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DEDICATION

For my Dad, Wendlin H. J. Beilman, who first took me outdoors and showed me
how to fully appreciate the natural world. Thanks, Dad, for teaching me

everything | ever really needed to know.



ABSTRACT

Permafrost occurs in localized landforms within peatiands at its southern
limit in western Canada. Extensive melt has shifted the southern limit north by
39 km on average and by as much as 200 km over the last 150 years. Localized
permafrost peatlands cover 17,505 km? of Alberta, Saskatchewan and Manitoba,
and occur in bogs and fens representing 37% of total bog cover, and 9% of total
fen cover within their distribution. Field studies indicated that localized
permafrost dynamics result in the creation of both the driest/most heavily
forested and the wettest/most open conditions that occur in continental bogs.
Plant communities, particularly bryophytes, responded strongly to these
gradients, and vascular plant and bryophyte species richness increased by 49%,
making localized permafrost bogs one of the most diverse peatland types in
western Canada. Permafrost melt results in highly variable plant communities
and developmental histories, due in part to varying degrees of disturbance

(collapse) following melt.
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CHAPTER 1:
GENERAL INTRODUCTION

1.1 Permafrost and peatlands in western Canada

Permafrost is a thermal condition of surface earth materials that remain
below 0°C for two or more years (Mulier 1945). At the continental scale, the
distribution of permafrost is considered in terms of continuity; the Continuous
Permafrost Zone in Canada’s north where permafrost occurs within all exposed
land and is often hundreds of meters thick, and the Discontinuous Permafrost
Zone where local factors determine the existence of perennially frozen ground
that becomes increasingly thinner and less colid towards the south (Heginbottom
1995). Permafrost is an important aspect of the Canadian landscape, as the
Permafrost Zones cover about half of Canada’s landmass (French 1996). The
boundary between these zones generally follows patterns of climate and roughly
corresponds to the -8°C mean annual air isotherm (Brown 1960; Nelson 1989).
In western Canada, this boundary runs from the northwest to the southeast from
south of Inuvik, NWT to just south of Churchill, MB (Heginbottom 1995). South of
this boundary, within the Discontinuous Zone, local factors that affect surface
energy balances become increasingly important, as permafrost exists only where
local terrain factors maintain perennially frozen ground. Such factors include
landscape relief (affecting insolation), the albedo and conductivity of surface rock
or mineral soil, vegetation, winter snow cover, and the presence of organic
surface deposits or peat (French 1996). Within the Discontinuous Zone
permafrost is most common in peatlands (Brown 1968). Permafrost reaches its
southernmost limit (excluding alpine permafrost in the Rocky Mountains) in the
boreal forest of Alberta, Saskatchewan and Manitoba (referred to here as
continental western Canada). Here permafrost is limited exclusively to

peatlands.



Peatlands are wetlands with greater than 40 cm of deposited peat where
depressed decomposition rates result in the accumulation of organic material
over time (Zoltai 1988). In western Canada, peatiands are typically dominated by
bryophytes (though some fens are graminoid-dominated). Peatlands are a major
component of the boreal continental western Canadian landscape, and cover
21% of the total land area of the prairie provinces (Vitt et al. 2000). This area
contains two of the world’s largest wetland areas, the southern portion of the
Mackenzie River Basin (Nicholson et al. 1996) and the western portion of the
Hudson Bay Lowlands (Zoltai et al. 1988).

In the Canadian Wetland Classification System, peatlands are classified
based on their hydrology as bogs or fens (Zoltai 1988, Zoltai and Vitt 1995).
Bogs are ombrogenous, oligotrophic peatiands that have surface waters and
nutrients derived solely from atmospheric input. In continental western Canada,
bog surfaces are elevated above the peatland water table, lack open pools, have
Sphagnum-dominated ground cover elevated above the peatland water table,
and are always treed by sparse Picea mariana (Mill.) BSP. Fens are geogenous,
variably minerotrophic peatiands that have surface waters that are influenced by
contact with mineral soils/substrata. Surfaces can be close to or at water table
level, and fens can have open pools. Fens can be further subdivided based on
their vegetation into poor and rich depending on the number of high-fidelity
indicator species present (DuRietz 1949). The poor - rich division also
corresponds to water chemistry gradients and nutrient availability (Sjors 1952),
as well as to the dominance of the ground layer by Sphagnum (poor fens) or
brown mosses (mostly from the Amblystegiaceae — rich fens). Fens are also
more physiognomically variable than bogs, and can be open, shrubby or treed.

Of these peatland types, permafrost has the greatest affinity for bogs. The
dry, elevated Sphagnum-dominated bog surface peat can have a thermal
conductivity an order of magnitude lower than wet peat (Brown and Williams
1972; Oke 1987), and water temperatures in bogs are consistently lower than
those in the range of fen types (Vitt ef al. 1995). The thermal characteristics of



ombrotrophic conditions are effective across spatial scales, including large bogs
at the landscape level (kilometers), and small ombrotrophic areas that occur in

fens at the local level (meters).

1.2 Peatlands and permafrost though the Holocene

Climate has been highly dynamic throughout the Holocene (the last
10,000 years) in western Canada. The early Holocene was characterized by
glacial retreat and a spatially and temporally complex postglacial warm period
that reached its maximum between 12000 and 6000 calendar years before
present (BP) (Deevey and Flint 1957; COHMAP 1988; Anderson et al. 1989;
Campbell and Campbell 1997) that prevented extensive peatland or permafrost
development in the northern Canadian prairie provinces. Peatlands began
forming in boreal continental western Canada between 10000 and 8000 years
BP, with most expansion occurring since 8000 years BP (Halsey et al. 1998;
Campbell ef al. 2000). The discontinuous permafrost zone was likewise
displaced north of its present location at 7000 years BP, and permafrost has
aggraded in boreal peatlands since that time (Zoltai 1995). The maximum extent
of permafrost has been hypothesized to have been reached more recently during
the Little Ice Age (approx. 1550 — 1850 CE), and subsequent permafrost
degradation has been attributed to natural climatic warming since then (Thie
1974; Vitt et al. 1994). Recent accelerated collapse rates calculated by
dendrochronology (Engelfield 1994; Camill and Clark 1998) and aerial
photography (Thie 1974; Kershaw and Gill 1979) have been attributed to
anthropogenic climatic change. Recent results from the CCCma coupled climate
model (combined effects of greenhouse gas concentrations and sulfate aerosol
loading) predict that at least a 5°C increase in mean annual temperature wil
occur over the next century in continental western Canada (Boer et al. 2000).
The response of peatiand ecosystems to both the historical aggradation of
permafrost and its continuing and potentially accelerating degradation has
emerged as an important question (Gorham 1994), particularly within the



southern portion of the Discontinuous Permafrost Zone where the existence of

permafrost is most sensitive to warmer temperatures.

1.3 Localized permafrost peatiands: terminology

Discontinuous permafrost in peatlands of subarctic and boreal Canada
has long been recognized as occurring as two general landform types: large
expansive areas of peatland underlain by permafrost called peat plateaus, and
small isolated permafrost occurrences usually less than 100m? in area (palsas) in
otherwise unfrozen peatlands (Brown 1968; Zoltai 1971). Both landform types
show evidence of permafrost degradation in continental western Canada. Areas
of melt within peat plateaus are called coilapse scars (Zoltai 1971) and coltapsed
localized permafrost landforms are called internal lawns (Vitt ef al. 1994). Peat
plateaus have low relief, usually elevated less than one meter above the
surrounding unfrozen peatland, and cover up to many square kilometers (Zoltai
1972). Localized forms that occur as isolated small treed frost mounds in
peatiands require more discussion and careful definition to avoid confusion in the

use of the term ‘palsa’ (see review by Nelson et al. 1991).

The word ‘paisa’ was originally borrowed from the Lappish/Finnish and
refers to ‘a peat hummock with a frozen core rising out of the surface of a mire’
(Seppéla 1988, page 249). While the original meaning is simply descriptive and
non-genetic, its adoption into periglacial geomorphology has also included
mineral cored mounds, and generally refers to treeless arctic/alpine forms that
emerge out of saturated wetlands (Seppéld 1988). In Canadian subarctic and
boreal peatlands small permafrost features of this scale have also been called
palsas, though these ‘invariably occur as islands or peninsulas in very wet fens
or ponds’ (Zoltai and Tarnocai 1975, page 34) as well as being differentiated
from peat plateaus by their internal structure of frozen cores that extend into
mineral substrata (Zoltai 1971). In addition, the Glossary of Permafrost and
Related Ground Ice Terms (Harris ef al. 1988) defines palsas as *...peaty
permafrost mound(s) possessing a core of alternating layers of segregation ice



and peat or mineral soil material’, further stating that ‘...ice segregation in mineral
soil beneath peat is the process responsible for growth.' Visible ice layers are
often absent in peat of localized frost mounds in boreal peatlands (Zoltai and
Tarnocai 1975), and permafrost does not always extend into mineral soil under
localized frost mounds (Zoltai and Tarnocai 1971) particularly at its southern limit.

Because localized permafrost in boreal western continental Canada is not
restricted to wet fens (commonly occurring in ombrotrophic dry bogs as well (Vitt
et al. 1994)), and the internal structure of every permafrost mound cannot be
inventoried in regional surveys, using the term palsa adds confusion to the nature
of permafrost in this region. Though a more general definition and usage for the
term has been suggested (Nelson ef al. 1991), | avoid the term palsa herein,
instead referring to localized treed frost mounds in peatlands as simply ‘localized
permafrost.” However, this can be interchanged with ‘wooded palsa’ (cf. Zoltai
1972) if considered non-genetically and strictly as a morphological size
description (sensu Washburn 1983). | use the phrase ‘localized permafrost
landform’ in general reference to either existing localized treed frost mounds or
internal lawns, and ‘localized permafrost peatland’ to describe peatlands with
both/either of these features. Localized permafrost landforms can occur in either
bogs or fens (Vitt ef al. 1994), that | call ‘localized permafrost bog’ or ‘localized

permafrost fen’.

1.4 Localized permafrost bogs

Localized permafrost occurs in both bogs and fens in continental western
Canada (Vitt et al. 1994). Localized permafrost aggradation results in the
isolation of frost mound surfaces from the influence of peatland surface waters
regardless of their hydrological nature (ombrotrophic or minerotrophic). Frost
mound vegetation may therefore be similar whether these landforms occur in
bogs or fens. In contrast, the degradation of localized permafrost results in
internal lawns that have a very different vegetation and water chemistry character
depending on the type of peatland they occur in. Internal lawns in localized



permafrost fens likely have surface water chemistry, plant communities and
biogeochemical processes similar to the pool microhabitats of the undisturbed
fen matrix, owing to the flow-through, minerotrophic nature of fen hydrology.
Internal lawns in localized permafrost bogs, however, have a greater potential to
have markedly different water chemistry, plant communities and biogeochemical
process due to the ombrogenous hydrological nature of the bog matrix in which
they occur, and the introduction of conditions and microhabitats that do not occur
in continental bogs. Due to this potential for permafrost dynamics (permafrost
aggradation and degradation) to influence the ecology of bogs to a greater
degree than fens, localized permafrost bogs were investigated in the fieid.



1.5 Thesis objectives

Permafrost distributions have been dynamic at the southern limit of
permafrost in western Canadian boreal peatlands over the last 500 years. The
aggradation and degradation of localized permafrost has had substantial
ecological effects on affected peatlands, though much remains to be learned
about the magnitude, nature and implications of these changes (Gorham 1994).
My objective in this thesis is to further the understanding of boreal permafrost
dynamics and their influence on plant communities and peatland development in
bogs. Herein, | use an existing database of wetland class coverages for
continental western Canada, two years of summer field data, and peat core data

to meet my specific objectives:

1) determine the spatial distribution of localized permafrost in peatlands across
boreal Alberta, Saskatchewan and Manitoba relative to more extensive

permafrost and climate/landscape characteristics (Chapter 2).

2) determine patterns of plant community and diversity change in localized
permafrost bogs due to permafrost dynamics from three peatiand study sites

across western Canada (Chapter 3).

3) determine the nature of localized permafrost bog development following
permafrost melt by reconstructing plant community and environmental change

from macrofossil analysis of near-surface peat deposits (Chapter 4).
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CHAPTER 2:
LOCALIZED PERMAFROST PEATLANDS IN WESTERN CANADA:

DISTRIBUTIONS AND DEGRADATION-
2.1 INTRODUCTION

Permafrost is a thermal condition of surface earth materials that remain
below 0°C for two or more years (Muller 1945). At the continental scale, the
distribution of permafrost is considered in terms of continuity; the Continuous
Permafrost Zone in Canada’s north where permafrost occurs within all exposed
land and is often hundreds of meters thick, and the Discontinuous Permafrost
Zone where local factors determine the existence of perennially frozen ground
that becomes increasingly thinner and less cold towards the south (Heginbottom
1995). Within the Discontinuous Zone, permafrost is most common in peatlands
(Brown 1968). Peatlands are bryophyte-dominated wetlands where low
decomposition results in the accumulation of organic matter over time (Zoltai
1988). Peatlands are a major component of boreal and subarctic [andscapes,
covering about 21% of Alberta, Saskatchewan and Manitoba (referred to here as
continental western Canada). Modern peatiand distributions in western Canada
follow climatic gradients (Halsey et al. 1997; 1998), and generally no peatlands
occur where evapotranspiration exceeds precipitation (Gignac and Vitt 1994).
Thus, peatlands are found in cooler climates that promote waterlogged soil
conditions typical of the Discontinuous Permafrost Zone (Vitt ef al. 1994).
Peatlands can be divided into two general types based on hydrology; fens are
geogenous peatlands that have surface waters that have been influenced by
contact with mineral soil (ground or surface flow water), and bogs are
ombrogenous peatlands that have surface waters derived from precipitation
alone. Continental bogs in western Canada are characterized by oligotrophic
nutrient status, tree cover of black spruce (Picea mariana [Mill.] B.S.P.), ground

- A version of this chapter has been accepted for publication. Beilman, D.W., D.H. Vitt, and L.A.
Halsey. 2001. Arctic, Antarctic, and Alpine Research 33: (in press).
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cover of Sphagnum spp. and a relatively dry surface elevated above the water
table with a lack of open pools (Vitt et al. 1994). Fens are wetter, have a ground
cover of brown mosses (rich fens) or Sphagnum spp. (poor fens), and are treed
(black spruce and/or Larix laricina [Du Roi] K. Koch) or treeless (Betula or Salix

shrubs or Carex spp.).

