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ABSTRACT

One of the most efficient methods for the transfer of information from a com-
puter to a human being is the graphical-visual form. The choice of specification
method is crucial — it determines the flexibility with which the information can
be used for a variety of purposes or output by the various output devices.

In this thesis, I investigate the properties of a declarative scene specification
method for the description of pictures composed only of rectangles. A careful
analysis is made and significant geometrical information is extracted from the
basic declarations. I also examine the realizability of such specifications. Even
restrictive versions of the realizability problem are surprisingly difficult, and
the decidability of realizability remains an open problem.



@%‘Q

To my dearest parents

B F R X E

===

iv



ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor Dr. Helmut Jiirgensen
for his knowledgeable advice and inspiring guidance. His infectious drive and
enthusiasm will be a continuing source of inspiration for me.

I am most grateful to my first teachers — my parents — for their support and
encouragement throughout my academic career. I would also like to thank my
children Victoria, Ayden, Anson and Vienna for constantly reminding me how
to smile and be happy, even when the going gets tough.

Finally my deepest heartfelt thanks go to my wife Stephanie for all the love
and support she has given me over the years. Her unselfishness and devotion
to our children made it all possible.



TABLE OF CONTENTS

Certificate of Examination ii
Abstract il
Dedication iv
Acknowledgements v
Table of Contents vi
List of Symbols ix
List of Figures xi
Chapter 1 Introduction 1
1.1 Problemdesecription . . . ... ... ........... .. ..... 1
1.2 Motivation . . . . . . . . . i ittt e e e e e e e e e e 3
1.2.1 Semanticinformation . . ... ... .. ... ......... 4
1.22 Typesetting. . . . . . . . . . . .. it 5
1.3 Some high-level graphicssystems . . . . ... ... .. ....... 11
1831 Sketchpad ................ ... . ... ... 11
132 IDEAL . ... ... . .. ettt e 11
1.33 JUuno. . . ... .. e e e e e e e e e e e e e e 12
134 COOL . ... ... .. it 12
1.3.5 Constraint-Based Reasoning . . ... ... ... ...... 15

1.4 Geometric dimensioning and tolerancing in computer aided de-
Signsystems . . ... . ... . ittt et e e e 18
141 Summary ... . .. . . .o v v vttt e et e 18
1.5 ThesisS . . .« v v ittt e e e e e e e e e e e e e e e e e e e e e e 19



Chapter 2 Basic Notions

2.1
2.2
2.3
2.4
2.5

Binaryrelations . . . .. ... ... ..... .. ... ... ...
Geometricnotions . . . . . . .« c c i ittt e e e e e e
Abstractnotions . . . . . . . . . . ... ...
Examples . . . . ... ... ... i e
Approachesnottaken . . . . ... ... ..... .. ... .....
2.5.1 Graphdrawingapproach. .. .................

Chapter 3 Early Findings

3.1
3.2
3.3
3.4

3.5

Properties of the geometric compassrelations . . . . ... .. ...
Equivalence of realizations . . . . . .. ... ... ..........
Examples . . . . .. . . ittt e e e e e e e
Cages . . . . i i e e e e e e e e e e e e e
341 LRcages .. ... ... i it ennna.
342 Generalcages . .. ... ... ... ... ...
343 Localmaximaandminima .. .................
Need toreducethe problem . .. ...................

Chapter 4 Examples

4.1
4.2
4.3

Specificationswithn=0 . . ... ... ..... . ....... ...
Specificationswithvandn . . . . ... ... ... ... . L.
Bigexample ... .......... ... .. . ... ...

Chapter 5 Limited Problems

5.1
5.2
5.3
5.4

UnitSqQuares . . . . . . . . o v v v vt ettt e e e e e
Integerrectangles . . . ... ... ... ... ... .. .. ...
Rationalrectangles . . ... ... ... ................
Realrectangles . ... ... ... . ... ... ...

Chapter 6 Augmented Problems

6.1
6.2
6.3

6.4
6.5
6.6
6.7

Clockwiseordering . . ... ... .. ... ..o,
Geometric order relationswgandwq . ... ... . ... ... ...
Abstract order relationswyand oy, . .. .. ... ..o oL
6.3.1 ®doesnotrestricttheproblem ... ... ..........
632 Usingo......... ...
Equivalence of arrangements . . . . .................
Left and right sidesofaclosedpath . ... ... ..........
Local normalization . . . .. ... ...................
Extended compassrelations . . . .. .................
6.7.1 The abstractrelationspando. ... ... ... ... .. ..



6.7.2 Casesnotcapturedbyo ....................
6.7.3 Usingpandn ...... ... ... ...

Chapter 7 Realizability
7.1 Necessary conditions for realizability. . . . . ... .........

Chapter 8 Concluding Remarks
81 Conclusion . . . .. .. .. . . i i ittt it e e e e
82 Furtherwork . . . . . . . . . . .. . @ i i i ittt e e

References

Vita



LIST OF SYMBOLS

Rectangles and squares

Rect::
SZ
QRect
ZRect
Rect
Rg

Functions
Xi(a)
X(a)
Xr(a)
Yy(a)
Ye(a)
Y(a)
Cla)
M{(a.b)

(real) rectangle with centre (x.y), width w and height 2 . . .
unit integersquare . . . ... ... ... ... ... ... ..
rationalrectangle. . . . . . . ... ... ... .........
integerrectangle . . . . ... ... ... ... .........
the set of all (real)rectangles . . . . . . . ... ........
the set of all rational rectangles . . . . . ... ... ... ..
the set of all integerrectangles . . . . . . ... ... .....
thesetofallunitsquares . . . . . ... ... ... ... ..

horizontal coordinate of the left edge of rectanglea . . . . .
horizontal coordinate of the centre of rectanglea . . . . . .
horizontal coordinate of the right edge of rectangle a . .
vertical coordinate of the bottom edge of rectanglea . . . .
vertical coordinate of the centre of rectanglea . . . . . . . .
vertical coordinate of the top edge of rectanglea . . . . . . .
coordinates of the centre of rectanglea . ... ... ... ..
midpoint of touching for adjacent rectangles a and &

Binary relations on rectangles

V.7
i;‘I” ﬁ‘l’
v.n

Ay, Oy
pvv’ pﬁw
G\-Iv 3 cﬁ‘,
Pv-Pn
Gvy. O'n

geometric “North of” and “East of” compass relations . . . .
geometric compass relations for a picturey . . .. ... ..
abstract “North of” and “East of” compass relations . . . .
geometricorderrelations . . ... ... _ ... ........
abstractorderrelations . . ... ... .. ... ........
geometric extended compassrelations . . . . . ... ... ..
geometric extended compassrelations . . . .. ... ... ..
abstract extended compassrelations. . . . . ... ... ...
abstract extended compass relations . . . . . . ... ... ..

22
53
58
54
22
58
54
93

23
23
23
23
23
23
23
25



Others

S specification . . . .. . ... .. ... ... ... ... ... 27
So o-specification . .. .. .. ... ... .. ........... 66
i symmetry images of specification.§ . . . ... .. ... ... 28
iSe symmetry images of o-specification S, . ..... ... ... 67
a arrangementofrectangles . . .. .. . ... ... ... . 26
'} picture . . . . . ... ..o 24
P path . . . . ... .. 27
P closedpath . ............ .. .. ... ........ 27
Cla.b) connection curve from rectangle a to rectangle 5 . . . . . . . 25
n(P) connection curveofapath? ... .. .. ... .. ...... 29
Ly Ry left-adjacent and right-adjacent sides of a closed path # . . 72
LZ.R;  leftand rightsidesofaclosedpath? . ... ...... ... 76



e

LIST OF FIGURES

1.1 Exampleofapicture. . ... ... ................... 3
1.2 Resolutionproblem. . . ... ... .. ... .. ... .. ...... 6
1.3 Alignmentproblem. . . . ... ... ........... .. ..... 8
1.4 Representations of a table fortheblind. . . . . .. ... ... ... 9
1.5 Sample of Chinese fontstyles. . . . . ... ... ........... 10
1.6 Visualization model proposed by Kamada (from (26]). . . . . . .. 13
1.7 Examples of picture generation in COOL (from [26]). . . ... .. 14
1.8 A sketch of an office layout (from([20]). . . . . .. ... ... .... 15
1.9 The possible relationships between two objects (from [20]). . . . . 16
1.10 Reasoning about spatial relationships. . . . . ... ... ... ... 17
2.1 A rectangle and its coordinate abbreviations. . . . ... ... ... 23
2.2 Connection curve for two adjacent rectangles. . . . . . . ... ... 26
2.3 Connectioncurveforapath. . . . ... .. ... ... ......... 29
2.4 A realizable specification. . . ... .......... ..., ..., 30
2.5 An unrealizable specification. ... ... ... ... ... ...... 31
3.1 Realizations that areequivalent. . . . ... ... .......... 34
3.2 Realizations that areequivalent. . . ... .. ... ......... 34
3.3 Realizations that are notequivalent. . . . . . ... ......... 34
3.4 Equivalenceclasses. . ........... ... . .00, 35
3.5 The four classes represented by the entry labeled with the = in
Figure3.4. . .. ... ... . . i e 36
3.6 Possible realizationclasses. . ... ... .. ............. 37
3.7 Overlapsarenotallowed. ....................... 37
3.8 Norealizationispossible. .. ... .................. 38
3.9 Counter-example for Observation 3.4.4. Rectangle d can be inside
oroutsidethecage. . ... .. ... .. ... ... .. ... ... 42

3.10 Counter-example for Observation 3.4.5. d is not in the LR cage. . 42
3.11 Observation 3.4.6: isdisinthe LRcage? . ... ... .. ... .. 43



3.12 Counter-example for Observation3.4.6. . ... ........... 43
3.13 Another cage situation. Here, a, b, and f are local minima, g, A

anddarelocalmaxima. . .................0.00.... 44
3.14 Counter example to Observation3.4.11. . . ... .. ... ..... 46
3.15Insideacage.. . . . .. .. .. .. ... e e e e 46
3.16O0utsideacage.. . . . ... .. ... ittt e 46
4.1 Some possible causes of unrealizability(n=0). . . . ... ... .. 48
4.2 Another example of unrealizability(n=90). ............. 49
4.3 Unrealizable because of overlap (vandn). . . . .. ... ... ... 50
44 @n=0;(b)v=0.. ... ... . . .. 50
4.5 Another non-realizableexample. . . .. ... ... ... ..... 51
46 Bigexample. . . .. . ... .. ... e 51
5.1 Relative placement positions for two touching rectangles of height

20onaunitgrid. ...... .. ... ... .. .. e 55
5.2 Range of possible positions for (r;.r;)ev.. . ... ... ... 57
6.1 Problem with using centres of rectangles: (a) 8, > 6, (b) 0, < 0,5. 62
6.2 Adding the centres of common edge segments. . . .. ....... 62
6.3 The ordering of the s/s are different depending on which of the

reference rectangles ryand rrisused. ... ... ... ....... 63
6.4 Counter-example for non-transitivityofwy. . .. ... .. .. ... 65
6.5 Realizations with or without ®, of Example6.3.4. . . .. ... .. 68
6.6 Roadblock. ... ... ... . . ...« ... 69
6.7 Roadblock. . . ... .. ... . . ... it i 70

6.8 Left-adjacent (o) and right-adjacent (@) sides of a path with vonly. 73
6.9 Defining the left-adjacent (t) and right-adjacent () of a closed path
?=(a.b.c....a)ywithbothvandn. .................. 75
6.10 Example of x being both to the left and to the right of a closed path.
It is not possible to realize the closed path without intersecting
itself. . . ... ... .. e e 78
6.11 Example of x& £{ N RS It is not possible to realize the closed path
without intersecting itself (only one out of four possible closed paths

isshown). . . . . .. .. ... ... e 79
6.12 Rectanglereplacement. . . . . .. .. ... ... ........... 81
6.13 Examples of path redirection in rectangle replacement. . . . . . . 82
6.14 Cases for the proof of Proposition6.6.4. . ... ... ... ..... 84
6.15Blocking 1. . . .. ... ... .. ... e e 88
6.16 Blocking2. . . . ... ... ... ... ... 88



6.17Blocking3. . . ... .. .. . ... e 88

6.18 Extended transitive. . ... .. ... . ... ... 88
6.19 Blocking conditionnotincluded. . . . . . . . ... ... ... ... 92
6.20 Examples for Proposition6.7.7. . .. ... ... .. ... .. .... 92
6.21 A realization of S, in Example6.7.11. .. ... . ... ... .. .. 94
8.1 Difficultsituation. . . . ... ... .. ... .. ... ... .. 99



CHAPTER 1

INTRODUCTION

The flow of information from a computer to a human being takes many forms.
One of the most efficient so far, if not the most efficient, seems to be the graph-
ical-visual form where the computer presents data in a graphical manner and
the user assimilates the information visually. This graphical presentation is
usually two-dimensional, and includes images, animations, diagrams as well
as text. Text is considered as graphics, as it is displayed by graphical fonts rep-
resenting the letters and words of a language.

A wide range of media is available for the output of this graphical informa-
tion. They include dynamic displays such as CRTs as well as static displays
such as paper output from a printer. They vary widely in characteristics as well
as capabilities. As a consequence, the choice of specification method for graph-
ical information is crucial — it determines the flexibility with which the infor-
mation can be used for a variety of purposes or output by the various output
media.

1.1 Problem description

There are many ways to describe graphical information. They can be classified
into three major classes: declarative, procedural, and image-based. Declarative
techniques describe the information as a set of objects. The relationships among
the objects are stated as a set of conditions. They are also known as semantic-
based techniques, as the relationships among objects convey the structure and



meaning of the scene. Procedural and image-based techniques describe the in-
formation explicitly at a low level. A procedural technique represents the in-
formation by a collection of low level drawing commands for drawing lines, cir-
cles, etc. Coordinates have to be used to position these drawing commands. An
image-based technique represents visual information by storing a likeness of
the desired output, usually in the form of a two-dimensional array of color val-
ues. Both procedural and image-based techniques can be considered as non-
semantic-based techniques.

Clearly these techniques are useful in different situations. Image-based
techniques are employed when fast rendering is required on a device for which
the image is used. Procedural techniques make it easier to specify and port
through the interface or software as long as the devices are not vastly different.
Declarative techniques are used when having information about the contents
or meaning of the image is crucial.

Let us consider what an ideal system for the description of graphical infor-
mation might look like. It should possess the following characteristics:

1. a clear distinction is made between the declarative specification and the
possibly procedural rendering of graphical information;

2. semantic information is present, or at least easily available, so that it is
possible to reason about the contents of the image;

3. structure existing in the image is reflected by structure in the specifica-
tion;
4. the specification is unambiguous, so that complex information can be ac-

curately described and output;

5. the specification is intuitive so that a user can manipulate the information
with relative ease;

6. the specification should not make reference to any device-specific features
such as coordinates or resolutions so that the information can easily be
translated for output on different devices and/or media.

I focus on a very much simplified abstraction of the ideal system to be called
picture specification. Consider a picture that consists only of rectangles. The



rectangles touch each other, but do not overlap. They are allowed to be stretched
or shrunk in both the horizontal or vertical directions. An example is given in

Figure 1.1.

B
o

Figure 1.1: Example of a picture.

One way to specify such a picture is to locate the corners of the rectangles
by coordinates. If one does not wish to use coordinates, one can use the spatial
relationships between the rectangles to specify the picture.

I want to use abstract relations to describe a geometric layout of rectangles.
Let us define two binary relations v and n on the rectangles. For rectangles a
and b, (a.b) € v if a touches b and is to the North of . Similarly, (a.b) € n ifa
touches 6 and is to the East of 5.

In the example in Figure 1.1, the corresponding relations to describe the pic-
ture are

v={(a,d).(c.d)} and n={(b.a)}

Obviously, a given pair of v and 1 is by no means sufficient to describe all
or even just all of the important aspects of a picture. Descriptions of this form
are investigated to gain some basic insights in the possibilities and pitfalls of
coordinate-free scene description methods.

1.2 Motivation

In this section, I will discuss the motivation for adopting a declarative descrip-
tion of a picture by highlighting some of the problems associated with procedu-
ral or image-based methods.



Note that the focus of the thesis is to study the techniques that can be used
in declarative methods. The results of the thesis are not directly applicable to
the solution of the problems to be presented.

1.2.1 Semantic information

In many situations, the semantic information contained in graphical informa-
tion is required explicitly. If it is not provided as part of the description of the
image, a series of involved computations, probably using algorithms in image
analysis, object recognition or reasoning and other techniques, is required to
extract the semantic information. I give two examples of when semantic infor-
mation could be useful or necessary and when the cost for image analysis may
be unacceptable.

Visually impaired user

Consider a computer system that represents scenes by declarative techniques.
The scene can be translated to be output in different forms. For a sighted user,
a graphical output of the scene can be used. A graphical display device such
as a CRT can be used to display a rendering of the scene. For a blind user, the
same information can be translated to other output devices. For example, the
scene can be translated to a verbal format. With the presence of semantic in-
formation in a declarative technique, it would be relatively easy to produce a
detailed spoken explanation of the scene. An example of a scene described with
semantics is

“This scene is composed of a table, two chairs, a book and a pencil in
a room. The book is on the table and the pencil is on the book. The
chairs are to the right of the table.”

Such relational description allows information to be derived from the initial dec-
larations. For example, if the user queries

“Is the pencil on the floor?”
The system would be able to state

“No.”



If the scene was represented by an image, a photograph, for example, or even
as a collection of individual entities with coordinates to position them, none of
the functionality described above would be available immediately as no seman-
tic information would be present.

Information retrieval

A procedural description of a picture lacks information regarding the relation-
ships between the components within the picture. Suppose one has a database
of pictures or movies. Without semantics, one is unable to implement any se-
mantic search capabilities for information retrieval. Suppose one needs to re-
trieve a scene as follows:

“There is a table. A jar of chrysanthemums is on the table. The table
is next to a window.”

Such a query can only be performed in a database that includes semantic in-
formation [27]. Currently the only available methods for this functionality in-
volves adding the semantic information manually — to the extent queries can
be foreseen.

1.2.2 Typesetting

The typesetting of text and graphics poses many challenges. I present some of
the problems encountered when procedural techniques are used.

Resolution problem

In order to visualize pictures, one has to render them on some kind of output de-
vice. The class of raster-based devices is the most common by far. The following
is a partial list of such devices, with their approximate resolution in dots-per-
inch (dpi).

e Computerized Braille tactile graphics display or Braille printer (about 7
dpi)

¢ Dot matrix impact printers (60-240 dpi)

e CRT monitors (70-100 dpi)



e Facsimile machines (100-200 dpi)
e Ink-jet printers (300-600 dpi)
e Laser printers (3001200 dpi)

e Photo typesetters (2400 dpi or more)

When a coordinate-based picture is created, one usually has to consider the
capability of the output device. If this picture is displayed on devices with dif-
ferent resolutions, one may get some undesirable results.

