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One of the most efficient methods for the t r d e r  of information from a com- 
puter to a human being is the graphical-visual form. The choice of specification 
method is crucial - it determines the flexibïlity with which the information can 
be used for a variety of purposes or output by the various output devices. 

In this thesis, 1 investigate the properties ofa declarative scene specification 
method for the description of pictures composed only of rectangles. A careful 
analysis is made and signiscant geometrical information is extracted from the 
basic declarations. I also examine the realizabiliw of such specifications. Even 
restrictive versions of the realizabilitg problem are surprisingly difficult, and 
the decidability of realizability remains an open problem. 
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The flow of ioformation h m  a computer to a human being takes many forms. 
One of the most efficient so far, îfnot the most efficient, seems to be the graph- 

ical-visual form where the computer presents data in a graphical manner and 
the user assimilates the information visually. This graphical presentation is 

usually two-dimensional, and indudes images, animations, diagiams as well 

as text. %xt is considered as grapbics, as it is displayed by graphical fonts rep- 

resenting the letters and words of a language. 

A wide range of media is available for the output of this graphical informa- 

tion. They include dynamic displays such as CRTs as well as static displays 

such as paper output fkom a printer. They vary widely in characteristics as well 
as capabilities. As a consequence, the choice of specification method for graph- 
ical information is crucial - it determines the flexibility with which the infor- 

mation can be used for a variety of purposes or output by the various output 
media. 

1.1 Problem description 

There are many ways to describe graphical idonnation. They can be classified 

into three major classes: declarative, procedural, and image- based. Declarative 
techniques describe the information as a set of objects. The relationships among 
the objects are stated as a set of conditions. They are also known as semantic- 

based techniques, as the relationships among objects convey the structure and 



meaning of the scene. Procedural and image-based techniques describe the in- 

formation explicitly at a low level. A procedural technique represents the in- 
formation by a collection of low level drawing commands for drawing Lines, cir- 
cles, etc. Coordinates have to be used to position these drawing commands. An 

image-based technique represents visual information by storing a likeness of 

the desired output, usually in the form of a two-dimensional array of color val- 

ues. Both procedural and image-based techniques can be considered as non- 

semantic-based techniques. 

Clearly these techniques are usefbl in different situations. Image-based 
techniques are employed when fast rendering is required on a device for which 

the image is used. Pmcedural techniques make it easier to specify and port 

through the interface or software as long as the devices are not vastly difTerent. 
Declarative techniques are used when having information about the contents 
or meaning of the image is cmcial. 

Let us consider what an ideal system for the description of graphical infor- 

mation might look like. It should possess the following chanicteristics: 

1. a clear distinction is made between the declarative specification and the 
possibly procedural rendering of graphical information; 

2. semantic information is present, or at least easily available, so that it is 

possible to reason about the contents of the image; 

3. structure exïsting in the image is refiected by structure in the specifica- 
tion; 

4. the specification is unambiguous, so that complex information can be ac- 
curately described and output; 

5. the spedication is intuitive so that a user can manipulate the information 
with relative ease; 

6. the specification should not make reference to any device-specific features 
such as coordinates or resolutions so that the information can easily be 
translated for output on different devices and/or media. 

1 focus on a very much simplified abstraction of the ideal system to be called 
picture specification. Consider a picture that consists only of rectangles. The 



rectangles toueh each other, but do not overlap. They are allowed to be stretched 

o r  shnuik in both the horizontal or vertical directions. An example is given in 
Figure 1.1. 

Figure 1.1: Example of a picture. 

One way to spe- such a pichire is to locate the corners of the rectangles 

by coordinates. If one does not wish to use coordinates, one can use the spatial 

relationships between the rectangles to specify the picture. 
1 want to use abstract relations to describe a geometric layout of rectangles. 

Let us defke two binary relations v and q on the rectangles. For rectangles a 

and b, (a. b )  E v if a touches b and is to the North of b. Similad& (a. 6 )  E q if a 

touches b and is to the East of b. 

In the example in Figure 1.1, the correspondhg relations to describe the pic- 

ture are 
v = { (a ,  d ) .  (c .d)}  and q = {(ha)}. 

Obviously, a given pair of v and q is by no means sufncient to describe all 

or  even just all of the important aspects of a picture. Descriptions of this form 
are investigated to gain some basic insights in the possibilities and p i t f ' s  of 
coordinate-fkee scene description methods. 

1.2 Motivation 

In this section, 1 will discuss the motivation for adopting a declarative descrip- 

tion of a p i c m  by highlighting some of the problems associated with procedu- 

rd or  image-based rnethods. 



Note that the focus of the thesis is to study the techniques that can be used 

in declarative methods. The results of the thesis are not directly applicable to 

the solution of the pmblems to be presented. 

1.2.1 Semantic information 

In many situations, the semantic information contained in graphical informa- 

tion is required earphcitly If it is not provided as part of the description of the 
image, a series of involved computations, pmbably ushg algorithms in image 

analysis, object recognition or reasoning and other techniques, is required to 
extract the semantic information. 1 give two examples of when semantic infor- 

mation could be useful or necessary and when the cost for image analysis may 
be unacceptable. 

Vïally impaired user 

Consider a cornputer system that represents scenes by declarative techniques. 

The scene can be translated to be output in different forms. For a sighted user, 

a graphical output of the scene can be used. A graphical display device such 

as a CRT can be used to display a rendering of the scene. For a blind user, the 

same information can be translated to other output devices. For example, the 

scene can be translated to a verbal format. With the presence of semantic in- 

formation in a declarative technique, it would be relatively easy to produce a 

detailed spoken explmation of the scene. An example of a scene described with 
semantics is 

"This scene is composed of a table, two chairs, a book and a p e n d  in 
a room. The book is on the table and the pend  is on the book. The 
chairs are to the right of the table." 

Such relational description allows information to be derived from the initial dec- 

larations. For example, if the user queries 

"Is the p e n d  on the floor?" 

The system would be able to state 



If the scene was represented by an image, a photograph, for example, or even 
as a coUection of individu81 entities with coordinates to position them, none of 

the hctionality described above would be available imrnediatdy as no seman- 
tic information would be present. 

Information retrieval 

A procedural description of a picture lacks information regarding the relation- 

ships between the components within the picture. Suppose one has a database 
of pictures or movies. Without semantics, one is unable to implement any se- 
mantic search capabilities for information retrieval. Suppose one needs to re- 

trieve a scene as follows: 

There is a table. A jar of chrysanthemums is on the table. The table 
is next to a window." 

Such a query can only be performed in a database that includes semantic in- 
formation 1273. Currently the only available methods for this hctionality in- 
volves adding the semantic information m a n d y  - to the extent queries can 
be foreseen. 

The typesetting of text and graphics poses many challenges. 1 present some of 
the problems encountered when procedural techniques are used. 

Resolution problem 

In order to visualize pictures, one has to render them on some kind of output de- 
vice. The class of raster-based devices is the most common by far. The following 
is a partial list of such devices, with their approximate resolution in dots-per- 
inch (dpi). 

a Computerized Braille tactile graphies display or Braille printer (about 7 

dpi) 

a Dot matrix impact pruiters (60-240 dpi) 

a CRT monitors (70-100 dpi) 



Facsimile machines (100-200 dpi) 

Lnk-jet printers (300-600 dpi) 

a Laser priaters (300-1200 dpi) 

Photo typesetters (2400 dpi or more) 

When a coordinate-based picture is created, one usually has to consider the 

capability of the output device. If this picture is displayed on devices with di& 
ferent resolutions, one may get some undesirable results. 

Consider the example shown in Figure 1.2. Suppose one hm a simple picture 

consisting of two squares that are non-touching. When rendered at a higher 

resolution, the two indeed do not touch each other. But when the same picture 

is rendered on a lower resolution device, they may touch. This is undesirable in 

most cases. 

Figure 1.2: Resolution problem. 

In a declarative description, important conditions that have to be met for 

each rendering are  given in the description. Then the rendering program wo J d  
ensure these conditions are satisfied in the rasterization process. 

The resolution problem is especially bad when very low resolution devices 
such as a computerized Braille output device are considered. Obviously, graph- 
ical objects must be greatly simplified to be displayed at very low resolution. If 
this is done by simple scaling, shapes may be lost, and the cmcial semantics in- 
formation contained in a picture may be missing in the representation. This is 
devastating to a visually impaired user. 



According to [23], the conversion pmcess has to ensure that the renderings 

at low resolution satisfg the following requirernents:l 

a features must be large and have simple shapes; 

the distance between mcomected parts has to be large; 

only straight lines paralle1 to the axes can be used; 

a features should only appear in predictable conte-. 

Clearly a prerequisite to this conversion pmcess is a clear understanding of the 
structure and meaning of the pictue to be displayed. This can only be achieved 
when semantic information is provided. 

Suppose one needs to compose a pictue of a musical note. The note is composed 
by putting together a flag, a vertical staff and the head. Tb produce a correct 
image, the position of the head may have to be shifted slightly, depending on the 
rendered thickness of the staff. Figure 1.3 illustrates two possible cases. The 
correct aligament is shown on the left, and an incorrect alignment on the right. 

If the composition is described by coordinates, it would be rlifficult to ensure the 
correct aügmnent of all objects over Merent output devices. 

This problem can be eI;mUiated in a declarative approach by s p e c m g  that 
the right edge of the stem must be aligned with the right edge of the oval. Then 
the device-specific rendering procedures would ensure that the composition is 
perfectly aligned. 

Music 

In the specification of musical score, the purposes are 

a playing by synthesizer; 

a searching for a motif. 

'Beyond Braille displays there are other devices for tactile output that could have slightly 
different requirements. The point hem is that low resolution imposes particularly restrictive 
conditions on the rendering. 



Figure 1.3: Alignment problem. 

This requires that the speeification reflect the musical stntcture, not the lay- 
out of the score or the sound-track [16], Cl5 1, [12]. 

In [13], Dunne discovered a problem with the use of coordinates in the Post- 

Script page description language. PostScript is commonly used in laser print- 
ers to control the rendering of images. LUie and rectangle drawing are not pre- 
cisely defined in PostScript. Due to the use of coordinates and discrete units 
for measures, the rendered output is incorrect. For example, it is impossible to 

correctly render a rectangle that is one device pixel high or wide. 

Symbols for the blind 

Consider a graphieal rendering system for the blind. Suppose one needs to rep- 
resent a scene containing a table and several other objects. Figure 1.4 shows 

four representations for a table. They are derived fkom drawings made by blind 
people. Representation (a) is seldom used, since a projection view of a three- 

dimensional object has no meaning to a congenitally blind person. Representa- 

tion (d) is used when the table is sut~ounded by other objects. Representations 

(b) and (c) are used when there are other objects to be placed on the tabletop 

I291, C303. 
Ideally, the description of the scene is hierarchical. The top level description 
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Figure 1.4: Representations of a table for the blind. 

would describe the relative positions of the objects in the scene. The next level 
would describe the properties and shapes of the objects. In this way, an appro- 

priate form for the table will be selected for rendering, depending on the objects 
around it. 

Zn a procedurd appmach, the scene is specified by a collection ofdrawing in- 

structions for all the objects in the scene. There is no information regarding the 
relationships among objects. There may not even be a distinction between the 
objects. This means that the graphical representation for al1 objects, including 

the table for example, mu& be preselected and explicitly described in the spec- 
ification. 

Design of Ideographic Charactere 

In the computerized typesetting of ideographic languages, the high-resolution 
output of ideographs has always been one of the most dïffidt and chdenging 

problems. The riiffidty arises in part h m  the huge number of characters re- 
q d e d  for such languages. Storing the complete high-resolution raster informa- 
tion is not only prohibitively espensive, but also prevents the individual users 

from making any sipnincant style modifications to existing font libraries. 
The analogy of typesetting a Chinese character is the typesetting of an En- 

glish word. English words are basicdy a one-dimensional string of letters. The 
alphabet is small and difncdties in inter-letter spacing can be handled by spe- 



cial cases. On the other hand, the structure of a Chinese character is two di- 
mensional. The analogy of the English alphabet is the set of sub-characters, 
sometimes known as (word) radicals. One radical c m  be composed of others 
and the set of radicals is very large (somewhere between 200 and 1000). Rela- 
tive sizing of the radicals, as well as inter-radical spacing (in two dimensions) 

carmot be specified by fixed amounts, nor can they be h d e d  by special cases. 
One strategy for the output of Chinese chanicters is to use a font genera- 

tor that is capable of generatïng fonts in different styles. A distinction is made 
between the style-independent and style-dependent aspects of font spedca- 
tion. The style-independent information consists of a s p d c a t i o n  of the generic 
structure of characters independent of font styles. Supplied with the appropri- 
ate font style characteristics, the images can be generated. 

Figure 1.5 shows a Chinese character printed in different font styles. As 

one can observe fiom the sample characters, it is not possible for the generic 
structures of characters to be s p d e d  with fixed coordinate positions, hence a 
procedural description cannot be used. Placement positions of strokes and sub- 
characters Vary with dinerent styles. The relative sizes of the sub-characters 
are also different. These parameters must be specîfied by higher-level declara- 
tions such as 4adical x is above r a d i d  y and they are both to the right of radi- 
cal z*. This information is then interpreted during font generation, where font- 

dependent routines compute the final sizes, shapes and positions of al l  strokes 
and radicals [4n, 1241. 

Figure 1.5: Sample of Chinese font styles. 



1.3 Some hi&-level graphics systems 

I have discussed some drawbacks of scene description without semantics. Let 
us now look at some high-level graphics systems and study how they represent 
and render graphical information. 

1.3.1 Sketchpad 

Sutherland's sketchpad 1441 pioneered the use of constraints in graphics sys- 
tems. It provides an interactive graphical interface, and its users could con- 
struct drawings by defining geometric constraints interactivelF 

Points, h e s  and cirdar arcs are primitive graphical objects in Sketchpad. 
Any drawing can be used as a primitive object by tuniing it into a "macro". A 

macro has a set of attachment points that are used to merge an instance of it 
into another drawing. 

The geometric constraints include making two lines parallel, perpendicular, 

or of equal length. Lines can also be made horizontal or vertical, and a point 

can be constrained to lie on a line or arc. With the use of such constraints, a 
user c m  compose a drawing without expficitly stating the coordinates of every 
primitive object. 

The macro feature allows objects to be built, but does not d o w  constraints 
to be specified with the objects. Hierarchy is not used effectively and as a con- 
sequence constraints can only to be stated with the primitive graphical objects, 

making it d i f f idt  to draw pictures. 

Van Wyk's IDEAL 1451 is a language for tgpesetting graphics into documents. 
IDEAL allows images to be built hierarchicalls using boxes. For example, this 
is a definition for a rectangle: 

rect € 
var ne, nu, sa, se, center, height, width; 

ne = se + (O, 1) * height; 

nv = sa + (O, 1) * height; 

ne = nw + width; 

center = (ne + SV) / 2 ;  



conn ne to nu to su to se t a  ne; 

3 

IDEAL uses constraint satisfaction to allow the positions and sizes of objects 
to be stated as relationships, which makes it very easy to lay out complex fig- 
ures. For example, one can place some rectangles side by side across the width 

of a page without speQfying their individual widths, except that they are each 
to be of e q d  width. The width of each object WU then be determined by the 
width of the page, even if the width of the page changes at a later tirne. This 
makes the description of images more flexible and n a t ~ r a l . ~  

However, the only primitive data type in IDEAL is a point. AU relations be- 

tween the nonprimitive data types must be expressed in terms of primitives, 

which are points. So to specify that %ctangle a touches rectangle b and is to 
the East of rectangle b", one needs ta state the low level constraint: neb = nu,. 

As in Sketchpad, the hierarchy of construction is not used in the specification of 

constraints. It wodd be more intuitive if one were able to define constraints in 

terms of the nonprimitive objects. Semantical information in the sense of our 
Tdeal system" cannot be specified. 

1.3.3 Juno 

Nelson's Juno 1341 is a system whkh integrates a constraint-based language 
with an image editor. With Juno, a constraint-language program can be rep- 

resented either in its textual form or by the image it produces. The user can 
edit either form, and the changes will be reflected back into the program. 

Juno's intended domain is very limited. Its only data object is the point, and 
there are only four constraints on points. New constraints can only be added if 
they can be expressed as a conjunction of the four primitive constraints. If one 
wants to use Juno for a Merent application, such as three-dimensional graph- 
ics, the underlying system would have to be modified extensively. 