Peatland surface vegetation and soils promote the aggradation and
maintenance of permafrost due to their dynamic physical and ecological effects
on surface energy balances. Near-surface organic soils are insulative when dry
during summer and become highly conductive when wet and frozen during the
fall and winter - their thermal conductivity increasing by an order of magnitude
(Brown and Williams 1972; Oke 1987) promoting deeper, colder winter freezes.
The expansion of water upon freezing elevates surfaces above the surrounding
peat surface and water table (Zoltai 1971) and can change ground cover
vegetation from wetland Sphagnum spp. to non-wetland lichen and feathermoss
communities (Belland and Vitt 1995), and promotes dense and tall growth of
black spruce on localized frost mounds in the south (Zoltai and Tarnocai 1971).
This dramatic vegetation change further maintains a negative or neutral energy
balance through increased shade (forest cover) and ground surface albedo
(lichen cover) during summer, as well as increased snow interception by the
forest canopy during winter - thinning the ground snowpack that normally
insulates the soil. These factors contribute to the aggradation and stability of
perennially frozen soils, allowing them to occur at warmer latitudes and
elevations than in other soil types or under different vegetation. Thus, at its
southern limit in continental western Canada permafrost is limited exclusively to

peatlands.

The permafrost-containing peatlands of subarctic and boreal Canada have
long been recognized as occurring as two general types; large expansive areas
of peatland underlain by permafrost called peat plateaus, and small isolated
permafrost occurrences (usually less than 100 m? in area) in otherwise unfrozen
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peatlands (Brown 1968; Zoltai 1971) that | calil localized permafrost peatlands.
Peat plateaus and localized permafrost have long been considered as
morphological variations of the same process (Brown 1968), thus the occurrence
of localized permafrost indicates a limit to local permafrost aggradation before
peat plateau magnitude is attained due to interaction between climate and local
factors (Seppéld 1994). This together with the location of localized permafrost at
the southern limit of the discontinuous zone, makes localized permafrost in
peatlands some of the most recently formed and most climatically sensitive

perennially frozen ground in Canada.

Permafrost is degrading at many locations within the Discontinuous
Permafrost Zone. Many authors have reported thermal degradation and
disappearance of true palsas in the discontinuous zone for some time (Sollid and
Sorbel 1974; Kershaw and Gill 1979; Brown 1980). In continental western
Canada, peat plateaus and localized permafrost in peatlands also show evidence
of extensive melt. Most peat plateaus have areas of internal degradation called
collapse scars, and localized permafrost almost always has associated
completely degraded forms termed internal lawns (Vitt et al. 1994). Internal lawns
are treeless areas with carpet or lawn cover by Sphagnum spp. that typically
have surfaces depressed about 50 cm below the surrounding non-permafrost
peatland, often with tilted partially buried black spruce snags from the pre-
existing frost mound (Vitt ef al. 1994). The extensive degradation in continental
western Canada, recently estimated to account for 9% (2627 km?) of the total
previously existing permafrost (Vitt ef a/. 2000a), has been attributed to natural
climatic warming over the last 150 years since the end of the Little Ice Age
(Halsey et al. 1995). The utility of monitoring characteristics and changes in such
focalized permafrost features as climate-change indicators has been advocated
by numerous authors (Washburn 1980; Seppaia 1988; Solid and Sorbel 1998;
Nelson et al. 1991). Given the sensitivity of localized permafrost to climate, as
well as the important physical and ecological changes that have occurred within
their distribution in the recent past, a detailed exploration of the distribution of
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permafrost landforms in peatlands, particularly localized permafrost, is necessary
to further understand the Canadian permafrost environment and how it is

changing.

2.2.1 Objectives

Vitt et al. (1994) presented a preliminary, qualitative overview of localized
permafrost and peat plateau distributions for continental western Canada. The
data used by these authors were occurrences or counts of mapped peatland
units within 15’ latitudinal by 30’ longitudinal gridcells, and summarized into
classes that ranged from rare to abundant. Since then, these mapped peatlands
have been digitized and summarized, and quantitative cover data for peatland
types have become available. My goal in this chapter is to expand upon the
initial work of Vitt et al. (1994) to determine the spatial distribution and to quantify
cover of permafrost peatiands (peat plateau and localized permafrost peatland)
at the regional scale, explore the relationship that these distributions have with
climate and landscape, and determine how permafrost distributions have
changed. Specifically, | will address the following questions: 1) What is the
spatial distribution of a) the presence/absence of localized permafrost peatland
relative to peat plateau, and b) landscape cover of localized permafrost
peatland? 2) What climate/landscape factors are related to these distributions?
and 3) What is the spatial distribution of complete degradation of localized
permafrost (distribution of peatlands with internal lawns only, without treed frost

mounds or peat plateau)?
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2.2 METHODS

2.2.1 Localized permafrost peatiand distribution

Wetlands were mapped from aerial photography (taken between %949 —
1952) following the wetland classification described by Vitt et al. (1996).
Information from the photos was transferred to 1:250,000 NTS base map-s,
digitized and summarized for 15’ latitudinal by 30’ longitudinal (NTS) gridecells in
Arc/info for Alberta and Saskatchewan and by the raster method (see Haslsey et
al. 1997) for Manitoba. Permafrost occurrence was inventoried as either 1)
peatland completely underlain by permafrost (peat plateaus), or 2) as
predominantly non-permafrost peatlands containing isolated permafrost
landforms (localized permafrost peatlands). A minimum mappable unit off 0.6
km? ensured that only extensive permafrost peatlands were recorded as peat
plateaus. Data are in the form of peatland area per gridcell for both permeafrost
landform types; peat plateau and localized permafrost peatland. Gridcells that
occur within the Continuous Permafrost Zone of northern Manitoba (as m=apped
by Heginbottom (1995)) were not included.

To determine the spatial distribution of localized permafrost relative to
peat plateau, gridcells were classified into four types by the presence/abs-ence of
permafrost peatland types and peatland coverage: 1) localized permafros-t
peatland only, 2) both localized permafrost peatland and peat plateau, with
localized permafrost peatland dominant (localized permafrost peatland is >50%
of totai peat plateau and localized permafrost peatland cover), 3) both peat
plateaus and localized permafrost peatland, peat plateaus dominant, and 4) peat
plateau only. Cover values were assigned using five cover classes: < 0.49%,
0.5-4.9%, 5-14.9%, 15-24.9%, 25-50%. Classified gridcells were mapped! in
Arc/Info. The boundaries of the region of localized permafrost peatland
occurrence were set by the northernmost and southernmost gridcell of the largely

contiguous localized permafrost gridcells.
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2.2.2 Climate and landscape factors

To further understand the controls on the spatial distribution of permafrost
peatlands, a number of climate and landscape variables were estimated for the
permafrost peatland area of continental western Canada. Variables were
selected based on their importance to peatland and permafrost distributions and
data availability for each peatiand gridcell from published studies. Permafrost is
a ground temperature phenomenon and distributions are related to climate. |
include two climatic variables here, mean annual temperature and a summer
aridity index. Mean annual temperature derived from climate normals (1951-
1980) was linearly interpolated between available climate stations, correcting for
elevation effects following Vitt ef al. (1994). Because thermal conductivity of
surface peat is strongly dependent on the soil moisture content, surface
evapotranspiration rates are important to maintaining permafrost in summer. The
combined effects of May through August precipitation and temperature are
represented by a summer aridity index (based on precipitation - potential

evapotranspiration) following Pettapiece (1995).

Three peatland variables were summarized for each gridcell, and included
total peatland cover, the proportion of ombrogenous peatland, and maximum
peat depth. Permafrost has an affinity for dry ombrotrophic peat at the iocal
scale. To explore this relationship at the regional scale total peatland cover and
the proportion of ombrogenous peatland to total peatland cover were estimated
by the same method as permafrost landform cover from the wetland database.
The maximum peatland depth occurring in each gridcell was compiled from
numerous sources and consisted of 818 peatland sites and was otherwise
interpolated where data were missing following Vitt ef al. (2000b). Mineral soil
texture was summarized for each gridcell based on a 5 point scale where smaller
values represent smaller-grained soils (silts and clays) and larger vaiues
represent larger-grained soils (sandy soils) following Halsey et al. (1998).
Gridceil topography was based on four relief classes ranging from level (1) to
undulating (4) terrain following Halsey et al. (1998). To determine how climatic
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and landscape character of gridcells in each permafrost landform class differed,
data were submitted to canonical discriminant analysis (SAS 1990) following
standardization (mean = 0, variance = 1) of all variables. The significance of
climate/landscape variables in explaining localized permafrost peatiand coverage
was determined by stepwise multiple regression (Zar 1999).

2.2.3 Degradation

The spatial distribution of localized permafrost gridcells that contain only
internal lawns (without frost mounds or peat plateaus), indicates the complete
melt of permafrost that existed in the recent past. Spatial distribution of these
cells demonstrate how distributions of localized treed frost mounds have

changed.

2.3 RESULTS

2.3.1 Localized permafrost peatland distribution

Spatial distribution of gridcells classified by the presence/absence of
permafrost landform types indicate a north to south latitudinal zonation with
exclusive peat plateau occurrence in the north, typically exclusive localized
permafrost peatland in the south, and a large area of overlap where both
permafrost landform types co-occur (Fig. 2-1). The northern half (48%) of these
permafrost cells contain peat plateaus exclusively, whereas exclusive localized
permafrost peatiand in the south account for 12% of the gridcells shown. The
remaining permafrost cells have a co-occurrence of peat plateaus and localized
permafrost containing peatland. One-third of all cells that contain permafrost
have dominant or exclusive localized permafrost peatland. Outliers to the region
of localized permafrost peatlands occur in the subarctic of northeastern Manitoba
and at higher boreal elevations south of the zone in eastern Saskatchewan /
western Manitoba (Fig. 2-1). Within the region, localized permafrost peatland
covers 17,504 km?, or 12.7% of total peatiand area (Table 2-1). Cover is greatest
in central and northeastern Alberta, northwestern Saskatchewan, and central
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Manitoba, with the majority of cover being up to 5% of the land area in a broad
band of occurrence (Fig. 2-2). About 56% of total localized permafrost peatland
cover is fen, found mostly in central Manitoba. However, localized permafrost
peatland cover is greater in bogs in Alberta and Saskatchewan (Table 2-1).
When considered relative to cover by peatland type within the zone, 37.5% of
total (non- peat plateau) bog area is localized permafrost bog. Localized
permafrost fen accounts for 9.1% of total fen cover.

2.3.2 Climate and landscape factors

Permafrost peatland classes 1-3 (gridcells with localized permafrost
peatland) are characterized by significantly different regional characteristics
following canonical discriminant analysis (F = 19.1; P < 0.0001). Canonical axes
1 and 2 explain 32% and 3% of the variance in the climate and landscape data,
with mean annuai temperature and bog cover most strongly correlated with the
first canonical axis (Table 2-2). The climate and landscape character of gridcells
in these three classes show considerable cverlap along the first axis in the
ordination diagram (Fig. 2-3), suggesting a continuum of conditions between
classes. Stepwise multiple regression of climatic and landscape variables
against localized permafrost peatland cover per gridcell resulted in a model
wherein only total peatland cover and mean annual temperature were significant
(adjusted r* = 0.316; F = 133.0). Peatland cover accounted for the bulk of

variability, as mean annual temperature increased model r? by less than 0.01.

2.3.3 Degradation

Of the gridcells with only iocalized permafrost peatland (Class 1 on Fig. 2-
1), 40% of these have internal lawns only (without existing treed frost mounds).
This complete permafrost degradation has occurred mainly in the south (Fig. 2-
2), displacing the southern limit of permafrost north by an average of 39 km,
though where internal lawns are found at higher elevations in boreal
Saskatchewan and Manitoba, permafrost has moved by more than 200 km north.
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2.4 DISCUSSION

2.4.1 Localized permafrost peatland distribution

The distribution of permafrost in Canada follows climate gradients, evident
in the broadly latitudinal zonation of permafrost zones at the continental scale
(Heginbottom, 1995). In this way, Continuous and Discontinuous Zone
boundaries closely parallel mean annual temperature isotherms. This pattern is
also seen within continental western Canada (Vitt ef al., 1994), where exclusive
peat plateau occurrence in the north is replaced by increasing localized
permafrost peatland in the south (Fig. 2-1). Distribution of permafrost peatiand
type and abundance forms the basis of Zoltai's (1995) sub-classification of
discontinuous permafrost in peatlands. The total distribution of localized
permafrost shown in Figure 2-1 spans his Sporadic and Localized Permafrost
Zones. The region of localized permafrost peatland (Fig. 2-2) occurs as a broad
band across the region. The greatest localized permafrost peatland cover
generally occurs in the middle of this band, and decreases towards the north and
south, due to marginal climatic conditions in the south and replacement by peat
plateau in the north. Though more localized permafrost occurs in fens than in
bogs (Table 2-1), much more of the total bog area has localized permafrost than
the total fen area. This affinity for permafrost occurrence in bogs is due to bog
surfaces elevated above the water table, their dry peat reducing groundwater
temperatures below that of neighboring fens (Vitt et al. 1995). However,
relatively dry rich fens are also common, especially in Manitoba, that also have
elevated brown moss dominated surfaces. These dry fens are also prone to

localized permafrost development.

