
University of Alberta 

PWOT: A Template Approach to Parailel I/O 

by 

Ian Scon Parsons 

A thesis submitted to the Faculty of Graduate Studies and Research in partiai W m e n t  of 

the nquirements for the degree of Doctor of Philosophy 

Department of Computing Science 

Edmonton, Alberta 



Nationai Libmry Bibiiïthèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographii Servicas se- bibliographiques 

The author has granted a non- 
exclusive licence dowing the 
National Library of Canada to 
reproduce, loan, distniute or sen 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 

L'auteur a accordé une licence non 
exclusive peaneüant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distniuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sin papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qyï protège cette thèse. 

thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



$0 Edith 



Parallel InputlOutput Templates. PVOT. is a novel. top-down, high-level approach to 

pafalleijzing file I/0. Each parailel nle descriptor is armotated with a high-levei specifica- 

tion, or template, of the expcted paraiiel behaviour. The annotations are extemai to and 

independent of the souire code. At m-the. ai l  y0 using a paralie1 file descriptor adheres 

to the semantics of the selected template. By separating the parailel Il0 specincaticm from 

the code, a user can quickly change the VO khaviour without rewriting the code. Tem- 

plates can be composed hierarchicdy to comtrucr complex access patterns. 

WMe other approaches expiicitly differentiate between parallei and sequential U0 in the 

source code, the ~r/m mOdel is based on the familiar standard smam UO (stdio) hnction- 

ality. The cutrent PVCX model contains five templates that c m  be composed to express 

more complicated I/O patterns. A set of amibutes for each template provides more ex- 

pressibility for thew basic template descriptions. The PUOT model is intended to be imbed- 

ded into a parallel programming system (PPS). The Enterprise PPS was used to impiement 

the P ~ O T  model. 

Four sets of experïments test the performance, useability. and composability of these 

templates. The first set of experiments examines the performance of this top-down ap- 

proach against versions implemented in an existing parael Il0 system (prous). Two appli- 

cations are used These applications share the same parent-chiid computational parailelism, 

but have different Il0 requirements. The ht, based on a molecular dockhg application, is 

fine-grained and contains variable-sized objects which in turn contain other variable-size 

objects. The other application is a coarse-grained version of disk-based ma& multiplica- 

tion. The experiments show that the performance of PVOT is at Ieast as good as prous. 



The second set of experiments examines the useability of the PVOT model. The run-time 

behaviours of two applications was changed by modifying the pardel specifications with- 

out recompiling the applications. 

The third set of experiments examines the effkct of the complexity of the dynamic seg- 

mentation function on performance. The molecular dockhg application was used. With 

sufficient computational granularïty, the complexity of the segmentation function does not 

have a sigaincaat impact on the application. 

The f o u .  set of experiments takes the lessons learned in this work and creates a more 

complicated parallei version of the fine-grained docking application that has better perform- 

ance than the simpler cornputauonal version- 

These sample applications demonstrate the benefits of PM model, both from the per- 

formance and the software engineering points of view. 



Acknowledgements 
Enterprise is a large team pmject and very liale of this couid be accompüshed without 

the efforts of many graduate students and researchers. 1 would specincally iike to thank 
Diego Novillo, Steve MacDonald, Randal Komelsen, and Paul Igiinski for their contribu- 
tions to this pmject. As weli, 1 would liLc to th& Steve Moyer for his advice on the MOUS 

implementations and discussions on the test nsdts. 
1 would like to thank my two supem-sors, Jonathan Schaener and hiane Szafroa for 

their guidance and direction, as weii, my unofficial supervisor, Ron Unrau, for his con- 
structive comments while developing and documenting this reseatch. I wish to thank Rod 
Johnson fiom Instructional Support Services for allowing me access to the undergraduate 
labontory for some of the experimental work. This research was supported by research 
grants h m  NSERC and a gant h m  IBM Canada, 

Fiiaily. to my wife Edith and my three children Manhew, Ellen and Emily: 1 thank you 
for ailowing me the &dom and opportunity to go back to university. 





5.1 Fi-graincd UO ...................................................................................................... - 5 7  
......................................................................................................... 5.1.1 Data File Layout 58 

....................................................................................... 5 . 1.2 Parailel Design Considerations 59 
5.13 Template I/0 in Entaprise ............................................................................................ 59 

............................................................................................... 5.1.4 PWS Implementation 6 1  
....................................................................................... 5.1 5 Fine-graincd UO Pcrformancc. 6 3  

5.2Coaf~c-graSd 110. ............................................................................................................ .65 
....................................................................................... 5 1 1  Paralle1 Design Considecations 66 

............................................................................................ 5.22 E n ~ r p r k  hnplemcntation 67 
.................................................................................................. 5 1 3  PIOUS Implemenfation 68 

...................................................................................... 5 1 4  Coarse-graïneci l/û Monnance 68 
............................................................................................. 5.3 Useabiiity and Composability 70 

.............................................................................................. 53-1 Hetemgeneous Children 7 0  
............................................................................... 5 3 2  Het~t~gentous Chüdren Pcrfomance 73 

........................................................................................... 533 Extended Pipeline Example 75 
..................................................................................... 5.3.4 Extendeci Pipeline Pafomunce 7 8  

.......................................................................... 5-35 Useability and Composability Summary 80 
....................................................................................................... 5.4 Dynamic Segmentation 81 

....................................................................... ................... 5.4.1 Segmentation Functiom ... 81 
............................................................................... 5.4.2 Dynamic Segmentation Performance 83 

.................................................................................. 5.4.3 Dynami-c Segmentation Summary 85 
......................................................................................................... 5.5 Complex U 0  Patterns 85 

............................................................................. 55.1 An Additional Segmentation Function 86 
............................................................................................. 55.2 Corn plex VO Performance 88 

5.5.3 Cornplex VO Surnmary ................................................................................................ 89 
.............................................................................................................. 5.6 Chapter Summary 89 

6 . Cooclusions ..................................................................................... 9 1  

............................................................................................ 6.1 Extensions and Future Research 91 
............................................................................................... 6.1 . 1 Deadlock Prevention 9 2  

6.1.2 Static Analysis Support .............................................................................................. 93 
............................................................................................... 6.1 -3 Run-tirne Improvements 94 

6.1 -4 Extensions and Future Work Summary ............ .. .............................................................. 94 
6.2 Conmbutions ............................................................................................................ 9 4  
6.3 Summary ......................................................................................................................... 95 

Bibliography ........................................................................................ 9 5  

................................................. A . Enterprise Paralle1 Programming System 1 02 

. A I Enterprise Programming Mode1 .............. ,, ......................................................................... 102 
......................................................................... A.2 Enterprise Implemcntation ................... ,., 104 

................................................................................... ............... A.2. 1 The Graph File .,.,. .lm 
............................................................................. A.2.2 The Precornpiler and Static Analysis 105 

............................................................................................... A.2.3 The Run-tirne Libraries 106 

............................................................... B . PIOUS Test Application Codes 107 

.................................................................................... B. 1 Small-Grainai V 0  Example Program 107 
............................................................................................ B -2 Coarse-Grained U0 Example.. - 1  09 
.............................................................................................. B.2.1 Source code for Parentc 109 

B.2.2 Source code for Chi1d.c ............................................................................................... 12 



Tables 
Table 5-1 - Elapsed times in seconds for PI/OT and prous (PSP, SSP and GSP). P~OUS import and expon 

times are not hcluded- Sequcatial user times in seconds were: 19 16 (buffered), 19 14 
..................................................................... (stanQtd stnam), and 1932 @OW-level). 63 

Table 5-2 - Disk-basai ma& multiply clapsod tirncs in seconds for 2000 by 2000 matrix of doubles 
(reals) using er/07 and Prous (input and export times not included). Sequentiai user times 
are 2214 seconds for buffked s t m m  y0,2352 seconds for saeam I/O anJ 1308 seconds for 

...................................................................................................... low-lcvel YO. 6 9  
Table 5-3 - Rapsed time (seconds) for thr# diffant paralle1 Il0 tcmplaîc combinations, three m u -  

ldty levels of cornputation. and nivo replication fa- for hetcrogenwus children exam- 
1 .-...............................................................................................................-.... 74 

Table 5 4  - Eiapsed times for dinercnt combinations of paralle1 UO ùchaviours and early ~Iease using 
the computaâonai pattern shown in Figure 5-1 %a Sequentiai user t h e  is 173 seconds. -. .-. 78 

Table 5-5 - Elapsed tirnes for clifferen t combinations of paralie1 UO be haviours and early release using 
the computational pattcni shown in Figure 5-18b. Sequenaal user Ume is 173 seconds.-.-.- 79 

Table 5-6 - Elapsed times for different combinations of paral1el U0 behaviours and early release using 
the computaâond pattern shom in Figure 5-1 8c. Sequenad user time is 173 seconds. ..... 80 

Table 5-7 - Elapsed times for different combinations of paraiiel UO befiavioun and early release using 
the computational pattern shown in Figure 5- l8d- Sequenbal user time is 173 seconds- --- .- 80 

Table 5-8 - Eiapsed time (seconds) using three different egmentation functions, four replication factors 
for the Child pcocess, and four computational granularities for the fine-grained U0 exam- 
pie .................................................................................................................. 8 3  

Table 5-9 - Ela@ time in seconds for a more complex computiition on a heterogeneous and a homo- 
geneous network of workstations. A t o t .  of ten processes are alIocated to execute the 

.................................................................................. Child and CEDE fincrions 8 8  



Figures 
figure 1- 1 . An example program witb samplt scqucntial input and output files. ..................... -CCC-CC--4 
Figure L-2 -Apadel  vasionof k u a m p f e s a p n t i a l  codt ...................................................... 5 

........................................................................................ Figure 2- 1 - Example for cmix YO 14 
............................................................................ Figure 3- 1 - Paralle1 Y0 bebaviour hicrarchy 21 

............................................................................... Figure 3-2 - SampIt code for UO attributes 21 
........................................................................................ figure 3-3 - Compoaing with PVOT 25 

........................... Figure 3 4  - tramples of co~cction purcns for a pipline of th= pmc~ss typs 27 
Figure 3-5 - Additional UO communication connections ncedcd for synchnitation and coordination 

..................................................... of fi access for global or segmenteci parailet Y0 27 
figure 3-6 - Possible connetion pattems using a pipetint of threc proces types . The character 1 

(one) indicates a singk instance of a proces type whiIe the character n indicates more 
than ont pfoctss instance . The boxcd pairs indiate that the contents of the box are rcp 

................................................................................... Iicatcd as a single unit 2 8  
.................................. Figure 3-7 - Ovenriew of the PVOT mode1 in a parailel pmgramrning system 29 

................................................. Figure 4-1 - Standard C strcam UO Iibrary function signaturcs 3 3  
............................................................... Figure 4-2 - Identifying Y0 managers and d odering 34 

................................................. Figure 4-3 - Two approaches to selectine an UO manager ......... ,. 35 
.......................................................................... Figure 4 4  - G d n g  access using PVOT . 3 6  

........................................................................... Figure 4-5 - Three entry points for stream YO 37 
Figure4-6 -Wrappercodeforaparailelfopen ........................................................................... 38 

.................................................................... Figure 4-7 - Two alternative signatures for fieopen 38 
Figure 4-8 -WrappercodeforparaIlelfclose ............................................................................. 39 
Figure 4-9 - Wrapper code for paralbl frrad .............................................................................. 40 

............................................................................. Figure 4- 10 - Wrapper code for parailel fscanf 41 
..................................... Figure 4- 1 1 - Wrapper code for paraile1 fprin d. ................................ ...... 12 

Figure 4- 1 2 - Wrapper code for parailel fsttk. ........................................................................... -42 
......................................................... Figure 4- L 3 - An example of a PVOT segmentation function. 44 

Figure 4- 14 - Another example of a ~rlûT segmentation function ................................................... 44 
Fipure 4- 15 - Format of a PVOT enuy for an Enterprise graph file ... .. ............................................ 48 

..................................................... Figure 4- 16 - An Enrerprise graph file with PI/O'~ extensions 4 8  
Figure 4- 17 - The signature of an Enterprise paralle1 fopen function ............................................ 50 

................................................................... Figure 4- 1 8 - The different y0 events for Enterprise 5 2  
Figure 5- 1 - Sequential code for fine-@ned Uû test program . ,.... .............. ,.., ......................... 58 
Figure 5-2 - Layout of an input data file for the fine-grainai y0 experiment ................................... 58 
Figure 5-3 - Modifications to sequcntial code for Enterprise ......................................................... 60 
Figure 5 J - Modifications necessary to the Enterprise graph file for fine-pined ï/O ........................ 60 
Figure 5-5 - An example UO segmentation function for fine-grained Il0 test program... .................... 61 
Figure 5-6 - An examplc of an il0 segmentation function for dynamic output records ....................... 61 
Figure 5-7 - Sequential source code for matrùr rnuftiply main   parent.^). ....................................... 65 
Figure 5-8 - Squential source code for matrix multiply Child (Chi1d.c) ............ .. ......................... 6 6  
Figure 5-9 - Enterprise code modifications to pardlelize disk matrix multiplication .......................... 67 
Figure 5-10 - Modifications to the Enterprise graph file for coarse graineci I/0 example .................... .. 68 
Figure 5- 1 1 - Heterogeneous children and extended pipeline padlel computation configurations. ......... -70 
Figure 5- 12 - Source code for the hetcmgentous children example .................................................. 71 
Figure 5- 13 - Four computation configurations us& for hetemgeneous children example ................... -72 
figure 5- 14 - Source code for the first stage of the three-stage pipeline example, Stage1 ...................... 76 
Figure 5- 15 - Source code for the second stage of the three-stage pipeline exampie, S tagen- ............... -76 
Figure 5-16 - Source code for the ttrird stage of the tbree-stage pipeline exarnpIe, StageIII ................... 77 
Figure 5- 17 - StagelI asset code modifieci to check futures ....................................~................. 7 7  
Fimre 5-18 - Four computation configurations for three stage pipeline example ............................... 78 
Figure 5- 19 - Segmentation fiinction for fine-@ned example that reads the entire record .................... 82 



figure 5-20 - Segmentation fimction for fine-@ned example that has the size of the record embedded 
into the data file- ,- ,-., . - -, , . . ,,,, , , . -, , ,, , ,,,. ,,, , . . . ,-. , -. -,--- .. . .. - -.-. -, - -. - - .  . , , ,, , . -. - -. -. . . . . . -. . -. . . . -82 

Figure 5-21 -Constant segmentation function for fine-@ned VO example-,,---.-..--- --.. -- ... - 83 
Figure 5-22 - Elapsed rime versus computational granularity using constant (a), hl1 read (b), and cm- 

bcddcd d (c) segmentation for fine-graincd UO example at four replication Ievels. 
Eiapscd tirne versus computation granulacity of the thnt segmentation fiinctions using a 
replication factor of fiftetn (d). ......................................... - ., . ,-. ,.,-.,, . -, . .-.--- û4 

Figure 5-23 - Source code for the CEDE firnction for the more complex I/0 example based on the fine- 
grainai Y0 example. ------.---- .-- -- ---- -. - --- ----- - -  - . . . . . . -  .-  . . . - . , . . -  . . . . 86 

Figure 5-24 - The cornpurationai pdlel ism for Miginal (a) and more complex (b) version of the fine- 
graincdy0wrample ,,..c,,.,,,.cdcd.cdcd.cdcdcd - cdcdcdcdcdcd.cd -.-. cdcd.cdcdcd.cdcdcd.cd.cdcdcdcd..cd.cdcd.cdcdcdcd.cdcdcdcd..cdcd .cdcdcdcd. c d . c d c d .  86 

Figure 5-25 - Modifieci source code for the Child function reflecting the changes necessary for the more 
complex fineepined Y0 cxamplc..,., .graigraigraigrai. .-.. g r a i g r a i g r a i g r a i g r a i g r a i g r a i .  . .  . - - - . . . - -  - - - - .  8 7  

Figure 5-26 - Segmentation fiinction for CEDE parallel U0 rtquirtrnents, -,-,..-.-.-..--..-.-.--..-eeee ..-- 87 
Figure A- 1 - Annotated graph file entry for one asset .-,.--.----,--.-.,,,-. ,.,. .-...--.- - ... - 1 0 1  
Figure A-2 - An example graph file. .-.-..-.-.-S. .-.-. - .--..... - .  . . . .,.,. .,. ..,..-... 105 



Chapter 1 

1. Introduction 
The development of paralle1 applications has focused on computational parallelism. 

Consequently, the comsponding growth in parailel input and output (VO) implemntation 
techniques has not kept pace. If an application is to puform p d e i  y0 operations, a user 
must explicitly ciifferenriate between p d e l  and sequential Il0 s t ~ a m s  at the source code 
ievel, and often import or export mes into or h m  specialiPd n]e systems. As weii, the 
computationai paralekm may have to k re-implemented to work with the communication 
system used to build the pcuallel VO hiraiy. This results in a lack of portability beniveen 
diffierent operathg systems, architectures, and even changes in the physical layout of the 
Files, 

IdeaUy, ail of this should not be of concem to the user. A user wouid type in the corn- 
maad cc -par Mycode- C. The compiler analyses the code and creates the resultant bi- 
nary, a- out. When a user nias the application, it adapts to the m-time environment. Al- 
though this is not feasible yet, the user can cunently specifjr what needs to be done. With 
this information, how the requirements are accompiished can be the concem of the paralel 
pmgramming system (PPS) and the physical resources controlled by the various operating 
systems- It should be possible to enter the command CC -par Whatiwant ~ycode . c to 
create a parallel-aware binary file and to get the resuits by entering the command a .out 
-par Whatiwant. The paralle1 behaviour specifications are associated with the matmant 
parame ter. 

This dissxtation proposes a design for implementing paralle1 Il0 requirements using 
hi&-level behavioural specifications (or templates) within the auspices of a parallel pro- 
grammiog system. One of the advantages of a pes is to shieid a user nom the low-level 
details of implementing parallel requirements. Several examples of these systems (with 
varying degrees of sophistication) can be found in 12, 4, 6, 10, 25, 28, 33, 46, 70, 831. 
A PPS codd use these paraiiel I/O specifications, dong with its own mode1 for descnbing 
the parallel computatïon, to implement the desired paralle1 behaviour. The PPS integrates all 
components for developing, compiling, ninning, debugging, and evduating the perform- 
ance of a paralle1 application. That is, the impIementaüon of the paraiieiism is handled by 
the PPS. A user cbwses the computational and VO tempiates that give the best perform- 
ance, 

Current approaches to paralle1 Il0 favour the use of parallel V 0  libraries. These h i -  
ies offer an Lnpmvement over implementing the desired hinctionality using low-level hinc- 
tions offered by operating systems. The paralle1 y0 requirements are specified using a 
package of specially designed paralle1 VO liirary calls (typicaiIy highly tuned to one or a 
few architectures). Usuaily, these iibraries force the user to diffexentiate between sequen- 
tial and parallel I/0 streams and to specify how the data is to be subdivided, synchronized, 
and merged. Tbere are a numkr of these ii'braries avaiiabie that are designed for object- 
oriented. data-paraiiel, and pardiel file implementations (for example, 17, 9, 15, 17, 20, 
2 1, 24, 3 1, 34, 35, 37, 40, 42, 47,48. 54-56, 58, 59, 63, 66, 75, 79, 821). 

When this library-of-functioas approach is taken, it is important to note that the paralle1 
behaviour is stili directly coded hto the program by a user. Any changes to the y0 or the 
parallel computation behaviour are reflected by modifications to the code. Thus, something 
as simple as integrating a new rdease of the uY3 library could introduce errors. Since a 
user's code is implemented for a paRicular V 0  library, if a decision is made to use another 
UO libriuy (possibly due to moving the code to a different system), modification of the 



source code is required even though the paralle1 bebaviour has remauied the same. As a 
side effect of experimen~g with different p d e l  ly0 access patterns or behaviours. many 
h e s  of code must be rewritten. 

An alternative to embedding the parailei behaviour ducctly into the appiication is a hi@- 
level abstraction, or template, tbat separates the paraiiei behaviour fiom the code. Tem- 
plates are intended to work within the framwork of a paraUeI pmgramming system. Ide- 
diy. one wouid designate an UO Stream as haviag a specinc p d e l  behaviour and the PPS 
wodd correctiy paraüelize all th sequentiai V 0  calls that use that Stream. This abstraction 
rnechanism is beneficial since: 

Patallel Y0 and computational behaviom are encapsulated into an easy to under- 
stand set of templates. 
The user specifies what paraUelism is needed while the template determines ho w 
the paralle1 behaviouf is irnplemented. This can result in different solutions for the 
same parailel behaviour, depending on îhe underlying architecture or low-level 
software libraries. 
Parailel behaviwr can be chaaged with minimal or no changes to the user code. 
Because the computational and y0 templates are integrated, optimîzations between 
the Merent paraLiel behaviours are possible at both compile and run Ume. 
Templates provide a quick first-draft of a solution that can be incrementally refmed, 
depending on a user's expertise. 
Correct parallel behaviour and implementation for the template are guarmteed. 
The performance of templates can be comparable to hand-coded solutions. 

The programmer uses the PPS to produce a paraliel application by supplying the sequen- 
tiai code for the paraUe1 algorithm. The pacalleIiun is descn'bed by selecting templates of 
predefined paralel behaviom for paralle1 computation and M and associating specific 
hinctions or variables to different templates. The PPS stores these templates separate from 
the user's code. The templates and the user's code are then processed by the PPS to gener- 
ate code to perform the parallel behaviour. This machine-generated code is linked with the 
necessary run-thne support iibraries to generate an executable for a specific target architec- 
ture. This is repeated if more than one type of architecture is king used (different VO im- 
plementations could be used that are transparent to the program). At run-tirne, the PPS is 
responsible for starting, monitoring, and terminating the parallel application. 

For example, consider an application that has one of its Il0 descriptors annotated to use 
a particular parallel I/O behaviour. The PPS analyses the source code for instances of the 
paralle1 file descriptor and modifies any code necessary to ensure the correct paralle1 I/O 
semantics (as dehed by the template). If a user wishes to change the paraüel I/0 behav- 
iour, a different template is specined and the PPS regeuerates the code to implement the new 
behaviour- The strength of this approach is that different paraUe1 UO behaviow are speci- 
fied by changing templates - not user code. 

S&on and Schaeffer examined the useability of several paralle1 programming sys- 
tems [73]. They found that using computational templates to create parallel applications is 
beneficial. The user code is signincantly reduced and the application is up and running 
much sooner since the templates are comctly implernented for the selected paralle1 behav- 
iour. The drawback to templates is that there can be a slight performance penalty (Le. less 
speedup). The work presented in this dissertation extends these results nom computationai 
templates to Y0 tcmplates and provides experimental validation. 

There are two perceiveci disadvantages to using such a high-level abstraction mecha- 
nism. Fint, there is the loss of d k t  conml by the user since a high-Ievel abstraction is 
supposed to shield a user fiom many of the low-level detaüs. Second. the perfomiance of 



the application might not be as good as the à a n d d e d  application since the abstraction 
&ais with the general rather than the spefific d e u s  of the problem. 

This first point is resoLved by creaciog a base set of templates with user-adjustable at- 
tributes that can be composed into more compiex behaviours. If more hands-on convoi is 
requïred, a user cm change the attniutes of the template (but not the code) to customize the 
application. The combination of simple base behaviours and adjustable attributes. coupled 
with the ability to be composed to b 3 d  more inaicate behaviours for greater complexity, 
provides a rich set of specifïcations for most peraUeI applications. The simple program- 
ming moâei. the short time to draft a wodMg application, and the independence fiom im- 
plementation details typïcaiiy wtweigh the restrictions imposed by workîng within a tem- 
plate fkamework 

The second concem is more serious since, to many people, puformance is the only 
evaiuation metric. Whik this dissertation primanly addresses tbe software engineering 
benefits of templare VO, the perhmmce of this system is shown to be comparable to 
band-code& Nned implementations. Since template Il0 offers signifîcant software engi- 
neering benefits, users should oniy consider hand-coded solutions if they are convinced 
that additional performance gains are possible. The possible performance gains may be 
offset by the cost of the additionai effort required to implement, debug, and test their cus- 
tom solution. An alternative approach for the advanceci user couid be to Nne and modi@ 
the code generated by the PPS since many PPSS use source-to-source translation. 

The system proposed in this dissertation is callecl Parailel InputrOutput Templates 
(P~/oT, pronounced pilot). Tt introduces a bigh-level, topdown approach to parallel W0. A 
user is able to separate the parailel bebaviour fkom the physical Il0 specifications. Changes 
to either the paraiiei computations or ttie parallel Il0 are not embedded in the user's source 
code. A source-to-source translation tool (precompiler) takes the specïfîcations and creates 
the necessary modifications to the source code to create the required parallel behaviours. At 
run-time.  PI/^ implements the paraLiel behaviours. Since P V ~  is inwided to be integrated 
with the paralle1 computations, optimizations such as prefetching, declustering of data. or 
replications of data files can be done dynamicdy. 

The rest of this chapter is as follows: Section 1.1 presents an example that illustrates 
some of the complexities of paraiielipng UO. Section 1.2 lists the contributions of this 
work to Cornputhg Science. Section 1.3 describes the layout of this thesis. 

1.1 A Simple Example 
This section prrsents a simple example that illushates some of the obstacles fûndamen- 

tal to paralleking sequential V0. The paralie1 program that is derived in this section is not 
an example of how the parallekation would be accomplished using templates. The exam- 
ple is intended to show the kind of code a user would need to provide if the parailelkation 
was done by hand. Alternatively, it shows what kind of code must be generated if tem- 
plates are used. 

Figure 1- 1 shows the sequential C code for this example dong with a sample input fde 
and the cotresponding output me. The sequentiai program opens two fdes, one for reading 
and one for writing. The program reads integea h m  the input file. and for each integer, 
outputs a h e  to the output file that contaios rnultiple copies of that integer. The input fde 
consists of a series of ASCII character rrpresentations of integers, separated by new-line 
characters and tenninateù by an end-of-file marker. The output file can be viewed as a se- 
ries of variable length character records separateâ by new-line characters. 

This example is a simple one but it illustrates that the following basic considerations 
must be made wheo converthg from sequentiai to parallel UO: 

When a file is opened by multiple processes, an access mechanism must be speci- 
fied The three common access mechanisms are: independent, shared, or se g- 



C 
int i, num ; 
fscanf( fin, "%du, &nin 1 ; 
for { i = O; i c mm; i u  ) C 

fprintf ( fout, '%d ' , num 1 ; 

fprintf ( fout. *\na ) ; 

1 

S - l m  input f i l m :  

Saquantial output film: 

Figure 1 - 1 - An example program with sample sequential input and output files. 

mented [23]. Independent access requires that each process have its own inde- 
pendent H e  pointer without any syncbronization between processes. Shared ac- 
cess means that movement of the file pointer by one process affects the me pointes 
of the other processes. Segmented access implies that the processes access mutu- 
aiiy exclusive regions of the nle with their own fde pointers. The user's code must 
be changed so that the access mechanism is explicit when a file is opened. 
For each paraliel access mechanism, there are different criteria for checking the end- 
of-file condition and different actions must be taken to close the paralle1 file. These 
differences must be reflected in the user's code. 

Access synchroaization must be specified. For example. to prevent unwanted in- 
terleaving of VO operations by different processes, blocks of Y0 statements must 
be identified in the code and would be considered as an indivisible or atomic VO 
tmn.saction. In addition, some synchronization may be necessary between transac- 
tions. 
The format of a file may need to be changed to support a particular paralle1 access 
mechanism. 



These considerations are not intended to be exhaustive. They are given here to show that 
even a simple program requires extensive modifications when its I/O is paralleiized The 
goal is to generate these modifications automaticaiiy, using paralle1 Y0 templates. 

A naaual parallekation of the pmgram in Figure 1-1 has the Parent function and mul- 
tiple copies of the fiinction named Qild each executed by its own process. Figure 1-2 
shows a parailei version of the code mat accomplishes this. A boldface font is used to 
identify changes to the code. (For clarïty and brevity, the code for spawning remote proc- 
esses, marshahg and demarshaiiïng of parameters and expIicit process communication is 
not shown.) Oniy two comtraints are p W  on the paralielization. The input tile may only 
be read once by the user's code to avoid the dupiication of w o k  The output of each 
chila fimction may not be interleaved with the output h m  any other. For exampie, it is 
not necessary for the 3s to k printed before the 6s. However, the 3s must appear on a 
separate line h m  the 6s. 

The Parent pmcess opens the input and output nks using a genenc parallel library 
fuoftion par-fopon. The extra parameters indicate the parailel access mode of the file 
(par~ode) and the processes that WU coiiectiveiy share this p@el file (pafiroup). 
These grouped processes that share this pardel file may be composed of subgroups within 
some hierarchy. This would d e c t  the synchmnization and coherency resuictions imposed 
by the compuiational parailelism. 

The par-feof function uses the pardel access mode set in the par-fopen fiinction to 
determine whetber the end-of-file condition has been met For example, if shared file ac- 
cess was selected, then par-f eof wiu be mie whenever any Chiid process encounters an 
end-of-file condition. If independent file access was selected, then par-feof wiii be m e  

Parent ( int argc, char **argv  1 
{ 

g u - F I z a  *fin. *fout ; 
f i n  = pu-fopon( argvtll, "rH, par-, puOrouP ; 

fout = p m f o p m a  ( argv[2 1 , "w" , ~Uwoda, p8rG:oup 1 ; 

while ( ! p.t-fmf( fin 1 ) { 
/ * 

Wrapper Cunction to send a message to remote process 
* executing Child 
*/ 
pu-Wld(  fin, fout 1 ; 

1 
par,fcloaa( fin 1 ; 

pu~fc lo .o(  fou t  1 ; 
1 

Childt pmr-?ILS *fin, pu-- *fout ) 

c 
in t  i, num ; 
pu,frcuaf( fin, '%dm, &num ) ; 

p.r-IOst.rt( fout 1 ; /* Start ï/O transaction */ 
for ( i  = O ;  i c r m ;  i++ ) { 

gu-fpzântf ( fout, '%d ', num 1 ; 
1 
pu,fprintf( fout, "\nu ) ; 

p u , I O m d (  fout  1 ; /* Stop U 0  transaction */ 
1 

Figure 1-2 - A parallel version of the example sequential code. 



only when the parent's fde pointer reaches the end-of-fde mark. In this program, thar will 
never occur since the p u e r i t  never moves its nle pointer. If segmented access is selected, 
Parent moves its own file pointer fornard one s e p n t  at a Ulm as it caiis its children. In 
this program, par-feof wiU be m e  when it passes the Iast segment to a child 

The "@ue" function. pa.r_chiid, contacts a remote process to execute the Chiid hnc- 
tions. This fiinction passes the appropriate pardei file desniptors to the remote Child 
processes. Finaily. the par- CIO OS^ hc t ion  doses the nle using the correct pardel ac- 
cess mode to dispose of the appropriate hle pointers. Ciosing a parallel file blocks the exe- 
cution of porent  until a i l  outstanding chiia proceses have nnished with the file. 

The fiindamental problem of parallel Il0 pmgramming is that multiple processes share a 
common resource. One of the consequences of this is that a user cannot assume a consis- 
tent Il0 state between successive operations unles accesses are synchronized. Even using 
a parallel II0 Ii'btary. a series of output operations would be interleaved unless the UO Li- 
brary is informed that a succession of Il0 actions are to be done as one transaction. The 
output op t ions  in the miia fùnction are a perfect example of this situation since the user 
wants ali of the 3s to be output together on a h e  with aU of the 6s on a dinemt line. 
There are four approaches to solving this transaction problem. In each case, the assump- 
tion is made that a single paralel Il0 operation is atomic and it is necessary to build these 
into larger atomic transactions. 

In the fmt approach, each line is printed in a single Il0 statement. However, since the 
number of output operations for each ike is varîable. each y 0  operation wïU expiicitiy 
write to a memory buffer each time W u g h  the for loop and then explicitly write the buffer 
to the file at the end of the loop. That is, each process prints to a buffer using sprint f in- 
side the loop (advancing the start of the buffer pointer over the previous Il0 statement) and 
then put the memory b a e r  to disk using fprintf outside the loop to write the entire line. 

In the second approach, an atomic block of output operations is explicitly idenafied to 
the paralle1 I/O system. This choice is presented in Figure 1-2 by the par-rostart and 
par-roend fbnctiom around the atomic VO operation. 

In the third approach, each remote process gets a block of the file to which it has exclu- 
sive access. Each process c m  then concumntly write its output without fear of interfer- 
ence. However, this approach is complicated if variable-length output records are needed. 
udess the block size can be easily determined in advance of using the block (either by static 
analysis or dynamically). 

In the founh approach. each remote p r o c w  writes to a local scratch file; after the trans- 
action is finished, the file contents are retumed to the parent to be integrated into the master 
füe. This approach is similar to the fkst approach, except that it is intended to be managed 
by a parallel VO system iastead of behg the explicit responsibility of the user. 

In addition to a mechanism to delimit atomic Il0 transactions, it is ofien necessary to 
spec* the synchronization of Il0 primitives themselves. For example, the par-fclose 
function cannot actually close the He  unul ali chiid functions have fdshed with the file. 
Code must be written in the par-fciose function to perfonn this synchronization. 

Sometimes the stmcture of fdes must be changed to support a parallel access mode. 
For example. if segmented access to the input file is desired for the program in Figure 1 -2, 
then fixed length records would be easiest to support. One way to do this would be to 
store the integers in binary format iostead of ASCII format. Altemately, if ASCII format is 
necessary, then a îïxed number of characters must be specified for each integer. This has 
the disadvantage of restricting the range of the input data, Say from -999 to 9999, if four 
charactes are used. Sirnilarly, if segmented access to the output file is used. a fixed size 
line for the output fde would be required as it is difficult to predetenaine the size of a par- 



ticular line or nle segment. Consequentiy, the nle would be padded with blank or nuii 
c harac ters, 

It is clear that even a very simple program requires extensive modifications to parallelue 
the VO operatiom. As Chapters 3 and 4 will show. templates provide a good mecbanisrn 
for generaMg much of this tedious code automatidy' wbile Cbapter 5 demonstrates that 
the template appmach cau provide reasonable pedormaflce. 

1.2 Contributions 
This thesis makes the foliowing research contri'butions: 

This wok dernonstrates that paraUeI VO Specincations cm be separated from the 
sequentid fiiactions. Tbat is, pr/ar keeps the standard sequential interface used for 
invoking any IEO operations in the user's code and descnbes, independent of the 
user's code, w b t  parallei LIO behaviour(s) are ueeded- At compile and at nui-tirne 
these specifications are used to identify and implemcnt how the paralle1 ùehavioun 
wiU interact with the application and its environment, 
By separatïng the II0 and computational pafallelism h m  the sequential code, it is 
possiïle to support optimizatioas and adaptive behaviours by ushg the captured 
knowledge of al l  the parallel bebaviours, both at compile t h e  and at rua-the. 
This work demonstrates that thae are significant software engineering benefits to 
Il0 templates including: less code, rapid prototyping' and fewer errors. As well, it 
demonstrates that JI0 templates can generate code whose performance is compara- 
ble to hand-coded pardiel UO. 
By identifying the components that interact between the computational and y0 par- 
ailel behaviours, this work shows how optïmization and run-time characteristics are 
handled in a more automatic and efficient manner. 
This work provides a contribution towards automatic paralleikation by the success- 
fil sepration and integration of the various parallel behavioun. 

1.3 Document Structure 
This chapter outlines the motives for this research and descnis the goals and scope of 

the thesis. The example (Section 1.1) iliusuates the complexity of paraUelizing the compu- 
tational and I/0 aspects of even a simple application. Chapter 2 provides a summary of the 
related work used to develop the model presented in this dissertation. Chapter 3 presents 
the parailel y0 mode1 used for PI~OT- Chapter 4 discusses the implementation of the model 
in general tenns as well as a specinc implementation within the Enterprise parallel pro- 
grammîng system. Chapter 5 compares the performance of the Enterprise version of pu'ur 
against the equivalent implementations using PIOUS 1571. a low-level paralie1 WO system. 
This chapter also explores the composability and useability of the templates to construct 
more complex I/O patterns with two different parailel computational rnodels. Chapter 6 
descni some user and system optïmïzations and extensions that are possible, dong with 
future research directions. Fially, Chapter 6 s u m m k s  the contributions of this work 
and presents conclusions. 



Chapter 2 

2. The Current State of Parallel UO 
This chapter presents a summary of the body of work that was used to inspire the spe- 

cific approach to paralie1 Il0 proposed in this thesis. In Section 2.1, some of the specsc 
temiinology uscd in this dissertation is &fhed. The balance of this chapter pments a re- 
view of the current state of paraUeI Il0 nsearch as it relates to this dissertation. 

The current state of parailel VO researrh can be divided ùito three parts: characteriza- 
tion, actual p d e l  Il0 systems. and integration with a p d e l  programming system. A 
problem mut be characterized and saidied before any solutions can be examined. PafalleI 
110 systems are denved h m  the results of characterizhg problems. How are these y0 
systems integrated into the computational mechaniSm? Or, are they stand-alone parallel file 
systems? If a given system has chosen to ignore the UNM interfe and sequentiai N e  
system, what must the user do in order to cross the boundary between paralle1 and sequen- 
tial VO? Paralle1 IK) solutions need to be integrated into the existing parallel computational 
solution. That is, I/O and computation must be considered in tandem. How easy is it for a 
user to make changes to either the computational or y0 parallelism without making sim- 
cant changes to the other? This is an important question if the system is to react dynami- 
c d y  to changes in the network, processors, and file-systems. 

Section 2.1 in~oduces specific definitions to some of the terms used in this work. De- 
pending on the reader's background, a specific term may have different meanings. The 
intent of this section is CI@ understanding by providing a single definition. Section 2.2 
sumarizes the cbaracterization of paraiil Y0 as well as some attempts to p d e k  the 
Y0 in various real applications. Section 2.3 characterizes the cumnt state of p d e l  110 
iibrarïes. Section 2.4 discusses the use of a separate He system to efficiently implement a 
desired p d e l  behaviour. However, utilizing the ewting sequential file system by coor- 
dinahg access may be equally efficient and bas the added benefit of not requïring the du- 
plication of fdes or pre- and pst-processing of the data fdes. Section 2.5 examines the 
object-oriented approach to paralle1 U0. Section 2.6 describes the current state of paralle1 
p r o g r d g  systems. The complexity of implementing pamllel VO implies that there must 
be cooperation with parallel computational systems. How these existing paralle1 cornputa- 
uonal systems support paraUe1 UO is examined Section 2.7 presents four issues for par- 
ailel V0. Fially, Section 2-8 provides a summary of this chapter. 

2.1 Terminology 
Templates have been used to express p d e l i s m  in many parallel programming systems 

(PPS). For example, templates have been used to express the computational parallelism in 
Enterprise [70], HeNCE [5], and PL [3] and to define data parallelism in High Perform- 
ance Fortran (HPF) [41]. Templates are pre-defineci behaviours with a weli-àefined inter- 
face that aüow the user to express to the PPS what is needed while the PPS can determine 
how to implement the behaviours. TypicaUy, templates are used to express simple behav- 
iours that can ofien be composed to represent the complex behavioun of an application. 
The welldefïned interface allows the PPS to interact with the different templaw to deter- 
mine how exactly the complex behaviour is implemented. 

Parailel templates should not be confused with Ci+ templates. Although TPIE [82] and 
Mentat 1331 use C+ templates to express parallel behaviours. in this thesis, tempiates do 
not imply a C++ language bindïng unless explicitly noted. 



UO and computatiom are inextricably tied in an application. The traditional view of the 
temporal ordering of data input, computation, and data output must still be respected when 
entering the paralle1 domain. This ordering may be necessary for progrmn correcmess. To 
a user, the order in which statements a~ executed okn determines whether the progra.cn 
performs comcrly. If the IIO operations in a plirallel program must occur in exactly the 
same oder as the equivaient sequentid program. the Y0 is  defhed to be in sequentiui or- 
der. 

However. in paraüel pmgrams, users may px5.f~ several levels of acceptable behav- 
iour dependhg on th application's requirements. These levels are due to the degree of 
concurrency now availah1e to tbe application. RecaU the example pmgram given in Sec- 
tion 1.1. The sequential version of the program opened an input and an output file, then 
repeatedly read in integers and output variable Iength character strings until the input file 
was exhausted (EOF was reached). When the appIication was paralleiized, one of the con- 
saaints was ihat the entire output Iine for a given input was to be considered as one atomic 
Il0 operation even though multiple Il0 operations were needed to mate it (the f o r  loop). 
However. the order of the liaes themselves was not important. In this case, the sequential 
ordering was relaxeci to a seridùed order in which atumic blocks codd be output in an ar- 
bitrary order. 

The input file had the constraint that the data must be read once, regardless of how 
many processes accessed the fde. By segmenthg the me, many processes could independ- 
entiy read diffierent parts of the input file concurrently. Such input is cailed chaorc as no 
process ordering is needed to access a file segment. 

AU of these input and output access patterns are correct according to the user con- 
straints. However, the implementation of these patterns is complicated by the computa- 
tional paraüelism and the m-tim environment. For example, the number of cooperatïng 
processes and the physical location of the data files will affat the overail perfomiance. 
From a p d e l  110 viewpoint, the access patterns (chaotic, serial, and sequential) can be 
viewed as a level of "correctness" shce they define progressive restrictions on VO behav- 
iour. 

Sequential comcmess is the most restrictive access pattern with VO operations pro- 
ceeding in the same order as the sequential application. Significant synchronization is re- 
quired, with a correspondhg reduction in concurrency. Serial comctness impiies that 
there are blocks of work to be done but that the order of the blocks is not important. How- 
ever, each block of work bas its own interna1 view of correctness that is irrelevant outside 
the block. For example, some blocks may be sequential and others might be seriaiized. 
The chaotic level is a complete relaxation of ordering where the program executes with 
minimal (if any) synchronization. 