Consider the example shown in Figure 1.2. Suppose one has a simple picture
consisting of two squares that are non-touching. When rendered at a higher
resolution, the two indeed do not touch each other. But when the same picture
is rendered on a lower resolution device, they may touch. This is undesirable in

most cases.
an: Rmae 24 %16
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Figure 1.2: Resolution problem.

In a declarative description, important conditions that have to be met for
each rendering are given in the description. Then the rendering program would
ensure these conditions are satisfied in the rasterization process.

The resolution problem is especially bad when very low resolution devices
such as a computerized Braille output device are considered. Obviously, graph-
ical objects must be greatly simplified to be displayed at very low resolution. If
this is done by simple scaling, shapes may be lost, and the crucial semantics in-
formation contained in a picture may be missing in the representation. This is
devastating to a visually impaired user.



According to [23], the conversion process has to ensure that the renderings
at low resolution satisfy the following requirements:!

¢ features must be large and have simple shapes;

o the distance between unconnected parts has to be large;
o only straight lines parallel to the axes can be used;

o features should only appear in predictable contexts.

Clearly a prerequisite to this conversion process is a clear understanding of the
structure and meaning of the picture to be displayed. This can only be achieved
when semantic information is provided.

Alignment problem

Suppose one needs to compose a picture of a musical note. The note is composed
by putting together a flag, a vertical staff and the head. To produce a correct
image, the position of the head may have to be shifted slightly, depending on the
rendered thickness of the staff. Figure 1.3 illustrates two possible cases. The
correct alignment is shown on the left, and an incorrect alignment on the right.
If the composition is described by coordinates, it would be difficult to ensure the
correct alignment of all objects over different output devices.

This problem can be eliminated in a declarative approach by specifying that
the right edge of the stem must be aligned with the right edge of the oval. Then
the device-specific rendering procedures would ensure that the composition is
perfectly aligned.

Music

In the specification of musical score, the purposes are
¢ printing/displaying;
¢ playing by synthesizer;

¢ searching for a motif.

!Beyond Braille displays there are other devices for tactile output that could have slightly
different requirements. The point here is that low resolution imposes particularly restrictive
conditions on the rendering.
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Figure 1.3: Alignment problem.

This requires that the specification reflect the musical structure, not the lay-
out of the score or the sound-track [16], [15], [12].

PostScript

In [13], Dunne discovered a problem with the use of coordinates in the Post-
Script page description language. PostScript is commonly used in laser print-
ers to control the rendering of images. Line and rectangle drawing are not pre-
cisely defined in PostScript. Due to the use of coordinates and discrete units
for measures, the rendered output is incorrect. For example, it is impossible to
correctly render a rectangle that is one device pixel high or wide.

Symbols for the blind

Consider a graphical rendering system for the blind. Suppose one needs to rep-
resent a scene containing a table and several other objects. Figure 1.4 shows
four representations for a table. They are derived from drawings made by blind
people. Representation (a) is seldom used, since a projection view of a three-
dimensional object has no meaning to a congenitally blind person. Representa-
tion (d) is used when the table is surrounded by other objects. Representations
(b) and (c) are used when there are other objects to be placed on the tabletop
[29], {30].

Ideally, the description of the scene is hierarchical. The top level description



(a) (b)

(c) (d)
Figure 1.4: Representations of a table for the blind.

would describe the relative positions of the objects in the scene. The next level
would describe the properties and shapes of the objects. In this way, an appro-
priate form for the table will be selected for rendering, depending on the objects
around it.

In a procedural approach, the scene is specified by a collection of drawing in-
structions for all the objects in the scene. There is no information regarding the
relationships among objects. There may not even be a distinction between the
objects. This means that the graphical representation for all objects, including
the table for example, must be preselected and explicitly described in the spec-
ification.

Design of Ideographic Characters

In the computerized typesetting of ideographic languages, the high-resolution
output of ideographs has always been one of the most difficult and challenging
problems. The difficulty arises in part from the huge number of characters re-
quired for such languages. Storing the complete high-resolution raster informa-
tion is not only prohibitively expensive, but also prevents the individual users
from making any significant style modifications to existing font libraries.

The analogy of typesetting a Chinese character is the typesetting of an En-
glish word. English words are basically a one-dimensional string of letters. The
alphabet is small and difficulties in inter-letter spacing can be handled by spe-



cial cases. On the other hand, the structure of a Chinese character is two di-
mensional. The analogy of the English alphabet is the set of sub-characters,
sometimes known as (word) radicals. One radical can be composed of others
and the set of radicals is very large (somewhere between 200 and 1000). Rela-
tive sizing of the radicals, as well as inter-radical spacing (in two dimensions)
cannot be specified by fixed amounts, nor can they be handled by special cases.

One strategy for the output of Chinese characters is to use a font genera-
tor that is capable of generating fonts in different styles. A distinction is made
between the style-independent and style-dependent aspects of font specifica-
tion. The style-independent information consists of a specification of the generic
structure of characters independent of font styles. Supplied with the appropri-
ate font style characteristics, the images can be generated.

Figure 1.5 shows a Chinese character printed in different font styles. As
one can observe from the sample characters, it is not possible for the generic
structures of characters to be specified with fixed coordinate positions, hence a
procedural description cannot be used. Placement positions of strokes and sub-
characters vary with different styles. The relative sizes of the sub-characters
are also different. These parameters must be specified by higher-level declara-
tions such as “radical x is above radical y and they are both to the right of radi-
cal z”. This information is then interpreted during font generation, where font-
dependent routines compute the final sizes, shapes and positions of all strokes
and radicals [47], [24].

& 43 18 i
T M8 & =

Figure 1.5: Sample of Chinese font styles.
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1.3 Some high-level graphics systems

I have discussed some drawbacks of scene description without semantics. Let
us now look at some high-level graphics systems and study how they represent
and render graphical information.

1.3.1 Sketchpad

Sutherland’s sketchpad [44] pioneered the use of constraints in graphics sys-
tems. It provides an interactive graphical interface, and its users could con-
struct drawings by defining geometric constraints interactively.

Points, lines and circular arcs are primitive graphical objects in Sketchpad.
Any drawing can be used as a primitive object by turning it into a “macro”. A
macro has a set of attachment points that are used to merge an instance of it
into another drawing.

The geometric constraints include making two lines parallel, perpendicular,
or of equal length. Lines can also be made horizontal or vertical, and a point
can be constrained to lie on a line or arc. With the use of such constraints, a
user can compose a drawing without explicitly stating the coordinates of every
primitive object.

The macro feature allows objects to be built, but does not allow constraints
to be specified with the objects. Hierarchy is not used effectively and as a con-
sequence constraints can only to be stated with the primitive graphical objects,
making it difficult to draw pictures.

1.3.2 IDEAL

Van Wyk’s IDEAL [45] is a language for typesetting graphics into documents.
IDEAL allows images to be built hierarchically, using boxes. For example, this
is a definition for a rectangle:

rect {

var ne, nv, sw, se, center, height, width;

ne = se + (0, 1) * height;
nw = sy + (0, 1) * height;
ne = nw + width;

center = (ne + sw) / 2;

11



conn ne to nw to sw to se to ne;

¥

IDEAL uses constraint satisfaction to allow the positions and sizes of objects
to be stated as relationships, which makes it very easy to lay out complex fig-
ures. For example, one can place some rectangles side by side across the width
of a page without specifying their individual widths, except that they are each
to be of equal width. The width of each object will then be determined by the
width of the page, even if the width of the page changes at a later time. This
makes the description of images more flexible and natural.?

However, the only primitive data type in IDEAL is a point. All relations be-
tween the nonprimitive data types must be expressed in terms of primitives,
which are points. So to specify that “rectangle a touches rectangle » and is to
the East of rectangle 5”, one needs to state the low level constraint: ne, = nw..
As in Sketchpad, the hierarchy of construction is not used in the specification of
constraints. It would be more intuitive if one were able to define constraints in
terms of the nonprimitive objects. Semantical information in the sense of our
“ideal system” cannot be specified.

1.3.3 Juno

Nelson’s Juno {34] is a system which integrates a constraint-based language
with an image editor. With Juno, a constraint-language program can be rep-
resented either in its textual form or by the image it produces. The user can
edit either form, and the changes will be reflected back into the program.

Juno’s intended domain is very limited. Its only data object is the point, and
there are only four constraints on points. New constraints can only be added if
they can be expressed as a conjunction of the four primitive constraints. If one
wants to use Juno for a different application, such as three-dimensional graph-
ics, the underlying system would have to be modified extensively.

1.34 COOL

In [26], a constraint-based system named COOL is built to visualize abstract
objects and relations. First data are translated into the relational structure

2TEX offers similar capabilities for boxes.

12



representation of abstract objects and relations. Second, abstract objects are
mapped to graphical objects, and abstract relations between them are mapped
to graphical relations between the corresponding graphical objects. Finally, an
actual layout of graphical objects is computed by solving graphical constraints,
and then a picture is generated.

original textual representation

)

Analyzer <-~=---~ syntax data

l

relational structure representation

|

, Visual Mapping ,< ------ mapping data

!

visual structure representation

!

COOL < ------ layout library

!

target pictorial representation

Figure 1.6: Visualization model proposed by Kamada (from [26]).

The positions of graphical objects are computed automatically from the spec-
ified graphical relations by the system. The geometric relations are expressed
as algebraic constraints among the variables which characterize the graphics
objects. A constraint hierarchy is built to handle over- or under-constrained sit-
uations.

Graphical objects in COOL are similar to boxes in IDEAL. They have lo-
cal variables that are related to one another by equations. Graphical relations
among graphical objects are expressed as extra constraints among the variables
of the objects. Some examples of pictures generated by COOL is shown in Fig-
ure 1.7.

The constraint solver in COOL is based on a simple equation solver. If a set
of constraints is over- or under-constrained, the system reports an error. The

13
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Box1, box2, box3, and box4 are boxes.
Box1 is placed on the left of box2.

Box3 is laid below boxI.

Box2 lies above box4.

Box1 is connected to box2 and box3

by thick dashed lines.

Solid lines connect box2 and box3 to box4.

C1, 2, 3, c4, 5, ¢6, and ¢7 are very small
circles.

C1 is put above ¢2 and ¢3 with connecting lines.
C2 is put above c4 and c5 with connecting lines.
C3 is put above c6 and ¢7 with connecting lines.
C4, c5, 6, and c7 are arranged horizontally.

Boxl is a very large box.

Box2 and box3 are standard white boxes.
Boxl1 contains box2 and box3.

Box1 is hidden by box2 and box3.

Figure 1.7: Examples of picture generation in COOL (from [26]).



user is then responsible to divide the constraints into two types, the “rigid” con-
straints which must be satisfied exactly and the “pliable” constraints that need
to be satisfied not exactly but approximately. Rigid constraints are eliminated
like Gaussian elimination. After that, pliable constraints are solved by the least
square method.

COOL does have many of the characteristics of an ideal system. It main-
tains a clear distinction of the specification and rendering of pictures, and is
able to generate pictures with the use of constraint-based techniques. However,
as with most constraint-based techniques, over- and under-constrained situa-
tions cannot be resolved easily.

If a constraint solver is unable to solve a set of constraints, it reports an er-
ror. The conflict involves local conditions, and may not be easily expressed in
the global layout scheme. This makes it difficult to identify the high-level con-
straints that have to be modified to resolve the problem.

1.3.5 Constraint-Based Reasoning

In [20], the “office world”, consisting of windows, desks, chairs, computers, etc,
is presented as an example domain for different basic forms of spatial reason-
ing. One way of describing the sketch of an office as given in figure 1.8 is by the
following proposition:

The chair is left of both the desk and the lamp, and the desk is left of
the lamp.

desk

Figure 1.8: A sketch of an office layout (from [20]).
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The left of relations between the objects can then be said to constrain the po-
sitions of the objects. So, these relationships can be represented by a constraint
network on the variables chair, desk, and lamp, where each variable specifies
the distance of the respective object to a reference point on some horizontal axis.
Suppose that the domains

Dchair = {49 5-6} Dgesie = {Se 6. 7} Dlamp = {6' 7'8}

are associated with the variables chair; desk, and lamp, respectively. Then the
assignment chair = 4, desk = 7, lamp = 8 are a solution of the constraint net-
work.

Figure 1.9 shows the set of relations used in [20]. A set of spatial proposi-
tions can be represented as a network consisting of two types of nodes: circle
representing the objects and rectangles representing the relations. Reasoning
about spatial relationships in a constraint reasoning setting now can be viewed
as modifying the labels of the rectangles, that is, the constraints, and inserting
new constraints into the network.

* Relationship ' Symbol | Symbol for Converse! Picture
O, left of O, o< > 0,
|
O, attached to O, < ! > 0,0,

|

O, overlapping 02'3 = ! > ; O;: |0,

i
I

Ol inside 02 ‘ C ; 3 I ljll 02

Figure 1.9: The possible relationships between two objects (from [20]).

Consider, for example, the network of Figure 1.10(a). Since O, is between O,
and Os, intuitively the spatial relation between O, and O; must be O; < O; (as
shown in Figure 1.10(b)). From this, together with O, < 03, one can conclude
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that = is not a possible relation between O, and O, because O is at least as
far left as 0, (as shown in Figure 1.10(c)).

> @ {2}

Y

| >~ RESnd]

(a) % @D
< @ |/

> 0] { %,¢,»}

(© 6; < 0,

\ < O, >

Figure 1.10: Reasoning about spatial relationships.

The example shows that there are two different reasoning steps on a network

of spatial relations:

1. Computing the composition of spatial relations, i.e., inserting new con-
straints into the network.

2. Deleting all relations that are inconsistent.

Standard constraint satisfaction algorithms can be used to remove inconsis-
tencies from the network. These algorithms result in different levels of consis-
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tency (ranging from local consistency to global consistency), and they are of dif-
ferent complexity (up to exponential).

The aim of the study in [20] is to introduce concepts and algorithms around
the notion of dynamic constraints. One severe limitation that prevents it from
being used as a method for scene description is the fact that it only deals with
spatial relations in one dimension. As I shall show in a later chapter, it is not
possible to treat two-dimensional spatial relations as two separate one-dimen-
sional spatial relations.

1.4 Geometric dimensioning and tolerancing in computer aided de-
sign systems

In computer aided design (CAD) systems, computer models of object compo-
nents are specified precisely with the use of coordinates. Problems arise in
the specification of assemblies of components that are coordinate based. As-
sembly constraints are used to provide information on how component are con-
nected. These geometric constraints present themselves as a set of algebraic
constraints, to be solved by a constraint solver.

The satisfaction of assembly constraints can be performed by solving the al-
gebraic equations that were derived from the geometric assembly constraints.
The problem of constraint-solving is difficult as the constraints are highly cou-
pled and non-linear [8],[39].

1.4.1 Summary

Besides the systems mentioned above, there are several other systems such as
Bertrand [32], ThingLab (6], DeltaBlue [18] [40]. They are in many ways sim-
ilar to the systems presented before as they all rely on constraint-based tech-
niques. Constraint satisfaction by itself is known to be a very difficult prob-
lem. Techniques that can be applied to solve general constraint problems are
inefficient and as a consequence most constraint-based systems usually employ
domain-specific techniques and are not easily extensible. In IDEAL, one can
define new structures that are like objects, but not new types of constraints on
those objects. In Sketchpad and Juno, one can define new operations on their
existing data types, but cannot define new types of objects.

18



Another problem with constraint-based techniques is the issue of numerical-
stability. Systems such as Juno use iterative numeric techniques to solve con-
straints. They may fail to terminate even when the constraints have a solution.
Moreover for constraints with more than one solution, an arbitrary solution is
given.

Coordinates are imposed in a constraint-based graphics system. Even if co-
ordinates are not used in the declaration of high-level constraints, they cannot
be avoided in the constraint-solving process. Inconsistencies in the description
of pictures present themselves as under- or over-constraints. These can only be
detected by the failure in finding a set of numerical solutions for all the coor-
dinate values. Although some form of constraint-solving may be inevitable in
the construction of a realization, one should be able to determine the realizabil-
ity of a picture by means other than to attempt to construct one. To determine
the realizability of pictures, one needs to have a clear understanding of the un-
derlying geometry, and derive rules to decide what is possible and what is not.
A constraint-solver provides no understanding of the problem at hand, merely
finding a solution by “brute-force” if it exists.

1.5 Thesis

So far I have shown the merits of declarative methods, and I have presented an
overview of how existing systems use them. I have discussed the shortcomings
of these existing systems due to their heavy dependence on constraint solving.
What is lacking is a good understanding of the fundamental properties that are
embedded in pictures specified with declarative methods.

In this thesis, I investigate the properties of pictures specified with declar-
ative methods. The aim is to extract as much information as possible from the
given specifications. Instead of considering general scene layouts, I focus on a
simplified abstraction of declarative methods — a specification of rectangle pic-
tures —as as proposed in [25]. Of particular interest is the question of realizabil-
ity. I show that the proposed framework is insufficient for complete specification
even under some very loose limitations to “similarity classes” of realizations. I
exhibit a set of necessary conditions, for such a specification to be realizable.
Moreover, I demonstrate that even restricted versions of the realizability prob-
lem are surprisingly difficult. The ultimate issue, that of deciding whether a
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given specification is realizable and, if so, to find a realization remains open.
I believe, however, that my analysis will contribute to the understanding and
eventual solution of the problem. The thesis is structured as follows:

¢ Chapter 2 introduces the basic geometric and abstract notions to lay the
groundwork for the study.

e Chapter 3 presents the characteristics of specifications. The limitations of
specifications are also discussed.

o Several examples of specifications are studied in Chapter 4 in order to help
gain clues on the conditions required for realizability.

¢ In Chapter 5, the original specification problem is reduced by placing re-
strictions on the rectangles.

o In Chapter 6, “order relations” are introduced to augment the specification
problem. In particular I focus on the “w-relations” and exploit its use in
order to infer a significant amount of geometric information.

e Chapter 7 summarizes the necessary conditions required for the realiz-
ability of specifications.

o The conclusion of the thesis and a discussion of further work is presented
in Chapter 8.



CHAPTER 2

BASIC NOTIONS

This chapter lays the groundwork for the study of rectangle picture specifica-
tions. Geometric notions such as rectangles and their spatial relationships are
introduced. An abstraction is made from these geometric notions to create a sys-
tem of abstract rectangle symbols and their relations. The abstraction is free
from coordinates and I will describe how it is used to specify pictures.