2.4.2 Climate and landscape factors

As a thermal condition of surface material, permafrost is closely related to
climate. The limits of the Discontinuous Zone have been expressed in terms of
mean annual temperature, occurring between about -8.3°C (Zoltai 1995) and 0°C
(Vitt et al. 1994) mean annual isotherms. Mean annual temperature is the most
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strongly correlated variable to canonical axis 1 (Table 2-2), that best separates
the permafrost peatland classes (Fig. 2-3). This indicates that overall coldness
strongly affects the occurrence of permafrost peatland types, and that climate
(specifically temperature), is an underlying factor that determines permafrost
peatland distribution at the regional scale. Thus, colder regions can develop
extensive peat plateaus, whereas warmer regions have a climatically imposed
limit on landform development, and are conducive to aggradation of localized
permafrost only. Seasonal precipitation also affects permafrost aggradation,
maintenance and degradation. Wet peat has a thermal conductivity an order of
magnitude greater than dry peat (Brown and Williams 1972), and high summer
precipitation and flooding have degraded small permafrost ienses in Finnish
Lapland wetlands (Seppala 1994). Summer aridity was weakly but significantly
correlated to canonical axis 1 (Table 2-2). This relationship likely has to do with
the importance of aridity to permafrost maintenance at the southern limit of
localized permafrost where aridity is highest, and promotes dry insulative
peatland surfaces during the thaw season. Winter precipitation as snowfall,
although not included in our analyses, also has an important affect on
permafrost. The reduction of winter snowpack has been shown to be a limiting
factor for permafrost aggradation in discontinuous zone wetlands (Seppéala
1994). This can occur at the very local scale by wind scour of higher microrelief
in hummocky terrain or redistribution of snow by wind in treeless wetlands. In
treed wetlands dense tree cover has a similar effect, intercepting much snowfall

within living forest canopies (Zoltai and Tarnocai 1971).

Landscape factors that include peatland cover, peatland type (bog
proportion of total cover), and mineral soil texture also show differences between
permafrost peatland classes. Permafrost distribution is related to peatland
distribution, as permafrost is found most commonly in peatiands within the
Discontinuous Zone and is restricted exclusively to peat in the south. The
correlation of peatland cover variables to canonical axis 1 demonstrates that the
landform gradient is also limited by the extent of peatland area, especially at the
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climatic limits of its occurrence. The amount of bog relative to total peatland
cover in an area (gridcell) is more closely correlated to axis 1 than total peatland
cover (Table 2-2), as ombrotrophic peatlands in the north of the provinces are
almost exclusively peat plateau. Surface mineral soil texture shows hydraulic
conductivity from low (clayey sails) to high (sandy soils). Increasing hydraulic
conductivity has been associated with the occurrence of minerotrophic peatlands
in Manitoba (Halsey et a/. 1997) and Minnesota (Glaser 1992). The negative
correlation of soil texture to axis 1 reflects the high abundance of fen peatland in
the south of the zone of localized permafrost peatland occurrence, where
localized permafrost is dominant or exclusive. Farther north peat plateaus begin
to dominate and ombrotrophic conditions become more common, seen in the
positive correlation of proportion bog to axis 1 (Table 2-2).

The variation in cover of localized permafrost peatland is best explained
by total peatland cover, and to a much lesser degree by mean annual
temperature. The bog proportion of total peatland cover is less important than
total peatland area in this case. The high cover values of fen peatland within the
distribution of exclusive or dominant localized permafrost peatland (class 1 and 2
gridcells) results in more localized permafrost fen than localized permafrost bog.
Even though permafrost has a demonstrable affinity for bogs, localized
permafrost aggradation is facilitated by dry microhabitats in fens. These include
hummocky microrelief created by common peatland bryophytes such as
Sphagnum spp. and Tomenthypnum nitens (Hedw.) Loeske, and dry ridges
(strings) separating wet pools (flarks) in patterned fens. When regressed against
coverage of localized permafrost landforms, climate is a poor explanatory
variable. Part of this weak relationship is due to scme non-linear response of
localized permafrost peatiand area to climate, since cover decreases in colder
areas when localized permafrost is replaced by peat plateau. However, the
majority of data for localized permafrost peatiand cover per gridcell is less than
5% and spans the range of mean annual temperatures for these gridcells,
implying that most of the variability in cover is controlled by other factors (i.e.
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peatiand cover). Altogether, this suggests that climate is an important factor in
determining whether permafrost develops into expansive ilandforms or is limited
to localized landforms. In areas where climate supports localized permafrost,

cover is largely a function of available peatland area.

Although climate and landscape factosrs explain much of the
presence/absence of permafrost landform ty-pes as well as the extent of localized
permafrost at the regional scale, much variability remains unexplained. In
continental western Canada the distribution of permafrost landform types, and
the extent of peatlands containing landforms. at their climatic limits such as
localized permafrost, presumably reflect climeatic patterns that existed during
permafrost aggradation, i.e. during the Little lce Age. While the Little Ice Age is
expected to have been about 1°C colder tham present mean annual temperatures
in the region (Vitt ef al. 1994), this cold period has been shown to have been
asynchronous and of varying intensity worldwide (Bradiey and Jones 1992). Itis
also possible that the climatic conditions and weather patterns of the Little Ice
Age could have been substantially different than modern climate, as has been
implicated as the cause of past dramatic weather changes in Churchill, Manitoba
(Scott et al. 1988). Thus, even though mode-rn climate is an important variable
explaining the presence/absence of peat plateaus and localized permafrost in
peatlands, some unexplained variability in our analyses may partially be due to
climate data that inaccurately represent aggradation conditions. The inclusion of
additional regional scale variables could likely explain more variation, however
factors that operate locally also have a strong effect on permafrost peatland type
and coverage. Camill and Clark (1998) showed that maintenance of relict
permafrost is controlled by complex local factors that operate on a landform-to-
landform scale. The large region of peat plateau and localized permafrost
peatiand co-occurrence, and that only certaire peatiands or parts of peatlands
have permafrost supports the importance of hocal factors and processes. Though
climate and landscape impose regional thresholds, local factors are influential in
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dictating the aggradation and degradation of permafrost at the southern limit of

the discontinuous zone.

2.4.3 Degradation
Permafrost has been dynamic in its distribution in continental western

Canada through the climatic changes of the Holocene. Zoltai (1995) tentatively
demonstrated that at 6,000 years BP, permafrost zones were up to 500 km north
of their current position. The Little Ice Age was the most extensive cold period
since Late Wisconsinan deglaciation, evident in the most extensive glacial
advances of the Holocene in the Canadian Rockies (Grove 1988; Luckman
1986), and tree ring records from Alberta (Case and McDonald 1995). It has
been proposed that permafrost reached its maximum Holocene extent during this
time, and account for much of the localized permafrost aggradation at the
southern limit (Haisey ef al. 1995). Dendrochronological dating of melt events
show that degradation was initiated in the last 100 years (Vitt ef a/. 1994), which
is synchronous with the amelioration of climate since the Little Ice Age (Thie
1974; Vitt ef al. 1994). The spatial distribution of internal lawns shows that
degradation has occurred throughout the zone of localized permafrost peatland
occurrence (Vitt ef al. 1994). This melting can be complete, with 40% of gridcells
with only localized permafrost peatland (Class 4 on Fig. 2-1) having internal
lawns only. The predominant distribution of completely degraded permafrost at
the southern limit of permafrost demonstrates that climate warming is responsible
for changes in permafrost distribution. The distribution of existing treed frost
mounds has been highly dvnamic over a relatively short period of time within the
zone of localized permafrost peatland occurrence. Further study of localized
permafrost landforms is important due to their utility as climate indicators, as well
as to further understand the environmental consequences of ongoing permafrost

meilt in the boreal forest.
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2.4.4 Conclusions

As a result of extensive inventory of peatland landforms and comparison

to climate/landscape within continental western Canada, | demonstrate here that:

1.

Permafrost landform occurrence as either peat plateaus or localized
permafrost peatland is distributed in latitudinally-oriented bands of occurrence
with peat plateaus oniy in the north, typically localized permafrost only in the
south, separated by extensive overlap or co-occurrence of landform types.

Localized permafrost peatlands (peatlands with treed frost mounds and/or
internal lawns) cover 17,505 km? in a zone of occurrence within the boreal
forest of continental western Canada, concentrated in north central and
northeastern Alberta, northwestern Saskatchewan and central Manitoba.
Localized permafrost occurs in both fen and bog: localized permafrost fen
covers 9,868 km? in this zone, localized permafrost bog covers 7,636 km?.

Climate and peatland area are the most important regional factors for the
occurrence of permafrost landform types as well as the extent and distribution
of localized permafrost peatlands. At the regional level, climate controls
permafrost development into either extensive peat plateau or localized frost
mounds. In climates where localized permafrost peatlands occur, their
regional coverage is mostly a function of peatland area. Local factors are

responsible for short-term temporal dynamics at the site level.

Localized permafrost in peatlands is the most recently formed and the most
climatically sensitive permafrost in the Discontinuous Zone. The continuing
degradation of permafrost has moved the southern limit of permafrost north
by an average of 39 km, and as much as 200 km over the last century.
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Table 2-1. Summary of total permafrost landform and peatland type cover (km?)
by province for the zone of localized permafrost peatland occurrence (as shown

in Fig. 2-1).

ALBERTA SASKATCHEWAN MANITOBA TOTAL

Peat plateau 3,439 709 11,795 15,943
Localized permafrost peatland 6,451 2,328 8,726 17,505
Localized permafrost bog 3,972 1,868 1,796 7.636
Localized permafrost fen 2,479 460 6,929 9,868
Total bog (non- peat plateau) 8,755 6,663 4,934 20,352

Total fen 37,301 24,438 46,308 108,047
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Table 2-2. Results of canonical discriminant analysis: Pearson correlation
coefficients for climate/landscape characteristics and canonical axes 1 and 2.
*denotes significance (P < 0.05).

FACTORS AXIS 1 AXIS 2
Mean annual temperature -0.83* -0.36*
Summer aridity -0.27* -0.09*
Total peatland cover 0.27* -0.19*
Bog proportion 0.62* 0.01
Maximum peat depth -0.02 0.24*
Topography -0.03 -0.04
Mineral soil texture -0.34* 0.81*

Squared canonical correlation 0.32 0.03
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Fig. 2-1. Distribution of permafrost landforms in boreal continental western
Canadian peatlands by landform class. PP = peat plateau, LPP = [ocalized
permafrost peatland. The northern and southern limits of the zone of localized
permafrost peatiand occurrence is demarcated by heavy lines. Cells within the
Continuous Permafrost Zone (Heginbottom 1995) of northeastern Manitoba are

excluded.
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Fig. 2-2. Cover of localized permafrost peatland expressed as percentage of
total peatland area per gridcell. Hatched gridcells show localized permafrost
peatlands with internal lawns only. The modern southern limit of permafrost is

shown by the heavy line.
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Fig. 2-3. Results of canonical discriminant analysis of climate/landscape
characteristics comparing permafrost peatiand classes 1-3 (localized permafrost
peatland). Canonical axes 1 and 2 are plotted. PP = peat plateau, LPP =
localized permafrost peatland.
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CHAPTER 3:
PLANT COMMUNITY CHANGE DUE TO LOCALIZED PERMAFROST

DYNAMICS IN BOREAL WESTERN CANADIAN BOGS

3.1 INTRODUCTION

Permafrost is an important part of Canada’s north, as Continuous and
Discontinuous Permafrost Zones cover about half the country’s landmass
(Heginbottom 1995). Permafrost is a ground temperature phenomenon, defined
as earth materials that remain below 0°C for two or more years (Harris et al.
1988). As such, it is sensitive to environmental changes that affect ground
temperature at the microclimate to regional climate scales (Williams and Smith
1989), especially at the climatic limits of its occurrence. Thus factors such as
disturbance (that affects the local microclimatic conditions) and long term
regional climatic change determine whether it is aggrading, degrading or is in
equilibrium with its environment. Interest in permafrost at its climatic limit is thus
increasing due to its value as a climate change indicator (Washburn 1980; Sollid
and Sorbel 1998), as well as the importance of determining the ecological effects

of its ongoing degradation (Woo et al. 1994).

In the Discontinuous Permafrost Zone, permafrost occurs most commonly
in treed boreal and subarctic peatlands, that can be divided into two types based
on morphology (Brown 1968): large expansive peat plateaus (completely
underlain by permafrost), and small restricted landforms of isolated permafrost in
largely unfrozen peatlands (localized permafrost peatlands, Chapter 2). The
distribution of these two morphologies follows climate (Vitt et al. 1994; Halsey et
al. 1997; Chapter 2) and localized permafrost peatlands are concentrated at the
southern limit of permafrost in continental western Canada (Alberta,
Saskatchewan, and Manitoba). Localized permafrost in peatlands is degrading
throughout its range (Vitt ef al. 1994, Vitt et al. 2000), leaving areas of localized
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permafrost collapse (internal lawns) in peatlands, and has completely
disappeared at some locations near its southern limit (Chapter 2).

