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Methodological Issues in the Development and Application of Predictive Rules
to Evaluate Outcomes of Coronary Artery Bypass Graft Surgery.
Daoctor of Philosophy, 2001
Joan Ivanov

Institute of Medical Sciences, University of Toronto

ABSTRACT

Drawing on data from a well established clinical registry for tracking preoperative
characteristics and postoperative outcomes of coronary artery bypass surgery (CABG),
this thesis explores several methodological and practical issues arising from the
derivation, validation and application of clinical prediction rules.

Among the uses of prediction rules for operative mortality following cardiac
surgery is risk-adjusted outcomes profiling. We examined whether clinicians and
managers should use an existing index without modification, recalibrate that index for
their populations, or derive a new model with additional risk factors. This study
illustrates that poorly calibrated risk algorithms can bias the calculation of risk-adjusted
outcomes.

We next demonstrated how a clinical prediction rule could be used to assist in the
assessment of temporal trends in patient severity and operative mortality. In addition to
providing a long-term perspective on outcome trends, this study also showed how a
clinical prediction rule can be combined with contingency table analysis to document
temporal shifts in risk profiles and outcomes.

A further application of clinical prediction rules is decision-support for pre-
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operative patient counselling. The findings of this study highlight both the rationale for
using predictive rules as a guide to decision-making, as well as the continuing challenges
in persuading clinicians to use such rules.

Two recurrent issues in the use of clinical prediction rules are the short time
horizon of many studies and the costs of collecting data for longer-term follow-up
studies. This study illustrates the feasibility of linking clinical and administrative data in
the development of more sophisticated clinical prediction rules. The findings highlight
the need to evaluate long-term, as well as short-term outcomes to evaluate the benefit of
surgical revascularization and the utility of adding some measurement of outcomes other
than mortality.

In conclusion, drawing on data for CABG surgery, this thesis addresses several
methodological and practical issues surrounding the development and application of
predictive rules. We believe that these findings are generalizable to a wide range of
medical diagnoses and surgical procedures where prediction rules can be used to enhance
our insights into prognosis, as well as the effectiveness and efficiency of clinical

interventions.
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Chapter One

Introduction



1.1  Introduction

Medical decision making affects the health of the nation and strongly influences
the allocation and consumption of health care resources. Therapeutic decision making
requires an appreciation of the prognosis of disease and risk stratification, e.g., patients
with the same disease can have different outcomes. The development and application of
predictive rules have become increasingly important for use in clinical and health service
research and as tools to help guide clinical decision making.l Examples of clinical
prediction rules include the Apgar score for newborns,> the Glasgow Coma Scale®
which evaluates level of consciousness,” the Injury Severity Score which assesses trauma
patients,>S the Ottawa Ankle Rule’ which guides physicians’ decisions to order an X-ray
for injured ankles, the Acute Physiology and Chronic Health Evaluation score
(APACHE) which evaluates patients’ probability of outcomes in the intensive care
unit,® and the Urgency Rating Scale developed for the Cardiac Care Network of Ontario
to determine the suggested maximum time for patients waiting in the queue for cardiac
surgery.m'l:" Clinical prediction rules estimate the probability of outcomes by combining
information contained in a number of patient-specific characteristics in a way which best
evaluates the patient’s risk of either disease or adverse outcome. Predictive rules can
provide key contextual data for guiding medical decision making, evaluating
technologies, estimating clinical risk and benefit for an individual patient, and for the
design of randomized controlled trials, e.g., risk group stratification or sample size
calculations. More recently, predictive rules have been used to compare risk-adjusted
outcomes across providers.

The advent of large computerized clinical and administrative databases has



allowed for the evaluation of numerous risk factors and their impact on outcomes, and
the construction of statistically derived risk algorithms.'*!> Spiegelhalter stated that the
goal of statistically derived predictive rules is to provide an explicit probabilistic
prediction to aid in a formal decision process.'® However, bias can arise from multiple
sources during the development and application of predictive rules (e.g., “up-coding”,
outcome ascertainment and statistical over- or under-fitting). A more detailed discussion
of methodological issues is presented in Chapter Two.

The development and application of predictive rules to evaluate the outcomes of
cardiac surgery are relatively new. The most common use of predictive rules within the
contextual framework of cardiac surgery has been to provide a method of risk
adjustment for the comparison of hospital outcomes and quality of care across providers -
- surgeons or institutions. The use of predictive rules in cardiac surgery was born out a2
need to evaluate how structures and process effect outcomes as well as from institutional
and surgical concems regarding the publication of crude, unadjusted operative mortality
rates in the United States. Since the late 1980's, several groups in the United States,
Canada and elsewhere have published extensively on this subject.r"7l A brief review
will be presented in Chapter Three of the major contributors to the development of
predictive rules used to evaluate outcomes of cardiac surgery.

Drawing on data from a well-established clinical registry of patients undergoing
coronary artery bypass surgery, this thesis explores several methodological and practical
issues arising from the derivation, validation and application of clinical prediction rules
for: (1) provider-specific comparisons of risk-adjusted operative mortality (Chapter Four:
Ivanov J, Tu JV, Naylor CD: Ready-made, recalibrated, remodelled? Issues in the use of
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risk indices for assessing mortality after coronary artery bypass graft surgery.
Circulation 1999;99:2098-2104); (2) risk group stratification (Chapter Five: fvanov J,
Weisel RD, David TE, Naylor CD: Fifteen-year trends in risk severity and operative
mortality in elderly patients undergoing coronary artery bypass graft surgery.
Circulation 1998;97:673-680); and (3) patient counselling (Chapter Six: IvanovJ,
Borger MA, David TE, Cohen G, Walton N: Predictive Accuracy Study: Comparing a
statistical model to clinicians’ estimates of outcomes after coronary bypass surgery. Ann
Thorac Surg 2000;70:162-168). In Chapter Seven, lessons learned in the previous three
chapters will be employed to develop a new predictive rule for the evaluation of long-
term outcomes following coronary artery bypass surgery. Each of the key study chapters,
four to seven, is presented as an independent study, containing an abstract, introduction,
methods, results and discussion sections. The contributions made in this thesis and

suggestions for future research will be discussed in the final summary chapter (Chapter

Eight).

1.2  Chapter Four: Evaluation of Three Modelling Strategies in the Use of
Predictive Risk Indices for Assessing Mortality After Coronary Artery
Bypass Graft Surgery
A perplexing issue facing administrators or clinicians who wish to use a

predictive rule is whether to use an existing, external risk index or to develop an internal

model. Ifan external model is used, should the regression coefficients be recalibrated.

In Chapter Four, we evaluated three modelling strategies: using an external predictive

rule, recalibrating the external model in the dataset at hand, or developing a new, internal

4



model. We used standard statistical methodology to evaluate the three strategies and
their impact on ranking, by risk-adjusted operative mortality, for fourteen surgeons.
Additionally we introduced a novel strategy to compare calibration curves between the
models: whereas others have evaluated calibration curves qualitatively or only reported
the coefficient of determination (Rz) for observed versus expected probabilities of
operative mortality, we performed an additional evaluation and reported the slope and
intercept of the linear regression to quantify the degree of over- or under-estimation of
each model. We also introduced the use of analysis of covariance as a method of

comparing competing models in the same dataset.”

1.3  Chapter Five: Application of a Predictive Rule Used for Risk Stratification -
Evaluation of Fifteen-year Trends in Risk Severity and Operative Mortality
in Elderly Patients Undergoing Coronary Bypass Surgery
Within the context of cardiac surgery, the use of predictive rules for risk

stratification has been employed more commonly as a method of comparing observed to

expected probabilities, either during the model validation step or for provider-specific

comparisons, 184154

In Chapter Five we demonstrated the application of a predictive
rule to stratify patients into relative risk groups for research purposes. We developed a
predictive rule for operative mortality in approximately 19,000 patients who underwent
coronary artery bypass surgery over a fifteen year period. We then applied cutpoints of
the model-derived risk scores to construct relative risk groups (low, medium, high).. This
chapter clarifies the issue of how risk groups, constructed from a predictive rule, can be

used for temporal trend evaluation of risk factors and outcomes in combination with



simple contingency table analysis.”> Additionally, we developed a new rule for

prediction of operative mortality in contemporary, elderly patients who undergo isolated

coronary bypass surgery.

14  Chapter Six: Predictive Accuracy Study: Comparison of a Statistical

Model to Clinicians’ Probability Estimates of Adverse Outcomes Following

Coronary Bypass Surgery

In Chapter Six we wished to evaluate the application of a predictive rule in
clinical practice as decision-support for pre-operative patient counselling. Surgeons,
residents and a nurse clinician were randomized to receive a predictive rule for either the
first or second set of 50 patient vignettes and asked to estimate the probability of each
patient’s risk of operative mortality and prolonged intensive care unit stay after
reviewing the vignettes. Clinicians’ estimates were compared to probability estimates
calculated from the predictive rule; additionally comparisons were made between the

clinicians and the statistical model for discrimination and precision.”®

1.S  Chapter Seven: The Development and Application of a Predictive Rule to
Evaluate the Long-term Outcomes of Coronary Artery Bypass Surgery
Issues identified in the previous three chapters which were important to the

development and application of a clinical predictive rule for hospital outcomes were

addressed in the development of a novel predictive rule to evaluate late outcomes

following cardiac surgery. Data linkage between a large clinical database and



administrative data allowed for identification of the multivariable, independent
predictors of late survival and re-admission to hospital for cardiac events. Additionally,
risk ratios from the Cox analysis of survival were used to determine risk scores for each
patient. Patients were stratified into relative risk groups and risk-adjusted survival was
compared between surgeons.

This method of linking an institutional, clinical database to administrative data for
the purpose of follow-up is unique in the cardiac surgery literature. A large Canadian
study by Ghali and colleagues’® used Canadian Institute of Health Information data to
determine risk factors and outcomes in over 50,000 patients undergoing coronary artery
bypass surgery. However, their study was limited by the determination of comorbidity
from ICD-9 codes and the lack of cardiac-specific risk factors such as left ventricular
ejection fraction and extent of coronary artery disease. Two American studies which
linked clinical data to administrative data were limited by the sole evaluation of mortality
in Medicare patients only,* or in a relatively small cohort of patients following
CABG.’ Thus we present a unique Canadian study which evaluates not only survival in
a large population of CABG patients but also their freedom from re-admissions for

cardiac events. Also, a predictive rule was developed to predict late survival following

CABG.



Chapter Two

Methodological Issues



Several authors have described methodological standards for the development

1141677102 gome of the major issues surrounding

and application of predictive rules.
model development, application and sources of potential bias will be reviewed briefly in

this chapter.

2.1  Prognostic and Outcome Variables

Dawson'% suggested that each variable contained in a prognostic scale can be
treated as a “test” or “measurement” and as such, we must be aware of the potential
biases and sources of imprecision that can arise from multiple sources of measurement.
Definitions of outcomes and prognostic variables should be precise, reliable,
reproducible and free of ascertainment bias.'*¥2%° Wasson'* suggested that rules
predicting objective biological outcomes rather than sociological or behavioural
outcomes are likely to be more robust when applied externally in different patient
settings. The variables used to build the model should be sensible, comprehensible and
have a biological association with the outcome. Feinstein referred to “content validity”
as the judgemental appraisal of the underlying components of an index.'®* Therefore,
subject knowledge should guide the selection of candidate variables submitted to
multivariable analysis. The degree of bias present in modelling is directly proportional to
the number of variables entered into the model.¥? For example, 2 model which is
internally valid but which includes idiosyncratic variables would be biased in favour of
the original dataset from which it was derived. The early deletion of unimportant or
unreliable data will result in models with less over-fitting and increased generalizability.

Inaccuracies in model development can arise from prognostic variables which violate



assumptions of linearity with the outcome variable, the omission of important predictors
from the model, and a high frequency of missing data or improper imputation methods.”’
Strict attention to the validity of data used to develop a predictive rule will ensure

minimal bias at this crucial, fundamental step in model building.

2.2  Thesis-Specific Issues Regarding the Data

Data Source and Handling

The Division of Cardiovascular Surgery at the Toronto General Hospital has
maintained a database of all patients undergoing cardiac surgery since January lst, 1982.
Information was collected prospectively on every patient at the time of their operation
and entered into a dBASEIV database by a trained, experienced data abstractor.
Consistent monitoring is undertaken to ensure accuracy, especially for variables such as
the Canadian Cardiovascular Society angina class and descriptors of acuteness which are
susceptible to subjectivity and variability in coding. The surgical checklist (Appendix 1),
attached to the front of every chart, is filled out by the surgeon at the time of surgery,
prior to any postoperative events. A database manager is responsible for collecting these
checklists from the chart after the patient is discharged, verifying risk factor information
by reviewing the chart and filling out the information regarding postoperative morbidity
or mortality. The database manager is highly trained and skilled at detecting miscoding
of variables or “up-coding”. Periodic data validation studies at the Toronto General
Hospital conducted by the Cardiac Care Network of Ontario have demonstrated an error
rate which is consistently less than 2% for all variables except for operative mortality,
where the error rate is less than 1/100th of one percent and represents keystroke errors

10



rather than ascertainment errors.

The surgeons at the Toronto General Hospital are familiar and comfortable with
the layout and format of the data checklist. Therefore, we can argue that this check list
has reasonable face validity.go Variables included on the form are a result of years of
discussion and modification within the cardiac surgery group and therefore are
considered sensible and comprehensive measurements of patient characteristics and
outcomes.

Data Entry and Coding

There are no coding transformations required prior to data entry. The data entry
program has been developed to provide range and logic checks for each variable entered.
To minimize the uncertainty associated with blank data fields, missing data are coded as
".9". Typically, the missing data rate in the Toronto General Hospital cardiac database is
less than 1%.

Variable or coding transformations are done by the statistician during the
analysis: for example, arbitrary cutpoints in age could be used to define “elderly” as
above or below 70 years of age. Two or more variables could be grouped to create
specific cohorts of patients, e.g., patients who have had a myocardial infarction within
the month prior to surgery and who were still experiencing post-infarctional angina.
Variables such as “timing of surgery” could be collapsed from four ordinal variables to a
dichotomous variable (elective, non-elective). The validity of these transformations
would be checked by evaluating their association with the outcome variable during the

initial steps of statistical analysis.

11



Candidate Variables

Appendix 2 includes the code book for all variables contained in the Toronto
General Hospital’s Division of Cardiovascular Surgery Clinical Database. For the
purpose of this thesis, only those variables which are relevant to coronary artery bypass
graft surgery are used. Variables specific to valvular, congenital or other non-coronary
surgery were excluded.

Briefly, information was collected which measured:

(1) demographics (e.g., age, sex, height, weight, previous cardiac surgery
etc.);

(2) cardiac pathology (e.g., extent and specifics of cardiac disease,
namely which coronary artery vessels are significantly stenotic, other
cardiac pathology, left ventricular ejection fraction);

(3) symptom status (e.g., severity and pattern of angina or shortness of
breath);

(4) functional status (e.g., New York Heart Association classification)
(5) other comorbidity (e.g., diabetes, renal failure, hypertension,
peripheral vascular disease, chronic obstructive lung disease etc.);

(6) operative mortality;

(7) length of stay.

Variables which measure intra-operative or postoperative events were excluded
from the development of the predictive rules in this thesis since their purpose(s) was
“prognosis” prior to surgery and/or quality of care comparisons. Each item measures
only one element of information.

12



Data Limitations

We were constrained by the characteristics of this existing database from which
we developed and evaluated the predictive risk instruments in this thesis. This is a
typical problem faced by those who wish to construct predictive rules based on data
which has already been collected. There may be some important items which have been
omitted or inadequately measured. For example, in the TGH database “diabetes” was
coded as either present or absent. There may have been a difference between the type of
diabetes (non-insulin versus insulin dependent) and the risk of operative mortality but we
were unable to assess this relationship. However, the deficiencies in some items would
most likely have contributed to “noise” and biased results toward the null hypothesis.

In addition, some variables which were recorded in a “Notes” field in the
database, may be clinically very important to outcome but because of their low
prevalence in the population of interest, fail to meet the statistical requirements for

inclusion in a model (e.g., severe vasculopathy, allergy to heparin, etc.).

2.3  Statistical Modelling
The choice of which statistical model to use to construct a predictive rule depends
on certain assumptions:
1) The study subjects are random and represent independent observations.
2) The distribution of the response (outcome) variable has certain properties:
a) Logistic regression has no distributional assumptions: the
predictor variable X is linearly related to log odds of the outcome
variable (log (P/1-P)), where P=predicted probability of the

13



outcome;

b) The Cox model assumes proportional hazards over time. In Cox
models for survival (S) to time=t, log(-log(S(t))) and log A(t) are
linearly related to X, where log A= the underlying hazard function;

3) Fully parametric tests (i.e., Weibull or log-logistic) do have distributional
assumptions for specific shapes;

4) Predictors act in an additive fashion unless interaction terms are included.
Interactions must be explored, especially those associated with age and
risk factors, temporal variables, quality and quantity of symptoms.
Interactions should be pre-specified to reduce the number of parameters
submitted to the model. A pooled test of all interactions is useful because

if none are significant, it may not be necessary to test any further.”"8!

Logistic regression models generate probabilities (P) of an outcome from the

formula:

e Bo+BrXy *BoXy Brre

P =
1 + eﬂo*ﬁlxl’ﬂzxrm’pm

where [, = the constant and [3; = the regression coefficient for each level of a risk factor

(X) in the model which characterizes the patient.

Stepwise selection adds variables to the model until the residual chi square is not
significant.’? The statistician must pay attention to interaction, collinearity, and

14



influential observations.®® The choice of which variables to submit for consideration to
the model should not be based solely on bivariate analysis.>* All explanatory variables
with a bivariate P value <0.25, as well as those found commonly in other major risk
indices but failing to meet the critical alpha level, can be submitted to logistic regression
analyses,$-105

Mathematical techniques to construct predictive rules include equations where
likelihood can be assessed by summing weights assigned to predictors to form a score.3
Risk weights for each prognostic variable can be constructed from rounded regression
coefficients™ or odds ratios.’*!% Coste and colleagues™ verified that the loss due to
rounding was minimal and that the resulting simplified scoring system was attractive to
clinicians because it did not require complex computation. The usefulness of a predictive

rule in a clinical setting may depend on its simplicity and ease of application.'?’

Model validity is evaluated by assessing both predictive accuracy and calibration.

24  Predictive Accuracy

Discrimination measures a predictor’s ability to separate patients with different
outcomes. Ifa model has poor discrimination, then no amount of adjustment or
calibration can correct the model. If discrimination is good, re-calibration will not
sacrifice discrimination.”’’8

For logistic or Cox models, discrimination can be quantified by the C index for
ordinal assessment which is equivalent to the area under the Receiver-Operator
Characteristic curve (ROC) for binomial outcomes. The area under the ROC curve is

related to rank correlation between predicted and observed outcomes. The areas under
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ROC curves are widely applicable and easily understood by clinicians.”’ The ROC curve
area reflects the percent of concordant pairs, i.e., the member of the pair who has the
disease or outcome is the one with the higher disease/outcome

probability, 16:77-90:92.93,100,108,109 Tpe areq under the ROC curve assesses resolution, not
calibration, and is not affected by the model’s constant.¥® The area under the ROC curve
can be used to compare predictive ability of two models, %% however ROC curves

are not sensitive for detecting small differences in discrimination between two models.”’

2.5  Calibration

Hosmer-Lemeshow Goodness-of-Fit

For probabilistic prediction to be useful for medical decision making, the model
must be reliable or calibrated.'® Calibration refers to the extent of bias. Calibration for
categorical assessments can be evaluated by the Hosmer-Lemeshow goodness-of-fit
statistic (HL).”8592969%.105 41 i derived from calculating the Pearson x> fora2 x g
table of observed and expected frequencies. This statistic has an asymptotic xl (g-2)
distribution.”® The null hypothesis for the HL statistic is that the model fits the data,
therefore P values less than 0.05 indicate a significantly imprecise model.

Calibration Curves

The precision of a predictive model can also be assessed by constructing
calibration curves of observed versus predicted probabilities.!’*78%9092 guhoroups are
formed based on composite risk scores, relative risk groups (e.g., low, medium, high
risk), cutpoints of the predicted probability of outcome or clinical definitions. The mean
predicted probability of outcome for each subgroup is plotted against the mean observed
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outcome. The degree of departure from the 45° line, representing perfect calibration, is an
assessment of bias, or over- or under-fitting. The R? from linear regression analysis
estimates the strength of the linear relation between predicted and observed probabilities,
or the amount of variation that is explained by the model. It is a method which can
directly assess the amount of over- or under-fitting.*®

Brier Scores

The Brier score measures both accuracy and calibration at the individual patient
level. The Brier score (BS) is a quadratic penalty score with values between 0 and 1;
therefore, the lower the Brier score, the more accurate the judgement. The formula is as
follows:

BS = (P -d)?

where P=predicted probability of outcome, d (event) 0=event did not occur, 1=event
occurred. The Brier statistic as a measure is a combination of two sorts of error -
calibration and discrimination. A statistic can be derived from the Brier score to test for
the calibration of the model. Under the null hypothesis of perfect calibration, this
statistic follows a standard normal distribution, and P-values can be derived from this
distribution, 15-1693:110-114

Over- under-fitting/power

Goodness of fit does not imply good predictive ability. The fit of a model can be
improved by increasing the number of variables in the model, but this strategy puts the
model at risk of over-fitting and therefore reduces the model’s performance in
subsequent studies.”> Diamond refers to over-fitting as a problem with calibration.®®
Inaccuracies due to over-fitting occur from fitting idiosyncrasies in small datasets
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resulting in too many parameters for too few outcomes.”''5 Models which contain
prognostic variables associated with very broad confidence intervals about their
regression estimates are red flags for statistical over-fitting.%

Under-fitting can occur as a result of lower power, therefore some important
variables may be omitted because there are insufficient outcomes to fully model ali the
important predictors.%

Parsimony refers to fitting the smallest number of variables in a model which best
describes the outcome. However, Spiegelhalter'® stated that if the purpose of the model
is prediction, then fitting a parsimonious model should not be the specific goal of
analysis. Issues of unbiasedness and identification of a small number of explanatory
variables are irrelevant. Spiegelhalter believed that the aim of developing a predictive
model is to allow for uncertainty about the estimated parameters, leading to less extreme
predictions or biased estimates and prediction. He concluded that variable selection
should be governed more by the convenience and costs of measurement than by attempts
to fit a parsimonious model.

Statistical errors can be avoided by paying attention to power.8? Hsieh and
colleagues have studied the number of outcome events required per predictor variable in
logistic regression and concluded that 10 events per outcome minimized bias. This
convention has been supported by others.”’879%:! 15 peduzzi and colleagues performed a
simulation study for the number of outcome events required per prognostic variable and
demonstrated that as the event/variable ratio decreased, bias of regression coefficients
increased.¥” If the dataset is small and there are numerous variables which could be
independently associated with the outcome, data reduction techniques which do not use
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the outcome variable may be employed to reduce the number of parameters submitted to
the model. Data reduction techniques include principle components clustering, deriving

clinical summary scores,”’ or combining risk factors which determine a specific

subgroup membership using propensity scores.!!6
However, even if predictive accuracy and calibration are optimal, a model

developed in a training set from empirical variable selection can be so highly adapted to

the derivation data that the utility of the model in external datasets is compromised.'®

2.6  Validation

The purpose of validating a model is to provide nearly unbiased estimates of
predictive accuracy which are of relatively low variance.”’ The best methods for
obtaining nearly unbiased internal assessments are data-splitting, cross-validation, or
bootstrapping.

Data-splitting: A model is developed in a proportion of the dataset and tested for
accuracy and calibration in the remaining data. With this method, the indices of accuracy
may vary greatly with different splits. It is not an appropriate method if the model is then
re-formed in the entire dataset for external use.”’

Cross-validation is repeated data-splitting. The benefit is that the training
samples can be large (e.g., total dataset minus 50 patients). This method reduces
variability by not relying on a single split. However, others have shown that this method
is relatively inefficient due to the high variation of accuracy estimates when the process
is repeated.”’

The jackknife method is performed by excluding one patient and then rederiving
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the rule and applying it to the one excluded patient, repeated many times. The frequency
that the excluded patient is misclassified is reported.

Bootstrapping provides nearly unbiased estimates of predictive accuracy that are
of relatively low variance. Bootstrap methods measure two error rates. One is obtained
by applying the original rule to a randomly chosen (with replacement) population. The
second is obtained by using the new population to calculate a second rule and then
applying it directly to that population, many times. The difference between the two error
rates is averaged over all populations. The size of this average is an estimate of the
stability of the rule as it might be applied externally. This is a good method when data
are too precious to waste using a split-sample method.'*”’

Both jackknife and bootstrap methods use the variability of the original dataset to
simulate performance of the predictive rule in an external population. These methods
will not eliminate bias in patient selection or data collection. The most stringent
validation method is to apply the predictive rule in an external dataset and then evaluate

14,80,81,86,95

predictive accuracy and precision. The most common reason for poor

external validation is statistical over-fitting.

2.7  External Application

To re-iterate: predictive rules developed in one population of patients often
perform poorly when applied to external datasets,!480,81:90.93.9596 The most common
problem associated with poor fitting of an external rule results from statistically over-
fitting the original model, ®33869095 Even if an external model was well validated
internally, secular changes in treatment or outcomes can reduce the applicability of the
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model. The site and case-mix of the population from whence the rule was developed
must be carefully defined. Selection bias or difference in case-mix may distort the
original rule such that it is not representative of the population for which it is being
applied. Additionally, predictive models may perform less well in external datasets
because of differences in surveillance strategies and differences in the definitions of
predictors or outcomes.'**%?36 If an external model has good discrimination but poor

precision, Teres’ suggested recalibration as a2 method to improve predictive accuracy.

28 Summary

Major methodological issues surrounding the development and application of
predictive rules include: 1) prognostic variable selection, 2) statistical over- or under-
fitting, 3) model discrimination and calibration, 4) model selection (e.g., external or
internal), and 5) model validation. These issues will be evaluated in this applied thesis
within the context of coronary artery bypass surgery.

In Chapter Four we evaluate a method to assess calibration in a single model
using linear regression analysis and a novel method of comparing two or more competing
models using analysis of covariance. We demonstrate the advantages of recalibrating an
existing, external index. Additionally, we demonstrate the improvement in both
discrimination and precision achieved by remodelling an external rule.

In Chapter Five we demonstrate how a predictive rule can be used to establish a
temporal benchmark. Relative risk groups constructed from a predictive rule can be used
to evaluate temporal trends in risk severity and outcomes using simple, contingency table
analysis.
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Chapter Six represents a unique study in application. A predictive rule was
offered to clinicians as a tool to guide their estimated probabilities of operative mortality
and prolonged length of ICU stay. In this study we used a method of prevalence
adjustment of a deliberately skewed patient sample to compare discrimination between a
statistical model’s and clinicians’ probability estimates of outcomes. This study
highlights the difficulties that may be encountered when trying to introduce a predictive
rule into clinical practice.

The major methodological lessons learned in the previous chapters were
incorporated in the development of a novel predictive rule to evaluate long-term survival
following coronary artery bypass surgery. In Chapter Seven we present a unique
Canadian study in which we linked a clinical database to administrative databases to
follow patients for long-term survival and freedom from re-admissions to hospital for

cardiac events.



Chapter Three

Knowledge to Date



A brief review of the experiences in Toronto, Ontario and the United States, and
the forces which gave rise to the proliferation of predictive risk indexes in the cardiac
surgery literature will be presented in this chapter. The major contributors to the

evolution of cardiac surgery risk algorithms will also be reviewed.

3.1 Toronto Experience

In 1981, a project was initiated at the Toronto General Hospital to create a clinical
data registry for all adult patients undergoing cardiac surgery. The two other University
of Toronto affiliated hospitals which had adult cardiac surgery programs (Toronto
Western Hospital and St. Michael’s Hospital) also expressed an interest in participating
in the database. The purpose of this database was to prospectively collect patient-
specific, procedure-specific and outcome information on every aduit patient undergoing
any cardiac surgery in the city of Toronto. The information was to be used for research
into the impact of risk factors on outcomes, the evaluation of temporal trends in risk
factors and outcomes, clinical research projects, and monitoring quality of care.

It took one year to establish the list and coding of the variables to be collected,
develop the computerized format, organize the infrastructure for data collection, and
learn the necessary computer and statistical skills required to input and access the data.
The original dataset contained information on cardiac-specific risk factors but there was
no information collected on comorbidity, e.g., diabetes, peripheral vascular disease,
hypertension, renal failure, etc.

The initial format involved coding the information on 80 column computer cards
and then passing those cards through a card reader to the IBM mainframe at the
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University of Toronto. The University mainframe was accessed by telephone modem
from a remote dumb terminal. The statisticai program, SAS (SAS Institute, Cary, NC)
was used to read the data and generate reports.

In 1987, the data platform was changed to a personal computer-based dBASEIV
format. At this time additional information which measured comorbidity (e.g., diabetes,
hypertension, peripheral vascular disease, renal failure etc.) was added to the variables
collected. Also, at this time, St. Michael’s Hospital withdrew from the citywide
database. Data collected from the previous five years were down loaded from the
University mainframe and appended into the dBASE files. Data were entered and
managed in dBASE and then uploaded to the University mainframe for analysis. This
structure remained in place until 1990 when all data were managed and analyzed on a
personal computer. In 1990, the Division of Cardiovascular Surgery at Sunnybrook
Health Sciences Center used the dBASEIV structure to create their own database.

Since the inception of the cardiac surgery database, each participating hospital
has received a confidential annual quality assurance report which was internally
distributed. Additionally, this database has provided a rich source of information for

observational research.’2’493,117-136

3.2  Ontario Experience

In 1991, the Cardiac Care Network of Ontario was inaugurated under the
direction of a committee of providers with input and financial support from the Ministry
of Health. All patients who had a cardiac catheterization in the province were registered

in the database. Surgical priority was recommended by a scoring algorithm based on



weights assigned to variables measuring symptom status, response to medical treatment
and coronary anatomy.'®'* The risk weights for recommended surgical priority were
determined by a consensus panel of providers. Each panelist reviewed 438 case
scenarios and was asked to independently rank each patient for the maximum acceptable
waiting period from the time of coronary angiography to surgery. Seven levels of
recommended wait times ranging from “emergency” to “marked delay” were
constructed. This urgency rating scale has been used to triage every patient undergoing
coronary angiography in the Province of Ontario since April 1991 in an effort to manage
patients waiting in queue for coronary bypass surgery.

Morgan and colleagues'®’ examined deaths in the queue waiting for cardiac
surgery in ~29,000 patients from 1991 to 1995. The death rate for those waiting for
isolated coronary artery bypass surgery was 0.48%. Naylor et al'33found that registered
patients who survived six months following an acute myocardial infarction and who were
waiting for CABG were at a much higher risk of death than an age-gender matched
population, however, they were at similar risk as those living with coronary artery
disease. Morgan et al suggested that additional reductions in the already low rate of
deaths in the queue could be achieved by even shorter waiting times, better compliance
with existing guidelines, and guideline revisions to upgrade patients with left ventricular
dysfunction. Reports from the Cardiac Care Network via the Institute for Clinical
Evaluative Sciences to the Ministry of Health have directly influenced additional funding
for cardiac care in the Province of Ontario and prompted increases in the maximum
allowed case load per institution for coronary bypass surgery. These reports highlight the
vital importance of an inclusive registry to health service management.
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The Cardiac Care Network has regularly produced confidential, risk-adjusted,
coronary artery bypass graft surgery outcome profiles by centre from 1993 to 1998. In
1999, the Institute for Clinical Evaluative Sciences published Cardiovascular Health and
Services in Ontario: An ICES Atlas. This was the first public report of institution-
specific, risk-adjusted operative mortality rates following coronary artery bypass surgery
in the Province of Ontario.'*

The Cardiac Care Network of Ontario has also provided valuable data for the
development of a predictive rule. Tu and colleagnes39 published a multicenter predictive
risk index to evaluate a combined outcome of operative mortality and prolonged length
of intensive care unit stay in 1995 based on data collected by the Cardiac Care Network.
This model was derived and internally validated in a heterogeneous population of
coronary artery bypass graft surgery and valvular heart surgery. Six variables were
modelled: age, gender, LV grade, previous coronary bypass surgery, surgical priority,
and valve surgery. Although statisticaily robust, the model was criticized for not
completely characterizing patients. Additionally, the mixed nature of the model resulted
in the dilution of the impact of some of the risk factors for the purpose of prediction of
operative mortality in coronary artery bypass surgery patients only (e.g., previous
surgery, poor ventricular function and female gender). The external validity of this rule
is evaluated in Chapter Four along with strategies designed to improve its performance in

a population of patients undergoing isolated coronary artery bypass surgery.

