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Abstract

The Modifiable Area Unit Problem (MAUP) has been discussed in the spatial analysis
literature since the 1930’s, but it is the recent surge in the availability of desktop computing
power and Geographical Information Systems software that have caused both a resurgence of in-
terest in the problem and a greater need to learn more about it. Many spatial datasets are col-
lected on a fine resolution (i.e. a large number of small spatial units) but, for the sake of privacy
and/or size concerns, are released only after being spatially aggregated to a coarser resolution (i.e.
a smaller number of larger spatial units). The chief example of this process is census data which
are collected from every household, but released only at the Enumeration Area or Census Tract
level of spatial resclution. When values are averaged over the process of aggregation, variability
in the dataset is lost and values of statistics computed at the different resolutions will be differ-
ent; this change is called the scale effect. One also gets different values of statistics depending
on how the spatial aggregation occurs; this variability is called the zoning effect. The purpose of
studying the MAUP is to try to estimate the true values of the statistics at the original level of
spatial resolution. Knowing these would allow researchers to attempt to make estimates of the

data values using either synthetic spatial data generators like the one described in this thesis or by

other techniques.



Many studies of the MAUP have been made using specific datasets and examining vari-
ous statistics, such as correlations. Although interesting properties have been documented, this
approach is uitimately unsatisfactory because researchers have had no control over the various
properties of the datasets, all of which could potentially affect the MAUP. This research has fo-
cused on the creation of a synthetic spatial dataset generator that can systematically vary means,
variances, correlations, spatial autocorrelations and spatial connectivity matrices of variables in
order to study their effects on univariate, bivariate, and multivariate statistics.

Even though the MAUP has traditionally been written off as an intractable problem, re-
sults from the various experiments described in this thesis indicate that there is a degree of regu-
larity in the behaviour of aggregated statistics that depends on the spatial autocorrelation and
configuration of the variable values. If the MAUP can be solved, however, it is clear that it will

likely be a complex procedure.
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1. Introduction

The Modifiable Area Unit Problem (MAUP), a term introduced by Openshaw and Tay-
lor’s (1979) classic paper, has long been recognized as a potentially troublesome feature of ag-
gregated data, such as census data. Aggregation of high resolution (i.e. a large number of small
areas) data to a lower resolution (i.e. a smaller number of larger areas) is an almost unavoidable
feature of large spatial datasets due to the requirements of privacy and/or data manageability.
When the original data are aggregated, the values for the various univariate, bivariate, and multi-
variate parameters will change because of the loss of information. This phenomenon is called the
scale effect. The M spatial units to which the higher-resolution data are aggregated, such as cen-
sus enumeration areas or tracts, postal code districts, or political divisions of various levels, are
arbitrarily created by some decision-making process and represent only one of an almost infinite
number of possible partitionings of the region M ways. Each partitioning will result in different
values for the aggregated statistics; this variation in values is known as the zoning effect. As will
be shown in the following chapters, the statistic values form distributions that are normal or
nearly so. The two effects are not independent, because the lower-resolution spatial structure
may be built from contiguous higher-resolution units, such as census tracts from enumeration ar-
eas, and the resulting aggregate statistics will be different for each possible arrangement of the
high-resolution units.

This research is timely and necessary. The increasing availability of powerful microcom-
puters, workstations, and Geographical Information Systems (GIS) software suggests that under-
taking complex spatial analyses is no longer limited to those trained in the vagaries of spatial
data. Large numbers of users are blissfully unaware that aggregation effects may cause wide-
spread misuse of results. For example, Openshaw and Taylor (1979) demonstrate that the sign of
the correlation between two variables can change, depending on the spatial resolution of the data-
set that is used, which means that if the data were to be used to influence a decision in public
policy a serious error could be made. The stubborn refusal of this problem to be solved analyti-
cally, except for some carefully defined and unrealistic problems (Arbia, 1989) means that, for
the moment, the most useful information about the MAUP can only be gleaned through the use
of statistical simulations. Ironically, it is the same increase in computing power that makes the

extensive simulations performed for this research possible.



The purpose of this research is to shed some light on the behaviour of statistics that are
computed with aggregated data by using a set of systematic empirical experiments. It is hoped
that the results of these experiments will bring us one step closer to the ultimate goal of being
able to accurately estimate the true statistical relationships within datasets that, for reasons of
confidentiality, size, or other factors, are only available in aggregated form. Knowing the statis-
tic values would allow researchers to attempt to make estimates of the data values using either
synthetic spatial data generators like the one described in this thesis or by other techniques. Until
Amrhein (1995), research into the MAUP has primarily consisted. of examining the effects of ag-
gregation on various statistics, usually correlations, computed from a single dataset. The primary

_ drawback to this method is that the researcher is unable to-vary the properties (such as means,
variances, covariances, and spatial autocorrelations) of the particular dataset, somewhat akin to
trying to determine the properties of a forest by studying a few trees here and there.

Amrhein’s (1995) study, described in more detail in the next chapter, represents an initial,
relatively simple, attempt to use synthetic data to study the. MAUP by aggregating points into
squares. My research required that I extend this process to the ability to control key parameters
like means, variances, correlations, and Moran Coefficients of spatial autocorrelation, as well as
the ability to generate connectivity matrices by subdividing a region with random Voronoi poly-
gons (Okabe et al., 1992). Systematically varying these parameters permits examination of their
influence on the MAUP, while creating synthetic datasets whose parameters are the same as
those of a real dataset allows the researcher to ensure that the results obtained are realistic.

The second chapter of this thesis presents a literature review that will helps to define its
context. The third chapter consists of a detailed description of the spatial dataset generator, the
aggregation model, and instructions on the interpretation of the diagrams. Chapter 4 explores the
effects of aggregation on the variance and the Moran Coefficient, and continues earlier efforts to
correlate the change in variance to a spatial statistic. Chapter 5 continues this research with
analysis of the bivariate statistics covariance, correlation, regression slopes, and the Moran Coef-
ficient of the regression residuals, comparing results to those found in Openshaw and Taylor
(1979). Chapter 6 presents the extension of the studies to multivariate regression parameters,
comparing the results to those of Fotheringham and Wong (1991). Finally, chapter 7 contains a

discussion and summary of the conclusions from the previous three chapters.



2. Literature Review

The Modifiable Area Unit Problem has been recognized in the literature since at least
Gehlke and Biehl’s (1935) work. Due to its inherent analytical intractability, it has been either
downplayed or ignored in various studies using spatial data and in textbooks on spatial analysis.
Only within the past 15 years or so with the advent of cheaper, faster, and more powerful com-
puters, has an in-depth examination of the behaviour of the MAUP become possible. The exten-
sive literature can be divided into two broad categories, empirical analyses and theoretical devel-
opments. [ have not tried to make this literature survey complete, since good survey papers
(Openshaw and Taylor, 1981; Dudley, 1991) exist already; rather it is intended to place my work

in context of the main body of MAUP research.

2.1. Univariate Statistics

The behaviour of univariate statistics such as mean, variance, and Moran Coefficient
(MC) under aggregation has received little attention in the literature, since it is inferences about
relations between two or more variables that is the focus of most research involving spatial data.
Spatial autocorrelation statistics, however, are often used to test for patterns in a satellite image
by landscape ecologists. As these patterns influence ecological processes, such as population dy-
namics, biogeochemical cycling, and aspects of biodiversity (Qi and Wu, 1996), it is useful to
know how the spatial scale of the analysis affects the spatial autocorrelation statistics. This is
problematic because the various satellites have different spatial resolutions. Qi and Wu (1996)
and Jelinski and Wu (1996) conclude that the Moran Coefficient, Geary Ratio, and Cliff-Ord sta-
tistic are scale dependent, showing an overall decline in spatial autocorrelation with scale, and
are also dependent on the zoning system used in the aggregation.

Amrhein and Reynolds (1996, 1997) present results based on census datasets from Lanca-
shire in England and from the Greater Toronto Area’s enumeration areas respectively. The aver-
age variance of the 8 Lancashire variables (all of which were averaged during aggregation) and
the 5 Toronto variables (the first three of which were summed and the last two averaged during
aggregation) is found to vary systematically with the change in scale. The change in variance is
also found to correlate well for all variables in both datasets with the G statistic (Getis and Ord,
1992), which was modified by dividing it by the global sum of squares of deviations of the ag-

3



gregated variable. The fit is not as good with the fifth variable of the Toronto dataset, which is
likely due to the presence of a large number of suppressed (zero) values of the EA average in-
come, but the overall results are good enough to indicate the potential of using a spatial statistic
to predict the effect of the MAUP on an aggregated dataset.

Amrhein (1995) is the first paper based solely on statistical simulation of the MAUP.
The experiments are based on 10 000 points located randomly within a unit square region, each
representing an individual. The x and y coordinates are generated first from a uniform distribu-
tion and then from a normal N(0,1) distribution. Each location is assigned two values represent-
ing observed variables, with the values again being drawn from first a uniform and then a normal
distribution, thus creating four combinations in total. To examine the scale effects, the points are
aggregated into 100, 49, and 9 square areal units, and to account for zoning effects, the process of
aggregating the 10 000 poiats into the 100 region grid is repeated for 100 independent sets, and
for 50 sets for the other two grids. Summary statistics for each aggregation are computed and
stored for comparison purposes with the original “population” statistics. It is found that the
weighted mean does not display any aggregation effects, which is to be expected since the aggre-
gate weighted mean is mathematically identical to the population mean. The variance is not
found to display scale effects beyond what could be expected from the decrease in observations,
though it is noted that scale-specific variance values cannot be imputed to other scaies without
adjusting for the change in number of units. Populations with higher variances tend to display
more pronounced zoning effects than those with a lower variance. The regression slope coeffi-
cient and the Pearson correlation coefficient both display scale effects that increase systemati-
cally with a decreasing number of zones. The standard deviation of the regression coefficient
displays pronounced zoning effects, to the point where it fails to provide useful information.
Sign changes of the regression coefficient are also noted. These results provided the starting

point for Steel and Holt’s (1996) theoretical results.

2.2. Bivariate and Multivariate Statistics

Gehlke and Biehl (1935) appears to be the first publication cited that describes an inter-
esting phenomenon, the tendency for correlation coefficients to increase as areal regions are ag-
gregated into fewer numbers of larger regions. When male juvenile delinquency was correlated

with median equivalent monthly rental, the correlation coefficient varied monotonically from-



0.502 for 252 census tracts to -0.763 for 25 regions; delinquency rates varied non-monotonicaily
from -0.516 to -0.621. Two other experiments were also performed that illustrated that the
method of grouping also affected the aggregated correlation.

Robinson (1950) examined correlations between race and illiteracy at the U.S. Census
Division (0.946), state (0.773) and individual (0.203) levels, and foreign birth and illiteracy at the
Census Division (-0.619), state (-0.526) and individual (0.118), but it should be noted that he
uses data that appear in contingency tables rather than the more usual x-y point data. He also de-
scribes a mathematical relationship between his “ecological’” correlations and individual correla-
tions and asserts (correctly) that one should not use conclusions derived from data at one level of
spatial resolution to units at another resolution (primarily individuals). A possible solution to the
contingency tables type problem is described in King (1997).

Clark and Avery (1976) looked at correlations derived from data collected from 1596
census tracts, and correlations from a survey of households, both from the Los Angeles area.
They found a systematic increase in the correlation coefficients (and systematic changes in other
bivariate statistics) as the number of aggregated units decreased, except for a slight decrease in
the fifth level of aggregation from the value at the fourth level. They also conclude that their re-
sults do not agree with a hypothesis by Blalock (1964) that changes in the slope coefficient are
explained by the reduction in variation of the independent or dependent variable, but instead
could be related directly to how covariation changes with aggregation, and independently on the
spatial autocorrelation of the micro- and macrolevel data.

Openshaw and Taylor (1979) are credited with introducing the term Modifiable Area Unit
Problem. They use a dataset of percentage voters for Republicans in the 1968 congressional
elections as a dependent variable and the percentage of population over sixty as recorded in the
1970 US census over the 99 counties of Iowa to examine the effect of the MAUP on bivariate
correlation coefficients. Ten thousand aggregations are performed at each of twelve different
spatial scales, ranging from six to 72 areal units, and the correlation coefficients are computed.
These aggregations are performed with two separate algorithms, one that requires spatial conti-
guity and one that does not. As illustrated by their Table 5.2, they find that the range of correla-
tion coefficients becomes broader as the number of zones decreases, to the point where all possi-

ble values for the coefficient are computed for the six and twelve zone groups, and even for the



48 zones in the non-contiguous aggregations the range is from -0.967 to 0.995. No relation is
found between the correlation coefficient and the relative loss of variation (original - aggregate
variance)/(original variance) of the independent variable, though there is a systematic trend in of
the loss of variation with scale. They also show that the interaction between spatial autocorrela-
tion and the contiguous zoning procedure directly affects the resulting statistics.

Fotheringham and Wong (1991) present the results of an analysis of the effects of aggre-
gation on linear regression and logit models constructed from an 871 block group census dataset
for the Buffalo Metropolitan Area. The models have four independent and one dependent vari-
ables, and all variables are proportions in which the numerator and denominator are aggregated
separately and divided after aggregation. This may have affected the results because each num-
ber is the combination of two others, both of which are likely affected differently by the MAUP.
A systematic variation of the parameters for both models with scale is found, with some becom-
ing more negative and others more positive as the scale (i.e. the number of zones) decreases. To
one degree or another, all show an increase in variation of values (and the standard errors of the
parameters) with the decrease in scale. In an attempt to link the changes to spatial autocorrela-
tion, the variation of the Moran Coefficient of the variables with aggregation is examined. Four
of the five have curves that are approximately normal in shape, with the highest values in the in-
termediate levels of aggregation. This differs significantly from my results as shown in Figure
4.2 and in Reynolds and Amrhein (1998a), and may be due to the nature of the proportion vari-
able that contains an implicit interaction between the spatial properties of two variables that are
summed during aggregation. The coefficient of determination R? is found to increase signifi-
cantly with the decrease in scale, which again differs from my results (Reynolds and Amrhein,
1996). Overall, Fotheringham and Wong are pessimistic about ever being able to deal with the
MAUP in muitivariate analysis. Again, my preliminary results indicate that this pessimism is

probably unfounded.

2.3. Theoretical Work

The theoretical side of the research is represented in this review by three papers. Steel
and Holt (1996) present a list of “rules” for random aggregation as a summary of their results,
based on the assumption that the groups are formed at random and that there is no association

between the variate values and group membership. They are listed as follows.



(1) The expectations of weighted group-levels statistics are not affected by aggrega-
tion. Thus any observed change, as we change boundaries or scale, is caused by
random variation.

(2) The variance of weighted group-levels statistics is determined mainly by the num-
ber of groups in the analysis. If the number of groups is small, this variation will
be high and the likely range will be so large that in many cases useful inferences
will not be possible.

(3) Valid confidence intervals and hypothesis tests can be obtained by means of
weighted group-level statistics. Even if the unit-level distribution is nonnormal,
the analysis of weighted group-level statistics can proceed with procedures associ-
ated with the normal distribution, provided that the sample size within groups is
not very small.

(4) Unweighted statistics have the same expectation as their weighted counterparts, but
larger variances. Unless the variation in group population sizes is small, standard
confidence intervals will have less than the required coverage.