Regardless of the level of correctness. multiple concurrentiy executing processes re- 
quire a user (or some intelligent agent) to implement synchronization mechanisms to ensure 
correct paralle1 behaviour. Example mechanisms are: barriers to ensure ail processes 
complete a certain task; rendezvous to cwrdinate senders and receivers; and sema- 
phores to indicate exclusive access. The user is responsible for specifying the desired 
paralle1 behaviour and the level of comctnw for tbe appiication. However, the PPS is re- 
sponsible for implementing the synchronization. The PPS resolves the different parailel re- 
quirements of the application to produce an overall paraUe1 behaviour. These requirements 
include the computation, the VO, and any global or s h d  memory. 

From a paralle1 IIO perspective, thm are two aspects to an application's parallel be- 
haviour - static and dynamic. The static (or compile-time) component idenofies ai l  possi- 
ble cases w here a parallel file pointer is use& detemines which vimial processes share the 
file, and resolves the boundaries definhg a given VO transaction. The dynamic (or run- 
t h e )  component decides which physical processes share the paralle1 füe, how much opti- 



mization (for example, prefetching or cachuig) can be done, and exactly how much of the 
fde is shared, locked, or modified. 

Computational p d e l i s m  has an efféct on the VO behaviours. This cm be seen in the 
simple case whee an application stays in a lwp  tbat inputs data, perfonns a compuration 
and outputs data until some exit condition is met- If the loop is paralle- to use concur- 
rent piooesses, a user may w a ~ t  to avoid reading the same input data more than once and 
may demand no iaterleaving of output lines. Synchronization and coordination of the input 
and output streams an neaded If an application splits a computation into severai pans ail 
runnîng concurrcntiy, the layout ofthe data in the nle may re~ujre  the user to impose barri- 
ers to prevent the application h m  reading or ~&ing to the wrong part of the file. 

Changing the paraUeiizati00 behaviour of the Uû can ais0 afkct the efficiency of the 
computatiod paralleiization. Wbether these e f f i  are positive or negative, they cannot be 
ignored. If the padlelization details can be separated h m  the computational requirements, 
the parailel details cm be separated h m  the sequential Y0 calls. The overall motive is to 
ensure that positive resuits are possible. 

2.2 Parailel WO Characterization 
The basic types of paralle1 Il0 are stiU the same as when Crockett [23] characterized 

them - global, segmented, and independent. However, opthkations for specifk archi- 
tectures and algoritùms cm be used to mate speciaüzed solutions (for example, strided in- 
terfaces, and disk striping). Nevertheless, integration of the parallel computation, run-time 
support himies, architecture, and network characteristics are essentiai to provide a good 
general paralle1 Il0 solution. A clearer understanding of these relationships pennits the 
programmer to mate efficient paraiiel applications. 

Various papers have discussed the optirni7iition of an application's U0. Most of these 
papers concentrate on specialized architectures (such as Hypercube, CM-5, and SP-2) and 
their associated custom V 0  software. The network configuration is largeiy ignored except 
to note that it should be as fat as possible, dedicated only to the application, and that M y  
comected processors are desirable. The capacity and speed of the communication network 
are perhaps the dominant considerations in detexmining the best solution for a given appli- 
cation. That is, a slower network solution cm trade the speed of locally cached data fdes 
against the complexity of enswing cache coherency. Altemativeiy, a large number of con- 
current processes sharing access to a aven fiie can make the cache coherency solution too 
expensive, 

VO opthhation can be approached from several directions. One way is to examine 
traces of "real" applications running on existing systems [22,60,67,76,77]. From these 
traces, a file system designed to optimize p d e l  y0 can be developed or tuned for the 
aven system and application suite. Another approach is to mate a set of test applications 
to characterize the best UO configuration for a given machine D2]. The user cm then en- 
gineer the application «> take advantage of a particuiar configuration. A more general ap- 
proach takes an algorithm and documents the sieps necessary to maximire throughput, irre- 
spective of the arcbitecnual platfonn. 

There are three problems with these approaches. The f k t  is to get ail  of the users to 
cooperate with the study. If a computational pladorm allows users to nin dKir applications 
concurrently, uncooperative users could contaminate the traces by consuming some of the 
platform's capacity in an unknown fashion. The second is to ensure that there is enough 
variety in the applications to draw useful generaüzations from the study. The third is to 
determine whether the stabiliiy of the machùie(s) and software available impose constraints 
on the potential solutions. Typically, the "%est" solution is a compromise between the ex- 
isthg software and hardware and the amount of the programmer's time available to develop 
an acceptable solution. As well, the run-time environment may indicate bat the optimal 



algorithmic solution with the system under beavy load is not optimal when the system is 
Lightly Io& 

For example. Nieuwejaar and Kotz [m studied traces of existing applications on vari- 
ous parallel systems. From their data, they detennined that regular steps or strides through 
data are common. Consequentiy, they bave deve10pcd strkied and nested-suided inter- 
faces [SS] which have I d  to the Gaiiey File System [61] and the disk-directed Y0 pro- 
posa1 for p d e l  Y0 [47]. 

Womble n al. [8s] examine the LU decomposition aigorithm executing on a Paragon 
and an ncube. One of their conclusions is that having background Il0 to overlap computa- 
tions is an important component of a paraüel file system. As weli, a partitioned ale system 
is important for hi@-performance. 

Acharya et al. Il] chronicles the steps necdeci to paraileh the V 0  in four applications 
that have overall y0 requirrrnents of between 75MB and 2ûûGB on an SP-2 with a high- 
capacity V 0  system. Thre!e of the appfications were tuned to get much better throughput. 
They found that complicated InO intedaces. such as strided IEO requests, were not always 
tbe best answer. The need to modify code, to use local disk storage where possible 
(avoidîng congestion on th network), and to have the knowledge of fiiture VO requests 
(when to prefetch) are sufficient to gïve SgnXcant improvement to throughput and 
speedup. 

These four applications were ained usiog the Jovian-2 p d e 1  Il0 system which, unlike 
its predecessor Jovian [7]. is a mula-threaded client-semer system with a sirnpliued inter- 
face similar to the POSIX iio-listio interface [43]. This aiiows multiple y0 requests to 
be issued with one c d .  The rewrite of Jovian was indicated after the collective I/O inter- 
face did not work well with real applications. 

Diffierent researchers have drawn different conclusions fiom their characterization ef- 
forts. Conclusions differ according to the extent of the modifications to the user's code 
necessary to "simplifY' the paraliehm and according to the nature of the applications behg 
paraUelized. Simplifications are cenainly usehil, but at what cost to developing =al appli- 
cations? 

Characterizhg weii-understood pardel applications and algorithms under controlled 
conditions facilitates development of optimization techniques. However, the study of the 
110 complexity of a task requires that m a ~ y  components be held constant. For example, 
having a homogeneous architecture and network, or generating the pardelisin with explicit 
knowledge of future requests, is not always possible. Parallel programming systems try to 
shield some of this heterogcneity fiom the user. Can the abstraction techniques used by 
these PPSS be utiüzed by parailel Y0 templates? 

2.3 Parallel y0 Interfaces 
ParaIlel Y0 interfaces c m  be roughly divided into two groups: m a l  paralie1 file sys- 

tems (which arc addressed in this section) or real parallel nle systems (Section 2.4). Vir- 
tual parallei me-systems reside witbin the conventional UNIX Ne systern. Wiihin these 
divisions. there is the library approach of separate function cails (as discussed here) and the 
object-oriented approach (Section 2.5). Many systems leave the user to specify the desired 
parallelism and to coordinate the synchronization. This puts the user in the position of en- 
coding the Il0 paraileiism directly into the application. Changes to either the computational 
or VO paralleiism may then require extensive code modifications. 

Four representative virtual parallel file systems ushg this Library-of-fwictions approach 
are presented in the fohwing sub-sections. They are PIOUS. MPI-IO, CUBIX, and CHIMP. 



Paralle1 Input/OUtput System (prous) [57] provides paraiiel CIO operations for proc- 
esses using PVM communication primitives. The basic p~ciples  of PMS are that it uses an 
asynchronous mode1 Mth independent individual servers, data declustering for scaieable 
performance, aud network trarisport and native He system independence to enhance port- 
ability. Each client uses a special Ii'bfary of fiinctio~~ to translate nle operations into service 
requests with the various PIOUS data servers. 

PIOUS bar a single service coordinator that initiates major system events such as openhg 
a nle by a client The semice c002diIliitor deah with tb netadata and not the actuai file 
access. Each processor involved in the declustering of the data hles has a data server that 
acts independent of aii others, enhancing scalabüity. Ideaily, the serven access local fdes 
on disks physicdy connected to the processor, but a network He system does not pose a 
problem. The server dœs not interpret the byte stream, but laves that up to the user. Se- 
quential UMX mes must be impoaed into the prous systcm before any of the parallel y0 
hinctions can work with the data Similariy, afkr the application is finished, the PIOUS file 
must be exported back to the sequentiai UMX me system before processing by non-PIOUS 
appiications. 

The parailel 110 operations are done as transactions to provide sequentïai consistency 
for the user. There are two difîerent transaction types: stable and volatile. Stable transac- 
tions guarantee that cobenncy is preserved in the case of a system crash. Volatile transac- 
tions do not guitraatee coherency if a system crash occurs, but they do provide high per- 
formance. 

PIOUS is based on a paraIiei access object, parafile. Each para fi le is logically one 
fie, but it is composed of physicaliy distinct segments. The segments are set at the tirne of 
creation and cannot be changed. The parafile is globaliy named w i t b  the PIOUS system. 
PIOUS ody supports an uninterpreted byte Stream. Where the Il0 is done in an environment 
consisting of heterogeneous cornputers, the fdes must be stored in universal data represen- 
tation (UDR) format- Work is king done on storing record formats for these types of files. 

An Y0 operation is usuaily considered as one transaction. For more complicated trans- 
actions, the user can expiicitly s w  end, and abon a transaction composed of multiple VO 
operations. 

There is a clear separation of paralle1 and sequential I/0 in eious .  The user must explic- 
itiy encode al1 the parallelism into the code. This is consistent with the PVM philosophy of 
providing a basic set of tools for the user to construct paraUei applications. A drawback to 
this library-of-funciions approach is that changes to the computational parallelism in the 
PVM application are not recognized by PIOWS. 

2.3.2 MPI-IO 

MPI-IO [20] started as a separate entity fiorn MPI 1831 but has since been integrated into 
the MPI-2 1531 pmposal. The MPI-IO working goup decided to provide a complex interface 
consisting of more than 45 W 0  related functions. This complexity reflects the desire of the 
group to kep each function simple and focused on one pafallei y0 task. Initiaily however, 
this plethora of choices appears daunting to the user. 

The MPI-IO system supports two kinds of pardel V 0  operations - independent and 
collective. The coordination of a nle is limited to the rnembers of the communication group 
used to open the file. An independent I/û operation does not coordhate with any other 
members of the communication group. However, if the user selects a collective Il0 opera- 
tion, al1 members of the communication group must participate. The completion of the cal1 
by one process does not mean all processes have started or completed the call. Each proc- 
ess is £bx to intermix individual or collective UO operations. 



The MPI-IO system maintains two We pointen. One file pointer is local to the process. 
The other is giobai and is shaced between a i l  members of the communication group. There 
is a coIlection of Y0 mutines which use the shared file pointer. Use of the shared file 
pointer leads to the sMaiïzation of multiple calls with nondetermlaisac results- 

In MPI-IO, the contents of a file are specined by an MPI derived datatype - an etype 
List. The e-e kt is a description of the fields of data storeci at specified offsets. Thus. 
"holes" in the data saeam are possible. Wben opening a file, the user specifies an absolute 
displacement in bytes h m  the beginning of th me. Subsequent access is defined by the 
~ W O  etype Ilsts: filetype a d  buftype. The filetype describes the disk layout of the 
file either parüy or compIeteLy. The buf-e ikt dCSQibCS the hyout in the appiication's 
memory buffer for each read and write operation. The dispiacement, filetype, and 
e-e cm be chaaged later to access different parts of the nle. This may appear confusing, 
but it makes sense b m  a paraUeI programming viewpoint. A user &fines different Y 0  
behaviows or data views within the code. There is no support for tûe concept of transac- 
tions in MPI-IO. Each V 0  fiinction is considered atomic. A developer is eltpected to use the 
gened MPI system to synchronize if an UO operation takes more than one function to com- 
plete. 1t is considered an error if a file is opened for shmd or collective operaaons by in- 
dividuai processes using different disk Iayouts. 

At the t h e  of writing, there are two alpha reieasesl of MPI-IO but they are incornplete 
and are based on earlier releases of the design document It is not clear when a more robust 
and complete version of MPI-IO wiiI be released, especidy since it is now king integrated 
with MPI-2, 

The main drawback of MPI-IO is that it is attemptuig to -te a standard that encom- 
passes C ,  Cu, FORTRAN, and FORTRAN 90 laquage bindings. Each of these lm- 
pages approach UO dïffierently. C views IrO as a sneam of bytes and imposes structure 
from within the application. FORTRAN has tixed or random sized records. C++ (object- 
oriented) has each object interpret a stream of bytes. Normaiiy, complex objects tell their 
sub-objects to read in data fiom the disk. This Leads to the I/O being distributed throughout 
the code and having fiaer granularity . By aying to create a standard for aiI, it is Iikely that 
only a comrnon unsatisfactory subset will emerge. It is not clear that leading research by 
developing a standard is the best approach at this point. Clearly, a standard wili be useful 
- eventudy. However, this ma of research is stdl  in a state of flux and standards at this 
tirne would iikely inhibit the iavoduction of altemate sduaons. 

The CUBIX Il0 model [29,69] defies two types of strearns. The fmt is the traditional 
single stream mode whiie the second addresses the concurrency found in pardel applica- 
tions. The user can explicitly switch a file stream between single and multiple mode. 
The CUEU model is based on loose synchronicity and rank odering of the processors. 
This ranking provides an access ordering to the He. There axe two access methods. In 
s h g k  mode, ail clients execute the same fde fiinction with identicai data and only one ar- 
bitrarily selected ciient's data is aansfened. The multiple mode occun when aii clients 
execute the same file function with dinering amounts of data. The order of transfer to or 
from the file is determined by the node identifier ranking (lowest to highest). 

One limitation of the CUBK Y0 model is that aii processes must execute the same Y0 
functioas at the same time and block util a lower ranked node bas releaseci the strearn to 
proceed. Reordering of the data file may be ~quired. The example shown in Figure 2-1 
illustrates this point. 

' IBM: http-J/www.research.ibm.comlpcople/p/pm~t/~ections/mpii~-h~nl and 
NAS: http:/AoveIacc.nas.nasa.gov/MPI-IO/pmpio/pmpio.htmI- 



Fgure 2-1 - Example for cusor l70. 

h this exampie. the fiuiction, ParFunc, is replicated four a s  (i.e. tkre are four 
processors executbg Parme concunently). In the sequential version, this function is 
d e d  four cimes. The table shows the values of the variables i and j, depending on 
whether th function is nui concumntly using CUBK Il0 or not AU four proasses execute 
the fkst scanf and, once done, all four do the second scanf. To get sequential resuln in 
the paralel version either the data file must be reorganized to reflect the paralIelism, or the 
two read statements must be consolidated into one read operation. 

Express 1271 uses the mot mode1 to help the user partition data files [63]. There are 
three VO abstractions: one process for muitiple chanwls, multiple processes for multiple 
channels. and multiple processes for a single channel. Express depends on the user to ex- 
plicitly insert addiàonal I/O fiiaction calls for the paralle1 behavioun. The user dehes how 
a group of processes will partition the data file. By using the Express functions to define 
the partitioning. the UO subsystem re-aügns itseIf with the processor mapping. The end 
result is that the user's conventional Il0 c& operate normally. 

LAM [62] is a distcibuted memory, multiple-action-multipledam (MIMD) pro- 
gramming and operathg environment for a network of heterogeneous UNM workstations. 
h is a subset of the TROWS 11 11 system that provides p d e 1  support for dedicated proc- 
essor systems. LAM supports parailel I/O based on the mu< fle access model. LAM dif- 
ferentiates y0 iasofar as there are separate y0 functions for CUBR and non-CUBIX (UNE) 
operau'ons. The UNIX version has each process write directly to an I/O saeam with no 
synchronization. The LAM system supports MPI, PVM. and its local message passing func- 
tions. The user is still expected to write parallel code by using the low-level iibrary func- 
tions. 

Comrnon High-level Interface to Message Passing (CHIMP) [l8] is a parailel pro- 
gramrning enWonwnt similar to LAM. The Pardel Utilities Lîbraries (put) [IO] are built 
on the cw base. Two of the relevant iïbraries support paraiiel Il0 and patalle1 &ta man- 
agement. There are two PUL utilities for paralle1 V 0  operations and two for parailel data 
management. 

The first utility is a Global Fie utility, PULGF [13], which provides access arbitration 
for a group of processes with a common shand me. GF provides the C s tdio fiuictionality 
of siruciunxi and unstructured access to shared files. There are fou modes of access. 
Two modes, single and multi. behave similarly to the cveix [63 ] model discussed in the 
previous section. The random mode allows processes to independently access arbitrary 
data using a global file pointer. The independent mode gives the processes a local file 
pointer. Modes can be changed dynamicaliy. The current implementation is a client-semer 
architecture providing non-blocking y0 oprations that let computations overlap with the 
VO operations. 

The second parallel I/0 utility is PUL-PF [15], or Paralle1 File system. PF îs intended to 
provide a transparent, efficient. and portable interface to parallei disks. The developers of 



PUL-PF feel that the conventional UNM byte stream modei is obsolete. An application data 
structure is used to contrd file access operations. The distribution of the fde data is done at 
a user-defined record level using an Il0 atom of possibly variable length. There are data 
distriiution saategies available to the user that permit the opiimuaiioo of I/O dependhg on 
the problem and architecture available. 

PUL provides pardel data management that addresses the pedormance of applications 
with regular local opedons over large data sets, such as computationai fluid dynamifs or 
seismic ciata pmcessing. Data is disa'buted and pmcessd according to the owner corn- 
putes nile. That is. the owner is responsiiale for boundary data consistency. The PUL- 
RD 1141, or Regular Domain decomposition utility, has operator stencils (simiiar to tem- 
plates) to calculate the inter-process communications ktween boundary updates. The user 
has the option of b l o c h g  on Il0 or overlapping computation with il0 operations. The 
PUL-SM [80], or Static Meshing utility, supports irreguiar mesh-bared problems nÿit suffer 
from load imbalance and a d  dyaamic reconfiguration. The SM utility supports two and 
three dimensional meshes, ensures consistency of  daîa boundaries, and provides data mi- 
gration. 

CH~MP and wt are based on MPI. It is interesthg to note that a user can abstract applica- 
tion requinments by assigning pcrraUel templates or meshes to data sets. However, the 
user's code still contains the expiicit parallelism. As weU, the developea have abandoned 
the traditionai UNDC byte Stream modei. This forces a user to redesign an application be- 
fore using this system if the application used UMX semantics. There is also the differen- 
tiation between a general network nle system and a speciaiized paralle1 file system. Cross- 
h g  this boundary is neither transparent nor trivial. 

2.4 Parailel File Systems 
Section 2.3 looked at Il0 iiiraries that provide a virtual parailel nle system. However, 

a reai pardel file system is another alternative. Five representive systems are presented 
here. The last of these systems is more than a p d e l  VO Library but less like a parailel fide 
system. 

VEXA [21.26] uses a two-dimensional fde layout and a client-server structure to con- 
trol accesses to parallel files. It defines a basic striping unit (%SU) with UO processes 
managing multiple BSUs. By managing access to stripes, concurrency of VO operations 
provides improved throughput. 

The GALLEY file system [59] enhances the V ~ A  approach by providing a t h e -  
dimensional view of paralle1 files. A p d e l  file is divided into a series of distributed su b- 
files where each subfile is M e r  subdivided into a number of forks. A fork is similar to 
a familiar sequential UMX file. This is weil suited to dyoamic record sizes and applica- 
tion-specific clustering of data. GAUEY provides t h  access mechanisms to the data: a 
simple striding, nesteà striding, and an unstructurrd interface. 

The Portable ParaIlel File System (PPFS) [42] provides a portable parailel UO library to 
allow a user to contrd nle caching, prefetching. data layout, and coherence policies. It 
provides a number of pdefined policies but does ailow a user to defme layout, access- 
patterns or new prefetching policies. 

The Vlmial Paralle1 File System (vm-FS) [35,36] is a layered approach to parailel UO. 
The local file systems are comected by Y0 processes that cwperate with the Vimial Parai- 
le1 Fie (VPF) layer to provide a single nle image to the interface. A user can access fdes by 
conventional UNiX c d s  such as open and lseek. Each process in the distributed parailel 
application bas complete access to the file. A user is responsible for coordinating file ac- 
cess. Altematively, the parallel fde can k partitioned and mapped to the various distributed 
processes using the specialized VIP-FS funchon calls. 



The Panda paralle1 UO system [l7] is designed for single-program-mui tiple-data 
(SPMD) scientific applications. It uses an HPF distribution schema for the data arrays with 
a server-dkected V 0  architecture. This semer-directed appmach allows a more controlled 
gatherhg of data chu& to take advantage of the lower cost of larger y0 operations. 

To s-, a i i  of these systems have a separately defined interface for pardel I/O. 
Some of the systems provide an iaterf' that pexmits the user to worlc with the familiar 
UMX Il0 fiiactions to access data. However, to strïp or distribute the data requires ex- 
plicit calls to specific paralle1 fiie system functions. 

Many object-oriented applications could b e d t  h m  patallel V0. Object-oriented ap- 
plications do not necessarily have the same Il0 cbaracteristics as a traditional high perfom- 
ance computbg (HPC) application (Wre computational fluid dynamics or systems of equa- 
tions). Typically, objects dehe their own Il0 so that complex objects rely on the Il0 op- 
erations of intemal objects. This decentcalizaàon of Il0 nquires more synchronization and 
coordination between processes and the file system(s). For example, one approach could 
cache VO blocks into local memory to amoaize the cost of the smaiier Y0 operations. Tbe 
task of the PPS is to idenfify and extract or mage the comct data block. 

Three representative object-orïented parallel Y0 systems are presented. 
The Mentat group [33] has implemented the ExtendibLe File System ( ~ F s )  p4]. 

an is designed so that a user implements a file system optimued on a class by class basis. 
Prefetching and caching strategies, as well as strïping and partitioning across multiple 
physical devices, are supponed. The consistency semantics for a given class rnay be re- 
laxed h m  the strict UNIX semantics of imrnediaie visibility after a write operation. It is 
both an advantage aad a disadvantage of ELFS that a user must defme and extend the parallel 
I/0 behaviours. 

A Transparent ParaIlel Il0 Environment, TPIE [82], uses C++ to implement paralle1 VO 
access patterns. A user builds a Stream of data stored on disk. Various access patterns are 
pre-defined for a user to associate with a fde. The intent of VIE is to abstract the VO de- 
tails, leaving a user to specify only the required VO behaviour. 

The Hurricane File System (HFS) [48] is the paralle1 file system for the Humcane dis- 
uibuted operating system 18 11. Tbis custom füe system allows a user to build hierarchies 
of data objects that reside in memory or on disk. Because HFS is designed to work with a 
supportive distxibuted operating system, many of the data management routines (such as 
cache management) are part of the operating system. This leaves a user free to concentrate 
on higber level parallel Y0 concepts. 

These systems still  require a user to encode the parallelism into the application using 
explicit parallel functions. Also, the specialized operathg system providing support for the 
£ le  system is intended for rrswch and is not widely available. 

2.6 Parallel Programming Systems 
Parailel programming systems (PPS) are essential for developing paralle1 applications. 

Since VO is an integral part of any application, some means of integrating and cwrdinating 
Y0 and computational paralleikm is needed. This section look at severai high-level PPSS 
and several Iower-level communication Libraries used to &velop paralle1 applications. Of- 
tea, a PPS or an JI0 Li'brary has developed perallel UO systems based on an underlying 
communication or parailel computational model. 

P d e 1  programming systems can be divided into two groups. The first group uses 
some form of abstraction to allow the user to specify the paraiielism at a high level. 
PAMS 161, HeNCE [4], Mentat [33], Enterprise [70], and High Performance Fortran 



(HPF) [41] are examples of these systems. Typicaily, these systems use a compiler tool 
that processes a user's source code along wîth the seiected abstractions to produce a parallei 
binary . 

HeNCE and Enterprise use a graphitai interfice to let the user descni the parailelism 
by means of templates or pre-dehned behaviours. There bas been no direct effort to sup- 
port parallel Il0 in either system HPF has compiler directives to distribute the data PAMS 
wuires tk user to define the paraUeiism by maos of stmchired comments. This hides 
annotations h m  a conventional coqder so it can build sequentiai applications with the 
same code. Mentat extends the C+c hguage through added key words. The user defines 
mentat piuaiiel classes. By taking advantage of inkritance in C++, Mentat implements 
paralle1 communication with the marshallhg of data handled automatically. 

The Parailel And Scalabie Software for Input-Output (PASSION) system [75] is a 
compiler and m-time li'brary for HPF applications. A user provides directives about data 
distribution, and the compiler manipuiates and transforms the source code to map the out- 
of- data to disk. Because aU the iaformaton about the pataüel cornputations and VO 
requirements are available, techniques such as prefetching and collective VO operations can 
be efficientiy implemenred This qstem does not address the problem of file access per se 
but it does show the effkctiveness of having sufficient information to make infomed op- 
timizations. 

A data-pde1 Il0 system. Stream* 1551, lets the user keep a paralle1 p r o m g  view 
(C* [38,78]) and familiar C nle routines. Hints are placed in the source code to disuibute 
the y0 by specifing a shapc (a physical tile layout) for the 110 and idenùfying pardel vari- 
ables using that shape. These hints enable the system to partition a file for data-parallel 
SIMD and MIMD cornputations. The parallel files have an associated meta-file that de- 
scribes the Y0 pafallelism. While this system is intended for data-parailel cornputations 
using a specific paralel programmiag laquage, it does maintain standard IIO system calls. 
It gives hints to the mn-the system about the desired paralelhm while still giving reason- 
able performance. 

The second group of parallel programmïng systems provides ii'braries of Lbprimitive" 
functions to let the user encode the explicit parallehm into the application. MPI [83], 
PVM [30], p4 1121, and LAM [ l l ]  are examples of these systems. The user is responsible 
for ail aspects of the parallelisrn includiag launch, communication, and shut-down. Typi- 
cally, the user writes code using a liirary of supplied functions and adds the appropnate 
library at link-time. 

The library-of-functions approach is complicated since a user is responsible for using 
the library correctly. A user not only needs to develop a paralei computational fiamework 
but also to define a parallel Il0 model and to integrate the fhmework and model in the mn- 
time code. A user ends up developing a series of "glue" functions that use the parallel 
computation information to implemat the desired UO hehaviours. The disadvantages are 
the potential for emr and the cost of leaniing the system. 

The systems that use a compiler to process the user's code couid be rn-ed to provide 
the necessary analysis of the user's code for parailel V 0  behavious. While this is fme for 
static analysis, each system would need to develop a paraUei run-time UO behaviour and 
integrate it with the parallel computational behaviour. Thk is typicdy a one-time cost. 

With the exception of Enterprise, the above systems differentiate between the parailel 
and sequential behaviours explicitiy in the source code. None of the systems use templates 
to express parallel Il0 behaviour separate fiom the Il0 fûnction cails. That is, none of them 
aiiow a user to develop an application ushg the familia, sequential y0 functions and spec- 
ify the parallelism separately. 



2.7 Four Issues 
Dwpite the apparent simplicity of the computationai patajleiism found in the example 

application in Chapter 1.1. thre are four issues for the application UO that a user must ad- 
dress when moving to the parallel domain. Thse issues are not the superficial ones from 
the exampie of opening or closing of a file, sharing nle pointers, and atomicity of VO re- 
quests. but are a deeper and more fundamental set of issues. 

The nrst issue is a physicai or operatiag system (OS) issue. The support offered by 
conventional mainstream operathg systems is for distriiuted or single process applications, 
not p d e i  app1ications. Thre is a Merence ktween a distriiuted application and a par- 
alle1 one. An airline resewation system is an example of a distributeci application while the 
example in Chapter 1.1 is a paralle1 application. These operathg systems, while providing 
Il0 twls to aid a paraUei programmer, do not directly support paralle1 applications. 

A user submits an V 0  request to the OS as a fiinction call. There is no direct contact 
between the process and the disk. Typicaily, many processes are active on a given proces- 
sor. These processes are themselves sharing an OS kernel data buffer consisting of several 
pages of the physical file. If many processors are accessing the same extemal data object 
(for example, a distributed or paraliel application), ail these distinct and independent kemel 
buffers must be cwrdinated a d  syachronïzed If the OS does support parallel fies di- 
rectly, the PPS or USer must explicitly supply the coordination and synchronbation function- 
ality before allowing the OS to complete the y0 operation. This may mean that the process 
that issues the UO request may not be the same process that actually does the VO operatioo. 

The second issue is the matchhg of the application to the parallel Il0 model. A number 
of p a p a  have studied paralie1 V 0  characteristics. One approach is to have a typical appli- 
cation suite med to an existing architecture and fiie system through analysis of physical 
traces of the Il0 calls. Another approach is to.document the steps necessary to pdel ize  
the U0 for a senes of applications to run on a particuiar system. From these studies, op- 
timizations such as disk-striping, prefetching, and strided interfaces have been developed. 

The third issue is matching the cornputaiional paralleikm and Il0 parallelism. A sig- 
nificant collection of parallel prograrnming systems exist that abstract the paralielism to a 
lesser or greater extent. If a parallel Y0 operation is to successfuily take place, a number of 
unknowns must be detemillied. The number of cooperating processes, which processes 
are actudy doing the VO, how the data is mapped to the physical file layout (overlapping 
or adjacent page boundaries), and what data is needed in the near future at a given process 
(prefetching) are just some of the information that can be supplied to optimize parallel IK3 
operations. 

The fourth issue is the approach taken to paralleking V0. The consensus appem to be 
chat it is preferable to have a separately defined parailel El0 interfice with a distinct applica- 
tion program interface. This implies that the paralleikm is now embedded in the applica- 
tion. This is a poor choice from a software engineering viewpoint since there are many dif- 
ferent parallel VO interfaces. With a distinct parauel W3 interface, changes to the y0 mn- 
thne environment or switching to a different library may require user intervention. This 
intervention does not reflect any changes to the underlying parailel UO behavioun but ad- 
dresses only the mechanics of how to implement the desired behaviours. 

The approach of dinerentiating between parailel and sequential I/O streams both corn- 
plicates and simplifies the programmer's coding strategy. It simplifies the problem since 
only the parallei U0 is converted. The cornpikation mises becaw a user must choose 
which files to parallelue and then decides on the paraüel W) model and its implementation 
(library) before starting to write code. Ternplates would aliow the user to switch between 
sequential and piVauel IEO at any the,  independent of the code. This leads to more port- 
able and maintainable code, 



A template approach can use any low-level parallel UO implementation that supports the 
expressed pardel behaviour of the template. The basic types of paralle1 Y0 are SU global. 
segmented, and in de pend en^ How they are hplemented, either as a Iibrary for a special- 
ized nle systern, as an operating system module, or even as hardware. is strictly a matter of 
efficiency. Thc interface to the user must k simple but flexiile enough to express what 
p d e l  behaviour is desrrd for a spccific application. 

At presen~, the i&a of separatiag the dcscnption of parailel V 0  behaviour fiom its se- 
quential cornterpart has not been exploited. Ratber. ail apptoaches to date have involved 
the development of a separate! interface to excusively handle the parallel U0. The user is 
required to explicitly encode the desired parallei behaviour into the application. Some work 
has been done to separate the mmputational paralle1 behaviour from the sequential code. 
This allows a user to easily change or test dinmnt parallef versions without mjor code 
revisions. This chapter outlined the motives for extending this separation technique to the 
VO component of a paraiiel application. 



Chapter 3 

In Chapter 2, various approaches to pdelizing Y0 weE outiïned. This chapter pres- 
ents the @el UO model centrai to this dissertation. The purpose of this mode1 is to sepa- 
rate the Il0 pdieiism h m  the physicd IIO. That is, a user specifies what needs to be 
doae using these templates but not how to accomplish the task. The mode1 is implemnted 
as a senes of templates represeating pardel LIO behaviours. By modifyiog attri'butes of the 
template behaviow, the user is able to customh the template to the application in a code 
independent rnanner. As weil, more complex Il0 behaviours can k mated by inheriting a 
cailer's y0 constraints and imposing them on top of the cumnt I/0 behaviour. 

The il0 model is only one part of the ovedl patailel programming system. Whüe par- 
ailel il0 does have special aeeds, it must be recognized that there exists an interdependence 
with the computational paraleiism and the physicai system running the application. Sepa- 
rating the definition of the pardel behaviour h m  the source code aliows the VO and corn- 
putatioaal behaviours to be dehed in an abstract mamer. This detinition ailows a global 
optimization of a i l  parallel behaviom of an application rat&r than a local optbnization of a 
specinc parallel behaviour. 

Because of the interdependence between the p d e l  behaviours of Il0 and cornputa- 
tion, y0 templates will need extemal information about the computational parallelism and 
the run-time environment to efficiently perform their task. For example, the definition of 
an Il0 block is important Other elements of information needed (and why) are: which 
processes are participating in the file access (coherency and synchronization). what hnc- 
tion each process will perform (program ordering), and what work remains to be done 
(prefetching and clustering). Architectural information such as locations of physicd file 
systems, processor types, and other run-time idormation me aetwork and processor 
loading) is also requked. The Il0 templates are htended to be integrated into the parallel 
programming system. The PPS coliects and manages this information for the templates at 
both compile-tirm and nui-Mie. 

Section 3.1 describes the proposed p d e l  Il0 templates. Section 3.2 presents the read 
and write attributes of the model that are used to enhance performance and tune the mode1 
for a given application. Section 3.3 uses an example to show how templates c m  be used to 
compose more complex parallel I/O access patterns. Section 3.4 discusses what externd 
parallel computation information is needed for these Il0 templates. Section 3.5 summarizes 
this chapter. 

3.1 Description of Parallel I/0 Templates 
The mode1 currently contains five parallel IrO templates. The tree (Figure 3- 1) is a class 

hierarchy diagram for these templates. The templates are simiiar to Crockett's proposal of 
independent, segmented, and global fde Il0 1231. Sequential W 0  class behaviour is the 
rwt of the tree. Sequential 110 has no parallel behaviour. With Independent UO be- 
haviour, each participating process bas its own file pointer that it can move independently. 
There is the potcatiai for each p r e s s  to synchronize at the beginning (starhg point) and at 
the end using the file pointer if the file is modified With Segmented UO each of these 
independent file pointers is mtricted to its own nle segment. With Global UO, each of 
the sequential file pointers is synchronized with a single global nle pointer. Each of the 
shaded paraUe1 templates in Figure 3-1 adds synchronization constrauits to these basic ab- 
stract parallel behaviours. 





The extent is detennhed at run-the by a user-supplied function or constant value. In 
the special case that the size camot be detemilned in advance of using the segment, the 
segment is said to be onhiom. Unknown segments are denoted by a size of zero. The 
nle manager determines wbat, if anytbing, will need updating afiet a process is finished 
using an unknown segment. If an unknown segment is modified. the file manager a p  
pends it to the fde. based on some userdefined ordering attri'bute. The base of the seg- 
ment is not used afw the tkst append However, if the unknown file segment is unmodi- 
fied. the file manager advaaas the file pointer to the current position retumed by this un- 
hwnm segment based on a user-defiaed ordering attniute. 

The drawback to an nmknown segment is that any pfocess not in its gmup wili block at 
the next Y0 statemea that uses this file pointer until dl the outstandhg U0 by the group is 
received by its file manager. However. if the system can determine that a given I(O state- 
ment does not access the uaknown section of the fiie, it does not need to block. Aithough 
unknown segments require more complicated spcùronization, they are supported be- 
cause of the variable Iength C Stream IIO operations. It is only afier the printf or scanf 
completes that the user can dewmine the new nle position. 

3.1.3 Report 
Having a group write a report usually involves the members coiiectively reading several 

other sections prior, during, or a€kr writing their own sections. As weli, comrnents may 
be written to other sections of the report which may or may not be incorporated into these 
remote sections. A report template has both gïobal and segmented nle properties. The 
global property is tbat only one process is allowed access to a paNcdar fik segment at a 
time but there is a mechanism for sharing access. The segmented property means that the 
fde c m  be divided into "independent'' segments. However, two processes can exchange 
segment ownership if necessary. That is, no segment has a fixed owner. A process must 
obtain read or write permissions for the desired segment h m  a file manager (parent). 
This behaviour provides a protocol so that multiple processes are able to concurrently ac- 
cess overlapping regions of a file. 

With this template, if a process exceeds its local segment boundary Iunits, it is not im- 
mediately considered an error. Raîher, it is a signal to the PPS that one segment is to be ex- 
changed for another. An e m r  that is reportecl back to the user occurs if the file pointer is 
moved to point before the base of the first file segment or past the extent of the last seg- 
ment. If the ws detennines that exceeding the Limits is not to be an error, the process asks 
the manager of the report file pointer for the appropriate permissions (=ad or write) to ac- 
c e s  the fde at the new location. There is a hierarchical structure so that if a given manager 
cannot resolve the permissions because they are outside of the cumnt manager's bounda- 
ries, the manager WU ask its f ie manager to resolve the cequest. 

Like the newspaper template, the extent of a given segment is determined at run-time 
by a user-supplied function or constant. Simüarly, an unknown segment size is resolved 
afier the process returns the segment to the pmcess's nle manager. However, uniike the 
newspaper template, modiEied segments are not appended to each other. The segments 
are overlaid based on a user-specified ordering amibute. AU processes not participatïng in 
this unknown report gmup are restricted h m  ushg the report nle pointer until the en- 
tire group is finished and the file state is resolved- Again. if the system can determine safe 
access to portions of the file. this restriction can be relaxed. 
3.1.4 Meeting 

The analogy cornes from a meeting where only one person bas control of the floor at a 
time. The meeting template uses a global file pointer and al1 processes using it musc syn- 
chronize and coordinate access to the fiie. A meeting has both global read and write capa- 
bilities. However, only the process that has control of the file may read or write at any 
tirne- 



if more than one global file pointer is passed to a process (e.g. an input and an output 
file pointer with global semantics), there m y  be a problem of deadlock. Therefore, to pre- 
vent deadlock, when a process a& for control of one global file pointer, the process must 
receive conml of aU the other global file pointers involved in the transaction. For example, 
suppose two processes, P, and P, are sharing two fik pointers, f, and f,. P, asks for or- 
cess to f, and gets conaol off,. Because of program flow, P, £int asks for access to f, 
and receives conml of 4- Now. if P, asks for control of P .  or P, asks for control of c,: 
dedock occurs unless eithr process f h t  relea~es the file pointen that the process cur- 
rently controls. This release may not always be immdiately possible. 

3.1.5 Log 
The analogy is with maintaining a record of events. Once an event has b e n  recorded, it 

is never modifieci. The log template uses a global file pointer with the added restriction 
that all write activity taLes place at the end of the file. AAer a write takes place, the nle 
pointer is left at the end of the file. However, any nad or seek operation is free to proceed 
without synchronization because the data is always consistent. The global end-of-file (EOF) 
rnarker is moved only when the process with the cunent access permission updates the 
global data stmcture. AU other processes are iimited to the fast known value of the global 
EOF- 

3.2 Read and Write Attributes 
In addition to a template's base semantics, each template can have several attributes 

which refme its behaviour. One attribute of ali the parallelI/O templates presented here is 
the ordering of VO operatons. Read and write operations cm have separately defïned or- 
dering. That is. the order in which a collection of processes comrnunicate with each other 
defmes both the access sequence and when updates become visible. There are three possi- 
bilities: ordered, relaxed, and chaotic. These correspond to the three levels of program 
correctness for UO- sequential, serial, a d  chaotic - defmed in Chapter 2. 

For example. the source code in Figure 3-2 performs blocks of VO in the order a,, a,, 
%, Po, Bi, &, using the two loops. Both Alpha and Beta are remotely executed functions. 
For the moment, assume that there are six separate processes that are concurrentiy execut- 
ing three copies of Alpha and three copies of Beta. For convenience, each process is 
identified as: a,, a,, q, Bo, p,, p2. 

The ordered VO attribute rneans the Il0 using this file pointer wiil be done in sequen- 
tial order. If fp is a global fde pointer, the ordering attriiute will seqwntialize the U0. If 
fp is an independent file pointer, aii changes to the master nle are recorded in program or- 
der. That is, a write by a, is seen by subsequent file accesses by the other processes. 
However, changes to the fde by a, are not seen by a+,, even if a, finishes before %. At the 
end of the computations, the fde contahs only the output of B, as ail the processes start at 
the sarne location in the fde and only the last modification will remain. If fp is a segmented 
fde pointer, ail six pieces of work will k sent out to execute concunently as independence 
is ensured by enforcement of the boundary conditions of each segment. In this case, the 
fde will look Wre a,,, a,, %? Bo. p,, B, regardless of the order in which the individual proc- 
esses finish. If the length of each segment is unknown at the tirne of the remote function 
invocation, the ordered attriiute ensures that the modified segments are appended to the 
fde in sequential order. 