33 American Experience
Cardiac surgery became the first medical discipline to be subjected to public
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scrutiny. The results of open heart surgery in Medicare patients were first made public in
1.986 and 1987.!"'® In 1986 there were 320,000 coronary artery bypass procedures
performed in the USA costing $7.5 billion for 1.5% of all health care expenditures.??
Prompted by an effort to achieve cost containment in cardiac surgery, the Health Care
Financing Administration disclosed survival rates following cardiac surgery with the
clear intention equating operative mortality with quality of care.3**>% This was later
dubbed “score card surgery” by the press.

In 1988, the New York Times filed a request under the Freedom of Information
Act to obtain information from Medicare for the operative mortality (OM) results
following coronary bypass surgery. In 1991, Newsweek sued the New York State
Department of Health for their database of information not only regarding coronary
bypass surgery but also surgeon-specific outcomes. The Supreme Court of New York
agreed that the public had a right to know to enable them to make informed decisions.

The State of Pennsylvania was also sued under the Freedom of Information act to
release provider-specific data on outcomes of cardiac surgery. In 1989, a law was passed
in Pennsylvania requiring hospitals to report mortality. In 1990, the Pennsylvania Health
Care Cost Containment Council (Harrisburg, PA) published a “Consumers Guide to
Coronary Artery Bypass Graft Surgery”. This report did not include surgeon-specific
results, but the surgeons were ranked in order of their risk-adjusted outcomes. The risk
algorithm used to calculate risk-adjusted outcomes was proprietary and access to the
formula was denied. The risk-adjustment system was criticised for being poorly
designed, in that there was no distinction made between preoperative conditions and
postoperative complications.'4?
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These first reports from New York and then Pennsylvania by the Health Care
Financing Administration contained either raw operative mortality rates or risk-adjusted
rates derived from questionable data or methods, and therefore did not fairly reflect
quality of care.!”!'® The result was a flurry of public outcry from surgeons complaining
about unfair comparisons, and a concerted effort by several groups to develop valid risk-
adjustment algorithms which would “level the playing field”.

The Pennsylvania report resulted in widespread gaming. A survey found that
90% of surgeons made no use of the report and thought the report was mis-leading. The
report had little influence on referral patterns but may have introduced a barrier to care
for high risk patients.'*® Carey and colleagues'*’ stated that there is evidence that public
releases in New York and Pennsylvania may have had a negative impact on the provision
of care to the most severely ill patients. Green et al'*! found that there was an increase in
prevalence in five risk factors in the New York State reporting system after the release of
the first public "score card". Variations of some risk factors were greater each year than
could be expected, therefore Green concluded that there was again concern that improved
results reflected “gaming” of comorbid variables rather than real improvements in
technical quality of care. He suggested that perhaps the fault should not lie with the
report cards per se but rather the method used for reporting results. Both Cary and Green
felt that disclosures must be accompanied by non-punitive, voluntary quality
improvement to promote an integrated, rational and evidence-based approach to the care
of patients with coronary artery disease. In response to criticism regarding out-migration
of high risk patients, Hannan and colleagues26 suggested that improvements in quality of
care in New York State were not related to changes in case-mix but rather an exodus of
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low-volume surgeons with high risk-adjusted operative mortality rates and better
performance of new surgeons.2

In the state of Minnesota in 1992, major payers in the state asked for risk-adjusted
outcomes so they could select “centers of excellence”. In 1993, surgeons organized to
collect, analyze and report reliable, statistically valid data using the Society of Thoracic
Surgeons voluntary database. Confidential reports and ongoing quality improvements
have resulted in a decrease in mortality in both confidential and public reporting
systems.'40

An example of confidential, voluntary quality improvement can be found in the
experience of the Northern New England group. The Northern New England group,
comprised of five hospitals in Maine, Vermont and New Hampshire, introduced a quality
assurance program in 1987. In 1990, risk-adjusted outcomes were distributed internally,
preserving the anonymity of institutions and surgeons. Teams from each hospital visited
each site to observe processes of care in 1990-1991. Needed changes to processes of care
were identified and as a result, operative mortality decreased 24% in 1992-1993. This
collaboration was felt to be a key concept for quality improvement. The authors
concluded that “cross-fertilization™ (one institution visiting another) resulted in a
synthesis of best pract:ice.140 The resulting improvements in the process and structures of
care were voluntary and not pum‘tive:.18 Similar results were found in Ontario where
annual risk-adjusted outcomes were also declining. The Ontario results were
confidentially distributed to each centre but were not disseminated public[y.142 Tuand
colleagues!#? suggested that alternative approaches do exist for achieving improvements

in mortality rates following CABG other than public disclosure.
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The positive outcome of the initial public disclosures of institution and surgeon-
specific outcomes was typified by a proposal by Hammermeister and others’™*>’ fora
new paradigm which would focus on monitoring quality of care through risk-adjusted
outcomes. Hammermeister proposed a participatory continuous improvement model as a
synthesis of three concepts: 1) continuous quality improvement, 2) intellectually and
altruistically motivated self-examination and self-improvement, and 3) a modern medical
information system. Hammermeister believed that participatory continuous improvement
models could provide the framework to positively influence practice patterns which
would then result in improved access, quality and cost-effectiveness of care.?

Many predictive models have been constructed for cardiac surgery patients to
calculate expected operative mortality or morbidity for the purpose of comparing risk-
adjusted outcomes across providers. Methodological sophistication has evolved over the
past decade. The application of results from these models has either been external and
public, or internal and confidential. Both applications have been focused on improving
the quality of care provided to patients undergoing cardiac surgery. However, whether
observed improvements in hospital outcomes can be directly attributed to provider
profiling remains controversial. We present the major American contributors to the

development of predictive risk algorithms below.

34  The Parsonnet Model

Parsonnet and colleagues!” developed one of the earliest predictive rules to
evaluate operative mortality following cardiac surgery.

Parsonnet devised a method to stratify patients by their predicted risk of operative
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mortality by developing a simple scoring system from data which was readily available
from a uniform reporting system in New Jersey. Parsonnet initially used a mixed model
of coronary artery bypass + valve surgery. Sixteen risk factors were evaluated by
logistic regression analysis to predict operative mortality in a test set of 3500 patients and
validated in a set of 1332 patients. However, the predictive risk model presented in their
Table 2 contained 18 variables: gender, morbid obesity, diabetes, ejection fraction, age,
reoperation, preoperative intra-aortic balloon pump, left ventricular aneurysm,
emergency surgery after failed PTCA, renal dialysis, “catastrophic” states, other “rare”
circumstances, mitral valve surgery, increased pulmonary artery pressures, aortic valve
surgery, high aortic valve gradient, and CABG combined with valve surgery. Parsonnet
stated that risk weights for each variable were derived from the logistic regression odds
ratios and relative risk groups determined by cutpoints of expected operative mortality:
good 0-4%, fair 5-9%, poor 10-14%, high 15-19% and extreme 220%.

An additive risk score was assigned to each patient in the test set by non-study
personnel. The score was also externally validated in four other state hospitals. The 95%
confidence intervals for observed mortality were compared to predicted mortality for
each relative risk group. Linear regression analysis was used to compare the observed to
the expected probabilities of mortality for the risk scores. The coefficient of
determination (Rz) was calculated for the calibration curves in both the derivation and
validation sets, however, the intercepts and slopes were not reported.

The authors excluded some risk factors from the scoring system because they did
not satisfy the criteria of being easily quantifiable and readily available. For example,
chronic obstructive lung disease (COPD) may have been an important predictor variable
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but it was not available unless a pulmonary function test was done. Other variables were
too subjective or not universally available, such as, the number of aortocoronary bypass
grafts performed, whether or not an internal thoracic artery was used as a conduit, or
operative priority. The inclusion of idiosyncratic variables or those which measured
process of care may have threatened the external validity of this prognostic index.

The authors stated that they used the odds ratios to form the risk scores but an
examination of their Tables 1 and 2 results in some confusion. Some variables which
comprise the additive risk score were not listed among the variables submitted to the
logistic regression. The odds ratio for diabetes was 1.58 (exponentiated regression
coefficient of 0.456), but the risk score for diabetes was 3. The regression coefficient for
morbid obesity was -0.271 (odds ratio 0.76), suggesting that lower weight patients were
at higher risk of operative mortality. However, the risk score given to morbid obesity
was 3. The variable, acute catastrophic states, measured several domains and was defined
as acute structural valve failure, cardiogenic shock or acute renal failure. The odds ratio
associated with this variable was 4.3. However, the risk score (10-50) assigned to "acute
catastrophic states” seemed quite arbitrary. These issues may have contributed to the
poor performance of the Parsonnet model in external databases.*%">143 Despite this, the
Parsonnet rule has been used in several studies as a metric for risk-adjustment or
assessment. '44-146

In 1996, Parsonnet and colleagues'” re-tooled their predictive rule for isolated
CABG patients by eliminating optional fields and reweighting the variables. Patterned
after the Society of Thoracic Surgery model, the number of variables increased from the
original 18 to 20. They reported an improved fit between predicted and observed
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probabilities for the highest risk patients.

3.5 New York State Model

Hannan and colleagues have written extensively on databases and processes used
to develop and apply predictive rules to the outcomes of cardiac surgery in New York
State,20-28

In response to the Health Care Financing Administrations’ 1987 report, the
Subcommittee on Statistics of Cardiac Surgery Advisory Committee in New York State
developed a patient-specific report card in 1988 to replace the aggregate hospital forms
previously submitted to the Department of Health. These reports were filled out on every
patient undergoing cardiac surgery in 30 hospitals in New York State. The new system
was named the Cardiac Surgery Reporting System (CSRS). The purpose of these reports
was to: 1) evaluate the appropriateness of intervention with regard to long-term benefit,
2) identify risk factors associated with hospital mortality, 3) to calculate provider-
specific, risk-adjusted rates, and 4) evaluate quality of care with regards to short term
risks.2>2! In the first six months of 1989, 7,596 patients were registered in the database.

Variables included in the report were those that were considered easily
obtainable; they included: age, gender, ejection fraction, previous myocardial infarction,
number of open heart operations in previous admissions, diabetes requiring medication,
dialysis dependence, disasters (acute structural defect, renal failure, cardiogenic shock,
gunshot), unstable angina, intractable congestive heart failure, left main trunk narrowed
more than 90%, and type of operation performed. Similar to the Parsonnet model, this
model also contained a variable, “disasters” which contained more than one element of
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information. The internal consistency of the data was checked. A PC based computer
system was developed which contained internal error and logic checks.

In the initial report of their proposed predictive rule to risk-adjust operative
mortality,?! logistic regression analysis was used with backward, stepwise variable
selection. Age was collapsed into three categories and there were no significant first
order interactions. The authors used a split-sample method to derive and test the model.
However, they did not report 95% confidence intervalis or standard errors around the
probability estimates.

Low and high outlier hospitals were identified by the standardized mortality ratio
(observed + expected probability of outcome). The authors found more variation in
mortality rates than could be expected by chance alone.

This was the first study in which detailed clinical information from an entire state
was used to identify risk factors and institutions with significantly high risk-adjusted
hospital mortality for all cardiac surgery patients.

In 1991, Hannan and colleagues?? evaluated the relationship between the volume
of cases and risk-adjusted operative mortality in the 1989 CSRS database of 12,448
CABG patients. Previous studies using claims or administrative data had failed to show
a relationship between low volume and poor outcomes. However, the databases used in
the previous studies had lacked information on important cardiac risk factors. Hannan et
al?2 found that low volume surgeons were a major contributor to outlier status in four out
of five hospitals. High volume surgeons had an operative mortality rate of 2.7% whereas
low volume surgeons had an operative mortality rate of 4.3%.

The authors compared the Cardiac Surgery Reporting System data which
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contained clinical information to the State-wide Planning and Research Cooperative
System’s (SPARCS) administrative data and evaluated the calculation of risk-adjusted
operative mortality from each system.23 Three important risk factors, not available in the
administrative dataset (ejection fraction, reoperation and left main disease), accounted for
much of the difference in predictive power between the two systems. The authors
concluded that SPARCS would improve if secondary diagnoses such as diabetes,
urgency, left main disease etc. were included in the database. Hannan et al concluded
that clinical data coding was unrestrained by ICD-9 codes and had the ability to
distinguish between comorbidity and postoperative complications. The kappa statistic in
this study for agreement between the clinical and administrative datasets for operative
mortality was 0.97.

Hannan wished to evaluate changes in risk-adjusted operative mortality during the
first four years of the CSRS.?* Surgeons and hospitals were divided into three groups
based upon their performance in 1989. All groups and providers demonstrated a decrease
in risk-adjusted operative mortality between 1989 and 1992, with the greatest decrease in
the highest provider group. Expected operative mortality increased in all three groups
over this four year time period, from an increase of 51% in the lowest group to 88% in
the highest group. In fact, in the first year after the original report, expected operative
mortality increased 16% in group 1, 28% in group 2, and 38% in group 3. These results
suggested either a significant increase in case-mix severity in one year or possible
“gaming” or “up-coding” of risk factors.

Some of the improvements may have been a result of overall quality
improvement. In the highest risk group, risk-adjusted operative mortality fell from
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11.8% in 1989 to 4.8% in 1992, a decrease of 59% suggesting that not all the
improvements in outcome were related to gaming. However, without any internal quality
control of the data, the results remain suspect. An imprecise intercept derived from the
1989 model and applied to the 1992 data may have also accounted for the increase in
expected operative mortality. The prevalence of risk factors in the 1992 dataset were not
presented in this paper so case-mix comparisons could not be made with the original
1989 dataset from which the model was derived.

Hannan et al continued to evaluate the improvements in outcomes in New York
State.”> The 1989-1992 CSRS dataset of 57,187 patients was used to calculate risk-
adjusted outcomes from the formula: observed/expected operative mortality times the
overall average operative mortality. The model had a ROC =0.787 and HL P value of
0.16. Adjusted odds ratios and their 95% confidence intervals were presented. Hannan
identified problems with audits in one out of the 10 hospitals evaluated. The authors also
identified that there may have been some potential out-migration to centers in other
states.

Quality improvements were identified in the process of care for emergency
patients. Referral patterns were changed for high risk patients who were directed to
centers with lower risk-adjusted rates. Some surgeons were denied practice and the
heads of some divisions were either changed or programs reorganized. These factors
may have contributed to an overall improvement in the quality of care.’

New York state annually reports institution-specific and surgeon-specific
outcomes of cardiac surgery.>* In response to criticisms that quality improvements in
New York state resulted from a change in case-mix, Hannan and colleagues performed an
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additional evaluation of the relationship between operative mortality and surgical
volume.?® They concluded that improvements were not related to changes in case-mix
but rather an exodus of low volume surgeons with high risk-adjusted operative mortality,
combined with better performance of new surgeons.

In 1997, Hannan et al*® concluded that there was no bias against operating on
high risk patients in New York State. High risk patients comprised 7.3% of the total
population and had an expected operative mortality greater than 7.5%. However, their
data showed that there was a 73% increase in the prevalence of high risk patients in only

two years. Gaming or “up-coding” in the CSRS remain suspect.

3.6 Society of Thoracic Surgeons Model

Clark and colleagues®® described the development of the first national database
for cardiothoracic surgeons in the United States. The framework of this database was
designed for smaller, community cardiothoracic surgeons rather than large tertiary
centers. The impetus for the creation of the Society of Thoracic Surgeons (STS) database
began with the Health Care Financing Administration’s (HCFA) release of raw mortality
rates for CABG and the response of the public to the misinterpretation of the raw rates.
There was no risk stratification in the HCFA reports. In 1986, the Standards and Ethics
Committee to the Council of the STS proposed the development of a nationwide,
voluntary database, stating that "risk stratification is the essence of responsible cardiac
surgery”. The STS solicited an outside contract with Summit Medical Systems Inc in
1990 who offered a four day educational course for data quality. The Society of Thoracic
Surgeons provided a template for voluntary data gathering and continues to maintain
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provider confidentiality.!*’ In June, 1990 the first mailing was sent to members. By
February 1991, 330 members had contributed 70,000 patients. By January 1993, there
was an 86% increase in the size of the database.>®

Edwards, Clark and Schwartz>2 developed the first statistical model to predict
operative mortality on behalf of the STS in approximately 80,900 patients undergoing
CABG between 1980 and 1990. Some of the data pre-dated the STS database therefore
~2000 records were excluded due to invalid data. Additionally, data which pre-dated the
STS database were subjected to varying methods of scrutiny and variable definition.
Because of significant temporal trends in CABG outcomes and the relatively smaller
amount of data prior to 1984, the authors agreed to develop the predictive model in the
1984 to 1990 data only. Data were split into equal derivation/validation sets.

Logistic regression was used to identify the independent predictors of operative
mortality. Bayes Theorem was used to calculate the conditional probabilities of
individual patient outcomes. Bayes modelling was chosen because the authors felt it was
extremely flexible in accommodating temporal changes in the patient population. As the
population changes over time, the conditional probability matrix will change to reflect
the influence of current patient characteristics. As a result of using Bayes, continuous
variables had to be collapsed into dichotomous variables, e.g., age<50 years (Yes/No),
age 50-70 years (Yes/No), and age>70 years (Yes/No). There was no description of the
validity of the chosen cutpoints, i.e., sensitivity or specificity.

Variables included in the Bayesian predictive model were: age, female gender,
morbid obesity, current smoking>100 pack years, diabetes, renal failure, hypertension,
cerebrovascular disease, COPD, valvular heart disease, previous cardiac surgery, number
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of disease coronary arteries, left main stenosis, ejection fraction, ventricular aneurysm,
previous myocardial infarction, angina stability, PTCA emergency, cardiogenic shock,
IV nitroglycerine use, and IV inotropic support. There were a total of 22 prognostic
elements included which increased to 33 input variables to the Bayes model.

Patients in the validation set were ordered by their predicted probability of
Operative mortality as calculated by Bayes Theorem. Five risk groups were constructed
to contain approximately the same number of deaths in each group. The authors
compared the number of predicted to the number of observed deaths within each risk
strata but did not perform any formal statistical testing of differences. Additionally, there
were no confidence intervals reported for the evaluation of temporal trends and no model
diagnostics (ROC, HL) reported for model validation.

In 1995, Shroyer and colleagues''® updated the STS predictive model in over
143,700 isolated CABG patients from 374 practices in the USA. Approximately 5000
records were eliminated because of poor data quality, resulting in a final dataset of
138,762 patients.

The authors evaluated competing strategies for model building: allowing a large
number of variables to compete in the model versus parsimony with a few clinically
important variables. They also employed some data reduction via data review to omit
those variables shown only to affect long-term outcomes but not operative mortality.
Statistical methodology was improved in this report. It included checking for
assumptions of each predictor variable with the outcome; collinearity and scaling
checked; and some subjective variables (e.g., NYHA) were recoded (e.g., rest symptoms

versus no rest symptoms). They used clinical or statistical imputation for missing



variables and included a table of the variable and the rule used for imputation.

Logistic regression analysis was used as the sole method for the development of a
predictive rule in isolated CABG patients. The final model contained 33 variables.
Shroyer et al reported the adjusted odds ratios but no confidence intervals or standard
errors. The C statistic was good for both the test set (0.80) and the validation set (0.79)
but the HL goodness-of-fit P value was <0.001 for both sets.

The patient sample was divided into deciles based on their observed operative
mortality. The model significantly over-estimated risk of operative mortality in the
higher risk subsets. This is a classic example of 2 model that discriminates well but is

poorly calibrated, resulting in a lack of fit, especially at higher risk scores.

3.7  Pennsylvania State
Griffith et al*® compared the state government-imposed Health Care Cost

Containment Council model with the STS model. The Council contracted MedisGroup
of Mediqual Systems Inc of Westborough, Massachusetts for use of their “Severity of
Iliness System (now known as Atlas Qutcomes). This system unfortunately did not
include some cardiac-specific risk factors important for predicting outcomes. The 1990
Pennsylvania report on surgeon-specific outcomes following CABG was based primarily
on the MedisGroup program. The University of Pittsburgh sued the Council and in 1991
moved to the STS model. Hattler™* constructed risk groups using the STS program
cutpoints of expected operative mortality. The results demonstrated a poor fit between
expected and observed probabilities, especially for higher risk groups.

Griffith stated that public reporting may have contributed to an improvement in
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risk-adjusted outcomes as hospitals and administrators addressed processes of care along
with poor performance. All risk groups improved with no obvious case shift. He felt that
the STS database was flawed because it was voluntary and “gaming” was a risk. Data
continue to be suspect because there is no internal audit.

The author challenged cardiovascular surgeons at the 115th Annual Meeting of
the American Surgical Association (Chicago, III) to learn the language and methods of

these statistical models.*S

3.8 Veterans Administration Models

The Department of Veterans Affairs (VA) Continuous Improvement in Cardiac
Surgery Study was initiated in 1987 to develop risk-adjustment models.>® The database
contained 12,712 patients from 43 VA hospitals. A one page information form with 34
variables was filled out on each patient. Operative mortality was defined but not the
explanatory variables. A risk group was defined by the presence or absence of a risk
factor. Logistic regression models were developed for each risk subgroup.

Data reduction by a series of univariate and muitivariable analyses was
undertaken to define a minimum of patient-related risk factors containing the maximum
predictive power for operative mortality. Variables were collected from non-invasive
testing (i.e., history, physical, lab) which reflected the "chronic" state of health. Non-
invasive testing was used to evaluate the "acute" state of health preoperatively and
invasive testing for cardiac disease severity. The authors used the non-invasive model
only to avoid losing 14% of their data. The data were reduced to 14 variables and
separate logistic regression models were run to evaluate odds ratios with and without the
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variable present. The purpose of the report by Griffith et al>® was to identify important
variables. There was no attempt at modelling and there was no comparison of predicted
versus observed outcomes.

Hammermeister and colleagues®? reported the results of their most recent year’s
data from the VA. In 1994, approximately 7000 patients underwent coronary artery
bypass surgery. Patient-level risk factors and outcomes were collected prospectively and
subjected to logistic regression analysis to calculate the predicted probability of operative
mortality. The authors noted a 14% reduction in observed to expected mortality ratios
over a 4.5 year period and concluded that a large-scale, low-cost program of continuous
quality improvement using risk-adjusted outcomes is feasible. They further concluded
that the program of monitoring risk-adjusted outcomes was associated with a decrease in

operative mortality.

3.9 Northern New England Model
The Northern New England Group is comprised of five centers in Maine, New

Hampshire and Vermont. O’Connor and colleagues’ *®

early report identified hospital-
specific and surgeon-specific differences in risk-adjusted operative mortality. A simple
ten variable model was developed to predict operative mortality in CABG patients.
Variables included age, gender, BSA, Charlson comorbidity index, redo surgery, ejection
fraction, LV end diastolic pressure, number of diseased vessels, left main disease, and
surgical priority. The model could be criticized for including both gender and BSA as
these variables often demonstrate high collinearity. In a subsequent paper, O’Connor et

al’’ demonstrated a correlation R? of 0.99 between observed and predicted mortality in
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an independent test set, however, there was no formal testing of the slope or intercept of
the relationship.

O’Connor and colleagues'*’ commented that the on-going evaluation of quality
improvement depends on a reliable and trusted data-gathering infrastructure combined
with technical quantitative expertise. It should combine feedback of outcomes data with
training in continuous quality improvement techniques. The preservation of anonymity,
site visits and an ongoing collaboration has resulted in quality improvement in Northern

New England resulting in a 24% decrease in risk-adjusted operative mortality.

3.10 Cleveland Clinic Models

Higgins and colleagues*! were concerned about the lack of standardization for
risk-adjustment and a need for a predictive model which will predict both mortality and
morbidity. They developed a predictive severity score in a test set of 5051 patients and
validated it in 4069 patients undergoing CABG. Morbidity and criteria for diagnosis
were explicitly defined. The patient sample was well documented. Logistic regression
analysis was used to determine the independent predictors of outcome. The risk weights,
1-6, for each prognostic variable were assigned based on univariate results, odds ratios,
degree of significance in the logistic regression analysis and clinical judgements.
Hosmer-Lemeshow goodness-of-fit statistics and the area under the Receiver-Operator
Characteristic curve were used to evaluate model validity. The resulting model contained
thirteen predictor variables: emergency priority, increased creatinine, severe LV
dysfunction, redo operation, operative mitral insufficiency, age, previous vascular
surgery, chronic obstructive lung disease, anemia, operative aortic stenosis, weight <65
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kg, diabetes and cerebrovascular disease. Sensitivity and specificity analysis were used

to determine cutpoints of the severity score which would identify patients at high risk of
operative mortality (score>6) or morbidity (score>4). Discrimination was good for both
outcomes; however, precision was poorer for the morbidity model.

The authors concluded that the severity system was easy to use because the items
were routinely available without need for special tests, in contrast to the Parsonnet model
where pulmonary function tests were required for a diagnosis of COPD. The model was
most useful for predicting good outcomes in low risk patients. The model did not
identify those at risk for poor outcomes and does not in general, identify those at high
risk.

In a later study employing a sequential risk analysis, Higgins et al*? demonstrated
that the fit between predicted and observed outcomes could be improved by including
processes of care in the model. This method has limited use for a purely prognostic risk
index but allows for revision of prognosis and directed [CU care; as observed by
Christakis and colleagues in a substudy of a randomized controlled trial.® Higgins et al
also concluded that cutpoints of the severity score used to classify patients into risk
subgroups was useful for group analysis but had limited use for predicting outcome in

individual patients.

3.11 Comparing Predictive Models

Daly and colleagues’ %

comparison of five models showed that the New York
and Parsonnet models included variables which were related to processes of care, which
would improve their predictive ability but which would not be appropriate for a purely
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preoperative prognostic risk index.

Orr et al*? evaluated four external models in a sample of 866 patients; the
Parsonnet, Northern New England, Cleveland Clinic and New York models. Although
the models were generally accurate with ROC curves ranging from 0.7 to 0.74, only two
models were reasonably precise (Northern New England and Cleveland Clinic). Orr felt
that the problem was related to statistical over-fitting to the study population. The
inclusion of processes of care may have contributed to the lack of precision of the
Parsonnet and New York models.

The 1995 report by Jones et al on behalf of the Working Panel Group for
Cooperative CABG Database Project7°compared seven external risk models used to
predict operative mortality following CABG. The models compared were from the
Society of Thoracic Surgeons, New York, Veterans Affairs, Duke University, Northern
New England, Minnesota, and New Jersey. The purpose of this evaluation was to
determine how many variables were needed to produce valid predictive operative
mortality probabilities.

Seven core variables were identified by the panel; age, gender, previous surgery,
LV ejection fraction, left main disease, the number of diseased coronary arteries and
surgical priority. Important Level 1 and Level 2 variables were identified by the percent
of the total model chi square contributed by each predictor. Level 1 variables included
height, weight, PTCA on current admission, recent MI, angina, serious ventricular
dysrhythmia, congestive heart failure, mitral regurgitation, diabetes, cerebrovascular
disease, peripheral vascular disease, COPD, and high creatinine.

The C index did not improve significantly when level 1 variables were added to
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the seven core variables. A similar study was performed by Tu and colleagues®’ who
concluded that there was relatively little benefit in model discrimination attained by
adding additional variables into a model which contained the most important half dozen
predictors. Jones and colleagues called for standardization of databases and predictive
rules used in cardiac surgery.

Weightman et al”* compared four external risk scores in a database of 927 CABG
patients. The models compared included those by Parsonnet, Higgins, Trembly and Tu
models. Weightman calculated the sensitivity and specificity of each model. The
authors concluded that the Parsonnet model had moderate complexity and significant
observer discretion for definition of risk factors. By contrast, Tu’s model was easy to
calculate from commonly available variables. They recommended the use of the Tu
model. Weightman and colleagues noted that all the models lacked the ability to predict
risk in individual patients; however, their database was perhaps too small to support

rigorous comparisons.

3.12 Summary

As this overview of methodological issues and knowledge to date suggests,
finding the right model for local use in provider profiling or patient counselling is not
straightforward. Local providers recurrently face the challenge of deciding whether to
use a well-validated “off-the-shelf”” index that may not be ideally suited to the local
setting, or to reshape such a mode! for local use, or to derive a new internal model
exclusively for local use. This issue is explored further in Chapter Four.

Predictive models developed for use in coronary artery bypass surgery may vary
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greatly in size, from a relatively small model of five prognostic variables such as the
CCN model, to a much larger 33 variable model such as that developed from the STS
database. The balance between parsimony and more complete patient characterization
remains an unresolved issue in the literature. In Chapter Four we evaluate the
advantages of modestly increasing the size of a model from five, to nine, easily
obtainable prognostic variables.

Model discrimination is inarguably the most important criterion for a valid model.
However, model calibration is equally important, especially if the purpose of the model
is to compare risk-adjusted outcomes across providers or to counsel patients regarding
the risks and benefits of a procedure. Previously, some authors have calculated the
coefficient of determination (R?) between predicted and observed outcomes. However,
they have not reported either the slope or intercept of the relationship. One could argue
that a linear relationship whose intercept is significantly different from zero indicates a
model which either over- or under-estimates the observed values. In Chapter Four we
present a novel method for evaluating model calibration as well as for comparing two or
more competing models. We also demonstrate the effect of model imprecision on the
ranking of surgeons by their risk-adjusted operative mortality.

Many reports of predictive rules designed to identify risk factors for operative
mortality following CABG have been limited either by not providing a long-term
perspective on outcome trends or by not incorporating risk-adjustment algorithms that
take into account the temporal shifts in risk profiles among patients receiving CABG. In
Chapter Five we demonstrate that improvements in risk-adjusted outcomes were
associated with an overall temporal trend towards improved outcomes which pre-dated
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the public disclosure of risk-adjusted outcomes in the United States. In Chapter Five we
also illustrate a simple method for temporal trend analysis of risk severity and outcomes
using relative risk groups constructed from a predictive rule followed by contingency
table analysis.

Although the focus of predictive algorithms in cardiac surgery has been directed
more recently towards provider-profiling, the most generic use of clinical predictive rules
has been to aid medical decision making and patient counselling. No model can predict
the exact individual who will experience an event, however, statistical models do have
the advantage of being able to integrate a large amount of information and making
reasonably accurate estimates of event rates in subgroups of patients. Some authors have
advocated for the inclusion of explicit probabilities of outcomes in the informed consent.
The issue of interest in Chapter Six is the update of a predictive rule into practice by
clinicians. We evaluate whether or not a predictive rule would aid clinicians in their
probability estimates of operative mortality and prolonged length of intensive care unit
stay.

The development and application of predictive rules in cardiac surgery has been
almost exclusively directed towards hospital outcomes. However, the net benefit of
coronary artery bypass must be evaluated by examining long-term outcomes as well as
the short-term risks of surgery. In Chapter Seven we examine long-term survival and
freedom from re-admission to hospital for cardiac events in a unique study which links a
large clinical database to administrative data. Specifically, we examine whether a
predictive rule designed for operative mortality can be expanded to evaluate long-term
survival and freedom from cardiac events requiring hospitalization. Additionally, we
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develop a novel predictive rule to estimate survival probabilities over the first five years
following surgery and explore a method by which this rule could be used to evaluate risk-

adjusted, long-term survival.
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Chapter Four

Evaluation of Three Modelling Strategies
in the Use of Predictive Risk Indices for Assessing Mortality

After Coronary Artery Bypass Graft Surgery *

* Adapted from:
Ivanov J, Tu JV, Naylor CD: Ready-made, recalibrated, remodelled? Issues in the use of
risk indices for assessing mortality after coronary artery bypass graft surgery. Circulation

1999;99:2098-2104
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4.1 ABSTRACT

Background: Risk indices for operative mortality following cardiac surgery are used for
comparative profiling of surgeons or centres. We examined whether clinicians and
managers should use an existing index without modification, recalibrate that index for
their populations, or derive a new model altogether.