Holt et al. (1996) propose statistical models whose purpose is to explain the aggregation
effect in populations composed of geographic groups. They conclude that the aggregation effects
depend upon the sample sizes upon which the area means are based, the number of areas used in
the analysis, and the strength of intra-area homogeneity on both variances and covariances for the
variables of interest. Auxiliary variables are introduced that explain much of the intra-area ho-
mogeneity, which leads to a decomposition of the aggregation bias into two components, one at-
tributed to a set of grouping variables and the other to a residual source of aggregation bias con-
ditional on the grouping variables. With some information about the individual level covariance
matrix of the grouping variables, it is believed that an adjustment can be made to eliminate the
first component of the aggregation bias.

Steel, Holt, and Tranmer (1996) use the same model as Holt et al. (1996), but present a
strategy for identifying adjustment variables for which an estimate of the unit-level covariance
matrix is available and that account for group effects. First, one must identify a set of variables
that covers the same subject area as the variables of interest, but for which both area level and
unit level data are available from the past, such as previous census data. Variables (such as
housing variables in their example) that are known to be strongly associated with areal differ-
ences can be added to this set, so long as estimates of both of the area and unit level covariance
matrices are available. A Canonical Grouping Variable analysis can then be carried out to iden-

tify the variables that load most strongly onto the most important CGVs. Finally, a set of ad-



justment variables from the CGV analysis that is available within the current dataset and for
which the unit level covariance matrix is available needs to be identified. These variables can
then be used to adjust the aggregate analysis for the variables of interest.

This brief survey of the extensive literature, as well as the more comprehensive surveys
by Dudley (1991) and Openshaw and Taylor (1981), indicate that little use has been made of nu-
merical simulations in the study of the MAUP, primarily due to the computationally intensive
nature of the simulations. The dataset generator and aggregation models described in Chapter 3

are a first step towards rectifying this deficiency.
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3. Technical Details

This chapter describes the spatial dataset generator, the aggregation model, and the output
diagrams in detail. It replaces technical descriptions that were present to varying degrees in the

three papers that form the next three chapters.

3.1. The Spatial Dataset Generator
3.1.1. Introduction

The need for a systematic study of the effects of the MAUP on summary statistics is clear.
The literature, some of which is discussed in the previous chapter, contains many case studies of
the effects of aggregation on various statistics using a single dataset for each study. Each set
comes with its own connectivity matrix and the variables have parameter values that are totally
out of the control of the researcher. A researcher reviewing the literature is likely to wonder if
the results found from dataset X will be replicatable tor dataset Y, even though the initial corre-
lations (for example) of the variables are completely different. Furthermore, many papers, such
as Clark and Avery (1976), discuss the possible effects of spatial autocorrelation on their results
in passing, but since they have no control over it, little more than speculation can be stated. To
date, there has been no attempt to systematically vary the dataset parameters in order to test their
effects on the aggregated statistics, and it is this deficiency that my research is redressing.

The method of generating synthetic spatial datasets discussed below is chosen because it
allows the user to create a set of variables with specific levels of spatial autocorrelation (as
measured by the Moran Coefficient) and Pearson correlations exactly and directly, as opposed to
other methods that take a set of existing values and rearranges them. Control over the spatial
autocorrelation of the variables is a requirement for my research, as it plays an important role in
the effect of spatial aggregation on statistics', while control over Pearson correlations was re-
quired for the bivariate and multivariate experiments. Other methods of generating spatial data,
such as the turning band method (see for example Bras and Rodriguez-Iturbe, 1985), work with
only one variable at a time and make the data fit to a particular type of variogram (Journel and

! A highly spatially autecorrelated variable will tend to suffer less from aggregation than one that is randomly or
negatively autocorrelated because the observations that are aggregated tend to be similar to one another. hence less
information (i.e. variability) is lost. Section 6.4 discusses this in more detail.
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Huijbregts, 1978, p. 12), but this is not satisfactory because it is advantageous for this research to
deal with a single number rather than a graph when attempting to describe spatial organization
and link it to the behaviour of statistics under aggregation, and it is not intuitive how to link a
variogram to a specific level of spatial autocorrelation. Using one of these methods also works
on only one variable at a time, making the specification of correlations between them difficult.

The Moran Coefficient (MC) is a convenient tool for measuring spatial autocorrelation in
discretized surfaces, and for the purposes of this research it is also convenient for generating
variables with specific levels of autocorrelation. It is, however, a first-order spatial statistic,
since it only deals with immediate neighbours to a cell, and this, among other things, means that
it is not unique. That is, many different spatial arrangements of a set of numbers can produce
similar or equal values of the MC. The data generation algorithm discussed below unfortunately
lacks the ability to select a desired type of spatial arrangement (or even a specific one). This
poses a minor problem, as the research shows that the arrangement of the values, especially for
higher levels of spatial autocorrelation, affects the behaviour of the MC and the various bivariate
statistics and interferes with the ability to draw highly general conclusions about their behaviour
under aggregation. As the conclusions drawn are no less valid for this lack of control, a more
systematic attempt to study the effects of spatial arrangement on the behaviour of moderately to
strongly autocorrelated variables under aggregation can be postponed as a topic for future re-
search. Since the generator is capable of producing a variety of spatial arrangements, it may be
possible to modify it in the future to control just which arrangement it produces. This weakness
does, unfortunately, make the dataset generator unhelpful in efforts to simulate real-world data-
sets, since it is very often the arrangement of the values that is as much of interest as the values
themselves.

Each synthetic variable created is a linear combination of eigenfunctions of the connec-
tivity matrix, making control of the resulting frequency distribution not possible with the current
algorithm. The distributions are mound-shaped and unimodal, but not necessarily normal (see
Figure 4.1 for examples). Certain combinations of MC and Pearson correlation are also found to
be incompatible, such as two variables with widely differing MCs but a high level of correlation.
This is reasonable because if the two variables were highly correlated then one would expect

their spatial arrangements to be similar, something which is not possible with widely differing
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MCs. The requirement that the covariance matrix be positive definite, which it must be by defi-
nition, makes it difficult to create a large number of combinations of MCs and negative correla-
tions. Finally, although it is theoretically possible to create spatial datasets of any size, the effort
required to compute and decompose MCsM (defined below) increases extremely rapidly with
size. These drawbacks and restrictions aside, the spatial dataset generator has proven to be a use-

ful tool for this preliminary empirical research into the effects of aggregation on statistics.

3.1.2. Some Symbols Used in the Derivation

The derivation of the method used to generated geo-referenced data uses the following symbols:

n = number of zones in a geo-referenced dataset

p = number of variables in a geo-referenced dataset

M = I-11"/n is a projection matrix commonly found in statistics and is used for the matrix

equivalent of sum of squares of deviations from the mean.

C = the binary spatial connectivity matrix of the region, where c;=1 if region i is next to region j,
otherwise c;j=0. Most of the experiments are performed using an irregular ten-sided convex
polygon illustrated in Figures 4.3 and 6.1 that is divided into 400 random Voronoi polygons.
Some experiments in Chapter 4 are performed on a square region of dimension 20.

1

~1'C1

Z,; = the covariance matrix of the intermediate variables V

Cs C, the scaled connectivity matrix, used in computing the Moran Coefficient

T, = the desired covariance matrix of the final variables X
V = matrix of intermediate variables v;

A = scaling matrix

X = matrix of variables with desired properties x;; X=VA.

3.1.3. The Dataset Generator

Their aspatial nature makes setting means, variances, covariances, and correlations of
variables to prespecified values a relatively simple task, as follows. Suppose a set of p variables
V, each with n observations, is postmultiplied by a pxp matrix A to form X = VA. It is easy to
show that the covariance matrix of X is £, = ATS;A. To solve for A, define T; = B'B and 3; =

D™D, i.e. find the Cholesky decompositions of the covariance matrices. It quickly follows that A
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=B'D. Changing a variable’s mean requires nothing more than adding (M>-J1;) to each observa-
tion, where [, is the current mean and i is the required mean. To change a single variable’s
variance, each observation must be multiplied by 6»/c|, where G, is the current standard devia-
tion and &> the desired one.
Unfortunately, the Moran Coefficient is not as readily bent to our will. Written in matrix
x TMC Mx
x'Mx

MC of a variable that is a linear combination of two or more other variables as a function of the

notation, its formula is MC(x) = . There is no simple general way to represent the

MCs of these variables. Suppose, however, that we compute the eigensystem of MCsM =
EAET, where E is the matrix of eigenvectors and A is a matrix with the diagonal elements equal

to the eigenvalues and the rest zero. Hence we can rewrite the formula for the Moran Coeffi-

. x'EAE"x :
cient: MC(x) = _—W (Tiefelsdorf and Boots, 1995; Griffith, 1996). Let x be one of the ei-

X

genvectors e;. By definition, the eigenvectors are all orthonormal, so that &;"EAE"e; reduces to A;
and e;"Me; reduces to one. Hence, the Moran Coefficient of an eigenvector of MCsM is just its
corresponding eigenvalue. Using similar arguments, it can be shown that the MC of a linear
a’\, + bzlj +cih, +---

. Thus,
a’+b+ct 4+

combination of eigenvectors y = ae; + be; +cex + ... is MC(y) =

the key to creating variables with specified Moran Coefficients lies in selecting appropriate linear

combinations of the eigenvectors of MCsM.

3.1.4. Worked Example

The detailed description of the method below includes a worked example for the set of

regions illustrated in the diagram on the next page. The desired values of statistics are:

Variable | Mean Variance Moran Coef Correlations
1 20 6 04 1.0 -06 04 -04 -0.8
2 20 6 0.2 -06 1.0 00 08 06
3 20 6 -0.2 04 00 10 -02 0.2
4 20 6 0.0 -04 08 -02 1.0 03
5 20 6 0.13 -0.8 06 02 03 1.0




The diagram of the region (a random Voronoi tessellation of Metro Toronto) is below.

1. Compute the eigensystem of MCsM.

Eigenvalues

14

Al As A3 Ay As As A7 Ag Ao

}"IO

-0.5263 -0.5263 -0.4649 -0.3942 -0.1166 0.0000 0.0540 0.0770 0.3796 0.5177

Eigenvectors

€1 € €3 €4 €s €6 €7 €3 €9

€10

-0.3271 0.4228 -0.1569 -0.4261 0.0060 -0.3162 0.0253 0.4405 -0.1371
-0.1319 -0.2147 -0.2663 0.1397 -0.5951 -0.3162 -0.2390 0.3868 0.0501
0.1319 0.2147 0.4576 0.3879 -0.4777 -03162 0.1249 -0.1477 0.2024
-0.5909 -0.0066 -0.2787 0.0991 0.1440 -0.3162 -0.1274 -0.5740 0.3109
0.0000 0.0000 0.6121 -0.3530 0.2670 -0.3162 -0.2223 0.1272 0.3747
-0.1319 -0.2147 0.1923 0.5045 0.4133 -0.3162 -0.2474 0.1864 -0.5183
0.3957 0.6441 -0.2047 0.0708 0.0851 -0.3162 -0.0564 -0.2378 -0.2468
0.3271 -0.4228 -0.0411 -0.4733 -0.1860 -0.3162 -0.2494 -0.3720 -0.3082
-0.1319 -0.2147 0.0802 -0.0959 0.0073 -0.3162 0.8442 -0.0478 -0.2096
0.4590 -0.2081 -0.3946 0.1463 0.3360 -0.3162 0.1474 0.2384 0.4819

0.4411
-0.4274
0.4125
0.0133
-0.3513
0.0983
-0.3921
0.2418
-0.2488
0.2126

2. One can create the covariance matrix X by placing the variance of e; on the diagonal of a pxp
matrix, where p is the number of variables. This can be done because the eigenvectors are all
uncorrelated, as well as orthonormal. We must do this step because we need to compute the

scaling matrix A so that the needed values of the MCs can be calculated in Step 4.

[ Diagonal of £; }0.1000 0.1000 0.1000 0.1000 0.1000 |
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3. Next one can create the scaling matrix A = B"'D, where B and D are the Cholesky decomposi-
tions of X; and Z, respectively.

7.746 -4.6476 3.0984 -3.0984 -6.1968
0 6.1968 23238 54222 1.1619

0 0 6.7082 -2.2361 4.2485
0 0 0 4 0.5000
0 0 0 0 1.3964

4. Compute the MCs that each variable v; must have in order for the equivalent x; to have the de-
sired MC. This must be done because muitiplying VA will change the MCs for all but the
first variable. The procedure is as follows. Recalling that X and A are composed of p vectors
of length n, write X = VA = (x'l ,xz,xs,x4) = (v(, Vy,V;3,V, )A . Using the upper-triangular

X, =a,v,
] ) X, =a,v,+anVv,
form of A to simplify, we get }
X; =ayV, +a5,V, tayv,

Xg =a,yVy +a,pVtagVytayv,

Since the v; are eigenvectors, the MCs of the x; are, using the relation previously defined,

M, =2,

M, = (a,zz}\., +a§27tz)l(a,z2 +a§2)

M, = (af;l, +akhA, +a§3k3)/(af3 +a3 +a})

M, = (a,ﬂk, +al A, +akh, +af_.l7\.4)l(a,14 +al, +al +ai4)

where M; is the Moran Coefficient for variable j, and A; is the MC which vj must have so that x;
will have the MC that is desired. Solving for A; gives: '

A, =M,

A, = .Mz(atzz +a§2)—af22.|]lazn

A .M3(a,23 +ak, +a§3)-(a,231[ +a§3l3)]/a§3

Ay = -M4(af4 +al, +al, +al, )—(a,ik, +alA, +a§4k3}]lai,

A, = szj:afj —iaélilla;}
L i=l

i=l

As can be seen, the required MC for variable j depends on the values of the MCs of the previous
variables. If a value exceeds the bounds A, £ MC £ A,, it means that the desired MC is not at-
tainable with the current configuration of correlations and MCs.

Variable 1 2 3 4 5
Required MC | 0.4000 0.0875 -0.3625 -0.2875 -0.5263
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5. Randomly select the eigenvalues A;; and A; that bracket each of the required MCs. Select the
value of b from a uniform random distribution and compute the required value of a using the

formula a’ = (%)bl (hence the need for the MC to be bracketed by the eigenvalues).
1
Lower Upper
eigenvalue Eigenvalue
Required MC } Index Value |Index Value a b
0.4000 7 00540 | 10 05177 | 0.2968 0.5088
0.0870 3 -04649| 9 03796 | 0.7037 0.9676
-0.3620 2 -05263| 5 -0.1166( 0.7974 0.6509
-0.2870 4 -03942| 8 00770 | 1.5589 0.8435
-0.5260 1 -05263] 1 -0.5263]-1.0000 0.8027

6. Create the variables v; using v; = aey; + bey;, where ej; is the eigenvector of the lower eigen-
value and ey; is that of the upper eigenvalue. Scale the v; so that their variances match the
variance of e;.

Zone \Z1 V2 \£) \7) Vs

1 0.3938 -0.2032 0.3313 -0.1651 -0.3271
2 -0.4896 -0.1161 -0.5427 0.3070 -0.1319
3 04192 04328 -0.1357 0.2708 0.1319
4 -0.0527 0.0875 0.0859 -0.1860 -0.5909
5 -0.4154 0.6631 0.1689 -0.2499 0.0000
6 -0.0397 -0.3061 0.0950 0.5324 -0.1319
7 -0.3672 -0.3200 0.5528 -0.0509 0.3957
8 0.0832 -0.2734 -0.4451 -0.5933 0.3271
9 0.2104 -0.1223 -0.1617 -0.1071 -0.1319
10 0.2579 0.1577 0.0513 0.2422 0.4590

7. Compute X = VA and shift the values of the x; so that their means equal the desired means.
This is done by adding the difference between the desired mean and the current mean to each
observation of x;.

