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Abstract 

The Modifiable Area Unit Problem (MAUP) has been discussed in the spatial analysis 

literature since the 19303, but it is the recent surge in the availability of desktop cornputing 

power and Geographical Information Systems software that have caused both a resurgence of in- 

terest in the problem and a greater need to l e m  more about it. Many spatial datasets are col- 

lected on a fine resolution (i.e. a large number of s W  spatial units) but, for the sake of pnvacy 

andlor size concems, are released only after king spatially aggregated to a coarser resolution (Le. 

a smaiier number of larger spatial units). The chief example of this process is census data which 

are collected from every household, but released only at the Enurneration Area or Census Tract 

level of spatial resolution. When values are averaged over the process of aggregation, variability 

in the dataset is lost and values of statistics computed at the different resolutions wiil be differ- 

ent; this change is caiied the scale effect. One also gets different values of statistics dependhg 

on how the spatial aggregation occurs; this variability is called the zoning effect. The purpose of 

studying the MAUP is to try to estimate the tme values of the statistics at the original level of 

spatial resolution. Knowing these would aüow researchers to attempt to make estimates of the 

data values using either synthetic spatiai data generators like the one describeci in this thesis or by 

other techniques. 



Many snidies of the MAUP have been made using specific datasets and exaoiiniog vari- 

ous statistics, such as correlations. Aithough interesthg properties have been documented this 

approach is ultimately unsatisfactory because researchers have had no control over the various 

properties of the datasets, al l  of which could potentiaiiy affect the MAUP. This research has fo- 

cused on the creation of a synthetic spatial dataset generator that c m  systematically Vary means, 

variances, correlations, spatial autocorrelations and spatial connectivity matrices of variables in 

order to study their effects on univariate, bivariate, and multivariate statistics. 

Even though the MAUP has traditionally been written off as an intractable probiem, re- 

sults from the various experiments descnbed in this thesis indicate that there is a degree of regu- 

larity in the behaviour of aggregated statistics that depends on the spatial autocorrelation and 

configuration of the variable values. If the MAUP can be solved, however, it is clear that it will 

likely be a complex procedure. 



The program that created the Voronoi tessellations was written by Jonathan Richard 

Shewchuk as part of the Archunedes project (puailel Finite Elexnent Methods) and was made 

available over the World Wide Web. Fiancial support h m  SSHRC research grants #SSH 410- 

94- 1736 and #4 10-97-0274 and doctorai fellowship #SSH 752-97-2 107 were crucial in gettuig 

the research to where it is today. 

1 aiso could not have cornpleted this work without the assistance and guidance of my su- 

pervisor, Professor Cari Amrhein. The efforts of Dan Griffith, who took the t h e  to make the 

numerous suggestions for improvements in the final version of this thesis, are also gratefully ac- 

knowledged. 

Finaily, 1 wish to dedicate this work to my wife Jeannine, whose love and support made 

the long hours shorter, and to my son Ioshua Morgan, who rnakes the dark days brighter. and 
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1. Introduction 

The Modifiable Area Unit Problem (MAW), a tenu introàuced by Openshaw and Tay- 

lor's (1979) classic paper, has Long k e n  recognized as a potentialiy troublesome feature of ag- 

gregated data, such as census data. Aggregation of high resolution (Le. a large number of smdl 

areas) data to a lower resolution (Le. a srnalier number of larger areas) is an almost unavoidable 

feature of large spatial datasets due to the requirements of privacy and/or data manageability. 

When the original data are aggregated, the values for the various univariate, bivariate, and multi- 

variate parameters wiIl change because of the Loss of information. This phenornenon is called the 

scale effect. The M spatial unis to which the higher-resolution data are aggregated, such as cen- 

sus enumeration areas or tracts, postai code districts, or politicai divisions of various levels, are 

arbitrarily created by some decision-making process and represent only one of an almost infinite 

number of possible partitionings of the region M ways. Each parîitioning WU result in different 

values for the aggregated statistics; this variation in values is known as the zoning effect. As will 

be shown in the following chapters, the statistic values form distributions that are normal or 

nearly so. The two effects are not independent, because the lower-resolution spatial structure 

may be built from contiguous higher-resolution units, such as census tracts from enumeration ar- 

eas, and the resulting aggregate statistics wiLl be different for each possible arrangement of the 

high-resolution units. 

This research is timely and necessary. The increasing availability of powerful microcom- 

puters, workstations, and Geographical Information Systems (GIS) software suggests that under- 

taking complex spatial analyses is no longer limited to those trained in the vagaries of spatial 

data. Large nurnbers of users are blissfully unaware that aggregation effects may cause wide- 

spread misuse of results. For example, Openshaw and Taylor ( 1979) demonstrate that the sign of 

the correlation between two variables can change, depending on the spatial resolution of the data- 

set that is used, which means that if the data were to be used to innuence a decision in public 

policy a serious emor could be made. The stubborn refusal of this problem to be solved analyti- 

cally, except for some carefully defked and unreaiistic problems (Arbia, 1989) means that, for 

the moment, the most useN information about the MAUP c m  only be gleaned through the use 

of statistical simulations. Ironically, it is the same increase in computing power that makes the 

extensive simulations performed for this research possible. 



The purpose of this research is to shed some light on the behaviour of statistics that are 

computed with aggregated data by using a set of systematic empincal experinents. It is hoped 

that the results of these experiments will bring us one step closer to the ultimate goal of king 

able to accuntely estimate the true statistical relationships within datasets that, for reasons of 

confidentiality, size, or other factors, are only available in aggregated fom. Knowing the statis- 

tic values would allow researchea to attempt to make estimates of the data values using either 

synthetic spatial data generators like the one descnbed in this thesis or by other techniques. Until 

Amrhein (1995). research into the MAUP has pnmarily consistedof examining the effects of ag- 

gregation on various statistics, usually correlations, cornputed from a single dataset. The primary 

drawback to this method is that the researcher is unable to-vary the properties (such as means, 

variances, covariances. and spatial autocorrelations) of the particular dataset, somewhat akui to 

trying to determine the properties of a forest by studying a.few trees here and there. 

Amrhein's (1995) study, described in more detail in the next chapter, represents an initiai, 

relatively simple, attempt to use synthetic data to study the- MAUP by aggregating points into 

squares. My research required that 1 extend this process to the ability to control key parameters 

like means, variances, correlations, and Moran Coefficients of spatial autocorrelation, as well as 

the ability to generate co~ectivity matrices by subdividing a region with random Voronoi poly- 

gons (Okabe et al., 1992). Systematically varyhg these parameters permits examination of their 

influence on the MAUP, while creating synthetic datasets whose parameters are the sarne as 

those of a reai dataset allows the researcher to ensure that the results obtained are redistic. 

The second chapter of this thesis presents a literature review that will heips to define its 

context. The third chapter consists of a detailed description of the spatial dataset generator, the 

aggregation model, and instructions on the interpretation of the diagrams. Chapter 4 explores the 

effects of aggregation on the variance and the Moran Coefficient, and continues earlier efforts to 

correlate the change in variance to a spatial statistic. Chapter 5 continues this research with 

analysis of the bivariate statistics covariance, correlation, regression slopes, and the Moran Coef- 

ficient of the regression residuals, comparing ksults to those found in Openshaw and Taylor 

( 1979). Chapter 6 presents the extension of the studies to multivariate regression parameten, 

comparing the results to those of Fotheringham and Wong (1-99 1). FinMy, chapter 7 contains a 

discussion and surnmary of the conclusions from the previous three chapten. 



2. Literature Review 

The Modifiable Area Unit Problem has k e n  recognized in the literature since at Ieast 

Gehlke and Biehl's (1935) work. Due to its inherent analyticai intractability, it has k e n  either 

downplayed or ignored in various studies using spatial data and in textbooks on spatial analysis. 

Ody withui the past 15 years or so with the advent of cheaper, faster, and more powerfd com- 

putes, has an in-depth examination of the behaviour of the MAUP becorne possible. The exten- 

sive literature can be divided into two broad categories, empincal analyses and theoretical devel- 

opments. I have not tried to make this literature survey cornplete, since good survey papers 

(Openshaw and Taylor, 198 1; Dudley, 199 1) exist aiready; rather it is intended to place my work 

in context of the main body of MAUP research. 

2.1. Univariate Statistics 

The behaviour of univariate statistics such as mean, variance, and Moran Coefficient 

(MC) under aggregation has received little attention in the literature. since it is inferences about 

relations between two or more variables that is the focus of most research involving spatial data. 

Spatial autocorrelation statistics. however, are often used to test for patterns in a satellite image 

by landscape ecologists. As these patterns influence ecological processes, such as population dy- 

namics, biogeochemical cycling, and aspects of biodiversity (Qi and Wu, 1996), it is useful to 

know how the spatial scale of the andysis affects the spatial autocorrelation statistics. This is 

problematic because the various satellites have different spatial resolutions. Qi and Wu (1996) 

and Jelinski and Wu ( 1996) conclude that the Moran Coefficient. Geary Ratio. and Cliff-Ord sta- 

tistic are scale dependent, showing an overall decline in spatial autocorrelation with scale, and 

are dso dependent on the zoning system used in the aggregation. 

Amrhein and Reynolds ( 1996, 1997) present results based on census datâsets from Lanca- 

shire in England and fiom the Greater Toronto Area's enurneration areas respectively. The aver- 

age variance of the 8 Lancashire variables (all of which were averaged dunng aggregation) and 

the 5 Toronto variables (the fust three of which were surnmed and the 1 s t  two averaged dunng 

aggregation) is found to Vary systematicaiiy with the change in scale. The change in variance is 

also found to correlate well for a l l  variables in both datasets with the G statistic (Getis and Or& 

1992). which was modified by dividing it by the global sum of squares of deviations of the ag- 



gregated variable. The fit is not as good with the fifth variable of the Toronto dataset, which is 

iikely due to the presence of a large number of suppressed (zero) values of the EA average in- 

corne, but the overall results are gwd enough to indicate the potential of using a spatial statistic 

to predict the effect of the MAUP on an aggregated dataset. 

Amrhein (1995) is the fmt paper based solely on statistical simulation of the MAUR 

The experirnents are based on 10 000 points Iocated randornly within a unit square region, each 

representing an individual. The x and y coordinates are generated fmt fiom a uniform distribu- 

tion and then fmm a nomal N(0.1) distribution. Each location is assigned two values represent- 

hg observed variables, with the values again k ing  drawn from first a uniform and then a normal 

distribution, thus creating four combinations in totai. To examine the scaie effects, the points are 

aggregated into 100,49, and 9 square areal units, and to account for zoning effects, the process of 

aggregating the 10 000 points into the 100 region grid is repeated for 100 independent sets, and 

for 50 sets for the other two @ds. Summary statistics for each aggregation are computed and 

stored for cornparison purposes with the original 'bpopulation" statistics. It is found that the 

weighted mean does not display any aggregation effects, which is to be expected since the aggre- 

gate weighted mean is mathematically identical to the population mean. The variance is not 

found to display scale effects beyond what could be expected from the decrease in observations, 

though it is noted that scale-specific variance values carmot be imputed to other scaies without 

adjusting for the change in number of units. Populations with higher variances tend to display 

more pronounced zoning effects than those with a lower variance. The regression slope coeffi- 

cient and the Pearson correlation coefficient both display scale effects that increase systernati- 

caiiy with a decreasing number of zones. The standard deviation of the regression coefficient 

displays pronounced zoning effects, to the point where it fails to provide useful information. 

Sign changes of the regression coefficient are also noted. These results provided the starting 

point for S tee1 and Holt' s ( 1996) theoretical results. 

2.2. Bivarïate and Multivariate Statistics 

Gehke and Biehl(1935) appears to be the first publication cited that describes an inter- 

esting phenornenon, the tendency for correlation coefficients to increase as areal regions are ag- 

gregated into fewer numbers of larger regions. When male juvenile delinquency was correlated 

with median equivalent monthly rentd, the correlation coefficient varied monotonicdy from- 



0.502 for 252 census tracts to -0.763 for 25 regions; delinquency rates varied non-monotonicdy 

from -0.5 16 to -0.62 1. Two other experiments were dso performed that Uustrated that the 

method of grouping also afTected the aggregated correlation. 

Robinson (1950) examined correlations between race and illiteracy at the U.S. Census 

Division (0.946). state (0.773) and individual (0.203) levels. and foreign birth and iiliteracy at the 

Census Division (-0.619). state (-0.526) and individuai (0.118), but it should be noted that he 

uses data that appear in contingency tables rather than the more usuai x-y point data. He also de- 

scribes a mathematical relationship between his "ecological" correlations and individuai correla- 

tiens and asserts (comctiy) that one should not use conclusions denved fiom data at one level of 

spatial resolution to units at another resolution (primarily individuais). A possible solution to the 

contingency tables type problem is described in King ( 1997). 

Clark and Avery (1976) iooked at correlations derived from data collected from 1596 

census tracts, and correlations fiom a survey of households, both from the Los Angeles area. 

They found a systematic increase in the correlation coefficients (and systematic changes in other 

bivariate statistics) as the number of aggregated units decreased. except for a slight decrease in 

the fifth level of aggregation fiom the value at the fourth level. They also conclude that their re- 

sults do not agree with a hypothesis by Bldock (1964) that changes in the slope coefficient are 

explained by the reduction in variation of the independent or dependent variable. but instead 

could be related directiy to how covariation changes with aggregation. and independently on the 

spatial autocorrelation of the micro- and macrolevel data. 

Openshaw and Taylor ( 1979) are credited with introducing the term Modifiable Area Unit 

Problem. They use a dataset of percentage voters for Repubiicans in the 1968 congressional 

elections as a dependent variable and the percentage of population over sixty as recorded in the 

1970 US census over the 99 counties of Iowa to exmine the effect of the MAUP on bivariate 

correlation coefficients. Ten thousand aggregations are performed at each of twelve different 

spatial scales, ranging from six to 72 areal units, and the correlation coefficients are computed. 

These aggregations are performed with two separate algorithrns, one that requires spatial conti- 

guity and one that does not. As Uustrated by their Table 5.2, they fmd that the range of correla- 

tion coefficients becomes broader as the number of zones decreases, to the point where dl possi- 

ble values for the coefficient are cornputed for the six and twelve zone groups. and even for the 



48 zones in the non-contiguous aggregations the range is from -0.967 to 0.995. No relation is 

found between the correlation coefficient and the relative loss of variation (original - aggregate 

variance)/(original variance) of the independent variable, though there is a systematic trend in of 

the loss of variation with scale. They aiso show that the interaction between spatial autocorrela- 

tion and the contiguous zoning procedure directly affects the resulting statistics. 

Fotheringham and Wong (1991) present the results of an analysis of the effects of aggre- 

gation on linear regression and logit models constructed from an 87 1 block group census dataset 

for the Buffalo Metropolitan Area. The models have four independent and one dependent vari- 

ables, and al1 variables are proportions in which the numerator and denominator are aggregated 

separately and divided after aggregation. This may have affected the results because each num- 

ber is the combination of two others. both of which are likely affected WerentIy by the MAUP. 