Methods: Drawing on 7,491 consecutive patients who underwent isolated coronary
artery bypass graft surgery (CABG) at two Toronto teaching hospitals between 1993 and
1996, we compared three strategies: 1) using a “ready-made”, external model that had
originally been derived and validated in our jurisdiction; 2) recalibrating the “ready-
made” model to better fit the population; and 3) deriving a new, internal model with
additional, or different risk factors. The three strategies were compared for: statistical
accuracy, i.e. area under a Receiver-Operator Characteristic curve ( ROC); statistical
precision, measured as Hosmer-Lemeshow (HL) goodness-of-fit; and actual impact on
both risk-adjusted operative mortalities (RAOM) and performance rankings for 14
surgeons. The newly derived index was externally validated in the 1998 set of 1793
CABG patients at the Toronto General Hospital.

Results: The new model was slightly more accurate than the existing index (ROC 0.78
versus 0.76 , P<0.05), albeit not different than the recalibrated model (ROC =0.77). HL
was significant (P<0.001) for the original model indicating a poor fit between predicted
and observed results whereas the recalibrated and remodelled indices demonstrated
excellent calibration (HL = 0.248, 0.383 respectively). The statistical imprecision of the
“ready-made” model resulted in a significant underestimation of RAOM (1.6 £0.2%)
compared to the recalibrated and remodelled indices (2.5+0.2%, P =0.048). Relative
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ranking for 7 surgeons with the lowest RAOM was identical across all three models.
However, remodelling resulted in re-ranking of surgeons with higher RAOM and a loss
of correlation between the models for rank of surgeon (Spearman r.=0.857, P=0.07).
External validation of the remodelled index resulted in a ROC of 0.802 and HL P value
of 0.42 suggesting continued good accuracy and calibration.

Conclusions: Poorly calibrated risk algorithms biased the calculation of risk-adjusted
operative mortality. Any existing index used for risk assessment in cardiac surgery
should be episodically recalibrated or compared to a new model to ensure that its

performance remains optimal.
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42 INTRODUCTION

Along with the proliferation of public “report cards” on cardiac surgery in the
United States, researchers have published many predictive rules or risk-adjustment
algorithms for mortality, morbidity and length of hospital stay after
surgery.‘"’21'2""32"”‘-"3‘9'“'53’65'92’95'[‘5'149'15O These risk indices aim at identifying and
weighting the patient characteristics that affect the probability of specific adverse
outcomes. Indices are then used retrospectively to adjust for case-mix differences among
surgeons and centres when performance profiles are compiled. They are also used
prospectively for patient counselling and for the identification of high-risk patient
subgroups for special care or research.

Patient populations — and the risk factors associated with adverse outcomes —
do change over time and also differ between centres. Thus, risk models derived and
validated in one locale usually perform less well when applied in other settings or even to
more contemporary patients in the same setting. 17404192199 Cinicians and managers
considering the use of a risk index accordingly have three basic options:

1. They can use an existing, external index, knowing that the identified risk
factors or at least the weights assigned to them may not be ideal for their
patient populations (‘ready-made’).

2 They can accept the risk factors in a published index, but adjust the
precision of the index to their own patient population by ‘recalibrating’
the weights assigned to a published model.

3. They can derive an internal index from their own data (‘remodel’).



In this chapter, we explore the implications of these options for assessment of
operative mortality using a detailed dataset with information on consecutive patients
undergoing isolated coronary artery bypass graft surgery {CABG] at two Toronto
teaching hospitals. Specifically, we have compared the analytical strategies of
‘recalibrating’ and ‘remodelling’ against a ‘ready-made’ rule developed by the authors

for the Ontario Cardiac Care Network (CCN).*?

43 METHODS
43.1 Data Sources

We examined clinical risk factors and operative mortality (OM) for all 7491
patients undergoing isolated CABG under the care of fourteen surgeons at The Toronto
Hospital (n = 5343) and Sunnybrook Health Science Centre (n = 2148) between April 1,
1993 and December 31, 1996. Details of this database have been previously
publishecl.128 Data from earlier years were deliberately excluded as they were included
in the multi-centre dataset used to derive and validate the CCN index. Twenty patients

were missing one or more data elements used in the analyses.

43.2 Analysis
General issues

Data were collected and managed in dBASEIV datasets. The SAS 6.12 for
Windows'>! and BMDP/DYN LR'3? programs were used for statistical analysis. We
were not seeking to recalibrate or rederive an index for external and general application.
Thus, we forewent split-sample methods (i.e. separate derivation and validation steps)
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with both the ‘recalibrating’ and ‘remodelling’ strategies described below.
Generating the models

‘Ready-made’: We used a six-variable risk index developed for the Ontario
Cardiac Care Network (CCN), drawing on all patients undergoing cardiac surgery in the
province between April 1991 to March 1993. Since CABG served as the reference level
for type of surgery in the original model, one variable — type of surgery — was set to its
null value, leaving only five variables and their associated risk scores. The original
regression coefficients for each variable were used to calculate patient-specific predicted

probability (P) of OM from the formula:

e Bo+B1Xy B2 Xoenne +B ot
1 +e Bo*BrXy *B2X *Brra

oM

where (, = the constant and = the regression coefficient for each level of a risk factor

in the model that characterizes the patient.

‘Recalibrated’: The five explanatory variables from the CCN index were included
in logistic regression analyses of the 1993-1996 dataset to re-estimate mortality-specific
regression coefficients and related risk scores. The predicted probability of OM as well
as the total risk score for each patient was calculated as for the CCN model. 3106

‘Remodelled’: The University of Toronto cardiac surgery registry covers a wide
variety of potential risk factors.'?® All explanatory variables with a univariate P value

<0.25, as well as those found commonly in other major risk indices but failing to meet
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the critical alpha level, were submitted to logistic regression analyses using forward
selection combined with backwards elimination.®*1%° The best logistic regression model
was determined by two diagnostic criteria: the Hosmer-Lemeshow goodness-of-fit
statistic (HL)'% and the area under the Receiver-Operator Characteristic curve
(ROC).”'“’&109 As in the CCN index, odds ratios were rounded to the nearest integer,
and an additive risk index created.'’>° Because of small numbers, risk scores greater
than 18 were collapsed, (i.e. score >18 for OM).
Statistical comparisons of index performance

Statistical accuracy, or model discrimination, was assessed with the area under
the ROC curve %819 for each model, with comparisons between models as described by
Hanley and McNeil.'®

Statistical precision, or model calibration, was evaluated by the Hosmer-
Lemeshow goodness-of-fit statistic.'%> We also plotted the mean predicted probability
for OM against observed OM for each total risk score,?*2 and carried out a weighted
linear regression to evaluate whether the relationship was over- or under-
estimated.!”"* A slope of 1 and intercept of 0 would indicate a perfect it of predicted
to observed outcomes.% Differences in slopes and intercepts between the three
regressions were evaluated by analysis of covariance with pairwise comparisons as
appropriate.

Accuracy and precision at the individual patient level were evaluated by the
calculation of Brier Scores. The Brier score (BS) is a quadratic penalty score with values

between 0 and 1; therefore, the lower the Brier score, the more accurate the judgement.

57



The formula is as follows:
BS= (P-dy’

where P=predicted probability of outcome, d (event) 0=event did not occur, 1=event
occurred. The precision of a set of probabilities is evaluated by calculating the associated
Z statistic. Z statistics >{1.96} indicate a set of judgements which is significantly
imprecise, !51693.110-114
Clinically-salient comparisons of index performance

Expected mortality for each surgeon for each model was calculated as the
weighted mean predicted probability of OM based on the observed risk factors in his/her
case load. Risk-adjusted operative mortality (RAOM) was calculated by dividing the
observed mortality by the expected mortality and then multiplying that ratio by the
overall mortality rate in the study population (0.0226). This result can be interpreted as
the mortality rate a surgeon would have if his/her case-mix was similar to the average
case-mix in the stua:iy.67

Within each model, the difference between the mean observed mortality minus
the mean expected mortality was evaluated by paired ¢ test for the null hypothesis (H,)
that the difference equalled zero.”? The differences in RAOM across 14 surgeons and
three models were evaluated by analysis of variance.

For each model, the surgeons were ranked from 1 (lowest RAOM) to 14 (highest
RAOM) based on how they ranked in the original CCN model. We examined
qualitatively whether the ranking of surgeons changed and also calculated Spearman rank

correlation coefficients (R;) across models.
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External Validation

The regression coefficients and intercept from the newly derived index were
applied to the 1998 dataset of 1793 patients undergoing isolated CABG at the Toronto
General Hospital. Model validity was evaluated by the area under the ROC curve and the
HL goodness-of-fit statistic as well as regression analysis of the mean weighted predicted
versus observed values for each risk score. This exercise was repeated for the original
CCN index.
Testing an external model

For complementary insights, we used a model developed and validated by
Parsonnet and colleagues'’in a database of over 4800 patients undergoing cardiac surgery
in New Jersey to calculate predicted probability of OM for each patient. The variables
included in the Parsonnet model and the regression coefficients are as follows: age
(0.054), aortic valve disease (0.235), bypass only (-0.588), bypass pius other procedures
(0.647), elevated cholesterol (0.083), diabetes (0.456), “catastrophic” states (1.455),
family history (-0.065), female gender (0.509), hypertension (0.263), left ventricular
aneurysm (-0.533), left ventricular ejection fraction (0.271), mitral valve disease (0.835),
obesity (-0.271), preoperative intra-aortic balloon pump (1.473), reoperation (0.893),
smoking (0.089); the constant was -7.032. Further definitions of these variables are

found in the report.!” We evaluated ROC and the HL statistic.
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44 RESULTS
4.4.1 Risk factors and risk groups for the three models

There were 169 operative deaths (2.26%) in the 1993-1996 patients. The
prevalence of risk factors and their univariate association with operative mortality (OM)
are shown in Table 4.1.

The independent predictors of operative mortality for the new internal model
were: LV grade, age group, previous bypass surgery, the timing of surgery, sex, triple
vessel disease, left main coronary artery disease, peripheral vascular disease, recent
myocardial infarction, acute coronary insufficiency, and a history of hypertension. Given
its recurrence as a risk factor in other published indices, we forced preoperative renal
insufficiency into the model but its inclusion unfavourably affected both model
discrimination and precision, possibly because of its low prevalence in our database or
collinearity with other important predictors.

Table 4.2 contains the original odds ratios for OM and risk weights for the
“ready-made” CCN model as well as the odds ratios, their 95% confidence intervals and
risk weights from the recalibrated and remodelled indices. Comparing the CCN and
remodelled indices, all five original risk factors do recur, but there are differences in
weights, most notably for repeat operation and grade IV ventricular function.

Table 4.3 shows the number of patients defined by each risk score for each model
and the observed operative mortality for that model’s score. The addition of four
explanatory variables to the remodelled index redefined “risk™ in 87% of patients who

bore at least one of the four conditions and resulted in a lower prevalence of both patients
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and OM at the lower risk scores.

4.4.2 Statistical parameters of index performance

As shown in Table 4.4, the longer, remodelled index showed a small increment in
accuracy over the original CCN index (ROC 0.78 vs. 0.76, P <0.05), with the recalibrated
index between them (ROC = 0.77). The ‘ready-made’ CCN model showed significantly
poor fit between predicted and observed results (P <0.001) at both the group (HL) and
individual patient levels (BS), while the other models had acceptable calibration.

Another method of assessing model fit is shown in Figure 4.1, depicting the mean
predicted probability of operative mortality versus observed operative mortality for each
cumulative risk score. The original CCN model over-estimated predicted OM (top
panel). In contrast, for the recalibrated and new models, slopes were closer to 1, and
intercepts were not significantly different from zero. Analysis of covariance confirmed
that there was a significant difference in intercepts between models. Pairwise
comparisons showed that, as with the ROC curve area, the significant difference arose

only in comparing the original CCN model and the newly remodelled index (P=0.044).

44.3 Operative Mortality: Observed, Expected, and Adjusted

We compared observed and expected mortality for each model. The observed
minus expected (O-E) mortality rates for each surgeon were compared and found to be
significantly different from zero for the CCN model (-1.04 £ 0.4%, P=0.011) but not with

recalibration (0.17 £ 0.3%. P=0.62) or remodelling (0.21 + 0.3%, P=0.55). Inter-model
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comparisons by analysis of variance confirmed that the CCN model had a significantly
greater disparity between observed and predicted results as compared to both the
recalibrated (P=0.017 versus CCN) and remodelled indices (P=0.014 versus CCN).

As shown in Figure 4.2, this higher expected OM in the “ready-made,” CCN
model resulted in an under-estimation of risk-adjusted operative mortality (P=0.047 as
compared to the remodelled index). RAOM was similar to unadjusted OM for the

recalibrated and remodelled indices.

4.4.4 Surgeon-specific rankings

Table 4.5 depicts the relative ranking of surgeons for each of the three models
from lowest RAOM (rank=1) to highest (rank=14). Recalibration resulted only in
surgeons #8 and #9 exchanging positions. Remodelling, however, resulted in surgeon
#13 shifting up by three positions and surgeons #10 and #11 each moving down two
ranks. Despite these latter shifts, the overall Spearman correlation coefficient (Ry)
showed a significant association between ranks for the CCN and new models (R; = 0.982,
P=0.012) because the positions of the first seven surgeons were stable across models.
However, examining the seven higher ranking surgeons revealed a diminished correlation

(r, = 0.857, P=0.07).

4.4.5 External Validation
The external validation exercise conducted in the 1998 dataset of 1793 patients

undergoing isolated CABG at the Toronto General Hospital (OM=1.3%) resulted in a
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ROC of 0.802 and HL P value of 0.42 for the remodelled index. The regression analysis
results comparing predicted to observed mortality for the remodelled index as applied to
the 1998 data were as follows: intercept = 0.006 (P=0.045), slope = 1.09 (P<0.001), and
R?=0.93 (P<0.001).

The original CCN index also demonstrated good discrimination (ROC = 0.794),
however, it remained significantly imprecise (HL P value <0.001). Regression analysis
results for the CCN index as applied to the 1998 data were as follows: intercept = 0.057

(P=0.04), slope = 0.439 (P=0.016), and R? = 0.54 (P=0.016).

44.6 External model performance
The Parsonnet model performed poorly in our 1993-1996 dataset of isolated

bypass surgery. The area under the ROC curve was only 0.45 and the HL was <0.001.

45 DISCUSSION

We have compared three possible strategies for assessing risk-adjusted outcomes
of cardiac surgery -— ‘off-the-shelf’ use of a simple, multipurpose risk index,
recalibrating that published index to ensure a better fit to the available data, and deriving
a new, internal model with additional risk factors. The comparisons were effected in a
clinical database of all isolated coronary artery bypass surgery patients undergoing
operation between April 1 1993 and December 31, 1996 at two large teaching hospitals
in Toronto, Canada. The newly derived model was validated in an external dataset

according to methods suggested by Harrell”” and others,'*#¢% and demonstrated
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continued good accuracy and precision. The external model developed by Parsonnet and
colleagues!” performed very poorly in our 1993-1996 dataset. The original CCN model
continued to have good discrimination in the 1998 dataset but remained significantly
imprecise.

Our rationale was to offer some guidance to providers who must respond to the
burgeoning literature on risk indices. We accordingly discuss the implications of our

findings under three subheadings below.

4.5.1 Implications for benchmarking improvements over time

The original CCN model was derived and validated for earlier years. As such, it
tended to overestimate the chances of post-operative death for high risk patients, with the
result that risk-adjusted outcomes improved. Experience with the Society of Thoracic
Surgeons 3> risk adjustment algorithm has been similar. Their original 23-variable
model was derived using Bayesian methods from data on tens of thousands of subjects
and scores of centres. Nonetheless, in recent years the model has predicted a rising
probability of operative mortality owing to an increasing prevalence of high-risk patients,
even as observed operative mortality has decreased.

If the goal of an outcomes analysis is to determine trends in mortality over time,
then arguably a risk model derived and validated from an earlier period can be used,
because it anchors practice historically and controls for the evolution of case-mix. One
limitation is that improved reportage of risk factors (“upcoding”) in contemporary groups

of patients may lead to a spurious impression that risk-adjusted outcomes are improving.
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For example, critics have charged that this phenomenon, rather than the impact of public

report cards, explains the improved outcomes of cardiac surgery in New York State.'¥!

4.5.2 Implications for contemporaneous quality management or patient

counselling

Setting aside temporal benchmarking, the usual goals of an outcomes analysis are
contemporary quality management or risk prediction by, respectively, comparing the
risk-adjusted outcomes of surgeons or centres, or identifying patients in high-risk
subgroups. For this purpose, our findings suggest that practitioners and managers should
consider recalibrating an existing index or developing a new model with the data at hand.

Recall first that our “ready-made” CCN index was originally derived and
validated in Ontario, using data from nine centres, including the two hospitals that
contributed subsequent patients to the current study. Thus, it is perhaps not surprising
that the CCN index still showed good discrimination in this study, with a ROC area of
0.76. However, the CCN index showed poor calibration associated with over-estimation
of expected operative mortality — a feature of model performance that is undesirable for
both prospective risk prediction and post-hoc risk adjustment. Poor calibration
presumably occurred not only because of temporal shifts in case-mix, but also because
the CCN index was developed in a dataset that combined ischemic and valvular heart
disease, and we were applying it to an isolated CABG series. Variables such as redo
surgery and poor ventricular function would have different associated risks for isolated

CABG versus a mixed population of valve and bypass surgery. Parsonnet,'” for
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example, observed a deterioration in model performance when his predictive rule,
developed in a dataset that combined CABG with valve surgery, was subsequently tested
for CABG and valve procedures separately. Additionally, the Parsonnet model contained
variables such as “catastrophic states” which measured several domains such as acute
structural valve failure, cardiogenic shock or acute renal failure. The inclusion of
variables which occur with significant infrequency combined with a weighting strategy
which was somewhat arbitrary seriously threatened the validity of the Parsonnet model in
our database. The CCN index was also derived to cover both OM and length-of-stay
outcomes, and the recalibration here was outcome-specific.

Recalibration was therefore a promising strategy in this context. More generally,
it allows a group of practitioners to remain efficient in data collection, restricting their
efforts to careful documentation of a limited number of pre-specified variables. By
reweighting these variables and fine-tuning the risk index, analysts may sometimes
mitigate shifts in case-mix and outcomes that occur either over time or as the index is
applied to centres other than those from whence it was derived.

Indeed, recalibration did lead to some improvements in model performance in this
test case. Whereas the original CCN index demonstrated significantly poor fit with data
from this new series of almost 7500 patients, the recalibrated index fit the data well and
we avoided over-estimating operative risk. The recalibrated model also showed similar
discrimination to a new and more complex model, and yielded similar relative ranks for
most surgeons. However, for the higher RAOM surgeons, the new model did lead to

some alterations in surgeon outcome rankings — an observation that underscores the



potential practical importance of even small marginal improvements in model accuracy
from a statistical standpoint.

In sum, for clinicians and managers who have developed their own index in the
past, or found an index that shows acceptable performance in their patient populations,
episodic recalibration of that index may suffice. However, in those instances where there
are profound differences in case-mix or event rates, it will be prudent to derive a new

model with the data at hand.

453 How many risk factors are enough?

Recently the Society of Thoracic Surgeons published its updated risk model for
1995,''> developed from a database of over 138,000 patients operated on at 374 hospitals
throughout the United States and Canada. The model shows excellent accuracy, but now
requires 33 predictor variables. Apart from increased costs of data collection, and
increased risks of data ‘gaming’ or random errors, the large numbers of explanatory
variables also increase the chances of statistical over-fitting and model instability when
applied to specific centres.

In contrast, the original CCN model was designed to be parsimonious and robust
for multi-centre comparisons.39 The new mode! adds only four variables, bringing the
total to nine for isolated CABG. These factors are similar to those reported previously
by our group'?® and others, |7-21:22-32.37-39.41,53,65,95,149,150 41,4 include those highlighted in
recent guidelines from the Working Group Panel on the Co-operative CABG Database

Project. 70 Despite minor differences in surgeon rankings, this new model had similar
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performance characteristics to the recalibrated CCN model with only five variables. This
latter result is consistent with our earlier findings on the limited marginal improvements
in model performance with increasing numbers of predictor variables.®’ Accurate and
complete data collection on a constrained set of important variables appears to be a

prudent strategy.

Summary

Our findings illustrate that temporal and inter-centre differences in case-mix
make it difficult to achieve optimal predictive performance with “ready-made” risk
indexes. This observation argues against the proliferation of published risk indices in the
clinical literature that either affirm well-known prognostic factors or add new variables
with minimal marginal impact. We have also demonstrated that recalibration of existing
indices may sometimes be sufficient to ensure adequate risk prediction even when
models are parsimonious. As a precaution, however, we suggest that centres collect data
fastidiously on a modest-sized set of key variables such as those suggested by the
Working Group Panel, 7 continue to evaluate the model’s validity, and undertake
intermittent remodelling to ensure that emerging risk factors are not inadvertently

overlooked.



Table 4.1

evalence
N (%)

Unadjted
Odds Ratio

Sex: Male|| 5932 (79) | 113 (1.9)
Female|| 1559 (21) 56 (3.6) | <0.001 1.89

Age: <65 4066 (54) 56 (1.4)
65-74|| 2653 (35) 73 (2.8) 1.99
275§ 772 (10) 40 (5.2) <0.001 3.75

LV Grade: 1| 2428 (32) | 22 (0.9)
20 3177 (42) | 57 (1.8) 2.00
3“ 1666 (22) | 63 (3.8) 422
4 220 (3) 27 (12.3) | <0.001 13.3

Timing: Elective | 4153 (55) | 65 (1.6)
Semi-Urgent} 3035 (42) | 83 (2.7) 1.69
Emergency 218 (3) 21 (9.6) <0.001 6.00

CABG Redo: Nof| 7059 (94) | 139 (2.0)
Yes|| 432(5.8) 30 (6.9) | <0.001 345

Left Main Disease: Nojf 6296 (84) | 127 (2.0)
Yes|| 1195 (16) 42 (3.5) 0.001 1.75

Triple Vessel Disease: Nofl 2149 (29) 30 (1.4
Yes|| 5342 (71) | 139 (2.6) 0.001 1.86

Peripheral Vascular Disease: Noj| 6398 (85) | 121 (1.9)
Yes| 1089 (15) 47 (4.3) | <0.001 2.26

Hypertension: No|f 3733 (50) 63 (1.7)
Yes|t 3741 (50) | 104 (2.8) 0.001 1.65

Recent MI: Nof| 5501 (74) | 101 (1.8)
Yes{| 1977 (26) 67 (3.4) | <0.001 1.89

Previous Stroke/TIA: Nof 6909 (92) | 151 (2.2)
Yesl| 579 (7.7) 18 (3.1) 0.151 1.41

Acute Coronary Insufficiency: No|| 4884 (65) 89 (1.8)
Yes|| 2606 (35) 80 (3.1) 0.001 1.72
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Diabetes: No

Prevalence oM xz Unadjed
~__N (%) N (%) P value Odds Ratio
5662 (76) | 117 (2.1)
Yes|| 1824 (24) 51 (2.8) 0.067 1.33

Renal Failure: No || 7227 (96) | 149 (2.1)
Yes|| 260 (3.5) 19 (7.3) | <0.000 3.48

Legend for Table 4.1 OM=operative mortality, MI=myocardial infarction,

TIA=transient ischemic attack.
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Table 4.2

Variable J CCN Model®?

Risk

Recalibrated | Risk ‘ Remodelled i
_7 95% CI) | Wgt | OR (95% CI)

Risk

e | Wet* Wet
LV Grade: 2 1.29 1 1.84 (1.1,3.0) 2 1.81 (1.1,3.0) 2
3 2 3.75 (2.3,6.2) 4 3.63 (2.2,6.0) 4
4 3 13.4 (7.3,25) 13 11.6 (6.2, 22) 12
Age: 65-74 2 1.82 (1.3, 2.6) 2 1.67 (1.2,24) 2
275 3 3.36 (2.2,5.2) 3 2.94 (1.9,4.6) 3
CABG Redo 3.22 2 3.16 (2.1,4.8) 3 3.30 (2.1,5.1) 3
Timing: Semi-Urg 1.45 1 L 1.28 (0.9, 1.8) 1 1.20 (0.8, 1.7) 1
Emergency 5.70 4 3.68 (2.1,6.5) 4 3.45 (1.9,6.2) 3
Female 1.68 1 1.92 (1.4,2.7) 2 1.82 (1.3,2.6) 2
TVD | x X 1.58 (1.0,24) | 2
HypertensionL X X 1.45 (1.0, 2.0) 1
Left Main Disease X X 1.40 (1.0, 2.0) 1 II
PVD X X 1.39 (1.0, 2.0) 1 "
Constant 0.0100 0.00395 0.00221
HL 0.45 0354 0.599
ROC 0.75 0.755 0.778

Legend for Table 42: Risk wgt = risk weight, OR = odds ratio, 95% CI = 95%

confidence interval, HL = Hosmer-Lemeshow goodness-of-fit statistic, ROC = area

under the Receiver-Operator Characteristic curve, x = variable was not submitted to the

model

The referent values are (in order) LV Grade 1, age 65 years, primary CABG, elective

timing, male sex, single or double vessel disease, no history of hypertension, no left main
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disease, no peripheral vascular disease.

* The risk weights for the “ready-made” CCN model were derived from averaging odds
ratios across three separate outcomes, operative mortality, prolonged ICU length of stay
and prolonged hospital length of stay. Odds ratios are presented here just for the

operative mortality model.
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Table43  Operative Mortality at Each Risk Score

CCN Model Recalibrated Remodelled

N (%) N (%) N (%)

0 | 1703 ©14) | 1703 (0.14) | 0150 (0)

1 | 101312 076) | 1340 (029) | o161 (0)
2 | 1271533 0.78) | 12/1342 (0.89) | 11465 (0.22)
3 | 311379 @25) | 51897 (0.56) | 2/622 (0.32)
4 | 23134 @03) | 19195 (159) | 6848 @.7) |
s | 28/804 (3.48) | 22996 (221) | 6/926 (0.65)
6 | 32383 (836) | 195618 (3.07) | 13/922 (1.41)
7 | 13140 929) | 21587 (3.58) | 17/916 (1.86)
8 | 650 (120) | 13303 (429) | 201746 (2.68)
o | 829 (276) | 13132 (9.85) | 16/536 (2.99)
10 | 517 294) | 6100 (6.00) | 15418 (3.59)
1 i 229 (690) | 16/268 (5.97)
12 i Y12 (1667) | 12/137 (8.76)
13 ] 6/67 (1045) | 792 (7.61)
14 i 436 (1L11) | s/52 (9.62)
l‘ 15 i 871 (845) | 4/51 (7.84) “
16 - 15/56 (28.6) | 3/39 (7.69)
17 ] - 7135 (20.0)
>18 ] - 17/82 (20.7)

Legend for Table 4.3: The addition of four variables to the remodelled index and the re-
weighting of key prognostic factors resulted in fewer patients at lower risk scores in the
remodelled index and substantially lower observed OM as compared to the other two

models.



Table44  Evaluation of Accuracy and Precision of Predicted versus Observed
OM for Each of the Three Indices

CCNModel | Recalibrated | Remodelled |

ROC | 0.760+0.022 | 0.77020.021 | 0.780+0.021*
HL <0.001 0.248 0.383
BS (x100) | 2.14+0.18 2.10£0.15 2.08+0.15

“ P value <0.001 0.47 0.44

Legend for Table 4.4: ROC = area under the receiver-operator characteristic curve + the

standard error. * Different from the CCN model, P=0.045
HL = Hosmer-Lemeshow goodness-of-fit P value, BS = Brier Score (+ standard error); a

P value <0.05 indicates poor calibration.
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Table 4.5

CCN Model Recalibrated Remodelled

Surgeon rank | Surgeon rank | Surgeon rank

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7

| 8 9 9
9 8 8
10 10 13 “
11 i1 12

“ 12 12 10
13 13 11
14 14 14

Legend for Table 4.5: The number for each surgeon was assigned according to his/her
ranking position for risk-adjusted operative mortality (RAOM) rate as calculated by the
original CCN model. The modelling strategy did not affect the relative ranking for the
seven surgeons with the lowest RAOM (Spearman correlation coefficient = 1.0,
P<0.0001). The type of model did however affect the ranking of surgeons with higher
RAOM (Spearman correlation coefficient = 0.857, P=0.069). Surgeon #13 moved up 3
places; surgeons #10 and #11 shifted down 2 places with remodelling.
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Figure 4.1
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Legend 4.1 The top panel depicts the results for the mean predicted probability of operative

mortality (OM) as calculated by the original CCN model's regression coefficients versus observed
mortality at each cumulative risk score (closed squares). The parameter estimates for the weighted
linear regression analysis are given (intercept and slope) as well as the R square. In the middle panel,
regression coefficients and risk weights were re-estimated for those five variables in the CCN model.
The bottom panel depicts results for the more complex, nine variable model. The dashed diagonal line
represents a perfect fit between predicted and observed values. The CCN model was different from the

Remodelled index by ANCOVA, P=0.044. 2%
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Chapter Five

Application of a Predictive Rule Used for Risk Stratification:
Evaluation of Fifteen-year Trends in Risk Severity
and Operative Mortality in Elderly Patients

Undergoing Coronary Bypass Surgery *

* Adapted from:
Ivanov J, Weisel RD, David TE, Naylor CD: Fifteen-year trends in risk severity and
operative mortality in elderly patients undergoing coronary artery bypass graft surgery.

Circulation 1998;97:673-680
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§1  ABSTRACT

Background: Trends in risk-severity and operative mortality (OM) were
examined in 3330 consecutive patients aged 70 years and older who underwent isolated
coronary artery bypass graft surgery (CABG) between 1982 and 1996.

Methods and Results: The proportion of elderly patients rose significantly over
time (P<0.001). Crude OM among the elderly was 7.2% in 1982-86, fell to 4.4% in
1987-1991, but did not improve thereafter. Logistic regression analysis of OM was used
to construct relative risk groups (low, medium, high). The prevalence of high-risk
elderly patients rose significantly over time (P = 0.001) from 16.2% in 1982-86 to 19.5%
in 1987-91 and 26.9% in 1992-96. OM in high-risk patients fell significantly (P = 0.044)
from 17.2% in 1982-86 t0 9.1% in 1987-1991, and was 8.9% in 1992-1996.

Contemporary independent predictors of OM among elderly patients were: poor
ventricular function (LV Grade 2-3, odds ratio [OR] 2.6, 95% confidence interval [CI]
1.3-5.2; LV Grade 4, OR 10.7, CI 4.4-26); previous CABG (OR 3.7, CI 2.0-7.0); female
sex (OR 1.8, CI 1.1-2.8); peripheral vascular disease (OR 1.8, CI 1.1-2.8); and diabetes
(OR 1.7, CI 1.1-2.7). Previous angioplasty was protective (OR 0.3, CI 0.1-0.9).

Conclusions: Previous reports of hospital outcomes in the elderly have been
limited either by not providing a long-term perspective on outcome trends or by not
incorporating risk-adjustment algorithms that take into account the temporal shifts in risk
profiles among patients receiving CABG. This study highlights the methodological
advantages of using a predictive rule to establish a temporal benchmark and stratifying
patients into relative risk groups, and then using simple contingency table analysis to

evaluate temporal trends in risk severity and outcomes. We observed that OM in elderly
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patients has declined significantly in recent years despite an increase in the prevalence
and severity of their risk factors. A careful weighing of risk, rather than advanced age
alone, should determine who is offered surgical revascularization. In this regard, poor
ventricular function and redo CABG surgery continue to have the greatest impact on OM

in elderly patients.
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52 INTRODUCTION

Within the context of cardiac surgery, the use of predictive rules for risk
stratification has more commonly been employed as a method of comparing observed to
expected probabilities, either during the model validation step or during provider-specific
comparisons.”''8""'54 In this chapter, we demonstrate and evaluate the use of a
predictive rule as a research tool used for risk stratification in elderly patients undergoing
coronary artery bypass surgery (CABG).