2.1 Binary relations

In this section I review some terminology and notations concerning binary re-
lations. Let R be a set and let £ be a binary relation on R, that is, £ CR x R.

¢ The inverse of £ is defined as £~! = {(r./)|r./ €R.(/.r) € E}.

o & is reflexive if (r.r) € § for all reR.

o & is anti-reflexive if (r.r) ¢ £ for all r € R.

e £ is symmetric if, for all .,/ € R, (r./) € § implies (/.r) € €.

e £ is anti-symmetric if, for all n.”/ ¢ R with r # 7/, (r./) € € implies (¥.r) € E.
o & is transitive if, for r.V./' € R, (r.V),(’./') € £ implies (r./") € E.

e & is anti-transitive if, for r,/,r" € R, (r.V),(¥./") € § implies (.7} € E.

e A &-cycle is a finite sequence (ry.r..... rn) of symbols rg.r;.....r, € R such
thatn> 1, rg=rp, (ri,rip1) €§fori=0.1.....n—l,and r; #rjfor0<i< j<n.

o If there are no &-cycles then & is anti-reflexive and anti-symmetric.
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e When & is transitive then there are no &-cycles if and only if £ is anti-sym-
metric.

o The transitive closure of § is defined as

X ={(nV )’ €R.I/ eR(n/).(7".F) €&}

e £ is a partial order if it is reflexive, anti-symmetric, and transitive.

e & is a strict order if it is anti-symmetric and transitive.
2.2 Geometric notions

I begin with defining the compass directions as an intuitive way of specifying
directions in a two-dimensional plane.

DEFINITION 2.2.1 (COMPASS DIRECTIONS) Consider a two-dimensional plane
with the usual horizontal and vertical axes. The following directions are defined:

1. North is the direction of increasing vertical axis value;
2. South is the direction of decreasing vertical axis value;
3. East is the direction of increasing horizontal axis value;
4. West is the direction of decreasing horizontal axis value;

The basic shapes to be considered are rectangles. A rectangle is defined as
a set of points in R2.

DEFINITION 2.2.2 (RECTANGLE) Let xg.y9,w.h € R and w.h > 0. The rectangle
Rect . is the set of all points within the region with the center (x,.y,), width w,
and height h, that is,
Rectzit & {(x.y) e R*ixg— "2 Sx <X+ “a.yo — Ha <y <yo + Hh}.
Let Rect denote the set of all rectangles, that is,

Rect %' {Rect:. : xg.yo.w.h € R.w.h > 0}.



In the sequel the notation Rect . is intended to imply, without special men-
tion, that xp.y0.w.h € R and w.A > 0. The following gives some useful abbrevia-
tions for representing the coordinates of the sides and centre of rectangles. For
a rectangle Rect ., the following items are defined:

1. Xi(r)=xo—"/2
2. X(r)=x0+¥)
3. Xelr)=xg

4. Y(r) =y +'h
5. Yy(r) =yo—th
6. Y(r)=y0

7. C(r) = (x0-¥0)

These items are illustrated in Figure 2.1.

e w —>
Y@ L T
Y.(a)=y,| a=Rect®} h
Y | l

X)) X(a)=x, X(a)

Figure 2.1: A rectangle and its coordinate abbreviations.

DEFINITION 2.2.3 (EXTENTS OF A RECTANGLE) Forarectangle r =Rect .., the
open intervals of real values (X,(r).,X,(r)) and (Yb(r), Y}(r)) are called the hori-
zontal and vertical extents of r, respectively.

Next we need the two binary relations to describe the spatial relationships
between the rectangles.
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DEFINITION 2.2.4 (GEOMETRIC COMPASS RELATIONS) Binary relationsvand
i for rectangles to represent “North of” and “East of” are defined as follows:

v = {(ab). a,bcRect: Y(a) =X(6) A (X(a).Xa)) N (Xi(h). Xo(b)) # o).
i = {(a.b). a.bcReet: X(a) =X(b) A (¥a). K@) n (1(b). %(6)) £ 0}.
These relations are called the geometric compass relations.

Notice that open intervals are used. This excludes cases called “corner kiss-
ing” in [25]. An example of corner kissing can be found in Figure 1.1, where
(b.c)gvuv-lufquqi~l.

Now I introduce the notion of a picture, which is a collection of non-overlap-
ping rectangles.

DEFINITION 2.2.5 (PICTURE) A picture y C Rect s a set of rectangles with the
property that no rectangles overlap, that is, for any distinct rectangles r, and r,

iny,
(Xitr0-Xer0) 0 (Xitr2) Xkr2)) =0 or (¥atr)- %)) 0 (Yalra). Bitra)) =0

Next I present a lemma that is useful for later proofs. It is based on the fact
that rectangles are not allowed to overlap.

LEMMA 2.2.6 Let ry.r, be any two rectangles in a picture.
1. If Xi(r1) = Xi(r2) or Xu(r1) = X(r,) then
(%r0. %)) 0 (¥a(ra). Yitra)) =o.
2. If Yo(r) = Yo(r2) or Yi(ry) = Y(ry) then
(Xm0, Xe(r)) 0 (). Xelr)) =0,
Proof:
1. fX(ry) = Xir) or X,(r;) = X/(r;) then
(X0 Xem)) 0 (Xitr2)- X)) #0.
Since no overlaps are allowed, one has, by Definition 2.2.5,

(Ytr). Ytr)) 0 (Yatra). Bira)) = 0.
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2. If Yy(r\) = Yp(r2) or Y(r1) = Yi(r2) then
(¥tr). %)) 0 (Yora)- X)) #0.
Again, by Definition 2.2.5, one has
(%), Xetr0) 0 (Xi(r2). Kot r2)) =0

a

The geometric compass relations are defined on the set Rect of all rectan-
gles in R2. We want to be able to refer to the geometric compass relations for a
picture.

DEFINITION 2.2.7 (GEOMETRIC COMPASS RELATIONS FOR A PICTURE) The
relations vy and Wiy denote the geometric compass relations for the rectangles in
a picture y. That is to say, vy = {(a.b),a.b€ y:(a.b) € V} and |y = {(a.b).a.b €
v :(a.b) €fq}.

DEFINITION 2.2.8 (MIDPOINT OF TOUCHING) Let a and b be rectangles in a

picture y such that (a.b) € ¥ UV, Uy UTi,'. The intersection intervals of the
rectangles are computed by
11-32) = (¥i(a). Tia)) 0 (%(6). (b))
and
(x1.x2) = (Xi(@)- X{a)) N (Xi(b). X))
The midpoint of touching is defined as:
( ﬂi,:fl.}’b(a) if (a.b) € ¥y
LER Yy(b)) if (b.a) € Vy
Xi(a).2372) if (a.b) € iy
X(b).%52) if (b.a) € Ay

\

The next notion to be introduced is the connection curve. It is illustrated in
Figure 2.2.

M(a.b) = 4

DEFINITION 2.2.9 (CONNECTION CURVE) Let aand b be rectanglesin a picture
v such that (a,b) € VUV-'UR{UR[~!. A connection curve ((a.b) from a to b is
obtained by drawing straight line segments through the points

Cla).M(a.b).C(b)
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Figure 2.2: Connection curve for two adjacent rectangles.

There is a symmetry that exists for pictures. It is defined in the following.

DEFINITION 2.2.10 (SYMMETRY IMAGES OF A PICTURE) For a picture vy, the
symmetry images of y are defined as the pictures obtained from applying a se-
quence of the following symmetry transformations on y:

1. mirroring about the horizontal axis y =0;
2. mirroring about the vertical axis x = 0;

3. clockwise rotation by n/2 about the origin.

The total of eight unique symmetry transformations (including the identity
mapping) form the dihedral group of order 8 [43].

2.3 Abstract notions

I would like to extract an abstraction from the geometric rectangles and their
relations. Instead of sets of rectangles I consider an alphabet of symbols de-
noting rectangles, rectangle symbols. 1 begin by defining a mapping of abstract
symbols to rectangles.

DEFINITION 2.3.1 (ARRANGEMENT) Let R be a set of symbols denoting rectan-
gles. An arrangement of R is an injective mapping o : R — Rect such that the
resulting rectangles form a picture.

Next I define an abstract specification of a picture. The specification requires
a set of abstract symbols and two relations representing the abstraction of the
geometric compass relations.

DEFINITION 2.3.2 (SPECIFICATION) A rectangle picture specification, or in
short a specification, is given by

SE(R.v.)
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where R is a set of rectangle symbols, and v.n CR x R. v and n are called the
abstract compass relations. The specification S is finite when R is finite.

Most of the results derived in this thesis hold true regardless of whether §
is finite or infinite; for the decidability issues introduced further below and for
the intended application for image specifications, S will be required to be finite.

In the sequel, let § = (R.v.n) be an arbitrary, but fixed specification.

REMARK 2.3.3 An arrangement a.of a set R of rectangle symbols defines the ge-
ometric compass relation vy and Wy on the set v = a(R) of rectangles. By slight
abuse of terminology I use v, and Wiy also to denote the corresponding induced
relations on the set R of rectangle symbols, that is,

(r.r) € Wy if and only if (a(r).a(r ) € Vy

and similarly for ©,. Also, for the sake of simplicity, for p = {X;. ;. X:. Y. Y. Y. C}
and any rectangle symbol r € R, I write B(r) instead of B(a(r)).

More definitions built on the abstract compass relations are introduced. We
continue with the definition of adjacency (or touching).

DEFINITION 2.3.4 (ADJACENCY) Let ri.r» € R. r| and r» are v-adjacent if
(ri.r) € vuv~!; they are n-adjacent if (r,.r») € nUn~!; they are adjacent if they
are v-adjacent or n-adjacent.

A sequence of adjacent rectangle symbols forms a path. Open and closed
paths are defined in the following.

DEFINITION 2.3.5 (PATH) Let r,.r, € R. A path from r, to ry is a sequence

of rectangle symbols such that

i

(rp,rp+|)€vUv'lUnUn" for p=0.....n—1

and
ro#Frg for0<p<qg<n.

Here n is called the length of the path, denoted by |P|.
The path P is said to be closed if r, = rp; it is open otherwise.
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Notice that the discussion is restricted to open and closed paths containing
distinct rectangle symbols only. Paths that contain repeated rectangle symbols
also exist, but they can be broken down into two or more paths that do not con-
tain repeated rectangle symbols. Then each part can be examined on its own.

Next I define connectedness. It can be considered as the transitive extension
of adjacency.

DEFINITION 2.3.6 (CONNECTEDNESS) r) is said to be connected to r, if there
exists a path from r to r,.

DEFINITION 2.3.7 (CONNECTED SPECIFICATION) A specification S is said to
be connected if every pair of rectangle symbols in S is connected.

In the remainder of the thesis, I assume that every spectfication is connected
without explicitly stating so. Specifications that are not connected can be sepa-
rated into two or more connected specifications. Then each connected specifica-
tion can be dealt with individually.

If one is given a specification, one of the fundamental questions is to ask if
there is a picture that corresponds to it. I call this realizability and define it in
the following.

DEFINITION 2.3.8 (REALIZABILITY) Consider a specification S = (R.v.n) and
an arrangement a. Let v = a(R).

1. If vy =vand iy, =, then a is acceptable (or a realization) and S is Rect-
realizable. § is realizable if it is Rect-realizable.

2. For a subset B C Reet, if v, = v, fjy =1, and y C B, then a is B-acceptable
(or a B-realization) and S is B-realizable.

Note: In the sequel, when it does not matter, the realization of a specification
refers to a, as well as the picture y generated by a. Also, I sometimes write a(.5)
instead of a(R) for the sake of convenience.

The symmetry images of pictures were defined earlier. Now I define the sym-
metry images at the abstract level.

DEFINITION 2.3.9 (SYMMETRY IMAGES OF A SPECIFICATION) The symmetry
images of a specification S = (R.v.n) and the symbols for denoting them are
given by:
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1S = (R.v.n) S = (Ron.v)

25 = (Rven™h) 65 = (Rn.v!)
35 = (R,V-l,ﬂ) YARES (R-fl'l~V)
45 = (Rovln™) 85 = (Ry~Lv!)

PROPOSITION 2.3.10 Let S=(R.v.n) be a specification and let o be an arrange-
ment of R such that y = a(R) is a realization of R. There is a one-to-one corre-
spondence 1 between the symmetry images ;5 of S and the eight symmetry trans-
formations in the dihedral group of order eight such that, up to translations of

the plane,
UsSI(w) = [UaS] 0 0] (S).

The correspondence stated above indicates that the abstract symmetry im-
ages correctly represent the geometric notions of the symmetry transformations.

Next, we want to relate a path in the abstract specification to a composition
of connection curves in the picture.

PROPOSITION 2.3.11 Let S = (R.v.n) be a specification and let a be a realiza-
tion of S. There is a one-to-one correspondence n between the paths in S and the
connection curves in a(R) such that, for a path P = (ry.ry.....rn), a(P) is the curve
resulting from the composition of the curves C{r;.riy ) fori=0.1.....n—1.

DEFINITION 2.3.12 (CONNECTION CURVE FOR A PATH) With S, o and n as in
Proposition 2.3.11, if P is a path then n(P) is said to be the connection curve of P.

Figure 2.3: Connection curve for a path.

Figure 2.3 shows the connection curve for a path. Now we are going to ex-
amine the characteristics of connection curves. I present the following proposi-
tions. The first proposition states that a connection curve fits in the rectangles



that correspond to the path. The second proposition states that a connection
curve cannot intersect itself.

PROPOSITION 2.3.13 Suppose one has a realization vy of a specification S =
(R.v.n). Let P = (rg.ry,....rn) be a path in S. Then the connection curve n(P)

of P is contained in | JLoa(r;).

Proof: Let us consider the connection curve for any two adjacent rectangle sym-
bols a and b in the path. Let 4 = a(a) and = a(b). The connection curve
is defined as the two straight line segments L; from C(d’') to M(d'.b'), and L,
from M(a'.5) to C(5'). By definition, C(d'),M(d'.b') € & and M(d'.b').C(b') € ¥'. A
straight line that connects any two points inside a rectangle is itself contained
entirely within the rectangie, therefore L, €  and L, € #'. Since this is true for
any two adjacent rectangle symbols, it is true for the entire path. a

PROPOSITION 2.3.14 Suppose one has a realizable specification S. The connec-
tion curve of a path is closed if and only if the path is closed. The connection
curve of a path does not intersect itself.

Proof: The connection curve of a path is contained entirely within the geometric
rectangles that correspond the path. For a connection curve to intersect itself,
the path must “cross itself” by having a rectangle symbol being used more than
once in the path (recall that corner kissing has been eliminated). This is not
allowed in the definition of a path. o

2.4 Examples

Figures 2.4 and 2.5 give simple examples of a realizable and an unrealizable
specification.

v={(a.b).(a.c)}
b c n==0

Figure 2.4: A realizable specification.
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v={(a.b).(a.c).(b.c)}
n=290

Figure 2.5: An unrealizable specification.

2.5 Approaches not taken
2.5.1 Graph drawing approach

One possible alternative is to use directed graphs to represent spatial relations.
Vertices in the graph represent rectangles, and the edges represent the spatial
relationships. If the spatial information can be correctly represented, then re-
alizability testing would be equivalent to the straight-line planarity testing of
the directed graph.

However, it seems that the spatial relations v and n cannot be directly re-
placed by edges, as there are no restrictions to the orientations of edges in a gen-
eral directed graph. One approach to constrain the orientations of edges is the
concept of upward graph drawings. A drawing of a directed graph is straight-
line upward if every edge is a straight line and is monotonically nondecreasing
in the y-direction. If this approach is to be adopted, two graphs would be re-
quired — one for v and one for 1. As necessary conditions for realizability, each
graph must admit a straight-line upward drawing. Unfortunately this is not
sufficient for realizability as I shall demonstrate in a later chapter that the re-
alizability problem cannot be solved by treating v and n separately.
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CHAPTER 3

EARLY FINDINGS

In this chapter, I present some early findings of the characteristics of specifica-
tions. We begin by showing the properties of the geometric and abstract com-
pass relations. Then I show that the abstract compass relations are insufficient
to specify unique realizations. I introduce equivalence classes to group similar
realizations. Following that, several examples are presented to illustrate how
the abstract relations are used to specify pictures. In doing so, some of the lim-
itations of the system is discovered. In the final section, we examine an inter-
esting construct called a “cage”.

3.1 Properties of the geometric compass relations
Let us examine the properties of the geometric compass relations v and 7.

PROPOSITION 3.1.1 v and Wi have the following properties:
1. There are no v-cycles and no t-cycles;
2. v and 1 are anti-transitive;

3. v, v\, §, and 7! are pairwise disjoint.

Proof:

1. (No cycles) Let us assume, on the contrary, that there is a v-cycle such that
(ro.r1).(r1.r2),....(Fn—1.7n) € v, ro =rn, for some n > 1. Then one has Y,(ry) =
Y(r1) > Yo(r) = Ye(r2) > --- > Yy(ra—1) = ¥(ra) > Yp(rn} = Yo(ro), which is a
contradiction. The proof for fj-cycles is analogous.

2. (Anti-transitivity) Suppose on the contrary that one has (r;.r).(r.r3).
(r.r3) € v. Then one has Yy(ry) = ¥i(r3), Ys(r2) = Xi(r3), and Yy(ry) = Yi(r3).



Hence Y/(r,) = Y;(r;). This means that rectangle r» has zero height. Since
degenerate rectangles are not allowed, one arrives at a contradiction. The
case for 1 is similar.

3. (Disjointness) If there are no v-cycles and no fj-cycles, then v and 7 are
anti-symmetric. Therefore vNv~! = fNf{~! = 0. Let us consider the case
for 8Ny, for (8.y) = {(v.#/).(v.7~).(v"1.A).(v"L.{§~")}. Let (r.ry) €8ny. If
(ry.r2) € 6 then one has Yy(r;) = Yi(r) or Y;(r;) = ¥V3(r2). This means that

((Yb("l), Y(r )) N (Yb("z)-Yz("z)) =0. 3.1)

But if (r.r2) € 5, then one has ((%(r1).%(r)) N (¥y(r2)-¥{r2)) # 0. This
contradicts equation 3.1. Hence 6Ny =0.

O

PROPOSITION 3.1.2 For rectangles ry and r; in a picture, if

Xi(r)). X (r) N [Xi(r2 ) Xe(r2)] = @
or

[Yp(ry), Ye(r)] N [Yp(r2). V()] =0
then

(r,m) €vuvtuqua .
Proof: If[/YI("l )-X;-(rl )] n [/Yl(fl)yX,—(rz)] = 0 then Xi(ry) #,Y,.(rz) and,(l(rz) #-Xr(r[ ).
Thus (r.r;) g VUV URUA™L
If [Ya(r ). Yi(r )] N [Yy(r2). Yi(r2)] = @ then Y,(r;) # Yi(r2) and Yy(ry) # Yi(r>). Thus

(l’l.rg)g\-/U\./_lUﬁUﬁ"l. O

COROLLARY 3.1.3 Suppose a specification S = (R.v.n) is realizable, then v and
n have the following properties:

1. There are no v-cycles and no n-cycles;

2. v and n are anti-transitive;

1

3. v, v7', n, and n~! are pairwise disjoint.