A systematic variation of the parameters for both models with scale is found, with some becom- 

ing more negative and others more positive as the scale (Le. the number of zones) decreases. To 

one degree or another, al1 show an increase in variation of values (and the standard erroa of the 

parameters) with the decrease in scaie. In an attempt to link the changes to spatial autocorrela- 

tion, the variation of the Moran Coefficient of the variables with aggregation is exarnined. Four 

of the five have curves that are approximately normal in shape, with the highest values in the in- 

termediate levels of aggregation. This differs significantly from my results as shown in Figure 

4.2 and in Reynolds and Amrhein (1998a). and may be due to the nature of the proportion vari- 

able that contains an irnplicit interaction between the spatial properties of two variables that are 

surnmed during aggregation. The coefficient of determination R~ is found to increase signifi- 

cantiy with the decrease in scale, which agah differs from my results (Reynolds and Amrhein, 

1996). Overail, Fotheringham and Wong are pessimistic about ever king able to deal with the 

MAUP in multivariate analysis. Again, rny preliminary results indicate that this pessimism is 

probably unfwnded. 

2.3. Theoretical Work 

The theoretical side of the research is represented in this review by three Papen. Steel 

and Holt (1996) present a list of "rules" for randorn aggregation as a summary of their results, 

based on the assumption that the groups are formed at random and that there is no association 

between the variate values and group rnembership. They are listed as follows. 



(1) The expectations of weighted group-levels statistics are not affected by aggrega- 
tion. Thus any observed change, as we change boundaries or scale, is caused by 
randorn variation. 

(2) The variance of weighted group-levels statistics is determined mainly by the n u -  
ber of groups in the analysis. If the number of groups is smail, this variation wüI 
be high and the likely range will be so large that in many cases useful inferences 
will not be possible. 

(3) Vdid confidence intemals and hypothesis tests cm be obtained by means of 
weighted grouplevel statistics. Even if the unit-level distribution is nomormal, 
the analysis of weighted group-level statistics cm proceed with procedures associ- 
ated with the normal distribution, provided that the sample size w i t b  groups is 
not very small. 

(4) Unweighted statistics have the same expectation as their weighted counterparts, but 
larger variances. Unless the variation in group population sizes is small, standard 
confidence intervals WU have Iess than the required coverage. 

Holt et ai. (1996) propose statistical models whose purpose is to explain the aggregation 

effect in populations composed of geographic groups. They conclude that the aggregation effects 

depend upon the sample sizes upon which the area means are based, the number of areas used in 

the analysis, and the strength of hua-area homogeneity on both variances and covariances for the 

variables of interest. Auxiliary variables are introduced that explain much of the intm-area ho- 

mogeneity, which leads to a decomposition of the aggregation bias into ~ K O  components, one at- 

tributed to a set of grouping variables and the other to a residual source of aggregation bias con- 

ditional on the grouping variables. With sorne information about the individual level covariance 

matrix of the grouphg variables, it is believed that an adjustment cm be made to eliminate the 

fmt component of the aggregation bias. 

Steel, Holt, and Tranmer (1996) use the same mode1 as Holt et al. (L996), but present a 

strategy for ideneing adjustment variables for which an estimate of the unit-level covariance 

ma& is available and that account for group effects. First, one must iden* a set of variables 

that covers the same subject area as the variables of interest, but for which both area level and 

unit level data are available fiom the put, such as previous census data. Variables (such as 

housing variables in their example) that are known to be strongly associated with areal differ- 

ences c m  be added to this set, so long as estirnates of both of the ara and unit level covariance 

matrices are available. A Canonical Grouping Variable analysis can then be carried out to ideo- 

ti@ the variables that load most strongly onto the most important CGVs. Finaliy, a set of ad- 



justment variables from the CGV analysis that is available within the current dataset and for 

which the unit level covariance matrix is available needs to be identified. These variables cm 

then be used to adjust the aggregate analysis for the variables of interest. 

This brief s w e y  of the extensive literature, as well as the more comprehensive surveys 

by Dudley (1991) and Openshaw and Taylor (198 l), indicate that little use has k e n  made of nu- 

merical simulations in the study of the MALP, primarily due to the computationaily intensive 

nature of the simulations. The dataset generator and aggregation models described in Chapter 3 

are a f i t  step towards rectiQing this deficienc y. 
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This chapter describes the spatiai dataset generator, the aggregation model, and the output 

diagrams in detail. It replaces technical descriptions that were present to varying degrees in the 

three papers that form the next three chapters. 

3.1. The Spatial Dataset Generator 

3.1.1. Introduction 

The need for a systematic study of the effects of the MAUP on summary statistics is c 

The literature, some of which is discussed in the previous chapter, contains many case studies of 

the effects of aggregation on various statistics using a single dataset for each study. Each set 

cornes with its own connectivity matrix and the variables have parameter values that are totally 

out of the control of the researcher. A researcher reviewing the Literature is likely to wonder if 

the results found from dataset X wül be replicatable for dataset Y, even though the initial corre- 

lations (for example) of the variables are completely different. Furthemore, many papers, such 

as Clark and Avery ( 1976), discuss the possible effects of spatiai autocorrelation on their results 

in passing, but since they have no convol over it. littie more than speculation can be stated. To 

date, there has k e n  no attempt to systematically Vary the dataset parameters in order to test their 

effects on the aggregated statistics, and it is this deficiency that my research is redressing. 

The method of generating synthetic spatial datasets discussed below is chosen because it 

allows the user to mate  a set of variables with specific levels of spatial autocomlation (as 

measured by the Moran Coefficient) and Pearson correlations exactly and directly, as opposed to 

other methods that take a set of existing values and rearranges them. Control over the spatial 

autocorrelation of the variables is a requirement for my research, as it plays an important role in 

the effect of spatial aggregation on statistics', while control over Pearson correlations was re- 

quired for the bivariate and multivariate experiments. Other methods of generating spatial data, 

such as the niming band method (see for example Bras and Rodriguez-Iturbe, 1985). work with 

only one variable at a time and make the data fit to a particular type of variogram (Journel and 

' A highly spatidly autocorrelated variable will tend to suffer l e s  from aggregation than one that is randomly or 
negatively autocorrelated because the observations that are aggregated tend to be similar to one another, hence l e s  
information (i.e. variabiiity) is lost. Section 6.4 discusses this in more detail. 



Huijbregts, 1978, p. 12), but this is not satisfactory because it is advantageous for this research to 

deai with a single number rather than a graph when attempting to descnbe spatial organization 

and link it to the behaviour of statistics under aggregation, and it is not intuitive how to link a 

variogram to a specific level of spatial autocorrelation. Using one of these methods also works 

on only one variable at a time, making the specification of correlations between them difficult. 

The Moran Coefficient (MC) is a convenient tool for measunng spatial autocorrelation in 

discretized surfaces, and for the purposes of this research it is also convenient for generating 

variables with specific levels of autocorrelation. It is, however, a fmt-order spatial statistic, 

since it only deds with irnmediate neighbours to a cell, and this, among other things, means that 

it is not unique. That is, many different spatial arrangements of a set of numbea can produce 

similar or equal values of the MC. The data generation algorithm discussed below unfominately 

lacks the ability to select a desired type of spatial arrangement (or even a specific one). This 

poses a minor problem, as the research shows that the arrangement of the values. especially for 

higher levels of spatial autocorrelation, affects the behaviour of the MC and the various bivariate 

statistics and interferes with the ability to draw highly general conclusions about their behaviour 

under aggregation. As the conclusions drawn are no less valid for this lack of control, a more 

systematic attempt to study the effects of spatial arrangement on the behaviour of moderately to 

strongly autocorrelated variables under aggregation cm be postponed as a topic for hture re- 

search. Since the generator is capable of producing a variety of spatial arrangements, it may be 

possible to modify it in the future to control just which arrangement it produces. This weakness 

does, unfortunately, make the dataset generator unhelpful in efforts to simulate real-world data- 

sets, since it is very often the arrangement of the values that is as much of interest as the values 

thernselves. 

Each synthetic variable created is a linear combination of eigenfunctions of the connec- 

tivity ma&, making control of the resulting fiequency distribution not possible with the current 

algorithm. The distributions are mound-shaped and unimodal, but not necessarily nomal (see 

Figure 4.1 for examples). Certain combinations of MC and Pearson correlation are also found to 

be incompatible, such as two variables with widely differing MCs but a high level of correlation. 

This is reasonable because if the two variables were highly correlated then one would expect 

their spatial arrangements to be similar, something which is not possible with widely differing 



MCs. The requirement that the covariance matrix be positive definite. which it must be by defi- 

nition, makes it difficult to create a large nurnber of combinations of MCs and negative correla- 

tions. FinaHy. although it is theoretically possible to create spatial datasets of any size, the effort 

required to compute and decompose MCsM (defmed below) increases extremely rapidy with 

size. These drawbacks and restrictions aside, the spatial dataset generator has proven to be a use- 

h l  tool for this preliminary empirical research into the effects of aggregation on statistics. 

3.1.2. Some Symbols Used in the Derivation 

The derivation of the method used to generated geo-referenced data uses the foliowing symbols: 

n = number of zones in a geo-referenced dataset 

p = number of variables in a geo-referenced dataset 

M = 1-llT/n is a projection matrix cornmonly found in statistics and is used for the matrk 

equivaient of sum of squares of deviations from the mean. 

C = the binary spatial connectivity matnx of the region, where ci,= 1 if region i is next to region j, 

otherwise cij=O. Most of the experiments are performed using an irregular ten-sided convex 

polygon illustrated in Figures 4.3 and 6.1 that is divided into 400 random Voronoi polygons. 

Some experiments in Chapter 4 are performed on a square region of dimension 20. 

1'1 
Cs =fi C , the scaled connectivity matrix, used in computing the Moran Coefficient 

Z1 = the covariance matrix of the intermediate variables V 

Z2 = the desired covariance matrix of the final variables X 

V = matrix of intermediate variables vi 

A = scaling ma& 

X = matrix of variables with desired properties xi; X=VA. 

3.1.3. The Dataset Generator 

Their aspatial nature makes setting means, variances, covariances, and correlations of 

variables to prespecified values a relatively simple task, as follows. Suppose a set of p variables 

V, each with n observations, is postmultiplied by a pxp matrix A to form X = VA. It is easy to 

show that the covariance matrix of X is 4 = A~&A. TO solve for A, define Li = B ~ B  and 4 = 

D~D, i.e. fmd the Cholesky decornpositions of the covariance matrices. It quickly foliows that A 



= B-'D. Changing a variable's mean requires nothing more than adding (pz-pl) to each observa- 

tion, where pi is the current mean and j ~ 2  is the required mean. To change a single variable's 

variance, each observation must be multipiied by oz/oi, where 01 is the current standard devia- 

tion and 0 2  the desired one. 

Unfortunately, the Moran Coefficient is not as readily bent to Our wiii. Written in maaix 

notation, its formula is MC@) = 
X~MC,MX . There is no simple general way to represent the 

x T M X  

MC of a variable that is a Linear combination of two or more other variables as a function of the 

MCs of these variables. Suppose, however, that we compute the eigensystem of MCsM = 

ENZT, where E is the matrix of eigenvectors and A is a matrix with the diagonal elements equal 

to the eigenvalues and the rest zero. Hence we cm rewrite the formula for the Moran Coeffi- 

cient: MC(x) = XTEmTX (Tiefelsdorf and Boots, 1995; Griffith, 1996). Let x be one of the ei- 
xTMX 

genvectors 4. By definition, the eigenvectors are al1 orthonormal, so that eiT~AETi reduces to k, 

and e i T ~ e i  reduces to one. Hence, the Moran Coefficient of an eigenvector of MCsM is just its 

correspondhg eigenvaiue. Using similar arguments, it can be shown that the MC of a iinear 

a2hi  + b2h, + c2h, +--- 
combination of eigenvectors y = aei + bej + cq, + ... is MC(y) = . Thus, +b2 + C 2  +... 

the key to creating variables with specifed Moran Coefficients lies in selecting appropriate Iinear 

combinations of the eigenvectors of MCsM. 

3.1.4. Worked Example 

The detailed description of the method below includes a worked example for the set of 

regions illustrated in the diagram on the next page. The desired values of statistics are: 

Variable 
1 
2 
3 
4 
5 

Mean Variance Moran Coef Correlations 
20 6 0.4 
20 6 0.2 -0.6 1.0 0.0 0.8 0.6 
20 6 -0.2 0.4 0.0 1.0 -0.2 0.2 
20 6 0.0 -0.4 0.8 -0.2 1.0 0.3 
20 6 O. 13 -0.8 0.6 0.2 0.3 1.0 



The diagram of the region (a random Voronoi tesseilation of Metro Toronto) is below. 

1. Compute the eigensystem of MCsM. 

Eigenvalues d 

Ei ~envec  tors 

2. One can create the covariance matrix Li by placing the variance of 4 on the diagonal of a pxp 
matrix, where p is the number of variables. This can be done because the eigenvectors are al1 
uncorrelated. as weU as orthonormai. We must do this step because we need to compute the 
s c a h g  matrix A so that the needed values of the MCs can be calculated in Step 4. 



3. Next one can create the scaling matrix A = B*'D, where B and D are the Cholesky decomposi- 
tions of Li and & respectively. 

4. Compute the MCs that each variable fi must have in order for the equivalent Xi to have the de- 
sired MC. This must be done because multiplying VA will chAnge the MCs for all  but the 
fmt  variable. The procedure is as foliows. Recalling that X and A are composed of p vectors 

of ien@ n, write X = VA (xi ,x,,x,,x,) = (v , . v, , v, , v, )A . Using the upper-tnangular 

Since the Vj are eigenvectors, the MCs of the xj are, using the relation previously defined, 

M, =(a;& +a& +a& +a:h,)/(a: +ai, +a& +a&)  
. - 

where Mj is the Moran Coefficient for variable j, and hj is the MC which Vj must have so that Xj 

will have the MC that is desired. Solving for kj gives: 

j-i 

X j  = [ M , 2 a s  - x a i & i l  

As can be seen, the required MC for variable j depends on the values of the MCs of the previous 
variables. If a value exceeds the bounds hi I MC 5 k,,, it means that the desired MC is not at- 
tainable with the current configuration of correlations and MCs. 

1 Variable 1 1 2 3 4 5 1 1 Required MC ( 0.4000 0.0875 -0.3625 -0.2875 -0.5263 1 



5. Randody select the eigenvalues hii and h2i that bracket each of the ~ q u i r e d  MCs. Select the 
vdue of b h m  a uniform random distribution and compute the requkd value of a using the 

formula a' = (:;-y) b' (hence the necd for the MC to be bracketed by th eigenvdues). 

Required MC 
0.4000 
0.0870 
-0.3620 
-0.2870 
-0.5260 

eigenvalue Eigenvalue 
Index Value Index Vaiue 

6. Create the variables Vi using Vi = aqi + bei,  where a is the eigenvector of the lower eigen- 
value and e.i is that of the upper eigenvalue. Scale the 9 so that their variances match the 
variance of e. 

Zone 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7. Compute X = VA and shift the values of the Xj so that their means equal the desired means. 
This is done by adding the difference between the desired mean and the current mean to each 
observation of Xj. 

