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Abstract 

The Role of Incretin Hormones in Glucose Homeostasis 
Doctor of Philosophy 200 1 

Laurie L. Baggio 
Department of Laboratory Medicine and Pathobiology 

University of Toronto 

Inmetins are hormones that are released nom the gut in response to nutrient ingestion 

and act to enhance glucose-stimulated insulin secretion. The two major peptides which have 

been identified as incretin hormones are glucose-dependent insulinotropic polypeptide (GP) 

and glucagon-like peptide4 (GLP- 1). Previous glucoregulatory studies using receptor 

knockout mice models suggest that the role of GIP is restncted to that of an incretin, whereas 

GLP-1 also exhibits non-incretin effects. However, studies with genetically-modified mice 

cm be complicated by compensatory adaptive changes. To avoid this possibility, we 

assessed the incretin and nonincretin actions of GIP and GLP-1 in wild-type rnice using the 

GLP-L receptor antagonist exendin(9-39) and immunopurified anti-GiP receptor antisera to 

antagonize GLP- 1 and GIP action, respectively. Our results indicate that GLP- 1 , but not 

GP, plays an important role in regulating blood glucose tevels in mice in a manner 

independent of oral nutrient ingestion. 

h addition to its role as an haetin, GLP-1 contributes to blood glucose lowering 

through several different mechanisms and thus its therapeutic value as a treatment for 

diabetes is currently under investigation. However, GLP-1 is rapidly catabolized by 

dipeptidylpeptidase IV (DPP-IV) and therefore has a short plasma half-life, which may, in 

him, limit its therapeutic potential. Inhriition of DPP-IV activity could thus provide a means 

to extend the half-life of GLP-1. However, DPP-IV may aiso act upon other substrates 

important for gIucoreguIation. To investigate this possibility, we examined the effects of 



DPP-iV infiribition in GLP-1 receptor knockout mice. Our results suggest that in addition to 

GLP-L, other substrates are involved in the DPP-N-mediated regdation of blood glucose 

control. 

Exendin-4 is a potent GLP-1 receptor agonist that was originally p m e d  from lizard 

venom and is currentiy being evaluated in clinical trials as a treatment for diabetes. Limited 

information is available regarding the long-terni effects of exendin-4 treatment in vivo. To 

assess the physiological effects of chronic exendin-4 expression in vivo, we have generated 

transgenic mice in which exendin-4 expression is under the control of an inducible promoter. 

Our data indicate that sustained elevation of circulating exeadin-4 has both predicted and 

unanticipated effects on GLP-I receptor-dependent physiological end points. 
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Chapter 1. Introduction 

The maintenance of normal glucose homeostasis is tightly regulated by the integated 

processes of hepatic glucose production, glucose uptake and utilkation by peripheral tissues 

and insulin secretion. Insulin, an important giucoreguiatory hormone, is released in response 

to elevated blood glucose levels and, among other functions, promotes glucose uptake from 

the blood into adipocytes and muscle cells. Deficits in insulin secretion or action lead to 

impaired glucose tolerance and the development of diabetes mellitus. 

The primary regulator of insulin synthesis and secretion is the plasma glucose 

concentration. in addition to glucose, insulin secretion is also modulated by the release of 

peptide hormones from the gastrointestinal tract. The concept that factors released fiorn the 

gut in response to nutrient ingestion can stimulate secretion nom the endocrine pancreas was 

first proposed in the early 1900's (1-4), and in 1929, the term "incretin" was introduced to 

descnbe these putative gut factors (5). This connection between the gastrointestinal tract and 

the endocrine pancreas was dubbed the "enteroinsular axis" (6). The mbsequent observation 

by a nmber of iovestigatoa that oral glucose administration stimulates a greater increase in 

insuiin secretion nom pancreatic B-cells than an isoglycemic intravenous Uifusion (7-1 1) has 

been attributed to the action of increrins (3.4). Thus, the term incretin refers to an agent that 

is deased nom the gut in response to nutrient ingestion and acts to potentiate glucose- 

stimuiated insuiin secretion (12). 

The fint incretin hormone to be identified was glucose-dependent insulinotro pic 

polypeptide (GIP) (13-17). in agreement with its role as an incretin, GIP is synthesized in 

and released fiom intestinal K-cens, primady in response to the ingestion of glucose or fat 

(1 8, 19)' and enhances glucose-stimdated insulin secretion (13, 14). However, it was 



concluded that GIP alooe cannot account fully for the incretin effect in vivo, based on the 

foliowhg findings. (i) A portion of the increth activity is presewed in rat gut extracts, 

despite immunoneutralization of endogenous GIP activity (20.2 1). (ii) Anti-GP antiserum 

depresses but does not eliminate insulin secretion in response to an oral glucose load in rats 

(22). (iii) Surgical patients who have most of their ileum resected exhibit a much smaller 

incretin effect relative to those who maintained a larger proportion of their ileum, despite 

both groups of patients having similar plasma GIP levels (23). 

The cloning and sequencing of mamalian genes and cDNAs encoding proglucagon 

(24-26) led to the discovery of a second candidate Kicretin hormone, glucagon-like peptide I 

(GLP-1). GLP- 1, a post-translational proteolytic product of the proglucagon gene, is 

released fiorn intestinal L-cells into the circulation in response to the ingestion of glucose or 

a mked meal and potentiates glucose-stunulated insulin secretion (27-30). In addition to its 

roIe as an incretin hormone, GLP-1 also Iowers blood glucose by its ability to inhibit 

glucagon secretion (3 1-35), food intake (36-41) and gastric emptying (42-46). GLP-L also 

confers glucose sensitivity to glucose resistant pancreatic p-ceils (47-49) and may also 

promote glucose disposal in peripheral tissues (50-53). Recent snidies have suggested that 

GLP-1 may also have a role in f!-celi neogenesis and proliferation (54-57). 

To date, only GiP and GLP-1 have been identified as incretin hormones. These two 

peptides augment glucose-stirnulated insulin secretion in an additive manner and are thought 

to account fully for the incretin effect (58.59). Due to their ability to augment glucose- 

stimulated insulin secretion, both GIP and GLP-1 represent potentiai therapeutic agents for 

the treatment of diabetes. However, subsequent analysis of the hsulinotropic activity of 

Uiese two peptides in type 2 (non insulin-dependent) diabetic patients revealed that the 



incretin activity of GLP-L was preserved in these patients but that of GIP was not (60). Thus, 

clhical studies have focused on the use of GLP- 1 for the treatment of diabetes. However, the 

therapeutic potential of native GLP-1 may be Limited as this peptide bas a very short plasma 

half-Me (approx 90 sec) (6 1) due, in part, to its rapid inactivation by the peptidase 

dipeptidylpeptidase N @PP-IV) (6 1-63). 

The short haSlife and potential therapeutic limitations of native GLP-I prompted a 

search for more suitable alternatives. Exendin-4, a naturally occurring, long-acting GLP- I 

receptor agonist, was originally purified fiom the venom of a Helodenna suspectum lizard 

(64) and subsequently found to elicit a variety of biological effects which mimic the actions 

of GLP-1, including its abilities to: (i) enhance glucose-stimulated insulin secretion (65,66); 

(ii) regulate gastric emptying (67); (iii) act as a satiety factor (68-701, and (iv) promote 

pancreatic endocrine ce11 differentiation and expansion of P-cell mass (55-57). in contrast to 

GLP-I, exendin-4 is not a substrate for DPP-IV activity and thus has a much longer half life 

than GLP-1 (71). In addition, preluninary in Mvo studies mggest that exendin-4 may be a 

more potent insulinotropic agent than GLP-1 (68,72). Currently exendin-4 is being 

evaluated in cfinical trials as a potential therapeutic agent for the treatment of diabetes 

(Amylin Pharmaceuticals website; www.amylin.com). 

The following sections summarize our curent knowledge regarding the synthesis, 

secretion and bio fogical activities of GLP-1, GIP and exendin*, as well as the molecular and 

fknctional characteristics of DPP-IV and its role in glucose homeostasis. 



1.1 Proglucagon and Proglucagon-Derived Peptides (PGDPs) 

(a) Progiucagoa Gene Expression 

In mammds, the proglucagon gene consists of six exons and five introns and gives 

rise to a single, identical mRNA transcript in the u-cells of the endocrine pancreas, the L- 

cells of the intestine, and in hypothaiamic nuclei and brainstem neuronal ceil bodies in the 

central nervous system (CNS; Fig. 1) (3,73). In general, pancreatic proglucagon gene 

expression is stimulated by fasting and hypoglycemia and inhibited by insulin (74,75), 

whereas in the intestine, proglucagon gene expression is up regulated by nutrients (76) and 

possibly by peptides such as gastrin-releasing peptide (GRP) and GIP (77,78). Agents 

which activate the protein kinase A (PU) pathway also up regulate proglucagon gene 

expression in both the pancreas and intestine (79-8 1). Tissue specific expression of the 

proglucagon gene is regulated by the interaction of a variety of transcription Factors with 

defined DNA regulatory sequences in the promoter and enhancer regions of the gene. Ce11 

tnuisfection and transgeaic mice studies have identified transcription factors and DNA 

sequences that modulate proglucagon gene expression in the pancreas and intestine (Fig 2) 

(4,30,82). 

Several cisacting sequences within the rat proglucagon gene promoter have been 

identified as important control regions for gene expression. G1 is a promoter proximal 

element which binds to the homeobox transcription factors Bm4, Pax6, cdx2/3 and isl- l and 

confers a-ceU specinc expression of the proglucagon gene (83-88). Recent studies have 

indicated that Pax6 and c W 3 ,  in association with a CO-activator protein, ~300, interact 

synergistically to regulate pmgiucagon gene expression in islet cens (89). G2, and G3 

repment proglucagon gene isIet-ceiI specifk enhancer-like elements (83). The G2 element 



Proglucagon 

w w m  t o m  la 

Fig. 1. Progiucagon gene, mRNA and precursor protein structures. A: The 
proglucagon gene is composed of six exons (El-E6), which encode functionaI 
domains of the proglucagon precursor protein, and 5 introns (TA-LE) and 
gives rise to a single, identical mRNA transcrïpt in the pancreas, brain and 
intestine. M, translation start site; S, signal peptide; UTR, untranslated region. 
The pairs of basic amino acids which serve as the sites for post-translational 
cleavage are indicated above the mRNA structure. Adapted from T.J. Kieffer 
and JE. Habener, Endocrine Reviews, 20(6): 876-9 13, 1999. B: Tissue specific 
post-translationai processing of proglucagon in the pancreas, intestine and brain. 
The numbers above and below the structure peaain to amho acid positions in 
progiucagon. For (A) and (B): GRPP, glicentin-related pancreatic polypeptide; 
Gluc, glucagoa; IP-1 and IP-2, mtervening peptide L and 2; GLP-1 and GLP-2, 
glucagon-like peptide4 and -2; MPGF, major proglucagon hgment. Adapted 
fiom DJ. h c k e r ,  Diabetes, 47: 159-1 69,1998. 



cAMPlPKA PKC-responsive 
element 

Insulin-responsive 
negative regulatory 

element 

Fig. 2. DNA regulatory elements and their cognate transcription factors in 
the 5'-flanking region of the rat proglucagoa gene. GUE, glucagon upstream 
enhanceq CRE, CAMP response element. G1 confers a-ce11 specific expression 
to the progiucagon gene. G2, G3, and G4 are islet-specific enhancer elements 
that confer pancreas-specific expression to the glucagon gene. TATA, TATA 
box. The right angled anow indicates the transcription start site. 



binds different members of the hepatocyte nuclear factor 3 (HNF-3) family of transcription 

factors to either enhance or repress proglucagon gene expression (90,9 1). G2 also interacts 

with members of the Ets f d y  of transcription factors (92), and mediates protein kinase C 

(PKC)-stuauiated glucagon gene transcription in islets (93,94). The G3 element interacts 

with members of the HNF family of transcription factors (99, as well as the transcription 

factor Pax6 (96). Recently, the transcription factor Pax2 bas been detected in the endocrine 

pancreas and shown to bind to the G1 and G3 elements of the proglucagon gene (97). Thus, 

Pax2 may also be an important regulator of progiucagon gene expression. G3 also contains 

an insulin response element believed to modulate insulin-mediated negative regdation of 

proglucagon expression in a-cells (98). More recent studies have suggested that insulin 

responsiveness is conferred to the proglucagon gene via synergistic interactions between 

proximal promoter elements and more distal enhancer-like elements (99). G4 is a sub 

element of G1 that binds the transcription factor BetaîMeuroD (4, LOO). The proglucagon 

gene 5'-flanking sequences also contain a CAMP response element (CRE) which binds to a 

CAMP response element binding protein (CREB), conferring CAMP responsivity to 

proglucagon gene transcription in both the pancreas and intestine (79-8 1, 101). in addition to 

CAMP, the rat proglucagon CRE is activated by membrane depolarization or influx of 

calcium (102). CAP-binding sites (CBS) are located adjacent to the CRE, on either side, and 

are binding sites for CREB-associated proteins (CAPS), which inhibit CREB-mediated 

CAMP stimulation of progiucagon gene expression ( 103). 

In contrast to proglucagon expression in the endocrine pancreas, very little is hown 

about the factors that specify proglucagon gene expression in the intestine and brain. Studies 

in transgenic mice indicate that approximately 1.3 kb of the rat proglucagon gene 5'- 



flanking sequences are sufficient to direct gene expression to the pancreatic a-cells and brain 

(104)' whereas a Iarger (2.3 kb) proportion of the 5'-flanking sequences direct proglucagon 

gene expression to the pancreas, brain and intestine (los), suggesting that the sequences 

between -1300 and -2300 in the rat proglucagon promoter are essential for specifyuig 

intestinal proglucagon expression. The sequences upstream of -1300 in the rat proglucagon 

gene have been designated the proglucagon upstream enhancer element (GUE) (1 06). 

Transfection studies and electrophoretic mobility shift assays in enteroendocrine ce11 lines 

indicate that the proglucagon gene GUE is comprised of multiple positive and negative cis- 

acting DNA regulatory subdomains that conhibute to the transcriptional control of 

proglucagon gene expression in both islet and intestinal cells (1 06). A recent study indicates 

that the transcription factor Pax6 is essential for pmglucagon gene expression in the 

enteroendocrine cells of the intestine (107). h transgenic mice studies, the hurnan 

proglucagon gene appean to utilize transcription factors and DNA sequences that are distinct 

fiom those used by the rat to speciQ tissue-specific gene transcription (108). In transgenic 

mice, approximately 1.6 kb of human proglucagon 5'-flanking sequences direct proglucagon 

gene transcription to the brain and intestine, but not the pancreas (108). Ce11 transfection 

studies using human proglucagon promoter reporter plasmids in rodent islet ce11 lines 

indicate that sequences within the fVst 6 kb of the human proglucagon gene 5'-flanking 

sequences are required for pancreatic expression (108). 

@) Proglucagon Post-Translationai Processing and Biologicai Activities of the PGDPs 

In ail three tissues (islets, intestine and brain), the proglucagon mRNA is translated 

into a single 160 amino acid precursor protein which undergoes tissue-specific post- 



transIationa.1 processing (73, 109) to liberate the proglucagon-denved peptides (PGDPs; Fig. 

1B). 

In the pancreatic a-ceils, the predominant post-translational processing products of 

proglucagon are glicentin-related pancreatic polypeptide (GRPP), glucagon, intervening 

peptide4 (IP-1), and the major proglucagon fragment (MPGF; Fig. 1 B) (3,4). Glucagon 

elevates blood glucose levels, primarily by stimulating hepatic glycogenolysis and 

gluconeogenesis (1 10) and thus, is essential for maintainhg glucose homeostasis in the 

fasting state. The fùnctions, if any, of GRPP, IP-1 and MPGF are cunently not known. 

In the intestinal L-cells and brain, post-translational processing of proglucagon gives 

rise p r imdy  to glicentin, oxyntomodulin, glucagon-like peptide- 1 (GLP- I),  intervening 

peptide-2 (IP-2), and glucagon-like peptide-2 (GLP-2; Fig. 1) (3,4). Glicentin appears to 

have trophic effects on the rat small-intestine (1 1 1) and oxyntomodulin bas been show to 

inhibit gastric acid secretion in vivo (1 12, 1 13). In addition to its role as an important 

incretin hormone, GLP- 1 has a number of other biological functions which will be discussed 

in detail in the next section. A biological function for IP-2 has not been identified thus ûr. 

The major biological effect of GLP-2 appears to be that of an intestinal trophic factor (1 14- 

1 16). GLP-2 mediates its trophic effects by mechanisms which involve induction of 

intestinal crypt-ce11 proliferation and inhibition of apoptosis in both the intestinal crypt and 

villus compartments (1 15, 117). GLP-2 has also been s h o w  to up regulate intestinal glucose 

transport ( l l8 ,  1 19). inhibit gastric emptying (1 20) and gastric acid secretion (1 2 l), and 

improve intestinal banier function by reducing intestinal epitheiial permeability (82, 122). 

Very recent studies have identified GU-2 as a specific neurotransmitter that inhibits food 

intake in rats (123). 



The post-translational processing of proglucagon is carried out by the prohormone 

convertase (PC) enzymes which are endoproteases that cleave C-terminal to paired basic 

amino acid residues (124, 125). The PGDPs are flanked by pairs of basic amino acid 

residues, the recognition sites for PC cleavage. PC1/3 and PC2 have been detected in 

proglucagon-expressing cells (1 26, 127). PC 113 has been localized to intestinal L-cells and 

shown to be both necessary and sufficient for the post-translational processing of 

proglucagon to its intestinal PGDPs (128-132). In contrast, PC2, but not PC 113, has been 

localized to the pancreatic a-cells (133) and is believed to be responsible, at least in part, for 

the post-translational processing of proglucagon to glucagon in these cells (1 34-1 37). 

1.2 Glucagon Like Peptide4 (GLP-1) 

(a) Biosynthesis and Secretion 

GLP-I secretion is controlled by a number of stimuli including nutrients and neural as 

well as endocrine factors (3,4,29). GLP-1 is produced in the enteroendocrine L-cells, the 

major@ of which are found in the distal ileum and colon (138-141), and secretion from these 

cells is mediated by the activation of a number of intracellular signals, Uicluding PKA, PKC 

and calcium (78, 14% 144). GLP- 1 is released rapidly (within 10-1 5 min.) into the 

circdation following oral ingestion of nutrients in both rodents and humans (145- 148). Oral 

administration of glucose in humans produces a bi-phasic increase in plasma GLP-1 levels, 

whereas intravenous infusion of glucose has no effect on GLP-1 secretion (148). Since the 

GLP-1-producing L-cells are located in the distal portion of the small intestine, it is likely 

that the rapid increase in plasma GLP-1 levels obsenred following nutrient ingestion are not 

due to a direct stimulatory effect of nutrients on the L-ceil. Thus, the existence of a 



proximal-distal loop that transmits nuhient-induced stimuiatory signals, via neural or 

endocrine effectors, to the L-cels has been proposed (149). In support of this, in vitro and in 

vivo studies in rats have shown that the more proximaiiy-located duodenal hormone GIP and 

the neurotransmitter acetylchohe cm stimulate intestinal 0 - 1  secretion (149-15 1). 

However, GIP does not stimulate GLP-1 secretion in humans (28,60). The neuropeptide 

gastrin releasing peptide (GRP) stimulates GLP-1 secretion in both humans (152) and rodents 

(153). Recent studies in the GRP receptor knock out mouse have shown that these mice 

exhibit a reduction in the GLP-1 response to gastric glucose (1 54), indicating that a normal 

GLP- 1 response to enteral glucose requires intact GRP receptor signaling. in addition, 

studies suggest that the stimulatory effects of GIP on GLP-I secretion may be mediated 

indirectly, via GRP (153). Additional studies have indicated that the vagus nerve also has a 

role in mediating the rapid release of GLP-1 from the distal L-cells in response to ingested 

nutrients (155). More recently, a role for the neuropeptide calcitonin gene-related peptide 

(CGRP) in the regulation of GLP-1 release has been proposed (156). Thus, the biphasic 

nature of GLP-1 release appears to be mediated through a proximal-distal loop consisting of 

hormonal and neural factors which stimulate early (within 10-15 min) GLP-1 release, as well 

as direct nutrient contact with the intestinal L-ce11 to promote the second phase (30-60 min) 

of GLP- 1 secretion (4). 

Hormones such as insulin and sornatostath-28 (132, W), as well as the neuropeptide 

galanin (158), have been shown to inhibit GLP-I secretion from the intestinal L-cell in both 

in vitro and ris vivo studies. 

Multiple forms of GLP-1 are secreted fiom the L-cells, including GLP- 1 ( 1-37) and 

GLP-l(l-36)W2, which are biologicdy inactive (27,3 1,159), and GLP-l(7-37) and GLP- 



1 (7-36)NHz whic h are biologicaily active. GLP- l(7-37) and GLP- 1 (7-36)NH2 are generated 

fiom their hiIl-length precursors by the action of PCIB (130), and both peptides have 

equipotent insulin-stimulating activity (160). However, in humans, the majonty of 

circulating GLP- I is in the form GLP- 1 (7-36)NH2 (1 6 1). 

