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coordinate axes 

x i s  



x distance measured from the center of beam support 

Y distance measured fiorn the center of beam 

1, 2, 3 material pnnciple axes 

P quantity defined by Eqn (4.13) 

61,62 quantities defined by Eqn (3.1 5) 

A deflection of beam at rnid-span 

AL, AN, ASNI AT quantities defined by Eqn (3.30) 

deflection due to bending 

deflection due to shear 

mid-span deflection of beam with fiction-fiee supports 

normal strain 

strains from three strain gages attached to the 10" off-axis shear test 

components of normal strain in xyr coordinate system 

components of normal strain in rnaterial coordinate system 

strains fiom two strain gages attached to the Iosipescu specimen 

normal strain rate 

strain rate at the outermost layer of simply supported beam 

normal strain rate for standard test condition 

vector of strains in matenal coordinate system 

vector of strains in xyz coordinate system 

shear strain 

components of shear strain in xyz coordinate system 

components of shear strain in material coordinate system 

shear strain rate 

average shear strain rate in section 

shear strain rate for standard test condition 



quantity defined by Eqn (4.2 1 ) 

fhction coefficient 

Poisson's ratios in materiaf principle directions 

= JEIG 
normal stress 

components of normal stress in xyz coordinate system 

components of nomial stress in material coordinate system 

vector of stress in material coordinate system 

vector of stress in xys coordinate system 

shear stress 

components of shear stress in xyz coordinate system 

cornponents of shear stress in material coordinate system 

rotation angle of axis I with respect to x a i s  as show in Fig. 1.1 

fiber-reinforced plastic composite 

Illinois Institute of Technology Research Institute 

t hrough-t he-t hickness inextensibility 

varying-span method 
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The longitudinal and the shear moduli of fiber-reinforced plastic composites (FRPC) are 

comrnonly measured by separate test methods. This thesis introduces a new test method 

which enables one to measure these propenies simultaneously. In the new test method, 

specimens with different span-to-depth ratios (Uh) are subjected to three-point bending. 

The method will be called the "Varying-Span Method" (VSM), since for a given matenal 

producing different L/h is simply achieved by changing the test span. 

One of the comrnon methods for evaluating the longitudinal modulus of FRPC is to 

conduct flexural tests on rectangular specimens. The longitudinal modulus is determined 

by a simple equation which is based on the Euler beam theory. Since this theory does not 

account for the shear deformation, the evaluated modulus is usually underestimated. The 

effect of shear deforrnation reduces when Lh of the specimen increases. However, since in 

general FRPC have low shear modulus, to eliminate the shear deformation effect fiom the 

evaluated modulus, one must use specimens with large span to depth ratios (say Lh60, 

see for example, Zweben et.al. 1979). In the VSM, instead of eliminating the effect of the 

shear deformation from the result of the flexural test, the attribute is used to 

simultaneousiy evaluate both the longitudinal and the shear moduli of the material. In this 

method, the test is considered as a phenomenon with two unknowns, namely, the 

longitudinal and the shear moduli. Theoretically, these unknowns can be obtained by 

conducting at least two tests on specimens with different Uh. 

Among the advantages of the VSM is its capzbility of measuring the through-the-thickness 

shear modulus of specimens with relatively small thickness (say 2 mm). For this, a special 

apparatus was designed and fabricated. The apparatus was used for the evaluation of the 

longitudinal and shear moduli of composites made of graphite/epoxy, Kevlar/epoxy and E- 



glasslepoxy. The results and their cornparison with the values obtained by other cornmon 

test methods are presented. 

A review of the most popular methods for the measurement of the longitudinal and the 

shear moduli of FRPC is presented in this manuscript. The advantages and the 

disadvantages of each method are discussed. The exact elasticity solution of a beam 

subjected to the-point bending is developed. This solution is used as a means to assess 

the integrity of the VSM. The relevant theones with respect to the VSM are reviewed. 

The application of these theories is discussed and a solution which accounts for the local 

effect of the concentrated load and the reaction forces on the deformation of the beam is 

presented. Factors that influence the accuracy and efficiency of the proposed method are 

identified and investigated. The integrity of the method is examined and proved by 

theoreticai and experimental investigations. 



Chapter 1 

lNTRODUCTlON 

Commercially available filarnentary materials such as glass, carbon, boron and Kevlar 

fibers provide a combination of high strength, high modulus and low specific çravity. 

These fibers, combined with a matrix, produce materials with superior properties in 

comparison to conventional rnetallic materials. The matrix material may be a polymer, a 

metal, or a ceramic. In general, the fùnction of matnx is to keep the fibers in the desired 

location and orientation, to transfer the loads between the fibers, and to protect the fibers 

from environmentally induced damages, while the fibers act as the principal load-canying 

elements. The materials produced in this way are called "fiber-reinforced composites". 

Comprehensive discussion on mechanics, design and manufactunng of these types of 

materials can be found in Mallick (1993), Gibson (1994), Tsai (1988) and Schwartz 

( 1984). 

In this thesis, attention is focused on fiber-reinforced polymeric composites (FRPC) in 

which the polymeric materials constitute the matrix. FRPC are the most common type of 

composite materials produced and used in industries. Meta1 and cerarnic metal matrix 

composites are comparatively new and do not yet have a large data base. However, since 

there is no major difference between the mechanics of FRPC and the mechanics of metal 

and ceramic matrix composites, most of the discussions and the solutions presented in this 

thesis are applicable to these composites as well. 

1 . 1  Nomenclatures 

In structural applications, FRPC are used in several forms. The most common form is 

called laminate. A larninate is obtained by stacking a number of thin layers composed of 

fibers and matrix. These layers are also called plies or laminae. The fiber orientations and 

the stacking sequences can be controlled to obtain the desired physical and mechanical 



properties for the composite laminate in different directions. Consequently, the product 

has an anisotropic nature, rnaking the design and analysis process considerably more 

difkult and complicated than that of structures made up of isotropic materials such as 

metals. 

The behavior of a laminated stmcture can be defined when the properties of its layers are 

known. With some exceptions, the layers can be defined as orthotropic material with nine 

independent elastic constants. These constants are defined according to each layer's 

principal axes. Figure 1 . 1  shows the definition of these axes for a fiber-reinforced lamina. 

As shown in this figure, axis i is along the fiber length and represents the longitudinal 

direction of the lamina. Axes 2 and 3 represent the transverse in-plane and through-the- 

thickness directions, respectively. The exception occurs when fibers with different 

orientations form a layer. In this case, it is convenient to assume each fiber direction is 

located in a separate layer. Consequently, the assurnption of onhotropy will not be 

violated. 

Figure 1.1 Definition of material principal axes and loading axes for a fiber-reinforced 
lamina. 



The elastic constants relate the stress components to the corresponding strain components 

produced in a body due to extemal and/or interna1 loads. To define these components, the 

stress and strain nomenclature shown in Fig. 1.2 is adopted throughout the thesis. 

Subscript x, y and s may be replaced by 1, 2 and 3. however in this case, the reference 

coordinate system will be the principal axes defined in figure 1 .1 .  It is important to note 

that only one xyr coordinate system is defined for a laminate, while each layer has its own 

local 123 coordinate system. The stress components identified by a are the normal 

stresses, while those denoted by r are the shear stresses. Strains correspond to these 

stresses are denoted by E and y, respectively. The stress-strain relations are usually 

presented in a matrix form. These relations in local coordinate system can be represented 

by 7 

Figure 1.2 Stress and strain nomenclature 



or when written in compact form: 

(4 =ISl(d 

The inverse of Eqn (1.2) is 

where {E), (a), [SI and [QI are the strain vector, stress vector, the cornpliance matrix and 

the stiffness matrix in the local coordinate systern of 123, respectively. E, u and G 

represent the elastic modulus, Poisson's ratio and the shear modulus in a particular 

principal direction denoted by their subscripts, respectively. These quantities are known as 

the elastic constants of the matenal and are defined by Eqns (1.4) through (1.6) when the 

stresses except in the specified direction are zero. 

The stress-strain relations in the wyr coordinate system have the followinç forms 



where 15) and (E) are the stress and strain vectors, and [q and [g] are the compliance 

and the stiffness matrices in the xyr coordinate system, respectively. [q and [QI are 

related to [SI and [Q] through the following relations 

Ts] = [cl '[sl[r,] (1.9) 

and 

[QI = [T,I~[QI[Z;I (1.10) 

where [ T,] and [ I;] are the stress and the strain transformation matrices, respectively. It is 

comrnon to define the xyz coordinate system in such a way that the r a i s  is parallel to the 

axis 3 of the plies. In this case the transformation matrices take the following forms. 

i 0 O O sine CO& O i 
1-cosesine cosûsinû O O O cos%-sin2@] 

cosTe sin% O 0 O cosûsinû 1 
sin '8 cos% O O O I -cosesine 1 

where 8, as shown in Fig. 1.1 ,  is the angle between the x axis and the 1 axis. For a more 

detailed and comprehensive discussion on the subject, and the proof of the above 

equations the reader is referred to Whitney ( 1987). 



In laminated structures, the thickness of the laminate with respect to its other dimensions 

is usually small. Therefore, it is common to assume that the normal stress in the through- 

the-thickness direction of the laminate (oz) in comparison to the other stress components 

is negligible. A special case of laminated structures is when the stnicture behaves as a 

bearn. The coordinate system for laminated beam is shown in Fig 1.3. In this case, the 

dimensions of the beam in the y and r directions are small, and therefore, it is admissible to 

neglect the stress components in these directions, i.e. normal stresses a ,  and O,, and the 

shear stresses s, and s,=. Notice that the assumption of r, = O is valid only when there is 

no lateral load in the y direction. Substituting zero values for O,, a ,  r, and r,- in Eqn 

(1.7), one obtains the following stress-strain relations. 

a, = E,E, (1.13) 

5 ,  =G,Y= (1.14) 

where 

Q I ,  S22, $2  and S66 are the members of the compliance matrix of Eqn ( 1.1 ). E,, and G, are 

also called the longitudinal and the through-the-thickness shear moduli of the layer, 

respectively. For 8 = 0" and 8 = 90°, E, and G,c will become 

For 0 = 0": 

For 8 = 90": 



1.2 Evaluation of the Elastic Constants 

An accurate evaluation of the elastic constants defined in Eqns (1.4) through (1.6) is 

necessary for the correct simulation and prediction of the behavior of FRPC structures. 

Several test methods have been developed to evaluate these propenies. Some of these 

methods have gained more popularity because either they have easy procedures andlor 

they use specimens with simple geometry. A review of the most cornmon test methods are 

presented in the next chapter. The advantages and disadvantages of each of them are also 

briefly discussed. 

Figure 1.3 The Coordinates system in beam type problem. 

Arnong these methods, three- and four- point bending tests are unique due to several 

inherent properties. These methods use a simple fixture to host specimens with simple 

rectangular geometry, and they do not require additional machining or tabbing. No strain 

gages or other expensive instrumentation or grips are required either. However, since 

most FRPC have low shear moduli, the evaluated longitudinal modulus by these methods 

depend on the span-to-depth ratio (Uh)  of the specimens. This characteristic of FRPC is 

used as the basis for the developrnent of the method introduced by Jalali and Taheri (1997, 

1998d). and is presented in this thesis in more detail. The method can simultaneously 



evaluate the longitudinal and the shear moduli of FRPC. The new method is called the 

"varying-span method (VSM). This is due to the usage of specimens with different spans 

(L) for producing different Uh. 

In the VSM, unidirectional specimens (usually O" or 90") are subjected to three-point 

bending. The flexural stifiess of each specimen is obtained fiom the load venus I r t  mid- 

span deflectior~ cuwe recorded during the test. The stiffiess of the specirnen is a function 

of the longitudinal and the shear moduli of its material. The shear modulus has significant 

effect when Uh of the specimen is small. The effect of the shear modulus rapidly decreases 

as L/h increases. On the other hand, the longitudinal modulus has the dominant eRect 

when Wh is large. This characteristic enables one to evaluate both the longitudinal 

modulus and the shear modulus of the material by subjecting at least two specimens with 

different Wh (one with a small U h  and one with a large LAI) to three-point bending. 

However, for higher accuracy and reliability one should test more than two specimens. 

1.3 Applicable Theories for the VSM 

The behavior of a beam subjected to three-point bending can be predicted by different 

theories. Among these theones the Euler beam theory is the simplest one. It assumes that 

the plane normal to the centriodal axis of the beam before deformation remains plane and 

normal to the axis after deformation. This theory has been used extensively in structural 

applications. For details and the applications of this theory one rnay refer for example to 

text books by Timoshenko and Young (1965), Ghali and Neville (1978) and Smith (1988). 

The Euler theory ignores the deformation due to shear. Nevertheless, it gives fairly 

accurate results for most structural applications. This is due to the fact that in most 

structural rnembers made of traditional materials such as steel, concrete and wood, the 

components' span-to-depth ratios are sufficiently large so that the shear deformation eflect 

is quite negligible. For example for a simply supported concrete beam with rectangular 

cross section the shear deformation is responsible for about 2% of the total deformation of 



the beam when U h  = IO and the load is distributed uniformly along the entire length of the 

beam. It should be noted that in most cases L/'h of structural members made of traditional 

materials is larger than 10. 

The longitudinal modulus is the only elastic constant that one requires for the Euler beam 

theory. This theory, when applied to the data obtained from a three-point bending test will 

provide one with the flexural modulus of the material. The flexural modulus obtained this 

way is very similar to the longitudinal rnodulus when a relatively large U h  specimen is 

used. However, one cannot evaluate the shear modulus of the material using this theory. 

The exact elasticity solution is another method of predicting the behavior of a three-point 

bending beam. A comprehensive discussion on elasticity solutions for isotropie materials is 

given by Timoshenko and Goodier (1970) and for anisotropic materials, by Lekhnitskii 

(198 1). A solution for an orthotropic beam under concentrated load(s) is given by 

Whitney (1985). A more accurate solution, however, for an onhotropic beam under three- 

point bending will be presented in Chapter 3 of this manuscnpt. These solutions provide 

exact results when the assumed boundary ccnditions are compatible with the actual 

boundary conditions of the beam. They are usually used for validating other solutions 

which, because of their simplifjhg assumption(s), are approxirnate in nature. However. 

the major problern with the elasticity solutions is that they provide solutions for only 

simple cases. Besides that, they are often too complicated for every day applications. 

Also, elasticity solutions depend on elastic constants other than the longitudinal and the 

through-the-thickness shear moduli. This, coupled with the complexity of the elasticity 

solution, make them unsuitable for use with the VSM. 

A suitable theory to form the basis of the VSM is one that includes the longitudinal 

modulus and the through-the-thickness modulus of the material as the only elastic 

constants for the accurate prediction of the three-point bending beam's deflections. For 



this, the Timoshenko beam theory and the through-the-thickness inextensibility theory are 

two theories that can efficiently be irnplemented for the VSM. 

In the Timoshenko beam theory, it is assumed that planes normal to the centriodal axis of 

the beam before deformation remain plane afler deformation. But in contrast to the Euler 

beam theory, the planes do not remain normal to the centriodal axis after deformation. 

The theory determines the deflections due to shear forces in addition to that caused by 

bending. Timoshenko (1983) acknowledges Poncelet as the first person who considered 

the effect of shear deflection for beams. However, the theory in its present form was 

introduced by Timoshenko (1921 and 1922). Others, for instance Gere (1963) and 

Cowper (1966) had also substantial contributions to the application of the theory. In this 

theory, the deflection of beams are composed of two separate parts, the deformation 

caused by bending and the deformation caused by shear. 

The through-the-thickness inextensibility theory was developed for laminated plates by 

Jalali and Tahen (1998a, b, c). In this theory, deflection of plates along the thickness is 

assumed to be constant. This assurnption, in conjunction with the equilibrium and the 

st ress-strain relationships, leads to at least one differential equation. The solution of the 

differential equation(s) depends on the boundary conditions of the laminates, and as in the 

case of the elasticity solutions, provides answers only for simple cases. One of the 

advantages of the through-the-thickness inextensibility solution in comparison with the 

elasticity solutions is that it requires a smaller number of elastic constants. In beam type 

problems, the through-the-thickness inextensibility solution depends only on the 

longitudinal and the t hrough-the-t hickness shear moduli. Therefore, one can effectively 

apply the theory to the VSM. The solution for three-point beam based on this theory is 

given in Chapter 4. 



While the Timoshenko and the through-the-thickness inextensibility theories provide 

accurate results for the overall deflections, they are not capable of predicting the local 

deformations due to concentrated load(s) and the reaction forces at supports. As a result, 

to obtain accurate results From the VSM, one must be able to measure the overall 

deflection of the specimen. In order to achieve this requirement, a special apparatus was 

designed and fabricated in-house. The description of the apparatus is presented in 

Appendix H. It was used for al1 the VSM tests conducted for the compilation of the data 

for the thesis. 

1.4 OrganizationoftheThesis 

Chapter 2 of this manuscript presents a review of the common test rnethods used for the 

evaluation of the elastic constants of FRPC. The test methods are critically evaluated and 

several aspects, such as the economy, the practicality and the reliability are used for their 

comparison. Chapter 3 presents the elasticity solution of a orthotropic beam under three- 

point bending. The solution is used as a means for the evaluation of the integrity of the 

VSM. Chapters 4 and 5 are dedicated to the development of the VSM based on the 

through-t he-t hickness inext ensibility and the Timoshenko beam theories, respectively. The 

theoretical investigation to evaluate the integrity of the VSM is presented in Chapter 6. 

Chapter 7 presents the experimental investigations. In this chapter the longitudinal and the 

shear moduli of several FRPC are evaluated by the VSM and the comparison is made with 

the results obtained by other common test methods. Summary and the conclusion of the 

work are presented in Chapter 8. Computer programs wntten and used in the thesis and 

the description of the VSM apparatus along with many complimentary data are provided 

in the appendices. 



Chapter 2 

AVAILABLE TEST METHODS REVIEW 

Design and analysis of FRPC structures require one to know the stress-strain relationship 

of the constituent laminates in their principal directions, defined in Fig. 1.1.  In general, the 

stress-strain relationships of materials may follow a nonlinear trend. However, in 

engineering applications, it is common to define the stress-strain relationship by two 

parameters, that is, the elastic modulus and the strength. As shown in Fig. 2.1, the elastic 

modulus rnay be defined as the slope of the initial tangent to the stress-strain curve, 

however, it is more common to take the dope of a secant line or a chord line for elastic 

modulus. The definition of the strength is also shown in Fig. 2.1. In some cases the 

strength is defined as the stress corresponding io a specified strain. 

Secant rnodulus line 

Strain 

Figure 2.1 Definition of various elastic moduli and the strength of materials. 

The stress-strain diagrarns for al1 reinforcing fibers in use are linear up to the point of 

failure, therefore the tangent, the secant and the chord moduli are identical. However, for 



polymeric solids, the stress-strain diagrams show nonlinear behavior. The shape of the 

diagrams also change by the variation of loading rate and ambient temperature. In FRPC, 

the rnatrix plays a minor role when the material is subjected to tensile load along the 

longitudinal direction of fibers (axis f), therefore the stress-strain diagram like that of the 

constituent fibers is linear and shows a brittle failure. However, the behavior of FRPC 

when subjected to shear stresses is rnatrix dominant and exhibits a nonlinear stress-strain 

relationship. 

The evaluation of different moduli and the corresponding strengths of FRPC are the scope 

of several test methods available in the literature. In this chapter we review some of these 

methods. However, our effort will be focused on those that have gained more popularity, 

and are commonly used. Furthemore, we restrict ourselves to those methods that rneasure 

the propenies that are evaluated by the VSM. These tests can be classified into four 

categories: tension, compression, flexural and shear tests. The advantages and 

disadvantages of each test will be discussed. A shon review on the latest achievements in 

this field is also presented. 

2.1 Tension tests 

The evaluation of longitudinal moduli dong the material principal axes f and 2 (El,  and 

Ez2) and the corresponding strengths can be determined by tension tests. The vanous test 

methods are discussed in below. 

2.1.1 Strip-specimen tension test (ASTM D3039-93) 

With this method a thin flat stnp of material having a constant rectangular cross-section is 

subjected to tension (Fig. 2.2) while the longitudinal and transverse strains, and the 

applied load are simultaneously measured and recorded. The longitudinal and transverse 

strains are measured in mid-length of the specimen using main gages and/or 

extensometers. The specirnen must have suficient length so that the rneasured strains 



would be fiee of the stress concentration regions due to the test gnps. Tabs are attached 

to the two ends of the specimen, to prevent the prernature failure of the specimen in the 

çrip zones and to promote a mid-length failure. 

The test result usually includes the effect of bending moment caused by the misalignment 

of the grips, or the specimen itself'. Misaligrunent of the specimen occurs when the 

specimen is gripped improperly or when it is out of tolerance. Excessive bending causes 

premature failure of the specimen and highly inaccurate modulus. ASTM E 10 1 2-93 

provides a guideline for the evaluation of the bending and describes the potential sources 

of such misalignment. The degree of bending in a tensile system can also be evaluated by 

using the procedure described in ASTM D3039-93. A system with less than 3% bending is 

considcred to be a good testing practice. When bending is greater than 3%, the average 

longitudinal strain should be used for the evaluation of the elastic modulus. In such a case, 

one must attach two strain gages/extensometers on both faces of the specimen, in the 

longitudinal direction. 

The method provides El and the corresponding tensile strength of the material when 

unidirectional O" specimens are used. Test on 90" specimens provides EZ2 and the tensile 

strength in this direction. The test method and the geometry of the specimen are simple; 

however, the need for tabs and the misalignment problem are considered as major 

shonfalls of this method. In addition, when testing thick 0" specimens, one ofien requires a 

high capacity testing machine and expensive hydraulically operated grips. 

Figure 2.2 ASTM D3039-93 tensile test. 



2.1.2 Dogbone-specimen tension test (ASTM D638M-93) 

A dogbone specimen is shown in Fig. 2.3. It has a flat surface and uniform thickness. The 

gradua1 increase in the cross section of the specimen at two ends are to prevent the 

premature failure of the specimen due to stress concentration in the grip zones. The test 

procedure is the same as outlined in the ASTM D3039 tension test, except for the fact that 

the specimen needs no tabs. 

The elhination of tabs in a dogbone specimen reduces one source of misalignment. 

However, producing the dogbone shape requires precise machining which makes the test 

expensive and time consurning. Machining of composites made of carbon and graphite 

fibers should be done using special precautions since smoke and fumes produced during 

cutting are very hazardous. Machining of Kevlar composites by conventionai methods 

using carbide blades or end mills induces delaminations and fuzzy edges. Therefore, 

special cutting devices, such as laser or water jet cutting techniques, may be necessary. 

The method is good for neat resin, however when it is used for FRPC, machining of the 

specimen is the biggest problem. 

Figure 2.3 A typical dogbone specimen for tension test. 

2.1.3 Hydrostatic tension test 

In this method, a ring type specimen of approximately 25 mm diameter machined from a 

thin-wall composite cylinder is subjected to intemal hydrostatic pressure. The procedure 

for fabrication of the thin-wali composite cylinder for ring-type specimen is outlined in 

ASTM D2291-83. The specimen is instrumented from outside by attaching strain gages 

along the lonçitudinal and hoop directions. For the specifics of hydrostatic tension test 



setup, one may refer to Daniel and Ishai (1994). Munjai et. al. (1983) reported a good 

correlation between the data obtained fkom tension tests on flat coupons and ring 

specimens. Ring specimens are more representative of cylindrical filament-wound 

components as compared to flat coupons. However, preparation of ring specimens is time 

consuming and costly. Moreover, the need for strain gages and special fixtures has made 

the method less attractive. 

2.1.4 Split disk method (ASTM D229û-92) 

The test setup for split disk method is shown in Fig. 2.4. As the figure shows, a ring-type 

specimen is loaded under tension through the two split disks fitted inside the specimen. 

The tensile stress in the specimen is calculated from the following equation 

where i and b are the thickness and the width of the ring, 

specimen experiences bending moment; as a result, the 

respectively. However, the test 

evaluated tensile modulus and 

tensile strength cannot represent the true properties of the material. Test data obtained 

from this method are recomrnended only for matenal evaluation and quality control 

[Munjai ( l989)l. 

f F 

Figure 2.4 Test setup for split disk method. 



To reduce the effect of the bending moment during the test, Chiao and Hamstand (1976) 

and Clements and Chiao (1977) used elongated ring specimens. Clements and Chiao 

(1977) compared the results of elongated ring specimens with those of flat panels 

specimens. They obtained lower strength but higher modulus for the elongated ring. 

Scatter of the data obtained for elongated ring specimens was also higher. 

The fixture for the split disk method is simple. However, the preparation of the specimen 

is time consuming and expensive. Moreover, the data obtained fiom this method is not 

acceptable for design purposes. Nevertheless. the method provides a convenient way for 

the quality control of tubular components, such as pressure pipes. 

2.1.5 Filament-wound pressure vessel tension test (ASTM D2S8S-68) 

In this test, a filament-wound pressure vessel with internal diameter of 146 mm is 

subjected to internal hydrostatic pressure (Fig. 2.5). For the evaluation of elastic modulus, 

strain gages are bonded to the outside surface of the vessel. Interna1 pressure is increased 

gradually while the strains and pressure are recorded simultaneously. The method provides 

the tensile strength and rnodulus of FRPC; however, the quantities obtained should not be 

considered as the tme properties of the material, because a) the material is subjected to 

biaxial tension, and b) the fibers are not unidirectional. The latter phenornenon, as was 

shown by Feldman et. al. (1966) and Pagano and Whitney (1970), produces a complex 

behavior that makes the interpretation of the test results a complicated task. ASTM 

D2585 calls the measured quantities "apparent properties" of FRPC. The method is good 

for the evaluation of the material and the process of filament winding and curing. It is also 

used for the purpose of quality control and acceptance or rejection of the actual product's 

manufacturing specifications. 



Filament-wound FRPC 

a- Interna1 pressure - 

Figure 2.5 Filament -wound pressure vesse1 . 

2.2 Compression tests 

Unlike ductile metals, the compressive strength and modulus of O" FRPC are not equal to 

their tensile strength and modulus. Arnong the commercially used fibers, FRPC made of 

Kevlar have considerably lower strength and modulus in compression than in tension. 

Carbon and Glass FRPC show slightly lower strength and modulus under compression 

than in tension, while there is virtually no difference between the tensile and compressive 

properties of boron FRPC (See for example, Piggott and Hams (1980) and Mallick 

(1993)). The compressive properties of FRPC are difficult to obtain because of the 

tendency for premature failure due to buckling and end brooming. A number of test 

methods incorporating a variety of specimen designs and loading fixtures have been 

developed to overcome the associated problems with the compression tests. A review on 

these methods was presented by Whitney et. al. (1985). Adsit (1983) and Lamothe and 

Nunes (1983) showed that the values of compressive modulus are generally independent 

of the test method. However, the compressive strength depends on mode of failure which 

varies from one test method to another. If the failure mode is not truly compressive, low 

compressive strength will be obtained. In general, a good test method induces a fiber 

compression failure, giving a high compressive strength value. The more commonly used 

compression test methods are reviewed in this section. 



2.2.1 End-loaded specimen (ASTM 695-91) 

In this test method, a flat strip specirnen with uniform thickness is placed in the jig shown 

in Fig. 2-6. The nuts and screws on the jig are finger-tightened, so that the specimen can 

slide freely inside. The specimen is then loaded at its two ends. The compressive strength 

data obtained fiom this method on O" specimen is consistently on the low side because of 

prernature failure due to end brooming. Despite the lateral support, there is also the 

possibility of having a buckling mode of failure. In order to prevent the premature failure 

due to end brooming, a dogbone specimen (Fig. 2.1) may be used. However, as stated 

earlier, the preparation of this type specimen is not easy and is costly. Moreover, the data 

obtained from tests on the dogbone specimens does not indicate considerable 

improvement over those obtained from the strip specimens. Munjal (1989) attnbutes this 

problem to the stress concentration present at the corners of the dogbone specimens which 

causes premature failure. In the investigation undertaken by the ASTM Committee D-3 0. 

Adsit (1983) repons that end-loaded specimens seem to fail by some fom of delamination 

or shear. He does not recommend the method for FRPC. 
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Figure 2.6 ASTM 695-91 fixture for FRPC compression test. 

2.2.2 Side-loaded specimen ( ASTM D34 10-95) 

A flat strip of material having a constant rectangular cross-section is used for the test. The 

specirnen, like the one shown in Fig. 2.2, is tabbed at two ends, but longer tabs are used to 

leave only a shon length of the specimen unsupponed. The compression force is induced 

in the specimen by shear action between the tabs and the specimen. Two types of fixtures 



are commonly used for this purpose. In both fixtures, the load is transferred to the tabs by 

a shear load acting along the grips via wedge action between the tapered grips and the 

tapered sleeves, Fig. 2.7. The difference between the two fixtures is that in one fixture the 

wedges are conical and in the other one the wedges are trapezoidal. The former fixture is 

known as the Celanese fixture. The latter one, which was first developed at the Illinois 

Institute of Technology Research Institute, is known as the IITRI fixture. The 

compression tests using the two fixtures are referred to as Procedure A and Procedure B. 

respectively, by the ASTM D34 10-95 standard. 

Tapered grips sleeves 

Figure 2.7 Schematic of side-loaded specimen compression test. 

The conical wedges fiom Procedure A are known to be prone to cone-to-cone seating 

problem. Mechanically, the Celanese fixture grips do not seat properly on a cone-to-cone 

surface contact arrangement. Instead, contact occurs along a pair of lines on the opposite 

sides of the specimen, at each end of the specimen. This unstable condition causes a lateral 

shifl in the grips, which in tum, produces high frictional forces in the enveloping cylinder. 

This situation can result in erroneously high values for the compressive strençth and 



modulus. This problem was discussed by Hofer and Rao (1977). The trapezoidal wedge 

grips in IITRl fixture eliminates the problem of line contact, but the fixture is much bigger 

in site and weight than the Celanese fixture. 

The data resulting from both the Celanese and the IITRi fixtures are sensitive to the 

flatness and parallelism of the tabs, as well as the whole system alignment. Therefore, 

special care must be taken to assure that the specimen tolerance requirements are met. 

This usually requires precision grinding of the tab surfaces after bonding them to the 

specimen, which makes the test expensive and time consuming. System with poor 

alignment, as was discussed in Sec. 2.1.1, produces bending moment in the specimen 

which in tum, results in premature failure and erroneous rnodulus. Every effort should be 

made to eliminate bending fiom the test system. Nevertheless, the expenmental work done 

by Adams and Odom (1991) did not show satisfactory results with this test method. They 

studied the effect of the type of tabbing material and tab taper on the measured axial 

compressive strength using the IITRI fixture. In pan of their work, they report: 

"Nearij every specime~i of ail the cotifiguratio~is testedfailed hi a regimi 

iti close proximity to the en& of the tabs, rather thati rmdomiy 

throiîghoirt the gage section. Therefore, a trire mial compressive s~re~igth 

of the composite, Le.. a stretigth independetif of the co@gwrario~>l. >vas 

upparerrtiy trot beitig meamred That is, the prewit remlts mggest that 

tabbbig materid atid geometry need to be studiedjirrther hi the research 

for a11 optimzcm specimen conjiguratioti. 

111 strmmary, compressiori testhg of highly orthotropic, high strength 

composite materiais, e.g., rcnidirectiotial-reitocd carbotwpoxy 

composites, is very semitive to specimen geometty alrd test techtiiqre. 

Exisriig statidds are szlfJicieritlj general thor iess thmi sntisficfory 

resdts c m  be obtaiiied e w i  ifail guidelines are fcciiy conjiorn~ed 10." 



The work done by Sinclair and Chamis (1983) also did not show that a unique failure 

mode was associated with the compression failure of the specimens tested using the IITN 

fixture. 

