2 - 4] + 2210 (22 — 24, 4,3).

- 3

Proof. We basically follow the proof of the preceding theorem. The difference is
in the covering of the [1,3] and [0,4]-sets. Let £, i =1,2,...,22™"1 be the (22m-1 —
2d,4,3) coverings on X, whose union is a (2°™~! — 2d,4,4) covering. Instead of using
the union of the blocks of EF and H we use the blocks of £ F;, 1 =1,2,...,22™"! to
cover the [1,3] and [0,4]-sets. O

For example, if m = 2 and d = 1, Theorem 2.5.3 gives C(22,6,4) < 581 while
Theorem 2.5.4 gives C(22,6,4) < 580 which is the best known bound (both use

Theorem 2.2.12). Corollary 2.5.2 leads to the following generalization.
THEOREM 2.5.5 Let 0 < d <222 —3. Then
C(3(2*™1!)—-2d - 1,5,3)

< (4'"—1) [L(22m—1 —2) + (4™t - d)] + C (2?1 - 24,5,3).

2 15
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Proof. Partition X (3(22™~!) — 2d — 1) into the two sets X; = {1,2,...,4™ — 1} and
Xz = {4™,4™ +1,...,3(22""!) —2d — 1}. Let D be the 2-(4™ — 1,5, 3(4™ — 4)) design
on X, from Corollary 2.5.2. Let A,, A,,..., Ay2m-1_, be the resolution classes of the
Steiner system S(4™ — 1,3,2). Let By, Ba,..., Bjam-1_;_.2q be the l-factors of a 1-
factorization of the complete graph Kjim-1_53 on X3 and Boam-1_34 = Baam—1_944y =
.. = Bpm-1 = B,. Let C be a (22! — 24, 5,3) covering of minimum size on X;. We

claim that the blocks of

A;Bi, i=1,2,.,22™ 1 _1
C
form a (3(22™~1) — 2d - 1, 5,3) covering.

Since the blocks contain as subblocks the blocks of the 3-(4™ — 1, {5,3},1) design
formed by the union of the design D and the Steiner system 5(4™ — 1., 3, 2), all of the
[3,0]-sets are covered.

The [2,1]-sets and [1,2]-sets are covered by the blocks of A;B;, i = 1,2,...,22"~1 -1,

The [0,3]-sets are covered by the blocks of C.

Again, the number of blocks of the constructed covering is exactly the right hand

of the desired inequality, which completes the proof. o



Chapter 3

Three infinite families of minimal

coverings

3.1 Introduction

In this chapter we prove that certain {-designs are minimal (¢ + 1)-coverings, thus
finding some new covering numbers. The results of this chapter have been published
in [11].

It is clear that any ¢-(v, k, A) design is 2 minimal ¢-(v, k, A) covering. Aside from
this, little is known about the covering number Cy(v, &k, ¢), A > 2.

There are some general results on Cy(v, k,2) [36] but for ¢ > 3, only a few sporadic

values are known. Two general results which have been obtained from finite geometries

63
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t+1 t t+1 t
g7 -1 q¢-1 g7 -1 ¢ t-1 g —1
C(q e l’) po [43] an C’(q,q ,) qq I (1],

where ¢ is a prime power. The corresponding coverings are 2- and 3-designs. In fact,

the only other known infinite family producing coverings with ¢ > 3 is

t o=l . t+1 __ 1
(04 (Z aeq'"',Za.‘q"“l,t) = qq 1 for any integers ag > a; 2 ... 2 a; 2 1;
i=0 i=0 -

a generalization of the result in [43] and found by Todorov [50], [51]. In a recent paper,
Chee and Ling [18] determined several covering numbers Cy(v, k,3) and in particular
showed that C3,(15,6,3) = 70\, for A = 1,2,3. The corresponding covering designs
also arise from results in [7] and are, in fact, 2-(15, 6, 10)) designs, A = 1,2,3. These
results suggest that there might be other designs that are minimal coverings and the
results of a search for such designs are presented in this chapter. We find three new

infinite families of minimal coverings with ¢ > 3.