If the template has both global and segmented characteristics (a report), the ordered 
attribute ensures that the requests for access to other segments are processed in sequential 
order. That is, the process accessing segment cl, that now needs to access the segment a, 
must fmt sumader segment q to the fde manager. Then, the process that just sumndered 
a2 waits und the process doing a, is ffished or indicates it needs no M e r  access to 



AlphaBeta ( FZLE * fp  1 
c 

int j ; 
f o r ( j = O ; j < 3 ; j * l  C 

A l p h a ( f p ) ;  /* The Alpha UO done in patallel */ 
1 
f o r ( j = O ;  j œ 3 ;  j e )  C 
Beta ( fg 1 : /* The Beta UO donc in paraIlel */ 

1 
fcloset fp  1 ; /* Close tbe file aïter aU the work is doue */ 

1 

Figure 3-2 - Sample code for Il0 attriibutes. 

segment ao. If unknown segments are use& the file manager updates the master file 
based on program order with the end resuit of the file containhg $,. Read access to the 
shared segment is not normally biocked However, if a process modifies tbe segment. the 
mdca t ions  are not immdiately visible until the master file processes the modined seg- 
ments. During this processing, aU processes are denied access to this segment. For modi- 
fied segments, the segments are merged ùistead of appended. This reflects the global na- 
ture of the report template. The position of the last segment fiie pointer sent out is used 
for the new master nle pointer. If the segment was read only, the position of the master file 
pointer is updated based on the retum status of the last segment sent out. 

Using the relaxed y0 attribute. the o r d e ~ g  is eased somewhat. Now, the ai Il0 op- 
erations are seri- followed by the serialized B, Il0 operations. If fp is a giobal file 
pointer, all  the cq yO blocks must be nnished before any fii W 0  block is ailowed to proceed. 
The o; Il0 blocks can occur in any order and will be foliowed by the & VO blocks in any 
order. For example, one possible result is that the file is accessed in the following order. 
%, q. a,, B2, Bo, pi. An independent file pointer will see any ai changes as they are sub- 
mitted to the master file controlier but $i W3 operations wiil see the changes oniy afker all 
the ai changes have been recorded in the master fiie. This does not mean the processes 
doing the 8- blocks are blocked Rather, these processes proceed using the older version of 
the file data This means, as weil, that changes to the nle by any pi must wait until after di 
the a, changes have been recorded. For example, dependhg on the order in which the 
various processes updated their contents t~ the master file controller. the file could be left 
containing the output of BI when the application exits instead of p,, as seen using the or- 
dered attribute. 

Pure segmented nle pointers will see little ciifference between the ordered and re- 
lnxed attribute unless the segment length is unknown ai the tirne of the remote îünction 
invocation. In this case, the relaxed attribute requires that the modified segments are ap 
pended as-received, subject to ail q segments being appended, foliowed by the appending 
of the segments. That is, the file again could be left in the state: q,, %, a,, B,, Po, p,. A 
report nle pointer with an unknowa segment length merges the a segments on an as- 
received basis and will mrge the $ segments only after the a blocks are al l  merged. For 
example, ushg the above ordering, the nle would be left in the state B,. 

For report file pointers with a known segment size, any process accessing the ai seg- 
ment which then determines it needs to access segment 9 can proceeà to request access for 
the aj segment. Permission is granted based on a first-in-first-out ordering amongst the a 
processes. However, any $, process that needs to access an aj segment must block until ail 
a segments have been released before proceeding. The run-time system has to detennine 
when ai i  a processes are nnished before the request by a p process type can be granted. 
However. the fïie wili be left in the same state as the pure segmented file pointer. 



With chaotic V0, the ordering is completely relaxeci so that any process cm have ac- 
cess to the file at any thne, subject to the pafaUe1 behaviour- The global template SU means 
that only one process has excIusive access at a time. However, program order is ignored at 
run-tirne. For exampie, the file couid be accessed in the foilowing order. q,, PZ, u2, Po, Pt.  
a,. The independent me pointer allows any update to tbe master file to be immediately 
visible to aiI other processes sharing this me. In this case. the updated file is left containing 
a,, which was the 1 s t  pmcess to update the me. 

Pure segmented nle pointus with a positive non-zem extent are not aected by re- 
îaxed o r d e ~ g  as the segments are determined by the program ordering and are coasumed 
in that orda. The fite will remain in the same state as the ode& y0 amibute: q,, a,, a,. 
Bo, pi, & The ieqwst for access to a n o h  segment by a report file pointer is handled on 
a mt-in-ht-out basis. However. there is no blodàng based on pnxess type (e.g. Alpha 
and ~eta). Any pure segmented file pointers with unknown length segments are merged 
in as-rrceived order, regafdless of type. For exampIe. thc file couid be accessed in the 
following fashion: a,,, p,, a*. 9, Bo, a. For report file pointers, the 1st segment received 
incikates the size of the segment used in subsequent IX) operations. In this case, the file 
contents were left in the state b, which was the 1st update of the me. 

The ordering attr i ie  does not modify the base behaviour unless some synchronization 
was nquired in the template. The ordering attniute does affect the way a nle is accessed 
and modined. Depending on the type of paraUeIism chosen, a process may or may not 
have to give up access or wait for access to a given file descriptor. 

3.3 Composing Templates 
One of the benefits of using templates lies in the fact that they can be arbitrarily corn- 

posed to support more complex Il0 behaviours. Figure 3-3 shows an example which 
benefits h m  composition. In this example, a file is segmented so that concurrent proc- 
esses access dinerent portions of the file. A pipeline mode1 of computation couid require 
such an access pattern. 

The fde is divided into three segments using a newspaper template. W i t h  a given 
segment, a portion of that segment is independentiy read by several other processes. Each 
segment is treaied as a meeting (global 61e) until a particular portion of the segment is 
reached. At that point, several processes are granted independent access as photocopies. 
After the independent operations are fdshed, the file access reverts back to a meeting (the 
global file pointer forms a banïer). 

Newspaper 

Meeting 

Pho tocopy 

Figure 3-3 - Composing with PVOT. 
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if the user tries to code ail of this by hand, the amount of specialized cade increases a 
mch level, dong with the chances of introàucing errors. If the computational parallelisrn 
changes, the restnnhning of the code to reflect tbe changes is a potential source of errors. 
For example, suppose this pipeline has sufficient granularity to run efficientiy on a shared- 
memory rnultiprocessor system. If the code û then ported to nin on a network of worlsta- 
tions, the coarser grandarity nquired to run efficiently may wan that one stage of the 
pipeline should be coilapsed. The photocopy tempiate, dong with the parailel cornputa- 
t i o d  khaviow of tbat associated stage of the pipeline, could be droppeà. The system 
should be able to compensate fa the l o s  of parailel UO behaviour at tbat stage by integrat- 
h g  the code into the earüer or later portion of the pipeline. The strength of a template ap 
proach for both the computational and 110 paraiIeIism is that any changes, either by the user 
or by the PPS, are quickiy and correctly implemented. 

The VO templates presented in this dise~ation do not exist in a vacuum. They are in- 
tended to exist and cwperate with the computational paraleikm and the physical system the 
application wiü be running on, using the PPS as the management twl. Extemal informa- 
tion, either explicitly supplied by the user or implicitiy acquired by the paralle1 program- 
ming sysrem, is needed to efficiently implement the desired Y0 behaviours. The model 
must be able to withstand contact with the reai world. 

The extemal information can be divided into two parts: the semantic content of the pro- 
gram (program flow) and the physical domain used to execute the parallei application 
(network, file systems, and processors). Both have static and dynamic components. 

The h t  piece of semantic idonnation required is the definition of an I/O transaction. 
A transaction is two or more UO statements that must be considered as one UO biock. UO 
rarely occurs as a single operation; instead, several IK) operations are clustered as one 
block. For example, a seek is followed by a read or write operation. Aithough they are 
two sequentid I/0 statements. this is oftcn considered as one y0 operation in the paralle1 
domain (some systems provide an atomic seek-and-read function or equivalent to solve 
this e-g. [53,57,61]). As well, a variable length record is ofien reaci or written in two or 
more steps. The fmt operation determines the number of elements; subsequent operations 
read or write the elements. Altematively, the List of elements is read or written until termi- 
nated by a special end-of-record character. Particularly in the paralie1 domain wbere con- 
current processes will share access to a common resource, the definition of y0 transactions 
is critical. 

The user can recode the application so ihat individual Il0 steps use a temporary fde or 
rnemory buffer. The paralel Il0 is then done as a single operation per process. However, 
this does not remove the necessity of identifjhng the IIO blocks, since it makes the pro- 
grammer idenm a transaction and explicitly provide the synchronization. 

Once the V 0  transactions are identifieci, the second piece of semantic infonnation is the 
program flow, as it pertains to parallel V0. The necessary information inciudes both the 
temporal and collective consnainu. From the source code found in Figure 3-2, the rad 
and wrïte attributes wiU benefit from knowledge such as whicb of the a I/0 blocks must be 
finished before any p y0 block can start. As a second exarnple, realizing that aii the VO for 
a matrix will be done ai the same time by a group of processes aiiows the PPS CO optimize 
both fetch and merge operatioas. 

Program flow can be detemineci at both compile-the and run-time. Prefetching deci- 
sions are easier to schedule if the program flow is known. Staîic progm.cn analysis aiIows 
the system to determine the program ordering for different classes of processes. Consider 
the case of a computational pipeline consisting of three process types, n,, II,, and n, 
(Figure 3-4a) that share a file. At mn-the, there can be one or more instances created of 
eac h process type. Figure 3-4 shows some possible comection configurations. 



Figure 3-4 - Exampies of comection patterns for a pipeline of three process types. 

Each instance of the process types shares or mages  its IIO information with one or 
more of the instances of any of the pnxxss types. Depenàing on the relationship between 
process instances (determineci by the connection patterns), either a particular instance is a 
recipient or a mainminer of the ioformation. To make good decisions and efficientiy man- 
age the Y0 information, the codiguration of the computational parailelism is needed. In 
addition there are thtee questions that must be addressed. How are th dfierent process 
types related to one another? How axe the instances comected? How do the p d e l  VO 
requirements affect this comection pattern? 

In the comection pattern shown in Figure 3 4 ,  there are three independent pipelines 
sharing access to a single fiie. If a segmented or global parallel U0 behaviour is defmed for 
the shared me, the computational connection pattern is insufficient for the y0 padelisrn as 
the n, processes must now coordinate y0 access. Figure 3-5 shows the new connections 
that must be made to al1 the n, processes to ensure synchronization and coordination of füe 
access. Depending on the implementation, a new manager process may be needed too. 

In the comection patterns shown in Figure 3-4 for a simple pipeline computationai 
model, an instance of process type n, may need to share global UO information with the 
other n, instances. This same instance wiIi need to distribute Il0 Somation to a group of 
&instances, and will need to synchronize the retunied Il0 information from this group. A 
group can contain one, some. or ai l  of the various process type instances. An instance of a 
ï& process receives Il0 information fiom a ïï, process and eventuaiïy retums to it the up- 
dated Il0 information. This 4 instance also dismiutes I/O information to a set of n, in- 
stances. The ïï, hstauces receive I/O information h m  a specinc n, process and will re- 
turn the modined I/0 information. Relying on static infiorxnation is iosufficient since it is 
possible that the actual number of instances for each process type are determinable only at 

Figure 3-5 - Additionai I/0 communication connections needed for synchronization and 
coordination of nle access for global or segmented parallel U0. 



nin-the. It is also possible that the comection pattern can change at run-time. This could 
happen if a process is able to nui more than one m e s s  type. depending on directives from 
the PPS. 

The types and number of process intercomections are important since these determine 
how the file is to be shared For example, in the case of a two stage pipeiine, there are 
eight ways of comecting the process instances that are of concem to parailel ID. They are: 
one-to-one. many-twne, one-to-many, many-to-many. and replication of the previous 
four cases. This last step talas one of the previous four patterns and mates n replicas. 
The data file is now s h d  by not just two pnxess types. n, and ïï,, but by n(i+j) proc- 
esses where i is the number of n, processes and j is the number of & processes. 

When a pipeline is increased by one to three process types, the number of possible 
combinations grows to thirty two (Figure 3-6). The boxed pairs indicate that the contents 
of the box are teplicated as one unit. Figure 3-4 clarifies the connection pattems for some 
of the combinations given in Figure 3-6. The shaded areas in Figure 3-6 correspond to the 
figures in a Ieft to right fashion and down each block to each configuration in Figure 3-4. 
For example, using a value of biree for both n and the replication factor of the boxes, the 
enw iu the second block, f k t  row, and third column is represented by Figure 3 4 j  while 
the fUst block, second row, second column in Figure 36 corresponds to Figure 3 4 f .  

It is clear that haadhg a l l  cases by hand is a ~ c d t  task. Even with a simple pro- 
gramming model. the growth of possibilities is exponentid. However, breaking down the 
problem into simple pieces and having a simple set of rules to mate more cornplex y0 
rnodels is an approach that works well for source-to-source compilers. At run-time, these 
d e s  are usefil when the application perfomance is not predictable or inegular. 

Dynamic work allocation or process scheduling c m  cornpensate for an irregular load 
distribution. A slower or heavier loaded processor could do n blocks of work in a given 
p e n d  of time while a faster or iightly loaded processor could do greater than n blocks. 
Altematively, using homogeneous processors, the work load per Il0 block may not be 
constant. Since tbis performance information is not always available at compile-time, mo- 
time information is beneficial in making more intelligent prefetching, segmenting, or syn- 
cbronization decisions. 

The Il0 templates need to determine the number of distinct concurrent processes that 
wili coliectiveIy share access to a partïcular fde. This grouping may contaui subgroups of 
processes and the membership c m  be dynamic. For example, giobal or segmented UO par- 

Figure 3-6 - Possible connection patterns using a pipeLine of three process types. The 
character 1 (one) indicates a single instance of a process type while the 
character n indicates more than one process instance. nie boxed pain indi- 
cate rhat the contents of the box are replicated as a single unit. 



ailelism needs to know how many processes are involved so that there are effective imple- 
mentations of these parallel M behaviours. A global behaviour needs to know which 
process will get access so that it can update ail the others; a segmented behaviour may di- 
vide the nle based on the number of processes or tuoe the prefetchùig a1goritb.m; an inde- 
pendent behaviour can use the number and location of processes to determine if replication 
and local cachuig of the data file wodd be more efficient. 

Physical information is not only important for determjning the performance of a given 
template? it is also critical for computational pedormance. In the sequential domain, Y0 is 
often buffered for efficient operation so that the expensive physical I/O operations are de- 
fened mtii nccessary. This efficiency is a W y  a hindrance when coacurrrncy is added. 
In order to avoid overlap, a process (w needs to rralirc the scope of another process's 
(P,) UO operation before perfiorming Pis V0. The only contact between the two proc- 
esses is the physicai nle t b u g h  the two local nle pointers. Deferring the physical update 
for the sake of the efficiency of the P, process can detrimntaiiy affect the overall efficiency 
of the application since P, rnay have to wait Of course, the P, process can use deferred 
output but the operating system canwt be reiïed upon to update the physical file in a time- 
critical maaner for other processes. Rather, the PPS must ensure that the physical update is 
done when accurate information is neded by the oother processes sharing this resource. 

Figure 3-7 gives an overall view of the WUT model and demonstrates how it tits into a 
paralle1 programming system. The paralie1 compler modifies a sequential fde pointer that 
has been aven pardel characeristics and creates a parailel file pointer. The parallel com- 
piler, using the paralle1 V 0  and computational specifications, creates a parailel application. 
When the user ruos the parallel application, the dynarnic i n f o d o n  is collected by the mn- 
time system; using the parailel specifications. the nui-the system coordinates access be- 
tween the paralle1 application and the physical files. 

Both static and dynamic analysis wiU benefit from physical information such as: the 
amount of local disk space avdable for caching; the physical Location of the fie sysstems on 
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Figure 3-7 - Overview of the  var model in a parailel programming system. 



the network in relation to the compute processes; the type of file system - general or spe- 
ciatized; the network bandwidth avdable for y0 either to m h ï m h  the impact of the appli- 
cation on other users or to maximire the performance of the application; the heterogeneity 
of the processors - architecture and speed; and the dism'bution of the processors over the 
network Whether tbcse physicai detaiis can be compensated for or effcctively utilited de- 
pends on the impiementation. Aowever, they will aii have an impact on the overail per- 
formance of che appiication. 

3.5 Chapter Swnmary 
Five paraIlel TIO templatcs have k e n  presented, each encapsulatiag a simple paralle1 

behaviour. An analogy is provideci for each template to make it easier to understand. R a d  
and wïte ordering atmiutes permit aining of the application without changing the original 
source code. Complex UO patterns can be built by composing the simple behaviour of the 
templates. The computational p d e l i s m  and I/O paraUelism can be combined to create ar- 
biaarily complex mess patterns that are SU modifiaMe without requiring changes to the 
user's source code. 

Extemal idonnation about the application and run-time environment is necessary to en- 
sure correct Y0 behaviours and performance o p ~ t i o n s .  Compile-time analysis of the 
user's application (using the suppiied parallel UO specifïcaaons) inserts hints to the run- 
tirne system about the needed parailel y 0  behaviours and the s*irt and finish of any II0 
transactions. At m-time, the PPS uses these hints and, based the program's dynamic envi- 
ronment and computationai behaviours, implements the paralle1 W3 requïrements. B y re- 
quiring the PPS to either supply or determine the necessary extemal information, a user has 
minimal impact on how the paraiiel behavioun are implemented. A user selects what par- 
alle1 behaviour is requkd. As weU, the PPS is able to ~w the performance of the entire 
application based on ali of the user-supplied requirements and the run-time environment. 

Chapter 4 explains how the parallel IIO templates are htended to be implemented in 
general and explicitly deals with one particular parallel programming system. 



Chapter 4 

4. Implementation 
An implemntation is needed to validate and to demonstrate the useNness of the paral- 

le1 VO mode1 pmsented in Cbapter 3. To be considemi successful (other than providing 
the correct behaviour), the implementation should $ive ceas011abIe performance for mnrimal 
effort on the part of the user and ensure that changes to the parallel Y0 khaviour be as 
simple as cbanging the template. The user should not need to differentiate at the code level 
between sequential and paralle1 Il0 cds .  

The parallel Y0 model proposed in this work requiies information regardhg the pcirallel 
computatio~~ and the state of the underlying commuaication iiiraries. There are static and 
dynamic components to the implementation. The static or compile-time portion consists of 
defbing the paralle1 behaviour and integraîing it with the comsponding static component of 
the parallel computational behaviours. The dynamîc component of parallel VO consists of 
the process States of the parallel application. This includes both the dationships and the 
dependencies between computationai processes as well as the process-processor mappings. 
This information, managed by the m-time component of the parallel programming system 
(PPS), determines the degree of paraiieiïsm and the dynamic behaviours of the mnning ap- 
plication. 

There are two basic premises for hplementing ~rlor. The fint is that a user does not 
identify any parallel VO in the source code. The parailel specifications are stored sepamte 
from the code. Second, pi/ar does not roil back UO operations or computations. Deadlock 
prevention rather than deadlock detection is the approach used when implementing PM. 

This chapter describes the implementation of pior. It is divided into three main parts. 
The minimal PVOT requirements are presented in Section 4.1. These are the minimal system 
(user-interface, compile, and m-time) requirements for any general PPS implementing 
P~/OT- Section 4.2 describes how the er/m programming model is intended to be imple- 
mented h m  an Y0 functionality viewpoint. Section 4.3 describes the pr/ar model imple- 
rnentation h m  a t e m p k  viewpoint. Section 4.4 describes the specifc modifications 
made to the Enterprise PPS (user-uiterface, compile, and run-time) for PI/OT. Section 4.5 
describes the current deadlock prevention mechanism. Section 4.6 gïves a sumrnary of 
this chapter. 

4.1 PYCYI' Minimal Requirements 
There are a number of conditions that must be met prior to implementing P ~ O T  in a 

given paralle1 programming system. The primary requirement is the abiiity to send, poil 
for, and receive asynchronous messages of arbitrary size between distinct processes in a 
reliable mamer. The distinct pmcesses requkement does not necessariiy h p l y  traditional 
heavy-weight UNIX processes; a thread wouid quaMy as well. Inter-process messages are 
needed for synchronization and coordination of a data file with the parallel application. The 
application views a fde as a su>gle global entity regardless how it is physically stored. 

The PPS mn-tirne system is also responsib1e for providing unique process identinen so 
that PVOT can use the communication system to send a message to, poil for a message from, 
or receive a message h m  any specifïed or ahitrary process in the paralle1 application 
without blocking. This implies that the user or the PPS has divided the application up into 
concurrent computational tasks. 



The P V ~  implementation bas to be able to intercept and substitute data in messages for 
these computationai tasks that contain file pointers. Modifications are made both at the tirne 
of sending and at th time of receiving the messages in order to insen or extract the pi/m 
information. Substitutions are made in addition to the other WOT messages necessary to 
implement the various paralie1 IK) behaviours.  var does not force the user to l e m  a sepa- 
rate set of @el Il0 fbctions. Rather, the user writes code using the familiar UND( 
s t ai0 interface (or low-level UO interface). A source-to-source translater (p recom piler) 
identifies the user-specifed paralle1 UO nOe handIes. The precompiler weds to create the 
necessary hwks to integrate any user-supplied segmentation fiinctions into the pi/ar mn- 
tirne environment, The MOT run-thne system is nsponsible for sending, processing, and 
retuming the dpamic state of an Y0 object between cmperating processes. 

AU iasLs in the pafStlle1 application arr classifïed by both their computationai aod parallel 
110 functionaüty. The PPS ~ 1 1 - t h e  system is responsible for mapping tasks and mes to 
processes and processors. It must aiso support queries to specific processes or tasks by 
the Win implementation. For Wm, a user identifies the parallel file descriptors and their 
paralie1 behaviour for each task classification. For example, a given file descriptor is des- 
ignated as having giobal Il0 semantics for a particular task. Another class of tasks desig- 
nates a file descriptor with segmented y0 semantics. At run-time, the two file descnpton 
are joined by the first task passing the global file descriptor to the second and linking the 
two together (a remote fhction invocation). The ~rlar run-time system must resolve the 
apparently different behaviours. 

It remains the responsibility of the user to define what the computationai and Il0 speci- 
fications are, and lave the precompiler and pc/ar component of the PPS run-time system to 
define how to implement them. 

In summary, pilm requires a message passing system tbat can poil, send, and receive 
messages of arbitmy length in a diable fashion. Pardiel tasks must be identifed and 
mapped to processes in some fashion availabk to P~/OT. The parallel I/O is identifïed on a 
per-task basis. Any messages sending a file-descriptor must be identified and have the V 0  
component replaced with the pardel I/0 configuration for that component. Sirnilarly, a 
message containhg a parallel y0 data structure must be converted into a conventional se- 
quential file pointer for the user's code. This is best done using a mimure of compiler and 
run-time support. FinaUy, the PPS nui-time system must be able to spawn tasks (either as a 
thread or heavy-weight process) when necessary. 

4.2 PUOT Implementation Issues 
This section describes how the paralie1 V 0  templates are intended to be implemented. 

Users of the templates do not need to know about a given imp1ernentation and altemate im- 
plementatiom can be used without affécting user programs. The prlar templates are in- 
tended to paraUeh the standard C stream V 0  library. Figure 4-1 gives a listing of the 
various standard stream functions and their signatures. However, there is no reason why 
the templates codd not be implemented to replace low-level V 0  calls (open, close, w r i  te, 
read, Iseek) .  

Each process maintains a iist of the local parallei hle pointers it uses. This list is called 
the Par10 iist. Each List element contains information such as the template type, the cur- 
rent file state, whether access is permitted, the communication handle of the local process 
and the manager process. 

A m-time list of active and outstanding outgoing parallel Il0 requests is maintained, 
either on a per-process bais or on a per-thread basis if the process is multi-threaded. This 
list is refemd to as the d-ehain. Eôch list element contaias information such as the par- 
allel I/O template, the current nle state, whether access is permitteci, and the communication 
hade of the caler and cake. The= is a corresponding list, called the pending list, 



- - - - - - 

liinclude <srdioh> 
P Opening streams */ 
FILE *fopen( const char *filemne, consc char +type ; 

FILE *W( cwiçt char *filename, conçt char +type, FILE *sueam 1 ; 
FIL€ *fdopen( bt f i ledesaiptor ,  const char +type ; 

/* Closing streams */ 
int fcloset FIïS *stream ) ; 

/* Flushing streams to or ftom dbk */ 
int fflush( FILE *titream ) ; 

/* Moving the lik pointer in a stream *I 
int fseekt FILS *stxeam, long offset, int ptrname 1 : 
void rewiad( E Z ï S  *stream ; 

long f te l l (  FlLE *stream 1 ; 
/* Testhg file stream for end-of-file */ 
in t  feof( FILE *stream ; 

P Readfog t o m  a stream */ 
int scanf( const char *format, ,.. ; 

int fscanf ( MLE stream, const char *format, - - , 1 ; 
sire-t fread( void * p a ,  size-t size,  size-t nit-, FILE 'stream 1 ; 
/* Writfng to a stream */ 
int printf ( const char 'format, - - , ) ; 
int fprintf ( MIE *stream, const char *format. - - - 1 ; 
size-t -te( const void *ptr, size-t s ize ,  size-c nitans, FILE * s u e a m  1 : 
/* Get a character, nord, or variable length character string from a stream *f 

in t  getc( FILE *stream 1 ; 
int get&ar( void ) ; 

int fgetc( FILE *stream ) ; 
in t  getw( FILE 'stream 1 ; 
char *gets( chaz *s 1 : 
char *fgets( char *s, kt: n, FlZE 'stream 1 ; 
/* Put a character back into the stream */ 
int ungetc ( int c, FïLE *stream ) ; 

/* Put a character, word, or variable length character string to a stream *I 
int putt( in t  c, FILE *saearn ) ; 

i n t  putchar( int c ) ; 

int fputc( int c, FILE *stream ) ; 
in t  putw( int W. FILE +strearn ) ; 

int puts ( const char *s ) ; 

in t  fputs ( const char 's, FILE *stream ) ; 

Figure 4-1 - Standard C sueam ï/O library function signatures. 

which is maintained for Y0 messages h m  other processes. For exarnple. a process rnay 
require access to a global nle or it may be reauniag access permissions for a given fde 
segment. The receiving process may not be able to process the message right away and it 
is queued in pendiag for later processing. Another process has the access permission and 
wiU retum it at some point in the fûtme. When an access permission message is received, 
the pendhg list will be processed for any requests that can be satisfied. 

It is important for the call-cbain and pending kts to be consumed in an order that 
presemes program correctness- If a task does aot consume the call-chah list, the out- 
standing caUs WU need to be cancelIed. (This happens if there is an error condition that 
ends the task's work or a task is generatiag speculative work and any answer is sufficient 
to end the task.) Similarly, any pendhg requests WU need to be cancelled and the calling 
processes will have to take any necessary actions to recover- (Normaiiy, the VO function 
renims a failure.) Note that the cornputational component of the PPS wiU need to end any 
outstanding computational tasks at this time as weU. 



The p d e l  file pointers are not expüntly difkrentiated from the sequentid ones in the 
source code. What is the minimai amount of idonnation necessary to determine if a file 
variable has parailel behaviours? AU y0 functioos, except those of the open variety, re- 
quire e i h r  an explicit or imphcit file haDdle passed as one of the parameters (for example. 
fprintf or printf). Since aii T/O handks are associated with a unique number that is as- 
signai by the operating system, lwkïng up the file number in a list can obtain the indicated 
pardel  behaviour. This implies rhat muitiple @eL behaviours a~ not permitted on a 
single file descriptor. However, muitipk file descriptors (and thus parallef behaviours) can 
be associateci with a single file. 

Inter-ptocess commdcation uses this unique file descnptor to match a p m ü l  file de- 
scriptor h m  a remote process with a Id file descrÏptor. PGlm manages two data stnic- 
 es which are used to match a parailel fiie descriptor h m  a ternote process to a corre- 
sponding locd one. The fint &ta smicain contains the local information of the paralle1 file 
descriptor. Included in this information is the unique systern file descriptor which is 
passed to the user's code. The second data structure, stored either in the call-chah or 
pending Est, contains the remote p d e l  fiie pointer iaformation and the same unique 
system me descriptor. A message received b m  another prmess contains the remote proc- 
ess's parauel file information. Dependhg on the message type, the receiver matches the 
remote information in either the d - c b i i n  or pending iist The unique tile descriptor is 
extxacted and the local pmcess parailel file structure is Located. 

The balance of this section is divided into five subsections. F i  determlliing progran 
order and htantiating the IIO managers are addressed. Second, how to grant access to a 
N e  is dehed- The final three subsections discuss the run-the details of creating, closing, 
and using a parallel fiie descriptor- 

4.2.1 Determinhg Order and UO Martagers 
The VO templates are intendecl to work within a hierarchy of remote message sends. 

Any process that makes a remote call to another pmess creates a hierarchy. In Figure 4-2. 
process A makes a remote c d  to process B, which in tums caiis process C, which then 
caiis B and so on. The order in which the cails are dynamicaiiy made forms the call 
chah which the I/O templates use to impiement the correct paraiiel y 0  behaviour. That is, 
the nin-time behaviour of the application is taken into account for the parallel VO behav- 
iours. (The VO managea wiii be denned later in this section.) 

The Il0 templates are impiementeci using a client-server model that is distinct from the 
computational model used. If the remote cali inchdes a file pointer, the file pointer is 
treated as a paralle1 fiie pointer by the m. The user must speciQ the parallel behaviour of 
the passed file pointer. Another way a pandiel I/O object is identifieci by  PI/^ happens 
when a file is coiIectiveIy opened by a group of processes. In either case, the user must 
identify to the PPS the intended piaallel behaviour for the y 0  object. Otherwise, pi/m 
would either consider the c d  illegai or impose some sorc of default behaviour. 

'4 Brrnch Manager 

Figure 4-2 - Idenming UO managea and c d  ordering. 



0" Manager 

Figure 4-3 - Two approaches to selectiag an UO manager. 

With improved compiler technology, pr/m may someday be able to automatically de- 
termine the appropriate paralle1 behaviour. For example, if a remote procedure cail is gen- 
erated in a loop and contains a file pointer as a parameter, attempting a segmented VO be- 
baviour may be an appropriate choice if maximum concunency is desired This will neces- 
sitate a preIiminary estimate of the segmenthg factor for the remote process. Altematively, 
afw examinhg the remote ftnction code and £Ming only one Y0 caiI using the pointer, 
the file pointer could be designateci as a shared file pointer. The remote function code could 
be modined to release the file back to the pool of waiting processes after completion of the 
VO functions. 

Every parailel V 0  transaction has a manager (semer) that is responsible for coordi- 
nating and enforcing the paratiel behaviour of the group of processes (clients) that share 
the VO object(s) composing a transaction. This happens regardes of the paralle1 template 
chosen for an individual Ne pointer. Nonnaiiy, the process that mates and passes the U0 
transaction to another process is considered the manager. The process that opens a Ne is 
considered the O wner . The manager's duties range fiom disseminathg control informa- 
tion to merging data. In the case of multiple or repiicated processes concurrently opening 
the same tile descriptor, the pilm run-time system designates one process as the VO man- 
ager. The WO manager process does not necessarily have to be implemented as a separate 
heavy-weight process. It can be collapsed as a thread into an aiready existing computa- 
tiond pardiel process. 

Figure 4-3 shows two approaches for selecting an VO manager for the coliective open 
case. (Selection of one approach is left to the implementor of PVOT.) AU of the A proc- 
esses in the figure try to open the same fde. The er/m run-thne system decides which one 
of them wiii contain the manager mk. In Figure 43a, A, takes on the M manager duties 
because it was the fmt one to request the open. AU the other A processes become clients 
for VO purposes oniy. As an alternative, Wur codd request that the PPS spawn a new 
manager process. In Figure 4-3b. the Mt process is created exclusively for managing the 
Il0 for the A, processes. Findy. the user couid indicate to PVOT diat an JI0 manager proc- 
ess must be placed on a specific processor (for example, if the disk file is local to a par- 
ticular processor). In this case. dl the A processes become clients for V 0  purposes. 

% is important to rralize that a client becomes a branch UO manager when the user's 
process (which contains the IK) ciient) in turn malces remote oLls to other processes. In 
Figure 4-2, the A pmcess is also the IIO manager for the caiI to B. However, when B 
passes its file pointer to C, C considers B as its Y0 manager. Then, C becornes the VO 
manager for the recursive call back to B, and so on. if information is needed. the request 
flows up the d chPin until the appropnate manager cm provide the information. 



1.2.2 Granting Aceess 

AU tempIate Il0 operations invoIve several processes - one or more clients and the 
manager. The manager is nspoasible for synchnizing access and merging results. The 
client must recognize when aaxss permissions are required, execute the user's code, and 
end the I/O îrausactions properly. Figure 4-4 shows some of the steps needed to exchange 
access permissions between two c h t  pnxwes  and a manager. 

If the nle pointer is iatended for sequential UO, the Y0 operation pmceeds normaUy and 
control Ïs retumed to the user's code when the Vû operation finishes. If the fùe pointer is 
pardel, the client detefmiLIes if it has access to ihe me. If it does not, the manager of the 
Il0 object is sent a message questing access. In Egure 4-4, both clients A and B send 
siinultaneous requests to the Y0 manager (step 1). 

When the manager receives a raqwn for access, it searches its call-ehain list to de- 
termine if access cm be granted. This Iist is popdateci in two ways. First, the manager 
process is informeci by the computational component of the PPS that nmote messages con- 
taining YO objects are king snit Second, colIective Il0 requests are received fiom client 
processes- For example, a collective open may be done using a segmented file. Each ciient 
open WU receive its own segment or an emr. The manager musc segment the fde and syn- 
chronize the merging (if necessary) of the segments afler the ciient is fhished processing. 

Each enay in the call-chah list coniains Sonnation such as the cder and cake 
identifies. the paraile1 file pointer data structure, transaction identÎfier, and a Mie stamp. 
From this list, the manager can cletennine who coiiectively accesses the file pointer and in 
what order access is pennitted at mn-time. At this point, the manager determines if there is 
any potential for deadlock in the various transactions and prevena it fiom happening. An- 
other important function of the V 0  manager is to inform the d e r  process that it is safe to 
perform another y 0  operation. h the exampie given in Chapter 1.1, Chiid processes 
would share the same UO manager. However, as Parent opened the me and is considered 
the owner of the entire füe, is not considered a client of this manager even though 
the manager process could be a thread in the Parent process. As Parent initiates remote 
UO cdis in Child processes, it must query the 110 manager process before executing 
p a r 3  close- 

The access permissions for an UO descriptor are determined by the ordering attributes 
of its template. If access is not alIowed at this point, the request is added to the pending 
List of the manager untii the request c m  be satisfied. If access can be granted, the manager 
marks the request in the call-chain list as active, updates the parailel UO data structure, 
and sends a message containing the access permission dong with any new global informa- 
tion to the client. Wben the client meives the manager's message, the client's file data 
smicture is updated to reflect the new global iafomtion. 

When access is granted to the client process (Figure 4-4, steps 2 and 4), the 110 opera- 
tion is verified so that it wili not violate any of the parallei template constraints- For exam- 
ple, it may not exceed the local segment's boudaries. Then, the y0 operation is executed 
and the paralle1 file data stnichue is locally updated. 

4. Gmnt Access [UO Client A r  S ?O Ckii t  BI . eturn Access 

Figure 4-4 - Granting access using WOT. 

36 



if the atomicity of the paralle1 I/0 operations is set to be a single y0 operation, the client 
must temporiuîly sumnder contml after completion of the laal Y0 operation. This is ac- 
cornplished by sending the manager a message that the client is temporariiy surrendering 
access. This message includes the updated giobal information for that parallei y0 object. 
The client records ihat its locai parailel file pointer &as k e n  denied access and continues 
processhg until the file pointer is needed again. At this point. the client petitions the man- 
ager for access permission. 

If ihe VO operation talres place within an idenafied transaction, control is retained until 
the transaction is fînished (E~gure 44 ,  steps 3 and 5). 'Ibe client sen& a permanent sur- 
mder message and the updated paralie1 file poiofer information to the manager. Finaiiy. 
the client pmcess retums to the user's code. 

When tbe manager receives the access sumnder message ftom the client, the manager 
searches the caU-chah Iist for the active LIO object It updates its own locai parallel UO 
data sûuchue for this pointer. It then removes the Y0 object h m  the call-chain list (if 
the surrender is permanent) or simply deactivates it. In either case, the manager then 
searches the pending list for the next UO cequest that can be satisfied. 
4.2.3 Creating a ParaIIel File Doscriptor 

The user's entry points hto the stream IIO library are the f ~ p e n ,  freopen, and fdopen 
functions. Their signatures are given in Figure 4-5. After detennining that one of these 
open requests is for a pataUe1 strearn, pi/or must instantiate the parailel behaviour for the 
given file and add the resultant parailel file descriptor to its intemal list (ParIO list) of par- 
dei  UO objects. The typicai user entry point is fopen. In this case, how wiil the pr/or 
run-the system know about pardiel behaviours? Since the p d e I  computation tasks are 
already ideniined by the PPS, any file opened by a parailel task may exhibit a paralle1 V 0  
behaviour. Adding the task identifier ailows the m-tirne system to know how to search 
for paralle1 information. 

#include <stdio. h> 
FILE * fopen(const char +filename, const char *type) ; 
ETLE *~eopen(const char *filmame, const char *type, FILE *stream) ; 
FILE *fdapen(int fildes, comt char *type) ; 

Figure 4-5 - Three entry points for stream I/0. 

A given task can have several nle pointers. each with different parallei behaviours. 
Thus. the name of the variaMe assigned to the file pointer is passed to the PI/OT mn-time 
system, ensuring tbat the correct paraUe1 y0 object in the right paralle1 task is properly up- 
dated. Figure 4 6  shows the parallel version of fopm and its new signature. This signa- 
ture modincation can be done at compiie tUne since bo!h the variable name (fp~ame) and 
parailel task type (parTask) are b n .  

The PVOT rua-tirne system searches the ParIO list of the process to see if the variable 
and task name tuple are associated with a user-deflned parallel y0 description. Note that 
this search mthod is diâerent h m  the previous1y discussed way of idenwing parailel file 
pointers by using the unique system file handle. Shce the unique U0 fde handle does not 
yet exist, an altemate way is needed to deWmiw a unique paralie1 110 description. 

If the tuple can be associateci with a user-defined paralle1 l70 behaviour, the ~i/ar mn- 
tirne system will detemine how to best open the pafallel me. What is best could range 
from selecting the I/O manager, to aiaking a copy of the fik local to improve performance, 
or to simply openhg the nle. The pardiel open updates the ParIO List with the new name 
of the file and the file descriptor value. if the me ffails to open propedy, the update is not 
performed and a N U  Ne pointer is returned to the user. 



Figure 4-6 - Wrapper code for a parallel fopen. 

The parallel open also takes into account whether the process is trying to collectively 
open the file. As pointeci out in Section 4.2.1, if an open is done in a collective manner, 
the results are umila. except îhat the access and access coordination are generated by the 
newly appointed or created Y0 manager. 

Wlde f o p ~  is the usual approach to opening a stream data stnicture, reopening a nle 
causes the argument s?ream to be closeci, regardless of whether it can be re-opened or not. 
Therefore the renim stream will point to the new file or NULL. Because of the semantics 
of f reopen, there are ~ W O  aiternatives to its paralle1 implementation (Figure 4-7). 

Figure 4-7a shows the signature of the fht implementation. This version relies on the 
fact that the passed fïie pinter has already been identined and defmed for the pardel be- 
haviour. Since a freopen statement is dealing with a previously opened fde, ody the 
physical file that is comected to the 6ie pointer changes. The renimed file pointer exhibits 
the same parallel behaviour as the passed hle pointer. In this case, no rnodif~cation to the 
signature of freopen is needed. 

Figure 4-7b shows a second alternative which does require the signature of ireopen to 
change. As the existhg stream is closed regardless whether the openhg of the new stream 
is successful or not, the new variable c m  be associated with a new paralle1 behaviour. In 
this case, both the parallel bebaviour and the physical nle can change. By passing similar 
idormation as was previously done with Eopen, the appropriate paraIlel behaviour is asso- 
ciated with the new nle descriptor and the existuig file pointer (parallel or not) can be 
closed. If the second Unplementation is chosen, the hinction modification can be done at 
compile time dong with the fopen modifications. Since this second merhod cm also be 
done by acombination of the fcïose statement foliowed by the fopen statement, the fint 
choice of ùnplementation should be Figure 4-7a 

The fdopen function associates a stream interface with a low-level fde descriptor (for 
example, a pipe or a device). If the original file descriptor is opened, taking into account 
possible pardel semantics, fdopen wiU require no modifications because the look-up table 
has been properly updated. If the low-level open is not capable of associating a paraiiel 
behaviour with a file descriptor, the fa op^ would be modined in a manner similar to the 
f reopen and fopen ~ \ ~ D c ~ ~ o Q s .  

As part of their parallel functionaiity, al l  three of these fünctions will update the look-up 
table of defineci parallel Il0 smctures for the process (the Par10 Iist). Because the func- 

a) FILE *Pilot,freopen(const char *filename, const char 'type, FILE 'stream 1 
b) FILE *Pilot-freopenkonst char 'filename, const char *type, FfLE *stream, 

const char *@Name, const char *parTask ) 

Figure 4-7 - Two alternative signatures for freopen . 



tion signatures can change depending on the defieci computational pafaueiisrn and the 
user's spcifications, using compiler technology to add the additional information wouid be 
the most efficient and transparent approach. 