Proof: Let v = a(R) be a realization. Then v = vy and n = fj,. It is proven in

Proposition 3.1.1 that for any picture y, ¥, and fj,, have all the properties listed
above. (m]
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3.2 Equivalence of realizations

Specifications do not stipulate the sizes of rectangles in the realizations. If a
specification is realizable, it can be mapped by different arrangements to an
infinite number of different pictures. We want to be able to classify them and
group them into classes. We will deal with the concept of equivalence informally
in this section and present a formal definition in Chapter 6.

Suppose one has a simple specification given by {{a,b}, {(a.b)}. 0}. All the
realizations shown in Figure 3.1 are to be considered as equivalent.

a

| a a a a a
i b b b b

r
!
!
!

b

o

|

Figure 3.1: Realizations that are equivalent.

Suppose one has another specification given by {{a.b. c}.{(a.b).(a-c)}-@}.
Realizations shown in Figure 3.2 are to be considered equivalent. However, the
realizations shown in Figure 3.3 are to be distinguished.

| a !

Le |

l?
5l lc] 18] e ';bs

—_—

Figure 3.2: Realizations that are equivalent.

bile| (ec||b

Figure 3.3: Realizations that are not equivalent.

If only specifications with n =0 are considered, Figure 3.4 lists all the equiv-
alence classes for specifications with one to five rectangles. Each entry may rep-
resent more than one class, as classes that are horizontal/vertical mirrors are
not shown. The total number of classes contained in each entry is shown in the

second column.
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Figure 3.4: Equivalence classes.



Let us look at an example to clarify the presentation of Figure 3.4. Consider
the entry labeled with the +. The entry represents a total of four classes, shown

T PR

Figure 3.5: The four classes represented by the entry labeled with the * in Fig-
ure 3.4.

That is to say, whenever you have three connected rectangles, their relative
positions must fall into one of the two general classes. Similarly for four rect-
angles, their relative positions must fall into one of the seven classes.

As expected, the number of classes increases dramatically with the number
of connected rectangles. There also does not seem to be a pattern that can be
extracted.

As mentioned before, these classes cannot be specified formally at this point
as some important concepts are still missing. The notion of equivalence will be
re-visited again in Chapter 6. There a formal definition will be given.

3.3 Examples

Let us look at some examples of specifications and examine their realizability.
In the first example, the specification is realizable and the possible realization
classes are shown. The specification shown in the second example is not realiz-
able, and a proof of this is presented.

EXAMPLE 3.3.1 Let

R = {a.b.c.d.e.f.g}.
v = {(b.a).(c,a).(d.b).(d.c),(e.a),(f.a).(g.e).(g. N}
n = 0

We can see that there are three classes of possible realizations (remember that
arbitrary scaling and vertical mirroring are allowed). They are shown in Fig-
ure 3.6. The picture shown in Figure 3.7 is not acceptable because rectangles
are not allowed to overlap.
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Figure 3.6: Possible realization classes.
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Figure 3.7: Overlaps are not allowed.

EXAMPLE 3.3.2 Let us now look at an example that cannot be realized. Let

R = {a.b.c.d.e.f.g.h.i.j},

v = {(a.h).(b.a),(c.a).(d.a).(e.b).(e.c).(f-c).(f.d).(g.€).(g-)-(i-h).(j. ).
(j.c)}. and
n = 0

The rectangle symbol c is enclosed in a “cage” formed by the closed path
(a.b.e.g.f.d.a). It is not possible for c to be adjacent to j which is outside of the
“cage”. This situation is shown in Figure 3.8.

Note that the cage used in this example is constructed deliberately in a care-
ful manner so that one can assert that c is inside and j is outside. The following
proves that this example is not realizable. Since the tools for dealing with the
inside and outside of cages have not yet been developed, the proof will not use
any properties of cages.



Figure 3.8: No realization is possible.

Proof: Let us assume that there is a realization. From v one knows that
() = Yy(e) = Yi(c) = Yp(f) = Vil(d) = Yp( /).
For ri.r, € {e.f.j}.r  # r», one has, by Definition 2.2.5,
(%tr).24r)) 0 (Ki(r2). Kot r2) ) = 0. (3.2)
Similarly for ry.r; € {b.c.d}.r; # ry, one has, by Definition 2.2.5,
(r3).2e4r3)) 0 (Kitra)- X)) =0 (3.3)

I have established that the horizontal extents of rectangles e, f, and j, as well
the horizontal extents of rectangles b, c, and d do not overlap.

Looking at rectangles b, c, and d, there are six permutations to order them
from West to East:

1. Xe(b) < Xclc) < X.(d) implies X;(b) < Xi(b) < Xj(c) < X(c) < Xi(d) < X(d).
2. Xo(d) < X(c) < X(b) implies Xj(d) < X/(d) < Xi(c) < Xi(c) < Xi(b) < X;(b).
3. Xc(b) < Xe(d) < Xe(c) implies Xj(b) < X:(b) < Xi(d) < Xp(d) < Xi(c) < X{c).
4. Xc(c) < Xc(d) < X:(b) implies Xj(c) < Xi{c) < X{d) < Xr(d) < Xi(b) < X,(b).
5. Xe(d) < Xc(b) < Xe(c) implies Xj(d) < X(d) < Xi(b) < Xr(b) < Xi(c) < Xi(c).

6. Xo(c) < Xo(b) < X(d) implies Xj(c) < Xr(c) < Xi(b) < X(b) < Xi(d) < X;(d).
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One has (e.b).(f.d).(e.c),(f.c) € v. Cases 3 to 6 can be eliminated because
they force rectangles e and f to overlap. I will show case 3 in detail and omit
cases 4 to 6 as the proofs are similar.

In case 3, Xj(e) < X,(b) because of (e.b) € v; moreover, X.(b) < Xj(c) as above,
thus Xj(e) < Xj(c). By (f.d).(f,c) € v and the inequality above one has X;(/) <
XHd) < Xi(c) < X(f). Thus by (e,c) € v Xj(e) < Xi(c) < X(e) and X;(f) < X{c) <
X-(/), hence (X,(e),X,(e)) N (X,( XA f)) # 0. However, this contradicts equa-
tion 3.2.

Let us now look at the two remaining possible cases.

1 X(b) < X(¢) < Xc(d).
Since (e.b).(f.d) € v, Xz(e) < X.(f). Looking at rectangles ¢, f, and /, one
has three permutations to order them.

(a) Xe(j) < Xc(e) <Xo(f) implies Xj(j) < X(j) < Xi(e) < Xp(e) < Xi(f) < X f).

(b) Xc(e) < Xe(/) < Xelf) implies Xj(e) < Xi{e) < Xi(/) < Xe( /) < X f) < Xl ).

(©) Xe(e) < Xe(f) < Xc(j) implies Xi(e) < XH(e) < Xi(f) < X ) < Xi( /) < XA J)-
Since (e.b).(e.c).(f.c).(f.d) € v one has Xj(e) < Xj(c) < X{(e) and Xj(f) <
X (c) < X 1)

For cases (a) and (c) one has (X,(j) < Xj(e) < Xj(c) or Xi{(c) < X ) < Xi()),
and therefore (X,(j),Xr(j)) N (X,(c).Xr(c)) =0. Thus (j.c) ¢ v. But this con-
tradicts the fact that (/,c) € v. Therefore cases (a) and (c) can be elimi-
nated.

For case (b), one knows that X;(c) < X{e) < X(j) < X{j) < Xi(f) <
X:(c). Since (j.i) € v, one has (X,(j),X,(j)) N (X,(i),X,(i)) # 0. Hence
(Xi(e). X)) N (Xit9). X)) # 0. Since (j.c). (j.i) € v, one has (¥3(0). %(4)) N
(Yb(c). Y,(c}) # 0. Thus rectangles i and c overlap. Therefore we have ar-
rived at a contradiction.

2. Xo(d) < Xe(c) < Xc(b).
The proof of the impossibility of this case is similar. It can be obtained by
simply exchanging e and f, as well as b and 4 in the proof of part 1.

Hence I have shown that no realization exists for the specification. a
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The proof above by case distinction is tedious and specific. It cannot be easily
generalized to other situations. This is one of the motivations for attempting to
characterize the cage situation in subsequent sections of this thesis.

It seems rather simple to identify a cage in a realization and to decide which
rectangle are inside and which are outside. But in fact, if we only look at the
abstract relations v and 7, this turns out to be a surprisingly difficult task.

3.4 Cages

Let us take a closer look at cages. Consider a specification S = (R.v.n). Suppose,
S has a closed path 2, called a cage in the sequel. If there is a rectangle symbol
r not occurring in 2 such that, in any realization a of 2, a(r) would have to be
attached to a rectangle inside the cage and also to a rectangle outside the cage
then, clearly, ? is not realizable. It seems natural, therefore, to develop the ab-
stract notions of inside and outside for cages in specifications. This turns out to
be surprisingly difficult.

DEFINITION 3.4.1 Let S = (R.v.n) be a realizable specification and suppose
there is a closed path P = (rg,....rs.rg) in S. A rectangle symbol r € R not oc-
curring in P is inside @ if, for every arrangement o. of S, a(r) is contained in the
area Aq(P) enclosed by the connection curve of a(®). The rectangle symbol r < R
is outside P if, for every arrangement o. of S, the interior of a(r) is contained in
the area .
R*\ (U a(r) U &(i’)) :
=0

In this section, I will present a series of attempts to capture the concept of in-
side and outside of cages. We restrict our discussion here to specifications with
n = 0 to reduce the complexity of the cases to be examined. I begin with a very
simple form of a cage, called an LR cage.

3.4.1 LR cages
DEFINITION 3.4.2 (LR CAGE) Whenever one has two paths
P = (Ppot = 50-51.----Sm = Fiop)

and
% = (rpor = fo-11-.- .. In = I'op)
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where
siFt, 0<i<m. 0<j<n
and
(Sf._Si_{).(lj,tj-l) ev. 1<i<m. 1 <Jj<n
one has an LR cage ? = (Mot = S0 =10, S+ -+ -+5m = Ftop = ty-In—1+- - --L1. 10 = Fbor = S0)-

noor and rigp are called the bottom and the top of the cage, respectively. The re-
maining rectangle symbols {s|,....sy_1} and {t;.....t,_;} compose the two walls
of the cage.

Note that at the abstract level, it is not possible to identify the left and right
walls. One knows that (s;. ). (£1.7bor) € V but there is no information available
to order s; and ¢;. The same can be said for s,,_1, t,—1, and rigp. The notion of left
and right walls does exist in the realizations though, after a specific arrange-
ment o is employed. We now present several attempts at abstracting the no-
tions of inside and outside from some scenarios in which these look intuitively

obvious.

ATTEMPT 3.4.3 An LR cage is empty if (a) there are no rectangle symbols r;
other than s, and t| such that (r;.no) € v; and (b) there are no rectangle symbols
ry other than s, and t,_; such that (rep.r;) € v.

Disproof: The only remaining candidates that can be inside the cage must be
adjacent to the side walls with respect to v. But they can always be “flipped
out” in the realizations. O

Note that the converse of the above statement is also not true. Even if the
rectangle symbols r; and r; do exist, they can again be “flipped out” of the cage
in the realizations.

ATTEMPT 3.4.4 Arectangle symbol is inside an LR cage if it is connected to both
walls of the cage.

Disproof: A counter-example is shown in Figure 3.9. The two realizations are
constructed from

v=1{(i.g).(g.b).(g.e).(h.f).(h.c).(b.a).(c.a).(e.d).(f.d).

Rectangle d can be inside or outside the cage. .
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d

Figure 3.9: Counter-example for Observation 3.4.4. Rectangle 4 can be inside
or outside the cage.

ATTEMPT 3.4.5 Arectangle symbol is inside an LR cage if it is connected to both
walls of the cage and also connected to either the top or the bottom of the cage.

Disproof: A counter-example is shown in Figure 3.10. a
Let us add more conditions to attempt to “force” rectangle symbols to be in-
side cages.

Figure 3.10: Counter-example for Observation 3.4.5. d is not in the LR cage.

ATTEMPT 3.4.6 A rectangle symbol inside in an LR cage ifitis connected to both
walls of the cage and also connected to either the top from the South or connected
to the bottom from the North.

At first glance, there seem to be enough conditions to prevent rectangle symbols
to be flipped out of a cage. An example is shown in Figure 3.11. But yet again, a
counter-example can be found. It is shown in Figure 3.12. The problem is that
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the “connectedness” condition provides too much freedom. We will have to use
the more restrictive adjacency condition in our next attempt.

Figure 3.11: Observation 3.4.6: is d is in the LR cage?

Figure 3.12: Counter-example for Observation 3.4.6.

ATTEMPT 3.4.7 A rectangle symbol is inside an LR cage if it is adjacent to a
rectangle symbol from each of the two walls.

We have finally collected enough conditions that is sufficient, but by no means
necessary, to state that a rectangle symbol is in an LR cage. This is used as a
basis to construct Example 3.3.2.

Proof: Let the LR cage be ? = (ry = ryor, Fis- - -1 = Fop:Fntls-- - Fntm = Foor)- Let r

be a rectangle symbol adjacent to »; and r; with0<i<mand 0 < j < n.
Let a be an arrangement of the specification. Then

Xe(ri) < Xe(r) = Xi(r) < X(r) = X(rj) < Xe(r))

or
Xe(ry) <Xe(r;) = Xi(r) <X (r) = Xi(r;) < Xe(r;).
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Thus n(?) ¢ a(r). Without loss of generality assume the former. Suppose a(r)
is not contained in 4,(?). Hence n(?) intersects the connection curve n(?) of P.
Hence there is a rectangle symbol r; such that C(7:. 71 1) mod(n+m) ) intersects a(r).
By Proposition 2.3.13 C(7:-7(;+1)mod(n+m)) 1S contained in a(r;)Ua(r;;). As a(r)
does not overlap with a(r;) and a(r; ) it follows that M(r;.r;,,) € a(r). However,
this again implies an overlap. mi

The series of attempts presented shows that it is not easy to derive proper-
ties for rectangle pictures, even for very simple cases. The apparently simple
notion of inside and outside cannot be defined easily, even in an extremely sim-
plified cage situation.

3.4.2 General cages
We now turn our attention to other cage situations.

DEFINITION 3.4.8 (GENERAL CAGE) A closed path ® = (pg.pi.....pa. po) forms
a cage.

g I h

n
|

c % e
|

a b

Figure 3.13: Another cage situation. Here, a, b, and f are local minima, g, # and
d are local maxima.

Given the difficulties we had with determining the inside and outside of an
LR cage there is little hope for a simple characterization of the inside and out-
side of a general cage. In the next section I present another sequence of at-
tempts to generalize the idea of Attempt 3.4.7, along with their counter-exam-
ples.

3.4.3 Local maxima and minima

In the general cage the roles of the rectangle symbols o, and 1, of an LR cage
seem to be taken over by “local minima” and “local maxima”. Intuitively, a rect-



angle symbol is a local minimum if no rectangle symbols is forced to be the South
of it in every realization.

DEFINITION 3.4.9 Suppose one has a closed path ®? = (pg. pi..... Pm- Do)-

1. A rectangle symbol p; is a local minimum of ? if (pipj)Eviorall0<j <
m.i# j. Let Ry denote the set of all local minima.

2. A rectangle symbol p; is a local maximum of ? if (p;.p;) € v forall 0 < j <
m.i# j. Let Ry denote the set of all local maxima.

3. A rectangle symbol p; is a side wall of P otherwise. Let Ry denote the set of
all side wall rectangle symbols.

4. Let p; € RyURy and let p;.p; € P. pi and p; are said to be on opposite sides
of piifthereisa p; € RvURy, j #i, such that one of the following conditions
is satisfied

(@) If j<ithenke{j+1.....i—1}and € {0.....j—L.i+1..... n} or vice
versa.
b) Ifi<jthenkec{i+1.....j~1}and [ €{0..... i—1.j+1.....n} or vice

versa.

ATTEMPT 3.4.10 A rectangle symbol is inside a cage if it is connected to a local
maximum or a local minimum of the cage, and to two other side wall rectangle
symbols on opposite sides.

Disproof: A counter-example is given in Figure 3.12. 4 is connected to the local
minimum a and side wall rectangle symbols g and 4. a

ATTEMPT 3.4.11 A rectangle symbol ris inside a cage if there exists a rectangle
symbol ry € Ry such that (r..r) € v or if there exists a rectangle symbol r, € Ry
such that (r.r,) € v.

Disproof: A counter-example is shown in Figure 3.14. O

ATTEMPT 3.4.12 A rectangle symbol ris inside a cage if there exists a rectangle
symbol r. € Ry and a rectangle symbol r, € Ry such that (r.ri).(rp.r) € v.

Disproof: An example of this is shown in Figure 3.15. However this attempt is
not true either as shown in Figure 3.16. a
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Figure 3.14: Counter example to Observation 3.4.11.
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Figure 3.15: Inside a cage.

c
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e b
f

I

a

Figure 3.16: Outside a cage.

3.5 Need to reduce the problem

It is shown that even seamingly simple ideas cannot be expressed easily, even
in specifications involving only one of the two abstract compass relations. Re-
call that the motivation to define the inside and outside of a closed path was to
enable us to identify certain specifications that are not realizable.
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CHAPTER 4

EXAMPLES

We would like to derive rules to determine the realizability of specifications in
the following chapters. It is difficult to do this by just looking at the abstract
relations. In this chapter, we will look at geometric examples to gather clues on
how to formulate conditions for realizability testing.

4.1 Specifications with n=0

We begin with simple specifications that involve v only. The following lists some
specific situations that may cause realizability problems.

1. Degenerate dimensions (Figure 4.1(a)).
For this case to be realizable, rectangle 4 has to have zero height. This is
characterized by a transitive relationship in v.

2. Impossible stretching (Figure 4.1(b)).
It is not possible for ¢ to be to the North of a. This is characterized by a

v-cycle.

3. Forced overlapping (Figure 4.1(c)).
Rectangles a and b act as obstructions to prevent x from touching y. How-
ever, in the absence of information ordering the positions of a and y, their
positions can be swapped without any change in v. Then it would be pos-
sible to obtain a realization.

