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ABSTRACT 

A compartrnentalized reservoir is made up of a number of hydraulically-communicating 

compartments. Usually the communication between a pair of neighboring comparhnents 

is poor due to the presence of faults or low-penneability baniers. Here a new approach is 

taken to understand the transient-pressure behavior of compartmentalized reservoirs. 

Analyticai solutions are developed for transient flow in compartmentalized systems 

descnbed by one-, two- and three-dimensional Cartesian coorainate systems. Solutions 

are derived for dimensionless pressure in one- and two-dimensional systems and for 

dimensionless potential in threedimensional flow sy stems. The solutions for one- and 

two-dimensional sy stems are usefùl for the purpose of studying areall y- 

compartmentalized reservoirs. Consideration of potentiai is important in a three- 

dimensional system due to the importance of the effects of gravity . Such a situation can 

be encountered in reservoir compartmentalization especiaily with vertical extent. The new 

solutions have been validated by comparing a number of their simplified cases with those 

availabie in the literature. 

Interference due to production through multiple wells from a compartmentalized system 

has been characterized. In addition, a compax-tmentalized system has been charactenzed in 

terms of a homogeneous system. Conditions under which the pnnciple of reciprocity is 

applicable in the new analytical solutions have been determined. 



Trarisient behavior in compartmentalized systems has been aamined using the solutions 

developed in this study. These include a linear system, a two-cornpartment systern, a 

system of small cornpartment in communication with a big one and a stacked channel 

red ization. Pressure-denvatives have been used to identi fy di fferent flow regimes while 

o b s e ~ n g  transient responses at the wellbore. Type-curves and simple solutions for late 

times have been presented for the purpose of identioing the gedogid stnicture and of 

quantiQing the flow resistance at the intenace boundary in terms ofa  skin factor. 

A partiaily-communicating bamier between adjoining compartments has been observed to  

behave as a sealing interface temporarily for a p e n d  of time. Using this observation, a 

simple diagnostic technique has been developed for detection of poor hydraiil ic 

communication between compartments from extended drawdown data. Methods have 

been proposed to compute the pore volume in each cornpartment, the total reserve, and 

the average reservoir pressure from stabilized drawdown data. 
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NOMENCLATURE 

Chapter 1 

Bp = Reference formation volume factor of fluid, L ~ /  L3 

H(t-7) = Heaviside unit step fûnction. equal to O when t < T and 1 when t h T 

hp = Reference pay thickness, L 

kp = Reference permeability, L' 

Ip, - p,laR,, = Pressure-drop across the interface, aR,,, rnk? 

q,, = Flow rate through the interface between ith and jth cornpartments, L ~ A  

q,,' = Flow rate per unit width through the interface between ith a d  $h 

corn parirnents, L2/t 
.1 

qv = Flow rate per unit area throught the interface between ith and jth 

compartments, Lit 

ql.,, ql = Production rates at the nodal points. t,.! and t,, respectively, illustrated 

in Fig. 1.4 

s,, = Skin factor at the interface between W and jth compartments 
CC.. 

t = lime, t 

M,, = Interface boundary between ith and jth corn patments 

Xp = Reference length, L 

pp = Reference viscosity of fluid, m/Lt 

[a, - O1lbR = Potential-drop across the interface, ah:,, m/L? 

vi, ~ 2 ,  y3 = Stepped values of y in respective time ranges, illustrated in Fig. 1.5 

Chapter 2 



am = Distance between the plane-sink in mrh compartment from the 

boundary at x = X,, L 

B, = Formation volume factor of fluid in mth compartment, L'I L~ 

Ao mi Bo , = Coefficients in Eq. (2.19) 

A n ,  B n  m = Coefficients in Eq. (2.22) 

c, , = Total compressibility of rock-fluid system in rnth compartment, ~ ? / m  

[Dl = Coefficient matrix, defined in Eqs. (2.48) 

E, = Constant eigenfunction considered when the extrerne boundary 

conditions are of homogeneous, Neummn-type 

f&) = Timedependent boundw function at x~ = XI o, as in Eq. (2.10) 

J , ( tD)  = Timedependent boundary function at x~ = XnTl D, as in Eq. (2.1 1) 

Fm = Storativity ratio in rnth cornpartment, (@m crm) 
(QP et,,) 

go(tD) = Source-funcbon in case of zero eigenvalue, defined in Eq. (2.58) 

g&) = Source-function, defined in Eq. (2.40) 

g;(r) = Source-function, defined in Eq. (2.62) 

Gm = Function, defined in Eq. (2.18b) 

hm = Height of mth comparmient, L 

km = Permeability of formation in mth cornpartment L~ 

Lo ,,,(xD) = Linear set, defined in Equation (2.16) for rnth cornpartment 

Ln ,(xD) = Li near sec defined in Equation (2.1 7) for rnth corn partment 

Mm = Mobility ratio in mth compartment, (km I P ~  1 
(kp  4 . q  

n = Total number of compartments 

No = Nom in case of zero-eigenvalue, defined in Eq. (2.60) 

NI = Nom, defined in Eq. (2.32) 

pm(x, r )  = Pressure at mth cornpartment as function of x and t, m/Lt2 

p ,  = Initial pressure in mth compartment, rn/Lt2 



p, = Reference pressure, m/L? 

Pm ,(hl, xD) = Function, defined in Eq. (2.47a) 

q,,,(t) = Production rate from the plane-sink in mrh compartment as a fundon 

of time, ~ ' h  

f(t) = Influx rate at the ith interface, ~~h 

Q, ,(t) = Cumulative influx at x = k; over a period, f ,  L-', defined as, 

Q,,&) = Dirnensionless cumdative influx at XD = k: D over a dimensionless 

period, tD, defined as, 
Q c t ( t )  kp 

qp Pp e p  ctp x:, 
[RLO] = Coefficient matrix, defined in Eq. (2.2la) 

[RL ,,] = C~efficient mauix, defined in Eq. (2.24a) 

R,,, = The region within the mth compartment 

sr = Skin factor at the interface boundary at x = or at x, = A-, D, 

k,, k1 ipt-pF1ll, 
defined as, , where q* is the fluid flow rate through 

PPA, q * 

the skin boundary at x = X,-, 

(SLO}  = Vector, defined in Eq. (2.21b) 

(SL ,,} = Vector, defined in Eq. (2.24b) 

r = Time, t 

Tm dhl, xD) = Function, defined in Eq. (2.47b) 

14 = Transmi ssibility parameter for ith interface, defined in Eq. (2.14) 

IIm A l l ,  xD) = Function, defined in Eq. (2.45a) 

V,,, d l l ,  xD) = Function, defined in Eq. (2.45b) 

wm = Width of mth compartment, L 

{WL *O} = Vector, defined in Eq. (2.21~) 



( WL Y,.) = Vector, defined in Eq. (2.24~) 

x = Space variable, L 

X,, X,-, = Boundaries of mth compartment, L 

{ Y) = Vector, defined in Eq. (2.4911) 

q = Coefficient in Eq. (2.25) and later determined in Eq. (2.34) 

a, = Transmissibility coefficient for mth cornpartment, defined in Eq. (2.7) 

qn = Difisivity ratio for mth compartment, defined in Eq. (2.6), also FJM, 

6(X - a) = Dirac del ta function 

61r = Kronecker delta, equal to 1 when I = I' and O when I # 1' 

hl = I i h  eigenvaiue 

Pm = Viscosity of fluid in mth cornpariment, mRt 

$, = Formation porosity in mth cornpartment 

y,,., 1 = W eigenfunction in mth compartment 

. . 
y:, , y, = Values of y, at XD = X, D, XD = X,+, D, respectively, in Eq. (2.44) 

B,(xD, tD) = Dependent variable of the hornogeneous problem, defined in Eqs. 

(2.18a) through (2.180 
- 

(tD = 0) = Function, defined in Eq. (2.6 1) 

r = Dummy variable, in Eqs. (2.42), (2.43), (2.51) through (2.54), (2.56), 

(2.58), (2.59) and (2.62) 

y,, Co = Parameters in Eq. (2.10) to be preset for obtaining an appropriate 

condition at the extreme boundary at x~ = Xl 

yn, 6, = Parameters in Eq. (2.1 1) to be preset for obtaining an appropriate 

condition at the extreme boundary at x~ = Xn,, D 



D = Dimensioniess 

i = ith interface at x = X, or  at x~ = X, D 

I = Ith eigenvalue, eigenfunction, nom,  function o r  transfonned 

dimensionless pressure 

rn = mth compartment 

p = Reference compartment or  parameter 

Chapter 3 

A, = Defined in Eq. (3.48) 

4'. b:"' = Co-ordinates of mth well in ith compartment. L 

BI = Formation volume factor in ith cornpartmeni 

c,, = Total compressibility in ith compartment, ~ t ~ / m  

e, = Defined in Eq. (3.18) 

Fdt)  = Function defined in Eq. (3.55) 

f, ,, f,, = Specified conditions at extreme boundanes of  ith cornpartment as a 

fiinction of dimensionless time 

h, = Reference pay thickness, L 

h, = Defined in Eq. (3.15) 

k,, k, = Pexmeability in x- and y-direction (principal axes), respective1 y, L' 

n = Total number of compartrnents 

x , = Number of wells in ith compartment 

Nl = Nom corresponding to Irh eigenvalue, defined in Eq. (3 -33) 

No = N o m  corresponding to  zero-eigenvalue, defined in Eq. (3.65) 

p~ .dd = Defined in Eq. (3 -63) 
- 
p, ,(t = O) = Defined in Eq. (3 66) 

D 

- 
p,, = Transformed value corresponding to /th eigenvalue 



p,, jT, = Average pressures at W and jth compartrnent, m ~ r t  

p,(x, y, 1) = Pressure in irh compartment as a function of (x, y, t), m 5 ?  

p, D = Dimensionless pressure in ith compartment, defined in Eq. (3.9) 

p, = Initial pressure in ith compamnent, mkt2 

p, = Dimensionless initial pressure in iih compamnent, defined in Eq. (3.2) 

Q,, *(tD) = Dimensionless cumulative influx through interface at aR, 

q,, = Rate of influx at interface between irh and jth compartments, ~ ~ / t  

CD = 4 1 ~ / 4 p  

dm'(I) = Production rate of the mth well in ith cornpartment as a function of 

time. L ~ A  

R, = Region within ith compartrnent 

s = Skin factor at an interface 

t = Time, t 

c, = Bamer transmissibility between ith and jrh compartments, ~ ~ t / r n  

II, 1  = irh eigenfùnction for x-direction in ith com partrnent 

CI, , ,  U2 ,, = Defined in Eqs. (3.43), (3.44), resprc~ively 

Il,*[. LI: = Value of U, 1  at x~ = Xg, X,+, D, respectively 
- 
LI,, = Defined in Eq. (3.50) 

= Ith eigenfunction for y-direction in iih compartment 

V, , 1, V2 , l = Defined in Eqs. (3 .49,  (3.46), respectively 

Y,; . V,; = Value of V, 1  at y~ = Y&, Y,, , D, respectively 
- 
y,  = Defined in Eq. (3.51) 

X;, X;+, = Location of boundaries of ith compartrnent parailel toy-ais, L 

.K. = Z/XP 

X, = Reference length, L 

x = Abscissa, L 

x~ = Dimensionless abscissa, defined in Eq. (3.10) 



Y,, Y,,l = Location of boundaries of ith corn part ment paral le1 to x-axi s, L 

u,, = X/X, 

y = Ordinate, L 

y~ = Dimensionless ordinate, defined in Eq. (3.1 1) 

a, ,, g , = Defined in Eqs. (3.16), (3.1 7), respectively 

6(x - a) = Dirac delta function 

6R, = Interface boundary between compartments, i and j 

6R,, = Interface boundary between compartments, i and n 

TL,, qy, = Defined in Eqs. (3.2 l), (3.26), respectively 

Al = Defined in Eq. (3.36) 

p, = Viscosity in ifh cornpartment, m/Lt 

$, = Porosity in ith compartment 

O, = Ith eigenvalue for y-direction in ith compartment 

0, = Ith eigenvalue for x-direction in ith compartment 

r, r ' = Dummy variables 

y, ,, La ,, = Parameten for conditions at extreme boundaries parailel to y-a is  

yOy ,, Co). , = Parameters for conditions at extreme boundaries paral le1 to x-axis 

Su bscripts 

D = Dimensionless 

i = ith compartment, i = 1, 2, 3 ,....., n 

ij = interface between ith and jth comparünents 

in = interface between ith and nth compartments 

j = jth cornpartment 

! = Ith eigenvaiue, eigenfunction or parameter 

rn = mth well in a compartment 



p = Reference compartment or parameter 

x, y = Along x or y direction 
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A, = Defined in Eq. (4.66) 

a:"", 6;"' = Areal coordinates of m'th well in ith cornpartment, L 

' 1  b'"" = 
a,, , J D  Defined in Eqs. (4.18), (4.19,  respectively 

BI = Formation volume factor in ith compartment 

cl,  = Total compressibility in ith cornpariment, ~ ? / m  

Chp = Defined in Eq. (4.73) 

e, = Defined in Eq. (4.25) 

FAT) = Function defined in Eq. (4.75 j 

f, ,,f,,,f,, = Specified conditions at extreme boundaries of irh compartment as a 

fûnction of dimcnsionless time 

g = Acceleration due to gravity, ~ / t ~  

gl = Defined in Eq. (4.49) 

go = Defined in Eq. (4.84) 

4 ( ; v ) ,  k(;*) = Extent of pay thickness of m'th well in ith cornpartment, illustrated in 

Fig. 4.2, L 

$72 , g$,) = Defined in Eqs. (4.20), (4.2 1 ), respectively 

h, = Pay thickness of the reference compartment, L 

k,, k, kz = Permeability in x-, y- and =-direction (principal axes), respectively, L' 

I I  = Total number of compartments 

N , , = Number of wells in ith compartment 

Nl = Nom corresponding to Zth eigenvalue, defined in Eq. (4.45) 

No = Nom corresponding to zereeigenvalue, defined in Eq. (4.85) 



p,(x, y, z, t )  = Pressure at irh cornparmient as a function of x, y, z and Z, m/L? 

Q,, D(tD) = Dimensionless cumulative influx through interface at a,, 
g,, = Rate of influx at interface between ith and jth compartments, ~ ' / t  

CD = !?&?p 

qj"'(r) = Production rate of the mth well in ith cornpartment as a function of 

tirne, ~ ' / t  

R, = Bounded region within ith compartment 

s = Skin factor at an interface 

t = Time, t 

t ,  = Dimensionless time, defined in Eq. (4.17) 

T, = Bamer transmissibility between ith and jth compartments, ~ " t / m  

II, 1 = Ith eigenfunction for x-direction in ith corn partment 

Ul , [, & , l  = Defined in Eqs. (4.59), (4.60), respectively 

LI,., . LI,; = Value of LI, 1 at XD = Xg, X,-, D, respectiveiy 
- 
U , ,  = Defined in Eq. (4.68) 

= Ith eigenfunction for y-direction in irh corn partment 

C.; , I ,  P l ,  = Defined in Eqs. (4.6 I), (4.62), respectively 

V,; . y; = Value of Y,  1 at y~ = YD, Y,+, o, respectively 
- 
y ,  = Defined in Eq. (4.69) 

W, = Ith eigenfunction for =-direction in ith compartment 

W, , l ,  W2 , = Defined in Eqs. (4.63), (4.64), respectively 

W,; . w,; = Value of W, 1 at ZD = ZD, Z,,, D, respectively 
- 
W, t = Defined in Eq. (4.70) 

X;, X,+] = Location of boundaries of ith compartment parallel to y-axis, L 

X D  = x;/X, 

X, = Reference length, L 

x = Abscissa, L 



x~ = Dimensionless abscissa, defined in Eq. (4.14) 

Y, Y,+, = Location of boundaries of ith compartment parailel to x-ais, L 

K D  = y /Xp  

y = Ordinate, L 

y~ = Dimensionless ordinate, defined in Eq. (4.1 5) 

Zr, Z,,, = Location of boundaries of ith comparîment parailel to z-axis, L 

2, , = z,/ 2' 
2, = Reference length, L 

z = Distance from x-y-plane, L 

ZD = Dimensionless abscissa, defined in Eq. (4.16) 

ax l, ay ,. a= = Defined in Eqs. (4.22), (4.23), (4.24). respectively 

6(x - a) = Dirac delta function 

6 4  = Interface boundary between compartrnents i and j 

6 4 ,  = Interface boundary between compartments i and n 

e, 1 = Ith eigenvalue for =direction in ith corn partment 

qx,, qy ,. , = Defined in Eqs. (4.28), (4.33), (4.38). respectively 

.;;'? ,p" = . ?, Defined in Eqs. (4.50), (4.5 1), respectively 

hl = Defined in Eq. (4.48) 

p, = Viscosity in ith compartment, m/Lt 

0, = Porosity in ith compartment 

add = Defined in Eq. (4.83) 
- 

ad (1 = O) = Defined in Eq. (4.86) 
D 

- 
@LI = Transformed value conesponding to Ith eigenvalue 

- - 
Ch, a, = Volumebic average potentials at ith and jth compartment, m/L? 

Qt(x ,  y, z, t )  = Potential in ith compartment as a function of x, y, r and t, m/Lt2 



= Dimensioniess potential in irh compartment, defined in Eq. (4.13) 

Oa = Initial potential in zth cornpartment, m/L? 

O*, = Dimensionless initial potential in ith compartment, defined in Eq. (4.3) 

p = Density of fluid, m k 3  

O, 1 = Irh eigenvaiue forydirection in zth cornpartment 

8,I = Irh eigenvaiue for x-direction in izh cornpartment 

r, .r ' = Dummy variables 

y, ,, ,, = Parameten for conditions at extreme boundaries parallel to y-z-plane 

y, ,, & , = Parameters for conditions at extreme boundaries parallel to x-z-plane 

y= ,, Lz, = Parameters for conditions at extreme boundaries parallel to x-y-plane 

Subscr@ts 

D = Dimensioniess 

i = irh compartment, i = 1, 2, 3 ,....., 11 

= interface between Îth and jth compartments 

211 = interface between irh and nth compmments 

j = jzh compartment 

f = Zrh eigenvalue, eigenfunction or parameter 

m = mth well in a compartment 

p = Reference compartment or parameter 

x, y, z = Along x, y or z direction 

Superscript 

(rn ') = m 'rh well in a cornparmient 
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DE c = Defined in Eqs. (5.3) and (5.8) 

DE H = Defined in Eqs. (5.5) and (5.10) 

~ E C D  = Defined in Eqs. (5.2) and (5.7) 

~ E H D  = Defined in Eqs. (5.4) and (5.9) 
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e = (4 c m  (Bd 4 4) 

hD = hlh, 

p, = Wellbore pressure, m/L? 

 p.^ = Dimensionless wellbore pressure, (k, hdq, ~ i ,  B,) @, -p,) 

Su bscripts 

I = Lower body 

rr = Upper body 
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A, = Dimensionless area of iIh cornpartment, defined in Eq. (3.48), Chapter 

3 

C, = A constant depending on location of well at producing compartrnent 

e, = Defined in Eq. (3.1 8), Chapter 3 

hp = Reference pay thickness, L 

h P ~  = hdXp 

k, = Permeability in ith cornpartment 

Ns = Hydrocarbon reserve per unit pressure drawdown, defined in Eq. 

(7.1 2), ~ ~ ? / r n  



Ns ,, NS = Hydrocarbon resenre per unit pressure drawdown in compartments 1 

and 2, defined in Eqs. (7.8) and (7.9), respectively, ~ ~ t ~ / r n  

No = Defined in Eq. (3.65), Chapter 3 

p, = Initial pressure, m / ~ ?  

p, = Wellbore pressure, m/L? 

p,' = Cartesian derivative of welibore pressure with respect to time, rn/Lt? 

p, = Dimensionless wellbore pressure, (k, hdq, pp B,) @, - p,) 

pwD' = Cartesian denvative of dimensionless wellbore pressure with respect to 

dimensioniess tirne 
- 
p = Average reservoir pressure, m/L? 
- 
p, = Defined in Eq. (7.2) 

q = Constant rate of production, ~~h 

q~ = Defined in Eq. (7.3) 

I: = Volume of ith compartment 

X, Y = Dimensions illustrated in Fig. 7.4, L 

X, = Reference length, L 

Subscripts 

i = ith compartment 

p = Reference compartment or parameter 

r = hfinite-acting radial-flow regime 



CHAPTER 1 

INTRODUCTDN 

1.1 Background 

A compartmentdized reservoir is made up of a number of hydraulically-communicating 

compartments. Rock and fluid properties in each compartrnent may be distinct. The 

hydradic communication between any two neighboring compments  is usuaily pour due 

to the presence of faults or low-permeability barriers. However, SmalIey and EngZm~d 

(1994) mention that these barriers wuld be of different strengths, ranging From relatively 

minor features that might retard fluid flow to major features that will not dlow any fluid 

communication. Evidence of reservoir compartmentaiization has been observed in both oil 

and gas reservoirs (Junkm et al., 1992). Bradley and Powley (1994) have pointed out that 

multiple compartments may be found both areally and vertically. A number of 

corn part mental i zed reservoirs have been discovered in di fferent parts of the world 

including those in the North Sea (Fox et cri., 1988), Texas Gulf Coast (Lord and Collins, 

1 99 1 ; h r d  et a/. , 1992; Jzinkir~ et a(. , 1992) and Austral ia (Makamzos and McDonough, 

1991) 

Lord et al. ( 1992) have given an example of a compartmentalized reservoir in South Texas. 

in this reservoir, the producing compartment of 8 MMcf is in communication with a 

secondary compartment of 24.7 MMcf through a barrier with a transmissibility of 4 md- 

fi (the banier is 8000 fl long, 1000 R across, and 1 fi high with a permeability of 0.5 md). 

Reservoir compartmentalization is detected pnmarily From observation of the 

discontinuities in pressure both areally for areal compartmentalization and vertically for 

vertical cornpartmentafization that have been found in produced fields when wireline 

formation tester surveys have been run in newly-drilled wells (Stewart and WhabaZZa, 

1989). Besides mentioning this primary rnethod, Bradley and Powley (1994) list a number 

of other ways the reservoir comparmientalization can be indicated, which are: 



by differing brine and hydrocarbon chemistries; 

by mineraiogical differences; 

by electrical resistivity, sonic velocity, and density of shales; 

by mud weight requirements and drilling rate changes. 

Also, Smalley and E n g h d  (1994) have proposed a method to assess the behavior of 

reservoir compartmentalization by analying the natural process of fluid mixing. These 

authors have used the data from reservoir fluid with compositional heterogeneity to get 

information about how fluids have been able to move through the reservoir over a gedogic 

time scale. 

It is important to identi resentoir compartrnentalization, if there is any. In the case of 

detection of an unexpected reservoir compartmentalization later during production, 

sometimes it becomes essential to drill more wells and build more facilities which could 

force re-evaluation of the whole development project based on economics. Therefore, it is 

essential ta have as much information about the compartmentalization of a reservoir as 

possible to avoid any unpleasant surprises in the future. Sma[Iey and Etigiutzd (1994) 

note, for example, that an unexpected detection of the presence of any cornpartment with 

a high gas-oil ratio might cause oi1 production rates to be constrained due to the Iimited 

capacity of the gas-handling facilities located at surface. 

Massmmat and Bar~dizioi (1 99 1) emphasize that the geology of a reservoir and the 

selection of the most suitable solution for well-test interpretation are inter-dependent and 

that these can complement and improve interpretation of the geology and the well test. 

According to Norris et al. (1993), the results coming from the well-test interpretation 

contribute to an improvement of the understanding and modeling of the geology. 