The elderly comprise the fastest growing segment of North American society and
the greatest increases in numbe'rs are in the oldest group, i.e., persons 285 years,!33-136
Increasing numbers of elderly patients now undergo CABG.!3157138 Indeed, over the
past 20 years, the definition of “elderly” in the literature on cardiac surgical outcomes has
gradually increased from persons 265 to those >80.118:136,157-172 Thjg shift reflects
reductions in the risks of surgery arising from improvements in technology, skills and
patient selection, !53156:157.160-162,165,173,174

In Ontario, Canada’s most populous province, the population-based utilization of
CABG since 1985 has doubled among persons aged 65-74 years and population-based
service rates more than tripled among persons aged 75 years and over.!™ Despite these
trends, the 1993 CABG service rate in Ontario was about half that of New York State for
patients aged 65-74 and only one-third the New York rate for those 275 years of age.!"®
New York, in turn, is at the low end of the American range for population-based CABG
rates.

Although there have been no randomized trials comparing the efficacy of surgery

to medical therapy for ischemic heart disease in a targeted group of elderly patients, the
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lower rates of service among elderly Ontarians do raise questions about whether some
patients are being denied procedures that may improve their quality of life. Stason'”’
has suggested that the elderly tend to value improved quality of life more highly than
prolonged longevity. Furthermore, several studies have reported improved quality of life
in elderly patients who underwent CABG.!64167.178-180 However, if the vital risk of
surgery is large, then the risk-benefit ratio may be tipped toward medical therapy for the
elderly.

We have accordingly examined the trends in postoperative mortality among
elderly Ontarians undergoing CABG at Canada’s largest teaching hospital. We have
used multivariable methods and a predictive rule to calculate risk-adjusted outcomes,
thereby creating a “level playing field” for temporal comparisons of outcomes. More
specifically, we report on: a) the temporal changes in the prevalence of elderly patients
(270 years of age) undergoing CABG over a 15-year period in Toronto, b) the risk-
adjusted temporal changes in clinical severity and in-hospital operative mortality among
these subjects, and c) the contemporary predictors of postoperative mortality in a 1991-

96 cohort of elderly patients undergoing CABG.

§3 METHODS
5§3.1 Data Source

Clinical, operative and outcome data were collected prospectively in a
computerized database for 19,009 consecutive patients undergoing isolated CABG
between January 1, 1982 and December 31, 1996 at The Toronto Hospital (formerly the

Toronto Western and Toronto General Hospitals prior to 1990). Patients undergoing
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valve, congenital, aortic root, ventricular aneurysm repair, transplantation, ventricular

mapping etc. were excluded from this study.

53.2 Outcome and Explanatory Variables

The outcome of interest for this study is operative mortality (OM), defined as any
postoperative, in-hospital death.

Core baseline explanatory variables collected since the inception of the database
in 1982 included: age, sex, LV Grade (1=EF>60%, 2=EF 40-60%, 3=EF 20-39%,
4=EF<20%), previous bypass surgery, urgency of surgery (elective, semi-urgent =
surgery during the same admission as a cardiac catheterization or cardiac event,
emergency = surgery within 12 hours of a cardiac catheterization or cardiac event),
number of diseased coronary arteries, presence of a significant stenosis (>50% by visual
evaluation of the cineangiogram) of the left main coronary artery, severity of angina, and
New York Heart Association functional class.

In 1990, the database was expanded to more fully characterize our patients by
adding information such as recent myocardial infarction, diabetes, peripheral vascular
disease, previous angioplasty or stent, history of hypertension, renal failure (dialysis),
preoperative stroke or transient ischemic attack, body size, and chronic obstructive lung

disease, to name a few. Details of this database have been published elsewhere.'?

S5.3.3 Analysis
Data were collected and managed in dBASE IV datasets. The SAS for PC'3! and

BMDP/DYN LR!%2 programs were used for statistical analyses. Chi square or Fisher’s
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exact tests were used to evaluate categorical data univariately. Multivariable logistic
regression methods were used to calculate risk-adjusted mortality and to calculate factor-
adjusted odds ratios. Model discrimination was evaluated by the area under the
Receiver-Operator Characteristic curve (ROC)“’&109 and calibration was assessed by the
Hosmer-Lemeshow goodness-of-fit statistic.'%> For goodness-of-fit, the null hypothesis
is that the model fits the data. Therefore, a non-significant P value is desired since a P
value <0.05 would indicate a poor fit between predicted and observed results.
Evaluation of temporal trends

Rather than build a complex model to assess the temporal trends in incidence,
risk-profiles, and outcomes of elderly versus non-elderly patients, we used a simpler
approach based on risk stratification and contingency tables, as outlined below.

The data prior to 1990 lacked the full range of potential predictors of
postoperative mortality. Thus, any temporal comparative analysis required a simple
predictive rule that included only key predictors. To this end we started from the
previously-validated predictive algorithm developed by Tu and colleagues®® as a
template. That algorithm was designed for both valve surgery and CABG, and therefore
included type of surgery (isolated CABG, isolated valve, or valve + CABG) as a variable.
Other validated models for predicting isolated CABG outcomes have included left
mainstem disease as a prognostic variable; hence this item was added to the model
instead of type of surgery.

To recalibrate the resulting six-variable algorithm for this one-centre temporal
analysis, we performed a logistic regression analysis in the entire 1982-1996 cohort of

patients. The resulting adjusted odds ratios for six explanatory variables: age (<65, 65-



74, 275), sex, previous CABG, urgency of surgery, LV dysfunction (LV Grade 2-3, LV
Grade 4) and left main coronary artery disease, were rounded as in the algorithm of Tu et
al. These rounded, adjusted odds ratios served as risk weights for each level of the
predictor variables. A risk score for each patient was calculated by summing the risk
weights for the variables that described the patient’s baseline characteristics. Logical
cutpoints of the observed mortality, determined by frequency analysis, for each risk score
was used to construct relative risk groups (e.g., low, medium, high).

Next, data from 15 years were divided into three, five-year time cohorts based on
date of operation: 1982-1986, 1987-1991, and 1992-1996. Patients were further divided
into a younger cohort (<70 years) and an elderly cohort (270 years). This allowed us to
use contingency table analysis to evaluate changes in the prevalence of elderly patients,
their risk factors and operative mortality over time and between the three risk groups.

As a complementary method, logistic regression analysis for operative mortality
was performed solely for the elderly cohort (1982-1996). This allowed us to generate
elderly-specific odds ratios for the six explanatory variables, as well as the risk reduction
in operative mortality associated with time after adjusting for those variables.
Contemporary Predictors of Operative Mortality

In the final step of the analysis, we focused on the cohort of elderly patients
undergoing CABG between 1991 and 1996, a group that was better characterized with
additional data as outlined above. This enabled us to determine the contemporary
predictors of operative mortality as contrasted to the six core explanatory variables used
for the temporal trend analysis. The following variables were tested by Chi-square

analysis for their univariate association with operative mortality: diabetes, peripheral
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vascular disease, history of hypertension, previous angioplasty/stent, renal failure, New
York Heart Association class, recent preoperative myocardial infarction, preoperative
stroke/transient ischemic attack, number of diseased vessels, severity of angina, and body
size. We included all variables with a P value <0.20, as well as those found to be
clinically important in other models” regardless of whether they met the critical alpha
level for inclusion. These variables were submitted for consideration to a stepwise
logistic regression analysis using forward selection combined with backward elimination.
The best model was determined by two criteria: the area under the ROC curve, and the
Hosmer-Lemeshow statistic. Because of the limited number of events, we did not
undertake split-sample methods to validate the model. Such validation would in any case
confirm the model’s applicability in our setting, but not prove generalizability to other
centres. Thus, we simply present this set of predictors for information, and as a

hypothesis for consideration and validation by others.

54 RESULTS
54.1 Knowledge to Date

Table 5.1 lays out 18 papers retrieved from a Medline search that demonstrate the
changing definition of “elderly” and also the range of operative mortality (5-20%)

reported for isolated CABG over the past 20 years.

54.2 Generalizability
All 19,009 consecutive patients undergoing isolated coronary artery bypass

surgery at The Toronto Hospital between January 1, 1982 and December 31, 1996 were
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examined. As noted, the core variables for this study were: age, sex, LV Grade, previous
CABG, urgency of surgery and left main disease. There were 346 patients with one or
more of these data elements missing, making the database 98.2% complete for core

information.

5.4.3 Increasing Prevalence of Elderly CABG Patients

There were 15,679 (OM=2.2%) patients under the age of 70 years who underwent
CABG between 1982 and 1996. “Elderly” was defined as those patients 270 years of
age at the time of operation (n=3,330, OM=4.95%). Figure 5.1 demonstrates the yearly
increase in the prevalence of those patients aged 70-74 (top panel) and those >75 (bottom
panel) over the 15 years of this study. Both groups increased significantly over time
(P<0.001). The absolute numbers for patients under 70 remained fairly stable for each
five-year time cohort (~5,300) but the number of elderly patients almost tripled from 593

in the 1982-86 cohort to 1,726 in the 1992-96 group.

5.4.4 Changing Risk Severity and Operative Mortality

There was a 34% overall relative risk reduction in the operative mortality rate (all
patients) from 1982-86 (OM=3.52%) to the following time cohorts (OM=2.34% for both
1987-1991 and 1992-1996 cohorts).

The predictive rule, recalibrated in the 1982-1996 dataset of 19,009 patients, had
a ROC area of 0.70 and 2 Hosmer-Lemeshow P value of 0.53. Table 5.2 shows the risk
weights for each level of the prognostic variables derived from the rounded, adjusted

odds ratios and the cutpoints of the total risk score used to define the relative risk groups.
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Table 5.3 shows the prevalence of individual risk factors as well as the changing
distribution of overall risk markers. Combined prevalence of medium- and high-risk
patients increased significantly (P<0.001) over time for those patients over and under 70
years of age (Figure 5.2).

Overall mortality and risk-group-specific mortality data are presented in Table 5.4
and Figure 5.2. Significantly positive trends are seen for medium and high risk patients,
and for most, albeit not all, risk factor subgroups in the non-elderly and elderly. Age-
specific mortality improved significantly for persons <70 years of age. Even larger
absolute improvements were seen among persons aged 70-74 and >75 years. However,
these did not reach significance owing to smaller sample sizes. We accordingly turned to
the overall logistic regression model for the elderly, as this would allow us to factor in
the temporal increases in severity.

For the overall logistic regression, we set aside the risk scores based on rounded
odds ratios and used the beta-coefficients, calculating exact adjusted odds ratios and
related confidence intervals for all explanatory factors. Among 3,330 elderly patients
operated on between 1982 and 1996, there were 165 deaths. Compared to 1982-1986,
operations in 1986-1991 and 1992-1996 were each associated with a significant ~50%
reduction in relative odds of death (Table 5.5). Adjusted odds ratios and their 95%
confidence intervals for all core risk factors are also shown in Table 5.5. Predictive
accuracy measured by the area under the ROC curve was 0.69 and precision, measured

by the Hosmer-Lemeshow goodness-of-fit statistic was 0.232.
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5.4.5 Contemporary Predictors of Operative Mortality in the Elderly

There were 2,002 elderly patients (270) who underwent isolated CABG between
1991 and 1996. Operative mortality was 4.6% in this group (n=92). The six core
variables, age (70-74, >75), sex, previous CABG, LV Grade (1, 2-3, 4), timing of surgery
(elective, semi-urgent, emergency) and left main disease (>50% stenosis) were submitted
to a logistic regression analysis along with the following additional variables: diabetes,
peripheral vascular disease, history of hypertension, previous angioplasty/stent, renal
failure, New York Heart Association class, recent preoperative myocardial infarction,
preoperative stroke/transient ischemic attack, number of diseased vessels, severity of
angina, and body size. The contemporary, independent, multivariable predictors of
operative mortality are contained in Table 5.6. Particularly interesting is a risk reduction
associated with previous angioplasty/stent. The Hosmer-Lemeshow goodness-of-fit P

value was 0.932 and area under the ROC curve was 0.713.

55 DISCUSSION

While advancing age remains a consistent predictor of operative mortality
following isolated CABG, a variety of reports in the literature have demonstrated that
elderly patients previously thought to be at very high risk for adverse events can now
undergo this beneficial procedure with acceptable post-operative
mortality, 153156.157.160-163,165,173,174 Many of these reports have been limited, however,
either by not providing a long-term perspective on outcome trends among the elderly, or
by not incorporating risk-adjustment algorithms that take into account the temporal shifts

in risk profiles among patients receiving CABG. In the latter respect statistical power
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has been a problem for many published reports of CABG in the elderly with the obvious
exception of the study by Hannan et al.'5® Given the current convention that there should
be at least 10 outcome events for every explanatory variable in an outcomes-prediction
model,*® many studies have sample sizes that permit only two or three variables to be
considered adequately for risk-adjustment purposes.

Our analysis has provided a 15-year perspective on 19,009 consecutive isolated
CABG procedures at Canada’s largest hospital, and includes over 3,300 patients aged 70
and over. We used a previously validated predictive rule®® as a template for risk
adjustment, added an additional explanatory variable (left main disease) and recalibrated
the rule across the entire 15-year dataset to create a more level playing field for temporal
comparisons of risk factor profiles and outcomes. Our findings confirm that there has not
only been a time-related increase in the prevalence of older patients undergoing isolated
CABG at our centre, but also an increase in the severity of the preoperative risk profile of
those patients. However, risk-adjusted operative mortality has decreased significantly for
elderly patients. The current overall mortality rate for elderly patients is less than 5%
and only 3% for low- and medium-risk patients.

Given the enthusiasm for outcomes “score-cards”, it is also noteworthy that an
improvement in outcomes was already evident in the 1987-1991 period for both older
and younger patients. This occurred well before Ontario embarked on its current
program of systematic outcomes monitoring as described elsewhere. '8!

Because patients’ characteristics were not as exhaustively documented in earlier
as in later years, we cannot absolutely rule out the possibility that the recent

improvements in outcomes are partly an epiphenomenon of unmeasured changes in case



selection. However, the model for mortality of elderly patients between 1982 and 1996
had a ROC curve area similar (0.69 versus 0.71) to that for elderly patients in the 1991-
1996 model which drew on additional risk factor data, and the trends to inclusion of
higher risk elderly patients are temporally consistent. Therefore, it is exceedingly
unlikely that our findings are explained by unmeasured changes in patient characteristics
working in the opposite direction, i.e. towards lower-risk case selection. Another
hypothetical confounder is declining length of stay. Since patients in recent years would
be discharged earlier, some who might otherwise have died in hospital would die at home
and not be counted. However, this is also an implausible explanation for the observed
trends. The mortality decrement was already evident for the 1987-91 period, which
antedates the contemporary move to much shorter lengths of stay after CABG. Second,
post-operative stays among the elderly undergoing CABG remain relatively long; for our
1992-96 cohort, the mean was 11.3 days (95% CI: 10.8, 11.8). Third, we have tracked
patients after discharge in a major randomized trial.'¥* Deaths occurring between
discharge and 30 days from the date of surgery were uncommon; over 95% of deaths
occurred on the index admission. Thus, any minor decrements in lengths of stay
occurring from 1982-86 to 1987-91 are most unlikely to account for the dramatic decline
in post-operative mortality observed in the same period.

The reasons for the improved outcomes nonetheless remain speculative. Possible
factors include better myocardial protection during surgery (e.g. by use of blood rather
than crystalloid cardioplegia or warm/tepid rather than cold cardioplegia temperatures),
greater use of left internal thoracic artery conduits, and improved cardiovascular

anaesthetic techniques. For that matter, most centres reporting temporal trends in overall
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CABG outcomes have noted improvements over the past decade. We found no evidence
for further significant changes in outcomes for 1992-1996. However, ongoing
improvements may be masked by the increasing prevalence of high-risk patients who are
incompletely characterized by the simplified risk-adjustment algorithm used for the 15-
year trend analysis.

Analysis of the 1982-1996 dataset was obviously not ideal for delineating
predictors in current practice for two reasons. First, a richer set of variables did not
become available until 1990; and second, as noted above, outcomes have been improving
over time. Thus, to determine the contemporary predictors of operative mortality in the
elderly, a logistic regression analysis was performed on a database of 2,002 well-
characterized elderly patients undergoing CABG between 1991 and 1996. Strong risk
factors were presence of a grade 4 ventricle (odds ratio: 10.7, 95% CI: 4.4 - 26) or
previous CABG (odds ratio: 3.73, 95% CI: 2.0-7.0). Some expected predictors -- such
as age >75 years, urgent/emergency surgery, renal failure, number of diseased vessels,
presence of left mainstem disease, or recent preoperative myocardial infarction -- fell out
of the final model. This is partly a function of statistical power, but it is instructive that
other predictors -- such as diabetes and peripheral vascular disease -- took precedence in
the risk adjustment algorithm.

The protective effect of previous angioplasty/stenting in the algorithm is
strikingly large. This finding is almost counter-intuitive, as one would expect individuals
at higher risk from CABG to be more likely to undergo angioplasty as a temporizing
measure, rather than proceeding directly to open heart surgery. There are two plausible

explanations for the effect, which are not mutually exclusive. The first is that previous



angioplasty/stenting is directly protective by reducing one or more of the critical
coronary arterial stenoses prior to CABG. The second is that the prior occurrence of
angioplasty/stenting is actually a proxy for less extensive or severe coronary
atherosclerosis, independent of the number of diseased vessels. In the latter scenario,
patients with a limited number of discrete lesions would be more likely to undergo a prior
angioplasty than those with diffuse atheroma and distal vessel involvement.

Limitations of this analysis are those that apply in any observational outcomes
analysis. First, miscoding of key risk factors is always a concern. The database in
question is very well-established, and subject to systematic logic and range checks.
Definitions for risk factors have remained unchanged since 1982 in some cases, and since
1990 for those factors added later. Furthermore, the data are subject to random audits
which have consistently shown raw inter-abstractor agreement on major variables to be
greater than 98%. The dataset is also acceptably complete in terms of core variable
information with only 1.8% of patients missing one or more key data elements.

Second, we have demonstrated the improving outcomes of isolated CABG in the
presence of growing numbers of procedures on high-risk elderly patients; but, in contrast
to the accumulated trial data on younger persons, the risk-benefit ratios of surgery for the
elderly are not precisely defined.!’>'®* The elderly are a very diverse group in terms of
their physical and mental health, work capacity and economic status.'!®* Prudent case
selection must obviously take into account the baseline functional capacities and
preferences of elderly patients. Furthermore, our results do show that high-risk elderly
patients still have a significantly increased operative mortality rate (8.9%); those with
poor ventricular function or previous CABG are at particularly high risk of post-

operative mortality. These latter findings may help clinicians in counselling elderly
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patients about the risks of isolated CABG surgery.

Third, as noted in the Methods section, the predictive algorithm for the most
recent period is based on consecutive patients from a single centre, without independent
validation. With only 92 deaths among the 2,002 elderly patients undergoing isolated
CABG at our centre between 1991 and 1996, it was not feasible to split the cohort into
derivation and validation samples. That said, most risk-adjustment algorithms in the
literature have been validated only in the centres from which they were derived. Other
centres should ideally use their own outcomes data to validate and recalibrate the risk
factors identified here.

Fourth, we have focused exclusively on mortality as a post-operative
complication. Additional work is needed to delineate trends in post-operative morbidity,
not the least of which is stroke, an outcome particularly feared by the elderly.

Furthermore, we do not have data on long-term life expectancy gains or quality of
life enhancement. Linkage to provincial statistics is planned to address life-expectancy
gains, but in the absence of prospective data collection, quality of life improvements
cannot be quantified.

In conclusion, previous reports of hospital outcomes in the elderly have been
limited either by not providing a long-term perspective on outcome trends or by not
incorporating risk-adjustment algorithms that take into account the temporal shifts in risk
profiles among patients receiving CABG. This study highlights the value of using a
predictive rule for research purposes. The predictive rule was used to stratify patients
into relative risk groups allowing us to use simple contingency table analysis to evaluate

temporal shifts in risk profiles and outcomes. The results of this simpler analytic format



were corroborated by logistic regression analysis which include temporal predictors in
the final model for operative mortality in elderly patients (Table 5.5).

Coronary artery bypass surgery may sometimes be the best of the unattractive
options for elderly patients who have a progression of disease and symptoms. Operative
mortality after isolated coronary bypass surgery in the elderly declined significantly
starting in the late 1980's for this important and growing group of patients, despite an
increase in the prevalence and severity of their risk factors; and has been stable since the
early 1990's at under 5% overall for patients aged 270. A careful weighing of risk, rather
than advanced age alone, should determine who is offered surgical revascularization. In
this regard, poor ventricular function and redo CABG surgery continue to have the most
impact on operative mortality in elderly patients in our centre. These and other risk
factors noted here can serve as a starting point for cardiologists and surgeons who wish
either to counsel elderly patients about the vital risks of isolated coronary bypass surgery,
or to delineate risk factors for adverse events in their own practices. In Chapter Six we
will evaluate the use of a predictive rule as a clinical tool for estimating the probability of

adverse outcomes following CABG.
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Table 5.1

| Gann (1977)'36
| Knapp (1981)!%° <0 | 2850 | 11
270 121 1.6
Gersh (1983)'60 65-69 803 4.6
70-74 241 6.6
275 42 9.5
Hibler (1983)'6! 65-69 65 4.6
70-74 40 5.0
275 10 20.0
Hochberg (1984)'62 <10 75 40 |
270 75 12.0
MacArthur (1984)"7 <70 21009 2.8
70 1275 5.8
Homeffer (1987)'% <55 228 2.2
55-69 228 2.2
270 228 9.3
Loop (1988)'¢4 65-74 | 4603 2.0
I 275 467 | 4.7
Goldman (1988)!!8 <70 2887 2.9
270 340 6.2
Horvath (1990)!93 <75 4385 3.1
275 222 10.8
Freeman (1991)!%8 280 62 129 |
Ko (1991)!66 280 100 12.0
Tsai (1991)'¢7 280 157 7.0
Hannan (1994)'68 <75 2604 2.3
275 4934 6.1
Curtis (1994)'6° >70 668 52
[ e 19947 270 | 1399 | 89
Katz (1995)!"! 270 628 6.4
Morris (1996)! 72 >80 474 7.8

OM = operative mortality
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Table 5.2

Variable

Female

1.8 (1.5,2.2)

isk Weight |

LV Grade: 2
3
4

12 (1.0, 1.6)
23 (1.8,2.9)
6.2 (4.4, 8.6)

Timing of Surgery: Semi-Urgent
Emergency

12 (1.0, 1.5)
34 (2.6,4.4)

Previous CABG

3.0 (23,3.9)

Left Main Stenosis

1.6 (1.3,2.0)

Age: 70-74
275

1.6 (1.4,2.0)
2.5 (1.9,3.4)

Total Possible Score

Risk Score Cutpoints:
Low Risk
Medium Risk
High Risk

Legend for Table 5.2 OR (CI) = odd ratio and the 95% confidence interval.

Reference categories in order are; male, LV Grade 1, elective surgery, no previous

CABG, no left main stenosis, age<70 years.
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Table 54

Variable 1982 - 1986 1987 - 1991 1992 - 1996
| <70 | 270 <70 270
(%) Overall OM || | 72 || 19 | 44 | 165 |45+
Risk-Stratified OM:

Low Risk 1.9 1.8 1.0 23 0.7** | 3.6uns
Medium Risk 5.8 59 24 34 22%** | 26 *
High Risk|| 12.8 17.2 9.7 9.1 68 * | 89 *
Sex: Malef| 2.7 54 1.9 3.8 1.4** | 38ns
Female 49 11.8 2.1 5.8 28%** | 63 *

Age: <65 2.8 - 1.5 - 1.4 ** -

65-69 4.5 - 33 - 2.2 %= -
70-74 - 6.4 - 3.9 - 39ns
275 - 10.3 - 54 - 55ns
LV Grade: 1 1.8 6.0 1.5 4.1 08%* | 1.7 *
2 2.8 5.8 1.2 43 1.0** | 48ns
3 53 11.2 3.1 3.0 32 ¥ | 52%*
41 12.1 7.7 7.9 13.2 72ns | 18.5ns
Previous CABG: No 2.8 7.0 1.7 42 14%* | 40**
Yes 8.0 22.2 6.1 8.2 52ns | 11.8ns
Timing of surgery: Elective| 2.5 5.5 1.4 2.0 1.2%* } 36 *

Semi-Urgent
Emergency

6.1
7.9

Left Main Disease: No
Yes

Perioperative MI

29
4.6

LCOS

Perioperative Stroke

Legend for Table 5.4 All values are percentages with the exception of the first row (N).

OM = operative mortality, MI = myocardial infarction, LCOS = low cardiac output syndrome.

Different over TIME, * P<0.05, **P<0.01, ns=not significant



Table 5.5

Logistic R ion of 3.330 Elderly Patients Undersoing CABG

Between 1982 and 1996 at the Toronto General Hospital

Year: 1986-1991
1992-1996

ession

Variable R Odds | 95% CI |
Coefficient Ratio |

-0.635
-0.736

0.53
0.48

0.3-0.9 |
0.3-0.8

Age 275 years 0.335 1.40 1.0-2.0
'I Female|  0.663 194 | 1427 |
|| Previous CABG| 1194 | 330 | 20-56 |
“ LV Grade: 2-3| 0511 167 | 1125
af 1796 | 602 | 3.1-12
'I Timing of Surgery: Semi-Urgent|| 0328 139 | 09-20 ll
Emergency 0.882 241 1.4-4.1
| Left Main Disease|  0.420 152 | L1-22
Constant| -3.678 | 0.03

Legend for Table 5.5 The reference categories in order are as follows: 1982-1986; 70-74

years; Male; No Previous CABG; LV Grade 1; Elective Surgery; and No Left Main

Disease. The ROC curve area for the model is 0.69; the Hosmer-Lemeshow goodness-

of-fit P value is 0.232.
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Table 5.6

S A
Coefficient | Ratio
LV Grade: 23] 0971 264 | 13-52
4] 2371 107 | 4.4-26
Previous CABG 1.316 3.73 | 2.0-70
Female|  0.570 177 | 1128 |
Peripheral Vascular Disease 0.566 1.76 1.1-2.7
Previous Angioplasty/Stent ll -1.342 0.26 0.1-0.9
Diabetes 0.527 169 | 1127 |
Constant|| -4.493 0.01

Legend for Table 5.6 Hosmer-Lemeshow goodness-of-fit P value = 0.932, ROC area =
0.713.

Note the risk reduction associated with previous angioplasty/stent.
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Legend 5.1 The figure shows the significant increase in the prevalence of

elderly patients undergoing isolated CABG at The Toronto Hospital
between 1982 and 1996. The temporal change was significant (P<0.001)

for both those aged 70-74 years and those aged 75 years and older.
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Figure 5.2

%
70
6ol Prevalence

s
ny
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20|
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!

82-86 97-91 92-96  82-86 97-91 92-96  82-86 97-91 92-96
Low Risk Medium Risk High Risk

20
| Operative Mortality

15t

10

0 82-86 97-91 92-96 82-86 97-91 92-96  82-86 97-91 92-96

Low Risk Medium Risk High Risk

Legend 5.2 The prevalence (top panel) of high risk elderly patients increased
significantly (P<0.001) over time. Operative mortality (bottom) panel
decreased significantly (P<0.05) over time for both medium and high

risk elderly patients.
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Chapter Six

Predictive Accuracy Study: Comparing a Statistical Model
To Clinicians’ Estimates of Outcomes After

Coronary Bypass Surgery *

* Adapted from:
Ivanov J, Borger MA, David TE, Cohen G, Walton N: Predictive Accuracy Study:
Comparing a statistical model to clinicians' estimates of outcomes after coronary bypass

surgery. Ann Thorac Surg 2000;70:162-168.
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6.1 ABSTRACT

The purpose of this study was to compare clinicians’ prior probability estimates of
operative mortality (OM) and prolonged ICU length of stay >48 hr (ICU>48h) following
coronary artery bypass graft surgery (CABG) to estimates derived from statistical models
alone.

Methods: Nine clinicians estimated the predicted probability of OM and ICU>48h from
an abstract of information for each of 100 patients selected from the 1996-97 database of
1904 patients who underwent isolated CABG.. Logistic regression models were used to
calculate the predicted probability of OM and ICU>48h for each patient. The study
sample was split into two parts; clinicians were randomly given access to a predictive
rule to guide their judgements for one part of the study.

Results: Clinicians’ estimates were similar with or without access to the rule, and both
parts of the study were therefore pooled. Clinicians significantly over-estimated the
probability of OM (Model 6.3 + 1%, Clinicians 7.6 + 3%, P=0.0001) and ICU>48h
(Model 25 + 2%, Clinicians 28 + 1%, P=0.0012). Clinicians’ estimates of OM were not
significantly higher than the model’s for non-survivors (0.8+0.7%, P=0.2), but were
significantly higher for survivors (1.4£0.3%, P=0.039). Areas under the ROC curves did
not differ for either outcome between the model or the clinicians. However, after
adjusting for the deliberately skewed prevalence of the outcomes in the sample, the
statistical models demonstrated superior discrimination compared to the clinicians: OM
at 2% prevalence: (Model ROC 0.974 #0.026, Clinicians ROC 0.720 £ 0.069,

P<0.001); ICU>48h at 16% prevalence: (Model ROC 0.942 + 0.014, Clinicians ROC
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0.760 + 0.025, P<0.001).

Conclusions: Clinicians trusted their own empiric estimates rather than a predictive rule
and over-estimated the probability of OM and ICU>48h. These findings highlight both
the rationale for using predictive rules in practice and the remaining challenges in

persuading clinicians to use such rules.
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62 INTRODUCTION

As noted in preceding chapters, many clinical predictive rules have been
developed for cardiac surgery to characterize case-mix and estimate the probability of
outcomes. The primary purpose of these predictive rules has been to calculate risk-
adjusted outcomes for provider profiling. 14.21,32,38,39,41,65,67,72.95,149,150 yther applications
for statistical models include: assisting administrators in determining resource allocation,
helping providers assess quality of care, and identifying high-risk subgroups for research
purposc:s.2'°"26':"2'33'41'73'%'149 As well, patients may ask for probabilistic information
regarding diagnosis, prognosis and response to treatment.'>6114.185 [ this chapter we
evaluate the use of a predictive rule as a tool to guide clinicians’ estimates of the
probability of hospital outcomes.

Statistical models can be used to facilitate discussions between surgeons and their
patients regarding the risks and benefits of a particular procedure. However, clinicians
sometimes claim that their intuition and experience gives them advantages over any
statistical model in predicting adverse outcomes, and that the variables included in
models reflect averages, rather than patient-specific clinical features that may put patients
atrisk. We accordingly undertook a study to 1) compare the judgements made by a
statistical model to those made by clinicians, and 2) evaluate the use of a predictive rule
as an aid to clinicians in making estimates of the probability of operative mortality and
prolonged ICU length of stay greater than 48 hours. To give maximum advantages to
clinical judgement, we compared predictive performance for a group of patients
assembled purposively to capture a cross-section of both high- and lower-risk individuals

who had suffered adverse events, and provided clinicians with additional clinical
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information not incorporated into the statistical model.

63 METHODS
6.3.1 Sampling frame and Case preparation

We drew 100 cases (study sample) from the 1904 patients who underwent
isolated CABG at the Toronto General Hospital between January 1996 and April 1997
(hereafter, the study population). We deliberately over-sampled for 70% of deaths,
drawing 29 of 41 post-operative fatalities from the general patient population, covering a
range of higher- and lower-risk patients who died after surgery. The remaining 71
patients were sampled from survivors. The 100 study patients were then randomly
divided into two 50 patient groups, Parts [ and II.