(b) Physiological Actions 

The primary physiological role of G U - 1  is that of an incretin hormone. GLP- 1, 

released &orn the gut in response to nutrient ingestion, is secreted into the circulation, and 

acts to augment glucose-stimulated insulin secretion (28,30, 162). GLP-1 binds to its 

specific receptor on the pancreatic p-ce11 and stimulates both insulin secretion as well as 

insulin gene transcription and biosynthesis (163, LM), thereby contributing to the 

replenishment of p-ce11 insulin stores and preventing exhaustion of 8-ce11 reserves. The 

insdinotmpic effects of GLP-1 are glucose dependent, thus, when blood glucose levels fall, 

GLP-1 no longer stimulates insulin secretion, thereby preventing the possible development of 

hypoglycemia (28,6O, 165- 167). GLP- I also confen glucose sensitivity to glucose-resistant 

p-cells in both humans and rats, thereby irnproving the ability of the 8-ce11 to sense and 

respond to glucose (47-49). A number of recent studies also indicate that GLP- 1 may 

promote P-ce11 neogenesis and proliferation (54-57). In vitro experiments using a pancreatic 

p-ceil h e  demonstrated that GLP-1, together with glucose, was able to activate the 

expression of imrnediate early genes that encode transcription factors regulating ce11 

proliferation and differentiation (168). In addition, GLP-1 treatment was able to reverse the 

age-related decline in glucose tolerance in rats (169) and to convert nonendocrine AR4U 

ceUs into cells which cm produce and secrete insulin (55). 



GLP-1 inhibits glucagon secretion (3 1-35, 170, 1 7 1) and stimulates somatostatin 

secretion (3 1, 172-174). The increase in somatostatin secretion is mediated directly via GLP- 

1 receptors on the somatostatin-secreting pancreatic 6-cells (175,176). whereas the 

uihi'bitory effect of GLP-1 on glucagon secretion may be indirect, through the stimulation of 

insulin and somatostatin secretion, both of which inhibit glucagon secretion (177). However, 

GLP- 1 may also inhibit glucagon secretion directly, via interaction with GLP- 1 receptors 

which are present on pancreatic a-cells ( 1 78). 

GLP-1 has also been shown to inhibit pentagastrin- and meal-induced gastric acid 

secretion (42, 1 12, 1 79). as well as gastric emptying (43, 1 80- 183). The inhibition of gastric 

emptying by GLP-1 promotes attenuation of meal-associated increases in blood glucose 

levels by slowing the transit of nutrients fiom the stomach to the maIl intestine. 

GLP- 1 receptors and GLP- l -immunoreactive nerve fiben are detected in brain 

regions known to be involved in the regulation of a number of homeostatic functions, 

including ingestive behavior (184- 191). Central administration of GLP- 1 has been shown to 

inhiibit short-terni food and water intake in rodents (36-38,41, 189, 192) and peripheral 

administration of GLP-1 prornotes satiety and suppresses energy intake in normal, diabetic 

and obese humans (39,40, 193- 195). In rodents, this inhibitory effect on food intake may be 

mediated by a direct interaction of GLP-1 with hypothalamic centers in the CNS which 

modulate feeding behaviour or, alternatively, via induction of a conditioned taste aversion 

(196-199). 

GLP-1 has dso been postulated to enhance glucose disposal directly (50,s 1), 

possibly through peripherd effects on iiver, skeletal muscle and adipose tissues (53). GLP-1 

was fotmd to enhance insulin-stimulated glucose metabolism in both adipocyte ceil cultures 



(52) and isolated rat adipocytes (200) and to increase glucose incorporation into glycogen in 

both isolated rat hepatocytes (20 1,202) and skeletal muscle (202,203). However, 

subsequent investigations were unable to confirm these reports (204,205) and evidence for 

the presence of GLP- 1 receptors on these peripheral tissues is ambiguous (206-2 10). in 

addition, although GLP-1 has been shown to enhance insulin sensitivity in depancreatized 

dogs (21 l), saidies in both normal (212) and type 2 (non-insulin-dependent) diabetic humans 

(2 13,2 14) do not support such a role for GLP- 1. Thus, a role for GLP- 1 in the mediation of 

glucose disposal in peripherai tissues, independent of its effects on insulin and glucagoa, is 

controversial. 

GLP- 1 receptors are expressed on heart cells (2 10,2 15) and in the nucleus of the 

tractus solitarius in the CNS, a region which is involved in the central control of 

cardiovascular function (190.2 16). Consistent with these observations, GLP- 1 treatment 

increases systolic, diastolic and mean artenal blood pressure and heart rate in rats (2 17,218) 

and aIso increases heart rate in conscious calves (219). 

GLP- 1 may also modulate the hypothalamic-pituitary axis. GLP- 1 receptors have 

been detected on cells of the pituitary gland ia the rat (190,220) and GLP- 1 was reported to 

stimulate CAMP formation as well as  thyroid-stimulating hormone (TSH) release fiom 

cdtured mouse pituitary thyrotrophs and isolated rat anterior pituitary cells (221). GLP-L 

aIso stimulated luteinizing hormone-releasing hormone (LHRH) secretion in a rodent 

hypothalamic neuronal ce11 Ime and central GLP- 1 administration rapidly increased plasma 

luteinizing hormone (LH) levels (222) and stimulated hypothalamic neuroendocrine neurons 

(223) in rats. 



Due to its ability to Lower blood glucose Ievels through a number of different 

mechanisms, GLP-1 is currently being assessed in clinical triais as a potential thenipeutic 

agent for the treatmeat of diabetes. Additionaily, meal-induced GLP- 1 secretion was found 

to be impaired in type 2 diabetic patients (224,225), emphasizing the importance of GLP-1 

replacement therapy in these patients. Although the sulfonylurea drugs cunently being used 

to treat type 2 diabetes also stimulate insulin secretion, they do not stimulate insulin gene 

expression and biosynthesis nor is their activity glucose dependent (4,82). Thus, 

sulfonylurea treatment does not replace depleted P-ce11 insulin stores and it has the additional 

risk of potentially inducing hypoglycemia, a complication of sulfonylurea cimg treatment 

(226). A number of studies in humans and rodents with type 2 diabetes have shown that 

GLP-1 treatrnent can enhance glucose-stirnuiated insulin secretion and lower fasting as well 

as post-prandial blood glucose levels (49,227-230). Furthemore, subcutaneous GLP-1 

treatment for up to three weeks improved post-prandial glycemic control in diabetic patients 

(23 1,232), indicating that GLP- I maintains its effects, despite prolonged treatment. In 

addition, GLP-1 treatment was aiso found to decrease fasting and postprandial blood glucose 

Levels as well as the meal-related inmiin repuirement in type 1 (insulin-dependent) diabetic 

patients (233-US), likely through inhibition of giucagon secretion and gastric emptying 

(234). These hdings suggest that GLP-1 therapy may be beneficiai to both noninmiin- and 

insulin-dependent diabetic patients. However, a potential drawback to GLP-I is its very 

short plasma half-life (less than 2min) (6 l), due to rapid inactivation by the ubiquitous 

protease DPP-IV (see below) (61,62,236). These fbdings have prompted the development 

of DPP-IV-resistant GU-I  andogs (237-240) and specinc DPP-IV inhibitors (241) as 

potentiai anti-diabetic agents. 



(c) Metaboüsm and Clearance 

As noted above, the half-Iife of circulating, biologically active GLP-1 is less than 2 

min. This relatively short plasma half-Me is attniuted to the protease activity of DPP-IV, 

which is present on the d a c e  of white blood cells in the circulation and on the vascular 

endothelium in the small intestine, adjacent to the sites of GLP-1 rebase (242-244). DPP-iV 

catalyzes the cleavage of GLP-l, or its amidated derivative, at the position 2 AIa residue to 

yield the biologically inactive peptides GLP- l(9-37) and GLP- I (9-3 6)M12, which may 

fiction as competitive antagonists of the GLP-1 receptor in vivo (245,246). 

In Mtru studies have shown that the neutral endopeptidase (NEP-24.1 1) has 

endoproteolytic activity on GLP-1 and thus, rnay also be involved in the metabolism of GLP- 

1 (247,248). 

The pnmary route of clearance of GLP-1 appean to be through the kidney (249,250). 

Uremic patients have elevated Ievels of circulating, immunoreactive GLP- 1 relative to 

control individuals (25 1) and bilateral nephrectorny or uretal ligation in rats is associated 

with increases in the circuiating haff-life of GLP-I (249). A role for tissues other than renal, 

such as the liver and Iung, in GLP-1 clearance, has not been clearly established (249). 

(d) The GLP-1 Receptor 

The GLP-1 receptor (GU-IR) was originally cloned fiom a rat pancreatic islet 

cDNA iibrary via functional clonhg (252). The receptor has subsequently been found to be 

expressed in a number of dflerent tissues including the brainstem, hypottialamus, pituitary, 

lung, stomach, heart, intestine7 a-, f!- and &cells of the islets, and kidney (175, 178, L 88, 

190,191,208-210,215,253). The presence of GLP-1 recepton in peripheral tissues such as 



muscle, liver and fat is not concIusive (208,210) and fias prompted the suggestion that 

structurai variants or a second, closely related receptor may exist (4.254). 

The GLP- 1 R belongs to the seven tnuwnembrane-spanning, heteroûimeric G protein- 

coupled family of receptors (252), which includes the GIP receptor, among others (255). 

Evidence to date indicates that GLP-1 mediates its eEects via a single GLP-IR that appears 

to be identical in ail tissues examined (2 15). In vitro studies have indicated that signaling 

through the GLP-1 receptor is coupled to both adenylate cylase and phospholipase C and 

activation of the PKA and PKC pathways, respectively (1 63,208,252). GLP-1 binding to its 

receptor is also associated with increases in intracellular calcium levels (256-258). 

Structure/~ction studies have shown that the N-terminal histidine residue and the C- 

terminal residues 34-37 oFGLP-l are essentiai for GLP- IR activation (259,260). The N- 

termina extracellular domain of the GLP-1R is required for GLP-I binding (26 1,262). 

whereas the third intracellular loop is necessary for efficient coupling of the GLP-IR to 

adenylyl cyclase and subsequent activation of PKA (263,264). 

Little is known about the factors that regulate GLP-1 R gene expression. Studies 

examining GLP-LR mRNA regulation in vitro found that receptor mRNA levels are down- 

regulated in response to GLP-1, activation of PKC, high glucose or dexamethasone (265- 

268). Analysis of the cloned 5'-flaoking sequences of the hurnan GLP-1 R gene suggests that 

GLP-1R expression is positively regulated by the binduig of Sp I and Sp3 transcription 

factors to the promoter region (269). and cell- and tissue-specific GLP-1R gene expession is 

negatively regulated by more distai elements (270). Recentiy, a distd cell-specific silencer 

element @CS) was Îdentifïed in the 5'-flanking sequences of the GLP-1R gene (271). The 

DCS was found to be responsibIe for repressing human GLP-IR gene expression in 



fibroblast and pancreatic a-cells, but not in pancreatic P or S ceus, indicating that the DCS 

mediates suppression of tissue- and ceIl-specific GU- 1 R expression (27 1). 

Ln islet ceii lines, the GLP-1R undergoes homologous and heterologous 

desensitization (272-275) and intemakation (275,276), which are both correiated with 

receptor phosphorylation (273-275). However, desensitization of the GLP-1R has not been 

observed in studies performed in vivo (4). 

An N-tenninally tnuicated version of [izard exendin-4, exendin (9-39). can bind to the 

GLP-1 receptor and function as a specific GLP-1 receptor antagonist (65,66,277,278). 

Exendin (9-39) is cornmonly used as a tooI to examine the physioiogical consequences of 

loss of GLP-I R signaling in both in vitro and in vivo snidies. The ability of exendin (9-39) 

to significantly reduce postprandial insulin levels (279) and diminish glucose tolerance and 

total insulin secretory response in normal rats (280) led to the conclusion that GLP- 1 is a 

physiologically important incretin in vivo. In humans, exendin (9-39) treatrnent increases 

postprandid blood glucose levels (28 1) and blocks the insulinotropic and glucagonostatic 

effects of physiological doses of GLP-1 (282), thus indicating that GLP- 1 is important for the 

maintenance of normal glucose homeostasis. Additional studies with exendin (9-39) in 

humans (282) and fasted baboons (283) has provided evidence that GLP-1 may have a tonic 

uihibitory eEect on glucagon secretion. Exendin (9-39) also inhibits the extrapancreatic 

effects of GLP-I on gastric ernptying (46,284, 285), hem rate and blood pressure (2 18, 

286). food intake (36,37), and glucose metabolism in skeletal muscle and liver (287). 

(e) The GLP-IR-/- Mouse 

To ascertain the relative physiological importance of GLP- 1-mediated actions, mice 

with a targeted disruption of the GLP-1R gene (GLP-IR-/-) were generated (288). These 



mice are viable, fertile and appear to develop normaiiy (288). GLP-I R-/- mice exhibit a mild 

fasting hyperglycemia and abnomal glycemic excursion in response to oral glucose, which is 

associated with a reduction in glucose-stimdated insulin secretion (288), consistent with an 

essential physiological role for GLP-1 in the regulation of glucose-stimulated insulin 

secretion. The mild diabetic phenotype of GLP-IR-/- mice may reflect the compensatory 

upregulation of glucose-dependent GIP secretion and insulinotropic action that is seen in 

these mice (289). GLP- IR-/- mice also exhibit glucose intolerance in response to 

intraperitoneal (i.p.) glucose administration (288), which bypasses the incretin and gastnc- 

emptying effects of GLP- 1, suggesting that even basal GLP-1 -mediated signaling is 

important for handling a glucose load, irrespective of the site of glucose entry. in addition, 

despite the observation that GLP-1 enhances p-ce11 responsivity to glucose, isolated islets 

fiom GLP-1 R-/- mice exhibit preserved glucose responsiveness (290). Although GLP-I has 

been shown to inhibit giucagon secretion and regulate peripheral glucose disposal, GLP-IR- 

/- mice have normal basai and post absorptive glucagon levels (291), and display normal 

whole-body glucose utiiization (291). However, Ni vitro studies using isolated islets from 

wild type and GLP-IR-/- mice suggest that the presence of the GLP-1 R, even in the absence 

of bound ligand, is essential for maintainhg the glucose-dependent insulin secretory capacity 

of the pancreatic p-cells (292). Although this study contradicts the observation of normal 

glucose cornpetence in GLP-IR-/- islets (290), subsequent studies have shown that the P 

cens of GLP-LR-/- mice have undergone compensatory changes in response to genetic 

deletion of the GLP-1R (293). These changes include reduced basal, but enhanced GIP- 

stimdated CAMP production, as weN as abnomalities in both basal and glucose-stimulated 



cytosolic calcium oscillations, thus supporthg an essential role for the GLP-IR in p-ce11 

signal transduction (293). 

Although GLP-1 has been shown to be a potent iuhitbitor of food intake (36-38.41, 

189, 192). GU- IR-/- rnice exhibit norrnal body weight and feeding behaviour (288), 

indicating that GLP-LR signahg is not essential for regdation of satiety and maintenance of 

normal body weight. Moreover, GLP-IR-/- mice maintained on a high fat diet for 18 weeks 

do not develop obesity (294). 

in light of the fmding that central GLP-1 administration stimulates TSH, LH, 

corticosterone, and vasopression secretion in rats (22 1 -223), the netuoendocrine 

consequences of disrupted GLP-1 signaling was assessed in GLP-1 R-/- mice (295). Male 

GLP- I R-/- mice have slight reductions in gonadal weight and females exhibit small delays in 

pubertal onset (295). However, both males and females reproduce normally and respond 

appropriately to fluid restriction (295). in addition, despite a small but significant reduction 

in adrenal weights in both male and female GLP-IR-/- mice, adrenal histology and basal 

plasma levels of corticosterone were normal (295). The circulating levels of thyroid 

hormone, testosterone, estradiol and progesterone were also normal in these mice (295). 

However, GLP-IR-/- were found to have an exaggerated corticosterone response to stress, 

relative to control mice (295). Taken together, these f'tndings suggest that, although 

genenilized neuroendocrine hc t ion  is nomai in GLP-IR-/- mice, GLP- 1 signaling appears 

to be involved in the normal neuroendocrine response to stress. 



1 3  Glucose-Dependent Insulinotropic Polypeptide (GE) 

(a) Biosyntbesis and Secretion 

In rats the GIP gene is expressed in the K cells of the intestine and in the 

submandiiular salivary gland (296). In humans, GIP expression occurs in the intestinal K 

cells (297,298), and recent studies suggest that GIP is also expressed in rodent and human 

stomach (299). 

There is very Little information regarding the factors that regulate GIP gene 

expression. The promoter region of the human GIP gene contains binding sites for a nurnber 

of transcription factors iucluding Sp 1, AP-1 and AP-2, and transient expression assays in an 

insulinoma ce11 line indicate that GIP gene expression is regulated by two CAMP responsive 

elements (300). In the rat, GIP gene promoter sequences between -193 and -182 contain a 

f'unctional GATA elernent and are responsible for regulathg cell-specific gene expression 

(301). in rats, a glucose meal (302) and intraduodenal infusion of fats (296) have been 

shown to up regulate duodenal GIP mRNA levels. 

Bioactive GIP (1-42) is synthesized and released nom the K cells of the duodenum 

and proximal jejunum prirnarily in response to the ingestion of glucose or fat (3, L 8,3031, 

aithough recent studies in rats indicate that peptones cm also potently enhance GLP levels 

(304). In both rats and humans, mature bioactive GIP is a 42 amino acid peptide that is 

generated by proteolytic processing of a Iarger preprohormone precursor (1 8,296,305). 

Studies indicate that the N-terminus of GIP is important for its biological activity (306). 

GIP secretion is dependent on the rate of nutrient absorption, rather than the presence 

of nutrients, in the s m d  intestine (307). In vitro studies using cuitmd canine e n d o c ~ e  

cens mdicate that GIP-produchg celIs are responsive to the activation of adenylyl cyclase, 



elevations in intracellular calcium, potassium-mediated depolarbation, glucose, GRP and P- 

adrenergic stimulation (3 08). 

@) Physiological Actions 

in the endocrine pancreas GiP has a well-established role as an incretin hormone (13, 

14,309,3 10). In response to nutrient ingestion, GIP is released fiom intestinal K cells into 

the circulation and subsequently binds to its specinc receptor on the pancreatic p-cell, 

resulting in augmented glucose-stimdated insulin secretion and insulin gene expression 

(3 1 1-3 13). This likely occurs via activation of P U  (3 14) or increases in intracellular 

calcium (3 15). GLP appears to have no effect on glucagon secretion, but it can stimulate 

sornatostatin secretion (1 73). 

Although GIP would appear to be a useful agent for the treatment of diabetes, studies 

with type 2 diabetic patients indicate that they have normal or even elevated serum levels of 

GIP (3 16-3 19), with the inactive tnincated catabolite (GIP 3-42) as the predominant 

molecular form (320). Moreover, GIP bas very little inmlhotropic or glucagon-lowenng 

activity in diabetic subjects (60,321). These observations are consistent with reports that 

Uidicate that GIP gene expression is enhanced in diabetic animals, and that elevated plasma 

GP levels promote chronic homologous desensitization of the GIP receptor (322). It has 

been suggested that such a mechanism could contribute to the irnpaired insulin secretion that 

is seen in type 2 diabetic patients (322). 

In the stomach, GIP can inhibit gastric acid secretion, but only at supraphysiological 

doses (323). GP has also been shown to up regulate hexose transport in the intestine (118). 

In the liver, GP attenuates glucagon-stimulated hepatic glucose production (324,325), likely 

through an i n k t  r n e ~ h ~ s m  as GP receptors have not been detected in the Liver (255). In 



adipose tissue, GIP stimulates fatty acid synthesis (326), enhances insulin-stimulated 

incorporation of fatty acids into higlycerides (327), and increases both the affkity of insulin 

for its receptor and the sensitivity of insulin-stimulated glucose transport (328). The 

signahg mechanism(s) by which GIP mediates its effects on adipocytes is cunently not 

known (18). However, bctional GIP receptors are expressed on adipocytes (255,329,330), 

and limited studies indicate that GIP binding prornotes increases in the accumulation of 

intracellular CAMP levels in adipocyte cultures (329,330). GP receptor mRNA and protein 

are also found in normal bone and osteoblast-like ce11 lines (33 1). Treatment of osteoblast- 

like cells with GU? stimulates dose-dependent increases in CAMP and intracellular calcium 

levels and results in increased aikaline phosphatase activity and elevated collagen type 1 

mRNA levels (33 1). Additionally, despite the detection of GIP receptor mRNA in a number 

of different tissues including the heart, adrenal cortex, testis, h g ,  intestine, and severai 

regions in the brain (18,255), the effect, if any, of GIP in these tissues remains to be 

detennined. 