1.3.4 COOL 

In 1261, a constraint-based system named COOL is built to visualize abstract 
objects and relations. First data are tnuislated into the relational structure 

2T&JC offers simiIar capabilities for boxes. 



representation of abstract objects and relations. Second, abstract objects are 

mapped to graphical objects, and abstract relations between them are mapped 

to graphicd relations between the corresponding graphical objects. Findl5 an 
actual layout ofgraphical objects is computed by solving graphieal constraints, 
and then a picture is generated. 

original textual representation 

syntax data 

relational structure representation 

Visual Mapping y - - - - - 

visual structure representation 

target pictonal representation 

Figure 1.6: Visualization mode1 proposed 

mapping data  

Iayout library 

Kamada (fkom 126 1). 

The positions of graphical objects are computed automaticdy fkom the spec- 
ified graphical relations by the system. The geometric relations are expressed 
as algebraic constraints among the variables which characterize the graphics 

objects. A constraint hierarchy is built to handle over- or under-constrained sit- 
uations, 

Graphical objects in COOL are simüar to boxes in IDEAL. They have lo- 
cal  variables that are related to one another by equations. Graphical relations 
among graphical objects are expressed as extra constraints among the variables 
of the objects. Some examples of pictures generated by COOL is shown in Fig- 

ure 1.7. 
The constraint solver in COOL is based on a simple equation solver. If a set 

of constraints is over- or under-constrained, the systern reports an error. The 



B o 4  b o a  box3, and box4 are boxes. 
Boxl is placed on the leR of box2 
Box3 is laid below  box^ 
Box2 lies above box4, 
Boxl is ~ ~ ~ e ~ t e d  to box2 and box3 
by thick dashed lines, 
Solid ünes connect box2 and box3 to box4, 

Cl, c2, c3, c4, c5, c6, and c7 are very mail 
circles. 
CI is put above c2 and c3 with corimecting lines. 
C2 is put above c4 and c5 with connecting iines. 
C3 is put above c6 and c7  wieh connecting lines. 
C4, c5. c6, and c7 are arranged horizontally. 

Boxl is a very large box. 
Box2 and box3 are standard white boxes- 
Boxi contains box2 and box3. 
Boxl is hïdden by box2 and box% 

- - -  

Figure 1.7: Examples of picture generation in COOL (eom [26]). 



user is then responsible to divide the constraints uito two types, the 'rigid" con- 
straints which must be satisfied exactly and the "pliable" constraints that need 
to be satisfied not exactly but approximately. Rigid comtraints are eliminated 
like Gaussîan elimination. ARer that, pliable comtraints are solved by the least 
square method. 
COOL does have many of the characteristics of an ideal system. It main- 

tains a clear distinction of the specification and rendering of pictues, and is 
able to generate pictures with the use of constraint-based techniques. However, 
as with most constraint-based techniques, over- and under-constrained situa- 
tions cannot be resolved easily. 

If a constraint solver is unable to solve a set of constraints, it reports an er- 
ror. The conflict involves local conditions, and may not be easily expressed in 
the global layout scheme. This makes it diffidt to identify the high-level con- 
straints that have to be modified to resolve the pmblem. 

In [20], the "office world", consisting of windows, desks, chairs, computers, etc, 

is presented as an example domain for different basic forms of spatial reason- 
ing. One way of describing the sketch of an office as given in figure 1.8 is by the 
following proposition: 

The chair is left of both the desk and the lump, and the desk is left of 

the lamp. 

Figure 1.8: A sketch of an office layout (fiom 1201). 



The lefi of relations between the objects can then be said to constrain the po- 

sitions of the objects. So, these relationships can be represented by a constraint 
network on the variables chair, &sk, and lamp, where each variable specifies 
the distance ofthe respective object to a reference point on some horizontal axïs. 

Suppose that the domains 

are associated with the variables chair, &sk, and h m p ,  respectively. Then the 
assignment chair = 4, desk = 7, lamp = 8 are a solution of the constraint net- 
work. 

Figure 1.9 shows the set of relations used in [20]. A set of spatial proposi- 
tions can be represented as a network consisting of two types of nodes: circle 
representing the objects and rectangles representing the relations. Reasoning 
about spatial relationships in a constraint reasoning setting now c m  be viewed 
as modifying the labels of the rectangles, that is, the constraints, and inserting 
new constraints into the network. 

- 

! I 

Relations hip I Syrnbol 1 , Symbol for converse 1 Picture 

Figure 1.9: The possible relationships between two objects (fkom [20]). 

Consider, for example, the network of Figure l.lO(a). Since 04 is between 0, 
and 4, inhUtively the spatial relation between Oi and O3 must be Oi 4 O3 (as 

shown in Figure 1.10(b)). From this, together with 5 @, one can conclude 



that is not a possible relation between Oi and O?, because 0, is at least as 
far leR as O2 (as shown in Figure l.lO(c)). 

Figure 1-10: Reasoning about spatial relationships. 

The example shows that there are two different reasoning steps on a network 
of spatial relations: 

1. Computing the composition of spatial relations. Le., inserting new con- 
straints into the network. 

2. Deleting all relations that are inconsistent. 

Standard constraint satisfaction algorithms can be used to remove inconsis- 
tencies from the network. These algorithms result in different levels of consis- 



tency (ranging h m  local consistency to global consistency), and they are of dif- 
ferent complexity (up to exponential). 

The aim of the study in 1201 is to introduœ concepts and algorithms around 

the notion of dynamic constraints. One severe limitation that prevents it h m  
being used as a method for scene description is the fact that it only deals with 
spatial relations in one dimension. As 1 shall show in a later chapter, it is not 
possible to treat two-dimensional spatial relations as tnro separate one-dimen- 

sionai spatial relations. 

1.4 Geometric dinrensioning and tolerancing in computer aided de- 
sign systems 

In computer aided design (CAD) systems, computer models of object compo- 
nents are specified precisely with the use of coordinates. Problems arise in 

the spedcation of assemblies of components that are coordinate based. As- 
sembly constraints are used to provide information on how component are con- 

nected. These geometric constraints present themselves as a set of algebraic 

constraints, to be solved by a constra.int solver. 

The satisfaction of assembly constraints can be performed by solving the al- 
gebraic equations that were derived fi-OIU the geometric assembly constraints. 

The problem of constraint-solving is d i f f id t  as the constraints are highly cou- 

pled and non-linear [8],B9]. 

Besides the systems mentioned above, there are several other systems such as 

Bertrand 1321, ThingLab 161, DeltaBlue 1181 1401. They are in many ways sim- 

ilar to the systems presented before as they ai l  rely on constraint-based tech- 
niques. Constraint satisfaction by itself is known to be a very difficult p h -  

lem. Techniques that can be applied to solve general constraint problems are 
inefficient and as a consequence most constraint-based systems usually employ 
domain-specific techniques and are not easily extensible. In IDEAL, one can 

define new structures that are like objects, but not new types of constraints on 

those objects. In Sketchpad and Juno, one can define new operations on their 
exisüng data types, but cannot dehe  new types of objects. 



Another problem with conssaint-based techniques is the issue of numerical- 
stabilitsf. Systems such as Juno use iterative numeric techniques to solve con- 
straints. They may fail to terminate even when the constraints have a solution. 
Moreover for constraints with more than one solution, an arbitrary solution is 

given. 
Coordinates are imposed in a constraint-based graphics system. Even if CO- 

ordinates are not used in the declaration of high-level constraints, they cannot 
be avoided in the constraint-solving process. Inconsistencies in the description 
of pictures present themselves as under- or over-constraints. These can only be 
detected by the f d u r e  in finding a set of numerical solutions for all the coor- 
dinate values. Although some form of constraint-solving may be inevitable in 

the construction of a realization, one should be able to determine the realizabil- 
ity of a picture by means other than ta attempt to construct one. 'Ib determine 
the realizability of pictures, one needs to have a clear understanding of the un- 
derlying geometry, and derive d e s  to decide what is possible and what is not. 
A constraint-solver provides no understanding of the problem at hand, merely 
hding a solution by "brute-force" if it exists. 

So Far 1 have shown the merits ofdeclarative methods, and I have presented an 
ovemiew of how existing systems use them. 1 have discussed the shortcomings 
of these existing systems due to their heavy dependence on constraint solving. 
What is lacking is a good understanding of the fundamental properties that are 
embedded in pictures speded with declarative methods. 

In this thesis, 1 investigate the properties of pictures specified with declar- 
ative methods. The aim is to exhact as much information as possible h m  the 
given specifications. lnstead of considering general scene layouts, 1 focus on a 

simplified abstraction of declarative methods - a specification of rectangle pic- 
tures - as as pmposed in [25]. Of pafticular interest is the question of realizabil- 
ity. 1 show that the pmposed fiarnework is insuffitient for complete specification 
even under some very loose limitations to Mnilarity classes" of realizations. 1 
exhibit a set of necessary conditions, for such a specification to be realizable. 
Moreover, 1 dernonstrate that even restricted versions of the realizability prob- 

lem are surprisingly dif!Ficult. The ultimate issue, that of deciding whether a 



given speciûcation is realizable and, if so, to find a realization remains open. 
1 believe, however, that m y  analysis wi l l  contribute to the understanding and 
eventual solution of the problem. The thesis is structured as follows: 

a Chapter 2 introduces the basic geometrie and abstract notions to lay the 
gmundwork for the study 

a Chapter 3 presents the characteristics of specifications. The limitations of 

specifications are also discussed. 

Several examples ofspecifications are studied in Chapter 4 in order to help 
gain dues on the conditions required for realizability. 

0 In Chapter 5, the original specification pmblem is reduced by placing re- 
strictions on the rectangles. 

0 In Chapter 6, "order relationsn are introduced to augment the specification 
problem. In particular I focus on the "a-relations* and exploit its use in 
order to infer a significant amount of geometric information. 

0 Chapter 7 summarizes the necessary conditions required for the realiz- 
ability of specifications. 

0 The conclusion of the thesis and a discussion of further work is presented 

in Chapter S. 



This chapter lays the gromdwork for the study of rectangle picture specifica- 
tions. Geometric notions such as rectangles and their spatial relationships are 
introduced. An abstraction is made f?om these geornetric notions to create a sys- 
tem of abstract rectangle symbols and their relations. The abstraction is free 
from coordinates and 1 will describe how it is used to spece  pictures. 

2.1 Binary relations 

In this section 1 review some terminology and notations concerning binary re- 
lations. Let R be a set and let g be a binary relation on R, that is, c R x R. 

a The inverse of 5 is defined as 5-L = {(r .r ' ) Ir .# E R.(r/.r) E c). 
a 5 is reflkziue i f ( r . r )  E for d r~ R. 

a g is anti-repeàve if ( r. r) 4 6 for d r 6 R. 

5 is symmaric if, for d r, # E R, (KI') E 6 implies ( f  . r )  E 5. 

a 5 is transitive if, for r .# , f l  E R, ( r . r ' ) , ( / . / )  E 6 implies (KY) é 5. 

0 A &cycle is a finite sequence (ro ri. . . . . r,) of syrnbols rot rl . . . . . r,, E R such 

thatnz I , ~ = r ~ , ( r ~ , r ~ + ~ ) ~ ~ f o r i = O . l  ..... n- l , = d r i # r j f o r O < i < j < n .  

a If there are no 5-cycles then 5 is anti-reflexive and anti-symmetric. 



When 5 is transitive then there are no e-cycles if and only if5 is anti-sym- 

metric. 

a The transitive closure of  is defined as 

O E, is apartiol or&r if it is dex îve ,  anti-symrrietric, and transitive. 

a 6 is a strict order if it is anti-symmetric and transitive. 

2.2 Geometric notions 

1 begin with defining the compass directions as an intuitive way of s p e c m g  

directions in a two-dimensional plane. 

DEFINITION 2.2.1 (COMPAS DIRECTIONS) Consider a two-dimensional plane 
with the usual horizontal and vertical axes. The followingdirections are defined: 

1. North is the direction of increasing vertical ax is  value; 

2. South is the direction of decreasing vertical cuBs value; 

3. East is the direction of increasing horizontal axis value; 

4. West is the direction of decreasing horizontal axis value; 

The basic shapes to be considered are rectangles. A rectangle is defined as 
a set of points in IRL. 

DEFINITION 2.2.2 (RECTANGLE) Let xo,yo, W. h E R and W. h > O. The rectangle 
R e c t .  is the set of al1 points within the region with the center (xo.yo). width W, 

and height h, that is, 

Let Rect denote the set of all rectanglesp that is, 

Rect sf {Rect~;,: : ~ 0 . y ~ .  W. h E W. W. h > O}. 



In the sequel the notation Rectzi is htended to imply, without special men- 

tion, that q.yo. W. h E R and w.h > O. The following gives some usefid abbrevia- 
tions for representing the coordinates of the sides and centre of rectangles. For 
a rectangle Recta: the following items are defined: 

These items are illustrated in Figure 2.1. 

Figure 2.1: A rectangle and its coordinate abbreviations. 

DEFINITION 2.2.3 (EXTENTS OF A RECTANGLE) For a rectangle r =Rect Ztk, the 
open intervals of real values (&(r).&(r)) and (&(r),  ~ ( r ) )  are called the hori- 
zontal and vertical extents of r, respectiuely. 

Next we need the two binary relations to describe the spatial relationships 
between the rectangles. 



DEFJNTION 2.2.4 (GEOMETRIC COhfPASS RELATIONS) Binary relations Y and 
f j  for rectangles to represent Worth of" and "East of" are defined as follows: 

C = { ( O .  O ) .  a,& E : &(a) = K(b) A (q(a)-&(a))  (~ l (b ) .&(b) )  # 0 ) -  

ij = { (a .  6) .  a. 6 E Wt : A$(=) =&(b) A (&(a). &(a)) (Y,(@. ~ ( b ) )  # 0). 

These relations are called the geometric compass relations. 

Notice that open intemals are used. This excludes cases called "corner kiss- 
ing" in 1251. An example of m e r  kissing can be found in Figure 1.1, where 
( b . ~ )  $ ~ ~ 0 - ~ ~ i j u i j - ~ .  

Now 1 introduce the notion of a picture, which is a collection of non-overlap- 
ping rectangles. 

DEFIMTION 2.2.5 (PICTURE) A picture y c Rect is a set of rectangles with the 
property that no rectangles overlap, that is, for any distinct rectangles rl and t-2 

in v, 

Next 1 present a lemma that is useful for later proofs. It is based on the fact 

that rectangles are not allowed to overlap. 

LEMMA 2.2.6 Let r l .  r2 be any two rectangles in a picture. 



Again, by Definition 2.2.5, one has 

u 
The geometric compass relations are defined on the set Rect of all rectan- 

gles in EtZ. W e  want to be able to refer to the geometric compass relations for a 
picture. 

DEFINITION 2.2.7 (GEOMETRIC COMPASS RELATIONS FOR A PICTURE) The 
relations ?, and ij, denote the geometric compass relations for the rectangles in 
a picture y. Thot is  to Say, GY = { (a ,  b) ,  a. b E y~ : (a .  6 )  E Y )  and fiY = { ( a .  6 ) .  a. b E 

w : (a. 6) E fi}. 

DEFINITION 2.2.8 (MIDPOINT OF TOUCHING) Let a and b be rectangles in a 
picture y~ such that (a.  b )  E Y, u YG' u fi, u fi; l. The intersection intervals of the 
rectangles are computed by 

( ( a ) )  - i f ( o . b ) ~ Y ~  

The next notion to be introduced is the connection c w e .  It is illustrated in 
Figure 2.2. 

DEFINITION 2.2.9 (CONNECTION CURI%) Let a and b be rectangles in apicture 
y such that (a ,b)  E YU v-' u fj u fi-'. A c o ~ e c t i o n  curve C(a. b )  Rom a to b is 

obtained by drawing straight line segments through the points 



Figure 2.2: Co~ection m e  for two adjacent rectangles. 

There is a symmetry that exists for pietures. It is defined in the following. 

DEFINITION 2.2.10 (SYMMETRY LMAGES OF A PICTURE) For a picture y, the 
symmetry images of are defined as the pictures obtained from applying a se- 
qwnce of the followiw symmetry transfomutions on v: 

1. mirron'ng about the horizontal axis y = 0; 

2. rnirroring about the vertical axis x = 0; 

3. clockwise rotation by RIZ about the ongin. 

