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Abstract 

We consider the construction of designs for the general nonlinear model. 

Using multiresolution analysis in wavelet theory, the classical nonlinear design 

problem is transformed into a robust design problem for 'approximately linear' 

models with orthonormal wavelet basis on the design space S as regressors. 

The rninimax approach is used to construct designs which are robust against 

small departures from the finite wavelet representation of the general nonlinear 

model. We find that the D-optimal design obtained by Herzberg and Traves 

(1994) is also G-, Q- and A-optimal (in the classical sense) if the Haar wavelet 

basis is used in the approximation. We provide a proof which we feel is simpler 

than that of Herzberg and Traves (1994). On the other hand, if the multiwavelets 

with N = 2 is used, the design which chooses more points in a neighbourhood 

of the midpoint of the design space and a few at the extremes is shown to be Q- 

and D-optimal in the simplest case. 

Using the nonparametric local averaging procedure with positive weights. we 

construct optimal weights and designs under the restriction of unbiasedness. bVe 

show that under this constraint, the ordinary least squares method is optimal 

in estirnating the parameters of the Haar regression model. In other words. the 

optimal weight and design obtained were each uniform. For the general N = 

3 rnultiwavelet regression model, we show that the optimal weight and design 

density are concave and convex paraboloids respectively in each of the 

intervals of the design space S = [O7 11 with maximum points at the midpoints 

and minimum points at the endpoints of each interval. We also show that the 

design is symmetric about the midpoint of the design space. 

Strategies for implementing the designs are discussed. The question of how 

well these wavelets approximate nonlinear models is also considered using specific 

exam ples. 
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Chapter 1 

1 Introduction 

The title of this dissertation indicates that we will focus our attention on 

const ruct ing designs for nonlinear models using wavelet approximations. Wavelet 

theory, which has been developing over the years, has proved to be useful in 

signal processing, fast aigorithms for integral transforms in numerical analysis 

and function representation (see Daubechies (199%), Strang (1989) and Alpert 

(1992)). This wide applicability has contributed to the growing interest in them. 

Let y(xi )  E % be an observable random variable; xi E S 8 9  the ith vector 

of some control variables and ei E P a sequence of uncorrelated random un- 

observable errors with mean zero and common variance a2. In this work, our 

discussion will be centered on a model describing the relationship between the 

response y(x) and the independent variables x in the following manner : 

where t ) ( x i )  is the value of some square integrable, possibly nonlinear function 

11 at xi. We observe that the precise structure of the nonlinearity present need 

not be known in order to apply wavelet approximation techniques. The only 

requirement is the choice of an appropriate wavelet b a i s  and the order m of 

the approximation. Often, if the form of ~ ( x )  is assumed known, it is only 

a convenient approximation based on experience and prior information which 

assumes that the deviations from the "true" model is negligible. In this case. 

the assumed form of q ( x )  also depends on some unknown vector of parameters. 

say Bo E RP. These parameters in general, have some physical meaning which 

makes them interpretable and of interest in their own right. However. since 

information provided by the original parameters O0 cannot be obtained from the 



wavelet approximation, the formulation ( 1.1 j provides a convenient framework 

for our discussion. In Chapter 4, we find that the multiwavelet ba i s  with LV 

= 1 and 2 can be used to approximate several nonlinear relationships. Thus 

wavelet approximation techniques provide a flexible tool for analysing unknown 

asd approximately known nonlinear functional forms. 

The three simplifications that anse from using wavelet expansions of nonlin- 

ear models are : 

(1) the regressors no longer depend on the unknown parameter Bo; 

(2) the diEcult problern of estimating the parameters of a 

nonlinear mode1 is eliminated; and 

(3)  the problem is transformed from a nonlinear design problem 

to a Linear one with disturbance function - the well known 

robust design problem. 

Thus. the problem of constructing classical designs for nonlinear models is made 

equivalent to that of constructing robust designs for linear models where the 

regressors constitute a system of orthonormal wavelet basis of the design space 

S. Herzberg and T'raves (1994) are probably the first to consider classical de- 

signs for wavelet regression models using the Haar waveiets as regressors. The 

approximation procedure is outlined in Section 1.3 of this chapter. 

In what follows, we provide a brief introduction to the theory of classical 

and robust design and some background on wavelets. More detailed discussions 

and reviews can be found in Box and Draper (19*59), Fedorov (1972), Steinberg 

and Hunter (El&$), Ford, Kitsos and Titterington (1989)? Daubechies (1992) 

and Pukelsheim (1993) arnongst others. The classical design problem is defined 

in Section 1.1 with some examples. We discuss the various approaches in the 

li terature for dealing wit h linear and nonlinear problems. The assump t ions of 

classical design theory discussed in Section 1.1 leads us naturally into the robust 

design problem presented in Section 1.2. CVe review four types of robust designs 



in the Literature. These are: 

(1) robust designs for approximately linear modek; 

( 2 )  designs robust against autocorrelated errors; 

(3) rninirnaz robust weights and designs for approxirnately linear models; and 

( 4 )  model robust designs for nonpararnetric regression rnodels. 

Two approaches, the minimax and infinitesimal approach, are reviewed. In Sec- 

tion 1.3 we provide sorne background on wavelet theory relevant to our work. 

The results obtained in Our investigation of robust designs for biased wavelet 

regression models are summarized in Section 1.4. 

1.1 The Classical Design Problem 

We begin by considering an observable random variable y E iJ2 which dependr 

on a design variable x E S g F through the model (1.1). 

An experimenter can take n independent observations on y a t  the points 

XI, xz7 ......, x,, not necessarily distinct, choosen from the set S. Since the set S 

often consists of more than n-points: the question that arises naturally is - which 

n-point design, xi, x2, ......, x,, should we choose ? ClassicaI design theory was 

developed in an attempt to answer this question. If the response surface ~ ( x )  

can be written as 

the problem is said to be a linear design problem; it is nonlinear otherwise. The 

classical design problem for regression models with a pre-specified form for ~ ( x )  

has been discussed in g e a t  details by several authors. In this case, it is implicitly 

assumed that the model ( 1.1) representing y ( x )  is exactly correct. 

Smith (1918) was the first to consider the question of design optimality. Other 

early contributors include Wald (1943). Hotelling (1944) and Elfving ( 1952). 

However, Kiefer (1959) and Kiefer and Wolfowi tz (1 959) contributed signifi- 



cantly to the area by extending the previous work. The subject of nonlinear 

experimental design was perhaps first studied by Fisher (1922). White (1973) 

proved the nonlinear version of the Kieier-Wolfowitz equivalence theorem. 

In order to apply optimal design theory to (1.1) a criterion is required for 

comparing experiments. For parametric models, t his criterion, somet imes called 

the loss function, is often taken in optimal design theory to be a rnonotonic 

increasing scalar valued function @ ( M ( @ )  of the mean squared error (MSE) 

matrix of an estirnator of Bo. 1f 8 is unbiased, the MSE reduces to the Covariance 

matrix. Mathematically, the classical design problem can be stated as: 

min @(M(d)). 
{xr .--.x, E S )  

For mathematical convenience, we associate wi t h the n-point design XI, xz,. --. 
x, a discrete design measure ((x) on S7 which places equal mass $ at each of 

the design points xi, 

where 6, denoteç the pointmass 1 at x. Then, we rewrite ibf(ê) as M ( ( ( x ) ) .  

This transforms the n-observation design problem to that of finding a discrete 

probability measure ['(x) which minimizes b(M(c(x))) .  A cornmon approach 

to this problem is to extend the definition of the MSE matrix to  the set of 

al1 probability distributions, denoted by X, on S and find En(x) in X to mini- 

mize O(M([(x))). CVe then hope that an n-observation design whose associated 

probability distribution approxirnates ('(x) will be close to optimal for the n- 

observation problem. We adopt t his viewpoint, often called approxima te design 

theory. For robust designs, t his implies t hat admissible designs are necessarily 

absolutely continuous (see Wiens(1992)). 

Some optimality criteria commonly iound in the Iiterature are : 

(1) D-Optimality - when the loss function is the determinant. 



(2) A-Optimality - when @(-) t race( - ) .  

(3) E-Optimality - when a(-) E A,,,(-) where A,., represents 

the maximum eigenvalue. 

(4) G-Optimality - when 

(5) Weighted-optimality - when @ ( M  (<)) = tr(W1~f -' (O), 
where W is a known weight. 

The Kiefer-Wolfowitz equivalence theorem mentioned earlier provides a link be- 

tween D- and G-optimality. Chang (1979) constructed weighted optimal designs 

for a linear model with linearly independent regressors belonging to the repro- 

ducing kernel Hilbert space (RKHS) H ( R )  generated by a known continuous 

and positive definite covariance reproducing kernel R ( s ,  t )  on S x S. For any 

symmetric positive definite matrix W the optimal design was simultaneously A-. 

D- and weighted optimal for S = [O, 11. 

The linear design problem has been studied by several authors using various 

loss functions and variations of the linear models. Interested readers can refer to 

Fedorov (1972), Silvey (1980) and Pukelsheim (1983).  Designs for nonparametric 

regression models have also been studied by a number of authors. Chan ( 1991) 

ernploys first order differences to construct designs for estimating variance in 

nonparametric models with model function g(t ) and independent errors having 

zero mean and constant variance. The estimate considered was of the form 

&2 = foi sorne syrnmetric non-negative matrix D. Assurning that g satisfies t rD 

a uniform Lipschitz condition and D = (ri,), a tridiagonal symmetric matris. 

the asymptotic variance V was obtained. The uniform design was found to be 

the minirnizer of V if is a one to one function of ( t i + l  - ti) where Yi; = 

+ vi), = = 0, (i = 1, ..,n) and yi,i+l = - r i ,  ( i  = 1 ,  .., n - 1). Muller 

(1984) considered a nonparametric model where the error Z ( t )  is a sequence 



of stochastic processes with E{Z( t ) )  = C O V { Z ( ~ ~ ) ~  Z(t2)) = O(n-'), t i  # t 2 .  

Var{Z(t)) = oZ(t )  + O(&) and the response surface g E Ck([O, 11). Based 

on the Gasser-Muller estimator g,,,(t), k > v ,  of the function g, with uniforrn 

and non-uniform bandwidt hs, the asymptotic Integrated Mean Squared Error 

(IMSE) of the estimate was derived. Under appropriate conditions, the design 

densities minimizingIMSE in the class {f E C([O, 11) 1 1 f ( x ) -  f(y)l _< Lrl~-gIQ '  

Lr > O and all x, y E [O, 11) were 

for uniform and non-uaiform bandwidths respectively, where h is the density of 

a probability measure H, $(x) = [a(~)~~-~)~(')(z)~(~~+~)h(x)~~+~ 1 and 

O < a 5 1. We observe that the optimal design density derived in Chapter 3 of 

this thesis has the above structure. 

Adopting a Bayesian approach Mitchell, Sacks and Ylvisaker (1994) defined 

three design citeria,  A-optimality (for average), G-optimality (for global) and 

D-optimality (for determinant), for constructing designs ivhen the response is 

represented by a random function (stochastic process ). In general, t hese criteria 

do not have the properties which obtain in the classical setting. The main interest 

of this work was to draw attention to the fact that certain asymptotics produce 

a class of tractable Bayesian design problems from hard ones. Necessary and 

sufficient conditions for D- and A-optimality were obtained and several exam- 

ples considered. They also compared exact designs computed numerically for the 

asymptotic criteria wit h exact designs computed for the original nonasymptot ic 

ones, in some simple cases. They found that designs based on the asymptotic 

criteria were easier to compute and were quite efficient over a wide range of 

the parameters of the prior process. Discussions on traditional Bayesian design 

theory, where the prior for the response function is a random finite linear com- 

bination of known functions can be found in Pilz (1953), Chaloner (1954) and 



Bandemer, Nather and Pilz (1987) amongst others. In a related developrnent. 

Sacks: Welch, Mitchell and Wynn (1989) discuss the design and analysis of com- 

puter experiments. One feature of computer experirnents is that the output is 

deterministic. Sacks et al (1989) treat the deterrninistic output as a realization 

of a stochastic process Y ( x )  that includes a linear regression model with error 

variance a2R, where R is the matrix of stochastic process correlations. Using 

the IMSE criterion and a method called Kriging to evaluate the blSE, they 

const ructed sequential designs for a circuit-simulator model on the design space 

[0.5,0.5]. 

Van der Linde (1985) discussed the question of estimating an unknown re- 

gression function g ( t ) ,  t E [a,  b] given a finite number of observations and in- 

vited studies on optimal designs based on the global generalized smoothing er- 

ror j,6 ef ($ )do@)  where Q is a rneasure on [a, b] and e 3 t )  is defined by Van der 

Linde (1985) to be the generalized smoothing error. Assuming that g E H(Ii). 

a RKHS, the technique was to interpolate g and estimate the interpolating func- 

tion. The Bayesian approach adopted was justified by interpreting interpolation 

in RKHS as a Bayesian procedure. Fan (1992) also considered the problern of 

estimating a nonparametric regression function g(x). Let f (x), the marginal 

density of the random variable X and Var(Y1X = x) = 02(x) be independent 

of g ( x ) .  Restricting to the c!ass C2 = {f(-, -) 1 Ig"(y) - g ( x )  - gl(x)(y - x)1 5 

$(y - x ) ~ ) ,  and under some regularity conditions, Fan (1992) obtained the best 

linear smoother to be the local linear regression smoother given by 

1502 ( with K ( t )  = 3 1  - r2]+ and h, = d. This rnethod is sornetimes called the 

design adaptive regression method because it adapts to various design densities. 

to both fixed and random designs and to both interior and boundary points. 



For nonlinear models, the methods used in the literature so far produce a 

mean squared error matrix which is a function of the unknown "truen parameter 

OO. The dependence of the MSE on the unknown do has been a major difficulty 

in obtaining good optimal designs. The following approaches have been used in 

the literature to remedy t his difficulty. 

B1 Parameters are assumed to be close to certain specified values. 

Designs obtained using this assumption are called locally optimal 

designs (Chernoff ( 1953)). 

B2 Use p i o r  estirnates either from previous experiments, or from a 

pilot experiment conducted specially for the purpose, or merely 

guesses (Box and Lucas (1959)). 

B3 Propose some weighting function W(-) on the parameter space. R, 

which may or may not be a formal prior density and construct 

or a new criterion 

This approach has been criticized by Ford, Kitsos and Titterington ( 1989). 

They also emphasize the effect of changes in the prior estimates of go on the 

properties of locally optimal designs and static designs obtained by B2. 

B4 Use a sequential strategy in ivhich the parameter estimates are updated after 

each trial and the next design point is then choosen with the aid of the 

improved estimates (Box and Hunter (1965)). Box (1970) introduces a 

criterion as a guide to the time when it is no longer worth changing points. 