(c) Metabolism and Clearance 

in humans the half-life of immunoreactive GIP was determined to be appmximately 

20 min (15,332-334). However, this value does not reflect the half-life of biologically active 

GIP, which has been estimated to be less than 2 min h rats (60) and approx 7 min and 5 min 

in normal and type 2 diabetic human subjects, respectively (320). The main route of 

clearance of GIP is through the kidney (339, and the liver appears to have no significant role 

in GIP clearance (336,337). 

A role for DPP-N in the degradation ofGIP (1-42) to the biologically inactive 

hgrnent GIP (3-42) has been established by in vitro studies using human senun (62). 



Additional studies in rats and nomal and diabetic humans indicate that DPP-N is Iikely the 

primary GIP-hactivating enzyme in vivo (6 1,320). 

(d) The GIP Receptor 

The GIP receptor (GIPR) was originally cloned from a rat cerebral cortex cDNA 

libtary using the polyrnerase chah reaction (PCR) and degenerate oligonucleotide primers 

corresponding to conserved amino acid residues in the transmembrane domains of members 

of the secretin-VIP receptor family (255). Subsequently GIPR mRNA was found to be 

present in the pancreas, stomach, mal1 intestine, adipose tissue, adrenal gland, lung, 

pituitary, heart, testis and several regions of the brain (255,329). Similar to the GLP-IR, the 

GIPR belongs to the seven-trammembrane domain, heterotrimeric G protein-coupled 

receptor farnily (255). 

To date, Iittle is known about the factors which regulate GLPR mRNA expression. 

Cloning and analysis of the rat GiPR gene revealed that the 5'-flanking sequences of the 

gene contain a nurnber of potential regulatory elements, including a CAMP response element, 

an octamer biading site, three SP 1 sites, as well as a transcription initiator element consensus 

sequence (338). However, there are no TATA or CAAT box motifs upstrearn of the 

transcription initiation site (3 3 8). In addition, cis-acting negative regulatory elements that 

mediate cell-specific expression may be present in the distal5'-flanking sequences of the rat 

GIPR gene (338). 

At the protein level, GLPR signaLing is coupled to CAMP activation and increases in 

intracellular caiciurn levels (208,256,3 15,339-344). Studies have also suggested that, in 

addition to CAMP, GIP rnay activate signal transduction via PI-3-kinase (345) or MAP kinase 

(MAPQ (346)- 



In vitro süucture/function studies indicate that the N-terminal domain and the fust 

extracellular loop of the GIPR are necessary for high-afnnity binding of GIP, whereas the 

distal part of the N-terminal domain and the nrst traiismembraae domain are essential for 

receptor activation and coupling to CAMP (347). In addition, a recent study has concluded 

that most of the C-tenninal tail of the GIPR is not required for intracellular signaling, but that 

a minimum receptor length of approxirnately 405 amino acids is required for efficient 

receptor transport and plasma membrane insertion (348). 

The GIPR undergoes rapid and reversible homoIogous desensitization (3) and specifc 

serine residues in the C-terminal tail of the GIPR, especially serines 426 and 427, are 

necessary for regulating the rate of receptor intemalkation (348). 

(e) The GIPR-1- Mouse 

To determine the role of GIP-mediated signaling in the enteroinsular a i s ,  mice with a 

targeted deletion of the GIPR gene (GIPR-/-) were generated (349). GIPR-/- mice exhibit 

normal fasting glucose and glycernic excursion in response to an intniperitoneal glucose 

challenge (349). However, in response to an oral glucose load, GPR-I- display impaired 

glucose tolerance, which is associated with a significant reduction in insulin secretion (349). 

These remlts suggest that GIP has an important role as an incretin hormone, but GiP 

signaling does not appear to be essential for handling a non-enteral glucose load. 

In nomial rodents which are ptaced on a high fat diet to induce insulin resistance, 

meai-induced glycemic excursion remains normal, due to compensatory increases in insuiin 

secretion. However, in GIPR-/- mice maintained on a hi& fat diet, the meal-induced 

glycemic excursion was abnormaily elevated due to reduced compensatory enhancement of 

insulin secretion (349). These results indicate that GIP signaling has a signiticant roIe in 



mediating the compensatory enhancement of insuün secretion under conditions of insulin 

resistance. 

1.4 Dipepüdyipep tidase IV (DPP-m/CD26 

Dipeptidylpeptidase IV @PP-IV), also known as CD26, is a ubiquitous 

multifunctional glycoprotein that is expressed either on the surface of a number of different 

ce11 types, or as a soluble fom in plasma (242,243). DPP-iV belongs to the prolyl 

oligopeptidase family and is a serine protease which specifically cleaves dipeptides from the 

amino terminus of oligopeptides or proteins containing an alanine or proline residue in 

position 2 (i.e. X-Alflro), thereby rendering them inactive or modifying their activity (242, 

243). In addition to its protease activity, DPP-N cm also bind to proteins including collagen 

and adenosine deaminase (350,35 l), and has been shown to have a role in both T-ce11 

costimulation and tumour suppression (3 52-3 54). 

DPP-IV has a fair1y widespread distribution, being found in a number of tissues 

including kidney, h g ,  adrenal gland, intestine, liver, spleen, testis, pancreas and CNS, as 

we11 as on the d a c e  of endothelid cells of blood vessels and in plasma (242,243). DPP-iV 

is dso expressed on activated T-helper lymphocytes and macrophages (355,356). 

GLP-1 and GIP contain an alanine residue in position No, and thus are both 

substrates for DPP-N enymatic activity. A number of studies have indicated that DPP-N- 

mediated cleavage is the primary mechanism whereby GLP- 1 and GIP are inactivated (6 1 - 
63). DPP-N catabolizes GLP-I to GLP-1(9-36)NH2 and GLP-1(9-37), which can bind, with 

Iow-affinty, to the GLP- 1 receptor and may fimction as cornpetitive antagonists of the GLP- 

1 receptor in vivo (63,245,246,357). In hurnan studies with normal and type 2 diabetic 



patients, intravenous or subcutaneous GLP-1 was rapidly degraded (withùi 30 min) to GLP- 

1(9-36)NH2, which accounted for more than 75% of the immunodetectable GLP-1 from these 

patients (358). Cleavage of GIP by DPP-IV leads to the formation of GIP (3-42), which is 

biologically inactive (62,306). In in vivo studies with rats, greater than 50% of an 

intravenous bolus of GIP or GLP-1 was metabolized to its N-terminal truncated form by 

DPP-N within two minutes of peptide administration (6 1). In contrasf Kterminal 

-cation was absent when these peptides were infbsed into a strain of rats that is DPP-IV 

deficient (6 1). Moreover, a number of studies indicate that pharmacological inhibition of 

DPP-IV activity can prolong the hal'lives of bioactive GIP and GLP- 1 (6 1,359-36 1). 

In light of the short plasma half-live of biologically active GLP-1, due to its rapid 

catabolism by DPP-N, and the observation that the incretin effect of GLP-1 is preserved in 

type 2 diabetic patients, the use of agents which inhibit DPP-N activity has been proposed as 

a potential treatment for type 2 diabetes (241,358). in anesthetized pigs, pharmacological 

inhibition of greater than 90% of the DPP-IV activity with valine-pyrrolidide resulted in an 

increase in the levels of intact GLP-1 in both the basal (endogenous) state and following 

GLP-1 infusion (359). Furthermore, this increase in the haif-life of bioactive GLP-1 was 

associated with enhancement of both the insulinotropic and glucagonostatic effects of GLP- 1 

(359). In rats, the DPP-IV inhibitor ne-thiazolide increked the plasma half-life of intact, 

endogenous GLP-1 released in response to intraduodenal glucose, wbch resulted in a 

shortening of the time required to reach peak insu1i.n levels and thus, a more rapid clearance 

of blood glucose (360). In both lean and obese Zucker rats, oral administration of the DPP- 

IV inhibitors ne-thiazolide or NVP-DPP728 enhanced insulin secretion and improved 

glucose tolerance (362,363). Moreover, DPP-IV inhibition in both control and high-fat fed 



giucose intolenint mice incteased the levels of endogenous GLP-I and improved glucose 

tolerance and insulin secretion (36 1). Taken together, these studies indicate that DPP-IV 

inhibition could be a promishg strategy for the treatment of diabetes. 

However, DPP-IV aiso degrades certain cytokines and other important regdatory 

peptides that contain an alanine or proline in the penultimate N-temllnal position, including 

neuropeptide Y (NPY), growth hormone releasing factor (GRF) and peptide W (242). 

Furthemore, in addition to its protease activity, DPP-N has also been implicated in the 

costimulation and activation of T-cells (352,353). Thus, the use of DPP-N inhibitors as a 

therapeutic treatment for diabetes could result in undesirable side effects. 

As an alternative therapeutic approach, a nurnber of DPP-IV-resistant GLP-I 

analogues have been synthesized and their metabolic stability, biological activity, potency 

and duration of action have been assessed (237-240,366366). Promishg results have been 

obtained with GLP- 1 -Gly8 (365) and with fatty-acid-derivatized GLP- 1 analogues (239). 

1.5 Exenàii-4 

(a) Peptide Discovery and &NA Cloning 

Most members of the glucagon superfamily of peptides, including GLP-1 , have a 

highly conserved histidine residue at their amino terminus (~is ' ) ,  as well as a phenylalanine 

residue at position six (367). IncIuded in this family are two biologically active peptides, 

helodermin and helospectin, which were pmified fiom the venom of Helodermatidae lizards 

(368-370). Thus, in an attempt to ident@ new bioactive peptides in lizard venom, amino- 

terminal sequencing was used as a strategy to screen for novel ~ i s '  peptides (371). Using 

this technique, a 39-amino acid carùoxy-terminai amidated peptide, designated exendin-4, 



was identined and p d i e d  fiom the venom of a Helodennn suspectum Lizard (64). The 

designation exendin4 is derived fiom the observation that this peptide is found in an 

exocrine secretion and has çodocrine activity (see below) (371). - 

It was determined that exendin-4 shares a 53% amino acid sequence identity with 

mammalian GLP-1 and subsequent studies have determined that exendin-4 is a GLP-1 

receptor agonist (65,66,277,278). Thus, exendin-4 can bind to the GLP- 1 receptor and 

rnimic a number of the biological activities of GLP-1, including the abilities to increase 

CAMP levels in guinea pig pancreatic acinar ce11 preparations (64) and stimulate CAMP- 

dependent H' production in rat parietal cells (277). Exendin-4 also stimulates glucose- 

dependent insulin secretion and increases CAMP levels and insulin gene expression in 

isolated rat islets and cultured islet ceIl lines (65). Moreover, as mentioned previously in 

section 1.2 (d), an exendin-4 hgment, exendin-(9-39), has been shown to be a specific GLP- 

1 receptor aniagonist. Exendin (9-39) can block the binding and biological activities of both 

exendin-4 and GLP- 1 (36,37,2 18,246,279-284,287,372,373). 

In light of the 53% sequence identity between GLP-1 and exendin-4, as well as the 

ability of exendin-4 to function as a GLP-I receptor agonist, it was originally believed that 

exendin-4 may represent the reptilian GLP-1 homologue. However, the subsequent cloning 

and sequencing of cDNAs for both [izard progiucagon and exendin-4 demonstrated that 

exendin-4 is not the reptilian equivalent of GLP-l (374). In the bard two diffierent 

progiucagon cDNAs, h d  proghcagon 1 and II (LPI and LPII), with unique 3'-untranslated 

regions were identifieci (374). LPI encodes glucagon and GLP-1 and its expression is 

resûicted to the üzard pancreas (374). In contrast, LPII encodes glucagon, GLP-1 and GLP- 



2 and is expressed in both the liard pancreas and intestine (374). No mRNA transcripts 

corresponding to lizard proglucagon couid be detected in Iizard salivary gland (374). 

Lizard exendin-4 is encoded by a single RNA transcript of approximately 500 nt 

which dso encodes a 45 amino acid peptide N-termina1 to the exendin sequence (designated 

exendin N-terminal peptide; ENTP). ENTP is followed by a pair of basic amino acids 

(characteristic of prohormone convertase cleavage sites), and the 40-mino acid long exendin 

sequence (374) (Fig. 3). The fùnction of ENTP is currently not known but the N-terminal 

haif of this peptide could represent a signal sequence. Lizard exendin-4 mRNA transcripts 

are detected only in the lizard salivary gland, and not in the pancreas or intestine (374). In 

addition to these midies, Southent blot analysis of lizard genomic DNA with exendin-4- and 

GLP- 1-specific cDNA probes confhned that lizard exendin-4 and lizard GLP- 1 are distinct 

peptides encoded by unique lizard genes (374,375). 

The finding that proglucagon and exendUi-4 are encoded by unique genes in the Iizard 

suggests that other species, including mammals, could possess an exendin-4 gene. However, 

attempts by our labotatory (Baggio and Dnicker, unpublished data; see Appendk 1) and 

others (375) to clone a rnammalian exendin-4 homologue have been unsuccessfil. 

(b) P hysiological Activities 

Exendin-4 is a GLP-1 receptor agonist and has been shown to mimic the biological 

effects of GLP-1 in a number of different systems. Exendin-4 produces significant elevations 

in systoiic, diastoiic and mean arterial blood pressure and heart rate in rats, but its efiects are 

more proIonged than those of GLP-1 (21 8), likely due to decreased degradation of exendin-4 

(see below). Studies in rats have indicated that exendin-4 is approximately 90-fold more 

potent than GLP-1 in its ability to slow gastric emptying (67). Like GLP-1, exendin4 
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Fig. 3. Lizard proexendin-4 cDNA structure. Lkard exendin-4 is 
encoded by a single proexendin-4 RNA transcript of approx 500 bp. 
The lizard proexendin-4 cDNA encodes a 45 amino acid N-terminal 
peptide (ENTP), followed by a pair o f  basic amino acids (KR) and the 
40 amino acid exendin-4 sequence ( E x 4  UTR indicates untranslated 
region. 



increases glycogen synthase a activity and glucose incorporation into glycogen in both rat 

hepatocytes and skeletal muscle (287). Exendin-4 can also stimulate exogenous glucose 

uptake and metabolism in muscle (287). At the level of the pancreatic B-cell, exendin-4 

binds to GLP-L receptors and enhances glucose-stimulated insulin secretion both in vitro in 

isolated rat islets (65) and in vivo in rats (280). Exendin-4 also stimulates insulin gene 

transcription in mouse insulinoma cells (65). Relative to GLP-1, exendin-4 has been shown 

to be a more effective and more potent insulinotropic agent in vivo in rats (376) and to 

stimulate greater elevations in CAMP levels in vitro in isolated rat islets (72). Thirteen weeks 

of once-daily exendin-4 treatment (24 nmoVkg i.p.) significantly reduced fasting hemoglobin 

Al, and blood glucose levels and increased fasting plasma insulin concentration in diabetic 

db/db mice (72). in diabetic db/db or ob/ob mice, acute exendin-4 treatment had a more 

potent and prolonged glucose lowering effect than GLP-1 (68). Treatrnent of Zucker diabetic 

fa/fa rats with i.p. exendin-4 twice-daily for 6 weeks led to significant dose-dependent 

reductions in food intake, body weight and hemoglobin Ai, levels, as well as an 

approximately 50% improvement in insulin sensitivity relative to saline-treated controls (68). 

in contrast to previous studies demonstrating that acute central (intracerebroventricular, 

ICV), but not peripheral (i-p.), GLP-1 treatment can inhibit food intake in normal rats (37), 

long-tem subcutaneous or i.p. exendin-4 administration produced significant and sustained 

reductions in food intake and body weigtt in both normal and diabetic rats (68,69). More 

recent studies have also demonstrated that, simila. to GLP-1, exendin-4 stimulates P-ce11 

neogenesis and proliferation in rats (56) and can convert AR421 cells, which have exocrine 

and neuroendocrine properties but lack islet hormone expression, into pancreatic endocrine 

cells (55). 



As indicated above, a number ofstudies have demonstrated that exendin-4 is more 

potent and that its physiologicd effects are more prolonged relative to GU-1. This is likely 

due, in part, to the longer plasma haKiSe of exendm-4 (18-41 min. foilowing i.v. bolus in 

rats) (7 l), compared to GLP- 1 (less than 2 min. following i.v. bolus in rats) (6 1). GLP- I 

contains an alanine residue in position two and thus, is rapidly catabolized by DPP-N. in 

addition, GLP-1 is also a potential target for the endoproteolytic activity of NEP-24.1 1 (247). 

In contrast, exendin-4 contains a glycine residue in position two and is not a substrate for 

DPP-IV-mediated catabolism. As well, exendin-4 has been shown to be a very poor 

substrate for NEP-24.1 1 (247). The greater potency and extended plasma half-life of 

exendin-4 suggest that it may be more usehl than GLP-1 as a thenipeutic agent for the 

treaûnent of diabetes. In light of these fidings, exendin-4 is currently being evaluated in 

clinical trials to assess its potential as an antidiabetic agent. 

1.6 Rationale, Bypotheses and Specüic Goais of this Research 

Do GLP-1 and GIP Iimte distinct d e s  In glucose homeostusis? Incretins, the gut- 

denved factors that augment glucose-stimulated insulin secretion, have been show to be 

essential mediators of normal glucose homeostasis. In fact, the incretin effect bas been 

shown to account for as much as 50% of the insulin secretory response to oral glucose (8). in 

addition, the incretin effect is reduced or lost in type 2 diabetic patients (377), agah 

emphasizing the importance of incretin action for glycemic control. 

Thus far ody two endogenous mammalian peptide hormones, GiP and GLP-1, 

possess the necessary activities to f.ulfiU the requUements of an incretin hormone, and thus 

represent potential therapeutic agents for the treatrnent of diabetes. To this end, 



administration of GLP-I to type 2 diabetic patients was insulinotropic, whereas GIP was not, 

indicating that the inmetin effect of GLP-1 is preserved in diabetic individuais. 

Although GIP and GLP-1 have both been shown to augment glucose-stimulated 

insuiin secretion, in addition to its role as an incretin, GLP-1 also contributes to the lowering 

of blood glucose by its additionai pleiotropic effects on glucagon secretion, gashic emptying, 

food intake and penpherd giucose disposal. GLP-1 also has a ghcose-sensitizing effect on 

glucose-resistant B-ceUs and may play a role in islet differentiation and Pcell mass 

expansion. The importance of these cbnon-incretin" effects of GLP-1 are further illustrated by 

studies in mice with a targeted disruption of the GLP- 1 receptor gene (GLP-1 R 4-). These 

mice exhibit rnild fasting hyperglycemia and impaired glucose tolerance in response to either 

oral or intraperitoneal glucose challenge. 

The principle action of GIP appears to be that of an incretin hormone. The biological 

importance of the incretin function of GIP has been supported by studies in GIP receptor 4- 

(GIPR-/-) mice which exhibit impaired glucose tolerance following oral glucose loading, but 

fasting glucose and the glycemic response to an intraperitoneal glucose challenge is normal. 

Taken together, shidies in the GLP-LR -1- mouse suggest that, in addition to its role as 

an incretin, GLP-1 may also have non-incretin effects that are required for glucoregulation. 

In contras, studies with the GIP R -/- mouse indicate that the role of GIP in glucose 

homeostasis is restricted to that of an incretin. Thus, these observations in receptor knock 

out mice indicate that GIP and GLP-1 have differential roles in glucose homeostasis. 

However, a potential diawback to studying receptor knock out mice is that they may aot 

accurately reflect normal physiology due to adaptive compensatory changes in regulatory 

systerns. This is supported by the obsavatioon that although GLP-1 has been s h o w  to inhibit 



food intake in rodents and humans, GLP-L R -/- mice display normal body weight and 

feeding behaviour. Moreover, GLP-1R-I- mice demonstrate upreguiation of GIP secretion 

and action in response to oral glucose. 

To avoid potential confounding adaptive changes in glucoregulation that may occur 

with studies in geneticaily modified mice, in this study we have used specific antagonists of 

GIP and GLP-1 action in both wild type and GLP-1R -/- mice to assess the relative 

contribution of these peptides to glycemic control in vivo and to veri& our hypothesis that 

GIP and GLP-1 have distinct roles in glucose homeostasis. 

Is the improved glucose tolerance in mice treated with pharrnacological inhibitors 

of DPPiVacîivity due to potentiation of GLP-2 action? GLP-I is currently being 

evaluated in clinical trials as a potential therapeutic agent for the treatment of diabetes. 

However, the therapeutic potential of GLP-1 may be limited by its very short plasma half-life 

due, in part, to its rapid inactivation by the peptidase dipeptidylpeptidase IV @PP-IV). 

Active GLP-1 is hydrolyzed by DPP-IV to yield GLP-I (9-37/36)NH2, which is inactive or 

weakiy antagonistic. 