The total of eight unique symmetry transformations (including the identity 

mapping) form the dihedral group of order 8 [43]. 

2.3 Abstract notions 

I would like to extract an abstraction from the geometric rectangles and their 
relations. Instead of sets of rectangles 1 consider an alphabet of symbols de- 
noting rectangles, rectangle symbols. 1 begh by defining a mapping of abstract 
symbols to rectangles. 

DEFINITION 2.3.1 (ARRANGEMENT) Let R be a set of symbols denoting rectan- 
gles. An arrangement of R is an injective mapping a : R + Rect such that the 
resulting rectangles fonn a picture. 

Next 1 define an abstract specification of a picture. The specification requires 
a set of abstract symbols and two relations representing the abstraction of the 
geometric compass relations. 

DEFINITION 2.3.2 (SPECIFICATION) A rectangle picture specification, or in 

short a specification, is given by 

def 5 = ( R . v . ~ )  



where R is a set of rectangle symbols, and v.q C R x R v and q are called the 

abstract compass relations- The specifiation is finite when R is finite. 

Most of the results derived in this thesis hold true regardless of whether 5 
is finite or infinite; for the decidabilityissues introduced further below and for 
the intended application for image specifications, 5 will be required to be finite. 

In the sequel, let .S = ( R. v. q) be an arbitraq but fixed spdcation. 

REMARK 2.3.3 An arrangement a of a set R of rectangle symbols defines the ge- 

ometnc compass relation Y, and fi,,, on the set y = a(R) of rectangles. By slight 

abuse of tenninology I use 9, and f i ,  also to dénote the corresponding induced 
relations on the set R of rectangle symbols, that is, 

( r $ )  E Vv if and only if (a(r).a( J ) )  E vy, 

and similarly for fi,. Also, for the sake of simplicity, for fl= {& . X,. X,. K. Yb. Y,. C} 

and any rectangle symbol r E R, I write p(r) instead of p(a(r) )- 

More definitions built on the abstract compass relations are introduced. W e  
continue with the definition of adjacency (or touching). 

DEFINITION 2.3.4 (ADJACENCY) Let ri.- E R ri and rz are v-adjacent if 
(ri .fi) E V U  v-l; they are 11-adjacent if (rl  .-) E q u q-l; they are adjacent if they 

are v-adjacent or q-adjacent. 

A sequence of adjacent rectangle symbols forms a path. Open and closed 
paths are defined in the following. 

DEFINITION 2.3.5 (PATH) Let ratrb E R A path from r. tu rb is a sequence 

of rectangle syrnbols such that 

and 

rp#  r, forO<p<qsn .  

Here n is called the length of the path, denoted by IPI. 

The path P is suid to be closed i f  r, = 0; it is open otherwise. 



Notice that the discussion is rsstricted to open and closed paths containing 
distinct rectangle symbols only. Paths that contain repeated rectangle symbols 

d s o  exist, but they can be bmken down into two or more paths that do not con- 
tain repeated rectangle symbols. Then each part can be examined on its own. 

Next 1 d e h e  comectedness. It can be considered as the transitive extension 
of adjacency. 

DEFINITION 2.3.6 (CONNECTEDNESS) ri is said to be connected to 0 i f  there 

exists a path f h m  rl to fi. 

DEFINITION 2.3.7 (CONNECTED SPECIFICATION) A specification S is said to 

be comected if every pair of rectangle symbols in S is connected. 

In the remainder of the thesis, I assume that every speciht ion is connected 
without explicitly stating so. Specifiations that are not connected can be sepa- 

rated into two or more connected specifications. Then each connected specifica- 

tion can be dealt with indiuidually. 
If one is given a specification, one of the finidamental questions is to ask if 

there is a picture that corresponds to it. 1 call this realizabiliv and define it in 
the following. 

DEFINITION 2.3 .8 (REALIZABILITY) Consider a specification 5 = ( R. v. q ) and 

an arrangement a. Let y~ = a( R). 

1. If V, = v and ïj, = q, then a is acceptable (or a realization) and S is  Rect- 
realizable. 5 is realizable if it is Rectrealizable. 

2. For a subset B Rect, if V, = v, ij, = q, a d  y C B, then a is B-acceptable 
(Or a B-realizatiod a d  .S is B-realizable. 

Note: In the sequel, when it does not matter, the malkation of  a specincation 
refers to a, as well as the picture generated by a. Also, 1 sometimes write a(S) 
instead of a( R) for the sake of convenience. 

The symmetry images of pictures were defined earlier. Now 1 deûne the sym- 
metry images at the abstract level. 

DEFINITION 2.3.9 (SYMMETRY IMAGES OF A SPECIFICATXON) The symmetry 
images of a specification S = ( R. v. 7) and the symbols for denoting them are 

given by: 



PROPOSITION 2.3.10 Let 5 = ( R. v. q) be a speciftcation and let a be an arrange- 
ment of R such that = a( R)  is a realization of R There is a one-to-one corre- 
spondeme 1 between the symmetry images ,-S of .5 and the eight symmetry trans- 
formations in the dihedral group of order eight such that, up to translations of 
the plane, 

I [ ~ ~ ( W I  = [i[iSl .a] (SI- 

The correspondence stated above indicates that the abstract symmetry im- 
ages correctly represent the geometric notions of the symmetry transformations. 

Next, we want to relate a path in the abstract specification to a composition 
of connection curves in the picture. 

PROPOSITION 2.3.11 Let S = ( R. v. q) be a specification and let a be a realiza- 

tion of.5. There is a one-to-one correspondence K betzueen the paths in S and the 
connection cuntes in a( R) such that, for a path T = (ro. ri. . . . . r,), a( P) is the cunie 
resulting fiom the composition of the curves C(ri;-. ri+, ) for i = O. 1.. . . . n - 1. 

DEFINITION 2.3.12 (CONNECTION CURVE FOR A PATH) %th S, a and n: as in 

Proposition 2.3.11, i f  is a puth then x(P) is said to be the connection curve of p. 

Figure 2.3: Connection curve for a path. 

Figure 2.3 shows the c o ~ e c t i o n  c w e  for a path. Now we are going to ex- 

amine the characteristics of connection curves. 1 present the following proposi- 
tions. The first proposition states that a connection curve fits in the rectangles 



that correspond to the path. The second proposition states that a connection 
curve cannot intersect itself, 

PROPOSITION 2.3.13 Suppose one has a realkztion of a specification 5 = 

( R. v. q ). Let T = (ro . ri, . . . . r.) be a path in S. Z k n  the connection cume x( P )  

of T k c o n t a i d  in a(ri). 

Proof: Let us consider the comection m e  for any two adjacent rectangle sym- 

bols a and b in the path. Let d = a(o)  and bf = a@). The connection curve 
is defined as the two straight line segments Li fkom C(d) to M(d.bt), and L2 
from M(d.6' )  to C(bf) .  By definition, C ( d ) . M ( d . b f )  E d and M ( d .  bt).C(b') E bt. A 
straight line that comects any two points inside a rectangle is itself contained 
entirely within the rectangle, therefore Li  E d and LI E bt. Since this is true for 
any two adjacent rectangle symbols, it is true for the entire path. 

PROPOSITION 2.3.14 Suppose one has a realisable specifiation 5. The connec- 

tion eurue of a path is closed i f  and only i f  the path is closed. The conneetion 

cume of a path does not intersect itself 

ProoE The co~ection cuwe of a path is contained entirely within the geometric 
rectangles that correspond the path. For a connection m e  to intersect itself, 
the path must "cross itself" by having a rectangle symbol being used more than 
once in the path (recall that corner kissing has been eliminated). This is not 
allowed in the definition of a path. CI 

Figures 2.4 and 2.5 give simple examples of a realizable and an unrealizable 
specification. 

Figure 2.4: A realizable speciûcation. 



Figure 2.5: An unrealizable specification. 

2.5 Approaches not taken 

2.5.1 Graph drawing approach 

One possible alternative is to use direeted graphs to represent spatial relations. 
Vertices in the graph represent rectangles, and the edges represent the spatial 
relationships. If the spatial infornation can be correctly represented, then re- 
alizability testing would be equivalent to the straight-line planarity testing of 
the directed graph. 

However, it seems that the spatial relations v and q cannot be directly re- 
placed by edges, as there are no restrictions to the orientations of edges in a gen- 
eral directed graph. One approaeh to constrain the orientations of edges is the 
concept of upward graph drawings. A drawing of a directed graph is straight- 
line upward if every edge is a straight üne and is monotonically nondecreasing 
in the y-direction. If this approach is to be adopted, two graphs would be re- 

quired - one for v and one for q. As necessary conditions for realizabiliw, each 
graph must admit a straight-line upward drawing. Unfortunately this is not 
suffiCient for realizability as 1 shall demonstrate in a later chapter that the re- 
alizabiliw problem cannot be solved by treating v and 11 separately. 



In this chapter, 1 present some early findings of the characteristics of specifica- 
tions. We begin by showing the properties of the geometric and abstract corn- 
pass relations. Then 1 show that the abstract compass relations are insuffiCient 
to specifg unique realizations. 1 introduce equivalence classes to group similar 
realizations. Following that, several examples are presented to illustrate how 
the abstract relations are used to speeifg pictures. In doing so, some of the lim- 
itations of the system is discovered. In the h a 1  section, we examine an inter- 
esting construct called a "cage". 

3.1 Properties of the geometric compass relations 

Let us examine the properties of the geometric compass relations Y and fi. 

PROPOSITION 3.1.1 Y and i j  houe the fo~~owingproperties: 

1. There are no kydes  and no ij-cycles; 

2. Y and ïj are anti-transitive; 

Roof: 

1. (No cycles) Let us assume, on the contrary, that there is a +-cycle such that 
( ~ . r ~ ) . ( r ~ : r ~ ) ,  .-..(rn-l.rn) €Y,a=r.,forsomen 2 1. Thenone has &(ro)= 
K(rl) > &(rl )  = &(ri) > a - -  > &(rn-') = &(rn) > Y&-.) = &(ro), whkh is a 
contradiction. The proof for q-cycles is analogous. 



Hence Y,(- )  = Yb(rZ). This means that rectangle rz has zero height. Since 
degenerate rectangles are not allowed, one arrives at a contradiction. The 
case for fi is similm 

3. (Disjointaess) If there are no Y-cycles and no fi-cycles, then C and ij are 
anti-symmetric. Therefore Y n Y-' = ij n il-[ = O. Let us consider the case 

for 6 n y, for (6. y) = {(Y. fi). (Y.  fi-'). (Y-'. fi). (Y-'. fi-')}. Let (rl .Q) E 6 n y. If 
(rl.rt) E 6 then one has &(ri) = K(rZ) or &(rl) = Yb(r2). This means that 

But If(rI.-)  E 6,  then one has ((&(rl).&(ri)) n (yb(rZ)-y( 7 )  - ) # 0. This 
contradicts equation 3.1. Hence 6 n y = 0. 

PROPOSITION 3.1.2 For rectangles rl and fi in a picture, i f  

COROLLARY 3.1.3 Suppose a speci/ication S = ( R . v . ~ )  is realltable, then v and 

q have the following properttrttes: 

1. There are no v-cycles and no q-cycles; 

2. v and q are anti-transitive; 

3. v, v-', q, and q-' are pahuise disjoint. 

Proof: Let y = a( R) be a realization. Then v = and q = fiv. It is proven in 
Proposition 3.1.1 that for any picture y, V, and fi, have all the properties Iisted 
above. 



3.2 Equivalence of realizations 

Specifications do not stipulate the sizes of rectangles in the reaüzations. If a 

specification is =&able, it can be mapped by diffemnt arrangements to an 
infinite number of Merent pietures. We want to be able to classify them and 
group them into classes. We will deal with the concept of equivdence informdy 
in this section and present a formal definition in Chapter 6. 

Suppose one has a simple specification given by {{a. b ) .  {(o. b ) } .  0). AU the 
realizations shown in Figure 3.1 are to be considered as equivalent. 

Figure 3.1: Realizations that are equivalent. 

Suppose one has another specification given by {{a. 6. c}.  { (a .  6). (a. c )  }. 0 ) .  

Realizations shown in Figure 3.2 are to be considered equivalent. However, the 
realizations shown in Figure 3.3 are to be distinguished. 

Figure 3.2: Realizations that are equivalent. 

Figure 3.3: Realizations that are not equivdent. 

If only specifications with q = 0 are considered, Figure 3.4 lists all the equiv- 

alence classes for specifications with one to five rectangles. Each entry may rep- 
resent more than one class, as classes that are horizontallvertical mirrors are 
not shown. The total number of classes contained in each entry is shown in the 
second column. 



Figure 3 -4: Equivalence classes. 



Let us look at an example to cl- the presentation of Figure 3.4. Consider 
the entry labeled with the *. The entrg represents a total of four classes, shown 
in Figure 3.5. 

Figure 3.5: The four classes represented by the entry labeled with the * in Fig- 
ure 3.4. 

That is to Say, whenever you have three c o ~ e c t e d  rectangles, their relative 
positions must f d  into one of the two general classes. Similarly for four rect- 
angles, the2 relative positions must fall into one of the seven classes. 

As expected, the number of classes inereases dramatically wieh the number 
of connected rectangles. There also does not seem to be a pattern that c m  be 

extracted. 
As mentioned before, these classes caxmot be specified formally at this point 

as some important concepts are sti l l  missing. The notion ofequivalence will be 

re-visited again in Chapter 6. There a formal dehition will be given. 

Let us look at sorne examples of specificatiorm and examine their realizabiliw 
In the first example, the specification is realizable and the possible realization 
classes are shown. The specification shown in the second example is not realiz- 
able, and a proof of this is presented. 

EXAMPLE 3.3.1 Let 

We can see that there are three classes ofpossible reakations (rernernber that 
arbitrary scaling and vertical miroring are allowed). They are shown in Fig- 
ure 3.6. The picture shown in Figure 3.7 is not acceptable becawe rectangles 
are not allowed to ouerlap. 



Figure 3.6: Possible realization classes. 

Figure 3.7: Overlaps are not dowed. 

EXAMPLE 3.3.2 Let us now look at an example that cannot be realited. Let 

R = {a.b.c.d.e. f.g.h.i.j}, 

v = { (a .  h) . (b .a ) .  (c-a).  (d.a).(e. b).(e.c).( f.c). (f.4. (g.4. (g-fl- ( i -h) . ( j - i ) .  

( j . ~ ) } .  and 

q = 0- 

The rectangle symbol c is enclosed in a "cage" formed by the closed path 
(a. b. e.g. f . d a ) .  It is not possible for c to be adjacent to j which is outside of the 
i%age". This situation is shown in Figure 3.8. 

Note that the cage used in this example is constructed deiiberately in a care- 
fid marmer so that one can assert that c is inside and j is outside. The following 

proves that this example is  not realizable. Since the bols for dealing with the 
inside and outside of cages have not yet been developed, the proof will not use 
any properties of cages. 



Figure 3.8: No realization is possible. 

Proof: Let us assume that there is a realization. From v one knows that 

For r1.e E {e. f. j} .rl  # rz, one has, by Definition 2.2.5, 

Similarly for r3. r4 E {b.c. d} .  r3 # r4, one has, by Definition 2.2.5, 

1 have established that the horizontal extents of rectangles e, f, and j, as weU 
the horizontal extents of rectangles b, c, and d do not overlap. 

Looking at rectangles b, c, and d, there are six permutations to order them 
fkom West to East: 



One has fe. b).  ( f .  d ) .  (e .  c) ,  (f .c) E v. Cases 3 to 6 c m  be eliminated because 
they force rectangles e and f to overlap- 1 will show case 3 in detail and omit 
cases 4 to 6 as the p m f s  are similar. 

In case 3, XI(e) < Xr(b) because of (e. b) E v; moreover, &(b) < Xl(c) as above, 
thus &(el < 4 ( c ) .  By (f.d).(  f,c) E v and the inequality above one has &(/) < 
X,(d) < &(cl < X ( n .  Thus by ( e x )  E v &(el < &(c) < &(e) and &(/) < Xl(c) < 
Xr(/), hence (&(e).&(e)) f~ (q(f)&(f)) # 0. However, thia contradicts equa- 
tion 3-2. 

Let us now look at the two remaining possible cases. 