Chernoff (1953) studied locally optimal designs using minimization of the 

trace of the inverse of Fisher's Information matrix as the design criterion. He 

used the design problem for quanta1 response data as an  example. Box and 



Lucas (1959) obtained numerically a D-optimal design for a chernical reaction 

mode1 

by working with a linearized approximation and preliminary guesses OIo = 0.1, 

= 0.2. The problem was to choose x l i ,  i=l,2, ..., n so as to maximize the 

determinant of FTF where F is the matrix of pârtial derivatives of 7 with re- 

spect to 0. The significance of this criterion derives from the fact that if q(x. 8) 

is assumed to be approximately linear in the neighbourhood of an initial point 

O., the asyrnptotic variance of the estirnate 8 is proportional to (FTF)-' and 

det(FTF')-' is proportional to the volume contained within any specific ellip- 

soidal probability contour for 0 about 8. in the space of the parameters. Thus 

the D-opt irnality criterion ensures t hat any such probabili ty contour includes 

the srnallest volume. That is, we minimize the volume of the linear approxima- 

tion joint-confidence regions for the parameters. The problem was considered 

for n = p = 2 so that the design points were choosen to maximize det(F). 

Considering ( l.4), Atkinson and Hunter (196s) describe a sequential procedure 

for obtaining the design points using the same criterion. They found in several 

chernical examples that with n a multiple of p, the optimum plan consist of P 
replications a t  each of the p optimum sets of levels for the case n = p, under cer- 

tain sufficient conditions on the design space. Box (1968) studied the case when 

n is not a multiple of p. Haines (1993) show that the replication of the ppoint 

D-optimal designs obtained by Atkinson and Hunter (1968) and Box (196s) as 

well as the result of Velilla and Llosa (1992) for heteroscedastic nonlinear models 

follow directly from approxirnate design theory. 

Several authors have applied optimal design theory to nonlinear models aris- 

ing from ciinical trials (Begg and Kalish (1984)), life testing (Maxim et a1 (1977)) 

and dynarnic systems (Ti t terington ( 1980)). The design criterion most st udied 



is D-optimality and the sequentiai procedure is most favoured. 

1.1.1 Examples of Classical Optimal Designs 

In this section, we give five examples of classical designs. The first two are 

based on the simple line fit model. Exarnple 3 is based on the Haar wavelet 

regression model adapted from the paper by Herzberg and Traves (1994). The 

last two exemples are on polynomial and nonlinear regression. The method of 

parameter estimation in al1 the examples in this section is that of least squares. 

Example 1: Consider the simple line fit model 

Using the least squares estimator of BT = (a0, BI) and applying elementary meth- 

ods it can be shown that the D-optimal design is: 

(a) choose f points xi at each of f 1 when n is even; 

(b) choose 5 points xi at each of iz1 and an extra point 

at either +l or -1 when n is odd; and 

(c) choose points xi at each of f 1 and an extra point 

at O when n is odd, if in addition we impose the condition C x; = 0. 

Such designs are said to be exact because they are discrete and irnplementable. 

Exarnple 2: We continue with the model in Example 1 with xi E [-1, O]. Define 

the vectors 

XT = (1, xi) and cT = (1,l).  

Following Pukelsheim (1993) it can be showo that the unique optimal design 

rninirnizing the variance of cTe is the design which takes one-third of the obser- 

vations at xi = -1 and two-thirds a t  22 = O. That is, 



Example 3 (Wavelet regression): Model (Herzberg and Traves (1994)): 

1 i f O $ x < f  

-1 i f $ s x < l  

O otherwise. 

Under the Haar regression mode1 of order m given by (1.5) the design which 

places equal mass 2-("+ '1 in the P+' intervals 

is D-optimal. For m = 2 and n = 8 the design is implemented by taking the 

eight observations at the points 

In Chapter 2, we show that the design described above is also Q-, A- and G- 

optimal. We give a proof which we feel is simpler than that of Herzberg and 

Traves (1994). We also provide a strategy for implementing the design, in Chap- 

ter 4, of which the choice (1.7) is a special case. 

Example 4 (Polynomial regression): Model (Hoel (1958)): 

Hoe1 (1958) has shown that the unique D-optimal design places equal weight -& 
at the ( d  + 1) solutions of the equation 



where Pd(t) is the first derivative of the dt h order Legendre polynomial Pd(t). 

Example 5 (Nonlinear regression) : 

Hamilton and Watts (1985) proposed a quadratic design criterion for the 

strictly nonlinear mode1 of type (1.1) based on a second-order approximation of 

the volume of the parameter inference region. The approximation is that the 

volume is proportional to 

where 

cr is a fixed significance level and s2 is an estimate of variance 

- B; 

The matrix B 

measures the intrinsic curvature of the expectation surface. Under the assurnp- 

tion of no intrinsic curvature, the matrix C becomes the identity matrix. If a2 

is known becomes 02X2(p;  a). The matrix M is defined by 

where A = L ~ [ u ~ ] [ v . ]  L is a three dimensional array. The matrices U and L are 

obtained from the decomposition V = CIL-' and satisfies UTLJ = I and L L ~  = 

(vTv) - l .  The square bracket multiplication (used to define multiplication by a 

three dimensional array) [UT][v.] reduces the n x p x p array V.  with elements 

$& to a p x p x p array. Hamilton and Watts(1985) proposed to iteratively 

minirnize the approximation as follows: 
a'x2(p;4.  (a)  choose an initial estimate, O:, for g2; select cr and set ki = , 

(b)  evaluate &, Co and &Io using an initial estimate O0 of O; 

(c) iteratively minimize the quadratic approximation to obtain an 

optimal design. 



Using the nonlinear model (1.4) and the procedure described above, they ob- 

tained an optimal design under the assumption of no intrinsic curvature equiv- 

alent to replacing C by its expected value. They used as initiai estimates 

Bo = ( 0 . 7 , 0 . 2 ) ~  and the D-optimal design from Box and Lucas (1959): x~ = 

(1.23,6.86)T. They choose 00 = 0.1, so that po = 0.25 and ko = 0.0884. Their 

iterative procedure led to the optimal design XQ = (1.04,5.56)T. 

Their work was motivated by the papers by Bates and Watts (1951) and 

Cochran (1973). Bates and Watts (1981) suggested choosing the design to mini- 

mize the pararneter effects curvature. Cochran (1953) invited studies of the small 

sarnple performance of the D-optimal design criterion after noting its asymptot ic 

nature. 

1.2 Robust Designs 

Robust designs became a subject of interest for two major reasons. These 

are 

( i )  the model may not be exactly correct; and 

(ii) the errors E j  may not be uncorrelated 

as earlier assumed implicitly or explicitly. It is well known that in most cases 

where the form of q(x) is pre-specified? the assumed form is the model builder's 

best mathematical description of the process under study and often a convenient 

approximation. We recall that in the nonlinear case, the designs constructed so 

far have used a linear approximation of q(x, Bo) with the hope that the remainder 

terms are negligible. Under these conditions, the least squares estimator of Bo 

is biased and the classical designs which minimize variance alone are no longer 

"optimal" due to the bias. Several authors including Box (IS'il), Cook, Tsai 

and Wei (1986) and Bates and Watts (1980) have studied the problem of bias in 

nonlinear regression models and provided approximations. 



In the linear case, Box and Draper (1959) outlined the effects of departures 

from the assumed linear model on the optimal design. They criticized the clas- 

sical optimality criteria, some of which have been defined in Section 1.1, and ar- 

gued that a more appropriate optimalitycriterion is the Integrated Mean Squared 

Error (IMSE) of the estimate i(x) of the "true" response surface q ( x )  over the 

design space S. That is, 

where R, the Integrated Square Bias (ISB) and the Integrated Vâriance (IV) are 

defined by 

and I V  = fil E{q(z)  - E [ + ( Z ) ] } ~ ~ X .  
cT2 

They showed that if the assumed mode1 is the simple linear model when the 

true rnodel is quadratic, the designs minimizing IMSE were similar to those that 

rninimized the bias component alone, but were quite different from t hose that 

minimized the variance cornponent.. 

Using the minimax approach, Huber (1975) studied the effect of departures 

from linearity and agreed with Box and Draper (1959) in his conclusion. Huber 

(1975) observes that deviations from linearity that are too small to  be detected 

are already large enough to tip the balance away from the (classically) optimal 

designs shown in Example 1. 

For nonlinear models no work bas been found in the literature that is aimed 

at  studying the effect of departures from the assumed model. This is not surpris- 

ing since the study of designs for nonlinear rnodels has lagged behind partly due 

to the inherent difficuity associated with the designs depending on the unknown 

parameter values. However, White (19S1), Steinberg and Hunter (1984) and 

Ford, Kitsos and Titterington (1989) have noted the consequences of pretending 



t hat a nonlinear regression model is exactly correct. Other related activities in 

this area include designs that facilitate improvements in nonlinear models by try- 

iog to highlight suspected inadequacies or that discriminate between competing 

models. Studies in this area have been done by Hunter and Reiner (1965). Box 

and Hill (1967), Hill , Hunter and Wichern (1968) and Atkinson and Fedorov 

(1975). 

Another point mentioned earlier is that of correlated errors. In this case, 

the covariance rnatrix of the estirnate 8 is a function of the unknown correlation 

matrix of the errors. Therefore, designing to minimize an optimality criterion 

which is a function of the covkance rnatrix under the assumption of uocorrelated 

errors will lead to designs that rvill not optimize the loss function under correlated 

errors. Thus the subject of robust designs is aimed at constructing designs which 

are not sensitive to small departures from the assumptions on which the model 

is based. 

There are two basic approaches in the literature for constructing robust de- 

sign~. These approaches, the rninirnax and infinitesimal approach, rvere both 

adapted from the theory of robust estimation. Huber (1964, 1975) introduced 

the rninirnax approach to robust estimation and design. Hampe1 (1974) is the 

first to use the infinitesimal approach for robust estimation. The infinitesimal 

approach was first applied to robust design theory by Wiens and Zhou (1996~) .  

1.2.1 Approximately Linear Models 

In order to investigate the sensitivity of designs to model misspecification. 

several authors have studied various versions of a modification to the assumed 

linear model. The "approxirnately linear model" is represented as 



where 

and f (x) is some unknown contamination terrn belonging to some class 7. Ro- 

bust minimax designs were constructed by solving the problem 

min max @(hi( f 0) 
€ je3 

for some loss function 9 (-), w here M( f, C) is the MSE of 8. 
To motivate (1.11), suppose that an experimenter fits the mode1 

knowing fully well that it is only a convenient approximation. Define 

and set 

Then the equations 

and 

define /3a uniquely provided the matrix Js q(x)qT(x)dx is non-singular. To pre- 

vent the error due to bias from dominating that due to variance, Huber (1975) 

and more recently Wiens (1990) placed a bound on the disturbance function 

f (x) to obtain the condition 



for some s m d  and known number T .  From (1.16) and (1.17) the class 

used by Huber (1975) and Wiens (1990, 1992, 1994, 1996) in their investigation 

was constructed. The class .FI has been criticized by Marcus and Sacks (1976) 

and Li and Notz (1982) as being too large. They claimed that exact designs in 

this class have infinite maximum loss; a clairn which has been proved by Wiens 

(1992). Therefore, robust designs constructed for deviations in FI are continuous 

designs which are ap proximated by discrete designs in pract ice. 

A class 3- which has been used by Marcus and Sacks (1976), Sacks and 

Ylvisaker ( 1978) and Pesotchinsky (1952) is 

where the function #(x) is known. This class often leads to designs whose m a s  

is concentrated at a small number of points in the design space, hence have 

severely limited robustness against reaiistic departures from the assumed model 

(see Wiens (1993)). 

The class of functions f or its derivatives f' satisfying a uniform Lipschitz 

condition are also found in the robust ness literat ure: 

Using IMSE loss and 31, Huber (1955) constructed robust designs for t he  

model (1.11) with qT(x )  = (1,x) and S = [-0.5,0.5]. He showed that the 

optimal design has density 



with a and 6 choosen to satisfy 

rn(r)dr = 1 and (1.21) z2rn(x)dx = 7. 

The parameter 7 is detennined by v = S. AS v -t O , the loss function is 

dorninated by the ISB and m(x)  -r 1 - the uniforrn density on [-0.5,0.5]. On 

the other hand, the IV dominates as u 4 ai. The solution then converges to 

the classicai optimal design which places equal mass at each of the points fi. 

Wiens (1990) extended the work of Huber (1975) to the case of multiple 

regression with q T ( ~ )  = (1, xT) , xT = (xl , 22, ...? z p )  and S the sphere of unit 

volume 

He also obtained the density of the optimal design for the case of two interacting 

regressors, where q T ( ~ )  = (1, XI, 12 ,  x l x 2 )  and S = [-0.3,0.5] x [-O& 0.51. The 

minimax design density for multiple regression was shown to be of the form 

where a and b are determined so that m ( x )  is a density and js Ilxl12rn(x)dx = m. 
r2 

For the range of values of the ratio where 70 = js xtdx = pfi, the values of the 

constants a and b as well as the form of the least favourable disturbance function 

were obtained. As $ 4 1 the uniform design becomes minimax corresponding 

to n -t oo or v + O. In the other directions, as 7 + = $ the optimal 
P 

design places pointmass 1 at llxll = rP.  

The density of the optimal design for the mode1 with two interacting regres- 

sors was shown to be 



where the multipiiers are determined to satisfy 

The uniform design becomes the minimax design if y = &. Using FI and the 

loss functions 

L D ( ~  7 t )  = d e t ( l W . f ,  O).  CA(^, 0 = t r a c e ( M ( f  7 5)) 

 LE(^, = ~rnaz(~f(f, c ) )  and t ~ ( f ?  c) = s u p ~ , ~  d ( x ;  f, t ) )  
where d(x; f, c )  ) = q T ( x ) i ~ (  f, c)q(x), optimal designs for the multiple regres- 

sion model have d so  been constructed by Wiens (1992).  Other robust designs 

constructed using the class Fi can be found in Wiens (1991,  1993. 1994, 1996). 

Pesotchinsky (1982) considers the setup given by 

where $(x) varies in the clasç F2 and Q(x) is a convex function of llxl12 = 

c:=, z:. In constructing the designs it is assumed that the experimenter intends 

to estimate the parameters of the model by means of the least squares method. 

Using the optimality criterion 



he showed that any symmetric design 6 supported only by points on the sphere 

SR of radius R = is D-optimd. The uniform design on a sphere of radius Ri 

= 6 and Rm = JG- were shown to be A- and Eoptimal respectively, where 

vl and v, are determined appropnately. Interested readers can see Pesotchinsky 

(1982, pg 521). Other authors who have used the class F2 are Li and Notz (1982). 

Li (1984) and Liu and Wiens (1994). 

Sacks and Ylvisaker (1984) used F3 and F4 to construct minimax designs for 

the nonparametric model 

where 7 is one of 35, f i .  The exact design problem was converted to an easier 

to solve approxirnate problem of choosing a measure C to minimize 

where Cf = c!=, q f ( t i )  = J'dC and I'f is any of the following 

( i )  Discrete : r f = c;"=~ 7, f (xj) = JS f f l ;  

(ii) Continuous : I'f = S, ~ ( x )  f ( x j d x ;  

(iii) Derivatives : i'f = f ' (xo) .  