DPP-IV, aiso known as CD26, is a senne protease belonging to the DPP-IV-like gene 

family. DPP-N specifically cleaves N-temiinal dipeptides from proteins containhg proline 

or alanine in position 2. Both GLP-1 and GIP are substrates for the proteolytic activity of 

DPP-N, which leads to the formation of inactive tnmcated versions of these peptides. A 

number of studies have demonstrated that pharmacoio~cai inhibition of DPP-IV activity 

redts in eIevated Ievels of ckuiating GLP-I and irnproved glucose tolerance and enhanced 

insulin secretion in both normal and diabetic animais. These studies suggest that treatment 

with agents that inhibit DPP-IV activity, either aione or in conjuuction with GLP-1 therapy, 



may be useful for treating diabetes. However, a number of enzymes exhibit DPP-IV-like 

proteolytic activity (378-380). making it dinicult to identify the exact targets of DPP-IV 

inhibitors. 

Recently, a transgenic moue line containhg a targeted disniption of the CD26 gene 

was generated (38 1). CD26 -1- mice clear an oral glucose load more rapidly than wild type 

control littermates and they exhibit increased glucose-stimulated insulin secretion in 

association with increased leveb of intact, biologically active GLP- 1 (38 1). 

To examine our hypothesis that the irnproved glucose tolerance in (a) CD26-/- mice 

and (b) mice treated with pharmacological inhibitors of DPP-IV activity, is largely due to 

potentiation of GLP- I action, we studied glucose homeostasis in wild type and GLP- IR-/- 

mice treated with valine-pyrrolidide, a specific DPP-iV inhibitor. 

Does long tenn tre-ent wiih exendin-4 fead to undesirable physiological effects? 

An alternative antidiabetic therapeutic approach to the use of agents which inhibit DPP-IV 

activity is the use of DPP-IV-resistant GLP-1 analogs. One such naturally occurring GLP- 1 

receptor agonist is exendin-4. As mentioned above, exendin-4 binds to the GLP-1 receptor 

and elicits a variety of biological effects which mimic the actions of GLP- L, including its 

abilities to enhance glucose-stimuiated insulin secretion, regulate gastric emptying, act as a 

satiety factor and promote pancreatic endocrine ce11 dinerentiation and expansion of Psell 

mas.  As well, in vivo shidies iodicate that the insuiin secretory effect of exendin-4 is more 

potent than that of GLP- L . 

Exendin-4 is currently being evaluated in ciinical trials as a potential therapeutic 

agent for the treamient of diabetes. However, the long terni coasequences of expression of 

exendin-4* a lizard-derived peptide, in mammalian systems remains unknown. Therefore, in 



order to assess the physiological effects of chroaic expression of [izard exendin-4 in vivo, we 

have generated a transgenic mouse line in which proexendin 4 expression c m  be regulated by 

induction of the mouse metallothioneh 1 promoter. 

In summary, this thesis addresses severai unanswered questions regarding incretin 

action, including (i) the relative roles of the hown inmetin hormones, GIP and GLP- 1, in 

ghcose homeostasis, (ii) the poteatial existence of other agents, in addition to GIP and GLP- 

1, which cm conhibute to glucose homeostasis, and (iii) the physiological effects of 

prolonged incretin activity. 



Chipter 2. Dinerentiai Roles for GIP and GLP-1 in the Control of Glucose 

Homeostasis 

2.1 Introduction 

The observation that oral glucose administration stimulates a greater increase in 

W i n  secretion fiom pancreatic fbcells than an isoglycemic intravenous infusion has 

stimulated considerable interest in the identity of gut-derived molecules that enhance insulin 

secretion. The terni incretin has been ascribed to factors released From the gut in response to 

nutrient ingestion that potentiate glucose-stimulated insulin secretion (6). To date, the two 

principal peptides that exhibit incretin-like activity are glucose-dependent insulinotropic 

polypeptide (GiP) and glucagon-like peptide4 (GLP-1). Together these two peptides are 

thought to account for most, if not al1 of the incretin effect (3,4,382). 

GIP is a 42-amino acid peptide that is synthesized in intestinal K-cells in the proximal 

jejunum and secreted primarily in response to the ingestion of glucose or fat (3,4). in 

contrast, GLP-1, a post-translational product of the proglucagon gene (73), is released from 

more distally located intestinal L-cells in response to ingestion of glucose or a mixed meal (4, 

29, 146,383). Under conditions of elevated blood glucose concentrations, both GIP and 

GLP- I stimulate insulin secretion and proindin gene transcription via specific recepton 

expressed on islet fbcells (1 63, I64,3 I 1,3 12). 

The principle action of GIP appears to be the stimulation of glucose-dependent 

insulin secretion following enterai nutrient ingestion. Consistent with this hypothesis, GIP 

immunoneutralizing antisera or a GIP receptor peptide antagonist reduced insulin secretion 

following oral glucose challenge in rats (20,384). The biological importance of GIP as an 

inmtin is fbrther illustrated by GIP receptor 4- mice that exhibit defective glucose clearance 



f o l l o ~ g  oral glucose loading, but normal fasting glucose and glycemic excursion &et 

intrapentoneal glucose challenge (349). In con- GLP-1 R-/- mice exhibit fasting 

hyperglycemia and abnormal glycemic excursion in response to both oral and intraperitoneal 

glucose challenge (288). 

Although results of studîes in knockout mice may be used to infer specific 

physiological actions of GIP and GLP-1 for control of glucose homeostasis, disruption of 

incretin receptor signaling f'rorn birth may be associated with subtie developmental and 

adaptive changes that could modify the interpretation of physiological studies. For example, 

GLP- IR-/- mice exhibit abnormalities in the hypothdamic-pituitary-adrenal axis (295) and 

up regulation of glucose-dependent GIP secretion and enhanced sensitivity to GIP action 

(289), complicating the interpretation of results ascnied simply to interruption of GLP- 1 R 

signaling in vivo. Accordingly, to control for potential confounding developmental or 

adaptive changes in incretin action observed in genetically rnodified mice, we have assessed 

the importance of GD? and GLP- I for glycemic control in wild-type, as well as GLP- 1 R-/-, 

mice using antagonists of GLP-1 and GIP action in vivo. 

2.2 Methods 

2.2.1 AaunaIs 

GLP-1 receptor -/- (288) and age-matched (6- to 8-week-old males) wild-type CD 1 

mice (Charles River Laboratories, Inc. Montreal, Quebec) were housed under a 12 h Light, 12 

h dark cycle in the Toronto GeneraI Hospital animai facility with Eee access to food 

(standard rodent chow) and water, except where noted AI1 wild-type mice used for these 

studies were acchatized to the anmial facility for several weeks prior to aoalysis. AU 



procedures were conducted according to protocols and guidelines approved by the Toronto 

Hospital Anund Care Cornmittee. 

2.2.2 Glucose Tolerance Tests and Measurement of Plasma Insulin Levels 

Oral (OG'IT) or intraperitoneal (IPGTT) glucose tolerance tests were carried out 

following an overnight fast (16-18 h). The GLP-1 receptor antagonist exendin (9-39)NH2 (5 

pg; California Peptide Research Inc., Napa , CA) or phosphate-buffered saline (PBS) was 

administered intraperitoneally 20 min prior to glucose administration, after a fasting blood 

glucose measurement had been obtained. Anti-GIP R antiserum (provided by Dr. Timothy 

Kieffer, University of Alberta, Edmonton, Canada) was raised in rabbits against a synthetic 

peptide containhg an extracellular epitope of the GIP receptor (Gly-Gh-Thr-Thr-Gly-Glu- 

Leu-Tyr-Gin-Arg-TrpGlu-Arg-Tyr-Gly-Trp-Glu-Cys) coupled to KLH (385). 

Irnmunoptuified GIPR antibody (GIPR Ab) blocks GIP-mediated increases in intracellular 

CAMP and specifically displaces '%GP binding with haKmaximal displacement at 

approximately 1 pglml(385). In the rat, plasma levels of GIPR Ab peak approximately 4h 

after i.p. injection and remain at this level for 2 days (385). When GIPR Ab is delivered at a 

dose of 1 pglg body weight, the insulinotropic action of an exogenous bolus of GIP is 

completely aboIished in rats (385). Immunopurified GIPR Ab (1 pg/g body weight) or a 

rabbit y-globulin control(1 pgig body weight; Jackson Irnmuno Research Laboratories, 

hc.,West Grove, PA) was given intraperitoneally at the onset of fasting, 16- 18 hr prior to the 

glucose tolerance tests. For glucose tolerance tests, mice were given 1.5 mg glucose/g body 

weight oraily through a gavage tube (OGTT) or via injection into the pentoneal cavity 

(IPGrr). Blood was drawn h m  a tail vein at 0, 10,20,30,60,90 and 120 minutes 

foLIowing glucose administration, and blood glucose levels were measured by the glucose 



oxidase method ushg a One Touch Basic Glucorneter (Lifescan Ltd., Bumaby, BC). Blood 

samples (100 pl) for measurement of insulin secretion were removed fiom tail veins during 

the 10- to 20-minute tirne penod following oral or intrapentoneal glucose administration and 

imrnediately mixed with a 10% vol of a chilled solution containing 5000 KWml Trasylol 

(Miles Canada, Etobicoke, Canada), 32 mM EDTA, and 0.1 nM Diprotin A (Sigma Chernical 

Co., St. Louis, MO). Plasma was separated by centrifugation at 4OC and stored at -80°C until 

assayed. Plasma samples were assayed for insulin content using a rat insulin ELISA kit 

(Crystal Chem Inc., Chicago, Illinois) with mouse insulin as a standard. 

2.23 Prolonged Exposure to Incretin Antagonfsts 

For more protracted studies, al1 rnice were given free access to standard rodent chow 

and water during the coune of the expenments. Wild-type CD I and GLP-1 receptor -1- mice 

were given intrapentoneal injections of either PBS or 5 pg of eexendin (9-39)Mz in 8% 

gelah. Injections were comrnenced at 0500 h, and each animal was given an intraperitoneal 

injection of the appropriate test substance every 4 h, with the 1st injection given 3 h prior to 

sacrifice, for a total of 15 h of treatment. Blood glucose levels were rneasured, animals were 

euthanized and blood was obtained by cardiac puncture. Plasma was collected from the 

blood samples for analysis of insulin levels (as described above). The pancreas was removed 

fiom each animal and a portion was used for RNA isolation and Noahem blot analysis. The 

remaining portion of the paumas was homogenized twice in 5 ml of extraction medium [ 1 N 

HCI containing 5% (voUvol) formic acid, 1% (voVvo1) trifluoroacetic acid, and 1% (wthol) 

NaCI] at 4°C. Peptides and mal1 proteins were adsorbed from extracts by passage through a 

Cl 8 siüca cartridge (Waters Associates, Milford, MA). Adsorbed peptides were eluted with 

4 ml of 80% (voifvol) isopropanol containing 0.1% (voVvo1) trifluoroacetic acid Pancreatic 



insulin levels were measured using a rat insulin ELISA kit (Crystal Chem inc., Chicago, 

Illinois) with mouse i d i n  as a standard. Total protein levels in extracts were determined 

using the Bradford method (386) with Bio-Rad dye reagent (Bio-Rad Laboratories, Hercules, 

CA). For longer term studies with GIPR Ab, wild-type CD 1 and GLP-1 receptor -/- rnice 

were given intraperitoneal injections of either rabbit y-globulin or I pglg body weight of 

pded GIPR Ab. Only a single injection of GIPR Ab was required, because the antibody 

is stable in plasma for seved days (385). At 18 h following administration of GIPR Ab or y- 

globulin control, mice were euthanized with CO2 and exsanguinated by cardiac puncture. 

Blood glucose, plasma insulin and pancreatic insulin content were detemiined as described 

above. 

2.2.4 RNA Isolation & Northern Biot Anaiysis 

Following prolonged exposure to PBS, exendi (9-39), rabbit y-globulin or GIPR Ab, 

mice were euthanized with CO2 and pancreases were removed immediately for RNA 

extraction by the acid-guanidinium isothiocyanate method (387). Total RNA (10 pg) was 

electrophoresed in a 1% (wtlvol) formaldehyde-agarose gel and transfened to a nylon 

membrane (Nytran Plus; Schleicher and Schuell, Keene, New Hampshire). For Northern blot 

analysis, the blot was hybridwd to 32~-labeled random-primed cDNA probes corresponding 

to rat proglucagon, rat insulin or 18s rRNA. 

- 2.2.5 Statistics 

Resdts are expressed as means k SEM. Statistical significance was calculated by 

ANOVA and Student's t-test using INSTAT 1.12 (Graph-Pad Software, hc., San Diego, 

CA). A p  value c 0.05 was considered to be statistically significant. 



23 Results 

2.3.1 Effects of Exendht (9-39) on Blood Glucose and Plasma Insuiin 

To assess the effects of acute blockade of GLP-1R signaling in vivo, we used the 

GLP-1 receptor antagonist exendin (9-39), a truncated lizard GLP- 1-related peptide that 

binds to and antagonizes mammalian GLP-1 receptors (65). Treatment of wild-type mice 

with exendin (9-39) immediately pnor to oral glucose challenge produced a statistically 

significant increase in blood glucose excursion during the 10- to 30-minute time period 

foUowing glucose administration (Fig. 4A; pcO.05 for saline- vs. exendin (9-39)-treated 

mice). Surprisingly, plasma insulin levels were not significantly different, following oral 

glucose loading, in saline- vs. exendin (9-39)-treated mice (Fig. 48). 

Because GLP-1 R -1- mice exhibit abnormal glycernic excursion following both oral 

and intraperitoneal glucose challenge, these findings suggest that GLP- l-mediated signaling 

events are important for fbcell function and glucose disposal, independent of the site of 

glucose entry (288). Consistent with the importance of non-incretin actions of GLP- 1 for 

glucoregulation, exendin (9-39) increased significantly the glucose excursion following 

intraperitoneal glucose challenge (pc0.05, saline- vs. exendin (9-39)-treated mice, from 30- 

120 min; Fig. 5A). Furthermore, the levels of glucose-stirnulated circulating insulin were 

reduced significantly in exendin (9-39)-treated mice (Fig. SB; FO.05; 0.58 f 0.02 vs. 0.47 f 

0.02 ng/d  in saline- vs. exendin (9-39)-treated mice, respectively). 

Although exendin (9-39) is generally viewed as a specifc GLP-I receptor antagonist, 

several reports suggest that exendin (9-39) may also bind to the GIP receptor and potentially 

antagonize the actions of GIP (3 14,3 15). To verify that exendin (9-39) is a specific 

antagonist of murine GLP-1 receptor signaling in vivo, we assessed the effect of exendin (9- 
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HG. 4. Oral glucose tolerince and plasma insulin levels in wiid-type mice 
receiving either siüne or 5 pg exendin (9-39). Values are expressed as means * SEM; n = L 1-12 mice/group. " ~ 0 . 0 5  vs. control (saline). A: Orai glucose 
tolerance test in saLine- or exendin (9-39)-treated wild-type males. B: Plasma 
insulin concentration at the 10-20 minute time period foIIowing oral glucose 
administration in saline- or exendin-(9-39)- treated wild-type males. 
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FIG. 5. Intraperitoneal @p.) glucose tolerance and pIasma 
insuiin levels in dd-type mice receiving either saline or 5 pg 
exendin (9-39). Values are expressed as meam k SEM; n = 12- 13 
mice/group. *p<O.OS vs. control (saline). A: Intra-pentoneal 
glucose tolerance test in sabue- or exendin-(9-39)-treated wild- 
type males. B: Plasma insuLin concentration at the 10-20 minute 
time period folIowing i.p. glucose administration in salioe- or 
exendin-(9-39)œtreated wild-type males. 



39) on glycemic excursion in mice with targeted genetic dimption of the GLP-1 receptor 

(288). Treatmmt of GLP-I R 4- mice with exendin (9-39) had no statistically significant 

effect on the glycemic excursion fouowing oral or intraperitoneal glucose loading (Figs. 6A 

and B), dernonstrating the specincity of exendin (9-39) for GLP- 1 R receptor-mediated 

glucose clearance at the dose employed here in vivo. 

2 3 3  Effects of Anti-GIP Receptor (GIPR) Antiserum (GIPR Ab) on Blood Glucose 

and Plasma Insulin 

To ascertain the contribution of GIP action to glucose disposal following glucose 

Loading in mice, we initially used the peptides GIP (6-30)m and GIP (7-30)MIz, which had 

previously been shown to antagonize GIPR function in vitro and in vbo in rats, respectively 

(384,388,389). However, we found that these GPR peptide antagonists had no consistent 

effect on glucose excursion or levels of plasma insulin in wild-type or GLP- 1 R-1- mice (data 

not shown). As an alternative, we used an immunoneutralizing antisera directed against the 

GIP receptor (GIPR Ab). Administration of GIPR Ab to wild-type mice prior to oral glucose 

challenge led to no change in fasting blood glucose levels, but a significant increase in blood 

glucose was detected at the 10- min time point of an OGTT (Fig. 7A; 1 3.1 & 0.6 vs. 1 0.8 t 

0.5 mM in GiPR Ab- vs. control-treated wild-type rnice, respectively, ~ ~ 0 . 0 5 ) .  The increase 

in blood glucose was associated with a srnaIl but non-signincant increase in plasma insului 

concentration (Fig. 78). in contrast, treatment of GLP-1RJ- mice with GIPR Ab also 

produced a sipnincant increase in blood glucose (Fig. 8A; 10.4 t 0.8 vs. 8.3 t 0.5 mM in 

GIPR Ab- vs. control-treated mice, pc0.05) but additionaily caused a significant reduction in 

levels of glucose-stimulated insului (Fig. 8B; 0.3 1 k 0.03 vs. 0.46 + 0.05 n g M  for mice 

receiving GIPR Ab vs. rabbit y-globulin, respectively, pe0.05). 
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FIG. 6. Orai and intraperltoaeai glucose tolerance tests in GLP-1 R -1- 
mice receiving either saline or 5 pg exendin (9-39). Values are expressed 
as means t SEM; n = 5 6  mice/group. A: Oral glucose tolerance test in 
saiine- or exendin-(9-39)- treated GLP-I R 4- males. B: [ntrapentoneal 
glucose tolenince test in saline- or exendin-(9-39)-treated GLP- 1 R -1- males. 
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HG. 7. Orai glucose tolerance and plasma insuün levels in Md- 
type mice receiving either 1 pg/g body wt rabbit gamma globuiin 
or 1 pg/g body wt GIPR Ab. Values are expressed as means f SEM; 
n = 8- 10 micdgroup. A: Oral glucose tolerance test in rabbit gamma 
giobulin- or GIPR Ab-treated wild-type males. *p<0.05 vs. control 
(rabbit gamma giobuiin). B: Plasma insulin concentration at the 10-20 
minute time period foIlowing oral glucose administration in rabbit 
gamma globulin- or GIPR Ab-treated wild-type males. 
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FIG. 8. Oral glucose tolerance and plasma insulin levels in GLP-1 
R 4- mice receivîng either 1 pg/g body wt rabbit gamma globulin 
or 1 pg/g body wt GIPR Ab. Values are expressed as means I SEM; 
n = 7-1 1 micelgroup. *p<0.05 vs. control (rabbit gamma giobuIin). 
A: Oral glucose tolerance test in rabbit gamma globuh- or GIPR 
Ab-treated GLP-1 R -/- males- B: PIasma insulin concentration at the 
10-20 minute time period fo1Iowing oral glucose administration in 
rabbit gamma globuün- or GIPR Ab-treated GLP- L R 4- males. 



in contrast to the sigdicant increase in blood glucose observed after intraperitoneal 

glucose loading and treatment with exendin (9-39) (see Fig. SA), administration of GIPR Ab 

had no effect on blood glucose or plasma insulin levels after intraperitoneal glucose loading 

in wild-type or GLP-1R -1- mice (data not show). 

2.33 Prolonged Antagonism of Increth Action 

The results of these experiments demonstrated that acute antagonism of GLP- I or 

GIP action produces differential effects on glycemic excursion following oral vs. 

intraperitoneal glucose loading. As both GLP- 1 and GIP have been postulated to regulate 

giycemia, in part through effects on insulin biosynthesis at the level of insulin gene 

transcription (1 63, 1 64,3 1 1,3 12), we examined the effects of administering either exendin 

(9-39) or GIPR Ab on glucose control, over a more prolonged 18 h tirne period. Repeated 

administration of exendin (9-39) to wild-type mice produced a significant elevation in blood 

glucose (Fig. 9A, 7.1 f 0.4 mM vs. 8.8 f 0.4 mM for saline- vs. exendin (9-39)-treated mice, 

F0.05)  and a significant reduction in the levels of plasma insulin (Fig. 9B, 2.4 t 0.1 vs. 1.7 

t 0.2 n g h l  for saline- vs. exendin (9-39)- treated mice, F0.05) .  Comparable treatment of 

GLP-IR-/- mice with repeated injections of exendin (9-39) had no effect on either blood 

glucose or plasma insulin (Figs. 9C and D). h contrast to changes in glucose and insulin in 

mice treated with repeated administration of exendin (9-39), no significant perturbation of 

blood glucose or plasma insulin levels was observed following analysis of either wild-type or 

GLP- 1R-/- mice, 18 h subsequent to administration of GPR Ab (Fig. 10, A-D). 