Mikhaibv and O=isik (1984) have suggested that analytical solutions, when available, are 

advantageous in that they provide good insight into the significance of various parameters 

in the system affécting the transport phenornena, as well as accurate benchmarks for a 

numerical approach. Along the same line, Massonnaf et al. (1993) have opined that the 



interpretation of transient pressure by the use of analytical models lads to a sirnplified 

description of the geological heterogenei ties around the well . Sfewart and Whaalla ( 1  989) 

prefer the use of analytical solutions for identieing and quantiQing major compartments 

and flow barriers before running a reservoir simulation. Baa'gett et ai. (1996) have 

observed that the production performance of a well is dependent on a number of variables 

including formation penneabil ity , corn pl eti on e f i  ciency, reservoir heterogenei ti es, fluid 

properties, reservoir pressure and drawdown. These authors aiso opine that well test 

anaiysis provides a means of quantieing these variables allowing for the cause(s) of non- 

ideai well performance to be identified. Corapciogh er al. (1983) suggested that analytical 

solutions can sornetimes be used as a partial check of numerical solutions for iarge-sale 

problems. 

The primary objective of this study is to recognize and evaluare the importance of 

considering the contrasts of rock and fluid properties in a compartmentalized system by 

using anaiytical models that are able to provide useful information about such a system. 

These transient-pressure models for compartmentalized reservoirs are developed 

anal yticall y in a generalized way . Closed-form solutions are obtained for 

compartmentalized systems with one-, two- and three-dimensional flow systerns. The 

interface-boundanes between adjoining compartments, due to vertical barriers of low- 

permeability or partially-communicating faults, are modeled as thin skins. The production 

rate at eôch producing well and conditions at the extreme boudaries of the reservoir are 

considered to be time-dependent to deal with any changing production and changing 

situations at these boundaries, respectively. An integral-transform technique for finite, 

composite domains has been used to derive the solutions for dimensionless pressure in 

terms of dimensionless time and space. The new analytical solutions have been validated 

by comparing simplified cases with those available in the Iiterature. A number of practicai 

applications of the new mode1 are also discussed. 

1.2 Geology of Compartmentalized Reservoirs 



Due to gedogic processes, most hydrocarbon reservoin are heterogeneous. Some of the 

reservoin are compartmentalized ( J u n h  et al., 1992). A compartmentalized reservoir is 

considered to have a number of hydraulically-connected compartments. The interfaces 

between adjoining compartments are usuaily pariially commu.licating due LO the presence 

of faults or low-permeability baniers (Fox et al., 1988). According to Stewart and 

Whabda (1989), the discontinuities in pressure occur over bodi horizontal events such 

as shales, micaceous streaks, stylolytes etc. and near vertical events such as partially- 

communicating faults, turbidite lobe intedaces, etc. 

Levorsen (1967) mentioned that the extent of a reservoir boundary may be sharp or it 

may be gradational as is more often the case. This heterogeneous character in a reservoir 

makes it diff'cult to model. However, to alleviate the mathematical difficulties of modeling 

such a system, the concept of compartmentalization may be used. Using this concept, a 

heterogeneous system is assumed to be comprised of a number of homogeneous 

compartments. The communication of fluid between adjoining compartments may be 

hindered due to the presence of faults. pemeability pinch-outs or any other flow bamers. 

Cma (1982) has opined that fluvial sediments are deposited by activities of nvers and 

that they are common in geologic record. This author has also mentioned that river 

sediments are highly variable in many aspects and cannot be charaaerized by any single 

facies model. This is so because of the fact that different types of i-iven occur in nature 

and, although a continuous spectrum of river types exists, they can be catagorized into 

discrete types - straight, anastomosing, meandering and sandy or pebbly braided. 

According to this author, in braided river deposits, lateral migration coupled with 

aggradation leads to sheet sandstones or conglomerates with thin, impersistent shales 

enclosed within coarser sediments. Meandering riven are generally more lateraily-stable 

than braided nven because they have thicker, more vegetated, cohesive floodplain 

deposits which are dificult to erode; they occur in areas of lower slope; and they show 

more regular discharge pattern. These rivers are also confined laterally by abandoned mud- 

filled meander loops, known as oxbow Mes, which are common on the floodplains of 

most meandering rivers. Gant (1982) also notes that anastomosing rivers have semi- 



permanent islands dividing the flow and well developed flwdplain and backswarnp areas 

extending away from the river. Because of the cause-grained nature of fluvial sediments, 

they may form potentially good reservoir rocks for oil or gas. This author also pointed 

out that *ncient fluvial sediments with up to 30% porosity and thousands of millidarcys 

permeability have been reported. 

Kerr and Jirik ( 1990) have given a good description of reservoir compartmentalization in 

the middle Frio (Oligocene) formation, South Texas. This formation is composed of sand- 

nch channel-fil1 and splay deposits interstrati fied with floodplain mudstones, al1 forming 

part of the Gueydan fluvial system. Channel-fil1 and associated splay sandstones are 

reservoir facies while levee sandy mudstones obstruct flow and separate individual 

reservoirs and compartments both laterally and vertically These authors also observe that 

laterally-stacked sandstone bodies lead to separate but potentially-leaky reservoir 

corn partments while vertically-sütcked sandstone bodies favor more isolated reservoir 

compartments. This means that in si~uations with vertically-stacked sandstone bodies, 

there is a high potential for reserve growth through the identification of untapped, poorly 

drained and by-passed reservoir compartments. 

Chili~tgarian et al. ( 1992) and Ma=zttllo and Chilingoriml ( 1992) have given an account of 

geologic and engineering aspects of compartrnentalization in carbonate reservoirs and 

reservoir heterogeniety . These authors have pointed out that reservoir 

compartmentalization may result not only from vertical and lateral lithofacies changes, 

but also from spatial variations in those processes of postdepositional diagenesis that 

have created secondary porosity in the rocks. In a number of reservoirs, the interbedding 

of original l y-permeable and relative1 y non-permeable rock units is funher accentuated b y 

subsequent modifications, or is reversed, such that the onginaily-impermeable units 

become porous and permeable, and vice versa. 

B r d e y  and Powley (1994) have presented various aspects of a compartmentalized 

system. These authors point out that a sealing boundary restncts the flow of both 

hydrocarbon and bnne and is formed where the pore throats become effectively closed 



(that is, the permeability approaches zero). However, a hydraulically-communicating 

boundary occun when the pressure difference caused by subsidence-sedimentation or 

uplifi-erosion or other pressure sources is greater than the leakage pressure for that sed. 

Qin and Ortoleva (1994) review the structure, mechanisrns of formation and key role of 

diagenetically-banded pressure seals. These authors mention that layered rock rnay make 

a very efficient barrier to flow normal to the layering plane. If a few layers are of very low 

permeability, the flow of fluid across the layenng is repressed. These authors also point 

out as an example, that if 1 % of the rock is occupied by 1 darcy material and the rest 

is milli-darcy matenals, the effective permeability is about 10" darcy. This shows how 

the effective permeability is dominated by the presence of a few low-permeability 

domains. According to QUI and C)rtoleva (1994), intense layering can arise through 

diagenesis even in the absence of appreciable texhird contrast from sedimentary bedding 

or lamination. They also mention that observed layered seals involve hundreds or 

thousands of individual layers. 

Meeha), and Cérma (1995) have pointed out that the lateral heterogeneities in a reservoir 

appear to be diagenetic pemeability alterations that result in panial 

compartmentalization of the many individual sands. 

1.3 Literature Review 

The interfaces between adjoining compartments in a compartmentalized system are 

usually partially-communicating due to the presence of faults or low-permeability ban-iers 

(Fox ez al., 1988). This kind of compartmentalized behavior becomes prominent in the 

pressure history at late times when the other hydraulically-connected compartments stan 

contributing. For understanding the long term behavior of a compartmentalized reservoir, 

it is important to characterize the inter-cornpartment fluid flow as a function of time. 

Running a reservoir simulator to understand the behavior of a compartmentalized 



resewoir is not a reaiistic approach before identiQing and quantifihg the major flow 

units and barrier resistance (Stewart and Whaballa, 1989). 

Presently, as described in the literature, a cornparimentalized reservoir is analyzed by 

using models, called tank models, that are based on matenal balance techniques that ignore 

resewoir geornetry (Jzinkin et al., 1992; Fox et al., 1988; Stewart and Whaballa, 1989; 

Payne, 1996). The amount of fluid that communicates between any two neighboring 

compartments is estimated using the difference in average pressures of the compartments. 

However, the amount of communicating Buid can be estimated more accurately if the 

reservoir i s modeled using transient-pressure responses. The tank models are used t O 

quanti@ the volumes of each cornputment of a reservoir and the bamier transmissibilities 

throuçh history matching and later to predict the future performance of the reservoir using 

the al ready established information. 

The mathematical formulation developed by Fox et ai. (1 988) is based on the assumption 

that the fluid flow between adjoi ning compartments occurs under stead y-state conditions. 

Theref~re, this made1 can be used when the hydraulic diffusivity is very high so that 

transient effects dissipate very quickly . An analytical mode1 has been developed b y 

Sreumi and Whaballa (1989) based on single-phase matenal baiance equations. Here, the 

concepts of boundary-pressure time delay and desuperposition are used to predict 

bottom-hole pressures over different flow regimes. 

Diagnostic techniques are presented by Hower and Colhs (1989), for detecting and 

quanti fying poorly drained compartments, which use matenal baiance equations and a 

numencal simulator based on the finite element technique. But these techniques are vaiid 

only if the reservoir is producing at pseudosteady state because they involve inflow 

pefiormance relationshi ps. 

Lord et al. (1992) show the usefulness of tank models for areai and stacked channe1 

realizations with the help of a simulator as developed by Kocberber and Collins ((199 1). 

Lord et ai. (1992) have obsewed that the tank models work reasonably well for gas 



reservoirs having pemeabilities in the range of moderate to hi& (greater than 5 md). They 

have also concluded that these tank models are not appropriate for formation 

permeabilities less than 5 rnd. Therefore, it is obvious that the above-mentioned criterion 

wilI be much more restrictive for oil reservoirs. 

Uilig-Economides (1994) presents the matenal balance equations due to multi-phase fluid 

production from a compartmentalized system with both areal and vertical extent. Here 

she uses the formulation in terms of potential, rather than pressure, with a view to deaiing 

with the importance of gravity in vertical compartmentalization. This author argues that 

the materid balance technique provides an estimation of the volume of fluid in place 

underground as a means independent of other sources like geophysical and geoiogical 

analyses. 

1.4 Statement of the Problem 

From the above literature review, it has been demonstrated that the mode!s available in the 

literature ignore the shape of the reservoir and the contrasts of rock and fluid properties 

of a compartmentalized system. This leaves an obvious choice of running a numencal 

simulator which can be very expensive. Therefore, it is very important to have transient- 

pressure models that are capable of providing usehl information about 

compartmentalized systems with areal and vertical extent. These analytical models should 

also be general enough to be applicable to a number of complicated cases of practical 

interest. Compartmentalization of resewoirs with both areal and vertical extent is evident 

in the field (Stewart and Whaballa, 1989; Ehlig-Economides, 1 994). Stewart and WhabaIIa 

(1989) have s h o w  a cellular system as an exarnple of areally-compartmentalized systems 

and a stacked channel realization as an example of vertically-compartmentalized systems. 

In the literature, it is evident that studies on compmentalized reservoin ignored the 

variations of rock and fluid properties and the resistance to fluid flow within 

compariments. There has been no andytical transient-pressure mode1 available in the 

literature that could lead to detailed information about rock and fluid properties and its 



effect on long-term production performance of a compamentalized reservoir. Therefore, 

this study proposes new analyticai solutions for transient responses in both areally and 

vertical1 y compartmentalized sy stems. Throughout this snidy . the Cartesian cwrdi nate 

system is used to formulate the problems. Moreover, for the sake of simplicity, rock and 

fluid propenies in a cornpartment are considered to be homogeneous. Here, a one- 

dimensional flow system and also a two-dimensional flow system are considered to 

si mulate areall y-compartmentalized reservoin and a three-dimensionai flow sy stem is 

considered to simulate vertically-compartmentalized reservoin. For the convenience of 

analysis, transient-pressure models for compartmentalized reservoirs need to be 

developed anal yticall y for the followi ng three separate cases: 

one-dimensional flow sy stem, 

two-dimensional flow system, and 

three dimensional flow system. 

The model for a one-dimensionai flow system is the simplest of the cases considered in 

this study. This mode1 applies to a situation where the fluid flow in narrow reservoirs or 

aquifers is predominantly linear. Because of geological processes, the rock andlor fluid 

properties in these linear systems may be non-uni for m. Such systems cm be considered 

as one-dimensional, linear corn partmentalized sy stems. 

The model for a two-dimensional compartmentaiized system is an extension of that for a 

linear, one-dimensional flow model. This mode1 is capable of dealing, in a general way, 

with a compartmentalized system having areai extent. In this case, the flow of fluid in 

each companment, neglecting gravity effects, may be described with a two-dimensional, 

Cartesian coordinate system. A cellular system is an example where this solution is 

applicable. 

In the event of the presence of reservoir compartmentaiization in the vertical direction, 

the modeis for areal compartmentalization cannot descnbe the transient-tlow situation 

properly (hhrnajr and Arnbastha, 199%). Therefore, the model for a three-dimensional 



compartmentalized system is an extension of and more general than that for a two- 

dimensional compartmentalized system. This model is capable of dealing with a 

compartmentalized system of both areal and vertical extent in a general way . In this case, 

the flow of fluid taking into account the effects of gravity in each cornpartment may be 

described with a three-dimensionai, Cartesian coordinate system. A system of stacked 

channels (two sand bodies crossing over each other having hydraulic communication 

through an interface) is an example where this model is applicable. 

1.5 Objectives of the Study 

Based on the preceding discussion, the objectives of this study are 

I .  To develop analytical solutions for transient pressure (or potential) for 

corn panmentalized reservoirs with areal and vertical extent. These solutions 

should be capable of dealing with a number of complicated scenarios of reservoir 

compartmentalization. The new solutiofis are to be validated by cornparhg a 

number of sirnplified cases with those available in the literature. 

2. To find a way to characterize a compartmentalized system in terms of a simple 

equivalent sy stem li ke a homogeneous one. 

3. To develop the necessary type-curves for the purpose of recognizing and 

analyzing various aspects of reservoir compartmentalization using well-test data. 

4. To develop a rnethod for identifying a compmentalized reservoir based on 

recognizing different flow regimes with the use of the derivative analysis. 

5. To use extended drawdown analysis for evaiuating the parameters of a 

com partmental ized system. 



1.6 Formulation of the Problem 

A compartmentaiized system is considered to have a number of parallelepiped 

compartments. Each cornpartment may have distinct rock and fluid propedes and may 

produce through a number of wells. The pattern of compartrnents and type of wells 

dictate how many dimensions need to be considered in the Cartesian coordinate system. 

The difference in formulation between areal and vertical systerns of compartmentalized 

reservoirs is due to the fact that the effects of gravity are neglected in areal arrangements 

of one- ans twodimensionai flow systems. In vertical systems, that is, in three- 

dimensional flow systems, a mathematical formulation with poten~ial, as defined by 

Hubberr (1940), rather than with pressure. is developed to take into account the gravity 

effects of the flowing fluids. This idea is consistent with that of Ehlig-fionornides 

( 1994). 

In two- and threedimensional flow sy stems, anisotropy of formation permeability in 

each cornpartment is considered. The geometric axes (x and y in a two-dimensional or x, y 

and : in a three-dimensional system) are parallel to the principal axes of permeability. 

Rmney (1975) developed a method for interference anaiysis to determine the 

perrneabilities dong the principal axes in a two-dimensional system using a set of 

injection data. However, if in a case where the principal axes of permeability are not dong 

the geornetric axes, then the necessary coordinate transformations can be made to have the 

equivalent system confom to the geometric axes following the method described by Chao 

(1964). According to M e y  (1975), many formations, such as channel sands, appear to 

exhibit anisotropy in horizontal planes. M e  (1 988) points out that gdogic features like 

crossbedding and shales are responsible for outsing high anisotropy of a formation. This 

author has also shown that heterogeneity is the major source of anisotropy at the large 

scale. Streltsova (1988) has mentioned that massive faulting, for example, can cause such 

preferential or directional permeability. She also points out that braided stream deposits 

show highl y directional permeabili ty . Since some compartmentalized reservoirs were 

subject to braided stream deposition in geologic p e r d s  (MaIavazos and M c h o u g h ,  



1991), it is very likely that these would show directional permeability and the 

consideration of mi sotropy is, therefore, j ustified. Link (1 987) observes that the grains 

oriented in one direction can increase rock pemeability parallel to their long axes and 

reduce it normal to their long axes. 

The interface-boundaries between adjoining cornpartments are due to low-peneability 

barrien or partially-cornmunicating faults and are modeled as thin skins following the 

ideas of vm Everdingen (1953) and Hurst (1953). The presence of such a thin skin at an 

interface is meant to cause an extra pressure-drop due to fluid flow across a iow- 

permeability barrier or partially-cornmunicating fault. However, this extra pressure-drop 

is directiy proportional to the rate of fluid crossing the interface as will be illustrated later 

in this Section. The representation of the resistance to flow at an interface as a thin skin is 

a technique commonly used in the literature (Cursim and Jueger, 1959; Ambartha and 

Sageev, 1 987; Ambastha et al., 1 989; Acost~ and Ambatha, 1 994). Stewart et al. ( 1 9 84) 

developed a method for interference-test analysis using a two-dimensionai simulator to 

determine the transmissibility of a partklly-communicating fault. Y d e y  (1 987) modeled 

the communication of fluid through a partially-comrnunicating fault separating two- 

regions of a composite system in terms of fault permeability and thickness. Lord et al. 

(1992) have adopted the use of transmissibility as a function of barrier dimensions and 

permeability in their mode1 for co rnp~en ta i i zed  reservoirs taking a similar approach of 

Y d e y  (1987). But Kuchuk and Habarhy ( 1  992) mention that this approach exhibits 

computational dificulties in cases where the perrneability of the fault is lower than the 

permeability of adjoining formations. Abbacodeh and Cinco-Ley (1995) have modeled a 

partiaily-communicating fault analytically allowing for linear flow dong the fault plane in 

addition to a pressure-drop across the fault plane during communication of fluid through 

it. These authors have pointed out that this mode1 is appropriate when the fa&- 

permeability is larger than that of the adjoining formations. 

In this study, the skin factor at an interface boundary between adjoining compartments is 

defined as the dimensionless pressure drop across the interface boundary (boundary skin 

or thin skin) due to the flow of fluid. However, the mathematical definition of the skin 



factor is slightly different in the cases of one-, two- and threedimensional flow systems 

because of the distinctness of the pattern of fluid Bow in each case. This is illustrated 

with the corresponding definitions of skin factors as follows: 

Here, at any elapsed tirne, the rate of flow, q,,, is constant over the entire interface, aR,, in 

linear, one-di mensional systems. 

At any elapsed time, the rate of flow per unit width, q,*, is constant dong the pay 

thickness on the interface, aR,,. 

Three-dimensio~~aIfrow (Figure 1.3): 

Here, at any elapsed time, the rate of flow per unit are% q,,**, is not necessarily constant 

at any position on the interface, 3 4 .  



q, = flow rate through aR, 

Figure 1 . 1  : Linear, one-dimensional flow sy stem with skin boundary. 

weil location t- 3% 

qij* = flow rate per unit 
widt h t hrough aRi. 

Figure 1.2: Two-dimensional flow sy stem with skin boundary - 

1 qj** irh compartment 

iEcEEq t weil location 

qa* * = flow rate p er unit 
area t hrough aR6 

Figure 1 -3 : Three-dimensionai flow sy stem wit h skin boundary . 



In Eqs. (1.1) through (1.3), the subscnpt, p, indicates reference parameters for rock and 

fluid properties. The skin factor defined in these equations cannot be negative, because a 

negative value of skin factor implies flow across an interface in the positive direction of 

pressure (or potential) gradienf violating a natural principle. This paradox, which arises 

when a negative skin factor is used, cm be observed in the interface conditions presented 

in Chapters 2.3 and 4. Ambusthu (1988) examined a few cases of negative skin factor in 

radial, composite systems and reported that the corresponding solutions do not converge 

in those cases. 

When the conditions at the extreme boundaries of the reservoir are considered to be time- 

dependent, Cauchy-type conditions are needed to deal with any changing situations at 

these boundaries. The non-homogeneous, Cauchy-type boundary conditions cm be 

modified to any fom of the boundary conditions that is encountered in the field 

(Corapciogh et al., 1983). This means that Cauchy-type boundary conditions can be 

changed to form Di n ch1 et-ty pe or Neumann-ty pe boundary conditions as special cases. 

This type of boundary condition (Cauchy-type) is applicable to confined or phreatic 

aquifers in contact with a clogged bed (Bear, 1972) and dso  when a linear system 

comrnunicates hydraulically wi th an adjoining region through a partiaily-communicating 

fault. Fox el al. (1 988) and Stewart and f i b a l l a  (1989) have given a practical example of 

reservoir compartmentalization where the producing compartment is in hydraulic 

communication with another compartment of bigger size through a low-pemeability 

barrier. These authors have assumed that the pressure in the bigger compartment remains 

unchanged dunng production through a weil in the smaller compartment. In this particular 

example, the Cauchy -type boundary condition is applicable at the interface between the 

two compartments (Rahman and Ambatha, 1997a). However, in this study, the 

boundary conditions at an interface between a pair of adjoining compartments are meant 

to ensure continuity of flow rate and discontinuity of pressure (or potential) due to the 

presence of a thin skin, if there is any. However, continuity of pressure (or potential) at 

an interface prevails for the case of perfect communication between the compartments (no 

fault or low-permeability bamer). 



Time-dependent situations c m  arise if the production rate in a well is varying ancilor the 

conditions at a boundary change with tirne. An exarnple of a dianging boundary condition 

would be a situation where an aquifer that has b e n  providing pressure-support at a 

boundary due to compaction of aquifer-rock is no longer able to maintain the same level of 

pressure-support; rather, the pressure support declines with time. Any changing pattern 

of the production rate from a well or of the condition at a boundary may occur over a 

period of time, rather than bang abrupt. But similar time-dependent situations are taken 

care of in the literature by the use of the principle of superposition in time (Lee, 1982; 

Dake, 1994) or Duhamel's theorern (Collins, 1961; 7hompson and R e y ~ o I . ,  1986; 

Rahma~.~ and Ambasth, l996a; Moser, 1996). In this study, any kind of time-dependent 

situation is handled through a direct approach that can be highlighted with: 

a production rate as a function of time in the source-term of the corresponding 

diffusivity equation; 

a Cauchy-type boundary condition as a non-homogeneous and time-dependent 

one. 

A rime-dependent changeover can be taken care of with proper formulation. Two such 

methods are outlined bnefly as follows: 

McEiiwards (l981), Stewart et al. (1983) and Meunier et a/. (1985) proposed this method 

for representing a time-dependent production rate. These authors suggest that a time- 

dependent function be approximated by a senes of linear segments comecting the nodes 

of intervals. For exarnple, a variable production rate, q(f),  is approximated by a series of 

linear segments as illustrated in Fig. 1.4. The rate within the ith interval is mathematically 

represented as: 



Figire 1 -4: Schematic illust rat ing Linear-Segment Ap p roGmation 
M et hod. 



This method is appropriate and widely used in convolution and deconvolution problems 

related to afterflow analysis where the production rate at the sand face can be better 

represented as illustrated above. As modem downhole instruments are capable of 

measuring flow rates reliably, this method is particularly usefùl in incorporating variable 

flow rate data (Kuchtrk and Ayestarmi, 1 98 5 ; Mendes et al., 1 989). 