For each of (i), (ii) and (iii) they proved the existence of an optimum C* under 

appropriate conditions on n and k. Several examples and efficiency calculat ions 

were provided to illustrate the construction of designs from the approximate 

problem for fixed T f .  In Sacks and Ylvisaker (1985), their previous work was 

extended to the case where f ( t )  is a realization of a stochastic process F with 

mean O and covariance function R(s, t ) = EF(s )F ( t  ), s, t E S. A connection was 

made between the Bayesian approach in this study and the minimax approach 

through a transformation to the RKHS associated with R. The specification of 

3 serves to represent the departure from the assumed "idealn model or serves 

as an approximation for the "realn f whose explicit form may never be knoivn. 



A related problem which bas been studied by Karson, Manson and Hader 

(1969), Sacks and Ylvisaker (1978) and Marcus and Sacks (1975) is that of 

finding new linear estimators of 0 when the model is approximately linear. The 

strategy adopted by Karson et al (1969) is to construct an estimator which for 

a given design 

(1) minimizes ISB, the bias arising from terms of specified higher degree 

being omitted from the fitted equation; and 

(2) subject to achieving minimum bias, the estimator achieves minimum IV. 

1.2.2 Linear Models With Autocorrelated Errors 

When observations are taken sequentially in time, as  in time series, it is often 

a good idea to subject the errors in the mode1 representing the data to a test 

of independence or serial correlation. In most cases, it turns out that the errors 

are correlated. However, the precise structure of the underlying correlation is 

either unknown or the errors are only known to behave as a weakly stationary 

stochastic process such as the autoregessive or moving average process. The 

covariance matrix of the parameters in the model then depends on the unknown 

autocorrelation matrix, which we shall denote by P. In the absence of knowledge 

of P, the covariance matrix cannot be minimized to obtain optimal designs. 

In the literature, robust designs for linear models with autocorrelated errors 

are constructed in two stages. These are: 

( 1 )  find a design (* which is optimal for uncorrelated errors; 

(2)  order the design points to minimize the covariance matrix of the 

parameter estimate under correlated errors. 

Following this procedure, Berenblut and Webb (1974) obtained robust D-optimal 

designs for the model 



The correlation structure they considered is when P = V(p) ,  where p is the 

parameter of the first order autoregressive process. Thus V ( 0 )  = I ,  the identity 

matrix. Constantine (1989) constructed A-optimal designs which are robust 

against autocorrelated errors when P = I + A4 where iM = (m,) and 

p i ,  i f i = j + l o r j = i + l  
mij = 

ot herwise. 

Other contributions to the study of designs for exactly linear models with au- 

tocorrelated errors can be found in Jenkins and Chanmugan (1962), Kiefer and 

Wynn (1981, 1984), Bischoff (1992, 1993) and Pukelsheim (1993). Williams 

(1952), Sacks and Ylvisaker (1966, 1968) and Bickel and Herzberg (1979) view 

the error process i ( t )  as a time series with the experimenter sampling in time. 

The most commonly studied process is the first-order autoregressive (AR(1)) 

process. 

From the stages outlined above for the construction of designs robust against 

autocorrelated errors, one can see t hat t hese designs are t hemselves classical 

designs. Some work h a .  been done in the area of constructing minirnax designs 

for approximately linear models of the type (1.11) with autocorrelated errors by 

Wiens and Zhou (1996a, 1996b). In their work of 1996a they considered an error 

process which follows a very general model of dependence. The error process 

was assumed to have 

where P is the autocorrelation matrix of a weakly stationary process. Under 

some assurnptions which include 

they obtoined the asymptotic MsE(&&). Based on the IMSE loss they showed 

that the asymptotically minimax design c. for the approximately linear model 



wi t h uncorrelated errors retains its optimality when the errors are correiated. if 

the design points are raadomly sampled from &. The error process also have to 

satisfy (1.26), (1.27) and 

Following t his work, t hey discussed (1996b) minimax designs for ( 1.11 ) when 

the errors follow an AR(1) process. The parameter was estimated by the best 

linear unbiased estimate (BLUE). They showed that the design & with marginal 

density (1.20) is an asymptotically minimax design for the BLUE provided the 

sign of p. lpl < 1, is fixed. 

For convex classes 3 and 77 of disturbance functions and autocorrelation 

matrices define 

Let M S E ( J ~ & ~ ?  f& P) be the mean squared error rnatrix of f i ê~s .  The 

change of variance function C V F ( ( ,  I ,  Pl) for a design ( at I in the direction Pl 

is defined by 

It measures the rate of change of MSE in the direction of a particular autocorre- 

lation structure under srnall departures from the ideal model. Changes in MSE 

due to increases in bias as departures from the ideal model towards a particular 

disturbance function occurs is measured by the change of bias function (CBF). 

The CBF of ( in the direction of fi is defined as  



Using the CVF and the CBF, Wiens and Zhou (1997) introduced t h e  concept 

of infinitesimal robustness. They defined t hree types of infini tesimal robust ness. 

A design is said to be 

(a) V-robust if it rninimizes L ( M S E ( & ~ ~ ,  fol [, 1)) subject to a 

bound on the change of variance sensitivity (CVS). That is, 

CVS(C) 1) = sup CVF(t7 1, P) 
5 a; 

p e p  L ( M S E ( ~ ~ ~ L S ~  h 0) 

(b )  B-robust if it minimizes L(MsE(J~&,, fo, [, 1)) subject to a 

bound on the change of bias sensitivity (CBS). That is, 

(c) M-robust if 5 is simultaneously V- and B-robust. 

Restricting to the class of designs with C:=, ri = O and taking S = [-0.5- 0.51. V- 

robust designs for the simple lineor regression mode1 were constructed for various 

range of values of a. They also derived the density for the B-robust design and 

outlined an approach to constructing ?VI-robust designs. 

In a related development designs which are robust against heteroscedastic 

errors in approximately specified regression models of type (1.11) with 

were discussed by Wiens (1996). One of the main results of this work is that the 

density ko(x) of the optimal design for polynomial fit, subject to a side condition 

of unbiasedness, is proportional to the function 

where PJx)  is the  qth Legendre pol-nomial on [-1,1]. It is not difficult to 

show that the local maxima of h , ( x ) .  hence those of k o ( x ) ,  are the zeros of 



(1 - x2) Pi(x). From Example 4 of section 1.1.1, these are the support points of 

the D-optimal design b of the exact polynornial regession model. Therefore. 

ko (x )  can be viewed as a smoothed version of [ D .  

1.3 Some Background On Wavelets 

In this section we introduce some theory on wavelets relevant to Our work. 

We restrict ourselves to the basic definitions and some of its properties. More 

extensive discussions and examples can be found in Mallat ( lSSS), Meyer ( 1992). 

Chui (1992) and Daubechies (1992). 

A wavelet system is the collection of dilated and translated versions of a 

scaling function d(x) and the primary wavelet +(x) defined by 

and 

respectively. The functions 4(x) and $(x) are choosen to satisfy the equations 

for a sequence { h , )  of constants, called filter coefficients, with 

The condition 



ensures the existence of a unique solution to equations (1.38) and (1.39) (sec 

Daubechies and Lagânas (1988)). Orthogonality of the translates of q(x) is 

ensured by the condition 

In the theory of wavelets, the space of square integrable functions, L2(S)  (S  C 

W), is written as the limit of a sequence of closed subspaces (4) where 

Definition 1.1: Let { x ~ ( x ) ?  k E 2) be a complete system of functions in L 2 ( S ) .  

The system { x k ( x ) ?  k E 2) is a Riesz basis if 

(1) for any function f ( x )  E L 2 ( S )  the series of the squares of the Fourier 

coefficients is absolutely convergent. That is, 

where 

(2)  for any sequence of numbers Idk) E f2, the set of square 

sumrnable sequences, there exists a function f ( x )  for which the 

{dk) are its Fourier coefficients with respect to the set { x k ( x ) ,  t E 2). 

The conditions (1.38) and (1.39) ensure that the set ( d j P k ( ~ ) ,  k E 2) is a Riesz 

b a i s  in each V,. That is, 

for any fixed j E 2. Jaffard and Laurencot (in Chui (1992)) have shown that i f  

H is a Hilbert space and (ep) a Riesz basis of H and G the operator defined by 



then ap = ~ - ' / * ( e ~ )  forms an orthonormal bais  of K. The Gram rnatrix C' is 

defined by G = ( g ( j ,  k))j,kE=l where g ( j ,  k) = < ej ,  e k  > and < ., . > is the 

inner product on the Hilbert space H (see Meyer (1992) pg. 25). If in addition 

to (1.42) and (1.43) the condition 

is satisfied, the sequence of closed subspaces {V,, j E 2) is said to be a mul- 

tiresolution analysis of &(S). Mallat (1989) has shown that a v e n  any multires- 

olution analysis, it is possible to derive a function @(x) such that the family 

j ( )  : j ,  k E S )  is an orthonormal basis of L2(S). 

To construct J > j , k ( ~ ) 7  we define for each j E 2 the difference space CV, to be 

the orthogonal complement of V, such that 

That is, any function r ( x )  E I.;-' can be written as a linear combination or 

direct sum of functions in CVj and If. It can be verified that IY, is a dilate of 

wo 

r ( x )  E CI; ~ ( 2 ~ 1 )  E CVO 

where 

Using (1.47), Lz(S) can be decomposed into a direct sum of the spaces CI/;, so 

t hat 

This implies that &(S)  is spanned by the dilates and translates of +(x). 



The normalized dilates and translates Q j , k ( x )  form an orthonormai wavelet basis 

for L2 (S). 

The Haar wavelet basis is the simplest example of a wavelet system on Lz(S) .  

The scaling function is : 

1 ,  i f O s x < l  

0 , otherwise. 

The refining relations for the Haar wavelet basis are 

and 

The multiwavelet system constructed by Alpert (1992) will also be useful in 

Our study. The multiwavelet basis differ from ot her wavelet bases in t hat instead 

of a single scaling function $(x), t here are several funct ions 40, .. -.... div- w hose 

translates span the space K. Each scaling function is a dilated, translated and 

normalized Legendre polynomial on the interval [O, 1 ): 

J m p i ( ' 2 x  - l ) ,  x E [O, 1) 
$i(x) = 

O otherwise 

where Pi, ( i  = 0,1, ....., N-1 ), are the Legendre polynomials. The space V,! n E S 

are dilates of Vo and the difference spaces W, are as defined previously. The 

primary wavelets denoted by NWQ, .....-; p p ~ ~ 1 - 1  vanish outside [O, 1) and are or- 

t hogonal to  polynomials of maximum degree, 

It turns out tha t  the multiwavelets coincide with the Haar wavelet basis if N = 

1. The procedure for constructing these wavelets are outlined in Alpert (1992. 



pgs. 197-199). For iV = 2 the scaling functions and primary wavelets are 

1 if O L x < l  

O otherwise 

( - 1 )  0 6 r < l  

0, otherwise 

d ( 1 - 4 s ) ,  o s z < ;  
J3(4x - 3),  f 5 x < 1 

0, ot herwise 

6 2 - 1 :  O s x < f  

62 -5, ! 5 x < l 
0, ot herwise. 

The refining relations for these multiwavelets (iV=2) are: 

The graphs of the scaling functions and primary wavelets are shown in Figure i. 

1.4 Summary of Results 

Beginning from Chapter 2, we const ruct robus t designs for the 'approximately 

linear wavelet regression model' of the form ( 1 . 1 1 )  with q = 1. We adopt the 

minimax approach. The wavelet bases on S = [O, 11 used in the construction of 

the designs are the iV = 1 (Haar) and N = 2 multiwavelets. 



Figure 1: Scaling functions and Pnmary Wavelets: (a) do(x) ; (b) & (2) : 

(4 W o ( 4  ; (4 2wd4- 



In Çhapter 2, we transform the problem of finding the least favourable distur- 

bance function f (x) into an eigenvalue problem involving the symrnetric positive 

defini te  root of a matrix G. We show that this matrix is at least positive semidef- 

inite and propose a procedure for approxirnating G if it is singular. 

To fix ideas, we proceeded step by step to construct minimax robust designs 

for the biased mth order Haar wavelet regression model. We found some evidence 

that no non-symmetric design is admissible (see Sections 3.1.1 and 3.1.2). Our 

conjecture is that this is true in general. Considering m = O and m = 1 we 

have shown, in Sections 3.1.1 and 3.1.2, that among symmetric and absolu tel^ 

continous designs and for any f E F the uniform design is A-, Q- and D-optimal. 

The results for m = O and m = I raised the suspicion that the uniform design 

might be minimax robust for the general problem. This suspicion led us to begin 

searching for a proof. 

In the general case, we first considered the classical problem. We were able 

to show that any design 6 with the property B ( b )  = 12m+i is simu1taneousIy 

A-, Q-, D- and G-optimal. It turns out that the design 50 which places equal 

mass 2-("+') in each of the 2"+' subintervals of S has this property. Using 

information from the results of the classical problern, it was not too difficult to 

show t hat the continuous version of CG, the continuous uniform design is minirnax 

robust in a strong sense (see the remarks after the proof of Theorem 2.2). 

Under the assumption that the order of approximation for the two primary 

wavelets (m and p) of the N = 2 multiwavelet are equal (m = p = O): we derived 

minimax robust A-: Q- and D-optimal design densities for the biased N = 2 

multiwavelet regression model. The minimax design derived places more mass 

in a neighbourhood of the midpoint of the design space and a few at the extremes 

(see Figure 2). We are only able to provide solutions to this simplest case due to 

the complexity of the eigenvalue problem arising from the maximization of the 

loss function with respect to ,f. 



In Chapter 3, we assume that the experimenter will use weighted least squares 

in estimating the parameters of the wavelet model. Under this assumption. ive 

denved an optimal weight function and design density, with respect to the IMSE 

criterion, for the general wavelet regression model subject to the condition of un- 

biasedness. The condition of unbiasedness eliminates the complicated eigenvalue 

problem mentioned earlier. The optimal design density is shown to be a func- 

tion of the squared Euclidean norrn of the vector of wavelet basis used in the 

approximation and also inversely proportional to the optimal weight. 

Using the Haar basis, we found that the optimal weight and design are each 

uniform. Implying that the ordinary l e s t  squares method is optimal in esti- 

mating the parameters of the Haar wavelet regression model if the model is 

unbiased. 

For the M = 2 rnultiwavelet regression rnodel we first derived a closed form 

for the squared norm of the vector whose components are the N = 2 multiwavelet 

b a i s  for m = p. Using the closed form, we showed that the squared norm is a 

convex paraboloid in each of the 2"+l subintervals of S with a maximum value 

of 2m+3 and a minimum value of 2"+ ' ?  attained at the endpoints and midpoint. 

respectively, of each subinterval. The obvious implication of this finding is that 

the optimal weight and design are respectively concave and convex paraboloids 

in each of the zm+' subintervals. By deriving some identities, we are able to 

establish the fact that the optimal design is symmetric about x = $. And 

also that the value of the squared norm on the design space S is completely 

determined by its value in only one of the 2"+' subintervals. The Iast result of 

this chapter is the derivation of a recursive relation for the squared norm when 

m # P. 
In Chapter 4 we propose strategies for implementing the designs constructed 

in Chapters 2 and 3. We also consider how well the multiwavelets used in 

this study and the optimal weights derived can be used to approximate some 



commonly used nonlinear models and data with no pre-specified model. W e  find 

that the general features of the models were picked up by the fitted wavelet 

models ait h sorne features of the primary wavelet retained. 