Despite the postulated importance of GLP-IR signahg for insulin gene transcription, 

no signifîcant alterations in the levels of insulin (or progiucagon) mRNA transcripts (Figs. 

1 1A and C) or pancreatic inmlin content (Fig 124 were detected, followùig repeated 
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F[G. 9. Blood glucose and plasma insuiin levels in wiid-type and 
GLP-1 R 4- mice following prolonged treatment with saline or 
exendln (9-39). A: Blood glucose level in wild-type males treated with 
saline (open bar) or exendin (9-39; solid bar). Values are expressed as 
means k SEM; n = 8-9 mice/group. *p<0.05 vs. control (saline). B: 
Plasma insuiin concentration in witd-type mdes treated with saline 
(open bar) or exendin (9-39; soiid bar). w . 0 5  vs. control (solid bar). 
C: Btood glucose Ievel in GLP-1 R 4- males treated with saline (open 
bar) or exendin (9-39; hatched bar). Values are expressed as  means f 
SEM; n = 4 rnice/group. D: Plasma uisulin concentration in GLP-IR-/- 
males treated with saline (open bar) or exendin (9-39; hatched bar). 
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FIG. 10. Blood glucose and plasma insulin Ievels in wild-type and 
GLP-1 R 4- mire following prolonged treatment with rabbit gamma 
giobrilin or GIPR Ab. A: Blood glucose level in wild-type males treated 
with rabbit gamma globulin (open bar) or GIPR Ab (soiid bar). Values are 
expressed as means f SEM; n = IO micelgroup. B: PIasma insulin 
concentration in wild-type males treated with rabbit gamma globulin (open 
bar) or GIPR Ab (solid bar). C: BIood glucose levei in GLP-I R -1- males 
treated with rabbit gamma globulùi (open bar) or GIPR Ab (hatched bar). 
Values are expressed as means k SEM; n = 13 micelgroup. D: Plasma 
insulin concentration in GLP-1 R -1- males treated with rabbit gamma 
globulin (open bar) or GIPR Ab (hatched bar). 
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Fig. 11. Northern biot anaiysis of pancreatic insulin and 
giucagon mRNA transcripts in Md-type and GLP-IR-/- mice 
treated with exendin (9-39) (A) or GIPR Ab (6). Relative mRNA 
Ievels (C) for insulin or glucagon and 18s &NA. Values are 
expressed as means f SEM. n = 8 micdgroup for experiments with 
satine and exendin (9-39) or 4-9 rnicdgroup for experiments with y- 
giob and GIPR Ab. (AH quantification was c e e d  out using the 
Molecular Dynamics PhosphorIrnager and ImageQuantfM). 
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Fig. 12. Pancreatic insuiin content in wild-type and 
GLP-IR-/- mice treated with exendln (9-39) (A) or  
GIPR Ab @). Values are expressed as mean + S.E.M. 
and n = 8 micdgroup for experiments in A and 4-9 
micdgroup for experiments in B. 



treatment with exendin (9-39), in either wild-type or GLP-1R -/- mice. Similarly, no 

significant changes in the levels of insulin mRNA or insulin content were detected in the 

panmeas of mice treated with GIPR Ab (Figs. 1 LB,C and 128). 

2.4 Discussion 

Although originally identified as an incretin, GLP-1 has subsequently been shown to 

exhibit multiple nonincretin actions including inhibition of both glucagon secretion (3 1,35) 

and gastric emptying (42, 18 1). GLP- 1 also confers glucose sensitivity to glucose-resistant 

pcells (47) and may also increase insulin-independent glucose disposai in peripheral tissues 

(5 1). Taken together with effects on reduction of food intake (39,40), it appears that GLP-1 

exerts both incretin- and nonincretin- mediated actions that contribute to glucose-lowering in 

vivo. 

The importance of nonincretin effects of GLP-1 are further exemplified by 

experirnents in mice with genetic dimption of GLP-IR signaling. Studies of islet function 

demonstrate defects in basal islet CAMP and glucose-stimulated calcium signaling in GLP-1 

R -1- islets (293). The importance of basal GLP-IR signaling for fbcell function may partly 

explain why GLP-IR-/- mice also exhibit mild fasting hyperglycernia and abnomal glucose 

excursion following intraperitoneal glucose challenge (288), conditions that would not be 

associated with Uicreases in levels of circulating GLP-1. Although the phenotype of 

impaired glucose tolerance in GLP-1 R-/- can be mild and variable, analysis of large numbers 

of GLP-IR-/- mice of different ages demonstrates statistically significant impairment of 

glucose homeostasis in the fasting state and after orai and intrapentoneal gfucose challenge 

(288,291,294). 



Interpretation of the modest impairment of glucose tolerance after genetic dismption 

of the GLP-IR is cornplicated by the observation that GIP secretion and GIP-stimulated 

insuün secretion are up-regulated in GLP-IR-/- mice, suggestuig that compensatory 

enhancement of GIP action partiaily modifies the phenotype of GLP- 1 deficiency in vivo 

(289). Furthemore, it remains possible that potential developrnental effects of GLP- IR 

deficiency might also rnodiQ islet and pcell development and responsivity, hence the 

abnormalities in pcell function and glucoregulation detected in GLP- 1 R-/- mice may not 

necessarily be directly correlated with acute disniption of GLP- 1 action in vivo. 

Accordingly, to eliminate confounding variables introduced by the potential 

contribution of developmental and adaptive changes in physiological regdatory systems, we 

re-examined the importance of GLP-I and GIP action for both incretin- and nonincretin- 

mediated control of glycemia in wild-type mice. Our data clearly show that inhibition of 

GLP-1 activity during intraperitoneal glucose challenge produces abnormal glycernic 

excursion in wild-type mice, associated with a significant reduction in plasma insulin. 

Because non-enteral glucose challenge would not be expected to stimulate GLP-1 secretion, 

our hdings strongly suggest that basal levels of circulating GLP-1 are essential for glycemic 

control, both in the fasting state and following glucose challenge, independent of the mode of' 

glucose entry. 

Further evidence supporthg the importance of basal GLP-1 signahg for 

glucoregulation derives fiom studies using exendin (9-39) in both humans and baboons. 

Administration of exendin (9-39) produced significant elevations in fasting levels of both 

glucose and glucagon, suggestmg that even basai GLP-I signahg during the fasting state 

exerts a tonic inhibitory effect on glucagon secretion (28 1-283). The h d h g  that glucagon 



secretion is under tonic inhiitory control by GLP-1 signaling is consistent with our 

observation that glucose levels rise in exendin (9-39)-treated mice, without an obligatory 

Uicrease in the levels of circulating insulin. Additional evidence for the importance of basal 

GLP-1 signaling derives nom studies demonstrating that exendin (9-39) is an inverse agooist 

of the P-ceII GLP-1 receptor and that constitutive activity of the GLP-I receptor, even in the 

absence of bound ligand, is important for maintaining basal levels of CAMP and for 

sustaining pancreatic p-cells in a glucose competent state (292,293). 

In contrast to the importance of GLP-1 for glucose regulation and p-ce11 function in 

the fasting state, our current data strongly suggests that the role of GIP in glucose control is 

considerably more restricted, pnncipally functioning as an incretin in the post-absorptive 

state. Disruption of GlP action during oral glucose challenge produced a significant increase 

in glycemic excursion in both wild-type and GLP-IR-/- mice, in association with a 

diminution of glucose-stimulated insulin secretion. in contrast, administration of GER Ab 

had no effect on fasting glucose or glycemic excursion after intraperitoneal glucose loading, 

not even in mice with loss of GLP-1 bction. 

Although the incretin function of GiP is well established (3,4,20), a role for GiP in 

the control of B-ce11 function in the fasting state is less clearly dehed. Infusion of GIP 

produced a dose-dependent increase in plasma insulin, in fasting rats, that was attenuated by 

CO-infusion of ANTGIP, a GIP receptor peptide antagonist (389). However, no change in 

fasting plasma insulin concentration was detected in rats 30 min. following subcutaneous 

administration of ANTGP (389). Although treatment with ANTGIP diminished glucose- 

stimuiaied insuh secretion in rats, the effect of ANTGIP on blood glucose or insuiin 

secretion following an intraperitoneal glucose challenge or on fasting blood giucose levels 



was not reported (384,389). Althou& we cannot be absolutely certain that the limitations of 

the immunoneutralizing GIPR Ab may affect our experimental results, the hding that GIP is 

pr imdy important for glucose clearance afler enteral, but not intraperitoneal, glucose 

loading, is consistent with data nom GIPR-/- mice. These mice exhibit normal fasting 

glucose, and the glycemic response to intraperitoneal glucose challenge is comparable and 

normal in the presence or absence of GIPR signaling (349). These findings are entirely 

consistent with our data showing no effect of GiPR Ab on fasting glucose or intraperitoneal 

glucose clearance in mice ni vivo. Taken together. the cumulative evidence strongly suggests 

that the glucoregulatory actions of GIP on the pcell are restricted to the potentiation of 

glucose-stimulated insulin secretion following entera1 nutrient absorption. 

The results of several studies have suggested an important role for GLP-1 in the 

replation of insulin gene expression and insuiin biosynthesis. Incubation of islet ce11 lines 

with GLP-I increases proinsulin mRNA via activation of insulin gene transcription (163, 

164). Similarly GLP increases insulin mRNA and insulin content in islet cells, via induction 

of insulin promoter activity and insulin gene expression (3 1 1,3 12). Despite the putative 

importance of GLP-l and GIP for insulin gene expression and insulin biosynthesis, we were 

unable to detect changes in pancreatic insulin content or insulin mRNA in wild-type mice 

treated with either exendin (9-39) or GIPR Ab. Furthemore, we found m i n i d  to no 

changes in pancreatic insulin mRNA and insulin content in GU-IR-/- mice (289-29 1). 

These hdings, taken together with our data using exendin (9-39) or GIPR Ab. strongly 

suggest that GLP-1 and GIP are not essentid for insulin gene expression and insulin 

biosynthesis in mice in vivo. 



In summary, these studies demonstrate that GLP-1 is essentiai for normal glucose- 

stirnulated insului secretion in mice, independent of the mode of glucose entry. Although 

several investigators have suggested that the predominant effect of GLP- 1 on glucose control 

resides at the level of gastric ernptying (43,390), our data clearly indicate an essential role 

for GLP-1 in glucoregulation independent of nutrient entry via the gastrointestinal tract. In 

conhast, GIP plays a more limited role in glucose homeostasis, with GIP actions restncted to 

the classicai incretin function of potentiating nutrient-stimulated insulin secretion. The wider 

spectnim of GLP-1 actions on gastric emptying, B-ce11 function, glucagon secretion, food 

intake and islet growth suggest that GLP-1 is likely to exhibit more potential, compared to 

GIP, as a therapeutic agent for the treatment of diabetes. 



Chapter 3. Inhibition of DPP-IV Activity Improves Glucose Tolerance and Insuiin 

Secretion in GLP-IR-/- Mice 

3.1 Introductiou 

Dipeptidyl peptidase N @PP-IV), also known as CD26, is a muitifiuictionai, 

ubiquitously expressed glycoprotein that can be found either anchored to ce11 surfaces, or as a 

soluble protein in plasma (242,243). in humans and rodents the DPP-N cDNA encodes a 

polypeptide of approx. 766 amino acids (242,39 1) and the solubilized glycoprotein consists 

of two identical subunits of approx, 120 kDa each (242,392). The 6 N-terminal amino acids 

of DPP-IV/CD26 comprise its very short cytoplasmic tail, with the majority of the protein, 

including the C-terminal catalytic domain, located extracellularly (242,243,392). The 

soluble fom of DPP-iVKD26 lacks the cytoplasmic tail and transmembrane domains (243). 

In the rat, the most abundant levels of DPP-iWCD26 activity are found in the kidney 

(393) and bmh-border membranes of intestinal enterocytes (242). High levels of DPP- 

IVlCD26 activity are also found in the h g ,  adrenal glands, liver, parotid gland, spleen and 

testis (242). More recently, DPP-IV/CD26 activity has also been detected in the secretory 

granules of a-cells in the pancreatic islets (394). Additionally, DPP-IVlCDZ6 is also located 

on the endotheliai cells of blood vessels (399, activated T-helper lymphocytes (359, subsets 

of macrophages (356), and on mammary, skin and synovial fibroblasts (396-398). In the 

rodent CNS, DPP-NICD26 has been detected in the choroid plexus (399), in the median 

eminence (400), on astrocytes in the c e r e b e b  and spinal corci, and in nerve perineurium 

(40 1,402). However, whether the DPP-LVlCD26 found in the CNS is catalyticdly active 

remains to be determined (403-405). Soluble DPP-NICD26 activity is found at high levels 

in seminal tluid, with Iower levels detected in plasma and cerebrospind fluid (243). 



DPP-IVKD26 appears to be involved in a number of biologicai processes. It can act 

as a binding protein for adenosine deaminase (351), as well as for collagen and fibronectin 

and thus, may be important for cell-matrut interactions (243,350). DPP-IVlCD26 has also 

been shown to be involved in T-ce11 activation and proliferation and consequently, appears to 

play a role in immune regdation (353). In addition, DPP-IVlCD26 is a serine protease that 

preferentially cleaves dipeptides fiom the N-terminus of polypeptides which contain either a 

proüne or alanine residue in position 2 (Le. X-Pro/Ala, where X is any amino acid) (406, 

407). Significantly, DPP-IVICD26-mediated hydrolysis has been shown to alter the 

biological specificity or receptor selectivity of a number of mammalian regulatory peptides 

including substance P, NPY, peptide W, growth hormone releasing hormone (GRH), as well 

as certain chemokines (62,408-4 13). 

The two most widely recognized incretin hormones, GLP-I and GiP, are also 

substrates for the proteolytic activity of DPP-IV/CD26 (61,62). DPP-WD26-mediated 

hydrolysis of biologically active GIP and GLP- 1 yields, respectively, GIP (3-42), which is 

inactive (306,3 1 O), and GLP-1 (9-36)NHz, which is inactive and may aiso function as a 

cornpetitive antagoaist of the GLP-1R in vivo (34,245,260,357,414). Furthemore, it has 

been suggested that DPP-IVlCD26 may be the primary enzyme responsible for the 

degradation and short plasma half-life of GLP-I and GIP in vivo (6 1,62,236). Recent in 

vivo snidies in the pig have shown that intact GLP-1 newly secreted fiom the intestine is 

rapidly degraded to GLP-1 (9-37/36)N& as it enters the DPP-IVfCD26-containhg blood 

vessels which drain the întestinal mucosa (244). 

While both GIP and GLP-1 are potentid therapeutic agents for the treatment of 

diabetes, only GLP-1 has been shown to retai. its incretin effect in diabetic patients (60). 



However, due to the short metabolic half-He of GLP-1, therapeutic efforts have focused on 

the development of DPP-IV-resistant GLP-1 analogues or, alternatively, the development of 

specific DPP-IV inhibitors. Such reagents would simultaneously prolong the biological 

activity of GLP-1 and minimize the accumulation of the antagonistic metabotite GLP- 1 (9- 

3 7/36)NH2. 

Pharrnacological inhibition of DPP-NICD26 activity has been show to increase both 

endogenous and exogenous levels of biologically active GLP-1 and to improve glucose 

tolerance and enhance insulin secretion in a number of normal and type 2 diabetic animal 

models (359-363). However, although DPP-NICD26 is presumed to be the major enzyme 

responsible for the degradation of GLP- 1 and GIP in vivo (6 1,62,236), additional enzymes 

which exhibit DPP-IVKD26-like activity have been identified (378-380). Thus, the specific 

molecular targets of DPP-NICD26 inhibiton are not clear. 

in order to elucidate the physiologicd function of DPP-iVICD26 and determine its 

role in glucoregulation, mice harboring a targeted inactivation of the DPP-IVICD26 gene 

were generated (026-/-) (38 1). These mice, which are fertile and appear to develop 

normdly, exhibit normal fasting blood glucose levels. However. they are able to clear an 

oral glucose load more rapidly than wild-type littermates and exhibit significant increases in 

glucose-stimuiated insulin levels in association with increased levels of intact biologically 

active GLP-1 (38 1). In addition, intact biologically active GLP- I or GIP was completely 

resistant to Kterminal degradation when incubated in plasma derived fiom CD26-/- mice 

(3 8 1). Moreover, treatment with vaIine-p yrrolidide, a phamiacological inhibitor of DPP- 

IV/CD26 enzymatic activity, resuited in improved glucose toletance in wild-type mice but no 

effect in CD26-/- mice, indicating that v&e-pyrroüdide mediates glucose clearance 



specifically via suppression of DPP-NlCD26 activity (38 1). Taken together, the shidies 

perfomed with the CD264 mouse suggest that the proteolytic activity of DPP-NlCD26 

an essential role in glucoregulation. 
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The precise mechanism by which DPP-IVlCD26 activity modulates blood glucose 

levels is UISCI1own, but likely involves regulation of the activity of GLP-1, and possibly GIP 

or other substrates as well. Thus, in order to detemine whether DPP-IV inhibitors lower 

blood glucose exclusively through GLP- 1 -dependent mec hanisms, we examined the effects 

of DPP-N/CD26 inhibition in GLP- 1 R-1- mice using the pharmacological inhibitor valine- 

pyrrolidide. GLP- 1 R-I- mice are glucose intolerant due to a lack of GLP- 1 signalhg which 

results in insufficient levels of glucose-stimulated insulin secretion (288). It was 

hypothesized that, if GLP-1 alone is responsible for the observed improvements in glucose 

tolerance and insulin secretion in CD26-/- mice, pharmacological inhibition of DPP- 

iVKD26 activity in GLP4R-I- mice would have no effect on glucose tolerance or insulin 

secretion. 

3.2 Methods 

3.2.1 DPP-IV Inhibition 

Vaiine-pyrrolidide (val-pyr) was provided by Dr. Nicolai Wagtmam (Novo Nordisk, 

Denmark). It is a stable and highly selective cornpetitive inhibitor of DPP-N activity (244, 

359), that is essentiaily inactive against other proteolytic enzymes (359). Lyophilized val-pyr 

was freshly dissolved at 4.12 mgM in water and injected i.p. into mice at a dose of 20.6 

mglkg, 30 min prior to initiation of glucose tolerance tests. 



3.2.2 Mice 

GLP-1 receptor 4- and age-matched (6- to 8-week-old males) wild-type CD 1 mice 

(Chartes River Laboratones, Inc. Montreal, Quebec) were housed under a 12 h light, 12 h 

dark cycle in the Toronto General Hospital animal facility with h e  access to food (standard 

rodent chow) md water, except where noted Al1 wild type mice used for these studies were 

acclimatized to the animal facility for several weeks prior to analysis. Al1 procedures were 

conducted according to protocols and guidelines approved by the Toronto Hospital Animal 

Care Committee. 

3.23 Glucose Tolerance Tests and Measurement of Plasma Insulin Levels 

Oral (OGTT) or intraperitoneal (IPGTT) glucose tolerance tests were carried out 

following an overnight fast (1 8 h). The DPP-iV inhibitor val-pyr (20 mgkg of a 4.12 mghl  

stock solution) or vehicle (water) was administered intrapentoneally 30 min pnor to glucose 

administration, after a fasting blood glucose measurement had been obtained. For glucose 

tolerance tests, mice were given 2.0 g gIucoselkg body weight orally through a gavage tube 

(OGTT) or via injection into the peritoneal cavity (IPGTT). Blood was drawn fkom a tail 

vein at 0,30,60, 120 and 180 minutes following glucose administration, and blood glucose 

levels were rneasured by the glucose oxidase method using a One Touch Basic Glucorneter 

(Lifescan Ltd., Bumaby, BC). Blood samples (100 pl) for measurement of plasma insulin 

levels were removed from tail veins during the 10- to 20-minute t h e  period following oral 

or intrapentoneal giucose administration and immediately mixed with a 10% vol of a chilled 

solution containing 5000 KIU/ml Trasylol (Miles Canada, Etobicoke, Canada), 32 mM 

EDTA, and 0.1 nM Diprotin A (Sigma Chernical Co., St. Louis, MO). Plasma was separated 

by centrifugation at 4OC and stored at -80°C unti1 assayed. Plasma samples were assayed for 



insulin content using a rat insulin ELISA kit (Crystd Chem Inc., Chicago, Illinois) with 

mouse insulin as a standard. 

3.2.4 Statistics 

AU results are expressed as means f SEM. Statistical significance was calculated by 

ANOVA and Student's t-test using INSTAT 1.12 (Graph-Pad Software, Inc., San Diego, 

CA). A p value < 0.05 was coasidered to be statistically significant. 