It shouid be noted tbat this does not preclude the possibaty of havïng multiple file 
pointers pointing to the same file object nos wiU W(TT hiader the user fhm dohg this. 
Resolution of the outcorne of such behaviour is undefined, pim does not coordinate be- 
haviour between different nk pointers, it manages the paralle1 behaviour of a single system 
file pointer. 
4.2.4 Closing a Paraiiel Fiie Descriptor 

Closing a paraUe1 nle descriptor wili create Mereut actions dependmg on where or 
when the f ihe  function is calle& Figure 4-8 shows the wrapper code fora paraiiel close 
function. If the file descriptor has a paralle1 behaviow (p i lo t - i s~ara l ld ) ,  the nui-time 
system tries to gain acoess to the file pointer (pilot-res~i~e~ccess). If tbt process thai 
opens the file then attempts to close it, this fimction should cause the proass to wait untü 
aU chiid processes are nnished This can be seen in the simple example aven in Chap- 
ter 1.1. The Parent pmcess must wait until ali  chiid processes a~ finisbcd before clos- 
ing the file. Any J70 requests in the d - c h a h  or pending list that involve the same file 
descriptor will block the parent process. The acbial close is done by pilot-ciose. The 
parallel close operation merges file segments into the master fîie (this may involve blocking 
depending on the ordering constraints), flushes data to disk, cleans up any tempotary buff- 
ers and fdes. and removes the file name and file descriptor from the look-up list of parallei 
Il0 objects in the manager process. 

int pu-fclomm ( FILE * streant 1 
c 

int status ; 
if ( P i l ~ t ~ ~ m P u r l l m l (  stream 1 1 C 

P i l o t ~ r m s o l ~ c c e 8 8  ( s tream 1 ; 
status = Pflot:,clomm( stream ) ; 

1 else I 
status = fclose( stream 1 ; 

1 
return status ; 

1 

Figure 4-8 - Wrapper code for paraiiel fcïose. 

Things becorne more interesthg if the close operation is cailed h m  a client process. 
After determining if the nle pointer has a p d e l  behaviour (~iiot-isparaiiei) and re- 
solving access permissions (pi10 t-resoive~cces s), the paralle1 close function is cded. 
Recaii that access is only granted to the client if the client's own call-chaii and pending 
lists are empty of requests for the file pointer. However, for the client, the hctionality of 
pilot-close is different. The file is closed only after consultation with the manager of the 
parallel N e  pointer. 

With global 6le descriptors (meeting and log), there is only one active process ac- 
cessing the nle. which removes any race conditions. Any inactive UO work requests are 
marked as closed (Le. the file pointer is set to the NULL pointer) h m  the manager's ca Il - 
chah list These are y0 requests that have not yet been assigned to a remote process. 
Note that the y0 requests am not removed, as would be the case if the cornputaiion ended. 

The manager's pending List requests are pmcessed in two ways, depending on the 
order-stunp associated with both the request and close events. (Think of an order-stamp 
as a variant of a tirne-starnp.) The events maintainecl by the manager's call-chah and 



pendiag contain an order-stamp which corresponds to the order in which the II0 -sac- 
tions were generated For the ciose event, the order-stamp is the same as the one for the 
file descriptor assigned in the d-chain that was passed to the client process. 

Fit, if the ordeFst.amp of an enay on the pendhg List is less than that of the f c 10 se, 
the request will be granted. That is, tht work is allowed to proceed as if the fde has not 
k e n  closed Second, if the close has the eadier order-stamp, the request is retumed indi- 
cating that the fiie is c l o d  The client process is rrsponsible for temiinating the cornputa- 
tion task and generating a quest for new wosk fhm the manager process. It behooves the 
user to nwthely check return codes for any Y0 operation. 

Independent tempiates (photocopy) iafonn the parent process about the close opera- 
tion. The uncommiüed y0 work requests using the affécted file descriptor in the eall- 
chah list are marked as closed As the work is consumed the pending requests wiU fmd 
the file closed, 

If the me descriptor is segmnted, the c h t  will contact the manager process and in- 
form it about the close action. AU outstanding work is dowed to proceed but any uncom- 
mitted work with this file descriptor is madced as closed in the eall-cbain iist. While the 
manager's nsponse to the close request is pmceeding, the client process closes the N e  
segment normaliy and continues execution. 

4.2.5 Using a ParaIlel File Descriptor 
There are four ways to use a parallel nle descriptor. They consist of reading or wnting 

fixed length records, readiag unknown length records, writiag unknown length records. 
and movement of the fde pointer within the Me. Whüe Cbapter 3.1.2 and Chapter 3.1.3 
discuss unknown file segments in more detail, uaknown Iength records mean that the 
actual size of the record read or Wfitten is known only after the individual Il0 function is 
frnished. 

For each of these dinerent types of I/0 hinctioas, there is a corresponding modification 
to the way the fwiction behaves. In ail cases, the fint decision is to test if the file pointer 
supplied is considered a parallel or sequential fiie descnptor. If the file pointer does not 
bave parailei behaviour. the sequentiai function is executed and the results are retumed to 
the user. 

In the case of reading or writing fïxed length records, since the size is already known, 
the run-the system cm ver@ that there is sufficient space avaîiable for the operation. 
Figure 4-9 shows the pseudo code for a parailel fread The nle pointer must fmt be de- 
tennined to have a p d e i  behaviour (pi10 t - ~ ~ s o ~ v ~ ~ c c ~ s s ) .  Then, suficient space 
must be available to do the I/O operaiion (piIo tqre~eri ~YFP). 

While exceeding tbe boundary is an error for newspapers, exceeding the boundary 

int  p a r - f d (  c h z u  *ptr, int  size, int nitems, FILE *stream 

int scatus ; 
if i Pilot,imOuallml( stream 1 ) C /* Parallel U 0  */ 
Rilot,rœrolvoAccm8m( stream ; 

P%lotgrmVa~ify?P( stream, size nit- 1 ; 
status = Pile-*-ad( ptr, size, nitems, stream 1 ; 
Rilotgo8tVœrf fy?P ( s tream ) ; 

1 else C /* Sequential VO */ 
status = fread( ptr, size, nit-, stream 1 ; 

1 
r e m  status ; 

1 

Figure 4-9 - Wrapper code for parallei fread. 



for a report n o d y  involves getting access permissions for the new segment- (The two 
exceptions for the report template occur when the new location is less than the value of the 
base of the f b t  segment or the extent of the last segment is exceeded-) Mer perfonning 
the acaial UO operation (in the case of the report, this may consist of a read or wrïte op- 
eration foreach segment). the nin-time system verifies that the file pointer is Ieft in a con- 
sistent and valid state for the parailei tempiafe constrahts, and that the nle is updated in a 
consistent and diable fashion (~ilotjost~eri~). That is, temporary fdes or memory 
buffers are aushed to the master 6ie on disk 

When the length of a read operation is not known util after the operation completes, 
two approaches are used to detemine if the pst-iead state of the file is legai. Using 
fscanf (Figure 4-10) as an example, the V 0  operation is dowed to proceed after access is 
p e h t t d  (~ i lo t~reso lvekcess )  but the p~~t-vo check (pi10 t g o s  t~eri SFP) ~ i l l  
confirm that the Y0 operation has been coqleteci witbin the limits d e m i  by the I/O 
template. For global and independent VO templates, this causes few problems. End-of-fde 
( m ~ )  conditions will apply normaily. 

int pu-f-( FZZE 'stream, char **String, va-arg 1 
{ 

/* The term va-arg indicates variable numbers of arguments. */ 
int status ; 
if ( P i l o + , i m P u a l I m l (  sueam f ) { /* Parailel VO */ 

P ~ l o t , r m m o l ~ c c m i 8  ( s tream 1 ; 
status = Pilot-vfac.nf ( stream, fmtstring, va-axg 1 ; 
P i l o t g o 8 t V o t i f y F P (  stream ; 

3 else { /* Sequentiai V 0  
I* vfscanf is the va-arg equivalent of fscanf *I 
status = vfscanft stream, fmtstring, va-arg ) ; 

3 
retun status ; 

1 

Figure 4-10 - Wrapper code for parallei fscanf. 

Unfortunately, pst-read state check is an unsatisfactory solution for segmented tem- 
plates since memory locations can potentidy be modifled when they should not be. An 
example of this wodd be where a &ad operihm crosses the segrne& boundaries and gets 
data fiom the neighbouring segment. This could happen if ~rlar segments the N e  logicaiiy 
but not physically. The lead should either read up to the segment boundary or fail corn- 
pletely because the exclusive access condition has been violated. By replicating a known 
length y0 segment locally, the EDF condition is exploiteci for the newspaper template and 
a solution is derived Unknown segment Iengths do not have this problem since they can 
use the conventional EOF to detemine the iimits on the file. 

For report templates, the end-ocsegment (ms) condition is not the same as the E ~ F  
condition. An alternate solution is to parse the format string and test each Rad operation 
separately - a pre-read operation. If a pre-read operation crosses the segment boundary, 
the run-the system will need to exchange the segments with the Ne rnanager. However, 
the actual read operation will not fail or notice the exchange. The drawback to this system 
is the necessity of two read operations one fkom disk and one from memory. 

If a write operation does not provide a Iength until after the operation completes, there 
is a "simple" solution. Figure 4-1 1 shows the pseudo code for a paraiiel fprint .  Mer 
access permissions have been resolved (~iio t-resoive~ccess) for the paralle1 f p r i n t  f. 
the output is redirected to a tempomy buffer (mps tream). This could be a temporary 
scratch file or a memory buffer. Its length will be checked by the verify operation 



ùrt pu-rpriatf ( FILE ' s u e a m ,  char +fmtString, va-arg ) 

c 
/* The term va-arg inditates variable numbers of arguments. */ 
int scatus ; 
if ( R ï l o t , i s O u a & l a l (  stream ) ) { If Parallei UO */ 
*ILS ~ l t t m m a  8 
Pilot-raaolI.llccmms( strean ) ; 

tmp8tr.u = D i l o t , t ~ l t r m u (  stream 1 ; 
status = P---f ( tmpStream, fmtstring, va-arg 1 ; 
P i l o t ~ a t V m r i f y r P  ( strearn ) ; 

1 e lse  C /* Scquential VO */ 
P vîprintl fs the va-arg equivalent o t  lprintf */ 
status = vfprintf ( Stream* fmtString, va-arg 1 ; 

1 
re- status ; 

1 

Figure 4- 1 1 - Wrapper code for paraïiel fpr in t  f. 

(pi 10 t ~ o s t ~ e r i  ~ Y F P )  and committed to the physical disk as necessary. If the parailel 
behaviour is global or independent, the memory stmm retumed is the actual sueam. For a 
newspaper behaviour, if the buffer excwds the segment size, the Il0 operation is com- 
pleted up to the boundaq (if known) or n o W y  (if unknown). Otherwise, the report 
behaviour causes a segment swap and the new file segment is updated with the remainder 
of the memory buffer. 

Fmally, there are the control y0 operations such as f seek (Figure 4- 12). These hnc- 
tions change the location pointed to by the file pointer. In this case, after the access per- 
missions have been resolved (pi10 t-resoive~~~ess) the paralle1 seek (pi10 t-f seek) is 
performed The alternative fseek is necessary since the user sees and addresses a global 
or unified file. A segrnented file must have the offset values maed to fit within the 
physicai constraints of the Ne segment 

A post condition check (~ilot-post~esify~~) will collfilm that the file pointer is cor- 
rectly updated. Seeking outside the h e d  Limits of a segment for a newspaper template is 
considered an error. Unknown fde segments are oniy a problem if the fde pointer is 
rnoved to a position less than the base value of the segment. This is considered an error 
condition simüar to when a user attempts to sequentially access data before the beginning of 
a me. For report behaviours, exceeding tbe segment boundaries wiU cause the appropn- 
ate segments to be exchanged with the file manager except for the staning segment and the 
segment containhg the EOF. h the case of the starthg segment, it is an error to seek before 
the base value and seeking past the EOF only extends the segment if the length is unknown. 

int g u , f m a m k (  FZLE + stream, long offset, int mode ) 

C 
int statuç ; 
i f  ( P ~ l o t , i m P u r l l m l (  stream 1 1 C /* Parallel UO */ 

Pi lot ,rmaolvaAccm88 ( stream 1 ; 
status = Pi lo t , faaok(  stream, offset, mode ; 

P i l o t q o r t V a r i f y F P (  stream 1 ; 
1 else C /* Sequential 110 */ 

status = fseek(  stream, offset, mode 1 ; 
1 
return status ; 

1 

Figure 4- 12 - Wrapper code for parailel f seek. 



4.3 P UOT Template Implementation Issues 
The previous section looked at the implementation issues £iom the viewpoint of the 

hrnctions that an parallelized. T b  sedion examines the concerns of implementing the five 
temple abstractions. There are t k  subsections tbat present specific Mplementation is- 
sues of the independent photocopy template, the three giobai templates (log, meeting, 
and report), and the two segmented Il0 templates (newspaper and report). 
4.3.1 Photocopy Template 

The independent template, photocop y, treats files similady to sequential saeam VO 
except that write operations are visible only to the local client. When the client is fuished 
processing the fiie, the manager gets the updated hle. The user-specifïed order of the write 
operations determines when changes to the manager's file becorne visible to the collective. 
If a process cioses. opens. or reopens a me, the manager will only be informed when the 
client is finished processing. This c m  Hect future usage of the fiie pointer for any inac- 
tive entries in the call-chah list. as bey have not yet been sent to a remote process. 
However. this will not affect any of the active entries as they are executing concurrently. 
4.3.2 Global Templates 

The global file pointer templates (meeting, log, and report) have Il0 stream behav- 
iour similar to the sequential behaviour. There are differences when fc lose and freopen 
are done by a client or when a group fopen OCCLUS. Closing a fde on the client side causes 
the manager to invalidate all remaining non-active y 0  requests left on the call-chah list 
for that paiticular UO object Reopenuig the fie resuits in aU subsequent Il0 access 
through the new file. As discussed earlier. when a collective fopen is done, one process is 
designated the manager to control access to the nle pointer. The ordering attribute for the 
template (Chapter 3.2) defines which process gets access to the file next. 
4.3.3 Segmented Templates 

The segmented fie pointer templates (report and newspaper) ciiffer in that a ciient re- 
ceives access permissions for a file pointer that iies wiihin a range specifed by the base (or 
starting point) in the file and the extent (or the number of bytes) that defme the iimït of the 
segment- At run-tirne, the base and extent for the client are deter-ed by the manager, 
either through a user-supplied constant or a cd-back segmentation function. The manager 
advances its file descriptor to point to the next byte after the end of the client's segment. 

The segmentation hiaction has a specific signature defhed for it. Figure 4-13 shows 
an example function where a variable length record consists of an entry defining the num- 
ber of elements foilowed by the elemeats. The f k t  parameter is the parallel file stream 
(stream). A user assumes that the file pointer is set to the start of the record. The three 
remaining parameters are the muiim~m (min). maximum (max), and current (current) 
number of processes sharing access to this parallel y0 object. The ~ i / m  run-the system 
will invoke this hinction automatically. The pr/m user-interface weds to ensure that this 
signature is used. 

Note that the user writes this segmentation hinction using the standard stream y0 func- 
tions. The user is not permitted to write to the file in the segmentation function, but read 
and seek operations are permitted. The reason for this is that the segmentation function is 
only intended to examine the file, not modify it. The retum value is the number of bytes 
composing the record. The usual paralle1 constraints stiii  apply to the Ne descriptor used 
for segmenting. For example, access permission to the file must be granted; the Ne pointer 
must stay within the specified boundaries of its segment. (Recali that a segment can be 
segmented.) 



unsigneü long segmntFcn( FILE * stream, int min. inc max. int 
( 

unsigneci long offse t  ; 
int nElements, status ; 
/* The number of elements composlng thfs record */ 
status = fread( m-ts, sizeoflht) ,  1, stseam 1 ; 
if (s ta tus  !=Il /* The read has fdled Y 

r e m  (unsigneù long) -1 ; 
/* Calculate the niimber of bytes in this record Y 
offset = sizeof (int) + I1Elements * sizeof (El~lient-typedef 1 ; 

renun offset ; /* Retorn the oumber of bytes in this record */ 
1 

Figure 4-13 - An exarnple of a ~G la r  segmentation fiioction. 

In the example depicted in Figure 4-13, the fiuiction feads in the number of elements 
(ffilmmts) found in the record. If there is an ermr in the read (no more data), the func- 
tion returns the equivalent of negative one (-1) to the run-time system, indicating that an 
error has occurred. Otherwise, the size of the record is calculated and retmed to the run- 
time system. The user does not have to restore or move the location of the file pointer prior 
to retuming, as this is the responsibility of the PVOT run-thne system. 

An altemate way of segmenting a file would be to have a record consistinp of data on 
three h e s  (Le. every third new-iine character delimits a record). Figure 4- 14 shows an 
exarnple of such a segmentation function for p i m .  The drawback to this approach to seg- 
menting is that the data nle is effecîïvely read twice, once by the segmenting process and 
once by the client process. 

The client uses a local copy of the segment if the fde is o p e d  in i n t e  or update mode. 
This local copy is not necessary if the file is opened using read-only mode. However, 
checking that the boundary conditions are not violated will require extra care if variable 
length read operations are used. If fieci-length records are specified, only the modif~ed 
segments need to be renirned to the manager for updating the master file. If the segment 
bas not been rn-ed, it does not need to be updated. 

If a newspaper template that uses a defined-length extent (a value greater than zero) 
is selected each process must stay between the two iimits base and base + ex ten t . 
DeBwd-length segments do not mean constant-length records. Rather. the extent is de- 

iinclude cstdio-h> 

unçigned long segmentFcn( FILE * stream, int m i n ,  in t  max, inc current 1 
C 

If A record is composed of three lines of daîa (delimiter cbaracter 'In") */ 
unsigned long offset = 0 ; 
int  count = O ,  status ; 
while ( ! feof( stream 1 && count < 3 1 C: /* Three line feeds or EOF */ 
if ( (status = fgetc( st.ream 1 == '\n' 
count++ ; /* Anofber lime feed encountered */ 

offset++ ; /* Another byte offset */ 
1 
return offset  ; /* Return the aew file segment extent */ 

1 ;  

Figure 4- 14 - Another example of a pi/ar segmentation function. 



termined in advance of the remott pmcess using the file pointer. Currently, the fde Ïs seg- 
mented either by a user-supplied constant or by a c&-back segmentation function at run- 
time. An extension of tbis work would have the precompiler derive the segment size by 
analyzing the code. The user specincs anknown-length records by defining an extent 
of zero (O). 

The unknown-length record size is usehi when the nle is ope& using write-ody 
mode. The processes Wnte in distinct file-segments that are reintegrated into the file in 
consecutive segments. In read-only mode, the processes share the same base a d ,  when a i i  
the processes have fished, the maximum of a l l  tk extents is used to update the paralle1 
file pointer. 

In update mode, the situation is more complicated The approach iaken is to have the 
processes read h m  the fiie and write to a local temporary fiie segment with the appropriate 
synchronization mecbanisms. Reintepration depends on tk ordering attn'bute. Concate- 
nating separate segments, as is dont with the Wnte-oniy modt, is not appropnate. The in- 
tent of the update mode in either sequential or paralie1 applications is to modify existing 
data Overlaying the segments in a user-specified manner (ordered, relaxed, or cha- 
otic) respects this intent However. if one process is reading h m  the file while another 
process is updating the nle. the result of the read operation is indeterminate. 

There are two solutions that avoid this non-determinism. The k t  is that any wrïte op- 
eration must require the writing piocess to get an exclusive write lock on the ponion of the 
füe affecte4 prior to proceeduig. The other processes can grant the write lock when rhey 
are able. This approach works adequately if the read-to-write ratio is large. However, get- 
ting permissions for every write operation is expensive. 

The second solution defers the permissions phase until a process is finished with the 
Ne segment. The processes would read h m  the master file and write to a temporary file. 
AU updates are made to the local copy. When the process is finished, it r e m s  the updated 
segment to the manager. The manager then seeks the appropnate permissions from aii the 
processes sharing this H e  pointer prior to updating the file with the rnodifÎed segment. 
This is trivial when using ordered updates in that the process update order has k e n  prede- 
fined. With relaxed or chaotic o r d e ~ g ,  the update permission must be acqukd from 
al1 participating processes. Dependhg on the application, the non-detemiinism inherent in 
th is  delayed update approach may not be acceptable. 

One side effect of using unknorni-length extenu is that both testing for end-of-file 
or any read/write operation by anyone other tban the owner(s) of the segment wiil block 
until the outstanding segments have been processed and reassembled in the fde. 

The order attri'bute indicates how the file will be reassembled when a client is finished 
with a segment. For example, if ordered Il0 is specified, the segments are integrated as 
specified by the caii ordering. If relaxed W 0  is used, segments representing similar work 
(a type in Figure 3-21 are assembled in an as-received order with the other segments (p type 
in Figure 3-2) blocked behg committed to disk until a l i  a segments are finished. 
Chaotic UO dows  any segment to be re-integrated into the manager's file in an as- 
received fashion. 

Men a report M operation crosses a segment boundary (either less than base or 
greater than base + extwt), the client requests permission from the manager to access the 
new segment. The manager waits untii the tequested segment is free or i~ asks the process 
that currentiy has the requested segment to temporarily give the requested read or wite  
permission for the segment to the client. If the segment is free. the manager passes the new 
segment on to the client. To prevent deadlock, the climt gives up its current segment be- 
fore receiving the new segment. The solutions proposed for newspaper templates with 
unhown-length extents are equidiy relevant for report templates. 

To ensure that multiple processes do not have access to the same segment, the manager 
is responsible for preventing the client or caIlïng process from attempting to move the füe 



pointer into areas of the nle sull conuolled by active segments in the call-chain list. 
Similady, the manager di block the c a h g  process on an f ciose until aU the outstanding 
segments are consumed. ment processes closing segmented mes wouid not block but 
may have si&-effects on the application. Thai is, closing a file wiU invalidate ail non-active 
work left in the C-chain list for that file descriptor. If the work is invalidateci, the next 
client pmcess would be required to open a new file and have the manager re-segment it. 
Thexe is no requirement to segment the new nle at this point for every remainiog element 
using this file in the cd-chah; as the remaining ekments are pmcessed they would be re- 
segmentai. 

The ireopen does not affkct processes cmently working on an active segment but any 
outstanding segments waiting for a pmcess are modifiai to use the new file. Again. the 
new nle would be s e p n t e d  upon request 

When a client fhishes with a nle segment, it sends a message to the manager that it is 
done. If the segment has k e n  modifie& the message also contains the modified segment. 
The manager processes the client's message and @tes its hle appropriately. 

4.4 P V m  and Enterprise 
This section presents the specific details about the modifications made to the Enterprise 

PPS to support the P V ~  parallel pmgnimming model. Enterprise meets the minimum re- 
quirements needed to implemeat pr/m as dehed in Section 4.1. Enterprise has a well- 
defined graphicd interfasce (GUI) for d e M g  relatiomhips between distinct computational 
tasks. A source-to-source transIator (precompiier) is used to generate wrapper code for 
remote function invocation, synchronkation points, and maintenance of futures. (A fu- 
ture [16] is defmed as a memory location that is promised a value in the future. The proc- 
ess is ailowed to continue processing until that memory location is accessed. If the value 
has not been received, the pmcess blocks until the value is received.) The nui-the system 
is responsible for spawning processes, ensuring messages are reliably sent between proc- 
esses. marshaiiing and demarshailhg &ta for remote function invocation. 

The Enterprise GUI is used to maintain an extemai file that descriï the paraiielism for 
the application. In this file, the paraliel tasks are identined and the relationships to the dif- 
ferent tasks are defmed. An Enterprise parallel task or asset corresponds to a function. 
ParaUeIism is reaiized when multiple invocations of a fùnction are running concurrently, 
using several processes. The Enterprise PPS does not require the user to learn a new library 
for p d e l  behaviours, nor does it extend the sequential programming language (C). En- 
terprise is responsible for marshallhg and demarshalling the parameters of asynchronous 
remote function caiis and identifyingfiritres or synchronizatïon points in the user's code. 
These responsibilities are accomplished by a combination of compile-time analysis which 
identifies fiitures and remote fuiction invocations; nui-time liraries deal with the dynamic 
nature of the application. For more details about the Enterprise prograrnming model as it 
pertains to this dissertation, see Appendix A. Detailed discussions about different compo- 
nents of Enterprise are found in (44.45.49-52.64,65,70,72,73. 841. 

There are three areas that required intervention or modification to the Enterprise PPS to 
support parallel UO. They are the graph me. the source-to-source translater (preeom- 
piler), and the nin-tirne library. Section 4.4.1 describes the changes to the graph nle; 
Section 4-42 documents the modifications to the precompiler and associated scripts for the 
static analysis; Section 4.4.3 provides details about the modifications to the m-tirne Li- 
braries to support PVOT. 

There are a number of limitations to the current Enterprise implementation of PI/OT. 
1. No direct advantage is taken of any physical parailelization of files (for example. 

sûiping or declustering). Rather, ai i  files are treated as baving a unïfïed single logi- 
cd image. 



Enterprise uses the scope of a parallel fuaction (asset) to define the lowest form of 
paralel activity. The definition of an IFO transaction is bound by this same scope. 
That is. arbitrarïiy s k d  atomic Y0 statements are not supported. 
The report template is not implemented yet Neither is the merging of photocopy 
template writes. The deadlock prevention mechaniSm is not sophisticated enough to 
support these templates. More work is needed in the compiler portion of pr/m to 
ensue deadiock does not happen- 
For IWSOOS similar to those given in 3. the coilective opem is not fdiy implemented. 
Deadlock prevention requneS more compiier support to ensure a general solution. 
Tbae is no check if the user has multiple nle pointers opening the same file. If the 
user opem the svae file using file pointer fa Mth a global behaviour and a second 
file pointer fb with segmented parailei behaviour, the implemotation does not iink 
the two separate file pointers to the same physicai file. Undefined results are ex- 
p e c d  
The Enterprise precompiier examines only the source code files of the Merent as- 
sets that compose the paraUcI computations. The non-asset user source files or li- 
braries are not yet searcheci by the premmpiier to m q  any fopen statements. 
Consequently, it is illegal to open a piuallel file pointer in anything but a parailel 
function source file. The definition of paralle1 file descriptors and their behaviours 
is not yet resolved for non-asset user code. One solution is to query the process to 
find out which parallel task is being currently run. Extendhg the tuple information 
to include the sequential firnction as weii as the variable narne and c m n t  p u e l  
task to iden* the paralle1 VO object may be one approach. 
There is no paralleikaîion of the fdopen function because the original low-Ievel 
open hinction does not take into account possible paraiiel semantics. The two 
functions. sscanf and sprintf are not parailelhi since they modQ memory lo- 
cations, not physical fdes. A block of shared memory would be considered the 
same as a nle for these two fuactions. There is no reason why they cannot suppon 
parailel U 0  semtics. When Enterprise supports disaibuted shared memory, a re- 
evaluation of the parallel behaviours possible for these two functions is needed. 

Graph File Modifications 
Each Enterprise asset type has its own parauel designation. The parallel Il0 mode1 

needs to understand its own parailel requirements and the assets it will cal1 to have the cor- 
rect behaviour. In the Enterprise graph He. each asset definition contains a field that, for 
historical reasons, is unused ~r /a r  uses this previously unused field, ERFERNU, to defme 
paralle1 Il0 for each asset as a series of tuples. Modincations to the parsing of the graph 
füe ref lec~g this change were made in the precompiler and run-time system. For now, the 
GUI was not modified as it is not used by er/ur. Nomialiy, the graph nle data would not be 
witten by the user. Rather, the GUI would mate the text file based on aU the idonnation 
supplied by the user. For other PPSS, there must be some way of htegrating the parallel 
task definitions with the pardiel y 0  requirements. Figure 4-15 shows the general outhe 
of a PVOT tuple's format for an Enterprise graph nle. 

Each tuple consists of the variable name of the file pointer used in the asset (var~ame). 
Foilowing it is the pafallei mode of the fiie pointer (par~ode). There are currently five ac- 
ceptable choices. The template read and write ordering attrÏbutes ( r e a d ~ r d e r  and wri te - 
order) can be optionaliy defined for the paralle1 mode. For read ordering, they are r o  
(ordered read). rr (daxed a), and rc (chaotic read). Similar amutes  are specifïed for 
write ordering. The remaining mandatory entq defines whether the JI0 transaction size 
(~1ockFactor)  is either a per-WO statement (rtomic) which is currently ignored, or a per- 



where: 

VaXNane := character string 
e := CMEEi!W 1 LûG [ PEBMWZOPY ( NEWSPAPER 1 REPORT) 
zeadOrder := Cr0 1 rr [ rc) 
writeorder := Cwo 1 w r  !WC) 

BlockFactor := { a 1 b ) 
assetName := r_hiir;icter string 
segmentsize := CO 1 >O 1 functiorWame1 
functioaName := cbazacter string 

Figure 4-15 - Format of a ~rlar entry for an Enterprise graph file. 

asset (biock). Since Enterprise does not permit missing entries, aiI of thek mandatory 
entries must be pzesent. 

If the paraUeI mode chosen is segmented (NEWSPAPER or REPORT), there must be a seg- 
mentation function or constant (segruentsize) defined for every asset that gets passed the 
file pointer. The segmentation of a file is based on ihe requirements of the different com- 
putational blocks that access i t  If there aie different types of computational blocks, each 
type could ~equire different amounts of data. If the asset is repiicated and it invokes an 
fopen, freopen, or £close function (coktive behaviour), there must be a segmentation 
value specïfied for the asset. The value is either a zero for an unkaown length segment, a 
positive integer represen~g the sire of the extent in bytes, or a user-dehed function that 
the ru-Ume system will c d  to determine the extent whenever the nle is opened or passed 
in a remte asset c d .  This fiinction may also retum the value of -1 (or its equivalent as an 
uns igned long). which indicates to the PJOT rua-tirne system that an error has occurred. 
The current action upon encountering a segmentation function error is to ask the PPS to re- 
port the e m r  and shut down the paralle1 application. 

To clarify the use of the ~Glar tuple in Enterprise. an example graph file is provided in 
Figure 4-16. The graph file is based on the example first discussed in Chapter 1.1. How 
this example has been "Enterpriseci" is explained in Appeadix A.2.1. There are two paral- 
1el file pointers defmed in the Parent asset stanza. The first one, f in ,  is to be treated as a 
segmented parallel me (newspaper) while the second one, EOU t, is a global &te append 
pardel file (log). The granularity of atomic LI0 operations is at the function block Ievel 
rather than at the atomic statement level. 

The read and write attributes are orclered for fin, This is the default case and there is 
no need to change this as fin is opened read-ody. However, the write ordering of f o u t  
c m  be relaxed since it was detemiined that the order of output was icrelevant as long as 
transactions did not overiap each another. In this case. chaotic writes would be equaiiy ac- 
ceptable since ody Chiid processes access the file. 

I Figure 4-16 - An Enterprise graph N e  with PM extensions. 



The Parent process opens the fde. Since it cannot be teplicated (a property of king 
the fmt asset) there is no need for a definition of a segmentation value. However, Parent 
does pass the two fiie pointers to chil& In this case, the user chose to b i t  each segment 
size to a constant vahe of four bytes and the dennition is child=4. An alternative wodd 
be to define a function (~egment4) tbat reninis the value 4. In that case. the dennition 
would be: child=segmenta. There is no need to specifjr the segmentation funciions in a 
particular order, nor to specify any unused segmentation functiom. 
4.4.2 Static Analysis Adàitioas 

The Enterprise source-to-source ttaaslator @tecompiler) uses the graph nle to rnodis 
only cenain of the user's source code for the paralle1 computational behaviotu - the 
asset source files. However, MUT needs to -lace aU the stxeam VO fiinctions except for 
fopen in both the asset code and non-asset source (xquential) code. Enterprise does not 
examine sequentiai code because there is no contd paralleiism located there. Because this 
deficiency (hm er/OT's viewpoint) of the cumnt Enterprise precompiler not examining ali 
the source code, a s=a2 script is used to searcb the user's sequentiai code and replace the 
V 0  statements. ûne limitation of the sed script is ibat non-asset code cannot open a file 
using a parailel behaviour since the signature of the fopen is not changed. Because the 
precompiler 100h only at the asset source code, only the asset code has the fopen hnction 
calls modifieci. 

WOT replaces the standard stream T/O fiinctions with a comsponding parallel V 0  stub 
function, ENT-XXX, where the m is replaceci with the name of the conesponding Il0 
s a a m  fuuction or macro. This replacement is done before the source code is preprocessed 
either by the Enterprise precompiler or by the conventional compiler (CC). These compiiers 
process any macros such as feof or getc. Each Mie the file pointer variable is passed in 
the y0 function invocation, the stub V 0  fiinction examines the pointer to determine if the 
variable is a pardiel nle pointer. 

The Iookup list (ParIo) for identïfying parallel UO descripton is created and main- 
tauied by the pr/ar run-time system for each asset object'controlled by a process. A query 
fiom the stub IIO function asks the run-time system for the asset currentiy in control. This 
asset is then asked to search its PPrIO Iist to determine if the file pointer has a parallel be- 
haviour. 

The interesthg part of modifying the source code is found in the entry points into the 
stream V0. The two entry points are the freopen and fopen hinctions. As discussed in 
Section 4.2.3, the= are two possible implementations of the parallel freopen. The h t  
method, where the physical file is changed but the parallel IN> behaviour remains the sanie, 
was chosen. The freopen fùnction signature is not modifiai and the sed script is suffi- 
cienr to search and replace for the appropriate W m  stub function. This method aliows the 
user to reopen a Ne in the sequential code as the paraiiel behaviour has already been estab- 
lished. 

The other user entry point is fopm. Figure 4-17 shows the maed fiinction signa- 
ture. In this case, the file pointer has not been initialized nor has the nle been identitied as a 
parallel Ne. The run-rime system needs to couple parailel behaviours to files. Recaii that a 
paralle1 computation task is a h d y  identified by Enterprise as an asset Coosequently, any 
file opened by an asset may exhibit paralle1 behaviours. Adding the asset name allows the 
mn-thne system to know where to search for parallel information. However, a given asset 
can have several file pointers, each with different paraUe1 behaviours. The name of the ac- 
tual variable that is being assigned is passed to the rua-time system to ensure that the cor- 
rect paraliel Y0 object is updated. 

sed (sûcam eàitor) is a standard UNIX program that applies a series of editor cornrnands to a file. 



Figure 4-17 -The signaime of an Entexprise pardel fopen fhction. I 
The Enterprise pecompiier was modifiai to semh the asset code nles for occurrences 

of fopea The precompiler then adds two text strings to the f o p a  parameter list. The first 
text s b g  contaios the name of tbe assigneci vananable in the fopen statement The second 
text string contains the nam of the asset which identifies the transaction type. AU fopen 
hinctions in asset source nIcs are modifie& ngatdless of whether they are designated par- 
d e l  or not. K a  fde pointer is aot designated as having a paraUel behaviouc, the pointer is 
tteated as having a sequential behaviour. Thus, a usa need only modify, add, or delete nle 
pointers in the graph file and rem the application again to test a new parailel Il0 behav- 
iour, 

It is important for the paraMe1 £open huiction to return a normal Stream I/O variable. A 
user calls sequential hctious using the nk pointer. If a parallel nle pointer is passed to 
sequendal functions. the correct paraUe1 behaviour is still performed, as al l  the VO func- 
tions in the source code have been replaced with paralle1 equivalents. A possible improve- 
ment would be to replace the sequential Il0 Iibrary with a parallel version. This paralle1 
iibrary wodd only k Iinked if the application has been properly preprocessed to reflect the 
modified pardiel U 0  fwiction signatures. 

The Enterprise precompiler also modifies the stub or wrapper fuoctions it generates for 
each type of asset invocation and the corresponding r e m  variable so that the Y0 variables 
are identined and declared properiy. When a remote hction is invoked, the parameters 
are sent to the pmess that wiil execute the function. If the message contains N e  pointers, 
PUW replaces those hle pointers with the conect paraliel UO data structures. Upon receipt 
of the message, the remote function would mate the parallel file pointers before invoking 
the function. When the remote function retums, the modined file pointer is interceptai and 
the appropriate pardel UO data is sent 

The precompiler also adds the names and addresses of the segmentation functions for 
each asset into a global vector so the run-tirne code can look up a aven function by name 
and ihen invoke i t  Some work has been done to search the symbol table of the executable 
so that this global vector is unnecessary. However, if the executable is strïpped (Le. the 
symbol information is remwed), such a search does not work- 
4.4.3 Run-time Libraries 

The ~tlar run-thne Il0 libmy, while based on Enterprise functionality, is not dependent 
on Enterprise. The ability to send and receive messages and reûieve pacaUe1 computational 
information is dl ihat is required. There is some intervention in the Enterprise nin-time 
code to include the parailel M) fiiactionality which occurs in five places: the asset graph 
(parallel UO data management), the remote firnction invocation (file pointer marshalling), 
processing (file pointer demarsballing), the nmote bction retum (updating and integration 
of fie), and parallel V 0  event generation. The actuai parallel VO code was kept separate 
nom the existing nui-tirne library as much as possible. 

The Enterprise implemntation of Wcn has modined the graph file to store the static 
parallel IrO information. At run-thne, the graph file is converted Uito an asset graph. 
This p p h  contains both dynamic (the numkr of processes for a given parallel type, which 
process manages the group) and static idormation (type of paraiiel behahavir, constraints 
about process location) for each parailel computational type. For parallei V 0 ,  each paralle1 
object (or asset) maintaias the two paralle1 V 0  lists, call-ehain and pending, plus a de- 
scription and curent status for each parallel Il0 object assigned to the asset (the Par10 
k t ) .  



Each entry in the call-chah and pending list contains sufficient information to de- 
scribe and constmct a paraIlel VO object Each entry contains the address of the manager of 
the Y 0  descriptor. the type ofparaUe1 UO behaviw. the name of the file currently attached 
to this descriptor, the base and extent (if segmnted). the access permission. ordering 
information, and t&e internai stream me pointers. 

In some cases, the paraiIel behaviour requires two separate file descriptors - one for 
use by the application and one for any temporary files or memory buffers. Temporary fdes 
are locateû by defauit in the directory /tmp to rninimirr the impact on the network. This 
default value is ovenidden if the user sets the sheil enviromnt variable, 
ENTERPRISE-IOTEMP, to indicate some other IOcafion- For example, setàag the environ- 
ment variable to -10 wül Iocate any temporary files in the director- -10 which is lo- 
cated relative to the current wodcing *tory of the application. 

AU sfnam U 0  fiinctions have paraiid comte- ex-t for sscanf, sprintf, and 
fdopen. This maltes the checking for paraUe1 behaviours simple and consistent for the 
system. The actuai check is a minor cost comparecl to doing the V0. When the user in- 
vokes an y0 fiinction, the paraüel fiincaon determines if the y0 operation is for a parallel 
or sequentiai nle pointer. If the file pointer is sequential, it is passed to the appropriate se- 
quential VO hction and the r e m  code is passed badc to the user. If the file pinter is 
parallel, its asset is quened for the cumnt state of the parallel object Dependhg on the 
actual UO operation, the cunently defined p d e l  UO behaviour. and the state of the asset, 
a number of messages are generated to prepare for the Il0 operation. The nin-time system 
checks the Il0 operation to connmi it can be safeiy done withh the consaaints of the par- 
del  template and then performs the I/O operation. Afierwards, the retum code of the VO 
function is passed back to the user. 

Each invocation of a remote fiinction c d  that includes a hle descriptor in the formai ar- 
guments passes the cunent state of the parallel Il0 object. This state is stored in the call- 
chah The Enterprise marshallhg code was modified to defect the H e  descriptor parame- 
ter. The Enterprise precompiler modined the srub codes. The run-tirne system searches for 
a nle pointer in the asset's PPrIO Iist The pardel I/O object is updated and flattened into 
an ASCII Stream suitable for sending to the iemote process. If the paralie1 behaviour is 
segmentecl, the IIO segmentation function associated with tbis paraIlel Il0 object and the 
cailed asset is invoked to determine the extent of the segment. 

Each hction invocation is assigned a unique (per process) identifier which doubles as 
the transaction identifier. The call-chain list controis the sequence or progression of VO 
operations for the application. As the remote asseu (client) reach the point where they 
need to update or gain access to a particula. Il0 object, the d e r  asset (manager) regulates 
which process gets access to the file or file segment. 

When a client receives a paraUe1 file object, it mates a new UO object based on the data 
stream received. Since a client c m  have muitiple assets, the Y0 object must contain the 
name of the asset it is associated with. The client then matches the object's asset type to 
one of the assets it manages. The matched asset then searches in its ParIO kit for the par- 
de l  I/O object The asset's y0 object is updated and the nie is opened appropriately. If 
the m-time system fails to fhd the correct asset and the coma VO object, the application 
is shutdown. When the asset parameters are completely processed, the computational 
function assigned by the user to the asset is c d e d  When the nle pointer is accessed in the 
user's code, the access permissions arr required h m  the d e r  asset prïor to performiag 
the V0. A message is sent to the V 0  manager to request access which blocks the client as- 
set from M e r  processing until the rnanager returns. 

The d e r  asset may receive many such reqwsts and saves the ones it cannot satisfy in 
the pending list. For example, if a q u e a  is received out of order (this depends on the 
ordering attribute) or the caller does not cumntly have access permission, the request is 



queued. The caüer a s a t  penodicaliy checks through the pending list to see if it c m  re- 
solve any outstanding W) requests. 

As -h asset finishes with its hle pointer, it uwtes the pardel file data structure, 
closes the file pointer, and returns the modifiecl file pointer to the caiiec. Upon receipt, the 
d e r  searçhes its call-chain lia and delem the comsponding object afler updating its 
own parallel file object in the Par10 Iist, if nazssary. This is dinerent h m  the Enterprise 
mode1 of parameter passing which allows parameters to be considered as one of three types 
- IN, OUT, or LNOWT. IN parameters are not returned to the caliing asset and consequently 
do not generate fbnue~. OUT parameters are only renuned to the c a h g  assets and an not 
passed to the remote asset INOUT parameters are passed in and retunied back. The last 
two parameter types always generate a fiinire. AU y0 objects are considered as king 
MOUT parameters and wili always generak a retum message containing data- However. 
y0 objects do not genew a hi- in the Enterprise sense. The checking of the current Il0 
state by the paraUei V 0  stub functions replaces the genenc future checking done by Enter- 
prise. The marsbslling code reflects this appmacb regardlas of any attempt by the user to 
ovemde (e-g. using the Enterprise IN or OUT marshaüing macros). 