Peatland plant communities have been moderately well studied in western
Canada. General plant communities were described in early studies (Lewis and
Dowding 1926; Lewis et al. 1928; Moss 1953). More recent work has focussed
on patterns of vegetation relative to environmental gradients across different
peatland types (Jeglum 1973; Kenkel 1987; Vitt and Chee 1990), and within
peatland types for fens (Vitt et al. 1975 - poor fens; Slack et al. 1980 — extreme-
rich fens; Chee and Vitt 1990 — moderate-rich fens), bogs (Beliand and Vitt 1995)
and peat plateaus (Horton ef al. 1979). Although the bryophytes of permafrost
peatlands have been included in some of these studies (notably Belland and Vitt
(1995) and Vitt et al. (1995)), and the vegetation has been roughly described (Vitt
et al. 1994), the plant communities of localized permafrost peatlands have not
been investigated in detail (with the exception of a single frost mound (treed
palsa) described by Zoltai and Tarnocai (1971)). Vegetation change in localized
permafrost bogs and the ecological conditions it indicates must be characterized
if the impact of ongoing permafrost degradation, that may accelerate with

predicted climate change, is to be fully understood.

3.1.1 Objectives

The objective of this study is to determine patterns of vegetation change in
western Canadian continental bogs affected by localized permafrost dynamics.
Specifically, | address two questions; 1) How do plant communities and diversity
in continental bogs respond to localized permafrost formation and melt as
determined through comparison of plant communities between continental bogs,
frost mounds and internal lawns? 2) How do piant communities vary within
internal lawns, and how do community and diversity patterns relate to peatland

deveiopment following permafrost melt?
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3.1.2 Study region and peatiand sites

Localized permafrost peatlands occur in a wide belt across boreal Alberta,
Saskatchewan and Manitoba, and cover 17,505 km? (Chapter 2). This area
largely falls within Zoltai et al.’'s (1988) Continental High Boreal Wetland Region
and is characterized by low precipitation (relative to coastal boreal wetland
regions) and cold winters, where localized permafrost peatlands are a
characteristic wetland type (referred to as palsa bogs by Zoltai et al. (1988)). To
determine the effects of permafrost dynamics on vascular plant and bryophyte
vegetation, three localized permafrost bogs were selected for study in each of
Alberta, Saskatchewan and Manitoba from aerial photography of the whole
region. These were chosen to have distinct frost mounds and internal lawns,
reasonable accessibility, and to span the longitude of the region. These bogs
occur where localized permafrost landforms are the dominant permafrost feature
(peat plateaus occur only rarely nearby (Chapter 2)), near the southern border of
the localized permafrost peatland region (Fig. 3-1) and the southernmost limit of
permafrost. Regional climate and the degree of degradation are comparable for
all three peatlands (Table 3-1).

3.2 METHODS

3.2.1 Plant community surveys

To determine the effect of permafrost aggradation and degradation on bog
plant communities three distinct landforms were surveyed, and included
continental bog (the background vegetation matrix in which localized permafrost
tandforms occur), frost mounds, and internal lawns (Fig. 3-2). The vegetation of
ten landforms of each type was assessed in each peatland (with the exception of
frost mounds at the Patuanak, SK peatland, where only 9 were found) for a total
of 89 landform relevés. Bog vegetation was evaluated by locating random
coordinate points from a grid overlain onto large-scale aerial photographs of each
site. The general area of each point was located on the ground, anda 5 x5 m
plot placed within a representative area of vegetation. Percent cover of all
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vascular plant and bryophyte species, and ali lichens over 1% cover, was
estimated visually within each plot. Cover data were supplemented by a search
for new species within a 25 m radius until no new species were found. Species
that occurred outside relevés were assigned a cover value of 0.05% for
abundance analyses. Frost mounds and internal lawns were randomiy selected
from the total accessible population of landforms in each site. Frost mounds
were surveyed by the same technique used to survey bog plant communities.
Internal lawns have the most variable vegetation and surface wetness conditions
of the three landform types, due to the effects of time-transgressive degradation
and subsequent peatland development, and could not be accurately sampled
using 5 x 5 m plots. Instead, abundance values were estimated for eacn entire
landform. Estimates of abundance were facilitated by the open, largely treeless
nature of internal iawns. Internal lawn edges represent a transition between
affected and unaffected bog, as pre-existing localized permafrost lenses thin out
at their margins (Zoltai 1972), resulting in decreased disturbance when
permafrost thaws. A one-meter margin around the inside border of each internal
lawn was therefore excluded from surveys to ensure only vegetation affected by
permafrost meit was included. Water samples from pools or shallow, excavated
pits in each bog and internal lawn relevé was collected in acid-washed
polyethylene bottles. Samples were refrigerated and the pH and conductivity
(corrected for pH following Sjérs 1952) of each sample were determined in the

lab.

To determine the spatial variability in vegetation resuiting from post-melt
peatland development, an additional five internal lawns were randomly chosen in
each peatland for finer-scale survey. internal lawns are typically oblong or
irregular in shape (Fig. 3-2), and degrade along ‘melting fronts’ following the
initiation of melt, creating a newly collapsed area and an older area. To capture
the range of conditions along this temporal/wetness gradient, a central transect
was placed along the longest axis of each internal lawn. This transect was
divided into 10 equal lengths, and a two-meter diameter round quadrat was
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randomly placed within each length (10 quadrats per internal lawn, 50 quadrats
per peatland, 150 quadrats total). Within each quadrat cover values of all
vascular plants and bryophytes, and lichens that had cover values greater than
one percent, were visually estimated. The modal height of the peat surface
above the water table and microrelief were measured for each quadrat.
Microrelief was estimated by measuring the height between the highest
hummock top and the lowest hollow bottom within each quadrat.

In all surveys, all vascular plants and bryophytes were identified to
species. True mosses and Sphagnum are treated separately, and ‘mosses’ refer
to non-Sphagnum mosses hereafter. Species names folliow Moss (1983) for
vascular plants, Ireland et al. (1987) for mosses and Sphagnum, Stotler and
Crandall-Stotler (1977) for hepatics, and Esslinger and Egan (1995) for lichens.

3.2.2 Data analysis

Non-metric multidimensional scaling (NMDS) was used to compare
vegetation from bog, frost mound and internal lawn relevés. NMDS is a non-
parametric dimension reduction technique that works without assumption of
linear or unimodal response, and escapes many of the distortions of eigenvector
techniques (Kenkel and Orléci 1987; Minchin 1987; Legendre and Legendre
1998). Sorensen (Bray-Curtis) distance was used as a general measure of
ecological similarity (Faith et al. 1987) for all NMDS ordinations. To thoroughly
explore the effects of permafrost dynamics on total bog vegetation as well as on
the vascular plant and bryophyte components, four analyses were run using
different data subsets: 1) abundance data for total vegetation including
coverages for lichen species that had >1% cover (Cladina mitis, C. rangiferina, C.
stellaris) and coverages of bare peat, 2) vascular plant and bryophyte
presence/absence, 3) vascular piant presence/absence, and 4) bryophyte
presence/absence. Differences in pH and conductivity between bog and internal

lawn surface waters were determined by Mann-Whitney U tests (Zar 1999).
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Summary statistics and tests for pH were conducted on hydrogen ion

concentrations, and reported as pH.

In order to decrease the effect of the few Sphagnum species that
dominated each of the small quadrats (and thereby increase the sensitivity of
analyses to patterns from less common species) abundance values in the
quadrat dataset were square-root transformed. The 150 internal lawn quadrats
were then classified using Sorensen distance between quadrats and flexible beta
clustering (beta = -0.25) (Legendre and Legendre 1998). Groups were named by
their dominant vegetation (Sphagnum species). Transformed abundance data
from these quadrats were ordinated by NMDS. All multivariate analyses were
implemented in PC-ORD (McCune and Mefford 1999).

Alpha, beta and gamma diversity were assessed following the diversity
concepts of Whittaker (1970). Alpha diversity was calculated as the mean
number of species (richness) in bogs, frost mounds, or internal [awns from the
relevé data, or the mean number of species in each vegetation group for the
internal lawn quadrat data. Beta diversity was calculated for both relevé and
quadrat data as the ratio of total number of species in each dataset to the mean
richness across all sample units (all 89 relevés, or all 150 quadrats). Gamma
diversity was defined as the total species richness from all surveys in all three
peatlands (the landscape diversity of localized permafrost bogs). The equality of
mean alpha diversity values between internal lawn quadrat groups was

determined by Kruskal-Wallis H tests.

3.3 RESULTS

3.3.1 Community/floristic ordinations, vegetation patterns, and water

chemistry
Ordination of abundance data for the total vegetation (including lichen and
bare peat cover) did not have a substantially lower stress value for solutions
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beyond two dimensions: final 2-D stress was 7.6. Landform groups are clearly
separated, with bog relevés intermediate on the diagram, and frost mounds and
internal lawns clearly separated at the ends of the first NMDS axis (Fig. 3-3A).
Between-peatland differences are greatest in the frost mound and internal lawn
vegetation, evident in the higher degree of closeness and clumping of localized
permafrost landform data points from the same peatiand compared to the more
freely intergrading bog vegetation on the diagram. Broad vegetation patterns
between landforms are shown by plotting tree cover values (Picea mariana) and
ground cover values (ground cover by Sphagnum spp., feathermosses
(Pleurozium schreberi, Hylocomium splendens, and Ptilium crista-castrensis) and
lichens) onto the ordination space (Fig. 3-3B through E). Landform types differed
markedly in tree cover (Fig. 3-3B), and were nearly always bryophyte-dominated
in ground cover (ranging from Sphagnum to feathermoss dominance). Bog
vegetation (unaffected by permafrost) was characterized by open Picea mariana
and was always Sphagnum-dominated. Frost mounds had Picea cover greater
than that of bog relevés (more than double on average (Fig. 3-3B), and often
resulted in closed canopies), and had ground cover dominated by feathermosses
(except for seven frost mounds in the Moose Lake, MB peatiand that were
dominated by lichens of the genus Cladina - Fig. 3-3C and 3-3E). Internal lawn
tree cover was less than one percent on average and did not exceed three
percent. Sparse tree cover present was from stray collapse survivors or newly
established spruce on older, drier surfaces. Ground cover in internal lawns was
strongly dominated by Sphagnum (Fig. 3-3D), with much reduced cover by other
mosses and a nearly complete exclusion of lichen (Fig. 3-3&). Two-thirds of the
internal lawns had S. fuscum cover greater than 50%, and mean cover of S.

fuscum in all internal lawns was 63.4%.

Surface water pH in bogs (mean = 3.65) and internal lawns (mean = 4.02)
ranged between 3.08 and 4.49, and were statistically different (P < 0.001).
Surface water corrected conductivity (bog mean = 15.0 yS/cm; internal lawn
mean = 52.2 uS/cm) was also significantly higher after permafrost collapse (P <
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0.001). pH and conductivity are shown plotted within the vegetation ordination

space in Figure 3-4.

Ordination of relevés based only on the presence/absence of species
using both vascular plant and bryophyte species also shows distinct separation
of frost mounds from internal lawns, though some overlap occurs between bog
and internal lawn relevés (Fig. 3-5A). Between-peatland differences (within
landform types) are not as clearly expressed in the floristic data as in the
abundance data (compare Fig. 3-3A and 3-5A), and relevé points from the
different peatland sites overlap more freely when only presence/absence is used.
Separate floristic analyses of the vascular plant and bryophyte vegetation
components by NMDS show that much of the landform separation and general
pattern in the total vegetation data comes from the bryophyte component of the
data (Fig. 3-5C) and less from the vascular plant component (Fig. 3-5B).
Vascular plant species ordination had a final stress of 16.59, and bryophyte
species had a final stress of 22.06; both had the best solution in two dimensions.
Both ordinations show a distinct position of frost mound points from bog and
internal lawn points in the ordination space. However, the vascular plant analysis
shows strong floristic overlap of Sphagnum-dominated bog and internal lawn

releves.

3.3.2 Diversity

Seventy-three vascuiar plant and bryophyte species were encountered in
the three localized permafrost bogs; 20 vascular plants, 26 true mosses, 11
Sphagnum mosses, and 16 hepatics (complete list provided in Appendix 1 and
2). Comparison of species diversity among landforms reveals that mean aipha
diversity is similar in bogs and internal lawns, and lower in frost mounds
(decrease of 31% from bog, Table 3-2). This decrease due to permafrost
aggradation is largely due to reduction in the number of vascular plant,
Sphagnum and hepatic species, though moss diversity increased and was
highest in frost mounds. Vascular plant diversity is nearly double in internal
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lawns relative to frost mounds, due to presence of common bog species in
addition to Betula pumila, Scheuchzeria palustris and species of Carex (plants
common in poor fens (Vitt ef al. 1975) and absent from bog relevés). Internal
lawn vascular plant diversity was higher than that of the bog matrix. Sphagnum
diversity was much higher in internal lawns compared to frost mounds, and also
exceeded that of the bog relevés due to the introduction of species that were
either rare or absent from the bogs (Sphagnum jensenii, S. obtusum, and S.
lindbergii). Hepatic diversity was highest in Sphagnum-dominated bog and
internal lawn relevés, though cover values were greatest in frost mounds due to
the presence of ilarge mats of Mylia anomala. Moss diversity was lowest in
internal lawns (Table 3-2). Beta diversity was greatest for true mosses and
hepatics, with lower values for Sphagnum and lowest values for vascular plants
(Table 3-2).