Zone X1 X2 X3 X4 Xs

23.0506 16.9106 229705 16.2769 18.1917
16.2078 21.5560 14.5732 23.3288 20.5627
23.2474 20.7334 21.3941 22.4346 17.6478
19.5917 20.7871 20.6165 19.7014 19.8752
16.7820 26.0396 21.3864 23.5052 23.9373
19.6924 18.2880 19.8033 20.3804 20.3762
17.1560 19.7235 21.8268 17.9628 24.7789
20.6446 17.9192 16.6368 16.8820 17.4359
21.6296 18.2641 19.2829 18.6180 17.6295
21.9978 19.7785 21.5095 20.9099 19.5649

Suooo-.lc\uu-huw._
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3.2. The Aggregation Medel

Because nearly all spatial aggregations are performed by aggregating a number of con-
tiguous spatial units into one unit, the aggregation program does the same. An aggregation is
initiated by the random selection of M seed regions from the N regions of the spatial dataset,
which are copied into an array of “just aggregated” regions. In each pass of the routine, the
neighbours of all of the recently aggregated regions are examined. Any neighbour that borders
only one of the expanding cells automatically becomes a member of the new cell, while any
neighbour that borders more than one cell is assigned to that cell currently having the fewest re-
gions, in an attempt to keep the number of regions per cell as equal as possible. In either case,
the region is added to the “just aggregated™ region list for the next pass. Aggregation passes
continue until no more free regions remain. The assignment process for region j consists of set-
ting element j of an index array to the identifier of the seed region around which the cell is built.
The new connectivity matrix is built by looking at the neighbours of the regions within each cell.
The cell IDs of those neighbours that are outside the cell are added to the new neighbours list.
The new cells are then renumbered, the cell averages are computed, and the various statistics are
computed using these average values, and then are stored.

One “run” of the model consists of a set of eight independent aggregations, one to each of
40%, 35%, ..., 10% of the original number of cells. One *“experiment” consists of 1000 runs per-
formed on a given dataset. The 1000 values of each statistic for each level of aggregation are
processed to produce the mean, standard deviation, maximum and minimum values that are used
to plot the summary diagrams (see below). Each distribution is also tested for normality using

both the Kolmogorov-Smirnov and Shapiro-Wilk test statistics.

3.3. Interpretation of the Diagrams

Consider the sample diagram below, which is a replica of Figure 4.2a. All figures consist
of sets of eight lines, where each set is based on the results for a particular variable, or in the case
of the bivariate and multivariate experiments, a pair of variables. Each line in a set represents a
distribution of statistic values for a given aggregation level as indicated in the legend at the bot-
tom of the figure. Each line is marked with the extremes of the distribution (a symbol keyed to

the level of aggregation), the mean (a heavy dot), and the mean plus and minus one standard de-
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viation (small horizontal lines), included to give an idea of the shape of the distribution. The
standard deviation is chosen instead of the interquartile range that is used in the more standard
box plots because it requires less effort to compute, it encloses more values, and the diagrams are

also often so dense that a box plot would make them even harder to read.
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Each set of lines is labeled according to the nature of the experiment, either with the Mo-
ran Coefficient(s) of the variable(s), or initial correlation of the variables in some of the bivariate
experiments. This format is chosen because it allows a lot of information to be displayed com-
pactly yet legibly, an important feature given the very large volumes of numbers the model pro-
duces. It would not be feasible to use three-dimensional plots, as it would be difficult to plot all
of this information legibly, especially for comparing results over different levels of aggregation.

3.4. References
Bras, R. L., and I. Rodriguez-Iturbe, 1985. Random Functions and Hydrology. (Reading, Mass:
Addison-Wesley), pp. 310-314.

Griffith, D. A., 1996: Spatial autocorrelation and eigenfunctions of the geographic weights ma-
trix accompanying geo-referenced data. The Canadian Geographer, 40(4), 351-367.



19

Journel, A. G., and C. J. Huijbregts, 1978: Mining Geostatistics. (London: Academic Press)

Tiefelsdorf, M., and B. Boots, 1995: The exact distribution of Moran’s I. Env. and Planning A,
27, 985-999.



4. The Effect of Aggregation On Univariate Statistics’

4.1. Summary

The resistance of the Modifiable Area Unit Problem to analytical solution requires that it
be investigated by numerical and empirical studies that have the potential to lay the foundations
for analytical approaches. The use of synthetic spatial datasets, whose spatial autocorrelation,
mean, and variance of individual variables, and Pearson correlation between variables, can be
controlled greatly enhances the ability of the analyst to study the MAUP in this manner. This
chapter explores the effects of spatial aggregation on the variance and three univariate spatial
autocorrelation statistics using a synthetic 400-region dataset. The relationship between the rela-
tive change in variance and a modified version of the G statistic that was first proposed by
Amrhein and Reynolds (1996, 1997) is explored in more detail. These results compare favoura-
bly with results generated from the Lancashire dataset of Amrhein and Reynolds (1996).

4.2. Introduction

The Modifiable Area Unit Problem (MAUP) has been the focus of research interest for
many years, with the current resurgence in interest being initiated by Openshaw and Taylor
(1979) and fueled by the rapidly increasing computing power available to analysts. It is well
known that the application of statistical results derived from one level of spatial resolution to a
higher resolution (such as census tract data being used to predict individual household informa-
tion) can result in serious errors; this all too common error has been named the ecological fal-
lacy. An ancillary effect of the enhanced computing power is the proliferation of Geographical
Information Systems (GIS) and other spatial analysis tools. As the MAUP has been either ig-
nored or written off as intractable in many research results, it can be expected to get short shrift
by users of this software who are unaware of the subtleties of spatial data analysis. The impor-
tance of gaining an understanding of the MAUP and how it can be taken into account in GIS
software to reduce the numbers of flawed analyses and their possibly expensive repercussions

cannot be understated.

! This is a modified version of the paper Reynolds and Amrhein (1998): Using a spatial dataset generator in an em-
pricial analysis of aggregation effects on univariate statistics. Geog. and Env. Modelling, 1(2), 199-219.

20
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Theoretical work, such as that by Arbia (1989), has shown that an analytical solution is
possible, but under restrictive conditions that would seldom be found in real life situations. Asa
result, research into the MAUP has been primarily empirical, focusing on the effects of aggrega-
tion on various statistics computed from a specific dataset. For example, Openshaw and Taylor
(1979) examine correlation coefficients using an Iowa electoral dataset, Fotheringham and Wong
(1991) study multiple regression parameters using Buffalo census data, Amrhein and Reynolds
(1996), one of the papers in the special issue of Geographical Systems that focuses on the
MAUP, and Amrhein and Reynolds (1997) study the effects of aggregation on univariate statis-
tics and make a tentative link between a spatial statistic and the relative change in variance.
Recognition of spatial patterns is a fundamental requirement for landscape ecology, and various
spatial autocorrelation statistics, such as the Moran Coefficient, are often employed as a tool for
this task (Jelinski and Wu, 1996; Qi and Wu, 1996); hence it is important to know how spatial
statistics are affected by aggregation as well.

The use of synthetic spatial datasets overcomes the difficulties inherent in publicly avail-
able sets, with census data being the prime example. Possible errors in the data notwithstanding,
the greatest frustration for researchers into the MAUP is that one has no control over the values
of spatial autocorrelation, means, variances, or Pearson correlations between variables; one must
work with the data at hand. Amrhein (1995) is the first to use synthetic datasets in the study of
the MAUP by locating points randomly within a unit square, assigning them random values, im-
posing various sized square grids, and aggregating the points within each square. This chapter
extends this approach by employing more sophisticated synthetic datasets to explore the effects
of spatial aggregation on the weighted variance and on three commonly-used spatial autocorrela-
tion statistics, the Moran Coefficient, the Geary Ratio, and the Getis (G) statistic. The following

sections discuss the method of analysis, the results, and the conclusions.

4.3. Method

The dataset generator, aggregation algorithm, and method for interpretation of the dia-
grams are described in detail in Chapter 3. The frequency distributions of values tend to be

mound-shaped and unimodal, but are not usually normal (see Figure 4.1 for examples). The spa-
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tial connectivity matrix is created from either a rectangular grid or a tessellation of randomly-
generated Voronoi polygons, depending on the experiment.

Three spatial datasets of 400 Voronoi polygons and 8 variables are created using the data-
set generator. In order to test the effect of spatial autocorrelation on spatial aggregation, the first
two sets are created with variables that are mutually uncorrelated, have variances of 6.0 and
means of 20.0, and have Moran Coefficients of -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The
non-zero mean is required so that all values are greater than zero in order for the Getis statistic to
be valid, as well as to match most real datasets. To see if the variance of the variable affects the
aggregated values, another set is created with variables that are mutually uncorrelated and have
means of 20.0, but have the same Moran Coefficient values of 0.0 and variances of 5.0, 10.0,
20.0, 30.0, 40.0, 50.0, 60.0, and 70.0. The random aggregation model of Amrhein and Reynolds
(1996, 1997) and Reynolds and Amrhein (1998)% was run 1000 times on each dataset and the
relative change in variance, Moran Coefficient, Geary Ratio, and G statistic were saved for each
of 8 levels of aggregation. Also saved were the following non-standard statistics:

MC, =[—§-‘l][iicﬁ(xi -%)x; —i)] )
cdLi=t =

GR, =[‘;‘S"cl][22cij(xi -x, )z] @

i=l j=l

o[2]8 S o [ Sxn | [£E 6o ®

i=t =1 i=l j=i+l i={
where S¢ = ZZCH and m is the number of aggregate cells. MC, and GR, are just modified
i=t j=I

versions of the Moran Coefficient and Geary Ratio, while G is the G statistic (Getis and Ord,
1992; Ord and Getis, 1995) modified by dividing by the aggregate unweighted variance. These
statistics are computed as part of the testing of possible correlation between equation (3) and the
relative change in variance in Section 4.4. Equation (3) is slightly different from the modified G
used in Amrhein and Reynolds (1996, 1997), who divided by the sum of squares of deviations,

2 Described in detail in Chapter 3.
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rather than the variance. To test the effectiveness of the new dataset generator at simulating a
real dataset, the Lancashire dataset of Amrhein and Reynolds (1996) and a synthetic replication
were run through the aggregation model and the results are compared. It is impractical to attempt
to replicate large datasets such as the Toronto set of Amrhein and Reynolds (1997), since the
time and effort required to compute the eigensystem of a matrix with 5370 rows and columns is

enormous.

4.4. Results
4.4.1. The effects of aggregation on the variance

Figure 4.2a illustrates the aggregation behaviour of the relative change in variance

(RCV), (0': —Gfgg)/ o, where ¢? is the variance of the N regions, and

2

M
cl, = fil—z n,(x; —X)’ is the aggregated variance that is weighted by the number of regions n; in

i=l

the M aggregated cells. A value of RCV near one (as in the first group of lines in Figure 4.2a)
means that the aggregated weighted variance is much closer to zero than the original variance,
while a value near zero (as in the last group of lines in Figure 4.2a) means that the new variance
is very similar to the original. The diagrams are explained in detail in Section 3.3.

It can be shown that the variance of a spatially located variable can be partitioned into the
sum of variances within various sub-regions and the variance of the average values of all the
subregions (see Section 5.3 and Moellering and Tobler, 1973). The process of aggregation re-
moves the former, so the more spatially homogeneous (i.e. positively autocorrelated) a variable
is, the smaller the variance within each cell will be (on the average) and hence the less variance is
lost. As the number of aggregate cells decreases (i.e. fewer, larger regions), the loss in variance
obviously increases, since a greater number of values are being lost. Both of these patterns are
well demonstrated in Figure 4.2a. As the number of aggregate cells decreases, the number of re-
gions per cell increases on average, since the aggregation algorithm attempts to have similar
numbers of regions per cell, but does not strictly enforce this ideal. When significantly positively
autocorrelated variables are aggregated, increasing the number of regions per cell increases the
likelihood that more widely differing values will be included in each cell, so one would expect

the variability of possible aggregate variance values to increase with a decrease in the numbers of
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cells. With negatively or near-randomly autocorrelated variables, however, the tendency towards
the juxtaposition of widely differing values means that as the number of regions per cell in-
creases, the opportunity for variation in the aggregate variance values will tend to remain the
same or decrease. Both of these patterns are demonstrated in Figure 4.2a. When variables of the
same MC but different variances were aggregated, it was found that the variance of the original
variable had no discernible impact upon the distributions of the RCV (not shown). Only the spa-

tial organization of the variable plays a major role in the new variance.

4.4.2. The effects of aggregation on the Moran Coefficient

Explanation for the changes in spatial autocorrelation, as explained by the aggregated
Moran Coefficient, is more difficult. Figure 4.2b was created by running the model on the same
dataset as Figure 4.2a. Unfortunately, the nice clear pattern seen in the figure for variances is not
present here. There is an upward trend in the ranges as the MC increases for the first three and
last three variables, but the variables whose MCs are 0.2 and 0.4 behave very similarly to the one
with MC of -0.2. Clearly the behaviour of the MC is much more complex than the variance and
further exploration is required.

Figures 4.3a to 4.3d illustrate 16 variables, 8 on the irregular tessellation used in the other
experiments and 8 on a 20x20 square grid, each of which has a MC of 0.8. Each figure has four
variables illustrated at the top and their estimated variograms (Cressie, 1993, p. 69) below. The

variograms are isotropic (i.e. a function of distance only, not of direction) and computed using

the standard method of moments estimator 2¥(h) = (Z(si) - Z(s; ))2 (Cressie, 1993, p.

1
N(b) i)
69), where h is the Euclidean distance between the points si=(x;, yi) and s;=(x;, y;) and Z(s) is the
variable value at point s. Because the data locations are regions, their centroids are used for the

values of s. This formula states that the value of the variogram at a distance h (plotted as the x
2
coordinate of the diagram) is the sum of all the values of (Z(si )= Z(s )) where the Euclidean

distance between s; and s; is less than or equal to h divided by the number of pairs of points that
meet this criterion. The variogram “acts as a quantified summary of all the available [spatial]
structural information, which is then channeled into the various procedures of resource and re-

serve evaluation” (Journel and Huijbregts, 1978, p. 12).
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Figures 4.3a to 4.3d clearly show that variables with the same MC can have very different
spatial structures, although the possibilities decrease as the MC approaches the maximum al-
lowed by the spatial structure. The location of the maximum of the variogram can be used as a
crude approximation of the length scale of the spatial structure. Variables with a short length
scale, such as those in Figures 4.3a and 4.3b, also have variograms that oscillate about the as-
ymptotic value. The downward component of the oscillation occurs when the distances are great
enough to reach from one cluster to another similar one, allowing more differences between
similar values to be included in the sum, and the upward component occurs when the distances
allow more dissimilar pairs of values to be included in the sum.