In addition to tbe paralie1 Il0 objets contahed in ParIO, each asset dennition is asso- 
ci& with a paralle1 U0 bebaviour - single, managed, or replicated. Depending on 
the behaviour, the I/O is perfonned differently- For exampe, if a paraiiel fopeh call occurs 
in an asset that has a mpiicated IIO behaviour, the asset would request its VO manager to 
coordinate the open. Altematively, a maaaged asset is a specialized system object that 
contains no user code. Its purpose is to spchronize and coordinate access to a fde. These 
behaviours are based on the asset's replication factor and whether the asset is defioed to be 
a manager or worker type by the Entezprise nintime system. 

As a tool for performance monitoring and debugging, Enterprise generates event mes- 
sages for pardel activities. These messages are generated and coliected when debugging 
the application or analysing for performance bottienecks. Since Il0 can have a signincant 
effect on the pefiomance of a parallel application, a set of V 0  events was made avaiiable to 
the Enterprise interface. A list of the current VO events is found in Figure 4- 18. They are 
typicaily in pairs. 

An Il0 transaction starts when the I/0 manager sen& a message (SM~IOMSCJ) and the 
client receives it (rcvdl~~sg) .  When the client actuaiiy srarts the transaction, the event. 
process I O M S ~ ,  is generated. If the client is f ~ s h e d  using a given paraUei fde pointer be- 
fore the overail Vansacaon is finished the doneIOMsg event is generated. This indi- 
cates that the client has no fiuther use for ihis file pointer but does not necessarily indicate 
that the Il0 transaction is cornpieted. That is, the run-the system can determine (or be 
prompted by the user) that the indicated paraiiel nle descriptor WU not be used any more in 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

#sentXMsg manager client msgTag t i r n e  I O S t a t e  
#rcvdIdMçg client manager msgTag the I O S t a t e  

#processIOMsg client manager msgrag the I O S t a t e  

#doneIQ!&g clieat manager ms-g time I O S t a t e  
#sentIORepTy client manager msgTag time I O S t a t e  
trcvdIOReply manager client msgTag the I O S t a t e  

#ZûAccessSurrender client manager msgTag thne I O S t a t e  
liIûAccessGained mmag= client xnsgTag t h  I O S t a t e  

#IûAccessEtequest client manager msgrag t h e  IOStare 
#IûAccessGranteà m g e r  client msgTag time IOState 

XperformIO process IUType =Gag t i m e  I O S t a t e  

Figure 4- 18 - The different V 0  events for Enterprise. 



the transaction. This eady release can improve concurrency. Currentiy, the eariy release 
mechaniSm is inserted by hand, Future research with the static analysis should do this 
automaticaiiy . The manager proeessing the reply generates the rcvdIORe~ly event. The 
end of an U0 transaction genetates two events - the client indicates it is done 
(sent~~~eply) and the manager processes the reply (rcvdI0~eply). 

If a client sumnders the access permission of a given file pointer to its UO manager, the 
IOAccessSurrender event is generated with the comsponding manager's IOAccess- 
Gained event The I O A c c e s s R e ~ e s t  event is Sent by the c h t  to the manager for per- 
mission to access the nquested me descriptor. Both global and report templates can gen- 
C r a i e  this request. Whn access is granted, the manager generates the IOAccessGranted 
event The manager generaies a rcvdIOReply event upon prarssing the early-dease. 

The format of the message for any of these paifed events is the same. The message 
consists of a tag identifying the event, a p d e l  ta& identifier of the event generator (this is 
unique for the application), the paralie1 task identifier of the IEO operation nxipient (again 
unique for the application), a per-process unique message tag, a tirne stamp vector (for or- 
d e ~ g  of events), md the current state information of the p a e l  file pointer. 

For the one unpaired event, performïo, the format of the message consists of the event 
tag i d e n m g  the event, the uuique paralle1 task identifier of the event generator, the name 
of UO fwiction performed (for example, fseek), a per-process unique message tag, a time 
stamp vector (for ordering of events). and the current state information of the parallel file 
pointer. 

4.5 Deadlock Prevention 
A PUOT implementation must address the issue of deadlock [19,39,68, 7 1. 741. With 

the sharing and coordination of multiple fie pointers tied together by remote function invo- 
cation or by coliective open statements, there is a significant composent of any implemen- 
tation that is concemed with deadlock prevention. The p i lm  run-time system must deter- 
mine if a request for a aven file pinter is safe or deadlock-fke. 

First, the four necessary conditions for deadlock are listed. The pr/m constmcts asso- 
ciated with each condition are identifieci. Second, measures to avoid or eluninate the con- 
ditions for creating deadlock are desaibed. Finally. the current state of deadlock preven- 
tion in the Enterprise implementation of pr/m is presented. 

The= are four necessary conditions for deadlock [19]. They are: 
1. Mutual Exclusion. The globai @el UO behaviours (meeting, log, and re- 

port) satisfy this condition since only one process cm access a fde or file-segment 
at a Mie. This condition cannot be completely eliminated. 

2. Hold and Wait. This condition OCCLUS if a pmcess holds a lock and is waiting 
for exclusive access to another file that is locked by another process. If a transac- 
tion requests a i l  its iocks prior to execution. this condition is avoided. However, 
utilization will drop if ail the locks are not needed immediately. To increase the 
concurrency in a PVOT transaction, the locks are not ail sought after at once. Rather, 
asking for exclusive access or a file lock is delayed until the h t  I/0 access in the 
hinction. If the order of requesting N e  locks is not consistent, tbis condition wiii 
be satisfied. The relaxed and chaotic ordering attributes of ~r/m templates ensure 
that this condition caanot be avoided without committing to exclusive access for di 
the other global N e  pointers in the transaction. 

3. No Pwmptioa. A process with exclusive access c m o t  have access taken away 
until it has f ~ s h e d  aii the Il0 with that file pointer. il0 access is asked for when 
needed. A premise of is that W3 cannot be roiled back. This condition for 
deadlock cannot be eliminated. 



4. Circular Wait. There exists a cycle of processes each waiting for a resource the 
aext process holds and will not release. This case is simila. to the situation in Con- 
dition 2. Transactions are identifieci by tbe remote nle pointer variables. Cycles 
couid inadvertently be created if some unique method of identification of a file 
pointer is aot used. The ciosent deadiock prevention implernentation uses the 
unique per-machine, low-level operating system file number to identi@ p d e l  file 
pointers rabr than the name or address of the file pointer structure in order to 
avoid this aliasing problem. 

When is Rpadlock pvention not needed in MOT? If tûere are no global Il0 behaviours 
in the transaction, the application avoiàs tbe fïrst RPiutlock condition. Having oniy one 
global me pointer per transaction avoids the second and fourth deadlock conditions. If the 
read and write attniutes for aI l  global me pointers are defined as ordered, thete is no 
deadlock. The order of access to the file has been pre-defîned and any out-ofi)rder re- 
quests wili be held util needed. Relaxing the ordering attniute of any one of the giobal 
fde pointers (relaxeci or cbaotic) cm lead to deadlock. 
4.5.1 PVOT Deadlock Prevention In Enterprise 

The Enterprise view of the scope of a transaction is defhed as the scope of a remotely 
executed function. However, a transaction does not start und a remote process actüally 
uses one of the paraUei nle pointers. When a process requests access to a global nle 
pointer, the entire transaction that the remote process is using is examined and aii global file 
pointers contained in the transaction are then commied to that process. This ensures that 
the hold and wait condition is not possible. AU the necessary file pointers wiii eventualiy 
be accessed. This is a first step to elirninating the potential for deadock. However, the 
ordering attnbutes c m  mate a condition where deadlock is possible. 

When a process is seeking exclusive access to a particular me pointer, the current 
deadlock prevention algorithm first determines the overall ordering of the transaction that 
includes the file pointer. This is based on ai i  the global file pointers in the transaction. The 
run-time system identifies the critical nle pointer which could cause a deadlock condition. 
If ms is not done, deadlock cm occur. 

Consider two global fîle pointers, f and 9. VO operations with f are defined as or- 
dered while with the ordering is relaxecl or chaotic. If a process, Pt. generates three 
of these transactions, the pendhg List wouid contain the foliowing entries G, g!, f,, g,, f,, 
g,) where the subscnpt indicates the transaction identiner and itaücized entnes uidicate that 
access is avaiiable to be granted 

If Pt gants a requesting process, Pz, access to g, (a property of the ordering semantics 
of g), the transaction tuple is marked as owned by P,. The pending list looks like (f,*, g ,', 
%, f,, g,) where the superscript entries indicate the identifier of the process that now owns 
the uansaction. The boldeci entries indicate that this process currently has access. How- 
ever, this is incorrect as f, shouid not be granted to P, since access to f is defined as or- 
dered. 

The current solution defines an o v e d  transaction ordering attniute based on the most 
consexvative value of the attributes of th parallel file objects. Using the fmt example. the 
request from P, for g would not be granted as the ordered atûiibute indicates that oniy P, 
has the comct tag in order to grant access to f,. When any nle pointer of a marked trans- 
action is ready to gant access, the permission is sent to the marked process which may or 
may not be blocked waiting for it. Still, other processes waiting on the fde pointer are 
blocked until the marked pmcess relinquishes the access permission. 

Part of the conditions for granting access is validating the Ne pointers. To show the 
necessity of this, consider three N e  pointers, f,, f,, and f, that are comected to three dif- 
ferent nles. The three fde pointers are managed by one process and are used in two differ- 



ent transaction types. The £ht  transaction definition contaias f, and f, while the second 
transaction contains f, and f,. W1th a ehaotie ordering dehed for f, a process of the 
second transaction type could ask for access to f, and inadvertenly be granted a transaction 
of the first type. This resuits in an emr. 

The current solution to deadlock prevention limits the expressïbiüty of the odering at- 
nibutes. More wo& is needed in this arrê As seen Iata on in Chapter 5.3, an early re- 
lease mechanism can be used to avoid the need for nParflock prevention and subsequently 
improve performance. Futwe work with stafic analysis cm autodcally insert eariy re- 
lease functionaiity into the user's code. 

4.6 Chapta Summary 
This chapter wtlined & o r  the PI/" programmïng mode1 should be implemnted in 

general and how PGIm has been iniplemented in the Enterprise paralle1 programming sys- 
tem. It is important to note thaî only minimal intrusion into the PPS is necessary to imple- 
ment this system. This minimal inmition bodes well for tramferring  PI/^ to other paralle1 
pmgramming systems. The efficiency of the Enterpn~e implementation is dealt with in 
Chapter 5. 

There are few changes to the staodard stream interface. Only the £open function has 
had its signature changed and the changes cm be handed automaticatly by a source-to- 
source translater. The various y0 mafrôs, such as getc or faof, have been replaced with 
fûnctions to d o w  a test for paralle1 behaviours. The user specifies what cornputational 
and Il0 parallel behaviom are requjreà, separate fiom the source code. The compiler then 
uses this information to determine how to modify the source code in order to implement 
the paraUe1 behaviom. The run-tirne system talces the dynamic information and determines 
how to perform the I/O efficiently. 

For the Enterprise implementation of ~i/ar, the precompiler replaces the Stream I/O 
functions with rnatching wrapper hinctions in the asset source code and, in the case of 
fopen, adds two variables to the parameter lisr. For the non-paraUe1 source code, a sed 
script was used which does not modm any function signatures. This 1st step means that 
only the asset source code can open a parallel fde descriptor. 

There are five identined areas where the ru-time Library of the PPS interacts with the 
PVOT run-tirne Library. They are: the asset graph (@el Y0 data management), the remote 
function invocation (file pointer marshalling), processing (file pointer demarshalling), re- 
mote function return (updating and integration of file). and parailel U0 event generation. 

The only non-standard user-level fea<ure of this implementation is the use of cail-back 
functions for the dynamic segmentation of the file. Later irnplementatiom may try to have 
the compiler provide this informaton. For static segmentation, the user can speciQ a con- 
stant value in the extemai specifications. Changing the value does not force a recompilation 
of the code because Enterprise rcads the paralie1 specifications at run-the. Since the com- 
piler modif~es aU the JI0 staternents, the only tim an application needs to be recompiled is 
when the segmentation function is changed. Othenwise, addiog, modifyùig or deleting par- 
d e l  templates is a run-the operaton. This makes for rapid prototyping of the application. 

If more than one file pointer is shared between the various processes, deadlock preven- 
tion is needed. The scope of a transaction is the scope of the remote function. Conse- 
quently, the f h t  paraUe1 fiie pointer used will set the ownership of the entire transaction. 
The ordering attributes of individual nle pointers cm cause deadlock However, deter- 
mining an overall ordering amibute for the transaction based on the most conservative or- 
dering will avoid this potentid for deadlock. The cost of deadlock prevention is seen in the 
Iack of expressibiiity of the ordering attributes and the subsequent reduction in concurrency 
of the application. If it is not safe to grant access, the remote process is blocked. 



Chapter 5 

5. Performance 
The description of the model (Chapter 3) and the iniplementation (Chapter 4) have 

been pmsentedc This chapter desc r i i  the attempts to justify the c l a h  that this topdown 
mode1 to paraiiekbg y0 is simple and effitive to use wwhi providing a reasonabie per- 
fomiance when compareci with the current handaded approaches. 

Five expeximents are presented The 6m two a d h s  performance cornparisons be- 
tween a handadeci appoach using HOUS and the high-ievel PVOT approach. The two ap 
piications display a similar computational patalleIism but have quite different y0 require- 
menu which stress the I/O system(s). The fim has fine-grained UO and the second has 
coarse-grained y0. 

The k t  performance experiment (Section 5.1) is drawn h m  a molecular docking ap- 
plication at the University of Alberta The onginai application looks at placement 'and 
alignment of a protein fragmemt onto a larger protein molecule (the smailer fragment 
"docks" at the larger molecuie). The application used in this expeciwnt consists of read- 
hg, processing, and wrïting blocks of data (molecules) on disk. These blocks consist of 
objects within objects within objects. Each object cm be of variable length on disk. Each 
individual VO operation is quite small, consisting of four to several hundred bytes within a 
single record. The second performance experiment (Section 5.2) consists of coasse- 
grained Il0 - disk-based matrix muitiply. The application processes a large ( 1.3 gi- 
gabytes) amount of data and quickiy saturates the network 

The third set of experiments, Section 5.3, examines the useability and composability of 
PVOT as discussed in Chapter 3.2. This experiment consists of two parallel computational 
approaches (heterogeneous children, Sections 5.3.1 and 5.3 -2. and a pipeline, Sec- 
tions 5.3.3 and 5.3.4). Syncbronization between different types of child processes is re- 
quired aad is based on the run-time invocation behaviour (the call-chah, Chapter 4.2). 
As well, the inheritance of the cder's Il0 constraints modify the child's subsequent use of 
the ale pointer in any remote procedure c d .  Both the performance and useability of some 
of the different combinations of the ~rlar Il0 mode1 and the Enterprise paraile1 program- 
ming model are presented. 

By specwing the parailel computational and Il0 requirements separate fiom the source 
code, no recompilation is required when the y 0  templates are changed. The effects of in- 
creasing process replication factors or cbanging the V 0  model are examined. The Enter- 
prise pro&rammùig mode1 does require recornpilation if parallel cornputational tasks are 
changed. That is. if two separate task types that were specified as parallel are now consid- 
end as one, or if one task type is split into two, the wrapper hinctioas must be re- 
implemented by the Enterprise precompiier. Another part of this third set of experiments 
examiDes the potential gain in concurrency (if any) by the timely release of file access per- 
missions. Curreatly, the insertion of the release mchanism is done by hand. However. 
funire work wïli look at the insertion of the re1ease mechanhm by compiler tools. 

The fourth experiment, Section 5.4, revisits the molecular docking problem fkst pre- 
sented in Section 5.1. This tirne, the effect of dynamic segmentation, where the size of 
each file segment is determined at m-time by using a cd-back funciion, is examined. The 
performances of three different segmentation approaches are examined using four levels of 
computational granularity. 

In the tifth experiment, Section 5.5, the lessons learned in the previous experiments 
are applied to the fine-grained example first seen in Section 5.1 The effect on performance 



is examuied when a more complex paraiiel computational and Il0 version is created. The 
ease of integratiag the additional @el UO requirements with the new computational par- 
ailelum is showa Performance resuits indicate that ihis more complex application can 
yieid better performance than the sinipler versions discussed in Section 5.1 and Section 
5.4 when using a hetemgeneous wodMation cluster instead oftbe alternative homogeneous 
workstation network. Section 5.6 presents a summary of this chapter. 

The Enterprise paraUeI programming system 1701 was wd to implement erlm. The 
PIOUS paralie1 y0 system [57] was used for perfonnanœ and coding comparisons. The 
choice of mous was made for thne reasons. Fust. the MPI-IO implementations which had 
just been r e l d  at the t h e  of testing were alpha impkmentations based on a changing 
"standard". It would be difkult to draw meauhm cornparisons and conclusions about 
the perfonaaoce of either system. Second m s  has been available for over a year and 
seems relatively stable. The thud and primary nason for using both Enterprise and PIOUS 
for these experïments is that these IWO systems both use PVM (301 as the underlying com- 
munication system. 

Revious work 1651 examineci the performance of Enterprise and PM as it relates to the 
cost of communication and teqlated computatiod paralleiha The simple parent-child 
computatiod pafaUeLism of both performance experiments provides similar performance 
with either Enterprise or PW. This provides a cornparison point to ensure that the cumnt 
implementations of Enterprise and the hand-cded HOUS applications are perfomiing ade- 
quately. By keeping the hardware and the communications software constant, more 
meaLLiagfÛi comparisons can be drawn about the YO. 

Cornparhg PIOUS with template V 0  is not intended as a critique O ~ P ~ O U S  or of any other 
parallel V 0  system. Rather, it is intended as an experiment to see if paralle1 VO templates 
are viable. It is assumed that low-level libraries and special parailei file systems like Gd- 
ley [61] wodd be integrated with the hi@-level templates in a fashion similar to what En- 
terprise has demonstrated with computational parallelism- 

For aU of these experiments, the paralle1 times given are the elapsed times or clock-on- 
the-waü times. The sequential tirnes, unless othewise noted, are the user times as deter- 
mined by the getrusage system hinction and represent the actual time spent by the appli- 
cation using the processor. 

This section examines in detail the paralleikation of a real problem in order to illustrate 
that templaie I/0 can realize iittie or no loss of performance in cornparison to the imple- 
mentation in PIOUS. The program is denved from a molecular dockhg problem in bio- 
chemistry at the University of Alberta. The original application lwks at placement and 
alignment of a protein fkagment onto a larger protein molecule (the smaller hgment 
"docks" at the larger molecuk). Each molccule and fragment is stored as a senes of nested 
objects on disk. That is. one object contains other objects which in turn contain other ob- 
jects. Each object is has a variable size. 

For this experiment, the biochemistly component was removed and replaced with a 
function that simulated the computational time spent on each sub-object. This allowed 
more control and flexibility when changing the computational granularity. The reading and 
writing of objects is dispersed throughout the computations and is fine-grallied in nature 
(four to several hundred bytes). 

In Figure 5-1 the application specincs have been abstracted out? leaving the high-level 
I/O view of the program The code looks similar to the example given in Chapter 1.1. but 
the Child function is dinerent. As weii, the r e w i n a  introduces new synchronization con- 
siderations. 



#incltade cstdio ,b 
m a i n (  int argc, char ++argv ) 
{ 

ETEE *fin, *fout ; IL Input and output file descriptors *I 
fin = fopen( argvill, 'rD 1 ; /* Open the input file *I 
fout  = fopen( a~gvl21,  -' 1 ; /* Open the output file *I 
a l e  ( ! feof ( fin 1 1 { I* Uatil end of file, work */ 
Childt fia, fout 1 ; 

1 
fclose( fin 1 ; /* Close the input file */ 
rewiad( faut 1 ; I* Rewind the output file to the begïnning */ 
Stats( fout 1 ; /* Perform summary sîatistlcs on output */ 
fclose( fout ) ; /* Close the output Cile */ 
return O ; 

1 

Figure 5-1 - Sequential code for fine-grained UO test program. 

In the sequential version, the chiid reads data h m  a nle (fin) and performs calcula- 
tions, with the results going to an output file (fout). Once the input is exhausted, the main 
program rereads the output file to analyze the results (stats). 

5.1.1 Data File Layout 
The input and output mes contain daîa objects within data objects within data objects. 

Each object has its own specik nad and write fûnctions and knows how many immediate 
sub-objects it contaias. AU 110 is spread throughout the code and is quite fine-grained 
(four to several hundred bytes at most for any individuai IIO operation). In the real appli- 
cation, the data objects are ai i  variable length. In order to make it easier to compare per- 
formance with prous, the objects were f i ed  in size with the resultant input records set to a 
constant length of 352,108 bytes, creating output records 18,050 bytes in length. 

The format of the input file is such that an arbitrary number of Child records are stored 
consecutively. Only by reaching the end of the nle does the application know how many 
Child records are in the fde. 

A C h i i d  input record (Figure 5-2) starts with a four byte integer, n, indicating the 
number of CEDE record blocks. A CEDE block (shaded) consists of one c block, one E data 
block, one D data biock and one E data block. The n CEDE record blocks foilow. Afier 
these data blocks, a single E record block (shaded) indicates the end of the Child record. 

Beginning of file 
t 

- 
C E D E  caiia Record M 

End of file 
Figure 5-2 - Layout of an input data file for the fine-grained Il0 experiment. 



A c and D record block have similar formats on disk. They consist of a four byte integer 
which indicates the s k  of the two vectoa that compose the balauce of the record block. 
There is h t  an integer vector followed by a character vector. An E record block is simüar 
to the c and D ~ o r d  blocks except aiat the order of the two vectors ïs reversed (ie. a char- 
acier vector foilowed by an integer vector). 

The output fde consists of a number of chiid output records. The acaid number de- 
pends on the number of input records processed. The output file of a chiid record starts 
with a singie cbaracter indicating the type of mord block, followed by a four byte integer 
indicating the number of CEDE output data blocks that follow. Eafh CEDE data biock is 
composed of a c, E. D, and E record block. These records have the same format, consist- 
ing of a single character indicating the type of record, a four byte integer for the number of 
elements use& and a constant sized vector of doubles (eight byte reaï numbers). A single 
E record block hdicates the end of the chiid output record. The s k e  of a Chiid output 
record is dependent on the number of CEDE records read in h m  the input file. 
5.1.2 Parallel Design Considerations 

Since the chiid tasks are independent of each other, multiple C h i l d  processes can run 
concurrently. They need only coordiriate reading from the input file and wrïting to the out- 
put me. The= is no need to preserve the correlation between the input file order and the 
output me order. 

Coordination of the input nle must guarantee that each input datum is processed pre- 
cisely once. Since it does not matter which chiid does which piece of work. segmenting 
the input file avoids the inefficiency of having to synchronize file access. Each chiid 
pmess reads a contiguous internai in the file. The program has been set to use an input 
segment size of 352.108 bytes. Output file access also needs to be synchronized. The se- 
quential program appends to the end of the output file. However, since the output data is a 
fmed size for each piece of input data, the output file can also be segmented. 

Segmentkg both the input and output mes eiimioates the need for C h i l d  processes to 
synchronize their concurrent activities. However, they must synchronize before the se- 
quential stats function can be called. A bamier is necessary to guarantee that ail the results 
are in the output file- The barrier is found in the rewind function since this function puts 
the parent's file pointer in a position that potentiaiiy dows two processes access to the 
same segment- stats  does a sequential read of the output file, summarinng each record. 
If the parallel application is created by hand, a paralle1 programmer must be careful with the 
output fde, since the C h i l d  hction wili need to aeat it as paraUeI V0, while sta ts  wiil 
mat it as sequeMa1 YO. 

Since there are few constraints on the ordering of input and output, it aliows experi- 
mentaïon with a variety of parallel UO implementatiom. 
5.1.3 Template VO in Enterprise 

Using tbe graphical interface, the programmer specifies tbat one process, called Par- 
ent, can c d  multiple instances of the caiia process. To have ihis program run correctly 
under Enterprise. the user must make a number of small changes (modifiing the C h i l d  pa- 
rameter List and renaming the main function), as shown in Figure 5-3. The changes to the 
user code are Enterprise-specific (either for data marshalling purposes or identifjhg paral- 
le1 tasks) and have nothing to do with parallel UO. In the implementation generated by En- 
terprise, each c d  to C h i l d  is traaslated hio a message sent to a remote process. The En- 
terprise mn-time system takes care of the spawnùig of processes. communication (sending, 
receiving, marshalingldemarshaiiing of data), synchronization, and program termination. 



tinclude cstdio .h> 
R e (  int argc, char **arqv ) /* Identify this as  a parallel task */ 

FILE *fin, 'fout ; /* input and output file descriptors */ 
fin = fopen( argv[ll, "r' ) ; /* Open tbe input file */ 
fout  = fapen( argv [2 ] ,  -w+= 1 ; /* Open the output file */ 
while ( ! feof ( fin C P Untit end of  file, woric */ 
W l d (  fia, 1, fout, 1 ) ; P Data marsballing OI pointers */ 

1 
fclose( fin 1 ; P Close the input file */ 
rewind( fout ) ; I* Rewiad tbe output ale to the beginning */ 
Stats( fout  1 ; /* Perfom summary stotistics on output */ 
fclose( fout 1 ; f* Close the output file *I 
return O; 

1 

Figure 5-3 - Modifications to sequentiai code for Enterprise. 

The application padlelism is specified graphidy in Enterprise and is saved in a- file 
separate from the sequential source code (the graph file). Enterprise uses a source-to- 
source translation tool (precompller) to insert the correct code to do message communi- 
cation and syuchronization. The translater has been modined to look for parallel UO file 
descriptors (as identified in the grapb file) and replace them with cab to parailel UO hnc- 
tions. The machine-generated source code Ïs then conventionaliy compiled and linked for a 
particular -et architecture. Th Enterprise run-time library uses the graph file and run- 
M i e  computational behaviors to implement the paralle1 IN) operations. Since the UO be- 
havior is interpreted at run-the, the user can change the y 0  templates without having to 
recompile the program. 

For this example, Figure 5-4 shows the additions necessary to the Enterprise graph file 
to speciS the newspaper template for the Parent process. This change reflects the fixed 
size input and output file segmentation used for cornparison between the Prous and P I / ~  
irnplementations. The WOC rnociScations to the Enterprise precompiler ensure that all oc- 
currences of these fiie pointers in Parent and Child will have the appropriate pardel VO 
semantics enforced. 

I fin BlSUSRAPWt r o  ro b Cbild-3S2LOB fout  tc WC b EIXWSPIIPLR Child-16050. 

Figure 5-4 - Modifications necessary to the Enterprise graph fde for fine-grained VO. 1 
A newspaper (segmented fde) requires a segment size. Figure 5-5 shows an exarnple 

of a segmentation fhction appropriate for the input file pointer for this application. Ide- 
ally, this consideration should be transparent to the user but, unfomnately, it is difficult to 
automatically choose a good segmnt size since the user knows best how the y0 is to be 
accessed. For segmented mes, pr/m aiiows the user to provide a cd-back fùnction that 
specifies the segment offsets. In this example, the fine-grained nature of the fiie is clearly 
illustrated. Each object contains a header that provides sufficient information for the user to 
cdcuiate the offset into the file for the next object The total offset for the C h i l d  segment is 
retumed to the run-time system. 

Figure 5-6 shows an example of an V 0  segmentation fuoction for dynamic output rec- 
ords that relies on the newspaper semantics to append the unknown sized segments in 
the output Ne. Using a report instead would result in the merger of the unknown fde 
segments. whicb is unacceptable since al l  the output data is aeeded, not just one record. 



idefine IC ( sizeof ( int)  + sizeof (char) 1 
#define 1 sizeof(int) 
unsigneci long InputSegSize ( Fï ïE  fp,  inr min, iat max, kt current 1 
c 

urisigned long offset ; /* Size of this segment */ 
int CD, C, D, E, i ; 
i = fread( MP, 1, 1, f p  ) ; /* How many CEDE records are there */ 
if ( i  !=Il /* End of Iik or N e  error return error Y 

return (unsignecl long) -1 ; 
offset = 1 ; P The record iacludes the sizt of CD */ 
f o r ( i = O ; i c C D ; i * )  C P Loop readiag the CEDE records */ 
fread( tic, 1, 1, fp 1 ; /* Elemenw in this C record */ 
fseek( fp ,  C IC, =-CUR ) ; P Skip over the C record */ 
offset += 1 + C 1:C ; P The size ot this C record */ 
fread( hE, 1, 1, fp 1 ; /* Elements in ais E record */ 
fseek( fp ,  E IC, --COR ) ; /* Skip over the E record *I 
offset += I + E IC ; /* The d z t  of this E record */ 
freadt &D, 1. 1, fp  1 ; /* Elements in this D record */ 
fsek( fp, D * IC, SEER-CUR 1 ; P Skip over the D record *I 
offset += 1 + D * 5C ; /* Tbe dze of this D record */ . 

fiead( a, 1, 1, f p  1 ; /* Elements in this E record */ 
fseek( fp, E * IC, SEEX-CUR ) ; /* Skip over the E record *l 
cffset += I + E IC ; /* The size of this E record */ 

1 P End of loop reading in the CEDE records */ 
fiead( &ED 1, 1. f p  1 ; I* Elements in this E record */ 
offset += I + E * IC ; /* The size of trailing E record */ 
return offset ; /* Return the extent for this segment */ 

1 
#undei IC 
Ihnidef Z 

Figure 5-5 - An example y0 segmentation function for fine-grained VO test program 

One of the advantages of the Mur approach is the ease with which a different y0 par- 
ailelism can be selected for the application. For example, the parailel tempiate for fin cm 
be changed h m  newspaper to meeting and the progra.cn immediateIy re-run without 
recompilation. As well, fin codd be convened back to sequential UO without any addi- 
tional effort by the user. This rnakes it easy for the user to experiment with different types 
of Il0 (and computational) p a r a l l e h  Note mat in any other system, cbanging the I/O 
behavior would usudy necessitate many changes to the source code. 

I unsigned long OutputSegSize ( FILE fp ,  int min, int max, in t  m e n t  1 
C I 

r e m  (unsigned long) 0 ; 
1 

Figure 5-6 - An example of an I/0 segmentation fuaction for dynamic output records. 

Th= classes of pious implementations were built AU PIOUS applications must impon a 
füe into the HOUS file system before the fiie can be accessed using the PIOUS library routines. 
Similarly, the output file must be exported back to the regular file system. A user needs to 
write these conversion routines. 

The k t  PIOUS implementation class used global file pointers. Because ordering of the 
input and output file is not required for this application, the input and output fdes codd be 



treated as globally shared resources. Globaliy shared mes effectively have one global fde 
descriptor, for which ali processes have to synchronize their access. (This is similar to the 
meeting or log templates.) The program reoieved an e n t h  dafa segment as one single 
block Y0 operation and cacbed the block on local disk storage (default is lm). The 10- 
cally cached data was ptocessed using the conventional ~ a a m  y0 with the output again 
going to local âisk stomge. The chiid source code was not modif~ed. AAer each chila 
fùnctioa nnished pzocessuig, the muits were addad to the mous output file as another sin- 
gle biockU0 operation. Whn the end of tk input file was reached, each Child process 
notified the  mont. When ail tbe cbildren had reporteci in, the parent continued on to the 
sequential part of the computation. 

This appraach pmved to be the &est to implement since most of the expiicit paraUel- 
ism was hidden by the global shared file synchronization. It aiiowed minimal impact on the 
existing user's code by ushg the standard Y0 operations to read the local file and then cre- 
ate the output data segment. 

A second implemeatation class involveci importing the input file into PIOUS as a list of 
segments and creating a conesponding kt of empty output fiie segments. (This is simüar 
to the newspapet or report templates.) The user had to Wnte additional code to distnb- 
ute the input segments as they were zquested by idle Child processes. Initiay, the par- 
ent process docated one *grnent to each Child, but as a Chi id completed its work, the 
Parent was responsible for allocating it a new segment 

Each chila process opened the appropriate input and output file segments, copied the 
local segment of work to a temporazy file in one I/Y) operation. opened the temporary out- 
put fde, performed the work, and then exported the local output file back to the paraiiel 
output file (again in one operation). This repeated untii all  segments were distributed. The 
parent process was thea idonned and the Chiid process exited afier cleaning up the tem- 
porary Wes. The advantage of this method is that the output is in the same order as the se- 
quential version. Again, the chird code was not touched. 

The final implemntation class was to wrïte a pure Prous application using the PIOUS 
segmented nle capabilities. However. hstead of importing or exporthg a block of work to 
local storage, ail paraiiel Il0 operations were identified and replaced with the appropriate 
PIOLJS hiaction calls. This was the most intrusive solution as simcant portions of the 
Child code needed modï&katioas. 

Each of the three classes required a significant amount of new code. This would also 
be m e  wben using any other low-level paralle1110 library. The fmt implementation class 
which cached data blocks locaiiy using the global file pointers is given in Appendix B. 1 . 
(Note that much of the hplementation has k e n  abstracted into subroutines that, for brev- 
ity, are not included.) The original sequential version is about 530 lines of code; the paral- 
le1 version is approximately 350 Liws longer. Any changes in the ï/O functionaiïty of the 
program must be reflected in the source code. For example, if the user wants to do the 
equivalent of cbanging from a newspaper to a meeting, a considerable number of 
changes have to be made to the source code, with the resulting overhead of testing and de- 
bugging the changes. 

Within the first two implementation classes, three versions were developed. The first 
version used the standard sueam V 0  hinctions without any changes. The second version 
modifieci the standard Il0 stream to use large buffers (using the setbuf function). The 
third version replaced the standard UO sueam fiinctiom with low-level VO functions (read 
and m i  te instead of fread or fwrite). The third implementation class had only one ver- 
sion - all PIOUS caUs. 



5.1.5 Fine-grained UO Performance 

The testing configuration consisted of one Sun Sparc 4 (SS4), two Sun Classics, four 
Sun ELCs, and four Sun SLCs processors connected by a lOMbps Ethemet AU proces- 
sors had a local disk used for temporary fiks and swap. In addition, one Classic and the 
SS4 provided NFS fiie systems to the other processon. Unlcss otherwise stated,  the^ 
was ody one compute process per procesor and a i i  processes were assigned to the fastest 
availabie processor. The pmessing power of these different processors dative to the 
slowest processor type (SLC) is as follows: the SS4 is 3.0 times faster, the Classic is 2.4 
times faster, and the ELC is about 1.7 tmvs f m r  when nmning th same application. 
T'bis is an approximaaon based on tbe performance of the applications presented in this 
chapter. 

Thrce sequential versions were created. The k t  used standard y0 functions. The 
second version used low-level Y0 fuactions to see if there is any performance improve- 
ment The thüd version increased the stdio system b&er space (u&g setbuf) to-see if 
there is any performance gain. The sequentiai user times when running on the fastest proc- 
essor (SS4) using the local disk are given as: 19 14 (standard), 1932 (low-Ievel), and 19 16 
(buffered) seconds. The poorer penorrnance of the low-level il0 can be attcibuted to the 
fine p u l a d y  of the Rad and write operations. Similariy, the performance of the buff- 
ered Y0 is not significantly dif5erent h m  the standard VO because of the fine granularity 
of the Il0 operations. 

A total of seven PIOUS versions were developed as descri- in Section 5.1.4. They 
are presented along with the segmented y0 (newspaper) Enterprise version. In most 
cases, littie or no added benefit was seen for the extra programming effort. 

The first PIOUS class uses global file semantics with local file cachkg of tile segments 
(Global Stream PIOUS, or GSP for short). That is, a large PIOUS Il0 operation is done and the 
resulting block is cached on a local disk. The user's code reads fiom this local fiIe while 
writing to another local me. After the work is finished for this segment, the local output 
fie is read in and written to the PIOUS fiie in one operation. The second class uses a sirnilar 
approach to the fmt class except that the fies are segmented by PIOUS rather than by the 
user (Stream Segmented PIOUS, SSP). However, the user is respoasible for distrïbuting ac- 
cess permissions to the remote processes for each segment. In the third dass, ai l  the VO is 
done in a segmented file system using prous fiinction calls, without any caching (Pure 
Segmented PIOUS, NP). From the pm&tammiag perspective, this version required the most 
nwber  of code changes. 

Table 5-1 contains the results for the fme-grained I/0 tests. For both systems. the tirne 
for starting PVM and for spawniDg the remote processes is ignored. The cost of the PIOUS 
import operation (30-60 seconds depending on the segmentation factor) is ignored as this 
could be considered a one-the cost if the input file was generated in situ. Similady, the 
costs of creating and exporthg the output file ba& to h e  network file system are ignored 
(5- 10 seconds)- 

Table 5-1 - Elapsed times in seconds for and PIOUS (PSP, SSP and GSP). PIOUS import 
and export times are not included. Sequential user d e s  in seconds were: 
19 16 (buffered), 19 14 (standard stream), and 1932 (low-level). 
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The parailel times presented are the k t  eiapsed times of at least five runs. The proces- 
sors and network used for this set of expriments were unavailable for exclusive use. The 
mns were collected over seved weeks during tims of quiesence but sisnif~cant variance 
was seen. Automatic system fiinctions such as backup operations appared to cause sig- 
nificant interference. 

Enterprise has one version tbat gives acceptable paralle1 Il0 performance: both the input 
and output mes are segmented using the newspaper template. A n o k  version uses the 
newspIlper template for the input and the log template for the output. This did not give 
good pedormance because the output file was locked untii al1 the write operations for a 
given chiid process were finished. As the write operations pervade the entire Child com- 
putation block, the other Child processes were quickly blodred waiting for access. The 
times for this iderior version are not shown. 

The results show the effect of using two separate nk systems for the physical storage 
of the global data files. (Recail that temporary nles arr stored on tbe local disk aaa~hed to 
each pmcessor.) PIOUS is able to use two (or more) physical nle systems to improve per- 
formance and concurreacy. In the case of Enterprise, the input nle was on one file system 
and the output file was on the other file system. erous always distniuted hles between the 
two file systems. Wherever possible, the eEect of the network was minimized. The nurn- 
ber of processors used was one more ihan the number of children to account for the par- 
ent process. No processor an more than one process (chiid or ~ a r ~ t ) .  

The GSP version using global file pointers shows linle ciifference fiom the SSP version. 
The PSP implementation uses Prous to perform a significant number of fme-grained VO op- 
entions. This is very expensive as each Il0 operation is converted to a message. This a p  
proach does show a performance gain over the sequential version but the gain is not as 
much as in the other irnplementations. 

The pr/ar performance. although faster than the sequential version, was ten to sixteen 
percent iderior to the GSP and SSP versions. Even though it used a sidar design in its im- 
plementation, the cost of using templates to absnart the pardel Il0 diminished only with a 
larger replication of the workers. A ke ly  reason for equality between the two systems is 
that the capacity of the network imposes an overail limiâng factor. Ten processes asking 
for separate data blocks create a theoretical demand of three megabytes on a ten megabit 
network. As weii, the fde serves must get the data block on and off the physical disk for 
each requesting process. 

Another factor for the poorer Enterprise implementation is that it checks every Il0 op- 
eration if the file pointer has parallel behaviour. If the= are many VO operations, this cost 
becomes more significant. Clearly, for this example, there is a performance cost to using 
templates. Still. the Enterprise application shows improved performance compared with 
the sequential tirne. Future work on optimization using prefetching and compiler code 
anaiysis to order Il0 operations shouid improve the template performance. 

The benefits of templates are seen in the amount of modification to the user's code and 
the ease of changing paralle1 behaviours. Each prous version took several houn to modiQ 
and debug. For the Enterprise version, the changes to the sequential code. as specifed in 
Section 5.1.3, were done and the application was generated. This took about twenty min- 
utes h m  starting with the sequential code until the fint test run. The application was fmt 
tested using a meeting template for fin and a log tempiate for fout. Performance runs 
were generated in newspaper mode simply by changing the parallel behaviour type for 
both file descriptors and making no changes to the code! No recompilation was necessary 
as the segmentation function was a constant sue. Any performance penalty for using tem- 
plates should be weighed agaiast the potential bewfits of quickly getting the pardel appli- 
cation up and ninning. 



It is interestitig that by using the global synchroriization offered by PIOUS with the 
caching of input and output segmnts to allow stream VO operations, this application 
shows the best performance. However, would thk be the case if the application oniy does 
coarse-grainai UO? 

Disk-based matrù multiplication was chosen as the coarse~grained Y0 application. 
This application is simple to code and can k done using coarse-graineci V 0  operations. 
The A and C matrices were segmtlted into user-specified stripes with the B mat& iode- 
pendently nad by each procesor. The B amtri% was transposed on disk to improve &ta 
processing. 

The sequential program (the source code for main is found in Figure 5-7) takes as 
command line arguments (argv) the names of the ihree files. the number of elements per 
row of the matrices and the number of rows per computational block. For simplicity. aii 
three mattices are assumed to have the same ra& The main function opens the three files 
and untii the end-of-fie marlrer is encountered in the A file. it calis Child in a loop. The 
file pointer for the B ma& file is rewound afief eveiy d to Child. mer the ioop exits. 
main closes all three files. 