The idea of representing a variable (pressure or flow rate) as a stair-step distribution has 

been used in the Petroleurn Engineering literature for a long tirne. v a n  Everdingen and 

Hursz ( 1949) and Horner ( 195 1 ) suggested the use of stair-step representation of variable 

terminal pressures and variable production rates for subsequent use with the principle of 

superposition. OJeh and Jones (1965) and Jurgot~ and v m  PooZIeii (1965) used this idea 

in multi-rate well test analysis. Later, Gzrillor and Honie (1986) used this idea in 

developing cornputer-based techniques for well-test interpretation using simultaneously 

measured fiow rate and pressure data. La~inopouZos (1984) also used a sirnila. approach 

to solve analytically a groundwater flow problem of recharging for two rates. Horne 

(1 990) has suggested that a continuously-varying production rate with time c m  be dealt 

with by treating each data point as a srnall stair-step of constant rate. However, this idea 

can be extended to any case of time-dependent conditions at the extreme boundaries, 

including the case of tirnedependent pressure at a boundary. When the production rate or 

extreme boundary condition i s represented as a stair-step variation, i ts mathematical 

representation becomes very convenient with the use of the Heaviside unit-step function. 

Figure 1.5 illustrates this idea where it shows a stair-step representation of an arbitrary, 

time-dependent function, ~ ( t ) .  A mathematical expression for y.@) bàng  represented as a 

stair-step function within the domain of r is given by: 



stair-step ap p roximation 1 

Figure 1.5: Schematic iUustrating use of the Heaviside unit-step funaion. 



The subsequent mathematical operations with the above representation is quite 

straightfonvard as explained by Correa and Ramey (1 988). 

The mathematical models of this study have been developed in such a way that the 

production rates and extreme boundary conditions are expressed as general functions of 

the time variable. Therefore, both of the simplification techniques discussed above are 

applicable in these models. However, the idea of a Heaviside unit-step function will be 

used in this study for the purpose of illustrating the use of time-dependent production 

rates and boundaiy conditions. 

1.7 Solution Methodology 

In developing the solutions for transient pressure of compartmentalized reservoirs, an 

integral-transform technique for finite, composite domains has been used following the 

theory as developed by Tille (1965) and Tifle and Robiiison (1965). This technique allows 

the solution to be derived in terms of independent variables (time and space variables) 

with eigenvalues as parameters. Lockwood and MuIhoIIad (1973) argue the superiority 

of the integral-transfocm technique over Laplace-transform technique based on the fact 

that the inversion of Laplace transforrns becomes dificult when the number of 

compartments is more than two. In this study, a closed-fom solution is obtained in terms 

of dimensionless time and space variables with eigenvalues as parameters. Raghavan 

(1993) notes the probable dificulties that are encountered while inverting a solution in 

Laplace space numencally into real space (for example, the time variable) using Stehfest 's 

algorithm (1970). However, the integral-transform technique used in this study has been 

found to converge rapidly while computing the numericd values of the solutions. Almeidz 

and Coffn (1995) have discussed a number of simple applications of the integral-transform 

technique illustrating examples of steady-state flow and time-dependent diffision 

problems. In the groundwater hydrology literature, a number of investigators (Chan et al., 

1976; Case and Peck, 1977; Gzll, 1981; Mustsfa7 1984) used the finite Fourier transforms 



for solving the problems of unsteady fl ow through redanguiar, homogeneous porous 

media. In fa@ the Fourier transfomis are speciai cases of the integral transfoms for finite 

domains as used in this study (Mikhaiiov, 1 997). 

In this study, the goveming equations are partial differential equations (diffusivity 

equations) with specified initial, interface and extrerne boundaiy conditions. An integrai- 

transform technique for finite, composite domains is used to solve these equations. The 

procedure for this technique is illustrated in Fig. 1.6. This includes the following steps: 

1. Development of the integral-transform pair (transformation and inversion 

fornulas) solving the homogeneous version of a given set of partial differential 

equations (difisivity equations) and boundary conditions. 

2. Integral transfomation of the given set of partial differential equations 

(diffusivity equations) resulting in an initial value problem with dimensionless 

time as the independent variable. 

3. Solution to the initial value problem for the transfomed solution. 

4. Calculation of the eigenvalues using al1 the prescnbed interface and boundary 

conditions. 

5. Inversion of the transformed solution for dimension1 ess pressure (or 

potential) in tenns of dirnensionless time and space variables. 

The details of this procedure will be discussed iater while developing solutions for one-, 

two- and three-dimensional flow systems in Chapters 2,3 and 4, respectively. 

1.8 Summary of the Following Chapters 



1 Partial Differential Equations 

1 Initial Value Problem 1 

- - 

Transformed Solution 
I I 

Transformation 

Solution in Tirne and Space 

Figure 1.6: Schematic illustrating steps of be  integral 
transfonn technique for finite, composite domains. 



This study has taken a new approach to understand the behavior of a cornpartmentalized 

resemoir by mocieling the transient fluid flow analytically. 

In Chapters 2, 3 and 4, the analytical solutions for transient pressure (or potential) for 

compartmentalized reservoirs in one-, twû-, and three- dimensional flow systems, 

respectively, are developed and validated by comparing their simplified cases with the 

solutions available in the literature. Practical applications of these solutions are also 

discussed. Chapter 5 deals with the interference of wells and proposes a method to unify 

the effects of al1 the wells in a compartmentalized systern. AIso an approach is taken to 

find an equivaient production rate with respect to a homogeneous systern which 

subsequently leads to the use of the type-curves of homogeneous system for a 

corn part mental ized system. C hapter 6 midies the transient behavior of 

compartmentalized reservoirs. Different flow regimes have been identified taking 

advantage of the denvative analysis. A number of compartmentalized systems that are 

ofien encountered in the field will be considered. These include a linear system, a system 

of a small producing compartment in communication with a big one, a two-compartment 

system and a stacked channel realization. The effects of the contrasts of rock and fluid 

properties in the compartments and of the presence of the boundary skins at the 

interfaces between compartments are shown. Where possible, different time critena to the 

start or end of different flow regimes and late-time solutions are also presented. Chapter 7 

deals with the extended drawdown analysis for compartmentafized reservoirs. Methods 

are proposed for detecting the poor communication between adjoining compartments and 

for estimating the hydrocarbon pore-volume in each compartment and the average 

reservoir pressure. Chapter 8 presents a general discussion, conclusions of the work 

presented in this study and recomrnendations for future work. 

Cornputer programs in FORTRAN 77 have been developed to compute the numerical 

values from the analytical solutions for one-, two- and the-dimensional flow systems. 

Appendices 4 B and C present the respective source codes of these prograrns. Appendix 

D presents the analytical solutions for transient potential as a function of dimensionless 

time and space variables in a rectangular parallelepiped due to production at a constant 



rate through a panially-penetrating well. These solutions are used to validate the 

solutions for the three-dimensional flow system in Chapter 4 and to study the 

interference of wells in Chapter 5. Appendix E presents a proof of the applicability of the 

principle of reciprocity with the new solutions of this study. 



CHAPTER 2 

LINEAR, ONE-DIMENSIONAL FLOW SYSTEM 

2.1 Introduction 

Flow of fluid through narrow reservoirs or aquifers is predominantly Iinear. However, this 

linear-flow system may possess variations in rock and fluid properties andlor faults due 

to geological phenomena. Ehlig-Economides and Eéonomi&s (1985) have pointed out that 

there are several depositi onal environments showing possible oil- and gas-reservoir 

geometries that result in predominantly linear flow. These formations, which generally 

have long, narrow shapes, may be the result of river meander point bars, oxbow lakes, 

river channels, or tectonic breccias. However, such systems rnay dso  be 

cornpartmentalized due to variations of rock and fluid properties and the presence of 

faults and, therefore, can be modeled as linear, cornpartmentalized systems. 

In the literature, a number of studies of linear, one-dimensional flow systems are related 

to homogeneous reservoirs or aquifers (Miller, 1962; Nabor and Barham, 1964; Bear, 

1972). Ntrtakki and Muttur (1982) generated transient pressure responses using the line- 

source solution with the principle of superposition for an infinitely long, narrow, 

homogeneous channel. They also developed a method to determine the time to the end of 

the radial-flow period and the beginning of the linear-flow period. Ehlig-Economides and 

Economides ( 1 98 5) have presented the techniques for interference, drawdown and 

buildup analysis for an elongated linear flow system. They also provided an example 

illustrating the estimation of pemeability, porosity, channel width and the extent of the 

well drainage area from those analyses. 

However, few studies on composite systems with or without a linear discontinuity have 

been reported. Cars~' and Jaeger (1 959) used the Laplace-transfomi technique to solve 

heat transfer problems in composite media. Bael et al. (1963) developed a mathematical 



mode1 for a composite system with two regions having a fully-communicating interface 

with the well located near it. 

Ambusth and Sageev (1987) obtained an analytical solution using the Laplace-transfomi 

technique for a linear, composite system composed of a finite region and an infinite region 

being separated by a boundary skin. Poon and Chhina (1989) developed a twctregion 

linear, composite mode1 in the Laplace-space domain for the purpose of investigating the 

transient-pressure behavior in an in-situ combustion pilot. Larsen (1993 and 1996) 

developed analytical solutions in the Laplace-space domain for systems of intersecting 

linear reservoirs. 

In thi s Chapter, a linear, com part mental ized sy stem with n parallelepiped corn partments 

is considered (Fig. 2.1). Any irregularity of the size of individual compartments in the 

transverse direction is acceptable, provided the assumption that this will not affect the 

linear character of the flow holds. The presence of a thin skin or boundary skin at the 

interface of adjoining compartments is considered to represent an extra resistance to flow 

following the ideas of van Everdingen (1953) and Hursr (1953). The rate of fluid 

communication between any two neighboring compartments depends on a specified skin 

factor at the interface. The presence of such a boundary skin at an interface causes a 

discontinuity in pressure at the interface separating the two neighbonng compartments. A 

detailed iilustration of this skin factor has been presented in Section 1.6, Chapter 1. 

In this study, the governing partial differential equations with appropnate initial and 

boundary conditions are set up starting with the difisivity equations describing the one- 

dimensional, single-phase flow of a slightly-compressible fluid with constant 

compressibiliîy through a compartmentalized sy stem. The partial di fferential equations 

with initial and boundary conditions are solved using an integral-transform technique for 

finite domains following the steps of MuhoIland and Cobble (1972) which are based on 

the theory of ïïtle (1965) and Tille and Robinson (1965). The kemel function for this 

integral transformation is found by solving an eigenvalue problem which has been 



Figure 2.1 : Schematic of a linea., compartmentalized system (n = 4). 



developed from the homogeneous version of the given set of partial differential equations 

dong wi th the corresponding ini tid and boundary conditions. An integral-transfomi 

technique with respect to the space-variable removes the spatial dependence of the partial 

differential equations. Thus, a partial differential equation is transfonned into an ordinary 

differential equation with time as the only independent variable and the eigenvaiues as the 

parameters. Non-hornogeneous, Cauchy-type boundary conditions at the extrerne 

boundariw are considered which allow for any possible situation of partial 

communication at those locations. However, these conditions can be modifieci easily by 

specifiing the Dirichlet-type condition, as in a specified pressure case or by specieing 

the Neumann-type condition as in a specified rate case. In the following section, this 

method of solution is illustrated. 

2.2 Development of the Analytical Solution 

Let us consider a system of n linear compartments. In the following subsections, the 

solution for transient-pressure responses is developed step by step: 

2.2.1 Setting up Governing Differential Equations 

A dimensionless form of the difksivity equation for a single-phase, slightly-compressible 

fluid with constant compressibility for the mth compamnent, producing through a plane- 

sink, is given by : 

where the dimensionless variables are defined as: 



- 
P m 0  - ........................................................................................... k P  hP ( p ,  - p,) (2.2) 

4, BP 

where the subscript, p, refers to a reference cornpartment or a reference parameter. 

The corresponding dimensiodess forms of the initial and boundary conditions associated 

with Eq. (2.1) are given as follows: 

(a) Initial condition: 



(b) Boundary conditions: 

(i)  at the extreme boundaries 

(ii) at the interfaces 

with 

for i = 2 to n. 

The parameters, y,, Co, y,, and cn, in Eqs. (2.10) and (2.11). can be chosen in such a way 

that these equations would take care of appropriate conditions due to partial 

communication or the presence of skin at the extreme boundaries. However, these 

parameters cm also be set to either 1 or O if the extreme boundv conditions are of the 

Dirichlet- or of the Neumann-type. Also, the time-dependent functions, f,(t,) andf,(t,), 



in Eqs. (2.10) and (2.1 1 ), respectively , allow speci fication of any tirne-dependent 

conditions at the extreme boundaries. Howwer, these functions can be replaced by 

suitabie constant numben if there is no time-dependent condition exidng there. The 

interface conditions, expressed by Eqs. (2.12) and (2.13), take into account the 

discontinuity of pressure due to the presence of a skin and also continuity of the amount 

of fhid crossing an interface between two compartments. 

2.2.2 Solving the Differential Equatioos 

The system of differential equations, given by Eq. ( 2 4 ,  is solved with the set of initial 

and boundary conditions, Eqs. (2.9) through (2.13), following the steps outlined by 

Mulhollund and Cobble (1972). The procedure is explained in the following steps: 

(a) Obtaining Homogeneous Conditions at the m e m e  Boundan'es: 

The conditions at the extreme boundaries, given by Eqs. (2.10) and (2.1 I), are non- 

homogeneous. However, the system of equations, expressed by Eqs. (2.1) and (2.9) 

through (2.13). is analytically solvable. Mikhuilov (1977) mentioned that this system is 

not always unifomly convergent and needs to be split to obtain uniformly-convergent 

systerns. The following substitution is made into Eqs. (2.1) and (2.9) through (2.13) to 

make the conditions at the extreme boundaries, given by Eqs. (2.10) and (2.1 l), 

homogeneous: 

This results in three sets of simpier problerns in L, ,, Ln , and 8, that are expressed in 

Eqs. (2.16), (2.17) and (2.18), respectively, as follows: 



subject to the boundaiy conditions, 

for i = 2 to 11. 

subject to the boundary conditions, 



for i = 2 to n. 

and 

where, 

subject to the boundary conditions, 



for i = 2 to n. 

and the initial condition, 

e,(x,, O ) =  pmD - Lo, (x0) (O)  - L,, (x,) fa@) ............... .. ......................... (2.1 8g) 

The extreme boundary conditions in 8 , ( x D ,  ID), expressed by Eqs. (2.18~) and (2.18d), 

are homogeneous. This development has made the system in 8 , ( x D ,  t,), expressed by 

Eqs. (2.18a) through (2.18g), simpler than the system in p, D ( ~ D ,  tD), expressed by Eqs. 

(2.1) and (2.9) through (2.13), from the solution point of view. 

(b) Solution of Sets of Equations 

Soiution of L,, 

The general solution to Eq. (2.16a) is given by : 

Substituting Eq. (2.19) into the boundary and interface conditions, given by Eqs. (2.16b) 

through (2.16e). it follows that, 



The coeflicient vector, (SL O } ,  is computed from the solution of the linear system of 

equations, given by Eq. (2.20). 

The general solution to Eq. (2.17a) is given by: 

......................................................................................... L,,(x,) = A,, x, BR,. . .(2.22) 

Substi tuting Eq. (2.22) into the boundary and intedace conditions, given b y Eqs. (2.1 7b) 

through (2.17e). it follows that, 

where, 



The coefficient vector, (& .), 

equations, given by Eq. (2.23). 

............................... A,, B,,} ...( 2.24b) 

J (2 .24c) .................................................................. 

is computed from the solution of the linear system of 

The procedure for solving for 8, involves the use of an integral-uansform technique and 

will be explained in the following steps: 

fi) Developrnent 4 an in tegral-tram form pair 

Let us represent O,(xD, tD), as defined in the region within the mth cornpartment, R ,  in 

tems of the eigenfunctions, yr,,, I(xD, hl), in the form as follows: 



The eigenvalue problem corresponding to the set of differential equations, given by Eqs. 

(2.18a) through (2. Hg), is developed upon separating the space and time variables in the 

homogeneous version of these equations. Therefore, the set of separated equations in 

tems of the space variable is referred to as the eigenvalue problem with an eigenvalue as a 

parameter and is given as follows: 

with the following boundary conditions: 

where X is an eigenvalue and v, is an eigenfunction at the mth cornpartment for z = 2 to n. 

The eigenfunction, y,, of this eigenvalue problem should satisfjr the following condition 

of orthogoaality: 



where the nom, NI, is defined as: 

Multiplying both sides of Eq. (2.25) by a, q, v, and integrating over R,, then 

summing up the resulting expressions over al1 the compartments, it follows, 

With Eqs. (2.3 l), (2.32) and (2.33), it can be s h o w  that, 

From Eqs. (2.25) and (2.34), one finds, 

From Eq. (2.35), the integral-transfom pair is written as: 

Inversion formula: 

Transformatio~~ formula: 



(ii) Integral transformation of dvferential equations ulong with associated condirions 

Multiplying both sides of Eq. (2.18a) by a, y, 1 drD and integrating over R,,,, then 

summing up the resulting expressions over al1 the compartments, one finds, 

The first term in Eq. (2.38) is expanded using Green's theorem, and then the values from 

Eqs. ( 2 . 1 8 ~ )  through (2.189 and (2.26) through (2.29) are substituted into it. The second 

term is simplified with the substitution of Eq. (2.18b). Then, Eq. (2.37) is substituted on 

both sides of the simplified Eq. (2.38) which follows as: 

where, 

Taking the integral transformation o f  the initial condition, given by Eq. (2.18g), one gets, 





Equations (2.44). (2.4%) and (2.45b) have been set up in such a way that v:, and 

represent the values of v,, at X, and Xm+l respectively. The derivative of both sides 

of Eq. (2.44) with respect to x~ is written as: 

where, 

Substitution of Eqs. (2.44) and (2.46) in the boundary conditions, expressed by Eqs. 

(2.26) through (2.29), results in a system of homogeneous, linear equations in y:, and 

w:,. This system of equations is written in matnx notation as: 

where, 



with 



and {O) is a (2n X 1 )-nul1 vector. 

To get a nontrivial set of the coefficients, and the corresponding coefficient 

matrix, described by Eq. (2.49a), has to be singular. That means, 

Equation (2.50) resuits in a transcendental equation which cm be solved for positive 

eigenvalues, hl, by a suitable method. However, in this study, the modified regula falsi 

method has been used to get a good estimation of the eigenvalues which are Iater used as 

an initial guess to compte the corresponding eigenvalues with more accuracy using 

Newton's method (Borse, 1985). The number of eigenvalues to be caiculated is dependent 

on the desired level of accuracy of the computed solution. Then, with each of these 

eigenvalues, the system of hornogeneous, linear equation, given by Eq. (2.48), is solved 

for the coeficient vector, {Y}. From these known coefficients, the eigenfunctions are 

computed frorn Eq. (2.44). 

Substituting Eqs. (2.19), (2.22) and (2.42) in Eq. (2.1 S), the expression for dimensionless 

pressure at the mrh cornpartment takes the fom as follows: 



2.2.3 Summary of the Solution Procedure 

The following is a summary of the solution procedure: 

(i) Solve for the coefficient vecton, ( SL 0 )  and {S' .) h m  Eqs. (2.20) and (2.23), 

respectively . Thus, the coefficients, A. ,, Bo ,, A., and B. ,, become known; 

(ii) Determine the first available positive eigenvalue, XI, from the transcendental equation 

(2.50); 

(iii) Determine the coefficient vector, { Y), from Eq. (2.48) and the nom from Eq. (2.3 1 ) 

corresponding to a calculated eigenvalue; 

(iv) For a given set of xD and ID, evaluate p, D (or its denvative as the case may be) from 

Eq. (2.51); 

(v) Determine higher positive eigenvalues from Eq. (2.50) and include their resulting 

contributions to p, D (or its derivative) in Eq. (2.5 1) following steps (iii) and (iv). Also 

keep cornparhg the contribution to Pm D (or its derivative) due to each additional 

eigenvalue with the desired level of accuracy; 

(vi) When the desired level of accuracy is met, stop calculating eigenvalue and report the 

value ofpmD (or its derivative). 

2.2.4 Computer Program for Numerical Values 

A computer program incorporating the solution scheme descnbed in Section 2.2.3 has 

been developed in FORTRAN 77 for the purpose of generating numencal values from the 

solution developed in this Chapter. The complete source code and a sample data file are 



presented in Appendix A. This program has a number of Subroutines and Subroutine- 

Subfunctions which are coordinated by the Main Program. Typically, it takes less than 30 

seconds to run the program for a C c o m p m e n t  system in the "Numencal Server" 

(RS/6000 Mode1 59Hs, 66.7 MHz) at the University of Alberta. 

2,2.5 Determination of Cumulative Flux at an Interface 

The dimensionless influx rate, CD at the ith interface, beîween two compartments as a 

fùnction of b c m  be evaluated by substituting Eq. (2.51) into Darcy's equation for one- 

dimensional, linear flow through porous media. It follows as: 

The dimensionless cumulative influx, Qc, &), over a dimensioniess p e n d  of t ,  is given 

Substituting the value of CD (T) fiom Eq. (2.52) into Eq. (2.53) and evaiuating the integrai, 

one gets, 



2.2.6 Special Cases 

The general solution for dimensioniess pressure, given by Eq. (2.5 l), needs modification 

for some particular cases. These are discussed below: 

(a) Neumann-type Boundary Conditions: 

Ozisik (1980) mentions that when the conditions at both extreme boundaries are of the 

Neumann-type, ko = O is also an eigenvalue. This kind of situation would anse when both 

extreme boundaries are closed or when one b o u n d q  is closed and the other is producing 

at a specified rate. In this case. we have. b = <, = O. But the expression for 0, in Eq. 

(2.43) is valid for positive, non-zero eigenvalues. Therefore, Equation (2.43) needs to 

include an additional t m  due to the zero-eigenvalue. The zero-eigenvalue corresponds to 

an eigenhnction. v, o. which is equal to E,, a non-zero constant. 

Multiplying both sides of Eq. (2.18a) by a, E, dyD and integrating over R,. then 

surnrning up the resulting expressions over al1 the compartments, one fmds. 

Substitution of the values from Eqs. (2 .18~)  through (2.180, (2.26) through (2.29) and 

(2.37) in an expanded forrn of Eq. (2.53) results in im ordinary diffaential equation. The 

initial condition to this ordinary differential equation is set up by taking the integral 

transformation of the initial condition, given by Eq. (2.18g). The solution to this initial- 

value problem is given by, 



where, 

Therefore, a final form of 8, that includes the zerwigenvalue condition becomes, 

where, 

The evaluation of the integral in Eqs. (2.43) and (2.59) requires prior knowledge of the 

functional dependence of q, on t (that is, q, 1, on tD). Horne (1990) suggested that a 

continuously varying flow rate can be dealt with by treating each data point as a smail 



stair-step of constant rate. However, this idea can be extended to any other time- 

dependent extrerne boundary conditions including time-dependent pressure at a boundary. 

Mathematically, this stair-step variation of a variable can be treated conveniently when 

represented by a Heaviside unit-step function as illustrated in Section 1.6, Chapter 1. 

(5) Pe$ect Comnutnication ot on Interface: 

In the absence of a skin at the ith interface, the adjoining compartments become perfectly- 

communicating. Thus, we should consider the limiting condition as si + O. This modifies 

the interface boundary conditions, given by Eqs. (2.12) and (2.13), to the following fom: 

and 

This also changes the other equations related to interface conditions. Thus, 

Equations (2.16d) und (2.16e) are modjed  to: 

and 



EqÜatiuns (2.1 7 4  and (2.1 7e) are modjied to: 

and 

Epatiom (2.18e) and (2.18J are mod1f7ed 20: 

and 

mid Eqrrations (2.29) and (2.30) me modped 10: 

and 

Accommodating the above changes into the solution would simulate the situation of no 

skin at an interface. 



(c) Resence of a Non-eommuriicating Fadt at an Interface: 

If there is a non-communicating fault present at an interfice, we take the lirnit as si + 

in the interface conditions. Hence, the condition at the ith interface, given by Eq. (2.13) 

takes the following form: 

The above condition forces the corresponding interface conditions in Lo ,, L, ,, B, and v, to 

change into homogeneous, Neumann-type conditions. Accommodating the above changes 

into the solution would simulate the situation of a non-communicating fault at an 

interface. 