Zone 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 



3.2. The Aggregation Mode1 

Because nearly alI spatial aggregations are perfomed by aggregating a number of con- 

tiguous spatial units into one unit, the aggregation program does the same. An aggregation is 

initiated by the random selection of M seed regions fiom the N regions of the spatial dataset, 

which are copied into an array of "just aggregated" regions. In each pass of the routine, the 

neighbours of aii of the recently aggregated regions are examined. Any neighbour that borders 

only one of the expanding cells automatically becomes a member of the new cell, while any 

neighbour that borders more than one cell is assigned to that ce11 currently having the fewest re- 

gions, in an attempt to keep the number of regions per cell as equai as possible. In either case, 

the region is added to the "just aggregated" region list for the next pass. Aggregation passes 

continue until no more fiee regions remain. The assignment process for region j consists of set- 

ting element j of an index array to the identifier of the seed region around which the ce11 is built. 

The new connectivity matrix is built by lookuig at the neighbours of the regions within each cell. 

The ce11 IDs of those neighboun that are outside the ce11 are added to the new neighbours k t .  

The new cells are then renumbered, the ce11 averages are computed, and the various statistics are 

computed using these average values, and then are stored. 

One "mn" of the mode1 consists of a set of eight independent aggregations, one to each of 

40%, 3545, ..., 10% of the original number of cells. One 'bexperiment" consists of 1000 runs per- 

formed on a given dataset. The 1000 values of each statistic for each level of aggregation are 

processed to produce the mem, standard deviation, maximum and minimum values that are used 

to plot the summary diagrams (see below). Each distribution is also tested for nomality using 

both the Kolmogorov-Smimov and Shapiro-Wilk test statistics. 

3*3* hterpretation of the Diagrams 

Consider the sarnple diagram below, which is a replica of Figure 4.2a Al1 figures consist 

of sets of eight h e s ,  where each set is based on the results for a particular variable, or in the case 

of the bivariate and multivariate experiments, a pair of variables. Each line in a set represents a 

distribution of statistic values for a given aggregation level as indicated in the legend at the bot- 

tom of the figure. Each line is marked with the extremes of the distribution (a symbol keyed to 

the level of agpgation), the mean (a heavy dot), and the mean plus and minus one standard de- 



viation (small horizontal hes), included to give an idea of the shape of the distribution. The 

standard deviation is chosen instead of the interquartde range that is used in the more standard 

box plots because it requires less effort to cornpute, it encloses more values, and the diagrams are 

aiso often so dense that a box plot would make them even harder to read. 

cscc Lcguid) 
Label for 
Variable 

One Std. 
Dcv. from 

MeaR 

Each set of Lines is labeled according to the nature of the experiment. either with the Mo- 

ran Coefficient(s) of the variable(s), or initial correlation of the variables in sorne of the bivariate 

experiments. This format is chosen because it allows a lot of information to be displayed com- 

pactly yet legibly, an important feature given the very large volumes of numbers the mode1 pro- 

duces. It would not be feasible to use three-dimensional plots, as it would be difflcult to plot all 

of this information legibly, especially for comparing results over different levels of aggregation. 
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4. The Effect of Aggregation On Univariate ~tatistics' 

The resistance of the Modifiable Area Unit Problem to analytical solution requires that it 

be investigated by numencal and empirical studies that have the potential to lay the foundations 

for anaiyticai approaches. The use of synthetic spatial datasets, whose spatial autocorrelation, 

mean, and variance of individual variables, and Pearson correlation between variables, can be 

controiled greatly enhances the ability of the analyst to study the M.#Il.JP in this manner. This 

chapter explores the effects of spatial aggregation on the variance and three univariate spatial 

autocorrelation statistics using a synthetic #region dataset. The relationship between the rela- 

tive change in variance and a modified version of the G statistic that was fmt proposed by 

Amrhein and Reynolds (1996, 1997) is explored in more detail. These results compare favoura- 

bly with results generated nom the Lancashire dataset of Amrhein and Reynolds (1996). 

4.2. Introduction 

The Modifiable Area Unit Problem (MAUP) has been the focus of research interest for 

many years, with the curnnt resurgence in interest king initiated by Openshaw and Taylor 

(1979) and fueled by the rapidly increasing computing power available to analysts. It is well 

known that the application of statistical results derived from one level of spatial resolution to a 

higher resolution (such as census tract data k i n g  used to predict individual household informa- 

tion) can result in serious erron; this ai l  too cornmon e m r  has k e n  named the ecological fol- 

lacy. An ancillary effect of the enhanced computing power is the proliferation of Geographical 

Information Systems (GIS) and other spatial analysis tools. As the MAUP has been either ig- 

nored or written off as intractable in many research results, it can be expected to get short shrift 

by users of this software who are unaware of the subtleties of spatial data analysis. The impor- 

tance of gaining an understanding of the MAUP and how it can be taken into account in GIS 

software to reduce the numbers of flawed analyses and their possibly expensive repercussions 

cannot be understated. 

' This is a modified version of the paper Reynolds and Amrhein (1998): Using a spatial dataset genentor in an em- 
priciai analysis of aggregation effects on univariate statistics. Geog. and Env. Modelling, 1(2), 199-219. 



Theoretical work such as  that by Arbia (1989). has shown that an analytical solution is 

possible, but under restrictive conditions that would seldom be found in real life situations. As a 

result, research into the MAUP has been primarily ernpuical, focusing on the effects of aggrega- 

tion on various statistics computed from a specific dataset. For exampie, Openshaw and Taylor 

( 1979) examine correlation coefficients using an Iowa electoral dataset, Fotheringham and Wong 

( 199 1) study multiple regression parameters using Buffalo census data, Amrhein and Reynolds 

( 1996). one of the papers in the special issue of Geographical Systems that focuses on the 

MAUP, and Amrhein and Reynolds (1997) study the effects of aggregation on univariate statis- 

tics and make a tentative link between a spatial statistic and the relative change in variance. 

Recognition of spatial pattern is a fundamentai requirement for iandscape ecology, and various 

spatial autocorrelation statistics, such as the Moran Coefficient, are ofien employed as a tool for 

this task (Jelinski and Wu, 1996; Qi and Wu, 1996); hence it is important to know how spatiai 

statistics are affected by aggregation as well. 

The use of synthetic spatial datasets overcomes the difficulties inherent in publicly avail- 

able sets, with census data king the prime example. Possible erron in the data notwithstanding, 

the greatest hstration for researchers into the MAUP is that one has no control over the values 

of spatial autocorrelation, means, variances, or Pearson correlations between variables; one rnust 

work with the data at hand. Amrhein (1995) is the fint to use synthetic datasets in the study of 

the MAUP by locating points randomly within a unit square, assigning them random values, im- 

posing various sized square grids, and aggregating the points within each square. This chapter 

extends this approach by employing more sophisticated synthetic datasets to explore the effects 

of spatial aggnrgation on the weighted variance and on three commonly-used spatial autocorrela- 

tion statistics, the Mora Coefficient, the Geary Ratio, and the Getis (G) statistic. The following 

sections discuss the method of analysis, the results, and the conclusions. 

43. Method 

The dataset generator, aggregation algonthm, and method for interpretation of the dia- 

grams are described in detail in Chapter 3. The frequency distributions of values tend to be 

mound-shaped and unimodal, but are not usuaily normal (see Figure 4.1 for examples). The Spa- 



tial comectivity matrix is created h m  either a rectangular grid or a tesseilation of randody- 

generated Voronoi polygons, depending on the experiment. 

Three spatial datasets of 400 Voronoi polygons and 8 variables are created using the data- 

set generator. In order to test the effect of spatial autocorrelation on spatial aggregation, the fmt 

two sets are created with variables that are mutually uncorrelated, have variances of 6.0 and 

means of 20.0, and have Moran Coefficients of -0.4, -0.2,0.0,0.2,0.4,0.6,0.8, and 1 .O. The 

non-zero mean is required so that ail values are greater than zero in order for the Getis statistic to 

be valid, as well as to match most real datasets. To see if the variance of the variable affects the 

aggregated values, another set is created with variables that are mutuaiiy uncorrelated and have 

means of 20.0, but have the same Moran Coefficient vaiues of 0.0 and variances of 5.0, 10.0, 

20.0,30.0,40.0,50.0,60.0, and 70.0. The random aggregation mode1 of Amrhein and Reynolds 

(1996, 1997) and Reynolds and Amrhein (1998)~ was nin 1000 times on each dataset and the 

relative change in variance, Moran Coefficient, Geary Ratio, and G statistic were saved for each 

of 8 levels of aggregation. Also saved were the following non-standard statistics: 

m m 

where Sc = and m is the number of aggregate ceus. MCi and GRi are just modified 

versions of the Mora  Coefficient and Geary Ratio, while G is the G statistic (Getis and Ord, 

1992; Ord and Getis, 1995) rnodified by dividing by the aggregate unweighted variance. These 

statistics are computed as part of the testhg of possible correlation between equation (3) and the 

relative change in variance in Section 4.4. Equation (3) is slightiy different h m  the modified G 

used in Amrhein and Reynolds (1996, 1997), who divided by the surn of squares of deviations, 

* DescIjbed in detail in Chapter 3. 



rather than the variance. To test the effectiveness of the new dataset generator at simulating a 

real dataset, the Lancashire dataset of Amrhein and Reynolds (1996) and a synthetic replication 

were run through the aggregation mode1 and the results are compared. It is impractical to attempt 

to replicate large datasets such as the Toronto set of Amrhein and Reynolds (1997). since the 

time and effort reqüired to compute the eigensystem of a matrix with 5370 rows and columns is 

enormous. 

4.4.1. The effeets of aggregation on the variance 

Figure 4.2a illustrates the aggregation behaviour of the relative change in variance 

(RCV), (0: - O:,) / O:, where O: is the variance of the N regions, and 

1 o:, = -x ni (xi -x)* is the aggregated variance that is weighted by the number of regions ni in 
N i,, 

the M aggregated cells. A value of RCV near one (as in the first group of lines in Figure 4.2a) 

means that the aggregated weighted variance is much closer to zero than the original variance. 

while a value near zero (as in the last group of lines in Figure 4.2a) means that the new variance 

is very similar to the original. The diagrams are explained in detail in Section 3.3. 

it can be shown that the variance of a spatially located variable can be partitioned into the 

sum of variances within various sub-regions and the variance of the average values of al1 the 

subregions (see Section 5.3 and Moellering and Tobler, 1973). The process of aggregation re- 

rnoves the former. so the more spatially homogeneous (i.e. positively autocorrelated) a vanable 

is, the smaller the variance within each cell will be (on the average) and hence the less variance is 

lost. As the number of aggregate celis decreases (i.e. fewer, larger regions), the loss in variance 

obviously increases, since a p a t e r  number of values are king lost. Both of these patterns are 

well demonstrated in Figure 4.2a As the number of aggregate celis decreases, the number of re- 

gions per celi increases on average. since the aggregation algorithm attempts to have sirnilar 

numbers of regions per cell, but does not strictly enforce this ideal. When significantly positively 

autocorrelated variables are aggregated, increasing the number of regions per ce11 increases the 

likelihood that more widely differing values wili be included in each cell. so one would expect 

the variability of possible aggregate variance values to increase with a decrease in the numbers of 



ceiis. With negatively or near-randomly autocorrelated variables, however, the tendency towards 

the juxtaposition of widely differing values means that as the number of regions per ceU in- 

creases, the oppominity for variation in the aggregate variance values wiii tend to remain the 

same or decrease. Both of these patterns are demonstrated in Figure 4.2a. When variables of the 

same MC but different variances were aggregated, it was found that the variance of the original 

variable had no discernible impact upon the distributions of the RCV (not show).  Only the spa- 

tial organization of the variable plays a major role in the w w  variance. 

4.4.2. The effects of aggregation on the Moran Coefficient 

Explanation for the changes in spatial autocorrelation, as explained by the aggregated 

Moran Coefficient, is more dificult. Figure 4.2b was created by mnning the mode1 on the same 

dataset as Figure 4.2a. Unfortunately. the nice clear pattern seen in the figure for variances is not 

present here. There is an upward trend in the ranges as the MC increases for the f ~ s t  three and 

last three variables, but the variables whose MCs are 0.2 and 0.4 behave very similarly to the one 

with MC of -0.2. Clearly the behaviour of the MC is much more complex thao the variance and 

further exploration is required. 

Figures 4.3a to 4.3d illustrate 16 variables, 8 on the irregular tessellation used in the other 

experiments and 8 on a 20x20 square grid. each of which has a MC of 0.8. Each figure has four 

variables illustrated at the top and their estimated variogram (Cressie, 1993, p. 69) below. The 

variograms are isotropic (Le. a function of distance only, not of direction) and computed using 

1 2 
the standard method of moments estimator 29(h) = - (z(s~) - 2(sj)) (Cressie, 1993, p. 

N(h) N(h) 

69), where h is the Euclidean distance between the points Si=(xi, B) and sj=(xj, yj) and Z(s) is the 

variable value at point S. Because the data locations are regions, their centroids are used for the 

values of S. This formula States that the value of the variogram at a distance h (plotted as the x 
2 

coordinate of the diagram) is the surn of ail the values of @si ) - Z(sj )) wherz the Euclidean 

distance between Si and s, is less than or equal to h divided by the number of pairs of points that 

meet this criterioo. The variogram "acts as a quantifîed summary of ai l  the avdable [spatial] 

structural information, which is then channeled into the various procedures of rzsource and re- 

serve evaluation" ( Jomel  and Huijbregts, 1978, p. 12). 



Figures 4.3a to 4.3d clearly show that variables with the same MC can have very different 

spatial structures, although the possibilities decrease as the MC approaches the maximum ai- 

lowed by the spatial structure. The location of the maximum of the variogram cm be used as a 

crude approximation of the length scale of the spatial structure. Variables with a short length 

scale, such as those in Figures 4.3a and 4.3b. also have variograms that oscillate about the as- 

ymptotic value. The downward component of the oscillation occun when the distances are great 

enough to reach fiom one cluster to another simila. one, alIowing more ciifferences between 

similar vaiues to be included in the sum, and the upward component occurs when the distances 

dlow more dissimilar pairs of values to be included in the sum. 

Figures 4.4a and 4.4b illustrate the effect of the spatial arrangement on the aggregated 

MC and RCV respectively. Each set of lines has a label that corresponds to the respective vari- 

able in Figures 4.3a to 4.3d. and the diagrams are divided into four sections to indicate in which 

figure each variable is located. As expected, the behaviour of both of the statistics is related to 

the arrangement of the values. As long as the aggregate ceus are, on average, of a similar or 

srnalier size than the length scale of the variable, then similar values will tend to be aggregated 

and hence the variance will not be greatly affected. With the aggregate cells having similar val- 

ues to the unaggregated cells, similar values will still tend to be next to each other and so the 

spatial autocorrelation will not be much affected either and in fact may even increase somewhat 

(Figure 4.4% Variables 1 1 to 15). As the number of celis decreases and size increases to reach 

and exceed the length scale. then more and more dissimilar values will be included within an ag- 

gregate celi and the loss in variance wiii be greater. Increasing variability of the values within 

the aggregate cells makes it more likely that dissimilar vaiues wiil be located next to each other 

in the aggregated region, hence l o w e ~ g  the spatial autocorrelation. sometimes dramatically, cre- 

ating a strongly negatively aggregated variable where it was strongly positive before. A more 

detailed analysis of spatial pattern's effect on aggregation will be a topic for future research. 

4 - 4 3  Frequency distributions 

As it is of interest, and potentidly useful, to learn about the fiequency distributions of the 

aggregated statistics, the distribution of statistic vaiues for each statistic at each level of aggrega- 

tion is tested for normality using botb the Kolmogorov-Smimov (K-S) and Shapiro-Wilk tesu. 