#include cstdio-b 
m a i n (  k t  argc, char **argv 1 
C 

int NwiberE1ements ; /* Number of elements per row *f 
kt BlockSize ; /* Number of rows per b l d  */ 
FSLE *a, *fb *fc ; /* Input and output file descriptors */ 
fA = fopen( argvlll, "r* 1 ; l* Open the A matrix file *I 
fB = fopen( argv[21, "r* 1 ; /* Open the B matrix file *f 
fC = fopen( argvE31, "w+' 1 ; /* Open the C matrix file *l 
/* Tbese two variables are used to partition the matrix into strZpes */ 
-E laen t s  = atoi ( argv[41 } ; IL Convert kom string to integer */ 
BlockSize = atoi{ argv[5] 1 ; 
&le ( r feof( fA 1 ) ( /* Until end of file, work */ 

=Id( fA, fS, fC, NuniberElements, BLockSize 1 ; 
rewind( fB 1 ; /* Rewind to the start of the B matrix file */ 

1 
fcfose ( fi ) ; /* Close the A matrix file */ 
fclose( Si ) ; /* Close the B matrix file */ 
fclose( fc ) ; l* Close the C mat& file *f 
recurn O ; 

1 

Figure 5-7 - Sequential source code for matrix multiply main (Parent-c). 

The function, child (the source code is found in Figure 5-8), reads in the user- 
specified block of the A matrix as one =ad operatioa. The B rnatrix must be read in its en- 
tirety and is done so in a loop using stripes simiJar in size to those used to read the A ma- 
trix. The same sized stripes were used for pmgramming simplicity- Each A and B stripe 
is multipiied together and stored in the appropriate location in the C matrix stripe. Mer  the 
B ma& fde is exhausteci, the compleied C matrix smpe is written to disk in one operation. 

A benefit of using large IIO blocks sequentiaily is seen if non-blocking y0 is used to 
overlap Y0 and computations; however, the code complexity hcreases. In this case, there 
is Little benefit to using asynchronous 1/0 as the W3 buffer is needed unmediately after the 
JI0 c d  (the B ma&) and the size of the B matrix p~cludes it from king cached in mem- 



void Child( FILE *fa, MLE *fb, FILE *fc, int nelemsi, int nblocks 1 
{ 
double *A, *B, *C ; P The A, B, and C matrices */ 
int k, n, j, status ; 
I* Allocate mtmory for each block of A, B, and C */ 
A = (double +)miloc( nblocks * sizeof ( double ) nelems 1 ; 
B = (double +)mailoc( nblocks * sizeof ( double 1 nelems 1 ; 
C = (double *)miiloc ( nblocks * sizeof ( doubk 1 nelems ) ; 

I* Read in the block of A for tbis di to Cbild */ 
statuç = fread( A, sizeof ( double ). ndenis + nblockç, fa 1 ; 
if ( status < nelems * nbïocks 1 { /* End of file */ 

retura ; 
1 else C P Do some work with the data */ 
k = O ;  
while ( 1 1 { /* Loop forever *I 

P Read in, one block at a tirne, al1 of B mtil the read fails Y 
status = fiead( B. sizeof ( double 1 , nelems nblockç, fb 1 ; 
if ( status c nelems nblocks 1 break ; /* AI1 done here */ 
for ( n = O ; n c nblocks ; n++ 1 P Do the striped matrix niultiply */ . 

for ! j = 0 ; j c nblocks; j++ 1 
C [ nfneiems+k+ j J = DotProduct ( &A[iinelems1 , &B [ j *nelems 1 , nelems 1 ; 

k += nbiocks ; 
3 /* End of while loop */ 
/* Write out the completed block of C */ 
Wite( C, sizeof( double ) ,  nelems nblocks, fc 1 ; 

1 /* End if not end-of-file encouatered */ 
&ee( A ; /* Free aitocated memory */ 
free( B 1 ; 
free( C 1 ; 
return ; 

1 

Figure 5-8 - Sequential source code for matrix multiply Child (Chi1d.c). 

ory at the processor. If double b u f f e ~ g  is used, the overall in-memory capacity of the ap- 
plication is reduced by one quarter assuming that only the B matrix stripe is doubled up. 
5.2.1 Parallel Design Considerations 

The same cornputational paraliehm used by the fine-grahed Il0 application in Chap- 
ter 1.1 and Section 5.1 was used. One of the ciifferences is that this application has thRe 
parallel file pointers (the A , B, and C ma& data fdes) each with different behaviours. 
The A file pointer is aeated as a segmentecl input file with each chiid process getting one 
segment or stripe of the matrix to =ad. The C fiie pointer is also segmented so each child 
process can write the corresponding answer stripe. The user or system must coordïnate 
and preseme tbe relatioaship between A and C segments as an out-of-order C mauix is 
incorrect. The B file pointer is independent but is distributed to the cbild processes. 

The other Merence in this coarse-grained application is that VO operations are few and 
can be quite large. In fact, with large numbers of processors d o r  large matrices, the 
network WU become the bottieneck depeading on the physical disk layout in relation to the 
processors. This application wiii stress the network and N e  systems. 

Observing the stress generated by this application is imponant if networks of generai- 
purpose workstations are used instead of speciaihd hardware platfomis or dedicated net- 
work famis. If parallel Y0 is to be made easy-to-use by the "generai" programmiDg pop- 
lation. resource allocation and sharing becom important - especiaüy to system adminis- 
trators. 



5.2.2 Enterprise Implementation 
Figure 5-9 shows the small number of moditications to the source code needed by the 

Enterprise version. The main fiuiction is renamed to Parent, extra parameters are added to 
iavoke C h i l d ,  and the rewind statement is removed, The rewind statement is not neces- 
s a r y  in the parailel case as this fiinction does not move the file pointer. The two nle point- 
ers f~ and fc are segmnted and need to have a segmentation function written for them. 
Note, in this case, one segmentation fiinction c m  be used for both file pointers. The other 
file pointer, f ~ ,  is oeeded by ail the chiid processes but is considered independent as it 
do& not q u i n  any syn~~nization. 

- 

#indu& CS tdio . b 
static int KWmk~Elements ; If Number of elements per row *i 
static int Blockçize ; /* Nurnber of rows per block */ 
parent( int argc, char *+argv /* Identity the parallel tas+ */ 
{ 

FILE +a, *fB *fC ; /* Input and output file descriptors */ 
fA = fopen( ~rgv[l], 'ru ) ; /* Opeii the A matrix file */, 
fB = fopen( argvE21, "r' ; P Open the B matrix file */ 
fC = fopen( ;irw[31, .w+- ) ; /* Open the C matrix file */ 
/* These two variables are used to partition the matrü into stripes */ 
NumberEïements = atoi( argvl41 ) ; /* Coavert lrom string to integer */ 
BlockSize = atoi ( argv[51 ) ; 

while ( ! &of( f A )  ) { /* Until end of file, work */ 
Child( fA, 1, fB, 1, fC, 1, NumberElaraerits, BlockingFactor ) : 
/* rewind( fB ) ; */  /*This is not necessary in parallel */ 

1 
fcloset fA ) ; /* Close the A matrix file */ 
fclose( fB ; P Close the B matrix file */ 
fclose( fc ) ; /* Close the C matrix file */ 
return O ; 

1 
unçigned long A l ~ I O (  FILE *fp, int min, int max, int current) 
{ 

/* In al1 cases, return the same segment size Y 
r e m  (unsigned long) ( NtmiberOfElenients BlockSize sizeof (double) ) ; 

1 

Figure 5-9 - Enterprise code modifications to pdeiize disk ma& multiplication. 

The important modification to notice is the movement of the declaration of the two vari- 
ables NumberElements and Blockingfactor h m  within the scope of Parent tO king 
global only within the scope of the fiie (the static declaration). This pemllts the segmen- 
ration function to be declared in the file contaùllng the Parent source c d e  to permit dy- 
namic segmentation of the data stripes. Of course, these two variables couid have been de- 
clared global without the static limitation (a "fk& global). Then, a separate file containing 
the segmentation function could have been used However, creating a free global is not 
always possible or desirable in legacy code. As both strîpes are equivalent in sue and are 
the only me pointers to be segmented, the segmentation function simply retums the number 
of bytes composing one saipe. 

To identify the three parallel nle pointers in Parent to the Enterprise implementation. a 
number of changes are made to the graph file. A sin& line is added. While three lines are 
used for clarity in Figure 5-10, the graph file entry consists of ody one he. The enay in- 
dicates that of the nle pointers (= and fc) are to use the newspaper parallel behav- 
iour (segmented) and the N e  segment site for both file pointers is determineci by using the 



1 Figure 5-10 - Modifications to the Enteqw& graph nle for coarse grained y0 example. ( 

segmentation fùnction, AI~MYIO. The nle pointer. fe. is considered to be independent 
(photocopy) . 

The PIOUS version (tbe code is found in Appendk B.2) tmk about 375 extra lines of 
code to impkmnt both the computationai and y0 paraUeIïsm- Th framework of the code 
is similar to the code needed for the fine-Wed paraileiism because the computational par- 
ailel behaviour is the same. The changes occur in the way the parallel UO is handled. This 
impiementation was quite intrusive and requkd modincations to the Chiid source code. 

The reading of an A saipe and the wriang of a C stripe are single y0 operations in the 
chiid function. Convertkg them directly to mous tead and write functions saves the 
wrapper code h m  reading a stripe, caching it to l a d  disk and then having Child re-read 
the local me. This is different fiom the he-grained example where caching was beneficial. 
As weil. the independent B marrix file is too large to cache 1ocaUy. So, as P~OUS code 
would have to be inserted to read the B mat& anyway. repiacing the UNIX read hinction 
for an A stripe and exchanging the UMX mite fiuiction of a C suipe operation for the 
equivaient PIOUS code is a minor addition. 

An additional responsibility for the ~a2-t is that now it must handle the coordination 
between the input and output file segments. The P a r e n t  process now manages the order in 
which segments are dispatched to the idle Chiid processes rather than letting the me sys- 
tem determine the order. Each Chiid works on one input and one output stripe. When no 
more slripes are available for processing, the Child process receives the no-more-work 
message (segment=-1) and then gracefully exits. 

This application did not lend itself to any variations in the IN) paralleiization strategies, 
as shown in the fine-grained example. Caching was not available and using giobal file 
pointers required synchronkation bctween the input and output mes. To do so results in a 
loss of computational concumncy. 

In summary. this application was iaeusive in respect to code modification for the par- 
alle1 Il0 in the user's source code. The user is responsible for coordinating access between 
corresponduig segments as well as the import and export of file. However, the code 
framework for computational parallekm remaked, for the most part, the same as the fine- 
grained example. 

The testing configuration was the same as that of the fine-grained example in Sec- 
tion 5.1. The configuration consisted of one Sparc 4 (SS4). two Sun Classics, four Sun 
ELCs, and four Sun SLCs processors corn& by a lOMbps Ethernet. AU processors 
bad a local disk used for temporary mes and swap. One Classic and the SS4 provided 
NFS file systems to the other processors. The processing power of these different proces- 
sors is relative to the slowest pmcasor type (SLC); the SS4 is 3.0 times faster, the Classic 
is 2.4 t h e s  faster, and the EU: is about 1.7 times faster when running the same applica- 
tion. This is an estimate based on several applications. 

The parallel iims presented are the best elapsed times of at least five runs. The proces- 
sors and network used for this set of experiments were unavailable for exclusive use. The 
runs were coilected over several weeks during t h e s  of  quiescence but significant variance 



was seen. The automatic system fuactions, such as backup operations. caused signifcant 
in terference. 

Three sequentîal versions were created The first one used the standard smam VO. 
The second version used a buffered Stream UO. This buffering is done by using the s e t  - 
buf fbnction to d k t  the stdio system to create a single b a e r  that is l e e  enough for the 
one data stripe. The third version used the low-level y0 functions instead of the Stream 
YO. 

Ail three sequentiai versions had similar performance and were ail  within approximately 
six percent of each other. These experhents were cm using t&e fartest pmcessor and a 
local disk. The s h  of the Y0 blocks was the same as in the paralle1 version. Not surpris- 
ingly, tbe buffered y0 (2214 user seconds and 125 system seconds) outperformed the 
other two versions. The low-level PO version (2308 user seconds and 127 system sec- 
onds) was slightiy better than the standard s- y0 (2352 user seconds and 142 system 
seconds). The high system tixm values for the standard stmm I/0 are the cost of the de- 
fault buffer king two smaii wtiich caused the system to thrash when nansfening large 
blocks. To get the best pedormance, the program should either use no buffering or bave 
sufncient b a e r  space to balance the cost of using i t  

Table 5-2 shows the results for Enterprise and a purely eious irnplementation multiply- 
ing two matrices of doubles (reals) srored in binary format and using a striping factor of 
50 rows. Again. startup and the cost of impoxting and exporthg the files into and out of 
PIOUS (180 seconds) is not included in the test results. Preliminary experiments with the 
2000 by 2000 ma& showed that ushg a striping faaor of 50 rows gave beaer perform- 
ance than using 100 or 25 rows per stripe. The better performance is due to the ratio of 
work to message size and the dflerent CPU speeds for the given network configuration. 

The Enterprise results are better than those of PIOU when using fewer child processes. 
This was unexpected but one explanation is offered prous uses direct process-to-process 
TCP/IP message-passing for parailel U0, by-passing the PVM daemons. On the other band. 
Enterprise uses both the network file system (on-demand messages) and default routing 
through the PVM daexnom to communicate messages and file information. The performance 
differences can be attn'buted to the cost of using the TCP/IP instead of the UDP network 
protocols to transport data across the network. These differences are magnified by the 
amount of data behg accessed (1,344 Mbytes). When the Child process is replicated ten 
times, PRWS and ~i/m give comparable results. This is Iücely due to the network becoming 
saturated (measurements showed the network to be between 8 1% and 87% of maximum 
utilization). 

These results point out that neither of these two parailel I/O systerns can be considered 
as the best overall solution. Just because Enterprise uses the network file system. which in 
tum uses a different protocol for trammitting data, Enterprise performs better for this par- 
ticular example. In contrast, the previous exampie shows that PIOUS performs somewhat 
better than Enterprise. The observed performance has iinle to do with the actual imple- 
mentation of the VO templates in Enterprise, but depends rather on the irnplementation of 
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Table 5-2 - Disk-based matrix multiply elapsed times in seconds for 2000 by 2000 matrix 
of doubles (reals) using pl/m and prous (input and export times not in- 
cluded). Sequential user times are 2214 seconds for buffered strearn V0. 
2352 seconds for Stream Il0 and 2308 seconds for low-level VO. 
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the nenwork file system. Nevertheless, templates once again yield comparable perform- 
ance. 

Ultimate!ly, it is the network availability and capacity that demmiae the effect of V 0  on 
the overall performance of a paraiiei appiication. By using dlfferent access pattern for the 
vo, the requirements made upon the network and the file semers change the performance 
of the application. The ability to experiment with different paraUe1 behaviom gives more 
flexibiüty in tuning an application to a specïfïc aetwork, processor, and data set Templates 
offer this fiexiiity at littie cost. 

Useability and Composabiiity 
The two previaus sections presented the pedionnance advaatages of the pi/ar program- 

ming model for a pair of appiications ihat use the same simple computationai model but 
have dinerent VO characteristics. The possible choices for parallel Il0 were M t e d  by per- 
formance consideratiom. This section examines the claims of the flexiiility and software 
engineering advantages of Mar (Chapters 3) when more complex computational applica- 
tions are deveioped A pair of applications is presented The £irst application parallelizes 
the Il0 shated by a process and its hetemgeneous children. (The heterogeneity is not found 
in pmessor ciifferences but rather in the process Merences.) The second application par- 
alieks the Il0 in a pipeline computation. 

A heterogeneous child application occurs when one process type calls two or more 
processes types (Qgme 5-1 la). For example, a process of type A cab both B and C 
process types. There are an arbitrary number of the A, B, and C processes. 

Figure 5- 1 1 - Hetemgeneous children and extended pipeline paraiiel computation con- 
figurations. 

A pipeline application is used to demonstrate the composability of the Il0 templates. in 
this case, A calls B which, in mm, caiis C (Figure 5-1 1b). As each stage of the pipeline is 
encountered, different Il0 abstractions can be imposed on the shared file pointer. Subject 
to constraints h m  eadier UO decisioos, more complex V 0  descriptions are constructed and 
tested. As the computational parallelism is modified, the paraliel VO component adapts to 
the changes without intervention by the user. 

For both of the applications presented ia this section, the advantages of early release of 
VO Stream are examined. While this decision where to insert the early release is currently 
done by hand, future work with the source-to-source code translater would insert this re- 
lease mechanism after analyzing the user's code. 

5.3.1 Heterogeneous Children 

If füe pointers are shared between al1 processes, an VO transaction is created and stored 
in the call-chiin of the parent process as each remote process call is made. P d e l  Il0 
may or may not require synchronization but coordination between processes is needed to 
access the fde properly. If a global nle pointer is shared, whichever process is aaive must 
have acquùed a current and upto-&te version of the file pointer. With a segmented Il0 füe 
pointer, each pmess has clearly defhed limits guaran~eeing it exclusive access. Since the 
order of access to a nle is not determined until run-time, the p d e l  Il0 behaviour interacts 
with the parallel computational behaviour to coordinate access. 



Depending on the Il0 ordering attributes, synchronization of füe access may be needed. 
In diis case, the parailel IIO system is given a fie access ordering and must block processes 
where necessary to preseme the ordering. Synchronuation of file access forces a given 
process to wait until its predetennined ( h m  the d-cha in  o r d e ~ g )  turn with the fde. h 
general, this may reduce the level of concunency available to the user's computations. 
With the heterogeneous child paralle1 computationd khaviour. an A pmass distributes 

work to the B and C processes. Figure 5-12 shows the source code for one such applica- 
tion. parent conesponds to A, ~ r o t h e r  c~msponds to B. and Sister conesponds to C 
in Figure 5-1 1. The CO& is in the format SuitaMe for aa Enterprise asset code. The PU- 
ent process will open the input and output files. A step size, n, is supplied as a command 
line parameter by the user to segment the input file. The Parent  process calls the remotely 
executed Brother hction n times foiiowed by a similac number of c d s  to the remotely 
executed sister function. This pattern repeats until the input file is exhausted The pa- 
rameters to Brother and sister are similar: a number ~presenting the record tag beiog 
worked on. foilowed by two file pointers for the input and output files. 

The Enterprise description of the computational paralIeiism is that p a r ~ t  is a depart- 
ment asset confainiog two individual assets, Brother and sis ter. Appendur A contains 
more details about the Enterprise nomenclature and programming model. 

The program flow in the P a r e n t  source code reflects the structure of the input file 
=hich consists of n pieces of work for ~ r o t a e r  processes followed by n pieces of work 
for the sister processes. Using a B or an S to represent blocks of data on disk for a 
Brother or a Sister process respectively, input patterns such as BSBSBSBS. 
BB SS BBS S , BBBBSS SS , and so on, could be created. Dependkg on the input pat- 
tern and the computational load for each piece of work, ciifterem ordering attributes will 
provide ciiffernt output patterns and different levels of coocurrency. Depending on the 
user's requirements, the output ordering may be more important than maximizing the con- 
currenc y. 

include CS tdio - h> 
P u a n t (  int argc, char '* argv 1 
r 

FILE *fin, *fout ; 
uIt i, j, step ; 
fin = fopen( argvlll, 'r' ) ; 

fout = fopen( argv[21, "w+" ) ; 

n = a t o i (  argv[31 ) ; 

i = O ;  
w h î l e  ( ! feof ( fin 1 ) { 

f o r (  j = O ;  j c n ; j + + )  { 
-( i+j ,  fin, 1, fout, 1 ) ; 

1 
f o r ( j = O ;  j c n ; j . » )  { 

S i m t w (  i+j ,  fin, 1, fout, 1 ) ; 

1 
1 + = n ;  

1 
fclose ( fin 1 ; 
fclose ( fout ) ; 

return ; 
1 

int &othmz ( int N, FILE *bine int nin, 
FILE *bout, int nout 1 

{ 

ïn t  input, i. j; 
if ( feof ( bin 1 ) return 1 ; 
i = fscanf( bin, "%dn, &input 1 ; 
i f  ( i != 1 ) retum 1 ; 
/* Early relertse of bin inserted here */ 
C-te ( input 1 ; 
PrUltBRecord( bout, N, input 1 ; 
return O ; 

1 
int lbtu ( int N, FïLE *sin, int nin, 

FILE *sout, int nout 1 
{ 

int input, i, j; 
if ( feof( sin ) ) return 1 ; 
i = fscanf( sin, "%dm, &input 1 ; 
if ( i != 1 )  return 1 ; 
P Early release of sin inserted bere */ 
Coxmute( input 1 ; 
PrintçRecord( sout, N, input 1 ; 
retuln O ; 

1 

Figure 5- 12 - Source code for the heterogeneous children example. 



Equally devant to improviag the level of concuneacy is the number of processes 
available to execute Brother or Sister as remote fùnctions. Increasing the replication 
factor for either remote function should impmve the computational concurrency. The num- 
ber of consecutive B aad S blocks make up the distribution pattern in the disk fde. Figure 
5-13 shows four possible comectim paüems that couid satisfy the paralle1 computationai 
requirements- 

The seleaion of a parailel UO bebaviour and ordering &bute is important since some 
choices can affkct the computationai concuncncy by cnatùig barriers in the code. Note the 
implied M e r  in the parent  code (l3gure 5-12) where tbe input file is tested if it is ex- 
hausted (feo f [ fin) ). hposing global fiie semantics on the input file pointer creates such 
a b& whereas using segmented me semantics does not Specifying ordered Rad attrii 
Utes for the input nk pointer imposes additional constrairits on the potential concurrency 
since the application must proceed in the order of invocation rather than in the order of 
availability. 

Ia Figure 5-13a, there is only one of each process type. The Il0 iequirements could be 
achieved by global semantics for the input and output Unfortunately, using this approafh 
is going to limit concumncy betwcen the two chilci processes as eadi one will be waiting 
for the other to finish before rrturning both file pointers. However, inserthg a function to 
release the input nle pointer early ailows the other process to read in the data and start corn- 
puting. The code for both the functions Brother and sister in Figm 5-12 has been 
commented to indicate the location in the code whae an early release fùnction for the input 
file pointers (bin and sin) could be safely inserted. If the input data is in the form 
BSBSBS, this wiU improve the overd concmncy. With only one of each process type 
available. other data patterns (for example, BBSS or BBBS SS) will not see much of an 
improvement except at the boundary conditions of the dinerent data types. 

The output file pointers do not benefit by an eady release. as both functions renini to 
the Parent immediately afier calhg the y0 function. Improved concurrency for the output 
file could be achieved if the order of output can be relaxed. Relaxing the o r d e ~ g  of the 
output file will see an improvement if the fiie pointer is locked until later on in the cornputa- 
tions. If the computations have irregular granularities, the h t  pmcess finished should be 
able to acquire the nle Iock However, the current deadIock prevention mechanism corn- 
mits both the input and output nle pointers at the same time. 

Segmenthg the input or output nle does not at h t  seem to be an appropriate step. 
However, the elimhation of the barrier when checking for endsf-file in Parent allows 
seved clustus of work to be generated. Using global semantics imposeci a barrier with 
the parent waiting until a single cluster of work is done before generating the next cluster. 
As weli, prefetching of input data can impmve the performance. Local caching of the data 
segment lessens the network demand for V0. As seen earIier in Section 5.1, a large net- 
work YO request followed by many srnail locally cached Il0 quests is more efficient than 
many small  network Y0 cequests. Early release of the input file wili not affect concurrency 
much since both processes will be given distinct file segments and wiil consequentïy pro- 
ceed independent of each other. However, early release could spread the network require- 
menu for the update of written segments instead of having ail updates occur at the end of 
the transaction. 

Sister O (d 
Brother 

Figure 5- 13 - Four computation configurations used for heterogeneous children exarnple. 



For the exampie application, segmented semantics on the output füe pointer lead to the 
problem that the s u e  needed for each output segment is indeterminable prior to the chiid 
processes starting the~computations. One approach is to have the file segment set to some 
arbitrary maximum. This maximrmi 9zt is dependent on the amount of temporary disk 
space avaiiable. Using some defauit value potentidy Ieaves the output file with a series of 
holes. Alternatively, by using the uiikaown file segmentation, ihe file fhgment could be 
merged back according to som predefined o r d e ~ g  attn'bute. 

In Figure 5-13b, both the child processes (~rother and sister) are replicated. Using 
global fiie pointers does not permit the extra processes to act in a concurrent fashion. in 
this case, early release of tbe input me will irnprove concurrency for data fiIes with the 
format of BBSSBBSS or BBBSSS. Relaxiag me or&Rng of thé output nle can now be 
done, either by clustering similar types of outpÜt data blodcsin an as&eived order instead 
of in an as-generated order, or by aüowing chaotic ordering of the output by any process 
~ a d y  to &te to the file. Using segmented U0, the input file is divided up and each file 
hgment is prefetched as each computational process is assigned a given block of work. 

Figure 5-13c and Figure 5-13d are mkror images of each other- AU of the work can be 
done by one process type in a given time pria while replidon of the other process type 
is needed to fdsh its work in the sacne time period In these cases, using segmented file 
semantics for input is appropriate since al i  the repiicated processes can start working. 
Evennialiy all the single pmcess wodc is hished and the application WU wait for the repli- 
cated processes to finish. Using global file semantics for the input with eariy release is ap- 
propriate for the replicated processes but it is not always appropriate for a single process 
type, except at the data borders. If the replicated processes access the file fint, leaving the 
single process sufficient time to consume al l  of its work, this approach may work. 

As seen, there are a number of choices the user has to make each time an application is 
run. If the data files are sufnciently varie4 diffierent versions of the application will be 
needed to efficiently process aü the data sets. Specifying the parallehm separately ailows 
the user to adapt the application to the data rather than havhg multiple applications. 
5.3.2 Eeterogeneous Chiidren Performance 

An example application using this computational mode1 based on the code in Figure 5- 
12 was consmicted. The two chiid process types, Brother and Sis ter, were mn using 
three levels of computational granularity - fme, medium, and coane. Both process types 
had the same computational granularîty. The machines used in this expriment are aU Sun4 
ELC's with 12 megabytes of memory and a local disk for swap and temporary fües. These 
machines are ~ 0 ~ e C t e d  by a lOMbps Ethemet network AU pardel runs reported are the 
average of five nins. The input data file consisted of 16 pieces of work laid out in the for- 
mat BBBBSSSSBBBBSSSS. Sequentiaily, the application took 29, 79, and 232 user 
seconds to process the input nle for each grandarity level iespectively. Thus, the average 
granularity for each block of work is approximately two (fme), five (medium), or fifieen 
(coarse) seconds of CPU the.  This application is not Y0 bound but the UO does require 
synchronization. 

Table 5-3 shows the resuits of a pair of experiments. The Brother and Sister proc- 
esses were each replicated either two or four times, resulting in a total of five or nine proc- 
esses for the computations (see Figure 5- 13b). Then were sufficient processors to ensure 
that there was only one computationai process per processor- The shaded headings in the 
table indicate the type of temple used for the input and output fies. The application was 
cornpiied oniy once. AU the paraUe1 combinations were done by modifying the Enterprise 
graph file. 

Within the range of values shown between different ordering attributes, there is liale 
difference. The lack of Merence can be ataibuted to the current deadlock prevention 
mechanism (Chapter 4.5) that limits concumncy. This mechanism uses the most conser- 



File Pointers Fine wular i ty  Medium granularity Coarse granularity 

Input 1 Outnit NormaI 1 Early Normal 1 Early Normal 1 Eatly 
L 

7 - A  F - - .,-_ & 29 79 232 
C 

Srothor and sirtmr each npîicated four ümes 
L 

Table 5-3 - Elapsed time (seconds) for three different pardel I/O template combinations, 
t h e  granulacity levels of computation, and two replication factors for hetero- 
geneous chüdren example. 
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sible instead of waitiag for the entire tramaction to fuiish. However, the output fiie pointer 
is stiu commined at the same time as the input file pointer. The larger increase in perform- 
ance using the chaotic orderiag with early release is aüri'buted to the removai of the resuic- 
tion th* the Brother processes must finish before the sister processes can proceed. 
Clearly. early release is beneficial to thk application. However, the dcadlock prevention 
mechanism hides any performance diEfinces with the o r d e ~ g  attnbutes. 

As the order of asLing for the giobal file pointen does not change in this application 
and aii global nle pointers are para~lteed to be asked for, deadiock m o t  happen. Future 
rescarch in compiier suppmt is necesSacy to analyse the user's code to determine if dead- 
lock prevention is requind at ail. This static aualysis couid then advise the m-time systern 
whether or not to invoke the cieaàiock prevention algorithm. The consequenœ of the cur- 
rent conservative and general appmach to ckdock prevention is the observed duction in 
concurrency and the uaifonnity of pedormance. 

For this application, early release does not directiy &eft a segmented input nle pointer 
as permission is already granted to access the file hgment and the nle is not modified by 
the remote processes. However, if the file m e n t  had been modifiecl, the reïntegration of 
the remote segments into the master file could be affected depending on the defined write 
ordering attnbute. Ear1y release has the potential to even out the demand on the wtwork by 
spreading out y0 messages instead of clustering them at the end of the computations of the 
remote fiinc tion. 

Segmented VO for both input and output streams gives the best performance. The 
mixed case of global input and s e p o t c d  output shows comparable performance to the 
segmented W 0  ody when the early release is used Considering the ratio of the thne spent 
reading in the data and the time spent computing, the early release result is not unexpected. 
5.3.3 Extended Pipeline Example 

The composability of the er/m templates is explored through a pipeline computation. 
The number of combinations available using a muiti-stage pipeline grows rapidly. Con- 
sider that for each paralle1 file pointer thece are the choices of five templates, three ordering 
amibutes for read operations, and ihRe ordering attributes for write operations. Currently, 
that gives the user forty-five (45) different combinations per fÏie pointer. At each stage of 
the pipeline, except for the 1st one, aii  the paraLiel file pointers cm be redefmed. Obvi- 
ously. not all these choices wili make sense but the number of appropriate choices is still 
quite large. This exponential growth provides a rich set of choices for the user. 

To clarw this growth, consider a two-stage pipeiïne that shares two parallel file point- 
es.  The number of possible combinations for different Il0 is 45 x 45 = 2,025. Adding an 
extra stage to the pipeline and sharing the hle pointers in ai i  stages increases the possible 
combinations to over four million. Altematively, d i n g  another parallel file pointer in- 
creases the two-stage pipeline parael I/O combinations to 9 1,125 and the three-stage pipe- 
line to over eight billion choices. 

This section analyses the effects of parallelishg the y0 for a three-stage pipeline mode. 
Ali three stages shate a common input and output file pointer. Coordination and synchro- 
aization are needed at each level of the pipeline. Clearly, not ai l  the Ir0 combinations will 
be presented here. Three pairs of paralle1 Il0 behaviours are examined. A pair is defmed 
as the parallei y0 behaviour assigned to the input nle pointer and the parailel behaviour as- 
signed to the output Ne pointer. Five diffierent replication factors for the pipeline are stud- 
ied using these three pairs. As weli, the effect of early release of the input pointer in the 
1st  two computation stages is examined. 

The fmt stage of the pipeline, stage1 (Figure 5- l4), opens the input and output files. 
Then, untii the input file is exhausted, it c a b  the second stage of the pipeline, s tageI I, 
passing the current state of the two file pointers. After the input Ne is exhausted, stage1 



Stagel: ( int  argc, char ** zcgv 1 

F ï ï S  *fin. *fout ; /* The input nad output file pointers */ 
int i ; /* A counter */ 
fin = foperi( argvlll, 'rD 1 ; /* Open the Input Cile */ 
faut = fapen( argvC21, ww+w ; P Open the output file *f 
i = O ;  
while ( ! feof( fin ) 1 C /* Wbilt thcrc is still daîa, gcnerate */ 
StageII( i++, fin, 1, fout, 1 1 ; f* wotk for the second stage *f 

fclose ( fin ; 

fclose ( fout 1 : 
retuzn ; 

1 

/* Close the input file *f 
/* Close the output ille *I 

Figure 5-14 -Source code for the f k t  stage of the three-stage pipeline example, StageI. 

closes the input and output nies and exits normally. stage1 does not do any computations 
nor are any of the r e m  values fiom the second stage used. 

The second stage of the pipeline, StageII (Figure 5 4 9 ,  checks if the input file has 
some data left to process. The output headet is written to the output file. The hinction 
does some computations (computestage~~) and then enters a loop calling the StageIII 
fûnction. This loop exits if either the end-of-file is reached for the input file or WORR~LOCK 
caüs are made. The latter condition was added to permit Uivestigating the effects of eariy 
release of the input file pointer, sin. The etum value of StageIII is ignored. Afier the 
loop exits, the comment indicates the location where the early nlease of the input N e  
pointer can be placed. Currently, the function that releases the file pointer is inserted by 
hand. Future work will have the function inserted by the precompiler. The StageII func- 
tion then writes to the output fde and retums to StageI. 

Figure 5-15 -Source code for the second stage of the three-stage pipeline example, 
StageII. 

4 4 3  

int Stage11 ( int N, FTLE *sin, int nin, PlLE %out, int  nout ) 

int j, WORKBLOCK = 4; /* A counter and the maximum numbet of blocks */ 
i f  ( &of( sin ) return 1 ; /* No data, return error *I 
PrintHeader( sout 1 ; /* Print bonder information */ 
CornputestageII ( 1 ; /* Do the computatioas */ 
j = O ;  /* Zero the counter */ 
while ( ! feof(sin) && j c tJORRBLOCK 1 C /* Generate work for the */ 
stageIII( N, j++, sin, nin, sout, nout 1 ; /* third stage */ 

1 
/* Early release of sin inserted here */ 
~rhtlkailer( sout 1 ; l* Print trailer information Y 
return O ; 

1 

The third stage of the pipeline, StageIII (Figure 5-16), ceads a value from the input 
Ne. If the= is a problem, it ntums an emr value to StageII which currentiy ignores the 
value. Again, the location of the early reiease code for the input N e  pointer, t in ,  is indi- 
cated by a comment. StageIII completes its computation by writing to the output file us- 
ing the N e  pointer tout .  



inc StageIII ( int N, int K. FILE %in, int nin, FILE *tout. k t  nout 1 
C 
int input, status ; /* Data input variabte and status variable */ 
i f  ( feof ( th ) 1 return i ; P No data, return error */ 
status = fscanf( tin, '%dm, & h p ~ ~ t  1 ; /* Read in the data */ 
i f  ( status != 1 1 retum 1 ; P Therc is a problem */ 
/* Early rtlease of tin imetted here *f 
CanputeStageIn( input 1 ; /* Computc the data Y 
FrhtRecord( tout, N, K. input 1 ; /* Write the output */ 
return O ; P R e m  to the second stage */ 

1 

Figure 5-16 -Source code for the third stage of the the-stage pipeline example, 
StageIII. 

An altemate method which avoids the end-of-nle check of the hput file pointer (sin) is 
given for StageII (Figure 5-17). This approach has the stage11 functioa wait for a non- 
zero retum fmm StageIiï. The stageII1 asset code is written so that if it fails on a read 
(typicdy, an end-of-file), it retums a one. This approach fails to achieve added concur- 
rency because of thefimcre created in StageII on the rem variable of StagerII. 

Figure 5-17 shows au Enterprise technique used to inamse computational concur- 
rency. The return variable is convertcd into a vector and an additionai loop, to check on 
the vector's contents, is added. Aside h m  being somewhat convoluted and counter- 
intuitive, ibis method is kss flexible when the y0 behaviour is changed. If the global me 
semantics are changed to segmented semantics, the extra blodrs of work wiU cause the fde 
pointer to point past the end-of-ole when constant segmntation is used. 

The segmentation function wiIi have to be carefully constructeci when it encounters the 
end-of-file. Returniag an error value (-1) causes the run-the system to attempt to recover 
h m  the enor. (Currently, the recovery aDempt is to abort the application.) Retuming a 
zero causes the nin-time system to assume the file segment is of unknown size. This ap- 
proach creates one extra piece of work for s tagel1 I. However, this extra work is insig- 
nificant since the StageIII process does no work as the function immediately retums upon 

#def ine WORKBDRST 4 
int  StageII ( int N, FTLE *sin, int n h ,  FILE *sout, k t  nout 1 
{ 

ùit j, returnVal[wORKBURSTl ; /* Counter and return variable army *I 
i f  ( feof ( sin 1 1 r e m  1 ; /* No data, return error */ 
Pirint?ïeader( saut ) ; /* Print header information *I 
CamputeStageII i 1 ; /* DO the computations */ 
for ( j = O ; j < WORKBITRST ; j++ ) { /* Generate a burst OC work */ 
returnvalljl = StageZII( N, j, sin, nui, sout, nout 1 ; 

1 
for( j = O ;  j<WRKBIfRST; j++) { /* Consume the futures *I 
if ( returnVal[jJ = 1 1 
break ; /* First failorc fndicates the input file is exhausted *l 

1 /* End of cbeckiog the bursts of work */ 
/* Ehrly rtfeasc o t  sin imerted bere */ 
PrintRailer( sout 1 ; /* Priat trailer information Y 

/* Return to first stage process */ 

Figure 5- 17 - StageII asset code modined to check futures. 



detecting the end-of-file. 
if the asset is configmd as mrdered (see Appendix A for more de-) from a com- 

putational viewpoint. thesefunres are resoived on an as-received basis instead of on an as- 
generated basis. At first glance, this looks as if an emr in the application is possible. since 
an out-of-sequence value aborts the work lwp pnmanire1y- However, any access to the 
output fiie pointer, sout, by stage11 will bIock untif all the outstanding StageIII proc- 
esses have released their daim on the output file. 
5.3.4 Extended Pipeline Performance 

The experhents pritsented for the pipehe performance used the same input Ne. The 
file consists of 16 pieces of w o k  The machias used iue d Sun4 ELC's with 12 mega- 
bytes of mmory and a local di& for swap and tempomy fïies. n>ey are comected by a 
lOMbps Ethemet network. Th sequential time (user the) was 173 seconds which gives a 
cornputauonai granuilarty of appmximately 1 1 seconds per piece of work. AU parallel runs 
reported are the average of five nuis. 

A numberof combinations are possible for the process intercomection pattern for ihis 
example- Recaiüng the example presented in Chapter 3.4 and Figure 3-6, Figure 5- 18 
shows the four combinations selected for this experiment- 

Figure 5- 18 - Four computation configUraaons for three stage pipeline example 

The f i s t  configuration, Figure 5-18% is a simple pipeline consisting of three processes. 
Segmenthg the input and output mes at aii stages wiil maximize the overail concurrency of 
the application. However, global file behaviours should not be dismissed. Table 5-4 
shows the results of using three combinations of global and segmented y0 behaviours. 
There are four choioes for early release of the iaput file pointer. The exclamation mark (!) 
indicates that early release was not done. For example, the column labeled !II&!III 
means that both the stage11 and StageIII processes did not release the input file pointer 
early . 

The global input file pointer. fin. blocks the h t  stage, StageI, when the loop checks 
for EOF of the input file. Appmpriately. only one StageII process can be active. This 
same check on the input Ne pointer. sin, blocks the s tagel1 hinction when it checks for 
the EOF. Again, since oniy one StageIII process is active, this is acceptable. Unless the 
input file is released eady, the StageII and stage1 processes are blocked waiting for ac- 
cess afier pwrating one piece of work. However, since there is only one process per 

Table 5-4 - Elapsed times for diffierent combinations of parallel M behaviours and early 
release using the computational pattern shown in Figure 5- 18a. Sequential 
user the  is 173 seconds. 



stage, early release does not show any benefitt The segmented approach does not show 
superior performance over giobal behaviours. 

The output file pointer does not benefit h m  eariy re1ease as tùe function retums irnme- 
diately a f h  the 1 s t  ycess with it Ifthe output file pointer is dehed as having global be- 
haviour, ody one process can be active in the fiIe at a tirne. Sinn ai l  the computations are 
done, the output should be completmi quickly to allow the next waiting process to access 
the me. Segmenthg the output file is somwhat difficuit as the record size is not known 
untii after the record is written. Using a n b w , ~ ~ ~  segment 4w is appropriate for this ap- 
plication. 

None of the combinations showed p e r f i c e  ktter than the quential version. The 
lower the demand for synchronization (changing h m  gobal to sgmented paralie1 behav- 
iours), the betta the perfofma~ce~ MOT bi t s  the concunency ktween stages by imposing 
barries at each stage which now cause a process to wait for its child process to r e m  y 0  
information. Effectively, oniy one process at a time is ailowed to progress. The cost of 
messages m e r  reduces the application performance. 

The second process configuration, Figure 5- 18b. attempts to improve the performance. 
The configuration Rplicates the second stage thcee times and leaves the third stage as a sin- 
gle process. The changes to the computational paraüelism are made to the graph file - and 
ieave the Il0 parallehm unchangeci. No recompilation is necessary. The StageIII proc- 
ess performs the bulk of the computatiom (number of invocations) and is rapidly over- 
whelmed with requests for work h m  the three StageII processes. Tùe data in Table 5-5 
show that the paralle1 performance is comparab1e to the previous co~guration (Figure 5- 
Ma) but uses more processors. Even with the early reIease of the input file pointer, sin, 
there is not much concunency available since there is only the one StageIII process. 
Using a giobal behaviour for the input file pointer with early release and segmented behav- 
iour for the output file pointer yields the ks t  performance of this configuration. Segment- 
hg the input file increases the concmncy but again, the stageri processes overwhelm 
the single StageIII process. Unless the cost of computing the second stage is signifi- 
candy more than the third stage. this configuration of processes is not that successful. 

Table 5-5 - Elapsed times for different combinations of parailel VO behaviours and early 
release using the computational pattern shown in Figure 5- 18b. Sequential 
user tirne is 173 seconds, 

The third process configuration. Figure 5-1&, has the last stage replicated three times. 
Since the bulk of the computations aie done in the last stage. replicating the 1 s t  stage 
should yield a ktter mult than the previous two attempts. Ushg global behaviours, the 
one StageII process would wait for a StageIII pmcess to ntum connol in order to pro- 
ceed. The mixture of giobal input and segmentai output nle pointers would not show a 
significant improvement since each of the StageIII processes would wait for access to the 
global input pointer. However, using early release of the input file pointer for this stage in 
the pipeline, the three StageIII processes will become fülly utilized. Performance should 
approach the performance of the M y  segmented file pointer test. 