3.3.3 Internal lawn vegetation

Vegetation from the intra-internal lawn surveys was divided into six groups
by cluster analysis (Fig. 3-6), and named for their dominant (Sphagnum) species.
Nearly two-thirds of the quadrats were strongly Sphagnum fuscum dominated
(greater than 90% cover, on average). Another 20 quadrats included S. fuscum
as a dominant species (> 50%), but also included high cover of S. magellanicum,
S. russowii, and S. angustifolium (named mixed S. fuscum). Twenty quadrats
were dominated by S. angustifolium, though these also included up to 20%
coverage by S. riparium. Six quadrats were S. riparium dominated, three
quadrats were S. russowii dominated, and a single quadrat had 98% S. jensenii
cover. NMDS ordination of the internal lawn quadrats supports the groups from
the cluster analysis (Fig. 3-7), and had a final stress of 13.8. The 98 S. fuscum
quadrats are closely clustered on the right side of the diagram, whereas the
remaining quadrats show greater compositional variability on the left of the

diagram.
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Ordering internal lawn plant community groups by increasing height above
water table shows that microrelief reached its greatest value in mixed S. fuscum
communities, with a slight decrease when S. fuscum comes to dominate (Fig. 3-
8). Mean alpha diversity of all species does not significantly change between
groups (P = 0.60). When separated into vascular plant and bryophyte
components, opposite trends in species richness are evident; vascular plant
richness slightly increases with height above water table (P < 0.001), while
bryophyte richness does not significantly change (P = 0.20). Variability in height
above water table and mean alpha diversity (total, vascular plant and bryophyte)
decreases along the vegetation sequence (Fig. 3-8).

3.4 DISCUSSION

Gradient analyses across North American peatland types show that
peatland vegetation patterns are generally determined by surface water
chemistry and wetness gradients (Kenkel 1987; Glaser ef al. 1990; Vitt and Chee
1890; Jeglum and He 1995). In western Canadian continental bogs, water
chemistry gradients are truncated (relative to rich fens) and other environmental
factors such as shade and dryness have a greater effect on vegetation (Belland
and Vitt 1995). In contrast to permafrost that occurs in dry Continuous Zone
bedrock or Discontinuous Zone upland soils, the abundance of water in saturated
subsurface peat leads to the elevation of permafrost-underlain surfaces above
water tables due to the volumetric expansion and buoyancy of ice (Zoltai 1972).
Soil conditions on frost mounds become free from water table influence, and
depth to the permafrost on frost mounds is typically around 60 c¢m but can be
over 100 cm (Zoltai and Tarnocai 1971; Zoltai 1972). Picea mariana has been
shown to respond strongly to decreased peatland water table (Dang and Lieffers
1989; Lieffers and MacDonald 1990), and increased tree vigor results in a more
shaded ground cover (Fig 3-3B). Degradation of localized permafrost resuits in
collapse of the frost mound surface to below that of the surrounding bog, creating

open conditions that are clearly evident on aerial photographs when trees are
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drowned (Vitt ef al. 1994). Localized permafrost aggradation and degradation at
the southern limit of permafrost thus has a great influence on peatland
vegetation, as frost mounds and internal lawns represent the driest/shadiest and

wettest/most open conditions that occur in Canadian continental bogs.

3.4.1 Community/floristic ordinations and vegetation patterns

The clear separation of landform relevés on the total vegetation
abundance data ordinations (Fig. 3-3A) shows that the landform groups are well
supported by the vegetation data, and that localized permafrost aggradation and
degradation results in landforms with distinct plant communities. Separation is
complete between frost mounds and internal lawn relevés on both total species
abundance and floristic ordination diagrams (Fig. 3-3A and 3-5A) clearly showing
that non-wetland conditions can be created by permafrost aggradation, and the
unique, wet conditions created by permafrost melt. The position of frost mound
relevés is most distinct in the ordinations, due to their unique vegetation and low
diversity. Change in tree cover between landforms is impressive (Fig. 3-3B), and
of importance in its effect on peatland habitat (P. mariana is the only source of
large physiognomic structure in bogs), the influence on understory vegetation
(Camill 1999a, Belland and Vitt 1995), and potential changes in carbon
sequestration due to increased tree vigor. The dense tree cover,
feathermoss/lichen groundcover and isolation from peatland water tables make
frost mound plant communities more similar to boreal upland black spruce
ecosystems than wetlands (cf. LaRoi and Stringer 1976). Permafrost
degradation in boreal peatlands can proceed quickly once initiated (Thie 1974;
Engelfield 1994), thus the farge community change that occurs when permafrost
degrades (evident in distance and separation between frost mound and internat
lawn points in Fig. 3-3A and 3-5A) is very fast. Since linear collapse rates are
faster in warmer regional climates (Camili and Clarke 1998), these large
community changes may occur even more rapidly with the 5°C increase in mean
annual temperature predicted for the region over the next century (Boer et al.
2000).
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In general, plant community change in boreal forest ecosystems (at
temporal scales from decades to centuries) is largely under control of
disturbance from fire (Johnson 1992; Payette 1992). Although fire also occurs
frequently in boreal peatlands (Wein 1983), macrofossil evidence shows that
bogs recover quickly from fire with tree cover and Sphagnum ground cover
returning quickly to pre-fire conditions (Kuhry 1994). Permafrost degradation, on
the other hand, results in longer, more pronounced changes in bog vegetation
(Zoltai 1993; Camill 1999b; Chapter 4). Frost mound collapse after permafrost
melt is likely the greatest disturbance that occurs in boreal and subarctic
ombrogenous peatlands. This, perhaps, is greatest when meit is initiated by fire
that results in loss of surface peat and therefore greater collapse relative to water
table upon melt). The magnitude of this disturbance is evident in the significant
increases in pH and conductivity between bogs and internal lawns, and suggests
that internal lawns can collapse to the degree that they become geogenous (are
in contact with minerotrophic ground water), and are in fact poor fens. It is likely
that minerotrophic conditions occur in newly melted landforms, and that
ombrogenous conditions return after a given amount of peat accumulates. This
is further supported by the common cccurrence of Sphagnum jensenii and
Cladopodiella fluitans in internal lawns, species that Vitt and Belland (1995)

recommend as poor fen indicators.

Between-peatland differences are clearly evident in the abundance data
and less distinct in the floristic data, and show that differences between
peatlands are more strongly expressed in changes in the cover of species that
occur in all three sites, rather than in the addition or removal of species between
peatlands. Between-peatland differences in frost mound plant communities are
related to the degree of environmental change caused by permafrost
aggradation. For example, Zoltai and Tarnocai (197 1) found that the densest
and tallest tree growth, that was correlated to ground vegetation cover by
mosses and lichens, was associated with the thickest permafrost lenses.
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Differences in the magnitude of permafrost aggradation between peatlands is
determined by past conditions, including site-specific hydrology and plant
communities (that affected surface thermal balances when permafrost formed),
and regional climate patterns during the Little Ice Age (that may have been
substantially different from present patterns). Differences in internal lawn
vegetation between peatlands are closely related to the permafrost conditions
expressed in the frost mound vegetation data, and the amount of time passed
since degradation (increased time for peat accumulation and succession). Since
permafrost aggradation also affects the composition of the peat (Zoltai 1993) and
the rate at which it vertically accumulates relative to undisturbed peat
accumulation in the surrounding bog (Turetsky et al. 2000), differences in
permafrost conditions determine the degree of landform collapse when
permafrost melts. Between-peatland differences in frost mound and internal lawn
plant communities are attributable to differing permafrost conditions, as well as

possible asynchronous degradation.

3.4.2 Diversity

Continental bogs are floristically simple, consistent ecosystems with the
lowest bryophyte diversity of all peatland types (Vitt et al. 1995) and low vascular
plant diversity compared to coastal bogs (Glaser 1992). Bryophyte diversity in
continental bogs is strongly associated with microhabitat heterogeneity (Vitt ef al.
1995). Frost mounds lack the dryness gradient present along the peatland
hummock-hollow sequence, evident in the decreased mean alpha diversity
values in permafrost compared to bog relevés. However, the abundance of
shaded, cool forest floor and tree base microhabitats results in increased forest
floor moss diversity on frost mounds (species of Ceratodon, Dicranum, and
feathermosses (Ptilium and Hylocomium) that are more uncommon in bogs).
Internal lawn mean alpha diversity (particularly Sphagnum diversity) is greater
than that of frost mounds due to the presence of the peatland dryness gradient.
In internal lawns, this gradient is lengthened due to the presence of very wet,
nearly aquatic conditions in newly collapsed areas and the presence of carpet
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vegetation. Moss diversity, however, is very low in internal lawns. Since the
availability of microhabitats in peatlands is strongly affected by the presence of
trees (of the nine peatland microhabitats named by Vitt et al. (1995), four are
associated with tree bases), moss diversity will likely rebound foliowing tree

establishment and growth.

3.4.3 Internal lawn vegetation
Peat accumulation rates in internal lawns have been shown to exceed

those in non-permafrost affected bogs (Turetsky et al. 2000), a phenomenon also
observed in more northern collapse scars within peat plateaus (Camill 1999b).
Resultant accelerated changes in internal lawn surface height above water table
drives post-melt plant community succession quickly (Zoltai 1993, Camill 1999b,
Chapter 4). The strong groups recognized by cluster analysis reflect both the
Sphagnum-dominated nature of internal lawn vegetation in bogs, as well as the
well defined niche space of Sphagnum along the wetness gradient (Horton et al.
1979; Vitt and Slack 1984). The large number of quadrats dominated by dry-
adapted Sphagnum fuscum is indicative of accelerated temporal change in
internal fawns as peat quickly accumulates (also supported by the abundance of
S. fuscum in internal l[awns from landform relevés). Organization of these groups
by their mean height above water table reflects the developmental series from
wet to dry taking place in internai lawns following permafrost collapse. These
mean height above water table vaiues are supported by those reported from
autecological studies of Sphagnum species’ tolerances and optima relative to
peatland water tables (Gignac ef al. 1991; see Chapter 4). Microrelief increases
along this series, as newly collapsed surfaces have even microtopography due to
very wet conditions and the occurrence of wet-adapted sphagna occurring in
carpets (S. jensenii) and lawns (S. riparium and S. angustifolium). Further
peatland development and establishment of hummock-forming species at higher
levels above the water table brings increased microtopography. The slight
decrease in microrelief when vegetation becomes strongly dominated by S.
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fuscum represents the loss of hollow microhabitat within the area captured by

quadrats.

Most diversity change across the sequence is captured in the beta
diversity values, as mean alpha diversity does not change significantly across the
sequence. Species turnover is greatest in bryophytes regardless of non-
significant mean alpha diversity changes, largely due to the localized sensitivity
of bryophytes to microhabitat wetness compared to rooting vascular plants. Thus
the greatest diversity in any internal lawn occurs when this dryness gradient is
maximized, i.e. melt sites that have both recently degraded and older, drier
surfaces. This time-transgressive pattern of permafrost melt within individual
internal lawns is common across the study region and is most evident in features
with recently degraded surfaces. The period of high variability in mean alpha
plant diversity and dryness following permafrost melt and initial peatland
development is followed by reduced variability as surfaces converge on S.
fuscum-dominated vegetation. The eventual establishment of trees in internal
lawns will re-introduce associated microhabitat conditions and likely increase

moss diversity towards bog values (Table 3-2).

3.4.4 Landscape implications

The mean alpha diversity of frost mounds and internal lawns are lower
than or equivalent to that of the bog matrix that surrounds them. However, the
total number of species increases by 49% when additional species present in
frost mounds and internal [awns are added to the list of species found only in the
bog surveys (Table 3-2). Vitt ef al. (1995) summarized bryophyte gamma
diversity by peatland type and noted that bryophyte species richness is 19%
higher in peat plateaus (with collapse scars) than in bogs. The total bryophyte
gamma diversity of the three localized permafrost bogs surveyed in this study (54
species) is more comparable to diversity in peat plateaus (44 species; Vitt et al.
1995) than continental bogs (38 species, this study; 37 species Vitt et al. 1995).
Permafrost dynamics, whether they result in frost mounds and/or internal lawns
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or peat plateaus with collapse scars, increase species diversity in similar ways,
by the creation of habitat conditions absent from bogs. The bryophyte gamma
diversity of localized permafrost bogs is as high as pooled gamma diversity from
both continental bogs and peat plateaus, and second only to extreme-rich fens in
western Canada (Vitt ef al. 1995). Thus, localized permafrost bogs are
previously undescribed centres of bryophyte diversity in the mosaic of peatland

types in the expansive peatlands of western Canada.
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Table 3-1. Climate and physiography of three localized permafrost bogs studied.
Landform areas were calculated from mapped and digitized small scale aerial
photography taken between 1987 and 1995 in Arc/Info. Climate data is taken
from 1951-1980 climate normals (Environment Canada 1982) from the nearest
permanent climate station to each peatland except for mean annual temperature
at Patuanak, that follows interpolated mean annual temperatures corrected for
elevation from Vitt ef al. (1994), due to lack of temperature data in the climate
normals.