3.2 Minimal 4-Coverings

THEOREM 3.2.1 Letv=2o0r4 (mod 6), v>8, andm = 3;(v—4)(v?—15v+

62) — 1. Then Cn(v,v —4,4) = 3;v(v — 1)(v — 2) = C(v,4,3).

Proof. There exists a 3-(v,4,1) design D for any v=2o0r4 (mod 6) [31]. The

number of blocks of D is Lv(v—1)(v—2) = C(v,4,3). The supplemental design D of

24
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Disa3-(v,v—4, %(";4)) design with Ao = 3;0(v—1)(v—2), A, = £(v—1)(v—2)(v—4),
A2 = (v —2)(v —4)(v — 5), Xa = &(v —4)(v—5)(v — 6).

Consider an arbitrary 4-subset S of X(v). The intersection equations of S with

respect to D are

ng+n;+n;+nz+ng=2A
n +2ns +3nz3+ 4ng =4
Mo +3Tl3 +6Tl4 = 6/\2

na + 4ngy = 4A;.

An essential step of the proof is to show that this system has only two distinct solutions
in non-negative integers ng,n;,n2,n3 and ng. To prove this, we find bounds on n,.

From the last three equations we obtain
ny +4ng = 40 — 12X + 12A5.
Since n; > 0 we get
ne < A — 3z + 3% = %(u — 4)(v? — 150 + 62).

On the other hand, solving the system for ng, ny, n2 and n3, we have

N3 = 4)\3 - 4n4
ng = 6y — 12X3 + 614
n = 4)\1 - 12)«2 + 12/\3 - 4114

Ng = »\o — 4A1 +6/\2 -—4/\3 + ny.
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A lower bound on n4 now follows from ng > 0:
1
ny4 2 4/\3 - 6/\2 + 4/\1 - /\0 = ﬁ('ﬂ - 4)(!}2 — 15w +62) — 1.

Thus n4 can take only two values, either m or m + 1, where m = 21—4(11 — 4)}(v? -
15v +62) — 1. It is easy to check that both values produce a non-negative integral
solution to the intersection equations for S. So, we proved that ezch 4-subset of X(v)
is contained in either m or m + 1 blocks of D; that is, D is a 4-(v, v — 4, m) covering.

To prove that D is a minimal covering, we show that the number Ag of blocks of D

meets the Schonheim lower bound (Corollary 1.1.2). Thus we claim

e el

Let v=6k+4,for k> 1. Thenm= %(18/(:3 — 21k* + 9k ~ 2). We obtain

6ek+1 1 3 9

1
6k —3

1
6k —3’

- %k(ﬁk @Bk -1) -

6k + 1 1 1,
[—Gk — 3m] = '2-'16(6’5 -1)3k—-1)= ﬁﬁk(ﬁk — 1)(6k — 2),

and the claim follows after simple arithmetic.

If v =6k +2, for k > 2, then m = 1(18k% — 39k? + 29k — 8). We have

__6k—1 1 3 2 1 1 1
Tt T —2)- = -(3k—1)(2k—1)(3k —2) ~ ——
6k—5" 5(18K° — 2747 + 13k — 2) T 2(31: 1)(2k — 1)(3k —2) T
6k — 1 1 1
[ek _ 5"‘] = 5(3k —1)(2k — 1)(3k — 2) = 56k — 2)(6k — 3)(6k — 4),

and the claim follows analogously. 0.
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The existence of many minimal covering designs without repeated blocks follows

from this result. The following result illustrate this.

Corollary 3.2.2 Suppose there exist | disjoint 3-(v,4,1) designs, where v > 8 and
[ <v—38, andlet m = (v—4)(v?— 150 +62) — 1. Then there exists a 4-(v,v —4,ms)

minimal covering without repeated blocks for 1 < s < I.

Proof. Let D be the 3-(v,4,s) design formed by s disjoint 3-(v,4,1) designs.
Then D is the desired covering. The Schénheim lower bound argument works for
1<s<v—8. a.