Chapter 2 

Robust Minimax Designs for Biased 

Multiwavelet Regression Models: Ordinary 

Least Squares 

1 Preliminaries 

We continue our discussion by considering the mode1 which describes the ith 

response yi E B in a nonlinear experiment as follows: 

where xi E 8 is the ith design point of the explanatory variable x choosen from 

some design space S E S; 7 ( x i )  E 4 is the value of some nonlinear function r) 

at the design point xi ;  and C i  E R is a randorn sequence of uncorrelated and 

unobservable errors with mean zero and constant variance a2 > 0. 

In this chapter, we begin the construction of designs for wavelet approxi- 

mations to the nonlinear mode1 (2.1). First, we discuss the structure of the 

approximation. Then, we provide sorne background on the general theory un- 

derlying the construction of robust designs in Section 2. The problem of finding 

the least favourable disturbance funct ion j(x) arising out of the wavelet approx- 

imation is considered in Section 2.1. It turns out that the general form of f ( x )  

can be obtained. However, we need a specific wavelet basis to construct the 

designs. The multiwavelets with parameter N = 1,2  were used for this purpose. 

We observed in Section 1.3 of Chapter 1 that the multiwavelets with iV = 1 

coincides with the Haar wavelet basis. 



The main result of this chapter is the finding that any design Co with B ( 6 )  = 

I p + t  is simultaneously A-, D-, G- and Q-optimal for the classical design problem 

if the Haar wavelet basis is used in the approximation of any nonlinear function 

i ) ( x ) .  That is, Co minirnizes trB-'(0 and maximizes the determinant of B(c) ,  

where the c o v ~ i a n c e  matrix is proportional to B-'(c). We use the equivalence 

t heorem and orthonormality of wavelet basis to obtain G- and Q-optimality. We 

also find that the continuous uniform design is Q- and D-optimal for the robust 

design problem. For the multiwavelets with IV = 2 we are only able to povide 

solutions to the simplest case due to the complexity of the eigenvalue problem 

arising from the maximization of the loss iunction wit h respect to f .  

Let x E S = [O, 11 and q(x) E LÎ (S ) .  The multiresolution analysis of C2(S)? 

discussed in Section 1.3 of Chapter 1, leads to two wavelet representations of 

q(x) defined by Meyer (1993) and Walter (1995) as : 

and 

where 

Meyer (1992) also showed that (2.3) implies (2.2) and states that it is not known 

whether (2.2) irnplies (2.3). Since actud computations require finite representa- 

tions, we rewrite q(x) as : 

m 2J-1 

and 



respectively. The range of k has been restricted to ( h  2 O )  so that at any level 

j the orthonormal wavelet basis I l > - j , k ( ~ )  will be zero on the complement of the  

design space S = [O, 11, (see also (2.46) and (2.109)). The function f(x) is the 

remainder satisfying 

for some srnall, known value T and m a finite non-negative integer. Define the 

1 x Sm+' vectors 

Then (2.1) can be written as 

To estimate the parameters ,Oo, we ernploy the least squares method because 

of it's classical nature and mathematical convenience. We note that the design 

problems discussed in this work remains the same if the robust M-estimate or 

the Mallows-type Generalized (or "Bounded Influence") M-estimate is used in- 

stead of the Least squares method. This is a consequence of the fact that the 

asyrnptotic variance of bM is a scalar multiple of the variance under ordinary - 
least squares estimation. The asymptotic variance of PGM is proportional to the 

variance of BwLs. In both cases, the multiples are independent of the weights 

and design. For details of the asymptotics see Wiens (1996a). 

A special class of nonparametric regression smoothen of q ( x )  is the local 

averaging procedure defined in general by 



where {W,i(x))%l is a sequence of weights which may also depend on the points 

xi .  If the weights are positive and satisfy 

then q ( x )  is a least squares estimate. In this case, î)(x) is the solution to 

So, the least squares estimate is a special case of the nonparametric local av- 

eraging procedure for estimating ~ ( x ) .  The ordinary least squares method of 

estimation which we have adopted in this chapter corresponds to the case where 

the weights are uniform. In Chapter 3? we consider the case when the weights 

are not uniform. 

Antoniadis, Gregoire and Mckeague (1994) in their discussion of least squares 

wavelet regression, observed that the wavelets used for least squares regression 

should form a basis of the L2 space on the design region S. This explains why we 

considered a multiresolution of the design space S rather than of 32 in the early 

part of t his section. In recent years, several out hors have considered the problem 

of constructing wavelets which form a basis of iC2 on a closed interval [AB] .  

They include Andersson et al (1993), Alpert (1992), Cohen, Daubechies and 

Via1 (1992), Chui and Quak (1992), Daubechies (1993) and Jaffard and Meyer 

(1989). Antoniadis, Gregoire and Mckeague (1994) also examined the problem 

of the best value of m and state that in practice, for sample sizes between LOO 

and 200, it suffices to examine only m = 3,4 and 5. 

2 General Theory 

The wavelet equivalent (2.9) of model (2.1) is precisely the 'approximately 

linear model' discussed in Section 1.2.1 of Chapter 1. Foliowing the technique 



outlined in that section, we approximate E(ylx) by qT(+)?o and defioe, by least 

squares, the "true" parameter in the wavelet approximation Po by 

We note that (2.9) and (2.11) define Bo uniquely since 

implying 
1 

Suppose that a sample of size n, ( ( x i .  y;))'7 is taken frorn the mode1 (2.1). 

approximated by (2.9). The least squares estimate of ,do under the approximation 

and 



Define 

and express B in terms of ((z) to obtain 

where { ( r )  is the distribution function of xi given by (1.3). Under the mode1 

(2.9), the bias, p and variance, C of are 

respectively. For the uniform design, dÇ(x) = dx, B(Ç) = I and b( f, () = 0. 

This irnplies t hat , 

Denoting the mean squared error matrix of B by M (  f, [) we have 

We recall that the idea behind (1.3) is to transform the n-observation design 

problem into that of finding a probability measure (': corresponding to an n- 

observation design, such t hat 

min max $ ( M (  f ,  5)) = max <P(M(j ,  C R ) )  
€ f E 7  j e 3  

for some real-valued monotone function @, and 



If we can find a (* to solve (2.21) then hopefully an n-observation design x. ivhose 

associated probability distribution approximates (* will be close to optimal for 

the n-observation design problem. 

Al1 loss functions we will be considering satisfy the following conditions: 

(Cl )  Monotonicity: If 1M( f i ,  () > kl( fi, c), in the sense of positive 

semidefiniteness, then <P(iM( f l , [ ) )  2 O ( M ( f i , { ) )  ; 

(C2) Unboundedness: @(hl (f,, <)) -t oo if Chl(lZI( fn, C)) 4 oo 

as n 4 oo, where Chl denotes the maximum characteristic root. 

CVe also assume, to avoid trivialities, that if there is a point xo E S with q(x,) = 

O, (e.g. q(l) = O),  then c { x o )  = O. Otherwise, since such a point xo would 

contribute nothing to b or B, we could remove it from S and work with the 

condi t ional design on S\ {xo} 

Under the above conditions, Wiens (1992) has shown that a necessary con- 

dition for s u p ~  9 ( M (  !,()) to be finite is the absolute continuity of the design 

rneasure 5. The loss functions we shall consider are: 

(1) Integrated mean squared error loss (IMSE), 

Substitute for M ( f ,  () and sirnplify to obtain 

(2) Trace of ibl( f ,  <), 



Any design that is optimal with respect to these loss fuunctions will be said to 

be Q-, A- and D-optimal respectively. By optimal we mean the design which 

minirnizes the maximum (over f )  loss. We observe that we can also define the 

INlSE as 

since the maximum over f E 3 lies on the boundary of the first constraint in 

(2.22) and therefore has no effect on the maximization problem (see discussion 

before and after (2.31)). Expression (2.26) then implies that 

min max LQ (f, () m[in max &,(f, c) .  (2.27) 
€ j€3 J E 3  

That is, Q- and A-optimality are equivalent for wavelet regression models. 

2.1 Least Favourable Function f (x) 

2.1.1 A-, Q-optirnality 

We first fix [ and maximize Lp over F. W e  consider only designs wi t h fini te 

maximum loss; these are necessarily absolutely continuous. Denote by m ( z )  t h e  

density of the distribution S ( x )  Then, our problem is. 

rnaxirnize J (  f,() = b T ~ - 2 b  + Js f2(x)dx subject io 

To solve the above problem we either proceed as in Wiens (1990) or use t h e  

Fritz John's condition and the independence constraint qualification for mixed 

constraints (see Bazaraa and Shetty (1976)) to obtain the  same solution. We 



9m+ 1 employ the latter approach. Let r E 93- , v2 2 O be Lagrange multipliers. 

The maximizing fo must then satisfy the equations 

where bJ(f0, A f, t) is the Gateaux variation of the functional J(io, A f, 5) in the 

direction of A f at fo E +. Now, 

There are two possibilities for the multiplier u* : 

(1) u;r = O implying I h (  fo) is inactive or nonbinding. 

(2)  u2 > O implying &( fO) is active. 

W e  note from (2.28) that if case (1) holds then we have strict inequality in 

constraint (ii). Ot herwise, we have equality and 

Note that if fo(x) satisfies (i) but 

2 &1jo)2(x)dz = r . 

The function h-' fo(x) satisfies the constraints (i) and (ii). and 



It follows that the maximurnover f lies on the boundary of the second constraint 

and case (2) holds. So, our problem becornes, 

The second term of the functional J (  f. F ) ,  namely j, f '(x)dx, has been dropped 

because constraint (ii) implies that it is a constant, r2 .  Heoce, the second term 

has no effect on the solution of the maximization problem. 

Combining (2.29) and (2.30) we have 

If this equation holds for al1 A/, then the maximizing Io must satisfy the equat ion 

That is, 

where 

Normalize (2.33) to satisfy (2.28i) to obtain 

Therefore, 

fo(z) = q T ( x ) ~ - ' [ ~ - ' n ( x )  - I]c .  (2.534) 

To show that the maximizing fo(x) is of the form (2.34), see Wiens (1990). 



From (2.24) we have that 

If we define 

Problem (2.31) becomes 

n a z i m i z e  J (  JO, () = C ~ ( B - ~ C  - I)B-2(CB-2 - I)c  

subject to ( 2 . 3 4 )  

r2 = c T W 2 ( C  - B2) B - 2 ~ .  

Let G = C - B2 and G'k the symmetric positive definite root of G. The question 

that arises in this context is whether G is positive definite. First. we show that 

it is at least positive semi-definite. To see this. we note that G can be written 

as, 

for some vector 5 E w ~ ~ ' ' .  NOW, if G is not positive definite, we approximate it 

as follows: 

( i )  Take any density m l ( x )  for which G > O and put 

m,(+) = ( 1  - t )m(x)  + tm i (x ) .  

(ii) Evaluate Gt = (C - 82)1,(,)=,,(,). 

(ii i)  Evaluate P ( t )  = IG'& Then? 



(a) P(t ) is a polynornial in t. 

(b)  P(0 )  = O, P(1) = IG,,(,J > O, which implies that P ( t )  is positive 

(since P is non-negative) for all sufficiently small t > 0. 

(iv) Put G, = Gtn > O for a sequence t ,  1 0. 

(v) Use G, in place of G and take limits at (2.42). 

If we define 

t hen 

and 

fo(x) = rqT(x)[m(x)~ -  fa 

for some a satisfying llallZ = 1. We rewrite (2.39) as 

fo(r) = uT(r)a 

w here 

It can be verified that the following hold : 

and 



Our problem is then to maximize (2.41) subject to lla1I2 = 1- NOW: 

m m  r 2 a T ~ h ~ - 2 ~ f  a = r 2 ~ h l ( ~ f  B - 2 ~ f )  (2-42) 
flall=1 

where a is the eigenvector corresponding to  the maximum characteristic root 

Chl(- ) .  To find the eigenvdues of G ~ B - Z G ~ ,  we solve 

where G = C - B2. 

Here, maximizing LD over 7 is equivalent to maximizing the functional 

b T F i b .  Proceeding as in Section 2.1.1: we have that the rnaximizing JO is 

of the form 

R ( x )  = $(z)[B- 'm(r)  - I]c.  

We transform the maximization problem into an eigenvalue problem by observing 

t hat 

So that we now solve 

where a is defined by (2.38). That is, we solve IG)B-'G) - XII = O or 

IG - AB1 = 0. 

For the purpose of illustration, we now consider examples using specific type 

of wavelets which form an orthonormal basis of L2(S) .  



3 Examples 

3.1 The Haar Wavelet 

The Haôr wavelet basis for &(S) is given by (see Daubechies (1993): in 

Recent Advances In Wavelet Analysis) 

where the scaling function is defined by (1.52) and the primary wavelet is 

The wavelet coefficients defined in (1.38) and (1.39) are 

;i, if k = O  
-$; if k = O , i  

hk= { i f k = I  
O otherwise 

O otherwise. 

From the primary wavelet, we find that  

We suppose that an experimenter plans to approximate a nonlinear regression 

model by the wavelet equivalent using the Haar wavelet basis. In the next 

section, we construct robust designs for t h e  Haar wavelet regression model. 

3.1.1 A-, Q-optimality 

To fix ideas, we proceed step by step to consider the cases rn = 0. 1 and the 

general case. 

m = O: Here, qT(z) = (4(x),  $(x)): 



and 

If for simplicity we set 

t hen 

There is some evidence, as seen in the theorem below, that no non-syrnmetric 

design exist for Lq, LA loss. 

Theorem 2.1 Let y satisfy the biased m = O Haar regression rnodel. Let S = 

[O, 11. Then, among absolutely continuous designs [, non-symmetric designs are 

inadmissible for Lp and LA. The unij'onn design is cl- and Q-opt imal  for a n y  

f E 3. Also, miqmaxjLo(f:C) = rniqmax/La(f,() = 2$ 

Proof : The steps we follow in proving Theorem 2.1 are : 

( i )  Solve the eigenvalue problem (2.43). 

( i i )  From (2.35) and (2.42) set m a x j  Iq( f ,  [) = r2(X,., + 1) + $ t r ~ - '  and 

minimize with respect to m(x) .  

(iii) Use the result from (ii)  to discuss 

designs. 

(iv) Restrict to symmetric designs and 

is uniform. 

the inadmissibility of non-symmet ric 

show that the minimax robust design 



Solving for A in the equation 

we obtain two roots Al, Az satisfying 

Note that le1 < i and 

is non-negative or negative depending on the sign of (he2 - 2pe + h ) .  Suppose 

(he2 - 2pe + h )  5 O ,  so that A,., = Al. LVe minimize 

subject to the constraints 

That is, we minimize 

iL 

for some multipliers u and v .  We obtain 

We note that the "density" (2 .56)  is oot finite if x 

(he2 - 2pe + h )  2 0 so that A,., = A*,  we obtain 

This "density" is aIso not finite if x E [i, 1) .  Thus no non-symmetric density 

is admissible. Our conjecture is that this is true in the general case as well. 
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So, restricting to absolutely continuous designs with density m ( x )  which are 

symmetricabout x = 8 ,  we have e = h = O and A,,, = XI = X2 = p - 1. 