Figures 4.4a and 4.4b illustrate the effect of the spatial arrangement on the aggregated
MC and RCYV respectively. Each set of lines has a label that corresponds to the respective vari-
able in Figures 4.3a to 4.3d, and the diagrams are divided into four sections to indicate in which
figure each variable is located. As expected, the behaviour of both of the statistics is related to
the arrangement of the values. As long as the aggregate cells are, on average, of a similar or
smaller size than the length scale of the variable, then similar values will tend to be aggregated
and hence the variance will not be greatly affected. With the aggregate cells having similar val-
ues to the unaggregated cells, similar values will still tend to be next to each other and so the
spatial autocorrelation will not be much affected either and in fact may even increase somewhat
(Figure 4.4a, Variables 11 to 15). As the number of cells decreases and size increases to reach
and exceed the length scale, then more and more dissimilar values will be included within an ag-
gregate cell and the loss in variance will be greater. Increasing variability of the values within
the aggregate cells makes it more likely that dissimilar values will be located next to each other
in the aggregated region, hence lowering the spatial autocorrelation, sometimes dramatically, cre-
ating a strongly negatively aggregated variable where it was strongly positive before. A more

detailed analysis of spatial pattern’s effect on aggregation will be a topic for future research.

4.4.3. Frequency distributions

As it is of interest, and potentially useful, to learn about the frequency distributions of the
aggregated statistics, the distribution of statistic values for each statistic at each level of aggrega-
tion is tested for normality using both the Kolmogorov-Smimov (K-S) and Shapiro-Wilk tests.
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In order to see if having more points is beneficial, the tests are conducted cumulatively on the
first 100 runs, the first 200 runs, and so on until all 1000 points are included. Tables la and 1b
(at the end of the chapter) present a summary of the K-S test results for selected statistics, aggre-
gation levels, and numbers of runs for variables with initial MCs of -0.4 and 1.0 respectively.
The second column lists the critical value of the K-S test; if the computed statistic is less than it
(for example, the RCV for 180 cells at 100 runs is 0.0431 and the corresponding critical value is
0.1360) then the frequency distribution is normal. All of the distributions are either normal or
close to normal, including the ones not shown. As a general rule, the distribution deviates more
from a bell-shaped curve as the number of aggregate cells decreases. As the number of runs in-
creases, the K-S statistics indicate a trend towards a less normal distribution, but this is probably
at least partly an artifact of the n"'? dependence of the critical value. This sort of problem is
common among simulation analyses in which one must decide the optimum number of experi-
ments based on an increase in accuracy due to more runs versus a shrinking confidence interval.
For the most part, the values of the K-S statistic decrease slightly or remain about the same with
increasing MC of the unaggregated variable, meaning that the values become more normally dis-
tributed. Curiously, the RCV of the 180 cell aggregation is a glaring exception to this observa-
tion; why this is so requires further investigation. Tables 4.2a and 4.2b on page 31 present se-
lected results for the Shapiro-Wilk tests for the same variables as above, and the values corrobo-

rate the conclusions drawn from the first two tables.

4.5. Correlating the change in variance with a spatial statistic

Amrhein and Reynolds (1996, 1997) and Reynolds and Amrhein (1998) have indicated
that a relationship could exist between the relative change in variance (RCV) and the aggregated
G statistic, defined as G by Equation (3), which is the classic G statistic (Getis and Ord, 1992)
modified by dividing it by the unweighted variance o2 of the aggregated values. The primary

challenge is to prove that this relationship is not simply due to the presence of similar terms on
both sides of the equation: the weighted variance in the numerator of the Relative Change in
Variance (RCV) and the unweighted variance in the denominator of the modified G.

Figure 4.5a illustrates the RCV as a function of the aggregated variable MC,, defined by
Equation (2), for the variable whose initial MC is -0.4, while Figure 4.5b illustrates that of RCV
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and the aggregated regular MC. Plots for the modified and regular Geary Ratio are very similar
and so are not shown. These plots and those of Figure 4.6 are created using the statistic values
from every tenth model run, and each level of aggregation has its own symbol. It is immediately
obvious that the inclusion of the sum of squares of deviations term turns a fairly strong non-
linear relationship into a very weak one. Figure 4.5 and the equivalent Geary Ratio plots serve as
a counterexample to the argument that the relationship between the modified G statistic and the
RCV is caused by the inclusion of this term.

Figure 4.6a shows the relationship between the RCV and log;o(G) for the variable with
MC of -0.4, while 4.6b illustrates that between RCV and logo(modified G). The logarithm is
required for clarity because the G and modified G values occur over two orders of magnitude. It
is clear that inclusion of the aggregated variance (with its sum of squares of deviations) creates a
very good non-linear relationship where there was none before. Note that the initial MCs of -0.4
are used in Figures 4.5 and 4.6 because they best illustrate the argument. With a little work it can
be shown that the Moran Coefficient and modified G statistic can be written in terms of the
Geary Ratio (for the former, see Griffith, 1987, p. 44), and it is this relationship, coupled with the
evidence in Figure 4.5, that suggests that the relationship between the RCV and the modified G
statistic is a real one, and not one created by the presence of similar terms on both sides of the
equation.

With the above conclusion reached, the points for all levels of aggregation and the vari-
ous MCs of the original variables were fitted, using least squares, to an equation of the form
RCV = A*G + B*log;o(G) +C*M +D*log,o(M+0) + E, where G is the aggregated modified G
statistic, M is the Moran Coefficient of the unaggregated variable, and o is a number large
enough to ensure that the logarithm is defined. In this case, 0=0.5 since the lowest MC used is
-0.4, but values in the 0.4 to 0.6 range produce fits with similar values of R%. The original MC is
included in this equation because of the obvious dependence of RCV on it that is displayed in
Figure 4.1a. Fits generated from various datasets with variables of varying MC consistently gen-
erated R-squared values in the 0.9 range and have very significant F-test results. Unfortunately,
initial attempts to exploit this relationship to predict the variance of an unaggregated variable

have not been successful, and work on this continues.
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4.6. Comparison of synthetic data to a real dataset

The use of synthetic spatial datasets to systematically examine the MAUP is essential, as
real datasets do not offer the flexibility of spatial and aspatial parameter control that can be de-
fined by an appropriate experimental design. In any sort of empirical experiment, one must be
able to identify any factors, such as the spatial autocorrelation and pattern, variance, and correla-
tion of the variables or the level of aggregation, that might have an impact on the results. After
these factors are identified, the experiments must be designed in such a way as to allow each
factor to be systematically varied over its feasible or practical range in order to judge its influence
on the outcome. When a single dataset is used, such as in Openshaw and Taylor (1979) to study
correlations, or in Fotheringham and Wong (1991) to study multivariate statistics, the researcher
is limited to whatever means, variances, correlations, MCs, and other properties that the variables
have. Conclusions that are drawn cannot be tested for the effects of a different MC or correlation
coefficient, resulting in what is effectively one tree in the forest of the behaviour of the MAUP.

It is important, however, to see how well the behaviour of a real dataset is mimicked by
that of a synthetic counterpart, i.e. a dataset created to have the same MCs, variances, correla-
tions, and means (so long as none of the synthetic variable values are negative). A good corre-
spondence will increase confidence in the validity of applying conclusions about the MAUP
based upon synthetic data to real world situations. Two weaknesses of this dataset generator be-
came apparent during the experimentation that led to this paper. The first, an inability to control
the frequency distribution of the values, often manifested itself in a need to shift the mean of a
variable so that the lowest value was zero, but was otherwise not of much consequence. The
second, an inability to control the spatial pattern of the values, poses a greater potential problem
to dataset simulation, as the behaviour of the spatial characteristics like MC depends on the spa-
tial arrangement (section 4.5.2) as well as the level of spatial autocorrelation inherent in it.

To this end, we employ the Lancashire dataset previously used in Amrhein and Reynolds
(1996). Figure 4.7 compares the behaviour of the RCV of all eight variables in this dataset to a
set of synthetic counterparts whose parameters match the originals. Generally speaking, there is
a good correspondence between the locations of the means of the distributions from the two data-
sets, though it can be seen that the values from the synthetic set generally occupy wider ranges.

This difference may be caused at least in part by differences between the spatial arrangements of
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the original and synthetic variable values (such as in Figure 4.9), and needs further investigation.
Figure 4.8 compares the behaviour under aggregation of the Moran Coefficients of the variables
in the two datasets. It can be seen that the last four variables of the sets behave similarly, while
the first four have often dramatic differences, the greatest of which occurs with the first variable,
MTDEP. Figure 4.9 compares the spatial distributions of the original and synthetic values of this
variable, with the distribution ranges divided up such that each encloses an equal number of the
304 wards to facilitate visual comparison. The dramatic differences between the two, which both
have an MC of 0.36, are more than likely to be the cause of the differences in the behaviour un-

der aggregation of their MCs, as is mentioned above.

4.7. Conclusions

The preceding experiments have demonstrated some interesting properties of statistics
that are computed from spatially aggregated data. They were made possible by the creative con-
trol over the synthetic data provided by the new generator. All statistics, even the complex spa-
tial ones, fall within well-defined distributions that are normal or nearly so, and whose parame-
ters (mean and standard deviation) are determined by the level of aggregation. The RCV shows a
strong dependence on the spatial autocorrelation of the original variable, as opposed to the spatial
statistics like the MC and Geary Ratio whose dependence on the original spatial autocorrelation
(as measured by the original MC) is unclear. The spatial arrangement of the data, especially for
high levels of MC, also plays an important role for both the aggregated MC and variance. None
of the statistics shows any discernible relationship with the variance of the unaggregated dataset,
however, indicating that it is the spatial distribution of the values, rather than the values them-
selves, that largely determine the behaviour of the dataset under spatial aggregation. The RCV is
also found to be highly correlated with a non-linear function of both the original MC and the
modified G statistic, having an R? value of the order of 0.9. It is argued that the strength of this
relationship is not due to the presence of similar terms on both sides of the equation (weighted
variance in the LHS and unweighted in the RHS) but is in fact genuine. This represents a small
step toward the ultimate goal of estimating the values of the various unaggregated statistics, but

more work is required in order to effectively exploit this relationship. Various attempts to use it
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to predict the original variance of an aggregated dataset have been unsuccessful, and research on
this problem continues.

The new spatial dataset generator provides more flexibility in the creation of datasets than
does the old one. The pair-swapping algorithm employed in the older generator does not allow
for the creation of variables whose spatial patterns are representative of the entire range of possi-
ble patterns, and also only allows the first row of desired correlations to be computed. Unfortu-
nately, it does not allow for control over the final spatial distribution of a variable, or the fre-
quency distribution of its values. While this does not appear to seriously affect the awility of
synthetic datasets to mimic the aspatial aggregation properties of their univariate statistics, the
behaviour of spatial statistics like the Moran Coefficient can be dramatically different between
the true variable and its synthetic counterpart due to differences in the spatial arrangements. It is
clear that the dataset generator is still in need of some refinements.

Among the most interesting and potentially useful results include the fact that aggregate
statistics, both spatial and non-spatial, form normal or near-normal sampling distributions whose
bounds are relatively small compared to the range of possible values of the statistics. This is a
strong indication that the results of aggregation are not chaotic, but behave in a well-defined
manner. The normality of the distributions is interesting because of the complexity of the proc-
esses involved, especially for the spatial statistics. Since most statistical theory is built around
assumptions of normally distributed data, a cynic would expect Murphy’s Law to act to make the
distributions something other than normal. Exploration of this feature is another topic for future
research. Programs to estimate the effect of the MAUP such as the ones used here have the po-
tential to be incorporated into routines in GIS software packages once sufficiently sophisticated
algorithms, backed by a more thorough knowledge of the theory behind what is going on, be-
come available. As this occurs, one of the most troublesome sources of error in the analysis of
spatially referenced data may finally be rendered tractable to even the most inexperienced GIS
users and the ultimate goal of being able to estimate the true statistical parameter values of a spa-

tially aggregated dataset may finally be achieved.



4.8. Tables

Table 4.1a: Selected K-S Test Statistics: Variable with Original MC of -0.4

Critical RCV Moran Coeff Geary Ratio Modified G

RUNS| K-S 180 40 180 40 180 40 180 40
200 | 0.0962 §0.0395 0.0807 | 0.0534 0.0508 | 0.0339 0.0405 | 0.0553 0.0673
400 |0.0680]0.0215 0.0920]0.0322 0.0471 | 0.0251 0.0372 |} 0.0393 0.0624
600 | 0.0555]0.0262 0.0770 | 0.0238 0.0446 | 0.0209 0.0305 | 0.0335 0.0624
800 | 0.0481§0.0249 0.0797 | 0.0138 0.0368 | 0.019 0.0288 | 0.0262 0.0655
1000 | 0.0430 §0.0266 0.0719 ] 0.0147 0.0375 | 0.0198 0.0246 | 0.0227 0.0728

Table 4.1b: Selected K-S Test Statistics: Variable with Original MC of 1.0

RUNS

Critical RCV

Moran Coeff

Geary Ratio

Modified G

K-S 180 40

180 40

180

40

180 40

200
400
600
800
1000

0.0363
0.0313
0.0263
0.0350
0.0292

0.0962
0.0680
0.0555
0.0481
0.0430

0.0473
0.0355
0.0345
0.0348
0.0304

0.0358 0.0324
0.0302 0.0196
0.0204 0.0211
0.0193 0.0182
0.0175 0.0187

0.0324
0.0323
0.0355
0.0278
0.0261

0.0453
0.0431
0.0329
0.0341

0.0336

0.0382 0.0426
0.0322 0.0347
0.0241 0.0399
0.0233 0.0410
0.0226 0.0353

Table 4.2a: Selected Shapiro-Wilk Statistics:

Variable with Original MC of -0.4

RCV

Moran Coeff

Geary Ratio

Modified G

RUNS

180 40

180 40

180 40

180 40

200
400
600
800
1000

0.9824 0.9445
0.9795 0.9115
0.9772 0.9239
0.9782 0.9275
0.9773 0.9295

0.9838 0.9663
0.9770 0.9673
0.9781 0.9737
0.9744 0.9768
0.9726 0.9754

0.9720 0.9572
0.9735 09518
0.9685 0.9624
0.9685 0.9662
0.9675 0.9664

0.9557 0.9530
0.9636 0.9447
0.9662 0.9347
0.9700 0.9349
0.9689 0.9137

Table 4.2b: Selected Shapiro-Wilk Statistics: Variable with Original MC of 1.0

RCV

Moran Coeff

Geary Ratio

Modified G

RUNS

180 40

180 40

180 40

180 40

200
400
600
800
1000

0.9658
0.9644 0.9679
0.9669 0.9707
0.9644 0.9702
0.9640 0.9691

0.9606

0.9621 0.9754
0.9669 0.9746
0.9720 0.9756
0.9723 0.9734
0.9746 0.9719

0.9728 0.9623
0.9683 0.9629
0.9651 0.9669
0.9670 0.9660
0.9680 0.9636

0.9515 0.9662
0.9614 0.9651
0.9669 0.9648
0.9701 0.9651
0.9697 0.9657
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4.10. Figures for Chapter 4
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Figure 4.1: Frequency distributions of three variables generated by the new synthetic dataset gen-
erator. The variables have Moran Coefficients of -0.4, -0.2, and 0.0 respectively. The
distributions are clearly mound-shaped, but are not normal.
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Figure 4.3a: Examples of variables with Moran Coefficients of 0.8 (top) and the variograms of
the variables (bottom). These variables all have a large number of small clusters of
high and low values, indicating short length scales and hence aggregation effects
will be noticeable even for relatively small aggregated zones.
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Figure 4.3b: Four more variables with MCs of 0.8 with length scales longer than those of Figure
3a. Note how the length scale is related to the number and positioning of clusters of

similar values.
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Figure 4.3c: Four more variables with MCs of 0.8, all with longer length scales. Note the lack of
oscillation of the variograms after the peaks, compared to those of the previous fig-

ures.