1- &(b) < &(c) <&(d)-  
Since ( e. &). (/. d )  E v, X,(e) < &(n. Looking at rectangles e, f, and i, one 
has three permutations to order them. 

Since ( e h ) .  (ex). ( f . c ) . (  f .d)  E v one has &(e) < &(c) < X,(e) and 4(/) < 

< &(f)* 

For cases (a) and (c) one has (Xr(j)  < &(el < &(c) or X ~ ( C )  < Xr(n  < Xl( j ) ,  

and therefore (x( j)&( j ) )  n ( & ( c ) . ~ , ( c ) )  = 0. Thus ( j .  c )  6 v. But this con- 
tradicts the fact that ( j , c )  E v. Therefore cases (a) and (c) can be elimi- 
nated. 

For case (b), one knows that &(c)  < X,(e) < XI(j) < Xr(j) < XI(I) < 
MC). Since ( j .  i) E v, one hm (&( ,)&( j ) )  n ( ~ , ( i ) - & ( i ) )  # 0- Hence 

( & ( c ) . ~ , ( e ) )  n ( & ( i ) . ~ r ( i ) )  # 0. Since ( j . c ) ?  ( j . i )  E v, one has ( & ( i )  ~ ( i ) )  n 

( f i (  c) .  & ( C I )  # 0. Thus rectangles i and c overlap. Therefore we have ar- 
rived at a contradiction. 

2- &(dl <X;(b)-  
The proof of the impossibility of this case is similar. It can be obtained by 
simply exchanging e  and f, as well as b and d in the proof of part 1. 

Hence 1 have shown that no realization exists for the specification. u 



The pmof above by case distinction is tedious and specific. It cannot be easily 

generalized to other situations. This is one of the motivations for attempting to 
characterize the cage situation in subsequent sections of this thesis. 

It seems rather simple to identify a cage in a realization and to decide which 
rectangle aie ioside and which are outside. But in fact, if we only look at the 
abstract relations v and q, this tuns out to be a surprisingly difficult task. 

3.4 Cages 

Let us take a closer look at cages. Consider a specification S = ( R. v. q ). Suppose, 
5 has a closed path T? cahd a cage in the sequel. If there is a rectangle symbol 
r not occurring in T such that, in any realization a of T, a(r) would have to be 

attached to a rectangle inside the cage and also ta a rectangle outside the cage 

then, clearly, T is not realizable. It seems natural, therefore, to develop the ab- 
stract notions of insi& and outside for cages in specifications. This turns out to 

be surprisingly difficult. 

DEFINITION 3.4.1 Let .S = ( R. vl q) be a realïzable specification and suppose 

there is a closed path T = (Q,. . . . r,, ro) in S. A rectangle symbol r E R not oc- 

cumhg in @ is inside T ifi for every arrangement a of S, a ( r )  is contained in the 
area &( T )  enclosed by the conrcection curve of a(!@. The rectangle symbol r E R 

is outside T if, for every arrangement a of 5, the interior of a(r) is contained in 

the area 

In this section, 1 will present a series of attempts to capture the concept ofin- 
siae and outside of cages. We restrict our discussion here to specifications with 
q = 0 to reduce the complexity of the cases to be examined. 1 begin with a ver-  
simple form of a cage, called an LR cage. 

3.4.1 LR cages 

DEFINITION 3.4.2 (LR CAGE) Whemver one has two paths 

and 

I>, = (kt = to . t i . .  . ..te = rtop) 



where 

and 

one hasan li cage T =  (rbor=so=to~si ..... s, =rtop =tn . tn-~  .--.. t i . t o = b l = ~ ) .  

bot and rtop are called the bottom and the top of the cuge, respectively. The re- 
maining rectangle symbols {si,. . . .s,-[ ) and {Q.. . . . i+l} compose the two walls 
of the cage. 

Note that at the abstract level, it is not possible to identify the leR and right 
walls. One knows that (sl . bt). ( t l  .bot) E v but there is no information available 
to order sl and t l .  The same can be said fors,-1, t,-i, and r,,. The notion ofleft 
and right walls does exist in the realizations though, after a specific mange- 

ment a is employed. We now present several attempts at abstracting the no- 
tions of inside and outside from some scenarios in which these look intuitively 

obvious. 

ATTEMPT 3.4.3 An LR cage is empty i f  (a) there are no rectangle syrnbds ri 
other than sl and tl such t h t  (ri. bt) E v; and (b) there are no rectangle symbols 
0 other than s,- 1 and tn-1 such t h t  (rtop. ri) E V. 

Disproof: The only remaining candidates that can be inside the cage must be 
adjacent to the side w d s  with respect to v. %ut they c m  always be "flipped 
out" in the realizations. 17 

Note that the converse of the above statement is also not true. Even if the 
rectangle symbols rl and rt do exist, they c m  again be "flipped out" of the cage 
in the realizations. 

ATTEMPT 3.4.4 A rectangle symbol is insi& an LR cage i f  it is connected to both 
walls of the cage. 

Disproof: A counter-example is shown in Figure 3.9. The two realizations are 
constructed h m  

Rectangle d can be inside or outside the cage. 



Figure 3.9: Counter-example for Observation 3.4.4. Rectangle d can be inside 
or outside the cage. 

ATTEMPT 3.4.5 A rectangle gymbol is inside an LR cage i f  it is connected to both 
walls of the cage and also connected to either the top or th4 bottom of the cage. 

Dispmof: A counter-example is shown in Figure 3.10. a 
Let us add more conditions to attempt to 'Yorce" rectangle symbols to be in- 

side cages. 

Figure 3.10: Counter-example for Observation 3.4.5. d is not in the LR cage. 

ATTEMPT 3.4.6 A rectangle symbol inside in an LJ3 cage i f  it is connected to 150th 
walls of the cage and also connected to either the top fion the South or connected 
to the bottom fiom the North. 

At e s t  glance, there seem to be enough conditions to prevent rectangle symbols 
to be flipped out of a cage. An example is shown in Figure 3.11. But yet again, a 
counter-example can be found. It is shown in Figure 3.12. The problem is that 



the "co~ectedness" condition provides too much fkeedom. We wiU have to use 

the more restrictive adjacency condition in our next attempt. 

Figure 3.11: Observation 3.4.6: is d is in the LR cage? 

Figure 3.12: Counter-example for Observation 3.4.6. 

ATTEMPT 3.4.7 A rectangle symbol is insi& an LR cage i f  it is adjacent to a 
rectangle symbol Pom each of the two uialls. 

We have finally collected enough conditions that is suBcient, but by no means 
necessary, to state that a rectangle symbol is in an LR cage. This is used as a 
basis to construct Example 3.3.2. 

Proof: p et t h e L R ~ a g e b e @ = ( ~  =~r,r~,..-.rn=rtop.~+~.----rn+m=~ot)- Let r 

be a rectangle symbol adjacent to ri and rj with O < i < m and O < j < n. 
Let a be an arrangement of the specification. Then 



Thus x( T) 4 a( r).  Without loss ofgenerality assume the former. Suppose a( r )  

is not contained in &( T). Hence n( @) intersects the comection m e  x( T of i). 
Hence there is a rectangle symbol ri such that C(ri,  l i c i  mod(n+m) ) intersects a( r). 

By Proposition 2.3.13 C(ri.r(KL)mod(n+m)) i~ contained in a(ri)  u a( ri,i ). As a( r )  

does not overlap ~ i t h  a(ri) and a( ricl ) it follows that M( ri. ri+ 1 ) E a( r ) . Kowever, 
this again implies an overlap. D 

The series of attempts presented shows that it is not easy to derive proper- 
ties for rectangle pictures, even for very simple cases. The apparently simple 
notion of inside and outside cannot be defined easily, even in an extremely sim- 
plined cage situation. 

3.4.2 General cages 

We now turn our attention to other cage situations. 

DEFINITION 3.4.8 (GENERAL CAGE) A closedpath @ = (popi . .  . ..pn. pO) f o n s  

a cage. 

Figure 3.13: Another cage situation. Here, a, 6, and f are local minima, g, h and 
d are local maxima. 

Given the diffidties we had with determining the inside and outside of an 
LR cage there is Little hope for a simple characterization of the inside and out- 
side of a general cage. In the next section I present another sequence of at- 
tempts to generaLize the idea of Attempt 3.4.7, along with their counter-exam- 

ples. 

3.4.3 Locd maxima and minima 

In the general cage the roles of the rectangle symbols rtop and bot of an LR cage 
seem to be taken over by rocal miniman and 'local maxima". Intuitively, a aect- 



angle symbol is a local minimum if no rectangle symbols is forced to be the South 
of it in every reakation. 

DEFINITION 3.4.9 Suppose one has a closedpath @ =  (po.pi-.--.pnt.po)- 

1. A rectangle symbol pi is u local minimum of @ if (p i tp i )  v for al2 O < j 5 
m. i # j. Let RN &note the set of al2 local minima. 

2. A rectangle qmb02 pi is a local e u m  of &' i f  (pi. pi) v for al1 O 5 j  5 
m. i # j- Let Rx &note the set of al2 local maxima. 

3. A rectangle symbol pi is a side w d  of T otherwise. Let Rw denote the set of 

all si& wall rectangle symbols. 

4. Let pi E RN u Rx and let pk. E @. ppk and p, are said to be on opposite sides 
of pi i f  there is CE pj E RNU Rx, j # i, such that one of the fdlowing conditions 
is  satisfid 

(a) I f  j <  ithen k~ {j+ 1 ..... i- l }  andl E {O ..... j -  Li+ 1 ..... n} or vice 

versa. 

(b) [ f i <  j t h e n k ~  { i f l  ..... j - l }and&{O ..... i-Lj+I ..... n}oruice 
versa. 

ATTEMPT 3.4.10 A rectangle symbol is insi& a cage i f  it is connected to a local 

maximum or a lm1 minimum of the cage, and to two other side wall rectangle 

symbols on opposite sides. 

Disproof: A counter-example is given in Figure 3.12. d is connected to the local 
minimum a and side wall rectangle symbols g and h. n 

ATTEMPT 3.4.11 A rectangle -bol ris inside a cage if there exists n rectangle 

syrnbol 5 E Rx such that (r,.r) E v or if there eJists a rectangle symbol r, E RN 
such that (r. r,) E v. 

Disproof: A counter-example is shown in Figure 3.14. IS~ 

ATTEMPT 3.4.12 A rectangle grrnbol r is inside a cage if there &sts a rectangle 

symbol r, E Rx and a rectangle m o l  r, E RH such that ( r. r, ). ( r,, . r ) E v. 

Disproof: An example of this is shown in Figure 3.15. However this attempt is 

not tme either as shown in Figure 3.16. D 



Figure 3.14: Counter example to Observation 3.4.11. 

Figure 3.15: Inside a cage. 

Figure 3.16: Outside a cage. 

3.5 Need to reduce the problem 

It is shown that even seamingly simple ideas cannot be expressed easily, even 
in specifications involving only one of the two abstract compass relations. Re- 
cal l  that the motivation to define the inside and outside of a closed path was to 
enable us to identify certain specifications that are not realizable. 



We would like to derive d e s  to determine the realizability of specincations in 
the following chapters. It is difEcult to do this by just looking at the abstract 
relations. In this chapter, we wi l l  look at geometric examples to gather clues on 
how to formulate conditions for realizability testing. 

We begin 6 t h  simple specifications that involve v only The following Lists some 
specific situations that may cause realizabüity problems. 

1. Degenerate dimensions (Figure 4.1(a)). 

For this case to be realizable, rectangle b has to have zero height. This is 
characterized by a transitive relationship in v. 

2. Impossible stretching (Figure 4.l(b)). 
It is not possible for c to be to the North of a. This is characterized by a 
v-c ycle. 

3. Forced overlapping (Figure 4.l(c)). 
Rectangles a and b act as obstructions to prevent x fkom touching y. How- 
ever, in the absence of information ordering the positions of a and y, their 
positions can be swapped without any change in v. Then it would be pos- 
sible to obtain a realization, 

4. hiddoutside (Figure 4.l(d)). 
Consider the closed path T = (a. 6. c. d .  a) .  If x is inside and y is outside of 
the cage, then x cannot be adjacent to y without overlapping some part of 



v = { ( a .  b ) .  (6.c) .  ( c a ) }  - 

i y l  
v = { (y .  a ) .  (a .  6 ) .  (a .d) .  

(6.c). (d-c).  (XC) 

(4 (y--d} 

= (a.6.c.d.a) 
I 

v = { ( a .  b) . (y .b) . (b .c) .  
( ~ . d ) ~  (x .  d ) .  (z. d ) .  

( y 4  (pz)) -- 

Figure 4.1: Some possible causes of unrealizability (q = 0). 



the cage. But again, without additional ordering information, a realiza- 
tion can be obtained by Wpping" x out of the cage. We have seen examples 
of tbis situation in the previous chapter, 

5. Forced overlapping (Figure 4.l(e)). 
At b t  glance, this situation seem to be unrealizable. b acts as a bamier 

to prevent y h m  touching x and z. But again, without the ordering of x, C, 

and z, one can Wp" c to the leftmost position. d and y are extended to the 
East, and x and z are extended to the North, forming a realization. 

Notice that examples 3,4, and 5 are reaüzable in the absence of additional 
information. If the "order" of ail rectangles is fked (to prohibit 'Ylipping"), then 
they are no longer realizable. 

Figure 4.2: Another example of unrealizability (q = 0). 

4.2 Specifications with v and q 

Suppose one has the situation given in Figure 4.3. The specification is mea l -  
izable, but this fact cannot be detected by examining v or q aloae. To illustrate 
this point, consider the same specification with q = 0. Then it is realizable and 
a realization is given in Figure 4.4(a). If we instead let v = 0, it is also realizable 
and a realization is given in Figure 4.4(b). 

This shows the two-dimensional nature of the problem: v and q cannot be 

treated separately. 
Let us look at another example involving both v and q, shown in Figure 4.5. 

This time, let us assume that, for each rectangle, the ordering of the rectangles 
adjacent to it is fked. Therefore the only possible transformations are transla- 
tion and scaling. 



Figure 4.3: Umealizable because of overlap (v and q). 

Figure 4.4: (a) q = 0; (b) v = 0. 

Observations: 

1. x camot be adjacent to y' because of a combined-anti-transitiviw formed 
by v and q. 

2. x canoot be adjacent to y because of Roposition 6.2.4. 

3. x cannot be adjacent to z because it would have to eut across or reach 
around b. 

4. x cannot be adjacent to c because it would have to reach around b. 

5. x can be adjacent to 2. 

4.3 Big example 

1 now show a slightly larger example, variants of which are used in several spots 

later in this work. The specification is as follows: 



Figure 4.5: Another non-reaüzable example. 

Figure 4.6: Big example. 

(i. j ) .  ( j . 1 ) .  (km). (k-n) .  ( L n ) .  (1.0). (1 .p ) .  (m-î). ( n - q ) - ( p ) .  ( K S I } .  

1 = { ( b . a ) . ( b . n . ( b ,  P ) . ( ~ , s ) , ( z . ~ ) - ( P . ~ ) } .  

It is realizable as shown in Figure 4.6. I show this example to make the point 
that it is indeed very difficult to determine abstractly whether rectangles can or 

cannot be adjacent to each other. For instance, none of the properties derived 
so far indicates that ( O - m )  E q would cause the specification to be unreaLizable 
even with q and s absent, that is, without the cage formed by b. S. q. n.  1. p. 



We have seen in the previous chapters that there are many difficulties asso- 
ciated with the original problem that cannot be dealt with easily. One reason 
is the infinite number of possibilities for the sizes and placement of positions 
when real values are used. In this chapter 1 discuss a few variants of the orig- 
inal problem. 1 am going to reduce the problem by placing certain restrictions. 
Instead of worlûng with rectangles that have sizes and positions in real num- 
bers, 1 consider rational and dao integer sizes and positions. 

5.1 unit sguares 

We begin by considering a simplification of pichire specïfications by restricting 
the rectangles to have unit dimensions. 

DEFINITION 5.1.1 A unit square is a rectangle with unit dimensions, 

Let S &note the set of all unit squares. T h t  is, 

Further, the range of positions that the squares can be placed is also going 

to be limited. The following enforces a "unit grid" on which to place the squares. 