In order to see if having more points is beneficial, the tests are conducted cumulatively on the 

fmt 100 mns, the fmt 200 runs, and so on until aU 1 û o  points are included. Tables la  and lb 

(at the end of the chapter) present a summary of the K-S test results for selected statistics, aggre- 

gation levels, and numbers of runs for variables with initial MCs of -0.4 and 1.0 respectively. 

The second column lists the critical value of the KS test; if the computed statistic is less than it 

(for example, the RCV for 180 cells at 100 runs is 0.043 1 and the corresponding cntical value is 

0.1360) then the frequency distribution is normal. AU of the distributions are either normal or 

close to nomal, including the ones not shown. As a general rule, the distribution deviates more 

from a beU-shaped curve as the number of aggregate ceiis decreases. As the number of runs in- 

creases. the K-S statistics indicate a trend towards a less normal distribution. but this is probably 

at least partly an artifact of the n-IR dependence of the critical value. This sort of problem is 

common among simulation analyses in which one must &cide the optimum number of experi- 

ments based on an increase in accuracy due to more runs versus a stinnking confidence interval. 

For the most part, the values of the K-S statistic decrease slightly or remain about the sarne with 

increasing MC of the unaggregated variable. meaning that the values become more normally dis- 

tributed. Curiously, the RCV of the 180 ceU aggregation is a glaring exception to this observa- 

tion; why this is so requires further investigation. Tables 4.2a and 4.2b on page 3 1 present se- 

lected results for the Shapiro-Willc tests for the same variables as above, and the values corrobo- 

rate the conclusions drawn from the fmt two tables. 

45. CorreIaüng the change in variance with a spatial statistic 

Amrhein and Reynolds (1996, 1997) and Reynolds and Amrhein (1998) have indicated 

that a relationship could exist between the relative change in variance (RCV) and the aggregated 

G statistic, defmed as G by Equation (3), which is the classic G statistic (Getis and Ord, 1992) 

modifed by dividing it by the unweighted variance ai of the aggregated values. The pnmary 

challenge is to prove that this relationship is not simply due to the presence of similar terms on 

both sides of the equation: the weighted variance in the numerator of the Relative Change in 

Variance (RCV) and the unweighted variance in the denorninator of the modified G. 

Figure 4.5a iiiustrates the RCV as a function of the aggregated variable MCi, defined by 

Equation (2), for the variable whose initial MC is -0.4, while Figure 4.5b illustrates that of RCV 



and the aggregated reguiar MC. Plots for the modified and regular Geary Ratio are very similar 

and so are not shown. These plots and those of Figure 4.6 are created using the statistic values 

nom every tenth mode1 nul, and each level of aggregation has its own symbol. It is immediately 

obvious that the inclusion of the sum of squares of deviations term tums a fairly strong non- 

linear relationship into a very weak one. Figure 4.5 and the equivalent Geary Ratio plots serve as 

a counterexample to the argument that the relationship between the modifed G statistic and the 

RCV is caused by the inclusion of this tem. 

Figure 4.6a shows the relationship between the RCV and Loglo(G) for the variable with 

MC of -0.4. while 4.6b illustrates that between RCV and logidmodified G). The logarithm is 

required for clarity because the G and modüied G values occur over two orders of magnitude. It 

is clear that inclusion of the aggregated variance (with its sum of squares of deviations) creates a 

very good non-hear relationship where there was none before. Note that the initial MCs of -0.4 

are used in Figures 4.5 and 4.6 because they best illustrate the argument. With a linle work it cm 

be shown that the Moran Coefficient and modified G statistic can be written in terms of the 

Geary Ratio (for the former, see Griffith, 1987. p. 44), and it is this relationship, coupled with the 

evidence in Figure 4.5, that suggests that the relationship between the RCV and the modified G 

statistic is a reai one, and not one created by the presence of similar terms on both sides of the 

equation. 

With the above conclusion reached, the points for ail levels of aggregation and the vari- 

ous MCs of the original variables were fitted, using least squares, to an equation of the fom 

RCV = A*G + B*loglo(G) +C*M +D*loglo(M+a) + E. where G is the aggregated modified G 

statistic, M is the Moran Coefficient of the unaggregated variable, and a is a number iarge 

enough to ensure that the logarithrn is defined. In this case, ûc=û.5 since the lowest MC used is 

-0.4, but values in the 0.4 to 0.6 range produce fits with similar values of R~. The original MC is 

included in this equation because of the obvious dependence of RCV on it that is displayed in 

Figure 4.1 a. Fits generated from various datasets with variables of varying MC consistently gen- 

erated R-squared values in the 0.9 range and have very significant F-test results. Unfortunately, 

initial attempts to exploit this relationship to predict the variance of an unaggregated variable 

have not been successful, and work on this continues. 



4.6. Cornparison of syntheac data to a d dataset 

The use of synthetic spatial datasets to systematically examine the MAUP is essential, as 

reai datasets do not offer the fiexibility of spatial and aspatial parameter control that can be de- 

fmed by an appropriate experimental design. In auy son of empirical expriment, one must be 

able to identify any factors. such as the spatial autocorrelation and pattern, variance. and correla- 

tion of the variables or the level of aggregation, that might have an impact on the results. After 

these factors are identined. the experiments must be designed in such a way as to allow each 

factor to be systematicdy varied over its feasible or practical range in order to judge its influence 

on the outcome. When a single dataset is used, such as in Openshaw and Taylor (1979) to study 

com1ations, or in Fotheringham and Wong (199 1) to study multivariate statistics, the researcher 

is limited to whatever means, variances, correlations, MCs. and other properties that the variables 

have. Conclusions that are drawn cannot be tested for the effects of a different MC or correlation 

coefficient, resulting in what is effectively one tree in the forest of the behaviour of the MAUP. 

It is important, however, to see how weii the behaviour of a real dataset is rnirnicked by 

that of a synthetic counterpart, i.e. a dataset created to have the same MCs. variances, correla- 

tions, and means (so long as none of the synthetic variable values are negative). A good corre- 

spondence will increase confidence in the validity of applying conclusions about the MAUP 

based upon synthetic data to real world situations. Two weaknesses of this dataset generator be- 

came apparent during the experimentation that led to this paper. The fmt, an inability to control 

the frequency distribution of the values, often manifested itself in a need to shift the mean of a 

variable so that the lowest value was zero. but was otherwise not of much consequence. The 

second, an inability to control the spatial pattern of the values, poses a greater potentiai problem 

to dataset simulation, as  the behaviour of the spatial characteristics like MC depends on the Spa- 

tial arrangement (section 4.5.2) as well as the level of spatial autocorrelation inherent in it. 

To this end, we employ the Lancashire dataset previously used in Amrhein and Reynolds 

(1996). Figure 4.7 compares the behaviour of the RCV of aiJ eight variables in this dataset to a 

set of synthetic counterparts whose parameters match the originals. Generally speaking, there is 

a good correspondence between the locations of the means of the distributions from the two data- 

sets, though it c m  be seen that the values from the synthetic set generally occupy wider ranges. 

This difference may be caused at least in part by Merences between the spatial arrangements of 



the original and synthetic variable values (such as in Figure 4.9), and needs further investigation. 

Figure 4.8 compares the behaviour under aggregation of the Moran Coefficients of the variables 

in the two datasets. It can be seen that the last four variables of the sets behave similady, while 

the fmt four have often dramatic ciifferences, the greatest of which occurs with the fmt variable, 

MTDEP. Figure 4.9 compares the spatial distributions of the original and synthetic values of this 

variable, with the distribution ranges divided up such that each encloses an equal number of the 

304 wards to facilitate visual cornparison. The dramatic differences between the two, which both 

have an MC of 0.36, are more than likely to be the cause of the differences in the behaviour un- 

der aggregation of their MCs, as is mentioned above. 

The preceding experiments have demonstrated some interesting properties of statistics 

that are computed from spatially aggregated data. They were made possible by the creative con- 

trol over the synthetic data provided by the new generator. AU statistics, even the complex spa- 

tial ones, fall within weli-defmed distributions that are normal or neariy so, and whose parame- 

ters (mean and standard deviation) are determined by the level of aggregation. The RCV shows a 

strong dependence on the spatial autocorrelation of the original variable, as opposed to the spatial 

statistics like the MC and Geary Ratio whose dependence on the original spatial autocorrelation 

(as measured by the original MC) is unclear. The spatial arrangement of the data, especially for 

high levels of MC, also plays an important role for both the aggregated MC and variance. None 

of the statistics shows any discemible relationship with the variance of the unaggregated dataset, 

however, indicating that it is the spatial distribution of the values, rather than the values hem- 

selves, that largely determine the behaviour of the dataset under spatial aggregation. The RCV is 

also found to be highly correlated with a non-linear function of both the original MC and the 

modified G statistic, having an R~ value of the order of 0.9. It is argued that the strength of this 

relationship is not due to the presence of simiiar ternis on both sides of the equation (weighted 

variance in the LHS and unweighted in the RHS) but is in fact genuine. This represents a small 

step toward the ultimate goal of estirnating the values of the various unaggregated statistics, but 

more work is required in order to effectively exploit this relationship. Various attempts to use it 



to predict the original variance of an aggregated dataset have been unsuccessful, and research on 

this problem continues. 

The new spatial dataset generator provides more flexibility in the creation of datasets than 

does the old one. The pair-swapping algorithm employed in the older generator does not ailow 

for the creation of variables whose spatial patterns are representative of the entire range of possi- 

ble patterns, and also oniy allows the f i t  row of desired correlations to be computed. Unfortu- 

nately, it does not ailow for control over the final spatial distribution of a variable, or the fie- 

quency distribution of its values. m e  this does not appear to senously affect the ability of 

synthetic datasets to m e c  the aspatial aggregation properties of their univariate statistics, the 

behaviour of spatial statistics Like the Moran Coefncient can be dramaticdy different between 

the true variable and its synthetic counterpart due to differences in the spatial arrangements. It is 

clear that the dataset generator is still in need of some refmements. 

Among the most interesting and potentiaiiy usefbl results include the fact that aggregate 

statistics, both spatial and non-spatial. fom normal or nez-normal sampling distributions whose 

bounds are relatively small compared to the range of possible values of the statistics. This is a 

strong indication that the results of aggregation are not chaotic, but behave in a well-defmed 

manner. The normality of the distributions is interesting because of the complexity of the proc- 

esses involved especially for the spatial statistics. Since most statisticai theory is built around 

assumptions of normaily disûibuted data, a cynic would expect Murphy's Law to act to make the 

distributions something other than normal. Exploration of this feature is another topic for future 

research. Program to estimate the effect of the MAUP such as the ones used here have the po- 

tentiai to be incorporated into routines in GIS software packages once suficiently sophisticated 

algorithm. backed by a more thorough knowledge of the theory behind what is going on, be- 

corne available. As this occurs, one of the most troublesome sources of error in the analysis of 

spatialiy referenced data may findly be rendered tractable to even the most inexpenenced GIS 

users and the ultimate goal of being able to estimate the true statistical parameter values of a Spa- 

t i d y  aggregated dataset may fmdy be achieved. 



4.8, Tables 

Table 4.la: Selected K4 Test Statistics: Variable with Original MC of -0.4 

1 Critical 
K-S 

0.0962 
0.0680 
0.0555 
0.048 1 
0.0430 

1 RCV 1 Moran Coeff 1 Geary Ratio 1 Modified G 1 

Table 4.lb: Selected K-S Test Statistics: Variable with Original MC of 1.0 

1 ICriticalI RCV 1 Moran Coeff 1 Geary Ratio Modified G 1 
I R U N S I  K-S 1 1 8 0  40 1 1 8 0  40 1 1 8 0  40 

Table 4.2a: Selected Shapiro-Wik Statistics: Variable with Original MC of -0.4 

1 1 RCV 1 MoranCoeff 1 Geaw Ratio Modified G 1 

Table 4.2b: Selected Shapiro-Wük Statistics: Variable with Original MC of 1.0 

RUNS 
200 
400 
600 
800 
1OOO 

Moran Coeff 

180 40 
0.9824 0.9445 
0.9795 0.91 15 
0.9772 0.9239 
0.9782 0.9275 
0.9773 0.9295 

G e w  Ratio 1 Modified G 1 
RUNS 
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4.10. Figures for Chapter 4 

0.25 1 

Figure 4.1 : Frequency distributions of three variables generated by the new synthetic dataset gen- 
erator. The variables have M o m  CoeEcients of -0.4, -0.2, and 0.0 respectively. The 
distributions are clearly mound-shaped, but are not normal. 
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Figure 4.2: Variation of relative change in variance RCV (top) and MC with initial MC and ag- 
gregation. Note how the RCV has a weii-defrned variation with MC, but the aggre- 
gated MC does not 



Figure 4.3a: Examples of variables with Moran Coefficients of 0.8 (top) and the variograms of 
the variables (bottom). These variables all have a large number of small clusters of 
high and Iow values. indicating short length scales and hence aggregation effects 
wili be noticeable even for relatively smaii aggregated zones. 



Figure 4.3b: Four more variables with MCs of 0.8 with length scales longer than those of Figure 
3a. Note how the Iength scale is related to the number and positioning of clusters of 
similar values. 



Figure 4 .3~:  Four more variables with MCs of 0.8, ail with longer length scales. Note the lack of 
oscillation of the variograms after the peaks, compared to those of the p ~ v i o u s  fig- 
ures. 
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Figure 4.3d: The fmal four variables with MCs of 0.8, all with long length scales. On average, 
aggregation effects manifest themselves more slowly for these variables than for 
those with shorter length scales. 
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Figure 4 . 4 ~  Variation of the MCs of the variables in Figures 3a to 3d. It can be seen that the longer the length scale, the larger the 
region must be before aggregation effects become severe and the slower the rate at which the aggregated MC decreases. 
Each group of lines is labeled with the variable number; each set of four groups is labeled with the figure in which they 
appear. 





Figure 4.5: Relative change in variance (RCV) as a function of the aggregated MC without the 
sum of squares of deviations term (top) and of regular aggregated MC (bottom), for 
variable with initiai MC of -0.4. Note how adding the term signifïcantly worsens the 
relationship. 
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Figure 4.6: Relative change in variance (RCV) as a function of loglo(G) (top) and loglo(rnodified 
G) (bottom). Notice how, unlike Figure 5, adding the variance (sum of squares of 
deviations divided by M. the number of ceiis) improves the relationship. 
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Figure 4.7: Behaviour of the Relative Change in Variance with aggregation for the achiai Lanca- 
shire dataset (top) and a synthetic Lancashire dataset (bottom). Differences exist, but 
the generai patterns of behaviour are quite similar. 
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Figure 4.8: Behaviour of the aggregated Moran Coefficients for the actual Lancashire dataset 

(top) and a synthetic Lancashire dataset (bottom). The differences in behaviour are 
most likely due to the different spatial configurations of the values, as shown in 
Figure 4.9. 
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Figure 4.9: Cornparison of the original and synthetic variable 
MTDEP in the Lancashire dataset. 