The specimen unsupported length must be short enough to prevent buckling. On the other 

hand, this region must be long enough to allow stress decay to uniaxial compression and 

to minimize the Poisson restraint effects due to the grips. This subject was discussed in 

more detail by Bogetti et. al. (1988), and Adams and Lewis (199 1). 

Despite the problem stated by Adams and Odom (1991), use of the IITRI fixture for the 

evaluation of compression propenies is very common in industry. When compared with 

more accurate methods, the IITRI method is less expensive and simpler. The work camed 

out by the ASTM Committee D-30 [Adsit (1983)l showed the method gave test data 

comparable to those obtained fiom the sandwich beam test method. 

2.2.3 Sandwich edgewise compression test (ASTM 064-94)  

In this test. a sandwich specimen composed of two composite coupons bonded to an 

aluminum honeycomb core is subjected to compression, Fig. 2.8. The honeycomb core is 

to provide lateral stability to the composite coupons. It is also assumed that the core does 

not carry any load. Compressive load is applied through the end caps. They are for 

supporting the specimen at its two ends to prevent premature buckling failure due to 

separation of the facings fiom the core at the point of contact with the loading plates. The 

caps also prevent end crushing. The two ends of the specimen must be machined so that 

they are parallel to each other and at nght angles to the length of the specimen. The results 

of the test are very dependent on the parallelism of the loaded surfaces. The preparation of 

the specimen is time consuming and expensive. Consequently, the test is not widely used. 



FRPC coupons 

Figure 2.8 Sandwich edgewise compression test. 

2.2.4 Sandwich beam compression test (ASTM D5467-93) 

A four-point flexural test is conducted on a sandwich beam specimen composed of a 

honeycomb core with a composite sheet bonded on the top and a metal sheet bonded on 

the bottom side, Fig. 2.9. The top facing sheet undergoes longitudinal compressive stress. 

The honeycomb is to prevent the top facing from buckling. But its material is so selected 

that it does not carry considerable load. The thickness of the composite and metal faces 

must be adjusted to ensure compressive failure in the top face. Longitudinal strain is 

measured by attaching two strain gages to the top plate along the longitudinal axis of the 

beam. These strain gages are located between the two concentrated loads and are 

svmmetric with respect to the mid-span of the beam. The readings from the two strain 

gages should not differ mcre than 10%. The compression stress in the top plate is 

calculated by ignonng the load carrying effect of the core. 

Theoretical investigation by Whitney (1973) revealed that the free edge effect produced a 

nonuniform compression stress distribution across the width of the composite facing while 

accompanied by other in-plane and out-of-plane stresses. However, it seems that the 



above mentioned problem does not have significant effect on the result of the test. The 

expenmental work of Shuart (1981) and Adsit (1983) confirmed the integrity of the 

methiid for the evaluation of the compressive strength and modulus of FRPC. 

Nevertheless, the test is not a popular method due to high cost for the preparation of the 

sandwich specimens and large arnount of material needed. The method is not 

recommended for determining the in-plane Poisson's ratio (v,), since the lateral 

deformation of the composite facing is infiuenced by the core deformation. Whitney et. al. 

(1984) believed that the higher value obtained for Poisson's ratio from a sandwich beam 

as cornpared to that fiom a tensile coupon is probably due to boundary effects or to the 

presence of transverse curvature in the sandwich beam. 

To reduce the cost and the amount of the materials used in the sandwich beam test, 

Gruber et. al. (1981) proposed the reusable sandwich beam concept. They showed that the 

data obtained by using the reusable beam of glasslKevlar hybrid composites were 

consistent with those obtained from the compression test using the IIRTI fixture. Funher 

investigations are needed to extend the finding for general purposes. 
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Figure 2.9 Sandwich beam compression test. 

I 1 

2.2.5.  Bydrostatic compression test ( ASTM D2586-68) 

In this test, a cylindncal specirnen is plugged at its two ends and is subjected to an extemal 

, : lm 
i 

hydrostatic pressure within a compression chamber, Fiç 2.10. The test provides the 



compressive strength of the specimen. However, the specirnen undergoes a state of biaxial 

stresses composed of hoop and longitudinal compressive stresses. Therefore the data 

obtained from this test cannot be considered as the true compressive strength of the 

laminate. The ASTM D2586 States that the method is limited to constructions containing 

greater than 50% by weight of glass reinforcement. The preparation of the test specimen is 

expensive and requires special manufactunng equipment . However, the compressive 

strength values obtained from tliis test provide a convenient means for assessing and 

comparing the influence of different fiber layouts and resin contents in filament-wound 

components. The test is also usefil for quality control. The values obtained from this 

method are not recommended for design purposes. ASTM discontinued the test method in 

1996, 

End plate, t Vented to atmosphere 

Specimen 

Figure 2.10 Hydrostatic compression test. 

2.3 Flexural test (ASTM D79û-93) 

Flexural properties, such as flexural strength and modulus, are determined by test method 

1 or II described in ASTM D790-93. Both methods use a specimen with uniform and 

rectangular cross-section. In test method 1, the specimen is loaded in a three-point bending 

mode, Fig. 2.1 la. In test method 11, the specimen is loaded is in four-point bending mode, 

Fis. 2.1 lb. The load is gradually increased while both the load and the deflection of the 

specimen at mid-span are simultaneously recorded. When the three-point bending test is 



ed, th ~ral modulus and strength are obtained from the following equations, 

respect ively 

where, FIA is detennined fiom the siope of the initial straight portion of the load- 

deflection curve and b is the width of the specimen. The other parameters are as shown in 

Fig. 2.1 la. When specimens with large span-to-depth ratio (say h'h>16) are used, 

significant horizontal reaction forces are developed at the suppons which affect the 

moment in a simply supported beam. In this situation, ASTM 790-93 provides the 

following equation instead of Eqn (2.3) 

where A is the deflection of the beam at mid-span corresponding to Fm. Similar equations 

are used to obtain the flexural properties of the material when four-point bending test is 

used. When unidirectional O" or 90" specimens are tested, the flexural modulus and 

strength are expected to equate to the corresponding tensile properties. However, in 

practice different values are obtained from the iwo tests. This problem will be discussed 

later. 

In cornparison to other test methods, flexural tests have many advantages. For example: 

a) The test specirnen has simple geometry and can be cut directly from the actual 

component. 

b) The possible small curvature and misalignment of the specimen do not influence the test 

result . 

C) Use of strain gagehages, which are usually costly and time consuming, is not needed. 

d) The test fiaure is simple. 



e) The flexural test results are less sensitive to the quality of the specimen and its 

fabrication than the tensile test (see Whitney et. al. (1974)). 

Because of these attributes, the flexural test methods have gained special popularity in 

composite material industry. However, there are some limitations that must be recognized 

when using the test methods. These limitations are discussed below. 

Figure 2.1 1 Flexural test. (a) Three-point bending test. (b) Four-point bending test. 

Some FRPC, as was stated earlier in this chapter, have different response under tension 

than in compression. Due to this phenornena the stress-strain relationship obtained fiom 

flexural test will be different from that obtained from the tensile and compressive tests. 

since specimens under flexural test undergo a combination of tensile and compressive 

stresses. On the other hand, the presence of a stress gradient in a flexural test results in 

higher tensile strength compared to that obtained by tensile test under uniform stress. 

Owing to the fact that flexural tests are less expensive and time consuming than the 

tensile/compressive tests, many researchers have tried to correlate the flexural properties 

to tension/compressive properties. For example, Zhang and Sikarskie ( 1  996) introduced a 

technique for generating stress-stress curves (for both tension and compression) for 

composite materials from flexural data. A similar technique was presented by Arai and 

Oku (1979) for isotropic graphite. Bullock (1 974) used a two-parameter Weibull mode1 to 

correlate the strength data obtained from flexural and tensile tests. His work was limited 



to unidirectional graphitdepoxy composites. A much broader work was camed out by 

Whitney and Knight (1980). Knight and Hahn (1975) presented similar work for 

randomly-distributed fiber composites. Although in general, these authors did not find a 

good correlation with the two-parameter Weibull statistical model, the model nevenheless 

explained why the flexural strength was expected to be higher than the tensile strength. 

Despite the difference between the values obtained from flexural and tensile/compressive 

tests, the flexural test results can be considered acceptable for design and analysis, 

because: 

a) For design and analysis of FRPC, it is conunon to define a single value for elastic 

modulus for both tension and compression in each principal direction. This value is 

usually defined based on the tensile modulus. 

b) For most FRPC the compressive and the tensile moduli do not differ significantly. 

C) When determined properly, the flexural modulus correlates very well with the tensile 

modulus. The expenmental results presented in Chapter 7 confirm this fact. 

d) The modulus and strength obtained from a flexural test are more representative for 

structures that are mainly subjected to flexural loading. 

A major drawback of the flexural test is the effect of shear deformation in the test results. 

This problem leads to an underestirnated value for flexural modulus. Since FRPC in 

general have low shear modulus, the deflection measured in flexural test may include a 

significant amount of shear deformation which is not accounted for in Eqn (2.2). The 

effect of shear is reduced rapidly when U h  of the specimen increases. Zweben et. al. 

(1979) suggest that L/h greater than 60 be used. 

It is also instructive to mention that the validity of Eqns (2.3) and (2.4) are questionable. 

These equations depend on two phenomena, a) the variation of longitudinal strain (cm) 

through the thickness of the section under consideration must be linear, and b) the material 



must have a linear stress-strain relationship. There are several works in the literature, for 

example Jalali and Taheri (1998a) and SandorfT (1980). that discuss the effect of 

concentrated load on the behavior of simply supported orthotropic beams. These works 

show that the concentrated load changes the distribution of stresses in the vicinity of the 

load. This phenomenon is illustrated in Fig. 2.12 for a highly orthotropic beam 

(EJGXZ=50) with I ' = 3 0 .  The deviation of the stress fiom a straight line decreases with 

increasing L/h. and with decreasing orthotropy. The non-linear behavior of the material is 

usually of minor concem, since in most cases FRPC show a linear behavior up to the 

failure load or very close to it. 

- Elasticity 
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Figure 2.12 Distribution of the longitudinal stress through the thickness of a beam 
subjected to three-point bending at mid-span (En/G,=50, Lh=30). 

2.4 In-plane shear tests 

The determination of in-plane shear properties of FRPC has been a controversial subject in 

composites research and industry. This is due to the fact that producing a pure state of 

shear stress in a given specimen is not simple. Several test methods are available; however, 

the results obtained from them do not usually match with each other very well. In this 

section, we review a few of the most widely used test methods. 



2.4.1 Torsion test on a tubespecimen 

In this test method, a unidirectional thin-wall tube is subjected to pure torsion. The 

simultaneous recording of the applied torque and the wall strain at 45" angle with respect 

to the longitudinal axis enables one to establish the shear stress-strain relationship. Instead 

of strain gage reading, one may record the relative anylar rotation between two points 

along the length of the tube. Arnong the several methods available for the evaluation of 

shear properties of FRPC, the torsion test method is believed to provide the most accurate 

results. Therefore, it has been used as a mean for the evaluation of the accuracy and 

validity of other shear test methods [Swanson et. al. (1985), Chiao et. al. (1977) and Sims 

(1972)l. It is important to note that for tubes with filament wound fibers at angles 

different fiom 0" and 90°, the interpretation of the results obtained fiom the test is not 

simple. The laminate will undergo a combination of biaxial and shear stresses. Therefore, 

three strain gages will be needed to record the strains at three different angles. However, 

the end constraints will have a significant effect on the results except when a specimen 

with suficient length is used. Theoretical discussion of this subject was given by Pagano 

and Whitney (1970) and Whitney and Halpin (1968). Riuo and Vicario (1  972) also 

conducted a finite element analysis to evaluate the efl'ect of the grip constraints on the 

distribution of the stresses in tube specimens. The investigations showed that when O* or 

90" specimens are used, accurate data can be obtained using classical shell theory. 

However, for helically wrapped tubes, the ratios of the wall thickness to diameter and the 

length to diameter of the tube can influence the determination of the strength and the 

modulus. 

Despite the accuracy of the results obtained from the torsion test on a unidirectional tube 

specirnen, the method is not a cost effective and convenient one. That is, the fabrication of 

FRPC tubes is an expensive task, requiring special manufacturing machinery. This is in 

addition to a special apparatus that is required for conducting the test. It is also important 

to recognize the difference between the fabrication methods of the tube specimen and that 



of' the actual structure. Therefore, it is reasonable to expect that the results obtained From 

the torsion on tube specimens not to be representative of the actual structures. 

Consequently, in practice other methods that employ flat specirnens are used. 

2.4.2 Rail shear tests (ASTM D4255-83) 

ASTM D4255 explains two test methods for the determination of the in-plane shear 

properties of composite matet-ials, Le. Method A and Method B. Method A test 

configuration is s h o w  in Fig. 2.13a. As s h o w  in the figure, two pairs of rails hold the 

specimen along its sides. Bolts are usually used to fasten the specimen to the rails. This 

procedure requires drilling holes in the specirnen. An in-plane shear force is induced in the 

specimen by applying a tensile force to the rails. For the evaluation of shear modulus one 

must attach at least one strain gage in the center of the specimen at 45" to the longitudinal 

direction of specirnen. However for more accurate results, one may use two to four strain 

gages. When four strain gages are used, they are mounted in MSO configurations to each 

face. 

Rails 

Strain 

Figure 2.13 Test configuration for (a) two-rail and (b) three-rail shear tests. 



In Method B (Fig. 2.13b) the test fixture consists of three pairs of rails that are fastened to 

the test specimen. As in Method 4 the rails and the specimen are usuaily bolted to each 

other. The in-plane shear force in the specimen can be produced by either a tensile or a 

compressive force. Strain gages must be used if shear modulus is to be evaluated. 

By simultaneous recording of load and strain, one can obtain the shear stress-strain curve 

of the specimen. The shear stress and shear strain are related to the applied load and the 

strain measured at 45" by the following equations 

r = F I A  ( 2 . 9  

Y = 2 ~ 4 5  (2 6 )  

where A is the area of sections resisting the shear force. €15 will be the average strain 

reading when more than one strain gages are used. Note that since the shear stress at free 

edges of the specimen must be zero, theoretically, a unifonn distribution of shear stress 

t hroughout the section is not possible. Therefore, the shear stress calculated from the 

above equation cannot be the true stress at the center of the specimen where the strain is 

measured. However, investigations conducted by Whitney et. al. ( 197 1 ) and Garcia et. al. 

(1980) showed that the difference between the true value and the value obtained from Eqn 

(2.5) was not very significant. That is due to the fact that, in general, a unifom state of 

shear stress can be obtained at a shon distance away from the free edges of the specimen. 

In the rail-shear tests, the specimens usually fail in an out-of-plane buckling mode. The 

measured shear strength and shear modulus may be affected by the specimen dimensions 

andior physical constraints. As a result, the method is referred to as a "standard guide" 

instead of a "standard method by the ASTM. As was stated earlier. the tests produce a 

uniform state of shear stress over most of the test section/sections, however, it is 

accompanied by normal stresses having si gni ficant magnitude in the transverse direct ion. 

The existence of the transversal nonnai stress causes a failure mode that is a combination 



of shear and n o m l  stresses. Garcia et. al. ( 1  980) recognized the existence of the 

transverse normal stresses as the cause of premature failure in the O" specimens compared 

to the 90" specirnens. Sun and Yamada (1  982) aiso reported a difference of a factor of 2 

between the strength results obtained fkom 0" and 90" specimens. 

Besides the above mentioned shortfdls, the difficulty involved with the installation of the 

test specimen in the fixtures makes the rail-shear test methods less attractive. Moreover, 

the results of the ASTM round-robin on this method as reported by Lockwood (1981) 

showed signifiant scatter among the average values, indicating that the method may not 

be a prefemed test method. It is, however, informative to mention that some researchers 

lika Sirns (1973) reported good correlation between the results obtained ftom rail-shear 

tests and other methods. 

2.4.3 10" off-axis tensile test 

In this test method, a 10" off-axis unidirectional specimen is loaded under tension. Like the 

ASTM D3039 tensile test, the specimen is tabbed at its two ends and special precautions 

taken to prevent bending in the test. As shown in Fig. 2.14 strains are recorded in three 

different directions, usually using a Delta rosette strain gage. To account for the possible 

out-of-plane bending, the use of two Delta rosette strain gages attached back-to-back of 

the specimen is recommended [Chamis and Sinclair (1977)l. Knowing the tensile load and 

the strains in the x and two other directions at 120" enables one to detemine the in-plane 

shear stress and the strain in the principle directions of the specimen using the following 

equations, respectively 

where ~ ~ 1 ,  and E,, are the strains from strain gages 1, 2 and 3 shown in Fiç. 2.1 4. 



Figure 2.14 10" off-ais tensile test. 

Chamis and Sinclair (1977) showed that when the tensile load is applied at a certain angle, 

depending on the property of the material, the material will experience the highest 

magnitude of shear stress and strain dong the principal axes, while the two normal stresses 

(al, and an) remain well below their critical limits. The investigation on Mod-Uepoxy, T- 

3001epoxy and S-glass/epoxy showed that the angles were about 10, l 1, and 15 degrees 

respectively, considered to be close enough to 10". The test is very sensitive to a small 

misorientation error of strain-gage positioning and load alignment with respect to the fiber 

direction. The end constraints of the specimen in the gnps can produce considerable error 

in the result of the test. However, the error can be reduced significantly by selecting a 

relatively long specimen (see for example Pindera and Herakovich (1986)). The failure of 

the specimen occurs under a combined state of stresses, therefore, the strength value 

predicted by the method is an underestimated value. On the other hand, as the analytical 

results of Pindera and Herakovich (1 986) show, the method in general overestimates the 

shear modulus. These findings were also confirmed by Chiao et. al. (1977). Pindera et. al. 

(1987) do not recornrnend the method for the measurement of the shear strength. They 

believe that the 45" off-axis tensile test provides more accurate results for shear modulus 

as compared to the 10" off-axis test. 

The 10" off-axis tensile test has the advantage of using specimens with a simple geometry. 

However, measuring strains in three directions makes the method expensive. Moreover. as 



was stated earlier, the method is sensitive to small misalignment of the strain gages and to 

the direction of the load with respect to the fibers. These are in addition to the bending 

effect which is a common problem in al1 tensile tests. Nevertheless, Yeow and Brinson 

(1978) and Lee et. al. (1990) reponed good agreement between the results obtained by 

the 10" off-axis test and the other acceptable methods when specimens with suficiently 

long length were used and/or the appropriate correction factor was applied. Lee and 

Munro (1986). who evaluated nine in-plane shear test rnethods, ranked the method below 

the MSO and the Iosipescu shear methods, as the most promising testing method. They 

considered several parameters such as the cost of fabrication, testing cost, data 

reproducibility and the accuracy of the experimental results as the criteria for their 

ranking. It is, however, informative to mention that some researchers like Munjal ( 1989) 

do not recommend the method for the evaluation of the shear properties of FRPC. 

2.4.4 Tensile test on 145' symmetric laminate (ASTM D3518-94) 

When a MSO symmetric laminate is subjected to a uniaxial tensile stress in 0" direction, the 

shear stresses dong the principal axes of the laminae are independent of the matenal 

properties and equal to half of the applied tensile stress. This characteristic is the basis of 

the ASTM D3518 test method. The configuration of the test is shown in Fig 2.15. The 

specimen usually does not need tabs. Two strain gages are used to record the longitudinal 

and the transversal strains. Use of four strain gages, two at each face, is recommended to 

account for any possible bending. This enables one to calculate the shear strain along the 

principal direction of the laminate as follows 

y = E, - El (2.9) 

where and EZ are the longitudinal and the transversal strains, respectively. Simultaneous 

recording of the applied load and the strain enables one to determine the shear stress-strain 

relationship of the specimen. 



Figure 2.1 5 M5O tensile test. 

Tensile test on a t4S0 symmetric laminate for determining the in-plane properties of the 

FRPC was first proposed by Petit (1969). The method was later improved by Rosen 

(1972). This test method is believed to provide reliable information for the shear stress- 

strain relationship of FRPC materials well into the nonlinear region. The fact was reported 

by Chiao et. al. (1977), Terry (1979) and Hahn (1973). The method is also highly 

recommended by several researchers (see for example Munjal(1989) and Lee and Munro 

(1986)). In a recent investigation, Dickson et. al. (1995) employed a new method to 

evaluate the accuracy of the M5" tensile tests along with the 10" off-axis tensile and the 

Iosipescu shear test. In their method, they used the shear modulus obtained by these test 

methods to determine the tensile moduli of several shear-sensitive laminates. The 

cornparison of the deterrnined values with those obtained with experiments proved the 

545' tensile test to be the most accurate method. 

Despite the wide acceptance of the +45" tensile test, the shear strength evaluated by the 

method should be used with caution, since it does not represent the true strength value of 

material. A premature failure may occur due to the existence of a complex stress field 

close to the fiee edges and also due to in-plane stress normal to the fiber direction in each 

ply. The existence of a complex state of stresses in the vicinity of free-edges, when a 

laminated composite is subjected to uniaxial load, has been shown by different methods in 

the literature. For example, Rybicki (1971) and Conti and De Paulis (1985) presented 



approximate solutions for the determination of these stresses, while Pipes and Pagano 

(1970) and lsakson and Levy (1971) employed finite difference and finite element 

solutions, respectively. The influence of these stresses on the strength of the laminate and 

the possibility of the initiation of delamination failure fiom the fiee edges were discussed 

by Soni and Kim (1 986), Herakovich (1 98 1) and Pipes et. al. (1 973). From these works, it 

becomes clear the failure of a M5" tensile specimen does not occur under pure shear. 

Kellas et. al. (1 993) believe that the fiee-edge effect is not as significant as the effect of 

the in-plane normal stress. They state that an in-plane stress normal to the fiber direction 

exists in al1 plies. However, the effect of this stress on a given ply is minimized by the 

reinforcing fibers of the neighbonng plies. Since the ply constraint is reduced by the 

increase of the ply thickness, the thickness of each individual ply is an important parameter 

that influences both shear stress-strain response and the ultimate failure load of this 

specimen. Moreover, the surface plies of a given specimen, being constrained by only one 

neighboring ply, will experience hipher normal stresses compared to the interior plies. 

Therefore, when a M5" specimen undergoes tension, a combination of shear and in-plane 

normal stresses will initiate failure in the surface plies. The laminate can still carry more 

load if the remaining intact plies are capable of carrying the total applied load. It is obvious 

that the higher the total number of plies, the greater the chance that the remaining plies 

will be able to carry the load without sudden ultimate failure. 

The other problem discussed by Kellas et. al. (1993) was the effect of fiber scissoring 

which occurs due to large deformation. This phenornenon changes the direction of the 

fibers from MS0. As a result, the accuracy of the test procedure becomes questionable. 

Although the fr4S0 tensile test method provides a simple and efficient mean for evaluating 

the in-plane shear properties of the laminates, it requires specimens with k45' lay-up 



sequence. Thus, it cannot evaluate the properties of laminates with other types of lay-up 

or randomly oriented chopped-fiber composites which are cornmonly used in practice. 

2.4.5 Iosipescu shear test (ASTM D5379-93) 

A small flat rectangular specimen having symmetncally located V-notches at its mid-length 

is used in this method. The configuration of the test apparatus is shown in Fig. 2.16. 

During the test, the specimen undergoes two counteracting moments and shear forces at 

the two sides of the notches. The induced moments cancel out at the nid-length of the 

specimen, thereby creating a state of pure shear force at the section. The V-notches are 

there to promote a uniform distribution of shear stress at the section. Two strain gages (at 

least) are used to record the strains at +4S0 and -45" angle with respect to the longitudinal 

axis of the specimen (the x axis). If the specimen is likely to twist, one must use four strain 

gages, two on each face. By sirnultaneous recording of the applied load and the strains, 

one can determine the shear stress-strain relationship. The following equations are used 

for the determination of shear stress and strain. 

Y = &+45 - E.45 (2.1 1) 

where h is the width of the specimen between the notches and b is the thickness of the 

specimen. 

Strain gages 7 1' 

Fiçure 2.16 Iosipescu 
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shear test. 



The Iosipescu shear test was originally developed for metals by Iosipescu (1967) and was 

later adopted for determining the shear propenies of composite rnaterials. Two 

alternatives of this method are the method developed by Arcan et. al. ( 1  978) and the 

antisymrnetric-four-point-bend method developed by Slepetz et. al. (1978). When 

cornpared with the other available methods, the Iosipescu shear test is simpler and 

provides reliable results. It can be used for measuring properties of unidirectional, cross- 

ply laminates and randomly oriented chopped-fiber composites. By this method, one can 

obtain both the in-plane (1-2 direction) and the through-the-thickness (1-3 and 2-3 

directions) shear properties of FRPC, depending on the direction of the specimen in the 

fixture. However, for the through-the-thickness shear propenies, one needs specimens 

with 20 mm thickness, which are usually difficult to prepare. Lee and Munro (1986) 

ranked the Iosipescu shear test beside the k45" tensile test as the most practical technique 

currently available for testing FRPC. Walrath and Adams ( 1983) and Adams and Walrath 

(1987) also considered the method as one of the most versatile methods for measuring the 

shear properties of FRPC. 

Many expenmental investigations have been camed out in which the results obtained by 

the Iosipescu method were compared with the results of the other methods. For example 

Sawnson et. al. (1985) compared the results of the Iosipescu test with those of the torsion 

tube test. Lee et. al. (1 990) compared the results of the Iosipescu test with those of the 

145" and the 10" off-axis tensile test. Pierron et. al. (1 995) used an isotropic material and 

detemined the shear properties of the material indirectly from the tensile test for the 

cornparison with the results of Iosipescu test. The results of these investigations confirmed 

the Iosipescu to be an acceptable test method. 

Despite the wide acceptance of the Iosipescu shear test, the result obtained from this 

method should not be considered as the tme shear propenies of the material. This is due 



to the fact that a uniform and pure shear stress state does not exist in the gage section of 

the specirnen. Investigations by Pinder et. al. (1987) and Morton et. al. (1992) showed 

that the method overestimated the shear modulus of the material when O" specimens were 

examined, while the evaluated values from 90" specimens were always underestimated. 

Pinder et. al. (1987) showed that the margin of the discrepancy depending on the degree 

of the anisotropy of the material rnight reach 40%. Abdallah and Gascoigne (1989) 

reponed that the best results for shear modulus could be obtained from [0"/90°] and 

[0°/k450/900] specimens. This fact was also reflected in ASTM D5379-93. 

Since a state of pure shear stress does not exist in the gage section, the specimen usually 

fails under a mixed-failure mode. This problem, beside the nonunifonnity of the shear 

stress in the gage section, promotes a premature failure of the specimen. The finite 

element analyses conducted by Herakovich and Bergner ( 1980) and Abdallah et. al. ( 1989) 

showed the severity of the problem in 0" specimens. Therefore, they suggested 90" 

specirnens be used for the determination of shear strength. Sullivan et. al. (1984) 

conducted similar work, however, they supported their findings by photoelasticity on 

vinyl-ester resin. Their numerical and photoelastic results indicated that for isotropie 

matenal better results could be obtained by the ant isymmetnc four-point-bend met hod 

compared to the common Iospescu fiaure known as Adams and Walrath fixture. 

Gipple and Hoyns (1 994) conducted a comprehensive investigation on the Iosipescu shear 

test when used for the through-the-thickness shear properties of FRPC. They measured 

the shear strain at the gage section of the specimens by using conventional strain gages, 

full section strain gages and moiré interferometry technique. They supported t heir result s 

by non-linear finite elernent analyses. Their findings confirmed the findinçs of the previous 

researchers. 



The influence of the load location on the specimen and the notch geometry on the test 

result was investigated by Spigel et. al. (1987). They reported that these parameters 

significantly infiuenced the test results. Measurement of strains also has significant effect 

on the test result. That is because the area of pure shear is very small. Abdallah and 

Gascoigue ( 1989) reported that this area was about 1 .5 mm long, and therefore ttiey 

suggested strain gages with a gage length of 1 mm be used for the test. 

2.5 Through-thcthickness shear tests 

Evaluation of the through-the-thickness shear properties of FRPC is more involved than 

their in-plane properties. Among the various methods discussed in the above, only the 

Iosipescu method can be used for the evaluation of through-the-thickness shear propenies. 

However, the method requires specimens with 20 mm thickness, which are not easy to 

prepare. Because of this difficulty, the method is not popular in the industry, and the 

related experimental works in the literature are very limited (see for example Gipple et. al. 

(1994)). The other shear test methods that enable one to produce a through-the-thickness 

shear stress in the materials are the short-beam shear test (ASTM D2344-84) and the 

notched-specimen test (ASTM D3846-94). These methods are discussed in below. 

2.5.1 Short-bearn shear test (ASTM D2344-84) 

When a FRPC specimen is subjected to three-point bending test, failure will occur due to 

excessive bending moment, while the shear force will remain far below the specimen shear 

strength. This phenornenon is reversed by selecting a specimen with small span-to-depth 

ratio (usually MG) in the short-bearn shear test. Assuming a parabolic shear distribution 

through the thickness of the beam, the shear strength is calculated fiom the following 

equat ion 



where F,, is the failure load and b and h are the width and the depth of the beam, 

respectively. No practical method is available for determining the shear modulus from this 

met hod. 

In an early investigation, Sattar and Kellogg (1969) concluded that the failure in the short- 

beam shear test was a pure shear failure staning from the center line of the beam. They 

reasoned that the combination of shear and flexure at intemediate locations was not of 

sufficient magnitude to cause failure. They had established their conclusions on the 

assumption of a parabolic distribution of shear stress through the thickness of the bearn, 

which was later proved to be incorrect by other researchers. For example, Berg et. al. 

(1972) used the finite element method to determine the correct distribution of the stresses 

in the short-bearn shear test while Whitney and Browning (1985) found the elasticity 

solution of the problem. Both investigations showed that the distribution of shear stress in 

the sections along the specimen is not even close to parabolic in shape. Indeed, the 

maximum shear stress occurs close to the top of the beam adjacent to the loading nose 

where high magnitude longitudinal compression stresses exist. The combination of shear 

and compression stresses at this region produces a mixed failure mode which cannot be 

correlated to the shear strength calculated from Eqn (2.12). Xie and Adams (1995) and 

Chatterjee (1996) also confirmed these findings. As a result the value obtained from Eqn 

(2.12) is referred to as the "apparent shear strength" by ASTM D2344-84 and the method 

is only recommended for screening and quality control. 

2.5.2 Notched-specimen test method (ASTM D3846-94) 

The shear strength of the material is measured by applying a compressive load to a 

notched specimen with the configuration show in Fig. 2.17. The specimen is located in a 

jig similar to that of the ASTM D695 test method (Fig. 2.6) so that it cannot buckle 

laterally. Assuming a shear failure along line ab, the shear strength is the failure load 

divided by the shear area between the two notches. 
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Figure 2.17 Notched-specimen test method. 

The notched-specimen test does not provide the true shear strength of the material. since 

the shear stress is not pure and uniform over the specified gage length. The work 

conducted by Shokneh (1 995) indicated the existence of high stress concentration at notch 

regions. Consequently, a mix-failure initiating at the tip of the notches governs the 

strength of the specimen. As a result, as Chiao et. al. (1977) reported, the method 

underestimates the shear strength of the materials. Since the degree of stress concentration 

depends on the geometry of the notches, the results of the test is quite sensitive to the 

notch machining. This method was originally designed to accommodate those types of 

FRPC that could not be adequately characterized by the short-bearn test. However, 

because of the difficulty involved in the precise machining of the notches and the above 

mentioned shonfalls, the method has not gained popularity. Munjal (1989) did not 

recomrnend the method even for quality control. 

