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ABSTRACT

STRATEGIES FOR APPLYING MARKER ASSISTED SELECTION IN NUCLEUS
BREEDING SCHEMES IN DAIRY CATTLE

Alessandra Stella Advisor:
University of Guelph, 2000 Gerald B. Jansen

The general goal of this thesis was to use simulation to examine practical issues
for marker assisted selection (MAS) of dairy cattle. Markers were used to select within-
family the bulls to enter progeny testing from a nucleus herd. The first study evaluated
the effects of considering a confidence interval of the position for a quantitative trait loci
(QTL) versus only the probable genotype at the predicted site of the QTL. The location
of the QTL was estimated by interval mapping with a granddaughter design. Accounting
for the confidence interval increased the response in all scenarios. The average true
breeding value (TBV) of the selected bulls was increased 2.60% when the confidence
interval was used, versus 2.00% when only the predicted location was considered. No
differences were observed with respect to how the confidence interval was estimated.

The second study compared strategies for repeated application of QTL detection
and MAS. Twenty QTL and 300 markers were randomly distributed across 30
chromosomes. A daughter design was used, every generation, to determine the
associations between marker and QTL alleles. Maximum response was achieved by

strategies that selected upon several markers flanking multiple QTL. The mean TBV of



selected bulls was increased by up to 12% when multiple loci were considered, versus
<7% when only the best marker was used.

The third study examined MAS when the selection goal included two traits. Trait
1 had an economic weight and heritability three times greater than trait 2. Multiple trait
MAS was comparéd to applying MAS for trait 1 only and conventional selection alone.
Multiple trait MAS decreased response for trait 1 relative to both single trait MAS or
conventional selection. However, response for trait 2 increased to a greater degree and,
therefore, response for the final index was greater. This result was consistent whether the
traits were positively or negatively correlated.

The final study examined how different assumptions about the underlying genetic
model affected the long-term response to MAS. Models differed in terms of mutation rate

and distributions of allelic effects and frequencies. The use of MAS was beneficial

regardless of the genetic model.
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1. General Introduction.

Many studies have examined the possible benefits to be gained in selection
accuracy and response by applying technologies such as the nucleus herd (e.g. Nicolas
and Smith 1988) and marker assisted selection (MAS) (e.g. Meuwissen and Goddard,
1996). The dairy industry is now beginning to adopt these technologies. The general
focus of this thesis was on the use of MAS in the dairy industry. Specifically, several
practical issues about the application of MAS when selecting young bulls to progeny test
within nucleus herd of dairy cattle were addressed. Kashi et al. (1990), Mackinnon and
Georges (1997) and Spelman and Garrick (1998) have already laid the groundwork and
examined many of the general issues related to the application of MAS within the dairy
industry. This intention of this work was to build upon those studies. All of the
investigation was performed by using computer simulation.

One of the major issues examined was how to use the information from
quantitative trait loci (QTL) detection and location experiments to select animals most
efficiently. This question was investigated for both granddaughter and daughter designs
and single and multiple trait selection goals. Another issue examined was the
sustainability of response in MAS programs over several generations, relative to

conventional selection. Finally, the sensitivity of simulation results to different genetic

models was examined.

This thesis is divided into eight chapters:



Chapter One is a general introduction that outlines the general focus of the thesis

and briefly explains the contents of each of the remaining chapters.

Chapter Two specifically states the basic objectives of the four different

experiments undertaken.

Chapter Three is a review of the previous literature that is most pertinent for the
practical aspects of MAS in dairy cattle. In addition, Chapters Four through Seven each
include an introduction that provides further detail about previously published work that
pertains specifically to each study. Comments and comparisons about these studies are

also included throughout the four chapters, primarily in the Discussion sections.

Chapter Four examines issues related to the application of results from a
granddaughter design to MAS of young bulls. Specifically, the efficacy of using a
confidence interval to account for uncertainty in the location of a single QTL was
investigated. Different approaches to estimate this confidence interval are proposed,

implemented, and compared.

Chapter Five compares strategies to use full genome scans for MAS. A daughter
design is used for estimation of marker effects. The different strategies vary in the
number of markers used and their respective genomic locations. The effectiveness of
MAS over several generations is also examined in the context of genetic response and

accuracy of marker-QTL associations.



Chapter Six applies the most effective approaches from Chapter Five to MAS
with a two-trait selection objective. Two strategigs of selection are proposed and
response to each is compared to conventional and single-trait selection. The experiment
is applied to selection goals with negatively and positively correlated traits and traits that

affect fitness.

Chapter Seven compares maintenance of genetic variance and response to MAS
for a variety of genetic models. Genetic models differ in terms of the distribution of
allelic effects and frequencies, number of segregating loci and mutation rates. A model
for which genetic variance is maintained for 100 generations is proposed and benefits of

MAS in the long term are evaluated for this model.

Chapter Eight is a general discussion that briefly summarizes the key results and
conclusions from each of the preceding four chapters and proposes new studies that could

be done to build upon the work presented in this thesis.



2. Objectives

The aim of this study was to develop strategies for the integration of marker assisted
selection (MAYS) in a nucleus breeding scheme in dairy cattle. Previous studies in the
application of MAS have, for convenience, been restricted to relatively simple designs for
implementation. The objective of this study is to investigate how the benefits of MAS
are affected when more complex applications are considered.

The major objectives were as follow:

1. Determination of the optimal information used to track the transmission of the
potential quantitative trait locus (QTL). In particular, the study evaluated whether the
efficacy of MAS, in situations where the position of the QTL is uncertain, could be

improved by considering a confidence interval of QTL position.

2. Development and comparison of several strategies for long-term application of MAS

to dairy cattle nucleus breeding schemes.

3. Analysis of the efficiency of MAS for a two trait breeding objective with different

methods to account for marker information.

4. Evaluation of the effects of different genetic models on results of MAS studies.



3. Literature review.

3.1 Introduction.

Dairy livestock, like many other domesticated species, have undergone selection
for a number of generations and for a variety of different traits of economic importance.
Most of these traits are quantitative in nature, i.e. their continuous variation is assumed to
be the result of the effects of an unknown but large number of genes and influenced by
environmental factors. The great achievements produced by selection in recent decades
have relied on phenotypic measurement and pedigree recording under the general
framework of the infinitesimal model (Falconer and Mackay, 1996). Based on this
model, statistical tools to predict individual breeding values accounting for the non-
genetic nuisance factors have been fully developed and applied (i.e. Best Linear Unbiased
Prediction, BLUP, Henderson, 1984). The infinitesimal model describes the individual
genetic merit as the sum of small effects contributed by a very large (effectively infinite)
number of genes equally spread throughout the genome. The model implies that each
chromosome or genomic region has equal importance in determining the individual
genetic superiority or inferiority and no special value can be associated to a specific
segment of DNA. As a consequence, covariances between animals are fully described by
simple pedigree relationships.

The polygenic model described above can be extended to a mixed inheritance
model by including the effect of one or more major genes. Developments in molecular
genetic techniques have made it possible to identify differences between individuals at

the DNA level. In the last decade, several major collaborative projects have started to



map an increasing number of genetic markers in the genomes of different livestock
species (e.g. Barendse et al., 1994; http://www.ri.bbsrc.ac.uk/pigmap/ecpigmap.htm| accessed

May 2000; http://bos.cvm.tamu.edu/bovarkdb.html, accessed May 2000; and

http://www.genome.iastate.edu/chickmap/, accessed May 2000). Such genetic markers have

provided the ability to track the inheritance of linked segments of the genome in suitable
pedigrees. By following a large number of markers spread approximately evenly
throughout the genome, in appropriate pedigrees, it is possible to identify the major
quantitative trait loci (QTL) influencing variation of a quantitative trait of economic
relevance in a specific population.

Once a genomic region is detected where a QTL is segregating, marker-assisted
selection (MAS) can be implemented to accelerate the genetic gain otherwise achievable
through conventional selection programs. Information on individual genes with effects
on quantitative traits can affect the genetic gain by affecting selection intensities,
accuracy of selection and generation interval. In conventional breeding schemes the
generation interval is increased by the need for phenotypic records for each individual. If
the genes and their effects were known, typing of animals at DNA the level at an early
age would make it possible to reduce generation interval. Moreover, BLUP methods do
not account for the actual contribution of a parent to an offspring and, thus, full-sibs with
pedigree information only will have the same estimated breeding values (EBV). In dairy
cattle breeding, to reduce inbreeding and risk, a limited number of full sibs should be
selected and this selection can only be at random until phenotypic data is obtained. If
information on genes was available, it could be possible to differentiate among EBV of

full sibs and increase selection accuracy (Stam, 1987; Kashi et al., 1990; Meuwissen and



Van Arendonk, 1992; Bovenhuis and De Boer, 1994). Because selection response is a
function of the accuracy of selection, information on QTL will be particularly
advantageous when accuracy is low or when used in novel stages or new pathways of
selection (Gomez-Raya and Gibson, 1993). Selection for traits with low heritabilities or
presenting other difficulties (e.g. expense for recording or sex-limited expression) can
take major advantage of information from molecular genetics (Smith and Simpson,
1986).

Based upon observation of current populations, a reasonable assumption is that
most of the traits of interest in animal breeding are controiled by a relatively large
number of loci, each with a small effect, and only a small number of loci with a large
effect (Shrimpton and Robertson, 1988). Therefore, traditional selection methods will
probably not be replaced by molecular genetics, but an integration of the two selection
methods could be beneficial to the selection response.

The benefits of molecular genetic information will not be limited to the use of
genetic markers to aid selection within a population. Genetic markers can also be used to
help introgress an interesting gene from one population to another (Groen and Smith,
1995). Results from QTL studies can also provide a better understanding of the mode of
inheritance of traits of interest (e.g. the callipyge gene as descvribed by Cockett et al.,
1996). The final aim of identification and positioning of genes affecting quantitative traits
is the cloning of the gene of interest (Oliver, 1996), to perhaps be transferred into the

genome of another species.

3.2 Genetic markers



The ability to undertake large-scale QTL studies depends strongly upon the
~ development of genetic markers, whose technology is moving at a very fast pace.
Required characteristics of marker loci are: 1. being evenly distributed in the genome, in
order to be able to produce complete maps, 2. being highly polymorphic and being co-
dominant to provide the maximum information with respect to the diversity among
individuals, 3. being neutral with respect to traits of interest and fitness (for QTL
mapping), 4. being reliable and repeatable, and 5. being easy to automate and low cost
(Falconer and Mackay, 1996). The information content of a marker is relevant within the
context of its use and relates to the level of polymorphism (number and frequency of
alleles) and the ease with which the allelic information can be retrieved, both in terms of
identification and of assigning alleles to the loci.

Restriction fragment length polymorphisms (RFLP) were initially the
predominant DNA markers. More recently, many other types of markers such as
minisatellite, microsatellite, randomly amplified polymorphic DNA (RAPD), amplified
fragment length polymorphism (AFLP), single stranded conformational polymorphism
SSCP and single nucleotide polymorphism (SNP) have been implemented and widely
used. In the current maps for livestock, microsatellites are the prevalent markers. The
marker density achieved to date in the cattle maps is approximately 1 marker per cM

(http://bos.cvm.tamu.edu/bovarkdb.html, accessed May 2000). However, molecular studies

on the human genome have suggested an average density of 1 polymorphism per 1000
base pairs (Chakravarti, 1999). If so, the potential exists to increase the marker density

by about 1000 times in the livestock maps. Most polymorphisms are likely the result of



single base-pair changes in DNA sequence (SNP). In the near future, DNA arrays and
DNA chips are expected to allow rapid genotyping of a large number of individuals for

thousands of polymorphic loci (Visscher and Haley, 1995; Hacia, 1999).

3.3 Mapping QTL

Information from phenotypes and marker genotypes can be used to pinpoint
chromosome areas responsible for part of the genetic variation for a given trait. Two
main approaches have been applied to map QTL: analysis of candidate genes and genome
scans.

The candidate gene strategy relies on identifying polymorphisms in genes with
functions that relate directly to the trait of interest. Association between the candidate
polymorphism and the trait is determined on the basis of population-level linkage
disequilibrium, provided that the sample of genotyped animals is truly representative of
the general population. The advantage of this strategy is that it directly exploits the
association in the breeding population and that the segregating gene is directly identified
(Rothschild and Soller, 1997). Moreover, the candidate gene approach can be combined
with positional information on a genetic or physical map, which then provides a solid
base to identify the putative gene. The candidate gene analysis has been successfully
applied to livestock. Examples are studies on litter size in swine (Rothschild et al., 1996),
double muscling in cattle (Grobet et al., 1997) and porcine stress syndrome in swine

(Fujii et al., 1991).



Genome scans using anonymous markers have been widely used to map QTL in
livestock (e.g. Andersson et al., 1994; Georges et al, 1995) and they are considered the
most reliable and effective technique by many (Haley, 1999). The detection of a QTL
through its linkage with a marker requires linkage disequilibrium between the QTL and
the marker. Many experimental designs can be used with the genome scan in QTL
mapping studies and the most suitable approach is dependent upon the species
characteristics (physiology, family structure, breeding strategy such as crossbreeding or
outbreeding) and to the»industry structure (Soller and Medjugorac,1999).

In swine, most of the current studies on QTL mapping are based on crosses (F2 or
backcross) of highly divergent parental populations, with respect to the trait of interest
(Andersson et al., 1994; Andersson et al., 1998; Knott et al., 1998; Roher and Keele,
1998, De Koning et al., 1999). The advantages of experiments for QTL detection based
on crosses include the likelihood of QTL segregation, the power of detection of the QTL
and the simplicity of the statistical analysis. However, a limitation of the designs based
on crosses of lines is that the power of detection of QTL segregating within either of the
parental populations is low. In contrast, experiments based on information from an
outbred population can reveal the presence of QTL of direct relevance to the population
under study.

Within an outbred population, recombination decreases linkage disequilibrium
between genetic markers and QTL over generations and, therefore, the information is
usually not often useful at a population basis. However, within families even loose
linkage between marker and QTL will cause linkage disequilibrium. The basic principle

underlying identification of QTL in an outbred population can be simplified as follows.

10



If an individual is heterozygous at a marker locus and at a linked QTL, then,
recombination excepted, offspring receiving a particular marker allele from the individual
will also tend to receive the corresponding allele of the linked QTL. Individuals are
scored for their genotype at the marker locus and their phenotype for qﬁantitative traits.
If a difference exists in the mean phenotypes among marker genotype classes, based on
the allele inherited from a common ancestor, then the presence of a QTL linked to the
marker can be inferred. Marker loci can be considered singly or jointly, with single or
multiple analyses.

In dairy cattle, crosses are not commonly produced commercially and, when
made, they are time consuming to generate due to the long generation interval. However,
the breeding structure of the most common populations of dairy cattle (e.g. Holstein)
provides a good source of accurately recorded information for QTL detection. A QTL
mapping experiment in an outbred population is usually based on information for
genotypes from two generations of animals (parents and their offspring) and phenotypes
recorded on the offspring or on their respective progeny.

In 1990, Lande and Thompson proposed a method to associate phenotype to
marker information. A multiple regression of phenotype on the number of copies of a
given marker allele was performed. In order to avoid bias due to the overestimation of
marker effect, they suggested re-estimation for the most evident effects.

The daughter design has been proposed in several studies on QTL detection in
dairy cattle (Kashi et al., 1990; Weller et al., 1990; Meuwissen and Van Arendonk,
1992). The flow of information in this design can be described as follows. The marker

effect of an elite sire is estimated by using information on daughters. The sire and the

11



daughters are scored for their genotypes and the performance of daughters is recorded.
Data from this design can be analyzed with a multiple regression model (Meuwissen and
Van Arendonk 1992). Markers are then traced (if possible) to the grand offspring of the
elite sires, which are assumed to have segregating markers linked to the QTL. Weller et
al. (1990) introduced the use of a granddaughter design for the detection of marker-QTL
associations in dairy cattle. With this design, sons of the heterozygous sire are scored for
their genotype at the genetic marker and the granddaughters are evaluated for the
quantitative traits. Records of granddaughters are then regressed on the genotypes of the
sons. Weller et al. (1990) calculated the statistical power of the design and compared it
with the daughter design as a function of heritability, size of the QTL effect and family
structure.

Results for power calculations (based on a chi-square analysis of the linkage
between marker and QTL) showed that, for a given number of animals scored in the
daughter design, power decreased with more sires and fewer daughters per sire. The
power of the granddaughter design increased with the number of grandsires, sons per
grandsire, granddaughters and size of gene effect. In addition, the granddaughter design
was shown to require fewer marker assays than did the daughter design for equivalent
power. This advantage of the granddaughter design was later shown to decrease with the
increase of the QTL effect (Van der Beek et al., 1995) because conventional selection is

very effective on such alleles. One disadvantage of the granddaughter design is the extra

generation of selection.

In conclusion, the power of an experiment to detect linkage between the marker

and the QTL depends upon the recombination rate between these two loci, the number of

12



informative individuals for the marker, the heritability of the trait, the size of QTL effect
and the frequency of alleles at the QTL. Using flanking markers instead of single
markers reduces the number of uninformative families and offspring (Jansen, 1989; Van
Arendonk et al., 1994a).

Coppieters et al. (1999) suggested that by accounting for all genetic relationships
among sires and sons, rather than treating the sires as unrelated and ignoring material
relationships among the sows, the power of a granddaughter design can be increased.

For dairy traits, another interesting approach to QTL detection and mapping is
selective genotyping (Darvasi and Soller, 1992). Some traits are routinely recorded at a
relatively low cost. All individuals may then be scored for a single trait and only a subset
of them may be genotyped. The basic idea is that individuals with extreme phenotypes
(in the extreme ends of a normal distribution) are more informative than the ones with a
score around the mean. This strategy can provide a large increase in power for a fixed
number of genotypings (Darvasi and Soller, 1992). The statistical model used for
analysis of selective genotype data must correct for the sampling bias.

The use of new markers, such as SNP, may provide in the future the possibility
for linkage disequilibrium mapping (Haley, 1999). With a very dense marker map,
marker loci and genes of interest are non-randomly associated across the population and
not only within family (Lynch and Waish, 1998). Linkage disequilibrium can be used to
fine map QTL in dairy cattle. Using the popular linkage methods and current populations
of livestock, estimates of QTL location lack precision. Often the confidence intervals for
QTL location are 20 to 30 cM (Riquet et al., 1999). The major obstacle to decreasing the

support area of the QTL location is the typical family size in livestock species.

13



Recombination is obviously relatively rare within regions very close to a QTL and
recombination is necessary to perform precise positional mapping to precisely localise a
QTL. Single families are typically not large enough to have experienced enough random
recombinations to localise the QTL in a small region. Although increasing family size is
biologically possible, particularly in dairy cattle with artificial insemination, it is not
economically justified. Therefore, a more feasible approach has been to increase the
family size by redefining the family. A larger family can be formed by grouping the
tested individuals descending from a past common ancestor and sharing genes through
identity by descent. Rather than creating more offspring from a single individual, related
individuals that seem to carry a similar QTL allele can be grouped and their pedigrees
traced to find a common ancestor several generations previous. Then these related
individuals can be genotyped for several markers spanning an interval in the imprecise
QTL support region and the small region shared by all individuals may be identified as
the most likely location of the QTL. Such a practice has been applied by Riquet et al.
(1999) to dairy cattle. They were able to apply this technique to a family of 7 sires and
fine map a QTL to within a region of 5 cM. Recently, furthermore, unexpected high
levels of disequilibrium between pairs of markers, have been shown in a genome-wide
scan in the Holstein population (Farnir et al., ZOOQ).

Quantitative trait loci with an effect on production traits have been mapped to
different chromosomes, in some cases with overlapping results in different studies (e.g.
Georges et al., 1995; Spelman et al., 1996; Ashwell et al., 1997; Coppieters et al., 1998;

Lipkin et al., 1998; Kuhn et al., 1999; Velmala et al., 1999). Studies have demonstrated

14



the existence of QTL for health and conformation traits (Vilkki et al., 1997; Zhang et al.,

1998; Spelman et al., 1999; Schrooten et al., 2000).

3.4 Statistical methods.

A variety of statistical methods is available for mapping QTL in cattle. The
choice of one method over another depends upon the data structure in the experiment,
computational constraints and assumptions on the distributions.

The simpler methods are the ones based on (multipie) linear regression (Haley
and Knott, 1992; Zeng, 1993; Spelman, 1996; Uimari et al., 1996). The interval mapping
based upon least squares is a relatively straightforward method that can be applied either
across the population (Haley and Knott, 1994) or within family (Knott et al., 1996; 1997).
These methods include fixed regression and iteratively re-weighted regression (Dentine
and Cowan, 1990). This regression method is computationally efficient, robust and,
because of its simplicity, allows performing data permutation to determine genome-wide
significance thresholds (Hoeschele et al., 1997). An added advantage is that standard
software packages can be used. The method also allows for multiple QTL analysis
(Jansen, 1993), multiple trait analysis (Knott and Haley, 2000) and composite interval
mapping (Zeng, 1994). The main drawback of the regression methods is that, due to the
approximations involved (e.g. unrelated parents), their use is limited to certain designs
and population structures, such as large half-sib families.