38

Variable 14

Variable 13

Variable 16

16

g
€
:
E
&
0 5 10 15 W 2'0 as
Distance
[-8=Variable 13 —e—Varisble 14 —&— Variable 15 ~@— Variable 16]
Figure 4.3d: The final four variables with MCs of 0.8, all with long length scales. On average,

aggregation effects manifest themselves more slowly for these variables than for
those with shorter length scales.
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Variation of the MCs of the variables in Figures 3a to 3d. It can be seen that the longer the length scale, the larger the
region must be before aggregation effects become severe and the slower the rate at which the aggregated MC decreases.

Each group of lines is labeled with the variable number; each set of four groups is labeled with the figure in which they
appear.
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Figure 4.5: Relative change in variance (RCV) as a function of the aggregated MC without the
sum of squares of deviations term (top) and of regular aggregated MC (bottom), for
variable with initial MC of -0.4. Note how adding the term significantly worsens the
relationship.



42

a) 1
0.95 + l g
o
[ ) o
09 + o ®
Q [
g oss | a
2 R
>
e a
g 08 + PY P
2 3 i
g
i 0.75 + a
‘ a
0.7 +
0.65 + ‘0
°
0.6 — -
2.4 =23 -2.2 -2.1 -2 -1.9 -1.3 -1.7 -1.6 -i.§ N
log(G)
NumbuorAurqntzCelkfo IR0 al60 o!d40 @120 Al00 w30 o060 ed10
b) !
095 +
09 t+

2

2

]
{

Relative Change in Variancy
o
L]

e
-
“

a7 1

a.65 +

0.6
-3 -2.5 2 -1.5 -1 -0.5 []
log(Modified C)

Numlmang;replcC:lls[olsD al60 Oi40 120 a100 mB0O ©60 ow!

Figure 4.6: Relative change in variance (RCV) as a function of log;o(G) (top) and log;o(modified
G) (bottom). Notice how, unlike Figure 5, adding the variance (sum of squares of
deviations divided by M, the number of cells) improves the relationship.



43

090 +

0.20 +

e
3 3
¢

Relptive Chang In Varlsgge
8

&
=]
—

0.30 +

0.20 +

0.10 + Vanable 1

L 4

Vanabie 2 Varrable 3 Vanable 4 Vanahle § Vanable 6 Vanable 7 Varnable 8

0.00 4

Number of Aggregaic Cells[—o—[37 —8~122 —4— 106 —¥=9] ~——16 —W—6| —@—46 —¢—30 —+—Sul Dcy —8—Mean |

b) 1.00

090 +

0.80 -1-

Il.gpln Chu;c in Vnrhgt

'S
o

e
-
a

0.20 t e

0.10 ¢+ Vamable |l

0.00 -

Vanable 2 Vanabhle 3 Vanablic 4 Varnable 5 Vanable 6 Vanable 7 Vanabic &

Nomber of Aggregate Cells[—am 137 —@— 122 —Wr— 106 —W—91 —=—76 ——6| —8—46 —o=— 30 ——S51d Dev ~0=Mcan |
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shire dataset (top) and a synthetic Lancashire dataset (bottom). Differences exist, but
the general patterns of behaviour are quite similar.
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Figure 4.8: Behaviour of the aggregated Moran Coefficients for the actual Lancashire dataset
(top) and a synthetic Lancashire dataset (bottom). The differences in behaviour are
most likely due to the different spatial configurations of the values, as shown in

Figure 4.9.
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Figure 4.9: Comparison of the original and synthetic variable

MTDERP in the Lancashire dataset.

45



5. The Effect of Aggregation on Bivariate Statistics

5.1. Summary

The synthetic spatial dataset generator described in Chapter 3 was used to seek a relation-
ship between the behaviour of aggregated bivariate statistics and the spatial autocorrelation of the
variables. It is found that a degree of dependence is visible, especially when their Moran Coeffi-
cients (MCs) are the same or when the initial correlation is zero. When the two variables have
different MCs, the use of spatial autocorrelation is insufficient to completely describe the be-
haviour of the statistics, especially that of the correlation and MC of regression residuals. Cor-
relation coefficients from a synthetic spatial dataset built on the Iowa connectivity matrix behave
in a similar manner to those derived from the data used in Openshaw and Taylor (1979), helping
to confirm the utility of the synthetic data generator as a tool for analysis of the MAUP. A nu-
merical measure of spatial pattern is recognized as a requirement for more precise measurement

of the MAUP as it affects the more complex univariate, bivariate, and multivariate statistics.

5.2. Introduction

The dependence of bivariate statistics, primarily correlation, on spatial resolution is what
initially drew researchers’ attention to what would be called the Modifiable Area Unit Problem
(MAUP) (for example, Gehlke and Biehl, 1934; Robinson, 1950). Studies using specific datasets
have appeared sporadically in the literature since then (e.g. Clark and Avery, 1976), but the
daunting computational requirements for even the most basic study meant that systematic studies
have been unfeasible until recently with the increasing availability of cheap, fast computers.
Furthermore, studying bivariate statistics is complicated because they depend on the behaviour of
two variables that are aggregated independently.

Openshaw and Taylor’s (1979) examination of the effects of spatial aggregation on cor-
relation coefficients has been widely recognized as the inspiration of an increasing body of re-
search (see the 1996 special issue of Geographical Systems). Reynolds and Amrhein (1998) and
Chapter 3 point out that the use of specific datasets greatly restricts the ability of researchers to
study the Modifiable Area Unit Problem because the various spatial and aspatial parameters of
the variables cannot be altered at will. The synthetic spatial dataset generator and random aggre-
gation model described in detail in Chapter 3 are employed here to extend the work of Reynolds
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and Amrhein (1998) to the bivariate statistics of covariance, correlation, regression slope pa-
rameters, and the Moran Coefficient of the regression residuals (MCgrgr). Results from the analy-
ses will be compared to results from Openshaw and Taylor (1979). The third section describes
the rationale and method behind the experiments, the fourth and fifth present the results of the
first and second experiments, the sixth section discusses the results, and the seventh presents

conclusions of the chapter.

5.3. Method

Reynolds and Amrhein (1998) clearly demonstrate that the relative change in variance,
defined on page 23, is clearly affected by both spatial autocorrelation and arrangement of the
unaggregated variable and the number of aggregate cells. A similar formula cannot be used to
express the change in covariance, unfortunately, because the covariance can be zero. Similar to
the variance, the unaggregated covariance can be written as the sum of the covariance between
the aggregated cells and the sum of weighted covariances within each cell as follows:

1 M o 1 M 1 M
ﬁg;,j:zl(xﬁ -, —y)?ﬁ; o, (x,. —=X)(y.. - 7)+-ﬁi§ n,Cov, (X, Y) (1)
where x;; and yj; are the observations of the “independent” and “dependent” variables in the j-th
region in the i-th cell, M is the number of aggregated cells, n; is the number of regions in cell i,

a; M n, M
iz X; is the aggregated value of X in cell j, i’z-;TZinj =§Znixi, is the overall
n; j=t i=l j=l i=l

X, =

mean, and Covi(X,Y) is the covariance of the variables X and Y within aggregate cell i. The
process of aggregation removes the weighted variances of variable X (and Y) within each aggre-
gate cell and it removes the weighted covariances between X and Y. Unlike the variance, which
is always positive, the covariance can be either positive or negative, so it is difficult to predict
whether the net change for a given aggregation will be positive or negative. Intuitively, knowing
the behaviour of variance, one would expect that covariance would tend to decrease in absolute
value with aggregation (except of course when it is initially zero) due to a decrease in the vari-
ability of both variables, with this tendency becoming more likely as the initial correlation be-

tween the variables increases.
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Studying the behaviour of the change in correlation, defined by r, = E@ , where
xJy

sj is the standard deviation of variable j, is complicated by the fact that the covariance and vari-
ances of X and Y are all independent, and so vary independently under aggregation (s and sy will
both decrease, but the covariance can either decrease or increase). Openshaw and Taylor (1979)
compare the aggregated correlation to the relative change in variance of the dependent variable,
which, although not incorrect, is not anywhere nearly enough to gain an understanding of how it
varies either due to spatial properties of the variables or to aspatial properties, such as the original
correlation between the variables. Since the behaviour of the variance (and hence standard de-
viation) is already known, the behaviour of the covariance needs to be examined along with that
of the correlation. To this end, the experiment is divided into two sections, the first in which
both X and Y have the same level of spatial autocorrelation, as measured by the MC, and the

second in which their MCs differ. The behaviour of the linear regression slope parameter

b, = Cov(X,Y) /s is also of interest, as it only depends on two independent, yet mathemati-
xy X pe

cally similar, factors. Finally, if the regression residuals are spatially autocorrelated, then the re-
quirement of independent residuals is violated and the validity of the linear regression analysis is
compromised because the sampling distributions of the parameters, and hence the probabilities of
Type I and Type II errors, are changed (Griffith, 1988, pp. 82-83). Cliff and Ord (1981, p. 191)
show that the least squares estimator of f§ has a variance that is higher when the residuals are
spatially autocorrelated, and Dutilleul (1993) and Clifford et al. (1989) note that spatial autocor-
relation in the variables requires a modified version of the t-test for the significance of the corre-
lation coefficient. It is therefore of interest to analyze the spatial behaviour of the residual under
aggregation to see if the process improves or worsens this problem.

The spatial dataset generator described in Reynolds and Amrhein (1998) (and in more
detail in Chapter 3) allows the creation of datasets with variables that have specified means, vari-
ances, Moran Coefficients (MC) of spatial autocorrelation, and also of the matrix of Pearson cor-
relations between the variables. The incompatibility of certain combinations of MC and correla-
tion and the requirement of positive definiteness of correlation matrices both act to hamper in-
vestigations of the behaviour of bivariate statistics, especially for negative correlations. The da-

tasets, generated on the irregular tessellation of 400 regions posited by Reynolds and Amrhein
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(1998) (and Chapter 4), attempt to observe the widest possible range of combinations of MCs
and correlations. The first experiment involves setting the MC of each of five variables to the
same value (ranging between -0.4 and 1.0) and having the correlations between them set to val-
ues between -0.8 and 0.8. The second experiment requires that as many correlations as possible
be fixed at a specific value while the MCs of the variables be varied within the limits imposed by
the desired covariance matrix. In both experiments, the variances of the variables are set to 6.0
and the means to 20.0 in order to have non-zero values to better simulate real data. Each dataset
is run through the random aggregation model of Reynolds and amrhein (1998) (described in de-
tail in Chapter 3) 1000 times, with the desired aggregated statistics computed and stored after
each run, and the overall distributions of the statistics tested for normality using the Kolmogorov-

Smirnov test.

5.4. Results for fixed Moran Coefficients, varying correlations

Figures 5.1, 5.2, and 5.3 illustrate the changes in covariance, correlation, and the upper
triangle of the regression slope parameters matrix, when both variables have the same MC and
different correlations, for MCs of a) -0.4 and b) +0.8. The lower triangle slopes behave in a
similar manner and are not shown. These figures are generated by running the model on a data-
set with five variables, and hence with a possibility of ten different correlations. Nine of the cor-
relations are labeled on the plots and range from -0.8 to 0.8; the tenth is set to a value that makes
the covariance matrix positive definite. Since this value is between -0.8 and 0.8, it is felt that
including its results would not be necessary for the analysis. As explained in Chapter 3, each
group of lines represents one statistic of interest, in this case a particular initial correlation, and
each line in a group represents the range of values of the aggregated statistic for a particular level
of aggregation. The heavy dot represents the mean of the distribution, and the tic marks above
and below it are one standard deviation away from it, to give an idea of the shape of the distribu-
tion. As it turns out, nearly all of the frequency distributions of all of the statistics generated by
these experiments are normal, according to the Kolmogorov-Smirnov test, and those that are not
too different from normal, so this will not be further discussed. One of the features of all three
figures is the symmetric behaviour of the statistics, which is not unexpected since greater organi-

zation is represented by values further away from zero in either direction.
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Figure 5.1 illustrates a clear trend towards zero covariance as the number of aggregated
cells decreases. Table 5.1 illustrates these observations numerically, with the top row being the
value of the MC of both variables, the next row being the original correlation, the third being the
original covariance values, and the entries being the mean values from 1000 runs of the aggrega-
tion model. Clearly the covariance tends to behave like the variance, at least when the MCs of X
and Y are the same, even though the weighted sum of internal covariances from Equation (1) can
be either positive or negative. The change in the concavity of a line formed by the heavy dots,
which are the means of the distributions in each group of lines, as the MC of the two variables
becomes more positive is also worthy of note, as it mimics that of the variance as shown in Fig-
ure 4.2. The range of values increases with decreasing number of aggregate cells for highly auto-
correlated variables, while the range decreases with decreasing number of cells for negatively
correlated variables, a pattern that shows up again in Figure 5.5a.

The table and figure show that more covariation is lost (in the sense that the covariance is
brought closer to zero) when the variables are negatively autocorrelated (about 96% between 400
regions and 40 cells) or weakly positively autocorrelated than when strongly autocorrelated
(about 58%), and these losses are approximately the same for all levels of initial correlation.
When X and Y are both strongly positively autocorrelated, the juxtaposition of similar values
means that the spatial arrangement of aggregated values will be similar to that of the unaggre-
gated values, and thus the change in covariance will not likely be as great as it will be for less
spatially organized variables. The covariance will tend to decrease (if initially non-zero) during
aggregation because the change in spatial arrangements of both variables is more likely to make
their association more random than it is to make it more related. When both variables are highly
autocorrelated, their covariance, like their individual variances, will tend to vary more as the
number of aggregate cells decreases because it becomes more likely that the larger cells will
contain greatly differing values and so increasing the (co)variance lost.

Figure 5.2 illustrates the aggregation effect on the correlation for pairs of variables with
the same MC, while Table 5.2 presents numerical values from selected original correlations,
whose values are the means of the 1000 runs of the aggregation model and are represented in the
figure by the heavy dots. In general, the means of the distributions remain close to the original

values of the correlation coefficients and do not change significantly with the level of aggrega-
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the range of values increases markedly as the MC decreases. As the number of aggregate celis
decreases, the mean correlation tends to decrease in magnitude when the variable MCs are posi-
tive, but tends to increase slightly as the MCs decrease. Since a change in correlation is the result
of a combination of decreases in magnitude of three factors, the standard deviations of X and Y
in the denominator and their covariance in the numerator, a net decrease is caused by the covari-
ance decreasing more than the standard deviations, while a net increase is caused by the standard
deviations decreasing more than the covariance. When X and Y are strongly positively autocor-
related, neither their individual variances nor the covariance between them are much affected by
aggregation, hence the correlation coefficients tend to not be greatly affected by aggregation ei-
ther. As the MCs of the variables decrease, X and Y become more likely to vary differently from
each other under aggregation because of the increasing tendency for dissimilar values to be lo-
cated next to each other, resulting in a greater variation of aggregated results.