4. Inside/outside (Figure 4.1(d)).
Consider the closed path ? = (a.5.c.d.a). If x is inside and y is outside of
the cage, then x cannot be adjacent to y without overlapping some part of
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(a)

(b)

(c)

(d)

(e)
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Figure 4.1: Some possible causes of unrealizability (n = @).



the cage. But again, without additional ordering information, a realiza-
tion can be obtained by “flipping” x out of the cage. We have seen examples
of this situation in the previous chapter.

5. Forced overlapping (Figure 4.1(e)).
At first glance, this situation seems to be unrealizable. 5 acts as a barrier
to prevent y from touching x and z. But again, without the ordering of x, c,
and z, one can “flip” ¢ to the leftmost position. 4 and y are extended to the
East, and x and z are extended to the North, forming a realization.

Notice that examples 3, 4, and 5 are realizable in the absence of additional
information. If the “order” of all rectangles is fixed (to prohibit “flipping”), then
they are no longer realizable.

a

y
/_“"\___,}

— i b

. v={(a.b).(y.b).(b.c).(x.c).(y.x)}

Figure 4.2: Another example of unrealizability (n = 0).

4.2 Specifications with v and n

Suppose one has the situation given in Figure 4.3. The specification is unreal-
izable, but this fact cannot be detected by examining v or n alone. To illustrate
this point, consider the same specification with n = @. Then it is realizable and
a realization is given in Figure 4.4(a). If we instead let v = @, it is also realizable
and a realization is given in Figure 4.4(b).

This shows the two-dimensional nature of the problem: v and n cannot be
treated separately.

Let us look at another example involving both v and n, shown in Figure 4.5.
This time, let us assume that, for each rectangle, the ordering of the rectangles
adjacent to it is fixed. Therefore the only possible transformations are transla-
tion and scaling.

49



| a e

b ble n={(e.c).(c.d)}
i A v={(a.b).(b.d).(b.e).(a.c)}
. d |e| e d | e -

Figure 4.3: Unrealizable because of overlap (v and n).

b d c e

’ d ; e
(a) (b)

Figure 4.4: (a) n=0; (b) v=20.

Observations:

1. x cannot be adjacent to y/ because of a combined-anti-transitivity formed
by v and .

2. x cannot be adjacent to y because of Proposition 6.2.4.

3. x cannot be adjacent to z because it would have to cut across or reach
around b.

4. x cannot be adjacent to c because it would have to reach around 5.

5. x can be adjacent to 2.

4.3 Big example

I now show a slightly larger example, variants of which are used in several spots
later in this work. The specification is as follows:

R = {ab.c.d.e.f.g.hijklmno.p.q.rs.t}.
v = {(a.c).(a.d).(a.e).(a.[).(b.t).(c.g).(d.h).(e.i).(f.i).(g.k).(h.k).
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4 y z| z
| S I 1= {(c.b),(b.a).(c.2).(y.a).(x.a)}
a b,o' [ V= {(y-x)~_(if_)_}
- ' Ordering is fixed.

Figure 4.5: Another non-realizable example.
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Figure 4.6: Big example.

(£.)).(j.D)-(k.m).(k.n).({.n).(I.0).(I. p).(m.1).(n.q).(q.5).(r.5)}.
n = {(b.a).(b.f).(b,p).(b,s),(I.k).(p.r)}.

It is realizable as shown in Figure 4.6. I show this example to make the point
that it is indeed very difficult to determine abstractly whether rectangles can or
cannot be adjacent to each other. For instance, none of the properties derived
so far indicates that (0,m) € n would cause the specification to be unrealizable
even with g and s absent, that is, without the cage formed by b.s.q9.n.1. p.
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CHAPTER 5

LIMITED PROBLEMS

We have seen in the previous chapters that there are many difficulties asso-
ciated with the original problem that cannot be dealt with easily. One reason
is the infinite number of possibilities for the sizes and placement of positions
when real values are used. In this chapter I discuss a few variants of the orig-
inal problem. I am going to reduce the problem by placing certain restrictions.
Instead of working with rectangles that have sizes and positions in real num-
bers, I consider rational and also integer sizes and positions.

5.1 Unit squares

We begin by considering a simplification of picture specifications by restricting
the rectangles to have unit dimensions.
DEFINITION 5.1.1 A unit square is a rectangle with unit dimensions,

def
Sws = Recton

= {(xy)eR*:xg—1h<x<xp+Yayo— A<y <yo+ o}
Let S denote the set of all unit squares. That is,

S qif{.S’_t_y :x.y€R}

Further, the range of positions that the squares can be placed is also going
to be limited. The following enforces a “unit grid” on which to place the squares.

DEFINITION 5.1.2 A unit Z-square is a unit square with integer-valued posi-
tions. That is,
7 def ..
S:{'_,-=Si_j. i.jeZ
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Let S~ denote the set of all unit Z-squares. That is,
8; T {sE :ije L}

The layout of unit Z-squares is not ambiguous because, for any pair of adja-
cent squares, there can only be exactly one relative position to arrange them.

REMARK 5.1.3 Suppose S¢ and S are two unit Z-squares in a picture. If
(SE.5%) € vU ! then X.(S%) = X.(SE). I (S%.5%) € AUA™" then Y.(SZ) = Y,(55).

Without ambiguity in the placement of unit Z-squares, it should be possible
to decide the realizability of a specification. This can be done by attempting to
construct the realization.

PROPOSITION 5.1.4 The S;z-realizability of a finite specification S is decidable,
and, if there is a realization, one can produce it algorithmically.

Proof: I shall prove this by describing an algorithm for constructing a realiza-
tion. The aim is to place all the squares down on a unit grid. Since these squares
are constrained, they can only be placed exactly onto a grid position. Once a grid
position is occupied, no other square can be placed on it.

Let us place the first square s;. The grid is initially empty, so we can place it
arbitrarily. Although there is an infinite number of positions to place the first
square, the choice has no consequence in the proof.

Now we place the next square s,. We choose one that is adjacent to s;, in
other words (s,.51) € vUv~'Unun~L. Since (s;.5;) occurs in exactly one of v,
v™1, n, n!, Proposition 5.1.3 states that there can only be one exact position
to place s,. The grid positions surrounding the first one are empty so far, and
therefore the second square can be placed.

Now we want to place another square s. We need to choose one that is ad-
jacent to a square that is already on the grid. We can always find one since all
the squares are connected. If the grid position is empty, then we can place it. If
the grid position is occupied, then we stop.

We continue in this fashion until

1. we have placed all the squares; or

53



2. we have encountered a situation where overlapping of squares occurs.

If we have placed all the squares, then we clearly have produced a realiza-
tion and therefore proved that the arrangement is realizable. Otherwise we can
conclude that the arrangement is unrealizable. a

The above is easily proven because there are essentially no choices to be
made in the layout of unit Z-squares. The realizations are all similar, differing
only in the absolute positions of the entire picture in the plane.

5.2 Integer rectangles

Let us relax the conditions slightly and examine a situation where there are
more decisions to be made. Consider the layout of a set of rectangles instead of
unit squares. These rectangles have integer dimensions, and can only be placed
at integer-valued positions in the plane. We define such rectangles in the follow-
ing.

DEFINITION 5.2.1 A Z-rectangleis a rectangle ZRect~: = Rect s such that w,h,x,
y€Z,w.h>0. Let Ry = {ZRectZ : w.h.x.y € Z.w.h > 0} be the set of all Z-rectan-
Sles.

We would like to consider the decidability of Rz-realizability for specifica-
tions. Unlike unit Z-squares that have only one size, the set of possible sizes of
the Z-rectangles is infinite. In order to bound the search space to be finite, an
upper bound is imposed on the size for the Z-rectangles. I will prove that the
realizability of such a layout is decidable in the following.

PROPOSITION 5.2.2 Suppose one has a finite specification S = (R.v.n). We im-
pose a size limit [ € Z* on every rectangle symbol r; € R such that for any arrange-
ment o, if ¥; = a(r;) = Rect’}, one has w; <l and h; < l. Then the Rz-realizability
of S is decidable and, if there is a realization, one can produce it algorithmically.

Proof: I shall prove the proposition by describing an algorithm for constructing
a realization.

Since we are dealing with an infinite plane to place the rectangles, the num-
ber of realizations for every specification is clearly infinite. However in the proof
of decidability, one needs not distinguish layouts that differ only in the absolute
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positions of the entire picture in the infinite plane. This corresponds to the se-
lection of the absolute position of the first rectangle to be positioned. The choice
of this initial position has no consequence in the proof.

We know that the sizes as well as the placement positions of every rectan-
gle are integers. Together with the size limit imposed on rectangles, one knows
that there can only be a finite number of layouts to be considered. For example,
suppose one has (a.b) € n and the limit on size set at 2 units. Then @ and 4 can
have sizes {1 x 1,2x1.1x2.2x2}. For the cases when both 4 and 5 have height 2
units, there are exactly three possible relative positions between ¢ and 5. They
are shown in Figure 5.1.

Figure 5.1: Relative placement positions for two touching rectangles of height
2 on a unit grid.

In general, if the size limit is / units, then each rectangle can have one of
> shapes. For each pair of adjacent rectangles, if m and n are the lengths of
their touching sides, there are exactly m + n — 1 possible placement positions.
Therefore the upper bound on the number of cases to be considered is

IR x (jv] + -1

Although the total number of cases could be large it is, nevertheless, finite.
All layout possibilities can be enumerated and we attempt to construct a real-
ization for each case. In each construction, no further decisions are required.
The construction algorithm is analogous to the one used in the proof of the pre-
vious proposition. It places the rectangles on the unit grid one after the other
as specified. If all the rectangles can be placed without overlapping, then one
has a realization.

If one is successful in constructing one realization, then the arrangement is
realizable, otherwise it is not realizable. a
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The previous proof enumerates all possible arrangements and attempts to
construct them. The construction technique can also be used to determine the
“spread” of the picture. We refer to the extents of a realization as the width
and height of a smallest bounding rectangle that contains the realization. The
following gives an upper bound to the extents of any realization.

COROLLARY 5.2.3 Suppose one has a finite specification S = (R.v.n). We impose
a size bound | € Z* on every rectangle symbol r € R such that for any arrange-
ment a, if ¥ = o(r) = Rect’}, one has w <! and h < [. Then one can compute the
maximum vertical and horizontal extents of yw = a(R) for any o.

Proof: We begin by arbitrarily selecting a starting rectangle r; € R. Let us take
the bottom left corner of r, (X}(rl ). Yp(ry )) , as the point of reference. Let ¥y,
Yinins Xmax, and Xy, represent the extremes that can be reached by rectangles in
the North, South, East and West directions respectively. The precise placement
position for the next rectangle is not known, but one knows the range of possi-
ble positions. The horizontal range of the current rectangle is represented by
(Xmin-Xmax) and its vertical range is represented by (ymin.Vmax). This means that
for the current rectangle r, [ x xpin < Xj(r) < X (r) <1 x Xmax and I x ypin < Y3(r) <
Y(r) <1 X ymax. In the beginning, set

Xmax = Ymax =Xmax =Ymax =1 and  Xyin = Ynin = Xmin = Ymin = 0-

We traverse the specification starting from r, .For every step taken from r; to
r;, where (r..r;) € vuv='unun~!, one performs the following:

1. Compute the range of positions for the next rectangle: for each of

Y=(xmins)’minsxmaxv.}’nmx)s Y=Y+AY’

where
(=1.1.1,1) if(rj.r,-)ev
) ) _ (-1.—-1.1.-1) if(rj.r,-)EV“‘
(Axmm~A)"nun-Axmax-A.Vmax) - (1‘_1, 1? 1) if(rj.ri) e rl

(=l.=1.—=1.1) if(r.r;) €n

2. Update the extents if necessary:

If ymax > Ymax then ¥max = Vmax
If ymin < Ymin then Yo = ymin
If xmax > Xmax then Xnax = Xmax
If xmin < Xmin then X = Xmin
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I will explain one case in step 1 to show how the A’s are determined. Consider
the case when (r;.r;) € v. It is clear the vertical range is shifted upwards by the
height of one rectangle. The horizontal range of positions for r; relative to r;
is shown in Figure 5.2. It increases the maximum horizontal range by almost
the width of one rectangle and decreases the minimum horizontal range by the
same amount. Therefore one has (Axpiy . AVmin, AXmax: AVmax) = (—1. 1. 1. 1).

e on

Figure 5.2: Range of possible positions for (r;.r;) € v.

After the entire specification is traversed, Ymax, Ymin, Xmax, and X, store the
extreme positions that can be reached by all the rectangles. Each rectangle is
limited to size / x /, therefore the maximum horizontal extent is / x (Xmax — Xmin)
and the maximum vertical extent is / x (Ynax — Ymin)- a

The converse of the previous corollary is also true. That is to say, given the
size of an area, one can compute the maximum size limits for the Z-rectangles
such that any realization would be able to fit into it.

COROLLARY 5.2.4 Suppose one has a finite specification S = (R.v.n) that is R--
realizable. Given an area of w x h square units, one can determine the maximum
size limit | € Z' to be imposed on the Z-rectangles such that it is always possible
to display any Rz-realization of S in the said area.

Proof: Corollary 5.2.3 states that given a specification, the maximum extents of
all Rz-realizations can be computed. The maximum horizontal extent is given
as / X (Xmax ~ Xmiy) and the maximum vertical extent is given as / x (¥max ~ Ymin)-
By setting the extents to be the maximum area available to display the realiza-
tions, one gets

w =1} X (Xmax —Xmin) = {j = w/(Xmax — Xnin)

and
h =1 x (Ymax ~ Ymin) = I» = h/(Ymax — Ymin)



- X

Then the required maximum size Yimit is / = min(/;.5). a

5.3 Rational rectangles

Now we are going to move away from integer coordinates to rational coordi-
nates. We consider rectangles that have rational dimensions and positions.

DEFINITION 5.3.1 A Q-rectangleisa rectangle QRect 3 = Rect?i such that w,h,x,
v€Q. Let Ry = {QRect i : w.h.x.y € Q} denote the set of all Q-rectangles.

PROPOSITION 5.3.2 A finite specification § = (R.v.n) is Rg-realizable if and
only if it is R--realizable.

Proof: If .S is R--realizable, then there exists an arrangement a such that a(R) C
R-. But Rz C Rg, therefore S is Ry-realizable.

The next step establishes that if a specification has a Rg-realization then
it also has a R-realization. To do that, one computes a common denominator
for all the rational numbers used in all the Q-rectangles in the R-realization.
Then the entire R-realization is scaled up by this common denominator. The
resulting realization would therefore contain only integer values.

For a Rg-realization vy, d € Z* is a common denominator of y if for all r =
Rect:; € y, there exist integers i|.i.i3.iy such that w=1i,/d, h =i /d, x = i3/d,
and y = ig/d.

We need to show that a common denominator exists for all Rg-realizations.
The following shows how one can be computed.

Let w = {r; = Rect:s;} be a Ry-realization. Then Vi [w;.h;.x;.y; € Q]. Every
rational number is represented by a fraction, say

w; = Ny/Dy
h; = Np/Dp
x; = Nz/Dj
Yi = Nu/Dy

for some N;;.D;; € Z. Then a common denominator of v can be computed by

d= 135_1( D; ;)
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where lem() is the function computing the least common multiple.

Let y be a realization of § where every rectangle is a Q-rectangle. Let 4 be
a common denominator for y. A new picture y’ is constructed by scaling every
Q-rectangle by 4. That is to say, for every Q-rectangle r = Rect; € y, a new rect-
angle ¥ = Rect> is obtained, where:

w = dxw
A = dxh
X = dxx
y = dxy

By the definition of the common denominator, one knows that w.4'.Y.y € Z.
Since the same proportional scaling is applied to all rectangles, the geometric
compass relations remain unchanged, that is to say v, = ¥, and fj+ = fjy,. Then
v is a realization of § where every rectangle is a Z-rectangle. Hence §$ is R--
realizable. a

5.4 Real rectangles

In this section, we will try to associate the restricted cases with the original
problem. We want to establish the relationship between realizability and R~-
realizability.

PROPOSITION 5.4.1 A finite specification S = (R.v.n) is realizable if and only if
it is Rp-realizable.

Proof: If § is Rg-realizable, then there exists an arrangement a such that a(R) C
Ry. But Ry C Rect, therefore S is realizable.

To show the converse, one must provide a way of constructing a Rg-realiza-
tion given a realization. In any realization, there is only a finite set of real num-
bers used to locate the corners of all the rectangles. These corners can be shifted
slightly to a position that involves only rational numbers. Then the new picture
is a Rp-realization.

Let y be a realization of S. For all rectangles r; € y we collect the real values
representing the coordinates of the corners of r;, namely Xj(r;), X,(r;), Y3(r:), and
Yi(r;). These numbers are sorted in ascending order. Let the sorted sequence
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be p;.p3.-...pn. For every pair of real numbers (p;_;.p;) in the sequence, one
can find a rational number ¢;_; such that p;_; < ¢;-; < p;- One can also find a
rational number g, > p,. We construct the corresponding sequence of rational
numbers g;.4>..-..qx.

A new picture ' is constructed by “shifting” all real values p; to the rational
values g;. For the coordinates of the corners of every rectangle, real value p;
is replaced with the corresponding rational value g;. The geometric compass
relations remain unchanged, that is, v, = v, and 1j,+ = fjy; moreover rectangles
in ' do not overlap. Thus y is a realization of § where every rectangle is a Q-
rectangle. Hence S is Ry-realizable. o

Propositions 5.3.2 and 5.4.1 can be summarized by the following corollary.

COROLLARY 5.4.2 A finite specification S is realizable if and only if it is R--
realizable.
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CHAPTER 6

AUGMENTED PROBLEMS

In Chapter 3, we have seen that specifications involving only v and n may have
many possible realizations. The large number of cases causes difficulties when
we are trying to establish properties of the specifications.

In this chapter, additional ordering relations for the rectangles are explored.
These ordering relations are first introduced on the realizations. Then an ab-
stract equivalent of such relations is extracted for the specifications.

6.1 Clockwise ordering

Figure 3.3 shows two pictures with the same v = {(a.b).(a.c}} and §4 = 0. By
looking only at the geometric compass relations, one is unable to distinguish
them. An ordering of rectangles b and ¢ with respect to a is required.

An obvious way to order them is to use the spatial relationships between the
centres of the rectangles. In our example, we construct directed edges from « to
b and from a to c. The orientation of the edges is used to order 4 and c.

DEFINITION 6.1.1 (8) For two adjacent rectangles ry and ry, 6, ,, is defined as
the anti-clockwise angle from a horizontal edge directed to the East and the edge
¢ics, where ¢y =C(ry) and ¢y =C(r»).