For example, there exist five non-intersecting 3-(10,4, 1) designs [33]. Therefore,
there exists a 4-(10, 6, 2s) minimal covering without repeated blocks for s = 1, 2. There
exist at least four non-intersecting 3-(14,4,1) designs [25]. Therefore, there exists a
4-(14, 10, 19s) minimal covering without repeated blocks for s = 1,2,3,4. Similar
extensions are possible for many other sets of parameters. For a survey of the results

on finding non-intersecting 3-(v, 4, 1) designs we refer the reader to [25].

THEOREM 3.2.3 Let ¢ > 4 be a prime power and A = q(qg — 1)(q — 3) + 2. Then

Cag?+ 1,42 —q,4) = q(¢* + 1).

Proof. The proof is similar to the proof of the preceding theorem. Let D be
the supplemental design of a 3-(¢* + 1,¢ + 1,1) design D (for example, the inversive

geometry of order g). The design D is a 3-(¢> + 1,4% — q,(¢ — 2)(¢® — ¢ — 1)) design
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with Ao = g(¢*+1), Ay = ¢*(g—1), A2 = (¢—1)(¢*~¢—1) and A3 = (¢—2)(¢>—q—1).
Let S be a 4-subset of X(q? + 1) and n;, ¢ =0, 1,2, 3,4, be the intersection numbers

of S with respect to D. As in Theorem 3.2.1,

ng <A =3+ 33 =¢q(qg—1)(g —3)+3,

ng 2 4x3 —6X2 +4) — Ao =¢q(¢g—-1){(¢-3)+2,
and both bounds produce a solution in non-negative integers to the intersection equa-
tions for S. Thus any 4-subset of X (¢? + 1) is covered by either A or A + 1 blocks of

D. So, Dis a 4-(¢* + 1,4% — ¢, A) covering. Furthermore,

¢*—2
?—-q-3

q—2
¢?—q-3

q—2

A=q3—3qz+q+2—m=(q—2)(q2—q—1)—

2
q? -2 )
[qz—q—3 ] (¢-2)(¢"—q-1),
and the equality

2 2 2 2
(QZ—Q[qz—q—l[q2—q_2[qz_q_3)‘ =q(q" +1)

follows directly. Therefore, the number of blocks of D meets the Schénheim bound,

which completes the proof. a.

Similarly, we obtain the following generalization of Theorem 3.2.3.

Corollary 3.2.4 Suppose there exist | disjoint 3-(¢*+1,q+1,1) designs, where [ < q,
q 2 4 s a prime power, and let A = q(q —1)(q — 3) + 2. Then there ezxist a 4-

(¢* +1,¢* — g, As) minimal covering without repeated blocks for 1 < s <.
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Proof. Let D be the 3-(¢>+1, ¢+1, s) design formed by s disjoint 3-(¢?+1,q+1,1)
designs. Then D is the desired covering because the Schonheim lower-bound argument
works for ;’5(%;—3}5 < 1; that is, for s < g. ao.

For example, there are at least three disjoint 3-(17,5,1) designs [17]. Therefore,

there exists a minimal 4-(17, 12, 14s) covering without repeated blocks for s = 1,2, 3.

3.3 Minimal 3-coverings

The next theorem provides the third of the infinite families referred to in the intro-

duction.

THEOREM 3.3.1 Letn=4* <1, k> 2. Then

1

360n(n - 1)(n -~ 3)(n - 5).

C%n—2(n’ 6$3) =

Proof. Let D be the 3-(n + 1,6, 3n — 1) design (with maximal intersection num-
ber p = 3) obtained from the Preparata code [15], p. 185-193 and described in
Theorem 2.5.1. Let D* be the derived design of D with respect to a point z; which
is a 2-(n, 5, 3n — 1) design with p = 2.