Figure 5.3 shows the behaviour of the upper triangle of the matrix of regression slope pa-
rameters for the MCs of -0.4 and 0.8. It can be seen that these slope parameters, along with those
in the lower triangle (not shown), behave very similarly to the correlations, which is reasonable
since the two statistics have similar forms and since the denominator terms s,s, for correlation

and s’ for the regression slope both represent the products of two variables with the same MC.

Figure 5.4 shows the behaviour of the upper triangle of the matrix of Moran Coefficients
of the regression residuals (MCgrg) when the MCs of the variables are -0.4 and 0.8; those from
the lower triangle behave similarly and are not shown. Since the linear regression procedure ig-
nores the spatial locations of the variables, it is expected that the regression residuals should have
a similar level of spatial autocorrelation as the original variables when they both have the same
MC. As Chapter 4 shows, variables with the same MC will not necessarily have the same spatial
arrangement and hence their statistics will behave differently under aggregation, with the MC
itself being the most unpredictable. All of the plots show a tendency for the residuals to become
more randomly autocorrelated as the number of aggregated zones decreases, with this becoming
more defined as the MCs of the variables increase. This finding reflects the behaviour of the ag-
gregated MCs as discussed in Chapter 4. It can also be seen that the behaviour of the MCgp is
almost independent of the initial correlation of the two variables for these two MCs, although
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there is a slight downward trend with increasing correlation visible when the variables have in-

termediate values of the MC (not shown).

5.5. Results for fixed correlation, varying Moran Coefficients

When the MCs of X and Y are allowed to vary independently, the number of potential
combinations of MC and correlation increases dramatically. Some of them can be ruled out as
impossible to create, if not theoretically then at least with the dataset generator, these being sets
with variables that have high correlations and greatly differing MCs. This is not unreasonable,
since highly correlated variables need to have similar spatial arrangements and this is simply not
possible with variables that have very different spatial autocorrelations. Setting all of the corre-
lations to the same value and varying the MC can be done for any value of the correlation that
exceeds -0.2; for correlations less than -0.2 only the top row (and leftmost column from symme-
try) of the matrix were set to the desired value and the remainder were adjusted until the covari-
ance matrix became positive definite. Several different datasets are required for the larger cor-
relations (especially large negative ones) in order to examine as many combinations as possible,
which has the unfortunate effect of introducing pairs of variables with the same MCs and differ-
ent spatial arrangements, whose aggregated statistics behave differently from each other and
make it harder to derive general conclusions.

Interpretation of the results becomes more complex with this experiment as well. All of
the remaining diagrams are similar to Figures 5.1 to 5.4, except that the initial correlation of the
two variables is held constant while their respective MCs vary. Hence, the groups of lines are
labeled (MCx, MC,y), representing the Moran Coefficients of the independent and dependent vari-
ables. Figure 5.5 shows the behaviour of the covariance, correlation, upper triangle of the matrix
of regression slope parameters, and the upper triangle of the MCgg for an initial correlation of
0.0, for which only one data file was required to be generated. The first three statistics have ini-
tial values of zero and are equally likely to be positive or negative on aggregation, as the symme-
try of the diagrams confirms. The most interesting feature of Figure 5.5a is the transition from
the covariance increasing with decreasing number of aggregate cells for two highly autocorre-
lated variables (left hand group of lines) to it decreasing with decreasing number of cells for two
negatively autocorrelated variables. This can also be seen in Figures 5.1a and 5.1b for all the

initial correlations, and is explained in the previous section.
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Figure 5.5b shows that the range of aggregate correlations increases with decreasing
number of cells for all combinations of variable MCs. As the MC of either variable decreases,
the range of correlations for all levels of aggregation increases. Since the variability of the co-
variance does not appear to be much affected by the spatial autocorrelations of the two variables,
as Figure 5.5a shows, this behaviour is due to the increasing variability of the variance (and
hence standard deviation) of a variable as its MC decreases. The variability of the regression
slope parameters increases as the difference between the MCs of the two variables increases, as
shown in Figure 5.5¢, and as with correlations it can be attributed to the variability of the vari-
ance of the independent variable increasing with decreasing MC. Finally, since the original slope
parameter is zero for the uncorrelated data, the regression residual will be just the deviation of
the dependent variable from its mean and hence the MCgp is the MC of the dependent variable.
Figure 5.5d shows that indeed the variation does not depend on the independent variable’s MC.

As the original level of correlation between the two variables increases, similar patterns
appear in the aggregated data as in the zero correlation example, albeit usually with less symme-
try. As one would expect, the patterns for initially negative correlations are similar to those of
their corresponding positive correlations, but reflected in the x-axis. Figure 5.6a, the change in
covariance for an initial correlation of 0.4, illustrates the tendency for covariance to decrease in
absolute value as the number of aggregate cells decreases, and as the MC of either variable de-
creases. As with the zero correlation case, the size of the range does not usually change signifi-
cantly with the number of cells, except for cases of two highly autocorrelated variables, when the
range increases with decreasing number of cells, and two regatively autocorrelated variables
when the range decreases with decreasing number of cells.

The behaviour of the regression slope parameter by, is more regular than that of the other
two statistics. Figure 5.6b shows the upper triangle of the matrix of b, for an initial correlation of
0.4 and was created by merging the results from two different files. The pattern with the zero
initial correlation is repeated here, with the range showing a tendency to increase for all levels of
aggregation as the independent variable decreases in MC, but with only a slight dependence on
the dependent variable’s MC, which is reasonable given that the only influence the dependent

variable can exert on the regression slope is through the covariance.
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Because the initial MCgp is very different for each variable, the difference between it and
the aggregated MCgp is examined. It can be seen that, at least for the case of an original correla-
tion of 0.4 shown in Figure 5.6¢, the behaviour seems more related to the MC of the independent
variable than that of the dependent variable, as was the case for the initial correlation of 0.0. A
general trend toward decreasing MCrp for highly autocorrelated variables and increasing MCgg
for negatively autocorrelated variables indicates a tendency toward more random autocorrelation
of residuals being produced by aggregation, indicating again that aggregation may actually im-
prove the statistical reliability of regression results. Unfortunately, the need to create and merge
several files for the initial correlation of 0.8 case and the resulting influence of the initial spatial
distributions make drawing conclusions for higher correlations difficult (not shown).

As the initial level of correlation increases, the behaviour of the aggregated correlation
becomes more unpredictable. When the initial correlation is moderate, such as in Figure 5.7a
where it is 0.4, there is a strong tendency for correlations to increase with aggregation for all but
the least spatially autocorrelated pairs of variables. This agrees with the general conclusions of
papers published prior to Clark and Avery (1976) that state that correlations tend to increase with
aggregation (Clark and Avery, 1976), a conclusion somewhat discounted by Openshaw and
Taylor’s (1979) results which show the peaks of the various distributions at or near the original
correlation value. Clark and Avery’s (1976) results show a correlation coefficient that increases
steadily with level of aggregation from its initial value near 0.4, except for the last level where it
decreases slightly, a behaviour that they considered an anomaly. Robinson (1950) described a
correlation coefficient that increased from 0.203 at the individual level to 0.773 at state level and
0.946 at the (U.S. Census) division level, and Gehlke and Biehl (1935) presented two, the first
which increased in absolute value monotonically from -0.502 to -0.763 and the second which
started from -0.563, decreased in absolute value and then increased to end at -0.621. No infor-
mation on the spatial autocorrelations of the variables was available for either of these three pa-
pers, but it is reasonable to assume that they were moderately positive.

Figure 5.7b shows the change in correlation for an initial correlation of 0.8 and graphi-
cally illustrates that the tendency for correlations to increase with aggregation does not always
hold, at least not for highly correlated variables. Each group of lines in a dashed box represents

the behaviour of the aggregated correlation between two variables with the same combination of
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M(Cs as the other group. It can be seen that pairs of variables with the same MCs can behave
quite differently under aggregation, an effect that is likely caused by differences in the spatial ar-
rangements of the dependent and independent variables. This behaviour is a good subject for

future research.

5.6. Discussion

In order to facilitate comparison with Openshaw and Taylor’s (1979) study of the aggre-
gation effect on correlations, a dataset with 8 variables, whose MCs alternate between 0.37 and
0.43, and which are all mutually correlated at 0.3466, is created using the correlation matrix of
the 99 counties of the state of Iowa. Unlike the MCs and correlation, the means and variances
were not stated in the paper, so they were all arbitrarily set to 20.0 and 6.0 respectively, the same
as in the other experiments. The aggregation model is only run 1000 times on this dataset, as
compared to the 10,000 runs of Openshaw and Taylor (1979), but prior experience has shown
that there is little to gain in going beyond 1000 runs. As the model automatically generates eight
levels of aggregation, from 45% to 10% of the original number of cells, the counties were aggre-
gated to 45, 40, 35, ..., and 10 regions. Figure 5.8a shows the variation in correlation between
the pairs of variables whose MCs were 0.37 and 0.43. Table 5.3 presents summary information
for the thirteenth group of lines of Figure 5.8a, which was selected because it has among the
greatest extremes in the 10 aggregate cells values.

The patterns of the figure and the table show behaviour similar to that in Openshaw and
Taylor’s (1979) Figure 5.1, with normally or near-normally distributed variables whose fre-
quency distributions become wider and flatter as the number of aggregate cells decreases. Figure
5.8b provides a comparison to a synthetic dataset in which all variables have MCs of 0.4 and
varying degrees of correlation, as in Figures 5.1 to 5.4, but generated on the lowa connectivity
matrix, and it can be seen that the third group of lines from the right, representing the original
correlation of 0.4, is similar to the groups in Figure 5.8a. The wider ranges in Figure 5.8b, as
compared to a similar diagram for the 400-zone connectivity matrix (not shown, but see Figure
5.2), is due to the smaller number of zones in the [owa dataset because the smaller numbers of
zones means that dissimilar values will be closer together and hence more likely to be included
within aggregate cells. This, plus the behaviour of the means of the distributions, which both

increase, decrease, and remain approximately the same, emphasizes the above conclusion that the
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behaviour of the correlation under aggregation is very difficult to predict and will depend on the

spatial configurations and number of observations of the two variables.

5.7. Conclusions

The synthetic spatial dataset generator of Reynolds and Amrhein (1997) is used to search
for a relationship between the effects of aggregation on the covariance and correlation and the
spatial autocorrelations of the two variables whose interaction is measured. Two experiments are
performed, the first in which the Moran Coefficients of the variables are equal and the correla-
tions varied, and the second in which the correlations of variables are held constant and their
MCs are varied. In both experiments, it is observed that the magnitude of the ranges of the co-
variances decreases with the decreasing number of aggregate cells for low values of variables’
MC, but this gradually changes as the MCs increase until the ranges increase with decreasing
numbers of aggregate cells. Even though the covariance can either increase or decrease with ag-
gregation, unlike the variance which always decreases, in the vast majority of cases it decreases
in magnitude, showing that variability is lost both within each variable and between them. One
common factor of all the statistics and levels of aggregation is that all of the frequency distribu-
tions are either normal or nearly normal, even for the very complex MC of regression residuals
(MCrpg).

When both of the variables have the same Moran Coefficient, the behaviour of the co-
variance, correlation, and regression slope parameter B, is quite regular, with the ranges of the
statistics tending to increase as the MCs decrease, increase as the number of aggregate cells de-
creases, and decrease as the original correlation increases in magnitude. The MCgg shows little
variation with initial correlation, but its behaviour changes as the MCs of the two variables in-
crease, showing a marked tendency to decrease as the number of aggregate cells decreases. Since
spatial autocorrelation of residuals is a violation of the desirable property of independent residu-
als, the decrease in MC indicates that the quality of results of linear regression will actually be
improved by aggregation, although the loss of information through aggregation makes this im-
provement questionable.

When the variables’ MCs differ and the initial correlation is zero, the behaviour of the
bivariate statistics is still reasonably regular. The covariance has its properties discussed above,

while the range of correlations shows a definite trend toward increasing as the MCs of the vari-
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ables decrease. As expected, the greatest variability in the b; values occurs for the variables with
the greatest differences in MCs, while again the ranges generally increase as the MCs of the vari-
ables decrease. The behaviour of the MCgrr depends on the MC of the dependent variable only,
since an initially zero b; means the initial MCgp is that of the deviation of y about its mean.
When the variables’ MCs differ but the initial correlation is non-zero, reliable prediction of the
statistics becomes much more difficult, especially for MCgrgr and correlation, as differences in
results due to different spatial configurations of the variables can be dramatic. The unfortunate
conclusion that must be drawn is that prediction of the unaggregated values of bivariate statistics
will be, if possible at all, a very difficult process. Clark and Avery (1976) hypothesize that de-
viations in the behaviour of the coefficients are related directly to how the covariation is affected
by aggregation and indirectly by the spatial autocorrelations of the variables, but do not agree
with a hypothesis by Blalock (1964) that the deviations are caused by reduction in variation of
the dependent or independent variable. My results indicate that both are partially correct — the
behaviour is related to all of these causes, which is why they, using only a few real datasets with-
out the benefit of being able to vary parameters at will, had difficulty drawing their conclusions.

In order to compare the results of the experiments to those of Openshaw and Taylor
(1979), a synthetic dataset was generated on the connectivity matrix of the 99 counties of Iowa
whose variables have MCs of 0.37 and 0.43 and correlations of 0.3466 to match the properties of
the variables in that paper. The results appear to be in agreement, with the distributions becom-
ing wider and flatter with aggregation, and the ranges becoming quite large as the number of
zones becomes small. The ranges are larger with the smaller number of initial regions as com-
pared to the 400 zones of the test datasets because dissimilar values are closer together, even for
high MCs, increasing the chance of having aggregate cells with larger internal variations. The
fact that some distribution means increase, while others decrease or stay roughly the same, high-
lights the dependence of the correlation on the spatial distribution of the variables, even though
the correlation has no spatial component.

Statistical simulation is proving to be a useful tool in the continuing attempts to under-
stand the workings of the MAUP, especially with the more complex bivariate and multivariate
statistics. Unfortunately, it seems that a higher level of sophistication than the Moran Coefficient
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is required to numerically describe the spatial pattern if attempts to predict and hence exploit the

behaviour of statistics under aggregation are to have any hope of success.

5.8. References

Blalock, H., 1964: Causal Inferences in Nonexperimental Research. (Chapel Hill: University of
North Carolina Press).

Cliff, A., and J. Ord, 1981: Spatial Processes. London: Pion.

Clark, W. A. V., and K. L. Avery, 1976: The effects of data aggregation in statistical analysis.
Geographical Analysis, 8, 428-438.

Clifford, P., S. Richardson, and D. Hémon, 1989: Assessing the significance of the correlation
between two spatial processes. Biometrics, 45, 123-134.

Dutilleul, P, 1993: Modifying the t-test for assessing of the correlation between two spatial proc-
esses. Biometrics, 49, 305-314.

Gehlke, C. E., and K. Biehl, 1934: Certain effects of grouping on upon the size of the correlation
coefficient in census tract material. Journal of the American Statistical Association, 29, 169-
170.

Griffith, D. A., 1988: Advanced Spatial Statistics. (Dordrecht: Kluwer).

Openshaw, S., and P. Taylor, 1979: A million or so correlation coefficients: Three experiments
on the modifiable area unit problem. In Statistical Applications in the Spatial Sciences, Ed.
N. Wrigley, (Pion, London), 127-144.