5. The Effect of Aggregation on Bivariate Statistics 

The synthetic spatial dataset generator described in Chapter 3 was used to seek a relation- 

ship between the behaviour of aggregated bivariate statistics and the spatial autocorrelation of the 

variables. It is f m d  that a degree of dependence is visible, especially when their Mora. Coeffi- 

cients (MCs) are the same or when the initial cordation is zero. When the two variables have 

different MCs, the use of spatial autocorrelation is insufficient to completely describe the be- 

haviow of the statistics. especially that of the correlation and MC of regression residuals. Cûr- 

relation coefficients h m  a synthetic spatial dataset built on the Iowa co~ectivi ty mtrix behave 

in a similar manner to those denved fiom the data used in Openshaw and Taylor ( 1979), helping 

to c o d m  the utility of the synthetic data generator as a tool for anaiysis of the MAUP. A nu- 

mencd measure of spatial pattern is recognized as a requirement for more precise measurernent 

of the MAUP as it affects the more complex univariate, bivariate. and multivariate statistics. 

5.2. Introduction 

The dependence of bivariate statistics. primarily correlation, on spatial resolution is what 

initiaüy drew researchers' attention to what would be cded  the Modifiable Area Unit Problem 

(MAUP) (for example, Gehike and Biehl, 1934; Robinson, 1950). Studies using specific datasets 

have appeared sporadicaily in the literature since then (e.g. Clark and Avery, 1976). but the 

daunting computational requirements for even the most basic study meant that systematic studies 

have k e n  unfeasible until recently with the increasing availability of cheap, fast cornputers. 

Furthemore, studying bivariate statistics is complicated because they depend on the behaviour of 

two variables that are aggregated independently. 

Openshaw and Taylor's (1979) examination of the effects of spatial aggregation on cor- 

relation coefficients has been widely recognized as the inspiration of an increasing body of re- 

search (see the 1996 speciai issue of Geographical Systems). Reynolds and Amrhein (1998) and 

Chapter 3 point out that the use of specific datasets greatly restricts the abiiity of researchers to 

study the Modifiable Area Unit Roblem because the various spatial and aspatial parameters of 

the variables cannot be altered at will. The synthetic spatial dataset generator and random aggre- 

gation mode1 described in detail in Chapter 3 are employed here to extend the work of Reynolds 



and Amrhein (1998) to the bivariate statistics of covariance, correlation. regression dope pa- 

rameters, and the Moran Coefficient of the regression residuals (MCRR). Results fiom the analy- 

ses will be compared to results fiom Openshaw and Taylor (1979). The third section describes 

the rationale and method behind the experiments, the fourth and fifth present the results of the 

fmt and second experiments, the sixth section discusses the results, and the seventh presents 

conclusions of the chapter. 

Reynolds and Amrhein (1998) clearly demonstrate that the relative change in variance, 

defmed on page 23, is clearly affected by both spatial autocomlation and arrangement of the 

unaggregated variable and the number of aggregate cells. A similar formula cannot be used to 

express the change in covariance, unfortunately, because the covariance can be zero. Similar to 

the variance, the unaggregated covariance con be written as the sum of the covariance between 

the aggregated cells and the sum of weighted covariances within each ceii as foilows: 

where xij and yi, are the observations of the "independent" and "dependent" variables in the j-th 

region in the i-th cell, M is the number of aggregated cells, ni is the number of regions in ceii i, 

1 n8 1 M "a 1 
xi, = - x x i j  is the aggregated value of X in ceil j, X = - z x x i j  =-xnixi .  is the overail 

ni j=i N i-1 j-1 N i=I 

mean, and Covi(X,Y) is the covariance of the variables X and Y within aggregate celi i. The 

process of aggregation removes the weighted variances of variable X (and Y) within each aggre- 

gate ce11 and it removes the weighted covariances between X and Y. Unlike the variance. which 

is aiways positive, the covariance can be either positive or negative, so it is difficult to predict 

whether the net change for a given aggregation wiil be positive or negative. Intuitively, knowing 

the behaviour of variance, one would expect that covariance would tend to decrease in absolute 

value with aggregation (except of course when it is initially zero) due to a decrease in the vari- 

ability of both variables, with this tendency becorning more likely as the initial correlation be- 

tween the variables increases. 



Cov(X, Y) 
Studying the behaviour of the change in correlation, defined by g = , where 

%SI 

sj is the standard deviation of variable j, is complicated by the fact that the covariance and vari- 

ances of X and Y are ali independent, and so Vary independently under aggregation (s, and s, will 

both decrease, but the covariance c m  either decrease or increase). Openshaw and Taylor (1979) 

compare the aggregated comlation to the relative change in variance of the dependent variable, 

which, although not incorrect, is not anywhere nearly enough to gain an understanding of how it 

varies either due to spatial properties of the variables or to aspatial properties, such as the original 

correlation between the variables. Since the behaviour of the variance (and hence standard de- 

viation) is already known, the behaviour of the covariance needs to be examined dong with that 

of the correlation. To this end, the experiment is divided into two sections, the fmt in which 

both X and Y have the same level of spatial autocorrelation, as measured by the MC. and the 

second in which their MCs ciiffer. The behaviour of the linear regression dope parameter 

b,, = Cov(X, Y) I s: is also of interest, as it only depends on two independent, yer mathemati- 

cally similar, factors. Finally, if the regression residuals are spatidy autocorrelated, then the re- 

quirement of independent residuals is violated and the validity of the linear regression analysis is 

comprornised because the sampling distributions of the parameters, and hence the probabilities of 

Type 1 and Type II errors, are changed (Griffith, 1988, pp. 82-83). Cliff and Ord (1981, p. 191) 

show that the least squares estimator of $ has a variance that is higher when the residuals are 

spatially autocorrelated, and Dutilleul (1993) and Clifford et al. (1989) note that spatial autocor- 

relation in the variables requires a modified version of the t-test for the significance of the corre- 

lation coefficient. It is therefore of interest to analyze the spatial behaviour of the residual under 

aggregation to see if the process improves or worsens this problem. 

The spatial dataset generator described in Reynolds and Amrhein (1998) (and in more 

detail in Chapter 3) allows the creation of datasets with variables that have specified means, vari- 

ances, Moran Coefficients (MC) of spatial autocorrelation, and also of the rnatrix of Pearson cor- 

relations between the variables. The incompatibility of certain combinations of MC and correla- 

tion and the requirement of positive definiteness of correlation matrices both act to hamper in- 

vestigations of the behaviour of bivariate statistics, especidy for negative correlations. The da- 

tasets, generated on the irregular tesseilation of 400 regions posited by Reynolds and Amrhein 



( 1998) (and Chapter 4), atteinpt to observe the widest possible range of combinations of MCs 

and conelations. The first expriment involves setting the MC of each of five variables to the 

same value (ranging between -04 and 1.0) and having the correlations between them set to val- 

ues between -0.8 and 0.8. The second experiment requires that as many correlations as possible 

be f i e d  at a specific value while the MCs of the variables be varied within the bi t s  imposed by 

the desired covariance mnaix. In both experiments, the variances of the variables are set to 6.0 

and the means to 20.0 in order to have non-zero values to better simulate real data. Each dataset 

is run through the random aggregation model of Reynolds and amrhein ( 1998) (described in de- 

taii in Chapter 3) 1 0  times, with the desired aggregated statistics computed and stored after 

each nui, and the overaii distributions of the statistics tested for normality using the Kolmogorov- 

Sminiov test. 

5.4. Results for fiid Moran Cdcients ,  varying correlations 

Figures 5.1.5.2, and 5.3 illustrate the changes in covariance. correlation, and the upper 

triangle of the regression slope parameters matrix. when both variables have the same MC and 

different correlations, for MCs of a) -0.4 and b) +O.& The lower triangle slopes behave in a 

similar manner and are not shown. These figures are generated by running the model on a data- 

set with five variables, and hence with a possibility of ten different correlations. Nine of the cor- 

relations are labeled on the plots and range from -0.8 to 0.8; the tenth is set to a value that makes 

the covariance matrix positive definite. Since this value is between -0.8 and 0.8, it is felt that 

including its results would not be necessary for the analysis. As explained in Chapter 3, each 

group of lines represents one statistic of interest, in this case a particular initial correlation. and 

each line in a group represents the range of values of the aggregated statistic for a particular level 

of aggregation. The heavy dot represents the rnean of the distribution, and the tic marks above 

and below it are one standard deviation away fiom it, to give an idea of the shape of the distribu- 

tion. As it tums out, nearly ail of the frequency distributions of ail of the statistics generated by 

these experiments are normal, according to the Kolmogorov-Smirnov test. and those that are not 

too different from normal, so this will not be further discussed. One of the features of al1 three 

figures is the symrnetric behaviour of the statistics, which is not unexpected since greater organi- 

zation is represented by values M e r  away from zero in either direction. 



Figure 5.1 illustrates a clear trend towards zero covariance as the number of aggregated 

cells decreases. Table 5.1 illustrates these observations numerically, with the top row behg the 

value of the MC of both variables, the oext row being the original correlation. the third king the 

original covariance values. and the entries king the mean values from 1000 runs of the aggrega- 

tion model. Clearly the covariance tends to behave like the variance. at Ieast when the MCs of X 

and Y are the same, even though the weighted sum of intemal covariances nom Equation (1) can 

be either positive or negative. The change in the concavity of a Line formed by the heavy dots. 

which are the means of the distributions in each group of lines. as the MC of the two variables 

becomes more positive is also worthy of note. as it mimics that of the variance as shown in Fig- 

ure 4.2. The range of values increases with decreasing number of aggregate ceiis for highly auto- 

con-elated variables, while the range decreases with decreasing number of cells for negatively 

correlated variables. a pattern that shows up again in Figure 5.5a. 

The table and figure show that more covariation is lost (in the sense that the covariance is 

brought closer to zero) when the variables are negatively autocorrelated (about 96% between 400 

regions and 40 cells) or weakly positively autocorrelated than when strongly autocorrelated 

(about 58%), and these losses are approximately the same for al1 levels of initial correlation. 

m e n  X and Y are both strongly positively autocorreiated. the juxtaposition of simfiar values 

means that the spatial arrangement of aggregated values wil1 be similar to that of the unaggre- 

gated values, and thus the change in covariance will not likely be as great as it will be for less 

spatially organized variables. The covariance will tend to decrease (if initially non-zero) during 

aggregation because the change in spatial arrangements of both variables is more likely to rnake 

their association more random than it is to make it more related. When both variables are highly 

autocorreiated, their covariance. like their individuai variances, WU tend to Vary more as the 

number of aggregate cells decreases because it becomes more Likely that the larger cells will 

contain greatly differing values and so increasing the (co)variance lost. 

Figure 5.2 iilustrates the aggregation effect on the correlation for pairs of variables with 

the same MC, while Table 5.2 presents numericd values from selected original correlations, 

whose values are the means of the 100 runs of the aggregation mode1 and are represented in the 

figure by the heavy dots. In general, the means of the distributions remain close to the original 

values of the correlation coefficients and do not change significantly with the level of aggrega- 



the range of values increases markediy as the MC decreases. As the number of aggregate cells 

decreases, the mean correlation tends to decrease in magnitude when the variable MCs are posi- 

tive, but tends to increase slightly as the MCs decrease. Since a change in comlation is the result 

of a combination of decreases in magnitude of three factors, the standard deviations of X and Y 

in the denominator and their covariance in the numerator, a net decrease is caused by the covari- 

ance decreasing more than the standard deviations, while a net increase is caused by the standard 

deviations decreasing more than the covariance. Men X and Y are strongly positively autocor- 

related, neither their individual vanances nor the covariance between them are much af5ected by 

aggregation, hence the correlation coefficients tend to not be greatly affected by aggregation ei- 

ther. As the MCs of the variables decrease, X and Y become more likely to Vary differently from 

each other under aggregation because of the increasing tendency for dissimiiar values to be lo- 

cated next to each other, resulting in a greater variation of aggregated results. 

Figure 5.3 shows the behaviour of the upper triangle of the rnatrix of regression slope pa- 

rameten for the MCs of -0.4 and 0.8. lt cm be seen that these slope parameters. dong with those 

in the lower triangle (not shown), behave very simiiarly to the correlations, which is reasonable 

since the two statistics have similar forms and since the denominator ternis s,s, for correlation 

and SI for the regession slope both represent the products of two variables with the sarne MC. 

Figure 5.4 shows the behaviour of the upper triangle of the rnauix of Moran Coefficients 

of the regression residuals (MCRR) when the MCs of the variables are -0.4 and 0.8; those from 

the lower triangle behave similarly and are not shown. Since the iinear regression procedure ig- 

nores the spatial locations of the variables, it is expected that the regession residuals should have 

a similar level of spatid autocorrelation as the original variables when they both have the same 

MC. As Chapter 4 shows, variables with the same MC will not necessarily have the same spatial 

arrangement and hence their statistics will behave differently under aggregation, with the MC 

itself being the most unpredictable. AU of the plots show a tendency for the residuals to become 

more randomty autocomlated as the number of aggregated zones decreases, with this becoming 

more defined as the MCs of the variables increase. This fmding reflects the behaviour of the ag- 

gregated MCs as discussed in Chapter 4. It cm also be seen that the behaviour of the MCRR is 

almost independent of the initial correlation of the two variables for these two MCs, although 



there is a slight downward trend with increasing correlation visible when the variables have in- 

termediate values of the MC (not show). 

55. ReSuIts for fmd correlation, varying Moran Coenicients 

When the MCs of X and Y are allowed to Vary independently, the number of potentiai 

combinations of MC and correlation increases drarnatically. Some of them can be ruied out as 

impossible to create, if not theoretically then ai least with the dataset generator, these k ing  sets 

with variables that have high correlations and greatly differing MCs. This is not unreasonable, 

since highiy correlated variables need to have similar spatial arrangements and this is simply not 

possible with variables that have very different spatial autocorrelations. Setting al1 of the corre- 

lations to the same value and varying the MC can be done for any value of the correlation that 

exceeds -0.2; for correlations less than -0.2 only the top row (and leftmost column from symme- 

try) of the matrix were set to the desired value and the remainder were adjusted until the covari- 

ance matrix became positive definite. Severai different datasets are required for the larger cor- 

relations (especially large negative ones) in order to examine as many combinations as possible, 

which has the unforninate effect of introducing pairs of variables with the sarne MCs and differ- 

ent spatial arrangements, whose aggregated statistics behave differently from each other and 

make it harder to derive general conclusions. 

Interpretation of the results becomes more complex with this experiment as well. AU of 

the remaihg diagrams are similar to Figures 5.1 to 5.4, except that the initial correlation of the 

two variables is held constant while their respective MCs Vary. Hence, the groups of lines are 

labeled (MC,, MCy), representing the Moran Coefficients of the independent and dependent vari- 

ables. Figure 5.5 shows the behaviour of the covariance. correlation. upper triangle of the matrix 

of regression dope parametes. and the upper triangle of the MCRR for an initial correlation of 

0.0, for which only one data fde was required to be generated. The fmt three statistics have ini- 

tial values of zero and are equally iikely to be positive or negative on aggregation, as the symme- 

try of the diagrams confirms. The most interesthg feature of Figure 5.5a is the transition from 

the covariance increasing with decreasing number of aggregate ceils for two highly autocorre- 

lated variables (left hand group of lines) to it decreasing with decreasing number of cells for two 

negatively autocorrelated variables. This can also be seen in Figures S. la and 5.1 b for dl the 

initial correlations, and is explained in the previous section. 