2.6 Recen t schievements 

The anisotropic nature of composite materials and the dificulty involved with the 

measurement of their elastic properties have always required the development of new test 

methods and the modification of available ones. However, each new technique must be 

validated through several investigations before it could be considered an acceptable testing 

method. Even afier this stage, the method may not gain popularity, since the popularity of 

a given method depends mainly on the practicality of the test and the associated data 

processing effort. A few recent achievements in this field are reviewed below. 



Tsai and Danid ( 1990) and Tsai et. al. (1990) developed a new test method in which thin 

rectangular coupons were subjected to torsion. A closed form solution was obtained based 

on the Mindlin-Reissner theory [Mindlin (1 95 1)]. In this method, the strains on the width 

and the thickness of the specimen must be measured at 45" angle with respect to 

longitudinal axis. With a O" specimen one can obtain both G12 and G13 of the material. 

However, at least two tests on specimens having different width-to-thickness ratios are 

needed. The data from the tests, then, are used in a trail and error procedure to determine 

the two shear moduli simultaneously. To obtain one rnust use a 90" specimen. When 

compared with the tube torsion test, the new rnethod uses specimens with simple 

geometry. However, it requires a relativeiy complicated trail and error procedure to 

extract the shear moduli From the test data. Moreover, the accuracy of the Mindlin- 

Reissner theory for this problem needs fùrther investigation. 

Shon (1995) proposed a new test method that enabled one to obtain the through-the- 

thickness shear strength of composite materials. In his method a sandwich specimen 

composed of two steel facings and composite core is subjected to four point bending. The 

span-to-depth ratio of the specimen is selected such that failure occurs due to interlaminar 

shear inside the core material. Shon (1995) used classical laminated plate theory (CPLT) 

to detennine the maximum shear stress at the center line of the specimen. He reasoned 

that the existence of the steel plates at two sides of the composite core prevented the 

stress concentration in the vicinity of the loads and reactions, therefore, the method did 

not have the problems associated with the short-beam shear test. Nevenheless, the 

reponed shear strength values obtained by this method and short-beam shear test did not 

show significant differences. Funhermore, the validity of the existence of pure shear stress 

at the centerline of the specimen and the adequacy of CLPT in t his method need to be 

investigated by finite element analysis or by some other numericaVrnathematica1 methods. 



Bansal and Kumosa (1995) and Broughton et. al. (1990) developed a new fixture that 

enabled them to subject the Iosipescu shear test specimen to a combined shear and axial 

stress. Their fixture is good for characterization of mixed-failure modes of the material. 

however it is not a suitable device for cornmon use in industry and research centers. 

2.7 Summary and conclusions 

Several test methods available for characterizing the mechanical properties of FRPC were 

discussed in this chapter. Arnong them, some are only suitable for quality control and 

screening, and some are too costly and time consuming or require complicated data 

processing. As a result, there remain only a few popular test methods that can provide 

acceptable data for design purposes. These methods are the strip-specimen tension test 

(ASTM D3 039-93), the side-loaded specimen compression test (ASTM D34 1 O-%), the 

M5" tensile test (ASTM D3518-94) and the Iosipescu shear test (ASTM D5379-93). 

However, each of them, as was discussed in detail, has some shonfalls. Consequently, 

several attempts have been made to develop new test methods or rnodify available test 

methods to overcome the existing shortfalls. One may consider the ideal test method as a 

method that has the following attributes. 

subjects the specimen to a state of stress that is similar to the state of stress that the 

material experiences in its actual life. 

can use as-received specimens (e.g. does not require a specimen with special lay-up 

sequences). 

uses specimens with simple geometry. 

does not require time consurning alteration and machining of the specimens. 

does not require considerable effort for mounting the specimen in the fixture. 

does not require strain gages and/or other expensive instruments. 

produces reliable results. 

can provide several properties from the same set of tests. 



Although in most engineering applications FRPC are subjected to a combined state of 

stresses, the general trend in the design of testing methods has focused on producing a 

state of pure stress along a gage length within a given specimen. As a result, the evaluated 

properties from these methods may not represent the tme in service behavior of the 

materials. On the other hand, when there are test methods that subject the materials to a 

combined state of stress, the interpretation of the test data either is not easy or the data are 

not useftl for design purposes. Furthemore, the state of stress produced by the test 

method may not be close to the one that the material may expenence in its semice life. 

Item a in the above list addresses this problem. 

The development of the Varying-Span Method (VSM) is a step towards the development 

of an ideal test method. The method is an extension of the three-point bending test and, 

therefore, it has al1 the advantages of this method. On the other hand, the proposed 

modification to the three-point bending test eliminates its associated shonfalls and 

consequently makes the VSM a relatively ideal test method. With this method, specimens 

with di fferent span-to-depth ratios (Uh) are subjected to t hree-point bending from which 

one can determine the longitudinal modulus and the through-the-thickness shear modulus 

of the material. The flemral strength and the apparent interlaminar shear strength can also 

be obtained fkom the results of the same tests, however the method does not lend anything 

new to the evaluation of these two properties. Therefore, they will not be addressed in this 

thesis. 

Also among the several advantages of the VSM is its capability of evaluating the through- 

the-thickness shear modulus of the FRPC from thin specimens (say 2 mm thick). The 

evaluation of this propeny, as was explained when reviewing the different test methods in 

this chapter, is not a simple task. For instance, the Iosipescu shear test, which is capable of 

providing this property, requires 20 mm thick specimens; a thickness which is not easily 



achieved. On the other hand, the torsion test method developed by Tsai and Danial (1990) 

and Tsai et. al. (1990) has the shortfalls that a) it is involves complicated data 

interpretation and b) it requires a torsion machine which may not be available in many 

facilities. Therefore, besides ot her positive attributes, the VSM is expected to receive 

special credit for its ability to evaluate the t hrough-the-t hickness shear modulu S. 



Chapter 3 

THE EXACT SOLUTION FOR SIMPLY SUPPORTED BEAMS 

UNDER THREE-POINT BENDING 

Although the analysis of a simply supported barn is a simple task in stmctural mechanics, 

its exact solution is lengthy and complicated. The Euler bearn theory is adopted in 

structural mechanics. This theory produces fairly accurate results for beams with large 

span-to-depth ratios (U), however, it is unable to accurately predict the behavior of the 

beams with small Uh. Moreover, as was shown in Fig. 2.12, the validity of the theory in 

proximity of the concentrated loads is questionable. The exact solution for such a beam 

can be obtained by the application of theory of elasticity. Sandorff (1 980) used the finite 

difference method to solve the differential equation of the theory of elasticity for the three- 

point bending boundary conditions. Berg et. al. (1972) and Xie and Adams (1994) used 

the finite element method to analyze the problem. Two different closed form solutions 

proposed by Whitney and Browning (1985) and Chattejee (1996) are also available in the 

literature. 

Chatterjee (1996) used a Fourier transfom solution for the elasticity problem of an infinite 

onhotropic strip. Although the solution is for an infinite strip, it gives accurate results for 

beams of finite length when the overhang lengths are about two times the depth of the 

beam. In this solution, the loads must be divided into antisymmetric and symmetnc loads. 

The final result is obtained by superposing the results of the analyses of the antisyrnmetric 

and the symmetnc loads. A numerical integration is employed for the Fourier 

transfomat ions. 

Whitney and Browning (1985) and Whitney (1985) solved the problem for a beam of finite 

length. The solutions were given for three- and four-point bending problems with the 

assumption that the concentrated loads and the reactions are distributed uniformly over 



small lengths. In their solution, the shear stress at the fiee ends of the beam automatically 

vanishes by the nature of the employed stress function. However, the boundary condition 

of O, = O at the fiee ends were not be fully satisfied. Instead, the force and moment 

resultants are set to zero at the two ends. Although this brings approximation into the 

solution, the solution for beams with sufficient overhangs, which is usually the case for 

laboratory specimens, 

result, fiom a practical 

Figure 3.1 

practically leads to zero longitudinal stresses at the two ends. As a 

standpoint, the solution satisfies the required boundary conditions. 

Geometry of simply supported beam for analytical solution. 

In this chapter we solve the problem of the simply supponed onhotropic beam with a new 

approach. The configuration of the problem is shown in Fig. 3.1. The distribution of the 

concentrated load and the reactions are assumed to follow the Hertizian contact law. The 

solution satisfies the conditions of zero longitudinal stress (0- = 0) and zero shear force at 

the two free ends of the beam (x = O, L '1. In general, the solution is simpler and more 

representative of the problem of three-point bending as compared to the two existing 

closed forrn solutions. The solution will be used for the evaluation of VSM and the 

through-the-thickness inextensibility theory later. First we will find the solution of a simply 

supported beam subjected to distrîbuted harmonic loads on both sides. The solution will 

then be extended to the beam subjected to three-point bending. We will define a new 



terminology called the "net mid-span deflection". Subsequently, the effects of variables 

such as the transverse modulus of elasticity (E39, the Poisson ratio, the diameter of the 

loading nose and the magnitude of the load on the net mid-span deflection are 

investigated. 

3.1 Solution for harmonie loading 

Consider the orthotropic beam shown in Fig. 3.2. To produce such a bearn from FRPC, 

the fibers must be either in the x direction or perpendicular to the xz plane. The boundary 

conditions at two ends are defined as follows 

where w is the dispiacement in the z direction. As shown in the figure, sinusoidal loads 

with different amplitudes, but with the same wave length act on the top and the bottom 

surfaces of the beam. These loads are defined by the following functions 

qr ( x) = a,' si n ( p )  

(x) = anb sin(p)  

where a: and a,b are the amplitudes of the top and the bottom loads, respectively, and 

Figure 3.2 Simply supponed beam subjected to harmonic loading on both its surfaces 



Idealizing the orthotropic beam as a plane stress problem, the following equations define 

the stress-strain relationships within the beam 

where Sv are the compliance coefficients of the material. These coefficients are defined by 

where E, G and v are the elastic modulus, shear modulus and the Poisson's ratio of the 

matenal, respectively. Notice that as the definition of the onhototropic bearn implies, the 

principal axes of the material must be dong the axes of the xyz coordinate system of the 

beam. Othenvise, Eqn (3.4) will not be valid. The equations of equilibnum for the state of 

plane stress are as follows 

The solution of differential equations (3.6) satisfjing Eqns (3.1) through (3.4) was given 

by Pagano ( 1  969) in the following form 



and 

where u and w are the displacement components in the x and r directions, respectively. 

The four values of m, are defined by the different combinations of the following equation. 

where 

A, (for i = l  to 4) are unknown constants which will be determined by satiseing the 

boundary conditions on the top and the bottom surfaces of the beam. These boundary 

conditions are 

t , ( h /  2 )  = t , ( - h / 2 )  = O (3.1 1) 

Equations (3.1 1 ) and (3.12) in conjunction with Eqn (3.7) provide four equations so that 

one can solve them for the four unknowns. Knowing A, the components of displacement 

and stress can be easily detemiined fiom Eqns (3.7) and (3.8). 

It is important to note that the solution provided is only for one term of the Fourier series. 

However, since any load can be transforrned into a Fourier series, the above solution can 

be used for general purposes. For this, the behavior of the beam under each term of the 

series is detennined separately. The final result will, then, be obtained by superposition of 



the results associated with each terrn of the Fourier series. This procedure will be used for 

the solution of a beam under three-point bending next. 

3.2 Solution for beam under three-point loading 

Consider the bearn show in Fig. 3.3. This beam is to represent the sirnply supponed beam 

shown in Fig. 3.1, The beam has a total length of L' while the span between the two 

supports is L. The rnid-span load and the reaction forces are distributed over small lengths 

representing the contact phenornenon. As shown in the figure, there are two fictitious 

supports at the two ends of the beam so that one can use the solution provided for the 

hannonic loads in section 3.1. Since the loads at the top and the bottom of the beam are in 

equilibrium, the supports do not apply any forces to the bearn. As a result, the solution of 

the beam in Fig. 3.3 provides the correct answers, except that it includes a rigid body 

movement equal to the vertical displacement of the points located at the real supports 

(w,). AS a result, to determine the absolute values of the vertical displacements, one must 

deduct the @id body displacement fiom the displacement values obtained by the solution. 

Figure 3.3 Idealization of a beam subjected to three-point bending. 

The solution of the beam shown in Fig. 3.3 satisfies the boundary condition of zero 

longitudinal stress (a, = O) at the two fiee ends of the beam. However, it does not 



guarantee the condition of zero shear stress at bearn's two ends. Instead, the condition of 

zero shear force, expressed by the following equation, exists. 

Because of the effect of the local reaction forces, the distribution of the shear stress in the 

vicinity of the  supports is irregular. As a result, despite the fact that there is no shear force 

in the sections located between the supports and the free edges, shear stresses with 

considerable magnitude may exist. However, as was shown by Ialali and Taheri (1998a), 

the irregularity of the shear stress practically vanishes when the section has a distance 

equal or greater than the beam thickness (h) from the point of application of local force. 

Therefore, for beams with overhangs larger than the beam thickness (a situation that 

always exists in laboratory specimens), Eqn (3.13) practically results in the condition of 

zero shear stress at the two fiee ends. 

It is also instructive to mention that the solution implies the restriction of equal vertical 

displacement for the points located on the two free end sections. Although this restriction 

is against the definition of Free ends, such a situation practically exists in beams with over- 

hangs equal or bigger than the beam thickness. This is due to the fact that sections located 

far enough from the supports (Fig. 3.1) are fiee from stresses, and as a result no relative 

vertical movement may occur in those sections. In summary, since the overhangs of the 

laboratory specimens are bigger than the minimum amount required, the solution of the 

beam in Fig. 3.3 accurately represents the true behavior of the acual test specirnens. 

As was stated earlier and as shown in Fig. 3.3, the concentrated load at mid-span and the 

reactions are distributed over finite widths. This phenornenon is due to the deformation of 

the contacting bodies under the applied load. A comprehensive discussion on this subject 

was presented by Goldsmith (1960) and Timoshenko and Goodier (1970). They applied 

the Hertzian contact law to determine the distribution of the stresses and the area of 



contacts for isotropic elastic materials. Sankar (1989) included the effect of bending in his 

solution and Chatte jee (1996) presented a solution for anisotropic materials. However, 

none of these solutions has the simplicity of the solution based on the Hertzian contact 

law. Since the use of different contact laws does not alter the outcome of our 

investigation, we adopt the Hertzian contact law which has the advantage of simplicity. 

According to this, the width of contact for the mid-span concentrated load can be defined 

by 

26 = 4 \ I m  (3.14) 

where Fdenotes half of the contact width and r, is the radius of the loading nose. Also 

where El ,  and EÎ are the elastic moduli of the two contacting bodies. The distribution of 

load over the contact width is slightly modified from the one defined by the Hertizian 

contact law to simplifi the mathematical manipulations. For the mid-span load, the 

distribution is defined by the following equation 

where X is measured from the center of the contact width. The contact width and the 

distribution of load at the supports are defined by 

where r, is the radius of the support roller. To solve the problem, the load on the top and 

the bottom of the beam must be transformed into Fourier series separately. Since the 

distribution of the loads with respect to the mid-span is symmetric, the Fourier series will 

not include even components. Therefore, the transformation of loads into Fourier series 

will have the general formai of 



where p has the same definition given in Eqn (3.3). To find the coefficients of the senes 

mlr x 
we multiply both sides of Eqn (3.18) by sin - 

L ' 
and integrate them over the entire 

t m x  mx x 
length of the beam. Since for n + m the result of 1 sin - 

L' 
sin y d x  is zero, the 

O L 

following equation is obtained for the coefficients of the Fourier series. 

By changing the variable of x to 

and with some manipulation the result will be 
L'I? 

where, J is measured from the mid-span. Note that because of symmetry, the integration 

in Eqn (3.2 1 )  is only over half of the length of the beam, however a coefficient of two was 

applied to provide the result for the whole length. The coefficient of Fourier senes for the 

load on the top and the load on the bottom of the beam must be calculated separately. To 

determine a, for the load applied on the top surface of the beam, we substitute Eqn(3.16) 

into Eqn (3.2 1). By replacing Y with F we obtain 

This equation can be simplified to 

i 2F ~ o s ( ~ 5 )  
ont = (-1) 2 - 

1 
for - #- 

L' pl= 7r 2 
1 - 



To obtain a, for the load applied to the bottom surface of the beam, the second of Eqn 

(3.17) is substituted into Eqn (3.21). By changing the variable 
t 

and with some manipulation one obtains 

Mer simplification, this equation becomes 

and 

Knowing the coefficients of the Fourier series components for the mid-span concentrated 

load and the reactions, the stresses and displacement at each point are obtained by the 

superposition of the results obtained from Eqns (3.7) and (3.8) for each components. As 

was mentioned earlier, the r direction displacement components includes a ngid body 

displacement equal to w,.  To determine the absolute displacement values, one should 

deduct the rigid body displacement from the value obtained directly fiom the solution. 

However, since the VSM utilizes relative displacements of certain points along the beam, 

deduction is an unnecessary operation. 

3.3 Numerical investigations 

In this section the influence of various parameters on the response of FRPC beam under 

three-point bending is investigated. Since the effect of the local deformations is significant 

for beam with small L'h, a beam with L/h = 4 is considered. The geometry of this beam is 



shown in Fig. 3.4. The radii of the loading nose and the supporting rollers are assumed to 

be equal. This radius is considered as a variable in the investigation. The magnitude of the 

applied load, the modulus of elasticity of the beam in the z direction and the Poisson's 

ratio are also considered as variables. The material properties of the beam are taken as 

follows 

E- = 200 GPa 

The properties represent materials with very high anisotropy. As a result, the local effect 

of the concentrated load and reaction forces is pronounced. The loading nose and the 

rollers are assumed to be steel with modulus elasticity of E = 200 GPa. The elastic 

rnodulus of the bearn in the z direction (E=) is also used for the determination of contact 

behavior. The following quantities are defined for the purpose of the analysis. 

Net mid-span deflection: AdV = w ,  - w g  

Semi-net mid-pan deflection: A, = w, - w, 

Total mid-span deflection: Ar = w c - w D  (3.30) 

Local deformation : A L  = AT - A d v  

The solution provided in this chapter was implemented into a computer program (ELAS- 

3P) for deterrnining the above mentioned quantities. The program was written in Qbasic 

and is listed in Appendix A. In this investigation, the effect of the variables on the 

quantities defined in Eqn (3.30) is studied. The results of the investigation are shown in 

Fig. 3.5 through Fig. 3.8. The results are presented in the form of either the flexural 

stiffness (F/A) or the stifiess ratio versus the variable. When the quantity F/A is used, A is 

the displacernent according to the definitions of Eqn (3.30). The stifiess ratios are the 

values of F/A normalized with respect to the F/A value of a situation which will be defined 

for each particular case separately. 



Figure 3.4 Geometry of the beam used for the numencal investigation. 

Figure 3.5a shows the influence of load magnitude on the rnid-span flexural stiffness 

values. As the figure shows, the behavior is nonlinear. However, the amount of 

nonlinearity for net mid-span flexural stifiess is insignificant. The nonlinear behavior of 

the flexural stifiess values is due to the increase of contact areas between the beam and 

the load and the support rollers as the applied load increases. The lowest stifiess value 

for each case is the stifhess at the stan of the loading (initial stiffness). This value 

increases as the load increases. In Fig. 3 5 3 ,  the stiffness values are normalized with 

respect to the initial stifiess value. As this figure shows, the variation of the stifhess 

values are about 1.5%, 15% and 39% for the net, semi-net and total mid-span deflections, 

respectively. This indicates that the variation of the load does not have significant effect on 

the linear behavior of the net mid-span deflection. 

The influence of radius of the rollers on the response of the beam is shown in Figs 3.6a 

and 3.6b. The values in Fig. 3.6b are normalized with respect to the stifhess value 

corresponding to r = 5 mm. The figures show that the radius of the rollers has insignificant 

effect on the net mid-span deflection, while the semi-net and the total deflections are quite 

sensitive to this parameter. 
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Figure 3.5 The effect of load magnitude on mid-span deflections for r = 5 mm, E= = 10 
GPa and v, = 0.25. (a) Non-normalized results. (b) Normalized results. 
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Figure 3.6 The effect of rollers radius on mid-span deflections for E= = 10 GPa and v, = 

0.25. (a) Non-normalized results. (b) Normalized results. 

The influence of E, and v, values on the behavior of the beam are shown in Figs 3.7 and 

3.8, respectively. The values in Fig. 3.7b are normalized with respect to the stiffness value 

corresponding to E = 10 GPa. The stiffness value of v, = 0.25 is also used for the 

normalization of values in Fig. 3.8b. The net mid-span deflection and the local deformation 



are selected as the dependent variables in these figures so that one can observe the 

variation of each of them separately. Figures 3.7a and 3.7b show that the variation of E= 

has significant effect on the local deformation, while the net mid-span deflection is not 

very sensitive to this parameters. The influence of v, as is shown in Figs 3.8a and 3.8b is 

higher on net mid-span deflection than the local deformation, however the arnount of 

variation is not of significant value. 

Figure 3.7 The effect of E:: on the mid-span deflections for r = 5 mm and v, = 0.25. 
(a) Non-normalized results. (b) Normalized results. 

- - Net 

Figure 3.8 The effect of v, = 0.25 on the mid-span deflections for r = 5 mm and Ezz = 10 
GPa. (a) Non-normalized results. (b) Normalized results. 



Recognizing that the application of the exact elasticity solution 1s too complicated to be 

considered as a practical tool for the evaluation of the VSM test results, one should rely 

on an approximate theory for this purpose. The investigation conducted in this section on 

beams with small U h  and high anisotropy indicates that among the three mid-span 

deflections defined in Eqn (3.30), i.e. AN, ASN and AT, only the net mid-span deflection 

(AN) shows insignificant dependency to the parameters that usually are not accounted for 

in the approximate theories available for beams. Therefore, when the approximate theories 

are used, among the quantities defined in Eqn (3.30), the net mid-span deflection is 

expected to be the most accurately determined quantity. The application of two 

approximate beam theories will be presented in Chapter 5 .  It will be shown that the 

solution based on these theories will be capable of accurately predicting the net mid-span 

deflection. 

3.4 Summary and conclusions 

The exact solution of a simply supported beam subjected to three-point bending was 

developed by the application of the theory of elasticity. The solution is different from the 

solutions available in the literature. The governing boundary conditions in the solution 

better represent the problem of the simply supponed beam compared with those of 

existing solutions. The solution was then implemented into a cornputer program called 

ELAS-3P which was used to investigate the behavior of short beams with different 

geomet ry and material properties. 

In summary the effect of parameters, such as the magnitude of the applied load, the radius 

of the loading nose and the supporting rollers, E, and v, on the response of a beam with 

L/h = 4 and highly anisotropic material was investigated. A new terminoloçy called the 

"net mid-span deflection" was defined. The investigation showed that the net mid-span 

deflection is not very sensitive to the above parameters. 



This finding is important, since for the VSM, approximate beam theories must be used. 

This is due to the fact that the exact elasticity solution accounts for the through-the- 

thickness properties and is very complex. The insensitivity of the net mid-span deflection 

to parameters such as the radii of the loading nose and supports rollers and the through- 

the-thickness properties is  a promising sign that this quantity for a11 range of U h  can be 

accurately predicted by the approximate beam theories. 



Chapter 4 

APPLICATION OF THE THROUGH-THE-THICKNESS 

INEXTENSIBILITY THEORY TO ORTHOTROPIC BEAMS 

The exact elasticity solution for an orthotropic beam was presented in the previous 

chapter. The solution provided is very usefùl for academic and research verification 

purposes. However, it is too complicated and lengthy for practical use. It requires the 

through-the-thickness elastic propenies (E=, v,) of the material beside the longitudinal 

and the shear moduli. Therefore, the solution treats the flexural test as a four-unknown 

problem, requiring four independent tests and complicated data processing for the 

determination of the four elastic constants. A practical solution for the VSM must depend 

only on the longitudinal and shear moduli. As a result, the exact elasticity solution cannot 

be considered a practical means for this purpose. In this chapter we investigate the 

application of the through-the-thickness inextensibility (TTTI) theory developed by Jalali 

and Taheri (1998a, b, c) in which the effect of E, and v, is ignored. The theory is 

approximate in its nature, since it assumes that the beam is inextensible through its 

thickness; othenvise the theory involves no other approximation. 

The through-the-thickness inextensibility theory was used by Jalali and Tahen ( 1  998a, b, 

c) to solve the problems of simply supponed laminated plates under cylindrical and planer 

bending. Their results showed very good agreement with the results obtained by Pagano 

( 1  969, 1970) and Jones (1970), who presented the exact elasticity solutions of the same 

problems for static and dynamic cases, respectively. The main advantage of the TTTI 

solutions provided by Jalali and Taheri (1998a. b, c) compared to the exact elasticity 

solutions is that they do not require the through-the-thickness properties of the materials. 

Furthermore, solutions based on the TTTI theory require less computational effort. On the 

other hand, the theory is different from many higher-order laminate theones [Whitney and 

Paçano (1970), Chow (1971), Whitney and Sun (1973). Lo et al. (1977) and Reddy 



(1984,1989)] and the layenvise laminate theories [Robbins and Reddy (1993). Basar et. al. 

(1993) and Reddy (1989)l available in the literature. since it does not imply any 

presumption on the in-plane displacement components of the laminate. Instead, the 

engineering strain, y, and y,, are used for developing the through-t he-t hickness 

displacement field of laminates. These strains are defined as 

- +- 
Y ~ - &  d r  

where u and v are the in-plane displacements in the x and y directions, respectively, and w 

denotes the out-of-plane displacement in the z direction. If one assumes w is constant 

through the thickness, the integration of Eqn (4.1) with respect to r leads to a 

displacement field in the x and y directions as follows 

where 11' and vo are the displacements at z = O. The assumption of a constant y, and y, 

through the thickness in the above equations leads to the solution of Mindlin (1951) for 

isotropic plates, and of Yang et al. (1966), Whitney and Pagano (1970) and Chow (1971), 

for laminated plates. The assumption of linear variation of y, and y, leads to the 

solution of Whitney and Sun (1973) and by taking a parabolic fùnction for y ,  one obtains 

the solution of Reissner (1945, 1975) and Reddy (1984) for isotropic and laminated plates, 

respectively. 

The solutions provided by Jalali and Taheri (1998a, b, c) are different fiom the above 

mentioned ones, since the exact forrn of y was found by solving the equilibrîum differential 



equation(s), satisfying the boundary and the compatibility conditions. They presented the 

solutions for the multi-layer laminates. Their solution can be directly used for Our single- 

layer orthotropic beam in here. However, for the sake of clanty, the application of the 

TTTI theoiy to this problem is discussed in this chapter. 

4.1 Formulation for a beam subjected to harmonic loading 

Consider the beam shown in Fig. 4.1 with the xyr coordinate system located at the center 

of the beam. The beam is subjected to a distributed harmonic load and has two simple 

supports at its two ends. it is cornposed of an orthotropic material with the principal 

material axes parallel to the xyr coordinate system axes. Since we are only concerned with 

the variables in the x direction, we omit the subscnpts for simplicity. Therefore, a and E 

are the stress and strain in the x direction and r is  the through-the-thickness shear stress in 

the zy plane, respectively. The boundary conditions of the beam at the two ends are 

defined by 

Figure 4.1 Simply supponed beam subjected to harmonic loading. 

Assuming the above problem is a plane stress problem, one can wnte the stress-strain 

relationship in the following form 



where E is the longitudinal modulus in the x direction and G is the through-the-thickness 

shear modulus in the zy plane. 

The first derivative of Eqn (4.2a) with respect to x gives the longitudinal strain, E . 
Multiplying the result by the longitudinal modulus (0, one can find the longitudinal stress 

as 

d ' w  du0 E 'dr  
a=-rE- 

& +E-+-I-ds dx G o &  

Recognizing that there is no body force in the x direction, the equilibnum condition in the 

x direction is defined by 

Substituting Eqn(4.5) into Eqn(4.6) gives 

The hannonic load is defined by 

q ( x )  = a, sin px 

where a, is a constant indicating the amplitude of the load and 

P =  

The solution of Eqn (4.7) for the load defined by Eqn (4.8) is of the form 

w = w, sinpx (4.1 0a) 

r = B cospx (4. lob) 

14 = c COS PX (4.1 Oc) 

where B is a function of z but W. and c are constants. Substituting Eqns (4.10) into Eqn 

(4.7) leads to 



To solve this differential equation, we use the Laplace transformation technique. Equation 

(4.1 1) after transformation becomes 

where B is the B function after transformation and s is the variable in the transformed 

domain. Aso 

Equation (4.12) after some manipulation can be written in the following form 

The inverse Laplace transformation of this equation gives the B function as 

Equations (4.10) satise the boundary conditions of simple supports at the two ends of the 

beam defined by Eqn (4.3). To satisfy the condition of zero shear stress at the top and the 

bottom of the beam, it requires 

Applying these boundary conditions to Eqn (4.15) gives 

As a result 



w,, E sin h ( f i  r) 
a = f i  c o s h ( 0  h l  2) 

s in(p)  

To determine the shear force along the beam, one must integrate Eqn (4.18) over the 

thickness of the beam. The result of the integration gives the following relationship 

between the shear force and the amplitude of the deflection - - 

where 

~ l = & h / 2  

On the other hand from the mechanics of structures the following relation holds. 

Substituting Eqns (4.20) and (4.8) into Eqn (4.22), one can determine w, as 

a n  
W o  = - 1 

p' G h  tanhq 
(4.23) 

1-- 
rl 

The longitudinal and the shear stresses can now be written in their final form by 

substituting Eqn (4.23) into Eqns (4.19) and (4.18), respectively. Thus 

w here 



4.2 Numerical investigations 

In this section we compare the solution provided in the previous section with the exact 

elasticity solution of Section 3.1. The comparison is made for a distnbuted half-sine load 

(11 = 1) on the top of the beam and a concentrated load at mid-span. In both cases the 

propenies of the beam material are assumed to be 

E,=200GPa E _ = l O G P a  

G, = 4 GPa u, = 0.25 

which represents a highly anisotropic material. 

4.2.1 Half-sine load 

Consider the beam shown in Fig. 4.1. The exact elasticity solution of this beam is the same 

as what was presented in Section 3.1 when the amplitude of the bonom load is set to zero. 

The solution was implemented in a program called ELAS-SIN. The program's code is 

presented in Appendix B. The cornputer program for the TTTI solution is called "TTTI- 

S N '  and its code is presented in Appendix C. Both programs were written in the Qbasic 

programming language. 

First we compare the deflections of the two solutions for beams with different L/h. Since 

in the exact solution the displacement in the z direction changes over the thickness of the 

beam, we determine the average displacement of the section. For this, we integrate the 

second equation of Eqn (3.8) over the t hickness, and divide the result by the thickness of 

the beam. The result is as follows 

The distribution of w normalized with respect to w,. for a beam with U h  = 4 is shown in 

Fig. 4.2. As the figure shows the displacement in the z direction increases from the bottom 

of the beam to the top. This is due to the through-the-thickness deformation of the beam. 

This phenornenon is ignored in the TTTI theory, and as a result the deflection at each 



section represents the z direction displacements of al1 the points in the section. The 

cornparison of the defiections obtained fiom the two solutions for beams with different h" 

is presented in Fig. 4.3. The figure depicts the deflections obtained fiom TTTI after 

normalization with respect to those obtained fiom the exact elasticity solution. As the 

figure shows, the maximum margin of error for the deflections obtained fiom the TTTI 

solution is about 0.2%. This indicates that the TTTI theory is quite accurate in predicting 

the overall deflections of the beams. The existing error vanishes when L h  increases. 

Figure 4.2 Distribution of the displacement in z direction over the thickness of the beam in 
exact elasticity solution. 

Figure 4.3 Cornparison of the deflections of the TTTI and the exact elasticity solution. 