DEFINITION 5.1.2 A unit Z-square is a unit square with integer-ualued posi- 

tions. That is, 



k t  & &note the set of all unit Z-squares. Thot is, 

The layout of unit 2-squares is not ambiguous beeause, for any pair of adja- 
cent squares, the= can only be exactly one relative position to arrange them. 

REMARK 5.1.3 Suppose s;' and S: are two unit Z-squares in a picture. If 
(s$:) E YU Y-' then &(s?) =&(s?). ~f ( ~ f ~ q )  E i j  u then Y,(s?) = Y,(S?). 

Without ambiguity in the placement of unit Z-squares, it should be possible 
to decide the realizability of a specification. This can be done by attempting to 
construct the realization. 

PROPOSITION 5.1.4 T%e &-realizability of a finite specification 5 is decidable, 
and, i f  there is a realization, one can produce it algorithmically. 

Proof: 1 shall prove this by describing an algorithm for constructing a realiza- 
tion. The aim is to place all the squares dom on a unit grid. Since these squares 
are constrained, they can only be placed exactly onto a grid position. Once a grid 

position is occupied, no other square can be placed on it. 
Let us place the first square SI. The grid is iaitially empty, so we can place it 

arbitrarily Although there is an infinite number of positions to place the e s t  

square, the choice has no consequence in the proof. 
Now we place the next square sz. We choose one that is adjacent to q, in 

other words (s2.sl) E v u v-' u q u q-'. Since (sz.si) occurs in exactly one of v, 

v- ' , q, q-l Proposition 5.1.3 states that there can only be one exact position 
to place y. The grid positions smounding the first one are empty so far, and 
therefore the second square can be placed. 

Now we want to place another square S. We need to choose one that is ad- 
jacent to a square that is already on the grid. We can always find one since all 

the squares are connected. If the grid position is empty, then we can place it. If 
the grid position is occupied, then we stop. 

We continue in t h ï s  fashion until 

1. we have placed al1 the squares; or 



2. we have encountered a situation where overlapping of squares occurs. 

If we have placed dl the squares, then we clear1y have produced a realiza- 
tion and therefore proved that the arrangement is realizable. Otherwise we can 

conclude that the arrangement is unrealizable. u 
The above is easily proven because there are essentially no choices to be 

made in the layout of unit &squares. The realizations are al l  similar, diBering 
only in the absolute positions of the entire picture in the plane. 

5.2 kiteger rectangles 

Let us relax the conditions slightly and examine a situation where there are 
more decisions to be made. Consider the layout of a set of rectangles instead of 

unit squares. These rectangles have integer dimensions, and can only be placed 

at integer-valued positions in the plane. We define such rectangles in the follow- 

hg. 

DEFINITION 5 -2.1 A %rectangle is a rectangle ZRect3 = RectZ such that wyh,x, 

y E Z, W. h > O. k t  Rz = (ZRectZ : W. h . r y  E Z. w: h > O} be the set of all Z-rectan- 
gles. 

We would like to consider the decidability of Rz-realizability for specifica- 
tions. Unlike unit %squares that have only one size, the set of possible sizes of 
the %rectangles is infinite. In order to bound the search space to be ânite, an 
upper bound is imposed on the size for the %rectangles. 1 will prove that the 

realizabiüty of such a layout is decidable in the following. 

PROPOSITION 5.2.2 Suppose one kas a finite specimtion 5 = ( R . v . ~ ) .  We im- 
pose a size lirnit L E Zf on every rectangle symbol ri E R such that for any arrange- 
ment a, i f  ( = a( ri) = Rect ;;$, one has wi < 1 and hi 5 l. Then the Rz-realizability 
of S is decidable and, ifthere is a realization, one can produce it algorithrnically. 

Proof: 1 shall pmve the proposition by describing an algorithm for constructing 

a realization. 

Since we are dealhg with an infinite plane to place the rectangles, the num- 
ber of realizations for every specification is clearlyinfinite. However in the proof 

of decidability, one needs not distinguish layouts that differ only in the absolute 



positions of the entire picture in the infinite plane. This corresponds to the se- 

lection of the absolute position of the b t  rectangle to be positioned. The choice 
of this initial position has no consequeme in the prwf. 

We know that the sizes as well as the placement positions of everg rectan- 
gle are integers. lbgether with the size Limit imposed on rectangles, one knows 
that there c m  only be a fhite number of layouts to be considered. For example, 
suppose one has (a. 6) E q and the limit on size set at 2 units. Then a and b can 
have sizes { 1 x 1.2 x 1.1 x 2.2 x 2). For the cases when both a and b have height 2 

units, there are exactly three possible relative positions between a and b. They 

are shown in Figure 5.1. 

Figure 5.1: Relative placement positions for two touching rectangles of height 
2 on a unit grid. 

In general, if the size limit is I units, then each rectangle can have one of 
1' shapes. For each pair of adjacent rectangles, if m and n are the lengths of 
their touching sides, there are exactly m + n - 1 possible placement positions. 

Therefore the upper bound on the number of cases to be considered is 
a- I l ~ l ~ x ( l v l + l i l l )  - 

Although the total number of cases could be large it is, nevertheless, finite. 
AU layout possibilities c m  be enumerated and we attempt to construct a real- 
ization for each case. In each construction, no fùrther decisions are required. 
The construction algorithm is analogous to the one used in the proof of the pre- 
vious proposition. It places the rectangles on the unit grid one after the other 
as specified. If dl the rectangles can be placed without overlapping, then one 
has a realization. 

If one is successful in constmcting one realization, then the arrangement is 
realizable, otherwise it is not realizable. a 



The previous p m f  enurnerates al l  possible arrangements and attempts to 

construct them. The construction technique can also be used to determine the 
"spread" of the picture. We refer ta the extents of a realization as the width 
and height of a smallest bomding rectangle that contaias the realization. The 
following gives an upper bound to the extents of any realization. 

COROLLARY 5.2.3 Suppose one h s  a finite specifieation S = ( R. v. q ). We impose 

a sire bound I E Z+ on every rectangle qynbol r E R such that for any arrange- 
ment a., i f  r' = a(r) = Rectx one has w < f and h < I. Then one can compute the 
maximum vertical and horisontal extents of = a( R) for any a 

Proof: We begin by arbitrarily selecting a staiting rectangle rl E R. Let us take 
the bottom leR corner of r l ,  (&(ri ). &(rl )) , as the point of reference. Let Ymx, 

Y&, X-, and X- represent the extremes that can be reached by rectangles in 
the North, South, East and West directions respectively The precise placement 
position for the next rectangle is not known, but one knows the range of possi- 
ble positions. The horizontal range of the nvrent rectangle is represented by 
( . x ~ ~ ~ . . v - )  and its verticai range is represented by (ykn.y,,). This means that 
for the cvrent rectangle r, I x x,, 5 &(r) < X,(r) 5 I x -Y,, and i x Vmin 5 Yb(r) < 
K(r) 5 f x y,,. In the beginning, set 

We traverse the specification starting £kom ri .For every step taken from ri to 
rjs where (ri. r j )  E v u V-' u q U q-', one p e ~ o m s  the following: 

1. Compute the range of positions for the next rectangle: for each of 

where 

2. Update the extents if necessary: 



I will explain one case in step 1 to show how the LSS are determined. Consider 
the case when (ri.  ri) E v. It is clear the vertical range is shiffed upwards by the 
height of one rectangle. The horizontal range of positions for rj relative to ri 
is shown in Figure 5.2. It inmases the maximum horizontal range by almost 
the width of one rectangle and decreases the minimum horizontal range by the 
same amount. Therefore one has (h-, &y-, AX-~,  Ay- = ( - 1 . 1 . 1 . 1  ). 

Figure 5.2: Range of possible positions for ( rj. ri) E V. 

After the entire specification is traversed, Y-, Y-, X-., and X* store the 
extrerne positions that can be reached by all the rectangles. Each rectangle is 
limited to size 1 x 1, therefore the maximum horizontal extent is I x (X,, - X- ) 

and the maximum vertical extent is Z x ( Y,, - Y-). 13 

The converse of the previous corollary is also true. That is to Say, given the 
size of an area, one can cornpute the maximum size limits for the Z-rectangles 

such that any realization would be able to fit into it. 

COROLLARY 5.2.4 Suppose one has a finite specification S = ( R. v. q) that is R=- 
realirable. Given an area of w x h square mits, one can &termine the maximum 
size limit I E Z+ to be imposed on the Z-rectangles such that it is always possible 
to display any Rz-realization of S in the said area. 

Proof: Corollary 5.2.3 states that given a specification, the maximum extents of 
all Rz-realizations can be computed. The maximum horizontal extent is given 
as I x (X,, - X,,) and the maximum vertical extent is given as I x ( Y,, - Y,,). 

By setting the extents to be the maximum area available to display the realiza- 
tions, one gets 



Then the required maximum size !imit is l = min(ll. lz). 

Now we are going to move away h m  integer coordinates to rational coordi- 
nates. We consider rectangles that have rational dimensions and positions. 

DEFINITION 5.3.1 A Q-rectangle is a rectangle QRect3 = RectY such that W, h,x, 

v E Q. Let Rg = {QRectY : W. h . r y  E Q} &note the set of all Q-rectangles. 

PROPOSITION 5.3.2 A fiBite specification S = ( R. v. q) is Rpealizable if and 

only if it is Ryealirable. 

Proof: Ifs is Rz-realizable, then there exists an arrangement a such that a( R) 

Rz. But Rz c RQ, therefore .S is Rp-realizable. 
The next step establishes that if a spefication has a Rr;-realization then 

it also has a R3-realization. T'o do that, one cornputes a common denominator 

for all the rational numbers used in all the Q-rectangles in the RQ-realization. 

Then the entire RQ-realization is scaled up by this common denominator. The 
resulting realization would therefore contain only integer values. 

For a Rd-realization v, d E Z+ is a common denominator of y if for all r = 
RectY E y, there exist integers il. i2? i3. 4 swh that w = iJd, h = h / d ,  x = b / d ,  

and y = i4/d.  

We need to show that  a common denominator exists for all Ra-realizations. 
The following shows how one can be computed. 

Let y = {ri = Rectl$} be a a-malization. Then V i  [wi. hiY-ri.yi E QI. Every 

rational number is represented by a hction, Say 

for some &. Dij E Z. Then a common denominator of can be computed by 



where is the function cornputing the least common multiple. 
Let y be a realization of S where every rectangle is a Q-rectangle. Let d be 

a cornmon denominator for v. A new picture y' is constructed by scaling every 
Q-rectangle by d. That is to Say, for every Q-rectangle r = Rect3 E y, a new rect- 
angle J = R e d $  is obtained, where: 

w' = d x w  

h' = d x h  
I x = d x x  

y' = d x y  

By the definition of the common denominator, one knows that d.hr.d.J. i  E Z. 

Since the same proportional scaling is applied to all rectangles, the geometric 
compass relations remain unchanged, that is to say Y,, = V, and ï&-t = q,. Then 
y/ is a realization ofS where every rectangle is a Z-rectangle. Hence .S is R=- 
realizable. II 

5.4 Real rectangles 

In this section, we will hy to associate the restricted cases with the onginal 
problem. We want to establish the relationship between realizability and R=- 
realizability. 

PROPOS~TION 5.4.1 A finite specification S = ( R. v. q ) is realizable if  and only i f  

it is RQ-realizable. 

Roof: Ifs is RQ-realizable, then there exists an arrangement a such that a( R) c 
RQ But RQ c Rect, therefore S is reaüzable. 

To show the converse, one must pmvide a way of constructing a Rp-realiza- 
tion given a reaiization. In any realization, there is only a finite set of real num- 
bers used to locate the corners of all the rectangles. These corners can be shiffed 
slightly to a position that involves only rational numbers. Then the new picture 
is a RQ-realization. 

Let be a realization of S. For all rectangles ri E y we collect the real values 
representing the coordinates of the corners of ri, namely Xl(ri), X,( ri ), Yb( ri ), and 
&(ri) .  These numbers are sorted in ascending order. Let the sorted sequence 



be pi - pz. - . . . pn. For every pair of mal numbers (pi- 1. pi) in the sequence, one 
can find a rational number qi- 1 such that pi-, < q~ 1 pi- One can also find a 
rational nwnber qn > p,,. We construct the corresponding sequence of rational 
numbers ql0q2?. - . .qn- 

A new picture y~ '  is cunsmctzd by ihifting" a l l  real values pi to the rational 
values qi. For the coordinates of the corners of every rectangle, real value pi 
is replaced with the corresponding rational value qi. The geometric compass 
relations remain unchanged, that is, V,, = 9, and il,, = fiv; moreover rectangles 
in do not overlap. Thus y' is a realization of S where every rectangle is a Q- 

rectangle. Hence S is RQ-realizable. CI 

Propositions 5.3.2 and 5.4.1 can be stimmarized by the foliowing coroUary. 

COROLLARY 5.4.2 A finite specifkztion S is realizable i f  and only if it is Rz- 
realiza ble. 



In Chapter 3, we have seen that specifications involving only v and q may have 

many possible realizations. The large number of cases causes difnculties when 
we are trying to establish properties of the specifications. 

In this chapter, additional ordering relations for the rectangles are explored. 
These ordering relations are first introduced on the realizations. Then an ab- 
stract equivalent of such relations is extracted for the specifications. 

Figure 3.3 shows two pictures wi th  the same Y = { (a .b) . (u .c) )  and fi = 0. By 
looking only at the geometric compass relations, one is unable to distinguish 
them. An ordering of rectangles b and c with respect to a is required. 

An obvious way to order them is to use the spatial relationships between the 
centres of the rectangles. In our example, we construct directed edges from a to 

b and from o to c. The orientation of the edges is used to order b and C. 

DEFINITION 6.1.1 (8) For two adjacent rectangles rl and ra O,,, is défined as 

the anti-clmkwise angle fiom a horizontal edge directed to the East and the edge 
+ 
C I C ~  where ci = C(ri ) and cl = C(Q). 

The intention is to use 8 to order rectangles, but there is a problem. Fig- 
ure 6.1 shows two possible pictures with Y = {(a,  b) ,  (a .c)}  and ij = 0. In case (a), 
one has 8,, > Oab. But in case (b), one has QaC < cab. The ordering is reversed by 
"stretching" a. This is undesirable as we want to consider the ordering of b and 
c to be the same for both cases. 

The ordering technique is improved by using a point on the the edge of in- 
tersection instead of the centres. The midpoint on the edge of intersection is 



Figure 6.1: Problem with using centres of rectangles: (a) €lac > Bab (b) O,, < eaa. 

DEFINITION 6.1.2 (0') For two adjacent rectangles ri and ra O;,, is defined as - 
the anti-clockwise angle from a horizontal edge directed to the East and the edge 

c 3 ,  where ci = C(rl ) and m = M(rl .fi). 

Figure 6.2: Adding the centres of common edge segments. 



Now 8/ is used to defme a relation f in an attempt to order adjacent rectan- 

gles. 

DEFINITION 6.1.3 .i i s  a binary relation on rectangies such that ( rz. r3 ) E f i f  

Let us derive i for an example. Consider the example given in Figure 6.3. 
If we consider the o r d e ~ g  of the rectangles si, sz, and s3 with respect to rl , we 
would obtain 

(s3.s2).(s2.s1) E 5- 

However, if we consider the ordering with respect to Q, we would obtain 

This is again undesirable, as the ordering of the si's are different dependiog on 
the reference rectangles. 

Figure 6.3: The ordering of the sis are different depending on which of the ref- 
erence rectangles rl and q is used. 

The motivation for using an ordering based on directions is to attempt to 
obtain one additional ordering relation f to order the rectangles for both C and 
fi. However it is shown that thie method is unsuccessful because f does not give 

an o r d e ~ g  that is globdy consistent, that is, antisymmekic. 

6.2 Geometric order relations ou and ai 

In ou. next attempt to order rectangles, 1 introduce a pair of relations, one for 
each of the geometric compass relations Y and q. 

DEFINITION 6.2.1 (GEOMETRIC ORDER RELATIONS) Let y be a picture. 1 de- 
fine the binary relations mqv and coq, on the set of rectangles in as follows. Let 
ri and fi be rectangles in y~. 



1. One has (ri. r2) E wv if &(rl ) > &( Q ) and there &sts a rectangle r, in iy 

such thot (rl.r3).(r2.rj j E V,,, or (r3.r1).(r3.q) E Gv. 

I cal1 ou, and q, the geometric order relations. 