Maximum Likelihood analysis has also been applied to half-sib designs in outbred

populations, using assumptions similar to the ones for least squares methods (Lander and
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Botstein, 1989; Weller, 1986; Bovenhuis and Weller, 1994; Mackinnon and Weller,
1995).

Restricted Maximum Likelihood (REML) based on the mixed model, in contrast
to least squares, allows incorporation of full pedigree information to perform variance
component estimation (Femando and Grossman, 1989; Goddard, 1992; Van Arendonk et
al., 1994a and 1994b; Grignola, 1996). The method uses marker information to estimate
identity by descent (IBD) relationships between individuals at a given point of the
genome. Using REML, the relationship matrix is used to calculate the variance due to
the specific point in the genome as well as the remaining polygenic effect. For instances
when the data includes many pedigrees, markers are not fully informative, or some
individuals in the pedigrees are not genotyped, the computational demand is very high.
Monte Carlo Markov Chain methods may be used to decrease memory requirements for
calculating the IBD coefficients at a given position of the genome when dealing with
complex pedigrees (Bink and Van Arendonk, 1999).

The Bayesian analysis is the most flexible approach and can account for
multilocus marker-QTL genotypes and the variable numbers of QTL on each
chromoso.rne, as well as different models for QTL variation (biallelic or multiallelic)
(Hoeschele and van Raden, 1993; Janss et al., 1995; Hoeschele et al., 1997). This general
approach also provides exact posterior variances and covariances among parameters and
exact confidence intervals. However, computational limitations make the application of
this approach difficult.

A somewhat controversial issue surrounding the detection of potential QTL is the

definition of the significance level at which to declare confidence in the presence of a

16



QTL. A common approach in nearly all fields of science is to apply nominal rates of
significance as if only a single experiment was performed. However, most QTL
detection experiments involve many individual significance tests. Often analyses are
applied to a number of different marker loci, on several chromosomes, and within several
families. The experiment is often repeated for multiple traits. If one performed a study
on three traits, for five loci, on each of three chromosomes, in four half-sib families, then
a total of 180 different tests would be applied. If a nominal significance level of 0.05 was
used and the tests were assumed to be independent, one would expect to observe nine
significant results, even in the absense of QTL effects.

If one can assume that the tests are independent, then the standard Bonferroni
correction can be applied. With the Bonferroni correction, if an overall significance of «
is desired across n tests, then a significance rate of approximately a/n can be used to
account for multiple testing (Lynch and Walsh, 1998).

The multiple tests are rarely independent, however. Markers are often linked
together on the same chromosome and traits are often genetically related. The
application of a Bonferroni correction would be excessively conservative in such
instances and would decrease the power of QTL detection. Lander and Kruglyak (1995)
developed the theory for an adjustment to significance levels based on Chi-square
statistics that accounted for multiple tests with markers on the same chromosome.

Another approach that requires fewer assumptions is the permutation test
(Churchill and Doerge, 1994). This test involves repeatedly (thousands of times)
shuffling the phenotypic values for a fixed set of genotypes and recording the resulting

significance tests. Experiment-wise significance levels can then be chosen empirically
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based on the distribution of the significance tests. This approach automatically accounts
for factors such as missing markers and non-random segregation of marker alleles (Lynch
and Walsh, 1998).

A variation of the permutation test can also be used to establish significance tests
for multiple correlated traits (Georges and Coppieters, 2000). This approach is based on
establishing an "effective" number of traits and using that value as » in a Bonferroni
correction. This approach involves shuffling all trait values for individuals into one of
two abritrary "treatment” groups and using a t-test to determine the significance of the
treatment effect. The effective number of traits (e) is then determined by solving the
following eqﬁation fore:

ne/N=cf
where n,, is the number of permuations that exceed (for all traits) the threshold associated
with the desired significance level o and N is the total number of permutations.

The choice of significance levels to use rﬁay depend upon how the information
from the QTL detection experiment is to be used. If the goal is to identify chromosome
segments for fine mapping, then a stringent threshold may be desired, to help avoid
wasting resources searching for a non-existent QTL. For MAS, applying intermediate

thresholds may yield the greatest genetic response (Spelman 1996) by avoiding type II

CITOIS.

3.5 Application of marker-assisted selection to dairy cattie.
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Two main strategies have been outlined in the literature for the implementation of
MAS in dairy cattle.

The first strategy proposes that selection decisions be made on breeding values
that combine QTL and polygenic components. Several studies have shown how
information on a single marker can be used in a mixed model analysis by fitting additive
effects for alleles at a QTL linked to the marker and additive polygenic effects for alleles
at remaining quantitative trait loci (Femando and Grossman, 1989; Goddard, 1991;
Goddard, 1992; Van Arendonk et al., 1994a, Hoeschele et al., 1995; Kinghorn and
Clarke, 1997). In 1989, Fernando and Grossman first presented a technique to include
the information provided by a single marker closely linked to a QTL into the mixed
model equations. Their model includes the usual covariances between the additive
effects of the animals for polygenic background (additive genetic relationships), and a
variance-covariance matrix between additive effects of marked QTL alleles. For this
gametic relationship matrix the recombination rate between marker and QTL, i. e. the
exact position of the QTL, is required. As pointed out by the authors and later by Van
Arendonk et al., (1994a), in this model the number of equations can be very large.

With the large number of anonymous markers currently available, in practice
several traceable markers could well flank a putative QTL. Goddard (1992) extended the
model to flanking markers and Ruane and Colleau (1995) introduced the possibility of
double recombination events. In these models, covariances between bracketed QTL
alleles can be described just as the relationships between animals determine the usual
relationship matrix (A). This approach has been subsequently developed by Meuwissen

and Goddard (1996) and used for different purposes by Spelman and Bovenhuis (1998).
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Meuwissen and Goddard (1996) assume that the inheritance of a bracketed QTL follows
that of the marker haplotype, neglecting double recombination, and do not attempt to
define the position of the QTL. They also noted that their gametic relationship matrix
was easily inverted using Henderson’s rules. The number of equations of their model
depends on the recombination rate of the marker haplotype, but is still beyond the
number of animals (approximately 3 times the number of animals).

An interesting alternative approach that reduces the number of effects in the
model to an animal level was presented by Nejati-Javaremi et al. (1997). They suggest
that, if all the QTL affecting a trait were known, a total allelic relationship matrix could
replace A in the mixed model equations. The definition of a total allelic relationship
coefficient between animal i/ and ; is twice their coancestry (Malécot, 1984) and defines
the probability of identity in state rather than identity by descent of the genes. As a
consequence, the total allelic relationship matrix is trait-specific and traces relationships
also among unrelated animals. The idea is related to the concept of identical by descent
coancestry conditional on marker genotypes originally introduced by Chevalet et al.
(1984) and later described by Ollivier (1998).

In the near future, relationship information based on marker genotypes or
haplotypes will replace the standard additive relationship matrix and genomic
information will impact the infinitesimal model. Ultimately a unified model can be
envisaged where different genomic regions have appropriate weights to the variance they
explain (Haley and Visscher, 1998; Pagnacco and Jansen, 2000).

In most of the studies where genomic information is included in genetic

evaluation, all animals have generally been assumed to have genotypic information.
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However, in most likely scenarios for MAS, marker genotypes will be available only on a
limited number of individuals. Therefore, some procedures have been proposed (Wang et
al., 1994; Van Arendonk et al., 1994a; Bink et al., 1998; Bink and Van Arendonk, 1998)
that allow the inclusion of information from animals with unknown genotypes.

The second strategy includes selection de;:isions first made on conventional
BLUP breeding values followed by within family decisions on QTL information (Kashi
et al., 1990; Meuwissen and Van Arendonk, 1992).

The first MAS strategy is technically more demanding, but also provides,
theoretically, a superior genetic response. The inclusion of QTL information in the
breeding value estimation, in fact, results in more accurate estimation and, therefore,
higher selection differentials. However, the dairy industry has hesitated to rely on this
first strategy. This indecision is probably due to a number of reasons. First, and most
obviously, genotyl;ing is expensive and, therefore, scoring of only a small fraction of the
population can be justified financially. Also, the risk of such a strategy probably seems
high, because different studies have reported very different results. Smith and Smith
(1993) and Spelman and Garrick (1997) demonstrated the risk of reduced genetic
response (compared to conventional selection) that could result from MAS when the
marker information is inaccurate. On the contrary, Van Arendonk et al. (1994b) found
that this risk is relatively small.

Gibson (1994) showed that maximum accuracy selection, when the genotype is
known, yielded more short term response, but lower long term response than did a control
selection where the genotype was unknown. This reduction occurred because both types

of selection eventually fixed the positive allele and achieved the maximum response at

21



the QTL. However, maximum accuracy selection reduced the pressure on polygenic
selection, resulting in a lower long-term gain.

Over the past ten years many studies have used simulations to examine the
efficiency of MAS in dairy cattle. Although these studies have consistently shown
increased responses where MAS has been applied, the estimated benefits of MAS have
varied greatly from study to study. Ruane and Colleau (1996) assessed a superiority of
MAS of up to 15% more genetic progress. Mackinnon and Georges (1998), and Spelman
and Garrick (1998) found that the genetic level of selected bulls was respectively 10 and
up to 9 percent higher when MAS was applied.

The main reason for these differences is the difficulty in creating a simulation that
is general enough to mimic and apply to all dairy cattle breeding schemes. Also, the true
genetic model is unknown and the parameters used to simulate the underlying model
have varied greatly. Spelman (1998) analysed the major determinants of the variability in
estimates of genetic response from MAS.

The first major difference among studies has been in describing the distribution of
the alleles of the QTL. Many studies have assumed a di-allelic genetic model (e.g. Ruane
and Colleau, 1996; Villanueva et al., 1999). Others have simulated many alleles (e.g.
Mackinnon and Georges, 1998; Spelman and Garrick, 1998). Responses with the di-
allelic model have generally been less, particularly when more than one generation was
simulated, because the population quickly approached fixation for the favorable allele,
decreasing variance at the QTL. Even among instances where multiple alleles were
simulated, the distributions of the alleles differed. Spelman and Garrick (1998) simulated

alleles that were normally distributed and Mackinnon and Georges (1998) simulated
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alleles with a double-exponential distribution. Also, the va.riancie of the QTL effects has
differed both across and within studies. Response to MAS has been greater for simulated
genotypes with greater variability among alleles at the QTL.

Furthermore, with more animals genotyped in each generation and multiple
generations considered, the increased accuracy of estimation of the QTL effect increased
the advantage of MAS (Meuwissen and Goddard,‘ 1996; Spelman and Van Arendonk,
1997). Lastly, the number of years or generations of simulated selection influences the
MAS superiority. Superiority of MAS decreases over generations as the variance at the
QTL decreases. This explains differences in the results of studies considering only one
generation (Kashi et al., 1990; Mackinnon and Georges, 1998) from studies that have
used MAS over several generations, accounting for reduction in QTL variance (Ruane
and Colleau, 1995 and 1996).

Kashi et al. (1990) provided a theoretical analysis of the advantages of MAS on
young bulls prior to entering the progeny testing. They assumed that di-allelic (DA) and
poly-allelic (PA) markers linked to a QTL were mapped and evaluation of elite sires was
used to estimate the marker-QTL association. Candidate bulls were selected, prior to
progeny testing, on information on marker alleles derived from the elite sire. The
analysis considered the possibility of recombination between marker and QTL and the
number of marker-QTL couplings identified in an elite sire that can actually be traced to
the grandson (i.e. the candidate bull). The MAS on candidate bulls was performed using
an index (I = P - Z), which represented the difference between the number of marker
alleles (or haplotype) associated with favorable QTL alleles and those associated with the

unfavorable ones. Resulits obtained by Kashi in the study showed that the statistical
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power of detection of a marker-QTL association increased with the number of dams and
with the number of QTL assumed. The MAS on candidate bulls based on a single DA
had a negligible effect on the rate of genetic gain. Significant increments were obtained
when QTL were detected by use of a single PA marker, a haplotype of DA markers or,
most effectively (20-30% higher than other schemes), a haplotype of PA markers.
Analysis at a cost level showed an advantage for the use of PA markers or marker
haplotypes over single markers.

Spelman and Garrick (1998) compared two within-family MAS schemes in terms
of genetic progress and economic return, using a stochastic simulation. Schemes were
identified as top-down (a granddaughter design) and bottom-up (daughter design).
Different reproductive rates on the female were used: 1, 3 and 40 progeny per female
were considered in order to simulate aritificial insemination (AI), multiplue ovulation and
embryo transfer (MOET) and in-vitro embryo pick-up (IVEP). The top-down scheme
provided no improvement in genetic gain (compared to the scheme where no account was
taken of marker information) when only one offspring was produced. However, with 3
and 40 offspring per dam, the genetic gain using a top-down scheme increased by 1 and
2%, respectively. The bottom-up scheme provided increased (ranging from 1 to 5%)
response in each of the reproductive situations. Spelman and Garrick (1998) also studied
the possible benefits of tracking the QTL in the maternal path. The increased amount of

information provided by this procedure increased response up to a total of 9%.

3.5 MAS in dairy cattle nucleus schemes
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As stated before, markers used within families allow for determination of which
of the two parent chromosome segments was inherited by an individual. In this way,
marker information explains part of the single parent’s Mendelian sampling variance
(Dekkers and Dentine, 1991). This knowledge can be particularly useful in breeding
schemes characterized by short generation intervals, such as juvenile MOET nucleus
schemes, in which selection among full sibs is inaccurate or random.

In the study by Meuwissen and Van Arendonk (1992), a deterministic model was
implemented to assess the value of MAS in progeny testing, and open and closed juvenile
nucleus schemes in dairy cattle. Marker-QTL associations were found by multiple
regression of performance data on the number of copies of marker alleles present for all
marker loci (where marker effect was considered as random). They assumed that
equidistant markers were available on each chromosome and simulated a cluster of
closely linked QTL. The QTL effects could potentially explain all the genetic variance.
Within family linkage disequilibria were used so that, by tracing markers from grandsire
to grand-offspring, deviations of grand-offspring records from their full-sib family means
were predicted. The fraction of the within family variance explained by the markers
ranged from 4.1 to 13.3%, with the maximum corresponding to higher number of dams
and minimum marker distance.

Prediction of within family genetic deviations gave a negligible contribution to
genetic gain in progeny testing schemes, where most of the information on the candidate
comes from individual and progeny performance. In nucleus schemes, where selection is
based upon pedigree information, genetic gain increased from 9.5% to 25.8% and from

7.7% to 22.4% in open and closed nuclei, respectively. Although genetic gain increased,
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the variance of the gain was also stable with use of MAS, meaning that MAS could help
decrease risk. The use of MAS, in fact, reduces the probability of selecting relatives and
reduces inbreeding. Ruane and Colleau (1996) calculated the effect of MAS on
inbreeding coefficients for loci neutral with respect of the trait of interest (from the
relationship matrix) and for the QTL (from number of individuals with QTL alleles
identical by descent). Inbreeding coefficients were always much higher at the QTL than
at the neutral loci. Restricted selection of full brothers, although decreasing inbreeding at
the neutral loci relative to BLUP selection, had only very little effect on inbreeding
coefficients at the QTL for MAS, since selection pressure for QTL remained high, even
when only conventional selection was practiced.

In addition to potential advantages for genetic response (relative to conventional
selection), a MOET nucleus scheme could have a more centralized structure, which could
make it economically feasible to genotype all the selection candidates of both sexes for
the markers of interest. In 1996, Ruane and Colleau analyzed the benefits of MAS within
a closed MOET nucleus scheme. They used a Monte Carlo simulation of a nucleus
breeding scheme in which the animals were typed for two markers flanking a QTL and
evaluated candidates using the BLUP method of Fernando and Grossman (1989). Unlike
Meuwissen and Van Arendonk (1992), they considered in the model the reduction in
variance due to inbreeding. Selection was for a single trait measured only on females.
The study showed that, when the favorable allele was initially at a frequency of 0.5, MAS
increased the response at the QTL locus but decreased the polygenic response.
Cumulative response was found to be superior to conventional BLUP by 3, 9, 12, and 6%

at one, two, three, and six generations of selection, respectively. The reduction of
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response in the polygenic selection was due to the competition between correlated
sources of information. An increased correlation between the QTL and the index
corresponded to a reduction in the correlation between the polygenic information and the
index. Moreover, after the first round of selection, due to the negative correlation created
between QTL and polygenic effects, animals with higher QTL values had, on average,
lower polygenic values. Similar results were found by Spelman and Van Arendonk
(1997): polygenic response was lower under MAS than under a control selection (BLUP)
and this difference was greater when the QTL explained a large proportion of phenotypic
variance (10%).

When the starting frequency of the favorable allele was low (0.1) the benefits of
MAS were larger because of the increased probability of loss of that allele without MAS
(Ruane and Colleau, 1996). When heritability was low, the effect of drift variance was
relatively larger and similar for BLUP and MAS selection, so that the frequency of loss
of the allele was increased for both schemes.

The model derived by Fernando and Grossman (1989) and modified by Goddard
(1992) was used by Meuwissen and Goddard (1996) to study the effect of selection on
marker haplotypes. The study assumed that a region where QTL were present had been
mapped and many alleles were assumed at the QTL. This design reflected a situation
where the observed QTL effect was due to a cluster of closely linked QTL. Ruane and
Colleau (1995, 1996) based their calculation of breeding values on the expected
inheritance derived from the recombination rate. However, in the model of Meuwissen

and Goddard (1996), probability statements were that QTL transmission either could be
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or could not be followed by inference from marker haplotype (the recombination event
was known). Therefore, probability statements other than 0 and 1 were not made.

Because MAS can be performed on different traits, characteristics of the traits,
such as heritability, availability of the records, time of recording, and information
available on the QTL are very important factors in implementing a program for MAS.
Meuwissen and Goddard (1996) simulated different situations with respect to the
availability of records (before or after selection) and calculated the respective genetic
gain expected in the short term. When records were available within the nucleus after
selection and only on females the situation reflected a juvenile MOET scheme. In this
case, MAS increased genetic gains by 38% and 21% in the first and fifth generations,
respectively. In general, when records for traits were available only after selection
decisions were made (e.g. fertility or longevity) genetic gains from MAS were
substantially higher than in situations when records were collected before selection
(+38% versus +8.8%).

Traits characterized by low heritability are also good candidates for MAS. Ruane
and Colleau (1996) showed that the beneficial effect of MAS on QTL response and total
response was higher for traits with progressively lower heritabilities. For the first three
generations of MAS superiority to BLUP selection was 3, 5, 12% for traits with of
heritabilities of 0.5, 0.25 and 0.1, respectively. Similarly, Meuwissen and Goddard
(1996) found greater increases in response rate due to MAS for traits with lower
heritabilities, but their model assumed that the QTL position and variance were known.
In general, with lower heritability, the accuracy of selection decreases but the QTL effect

can still be accurately estimated, but only with a large number of genotyped daughters
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(such as available in a well-designed progeny test program). This result is explained by
the fact that tracing copies of QTL alleles by markers leads to availability of multiple
records to estimate the effects of QTL alleles. Therefore, accuracy is decreased less due
to decreased heritability than is the accuracy of an EBV based on a single record. In
1998, Muir and Stick compared, at different levels of heritability, response to phenotypic
selection (P), candidate gene selection (C), and selection on an index (B) combining both
sources but favoring the candidate gene. Based on response in the long term, at a very
low heritability (1%) B was superior to P and P was superior to C. When heritability was
10% the situation was the opposite for B and P (both were still superior to C).

When a closed nucleus scheme is analyzed, information on genotype and
performance are typically only recorded within the nucleus. Meuwissen and Goddard
(1996) investigated the advantage of also including information from outside the nucleus
(records from 1000 commercial progeny). Relatively little advantage was found in
genetic gain with that extra information (44% versus 38%). The accumulation of
information from previous generations used in the model greatly decreased the need for
further recording outside the nucleus. However, results showed that having limited
marker information from previous generations could greatly decrease the extra genetic
gain from MAS.

Although it was monitored in the simulation by Ruane and Colleau (1996), none
of the studies reviewed adequately accounted for the reduction in QTL variances due to
changes in allelic frequencies. Ruane and Colleau showed that when a scheme with 8

sires and 64 dams is considered, fixation for the beneficial allele was reached in only
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three generations. The model, however, continued to estimate QTL differences that
eventually did not exist, reducing the advantage of MAS over BLUP selection.