2.3 Validation of New Solution 

The new analyticd solution developed in this study has been vaiidated by cornparhg the 

transient data for homogeneous and composite systems with those generated from the 

solutions available in the literature. In al1 the solutions generated in this study, each 

compartment has been assumed to have a distinct and uniform initial pressure. The 

dimensions of each compartment dong the planes perpendicular to the direction of flow 

have been considered uniform. Also the dimensioniess parameters are based on the first 

compartment as the reference compartment, and the initial pressure as the reference 

pressure @,). In al1 cases of mode1 validation, the inner boundary is located at x, = O and 

the outer boundary is located at x, = 1. Transient data for a homogeneous system from 

the new solution have been generated by considenng identical rock and fluid properties in 

each compartrnent of a compartmentalized system. Timedependent, stair-step varying 



conditions are considered in this solution using the Heaviside unit-step function following 

the approach illustrated in Section 1.6, Chapter 1. 

Figure 2.2 illustrates a comparison of the solution of this study with that of Nabor and 

Bmham (1964) for a homogeneous system with no skin present at the interfaces. An 

excellent match for a two-rate flow condition at the inner boundary and a closed outer 

boundary has been obtained. The Nabor and Barhum (1964) solution was used in 

conjunction with the application of the pnnciple of superposition to deal with iiis 

variable rate situation. 

Figure 2.3 shows a comparison of dimensionless cumulative influx due to a constant, 

dimensionless pressure at the imer boundary while the outer boundary is closed for a 

homogeneous system with no skin at the intefiaces. The definition of dimensionless 

pressure used in this study has been modified to the following form to have it comparable 

with that of Nubor and Barhom (1964) for the case of a constant pressure at the inner 

boundary : 

where, p,(O, t )  is the pressure maintained at the inner boundary for r > O. For this 

panicular case, the definition for dimensionless cumulative influx, Q, D, at the inner 

boundary, x~ = 0, becomes, 

where Qc is defined in the same way as Q c m  in the Nomenclature. The above definition is 

used for both the new solution and that of Nabor and Earham (1964). The comparison in 

Fig. 2.3 also shows an excellent match. 



." ""Y " """' " """' " """' " """' " "' 
- - This study 

C 

Nabor and Barham (1961) - 
with superposition 

C - 

- - - - - 
- - 
- - - 
- - 
- - - - - 

d 

- - 
- - - 
- - 
- - 

Io-* IO-' l@ 1 O' 102 id 10" 

I D  
Figure 2.2: Two-rate flow condition at the inner boundary and 
closed outer boundary in a homogeneous systern. 
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Figure 2.3 : Cornparison of dimensionless cumulative influx at the 
constant pressure inner boundary while the outer boundary is 
closed. 



Figure 2.4 shows a cornparison of buildup behavior of a homogeneous system with no 

skin at the interfaces. In this case, a p e r d  of production is followed by a shut-in period 

while the outer boundary is maintained at a constant, dimensionless pressure. This also 

shows an excellent match of the data from Nabor and Burham (1 964) with the data from 

the new solution. As before, the solution of Nabor and Bmham (1964) has been used 

with the application of the principle of superposition. 

Figures 2.5 and 2.6 show cornparisons of the solution from this study with that of a 

modified form of the work of Ambatha and Sogeev (1987). The solution of this study 

belongs to the case of constant dimensionless-rate production at the imer boundary and 

constant dimensionless-pressure at the outer boundary. The solution of Ambasth and 

Sageev (1987) has been modified to consider the outer boundary at a finite distance and to 

keep this at a constant pressure. Figure 2.5 shows the transient-pressure responses for a 

homogeneous, two-cornpartment system with a skin boundary located at XD = 0.1 for 

skin-factors, s, = 100, 1000 and 10000. This shows an excellent match. Figure 2.6 

compares the dimensionless transient-pressure responses for a two-region, composite 

system with a skin boundary located at x~ = 0.1 for skin-factors, s, = 100, 1000 and 

10000. Two distinct mobility ratios, Ml = 1 and M2 = 5 have b e n  used for the two 

regions. Each of these cornparisons atso shows an excellent match. 



Figure 2.4: Shut-in followed by production at the inner boundary and 
constant pressure at the outer boundary. 
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Figure 2.5: Cornparison of the dimensionless pressure at the 
producing boundary of a homogeneous system with the 
modified solution of Ambastha and Sageev (1987). 
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Figure 2.6: Cornparison of the dimensionless pressure at 
the producing boundary of a composite system with the 
modified solution of Ambastha and Sageev (1 987). 



2.4 Scope of the Mode1 

In this study, a generalized transient solution for an n region linear, compartmentalized 

system has been developed. Each compartment is allowed to have distinct rock andor 

fluid properties. Aiso, each compartment may have distinct physical dimensions 

provided it still maintains the linear character of flow. The conditions at the externe 

boudaries may need adjustment with tirne as a result of the way a compartmentalized 

system produces. In addition, the production rate from a c o m p m e n t  may not be kept 

at a constant value. The proposed solution has been generalized by allowing the extreme 

boundary conditions and the production rate dirough a line-sink in each compartrnent to 

be time-dependent. Thus, this solution is capable of dealing with a tirne-dependent 

situation directly. Conventionally, this kind of tirne-dependent situation is dealt with by 

the use of the principle of superposition andor Duhamel's theorem. Corqciogh et al. 

(1983) mention that various types of boundary conditions cm be encountered in the field, 

depending on the gdogical conditions. Considenng the extreme boundary conditions as 

the Cauchy-type for the new solution has a number of advantages. This type of boundary 

condition is applicable in confineci or phreatic aquifers in contact with a clogged bed 

(Bear, 1972) and also when a linear system communicates fiuid with an adjoining region 

through a partially-communicating fault. Also, the Cauchy-type boundary condition can 

easily be rnodified to the Dirichlet- or the Neumann-type boundary condition as a specid 

case. The Dirichlet-type condition applies to speciQing the pressure at a boundary while 

the Neumann-type applies to speciQing rate and to the condition of no-flow. Therefore, 

the Cauchy-type boundary condition that has been adopted in this study is general in 

nature and can be modified easily to conform with various types of problems encountered 

in the field. 

The inclusion of property contrasts in the compartments and skin factors at the interfaces 

permits one to investigate complicated scenarîos of heterogeneity in a linear system. 

Conventionally, transient responses of an aquifer are studied based on the assumption 

that the reservoir-aquifer interface is either at a constant pressure or producing at a 



constant rate. In this kind of analysis, the transient behavior of the reservoir is negiected. 

However, the new solution can be us& to study the transient behavior of an entire 

reservoir-aquifer system which predominantly maintains a linear character of flow. 

2.5 Example Problerns 

It is very important to estimate the cumulative water influx into a reservoir from an 

adjoining aquifer for material balance purposes. Any error in the cumulative water influx 

will result in an error in the estimation of the initial oil in-place and in the projected future 

performance of the reserv-oir. In this section, a number of example problems are studied 

with the new analytical solution to check on the validity of certain conventionally- 

accepted simpliQing assurnptions in the calculation of cumulative water influx. In these 

assumptions the transients and compressibilities in the reservoir are neglected while 

calculating the cumulative water influx through the reservoir-aquifer interface (Cr@ et al., 

1991). These assumptions lead to a situation where the pressure responses at the 

reservoir-aquifer interface are the sarne as those at the producing boundary of the 

reservoi r. Thus, the transient-pressure behavior of an aqui fer is and y zed assuming that 

the reservoir-aquifer interface is at a constant pressure or that the aquifer is replenishing 

the reservoir at a constant rate. Earlozrgher (1 977) pointed out that the reservoir-aquifer 

interface, in practice, is generally neither at a constant pressure nor replenishing the 

reservoir at a constant rate. However, with the use of the new solution of this shidy, it is 

possible to include the transients and compressibilities of the reservoir to calculate the 

cumulative water influx. 

Figure 2.7 shows a schematic of a reservoir-aquifer system. The reservoir-aquifer interface 

is located at xD = X2 D. The adjoining aquifer is considered to have two regions with 

diKerent rock and fluid properties. For d l  the example problems discussed in this section, 

it is considered that the inner boundary is located at XD = O and that the outer boundary is 

located at XD = 1. 



Figure 2.7: Schematic of a reservoir-aquifer system. 



First, a reservoir-aquifer sy stem is considered with the following properties or 

parameters: 

Here, multiple, dimensionless production-rates at the imer boundary and a constant, 

dimensionless pressure at the outer boundary are considered. Figure 2.8 shows a stair- 

step variation of dimensionless rate at the inner boundary with dimensionless time. The 

outer boundary always maintains the initial pressure. The finite aquifer is considered to 

have two compartments with contrasts in rock and fluid properties. The dirnensionless 

cumulative influxes, Q, , at the inner boundary and Q, at the reservoir-aquifer 

interface are computed and are shown in Fig. 2.9. Conventionally, the cumulative influx 

through the reservoir-aquifer interface in this kind of situation is cornputed assuming that 

the water-influx rate is qua1 to the production rate at the imer boundary neglecring any 

possibility of the effects of transients and compressibilities in the reservoir. However, the 

coincidence of Q, 1 with Q, 2 D in Fig. 2.9 within 1% demonstrates the validity of this 

assumption despite the presence of transients at the reservoir-aquifer interface due to the 

variable dirnensionless production rate at the inner boundary. 

Another reservoir-aquifer system is considered with the following properties: 

In this case, the inner boundaq is producing at a vaiable dimensionless pressure and the 

outer boundary is closed. Figure 2.10 shows the cornparison of the stair-step variation of 

dimensionless pressure at the imer boundary due to production and the corresponding 

dimensionless-pressure response at the reservoir-aquifer interface. Also the dimensionless 

cumulative infiuxes are calculated at the inner boundary and at the reservoir-aquifer 

interface with dimensionless time and then plotted in Fig. 2.11. Conventionally, the 



Figure 2.8: The variation of flow rate at the inner bound-. 
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Figure 2.9: Comparison of dimensionless cumulative influxes 
at the inner boundaiy and the reservoir-aquifer interface. 



Figure 2.10: Comparison of dimensionless pressures at the 
inner boundary and reservoir-aquifer interface. 
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Figure 2.1 1 : Comparison of dimensionless cumulative influxes 
at the inner boundary and the reservoir-aquifer interface. 



cumulative influx at the reservoir-aquifer interface in this kind of situation is considered to 

be qua1 to the cumulative production at the imer boundary, neglecting the effects of 

transients and compressibilities in the reservoir. Hg. 2.1 1 shows that there will be an 

error of 8.4% near b = 1, if the transient and compressibility eflects in the reservoir are 

negl ected. 

Finally, homogeneous rock and fluid properties, and dimensions in a reservoir-aquifer 

system are considered. The inner boundary is considered to be producing at a constant 

dimensionless pressure of pl D (0, b) = 1. The corresponding dimensionless-pressure 

response at the reservoir-aqui fer interface is shown in Fig. 2.1 2. The dimensionless 

cumulative influxes at the inner boundary and at the reservoir-aquifer interface are 

compared in Fig. 2.13. This plot shows that at the flow cut-off point (near t~ = l), there 

will be a 5% error if the transient and compressibility effects of the reservoir are 

negiected. 
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Figure 2.12: Dimensionless pressure response at the 
reservoir-aquifer interface for a homogeneous system. 
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Figure 2.13: Cornparison of dimensionless cumulative 
influxes at the imer boundary and the reservoir-aquifer 
interface for a homogeneous system. 



CHAPTER 3 

TWO-DIMENSIONAL FLOW SYSTEM 

3.1 Introduction 

The model for a linear, one-dimensional flow systern developed in Chapter 2 may not be 

able to describe an areally-compartmentalized system adequately. This can happen when 

an areai system is not narrow enough to have predominantly linear flow of fluid. An areal 

comparunentalization is observed due to the presence of partiallycommunicating faults 

and turbidite lobe interfaces (Stewm and Whaballa, 1989). Such a system may be 

dominated by two-dimensional fiow. In this Chapter, an analytical transient-pressure 

mode1 for two-dimensional compartrnentalized systems will be developed. 

There are a number of papers available in the literature on the transient-pressure behavior 

of rectangular reservoirs. Errrlmgher et al. (1968) generated the pressure responses at 

different locations for various rectangular systems and well locations. k e y  and Cobb 

(1971) developed a general pressure buildup theory for a well in closed drainage areas of 

any shape. Kumar and Ramey (1974) presented the methods for drawdown and buildup 

analy sis for a well inside a square with constant-pressure boundaries. These authors also 

showed how to masure the average pressure at any time during shut-in when the 

reservoir boundaries are maintained at a constant pressure. 

There are a few shidies reported on twodimensional composite systems. Of these, Y d e y  

(1987) presented a mathematical model for a homogeneous system with a linear, partially- 

communicating fault of finite thickness and finite conductivity. Ambastha et cil. (1989) 

extended the work of Ymley (1987) and developed a more generalized, analytical, 

mathematical model for a composite system of two regions with property contrasts and 

separated by a boundary skin. These authors developed the solutions for transient- 



pressure behavior for a line-sink well producing at a constant rate using a Fourier 

transformation in one space-variable and Laplace transformations in the other space- 

variable and time-variable. Kuchuk and Habashy (1 992) ob tained anal ytical solutions for 

transient-pressure responses in the Laplace-space domain for a laterally-composite 

system with a finite number of My-communicating zones, each of which is of a constant 

cross-sectional area and para11 el to the interfaces. In these solutions, these authors 

considered the property contrasts and that the production is through a single well located 

in one of the zones. Butler and Liu (1991) developed a serni-analyticai solution for a 

three-region composite systern to s ~ d y  aquifers with property contrasts using the 

Laplace-transform technique. These authors also generaîed both drawdown and 

drawdown-derivative responses for aquifer systems with different rock and fiuid 

property contrasts. 

3.2 Development of the Analytical Solution 

An analytical solution for transient pressure will be developed here. The resistance to 

fluid communication between any two neighboring compartments is specified by a skin 

factor. The presence of this skin is meant to cause an extra pressure drop at an interface 

between two cornpartments simulating the effect of the presence of a low-pexmeability 

barrier or a partially-communicating fault in between two hydraulicaily-communicating 

compartments. Partial differential equations wiîh appropriate initiai and boundary 

conditions are set up starting from diffisivity equations describing two-dimensional flow 

through porous media The partial differentiai equations are solved by an integrai- 

tram form technique for fini te, composite domains, following the ideas of Etle (1 965), 

Title and Robinson (1965) and Padovm (1974). The kernel hnctions of the integral 

transformation are developed by solving an eigenvalue problem which has been developed 

from the homogeneous version of the partial differential equation in hand. The goveming 

partial di fferential equation for a cornpartment has three independent variables: two space 



variables and one tirne variable. Integral transformation with respect to the space-variables 

removes the spatial dependence of the partial differential equations. Thus, a partial 

differential equation transfonns into an ordinary differential equation with time as the 

only independent variable with the eigenvdues as the parameters. 

Let us suppose that there are n compartments in a compartmentalized system. The 

amount of fluid communication between any two neighboring cornpartments is specified 

by a skin factor. Definition of this skin factor has been illustrateci in Section 1.6, Chapter 

1. In the following Sub-Sections, an analytical solution will be developed step by step. 

3.2.1 Setting up Governing Differential Equations 

We consider a compartmentalized reservoir in a finite region, R, bounded by a surface, 

aR,, and divided into ~1 finite subregions or compartments, R, with i = 1 , 2, 3 ,......., n. 

Each compartment may have distinct rock or fluid properties. There are N, , fully- 

penetrating, line-sink weils in R, producing at time-dependent rates. Kamal and Hegeman 

(1988) pointed out that the multiple-well tests provide information about reservoir 

characteristics such as permeability, porosity, communication between wells, and 

reservoir heterogeneity. Any compartment, R,, is hydraulically communicating with at 

most four adjacent compartments. A general configuration like this is shown in Fig. 3.1. 

However, for the sake of mathematical generality, let us suppose that cornpartment R,, is 

communicating with adjacent (along the x-axis) cornpartment R,, through the interface 

boundary, aR,,, and with another adjacent (along the y-axis) compartment, Rn, through the 

interface boundary, 34,. Compartment R, may have extreme boundaries, aR,# and MW,. 

A dimensionless form of the difisivity equation for the flow of a singie-phase, slightly- 

compressible fluid with a constant compressibility through an anisotropic and 



lith cornpartment 1 1 jth a>rnpartmentl 

Fipre 3 .1  : Schemat ic illustrating the geometry of a two-dimensional, 
areally -camp art mentdized sy stem. 



homogeneous porous medium in the zth cornpartment which is producing through Nw , 

fully-penetrating line-sink wells is given by: 

The initial and boundary conditions are prescribed as: 

(a) initial condition: 

(b) boundary conditions: 

(i) at an extreme boundary parallel to the y-axis, aR,,, 

(ii) at an extreme boundary parallel to the x-mis, aR,,, 

(ii i)  at an interface parallel to the y-mis, a& 



(iv) at an interface parallel to the x-axis, aR,,,, 

I 
............................................................. - - [PD - P ~ D ] & ~  = art [el_ 

sr, 

where the dimensionless variables are defined as: 

- P,D - k? hP ........................................................................................ @, - p,) 
4, CI, BP 



dE'(ro)= dm'(r) /qp ..................................................................................................... (3.19) 

where the subscript, p. refers to a reference compartment or a reference parameter. 

The mathematical formulation described above has considered variations of dimensionless 

pay thickness. In this case, there is an underlying simplification that assumes that the 

variation of dimensionless pay thickness does not lead to predominantly three- 

dimensional flow. Specieing a uniform pay thickness for each cornpanment would 

guarantee two-dimensional flow. The conditions at the extrerne boundaries expressed in 

Eqs. (3.3) and (3.4) are of the non-homogeneous, Cauchy-type which allow for any 

possible situation of partial communication at those locations. However, the parameters 

for the conditions at the extrerne boundaries, y,,, L,, y,, and L,, , in Eqs. (3.3) and (3.4). 

c m  be chosen in such a way that these equations take w e  of the appropriate conditions 



due to partial communication or the presence of skin at the extreme boundaries. These 

parameters can also be set to O or 1 to obtain the conditions at the extreme boundaries as 

the Dirichlet- or the Neumann-type. Also, the tirnedependent functions, f, ,(tD) and f, 

,(rD) in Eqs. (3.3) and ( 3 4 ,  respectively, allow for specifying any time-dependent 

conditions at the extreme boundaries. Thus, the mathematical formulation described b y 

Eqs. (3.1) through (3.8) deais with time-dependent variations of production rates and 

extreme boundary conditions direct1 y. 

3.2.2 Solution of Differential Equations 

An integral-transform techni que for finite, composite domai ns, based on the theory and 

technique as developed by Title (1 965), firie and Robinson (1965). and Padovatz (1 974), 

will be used to develop an analytical solution of the set of equations in the following 

steps : 

Develupinent of integral-tranFfrm pair 

To develop the integral-transform pair, it is necessary to define the corresponding 

eigenvalue problem S. Fol1 owing the similar procedure for one-dimensional flow described 

in Chapter 2, and also by Padavm (1974), two sets of eigenvalue problems with the Ith 

eigenvalue as a parameter can be developed by separating variables of the homogeneous 

version of the set of goveming differential equations listed above as follows: 

x-direction eigenvahe prob Iem 

where, 



with the boundary conditions: 

.............................................. ............................. Y,, - - L, u,, - O .. (3.22) 
L 1% - 

ydirection eige~lvahe pro blem 

where, 

with the boundary conditions: 



The functions, Il, &) and V,  &,) are Zfh eigenfünctions for the ith cornpartment in the x 

and y directions, respectively. Title (1 965) and TMe and Robinson (1965) mention that the 

eigenvalue problems for the x- and y-directions described above are related by the 

condition of identical time-behavior of dimensionless pressure on both sides of an 

interface which is given as follows: 

Salt (1983 a and b) also endorsed the above relationship (Eq. (3.30)) between eigenvaiues 

in the x- and y-directions. Following the similar procedure descîibed by Pudovan (1 974). 

one has the following i ntegral-transform pair: 

where, 



(ii) Integrai transforman'on of diflêrential equaiions olong wirh rlreir conditions 

Multiplying both sides of Eq. (3.1) by (I, 1 Y ,  1 djc, dyD and integrating over R, and then 

summing up the resulting expressions over al1 compartments, one gets, 

The first two terms of the above equation are simplified by using Green's theorem. Then 

substituting the values from Eqs. (3.3) through (3.8), (3.20), (3 -22) through (3.25), (3.27) 

through (3.30) and (3.32) in Eq. (3.34), it can be shown that, 

where, 



A detailed procedure for the above step that leads to the development of an initial value 

problem upon integral transformation is described in Chapter 2. The parameter hl in Eq. 

(3.36) is the same for each cornpartment; therefore, Eqs. (3.30) and (3.36) are identical. 

Both of these equations ensure that the time-behavior of the dimensionless pressure at 

either side of an interface is identical on the assumption that the skin boundary does not 

have any storage. 

Taking the integral transformation of the initial condition, Eq. (3.2), one gets, 

We now have an initial-value problem with an ordinary differential equation, &en by Eq. 

( 3 . 3 9 ,  with an initial condition, given by Eq. (3.38), as a result of an integral 

transformation of the space variables. The solution of this initial-value problem is given 

by 3 

(iii) Inversion 

- 
p, , (2,) from Eq. (3 -39) is inverted into p, ,(xD y,, 1,) using the inversion formula, Eq. 

(3.3 l), as follows: 



Before carrying out the above inversion process, it is required to have calculated a number 

of eigenvalues of the system. Computation of eigenvalues is discussed in the next step. In 

general, the rate of convergence for smming up the series in Eq. (3.40) is very high. The 

number of eigenvalues or the number of ternis required in the senes is dependent on the 

desired level of accuracy . 

(iv) Computation of eigenvalues and eigen functions 

Fira we need to evaluate the Zth eigenvalues, 8,1 and o, b for each cornpartment (i = 1, 2, 3, 

4,. ... n) in order to determine the corresponding eigenfunctions, U, and V,  l .  According to  

MiWlailov and Kvfchar~ov (1983) and Cotm (1993), the general expressions for these 

eigenfunctions are the generai solutions to Eqs. (3 -20) and (3 .X), respectively , as fol1 ows: 

where, 



.Msq Ur, and are the values of Ll, &) at XD = X; D and X,,, D, respedvely, and, vt; 

and VI; are the values of V,  b) at y~ = Y ,  D and Y,,, D, respectively. 

The substitution of Eqs. (3.4 1) and (3 .42)  in the boundary conditions for the x-direction 

eigenvaiue problem (Eqs. (3 -22) through (3 -24)) and for the y-& rection eigenvalue problem 

(Eqs. (3.27) through (3.29)) results in two systems of linear, homogeneous algebraic 

equations in q, and LI:,, and V,; and q, respectively, with the eigenvalues as 

parameters. Thus, a two-dimensional eigenvaiue problem in this study has been converted 

into two one-dimensional eigenvalue problems related by the condition expressed by Eq. 

(3.30). For n compartments, there are Zn of the W eigenvalues to be calculated. There are 

also 2.n non-linear equations available for the purpose of calculating the 2n eigenvalues. Of 

these 2n equations, there are (n - 1) equations due ro the continuity of the time- 

independent behavior at an interface-boundary and the other (n + 1) equations are fiom 

the conditions of non-trivial values of eigenfunctions (Rahman and Ambusth, 1996a). 

Padovan (1974) mentions that the positive roots of this sirnultanesus system of 

equations are the eigenvalues and that they can be computed by using a suitable method. 