Robinson, W. S., 1950: Ecological correlations and the behavior of individuals. American So-
ciological Review, 15, 351-57.

Reynolds, H., and C. Amrhein, 1998: Using a spatial dataset generator in an empirical analysis
of aggregation effects on univariate statistics. Geog. and Env. Modelling, 1(2), 199-219.



5.9. Tables

59

Table 5.1: Variation of the covariance with original MC of the variables and correlations

Original MC = -0.4

Cellsjr=-06 r=04 r=028

Original MC = 0.8
r=-06 r=04 r=08

—

-1.0733  0.6401  1.3696
-0.8969 0.5340 1.1428
-0.7287 04296 0.9260
-05844 0.3404 0.7388
-04299 0.2601 0.5497
-0.3204 0.1869 0.4054
-0.2095 0.1217 0.2640
-0.1151 0.0688 0.1457

-3.0226 2.0130 4.0241
-2.9355 19506 3.9038
-2.8314 1.8747 3.7574
-2.6993 1.7812 3.5717
-2.5401 1.6691 3.3467
23294 1.5157 3.0468
-2.0166 1.3023 2.6201

-1.5468 0.9773 1.9725

Table 5.2: Variation of the correlation with original MC of the variables and correlations

Original MC = 0.8

A R Vi Uik

-0.6041 0.4008 0.8011
-0.6035 0.4002 0.8000
-0.6030 0.3994 0.7984
-0.6013 0.3983 0.7956
-0.5995 0.3979 0.7922
-0.5967 0.3957 0.7861
-0.5869 0.3905 0.7742
-0.5710 0.3815 0.7518

Table 5.3: Summary information for the thirteenth group of distributions in Figure 5.8a

Cells{ Mean Std Dev

Min Max

Range

99 | 0.3466

45 | 0.3193 0.0500 O.
40 | 03112 0.0557 0.0761 04500 0.3739
0.0898 0.5023 0.4125
30 | 0.2928 0.0767 0.0048 0.5254 0.5206
0.0951 -0.1720 0.5309 0.7029
20 | 0.2692 0.1166 -0.2637 0.6245 0.8882
I5 | 0.2483 0.1672 -0.5425 0.7013 1.2438
10 | 0.2212 0.2565 -0.7585 0.9003 1.6588

35 | 0.3048 0.0643

25 | 0.2813

1497 0.4938 0.3440
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Figure 5.1: Variation of aggregated covariance with initial correlation where dependent and inde-
pendent variables have MCs of (a) -0.4 and (b) 0.8. Note how the concavity of the
line joining the heavy dots changes between the diagrams.
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6. The Effects of Aggregation on Multivariate Regression Parameters’

6.1. Summary
Several empirical studies of the Modifiable Area Unit Problem (MAUP) have been per-

formed on census data, one of which has been about its effects on multivariate regression analy-
sis. Recognizing that as much control as possible needs to be exerted in order to effectively
study the MAUP, a spatial dataset generator was created that allows the user to construct sets of
variables with various spatial and aspatial properties. The effect of aggregation on multivariate
regression parameters, with special attention to the influence of spatial autocorrelation, is studied
using a number of synthetic datasets created by the data generator. It is found that the effects de-
pend on the combinations of autocorrelations of the unaggregated dependent and independent
variables. It is also found that aggregation introduces collinearities between independent vari-
ables where none existed before. The patterns displayed provide hope that the effects of the

MAUP on multivariate regression may not be as unpredictable as was once feared.

6.2. Introduction
The Modifiable Area Unit Problem (MAUP), a term introduced in Openshaw and Tay-

lor’s (1979) classic chapter, has long been recognized as a potentially troublesome feature of
spatially aggregated data, such as census data. Aggregation of high-resolution (i.e. a large num-
ber of small spatial units) data to lower resolution (i.e. a smaller number of larger spatial units)
areas is an almost unavoidable feature of large spatial datasets due to the requirements of privacy
and/or data manageability. When the original data are aggregated, the values for the various uni-
variate, bivariate, and multivariate parameters will more than likely change because of a loss of
information. This phenomenon is called the scale effect. The N spatial units to which the
higher-resolution data are aggregated, such as census enumeration areas or tracts, postal code
districts, or political divisions of various levels, are arbitrarily created by some decision-making
process and represent only one of an almost infinite number of ways to partition a region into N
cells. Each partitioning will result in different values for the aggregated statistics; this variation

in values is known as the zoning effect. The two effects are not independent, because the lower-

! This chapter is based on Reynolds and Amrhein, 1998b, and was actually written before the other papers.
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resolution spatial structure may be built from contiguous higher-resolution units, such as census
tracts from enumeration areas, and the resulting aggregate statistics will be different for each
choice of aggregation.

Several studies (for example, Amrhein and Reynolds, 1996, 1997; Fotheringham and
Wong, 1991; Amrhein and Flowerdew, 1993; Openshaw and Taylor, 1979) have been published
that study the effects of the MAUP on a number of census datasets. Of these, only Fotheringham
and Wong (1991) have examined the effects of the MAUP on multiple regression parameters,
pessimistically concluding that its effects on muitivariate analysis are essentially unpredictable.
Amrhein (1993) presents the results of a statistical simulation of the MAUP by aggregating ran-
domly-generated point data into square grids of various sizes, thus avoiding many of the prob-
lems associated with the use of census data. This chapter expands upon the ideas from both, us-
ing statistical simulations to study the effects of the MAUP on multivariate analysis. The fact
that Steel and Holt’s (1996) analytically derived rules for random aggregation agree with
Amrhein’s (1993) empirical rules corroborates that simulations are an effective tool for examin-

ing the effects of the MAUP.

6.3. The synthetic spatial dataset generator

The use of census data imposes a serious constraint upon those who seek to understand
the mechanics of the MAUP simply because there is no control over the nature of a region’s
overall shape; the shapes, sizes and connectivities of its subregions; or the ranges, means, vari-
ances and covariances, frequency distributions, and spatial autocorrelations of the variables. The
effects of aggregation on a given census variable can be determined readily enough, but few clues
to underlying processes can be gleaned because the data cannot be systematically varied to test
for the effects of changes. Other weaknesses of census data, such as random rounding and values
missing due to the absence or suppression of data, only serve to make the drawing of any conclu-
sions even more difficult. In order to study the MAUP, it is therefore advantageous to be able to
construct synthetic spatial datasets over which a researcher can control and systematically vary
all of the above features. This chapter employs the dataset generator described in detail in
Chapter 3. Figure 6.1 illustrates the region used for the experiments, which is divided into 400
subregions, along with three sample aggregations.
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6.4. The experiments

Spatial autocorrelation is known to play a key role in the MAUP, as is illustrated in the
following experiment. Consider a spatial dataset that contains negative spatial autocorrelation;
that is, numbers that are dissimilar are located in adjoining regions. In the aggregation process,
contiguous regions are joined and the individual variable values are (in this case) replaced by
their average, hence creating a new dataset with a reduced variance. With some algebra, it is
easy to show that the difference between the original variance and the aggregate variance
(weighted by the number of units in each cell) is the sum (again weighted by the number of units)
of the variance of the regions within each cell. For the negatively autocorrelated dataset, it is ex-
pected that the values in each cell will have a high variance, and hence the change in variance
will be relatively large. As the spatial autocorrelation becomes more positive, the expected in-
ternal variance within each cell should decrease, since similar values will tend to become more
likely to be adjacent, and hence the change in variance should become less. The influence of
spatial autocorrelation on the behaviour of bivariate and multivariate statistics is more difficult to
assess, however, as Chapter 5 demonstrates for the bivariate case, since each variable’s MC and
spatial pattern will cause it to respond to aggregation differently.

The experiments in this chapter explore the effects of aggregation on the various pa-
rameters of the linear regression model y = Bp + Bix; + B2x2 + B3xs. Three independent parame-
ters are considered to be sufficient to capture enough of the complexities involved in multivariate
linear regression without creating excessive computational and analytical overhead. Fothering-
ham and Wong (1991) use a four-variable regression model, in which the variables are all pro-
portions; their results are compared to ours here.

Three different experiments are performed. In the first, y, X, X2, and x; are all assigned
the same level of spatial autocorrelation (as measured by the MC). Eight datasets are created in
which all four variables have MCs of -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 respectively, and
have zero correlation between them. In the second experiment, X;, X2, and x; are assigned the
same MC, while y is given a different one and again all variables are uncorrelated. Datasets are
created with MCs for dependent and independent variables chosen from -0.4, 0.0, 0.4, and 0.8,
for a total of twelve combinations. The third experiment counts the number of statistically sig-

nificant changes in correlations between variables for the datasets of the first experiment in order
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to estimate the potential for introduced collinearities. Obviously, having variables with no col-
linearity is an idealized case, since most variables will have some degree of correlation between
them, but it is a good place to start.

The aggregation algorithm is described in detail in Chapter 3. For these experiments, as
in Chapters 4 and 5, the regions are aggregated to M = 180, 160, 140, 120, 100, 80, 60, and 40
cells, representing from 45% to 10% of the original 400 regions, in order to assess the scale ef-
fect of the MAUP. All of these aggregations are performed independently in a run of the model,
and each run is independent of the previous runs. To account for the variability of results intro-
duced by the zoning effect, 1000 runs of the model are performed. After each aggregation, the
data are fitted to the multiple linear regression model and the resulting parameters, plus the Mo-
ran Coefficient of the regression residuals (MCgg), are saved.

Once all aggregations are completed, the maximum, minimum, mean and standard devia-
tion of each parameter for each scale of aggregation are computed and saved for analysis. The
analysis plots (see Figure 6.2b as an example, and Chapter 3 for a more detailed description) are
arranged in groups of eight lines, one line for each scale of aggregation, with the labels for each
line being listed in the plot’s legend. Each group represents a set of initial conditions for an ex-
periment, and is labeled on the plot with (MC,, MC,), where MC, is the MC of the independent
variables and MC, that of the dependent variable. Each line represents the range of values of the
parameter that are obtained for the scale over all the runs, and is also marked by the mean value
(a heavy dot) and at the mean + 1 standard deviation (a small horizontal line) to give a rough idea

of the distribution of values.

6.5. Results

The resuits from the first experiment, in which the Moran Coefficients for the dependent
and independent variables are the same, show that all of the multivariate regression parameters
vary systematically with a change of scale and also with the level of spatial autocorrelation latent
in the data. Figures 6.2 to 6.4 illustrate the variations in R?, the MC of the residuals, and the val-
ues for Bo, B1, and their standard errors; figures for B, and B; are similar to those of §;, and are
not shown. All of the figures show the same pattern, with the ranges for all scales decreasing

with increasing spatial autocorrelation. This conforms to expectations, since we expect the scale
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effect to be less severe with greater positive autocorrelation due to more similar values tending to
be aggregated. The figures also show that the variation of all parameter values increases with the
magnitude of the scale effect over all levels of spatial autocorrelation. This again agrees with
expectations, since more information is lost as the data values are aggregated into fewer cells,
and with a larger number of regions going into each cell it is expected that there would be a
greater degree of variation in results caused by the choice of partition, even for highly spatially
autocorrelated data.

Since all the variables are generated randomly and are mutually uncorrelated, the values
of R? for the unaggregated datasets are all close to zero. Figure 6.2a illustrates that aggregation
can produce a model that can have, in extreme cases, from 20% to even 70% of the variation ex-
plained by the model, depending on the scale of aggregation and the spatial autocorrelation of the
data. The distance of the maximum extreme values from the mean plus one standard deviation
mark indicate they are all outliers in the frequency distributions, and as such they will tend to in-
crease the mean value. But even with that in mind it is still apparent that aggregation tends to
give models with better fits than the original data, with better fits being associated with greater
aggregation. This agrees with expectations, since a reduction in the variability of the data values
will tend to produce a better-fitting model (if covariance is also not reduced), but the loss of in-
formation caused by reducing the sample size offsets any apparent gain.

Figure 6.2b illustrates the change of the MCgg with aggregation. One of the basic as-
sumptions of a linear regression model is that the residuals are independent, and it is clear that
this assumption is being violated since spatially autocorrelated residuals are not independentz.
Since the initial correlations between the variables are all zero, all of the regression slope pa-
rameters are also initially zero so that the initial MCrg will simply be the MC of the deviation of
y about its mean, which equals the MC of y. The diagram illustrates the tendency for the regres-
sion residuals to become more randomly autocorrelated, with that for the initially negative re-
siduals tending to increase, while that for the initially positive ones tending to decrease. The
change in residuals for the MC of 1.0 does not follow the pattern of the rest of them, but still

does tend to decrease slightly. As with the findings of Chapter 5, it appears that aggregation

2 Since each observation can be partly predicted from its neighbours, the information content of observations is re-
duced. See Section 5.3, Griffith (1988, pp- 82-83). and Cliff and Ord (1981, p. 199) for details.
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tends to improve the statistical quality of linear regression, even though it changes all of the pa-
rameter values.

Figures 6.3 and 6.4 show that the regression coefficients and their standard errors behave
sirnilarly under aggregation. The mean values of the Bo and 3, estimates bg and b, remain close
to their unaggregated values over all levels of spatial autocorrelation and all scales. In contrast,
the average value of the standard error for all coefficients shows a definite increase with the scale
effect. This is not unexpected, as Fotheringham and Wong (1991) point out, since the standard
error depends partly on the number of aggregated units. Interestingly, even though the range of
variation of the standard error due to the zoning effect decreases with increasing spatial autocor-
relation, the mean value for a given scale remains essentially constant. The B, and B3 coefficient
estimates b, and b; and their standard errors behave similarly and are not shown.

The results of the second experiment, in which the independent variables x;, xz and x3
contain the same level of spatial autocorrelation, while y has a different one, are presented in
Figures 6.5 to 6.7. Each plot consists of 12 groups of lines, with each group representing a com-
bination of MCs for the dependent and independent variables. The groups are organized in four
sets of three, with each set’s dependent variable having the same Moran Coefficient.

As before, the range of variation of the various parameters increases as the scale de-
creases. Figure 6.5a shows that the range of R? decreases as the MC of both the independent and
dependent variables increases, though it appears to decrease faster with the increase in the inde-
pendent variables’ MC than with the dependent variable’s. This is consistent with the results
shown in Figure 6.2a and indicates that, as before, less information is lost when the variables are
highly autocorrelated, resulting in smaller variations of the aggregated statistic values.

By examining Figure 6.5b and comparing it to Figure 6.2b, it is apparent that the behav-
iour of the MC of the residuals depends more on the spatial autocorrelation of the dependent
variable than that of the independent variables, since the distributions do not change significantly
with the MC of the independent variables. As explained above, this is due to the initial values of
the slope parameters being zero, resulting in the initial MCgg being the MC of the dependent
variable. As before, the behaviour will depend on the spatial pattern of the variables, not just on

their MCs.
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As with the first experiment, the regression coefficients and their standard errors each be-
have in roughly the same way for each combination of spatial autocorrelations. There are three
clearly visible patterns, aside from the usual increase in variability with decreasing aggregation
scale. First, the mean values of the distributions for the regression coefficients tend to remain
fairly stable as the number of aggregate cells decreases, while the means of the standard errors
tend to increase. Second, for a given MC of the independent variable, the variability of the
ranges increases with increasing MC of the dependent variable, though this effect becomes much
less dramatic as the MC of the independent variables increases. The size of some of the ranges is
interesting, especially with the intercept parameter be which can be almost 80 above or below the
mean of 20 for the 40-cell case in the third from last group in Figure 6.6a. Third, for a given MC
of the dependent variable, the range decreases with increasing MC of the independent variables.
The patterns are reflected in the those for the standard errors, as shown in Figures 6 and 7 for bg
and b (those for b, and b; are similar and not shown). Since the multivariate linear regression
model parameter estimates are of the form b=X"X)"'(X"Y), it is expected that variations in the
spatial autocorrelation of the independent variables X will influence the outcome more than those
of the dependent variable Y. These figures should serve as a clear warning to those who would
blindly use multivariate regression methods on aggregated georeferenced data and then expect
the results to apply to a higher resolution!