Furthermore, the models assumed in the previously described studies generally
require the use of known values for the proportion of genetic variance explained by the
QTL. When the test statistic exceeds a certain significance level, the QTL effect can be
easily overestimated (Wang, 1995). In 1997, Spelman and Van Arendonk used stochastic
simulation to investigate the effect of inaccurate estimates of genetic variance associated
with QTL on genetic response in an adult, closed MOET nucleus scheme. In their model,
a QTL actually accounting for 5% of the genetic variance, was evaluated with assumed
QTL variances of 10% and 15%. Greater genetic gain at the QTL was observed when the
variance was overestimated and MAS was used, but polygenic response was severely
reduced. As a result, the overall genetic gain was decreased, particularly in the long term
(7 generations). The long term loss of response was reduced when the variance of the
QTL was re-estimated after four generations of MAS. In the same study, the relative
advantage of MAS over BLUP selection on polygenic effect only was estimated for two
levels of variance explained by the QTL (5% or 10%) and two genetic models: a total of
10 alleles at the QTL (A10) or 2 distinct alleles per each base parent (BP2). As expected,
the greater the QTL effect the larger was the response. The two models gave similar rate
of response for the 5% QTL but when the QTL explained 10% of the variance, the model
with more alleles (BP2) was superior.

In summary, the results from the studies published on the use of MAS within a
MOET nucleus scheme show sizeable effects of the assumptions made in the model on

the resulting estimates of genetic response achievable.
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3.6 Moet nucleus breeding schemes.

The introduction of MOET techniques in animal breeding made it possible to
overcome the restriction on female reproduction, i.e. low reproductive rate and long
generation interval. Until MOET, the genetic gain achieved through selection was mostly
due to selection on male pathways.

To better capitalize on the genetic opportunity offered by MOET, Nicholas and
Smith (1983) proposed the implementation of nucleus schemes by artificial insemination
(AI) organization, operating in a large population of dairy cattle. Because MOET costs
are high, Al firms are most likely to be the organization prepared to implement and
exploit the genetic improvement generated by MOET and other reproductive techniques
such as ovum pick up, [VEP, embryo sexing, splitting and cloning.

Several studies have investigated the various structures possible in nucleus
programs. In an early study, Nicholas and Smith simulated various situations of nucleus
selection, following the rules of selection index theory (deterministic simulation) and
comparing the different breeding schemes in terms of annual genetic gain. In these
schemes, a separate herd is established, with the ultimate goal of production of young
bulls. The scheme is designed to reduce the generation interval while tolerating lower
accuracy and requiring a smaller number of recorded cattle. Two types of mating design
were described: a juvenile scheme, with selection at one year of age based on pedigree
information and an adult scheme, in which females were selected after completion of first

lactation. The results obtained by the simulation showed superiority, in terms of annual
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genetic change, of the juvenile scheme applied to both sexes. All these schemes predicted
a higher (up to 80%) genetic response compared to conventional progeny testing at a
national level.

In 1987, Juga and Maki-Tanila used a stochastic model to simulate an adult
nucleus scheme. The genetic gain was substantially lower than deterministic predictions
(33% less), and adult nucleus herds were not expected to be competitive with an efficient
progeny testing scheme. Similar results were found by Woolliams and Smith (1988). In
their deterministic study, adult schemes used high MOET rates (16 progeny per donor) to
compete with an efficient progeny testing scheme, while juvenile schemes gave a better
response at any rate of MOET. The use of MOET within a nucleus herd proposed by
Nicholas and Smith was modified in several studies.

In the 80's, Christensen and Liboriussen (1986) and Colleau (1985, 1986)
proposed "MOET x conventional" hybrid nucleus scheme, in which all the sires used for
breeding were progeny tested. Furthermore, open nucleus schemes were considered in
which genetically superior animals from the commercial population couid be selected to
breed nucleus replacements.

Meuwissen (1990) compared expectation and variance of the steady state genetic
gain in open and closed MOET nucleus and progeny testing schemes. Genetic gains of
conventional (fixed generation interval) and modemn progeny testing and open nucleus
schemes were abqut 19, 13 and 3% lower than closed nucleus schemes, which gave the
best response.

Colleau (1986) simulated the effect of opening the nucleus to foreign genetic

material. The nucleus studied was open to genetically superior bulls progeny tested in the
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population. Opening the nucleus in the female paths allows the best females in the
nucleus and across the commercial population to be used as donors. This would lead,
according to Colleau (1986) to 6% higher genetic gain in the short term, but to lower
response in the long term with most of the selected females (70%) coming from the
commercial population.

In 1990, Meuwissen suggested that opening the nucleus could provide a higher
response by increasing the number of selection candidates. However, intense selection on
base females can decrease the genetic variance in the nucleus and this can cause lower
gain in an open versus a closed nucleus. Closed nuclei benefit more from an increased
female reproductive rate, because selection differential of female nucleus replacements
selected from the nucleus are low when the reproductive rate is low. In an open nucleus
scheme, the selection diff;erential of replacements selected from the base is high even
when reproductive rate is low (i.e. progeny testing scheme).

Dekkers and Shook (1990) used a semi-stochastic model to simulate five
competing Al firms. Changes in the breeding scheme of one of the firms were compared
in terms of genetic and economic response to an efficient conventional program using
MOET to produce young bulls. The effect of opening the nucleus to donors from the
commercial population (open versus closed nucleus) was investigated. When a closed
adult nucleus was analyzed, the genetic gains obtained were not competitive to
conventional MOET used as a comparison base, with the exception of very a large
nucleus, (which are also associated with very high costs). Opening the nucleus to superior
animals from an elite population had a positive effect on the genetic response, more so

for adult than for juvenile schemes. The model implemented by Dekkers and Shook
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(1990) was partially followed by Schrooten and Van Arendonk (1992). A hybrid nucleus
scheme was simulated stochastically (progeny test of all the bulls). The annual genetic
response at equilibrium was compared for open and closed nuclei with 120 or 240 heifers
entering the nucleus every year. Compared to the progeny testing scheme, response in
open nucleus schemes with respectively 120 and 240 replacements per year were 4.3%
(0.244 sa) and 5.6% (0.247 sa) higher. In the first years after the establishment of the
nucleus, a relatively small share of dams was selected from the nucleus. The proportion
increased for 30 years of simulation and then stabilized with 60% of dams from the
nucleus, of which 36% were heifers. Closed nucleus schemes gave a lower response to

selection than open schemes and this difference was larger in a small nucleus.
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4. Accounting for uncertainty in QTL location in marker-assisted

preselection of young bulls prior to progeny test.

4.1 Summary

The objective of this study was to evaluate whether the efficacy of MAS could be
improved by considering a confidence interval (CI) of the QTL position. Specifically,
MAS was applied for within-family selection in a stochastic simulation of a closed
nucleus herd. The location and effect of the QTL were estimated by least squares interval
mapping with a granddaughter design and marker information was used in a top down
scheme. Three approaches were used to select the best bull within fullsibships of 3 or 40
bulls. All three were based on the probability of inheriting the favorable allele from the
grandsire (PROB). The first method selected the sib with the highest PROB at the
location with the highest F-ratio (MAXF). The other two approaches were based on sums
of estimated regression coefficients weighted by PROB at each ¢cM within a 95 % CI
based on either bootstrapping (BOOT) or approximate LOD scores (LOD).

Accounting for CI increased the relative genetic gain in all scenarios. The average
TBV of the selected bulls was increased by 2.00, 2.60 and 2.59 % when MAS was
applied using MAXF, BOOT and LOD, respectively, compared to random selection (h* =
.30). Selected bulls carried the correct allele in 63.0, 68.5, 67.6 and 50.1% of the cases

for MAXF, BOOT, LOD and random selection respectively.

4.2 Introduction
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The potential genetic improvement from marker assisted selection (MAS) in dairy
cattle has been evaluated in many studies. These studies have consistently shown that
genetic progress can be improved by the implementation of MAS. Breeding schemes in
dairy cattle that employ multiple ovulation and embryo transfer for genetically superior
females provide the opportunity for the use of marker information in selection among full
sibs prior to progeny testing (Kashi et al., 1990; Meuwissen and Van Arendonk, 1992;
Ruane and Colieau, 1996; Spelman and Garrick, 1997). Many of the studies examined the
maximum responses possible with MAS. These studies often assumed that location of
the QTL relative to markers was known with certainty and, in mdst cases, recombination
between flanking markers and the QTL was not accounted for (e.g. Mackinnon and
Georges, 1998; Spelman and Garrick 1998). Future advances in molecular genetics will
almost surely increase the resolution of genetic maps and identify some of the actual sites
of polymorphism responsible for phenotypic differences in economic traits, but currently
much uncertainty about QTL position remains. Thus, MAS decisions can be based only
on the genotypes of candidate animals at the most probable location of the QTL, with
respect to anonymous genetic markers.

Various methods have been proposed to calculate the confidence interval for the
QTL location in mapping experiments (Visscher et al., 1996; Mangin and Goffinet,
1997). The objective of this study is to evaluate if the efficacy of MAS, in situations

where the position of the QTL is uncertain, can be improved by considering a confidence

interval of the QTL position.

4.3 Material and Methods
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Marker-assisted selection within a adult closed nucleus population was simulated.
Selection for a sex-limited trait was modeled. We assumed that results from previous
studies had suggested the presence of a QTL on a given chromosome but its location was
undefined. Therefore, a single chromosome was targeted and simulated both QTL
detection and MAS based on the result of the mapping study. A top down scheme was
used (Mackinnon and Georges, 1998).

Three discrete generations of truncation selection were performed. Grandsires and
granddams were selected from an unrelated base population and were used to establish
the nucleus. They were mated to produce a second generation of nucleus sires and dams.
Estimated breeding values of the sires were generated and used in a granddaughter design
to estimate the location of the QTL and substitution effect for each grandsire. Then a
third generation of bulls was generated and results from QTL detection were used for
within family selection of the bulls to be admitted into a progeny test program.

Several different scenarios were simulated. The standard scenario was based on
the work of Spelman and Garrick (1998) and simulated a trait with true heritability of
0.30 and a QTL that accounted for 17% of the genetic variance. Young bulls were
selected from full-sib families of 40 males. The parameters that were varied to define the

alternate scenarios are shown in Table 4.1.

Population

The scheme of the population structure is shown in Figure 4.1. The base

population consisted of 750 males and 25,000 females. To form the nucleus, five
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grandsires and 250 grandams were selected from the base population on their EBV. For
all individuals, EBV were simulated by adding random, normally distributed, prediction
errors to the respective genetic components, using the same approach as Spelman and

Garrick (1998):
EBV; = rii(BV: — MBV) zN(V(b’rrr” - BPrrr’) + MBV), (1]

where, rr° was the squared accuracy of selection, BV; was the true breeding value, MBV
was the populat.ion mean breeding value, z; was a standard normal deviate, and V, was
the phenotypic variance. The standard deviation of the prediction error was varied by
altering r;* according to sex and generation to reflect the amount of information typically
available for prediction of TBV.

Each selected grandsire was mated to 50 granddams and from each of these
families one sire and three dams were replacements in the nucleus. Estimated breeding
values were generated for these replacements by assuming that the sires were progeny
tested (85 daughters each) and the dams produced a single lactation record.

The best 5 sires and 250 dams from the second generation were chosen and mated
to produce the third generation of young bulls. Multiple ovulation and embryo transfer or
in vitro embryo production were used to produce three or forty young bulls, respectively,
for each dam (as in Spelman and Garrick, 1998), generating either 750 or 10,000 young

bulls in total.

Genetic model
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Genetic variation was contributed by a single QTL and an unlinked polygenic
effect such that total heritability of the trait was either 0.10 or 0.30. The polygenic effect
was sampled from a normal distribution. Only additive effects were modeled.

Ten alleles were generated for the QTL. Allelic effects in each replicate were
drawn from a normal distribution N (0, 6°gr). This approach for modeling allelic effects
simulates a situation in which several sites of polymorphism are present within the same
gene (or closely linked genes) and different animals carry alleles defined by different
combinations of the polymorphisms. Two QTL variances were used in the study: 17%
and 35% of the total genetic variance. In the base population all alleles had the same
frequency.

The QTL was surrounded on the chromosome by six markers. Six alleles, all at
the same frequency, were assigned to each marker in order to mimic microsatellite
markers. In the base scenario the markers were evenly spaced across a chromosome of
130cM (Coarse). This design represented the base situation, for which we assumed that
previous knowledge (such as previous genome scans or comparative mapping with
another species) provided reason to believe that a QTL may exist on the chromosome of
interest, but little indication of the QTL location. The QTL was located either midway
between the two central markers or midway between the first two markers.

To compare to the base situation with results from previous studies, we also
simulated finer mapping for which a narrow chromosomal region was targeted and the

QTL was positioned relative to 6 markers spaced at 1 cM (Fine).

OTL Mapping and MAS
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Genotypic information from the grandsire and the progeny tested sires and the
EBYV of the sires were used in the granddaughter design. Interval map[;ing was performed
using multimarker regression as developed by Knott et al. (1996). Marker assisted
selection was applied to young bulls in the third generation. Only one bull was selected
per fullsibship. Two basic strategies for MAS were practiced.

The first strategy was the simplest and involved selecting bulls based only on
their genotype at the chromosomal location with the maximum probability of being the
QTL (MAX). This approach consisted of first using across-sire least squares analysis
(Knott et al., 1996) to estimate the most probable location of the QTL. The regression
approach of Knott et al. (1996) uses the genotypic information to calculate the probability
that sires and sons share a given haplotype at every centiMorgan along the chromosome
of interest. This information was then extended to a second generation to estimate the
probability of each young bull sharing the same haplotype as the grandsire at the
chromosomal location most likely to be the QTL.

When this haplotype was estimated to include the superior QTL allele, the full sib
with the greatest probability of inheriting the haplotype at the predicted best location was
selected. The converse was applied when the reference haplotype contained the inferior
allele. In other words, the young bull with the lowest probability of inheriting the
grandsire haplotype at the most probable QTL location was selected.

The other basic strategy involved calculating a confidence interval (CI) for the
QTL location and choosing the bull with the best haplotype spanning this CI, rather than

simply concentrating cn the best location. Within this strategy, several different
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approaches were used to define the selection criterion and the performance of the
different strategies was compared.

These strategies differed with respect to two different variables, 1) the length of
the CI, and 2) the relative weighting placed upon centiMorgans within the CI. Two
methods were used to establish the length of the CL.

One approach (BOOT) used a bootstrapping technique based on work by Visscher
et al. (1996) to derive a 95% confidence interval of QTL location. For this approach, 50
random samples of EBV and genotype information of sons were drawn (with
replacement) from the data. Then the method of Knott et al. (1996) was used to identify
the most probable location of the QTL for each of these 50 samples. The lowest and
highest estimates were discarded, and the extreme values from the remaining 48 samples
were used as the endpoints of the CI. Only 50 bootstrap samples were generated for the
sake of computing efficiency and because the results of Visscher et al. (1996) showed
that increasing the number of samples had very little effect on the estimated CL.

The second approach estimated the length of the confidence interval based on
approximate LOD scores (LOD) (Lander and Botstein, 1989). The LOD score at each

location along the chromosome was estimated by the following equation (Lynch and

Walsh, 1998):

LODapprox = [0 % IN(RSSreducea / RSSau)] / 4.61, 2]

where, LODgpprox 1S approximate LOD score at a given ¢M, n is the number of sires,

RSS cduced 1S the residual sum of squares for the reduced model (which included only
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grandsire effects), RSSgy; was the residual sum of squares from the full model (which
included effects of grandsire and the genotypes of the sires). The CI included all adjacent
cM for which the approximate LOD score was within 1 of the LOD of the site that was
the most probable location of the QTL.

For each centiMorgan (cM) within the CI the probability of the young bull
sharing the reference haplotype with the grandsire was multiplied by one of three
different weights.

For the first approach (Within grandsire), the probability of transmission to the
young bull at each cM was multiplied by the standardized estimate, for the respective

grandsire, of the QTL allele effect at that location. The sum of these values was then used

as the selection criterion:

Iwitun = )_ p:By » (3]
=1

where, m is thé length of the CI in cM, p; is the probability that the son inherited the
reference grandsire haplotype at cM i, and B is the regression coefficient for grandsire j
at cM i (standardized by dividing by its standard error).

The second approach (Across grandsire) multiplied the approximate likelihood
ratio (approximate LOD * 4.61) at each cM, calculated across grandsires, by the
maximum regression coefficient for each sire and then summed up values across the CI.

Then, similar to the first approach, the bull with the greatest sum was selected. Thus,
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Incross = . p: By T » [4]

i=1

where, m and p; were as defined in Equation [3], By was the regression coefficient for
grandsire j at the most probable location of the QTL, and T; was the approximate
likelihood ratio at cM i.

The final approach (Uniform) simply summed the probabilities of transmission at
each site, without weighting locations with respect to the predicted location of the QTL.

Following the notation of {3] and [4],

[yniForM = Zpiﬂkj . [5]

=l

With these methods no discrimination was necessary with respect to whether the
reference haplotype contained the favorable or the unfavorable allele because this factor
implicitly accounted for by the sign of the estimated QTL effect.

In applying mapping results for MAS, no consideration was given to the
significance level of the regression either between sire or pooled across sires.

The average TBV of young bulls selected prior to progeny test were calculated for
the different MAS strategies and compared to random within family selection of young
bulls. The following formula was used for the comparison:

(TBVumas-TBVaandom)/(TBV random=-TBV comm)*100 (6]
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where TBVyas is the average TBV of young bulls selected by each of the MAS
approaches, TBVRrandom is the average TBV of full sibs selected at random and TBVcomm

is the average TBV of the commercial population.

4.4 Resulits

The simulation program was validated by comparing results for random and index
selection with selection index predictions. In the base situation with heritability = 0.30,
observed mean genetic values of males were 0.09, 22.10, and 35.85 for generations 1, 2,
and 3, versus expected values of 0.00, 22.30, and 35.95. For selected females, observed
values were 17.28 and 28.40 in generations 1 and 2 and expected values were 17.48 and
28.47.

Table 4.2 shows the respective probabilities of selecting a young bull that carried
the desired QTL allele when using the three different approaches for weighting
chromosomal locations within a confidence interval. The desired allele was defined as the
paternal grandsire allele if the sire inherited the superior allele from the grandsire or the
paternal granddam allele if the sire inherited the inferior allele from his grandsire. If
either the grandsire or the sire were homozygous at the QTL then all the young bulls were
not considered to have inherited the favorable allele.

Regardless of which method was used to establish the CI, the approach that
weighted each location based on regression coefficients within grandsire was superior
over the approaches that used weights estimated across grandsires or a uniform weight

for all locations Qithin the CI. The table gives results for h? = 0.30, GZQT[_= 17% and
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family size of 40, but the superiority of using the estimates within grandsire was
consistent across all combinations of parameters simulated. Because the approach of
weighting location based on regression coefficient within grandsires was consistently
superior, all subsequent results reported will be based on this approach.

As expected, all strategies of MAS increased the probability of selecting a young
bull that carried the desired allele and, therefore, increased the average breeding value of
the group of selected young bulls. Table 4.3 compares the efficacy of MAS relative to
random selection when young sires are selected based on their genotype at the single
most probable location of the QTL (MAX) or for their haplotypes for the region bounded
by a CI calculated by bootstrapping (BOOT) or approximate LOD score (LOD). Results
for random selection are given for reference. On average either approach using the
confidence interval was superior to considering only the most probable location.

The overall advantage of using MAS was decreased when the size of the full-stb
families was smaller. The average gain for MAS with family size of 3 was 1.08%, 1.56%,
1.50% for MAX, BOOT and LOD, respectively, relative to random selection. This
decrease was due to the lower selection intensity and reduced selection opportunities in
such small sibships. In one third of the families, the randomly selected and the marker
assisted selected sons were the same. The two methods considering the confidence
interval were still significantly different from MAX.

No statistically significant differences were observed in the efficacy of MAS
when the CI was determined by BOOT versus LOD. As a rule, the CI estimated by
BOOT tended to be longer than with LOD. For the base scenario the average lengths of

. the CI were 105 cM and 70 cM, respectively, for bootstrapping and LOD approximation.
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The reason little difference was observed in the genetic gain between methods was
probably that, despite their differences in length, the CI from both methods nearly always
spanned most of the chromosome.

Table 4.4 shows the relative increases in the average TBV (over random
selection) of young bulls from each method of MAS for four different combinations of
true h? (0.10 or 0.30) and GZQT[_ (17% or 35%). The benefits of using MAS were
increased when G'ZQTL was greater. Improvement relative to random selection was greatest
when true h* = 0.30 and GzQTL = 35%. For all combinations, the methods using the CI
were significantly (P < 0.05) superior over MAX. The difference between the two CI
methods and MAX was greatest at true h> = 0.30 and ¢ g1 = 17%.

The relative increases in the average TBV (over random selection) of young bulls
from each method of MAS for three different distributions of markers and QTL across
the chromosome is shown in Table 4.5. Logically, the greatest benefits of MAS were
observed when the markers were located closer to the QTL. For example, using the CI
from bootstrapping, the improvement over random selection was 2.59% with coarse
mapping (10 cM from QTL), and 3.86% for Fine (1 cM). The benefits of MAS were
greater when the QTL was located near the center of the chromosome, versus near one of
the telomeres. Accounting for the CI provided the greatest relative gain in all instances.
The difference between the MAX and CI approaches was not significant, however, when
low recombination rate was generated between the markers and the QTL. In this case an
implicit assumption was that the QTL location was well known (within the marked 5 cM
region), so the success of selection was not highly dependent upon the precision of the

estimated location of the QTL within the interval.
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Marker assisted selection is costly to apply to a breeding program. Many factors
other than which potential allele at a single QTL was inherited by a bull will have
significant influences on the TBV or EBV of that bull. Among the major factors are the
size of polygenic effect or other QTL on unmarked chromosomes, random effects on the
daughters of bulls and even the alleles at the QTL inherited from dams. Intense selection
limits the variability of allelic effects at 2a QTL. These considerations limit the value of
applying full scale MAS.