A half-page abstract was prepared for each patient. Again, to support clinical
judgements, the abstract contained a table of information covering many more variables
than the statistical models which were derived and validated by our group.:"s""z'-'3 The
variables drawn from our clinical cardiac surgery database included: age, sex, LV
ejection fraction, New York Heart Association functional class, anginal symptoms (i.e.,
stable, unstable, acute coronary insufficiency), previous CABG, timing of surgery (i.e.,
elective, same-hospitalization, urgent, emergency), left main disease, positive exercise
stress test, recent myocardial infarction within the month prior to surgery, diabetes,
peripheral vascular disease (including carotid stenoses), history of hypertension, renal
insufficiency, height and weight. Results of coronary angiography were also shown in
detail as a diagram along with information regarding the quality of the vessels, i.e.,

degree of stenosis, and vessel size, quality of distal vessels, and collateral flow, when
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available. A brief narrative was prepared which described each patient’s relevant history,
presenting scenario and other comorbidity. Table 6.1 contains an example of additional,
relevant information which was not contained in the database but was added to the

narrative.

6.3.2 Predictive Rule

A predictive rule, developed from the combined CABG database of two Toronto
hospitals for the years 1993 to 1996, was used as the format for the contemporary, site-
specific guidelines. Risk weights for this rule were re-calibrated in the 1993 to 1997
database for the Toronto General Hospital only. Risk weights and cutpoints of the total
risk score which defined relative risk groups (low, medium, high) can be found in Table
6.2. Details regarding the development of this rule have been published.72 By presenting
a simple and additive scoring system, we hoped to maximize the system’s acceptance by

clinicians.

6.3.3 Clinician Sample

All nine cardiac surgeons who performed CABG surgery at the Toronto General
Hospital in 1997-1998, as well as two cardiac surgery residents and a specialty nurse-
clinician were invited to participate. Two senior clinicians declined the invitation to
participate and one senior clinician had difficulty with the format and also decided not to
participate. Senior cardiac surgeons are designated in the figures as clinicians #1-#5, #6
is a junior cardiac surgeon, the two speciality residents are #7 and #8 and the speciality

nurse is clinician #9.
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Clinicians were randomized to receive the predictive rule as an aid for Part I or
Part II of the study. After a four month ‘wash-out’ period, clinicians who received the

predictive rule for Part I, did not receive it for Part II of the study, and vice versa.

6.3.4 Outcomes

Clinicians were asked to estimate, for each patient, the probability of 1) operative
mortality (OM), defined as any postoperative, in-hospital death, and 2) prolonged ICU
length of stay defined as an ICU length of stay greater than 48 hours (ICU>48h), which

corresponded to the 83rd percentile of ICU length of stay for 1995-1997.

6.3.5 Statistical Model

The model was essentially similar to the original predictive rule used to assist
clinicians. Risk factors from the original rule, in addition to other important prognostic
variables, were submitted to a logistic regression analysis to recalibrate regression
coefficients and optimize precision.”

In 1995, the pattern of practice changed regarding discharge from the ICU:
patients were extubated earlier and discharged sooner than previous patients because of
“fast-tracking”.!36187 Because of this changing pattern, the logistic regression model for
the prolonged ICU stay outcome was re-derived for only the 1995-1997 database of
isolated CABG patients. An ICU stay of >48 hours corresponded to the 83rd percentile
of total ICU length of stay.

Regression coefficients from the newly derived models were used to calculate the

patient-specific predicted probability of each outcome using methods previously
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6.3.6 Statistical Analysis

Data were managed in dBASEIV datasets and analyzed using SAS for Windows
Version 6.12.!3! Results are presented as means + standard errors. A two-tailed P value
<0.05 indicates statistical significance unless otherwise noted.

The estimates of probability for OM and ICU>48h with and without access to a
predictive rule were evaluated by unpaired ¢ test. The difference between the clinician’s
estimate of the probability of OM and ICU>48h and the model’s estimate was calculated
for each patient (clinician minus model) and evaluated by paired ¢ test. The null
hypothesis for this analysis was that the difference in the predicted probability of an
event equalled zero.

Calibration, or precision at the group level, was evaluated by the Hosmer-
Lemeshow goodness-of-fit chi square statistic (HL).'% Hosmer-Lemeshow goodness-of-
fit P values <0.05 indicate a significantly imprecise model (i.e. the model did not fit the
data). Calibration is also important because, in contrast to the match between
probabilities and categorical events reflected in the ROC curve area, it captures the
ability of the model (or clinicians) to predict the absolute event rates on average.

The Brier score (BS) is a quadratic penalty score with values between 0 and 1.
The Brier scores measures both accuracy and precision at the individual patient level.
The lower the Brier score, the more accurate the judgement. The formula is as follows:

BS= (p-dy’

where P=predicted probability of outcome, d (event) O=event did not occur, 1=event
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occurred.

The precision of a set of probabilities are evaluated by calculating the associated
Z statistic and P value. A P value <0.05 indicates a model which is significantly
imprecise, 1011418518512 Tpe difference between clinicians’ and the models estimates
of Brier scores was evaluated by non-parametric analysis of variance, the Kruskal-Wallis
non-parametric rank analysis as well as by parametric ANOVA and ¢ tests.

Discrimination (or predictive accuracy) was assessed by calculation of the area
under the Receiver-Operator Characteristic curve (ROC) for each set of estimates. 9810
The area under the ROC curve reflects the proportion of randomly paired sets of patients
for which the patient experiencing the event has a higher predicted probability of having
the event, compared to the patient who does not experience the event. An area under the
ROC curve of 50% indicates no discriminatory ability; ROC areas above 70% represent
fair discriminatory ability and ROC areas above 80% represent good discriminatory
ability. The area under the ROC curve is independent of the prevalence of the outcome
in the database. However, since the study sample was deliberately skewed towards
patients who had events, we adjusted the prevalence of each outcome by the following
strategy: 1) patients who died were ranked in order of their predicted probability of OM
(lowest to highest), 2) patients with the lowest predicted OM were incrementally
changed from “died” to “survived”, thereby reducing the overall prevalence of OM in the
dataset, 3) ROC and HL GOF were recalculated for each step, 4) this strategy was
repeated for the outcome, ICU>48h. The theory behind this exercise was that, as the
prevalence of each outcome was decreased in favour of those having a lower predicted

probability of having an event, the ability of the model (or clinicians) to discriminate
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patients at higher risk should have approached 100%. The comparisons of ROC curves
for clinicians versus the statistical model were performed using methods described by

Hanley and McNeil. 19819

64 RESULTS
6.4.1 Statistical Models

There were 7313 patients who underwent isolated CABG at the Toronto General
Hospital between 1993 and 1997. Operative mortality (OM) in this group was 2.3%
(n=169). In the 1995 to 1997 database of 4572 patients undergoing isolated CABG, the
prevalence of ICU>48h was 17% (n=778).

Logistic regression coefficients for both the OM model and the prolonged ICU
stay model are found in Table 6.3. Both models demonstrated excellent discrimination

and precision.

6.4.2 Study Population

For the study population of 1904 consecutive patients undergoing isolated CABG
between January 1996 and March 1997, OM was 2.3% and ICU>48h was 15.6%.
Regression coefficients from the newly derived models for OM and ICU>48h were
applied to these data to calculate the predicted probability of each event. The statistical
models demonstrated good discrimination and precision in the study population: for OM,

ROC was 0.76 and HL P=0.104. For ICU>48h the ROC was 0.71, with HL P=0.51.
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6.43 Sample characteristics

Table 6.4 depicts the demographics of the study population and the 100 patient
study sample. The deliberate skew of the study sample is evident in both the prognostic
variables and the prevalence of outcomes. There was no group level difference between
Part [ and Part II for any prognostic or outcome variable -- on average, the two groups

looked the same with regard to risk factors and outcomes.

6.44 Impact of access to a Predictive Rule

Access to a predictive rule did not significantly alter overall predictive
performance for the group for either outcome (Table 6.5). With the exception of one
cardiac surgery resident, there were no statistical differences in clinicians' predicted
probabilities of OM made with or without access to the rule. Access to the predictive
rule was associated with significantly higher estimates of the probability of ICU>48h for
two clinicians and significantly lower estimates for two other clinicians (Figure 6.1)
Moreover, when clinicians were surveyed after the study, only one junior staff surgeon
and the nurse clinician consistently referred to the predictive rule as a guideline for
making their probability estimates. Both parts of the study were therefore combined for
comparisons between clinicians’ prior probability estimates of outcomes versus those

made by a statistical model.

6.4.5 Difference Between Clinicians and the Meodel
Predicted Probabilities of Outcomes

Figure 6.2 shows the difference by paired ¢ test between each clinician’s predicted
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probability and the model’s calculations for OM (top panel) and ICU>48h (bottom
panel). The differences for OM were significant for the experienced clinicians (#1, #2,
#3, #5, #6) whereas the more inexperienced clinicians (#7 - #9) demonstrated no
significant difference from the model’s predictions. The junior clinicians (#7-#9)
estimates were significantly different from the senior clinicians (#1 - #5) by analysis of
variance (P<0.05).

Figure 6.2 (bottom panel) shows the results of the paired ¢ tests evaluating the
differences between the clinicians and model for predicted probability of ICU<48h. In
this instance, there was no relationship between clinical experience in either direction or
magnitude of discrepancies.

Table 6.6 shows the results of the pooled clinician sample compared to the
statistical model. The clinicians significantly over-estimated both total OM and
ICU>48h. However, when we evaluated those having events versus those not having the
event, the differences for predictions of OM were significant only for survivors
(Clinicians 7.0£9%, Model 5.6+7%, P=0.0001); there was no significant difference in
OM predictions for the non-survivors (Clinicians 9.0+10%, Model 8.1+9%, P=0.23).
Clinicians estimates of prolonged ICU time were significantly higher than the Model’s
for both those not experiencing the event (Clinicians 22+22%, Model 20+£15%, P=0.03)
and those who did have an ICU length of stay >48 hr (Clinicians 39+28%, Model
34+£23%, P=0.01).

Accuracy
With the exception of one surgeon, predictive accuracy (or discrimination) as

measured by the area under the ROC curve was poor for all sets of judgements for OM
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(Figure 6.3). Discrimination was higher, in general for ICU>48h compared to OM.
There was no difference in ROC curves between the pooled clinician sample versus the
statistical model for either OM or ICU>48h (Table 6.6). However, for OM, six of nine
clinician had ROC curves with lower values than the statistical model’s ROC.

The prevalence of OM in the Parent database was 2.3%. The prevalence of
ICU>48h in the Parent database was 15.3%. By comparison, the prevalence of each
outcome in the 100 patient sample was extremely skewed by design: OM 29%, ICU>48h
36%. The prevalence of each outcome was decreased by incrementally reversing the
outcome for patients with the lowest probability of experiencing the event. Tabie 6.7 and
Table 6.8 display the results of this strategy for OM and ICU>48h respectively. ROC
curves for the statistical models approached 100% as was expected in this manoeuvre.
However, ROC curves for the clinicians estimates did not increase as expected and were
significantly lower than ROC curves for the statistical models.

There were no significant differences in Brier scores for OM (Figure 6.4, top
panel). All Brier scores were associated with Z statistics >1.96 indicating significant
imprecision of the judgements. Brier scores for ICU>48h were significantly different
between clinicians by ANOVA and the Kruskal-Wallis rank test (P<0.001). Although
overall precision was poor, two clinicians had judgements associated with Z statistics

(1.55 and 0.44) indicating excellent precision (Figure 6.3, bottom panel).

6.S DISCUSSION
The ability of physicians to make probabilistic judgements may be linked to the

quality of care they provide as well as to the allocation and consumption of
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resources. 14185191193 A ¢ 3 result, predictive rules have been developed in many areas
of medicine to aid clinicians in making probabilistic judgements.3%6%4 [n cardiac
surgery, predictive rules have been developed primarily for coronary artery bypass
surgery, focusing on post-operative mortality and length of hospital
stay.*4’21'32'38'39'4"65 6795,149,150 1t has been suggested that these models may be helpful
variously for patient counselling regarding the risks and benefits of a procedure,
identification of high risk subgroups for research purposes,zz"'z"""‘2'33"“'9 6149 and
calculation of surgeon-specific, risk-adjusted outcomes of coronary bypass surgery."2

In this study we examined the comparative performance of clinicians and a
statistical model in predicting adverse outcomes after CABG. We presented a group of
clinicians with case abstracts for 100 patients, and deliberately skewed the sampie by
including 29 patients who died post-operatively. The additional information contained in
the narrative section of the patient histories, coupled with the skew towards higher risk
patients who experienced adverse events, was designed to give clinicians an advantage
over the statistical model’s estimates of probability. We postulated that clinicians’
conceptual flexibility and intuition might allow them to identify patients at special risk
more accurately than a statistical model. To maximize the performance of the statistical
model we drew the study sample of 100 patients from the population of patients in which
the rule was recalibrated.

Prior to the start of the study, the study protocol was circulated to each clinician
and followed by two emails asking for comments or questions. The purpose and details
of this study were then presented at divisional rounds on two separate occasions. The

predictive rule as depicted in Table 6.2 was provided to each clinician for one phase of
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the study. The four month “wash-out” period between the two parts of the study was
designed to prevent contamination. We were not particularly surprised that the majority
of clinicians elected not to use the rule consistently to calculate patient-specific
probabilities of each outcome. Indeed, we found no differences in predictive accuracy
whether clinicians were exposed to the rule or not, and whether they claimed to use it
consistently or not. We were surprised that two very senior surgeons would not
participate in the study despite repeated requests from the primary investigator. These
findings highlight the tendency of clinicians to rely on their own intuitive judgements
rather than a statistical model.

Given the lack of impact of access to the predictive rule, we analyzed the results
for both phases of the study together. Unlike previous studies which have shown that

clinicians outperformed quantitative models, #*18%19!

a robust analysis of the paired
difference of each clinician’s estimates of probability versus those made by the statistical
model revealed that senior surgeons significantly over-estimated the probability of
operative mortality. One possible explanation for these results is that senior surgeons
make typically broad predictions based on their recent experience®® whereas the junior
clinicians, lacking in experience, may rely more closely on published results. However,
in a review of 100 studies comparing statistical to clinical judgments, Dawes and
colleaguesw5 concluded that statistical estimates equalled or surpassed the clinical
method even when clinicians were given an information edge.

The relatively poor performance of the statistical model in the 100 patient study

sample was understandable given the deliberately skewed prevalence of outcomes in the

study sample. Indeed, as noted, we expected that the approach towards a study sample
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with an increased prevalence of high risk patients having outcomes would give clinicians
an advantage. It did not. Dawes et al'® noted that a unique ability to observe is not the
same as a unique ability to predict based upon the integration of observed information.
They stated that research has shown that individuals have difficulty discerning between
valid and invalid variables and commonly develop false beliefs in associations between
variables. Others have highlighted the importance of disease prevalence when
transporting clinical prediction rules.” To evaluate underlying discriminatory ability, we
explored a strategy to test the predictive accuracy of both the model and the clinicians by
incrementally reducing the prevalence of each outcome in the study sample by changing
patients with the lowest predicted probability of an outcome from having the event, to not
baving the event. The results demonstrated that after this adjustment, the statistical
models had significantly improved discrimination compared to the clinicians. These
results were similar to those found in a study by Poses and colleagues®® who found that
discriminatory power was diminished when three predictive rules were tested in a
population whose disease prevalence was significantly lower than the population from
whence the rules were derived. After adjusting for disease prevalence by using the actual
disease prevalence in their population as the pre-test estimate of disease probability, these
investigators found that estimates made by all three rules were significantly more
accurate compared to those made by the clinicians. The authors concluded that
predictive rules might aid clinicians’ decision-making provided the rules are accurate and
properly calibrated.

One limitation of this study was that the clinicians were making estimates of

mortality and prolonged ICU stay from a written synopsis of patient information rather
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than direct examination. However, clinicians were given the advantage by being
provided with additional relevant clinical information in the narrative portion of each
patient abstract. Also, the diagram of the cardiac catheterization results included distal
vessel quality if it was noted to be poor. Despite these advantages, the clinicians did not
outperform the statistical models which relied solely on a limited number of variables.
We doubt, therefore, that our findings would have been different if the study had taken
place prospectively in practice as opposed to relying on written case abstracts.

As noted, the limited impact of access to a predictive rule was not surprising.
Clinicians are trained to rely heavily on their own experience and intuitive judgements.
Moreover, the literature on changing physician behaviour amply illustrates that clinical
decision-making is not readily influenced unless there is acceptance of a new practice
norm by 'opinion leaders' and a concerted local effort to address barriers to change, e.g.
by automating decision support systems.l%'197 However, surgeons and anaesthetists at
our centre are already using an implied form of prior probability estimates to fast-track
low risk cardiac surgical patients through the ICU.'8!87 [n this regard, resources have
been streamlined for those patients deemed to be at a low risk of poor outcome and
conversely, there is a greater concentration of resources for higher risk patients. We
believe that with appropriate implementation strategies, clinicians will use statistical
tools that enable them to make more accurate judgements of patients' risks of adverse

outcomes after CABG.
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Summary

Predictive rules have the advantage of being able to integrate more information
by relating both continuous and categorical variables to an outcome of interest. An
accurate and precise model can be used as a concise summary of the relationships
between prognostic variables and the outcome.”*8

Cardiac surgery clinicians, when given the option, preferred not to use a
predictive rule but rather trusted their own judgements to estimate the probability of
operative mortality or prolonged ICU length of stay after coronary bypass surgery.
Experienced surgeons significantly over-estimated the risk of operative mortality
compared to their junior colleagues and compared to the statistical model. Clinicians’
predictive accuracy was only fair for operative mortality, and only slightly better for
estimates of prolonged ICU length of stay. Although no model can predict the specific
individual who will have an adverse event, statistical models do permit reasonably
accurate estimates of event rates for subgroups of patients. If methods were devised to

ensure that clinicians can and do make use of predictive rules, they would be able to

make more accurate judgements of the probability of adverse outcomes following

coronary artery bypass graft surgery.
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Table 6.1

Patient previously denied surgery because of high risk

Patient previously refused surgery

Recent MI with continued post-infarct angina

Patient required resuscitation preop due to cardiac arrest

Patient admitted with transmural MI leading to pulmonary edema and
shock requiring intubation and resuscitation

Patient required IV heparin and/or NTG due to severe, unstable angina
Patient allergic to heparin

Severe vasculopath

Angina interfering with quality of life (“afraid to do things”™)

SOB on exertion. Presently off work because of angina, four kids at home

Patient states that he “knows he is going to die”

Legend for Table 6.1 Information included in the patient narrative was designed to give

clinicians an advantage by more fully characterizing the patient.
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Table 6.2 icti ? inicians i i

Age: 65-74 2
275 3
CABG Redo 4
Timing: Semi-Urgent/Urgent

Emergency

Female

1

3

2
Peripheral Vascular Disease 2 “

2

2

“ Diabetes

“ Left main stenosis

p—

Hypertension "
Total Possible Risk Score 0-29

Legend for Table 6.2 Risk weights which characterize each patient are summed for a
“total risk score”. Cutpoints of the total risk score describe each patient’s relative risk.
The percentages for operative mortality (OM) were determined from the original
database.”

Low risk: Score 0-3 (OM: range 0 - 0.7%; average 0.4%)

Medium risk: Score 4-9 (OM: range 0.7% - 3.0%; average 2.0%)

High risk: Score 210  (OM: range >3.0%; average 9.0%)
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Variable

OM
1993-1997

Age: 65-74
275

0.461 £0.19
1.299 £ 0.22

ICU>48h
1995-1997

0.341£0.10
0.633+0.13

Female

0.624 £0.18

0.5200.10

LV Grade: 2
3
4

0.600 £0.26
1.179+£0.26
1.897 £0.34

0
0.247 £0.10
0.247+£0.10

Timing: Semi-Urgent/Urgent
Emergency

0.159+0.18
0.984 £0.32

0.209 £0.26
0.247 +£0.10

Previous CABG

1.106 £ 0.22

0.526£0.16 |

Left Main Disease

0.349+0.18

0.245£0.10 |

Peripheral Vascular Disease

0486 +£0.18

|}
ns

Hypertension

0.342+£0.17

ns

Renal Failure

0472+0.28

0.912+0.20

l[ Diabetes

ns

0.228 £0.10

|| Recent MI

ns

0.299 +0.11

“ Preop Intra-Aortic Balloon Pump

ns

1.569 + 0.20

" Congestive Heart Failure

ns

0.729 £0.13

| Triple Vessel Disease

ns

II Chronic Obstructive Lung Disease

ns

0.296 £0.11
0.306 £0.13

| Preop Atrial Fib/Flutter

ns

0402£0.15 |

Constant
ROC
HL GOF

-5.750 £ 0.28
0.77
0.10

-2.879 £0.12
0.71
0.51

Legend for Table 6.3 To maximize performance, the statistical models were re-derived
in the Toronto General Hospital database. OM = Operative Mortality. The OM model
was derived from the 1993-1997 database of isolated CABG patients. ICU>48h =
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prolonged ICU stay >48 hours. The I[CU>48h model was derived from the 1995-1997
database.

ROC = area under the Receiver-Operator Characteristic curve, HL GOF=Hosmer-
Lemeshow goodness-of-fit statistic, ns = variable was submitted to the model for

consideration but was not a significant predictor of the outcome.
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Table 6.4

Study
Population
Jan 1996-Mar 1997
N
Age: <65 51
65-74 37
275 12
Female 22
LV Grade: 1 26 22
2 49 38
3 22 26
4 3 14
Timing: Elective 50 39
Semi-Urgent/Urgent 48 37
Emergency 2 24
NYHA: 1 3 2
2 Il 2
3 32 29
4 54 67
|| Previous CABG 6 17 |
| Left Main Disease 18 21
Diabetes 26 27
Hypertension 55 68
Peripheral Vascular Disease 14 24
Renal Failure 1.3 2.0
Operative Mortality 22 29
ICU Stay >48 hrs 16 36

Legend for Table 6.4 The study population was comprised of all patients undergoing
isolated CABG between Jan 01, 1996 and March 31, 1997. Results are presented as

proportions.
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Table 6.5

OM: Predicted Probability (%)
ROC (%)

BS (%)

ICU>48h: Predicted Probability (%)
ROC (%)
BS (%)

Legend for Table 6.5 ROC = Area under the Receiver-Operator Characteristic curve,
BS = Brier Score, OM = Operative Mortality, ICU>48h = prolonged ICU stay greater
than 48 hours.

Results are presented as the mean @ standard error. All BS were associated with Z
statistics >1.96 and therefore, significantly imprecise. There were no statistically

significant differences for clinicians between using a Rule or not using a Rule.

127



Table 6.6

OM: Predicted Probability (%) 63+1 7.6 +3*
ROC | 0.614+0.021 | 0.603 +0.021
HL GOF p <0.001 <0.001
BS (%) 25+2 25+2
ICU>48h: Predicted Probability (%) 25+£2 28 @ [**
ROC | 0.682+0.020 | 0.689 +0.020
HL GOF p <0.001 <0.001
BS (%) 22+2 22+1

Legend for Table 6.6 OM = Operative Mortality, ICU>48h = prolonged ICU stay

greater than 48 hours, ROC = Area under the Receiver-Operator Characteristic curve, HL

GOF = Hosmer-Lemeshow goodness-of-fit statistic. Results are presented as the mean +

standard error.

Clinicians different from Model, *P=0.0001, **P=0.0012. All Brier Scores (BS) were

associated with P values <0.05 indicating significantly imprecise calibration.
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Table 6.7

Probability Observed OM

Cutpoint
none 29% Model | 0.614 £+ 0.021 <0.001
Clinicians | 0.603 +0.021 <(0.001
<1.0% 27% Model | 0.653 +0.022 <0.001
’L Clinicians | 0.601 = 0.022 <0.001
<2.0% 20% Model | 0.779 £ 0.022 <0.001
Clinicians | 0.668 + 0.024* <0.001
<6.0% 12% Model | 0.851 £ 0.024 0.097
Clinicians | 0.714 £ 0.029* <0.001
<10.0% 8% Model | 0.950 £ 0.018 0.456
Clinicians | 0.783 £ 0.033* 0.001
|| <15.0% 6% Model | 0.953+0.020 | 0.697
Clinicians | 0.767 £ 0.039* 0.002
<23.2% 4% Model | 0.966 + 0.021 0.752
Clinicians | 0.769+ 0.047* <0.001
<23.5% 2% Model | 0.974 £ 0.026 0.834
Clinicians | 0.720 £ 0.069* <0.001
<30.0% 1% Model | 0.990 £+ 0.023 0.714
Clinicians | 0.720 = 0.097* <0.001

Legend for Table 6.7 Patients were ranked in order of their predicted probability of
operative mortality (OM) as calculated by the statistical model. Patients with
probabilities lower than the “cutpoint” were changed from “died” to “survived” in the
database. Receiver-Operator Characteristic curves (ROC) and Hosmer-Lemeshow
goodness-of-fit (HL) were recalculated for each step. The Model had statistically higher

ROC areas compared to the Clinicians (* P<0.0I). As the prevalence of OM decreased,
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model discrimination did as expected, and improved to almost 100% The clinicians’
estimates improved only to a maximum ROC area of 0.783. HL GOF for the clinicians

remained significantly imprecise
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Table 6.8

Probability | Observed | Estimates

Estimate | ICU>48h _
none 36% Model | 0.682 £0.020 <0.001
Clinicians | 0.689 +0.020 <0.001
<5% 34% Model | 0.729 £0.019 0.017
Clinicians | 0.668 £ 0.020* <0.001
<12% 29% Model | 0.814+0.018 0.115
Clinicians | 0.690 £0.021* <0.001
<15% 26% Model | 0.848 £0.017 0.131
Clinicians | 0.696 +0.021* <0.001
<20% 21% Model | 0.897 £0.016 0414
i Clinicians { 0.719 £0.023* <0.001
<25% 18% Model | 0.925£0.0t5 0.336
Clinicians | 0.764 £0.023* <0.001
<30% 16% Model | 0.942+0.014 0.137
Clinicians | 0.760 + 0.025* <0.001
<36% 12% Model | 0.964 £0.013 0.102
Clinicians | 0.767 +0.028* <0.001

<45% 10% Model | 0.990 +0.007

Clinicians

0.803 £0.029*

Legend for Table 6.8 The same strategy was employed as is described in Table 6.7.

The Model had statisticaily higher ROC areas compared to the Clinicians (* P<0.01). As

the prevalence of ICU>48h decreased, model discrimination did as expected, and

improved to almost 100% The clinicians’ estimates improved only to a maximum ROC

area of 0.783. HL for the clinicians remained significantly imprecise
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Figure 6.1

* p<0.05, ** p<0.01

sk
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B No Rule H Rule
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Probability ICU>48h (%)
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Legend 6.1 Predicted probabilities of operative mortality (OM) made by clinicians with access

to the predictive rule (Rule) and without access to the predictive rule (No Rule) are depicted in

the top panel. Only clincians #6 and #9 reported that they used the rule when it was made

available. Probability estimates for prolonged ICU stay greater than 48 hr (ICU>48h) are depicted
in the bottom panel.
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Legend 6.2: The delta of the clinicians minus the statistical model's estimates

of the predicted probability of operative mortality (OM, top panel) and prolonged ICU
length of stay greater than 48 hours (ICU>48h, bottom panel) is depicted. The senior
clinicians (#1 - 5) significantly over-estimated the probability of OM compared to the
statistical model. The junior clinicians’ (#7-9) estimates were significantly different (p<0.05)
from the seniors' estimates. There was no discernible pattern for ICU>48h relating to seniority.
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Legend 6.3 The area under the Receiver-Operator Characteristic curve (ROC)
for operative mortality (OM, top panel) and prolonged ICU length of stay greater
than 48 hours (ICU>48h, bottom panel). With the exception of one senior surgeon,
discrimination was poor for OM. Discrimination was slightly better for estimates
of ICU>48h.
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Legend 6.4 Brier Scores (BS) for operative mortality (OM, top panel) and prolonged
ICU length of stay greater than 48 hours (ICU>48h, bottom panel) are depicted. All
Brier Scores for OM were associated with P values <0.001, indicating significantly
imprecise judgements. With the exception of Clinicians #5 and #6, all Brier Scores for

ICU>48h were also associated with P values <0.001.
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Chapter Seven

The Development and Application of a Predictive Rule
to Evaluate the Long-Term Outcomes of

Coronary Artery Bypass Surgery *

* Adapted (in part) from:

Ivanov J, Ralph-Edwards A, David TE, Yau TM and Naylor. The evaluation of long-
term outcomes in patients following coronary artery bypass surgery using a clinical
database linked to administrative data. Submitted to J Thorac Cardiovasc Surg; May
2000. Revision requested September 2000.
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71  ABSTRACT

Purpose: To identify the contemporary, independent predictors of late survival and re-
admissions for cardiac events following coronary bypass surgery (CABG); and to
develop a predictive risk index for long-term survival.

Methods: A clinical database of 7022 patients undergoing isolated CABG between
January 1/92 and December 31/96 was linked to the Canadian Institute of Health
Information (CIHI) database and the Registered Persons Data Base to determine
operative deaths (n=164), and late deaths: in-hospital (n=270) and out-of-hospital
(n=137). Discharge diagnostic codes and procedure codes from the CIHI database were
used to determine freedom from re-admissions for cardiac events which included
recurrent angina, acute MI, congestive heart failure and repeat revascularization (PTCA
or CABG). Risk ratios from the Cox regression analysis for survival were rounded to
their nearest integer to provide a risk weight for each independent predictor of survival.
Risk weights were summed to create a total risk score for each patient. Total risk scores
were divided into quartiles to form relative risk groups. The predicted probability of
survival to each time interval for each patient was calculated by a log-logistic, risk-
adjusted model. Comparisons of predicted versus observed probabilities were made by
linear regression.

Results: Data were 99.5% complete for all prognostic risk factors. Mean follow-up
was 42 219 months (range 0-78). Overall five year survival was 89+1%. The
independent predictors of late survival were (risk ratio in parentheses): age group,
defined as <65 years, 65-74 years and 275 years (1.7), female (1.2), LV grade (1.5),
previous CABG (1.8), surgical priority (1.3), congestive heart failure (1.7), diabetes
(1.3), peripheral vascular disease (1.5), hypertension (1.3) and renal failure (1.5). The
overall five year freedom from re-admission for cardiac events was 79 + 1%. The

independent predictors of cardiac re-admission were: age group (1.1), female (1.4), LV
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Grade (1.4), previous CABG (1.6), surgical priority (1.6), congestive heart failure (1.8),
diabetes (1.3), peripheral vascular disease (1.3), hypertension (1.2), and renal failure
(1.4). The comparisons of observed to predicted five year survival for each risk group
and the R? for predicted versus observed survival probability for each patient at the time
of death or censor are as follows: Low Risk (N=1854) OBS=96+1%, PRED=97+1%,
R*=0.52. Medium Risk (N=2391) OBS=92+1%, PRED=94+1%, R>=0.61. High Risk
(N=1788) OBS=86:1%, PRED=89+2%, R>=0.58. Extreme Risk (N=954) OBS=71+2%,
PRED=76+10%, R?=0.28. All R? P values were <0.001.