3 3  Resuits 

3.3.1 Effects of DPP-IVlCD26 Inhibition on Oral GIucose Tolerance 

in CD26-/- mice an oral glucose load is cleared more rapidly than in wild type control 

mice (38 1). This accelerated glucose clearance is associated with increased levels of intact, 

biologically active GLP-1 and enhanced insulin secretion (38 1). To determine whether the 

improved oral glucose tolerance observed in CD26-1- mice is mediated entirely by GLP-1- 

dependent mechanisms, we treated wild-type and GLP-1R-/- mice with the pharmacological 

DPP-IVlCD26 inhibitor val-pyr, prior to an oral glucose tolerance test. Surprisingly, 

inhibition of DPP-NlCD26 activity during an oral glucose challenge had no effect on the 

rate of glucose clearance in wild-type mice (Fig. 13A), but it did produce a notable, although 

not statistically significant, increase in the plasma inmlin concentration (Fig. 13B). 

However, in GLP- L R-1- mice, inhibition of DPP-N/CD26 activity with val-pyr resulted in a 

significant Unprovernent in oral glucose clearance @<O.OS for vehicle- vs. val-pyr-treated 

GLP-IR-/- mice at 30 and 60 min following oral glucose; Fig. 14A), which was associated 
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Fig. 13. Oral giucose tolerance and plasma insuiin Ievels in wiid- 
type d c e  receiving either vehicle (water) or 20.6 mglkg vaï-pyr. 
Values are expnssed as means * SEM; n = 8-10 rnicelgroup. 
A: Oral glucose toleranct test in vehicle- or val-pyr-treated wild- 
type males. B: Plasma insulin concentration at the 10-20 min 
period following oral giucose administration in vehicle- or val-pyr- 
treated wild type males. 
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Fig. 14. Orai glucose tolerance and plasma insuiin levels in 
GLP-IR+ mice receivhg either vehicle (water) or 20.6 mgkg 
val-pyr. Values are expressed as means * SEM; n = 9-1 1 micelgroup. 
*p<0.05 vs. control (water). A: Oral glucose tolerance test in vehicle- 
or val-pyr-treated GLP- 1 R-/- males. B: Plasma insulin concentration 
at the 10-20 min period foUowing oral glucose administration in vehicle- 
or val-pyr-treated GLP-IR-/- males. 



with enhanced insulin secretion (0.29k0.02 ng/ml in vehicle-treated vs. 0.7410.08 ng/ml in 

val-pyr-treated GLP- I R-/- rnice; pc0.05; Fig. 14B). The observed improvement in oral 

glucose tolerance and insului secretion in GLP- IR-/- mice following val-pyr treatment, 

despite lack of GLP-IR signaling, suggests that DPP-NICD26 does not mediate its effects 

on blood glucose levels exclusively through GLP- 1-dependent mechanisms. 

33.2 Effects of DPP-WCD26 Inhibition on Inbaperitoneal Glucose Tolerance 

in addition to its role as an incretin hormone, GLP-I has also been shown to be 

essential for clearing an intraperitoneal glucose load (288). Administration of glucose into 

the peritoneal cavity bypasses the incretin effect. as well as any effects on gastric emptying. 

Thus, GLP-1 is important for handling a glucose load, independent of the site of glucose 

entry (288). To determine if DPP-IVICD26-mediated glucoregulation also involves 

nonincretin substrates, including and/or in addition to GLP- 1, wild-type and GLP- I R-1- mice 

were treated with val-pyr pnor to an intraperitoneal glucose tolerance test. Treatment with 

val-pyr pnor to an intraperitoneal glucose challenge had no effect on glucose tolerance or 

plasma insulin concentration in wild-type mice (Figs. 15A and B). However, inhibition of 

DPP-IV/CD26 activity in GLP- 1 R-/- mice significantly decmsed the glycemic excursion 

following the intrapentoneal glucose load w0.05  for vehicle- vs. val-pyr-treated GLP- IR-/- 

mice at 30 and 60 min following intrapentoneal glucose; Fig. 16A). Moreover, the plasma 

insului concentration was significantly increased in the val-pyr-treated GLP- I R-/- mice 

(0.3310.02 ng/ml in vehicle-treated vs. 0.44k0.02 @ml in val-pyr-treated GLP-IR-/- mice; 

fi0.05; Fig. 16B). These results suggest that DPP-NICD26-mediated regulation of blood 

glucose is likely independent of effects on gastnc emptyhg and involves additional 
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Fig. 15. Intraperitoneai (i.p.) glucose tolerance and plasma 
insuiin levels in Wd-type mice receiving either vehicle (water) 
or 20.6 mg/kg vrl-pyr. Values are expressed as means SEM; 
a = 8-10 mice/group. A: i.p. glucose tolerance test in vehicle- or 
val-pyr-treated wild-type males. B: Plasma insulin concentration 
at the 10-20 min t h e  period following ip.  glucose administration 
in vehicle- or val-pyr-treated wiid-type males. 
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Figo 16. Intraperitoneai (i.p.) glucose tolerance and plasma 
insulin levels in GLP-IR-/- mice receiving either vehicle (water) 
or 20.6 mgkg val-pyr. Values are expressed as means * SEM; 
n = 8-14 micdgroup. *pc0.05 vs. control (water). A: i.p. 
glucose tolerance test in vehicle- or val-pyr-treated GLP-IR 
-1- males. B: Plasma insulin concentration at the 10-20 min 
tirne period foiiowing i.p. glucose administration in vehide- 
or val-pyr-treated GLP- 1 R-/- male mice. 



mechanisms, and not simpty inhibition of endogenous GLP-1 degradation. Hence, these 

results indicate that the effects of substrates other than GLP-1 play an important role in 

mediating DPP-N/CD26-regulated glucose control. 

3.4 Discussion 

Recent studies have shown that mice with a targeted inactivation of the DPP- 

NKD26 gene are able to clear a glucose load more rapidly than their wild-type littermates 

and that this improved glucose tolerance is associated with increased plasma insulin levels. 

These results indicate that the proteolytic activity of D P P - M D 2 6  plays an important role in 

the regulation of blood glucose levels (38 1). However, the exact mechanism by which DPP- 

IVKD26 modulates glucoregulation is uncertain. A number of studies in pigs and both 

normal and diabetic rodents have shown that DPP-WD26 inhibition results in increased 

levels of intact, biologically active endogenous GLP- 1 (359-36 1,363). Moreover, in CD26- 

1- mice, the improved glucose tolerance and increased insulin secretion were associated with 

increased levels of intact, biologically active GLP- 1 (38 1). Thus, DPP-N/CD26 likely 

mediates its effects on blood glucose levels by regulating the activity of GLP-1, although 

other substrates, including GIP, could also be involved. 

In this study, wild type and GLP-IR-/- mice were treated with val-pyr, a specific 

DPP-[V/CD26 inhibitor, to determine if GLP-1-dependent mechanisms were entirely 

responsible for mediating the efliects of DPP-IV/CD26 on blood glucose regulation. 

Surprisingly, val-pyr treatment had no effect on blood glucose levels in wild-type 

mice. Similarly, in studies performed on anesthetized pigs, inhibition of DPP-IVICD26 

activity with val-pyr produced a signincant increase in piasma insulin concentration, but had 



no effect on blood giucose levels (359). Moreover, treatment of wild-type C57BMJ mice 

with val-pyr, or administration of the DPP-iV inhibitor Mrp-DPP728 in lean Zucker rats, 

prior to oral glucose tolerance tests, produced ody rnild improvements in glucose tolerance, 

despite marked increases in plasma insulin levels (36 1,363). Since recent studies have 

suggested that giucagon may also be a substrate for DPP-NICD26's proteolytic activity 

(4 1 S), the lack of improved glucose tolerance in response to DPP-IVlCD26 inhibition could 

be due to increased levels of endogenous biologcally active glucagon. 

Inhibition of DPP-NICM6 activity in GLP-1R-I- rnice resulted in improved glucose 

tolerance and increased plasma insuiin levels in response to either an oral or i.p. glucose 

challenge. These results indicate that the improved glucose tolerance and elevated insulin 

levels in CD26-1- mice may not be mediated exclusively through GLP-1 activity, and that 

DPP-IVICD26-mediated regulation of other insulinotropic substrates is important for 

controlling bIood glucose levels. One substrate that is likely involved in the non-GLP- 1- 

mediated effects of val-pyr is GIP. GIPR-/- mice display impaired glucose tolerance and 

significant reductions in glucose-stimulated insulin secretion in response to an oral glucose 

challenge (349), indicating that GIP plays an essential role in glucose homeostasis following 

enteral giucose challenge. [n addition, DPP-iV/CD26 has been shown to be the primary 

enzyme responsible for GIP degradation in vivo (6 1) and intact GIP was completely resistant 

to N-terminal cleavage when incubated in plasma obtahed nom CD264 mice (38 1). 

Furthemore, GLP-IR-/- mice exhibit upregulation of glucose-dependent GiP secretion and 

insulinotropic action (289) and, thus, may be hypersensitive to the increased levels of intact 

GIP that result fiosn DPP-NICD26 inhibition. Enhanced setlsitivity to GIP action could dso 

explain why val-pyr treatment resuited in improved glucose tolerance and hcreased insulin 



secretion in GLP-IR-/- mice in response to an Lp. glucose load. Although studies performed 

with both GIPR-/- and wiId-type rnice treated with a GIPR antagonist suggest that GIP 

activity is not essential for clearing an i.p. glucose load (349,416), it is plausible that 

elevated levels of intact GIP in val-pyr-treated GLP-IR-/- mice could unmask additional GIP 

effects, including non-incretin-like actions. However, in order to accurately mess the 

involvement of GIP in DPP-IV/CD26-mediated glucoregulation, the levels of glucose- 

stimulated endogenous intact GIP must be rneasured in the GLP-IR-/- mice, in the presence 

and absence of val-pyr. Additionally, administration of a GIPR antagonist to GLP- I R-/- 

rnice, in conjunction with val-pyr treatment, would allow us to evaluate the relative 

contribution of GP to the improved glucose tolerance and enhanced insuiin secretion that 

was observed in these rnice. 

From our curent studies it is clear that the DPP-IWCD26-regulated pathway of blood 

glucose control involves substrates other than GLP-1. As GIP is the most likely candidate 

peptide to be involved in the GLP-Lindependent, DPP-IViCD26-mediated regdation of 

blood giucose, studies aimed at evaluating the effects of val-pyr treatrnent on glucose 

homeostasis in GPR-/- mice are warranted. 

Since DPP-N/CD26 activity inactivates a nurnber of biologically important peptides, 

it is aIso feasible that other DPP-IV/CD26 substrates, in addition to GLP-1 and possibly 0, 

contriiute to the improved glucose tolerance and elevated insuiin levels seen with val-pyr 

treatrnent. With respect to blood glucose regdation, peptide histidine isoleucine (PHI) has 

been shown to stimulate insulin secretion in mice (4 l7,4 18) and is a target for DPP- 

IWCD26-mediated proteolytic cleavage (242). Moreover, pituitary adenylate cyclase- 

activating polypeptide (PACAP), a neuropeptide, has been shom to be a potent in vivo 



stimtiiator of glucose-induced insulin secretion in both mice (41 9) and hrmians (420). 

Although the PACAP amino acid sequence contains N-terininal His-Ser, and thus does not 

confom to the consensus X-Pro or X-Ala motifrecognized by DPP-iVICD26 (62), studies 

have also shown that, despite its relatively restncted substrate specificity, DPPWICD26 will 

cleave certain peptides that contain residues other than Pro or Ala in position 2, albeit at 

much slower rates (408,421). In addition, others have shown that glucagon, a polypeptide 

which contains His-Ser at its N-terminus, cm be degraded by DPP-iVlCD26 proteolytic 

activity (4 15). The relative contribution of insulin secretagogues such as PHI and PACAP, if 

any, to the improved glucose tolerance and increased insulin secretion in val-pyr treated mice 

rernains to be determined. 

inhibition of DPP-IVlCD26 activity has been shown to improve glucose tolerance 

and augment glucose-stimulated insulin secretion in a number of rodent models of type 2 

diabetes (361-363) and, thus, has been proposed as a relevant therapy for the treatment of 

type 2 diabetes (241). However, given the variety of substrates that are cleaved by DPP- 

IVlCD26, its role as an immune modulator, and the existence of other enzymes which exhibit 

DPP-NlCD26-like activity, the use of phartnacologicai agents that inhibit DPP-NICD26 

activity in humans may be associated with undesitable side effects. Nonetheless, CD26J- 

mice appear healthy, are fertile, and tolerate complete loss of DPP-NICD26 activity without 

any reported side effects, other than the observed effects on glucose metabolism (38 L). Also, 

mice with a targeted dimption of the nbroblast activation protein ( F M )  gene, which 

encodes an enzyme that possesses DPP-rVICD26-like activity, are fertile and show no 

evidence of developmental defects (422). In addition, a strain of DPP-NICD26-deficient 



Fischer rats that arose as a result of a spontaneous mutation in the CD26 gene, is 

phenotypicaUy noma1 (423). 

In conclusion, the current study demonstrates that DPP-NICD26 inhibition improves 

glucose tolerance and enhances insulin secretion in the glucose intolerant GLP-1 R-/- mouse. 

Although additional studies are required to assess the consequences of long-term inhibition 

of DPP-NfCD26 activity in vivo, the results of this study and others indicate that DPP- 

IVfCD26 iahibitors may be practicai and valuable agents for the treatment of type 2 diabetes. 



Chapter 4. Sostained Expression of Exendin-4 does not Perturb Glucose Homeostasis, 

PceU mass or Food Intake in MeWothioneh-Exendin-4 Transgenic Mice 

4.1 Introduction 

Gtucagon-like peptide4 (GLP-1), a product of the proglucagon gene is released fiom 

gut endocrine cells and potentiates glucose-dependent insulin secretion (29). GLP-I also 

regulates gastric emptying, food intake, glucagon secretion and islet proliferation, and hence 

is cmently under investigation as a thenpeutic agent for the treatment of diabetes (29). 

However, a significant limitation to GLP-1 thempy in diabetic subjects is the short biological 

half-life of this peptide (61,63,358), limiting its ability to control blood glucose for an 

extended penod of the. These considerations have prompted the investigation of strategies 

designed to prolong the duration of GLP-1 action in vivo (237,241). 

Exendin-4, a peptide stnicnirally related to but distinct from GLP-1 (374), was 

oripinally purified from the venorn of a Helodenna suspectum lizard (64,424). Subsequent 

charactenzation of exendin-4 activity demonstrated that the lizard peptide was a potent 

agonist for the mammalian GLP-1 receptor (GLP-1R) (64,65,68,277,424). Exendin-4 

exhibits a much longer in vivo half-life and prolonged duration of action (68), rendering it 

more potent for protracted stimulation of GLP- 1 receptor signaling and sustained 

improvement in glucose homeostasis in Mvo. Despite the structural homology of lizard 

exendin-4 and mamrnalian GLP-1, a m m a i i a n  exendin-4 gene has not yet been identified 

(374,375). 

The hding bat exendin-4 represents a potent GLP-1-like andogue has prompted 

studies of exendin-4 activity in normal and diabetic rodents. Exendin-4 potentiates glucose- 

stimdated insului secretion and lowers blood glucose in both rats and mice (56,57,68,69, 



72). Exendin-4 also inhibits food intake, laishg the possibiiity that chronic exendin-4 

treatment may decrease satiety and promote weight loss in vivo (68,69). Furthemore, recent 

studies demonstrate that exendin-4 administration leads to induction of pancreatic endocrine 

ce11 differentiation, islet proliferation, and expansion of PseU mass (55-57). 

Although the biological activities of exendin-4 and GLP-1 have been examined in 

numerous short terni studies, limited idormation is available regarding the physiological 

actions of these peptides in experimentai paradigms characterized by prolonged exposure to 

increased levels of GLP- 1 R agonists. To assess the physiological effects of chronic 

expression of lizard exendin-4 in vivo, we have generated transgenic mice in which lizard 

exendin-4 expression is under the control of the inducible mouse metallothionein-I (MT-1) 

promoter. The physiological characterization and metabolic effects of sustained exendin-4 

expression in mice in vivo are reported in the following sections. 

4.2 Methods 

4.2.1 MT-Exendin Transgene Construction and Generation of Transgenic Mice 

To generate the MT-Exendin transgene, a 492 bp cDNA encoding lizard proexendin- 

4 (374) (see Fig. 3) was cloned into the Bgl II site of the pEV142 expression vector (425), 

lmder the control of an inducible mouse MT4 promoter. A 1.9 Kb Eco RI hgment 

containing the MT-Exendin transgene was electro-eluted fiom a 1% (wt/vol) agarose gel and 

M e r  pudied on an Elutip-d column (Schieicher and SchueU, Keene, MI). Transgenic 

mice were generated by Chrysalis, D M  Transgenic Sciences, Princeton, N.J. on a C57BU6 

x SJL genetic background. Ail mice used in these studies were 16-20 weeks 016 Control 

anùnals w m  age- and sex-matched transgene-negative mice nom the same titter or family. 



For induction of MT-1 promoter activity, drinking water was supplemented with 25 m M  

ZnS04 for a minimum of 72 h. Al1 procedures were conducted according to protocols and 

guidelines approved by the Toronto Hospital Animal Care Comrnittee. 

4.22 Plasma Extraction 

Blood samples were obtained by cardiac puncture and mixed with 10% (voVvo1) TED 

(500 W/ml Trasylol, 1.2 mdmi EDTA and 0.1 mM Diprotin A). Plasma was collected by 

centrifugation at 4OC and mixed with two volumes of 1% (voVvol) trifluoroacetic acid, pH 

2.5. Peptides and small proteins were adsorbed from plasma extracts by passage through a 

C 18 silica cartndge (Waters Associates, Milford, MA). Adsorbed peptides were eluted with 

4 ml of 80% (voVvol) isopropanol containhg O. L% (voVvol) trifluoroacetic acid. Total 

protein levels in plasma extracts were determined using the modified Bradford method (386) 

with Bio-Rad dye reagent (Bio-Rad Laboratories, Hercules, CA) and bovine y-globulin as a 

standard, 

4.2.3 High Pressure Liquid Chromatography (HPLC) and Radioimmunoassay (RIA) 

HPLC was performed on a Waters system using a C 18 pJ3ondapak column. 

Radioimmunoassay for exendin4like immunoreactivity was carried out using a rabbit anti- 

exendin-4 antiserum (Cocalico Biologicds Inc., Reamstown, PA), synthetic exendin-4 

(California Peptide Research Inc., Napa, CA) as standard* and 1U~-exendin-4, prepared by the 

chioramine T method (130,426). 

4.2.4 Glucose Tolermce Tests and Measurement of PIasma hsulin LeveIs 

Oral ( 0 0  or intraperitoneai glucose tolerance tests were canied out 

following an ovemight fast (1 64 8 h). Glucose ( L .S mg Ig  body weight) was administered 

oraily through a gavage tube (OGTT) or via injection into the peritoneal cavity (IPGTT). 



Blood was drawn h m  a tail vein at O, 10,20,30,60,90 and 120 minutes following glucose 

administration and blood glucose levels were measured by the glucose oxidase method using 

a One Touch Basic Glucometer (Lifescan Ltd., Canada). Blood samples (100 pi) for 

measurement of insulin secretion were removed fiom tail veins during the 10- to 20-minute 

tirne period following oral or intraperitoneal glucose administration and immediately mixed 

with a 10% vol of a chilled solution containhg 5000 W m l  Trasylol (Miles Canada, 

Etobicoke, Canada), 32 mM EDTA, and 0.1 nM Diprotin A (Sigma Chernical Co., St. Louis, 

MO). Plasma was separated by centrifugation at 4OC and stored at -80°C until assayed for 

insulin content using a rat hsulin ELISA kit (Crystal Chem Inc., Chicago, Illinois), with 

mouse insulin as a standard. 

4.2.5 Measurement of Food and Water Intake 

For feeding studies, mice were fasted for 18 h and then placed into individual cages 

containing preweighed rodent chow, with fiee access to water. At the indicated time points, 

the chow was re-weighed and total food intake (glg body wt) was calculated. Food intake 

was monitored for a total of 24 h. For druiking studies, mice were water deprived for 13 h 

and then placed into individual cages containing preweighed water bottles, with free access 

to food. At 0.5, 1,2 and 24 h the water bottles were ce-weighed and water intake (ml) was 

detennined. 

43.6 Histology and Immunohistochemistry 

The pancreas was removed, k e d  overnight in either 10% buffered formaiin or 4% 

pdormaldehyde and embedded in parafEn. Sections were obtained and stained with 

hematoxylùi and eosin using standard protocols. Immuaostaining for insuiin and glucagon 

was c d  out as previousIy descnlbed (8 1,107,427). 