The sources of variances other than the QTL introduce error into the interval
mapping procedure. For this reason, sometimes a Type I error occurs and a given QTL
allele of a grandsire is estimated to be superior when the opposite is the case. In some
case the grandsire can be homozygous. Type I errors are more likely to occur when the
difference between alleles is small, so that application of MAS has relatively little value.
Therefore, a breeding company may wish to apply a critical value (based on F-ratio for
example) to help guard against Type I errors. Then MAS can be applied to families for
which the F value exceeded the threshold. One potential problem with this approach is
that some families with truly large allelic differences will be overlooked (Type II error)
and the overall gain from selective application of MAS will more likely be less than with
full scale MAS.

The proportion of correct contrasts increased when restrictions were applied to the
F-ratio, estimated within family. Table 4.6 shows the proportion of correct contrasts and
of selected young bulls inheriting the desired allele and the average TBV of the selected
group for different levels of F-ratio of the significance test. When the F-ratio within a

family was lower than the threshold, MAS was not applied and young bulls were selected
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at random in those families. Average breeding values are presented for the families where
MAS was used and for all families. The stricter the constraint on the F-ratio, the fewer
grandson families are genotyped (Table 4.6) and the greater the average TBV of the
young bulls selected by MAS. When the F-ratio was required to be greater than 10, only
about 5% of the families were selected using MAS. This yielded to relatively high
average TBV of the group selected by MAS (15.32) while the average TBV of the total
group of selected young bulls was only slightly higher than when using random selection

in all families (14.00 versus 13.94).

4.5 Discussion

In nearly all situations simulated, MAS schemes that considered a confidence
interval were superior to selecting sons based only on the most probable location of the
QTL. This difference tended to increase when family sizes were larger and when the
QTL was less precisely localized.

The methods employing the CI seemed to be more robust than was MAX,
probably because they considered a wider range of cM across the chromosome and were
therefore less subject to inaccuracies in the estimate of the QTL location. The MAX
method selected sons with the greatest probability (or lowest if the grandsire allele was
unfavorable) of inheriting the grandsire allele at the most probable location. This practice
simply favored the selection of bulls that had no recombination between the markers that
flanked the most probable location, without regard to other regions of the chromosom:e.

Therefore, some precision was lost if the true position of the QTL was outside the
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markers ﬂémking the most probable location. The CI methods, on the other hand, favored
the selection of sons with little or no recombination in the entire region of the CI, which
almost always included the true QTL position. The CI methods were particularly
superior when selecting among full-sib sons of bulls who had a recombination event
between the two markers that directly flanked the QTL. This difference was amplified
when the estimated location of the QTL was relatively inaccurate.

To 1llustrate this problem with an example, Figure 4.2 has the genotypes of a
grandsire and one of his sons that was chosen as a sire of sons in generation 2. As the
figure shows, a recombinant haplotype was received by the son. The recombination
occurred between the QTL and the estimated location of the QTL.. In this case, the MAX
method performed poorly as none of the selected sons carried the desired allele. On the
other hand, by considering an interval of loci, the CI methods performed far better,
selecting 48 (BOOT) and 49 (LOD) sons with the desired QTL allele out of 50
fullsibships.

The CI approach was superior to MAX regardless of the method used to form the
CI and to the weight values within the CI. Although differences among CI methods were
small and in some cases not significant, the methods that weighted each chromosome
position based on results within grandsire family tended to yield the best results. A
plausible explanation is that MAS, in general, was most effective within families of
grandsires that ﬁad large differences between the QTL alleles. Including information
from other families possibly only tended to add noise to the within family prediction of

QTL location for these grandsires.
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The estimates of CI by using LOD score approximation were shorter than CI
calculated by bootstrapping for all scenarios. Van Ooijen et al. (1992) and Mangin et al.
(1994, 1997) pointed out that the LOD score drop-off method can be biased downward
for populations of small or medium size. This is because in those situations the
distribution of the test statistic does not follow a chi-square distribut_ion.

The genetic gains from MAS estimated in this study are relative to a single-
generation application of MAS. If MAS was to be applied to the same locus in following
generations, a further decrease in QTL variance would reduce the genetic gain. The
decrease in QTL variance after three generations of selection was 47% for the base
scenario. Selection based on EBV chose sires with the better alleles at the QTL, which
may, therefore, be homozygous or have lower difference between the two QTL alleles.
For example, the average contrast between alleles was shown to be decreased by nearly
75% after two rounds of selection in a similar simulation by Spelman and Garrick (1998).
In contrast, in another simulation model, within-family MAS was applied to an
unselected population, the relative genetic gain was approximately 10% (Mackinnon and
Georges, 1998).

Spelman and Garrick (1998) achieved an increase in genetic progress of 0.3% to
1.6% by applying MAS by using the top down scheme in a population for a trait with h’
= .30 for which 16.5% of the genetic progress was controlled by the QTL. The responses
we observed with similar genetic parameters were greater than 2%. The probable reason
for difference was the increased number of sires (50 versus 28) used to estimate the
difference in effect of the QTL alleles within each grandsire. This resulted in greater

accuracy and power in our study. Evidence of increased accuracy was observed when



comparing the percentage of correct contrasts, when no significance test was applied to
the contrast estimates to restrict the use of MAS. In these situations (F-ratio > 0) in our
study, the proportion of incorrect contrasts was approximately 32% versus 41% for
Spelman and Garrick (1998).

Results from this study were based on a genetic model with 10 alleles at a single
QTL. If a di-allelic model was used the increase in genetic progress would be lower

(Spelman 1998).
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Table 4.1 Input parameters for the simulated population.

Parameter Values

Gp 20

h? 0.10, 0.30

o2otL 17%, 35%'
Family Size 3,40

QTL location Center, Telomere
Marker distance 20cM, 1cM

T . . s .
. percentage of the total additive genetic variance

Table 4.2 Percentage of bulls chosen based on MAS that inherited the desired allele
for three methods of weighting the probability of transmission of the grandsire
haplotype at each centiMorgan within the confidence interval'.

Confidence interval

Weights BOOT LOD
Uniform 64.9% 64.8*
Across Grandsires 65.7° 65.8*
Within Grandsires 68.5° 67.6°

Th? =0.30, o’qri= 1 7%, family size = 40
*® Values in the same column with different superscripts are significantly different (p <0.05).
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Table 4.3 Percentage of selected young bulls that inherited the desired grandsire
allele and the average and relative' increase in breeding value when young bulls
were selected randomly or with three schemes of MASZ.

Selection Successes ABV
Method Overall % Relative % Mean” %,
MAX 63.0° 25.7 14.23* 2.00
BOOT 68.5° 36.7 14.27° 2.60
LOD 67.6° 34.9 14.30° 2.59
RANDOM 50.1¢ 13.94¢

* Relative to random selection

*h? =0.30, o"qr.= 17%, family size =40

* Expressed as deviation of sire TBV from the parental mean

20 Values in the same column with different superscripts are significantly different (p < 0.05).

Table 4.4 Increase in average TBV' of bulls selected ?y three methods of MAS with
low and moderate h* and low and high QTL variance”.

Heritability
10 30
clorL=17% _ corL=35%  coi=17% o or.=35%
%
MAX 2.092 2.48° 2.00° 2.80°
BOOT 2.28° 3.01° 2.60° 3.20°
LOD 2.39° 3.01° 2.59° 3.11°

" Relative to random selection

2

~ Family size =40

*® values in the same column with different superscripts are significantly different (p <0.05).




Table 4.5 Increase in average TBV' of bulls selected by three schemes of MAS with
different distribution of markers and QTL along the chromosome?.

Distribution
Corse Fine Telomere
%
MAX 2.00% 3.64° 1.70°
BOOT 2.60° 3.79° 2.22°
LOD 2.59° 3.86° 2.01°

! Relative to random selection
212 =0.30, o’qri= 17%, Family Size = 40
b vralues in the same column with different superscripts are significantly different (p < 0.05).

Table 4.6 Effect of selectively applying MAS to families exceeding F-ratio
threshold'”.

F-ratio Correct Selection Families
threshold contrasts success” Average TBV* genotyped (%)
(%) (%) MAS® All

0 68.5 78.5 14.30 14.30 100.0

1 70.8 80.1 14.33 14.26 83.4

2 73.5 81.6 14.40 14.22 61.8

5 79.9 85.2 14.58 14.09 25.0

10 88.3 94.7 15.32 14.00 4.9

' MAS was performed using LOD

*h* =0.30, o’qr.= 1 7%, Family Size = 40

? Percentage of selected young bulls inheriting the correct allele

* Expressed as deviation of sire TBV from the parental mean

® MAS is applied only to families for which F values was greater than threshold
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Figure 4.1 Structure of the nucleus population.
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Figure 4.2 Example of a situation where the confidence interval methods excel.

Estimated location

e

Grandsire’s haplotype

1 6 2 [T\ 4

3 3 5 O/ 3 3 6
Sire’s haplotype

6 3 S 4 6 2

(N
3 3 5 8 1 2 5

56



5. Strategies for continual application of MAS in an open nucleus

population.

5.1 Summary

The objectives of this study were to develop and simulate the implementation of
several strategies for repeated application of QTL detection and MAS and to compare the
short-term and continual genetic responses. A finite locus model was simulated with 20
QTL randomly distributed across 30 chromosome. Three hundred markers were evenly
spaced across the genome. Allelic effects were sampled from a double exponential
distribution. A daughter design was used, every generation, to determine the marker
alleles favorably associated to QTL alleles. The MAS was applied within family to
young bulls, prior to progeny testing, as part of an open nucleus. Young bulls were
selected using strategies based on a) the single marker with greatest contrast (BEST/), b)
the sum of n greatest contrasts (BESTr), c) the best n contrasts, limited to one per
chromosome (LIMn), d) the sum of all contrasts exceeding a given threshold (THRES),
and e) the sum of contrasts exceeding a threshold, but limited to one per chromosome
(LIMT). The maximum progress was achieved by strategies that selected upon several
markers flanking multiple QTL in each generation. When THRES was applied, the mean
TBV of selected bulls was increased by 11.98% (over conventional selection) versus
6.73% for BEST! in the first generation. Applying a full genome scan in each generation
allowed selection for different QTL across time. By selecting for multiple QTL over

time, MAS maintained superiority over conventional selection for many generations.
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5.2 Introduction

Numerous studies have demonstrated that marker assisted selection (MAS) is
effective in increasing genetic response in the short term (Whittaker et al., 1995; Ruane
and Colleau, 1996; Mackinnon and Georges, 1998; Spelman and Garrick, 1998). These
studies have generally examined selection at a single locus across the population.
However, when selection occurs, the variability of alleles at a QTL decreases from
generation to generation. This decrease may be especially large at loci where direct MAS
is applied (Chapter 4). Advantages of marker assisted selection programs can, therefore,
be sustained in the long term only if new QTL are continually discovered and selected
upon. Re-testing for QTL may also be necessary to account for recombination between
the QTL and the markers (Zhang and Smith, 1993; Whittaker et al., 1995). These "new"
QTL may be smaller than the "original" QTL, because the larger QTL are the most likely
to be found early or moved to fixation via the forces of conventional selection. Thus, the
gains in later generations may be reduced because the maximum potential (allelic
substitution effect) of successive QTL is likely to be smaller and the type [ error of the
QTL detection test is likely to be larger (Whittaker et al., 1995; Meuwissen and Goddard,
1996; Spelman and Van Arendonk, 1998; Villanueva et al., 1999).

The objective of this study was to develop and simulate several strategies for
repeated application of QTL detection and MAS and compare the strategies for short-
term and continual genetic response. The sustainability of genetic response over several
generations of QTL detection and MAS in a dairy nucleus herd was compared to genetic

progress achieved with conventional selection. Sustainability was evaluated by the
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number of QTL exploited in later generations compared to early generations. Stochastic

simulations were developed based on a finite locus model.

5.3 Methods

The simulated population included an open nucleus and a commercial herd.
Selection for a sex-limited trait was modeled. The MAS was applied based on a complete
genome scan during each generation, using the bottom-up design by Mackinnon and
Georges (1998). Associations between QTL and markers were identified based on
genotypes and phenotypic records of progeny test daughters. This information was used
for within family selection of young bulls entering the progeny test program.

Population

The structure is shown in Figure 5.1. The base population consisted of 1500 and
50,000 unrelated and unselected males and females, respectively. To form the nucleus,
the top ten sires (0.66%) and top 500 dams (1%) were selected from the base population
according to their EBV. For all individuals, EBV were simulated by adding random,

normally distributed, prediction errors to the true breeding values (TBV), using the

approach of Spelman and Garrick (1998):

EBV; = rr(BV; — MBV) zV(Vy(h’rr” - hrrr’) + MBV), ]

where, rri” was the squared accuracy of selection, BV; was the true breeding

value, MBV was the population mean breeding value in the current generation, z; was a



standard normal deviate, and V, was the phenotypic variance. The standard deviation of
the prediction error was varied by altering rii* according to sex and generation to reflect
the amount of information typically available for prediction of BV. The EBV of the sires
were assumed to have accuracies corresponding to a progeny test with 100 daughters.
Dams for the nucleus were selected based on EBV with accuracy corresponding to one-
lactation record. Each of the 10 sires was mated randomly to 50 nucleus dams to
generate full-sib families of three males and three females. Within each family, the best
male was selected based on his genotype, considering results of a daughter design
conducted on each of the ten sires. All 1500 females produced were eligible for selection
on their EBV, based on one completed lactation. No additional fixed effects (such as age,
parity, etc) were generated. Among these females, the top 400 were selected as part the
next generation of dams. In addition, 100 dams were randomly selected from the top 2%
of a commercial population. The commercial population was comprised of 50,000 cows
that were sired by the top 50 bulls in the previous generation. These cows had one
gamete from one of the sires and the other gamete was generated based on allelic
frequencies in the commercial population. The allelic frequencies in the commercial
population were computed in each generation as the average of previous generation and

the average of the 50 selected bulls. For the base scenario 5 generations were simulated.

Genetic model

The TBV were produced assuming a finite locus model for which all the allelic
effects were strictly additive. The genetic model was based on the general approach of

Mackinnon and Georges (1998). The parameters used to simulate the base situation are
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in Table 5.1. Several comparisons were made for certain scenarios generated with
alternative parameters. In the base situation, all the genetic variability in the trait of
interest was explained by 20 loci, each with 5 alleles. Mackinnon and Georges (1998)
also considered QTL with multiple alleles. Multiple alleles have been reported for
several genes, including blood groups, milk protein genes, and loci in the major
histocompatability complex. Different QTL effects and positions were randomly
assigned in each replicate. Allelic effects were simulated using a double exponential
distribution. Compared to the normal distribution, the double exponential distribution is
more sharply peaked, yielding relatively fewer intermediate allelic effects and slightly
more large ones. The initial QTL allele frequencies were uniformly distributed and
standardized to sum to 1.0. The phenotypic variance was 400. In the base scenario,
heritability was 0.30. The QTL were randomly distributed across the genome, with no
upper limit placed on the number of QTL per chromosome.

Thirty chromosomes of 90 cM each were simulated. There were 300 co-dominant

markers, with 6 alleles each, distributed across the 30 chromosomes, evenly spaced and

separated by a recombination rate (0) of 0.10.

Marker assisted selection

A daughter design was used, every generation, to determine which marker alleles
were associated with the favourable QTL alleles. Each sire had 100 daughters from the
commercial population, with a lactation record and complete marker genotypes. Marker
contrasts were calculated for all heterozygous markers within sire. All daughters that

were informative at a given locus were used to calculate the contrast, ignoring the

61



genotype of the dams. The contrast was simply the difference in the mean of EBV of
daughters carrying the alternative sire alleles. These EBV were based on one lactation
record. Contrasts were then divided by their standard errors to account for differences in
the number of informative daughters across loci.

Marker assisted selection was applied to select the best sons from among full-sib
families of three males. Selection was based on one or more of the markers with the

highest contrasts. If all the sons were uninformative or carried the same sire allele then

selection was random.

The efficiency of QTL detection experiments and MAS varies depending on the
genetic variance (Lande and Thompson, 1990; Ruane and Colleau, 1996; Meuwissen and
Goddard, 1996), so two alternate levels of heritability were considered (0.10 and 0.50,
Table 5.1). Also, the effect of the map density was examined. In addition to the base
scenario, responses to selection were examined when using a relatively FINE (6 = 0.05)
or COARSE (8 = 0.15) genetic map of markers. For these alternative maps, the number

of markers was changed and the length of the genome remained constant.

Selection strategies

Five different selection strategies were examined (Table 5.1). In the first
approach (BEST/), which served as the basis for most comparisons, the selection was
based on the single best marker contrast for each sire. The selected marker could be
different for each sire. The second strategy selected the young bull based on the best »
marker loci, where n was equal to 3, 5 and 10 (BEST3, BEST5 and BESTI0,

respectively). For each son an index was calculated upon which to base the selection:
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=Y (-)"*C, [2]

! k=1

where { is the sire number, j is the son number, £ is the locus number, # is 3, 5 or
10, Cx 1s the contrast for sire / at locus &, and m is and indicator variable with value 0 or 1
if the first or second sire allele was inherited, respectively. This index differed for each
son depending on which sire alleles were inherited.

The third strategy was a variation of the second. This approach first identified the
marker with the highest contrast for each chromosome and then selected bulls based on
an index (equation 2) for the best n of these markers. The limit of a single marker per
chromosome was designed to prevent selection on multiple markers linked to the same
QTL. Two levels of n were used, 3 and 5 markers (LIM3 and LIMS35, respectively).

The fourth strategy (THRES) involved considering all the markers for which the
standardized contrast exceeded a given threshold. For the base situation, the threshold

was set at 1.96, to reflect an oo = 5% significance test (THRESJS). For comparison, the

simulation was repeated by using lower (THRES/0) and higher (THRES/) to reflect o =
10% and « = 1%, respectively.

The fifth strategy, LIMT, combined aspects of LIM and THRES. First, the
marker with the greatest contrast was identified for each chromosome. Then selection
was based on all of these 30 markers with contrasts that exceeded the threshold 1.96.

The final strategy (DD) evaluated the feasibility of applying the results of the
daughter design in the first generation to making selection decisions in subsequent
generations without repeating the genome scan. Markers were traced from the initial

sires of sons to their offspring and MAS was applied to choose sons of informative sires.

63



No specific effort was made to locate and characterize the QTL, but the QTL
were assumed to be nearest to the markers with the greatest contrast. Because selection
was based on an index of contrasts [Equation 2], the markers most likely to be near QTL
implicitly received the greatest weight in the index.

Generational and cumulative responses to MAS were compared to response to
conventional selection (random within-family selection). The extra gain per generation
from MAS was the difference between the means of TBV of bulls selected using markers
and bulls selected randomly. This quantity was expressed as a percentage by dividing by
the gain achieved through random selection.

Many of the past theoretical studies on MAS have assumed a single QTL (Ruane
and Colleau, 1996; Spelman and Garrick, 1998), clusters of QTL (Meuwissen and Van
Arendonk, 1992; Meuwissen and Goddard, 1996) or few QTL (Spelman and Bovenhuis,
1998; Schulman et al., 1999), with previous knowledge of the position of the QTL
relative to flanking markers. Thus, in these studies, the QTL being selected was
predetermined. In contrast, the présent study assumed no previous knowledge of QTL
location. Therefore, several analyses were performed to investigate which markers were
used in selection decisions, their location relative to the QTL, and the size of the QTL, in
terms of genetic variance. To do this, the marker upon which selection was applied was
monitored for each sire. The location of the marker relative to the nearest QTL was
observed. The proportion of times that a QTL was adjacent to the marker, within three
marker intervals or simply on the same chromosome was recorded. I[n addition, the
genetic variance contributed by the marked QTL was recorded and all QTL were ranked

in terms of their genetic variance.
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Some previous studies (e.g. Schulman et al., 1999) have shown that MAS induces
negative linkage disequilibrium among QTL greater than that expected to occur as a
result of conventional selection. Negative linkage disequilibrium occurs when a negative
covariance exists between the selected locus and the remaining loci. This disequilibrium
has the potential to reduce genetic gain from MAS and possibly diminish the power of
experiments designed to detect QTL. To test for evidence of increased disequilibrium
(manifested in decreased power) due to MAS, we compared the mean value of contrasts
following 5 generations of MAS versus 5 generations of conventional selection.
However, changes in the relative magnitude in the contrasts between MAS and
conventional selection could also be the result of differences in allelic frequencies and
decreased genetic variance due to increased selection response from MAS. To account
for differences in the contrasts due to changes in allelic frequencies, the allelic
frequencies for both MAS and conventional schemes were recorded after 5 generations
(GENS5) and then used as initial gene frequencies to establish a new, unrelated base
population (NEW). Then, marker contrasts were re-estimated in this new base
population. The difference between maximum marker contrasts from the GEN5 and
NEW were then compared for MAS and conventional selection. A significant difference
between the magnitude of contrasts from GENS5 and NEW populations was assumed to
indicate a difference in disequilibrium.