Note on symmetry 

There is a symmetry regardhg v and q. Properties of v and q are identical, with 
the appropriate mimring der rotation. The same symmetry extends to ov 

and a,.,. In the sequel, we will exploit this symmetry to simpiify the discussion 

by avoiding the unnecessary duplication of arguments for v and q, and for o,, 

and a,,. Therefore all propositions that are stated may be specinc to one orien- 
tation, but are also true for other orientations, with the appropriate substitu- 
tions, 

PROPOSITION 6.2.2 and q have the followingproperties: 

1. There are no oI-cycles and no q-cycles; 

2. ou and o, are not transitive in general; 

3. co~, o; l, %, and ai1 are painuise disjoint. 

1. (No cycles) Let us assume, on the contrary, that there is a %-cycle such 
that (rO. r1 ). (rl, Q). . - . . (rn- 1 . rn) E w, ro = rn, for some n 1 1. Then by defini- 
tion one has &(a) > Xc(rl) > - - > &(r,) =&(ro), which is a contradiction. 

2. (Non-transitivity) Consider the counter-example shown in Figure 6.4. In 
the layout, one has (r2,rl). ( 4 1 3 )  E OC. But (Q. rl ) 6 O+ because it does not 
satisQ part 1 of the definition of oq. 

3. (Disjointness) a+ n oc1 = 021 " a;' = 0 has been shown above by the fact 

that there are no oc-cycles and no coq-cycles. Let us consider the case for 
6 n y, for 

(6.1) = {(O~.O~)-(O~.O?' ).(o~~.o~)-(o~'.o~' )}.  



Figure 6.4: Cornter-example for non-transitivity of ou. 

Roof: Assume that one has ( rl , r2) E wu. By definition the rectangles r,  and i 
have a common top or bottom boundarg, that is, &(rI ) = Y,(r2) or Yb(rl ) = Yb(rz ). 

They are not allowed to be degenerate, therefore their vertical extents overlap, 

Since rectangles in a pictve do not overlap, one has 

Since Xc(r[ ) > X,(- ) and &( r )  < X,(r) < X,( r )  for any rectangle r, we must have 

m r1 ) 2 &(rd* 

PROPOSITION 6.2.4 If (a. b ) .  (6.c)  E oc then (a .  c )  YU Y-' u fi u 9-'. 

Proof: b is "in between" a and c. For a and c to be adjacent, b would have to be 
degenerate, which is not allowed. 

If (a .  b) .(b.c)  E 09, then &(a)  2 Xr{b) > q ( b )  2 X,(c). This means that 

LEMMA 6.2.5 If (rl.rz) E CO: then Xc(rl) > Xc(r2) and 4 ( r l )  2 Xr(r2). 



PROPOSITION 6.2.6 and @;if have the followingproperties: 

1. There are not a:-cycles and no a{-cycles; 

2. og and o$ are transitive; 

1. (No cycles) Let us assume, on the contrary, that there is a a$-cycle such 
+ that (ro .r l ) - (r l . - )  ..... (rn-l.rn) E ay, r~ = r,, for some n 2 1. Then, fkom 

Lemma 6.2.5, one has Xc(ro) > &(ri ) > - - - > X,(r,) = XC(ro), which yields a 
contradiction. 

2. (Transitivity) oy+ is transitive by definition. 

a 
1 believe that in addition to the properties listed in Proposition 6.2.6, the re- 

lations o: and CO: are disjoint, but 1 do not have a complete formal proof at this 
point. 

6.3 Abstract order relations a,, and q, 

Now we need to extend the speciscation to include the o orderings. 1 d e h e  a 
new form of specification called a-specification. 

where v. q. ov. w,, C R x R I cal1 a,, and q the abstract order relations. 

DEFINITION 6.3.2 (REALIZABILITY WITH o) Consider an w-specification S, = 

( R. v. q CO,,. q ) and an arrangement CL Let y = a( R ). a is acceptable (or a real- 
ization) if Vv = v, ij, = q, o, = mv, and q, = a,,. 

PROPOSITION 6.3.3 Suppose an o-specification &, = ( R. v. q. ov. o, ) is realiza- 
He, then 



1. o, and o, have the following properties: 

(a) There are no a,,-cycles and no %-cycles; 

fi) o, and o, are not transitive; 

(c) w, a; ', q, and o; are painvise disjoint. 

(d) For p = { v -q } ,  i f  (rl,rZ) E o p  then there is a r; E R such that 

( r i . r3 ) - ( e t r3 )  E P or (r3.rl)<(r3-r2) E p 

2. oz and o,f have the fdowingproperties: 

(a) There are no oz-cycles and m no:-cycles; 

(b) oz and o$ are not transitive; 

Proof: Let yi = a ( R )  be a realization. Then (Y, . f jv .oy , .qv)  = ( v . q . a v . ~ ) .  

1. Proposition 6.2.1 states that for any picture v, oy, and coq, have the prop- 
erties l(a) to l(c). l(d) is an immediate consequence of Definition 6.2.1. 

2. Proposition 6.2.6 states that for any picture v, ovf and o,fv have the prop- 
yl 

erties 2(a) and 2(bh 

EXAMPLE 6.3.4 Consider the specification 

Without additional orctering, we have seveml possible realizations classes, shown 
in Figure 6.5(a-O. If we add to the specification a,, = ((r3. r z ) .  (1-4. r3 ). (Q. )}, there 
is only a unique realizcttion class, the one shown in Figure 6.5(a). 

Now we need to extend the definitions of symmetry images so that they in- 
clude a-specifications. 

DEFINITION 6.3.5 (SYMMETRY IMAGES OF AN o-SPECIFICATION) The sym- 

metry images of an a-specification Sm = (R. v. q, a,. a,,) and their names are 
@ven by: 



Figure 6.5: Realizations with or without a, of Example 6.3.4. 

One verifies that Proposition 2-3-10 can be extended to a-specifications using 
iSo, instead of iS. 

6.3.1 o does not restrict the pmblem 

In the previous example, ov was considered as an addition to the specification. 
However, since R is finite, there can only be a finite number of different a,, and 
a,, for a particular specification. So for any specification, all possible ov and a, 

can be enumerated to obtain o-specifications. Another possibility is to begin 
with subsets of the ordering relations, possibly provided as additional informa- 



tion together with the abstract compass relations. Then the remaining order- 
ings c m  be automatieally enumerated and tested. 

Not al l  a-specifications will be reakable. But the important point to note 
is that if one such wspeciûcation is realizable, then we can Say that the same 
specification defined without o is reahable. 

OBSERVATION 6 -3.6 A specifiation S = ( RI v. q) is realizable if  and only if  there 
are &, a,, such that the o-specification 5' = ( R. v. q. CD,,. o, ) is realitable. 

COROLLARY 6.3 -7 Realizability is &ci&ble for specfiation S i f  and only i f  it 
is decidable for an a-specification Sa. 

In this section we explore some basic properties of o, and q. This is intended 
to set the stage for the more sophisticated cases studied in Section 6.7 and to 
show some typical proofs. 

PROPOSITION 6.3.8 Consider 4 rectade symbols a. B q i .  and y2 in a realiz- 

able a-specification &, = (R. v. q.av. o,). Suppose one has (a .yI  ). (a -y2)  E v and 
(yr.yi)  €av. If(p.a) € q ~ o ~ o r ( ~ . ~ ~ ) ~ q ~ w v + t h e n ( ~ . y ~ ) # v ~ v - ' ~ q ~ q - ' .  This 
is also true for the symmetry images & to of Su. 

(a) (b) 

Figure 6.6: Rnadblock. 

Proof: The situation for this proposition is shown in Figure 6.6. As the spec- 
ification is realizable, there exists an arrangement a such that y = a(&) and 
( V. q. ov. y ) = , .. ijw. oq . q, ). Lemma 6.2.5 is used to provide the geometric 
properties of the rectangles in this proof. 



Figure 6.7: Roadblock. 

PROPOSITION 6.3.9 Consider 5 rectangles a.fltG.yl, and y2 in a realizable o- 
specification. Suppose one has (a.yi)t(a-y2) E v. (p.a) E vue:. (6.P) E quo$, 

and (y2.yi) E a,,, then (yt,P).(yi,G) @ V U V - ' U ~ U ~ - ' .  This is also true for the 

synmetv images &, to ~5~ of Sa>. 

Proof: As the speeification is realizable, there exists an arrangement a such that 
= a(&,) and (v.q.a,, .y) = (i+,, f j , , , . ~ V - ~ ~ , ) .  Again, Lemma 6.2.5 is used to 

provide the geometric properties of the rectangles in this proof. 

@.a) E V U ~ ;  = Y,,,U~$~, thus 

&(a) < Y b ( p ) -  



NOW 1 show the same for S. There are two cases, either Xr(a) 5 Xl( 6) or Xr( a) > 
&(SI. 

1. Assume &(a) 5 4(6). 
It is known that (y2?yi) E ov = os, thus 

2. Now assume X,(u) > q ( 6 ) .  Again 1 separate into two cases, (P. a) E v or 
(P-a) E a?+. 

(a) Consider (P.a) E v. 

It is known that ( p. a) E v = i+,, so one has 

Rectangles in a picture do not overlap, therefore by Definition 2.2.5 

one has 

(&(a). b(a) n (&(W. W)) = 0- 

This means that 

(b) Consider @.a) E a,+. 
It is known that ( p. a) E a: = a&, therefore 



In all cases, 1 have shown that either the vertical extents or the horizontal ex- 
tents of a and y1 do not inters&. Therefore by Proposition 3.1.2, (a. yi ) S u 
c-' u fi u fi-' = v u v-' u q u The proofs for &, to are obtained by sym- 
mem. CI 

1 have exhibited two simple %ad block" conditions. Many more such cases 

exist. This is explored in later in this chapter. 

6.4 Equivdence of arrangements 

With the introduction of the relations a,, and a,, it is now possible to state the 
conditions for the equivalence of arrangements. 

DEFINITION 6.4.1 (EQUIVALENCE OF ARRANGEMENTS) Let S = (R.v.9) be a 
realizable speci@ation and a and a' be two arrangements such that y = a(R) 

and # = a'( R). a and a' are equivalent if 

I would like to examine the geometric consequences of the equivalence of the 

arrangements. The intuition is that the pictures that result fkom equivalent 
srrangements are "similar" to each other. 

The examples suggest that, ifpictures \~r and yi' are equivdent, then # can be 

obtained h m  y~ by a finite sequence of basic steps, each involving some scaling 
of rectangles and some translations. At this points, 1 don't see how to cast this 
intuition into a formal fimeework that would permit a formal proof. 

6.5 Lefi and right sides of a cloeed path 

Recall that in Section 3.4 we had dinidties with the concepts of inside and out- 
side of a closed path. The a-relations will enable us to define the opposite sides 
of a closed path. While this will not d o w  us to define inside and outside we 
can, nevertheless, use the notions of bpposite sides" as, in no realizable speci- 

fication, can a rectangle be on both sides of a closed path. 
When we traverse a closed path @, we can partition the set of all rectangles 

that are adjacent to the rectangles in T into two classes: those to the leR and 
those to the right of the path. Let us denote the classes as L+ and Q respec- 
tively. 



To begin, we restrict our attention to specifications with q = 0 to reduce the 
number of possible cases. Consider an example where one has a closed path T = 
(ro. - . . . a. 6. c. .  . -0). and (a. b ) ,  (c. 6 )  E v. Then we have two possibilities, either 
(a .  C )  E O,, or (c.u) E a,,. If (a.c) E a,,, then for any rectangle r that is adjacent 
to 6: 

In the former case we think ofr king to the right of*. In the latter, r would be 
to the lefi. On the other hand, if (c. a) E a,,,, then situation is reversed: 

This example is illustrated in Figure 6.8 in the entry labeled with the *. Rectan- 
gles that are placed at the black squares are to the right, whereas those placed 
at the white squares are to the lefi of the path. The complete figure Uustrates 

al1 the right and leR partitions for all possible orientations among a. 6 ,  and c. 

Figure 6.8: Lefbadjacent (a) and right-adjacent (8) sides of a path with v only. 



Now we are goïng to litt the restriction of q = 0 and look at specifications 
involving both v and q. Consider a closed path T = (a. 6.  c . . . . a). Again we start 

with an example, this time looliingat the case when ( h a )  E v and (c. 6)  E q. Then 
foranyrectanglersuch that ( q b )  E V U V - ~ U ~ U ~ - ~ :  

r E Q  ~both(b.r)~va~d(r.a)~o,orboth(r.b)~qand(c.r)~~~; 

r E + otherwise. 

This example is illustrated in Figure 6.9 in the entry labeled with the *. As 
before, rectangles that are placed at the black squares are to the right, whereas 
those placed at the white squares are to the left of the path. 1 define the leR 
and right sides of a closed path formally in the next definition, Please refer to 
Figure 6.9. The number on the lower right corner of each entry in the figure 
corresponds to the part number used in the definition. 

DEFINITION 6.5.1 [LEFT-ADJACENT AND RIGHT-ADJACENT SIDES OF A 

CLOSED PATH] Suppose one has a closed path !k = (ro.. . .. a-6-c.. .  ..ro) in an 

o-specifiation. I denote the left-adjacent and right-adjacent sides of T as L+ 

and !!(+. Suppose one has a rectangle d such that (d .  6 )  E V U  v-' u q u q-'. 

1. The followingappliesfor (aJ3.6.y) = {(a.b.c.d) .(b.a-d-c)} .  

(a) Supposeonehas(a.~)€vad(6.~)Eq. Ifboth(y.P)€va>Ld(y.a)€w,, 
o r b o t h ( y . p ) ~ q a n d ( y , 6 )  ~ o , t h e a d ~ L + ,  o t h e n u i s e d ~ &  

Ib) Süpposeonehas(P,6)~vand(a,P)~q. I f b o t h ( j 3 , y ) ~ v a n d ( y . 6 ) ~ o , ,  
or both (y$) E q and (a.y) E o, then d E L+, othenuise d E & 

2. The followingapplies for ( a . P . 6 ~ )  = {(a. b.c.d).(b.a.d.c)}. 

(a) Supposeonehas(a.P) ~ v a n d ( P , 6 ) ~ q .  I f b o t h ( y . P ) ~ v a n d ( a . y ) ~ o ~  
or both (p. y )  E 11 and (y. 6 )  E q then d E + othenuise d E +,. 

fi) ~upposeonehas(~.6)~vand(~.a)~q. I f b o t h ( ~ . y ) € v a n d ( 6 . y ) E o v  
or both @.y) E q and (a.y) E a,, then d E + otherwise d E + 

3. The followingapplies for (a,B.6) = {(v.L+.%).(q.Q.L+,)). 

(a) Suppose one has (a .b) . (c .b)  E a. 



Figure 6.9: Defining the lefiadjacent (0) and right-adjacent (i) of a closed path 
T = (a. b. c . .  ..a) with both v and q. 



i. Suppose (a -c )  E a,. If (d.b) E a and (a.d).(d.c)  E a, then d E 6, 

otherwise d E $. 

ii. Suppose (c:u) E a,. If (d.b) E a and (c.d).(d.a) E o, then d E /3, 

otherwise d f 6. 

i. Suppose (a.  c )  E a=. If (d.  6 )  E a and (a.  d ) .  (d .  c) E aa then d E P, 
othenuise d E 6. 

ii. Suppose @.a) E CO,. If (d.6) E a and (c.d) .(d.a)  E ma t k n  d E 6, 

othenuise d  E & 

4. The following applies for (a, p. 6, y) = {( v, q L*. Q ). ( q. v. &. L, ) }. 

(a) Suppose one has (c,  b ) ,  (b.a) E a If (b-d)  E or both (d .  6 )  E a )  and 
(c-d)  E ma or both (b-d)  E a)  and (a.d) E CO, then d E 6, othemise d E y. 

fi) Suppose one has (a.6)Jb.c) E a. If ( d - b )  E or both (d .6)  E a)  and 
( d - a )  E aa OF both (d,b)  E a) and ( d c )  E ma then de  6, othemise d~ y. 

L* and % contain rectangle symbols that are adjacent to a rectangle symbol 
in @. By intuition, we know that we should also be able to class* rectangles 

that are conrcected to a rectangle symbol in T. 1 extend the left-adjacent and 
right-adjacent definitions by the following. 