Conclusions: The linkage of a clinical database with administrative data allowed for the
efficient follow-up of a large contemporary cohort of CABG patients and the
identification of multivariable predictors of survival and re-admission to hospital for
cardiac events. Patient-related risk factors which were predictive of mortality also
predicted re-admission to hospital for cardiac events. A predictive rule developed from
the Cox regression risk ratios of survival permitted the characterization of patients into
relative risk groups. Predicted long-term survival showed moderate precision with
observed results for all but the extremely high risk group. This predictive algorithm may
provide a valuable tool for medical decision making, internal benchmarking, trial design
and patient counselling for the follow-up interval between one and five years.
Prospective external validation is still required and should be the focus of future research.
This study demonstrates the need to consider long-term as well as short-term outcomes to
evaluate the benefit of CABG. Additionally, the true benefit of CABG cannot be
evaluated by the examination of mortality alone, but should also include freedom from

recurrent cardiac events.
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7.2 INTRODUCTION

Since its inception in 1969,'%® coronary artery bypass graft surgery (CABG) has
become the most intensely studied surgical procedure in the world. Over the past two
decades we, and others, have documented a significant temporal increase in the
prevalence of risk factors in patients presenting to CABG which has been accompanied
by a paradoxical decrease in hospital mortality.3%3>73120 A5 a result of improved
hospital processes of care and outcomes, there has also been a significant shift in the
postoperative management of CABG patients, specifically in regards to shorter intensive
care unit and hospital lengths of stay. %6187

The previous three chapters demonstrated that the surgical literature is replete
with studies examining the association between various risk factors and hospital
mortality following CABG. However, the effectiveness of CABG cannot be
characterized solely by evaluations of hospital outcomes which reflect short-term risks of
surgery. The net benefit of surgical therapy for ischemic heart disease must be evaluated
by examining long-term survival and freedom from recurring symptoms.

There are many studies which have identified important multivariable risk factors

and their impact on long-term outcomes in patients recruited as early as the 1970's.!%%-219

Fewer studies have included more contemporary patients operated on after 1985.2! 1-216
There are no large observational studies which examine postoperative survival and
freedom from cardiac events in CABG patients in Canada. Recent medical audits
(institutional or surgeon-specific) which evaluate the safety and effectiveness of surgical
therapy do not include evaluations of the contemporary, long-term outcomes of therapy
for individual patients or those with specific combinations of risk factors.2!” Guidelines
developed for the American Heart Association and American College of Cardiology
recommended the use of time-related, patient-specific calculations of predicted survival

derived from multivariable risk equations of long-term outcomes as a tool to counsel
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patients regarding the risks and benefits of various therapies for the treatment of
coronary artery disease.2'® Additionally, multivariable risk equations developed for long-
term survival may provide a valuable adjunct to the evaluation of quality of care through
the calculation of provider-specific, risk-adjusted survival. Predictive risk algorithms
may also be valuable tools for the identification of high risk subgroups of patients who
may benefit from specific therapies designed to reduce their risk of poor outcomes. Such
algorithms may be useful both in practice and in the design of efficient randomized
controlled trials.

Postoperative follow-up in large groups of patients by traditional methods is a
slow, resource intensive and costly endeavor. In Ontario, Canada’s largest province, all
patients have a unique Health Card number which becomes part of every medical record.
The Canadian Institute of Health Information (CIHI) contains the discharge International
Classification of Disease 9th revision (ICD-9) codes on every patient admitted to a
Canadian hospital. Since 1982, the Division of Cardiovascular Surgery at the Toronto
General Hospital has maintained a prospective database on every patient undergoing
cardiac surgery at our institution.”12%:128 We have linked our clinical database with
administrative data to follow all patients undergoing isolated CABG between Jan 1,
1992 and Dec 31, 1996 for survival and re-admission to hospital for cardiac events.

Therefore, the purpose of this study was:

1) To determine the contemporary, independent predictors of long-term

survival and re-admissions for cardiac events;

2) To compare risk factors for operative mortality with those for long-term

survival and re-admissions for cardiac events;

3) To develop a predictive risk index for long-term survival based on a

simple set of key prognostic variables available to most cardiac surgeons

at the time of initial patient consultation;

140



4) To use the predictive risk index as a tool to characterize patients into
relative risk groups based on long-term outcomes for greater ease of

clinical and research applicability.

7.3 METHODS
73.1 Data Sources

Clinical, operative and hospital outcome information for all 7022 consecutive
patients undergoing isolated coronary artery bypass graft surgery (CABG) at the Toronto
General Hospital (TGH) between Jan 1, 1992 and Dec 31, 1996 were entered
prospectively into a computerized cardiovascular surgery clinical database. Permission
was obtained from the Ontario Ministry of Health to use patient identifiers, the medical
record number, the Ontario health card number and date of operation to link the clinical
database to administrative databases: the Canadian Institute of Health Information
(CIHI) database and Registered Persons Database (RPDB) of registered deaths. Data
linkage and analysis were performed on-site at the Institute for Clinical Evaluative
Sciences where the security and confidentiality of the data is protected. The date of entry
into the study was defined as the date of operation. The closing date for administrative
data was March 31, 1998.

73.2 Outcomes
Outcomes for this study were time to mortality from any cause and time to re-
admission to hospital for cardiac related events following discharge for the index CABG
operation.
Deaths were determined from three sources:
a) operative mortality, defined as any in-hospital death in the clinical
registry during the index admission for CABG,
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b) in-hospital deaths from the CIHI database were determined from the
discharge exit code
c¢) out-of-hospital deaths were determined from the RPDB

Re-admissions to hospital for cardiac events occurring after the entry date of
operation were determined from the ICD-9 codes for the most responsible diagnosis
(DXCODEL!) and the revised Canadian Classification of Diagnostic Procedure codes
(CCP) for the first and second procedures (PRCODE1, PRCODE2). Cardiac events
included acute myocardial infarction (DXCODE = 410), angina (DXCODE =411, 413),
congestive heart failure (DXCODE = 428.0 to 428.9), atrial fibrillation or flutter
(DXCODES = 427.3), supraventricular tachyarrhythmia (DXCODE = 427.0 to 427.2),
percutaneous transluminal angioplasty or stenting (PRCODE = 48.02 to 48.04) and
repeat CABG (PRCODE = 48.11 to 48.90).2!%%2° The first admission for each cardiac
event was captured and used in the analysis, therefore, any one patient may have had
more than one type of cardiac event analyzed. The failure time for freedom from any
cardiac event was defined as the earliest admission date for any cardiac event.

The RPDB captured 95% of the operative deaths from the clinical registry (which
is considered the “gold standard™) for a kappa statistic for agreement above chance of
0.95 £0.01. Deaths of out-of-province patients would not have been captured by the
RPDB. Approximately two dozen foreign patients per year undergo CABG at the
Toronto General Hospital. Out-of-country or out-of-province deaths or hospital
admissions would not have been captured by either the CIHI or RPDB databases.

The number of follow-up months was calculated by subtracting the date of
operation from the closing date of the CIHI database. For patients who died, survival
time was calculated by subtracting the date of operation from the death date. The
number of months for freedom from re-admission to hospital for a cardiac event was

calculated by subtracting the entry date of operation from the closing date for
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administrative data. For patients who experienced a cardiac event, the time to the earliest
admission for any one event was determined by calculating the interval between the re-

admission date and the entry date of operation.

73.3 Analysis

General issues

SAS 6.12 for Windows '°! was used for statistical analysis. Data are presented
as the means + standard deviations in text and tables, and as means @ standard errors in
figures, unless otherwise noted. Statistical significance was defined as a two-tailed P
value <0.0S.

Predictors of Operative Mortality

Using previously described methods, the independent predictors of operative
mortality (OM) were determined by a stepwise logistic regression analysis.”? All
explanatory variables available in the database were submitted to logistic regression
analyses using stepwise selection.?®1%5 The variables submitted to all multivariable
models included: age, gender, left ventricular (LV) grade based upon the
ventriculographic ejection fraction (1=EF>60%, 2=EF 40-59%, 3=EF 20-39%, 4=EF
<20%), New York Heart Association functional classification (NYHA), surgical priority
(elective, same-hospitalization as a cardiac catheterization or cardiac event, emergency
defined as <12 hours from catheterization or a cardiac event), acute coronary
insufficiency defined as prolonged chest pain lasting greater than 15 min, recent
myocardial infarction within the month prior to surgery, previous bypass surgery,
congestive heart failure, diabetes, peripheral vascular disease which included carotid
disease, a history of hypertension, renal failure defined as requiring either peritoneal or

hemodialysis, hyperlipidemia, history of stroke or transient ischemic attacks, the extent
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of coronary artery disease and a significant left main stenosis.

Age was entered as a categorical variable (1=age <65 yr, 2=age 65-74 yr, 3=age
>75 yr) so that odds ratios for operative mortality for age could be compared to the risk
ratios for long-term survival for the predictive model. Age was also evaluated as a
continuous variable in a separate model to determine to what extent the odds ratios for
other predictor variables changed between the two modeis.

Two way interactions were tested in all models for combinations of age or LV
Grade or redo CABG with all other prognostic variables. Because of high collinearity
(Pearson correlation coefficients >0.4) the variables “surgical priority”, “acute coronary
insufficiency” and “recent myocardial infarction” were ultimately tested individually in
the model for survival. Incomplete revascularization was not tested in any model
because there were only 16 patients who received fewer grafts than they had diseased
vessels.

The best logistic regression model was determined by two diagnostic criteria: the
Hosmer-Lemeshow goodness-of-fit statistic (HI.)'OS which evaluated the precision
between predicted and observed probabilities, and the area under the Receiver-Operator

Characteristic (ROC) curve which evaluated model discrimination.?>1%8:109

Univariate Results for Survival and Cardiac Related Re-admissions

The cumulative probability of remaining free of an event for longer than time=t
was calculated by Kaplan-Meier analysis for all prognostic variables. The univariate
association between survival curves for each prognostic variable (i.e., male vs female,

primary vs redo CABG etc.) was evaluated by the log-rank statistic.

Multivariable Cox Regression Models

All prognostic variables were submitted to Cox regression analyses using
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stepwise selection to determine the independent, multivariable predictors of each long-
term outcome. Because of criticisms from statistical reviewers regarding the potential
loss of information when continuous variables are categorized, we used age group, LV
grade, NYHA etc as continuous variables and derived one regression parameter for each
variable. The regression coefficient would then be multiplied by each value of the
prognostic variable and exponentiated to obtain the risk ratio. Model validity was
evaluated by the chi square P-value for the last variable retained in the model.

Three different models of survival were constructed: (a) survival to one year, in
which all patients were censored at one year if they survived past one year, (b) survival in
all patients for the total follow-up period, and (c) survival in just those patients who

survived their index hospital admission.

Relative Risk Group Construction

Risk weights for each level of an independent predictor variable were derived by
rounding the risk ratios from the Cox regression analysis for survival to the nearest
integer. A total risk score was calculated by summing the relevant risk weights which
characterized each patient.>>’>” Because of small numbers, risk scores >14 were
collapsed into a single score of 14. Relative risk groups were constructed based on
quartiles of the total risk score: low risk (LR=total risk score 0-2), medium risk
(MR=total risk score 3-5), high risk (HR=total risk score 6-8) and extremely high risk
(ER=total risk score 29).

As a comparative method, the regression coefficients were also used to construct
relative risk groups. Regression coefficients which characterized each patient were
summed. Quartiles of this risk score were also used to define each relative risk group:
LR total score 0-0.63 (N=1682, 24%), MR=total score 0.64-1.09 (N=1827, 26%),
HR=total score 1.10-1.59 (N=1673, 24%), and ER=total score >1.6 (N=1805, 26%).
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Predicted versus Observed Survival

A fully parametric, accelerated failure time model was used so that estimated
survivor functions could be directly produced from the model and therefore goodness-of-
fit could be checked more thoroughly. The intercept, scale parameter and regression
coefficients from the log-logistic analysis were used to calculate the predicted probability
of survival to time=t from the formula:

S(tIX)= 1/1+[-g(Bo+X)]*t8
where S = survival probability, g = 1/scale parameter, B, =regression intercept,
X = regression coefficients for covariates which describe each patient, t = follow-

up time (morn:hs).151

Accuracy and Precision of the Survival Model

A single survival estimate for each patient was calculated from the log-logistic
model and converted to a cumulative hazard (-log of predicted survivai). The number of
predicted deaths was determined by summing the cumulative hazards.?'” The percent of
accurately predicted deaths was calculated by dividing the predicted number of deaths by
the observed number of deaths within each risk group. Model precision was evaluated
first by graphically superimposing the predicted probability (+ | standard error) of
survival as calculated by the log-logistic model over a graph of observed survival as
calculated by the Kaplan-Meier analysis. 3992218 A weighted linear regression was
performed comparing the predicted probability of survival versus observed probability
of survival grouped by total risk score.”>?2! In addition, the difference (residual)
between the mean predicted minus observed probabilities of survival was plotted to
evaluate time-related departures from a residual that equalled zero.

A further evaluation of model fit was performed by a weighted linear regression

comparing the annual mean predicted versus observed cumulative probability of survival
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for each total risk score to evaluate to what degree the relationship was over- or under-
estimated. A slope of 1 and intercept of 0 would indicate a perfect fit of predicted to
observed outcomes.®® Model fit was also evaluated by the residual chi square comparing
expected (sum of cumulative hazards) to observed deaths within each risk group from the
formula:
x* =(0-E* / (E(1-EN))
where %2 = chi square, O=observed number of deaths, E=expected number of

deaths, N=total number in each group.

Calculation of Provider-Specific Risk-Adjusted Survival

We explored the possibility of using the predicted probabilities of survival
derived from the multivariable model in an equation to calculate provider-specific, risk-
adjusted outcomes. A predicted survival curve was generated for each patient. The mean
predicted survival of each surgeon’s patients was divided by the observed cumulative
survival and then multiplied by the overall observed survival for all providers for the
three year time interval. This calculation of risk-adjusted survival is interpreted as the
survival for any one provider based upon the results he/she could anticipate if his/her

case-mix was identical to everyone else’s.®”"

74 RESULTS
7.4.1 Patient Sample

Between January 1, 1992 and December 31, 1996, 7022 consecutive patients
underwent isolated coronary artery bypass graft surgery (CABG) at the Toronto General
Hospital. Data were complete for all but 35 patients who were missing one or more
important elements of prognostic information (99.5% complete). Operative mortality

was 2.3% (n=164). Patient demographics, risk factors and outcomes are presented in
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Table 7.1.

Linking the clinical database with the CIHI database resulted in a total of 18,074
records, of which 11,156 records represented pre-CABG admissions. The remaining
6,918 records represented post-CABG admissions in 3,629 patients. Non-cardiac
admissions in this group accounted for 5,026 records. Total post-CABG events therefore
accounted for 1,892 total admissions in 1,036 patients.

7.4.2 Predictors of Operative Mortality by Logistic Regression

The independent, multivariable predictors of operative mortality are contained in
Table 7.2. The area under the ROC curve was 0.772 and the Hosmer-Lemeshow
goodness-of-fit P value was 0.16. When age was tested in a separate model as a
continuous variable, the odds ratios for the remaining predictor variables did not change
more than + 10%. In addition, neither model accuracy nor precision was affected by the

use of age as either a categorical or continuous variable.

7.4.3 Survival and Freedom From Re-admission for Cardiac Events

Survival

Mean follow up was 42 + 19 months (range 0 to 78 months). The minimum
follow-up for survivors was 15 months. There was a total of 407 late deaths following
discharge from the index operation: 270 in-hospital deaths were determined from CIHI
data while 137 out-of-hospital deaths were identified from the RPDB data. Overall
survival to one and five years was 96 + 0.4% and 89 + 1% (Figure 7.1). The risk ratios
(RR) and the 95% confidence intervals (CI) for the independent, multivariable predictors
of survival to one year, total survival, and survival for the hospital survivors only are
found in Table 7.2. Univariate resuits from Kaplan-Meier analyses for survival are
presented in Table 7.3.
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Re-admissions for Cardiac Events

There were 1036 (15%) re-admissions for cardiac events over the complete
follow-up period. Overall actuarial freedom from re-admission for any cardiac event at
one and five years was 94 + 0.3% and 79 + 1%. The independent, multivariable
predictors of re-admission for cardiac events are contained in Table 7.4. The Kaplan-
Meier estimates are contained in Table 7.5. All univariate comparisons for freedom from
re-admissions for cardiac events were significant by the log-rank test, P<0.001.

One and five year freedom from re-admission for recurrent chest pain, which
included acute myocardial infarction or angina was 97 + 0.2% and 87 + 1% (n=608,
8.7%).

Freedom from re-admission at one and five years for congestive heart failure
(n=314, 4.5%) was 98 £ 0.2% and 94 £ 0.2%.

There were 27 repeat CABG procedures and 108 percutaneous angioplasty/stents
over the follow-up period. The one and five year freedom from revascularization, which
included both PTCA and/or CABG (n=135, 1.9%), was 99 + 0.1% and 97 @ 0.2%.

The one and five year event-free survival (n=1460, 21%) was, 92 2 0.3% and 72
® 1% respectively. The independent, multivariable predictors of event-free survival were
(risk ratios (RR) and 95% confidence intervals (CI) in parentheses): age group (RR
1.252, CI 1.16 - 1.35), female gender (RR 1.316, CI 1.17 - 1.48), LV Grade (RR 1.374,
CI 1.28 - 1.47), NYHA (RR 1.227, CI 1.12 - 1.35), previous CABG (RR 1.609, CI 1.36 -
1.91), preoperative congestive heart failure (RR 1.748, CI 1.48 - 2.06), surgical priority
(RR 1.35, CI 1.20 - 1.52), diabetes (RR 1.262, CI 1.13, 1.42), hypertension (RR 1.205, CI
1.08 - 1.34), peripheral vascular disease (RR 1.340, CI 1.17 - 1.53), renal failure (RR
1.453, CI 1.19 - 1.77) and myocardial infarction in the month prior to surgery (RR 0.837,
CI0.73 - 0.96). The P value for the last variable included in the model was 0.013.
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7.4.4 Relative Risk Group Construction

The risk ratios for each predictor variable from the Cox regression analysis for
survival were rounded to their nearest integer to form a risk weight. (Table 7.6). The
total risk score was calculated by summing the risk weights which characterized each
patient. Univariate as well as frequency analysis were used to establish the cutpoints of
total risk score which defined the relative risk groups: low (LR, score 0-2, N=1854,
27%), medium (MR, score 3-5, N=2391, 34%), high (HR, score 6-8, N=1788, 26%) and
extremely high (ER, score 29, N=954, 14%). Patient characteristics and outcomes for
the relative risk groups are presented in Table 7.7.

A comparison of patients in each risk group constructed from the rounded risk
ratios versus the Cox regression coefficients showed agreement above chance was 0.88
0.01. We determined that it would be easier for clinicians to use a simple predictive rule
which sums rounded risk ratios to form a total risk score rather than summing regression

coefficients and have therefore relied upon the former method.

7.4.5 Predicted versus Observed Survival

Regression coefficients for the log-logistic accelerated failure time model are
described in Table 7.8. The yearly predicted probabilities of survival for each risk score
are found in Table 7.9. The mean predicted probability of survival was graphically
superimposed over observed survival for the total sample of patients (Figure 7.1) and for
each relative risk group (Figure 7.2).

Both observed five year survival from the Kaplan-Meier analysis and risk-
adjusted predicted survival from the log-logistic accelerated time failure model are
shown in Table 7.10. The R? from the linear regression analysis of predicted versus
observed survival probabilities for the total dataset of ail patients was only 0.04;

however, due to the large sample size, this regression was statistically significant
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(P<0.001). The R?s for each risk subgroup were all significant at the P<0.001 level. The
R? for the ER group was only half that of the other three groups. However, the R? for the
ER group which was constructed from cutpoints of the sum of regression coefficients
was only 0.14, suggesting that the use of rounded risk ratios was a more valid approach.

The departure between predicted and observed survival seen at five and six years
in the ER group may have been a function of reduced sample size at those time intervals
or, more probably, the onset of saphenous vein graft failure which has serious
consequences in higher risk patients who are further compromised by poor ventricular
function. Figure 7.3 depicts the residual difference between predicted minus observed
results for the overall patient sample and for each risk subgroup. There is a clear over-
estimation of actual survival for the operative and latter time intervals. Figure 7.4 depicts
the calibration curve of the mean predicted versus observed estimates of survival for each
risk score at each yearly interval. The weighted linear regression R?of 0.86
demonstrated that there was an excellent fit between the model’s estimates and actual
outcomes when averaged for each risk score.

The predicted number of deaths within each risk group was calculated by
summing the cumulative hazard ratios from the log-logistic model. Chi square P values
for each risk subgroup indicated no statistical difference between observed and predicted
results (Table 7.10). When the sample of patients was evaluated in total, summing the
cumulative hazard ratios resulted in 508 predicted deaths for 89% accuracy. However,
due to the larger sample size, there was a significant difference between observed and
predicted deaths for the whole group (P<0.001).

To further validate the appropriateness of risk group stratification, we examined
the univariate association between risk groups and survival (Kaplan-Meier analysis, log-
rank P=0.0001) as well as freedom from admissions for chest pain, congestive heart

failure, any cardiac event and overall event-free survival (Figure 7.5). There was no
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significant, univariate difference between risk groups for revascularization. At six years
the freedom from revascularization was (95% confidence intervals): LR 97% (96, 98%);
MR 97% (96, 98%); HR 97% (96, 98%); ER (98% (97, 99%), P=0.8.

7.4.6 Provider-Specific, Risk-Adjusted Survival

The results depicted in Figure 7.6 are a preliminary evaluation of the use of a
multivariable model of survival in the calculation of risk-adjusted, provider-specific
survival. We suggest a cautious interpretation of these results since the providers in this
context are surgeons and in all fairness, have limited impact on the long-term
management of these patients. However, Figure 7.6 does suggest that it is possible to
separate out provider effects. Note the very different results between the upper most and
lowest dashed lines. These two providers had identical predicted probabilities of three

year survival based on their case-mix but different observed and risk-adjusted outcomes.

7.5 DISCUSSION

The clinical database of 7022 consecutive patients undergoing CABG between
1992 and 1996 at the Toronto General Hospital was linked to provincial and national
hospital administrative data as well as to a national data register of deceased persons.
This data linkage permitted us to follow our patients for survival and re-admissions to
hospital following their index operation. Two other studies by Hartz** and Boscarino’®
also used linked clinical and administrative data to evaluate survival data following
CABG. The study by Hartz and colleagues was conducted in a large population of
Medicare patients for the sole evaluation of late survival. Boscarino et al evaluated late
survival in a relatively small cohort of 771 patients following CABG. Thus we present a
unique Canadian study which evaluates not only survival in a large population of CABG

patients but also their freedom from re-admissions for cardiac events. Also, a predictive
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rule was developed to predict late survival following CABG.

The richly characterized clinical data in this study were used for the development
of a multivariable statistical model to characterize survival up to six years following
surgery. To achieve clinical applicability and relevance to decision making in and
around the time of surgery, the variables in t:he models were those usually available to
cardiac surgeons at the time of initial surgical referral.”® Additionally, the independent,
multivariable risk factors for re-admission to hospital for cardiac events were also
identified by Cox regression analysis. The results demonstrated that a predictive rule can
be used to construct valid relative risk groups for long-term outcomes after CABG and
suggest that outcomes can be predicted reliably for up to five years postoperatively in all

but the most extremely high risk patients. However, external validation is still required.

7.5.1 Study Strengths

This observational study was conducted in a large cohort of consecutive patients
undergoing isolated CABG at one institution over a relatively short recruitment period of
five years. The results of this study are therefore generalizable to institutions with
similar case-mix and outcomes as the Toronto General Hospital.

The diversity of patient characteristics and data linkage with administrative data
extended our ability to capture a wide range of important clinical risk factors as well as
outcomes. The framework of this study therefore integrates both classical principles of
measurement with statistical methods to model the impact of those risk factors on
survival and cardiac-related re-admissions to hospital. Follow-up data were collected by
the same method for all patients and therefore reduced outcome ascertainment bias. This

study highlights the value of using complementary data sources for clinical research.®
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7.5.2 Limitations

The most important limitation of this study is the lack of information on long
term interventions such as risk factor modification, use of anti-platelet drugs, lipid
lowering medications, beta blockers etc. Variations in these long term factors might be
important confounders that, if included in a model, would alter the risk weights of certain
variables or eliminate their impact altogether. The most optimistic theory would be that
the results in this study are unbiased by these factors if they are similar across surgeons
and risk groups.

Mis-classification of clinical and outcome variables could bias outcomes. Coding
of admissions for myocardial infarction has been addressed in previous studies conducted
by the Institute for Clinical Evaluative Sciences.?!? Coding accuracy in previous studies
demonstrated a sensitivity of 95% and specificity of 88% for the most responsible
diagnosis of acute MI. To mitigate potential errors (e.g. unstable angina diagnosed as an
acute MI), we choose to create a composite outcome of recurrent ischemic pain which
included both acute MI or angina. Mis-classification in this study would most likely
contribute to noise and bias the results towards the null hypothesis for subgroup
comparisons.

We did not capture out-of-country deaths or re-admissions to hospital. There are
approximately two dozen foreign patients each year who undergo CABG at the Toronto
General Hospital. Additionally, Ontario residents may be admitted to hospital for cardiac
events while on vacation in other provinces or countries. These factors may have
contributed to a slight under-estimation of outcomes but in general, should not have
biased the subgroup comparisons.

The predictive rule appeared to be internally valid. However, external validation
is still required. The standard methods of index development usually involve creating a

derivation and validation dataset using some method of sample splitting, e.g.,
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bootstrapping. The creation of derivation-validation sub-sets of patients is a valid
exercise for much larger datasets but in the case of only 7000 patients it would have
resulted in under-powered observations for the highest risk group. Therefore, our
strategy was to use our entire dataset to identify all the potential predictors and their
associated risk weights, validate the rule internally, using methods previously
described, 27 and plan for prospective, external validation.

The first re-admission to hospital for a cardiac event was evaluated and not the
first occurrence of symptoms which did not require hospitalization. To this end, due to
the nature of our follow-up methods, we may have under-estimated the actual recurrence
of symptoms related to ischemic heart disease, although our report shows similar

recurrence rates to other studies using more traditional methods of following patients.

7.53 Survival

The observed five year survival of 89 + 1% for all patients was similar to several
other published reports despite the fact that patients in those studies were recruited as
early as the 1970's.199-210216218 There has been a nation wide increase in the prevalence
of risk factors in patients presenting to CABG which has, paradoxically, been
accompanied by a significant reduction in hospital mortality. The fact that our observed
five year survival is similar to earlier reports suggests that overall risk-adjusted, long-
term survival has also improved in parallel with hospital outcomes, possibly due to
continued refinements in operative and anaesthetic techniques as well as postoperative
management occurring during the interval of t‘ollow-up.[99 The predictors of mortality in
those patients who survived the immediate postoperative period were different from the
predictors in the total patient sample (Table 7.2). These results suggest that the impact
of gender and redo bypass on survival occurs in the early postoperative period only.

Survival is the most unbiased event and therefore the risk ratios from the Cox
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regression for survival were used to determine the risk weights for the predictive rule.
The purpose of using risk ratios was simply to separate patients into clinically relevant
risk groups and not to calculate the actual probability of events. Risk group stratification
by quartiles of the total regression coefficient score had excellent agreement with the
method used based upon the risk scores. However, the risk scores derived from summing
regression coefficients resulted in a more complex computational method which would
not have been as useful for clinicians. Coste and colleagues™ suggested that every effort
be made to simplify scoring systems and present them in an attractive format to ensure
their applicability in diverse settings.

A prognostic rule based simply on coronary anatomy developed at Duke
University '* showed a clear relationship between survival and the extent of coronary
artery disease. They found that adjusting survival in cohort studies by baseline
characteristics resulted in estimates similar to those found in randomized controlled
trials. Although the extent of coronary artery disease was not a significant predictor of
survival in this study, the weighting of other clinical characteristics to construct relative
risk groups was significantly associated with long-term survival.

Califf and colleagues concluded that five year survival rates were a function of
operative risk.2%! Our findings are similar. In this study, the risk factors and indeed most
of the risk weights for the predictive rule developed from the Cox model for long-term
survival were very similar to the logistic regression-based predictive rule developed for
operative mortality in Chapter Four. It is possible that the original rule developed for
operative mortality may have been equally effective at stratifying patients into low-high
risk groups for long-term outcomes.

But, are five year survival rates primarily a function of operative risk or are other,
unmeasured forces exerting their influence over late survival following CABG? The

shape of the observed survival curves in our high and extremely high risk patients
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showed a “shoulder” of decreasing survival beginning at approximately four years
postoperatively. The shape of our survival curves was very similar to those seen in the
study from Duke?® in patients with poor LV ejection fraction (their Figure 3). In the
Duke study’s lower risk, surgical cohort there is a similar “shoulder” seen in observed
survival at seven years (their Figure 5). The VA randomized study in low risk patients
also reported a gradual loss of vein graft patency between five and 10 years.?!® In our
study, it is possible that we are seeing at four years, the onset of vein graft failure in the
higher risk groups: a harbinger of events that are delayed in lower risk patients with
good LV function, but having serious consequences in patients with poor ventricular
function and little reserve.

Sergeant and Blackstone®!’

also evaluated the use of a predictive risk algorithm
developed from the ACC/AHA guidelines to predict the probability of survival after
CABG.%'® The rule was recalibrated in the Belgium dataset and modified slightly by the
addition of other variables. They concluded that the poorer precision between predicted
and observed survival seen in higher risk patients was due to unmeasured risk factors
which, because of their low prevalence in the database, were not included in the
predictive rule. That may be a valid conclusion to some extent, but one cannot ignore the
postoperative course in compromised patients, specifically in regards to graft failure, left
ventricular reserve, the modification of risk-factors (e.g., cessation of smoking,

hypertension control, diabetic control), and compliance with medical therapy (e.g.,

aspirin and lipid lowering medication).

7.54 Re-admissions for Cardiac Events
The recurrence of symptoms of ischemia and congestive heart failure not
requiring admission to hospital may have resulted in an under-estimation of the return of

symptoms related to ischemic heart disease. However, our five year freedom from

157



angina was 87 + 1%, which was very similar to the ACC/AHA Task Force Report five
year rate of 83%.2'% A myocardial infarction in the month prior to surgery and left main
disease were associated with a risk reduction for postoperative chest pain recurrence,
possibly because the area at risk was already infarcted prior to surgery.

Our five year revascularization rate was identical to that reported by
others. 205209216 Thege previous studies also found that older age, poor ventricular
function and triple vessel disease were associated with a lower risk of revascularization.
These results highlight a need to revise the concept of increased risk of revascularization
compared to repeat cardiac events when considering these risk factors since the results go
in the opposite direction. Sergeant?'® identified a very short early hazard phase for
revascularization followed by a longer, late phase of increasing hazard. They note that
revascularization is an event which captures the practice of reintervention and not the
actual need. It is likely that our results reflect the fact that patients with poorer LV
function, more comorbidity or increased age are not offered repeat procedures because
they are deemed to be at extraordinarily high operative risk.

Our event-free five year survival rate of 72% was close to the 78% reported by
Sergeant’” despite the difference in follow-up methods between the two studies. Higher
risk patients had significantly decreased event-free survival compared to the other
cohorts. However, Califf et al®! and others'**2% have suggested that high risk patients
have more of a survival benefit from CABG than low risk patients. Califf et al were
specifically concerned that pressure from providers to select low risk patients would lead
to a significant misallocation of funds and result in lower CABG rates in the patients who
would benefit most, those at higher risk of poor outcomes. They suggested that patient
selection for CABG should be contingent on long-term benefits as well as operative risk.
The use of a predictive rule may help to identify high risk patients who would benefit
most from surgical therapy as well as helping providers plan for the appropriate
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allocation of resources and postoperative patient-management strategies.

7.5.5 Model Development

Our plan was to develop a predictive rule which would encompass the entire
follow-up period from the date of operation to the end of the follow-up interval, in this
case, 78 months. To maintain simplicity of use, the predictive rule would therefore be
required to model hospital outcomes as well as later events. There have been at least
two?? and perhaps three 2!2!3 distinct hazard phases identified for survival following
CABG. The early phase was defined as the early postoperative period (up to one year)
which was associated with an increased hazard of dying. In the following phase there
was a decreased, but sustained hazard of dying. After five years, there is a gradual
increase in the hazard of dying as well as an increased hazard of experiencing cardiac
events.?!® The Cox model was used to calculate an adjusted risk ratio for each variable
and was therefore used to determine the relative risk weights for each independent
predictor variable. The Cox model is semi-parametric and does not have an intercept or
shaping parameter. Therefore, the log-logistic model, which is fully parametric with a
calculated intercept and shaping parameter, was used to calculate risk-adjusted, expected
survival. The log-logistic shape parameter is specifically designed to capture the early
postoperative phase of increased hazard and the subsequent constant hazard phase.
However, it is apparent from our results that the very late hazard phase is not precisely
captured by this equation (Figure 7.3) and there is good argument for a similar lack of
precision for the earliest hazard phase in the extremely high risk group. This equation is
therefore an appropriate statistical tool to model expected survival following CABG for
one to four years or until the late hazard begins to increase. Because of the early onset
of increased hazard in the high and extremely high risk groups, clinicians who are
counselling high risk patients may wish to tailor their estimates of survival probability
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towards the lower confidence intervals in Table 7.9.