That is, 
P 

A,, = Js m2(s)dx - 1 

and a = 1. We then minimize 

subject to the constraint 

to obtain m(x) = Is, the continuous uniform design. To see this, we observe 

that if (2.59) holds then 

which is clearly rninimized by m(x) = Is. 

m = 1: In this case, 

Restricting to densities which are symmetric about x = 6 ,  we have 



It follows that 

and 

LVe also observe that 

Js $2(3x)m2(x)dx 

T herefore, 

w here 

p = 24 ~(2x)rn2(x)dx, and 7 = 2 ~2(2r)m2(x)dx = /5 m2(x)dx. 



w here 

E = [y - ( 1  + X ) ( 1  +2a2)] l  and 



For ease of computation, we rewrite the matrix B as 

with 

w here 

and 

I + PH- 'R  = H-' = (1 - ?a2)-'1. 

So that 

Theorem 2.2 Let y satisfy the biased m = 1 Haar regression model. Le! 

S = [O, 11. Then, the continuous uniform design is robust minimax among 

symmetric and absolutely continuous designs ( and for any f E T.  Also. 

Proof : The proof involves restricting to symmetric designs and using the steps 

outlined in the proof of Theorem 2.1. W e  begin by solving the eigenvalue equa- 

t ion 



to obtain 

( A l  + 1) = 
A b - 7  

2a& - (1 + ?a2) 
and 

Next, we find A,.,. To do this, we consider the difference 

Frorn the above expression, A,,, = Xi if f ( a )  = 2a2/3-?ay +p 5 O .  Otherwise. 

A,,, = A2. Let us assume, for a moment, that A,., = AÎ. It follows that. 

Using the expressions for X2 and trB-' we obtain 

We then minimize, 

Prior evaluation of the multipliers associated with the constraints show t hat the 

second symmetry constraint 



is inactive or nonbinding in the sense that the multiplier associated with this 

constraint is zero. It is therefore dropped from the list of constraints. For sorne 

multipliers u: v ,  w ,  we minimize 

to obtain 

We rewrite ('5.52) as 
1 

1 I 
+$w - - V ) I [ ) ~ ~ < ! ]  + pl[$5zol. Y (2.83) 

Determining u,  u and w to satisfy (2.79) and (2.80) we obtain 

u=2&+4a ,  v = 4 & a a n d w = 2 + 2 & .  

By substitution, the optimal design density is given by 

We evaluate f (a) = 

? = 2f 

+( 1 - afi) [ I [ ~ ~ ~ <  il + I [ ~ < z < ) ] ] -  (2.85) 

2cr2P - 2ay + P. Substituting for m(x), we have 

Therefore, f ( a )  = O.  It follows from (2.75) that A,., = X2 = At  for m ( x )  

defined by (2.85). Tt turns out that using hi or X2 as A,., yields the same 

optimal design density (2.85). Substituting /? and 7 into (2.77) we have that  

4 a 2  
min mgx L o ( f o ( )  = < (1 - 2a2)n + r2 



which we minimize with respect to a. Obviously, a = 0. T = O rninimizes (?.dB). 

It follows that the uniform design is Q-optima1 and 

Remark : We observe, from (2.85), that the minimax design for rn = 1 is 

actually the sum of uniform designs over each of the zmfl intervals. 

General Case 

The designs which are optimal for any m are presented in Lemma 2.1 and 

Theorern 2.3. Lemma 2.1 provides the design which minimizes the t race  of 

the covariance matrix B-'({). The remark that follows shows that this design 

also maximizes the de terminan t  of B(c). 

Lemma 2.1 For the model (2.1) approximated b y  the wavelet model (2.9) with 

scaling function b ( x )  and primary wavelet +(x) defined by (1.52) and (2.47) 

respectiuely, any design Co with B(c0) = Izm+i minimizes tr{B-'(0). In partic- 

ular, an y design tG which places equal mass  Pmf '1 in the 2m+1 interuals 

Proof : Consider the convex combination 

and define 

p ( t )  = trBel(tt). 

Shen p ( t )  is a convex function (see Fedorov (1972) Theorem 2.9.1) and is min- 

imized at t = O if  and only if pl(0) > 0, for al1 &. In what follows. we evalu- 

ate pl(0) and apply the condition B ( 6 )  = 1 2 m + i .  We then see that the  result 



follows trivially if llq(~)11~ is a constant for al1 x E [O, 1). We conclude the 

proof of the first part by using the properties of the Haar wavelets to show that 

llq(x)112 = 2m+1 for al1 x E [O, 1). Finally, we show that B({i)  = Ip+i. Now. 

w here 

T herefore, 

We now show that 

That is, 

is maximized by t0. The result follows if we can show that qT(x)q(x) is constant 

for al1 x E S. From the definition of m(x) and $(x): we have that q i ( l )  = O for 

al1 i. It follows from our assumption that {(l) = O. Therefore, any design which 

concentrates mass at 1, cannot maximize Js qT(x)q(x)d[. Hence, it is sufficient 

to show that qT(x)q(x) is constant for al1 x E [O, 1). 



At any level 1, (Z = O, 1, ...., m), t here are 2' q5-functions and 2'+ l intervais. 

For any arbitrarily choosen xo E [0,1), o d y  one of these $-functions is non-zero 

at a given level 1, since the intervals are disjoint and 10 belongs to one and only 

one of the intervals. In fact, the only non-zero 11>-function takes the value f 

Therefore, for any xo E [0,1), 

and 

Since xo is arbitrary, for any x E [O1 l ) ,  qT(x)q(x) = 2"+' and the first part of 

the theorem is proved. 

To complete the proof we show that any design (G which places equal mass 

*Hm+') I in the intervals (2.90) has the property B(( i )  = 12m+i. Now, at any level 

1, (1  = 0,1, .., m),  the diagond elements of q(x)qT(z) are 

and the off diagonal elements are either zero or of the form 

where h, ai, az, 61 and b2 are constants such that b2 - a2 = bl - al = 2-('+l). So, 

Remark: In Fedorov (1972) it has been proved that  the following assertions are 

equivaleot : 



(1) the design in minimires trB-l (c) 
(2) the design Cs minimires max&(x, c), where 

(3) rnax, P(x, c') = trBa'(['). 

So, if B-*(cn) = k B - l ( ~ * ) :  for some constant k, <' is also G-optimal and hence 

D-optimal. Now, B(Co) = kI and LQ = LA (see (2 .26) ) .  It follows that Co 

is simultaneously A-, D-, G- and Q-optimal considering only the variance. The 

proof of D-optimality of 6 was also given by Herzberg and Traves (1994); we 

feel that our proof is much simpler. 

Theorem 2.3 For the mode1 described in Lemma ,".Io the unifornt design [' 

minimizes Iq( f, t )  and La( f, t), among absolutely continuous designs and for 

any f E F. Also, 

Proof: We shall show that C' minirnizes the two summands in Lg(l.{) simul- 

taneously. For the continuous uniform design, 

for al1 f E 7. In the proof of Theorem 2.1, we have shown that qT(x)q(x) is 

constant for al1 x E [O, 1). It follows that the uniform design also maximizes 

This implies that <* minirnizes t rW1(<) .  Therefore tu minimizes Lq (f. t*) since 

it minimizes the two summands in L4(f7 [*) simultaneously. ünder t', B(<') = 

12m+i and 



The results of Lemma 2.1, Theorems 2.3 and 2.6 imply that if any nonlinear 

regression model is approximated by the Haar wavelet basis, then t h e  robust 

minimax design is uniform arnong symmetric and absolutely continuous designs. 

m = O: Using the notation in Section 3.1.1 we have 

Theorem 2.4 Let y satisfy the biased rn = O Haar regression model. Let S = 

[O,  11. Then, among absolutely continuous designs E ,  non-symmetric designs are 

inadmissible for LD. The unifom design is D-optimal for any  f E F. .dbo. 
2 

min,maqLD(f , [ )  = (1) . 

Proof : The main features of this proof involve determining the maximum 

eigenvalue and minimizing the maximum loss with respect to m(+). To determine 

the maximum eigenvalue, we first solve IC - B2 - AB1 = O for A. We obtain 

t wo eigenvalues 

and 



subject to the constraints (2.55). That is, we minimize 

The solution is given by (2.56). Using A,, = X 2 ,  leads to (2.57). Implying 

that non-symmetric designs are inadmissible. Therefore restricting to absolutely 

continuous designs which are symmetric about x = 5, we minimize 

to obtain m(x)  = Is, the uniform design. That is, 

rn = 1: In this case, we restrict to symmetric densities to obtain 

where 

/3 - (2  + A)a -[? - (2 + .\)a] 
U = [(, - A )  - (1 + %cr2)]1 and V = E 2.103) 

/? - (2  + X)a B - (2 + X ) a  

Theorem 2.5 Let y satisfy the biased rn = 1 Haar regression mode[. Let S = 

[O, 11. Then, the continuous uniform design is robust minimax among symmrtric 

and absolutely continuous designs ( and for a n y  f E F. Afso, m i q  max, Lo = 

Proof: .4s usual, we begin by solving 



to obtain 

and 

Suppose that A,., = A*, then ive minirnize 

subject t o  the constraints (2.79) and (2.50). That is, we minirnize 

The solution is given by (2.52). It turns out that using A,,, = X i  leads to the 

same solution. Under t his solution, 

p = 2a, y = (1 + 2a2) and X i  = X2 = 0. 

So that 

is minimized by a = O. Therefore, the uniform design m(x) = Is is D-optimal 

and 

4 

min m y  co(/,<) = (g) e 

General Case : We state the result as a theorem. 



Theorem 2.6 For the mode1 described in Lemma 2.1, the uniJorn design 5' 

minimizes Lo( f,t), among absolutely continuous designs ( and for any f E 3. 

Also, 

Proof : The statement of the theorem follows from the fact that Cx maxi- 

mizes IB(()I and minimizes b T E L b  simultaneously as shown in Lemma 2.1 

and Theorem 2.3 respectively. To see t his, we have shown in Theorem 2.3 t hat 

b( f, c') = O. AIso, under E * ,  B({') = 1. It therefore follows from Lemma 3.1 

and the remarks that E* maximizes IB(C) 1 as well. 

Remarks : The optimality of the continuous version C* of [G (see Lemma 2.1) 

stated in Theorems 2.3 and 2.6 is a particularly strong version of minimax ro- 

bustness. This follows from the fact that 

for any design 5 and any f E 7 and L is any of Lq, Lil, CD. The first inequality 

follows from Lemma 2.1 and the second inequality follows from the definitions 

of the loss functions. The equality is derived from (1.16). 

3.2 Multiwavelets 

For the purpose of our exarnple, we take N = 2. We rernind ourselves that 

when iV = 1, the multiwavelets coincide with the Haar wavelet basis. For iV = 

2, the multiwavelet orthonormal basis for &([O, 11) is given by 

L ivhere lvut~'k(z) = 2 - 2  N ~ 1 ( 2 - j ~  - k), 2 = 0,1. The scding functions and primary 

wavelets are defined by (1.54), (1.53), (1.56) and (1.5'7). For rnultiwavelets the 



representations discussed in Section 1 of this chapter can be written aso 

and 

We then write the mode1 

where the vectors q(x) and Bo are defined in such a way that (2.112) is equivalent 

to one of the representations in (2.110) and (2.111). We limit our consideration 

to the representation described by (2.1 10) with m = p = O due to the complexity 

of the eigenvalues arising from the maximization problem described previously 

for values of m, p > O. In this case, 

From previous results, 

w here 



3.2.1 A-, Q-optimality 

Recall that the Q-optimality problem is to minimize the maximum integrated 

mean squared error over some design space, where the maximum is evaluated 

over F the  L2 contamination neighbourhood. We also recdl that for orthonormal 

wavelets the Q-optirnality and A-optimality problems are equivalent since 

A = / ,  
q(x)qT(r)dz = 1, the identity rnatrix. 

So, our problem is to solve 

min max L g ( l ,  () 
€ f E 7  

where the loss function is defined by 

From previous results, maximizing LQ( f ,  c) over 3 involves evaluating the maxi- 

mum characteristic root of the matrix ~f B - * G ~ .  That iç, we solve the equations 

IG- XB21 = O where G = C - B2 and 

b 

Using (2.113) we have 

Restricting to densities that are symmetric about x = $ we con show that 



Results simlar to (2.116) also hold if n(x) is replaced by m2(x). Using the result 

in (2.1 l6), it ca.n be shown that the following hold: 

where 

a = Ji zm(z)dz,  ,û = J; x2rn(z)dx, a = ji m 2 ( x ) d x  
(2.1 18) 

c = $: zm2(x)dz and d = J: x2m2(t)dx.  
2 

It follows that the matrices B and C can be written as 

The main idea behind (2.116) and (2.117) is to transform the problem from 

S = [O, 11 to a smaller space [O& 11 using the symmetry constraint. Solving the 

eigenvalue equation IC - (1 + A) B2 1 = O we obtain 

So, the eigenvalues of the rnatrix G$ B - ~ G ~  are given by 



and 

2(36d - 60c + 25a) 
X* = - 1. 

(52P - 1 2 0 ~  + 25)* 

From this point we proceed as follows: 

(i) assume that A,., = XI 

(ii) find the  density ~ ( x )  minimizing the maximum loss; and 

(iii) check the condition A l ( w ( x ) )  2 X~(Q(X) ) .  

If step (iii) fails, we then hope that A,., = A2. Taking A,, 

rninimize 

oz 
mFm LQ(1,F,) = r2(X1 + 1) + -trB-' 

n 

subject to the conditions 

t 1 1 

(i) - rn(z)dz = - ? ?  (ii) x rn( r )d r  = a, (iii) i2rn(r)dz = . (2.125) 
2 

k i n g  the expression for Al we have 

Define 

where mo(x), n i ( x )  satisfy (2.125), for some multipliers u, v and W .  It is not 

too difficult to check that Ar'(t) 2 O. That is, A(t)  is convex with a minimum 

at  t = O if and only if h ' ( 0 )  2 O for al1 ml (x ) ,  where 

It  follows from (2.125) that the minimizing 

(4s - 3)2m0(x) + uw + h w x  - 
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mo(x) must satisfy the equation 

16wx2 = O, mo(x) 10. 