The intention is to use 0 to order rectangles, but there is a problem. Fig-
ure 6.1 shows two possible pictures with v = {(a,b).(a.c)} and i = 0. In case (a),
one has 6,. > 0,,. But in case (b), one has 0,. < 0,;. The ordering is reversed by
“stretching” a. This is undesirable as we want to consider the ordering of » and
¢ to be the same for both cases.

The ordering technique is improved by using a point on the the edge of in-
tersection instead of the centres. The midpoint on the edge of intersection is

61



(~]
)
a;
)
I

(a) (b)

Figure 6.1: Problem with using centres of rectangles: (a) 8. > 0,5 (b) 8, < 0.

used.

DEFINITION 6.1.2 (68') For two adjacent rectangles r| and r», 0} ., is defined as
the anti-clockwise angle from a horizontal edge directed to the East and the edge

cym, where ¢y =C(r))and m = M(ry.r).

ce:

be

Figure 6.2: Adding the centres of common edge segments.

62



Now ¢’ is used to define a relation % in an attempt to order adjacent rectan-
gles.

DEFINITION 6.1.3 Tisa binary relation on rectangles such that (r>.r3) € T if
1. There exists ry € R such that (ry.ry).(r3.ry) € vor (ry.r).(ri.r;) € v; and
2. er[rz > 9!‘[”3'

Let us derive t for an example. Consider the example given in Figure 6.3.
If we consider the ordering of the rectangles sy, s,, and s; with respect to r|, we

would obtain
(53.52).(52.51) €T

However, if we consider the ordering with respect to r», we would obtain
(51.82).(52.53) € T.

This is again undesirable, as the ordering of the s;’s are different depending on
the reference rectangles.

8| |82 |Ss

Figure 6.3: The ordering of the s;’s are different depending on which of the ref-
erence rectangles r; and r, is used.

The motivation for using an ordering based on directions is to attempt to
obtain one additional ordering relation t to order the rectangles for both v and
. However it is shown that this method is unsuccessful because % does not give
an ordering that is globally consistent, that is, antisymmetric.

6.2 Geometric order relations o; and o;

In our next attempt to order rectangles, I introduce a pair of relations, one for
each of the geometric compass relations v and 1.

DEFINITION 6.2.1 (GEOMETRIC ORDER RELATIONS) Let vy be a picture. I de-
fine the binary relations vy, and oy, on the set of rectangles in y as follows. Let
r1 and r, be rectangles in .



1. One has (ri.r;) € oy, if X(r1) > X(r:) and there exists a rectangle r; in y
such that (r.r3).(ry.r3) €Yy or (r3.r1).(r3.r) € Vy.

2. One has (r1.r) € o5, if Yo(r1) > Y.(r,) and there exists a rectangle r; in y
such that (rlvr3)7(r27r3) € ﬁ‘{l or (r;,rl),(r3,r2) € ﬁ\!"

I call o5, and oy, the geometric order relations.

Note on symmetry

There is a symmetry regarding v and n. Properties of v and 1 are identical, with
the appropriate mirroring and/or rotation. The same symmetry extends to o
and w,. In the sequel, we will exploit this symmetry to simplify the discussion
by avoiding the unnecessary duplication of arguments for v and n, and for o,
and oy. Therefore all propositions that are stated may be specific to one orien-
tation, but are also true for other orientations, with the appropriate substitu-
tions.

PROPOSITION 6.2.2 o; and o; have the following properties:
1. There are no wy-cycles and no ws-cycles;
2. w; and w; are not transitive in general;
3. oy, 07, oy, and o7 are pairwise disjoint.

Proof:

1. (No cycles) Let us assume, on the contrary, that there is a wj-cycle such
that (rq.r1).(r1.72)-..-. (Fp—1:7n) € ®g, o = rn, for some n > 1. Then by defini-

tion one has X.(rg) > Xc(r1) > --- > Xo(rn) = Xc(rg), which is a contradiction.

2. (Non-transitivity) Consider the counter-example shown in Figure 6.4. In
the layout, one has (r;.r|), (r;3.r2) € @y. But (r;.r) € o because it does not
satisfy part 1 of the definition of w;.

3. (Disjointness) o; N@;' = @3 N3 = @ has been shown above by the fact
that there are no w;-cycles and no wj-cycles. Let us consider the case for
énNy, for

(7!

(8.7) = {(ws.@7). (0. 0F ; .mﬁ).(m;l_mgl)}.
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Let (r;.r) €8Ny. If(r[.l’g) € é then Y(r) = Yi(ry) or Yy(r1) = Yp(r). Hence
(Yp(ry). Ye(r )N (Yp(r2). Fi(ra)) #0. I (ry.ra) €y then Xi(r) ) = X(ra)or Xo(r ) =
X.(ry). Hence ((X;(r; ). X{r1))N(Xi(r1).X:{r7)) # 0. Thus, r, overlapsr,. Over-
laps are not allowed, therefore Ny =49.

":*. r‘ rs

Figure 6.4: Counter-example for non-transitivity of ws;.

PROPOSITION 6.2.3 If (r|.r;) € oy then Xi(ry) > X.(r,).

Proof: Assume that one has (r;,r;) € ;. By definition the rectangles | and r»
have a common top or bottom boundary, that is, ¥(r;) = Yi(ry) or Yy(r;) = Yy(r).
They are not allowed to be degenerate, therefore their vertical extents overlap,

(},b(r[ )-,Yt("l))n(Yb("z)?x(rz)) #0'
Since rectangles in a picture do not overlap, one has
(Xi(r)-Xe(r )N (Xi(r2). X)) = 0.

Since X:(r;) > X:(r2) and Xj(r) < X(r) < X-(r) for any rectangle r, we must have
Xi(r1) 2 Xe(r2). O

PROPOSITION 6.2.4 If (a.b).(b.c) € o then (a.c) ¢ vuv-'uquf~L

Proof: b is “in between” a and c¢. For a and ¢ to be adjacent, b6 would have to be
degenerate, which is not allowed.
If (a.b).(b.c) € oy, then Xj(a) > X(b) > X;(b) > X(c). This means that

(Xi(a).X(@)) 0 (Xi(e). Xolc)) =0
and therefore (a.c) ¢ vUv-lUfjuf~L. o

LEMMA 6.2.5 If (ri.r;) € o} then X(r) > Xo(r2) and Xj(ry) > Xi(r2).
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Proof: If (r,.r:) € o, then there are s;..... sp such at (r;.s;).(s1.52)..... (Sn-r2) €
@y. Thus Xo(r1) > Xe(s1) > Xel(s2) > ... > Xesn) > Xe(ra) and Xy(ry) > Xo(s1) > Xi(s1) >
X(52) > -+ 2 Xo(sn) > Xi(sn) 2 Xe(r2).

D

PROPOSITION 6.2.6 o} and m,.*" have the following properties:
1. There are not of -cycles and no o} -cycles;
2. of and mj-‘” are transitive;

Proof:

1. (No cycles) Let us assume, on the contrary, that there is a o} -cycle such
that (rg.r1).(ry.r2).....(ra=1.ms) € @F, rg = ry, for some » > 1. Then, from
Lemma 6.2.5, one has X.(rg) > Xo(ry) > --- > X(rn) = Xc(ry), which yields a
contradiction.

2. (Transitivity) o} is transitive by definition.

a

I believe that in addition to the properties listed in Proposition 6.2.6, the re-
lations o} and o} are disjoint, but I do not have a complete formal proof at this

point.
6.3 Abstract order relations o, and o,

Now we need to extend the specification to include the o orderings. I define a
new form of specification called o-specification.

DEFINITION 6.3.1 (o-SPECIFICATION) An w-specification is given by

5(1) déf(R' vy rlv (\)v. (Dq)

where v.1,@y.0q € R x R. I call o, and oy the abstract order relations.

DEFINITION 6.3.2 (REALIZABILITY WITH ®) Consider an w-specification S, =
(R.v.n,ov.0,) and an arrangement a. Let y = a(R). a is acceptable (or a real-
ization) if vy =V, fy =1, w3, = Oy, and ©F, = On.

PROPOSITION 6.3.3 Suppose an w-specification S, = (R.v.n.0y.®y) is realiza-
ble, then



1. oy and o have the following properties:

(@) There are no o.-cycles and no wq-cycles;

(b) o, and oy are not transitive;

(c) wy, 07!, oy, and o' are pairwise disjoint.

(d) For B = {v.n}, if (rn,r) € wg then there is a r; € R such that
(ri.r3)-(r2.r3) €Bor(rs.r1).(r3.r2) €B.

2. of and o have the following properties:

(a) There are no w}-cycles and no w}-cycles;

(b) o} and o} are not transitive;
Proof: Let v = a(R) be a realization. Then (vy. fiy. @5, .05,) = (V.N.0y.0q).

1. Proposition 6.2.1 states that for any picture v, oy, and w5, have the prop-
erties 1(a) to 1(c). 1(d) is an immediate consequence of Definition 6.2.1.

2. Proposition 6.2.6 states that for any picture v, m‘-fw and (o,-“\“v have the prop-
erties 2(a) and 2(b).

EXAMPLE 6.3.4 Consider the specification
S={{ri.....rs}. {(ri.ra).(ry.r3).(ry.r), (ra.r5).(ra.rs)}.0}.

Without additional ordering, we have several possible realizations classes, shown
in Figure 6.5(a-f). If we add to the specification w, = {(r3.r3).(r4.r3).(ry.r2)}, there
is only a unique realization class, the one shown in Figure 6.5(a).

Now we need to extend the definitions of symmetry images so that they in-
clude w-specifications.

DEFINITION 6.3.5 (SYMMETRY IMAGES OF AN ®-SPECIFICATION) The sym-
metry images of an w-specification S, = (R.v.n, ®.0) and their names are
given by:
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Figure 6.5: Realizations with or without o, of Example 6.3.4.

150 = (R.v.n.0v.0q)

o = (Rv.n Loyl o)
150 = (R.v’l.n,mv,(oql)
o = Rvinlerl o)
S0 = (Rn,v.0q.0y)

6w = (R.n,v"[.m{{l,mv)
150 = (R,n"[,v.con,m;')
Sw = (R-n—lev—lwm;lem;l)

One verifies that Proposition 2.3.10 can be extended to -specifications using
Se instead of ;S.

6.3.1 o does not restrict the problem

In the previous example, @, was considered as an addition to the specification.
However, since R is finite, there can only be a finite number of different ©», and
oy for a particular specification. So for any specification, all possible o, and oy
can be enumerated to obtain w-specifications. Another possibility is to begin
with subsets of the ordering relations, possibly provided as additional informa-
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tion together with the abstract compass relations. Then the remaining order-
ings can be automatically enumerated and tested.

Not all w-specifications will be realizable. But the important point to note
is that if one such w-specification is realizable, then we can say that the same
specification defined without o is realizable.

OBSERVATION 6.3.6 A specification S =(R,v.n) is realizable if and only if there
are ov, ®y such that the w-specification S, = (R.v.n.®y.0y) is realizable.

COROLLARY 6.3.7 Realizability is decidable for specification S if and only if it
is decidable for an w-specification S,.

6.3.2 Using o

In this section we explore some basic properties of o, and ,. This is intended
to set the stage for the more sophisticated cases studied in Section 6.7 and to
show some typical proofs.

PROPOSITION 6.3.8 Consider 4 rectangle symbols a.f.y,. and v, in a realiz-
able w-specification S, = (R.v.n.0v.®y). Suppose one has (a.v;).(a.v2) € vand
(Y2-71) €ov. If (B.a) enUOF or (B.v2) € nU} then (B.y;) € vuv~'unun~l. This
is also true for the symmetry images 15« to 35w of Se-

« B x
Y: Y, Y Y, 8
(a) (b)

Figure 6.6: Roadblock.

Proof: The situation for this proposition is shown in Figure 6.6. As the spec-
ification is realizable, there exists an arrangement a such that y = a(S$,) and
(V.N.0v.0n) = * . Tly. O, .05, ). Lemma 6.2.5 is used to provide the geometric
properties of the rectangles in this proof.
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Consider (B.a) e nUa}. Itis known that nUef = ﬁq,Uco\-*,"v, soone has X,(a) <
X)(B). Since (a.y2) € vUV™! =¥, UV, !, one has Xj(y2) < X{(a). (Y2.71) € Ov = @5,
thus X(v1) < Xi(v2) < X(a) < X(B)-

Now consider (B.y;) € nU?. It is known that (B.y>) e nUo! =1y Uco‘.fw, SO
one has X(v2) < Xi(B). (v2.71) € ov = 0y, thus Xi(v1) < Xi(v2) < X{v2) < X(B).

I have shown in both cases that X,(v;) < X;(B), and by Proposition 3.1.2, one
has (B.y1) € VUV URUA! = vuv lunun~l. The proofs for »S5, to 35, are
obtained by symmetry. a

Now we look at another “road block” situation, shown in Figure 6.7. vy, acts
as a road block to prevent y, to be adjacent to  or 6.

LG 128
[ 4 o
Yl (% v.| |n
(a) (b)

Figure 6.7: Roadblock.

PROPOSITION 6.3.9 Consider 5 rectangles a.p.8.v,, and y; in a realizable o-
specification. Suppose one has (a.y).(a.v2) € v. (B.a) € vU . (8.B) e nU ],
and (Y2.71) € o, then (v1,B).(11,8) € vuv-tunun~l. This is also true for the
symmetry images >5q to 35S, of So-

Proof: As the specification is realizable, there exists an arrangement a such that
v = o(Sw) and (v.n.@v.0q) = (Vy, y. 0,05, ). Again, Lemma 6.2.5 is used to
provide the geometric properties of the rectangles in this proof.
(B.a) evUo} = V“,Uma, thus
Yi(a) < Yy(B).
(6.B) enUe =ﬁ‘,,Ua)\3,;, thus

X-(B) < Xi(3).

(a.Y2) € v =V, thus
Xi(r2) < X{a).
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(a.y1) € v =Vy, thus
Yi(11) = Yp(a) < Ye(a) < Ya(B)-

Since Y(y:) < Y3(B), by Proposition 3.1.2,
(11.B) g vuvTtuRUAT =vuvTlununh

Now [ show the same for 8. There are two cases, either X,(a) < Xj(8)or X, (o) >
Xi(9).

1. Assume X,(a) < X;(8).
It is known that (v:.v1) € @y = @, thus

X-(71) SXi(y2) < X{a) < X(3).

2. Now assume X (a) > X;(8). Again I separate into two cases, (B.a) € v or
(B-a) € @

(a) Consider (B.a) € v.
It is known that (B.a) € v = ¥, so one has

Xi(a) < X:(B) < Xi(8).

Thus,
(Xi(a). X (a)N(X;(3). X(8)) # 0.

Rectangles in a picture do not overlap, therefore by Definition 2.2.5

one has
(Yp(a), V()N (Yp(5). i(3)) = 0.

This means that

Yp(8) 2 Yi(@) > ¥y(a) = Yi(y1)-

(b) Consider (B.a) € o} .
It is known that (B.a) € o} = mgv, therefore

Yp(B) 2 Yi(a) > Yy(a) = Filyy ).



AL

In all cases, I have shown that either the vertical extents or the horizontal ex-
tents of a and y; do not intersect. Therefore by Proposition 3.1.2, (a.y;) € vU
vlufui~t =vuvlunun~l. The proofs for 15, to g5, are obtained by sym-
metry. a

I have exhibited two simple “road block” conditions. Many more such cases
exist. This is explored in later in this chapter.

6.4 Equivalence of arrangements

With the introduction of the relations ®, and wy, it is now possible to state the
conditions for the equivalence of arrangements.

DEFINITION 6.4.1 (EQUIVALENCE OF ARRANGEMENTS) Let S = (R.v.n) be a
realizable specification and o and o' be two arrangements such that vy = o(R)
and ¢’ = d/(R). a and o' are equivalent if

(‘7\|I~,ﬁ\(h(o\-lv1(oﬁv) = (‘.’q}" ﬁ\y’?m\.rw,-mﬁvl)

I would like to examine the geometric consequences of the equivalence of the
arrangements. The intuition is that the pictures that result from equivalent
arrangements are “similar” to each other.

The examples suggest that, if pictures y and y’ are equivalent, then y' canbe
obtained from vy by a finite sequence of basic steps, each involving some scaling
of rectangles and some translations. At this points, I don’t see how to cast this
intuition into a formal framework that would permit a formal proof.

6.5 Left and right sides of a closed path

Recall that in Section 3.4 we had difficulties with the concepts of inside and out-
side of a closed path. The w-relations will enable us to define the opposite sides
of a closed path. While this will not allow us to define inside and outside we
can, nevertheless, use the notions of “opposite sides” as, in no realizable speci-
fication, can a rectangle be on both sides of a closed path.

When we traverse a closed path 2, we can partition the set of all rectangles
that are adjacent to the rectangles in ? into two classes: those to the left and
those to the right of the path. Let us denote the classes as £; and R, respec-
tively.
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To begin, we restrict our attention to specifications with n =0 to reduce the
number of possible cases. Consider an example where one has a closed path ? =
(rg.....a.b.c....rg), and (a.b),(c.b) € v. Then we have two possibilities, either
(a.c) € @y OF (c.a) € ay. If (a.c) € o, then for any rectangle r that is adjacent
to b:

reR, if(rnb)evand (rc).(a.r)€ay;

re L, otherwise.

In the former case we think of r being to the right of 2. In the latter, r would be
to the left. On the other hand, if (c,a) € o, then situation is reversed:

re L, if(rb)evand (rc).(a.r) € oy;
re R, otherwise.

This example is illustrated in Figure 6.8 in the entry labeled with the *. Rectan-
gles that are placed at the black squares are to the right, whereas those placed
at the white squares are to the left of the path. The complete figure illustrates
all the right and left partitions for all possible orientations among a. 5, and c.

; To c ;

| b i b

. Froma E c

L

1

! %k i

E a i R /= -

i : N’ .

i b ] !
\ = , !

" v 3 ‘

; i

| |

- o [

E SNV R

| b =

i g i

i o H

; g T/Th o

a a TOATIN

H |

i

Figure 6.8: Left-adjacent (c) and right-adjacent (w) sides of a path with v only.
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Now we are going to lift the restriction of n = @ and look at specifications
involving both v and 1. Consider a closed path # = (a.b.c....a). Again we start
with an example, this time looking at the case when (b.4) € vand (c.b) € . Then
for any rectangle r such that (r,5) e vuv-lunun=i:

r€ R, ifboth (b.r) € vand (r.a) € oy or both (r.5) € n and (c.r) € oy;

r € L; otherwise.

This example is illustrated in Figure 6.9 in the entry labeled with the *. As
before, rectangles that are placed at the black squares are to the right, whereas
those placed at the white squares are to the left of the path. I define the left
and right sides of a closed path formally in the next definition. Please refer to
Figure 6.9. The number on the lower right corner of each entry in the figure
corresponds to the part number used in the definition.