The minute difference between the exact and the TTTI solutions is due to the TTTI 

assurnption that the beam is inextensible through its thickness. The over estimation of the 

deflections can be explained using the ptinciple of energy. The energy due to the applied 

external load is transferred into intemal energy comprising of various components. For the 

present case study the constituents are due to &,O,, y,?, and E ~ G _ .  The first two 

constituents correspond to the overall deflection of the beam and the last corresponds to 

the through-the-thickness deformation. Ignonng the through-the-thickness deformation, 

and therefore the corresponding energy, leads to an over estimation of the energy 

associated with the overall deflection. This, in turn, results to an over estimation of the 

overall deflections. Note that the exact solution converges to the TTTI solution when the 

through-the-thickness stiflhess of the beam increases. 

The comparison of the stresses obtained fiom the TTTI and the exact elasticity solution is 

shown in Fig. 4.4. Since the discrepancy of the results increases as U h  decreases, the 

comparison is presented for a beam with L(h = 4 which is considered to be the most severe 

case in the VSM. The following normalized quantities have been used in connection with 

the figure 

where a, is the amplitude of the half-sine load. As the figure shows, the TTTI solution 

agrees very well with the exact elasticity solution. These results in conjunction with those 

obtained for the deflections confirms the adequacy of the TTTI theory for predicting the 

behavior of simply supported beams under distributed loads. 



Figure 4.4 Cornparison of the stresses obtained fiom the TTTI and the exact elasticity 
solution for a beam with Uh = 4. (a) Longitudinal stresses. (b) Shear stresses. 

4.2.2 Concenttated load at mid-span 

To investigate the adequacy of the TTTI theory for predicting the response of beams 

subjected to a concentrated load at mid-span, consider the beam shown in figure 4.5. The 

thickness of the beam and the diameter of the loading nose are selected to represent the 

actual dimensions of a real FRPC specimen flexural test. The distribution of the stresses 

beneath the loading nose is assurned to follow Eqns (3.14) through (3.16). The loading 

nose i s  assumed to be steel with E = 200 GPa. The elastic modulus of the beam in the z 

direction is also used for the determination of the contact behavior. The Fourier 

transformation of the load is expressed by Eqn (3.18). Replacing L' with L in Eqns (3.23) 

and (3.24), the series coefficients are obtained from the following relations 

!!2 7tF 
an = (-1) 2 - 1 - 

2 L  
for - - - 

7t 2 

where b is half of the contact length and p is defined by Eqn (4.9). The exact elasticity 

solution and the TTTI solution of the beam are obtained by the superposition of the result 



obtained for the various series components. The procedures for the two solutions were 

implemented in two different computer programs, called ELAS-CON and TTTI-CON. 

and are documented in Appendices D and E, respectively. The results obtained from the 

analyses of beams with different U h  are discussed next. 

t = Variable 

Figure 4.5 Configuration of the beams subjected to a concentrated load. 

Since the concentrated load produces a significant amount of through-t he-t hickness 

displacement, the average deflection at mid-span from the exact solution cannot represent 

the overall deflection of the beam. A more representative quantity for the comparison with 

the deflection obtained from the TTTI solution is deemed to be the deflection obtained at 

the bottom surface of the beam. This comparison for beams with different U h  is presented 

in Fig. 4.6. As the curve identified by TTTI shows, the overestimation of the deflection in 

this case is much higher than the previous case when a half-sine load was considered. The 

figure also presents a curve identified by "TTTI-modified". Definition of this curve will be 

discussed later. In Figs 4.7a and 4.7b the cornparison is made for a beam half length with 

L/h = 4. In these figures is the distance rneasured from mid-span. The figures show that 

the difference of the results from the two solutions is significant in the vicinity of the 

concentrated load, while the difference vanishes as the distance fiom the concentrated load 

increases. 



Figure 4.6 Cornparison of rnid-span deflections determined from the TTTI and the exact 
elasticity solutions. 

1.- .- - Exact 

- Unmodified 
-- - Modified 

Figure 4.7 Companson of deflections determined from the TTTI and the exact elasticity 
solutions for bearn with L/h = 4. 

The longitudinal stresses at the top surface of the beam at the mid-span are significantly 

affected by the presence of the concentrated load. As shown in Fig. 4.8, this stress is 

several times higher than the stress at the bottom of the beam in the same section. The 

local effect of the concentrated load rapidly vanishes as the distance from the contact point 

increases. This is illustrated in Fig. 4.8 by the fluctuation of the top longitudinal stress in 



the vicinity of the contact point and the fact that its value approaches the bottom 

longitudinal stress at a distance of about Y = h .  On the other hand, the variation of the 

bottom longitudinal stress along the beam is quite smooth and is not affected by the 

concentrated load. This is due to the fact that the bottom surface has sufficient distance 

from the contact point of the load, so that the local effect of the load has completely 

decayed at that distance. 

The longitudinal stress obtained from the TTTI solution is also illustrated in Fig. 4.8. 

Similar to the deflections, the stresses at the bottom of the beam from the two solutions do 

not agree very well. The difference becomes significant at the vicinity of the mid-span. 

This difference cannot be related to the local effect of the concentrated load, since as 

stated earlier the bottom surface has sufficient distance from the contact point. The reason 

for such differences and its remedy will be discussed next. 

Figure 4.8 Cornpanson of stresses determined from the TTTI and the exact elasticity 
solutions for beam with L/h = 4. 

Figure 4.9 shows the distribution of a_ at three elevations through the  thickness of the - 
beam. These distributions were deterrnined by the exact solution. The curve corresponding 

to each elevation is nomalized in such a way that the area undemeath represents 0.1 kN. 



As the figure shows, the heavily concentrated stress distribution on the top surface (241 = 

0.5) becomes smoother as the distance from the top surface increases. The assumption of 

inextensibility, which is the basis of the TTTI method, does not account for this gradual 

distnbution of the load, and as a result, it leads to an overestimation of the axial stresses 

and the deflections in the Mcinity of the mid-span. To account for the gradual distnbution 

of the load in the TTTI method, one must distribute the concentrated load over a slightly 

wider length. For this purpose, we assume the distribution of load to be based on the 

following relation, which is also illustrated in Fig. 4.9. 

where b is half of the width assumed for the distribution of the load. The value of 

depends on the degree of anisotropy of the b a r n  materiaf and increases as the anisotropy 

increases. Jalali and Taheri (1998a) reported that for most practical purposes this value 

falls between 1.3h and 1.6h. The curve in Fig. 4.9 is drawn for b = 1.4%. 

Figure 4.9 Distribution of the through-the-thickness normal stress at various levels of a 
beam with L/;h = 4. 

The results of the calculations based on the modified distribution (Eqn (4.31)), as 

presented by lines labeled "modified TTTI" in Figs 4.6 through 4.8, agree very well with 



those of the exact solution. The distnbution of the stresses on a section at a distance equal 

to the thickness of the bearn from the mid-span is also show in Fig. 4.10. The figure 

compares the stresses obtained from the TTTI solution based on the modified distnbution 

and those fiom the exact solution. The agreement of the stresses except for a small part 

close to the top of the beam is very good. The small discrepancy between the results of the 

two solutions vanishes as the distance fiom the concentrated load increases. In summary 

the good agreement between the results obtained fiom the rnodified TTTI solution and 

those of the exact solution confirrns the method of load distribution as discussed. 

- Exact 
- - - I l " ï l  -modifi - - - ïTl-rnodified 
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Figure 4.10 Comparison of the stresses obtained from the TTTI and the exact elasticity 
solutions. (a) Longitudinal stresses. (b) Shear stresses. 

4.3 Summary and conclusions 

The through-the-thickness inextensibility (TTTI) theory proposed by Jdali and Taheri 

(1998a, b, c) was used to find a solution for a simply supponed onhotropic beam. The 

solution was used for the determination of the stresses and the deflections of a highly 

anisotropic beam under a half-sine distributed load and a concentrated load. The results 

were compared with those obtained by the exact elasticity solution discussed in Chapter 3. 

The agreement between the results obtained fiom the two solutions was excellent for the 

half-sine load. It was also shown (Fig. 4.9) that the transfer of the concentrated load to the 



beam occurred gradually. As a result, to compensate for this delay in TTTI method, the 

concentrated load should have been distributed over a wider length than the one predicted 

by contact law. A new relation was proposed for this distribution. In the concentrated load 

case, the TTTI solution was incapable of predicting the accurate deflections and the 

stresses in the vicinity of the load. However, the method provided accurate results for the 

bottom and the sections farther than a distance equal to the thickness of the beam from the 

concentrated load when the proposed distribution was employed. 

The solution based on the TTTI theory requires only the longitudinal and the through-the- 

thickness shear moduli (E, and G,) of the material for predicting the behavior of an 

orthotropic bearn. In contrast, the exact elasticity solution additionally requires Ez and v,. 

This charactenstic of the TTTI solution makes it a practical tool for use with the VSM to 

determine the longitudinal and the through-the-thickness shear moduli of the FRPC 

specimens. 



Chapter 5 

DEVELOPMENT OF THE VARYING-SPAN METHOD 

The exact solution of a simply supported beam subjected to three-point bending was 

presented in Chapter 3. The solution assumed the beam was under a state of plane stress, 

and as a result, E,, E=, G,, v, were the elastic properties required in the formulation 

provided. A new terminology, called the net rnid-span deflection, was also introduced. It 

was show that t his quantity was not sensitive to the through-t he-t hickness properties of 

the beam (E= and v,) and the contact phenornenon. 

In chapter 4, we employed the theory of the through-the-thickness inextensibility (TTTI) 

to predict the behavior of a simply supported beam. It was shown that the TTTI solution, 

which does not consider the effect of E= and v,, provided accurate results for the overall 

behavior of the beam. For beams subjected to a concentrated load, the TTTI solution 

overestirnated the mid-span deflection. This shonfall, however, was resolved by using Eqn 

(4.3 l) ,  thereby applying the concentrated load on a finite width. The deflections predicted 

by TTTI solution were then in very good agreement with those obtained by the exact 

elasticity solution for the bottorn of the beam. 

These findings assure that the overall behavior of a simply supponed beam can be 

accurately predicted by knowing only the longitudinal and the through-the-thickness shear 

moduli. The level of contribution of these two elastic moduli in the response of the beam 

depends on the span-to-depth ratio (Uh) of the beam. The effect of the shear modulus for 

beams with small Lih is quite significant, while its effect reduces rapidly as L.:h increases. 

On the other hand for a given L/h, the influence of the shear modulus becomes more 

significant when the ratio of the longitudinal-to-shear moduli ( E G )  of the material 

increases. 



In three-point bending tests the net rnid-span deflection is one of the quantities that is 

controlled by the overall behavior of the bearn. This quantity can easily be recorded during 

the test and is selected for the characterization of the test specimen. Recognizing that 

FRPC often have large E/G values, the net mid-span deflection measured for specimens 

with small and average U h  carries a signifiant arnount of shear deformation. This 

characteristic brings the possibility of simultaneous evaluation of both the longitudinal and 

shear moduli of FRPC by changing the effect of shear modulus in the three-point bending 

test. This can easily be accomplished by conducting tests on specimens with different Uh. 

We cal1 the test method the "Varying Span Method (VSM), due to the fact that in 

practice variable L/l, cm easily be produced by only changing the span of the test. 

The distribution of the concentrated load over a finite width according to Eqn (4.3 1), as 

was shown in Chapter 4, produces good results for the deflections and also the stresses on 

the bottom surface of the beam and at any location farther than "h" fiom the concentrated 

load. However, fùrther investigation has s h o w  that even a simple uniform distribution of 

the concentrated load produces acceptable results, as long as the only concem is the 

deflection values. In Fig. 5. l b  the applied mid-span load and the reactions are distributed 

uniformly over a length equal to 26. This configuration is used to predict the net mid-span 

deflection of the beam shown in Fig 5. la. Note that we are looking for solutions which do 

not consider the effects of E, and v,. OtheMrise, for the exact elasticity solution, the 

distribution of the concentrated load must be based on the contact behavior of the 

contacting bodies (i.e. interface of the beam with rollers and loading nose). Therefore, the 

suggested technique of distributing the load and reaction forces over wider length should 

not be applied. 

For simultaneous evaluation of the longitudinal and through-the-thickness shear moduli of 

the material, one needs a solution that can adequately predict the response of a beam 

under three-point bending and requires only the two elastic constants. The solution based 



on TTTI theory, as was presented in Chapter 4, has the required characteristic. The 

solution based on this theory for a beam with two simple suppons at its two ends and 

under a concentrated load at mid-span was presented in Section 4.1. However, it cannot 

be used directly, since in the VSM, the suppons are not located at the two ends of the 

beam. Therefore, the appropriate solution and the procedure for determining the 

longitudinal and the shear moduli fiom the test results are presented in this chapter. 

Figure 5.1 Representation of the mid-span concentrated load and the reactions with 
unifomly distributed load. 

As was discussed earlier, among the various available higher-order theories proposed for 

the laminated structures, the first-order theory is the simplest one and provides satisfactory 

results for the deflections. For the beam type problem, this theory is identical to 

Timoshenko beam theory. The application of this theory to the VSM is also discussed in 

this chapter. The solution based on Timoshenko beam theory is much simpler than the one 

provided by TTTI method and will be widely used later. 

Notice that we denote the E, and G, by E and G in the formulations. This is due to the 

fact that these two quantities are the only elastic constants in the formulation used for the 

VSM. Therefore, dropping the subscripts will not produce any confusion, while it provides 

some simplicity in the formulations. The subscripts, however, will be added wherever 



there is the possibility of confiision between these quantities and the other elastic 

constants. 

5 .1  The application of the through-the-thickness inertensibility (TITI) theory 

Consider the beam shown in Fig. 5. l b  with the total length of L' and two imaginary 

simple supports at its two ends. The existence of the two irnaginary supports enables one 

to use the TTTI solution for the hannonic load condition presented in section 4.1. 

However, since the loads at the top and the bottom of the beam are in equilibrium, the 

imaginary suppons do not carry any forces. As a result, the solution provides the correct 

answers for the beam shown in Fig. 5 . l b  except that it carries a ngid body movement 

equal to the vertical displacement of the points located at the real supports (wD). This 

problem can easily be resolved by deducting w~ from the deflection values. 

To obtain the coefficients of the Fourier series for the loads shown in Fig 5.1 b, we 

substitute the loads in Eqn (3.21). With some manipulation the following equation is 

derived 

where 

The deflections along the beam for a single term of the Fourier series are defined by Eqn 

(4.1 Oa). Substituting Eqns (5.1) and (4.23) into Eqn (4.10a) and superposing for al1 the 

series terms, one reaches th2 following equation 



Since the deflection values obtained from this equation carry the rigid body movement of 

WB, one must deduct WB from the values obtained from this equation. For the mid-span 

deflection, A, one can write 

A = w ,  - w ,  (5.4) 

where w~ and WB are the deflection values at points A and B obtained from Eqn (5.3), 

respectively. Substituting w~ and WB from Eqn (5.3) into Eqn (5.4) gives 

~=l-f 
Gbh 

or after rearranging 

where / is defined by the following equation 

The lefi hand side of Eqn (5.6) represents the flexural stiffness of the beam and can be 

deterrnined fiom the slope of the load-deflection curve recorded fiom the flexural test. 

Since E and G are the only unknowns in Eqn (5.6), one needs two independent equations 

for detemining the two unknowns. The data required for these equations can be obtained 

by conducting two flexural tests on specimens with different Uh. Using Eqn (5.6), one can 

correlate the flexural stifiess values obtained fiom the two tests as 

where K is the flexural stiffness defined by the leA hand side of Eqn (5.6), and the 

subscnpts I and 2 correspond to the two different tests with different LA. The only 

unknown in Eqn (5.8) is the DG value. This quantity, which determinesfl andh, can be 

easily calculated by a trail and error procedure. For this, one may determine the nght hand 

side of Eqn (5.8) by assuming different values of DG until the equality of the equation is 



satisfied. The final E/G is then used to determine the value of G by applying Eqn (5.6) to 

either test data. The value of E is determined by multiplying G by WG. 

A graphical solution of Eqn (5.8) is presented in Fig 5 -2. Figure 5.2a presents the solution 

for the cases that specirnens with Uh= 7 and 30 are used. The solution for the cases that 

specimens with L/h = 5 and 20 are used is presented in Fig. 5.2b. In each figure three 

curves representing different values of b / h are provided. To use these curves, one rnust 

first obtain the quantity of the abscissa from the test data of the two specimens with 

specified Uh values. The DG value can then be easily obtained from the corresponding 

curve when the value of b /  h is known. Determination of 6 / h will be discussed in the 

nea chapter. 

Figure 5.2 Graphic representation of Eqn (5.8). (a) For specimens with L/h = 7 and 30. (b) 
For specimens with L'h = 5 and 20. 

One may, obviously, question the reliability of the E and G values that are established 

based on only two tests. To increase the reliability of the results, one can perform more 

tests on specimens with different L/h. As a result, one will obtain NW-1)/2 different 

values of E and G, where N is the total number of tests conducted on bearns with different 

Uh. Special staiistical procedures will then be needed to determine the values of the most 

probable E and G. 



Altematively, a simpler approach can be adopted to establish reliable values. One c m  use 

two sets of specimens. Each set will have several specirnens with the same Uh, while the 

two sets will have different Uh. The K/bh value for each L/n will, then, be determined by 

averaging the values of the different specimens in the same set. As a result, the outcome 

will be statistically more reliable. 

5.2 The application of Timoshenko beam theory 

This theory assumes that the deflection of a beam comprises of two p a s :  one due to 

bending moment and the other due to shear forces. These quantities cm be calculated 

separately. Therefore, for the deflection at mid-span one can write 

For the beam shown in Fig. 5.1 b An,,, and Ash, are determined From the following 

equations, respectively 

Therefore 

where 1 and A are the moment of inertia and the cross section area of the beam, 

respectively. Ignoiing the contribution of the shear in the deflection of the beam, Eqn 

(5.10) should express the total deflection. As a result, the E value in the equation will be 

smaller than its real value when based on the total deflection. We cal1 this quantity the 

"apparent rnodulus of elasticity" and denote it by E'. Substituting A instead of Amml in 

Eqn (5.10) and rearranging the equation, one can express E' as 



In a flexural test the value of FIA can be obtained from the slope of the recorded load- 

deflection curve. It is important to note that E f  is not a constant value. In fact it cames 

the shear effect, and as a result, is a tiinction of U h  of the specimens. The value of E', 

however, approaches E as L/h becomes large. 

Dividing both sides of Eqn (5.12) by 
( L ~  - ~ L F  +b3)  

481 
and setting I = bh3 / 12 and 

A = bh gives 

The left hand side of this equation is the reciprocal of E t .  Defining J as 

one reaches the following equation 

This equation is the equation of a straight line in which JO' and 1 / E' are the 

independent and dependent variables respectively. An schematic view of the equation is 

illustrated in Fig. 5.3. As show in the figure, 11 E and 1 I G are the intercept and the 

slope of the line, respectively. The line is called the "characteristic line" of the material, 

since the properties of the line are defined by the longitudinal and the through-the- 

thickness shear moduli of the material. To establish the characteristic line of a material one 

needs at least two points in the coordinate system of Fig. 5.3. For this one must perfonn 

flexural tests (Fig. 5. la) on two specimens having different L/h. Determining the slope of 

the load-deflection curve of each test provides a FIA value for Eqn (5.13), from which the 

corresponding E f  is calculated. Since the E f  value obtained from each test corresponds to 

a specific value of J(~/L)', the two tests on specimens with difFerent Lh generates two 



distinct points in the coordinate system of Fig. 5.3 fiom which the characteristic line can 

be established. Knowing the characteristic line, one can easily determine the value of E 

and G. 

It is obvious that the accuracy and the reliability of the results obtained from the two tests 

are questionable. One can increase accuracy by conducting several tests, since each test 

generates a point in the coordinate system of the characteristic line. A linear regression 

analysis can then be used to establish the best fitted line. Statistically, the E and G values 

obtained fiom the intercept and the slope of the regression line are more reliable when the 

number of data points increases. 

Figure 5.3 Schematic view of the characteristic line. 

The value of b is also an important parameter influencing the value of J and E t .  It is more 

convenient to write b as a fiaction of t he beam depth, 

b = a  h (5.17) 

in which case, Eqns (5.13) and (5.15) take the following forms, respectively 



The J coefficient is a correction factor that includes the load and reaction distribution 

effects. For zero load distribution (a = 0) the coefficient becomes 1.2, however for a > 0, 

it is always smaller than 1.2. For beams with large L/h, the effect of the load distribution 

becomes insignifiant, and as a result, the value of J approaches 1.2. The influence of Uh 

and a on J is illustrated in Fig. 5.4. 

Figure 5.4 Variation of J with respect to L/h and a. 

When compared with the TTTI formulation, the application of the  Timoshenko beam 

theory provides a much simpler and more practical procedure for evaluating the 

longitudinal and shear moduli from the VSM test data. As a result, the next two chapters 

of the thesis will focus on this procedure when investigating the integnty of the VSM and 

the reliability of the results obtained from the method. 

5.3 Summary and conclusions 

For simultaneous evaluation of the longitudinal and through-the-thickness shear moduli of 

FRPC by the VSM one needs a relationship between the applied load and the mid-span 



deflection that only depends on these two elastic moduli. For this purpose, the TTTI and 

Timoshenko beam theories were used in t his chapter. While the relat ionship obtained from 

TTTI theory is believed to provide more accurate results, the application of the 

Timoshenko bearn theory was shown to be simpler. The procedure for determining the 

said elastic moduli from the VSM results based on the two relationships were discussed 

separatel y. 

When using the TTTI solution, one must have the result of tests on specimens with two 

different Uh. Determination of the elastic moduli requires one to perform a trial and error 

procedure, or to use the graphical solution provided in Fig. 5.2. Special statistical 

procedures will be needed if one wishes to determine the E and G values from testing 

specimens with more than two different Uh. 

The solution based on the Timoshenko bearn theory led to the introduction of a new 

terminology called the "characteristic line" of the matenal. One may conduct tests with 

different L/h to produce several data points in the coordinate system used for constructing 

the characteristic line. The characteristic line is obtained by fitting the best line among the 

data points. The intercept and the dope of the characteristic line provide the reciprocal of 

the longitudinal and shear moduli of the material, respectively. This procedure is 

summarized in the flowchart of Fig. 5.5. 

dflerent Lih 

a from Figs 6.7 
through 6.18 or - l Intercept and slope of the 

characteristic line (Fig. 5.3) 

Figure 5.5 Flowchan for the VSM based on the Timoshenko beam theory. 



Cbapter 6 

THEORETICAL INVESTIGATIONS 

Two possible methods for interpreting the VSM data were introduced in Chapter 5. The 

methods were based on two-dimensional models dong with some simplifjmg assumptions. 

Therefore, to assess the efficiency and the reliability of the met hod, comprehensive 

theoretical and experimental investigations are needed. While the experimental 

investigations will be presented in the next chapter, the theoretical investigations are 

presented herein. Between the two methods of data processing developed in Chapter 5,  

the method based on the Timoshenko beam theory is simpler and more practical. As a 

result, the attention will be focused on this method. The effect of several influentid 

parameters on the accuracy and efficiency of the VSM are investigated and discussed 

below. 

6.1 Elliciency 

The efficiency of the VSM method depends on the variation of the shear effect on the 

response of FRPC when specimens with various Uh are subjected to three-point bending. 

This variation is reflected in the magnitude of 11 E ' .  Referring to Fig. 5.3, the variation of 

1 I E' determines the slope and the intercept value of the characteristic line from which the 

shear and the longitudinal moduli are obtained. Since there is always the possibility of 

obtaining different properties fiom one specimen to another, a wide variation of 1 1 E' in a 

set of tests is needed to compensate for possible variability due to errors in tests and 

material nonuniformity. 

In order to investigate the variation of the shear effect in the response of the FRPC 

specimens, we multiply the two sides of Eqn (5.16) by E to reach the following equation. 



As the equation shows, the change in the shear effect is proportional to the change in 

F/L)'WG fiom one specimen to another. The characteristic of the equation for a = 0.7 is 

illustrated in Fig. 6.1. As the figure shows, for specimens made of a material with UG=30, 

one can generate 47% change in the shear effect by changing U h  from 8 to 30. To get the 

same change for a material with E/G=IO, Uh has to Vary fiom 4.5 to 30. However, for a 

material with DG=2, a wide change in Uh fiom 4 to 30, produces only a 9% change in 

the shear effect. It is, therefore, clear that for the proposed method to work effectively, 

one should be able to test specimens with relatively small spans. This factor is more critical 

when materials with smail E/G are tested. 

Figure 6.1 Variation of the shear effect in three-point bending. 

6.2 Effect of support friction 

When a specimen is subjected to three-point bending, the points over the supports move 

outward. This is due to the fact that the bottom surface of the specimen is under tension. 

Free movement occurs only if the interface friction between the specimen and supports is 

null. Otherwise, as show in Fig. 6.2, two horizontal forces at the points of contact with 

the supports will act on the specimen. These forces counteract the applied load and tend 

to reduce the mid-span deflection. As a result, the flexural stifFness obtained from the test 



will be overestimated. To assess the extent of the phenomenon, the elasticity solution of 

the problem is denved. The solution will then be used to investigate the phenomenon for 

specimens with different material properties and with different Uh. 

The elasticity solution for a simply supported b a r n  subjected to harmonic loads at the top 

and bottom surfaces was presented in Section 3.1. The applied loads were distnbuted 

normal to the surfaces, and as a result, the shear stresses on these two surfaces were set to 

zero by applying Eqn (3.1 1). To obtain the solution for Our present case, we assume that 

the shear stress at the bottom of the beam is not zero. Therefore, the boundary conditions 

for the top and bottom of the beam are expressed as follows 

where qt(x) and qs(xl are the harmonic loads on the top and the bottom of the beam 

respectively defined by Eqn (3.2), and 

7, (x) = on CO{ PX) w4) 
where p is defined by Eqn (3.3). 

Figure 6.2 Free body diagram of beam under three-point bending when the supports are 
not friction-fiee. 



To include the effect of the horizontal reactions on the solution provided in Section 3.2 for 

a bearn under three-point bending, one must transform the horizontal reactions to Fourier 

where .r defines the distribution of the reactions 

i l =  1,3,5 ,.... (6.5) 

on the bottom surface of the beam. To 

mX x 
find the coefficients of the series one must multiply both sides of the equation by cos- 

L' 

and integrate over the entire length of the beam. Since for n t  m the result of 

I I X  x mn x 
c o s y &  is zero, one obtains the following equation for the coefficients of 

O L 

Fourier series. 

By changing the variable x to 

one can write 

where, is measured from the mid-span. Since both r and  in(^^) are odd fùnctions, the 

integrand in Eqn (6.8) is an even fùnction. As a result, (9. can be detennined by integrating 

only over half of the beam as 

Since the horizontal reactions are the result of fiction, they can be calculated by the 

multiplication of the vertical reactions by a fnction coefficient, p. Assuming that the 



horizontal reactions follow the same distribution as the vertical reactions (Eqn (3.17)), one 

can define the shear stress due to the fnction, T, as 

where F is measured fiom the center of the support and the other variables have the same 

meaning as defined before. The negative sign occurs because a positive F produces a 

negative shear stress. Substituting this equation into Eqn (6.9) and applying the following 

variable change 

one reaches 

Mer simplification, the above equation becomes 

and 

The cornputer program ELAS-3P introduced in Chapter 3 can also treat the above 

problem. The program accepts the fiction coefficient as an input. When p = 0, the 

horizontal reaction forces are zero, and as a result, the program simulates the problem as 

outlined in Chapter 3. For p > 0, however, the effect of horizontal reactions are 

implemented duly. 

To investigate the effect of the support fiction, we consider two laminae with the 

following material propenies 



Material 1 

E, = 200 GPa E _  = 16.67 GPa 
G, = 6.67 GPa p, = 0.25 

Material II 

which represent materials with E& = 30 and 10, respectively, while E I G ,  for both of 

them is 2.5. The diameters of the loading nose and the support rollers are assumed to be 

the same and equal to 10 mm. It is assumed that the beams are 2 mm thick and have 4 mm 

overhangs at both ends. The results of the calculations for F = 0.1 M/mm are presented in 

Fig. 6.3. In this figure A and &, are the net mid-span deflections with and without the 

efect of fiction, respectively. As the figure shows, the effect of friction becomes more 

significant as U h  becomes smaller. The effect of Fnction is also more significant for 

material II which has a smaller EJGx value. These results can also be demonstrated by 

the application of the Timoshenko beam theory to the beam shown in Fig. 6.2. For this, 

one must add the mid-span deflection due to flexure, shear and the horizontal load. The 

total deflection can be expressed by 
- - 

where the last terrn in the brackets is the contribution of the horizontal reactions. The 

effect of fiction as defined in Fig. 6.3 becomes 

Although Eqn (6.18) is approximate, it shows a similar trend to that shown in Fig. 6.3. 

The above investigation shows that the support fnction can have significant effect on the 

result of three-point bending. Moreover, the effect of fnction changes with the changes in 

L h .  As a result, the fnction effect will influence both the slope and the intercept of the 



characteristic line. thereby causing inaccuracy in the evaluated E and G values. Therefore, 

every effon should be made to minirnize the amount of fi-iction at the supports, with the 

clause that more precaution is needed when materials with small E7G are tested. 

Figure 6.3 Effect of support fiction on the net mid-span deflection. (a) For matenal type 
1. (b) For material type II. 

6.3 Specimen alignment 

As was discussed earlier, FRPC have three distinct values of E and G corresponding to the 

fiber direction and the two orthogonal axes to it. One can obtain these quantities by 

changing the alignment of the material axes (Fig. 1.1) with respect to the loading axes. 

Figure 6.4 shows two possible alignments for the specimens. In alignment type A, the 

width of the specimen, b, in cornparison to its other dimensions is small, and therefore, a 

state of plane stress govems. Furthemore, producing U h  equal to 4 or even less is easily 

achievable. Consequently, not only the measurement of the moduli of materials with 

relatively small D G  is possible, but also the accuracy and reliability of the results in 

general is high. The shortfall of this type of alignment is the difficulty in providing 

adequate lateral support to maintain the specimen in a vertical position and to prevent 

lateral buckling. With this alignment, one can determine either EII  and GiI or E, and G12 

by changing the direction of the material principal axes with respect to the loading axes. 



As it can be seen from Fig. 6.4, alignment type B is very simple and it enables one to 

obtain simultaneously either E,, and G,, or EJ2 and Gu. Obviously, producing small Uh in 

this case is not as easy as that in the alignment type A, unless relatively thick specimens 

are used. This problem may make the method less attractive in situations where HG ratio 

is small. Therefore, one may not find this alignment suitable for the evaluation of Ex and 

Gt3. 

Figure 6.4 Two possible alignments for the VSM. 

It should be mentioned that the specimens in alignment type B behave somewhere between 

the state of plane stress and plane strain. Having a constant width, specimens with large 

L/h are almost in a state of plane stress, while as Uh decreases, they approach the state of 

plane strain. From the theory of elasticity, it is known that the tlexural stifhess of a plate 

under plane strain is [ I I  (1 - v,')] times larger than when the sarne plate is under plane 

stress state. Although the effect of this phenomenon will be considered in the 

establishment of a values in Section 6.5, it suffices to mention that the phenomenon can 

be problematic when materials with small EiG and v, are tested. For example, consider a 

material with E/G = 2.6 and v, = 0.3. For a specimen with U h  = 4, the shear effect 



reduces the flexural stifiess by as much as 15% while, behaving under the state of plane 

strain inireases the stiflhess by 11%. This leaves only a 4% difference for the 

determination of the dope of the characteristic line, which obviously will not provide 

sufficient accuracy and reliability. This problem, however, c m  be significantly reduced by 

selecting specimens with smaller width. 

It is obvious that as with any new test method, the VSM must be subjected to a significant 

amount of theoretical and experimental investigations before any conclusion on the 

integrity of the method based on each possible alignment can be made. Thus, a 

comprehensive long term research program must be designed to investigate al1 the possible 

cases. Considenng the present work as the starting point of this program, the attention 

will be focused only on one case. For this, alignment type B when the axis I of the 

material is aligned in the x direction will be considered. 