That is, 

with u, v and w determined to satisfy (2.125). We observe that if we write 

and set r = v - 6, t = u + 3u - 9 then 

where w 2 O, t 2 O and r is arbitrary. For mathematical simplicity, we transform 

rno(x) by setting y = 4s - 3 to obtain 

We now express the conditions (2.125) in tems of po(y). It is easy to show 

Frorn (3.125) (ii) we have 

Use (2.131) and simplify to obtain 

1 J: YPO(Y)~Y = p a  r. 
- 3)- 

Furthermore, (2.125) (iii) yields 

t hat 



Again we use (2.131), (2.132) and simplify to obtain 

Also, 

Use (2.131), (2.132): (2.133) and sirnplify to obtain 

w 
((4x - 3)2mi(x)dz = -{(32@ - 4th. + 9) - @a - 3) - t}. (Ti:3-i) 

3 

Substituting (2.134) into (2.126) we have 

where r, t and w are chosen to satisfy (2.131), (2.132) and (2.133). Furthetmore. 

on the interval [i, 11 the inequality 

holds. Multiply through by m(x) and integrate to obtain 

Similarly, 

- I 
m(x' < rm(r) ,  which irnplies - 5 a. 

2 - 4 

By the Cauchy-Schwarz inequality we have 



Together, (2.136) and (2.137) impiy that a and ,d must satisiy the inequality 

PVe surnmarize the results of this section in the following theorem: 

Theorem 2.7 For A = (a, B )  and 5 2a2 5 @ 5 a 5 define the density 

where the non-negatiue constants u, = w ( A ) ,  r = r(A),  t = t (A) are detemined 

to satisfy (2.125). Then n o ( x ;  A) minimires $(4x - 3)2rn2(r)dx /or jked A. 

Define Aq to be the minimizer of (2.135). Then m o ( x ; d Q )  is minimax robust 

for tq and LA 

The eigenvaiue 

We observe 

for those ualues of v for which X ~ ( m o ( x ;  Ap))  > Xz(rno(x: AQ)) .  

inequaiity holds for v 2 4.45. 

that if r = t = 0, the min ima  robust design is uniform with 

3 7 -oz 2 
a =  - p = -  B =  I z X 2  and L Q ( f , c )  = - + r  

S '  24 ' n 

which is the minimum loss for the Haar wavelet basis. To see that the  eigenvalue 

inequality holds for v 3 4.45, we need to carry out the actual computations. Our 

problem now is to choose cr and 13 to minimize 

for fixed v = over the range 

where r, t and w are determined to satisfy 

(4 JIl ypo(y)dy = $0 - 3) 



In addition, we require that Xl(po(y)) 2 A2(po(y)) at w' = w(<xœ7S'), r' = 

r ( a n ,  /3-) and t' = t(a*, P') where a', p* are the values of a: /3 minimizing 

( 2 . 1 0 )  Expressing hz in t e m s  of (41 - 3) we have 

X,(mo(x)) = 

~ ~ ( P O ( Y ) )  = 

The definition of po(y) indi cates that there exist some constants k, Z si 

(S. 142) 

(2. l-LI) 

lch t hat 

p o ( ~ )  = 0. k 5 y 5 1 where -1 < k < O and O < Z < 1. That is, 

wit h equality a t  k and 1. This implies that k and 1 are given by 

P -  JW 
and 1 = 

r +  ,/m 
9 
Y 

9 
Y 

From (2.141) ( i )  we have 

We simplify to obtain 

Similarly, we obtain the following equations from (3.141) (ii) and ( i i i )  respec- 

t i vely, 

The problern defined above is solved numerically in the following way: 



(a) Solve (2.144) for r and t to obtain 

(b)  Rewrite (2.145), (2.146) and (2.147) as follows: 

(c) Use (2.148), (2.149), (2.150) and (2.151) to write the objective 

function (2.140) as a function of k and 1. 

(d) Use the S-plus function nlminb(-) ( "nonlinear minimization wit h 

box constraints") in an S-plus program to minimize the objective 

function with respect to k and 1 for fixed values of v where 

(e) Solve for r ,  t ,  w,  a and ,B from (2.148) - (2.151) and check that 

the side conditions (2.138) and (2.141) are satisfied. 

( f )  Evaluate the eigenvalues Xl(po(y)) and X2(po(y)) to check 

if XI(PO(Y)) > X~(PO(Y)). 

Some values of the constants and eigenvalues are shown in Table 1. Figure 2 

shows the minimax densities for u = 6 and 20. 

It turns out tbat Xl(po(y)) 2 X2(po(y)) for values of u 2 4.45 (approximated 

to two decimal places) and fails otherwise. So, we hope that A,,, = X2 for v < 

4.45 and minirnize 

subject to (2.135) to obtain 



Sable 1: Some Parameter Values Winimizing (2.140) 

rvhere w l  2 O, t l  2 O and r1 is an arbitrary constant. We proceed as before to 

put z = 6 2  - 5 in (2.1.53) to obtain 

The side conditions (2.125) now take the form 

(i) J', pl ( 4 d 2  = !j ( i i )  J:~ zpl(z)di = $ 2 ~  - 5) 

( i i i )  512 z~~~ ( z )dr  = $(72/3 - 120a + 25).  

ALso, it can be shown that 

Substituting (2.156) in (2.152) we have 



w1[(72p - 120a + 25) - r l (12a - 5 )  - t l ]  
mjn mpx L Q ( j , t )  = r2{ 

(72P - 120a + 25)2 

where 7-1, t l and wl are chosen to satisfy (2.155). Proceeding as before, we 

Figure 2: Q-optimal and D-optimal Deosities rno(x): (a )  v = 6 : (b)  v = 20. 

obtain, from (2.155), the following equations : 

1 ce - i + 3) + r i h  (lq) + fl (f + k - f)] = 3 



Sol we choose a and p to minimize 

wlI(72B - 120a + 25) - r l(12a - 5) - t l ]  

for fixed values of u over the range (2.138), with r l ,  t 1 and w 1  choosen to satisfy 

(%.l58), (2.159) and (2.160). Some oumerical solution to t his problem is shown in 

Table 2. The numerical solution shows that the condition X2(pi (y)) > XI (pi ( y ) )  

fails to hold for al1 values of v.  It follows that for v < 4.45 no minimax solution 

to the Q-optimality problem exist. We now discuss how this difficulty can be 

overcome. 

As at (2.129), we found that using A,., = Xi, 

minimizes maxlLq( f,() where r ,  t and w satisfy (2.125). 

Similarly, with A,,, = AL>, 

rninirnizes m a z j l q (  f ,  5) where r 1, t 1 and w 1 also satisfy (2.125). For ease of 

notation let us denote the expression (2.140) by &(a, 8) and ('2.161) by %(a? 13). 
We then proceed as follows: 

(1) Determine (a., &) to minimize (2.140) subject to ,%(a, ,B) 2 3Ja. 13). 
( 2 )  Determine (&.,B.) to minirnize (2.161) subject to JJa,p) > &(CI. 3 ) .  



Table 2: Some Parameter Values Minimizing (2.161 ) 

The rninimax design is then defined by 

We have not provided explicit and numerical solutions for the above discussion 

because the solutions are probably too complicated to be useful in practice. 

Again, we recall that the D-Optimality problem involves minimizing the max- 

imum determinant of the mean squared error matrix. In mathematical terms. 

we solve 

where 



Table 3: Some Parameter Values Minirnizing (3.168) 

The maximizat ion problem, as seen previously, leads to  solving the equat ion 

IG' - AB1 = O where G = C - B2. From (2.119) and (2.190) the matrix G 

is given by 

where pi = 6(16d - 24c + 9a)  - 9(32@ - 48cr + 9), and p2 = 2(36d - 60c + 
35a) - (72P - 120a + 95),. So, the equation IG - XBI = O leads to two linear 

equations in X given by 



Solving these equations we obtain 

and 

We now assume that Al is the maximum eigenvalue and minimize 

(2.167) 

(2.125). Under t hese with respect to the density m(x), subject to  the constraint2 ; 

constraints the matrix B is fixed. So that minimizing (2.167) is equivalent to 

rninimizing 

This problem h a .  been solved in Section 3.2.1 and the rninimizing density is 

given by (2.129). Using (2.134), we then choose a and /? to minimize 

for fixed values of v over the range (2.138) with r? t and w satisfying (2.141) where 

Il31 = 3(328-48a+9)(72P- 120a+25). Also, the minimizing a and B is choosen 

such that the inequality X1(mo(x)) 2 Xz( rno(x ) )  is satisfied. Some numerical 

solution to this problem is shown in Table 3. We observe that Xl(mo(x)) 2 

X2(rno(x)) for values of v 2 5.04 and fails otherwise. The results for D-optimalit. 

are also summarized in the following theorem: 

Theorem 2.8 For 23 = (a, 8) and 5 2cr2 5 P 5 a < define the density 



Table 4: Some Optimal Parameter Values for A,., = A2 

where the non-negatzve constants w = zu(B), r = r ( B ) ,  t = t ( O )  are d e t e m i n e d  

fo satisfy (2.125). Then rno(x; B) mininizes ~f (41 - 3 ) 2 m 2 ( x ) d z  for f i e d  B.  
2 

DeJine Bo to be the minimirer oJ (2.168). Then m o ( x ; B D )  is minimax robast 

eigenvahe inequaiity holds for  v 2 5.04. 

Proceeding as in Section 3.2.1 we find that no min ima  solution exist for v 

< 5.04. In Table 4 we present some of the parameters when A,,, = A2 was 

used. An approach similar to the discussion at the end of Section 3.2.1 cari be 

adopted to  overcome this difficulty. We observe that as  the size of n becomes 

larger and larger, one would require r2 to be of the order of n-' (i-e r2 = O( :)), 

so that the error due to random variation and that due to bias will be of the 

sarne magnitude. In this case, Y = $ *il1 be bounded away from O as n -+ W. 

That is, v >> O as n -, CO. Thus the Iack of definitive results for v near zero 

isn't a problem. 



Chapter 3 

Optimal Weights and Designs for Multiwavelet 

Regression Models: Weighted Least Squares 

I Preliminaries 

In Chapter 2, we discussed briefly the relationship between the nonparametric 

local averaging procedures and the least squares method. We noted that if the 

weights are positive and uniform then the local averaging procedure is equivalent 

to the ordinary least squares method which we used to estimate the parameters 

in the wavelet regression model defined in Chapter 2. In this chapter we use 

the local averaging procedure with positive weights. That ist the weighted least 

squares regression method. The problem is then to find minimav weights and 

designs under the wavelet regression model : 

where f (x)  E F, 

and the errors E i ,  (i = 1,2: ...., n)  are uncorrelated with mean O and constant 

variance 02. A similar problem h a  been considered by Wiens (1996) for appror- 

imately specified multiple and polynomial regression models with heteroscedas- 

tic errors. We have already mentioned one of the main results of that report in 

Chapter 1. 



The main results of this chapter are presented in Theorem 3 .1 ,  Lemma 3.1 

and Theorem 3.2. We find that for the Haar mode1 the optimal design and 

weights are both uniform under the restriction of unbiasedness. This translates 

into requiring the product of the optimal design and weights to be the uniform 

density. We begin with a mathematical formulation of the problem we shall be 

discussing in this chapter. 

Problem 

Find optimal weights and design if weighted least squares 

regression is vsed to  est imate the parameter A. 
Applying weighted least squares regression 

In matrix notation, we can write BwLs as 

the estimate of can be expressed 

where 

and 

yT = (!Ad, ~(4,  - - . - - - 1  y(xn))* 

Using (3.2) we have that 

BWLs = ( Q ~ W Q ) - ' Q ~ W ( Q B  + f ( ~ )  + C) 

where fT(z) = (f(q),..-? f(2,)). 

Sl  



Let C ( x )  be the discrete design measure on the design space defined by ( 1 4. 
Then, we can wnte expression (3.5) as 

where 

From (3.6) the bias and covariance matrix of the estirnate BwLs are 

o2 
b i a s ( h s )  = B%, and cou(&Ls) = -B-~DB-' n 

where 

It follows that the mean squared error rnatrix of firvLs is 

The loss iunction of interest in this study is the Integrated Mean Squared Error 

loss defined by 

However, since q(x) is a vector of orthonormal wavelets, the matrix 

A = L  q(+)qT(r)dx = I (the identity matrix). 

Thus the loss funct ion becomes 



Following Wiens (1992) it can be shown that supj L( f ,  w, 5) is not finite unless 

the distribution function f(x) is absolutely continuous. If we define 

<'(x) = k(x) and p(x) = k (x )w(x ) ,  

= jS q ( x ) s T ( M 4 d x  

b = b(f ,p(x) j  = W , W , E )  = q ( ~ ) f ( + ( ~ ) i l . ( + ~  

= jg q ( 4 f  (X)P(X)dX (3. L3) 

D = D ( W , P ( X ) )  = D ( w , F )  = q ( x ) q T ( d w 2 ( x ) W d x  

= 4(X)9T(X)w(X)P(X)dX. (3.14) 

B y  the transformation (3.11) the loss function now depends on w(x) explicitly 
A 

only through the matrix D. Also, since PrvLs remains invariant if the weights are 

multiplied by a scalar, (i.e. w ( x )  -t a w ( x ) ) ,  we can assume that the average of 

the weights is 1. By this assumption, p(x )  is a density on S and 

The problems defined in 

following ways: 

the early part of this section can be discussed in the 

P l  : Take  a fixed weight, w&) und minimize(ouer p )  

the rnaximun(over f )  of the loss f unction. 

P2 : Take  a Jixed density po(x) on S and minimire(0ver w )  the 

rnasirnurn(mer f) l o s .  Then k&) = S. 
po(x) P3 : Solve min,  min, maxf  L( f, w, 0. Then ko(x)  - wo(t). 

Problem Pl has been discussed for the multiwavelets constructed by Alpert 

(1992) with uniform weights when IV is equal to 1 and 2. The simplest case was 
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discussed in the case of rV = 2 due to the complexity of the eigenvalues arising 

from the maxirnization of the Ioss function with respect to f .  In the next section 

of this study, we discuss P2 for these multiwavelets as well. We find that we are 

able to obtain optimal designs for the general case due to the simplicity arising 

from fixing the density p o ( x )  Results from Section 2.1 of Chapter 2 show that 

rnfm L(f, w , [ )  = r2[1 + A,,, + v t r ~ - ' ~ ]  (3.16) 

where A,., is the maximum characteristic root of G ~ B - Z G ~  for 

G = G - B2 and C = q(x)qT(r)$(x)dz.  

Now 

where l,(z) = qT(x)B-2q(x).  Therefore 

2 Optimal Weight and Design for Fixed 

Density po(x) 

In this section, we minimize (3.18) with respect to w(x) subject to the con- 

straint (3.15) for fixed po(x). 

Theorem 3.1 For po(x) a fized density on S ,  deJne 

where u is determined to satisfy (3.15) and S is such that Jsdx = 1 .  Define 

UQ = 5' P O ( z ) [ l m ( z ) ] ~ d x .  Then wo(x; u Q )  is the optimal rveight for Lq and Le4. 