DEFINITION 6.5.1 [LEFT-ADJACENT AND RIGHT-ADJACENT SIDES OF A
CLOSED PATH] Suppose one has a closed path P = (rg.....a.b.c.....ry) in an
w-specification. I denote the left-adjacent and right-adjacent sides of ? as L,
and R;. Suppose one has a rectangle d such that (d.b) € vuv-tunun-.

1. The following applies for (a.B.8.y) = {(a.b.c.d).(b.a.d.c)}.

(a) Supposeone has (a.B) e vand (8.) e n. Ifboth (y.B) € vand{y.a) c o,
or both (y.B) € n and (1,8) € &y then d € L, otherwise d € R,
(b) Suppose one has (B.8) € vand (a,B) € n. Ifboth (B.y) € vand (1.5) € oy
or both (v.8) € n and (oY) € oy then d € L, otherwised € R;,
2. The following applies for («.p.8.y) = {(a,b.c.d).(b.a.d.c)}.
(a) Suppose one has (a.p) € vand (B,5) € n. Ifboth (v.B) € vand (a.y) € oy
or both (B.y) € n and (v.8) € wy then d € R, otherwise d € L.
(b) Suppose one has (B.8) e vand (B.a) en. Ifboth (B.y) € vand (8.y) € v
or both (B.y) € n and (oY) € vy then d € R, otherwised € L,
3. The following applies for (a,B.8) = {(v. L;. Rp)-(M-Rp. L) }.

(a) Suppose one has (a.b).(c.b) € au
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Figure 6.9: Defining the left-adjacent (c) and right-adjacent (w) of a closed path
P = (a.b.c....a) with both v and .



.. Suppose (a.c) € 0q. If (d.b) € a and (a.d).(d.c) € o then d € §,
otherwise d € p.

ii. Suppose (c.a) € 0. If (d.b) € a and (c.d).(d.a) € vy then d € B,
otherwise d € &.

(b) Suppose one has (b.a),(b.c) € o

i. Suppose (a.c) € wq. If (d.b) € a and (a.d).(d.c) € oy then d € B,
otherwise d € .

ii. Suppose (c.a) € wq. If (d.b) € a and (c.d).(d.a) € v then d € §,
otherwise d € B.

4. The following applies for (o.B.8.v) = {(v.n. Lp- Rp)- (M. V. Rp. L) }.

(a) Suppose one has (c.b),(b.a) € a. If (b.d) € B or both (d.b) € a) and
(c.d) € g or both (b.d) € a) and (a.d) € wq then d € 5, otherwise d € y.

(b) Suppose one has (a.b).(b.c) € . If (d.b) € B or both (d.b) € ) and
(d.a) € oq or both (d.b) € a) and (d.c) € wq then d € 5, otherwise d € v.

L; and K, contain rectangle symbols that are adjacent to a rectangle symbol
in #. By intuition, we know that we should also be able to classify rectangles
that are connected to a rectangle symbol in 2. I extend the left-adjacent and
right-adjacent definitions by the following.

DEFINITION 6.5.2 (LEFT AND RIGHT SIDES OF A CLOSED PATH) Supposeone
has a closed path ? in an o-specification. For ¢ € { Ly. Ry}, if x €, then for any
y such that there is a path Q = (x =q\.¢3.....qn =), n > 1 with q; ¢ P for all i,
one has y € ¢*. I call L}, and R} the left and right sides of the closed path .

I am trying to capture the geometric notion of the left and right sides of a
closed path by the above definitions using the abstract relations. It is known
that one side is the inside and the other side is the outside of the path. However,
one is unable to determine which is which. An analogy of this problem is when
one has a closed continuous curve on a sphere. One is able to distinguish the
points on either side of the curve, but the concept of inside and outside is not
clear. The analogy is not complete as the path formed by rectangles has discrete
steps. It does not have as much freedom of movement. But the consequence is
similar that one is unable to discern the inside and the outside.
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One of the reasons to pursue a definition of inside and outside is to enable
us to express the condition that rectangles that are inside a closed path cannot
be adjacent to rectangles that are outside. That condition can be replaced by
using the left and right sides of a closed path without any loss of generality.

In the following, we will show the soundness of £, R, £¥, and R”. First we
show that a rectangle symbol cannot be simultaneously left-adjacent and right-
adjacent to a closed path in a realizable w-specification.

PROPOSITION 6.5.3 For all closed paths ? in a realizable »-specification S, =
(R.v.N.0v. @), LpN R, =0.

Proof: Let us assume, on the contrary, that there exists a rectangle x such that
x€ Lyand x€ Ry Let P=(a.b,c,....d .V .c.....a).

Assume that x € &; is decided by the adjacency between x and b, and x € £,
is decided by the adjacency between x and &'.

It is clear that 4 # b’ because in all cases in the definition, it is not possible
to havex € £; and x € R, when b = 4.

Since there is a realization, one has a picture y = a(.5) for some arrange-
ment a. Let us look at one possible realization. Figure 6.10 shows a case when
rule 4(a) and rule 2(a) from Definition 6.5.1 are used to determine that x € %,
and x € L; respectively. The rules determine the direction of C; at 5 and 4'.

Consider the connection curves n(?) for 2 and =(P) for the path P = (b.x. ).
Since x ¢ P, n(®P) is not allowed to cross n(?) and it is impossible to find a re-
alization of P such that its connection curve does not intersect itself. This is
true for all cases of the rules used to determine x € ®; and x € £;. Since the
arrangement was supposed to be realizable, one has arrived at a contradiction.
Therefore the propesition is true. a

Now we show that a rectangle cannot be simultaneously to the left and to
the right side of a closed path.

THEOREM 6.5.4 Suppose an o-specification S, has a realizable arrangement o.
For all closed paths ? in S, LEnRE = 0. I call this the left-right property.

Proof: Let us assume, on the contrary, that there exists a rectangle x such that
x € L} and x € R{. This means that there exists a path Q = (g0-q1.....qm = x)
such that q¢ € £, and g; ¢ P foralli. Let pq € P such that (qo-pg) EvVUVTUnU
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Figure 6.10: Example of x being both to the left and to the right of a closed path.
It is not possible to realize the closed path without intersecting itself.



n~'. There also exists another path T = (1.1,.....t, = x) such that 1, € ®;, and
t;& P forall j. Let p, € ? such that (., p,) € vuv-lunun~l

LI

Figure 6.11: Example of x € L; N Rif. It is not possible to realize the closed path
without intersecting itself (only one out of four possible closed paths is shown).

Consider the connection curves n( ) for # and n(®) for the path

P = (Pg:90:q1:----Gm-1-X-tn_1,tp=2, - - --0)-

The rules used to decide g € £; and ¢, € K;, determine the direction of n(?) at
pq and p,. By definition x.q;.7; ¢ P, therefore n(?) is not allowed to cross n(P)
and it is impossible to find a realization of ? such that its connection curve does
not intersect itself. An example is shown in Figure 6.11.

This is true for all cases of the rules used to determine g € £;, and ¢ € &,;..
Since the arrangement was supposed to be realizable, we have arrived at a con-
tradiction. Therefore the theorem is true. m;

PROPOSITION 6.5.5 For any closed path ? in a realizable w-specification S, =
(R.v.n.0v.0q), P, £} and R} are disjoint, and R = PU L} U RS

Proof: N LE=REN # = 0 is obtained directly from the definition of £ and R}.
K5 N L}, =0 is proven in Proposition 6.5.4. Thus #, £} and K are disjoint.
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Now we want to show that R = U L UR}. Consider a rectangle symbol
a € R. Clearly if a € 2 then the proposition is true. Now consider a ¢ ?. It is
assumed that all specifications are connected, therefore a is connected to some
rectangle symbols in #. By Definition 6.5.2 and Theorem 6.5.4, we know that
either a € L} or a € X$. Thus the proposition is true. a

Thus I have shown that the abstract definition of £} and K captures the
intuition of the left and right sides of a path in the geometric domain.

COROLLARY 6.5.6 Let 5, = (R.v.n,0y.0y) be an o-specification. If there is a
closed path P in S, such that, for somercR. re L;-‘, NR then S, is not realizable.

In Corollary 6.5.6 we capture the “cage” problems that escaped us before in
Chapter 3. For example, in the cage situation of Figure 3.8 one has the closed
path ? = (a.b.e.g.f.d.a). The rectangle symbol c is to the right of ? and the
symbols 4, i, j, c are to the left. Thus, the symbol ¢ is both to the right and the
left of this path, hence the specification is unrealizable.

6.6 Local normalization

In this section, we present a technique called local normalization to replace a
rectangle in a picture by a group of new rectangles. This can be useful as a proof
technique in an induction proof, but it is not used further in this thesis.

We begin by defining the process of normalizing a rectangle symbol. We refer
to Figure 6.12 and Figure 6.13 for the following definition.

DEFINITION 6.6.1 (LOCAL NORMALIZATION) Consider an w-specification S, =
(R.v.N.0v.0y). A new @-specification S, = (R'.V, v, @}, @} ) is produced by replac-
ing a rectangle symbol x € R with a set of five new rectangle symbols xr,xg,xp,x;,Xc.
The subscripts of the replacement rectangle symbols represent top, bottom, right,
left and centre, respectively. Then

R'=RU {xr.xg.xr.x1.xc} \ {x}

V' is defined by

v' = vU{(xr.xc).(xc.xg)} U{(a.x7) | (a.x) € v}

U{(xr.b) | (b.x) € vi\{(a.x).(x.b) |a.b € R}
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n' is defined analogously using n instead of v.
Let

e.fER.e# f. with (e.x).(x.f) € oy
@, = oyU{ (e.xr).(xr,f) | and for some y € R
(nx)and (y.e)evor(y.f)ev
e.fER.e# f. with (e.x).(x.f) € oy
U 4 (e.xg).(xp.f) | and for some y € R

(x.y)and (e.y) evor (f.y)ev
\{(e.x).(x. ) [ (e.x).(x. /) € @y }.

The definition of ], is analogous using n instead of v.

Figure 6.12: Rectangle replacement.

We need to specify how paths are affected by the normalization. For a path
Pin S,, we define P to be the sequence of rectangle symbols obtained as follows:

1. IfP= (...,p;,x.pj....), then

( (""pif vaj?"') if(piex)-.(pjrx) €Y for (ﬁvY) €
{(x7.v), (x5, v"1). (xr.M). (.~ 1)}
(---.P:i-B.xC.d.pj,...) otherwise, where
7= B = Bo if (pi.Bo) € 1 for (Bo.11) €
{(x1, V). (x8.v™"),(xg. M), (xL.m~ 1)}
8=2380if (p;.80) €y for  (8.72) €
L {(xT'V)-,(vavhl)v(van)'(thn‘l)}

2. If P=(x,pj....), then
P = (xc.8,pj... ).

where 8 = 8 if (p;.80) € v3 for (8¢.13) € {(x7.v). (xg.v7!).(xg.n). (x,-n~1)}.
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3. If 7=(....pi.x), then
1,, = ('-~fpi?ﬂ?xc>

where B = BO if(Pi’ﬂO) €Y for (30'74) € {(xT-V)-(stV-[)~ (IR,‘]J.(.YL, n-[ )}‘

1-

Figure 6.13: Examples of path redirection in rectangle replacement.

PROPOSITION 6.6.2 P is a path; it is closed if and only if P is closed.

Proof: Those parts of 2 not involving x are the same in 2?’. The steps reaching
and leaving x are replaced by 4 steps via the new rectangles. Thus 7’ is a path.
This assumes that x is not the first or last element of the path. If it is then the
step leaving or reaching x, respectively, is replaced by two steps via the new
rectangle symbols. The rest is obvious. u]

PROPOSITION 6.6.3 If S, is realizable, then S|, obtained by replacing a rectan-
gle xin S, for local normalization, is also realizable.

Proof: We begin with a realizable w-specification 5,. If we look at the geometric
realization, the replacement pattern for x can always be fitted into the space
occupied by x by scaling the replacement pattern appropriately. All adjacent
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rectangles can also be attached correctly. To achieve this, imagine scaling x¢ to
be almost as large as x, leaving xz, x;. x7. x5 to be very thin/narrow rectangles. No
overlaps are introduced, therefore the conditions of a picture are still satisfied.
This resulting picture is a realization of 5. O

Next we want to show that local normalization does not affect the left and
right sides of a closed path.

PROPOSITION 6.6.4 Suppose one has an arrangement a of an w-specification
So = (R.v.n.®y,@y). Now we perform a local normalization on a rectangle sym-
bol x € R to obtain S, = (R'.V.n',e, o). For a closed path P in S, we denote
the corresponding closed path in S, by ?'. Then for all rectangle symbols v € R,
v # x, and all closed paths P in S,

yGLg,;‘»yeL;, and yeﬂ(;‘:\»yef{if,

Proof: The following proof applies for (£.L') = {(Lp. Ly ). (Rp- Rpr )} -
Please refer to Figure 6.14 for this proof. If y € {* then there exists a path Q =
(q0-q1-----qn =) in S such that gy € { and ¢; ¢ 2 for all ;.

1l.x¢g®
If x¢ ?, then # = P and x;,xg,x7.xg.xc € 7.

(a) Ifx¢ Q, then g € ¢’ and ¢; ¢ P for all ;. (since gy and 2 are unchanged)
Therefore y & (™.

(b) If x€ Q, then letting x =g;, j # 0, one has

QI: (qo’ql"'"'qj—l'-xhqj-é-l ----- qn)

or

for x.x2 € {xz.xr.x7,x3} as defined in the local normalization defini-
tion. Since x;.xg,xr.xz.xc € %, one has ¢} ¢ ¥ for all ¢} € Q'. Also
95 =40 €§ = qp €¢'. Therefore y € {*.

If x = qo then let x,; be the rectangle that replaced g, in the same posi-
tion, where x; € {x;.xg,xr.x5.xc}. Then g =x; € = g} € {'. Therefore
yel*
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2. xc P
Let ? = (pg. .. ---Pm = po)- If x = p;, one has

P = (PO P1--- - PI—1- X1, Dl - - - - Po) (6.1)

or
P = (Po,P1.---. PI_1.X1-XC. X2 Pl 1. - --- P0) 6.2)

for x;.x; € {x;.xg.xr.x3} as defined in the local normalization definition.

Since go € &, (g0.2g) € vUVTIUNUY~ for some 0 < g <m— L.

(a) If x # p, then g € &', since the same p, is used. Sincexe ? = x¢ Q,
Q' = Q. Since ¢; ¢ ¥ and g; # x for all ;, q; ¢ ?'. Therefore vy € (™.

(b) If x = p, then let x; be the replacement rectangle, where x; = {x;.xz.
xr.Xg.Xc}, such that (x;.q9) € vuv~lunun~L

i. 7 is defined as in equation 6.1.
This would mean that (p;_;.x).(pry1.%)-(pr—1-X1).(P131.x1) € 3 for
§={v.v-lnnl}
If (go.x) € 3 then x; = x; replacedxin ?'. go € § = qo € (. Therefore
yel®
If (go.x) ¢ 8, consider merging xc with x; so that xc is part of 7.
Then the orientation between ¢, and x is the same as between x,
and x.. Since gg € G, x, € £, and since g is adjacent to x,, g; € ¢*
for all i. Therefore y € (™.

ii. 2’ is defined as in equation 6.2.
If x, € ?’ the orientation between g, and x is the same as between
g0 and x,. Since gg € &, g9 € §', and therefore y € {*.
If x, ¢ P then the orientation between go and x is the same as be-
tween x; and xc. Since g € g, x, € {', and since g is adjacent to x,,
g; € ™ for all i. Therefore y c (.

6.7 Extended compass relations

We wish to extract as much information as we can from the geometric compass
relations. The geometric compass relations describe the relative orientation of
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touching rectangles. We are now going to explore the relative orientations of
rectangles that do not touch by introducing four relations ps, p5, ov, and o5 on
the geometric rectangles. Then we extract the abstract extended compass rela-

tions py, py, v, and oy
I introduce the relations py,, ps,, Ov,, and c;;, on the rectangles in a picture

v by

(a.b) € py, ifand onlyif Y(a)> K(b).
(a.b) € p3, ifandonlyif Xj(a)> X (b).
(a.b) € oy, ifand onlyif Yy(a)> Yi(b).
(a.b) e o5, ifand onlyif Xj(a)> X(b).

PROPOSITION 6.7.1 The properties of ps,, Ps,» Gv,, and oy, are:
1. There are no ps,-cycles, no p;,-cycles, no o -cycles, and oy, -cycles;
2. ps,s Py Ov, and oy, are transitive.

Proof:
I begin with the proof for o5,

1. (No cycles) Let us assume, on the contrary, that there is a o;,-cycle such

that
((rlﬁrZ)e(r?,v’?)?---~(rn-—l?rn)v(rn-rl)) € Gﬁv~

Then one has
Xi(r1) 2 X(r) > Xi(r2) 2 X (r3) > --- > Xi(ra) 2 Xo(ry) > Xi(n)-
a contradiction.

2. (Transitivity) Suppose (a.5),(b.c) € c5,. Then one has Xi(a) > X.(b) >
Xi(b) > X:(c). Hence (a.c) € p3,.

Now I show the proof for p;,. Since p;, C oy, there are no p;,-cycles. Sup-
pose (a.b).(b.c) € pj,. Then one has Xj(a) > X.(b) > Xi(b) > X:(c). Hence p;, is
transitive.

The proof for the other relations is obtained by symmetry. 0



6.7.1 The abstract relations p and ¢

We now want to define the abstract counterparts to the extended geometric com-
pass relations. In the following, I will define p,, and o,. As before, the defini-
tions of p, and o, and all the associated theorems and proofs can be obtained by
symmetry. To improve the presentation of the definition, I will first introduce a
set of conditions to be used in the definition.

DEFINITION 6.7.2 (BLOCKING CONDITIONS) Consider an w-specification S, =
(R.v.n. ®y, ®y) and two rectangle symbols 1.5 € R.

1. (1.8) satisfies the blocking 1 condition if there exist rectangle symbols
7.B.x € R such that
(@) (8.x).(B.x).(.B),(A.B) Evand
(b) (B.8).(A.y) € ov.

2. (A.3) satisfies the blocking 2 condition if there exist integers m and n, and
rectangle symbols y.B.x.¢.sy.-...Sm-t1-..--tn € R such that

(@) (¢.51)-(51,82)s- .. (Sm—1:5m)-(5m. 8).(8.81). (1-82). - - .. (tg— 1 tn). (£0-K).
(¢-v)-(v:B).(A.B).(B.8) € vand
(B) (B.ta).(A.Y)-(Y.51) € Ov-
3. (A.d) satisfies the blocking 3 condition if there exists rectangle symbols y.p €
R such that
(@) (A.8)¢n,
(®) (v.8).(B.8)€n,
(¢) (h.y) €V,
(d) (B.y) € ov.
(A.d) satisfies the blocking conditions if it satisfies one of the blocking conditions

above.