Anzac Patuanak Moose Lake
Bog, AB Bog, SK Beg, MB
Climate Mean annual temperature {C) -0.4 -1.0 -1.2
Mean annual precipitation (mm) 471.9 443.9 495.6
Peatland Bog form' flatbog plateau bog plateau bog
(islands) (islands)
Total bog area (knf) 6.97 1.33 4.07
Total frost mound and internal 0.1 0.09 0.17
lawn area (knt)
Extent of degradation (% by area) 60.3 65.5 53.2

Tafter Zoltai et al. (1988).
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Table 3-2. Summary of mean alpha (species richness) and beta diversity from
bog, frost mound, and internal lawn surveys, from three localized permafrost
bogs in continental western Canada.

Bog Frost Mound Internal All Beta
Lawn Landforms Diversity
Mean Alpha Total 226 156 221 20.2 3.66
Diversity
Vascular plant 8.3 54 9.8 7.9 2.54
Bryophytes 14.3 10.2 12.3 12.8 422
Sphagnum 4.1 11 5.9 3.8 2.93
Mosses 5.3 6.3 26 4.7 5.51
Hepatics 49 2.8 3.8 3.8 444
Total Species All species 49 45 56 73

Richness
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Fig. 3-1. Continental western Canada (Alberta, Saskatchewan, and Manitoba)
with the outline of the localized permafrost peatland region and location of study
sites; Anzac, AB (square), Patuanak, SK (circle), and Moose Lake, MB (triangle).
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Fig. 3-2. Aerial photograph of the Moose Lake, MB localized permafrost bog.
Treed frost mounds (f) and internal lawns (i) occur within the continental bog (b)
matrix.
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transformed cover data.
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Fig. 3-8. Patterns of mean alpha diversity and microrelief among vegetation
groups from 150 internal lawn quadrats, shown in increasing order of height
above water table. Error bars show standard deviations. The Sphagnum
Jensenii group has only one quadrat. Non-significant (n.s.) and significant (* - P
<.05) results following Kruskal-Wallis H tests are indicated.
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CHAPTER 4:
BOG DEVELOPMENT AFTER LOCALIZED PERMAFROST DEGRADATION
IN BOREAL WESTERN CANADA

4.1 INTRODUCTION

Peatland development has proceeded in western Canada through the
Holocene under the influence of a changing climate. In continental western
Canada (Alberta, Saskatchewan, and Manitoba) peatlands began forming about
9000 years BP, and reached their present southern limit by 2000 years BP
(Haisey ef al. 1998). Peatland development reconstructed via pollen and
macrofossil histories and radiocarbon dating has been well studied in this region
(Vitt and Kuhry 1992). Allogenic factors, especially climate, local physiography,
and soils (Halsey et al. 1997) and such autogenic factors as peat accumulation
and acidification by Sphagnum (Kuhry et al. 1993; Nicholson and Vitt 1990) have
been shown to affect peatland development. Currently, peatlands form a major
part of the western Canadian boreal and subarctic landscape, covering 21% of

continental western Canada (Vitt et al. 1998).

Within the Discontinuous Permafrost Zone, permafrost is most common in
peatlands (Brown 1968). Permafrost distributions have been dynamic through
the Holocene, and Zoitai (1995) suggested that much of the Discontinuous Zone
was displaced north of its present position at 6000 years BP, and that southern
expansion of permafrost in peatlands followed boreal and subarctic peatland
expansion. Presently, permafrost landforms in peatlands vary in size, and can
be classified as either peat plateaus (spatially extensive peatlands completely
underlain by frozen ground) or as isolated frost mounds in mostly unfrozen
peatland (Brown 1968) that | call localized permafrost peatland. Localized
permafrost occurs in the south of the Discontinuous Zone, and is the
southernmost permafrost landform type in peatlands (Chapter 2). Permafrost in
peatlands is melting across continental western Canada, creating collapse scars
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in peat plateaus and internal lawns in localized permafrost peatiands (Vitt et al.
1994).

The influence of permafrost on peatland development has been described
in a few papers, although little is known about its effect on localized permafrost
peatlands. Most paleoecological studies have concentrated on Holocene
permafrost aggradation (Lavoie and Payette 1995; Kuhry 1998) and dynamics in
peat plateaus and collapse scars (Zoltai 1993; Camill 1999). Using plant
macrofossil evidence in near-surface collapse scar peat, Zoltai (1993) showed
that several cycles of permafrost melt and redevelopment have occurred over the
last 2,000 years in northwestern Alberta. Peat accumulation and community
change proceed quickly in collapse scars, from wet communities to dry
communities able to support trees in less than 100 years (Camill 1999). Plant
community changes in internal lawns resulting from localized permafrost collapse
have not been investigated in detail in western Canada, with only two internal
lawns briefly described by Vitt et al. (1994).

Bog development following localized permafrost degradation is strongly
influenced by peat accumulation in an oligotrophic environment. Modern
vegetation and environmental conditions of internal lawns in bogs range from dry
Sphagnum fuscum hummocky surfaces with stunted black spruce, to very wet
treeless S. ripanium carpets. Modern variability in internal lawn vegetation can be
attributable to either asynchrony of degradation events (wetter sites are younger)
or to differences in the magnitude of collapse disturbance. My objective in this
chapter is to investigate the latter explanation, and describe plant community
histories following localized permafrost collapse in ombrogenous peatlands.
Specifically, | address the question: are all internal [awn developmental histories
the same (i.e. does localized permafrost always result in collapse to below the
water table, followed by unidirectional succession of species to Sphagnum

fuscum hummocky communities)?
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4.1.1 Study Sites

To capture variability at the regional level, three peatlands were seiected
for study within the distribution of localized permafrost bogs in western Canada.
Localized permafrost bogs were named after their nearest map locality and
included Anzac bog, AB, Patuanak bog, SK and Moose Lake bog, MB (Figure 4-
1). Sites were selected from aerial photographs of the region to have distinct
localized permafrost landforms (treed frost mounds and internal lawns),
reasonable accessibility, and to span the geographic range of localized
permafrost bogs. Sites are located near the southern limit of permafrost. Both

localized frost mounds and internal lawns occur in the study peatlands (Table 4-

1.
4.2 METHODS

4.2.1 Field sampling

To fully explore the variability in peatland development within internal
lawns, between internal lawns from the same peatland and between internal
lawns from different peatlands, three internal lawns from each peatland were
randomly chosen from the total accessible population of internal lawns. A single
peat core was extracted from two locations in each lawn, selected to capture the
range of the internal lawn’s developmental history. Coring locations were chosen
based on the height of the surface relative to the water table and the composition
of the surface vegetation, with one core taken from the wettest area and the
other from the driest area of the internal lawn. Care was taken to avoid the
edges of the feature where permafrost conditions were marginal. Cores were
extracted using a stainless steei 7cm x 7cm x 1m box sampler (Fig. 4-2) modified
from Jeglum et al. (1994). Cores were subsectioned in the field into 10 cm
lengths, packaged into 1 m sections of plastic eavestroughing, and wrapped in
plastic film for transport. Sylvic peat consisting of dark, well humified organic
material including spruce macrofossils (needles, wood, bark, twigs) was present
in each core extracted. This sylvic peat represents vegetation and environmental



69

conditions from the pre-existing frost mound surface, and its presence ensured
that the complete post-degradation history was captured in each core. In the

laboratory, cores were kept frozen until processed.

4.2.2 Peat core analyses

Beginning with the sylvic layer, peat cores were sampled every 10 cm or
at major changes in the peat stratigraphy, through to the near surface peat.
Samples were extracted semi-frozen with a #12 brass cork borer (inner diameter
= 1.77 cm), and cut into 3 cm® and 5 cm® subsamples for macrofossil and

physical analyses, respectively.

Macrofossil subsamples were screened using two sieve sizes; 500 pm to
separate large material and intact bryophyte branches from smaller material and
leaves, and 150 um to separate small material from fine debris. Macrofossil
remains from the 500 pum screening were dispersed in distilled water on a petri
plate and identified using dissecting and compound microscopes. Assembiages
were verified by identifying a small grab of material (loose bryophyte leaves) from
the 150 pm screening. Species names follow Moss (1983) for vascuiar plants,
Ireland ef al. (1987) for mosses, and Stotler and Crandali-Stotler (1977) for
hepatics. Macrofossil abundance in each assemblage was estimated as relative
percent cover on the petri plate. Material captured on both screen densities
following sieving was air dried and weighed, and used to determine the degree of
decomposition (in this case the ‘intactness’ of plant remains) of the peat
subsample. This was calculated as the ratio of the weight of material from the
150 um and 500 um screens, and resuits in an index (that | call ‘150:500 sieve
ratio’ with possible values ranging from zero to infinity) where larger values
indicate more decomposition or separation of leaves from branches and stems.
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Subsamples for physical analyses were dried for 24 hours at 65°C and
weighed to determine bulk density. Oven-dried samples were then ashed at
550°C for 4 hours and re-weighed to determine the loss of organic matter on

ignition, expressed as gravimetric percent ash.

4.2.3 Data analysis

Assemblages were grouped and classified by agglomerative cluster
analysis using the Bray-Curtis dissimilarity measure linked by the UPGMA
method (Legendre and Legendre 1998). Assemblages from all cores were
compared and interpreted using muitivariate ordination (Gordon and Birks 1974;
Prentice 1980). Pathways of community change following permafrost melt were
illustrated by first ordinating all assemblages by correspondence analysis (Hill
1974). Successional vectors connecting assemblages in order for each core
were then superimposed onto the ordination space. Multivariate analyses were
implemented in PC-ORD (McCune and Mefford 1999).

The bryophyte component of each post-collapse macrofossil assemblage
was used to reconstruct the paleocenvironmental history of peatland surface
relative to water table for each core. Weighted averaging (ter Braak 1995) was
used to calculate species scores from a modern data set and an inferred height
above water table value for each assemblage. This technique has performed
well for lake pH reconstruction from fossil diatoms (Birks ef al. 1990) and has
also been applied to reconstruction of peatland pH and wetness histories from
fossil bryophytes (Janssens ef al. 1992; Kuhry et al. 1993). Species scores for
bryophytes in macrofossil assemblages were determined from quadrat and
relevé data with associated height above water table values from peatland sites
across continental western Canada, east of the Rocky Mountains from Gignac et
al. (1991). Species scores are provided in Table 4-2. Inferred surface wetness
values are accurate within the range of measurement in the original wetland data
set. Since localized treed frost mounds are elevated landforms that can have
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surfaces over 2 m above water table (Zoltai and Tarnocai 1971; Zoltai 1972),

values were not computed for sylvic assemblages.
4.3 RESULTS

4.3.1 Plant macrofossils
In total, 137 macrofossil assemblages were determined in the 18 cores

from the three study bogs (Appendix 3). Each assemblage was dominated by
one or two main components. A sylvic peat layer occurred between 34 and 85
cm depth in each core. The macrofossil components of the sylvic layer were
consistent with vascular and nonvascuiar vegetation of existing treed frost
mounds in each of the study peatlands (Chapter 3), including abundant Picea
needle, bark and twig litter, lichen remains, Pleurozium schreberi, Dicranum spp.
and unidentifiable organic debris. Sphagnum was lacking in most sylvic
assemblages, but when present always consisted of well humified S. fuscum in
association with abundant Picea macrofossils. Evidence of fire (charred
macrofossil remains) was encountered at the transition from sylvic to Sphagnum
peat in seven of the 18 cores, and was present in at least two of the six cores
from each peatland. Charcoal was never found in both cores from the same
feature, and in six of its seven occurrences was in the wet location core. Post-
collapse assemblages lacked sylvic components, were always dominated by
Sphagnum, and were very well preserved (lacked unidentifiable debris).
Drepanocladus fluitans was sometimes abundant in early post-coliapse
assemblages (up to 20% of macrofossil abundance) particularly at the Patuanak
site, and was missing from Moose Lake assemblages. Roots from ericaceous
shrubs and graminoids were common and sometimes dominated assemblages.
Root components are not a representative part of communities present when
peat was deposited (roots growing down from the surface into older peat). Since
my objective was to reconstruct changes in communities and environmental
conditions when peat was formed, ericaceous and gramineid roots were

excluded from multivariate analyses of macrofossil data.
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Post-degradation Sphagnum-dominated assemblage succession was
variable, both within and between internal lawns. Sphagnum species can persist
through the entire macrofossil record (S. magellanicum, Fig. 4-3A), or succeed
each other over short distances (Fig. 3B) in cores taken from the same internal
lawn. Cluster analysis of macrofossil abundances obtained from all core
subsamples provided division of assemblages (the seven most distinct clusters)
that were named for their dominant components (Fig. 4-4). These macrofossil
assemblage groups are summarized for all cores by their depth in Figure 4-5.
Ordination by CA separated Sphagnum-dominated assemblages well along the
first axis (eigenvalue = 0.82; Fig. 4-6). Axis 2 generally separated sylvic from
Sphagnum-dominated assemblages (eigenvalue = 0.73).