To compare long term responses for marker assisted and conventional selection,
the simulation was allowed to continue for many generations until the genetic variance
was nearly exhausted (< 0.1% of the original variance) and cumulative response to MAS

was compared to conventional selection. Much uncertainty and controversy exists
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regarding the true number of genes affecting quantitative traits (Lande, 1981; Zeng,
1992). Therefore, for this comparison, a situation in which the trait was controlled by 50

QTL with 5 alleles each (Hayes and Goddard, 2000)was also simulated.

5.4 Results and Discussion

The following results pertain to the base set of parameters outlined in Table 5.1

unless stated otherwise.

Under the genetic parameters of the model with 20 QTL, on average (across
replicates) 13.1% of the individual QTL accounted for at least 10% of the total genetic
variance. With 20 QTL, a single randomly selected QTL was expected to account for 5%
of the total genetic variance. Also, 2.3% of the QTL accounted for at least 20% of the
variance, and 0.5% and 0.1% of the individual QTL accounted for at least 30 and 40%,
respectively, in the base population. On average, the maximum difference between the
highest and lowest allelic effect for any QTL was 9.90, which corresponds to
approximately 0.9 genetic standard deviations or 0.5 phenotypic standard deviations.
Previous analyses of field data (Ashwell et al, 1997; Georges et al., 1995) have
uncovered QTL with estimated effects of this size or greater.

Table 5.2 shows the percentage increase above random selection in the average
TBV of the chosen progeny test bulls for each of the five MAS approaches. This value
was calculated as previously explained in Chapter 4. |

The percentage increase ranged from 6.73 for the BEST/ to 11.98 for THRESS,

in the first generation. Gains were roughly halved by generation 5. Cumulative gains in
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the mean TBV of the commercial population are also presented (Table 5.2) and they
followed the same pattern. Cumulative gains in the commercial population (ranging from
1.68% to 2.77%) were less than the average advantage per generation for young bulls
because selection of young bulls is only one of the factors that affect genetic progress in
the commercial population.

One can consider BEST/ and BEST3 as applications of THRES with much higher
thresholds. On average, 19 marker locations exceeded the 1.96 critical value for
THRESS (compared to 1 and 3 for BEST/ and BEST3). Clearly, some of the potential
gain from MAS was lost when a too stringent critical value was applied. Basing selection
decisions on a fixed threshold rather than on a fixed number of loci allows many potential
loci on several chromosomes to be cbnsidered, if statistical evidence supports the
segregation of numerous loci. In addition, the threshold method easily allows for
selection based on an interval of markers surrounding the same QTL. This helps to
account for imprecision in the location of the QTL with respect to the markers (on the
contrary BEST/ assumes that the QTL is in the interval adjacent to the marker), therefore
increasing response to MAS (see Chapter 4, Appendix 1). Another potential advantage
for the threshold was that it could allow for variability among the sires in the numbers of
marker contrasts used in selection. With the THRESS, sires ranged from 4 to 39 (sd =
6.7) in the number of marker contrasts that exceeded the threshold, which indicates
variability among sires in the number of segregating QTL with widely different allelic
effects. When BEST/0 was applied, cumulative gain was 2.80%, which exceeded
(although not significantly) the gain from THRESS. Therefore, the advantage of

THRESS over the other approaches was more a function of selection on more loci than of
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allowing variability among sires in the number of markers that contributed to the
selection criterion.

Some efficacy is lost by applying a very liberal threshold because of excessive
type I errors. For this simulated population, the optimal threshold was within the range
corresponding to a comparison wise o of beﬁveen 1 and 5%. When applying the higher
threshold (a = 1%), the cumulative genetic gain over 5 generations was 2.84%, which
was not significantly greater than the response of 2.77% achieved when the threshold was
o = 5%. When the lower threshold (o = 10%) was applied, cumulative genetic gain was
significantly (P < 0.01) decreased, at 2.52%.

Response to MAS was decreased, relative to THRESS, when applying the LIM3,
LIM5 and LIMT approaches, which restricted selection to a single marker per
chromosome. Although these methods outperformed BEST/ because they allow for
selection on multiple QTL, by restricting selection to a single marker per chromosome,
some precision was lost when the underlying QTL was not in an interval adjacent to the
selected marker. A selected son could share the sire’s haplotype at the selected markers
but not the desired QTL allele, if recombination occurred. No significant differences in
selection response were observed when considering 3 versus 5 loci (LIM3 versus LIM)).

For all approaches, the advantages of MAS decreased with each generation.
These decreases occurred because selection decreased the amount of genetic variability in
the population and, therefore, the expected difference between sire alleles at the QTL.
This loss of variability not only decreased the potential gain that could be achieved, but
also decreased the accuracy of the estimates of associations between markers and QTL.

The number of markers exceeding the given thresholds also decreased each generation.
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The risk associated with the various strategies can be evaluated by comparing the
mean advantage in TBV of selected bulls with the standard deviation (SD) of this
advantage (Table 5.2). For example, in Generation 1, the advantage of the BESTI1
strategy was 6.73% with a SD of 2.94%. Thus, the TBV of bulls selected by BEST1
exceeded that of the randomly selected bulls by an average of 2.28 SD. Assuming that
the advantage was normally distributed, the randomly selected young bulls were expected
to be equal or superior to the MAS bulls in only about 1% of the replicates. Not
surprisingly, the more successful strategies were even less risky, as the means in the
advantages of these strategies in TBV for Generation 1 were all in the range of 3.0 SD,
meaning that the TBV of the randomly selected bulls would be expected to meet or
exceed the TBV of MAS bulls in fewer than 0.15% of replicates.

As expected, the risk increased as more generations of MAS were practiced and
the advantage of the MAS bulls decreased. In Generation 5, the TBV of THRESS bulls
was only 1.70 SD greater than randomly selected bulls on the average, so the randomly
selected bulls were superior to the MAS bulls about 4.5% of the time. This level of risk
was still rather low.

The cumulative response in the commercial population after five generations
followed similar patterns. When BEST1 was practiced, the mean TBV of the commercial
population was approximately 2.15 SD above the mean when only conventional selection
was practiced (1.58% risk). By practicing THRESS, this risk was <0.05%.

Table 5.3 gives, for each generation, the frequency for which the marker with the
highest contrast was located near a QTL. for the BEST! strategy. Clearly, the probability

that a QTL existed nearby the marker with the highest contrast decreased over
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generations. For example, in the first generation there was a 60% probability that a QTL
was located in the interval between the selected marker and the next marker on the
chromosome. This dropped by almost half (to 33.8%) in generation 5. Nevertheless,
MAS was still effective in the fifth generation because this percentage was still 3 times
greater than probability expected by choosing a marker at random. In addition, about
55% of the time a QTL was within 30 cM from the marker with the best contrast and
69% of the time on the same chromosome. Approximately 12% of the time no QTL was
found on the same chromosome as the selected marker, even in the first generation. This
result stresses the importance of considering multiple markers by using one of the other
methods such as THRES.

Although the marker with the largest contrast was usually near a QTL, this QTL
was rarely the most important locus as measured by the amount of genetic variance (in
the commercial population) accounted for by the QTL (Table 5.4). For each replicate and
generation, each QTL was ranked based on its genetic variance in the commercial
population. For each sire, we determined the QTL that was being selected upon by the
marker with the greatest contrast. Only 10.10 % of the times the selected QTL had the
most variance.

On average, selection was for the seventh most variable QTL in generation 1 and
this value decreased with increasing generations (Table 5.4). When using an additive
model, the variance accounted for by a QTL is a function of allelic frequencies and
substitution effects (Falconer and McKay, 1996). With large substitution effects,
conventional selection would favor animals that are homozygous for the most favorable

locus. Therefore, even if a QTL had the greatest genetic variance in the commercial
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population, many of the nucleus sires may have been homozygous for the most favorable
allele (Table 5.4). If so, then markers near this QTL would not show a large contrast.
Spelman and Garrick (1998) demonstrated, under similar conditions of selection
intensity, but using a single QTL, that the average contrast decreased by 25% in two
generations of selection. For each QTL, the correlation for that QTL was calculated
between the genetic variance contributed by that QTL and the proportion of sires that
were homozygous for that QTL. We also recorded the proportion of sires that were
homozygous at the QTL that contributed the most genetic variance. The correlation
between QTL variance and proportion of homozygous sires was positive and significant
(P<0.0001), ranging from 0.23 in generation 1 to >0.5 after generation 3 (Table 5.4). The
proportion of sires homozygous at the most variable QTL was 0.3 in first generation
(expected = 0.2 in the absence of selection) and more than 0.6 in generation 5.

Although QTL detection experiments have been shown to be most powerful when
applied across family (Spelman et al., 1999), these results underscore the importance of
considering results within family when subsequently applying MAS. Not only must
transmission studies within family be used to determine the phase of the association
between marker and QTL (Weller et al., 1990), but also to determine whether each family
is actually segregating. These results indicate that as QTL variance (and thus the power
for detection) increases, the probability that the QTL will be segregating within highly
selected animals is decreased.

No difference was observed in the relative effectiveness of MAS with respect to
the true heritability of the trait. For all three heritability levels (0.10, 0.30, 0.50), the

average TBV for young bulls chosen with MAS in the first generation was 6.73% greater
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than of those bulls selected randomly. These percentages varied slightly in later
generations, but not significantly. With a lower heritability, the marker contrasts were
estimated less accurately, but this factor was balanced by the fact that sires were less
likely to be homozygous for the most variable QTL. These results differed from other
studies (Chapter 4; Ruane and Colleau, 1996), but those studies considered only a single
QTL. Moreau et al. (1998) showed that the response to MAS decreased for very low
heritabilities (< 0.15). They estimated the existence of an optimal heritability around
0.15- 0.20, varying slightly depending on the percentage of genetic variance associated
with the markers.

The effect of marker density on efficiency of MAS was also examined (Table
5.5). As expected, finer mapping yielded a superior group of progeny test bulls.
However, the marginal advantage of increasing the marker density decreased as the
density increased. For, example, when the COARSE mapping strategy was applied in
generation 1, the average TBV of selected young bulls exceeded the EBV of randomly
selected bulls by 6.28% (Table 5.5). This gain was increased by 7.2% (to 6.73% for
BEST/) by increasing the marker density by 67% (from 6 to 10 markers per
chromosome). Increasing the number of markers per chromosome by an additional 80%
(from 10 to 18 with FINE) resulted in an in'crease of only 3.4% (to 6.96%). In fact, when
cumulative gain was considered over 5 generations, the difference between using the base
(BEST!) and FINE map was not significant (P > 0.10). The reason to place several
markers on a chromosome is to use recombination events between markers to help locate
the QTL more precisely. Spelman and Bovenhuis (1998) showed that, for this reason,

having smaller marker brackets increased the response to MAS. In our study,
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diminishing returns with finer maps occurred because, as maps become more dense, the
number of daughters (or sons) with a recombination between two particular markers
decreases.

Some breeding companies may be interested in trying to apply the DD approach
because the QTL detection is only performed once and, therefore, costs decrease greatly.
However, the benefits of applying MAS also decreased greatly. In the second generation
of MAS, the average TBV of young bulls was only 1.27 % greater than random within-
family selection and the advantage was nearly negligible in later generations. If within-
family MAS is effective, nearly all surviving members of a given sire family will have
inherited the best alleles at the loct upon which MAS was applied.

Means of the maximum contrasts (absolute value) following five generations of
conventional selection and MAS are in Table 5.6. The means of maximum contrasts
when the resulting allelic frequencies were used to establish new populations (NEW) are
also presented. The maximum contrast following MAS (3.18) was significantly
(P<0.0001) but only slightly lower than after the same period of random within-family
selection of progeny test bulls (3.26). No difference was observed in the maximum
contrasts for NEW populations established with the resulting allelic frequencies, so the
difference between GENS and NEW contrasts was also greater (P<0.0001) for MAS than
conventional selection. This difference was likely due to increased negative linkage
disequilibrium among QTL when MAS was applied. Contrasts were greater in NEW
versus GENS populations for both selection schemes. Increased genetic relationships
among animals in the commercial population after 5 generations of selection were likely

responsible for much of this difference, but should not have greatly affected the

73



difference between MAS and conventional selection in GENS5 because MAS was applied
only within families.

Previous studies have demonstrated inferior long-term genetic response to MAS
when compared to conventional selection (Gibson, 1994; Villanueva et al., 1999). That
phenomenon was not observed in our study for either 20 or 50 QTL models. Cumulative
response with marker assisted selection was consistently greater than with random
selection within full-sib family, even after selection had continued to the point where
genetic variance was reduced to less then 0.01% of the initial variance. OQur study differed
from the previous, however, in several features. First, selection strategies differed. In our
study, MAS was applied only to choose progeny test bulls from within families. In
contrast Gibson (1994) and Villanueva et al. (1999) practiced population wide selection
based on an index of the marked gene and the remaining polygenes. Also, previous
studies simulated continued MAS on a single locus, rather than a varying array of loci as
was the case in the present study. Applying MAS on many loci may be a more robust

approach that helps prevent drift from fixing some loci at non-favorable alleles.

5.5 Conclusions

Applying full genome scans in each generation allowed for selection on different
QTL across time. Within a given family, repeated selection for the same marker locus
over multiple generations was of little value because of loss of information and decreased
genetic variability from previous selection. Maximum progress was achieved by selecting

in each generation upon several sets of markers neighboring multiple potential QTL,
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rather than only the most likely QTL. The markers selected in each family should be
based on a significant threshold rather than on arbitrary limitations on number of markers
per chromosome or family.

The cost of the simulated MAS program would likely be prohibitive with current
genotyping technology. Therefore, perhaps some combination of repeated scans on
targeted areas of the genome and application of previously obtained results may be more
efficient for breeding companies. Future technologies may, however, greatly decrease
the cost of repeated full genome scans.

Within family MAS was rarely applied to the most important QTL in the
commercial population because sires of sons were often homozygous for the best alleles
at these loci. When MAS was practiced on different QTL in different generations,
cumulative response with MAS maintained an advantage over response from

conventional selection.



Table 5.1 Simulation parameters.

Parameter Base scenario Alternatives
Heritability 0.30 0.10, 0.50

Number of QTL 20 50

Recombination rate

between markers 0.10 0.05, 0.15

MAS strategy BEST/ BEST#a, LIMn, THRES#, LIMT, DD

Table 5.2 Average (SD) increase' in mean TBV of the selected group of young bulls
when MAS is applied within family and cumulative gain (relative to conventional
selection) in the commercial populations after five generations of selection.

MAS method
Generation BEST1 BEST3 THRESS LIM3 LIMT
%
1 6.73%(2.94) 10.14°(3.34) 11.98°(3.35) 0.72%(3.33)  9.55%(2.99)
2 5.34%(2.94) 832°(3.46) 9.85°(3.47) 791%(3.45) 7.89%(3.23)
3 4.82*(2.85) 7.44°(3.33) 8.62°(3.32) 6.97°(3.48) 7.05(3.07)
4 4.16*(2.95)  6.25°(3.30)  7.04°(3.40) 5.94°(3.30) 5.699(2.91)
5 3.43°(2.81)  5.20°(3.41) 5.79°(3.41) 4.81°(3.20) 4.63°(2.80)
Cumulative® 1.68%(0.78)  2.31°(0.82) 2.77°(0.82) 2.29°(0.81)  2.34°(0.80)

T N - : ;
Expressed as a percentage of the genetic response with conventional selection.

ab,cd

2 . .. . .
~ Cumulative gain in the commercial population

76

Values in the same row with different superscripts are significantly different (p <0.0001)




Table 5.3 Frequency of finding the largest marker contrast near a QTL and the
expected values for a marker selected at random.

Position of the best contrast

Generation Within Within Whole
+ 10cM + 30cM Chromosome
%
1 56.9 78.7 87.2
2 47.5 69.9 80.6
3 43.2 65.6 76.9
4 37.9 59.6 72.9
5 338 54.9 69.0
Random 12.5 299 49.2

Table 5.4 Average rank in genetic variance' of the QTL selected upon, the average
percent of sires that were homozygous for the QTL that contributed the greatest
genetic variance' and the correlation (r) of genetic variance' per QTL with the
proportion of sires (r) that were homozygous.

Generation Rank’ Homozygous r
sires
1 7.16 30.6% 0.23
2 9.06 37.7% 0.38
3 10.05 44.2% 0.47
4 11.00 52.3% 0.51
5 11.91 60.3% 0.53

" 'In to the commercial population.
*Out of 20.
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Table 5.5 Effect of marker density on the increase' in mean TBV of the selected
group of young bulls when MAS is applied within family.

Marker Density”
Generation Coarse - BEST1 Fine
(0=0.15) (6=0.10) (6=0.05)
1 6.28 6.73 6.96
2 4.85 5.34 5.60
3 4.25 4.82 5.05
4 3.63 4.16 4.37
5 3.08 3.43 3.58

Expressed as a percentage of the genetic response with conventional selection.
*Recomination rate = 0.15, 0.10, and 0.035, for Coarse, Bestl, and Fine, respectively.
8 = recombination rate between adjacent markers.

Table 5.6 Mean of maximum contrasts' following five generations (GEN5) of
conventional and marker assisted selection (MAS) and in unrelated populations
with the same allelic frequencies (NEW).

Selection scheme

Population Conventional MAS
GENS 3.26° 3.18°
NEW 3.46° 3.46°
Difference’ -0.20° -0.28°
'Standardized

*Difference between GENS and NEW
b values with different superscripts in each row are significantly different (p < 0.0001)
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Figure 5.1. Structure of the population.
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6. MAS for a multiple trait objective in an open nucleus herd.

6.1 Summary

The objective of this study was to examine the efficacy of applying MAS when
the selection goal included two traits. A nucleus herd was simulated for five generations
and MAS was applied within full sib families to choose bulls for progeny testing. A
finite locus model was assumed with 20 QTL on 30 chromosomes. Three hundred
markers were distributed evenly across the genome and a daughter design was used in
each generation to determine which markers were associated with QTL. The selection
goal included two traits. Trait 1 had an economic weight three times greater than trait 2.
Heritabilities were 0.30 and 0.10 for traits 1 and 2, respectively, and the genetic
correlation was either —0.25 or 0.25. Multiple trait MAS was applied in two ways, 1) by
calculating separate contrasts for the two traits and combining the results together, or 2)
calculating a single contrast using an index of the two traits. Multiple trait MAS was
compared to applying MAS for trait 1 only and conventional selection alone. Situations
where trait 2 directly affected fitness were also simulated. Multiple MAS decreased
response for trait 1 relative to both single trait MAS or conventional selection. However,
response for trait 2 increased to a greater degree and, therefore, response for the index
was greatest with multiple trait MAS. This result was consistent whether the traits were

positively or negatively correlated. No significant differences were observed between the

two approaches for multiple trait MAS.

6.2 Introduction
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Many studies have demonstrated that genetic response can be increased by
applying marker assisted selection to increase selection accuracy (e.g. Lande and
Thompson, 1990; Spelman and Garrick, 1997; Mackinnon and Georges, 1998). These
studies have generally been applied for the genetic improvement of a single important
trait. Many traits are recorded for dairy cattle and experiments to detect relationships
between genetic markers and underlying QTL have been applied for most of these traits
(e.g. Georges et al., 1995; Spelman et al., 1996; Ashwell et al., 1997) and several
approaches to multitrait analysis for QTL mapping have been proposed (Ronin et al.,
1995; Weller et al., 1996; Knott and Haley, 2000). However, with the exception of a few
studies (DeKoning and Weller, 1994; Xie and Xu, 1998; Bernardo, 1999), work on the
application of QTL information in breeding programs has generally focused on
improvement for response to single trait selection objectives.

Single trait MAS is unlikely to be the most beneficial approach for application of
information about QTL in selection programs. Although milk production is of primary
concemn for dairy cattle, other traits are economically important. For example, in Canada,
many dairy traits are recorded and evaluated genetically. Commercially available sires
can be selected based upon indexes that account for type traits, longevity, and udder
health, in addition to production (Dekkers, 1995). Also, many of the non-production
traits such as mastitis resistance (Emanuelson et al., 1988; Poso and Mantysaari, 1996)
and reproductive performance (Roth et al., 1999) have unfavorable genetic correlations
with production (Pryce et al.,, 1997), which may affect the efficacy of MAS. Also,

phenotypic effects of reduced fertility due to high production (Roth et al., 1999) could
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affect the number of offspring produced, decreasing selection intensity and genetic

progress.