The optimal design density ko(x; u q )  is inversely proportional to wo(z; u p ) .  I/ in  

particular we take po(x) = y > O, then l p 0 ( x )  = l-,(x) = 11q(~)11~ and wo(q u Q ) .  

k o ( x ;  u q )  are optimal subject to the condition of unbiasedness. 



for wo(x), wl(x) satisfying (3.15) and an arbitrary multiplier u. Differentiating 

8(t)  twice with respect to t we obtain 

Clearly, 8"(t) 2 O. So, @(t) is a convex function of t which is minimized at t 

= O if and only if @'(O) 2 O for al1 uil(x). The equation below, obtained from 

(X2O);  

suggests that ive choose wo(x) to satisfy the equation 

That is, 

where u is determined to satisfy (3.15). Using (3.15), it is easy to show that 

It follows that the optimal weight under fixed po(x) is 



and the optimal design density is 

It can be seen from (3.26) and (3.27) that 

1 
wo(x) a [ l , ( x ) ] - ~  while k o ( x )  oc - 

WO(X) ' 

Substitute for wo(x) and simplify to see that 

Therefore we have, from (3.18), t hat 

min rnax L(1, W -  F )  = r2 [l + Amar + Y ( J S [ ~ ~ ~  (x)] i ~ ( ~ ) d ~ )  *] . (3.30) 
rd f 

Now we take po(x) = 7, where y > O is some constant chosen such that p , ( x )  is 

a density on S. This choice of ~ ( x )  is equivalent to the side condition 

of unbiasedness and results in (3.30) reducing to 

o2 2 
min tu L(w,()  = min mar  L( f. w ,  Ç) = (Ji[l,(i)]~ds) 

f n 

where 

That is, 

2 

min w C ( w , C )  = 2 n ( ~ [ q l ( x ) q ( x ) ] ~ d x )  

3 Examples 

In our examples we will use the multiwavelets constructed by hlpert (1992) 

with IV = 1 and 2- We recall that when :V = 1 these wavelets coincide with the  



Haar wavelet. To avoid trivialities, we assume (as in Section 2 of Chapter 9 )  

that if there is a point xo E S with q(xo) = O (e-g. q(l) = O),  then c{xo) = 0. 

Otherwise, since such a point xo would contribute nothing to b, B or LI, ive 

could remove it from S and work with the conditional design on S\{xo). 

3.1 N = 1 (Haar Wavelet) 

As usual, our design space is S = [O, 11 which implies that y = 1. Results for 

Pl, with uniform weights, show that for any x E [O, 1) 

for the Haar wavelet basis of order m. It follows that applying the above as- 

surnption ive have, from (2.94), that 

1 ~ 2 )  = zrn+', ~ ~ ( 2 )  = 1. kO(x) = 1- x E [O, 1) 

and 

Thus we have : 

Corollary 3.1 Let po(x) = 7, 7 > O a constant. be a jixed density on the 

design space S = [O,  11. Let the components of the vector q(z) be the Haar 

wavelet basis of order m. Then, the design and weight ninimiring Lq and LA 

are each unifom. In other words, ordinary least squares is optimal for estimating 

the parameters of the rnth order Haar regression mode1 under the condition of 

unbiasedness. 

3.2 iV = 2 Multiwavelet 

For iV = 2 the vector q(x), as a function of the order rn of the wavelet ba i s  

is given by 



Here, we have used the expression (2.1 11) with m = p to define the vector (3.35). 

The results for m # p ore presented later in this section. If we set 

t hen 

It  follows that 

w here 

We now use the expressions for the primary wavelets Z ~ ~ o ( x )  and 2wl (2) to obtain 



We expand the first and third squared terms in (3.40) to obtain 

Adding these expressions we have 

Using (3.41) and (3.42) in (3.40) we have that 

any x E [O, 1) we can find one and only one value of k, O 5 Ir 5 2"+' - 1. 

Say B,  such that 



since the intervals are disjoint. So we can mite 

Then, it can easily be verified that 

where 

It follows frorn (3.45) that 

Next, we state and prove a theorem which provides a closed form for the squared 

Euclidean norm of the vector qm(x)  for an arbitrary order m. 

Theorem 3.2 Let the components of the vector q(x) be the muftiwauefets of 

order n with iV = 2. Then, 

where 



The squared n o m  can also be written as, 

I[qm(x)ll2 = 2m+3 0 < k 5 2 ~ + ~  min -1 (1 - 3h, (x; k)] 

where 

Proof : If (3.48) is true, it implies that from (3.35) we can write 

Tt then follows that 

Combining (3.38) and (3 .40,  it is easily verified that 

Therefore from (3.53) and (3.54), showing that (3.48) holds is equivalent to 

showing that 

Sol if we are able to show that the identity (3.55) holds then it follows that (3.48) 

also holds. It is not too difficult to see, from (3.55), that for a n  arbitrary value 

i f r i s e v e n  
k=k,=: y if r is odd 



We shdl show that (3.55) holds for r even and r odd. Now. if r E [%-lmf2)r 

2 - (m+2) ( r  + 1)) and r is even we have 

We simplify to obtain 

Also, from (3 .46 )  we have that 

We simplify (3 .59)  to obtain 

Comparing (3.55) and (3.60) we observe that 

when r is even and x E [2-(m+2)r, 2 - (m+2) ( r  + 1 ) ) .  Therefore, we have shown 

that (3.55) holds when r is even and s E [2- ("f2)r .  2 - ( m + 2 ) ( r  + 1 ) ) .  Now if r 

E [%-(m+2) r, 2-(m+2) ( r  + 1)) and r is odd then 



Simplifying, we obtain 

- - 2m+3 F ( 2 4 ( 2 m  - 6(?'x)(4 + i r )  + ( 7  + 3r(8 + 7r) ) ]  
4 (3.62) 

We also have, from (3 .46) ,  that 

e ( x ; m  + 1) = 2"+' 2m+1s - - 
d 

Again, comparing (3.62) and (3.63) we see that 

Zm+l ( x ;  r ) - lm (x; k) = e ( x ;  rn + 1 ), 

r odd and z E [ - - ("+~)r ,  2-("+')(r + 1)). Implying that, (3.55) holds when r 

is odd and 2 E [2-(m+2)r, 2-(m+2)(r + 1)). We therefore conclude that (3.35) 

holds for al1 r, (r = 0,1,2, ..., 2"+ * - 1) which completes the proof for (3.48). 

Next, to simplify notations, let us set y = Zmz and define 

At the endpoints of the interval, x = 2-(*+l)k and z = 2-(m+1)(k + 1). When 

gk( 9) = 1. Therefore we have that 

which is also the maximum value of gk(y) attained at the e x t ~ m e s  of each 

interval. We can then express gk(y) as 



md write the function lm(+; k) as follows 

Then, it is not too difficult to see that Ilqm(x)llz can be written as 

Lemma 3.1 Let the variable y sat is fy  the relationship described by the  mode1 

(3.2) Let  the design space S be n o m a l i z e d  such  tha t  Jsdx = 1 .  Let the corn- 

ponents  o f  the vector q(x) be the multiwavelets o f  order m with N = 2. If 

the dens i t y  ~ ( x )  7 := (Ss dx)-l, t h e n  the opt imal  weighl wo(z) and design 

nainimizing Lq and  LA is given by 

respectively, where 1 lqm(x) 1 l 2  is dejîned by (3.48) a n d  

Proof : The fact that the optimal weight and design are 

Km and 4 ( x )  = lI~m(x)ll 
W"(x) = 119rn(x)ll Km 

respectively, where 



is a direct consequence of Theorems 3.1 and 3.2. Since the intervais are disjoint. 

the expression (3.73) for IC, holds. To prove (3.71) we use (3.49) to write R, 

w bere 

g m ( x ;  k) = 3(22(m+1))x2 - 3(zm+l) ( l  + 2k)x + (1 + 3 k ( k  + 1)).  

To simplify notations, let us define 

a. = 3(22(mf1) ) 6. = -3(2"+')(1 + 2k) and C. = (1 + 3k(k + 1)). 

Since 

it Eollows, from Gradshteyn and Ryzhik (1980). that 

Substitute and simplify to show that when x = 2- (m+1)~ ,  

2a.x + b. = 3(2"+') and g,(r; k )  = 1. 

The fact tha t  g,(x; k)  = 1 at the boundaries has been shown in the proof to 

Theorem 3.2.  Therefore, by substitution we can verify that 



We observe that the value of Km is independeot of k. The lemma that follows 

provides a justification for t his. We s show t hat once the value of lm (x; k)  is known 

in any of the intervals, it is completely determined over the intervai [O, 11. Figure 

3 shows a plot of the squared norm of q,(x), wo(x) and k&) for m = 1. 

Lemma 3.2 The squared n o m  1 lq,(z)l l 2  satisfies the inequality, 

3 m + i  < - llq,,,(x)ll* 5 Y+3 , for al1 x E [O, 1). (3.74) 

The function Z,(x; k )  satisjies the identities, 

and 

Proof : First, we show that in each interval [2d(m+L)Ir, 2 - ( m f 1 ) ( k  + 1)): ( k  = 

0,1, 2, ..., 2"+' - 1); the function 1, is a minimum at the midpoint of the interval. 

From elementary calculus, the stationary points of gk(y) must satisfy 

This implies t bat 

or in terms of x 

61 Since -gk(y) > O, it follows that the point y = y is a minimum point of 

gk(y) with minimum value gk (y) = f .  This shows that, in each interval 

[2-("+')k, 2-("+')(k + l ) ) ,  (Ir = 0,1,2. .., 2"+' - l ) ,  the squared norm of q,(x) 

is a paraboloid (see Figure 3) with a minimum value of Zm+' attained at the 



rnidpoint 2-(m+1) (9) of each interval and a maximum value of 2m+3 attained 

at  the endpoints k and 2-("+ ' ) ( k +  1) (see (3.67) and the discussion before 

and after (3.67)). That isl 

Next, we show that the identity (3.75) holds. We observe that if x E [--("fl)k. 

Figure 3: A Plot of llq(x)112, Optimal Weight and Density for m = 1: (a) 

Ilsdx)l12 ; (b) w o ( 4  ; (4 ko(4- 



0 , l .  2, .., Zm+' - 2). So traosforming x to x + 2-(mt') implies y = P z  be- 

cornes y + $ and k takes the value k + l. Based on the above, we can show 

t hat 

In terms of the function lm thïs means that 

The second identity, 

follows from the fact that, 

From the first identity (3.75), we can see that for x E [O, 2-("+') ) 

This implies that the value of the squared norm of the vector qm(x),  1 lq,(x) 1 1 2 .  
is cornpletely determined by its value in only one of the intervols [2-(m+1)k. 

Y("+') L ( k + l)),  (t = 0,1,2,  .., zm+' - 1). The second identity (3.76) provides 

the following relationships : 

m = 0: 



and so on. This shows that llq,(x) 11' is symmetric about x = $ (see Figure 3) .  

It follows that the optimal weight and design derïved using the multiwavelets 

when N = 2 is also symmetric about x = $. 
As at (3.35) the vector q ( x )  was defined for m = p and the results that 

followed were based on this definition. Theorem 3.3 provides the results for m 

# P- 

Theorern 3.3 L e t  the variable y satisfy the relationship descrïbed by the mode1 

( 3  Let the cornponents of the vector q(x) be the iV = 2  multiwavelets with 

rn # p. Then, 

X(x; m, p )  = X ( x ;  m, p - 1) + bl(x;  p ) ,  %(x: m, m )  = O 

and 1 lq,(x) 1 1 2 ,  1 l qp (x )  1 I 2  satisfy (3.48). F o r  k = 0,1, ..., 2p+I - 1 and x E 

[2-(~+')k ,  2 - ( ~ + ' ) ( k  + l)) ,  b l ( q  p )  is defined by 

3P [ 6 ( 3 P x  - ) - ] 2 ,  i / k i s e v e n  
2 

2% - -) 2 - 51 , if k is odd. 

For k = 0,1, .... 3"+' - 1 and x E [--("+')k, 2-(m+1)(k + l ) ) ,  b2(r; m )  is 

def ined by  
2 

2m [I - 4 (2mx - $)] if k is even 
b2(x; m )  - 2 

2m [4 (3mz - 3) - 31 . if k is odd. 



Proof : For rn # p, we have, 

So that , 

p 21-1 

+ C C 2j2w; (2 jz  - k). (3.50) 
j=O k=O 

Let us? for a moment, assume that m is less than p. Then, we can write (3.80) 

and substitute for 2 w 1 ( 2 j x  - k) to obtain 

This implies that 

Following previous discussions we can find some P ,  O 5 k $ 2j  - 1. Say k., such 



It is oot too difficult to see, from (3.54), that for k = 0,1, ..., 2 ~ + '  - 1 and 

k* = 
if k is odd 

and 

2 P [ 6 ( 2 ~ t - 5 ) - 1 ] 2 ,  i fk i seven  

6 2 2 - % ) - 5 1 2 ,  i fk i sodd .  l t p  
Alternatively, for 1 = 0,1,2, ...., %P - 1, we have 

If we define the recursive relation, 

H ( x :  m, p )  = X ( x ;  ml p - 1) + b l ( x ;  p ) :  where Z(x; m, m)  = O? (3.88) 

then, for m < p we have 

where bl(x;p) is given by (3.86) or (3.8'7) and Ilq,(x)ll2 is defined by (3.48). 

On the other hand, if m > p we have, from (3.80) 

where 

for some k. E (0,1, ..., 2j  - 1). From previous discussions, it can be easily verified 

that for m > p, 



where 

D ( x ; m , p )  = D ( x ; m  - 1,p) + b-(x;m), D ( x ; p , p )  = O ?  (3.93) 

and for k = 0,1, ..., Zmf' - 1 and x E [2-(m+1)k, 2-(m+')(k + 1)), 

2 
2"[1-4(2"r-5)]  , i fk i seven  

b2(x;  m) - 
zm [4 (PZ - 9) - 312, if IZ is odd. 



Chapter 4 

Applications 

1 Preliminaries 

Thus far we have only constructed optimal designs for wavelet approxima- 

t ions to the nonlinear regression mode1 (4.1) wit hout suggest ing strategies for 

implement ing t hese designs. This chapter is devoted to st rategies for implemen- 

tation. VVe recall that the mode1 of interest is 

approximated by 

where f (x) is the remainder term arising from the approximation and the ele- 

ments of the vector q(x) form a wavelet basis on the  design space S. 

In the introduction to Chapter 1 we mentioned that the precise mathematicai 

structure of ~ ( x )  need not be known in order to apply wavelet approximation 

techniques. We only need to decide on the appropriate wavelet basis to be used 

and the order m of the approximation. In situations where the precise form 

of TI (" )  is assumed known with pararneters having some physical interpretation. 

experimenters may wish to consider using the techniques outlined in this work to 

design their experiments rat her than choosing their design points in an arbitrary 

fashion. Then the assumed form of ~ ( x )  can be used to estimate the parameters 

after the experiment has been perforrned and measurements taken at the design 

points. 



The design space S we have considered in t his study is the unit interval, [O, 11. 
To apply our results to a more general design space Su = [a, b ] ,  we transform 

any point x' E Sn to x E S by, 

II 
xL - a 

x --+ = -. 
b - a  

So that if xi is an optimal design point in S, then 

is optimal in S'. 