Successional vectors superimposed on the CA ordination diagrams
illustrate that peatland development does not always follow the same sequence
following frost mound collapse. Aithough pathways generally follow a similar
trajectory eventually leading to drier communities (after peat accumulation and
compaction), initial communities following colonization and establishment after
melt can differ (Fig. 4-7). General patterns are evident in these diagrams. Sylvic
peat assemblages deposited on the pre-existing treed frost mounds were most
distinct (as shown by their position on the diagram) in the Anzac and Patuanak
cores. Moose Lake sylvic assemblages were less distinct and sometimes
clustered with S. fuscum assemblages due to their greater Sphagnum
component, although strongly sylvic assemblages were also present at this site
(Moose Lake internal lawn 3). There is a great deal of variability within internal
lawns. Bog development can follow similar sequences in both wet and dry
locations, as shown in the cores from Anzac internal lawn 3. However, different
areas of the same internal lawn can have differing initial communities following
collapse (Anzac internal lawn 1). Internal lawns from both Anzac and Patuanak
included coliapse to S. riparium communities, while the Moose Lake internatl lawn
cores did not include S. riparium dominated communities (although it was
present). Succession from S. riparium to S. fuscum communities occurred more
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frequently at Anzac, whereas S. npanum communities remained dominant

throughout the wet location core histories from Patuanak.

4.3.2 Quantitative reconstruction of water table

Height above water table reconstruction indicates that different localized
permafrost landforms collapse to different levels relative to water table (Fig. 4-8).
Variability within individual internal lawns was also evident, as cores from the
same internal lawn had different wetness histories. Permafrost collapse can
create very wet conditions in localized permafrost bogs, and the lowest

reconstructed values were about 1 cm above water table.

4.3.3 Physical peat characteristics

The three assemblages that were dominated by Cyperaceae leaves are
subsamples that likely captured the base of Enophorum vaginatum tussocks from
permafrost mounds (when they included sylvic components) or internal lawns
(when they included Sphagnum components), and have been excluded from this
section. Percent ash and bulk density of peat were high in the sylvic permafrost
layers (Fig. 4-3; Fig. 4-9), compared to lower values for Sphagnum-dominated
peat layers. The weight ratio of plant remains captured by the 150 and 500 pm
sieves was high for sylvic peat and indicates a high degree of humification. The
Sphagnum groups show increased intactness with increased mean height above
water table values for dominant components (S. riparium - S. fuscum series) that
is associated with depth and age in internal lawn cores (S. riparium often the
older plants in the peat, deposited during wetter newly collapsed periods).
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4.4 DISCUSSION

Western Canadian bogs that have not been affected by permafrost have
comparatively simple bryofioras, with about half as many species as fens (Vitt et
al. 1995a). Regionally across western Canada, Sphagnum species distributions
across all peatland types are limited mostly by water chemistry and climatic
gradients (Gignac and Vitt 1990). However, continental bogs are much less
variable than geogenous peatlands in their water chemistry (Vitt ef al. 1995b),
and Belland and Vitt (1995) found that the main limiting gradients in continental
western Canadian ombrogenous peatlands were dryness, shade and pH.
Internal lawns throughout our study sites show little variability in pH (mean = s.d.
=4.03 = 0.13, n = 45) relative to the range of conditions seen across peatland
types in western Canada (bog = 3.96 = 0.07; extreme-rich fen = 6.88 + 0.30 (Vitt
et al. 1995b)). Shade has little influence on internal lawn community succession
as newly collapsed features drown Picea mariana populations that cannot re-
establish until drier conditions emerge following peat accumulation and
compaction. Even once conditions are dry enough to allow Picea to germinate
and establish, initial tree growth is likely suppressed on modern internal lawn
surfaces that are closer to the water table than bog surfaces (cf. Lieffers and
Rothwell 1986). The nine internal lawns cored in this study had very low P.
mariana cover (mean = 1.2 + 1.8%). Thus, internal lawn community succession
is most affected by surface dryness that changes with peat accumulation and

internal lawn age.

4.4.1 Plant macrofossils

The macrofossil groups identified by the cluster analysis in conjunction
with the CA ordination provide a readily interpretable diagram of plant community
change following permafrost melt (Fig. 4-6). The relative iocation of assemblage
points along the first CA axis follows the height above water table gradient in
Sphagnum-dominated internal lawns. Decreases in assemblage axis scores
(from positive to negative) represent species changes due to increases in surface
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dryness that occur as peat accumulates. The position of assemblages along this
axis also agrees with independent species scores from Table 4-2. Axis 2 can be
interpreted as a complex gradient that relates to both greater dryness and shade
towards the top of the diagram, and represents increasing influence of
permafrost conditions (with greater Picea, lichen, and feathermoss, and

Dicranum spp. components and exclusion of Sphagnum).

Macrofossils present in assemblages immediately above sylvic peat layers
show that newly collapsed frost mounds can have different initial communities
determined by variability in post-collapse environmental conditions. This
variability is evident within lawns (Fig. 4-3; Fig. 4-7), and indicates that different
parts of the same internal lawn can have different initial community types. The
longevity of assemblage types in the record also varies; in some cores
assemblage types succeeded each other quickly (Fig. 4-7 - Anzac internal lawn
1, dry location core), and other cores showed proionged periods of similar
macrofossil composition (Patuanak internal lawn 1 and 2, wet location cores).
The wet, treeless conditions that characterize internal lawns in boreal peatiands
can thus be of different extent and longevity, depending on the local conditions
created by permafrost melt. This variability is also evident in collapse scars in
peat plateaus, as Zoltai (1993) reported different Sphagnum assemblages in
different collapse scar periods from peat plateaus that show several permafrost

formation/melt cycles.

4.4.2 Quantitative reconstruction of water table

Reconstructed height above water table values indicate that localized
permafrost melting collapses surfaces to variable positions relative to the iocal
water table. These reconstructed wetness histories complement the resuits of
the CA diagram vectors, and support the major trends identified in the ordination
analysis. Although reconstructed wetness values were as low as 1 cm, ground
observations from the peatland sites indicate that recently collapsed surfaces can
be sunken below the water table, sometimes by more than 20 cm. The
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discrepancy between the reconstructions and ground observations is due to the
actual internal lawn conditions following melt being out of the range of conditions
from the calibration data set (minimum value = 0 cm). Reconstructed values
therefore represent maxima for height above water table, that accurately would
often be negative. Overall, reconstructed height above water table changes are
best interpreted as an index showing relative changes in internal lawn history,

rather than as accurate values.

Wet-adapted Sphagnum riparium/Drepanociadus fluitans communities can
persist throughout post-collapse cores (Patuanak cores 1 and 2, wet sites) and
shows that frost mound collapse can be substantial, and that carpet communities
and conditions can last for some time. In these situations, rapid Sphagnum
succession is likely postponed until surfaces emerge to heights closer to
individual species optima (Table 4-2). Height above water table reconstructions
of entire peatland histories in other studies show that the change from brown
moss dominance to Sphagnum is associated with large increases in surface
height above water table (Kuhry ef al. 1993; Janssens ef al. 1992; Nicholson and
Vitt 1990). The low, near water table values calculated from Sphagnum
assemblages here are closer to geogenous rich fen (brown moss) values in
these studies (and are often lower), though internal lawns retain the low pH
values consistent with bogs and acidic poor fens (Vitt ef al. 1995b). This
suggests that localized permafrost collapse in bogs create the wettest conditions
experienced in continental ombrogenous peatlands, and these physically
resembie carpet/pool habitats of oceanic bogs (Damman 1977; Gignac and Vitt
1990; Vitt et al. 1990).

4.4.3 Fire and localized permafrost melt

Fire is the principal cause of natural disturbance in the Canadian boreal
forest (Wein and MacLean 1983; Johnson 1992; Payette 1992), and has an
influence on peatland vegetation and development (Wein 1983; Kuhry 1993;
Zoltai et al. 1998). All three of my study sites show evidence of past fire in the
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form of charcoal macrofossils that, when present, were always located at the
boundary between sylvic frost mound peat and the overlying Sphagnum internal
lawn peat (Fig. 4-5). This suggests that permafrost degradation occurs when fire
burns the vegetation and surface peat of frost mounds in localized permafrost
bogs. Peat plateaus have been shown to resist degradation following fire (Thie
1974) or to redevelop permafrost in peat plateau — collapse scar cycles initiated
by fire (Zoltai 1993). Localized permafrost is more susceptible to degradation
after disturbance due to its southern distribution and the warmer climates in
which it occurs, and no evidence exists for its resistance to fire or its
redevelopment. Localized permafrost below surfaces that are burned likely
always degrades, and probably does not reform, in the south of its distribution.

Charcoal layers were never found in both cores from the same internal
lawn. Although this may be a shortcoming of the peat core sampling design, as
non-contiguous sample locations may have missed thinner charcoal layers, it
may also be explained by two historical scenarios. First, localized fire may have
initiated degradation that triggered subsequent melt of surrounding unburned
areas, resulting in collapse of the whole feature within a relatively short time. A
patchy fire pattern may be related to the fuel characteristics of the frost mound
vegetation. Areas with thicker frost lenses have taller, denser Picea cover (Zoltai
and Tarnocai 197 1) that may be more susceptible to fire than less dense areas of
the same frost mound. Once melt begins in the burned area it may continue due
to instability along the melting front that thins permafrost lenses and increases
wetness and thermal conductivities, that may spread thaw into unburned areas.
Although permafrost degradation can be halted by specific surface vegetation
and soil conditions in peat plateaus (Camill and Clarke 1998), localized
permafrost melt is likely difficult to stop in warmer climates. This scenario is
supported by the occurrence of six of seven charcoal layers in the wet location
cores. The larger amount of vertical collapse relative to the water table (the wet
location in the internal lawn) is caused by a lower vertical peat accumulation rate
on the frost mound relative to that of the surrounding bog, and is influenced by
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the same environmental conditions that increased tree growth. Loss of additional
peat depth due to the burning of surface peat also adds to the degree of
collapse. The second scenario involves two distinct permafrost degradation
events. An early period of slower melt may have occurred, resulting from thermal
disequilibrium with climate (though possibly initiated by a localized disturbance
such as tree throw). This was followed by a second period of rapid degradation
when fire burned the remaining frost mound and skipped the wet internal lawn
that was formed previously. All wet site cores had a consistently shallower or
equivalent depth sylvic peat layer compared to the dry site core in each of the
nine internal lawns studied. This suggests that wet coring sites may indeed
represent younger collapse than dry coring sites and supports the second
scenario. However, depth may not be a good direct surrogate for age in collapse
scars and internal lawns, as rates of peat accumulation are variable over the age
of these peat deposits (Camill 1999; Turetsky et al. 2000). Resolution of these
two scenarios could be accomplished by careful dating of collapse events by

21%pp or dendrochronological techniques.

4.4.4 Physical peat characteristics

Peat deposited on the pre-existing frost mound surface has very different
physical qualities than the Sphagnum post collapse peat. High bulk density
values in sylvic peat indicate a higher degree of decomposition in these dry non-
wetland environments. Likewise, the high ash content in these layers represents
the combined effects of increased humification as well as possible intrinsic
differences in the mineral content of the species (Tolonen 1984). Turetsky et al.
(2000) reported similar bulk density and ash values for localized frost mounds in
Alberta, and Camill (1999) showed similar values for peat plateaus in Manitoba.
The post-collapse Sphagnum-dominated assemblages had much lower values
for percent ash and bulk density than the sylvic assemblages, consistent with
near-surface Sphagnum deposits from across the region (Kuhry 1997; Kuhry et
al. 1992), other internal lawns (Turetsky et al. 2000), and coliapse scars (Camill

1999).
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Sphagnum assemblage groups have decreasing 150:500 sieve ratios that
correspond to the wetness gradient, where wet-adapted groups have larger sieve
ratios than the drier-adapted groups. This is largely due to time since collapse
relationships, as dry-adapted plants like S. fuscum occur later in the development
history and are therefore more intact than wet-adapted species that usually occur
immediately following collapse (have spent more time as peat). However, a
species-specific effect is also present, as leaves from species of Sphagnum
section Cuspidata (S. angustifolium, S. riparium, and S. jensenii), appear to
become separated from stems and branches more readily than more resilient
species from sections Acutifolia (S. fuscum and S. russowii) or Sphagnum (S.
magellanicum). The slightly higher value in the S. russowii dominated
assemblages is likely due to the inclusion of more section Cuspidata species
than the S. magellanicum and S. fuscum assemblages.

4.4.4 Conclusions

Localized permafrost has been degrading over the last 150 years in boreal
continental western Canada creating internal lawns in peatlands (Vitt ef al. 1994).
It has been argued that the current distribution of localized permafrost is in
disequilibrium with modern climate (Halsey ef al. 1995) and melt is continuing
across the region. Global temperatures are predicted to increase in the western
Canadian boreal forest (Boer et al. 2000). Recent estimates suggest that less
than half of the currently vulnerable permafrost has collapsed across the region,
and the area of climatically sensitive permafrost will increase with warmer
temperatures (Vitt et al. 2000). Future ecological changes resulting from
permafrost melt across the region will thus be affected by 1) increased rates of
permafrost melt (Thie 1974, Engelfield 1995; Camill and Clark 1998), 2)
increased area of vulnerable permafrost (Vitt ef al. 2000, Anisimov and Nelson
1997), and 3) the magnitude of disturbance caused by landform collapse as
shown in this paper. Specificaily, the macrofossil histories of the 18 peat cores
studied in this chapter have lead to the following conclusions:
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In the internal lawns studied here, peatiand development and Sphagnum
community succession proceeded along a similar trajectory from wet to dry
following localized permafrost melt, although initial communities and the

longevity of communities are variable.

Plant community succession is markedly variable at the local scale within
individual internal lawns, as well as variable regionally within and between

peatiands.

Localized permafrost landforms collapsed to variable positions relative to
peatland water tables producing different degrees of disturbance following
permafrost melt. Dry internal lawn surfaces on the present tandscape may

have started very wet or relatively dry.