For completeness we need a direct proof to part of Corollary 2.5.2 which we now

present. We prove that the 3-subsets of X(n) that are not covered by any block of
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D* form a 2-(n,3,1) design D*. A 2-subset T of X(n) is contained in (n — 2) of the
3-subsets c¢f X(n). On the other hand, T is contained in 3(3n — 1) = n — 3 of the
3-subsets that are subsets of blocks of D*. Since D* has p = 2, all these subsets are
distinct. Therefore, T is contained in exactly (n —2) —(n —3) =1 3-subset of X(n)
that is not covered by any block of D*.

Now, consider the residual design D, of D with respect to the same point z. It
is a 2-(n,6, {3(n — 3)(n — 5)) design with p = 3. Any 3-subset of X(n) that is not
a block of D" is contained in exactly (3n — 2) blocks of D and any block of D" is
contained in exactly (3n — 1) blocks of D;. Thus D. is a 3-(n,6, in — 2) covering. To

prove that D, is a minimal covering we note that

222 ()] -[280=0 1] _o=pteo

(because (n — 3)(n — 5) is divisible by 12). Further, He=tin=3Mn=5) is oy integer, as
one of (n — 1), (n — 3) and (n — 5) is divisible by 5 and n = 4F — | implies n = 3

(mod 6). Then the equality

-9t -9 =[5 [ G-2)|]

1s immediate. This completes the proof that D, meets the Schénheim bound. a.




Chapter 4

New Simple 3-Designs on 26 and

28 Points

4.1 Introduction

The most recent tables of the known simple designs have been published in [34]. In
this chapter we prove the existence of 22 new simple 3-designs on 26 and 28 points.
The base of the constructions are two designs in which the maximum size of the
intersection of any two blocks is small. The work of this chapter has been published
in [12].

The following theorem, proved in [22], and its corollaries given in [9], [8], can be

used to obtain new designs from designs with sufficiently small maximal intersection

71
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number p.

THEOREM 4.1.1 (DRIESSEN’S THEOREM [22]) If D is a t-(v,k, A) design with a

mazimal intersection number p < k —m — 1 — 1, for fized integers m,l > 0, ther

Dpy={(BULO\M:Be D,MCB,IM|=m,LC(X\B),|L]|=1}

= (e () () G/ ()

design.

Corollary 4.1.2 Designs obtained by Driessen’s Theorem for pairs my,ly and ma, s,
where m; # m,, but my — I} = m, — I3, have the same block size, and are simple and

disjoint.

Corollary 4.1.3 If the designs produced by Driessen’s Theorem are simple and non-

trivial, then m < k —t — 1, and the initial design is not trivial.

4.2 New 3 —(26,k,\) designs

Let D be the unique 3-(26,6,1) design. We will prove the existence of a 3-(26,8,14)
design D’ with p = 5. We use the method illustrated in Theorem 2.3.17. The size

of the spectral set of X8 under D is 13. One of the equivalence classes is D’ with
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| D’| = 650 and Specp(D’) = (12,0,0). Itisa 3-(26,8,14) design with p = 3. Thus we

have the following.

THEOREM 4.2.1 The 8-subsets of X(26) that intersect each block of the unique
3 — (26,6,1) design D in at most 4 points and ezactly 12 of the blocks of D in 4

points, form a 3 — (26,8, 14) design with p = 5.

The application of Driessen’s theorem and Corollaries to D and D’ produces

amongst others the following designs:

Diy: 3—(26,6,120) Dig: 3—(26,6,140)
Doy: 3—(26,7,35) Dig: 3—(26,7,70)
Dys: 3—(26,7,1995) D, : 3 — (26,8,2016)
Dos: 3—(26,8,532) DioUD,, : 3—(26,8,2030)
Dos: 3—(26,9,4788) Di, : 3 — (26,9,378)
2 ¢ 3~ (26,10,4590).
The designs from the first column are mentioned in [9); whereas the designs from the

second column are new (with the exception of Dj ).

THEOREM 4.2.2 The following are sets of pairwise disjoint designs: D, Dy and

D’Z,O; DO.I’ D1'2 and D;'O; Do'z, .D’ and Di.l; DO'S and D’O'l.