DEFINITION 6.5.2 (LEFT AND RIGHT SIDES OF A CLOSED PATH) Supposeone 
has a closed path @ in an o-specifiation. For 4 E (4. Q}, if x E t, then for any 
ysuch that there is apath Q = (x = qi,q21---,qn =y), n 2 1 with qi 6 2) for a11 i, 

one has y E &#. I cal2 L$ and q* the left and right sides of the closed path @. 

1 am trying to capture the geometnc notion of the left and right sides of a 
closed path by the above definitions using the abstract relations. It is known 
that one side is the insi& and the other side is the outside of the path. However, 

one is unable to detenoine which is which. An analogy of this problem is when 
one has a closed continuous m e  on a sphere. One is able to distinguish the 

points on either side of the curve, but the concept of inside and outside is not 
clear. The analogy is not complete as the path formed by rectangles has discrete 
steps. It does not have as much fkeedom of movement. But the consequence is 

similar that one is unable to discern the inside and the outside. 



One of the rasons to pursue a definition of inside and outside is to enable 

us to express the condition that rectangles that are inside a closed path cannot 

be adjacent to rectangles that are outside. That condition can be replaced by 
using the left and right sides of a closed path without any loss of gener* 

In the following, we wilI show the souadness of L7 t d, and K? First we 
show that a rectangle symbol m o t  be simultaneously left-adjacent and right- 

adjacent to a closed path in a realizable a-specification. 

PROPOSITION 6.5.3 For al1 closed puths T in a realizable o-specification = 

( R . v . ~ . w . ~ ) ,  L + ~ Q = @ .  

Roof: Let us assume, on the contraiy, that there exists a rectangle x such that 

X E  Li, a n d x ~  &. Let @= (a.b,c ,.... d.br.c' ..... a}. 

Assume that x E 6 is decided by the adjacency between x and 6,  and x E L+, 

is decided by the adjacency between x and b'. 

It is clear that b # b' because in all cases in the definition, it is not possible 

t o h a v e x ~ 4 a n d x ~ + w h e n b = b ~ .  
Since there is a realization, one has a pictute y = a(S) for some arrange- 

ment a. Let us look atone possible realization. Figure 6.10 shows a case when 
d e  4(a) and d e  2(a) from Definition 6.5-1 are used to determine that x E 

and x E L+ respectively. The d e s  determine the direction of C+ at b and 6'. 

Consider the connection curves n( T) for k and n( i) for the path P = (6. x. b') . 
Since r T, H(@) is not allowed to cmss n(T)  and it is impossible to find a re- 
alizatim of T such that its co~ection curve does not intersect itseE This is 
tnie for all cases of the d e s  used to determine x E % and x E 4. Since the 
arrangement was supposed to be realizable, one has arrived at a contradiction. 

Therefore the proposition is tme. a 
Now we show that a rectangle cannot be simultaneously to the left and to 

the right side of a closed path. 

THEOREM 6.5 .4 Suppose an ospecifiation 5, has a realizable arrangement a 
For all closed paths T in Sa, L: n %# = 0. I call this the left-right pmperty. 

Proof: Let us assume, on the contrary, that there exists a rectangle x such that 
r E L$ and x E s'. This means that there exists a path Q = (qo. qi . . . . . qin = X) 

s u c h t h a t q o ~ ~ + , a n d q i ~ ~ f o r a l l i .  L e t p , ~ 1 > s u c h t h a t ( ~ ~ . ~ , ) ~ v ~ v - ~ ~ ~ ~  



Figure 6.10: Example of x being both to the leR and to the rïght of a closed path. 
It is not possible to realize the closed path without intersecting itself. 



q-'. There also exists another path I = (ro, t l . .  . . . tn = x) such that to E q, and 

Figure 6.11: Example of x E L$ n Q#. It is not possible to realize the closed path 
without intersecting itself (only one out of four possible closed paths is shown). 

Consider the connection curves X ( T )  for T and x(P) for the path 

The d e s  used to decide qo E 4 and to E Q determine the direction of n( &) at 

pp and pf. By definition r q i :  t j  6 k, therefore n ( ~ )  is aot allowed to cross x ( p )  

and it is impossible to 6nd a realization of T such that its connection curve does 
not intenect itself. An example is shown in Figure 6.11. 

This is tnie for al l  cases of the d e s  used to determine qo E E* and to E Q. 

Since the arrangement was supposed to be realizable, we have arrived at a con- 
tradiction. Therefore the theorem is true. CI 

PROPOSITION 6.5.5 For any closed path T in a realizable o-specification &,, = 

( R. v. q. a". o, ). T. L$ and ' are disjoint, and R = @U L; u %#. 

Pro& $J n L: = n 4 = 0 is obtained directly from the definition of L: and -$#. 
n L$ = 0 is proven in Proposition 6.5.4. Thus $, L$ and $ are disjoint. 



Now we want to show that R = T U  L$ u '. Consider a rectangle symbol 
a E R. Clearly Xa E T then the proposition is m e .  Now consider a T. It is 
assumed that al1 specifications are connected, therefore a is comected to some 
rectangle symbols in T. By Definition 6.5.2 and Theorem 6.5.4, we know that 
either a E L$ or a E %#. Thus the proposition is true. Q 

Thus 1 have shown that the abstract definition of L$ and %# captures the 

intuition of the left and right sides of a path in the geometric domain. 

COROLLARY 6.5.6 Let &, = (R. vl q,co,,,m,,) be an a-specification. If there is a 
closedpath T in S, such that, for some r E R. r E L$ n %# then &, is not realizable. 

In Corollary 6.5.6 we capture the "cage" problems that escaped us before in 
Chapter 3. For example, in the cage situation of Figure 3.8 one has the closed 
path @ = (a. 6. e.g. f.d. a). The rectangle symbol c is to the right of and the 
symbols h, i, j, c are to the le% Thus, the symbol c is both to the right and the 
leR of this path, hence the s p d c a t i o n  is unrealizable. 

In this section, we present a technique called local nonnalization to replace a 

rectangle in a picture by a group of new rectangles. This can be useful as a proof 
technique in an induction proof, but it is not used fbrther in this thesis. 

W e  begin by defining the pmcess of normalizing a rectangle symbol. We refer 
to Figure 6.12 and Figure 6.13 for the following debition. 

DEFINITION 6.6.1 (LOCAL NORMALIZATION) Considkr an o-specifiation 5, = 
( R.v. q. CO,,.%). Anew a-specification& = (Rr.v',q',o(,.a$) isproduced byrephc- 

ing a rectangle symbol x E R with a set offiue new rectangle ~ ~ O Z S X ~ . ~ ~ , X ~ ~ ~ ~ . ~ .  
The subscripts of the replacement rectangle synbols represent top, bottom, right, 
left and centre, respectively. m n  

R' = RU { X ~ . X ~ . - Y ~ ~ X ~ , X ~ )  \ {x} 

v' is defined by 



q' is defined analogowly using q instead of v. 
Let 

The &finition of ah is analqgow using q instead of v. 

Figure 6.12: Rectangle replacement. 

We need to specifg how paths are affected by the normalization. For a path 
P in Sa, we define P to be the sequence of rectangle symbols obtained as follows: 

(----pi,Ptpj.-.-) if(pi.x)t(pj:x)Ey for(p,y)€ 
{ (xr -  4, (XB, V-' 1- (XR: q). (XL. q-I ) }  

(. - -, pi- Plxct 6. P j: - . .) otherwise, where 
P = BO i f ( ~ i : P o )  E YI for ( B o ~ Y I )  E 

{ ( x n v ) :  (xB-v-' ) y  (XR?  r)): (xL T)-' )) 
6 = 6 0 i f ( ~ ~ o 6 0 ) ~ ~ 2 f o i .  ( & ) = y r ) €  

{ ~ v L  (XB? v-' 1: q)- (XL: q-' )} 



Figure 6.13: Examples of path redirection in rectangle replacement. 

PROPOSITION 6.6.2 P is a path; it  is closed i f  and only i f  T is closed. 

Roof: Those parts of P not involving x are the same in P. The steps reaching 
and leaving x are replaced by 4 steps via the new rectangles. Thus P is a path. 

This assumes that x is not the first or last element of the path. If it is then the 
step leaving or reaching x, respectively, is replaced by two steps via the new 

rectangle s ymbols. The rest is obvious. 

PROPOSITION 6.6.3 If & is realizable, then 9, obtuined by rephcing a rectan- 

gle x in S, for local normulization, is also realizable. 

Proof: W e  begin with a realizable a-specification &. If we look at the geometric 
realization, the replacement pattern for x can always be fitted into the space 
occupied by x by scaüng the replacement pattern approprïately. All adjacent 



rectangles c m  also be attached c o d y  To achieve this, imagine ~ca1ing.r~ to 

be almost as large as x, leavingxR,xL7xr.nr, to be very thinlnarrow rectangles. No 
overlaps are introduced, therefore the conditions of a picture are stiU satisfied. 
This resulting picture is a realization of .$, . a 

Next we want to show that local nomalization does not affect the left and 
right sides of a closed path. 

PROPOSITION 6.6.4 Suppose one h s  an arrangement a of an a-specification 
S, = ( R. v. q. a,,, o,). Now we p e r f o n  a local normalization on a rectangle sym- 
bol x E R to obtain S, = (Rr. v'. q'. oL7 ah). For a closed path T in Sm we &note 
the correspondhg closed path in S, by &. Then for al1 rectangle synibols y E R, 

y # x, and all closed paths in S, 

Proof: The following proof applies for (5. $1 = {( L*. L+, ). ( %. ) } . 
Please refer to Figure 6.14 for this proof. If y E 5' then there exists a path Q = 

(qOq i - . . - . q n = y )  i i i~such that qo~<andqi@foral l i .  

(a) If x # Q, then qo E C and qi 6 T for all i. (since qo and T are unchanged) 
Therefore y E p. 

(b) If x E Q, then letting x = qj ,  j # O, one has 

for xi .xz icz {xL .xR7xTl xB} as defined in the local normalizatioa defini- 
tion. Since x ~ . x ~ ~ x r . x ~ , x c  4 @, one has 4 # @' for all E QI. Also 

If x = qo then let x, be the rectangle that replaced go in the same posi- 
tion, where xq E {q . xR, xr. xB7 xc) . Then t& = .Y, E =s 4 E C. Therefore 
y E p. 



Figure 6.14: Cases for the proof of Proposition 6.6.4. 



for xi .xr E {xL. xR? xy.xB} as defined in the local normalization definition. 

(a) E x  # pq then qo E G', since the same pq is used. Since x E + ... g! Q, 
Q' = Q- Since qi 4 T and qi # x for all i, $- @ @. Therefore -v E <'? 

(b) If x = p, then let x, be the replacement rectangle, where x, = {.yr ..yR. 

xr.xs.xC), such that (xq,qo) E V U V - ~ U ~ U ~ - ~ ~  

i. Y is defined as in equation 6.1. 
This would mean that (pl-i.x).(pr+i,x).(p~-i.xl).(pr+i.xl) E 6 for 
6 = { V - V - ~ . ~ ,  qdl). 

If (go .x) E 6 then x, =xi replacedx in @. qo E 6 * qo E $. Therefore 

Y E 6". 
If (qo.x) $ 6 ,  consider merging xc with xi so that xc is part of ?. 
Then the orientation between qo and x is the same as between x, 
and x,. Since qo E 5. x, E cl, and since qo is adjacent to x,, qi E e 
for all i. Therefore y E &*- 

ii. @' is defined as in equation 6.2. 

If xq E @ the orientation between qo and x is the same as between 
q0 and xq. Since qo E Er, qo E C, and therefore y E cm. 
E x q  4 @ then the orientation between qo and ndx is the same as be- 
tween n, and xc. Since qo E c, xq E $, and since qo is adjacent to .r,, 
si E cnr for dl i. Therefore y E c". 

6.7 Extended compass relations 

We wish to extract as much information as we can from the geometric compass 
relations. The geometric compass relations describe the relative orientation of 



touching rectangles. We are now going to explore the relative orientations of 
rectangles that do not touch by introducing four relations pc, pi ,  oc, and a, on 
the geometric rectangles. Then we extract the abstract extended compass rela- 

tions pv, pl,, a", and al,. 

1 intmduce the relations p, , pq,, acv, and a?, on the rectangles in a picture 

v by 

(a.6) E py, ifandonlyif &(a) > Y,(b). 

( a . b ) ~ p r l ,  ifandonlyif q ( a )  >X,(b) .  

(a.b) EOC, ifandonlyif Yb(a) 2 C(b) -  

( a . b ) ~ a , ,  ifandonlyif &(a) ZX,(b) .  

PROPOSITION 6.7.1 The properties of pu,, pq,, GQ", and mqiI, are: 

1. There are no py, -&es, no pqv -cycles, no q,, -cycles, and wj, -cycles; 

Proof: 
I begin with the proof for a,,. 

1. (No cycles) Let us assume, on the contrq, that there is a a,,-cycle such 

that 
( h l r 2 ) - ( ~ , r 3 ) . - -  - - ( r n - ~ - ~ ) , ( ~ , * r l ) )  E Qilv+ 

Then one has 

a contradiction. 

2. (TTansitivity) Suppose (a.b),(b.c) E a,,. Then one has &(a) 1 &(b) > 
X,( b )  2 Xr(c). Hence (o. c) E pi,. 

Now 1 show the proof for pqw. Since p?, ail, there are no p?v-cycles. Sup- 

pose (a .  b ) .  (b .  c )  E pq,. Then one has &(a) > X,(b) > &(b) > Xr(c). Hence pq, is 
transitive. 

The proof for the other relations i s  obtained by symmetry. ~1 



6.7.1 The abetract relations p and a 

We now want to define the abstract counterparts to the extended geometric corn- 
pass relations. Ln the following, 1 will define h and O,. As before, the defini- 
tions of p,, and crv and all the asshated theorems and proofs c a n  be obtained by 
symmetry 'Ib improve the presentation of the defmition, 1 will first introduce a 
set of conditions to be used in the definition. 

DEFINITION 6.7.2 (BLOCEING CONDITIONS) Consider an a-specification Sa = 

( R. v. qo a,,, o, ) and two rectangle symbols X. 6 E R 

1. (h.6) satisfis the blocking 1 condition if there exkt rectangle symbols 
y. p. K E R such that 

2. ( h. 6) satisjîes the blocking 2 condition if there exist integers m and n, and 
rectangle symbols y. f3. r.&sl. -. . .s,. t i . .  . ..ln E R such that 

3. ( h. 6 )  satisj2s the blocking 3 condition i f  there &sts rectangle symbols y. P E 

R such that 

( h. 6) satisfies the blocking conditions i f  it satisfis one ofthe blocking conditions 
a boue. 

DEFINITION 6.7.3 Suppose one has an a-specifiution Sa = (R. v. q, a,. mil) and 
two rec tade  symbols 1.6 E R. Let o be a binary relation on R ( h. 6 ) sa tisfies the 



Figure 6.15: Blocking 1. 

Figure 6.16: Blocking 2. 

Figure 6.17: Blocking 3. 

extended transitivity condition with respect to a i f  t k r e  exkt rectangle grmbols 
P. 7 E R such that 

Figure 6.18: Extended transitive. 

Now 1 will define p, and a, using the above conditions. p, and o, are defined 

sirnul taneously 



DEFINITION 6.7.4 (p AND a) For an o-specifcation & = ( R. v. q. a. a,, ), p, and 
o, are defined as the smallest birurry relations on R satisfj6ng the following con- 
ditions: 

2. If ( A. 6 )  satisfis the blocking conditions for &, or &, then (1 .6)  E p, and 

(k .6 )  E o,. 

If (A. 6 )  satisfis the blocking conditions for &, or &, then (1 .6)  E p;' and 

(A.6) E a;;'. 

3. If  (A. 6 )  satisfis the extended tmnsitiuity condition with respect to o, for 

& or J&, then (h.6) E h and (7c.6) E o,. 

If (A. O )  satisfis the extended transitiuity condition with respect to O,, for 

2So or &, then ( h. 6 )  E p;;I and ( h 6) E a-' r l -  

PROPOSITION 6.7.5 p,, and a, are well-&fined and can be computed. 

Roof: The definition is recursive with (1) and (2) as base cases and (3) and (4) 

deking the recursion steps. CI 

PROPOSITION 6.7.6 If an a-specification Sa, is realiioble then, for any realka- 

tion v, pq C Pi\, and a, C a,,. 