The objective of this study was to examine the efficacy of MAS when the
selection goal included two traits. The comparisons were made for situations where the
traits were negatively and positively correlated. In addition, MAS was applied when the

traits were negatively correlated and one of the traits represented fertility.

6.3 Methods

The simulated population was originally described in Chapter 5. Selection for sex
limited traits was practiced within an open nucleus and a commercial herd (Figure 6.1).
The nucleus was formed by selecting, from a base population of 1500 males and 50,000
females, the best ten sires and 500 dams according to an index of EBV (Spelman and
Garrick, 1998) for two traits. The EBV of the sires were assumed to have accuracies»
corresponding to a progeny test with 100 daughters and the accuracy of EBV for dams
corresponded to one lactation record.

In subsequent generations, each of the ten selected sires was mated randomly to
50 nucleus dams to generate full-sib families of three males and three females. Within
each family, the best male was selected based on his genotype, considering results of a
daughter design that was previously conducted on each of the ten sires. All of the females
were eligible for selection on their index. The top 400 nucleus females were selected for
the next generation of dams along witk-1 100 dams from a commercial population. The
commercial population was comprised of 50,000 cows that were sired by the top 50 bulls

in the previous generation. Five generations were simulated. To decrease variability
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across comparisons, the same seed value was used to initiate the random number

generator for all simulations.

Genetic model

Two traits were included in the selection goal. Trait 1 was designed to represent
production, whereas Trait 2 had a lower heritability and was of secondary importance,
representing a trait such as conformation, longevity, or a measure of health or
functionality. Trait | received a standardized selection emphasis three times greater than
did trait 2. For comparison, in Canada, production receives 2.5 times more weight than
does longevity and >6 times more weight than does udder health (Dekkers, 1995). Trait 1
had a heritability of 0.30 and trait 2 had a heritability of 0.10. The phenotypic variance
was arbitrarily set to 400 for both traits. To evaluate how selection response varied as a
function of the relationship between the traits, separate situations were simulated in
which the traits had genetic correlations of -0.25 and 0.25, respectively. The
environmental correlation between the traits was assumed to be zero.]

Two additional situations were simulated where trait 2 directly affected fitness or
reproductive rate. The genetic correlation between traits 1 and 2 was —0.25, based on
estimates from the literature of genetic correlations between milk production and fertility
(e.g. Roth et al,, 1999). In the first of these two situations, trait 2 was a threshold trait
affecting female fertility rate. For each female, an underlying variate for fertility was
simulated by adding a random normal deviate (o = 360) to the TBV of each cow. Cows
with variate >1.0 standard deviation below the mean of the base population were allowed

to have only two offspring of each sex, rather than three. Cows with phenotypes >2.0
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and >2.5 standard deviations below the mean had only one and zero offspring,
respectively. The other situation was similar to having a lethal recessive that was
unfavorably associated with trait 1. Numeric effects were assigned to all alleles by using
the procedure described with a correlation of —0.25 between the traits. The allele with the
greatest detrimental effect on trait 2 was declared the deleterious allele. Individuals (both
males and females) that were homozygous for this unfavorable allele were unable to
produce any offspring. The effect on the TBV and phenotypes of carriers of this allele
was equal to the numeric effect.

The TBV were produced assuming a finite locus model for which all the allelic
effects were strictly additive (Mackinnon and Georges, 1998). All genetic variability in
the traits of interest was explained by 20 loci, each with 5 alleles. The QTL position was
randomly assigned in each replicate. The initial allele frequencies of allele effects were
uniformly distributed and standardized to sum to 1.0.

A pleiotropic effect was simulated for each QTL so that all QTL had some effect
on both traits. The simulation of allelic effects was a three-step process. In each
replicate, allelic effects for trait 1 were first drawn from a double exponential distribution
with unit variance. Then, each of the effects for trait 1 was multiplied by the genetic
correlation, r;, and summed to a second random deviate from a double exponential
distribution with variance [1- rgz] to generate the effects for trait 2. Finally, the allelic
effects for each trait were scaled to give the desired genetic variance given the initial
allele frequencies. This procedure resulted in a few QTL with large effects on both traits,
some QTL with large effects on only one trait, and many QTL with little effect on either

trait.
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The QTL were randomly distributed across the genome, with no upper limit
placed on the number of QTL per chromosome. Thirty chromosomes of 90 ¢cM each
were simulated. There were 300 co-dominant markers, with 6 alleles each, distributed

across the 30 chromosomes, evenly spaced and separated by a recombination rate () of

0.10.

Marker assisted selection

A daughter design was used, every generation, to determine which marker alleles
were favorably associated with the QTL alleles. Each sire had 100 daughters from the
commercial population, with a lactation record and complete marker genotypes. Marker
contrasts were calculated for all heterozygous markers within sire. All daughters that
were informative at a given locus were used to calculate the contrast. The genotype of
the dams was ignored in the calculation of the contrast. The contrast was simply the
difference in the mean of EBV of daughters carrying the altemative alleles. These EBV
were assumed to have the precision of EBV based on one lactation record. Contrasts
were then divided by their respective standard errors to account for differences in the
number of informative daughters across loci.

Marker assisted selection was then applied to select the best sons from among
full-sib families of three males. Selection was based on the THRES approach of Chapter
5, because this approach was superior among different strategies compared in that study.
This approach identified all marker alleles at which the marker contrast exceeded a given
threshold. Then, for each son, contrast values were summed across all significant markers

to form an index for selection that implicitly gave the most weight to the markers with the

85



greatest contrasts. The son with the highest sum was selected. A threshold of 2.65
standard units, corresponding to 5% comparison wise type I error rate, was used to
determine which contrasts contributed to the sum.

Three approaches to MAS were developed. In the first situation (SEPARATE),
standardized marker contrasts were calculated separately for each trait. Then the two
sums were added, weighted according to the relative economic importance of each trait.
For the second approach (INDEX), an index of the two traits was calculated for each
daughter by multiplying the single trait EBVs for Trait 1 and 2 by selection index weights
which accounted for the economic weights, the genetic correlation and the amount of
information the EBVs were based on. Then sons were selected based on marker contrasts
for this index. The final situation (SINGLE) mimicked MAS as it may be applied in the
current breeding industries, in which the underlying selection objective includes several
traits but selection is formally practiced on one or a few traits. In SINGLE, both
conventional selection and MAS were practiced only on trait 1.

Several comparisons were made to evaluate the relative effectiveness of
conventional selection (RANDOM), in which young sires were selected randomly
within-family, and the three MAS approaches. First, in each generation the average TBV
of the sons chosen by MAS was compared to average TBV of a group of sons chosen
randomly following the same approach as in Chapter 4 (equation [6]). This comparison
was made for both traits 1 and 2 and an index of the two traits. Second, the genetic
response in the commercial population was also compared. Finally, because the goal of a
multiple trait selection program is to increase the frequencies of alleles that favorably

affect both traits, the difference between generation one and five in the frequency of the
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best allele was monitored within the commercial population. To determine the best allele,
an index was calculated for each allele at each QTL,
LI; = 3*aj;+1%a;;,

where ajj) and ajj; are the effects of allele j of QTL 1 on traits 1 and 2 (standardized for
genetic standard devation), respectively. The “best” allele was the allele for which [ was
greatest.

Similar comparisons were made for the situations that examined responses to
MAS when differences in fertility were accounted for. However, rather than monitoring
the frequency of the best allele, the frequency of the lethal recessive was recorded within
the commercial population. Changes in the frequencies of the recessive allele were

compared across selection strategies to determine which strategy most quickly decreased

its frequency.

6.4 Results

Considering both traits while applying MAS within families resulted in
significantly (P > 0.05) greater response for the selection objective than did either
considering only the trait of primary importance (trait 1) or selecting young bulls via
RANDOM. These advantages were obtained by improving the efficacy of selection for
the second trait. The TBV of bulls selected by MAS were greater for trait 2 than were the
TBV of randomly selected bulls. The relative differences between the TBV of bulls
chosen by MAS versus randomly are given in Table 6.1 for multiple trait MAS strategies
(INDEX and SEPARATE) and for selection on trait 1 only (SINGLE). Results in Table

6.1 are for the first generation of the simulation, but similar advantages were observed in
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all generations. Differences in TBV are expressed as a percentage of the TBV of bulls
selected randomly.

When the traits were negatively correlated, the bulls selected by multiple trait
MAS had lower mean TBV for trait 1 than did the bulls selected randomly (P < 0.05).
This difference occurred because multiple trait MAS placed relatively more emphasis on
trait 2. Table 6.1 has values of >100% for this set of circumstances (heritability, genetic
correlation, and selection weights) because essentially no improvement was obtained in
trait 2 when the bulls for progeny testing were selected randomly. For example, the
average TBV for trait 2 in the commercial population was —0.056. The average TBV of
bulls when selecting randomly was -0.209 (lower, but not significantly different, P >
0.01). Bulls selected by the SEPARATE and INDEX approach had mean TBV for trait 2
of 0.291 and 0.502, respectively, both of which were significantly different from the
means of both the commercial population and the bulls selected randomly (£ < 0.05).
However, the mean TBV for SEPARATE and INDEX were not significantly different
from each other. Given that multiple trait MAS was advantageous (relative to random
within-family) selection for trait 2 but not for trait 1, the final advantage in the index was
relatively small but still significant (Table 6.1). Again, the SEPARATE and INDEX
methods were not significantly different from each other. The increased emphasis on
trait 2 resulting from MAS may be due to the fact that MAS, in general, increases
selection accuracy and this increase was relatively more important for trait 2, because of
its lower heritability.

Multiple trait MAS was more effective when the genetic correlation between the

traits was positive. When the traits were positively correlated (r; = 0.25) bulls selected
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by multiple trait MAS had greater TBV for both traits (Table 6.1), than did randomly
selected bulls. As was the case when traits were negatively correlated, the advantage was
greater for trait 2. For example, advantages over random selection for trait 2 were
16.90% and 19.22% for SEPARATE and INDEX, respectively, versus 2.70% and 3.02%
for trait 1. Because trait 1 received more weight in the selection index than did trait 2, the
final advantage for the index was 4.62% and 5.91% for SEPARATE and INDEX,
respectively, which were closer to the results for trait 1 than for trait 2.

All of the individual results, for both positive and negative genetic correlation
slightly favored the INDEX approach over SEPARATE, but the differences were not
statistically significant.

Applying SINGLE trait selection (both conventional and marker assisted) for trait
1 yielded expected results (Table 6.1). The selected young bulls were much superior for
trait 1, having mean TBV 12.19% greater than randomly selected bulls. This advantage
was exactly the same for both positive and negative correlations between traits, because
the same random seed was used for the simulation and correlation had no effect on
selection for trait 1 only. Superniority for trait 1 came at the expense of trait 2, as the
mean TBV for trait 2 for selected bulls was decreased by greater than 10% in both
instances. Because trait | was more important and received more weight in the index,
SINGLE MAS for trait 1 still yielded slightly greater advantages in the index than did
random selection. For the individual traits, differences between SINGLE and
SEPARATE and INDEX were significant (P < 0.05), with differences being more
pronounced for trait 2. Again, because of the importance of trait 1, differences in the

overall index were less than between individual traits.
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The differences between multiple trait MAS and random selection of young bulls
tended to decrease in subsequent generations (results not shown). For example, in
generation five when the correlation between traits was positive, the young sires selected
by SEPARATE were only 2.24% greater for the index than were randomly selected sires
versus 5.91% in generation one. When the traits were negatively correlated and INDEX
was applied, the difference between MAS and randomly selected bulls was 1.64% in
generation 5 versus 1.87% in generation one. In Chapter 5 we observed a similar result
when single trait MAS was applied for within family selection of progeny test bulls and
attributed it to effects of previous selection decreasing genetic variance at QTL with large
effects. Also, in the initial generation the SINGLE approach was superior to random
selection of young bulls by 1.50% (Table 6.1), mostly due to high response in trait 1 that
compensated for decreases for trait 2. In later generations, as response to trait 1
decreased and the deficit in trait 2 increased, bulls selected with SINGLE had poorer
values for the index than did randomly selected bulls.

Similar trends were observed when differences between multiple trait MAS and
single trait MAS or random selection of young bulls were evaluated in terms of genetic
response in the commercial population after five generations (Table 6.2). Specifically,
when the traits were negatively correlated, SINGLE MAS yielded the most response for
trait 1 and the least for trait 2. Random selection of young bulls yielded slightly (but not
significantly) greater response for trait 1 than did the SEPARATE and INDEX
approaches, but the SEPARATE and INDEX approaches were significantly superior (P <
0.05) for response in trait 2. Table 6.2 also gives responses after 5 generations to the

overall index, expressed relative to a value of 100 for response to random selection of
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young bulls. Responses in the index to SEPARATE and INDEX approaches were
greatest, followed by RANDOM and SINGLE. The advantages of SEPARATE and
INDEX relative to RANDOM in cumulative response after five generations of 0.8% and
1.4%, respectively (Table 6.2) were less than the relative advantages in young bull TBV
of 1.42% and 1.87% (Table 6.1). This decrease was due to two reasons. First, other
pathways of selection, in addition to the selecticn of bulls to progeny test, have effects on
response in the commercial population. Second, results in Table 6.2 were after five
generations of selection and, as mentioned earlier, the relative advantages of MAS for
selection of progeny test bulls decreased over time. Trends of response were similar
when the traits were positively correlated, except that, as expected, responses for trait 2
were greater (Table 6.2) when it was positively correlated with trait 1. Even when the
traits were positively correlated, the benefits of multiple trait MAS were minor and much
less than observed for single trait MAS in the previous two chapters. This result may be
due to the fact that extreme values for contrasts were less common in the multiple trait
scenarios. Few alleles would be expected to have extremely favorable effects for both
traits. If so, this result may even be worse for situations with more traits or traits with
similar weights and heritabilities.

Differences between generation 1 and 5 in the frequencies of the most favorable
alleles for the two traits and the index are in Table 6.3. When the traits were negatively
correlated, the greatest increase in frequency of the best allele for trait 1 was obtained by
SINGLE trait selection (0.51). RANDOM selection gave the second greatest increase
(0.48) which was only slightly, but significantly (P < 0.05), different from multiple trait

MAS (0.47). The opposite pattern was observed for trait 2, with multiple trait MAS
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being the most effective approach. Increases in the frequencies of the best allele for trait
1 were much greater than for trait 2, regardless of the strategy. This difference was due
to the greater selection weight and higher hentability for trait 1. As a consequence of the
greater importance of trait 1 in the index, the greatest response for the best allele for the
index was achieved by SINGLE trait selection, 0.51 versus 0.48 for the other methods.
When the traits were positively correlated, trends were similar, but the multiple trait
approaches were more effective than when traits were negatively correlated. No
difference was observed between these methods and RANDOM for the frequency of the
best allele for trait 1 and the differences in frequencies between methods were greater for
trait 2 than they were when the traits were negatively correlated.

The different approaches to selection also significantly affected the underlying
genetic correlation between the two traits. When the traits were negatively correlated,
multiple trait selection increased the magnitude of the correlation from -0.25 to —0.29.
SINGLE trait selection reduced it to —0.21. When the traits were positively correlated
both approaches decreased the genetic correlation, but the decrease was greater (to 0.12
versus 0.20) with multiple trait selection.

Changes in selection responses in the commercial population due to the effect of
fertility and the presence of a deleterious recessive were much greater for multiple trait
MAS (INDEX) than for SINGLE trait MAS (Table 6.4). When effects of fertility were
accounted for, response for trait 1, after five generations of selection, was reduced by
1.6%, from 39.66 to 39.03. However, response to trait 2 was increased by 27%, from
1.08 to 1.37. In contrast, no significant effects on response were observed for SINGLE

trait selection. Differences were more pronounced when a deleterious recessive was



simulated. Response for trait 1 was reduced by 11.3%, from 39.66 to 35.16 when the
deleterious recessive was present and multiple trait MAS was practiced, whereas
response to trait 2 was increased by 63.9%, to 1.77. Effects of the deleterious recessive
on response to SINGLE trait MAS were less than with INDEX selection, but were
significant (P < 0.05). Response to trait 1 was decreased by 2.8% and response to trait 2
was increased by 4.0%.

The use of aA multiple trait INDEX for MAS also decreased the frequency of the
deleterious gene more than did SINGLE trait MAS. After 5 generations of INDEX MAS,
the frequency of the deleterious allele was decreased by 0.057, despite the unfavorable
correlation with trait 1. In contrast, the frequency of the deleterious allele was increased
by 0.015 when SINGLE trait MAS was applied. Although the deleterious allele had little
effect on response to SINGLE trait selection in the short term, long term response may be
limited as the frequency of the deleterious allele continues to increase at a similar rate.
This result suggests that multiple trait MAS may be a more robust approach for the long

term than is single trait selection.

6.5 Discussion

Marker assisted selection for the multiple trait selection objective was more
effective than was conventional selection, when applied to the choice of young bulls prior
to progeny testing. However, the benefits of multiple trait MAS were less than
previously observed for single trait MAS. Considering the scenarios simulated, the
average TBV (for the index) of MAS young bulls were up to 6% greater than the average

TBV of randomly selected young bulls. This advantage tended to be less than the
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response of approximately 12% observed for single trait selection in the most directly
comparable study (see Chapter 5). Under similar assumptions and approaches regarding
the application of MAS, Spelman and Garrick (1999) also observed advantages ranging
up to 10%. Other studies (e.g., Kashi et al.,, 1990; Mackinon and Georges, 1998;
Schulman and Dentine, 1998) reported gains that varied from less than five percent to
greater than 20%, but the underlying genetic models differed greatly. Averaging of the
effects of the multiple trait resulted in having fewer alleles with large favorable effects on
both traits.

In this study, response to MAS for the primary trait (Trait 1) was significantly
decreased compared to both single trait MAS and conventional selection for that trait.
However, gains in the multiple trait selection objective resulted from large increases in
response for the secondary trait.

In contrast to the results reported here, De Koning and Weller (1994) observed
relatively greater gains from MAS for a multiple trait objective than for a single trait
objective. This discrepancy between the current study may be explained by differences in
the underlying genetic models used for the simulations. First, De Koning and Weller
(1994) assumed that QTL genotype was known without error, while in the present study
the QTL position was unknown. Moreover, they simulated QTL for which the individual
allelic effects for each trait were correlated by either 1 or —1, whereas each QTL was
simulated with a different covariance in this study. The QTL simulated by De Koning
and Weller (1994) were also biallelic, rather than multi-allelic. All of these factors would
be expected to contribute to greater response to multiple trait MAS than for the

conditions that we simulated. Finally, the previous study applied the same economic
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weight for the two traits. This assumption may also have favored multiple trait MAS
relative to our study. The major gains were for the second trait, which had a much lower
economic weight (and thus contributed less to overall response to MAS) than did the first
trait.

The advantages achieved from multiple trait MAS were considerably greater in
our study when the traits were positively correlated than when negatively correlated. De
Koning and Weller (1994) observed the opposite result. This difference was most likely
due to the fact that they assumed precise knowledge of the genotypes for the QTL. In our
study, the negative correlations between the traits likely decreased the accuracy with
which markers were statistically associated with QTL.

When the secondary trait (2) in our study affected fitness and was negatively
correlated with the primary trait (1), multiple trait MAS led to increased response in trait
2 (relative to the sitL_lation where reproductive rate was unaffected). Although this
phenomenon may need to be corroborated and confirmed in repeated studies, it may
provide an additional reason why MAS may be especially beneficial for health and
fitness traits, in addition to reasons given by previous authors (e.g. Haley and Visscher,
1998; Davis and DeNise, 1998).

Additional research in multiple trait MAS is definitely needed. The increased use
of MAS and the addition of more traits to breeding goals and selection indexes for dairy
cattle have been predicted for the future (Boettcher, 2000; Cassell, 2000; Welper, 2000).
One specific topic to address is the mathematical approaches for the design of indexes
that incorporate MAS and conventional selection on EBV. No differences were observed

between the two approaches used in this study for the application of multiple trait MAS,
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but the selection criteria used were rather simple. More research is needed on approaches
to combine information about marked QTL and EBV for the remainder of the genome,
possibly by using variations of approaches developed for single QTL and single traits
(Dekkers and Van Arendonk, 1998). Efficient approaches for detecting QTL with effects
on several traits are also needed, perhaps by expanding on previous work by (Ronin et al.,

1998; Henshall and Goddard, 1999; Bovenhuis and Spelman, 2000).
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Table 6.1 Percent difference at generation one in TBV of young bulls selected
through MAS and randomly, when two traits were negatively and positively
correlated and three different selection strategies were applied.

MAS Genetic correlation
Strategy Negative Positive
Trait 1 Trait 2 Index Trait 1 Trait 2 Index
%
SEPARATE -1.34% >100.00* 1.42* 2.70* 16.90° 4.62%
INDEX 2112 >100.00* 1.87° 3.02° 19.22% 5.917
SINGLE 12.19° -10.26° 1.50° 12.19° -12.67° 2.11°

2P values in the same column with different superscripts are significantly different (P <
0.05)

Table 6.2 Responses in the commercial population to five generations of selection
using four different strategies of multiple trait MAS, when two traits were
negatively and positively correlated.