6.4 Influence of the interface contact and the non-linear behavior o f  the 

specimens 

The response of the test specimens subjected to three-point bending is a non-linear 

behavior. This non-linearity is due to the increase in the interface contact areas; that is the 

contact area between the specimen and the loading nose, and those between the specimen 

and the supporting rollers. This non-linearity becomes quite significant in specimens with 

small Uh. The problem was implicitly discussed in Section 3.3. However, to fùrther 

illustrate the influence of this non-linear behavior on the net mid-span deflection, a critical 

case is investigated in here. For this, the exact elasticity solution presented in Section 3.2 

is used. The propenies of the beams are taken as follows 

E,  =200 GPa E ,  = 4  GPa 
G, = 4  GPa u, =0.25 

which represent a highly anisotropic material. The geometry of the test is assumed to be 

L f  = 12 mm, L = 8  mm, h = 2 mm, r, = 5 mm and r = 3  mm (see Fig. 3.1). The beam is 



analyzed for a load F varying fiom zero to a maximum of F = 400 N per millimeter width. 

The maximum load was taken fiom a test on a graphite/epoxy specimen with 

approximately the same geometry. 

The result of the analysis is shom in Fig. 6.5a. The three difTerent lines in the figure 

represent the total displacement, the semi-net displacement and the net displacement at 

mid-span. Refemng to Fig. 3.1 and Eqn (3.30). these displacements are denoted by Ar, 

AsNi AN. AS Fig. 6.5a shows, the effect of non-linear behavior of the bearn on the net mid- 

span deflection is quite negligible. The initial slope of this curve is only 0.5% different 

fiom the slope of the best fit line through the first one quarter of the curve. The difference 

remains less than 2% when the dope of the best fit line is obtained by considenng the full 

curve. On the other hand, the non-linearity of the total and semi.net displacements are 

quite significant. The dopes of these curves Vary along their length and are different fiom 

the slope of net displacement. The initial dope of the serni-net and the total curves are 

63% and 38% of the net curve, respectively. These values increase to 79% and 59% at the 

end of the curves, respectively. 

Figure 6.5b also shows the result of a fiexural test on a specimen of graphitdepoxy with 

L/h z 5 S. The solid line represents the measurement of the net mid-span deflection. The 

deviation of this line fkom the initial linear portion is due to the non-linear response of the 

material, and it does not reflect the geometric non-lineanty due to the contact 

phenomenon. Owing to such material non-linearity, the dope of the load-deflection curve 

to be used in the evaluation of the elastic properties should be based on the dope of the 

linear portion at the beginning of the curve. Altematively, one can use the initial tangent 

method to establish the slope. In either case, as the result of the numerical analysis in Fig. 

3.5a shows, the effect of geometnc non-linearity on the measured net mid-span load- 

deflection curve is quite insignificant. 
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Figure 6.5 Load-displacement curves. (a) From the elasticity analysis. (b) From flexural 

test on a graphite/epoxy specimen with Lh E 5.5. 

The effect of the diarneters of the loading nose and supporting rollers were already 

investigated in Section 3.3. It was shown that the variation of the diameters had 

insignificant effect on the net mid-span deflection. In general, it is more desirable to use 

loading nose and supporting rollers with small diarneters to make the test as close as 

possible to the assumptions of the theory. Furthermore, rollers with small diameters 

provide more fieedom to produce small spans. However, the rollers and loading nose 

diameters must be kept large enough to avoid premature failure of the specimen due to 

stress concentration in the vicinity of the applied load and reactions. 

6.5 The value of "aw 

In Chapter 5 two direrent solutions were developed to determine the longitudinal and 

through-the-thickness shear moduli of materials fiom the VSM tests results. In both 

solutions, the applied load and the reactions were assumed to be distnbuted over a small 

length denoted by 26. This length, however, as defined by Eqn (5.17), was related to the 

depth of the beam by a coefficient called a. The magnitude of a must be known before 

either solutions can be used for the VSM tests results. The value of a depends on the 

following factors. 



1- the alignrnent of the specimen with respect to the applied load ( Alignment type A or B 

in Fig. 6.4), 

2- the solution for which it is being used, 

3- the elastic properties of the material, and 

4- the ratio of width to depth of the specimens (bh) .  

Considering the first two factors, it is obvious that there can be 4 different possibilities. 

The effect of the two last factors then must be investigated for each case separately. In the 

present work, attention will be focused on alignment type B. This will be in conjunction 

with the Timoshenko beam theory discussed in Section 5.2, which provides an easier and 

more straight forward solution compared to the TTTI theory. The evaluation of a and the 

other investigations will only be performed for 0" specimens (where the mis 1 of the 

material is aligned in the x direction). 

6.5.1 Evaluation of a 

As was shown in Section 5.2, evaluation of the longitudinal and the shear moduli of FRPC 

requires one to determine the characteristic line in the coordinate system of Fig. 5.3. For 

this one must draw a straight line through the data points obtained From a series of three- 

point bending tests performed on specirnens with different Uh. The evaluated moduli from 

this procedure, however, depends on the value of a. 

To establish the value of a for a panicular set of material properties and bh ,  the data 

points are produced from theoretical analysis using the same properties and bih in the 

analysis. The longitudinal and through-the-thickness shear moduli determined fiom the 

characteristic line should match the moduli used for the generation of the data points. If 

not. the value of a is changed in such a way until the two pairs of moduli are equal or very 

close to each other. The a value obtained in this way is called the "best a" for the 

speci fied case. 
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Figure 6.6 Finite element three dimensional model. 

For the generation of the data points, one can follow the elasticity solution given in 

Chapter 3.2. However, the solution is only valid when a state of plane stress exists. For 

other situations, one should obtain the required data fiom a three dimensional finite 

element analysis. Here, the required data is obtained by conducting a set of finite element 

analyses. Three dimensional solid elements with 20 nodes (parabolic elements) are used to 

model beams with Ln> = 5, 7, 10, 20 and 30 and b/h= 1, 3 and 5. Figure 6.6 shows the 

finite element model used for U h  =7 and b/h = 5 .  Because of symmetry, only half of the 

beam is modeled and, therefore, the displacements of the nodes in the x direction at mid- 

span are constrained. Beam elements with very large flexural stiffiesses are also used to 

simulate the rigid loading nose. The vertical displacements of points A and B, as shown in 

Fig. 6.6, are the major focus of the analyses. The net mid-span deflection is calculated 

from the vertical displacement of these points, and the flexural stifiess, FIA, is determined 

subsequently . 

The best a value for each case is calculated based on the results of three different values 

of L/h. For this, two ranges are considered; beams with L A  = 5, 7 and 20, representinç 



tests on short specirnens, and beams with L/h = 7, 10 and 30, simulating tests on longer 

specimens. The procedure was performed for 120 different sets of assumed properties, as 

tabulated in Appendix F. The different sets of the properties were taken in such a way that 

the effect of the following normalized quantities on a could be investigated. The values of 

the normalized quantities used in the investigation are as follows 

It was also assumed that E22 = E33, GIZ = GL3 and vl3 = = VI* ,  Considering 3 different 

cases for b h  and 5 different cases for h/L, a total of 1800 analyses were perfomed. For 

this, the generai purpose finite element program MSA was used. The a values obtained 

from the finite element analyses and the procedure explained above are tabulated in 

Appendix G. These values are also presented in graphical fonn in Figs 6.7 through 6.18. 

As the plots show, a varies fiorn 0.5 to 0.9 with an average value of 0.7. 



Figure 6.7 Variation of a for long specimens (7  < L / h < 30) with b/h= 1 and GialGu=l. 

Figure 6.8 Variation of a for short specimens (5 s L / h < 20) with b/h=1 and Gl3/Gll=l .  



Figure 6.9 Variation of a for long specimens (7 5 L 1 h < 30) with bh=3 and G13/GU= 1. 

Figure 6.10 Variation of a for shon specimens (5 5 L / h < 20) with b / k 3  and GII/GU=l. 



Figure 6.1 1 Variation of a for long specimens (7 s L / h < 30) with b/h=5 and Gli/Gu=l. 

Figure 6.12 Variation of a for short specimens (5 5 L / h < 20) with bih=5 and G~,/GU=I. 



Figure 6.13 Variation 

€1 dGl3 

of a for long specimens ( 7  L / h 5 30) with b/h= 1 and G13/Ga=2. 

Fiyre 6.14 Variation of a for shon specimens ( 5  s L / h 5 20) with b / ' I  and GlI/Gz=2. 



Fiyre 6.15 Variation of a for long specimens (7 5 L I h < 30) with b k 3  and G13/Gn=2. 

Figure 6.16 Variation of a for short specimens ( 5  < L l h < 20) with &h=3 and GI3/GL1=2. 





6.5.2 The sensitivity of the method to the variation of a 

The prerequisite for the use of Figs 6.7 through 6.18 is the knowledge of the material 

elastic properties. However, since these quantities c m o t  be accurately known before 

performing different types of tests, one must usually depend on previously available data 

or one's own judgment to attain some values for the norrnalized quantities needed in these 

Figures. As a result, the a value will be approximate. The question which arises is how 

sensitive the results of the VSM are to the variation in a (frorn its best value). 

To answer this question, first the feasibility of taking the average value of a = 0.7 for al1 

cases is investigated. For this, the values of E and G for the various cases used for the 

evaluation of the best a in Section 6.5.1 are calculated correspondingly. The difference 

between the correct E and G and the values obtained based on a = 0.7 indicates the 

sensitivity of the method io the variation of a. The amount of errors in calculation of E 

and G for al1 cases are detemined and are tabulated in Appendix G. These values show 

that the percentage error in no case exceeds 2% and 12%, respectively, for E and G, while 

the corresponding average errors are 0.58% and 4.4%. The maximum error recorded for 

long specimens is lower than what was recorded for small specimens. Also cases with 

larger b/h show less error for the value of G. For example, the maximum errors obtained 

for long specimens with b h  = 5 are only 1% for E and 5% for G. Recognizing the other 

uncertainties involved with the design of engineering structures and the variability involved 

with the manufactunng of the FRPC stmctural components, the error induced by taking 

the average value of a = 0.7 can be considered negligible. Moreover, the uncertainty of 

the results obtained From other established methods used for evaluating the longitudinal 

and shear moduli of composites are usually higher than 0.58% and 4.4%. respectively. 

Therefore, one can conclude that using the average value of a = 0.7 is suficient to obtain 

reasonably accurate E and G values for most practical purposes. 



The above investigation clearly indicates that the VSM is not sensitive to small variations 

in a. While the average value of a = 0.7 provides sufficient accuracy, more accurate a can 

be easily obtained from Figs. 6.7 through 6.1 8. For this, one needs to know the quantities 

of E331G13, EIIIGi3, G13/G2, and v of the material. However, a close examination reveals 

that G13/GZ3 has insignifiant effect on the value of a. The variation of the other quantities 

also do not change the value of a significantly. As a result, if no data exist for these 

quantities, approximate values obtained by the rule-of-mixture will provide sufficient 

accuracy. A more accurate value for Ell/Gi>, however, can be obtained by using the Ell 

and Gi3 values detedned based on the approximate value of a fkom the VSM. 

The above investigations were conducted based on assuming a wide range of elastic 

properties to encompass al1 cornrnonly used FRPC. Nevenheless, further validation was 

camed out by applying the above procedure to 8 commercially available FRPC. The 

elastic properties of these matenals were obtained from Tsai (1988), and are listed in 

Table 6.1. The following assumptions were also made. 

L 

G,, = TG,? 

The best values of a and the errors associated with the evaluation of the E and G for long 

specimens with b h  = 5 are tabulated in Table 6.2. The errors tabulated in the columns 3 

and 4 are those resulting when the best values of a were used in the calculations; those 

resulting fkom a = 0.7 are also listed in the columns 5 and 6. As can be seen from Table 

6.2, the changes in a has insignificant influence on the accuracy of E Nevertheless, the 

corresponding error in no case exceeds 0.5%. The error associated with the evaluation of 

the G values based on a = 0.7, except for one case, is always less than 2%. Figure 6.19 

shows the characteristic lines of these materials based on a = 0.7. 



Table 6.1 The properties of  the selected matenals from Tsai (1988). 

Materials Fibers Resin EI 1 E22 G13 v12 

ID 
1 T-300 N5208 181 10.3 7.17 0.28 
2 B(4) N5505 204 18.5 5.59 0.23 
3 AS H3501 138 8.96 7.1 0.3 
4 E-glass Epoxy 38.6 8.27 4.14 0.26 
5 Kev49 PEEK 76 5.5 2.3 0.34 
6 AS 4 E P ~ ~ Y  134 8.9 5.1 0.28 
7 IM6 PEEK 203 11.2 8.4 O. 3 2 
8 T300 Epoxy 148 9.65 4.55 0.3 

Table 6.2 The variation of a and the associated percentage of 
error. 

Materials Best %Enor based %Error based on 
D a on the best a a=O .7 

E G E G 
1 0.719 0.22 -0.06 0.20 0.63 
2 0.569 0.22 0.05 0.48 -4.28 
3 0.742 0.26 0.08 0.22 1.77 
4 0.681 0.44 -0.04 0.45 - 1 .O5 
5 0.653 0.39 0.04 0.48 -1 .56 
6 0.681 0.25 0.03 0.28 -0.65 
7 0.747 0.28 -0.04 0.22 1.72 
8 0.663 0.30 -0.09 0.37 -1.37 



Figure 6.19 Characteristic lines of the matenals identified in Table 6.1. 

6.6 Strain rate effect 

The standard procedure for a FRPC flexural test involves increasing the mid-span 

deflection at a constant rate while recording the corresponding load. The same procedure 

is adopted for the VSM. Since the mid-span deflection and the specimen strains are 

correlated, one can adjust the desired strain rate by changing the rate of mid-span 

deflection. To do this, the relations between the mid-span deflection rate and the strains 

rate must be known. 

In determinhg the net mid-span deflection of a beam under three-point bending in Section 

5.2, the load and reactions were assurned to be distributed over a length equal to 2ah. 

This was to elirninate differences between the Timoshenko beam theory and the exact 

elasticity solut ion. The assumption was important, since any inaccuracy in prediction of 

the mid-span deflection would directly affect the values of elastic moduli evaluated fiom 

the VSM tests results. However, for the strain rate, the situation is not so sensitive. As a 

result, and for the sake of simplicity, the load and the reactions are assumed to be 



concentrated (Le. a = O). Under this assumption, Eqns (5.10) and (5.1 1) are simplified as 

follows 

FL 
A ,  = 0.3- 

Gbh 

respectively. The total deflection will then be determined by 

F L ~  A = -  FL 
4~7/,3 + Gbh 

Taking the ratio of Eqns (6.22) and (6.23) gives 

On the other hand, 

determined fiom the 

the maximum longitudinal 

S G L ~  - 
6Eh2 

strain 

following equations 

3FL -- 
'mu - 2Ebh2 

Substituting Eqns (6.26) and (6.27) into Eqns (6.22) 

equations gives 

(6.25) 

and the average shear strain are 

(6.27) 

and (6.23), and dividing the two 

The left hand sides of Eqns (6.28) and (6.25) are the m e .  As a result, one can equate the 

right hand sides of the two equations to obtain 

where t,, and y, denote the longitudinal and shear strain rates of the specimen, 



respectively, in three-point bending. As Eqn (6.30) shows, the ratio of Lm, to y, is a 

function of Uh of the specimen. Consequently, it is not possible to maintain a constant 

strain rate for both longitudinal and shear strains in the VSM from one specimen to 

another. For example by maintainhg one of &,, and y, constant for the specimens with 

Ll, varying fiom 4 to 30, the other strain rate changes by an order of 7.5. This 

phenornenon influences the accuracy of the VSM when strain rate sensitive materials are 

tested. Whether the influence is significant when characterizing FRPC, depends on the 

degree of strain rate sensitivity of a given material. The works of Daniel et al. (1982) and 

Adams and Adams (1990) provide good information for the strain sensitivity of some 

FRPC. Considenng the range of strain rate change in the VSM and the strain sensitivity of 

FRPC, one can conclude that for most FRPC the variation of strain rate in the VSM does 

not have significant effect on the evaluated properties by this method. However a definite 

conclusion can be reached only when the results of VSM obtained under different strain 

rate arrangements are compared to each other. It is also important to compare the results 

obtained by the VSM with those obtained fiom other standard test methods. These 

cornparisons will be carried out in Chapter 7. However, the theoretical background of the 

problem is presented here. 

To obtain relationships between the strains and the mid-span deflection, Eqns (6.26) and 

(6.27) are substituted into Eqn (6.24). Taking the first derivative of the resulting equation 

with respect to time, one obtains 

where A is the rate of the rnid-span deflection. By combining this equation with Eqn 

(6.30), one can express the mid-span deflection rate of the beam in the following forms 



To maintain a constant longitudinal strain rate fiom one specirnen to another, the rate of 

mid-span deflection must be determined fiom Eqn (6.32). Equation (6.33) is for 

maintaining a constant shear strain rate. Which equation to be used in practice depends on 

the sensitivity of E and G to strain rate, and to other parameters which will be discussed 

below. It is obvious that when one of the E and G values is considerably more sensitive to 

strain rate than the other, the corresponding strain rate must be kept constant. For other 

cases, one may find it usehl to implement the following consideration to improve the 

consistency of the results. 

The shear does not have signifiant influence on the result of the tests when specimens 

with L/h>20 are tested. However, the results are quite sensitive to the longitudinal 

properties. Therefore, in testing specimens with large Uh, maintaining a constant 

longitudinal strain rate has more importance than a constant shear strain rate. In specimens 

with LAWlO, when the longitudinal strain rate is kept constant, the shear strain rate varies 

by 2.5 when L/h changes from 4 to 10. Although this variation is quite insignificant, one 

may find it more useful to calculate the rate of the mid-span deflection by taking the 

average of the values obtained fiorn Eqns (6.32) and (6.33). Nevertheless, for most 

common composite matenals, the use of Eqn (6.32) for determining the mid-span 

deflection rate seems to be quite adequate. 

A numerical investigation will better show the effect of strain rate sensitivity and the 

implementation of the above guidelines on the result of the VSM. For this, the sensitivity 

of E and G to strain rate are assumed to obey the following equations 



where b ,  and y, are the standard rate for the evaluation of E and G, respectively. These 

values usually are taken equal to 0.01 sec". E,t and Gsr are also the value of E and G at the 

standard strain rate. Considering the variation of E and G according to Eqns (6.34) and 

(6.3 9, Eqn (5.16) is used to produce data points in the coordinate system of Fig. 5.3. The 

characteristic line is drawn and the estimates of E and G are calculated accordingly. By 

cornparison of these values with Est and G ,  used for the generation of the data points, the 

percentage error associated with the VSM is evaluated. 

To carry out the investigation, three different cases of strain rate arrangements are 

considered. In case 1, the rnid-span deflection rate is assumed to be calculated fiom Eqn 

(6.32). As a result the shear strain rate is variable from specimen to specimen, while the 

longitudinal strain rate remains constant. The variation of G is, therefore, detennined fiom 

Eqns (6.35). In case II, Eqn (6.33) is used for mid-span deflection and the variation of E is 

determined from Eqn (6.34). In case III, Eqn (6.32) is used for Uh 2 20 and the average 

value of Eqns (6.32) and (6.33) is used for other Uh. The variation of E and G are 

accordingly determined from Eqns (6.34) and (6.3 5). The results of the investigation on 

five types of materials are presented in Table 6.3 and 6.4 for long and shon specimens, 

respectively. The investigations for the long specimens were based on producing data 

points for U h  = 7, 8, 10, 14 and 30, while Uh = 4, 5, 7, 10 and 20 were used for shon 

specimens. 

It is imponant to notice that the sensitivity to strain rate provided by Eqns (6.34) and 

(6.35) is considerably higher than the sensitivity of most FRPC. As a result, the errors 

tabulated in Tables 6.3 and 6.4 may be exaggerated for many cases. Nevertheless, in 

general, the results of the investigation confirrn the earlier discussion on the application of 

Eqns (6.32) and (6.33) for the determination of the mid-span deflection rate. The results 



also show that when the mid-span deflection rate is determined properly, the effect of 

material strain rate sensitivity cm be significantly reduced. 

Table 6.3 Percent of error associated with different strain rate arrangements 
and the assumed sensitivity to strain rate for long specimens. 

Ei% Percent of error 
Case 1 Case II Case III 

E G E G E G 
10 0.08 1.36 4.4 12.16 0.89 1.24 
20 O. 16 O. 15 2.89 6.65 0.40 0.55 
30 O. 24 1 .O3 2.01 4.61 0.1 1 0.30 
40 0.3 1 1.65 1.38 3.54 0.09 O. 12 
50 O. 39 2.14 0.90 2.88 0.25 0.52 

Table 6.4 Percent of error associated with different strain rate arrangements 
and the assumed sensitivity to strain rate for short specirnens. 

E/G Percent of error 
Case I Case II Case III 

E G E G E G 
10 O. 22 0.16 3.34 5.16 0.72 O. 79 
20 0.43 1.35 1.83 2.72 0.04 O. 1 
30 0.63 2.23 0.95 1.86 0.37 0.85 
40 0.82 2.85 0.33 1.42 0.68 1.42 
50 1 .O2 3.34 O, 16 1.15 O. 95 1.88 

It is also important to note that both Eqns (6.32) and (6.33) are dependent on the value of 

E/G. a ratio that is not precisely known before testing. Therefore, one must use an 

approximate value for DG.  A close investigation of Eqns (6.32) and (6.3 3) shows that the 

rates caiculated by these two equations are not very sensitive to the change in C G .  For 

example, for Uh>20 the variation of DG fiom 10 to 50 alters the rate calculated by Eqn 

(6.32) (the equation which is recornmended for use for beams with large L/h) by less than 

1 1%. On the other hand, for L!h<lO, when E G  changes from 10 to 50, the rates obtained 

by Eqns (6.32) and (6.3 3) Vary less than 2.7 and 3.5 times, respectively. Recognizing these 



facts, assuming an average value of ffG = 30 can be considered quite accurate for most 

practical purposes. However, one can easily estimate a more reasonable value for UG, 

based on the rule-of-mixture, or fiom the literature. 

6.7 Effect of lateral Friction 

For the evaluation of a in Section 6.5.1, the lateral (y direction) movements of the finite 

element models at the supports and loading nose were assurneci to be free. However, in 

practice, due to the existence of the fnction forces such an assumption may not be fully 

valid. The magnitude of this fnction, even though it may be very small, is unknown. To 

examine the influence of the friction quantitatively, the finite element models used in 

section 6.5.1 (Fig. 6.6) are used to examine two extreme cases. In one case, the nodes on 

the contact lines are restrained against lateral displacement. This case simulates the 

extreme situation where the fnction between the contacting surfaces in the y direction is 

very large. In the other case, the nodes are allowed to move fteely laterally, thus 

sirnulating a Cnction fiee contact. The investigation is conducted for the matenal 

properties used in section 6.5.3 (Table 6.1). To determine the effect of fiction for the 

worst condition, beams with Wh = 4 and Wh = 5 are exarnined. The ratio of the net mid- 

span deflection obtained fiom the two models are determined and tabulated in Table 6.5. 

As the results show, the difference between the results of the two cases are quite 

insignificant, leading to the conclusion that fnction between the contacting surfaces in the 

lateral direction is not an infiuential parameter. 

Table 6.5 The ratio of the net mid-span deflection obtained From models with and 
without lateral friction at the supports. 
Matenal ID 1 2 3 4 5 6 7 8 

Ratio 1.0043 1.0019 1.0046 1.0013 1.0037 1.0036 1.0054 1.0036 



6.8 Summary and conclusions 

The effect of several influential factors on the efficiency and the accuracy of the VSM was 

theoretically investigated and discussed. Between the two possible alignrnents for testing 

the specimens (Fig. 6.4), the alignment type B was the focus of the investigations. The 

effect of lateral fiction at the supports was s h o w  to be insignifiant, while maintaining 

fiction-fiee hinge suppons was shown to be very important for obtaining accurate results. 

The non-linear behavior due to the contact of the specimen with the loading nose and the 

supporting rollers was show to have insignificant effect on the net mid-span deflection. 

The values of a for materials with different properties were established. It was found that 

this quantity varied between 0.5 and 0.9, while the use of the average value of a = 0.7 was 

shown to be sufficient for practical purposes. The infiuence of the vanation of the 

longitudinal and shear strain rates from one specimen to another was discussed. 

Considenng the relative insensitivity of most FRPC to strain rate, it was postulated that 

the range of changes in the strain rate in the VSM would not have significant effect on the 

results of the tests. Nevertheless, special guidelines and equations were provided to obtain 

the best results. 

In general, the theoretical investigation validates the integrity of the VSM as a promising 

method for the simuitaneous evaluation of the longitudinal and the through-the-thickness 

moduli of FRPC. The errors produced due to the nature of the method and those 

associated with the simplifjmg assumptions are al1 less than other uncertainties present in 

the design of FRPC engineering structures. In addition, the accuracy of the results are 

better than or at least comparable to the results of other available test methods. 



Chapter 7 

EXPERIMENTAL INVESTIGATIONS 

This chapter discusses the results of the expenmental investigations designed to assess the 

integrity of the VSM. The materials considered in these investigations were unidirectional 

graphitdepoxy, unidirectional Kevladepoxy and unidirectional E-glasdepoxy. The 

investigations were to evaluate the following issues: 

a) the applicability of the VSM for the selected matenals, 

b) comparison of the longitudinal and the shear moduli values determined by the VSM 

with other common test methods in practice, 

c) the reliability of the VSM test results, and 

d) the effect of the variable strain rate inherent in the VSM on the result of the test. 

The applicability of the VSM method was assessed by the scatter of the data points 

obtained from the test results when they were plotted in1 1 E' versus J(h 1 L)'coordinates 

system. A linear distribution of the data points was interpreted to mean that the VSM was 

a viable test method to the selected matenal. 

The reference test method for the comparison of the longitudinal modulus evaluated by the 

VSM for al1 cases was the ASTM D3039-93 tende test. However, as was mentioned in 

Chapter 2, the evaluation of the through-the-thickness shear modulus (Gi3) of the 

matenals is only possible by the Iosipescu shear test (ASTM D5379-93) which requires a 

20 mm thickness specimcn; a configuration usually not easy to prepare. As a result, 

depending on the situation, one or two of the common test methods for the in-plane shear 

properties, such as the f45" (ASTM D35 18-94), the Iosipescu (ASTM D5379-93) and the 

10" off-axis shear tests, were used to assess the shear modulus obtained by the VSM. It 

should be mentioned that theoretically, if the distribution of fibers through the thickness 

and through the width of the laminate follows the same pattern, G13 and Giz should be 



equal. In practice, however, the situation may not be ideai. For instance, in hand lay-up 

laminates, the layer interfaces are more susceptible to defects and therefore a smaller value 

for (313 cm be expected. 

The reliability of the VSM was estimated by determining the 95% confidence interval for 

the test results. This was accomplished by a linear regression analysis for the material 

characteristic line. 

To assess the effect of variable strain rate fiom one specimen to another, different sets of 

specimens were prepared fiom each material. The test speed for each set was determined 

in such a manner that either the longitudinal or the shear strain rate remained constant for 

al1 the specimens in the given set. Equations (6.32) and (6.33) were used for this purpose. 

Since a constant net mid-span deflection rate could not be rnaintained through the loading 

device, the values from Eqn (6.32) and (6.33) were used directly to establish the speed of 

the actuator of the loading device. 

A special apparatus was designed and fabricated for the VSM. It was to allow the 

measurement of the net rnid-span deflection and also to allow testing of specimens with 

small spans. The schematic and the description of the apparatus are documented in 

Appendix H. The loading device was an universal MTS testing machine. 

7.1 Investigation on graphiie/epoxy 

Experimental investigation on graphitelepoxy was carried out by conducting the VSM, the 

ASTM D3039-93 tensile test, the ASTM D35 18-94 +45 shear test and the ASTM D5379- 

93 Iosipescu shear tests. The specimens were cut fiom 300x300 mm hand lay-up panels 

made of 24 layers of Fibente graphite/epoxy prepreg. The panels were vacuum bagged 

and were cured in an autoclave using the curing cycle specified by the supplier of the 

prepregs. The specimens for the VSM, the tensile and the Iosipescu shear tests were çut 



fiom unidirectional panels, while a symrnetric cross-ply laminate was used to provide the 

specimens for the MS0 shear tests. The panels were cut into strips of approximately equal 

width. These strips were then used to prepare specimens with different lengths. To 

elirninate the effect of resin reach layers on  two sides of the specimens and also to ensure 

smooth surfaces and uniform thickness, the specimens were sanded with No. 400 silicon 

carbide powder. The final thickness of the specimens was between 2.5 1 and 2.72 mm for 

the VSM tests, between 2.33 and 2.5 1 mm for the tensile tests, between 2.41 and 2.5 1 mm 

for the k45 shear tests and between 2.55 and 2.58 mm for the Iosipescu shear tests. The 

width of the specimens were about 12.5, 13 and 25 mm for the VSM, tensile and for MS0 

shear tests, respectively. The dimensions of specimens for the Iosipescu shear test were 

based on the dimensions specified by the ASTM D5379-93. The details for the specimens 

are presented in Appendix 1. 

Four sets of specimens were prepared for the VSM. The speed of the test for the first two 

sets were determined by assurning a constant longitudinal strain rate of Emx = 0.01 sec-' 

and assurning WG=30 for use in Eqn (6.32). For the third set, the value of U G  in Eqn 

(6.32) was assumed to be equal to 10, while the longitudinal strain rate was assumed to be 

the same as that used for the first two sets. The fourth set of specimens were subjected to 

a constant shear strain rate. Equation (6.33) with the assumption of y, = 0.01 sec-' and 

UG=30 was used for this set. Table 7.1 sumaries the different strain rate cases. 

Table 7.1 Specifications of strain rate cases for different sets 
of graphite/epoxy specimens. 

E/G Designation Equation Emm Y a, 

GR- 1 6.32 30 0.0 1 var. 
GR-2 6.32 30 0.0 1 var. 
GR-3 6.3 2 I O  0.01 var. 
GR-4 6.33 30 var. 0.0 1 



Each set of specimens were tested with 5 different spans, for U h  fiom 5.52 to 30.05. For 

each span, at least three specimens were tested. Each specimen was tested twice. In the 

first trial, depending on the linearity limit, the specimen was loaded to about 50% to 80% 

of the failure load. The test was stopped before the specimen showed significant 

nonlinearity. In the second trial, the specimen was loaded until failure. The initial slope of 

the load-deflection curve of each test was evaiuated. This value was used for F / A in Eqn 

(5.18) to calculate the corresponding E '. The plots of 1 1 E' versus J(h 1 L)' for the 

results obtained fiom the tests for each set, and the corresponding materials characteristic 

lines are presented in Figs 7.1 through 7.4. The E and G values, respectively, detennined 

fiom the reciprocal of the intercept and the slope of the characteristic lines for different 

sets of the specimens are tabulated in Table 7.2. The approximate value of a=O. 7 was used 

for al1 cases. The load-displacement curves for al1 these specimens are included in 

Appendix J. 

The plot of the test data in Figs 7.1 through 7.4 for both loadings follow a clear linear 

trend which confirms the applicability of the proposed method for the selected matenal. 

The E and G values obtained for different strain rate cases (Table 7.2) are quite similar, 

their differences being in the acceptable range of accuracy in practice. Furthermore, as Fig. 