In this study, a rnodified regula falsi method has been used to get a good estimation of the 

eigenvalues which are later used as an initial guess to compute the corresponding 

eigenvalues with an assigned accuras, by uang Newton's method (Borse, 1985). Since 

the mathematical mode1 developed in this study is an extension of that for the one- 



dimensional 80w situation described in Chapter 2, a similar procedure has been followed 

here to calculate the eigenvalues and eigenfunctions. 

The forma1 solution to the set of Eqs. (3.1) through (3.8) is aven by Eq. (3.40). This 

solution is subject to accommodation of changes corresponding to certain special cases 

which will be discussed later in Section 3.2.7. 

3.2.3 Cornputer Program for Numerieai Values 

A cornputer program incorporating the solution scheme described in Section 3.2.2 has 

been developed in FORTRAN 77 for the purpose of generating numerical values of the 

solution developed in this Chapter. The complete source code and a sarnple data file are 

presented in Appendix B. This prograrn has a number of Subroutines and Subroutine- 

Subfunctions which are coordinated by the Main Program. Typically, it takes about 5 

minutes to run the prograrn for a 4-cornpartment system in the "Numerical Serve?' 

(RS/6000 Mode1 59Hs, 66.7 MHz) at the University of Alberta. 

3.2.4 Average Cornpartment Pressure 

The expression for the volumetnc average dimensionless pressure in the izh compartment 

as a fùnction of dimensionless time is given by : 

where, 

4 = (X,,,. - X,.) (r+, - Y,.).... ......................................-......... ....-..-.....-....-.......( 3.48) 
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Substituting the expression for p, D from Eq. (3.40) in Eq. (3.47) results in the following 

expression, 

w here, 

The expression for dimensionless average pressure in the irh compartment shown in Eq. 

(3.49) has considered dirnensionless pressure in that compartment based on extreme 

boundary conditions of the Cauchy-type. However, similar expressions for average 

dimensionless pressure with any other type of conditi~ns at the extreme boundaties can 

be shown by taking care of the appropriate changes in the expression for dimensionless 

pressure which will be discussed later. 

3.2.5 Cumulative Influx through an Interface 

Following a sirnilar approach to that described in Chapter 2, the expression for the 

dimensionless cumulative influx through an interface at aR, as a function of dimensionless 

time is given by: 



where, 

In Eq. (3.53), the flow of fluid from the jth cornpartment to the ith compartment has been 

considered positive. Therefore, a positive value of the cumulative influx, Q, (tD), will 

mean that the net flow has been from thejth compartment to the ith compartment. 

It is also assumed that d i  compartments have been at a unifom, initial pressure prior to 

going on production. Subnituting Eqs. (3.40) and (3.53) into Eq. (3.52)- one gets, 

where, 

An expression similar to Eq. (3.54) can be shown for the dimensionless cumulative influx, 

Q,nD, through an interface parallel to the x-axis, aR,,. 

3.2.6 Relationship between Skin Factor and Barrier Transmissibility 



Fox et al. ( 1  988) and Stewart and Whaballa ( 1  989) gave the expression for the rate of fluid 

that cornmunicates between ith and jrh compartrnents as: 

The above definition neglects the interna1 resistance to flow in each cornpartment (Stewart 

and IyhabaIZa, 1989). But the barrier resistance in the form of a skin factor as used in this 

study does not impose any limitation on the intemal resistance to flow within any 

cornpartment (Rahman and Ambastha, 1996b). However, there is a relationship between 

the skin factor at an interface as used in this study and the b&er transmissibility defined 

by Fox et al. (1988) and Stewart and WhubaZla (1989). This relationship is given by: 

where [p,  - defines the diff'rence in pressures between the ith and jfh cornpartrnents 

across an interface parallel to the y-axis, a&,. Equation (3.57) c m  be rearranged to obtain 

the following dimensionless forni: 

where, 



Expressions similar to Eqs. (3.57) and (3.58) can be obtained for the relationship between 

c,, and si,, due to fluid communication through an interface parallel to the r-mis. a&. 

3.2.7 .Modification of Solution for Special Cases 

The general solution developed above needs modification in some special cases. These are 

discussed below: 

(9 Per/ect communication ut an interface 

If there is a perfect communication at an interface, CR,, we can write. s,, + O. This 

rstablishes the condition of continuity of pressure. Thus, the corresponding interface 

conditions described in Eqs. (3.5) and (3.6) take the following form: 

Subsequent interface conditions for the corresponding eigenvalue problem should be 

updated also to reflect the conditions expressed by Eqs. (3.61) and (3.62). 

(ii) Dirichlet-type conditian at an m e m e  boundary 



When the condition at an extreme boundary is of the Dirichlet-type, the solution as given 

by Eq. (3.40) remains the same (Ozisik, 1980). But the expression for gl in Eq. (3.37) 

needs to be modified. For example, if an exberne boundary parallel to the y-axis in the zh 

cornpartment has the dimensionless pressure specified, then the following changes should 

be introduced: 

Here, y,, = 0, therefore, 

ut, 1 dur, replace - by -- 
Y,, L, asr, 

When the conditions at the extreme boundaries are of both the Cauchy- and the Neumann- 

type, then the expression for p, in Eq. (3.40) remains unchanged (Ozisik, 1980). But 

when the conditions at the extreme boundaries are al1 of the Neumann-type, the solution 

given by Eq. (3.40) needs to be augmented by an arnount p~ ,dd, due to the fact that ho = O 

is an eigenvalue of the system. This means that an additional term correspondiag to the 

zero-eigenvalue has to be added to the solution presented in Eq. (3.40). Here al1 5, ,'s and 

by ,'s are equal to O. The additional tenn corresponding to the zerwigenvalue has becn 

denved following the procedure discussed in Chapter 2 and is presented below: 

where, 



3.3 Validation of New Solution 

It is necessary to validate the new solution to check its arithmetic reliability. Here, the 

new solution developed in this snidy has been validated by cornparkg a number of its 

simplified foms with those available in the literature. 

Figure 3.2 shows the cornparison of dimensionless pressure responses at xo = 0.553, y* = 

0.553 due to a constant dirnensionless production rate of qD = 1 from a well located at a~ 

= 0.52, bD = 0.434. The comparison has been made between the analytical solution for a 

closed, homogeneous rectangular reservoir as developed by Hovanessicm (1961) and that 

from this study. To generate responses for a hornogeneous reservoir from this study, a 

three-cornpartment system with each cornpartment having identical rock and fluid 

properties and the presence of no skin at the interfaces is considered. This comparison 

shows an excellent match. 

Figure 3.3 shows a comparison of the dimensionless pressure responses using the 

solution of Hovanessian (1 96 1) with the pnnciple of superposition and that of this study 

at x~ = 0.5, yD = 0.5 of a closed homogeneous reservoir. The well is located at a~ = 0.2, bD 

= 0.7 producing at three different rates: 
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Figure 3.2: Comparison of dimensionless pressure responses in a 
cIosed homogeneous reservoir. 
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Figure 3 -3 : Comparison of dimensionless pressure responses for a 
3-rate situation in a closed homogeneous system. 



qlD= 1, whileO<iDI 10; 

q 2 ~  = 2, while 10 < iD 1 50; and 

q 3 ~  = 1, while tD > 50. 

The multiple-flow rate situation for this study has been dealt with directly by the use of 

the Heaviside unit-step function while the solution of Hovanessicm (196 1) is used in 

conjunction with the pnnciple of superposition. This shows an excellent match. 

Figure 3 -4 shows a comparison of responses at x~ = OS, y~ = 0.5 where a shut-in penod 

is followed by a flow p e n d  in a closed homogeneous reservoir. The well located at a~ = 

0.2, bD = 0.7 produces at the rate of q~ = 1, while O < t~ S 10. This situation has been 

dealt with as two-rate flow situation and the principle of superposition is used with the 

solution of Hovu~tessian (1961). The comparison made in this plot shows an excellent 

match . 

Figure 3.5 shows a comparison of dimensionless pressure responses at x~ = 0.4, y~ = 0.6 

due to a constant dimensionless production rate of qD = 1 from a well located at a~ = 0.3, 

bD = 0.7. The comparison has been made between the analytical solution for a 

homogeneous rectanguiar reservoir with constant-pressure boundaries as developed by 

Hovanessian (1961) and that from this study. To generate responses for a homogeneous 

reservoir From this study, a three-comparîment system with each cornpartment having 

identical rock and fluid properties and presence of no skin at the interfaces is considered. 

This comparison shows an excellent match. 

Figure 3.6 shows a comparison of the dimensionless pressure responses using the 

solution of Hovonessian (1 961) with the principle of superposition and that of this study 

at x~ = 0.4, y~ = 0.6 of a homogeneous reservoir with constant-pressure boundaries. The 

well is located at aD = 0.3, bD = 0.7 and produces at three different rates: 
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Figure 3.4: Cornpanson of buildup responses in a closed 
homogeneous system. 
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Figure 3.5: Cornparison of dimensionless pressure responses in a 
homogeneous reservoir with constant-pressure boundaries. 
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Figure 3.6: Cornparison of dimensionless pressure responses for a 
3-rate situation in a homogeneous system with constant-pressure 
boundaries. 



q l D  = 1, while O < tDI 10; 

q2 D = 2, while 10 < tD 5 50; and 

q 3 ~  = 1, while g > 50. 

The multiple-flow rate situation for this study has been dealt with directly by the use of 

the Heaviside unit-step function while the solution of Hovonessian (1961) is used in 

conjunction with the principle of superposition. This shows an excellent match. 

Figure 3.7 shows a comparison of responses at x~ = 0.4, yD = 0.6 where a shut-in p e n d  

is followed by a flow period in a homogeneous reservoir with constant-pressure 

boundaries. The well located at a, = 0.3, bD = 0.7 produces at the rate of a = 1, while O 

< f D  5 1. For this situation, the principle of superposition is used with the corresponding 

solution of Hovunessiatz (1961) for the two-rate flow condition. This cornpanson shows 

an excellent match. 

Figure 3.8 shows the semilog derivative and the Cartesian derivative responses due to 

production through a well located at the center of a closed square reservoir. This shows an 

excellent match of the semilog derivative responses with those generated using the 

solution of Hovanessim (1961). From observation of the end of the zero-dope line of the 

semilog denvative responses (that is, end of the infinite-acting penod), as computed ushg 

the new solution, it is inferred that the pseudosteady-state flow starts when tD > 0.1. 

This is confimed here by the observation that the Cartesian denvative line with zero 

slope begins around t~ = 0.1. The study of Ramey and Cobb (1971) observes the onset of 

pseudosteady-state flow at the same dimensionless time based on the area for a closed 

rectangular system. Therefore, this comparison of semilog derivative responses and the 

start of pseudosteady-state penod confimis the validity of the solution developed earlier 

in this Chapter. 
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Figure 3.7: Comparison of buildup responses in a homogeneous 
system with constant-pressure boundaries. 
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in the preceding discussion, a number of simplified cases leading to hmnogeneous systems 

have been compared with the corresponding homogeneous systems. The solution 

presented in this Chapter corresponds to an extension of the solution for the linear, one- 

dimensional systern presented in C hapter 2. The system of partial differential equations 

for a two-dimensional system is essentially similar to that for a one-dimensional system. 

Both systems of equations are solved using the same theory for an integrai-transform 

technique. As s h o w  in Chapter 2, the solution for a one-dimensional system was 

validated with a number of cases involving distinct rock and fluid properties in the 

compartments, with or without skin at the interfaces. Therefore the cornparison of the 

solution for two-dimensional system with the cases of distinct rock and fluid properties 

in the compartments, with or without skin at the interfaces, wouid obviously lead to the 

same conclusion of good matching. 

3.4 Application of New Model 

The new analytical solution developed in this study may be used for understanding the 

transient-pressure behavior of an areally-comp~entalized system. Detecting and 

quantifying the flow units and flow barriers in a compartmentalized system is very 

important for designing development schernes. The new analytical solution is capable of 

providing usefùl information for this purpose. It is dso possible to generate type-curves 

of transient-pressure responses for diagnostic identification of corn partmentalized 

behavior in a reservoir. 

The ability to consider the time-dependence of production rates and extreme boundary 

conditions directiy makes this model more flexible fiom a practical point of view. Also, 

the Cauchy-type boundary condition is a g e n d  way of specieing conditions at an 

extreme boundary which can be modifieci to the Dirichlet- or the Neumann-type as special 

cases. Since this model considers contrasts of rock and fluid properties, including 



anisotropy in compartments, it can be used for studying reservoir heterogeneity. 

Bourgeois et ai. (1993) underline the importance of using analytical solutions for 

understandi ng the pressure behavior of channel-leve complexes. These complexes are 

modeled as a main channel bounded laterally by finite or infinite width levees with 

distinct rock and fluid properties. The solution developed earlier c m  be used to study the 

transient-pressure behavior of channel-levee complexes. A nurnber of applications of this 

solution will be illustrated in Chapter 6. 



CHAPTER 4 

THREE-DIMENSIONAL FLOW SYSTEM 

4.1 Introduction 

In the case of vertical comparbnentalization of reservoirs, the models presen ted for areal 

compartmentalization are not able to describe the transient-flow behavior adequately 

because the effects of gravity have been neglected in these rnodels. Therefore, an 

analytical solution will be developed in this Chapter that accounts for the effects of 

gravity by formulating the problern in terms of potential, rather than pressure. The 

solution to the problem will be of a general nature, but it degenerates to the solutions for 

ared compartmentalization when the effects of gravity and the flow in the vertical 

direction are neglected. This kind of formulation is considerd as an appropriate 

description of the flow of fluid in complex geological structures of compartmentalized 

systems including cellular systems, stacked channel realizations, and aeolian dune sand 

realizations. SrnaZIey and Hale (1996) have pointed out th2t the identification of 

stratigrap hic (vertical) corn partmentalization is very important for the purpose of 

assessing the effectiveness of a production strategy. In these kinds of gdogical 

stmctures, the areal models, as developed in Chapters 2 and 3, are able to descnbe the 

mechanics of flow adequately because of the high degree of compartmentalization in the 

vertical direction. Here, we consider that there are n compartments that might be a m g e d  

vertically and areally for the purpose of developing the solution. 

In this analytical solution, the resistance to fluid communication between any two 

neighboring compartments is specified by a skin factor to take into account the poor 

hydraulic communication between these compartments. 

such probable poor communication and the implication 

The reason for the presence of 

of representing this with a skin 



boundary have already been discussed in Section 1.6, Chapter 1. Partial differential 

equations with appropriate initial and boundary conditions are set up starting from 

diffisivity equations describing threedimensionai flow through porous media. Due to the 

importance of gravity, the governing equations are considered in tems of potential, 

instead of pressure. Mg-Economi&s ((1 994) emphasized the importance of considering 

the formulation in tems of potential for compartmentalized systems. ColZins (1961) used 

the force potential, as descnbed by Hubbert (1940). in the form of energy per unit volume 

to fornulate Darcy's equation for incompressible flow. In this study, a similar approach 

is taken with the transient potential, @(x, y, z, t), defining it at a point, (x, y, z), in the 

Cartesian coordinate syaem, within the domain under consideration, as: 

O(x,y,z, t )  = p(x,y,=, t )  - p g z  .....................................-...-...........-.. * --.----...-.-.-..... (4.1) 

where p(x, y, z, 1) is the pore pressure at the point, (x, y, ;), at time t, and z is the distance 

from a reference plane (x-y plane as in this case) which is taken positive in the direction of 

gravity. A similar approach with potential in the form of the energy per unit volume has 

aiso been taken by Popozacos (1987) in formulating an analytical mode1 for a partially- 

penetrating well. The introduction of potential in the diffisivity equation means that the 

flow of fluid at a point occun only if there a potential gradient at that point. 

4.2 Development of the Analytical Solution 

The partial differential equations describing the flow of each cornpartment are solved by a 

integrai-transform technique for finite, composite domains, following the ideas of Ti~le 

(1965), 7Me and Robinson (1965) and Padovm (1974). The kernel functions for the 

integral transformation are developed by solving an eigenvalue problem which has been 

developed fiom separating the variables of the homogeneous version of the partial 



differential equations. The g o v h n g  partial differential equation for a compartrnent has 

four independent variables: three space variables and the time variable. Therefore, the 

integral transformation of the partial differential equations and associated conditions with 

respect to  the space-variables removes the spatial dependence of the partial diffkrential 

equations and associated conditions. Thus, a partial differential equation i s transformed 

into an ordinary differential equation with time as the only independent variable with the 

eigenvalues as the parameten. In the following Sub-Sections, an anaiytical solution will be 

developed step by step. 

4.2.1 Setting up Governing Differential Equations 

We consider a compmentalized reservoir in a finite region, R, bounded by a surface, 

aR,, and divided into n finite sub-regions or compamnents, R,, with i = 1 , 2, 3 ,......., n. 

Each compartment may have distinct rock or  fluid properties. There are N, , partially- 

penetrating, line-sink wells in RI producing at time-dependent rates. Any compartrnent, 

4, is hydraulically communicating with at most six adjacent compartments. A general 

configuration like this is shown in Fig. 4.1. Here, for the sake of mathematical generality, 

let us consider that the compartrnent, R,, is communicating with the compai-tment, R,, 

adjacent along the x-ais, through the interface boundary, a&,, with compartment, Rk, 

adjacent along the y-axis through the interface boundary, aRlh and with another 

cornpartment, R,,,, adjacent almg the r-axis, through the interface boundary, dR,m. The 

cornpartment, R,, may have extreme boundruies, aR,,, dR,, and 3% ,. A dimensionless 

form of the di ffisivity equation for the fl ow of  a single-phase, slightl y-compressible fluid 

with constant compressibility tlrough an anisotropic and homogeneous porous medium 

in the zth compamnent which is producing through AT, , partially-penetrating, line-sink 

wells, as illustrated in Fig. 4.2, is given by: 



(Gravity ) 

Cornpartment k 

v Cornpanment i is at rhe centre 
of the anangement (no t show) 

Figure 4.1 : Schematic of a general arrangement in a three-dimensional 
compartmentalized system. 



areal Iocation 
of a well 

- z, = Z,, + .1J7 

completed 
interval in m'th 
well 

- z, = z,3 + 45'' 

Figure 4.2: Schematic showing location of wells in irh compament. 
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The initial and boundary conditions are prescnbed as: 

(a) initial condition: 

(b) boundary conditions: 

( i )  at an extreme boundary parailel to the y-=-plane, aR,_,, 

- - 

(ii) at an extreme boundary parallel to the x-=-plane, aR, ,, 

........................................................................ [Yqf 2 5 q , m ~ D  = f w , ( r D )  (4-5) 
IaF!=, 

(iii) at an extreme boundary parailel to the x-y-plane, Mary,, 



(iv) at an interface parallel to the y-=-plane, 3% 

(v) at an interface parallel to the x-r-plane, a&, 

(vi) at an interface padlel to the x-y-plane, a&m. 

where the dimensionless variables are defined as: 



k l  PPBP a,, = -- ...................................................................................................... -(4.22) 
1 kp 



k p P 4  a,, = Z1- ..................................................................................................... (4 .24) 
c l 1 4  k p  

where the subscnpt, p, refers to a reference cornpartment or a reference parameter. 

The conditions at extreme boundaries expressed in Eqs. (4.4) through (4.6) are of the non- 

homogeneous, Cauchy-type which allow for any possible situation of partial 

communication at those locations. However, the parameters for the conditions at extrerne 

boundaries, y,,, L,, y,,, b,,, y,, and cc,, in Eqs. (4.4) through (4.6), r e ~ p ~ ~ i v e l y ,  can 

be chosen in such a way that these equations would take care of the appropnate 

conditions due to partial communication or presence of skin at the extrane boundaries. 

These parameters can also be set to O or 1 to obtain the conditions at the extreme 

boundaries of the Dirichlet- or the Neumann-type. The tirne-dependent fûnctions,f, ,(iD), 

f,&) and f,,(lD) in Eqs. (4.4) through (4.6), respectively, allow for specifying any time- 

dependent conditions at the extreme boundaries. Thus, the mathematical formulation, 

described by Eqs. (4.2) through (4.12), deals with time-dependent variations of 

production rates and extreme boundary conditions directly. 

4.2.2 Solution of DifTerential Equations 



An integral-transform technique for finite, composite domains, based on the theory and 

technique as developed by 7ïtZe ( l965), Titîe and Robinson (1 965) and Padovan (1 974) 

will be used to develop an andytical solution to the set of goveming diffwential 

equations, as developed in the previous Section, in the following steps: 

To develop an integral-transform pair, it is necessary to define the corresponding 

eigenvaiue problems. Following the similar procedure for onedimensional flow described 

in Chapter 2 and also by Padovm (1974), three sets of eigenvalue problems with the fh 

eigenvalue as a parameter can be developed by separating variables of the homogeneous 

version of the set of goveming differential equations listed above as follows: 

xdirection eigenvalue pro &lem 

w here, 

- q - a .................................................................................................................. (4.28) x t 

with the boundary conditions: 



y-direction eigenvulue pro blem 

where, 

with the boundary conditions: 

N", ................................................................................... 
a,.[-] 4 3  a,,,, = a.vn[-] 4 a. 

(4.36) 

rdirection eigenvalue problem 

where, 



with the boundary conditions: 

The functions Ll, &), V,  &) and W, A=,) are the W eigenfunctions for the zrh 

cornpartment in the x-, y- and z-directions, respectively. TMe (1965) and Title and 

Robinson (1965) mentioned that the eigenvalue problems with the x-, y- and =-directions 

described above are related by the condition of identical time-behavior of the 

dimensionless potential on both sides of an interface boundary which is given as follows: 

Salt (1983 a and b) and MikhaiIov and Ozisik (1986) also endorsed the above relationship 

between eigenvalues in the x-, y- and z-directions, respectively. Following a similar 

procedure described by Padovan (1974), one has the following integral-transform pair as: 

Inversion fonnulo: 



Transjiormation fonnu fa: 

where, 

(ii) Integral transformation of differential equations along with their conditions 

Multiplying both sides of Eq. (4.2) by U, 1 V,  1 W, 1 kD dy, dr, and integrating over R, and 

then summing up the resulting expressions over al1 cornpartments, one gets, 

The first three terms of the above equation are simplified by using Green's theorem. Then 

substituting the values from Eqs. (4.4) through (4.12), (4.27), (4.29) through (4.32), 

(4.34) through (4.37), (4.39) through (4..41), (4.44) and (4.45) in Eq. (4.39, it can be 

shown that, 



where, 

+ [ax1 V l f a r  laR-, JJYI  ~ l d y D  h D  - [ a,. hf*.] # Jj 
a%, uIIJT,& cl=, Y,,  soc Y.1 aR-# 

A detailed procedure of the above step that leads to the development of an ordinary 

differential equatiun, given by Eq. (4.47), upon integral transformation is described in 

Chapter 2. The parameter hl in Eq. (4.48) is the same for each comparhnent. Therefore, 

Eqs. (4.42) and (4.48) are identical. Both of these equations ensure that the time-behavior 

of the dimensionless potential at either side of an interface is identical on the assumption 

that the skin boundary does not have any storage. 



Taking the integral transformation of the initial condition, Eq. (4.3), we get, 

One now has an initial-value problem with an ordinary differentiai equation, given by Eq. 

(4.47) and with an initial condition, given by Eq. (4.52), as a result of the integral 

transformation of the space variables. The solution to this initial-value problern is given 

by 

(iii) Inversion 

- 
OD, (1,) from Eq. (4.53) is inverted into OD l(xD, yD, ZD, r,) using the inversion formula, 

Eq. (4.43), as foilows: 

Before carrying out the above inversion process, it is required to have calculated a number 

of eigenvalues of the system. Computation of eigenvaiues is discussed in the next step. In 

general, the rate of convergence for sumrning the series in Eq. (4.54) is very hi&. The 

number of eigenvalues or the nurnber of terms required in the series is dependent on the 





Also, u:, and LI:/ are the values of (I, ,(xD) at x~ = X, D and X,-, D, respectively; F,*, and VI; 

are the values of OD) at y~ = and Y,-* D, respectively; and Wtol and WJ are the 

values of W, /(zD) at z~ = 2, D and Z,,, D, respectively . 