Figure 5% shows that the range of aggregate correlations increases with decreasing 

number of cells for all combinations of variable MCs. As the MC of either variable decreases, 

the range of comlations for all levels of aggregation increases. Since the variability of the co- 

variance does not appear to be much affected by the spatiai autocorrelations of the two variables, 

as Figure 5.5a shows, this behaviour is due to the increasing variability of the variance (and 

hence standard deviation) of a variable as its MC decreases. The variabiiity of the regression 

dope parameters increases as the difference between the MCs of the two variables increases, as 

shown in Figure 5.5~. and as with correlations it can be aîtributed to the variabili~ of the vari- 

ance of the independent variable increasing with decreasing MC. Finally, since the original slope 

parameter is zero for the uncorrelated data, the regression residual will be just the deviation of 

the dependent variable from its mean and hence the MCRR is the MC of the dependent variable. 

Figure 5.5d shows that indeed the variation dws not depend on the independent variable's MC. 

As the original level of correlation between the two variables increases, similar patterns 

appear in the aggregated data as in the zero correlation example, albeit usually with less syrnme- 

try. As one would expect, the patterns for initially negative correlations are similar to those of 

their corresponding positive correlations, but reflected in the x-axis. Figure 5.6a the change in 

covariance for an initial correlation of 0.4, illustrates the tendency for covariance to decrease in 

absolute value as the number of aggregate cells decreases, and as the MC of either variable de- 

creases. As with the zero correlation case, the size of the range does not usually change signifi- 

cantly with the number of cells, except for cases of two highly autocorrelated variables, when the 

range increases with decreasing number of cells, and two negatively autocorrelated variables 

when the range decreases with decreasing number of cells. 

The behaviour of the regression slope parameter bi, is more regular than that of the other 

two statistics. Figure 5.6b shows the upper triangle of the matrix of bi for an initial correlation of 

0.4 and was created by merging the results from two different files. The pattern with the zero 

initial correlation is repeated here, with the range showing a tendency to increase for aii levels of 

aggregation as the independent variable decreases in MC, but with only a slight dependence on 

the dependent variable's MC, which is reasonable given that the only influence the dependent 

variable can exen on the regression slope is through the covariance. 



Because the initiai MCRR is very different for each variable, the ciifference between it and 

the aggregated MCRR is examined. It can be seen that. at least for the case of an original cornla- 

tion of 0.4 shown in Figure SAC, the behaviour seems more related to the MC of the independent 

variable than that of the dependent variable. as was the case for the initial correlation of 0.0. A 

general trend toward decreasing MCRR for higNy autocorrelated variables and increasing MCRR 

for negatively autocorrelated variables indicates a tendency toward more random autocorrelation 

of residuais being produced by aggregation. indicating again that aggregation may actudly im- 

prove the statisticd reliability of regression results. Unfortunately, the need to create and merge 

several fdes for the initial correlation of 0.8 case mJ the resulting influence of the initial spatial 

distributions make drawing conclusions for higher correlations dficult (not shown). 

As the initial level of correlation increases, the behaviour of the aggregated correlation 

becomes more unpredictable. When the initiai correlation is moderate. such as in Figure 5.7a 

where it is 0.4, there is a strong tendency for correlations to increase with aggregation for al1 but 

the least spatially autocorrelated pairs of variables. This agrees with the general conclusions of 

papers published prior to Clark and Avery (1976) that state that correlations tend to increase with 

aggregation (Clark and Avery, 1976). a conclusion somewhat discounted by Openshaw and 

Taylor's (1979) results which show the peaks of the various distributions at or near the original 

correlation value. Clark and Avery's (1976) results show a correlation coefficient that increases 

steadily with level of aggregation from its initial value near 0.4. except for the last level where it 

decreases slightly, a behaviour that they considered an anomaly. Robinson ( 1950) described a 

correlation coefficient that increased from 0.203 at the individual level to 0.773 at state level and 

0.946 at the (U.S. Census) division level, and Gehlke and BieN(1935) presented two, the fmt 

which increased in absolute value monotonically from -0.502 to -0.763 and the second which 

started from -0.563, decreased in absolute value and then increased to end at -0.62 1. No infor- 

mation on the spatial autocorrelations of the variables was available for either of these three pa- 

pers, but it is reasonable to assume that they were moderately positive. 

Figure 5.m shows the change in correlation for an initial correlation of 0.8 and graphi- 

caily illustrates that the tendency for comlations to increase with aggregation does not always 

hold, at l e s t  not for highly correlated variables. Each group of lines in a dashed box represents 

the behaviour of the aggregated correlation between two variables with the same combination of 



MCs as the other group. It can be seen that pairs of variables with the same MCs c m  behave 

quite differentiy under aggregation, an effect that is likely caused by ciifferences in the spatial ar- 

rangements of the dependent and independent variables. This behaviour is a good subject for 

future research. 

5.6. Discussion 

In order to facilitate comparison with Openshaw and Taylor's (1979) study of the aggre- 

gation effect on correlations, a dataset with 8 variables, whose MCs altemate between 0.37 and 

0.43, and which are aii mutually correlated at 0.3466, is created using the correlation rnavix of 

the 99 counties of the state of Iowa. Unlike the MCs and correlation, the means and variances 

were not stated in the paper, so they were ail arbitrady set to 20.0 and 6.0 respectively, the same 

as in the other experiments. The aggregation mode1 is only run 1000 times on this dataset, as 

cornpared to the 10,000 runs of Openshaw and Taylor (1979), but prior experience has shown 

that there is littie to gain in going beyond 1000 ruas. As the mode1 automaticaIiy generates eight 

levels of aggregation, from 45% to 10% of the original number of cells, the counties were aggre- 

gated to 45,40,35, . . ., and 10 regions. Figure 5.8a shows the variation in correlation between 

the pairs of variables whose MCs were 0.37 and 0.43. Table 5.3 presents sumrnary information 

for the thiaeeath group of lines of Figure 5.8% which was selected because it has arnong the 

greatest extremes in the 10 aggregate ceUs values. 

The patterns of the figure and the table show behaviour similar to that in Openshaw and 

Taylor's ( 1979) Figure 5.1, with normaily or near-normaliy distributed variables whose fre- 

quency distributions becorne wider and flatter as the number of aggregate cells decreases. Figure 

5.8b provides a comparison to a synthetic dataset in which al1 variables have MCs of 0.4 and 

varying degrees of correlation, as in Figures 5.1 to 5.4, but generated on the Iowa comectivity 

matrix, and it can be seen that the third group of iines from the right, representing the original 

correlation of 0.4, is similar to the groups in Figure 5.8a. The wider ranges in Figure 5.8b, as 

compared to a similar diagram for the 400-zone comectivity maerix (not shown, but see Figure 

5.2), is due to the smder  number of zones in the Iowa dataset because the smaller numbers of 

zones means that dissimilm values will be closer together and hence more likely to be included 

within aggregate cells. This, plus the behaviour of the means of the distributions, which both 

increase, decrease, and remain approximately the same, emphasizes the above conclusion that the 



behaviour of the correlation under aggregation is very dacuit to predict and wiil depend on the 

spatial configurations and number of observations of the two variables. 

5.7. Conclusions 

The synthetic spatial dataset generator of Reynolds and Amrhein (1997) is used to search 

for a relationship between the effects of aggregation on the covariance and correlation and the 

spatial autocorrelations of the two variables whose interaction is rneasured. Two experiments are 

performed, the fmt in which the Moran Coefficients of the variables are equai and the correia- 

tions varied, and the second in which the correlations of variables are held constant and their 

MCs are varïed. In both experiments, it is observed that the magnitude of the ranges of the co- 

variances decreases with the decreasing number of aggregate ceiis for low values of variables' 

MC, but this gradually changes as the MCs increase until the ranges increase with decreasing 

numbers of aggregate celis. Even though the covariance can either increase or decrease with ag- 

gregation, unlike the variance which always decreases, in the vast majority of cases it decreases 

in magnitude, showing that variability is lost both within each variable and between them. One 

common factor of al1 the statistics and levels of aggregation is that all of the frequency distribu- 

tions are either normal or n e d y  normal, even for the very complex MC of regression residuals 

(MCRRI- 

When both of the variables have the same Moran Coefficient, the behaviour of the co- 

variance, correlation, and regression slope parameter pi is quite regular, with the ranges of the 

statistics tending to increase as the MCs decrease, increase as the number of aggregate cells de- 

creases, and decrease as the onginal correlation increases in magnitude. The MCRR shows little 

variation with initial correlation, but its behaviour changes as the MCs of the two variables in- 

crease, showing a marked tendency to decrease as the nurnber of aggregate ceiis decreases. Since 

spatial autocorrelation of residuals is a violation of the desirable property of independent residu- 

als, the decrease in MC indicates that the quality of results of h e a r  regression will actually be 

improved by aggregation, although the loss of information through aggregation makes this im- 

provement questionable. 

When the variables' MCs differ and the initiai correlation is zero, the behaviour of the 

bivariate statistics is still reasonably regular. The covariance has its properties discussed above. 

while the range of correlations shows a definite trend toward increasing as the MCs of the vari- 



ables decrease. As expected, the greatest variability in the bi values occurs for the variables with 

the greatest differences in MCs, while again the ranges generally increase as the MCs of the vari- 

ables decrease. The behaviour of the MCRR depends on the MC of the dependent variable only, 

since an initially zero bi means the initial MCRR is that of the deviation of y about its mean. 

When the variables' MCs differ but the initial correlation is non-zero. diable prediction of the 

statistics becomes much more difficult. especially for MCRR and correlation, as differences in 

results due to different spatial configurations of the variables can be dramatic. The unfortunate 

conclusion that must be drawn is that prediction of the unaggregated values of bivariate statistics 

will be, if possible at aU. a very ~ t c u l t  process. Clark and Avery (1976) hypothesize that de- 

viations in the behaviour of the coefficients are related directly to how the covariation is affec ted 

by aggregatioo and indirectly by the spatial autocorrelations of the variables, but do not agree 

with a hypothesis by Blaiock (1964) that the deviations are caused by reduction in variation of 

the dependent or independent variable. My results indicate that both are partiaiiy correct - the 

behaviour is related to ail of these causes, which is why they, using only a few real datasets with- 

out the benefit of being able to Vary parameters at wiU, had difficulty drawing their conclusions. 

In order to compare the results of the experiments to those of Openshaw and Taylor 

(1979). a synthetic dataset was generated on the comectivity matrix of the 99 counties of Iowa 

whose variables have MCs of 0.37 and 0.43 and correlations of 0.3466 to match the properties of 

the variables in that paper. The results appear to be in agreement. with the distributions becom- 

ing wider and flatter with aggregation. and the ranges becoming quite large as the number of 

zones becornes small. The ranges are larger with the smaller number of initiai regions as corn- 

pared to the 400 zones of the test datasets because dissimilar values are closer together. even for 

high MCs, increasing the chance of having aggregate cells with larger intemal variations. The 

fact that some distribution means increase, while others decrease or stay roughly the same. high- 

lights the dependence of the correlation on the spatial distribution of the variables, even though 

the correlation has no spatial component. 

Statistical simulation is proving to be a useful tool in the continuing attempts to under- 

stand the workings of the MAUP, especially with the more complex bivariate and rnultivariate 

statistics. Unfortunately, it seerns that a higher Ievel of sophistication than the Moran Coefficient 
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is required to nwnericaiiy describe the spatial pattern if attempts to predict and hence exploit the 

behaviour of statistics under aggregation are to have any hope of success. 
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5.9. Tables 

Table 5.1: Variation of the covariance with original MC of the variables and correlations 

Original MC = -0.4 
r = -0.6 r = 0.4 r = 0.8 &gjJma@m .-.*i 4- , A Q L L - u b r .  

- 1.0733 ' 0.6401 1.3696 
-0.8969 0.5340 1.1428 
-0.7287 0.4296 0.9260 
-05844 0.3404 0.7388 
-0.4299 0.260 1 0.5497 
-0.3204 0.1869 0.4054 
-0.2095 O. 12 17 0.2640 
-0.1 15 1 0.0688 0.1457 

Table 5.2: Variation of the correlation with original MC of the variables and correlations 

Original MC = 0.8 

Table 5.3: Summary information for the thirteenth group of distributions in Figure 5.8a 

Mean Std Dev Min Max Range 
0.3466 
0.3193 0.0500 0.1497 0.4938 0.3440 
0.31 12 0.0557 0.0761 0.4500 0.3739 
0.3048 0.0643 0.0898 0.5023 0.4125 
0.2928 0.0767 0.0048 0.5254 0.5206 
0.28 13 0.0% 1 -0.1720 0.5309 0.7029 
0,2692 O. 1 166 -0.2637 0.6245 0.8882 
0.2483 O. 1672 -0.5425 0.70 13 1.2438 
0.22 12 0.2565 -0.7585 0.9003 1.6588 



5.10. Figtlres for Chapter 5 

a) 2.5 

Figure 5.1: Variation of aggregated covariance with initial correlation where dependent and inde- 
pendent variables have MCs of (a) -0.4 and (b) 0.8. Note how the concavity of the 
iine joining the heavy dots changes between the diagrams. 



Nuaiberal A ~ ~ r c ~ a r e C c l i s  1-45 -40 -35 *30 -25 +ZO -15 -10 +SiJ Dev - c h l e a n /  

Figure 5.2: Variation of aggregated comlation with initial correlation where dependent and inde- 
pendent variables have MCs of (a) -0.4 and @) 0.8. Note the symmetry of the ranges, 
and how the ranges decrease with increasing MC of the variables. 



Figure 5.3: Variation of aggregated upper triangle (row is independent, column dependent) of the 
matrix of regression dope parameten with initiai correlation, where dependent and 
independent variables have MCs of (a) -0.4 and @) 0.8. Note the general lack of de- 
pendence on initial correlation. The lower triangle behaves similady. 



Figure 5.4: Variation of the MC of regression residuals with the original correlation, where de- 
pendent and independent variables have the onginal MC of a) -0.4 and b) 0.8. Note 
the general lack of dependence on correlation. 



Figure 5.5: Variation of covariances (top) and correlations with the (MC independent. MC de- 
pendent) variables for an initial correlation of 0.0. Note how the pattern of change in 
a) is similar to that between Figures 5. la and 5. lb. 



T t t  

Figure 5.5, con't: Variation of upper triangle of regression dope parameters (top) and change in 
MCRR with the (MC independent, MC dependent) variables for an initial correlation 
of 0.0. Note the lack of dependence of MCRR on the MC of the independent variable. 
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Figure 5.6: Variation of covariance (top) and upper triangle of the matrix of regression slope co- 
efficients with the (MC independent. MC dependent) variables for an initiai correla- 
tion of 0.4. 



Figure 5.6 (con't): The change in the M C R ~  wiih the (MC independent, MC dependent) vari- 
ables for an initial correlation of 0.4. Again note the generai lack of dependence on 
the independent variable, and how it tends to decrease for the high MCs and increase 
for the low MCs, indicating a generai trend towards random autocorrelations. 