7.5 shows an obvious pattern between the results obtained for different strain rate cases 

(Table 7.1) does not exist. Conseguently, it can be concluded that the variable strain rate, 

inherent in the VSM, is not problematic for graphitelepoxy. 
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Figure 7.1 Plot of 1 / E t  versus J(h 1  an and the matenal characteristic line for GR- 1 
graphite/epoxy specirnens. 
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Figure 7.2 Plot of 1 / E t  versus J(h / L)' and the matenal characteristic line for GR-2 
graphitdepoxy specimens. 
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Figure 7.3 Plot of 1 / E' versus J(h / L)' and the material charactenstic line for GR-3 
graphitdepoxy specimens. 

Figure 7.4 Plot of I / E t  versus J(h 1 L)' and the material charactenstic line for GR-4 
graphitekpoxy specimens. 
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Table 7.2 Values of G13 and El 1 for dif5erent sets of the graphitdepoxy specimens obtained 
by the VSM (GPa). 

First loading Second loadinp, 
Set ID. GR-1 GR-2 GR-3 GR-4 GR-] GR-2 GR-3 G R 4  
Ei 1 151.9 150.8 155.8 149.4 151.0 153.1 156.4 151.0 
G13 4.55 4.59 4.32 5 .O7 4.87 4.7 4.44 4.88 

T 1st loading T 2nd loading 

O 0.01 0.02 0.03 0.04 O 0.01 0.02 0.03 0.04 
J (ML) J(~IL)* 

Figure 7.5 Plot of 1 I E' versus J (h  / L)' for al1 graphite/epoxy sets. 

Four specimens of graphite/epoxy were used to evaluate the longitudinal modulus by the 

tensile test. Two extensometers, with 25.4 mm gage lengths, were attached back to back 

on each specimen to measure the elongation of the specimens during the test. The 

longitudinal moduli obtained fiom these tests were 149.8, 146.7, 153.3 and 150.9 GPa 

giving an average value of 150.2 GPa. 

To evaluate the shear rnodulus of the rnaterial by the k4S0 and the Iosipescu shear tests, 

three specimens were used for each method. In the MSO shear test the longitudinal strain 

was measured by attaching two 25.4 mm gage length extensometers to the two surfaces of 

the specimens while the transverse strain was rneasured by strain gages. The shear moduli 

obtained frorn these tests were 4.86, 5.0 and 4.76 GPa for the k45" shear test, and 5.83, 

6.11 and 6.51 GPa for the Iosipescu shear test for average values of 4.87 and 6.15 GPa, 



respectively. 

Table 7.3 Summary of the results obtained from diflerent test methods and 95% 
confidence intervals for graphitelepoxy (GPa). 

1 st loading 2nd loading Tensile test MSO shear Iosipescu 
VSM VSM test shear test 

Eii 152.4k4.4 153.1k2.8 1 50.8 - - 
G13 4.57H.2 1 4.69M. 15 - - - 
G12 - - - 4.87 6.15 

Table 7.3 summarizes the results obtained fiom the various test methods. The values of 

El1 and G13 of the VSM in this table were evaluated from the results of the tests on dl the 

specimens (Fig. 7.5). The 95% confidence intervals are also reported for the results 

obtained by the VSM. The small margin of the confidence intervals confirm the reliability 

of the proposed rnethod. The difference between the values of longitudinal moduli 

obtained by the tensile test and the VSM is less than 2%, indicating a good agreement. 

The value of Giz obtained by the M5" shear test and the G13 values obtained by the VSM 

are also in good agreement. Nevertheless, as was mentioned earlier, the Gia and G12 values 

of the matenals may not be equal due to different distribution of the fibers through-the- 

thickness and through-the-width of the specimens. Moreover, in hand lay-up materials, 

Glz is expected to be larger than Gi3. The results obtained fiorn the Iosipescu shear test 

are considerably higher than the other values. This difference, as rnentioned in the ASTM 

5379-93, can be attributed to the nature of this method which usually produces higher 

value for shear modulus when highly anisotropic O" specimens are used. Finally, it should 

be emphasized that the fixture fabricated for the VSM is in its preliminary design stage. 

Refinement and enhancement of the fixture is expected to fùnher improve the results. 

7.2 Investigation on Kevladepoxy 

The specimens of Kevlar/epoxy were cut from a pulltruded panel with average thickness 

of 1.9 mm. The panel was provided by TW Pultnision Ltd of Dartmouth, NS. The 



specimens were prepared for the VSM , 10" off-ais and Iosipescu shear tests. The tensile 

properties of the matenal had been provided by the supplier of the materiai. The width of 

the specimens was about 12.5 mm for the VSM and 13 mm for the 10" off a i s .  The 

dimensions of the specimens are presented in Appendix 1. No sanding or polishing was 

applied to the surfaces of the specimens. 

Six sets of specimens were subjected to the VSM, with the Uh varing between 7.02 and 

30.6. There were at least 15 specimens in each set for five different spans. The speed of 

the tests for each set was calculated based on the strain rate specifications of Table 7.4. 

Similar to the previous case, the specimens of Kevlarlepoxy were tested twice. The load- 

deflection curves of the tests are presented in Appendix J. The initial slopes of the load- 

deflection curves are ais0 presented in Appendix 1. These values were used to draw the 

plots of 1 / Er versus J(h 1 L)' for each set of specimens in Figs 7.6 through 7.1 1. The 

value of a for ail cases was taken to be 0.7. Also shown in these figures are the 

characteristic lines of each sets which were determined by linear regression analysis. The E 

and G values of each set were determined fiom the reciprocal of the intercepts and slopes 

of the characteristic lines, respectively. The values are tabulated in Table 7.5. The plot of 

1 / Er versus J(h / L)? for al1 sets are s h o w  in Fig. 7.12. 

Table 7.4 Specifications of strain rate cases for different sets 
of Kevladepoxy specimens. 

E/G Designation Equation Emax Y, 
K- 1 6.32 30 0.01 var. 
K-2 6.32 30 0.01 var. 
K- 3 6.32 10 0.01 var. 
K-4 6.32 10 0.01 var. 
K-5 6.33 30 var. 0.0 1 
K-6 6.33 30 var. 0.0 1 
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Figure 7.6 Plot of 1 1 E' versus J(h / L)' and the matenal charactenstic line for K-1 
Kevalr/epoxy specimens. 
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Figure 7.7 Plot of I 1 E' versus J(h  / L)' and the material charactenstic line for K-2 
Keval depoxy s pecimens. 
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Figure 7.8 Plot of 1 / E' versus J(h / L)' and the materid characteristic line for K-3 
Kevaldepoxy specimens. 
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Fiyre 7.9 Plot of 1 / E' versus J(h / L)' and the material characteristic line for K-4 
Kevalr/epoxy specimens. 
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Figure 7.10 Plot of 1 / Er  versus J(h / L)' and the matenal characteristic Iine for K-5 
Kevalrlepoxy specimens. 

Figure 7.1 1 Plot of 1 / E' versus J(h  / L)' and the matenal characteristic line for K-6 
Kevaldepoxy specimens. 
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Table 7.5 Values of Gi3 and El, for different sets of the KevlariEpoxy specimens obtained by the 
VSM (GPa). 

First loading Second loading 
Set ID K-1 K-2 K-3 K-4 K-5 K-6 K-1 K-2 K-3 K-4 K-5 K-6 
El 1 66.9 67.9 69.7 68.3 67.6 69.4 66.0 68.4 68.9 67.6 67.4 68.3 
G I ~  1.82 1.75 1.59 1.71 1.73 1.68 1.76 1.62 1.58 1.69 1.68 1.73 

0.03 T 1st loading 0.03 T 2nd kading 
8 

Figure 7.12 The plot of 1 / E' versus J(h / L)' for al1 sets of Kevlarlepoxy specimens. 

As can be seen in Figs 7.6 through 7.11, the distribution of the data points in the 1 I E' 

versus J (h  1 L ) 2  coordinate systern closely follows a linear pattern. As a result, one can 

conclude that the VSM is applicable to the Kevlarlepoxy composite. The E and G values 

obtained fiom different sets of specimens are also quite close to each other and do not 

show dependency on the strain rate cases of Table 7.4. Figure 7.12, which shows the 

scatter of the data points for al1 specimen sets, also does not indicate a dependency on the 

strain rate cases. As a result, the variation of strain rate for specimens with different Lih is 

not a problern for this material. 

The values of the tensile modului, as provided by TW Pultrosion Ltd., were 67.8, 66.6 and 

65.3 GPa with an average of 66.6 GPa. The panel used to obtain the tensile test specimens 

was the sarne one that later was used for the VSM, the 10" off-axis and the Iosipescu 



tests. To evaluate the Glz value of the material, three specimens were used for the 

Iosipescu and two specimens were used for the 10" off-axis shear tests. The G12 values 

obtained fiom these tests were 2.09, 2.1 3 and 2.24 GPa for the Iosipescu shear tests, and 

1.86 and 1.72 GPa for the 10" off-axis shear tests giving average values of 2.1 5 and 1 .79 

GPa, respective1 y. 

Table 7.6 Summary of the results obtained from different test methods and 95% 
confidence intervals for Kevlarlepoxy (GPa). 

I st loading 2nd loading tensile test 10" off-axis Iosipescu 
VSM VSM shear test shear test 

Ei 1 68.3k1.3 67.8I1.3 66.6 - - 
G13 1.72M.06 1.68kû.07 - - - 
(312 - - - 1.79 2.15 

The summary of the various tests results are tabulated in Table 7.6. The material 

characteristic line fitted to the results of al1 the VSM specimens (Fig. 7.12) was used for 

the determination of El and Gi3 values in this table. The 95% confidence intervals 

reported for the VSM results are very small. This confirms the integnty and reliability of 

the method for the evaluation of E and G values for the Kevlar/epoxy composite. The 

difference between the values of longitudinal moduli obtained by the tensile test and the 

VSM is quite small. Recalling the earlier discussion on the difference between G12 and Gi3, 

the values of Gi3 obtained by the VSM are quite close to the GI2 value obtained by the 

10" off-axis shear test. Nevertheless, as it was discussed in Chapter 2, one should expect 

an overestimated value for shear modulus fiom the IO0 off-axis method, unless relatively 

long specimens are used. Tne values from the Iosipescu shear test are considerably higher 

than the other values. This difference, as mentioned in the previous section, can be 

attributed to the nature of this method which usually overestimates the shear modulus 

when highly anisotropic O" specimens are used. The errors introduced by the VSM fixture 

due to possible fabrication imperfection can also be considered as another source for 

discrepancy 



7.3 Investigation on Eg~ass/epoxy 

The specimens of E-glasdepoxy were subjected to the VSM, tensile and Iosipescu shear 

tests. The specimens were cut from pulltruded bars provided by Glasfoms Inc., San Jose, 

California, with an average thickness of 6.3 mm. The average width of the specimens was 

about 13.4 mm for the VSM and 14 mm for the tensile test. The exact dimensions of the 

specimens are presented in Appendix 1. Similar to the Kevlarlepoxy specimens, no sanding 

or polishing was applied to the surfaces of the specimens. 

For the VSM tests, four sets of specimens were prepared. There were 12 specimens in 

each set which were tested at 4 dieerent spans. The L/n of the specimens varied between 

4.93 mm and 1 7.82 mm. The speed of the tests for each set was calculated based on the 

strain rate specifications of Table 7.7. Sirnilar to the previous cases, the specimens of E- 

glasslepoxy were tested twice. The load-deflection curves of the tests are presented in 

Appendix J with the initial slopes reported in Appendix 1. The values of the initial slopes 

were used to draw the plots of 1 / E' versus J ( h  / L)' for each sets of specimens. These 

plots are presented in Figs 7.13 through 7.16. Similar to the previous cases, a=0.7 was 

used for al1 sets of the specimens. The charactenstic lines of each set, determined by linear 

regression analysis, are also drawn in the figures. The E and G values of each set, 

determined respectively fiom the reciprocal of the intercepts and slopes of the 

charactenstic lines, are tabulated in Table 7.8. The plot of 1 / Er versus J(h I L)' 

containing the results of tests for al1 sets of specimens are also shown in Fig. 7.17. 

Table 7.7 Specifications of strain rate cases for different sets 
of E-glass/epoxy specimens. 

E'G Designation Equat ion %mx Y,, 
GL- 1 6.32 30 0.0 1 var. 
GL-2 6.32 10 0.0 1 var. 
GL-3 6.32 10 0.0 1 var. 
GL-4 6.33 10 var. 0.0 1 
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Fi y r e  7.13 Plot of 1 / E' versus J(h / L)' and the material characteristic line for GL-1 
E-glass/epoxy specimens. 

0.028 - 1 st loading 0.028 - 2nd loading 
0 

0.026 -- 0 5 0.026 -- - 2 0.024 -- 
Y Y 

k? 0.022 -- 0 test %! 0.022 
P 7 

0 test 
- regression 

0.02 0.02 

Figure 7.14 Plot of 1 1 E' versus J(h / L)' and the material characteristic line for GL-2 
E-glasdepoxy specimens. 
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Figure 7.15 Plot of 1 1 E' versus J(h 1 L)' and the material characteristic line for GL-3 
E-glasdepoxy specimens. 
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Figure 7.16 Plot of 1 / E' versus J(h / L)' and the material characteristic line for GL-4 
E-glasdepoxy specimens. 



Table 7.8 Values of (313 and El, for different sets of the E-glasdepoxy specimens obtained 
by the VSM (GPa). 

First loading Second loading 
Set ID GL-1 GL-2 GL-3 GL-4 GL-1 GL-2 GL-3 GL-4 
EI 1 47.8 51.4 47.5 49.2 47.6 50.3 46.6 48.7 
GI 7 9.72 5.98 7.75 6.56 9.78 7.66 9.09 6.57 

A linear trend between 1 / E t  and J(h / L)2 is evident fiom Figs 7.13 through 7.17. For 

this material, the deviation of the data points fiom the regression lines appears to be 

sigiiificant. A closer examination of the figures reveals that the relative deviation (ratio of 

deviation to the rneasured value) is in the same range of those of Kevlar/epoxy and 

graphitdepoxy. However, the range of 1 / E' in this case is considerably smaller than for 

the other two rnatenals. That is, the ratio of the maximum I I  E' to the minimum 11 Er in 

the E-glass/epoxy tests is less than 1.3, while the sarne ratio for the Kevlarfepoxy and the 

graphitdepoxy tests results is lager than 2. As a result, a usual variation of 5 to 10 percent 

in the material properties appears as a significant discrepancy in Figs 7.13 through 7.17 for 

the present case. This problem, as was discussed in Chapter 6, is due to the small DG 

value of E-glass/epoxy which makes the VSM less efficient. Consequently, the values of G 

obtained fiom different sets of specimens do not agree with each other very weil. A wider 

range in 11 Er could be obtained by testing specimens with wider range of Uh. 

The G values of Table 7.8 for second loading and also the plots of the second loading test 

results in Fig. 7.1 7 indicate that the results of the GL-4 set of specimens are considerably 

different fiom those of other sets. This difference may be interpreted as the infiuence of 

the strain rate sensitivity of E-glasdepoxy in the VSM. However, a more detailed 

investigation, as follows, would imply that the reason for the difference must be attributed 

to the variation of the material properties and the other variables involved with testing and 

estimating the initial slopes of the load-deflection curves. 



Referring to Fig. 7.17, the E' values obtained for the second loading of GL-4 specimens 

are considerably smaller than those of other sets for tests with the smaliest span (3 1.19 

mm). Obviously, this difierence is the reason for the small value of G obtained fiom this 

set of specimens. By checking Appendix J, one will realize that the speed of tests for GL-4 

specimens was between those of GL-1, GL-2 and GL-3 specimens. As a result, in case of 

sensitivity to strain rate, the E' values of GL-4 specimens should have fallen between the 

E' values obtained from the other sets of the specimens. Since this was not the case, the 

existing difference cannot be related to the strain rate sensitivity of the material. 

The G value of the GL-1 set of specimens in Table 7.8 for fim loading is also considerably 

higher than the G values of the other sets. Since the plot in Fig. 7.17 of the first loading 

does not show an obvious dependence of the GL-1 specimens to strain rate, one can again 

attribute the higher value of G to the variation of the material properties and the other 

variables involved with testing and estimating the initial dopes of the load-deflection 

curves. 

o.o28 T 1 st loading 
8 

T 2nd loading 
4 

Figure 7.17 Plot of 11 E r  versus J(h  / L)' for al1 sets of E-glass/epoxy specirnens. 

The tensile test was conducted on three specimens. The E values obtained From these 

specimens were 47.2, 50.6 1 and 47.7 GPa with an average value of 48.5 GPa. The result 



from the Iosipescu shear tests were 7.07, 7.39 and 8.27 with an average value of 7.57 

GPa. These average values, dong with the E and Gi3 obtained from the characteristic line 

of ail the VSM specimens (Fig. 7.17), are tabulated in Table 7.9. The 95% confidence 

intentals for the results of th- VSM are also determined by statistical means and reported 

in the same table. The small confidence interval for the E value confirms the reliability of 

the VSM method for evaluation of the E-glasdepoxy's longitudinal modulus. The 95% 

intervai for the shear rnodulus is more than 10% of the modulus itself which is 

considerably higher than the values obtained for the KevIar/epoxy and the graphitdepoxy 

investigated earlier. The cause of this problem, as was discussed earlier, is due to the small 

range in 1 1 E' for the tests. The consistency of the results could be improved by increasing 

the range of Uh of the specimens. Nevertheless, both values of E and G calculated from 

the VSM test results on al1 sets of specimens, agree very well with the values obtained by 

the tensile and the Iosipescu shear tests. 

Table 7.9 Summary of the results obtained from different test 
methods and 95% confidence intervals for E-glasdepoxy (GPa). 

I st loading 2nd loading tensile test Iosipescu 
VSM VSM shear test 

Ei i 48.9C1. 1 48.3+1 .O 48.5 - 

7.4 Summary and conclusions 

In this chapter, the integrity of the VSM was experimentally investigated. For this, three O" 

unidirectional FRPC, inciuding graphite/epoxy, Kevladepoxy and E-glass/epoxy, were 

considered. The longitudinal and the through-the-thickness shear moduli of the materials 

were evaluated by subjecting them to the VSM test. The longitudinal moduli obtained by 

the VSM were verified by conducting the ASTM D3039-93 tensile test on the materials. 

Since there was not a simple method to evaluate the through-the-thickness shear moduli of 



the materials, the in-plane shear moduli were evaluated by common available shear test 

methods to assess the values obtained by the VSM. For this, the Iosipescu shear test was 

used on al1 materials while the M5" shear test was applied only to the specimens of 

graphitelepoxy and the 10" off-axis test was applied to the Kevlarlepoxy specimens. With 

the exception of the Iosipescu test results for graphitefepoxy and Kevlarlepoxy, which 

were about 30% higher than the shear moduli obtained by the VSM, the values obtained 

by the different test methods were in good agreement. The higher values obtained fiom 

the Iosipescu test method for graphitdepoxy and Kevladepoxy were attributed to the 

nature of the test method which is known to generally overestimate the shear modulus of 

highly anisotropic 0" specimens. The small discrepancies for other cases is quite acceptable 

for practical purposes. Nevertheless the discrepancy can be attributed to the following 

parameters. 

a) The results obtained by the tensile test can be influenced by possible bending due to 

specimen and/or system misalignment. 

b) The shear modulus obtained by the VSM method is Gi3, however the results 

obtained from the other rnethods are G ~ z  AS explained, these values are not 

necessarily equal. 

C) None of the shear test methods used here are considered to be exact. 

d) The 10" off-axis shear test generally gives higher values, unless when applied to 

specimens with very large aspect ratios. 

e) The quality of the material may not be uniform for al1 specimens. 

f) None of the test methods has an exact procedure for the determination of the 

modulus value From the test data. 

g) The fabricated fixture for the VSM is in its prelirninary stage; funher modification 

and enhancements of the fixture may improve the results. 



The effect of variable strain rate for specimens with different Lh, which is inherent in this 

method, was also investigated by performing tests under different strain rate cases. No 

apparent dependency was observed between the results obtained for different cases. 

Consequently, one cm conclude that the non-constant strain rate in the VSM is not an 

issue for the materials tested. Based on the results of the VSM on al1 the specimens of 

each matenal, the 95% confidence intervals for the E and G values were statistically 

determined. With the exception for the G value of the E-glasdepoxy, the 95% confidence 

intervais were quite small, confirming the reliability of the VSM. The larger confidence 

interval obtained for the shear modulus of the E-glasdepoxy was due to the small range in 

I I  E' over the VSM test results, which in tum was due to the low E/G value of this 

material. Selecting a wider range of Uh for the specimens is believed to improve the 

results. 



Chapter 8 

SUMMARY AND RECOMMENDATIONS 

A novel test method called the "Varying-Span Method" (VSM) was introduced and was 

extensively discussed in the previaus chapters. Every effort was made to study and 

investigate the VSM fiom various angles so that one could recognise its advantages and 

its limitations. A sumrnary of the investigation is presented below. Recomrnendations for 

future work and fùrther development of the method are also provided in this chapter. 

Despite the extensive effort carried out, the author believes that the subject is still in its 

prelirninary stage and requires fbrther research and development. 

8.1 Summary 

A new test method capable of simultaneous evaluation of the longitudinal and through- 

the-thickness shear moduli of FRPC was introduced in this thesis. With the new test 

method specimens with different spans were subjected to three-point bending. Therefore, 

the method was called the "Varying-Span Method (VSM). The importance of evaluating 

the elastic properties of FRPC as an onhotropic matenal in different directions and the 

corresponding nomenclatures were presented in Chapter 1. Chapter 2 reviewed the 

comrnon test methods available for the determination of the longitudinal and the shear 

moduli of FRPC. As a result of the review, it became clear that the VSM was a unique test 

method due to its capability of simultaneously evaluating two elastic moduli of a given 

FRPC while being a simple and efficient test method. 

Chapter 3 provided the exact elasticity solution for three-point bending of onhotropic 

beams. This solution was used later to assess two approximate, yet simple solutions 

developed for treating the same problem. The approximate solutions sought for this 

problem were based on the through-the-thickness inextensibility and the Timoshenko 



beam theories. The first theory was discussed in Chapter 4 and references were given for 

the second. 

The fùndarnentals of the VSM were presented in Chapter 5. It was shown that by 

deterrnining the flexural stiffness of specimens with different length-to-depth ratio (Uh), 

one could theoretically evaluate the longitudinal and through-the-thickness shear moduli 

of elastic materials, simultaneously. Chapter 6 showed that the efficiency of the method 

depended on the ratio of the longitudinal to shear moduli (UG) of the material, providing 

higher efficiency for materials with larger DG. As a result, it was concluded that the 

met hod would be particularly applicable to FRPC. The theoretical and the experimental 

investigations in Chapters 6 and 7 confinned that the VSM would be an efficient and a 

practical test method for this type of matenal. 

The VSM's development, outlined in Chapter 5, was built on the two approximate 

theories introduced earlier, that is, the through-the-thickness inextensibility and the 

Timoshenko beam theories. Because of the simplicity of the second theory, the theoretical 

and the experimental investigations were limited to the use of this theory. In the solution 

developed based on the Timoshenko beam theory, a new quantity called the "apparent 

modulus of elasticity" was introduced. This quantity, as defined by Eqn (5.18), is 

determined from the result of three-point bending test. It was shown that when the 

apparent moduli of elasticity of specimens with different U h  are plotted in the coordinates 

system of Fig. 5.3, a straight line called the "material characteristic line" is obtained. One 

could then evaluate the longitudinal and the shear moduli of the matenal from the 

reciprocal of the intercept and the slope of this line, respectively. 

The distribution width of the applied load ont0 the specirnen, and the supports reaction 

forces were defined by a parameter denoted by "a". It was shown in Chapter 6 that a was 

a function of specimen geometry and material properties. The exact values of a were 



provided in Figs 6.8 through 6.18. It was also shown that for most practical cases, 

determination of the exact value of a was not necesSary and the use of an approximate 

value of a = 0.7 would provide sufficient accuracy. This approximate value was later used 

in Chapter 7 for the expenmental investigations. 

The materials considered in the experimental investigations of Chapter 7 were 0° 

unidirectional graphitdepoxy, Kevladepoxy and E-glass/epoxy. The longitudinal and shear 

moduli evaluated by the VSM were compared with the values obtained by the tensile test 

(ASTM D3039-93) and the MSO (ASTM D3518-94), Iosipescu (ASTM D5379-93) and 

10" off-axis shear test methods. The results obtained by the VSM were in close agreement 

with those obtained fiom the other test methods. The small differences were attributed to 

the following factors: 

a) The effect of the possible bending due to fiber, specirnen and/or system 

misalignment in the tensile test. 

b) The inherent difference between the quantity of the through-the-thickness shear 

modulus obtained by the VSM method and the in-plane shear modulus obtained by 

other shear test methods. These two shear moduli are not necessady equal. 

C) None of the shear test methods used is considered to be an exact method. 

d) The overestimation of shear modulus by the 10" off-axis shear test when specimens 

with very large aspect ratios are not used. 

e) The variation of material properties from one specimen to another. 

f) The fact that the procedure for the determination of E and G values fiom the tests 

results is not an exact procedure. 

g) The imperfections in the VSM fixture due to its preliminary design and fabrication. 

In Chapter 6, it was shown that maintaining a constant strain rate for both the longitudinal 

and shear strain when the specimens with different L/h are used is not possible. This 



phenornenon prompted the question of "how accurate would the results of the VSM be if 

the materials were strain rate sensitive?". The influence of the strain rate was thetefore 

evaluated by numerical and experimental investigations outlined in Chapters 6 and 7, 

respectively. The numerical investigation showed that the variation of the strain rate frorn 

one specimen to another would not impact the results of the VSM for cornrnon FRPC 

rnaterials. The same conclusion was reached from the experimental observations in 

Chapter 7. Nevertheless, the necessary guidelines to reduce the possible effect of variable 

strain rates were provided in Chapter 6. 

The reliability of the VSM was assessed by determinhg the 95% confidence intervals for 

the E and G values evaluated by this method in Chapter 7. Except for the shear modulus 

of E-glass epoxy, the 95% confidence intervals were quite narrow, indicating the reliability 

of the results. The exception was the shear modulus (G) of the E-glass epoxy whose 95% 

confidence interval was larger than 30% of the G value. This was attributed to the low 

EG ratio of the material which did not produce sufficient change in the value of 1 1  E' 

obtained from the tests. A wider range of Uh is believed to resolve the problem. 

In conclusion, the VSM was shown to be a promising test method for evaluating the 

longitudinal and shear moduli of FRPC. The efficiency of the method increases for 

materials with large ratios of WG. For a matenal with a srnall ratio of EIG, the predicted 

value of G by the VSM becomes less reliable. However, fiom practical point of view, this 

is not of significance, since in a material with low DG ratio, the through-the-thickness 

shear modulus has insignificant role in effecting the behavior of the structure. 

Consequently, the importance of having an accurate value for the shear modulus fades. 

In companson to other available test methods, the VSM has significant advantages. In 

summary, these advantages are: 



a) The test specimens are subjected to a combined state of stresses which is representative 

of the in-service behavior of the material and is therefore more realistic. 

b) The specimens can be extracted directly fiom the as-received stnictural wmponents. 

C) The specimens have simple rectangular geometry. 

d) The specimens do not require special alteration (i.e. notches or holes). 

e) Mounting of the specimens in the fixture is easy. 

f) No strain gages and/or other expensive instruments are required. 

g) The longitudinal and the through-the-thickness shear moduli are obtained 

simul t aneously . 

h) The properties obtained by the other methods are representative of the material 

behavior in a small gage length. In contrast, the properties obtained by the VSM 

reflects the response of the materiai in its entirety. 

8.2 Recommendations for future works and further development 

The limitations of time and resources usually do not allow one to reach to one's desired 

destination in research and science. However, while these are available, the spread of 

unknowns to be answered is so vast that they ovenvhelm one's capability. As a result, 

there must be others to continue and improve earlier works and accomplishments. The 

work presented in this thesis obviously is not an exception, and it follows the same rule. 

To keep the work started here going, a few recommendations for future work are 

provided below. In these recommendations different aspects of the VSM which require 

work and improvement are discussed. 

i) Experimental investigations on ot her types of O" unidirectional FRPC : The 

experimental investigations in this thesis were limited to graphite/epoxy, Kevlarlepoxy and 

E-glasdepoxy having certain percentages of fibers. To validate the applicability of the 

VSM to other types of FRPC, experirnentation on other composites, similar to the ones 

camed out in this thesis are recornrnended. 



ii) Application of the VSM to more general types of FRPC: The VSM can also be used 

for FRPC such as randomly oriented chopped-fiber, mat-fiber and woven-fiber 

composites. Additional expenmental investigation, therefore, is recommended. 

iii) Development of a fixture for the alignment shown in Fig 6.4a: All the theoretical and 

the expenmental investigations in this thesis were based on the alignment of Fig. 6.4b. 

Moreover, the apparatus developed for the experiment was also designed for this purpose. 

As a result, the development of a fixture capable of holding a specimen based on the 

alignment of Fig. 6.4a and the corresponding investigations remain for future. This 

alignment will enable one to evaluate either El and Glt  or E22 and Ci* of the material, 

simultaneously. A state of plane stress always exists and specimens with vey small L/h 

can be tested. As a result, the shear modulus of materials with small E/% values can be 

detemined with sufficient accuracy. 

iv) Extension of the VSM to dynamic testing: The same fundamentals used for 

simultaneous evaluation of the longitudinal and shear moduli of materials can be used to 

evaluate these properties by dynamic method. In the same vein, the method can be based 

on the effect of shear modulus on the flexural natural fiequency of a composite beam. The 

effect of shear modulus increases for beams with small U h  and for higher natural 

frequencies. Consequently, determining the first natural fiequency of a specimen for at 

least two different Uh, or determining at least two different natural frequencies of the 

same span enables one to evaluate both the longitudinal and shear moduli of the material. 