The results of using three different Mar template combinations and invoking early re- 
lease of the input N e  pointer, shown in Table 5-6, indicate that early release of the input file 
pointer in the StageIII processes does permit more overlapping concurrency. The pure 



segmenteci behaviour hlls the pipeline and shows the best performaace- The mixture of 
global and segmenteci file pointers shows ody slight improvemnt over the global behav- 
iour. The effect of adding eariy reIease to the last stage signiflcantly improves the appiïca- 
tion's performance over its sequentid performance- 

Table M - Eiapsed tims for diffèrent combinations of paralle1 y0 khaviours and eariy 
reiease using the cornputafional pattern shown in figure 5-18c. Sequential 
user thne is 173 seconds. 

The founh proass configuration, Figure 5-18d, has both the second and third stages 
replicated three times. Using only giobal behaviours with eady release should show bemr 
results since more of the second stage processes wodd be concurrently utilized. With the 
second and third stages replicated, the eady release of the input file pointer is beneficial 
only if either the third stage or both the second and third stages are involved. This is obvi- 
ous shce early release of the second stage relies on the third stage releasing the input file 
pointer fust. The p w l y  segmented approach would show no effect using early release 
since the input fiie segment is not modified. The data in Table 5-7 confimis these predic- 
tions. 

tase1 1 and - S t aselII Rocesses 
193 90 192 110 
189 73 189 108 

File Pointer Variables 
sin 1 sout 1 tin 1 tout 

Table 5-7 - Uapsed thes for dinerent combinations of paralie1 Y0 khaviours and early 
release using the compational pattern shown in Figure 5-18d. Sequentiai 
user time is 173 seconds, 

Early Rclease 
!II&!III 1 II&ILT 1 II&!III 1 !mm 

The f a  configuration is similar to the fourth configuration except that the replication 
factor for the third stage is increased to six for a totai of eleven processes. #en the repli- 
cation factor of the last stage was hcreased to six, the segmented performance continued to 
improve3. As weil. the rnixed behaviour version using early release continued to show an 
improvement as more of the StageIII processes were utilized. 
5.3.5 Useability and Composability Summary 

The p l l m  mode1 offecs many choices for paraUeWg the VO. The two example appli- 
cations, whüe containing relatively simple cornputatio~~al parallelism, show how more 

When repeating this experiment on the heterogeneous network used in the first nvo experiments 
(Section 5.1 and Section 5.2). increasing the replication factor of the last stage actually &@xi per- 
formance. ïhis happeneci since it is more Iikely that a slower pmcessor would be selected by che compu- 
tationd manager. 



complex UO patterns are eady created by composing these simple parallei behavioun. The 
ease of developing the pardel applications Mthout any dependencies on specialized library 
functions or by expkitly eacoduig the parallehm into the application is a positive feature 
of this approach to parailel U0. These two exampies also show that parallelizuig y0 for 
more cooipkx applications does not Mdily show the speed up that the computational par- 
allelism suggests is possibie. - Granuiiuity of t&e computatiom must be hcreased to balance 
the cost of the synchnilation and coo<dinaàon of the paraUei 110 model. The current 
deadiock prevention mechanism does not permit as much flexiiility as desired with the read 
and write aüriiutes. The more I/O pointers involveci in a transaction, the iess flex'biiity is 
shown. More work is needed to improve the APndlock prevention algorithm to gain tangi- 
ble proof of the knefits of thne Ieveis of o r d e ~ g .  

5.4 Dynamic Segmentation 
Strided interfaces or predefining access structures for reguiar data strucaue~ appean to 

be the current approach to segmenthg a file. This is acceptable for regular data structures 
Like dense matrices. Irreguiar sized data structures are not as easily manipulated by a prede- 
fined or regular segmentation approach and coasequently, show poor paralle1 performance. 

An irregular data structure is typicaily represented in a file as a header element indicat- 
ing either the size or nuinber of elements - a description of what foilows. The actual ele- 
men& foliow the header element This two step impiementation is o f h  nested. While per- 
forming two read or &te operatioas works weiI with sequentiai applications, a two stage 
read or write technique is dinicult to manage for paralel applications because the concur- 
rency innoduces synchronization problems. Another approach to interpreting an irregular 
data record is to use a special character indicating the end of record. For example, the seg- 
mentation function in Figure 4-14 uses the knowledge that every third line feed character 
indicates the end of a data record to segment a file. 

Sequentially. a nle is m t e d  as a Stream of bytes. No structure is imposed on the disk 
file. In parallel applications, this lack of structure causes problems. Segmenthg a file not 
based on meta-information regarding the sue and composition of data blocks could be inef- 
ficient. Sequentiaiiy, this information is found by perfomiing two reads or double writing 
a complex object Double writing means that tbe object is wrïtten to a temporary buffer 
(disk or memory). the record length determineci, and the record is copied to disk dong with 
the length. When importing a sequential file into a parallei V 0  system, a user should be 
given a chance to cache segmentation information for a specific data fde. This could be 
done either by creating a meta-file or by m-hg the contents of the actual data file. This 
last step is not done casuaiiy since it effects the user's code. 

During the paralle1 computation, the meta-infornation about the file structure is used to 
segment the me. Export of the nle h m  the parallel file system back to the sequential fie 
system uses this meta-information to ressemble tbe parailel fde. Both the import and ex- 
port steps should k taken into account when determinhg ovemll processing thne for the 
fdes. In effect, the application r a d s  the nle twice - once for the meta-information and 
once for the actual data. Shce the= is littie chance of avoiding this double read, a seg- 
mentation fuuction that does this as the application progresses through the fde is proposed. 

Earlier in Section 5.1, a fme-grained I/û application was used to compare the perform- 
ance of ~rlar and PIOUS. That particular cornparison used a constant segmentation factor. 
This section look at the cost of using a dynamic segmentation function. 
5.4.1 Segmentation Functions 

Three segmentation functions were tested. These ttiree form a spectrum of segmenta- 
tion functions. They range from a complete reading of a data record to a single smd (4 
byte) read to estabIish the size of the record to no read (a constant). From this spectrum, 
the effect of the approach to segmenthg a nle is studied 



The first approach is a complete read of the entire record (Figure 5- 19). Instead of us- 
hg the version shown in Figure 5-5 which seeb over the elements of a subcomponent, the 
hinction reads the size of a subcomponent The function then reads in the elements to ad- 
vance the fiie pointer to the start of the next subcomponent. Since the size of the data is 
known or computable, reading into a bufk is acceptâbIe. Of the thiae segmentation WC- 
tions testeci, tbis fiinction should have the iargest impact on performance. The segmenta- 
tion hinction effectively reads the e n t k  segment using a number of smail UO operations. 

#define IC ( sizeof (int) + sizeof (char) 1 
#define I sizeof (int) 
unsigned long Readsegxentatian { FILC + fp, int min. int max, int cur~ent 
C 
unsigneci long offset ; /* Extent of tbis record */ 
int CD, C, D, E, i ; /* Record beader variables and a counter */ 
char buffer[ 4096 i ; P The maximum size of a record on diskf/ 
i= fread(  &CD, 1, 1, fp  1 ; /* How many CEDE objects are there */ 
i f  ( i ! = l )  /* End OC ale or file error, return error */ 

retum (unsigned long) -1 ; 
offset = I ; /* The record tadudes the site of CD */ 
f o r ( i = O ; i < C D ;  i++) f P Loop reading the CEDE records */ 

fread( &C, 1, 1, fp  1 ; /* Elements in this C record */ 
fread( buffer, sizeof (char), C IC, f p  ) ; /* Read C data block Y 
offset += I + c IC ; /* Increment size of record */ 
fread( &E, 1, 1, fp  ; /* Elerncnts in this E record */ 
fread( buffer, sizeof(char), E IC, f p )  ; l* Read E data block *i 
offset += I + E * IC ; f* Iacrement size of record */ 
fread( &D, 1, 1, fp  ; /* Elements in this D record */ 
fread( buffer, sizeof(char1, D IC. fp 1 ; /* Read D data block */ 
offset += I + D = IC ; /* Increment size of record */ 
fread( &E, 1, 1, fp  ; /* Elements in this E record */ 
fread( buffer, sizeof(char1, E * Ic, fp ) ; I* Read E data block */ 
offset += 1 + E * IC ; /* Increment size of record */ 

1 /* End of loop reading in the CEDE records */ 
fread( &E, 1, 1, fp  1 ; P Elements in this E record */ 
offset += I + E * TC ; /* Iocrement size of record */ 
retusn offset ; I* Return the size of the Child record */ 

1 
#und& IC 
(tundef 1 

Figure 5- 19 -Segmentation hinction for fme-grained example that reads the entire record. 

The second fhction, Embeddedsegmentation figure 5-20), requires modifications Co 
the sequentiai and paralle1 applications. The intemal structure of the file must be modifed 

unsigned long Rnhddedsegnienrntion ( FILE f p ,  int min, int rriax, int current 1 
ï 

int size, i ; 
i = fread( &size,  sizeof (iut), 1, fp  1 ; If How big is this record */ 
i f  ( i  ! = 1 )  /* End of file o r  ale error, r e tun  error */ 
return (unsigned long) -1 ; 

/* Return the size (in bytes) of this record plus the header size */ 
return (unsigneci long) (size + sizeof (int) ; 

1 

Figure 5-20 -Segmentation fiinctioa for fine-grained example that has the size of the rec- 
ord embedded into the data file. 



to inchde a header before each chiid data block indic-g how many bytes the block 
coritains. Tbe bction reads in the value and retums the offset. This intrusive approach 
should have a srnalier impact on performance than that of the full read version because there 
is only one smaü read operation. 

The third hction, constantsegmentation (Figure 5-21). is intended to have the 
least impact on @ormance. ù sllnply nturns a constant value with no access to the disk. 
However, this constant size trades knowledge for fleexiiiity- If the records are smailer than 
this constant size, holes will exist in the file. If îhe data records am larger than the stated 
size, datais lost, As weii, the pmgram is CO- due to readïng past segment bounda- 
ries or the fiie is comipted by writing pst segment boundaries. 

uasigned long Constantsegmentation ( FIIB * f p ,  int m i n ,  ht niax, int ~lrrent  1 ~ C 
/* Rehirn the sizt (in bytes) of a i s  record */ 
temm (wsigned long) 352108; 

1 

Figure 5-21 - Constant segmentation function for fine-@ed V 0  example. 

5.4.2 Dynamic Segmentation Performance 
The two read segmentation functions and the constant value function were used to ex- 

amine the effect of increasing computationai granulanty against increasing the replication 
factor. The application was run using four di&rent computational granularities consisting 
of approximately 0, lO,37 and 147 seconds per data record (Table 5-8). 

This grandarity is based on the computational part of the application, not the cost of 
segmenting the record. Each cornputaiional granuiarity was tested using four diffemt reg 
iication factors of 2, 5, 10, and 15 Chiid processes for each segmentation hinction. 
paralle1 runs reported are the average of five mns- The data iadicates that until a cenain 

Table 5-8 - Elapsed tirne (seconds) usiag three dinerent segmentation functions, four 
replication factors for the Child process, and four computationai granulari- 
ties for the fine-grained UO example. 

-- 

Replication 
Factor 

, Se~aential - 

--- - - - -  

CPU granularities (seconds) 

FuW Read S ~ e n t r t i o n  . 
1 

147 J 

7339 
37 

1853 
O 
16 

4875 
1 824 
1062 

2 
5 
10 

10 
479 

239 
168 
137 

512 
251 
187 

1361 
535 
324 



threshold of computational granularity is reached, the application is better off king mn se- 
quentially. Tbere appears to be Iittle clifference in performance to determine which seg- 
mentation function is best to use- 

A maximum of sixteen processors are used in this set of experiments. Fourteen are 
Sun4 ELCs while the other two were slower Sun4 IPCs. When using the K s .  any ad- 
ministrative processes (e.g- the Enterprise root processi) or a process that did not have a 
large CPU quirement were placed on the slower machines. Where possible, the fastest 
processon were used fint AU processors have a local disk for swap and temporary files 
and are comected by a lOMbps Ethanet network. 

Figure 5-22 (a). (b), and (c) shows the performance of the three segmentation functions 
with iacreasing replication factors for the c b i ~  processes. These figures show that there 
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Figure 5-22 - Elapsed time versus computationai granularity using constant (a), Full read 
(b), and embedded read (c) segmentation for fme-grained I/0 exarnple at 
four replication levels. Elapsed time venus computation granularity of the 
three segmentation functions using a replication factor of fifteen (d). 

See Appendix A for more details. 



are diminishing retums by increasing the repiication factor. This diminishment can be at- 
uibuted to the Parent process becoming a bottleneck for distribution of the input file seg- 
ments and integrating the output fiie segments. The computational interactions lunit the 
scalability of this hplementation of War. The difference behueen the three different seg- 
mentation huictions using a repIication factor of 15 is seen in Figure 5-22(d)- Unless the 
computational granuianty is low, there is no significant ciifference between the three ap- 
proaches to segmentation. 

At low granularity or replication factor, the constant fimction and the embedded read 
function show definite performance improvements over the fidi read segmentation fûnction. 
The cost of fUy  reading the mord hvice is noticeabie but small. However, once there was 
suffxient cornputational gtanularity (10 seconds), aü the segmentation fiinctions gave 
similar performance. The full read version gave siightiy better performance with the higher 
granularities aad replication factors. 

The performance improvement can be attriited to the overlappuig Il0 and computa- 
tions. As weil, the il0 has ken  pcefetched and is st i l i  likely to be either in the disk cache 
or resident in rnemory at the file server. Clearly, the costs of segmentation are hidden 
when there is dcient computational granularity. For this application. the parent proc- 
ess continues to segment the fde afier ail  the chiid processes are busy. The overlap of the 
Y0 and computations is beneficial. 
5.4.3 Dynamic Segmentation Summary 

Three segmentation functions were exarnined for their relative performance in a paralle1 
application. As the granularity of the computation rose, the choice of a segmentation func- 
tion became moot Clearly, the lean interference with the original data füe is most desir- 
able. 

The performance of the simple parallel configuration is acceptable (in that a speedup is 
seen). The next section looks at a more complicated cornputational pattern dong with an 
increase in the complexity of the parailel V 0  requirements. The intent is to examine 
whether improved performance can be extracted for the application and to determine the 
costs of creating the application. 

5.5 Complex VO Patterns 
If there is suffïcient cornputational granularïty, experimentation with the confi~guration 

of a parallei application may yield better performance. The fine-grained example used in 
Section 5.1 and 5.4 was modified to change the computational parallelism in order to seek 
better performance on the two computational pladomis. 

The Child data record (Section 5.1.1) consists of n(CEDE) &ta blocks foliowed by 
a trading E data block. With increashg computational granularity, cornputing a subset of 
the CEDE blocks could be padieîized with the potential for an increase in performance. 
However, the UO requirements have now been changed. What modifications are necessw 
to implement these changes? 

A new function, CEDE, was developed to run in parailel (Figure 5-23). ïhis huiction 
assumes that what is lefi in the input file is a coUection of CEDE records. This approach 
takes advantage of the WOT segmented UO semantics in which the end-of-ffle is the same as 
end-of-segment for the newspaper template. An altemate approach has the actuai number 
of records in the segment block passed as a parameter to the huiction. However, in either 
case, the paralle1 UO implementation must leave the input file pointer Iocaied at the start of 
the vailing E record for the Child process after aU the c d s  to CEDE. 

The computationai parallelism is straightforward to modi@. The computation becomes 
a three-stage pipeline consisting of Parent as the fmt stage, chiid as the second and CEDE 



int CEDE ( FaCE 'cdin, int nin, FILE *cdout, int nout 1 C 
if ( tain == NULL 1 recum 1 ; /* No file is defined! */ 
while ( ! feof (cdin) {P Assume tût filt contains oaly CEDE blocks */ 
ComputeC( cdin, cdout 1 ; P Compute the C record */ 
CampirzeE( cdin, cdout 1 ; P Compote the E record */ 
Camput:eD( cdin, câout 1 ; P Compute the D record */ 
~ampute~( cdin, cdout ) ; P Compote the E record */ 

1 
fflush( cdout 1 ; P Ensure output hos gonc to disk */ 
return O ; /* Retum to Child function Y 

1 

Figure 5-23 -Source code for the C E ~ E  fiinction for the more complex UO example based 
on the &e-graiued W) example. 

as the third. The second and third stages are replicated nie original computational con- 
figuration is seen in Figure 5-24a while Figure 5-24b shows the new configuration. 

For performance cornparison, the number of actuai processes is kept the same. A 
Chiid process stül receïves an input file segment h m  the p u e n t  process. Child is now 
responsible for distributhg the sub-segments of its segment to the c m ~  function. The 
Child proces must ais0 coliect the output fkom these client processes and merge the output 
More retuming its output segment to Parent. 

Process 
TY pe /&, 

Pamnt O 
Chiid 0 

Figure 5-24 -The computational parallelism for original (a) and more complex (b) version 
of the fine-grahed I/0 example. 

The Child function required some modification (Figure 5-25) in order to implement 
this new paralle1 computational behaviour. The Ioop counter where the CEDE blocks were 
computed was changed to increment by a specified number of blocks. Inside the Loop. the 
number of CEDE elernents per block was monitored to ensure that only CEDE blocks 
were disaibuted. After the loop ffished, the trailing E record was computed. The Child 
process then waited until aü the outstanding CWE work requests were completed and re- 
tumed their output before returning to the Parent process. 

The only ~ilar modification is that an additional segmentation function must be created 
to segment the CEDE record blocks. The next section documents the creation of this addi- 
tional segmentation hmction. 
5.5.1 An Additional Segmentation Function 

A new segmentation function (Figure 5-26) was created for the new cornputational 
stage, c m ~ .  One problem amse when developing the sequential code. If a constant block 
of CEDE records is used there is a good possibiiity that the 1st  block wiU contain more 
than just CEDE records. For example, suppose there were 101 CEDE records in the 
Child segment and the blocking faaor was ten. The iast fie segment should only contain 
one CEDE record but it will contain additional information that the CEDE function wiil 
misinterpret and compt the rest of the calculatiom. Since the interface between the c d -  
back huiction and run-tirne system is already defuiecl, an altemate approach is needed. 



#define StartingCEDEBlock 10 
i n t  CEDE-BLOCKSIZE = S t a r t  ingCEDEBlock ;/L Used by segrnenation function */ 

int Childt FILE *bh, kt n k ,  MLE 'bout, int nout 1 { 

k t  cdelem, 1; /* Numbtr of records to process and a counter */ 
char type='~'; I* Record type */ 
i = fread( MPelem, sizeof (int) , 1, bin ) ; P Numbcr of CEDE records */ 
i f  ( i = O )  r e t u r n 1 ;  P Read failed, nothing to do */ 
i f  ( 1  feof(bin1 1 { P Not end of record */ 

OutputBEIeader( bout, CDelem ) ; P Output the B record hcadrr */ 
-ZE = StartingCEDEBlock ; I* Compute a CEDE block */ 
for ( i = O; i < CDelenr; i += CEDE-BL~CKSIZE i CI* Distribute blocks */ 

I+ Don't cxcnd the number or records ! */ 
i f  ( i + T_IERE-BLOCnSIZE > CDeïem 1 CEDECEDEBILCEIZE = CDelem - i ; 
CEDE( bin, 1, bout, 1 ) ;  /* Compute the CEDE block */ 

1 
Cornput&( bin, bout ); P Compute the trailing E record */ 

1 
fflusht bout 1 ; If Ensure output bas gone to disk */ 
retum stacus ; /* Returu status of this function to Parent */ 

1 

I Figure 5-25 -Modioed source code for the Child function reflecting the changes neces- 
s a r y  for the more complex fine-grained VO example. 1 

One solution is to use a global variable. The Child process knows the number of 
CEDE blocks pnor to uivoking the CEDE firnction. It was a simple matter to insert a test in 
the Child distribution loop to test and. if necessary, limit the number of CEDE blocks 
distributed This global van-able could be declared static and effectively shielded from 

extern int CEDE-BZXKXSIZE ; /* HOW many CEDE btocks to read */ 
#defuie IC ( sizeof (int) + sizeof (char) 1 
#define 1 sizeof(int1 
unsigned long segCEDE ( FfLE 'fp, int curr, i n t  min, int max 1 ( 

unsigneci long offset = O ; 
int i, C ,  D, E ;  
char buffer140961 ; P Maximum size of a record on disk */ 
for ( i = O ; i < CEDEEBtOCKSIZE ; i++ 1 C I* Determine the block size */ 

fread( Z, 1. 1. f p  ; /* Elements in this C record */ 
fread( buffer, sizeof(char1, C IC. f p  ) ; /* Skip over C record */ 
offset += I + c IC ; /* Increment the size counter */ 
freadt &E, 1. 1, fp  ) ; /* Elemeats in this E record */ 
fi=ead( buffer, siteof (char), E * IC , fp  1 ; /* Skip ovtr E record */ 
offset += f + E * IC ; /* Increment the size counter */ 
f read(&D, 1, 1, f p )  ; /* Elements in tbis D record */ 
fread( buffer, sizeof(char1, D *  TC, fp ) ; /* Skip over D record */ 
offset  += I + D * IC ; /* Increment the site counter */ 
fread( tkE, 1, 1. fp ; /* Elements in this E record */ 
fread( buffer, sizeof (char), E * IC. f p  ) ; I* Skip over E record */ 
offset += I + E * IC ; /* Incrcment the site counter */ 

1 
r e w  offset ; P Retuni the size of ibis CEDE record block * /  

1 
hrdef IC 
liinidef 1 

Figure 5-26 - Segmentation function for CEDE parallei U0 requirements. 



the rest of the code if the asset code and the segmentaiion function share the same file. 

The number of CEDE blocks per segment sent to a remote CEDE fiuiction was set to a 
default value of ten. Thme replication combinations using ten processes were tested. TWO 
different computationd platforms were used The same operathg system was used on both 
plaâorms - SunOS 4.1.4. AN the processors c ~ m m ~ c a t e  with each other using a 
1OMbps Ethernet comection. 

The h t  pldom is heicrogencous in processor capacity. It is sunilar to the c o n f ~ w -  
tion used in the k t  two experiments (Section 5.1 and Section 5.2) except that the S p a  4 
(SS4) and one of the Sun ELCs is now replaced by a Sparc 10 (SS 10) dual processor unit 
and a Sun SLC- The SSIO is about 4-5 times faster than the SLC. The other processor 
ratios are found in Section 5.1.5. The configuration consiued of the following processors 
(and memory): one SS IO (96 megabytes), two Sun4 Classics (32 megabytes), five Sun 
ELCs (32 megabytes), and five Sun SLCs (16 megabytes). Ail processors have local disk 
for swap and temporary file space. The second configuration is the homogeneous platform 
that was used for the third (Section 5.3) and fouah (Section 5.4) experiments, and con- 
sists of thirteen Sun ELCs with 12 megabytes of memory and local disk for swap and rem- 
porary fde spspace. 

Tbis problern contained fi@ Child records with each chila record containhg one 
hundred CEDE records. As the number of C h i l d  processes increases, the CEDE processes 
becorne the bottleneck. For the data file used, each tirne a Chiid process receives a work 
request from Parent, C h i l d  generates ten c m E  calis. For these experiments, the sequen- 
tial thne needed to process one Child record was set to be about 85 seconds on the fastest 
processor that nuis a Child process in the heterogeneous case. That same setting corre- 
sponds to 147 seconds with the homogeneous process cluster. The average computationd 
cost for a CEDE cali is approxhately 9 (heterogeneous) or 15 (homogeneous) seconds. 
With eight CEDE processes, the twenty requests are quickly handled As the nurnber of 
work requests increases, the reduced number of CEDE processes, which do the major@ of 
the cornputations. inhibits performance on the homogeneous processor cluster. However. 
using the heterogeneous process cluster, the slower processon were specificaily selected to 
run the C h i l d  processes, ieaving the CEDE processes to the faster processon. Conse- 
quently, there should a noticeable irnprovement to the performance of the application. 

The chiid fde ffrgment t a s  further segmented for each block of CWE records. niere 
is Little impact on the network for IIO activity as ail the chiid processes segment theû local 
copy of the larger file hgment. Simüariy, the chird processes ceassemble the output of 
the C m E  processes before renuning their larger segment to the Parent process. As the 
Chiid and CEDE processes do not know in advance the size of their respective output rec- 
ord, an unknom segment size was used for both procas types. 

Given the same number of processes, Table 5-9 shows that the performance is better 
- -  - - - -  

Replication Elapsed Time - (seconds) CEDE 
Child CEDE Betero~eneous Homogemous Requests 

10 O 1538 1062 O a 

2 - 8  1448 1023 20 

4 6 1630 1 344 40 

Table 5-9 - Elapsed t h e  in seconds for a more complex computation on a heterogeneous 
and a homogeneous network of workstations. A totai of ten processes are 
allocated to execute the C h i l d  and CEDE functions. 



than in the sirnpler pipeiine exampIee The shaded row corresponds to the elapsed t h e  for 
the shpler two-stage pipeline approach. There is about a six percent increase in the per- 
formance on the heterogeneous processor cluster using the more complicated paralle1 de- 
sign. This per fomce  improvement deteriorates as the number of Cniid processes in- 
creased. This is due to the inabilïty of the faster processors to keep up to the increased 
number of work requests from the Chiid processes. The homogeneous computationd 
platfonn sbowed very linle perfo~~lliince gain and, as the number of Child processes in- 
creased, performance degraded quickiy. 

5.5.3 Compkx UO Summary 

The benefits of a template approach over a hand-coded liifafy approach aie highlighted 
in this experiment. With a minor change to the source code, the puformance is incremen- 
taUy improved for the heterogeneous neovork. Adapting to the change involved a modifi- 
cation to the computational paraUelism and corresponding adaptation to the UO pdelism. 
The PVM and Enterprise modincations took about an hotu to design and implernent. The 
application needed to be recompiled by Enterprise to reflect the changes in the computa- 
tional pafauelism (creating the new wrapper fhction for CEDE). Creating this sarne appli- 
cation by integrating and embedding both the computational and y0 pde l i sm into the 
code, for example using PVM and prous, would take considerably more tirne and would be 
prone to errors. Clearly, while PVOT does not paraileh the application, this model of VO 
provides the abstractions necessary to d o w  the user to specify what is needed while 
leaving how to implement requirements to the run-time systea 

5.6 Chapter Summary 
Five sets of experiments examined the performance and useability of the pr/m model 

and implementation. The fmt two experiments compared the performance aspect of the 
Enterprise implementation of pr/ar and a more low-level parailel file system, erous. Both 
experïments had the same computational paraleIism - a simple parent-child behaviour. 
Enterprise and P~oUS both use PVM as the uoderlying communication system. The difierence 
is that Enterprise uses computational templates to express the parallelism while the HOUS 
version relies on the user to hand-code the necessary paralle1 communications to develop 
the parent-child behaviour. The computational behaviour was straighdoward to implement 
in either system. However, the pade l  UO requirements were quite different. 

The fmt experiment (Section 5.1) has fine-grained V 0  requirements spread throughout 
the application. The fmt experïment had one input and one output file, each xgmented. 
Each segment of work consisted of rnany smalI VO calls involvhg from four to several 
hundred bytes. Only one Enterprise version gave acceptable performance. 

The hand-coded approach using nous pennitted seven dflerent implementions of the 
same application. The user could use the noos system cails to treat the Nes as either seg- 
mented or globaily shared, and cache segments to a local disk or not. The local processes 
used buffered or standard UO streams, or Iow-level i70 calls on these local cached copies. 
Each of ?he PIOUS venions developed took several hours to code and debug. The child 
process needed no modifications to the onginai source code for the child except in one case 
where al1 VO was repiaced with the prous UO cals. 

The second expriment (Section 5.2) had a few coarse-graiued V 0  operations spread 
over t h e  file pointers. The application did not provide the same varîety of choices as did 
the fine-grauied Il0 when using the low-level paralle1 Ne system. In fact, there was only 
one way of implementing it in each parailel VO system to get acceptable performance. 

The third experiment (Section 5.3) examined the useability and composabiiity of the 
PVOT p d e l  V 0  model. Changing the extemal paraIlel UO requirements did not require a 



recompilation (or re-wrïting) of the sequential source code. Early release of fde pointers 
shows the improved concurrency for a given application. 

Early release is only one put of the potential of ushg statïc anaiysis to improve UO per- 
fo~nance. The compiler can determine the xope of a file pointer's use in a hinction. The 
early release mecbanism aui be inserted when the fîle pointer is no longer needed- Static 
analysis can aiso determine if it can de1y rrarrange code to cluster the VO statements to 
improve tbe effect of early release. This aoalysis can also be used to provide hints to the 
nui-time system indicating that, for a given transaction type, deadlock prevention is no< 
necessary. However. static aoalysis can only pmvide hints. Since the paralle1 Y0 behav- 
iour can k changed without requiling the recompilation of the application, the m-tirne 
system must make the fmai decision about deadlock prevention. 

The founh experirnent (Section 5.4) examineci the performance of three different seg- 
mentation hctions. as proposeci for the dynamic segmentation conm3ution of PVOT. The 
performance of segmentation fiinctions is not as much of a concem when there is some 
computational granularity. The exact point when the segmentation function has a signifi- 
cant impact on the performance depends on the size of the compittationai granularity, the 
amount of VO needed, and the complexity of calculahg the size of the extent 

The f f i  experiment (Section 5.5) revisited the first application, the fine-grained UO. 
The lessons learned in the first four experiments were applied to see if the earlier perform- 
ance could be improved. The application was modified for a more complex computational 
pattern and a different parallel Il0 behaviour- This resulted in a six per cent increase when 
working with a heterogeneous M of processors. This same pattem showed Linle or no 
gain when mnning the same application with a homogeneous pmcessor mix. Modifica- 
tions were needed to the computational parallelism but the oaly additionai code required for 
the new parailel Il0 behaviour was a new segmentation fiinctioa. The functions using VO 
did not need any modifcations for the new p d e l  UO behaviour. The advantages of a 
templated approach to the computations and V 0  parailehm are seen in the flexibility to ex- 
periment and test to seek the best performance for a given computational pladorm. 



Chapter 6 

6.  Conclusions 
The feasibüity of a topdom approach to parailelking tbe VO components of an appli- 

cation has tteen prrsented. The cunent approaches are bottom-up with speciaiized libraries 
of functions differentiating b e m n  paralle1 and sequentiai streams. Synchronization and 
coordination between different I/O streams are left as the cesponsïbility of the user. Trans- 
action support is mdimentary. Ali the pdel ism is explicitiy inserted into the application 
code. If either the computationai or Il0 pafatlelism is changea a new version of the appli- 
cation must be created. Pllm e-ates these problems by using VO templates and cooper- 
ating with the computational templates. However, given the desire for high performance in 
paralIel applications. the above advantages can easily be negated if the m-tune perform- 
ance of ~tlm is poor. While the cumnt implementation is not complete, the results reported 
here validate the claim that the performance is acceptable. 

ui f't, the= are NO claims made in this thesis. The f ~ s t  claim (Chapter 3 and 4) is 
that pardel UO behaviours in an application can be specified separately fiom the source 
code. The work presented here extends the template appmach wbich is shown to be bene- 
ficial for computationai parallelism by Sitafion and Schaeffer [73]. The user code is sig- 
nificantiy reduced in cornparison to the hand-coded versions and the application is com- 
pleted much sooner since the templates are correctly implemented for the selected parallel 
behaviour. There are no new paraiiel UO b c t i o n  libraries to l e m  and no language exten- 
sions. AU VO is performed using the famüiar standard Stream interface. The separation of 
the parallei Il0 behaviom £tom the source code, coupled with a corresponding separation 
of paraiie1 computation behaviours, c m  be combined to produce a more responsive and 
"better" tuned application. This corresponds to the idea that the user specifies what paral- 
tel behaviours should be used while the parallel programmhg system determines ho w to 
implement the behaviours. 

The second claim (developed in Chapter 5) is that the software engineering advantages 
of such an approach do not necessdy incur a significant loss of performance. This claim 
agrees with the conclusions of S&on and Schaeffer chat only a small performance penalty 
is paid for using computational templates. 

A number of extensions and fiinire research possibiiities arise from this work. Sec- 
tion 6.1 documents some of the compile-tïme and nui-time extensions that would lead to 
M e r  improvements. Section 6.2 lists the contributions of this dissertation. Section 6.3 
s u m a r k e s  the work presented in ihis document. 

6.1 Extensions and Future Research 
Not ail of the lessons learned nom developïng this  PI/^ prototype are integrated into 

the curent solution. Ratber than adding the misshg portions (the report tempiate. wn- 
table photocopies. a more intelligent deadlock prevention mechanism, and support for 
atomic VO statements) in an ad-hoc fahion, the current implementation would benefit from 
a complete rewrite. 

The Enterprise PPS needs modifications to the precompiler and nui-time system to fdIy 
support the dBerent I/O templates. M y .  this involves providing hints for deadlock 
prevention and prefetching. Enterprise is intended to be a complete parallel programmùig 
environment. The Enterprise graphical user interface should be modif~ed to support 
graphical Pzlm templates. Currently, the graph file is rn-ed by hand. pi lm generates 



events about parailel y0 operations which are intended for use by the Enterprise paraiiel 
debugger and performance monitor. Both of these components need modification in order 
to use this information- 

A second area of hiture work is to implement P J / ~  wïlhUi another paraiiel programming 
system. The decision to use Enterprise for the prototype was easy to make. The Enterprise 
source code and, more importantly, the people who developeà Enterprise were available for 
consultation when it came tim to impiement P V ~ .  The VO model presented here is inde- 
pendent of the implementation pladonn. However, proof of th-s independence would be 
demonstrateci by a suoccssful implementation in another paraUe1 pmgrammïng system. In- 
dependenœ could also be validatexi by irnplementïng Mar usiag a speciaüzed @el VO 
iibrary. This topdowu approafh to pafaUeL V 0  should be able to take advantage of the op- 
tirnizations offend by these tools. 

As well, Enterprise ooly supports cenain computational models. Mesh and peer-to- 
peer models, for example, are not supported. The reason for mis is that computational 
deadlock is difncult to detect or prevent for such templates. Implementiag PI/OT in a PPS that 
d o w s  the user to develop such a computationd application would test the current deadiock 
prevention mechanism. The work done so far has identified the minimal requirements for a 
parailel computational system needed to implement Pll<rr. 

Ali this work has been done on a network of workstations (NOW). but shared memory 
processors ( S m )  are a popular cornpetitive alternative. As weli. distributed shared rnem- 
ory systems (DSM) can provide adequate pefiormance if the network provides suffcient 
bandwidth and message latency for a particular application. Can shared memory and par- 
alle1 I/O co-exist? Consider a fde pointer that is placed in shared memory. Unless there is 
operating system support for such a strategy. problerns will develop. In particular, if dis- 
tributed shared memory is used. a file pointer created by one processor and used on a dif- 
ferent processor is not likely to work. In addition, shared memory would also require the 
memoly Stream (sprint f and sscanf) hinctions to be made parailel-aware. UO templates 
would work with the shared memory mode1 and the computational parallelisrn to provide an 
appropnate solution. Therefore, a PPS that supports a shared memory model would need 
compiler and run-time modifications to idenOfy and support shared paralle1 Il0 objects. 

The five templates presented here should not be considered complete. Future work is 
needed to examine whether additional templates or attributes are appropriate and to deter- 
mine their relationships. For example, the log template can be treated as a speciaIization of 
the meeting template whiie the report template can be considered a generalization of the 
newspaper template. However. these two specialized templates are useful to specify 
common paraiiel behavioun. 

An important area for future work is the development of a more sophisticated deadlock 
prevention mechanism. This wili require compiler and m-the support. The conservative 
approach of the current implementation restricts concurrency and the expressiveness of the 
attributes. Section 6.1.1 addresses this problem in more detail. 

The rest of tbis section describes in more detail where static and nin-tirne extensions 
should be beneficial. Section 6.1.1 lmks at extensions to the deadlock prevention with the 
PVOT model. Section 6.1.2 dimisses some of the issues that s<atic analysis should address 
to inkgrate UO and computation parallelism. Section 6.1.3 discusses some extensions of 
the run-time support. Section 6.1.4 summarizes the future research directions of the work 
presented in this dissertation. 

6.1.1 Deadlock Prevention 
As discussed in Chapten 3,4, and 5, d e d o c k  prevention is needed. Deadlock detec- 

tion after the fact is not appropriate since resolution wili Lücely involve a rollback of corn- 
putations and y0 operations. This is difficult and costly to do correctly in the general case 
(if it c m  be done at all). Deadlock prevention does not require rollback. The price of this 



prevention is the Luniration of some of the potential concunency. Static analysis of the 
source code, dong with run-time anaiysis of the transaction and tempiate attributes. can 
ensure deadlock prevention is anivated oniy when needed 

For example, aaosactions that make aii  access requests in the same sequence do not 
n d  dedock prevention. If static analysis can ddcct this pattern, or better, safely re- 
organize the code to ensure this pattern, deadlock prevention can be avoided This assumes 
that the access permission is suzrendered back to t û e p l  of processes cornpethg for ac- 
c e s  only when the transaction &as no more need for the file pointer. 

There are two areas wbere Apndlock prevention can be extended. The fmt is in the 
kfnitioa of the transaction by a process. Currently , the definition of a transaction Lies in 
the formai parameters of the remote fûnction invocation. The mation of a transaction in- 
stance occurs when the rrmote process is passecl a collection of nle pointers. The scope of 
a transaction consists of the fim access by any of the nle pointers compobiag the aansac- 
tion and the r e m  of the remote function. Identification of any sub-transactions which 
would elàninate coupling between globai nle pointers reduces the need for deadlock pre- 
vention. Having only one global hte pointer in a transaction elimuiates the second condi- 
tion for deadlock (Chapter 4.5). 

The second extension for deadlock prevention occurs when a collective V 0  operation 
takes place. The collective open musc be taken into account by the Qadlock prevention 
mechanism in the context of the current transaction of the process.  PU^ is designed to use 
a client-amer model. hiroducing a third process as the manager of the collective open 
(Chapter 4.2.1) complicates the deadlock prevention mechanism. 

if there are any global nle pointers in the cunent transaction, other than the one CU- 
rently king coiiectively opened, the client process carmot request the open until access for 
the other pointers is confied. Since the process that is the manager of the collective open 
is not necessady the same process that produced the c m n t  transaction, there are now 
three processes involved with the collective open. The client process (P,), the process that 
generated aie transaction (PT). and the collective manager process (PM) must cwperate to 
prevent deadlock. 

P, cannot proceed to ask PM for participation in the collective open until it has b e n  
granted access to the global fde pointers in the transaction by PT. If the access to these fde 
pointers has not k e n  sought yet, which one should P, use to ask for access? R e d  that 
the client will be blocked until the access permission arrives. As weli, PSI must ensure ihat 
it does not grant access to several client processes when more than one file is collectively 
opened. For example, two file pointers, f and g, with global semantics are collectively 
opened by processes Pa and P,. If P, is allowed to open f. the manager process (PM) 
must ensure that P,, opens g before Pa's requests for f or g can be granted. Othemise, 
deadlock occurs. 

Static analysis can be used to determine the scope of transactions. The transaction is 
cumently defined by the scope of the remote function. However, within the huiction, sub- 
transactions cm be defmed (as evident by the effect of the early release fiinction in Chap- 
ter 5.3). This subdivision must be kept under the control of the user since the user's algo- 
rithm can couple the two file pointers together despite the static analysis detenninuig they 
are independent of one another. 

6.1.2 Static Analysis Support 

To solve the deadlock problems poiated out in the previous section and to increase the 
potential for concurrency, static analysis of tbe source code should provide hints to the nin- 
time system. Also, this static analysis provides the chance to safely move W) code within 
an application to reduce the length of tim a transaction needs to mn. Consider the case 
where a fuaction reads in some data computes. reads in some more data, computes, and 
then wrïtes out the resulü. If it can be detennined that the read and write operations are 



independent of one another, the static analysis could recommend that an early release be 
insened after the second reaci operation. A m e r  refiwment of this transaction has the 
two read oprations consolidated or clustered together at the beginning of the computations 
(if possible). After the read operations are completed the fiie pointer is released This ai- 
lows another blocked process to read and start processing the data. The overail concur- 
rency has been inaased over the original solution. The first process to finish computing 
can then re~uest access to the output hle. 

While the =ope ofa transaction is behg defineci in the remote hinction by the compikr, 
static analysis could be done in an e m p  to automatidy derive a segmentanon huiction 
or constant, 

The m-time system makes decisions to grant access based on the current process con- 
figuration, die static analysis hïnts, and the call-chin Iist containing the current pending 
transactions. With more hints provided by the static analysis, concurrency codd be safely 
Mptoved. 

One possible area of investigation is to examine the effectiveness of using on-demand 
pagiag for the cached file segments. In particular, when unknown segment sizes or a 
writable photocopy template are used the current implementation reads from the starting 
point in the file to the end-of-file and sends that block of data as the cache. instead on- 
demand paging could cache ody the parts that the remote process actuaily needs. The run- 
time system would need support fÏom the operating system (or the nui-time system would 
have to implement an equivalent paging system) to ensure that any meta-information asso- 
ciated with each page and the overall füe is properly retrieved and updated. Possibly. a 
journal Ne approach would ailow the original Ne to be updated as a series of y0 opera- 
tions recorded by the remote process instead of overwriting the fde or file segment by each 
retuming process. 