Proof. We investigate the intersections of the designs with the initial design D.

In what follows, we essentially use the condition of Driessen’s theorem.
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Consider the designs D, D;; and D; 4. The maximal intersection number of D is
2. Each block B of D, has an intersection of size 5 with some block B* of D and
an intersection of size less than 5 with each of the remaining blocks of D (because
B is obtained from B* by removing a point and adding a new point from the set
X(26)\ B~). Any block of D, is a 6-subset of a block of D’ and any block of D’ has
at most 4 points in common with a block of D. Therefore, any block of D}, has at
most 4 points in common with a block of D. On the other hand, each block of D,
has 5 points in common with a block of D and consequently, the designs D, D, ; and
Dy, are pairwise disjoint.

Consider the designs Do, D12 and D{ 4. Any block of Do contains a block of D.
Any block of D, has an intersection of size 5 with a block of D and an intersection
of size less than 5 with each of the remaining blocks of D. So, it has at most 5 points
in common with a block of Dy,;. The blocks of Dj 4 are the T-subsets of the blocks of
D'. Therefore, any block of D ; has intersection of size at most 4 with each of the
blocks of D and thus at most 5 with the blocks of Dg; and 6 with the blocks of D, ,.
Consequently, the designs Dy, D2 and D} o are pairwise disjoint.

Consider Dy, D' and D ;. Any block of Dy, contains a block of D. Any block of
D' has at most 4 points in common with each of the blocks of D, so blocks of D’ and
Dg,2 have at most 6 points in common. Any block of Dj; is obtained by removing a

point from a block of D’ and adding a point from the supplement of the same block.
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Therefore, a block of D}, cannot have more than 5 points in common with a block
of D and hence 7 with a block of Dy 2. The designs D’ = Dj, and Df | are disjoint
by Corollary 4.1.2. Consequently, the three designs Do, D' and D}, are pairwise
disjoint.

Finally, consider Do3 and Dj,. Any block of Dg3 contains a block of D. Any
block of Dy, contains a block of D’ and one more element. Consequently, a block of
Dg , cannot have more than 5 points in common with a block of D and hence at most
8 points with a block of Do3. Therefore, the designs Doz and Dy, are disjoint. O.

The observations made so far lead to the following result. (See Table 4.1 for the

proofs.)

Corollary 4.2.3 There ezist designs with the following parameters:

3 —(26,6,m) for m = 141,260,261,
3—(26,7,35m) for m =2,3,59,60;
3-(26,8,7m) for m =2,78,288,290,364,368;
3-(26,9,21lm) for m = 18,246;

3 -(26,10,3m) for m = 1530.

Note that the designs are given in the form ¢-(v, k, Aminm), where A,y is the minimum

value of A for which a ¢-(v, k, A) design could exist (cf. [34]).
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4.3 New 3 —(28,k,)) designs

Van Lint and MacWilliams [35] have constructed a 3-(28,9,28) design D” from the
subsets of coordinate places holding codewords of weight 9 in a linear code of length
28 over GF'(4). The code has minimal distance 9 (equal to the minimal weight of a
codeword). We prove that the design D" has p < 6. There are three non-zero elements
in GF(4) and the code is linear, so there are three codewords for each support. Since
the minimal distance of the code is 9, any other word of the code must be at a distance
at least 9 from each of these three. If p > 6, consider three codewords, ¢, ¢; and c;
with the same support. There must be a codeword ¢’ which has at least 7 non-zero
elements in the support positions. At least three of these elements must be the same
as the corresponding elements in one of the three codewords, say ¢,. This gives two
codewords, ¢; and ¢/, at distance at most 8, which is a contradiction. Thus p < 6 for
the 3-(28,9, 28) design D" obtained in [35].

The application of Driessen’s theorem and corollaries, as shown in Table 4.1, now

proves the following.

THEOREM 4.3.1 There exist designs with the parameters 3 — (28,7,420); 3 —

(28,8,168); 3 — (28,9,28m), m = 171,172; 3 — (28, 10, 760) and 3 — (28, 11, 9405).