This model contained most of the risk factors identified by the Working Panel
Group on the Cooperative CABG Database Project as being important in the
development and utilization of a predictive rule.”® Over-estimation of survival in our
highest risk groups was similar to results seen by Sergeant.?% It is likely that some risk
factors have a major impact on outcomes but their low prevalence in the database does
not permit them to be statistically modeled.?® Excess mortality may be related to
unmeasured comorbidity, the onset of early graft failure, or differences in surgeon-
specific, risk-adjusted outcomes that were not accounted for in the model. Sergeant
noted that the changing pattern of risk factors may result in the absence of strong
predictors in the model. In a recent study from Australia in which patients were recruited
between 1985 and 1995,215 many of the same risk factors associated with decreased
survival were identified; however, notable by their absence were the extent of coronary
artery disease, surgical priority, hypertension and female gender. We have observed that
previously important risk factors such as left main disease and the number of diseased
coronary vessels are no longer contemporary independent predictors of mcn'tality.n'128
Perhaps the previous identification of these important conditions or the increasing wide-
spread use of arterial conduits has led to a reduction in the mortality associated with these
variables. Indeed, the odds ratios for operative mortality for female gender and previous
CABG were greater than the upper 95% confidence intervals for the risk ratios for long-
term survival and re-admissions for cardiac events. These results suggest that the
influence of these two variables on long-term outcomes may well be concentrated in the
early postoperative period with a reduced hazard after the first year. The advent of new
surgical technologies such as multiple arterial conduits, off-pump bypass and robotic
surgery, combined with improved postoperative management of patients following

CABG, will require that we rethink the impact of traditional risk factors in the next
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millennium.

Other reasons for a lack of model membership could be due to high collinearity
between clinical variables which measure similar domains, such as anginal severity,
recent MI, coronary anatomy and surgical priority. In our database, there was a
significantly high correlation (Pearson correlation coefficient in parentheses) between
surgical priority and recent MI (0.5), NYHA (0.6), and anginal severity (0.6) In Ontario,
patients waiting for surgery are managed by a triage system which assigns priority based
on several factors, with the greatest weight given to coronary anatomy and anginal
instability.'%13%3 Since the inception of this system in April 1991, we have found that
“surgical priority” has become a more robust predictor of hospital outcomes and, because
of the triage system, is less susceptible to “up-coding”. In our models, the inclusion of
“surgical priority” was associated with improved accuracy and precision as compared to
its component variables. Another explanation for lack of model membership is that a
variable which has a significant univariate association with the outcome, may not
contribute additional predictive value to the model over and above the variables already
in the equation.

Our predicted versus observed survival R? 0f 0.04 for the entire dataset
demonstrated a rather weak relationship despite being statistically significant. When
regressions were examined for the risk subgroups, there was a much improved fit
between observed and predicted values as evidenced by the R? in each panel of Figure
7.2. Itis possible that evaluating all patients in one model violated an assumption of
linearity which resulted in poorer fit. Using linear regression for the risk subgroups
would have, in effect, examined shorter segments of the total calibration curve and
therefore resulted in an improved fit. Transformation of the values on the y-axis did not

improve precision.
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7.5.6 Implications for Patient Counselling

Can outcomes be predicted reliably past four or five years postoperatively?
Several researchers have felt that there is an important relationship between preoperative
risk factors and long-term survival.** However, worsening disease states combined with
the onset of graft failure are not included in prognostic models developed from
preoperative risk factors. The confidence intervals around estimates of predicted
survival were quite broad for those patients having higher risk scores (Table 7.9).
Weintraub and colleagues?®® were particularly concerned that the changing pattern of
CABG surgery, specifically in regards to the use of mammary artery grafts, aspirin
treatment, risk factor modification and the increasing prevalence of high risk patients,
would make it difficult to predict very late outcomes. Therefore, when counselling
patients regarding risks and net benefits, surgeons must consider not only temporal
changes in the prevalence of risk factors and improvements in outcomes but also the
patients’ contribution to their own well-being. Risk factor modification, (e.g., cessation
of smoking, control of hypertension, diabetic control and compliance with anti-platelet
and lipid lowering medications) is not captured by a predictive risk index; however, this

domain probably has significant impact on long-term survival.

7.5.7 Quality Improvement

Clinical outcome is influenced by patient characteristics but also institutional and
provider effects.”® If we understand the forces, we can identify specific characteristics
which may be amenable to strategies which will reduce a patient’s risk of poor outcomes.
We present this preliminary analysis of risk-adjusted three year survival as one potential
tool for the evaluation of provider-specific outcomes and quality of care on a different
time-horizon than is the case for most existing models. However, the validity of

calculating risk-adjusted, long-term survival requires more intensive evaluation than
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given in this report.
7.5.8 Conclusions

The linkage of a clinical database with administrative data allowed for the
efficient follow-up of a large contemporary cohort of consecutive CABG patients and the
identification of multivariable predictors of survival and re-admission to hospital for
cardiac events. Patient-related risk factors which were predictive of mortality also
predicted re-admission to hospital for cardiac events. Actuarial estimates from registry
and administrative data were similar to estimates made from more traditional follow-up
methods in previously published studies.

Survival estimates in this contemporary sample of patients suggest that there may
have been a similar shift in the improvement of long-term outcomes which parallels
temporal improvements seen with hospital survival. However, statistical models based
on preoperative risk factors do not capture information on long term factors which may
have acted as important confounders of outcomes.

Patients were characterized by relative risk groups based on Cox regression risk
ratios for important prognostic variables. An accelerated time failure model using the
log-logistic distribution was used to generate a predicted survival curve for each patient.
After stratifying by risk group, the model predicting long-term survival demonstrated a
good correlation between predicted and observed outcomes for the majority of patients.
However, the results in higher risk patients suggested that the predictive rule was not as
precise for estimates made after four to five years. Future research will be directed
towards improving the precision of the predictive model by adding in variables which
describe process of care or early outcomes.

This predictive algorithm may provide a valuable tool for medical decision
making, internal benchmarking, trial design and patient counselling. Prospective external
validation is still required and should be the focus of future research.
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Table 7.1

Total fo -
All Patients

| NC6)

N 7022

Age: Mean £SD 6210
<65 year | 3916 (56)
65-74yr | 2453 (35)
275 yr 653 (9.3)
Female | 1482 (21)
LV Grade: 1| 2026 (29)
2| 3202 (46)
3] 1565 (22)
4 220 (3.1)
Priority: Elective | 3780 (54)
Semi-Urgent | 3019 (43)
Emergency 221 (3.2)
Previous CABG | 485 (6.9)
Preop CHF | 524 (7.5)
NYHA: 1 156 (2.2)
2 936 (13)
3| 2458 (35)
4| 3472 (49)
ACI| 2217 (32)
Recent MI | 1278 (18)
TVD | 5247 (75)
|  Lefmaindisease | 1340 (19)
| Diabetes | 1726 (25)
PVD | 1003 (14)
Hypertension | 3563 (51)
Renal Failure | 290 (4.1)
Preop Stroke/TIA | 585 (8.4)
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Variable Total for 7
All Patients
—

Operative Mortality | 164 (2.3)
Operative LOS | 546 (7.8)
Operative Stroke 90 (1.3)
ﬂ Total Deaths (6 yrs) | 571 (8.1) “
AMI | 161 23) |
Chest Pain (AMU/UA) | 600 (86) ||
| CHF | 314 (4.5)J\
PTCA | 112 (L6)
CABG | 25 (0.4)
|r Any Cardiac Event | 1036 (15)

“ Mortalig/l\dorbidig 1460 (21) "

Legend for Table 7.1 CHF=congestive heart failure, NYHA=New York Heart Classification,
ACI=acute coronary insufficiency, MI=myocardial infarction, TVD=triple vessel disease,
PVD=peripheral vascular disease, TIA=transient ischemic attack. Semi-urgent priority was

defined as surgery occurring during the same admission as a cardiac catheterization or cardiac

event. Emergency priority was surgery occurring within 12 hours of a cardiac catheterization or

acute cardiac event. LOS=Low cardiac output syndrome, AMI=acute myocardial infarction,

CHF=congestive heart failure, UA=unstable angina, PTCA=percutaneous transluminal coronary

angioplasty.
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Table 7.2

Variable SLR
oM
OR(95%CI) | RR(9%CD | RR(95%CD | RR(95% CD
Age group 1.704 (14,2.1) | 1.669(1.4,2.0) | 1.684 (1.5,19) | 1675(L5, L9)
Female 1.940 (14,2.7) | 1651(13,22) | 1216 (L0, 1.5)
LV Grade 1.846 (1.5,2.3) | 1.697(1.4,2.0) | 1.473 (13,16) | 1.368(1.2, L6)
Redo CABG 3.528 (2.3,53) | 2.865(2.1,4.0) | 1.838 (1.4,24) j
[ surgical Priority | 1397 (1.1,1.8) | 1496 (1.2,1.9) | 1285 (1.1, 1.5) | 125410, 15) |
| crF 1.823 (1.2,2.8) | 1.674(1.2,2.3) | 1.697 (1.3,22) | 1.590(1.2,22)
| Diabetes 1453 (1.0,2.0) | 1.394(L.1,1.8) | 1340 (1.1, 16) | 1313(L1, L6)
[pvD 1.572 (1.1,23) | 1469(1.1,2.0) | 1.530 (1.2,1.9) | 1.446(1.1,1.9)
Hypertension 1333 (10, 1.7) | 1271 (1., 1.5) | 1.241(1.0,15)
Renal Failure 1.532 (1.1,2.0) | 1.691(1.2,2.9)
L Main disease 1.378 (1.0, 1.8)
Preop CVA/TIA . 1.422(1.1, 1.9)
NYHA
FLRecent MI
TVD
P value for last 0.032
variable in the
model

Legend for Table 7.2 SLR=stepwise logistic regression, OM=operative mortality, OR=o0dds ratio, RR=risk
ratio, 95%CI=confidence interval, Age group: l=age <65, 2=age 65-74, 3=age 275; LV Grade: 14,
Surgical Priority: 0=Elective, 1=Same hospitalization, 2=Emergency, x=variable was not significant in the

166



model. CHF=congestive heart failure, DM=diabetes, PVD=peripheral vascular disease, BP=hypertension,
RF=renal failure. Variables submitted but not significant in the models: NYHA, left main disease, triple
vessel disease, history of stroke/TIA, recent preoperative MI (highly correlated with surgical priority).
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Table 7.3

<65 98.6+0.2 97.8+0.2 93.4+0.5

65-74 97.2+0.3 95.1+£04 854210

275 94.620.9 919e1.0 773+3.0

Sex: Male 98.2+0.2 97.0£0.2 90.0+0.5

Female 96.0+0.5 94.0 £0.6 86.2+1.2

LV Grade: 1 99.0+0.2 98.3+£0.3 92.720.8

2 98.1+0.2 96.8 £0.3 90.720.7

3 96.4+0.5 94.6 £ 0.6 846@1.2

4 914%19 85.0+24 69.5242

Previous CABG: N 98.1 £0.2 96.8 0.2 89.7+0.5

f Y 93.2+1.1 91.1+1.3 84.4+2.0
Surgical Priority: Elective 98.3+0.2 97.6+0.3 91.5%0.6
Same Hospitalization 97.4+0.3 95.5+0.4 87.520.8
Emergency 914+19 87.3£22 740240

Congestive Heart Failure: N 98.2+0.2 97.0+£0.2 90.6£0.5
Y 92.6+1.2 882+14 64.4£5.7

Diabetes: N 98.0+0.2 96.9+0.2 90.6+0.5

Y 97.2+04 94.8+0.5 855+1.2

Hypertension: N 98.3+0.2 97.3+0.3 91.4£0.7

Y 97.3+£0.3 95.5+0.3 87.4+0.7

Peripheral Vascular Disease: N 98.1+0.2 96.9 0.2 90.8 £0.5
Y 95.7+0.6 929+0.8 80.0+1.8

Renal Failure: N 97.9+0.2 96.7+0.2 90.1 0.5

Y 95.5+£1.2 89.4+ 1.8 69.2+4.0

Legend for Table 7.3 All comparisons across risk factors are significant by Kaplan-Meier analysis, log-

rank P<0.001.




Congestive '- Cardiac
B - Heart Failure Event
1456 (12, 1.7) | 0.657(0.5,09) | L1112 (10, 1.2)
| Female 1.481 (12, 1.8) | 1.553(1.2,2.) 1.424 (1.2, 1.6)
LV Grade 2.291(20,2.7) | 0.770(0.6,1.0) | 1.353 (1.2, 1.5)
Redo CABG 1.536 (1.2,2.0) | 1.550(L.1,2.2) 1.576 (1.3, 1.9)
Surgical Priority | 1.391(1.2, 1.7) 1.838 (1.4,2.4) | 1585 (1.4, 1.8)
CHF 1.505 (1.1, 2.0) | 2.169(1.6,2.9) 1.828 (1.5,22)
Diabetes 1.698 (1.4, 2.1) 1.255 (L1, 1.4)
k)vn 1.268 (10, 1.6) | 1.413(L.1, L9) 1.318 (1.1, 1.6)
| Hypertension 1331 (L1, L.7) 1.169 (L0, 1.3)
| Renal Failure 2.020 (1.4, 2.8) 1.397 (L1, 1.8)
L Main disease | 0.741 (0.6, 0.9) I
Preop CVA/TIA .
NYHA 1.656 (1.4, 19) | 1.298(L.L, L6) 4'
Recent MI 0.757 (0.6, 0.9)
TVD 0.671 (0.5, 1.0)
P value for last 0.029 0.021 0.024 0.024
variable in the
model

Legend for Table 7.4 Cox regression risk ratios and 95% confidence intervals in parentheses. Age group:
l=age <65, 2=age 65-74, 3=age 275; LV Grade: 1-4, Surgical Priority: 0=Elective, I=Same
hospitalization, 2=Emergency, x=variable was not significant in the model. CHF=congestive heart failure,
DM=diabetes, PVD=peripheral vascular disease, BP=hypertension, RF=renal failure, NYHA=New York
Heart Association classification, left main disease, TVD=triple vessel disease, Preop CVA/TIA=history

of stroke/transient ischemic attack, Recent MI=preoperative MI within a month prior to surgery.
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Table 7.5

Age: <65 99.120.2 95.620.3 80.520.9
65-74 98.5+0.2 93.9+0.5 77.7+£1.2
97.9+0.6 90.2+1.2 719+24
: 99.0+0.1 95.3+0.3 80.5+0.8
Female 98.1 0.4 91.6+0.7 729+1.6
LV Grade: | 99.4+0.2 96.4+0.4 83.83e1.0
2 98.8+0.2 95.2204 81.6+1.0
3 97.8+x04 922+0.7 700+ 1.8
4 97.1@1.2 81.2+£28 53.8+49
Previous CABG: N 98.8 £0.1 94.7+£0.3 79.6 £0.7
Y 98.2+0.6 91.6+1.3 70.4 £2.8
Surgical Priority: Elective 99.5 +0.1 96.8 +0.3 83.8+0.8
Same Hospitalization 98.3+0.2 923+0.5 73.2+£1.2
Emergency 926+1.8 84.7+£25 68.1 £4.0
Congestive Heart Failure: N 99.0 0.1 953+£0.3 80.7£0.7
Y 95.6+0.9 84.1+1.7 482 +4.8
Diabetes: N 98.8+0.2 948 +0.3 80.9+0.7
Y 98.8 +£0.3? 93.6+0.6 723%1.6
|| Hypertension: N |  99.0£0.2 95.520.4 81.7 £0.9
Y 98.6 +0.2 93.6+04 76.4+1.0
Peripheral Vascular Disease: N 98.9+0.1 95.0+0.3 80.6 0.7
Y 97.8+0.5 91.7+0.9 68.0+22
Renal Failure: N 98.9+0.1 94.7+£0.3 79.820.7
|| Y 95.8+1.2 89.0+1.9 59.1+44 |

Legend for Table 7.5 All comparisons across risk factors are significant by Kaplan-Meier analysis, log-

rank P<0.001.



Table 7.6  Predictive Rule Risk Weights

Variable
Age: 65-74
275
Female

LV Grade: 2
3
4

Redo CABG

| Surgical Priority: Same Hosp.
Emergency

Congestive heart failure

Peripheral vascular disease
Renal failure

History of hypertension

L= NN IO=]NWN—= ] = ]WN

Diabetes

Legend for Table 7.6 The referent values (risk weight=0) are: age<65 years, male, LV Grade 1,
primary CABG, elective priority, no congestive heart failure, no diabetes, no peripheral vascular
disease, no hypertension, and no renal failure. Risk weights which characterize each patient were
summed to create a total “risk score”. The total risk score was divided into quartiles to construct
four relative risk groups: Low Risk (LR=score 0-2), Medium Risk (MR=score 3-5), High Risk
(HR=score 6-8), and Extreme Risk (ER=scores 29).
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1854 (27) | 2391 (34) | 1788 (26) | 954 (14)

Age: Mean +SD 5597 60%9 67+8 71£7
<65 year | 1854 (100) | 1517 (63) | 416 (23) | 115 (12)

65-74 yr 0 850 (36) | 1093 (61) | 496 (52)

275 yr 0 24 (1) 279 (16) | 343 (36)

Female | 133 (7.2) | 440 (18) | 527 (29) { 370 (39)

LV Grade: 1| 931 (50) 712 (30) | 323 (18) | 52 (5.5)

2| 923 (50) | 1146 (50) | 852 (48) | 275 (29)

3 0 523 (22) | 542 (30) | 490 (51)

4 0 10 (04) | 71 (4.0) | 137 (14)

Priority: Elective | 1351 (73) | 1403 (59) | 786 (44) | 237 (25)
Semi-Urgent | 503 (39) 922 (39) | 948 (53) | 625 (66)
Emergency 0 66 (2.8) 54 (3) 92 (9.6)
Previous CABG 6 (0.3) 143 (6) 187 (10) | 146 (15)
Preop CHF 0 30 (1.2) | 130 (7.3) | 359 (38)
NYHA: 1 63 (3.4) 55 (2.3) 30 (1.7) 5 (0.5)

2| 456 (25) 324 (14) | 124 (6.9) | 28 (2.9)

3| 768 (41) 935 (39) | 572 (32) | 180 (19)

41 567 (31) | 1077 (45) | 1062 (59) | 741 (78)

ACI | 340 (18) 651 (27) | 718 (40) | 491 (52)

Recent MI 166 (9) 381 (16) | 360 (20) | 354 37)

TVD | 1254 (68) | 1727 (72) | 1443 (81) | 798 (84)

Left main disease | 281 (15) 415 (17) | 387 (22) | 246 (26)
Diabetes | 203 (11) 575 (24) | 545 (30) | 395 (41)

PVD | 16 (0.9) 207 (8.9) | 349 (20) | 427 (45)
Hypertension | 626 (34) | 1174 (49) | 1086 (61) | 670 (70)
Renal Failure 0 36 (1.5) 77 (4.3) | 177 (19)
Preop Stroke/TIA | 44 (24) 147 (6.2) | 197 (11) | 197 (21)
Operative Mortality 6 (0.3) 33 (14 52129 | 71 (74)
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B R B
Risk Risk Risk Risk
N (%) N (%) N (%) N (%)
Operative LOS | 46 (2.5) 133 (5.6) | 182 (10) | 178 (19)
Operative Stroke 3 (0.2) 20 (0.8) 32 (1.8) | 35 (3.6)
Total Deaths (6 yrs) | 42 (2.3) 141 (5.9) | 183 (10) | 198 (21)
AMI | 37 (2.0) 46 (1.9) 42 (24) | 32 (3.4)J'
Chest Pain (AMI/UA) | 131 (7.1) | 184 (7.7) | 174 (9.7) | 111 (12)
CHF 8 (0.4) 60 (2.5) | 106 (5.9) | 139 (15)
PTCA | 33 (1.8) 46 (1.9) 22 (1.2) 10 (1.0)
CABG | 10 (0.5) 3 (0.1) 8 (0.4) 4 (0.4)
Any Cardiac Event | 170 (9.2) | 286 (12) | 308 (17) | 263 (28)
Mortality/Morbidi 207 (11) 399 (17) | 450 (25 389 (41)

Legend for Table 7.7 CHF=congestive heart failure, NYHA=New York Heart Classification,
ACI=acute coronary insufficiency, MI=myocardial infarction, TVD=triple vessel disease,
PVD=peripheral vascular disease, TIA=transient ischemic attack. Semi-urgent priority was
defined as surgery occurring during the same admission as a cardiac catheterization or cardiac
event. Emergency priority was surgery occurring within 12 hours of a cardiac catheterization or
acute cardiac event. LOS=Low cardiac output syndrome, AMI=acute myocardial infarction,
CHF=congestive heart failure, UA=unstable angina, PTCA=percutaneous transluminal coronary

angioplasty.
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Table 7.8

Variable Regression Coefficient
+ Std Err
Intercept 11.243 +0.425
Age group -0.892 £0.107
Female -0.243 £0.170
LV Grade -0.573 #0.096
Previous CABG -0.796 + 0.241 <“
Preoperative CHF -0.820 £ 0.220
| Surgical Priority 20.395 £0.130
Diabetes -0.507 £ 0.157
Hypertension -0.362 £0.149
Peripheral vascular disease -0.668 +0.177 LI
| Renal failure 0.804+0258 |
“ Scale parameter 1.505 +0.063 ll

Legend for Table 7.8 Age group: 1=age<65 years, 2=age 65-74 yrs, 3=age 275 years. LV
Grade: 1=EF>60%, 2=EF 40-59%, 3=EF 20-39%, 4=EF <20%. CHF=congestive heart failure.
Surgical priority: 0=Elective, l=same hospitalization as the cardiac catheterization,
2=emergency (<12 hr) surgery. For all other binomial variables the values are 0 if the risk factor
is not present and 1 if the risk factor is present.

The intercept, scale parameter and regression coefficients from the log-logistic analysis
were used to calculate the predicted probability of survival to time=t from the formula:

S(t[X)= 1/1+[-g(Bo+X)] *tB

where S = survival probability, g = 1/scale parameter, B, = regression intercept, X = regression

coefficients for covariates which describe each patient, t= follow-up time (months).
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0 (275) 99.2(100,96) | 98.8(100,96) | 98.4(100,96) | 98.1(100,96) | 97.8 (100, 96)

| 10260 | 98.90100,59) | 98.3(100,83) | 97.8(100,79) | 97.4100,76) | 97.0(100,73)
2 (853) 98.6(100,85) | 97.8(100,79) | 97.1(100,74) | 96.5 (100,70) | 96.0 (100, 67)

“ 3(768) 98.3(100,82) | 97.3(100,75) | 96.5(100,69) | 95.8(99,65) | 95.2(99,62)

II 4 (843) 97.9(100,79) | 96.7 (100,70) | 95.7 (99, 64) 94.9 (99, 60) 94.1 (99, 56) "
5 (780) 97.4(100,75) | 95.9(100,65) | 94.7(99,59) | 93.7(99,54) | 92.8(99,50)
6 (742) 96.7 (100,70) | 94.9 (%9, 59) 93.5(99, 52) 92.2 (99, 48) 91.1 (99, 44)
7 (559) 95.9(100,64) | 93.6(99,52) | 91.8(99,46) | 90.2(99,41) | 88.8(99,37)
8 (487) 94.8(99,57) | 92.0(99,46) | 89.8(99,46) | 87.9(99,39) | 86.2(99,32)
9337 93.5 (99, 51) 90.0 (99, 40) 87.3 (98, 33) 85.1 (98, 29) 83.1 (98, 26)
10 (230) 91.9 (99, 44) 87.7 (99, 34) 84.5 (98, 28) 81.9 (98, 24) 79.6 (97,22) |
11 (141) 89.9(99,38) | 84.9(98,28) | 81.1(98,23) | 78.0(97,20) | 75.3(97,17)
12 (102) 87.4 (99, 32) 81.4 (98, 23) 76.9 (97, 19) 73.4 (96, 16) 70.4 (96, 14)
13 (52) 84.6 (98, 27) 77.6 (97, 19) 72.6 (96, 15) 68.6 (96, 13) 65.4 (95, L)

214 (92)

81.6 (97, 18)

73.7 (95, 12)

68.2 (94, 10)

63.9 (93, 8)

60.4 (92,7

Legend for Table 7.9 Predicted survival (%) and the 95% confidence intervals (CI) in

parentheses as calculated by the multivariable log-logistic model.
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Table 7.10

97 #0.02
94 +0.02
89 +£0.05
76 £0.31

Legend for Table 7,10 LR=low risk, MR=medium risk, HR=high risk, ER=extremely high risk.
Observed (OBS) and predicted (PRED) survival probabilities are reported as the mean +
standard error. All P values associated with the R? results were significant at the P<0.001 level.
%PRED = #PRED/#OBS. Chi square (x*) P values >0.05 indicate no statistical difference

between predicted and observed number of events.
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Survival (%)

E

100 |-
9 | \'\\\\ ==
80 F _—
70 _K.ﬂ 86 +1%
60 — Model @6 yr
S0 - -
40 £
30F
20 F Ppatients @ risk
10F 7022 6767 5648 4169 2752 1527 311
oEr . ) I : . :

0 1 2 3 4 5 6
Years Postoperatively
ROC 0.77 0.74 0.73 0.71 0.71 0.71

Legend 7.1 The observed cumulative survival probability as calculated by the
Kaplan-Meier (KM) analysis for all patients is depicted by the solid, heavy line.
The average predicted probability as calculated by the multivariable statistical model
is depicted by the heavy dashed line + I standard error (light, dotted lines). The area
under the Receiver-Operator Characteristic (ROC) curve for model estimates is given

at each yearly interval.
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Legend 7.3 The average difference between predicted minus observed
survival is depicted for each relative risk group at each time interval. The
statistical model over-estimated survival after 4 postoperative years. This
loss of precision was most dramatic in the high risk (HR) and extremely
high risk (ER) groups. There was also a significant over-estimation of
survival in the ER group in the early postoperative period. The stipled area
represents #2% from a zero difference between observed and predicted
probabilities.



Figure 7.4

Predicted Survival (%)

100
90
mlyr
80 *2yr
- Adyr
70 + Odyr
X OSyr
60 Intercept=11.0+2.4
Slope =0.88 £0.03
p R2 = (.86, P<0.001
50 pd 1 1 1 L 1 L 1 I 1
50 60 70 80 90 100
Observed Survival (%)

Legend 7.4 The average predicted probability of survival as calculated

by the multivariable statistical model is plotted against the mean observed survival

for each yearly interval and each total risk score (represented by each symbol).

Results are given for the weighted linear regression (solid diagonal line). The

dashed diagonal line represents a perfect fit between predicted and observed

survival. 180
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Legend 75 Kaplan-Meier estimates of the cumulative probability of freedom from re-admissions for chest pain (CP),

congestive heart failure (CHF), any cardiac event (Cardiac) and event-free survival are depicted for each relative risk group. The

6 year estimates are given in the text with their 95% confidence intervals,




Figure 7.6

3 Yr Survival (%)
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Legend 7.6 Comparison of observed, expected and risk-adjusted three
year survival for each provider. Note how the two providers represented by dashed
lines have the same expected survival based on their case-mix, but different observed

and risk-adjusted survival estimates.
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Chapter Eight

Summary
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81  Overview

Methodological issues which surround the development of predictive rules within
the contextual framework of coronary artery bypass surgery include, but are not limited
to: 1) prognostic variable selection; 2) statistical under- or over-fitting; 3) model
discrimination and calibration; 4) selection of an external or internal model; and 5)
model validation. Among the applications for predictive rules for operative mortality
following CABG are: 1) risk-adjusted outcomes profiling for surgeons or centres, 2) risk
group stratification, and 3) decision-support for pre-operative patient counselling. These

methodological issues have been evaluated in this applied thesis.

8.2  Chapter Four: Evaluation of Three Modelling Strategies in the Use of
Predictive Risk Indices for Assessing Mortality After Coronary Artery
Bypass Graft Surgery
In Chapter Four we demonstrated that temporal and inter-centre differences in

case-mix make it difficult to achieve optimal predictive performance with “ready-made”,

external risk indexes used for provider profiling through evaluations of risk-adjusted
outcomes. This observation argues against the proliferation of published risk indices in
the clinical literature that either affirm well-known prognostic factors or add new
variables with minimal marginal impact. We have also demonstrated that recalibration of
existing indices may sometimes be sufficient to ensure adequate risk prediction even
when models are parsimonious. As a precaution, however, we suggested that centres
collect data fastidiously on a modest-sized set of key variables such as those suggested

by the Working Group Panel,m continue to evaluate the model’s validity, and undertake
intermittent remodelling to ensure that emerging risk factors are not inadvertently
overlooked.

In addition to these conceptual contributions, this chapter also introduced a
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refinement in the quantitative evaluation of model calibration. Several authors have
previously used linear regression analysis to calculate the coefficient of determination
(Rz) of predicted versus observed results for subgroups of patients. We showed that the
intercept and slope of the regression line should also be evaluated because they give
direct assessments of the amount of over- or under-estimation of the model.
Additionally, we introduced analysis of covariance as an effective method to compare
competing models in the same dataset. This study illustrated that poorly calibrated risk

algorithms can bias the calculation of risk-adjusted operative mortality.

83  Chapter Five: Application of a Predictive Rule Used for Risk Stratification:
Evaluation of Fifteen-year Trends in Risk Severity and Operative Mortality
in Elderly Patients Undergoing Coronary Bypass Surgery
In Chapter Five we demonstrated the application of a predictive rule used for risk

stratification. The construction of relative risk groups from cutpoints of the total risk

score permitted the evaluation of temporal trends in risk factors and outcomes using
simple contingency table analysis. To the average reader, this format is clearer
compared to the relative complexity of interpreting adjusted odds ratios from logistic
regression analyses.

In this chapter we also demonstrated that the inclusion of additional variables to
small, robust models did not significantly improve discrimination: the model for
mortality in elderly patients between 1982 and 1996 had a ROC curve area similar (0.69
versus 0.71) to that for elderly patients in the 1991-1996 model which drew on additional
risk factor data.

The importance of statistical power for the evaluation of outcomes in relatively
low prevalence patient groups such as the elderly was an important element of this

study. Most previous reports have had insufficient sample sizes to adequately explore
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the multivariable impact of risk factors on operative mortality. Additionally, they have
been limited by not providing a long-term perspective on outcome trends among the
elderly, and by not incorporating risk-adjustment algorithms that take into account the
temporal shifts in risk profiles among patients receiving CABG. Our logistic regression
analysis of operative mortality in 3,330 patients from 1982 to 1986 included a temporal
marker and revealed that most elderly patients have an acceptable risk of surgery,
however, poor ventricular function and previous CABG remain the most important risk
factors in this group.

In addition to providing a long-term perspective on outcome trends, this study
also showed how a clinical prediction rule can be combined with simple contingency

table analysis to document temporal shifts in risk profiles and outcomes.

84  Chapter Six: Predictive Accuracy Study: Comparison of a Statistical Model
to Clinicians’ Probability Estimates of Adverse Outcomes Following
Coronary Bypass Surgery
The potential application of clinical prediction rules for decision-support for pre-

operative patient counselling was evaluated in Chapter Six. This study was flawed from

two important perspectives. First, the study sample of 100 patients was not randomly
selected from the database. This was deliberate but severely compromised the ability of
both the statistical model and the clinicians to discriminate between those having, and
those not having events. However, the evaluation of discrimination through a unique
prevalence adjustment exercise demonstrated that the model ultimately did out-perform
the clinicians.