Figure 5.7: Variation of correlation with the (MC independent, MC dependent) variables for ini- 
tiai correlations of 0.4 (top) and 0.8. Note the often wide variation in behaviour of 
correlations in the dashed boxes where the dependent and independent variables have 
the same MCs, Likely caused by ciifferences in spatial arrangements of the variables. 
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Figure 5.8: Variation of correlation for several combinations of variables whose MCs and corre- 
lations mimic those used in Openshaw and Taylor (1979) (top). and for a set of vari- 
ables with MCs of 0.4 and different correlations (bottom). These results generdy 
agree with those of Openshaw and Taylor. 



6. The Effects of Aggregation on MuMivariate Regression ~ararneterd 

Several empirical studies of the Modifiable Area Unit Problem (MAUP) have been per- 

formed on census data, one of which has k e n  about its effects on multivariate regression analy- 

sis. Recognizing that as much control as possible needs to be exerted in order to effectively 

study the MAUP, a spatial dataset generator was created that allows the user to constmct sets of 

variables with various spatial and aspatid properties. The effect of aggregation on multivariate 

regression parameters, with special attention to the influence of spatial autocomlation, is studied 

using a number of synthetic datasets created by the data generator. It is found that the effects de- 

pend on the combinations of autocorrelations of the unaggregated dependent and independent 

variables. It is aiso found that aggregation introduces collinearities between independent vari- 

ables where none existed before. The pattern displayed provide hope that the effects of the 

MAUP on multivariate regression may not be as unpredictable as was once feared. 

6.2. Introduction 

The Modifiable Area Unit Problem (MAUP), a term introduced in Openshaw and Tay- 

lor's (1979) classic chapter, has long been recognized as a potentially troublesome feature of 

spatially aggregated data, such as census data. Aggregation of high-resolution (i.e. a large num- 

ber of small spatial units) data to lower resolution (i.e. a srndler number of larger spatial units) 

areas is an almost unavoidable feature of large spatial datasets due to the requirements of privacy 

andor data manageability. When the original data are aggregated, the values for the various uni- 

variate, bivariate, and multivariate parameters wiU more than Likely change because of a loss of 

information. This phenornenon is called the scale effect. The N spatial units to which the 

higher-resolution data are aggregated, such as census enurneration areas or tracts. postal code 

districts, or political divisions of various levels, are arbitrarily created by some decision-making 

process and represent only one of an ahost  *te number of ways to paxtition a region into N 

cells. Each partitioning wili result in different values for the aggregated statistics; this variation 

in values is known as the zoning effect. The two effects are not independent, because the lower- 

' This chapter is bascd on Reynolds and Arnrhein. 1998b and was actuaily written before the other papers. 
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resolution spatial strucn>re may be built from contiguous higher-resolution units, such as census 

tracts from enurneration areas, and the resulting aggregate statistics will be different for each 

choice of aggregation. 

Several studies (for example, Amrhein and Reynolds, 1996, 1997; Fotheringham and 

Wong, 199 1; Amrhein and Flowerdew, 1993; Openshaw and Taylor, 1979) have k e n  pubLished 

that study the effects of the MAUP on a number of census datasets. Of these, only Fotheringham 

and Wong (199 1) have examined the effects of the MAUP on multiple regression parameters, 

pessimistically concluding that its effects on muftivariate analysis are essentially unpredictable. 

Amrhein (1993) presents the results of a statistical simulation of the MAUP by aggregating ran- 

dornly-generated point data into square grids of various sizes, thus avoiding many of the prob- 

lems associated with the use of census data. This chapter expands upon the ideas nom both, us- 

ing statistical simulations to study the effects of the MAUP on rnultivariate analysis. The fact 

that Steel and Holt's (1996) analyticaiiy derived d e s  for random aggregation agree with 

Amrhein's (1993) ernpïrical rules corroborates that simulations are an effective tool for examin- 

ing the effects of the MAUP. 

6.3. The synthetic spatial dataset generator 

The use of census data imposes a senous constraint upon those who seek to understand 

the mechanics of the MAUP simply because there is no control over the nature of a region's 

overd  shape; the shapes, sizes and comectivities of its subregioas; or the ranges, means, vari- 

ances and covariances, frequency distributions, and spatial autocorrelations of the variables. The 

effects of aggregation on a given census variable can be determined readily enough, but few dues 

to underlying processes can be gleaned because the data carmot be systematicdy varied to test 

for the effects of changes. Other weaknesses of census data, such as random rounding and values 

missing due to the absence or suppression of data, only serve to make the drawing of any conclu- 

sions even more difficult In order to study the MAUP, it is therefore advantageous ?O be able to 

construct synthetic spatial datasets over which a researcher can control and systematicdy vary 

a i i  of the above features. This chapter employs the dataset generator described in detail in 

Chapter 3. Figure 6.1 iiiustrates the region used for the experiments, which is divided into 400 

subregions, dong with three sample aggregations. 



6.4. The experiments 

Spatial autocorrelation is known to play a key role in the MAUP. as is illustrated in the 

following experiment. Consider a spatial dataset that contains negative spatial autocorrelation; 

that is, numbers that are dissimilar are located in adjoining regions. In the aggregation process, 

contiguous regions are joined and the individual variable values are (in this case) replaced by 

their average, hence creating a new dataset with a reduced variance. With some aigebra, it is 

easy to show that the difference between the original variance and the aggregate variance 

(weighted by the number of uni& in each cell) is the sum (again weighted by the number of units) 

of the variance of the regions within each cell. For the negatively autocorrelated dataset, it is ex- 

pected that the values in each cell will have a high variance, and hence the change in variance 

will be relatively large. As the spatial autocorrelation becomes more positive, the expected in- 

ternai variance within each cell should decrease, since similar values will tend to become more 

Iikely to be adjacent, and hence the change in variance should become less. The influence of 

spatial autocorrelation on the behaviour of bivariate and multivariate statistics is more difficult to 

assess, however, as Chapter 5 demonstrates for the bivariate case, since each variable's MC and 

spatial pattern will cause it to respond to aggregation differently. 

The experiments in this chapter explore the effects of aggregation on the various pa- 

rarneters of the Iinear regression model y = Do + Pixi + Bzxz + P3x3. Three independent parame- 

ters are considered to be sufficient to capture enough of the cornplexities involved in multivariate 

linear regression without creating excessive computational and analytical overhead. Fothering- 

harn and Wong (1991) use a four-variable regression model, in which the variables are ail pro- 

portions; their results are compared to ours here. 

Three different experiments are performed. In the fmt, y, xi, xl, and x3 are a i l  assigned 

the same level of spatial autocorrelation (as measured by the MC). Eight datasets are created in 

which all four variables have MCs of -0.4. -0.2.0.0.0.2, 0.4,0.6,0.8, and 1.0 respectively, and 

have zero correlation between them. In the second experiment, xi, xz, and x3 are assigned the 

sarne MC, while y is given a different one and again dl variables are uncorrelated. Datasets are 

created with MCs for dependent and independent variables choeen from -0.4.0.0, 0.4, and 0.8, 

for a total of twelve combinations. The third experiment counts the number of statisticaily sig- 

nifiant changes in correlations between variables for the datasets of the fmt experiment in order 



to estimate the potential for introduced cohearities. Obviously, having variables with no col- 

Iinearity is an idealized case, since most variables wiU have some degree of correlation between 

them, but it is a good place to start. 

The aggregation algorithm is described in detail in Chapter 3. For these experiments, as 

in Chapten 4 and 5, the regions are aggregated to M = 180, 160, 140, 120, 100.80.60, and 40 

ceus. representing from 45% to 10% of the original 400 regions, in order to assess the scale ef- 

fect of the MAUP. AU of these aggregations are performed independently in a run of the model, 

and each run is independent of the previous runs. To account for the variability of results intro- 

duced by the zoning effect, 1000 runs of the model are performed. After each aggregation, the 

data are fitted to the multiple linear regression model and the resulting parametee, plus the Mo- 

ran Coefficient of the regression residuals (MCRR). are saved. 

Once all  aggregations are completed, the maximum, minimum, mean and standard devia- 

tion of each parameter for each scale of aggregation are computed and saved for analysis. The 

analysis plots (see Figure 6.2b as an example, and Chapter 3 for a more detailed description) are 

arranged in groups of eight lines, one line for each scale of aggregation, with the labels for each 

line being listed in the plot's legend. Each group represents a set of initial conditions for an ex- 

periment, and is labeled on the plot with (MC,, MC,), where MCx is the MC of the independent 

variables and MC, that of the dependent variable. Each line represents the range of values of the 

parameter that are obtained for the scale over aiI the mns, and is aiso marked by the mean value 

(a heavy dot) and at the mean f 1 standard deviation (a small horizontal line) to give a rough idea 

of the distribution of values. 

The results from the fust experiment, in which the Moran Coefficients for the dependent 

and independent variables are the same, show that ail of the multivariate regression parameters 

Vary systematically with a change of scale and also with the level of spatial autocorrelation latent 

in the data. Figures 6.2 to 6.4 illustrate the variations in lZ2, the MC of the residuds, and the val- 

ues for Bo, Pi, and their standard errors; figures for Pz, and P3 are similar to those of Bi, and are 

not shown. AU of the figures show the same pattern, with the ranges for al1 scales decreasing 

with increasing spatial autocorrelation. This conforms to expectations, since we expect the scaie 



effect to be less severe with greater positive autocorrelation due to more simiiar values tending to 

be aggregated. The figures also show that the variation of di parameter values increases with the 

magnitude of the scale effect over a i l  levels of spatial autocorrelation. This again agrees with 

expectations, since more information is lost as the data values are aggregated into fewer ceiis, 

and with a larger number of regions going into each ce11 it is expected that there would be a 

greater degree of variation in results caused by the choice of partition, even for highly spatially 

autocorrelated data. 

Since aU the variables are generated randomly and are mutualiy uncorrelated. the values 

of R~ for the unaggregated datasets are aiI close to zero. Figure 6.2a illustrates that aggregation 

can produce a model that cm have, in extreme cases, from 20% to even 70% of the variation ex- 

plained by the model. depending on the scale of aggregation and the spatial autocorrelation of the 

data. The distance of the maximum extreme values from the mean plus one standard deviation 

mark indicate they are a i l  outliea in the frequency distributions, and as such they wili tend to in- 

crease the mean value. But even with that in mind it is still apparent that aggregation tends to 

give models with better fits than the original data, with better fi& king associated with greater 

aggregation. This agrees with expectations, since a reduction in the variability of the data values 

will tend to produce a better-fitting mode1 (if covariance is also not reduced), but the loss of in- 

formation caused by reducing the sample size offsets any apparent gain. 

Figure 6.2b illustrates the change of the MCRR with aggregation. One of the basic as- 

sumptions of a hear regression model is that the miduals are independent, and it is clear that 

this assurnption is being violated since spatialiy autocorrelated residuals are not independent2. 

Since the initial correlations between the variables are d l  zero. ai i  of the regression slope pa- 

rametes are also initially zero so that the initial MCnR will simply be the MC of the deviation of 

y about its mean. which equals the MC of y. The diagnm illustrates the tendency for the regres- 

sion residuals to becorne more randomly autocorrelated, with that for the initially negative re- 

siduais tending to increase, while that for the initially positive ones tending to decrease. The 

change in residuals for the MC of 1.0 does not foliow the pattern of the rest of them. but still 

does tend to decrease slightly. As with the findings of Chapter 5, it appears that aggregation 

Since each observation can be pnrtly predicted h m  its neighboun. the information content of observations is re- 
duced. See Section 5.3, Griffith (1988, pp. 82-83), and Cliff and Ord (198 1, p. 199) for details. 



tends to improve the statistical quality of linear regression, even though it changes ail of the pa- 

rameter values. 

Figures 6.3 and 6.4 show that the regression coefticients and their standard errors behave 

similarly under aggregation. The mean values of the Bo and Pl estimates bo and bi remain close 

to their unaggregated values over ail levels of spatial autocorrelation and dl scales. In contrast, 

the average value of the standard error for al1 coefficients shows a definite increase with the scale 

effect. This is not unexpec ted, as Fotheriagham and Wong ( 199 1) point out, since the standard 

error depends partly on the number of aggregated units. Interestingly, even though the range of 

variation of the standard error due to the zoning effect decreases with increasing spatial autocor- 

relation, the rnean value for a given scale remaios essentiaüy constant. The and p3 coefficient 

estimates b2 and and their standard errors behave similady and are not shown. 

The results of the second experiment, in which the independent variables xi, x2 and x3 

contain the same level of spatial autocorrelation, while y has a different one, are presented in 

Figures 6.5 to 6.7. Each plot consists of 12 groups of lines, with each group representing a corn- 

bination of MCs for the dependent and independent variables. The groups are organized in four 

sets of three, with each set's dependent variable having the same Moran Coefficient. 

As before, the range of variation of the various parameters increases as the scale de- 

creases. Figure 6.5a shows that the range of R~ decreases as the MC of both the independent and 

dependent variables increases, though it appears to decrease faster with the increase in the inde- 

pendent variables' MC than with the dependent variable's. This is consistent with the results 

shown in Figure 6.2a and indicates that, as before, less information is lost when the variables are 

highly autocorrelated, resulting in smaller variations of the aggregated statistic values. 

By examiniiig Figure 6.5b and comparing it to Figure 6.2b. it is apparent that the behav- 

iour of the MC of the residuals depends more on the spatial autocorrelation of the dependent 

variable than that of the independent variables, since the distributions do not change significantly 

with the MC of the independent variables. As explained above, this is due to the initial values of 

the slope parameters king zero. resulting in the initiai MCRR being the MC of the dependent 

variable. As before, the behaviour will depend on the spatial pattern of the variables, not just on 

their MCs. 



As with the fmt experiment, the regression coefficients and their standard errors each be- 

have in roughly the same way for each combination of spatial autocorrelations. There are three 

clearly visible patterns, aside from the usud increase in variability with decreasing aggregation 

scale. F i t ,  the mean values of the distributions for the regression coefficients tend to remain 

fairly stable as the number of aggregate ceiis decreases, while the means of the standard errors 

tend to increase. Second, for a given MC of the independent variable. the variability of the 

ranges increases with increasing MC of the dependent variable, though this effect becornes much 

less drarnatic as the MC of the independent variables increases. The size of some of the ranges is 

interesting, especially with the intercept parameter bo which can be almost 80 above or below the 

mean of 20 for the 4û-cei.I case in the thkd from last gmup in Figure 6.6a. Third, for a given MC 

of the dependent variable. the range decreases with increasing MC of the independent variables. 

The patterns are reflected in the those for the standard errors, as shown in Figures 6 and 7 for bo 

and bi (those for and b3 are similar and aot shown). Since the multivariate linear regression 

mode1 parameter estimates are of the fom b=(xTX)-'(x*Y), it is expected that variations in the 

spatial autocorrelation of the independent variables X will influence the outcome more than those 

of the dependent variable Y. These figures should serve as a clear waming to those who would 

blindly use multivariate regression methods on aggregated georeferenced data and then expect 

the results to apply to a higher resolution! 

Cornparison of these results with those of Fothenngham and Wong (199 1) is difficult be- 

cause the dependent and each of their four independent variables had a different MC, ranging 
blûck from almost 0.9 for their P to about 0.25 for pld. Even from the very simple second expen- 

ment, it is clear that having the dependent and independent variables with different MCs in- 

creases the complexity of the response of the regression parameters to aggregation. Differences 

in the spatial patterns of the variables, as shown above, can also hamper comparisons, as results 

may be very different for variables with the same MCs. 