The results of Corollary 4.2.3 and Theorem 4.3.1 are summarized in Table 4.1. Of

particular interest are the two designs with parameters 3-(26,8,14) and 3-(26,9,378)
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Table 4.1: New designs

New design Construction
Parameters m
3-(26,6,m) 141 | DU Dy,

260 | DyyU Dy
261 | DUD,,UD,,
3(26,7,35m) |2 | Dig

3 | DoaUD,

59 | Di2U D,

60 | DosUDi,UD,,
3-(26,8,7m) |2 | D

78 | D'U Dy,

288 | DY,

290 | D'UD,,

364 | Do U DY,

366 | D'UDo,U D),
326,9,21m) |18 | Dj,

246 | Doz U Df,
(26,10,3m) | 1530 | D4,
(28,75m) |84 | Dj,
(38842m) |4 | DY,
(28,9,28m) | 1711 | D,

172 | D u DY,
3-(28,10,20m) | 38 | D,
3-(28,11,495m) | 19 | D&,

3-
3-
3-
3-

as they have the smallest known A when the other three parameters are fixed.
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Appendix

C(14,5,3) < 43
42, 26, 41, 111, 21, 29, 92, 15, 5, 37, 11, 9, 134, 35, 56, 24, 23, 13, 7, 13, 93, 102, 15, 62, 60,

26, 13, 64, 133, 56, 18, 29, 50, 30, 48, 48, 103, 54, 38, 53, 94, 25, 16.

C(14,5,4) < 232
6,8,6,20,7,4,3,3,9,21,7,4,7, 1, 3, 20, 6, 19, 3, 14, 3, 6, 2, 6, 3, 9, 23, 13, 5, 3. 9, 20,
5,5,2,2,22,11,1,3,7,8,24,9,9, 11, 15,9, 2, 6, 12, 12, 6, 4, 6, 8, 5, 7, 11, 2, 10, 7, 31,
9,5,511,2, 7,9, 2,11, 15, 8, 4, 11, 3, 22, 5, 9, 10, 8, 14, 2, 12, 1, 14, 6, 12, 12, 3, 14, 2,
14,3, 14, 1,2, 12, 4, 10, 8, 7, 16, 14, 6, 12, 2, 9, 6, 8,9, 8, 3, 3, 2, 25, 16, 10, 19, 5, 13, 8, 6,
8,13,4,3,11, 7,21, 2, 10, 18, 10, 6, 12, 6, 4, 3, 5, 16, 2, 2, 6, 8, 21, 16, 3, 11, 3, 12, 15, 1,
1,3,21,2,3,17,27,1,1,2,15,2, 1, 9, 9, 4, 8, 25,5, 2, 10, 12,2, 9, 16, 9, 8, 6, 11, 9, 6, 8,
26,5, 16, 5, 1, 10, 13,5, 11, 7, 1, 3, 21, 14, 1, 6, 4, 11, 2, 19, 14, 5,9, 2, 11, 5, 4, 2, 12, 4,

13,5,17,27,1, 16,1, 9, 2,21, 4, 14, 3, 3, 11, 11.

C(16,5,4) < 416
10, 13,9, 4, 11, 6, 11, 16, 3, 8, 3, 15, 28, 4, 9, 16, 11, 17, 12, 14, 9, 19, 5, 14, 13, 11, 7, 6, 13,
6, 10,2, 23, 1, 15, 5, 11, 11, 5, 14, 12, 13, 17, 3, 7, 15, 11, 14, 6, 6, 12, 19, 8, 5, 11, 20, 1,
22,19, 1, 8, 3, 14, 10, 15, 1, 3, 18, 28, 4, 7, 11, 4, 27, 14, 6, 6, 13, 10, 4, 12, 13, 31, 8, 1, 10,
2,22,5,2,7, 10, 4, 16, 9, 8, 6, 5, 21, 21, 3, 13, 2, 18, 3, 2, 7, 25, 1, 4, 20, 7, 28, 8, 4, 6, 8,