MAS Genetic correlation
Strategy Negative Positive

Trait 1 Trait 2 Index Trait 1 Trait 2 Index
RANDOM 40.10° 0.09°  100.0° 40.90° 12.29° 100.0°
SEPARATE  39.75° 1.22°  100.8° 40.94° 12.97° 100.9°
INDEX 39.66% 1.80° 101.4° 40.97° 13.19° 101.2°
SINGLE 43.98° -7.83¢ 98.5° 43.78° 4.52¢ 96.6°

#b€ Values in the same column with different superscripts are significantly different (P <
0.05)
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Table 6.3 Changes, after five generations of selection, in the frequencies of the most
favarable alleles when different strategies of multiple trait MAS were applied and
the two traits were negatively and positively correlated

MAS Genetic correlation
Strategy Negative Positive

Trait 1 Trait 2 Index Trait 1 Trait 2 Index
RANDOM 0.48* 0.05*  0.48° 0.48" 0.16* 0.49*
SEPARATE 0.47° 0.06°  0.48* 0.48* 0.18° 0.49%
INDEX 0.47° 0.06°  0.48* 0.48° 0.19° 0.49°
SINGLE 0.51¢ -0.045  0.51° 0.51° 0.05¢ 0.51°

2P yalues in the same column with different superscripts are significantly different (P <
0.05)

Table 6.4 Responses' to five generations of INDEX and SINGLE MAS, when two
traits were negatively correlated, when trait 2 was fertility and when one allele was

a lethal recessive.

Strategy Trait 1 Trait 2
INDEX
Negative 39.66° 1.08*
Fertility 39.03° 1.37°
Recessive 35.16° 1.77°
SINGLE
Negative 43.38¢ -6.26°
Fertility 43.314 -6.369
Recessive 42.18° -6.02°

' Response in the commercial population.
abede yalues in the same column with different superscripts are significantly different (P

< 0.05)
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Figure 6.1 Structure of the population.
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7. Models for genetic effects in simulations of marker assisted selection

in dairy cattle

7.1 Summary

The objective of this study was to determine how different assumptions about the
underlying genetic model for a population affected the distribution of allelic effects and
the long-term response to marker assisted selection (MAS) in dairy cattle. An open
nucleus and commercial population was simulated, with MAS being used within family
to select young bulls to enter a progeny-testing program. A finite genetic model with up
to 200 loci was assumed. Effects of mutation were included to maintain genetic variance.
One hundred generations were simulated. The genetic models differed in the distribution
of allelic effects. Gamma, double exponential and normal distributions were used to
generate allelic effects. Models also differed with respect to mutation rate, number of
segregating loci, and the distribution of initial allelic frequencies. Genetic variances in
the commercial population were monitored. Genetic variances changed over time, but
eventually stabilized. Based on inference from the final generation, after the genetic
variance became stable, a gamma distribution with long tails seemed to best describe the
allelic effects. The 3 largest QTL explained approximately 40% of the genetic variance,
versus <20% for the normal model. The 20 largest QTL accounted for >99% of the
variance. The distribution of allelic effects was clearly U-shaped, with most alleles
having very high or very low frequencies. To test the efficacy of MAS, the breeding
values of selected bulls were compared to randomly chosen bulls from the same families.

The superiority of MAS was maintained throughout the course of the simulation,
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regardless of the model used. Over time, the trend in the advantage of MAS mirrored the

trend for genetic variance in the commercial population.

7.2 Introduction

Different simulations of MAS have used different underlying genetic models.
This greatly affected the results on the relative advantage of MAS over conventional
selection (for review, Spelman, 1998). One major difference is the use of a mixed
inheritance model with a polygenic background and one or more QTL (e.g. Chapter 4;
Meuwissen and Goddard, 1996; Spelman and Garrick, 1998) versus a finite locus model
(e.g. Chapter 5; Mackinnon and Georges, 1998). When stochastic simulations have
considered only short or medium term prediction, the results have tended to be similar for
the two previously mentioned models. However, the finite locus model is unable to
predict a long-term response to selection, because allele frequencies are rapidly driven to
fixation (Gibson, 1999). Recently, QTL of moderate effect have been detected in
selected populations (e.g. Coppieters et al., 1998). Hayes and Goddard (2000) performed
a meta-analysis of QTL mapping experiment results from the literature. They estimated
the number of genes affecting quantitative traits in dairy cattle and swine to be between
50 and 100. These results highlight the need to consider the finite model in the prediction
of selection response, since, for these analyses, the infinitesimal model is flawed.

Mutation makes a substantial contribution to genetic variation (Hill, 1982). Along
with migration and non-additive genetic effects (e.g. dominance and epistasis), mutation

is likely one of the major factors in the maintenance of variation (and long term response)
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in populations under selection (Lynch and Walsh, 1998). To be able to reproduce the
long term selection response that has been observed in commercial livestock populations
(e.g. Cassell, 2000), mutation should be considered in modeling MAS breeding schemes.
The first objective of this study was to determine how different assumptions about
the underlying genetic model for a population affected response to selection and the
distribution of allelic effects following many generations of selection. A second
objective of the study was to determine the superiority of MAS under a genetic model

designed to sustain long term selection response.

7.3 Methods

Populations were simulated by following the basic desig outlined in chapter 5.
Selection for a sex-limited trait was applied within an open nucleus and a commercial
herd (Figure 7.1). The nucleus was formed by selecting, according to EBV (Spelman and
Garrick, 1998), the best ten sires and 500 dams from a base population of 1500 males and
50,000 females. The EBV of the sires were assumed to have accuracies corresponding to
a progeny test with 100 daughters. The accuracy of EBV for dams corresponded to one-
lactation record.

In the first and following generations, each of the 10 sires was mated randomly to
5U nucleus dams to generate full-sib families of three males and three females. Within
each family, the single best male was selected to enter a progeny test, based on
favourable marker-QTL associations determined in a daughter design. All nucleus born

females were eligible for selection and the top 400 females were selected for the next
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generation of nucleus dams, along with 100 cows from the commercial population. The
commercial population was comprised of 50,000 cows that were sired by the top 50 bulls

in the previous generation. One-hundred generations were simulated in each of 200

replicates.

Genetic model

For each simulation, a different underlying genetic model was assumed. All of
the simulations had several characteristics of the genetic model in common. Then, one
aspect of the genetic model was modified for each situation, in order to evaluate the

effects on maintenance of genetic variability and response to MAS.

Common aspects across simulations. For all scenarios, the TBV of each animal

was determined by the sum of additive effects for 200 QTL in a finite locus model. Each
QTL had five alleles. The QTL were randomly distributed across the genome. Thirty
chromosomes of 90 ¢cM each were simulated and no upper limit was placed on the

number of QTL per chromosome.

The phenotypic variance for the simulated trait was 400. Initial genetic variance
was targeted at 120 (heritability = 0.30), but varied slightly depending on the actual
allelic effects and frequencies obtained in a replicate. For MAS, 180 co-dominant
markers, each with 6 alleles, were distributed across the 30 chromosomes, evenly spaced
(i.e. 6 per chromosome) and separated by a recombination rate () of 0.18.

Variable aspects across simulations.

Three alternatives were used to describe the initial distribution of allelic effects:

1. normal distribution,
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2. double exponential distribution,
3. gamma distribution.

Figure 7.2 shows the upper half of each of these distributions. The normal
distribution has been used by many previous authors when simulating underlying allelic
effects (e.g. Chapter 2; Meuwissen and Goddard, 1996; Spelman and Garrick, 1998) and
is the proposed distribution of QTL for simultaneous genetic evaluation of identified
QTL and remaining polygenes as random effects in a linear model (Fernando and
Grossman, 1989). To obtain the desired variance, allelic effects were drawn from a
normal distribution with p =0 and o = 2.0.

The double exponential distribution is more peaked and has longer tails than does
the normal distribution (Figure 7.2), resulting in fewer alleles with intermediate effects
and more with small or large effects. Mackinnon and Georges (1998) assumed that
allelic effects were distributed as a double exponential. The double exponential
distribution is defined by a scale parameter. The scale parameter used to achieve the
desired genetic variances in these simulations was 1.35.

The gamma distribution is very general (in fact, the normal and exponential are
specific types of gamma distributions) and its shape varies greatly depending upon the
values of shape and scale parameters used to define the distribution. The distribution
used in the simulation had shape and scale parameters of 0.5 and 0.55, respectively,
resulting in the distribution shown in Figure 7.2. In the simulation, allelic effects were
randomly drawn from symmetric distributions with both positive and negative values.
This gamma distribution results in relatively more large and small allelic effects and

fewer intermediate effects than either the normal or double exponential distributions.
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Hayes and Goddard (2000) proposed a gamma distribution for allelic effects based on
meta-analysis of previous QTL detection studies.

In addition to the differences in the initial distribution of allelic effects, the
following aspects of the genetic model were also examined:

1) mutation rate,
2) number of segregating loci,
3) initial allelic frequencies.

Each of these differences were applied to populations simulated with the gamma
distribution as the initial distribution for allelic effects.

Mutation rate. If allelic effects are fixed in a population over time and no new
alleles enter the population, selection and genetic drift will eventually exhaust most of the
genetic variation, fixing each QTL at a given allele. Such a phenomenon has not been
observed in selected experimental or commercial populations, suggesting that new
genetic variation is continually introduced through mutation (Lynch, 1988; Keightley,
1998).

Simulation of mutation was the most difficult aspect of this study and required the
most liberal assumptions. In this study two different kinds of mutation were simulated.
First, mutation in segregating QTL that changed one allele to another one of the five
initial alleles was generated. The second type of mutation created variability in new
QTL. Ofthe 200 simulated QTL most (165) were initially fixed at one randomly selected
allele. These were the QTL at which new mutations would occur in later generations of
the simulation. The value of 200 QTL was chosen as a result of computing resources.

The genes that affect quantitative traits are likely to include thousands, or even millions,
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of base pairs at which a polymorphism could alter performance. Therefore, with
unlimited resources, one would probably want to design a simulation with a much higher
number of potential loci at which future mutation could introduce variability.

For this study, we generated 35 alleles at which variability existed in the first
generation. The actual number of segregating QTL contributing genetic variability of a
production trait is obviously unknown but 35 was chosen because this value was the mid-
point between 20 by Mackinnon and Georges (1998) and 50 by Hayes and Goddard
(2000). Therefore, in early generations of the simulation, the ratio of probabilities of
mutation in a new versus segregating QTL was approximately 165 : 35.

To help circumvent the restriction to 200 total QTL, in addition to the initial 165
potential new QTL, the opportunity for further new QTL alleles was also simulated. This
situation was simulated by monitoring each segregating allele until fixation was reached.
Fixation was declared for a given QTL when the frequency of one allele exceeded 0.995
in the commercial population. When fixation was reached, new values were simulated
for the other 4 alleles at that locus, each with an initial frequency of 0.0. Thus, additional
new mutations could be generated continuously and were not limited to the original 165.

A standard mutation rate was used that corresponded with a genome wide rate of
10° (Lynch and Walsh, 1998). At this rate, mutation was expected to occur in
approximately 12 animals in the nucleus each generation (2 alleles * 200 QTL * 3000
nucleus animals * 10). To observe the effects of an increased mutation rate, one set of
simulations was performed with a higher mutation rate of 2 x 107

For simplicity, mutation was not simulated at marker loci. Although this is

clearly a rather unrealistic assumption, it was assumed that the primary effect of such
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mutations on MAS would be to increase the number of apparent genotyping errors and
uninformative individuals and thus decrease the advantages of MAS at a rate proportional
to the frequency of mutation. The analysis of this interesting relationship was not among
the objectives of the study.

Number of segregating loci. As mentioned previously, for most situations, the
initial number of segregating QTL was set at 35. An additional situation was simulated
with only 20 segregating QTL in the first generation of the simulation. With only 20
segregating QTL, each locus contributed more genetic variance than when 35 QTL were
segregating. Therefore, allelic effects for this model were drawn from a gamma
distribution with scale parameter of 0.42, rather than 0.55. Preliminary studies with a
greater number of segregating QTL (50) indicated little difference from a starting value
of 35 QTL. Thus, populations with more than 35 QTL were not examined further.

Initial allelic frequencies. In the standard model, allelic frequencies for
segregating QTL were generated following the approach of Mackinnon and Georges
(1998). For each QTL, frequencies for the five alleles were initially drawn from a
uniform distribution bounded by 0.0 and 1.0. The five values were then standardized to
sum to 1.0.

Some authors have suggested (Crow and Kimura, 1970) that the distribution of
allelic frequencies is more likely to be somewhat U-shaped, rather than uniform. With a
U-shaped distribution, for most QTL, one allele has a much greater frequency than do the
alternative alleles. For example, in selected populations, the most favorable allele is

expected to have the highest frequency at most QTL.
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For comparison to the standard situation with uniform allelic frequencies, one set
of simulations was generated with a U-shaped distribution for alleles. To simulate the U-
shaped distribution, the allelic frequency (py) for one randomly chosen allele was drawn
from a uniform distribution bounded by 0.9 and 1.0. The frequencies for the other 4
alleles were then drawn from another uniform distribution, but standardized to sum to (1

— pu)- For all simulations, marker alleles were assumed to have equal initial frequencies.

Marker assisted selection

A daughter design was used, every generation, to determine which marker alleles
were favorably associated with the unknown QTL alleles. Each sire had 100 daughters
from the commercial population with a lactation record and complete set of marker
genotypes. Marker contrasts were calculated for all heterozygous markers within sire.
All daughters that were informative at a given locus were used to calculate the contrast.
The genotype of the dams was ignored. The contrast was simply the difference in the
mean of EBV of daughters carrying the alternative alleles. These EBV were based on
one lactation record. Contrasts were then divided by their standard errors to account for
differences in the number of informative daughters across marker loci.

Marker assisted selection was applied to select the best sons from among full-sib
families of three males. Selection was based on the THRES approach of Chapter 5,
because this approach was superior among different strategies compared in that study.
This approach first identified all marker alleles at which the marker contrast exceed a

given threshold. Then, for each son, contrast values were summed across all significant
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markers and the son with the highest sum was selected. A threshold of 2.65 standard

units was used. This form of MAS was performed in every generation of the simulation.

Analyses performed

Two-hundred replicates were generated for each genetic model. For each model,
the advantage of within family MAS over random selection was calculated in each
generation. This quantity was determined by calculating the difference between the
average TBV of bulls selected by MAS and a randomly selected set of bulls. In addition,
the genetic variance and frequencies of each QTL allele within the commercial
population was also monitored. From this information, the shape of the distribution of
allelic frequencies that occurred following many generations of selection could be
determined and the number of segregating QTL and the amount of genetic variance
contributed by each could be calculated.

Based on these results, a genetic model for which genetic variability and selection
response could be maintained at a relatively steady state for many generations could be

proposed. The effectiveness of MAS was tested in this population.

7.4 Results and Discussion

Distribution of allelic effects

Genetic variance was calculated in the commercial population in every generation
of every simulation. Figure 7.3 shows the trend In genetic variances for models that

assumed that allelic effects were from normal, double exponential, and gamma
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distributions. For all models, the genetic variance changed greatly across generations.
All three models showed the same pattern. Initially the genetic variance decreased until
about generation 5. Then for 10 to 15 generations the variance increased to reach
maxima at approximately 1.7 to 1.9 times the original variance. Variances for all three
models then decreased steadily until around generation 60 where variance for the gamma
model became stable. Variance for the other two models continued to decrease, but at a
slower rate, beyond this point. Both normal and double exponential models stabilized at
around generation 90.

The initial decrease in variance occurred due to selection prior to the point where
new mutations started to exert an effect. The decline in variance was likely a
consequence of both the changes in frequencies of some alleles and disequilibrium
among loci (Bulmer, 1971). This decrease was greatest for the gamma model, which
reached a minimum of 105 versus 110 for the other two models (£ < 0.05). The variance
for the gamma model decreased the most because effects of individual alleles were
greatest for this distribution (Figure 7.2) and, therefore, selection moved these loci more
quickly toward fixation.

The subsequent upsurge in variance indicated the period where the new mutations
in the 165 loci that were initially fixed started to occur. These QTL were initially fixed at
a randomly selected allele. Therefore, the best allele at most of these loci (4 out of 5) was
at a very low frequency during the early generations of the simulation. Through selection
the frequency of these alleles increased, thereby increasing the total genetic variance
during this second phase of the simulation. The upward trend in variance occurred most

quickly, but reached the lowest peak, for the gamma model because of the previously
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mentioned larger effects of the extreme alleles, upon which selection was most effective.
For this reason the trend for the double exﬁonential distribution was intermediate.

The stage of declining genetic variances that was observed between generations
25 to 60 occurred because mutation at most of the 165 initially fixed QTL took place in
previous generations. The frequencies of the best alleles for these QTL passed 0.50 and
further selection decreased genetic variance rather than increasing it. The genetic
variance tended to eventually reach a steady state for all three models. This state occurred
much earlier with the gamma distribution and at a greater magnitude than with the normal
or double exponential models. The variance for the gamma model stabilized at
approximately 40 versus approximately 20 for the other two models (Figure 7.3). The
variance was likely maintained at a higher level for the gamma model because the
extreme effects of new mutations were greater and more easily retained in the
immediately subsequent generations. Genetic drift was seemingly either more likely to
eliminate the new mutations in the normal and double exponential models or these
mutations had smaller effects than the extreme mutations with the gamma model, and
thus each contributed less variance.

The relative impact of individual QTL from the different models can be evaluated
by examining variance accounted for by each QTL. Figure 7.4 shows the proportion of
total variance accounted for by each of the 200 QTL for the gamma and normal models.
The QTL are ordered from left to right in terms of total variance. The results shown are
means from generation 100, after variability had stabilized for both models. Results from
the double exponential model were more similar to the normal and, therefore, are not

shown. As can be clearly seen, the extremely large QTL for the gamma model accounted
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for much greater proportions of total genetic variance than for the normal model. On
average, the largest QTL for the gamma model accounted for >20% of the total genetic
variance, versus only about 6% for the normal model. In fact, both the second (>10%)
and third (~7%) most variable QTL for the gamma model accoﬁnted for more variance
than did the most variable QTL from the normal model. Overall, the 10 largest ranked
QTL for the gamma model accounted for more of the total genetic variance than did the
correspondingly ranked QTL from the normal models.

Although extension of results from simulation to real life situations can be
difficult and must be done with caution, these results regarding the variance accounted
for by individual QTL may suggest that the “true” distribution of QTL effects in real
livestock populations may more closely resemble the gamma distribution than either the
normal or double exponential. Previous QTL detection studies (Georges et al., 1995;
Knott et al., 1998; Coppieters et al., 1998) have attributed to individual QTL proportions
of total genetic variance that were consistent with the values for the largest alleles from
the gamma distribution and much greater than the largest alleles from the simulated

normal or double exponential distributions.

Other factors

Assumptions about mutation rate, number of segregating QTL, and the
distribution initial allelic frequencies had noticeable effects on the genetic variance
within the commercial population, particularly in the early generations. Figure 7.5 shows
the genetic variation in the commercial population by generation for the models with

increased mutation rate, 20 rather than 35 initially segregating QTL, and a U-shaped
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distribution for the initial allelic frequencies. Because all models except the twenty-QTL
model eventually converged to approximately the same variance (not significantly
different) after approximately 50 generations, only the first fifty generations are shown.

All three modifications caused genetic variance to increase in the early
generations relative to the reference gamma model (Figure 7.3). The greatest difference
was for the model with only 20 QTL controlling genetic variance. This factor led to
greater variance because with fewer QTL, effects of each QTL were larger. This increase
in effect applied to both initially segregating and new QTL. Given that the QTL formed
by new mutations tended to be larger than with the other models, genetic variance rose
faster and peaked at a higher level than when the other models were used. The variance
was also maintained at a greater level in the long term.

The genetic variance for the model with increased mutation rate also had higher
variance in the short term than did the reference gamma. This gain in variance occurred
because, in the short term, relatively more new segregating QTL were created, due to
increased rates of mutation. In the long term, this model began to converge toward the
standard gamma because there was no difference between the models in the size of the
allelic effect and number of new loci and these variables controlled the genetic variance
in later generations.

Differences between the U-shape model and the standard gamma with uniform
allelic frequencies were only observed in the very short term. The initial drop in genetic
variance due to selection was not as severe because, for a greater number of QTL, the
frequency of the best allele was increasing toward 0.50. None of the six initial models

maintained a stable genetic variance throughout the term of the simulation, but the trends
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observed provided information about how to alter the simulation model to help maintain
a more consistent trend in variance. The early drops, sharp upswings, and subsequent
steep declines observed for genetic variance highlighted potential flaws in the design of
the initial simulation. The initial drop in variance probably occurred because the
approach to assign original allelic frequencies was not entirely adequate for a simulation
with many generations. Beyond five generations, the genetic variability would have
continued to decline quickly, had not mutation been included in the model.