Secondly, the clinicians did not make use of the predictive rule for the part of the
study in which they were randomized to have access to it. This was despite at least three

discussions of the study during rounds and several written communications regarding the
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purpose and methods of the study. When given the option, neither the surgeons nor the
residents preferred to use a predictive rule but rather trusted their own judgements to
estimate the probability of operative mortality or prolonged ICU length of stay after
coronary bypass surgery. Reasons for not using the predictive rule may have included:
1) the rule was too time consuming, 2) too complex, or 3) clinicians preference to use
their own empiric estimates. The findings of this study highlight both the rationale for
using predictive rules as a guide to decision-making in practice, as well as the continuing

challenges in persuading clinicians to use such rules.

85  Chapter Seven: The Development and Application of a Predictive Rule to

Evaluate the Long-Term Outcomes of Coronary Artery Bypass Surgery

Two recurrent issues in the use of clinical prediction rules are the short-time
horizon of many studies and the costs of collecting data for longer-term studies. Chapter
Seven presents the methods and findings for a unique Canadian study. The linkage of a
clinical database with administrative data allowed for the efficient follow-up of a large
contemporary cohort of CABG patients and the identification of multivariable predictors
of survival and re-admission to hospital for cardiac events. This study highlights the
advantage of a universal health care system which allows researchers to build population-
based inclusive linked datasets of this nature. Actuarial estimates from registry and
administrative data were similar to estimates made from more traditional follow-up
methods in previously published studies.

Additionally, an accelerated failure time model was used to generate a predicted
survival curve for each patient. After stratifying by risk group, the model predicting
long-term survival demonstrated a good correlation between predicted and observed
outcomes for the majority of patients. However, the results in higher risk patients

suggested that the predictive rule was not as precise for estimates made after four to five
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years. Future studies will evaluate whether the addition of postoperative events improves
predictive accuracy of the survival model. We also explored a method of comparing
provider-specific long-term risk-adjusted survival.

This predictive algorithm may provide a valuable tool for medical decision
making, internal benchmarking, trial design and patient counselling. Prospective external
validation is still required and will be the focus of future research.

This study illustrates the feasibility of linking clinical and administrative data in
the development of more sophisticated clinical prediction rules. The findings highlight
the need to evaluate long-term, as well as short-term outcomes to assess the benefit of
surgical revascularization and the utility of adding some measurement of outcomes other

than mortality.

8.6  Coaclusions

Patients with the same disease can have very different outcomes. Predictive rules
which adjust for differences in patient characteristics can offer valuable insights for
clinicians, administrators and researchers. However, Parsonnet’s cautionary note is well
founded: the validity of the model can greatly influence the calculation of risk-adjusted
outcomes. Krumholz??* suggested in a recent editorial, that the proposed application of a
predictive rule should dictate the necessity of evaluating calibration. He stated that
relative comparisons between providers did not require the recalibration of a previously
validated external predictive model. We disagree with this philosophy. Models used for
provider profiling should be well-calibrated across the full range of estimated outcomes.
Models that over-estimate probabilities at the lower range of outcomes and under-
estimate probabilities for higher risk patients may obscure the differences between
providers with different case mixes. A precise model will truly “level the playing field”

and result in a fairer comparison of risk-adjusted outcomes.
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Previously well-validated models do not need to be recalibrated if the application
is benchmarking temporal trends (e.g., the study presented in Chapter Five). Ifthe
application of the model is for the purpose of patient counselling, recalibration of an
external model is essential to provide valid, contemporary estimates of outcomes.

Regardless of the application, all predictive rules must discriminate well. Good
discrimination is the most fundamental element of a valid predictive rule and is directly
influenced by the number of variables in the model and the quality of the data. The issue
regarding the basic building block of any predictive rule--the prognostic variable--has not
been well addressed. As with any predictive rule developed from an existing database,
we are constrained by the data at hand. Many measurement issues surround the
collection of data, not the least of which are outcome ascertainment, prognostic variable
selection and using continuous versus categorical variables to describe disease states or
risk factors (e.g. age). In the clinical database at the Toronto General Hospital we
generally categorize most of the risk factor information. Statisticians argue that the
practice of categorizing continuous variables results in a loss of information. It may also
negatively impact model discrimination. However, clinicians argue that this practice
enhances “usability”.

Another major issue surrounding variable selection is the lack of information in
most databases regarding the quality of the distal coronary arteries. This piece of
information may be one of the most important predictors of outcome. However, no
existing predictive rule for OM following CABG includes a measure of distal vessel
quality. The inclusion of some measure of distal vessel quality could possibly improve
the discrimination of most models to well above the apparent ceiling of ~80%.

Additionally, in none of our models have we included the surgeon as a potential
independent predictor of outcome. The inclusion of surgeon or other markers of process

of care may improve model discrimination, unless the purpose is to benchmark surgeons,
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in which case, surgeon could not be included in the model.

We have illustrated that: 1) the potential bias in the calculation of risk-adjusted
operative mortality from poorly calibrated models can affect provider-profiling; 2) risk
stratification via predictive rules can be combined with simpler analyses for research and
administrative purposes; 3) there are continuing challenges for using predictive rules as
guides for decision-making in practice and in persuading clinicians to use such rules; and
4) a predictive rule designed for long-term outcomes provides a novel method to

evaluate risk-adjusted survival following surgical revascularization.

8.7  Future Directions

We wish to develop similar predictive rules for outcomes following valve
surgery. Edmunds and colleagues®®® explicitly defined the variables which should be
included in evaluations of mortality and morbidity following valvular heart surgery. This
paper was printed simultaneously in the Journal of Thoracic and Cardiovascular Surgery
and in the Annals of Thoracic Surgery and serves as a template for all authors who are
considering submission of a valve-related manuscript to any major cardiac surgery
journal. As a direct result of this effort, it has been possible for us to link our clinical
database with data from Vancouver General Hospital and Stanford University Medical
Centre to facilitate multicentre evaluations of valve surgery. These studies (still in the
analytic phase) represent large patient samples with sufficient events to produce valid
multivariable models of outcomes. Additionally, the generalizability of the results is
greatly enhanced by this collaborative effort.

Future studies are planned to prospectively evaluate surgeons’ risk assessment
and to determine whether the use of a predictive rule at the time of patient assessment
improves their predictive accuracy and precision. We have developed a user-friendly,
Windows-based, Visual Basic program (written by Matthew Weisel), which incorporates
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the regression parameters from the models to calculate the predicted probabilities and
95% confidence intervals of operative mortality and prolonged ICU length of stay for
patients undergoing isolated coronary artery bypass graft surgery. The program allows
clinicians to check off patient risk factors on a computer screen during the pre-admission
clinic visit. Each surgeon at the Toronto General Hospital has been given this program as
an aid to counsel patients at the time of obtaining informed consent. We have
demonstrated its use at one meeting and plan for several more demonstrations. The
importance of these studies is to determine whether or not the assumption of risk
provides a barrier to the care of high risk patients, and to evaluate a strategy of streaming
high risk patients towards surgeons with better outcomes in an effort to reduce overall
mortality and morbidity.

The evaluation of long-term outcomes is important to establish the effectiveness
and efficiency of surgical revascularization. We plan to link the Province of Ontario
Cardiac Care Network database to administrative databases (CIHI and RPDB) to evaluate
long-term outcomes for coronary artery bypass surgery. Although we have used purely
prognostic variables in all of our predictive models, we will evaluate whether the
inclusion of some measures of process of care will improve precision and discrimination
of long-term outcomes of surgery. The identification of non-cardiac morbidity will
present the biggest challenge in this study. This study will allow us to examine regional
differences in processes and outcomes of care.

In conclusion, drawing on data for coronary artery bypass graft surgery, this
thesis addresses several methodological and practical issues surrounding the development
and application of predictive rules. We believe that these findings are generalizable to a
wide range of medical diagnoses and surgical procedures where prediction rules can be
used to enhance our insights into prognosis, as well as the effectiveness and efficiency of

clinical interventions.
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UNIVERSITY HEALTH NETWORK - DIVISION OF CARDIOVASCULAR SURGERY 2000

ADMISSION TO HOSPITAL: /
DATE OF OPERATION: / APPENDIX 1
DATE OF DISCHARGE: /
DAYS IN ICU:
MINUTES ON VENT:
MINUTES IN ICU:
SURGEON: 1* ASSIST: A
B
Date Accepted for Surgery: / /
FAMILY DR.:
Triage Case Y N
CARDIOLOGIST: Same Day Admit Y N
Readmissionto ICU Y N
GENERAL PATIENT DATA
TIMING: ANGINA PECTORIS: C.A.D. RISKS:
YES NO
( ) 1 =Elective ( )0 =None Diabetes () ()
( )1 =Stable ( )I=Diet ( )2=Oml ( )3=

()2 =Same Hospitalization
Insulin

( ) 3 =Urgent <72 hrs from event
( ) 4=Emergent <12 hrs from event

NON-ELECTIVE SURGERY FROM:

( ) 1 =Floor

( )2=CCU

( )3=CathLab
( ) 5=0ther:

PREVIOUS HEART SURGERY:

Date: / /

Place:

# of Previous Ops:

PREVIOUS INTERVENTION:

( Y0=None
( ) I =Angioplasty Date: !/ /

( )2=Valvotomy Date: I

( )3 =Thrombolysis Date:__/ _/

HEART CATHETERIZATION:
()TTH () Sunnybrook
( ) Scarborough ( ) St. Michael’s

Centenary ( ) Mount Sinai
( ) Other

( )2=_Crescendo
()3=ACIL

M.IL. <30 DAYS:

( )O=No

{ ) ! =Non-Q Wave
{ )2=Transmuml

DATE OF M.L.: / /

PN PN N PN
Nt N N ot

L.V. EJECTION FRACTION:

( )1=260%
( )2=40-59%
( )3=20-39%
( )4=<20%

STRESS TEST:

( )0=Notdone

( ) 1=Negative
( )2="Positive

Hypertension
Hyperlipid
Family History

~ o~ o~
[
N’ -’

SMOKING:
0 = Never smoked

()
( ) 1 =Stopped smoking
( ) 2= Still smoking

ASSOC. DISEASES:

G

C.O.P.D. severe
Stroke / TIA
PV.D.

Dialysis
Marfan

I~ P~~~
e N o ot Nt
LYY L tan)
' N o Nt

ELECTROCARDIOGRAM:
( ) 0=Normal Sinus Rhythm
( ) 1=A.Fib./Flutter

( )2=CHB/Pacer

OTHER SYMPTOMS:

YES NO
Heart Failure () )
Shock () )
Syncope ) )

(

(
PREOPERATIVE: YES NO
Aspirin <7 days () ¢«




Date; / / Creatinine level
VALVE PATIENT DATA
VALVULAR LESIONS: REASON FOR URGENT SURGERY:
( JAS ( )AI { )0 =NotUrgent
( IMS ( YMI { ) I = Acute endocarditis
()TS ()1 { )2 =Acute pump failure
{ )3 =Acute prosthetic failure
INFECTIVE ENDOCARDITIS: ( )4 =Failed balloon valvuloplasty
( ) 5 =Life threatening arrhythmia
( )O=No ( ) 6 =Ischemic mitral regurgitation
( ) I=Remote ( )7 =Dissection
( Y2=Active
( )3 =Active abscess
AORTIC VALVE SURGERY: AV PATHOLOGY: Check all that apply
( )0=None ( )1 =Rheumatic
( )1 =Repair ( )2 =Tricuspid, calcific
( ) 2=Replacement ( )3 =Bicuspid
{ ) 3 =Repair of an in-situ prosthetic valve ( )4 =Congenital, other
( ) 5= Aortoannular ectasia
( ) D1 = reimplantation () 1=STJ ( ) 6 = Prosthetic dysfunction
( ) D2 =remodelling ( ) 2=1Sinus ( )7 =Dissection
( ) 3=2Sinuses ( )8 =0ther:
( ) 4=3Sinuses
AV PROSTHESIS:
TYPE:
SIZE: (mm) AV ANNULUS ENLARGED:
( )O=No
X PLANTED VALVE PATHOLOGY: ( ) 1 =Yes, annular
( ) 2= Yes, sinuses
( )1 =Thrombosed ( )3=Yes, both
( )2=Calcified
( )3 =Cusp Tear XPLANTED VALVES:
( )4 =Infected
( )5 =Mechanical Dysfunction TYPE:
( }6=0ther SIZE: (mm)
MITRAL VALVE SURGERY:
( )0=None MV PATHOLOGY: Checkall that apply
( ) L =Repair
( )2=Replacement { ) 1=Rheumatic
{ ) 3 =Repair of an in-situ prosthetic valve { )2 =Ischemic
( )3 =Myxomatous
MV PROSTHESIS: ( )4 =Prosthetic dysfunction
( )5 = Annular dilatation
TYPE: ( ) 6=0ther:
SIZE: (mm)
MV ANN. RECONSTRUCTION: CHORDAE PRESERVED:
{ YO=No { JO=No

( ) 1=Yes, autologous
( )2=Yes, bovine
( )3=Yes, Dacron

X_PLANTED VALVE PATHOLOGY:

( ) 1 =Thrombosed

( )2=Calcified

( )3=Cusp Tear

( )4 =Infected

( ) 5 =Mechanical Dysfunction
( )6=0ther

{ ) 1 =Yes, posterior only
( ) 2= Yes, posterior and anterior

Goretex sutures: { ) YES ( ) NO

X_PLANTED VALVES:

TYPE:
SEZE: (mm)




TRICUSPID VALVE SURGERY:

( )0=None

( ) 1 =Repair

( )2=Replacement

( ) 3 =Repair of an in-situ prosthetic valve
TV PROSTHESIS:

TYPE:

) 6 =Other

TV PATHOLOGY: Check all that apply

—~ o~~~

5 =Other:

) 1 =Rheumatic
)} 2 = Secondary
) 3 =Congenital
)
)

4 = Prosthetic dysfunction

( )0=No

{ ) 1 = Abdominal Aortic Surgery
( ) 2 =Carotid Endarterectomy
( )3 =0Other:

LEFT VENTRICULAR ANEURYSM:
{ )0=No

{ ) I = Anterior

( )2 =Posterior

( )3 =False Aneurysm

L.V.A. Patch: { ) YES ( )NO

Location:

Material:

OTHER CARDIAC OPERATIONS

CONGENITAL HEART DISEASE:

ASC. AORTA REPLACED:

( )0=No
( )1 =Yes, separate
( ) 2= Yes, composite

OTHER PROCEDURES:

)0 =No

) 1 = Ischemic VSD - Patch
)} 2 =Myxoma

) 3 = Myectomy

) 4 = Mapping / Arrhythmia
) 5 = Heart Transplant

) 9 = Maze Procedure

) 8 = Other:

e R e e R X X e X
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ACB PATIENT DATA

CORONARY STENOSIS > 50%: ARTERIES GRAFTED:
( JLAD ( )INT ( JRCA ( )LAD ( JINT ( JRCA
( )DIAL { YOM1 ( )PLV ( )DIAI ( yOM1 ( )PIV
( )DIA2 (jyomM2 ()PL ( )DIA2 ( )oM2 ()PL
( )PER ()X ( )AM ( )JPER ()X ()AM
( )Left Main Endarterectomy : ( ) YES: ()
NO
LITA: ( )YES: ( )JNO Coronary Vein: ( ) YES: ()
NO
RITA: ( )YES: ( )NO Patch Angioplasty
RADIAL ARTERY: ( ) YES: { )NO Other conduit:

GENERAL OPERATIVE DATA
PUMPCASE ( ) YES ( ) NO ( ) STANDBY MYOCARDIAL PROTECTION: HYPOTHERMIA:
MINIMALLY INVASIVE SURGERY ( )YES ( )NO Primary form of myocardial protection: ( )0 =Normothermia

OR TIME:

( ) 1=Mild (30-35°C)

min. { )0 = None, coronary perfusion ( )2=Maoad (20-29°C)
{ ) 1| = Warm blood cardioplegia (35-38°C) { ) 3 =Profound (< 20°C)
BYPASS TIME: min. ( ) 2 =Tepid blood cardioplegia (20-35°C)
( ) 3 = Cold blood cardioplegia ( < 20°C)
X-CLAMP TIME: min. ( )4 =Crystalloid cardioplegia
CIR. ARREST TIME: min. TECHNIQUE Method of Cardioplegia: OFF C.PB.:#1
BS.A.: m? { ) | = Intermittent ( )0=Well
( )2=~Continuous ( ) ! =Inotropes / Balloon
HEIGHT: cm ( )3=Both ( )2=0R Death
WEIGHT:____ kg DIRECTION of Cardioplegia:
( ) 1 = Antegrade
( ) 2 =Retrograde
( )3=Both
COMPLICATIONS
IABP: STROKE:
{ Y0=No Perioperative M.L.: ( YYES ( )NO ()0=No
( )1 =Preop CCU ( ) | = Intra-operative
( )2=PreopOR Inotropes: ( )YES ( )NO ( ) 2=Post-operative
( )3=0R
( )4=Postop [CU LOS: ( )YES ( )NO INFECTION:
REOPENING: Renal Failure: ( )YES ( )NO Leg( )0=No
( ) 1 = Superficial
{ )O=No Pacemaker: ( )YES ( )NO { )2=Deep
( ) 1 =Bleeding
( ) 2=Tamponade Vent. Dysrhyth: ( )YES ( )NO Sternum ( ) 0=No
( ) 3=Shock/arrest { ) 1 =Superficial
( )4 =Infection A Fib. ( YYES ( )NO ( )2=Deep
( ) 5=Dehiscence
( ) 6 =Redo Surgery D.V.T.: ( )YES ( )NO Am ( )YES ( )NO
( )7=0ther:
Pulm. Complic’s: ( )YES ( )NO Sepsis( ) YES ( )NO
POSTOP E.C.G.:
Seizures: ( )YES ( )NO HOSPITAL SURVIVOR:
( )0=No change ( )YES ( )NO
( ) I =New ST/T waves TIA: ( )YES ( )NO
( )2=New Q waves DCTO: H C O D
( )3=Complete LBBB Bb: pre
( Y4=Lossof R waves PROCEDURE CODE:
post
()1 ()2 ()3
Blood
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Appendix 2

NOTE: Fill out forms on ail PUMP AND NON-PUMP cases.
The Toronto General Hospital
Division of Cardiovascular Surgery
CODE BOOK TGH (MS Access)
Printed on: March 6, 2001
DEMOGRAPHICS:
PTID Patient identification. First three letters of last name, first letter of first name,
and date of birth LLLFMMDDYY)
(NOTE: See last page for conventions)
CHART Hospital chart number
LNAME Last name of patient
FNAME First name of patient
(>12/31/97)
AGE Age on date of surgery (yrs)
SEX Sex of patient:
1 - Male
2 - Female
AREA Resident location of patient
(>12/31/93) 0 - Ontario
1 - Out of province
2 -~ Out of country
TRIAGE Non-elective admission (excluding heart transplants) (YES/NO)
(>12/31/96)
SDA Patient seen in same-day admit clinic and admitted to hospital the day of
surgery
(>12/31/96) (YES/NO)
DATES & DOCTORS:
ADDATE Admission to hospital (MM/DD/YY)
DATEOR Date of operation (MM/DD/YY)
DISDATE Date of discharge from hospital (MM/DD/YY)
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DAYSPOST Post-op days in hospital (excluding OR day)
ICUNUM Number of admissions to [CU
(>12/31/98)
ICU Total number of days in ICU (excluding OR day)
ICUTIME Total number of minutes in ICU (from arrival in ICU till departure to floor)
(>06/05/94)
VENT Days on ventilator {(excluding OR day)
(<07/01/93)
VENTTIME Minutes on ventilator (from arrival in ICU till extubation time)
(>06/30/93)
SURG Surgeon's initials
ASSIST First assistant (senior resident or other)
FDOC Patient's family doctor
cbocC Outside cardiologist following patient post-op
GENERAL PATIENT DATA :
TIMING Timing of surgery - approximate length of time between the event resulting in
hospitalization and surgery
1 - Elective
2 - Same hospitalization: cannot go home because of urgency or
anatomy (semi-urgent)
3 - Urgent: < 72 hrs from event
4 - Emergency: < 12 hrs from event
FROM Pre-op location of non-elective patients

1 - Floor

2-CCU

3 -CathLab

4 - Emergency (<01/01/98)
5 - Other
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PREVIOUS HEART SURGERY:

ACBREDO

AVREDO

MVREDO

TVREDO

OTHREDO

Previous ACB (YES/NO)

Previous aortic valve surgery
0-No
1 - Repair
2 - Replacement
3 - Repair of an in-situ prosthetic valve

Previous mitral valve surgery
0-No
I - Repair
2 - Replacement
3 - Repair of an in-situ prosthetic valve

Previous tricuspid valve surgery
0-No
1 - Repair
2 - Replacement
3 - Repair of an in-situ prosthetic valve

Any other previous cardiac surgery (YES/NO)

PREVIOUS (NON-SURGICAL) INTERVENTION:

PRECARD Previous non-surgical intervention

1 - Angioplasty

2 — Balloon valvotomy
PIDATE Date of previous intervention (MM/DD/YY)
PITHROMB Previous thrombolysis (YES/NO)
PITDATE Date of previous thrombolysis (MM/DD/YY)
HEART CATHETERIZATION:
CATH Hospital where patient was catheterized

TGH - The Toronto Hospital, General Division. (<01/01/96)
TWH - The Toronto Hospital, Western Division. (<01/01/96)
TTH - The Toronto Hospital (>12/31/95)

SMC -~ Sunnybrook Health Science Centre

SMH - St. Michael's Hospital

SCH - Scarborough Centenary Hospital
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CATHDATE

MSH - Mount Sinai Hospital
OTH - Other

Date of catheterization (MM/DD/YY)

CLINICAL PRESENTATION:

ANGINA

PREOPMI

MIDATE

LVGRADE

STRESS

DIABETES

DOI
(12/31/97)

Most severe angina pectoris within one month prior to surgery
0 - None
1 - Stable: predictable exertional angina

2 - Crescendo: increasing frequency or severity of symptoms

3 - Acute coronary insufficiency: prolonged episodes of unprovoked

pain (>15 mins) despite medical therapy

Most recent myocardial infarction within 30 days of OR date
0 - None
1 - Non-Q wave infarction
2 - Transmural infarction

Date of most recent MI (MM/DD/YY)

NYHA classification (cardiac disability)
1 - No restrictions
2 - Symptoms provoked by exertion beyond daily activity
3 - Symptoms provoked by normal daily activity
4 - Unprovoked symptoms

LV grade based on LV ejection fraction
1->0r=60%
2-40-59%
3-20-39%
4 -<20%

Stress test
0 - Not done
1 - Negative
2 - Positive

Diabetes Mellitus (insulin or non-insulin dependent) (YES/NO)

Control of diabetes
1 - Diet
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2 - Oral medication
3 - Insulin
4 - None (patient recently diagnosed)

HYPER Medically treated hypertension (YES/NO)
CHLSTRL Diet or medically treated hyperlipidemia (YES/NO)
FHX Family history of heart disease including stroke, PVD, MI, angina, or heart
surgery (YES/NO)
SMOKE Smoking history
0 - Never smoked
I - Stopped smoking
2 - Still smoking
ASSQCIATED DISEASES:
COPD Chronic obstructive pulmonary disease (YES/NO)
(<01/01/96)
COPDS Chronic obstructive pulmonary disease - severe (YES/NO)
(>12/31/95) (Patient must be receiving daily inhalational or oral medication to improve
breathing)
THROMB Previous stroke or T.I.A. (YES/NO)
PVD Peripheral vascular disease (YES/NO)
RF Significant renal failure
(<01/01/95) 0-No
1 - Not on dialysis pre-op
2 - Chronic peritoneal or hemodialysis
NEWRF Significant renal failure
(>12/31/94) 0-No
(<01/01/97) 1 - Yes (as defined by the surgeon or patient is on dialysis)
DIAL Pre-op dialysis
(>12/31/97) 0-No
1-Yes
MARFAN Patient has been diagnosed with Marfan syndrome
(>06/20/91) 0-No
1-Yes
RECG Pre-op electrocardiogram (rhythm)

0 - Normal sinus rhythm
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1 - Atrial fibrillation or flutter
2 - Complete heart block/ pacemaker

OTHER SYMPTOMS:
CHF Congestive Heart Failure (YES/NO)
SHOCK Shock (YES/NO)

NOTE: If Shock=YES, NYHA=4
SYNCOPE Fainting spells (YES/NO)

PRE-OPERATIVE MEDICATIONS:

ASP Aspirin stopped <7 days prior to surgery (YES/NO)

(>12/31/94)

AMI Taking amiodarone at time of admission (YES/NO)

(>12/31/94 and <01/01/96)

CREAT Creatinine level measured preoperatively

(>12/31/95)

ACB PATIENT DATA:

DISLAD Stenosis > or = 50% in the Left Anterior Descending arterial system (YES/NO)
(LAD, DIA-1, DIA-2, PER)

DISCX Stenosis > or = 50% in the Circumflex arterial system (YES/NO)
(CX, INT, OM-1, OM-2)

DISRCA Stenosis > or = 50% in the Right Coronary Arterial system (YES/NO)
(RCA, PIV, PL, AM)

LMAIN Stenosis > or = 50% in the Left Main Artery (YES/NO)

DISNUM Total number of diseased arterial systems

ARTERIES BYPASSED:
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RADIAL
(>12/31/97)

GFTLAD
GFTCX
GFTRCA

ENDART

CVPA

OTHGFT

ACBNUM

LIMA graft used
1 -LAD
2 -CX
3 -RCA

RIMA graft used
1 -LAD
2 -CX
3 -RCA

Radial artery graft used
1 -LAD
2-C&X
3 -RCA

Number of grafis to the Left Anterior Descending region
Number of grafts to the Circumflex region
Number of grafis to the Right Coronary Artery region

Endarterectomy
1 -LAD
2 -CX
3 -RCA

Coronary vein patch angioplasty
1 -LAD
2-CX
3 -RCA

Other conduit used
1 - Gastro-epiploic artery
2 - Artificial
3 - Cryo-preserved

Total number of distal grafts

GENERAL OPERATIVE DATA:

PUMPCASE

Patient went on pump.
0-No
I-Yes
2 - Standby only

Minimally invasive surgery (YES/NO)
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(>12/31/96)
ORTIME
PUMP
CLAMP
CIR ARR

BSA

MYOPRO

TECHNIQUE

DIRECTION

HYPOTHER

OFFPUMP

Surgeon time in OR (minutes)
Cardiopulmonary bypass time (minutes)
Cross-clamp time (minutes)

Circulatory arrest (minutes)

Body Surface Area (m2)

Height (cm)

Weight (kg)

Primary form of myocardial protection
0 - None, coronary perfusion
1 - Warm blood cardioplegia (35-38°C)
2 - Tepid blood cardioplegia (20-35°C)
3 - Cold blood cardioplegia (<20°C)
4 - Crystalloid cardioplegia

Method of cardioplegia
1 - Intermittent
2 - Continuous
3-Both

Direction of cardioplegia
1 - Antegrade
2 - Retrograde
3 -Both

Lowest level of systemic hypothermia
0 - Normothermia
1 - Mild (30-35°C)
2 - Moderate (20-29°C)
3 - Profound (<20°C)

Patient came off pump
0-Well
1 - With inotropes/ballocon
2 -Died in OR

COMPLICATIONS (before discharge or within 30 days of DATEOR if discharged):
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IABP

REOPNUM

REOP

REOP2
(>12/31/98)

REOP3-5
(>12/31/98)

[ECG

CKMB
(<01/01/99)

CK
(<01/01/99)
MI

INO

LOS

Insertion of intra-aortic batloon pump
0 - None
1 - Preop in CCU
2 - Preop in OR
3 - Intra-op in OR
4 - Post-op in ICU
NOTE: IfIABP=3 or 4, LOS=YES

Number of times patient returns to the OR on this admission

Reopening after surgery
1 - Bleeding
2 - Tamponade
3 - Shock/arrest
4 - Infection
5 - Dehiscence
6 - Redo Surgery
7 — Other

Reopening after surgery (same as for REQP)
Patient is reoperated on twice post-op. This field contains the second most
important reason for reopening regardless of date.

Same as REOP2

Postoperative electrocardiogram - ischemic changes while in hospital
0 - No changes
I - New ST and T wave changes
2 - New Q waves
3 - Complete left bundle branch block
4 - Loss of R waves
NOTE: IfIECG=2, MI=YES

Highest postop CKMB level (units)

Highest corresponding CK level (units)

Perioperative myocardial infarction (YES/NO)

NOTE: This includes all patients with new Q waves post-op

Use of dopamine (>3 mg/kg) or dobutamine in [CU for more than 30 minutes to
maintain a blood pressure greater than 90 mmHg after adequate reload and after
load reduction (YES/NQ)

Low output syndrome (use of inotrope or mechanical devices for more than 30
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POSTRF

PACE
OCVENDYS

AFIB
(>12/31/96)

OCDVT
OCPULMC

SEIZURES
(>02/04/93)

TIA
(>09/08/94)

PREHB
(>05/31/94)

POSTHB
(>05/31/94)

PACKCELLS
(>07/01/94)

STROKE

INFLEG

min. to maintain a blood pressure greater than 90 mmHg witha CI. <2.2
Vm/m2) (YES/NO)
NOTE: This includes all patients with [ABP inserted intra-op in OR or postop in
ICU
Renal failure post-op
0-No
1 - Yes, required dialysis
2 - Yes, no dialysis but patient died in renal failure
Insertion of permanent pacemaker (YES/NO)
Medically treated ventricular dysthythmias (YES/NO)

Presence of atrial fibrillation post-operatively (YES/NO)

Deep vein thrombosis (YES/NO)
Pulmonary complications (YES/NO)

Seizures post-op (YES/NO)

Transient ischemic attack as diagnosed by cardiologist (YES/NO)

Hemoglobin pre-op

Hemoglobin at time of discharge

Number of units of red cell concentrate used for transfusion.

Evidence of a persistent neurological deficit
0-No
1 - Yes, intraoperative
2 - Yes, postoperative

Leg infection
0 - None
1 - Superficial - based on the presence of purulent discharge, invoiving
skin & fat (<1 cm deep)
2 - Deep - below the superficial fascia (>1 cm deep)
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INFSTERN

INFARM

INFSEP
SURVIVAL

DCTO
(>12/31/96)

PROC

NOTES

Sternal infection
0 - None
1 - Superficial (based on the presence of purulent discharge, involving
skin & subcutaneous tissue only)
2 - Deep (requiring surgical debridement)

Arm infection - based on the presence of purulent discharge, involving skin &
fat <1 cm deep) (YES/NO) >12/31/98

Sepsis - based on positive blood culture (YES/NO)
Patient left hospital and survived thirty days post DATEOR (YES/NO)

Patient discharged to:
0 - Patient died
1 - Home
2 - Convalescence
3 - Other

Surgery category: to be completed after review of surgical procedure
1 - ACB: isolated bypass surgery (without VALVE or OTHER
procedures)
2 - VALVE: any valve replacement or repair (with VALVE procedure
as a primary procedure
3 - OTHER: other cardiac susgery including CHD, LVA, MISC and
AAS (with VALVE procedure as a secondary procedure)

Fifty character space for extra notes
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CONVENTIONS;

0 - Negative entry (NO)
1 - Positive entry (YES)

MM/DD/YYYY Date format

PTID:

If last name contains an apostrophe, it should be included in the PTID.

If last name is hyphenated, hyphen should be deleted from the PTID.

If the last name contains only two letters, an underscore (-) should be used in place of the third letter in the

PTID.

If the last name contains a space (eg: Le Baron), the space should be deleted from the PTID.

If the patient has a first initial or first name but goes by their middle name, the fourth letter of the PTID
should come from their middle name (i.e: the name commonly used).

MISSING DATA:

For TEXT (character field): BLANK
For Numbers (numeric field): 9o0r-9
For Dates (date field): BLANK

If partially complete, use midpoint:
eg.: Jan. 1989 = (01/15/1989)
1978 = (06/30/1978)
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