42.7 Estimation of PCeII Mass 

The entire pancreas was removed, weighed, fixed in acidic formalin and p&m 

embedded. Parafh blocks were sectioned and a set of 6 9  sections from each pancreas was 

sarnpled by systematic uniform random sampüng (SURS). The sarnpled sections were 

hunostained for insulin ushg &ea-pig anti-insulin (Dako, Denmark) as prirnary 

antibody (1: 100 dilution) and rabbit anti-guinea-pig immunoglobulin @&O, Denmark) as 

secondary antibody (150 dilution). Antibody binding was visualized by 3,3- 

diaminobenzidine and sections were counterstained by Meyers hematoxylin. The volume 

fraction of P-cells within tissue blocks was estimated according to the principle of Delesse 

(428). The sections were examined ushg an Olympus BH-2 microscope equipped with a 

video camera and comected to a computer with C.A.S.T.-grid software (Olympus, USA). 

Sampling within sections was also performed by SURS. A coherent double-lanice grid was 

used for point counting. Sampling and grid density was calibrated such that approximately 

100-200 points hitting p-cells and approximately the same nurnber of points hitting pancreas 

were counted per pancreas (429). Al1 esthates of Pcell mass were determined in a blinded 

mamer. 

4.2.8 Streptozotocin (STZ) Studies 

Six-week-old C57BL/6 male mice were used for these studies. Streptozotocin (STZ; 

Sigma Chernicd Co., St. Louis, MO) was fieshly dissolved at 10 mglml in 0.1M sodium 

citrate buffer (pH 5.5). On each &y ofthe experiment dl mice were fasted for 3 h (8:30 am- 

1 1:30 am) and then the2 biood giucose levels were measured fiom a tail vein sampIe using 

the ghcose oxidase method and a One Touch Basic Glucometer (Lifescan Ltd., Canada). On 

day 0, foilowiag the 3 h fast and measurement of blood glucose, halfof the mice were treated 



with a singie Uitraperitoneal dose of STZ (200 mgkg), while the other half served as controls 

and were given O.IM sodium citrate alone. On days 2-1 1, following the 3 h fast and 

measurernent of blood glucose, control and STZ-treated mice received a single i.p. dose of 

either saline or 24 m o i k g  exendia-4 (California Peptide Research hc., Napa, CA). On the 

1s t  day of the experiment (day 1 I ), following a final blood glucose measurernent, the mice 

were euthanized and exsanguinated by cardiac punctw. Plasma was collected fiom the 

blood samples for measurernent of insulin Ievels (as descnbed above). The pancreas was 

removed £tom each animal and homogenized twice in 5 ml of extraction medium [l N HCl 

containing 5% (voVvol) formic acid, 1% (voVvol) trifluoroacetic acid, and 1% (wt/vol) NaCl] 

at 4OC. Peptides and small proteins were adsorbed fiom extracts by passage through a C 18 

siIica cartridge (Waters Associates, Milford, MA). Adsorbed peptides were eluted with 4 ml 

of 80% (voi/vol) isopropanol containing 0.1% (voVvol) tnfluoroacetic acid. Pancreatic 

insuiin levels were rneasured using a rat insulin ELISA kit (Crystal Chem inc., Chicago, 

Illinois) with nîouse insuiin as a standard. Total protein levels in extracts were determined 

using the Bradford method (386) with Bio-Rad dye reagent (Bio-Rad Laboratories, Hercules, 

CA). 

4,2,9 Statistics 

Results are expressed as means I SEM. Statistical signiticance was calculated by 

ANOVA and Student's t-test ushg INSTAT 1. L2 (Graph-Pad Software, Inc., San Diego, 

CA). A p  value c0.05 was considered to be statisticaiiy significant. 



43  Resuits 

43.1 Generation of MT-Exendia Transgenic Mice and Transgene Expression 

A 1.9 Kb hgment (Fig. 17A) containing: (i) 770 bp of the mouse MT4 promoter, 

including 5'-flanking and exon 1 sequences (430,43 1); (5) the 492 bp Lizard proexendin4 

cDNA (374); and (iii) 625 bp of the human growth hormone gene containhg the 

polyadenylation signal and 3'-flankllig sequences (432) was used for the generation of MT- 

Exendin (MT-Ex) mice. Transgenic mice were identified by Southern blot analysis (Fig. 

17B). Male and fernale MT-Ex transgenic mice were viable, fertile and appeared to develop 

normaiiy . 
Northem blot analysis detected transgene RNA expression in several tissues including 

heart, duodenum, jejunum, ileum, colon, stomach, brain, pancreas, and adipose tissue (Fig. 

18 and data not shown). Tissue and plasma extracts fiom MT-Ex mice were prepared and 

analyzed by radioimmunoassay for exendin4like irnrnunoreactivity (Ex 4-ïR) using 

exendin-4 antisenim (performed by Feisal Adatia in Dr. Patricia Bntbaker's laboratory in the 

Department of Physiology at the University of Toronto). The exendin4 antiserurn used for 

these studies does not cross-react with glucagon, glicentin, oxyntomodulin, gastric inhibitory 

polypeptide (GIP), vasoactive intestinal polypeptide (VIP), or glucagon Iike peptides 1 and 2 

(GLP-I and GLP-2). nor does it require a fiee Kterminus for binding P r .  Patricia Bnibaker, 

personal communication). in wild-type non-transgenic mice, basal levels of Ex 4-IR were 

less than 27 pgml (Fig. 19A). In contrast, basal plasma levels of Ex CIR were 434 k 39 and 

33M84 pgh l  in male and femaie transgenic mice, respectively (Fig 19A), and induction of 

transgene expression with zinc treatment resdted in a M e r  - 2.5-fold increase in the 

circulaihg levels of Ex 4-üke IR in both male and fernale mice (Fig. 19A). 
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Ftg. 17. Structure of the MT-Exendin transgene and Southern blot 
anaîysis of genomic DNA from transgenic mire. A: The Helodenna 
wpectwn proexendin-4 cDNA was cloned into the pEV 142 expression 
vector, downstream of an inducible mouse metallothionein-1 promoter 
(MT-[) and upstream of 3'-flanking sequenees fiom the human growth 
hormone (hGH) gene. The 1.9 Kb Eco RI hgment containhg the MT- 
Exendin transgene was p d e d  and used to genenite transgenic mice. 
The portion of the transgene that was used as a probe to ident* transgenic 
mice is indicated by the cross-hatched bar. B: Transgenic mice were 
identifieci by Southern blot analysis of genomic DNA digested with Hhd LII 
and Sac I by usiag a fiagrnent derived €rom the MT-Exendin transgene as a 
probe. Transgene-uegative mice are indicated by (-) and MT-Exendin 
transgene-positive mice are indicated by (+). In the fïrst Iane (C), the DNA 
h p e n t  correspondmg to the probe sequence was separated in the gel and 
served as a positive controi. 
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Fige 18. MT-Exendln transgene expression in adult mouse tissues. 
Northem blot analysis of total RNA (10 pg) isolated fiom male (M) and 
femaie (F) wild-type control (-) or MT-Exendin tnuisgenic (+) mouse tissues. 
In the last Iane (C), mRNA (25 ng) isolated fkom Lizard salivary gland 
was separated in the gel and served as a positive coatrol. The blot was 
hybridued with a 3pZP-labe1ed cDNA fiagrnent corresponding to the lizard 
proexendin-4 cDNA. 
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Fig. 19. Detection of exendin4like immunoreactivity in the plasma of 
MT-Exendin transgenic mice. A: RIA for detection of exendin4ke 
immmoreactivity (Exendin IR) in plasma fkom wild-type control litter- 
mates (non-TG) and transgenic male (MT-Ex M) or femaie (MT-Ex F) 
mice. Mice were given either standard drinhg water (-Zn, open bar) or 
water supplemented with 25 mM ZnSO, (+Zn, solid bar) tu upregdate 
transgene expmsion. Zinc supplementation was for a period of 72 hr. 
Values are expressed as means * SE. *F0.05, transgenic vs. control. 
B: HPLC elution profile of exendin4like imrnunoreactivity (Ex4IR) 
extracted h m  the plasma of a 4monthsld zinc-treated MT-Exendin male 
mouse. The eiution position of synthetic exendin-4 is indicated by the arrow. 



To determine whether proexendin was both processed appropnately and secreted into 

the circulation, HPLC and radioimmunoassay analyses were carried out to characterize the 

molecdar forms of circdating exendin4iR (perfonned by Feisal Adatia in Dr. Paûicia 

Bntbaker's laboratory). The major exendin-immunoreactive peptide detected in plasma 

extracts from MT-exendin-4 transgenic mice eluted at the same position as synthetic 

exendin-4 (Fig. 19B). Significant amounts of exendin4immunoreactivity eluting in the 

same position as synthetic exendin-4 were also detected in the testes and adrenal glands of 

transgenic mice (data not shown). 

43.2 In Effects of Exeadin-4 on GLP-1 Receptor-Dependent Physiological 

Endpoints 

Although the biological properties of exendin-4 have been examined in acute 

administration studies and following once daiIy administration regimens in rodents (56,57, 

72), the long term consequences of increased circulating exendin-4 on GLP- 1 receptor- 

dependent actions has not been examined. 

As GLP- f receptor signalhg is essential for control of fâsting blood glucose, glucose 

clearance and glucose-stimulated Uisulin secretion (29). we examined these parameters in 

control and MT-Ex transgenic mice. Fasting blood glucose levels were normal in MT& 

mice under conditions of either basal or induced transgene expression (Figs. 20 and 21). 

Despite clearly detectable levels of circulating exendin-4 immunoreactivity, blood glucose 

excursion and glucose-stimulated insuiin was comparable in wild-type controI and MT-Ex 

transgenic mice following either oral (Fig. 20A) or intraperitoneal glucose challenge (Fig. 

2lA). In contrast, induction of transgene expression with zinc treatment redted in a 
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Fig. 20. Oral giucose tolerance and plasma insulin levels in control and 
MT-Exendin transgenic femaie miee. Values are expressed as means SEM, 
n = 8-12 mice/group. *p<O.OS, tmnsgenic vs. control mice. A: Oral glucose 
tolerance in control (open circles) and MT-Exendin (soiid squares) mice. 
Plasma insulin concentrations (inset) foliowing oral glucose in control (open 
bar) and MT-Exendin (solid bar) mice were measured in plasma obtained at the 
10-20 min time point folîowing oral glucose. B: Oral giucose iolerance in 
control (open circles) and MT-Exendin (soiid squares) mice foliowing treatment 
with 25 mM ZnSO, to up-regulate transgene expression. Plasma insuiin con- 
centrations (inset) m control (open bar) and MT-Exendin (hatched bar) mice 
were obtained at the 10-20 min t h e  point foiiowhg oral glucose. 
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Fig. 21. Intraperitoneai glucose tolerance and plasma insulin levels in control 
and MT-Exendin transgenic femaie mice. Values are expressed as means * SEM, 
n = 8-1 0 mice/group. *p<0.05, transgenic vs. control mice. A: htrapentoneai (i.p) 
glucose tolerance in control (open circles) and MT-Exendin (solid squares) mice. 
Plasma msulin concentrations (inset) foilowing ip.  glucose in control (open bar) 
and MT-Exendm (solid bar) mice were measured in plasma obtained at the 10-20 
min time point following i.p. glucose. B: Intraperitoneal (i.p.) glucose tolerance 
in control (open circles) and MT-Exendin (solid squares) mice following treatment 
with 25 mM =O4 to up-regdate transgene expression. Plasma Uisulin concentrations 
(inset) in control (open bar) and MT-Exendin (hatched bar) mice were obtained at the 
10-20min time point following i.p. glucose. 



significant reduction in the glycemic excursion in response to oral (Fig. 208) and 

intraperitoaeal (Fig. 2 1 B) ghicose loading. The reduced glycemic excursion wss associated 

with a signincant increase in plasma levels of glucose-shulated insulin after oral but not 

intrapentoneal glucose challenge (0.38 I 0.04 n g l d  vs. 0.21k0.02 @ml, for insulin in MT- 

Ex transgenic vs. control mice respectively; pc0.05; Fig. 20B inset). 

The physiologicai importance of GLP-1 receptor signaiing for CNS control of food 

intake and body weight remains unclear. Administration of intracerebroventricular (ICV) 

GLP-1 or exendin-4 inhibits short terni feeding, while repeated administration of the GLP- 1 R 

antagonist exendin (9-39) increases food intake and promotes weight gain in rats (36,41). in 

contrast, rnice with complete disruption of GLP- 1 R signaiing do not exhibit defects in 

feeding control or body weight homeostasis (288,294). Basal levels of exendin-4 expression 

had no effect on short (2 hr) or long (24 hr) term food intake (Fig. 22A and B) in MT-Ex 

mice. However, up regulation of transgene expression following zinc treatrnent lead to a 

d l ,  but significant reduction in short term (2hr) food intake (0.026k0.003 g/g body weight 

in MT-Ex transgenic vs. O.034H.00 1 g/g body weight in control mice; pcO.05; Fig. 22C and 

D). Basal levels of transgene expression were also associated with a significant reduction in 

short term (up to 2hr) water intake (Fig. 23A and B). in contrast to recent studies 

demonstrating weight Ioss in exendin4treated nits (69), no significant differences in body 

weight, relative to non-transgenic littermates, were observed in MT-Ex mice at 4-8, 16 or 20 

weeks of age (data not shown). 

Inmeashg evidence suggests that both GLP-1 and exendin-4 stimulate p-cell 

replication and neogenesis, enhance islet size, and promote differentiation of pancreatic 

precursor ceUs into islet cells (54-57). To examine the effects of transgene expression on 
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Fig. 22. Food intake in control and MT-Exendin mice. Following an 
ovemight fast, food intake was monitored durkg specific time intervals 
(A) and (C), as well as cumdatively (B) and @), for a total period of 
24 hr in control (open bar) and MT-Exendin (soüd or hatched bars) mice. 
+Zn denotes mice treated with zinc supplementation as desmied in 
section 4.2.5. Values are expressed as means * SEM; n = 6 micelgroup. 
*p<0.05, transgenic vs. control mice. 
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Fig. 23. Water intake in control and MT-Exendin mice. Following a 13 h period of 
water deprivation, water intake was monitored duriag specinc time intervais (A) and 
(C), as well as c d a t i v e l y  (B) and @), for a total period of 24 h in control (open bars) 
and MT-Exendin transgenic (solid bars) mice. +Zn denotes mice treated with zinc 
supplementation as descrîbed in section 4.2.5. Values are expressed as means * SEM; 
n = 5-7 mice/group. *~0 .05 ,  transgenic vs. control mice. 



islet growth, we examined pancreata from MT-Ex transgenic mice. Islet histoiogy appeared 

normal and comparable in transgenic and wild-type control mice, with no gross evidence of 

islet neogenesis or abnormal distribution of endocrine ce11 types within the islets (Fig. 24A 

and B). Furthemore, quantitative analysis demonstrated no merences in p-ce11 mass in 

MT-Ex transgenic compared to wild-type control mice (carried out by Troels Bock at the 

Bartholin Institute in Denmark) (Fig. 24C). 

To determine whether hyperglycemia was required for exendin4mediated induction 

of islet proliferation and enhanced p-ce11 mass, wild-type C57BU6 rnice were rendered 

hyperglycemic following administration of a single, large dose of streptozotocin and groups 

of diabetic mice were treated daily with intniperitoneal injections of saline or exendin-4 (24 

nmoükg). Daily exendin-4 treatment resulted in a significant improvement in fasting blood 

glucose levels in diabetic mice, but had no effect on fasting blood glucose in non-diabetic 

animals (Fig. 25A). Levels of plasma or pancreatic insulin were not detectable in saline- or- 

exendin4treated diabetic mice. in non-diabetic mice, exendin-4 treatment significantly 

increased fasting plasma insulin levels (2.56kO. 16 ng/ml in exendin4treated vs. 1.8k0.22 

ng/ml in saline treated controls; ~ 0 . 0 5 ;  Fig. 25B) but had no statisticdly significant effect 

on paacreatic insulin content (Fig. 25C). Furthemore, evidence of  increased islet size or 

islet neogenesis was not detected in a non-quantitative histofogical assesment of pancreata 

following exendin-4 treatment in diabetic mice (Fig. 26). 
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Fig. 24. Normal M e t  rnorphology and P e i I  mass in MT-Exendin transgenic 
Mice. Hematoxyh and eosin (HE) and immunohistochemical staining for 
glucagon and insulin in the pancreatic islets of control (A) and MT-Exendin 
tnuisgenic (B) mice. Panmata were obtained fiom control and h-ansgenic animais 
that were given either standard drinking water (Zn-), or water supplemented 
with 25 mM ZnSO, (Zn+) for 5-7 days to up-regdate transgene expression. 
C: p-ceii mass in control (open bars) and MT-Exendin transgenic (solid bars) mice. 
Values are expressed as means k SEM; n = 3-8 mice/group. Al1 mice were maintained 
on water supplemented with 25 m M  ZnSO, for 5-7 days to up-reguIate transgene 
expression. 
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Fig. 25. Effects of exogenous exendin-4 on frsting blood glucose, 
plasma insuiin and pancreatie insulin content in diabetic and non- 
dirbetic C57BL16 mice. A: Fasting blood glucose Ievels in mice 
treated with saline (soiid chles), exendin-4 (open triangles), strepto- 
zotocin (STZ) done (open circles), or STZ plus exendin-4 (solid squares). 
VaIues are mean * SEM; n = 5-7 micefgroup. * ~ 0 . 0 5 ,  STZ plus exendin- 
4-treated vs. STZdeated mice. Plasma uisului (B) and pancreatic insuiin 
content (C) on day 1 L of exendin-4 treatment in saline (open bar) or exendin- 
4treated (hatched bar) non-diabetic mice. Detection Limits for insulin were 
156 pglml in plasma and 39 pglml in pancreatic tissue samples. 
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Fig. 26. Exendin-4 treatment has no effect ou islet morphology in normal 
or diabetic C57BL16 dce. Hematoxylinleosin (HIE) and imrnunohisto- 
chemical stainuig for giucagon and uisulin in the pancreatic islets of C57BU6 
mice treated with either saline, exendin-4 (Ex 4), streptozotocin (STZ), or 
streptozotocin plus exendm-4 (STZIEx 4). 



4.4 Discussion 

The observation that GLP-1 exhibits a very short plasma half-Me due to its rapid 

degradation by dipeptidyl peptidase-IV (DPP-IV) (6 1,63) has prompted a search for DPP - 
IV-resistant GLP-1 analogues that exhibit longer durations of action and enhanced potency in 

vivo. Several GLP-I analogues have now been reported that exhibit improved potency in 

both normal and diabetic rodents (237,238,240,366). Furthemore, fatty acid denvatives of 

GLP-1 may also resuit in enhanced albumin binding and more prolonged bioactivity in vivo 

(239). The aaturally occurring Iizard exendin-4 peptide is not a substrate for DPP-JY, and 

consequently exhibits a much longer half-life and p a t e r  potency in vivo (68,72,424). 

GLP-1 and exendin-4 have been adrninistered daily to humans and diabetic rodents 

for periods of up to several weeks (57,69,72, 169,23 1), however the long term 

consequences of more prolonged exendin-4 administration have not been examined. 

Although celCbased delivery systems for GLP- 1 and exendin-4 have been proposed (433), 

there is liale information available on the viability or efficacy of this strategy in rodents in 

vivo. The generation of rnice expressing lizard proexendin-4 provides an oppomuiity to 

assess the safety and feasibility of continuous exendin-4 delivery in mice in vivo. Even 

though studies of the molecuIar determinants of proexendin-4 processing have not yet been 

reported, the finding of detectable levels of circulating exendin-4 in MT-Ex transgenic mice 

is consistent with the correct processing and secretion of the lizard proexendin precursor in 

murine tissues in vivo. Furthemore, the levels of circulating bioactive exendui-4 detected in 

MT-Ex mice are much higher than plasma levels of GLM(29) and withh the range or 

higher than plasma levels of exendin4 that were able to decrease blood glucose in diabetic 



&/db mice (68,434). Hence, our current observations cannot sirnply be attributed to a 

failure to achieve sdlicient levels of bioactive exendia-4 in vivo. 

Exogenous GLP-llexendin-4 treatment has been shown to reduce both fasting and 

postprandial blood glucose levels and enhance glucose-stimulated insulin secretion in both 

human and rodent studies (4,29,72,170,227,228,376,435,436). In complementary 

shidies, mice with a targeted dimption of the GLP-I receptor gene exhibit mild fasting 

hyperglycemia (288) and immunoneutralization or blockade of GLP-1 action increases 

fasting blood glucose in baboon, rodent and human studies (280,282,283). These findings 

implicate an important role for basal GLP-1 signaling, even in the fasting state, for control of 

glucose homeostasis. Although basal levels of circulating exendin-4 were clearly detectable 

in MT-Ex mice, fasting blood glucose was normal, even upon M e r  induction of transgene 

expression with zinc treatrnent. Furthemore, hypoglycemia was not observed in MT-Ex 

mice despite M e r  induction of ûansgene expression with Pnc. As exendin-4 has been 

estimated to be up to at least 5000 times more potent than GLP-I with respect to glucose 

lowenng in vivo (68), our findings of normoglycemia in MT-Ex mice m e r  emphasize the 

glucose-dependence of GLP- 1 R signaling for glucoregulation in vivo (4,29). 