For the evaluation of the two moduli from the test results, however, one needs to apply a 

beam theory which accounts for the shear effect. For this, use of the Timoshenko beam 

theory, despite its simplicity, is not recommended. This is due to the fact that the theory 

cannot provide the needed accuracy. This subject was discussed by Jalali and Taheri 

(1998b) and several others. Jalali and Taheri (1998b) showed that the through-the- 



thickness inextensibility theory provided very accurate values for the natural fiequency of 

laminated bearns. Therefore, this theory cm efficiently be used for the suggested purpose. 
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Appendix A 

ELAS-3P PROGRAM 

'The net, semi-net and total mid-span deflections of orthotropic beam under three-point 'bending 
is predicted by eîasiticity solution 

DECLARE SU0 SOLVE (N!, A0 AS DOUBLE, BO AS DOUBLE) 
'LT: TOTAL LENGTH OF THE BEAM 
'L: SPAN LENGTH 
'H: THICKNESS OF THE BEAM 
'F: CONCENTRATED LOAD AT MID-SPAN 
'NSERI: NUMBER OF FOUREIR SERIES COMPONENTS IN THE ANALYSIS 
'EX: MODULUS OF ElASTICIW IN X DIRECTION 
'€2: MODULUS OF ELASTlClTY IN Y DIRECTION 
'NUXZ: POISSON'S RATIO 
'GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS 
'RM: THE RADIUS OF LOADING NOSE 
'RS: THE RADIUS OF SUPPORTING ROLLERS 
'ER: MODUCUS OF ELASTlClTY OF THE ROLLERS AND THE LOADiNG NOSE 

'$DYNAMIC 
DEFDBL P 
CLS 
READ LT, L, Hl F, NSERI 
READ EX, EZ, NUXZ, GXZ 
READ mi, rs, ER 
DATA t6,8,2,.l ,100 
DATA 200,4,.25,4 
DATA 5,5,200 

Pi = 4 ' ATN(1) 
DEL1 = 1 / (€2 ' PI) 
DEL2 = 1 1 (ER * PI) 
BBAR = 2 SQR(F (DEL1 + DEL2) rm) 'CONTACT WlOTH AT MID-SPAN 
CBAR = 2 ' SQR(F / 2 ' (DEL1 + DEL2) rs) 'CONTACT WlDTH AT THE SUPPORTS 
RI1 = 1/EX 
R33 = 1 /EZ 
RI3 = -NUXZ / EX 
R66 = 1 / GXZ 
AA = R66 + 2 'RI3 
BB=SQR(AAA2-4'R11 'R33) 
CC=2'R11 
DIM COEFMAT(4,4) AS DOUBLE, A(4) AS DOUBLE 
FOR II = 1 TO NSERI 
N = 2 ' I l -  1 
P =  N 'PI ILT 
M(l) = P ' SQR((AA + 06) / CC) 
M(2) = P ' SQR((AA - 00) / CC) 
M(3) = -P ' SQR((AA + BB) 1 CC) 



M(4) = -P " SQR((AA - BB) / CC) 
I~---d-------------U--C--------u-u--u---.----u--rrr 

'UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART 
'BY SATlSFYlNG THE BOUNDARY CONDITIONS AT THE TOP 
'AND THE BOlTOM OF THE B€AM 

FORJ=1 T 0 4  
COEFMAT(1, J) = -P A 2 ' EXP(-M(J) * H 1 2) 
COEFMAT(2, J) = -P A 2 ' EXP(M(J) ' H / 2) 
COEFMAT(3, J) = -P ' M(J) ' EXP(-M(J) ' H 12) 
COEFMAT(4, J) = -P ' M(J) ' EXP(M(J) ' H 1 2) 
NEXT J 

IF P ' CBAR 1 PI = .5 THEN 
BETAS = PI 1 2 

ELSE 
BETAS = 2 COS(P ' CBAR) / (1 - 4 (P CBAR 1 PI) A 2) 

END IF 

IF P BBAR / PI = .5 THEN 
BETAM = PI / 2 

ELSE 
BETAM = 2 l COS(P l BBAR) / (1 - 4 ' (P BBAR / PI) A 2) 

END IF 

A(l) = (-1) A ((N - 1) /  2) ' F I  LT" BETAS" COS(P L /2)  
A(2) = (-1) A ((N - 1) / 2) ' F / LT ' BETAM 
A(3) = O 
A(4) = O 

DA = A(J) l (RI 3 " M(J) - R33 " P A 2 1 M(J)) EXP(-M(J) ' H 12) 
WA=WA+SlN(PaLT/2) 'DA 
DB = A(J) ' (RI 3 * M(J) - R33 ' P A 2 1 M(J)) ' EXP(M(J) H 12) 
WB=WB+SIN(Pn(LT-L) /2) 'DB 
DC = A(J) (RI 3 ' M(J) - R33 ' P A 2 1 M(J)) ' EXP(M(J) H 12) 
WC=WC+SIN(PaLT/2)*DC 
DO = A(J) (RI  3 ' M(J) - R33 ' P " 2 1 M(J)) EXP(-M(J) " H / 2) 
WD = WD + SIN(P ' (LT - 1) 12) ' DD 
NEXT J 
NEXT II 
PRINT 
PRINT 

PRINT TAB(8); "WC-WD="; USlNG " ##.##WAAA"; WC - WD 
PRINT TAB(8); "WA-WD="; USlNG " WA - WD 
PRINT TAB(8); "WA-WB="; USlNG " M.####AAAA"; WA - WB 



REM $STATIC 
DEFSNG P 
'GUASS ELlMlNATlON METHOD FOR SOLVING SIMULTANEOUS EQUATIONS 

SU8 SOLVE (N, A0 AS DOUBLE, BO AS DOUBLE) 

FORI=1 T O N - ?  
MAX# = O 
JJ = I 
FORJ=ITON 
IF ABS(A(J, 1)) > MAX# THEN 

MAX# = ABS(A(J, 1)) 
JJ = J 

END IF 
NEXT J 
IF JJ = I GOTO 10 
SB# = B(I): B(I) = B(JJ): 5(JJ) = BB# 
FORJ=ITON 
AA# = A(I, J) 
A(I, J) = A(JJ, J) 
A(JJ, J) = AA# 
NEXT 3 

10 F O R l l = I + l T O N  
IF A(II, t) = O GOTO 20 
COF# = A(I 1, 1) 1 A(I , 1) 
B(li) = B(il) - B(1) COF# 
FORJ=ITON 
A(II, J) = A(II, J) - COF# * A(I, J) 
NEXT J 

20 NEXTII 
NEXT l 

F O R I = l T O N  
I l = N - l + l  
SUM# = O 
F O R J = I T O l - 1  
J J = N - J + l  
SUM# = SUM# + A(II, JJ) ' B(JJ) 
NEXT 3 
B(ll) = (B(11) - SUM#) 1 A(lI, II) 
NEXT l 
END SUB 



Appendix B 

ELAS-SIN PROGRAM 

'The behavior of simply supported orthotropic beam under HALF-SINE 
'load is predicted by elasiticity solution 

DECLARE SUB SOLVE (N!, A 0  AS DOUBLE, BO AS DOUBLE) 
IL: SPAN LENGTH 
'H: THICKNESS OF THE BEAM 
'EX: MODULUS OF ELASTlClTY IN X DIRECTION 
'EZ: MOOULUS OF ELASTICtTY IN Y DIRECTION 
'NUXZ: POISSON'S RATIO 
'GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS 
'Note: The amplitude of the SINE load is 1. 
' The load is applied on the top of the beam. 

'$DYNAMIC 
DEFDBL P 
CLS 
OPEN "ELAS-SIN.OUTW FOR OUTPUT AS #1 'Open Output file 

~ o * t l i t * * * * l ) * t m ~ r n ~ ~ - m m f n n c m * t + . ~ m * m ~ ~ * m *  

'Data Input 

READ L, H, EX, €2, NUXZ, GXZ 
DATA 8,2, 200,l O, . îS ,4  

PI = 4 ATN(1) 
R I 1  = 1  /EX 
R33 = 1 1 EZ 
R I 3  = -NUXZ I EX 
R66 = 1  / GXZ 
AA=  R66 + 2 * R I 3  
BB = SQR(AA A 2 - 4 ' R i  1 ' R33) 
C C = 2 * R 1 1  
DIM COEFMAT(4,4) AS DOUBLE, A(4) AS DOUBLE 

P = P I / L  
M(l) = P ' SQR((AA + BB) I CC) 
M(2) = P ' SQR((AA - BB! / CC) 
M(3) = -P SQR((AA + BB) / CC) 
M(4) = -P ' SQR((AA - 08) 1 CC) 

~ ~ o c o t e * n * * * * * o * * * l ) t ~ ~ ~ t ~ ~ ~ ~ t t ~ m ~ ~ t t * t t t t * ~ * m t t ~ ~ ) n ~ * * * * * * *  

'UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART 
'BY SATISFYING THE BOUNDARY CONOIT IONS AT THE TOP 
'AND THE BOTTOM OF THE BEAM 

'Coefficients of the simultaneous equations 



FOU J =  1 TO4  
COEF MAT(1, J) = -P A 2 ' EXP(-M(J) ' H 1 2) 
COEFMAT(2, J) = -P A 2 ' EXP(M(J) H / 2) 
COEFMAT(3, J) = -P ' M(J) ' EXP(-M(J) ' H 1 2) 
COEFMAT(4, J) = -P ' M(J) ' EXP(M(J) ' H 12) 
NEXT J 

'KNOWN VECTORE 

C A L  SOCVE(4, COEFMATO, A()) 

- - - - - - - 

'Average deflect ion 

COF = A(J) * (RI 3 ' M(J) - R33 ' P " 2 1 M(J)) 1 M(J) 
COF = COF ' (EXP(M(J) H 1 2) - EXP(-M(J) H / 2)) / H 
WA = WA + COF 
NEXT J 
PRlNT TAB(8); "Average Deflection:"; WA 
PRlNT 
PRlNT TAB(8); " ZIH Deflection Sigxx"; 
PRINT" S i g u  Tuw" 
PRlNT #1, TAB(8); "Average Deflection:"; WA 
PRlNT # l  , 
PRlNT # c l ,  TAB(8); " Z/H Oeflection Sigxx"; 
PRlNT #l , " Sigu. Tuxz" 

- - - - - -  - - - - -  - ----------------------- 

'Stresses at 1 1 points through the thickness 
FORI=OTO10  
DFL = O 
COFXX = O 
COFZZ = O 
COFXZ = O 
Z = I ' H /  1 0 - H l 2  

FOR J = l  T 0 4  
DFL = DFL + A(J) ' (Ri 3 ' M(J) - R33 ' P A 2 / M(J)) ' EXP(M(J) ' 2) 
COFXX = COFXX + A(J) ' M(J) A 2 ' EXP(M(J) ' Z) 
COFZZ = COFZZ + A(J) EXP(M(J) ' 2) 
COFXZ = COFXZ + A(J) ' M(J) EXP(M(J) ' Z) 
NEXT J 

DEFLECTION = DFL 



SlGXX = COFXX 
Sigu = -P A 2 COf ZZ 
Tuw = -P ' C O F X  

PRlNT TAB(8); USING W.#"; Z / H; 
PRlNT USlNG " ##.#lM#PAAA"; DEFLECTION; SIGXX; Sigu; Tuw 
PRlNT #1, TAB(8); M I N G  W.W; Z / H; 
PRlNT #1, USlNG " ##.W#PAAA"; DEFLECTION; SIGXX; Sigu; Tuxz 

NEXT 1 

REM $STATIC 
DEFSNG P 
'GUASS ELlMlNATlON METHOD FOR SOLVING S!M!JLTANEOUS EQUATIONS 

SU6 SOLVE (N, A() AS DOUBLE, BO AS DOUBLE) 

FORI=1  T O N - 1  
MAX# = O 
J3 = 1 
F O R J = I T O N  
IF ABS(A(J, 1)) > MAX# THEN 

MAX# = ABS(A(J, 1)) 
JJ = J 

END IF 
NEXT J 
IF JJ = 1 GOTO 10 
BB# = B(1): B(I) = B(JJ): B(JJ) = BB# 
F O R J = I T O N  
AA# = A(I , J) 
A(1, J) = A(JJ, J) 
A(JJ, J) = AA# 
NEXT J 
F O R I I = I + l T O N  

IF A(II, 1) = O GOTO 20 
COF# = A(I1, 1) / A(1, 1) 
B(l1) = B(11) - B(1) ' COF# 
F O R J = I T O N  
A(I1, J) = A(II, J) - COF# A(I, J) 
NEXT J 
NEXT II 

NEXT 1 

FOR I = 1 TO N 
i l = N - 1 + 1  
SUM# = O 
F O R J = l T O I - 1  
J J = N - J + l  
SUM# = SUM# + A(II, JJ) ' 0(JJ) 
NEXT J 
B(l1) = (B(l1) - SUM#) / A(I1, II) 
NEXT 1 

END SU8 



Appendix C 

TTTI-SIN PROGRAM 

'The behavior of simply supported orthotropic bearn under HALF-SINE load 
'is determined by the application of the through-the-thickness inextensibility 
'theory . 

DECLARE FUNCTION SINH# (X AS DOUBLE) 
DECLARE FUNCTION COSH# (X AS DOUBLE) 
OECLARE FUNCTION TANH# (X AS DOUBLE) 

'L: SPAN LENGTH 
'H: THICKNESS OF THE BEAM 
'EX: MODULUS OF ELASTlClTY IN X DIRECTION 
'GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS 
'Note: The amplitude of the SINE load is 1. 

'$DYNAMIC 
DEFDBL P 
CLS 
OPEN "ml-SIN.OUTm FOR OUTPUT AS #l 'Open Output file 

~ + + + + + t w t t t * t t * m ~ ~ t l i m * m t ~ a w n m t l ) + m n t n a + m m *  

'Data Input 

READ L, Hl EX, GXZ 
DATA 8,2, 200,4 

PI = 4 ATN(1) 
P = P I / L  
BETA=EX*PA2/GXZ 
ALFA# = SQR(6ETA) * H 1 2 
FI = SQR(EX 1 GXZ) 

PR1 NT TAB(8); "Deflection:"; DEFLECTION 
PRlNT 
PRlNT TAB(8); " ZIH Sigxx Tuxz " 
PRlNT #1, TAB(8); "Deflection:"; DEFLECTION 
PRINT YI, 
PRINT # I l  TAB(8); " ï /H Sigxx Tuxz " 

'Stresses at 1 1 points through the thickness 
FOR I =OTOlO 
Z = I 9 H / 1 O - H / 2  



'-.------------------ --)_I______________________)_I______________________ 

'Sigmaxx 
C l  = FI A 2 / (ALFA# - TANH(ALFA#)) / 2 
C2 = SINH(2 ALFA# Z / H) / COSH(ALFA#) 
Sigxx = C l  ' C2 

8 
-----)_I______________________-------------m___ 

'Tuxz 
C l  = FI / (ALFA# - TANH(ALFA#)) / 2 
C2 = (1 - COSH(2 ALFA# Z / H) 1 COSH(ALFA#)) 
TUXZ = C l  ' C2 

PRlNT TAB(8); USlNG W.##"; 2 1 H; 
PRlNT USlNG " ##.wAAA"; Sigxx; TUXZ 
PRlNT #1, TAB(8); USlNG W.##"; Z / H; 
PRlNT #1, USlNG " ##.##HPAAA"; Sigxx; TUXZ 

NEXT l 

'Function to determine "cosine hyperbola" 
FUNCTION COSH# (X AS DOUBLE) 
COSH = .5 ' (EXP(X) + EXP(-X)) 
END FUNCTION 

'F unction to detemine "sine hyperbola" 
FUNCTION SINH# (X AS DOUBLE) 
SlNH = .5 ' (EXP(X) - EXP(-X)) 
END FUNCTION 

'Funcîion to detemine "tan hyperbola" 
FUNCTION TANH# (X AS DOUBLE) 
TANH = SINH(X) / COSH(X) 
END FUNCTION 



Appendix D 

ELAS-CON PROGRAM 

'The behavior of simply supported orthotropic beam under a con 
'at mid-span is determinedaccording to the elasiticity solution. 

DECLARE SUB SOLVE (N!, A() AS DOUBLE, BO AS DOUBLE) 
'L: SPAN LENGTH 
'H: THICKNESS OF THE BEAM 
'F: CONCENTRATED LOAD AT MID-SPAN 
'NSERI: NUMBER OF FOURElR SERIES COMPONENTS IN THE ANALYSE 
'EX: MODULUS OF ELASTICITY IN X DIRECTION 
'€2: MODULUS OF ELASTICIW IN Y DIRECTION 
'NUXZ: POISSON'S RATIO 
'GXZ: THROUGH-THE-f HICKNESS SHEAR MOOULUS 
'R: THE RADIUS OF LOAOING NOSE 
'ES: MODULUS OF ELASTlClTY OF THE ROLLERS AND THE LOADING NOSE 
'X: COORDINATE OF THE SECTION THAT THE CALCULATION MUST BE DONE 

FOR 

'$DYNAMIC 
DEFDBL P 
OPEN "ELAS-CON.OUT" FOR OUTPUT AS #1 
CtS 
READ LI X, Hl F, NSERI 
READ EX, EZ, NUXZ, GXZ 
READ R, ES 
DATA 8,4,2,.1,200 
DATA 200,10,.25,4 
DATA 5,200 

PI = 4 ' ATN(1) 
DEL1 = 1 / (EZ PI) 
DEL! = 1 / (ES PI) 
BBAR = 2 SQR(F " (DEL1 + DEL2) ' R) 'HALF OF CONTACT WlDTH 

RI1 = 1 /EX 
R33= 1 I E Z  
RI3 = -NUXZ / EX 
R66 = 1 / GXZ 
AA = R66 + Z"R13 
BB=SQR(AAA 2 - 4 ' R l l  'R33) 
CC =2'R11 
DIM COEFMAT(4,4) AS DOUBLE, A(4) AS DOUBLE 

FOR N = 1 TO NSERI STEP 2 
P = N ' P I / L  
M(l) = P ' SQR((AA .+ 60) / CC) 
M(2) = P ' SQR((AA - BB) / CC) 



M(3) = -P ' SQR((AA + BB) / CC) 
M(4) = -P SQR((AA - BB) 1 CC) 

'--------_--* ---- -------------- ----- 
'UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART 
'BY SATlSFYlNG THE BOUNDARY CONDITIONS AT THE TOP 
'AND THE BOTTOM OF THE BEAM 

FORJ= 1 T 0 4  
COEFMAT(1,J) = -P " 2 EXP(-M(J) H / 2) 
COEFMAT(2, J) = -P A 2 ' EXP(M(3) " H 1 2) 
COEFMAT(3, J) = -P ' M(J) ' EXP(-M(J) ' H 1 2) 
COEFMAT(4, J) = -P ' M(J) ' EXP(M(J) H / 2) 
NEXT J 

IF P ' BBAR 1 PI = .5 THEN 
ACOF = Pl 12 'SERIES COEFFICIENTS 

ELSE 
ACOF = 2 * COS(P ' BBAR) 1 (1 - 4 ' (P ' BBAR / PI) A 2) 

END IF 

A(l) = O 
A(2) = (-1) " ((N - 1) / 2) ' F / C 'ACOF 
A(3) = O 
A(4) = O 
SUMM = SUMM + A(2) ' SIN(P ' X) 
CALL SOLVE(4, COEFMATO, AO) 

l --------,---------I________,__________________ I________,__________________ I________,__________________I________,__________________I________,__________________I________,__________________I________,__________________I________,__________________I________,__________________ 

'Average deflection 
F O R J = 1  T 0 4  
TEMP = A(J) " (RI3 ' M(J) - R33 " P " 2 / M(J)) I M(J) 
TEMP = TEMP (EXP(M(J) H 1 2) - EXP(-M(J) H / 2)) / H 
WAVER = WAVER + TEMP ' SIN(P X) 
NEXT J 

'Determination of Deflection AND STRESSES FOR 11 ELEVATIONS AT x=X 

NEXT J 
NEXT l 
NEXT N 



'PRINT OUTPUT 

PRlNT 
PRlNT TAB(8); "AVERAGE DEFLECTION"; WAVER 
PRlNT 
PRlNT TAB(8); " Z/H Defi ection Sigxx"; 
PRINT" S igu Tuxz" 
PRlNT #il TAe(8); "Average Deflection:"; WAVER 
PR! NT # I l  
PRINT # I l  TAB(8); " YH Deflection Sigxx"; 
PRlNT # I l  " Sigu Tuxz" 

FOR I=OTO 10 

Z = I o H I 1 0 - H l 2  
PRINT TAB(8); USlNG W.##"; Z / H; 
PRlNT USlNG " ##.WHWAAA"; W(I); SIGXX(1); SIGZZ(1); TUXZ(1) 
PRlNT RI, TAB(8); USlNG "##.W; Z 1 H; 
PRINT #1, USlNG " ##.#MWAAA"; W(I); SIGXX(1); SIGZZ(1); TUXZ(I) 

NEXT l 

REM $STATIC 
DEFSNG P 
'GUASS ELtMINATlON METHOD fOR SOLVING SIMULTANEOUS EQUATIONS 

SUB SOLVE (NI A0 AS DOUBLE, BO AS DOUBLE) 

F O R I = l T O N - 1  
MAX# = O 
JJ = I 
F O R J = I T O N  
IF ABS(A(J, 1)) > MAX# THEN 

MAX# = ABS(A(J, 1)) 
JJ = J 

END IF 
NEXT J 
IF JJ = I GOTO 10 
Be# = B(J): B(l) = B(JJ): B(JJ) = BB# 
F O R J = I T O N  
AA# = A([, J) 
A([, J) = A(JJ, J) 
A(JJl J) = AA# 
NEXT J 
F O R I I = I + 1  TON 

IF A(I 1, 1) = O GOTO 20 
COF# = A(I1, 1) / A(!, 1) 
B(11) = B(ll) - B(I) COF# 
F O R J = I T O N  
A(II, J) = A(II, J) - COF# A(I, J) 
NEXT J 
NEXT Il 

NEXT l 



F O R I = l T O N  
I l = N - l + l  
SUM# = O 
F O R J = I T O I - 1  
J J = N - J + l  
SUM# = SUM# + A(I 1, JJ) ' B(JJ) 
NEXT J 
B(ll) = @(Il) - SUM#) / A(ll, Il) 
NEXT l 

END SU6 



Appendix E 

TTTI-CON PROGRAM 

oad 'The behavior of simply supported orthotropic beam under a concentrated I 
'at mid-span is determined by the application of the through-the-thickness 
'inextensibility theory. 

DECLARE SUB SERIESCOFF (LOADDIST!, P#, BBAR!, ACOF!) 
DECLARE SU6 SERICOFF (LOADDIST!, P#, BBAR!, ACOF !) 
OEClARE SUB HERTZIAN (Ml BBAR!, ACOF!) 
OECLARE FUNCTION SINW (X AS DOUBLE) 
DECLARE FUNCTION COSH# (X AS DOUBLE) 
DECLARE FUNCTION TANW (X AS DOUBLE) 

'The distribution of the concentrated toad on the beam may follow 
'one of the following options: 
'1- Uniform; LOADDIST=l 
'2- Hertezian contact law; LOADDIST=2 
'3- Eqn (4.31); LOADDIST=3 

IL: SPAN LENGTH 
'H: THICKNESS OF THE BEAM 
'X: THE COORDINATE OF THE POINT THAT THE ANALYSE IS DONE FOR 
'EX: MODULUS OF ELASTlClTY OF THE BEAM IN X DIRECTION 
'EZ: MODULUS OF ELASTlClPf OF THE BEAM IN Z DIRECTION 
'ES: MODULUS O f  ELASTlClTY OF THE LOADING NOSE 
'GXZ THROUGH-THE-THICKNESS SHEAR MODULUS 
'F: MAGNITUDE OF THE CONCENTRATED LOAD 
'R: RADIUS OF THE LOADING NOSE 
'NSERIES: NUMBER OF THE SERIES COMPONENTS TO BE CONSIOERED 
'BBARRATIO: HALF CONTACT LENGTH TO THICKNESS RATIO. IS NOT 
I USED FOR LOADDIST=Z 

'$DYNAMIC 
DEFDBL P 
CLS 
OPEN "TTTI-CON.OUTw FOR OUTPUT AS #1 'Open Output file 

LOADDIST = 3 
READ LI X, H, EX, GXZ 
DATA 8,2,2, 200,4 
READ F, €2, ES, RI NSERIES 
DATA .1,1 O,ZOO,S,îOO 
READ BBARRATIO 'FOR LOADDlST=I AND 3 
DATA 1.45 



BBAR = H BBARRATIO 
PI = 4 ATN(1) 

'HALF OF CONTACT LENGTH FOR HERTZIAN CONTACT 
IF LOADDIST = 2 THEN 

DEL1 = 1 / (EZ ' PI) 
DEU = 1 / (ES ' PI) 
BBAR = 2 ' SQR(F " (DEL1 + DEK) R) 

END IF 

FOR N = 1 TO NSERIES STEP 2 
P = N * P I / L  

'SERIES COMPONENTS COEFFICIENTS 
CALL SERIESCOFF(LOADOlSf, Pl BBAR, ACOF) 
ACOF = (-1) A ((N - 1) / 2) ' ACOF F 1 L 

BETA=EX*PA2/GXZ 
ALFA# = SQR(6ETA) H 1 2 
FI = SQR(EX / GXZ) 

------------------------------ 
'Defiedion 

WO = ACOF 1 (P A 2 GXZ ' H) 1 (1 - TANH(ALFA#) / ALFA#) 
DEFLECTION = DEFLECTION + WO * SIN(P ' X )  

'Stresses at 11 points through the thickness 
FORI=OTO10 
Z = I ' H / 1 0 - H l 2  

'Sigmaxx 
C l  = FI A 2 1 (ALfA# - TANH(ALFA#)) I 2 
C2 = SINH(2 ' ALFA# ' Z / H) 1 COSH(ALFA#) 
SIGXX(I) = SIGXX(I) + ACOF * C l  * C2 ' SIN(P ' X) 

'--- ----------- ------------)_____________________________-- 
'Tuxz 

Cl  = FI / (ALFA# - TANH(ALFA#)) / 2 
C2 = (1 - COSH(2 " ALFA# * 2 / H) 1 COSH(ALFA#)) 
TUXZ(I) = TUXZ(I) + ACOF ' C l  ' C2 ' COS(P X) 

NEXT I 
NEXT N 

PRlNT TAB(8); "Deflection:"; DEFLECTION 
PRlNT 
PRlNT TAB(8); " ZIH Sigxx Tuxz " 
PRlNT #1, TAB(8); "Deflection:"; DEFLECTION 



PRlNT #1, 
PRlNT #1, TAB(8); " ZIH Sigxx Tuxz " 

FORI=OTO10 
Z = I ' H / 1 0 - H l 2  
PRlNT TAB(8); USING W.##"; Z 1 H; 
PRlNT USING " # M m A A A " ;  SIGXX(1); TUXZ(I) 
PRlNT #Il TAB(8); USING W.##"; Z / H; 
PRlNT #f , USING * ##.WAAA"; SIGXX(1); TUXZ(I) 
NEXT l 

'Function to detemine "cosine hyperpola 
FUNCTION COSH# (X AS DOUBLE) 
COSH = .S ' (EXP(X) + EXP(-X)) 
END FUNCTION 

REM $STATIC 
'Subroutine to determine the coefficinets of Fourier series 

SUB SERIESCOF F (LOADDIST, P, BBAR, ACOF) 
SHARED Pl 
IF LOADDIST = 1 THEN 

ACOF = 2 ' SIN(P ' BBAR) 1 (P ' BBAR) 
END IF 

IF LOADDIST = 2 THEN 
IF P BBAR 1 PI = .S THEN 

ACOF = PI 12 
ELSE 

ACOF = 2 ' COS(P ' BBAR) / (1 - 4 ' (P BBAR / PI) A 2) 
END IF 

END IF 

IF LOADDIST = 3 THEN 
CC = SIN(P BBAR) 
C l  = C C / P  
IF P BBAR = 4 PI THEN 

C2 = BBAR / 2 
EtSE 

C2=- (P 'BBARA2/ (16 'P IA2 ) 'CC / (1  -(P'BBAR/(4'PI))A2)) 
END IF 
IF BP BBAR = 3 PI THEN 

C3 = BBARl2 
ELSE 
C3 = (P BBAR " 2 / (9 PI " 2) " CC / (1 - (P " BBAR 1 (3 PI)) A 2)) 

END IF 
IF P BBAR = 2 PI THEN 

C4 = BBAR / 2 
ELSE 

C4 = -(P ' BBAR " 2 1 (4 ' PI A 2) ' CC 1 (1 - (P ' BBAR 1 (2 ' PI)) A 2)) 
END IF 
IF P ' BBAR = PI THEN 

CS = BBAR 12 
ELSE 



C5=(P 'BBARA2/ (P IA2) *CC/ (1  - (P*BBAR/PI )A2) )  
END IF 
TEMP=4.375*C1 + .125*C2+C3+3 .SoC4+7*C5  
ACOF = 4 1 (8.75 BBAR) TEMP 

END IF 
END SU6 

REM $DYNAMIC 
'Function to determine "sine hyperbola" 

FUNCTION SINH# (X AS DOUBLE) 
SlNH = .S (EXP(X) - EXP(-X)) 
END FUNCTION 

'Çunction to determine "tan hyperbola" 
FUNCTION TANH# (X AS DOUBLE) 
TANH = S I N H O  / COSH(X) 
END FUNCTION 



Appendix F 

THE MATERIAL PROPERTIES USED FOR THE 

DETERMINATION OF a 

Table F. 1 The matenal properties used for the determination 
of a 
Maretial El, E22, E33 ~ 1 2 ,  V I ~ .  GIZ* G13 GU 
ID v2.3 

AAO 
AA 1 
AA2 
AA3 
AB0 
AB 1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD1 
AD2 
AD3 
AEO 
AE1 
AE2 
AE3 
BA0 
BAI 
BA2 
BA3 
BBO 
BB 1 
BB2 
BB3 
BCO 
BC 1 



BC3 
BDO 
BDl 
BD2 
BD3 
BE0 
BE 1 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC I 
CC2 
CC3 
CD0 
CD 1 
CD2 
CD3 
CE0 
CE 1 
CE2 
CE3 
DAO 
DA 1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC 1 



Table F. 1 (Continued) 

DC2 
DC3 
DDO 
DD 1 
DD2 
DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAl 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE I 
EE2 
EE3 
FA0 
FA 1 
FA2 
FA3 
FBO 
FB I 
FB2 
FE33 
FCO - -  - 6.667 6.6667 



Table F. 1 (Continued) 
Maretial EH E22, EU VI*, V13. G12, G13 GD 

ID vu 
FC 1 200 13.333 .3 5 6.667 6.6667 
FC2 200 20 .35  6.667 6.6667 
FC3 200 26.667 .35 6.667 6.6667 
FDO 200 10 .3  5 1 O 10 
FD I 200 20 .35 10 10 
FD2 200 30 .3 5 10 10 
FD3 200 40 .35 1 O 10 
FE0 200 20 .35 20 20 
FE 1 200 40 .35 20 20 
FE2 200 60 .35 20 20 
FE3 200 80 .35 20 20 



Appendix G 

VARIATION OF a AND THE ASSOCIATED ERRORS FOR THE 

MATERIALS OF APPENDIX F 

Table G. 1 Results of calculations for short specimens with b/h=l. 
Material Best %Error based on %Error based on 

ID a the best a a=O. 7 
E G E G 

G A O  
AA 1 
A M  
AA3 
AB0 
AS1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD 1 
AD2 
AD3 
AEO 
AE 1 
AE2 
AE3 
BA0 
BA 1 
BA2 
BA3 
BBO 
BB 1 
BE32 
BI33 
BCO 
BC 1 
BC2 



Table G .  1 (Continued) 
Material Best %Enor based on %Error based on 
ID a the best a a=O. 7 

E G E G 
BC3 
BDO 
BD 1 
BD2 
BD3 
BE0 
BEI 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC 1 
CC2 
CC3 
CD0 
CD 1 
CD2 
CD3 
CE0 
CE 1 
CE2 
CE3 
DAO 
DAI 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 



Table G. 1 (Continued) 
Material Best %Error based on %Error based on 

ID a the best a a=0.7 
E G E G 

DC 1 
DC2 
DC3 
DDO 
DD 1 
DD2 
DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAl 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE 1 
EE2 
EE3 
FA0 
FA1 
FA2 
FA3 
FBO 



Table G. 1 (Continued) 
Material Best %Errer based on %Error based on 

ID a the best a a=O .7 
E G E G 

FE32 
FB3 
FCO 
FC 1 
FC2 
FC3 
FDO 
FD 1 
FD2 
FD3 
FE0 
FE 1 
FE2 
FE3 



Table G.2 Results of calculations for long specimens with M k l .  
Material Best %Errer based on %Errer based on 

ID a the best a a=O. 7 
E G E G 

AAO 
AA 1 
AA2 
AA3 
AB0 
AB 1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD 1 
AD2 
AD3 
AEO 
AE 1 
AE2 
AE3 
BA0 
BAI  
BA2 
BA3 
BBO 
BB 1 
BB2 
BB3 
BCO 
BC 1 
BC2 
BC3 
BDO 
BD1 
BD2 
BD3 
BE0 



Table G.2 (Continued) 
Material Best %Errer based on %Error based on 
U) a the best a a=0.7 

E G E G 
BE 1 
BE2 
BE3 
CAO 
CA1 
CA3 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC 1 
CC2 
CC3 
CD0 
CD1 
CD2 
CD3 
CE0 
CE 1 
CE2 
CE3 
DAO 
DA 1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC 1 
DC2 
DC3 
DDO 
DD 1 



Table G.2 (Continued) 
Mat enal Best %Enor based on %Errer based on 

ID a the best a a=0.7 

DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAI 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED3 
ED3 
EEO 
EE 1 
EE2 
EE3 
FA0 
FA1 
FA2 
FA3 
FBO 
FB 1 
FB2 
FB3 
FCO 
FC 1 
FC2 
FC3 
FDO 