Fotheringham and Wong's (1991) (hereafter referred to as FW for brevity) analysis of the 

change in Moran Coefficients of the variables can be compared with experimental results, how- 

ever, using the diagrams of Chapter 4. Even though the change in the MC depends on the spatial 

anangement of the variable, Figures 4.2b, 4.4a, and 4.8 show that the distributions widen as the 

number of aggregate ceUs decreases (also shown in FW's Figure 6). and that the mean value ei- 



ther decreases or increases monotonically, unlike most of the examples in their Figure 6 which 

increase and then decrease. These ciifferences could be the result of FW's performing ody  20 

random aggregations for each spatial scaie (20 being not nearly enough to approximate the tme 

distribution of aggregate values), having more than twice the number of base units as we used, 

and using proportional variables (i.e. numerator and denominator are aggregated separately and 

the results divided) rather than variables that are simply summed or averaged, or perhaps to un- 

known violations of the regression model assumptions. Further research needs to be done to 

study the effects of the MAUP on proportion-type variables. 

Aiso of interest in a study of multivarîate h e a r  regression are conditions that violate the 

assumptions of the model. The easiest one to study is cohearity, the presence of comlation 

between the independent variables3. For this experirnent, the datasets used in the fmt expen- 

ment, which alI have zero correlation between the variables, are aggregated in the model as be- 

fore and the number of correlations that are statistically signincantly different fkom zero are 

counted for each level of aggregation. Table 6.1 summarizes the results for the sets that have 

MCs of -0.4,0.2, and 0.8 for the aggregation levels of 180, 100, and 40 cells. while Figure 6.8 

illustrates the variation of correlation with MC for the datasets whose variables have the MCs of 

-0.4 and 0.8. Note that the values in the row labelled Any wiIl be less than the sum of the vaIues 

in the columns if more than one of the correlations is significant at the sarne tirne, which occurs 

frequently for the -0.4 MC case at all levels of aggregation, but less so for the other datasets. 

Figure 6.8 and Table 6.1 demonstrate that the ranges of the introduced correlations de- 

crease as the MCs of the variables increase, whiie as usual the ranges increase with decreasing 

numbes of ceiis. The reduction in the range is caused by the decreasing amount of variability 

lost as the variables become more positively spatidly autocorrelated, so as the range decreases 

fewer values in the distribution cross over into the critical range. As Uustrated in Chapter 5, 

predicting how a preexisting non-zero correlation between two of the variables will be affected 

by aggregation is not simple, as the change will depend on the interaction between the spatial 

Note that the papa which f o m  this chapter was initially written before my more detailed andysis of bivariate sta- 
tistics in Chapter 5. Since the counting of significant changes in r was not a topic discussed in Chapter 5.1 de- 
cided to leave this in as is. 



distributions of the variables. The fact that there can be signifîcant changes in the colhearities 

reinforces the need for caution when using multivariate regression techniques on aggregated data. 

6.6. Conclusions 

In order to systematicdy examine the role of spatial autocorrelation in the data on the re- 

sponse of rnultivariate regression parameters to aggregation, a multiple linear regression mode1 

of the form y = Bo + Pixi + p2xz + P3x3 was employed. as three independent variables are suffi- 

cient to capture much of the cornplexit- of multivariate regression while minimizing the compu- 

tational and analytical overhead The fmt two of the three experiments perforrned were designed 

to test the effect of various spatial autocorrelation levels in the independent and dependent vari- 

ables on the variation of the regression parameters with aggregation. The third experiment tests 

to see how much collinearity is introduced between independent variables with increasing aggre- 

gation, when there was none in the unaggregated data. 

When al1 variables have the same spatial autocorrelation, as measured by the Moran Co- 

efficient, the variation of the parameters tends to decrease as the Moran Coefficient increases. as 

expected, indicating that more positively autocorrelated data are less affected by the MAUP. For 

ali values of MC tested, the mean values of the coefficient estimates bo, bl,  bZ and b3 are found to 

be essentially constant over all  levels of resolution. even as the range of the distributions in- 

creases. Change in the variabiiity is reflected in the standard errors for the coefficients, whose 

mean values and ranges tend to increase with decreasing spatial resolution. The mean value of 

R' shows a very large variability for negatively autocorrelated data that tends to decrease with in- 

creasing values of the Moran Coefficient. The change of the MC of the residuals depends on the 

MC of the dependent variable more dian that of the independent variable. since the initial values 

of the coefficients are zero and hence the initial MCRR is that of the dependent variable. 

When all of the independent variables have a particular Moran Coefficient, and the de- 

pendent variable has a different one. it appears that the MC of the independent variables tends to 

play a larger role in the variation of the regression coefficients, R', and the MCRR, than does the 

MC of the dependent variable. For a given MC of the dependent variable, the variability in the 

coefficients and their standard errors tend to decrease with increasing MC of the independent 

variables. However, for a given MC of the independent variables, the variability tends to in- 



crease with increasing MC of the dependent variable. The range of R~ decreases as the MC of 

either the dependent or independent variables increase. It appears that the change in MCRR de- 

pends on the MC of the dependent variable for initidy uncomlated variables. 

Results from the third experiment reveal that collinearities between independent variables 

can be introduced by aggregation. The mean values of the ranges of correlations remain at or 

very near 0.0 for ail resolutions and MCs of the variables. As one would expect. the ranges of 

the aggregate correlations are much greater for the variables with low or moderate MC than for 

those that are more highly autocorrelated, resulting in more statistically significant changes of 

correlations, many of which WU occur simultaneously. Of course few datasets have no corda- 

tions between the variables, but it will be difficult to predict the change in a non-zero correlation 

untii a way to incorporate the spatial patterns of the variables into the analysis is found. 

The results of the experiments in this chapter ody scratch the surface of the behaviour of 

multivariate regression parameters when data are aggregated frorn one level of spatial resolution 

to another. It is clear that the spatial autocorrelation of each of the variables involved influences 

the behaviour, and that if each variable has a different autocorrelation it will be difficult to pre- 

dict ahead of tirne what the behaviour of the regression parameters will be. Exploration of the 

effect of the MAUP on rnultivariate regression using variously autocorrelated variables and vari- 

ous degrees of collinearity is a focus for future research. 

The variables used in these experiments are al1 variables that were averaged during the 

aggregation process. The behaviour of variables that are proportions. in which numerator and 

denominator are aggregated individually, and variables that are summed in aggregation, also 

needs to be examined. Cornparison of FW's results to ours indicates that multivariate models 

constructed with variable other than averaged variables may behave differently under aggregation 

from the mode1 described in this chapter. Models that involve combinations of different variable 

types may behave even more differently. Ail of these require further research. 

The ultimate goal of the research is, of course, to see if it is possible to empirically esti- 

mate error in a spatial dataset that has been introduced by aggregation, and the presence of rec- 

ognizable patterns indicates that the prospects are perhaps not as gloomy as F W  fmt believed. 



Table 6.1: Total number of statistically signincant correlations between the variables created by 
the aggregation process. The number of instances when any of the combinations 
produced a sigdcant correlation is recorded in the row labeiied Any. 
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6.8. Figures for Chapter 6 

Figure 6.1 :The synthetic region used in al l  of the experiments, with its 400 ceils (a) and a sample 
aggregations to 180 ceils ('ô), 100 ceUs (c) and 40 ceUs f d). 





Figure 6.3: Variation of the multivariate regression parameter Bo and its standard error over 1000 
runs of the model, with dependent and independent variables having the same Moran 
Coefficients. Note how the variability decreases with increasing MC. 





Figure 6.5: Variation of the multivariate R~ (top) and the change of the Moran Coefficient of the 
regression residual (bottom), with the independent variables having the same MC and 
the dependent variable having a different MC. 



Figure 6.6: Variation of the multivariate regression panuneter (top) and its standard error, with 
the independent variables having the same MC and the dependent variable having a 
different MC. 



Figure 6.7: Variation of the multivariate regession parameter P i  (top) and its standard error, with 
the independent variables having the same MC and the dependent variable having a 
different MC, 



Figure 6.8: Variation of correlation with aggregation for the datasets of experiment 1 in which the 
original MCs of the variables are -0.4 (lefi) and 0.8 (nght). 



7. Summary of Conclusions 

The results of this research clearly demonstrate why the Modifiable Area Unit Roblem 

has been such a source of frustration for spatial analysts for so long. Even a relatively simple 

statistic üke the weighted variance behaves in a complex manner, infiuenced by the spatial auto- 

correlation and arrangement of the unaggregated variable. More complex statistics, Iike the Mo- 

ran Coefficient, correlation, covariance, and the bivariate regression slope parameters. are af- 

fected by the spatial arrangements of both variables, while the multivariate regression parameters 

are affected by those of ali  variables involved. Unfortunately, results reported in Chapter 4 am- 

ply indicate that the MC is not a sufficient measure of spatial organization for the purposes of 

prediction of results, since many different types of arrangement can have the same MC, and it is 

often the arrangement for the given MC that determines how a variable will behave under aggre- 

gation. Even so, it is still useful as a fmt approximation in most cases. and further research may 

be able to provide a summary statistic that can include pattern as well as spatial autocorrelation. 

One of the cornmon features to a i I  the experiments is that the fiequency distributions 

(which are a result of the zoning effect) of a i l  of the aggregated statistics are either nomaily dis- 

tributed or nearly so. The assumption of a normal distribution plays a pivotal role in rnost infer- 

ential statisticd theory, so this ernpirical finding may help to further advance theoretical investi- 

gations of the MAUP. The finding is surprising, especiaily for something as complex as a MC of 

a regression residual, because due to Murphy's Law 1 would expect a distribution that would 

make the analysis of the MAUP with statistical theory even more ciifficultl. 

The relative change in variance shows a strong dependence on the spatial autocorrelation 

of the original variable, which of course is no surprise, but it aiso depends on the spatial ar- 

rangement of values. The aggregated Moran Coefficient depends not just on the initiai spatial 

autocorrelation, but also on the spatial arrangement of the values, especially as the original MC 

increases and patterns become more distinct. Patterns with a large number of small clusters of 

similar values wili show the grea~est change in aggregate univariate statistics as the number of 

ceiIs decreases because as the ceil size increases, the Likelihood of including regions with dis- 

similar values increases faster than it does when there are only a few large clusters. A more pre- 

cise d e f ~ t i o n  of the relationship must await a better way to describe the spatial arrangement of 

I OK, this is a bit cynicai. Maybe 1 have been a post-graduate for too long. 
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the data values, perhaps by using two or more spatial autocorrelation statistics in conjunction 

with each other. 

The relative change in variance is strongly non-linearly correlated to the G statistic, which 

has been modined by dividing by the unweighted aggregate variance. This dependence does not 

appear to be because the unweighted aggregate variance is present on both sides of the regression 

equation, though what causes it and how it cm be exploited are worth future research. 

The covariance tends to behave in a similar way to the variance under aggregation, in 

spite of the possibility for it to increase or decrease. The range of the distributions of both statis- 

tics decreases with the decreasing number of aggregate cells for low values of spatial autocorre- 

lation of variables, since increasing the cell size will not appreciably increase the (co)varïation 

within each celi that can be lost by aggregation. As the MC increases, the within-cell variability 

wiIl tend to increase with an increase in ceU size as more dissimilar values are inciuded, with the 

rate of this increase depending on the spatial arrangment (mmy s m d  or fewer larger clusters). 

When both variables have the same MC, the ranges of the covariance, correlation and re- 

gression dope parameter tend to increase as MC decreases, and to increase as the number of ag- 

gregate cells decreases. The MC of the regression residual (MCRR) is not much af5ected by the 

initial correlation of the variables, but changes considerably with the increase in MC of the vari- 

ables, showing a marked tendency to decrease as the number of aggregate cells decreases. This 

indicates that the statisticai quaüty of regression results c m  actudy be improved with aggrega- 

tion, even though the values of the parameters are quite different from the original. This appar- 

ent improvement is offset by the loss of information caused by the reduction in sample size. 

When the variables have different MCs and the initial correlation is zero, the behaviour is still 

reasonably regular. The range of correlations tends to increase as the MC of the variables de- 

creases, and the range of regression slope parameters is greatest when the MCs of the variables 

are the most different, and again tends to increase as either variable's MC decreases. The change 

in the MCRR appears to depend primarily on the MC of the dependent variable. When the vari- 

ables have different MCs and the initial correlation is non-zero, prediction of the statistics, and 

especially MCRR and correlation, becomes dificuit due to differences that are caused by the dif- 

ferences in spatial patterns of variables that have the same MC. Having a srnalier number of hi- 

tiai zones in the aggregation Uicreases the ranges of the aggregated statistics for variables with 



the same MC because dissimilar values are closer together, increashg the chances of having ag- 

gregate ceils with larger interna1 variations. 

When the dependent and three independent variables in the multiple regression experi- 

ments bave the same MCs, the variation of the statistics tends to decrease as MC increases. The 

mean of the distributions of the regression parameten rêmauii essentially constant as the number 

of aggregate ceils decreases. As with the bivariate case, the change of the MCRR seems to be in- 

dependent of the MC of the independent variables, but again this is caused by the initial correla- 

tions between variables king zero and so the initial MCRR is the MC of the dependent variable. 

When the dependent variables have one MC and the independent variabIe has another, the MC of 

the independent variables tends to have more of an effect on the regression statistics than does 

that of the dependent variable. For a given MC of the dependent variable, the variability in the 

coefficients and their standard erron tends to decrease with increasing MC of the independent 

variables. However, for a given MC of the independent variables, the ranges d the statistics in- 

crease with an increase in the MC of the dependent variable. As the results from the bivariate 

analysis indicate, coihearities between variables are introduced when the initiai correlations are 

zero. However, only 2 to 8 percent of the aggregations produce correlations that are statistically 

significantly different from zero. 

The results of this research rnake it abundandy clear that those who use spatially refer- 

enced data should not try to extend any conclusions they draw to Ievels of spatial resolution that 

are different fiom the resolution of the data. As yet there is no way to estimate the value of a 

statistic computed at a finer scale of resolution (larger number of smaiier regions) from aggre- 

gated data, applying results denved from a coarser spatial resolution wiU most likely lead to the 

drawing of erroneous conclusions. 

8. Topics for Future Research 

This research represents the fmt step in the systematic empirical exploration of the Modi- 

fiable Area Unit Problem, and much remains to be explored. AU of the research work in this the- 

sis is for variables that are averaged during aggregation, and it is suspected that variables that are 

summed or that are proportions (i.e. numerator and denominator aggregated separately) wiiI not 

behave in the same way. Only a few of the possibilites have been explored for the multivariate 

regression statistics, and more complex multivariate procedures such as factor analysis have not 



k e n  tested at ail. Before such analysis can properly proceed, however, a better way is required 

to numencaliy quanti@ spatial arrangements than the Moran Coefficient. A variogram certainly 

contains a complete description of the spatial structure, but then a way to describe the variogram 

would have to be concocted and we are no better off. The MC itself is not sufficient to describe 

the spatial arrangement, but perhaps using it in conjunction with other spatial autocorrelation 

statistics that describe the pattern differently will work. 

It is hoped that rny research will lead to further advmces in the theoretical as weil as ern- 

piric& expioration of the MAUP. and that the knowledge that it is not totaiiy intractable and cha- 

otic might be enough to renew interest and research in this chdlenging statistical phenornenon. 
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