Comparison of these results with those of Fotheringham and Wong (1991) is difficult be-
cause the dependent and each of their four independent variables had a different MC, ranging
from almost 0.9 for their P*** to about 0.25 for P*%. Even from the very simple second experi-
ment, it is clear that having the dependent and independent variables with different MCs in-
creases the complexity of the response of the regression parameters to aggregation. Differences
in the spatial patterns of the variables, as shown above, can also hamper comparisons, as results
may be very different for variables with the same MCs.

Fotheringham and Wong’s (1991) (hereafter referred to as FW for brevity) analysis of the
change in Moran Coefficients of the variables can be compared with experimental results, how-
ever, using the diagrams of Chapter 4. Even though the change in the MC depends on the spatial
arrangement of the variable, Figures 4.2b, 4.4a, and 4.8 show that the distributions widen as the

number of aggregate cells decreases (also shown in FW’s Figure 6), and that the mean value ei-



77

ther decreases or increases monotonically, unlike most of the examples in their Figure 6 which
increase and then decrease. These differences could be the result of FW’s performing only 20
random aggregations for each spatial scale (20 being not nearly enough to approximate the true
distribution of aggregate values), having more than twice the number of base units as we used,
and using proportional variables (i.e. numerator and denominator are aggregated separately and
the results divided) rather than variables that are simply summed or averaged, or perhaps to un-
known violations of the regression model assumptions. Further research needs to be done to
study the effects of the MAUP on proportion-type variables.

Also of interest in a study of multivariate linear regression are conditions that violate the
assumptions of the model. The easiest one to study is collinearity, the presence of correlation
between the independent variables®. For this experiment, the datasets used in the first experi-
ment, which all have zero correlation between the variables, are aggregated in the model as be-
fore and the number of correlations that are statistically significantly different from zero are
counted for each level of aggregation. Table 6.1 summarizes the results for the sets that have
MC:s of -0.4, 0.2, and 0.8 for the aggregation levels of 180, 100, and 40 cells, while Figure 6.8
illustrates the variation of correlation with MC for the datasets whose variables have the MCs of
-0.4 and 0.8. Note that the values in the row labelled Any will be less than the sum of the values
in the columns if more than one of the correlations is significant at the same time, which occurs
frequently for the -0.4 MC case at all levels of aggregation, but less so for the other datasets.

Figure 6.8 and Table 6.1 demonstrate that the ranges of the introduced correlations de-
crease as the MCs of the variables increase, while as usual the ranges increase with decreasing
numbers of cells. The reduction in the range is caused by the decreasing amount of variability
lost as the variables become more positively spatially autocorrelated, so as the range decreases
fewer values in the distribution cross over into the critical range. As illustrated in Chapter 5,
predicting how a pre-existing non-zero correlation between two of the variables will be affected

by aggregation is not simple, as the change will depend on the interaction between the spatial

3 Note that the paper which forms this chapter was initially written before my more detailed analysis of bivariate sta-
tistics in Chapter 5. Since the counting of significant changes in r was not a topic discussed in Chapter 5, I de-
cided to leave this in as is.
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distributions of the variables. The fact that there can be significant changes in the collinearities

reinforces the need for caution when using multivariate regression techniques on aggregated data.

6.6. Conclusions

In order to systematically examine the role of spatial autocorrelation in the data on the re-
sponse of multivariate regression parameters to aggregation, a multiple linear regression model
of the form y = Bo + B1X: + B2x2 + B3x3 was employed, as three independent variables are suffi-
cient to capture much of the complexity of multivariate regression while minimizing the compu-
tational and analytical overhead. The first two of the three experiments performed were designed
to test the effect of various spatial autocorrelation levels in the independent and dependent vari-
ables on the variation of the regression parameters with aggregation. The third experiment tests
to see how much collinearity is introduced between independent variables with increasing aggre-
gation, when there was none in the unaggregated data.

When all variables have the same spatial autocorrelation, as measured by the Moran Co-
efficient, the variation of the parameters tends to decrease as the Moran Coefficient increases, as
expected, indicating that more positively autocorrelated data are less affected by the MAUP. For
all values of MC tested, the mean values of the coefficient estimates by, by, b, and bs are found to
be essentially constant over all levels of resolution, even as the range of the distributions in-
creases. Change in the variability is reflected in the standard errors for the coefficients, whose
mean values and ranges tend to increase with decreasing spatial resolution. The mean value of
R? shows a very large variability for negatively autocorrelated data that tends to decrease with in-
creasing values of the Moran Coefficient. The change of the MC of the residuals depends on the
MC of the dependent variable more than that of the independent variable, since the initial values
of the B coefficients are zero and hence the initial MCgp is that of the dependent variable.

When all of the independent variables have a particular Moran Coefficient, and the de-
pendent variable has a different one, it appears that the MC of the independent variables tends to
play a larger role in the variation of the regression coefficients, R?, and the MCgg, than does the
MC of the dependent variable. For a given MC of the dependent variable, the variability in the
coefficients and their standard errors tend to decrease with increasing MC of the independent

variables. However, for a given MC of the independent variables, the variability tends to in-
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crease with increasing MC of the dependent variable. The range of R? decreases as the MC of
either the dependent or independent variables increase. It appears that the change in MCgp de-
pends on the MC of the dependent variable for initially uncorrelated variables.

Results from the third experiment reveal that collinearities between independent variables
can be introduced by aggregation. The mean values of the ranges of correlations remain at or
very near 0.0 for all resolutions and MCs of the variables. As one would expect, the ranges of
the aggregate correlations are much greater for the variables with low or moderate MC than for
those that are more highly autocorrelated, resulting in more statistically significant changes of
correlations, many of which will occur simultaneously. Of course few datasets have no correla-
tions between the variables, but it will be difficult to predict the change in a non-zero correlation
until a way to incorporate the spatial patterns of the variables into the analysis is found.

The results of the experiments in this chapter only scraich the surface of the behaviour of
multivariate regression parameters when data are aggregated from one level of spatial resolution
to another. It is clear that the spatial autocorrelation of each of the variables involved influences
the behaviour, and that if each variable has a different autocorrelation it will be difficult to pre-
dict ahead of time what the behaviour of the regression parameters will be. Exploration of the
effect of the MAUP on multivariate regression using variously autocorrelated variables and vari-
ous degrees of collinearity is a focus for future research.

The variables used in these experiments are all variables that were averaged during the
aggregation process. The behaviour of variables that are proportions, in which numerator and
denominator are aggregated individually, and variables that are summed in aggregation, also
needs to be examined. Comparison of FW’s results to ours indicates that multivariate models
constructed with variable other than averaged variables may behave differently under aggregation
from the model described in this chapter. Models that involve combinations of different variable
types may behave even more differently. All of these require further research.

The ultimate goal of the research is, of course, to see if it is possible to empirically esti-
mate error in a spatial dataset that has been introduced by aggregation, and the presence of rec-

ognizable patterns indicates that the prospects are perhaps not as gloomy as FW first believed.
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Table 6.1: Total number of statistically significant correlations between the variables created by
the aggregation process. The number of instances when any of the combinations
produced a significant correlation is recorded in the row labelled Any.

MC=-04 | MC=02 | MC=0.8

Cells 180 100 40 |180 100 40{180 100 40
yv,x; |20 52 641 2 1210 O 3
y.x2 |13 60 65 0O 0 2
y.x3 |27 42 79 0O 0 2
X1, X2 120 57 60 0 0 0
0O 0 4

0 0 1
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6.8. Figures for Chapter 6

a)

Figure 6.1: The synthetic region used in all of the experiments, with its 400 cells (a) and a sample
aggregations to 180 cells (b), 100 cells (c) and 40 cells (d).
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Figure 6.2: Variation of R? (top) and the change of Moran Coefficient of the multivariate regres-
sion residual with aggregation over 1000 runs of the aggregation model, with depend-
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Figure 6.8: Variation of correlation with aggregation for the datasets of experiment 1 in which the
original MCs of the variables are -0.4 (left) and 0.8 (right).



7. Summary of Conclusions
The results of this research clearly demonstrate why the Modifiable Area Unit Problem

has been such a source of frustration for spatial analysts for so long. Even a relatively simple
statistic like the weighted variance behaves in a complex manner, influenced by the spatial auto-
correlation and arrangement of the unaggregated variable. More complex statistics, like the Mo-
ran Coefficient, correlation, covariance, and the bivariate regression slope parameters, are af-
fected by the spatial arrangements of both variables, while the multivariate regression parameters
are affected by those of all variables involved. Unfortunately, results reported in Chapter 4 am-
ply indicate that the MC is not a sufficient measure of spatial organization for the purposes of
prediction of results, since many different types of arrangement can have the same MC, and it is
often the arrangement for the given MC that determines how a variable will behave under aggre-
gation. Even so, it is still useful as a first approximation in most cases, and further research may
be able to provide a summary statistic that can include pattern as well as spatial autocorrelation.

One of the common features to all the experiments is that the frequency distributions
(which are a result of the zoning effect) of all of the aggregated statistics are either normally dis-
tributed or nearly so. The assumption of a normal distribution plays a pivotal role in most infer-
ential statistical theory, so this empirical finding may help to further advance theoretical investi-
gations of the MAUP. The finding is surprising, especially for something as complex as a MC of
a regression residual, because due to Murphy’s Law [ would expect a distribution that would
make the analysis of the MAUP with statistical theory even more difficult'.

The relative change in variance shows a strong dependence on the spatial autocorrelation
of the original variable, which of course is no surprise, but it also depends on the spatial ar-
rangement of values. The aggregated Moran Coefficient depends not just on the initial spatial
autocorrelation, but also on the spatial arrangement of the values, especially as the original MC
increases and patterns become more distinct. Patterns with a large number of small clusters of
similar values will show the grea.est change in aggregate univariate statistics as the number of
cells decreases because as the cell size increases, the likelihood of including regions with dis-
similar values increases faster than it does when there are only a few large clusters. A more pre-

cise definition of the relationship must await a better way to describe the spatial arrangement of

' OK, this is a bit cynical. Maybe I have been a post-graduate for too long.
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the data values, perhaps by using two or more spatial autocorrelation statistics in conjunction
with each other.

The relative change in variance is strongly non-linearly correlated to the G statistic, which
has been modified by dividing by the unweighted aggregate variance. This dependence does not
appear to be because the unweighted aggregate variance is present on both sides of the regression
equation, though what causes it and how it can be exploited are worth future research.

The covariance tends to behave in a similar way to the variance under aggregation, in
spite of the possibility for it to increase or decrease. The range of the distributions of both statis-
tics decreases with the decreasing number of aggregate cells for low values of spatial autocorre-
lation of variables, since increasing the cell size will not appreciably increase the (co)variation
within each cell that can be lost by aggregation. As the MC increases, the within-cell variability
will tend to increase with an increase in cell size as more dissimilar values are included, with the
rate of this increase depending on the spatial arrangment (many small or fewer larger clusters).

When both variables have the same MC, the ranges of the covariance, correlation and re-
gression slope parameter tend to increase as MC decreases, and to increase as the number of ag-
gregate cells decreases. The MC of the regression residual (MCrg) is not much affected by the
initial correlation of the variables, but changes considerably with the increase in MC of the vari-
ables, showing a marked tendency to decrease as the number of aggregate cells decreases. This
indicates that the statistical quality of regression results can actually be improved with aggrega-
tion, even though the values of the parameters are quite different from the original. This appar-
ent improvement is offset by the loss of information caused by the reduction in sample size.
When the variables have different MCs and the initial correlation is zero, the behaviour is still
reasonably regular. The range of correlations tends to increase as the MC of the variables de-
creases, and the range of regression slope parameters is greatest when the MCs of the variables
are the most different, and again tends to increase as either variable’s MC decreases. The change
in the MCgp appears to depend primarily on the MC of the dependent variable. When the vari-
ables have different MCs and the initial correlation is non-zero, prediction of the statistics, and
especially MCgrg and correlation, becomes difficult due to differences that are caused by the dif-
ferences in spatial patterns of variables that have the same MC. Having a smaller number of ini-

tial zones in the aggregation increases the ranges of the aggregated statistics for variables with
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the same MC because dissimilar values are closer together, increasing the chances of having ag-
gregate cells with larger internal variations.

When the dependent and three independent variables in the multiple regression experi-
ments have the same MCs, the variation of the statistics tends to decrease as MC increases. The
mean of the distributions of the regression parameters remain'; essentially constant as the number
of aggregate cells decreases. As with the bivariate case, the change of the MCgy seems to be in-
dependent of the MC of the independent variables, but again this is caused by the initial correla-
tions between variables being zero and so the initial MCgp is the MC of the dependent variable.
When the dependent variables have one MC and the independent variable has another, the MC of
the independent variables tends to have more of an effect on the regression statistics than does
that of the dependent variable. For a given MC of the dependent variable, the variability in the
coefficients and their standard errors tends to decrease with increasing MC of the independent
variables. However, for a given MC of the independent variables, the ranges cf the statistics in-
crease with an increase in the MC of the dependent variable. As the results from the bivariate
analysis indicate, collinearities between variables are introduced when the initial correlations are
zero. However, only 2 to 8 percent of the aggregations produce correlations that are statistically
significantly different from zero.

The results of this research make it abundantly clear that those who use spatially refer-
enced data should not try to extend any conclusions they draw to levels of spatial resolution that
are different from the resolution of the data. As yet there is no way to estimate the value of a
statistic computed at a finer scale of resolution (larger number of smaller regions) from aggre-
gated data, applying results derived from a coarser spatial resolution will most likely lead to the

drawing of erroneous conclusions.

8. Topics for Future Research

This research represents the first step in the systematic empirical exploration of the Modi-
fiable Area Unit Problem, and much remains to be explored. All of the research work in this the-
sis is for variables that are averaged during aggregation, and it is suspected that variables that are
summed or that are proportions (i.e. numerator and denominator aggregated separately) will not
behave in the same way. Only a few of the possibilites have been explored for the multivariate

regression statistics, and more complex multivariate procedures such as factor analysis have not
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been tested at all. Before such analysis can properly proceed, however, a better way is required
to numerically quantify spatial arrangements than the Moran Coefficient. A variogram certainly
contains a complete description of the spatial structure, but then a way to describe the variogram
would have to be concocted and we are no better off. The MC itself is not sufficient to describe
the spatial arrangement, but perhaps using it in conjunction with other spatial autocorrelation
statistics that describe the pattern differently will work.

It is hoped that my research will lead to further advances in the theoretical as well as em-
pirica: exploration of the MAUP, and that the knowledge that it is not totally intractable and cha-

otic might be enough to renew interest and research in this challenging statistical phenomenon.
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