Table G.2 (Continued) 
Matenal Best %Error based on %Enor based on 

ID a the best a a=O.  7 
E G E G 



Table G.3 Results of calculations for short specimens with b k 3 .  
Material Best %Error based on %Error based on 

ID a the best a a=0.7 
E G E G 

AAO 
AA 1 
AA2 
AA3 
AB0 
AB 1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD1 
AD2 
AD3 
AEO 
AE 1 
AE2 
AE3 
BA0 
BA1 
BA2 
BA3 
BBO 
BB 1 
BB2 
BB3 
BCO 
BC 1 
BC2 
BC3 
BDO 
BD 1 
BD2 
BD3 
BE0 



Table G.3 (Continued) 
Material Best %Error based on %Error based on 
ID a the best a a=O.  7 

E G AF G 
BE 1 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC I 
CC2 
CC3 
CD0 
CD 1 
CD2 
CD3 
CE0 
CE 1 
CE2 
CE3 
DAO 
DA 1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC 1 
DC2 
DC3 
DDO 
DD 1 
DD2 



Table G.  3 (Continued) 
Material Best %Enor based on %Error based on 
ID a the best a a=O. 7 

E G E G 
DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAI 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE 1 
EE2 
EE3 
FA0 
FA 1 
F A 2  
FA3 
FBO 
FB 1 
FB2 
FI33 
FCO 
FC 1 
FC2 
FC3 
FDO 



Table G. 3 (Continued) 
Material Best %Enor based on %Error based on 

ID a the best a a=O. 7 
E G E G 

FDI 0.69 1 0.47 -0.07 0.5 -0.57 
FD2 0.62 O. 54 0.03 0.82 -4.18 
FD3 O. 578 O. 58 0.09 1 .O1 -6.3 
FE0 0.83 1 0.35 0.0 1 0.1 1 9.06 
FE 1 0.719 O. 56 0.02 O. 52 1.27 
FE2 0.672 0.65 O O. 7 -1.86 
FE3 0.644 0.71 0.05 0.82 -3.65 



Table G.4 Results of calculations for long specimens with b k 3 .  
Matenal Best %Error based on %Error based on 

n> a the best a a=0.7 
E G E G 

AAO 
AA 1 
AA2 
AA3 
AB0 
AB1 
AB2 
AB 3  
AC0 
AC 1 
AC2 
AC3 
AD0 
AD 1 
AD2 
AD3 
AEO 
AE 1 
AE2 
AE3 
BA0 
BA 1 
BA2 
BA3 
BBO 
BB 1 
BB2 
BB3 
BCO 
BC 1 
BC2 
BC3 
BDO 
BD 1 
BD2 
BD3 
BE0 



Table G.4 (Continued) 
Material Best %Enor based on %Enor based on 
tD a the best a a=O .7 

E G E G 
BE 1 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CBl 
CB2 
CB3 
CC0 
CC 1 
CC2 
CC3 
CD0 
CD1 
CD2 
CD3 
CE0 
CE 1 
CE2 
CE3 
DA1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC I 
DC2 
DC3 
DDO 
DD 1 
DD2 
DD3 



Table G.4 (Continued) 
Material Best %Errer based on %Enor based on 
ID a the best a a=O. 7 

E G E G 
DEO 
DE 1 
DE2 
DE3 
EAO 
EA 1 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE I 
EE2 
EE3 
FA0 
FA1 
FA2 
FA3 
FBO 
FB 1 
FB2 
FB3 
FCO 
FC 1 
FC2 
FCS 
FDO 
FD I 



Table G.4 (Continued) 
Mat erial Best %Errer based on %Error based on 

ID a the best a a=O .7 



Table G.5 Results of calculations for shon specimens with b/h=5. 
Material Best %Errer based on %Error based on 

ID a the best a u=O. 7 
E G E G 

AAO 
AA1 
AA2 
AA3 
AB0 
AB 1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD 1 
AD2 
AD3 
AEO 
MI 
AE2 
AE3 
BA0 
BAI 
BA2 
BA3 
BBO 
BB 1 
BB2 
BI33 
BCO 
BC 1 
BC2 
BC3 
BDO 
BD 1 
BD3 
BD3 
BE0 



Table G. 5 (Continued) 
Material Best %Errer based on %Errer based on 
ID a the best a a=O. 7 

E G E G 
BEI 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC 1 
CC2 
CC3 
CD0 
CD 1 
CD3 
CD3 
CE0 
CE 1 
CE2 
CE3 
DAO 
DA 1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC 1 
DC2 
DC3 
DDO 
DD 1 
DD3 



Table G. 5 (Continued) 
Mat erial Best %Enor based on %Errer based on 

ID a the best a a=0.7 
E G E G 

DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAl 
EA.2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE 1 
EE2 
EE3 
FA0 
FA 1 
FA2 
FA3 
FBO 
FB 1 
FB2 
FB3 
FCO 
FC 1 
FC2 
FC3 
FDO 



Table G. 5 (Continued) 
Material Best %Errer based on %Error based on 
ID a the best a ~~'0.7 

E G E G 
FD 1 0.658 0.76 -0.08 0.9 1 -2.32 
FD2 0.597 0.95 O 1.3  1 -5.42 
FD3 0.564 1 .O9 O 1 .56 -7.1 1 
FE0 O. 79 1 0.65 -0.07 0.49 6.17 
FE 1 0.69 1 1.12 -0.04 1 .13  -0.66 
FE2 0.658 1.4 0.05 1.48 -2.73 
FE3 0.646 1.62 0.03 1.72 -3.5 



Table G.6 Results of calculations for long specimens with b/h=5. 
Material Best %Error based on %Error based on 

ID a the best a a=0.7 
E G E G 

AAO 
AA 1 
AM 
AA3 
AB0 
AB1 
AB2 
AB3 
AC0 
AC 1 
AC2 
AC3 
AD0 
AD 1 
AD2 
AD3 
AEO 
AE 1 
AE2 
AE3 
BA0 
BAI 
BA2 
BA3 
BBO 
BB 1 
BB2 
BB3 
BCO 
BC 1 
BC2 
BC3 
BDO 
BD 1 
BD2 
BDS 
BE0 



Table G.6 (Continued) 
Material Best %Enor based on %Error based on 

ID a the best a a=O. 7 
E G E G 

BE 1 
BE2 
BE3 
CAO 
CA1 
CA2 
CA3 
CBO 
CB 1 
CB2 
CB3 
CC0 
CC 1 
CC2 
CC3 
CD0 
CD 1 
CD2 
CD3 
CE0 
CE I 
CE2 
CE3 
DAO 
DA1 
DA2 
DA3 
DBO 
DB 1 
DB2 
DB3 
DCO 
DC 1 
DC2 
DC3 
DDO 
DD I 
DD2 



Table G.6 (Continued) 
Material Best %Enor based on %Error based on 
ID a the best a a=O .7  

E G E G 
DD3 
DE0 
DE 1 
DE2 
DE3 
EAO 
EAl 
EA2 
EA3 
EBO 
EB 1 
EB2 
EB3 
ECO 
EC 1 
EC2 
EC3 
EDO 
ED 1 
ED2 
ED3 
EEO 
EE 1 
EE2 
EE3 
FA0 
FA 1 
FA2 
FA3 
FBO 
FB 1 
FB2 
FB3 
FCO 
FC 1 
FC2 
FC3 
FDO 0.8 13 4.62 



Table G.6 (Continued) 
Mat enal Best %Error based on %Enor based on 
ID a the best a a=O. 7 

E G E G 
FDl O. 7 0.49 O. 1 0.49 O. 1 
FD2 0.663 0.6 1 -0.07 0.65 -1.53 
FD3 0.639 0.69 0.02 0.75 -2.35 
FE0 0.827 0.48 -0.06 0.4 1 6.78 
FEI 0.777 O. 7 5 0.02 O. 7 4.13 
FE2 0.777 0.92 -0.02 O. 88 4.09 
FE3 0.787 1 .O6 O 1 .O1 4.6 1 



Appendix H 

THE VSM APPARATUS 

Figure H-l illustrates the apparatus developed and used for the VSM. Each component of 

the apparatus is identified by a number. As the elevation of the apparatus shows, it 

comprises of a base (4), two supporting blocks (3), a middle assembly composed of parts 

(5) through (13), two side assernblies composed of parts (14) through (20) and two 

connecting bridges (2 1 ). 

The test specimen ( 1  ) sits on two supponing rollers (2) parallel to each other. The rollers 

(2) are located on the suppori blocks (3). and the support biocks (3) rest on the base (4). 

By sliding the support blocks (3) over the base (4) one can change the span of the 

specimen ( 1  ). 

Part (5) is a loading nose which is connected to the top plate (6) and is parallel to the 

supporting rollers (2). The top plate is rigidly connected to the load fiame by a screw 

between the threaded hole (7) and the load frame. By relative vertical movement of the 

base (4) with respect to the top plate (6), load is applied to the specimen (1) through the 

support rollers (2) and the loading nose (5). 

A locatins beam (8) passes undemeath the test specimen (1). The contact point (9) on the 

top of the locating beam (8) makes contact to the bottom of the specimen (1) at the center 

of the loading nose (5). The locating beam is connected to two guide bars (10) which 

restrict the movements of the locating beam, except in the vertical direction. The two 

suide bars (10) slide through two holes provided in the top plate (6). The bars (10) are 

hold by two compression spring ( 1  1) placed between the top plate (6) and the stop collars 

(12). By this assembly, the bottom vertical displacement of the specimen (1 )  at its mid- 

span is transferred to the mounting plates (1 3). 



The top venical displacements of the specimen (1) at suppons are transfemed to the side 

assemblies and fiom there to connecting bridges (21). Each assembly consists of a pointer 

( 14). a locating arms ( 1 9 ,  a guide plate ( l6), a guide bar ( 1 7), two sliders (1 8), two side 

screws (19), and an adjusting screw (20). The pointer (14) is iocated at the center of the 

support (2) and transfers the top vertical displacement of the specimen to the assembly 

through the locating arm (15). The guide plate (16) can slide freely in vertical direction 

along the guide bar ( 1 7) and over the back of the suppon block (3). Two sliders ( 18) are 

provided to reduce the fiction between the guide plate (16) and the support block (3). 

The adjusting screw (20) is to adjust the venical position of the side assembly. 

The connecting bridges (21) are hinge connected to one of the side assemblies through the 

side screws ( 1  9) and sit on the two other side screws (19) of the other side assernbly. The 

change of vertical distance between the connector bridge (2 1)  and the mounting plate ( 1  3) 

located on one side of the apparatus is the net mid-span deflection of the specimen (1). 

This displacement can be measured by mounting a displacement transducer (LVDT) to the 

mounting plate (13), while the moving end of the device sits on the connecting bridge 

(21). 

Fiçures H.2 through H.4 show the general view of the VSM apparatus and test setup. 
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Figure H. I The outline of the apparatus used for the VSM. 



Figure H.2 The VSM apparatus installed in MTS testing machine. 



Figure H.3  E-çlasskpoxy specimen in the VSM apparatus. 



Figure H.4 Front view of the VSM apparatus 



Appendix 1 

SPECIFICATIONS OF THE TESTS SPEClMENS 

The specifications of the specimens used in the VSM test are tabulated in Tables 1.1 

through 1.14. The values tabulated in columns 5 of these tables are the rate of 

displacement of the actuator. Initial slopes of the load-deflection curve from the two 

consecutive tests on the specimens are presented in columns 6 and 7, respectively. The 

specifkation of the specimens used for tensile and various shear tests are tabulated in 

Tables 1.1 5 t hrough 1.2 1 . The corresponding modulus obtained fiom each test is tabulated 

in the last column. 

Table 1.1 Specifications of graphitekpoxy specimens in GR4 set for the VSM. 
Specimen Width Thickness Span Rate (FIA) I (FI42 

GR-SA1 
GR-SA2 
GR-SA3 
GR-EA 1 
GR-EA2 
GR-EA3 
GR-TA 1 
GR-TA2 
GR-TA3 
GR-FA 1 
GR-FA2 
GR-FA3 
GR-XA 1 
GR-XA2 
GR-XA3 

(mm) (mm) (mdsec) (Nlmm) (Wrnrn) 
2.64 14.97 O. 3 21417 21417 
2.6 14.97 O. 3 21 160 21463 
2.58 14.97 O. 3 19563 2 1836 
2.57 17.57 O. 3 54 13350 13708 
2.63 17.57 0.354 15336 15105 
2.6 17.57 0.354 13742 14337 
2.57 21.95 0.467 8599 8530 
2.6 2 1.95 0.467 9 136 9294 

2-62 21.95 0.467 8885 8885 
2.56 3 1.99 O. 82 3126 3155 
2.58 3 1.99 0.816 3256 3303 
2 3 3  3 1.99 0.816 3221 3340 
2.47 74.32 3.865 268 268.7 
2.5 1 74.22 3.808 270.1 270 
2.54 74.22 3.767 292.8 293.3 



Table 1.2 Specifications of graphitedepoxy specimens in GR-2 set for the VSM. 
S pecimen Widt h Thickness Span Rate (F/A)i (FIN2 

ID (mm) (mm) (mm) (mrnhec) (Nlrnm) OJ/mm) 
GR-SB1 12.41 2.7 14.97 0.3 202 1 8 20 122 
GR-SB2 12.52 2.71 14.97 0.3 22973 2303 1 
GR-SB3 12.58 2.67 14.97 0.3 21312 2 1507 
GR-EBI 12.41 2.71 17.57 0.352 16208 15576 
GR-EB2 12.6 2.7 1 17.57 0.352 16627 16570 
GR-EB3 12.53 2.72 17.57 0.352 17559 17333 
GR-TB1 12.59 2.66 2 1.95 0.46 1 9230 9303 
GR-TB2 12.52 2.7 2 1.95 0.459 9857 9767 
GR-TB3 12.4 2.66 2 1.95 0.46 1 8792 8835 
GR-FB1 12.45 2.71 3 1.99 0.792 3553 3657 
GR-FB2 12.44 2.7 3 1.99 O. 794 3558 3735 
GR-FB3 12.44 2.7 3 1.99 O. 794 3405 3675 
GR-XI31 12.66 2.65 74.22 3.624 335.5 335 
GR-XB2 12.66 2.6 74.22 3.687 3 13.3 320.4 
GR-XB3 12.67 2.65 74.22 3.624 335.3 334.8 

Table 1.3 Specifications of graphitelepoxy specimens in GR-3 set for the VSM. 
Specimen Width Thickness Span Rate ( F m  (Fi42 

n> (mm) (mm) (mm) (mmhec) (Nlmm) (Nlmm) 
width h L Fldefl Fldefl 

GR-SC1 12.59 2.69 14.97 O. 193 20346 2 1422 
GR-SC2 12.51 2.69 14.97 O. 193 2 1 096 2 1648 
GR-SC3 12.52 2.7 14.97 O. 192 22776 22776 
GR-EC1 12.49 2.69 17.57 0.245 1478 1 15317 
GR-EC2 12.6 2.71 17.57 O. 244 15589 1 5764 
GR-EC3 12.62 2.69 17.57 0.245 16234 15530 
GR-TC1 12.66 2.66 2 1.95 0.355 9365 9229 
GR-TC2 12.63 2.69 2 1.95 0.352 9648 97 12 
GR-TC3 12.65 2.68 2 1.95 0.353 9687 9613 
GR-FC1 12.36 2.67 3 1.99 0.692 3477 3587 
GR-FC2 12.4 2.66 3 1.99 O. 694 353 1 3550 
GR-FC3 12.36 2.7 3 1.99 0.686 3368 3628 
GR-XC1 12.55 2.64 74.22 3.53 330.1 329.7 
GR-XC2 12.56 2.64 74.22 3.53 336.4 334.6 
GR-XC3 12.56 2.64 74.22 3.53 336.8 335.2 



Table 1.4 Specifications of graphitdepoxy specimens in GR-4 set for the VSM. 
Specimen Width Thickness Span Rate (FIA) I (F1A)z 

ID (mm) (mm) (mm) (mmlsec) (Nlmm) (N/mm) 
GR-SDl 12.48 2.59 14.97 O. 173 21429 2 1429 

Table 1.5 Specifications of Kevlarlepoxy specirnens in K-1 set for the VSM. 
Specimen Width Thickness Span Rate (FIA), (F/A)2 

ID (mm) (mm) (mm) (mdsec) (N/mm) (Nlmm) 
K-SOS 
K-S06 
K-S07 
K-EO 1 
K-E02 
K-E03 
K-E04 
K-TO 1 
K-T02 
K-T03 
K-T04 
K-FO 1 
K-F02 
K-F03 
K-XO 1 
LX02 



Table 1.6 Specifications of Kevlar/epoxy specimens in K-2 set for the VSM. 
Specimen Width Thickness Span Rate (FiNi ( F m 2  

ID (mm) (mm) (mm) (mmlsec) (N/mm) (Nlmm) 
K-SOS 12.59 1.91 13.55 0.275 5369.3 5 102 
K-S09 12.49 1.91 13.55 0.275 524 1.6 5060 
K-S 10 12.21 1.93 13.55 0.274 5468.8 5118 
K-EOS 12.6 1.87 15.13 0.316 4288.9 4282.5 
K-E06 12.47 1.86 15.13 0.317 3852.71 3952 
K-E07 12.46 1.92 15.13 0.3 14 4232.1 1 4 192 
K-EO8 12.58 1.93 15.13 0.3 13 4347.2 4243 
K-TO5 12.57 1.9 18.97 0.43 2414.8 235 1 
K-T06 12.43 1.86 18.97 0.434 2153.8 2093 
K-T07 12.54 1.87 18.97 0.433 2426.6 2376 
K-F04 12.41 1.91 26.5 1 0.728 1015.5 1 O00 
K-F05 12.43 1.93 26.5 1 O. 723 1071 1 053 
K-F06 12.56 1.87 26.5 1 0.739 1014.5 1018 
K-F07 12.46 1.93 26.5 1 0.723 1061.4 1055 
K-X04 12.49 1.93 56.92 2.914 127.1 127.1 
K-XO5 12.46 1.86 56.92 3.015 1 18.8 1 19.4 
K-X06 12.38 1.93 56.92 2.914 112.1 122.5 
K-X07 12.58 1.92 56.92 2.928 1 18.9 1 19.4 

Table 1.7 Specifications of Kevladepoxy specimens in K-3 set for the VSM. 
Specimen Widt h Thickness Span Rate ( F m  ( F m  

ID (mm) (mm) (mm) (mm/sec) (N/mm) (Nlmrn) 
K-S 1 1 12.39 1.88 13.55 0.2 4910 4992 
K-S 12 12.54 1.93 13.55 O. 197 5266.7 5292 
K-S 13 12.53 1.92 13.55 O. 198 5008.6 4773 
K-E09 11.79 1.92 15.13 0.237 3885.2 3798 
K-E 10 12.52 1.89 15.13 0.24 4052.3 4003 
K-E 1 1 12.63 1.91 15.13 0.238 4140.3 4101 
K-T08 12.53 1.94 18.97 0.348 2482.1 2362 
K-T09 12.56 1.87 18.97 0.358 2503.4 3428 
K-T 1 O 12.56 1.91 18.97 0.352 2504.1 246 I 
K-F08 12.5 1.9 26.5 1 0.654 1062.8 1055 
K-F09 12.55 1.86 26.5 1 0.667 954.3 939 
K-F 1 O 12.53 1.86 26.5 1 0.667 954 944 
K-XO8 12.59 1.86 56.92 2.94 110.1 110.2 
K-X09 12.5 1.9 56.92 2.88 124.2 125 
K-X 1 O 12.44 1.89 56.92 2.895 130.5 122.1 



Table 1.8 Specifications of Kevlarlepoxy specimens in K-4 set for the VSM. 

Specimen Width Thickness Span Rate ( F m  ( w 2  

ID (mm) (mm) (mm) (mmlsec) @/mm) (Nfmm) 
K-S14 12.59 1.9 13.55 0.199 5 192.2 5236 
K-SI5 
K-S16 
K-E 1 2 
K-E 13 
K-E 14 
K-E 1 5 
K-Tl 1 
K-Tl2 
K-Tl3 
K-FI 1 
K-F 12 
K-F13 
K-XI 1 
K-XI 2 
K-X13 

Table 1.9 Specifications of Kevladepoxy specimens in K-5 set for the VSM. 

Specimen Width Thickness Span Rate (WA) 1 ( F m  
ID (mm) (mm) (mm) (mmkec) (N/mm) @/mm) 

K-S 17 12.52 1.86 13.55 0.201 4561.3 4480 
K-S I 8 12.46 1.89 13.55 0.197 
K-S 1 9 12.53 1.92 13.55 O. 194 
K-E 1 6 12.54 1.91 1 5.13 0.249 
K-E 1 7 12.52 1.9 15.13 0.25 1 
K-E 1 8 12.49 1.9 15.13 0.25 1 
K-E 19 12.55 1.84 15.13 0.26 1 
K-T 14 12.62 1.92 18.97 0.422 
K-T 1 5 12.56 1.87 18.97 0.439 
K-T 1 6 12.69 1.91 18.97 0.426 
K-F 14 12.62 1.86 26.5 1 1 .O57 
K-F 1 5 12.6 1 1.88 26.5 1 1 .O38 
K-F 16 12.56 1.9 26.5 1 1.019 
K-X 14 12.62 1.93 56.92 8.593 
K-XI 5 12.58 1.9 56.92 8.856 
K-X 16 12.58 1.93 56.92 8.593 
K-X 1 7 12.59 1.91 56.92 8.767 



Table 1.10 Specifications of Kevlar/epoxy specimens in K-6 set for the VSM. 

S pecimen Width Thickness S pan Rate ( F m  (FI42 

ID (mm) (mm) (mm) (mmlsec) (Nhm) (N/mm) 
K-S20 12.51 1.86 13.55 0.20 1 5053. 5 4872 
K-S2 1 12.38 1.89 13.55 O. 197 4959.3 5262 
K-S22 12.44 1.92 13.55 O. 194 5340.9 5301 
K-E20 12.55 1.84 15.13 0.26 1 4095 4047 
K-E2 1 12.57 1.84 15.13 0.26 1 3957. I 3985 
K-E22 12.46 1.88 15.13 0.254 3884 3851 
K-T 1 7 12.55 1.89 18.97 0.432 2436.7 2369 
K-T 18 12.51 1.93 18.97 0.419 2571.9 249 1 
K-T 19 12.63 1.86 18.97 0.443 2417.1 2385 
K-FI 7 12.68 1.93 26.5 1 0.993 1 105.9 1 087 
K-FI8 12.54 1.95 26.5 1 0.976 1123.8 1105 
K-F19 12.66 1.91 26.5 1 1 .O1 1030.3 1019 
K-F20 12.51 1.92 26.5 1 1 .O01 1042.7 1 044 
K-X 18 12.53 1.93 56.92 8.593 131.3 131.1 
K-X 19 12.57 1.9 56.92 8.856 124.4 1 24.5 
K-X20 12.54 1.85 56.92 9.322 108.2 108.7 

Table 1.1 1 Specifications of E-glasskpoxy specirnens in GL- 1 set for the VSM. 
Specimen Widt h Thickness Span Rate (FIA)[ (FI42 

ID (mm) (mm) (mm) ( m d s e c )  (N/mm) (N/mm) 
GL-SO I 13.28 6.32 31.19 0.636 18806 18529 
GL-S02 13.31 6.33 31.19 0.636 18660 18513 
GL-S03 13.5 6.33 31.19 0.636 17863 18151 
GL-EOl 13.55 6.3 37.53 0.75 1 11265 1 0896 
GL-E02 13.27 6.32 37.53 0.75 1 10445 1 0679 
GL-E03 13.44 6.3 3 37.53 0.75 1 1 1526 11252 
GL-TOI 13.33 6.32 51.18 1 .O7 4395 4508 
GL-T02 13.25 6.33 51.18 1 .O7 4698 4660 
GL-T03 13.53 6.3 51.18 1 .O7 4484 4389 
GL-FO 1 13.41 6.32 1 12.24 3.701 453.3 452.8 
GL-F02 13.44 6.3 1 1 12.24 3.706 339.3 437.9 
GL-F03 13.45 6.3 1 1 12.24 3.706 456.8 453.2 



Table 1.12 Specifications of E-glass /epoxy specimens in GL-2 set for the VSM. 
Specimen Width Thickness Span Rate (FI& (FI42  

ID (mm) (mm) (mm) (mdsec) (N/mm) O\l/mm) 
GL-S04 13.3 6.3 31.19 0.383 16802 17883 
GL-SOS 13.48 6.33 31.19 0.383 1863 1 1 863 1 
GL-SO6 13.3 6.3 3 1 .  19 0.383 16905 16770 
GL-E04 13.62 6.34 37.53 0.497 1 1266 1 1768 
GL-EOS 13.27 6.33 37.53 0.497 11 172 1 1282 
GL-EO6 13.43 6.32 37.53 0.498 10240 10597 
GL-T04 13.26 6.33 51.15 0.818 4747 4665 
GL-TOS 13.34 6.33 51.15 0.818 4840 4746 
GL-T06 13.51 6.34 51.15 0.818 483 3 4883 
GL-F04 13.25 6.33 1 12.24 3.444 467 463.2 
GL-FOS 13.44 6.33 1 12.24 3.444 469.9 470.2 
GL-FO6 13.44 6.33 1 12.24 3.444 470.2 470.4 

Table 1.13 Specifications of E-glasdepoxy specimens in GL-3 set for the VSM. 
Specimen Width Thickness Span Rate (FIA)! (FI42 

ID (mm) (mm) (mm) (mmhec) (N/mm) (Nlmrn) 
GL-S07 13.48 6.32 31.19 0.383 19415 19817 
GL-S08 12.7 6.29 31.19 0.383 14976 15375 
GL-S09 13.57 6.32 3 1.19 0.383 17845 182 15 
GL-E07 13.65 6.3 37.53 O. 499 10540 10690 
GL-E08 13.33 6.32 37.53 0.498 10760 10727 
GL-E09 13.53 6.3 37.53 0.499 10779 10792 
GL-T07 13.39 6.3 51.15 0.8 18 4283 4275 
GL-TO8 13.57 6.3 51.15 0.8 18 440 1 4410 
GL-T09 13.21 6.3 51.15 0.8 18 4393 4282 
GL-F07 13.52 6.3 1 12.24 3.459 440.5 439.4 
GL-FOS 13.45 6.3 1 12.24 3.459 444 437.1 
GL-F09 13.45 6.3 1 1 12.24 3.454 457.3 448.9 



Table 1.14 Specifications of E-glasdepoxy specimens in GL-4 set for the VSM. 
Specirnen Width Thickness Span Rate ( F m  (FI42 

ID (mm) (mm) (mm) (mdsec) (N/mm) (N/mm) 
GL-SI0 13.62 6.3 1 31.19 0.568 17838 17697 
GL-SI 1 
GL-S 12 
GL-E 1 O 
GL-El 1 
GL-E 12 
GL-T 1 O 
GL-T 1 1 
GL-T 1 2 
GL-F I O 
GL-FI 1 
GL-F 1 2 

Table 1.15 Specifications of graphitelepoxy specimens in 
tensile test. 
S pecimen Widt h Thickness Lengt h E 

ID (mm) (mm) (mm) (GPa) 
GR-TN-1 12.15 2.33 140 149.8 
GR-TN-2 12.15 2.36 140 147.2 
GR-TN-3 12.21 2.49 140 153.3 
GR-TN-4 13.81 2.62 290 150.1 

Table 1.16 Specifications of E-glasdepoxy specimens in 
tensile test. 
Specimen Width Thickness Length E 

ID (mm) (mm) (mm) (GPa) 
GL-TN-1 14.28 6.26 200 47.2 
GL-TN-3 13.46 6.25 200 50.6 
GL-TN-3 14.27 6.27 200 47.7 



Table 1.17 Specifications of -maphitekpoq specinicns in 
I o s i p u  shm test. 
Specimen Width ThicLness Length (; 

ID (mm? (mm) pini)  (GPa) 
GR-ISH-1 11.37 2.56 760 5.83 
GR-ISH-2 11.33 2.55 760 6.11 
GR-ISH-3 1 1.3 7 2.35 760 6.21 

Table 1.19 Specifications of Kevlarkpoq speciniens in 
1 osi~escu shear test. 
Specimen Width Thickness Lens1 h C; 

ID (mm) (mm) (nirn) (GPa) 
K-ISH- 1 10.97 1.83 760 2.09 
K-ISH-2 11.21 1.83 760 2.13 
K-ISH-3 10.80 1.91 760 2.24 

Table 1.19 Specifications of E-glass/eposy speciiiieiis in 
Iosi~escu shear test 
Specimen Widt h Thickness Lengtlt G 

ID (mm) (mm) (nirri) (GPd 
GL-ISH-1 10.57 6.28 760 7.07 

Table 1.20 Specifications of graphitdeposy speciniens in  
445' shear test. 
Specimen Widt h Thickness Length 

ID (mm) (mm) ml) (GPa) 
GR-FSH- 1 35.29 2.5 1 240 4.86 
GR-FSH-2 24.85 2.4 1 280 5.00 
GR-FSH-3 24.94 2.45 280 4.76 

Table 1.2 1 Specifications of Kevladepoxy specimens in  1 0" 
off-axis shear test. 
Specimen Widt h Thickness Lengtli G 

ID (mm) (mm) (mn1) (GPa) 
K-TSH- 1 12.34 1.84 330 1.86 
K-TSH-2 13.55 1.84 330 1.72 



Appendix J 

LOAD-DEFLECTION CURVES OBTAINED FROM THE VSM 
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Figure I. 1 Load-deflection curves obtained for graphite/epoxy GR- 1 specirnens. Top: First 
loading. Bottom: Second loading. 
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Figure 1.2 Load-deflection curves obtained for graphite/epoxy GR-2 specimens. Top: First 
loading. Bottom: Second loading. 



iRSC1 
IRSCZ GRXC1 

GRTC1 

GR-XC1 
GR-XC2 
GR-XCJ 

O 0.2 0.4 0.6 O. 8 1 

Displacement (mm) 

O 0.2 0.4 0.6 0.8 f 

Displacement (mm) 

Figure 5.3 Load-deflection curves obtained for graphitelepoxy GR-3 specimens. Top: First 
loadinç. Boitom: Second loading. 
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Figure J.4 Load-deflection curves obtained for graphite/epoxy GR-4 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure J .  5 Load-deflection curves obtained for Kevlarlepoxy K- 1 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure J.6 Load-deflection curves obtained for Kevlar/epoxy K-2 specimens. Top: First 
loading. Bottom: Second loading. 



O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O. 8 

Displacement (mm) 

O 0.2 0.4 0.6 0.8 1 

Displacernent (mm) 

Figure 1.7 Load-deflection curves obtained for Kevladepoxy K-3 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure 1.8 Load-deflection curves obtained for Kevladepoxy K-4 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure J.9 Load-deflection curves obtained for Kevlar/epoxy K-5 specimens. Top: First 
Ioadinç. Bottom: Second loading. 
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Figure J .  1 O Load-deflection curves obtained for Kevladepoxy K-6 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure J .  1 1 Load-deflection curves obtained for E-glasdepoxy GL- I specimens. Top: First 
loading. Bottom: Second loadins. 
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Figure J .  12 Load-deflection curves obtained for E-glass/epoxy GL-2 specimens. Top: First 
loading. Bottom: Second loading. 
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Figure J. 13 Load-defleciion curves obtained for E-glass/epoxy GL-3 specimens. Top: First 
loadinç. Bottom: Second loading. 
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Figure J .  14 Load-deflection curves obtained for E-glasdepoxy GL-4 specimens. Top: First 
loading. Bottom: Second loading. 
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