Substituting Eq. (4.56) in the boundary conditions in the xdirection eigenvalue problem 

(Eqs. (4.29) through (4.3 1)) , Eq. (4.57) in theydirection eigenvalue problem (Eqs. (4.34) 

through (4.36)), and also Eq. (4.58) in the zdirection eigenvalue problem (Eqs. (4.39) 

through (4.41)) results in three systems of linear, homogeneous dgebraic equations in LI:, 

and U:,, VI*[ and q, and W,; and Wly, respectively, with eigenvdues as parameters. 

Thus, a threedimensional eigenvalue problem in this study has been converted into three 

one-dimensional eigenvalue problems related by the condition expressed by Eq. (4.42). 

For n compartments, there are 3n of Iih eigenvalues to be calcuiated. There are aiso 3n 

non-linear equations available for the purpose of caladating 3n eigenvalues. Of these 3n 

equations, there are (n - 1) equations due to the continuity of time-independent behavior 

at an interface-boundary and the other (2n + 1) equations are from the conditions of non- 



trivial values of eigenfunctions (Rahman and Arnbasrha, 1996a). Padovun (1974) 

mentions that the positive roots of this simultaneous system of equations are the 

eigenvalues and that they cm be cornputed by using a suitable method. In this study, each 

set of eigenvalues is computed by using Newton's method (Scarborotgh, 1966). Since 

the mathematical mode1 developed in this Chapter is an extension of that for the one- 

dimensionai flow situation descnbed in Chapter 2, a similar procedure has been followed 

here to calcuiate the eigenvalues and eigenfuncîions. 

The formal solution to the set of Eqs. (4.2) through (4.12) is given by Eq. (4.54). This 

solution is subject to changes corresponding to certain speciai cases which will be 

discussed Iater in Section 4.2.7. 

4.2.3 Computer Program for Numerical Values 

A computer program incorporating the solution scheme described in Section 4.2.2 has 

been developed in FORTRAN 77 for the purpose of generatinç numencal values of the 

solution developed in this Chapter. The complete source code and a sample data file are 

presented in Appendix C. This program has a number of Subroutines and Subroutine- 

Subfunctions which are cwrdinated by the Main Program. Typically, it takes about 14 

minutes to run the program for a 6-cornpartment system in the "Numencal Servet' 

(RS/6000 Mode1 59Hs, 66.7 MHz) at the University of Albena. 

4.2.4 Average Cornpartment Potential 

An average cornpartment potential at a given time is a measure of the available driving 

force to produce hydrocarbon from that compartment. Knowing this value also helps to 

prepare a production schedde that avoids producing from a compartment below the 



bubble-point pressure. EMig-Ecommi&s ((1994) has presented an expression for the 

average compartment pressure based on the assumption that the system has dready 

reached pseudosteady state. The expression for the volumeaic average dimensionless 

potential in the ith compartment as a fûnction of dimensionless time is given by: 

where, 

............................................................ A, = ( X , ,  - X I , )  (Y,, - y D )  (Z,, - Z,,) (4.66) 

Substituting the expression for @, from Eq. (4.54) in Eq. (4.65) results in the following 

expression, 

where, 



The expression for the average dimensionless potential in the W compartment shown in 

Eq. (4.67) has considered the dimensionless potential in that compartment based on 

extreme boundary conditions of the Cauchy-type. However, similar expressions for the 

average dimensionless potential with any other type of conditions at the extreme 

boundaries can be developed by taking care of the appropriate changes in the expression 

for dimensioniess potential which will be discussed later. 

4.2.5 Cumulative Influx through an Interface 

Following a similar approach to that taken in Chapter 2, the expression for the 

dimensionless cumulative influx through an interface at aR,, (paralle1 to the y-z-plane) as a 

function of dimensionless time is given by: 

where, 

In Eq. (4.72), the flow From the jth compartment to the zth cornpartment is considered to 

be positive. Therefore a positive value of cumulative influx, Q, D (ID), implies that the net 

flow has been from the jth compartment to the ith compartment. 



Substituting Eqs. (4.54) and (4.72) into Eq. (4.7 l), one gets, 

where, 

f 

k = f  F,(T) = lg,(7') e .............................................................................. 

Expressions, similar to that in Eq. (4.74), for the dimensionless cumulative influxes, Qtk D, 

through an interface paralle1 to the x-=-plane, a&, and Q,, D, through an interface parallel 

to the x-y-plane, aR,,, can be derived. 

4.2.6 Relationship between Skin Factor and Barrier Transm issibility 

Fox et al. (1988) and Stewart and Wh~baIIa (1989) gave the expression for the rate of fluid 

that commcnicates benveen the ith and jth compartments as: 

The relationship between the skin factor at an interface as used in this study and the 

barrier transmissibility as defined by Fox et al. (1988) and Stewart and Whoballa (1989) is 

given b y : 



where [O, - ~ , ] ~ i r n ~ l i e s  the difference in potentials between the ith and jh 

compariments on an interface parallel to the y-ais, aR,. Equation (4.77) can be written in 

dimensionless form as follows: 

where, 

ut* o z -  

........................................... '-)y = ['/(" -Co)] j /lalD -OJ,],,,dy, kD .....(4.80) 

Expressions, similar to Eqs. (4.77) and (4.78), can be developed for the relationships 

between and s l k  due to fluid communication through an interface parallel to the x-z- 

plane, aRlk, and between T,, and s,, due to fluid communication through an interface 

parallel to the x-y-plane, aR,,. 

4.2.7 Modification of Solution for Speciai Cases 

The generd solution developed above needs modification in some special cases. These are 

di scussed bel ow: 



If there is a perfect communication at an interface, aR,,, one can write, s, -r O. This 

establi shes the condition of continuity of potential . Thus, the correspondi ng interface 

conditions descnbed in Eqs. (4.7) and (4.8) take the following form : 

Subsequent interface conditions for the corresponding eigenvalue problem should also be 

updated reflecting the conditions expressed by Eqs. (4.8 1)  and (4.82). 

(ii) Dirichlet-type condition at an extreme boundaty 

When the cordition at an extreme boundary is of the Dirichlet-type, the solution as given 

by Eq. (4.54) rernains the sarne (Oziszk, 1980). But the expression for g~ in Eq. (4.49) 

needs to be modified. For example, if an extreme boundary, a&, ,, parallel to the y-z- 

plane in the ith compartrnent has the dimensionless potential specified, then the following 

changes should be introduced: 

Here, y,, = 0, therefore, 

ut l 1 du,, replace - by --. 
Y,, 5,. c6c, 



When the conditions at the extreme boundaries are mixed with both the Cauchy- and the 

Neumann-types, then the expression for af D in Eq. (4.54) rernains unchanged (Ozzsik, 

1980). But when the conditions at al1 the extreme boundaries are of the Neumann-type, 

the solution given by Eq. (4.54) needs to be augmented by an amount OD add, due to the 

fact that = O is an eigenvalue of the system. This means that an additional term 

corresponding to the zerm5genvdue has to be added to the solution presented in Eq. 

(4.54). Here al1 L , . s ,  ,*s and 5, ,'s are quai to O. The additional term corresponding 

to the zero-eigenvaiue has been derived following the procedure discussed in Chapter 2 

and is presented below: 

where, 

and Chp has already been defined in Eq. (4.73). 



4.3 Validation of New Solution 

It is necessary to validate the new solution to check its arithmetic reliability. Here, the 

new solution for a compartrnentalized system developed in this Chapter is vaiidated b y 

comparing a number of its simplified forms with those of homogeneous systems. 

Anal ytical solutions for a homogeneous and i sotropic, rectangular paral le1 epi ped 

producing through a partially-penetrating well are presented in Appendix D following the 

ideas of Hovmessian (1 96 1). The solutions for a homogeneous system for special cases 

of the compartmentalized system are compared with the solutions for the homogeneous 

system. 

A homogeneous, isotropie parailelepiped (Xo = Y. = Zo D = 1) is considered to be 

producing through a partially-penetrating well for validation purposes. The corresponding 

solution for the compartmentalized sy stem is generated b y considering three 

compartments with identicai rock and fluid properties and no skins at the interfaces. Two 

cases of the extreme boundary conditions are considered below. 

All Bottridaries Closed 

Here al1 the extreme boundaries are considered closed. Figure 4.3 shows the cornparison of 

the dimensionless potential responses, the Cartesian derivative, dDddtD, and the 

particular denvative, (tD)'-' &&ID, for spherical fiow with dimensionl ess time at XD = 

0.51, y~ = 0.51 and ZD = 0.5 for systems with closed boundaries. The well is located 

areally at XD = 0.5 and yD = 0.5, and vertically between h, D = 0.45 and h D = 0.55, and is 

producing at a dimensionless rate of qD = 1. According to Issaka and Arnbmthu (1 9961, an 

infinite-acting spherical flow period is characterized by a zero-dope line of this particular 

derivative. ~herefore, the transient period (up to tD = 0.1, approxirnately) for this 

particular case is dominated by the infinite-aaing spherical flow pattern due to a very 
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Figure 4.3: Comparison of the dimensionless potential response and its 
denvatives from the solution of a compartmentalized system with those 
from a closed, homogeneous system. 



small producing intenial (10Y0 of total pay). It is also observed that the pseudosteady- 

state flow penod starts approxirnately at t~ = 0.1 which is charactenzed by a zero- 

slope line of the Cartesian derivative (Proano and Lilley, 1986). This plot shows an 

excellent match of al1 profiles. 

Figure 4.4 shows the comparison of the dimensionless potential responses, its Cartesian 

and semilog derivatives with dimensionless time at x~ = 0.5, y~ = 0.5 and z~ = 0.5 for 

systems with closed boundaries. The well is located areally at XD = 0.5 and y~ = 0.5 and 

vertically between hl D = 0.0 and h2 D = 1.0 (Mly-penetrating interval). and is producing 

at a constant dimensionless rate of = 1. As a result of the presence of the fuliy- 

penetrating interval, the flow of fluid degenerates to the two-dimensional flow system and 

therefore is comparable with the solution of Hovanessian (1961). This graph shows an 

excellent match of the dimensionless potential responses generated from the solutions of a 

comparmientalized system. a homogeneous parallelepiped system and a homogeneous, 

rectangular sy stem as developed by Hovanessian (1 96 1 ). 

AI1 Bourt&ries ar Constant Pofentiaf 

Here al1 the extreme boundaries are rnaintained at a constant potential (initial potential). 

Figure 4.5 shows the comparison of the dimensionless potential responses and its 

Cartesian derivative, &ddtD, with dimensionless time at x~ = 0.51, y~ = 0.5 1 and ZD = 

0.5 for systems with constant-potential boundaries. The well is located areally at XD = 0.5 

and y~ = 0.5, and vertically between hl D = 0.45 and h2 D = 0.55, and is producing at a 

dimensionless rate of qD = 1. This shows an excellent match of the dimensionless 

potential responses and its Cartesian derivative. This graph also shows that the transient 

period ends approximately at lD = 0.1. AIso, the steady -state fi ow starts approximatel y 

at t~ = 0.1 which is characterized by a zero-slope line with zero-intercept of the Cartesian 



id' 
Compartmentalized sy st 
Homogeneous system 

1000 

100 

Figure 4.4: Comparison of the dimensionless potential response and its 
~&esian derivaove from the solution of a cornpartmentalized system 
with those from a closed, homogeneous system and Hovanessian ( 1  961 ). 

Homogeneous system 

Figure 4.5: Comparison of the dimensionless potential response and its 
Cartesian denvative from the solution of a cornpartmentalized system 
with those from a homogeneous system. 



derivative (Prauno and Lilley, 1986). Moreover, the comparison of the potential 

responses and its denvative shows an excellent match. 

Figure 4.6 shows the comparison of the dimensionless potential responses with 

dimensionless time at XD = 0.51, y~ = 0.51 and z~ = 0.5 for systems with closed 

boundaries. The well is located areally at x~ = O S  and yD = 0.5, and veriicaily between h, 

= 0.0 and h2 = 1 .O (fully-penetrating internai), and is producing at a dimensionless rate 

of qD = 1. As a result of the presence of the fully-penetrating interval, unlike the case of 

closed boundaries, the flow of fluid in this case does not degenerate to the two- 

dimensional flow system. This plot shows an excellent match of the profiles. 

In the preceding discussion, a number of simplified cases leading to homogeneous systems 

have been compared with the corresponding homogeneous systems. The solution 

presented in this Chapter corresponds to an extension of the solution for the linear, one- 

dimensional system presented in Chapter 2. The system of partial differential equations 

for a three-dimensional system is essentially similar to that for a one-dimensional system. 

Both systems of equations are solved using an integral-transform technique. As shown in 

Chapter 2, the solution for a one-dimensionai system was validated with a number cf 

cases involving distinct rock and fluid properties in the compartments with or without 

skin at the intefices. Therefore, the comparison of the solution for a three-dimensionai 

system from this Chapter with the cases of distinct rock and fluid properties in the 

cornpartments with or without skin at the interfaces would lead to the same conclusion 

with respect to the quality of the match. 

4.4 Application of New Model 

The new analyticai solution deveIoped in this study may be used for understanding the 

transient behavior of a compartmentalized system with vertical extent. Detecting and 
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Figure 4.6: Corn parison of the dimensionless potential response and its 
Cartesian derivaiive generated from the solution of a compartmentalized 
system with those from a homogeneous system. 



quantifying the flow units and flow barriers in a cornpartmentaiized system are very 

important for designing development schemes. The new andytical solution is capable of 

providing usehl information for this purpose. It is also possible to generate type-curves 

of transient responses at the wellbore for diagnostic identification of compartmentalized 

behavior in a resewoir. This possibility will be illustrated with an example in Chapter 6. 

The ability to consider the time-dependence of production rates and extreme boundary 

conditions diredy makes this model more flexible from a practical point of view. Also, 

the Cauchy-type boundary condition is a general way of specifying condition at an 

extreme boundary which can be modified to the Dirichlet- or the Neumann-type, as 

speciai cases. 

Since this model considers contrasts of rock and fluid properties including anisotropy in 

cornpartments, it can be used for studying computationally the resewoir heterogeneity. 



CHAPTER 5 

INTERFERENCE OF WELLS DUE TO PRODUCTION 

5.1 Introduction 

Interference in the pressure behavior of a well is inherent due to production through the 

other wells located in the same c o m p m e n t  or in other hydraulically-communicating 

compartments of the same reservoir. Ramey et el. (1973) have defined interference as the 

effect of a production well that causes a detectable pressure drop at an adjacent well. The 

system becomes particularl y complicated when each well has a distinct production 

schedule. However, in this Chapter, it is intended to integrate the interference of wells due 

to production and to express this in terms of an equivalent parameter. Interference 

becomes very simple to deal with if the effects of al1 the wells in each compartment can 

be lumped into the behavior of a single well. In that case, studying with a single producing 

well would give the desired transient pressure effects of multiple wells with different 

production schedules. This Chapter shows the development of an equivalent 

dimensionless production rate with respect to a corresponding equivalent system as a 

function of dimensionless time. In this developmenc the advantage of the fact that the 

eigenvalues are not functions of time has been utilized. This means that an equivalent 

dimensionless production rate as a function of dimensionless time can be computed for a 

compartmentalized system with a multi-well and a multi-rate configuration. The primary 

objective of computing such equivalent production rates is to characterize a 

compartmentalized system with a plausible parameter, rather than in terms of a series of 

eigenvalues. This would also facilitate the use of solutions of homogeneous systems in a 

compartmentalized system under the condition of quivalence which will be illustrated 

later. 



H m  (1960) and Mor- (1960) developed analytical solutions for studying interference 

in radial systems with distinct rock and fluid properties. Hurst (1960) examineci the 

interference pressure drop due to a point sink located in an infinite system consisting of 

wo regions in senes where the permeability has changed at some distance from the point 

sink. However, Mortah (1960) has considered a line-sink well producing from a two- 

region system and showed the effeas of such variations of properties by cornparing the 

transient responses with those of a homogeneous system. 

Rmey er (1973) used the principle of superposition to generate the transient-pressure 

responses in rectangular reservoirs producing with multiple wells under water-drive 

conditions. Doke (1994) suggests the use of the principle of superposition in time and 

space to generate pressure responses in the case of multi-well and multi-rate situations. 

Earlougher and Rumey (1973) computed the dimensionless pressure responses as a 

function of dimensionless time at different locations within bounded rectangular reservoirs 

for selected locations of a producing well using the principle of superposition for the 

purpose of using it in interference test analysis. However, this method of superposition is 

not applicable in a compartmentalized system because of the presence of partially- 

cornmunicating faults and the variations of rock and fluid properties. As shown in 

Chapters 3 and 4, rnulti-well and multi-rate situations are dealt with directly in the source 

term of the diffusivity equation for each compartment in this study. Duotg (1989) 

develops the expressions for equivalent time in a multi-rate production situation with a 

view to appl ying i t with type-curves based on constant-rate production incorporating 

the variation of production rate. These expressions are derived for both drawdown and 

buildup analyses. In this Chapter, a similar attempt will be made to derive an equivalent 

flow-rate for a compartmentalized system. 

b 

By obsewing the respective solutions, it has been found that the eigenvalues calculateci 

for two- and threedimensional flow systems represent the characteristics of a 



compartmentalized system. A set of these eigenvalues is dependent on the following 

properties of a corn partmentalized sy stem : 

Geomeûy of the system including al1 the boundaries 

Location of the boundaries 

Extreme boundary conditions (homogeneous form) 

Interface conditions due to the presence of skins, if any. 

However, these eigenvalues are not dependent on the following properties of a 

compartmentalized system: 

Number and location of wells in any compartment 

Production rate from a well, even as a fiinction of time. 

5.2 Mathematical Consideration 

For a one-to-one correspondence of the dimensionless pressure (or potential) at a point in 

a compartmentalized system with that in a simpler system, one has to equate 

dimensionless pressures (or potentials) to find the necessary relationship. The original 

system is considered to have n compamnents, where the ith cornpartment has N, , (i = 1, 

2, 3, ...., n) wells and the rn 'th well in the zth compartment is producing at a dimensionless 

rate of q ; ' 3 t D )  (with the M ' = I,  2, 3 ,... ...., Nw ,). We also consider that both original and 

equivalent systems have been subject to uniform pressure (or potential) initially which 

l ad s  to the homogeneous initial conditions in dimensionless form for both systems with 

the reference pressure (or potential) taken as the initial pressure (or potential) in the 

definition for dimensionless pressures (or potentials) as in Eqs. (3 -9) and (4.10). Also it is 

considered that the extreme boundaries are al1 closed. The source terms ( gl ) that consider 



the locations of wells and the production rates as a function of dimensionless time are 

within the diffisivity equations, expressed by Eqs. (3.1) and (4.2). In the following Sub- 

Sections, the equivalent systems are developed for two- and threedimensiond flow 

systems: 

5.2.1 Two-Dimensional System 

Here the solutions developed in Section 3.2, Chapter 3, are considered. The dimensionless 

pressure, ~ E D ,  at (xD,yD) of an equivalent system for the original system is defined as: 

Equivalence to Compartmentalized S'stem with a Single Weil 

If an equivalent system refers to the same compartmentalized systern but which is 

producing through a single well located at (ao bbO *) in the zth cornpartment at a constant 

rate of q~ D(ID) until the elapsed dimensionless time of tD, then Eq. (5.1 ) reduces to the  

following relationship: 

where, 



Equivolence to Homogeneous Rectangular System with a Single Well 

Here an equivalent system is defined as a closed, homogeneous rectangular system with 

the single well, located at (aoh bo D),  as shown in Fig. 5.1, that is producing at a constant 

rate of qEHD(tD) until the elapsed dimensionless time of tD. By equating the dirnensionless 

pressure responses at (x, D, y, o) of the compartmentalized system under consideration 

and at (xh yD) of the homogeneous system, Eq. (5.1) Ieads to the following relationship: 

where, 

The nomenclature for the symbols used in Eqs. (5.1) through (5.5)  is the same as that for 

Chapter 3. 

In the above development, the solution for a closed, homogeneous system has been taken 

from Hovanessian ( 1 96 1). 



+ observation point 

(XD. Y D )  

y0 D (aoo*bo D )  

Figure 5.1: A homogeneous rectangular reservoir with a two-dimensional flow sys tea  



5.2.2 Three-Dimensional System 

Here the solutions developed in Section 4.2, Chapter 4, are considered. The dimensionless 

potential, aED, at (xD, y ~ ,  rD) of an equivalent system for the original system is defined 

as: 

Equivalence to Compartrnentalized System with a Single Well 

I f  an equivalent system refen to the sarne compartmentalized systern but which is 

producing through a single well located at (ao D, bo D, co D) in the irh cornpartment at a 

constant rate of qEcD(tD) until the elapsed dirnensionless tirne of tD, then Eq. (5.6) reduces 

to the following relationship: 

where, 



The nomenclature for the symbols used in Eqs. (5.6) through (5 .8)  is the sarne as that for 

Chapter 4. 

Equivalence to Humogeneuus Pardlelepiped witk a Single Weil 

Here, an equivalent system is defined as a closed, homogeneous parallelepiped with a 

single well, located at (ao *, bo D) and completed between the interval hl and h2 D, as 

shown in Fig. 5.2, that is producing at a constant rate of q~ H AtD) until the elapsed 

dimensionless time of g. By equating the dimensionless potential responses at (x, D, y, D, 

z, D) of the compartmentalized system under consideration and at (xD, y ~ ,  zD) of the 

homogeneous system, Eq. (5.6) leads to the following relationship as: 

where, 

In the above development, the solution for a closed, homogeneous rectangular 

parallelepiped has been taken from that presented in Appendix D. 



0 areal location 
of the well 

/ Observation 

Figure 5.2: A homogeneous reccangular parallelepipai with a three-dimensional flow system. 



5.3 Results and Discussion 

The ideas of equivalent dimensionless production rate presented in the precedi ng Section 

are meant to help understand the effects of production rate andor production tirne on the 

interférence behavior in a compartmentalized system. Thus, the effects of al1 the 

producing andor shut-in wells are felt through the equivalent dimensionless rate at a 

single well in an equivalent system. In this Section, these ideas will be illustrated b y 

exam ples. 

First, a two-cornpartment system which is subject to two-dimensional flow is considered. 

Wells are located at xD = 0.25, y, = 0.5 in the first compartment and at x~ = 0.75, y* = 0.5 

in the second compartment. Both wells are producing at a constant dimensionless rate, q~ 

= 1. Profiles for the equivalent dimensionless production rate in the same 

compartmentalized sy stem with the well located at x~ = 0.25, y~ = 0.5 for di fferent values 

of the skin factor are presented in Fig. 5.3. The penods with an equivalent dimensionless 

rate, q~ c D, of 2.0 signifies the fact that both the compartmentalized system with two 

wells and the equivalent compartmentalized system with one well have simultaneously 

reached pseudosteady state. But the beginning of such a period for the compartmentalized 

system under consideration cannot be ascertained from these profiles, because the 

equivalent system was late in arriving at its pseudosteady state. For instance, with s = 

100, the system with two wells reaches pseudosteady state at tD = 0.08, whereas the 

equivalent system with one well reaches pseudosteady state at to = 14.08; therefore, the 

profile in Fig. 5.3 shows the corresponding flat profile after tD = 14.08. Figure 5.4 shows 

the profiles for the equivalent dimensiodess rates for the compartmentalized system 

described above but with a two-rate production history having the following 

dimensionless rates: 

From the well in the first compartrnent: q ~ ] =  l.O,while, 0 < t D L  100 



Figure 5.3: Profiles of equivalent dimensionless production rate due 
to interference of wells in a two-well, two-cornpartment system . 

I I I  

well 2 a = 0.25. b, 
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Figure 5.4: Effect of skin factor on profiles of equivalent dimensionless 
production rate due to interference of wells in a two-well, two-compartrnent 
system. 