15,21,19,7,8, 14, 11, 3, 5, 9, 4, 12, 13, 9, 11, 5, 16, 1, 23, 5, 19, 19, 7, 8, 13, 12, 1, 15, 18,
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13, 2, 4, 10, 3, 2, 25, 25, 11, 8, 14, 13, 3, 6, 5, 24, 12, 25, 7, 6, 6, 8, 10, 9, 8, 20, 13, 14, 1, 4,
7, 24, 1, 2, 14, 15, 10, 3, 9, 5, 32, 10, 17, 6, 8, 8, 7, 11, 6, 4, 4, 19, 6, 8, 1, 18, 5, 14, 16, 10,
3,24,28,5,1, 17,10, 12, 21, 3, 2, 15, 5, 2, 6, 14,6, 3, 28,9, 13,5, 19, 7, 15, 7, 17, 14, 8, 2,
10, 14, 5, 13, 29, 3, 3, 6, 2, 8, 10, 34, 6, 2, 3, 8, 18, 3, 14,17,5,1, 7,9, 7, 1, 23, 21, 3, 7, 16,
4,26, 11,2, 1, 17, 4, 8, 22, 11, 12, 11, 1, 20, 6, 22,9, 5, 11, 11, 7, 9, 33, 9, 15, 10, 5, 3, 4,
16, 12, 11, 3, 17, 14, 34,5, 7, 3, 27, 3, 1, 1, 1, 21, 25, 1@, 5, 10, 5, 4, 8, 1, 17, 33, 7, 6, 10, 8,
13,14, 4,5,7,1,7,14, 5,4, 21, 4, 52, 3,9, 9, 2, 19, 8, 2, 26, 9, 20, 12, 3, 14, 8, 24, 20, 1, 7,
8, 16,5,12, 8, 3,19, 2,9, 3, 32,13, 4, 10, 13, 16, 2, 11, 8, 22, 3, 2, 12, 25,6, 7, 7, 3, 9, 24,

2,16, 5,18, 11, 6, 5, 12, 14, 3, 14, 7, 1, 24, 10, 8, 9, 4, 22, 9, 5, 2, 22, 15, 8,5,9, 7, 7.

C(19,6,3) < 63
359, 238, 57, 301, 15, 17, 1669, 181, 806, 22, 9, 2426, 173, 64, 19, 213, 518, 26, 19, 879, 571,
737, 26, 19, 35, 1924, 538, 1030, 64, 19, 1044, 103, 97, 98, 22, 9, 847, 718, 64, 19, 203, 1369,
15, 17, 1004, 743, 22, 9, 1678, 26, 19, 435, 1594, 15, 17, 444, 1308, 508, 187, 90, 1329, 19,

64.

C(20,6,3) < 72
264, 487, 366, 948, 791, 69, 372, 557, 244, 952, 359, 227, 344, 1233, 112, 172, 693, 1237, 447,
356, 279, 197, 71, 947, 1501, 81, 457, 970, 191, 287, 814, 207, 327, 803, 188, 498, 1324, 453,

521, 554, 454, 820, 351, 1226, 632, 1408, 52, 277, 494, 325, 640, 217, 514, 540, 1167, 213,
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363, 440, 656, 689, 803, 122, 209, 266, 1129, 173, 325, 281, 663, 386, 542, 392.

C(15,6,4) < 118
14, 19, 50, 44, 36, 97, 64, 35, 27, 56, 52, 73, 8, 14, 24, 44, 5, 56, 50, 3, 94, 28, 25, 20, 38, 96,
10, 12, 15, 6, 22, 82, 71, 91, 28, 41, 4, 4, 49, 23, 51, 7, 12, 6, 7, 73, 48, 9, 42, 7, 140, 78, 41,
8, 58,8, 9, 18, 36, 78, 133, 24, 32, 22, 39, 85, 40, 15, 78, 26, 13, 50, 5, 11, 55, 81, 30, 51, 36,
52, 14, 60, 93, 30, 108, 41, 32, 57, 27, 58, 35, 31, 34, 51, 44, 49, 8, 18, 40, 101, 55, 74, 23,

38, 86, 13, 45, 47, 14, 79, 57, 34, 52, 21, 23, 53, 153, 31.