Although incretins such as GIP and GLP-I have been pmposed as possible treatments 

for patients with diabetes, short term infusion of GIP has been associated with diminished 

effectiveness in diabetic patients (437) and desensitization of the GIP receptor in diabetic rats 

in vivo (322). Both homologous and heterologous desensitization of GLP- 1 receptor 

mgnaling has also been observed in islet cell h e s  in vitro (272,274,438). However, daily 

administration of exendin-4 to diabetic mice for 13 weeks reduced Levels of bIood glucose 

and glycosylated hemogiobin and increased plesma insulin (72), demonsîrating that a single 



daily exendin-4 injection does not produce sigaifcant desensitization in vivo. The results of 

our studies in MT-Ex transgenic mice extend these observations by demonstrating that, 

despite continuous exposure to transgene-derived exendin-4 for several rnonths, acute 

induction of ûansgene expression in older mice led to enhanced glucose clearance and 

significantly increased levels of glucose-stimulated k d i n  following oral glucose challenge. 

These hdings suggest that ongoing continuous exposure to exendin-4 is not associated with 

significant impairment of GLP-1 receptor-dependent actions such as loss of the glucose- 

lowenng effects of exendin-4 in vivo. However, whether p-ce11 desensitization to GLP- IR 

agonists will prove to be an issue in long terrn human studies cannot be inferred From our 

current studies in MT-Ex mice. 

The physiological importance of GLP-I receptor signaling for control of food and 

water intdce remains unclear (439), however a large nurnber of studies have demonstrated 

that exogenous administration of GLP- 1 or exeadin-4 clearly reduces food intake. in 

mdents, ICV administration of GLP-1 reduced short- but not long-term food and water intake 

(36-38,40), whereas peripheral GLP-I administration inhibired water intake, but had no 

effect on feeding (37). However, a recent study found that acute central (via ICV) or 

peripheral (via sub-cutaneous) administration of GLP-1 or exendin-4 resulted in a reduction 

in food intake (for at lest  4 hr) in Zucket obese rats (440). Moreover, additional studies 

have shown that daily i.p. exendin-4 treatment can reduce short-term, but not long-term, food 

intake in rodents (69,72). [n both normal and type 2 diabetic humans, intravenous 

administration of GLP-1 was found to promote satiety and reduce energy intake (39.40). 

Although chronic ICV administration of exendin (9-39) increased feeding and weight 

gain in rats (41), we found no evidence for dysregulation of food intake or body weight in 



MT-Ex transgenic mice. The effects of exendin-4 on food intake may be related to the mode 

of exendin-4 delivery and the relative changes in the levels of systemic exendin-4. Rats 

treated with a single daily i.p. dose of exendin-4 exhibited no signiiicant changes in food 

intake or body weight after the nrst few days of exendin-4 administration, whereas twice 

daily exendin-4 dosing led to a more sustained reduction in food intake and body weight 

(69). in contnist, basai transgene expression of exendin-4 in MT-Ex mice was associated 

with a significant reduction in short term water intake. However, oniy induced, but not basal 

exendin-4 expression was associated with a significant reduction in short term food intake. 

These € i g s  have implications for future studies designed to deliver therapeutic levels of 

exendin-4 that promote nistained reductions in food intake and body weight over a long term 

treatment period. 

Several experiments implicate a role for exogenous exendin-4 in the induction of P- 

cell neogenesis and proliferatioa Treatment of pancreatic AR42J cells with exendin-4 

induced differentiation into insulin-secreting islet cells (59,  and exendin-4 stimulated P-ceil 

replication and neogenesis, enhanced ductal pdx-1 expression in the islets and improved 

glucose control in rats and mice (56,57). In contrast, we observed no differences in islet 

morphoiogy or P-ceil mass in normoglycernic MT-Ex transgenic mice. The finding of 

normal islet histology in MT-Ex tratisgenic mice may reflect the need for additional 

metabolic conditions, such as hypergiycemia, to promote islet neogenesis followuig 

activation of GLP-IR signaling. Akematively, ductal and islet celis chronically exposed to 

exendin-4 may compensate by downregulating the GLP-I R-dependent sigualing pathways 

leading to increased islet proIiferation. Taken together, our data suggest that mstained 



exposure to circuiating exendin-4 alone in normogiycemic transgenic mice is not suficient 

for induction of islet proliferation or neogenesis. 

To address the possibility that hyperglycernia or a diEerent mode of exendin-4 

delivery is required for induction of islet ce11 proliferation, we examined glucose regulation, 

pancreatic insulin content and islet histology in normal and diabetic mice treated with daily 

administration of exogenous exendin-4. Although a mal1 improvement in blood glucose 

was observed in exendin4treated diabetic mice, we did not observe any changes in islet 

histology after 10 days of exendin-4 administration. Hence, in contrast to the results of 

recent studies (56,57), our results from MT-Ex transgenic mice and exogenous exendin-4 

administration to diabetic rnice demonstrate that increased levels of exendin-4 alone are not 

sufficient to stimulate meaninfil changes in p-ce11 mass or islet neogenesis. 

As exendin-4 and long acting GLP-1 analogues have generated considerable interest 

as potentid therapeutic agents for the treatment of diabetes, several questions about the 

safety and efficacy of these molecules remain unanswered. Our analyses of MT-Ex mice 

demonstrate that aithough bioactive exendin-4 is liberated following transgene expression, 

sustained reductions in food intake or body weight, or induction of islet proliferation are not 

invariable consequences of continual exendin-4 expression in the mouse. Given the central 

importance of these biological actions for the potentid treatment of diabetes, MT-Ex mice 

represent a usehl new mode1 for andysis of the physiological consequences of long-term 

activation of GLP-I receptor signahg in vivo. 



Chapter S. Discussion and Future Directions 

Incretin hormones have proven to be essential regdators of glucose homeostasis. 

Studies utilizing GIPR-1- and GLP- 1 R-/- mice have indicated that the two most widely 

recognized incretin hormones, GIP and GLP-1, contniute to glucose lowering via both 

sirnilar and distinct mechanism. These findings are corroborated by our studies which 

utilized specific receptor antagonists to inhibit GIP and GLP-I action in vivo. Although our 

studies were Limited by the efficacy and tissue bioavailability of our receptor antagonists, the 

results obtained with exendin (9-39) and GiPR Ab treatment support the observations in the 

GLP-IR-/- and GIPR4- mice, respectively, by an independent approach. Thus, in addition to 

its role as an incretin, GLP-1 also has non-incretin effects that contribute to glucose lowering, 

including glycemic control by basal levels of circulating GLP-1 that is independent of the site 

of glucose enûy. In conûast, the role of GLP in glucose homeostasis appean to be restricted 

to its incretin function. 

The non-increth effects of GLP-1 on glucoregulation could be mediated by any one 

or a combination of its abilities to suppress glucagon secretion or enhance peripheral glucose 

disposal. AIthough previous studies have reported that GLP-1 has a direct, insulin- 

independent effect on glucose disposal in both normal and diabetic humans (50,s l), more 

recent studies do not support such a role for GLP- I (44 1,442). In addition, whole-body 

glucose utilization was similar in wild-type and GLP-IR-/- mice, tmder both basai and 

hyperiasuhemic conditions (29 1). Taken together, these studies indicate that GLP-1 likely 

does not regulate blood glucose levels by enhancing glucose uptake in peripheral tissues. 

Thus, the observed increase m the giucose excursion in response to exendin (9-39) treatment 

in our studies is lürely not due to an effect on glucose uptake in the periphery. 



Administration of exench (9-39) to humans or baboons results in elevations in the 

fasting leveis of both glucose and glucagon, indicating that basal levels of GLP-1 have a 

tonic inbibitory effect on glucagon secretion (282,283). Although we did not examine the 

effects of exendin (9-39) treatment on fasting glucose or glucagon levels, or on glucose- 

stimuiated glucagon secretion, it is possible that the increased glucose excursion that was 

observed in mice treated with exendin (9-39) could be due to loss of the inhibitory effect of 

GLP- 1 on glucagon secretion. However, GLP- I R-1- are reported to have normal fasting and 

postprandial glucagon levels (29 1). Our studies require the rneamrement of plasma glucagon 

levels in order to determine whether elevations in glucagon were responsible for the 

abnormal glucose excursion in response to exendin (9-39) treatment. One barrier to these 

experiments is that concurrent measurements of blood glucose, insulin and glucagon levels 

require considerable arnounts of blood and therefore it would be dificult to sirnultaneousIy 

measure al1 of these parameters in a srna11 animal. 

Despite a reported role for GIP and GLP-1 in the regulation of insulin gene 

expression and insulin biosynthesis in viim (1 63, 164,3 1 1,3 12), we found that inhibition of 

GIP- or GLP-1 receptor signahg had no effect on insulin &A levels or insulin 

biosynthesis. Although these results suggest that GIP and GLP-1 are not essential for insulin 

gene expression and biosynthesis in mice, it is aiso possible that our treatment period of 18 h 

was insutFcient to induce such effects. Thus, in order for us to observe changes in insulin 

gene expression and biosynthesis, a more protracted treatment with the receptor antagonists 

rnay be required. 

Since the results of our studies with the inmetin receptor antagonists parallel the 

findings in the GIPRJ- and GLP-1R-1- mice, firture studies aimed at c1-g the necessity 



of GIP and GLP-1 for glucose homeostasis would utiiize the GIPWGLP-1R double knock- 

out mouse, which is cunently being generated by our laboratory. The levels of fasting blood 

glucose, as weli as the glucose excursion and plasma insulin Ievels in response to oral and 

intraperitoaeai glucose challenges would be measured to determine if loss of both GIP and 

GLP- I receptor signaling produces additional perturbations in glucose homeostasis. 

A nurnber of reports have shown that DPP-IV-mediated regulation of incretin 

hormone activity has important consequences with respect to glucose homeostasis. 

Consequently, new anti-diabetic therapeutic strategies are directed at the synthesis of DPP- 

IV-resistant incretin analogues or the generation of compounds which inhibit DPP-IV 

activity. It has been established that DPP-iV is the prirnary enzyme responsible for the 

degradation and inactivation of GLP-1, and a nurnber of in vivo studies have shown that 

inhibition of DPP-IV activity is associated with increased levels of intact, biologically active 

endogenous GLP-1. However, the improved oral glucose tolerance and increased plasma 

insulin levels that we observed in GLP-IR-/- mice treated with val-pyr, a specific DPP-IV 

inhibitor, indicate that DPP-IV regulation of glucose homeostasis can be mediated by GLP-1- 

independent mechanisms. We suggested that the incretin hormone GP, also a substrate for 

DPP-IV proteolytic degradation, is likely involved in the non-GLP-1-mediated effects of 

DPP-IV inhibition. However, we also observed improved glucose clearance and elevated 

plasma insulin levels in val-pyr-treated GLP-1R-/- mice during an IPGTT. Since previous 

studies have indicated that GIP activity is not essentiai for clearing a nobenterai glucose 

Ioad, it is quite possible that the activities of other DPP-N substrates contriiute to the 

improved glucose tolerance and enhanced insulin levels in these rnice. A nurnber of insulin 

secretagogues, including PHI, V P  and PACAP, have been show to be (e.g. PHI) or are 



potential candidates (e.g. VIP, PACAP) for DPP-N-mediated degradation. It is possible 

that, üke GU?, the levels and activities of these additional peptides are also upregulated in 

GLP-1R-I- mice. Thus, the improvernents in glucose tolerance and insulin secretion in the 

val-pyr-treated GLP-IR4 mouse could be attributed to compensatory upregulation of other 

insulin secretagogues d o r  DPP- N-mediated enhanced insulin secretagogue activity. Until 

the levels of these other peptides are measured in val-pyr-treaied GLP- 1 R-1- mice, these 

inferences remain purely speculative. Future studies that would help to delineate the role of 

GIP in the mediation of GLP- 1 -independent DPP- IV-regulated glucose control would include 

an examination of the effects of DFP-IV inhibition in the GiPWGLP- 1 R doubIe knock-out 

mouse. Altematively, simultaneous treatment of CD264 mice with GiPR and GLP-1 R 

antagonists, prior to glucose tolerance tests, could provide insight as to the relative 

importance of GIP activity for GLP- 1 -idependent DPP-IV-mediated glucoregulation. 

The use of DPP-N inhibitors has been proposed as a treatment for type 2 diabetes. 

However, given that the incretin hormones are not the only substrates for DPP-IV proteolytic 

activity, and that, in addition to its role as a regulatory pmtease, DPP-IV functions as a 

binding protein and immune modulator, the use of agents that inhibit DPP-IV activity may be 

associated with adverse side effects in humans. Moreover, thus far, only short-term studies 

have been used to examine the effects of DPP-iV inhibition. Although the apparent 

healtbiness of DPP-NlCD26-1- mice and rats indicates that long-term dimptioa of DPP-iV 

activity is not associated with severe adverse effects, these animals may have tmdergone 

compensatory or adaptive changes in response to the loss of DPP-N activity during 

development. For example, DPP-N-deficient Fisher rats have been shown to have an 

unexpectedly normal glucose e x d o n  and insulin response to oral glucose, which couid be 



attniuted to the observed compensatory reductions in GIP secretion and pancreatic 

desensitization to the effects of GIP in these animais (423). Thus, additional shidies are 

wamted to assess the effects of long-term Uihibition of DPP-IV activity in vivo. For more 

protracted shidies, the DPP-IV inhiiitor pro-pro-diphenyl-phosphonate, which has a half-life 

of approx 8 days in rabbits (443), would Iikely be a useful reagent for evaluating the long- 

tenn effects (beneficial or adverse) of DPP-IV inhibition in vivo. 

As an alternative strategy to the use of DPP-N inhibitors, DPP-N-resistant GLP- I 

analogues are being developed as anti-diabetic therapeutics. To this end, exendin-4, a very 

potent and naturally occurring GLP-1 receptor agonist is currently being evaluated in clinical 

trials as a potential therapeutic agent for the treatment of type 2 diabetes. The long-tenn 

consequences of expression of a non-mammalian peptide was evaluated using out exendin4 

expressing transgenic mouse (MT-Ex). Induction of proexendin transgene expression in MT- 

Ex mice resuited in a signincant reductioo in the glucose excursion in response to both oral 

and intrapentoneal glucose challenges, thus mimicking the effects of GLP- L treatment. 

Similar to results obtained with GLP-1 treatment in rodents, transgene induction resulted in a 

significant reduction in short-term, but not long-term food intake in MT-Ex mice. However, 

recent studies examining the effects of daily peripherai injections of exendin-4 in rats have 

found that, although single daily doses of exendm-4 had no significant effect on food intake 

after the nrst few days of treatment, doubhg the dose of exendin-4 by administering the 

peptide twice a &y redted in sustained reductions in food intake and body weight. As MT- 

Ex transgene expression was induced ody for a perîod of 72 h pnor to our food intake 

anaiysis, it is possible that this amount of t h e  was not SUfEicieniIy long to elevate exendin-4 

to levels that wouid affect féeding behavior. 



In a recent study by Greig et al., once daily injections of exendin-4 to diabetic mice 

for a period of 13 weeks was able to achieve long-terni improvements in blood glucose and 

plasma insulùi levels, however there were no long-lasting effects on food intake or body 

weight (72). Similarly, we found no signincant merences in body weight in MT-Ex 

transgenic mice, relative to control littermates, even up to 20 wks of age. These findings are 

in contrast to the weight reduction observed in rats treated twice daily with exendin-4. Since 

the MT-Ex mice are not continuously maintained on drinking water siipplemented with zinc, 

it is possible that continuous up-regdation of MT-Ex transgene expression is required to 

produce the levels of exendin-4 that are necessary to promote weight reduction. 

Although recent studies have shown that exendin-4 c m  induce p-ceil neogenesis and 

proliferation in rats and rnice (56,57), we observed no differences in islet morphology or P- 

cell m a s  in MT-Ex mice, despite more prolonged (5-7 days) induction of transgene 

expression. Although the levels of circulating exendin-4 detected in MT-Ex rnice were 

sirnilar to levels of exogenous exendin-4 that were shown to reduce blood glucose levels in 

diabetic db/db mice (434), they are still lower than the amounts that were used in the above 

mentioned -dies in mice and rats. Thus, it is possible that the circulating levels of exendin- 

4 in MT-Ex mice were not SuffiCient to promote p-ce11 neogenesis and proliferation. 

Alternatively, the lack of effect of long-term exposure to exendin-4 on islet morphology and 

p-ce11 m a s  in MT-Ex mice could be due to compensatory changes in pancreatic islets and 

ducts as a r d t  of continuous exposure to exendin-4 during development. 

We also speculated that hypergiycemia may be re-d in order for exendùi-4 to 

stimdate sipnincant changes in f k e U  mass or isiet proliferation. Nonetheless, we did not 

observe any changes in islet histology folIowing 10 days of exogenous exendin-4 treatment 



in diabetic C57BU6 mice. For these studies we used a single high dose of streptozotocin 

whkh effectively eliminated virtually al1 of the fkeiis in these rnice. Thus, the diabetic 

mouse model used in our studies mers from the p d a l  pancreatectomy rat mode1 of type 2 

diabetes, in which 540% of the pancreas remains intact and exendh-4 treatment stimulates 

pancreas regeneration and P-ce11 neogenesis and proliferation (56). An alternative approach 

wodd be to examine the effects of exogenous exendin-4 treatment on rnice treated with a 

lower dose of streptozotocin, which should induce a milder form of diabetes and prevent 

complete loss of 8-cells. 

Future studies using the MT-Ex transgenic mouse model would include examination 

of the effects of in vivo exendin-4 expression, at both basal and induced levels, on other 

GLP- 1 -dependent parameters. Exogenous tmitment with either GLP- 1 or exendin-4 bas 

been shown to increase blood pressure and heart rate in rats, with the effects of exendin-4 

being more prolonged (218). If exendîn-4 is going to be used to clinically treat diabetes, it 

would be crucial to establish whether prolonged exposure to this peptide is associated with 

elevations in heart rate and blood pressure. Also, GLP-I signaling appears to be important 

for the neuroendocrine response to stress. Thus, it would be of interest to evaluate the effects 

of long-term exendin-4 activity on the hypothdamic-pituitary-adrenal axis. In addition, 

GLP-1 has been shown to stimulate insulin gene transcription and biosynthesis in vitro, and 

exendin-4 treatment was found to enhance pancreatic expression of the transcription factor 

IDX-l(56). IDX-I is required for early pancreatic development and also interacts with the 

insulin gene promoter to augment glucose-stimulated insuiin gene transcription (444). 

Hence, an observed upreguiation of insuIin a d o r  IDX-I mRNA levels in our MT-Ex mice 



would implicate an important role for exendin-4 in the regdation of insulin gene 

transcription in vivo. 

in conclusion, incretin hormones are potential therapeutic agents for the treatment of 

diabetes. Thus, it is essential to understand their precise physiological functions. It is also 

important to identify the factors that influence their degradation, so that more effective 

strategies can be developed to prolong their therapeutic activities. Additionally, because of 

potential toxic or adverse reactions, the effects of prolonged incretin exposure/treatment must 

be evaluated in our studies we have shown that the incretin hormones GIP and GLP-1 have 

differential roles in glucoregulation. Our results also raise the possibility that peptides other 

than GP and GLP-L may be important mediaton of glucose homeostasis. Finally, using a 

transgenic mouse model, we have shown that sustained GLP-1 receptor signaling, mediated 

by exendin-4 expression, is not associated with any apparent adverse effects. 



Attempts to Identify a Marnmaiian Exendin-4 Homologue 

Attempts to identify and clone a mammaiian exendin-4 homologue included several 

approaches: 

1) Northem blot analysis using the entire lizard proexendin-4 cDNA sequence as a probe to 

screen 5 pg of poly (A)' RNA nom a number of different mouse tissues (liver, pancreas, 

lung, hypothalamus, salivary giznd, adrenal gland) under low stringency conditions failed to 

detect any cross-hybridizing tninscripts. 

2) Several cDNA libraries (hurnan and mouse heart, human skeletal muscle, human 

pancreas, mouse spleen, mouse testis) were screened using the entire lizard proexendin-4 

cDNA sequence as a probe under low s t ~ g e n c y  conditions. These tissues were suspected to 

express an exendin4like transcript based on irnmunohistochemical analysis of mouse 

embryos using an exendin-4 antiserum. Although several hybridizing plaques were 

identined, subsequent purification and sequencing of these clones did not identify a 

mammalian exendin-4 homologue. 

3) The above mouse and human cDNA liraries were also screened by PCR and Southem 

blot analyses using degenerate exendin-4 oligonucleotides as primers. Using this approach, 

no mammalian exendin-4-like sequences could be identified. 
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