From the well in the second compartment: q ~ ?  = 0.0, while, O < tD 5 100 

q~ 2 = 1.0, while, > 100 

Since the well in the second compartment is producing before tD = 100, up to this time the 

compartmentalized system under consideration is generating the same responses as its 

equivalent system, as evidenced from q~ , = 1. M e r  the well in the first compartment is 

shut in and the well in the second compartment starts producing at ID = 100, the deviation 

of the dimensionless profile is iowards a higher value of the skin factor, where it takes 

longer for the system to stabilize. 

Figures 5.5 and 5.6 present the profiles for equivalent production rate with respect to a 

homogeneous system of the same systems considered in Figs. 5.3 and 5.4, respectively. 

Figure 5.5 shows that al1 profiles for the equivalent production rate, q~ IX have merged 

into a single line. This is an indication of the fact that the compartmentalized system is 

acting like a homogeneous system. In the compartmentalized system under consideration, 

the skin boundary is behaving like a no-flow boundary regardless of the value of the skin 

factor because each of the producing wells has been placed at an equal distance from and 

on opposite sides of the skin boundary. Thus the dimensionless pressure responses in the 

first compartment would follow the pattern of a homogeneous system resulting in 

merging of equivalent dimensionless rates for dl skin factors. Figure 5.6 shows the 

profiles for the equivalent production rates of the same system as descnbed for Fig. 5.4. 

This shows that the interference behavior of the compartmentalized system under 

consideration merges with that of the homogeneous system when both systems are at 

pseudosteady state, resulting in ~ E H D  = 1-  However this merging is delayed longer, fier 

the rate change at fD = 100, by a higher value of the skin factor in the compartmentalized 

system under consideration. 



Figure 5.5: Profiles of equivalent dimensionless production rate 
compared with a homogeneous system due to interference of 
wells in a two-well, two-cornpartment system . 

Figure 5 6: Effect of slun factor on profiles of equivalent dimensionless 
production rate due to interference of wells in a two-well, two-cornpartment 
system with respect to a homogeneous system. 



5.4 Applicability of the Principle of Reciprocity 

McKinley et al. (1968) stated the pnnciple of reciprocity as - "The pressure response at 

well A, pBA(t), caused by injecting fluid at well B at a rate of q(t) is quai to the pressure 

response at well B, pRB(t), caused by injecting fluid at well A at the same rate, q(t)." T hey 

also added that this pnnciple is applicable subject to the following conditions: 

the pressure responses must satisfy the diffisivity equation; 

the mobility and storativity of the reservoir may have arbitrary spatial 

variation, but these must not be pressure-sensitive. 

Raghavan (1993) has pointed out the main advantage of this theorem is that the decision 

to choose an active well or an observation well fkom a pair of wells is moot because 

identical information is obtained in an interference test with either case. McKiitdey et al. 

(1968) demonstrated that this principle is applicable in the following cases: 

constant pressure on the boundary; 

no flow on the boundary; 

constant pressure on part of the boundary and no flow on the rest of it; 

an infinite medium. 

Ogbe and Bringhum (1984) have studied the effects of the presence of wellbore storage 

and skin on the principle of reciprocity for infinite reservoirs. They also presented 

correlations for correcting the pulse response amplitude and time lag due to wellbore 

storage. Deng and Horne (1993) have provided an extension of this pnnciple t o  

discontinuous distributions of reservoir properiies, developing andyticai solutions in 



terms of Green's function. These authors also found that the principle of reciprocity d w s  

not hold for non-unifonn, initial pressure. 

As far as the solutions of this study are concemeci, the principle of reciprocity is vdid, 

provided the initial pressure (or potential) in the compartments is uniform. From an 

inspection of these solutions, it is dso found that the distinctness of the rock and fluid 

properties in each compartment and the presence of skin at an interface do not affect the 

validity of this principle. However, the conditions at the extreme boundaries should be of 

the homogeneous, Dirichiet-, Neumann-type or a combination of these. This means that 

the boundary condition can be constant pressure (or potential), no-flow or a combination 

of these, which is in agreement with the findings of Deng and Honte (1 993) for bounded 

systems. Appendix E presents a proof of the applicability of the principle of reciprocity 

when the conditions at the extreme boundaries in a compartmentalized system are of the 

homogeneous, Dirichlet-type. 



CHAPTER 6 

TRANSIENT-PRESSURE BEHAVIOR OF COMPARTMENTALIZED 
SYSTEMS 

6.1 Introduction 

In this Chapter, the transient-pressure behavior of a number of compxtmentalized 

systems will be studied using the analytical solutions developed in Chapters 2, 3 and 4. 

When a new mode1 of transient behavior is introduced in the literature, it is important to 

illustrate the similarities to commonly o b s e ~ e d  trends, and to identiQ the distinguishing 

characteristics (Mg-fionornides et al., 1 989). The advantage of the fact that an anal y sis 

based on pressure-derivative responses provides more definitive results than that on 

pressure responses will also be utilized here. 

It has been demonstrated in the literanire that the pressure-derivative responses show 

more features than the pressure responses (Bourdet et al., 1983; Procnzo and Lilley, 1986; 

Mg-Economides, 1988). The pressure-denvative anal ysis requires an accurate set of 

pressure data which is now possible to acquire with the advent of sensitive pressure 

gauges (Ehlig-fionornides, 1988; Bourdet et al., 1989 and Raghavan, 1993). Ramey 

(1992) has pointed out that the pressurederivative type-curves are sensitive throughout 

the time domain and permit identification of events not evident on either log-log or 

semilog pressure graphs. Alvarado (1994) has mentioned that the basis of pressure- 

derivative analysi s i s recognizing a pattern for each flow regime. 

According to Raghavan (1993), the use of pressure derivatives was first discussed by 

Chaw (1952) in the ground-water hydrology literature and the applications of the 

denvative were tira discussed by Jones ( 1  957) in the petroleum literature. Chow ( 1  952) 

also formulated the basis for semilog derivative responses by introducing a similar 



parameter involving logarithms to the base 10. Ticlb and Kumm (1980) developed a 

pressure-derivative method for a system with a line-source well in an infinite system. 

Later, Bourdet et al. (1983) introduced the idea of the semilog pressure derivative, defined 

as the denvative of the well pressure with respect to the natural logarithm of tirne. Wong 

et al. (1986) presented Cartesian and semilog pressure-denvative responses for closed 

rectangular reservoirs with different well locations outlining the criteria of idenuQing 

different flow regimes. According to P r m o  and Lilley (1986), the basis for the derivative 

approach involves the recognition of a pattern of any departure of well test data from a 

reference line. Ehlig-Economiaks (1988) has discussed the use of pressure-denvative 

responses for diagnostic purposes in characterizhg different flow regimes, adapting the 

examples from Mafthews and Russell (1 967). Duong (1 989) developed a new set of type- 

curves using the pressure/pressure-derivative ratio which is applicable for use in 

cornputer-aided analysis. Issoka and Arnbostha (1996) have extended the notion of a 

generalized pressure-derivative analysis, proposed by Jelmert (1993 a and b), to different 

flow regirnes of composite systems. 

In this chapter, the effect of the contraas of rock and fluid properties on pressure (or 

potential) and its derivative responses for various compartmentalized configurations will 

be exarnined. The contrasts of rock and fluid properties are shown by assigning different 

rnobility and storativity ratios to different cornpartrnents. From this pressure (or 

potentiai)-derivative analysis, it is possible to estimate the dimensionless time to the start 

of steady-state or pseudosteady-state flow. Lord and Collins (1991) used the production 

data in the pseudosteady-state period for evduating the production performance of a 

compartrnentaiized sy stem using the inflow performance relationshi p. This inflow 

performance relationship is valid only when pseudosteady-state flow has been achieved. 

Therefore, it is important to know the time to the end of the transient-flow period and the 

time to the start of the pseudosteady-state p e n d  to use the inflow performance 

relationship. In the next four Sections, the pressure-derivative andysis is used for 



understandi ng the pressure behavi or of di fferent corn partrnentalized sy stem S. Here a 

linear system, a system composed of a mai l  compartment in communication with a big 

one, a two-cornpartment systern and a stacked channel realization will be considered. 

6.2 Linear System 

GrNtgmren et al. (1 974), Ershaghi and WOOdbury (1 985)  and Wong et al. (1 986) have 

characterized the infinite-acting linear flow period by a IR-dope on log-log plots of the 

pressure responses venus time for a homogeneous system. However, KmaI et al. (1995) 

have pointed out that this slope is less than 1/2 on a log-log plot of pressure responses 

versus time if the wellbore skin is non-zero. The entire flow regirne in a linear, 

compartmentaiized system of this study is linear. It would be interesting to see how the 

flow regimes in a cornpartrnentalized system that may have rock and fluid properties 

contrasts and skins at interface boundaries would behave in comparison to the 112-siope 

criterion of infinite-acting linear flow for homogeneous systems as presented in the 

li terature. 

In this Section on a linear system, the analytical solution for linear, one-dimensionai 

systems as developed in Chapter 2 has b e n  used. A system with two linear 

compartments is considered here. The communication between the compartments is poor 

due to the presence of a thin skin at the interface Iocated at XD = X2 D. One extrerne 

boundary of the system at xD = XI = O is producing while the other extreme boundary at  

XD = X J D  = 1 is closed. Here the variation of the value of the skin factor (s) and the rock 

and fluid properties is considered. The reference values of the rock and fluid properties 

are taken with respect to the first compartment (X, D 5 x~ I 4 D ). Initiaily, both 

cornpartrnents are considered to be at a uniform pressure. 



Issakza and Ambatha (1996) have shown that the specific derivaiive (12" d p W a D )  

during an infinite-acting linear flow period has a value of 114~. Therefore, the specific 

derivative profile dong dimensionless tirne in infinite-acting linear flow is a zero-siope 

line. In this study, the cnterion for the end of the infinite-acting lin- flow period is taken 

as 2% deviation of the specific derivative fiom l/dlr. Also the criterion for the 

dimensioniess time to the start of the pseudosteady-state flow p e n d  is taken as the 

Cariesian derivative (dpWddtD) falling within 2% of unity. 

Figure 6.1 shows dimensionless pressure responses at the wellbore located at XD = Xl D = 

O. The situation with s = O corresponds to a linear homogeneous system whose extrerne 

boundaries are located at xD = X, = O and XD =GD = 1. It is also observed that the dope 

increases to slightly more than 1/2 in this log-log plot of dimensionless pressure 

responses versus dimensionless time as the infinitely-acting linear 80w ends for a non- 

zero value of the skin factor. Figure 6.2 shows the specific derivative profile of 

dimensionless pressure responses (tDo-' t@,,,ddtD) with dimensiodess time. This plot 

cleari y demonstrates that a longer period of infinite-acting Iinear flow exists for s = O than 

for s + O. The Cartesian derivative ( &ddtD ) profile of dimensionless pressure 

responses with dimensionless time is presented in Fig. 6.3. This figure shows that with an 

increase in the value of the skin factor, the onset of pseudosteady-steady state flow is 

delayed. Using the criteria mentioned earlier, the end of the infinite-acting linear flow 

period (tDL) and the start of pseudosteady-state flow period (t-) for the linear 

compamnentalized system are presented in Table 6.1. It has also been observed that  DL = 

0.054 for s > O. However, t~~ = 0-22 for s = O (homogeneous system). 

Figures 6.4 and 6.5 show the effect of contrasts of rock and fluid properties on the 

Cartesian derivative of dimensionless pressure responses at the wellbore for s = 100. 

With low storativity in the second compartrnent (F2= 0.01), the flow reaches 



Figure 6.1: Dimensionless wellbore pressure responses in a linear system. 

Figure 6.2: Specific derivative profile of dimensionless wellbore 
pressure responses for a linear system. 



Figure 6.3 : Cartesian derivative profile of dimensionless well bore 
pressure responses in a linear system. 



TABLE 6.1: DIMENSIONILESS TIME TO THE END OF INFINITE-ACTING LINEAR FLOW, 
to r ,  AND THE START OF PSEUDOSTEADY-STATE FLOW, r~ pss 



Figure 6.4: Effect of storativity ratio on the Cartesian derivative 
of dimensionless pressure responses in a linear system for M2 = 10. 
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tD 

Figure 6.5: Effect of storativity ratio on the Cartesian derivaîive 
of dimensionless pressure responses in a linear system for Mt = 100. 



pseudosteady-state very quickl y. Moreover, the Cartesian derivative of di mensionless 

pressure responses at late times c m  be approximated by, 

where n is the total number of linear compartments and F, is the storativity ratio in the irh 

cornpartment. For the system under consideration with Fl = 1, F2 = 10, we have, 

dp, ddtD = 0.18 18 at late times. Equation (6.1) shows that the Cartesian derivative of 

dimensionless pressure responses at late times is not a fundon of the mobility ratio (Ml) 

or the values of the skin factor. However, any higher value of F, decreases the value of 

this derivative due to an increase of the pore volume and/or of the total compressibility in 

the system. The values of the Cartesian derivative at late times are found to be in good 

agreement with the respective values as found from Figs. 6.4 and 6.5. Equation (6.1) can 

play an important role in confirming the volume-weighted storativity from the late-time 

data. 

6.3 A Small Cornpartment in Communication with a Big one 

In this section, one of the very important aspects of reservoir cornpartmentalization will 

be considered. Sometimes it is discovered that a small cornpartment is in poor hydraulic 

communication with a big one (Fox et al., 1988). Here the volume and hydraulic 

diffis vity of the supporting compartrnent are very large compared to the producing 

compartment. The big compartment has been termed the "source reservoir" by Fox et al. 

(1988). According to Stewart and WhabaZIa (1989), because of its large size, depletion of 

the supporting cornpartment is very slow indeed and it remains essentially at the initial 

pressure. Therefore, any production from the small compartment apparently would not 

have any efTect on the pressure behavior of the neighboring big compartment in the shon 



term. It is apparentiy a situation where the condition at the extreme boundary (at the 

interface on the side of the big compartment) can be considered as a constant-pressure 

condition. As a result of such a consideration, the condition at the communicating 

boundary becomes a Cauchy-type boundary condition. This situation is illustrated 

schematicaily in Fig. 6.6. In this study, the mal1 compartment is considered to be 

producing through a well, located at the center, at a constant rate of q ~ .  The region within 

the smali cornpartment with a well is bounded by O S xD < Xo and O a yD Y. areally 

and has a dirnensionless pay thickness of hD. However, in this study, we consider, Xo D = 

Y o D z h D =  1. 

Table 6.2 identifies al1 the boundaries in tems of location, extent and specification with a 

skin factor. There is a possibility that not al1 of the boundaries of the srnall compartment 

may be in communication with the big compartment. Hence, al1 possible combinations of 

the conditions at the boundaries of the small compartment need to be anaiyzed. These 

combinations of the values of the skin factor on the boundaries to be considered are 

shown in Table 6.3.  "Combination 1"- for example, refers to a condition where the 

boundary at XD = 1 (O 5 y~ < 1) of the small compartment is considered to be in 

communication with the big cornpartment while al1 the remaining boundaries are closed. 

Similarly, with "Combination 2", there are boundaries at XD = 1 (O 5 yD S 1) and at y~ = 1 

( O  S x ,  5 1) of the small compartment in communication with the big compartment while 

the remaining boundaries are closed. With "Combination 3", the boundaries located at x~ 

= O (O 5 y~ S 1) and XD = 1 ( O  5 y, 5 1) of the srnall compartment are in communication 

with the big compment  while the remaining boundaries are closed. This combination 

possesses the same amount of surface area for fluid communication through the 

boundaries as "Combination 2", but has a different configuration. "Combination 3" 

possesses two times as much area for fluid communication on the boundaries of the mal1 

compamnent as "Combination 1". "Combination 4" possesses boundanes at x~ = O 



BIG COMPARTMENT 

Figure 6.6: A schematic showing a srna11 cornpanment in communication with a 
big one. 



TABLE 6.2: LOCATION, EXTENT AND SPECIFICATION OF SKIN FACTOR OF 
COMMUNICATING BOUNDARIES 

TABLE 6.3: COMBINATIONS OF SKIN FACTORS AT THE BOUNDARIES OF A SMALL 
COMPARTMENT 

Corn bination 
1 

2 

3 

4 

5 

s I 
Finite 
Finite 

Finite 
Finite 
Finite 

s2 

00 

Fini te 
w 

Finite 
Fini te 

s3 

00 

00 

Finite 
Finite 
Finite 

SJ 

00 

00 

00 

00 

Finite - 



(O S y D  2 l), at y~ = 1 (O S x~ 5 1 ), and at x~ = 1 (O <yD S 1) of the small compartment in 

communication with the big compartment while the remaining boundary is closed. This 

combination has three times as much area for fluid communication through the boundaries 

of the smail compartment as "Combination 1". Finally, "Combination 5" assumes that al1 

the boundaries of the small compartment are in communication with the big cornpartment. 

This arrangement has four times as much communicating area of the small compartment as 

in "Combination 1". 

For a boundary with finite values for the skin factor, skin factors of O, 1, 10, 100, 1000, 

10000 and are considered. An infinite value (0) for the skin factor at a certain boundary 

of the small compartment means that the boundary is closed to fluid communication with 

the big compartment (boundary condition of the Neumann-type) and a zero value for the 

skin factor means that the boundary on the side of the small compartment is maintained at 

a constant pressure with the big compartment (boundary condition of the Dirichlet-type). 

Thus, the small cornpanment would tend to be closed for fluid communication altogether 

as the value of the skjn factor at al1 boundaries tends to have a limiting value of infinity 

(=). However, zero and infinite values for the skin factor are meant to consider the 

respective exûeme situations that are possible as far as a boundary condi' U Z I ~  1s 

concemed. 

Al1 the reference parameters regarding the reservoir geometry, and the rock and fluid 

properties, are taken with respect to the small compartment. Initially the whole reservoir 

is considered to be at a constant uniform pressure. In the definition of dimensionless 

pressure, the initial pressure of the reservoir is taken as the reference pressure, p,. 

Therefore, the dimensionless initial pressure everywhere in the reservoir is zero and 

p,,, D(aD, bD, O) = O. For ail the combinations of the conditions of the wmmunicating 

boundaries, as listed in Table 

radial flow period ends, and, 

6.3, the dimensionless times, tDR, at which infinite-acting 

tm, at which the steady-state fiow period starts, will be 



determined later. For al1 combinations,  DR is determined uing the criterion of 2% 

deviation from the intercept of the initial flat line in the semilog derivative plot and tm is 

determined using the criterion of the Cartesian denvative falling below 0.02 (for a perfect 

steady state, it is zero). The transient behavior corresponding to the combinations is 

discussed in detail below. 

6.3.1 Drawdown 

Figures 6.7 through 6.11 show the dimensionless pressure responses in drawdown zt the 

wellbore for different values of the skin factor at the communicating boundary for 

"Combination 1" through "Combination 5". The infinite-acting radial flow periods at 

early tirnes are characterized by the line (up to about tD = 0.1) before the effects of the 

boundaries are felt. However, the boundary-dominated flow regimes are characterized b y 

the respective value of the skin factor. 

At late times, the flow lads to steady state regardless of the finite value of the skin 

factor. The dimensionless time required to reach steady state is longer for higher values of 

the skin factor, in any combination. Moreover, the dimensionless pressure responses in 

drawdown for Iate times for different combinations cm be estimated fiom the following 

equations: 

Combination 1 : 

- p, - s+ 1.5 ................................... .. .............................................................................. (6.2) 

where s = sl. 

Combination 2: 



Figure 6.7: Dimensionless pressure responses in drawdown for 
different values of skin factor considered in "Combination 1". 

Figure 6.8: Dimensionless pressure responses in drawdown for 
different values of skin factor considered in "Combination 2". 



Figure 6.9: Dimensionless pressure responsa in drawdown for 
different values of skin factor considered in "Combination 3". 

Figure 6.10: Dimensionless pressure responses in drawdown for 
different values of skin factor considered in "Combination 4". 



a, = a,. = 1 1 % = l  

9,= 1 

Figure 6.1 1 : Dimensionless pressure responses in drawdown for 
different values of  skin factor considered in "Combination 5" .  



where s = sl = s?. 

Combination 3: 

- p - 0.5s+1.25 ......................................................................................................... (6-4) 

where s = sl = s3. 

Combination 4: 

p,, = 0.33s+1.23 .......................................... 

where s = sl = s-, = s3. 

Combination 5: 

- 0.25 s+ 1.21 .......................................... P ~ D  - 

where s = s1 = s2 = s3 = s,. 

For finite values of the skin factor, Eqs. (6.2) through (6.6) show linear relationships 

between the dimensionless wellbore pressures at late times and the values of the skin 

factor. These equations may be used to estimate the values of the skin factor by matching 

the data From an extended drawdown test. Cornparison of Eq. (6.3) with Eq.  (6.2) shows 

that "Combination 2" always leads to a lower dimensionless wellbore pressure (or lower 

drawdown) than "Combination 1" at steady state because of possessing a larger amount 



of area for fluid communication. Also the comparison of Eqs. (6.3) and (6.4) shows that 

both "Combination 2" and "Combination 3" lead to about the same dimensionless 

pressure at late times, especially at high values of the skin factor. For example, the 

clifference in dimensionless wellbore pressures between these two combinations is 4.8% 

for s = O and 0.12% fors = 100. Comparison of Eq. (6.5) with Eqs. (6.3) and (6.4) shows 

that "Combination 4" results in a lower dimensionless wellbore pressure (or lower 

pressure drop at the wellbore) than "Combination 2" or "Combination 3" does at steady 

state. This is so because this combination has one and a half times as much a r a  open to 

fiuid communication as "Combination 2" or "Combination 3". Comparison of Eq. (6.6) 

with Eqs. (6.2) through (6.5) shows that arnong all the combinations, "Combination 5" 

results in the lowest dimensionless wellbore pressure at steady state. This is so because 

this combination possesses the largest amount of the area for fluid communication 

through the boundaries of the small cornpartment- 

Figures 6.12 through 6.16 show the semilog denvative profiles of dimensionless pressure 

responses generated in drawdown for different values of the skin factor at the 

communicating boundary for "Combination 1" through "Combination 5". Here the 

infinite-acting radial flow regimes are s h o w  to be separated distinctly from the boundary 

dominated flow regimes for different values of skin factor in any combination. Figures 

6.17 through 6.21 show the Cartesian derivative profiles of dimensionless pressure 

responses generated in drawdown for difFerent values of the skin factor at the 

communicating boundary for "Combination 1" through "Combination 5". These figures 

also demonstrate that effects of boundarydominated flow on the transient behavior is 

distinct for different values of the skin factor. The steady-state flow regime is 

characterized by the flat line witn a Cartesian derivative of O, whereas, the pseudosteady- 

state flow p e n d  (in the case of s = -) is characterized by a flat line with a Cartesian 

derivative value of 1 . It has been estimated that the infinite-acting radial flow pend ends 

at = 0.10 1 using the criterion of 2% deviation from the intercept of the initial flat Iine, 



Figure 6.12: Semilog derivative of dimensionless pressure responses 
in drawdown for different values of skin factor considered in 
"Combination 1 ". 

Figure 6.13: Semilog derivative of dimensionless pressure 
responses in drawdown for different values of skin factor 
considered in "Combination 2". 



Figure 6.14: Semilog denvative of dimensionless pressure 
responses in drawdown for different values of skin factor 
considered in "Combination 3". 

Figure 6.15: Semilog denvative of dimensionless pressure 
responses in drawdown for different values of  skin factor 
considered in "Combination 4". 





Figure 6.18: Cartesian derivative of dimensionless pressure 
responses in drawdown for different values of skin factor 
considered in "Combination 2". 
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Figure 6.19: Cartesian derivative of dimensionless pressure 
responses in drawdown for different values of skin factor 
considered in "Combination 3". 
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Figure 6.20: Cartesian derivative of dimensionless pressure 
responses in drawdown for different values of skin factor 
considered in " Combination 4". 