DEFINITION 6.7.3 Suppose one has an o-specification S, = (R.v.n.®,.0y) and
two rectangle symbols 1.5 € R. Let ¢ be a binary relation on R. (A.5) satisfies the
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Figure 6.16: Blocking 2.
B

) 4

Figure 6.17: Blocking 3.

extended transitivity condition with respect to ¢ if there exist rectangle symbols
B.v € R such that

1. (a,B).(v.8) €o;and

2. (v.p)evuvliueguoeyl

Figure 6.18: Extended transitive.

Now I will define p,, and oy, using the above conditions. p, and &, are defined
simultaneously.
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DEFINITION 6.7.4 (p AND o) For an w-specification S, = (R.v.n.0v.0y), pyand
on are defined as the smallest binary relations on R satisfying the following con-
ditions:

1. (ntue)\nCpenand ntuel Coy.

2. If (1.3) satisfies the blocking conditions for |5, or 35, then (1.8) € py and
(A.8) € oy

If (1.8) satisfies the blocking conditions for 15, or 15., then (1.8) € p;' and
(A.8) e oyl

3. If (A.8) satisfies the extended transitivity condition with respect to oy for
15w Or 350, then (1.8) € py and (A.8) € oy,

If (A.8) satisfies the extended transitivity condition with respect to oy for
250 O 45w, then (1.8) € p;! and (1.8) € o7,

4. pf C pqand ot Cop.
PROPOSITION 6.7.5 py and oy are well-defined and can be computed.

Proof: The definition is recursive with (1) and (2) as base cases and (3) and (4)
defining the recursion steps. o

PROPOSITION 6.7.6 If an w-specification S, is realizable then, for any realiza-
tion v, py C pj, and oy C o5,

Proof: Since S is realizable, there is an arrangement a such that y = a(5).
Therefore (v.n. oy, @q) = (Vy. Ny, 0y,.05,) for some o, and w;.

Pn € Pd, and oy C p5, is proven simultaneously. The definitions of p, and
on are recursive. I will prove the proposition by induction. Let (1.5) € p, and
(A'.8") € oy. It suffices to prove that X;(1) > X,(3) and X;(1') > X(&'). In the com-
putation of p, consider the step when (A.8) is first obtained and let p,, be the part
of p,, constructed up to but not including this step. &y, is also defined in the same
way. Four cases are distinguished according to the condition by which (A.8) and
(A'.8") are added.

1. Suppose (A.5) is added to p;, because (1.8) € (ntUwi)\n. If(A.8) ent\n
then there are B;..... B, r> 1, such that (A.B,).(B;.B>).---- (Br-1-Br).(Br.8) €
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n. Then Xy (A) =X:(B1) > Xi(B1) =X:(B2) > --- > X Br) = X»(3), hence X;(R) >
X:(3).

If(1.8) € o} then by Lemma 6.2.5 one has X;(1) > X;(5). But since (1.5) ¢n,
X;(A) # X,(3). Hence one has X;(A) > X;(3).

Suppose (1", 8') is added to o, because (1'.8") e n*Ua}. If(1'.8') €nt then

Then Xj(1') = X:(B1) > Xi(B1) = X{B2) > --- > Xi(B,) = X(3'), hence Xj(1') >
X(8&).

If (\'.§') € ®f then by Lemma 6.2.5 one has Xj(1') > X;(§').
2. Suppose (A.3) is added to p, because of the blocking conditions.

(a) If blocking 1 condition is satisfied, then there are rectangle symbols
v.B.x € R such that (5.x).(B.x).(y.B).(A.B) € v and (B.8).(A-.Y) € oy.
Since (B.8).(A.Y) € @, one has X;(B) > X,(8) and X;(1) > X,(y). Since
(v-B) € v, one has X,(y) > X,(B). Therefore X;(A) > X;(y) > X-(B) = X(8).

(b) If blocking 2 condition is satisfied, then there are rectangle symbols
Y.B.<.¢.5).....Sm.t}.....In € R such that

(ta,k).(9.7).(7.B).(A.B).(B.8) € v

and
(B?tn)?(}"vy)?(Yesl) € ©y.

From (X\.y) € v and (7,B) € v, one knows that X;(1) > X,(y) and X;(y) >

Xi(B)-

Consider the LR cage from the bottom « to the top ¢. The two side
walls are the paths (¢;,8.s;) and (B.y). One knows from (B.2,) € oy that
(t;,8.s;) is the left wall (denoted by #7) and (B.y) is the right wall (de-
noted by W3). Since overlaps are not allowed, one knows that for all
x € W one cannot have both X;(8) < X;(x) and X;(7) < X,(x). Hence one
has X;(B) > X(3) or Xj(y) > X{(3).

Therefore one has either

Xi(h) 2 X:(y) > Xi(B) 2 X(5)

90



or
Xi(A) 2 X(y) > Xi(v) 2 X(5)-

Hence X(1) > X:(3).

(c) If blocking 3 condition is satisfied, then there are rectangle symbols
v-B € R such that (1.5) & n, (v.8).(B.8) € n, (A.Y) € v, and (B.7) € w..
From (y.3),(B.8) € n one knows that Y(y) > ¥;(5) and Y3(B) < ¥(5). Ac-
cording to (B.y) € oy one knows that Y,(B) > Y(y). Therefore ¥,(§) >
Y5(B) = Yily) > Y(5)

From (A.y) € v one knows that Y;(1) = ¥;(y).

Now there are two cases, comparing X;(A) and X(B). If X;(A) > X:(B),
then X;(1) > X(B) > Xi(B) = X{3). On the other hand, if X;(1) < X:{B),
then one has Y(A) < Y3(B) < ¥(8). Since overlapping is not allowed,
one has X;(A) > X;(8). Since (1,8) € n one obtains X;(A) > X:(3).

Now suppose (1'. &) is added to o, because of the blocking conditions. It is
shown above that if (1'.8’) satisfies the blocking conditions, then X;(1') >
X(&).

. and 4. Rules 1 and 2 form the basis for the induction. Now assume that
Xi(a) > X(b) if (a.b) € py. If (A.8) is added because of transitivity then
there are §;..... B, such that (A.8;).(B;.B2).----(Br=1-Br)-(Br-8) € py. By the
induction assumption, X;(A) > X{B;) > Xi(B1) > X{B2) > --- > X,(8), hence
Xi(A) > X;(8). On the other hand, if (1.8) is added because of extended tran-
sitivity then there are rectangle symbols f and y such that (A.B).(y.8) €
Py-(1.B) € vUv ! UwqUay!. By the induction assumption, X;(1) > X(B) and
Xi(y) > X(8) and X:(B) > X:(y). Then one has X;(1) > X,(5), hence (1.5) € p;.

Now assume that X;(a) > X/(b) if (a.b) € 6y. If (1',8’) is added because of
transitivity then there are B,.....B, such that

By the induction assumption, X;(1') > X;(B1) > Xi(B1) > X-(B2) > --- > X(¥'),
hence X;(1'}) > X,(8'). On the other hand, if (1'.§") is added because of ex-
tended transitivity then I have shown that (1'.8') € ps, and hence Xj(1') >
X&)
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An interesting observation is made with the case known as Blocking 2. It is
modified slightly by inserting a new rectangle u between g and x. Then (1.3) €
p7 is no longer true. An example exhibiting a violation is shown in Figure 6.19.

Figure 6.19: Blocking condition not included.

It is shown that for every realization, p, C p; and oy € 657. But is p, 2 p5
and oy, 2 65? If it is true, then p, = pj and oy, = oy for all realizations. This is
clearly not possible. It is stated formally in the following.

PROPOSITION 6.7.7 There is a realizable w-specification S, with a realization
y such that py # pj, and on # Gy,

Proof: Consider the w-specification S, = {{a, b.c}.{(a.b).(b. c)}.@.@.@}. Then y =
a(Se) and ¢ = o'( S, ) shown in Figure 6.20 are realizations of S, such that (c.a) €

Pa, and (c.a) ¢ pﬁwl
By Proposition 6.7.6, py C ps, NPy, - Therefore (c.a) ¢ py, hence py # pg,.

a a
b b

C
y = Sy
Figure 6.20: Examples for Proposition 6.7.7.

A {)

PROPOSITION 6.7.8 The basic properties of the abstract extended compass re-
lations py, pn, Ov, and oy are:

1. There are no pv-cycles, no py-cycles, no cy-cycles, and no oy-cycles;
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2. pv, Py, Ov, and oy are transitive.

Proof: It is shown in Proposition 6.7.1 that for any picture v, ps,, ps,, ov,, and
o5, have the above properties. According to Proposition 6.7.6, pv C ps,, pn C
Piiy» Ov C Gy, and oy C o;,. Together with the fact that py, py, ov, and oy are
transitive by definition, they have the three properties listed above. a

6.7.2 Cases not captured by ¢

There are situations when one can conclude about East-West order which are
not covered by o;,. This is in contrast to the example shown in Proposition 6.7.7
where oy, # o3, because of some inherent ambiguity regarding the East-to-West
order. I now describe a situation where o, # o5, not because of such an ambi-
guity, but because o, fails to capture all cases.

DEFINITION 6.7.9 Suppose one has a closed path ? = (ag.a,.....a,.aq) in an o-
specification S.. Suppose further that (ag.a;) €py fori=2..... n— 1. Ifthere is no
¢ such that (£,aq) € 1, then one introduces it as a new rectangle. If { € L, then
Lg is the outside and R is the inside of P, otherwise L} is the inside and :Rﬂ’f is
the outside of ?. This definition is extended to the symmetry images | S, to 35,
of Sw-

PROPOSITION 6.7.10 Suppose one has a closed path ? = (ay.a..... ap.ap) in a
realizable w-specification S,. Suppose further that (ag.a;) € oy fori=2..... n—1.
Then for any realization y of Su, (a0.X) € 635, for all rectangles x inside ®. This
is also true for the symmetry images 5, to 3So of Se.

Proof: Since y is a realization of S, (a0.4:) € o, fori=2..... n—1.
Since (ap.a2).(ag.a,-1) € oy, then X(a;) < Xi(ag) and X(a,) < Xj(ag). Thus
Xi(ri) > XAr;) > Xi(ap) for 1 < i < n. Since x is inside P, X,(x) < Xj(ay). Hence

(a()'x) € Gﬁv = Grl.

EXAMPLE 6.7.11 Consider the w-specification

So = ({B-Y,&MK,CL{(B,l),(l-,'/)}-,{(K,k),(&B),(&*/)-,(C-.S)}-{(B-,Y)})-

Figure 6.21 shows a possible realization of S,. (8. 1) satisfies blocking 3 condition
in Definition 6.7.2 and by Definition 6.7.4 (5.1) € py. Now consider the closed
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path ® = (5.p.A.y). By Definition 6.5.1 ¢ € R and x € Ly By Definition 6.7.9
Rg is the outside and L; is the inside of P. Then Proposition 6.7.10 states that

(6.K) € py-

Ak 6| C

Y

Figure 6.21: A realization of S, in Example 6.7.11.

While I could have included the case of Proposition 6.7.10 in the definition
of pn, adding another case to the recursion part, I decided not to do so at this
point as this case looks rather special — and its general abstract principle is
not yet apparent. I still have the impression that this case is just an example
of a more general situation in which East-to-West information can be deduced
using cages and path directions.

6.7.3 Using p and n

PROPOSITION 6.7.12 Suppose one has an o-specification S, = (R.v.n.@y.0q).
If So is realizable then (p,Up;' UpyUprl)N(vUv-lunun~!) =a.

Proof: Let v be a realization of S,. Suppose (r;.r) € (pyUpy' Upy Upy!) for
some ri.r; € R. If (r;,r2) € pyUp;! € pg, Up‘i,'J, then Y,(ri) > Yi(r2) or Yu(r2) >
Y(r). If (n.r2) € paUpY' C P, Up;,, then Xi(r() > Xi(r2) or Xi(r2) > Xe(r1). By
Proposition 3.1.2, one has (r.r) €vuv-lufjuf~ ! =vuv-lunun™! a



CHAPTER 7

REALIZABILITY

I have collected a series of conditions to determine the realizability of a specifi-
cation. They are summerized in this chapter.

7.1 Necessary conditions for realizability

LEMMA 7.1.1 Suppose one has a specification S = (R.v.n). An w-specification S,
is built for every possible o, and wy. Ifone of S, is realizable, then S is realizable.

THEOREM 7.1.2 A realizable w-specification S, =(R.v.n. ®,.©y) satisfies the fol-
lowing conditions:

1. vand n satisfy the basic properties of the abstract compass relations. That
is to say, v and n have the following properties:

(a) There are no v-cycles and no n-cycles;

(b) v and n are anti-transitive;

(c) v, v-1, n, and n~! are pairwise disjoint.

(d) For B = {v.n}, if (r1,r2) € wg then there is a r; € R such that
(ri.r3).(r2.r3) €Bor (r3,ry).(r3.r2) €B.

2. o, and oy satisfy the basic properties of the abstract order relations. That
is to say, ®y and oy have the following properties:

(@) There are no o-cycles and no oy cycles;
(b) oy and oy, are not transitive;

(c) v, o5}, oy, and ;' are pairwise disjoint.

3. o} and o} have the following properties:
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(a) There are no o} -cycles and no o} cycles;

(b) w} and o] are transitive;

4. pv, P, Ov, and oy, satisfy the basic properties of the abstract extended com-
pass relations. That is to say, pv, py, v, and oy, have the following proper-
ties:

(a) There are no py-cycles, no py-cycles, no o,-cycles, and cq-cycles;

() pv, py, Ov, and oy, are transitive.

5. So satisfies the “left [right” property. That is to say, for all closed paths P
in S,, one has Lgnfkg =0.

6. If one has a closed path ® = (aq.ay.....aq) such that (ag.a;) € py for i =
2.....n— 1, then (ay.x) € py for all rectangles x inside P. This is also true
for py and also for the symmetry images of S,

7. (pvuUptupnuprt)n(vuvtununTh) =o.
Proof:

1. See Proposition 3.1.3.

2. See Proposition 6.3.3.

3. See Proposition 6.3.3.

4. See Proposition 6.7.8.

5. See Theorem 6.5.4.

6. See Proposition 6.7.10.

7. See Proposition 6.7.12.



CHAPTER 8

CONCLUDING REMARKS

8.1 Conclusion

e The rectangle picture specifications studied in this thesis was proposed
to study semantic-based systems. It was never intended that rectangles
alone would suffice in the layout of general scenes. The results obtained
in this thesis, on its own, does not and was not meant to provide imme-
diate solutions for problems that exist in non-semantic-based approaches,
such as the problems discused in the section on motivation. Instead, this
work explores the power and limitations of such systems in principle.

¢ A significant amount of geometrical information can be inferred from basic
systems of rectangle picture specifications. The idea of road block condi-
tions and the resulting relations p and o capture some of the global condi-
tions that must hold true for all realizations. This knowledge is obtained
by the analysis of the the local information provided by the compass rela-
tions.

e To deal with the decidability problem, I have explored other approaches,
including methods based on the Post Correspondence Problem, as well as
methods based on graph grammars. They do not lead to any significant
results.

e Apparently simple concepts like inside or outside of a cage are hard to cap-
ture; while there are some obvious simple cases for which sufficient con-
ditions can be formulated for a rectangle symbol to be inside the cage in
every realization, a general characterization of this property seems to be
very difficult.



o Notions of to-the-left-of and to-the-right-of a path can be defined in such

a way that, for closed paths, they meet the intuitive requirement that a
rectangle cannot be both to the left and to the right of a closed path. The
difficulty lies in the determination of the left and the right sides of a path
in the context of rectangle picture specifications. Once the two sides are
identified, the condition that they are disjoint is an application of the clas-
sical Jordan curve theorem.

The cage situation, intuitively stated as no rectangle can be attached to a
rectangle inside the cage and also to a rectangle outside the cage, can be
re-expressed as no rectangle can be both to the left and to the right of the
closed path forming the cage.

The realizability problem for specifications cannot be solved by treating v
and n separately. The two relations must be considered jointly.

A specification is realizable if and only if it is Rz-realizable. Thus, the dif-
ficulty of the problem is not a result of the search space being uncountable;
it is far more fundamental than this.

If the realizations are restricted to rectangles of bounded size and bounded
resolution then realizability is trivially decidable and bounds on the size
of a bounding box for all realizations can be computed.

The status of the general realizability problem or, equivalently, the R--
realizability problem is open. My feeling is, it is undecidable. Consider
the picture given in Figure 8.1. Suppose it is a realization of some specifi-
cation § = (R.v,n). Let us follow the path {a,b.c,..., p). One knows that a
and p can be adjacent. However, if a rectangle somewhere along the path
is modified slightly, then it may no longer be possible for 2 and p to be adja-
cent. The possible modifications include changes to the abstract compass
relations and/or the abstract ordering relations. As an example, consider
the case when one has (m./) € n instead of (/,m) € n. Then § is no longer
realizable. As one can see from the example, there are many possibilities
for modifying the path. It seems unlikely that one can find enough global
rules or even a complete set of local rules to deal with all cases.
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8.2

C
0
I
d| (n| h )
| 4 (2] |f] o] B
m
e
a

Figure 8.1: Difficult situation.

¢ For many cases, as was to be expected, a specification may have many

non-equivalent realizations. Adding additional relational information to
the specification may eliminate some of this ambiguity. Among the candi-
dates, clockwise ordering often leads to inconsistencies. The w-relations,
while reducing ambiguity do not help regarding the decidability question.

In Theorem 7.1.2 I list a set of necessary but not sufficient conditions for
an o-specification to be realizable. These conditions are decidable.

Further work

Foremost, of course, the decidability of realizability has remained open.
There are, however, several other unresolved issues.

From the examples one has the impression that equivalent pictures can
be obtained from each other using a finite sequence of elementary trans-
formations involving only scaling and translation. This intuition needs to
be cast into formal terms.

A more uniform approach to the road block conditions needs to be found
so as to arrive at a manageable set of sufficient conditions for realizabil-
ity. So far, for any new type of conditions, I usually also find a case not
covered. This could be an indicator of a lacking fundamental insight or it
could point to undecidability of the realization problem.
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In summary, specifications and more so w-specifications, provide a large amount
of geometrical information that can be extracted easily by algorithms. They are,
however, too weak to be usabie on their own for scene specifications and would
have to be supplemented by additional, preferably “orthogonal”, information.
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