2 Mult iwavelet s wit h Ordinary Least Squares 

2.1 iV = 1 (Haar Wavelet) 

We have shown in chapter 2 that the design which minimizes the trace of 

the covariance function is that which places uniform weight 2-("+') in the 2"+' 

intervals 

{[.2-("+') k, 2-(""' ( k  + 1 )))k-o,l,...,,m+l -1 (4.4) 

We also showed that this design is A-, D-, and G-optimal. Introducing the bias 

terrn, we found that the optimal design density is the uniform density. 

To implement this design, the number of design points n has to be a multiple 

of the number of sub-intervals 2"+'. The points are then selected uniforrnly 

from each of the 2m+1 intervals. In the literature, if the design is uniform over 

[- 1 , 1 ] ,  the n-observation design is 

This transforms to 

= 2 ( i  - 1) 
n - l  

choosen t O sat isfy 

- 1: i = 1,2, ..., n. 

i - l  . 
2; = - 2 = 1,2, .,., n 

Tt-1' 



on [O, 11. However, this will include the point x, = 1 for which q(x,) = 0. 

Since this point does not contribute to the estimation of Po we avoid x, = 1 by 

choosing the points as  follows: 

on [O, 11, where n = zrn+'a for some integer constant, a > O .  One approach will 

be to take "an repeated measurements at xi's choosen for n = 2m+1. It turns out 

that the optimal n-observation design proposed by Herzberg and Traves (1994) 

is a special case of (4.7) with a = 3 and n = 2. 

Another approach for selecting uniform design points will be to use the fact 

that z E ([2-(m+1)k, 2-(m+1)(k + 1))) irnplies x + 2-(m+1) E {[2-(m+1)(k + 
1 ( + 2 ) )  So, for n = 2"+' we first choose any 11 E [O, 2-(m+1) ) 

then subsequently we choose 

If we choose xi  = 2-(mf '1, then we have (4.7) as proposed previously. More 

generally, if n = Y + ' a  we propose to choose, 

One can also consider taking "a" repeated measures at xi's choosen from (4.S). 
2-f m+2) If in (4.9) we take X I  = 7 , then we obtain (4.7) as before. 

2.2 !V = 2 Multiwavelet 

Instead of the Haar wavelet basis, one rnay decide to use the multiwavelets 

of order m with N = 2 in the approximation (4.1). Under the transformation. 

y = 41 - 3, we showed that for m = 0, the minimax design has density 



That is, 

for some k and 1 satisiying -1 < k < 0, O < 1 5 1, where w, r and t depends on 

v = S. Sorne optimal values of tu, r and t are given in Table 1 for fixed v. As 

v - O, k, 1 -+ O and pa(y) -4 1, the uniform density. On the other hand, as 

v - oo, k -+ 1 and I * -1. However, kgoes faster to 1 than 1 goes to -1. 

That is, the design chooses most of its points at  the middle of the interval and 

a few at the extremes. 

To implement the minima design with density po(y) we randomly sample 

design points from 6 as follows: 

( i )  Let P ( y )  be the distribution function of y corresponding to po(y). 

(ii) Select 

(iii) Then, xi = T, i = 1,3, ..., nl. 
We observe that choosing y E [- 1,1] is equivalent to choosing 2. E [ 1 .  Due 

to symmetry about 2 = the points in [O, i] can be obtained by using the fàct 

that (1 - 2) E [O, i] for every s E [$, 11. So, if we require a total of n points, we 

first choose ni = points in [f , l] then the other n* = ni points are obtained 

by symmetry. 

For u = 5, we have 

7.975 (l - 0-1:l 0.4292) 
if - 1 5 y 5 -0.5933 

4 
P ~ Y )  = 

Y2 and 0.7734 y 5 1 

A set of Q- and A-optimal design points randornly selected as described above 

for nl  = 16 (n = 32) are (approximated to four decimal places): 



When v = 50, the Q- asd A-optimal density is 

if - 1 5 y $ -0.8087 

PO(Y) = ----) Y2 1 and 0.9556 5 y 5 1 

The points randomly choosen from the distribution function of this density are: 

Similarly, we choose D-optimal design points for u = 6 and 40 with nl = S and 

16 respectively, 

and 

3 Multiwavelets wit h Weighted Least Squares 

In Chapter 3, we constructed optimal weights and designs for multiwavelet 

approximations when the met hod of estimating the parameters is weighted least 

squares. For .N = 1, we found that the optimal weight and design were uniform. 

We have discussed strategies for implementing uniform designs in Section 2 of 

this chapter. Our discussion in this section is therefore restricted to strategies for 

implementing the optimal weight and design constructed for N = 2 in Section 

2.1.2 of Chapter 3. 



We recall that in Section 2.1.2, we found the optimal weight and design to 

where 

To implement the design and weight, we select n design points [rom the distri- 

bution funct ion of ko(x), then evaluate the corresponding weights at the selected 

points. For fixed m we proceed as follows: 

( i )  Let &(x) be the distribution function of x corresponding to / i 0 (x ) .  

It can be shown that 

1 + -  S& Arsh (2a*z '.)] 
[ o , ~ ] n [ 2 - ( ~ + ~ ) k , 2 - ( ~ + ~ ) ( k + l ) ]  

(ii) Select xi = K;' (y) , i = l,?, ..., n. 

A set of n = 16 and 24 randomly choosen points for m = O and 1 respectively 

are shown in Tables 5 and 6. 

Sometimes, experimenters partition the design space S into two subspaces Si 

and S2 such that S = SI (J SÎ. Theno based on prior experience and knowledge 

of the experirnent, they perform more experiments at points choosen from. say 

Si,  and the remainder at points choosen from S2. That is, they choose nl design 

points from Si and 722 from S2 where nl >> n2 and n = ni + nz. Such designs 

are cornmon in chemical kinetics and drug related experiments in pharmacology. 

The strategy we propose for choosing the design points as described above is: 



Table 5: Randomly Selected Design Points and Weights for m = O, n = 16 

Table 6: Randomly Selected Design Points and Weights for rn = 1, n = 24 

0.47s 

0.859 

DesignPoint 

Weight 

1 Design Point 1 0.985 

0.868 

1.034 

Weight 0.87 

0.523 

0.860 

0.428 

0.932 

(1) Let Si = [a, bl) ,  Sz = [bl,c] and pi = I(o(bl) .  

(2) Select ni design points from Si to satisfy 

(3)  Select the remaining nl design points from S2 to satisfy 

0.793 

1.150 

0.023 

0.861 

Design Point 

Weight 
,' 

0.293 

1.150 

0.708 

1.151 

0.98 

0.859 

0.573 

0.933 

0.928 

0.932 

0.133 

1.036 

0.208 

1.151 

0.633 

1.035 

0.073 

0.934 

0.365 

1.033 



4 Some Examples of Multiwavelet 

Approximations 

In what follows, we consider some nonlinear models commonly used in prac- 

tice and see how well the wavelets used in this work can approximate these 

models. We also show how well the multiwavelet regression models fit a data 

set with no underlying pre-specified model. For each of the nonlinear models we 

proceed as follows: 

( i )  Generate n values of the nonlinear function q(x, O )  for fixed 8 

and xi, i = l ,2 ,  ..., n, t E [a, b] ;  

(ii) Transform x as in (4.2); 

(iii) Fit the Haar wavelet regression model by ordinary least squares; 

(iv) Fit the 1V = 2 multiwavelet regression model by weighted least 

squares using the optimal weights constructed in Chapter 3; 

(v) Overlay plots of the values of ~ ( x ,  O )  from ( i )  and the fitted values 

from (iii) and (iv) on same page 

(vi) Simulate the model 

for some known value of a2 and repeat (ii) - (v). 

We observe that the fitted wavelet regression models picked up the main 

features of the data in al1 our examples. However, the fitted models appear to 

have retained some features of the primary wavelets used in the approximation. 

For instance, the fitted Haar wavelet regression models exhibit the step function 

feature of its primary wavelet +(x) (see (2.47))- On the other hand the fitted 

N = 2 multiwavelet regression models appear to exhibit the sharp-curve feature 

of one of its primary wavelets zwo(x) (see (1.56) and Figure 1) especially at 

points where the funct ions being approximated change direct ion. 



1 Ion Transport Model: 

Figure 4: The Ion Transport Model Function: (a) Haar Wavelet (n = 2) ; ( b )  

N = 2 Multiwavelet With Optimal Weights (m = 1). 

The mode1 function 

is commonly used to describe data from ion transport experirnents (e.g. chloride 

ions), t hrough blood ce11 walls-The function ~ ( x ,  B )  measures the concentration 

of the ions a t  time x. In this model, the parameters have physical meanings. 

The parameter O1 is interpreted as the final percentage concentration, O3 is a rate 

constant and û2 accounts for the unknown initial and final concentrations and 

the unknown initial reaction time. The parameters, = (39.09, 0.S2S. 0.159)~. 

we used are the estimates obtained by Bates and Watts ( 19SS. pg. 93) From real 



data with n = 50. The range of x, x E [O, 321, which is slightly different from the 

interval used in Bates and Watts (198S), was transformed as discussed eariier. 

Figure 4 shows the plots obtained by following steps ( i )  - (v) outlined above. 

Using the values generated from q(x; O )  (see step ( i))  as data we calculated the 

mean squared error (MSE). The MSE from the Haar fit is approximately 5.24 

and 0.509 from the 1V = 2 rnultiwavelets. 

Following step (vi) with c2 = 3.534 we obtained Figure 5. The MSE from 

the Haar fit is approximately 5.732 and 5.313 from the N = 2 multiwavelets. 

Figure 5: Simulated Data  from the Ion Transport Model: (a) Haar Wavelet (rn 

= 2) ; (b)  N = 2 Multiwavelet With Optimal Weights (m = 1). 

2 The Quadratic Michaelis - Menten Model: 

The Michaelis - Menten Model 

is popular in enzyme kinetic experiments. It relates the "velocity" of an en- 

zymatic reaction to the substrate concentration x. Bates and Watts (1988 pg. 

114) also used this mode1 to analyse data from an experiment on the utilization 



Figure 6: The Quadratic Michaelis-Menten Mode1 Function: (a) Haar Wavelet 

(rn = 3) ; (b) N = 2 Multiwavelet With Optimal Weights (rn = 2). 



of nitrite in bush beans. The pararnetea, B = (1254,20.5,350.44) were carefully 

choosen to obtain the shape seen in Figure 6 .  The sample size was n = 100 

and x E [O, 161 was transformed as in Section 1. The mean squared error for 

the Haar and N = 2 multiwavelets models are approximately 0.162 and 0.008 

respect ively. 

Again, we apply step (vi) with e2 = 0.694 to obtain Figure 7. The MSE frorn 

the Haar fit is approximately 1.136 and 1.102 from the N = 2 multiwavelets. 

Figure 7: Simulated Data from the Quadratic Michaelis-Menten Model: (a) Haar 

Wavelet (m = 3) ; (b) N = 2 Multiwavelet With Optimal Weights (m = 2).  

3 Metaboiism of Saccharin Compounds: 

Here, we use real data from an experiment on the metabolism of saccharin 

compounds provided by Renwick (1982). A rat is given a single bolus of saccha- 

rin. At given time intervals, the amount of saccharin accumulated in the urine 

of the rat is rneasured. The response is the level of radioactivity of the urine 

which was converted to amount of saccharin in micrograms ( p g ) .  The proposed 



Figure 8: Amount of Saccharin versus Time(hrs) Interval: (a) Haar Wavelet ( m  

= 2) ; (b)  N = 2 Multiwavelet With Optimal Weights (n = 1) .  

----- Observed - Approximation 



integrated model is 

where r)  is the amount of saccharin excreted during an intervd, X I  is interval 

starting time, and xz is the length of the intervd. 

In Figure 8, we plot the observed excreted amount versus the time interval. 

(e.g. O - 5 ) ,  scaled as discussed in step (ii) above. This example is aimed a t  

showing that the Haar model performs better in approximating step functions. 

4. The Motorcycle Data: 

Figure 9: A Plot of the Motorcycle Data Set: (a)  Haar Wavelet ( m  = 3)  ; (b)  

N = 2 Multiwavelet With Optimal Weights (rn = 2). 

Our next example illustrates the flexibilty of wavelets in describing nonlinear 

experiments even when the precise mathematical structure of the function de- 

scribing the experiment is unknown. The motorcycle data set taken from Hardle 

(1990) are measurements of the head acceleration ( y )  of a post rnortem human 

test object after a simulated impact with motorcycles in a given time (2). The 



nonlinear model which descnbes the experiment is unknown. A plot of the fit ted 

models are shown in Figure 9. 

We observe that the higher the degree of nonlinearity of the experiment, 

the higher the value of m, hence more design points required to obtain a good 

approximation. 

5 Concluding Remarks 

In t his work we have outlined the results of our investigation into the use of 

wavelets in designing nonlinear experiments. Wavelets was introduced into the 

pro blem by t ransforming the nonlinear regression model descri bing the exper- 

iment into a wavelet regression mode1 with disturbance function. Throughout 

our discussion the mat hematical structure of the underlying nonlineari ty was not 

assumed known. Using examples, we have shown that the multiwavelet bases is 

capable of capturing the general features of any nonlinearity in an experiment. 

though still retaining some features of its primary wavelets. This cails for fur- 

ther studies into the use of wavelet bases with smoother properties in designing 

nonlinear experiment S. 

For the simplest case (rn = O )  of the mth order Haar wavelet regression mode[ 

we have been able to show that no non-syrnmetric design will be optimal. We 

also observe that the optimal weights and designs constructed in Chapter 3 (with 

no symmetry constraint) were symmetric. Our conjecture is t hat, in general, no 

non-symmetric design will be optimal. Investigation into a formal proof is also 

another area for further research. We have also shown that the classical D- 

optimal design proposed by Herzberg and Traves (1994) is sirnultaneously Q-, 

A-, D- and G-optimal and provided a proof we sense is much sirnpler. The 

continuous uniform design which we showed to be optimal for the biased Haar 

model can be considered a smoothed version of this design. 



The optimal weights and designs constructed in Chapter 3 are for general 

wavelet regression models. Therefore, once the wavelets to be used in the ap- 

proximation is choosen, the corresponding optimal weights and designs can be 

const ructed. Strategies for irnplernenting the designs have been out lined includ- 

ing a situation where the experimenter wishes to take more observations from 

some region of the design space. 

hpart from the problems mentioned earlier which require furt her studies. 

some other open problems are : 

(1)  D-, E- and G-optimal weights and designs for wavelet regression 

models subject to the condition of unbiasedness. 

(2) Robust minirnax weights and designs for the general N = 3 multiwavelet 

regression model. 

(3) Robust inhitesimal designs for wavelet regression models. 

(4) Robust designs for nonlinear models when the noniinear function q(z)  is 

estimated by wavelet versions of kernel estimators (see Antoniadis 

et al (1994)). 

(5) Robust weights and designs for wavelet regression models when the 

estimators of the parameters are generdized hl-estimators or other 

robust estimators. 

(6) Robust designs for biased wavelet regression models with autocorrelated 

errors. 

(7) Robust minimax weights and designs for biased wavelet regression models 

wi th heteroscedastic errors. 

We hope that this work will motivate further research in the direction of con- 

s tructing designs for wavelet regression models and the construction of wavelets 

for design purposes. 
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