Roof: Since S is realizable, there is an arrangement a such that = a ( S ) .  
Therefore (v.q.co,,~w,) = (V,.ij,.ov,.o~,) for some O, and O,. 

pq E p,i, and a, 2 pq, is proven simultaneously. The definitions of p, and 

G,, are recursive. 1 will prove the proposition by induction. Let ( h. 6 )  E p, and 

(k1'.6') E G,,. It suffices to prove that Xl(A) > Xr(6(6) and XI(hl) 2 X,(b). In the corn- 
putation of p, consider the step when ( A .  6 )  is û r s t  obtained and let h, be the part 
of p, constructed up to but not including this step. 6, is also defmed in the same 
way. Four cases are disthguished according to the condition by which (A. 6 )  and 
( A/. S r )  are added. 

1. Suppose (h.6) is addedto p, because (1.6) E (qf uo$)\q. If (1 .6)  E qf \ q  

thentherearep, ..... Pr,r2 1 ,  suchthat (k.p,).(pl.PZ) .....(P,-i.Pr).(P,.si E 



If ( h 6 )  E a$ then by Lemma 6.2.5 one has &(k) 2 Xr(6). But since (h.  6 )  $! q, 

&(h) # X,(S). Hence one has &(A) > X,(6). 

If(hf.6')  E o,f then by Lemma 6.2.5 one has &(hf) 3 Xr(6'). 

2. Suppose (71.6) is added to p,, because of the blocking conditions. 

(a) I f  blocking 1 condition is satisfied, then there are rectangle symbols 
~ . P . K  E R such that (G.ic).(P.~).(y.B)~(h.p) E v and ( p . S ) . ( h . y )  E UV. 

Sime (P.6).(h.y) E m, one bas &(p) 2 Xr(6) and X1(l) 2 Xr(y). Since 

(y$) E v ,me hasX,(y) >&(BO. ThereforeXi(U >&(y) >X,(B)  &Kr(@. 

(b) If blocking 2 condition is satisfied, then there are rectangle symbols 
y. P. K . + . S ~ .  . . ..s,.tl.. . . ,c E R such that 

From ( h. y) E ov and (y, B) E v, one ~ O W S  that &(A) 1 &(y) and Xr( y )  > 

x , ( 0  
Consider the LR cage h m  the bottom r to the top 4. The two side 
walls are the paths (ri. &si) and (f3.y). One knows from (p. t ,)  E ov that 
( t j ,  S. si) is the left wall (denoted by WL) and (p. y) is the right wall (de- 
noted by WR). Since overlaps are not allowed, one knows that for all 
x E WL one ccannot have both &(p) < Xr(x) and Xl( y )  < X,(x). Hence one 
bas 2 x,(@ orXr(y) 2 &m. 
Therefore one has either 



(c) If blocking 3 condition is satisfied, then there are rectangle symbols 

y$ E R suchi that (h.6) fZ q, (y.S).(f3.6) E q. ( L y )  E v, and @.y) E a,,. 

From (y. 6), ( p. 6) E q one h o w s  that &(y) > Yb@) and Yb( B)  < K(6). Ac- 
cording to (f3.y) E w, one knows that &@) 2 &(y). Therefore Y,@) > 
Yb(p) 2 &(Y) > yb(6) 

From @.y) E v one knows that &(A) = Y,(y). 

Now there are two cases, comparing &(A) and Xr(P). If&(k) 2 X,( ), 

then&@) 1 &(P) >4(P) =X,(6). On the other hand, if&(A) < &{p), 
then one has &( h) < &(P) < Y,(6). Since overlapping is not allowed, 
one has %(A) > Xr(6). Since (k,6) 6 q one obtains &(A) > Xr@). 

Now suppose (Af. 6') is added to a, because of the blocking conditions. It is 
shown above that if (hl. 6') satisfies the blocking conditions, then q(U) > 

3. and 4. Rules 1 and 2 form the basis for the induction. NOW assume that 
&(a) > &(b) if (a.6) E 4. If ( 1 6 )  is added because of transitivity then 
therearep l.....Pr~~~hthat (h.pl).(Pl.~z).-.-.(Pr-i.Pr)-(Pr-6) E 6,. BY the 
induction assumption, &(h) > &(Pl ) > &(BI ) > Xr( pz) > - - > Xr(6) ,  hence 

&(A) > Xr(6). On the other hand, if (k. 6) is added because of extended tran- 
sitivity then there are rectangle symbols B and y such that (A. P). (y. 8 )  E 

b,.(y. p) E VUV-l U~,UU;;~. By theinductionassumption,&(h) >&@) and 

&(y) > Xr(6) and X,(p) > Xr(y). Then one has &(A) > Xr(6), hence (A. 6)  E pi .  

Now assume that &(a) 2 Xr( b) if (a. 6) E a,, . If (hr,6') is added because of 
transitivity then there are pl . .  . . Pr such that 

By theinduction assumption,&(L1) 3 Xr(P1) > & ( P i )  2 Xr(P2) > --• 2 Xr(6'), 
hence &(h') 2 Xr(S1). On the other hand, if (hl. 6') is added because of ex- 

tended transitivity then 1 have shown that (A'. 6') E pi, and hence 40:) 2 
Xr( 6' ) 



a 
An interesting observation is made with the case known as Blocking2. It is 

modified slightly by iaserting a new rectangle p between f3 and r Then (A.6) E 

pq is  no longer true. An example exhibiting a violation is shown in Figure 6.19. 

Figure 6.19: Blocking condition not included. 

It is shown that for every realization, p,, C p, and a,, E a,. But i s  p, > p i  

and a,, 2 a,? If it is h i e ,  then p,, = pq and q = a, for all realizations. This is 
clearly not possible. It is stated formally in the following. 

PROPOSITION 6.7.7 There is a realirable a-specification S ,  with a realization 

y such that p, j: piv and q # a,,. 

b o f :  Consider the a-specification ;S, = {{a.  b? c}  . {(o. 6 ) .  ( 6. c )  } .B. 0.0). Then yi = 

a( Sa, ) and 4 = a'(& ) shown in Figure 6.20 are realizations of Sa such that ( c. a ) E 

P i v  m d  (c-4 Z P , ~  
By Proposition 6.7.6, p,, C pqV n pqI. Therefore (c. a )  6 p,, , hence p, # piv. 

Figure 6.20: Examples for Proposition 6.7.7. 

PROPOSITION 6.7.8 The basic properties of the abstract exten&d compass re- 

lations p ,  p,,, a,, and q are: 

1. There are no pv-cycles, no p,, -cycles, no av-cycles, und no <r, -cycles; 



2- p, p ,  a,,, and o, are transitive. 

Proof: It is shown in Proposition 6.7.1 that for any picture y, pu,, fi,, os, an d 

driw have the above properties. According to Proposition 6.7.6, pv C p, , p, E 
PIiwf O,, s GY,, and a, a,,. lbgether with the fact that p,,, h, a,,, and a, are 
transitive by definition, they have the three properties listed above. u 

6.7.2 Cases not captured by c 

There are situations when one can conclude about East-West order which are 
not covered by a,. This is in contrast to the example shown in Proposition 6.7.7 

where a, # crq, because of some inherent ambiguity regarding the East-to-West 
order. 1 now describe a situation where o, f a,, not because of such an ambi- 
guity., but because a, fails to capture all cases. 

DEFINITION 6 .? .9 Suppose one hus a closed path T = (ao. a 1.. . . . a,. ao) in an o- 
specification Sm. Suppose fùrther that (ao. ai) E p,, for i = 2. . . . . n - 1. If there is no 

5 such that (&,ao) E q, then one introduces it as a new rectangle. If 5 E L+, then 
L$ is the outside and is the inside of $, othenuise L$ is the inside and is 

the outside of T- This definition is extended to the syrnmetry images i&, to &, 
of S. 

PROPOSITION 6.7.10 Suppose one has a closed path @ = (g . al..  . . . a,. ao) in a 
realizable o-specifkation Sa. Suppose Frther t h t  (ao. ai) E a, for i = 2. . . . . n - 1. 

Then for any reulization y of S, (ao7x) E ail, for al1 rectangles x inside @. This 

is also tme for the grmmetry images &, to &, of Sa. 

Proof: Since is a realization of Sa, (ao1 ai) E a% for i = 2.. - . . R - 1.  

Since (ao.al)-(aota,-i) E DG,, then X ( q )  < %(ao) and X=(a,) < &(ao). Thus 
&(ri) > &(ri) > &(ao) for 1 5 i 5 n. Since x is inside $, $(x) 5 &(ao ). Hence 

(ao.x)  E ailv = o,. 
[1 

EXAMPLE 6.7.11 Consider the a-specifiation 

Figure 6.21 shows a possible realization of Sm. ( S .  k ) satisfies blocking 3 condition 

in Definition 6.7.2 and by Definition 6.7.4 (6.1) E p,. Now consider the closed 



path @ = (6. P. A. y). By Definition 6.5.1 5 E Q and K E +. By Definition 6.7.9 
qf is the outside and L$, is the inside of $. Then Proposition 6.7.10 states that 

(6 .  r) E p,,. 

Figure 6.21: A realization of Sm in Example 6.7.11. 

While I could have included the case of Pmposition 6.7.10 in the definition 
of p,, adding another case to the recursion part, 1 decided not to do so at this 
point as this case look rather special - and its general abstract principle is 
not yet apparent. 1 still have the impression that this case is just an example 
of a more general situation in which East-to-West information can be deduced 
using cages and path directions. 

6.7.3 Using p and q 

PROPOSITION 6.7.12 Suppose o m  has an o-specifcation 3, = ( R. v. q. a,,. a, ). 

I f &  isrealizablethen ( f i ~ p ; ~ ~ p , ~ p ; ~ ] n ( v ~ v - ' ~ q ~ ~ ~ - ' )  =0 .  



I have collected a series of conditions to determine the realizability of a specifi- 
cation. They are summerized in this chapter. 

7.1 Necessary conditions for malizability 

LEMMA 7.1.1 Suppose one has a specifiation 5 = ( R. v. q ). An a-specification Sa 
is built for every possible CO,, and y. If one of Sa is realizabley then S is realiza ble. 

THEOREM 7.1.2 A realizable a-specification Su = ( R. v. q ov. o, ) satis@s the fd- 

lowing conditions: 

1. v and q satisf4 the basicproperties of the abstmct compass relations. That 
is to Say, v and q have the foZZowingproperties: 

(a) There are no v-cycles a d  no q-cycles; 

(b) v and q are anti-tmhsitive; 

2. CO,, and w, satistjr the basicproperties of the abstmct order relations. That 
is to say, ov ami o, have the followingproperties: 

(a) There are no %-cycles and no o, cycles; 

fi) o, and o, are not tmizPitive; 

(c) OV, CO; ' y  q, and o; ' are painuise disjoint. 

3. o,f and o,f have the followingproperties: 



(a) There are no O$-cycles a d  no a>,f cycles; 

fi) o,f and o,f are transitive; 

4. pv, p,,, a,,, and G,, satisfi the busicproperties of the abstract exten&d con- 

pass relations. That is to s- fi, h, a ,  and a, have the followingproper- 
ties: 

(a) There are no pv-cycles, no p,,qcycl es, a,,-cycles, and a,-cycles; 

fi) p ,  pq, eV, and a, are transitive. 

5. Soi satisfis the "Ieft / right" property. That is to suy, for all closed paths @ 
in Soi, one hus ~ $ n q # = 0 .  

6. If one has a closed path T = (ao, ai.. . -. uo) such that (ao. ai) E p,, for i = 

2... ..n - I, then (ao.x) E h for all rectangles x inside fk This is also true 
for pv and also for the qymmetry images of Sa. 

1. See Proposition 3.1.3. 

2. See Proposition 6.3.3. 

3. See Proposition 6.3.3. 

4. See Proposition 6.7.8. 

5. See Theorem 6.5.4. 

6. See Proposition 6.7.10. 

7. See Proposition 6.7.12. 



8.1 Conclusion 

a The rectangle p i c m  specincations studied in this thesis was proposed 
to study semantic-based systerns. It was never ïntended that rectangles 
done would sutnce in the layout of general scenes. The results obtained 
in this thesis, on its own, does not and was not me& to provide imme- 
diate solutions for problems that exist in non-semantic-based approaches, 
such as the problems discused in the section on motivation. Instead, this 
work explores the power and Iimitations of such systems in principle. 

a A significant amount of geometrical information can be inferred fkom basic 
systems of rectangle p i c m  specifications. The idea of road block condi- 

tions and the resulting relations p and a capture some of the global condi- 
tions that m u t  hold true for all realizations. This knowledge is obtained 
by the analysis of the the local information provided by the compass rela- 
tions. 

a Tb deal with the decidability pmblem, 1 have explored other approaches, 
including methods based on the Post Correspondence Problem, as well as 
methods based on graph grammars. They do not lead to any significant 
results. 

Apparently simple concepts like insi& or outside of a cage are hard to cap- 
ture; while there are some obvious simple cases for which sufncient con- 
ditions c m  be formulated for a rectangle symbol to be inside the cage in 
every realization, a general characterization of this property seems to be 
very difficult. 



Notions of to-the-lefi-of and to-the-right-of a path can be defined in such 
a way that, for closed paths, they meet the intuitive requirement that a 
rectangle cannot be both to the left and to the rîght of a closed path. The 
difficulw lies in the determination of the lefi and the right sides of a path 
in the context of rectangle pieture specifications. Once the two sides are 

identified, the condition that they are disjoint is an application of the clas- 
sical Jordan m e  theorem. 

The cage situation, intuitively stated as no rectangle can be attuckd to a 
rectangle insi& the cage and also to a rectangle outside the cage, can be 
re-expressed as no rectangle can be both to the lefi and to the right of the 
closed path forming the cage. 

The realizability problem for specifications cannot be solved by treating v 

and q separately. The two relations must be considered jointly. 

A specification is realizable if and only if it is Rz-realizable. Thus, the d i s  
ficulty of the problem is not a result of the search space being uncorntable; 
it is far more bdamental  than this. 

0 If the realizations are restricted to rectangles of bounded size and bounded 

resolution then realizability is trivially decidable and bounds on the size 
of a bouding box for al l  realizations can be computed. 

0 The status of the general realizabiüty problem or, equivalently, the R=- 
realizability problem is open- My feeling is, it is undecidable. Consider 
the picture given in Figure 8.1. Suppose it is a realization of some specifi- 

cation = ( R. v, y). Let us follow the path (a, bo c, . . .: p).  One knows that a 

and p can be adjacent. However, if a rectangle somewhere dong the path 

is modified slightly. then it may no longer be possible for a and p to be adja- 
cent. The possible modifications include changes to the abstract compass 

relations and/or the abstract ordering relations. As an example, consider 

the case when one has ( m J )  E 11 instead of ( l ,  m) E q. Then 5 is no longer 

realizable. As one can see h m  the example, there are many possibilities 
for rnodifying the path. It seems tuilikely that one can find enough global 
d e s  or even a complete set of local d e s  to deal with al1 cases. 



e I I I  

Figure 8.1: Difficult situation. 

r For many cases, as was to be expected, a specification may have many 
nomequivalent realizations. Adding additional relational information to 

the speci£ication may eliminate some of this ambiguim. Among the candi- 
dates, clockwise ordering oRen leads to inconsistencies. The o-relations, 

while reducing ambiguity do not help regarding the decidability question. 

0 In Theorem 7.1.2 1 List a set of necessary but not sufacient conditions for 

an a-specification to be realizable. These conditions are decidable. 

8.2 Further work 

r Foremost, of course, the decidability of realizability has remained open. 

There are, however, several other unresolved issues. 

0 From the examples one has the impression that equivalent pictures can 
be obtained fkom each other using a finite sequence of elementary trans- 
formations involving only scaling and translation. This intuition needs to 
be cast into forma1 tenas. 

A more uniform approach to the road block conditions needs to be found 
so as to arrive at a manageable set of suffiCient conditions for realizabil- 
ity So far, for any new type of conditions, 1 usually also find a case not 
covered. This could be an indicator of a lacking fundamental insight or it 
could point to undecidability of the realization problem. 



In summary, specincations and more so o-specifications, provide a large amount 
of geometrical information that can be extracted easily by algorithrns. They are, 
however, too weak to be usabie on theîr own for scene specifications and would 
have to be supplemented by additional, preferably u~rthogonal", idormation. 
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