The simulation of a U-shaped distribution for initial gene frequencies would
likely have prevented the initial drop in variance that was observed. A U-shaped
distribution of allelic frequencies implies that some of the best alleles at a few of the QTL
have very low frequencies (less than 0.01, for example). Selection would be expected to
increase the genetic variance contributed by these QTL (until the frequency of the best
allele passed 0.50) while decreasing the variance only slightly at the alleles where the
frequency of the best allele was already high. Therefore, the total genetic variance would
have remained more stable overall.

The proposal for a U-shaped distribution of allelic frequencies was supported by
observation of the allele frequencies that resulted in generation 100, after stability was
reached in the models (Figure 7.6). Figure 7.6 shows for the gamma model a histogram of
frequencies for all the alleles of the QTL that were segregating in generation 100. (Only
results for the gamma model are shown, because the distribution of allelic frequencies
was of a similar shape for all models.) Clearly, the distribution of allelic frequencies at

the point of stable genetic variance was U-shaped. Most of the alleles had frequencies

<0.05 or >0.95.
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The dramatic rise in genetic variance indicated another potential problem in the
simulation model, suggesting that the rate of new mutations was too high in these
generations. The simulated mutation rate was designed to correspond with a genome
wide rate within the range of predictions from literature and thus, may have been
adequate. The observed result was probably not a result of an excessive mutation rate,
alternatively, the distribution of allelic effects for new mutations may not have been
realistic. In the simulation, five allelic effects were initially simulated for the new QTL
and the genome was fixed randomly at one of the five alleles. To most closely simulate
reality, most of the QTL probably should have been fixed at the best allele. Long term
forces of selection (both natural and artificial) have created organisms for which most
genes encode proteins that are of a nearly optimal structure for their particular purpose.
Thus, most mutations to change this structure are much more likely to be detrimental
rather than beneficial (Hartl, 1999). This concept also helps to explain why the DNA
sequences for the functional parts of many proteins are highly conserved, even across
species (Lyn et al., 1995; Bemark et al., 1998; Thaller et al., 1998). Years of evolution
have selected for the ideal protein at these sequences, which is the same regardless of
species.

The eventual stabilization of genetic variances at levels less than the initial
variances could be an indication that the size (variability) of allelic effects was too low.
The genetic variance with the 20 QTL model stabilized at a higher level than did the

variances with the other models, and this model had greater variance for the individual

allelic effects.
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New Simulation

In an effort to improve the simulation model to obtain a more stable trend in
genetic variance, a number of modifications were made. First, a U-shaped distribution
for initial gene frequencies was simulated to help prevent the early decreases in variance
due to selection. To generate the U-shaped distribution, the procedure followed was
similar to that described previously (sampling one allelic frequency of one allele from
U(0.90,1.00) ), excei)t that an additional condition was added. That is, for most (75%) of
the QTL, the most favourable allele was most common. This modification was designed
to simulate the fact that past selection would have increased the frequency of the
favourable alleles. The 75% was chosen based on the final allelic frequencies (generation
100) observed in the previous simulations. The rate of new and beneficial mutations was
decreased to an expected value of three per generation to help decrease the large peak in
the genetic variance observed in generations 10 to 15 with the previous models (Figures 3
and 4). The choice of three new mutations per generation was chosen following a grid
search and corresponded to approximately 1.2 x 107 per locus per meiosis. When fewer
mutations were simulated, genetic variance continued to decrease; when more mutations
were simulated, variance continued to reach excessively high levels. Finally, the size and
variability of allelic effects for new mutations was also increased, in order to maintain
long-term variance at a level more consistent with the starting variance. These effects
were generated with a gamma distribution with scale parameter of 0.40.

The results of the modifications can be seen in Figure 7.7, which shows the
genetic variance for each generation, based on 200 replicates of the new simulation

model. Clearly, the changes helped maintain a higher and more stable genetic variance
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throughout that stabilized at a greater value in later generations than did the previous
simulations. However, some trends remained that were difficult to avoid due to
conflicting forces between the forces affecting genetic variance. Use of a U-shaped
distribution for allelic frequencies maintained the genetic variance at or above the
original level for a few generations, but effects of selection decreased the variance
significantly below the starting level by generation 10. The effect of new mutations,
being fewer in frequency than in previous simulations, did not begin to override the
decreases due to selection until about generation 20. The new mutations eventually
increased genetic variance above the original level, peaking at around 125% of the
original value at generation 60. The variance then declined until reaching an equilibrium

of approximately 100% of original variance in generations 90 and greater.

Advantage of MAS

Table 7 also shows the advantage obtained by MAS throughout the simulation,
expressed as percent of superiority in MAS young bulls relative to randomly selected
bulls. Although some variability was observed, the superiority remained significant
stabilizing at around 9% (+/- 0.5%) in the later generations.

As discussed previously, the other simulation models differed in a variety of
aspects, but regardless of the genetic model simulated, the TBV of bulls selected by MAS
was greater than the TBV of bulls selected randomly from the same families. Figure 7.8
shows for all models the average percentage difference in TBV of MAS and randomly
selected bulls for each generation. The trends of this advantage in TBV for MAS bulls

follow the same pattern as observed for genetic variance in the commercial population
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(Figures 3 and 5). As variance increased in the commercial population, so did the
advantage due to MAS. The different trends each increased to a peak in early generations
when many QTL with new mutations were segregating in the population. The peak was
greatest (up to 20%) for the model that started with 20 segregating QTL, which was also
the model with the highest initial increase in variance.

The use of MAS in early generations was particularly beneficial in these
simulations because at many loci, the best alleles were newly formed by mutation and
were initially at relatively low frequencies. Selection quickly began to increase the
frequencies of these beneficial alleles toward fixation, however, such that the benefits of
MAS (and genetic variance, as shown in Figures 3 and 5) decreased in generations 20 to
50. Eventually, the benefits of MAS stabilized in the later generations at lower levels
than observed with the “improved” model (Figure 7.7) but TBV of bulls selected by
MAS remained at a level significantly (P < 0.05) greater than for random selection for all
models. In these later generations, the influx of new and beneficial mutations was less
than in early years, but still high enough to maintain some genetic variation.

Gibson (1994) and Muir and Stick (1998) both used simulation to demonstrate
that long-term gains with MAS were less than with conventional selection. However,
their models differed from ours, primarily because they considered MAS for a single
locus and did not consider the possibility of mutation, which could have created new
favourable alleles at the locus. In their studies, as that locus approached fixation for the
selected allele, continuing to emphasize its selection compromised genetic improvement
at QTL in the rest of the genome. Gibson (1994) and Muir and Stick (1998) also

simulated individual selection based on an index of QTL and remaining genetic
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information, which differed from the approach applied in this study of selecting the
animal with the best QTL genotype within family. In our study, all of the directly
competing candidates (full-sibs) for MAS had equal EBV for the remaining (non MAS)
portion of the genome, so no danger existed in over-emphasizing the MAS portion of the
genome.

Recently, Dekkers and Van Arendonk (1998) demonstrated that a more
complicated index that optimised weights on QTL and remaining genetic information
could be devised so that response to MAS could meet or exceed that for conventional
selection for any given planning horizon. Based on their results, and the observations
made in this study, a seemingly logical conclusion is that for most situations, MAS
programs can be designed to increase response over conventional selection methods and
maintain such an advantage for many generations. The precise magnitude of the
advantage obtainable by MAS is likely to be highly variable and based strongly on the

rates of mutations and effects of the new alleles created.

7.5 Conclusions

In this study, due to limits on computing resources and knowledge of true rates
and sizes of mutations, many simplifying assumptions were made. The greatest
assumptions were made about the mutation effects, including the rate and size of
mutations, and the number of alleles affecting the quantitative traits. The validity of
these assumptions can not be tested until more knowledge about the genome underlying
quantitative traits is obtained, but a range of values were used and compared in this study

to help account for the lack of prior knowledge.
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Figure 7.1 Structure of the population

1500 SIRES

BASE POPULATION

50,000 DAMS

Y

TOP 50 SIRES

10 NUCLEUS SIRES

v

50,000
COMMERCIAL COWS
100 SELECTED

DAUGHTER
DESIGN
100 per sire

/

v

1500 NUCLEUS SIRES
MAS
500 PROGENYTESTED

NUCLEUS REPLACEMENTS

e

TOP 50 SIRES

T
}
3
5
!
[}
}
1

10 NUCLEUS SIRES

500 NUCLEUS DAMS

1500 NUCLEUS
DAMS

500 NUCLEUS DAMS



Relative Frequency

1.2 -

Q
®

o
o

Figure 7.2 The upper halves of distribution of allelic effects from
the normal, double exponential and gamma distributions.

o
i
t

o
[\

0 5 10 15 20

Effect

gamma

——double exp normal

121



Variance

Figure 7.3 Trends for genetic variance in the commercial populations
when allelic effects had normal, double exponential and gamma

distributions.
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Figure 7.4 Percent of the total genetic variance contributed by each QTL
QTL after 100 generations of selection.
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Genetic Variance
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Figure 7.5 Genetic variance for each generation in the commercial population for

the models with high mutation, 20 QTL and U-shaped distribution for initial
frequencies.
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Figure 7.6 Distribution of allelic frequencies in generation 100.
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Genetic Variance
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Figure 7.7 Means of genetic variance in the commercial population and
percentage increase in TBV of bulls chosen by MAS across 100 generations from
the "improved" simulation.
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Figure 7.8 Means across all generations for each simulation model of the percent
increase in TBV of young bulls chosen by marker assisted selection.
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8. General Discussion

Computer simulation 1s a powerful tool with an almost infinite number of uses.
The average member of the public is probably most familiar with the use of simulation in
computer games or training tools for airline pilots, but simulation is perhaps most
valuable when used for scientific study. Simulation is used in some way in nearly all
branches of science, from medicine (Mihalas, 1998) to nuclear physics (Laedermann and
Décombaz, 2000) and, of course, animal production (Korver and Van Arendonk, 1988).

Simulation holds some distinct advantages over conventional experimentation.
Possibly, the biggest advantage is cost. Time is also an important consideration. Dairy
cattle take several years to turn over a generation, a process that can be done in
milliseconds with today’s computers. These huge savings in money and time allow
simulated experiments to be large and replicated many times, which increases the
statistical power. Another advantage is that the underlying parameters of the simulation
are known, which allows for checking and verification of the simulation model. The
parameters upon which the simulation is generated can be varied, which allows one to
test results for sensitivity to changes in the underlying parameters. Because of these
factors, relatively strong conclusions can often be drawn from simulation experiments.

Simulation experiments do have some disadvantages and potential pitfalls,
however, which the investigator must consider in the design and especially in the
interpretation of results from simulation. For a number of reasons, including imperfect
knowledge, mathematical complexity, and insufficient computing resources, simulation
programs are almost always subject to simplifying assumptions. In these studies, for
example, discrete generations were simulated, although generations overlap in dairy
cattle. This assumption was made to simplify the simulation and was not expected to
greatly impact the general conclusions. In animal breeding, the infinitesimal (Falconer
and Mackay, 1996) or mixed inheritance models of genetic effects are often used.
Simulation studies of marker assisted selection (MAS) have often dealt with selection for
one (e.g. Spelman and Garrick, 1998) or a few (e.g. Kashi et al., 1990) loci with the
remainder of an animal’s genetic value being represented by a normally distributed

random variable. Because these simplifying assumptions are required, strong conclusions
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can often not be made about the absolute numeric values obtained, but rather only about
relative values and general trends in how results change as parameters of the simulation
are varied over a range. Finally, with simulation, an investigator must often choose
between adopting a very simple model about which only general and less precise
conclusions can be made or a more specific model that may yield results that yield more
precise conclusions that are applicable in a relatively specific context.

Many‘ of the previous studies of the application of MAS have been quite general.
The simulations presented in this thesis have taken a more specific approach. In all
instances, MAS was simulated for choosing progeny test sires from among full sibs in a
nucleus herd. From each of the experiments several firm conclusions can be made about
MAS in this context and the general trends observed are likely to hold true in many
approaches for MAS.

The primary objective of the first experiment was to investigate whether
accounting for a confidence interval for locations for quantitative trait loci (QTL) when
making selection decisions increased response relative to performing selection based only
upon the genotype at the genomic location where the QTL most likely resided. The
results indicated that, in fact, selection response was increased when the uncertainty in
QTL location was taken into consideration and young bulls were selected according to an
index of marker regression coefficients throughout a confidence interval of the marker
location. The mean true breeding value (TBV) of bulls selected by considering the
confidence interval exceeding that of randomly selected bulls by 2.60%, versus only
2.00% when only genotypes at the predicted QTL location was used. Accounting for this
uncertainty was particularly beneficial in instances where the predicted QTL location was
outside of the region bracketed by the markers adjacent to the QTL and recombination
had occurred between the true and predicted locations of the QTL. These advantages
increased as the size of full-sib families increased. General results for response to MAS
were similar to reports by Spelman and Garrick (1998) who used a similar model.

An additional objective of the first study was to examine effects on selection
response of using either bootstrapping or approximate LOD scores to construct the
confidence interval. Although the bootstrapping approach tended to yield slightly wider

confidence intervals than did the LOD approach, no significant difference in the average
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TBV of selected young bulls was detected between these two methods. The index used
to weight the different chromosomal locations within the confidence interval was
relatively simple. A more complex approach that improves selection response could be
derived, but this is somewhat doubtful, however, because the selected sons carried the
desired allele with a high frequency (approximately 70%). Because of this latter factor,
genetic variance at the QTL was quickly decreased throughout the three generations
simulated, suggesting that the marker information obtained in the selected generation
would have had little value had subsequent generations been simulated.

This final result was examined in more detail in the second experiment, for which
MAS was simulated for five generations. A daughter design was used to determine the
markers upon which to base selection with a finite locus model similar to Mackinnon and
Georges (1997). As part of this experiment, MAS was practiced on the most favourable
locus in the first generation within a given sire family and then again in following
generations, if possible. As suggested by the first experiment, this locus was of relatively
little statistical or practical significance in subsequent generations. For this reason, the
primary objective of the second experiment was to implement and compare (in terms of
selection response) several strategies for the use of full genome scans in each generation
to apply MAS.

The most beneficial strategy was one that selected young bulls on their genotypes
at all markers with allele contrasts exceeding a given threshold, whether or not those
markers were associated with the same QTL. This approach combined the benefits of
selecting on multiple QTL and included aspects of using a confidence interval for QTL
location. The average TBV of bulls selected by this strategy exceeded the mean of
randomly selected bulls by up to 12%, versus <7% when only the marker with the
greatest contrast was used. An intermediate threshold was optimal. For this specific
situation the optimum occurred at around 2.65 standard units, corresponding roughly to a
nominal comparisonwise significance level of <1%, but this value is likely to differ for
different situations. Of critical importance was to avoid setting the threshold too high
and thus increasing the probability of ignoring some segregating genes. This factor was
especially true for selection within a nucleus, because most of the sires were homozygous

for the best allele of the most important (based on genetic variance) QTL in the
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commercial population. As a result, the QTL for which these selected animals were
heterozygous was often one of the QTL of secondary importance, which decreased the
expected value of the contrast. Both genetic variance and the advantage of MAS
decreased across generations.

The objective of the third experiment was to examine the benefits of MAS for a
multiple-trait selection goal, a common characteristic of dairy cattle breeding schemes
(Dekkers, 1995). Situations were simulated for an index that included a primary
(production) and secondary (functional) trait. Both positive and negative correlations
between the two traits were considered in separate simulations. Two approaches to
multiple-trait MAS were considered. One was an index based on separate statistical
analyses for each of the two traits and the other considered identifying markers that
seemed to be linked to QTL that directly affected phenotypes for the index. No
significant differences were found between these two approaches. In general, multiple-
trait MAS was found to be effective, at least in terms of the total index. The selected
young bulls were superior to randomly selected bulls for the secondary trait, but no
better, or even somewhat inferior, for the trait of primary importance. The superiority of
MAS decreased as the genetic correlation between traits increased. In general, MAS for
a multiple-trait objective was less beneficial than was single-trait MAS. In the most
favourable situation, the TBV of young bulls selected by MAS exceeded that of randomly
selected bulls by about 6%. Many of the results conflicted with the findings of DeKoning
and Weller (1994) who performed one of the few published experiments on multiple-trait
MAS. However, their model was considerably different from the one used here,
particularly because they simulated selection for QTL known without error.

The final experiment examined factors that could effect long-term maintenance of
genetic variance and response to MAS and how these factors could be accounted for in
simulation. Genetic variance (in the commercial population) was monitored as a function
of changes in mutation rates, distributions of allelic effects, number of QTL, and
distributions of allelic frequencies. The results suggested that allelic effects should be
simulated with a gamma distribution, as proposed by Hayes and Goddard (2000). Allelic
frequencies followed a U-shaped distribution, as suggested by Gibson (1999) and others.
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In all models simulated, MAS was of benefit throughout the term of the experiment (100
generations).

As is common with most studies, this work answered a number of questions, but
left many unanswered, including some that pertain to this work. One of the most
important questions is how these results can be extended to real life applications. In some
instances, more work may be required. For example, the final three studies were based
on full genome scans in each generation. Although such an approach would probably
yield the greatest selection response, it may not be optimal under today’s cost structure.
Some have predicted that rapid genotyping for many loct will soon be available at very
low costs (e.g. Visscher and Haley, 1995), but that is not a reality today. Therefore, work
may be needed on a strategy that targets the genome scans to certain areas of the genome,
based on results of previous genome scans. Results across families could be combined.
For example, perhaps an initial genome scan can be done for several families. Later
genome scans can then ignore areas for which no indication of QTL was previously
found. In the simulation used for the second and third experiments, 20 QTL were placed
on 30 chromosomes, so at least 10 chromosomes had no QTL. Ideally, in actual selection
programs, at least some of these chromosomes could be eliminated from future scans
| (although they should eventually be rescanned to detect possible mutations).

Also, a great deal of additional work is needed on the application of MAS to
multiple-traits. The procedures used in the third study could possibly be made more
elegant and effective. Several authors have suggested that MAS was most beneficial for
the secondary traits, so any MAS upon such traits will have to simultaneously consider
both the marked and unmarked genes influencing production. Weights for selection
indexes with MAS must consider the additional accuracy obtained and the fact that this
increase in accuracy may be greater for low heritability traits.

Although mutation is an important contributor to the maintenance of genetic
variation, other factors also play a significant role. These factors include migration
across populations and interactions among different loci and alleles, such as dominance

and epistasis. The impact of these factors on short and long-term response to MAS should

be examined.



Finally, additional work is required on un<covering the true genetic model for traits
of interest in animal production. Achieving this goal will undoubtedly be aided by
ongoing work on humans and model species. With increased knowlecige on this broad
subject, additional improvements can be made in the simulation of the genetics of

livestock populations.
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Appendix 1. Comparison of interval mapping and single marker

contrasts for MAS

Interval mapping was one of the most time consuming aspects of the simulation in
Chapter 4. In order to simplify simulations for the subsequent research objectives, it
would be opportune to simplify MAS by using single marker contrasts. Thus, it was
necessary to test how much advantage was really obtained from the more compiex
interval mapping approach.

The selection criteria used in Chapter 4 were based on dividing the chromosome
into many loci separated each by one centiMorgan and calculating the probability of
inheritance from grandsire to grandson at each location. Then the regression coefficients
associated with each of these positions were multiplied by the transmission probability
and summed across the confidence interval. However; markers were only available for a
small proportion of these locations. Therefore, we hypothesized that considering in the
selection criteria only those loci at which markers were present would yield results that
were not significantly different from the approach that considers all loci.

To test this hypothesis, equation [3] from Chapter 4 was modified and the

following equation was used for the selection criteria:
[= Z P:f;
i=l

where i = 1,...m, refers to only those loci within the confidence interval where an
informative marker was present, p; is the probability that the son inherited the reference

grandsire haplotype at ¢cM i, and B; is the standardized regression coefficient for
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grandsire j at cM 1. The breeding values of the sons selected by this criterion were then
compared to those of sons selected by equation [3] of Chapter 4 and randomly selected.
Because no difference was observed between the two approaches for defining the
confidence interval, this comparison was made for the LOD approach only. Forty
offspring per dam were simulated.

As hypothesized, no significant difference was observed between the approach
that considered all loci and the current approach, that considered only the marked loci.
The average breeding value of bulls selected by considering all loci was 14.30 versus
14.28 when only marked loci were considered. Both were significantly superior to
random selection (13.94).

These results can be explained by the fact that the genotypes at marker loci
provided all of the available information about the transmission of the favourable QTL
allele from grandsires to grandsons in intervening intervals. Thus, even though interval
mapping provides more precise estimates of QTL location than do single marker
contrasts, as the QTL location is not confounded with its effect (Liu 1998), for the
purposes of MAS there is probably little difference between them. Precision with regard
to QTL location is not highly critical for the purposes of MAS. Increased mapping
precision has been shown to have little effect on the power of QTL detection (Darvasi et
al., 1993: Dupuis_and Siegmund, 1999) and, therefore, should have little effect on power
and subsequent response to MAS. This finding justisfies the use of single marker

contrasts in the studies in Chapters 5 to 7.
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