Fire resuited in degradation of the permafrost that occurred below burned
surfaces in the localized permafrost bogs studied, while other surfaces

collapsed without a fire event.
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Tabie 4-1. Characteristics of the three localized permafrost bogs sampled. See
Table 3-1 for additional details.

Anzac Bog, Patuanak Moose Lake

AB Bog, SK Bog, MB
Location 56.47° N, 55.84° N, 55.08° N,
111.04°W 107.68°W  99.95° W
Climate = Mean annual temperature (°C) -0.4 -1.0 -1.2
Mean annual precipitation (mm) 471.9 4439 495.6
Peatland Total bog area (km?) 6.97 1.33 4.07

Extent of degradation (% by area) 60.3 65.5 53.2
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Table 4-2. Weighted mean height above water table (HAWT) scores for
abundant bryophytes found in macrofossil assemblages. Bryophyte species
scores were calculated from modern peatland vegetation sampled across
continental western Canada (see Gignac et al. 1991).

Species Weighted mean Standard deviation n
HAWT (cm) (cm)

Dicranum spp. 38 17.7 254
Drepanocladus fluitans 1 1.8 31
Mylia anomala 32 12.3 120
Pleurozium schreberi 38 14.6 208
Pohlia nutans 22 9.6 34
Polytrichum strictum 31 13.7 185
Sphagnum angustifolium 21 8.9 207
Sphagnum fuscum 36 12.6 239
Sphagnum jensenii 1 0.7 11
Sphagnum magellanicum 25 7.8 151
Sphagnum ripanium 1 6.2 22

Sphagnum russowii 23 10.2 13
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Fig. 4-1. Continental western Canada (Alberta, Saskatchewan, and Manitoba)
with the outline of the localized permafrost peatland region (Chapter 2) and
location of study sites; Anzac, AB (A), Patuanak, SK (P), and Moose Lake, MB
(M).
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Fig. 4-2. Box sampler core from Patuanak, SK. Light, well preserved Sphagnum
peat and dark, well humified sylvic peat are separated by a sharp collapse
boundary (white arrow).
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Fig. 4-3. Detailed macrofossil stratigraphy from two cores (W = wet site; D = dry
site) from internal lawn 1, Anzac, AB bog. Cores show different successional
histories within the same internal lawn. Bars indicate macrofossil abundance
(percent frequency). Plus signs (+) show macrofossil presence at less than one
percent abundance.
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Fig. 4-4. Bray-Curtis UPGMA cluster analysis and classification of 137
macrofossil assemblages. Assemblage groups are named for the dominant
species present. Ericaceous and sedge root macrofossil abundances were
excluded from the data before analysis.
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Fig. 4-5. Macrofossil assemblage groups and peat bulk density profiles for
internal lawn cores. Two cores were extracted from each of three internal lawns
in each of three peatlands (total 18 cores). Numbers above cores correspond to
individual internal lawns. Wet site cores (W) are to the left and dry site cores (D)
are to the right below each internal lawn number. The vertical dimension of peat
core samples (centred on its extracted depth) is greatly exaggerated for clearer
viewing. Bulk density values on the horizontal axis are in 30 mg/cm® increments.
The symbol ‘C’ shows the presence of charcoal in macrofossil assemblages.
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Fig. 4-7. Pathways of community change following permafrost degradation
drawn as successional vectors on the ordination diagram from Figure 4-6. Each
diagram shows the pathway from both cores from each internal lawn; black lines
represent cores taken from present wet locations of internal lawn surfaces, light
lines are cores taken from present dry locations. Symbols show cluster analysis
groups and follow Fig. 4-6.
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Fig. 4-8. Reconstructed past changes in surface height above water table
following permafrost collapse in 18 cores from three study sites across western
Canada. Only the post-collapse reconstructed values from macrofossil
assemblages (i.e. those above sylvic layers) are shown. Black lines represent
cores taken from present wet locations of internal lawns surfaces, light lines are
cores taken from present dry focations. Height above water table values along
the horizontal axis of each plot is shown in centimeters.
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CHAPTER &:
GENERAL DISCUSSION

5.1 Summary and synthesis

In the mosaic of upland forest and lowland peatland in the boreal and
subarctic regions of the northern Canadian prairie provinces, localized
permafrost peatlands cover 17,505 km? of land area, or 12.7% of the total!
peatland area in the region shown in Figure 2-1. The results of Chapter 2 are the
first that identify the landform gradient from localized permafrost to peat plateau
from directly mapped landform cover data, summarize their distribution in
regional maps, and explore the correlations between the gradient and
environmental variables of climate and landscape. Vitt ef al. (1994) showed that
localized permafrost bogs occur widely across each of the prairie provinces, and
that localized permafrost fens were less extensive in occurrence, found mostly in
Manitoba. Although the frequency of the occurrence of localized permafrost fens
is lower, Chapter 2 shows that they in fact cover a greater area than localized
permafrost bogs (Table 2-1). This was somewhat unexpected, as permafrost is
believed to have an affinity for the dry conditions of continental bogs. However,
when expressed as a proportion of total bog and fen area, a greater proportion of
the total bog area has localized permafrost landforms (38%) compared to the
proportion of total fen area that has localized permafrost landforms (9%). This
supports the idea that permafrost is most easily formed in ombrogencus
peatlands (also evident in the strong correlation between the proportion of bog
peatland with the permafrost landform gradient — Table 2-2), althoughn it also
shows that permafrost can form in areas that are dominated by fens. Local
factors also play a large role in permafrost formation, and isolated dry brown
moss hummocks in rich fens, or smail areas of dry, elevated (even possibly
ombrotrophic) Sphagnum areas in poor fens likely serve as important nucleation
points during initial aggradation.
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The importance of local factors is also supported by the canonical
discriminant analysis that related the permafrost landform gradient (the increased
southward dominance of localized permafrost peatland over peat plateau) to
climate and landscape variables. Though this analysis reinforces the strong
relationship between permafrost and climate that has been long documented in
the literature (Brown 1960) and the affinity for extensive permafrost formation
with increased bog area (mean annual temperature and the proportion of bog
peatiand were the two variables most strongly correlated with canonical axis 1
that best separated the permafrost classes), only 33% of the total variation was
explained by the regional variables (Table 2-2). To befter determine the factors
that control localized permafrost development in peatlands, the scale of
investigation should be larger. A higher resolution dataset that accounts for
variability in fandscape factors within the gridcell space used in this study (i.e. a
peatland-by-peatland analysis) would perhaps be more sensitive to these local
factors. However, it may also be that the present pattern of localized permafrost
development is under extra-local (centimeters - meters) control by conditions that
either existed in the past that cannot be measured (permafrost aggradation) or by
localized disturbance events such as fire or tree blow-downs (permafrost

degradation).

The study presented in Chapter 3 is the most thorough investigation of
localized permafrost bog plant communities completed to date. Changes in bog
plant communities due to permafrost aggradation and degradation are shown to
be substantial. Permafrost formation results in an elevation of bog surfaces
above the water table, the promotion of black spruce growth, and a change in
ground cover from Sphagnum-dominated to feathermoss- or lichen-dominated
over time. These plant community changes have created unique frost mound
features and environments in continental bogs that are more similar
vegetationally to upland black spruce stands. When permafrost melts, the frost
mound surface collapses often to below the water table. Trees are drowned in
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the process, wet-adapted sphagna come to dominate, and total plant diversity

increases back to bog values.

Vegetation studies of bags from across continental western Canada show
that undisturbed continental bog communities are relatively predictable in that
they are low in rare plants and mean alpha diversity in terms of both vascular
plants (Glaser 1992) and bryophytes (Vitt and Belland 1995; Vitt ef al. 1995).
Paleoecological studies of peatland macrofossil sequences show that continental
bogs can also persist for thousands of years on the landscape (Nicholson and
Vitt 1990; Kuhry et al. 1993; Kuhry 1997). Internal lawn vegetation change is in
contrast to the stability observed in bogs. Following degradation and surface
collapse, initial wet communities can be replaced in relatively rapid succession by
progressively drier Sphagnum-dominated communities. The initial communities
following permafrost degradation, as well as the duration of those communities
on the landscape are also variable, depending on wetness conditions in internal
lawns (Chapter 4). This creates greater plant community variability both spatially
and temporally in internal lawns compared to continental bogs. Modern internal
lawn vegetation and surface conditions are drier than was previously thought.
The high cover of Sphagnum fuscum in the internal lawn releves (two-thirds with
greater than 50% S. fuscum cover, and 63% mean cover in all internal lawns)
shows that the wet, treeless conditions that characterize localized permafrost
collapse are of relatively short duration. Drier conditions and communities

quickly succeed wetter communities as peat accumulates.

5.2 Considerations for future research

Although my field studies are the most extensive investigations of the
plant communities and development of localized permafrost bogs to date,
locaiized permafrost occurs in both bogs and fens in continental western Canada
(Vitt et al. 1994). Additionally, in Chapter 2 | demonstrated that localized
permafrost fens cover a larger area than localized permafrost bogs. Localized
permafrost aggradation likely leads to similar vegetation whether localized
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permafrost occurs in bogs or fens, due to the isolation of surfaces from the
surrounding peatland regardless of that peatland’s hydrological status.
Considerable similarity exists between the frost mound vegetation described in
Chapter 3 and that described from a frost mound located in a rich fen by Zoltai
and Tarnocai (1971), especially in the dominant ground layer cryptogams.
Localized permafrost degradation, however, creates internal lawns that are
strongly affected by the hydrology of the surrounding peatland matrix, and
internal lawns in localized permafrost fens are likely very different than that
shown here for localized permafrost bogs. In Chapter 3, | showed that species
occur in internal lawns that either do not occur or are rare in the surrcunding bog
matrix, due to the creation of wet, treeless, even weakly minerotrophic conditions
that do not otherwise exist in continental bogs. Unique microhabitats are
probably not created in fens to the degree they are in bogs following localized
permafrost melt, due to movement of minerotrophic surface waters through fens
and the presence of pool microhabitats in the surrounding fen matrix (regardless
of their position on the poor — rich fen gradient). Peatland development following
collapse is likely also different in fens, that would follow pathways of succession
similar to those that occur other wet microhabitats in the fen. Regardless,
degradation would still increase the amount of area covered by these wet
conditions. At this time, localized permafrost fens have not been studied
comprehensively. Given the extensive coverage of these peatlands in
continental western Canada (Chapter 2), the ecological impacts of localized
permafrost dynamics in fens need to be investigated to compliment the results in
this thesis to fully understand how the region has been affected, and how it will

change in the future.

The resuits from Chapter 2 show that the southern limit of permafrost has
shifted north in the recent past due to extensive degradation of localized
permafrost in peatlands. The timing of this permafrost degradation, however,
and the spatial patterning of degradation events at local and regional scales
remains largely unknown. Although some data exist for the age of collapse scar
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formation in peat plateaus (Camill and Clarke 1998; Engelfield 1994; Thie 1974),
these are limited to recent melt within the period that trees are still suitably
undecomposed for dendrochonological crossdating, or the period of available
aerial photographs. Dates for degradation of localized permafrost in boreal
peatlands are nearly nonexistent in western Canada, although dates of
compression woaod initiation in black spruce from internal lawns in bogs (four
trees) have been placed between 1893 and 1945 (Vitt ef al. 1994). Although the
descriptive evidence of the changes resulting from localized permafrost melt is
growing, the temporal aspect of these changes is largely missing from our
understanding of the response of boreal permafrost to climatic change. To better
understand the changes that are likely to occur within the region, we must learn
when past changes have taken place and the rate at which they have occurred.
The problem of determining the extent that permafrost degrades in direct
response to climatic change versus how much degrades in direct response to fire
also remains unresoclved. The dating of degradation events, together with
paleoecological information from peat cores, would allow us to better understand
when and why permafrost has melted in the past. This, in turn, would allow
better predictions of how peatland ecosystems will be affected in the future as

melt continues.
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APPENDIX 1:
Plant community data (raw abundances) from 89 landform relevés from three

localized permafrost bogs (anz = Anzac Bog, AB, pat = Patuanak Bog, SK, msl =
Moose Lake, MB; see Table 3-1) in continental western Canada. CB =
continental bog, FM = frost mound, IL = internal lawn. Plant community data are
reported as percent cover, where 0.2 = cover less than one percent, 0.01 = one
or two individual plants, 0.05 = species found outside the 5x5 m plot within a 25
m radius of the plot (see methods in Chapter 3).
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APPENDIX 2:

Plant community data (raw abundances) from 150 internal lawn quadrats from
three localized permafrost bogs (anz = Anzac Bog, AB, pat = Patuanak Bog, SK,
msl = Moose Lake Bog, MB; see Table 3-1) in continental western Canada.
Plant community data are reported as percent cover, where 0.2 = cover less than
one percent, and 0.01 = one or two individual plants (see methods in Chapter 3).
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APPENDIX 3:

Physical peat and macrofossil raw data from 18 internal lawn peat cores
extracted from three localized permafrost bogs (anz = Anzac, AB, pat =
Patuanak, SK, msl = Moose Lk, MB; see Table 3-1) in continental western
Canada. Physical peat and macrofossil analyses were conducted on separate
subsamples from each sample taken at the depth given in the data that follows
(see methods in Chapter 4). Macrofossil data are reported as percent
abundance, where 0.5 indicates abundance < 1%, and 0.01 indicates the
presence of that macrofossil component, but at very low abundance (single leaf,
small root segment, single Sphagnum branch, etc.).
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