C(14,6,5) < 377
8,9, 1,15,3,10,16,9,5,15, 1, 3,7, 13, 2,4, 7,6, 26, 4, 1, 2, 13, 3, 6, 4, 13, 3, 6, 10, 11,
10,13,4,3,9, 4,4, 17,7, 4, 3, 4, 3, 5, 22, 4, 10, 6, 3, 8, 8, 18,9, 2, 19, 14, 7, 6, 5, 5, 11, 4,
14,4,8,9,8,5,9,4, 519, 8,1, 2, 5, 14, 10, 6, 5, 16, 3, 5, 11,2, 19, 2, 5, 1, 6, 8, T, 12, 13,
9,4,14,6,7,15,7,4,4,2, 7, 4, 15,8, 11, 5, 14, 10, 8, 8,6, 4, 9, 6, 3, 13, 1, 13, 15, 2, 12,
9,5,10,8,8,6,13,3,3,15,5 17,1, 13,8, 7,8, 8, 1, 14, 2, 11, 10, 13, 14, 2, 7, 2, 12, 6, 9,
3,13,2,5,8,16,11,3,9,7,3, 11,6,9, 3, 5, 18,10, 6, 1, 25, 1, 4, 18,7, 2, 9, 5, 4, 5, 9, 3,
7,9,16,2,4,7,6,9,15,3,9,5,4,23,7,7,9,3,4, 16, 3,2, 11, 9, 4, 6, 2, 15, 14, 3, 18, 8,
6,9,5, 10,5, 14,4, 11, 3, 14, 3, 3, 12, 15, 3, 5, 3, 5, 5, 28, 6, 9, 14, 4, 8, 12, 3,9, 8, 6, 1, 7,
9,16,12,5,7,7,2,9, 11, 6, 4, 2, 16, 2, 6, 6, 12, 8, 11, 6, 16, 7, 4, 18, 12, 6, 8, 10, 8, 5, 7,
1,7, 14, 14, 4, 8, 10, 3, 6, 17, 1, 4, 2, 21, 1, 10, 19, 3, 8, 17,5, 4, 6, 6, 14, 9, 8, 2, 15, 7, 9,

8,9,4,2, 7,12, 10, 8, 10, 10, 4, 8, 7, 7, 16, 6, 10, 15, 4, 3, 2, 21, 8, 4, 12,9, 1, 18, 5, 5, 9,
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7,17,6,8,7,5,18,7,2,9,4,4,9,13,2,2,8, 8,7, 5, 12, 10, 5, 8, 8, 11, 19, 3, 12, 10, 4.

C(14,7,5) < 143
26, 3, 24, 5, 24, 17, 49, 2, 45, 10, 40, 47, 20, 9, 13, 7, 144, 2, 19, 34, 22, 57, 5, 13, 9, 42, 7,
15,3, 41, 43, 5, 141, 2, 2, 1, 21, 33, 40, 37, 9, 13, 5, 46, 3, 15, 7, 98, 16, 24, 3, 53, 2, 3, 8, 5,
52, 1,5, 38, 15, 21, 4, 40, 11, 5, 62, 51, 22, 1, 22, 118, 34, 19, 2, 53, 7, 6, 9, 3, 2, 53, 3, 8, 5,
1,52, 5, 8,6, 85, 15, 22, 9, 13, 5, 46, 3, 15, 7, 38, 24, 31, 19, 2, 17, 146, 7, 41, 18, 23, 5, 13,
9,42, 7, 15, 3, 41, 36, 19, 17, 2, 19, 146, 5, 5, 9, 35, 6, 132, 14, 3, 32, 30, 10, 2, 3, 17, 6, 1,

5, 16.
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