Using the append mode when opening a file gives the system the knowledge that there 
are no modif~cations to any existing data and that seeking backwards wiii not affect future 
changes. However, the fùe pointer still needs coordination and synchronkation for writ- 
ing. This leads to the situation where there are different views as to the location of the end- 
of-fie, dthough reading and seeking backwards into the fde WU not need to be coordi- 
nated. 
6.1.4 Extensions and Future Work Summary 

Based on this prototype implementation of ~r/ot, a number of future research directions 
have been suggested The most important research direction involves static analysis of the 
application's source code. This analysis of the user's source code would identify sub- 
nansactions, thus ~ducing the dependency on deadlock prevention and increasing the 
available concurrency for the application. Static analysis cm be used to safely rearrange the 
code to optimize IIO access. In addition, huits for the run-time system to prefetch data cm 
be introduced. Run-the refuements can take advantage of this improved knowledge base 
as weil as using dynamic idormation such as opening a file using read-only or append 
mode to improve performance. 

6.2 Contributions 
Chapter 1.2 listed the proposed contri'butions of diis work. The fmt contribution is to 

separate the paralie1 Il0 specifications from the sequential functions using templates. That 
is, the goal was to keep the standard sequential interface for invoking Il0 operations in the 
user's code and to describe what p a d e l  UO behaviour(s) are needed independent of the 
code. At compile and at nui-thne these specifications are used to identify and irnplement 
how the parallel behaviours wiii interact with the application and its envuonment 



The sepadon of parallel UO specifcations fiom the interface was accomplished by the 
five templates presented in Chapter 3. These simple behaviours cm be composed to yield 
more complex UO pattern. The composition of the simple behaviom. dong with the read 
and umîte ordering attributes, ailows the user pater  flexiiility in expressing the exact be- 
haviour needed. 

The second contribution of this work Iies in the fact that by separating the Y0 and corn- 
putationai paraUelism h m  the sequential code, optimhtions and adaptive behaviours ac 
compile and nm-time are possible. Developcd in Chaptes 3 and 4 and demonstrated in 
Chapter S. the m-time system for 110 queries and cooperates with the computational par- 
alielism to produce a cocumnt application. When an application changes the VO behav- 
iour of a part*cular task type. the computational khaviour is not affecte& However, the 
o v e d  performance can k affiected 

The third contriiution is a validation that M templates do not necessarily imply a per- 
formance penalty. This daim is developed in Chapter 5. The software engineering ad- 
vantages of templated IIO do not necessarily incur a conesponding loss of performance. 

As a fourth conaibution, this work identifies the components that interact between the 
computational and V 0  paraliet behaviours. There are three areas where interactions oc- 
curred when implementing er/ar in Enterprise (Chapter 4.4). The fmt set of interactions 
defines a transaction by identiQing parallel fiie pointers and determining the scope of these 
file descriptors using remote procedure caii arguments (the computational paraileiism) or 
collective opens (replication factors). In the second set of interactions. this defmed trans- 
action is used by the source-to-source translater to ideniify and rn- V 0  objects to reflect 
the desired p d e 1  behaviours. Analysis will detennine if deadlock prevention is needed. 
The thkd set of interactions is found in the nui-the environment. When a transaction is 
activated, the nin-time environment determines how the behavioun wiil be implemented. 
The location of N e  serves and processes, the number of processes pacticipating in the 
transaction, and how the computational paraileIism is implemented ail have an effect on 
how the Il0 parallekm is implemented. 

The fifih and fmal contriiution ~ s t s  in the fact that this paralle1 VO mode1 is a step to- 
wards automatic paralleiization. The abstraction mechanism for both the computational and 
VO parailelism creates the oppomullty for the user to specify w b t  is wanted for the paral- 
lelism. Dependhg on the supplied code, the compiler c m  create a fiamework that at rua- 
time can detennine the best way (or how) to implement the parallelism. 

6.3 Summary 
This dissertation describes an attempt to define and implement a top-down mode1 for 

parailel V0. A w r  specities what computational and y0 parallelism is wanted for an ap- 
plication. Static analysis and nui-tirne support allows the application to determine ho w to 
irnplernent the padiel behaviours. The centraf assumption is that the user develops code 
using standard C and the supplied standard stmm interface (S tdio). No new Library of 
functions is needed to ciifferentiare the pardel fiom sequential I/0 operations. The cost of 
this approach does not mean signiticant loss of perfomüurce. Some compiler support is 
required to supply transaction information to the nuidme system. This static analysis cm 
be used to improve the concurrency through the insertion of an early release mechanism of 
füe descriptors within a transaction and by determinùig if the deadlock prevention rnecha- 
nism is necessary for a given transaction. The ei/m parallel y0 model relies on an absnac- 
tion of the parallel computational model. Information is shared so that computational par- 
allelisrn and UO paraileLiSm cwperatively work together to produce an efficient paralle1 ap- 
plication. 
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Appendix 

Enterprise Paraiiel Programming S ystem 
The Enterprise PPS [70] uses an analogid appn,ach to help users develop their 

programs. It has successfully abstrafted several paraleking techniques so that the user 
code is wrïtfen in conventionai C and no speaal li'brary hiactions an by the user. 
Enterprise does not analyze the code in order to paraUelize i t  Rather, by ushg the 
directions provided by the user, it inseru the necessary paraUeLiWng code fragments 
according io pdefhed templates. Enterprise uses asynchronous message-passing where a 
message is definecl by the formal patanieter iist of a user-dehed asset. AnalyMg the 
user's code identifies any syncbronization points or futures. 

The advantage of Enterprise is that the user has portable code, both h m  an 
architectural and a communication subsystem point of view. An Enterprise program 
provides similar behaviour regardless of the processor combination. Of coune, 
performance will WEely be different- 

Appendix A- l htroduces the Enterprise programming mode1 and explains how the user 
interacts with this m to c~eafe a worlâng parailel application. A more detailed discussion 
is found in the Enterprise User's Manual [45]. What is presented here is pared down and 
is only sufncient for the paralle1 y0 discussion. More infoxnuition about the different 
aspects of the Enterprise system can be found in [M. 49, 5 1, 64, 841. Appendix A.2 
examines the run-tîme himies used by Ente- ?O mate the parallel computational 
behavioun. These liraries were completeiy redesigned and re-kplemented in an object- 
oriented manner [5 11. Because of this redesign, the implernentatïon of parailei y0 in 
Enterprise was simpWied. 

A. 1 Enterprise Programming Mode1 
Enterprise seeks to separate the parallel implementation details from the user's source 

code. By means of compiler technology, the source code and the specifications for 
parallelism are blended to produce rnacbhe-generated source code reflecting the parallelism 
desired. The user bas no special hiiraries of functions to lem; ail user code is written in 
standard C. A graphical user interface allows the user to express the parallelism in an 
intuitive, visual fashion. 

Enteprise uses a business analogy to represent the different parallel behaviours. A 
business is a nanirally paralle1 object and c m  be viewed as containhg assets tbat represent 
functions that can be remotely and concmently executed. There is a corresponding weU- 
defined chah of cornmand progressing from the top to the bottom of the organization. 

Starting with the initial progmin icon, the user modifies the asset type to represent a 
specific type of paralle1 behaviour. The choices of asset nlpes are available from a menu. 
The assets are c o ~ e ~ t e d  by a series of arcs to form the control-flow diagram for the 
pamllelism in the application. The arcs joiniog these icons represent the communication 
paths for messages and control flow data. Eech asset is associated with a user-defmed 
function. To commuaicate over a given arc, the asset at the start of the arc invokes the 
function associated with the asset at the end of the arc. One of the current drawbacks to 
this mode1 is the inability of the user to express peer-to-peer communication. 

The assets have simple p d e l  behaviours and cm be nested within one another to 
mate more cornplex paraiiel behaviours. Currently, the available assets are: individual, 
service, line, department. and division. An individual asset corresponding to an individual 



worker consists of a sequeutid fiinction. There is no spetial paralle1 behaviour associated 
with an individuai other ihaa iodicating to the em that this function can be executed 
remotely. A service is sïmiiar to an UtdivWl excep that a service cannot initiate remote 
c a s  to otba assets and it is fully c 0 ~ e ~ t e d  to di assets. 

Next are composite assets: l k ,  &p9ranent and division. A composite asset contains 
other assets and has a speafied paralie1 behaviour d a t e d  with it. A Iine asset 
reprrsents the assembly-line in a business. Each worker does some work and then passes 
the partially compIeted workon to tbe next wodter in the iine. The starting worker in a Liw 
is considered tk receptionki. Ail other workers initiate work requests through this 
worker. 

A &pmem has a receptionut who dirats hcomhg cak to the most appropriate 
asset. The receptionin couid aiso divide the work into heterogeneous portions and 
&m'butes it to aii or some of its workers to execute concuûently. 

The division is an attempt to represent the parallelism in divide-andconquer problems. 
Every worker or represenîaîive in a division does the sam job. By splitthg the work into 
smailer chunks. eveatuaily a particular repres~amte will not make a remote call but wiU 
recursively perfom the work itself. For a division, thete is aiso a special munager asset 
whose purpose is to forward wotk to a represeniiztive. The user is aot responsible for 
writiag the code for this generic asset but shouid be aware of its existence at m - t h e .  

Each asset has a collection of five attriites. Fit, and most important, each asset has 
some user-defined. sequential fiinction associated with i t  The nome of the asset 
corresponds to the name of the fiinction. Second, an asset has a replication factor- 
This is dehed as a maximum number of repLicas and a minimum number of replicas. If 
the asset is considered a composite asset, ail the assets contained within this composite 
asset are replicated as well. 

Third, an asset can have ordered or unordered parailel behaviour. Ordered 
behaviour tells the Enterprise m-tirne system that when multiple caiis are made to one 
asset and a return reply is indicated, the order in which the calis were iniaated is the same 
order in which the corresponding replies wiIl be processed. Unordered behaviour tells the 
mn-tirne system to process whichever reply is availabie to the cder. 

Fourth. an asset can be optim0zed a d o r  debugged. To optimize an asset currently 
means the conventional compiler will use the -02 compiler flag. In the future, the source- 
to-source compiler will reorganize the user's code to op- the paraiielism This could 
be doae by loop reorganization, rnoving code to ensure more overlap of concurrent 
computations. If an asset has the debug amibute set, this cunently means the conventional 
compiler WU use the -9 compiler flag. This debug attribute pmvides only the process level 
of debugging in the paraUe1 environment. 

Parallel debugging is a run-the option. When this option is enabled, event 
monitoring is done for aii or some of the processes. Event monitoring generates trace 
files containhg signincant events in the pardel  appiication: messages sent, received, 
processes being spawned and the like. The user can replay the application using these trace 
files to debug individual processes. Trace mes are also used to visualize and debug 
application performance. 
Fifth, the user defines sets of processors either the asset must be run on or cannot be 

nin on as another attriiute pair of the asset. The user can specm a mutuaily exclusive sub- 
set of the machine list for either attribute. When ninning the application, the mn-time 
system tries f h t  to place the process running the asset on the desired processor list. If this 
iist is aot specifïed, a processor is selected h m  the sub-list composed of the avaiiabIe 
machine names with the unacceptabie machine names removed. Otherwise, the Enterprise 
run-time system wili use the entire machine list. In di cases, the processor chosen will be 
the machine with the lightest loab The load for a processor is determined by the Enterprise 



run-ùme h i m y  and may require more information than just the number of active processes 
on a given processor. This couid include information such as: the amount of network 
a~hvity flowing to and h m  a processor, the level of y 0  activity (network or local), the 
type of users (interactive, batch, or owner). 

Tbe interface of the fkst asset is predehed to have the same arguments as the main 
function in a quential C program. This allows the user to u t i .  the cornmanci-he 
argument iist to pass data to the application. As well, the k t  asset is not permined to be 
repiicated. 

A. 2 Enteprise Implementation 
The Enterprise implemntation is presented as three distinct components: the graph fiie, 

the pmcompiler, and the run-time system. Each component has been modified to 
implement the paralle1 I/O templates. What is king presented is sufficient for the paralie1 
VO mode1 but is not complete as to the fdl capabilities of Enterprise. 
A.2.1 The Grapb File 

The gmpb Bk is the hart of the Enterprise system. It is the textual representation or 
dennition of the assets, their paraUel behaviour and atm'butes. The graphical interface 
generates this file for the user. The pre-compiler and the run-time system use this file to 
generate the user-specined behaviows. Figure A-1 shows the generic layout for one asset 
with the bolded text king comments added to clarify and classify the actual text. The 
bolded text is not included in the actual graph file. 

Five h e s  are used to represeat a given asset. Lines two through five are aiways treated 
the same way. regardles of the asset type selected However, the definition of the fmt 
Line is dependent on the asset type selected. The nrst line is the same only for the fmt two 
entries. They are: the name of the hinetion associated with the asset template (asset~ame), 
and the parailel behaviou. associated with the fuaction (as se t-e). The assetType can 
be one of six vaiues: line, department, division, individual, representative, and 
service. Depending on the selection of the asset type, the balance of the line is different. 

Composite assets (iine, department, or division) bave the number of internai 
assets defmed. For ali assets other than the service asset, the minimum and maximum 
replication factors are then dehed. The f h t  line is completed by ail assets def&g if 
o r d e ~ g  (ORDERED or NORDERED), debugghg (DEBUG, or NDEBUG) and optimization 
( O P T I ~ Z E  or NOPTIMZE) are enabied or disabled. 

Figure A-2 shows an acaial graph file with two entries. Sub-assets are defmed in a 
depth-fmt fashion with seNice assets king appended to the end of the füe. This layout is 

Al1 A . m m t m :  
assecName asse- 

Compoiitm A m s r n t 8  ( l i a œ .  dapartaont, division): 
ntimberOfSubassets minReplication maxReplicarion ûrder Debug Optimize 

Xndividual A m m e t 8  (indiridual, r m g r œ m a o t r t i v o ) :  
minReplication maxP-eplication ûrder Debug ûptimize 

O t h m r  Amiet  (somricm): 
ûrder Debug ûptimize 

AT1 A s r m t m t  
CFLAC;s 

EamNAL 
ImulDE 
EXCLUDE 

Figure A-1 - Annotated graph nle entry for one asset 



different h m  the user manual anci reflects the changes made in the redesigned system. 
RecallLig the exampie @en in Chapter 1.1, the paralle1 bebaviour of a parent-chiid 

relationship is easy to implemnt in the graph file. Figure A-2 shows the resultant graph 
me. It descrïbs tk computationai paraUelism of the application. The k t  asset is a 
composite arset d e d  P a r e n t  and contains the fûnction Parent. The signature for 
Parent is: irit, char **. This is to codorm with the sequential C interface to the user 
forind in the fiinction, main. parent malces at l e s t  one cal1 to its sub-asset, the asset 
C h i i d ,  to execute some w o k  Ot&nwïse, a compile-tim emr wiü occur. Parent i~ not 
replicated (nor is it aIlowed to mplicate since it is the k t  asset). This asset is to be treated 
as having dered behaviour with no debugging information needed, nor is the asset to be 
optimized. Wben nui. the asset is to be M on tbe processor called sherwoodpk (if 
avdable) and cannot be nui on the processor known as maligne-lk. 

I Figure A-2 - An exampie graph fie. 

Child asset is an individual asset that will be run as a separate process. It can ody 
be cded by the asset known as Parent, The fiinction, Child, wiu be repiicated starting 
with a minhum of three but expandabie to a maximum of four processes. Successive 
retum vdues nom Chiid do not have to be processed in the original cal1 order but rather 
whenever work is ~ce ived  by Parent. NO debugging idormation is needed nor is the 
asset to be optimized. No Child asset process is dowed to run on the processor called 
sherwoodpk. 

A. 2.2 The Precompiler and Static Analysis 

The Sage* tool kit [8] is used to build the source-to-soum compiler or precompiler, 
for Enterprise. Each asset is stored in a separate file. The precompiler examuies each asset 
source fde. It searches for fwrction c& to other assets as defined in the graph fie. It 
repiaces the function caU with a cal1 to the wrapper function or smb that will pack the 
message containing the function parameters and send it to the remote process. 

The precompiler identifiesfimres (variabks that wiii be modified by a reply message) 
and inse* Enterprise-specific code bgments to ensure that futures are resolved prior to 
using them. Currentiy, any user source code that is not expiicitly d e h d  to be paralleiized 
is not examinai by this tool. 

This wrapper code crosses the boundary h m  the user's code written in the standard C 
language into the run-time system which is written in CH. This stub function is a srnail 
function that coniains sufiCient information about each of the formal parameters of the 
remote function that permit the mtime hifaries to marshal the formal parameters into a 
single message. identifjr the appropriate process, send the data over to the remote process 
for pmessing, add to thefutures list when necessary, demarshai return values, and resoive 
anyfuhrres when a rem message is received fiom a remote process. 



A. 2.3 The Run-time Libraries 
MacDonald [SI] completely redesigned and re-implemented the run-the system using 

CH. Ooe of the sipifïcant changes was the use of behaviour classes to determine the 
paraüel action appropriate for the asset There are single, worker, manager and root 
asset class behaviouis. During program e x d o n ,  a process ninning an asset can exhibit 
different behavious. For example, a process couid be initializd as a single asset. Later 
on, a need develops for several copies of the asset running. The pmcess promotes itself to 
manager of this asset and spawns the iKwssary n&r of worker assets. When the 
ta& is fhshed, the worker assets are dismissed and the manager demotes itself «, 
becom the single asset again. The root asset is respons1ile for user-interfare and run- 
time system interactions. 

The graph file is r d  and transformeci into the asset graph. Recailuig that the graph 
file is considered the kart of the Enterprise system, the asset graph should be considered 
the brauis of the Enterprise paralle1 run& system. I t  maintains both the static 
information contahed in the graph file as well as the dynamic idonnaton acquired at mn- 
tirne. By asLing the graph, a process can determine what asset it is supposed to represent, 
the current, minimum, and maximum replication factors, what asset can c d  it and more 
importantly, what asset it can caU, which pmcess to send the message to, and what futures 
are outstanding. 

The asset graph consists of the mereut components that make up a parallei program. 
This includes the user's asset definitions as well as the extra gewric assets that are 
necessary to run the paralle1 application. These genenc assets are the root and manager 
assets. 

The mot asset is responsible for king the interface between the GUI and the run-time 
system. The rmt asset is responsible for starhg up and shuttuig down the parallel 
application. Tt spawns and aarts the first asset by packbg the command line arguments 
and sending it the resultant message. Ifevent monitoring is needed, it collects events h m  
all processes and either forwards them on to the GUI for rd-time monitoring or stores 
hem in a N e  for pst-mn anaiysis. It is responsible for coordinating the debugguig of the 
entire appücation at the event Level. Because of its responsibiiities, the mot asset is aiways 
a standalone process. 

The other genenc asset, the manager asset, uses a simple store-and-forward process 
to ensure even workload distributon. It is responsible for recmitbg and disposing of new 
worker assets. One optimization of this asset is that it can be collapsed so that a single 
process contains more than one asset: one userdefinecl and one or more managers. 
Typically. this happas when the% is only one d e r  of a replicated asset. The intent is to 
Save one or two network messages. There are two situations when this manager asset 
camot k collapsed. This occurs when more than one asset cails a replicated asset or when 
an asset is a division. 



Appendix B 

B. PIOUS Test Application Codes 
This appendix contains fhe ~ O U S  imp1ementation for the various test applications 

discwed in tbe dissertation. Appendix B. 1 contains tbe PIOUS code for the fiw-grained 
exampIe used in Chapter 5.1. Appndix B.2 contains the PIOUS code for the coarse-grained 
Il0 exampk used in Chapter 5.2. 

B. 1 Small-Graiaed UO Example Program. 
From the original sequential code, there is a significant amount of new code that weds 

to be written. The original version is about 530 liws of code. Converthg to paralle1 
increases the program size by approximately 350 lines. The bold liues in the code represent 
the original code that the user had to write. For this example, the sequential code for chiid 
did not have to be modified. As much as possible. the PVM code for the computational 
parallelism has been hidden away. 

There are several functions that the Parent process c a k  to mate 
( ~ r e a t e ~ i l e ~ n ~ ~ ~ ~ ~ ) ,  import fks int0 ( I m p o r t ~ i l e ~ o ~ ~ ~ ~ ~ ) ,  OC eXpOCt fies f r ~ m  
( ~ o r t ~ i l e ~ r o r n ~ 1 0 ~ ~ )  the PïôüS fiies system. These are tuned to the application 
granularity of an VO segment and are specific to the application. 

The Parent spawns d the Chiid processes ( ~ r e a t e ~ ~ h i l d r e n )  and waits for ail 
the chiid processes to finish (~ait~or~hildren~o~inish) before pmceeding with the 
summary statistics (stats). In the case of the segmented VO, the Parent must ais0 
coordinate the access of the segments by the child processes to ensure that aii the 
segments are read and written only once. Note the distinction between the parailel and 
sequeatial IK3 for the same file. 

A Chiid process opeas the global input and output mes, copies the local segment of 
work (in one operation) to a temporary me, opens the temporary output füe, performs the 
work and then exports the local output fde back to the parallel output file (again one 
operation). This repeats unOl the globai input file is exhausted. The P a r e n t  process is 
then informed and the chi i d  process gracehiiiy exits after cleaning up the temporary files. 
tinclude .h> 
(iinclude cpiousl.h> 
#includo <stdio.hs 
#def ine GRûüP "iogD 
#define MYMES!3iGE 1234 
#define MAXP- 1024 
tdefine INBOFSIZE 352108 
idefine m S I Z E  18050 
#define R#aIDDE ( (pious-modet) ( PIûüSJRUSR ( PIOUS-IWUSR ( 

PIOUS-IRGR2 1 P I O U S ~ ~  1 ) 
main( iat argc, chat *+UgV 1 
t 

int K@XD ; /* My PVM handle */ 
int m y ~ a r e n t ~ ~ ~  ; l* My parent's PVM handie */ 
ht *child~m ; /* List of children's PVM bandles */ 
int dçmt ; P PIOUS bandle */ 
int nchild ; /* Number of childrea wanted */ 
int M d ,  mtfd ; If The parallel file descriptors */ 



k t  i ; /* A counter *f 
int M i d ,  status; /* PVM bufîer handle and status Y 
FILE * fp  ; P Local segment's input file handle */ 
FTLE *O& ; /* Local segment's output file handle */ 
charibufferl INBLTFSIzE] ; /* h p u t  buffer */ 
char abuffer[ OC3TBUPSIZE 1 ; /* Output bumer */ 
char inFi1eC M P d t P m  1 ; /* Global input and *f 
char outfile[ MZiXPAllILEN 1 ; /* Output Cile path */ 
char miRipïhFilet M?HPAIIIIIPI 1 ; P Temporary inpot and */ 
char miaipoutFile[ 1 ; /* Output Cile paths */ 
if ( ( myParentTïD = p v m m t 0  ) = RimNoParent 1 { 

/ 
* Parent - spawn cbild processes 
argv[O]: process name argv[l]: input file name 
argy[2]: output Iflename argv[3]: Number of child processes 

*/ 
nchild = atoi( argv[3] 1 ; /* How many chjld processes are wanted */ 
Inpr tF i l eToPIûüS(  argvlll 1 ; /* lmport the UNIX ffie into PIOUS */ 
CreateFileInPIOSS( argvf21 ) ; /* Cnate  the output file in PIOUS */ 
childTfD = (int *) malloc ( nchild * sizeof ( int ) ) ; /* Allocate handle vector *f 
QeatePVMChildren( childTïD, nrgc, argv ) ; /* Spawn al1 the child processes */ 
WaitForChildren~oFinish( nchild 1 ; /* Wait for them to finshed processing */ 
free( chi ldTa)  ) ; I* Free op child handle vector */ 
EkportFileELanPIOUS( argv[2l 1 ; P Export the output file back to UNM *f 
fp = fopen( argv[S], "ru 1 ; /* Open sequential file *f 
St8t.l f p  ) ; /* Calculate the totals */ 
pvm-exit0 ; /* Leave PVM */ 

1 else { /* I'm a child process */ 
/*  Qild procm88 -- trait f o r  naam o f  f i l m s  to 0g.n */  
M i d  = pvm_recv( myParentTla, KYM€SSAGE ) ; 

stams = pm-upksa( inFile 1 ; /* The input file */ 
starus = pvm-.kstr(  outFile 1 ; /* The output file */ 
dscnt = pious-sysinfo ( P 1 O U S s y s ~ s S ~ ~ ~  1 ; P Ask for PIOUS default information */ 
P Open the PIOUS iaput and output files */ 
infd = pious,papen( GROUP. S i l e ,  PIOUS-=, ~ U F S I Z E ,  

PIOUSS.tATïLE, PI013SSRDONLY, PIOUS-IWSR, üscnt 1 ; 
if ( ù i f d < O  ) 

printError( status, " m g  input file: child' ; 

outfd = pious-popen ( GROUP, outSile, PIOUS--BAL , OUTBIPSIZE , 
P r o u s S . ,  P I O U S V Q f i A T I L E ~  1 PIOUS-CREATE 1 
PIOuSSTRLMC. -DE, dscnt 1 ; 

if ( outfd c O ) 

printErrort status, "Opening output file: childœ ) ; 
/* Create local copy of inputioutput files for this segment */ 
sprintf ( ny'hpIriFile, "/tmp/in-W, pvmmid t ; 

sprintf ( -tFile, "/tmp/out .%xu , mmytid( 1 1 ; 
wfiile (1) { 
status = pious,read( infd. ïbuffer, INBUPSIZE 1 ; I* Read the next block */ 
i f  ( status < O 1 C /* Error */ 
printError ( status, "Reading input: childO 1 ; 

1 else if ( status - O 1 { /* Al1 done */ 
break ; 

1 else if ( status > O ) { /* Normal situation */ 
f p  = fopen( -mile. "w+* ) ; /* Open local iaput file */ 
fwrite ( ibuffer, sizeof (char), INBUFSIZE, f p  ) ; /* Fill it up +/ 
rewind( f p  ; /* Cet it ready for the user's code */ 
ofp = fopen( -tFile, 'w+* ) ; I* Open the local output file */ 
Chfld< fp. ofp ) ; /* Call user's code */ 



rewind( o f p )  ; /* Export the I d  output file to the global file */ 
status = hiead( obuffer, sizeof (char), ûUfBüFSfm, ofp  ; 
status = pioits_write( outfd, obuffer. s t a t u  sizeof (char) I ; 
fclose( f p  1 ; P Close tâe local input and output files */ 
fcloset ofp 1 ; 

1 
1 
/* Shutdown this child and let the parent know */ 
bufid = pvirlirri~send( PmDataRaw 1 ; /* A buffer please */ 
status = pvnl,send( m y ~ a r e n t ~ ~ ~ ,  MYMESSAGE 1 ; /* Tell parent */ 
s t a w  = pious-close( M d  1 ; P Close PIOUS input i i le */ 
sta- = pious-close( outfd ) ; I* Close PIOUS output file */ 
pwapwaexitO ; /* Exit PYM */ 
ualink ( myTB@IitFile ) ; I* Remove the lucal input file */ 
irnli.uk ( -tFile ) ; /* Remove the local output file */ 

1 
rat- O ; 

1 

B. 2 Coarse-Grained I/0 Example 
From the original sequential code in Figure 5-7. it can be seen that there is a ~ i ~ c a n t  

amount of new code that needs to be writtea The sequential version is about 225 h e s  of 
code. Converthg to parallel increases the program size by approximately 350 hes. The 
code shown has been clarified and shortened by removing the timing and resource 
utilization code, 

In this applicaaon. the sequential code for chiid (Figure 5-8) did have to be modified. 
The U e  pointers were changed to PIOUS file hanciles and the U N E  read and write functions 
were converted to PIOUS read and write functions. It is inefficient to cache the striped data 
to local disk and the re-read the local file into memory. As weii, the B manix file was too 
large to cache Iocally. 
B. 2.1 Source code for Parent-c 

#inchde  cpvm3 .h, 
Kinclude <piousl-h> 
#include <stdio.tu 
fdef ine GRQUP ' iog . 
#define MYMESSAGE 1234 
#define MôREWORK 4321 
#define W A ! P H L E N  1024 
#def ine ( (piousgiodet) ( PIOUSSSRUSR 

P I 0 U S S ~  
int Child( int, int, int, int, int ) ; 

main( int argc, char **argv ) 
i 

uit q m m ;  
int myPareritTID ; 
int  *diildTID ; 
int dscnt ; 

1 ~rovs-IWUÇR 1 \ 
1 P ~ O U S S ~  
/* Note the change in parameter type */ 

I* The PVM tid for tbis process */ 
/* The process who spawned me */ 

/* A vector OC childien tids */ 
/* The default PIOUS connguratloa */ 

int segment ; /* Tbe current file segment to work on */ 
int nsegments ; I* Number of segmeals in a file */ 
int  tid, length, msmg ; /* The tid, length and tag for a message */ 
int nelemeoas, rowç~er~lock ; I* The nomber of elernents pet row and rowdblock */ 
int IOBISFFERSfZE ; /* The size of the UO buffer */ 
int ncfuld, nu&t ; /* The number of cbild procesoes */ 
int  infd, outfd ; /* The parallel file descriptors */ 
i n t  ainfd, binfd, coutfd ; /* Child parallel Cile descriptors */ 



in t  i , j ,  k ; /* Counters */ 
inc inpu- ; 

int M i d ,  scatus ; /* Message handles and status variable */ 
F Z E  * f p  ; I* üMX nie descriptor to import and export files */ 
char airSile[ M M P m  1 r /* The A ma- input file uame */ 
char biPPile[ 1 ; P The B m a t h  input file name */ 
char coutFilel M A X F a  1 ; /* The C maMx output file aame */ 
char 'iobuffer ; 

if ( ( m y P a r e n U T D  = p~99arentO = -Parent C 
/ *  

Parent - spawn child processes 
argv[O]: Ptoccss name 
argv[lJ: MatriX A inpilt me arime 
argv[lJ: Matrùr B input IUt mame 
argvl31: c output nItn=t 
argv[4]: Number of elements ptr row 
argv[q: Number of rows pet block (segments) 
argv[q: Nurnbtr of chiid processes 

*/ 
nelearems = a t o i  ( ; i r c ~ [ 4 1  1 r /* Number of Elements per row */ 
rowsPerBlock = a t o i (  argv[SI i ; I* Rows per block */ 
nchild = atoi  ( argv[6] ) ; l* Number of child processes */ 
nçegxaents = nelemexus / rowsPerBhck ; /* Precalculate number of segments Y 
IOBüEFERSIZE = nelemems * rowsPerBlock sizeof (double) ; 
iobuf fer = (char *) mhlloc ( IOBUFFERÇIZE ) ; 

/* NOW, create the PIOUS files from the UNM files */ 
dscnt = ~~~~~~~~~~~~~~~~~~DFL,T) ; /* Get default PIOUS configuration */ 
/* Open the A matrix file and import it into PIOUS */ 
infd = pious-popen( GROUP, argvlll , PZOUS-GLOBAL, IOWFFEECSIZE, 

PIOUS-VOLATILE, PIûüS-RiBR ( PIûüS-CREAT [ PIOUSCREATRUNC, 
-, nsegIIlents 1 ; 

fp  = fopen( argvlll , *rn) ; /* Open the UNIX file */ 
a l e  ( ! feof( f p  ) ) E /* Read in until EOF is encountered */ 
i = fread ( iobuffer, sizeof ( char 1 , IOBUFFERSIZE, f p  ) ; /* Read a block */ 
i = pious-mite ( infd, iobuf fer, i ) ; /* Export a block */ 

1 /* Written the whole file out */ 
status = pious-close ( -d ) ; /* Closing the PIOUS file */ 
fclose( f p  ) ; /* Close the UNIX file */ 
/* Open the B matrix Ble and import it into pious */ 
infd = pious-papen( GRôOP, argv[2], PIOUS--BAL, IOB-IZE, 

PIOUS-VOLATILE, PIOUS-RDWR 1 P I O U S - m  1 PIûUSSTRUNC, 
REamm, dscat ) ; 

fp  = fopen( argv121, "r-1 ; /* Open the U N I .  file */ 
&le ( ! feof( f p  ) ) (: /* Read in untü EOF is encountered */ 
i = fread( iobuffer, sizeof( char 1,  10-IZE, f p  ) ; P Read block */ 
i = pious-wite i ïnfd, iobuffer, i ) ; /* Export block */ 

1 /* Wrîttea the whole file out */ 
status = pi--close ( infd ) ; /* Closiag the PIOUS file */ 
fclose( f p  ) ; /* Close the UNIX file */ 
/* Open and create the C Matrix output file */ 
for ( i = O ; i c nsegments; i++ ) { /* Create each segment */ 
outfd = p i o u s m  ( GEtOtJP, -13 1 , PIOOS--, i , PIOUS-VOLATILE, 

PIOUS-RDWR 1 PIOUS-CREAT 1 PIOUS~TRUNC, REGMODE, 
nsegxmlts 1 ; 

status = ~10os,close ( outfd ) ; 

1 
nimibt = SpawnWorkers( argv[Ol, &childLD, nchild ) ; /* Spawn the wotkers */ 
/* Broadcast to ail child processes a stcutPp message */ 



M i d  = pvmpvminitsend( PvmOataRaw 1 ; /* A buffer please */ 
stattrs = pvmqkstr( argv[ll 1 ; P PIOUS A matrix FILE */ 
status = pwlpkstr[  argv[Sl 1 ; /* PIOUS B matrix FILE */ 
status = pm&cstr( -131 1 ; P PIOUS C matrix FILE *I 
status = m k i n t  ( rnelpmem, 1, 1 1 ; /* The elements per row */ 
status = m k i n t (  &rmrsPerBlock, 1, 1 1 ; /* Tbe rows pet block */ 
status = pvmgkint( &nsegments, 1, 1 1 ; l* Total segments */ 
status = -t( c h i ~ d ~ ~ b ,  n a d ,  MYMESSIGE ) ; /* Send to aII children */ 
s m ~ ç  = pvm-freebuf( M i d  1 ; P Clean up */ 
/ 

Tben are nsegments of work to be done. 
T k r e  are n d l d  processes to do the work 
Each côild proces asks for work, gets segment to work on, does work 
until there is no more in segment then repeats the process 

Each request for work (nsegments) eacb cbild procas told to die (nchild) 
Total: nsegments + nchild messages out 

*/ 
for ( i = O ; i c ns-ts; i++ ) C 
bufid = pvm-rem( -1, MORFrJORK ) ; 1' Request Ior work */ 
status = pvm-bufinfo ( M i d ,  &Iength, &msgTag, &tid ; /* Who from ? */ 
status = pvnlfreebuf ( bufid 1 ; /* Clean up */ 
sta- = pvm-initsend( Pvml3ataRaw 1 ; /* New buffer please */ 
status = pom_pkint( &i, 1, 1 1 ; /* Remaining work */ 
status = pvm_send( tid, M3REWORK 1 ; /* Tell child segment to work on */ 
status = pvm_freebuf( bufid ) ; /* Clean up  */ 

k = -1; /* No more work to be done tell 111 children */ 
for ( i = O ; i c nchild; i++ ) { 

buf id = pvm-recv ( -1, MOREWORK 1 ; /* Request for work */ 
status = pvm.bufinfo ( W i d ,  &length, &msgTag, &tid 1 ; /* Who from ? */ 
status = mfreebuf ( bufid 1 ; /* Clean up */ 
status = pvm-initsendt PvmDataRaw i ; /* New buffer please */ 
status =pnngkint( &k, 1, 1 ) ; /* No more work */ 
status = pvmpvmsend ( tid,  MOREFEORK 1 ; /* Tell cbild that */ 
stahls = pvm-freebuf ( bufid ) ; I* Clean up */ 

1 
for ( i = O ; i < ndiild; i++ 1 { /* Receive the die message from each child */ 

bufid = pvm.recv( -1, MYMESSAGE ; /* From aaybody */ 
status = mfreebuf ( bufid ) ; I* Clean up */ 

1 
free ( c h i l m  1 ; I* Free the children handles */ 
/* Open the output file in global mode and reread it for export */ 
outfd = pious-popen ( GROUP, argv [3 ] , pious--BAL, IOBUETERSIZE, 

PIOUS-VOLATILE, P I o u S ~ ~ Y ,  REGMODE, nsegments 1 ; 
if ( outfd >= O 1 { /* If the output file exfsts */ 

f p  = fopen( -[3j, 'w+'); /* Open the U N E  Pile */ 
while (1) C /* Until done */ 
status = pious-rad( oued, iobuffer, IûBWFEElSïZE 1 ; /* Read a block */ 
if ( status == O 1 break ; /* AI1 doue */ 
status = fimite( iobuffer, sizeof  (char), SOBUFFERSIZE, fp  1 ; /* Write it */ 

1 
status = pious-close( outfd ; /* Close the output file */ 
fclose( fp  ; /* Close the UNIX file */ 
s t a t u  = pious-mlink( argv[3] ); /* Remove the C matrix flte from PIOUS */ 

1 
status = pious-tnilink( argv[2]  ) ;  /* Remove the B matrix file from PIOUS */ 
status = pious,unlink( argvfl] ) ; I* Remove the A matrix file from PIOUS */ 
~vm-exitO ; /* Gracefully leave PVM */ 



} else C I* I'm a child process ' 1  
/* CILJLD ptocess -- wait for file namts in order to open */ 
bufid = pwijecv( myParentTxD, MYMESSAGE ) ; /* Cet r message r o m  my parent */ 
scatus = pvm-upkstr( ainFile ) ; /* Tbe A rnatrix file name */ 
scatus = pvm-upkstr( binFile ) ; /* The 8 matrix file name */ 
scatus = pwa-upkstr( coutFile ) ; /* The C matrfx file name */ 
status = pvm-,kint( &neleiaans, I, 1 ; P Tùe elements per row */ 
status = pvm,upkint ( &rowsPerBlock, 1, L 1 ; /* The rows per segment3/ 
status = pvm-upkintf &nsegmeats, 1, 1 1 r /* The total segments *I 
1-2.. = nelaaen~ rowsPerBlock + sizeof (double) ; 
dscnt = pious-sysinfo (PIO[]S-D$~T) ; 
binfd = pious-popen( GROUP. binFile, PIûüS-IM3EPeSDENP, IûBüFFERSIZE. 

PI~SSVOIaTLLE, P I m s S ~ y  . -DE, dscnt 1 ; 
while ( 1 i 
-id = pvm,iaitsend( RrmDataRaw 1 ; /* Buffet please *l 
status = pum,send( m y P a r e ~ t T m ,  M3REWORR ) ; /* Ask parent for some work */ 
statuç = pvm,freebuf( M i d  1 ; /* CIean up */ 
M i d  = pvni-recv( myParentTSD, MüREWORK ; /* Cet some work */ 
s-tus = pvm-upkint( &segment, 1, 1 1 ; I* Which segment to work on *l 
status = pvrq,freebuf ( bufid 1 ; I* Clean up */ 
if ( segment -- -1 ! break /* Al1 done */ 
M d  = pious-popen( GROUP, a s i l e ,  PICUS--, segment, 

PIOUS-VOLATILE, PIOUSLATFKXXGY, REGblODE, nsegments ; 

coutfd = pious_popen( GI1OUP, coutfile. P I O U S - m ,  segment, 
PICIUS-VO~ILE, PICnJS-WFtONLY, RBZM2DE, nsegments ; 

&le (1) { /* Read until done */ 
status = Child( a d ,  binfd, coutfd. nelanems, rowsPerBlock ; 

if ( stanrs c 1 1 break ; 
1 
status = pious-close( ainfd ) ; /* Close the A segmented input file */ 
status = pious-close( mtfd ) ; /* Close the C segmented output file */ 

1 
status = pious,close( binfd ) ; /* Close the independent B input file */ 
bufid = pum-initsend( RnnaataRaw ) ; /* A buffer please */ 
status = pvm-send( myParentTID, MYMESSAGE ) ; /* Tel1 my parent */ 
pvmpvmexitO ; /* Gracefully exit PVM * /  

1 /* End of if child or parent process */ 
exit(0) ; /* End OC matrix multiply */ 

1 

B. 2.2 Source code for Chi1d.c 
int Cfüld( iat fa. in+ fb, i m t  fc, int nelems, int  nblocks 1 
{ 

double *A, *B, *C ; /* Poi~ te r  to the three matrices */ 
int k, n, j, status ; 
P Allocate space Cor each block of A, B, and C */ 
A = (double *)malloc( nblocks sizeof( double ) + nelems ) ; 

B = (double +)mailoc( nblocks * sizeof( double ) nelems ) ; 

C = (double *)dloc( nblocks + sizeof ( double ) * nelems 1 ; 
/* Read in the block of A for this cal1 to Cbild */ 
status = pioiu-&( fa, A, sizeof( double ) * nelems * nblocks ) ; 

if ( status c 1 ) return status; /* End of file or problems*/ 
k = O ;  
a l e  ( 1 1 C 

/* Read in d l  of B, one block a t  a tirne, until the read fails *l 
status = pioua,m( fb, B. sizeof ( double 1 nelems nblocks 1 ; 
i f  ( .tatua < O 1 /* Problems abort */ 
rat- atatum ; 



el8r i f  ( 8trtw 8- O ) /* Al1 done reading B */ 
brmrf ; 

for ( n = O; n < nblocks ; n* ) { /* Compute the C matrix */ 
for ( j = O ; j < nblocks; j* ) { 

C l  ntnelaas+k+j J = DotProàuct( &ACi*neïeaisl, &âlj*neiemsJ, nelems 1 : 
1 

1 
k += nblocks ; 

1 
/* Write out Che cornpietcd block of C */ 
status = psw-wzito ( fc, C,  sizeof ( double 1 nelems nblocks ) ; 

f r e e ( A 1 ;  /* Frte up the allocated memory */ 
- ( B I ;  
f E e e t C 1 ;  
rot- strtus ; 

1 