Figure 6.2 1 : Cartesian derivative of dimensionless pressure 
responses in drawdown for different values of skm factor 
in "Combination 5". 



which is 0 . 2 5 / ~ ,  as shown by P r m o  and LiIZey (1986), on the semilog derivative plot 

regardless of the values of the skin factor and combination of boundary conditions. Tables 

6.4 through 6.8 show the dimensionless times, tm, at which the steady-state flow period 

would stan for different finite values of skin factor for "Combination 1" through 

"Combination 5". Comparison of  values from Table 6.4 with those From Table 6.5 

shows that the system with "Combination 2" takes a shorter dimensionless time to reach 

steady state than that with 44Combination 1" for identical values of the skin factor because 

of possessing a Iarger area for fluid communication at the boundaries. Comparison of the 

values in Tables 6.5 and 6.6 shows that "Combination 3" reaches steady state 

significantiy earlier than "Combination 2" with low but identical values of skin factor. But 

this difference in dimensionless times to reach steady state dissipates to an insignificant 

lwel with high but identical values of the skin factor. Comparison of the values of t ~ s  

from Table 6.7 with those ftom Tables 6.5 and 6.6 shows that "Combination 4" takes 

significantly shorter dimensionless times to reach steady state than "Combination 2,' or 

"Combination 3" does. For example, tm for "Combination 2" is 48.8% longer and that for 

"Combination 3" is 5 1.3% longer than tDs for "Combination 4" with s = 10. Comparison 

of the values of tDs from Table 6.8 with those from Tables 6.4 through 6.7 shows that 

"Combination 5" reaches steady state earlier than any other combination. For exarnple, t ~ s  

with "Combination 3" is 99.9% longer and that with "Combination 4" is 33.4% longer 

than tm with "Combination 6" for s = 100. The criterion for the start of steady-state flow 

period, tm is taken as when the Cartesian derivative falls below 0.02 (i.e., O 5 p, D I 

0 .OZ). As is also evident in Figs. 6.12 through 6.2 1, the periods between  DR and tm are 

dominated moaly by the effects of pseudosteady-state flow. During these periods the 

reservoir behaves predominantly like a closed one. However, these penods are longer for a 

higher value of the skin factor which is consistent with the trend shown in Figs. 6.7 

through 6.1 1. 



TABLE 6.4: DIMENSIONLESS TIME TO TEE START OF STEADY-STATE FLOW, t~s ,  IN 
"COMBINATION 1" 

TABLE 6.5: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, t ~ s ,  FN 
"COMBINATION 2" 

TABLE 6.6: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, ZDS, IN 
"COMBINATION 3" 



TABLE 6.7: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, ~JX, IN 
YCOMBINATION 4" 

TABLE 6.8: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, tas, IN 
"COmINATION 5" 



6.33 Buildup 

Figures 6.22 through 6.26 show the dimensionless pressure responses at the wellbore due 

to a production period (ending at t'o = 4) followed by a buildup p e n d  for different values 

of the skin factor at the communicating boundary for "Combination 1" through 

"Combination 5". These figures demonstrate that the well should be shut in earlier for 

higher values of the skin factor for any combination of the boundaq conditions to avoid 

the well pressure falling below the bubble point pressure. The buildup responses are 

steeper for Iower values of the skin factor for al1 combinations. This means that the 

systems with higher values of the skin factor need more dimensionless time to build up to 

the same 1 evel of dimensionless pressure, following a particular production period. 

6.3.3 General Discussion 

S~ewarr and lKhabuIIu (1989) have argued that an extended drawdown test should be 

performed to detect the limits of the producing cornpartment. Thus, transient-pressure 

behavior has been studied in extended drawdown. From the preceding analysis, it is 

evident that the type-curves developed in Figs. 6.4 through 6.23 and the time-criteria 

presented in Tables 6.3 through 6.7 can be used for identifjmg the extent of faulted 

boundaries between mal1 and big cornpartments. By matching the data from late times 

with Eqs. (6.1) through (6.5), it is possible to estimate the values of the skin factor, a 

parameter related to the resistance to flow of fluid at the boundary. It has already been 

mentioned earlier that quantifying the flow resistance in terms of a skin factor is very 

important for forecasting the long tenn production performance of a reservoir. A similar 

problem has been solved by Fox et al. (1988) making the assumption that the transient- 

effeas dissipate so quickly that steady-state flow of the fiuid cm be considered for the 

sake of sirnplicity. The analysis presented earlier in this study has shown that with the 

use of the transient-pressure data, while considering the resistance to flow, it is possible 



Figure 6.22: Dimensionless pressure respoÏkes at the wellbore for 
a shut-in period k i n g  followed by a production period where the 
well is shut in at t, = 4 for "Combination 1". 
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Figure 6.23: Dimensionless pressure responses at the wellbore for a 
shut-in period k i n g  followed by a production period where the well 
is shut in at tD = 4 for "Combination 2". 



Figure 6.24: Dimensionless pressure responses at the wellbore for 
a shut-in p e r d  being followed by a production period where the 
well is shut in at t, = 4 for "Combination 3". 

Figure 6 -25 : Dimensionless pressure responses at the wellbore 
for a shut-in period k i n g  followed by a production period where 
the well is shut in at t, = 4 for "Combination 4". 



Figure 6.26: Dimensionless pressure responses at the wellbore 
for a shut-in period being followed by a production penod where 
the well is shut in at tD = 4 for "Combination 5". 



to recognize and quanti@ the presence of partiallycornmunicating faults or low- 

permeability bamers, if there are any. The dimensiodess time at which infinite-acting 

radial flow ends (tDR) has been estimated to be 0.101, regardless of the wmbination of 

boundary conditions. This time-critenon for the end of the infinite-acting radial flow 

period cm be used for the semilog analysis to evaluate the rock and fluid properties of the 

small cornpartment. Also the tirnecriteria of Tables 6.4 through 6.8 are useful in 

detemining the time to the aart of the steady-state flow regime for the purpose of 

deciding the applicability of simplified analyses like the one presented in Fox et ol. 

(1988). Evidence has been found in the previous Sub-Section that a pseudosteady state 

flow-period exists between tDR and tm that has a flattened value of the Cartesian 

derivative of unity. This particular period can be utilized to End the volume of the 

producing compamiient using an extended drawdown analysis. The idea of estimating 

pore-volume corn the extended drawdown data will be presented in Chapter 7. Therefore, 

the time-critena presented earlier can help locate the pseudosteady state flow regime in a 

set of well test data. The onset of steady-state flow is characterized by a fiattening of the 

Cartesian derivative profile dong the intercept value of zero which signals the 

establishment of pressure support at the communicating boundaries of the small 

cornpartment (Figs. 6.12 through 6.16). The type-curves can also be used to design the 

production and shut-in schedule of the producing well ahead of time to avoid producing 

from the cornpartment below the bubble point pressure. 

"Combination 2" and "Combination 3" possess the sarne amount of surface area for fluid 

communication at the boundaries. But the total area for fluid communication in 

"Combination 3" is split into two segments which are located at opposite sides of the 

small cornpartment. The solutions for late times of these combinations are presented in 

Eqs. (6.3) and (6.4), respectively, which are very close in magnitude, especially at high 

values of the skin factor. Dimensionless times for the start of the steady-state flow 

period, tm, of these combinations are tabulated in Tables 6.5 and 6.6, respectively. These 



tables show that the dimensionless tirnes in "Combination 3" are significady shorter 

than those in "Combination 2" for low values of the skin factor. However, the difference 

in dimensionless times for these two combinations becomes insignificant for high values 

of the skin factor. 

Dimensionless wellbore pressure at late times, as expressed by Eqs. (6.2) through (6.6), 

is observed to be a linear function of the finite vdue of the skin factor. Comparison of 

these equations reveds that an increase in area of the communicating boundaries for a 

particular value of the skin factor results in a decrease in the dimensiodess wellbore 

pressure at steady nate. An increase in area for fluid communication at the boundaries 

decreases the total resistance to flow which eventually causes a lower dimensionless 

pressure drop at the wellbore. 

Comparison of Tables 6.4 through 6.8 shows a general trend of taking shorter 

dimensionless times for a system to reach steady-state flow with an increase in the 

communicating area at the boundary for identical values of the skin factor. 

6.3 Two-Cornpartment Cellular System 

Section 6.2 has dealt with a situation where a producing compartment is in hydraulic 

communication with a relatively big compartment having negligible intemal resistance to 

the flow of fluid. However, in this Section the situation when the two communicating 

compartments are of comparable volumes having finite intemal resisiance to the fiow of 

fluid is considered. Junkrn et al. (1 992) have pointed out that, in most instances, the 

evduation of production data and static pressure history cm be accomplished with a two- 

cornpartment system producing through a single well. 



The cornpartmentalized system under consideration is bounded by extreme boundaries 

located atxD=x'~ = O, XD =X'D = 1, y~ = YI D = O a n d y ~  = Y J D  = 1. Hydraulic 

communication between the compartments is pwr due to the presence of a thin skin at 

the interface located at XD = X2 D = 0.5 (Yl D < y~ < Y2 D). The first compartment is 

producing at a constant rate of qD = 1 through a well located areally at the center of the 

first compartment with coordinates (aD = 0.25, bD = 0.5). Ail the reference parameters are 

taken with respect to the rock and fluid properties in the first compartment (X, 5 x~ 5 

X z d .  Initially the system is assumed to be at a uniform pressure. The analytical solution 

for a two-dimensional cornpartmentalized system as developed in Chapter 3 is used to 

generate numencal values for the system under consideration. 

First, the effea of skin factor (s) on the transient responses at the wellbore is considered. 

The compartments with identical values of the rock and fluid properties are separated 

with an interface with skin. Figure 6.27 demonstrates the dimensionless pressure 

responses for different values of the skin factor. With increasing values of the skin factor, 

the elevated dimensionless pressure remains in a longer transition p e n d  before the profile 

merges with that of s = O. Figure 6.28 shows the semilogderivative profiles of the 

dimensionless pressure responses for different values of the skin factor. This plot 

reinforces the observations drawn fiom Fig. 6.27. The effects of the skin factor on the 

Cartesian derivative of the dimensiodess pressure responses are s h o w  in Fig. 6.29. 

Regardless of the value of skin factor, the flow regime eventually leads to pseudosteady- 

state flow where @, ddtD = 1. For instance, pseudosteady-state flow starts at tD = 107 

for s = 100 (using a criterion of the Cartesian denvative reaching within 2% of the 

benchmark value of 1). However, it takes longer for a higher value of the skin factor to 

reach the pseudosteady-state period. 

Identification of the pseudosteady-state flow p e n d  is important, because one can 

perform an extended drawdown analysis during pseudosteady-state 80w to evaluate the 



Figure 6.27: Effect of skin factor on the dimensiodess pressure 
responses at the wellbore in a two-cornpartment system. 
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Figure 6.28: Effect of skin factor on the semilog derivative of dimensionless 
pressure responses at the wellbore in a two-cornpartment system. 



Figure 6.29: Effect of skin factor on Cartesian derivative of dimensionless 
pressure responses at the wellbore of a two-cornpartment system. 



pore-volume in the producing compartrnent. This idea will be illustrated later in Chapter 

Figures 6.30 through 6.36 depict the effects of the contrasts of the values of the rock and 

fluid properties in the compartments on the Cartesian denvative of the dimaisionless 

pressure responses at the wellbore. The values of s = 100 and 1000 are considered in 

these cases. A comparison of Fig. 6.30 with Fig. 6.31 shows that an increased mobility 

ratio in the ~ p p o m n g  compariment (second compartment) (fkom M2 = 10 to M2 = 100) 

for s = 100 has little effect on the Cartesian derivative profiles for different storativity 

ratios. Moreover, a comparison of Fig. 6.30 with Fig. 6.32 demonstrates that a decreased 

mobility ratio in the supporthg compartment (from M2 = 10 to M2 = 0.1) always has 

littie effect on the Cartesian derivative. This is so because the resistance to flow due to s 

= 100 at the interface boundary is more dominant than the intemal resistance in the 

supporting compartrnent. But the storativity ratio has an effect on the Cartesian 

denvative profiles, especially at higher values. The profiles at late times are influenced by  

the value of storativity ratio. A higher value of skin factor (s = 1000) is considered in 

Figs. 6.33 through 6.36. In this case, similar observations as made for s = 100 can be 

reiterated. In Figs. 6.35 and 6.36, lower mobility ratios, M2 = 0.01 and 0.1, in the 

supporting cornpartment than the producing compartment have been considered. These 

cases ais0 show skin-dominated flow even after considering such low value of the 

mobility ratio. 

The Cartesian derivative of dimensionless pressure responses at late tirnes is 

approximated by the following equation: 



Figure 6.30: Effect of mobility and storativity ratios on Cartesian derivative 
of dimensionless pressure responses at the wellbore of a two-cornpartment 
system with M- = 1 O, s = 100. 

Figure 6.3 1 : Effect of mobility and storativity ratios on Cartesian derivative 
of dimensionless pressure responses at the wellbore of a two-cornpartment 
system with M2 = 100, s = 100. 



Figure 6.32: Effect of mobility and storativity ratios on Cartesian derivative 
of dimensionless pressure responses at the wellbore of a two-cornparnent 
system with M2 = 0.1, s = 100. 

Figure 6.33: Effect of mobility and storativity ratios on Cartesian derivative 
of dimensionless pressure responses at the wellbore of a two-cornpartment 
system with M2 = 10, s = 1060. 
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Figure 6.34: Effect of mobility and storativity ratios on Cartesian derivative 
of dimensionless pressure responses at the wellbore of a two-cornpartment 
system with M* = 100, s = 1000. 

Figure 6.35: Effect of mobility and storativity ratios on Cartesian derivative 
of dirnensionless pressure responses at the wellbore of a two-cornpartment 
system with Mt = 0.01, s = 1000. 
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Figure 6.36: Effect of mobility and storativity ratios on Cartesian denvative 
of dimensionless pressure responses at the wellbore of a two-compartment 
system with M2 = O. 1, s = 1000. 



where n is the total number of compartments and F, is the aorativity ratio in the ;th 

compartment. For the system under consideration with Fl = 1, F2 = 20, one has, 4, ddD 

= 0.0952 at late times. Equation (6.7) shows that the Cartesian derivative of 

dimensionless pressure responses at late times is not a function of the mobility ratio (M,) 

or of the values of the skin factor. However, any higher value of F, decreases the value of 

this derivative due to an increase of the pore volume and/or of total compressibility in the 

system. The values of the Cartesian derivative at late times are found to be in good 

agreement with the respective values as observed from Figs. 6.29 through 6.36. These 

figures aiso demonstrate that the value of the storativity ratio in the supporting 

compartment has an effect on the Cartesian denvative profile, especially at a high value 

dunng late times. However, this equation can be used in confirming the volume-weighted 

storativity from the late-time data or in evaluating the volume or storativity of a 

compartment if other parameters are known. 

6.4 Stacked Channel Realization 

Another important aspect of reservoir corn partrnentalization i s a stacked channel 

realization where two sand bodies communicate hydraulicaily with each other through an 

overlapping area (interface). This has been illustrated schematically in Fig. 6.37. However, 

in this study, the pwr communication between the sand bodies is taken care of by 

considering the presence of a thin skin at the interface. Stewart and Whabaih (1989) have 

mentioned that the sealing nature of the overiapping area would make the producing sand 

body behave as if it were a closed rectanguiar system. Lord et al. (1 992) have pointed out 

that such an interface may be extensive in area, but typically consists of low-permeability 

shale. In this Section, the transient behavior of a stacked channel realization will be 

investigated. 



Figure 6.37: Schematic of a stacked channel realization. 



Since the effects of gravity are important due to the structure of a system of stacked 

channels, transient-potentid behavior, rather than transient-pressure, will be anaiyzed. 

The analytical solution for a threedimensional flow system as developed in Chapter 4 

vvill be used to generate the transient responses. The geometry of the system of stacked 

channels to be considered in this study is illustrated in Figs. 6.38a and 6.38b. These 

figures show that the upper body has a region within XI D a xD I X, D, Y, < y, 5 Y,, 

and Zl D < ZD < 4 D, and that the lower body has a region within X2 L XD < Xj Y, D L 

y~ S Y,. and Z2 D S ZD 5 Z3*. Also the skin surface is within the region, X2 5 xg < X3 

and YI L y~ S Y3 D, located between the upper and lower bodies. Al1 the emerne 

boundaries of this system are considered closed. Al1 rock and fluid properties are taken 

with reference to those in the upper body. Initially, the entire system has been at an 

identical, uniform potential. 

Figure 6.39 shows the effea of contrasts of rock and fluid propenies in the upper and 

lower bodies of a stacked channel realization. Here, the upper and lower bodies are in 

perfect communication (s = O). For a very low storativity ratio in the supporting 

compartment (lower body), el I 0.1, the producing compartment (upper body) receives 

very litile potential support. In such cases, the Cartesian denvative responses are sirnilar 

to a situation with very high communication resistance at the interface. However, for high 

values of the storativity ratio, el > 1 .O, the upper body receives substantial potential 

suppon from the lower body. This results in low values of the Cartesian derivative at late 

times. 

Figure 6.40 shows the effects of contraas of rock and fluid properties when s = 100. The 

Cartesian derivative profiles for different values of el are presented. After the transition 

from infinite-acting radial flow period, there is a certain p e n d  of time where the 

producing compartment behaves as if it were a closed system, as indicated by flattening 



Figure 6.38a: Schematic illustrating the geometry of a stacked channel realization in areal view. 

Figure 6.38b: Schematic illustraring the geomeny of a stacked channel realization in plan view. 



Figure 6.39: Effect of storativity ratio on the Cartesian derivative of 
dimensionless potential responses at a wellbore in a stacked channel 
realization for s = 0. 

Figure 6.40: Effect of storativity ratio on the Cartesian denvative of 
dimensionless potential responses at a wellbore in a stacked channel 
realization for s = 100. 



of the derivative values. But for el S 0.1, the profiles rernain flat. This means that the 

upper body gets very little potential support from the lower body for such low 

storativity values for the lower body. However, this observation is identical to that for s 

= O in Fig. 6.39. For el > 1.0, a considerable amount of potential support is available as 

depicted by the lower values of the Cartesian denvative at late times. There is a time-lag 

for establishment of such support due to the presence of resistance at the interface 

between the upper and lower bodies (s + 0). 

Figure 6.41 shows the Cartesian derivaiive profiles for the potential responses at the 

wellbore for different vaiues of the skin factor in a stacked channel realization with 

identical rock and fluid properties in the upper and lower bodies. For s > O, it is shown 

that the upper body (producing compartment) remains a closed system as depicted by 

the zero slope for some time after the infinite-acting p e r d  and the transition p e n d  afier 

that disappear. Such an intenm pseudosteady-state p e n d  is more prominent and lasts 

longer for a higher value of the skin factor. After this penod of pseudosteady-state flow, 

the potential support from the lower body is established, as is depicted by the declining 

value of the Cartesian derivative for s > O, before the entire system leads to  

pseudosteady-state flow. The system pseudosteady-state Bow period is another flat line 

having a smaller value of the intercept than that during the pseudosteady-state period for 

the producing compartment. Remgnizing these pseudosteady-state periods is important 

for the purpose of estimating the compartment volumes from extended drawdown data 

which will be discussed in the following Chapter. 

The Cartesian denvative of the dimensionless potential responses at late times is 

approximated, from the solution presented in Chapter 4, by the following equation: 
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Figure 6.4 1 : Cartesian derivative of dimensionless potential responses 
at a wellbore for different values of skin factor in a stacked channel 
realization. 



where e and v stand for the storativity ratio and the dimensiodess volume, respectively, 

and the subscnpts u and I represent the upper body and the lower body, respectively. 

Equation (6.8) shows that the Cartesian derivative of dimensionless potential responses 

at late times is not a funnion of the mobility ratio or the skin factor. However, this 

equation can be used to wnfirm the volume-weighted storativity or to evaluate the 

volume or storativity of a cornpartment fiom extendeci drawdown data. The Cartesian 

denvative of the potential responses at late times, as s h o w  in Figs. 6.39 through 6.4 1, is 

found to be in excellent agreement with that predicted by Eq. (6.8). 



CHAPTER 7 

EXTENDED DRAWDOWN ANALYSIS IN COMPARTMENTALIZED 
RESERVOIRS 

7.1 Introduction 

Compartmentalized models in low-permeability reservoirs are an improvement over the 

application of traditional volumetric analy si s (material balance mode1 s). Accordhg t O 

Pqme (1996), this p w r  performance of the volumetric analysis in such reservoirs is a 

result of the residual pressure gradient, even &er moderate shut-in periods. He also 

indicates that a Iack of understanding of the way a number of poorly drained regions 

would behave in the long run could lead to a conservative estimation of reserves. 

An estimation of average reservoir pressure is very important for characterizhg a 

reservoir, computing the amount of hydrocarbons in place and predicting future reservoir 

behavior (EarZougher, 1977). Also the average reservoir pressure gives an estimation of 

the density of the fluids in place and the average driving force to move fluids toward the 

wellbore (Raghavan, 1993). Dake (1994) proposes a method for estimating the average 

reservoir pressure of a homogeneous system fiom a set of data from a two-rate flow test 

without any shut-in of the producing well. This method makes economic sense because 

any shut-in of a producing wel1 to obtain pressure buildup data causes a loss of 

production. But the difficulty of establishing a second, stable production rate is 

mentioned as a barrier to the application of this method. 

A number of well-established methods a r ~  available to masure the average reservoir 

pressure in hornogeneous systems fiorn pressure buildup data. These include those of 

Horner (1 95 1 ), Miller et al. ( 1  B O ) ,  Matthews et al. ( 1  954) and Dieiz (1 965). 



Lord and CoIIins (1991) mention that the inflow relationship is valid only after a 

pseudosteady-state pressure distribution has evdved in the reservoir. This means that 

following any rate change, a time period would have to e!apse before this relationship 

cornes into effect. Fox et a% (1988) achowledged the limitation of a conventional buildup 

test to determine the average pressure within a cornpartment due to uncertainty about the 

amount of fluid crossing a partially-communicating interface. 

7.2 Relationship between Average Reservoir Pressure and Production Rate 

Golan and Whirson (1986) have suggested an equation for the decline of the average 

reservoir pressure for constant-rate production in a closed system using material balance. 

To generalize the equation for the decline of the average pressure, a variable rate of 

production from a closed, compartmentalized system is considered. Taking a similar 

approach to that of Golan and Whitson (1986)- one has the dimensionless fom of this 

relationship as, 

where, 



7 3  Analysis of Ertendeû Drawdown Data 

Jones (1956) introduced the idea of analyzing the drawdown data to compute the volume 

of hydrocarbons from the observed rate of pressure decline due to production. 

EPrlmgher et al. (1968) observed that pseudosteady-state flow at the wellbore ensures 

that the same condition prevails at al1 other points in the reservoir. This has been the 

basis for analysis of extended drawdown data. 

Ln the following Sub-Sections, methods will be presented to detect pwr  drainage between 

compartments and to dculate the amount of hydrocarbon reserve per unit pressure 

drawdown and the average reservoir pressure. Although the methods are explained in 

ternis of a two-cornpartment system, they can be extended similady to any number of 

cornpartments. 

7.3.1. Detection of Poor Hydraulic Communication 

Consider a two-cornpartment system where Compartment 1 is producing through a well 

at a constant rate of q, while Compartment 2 is supporting Compartment 1 hydraulically. 

The ext-eme boundaries are al1 closed ones. Both compartments have been subject to the 

same uniforni, initial pressure, p,. When the system reaches pseudosteady state, the late- 

time versions of the solutions from Chapters 3 and 4 are applicable. 

Cartesian denvative profiles with dimensionless time for different values of the skin 

factor are ploned on a log-log plot in Fig. 7.1. This figure shows that the producing 

cornpartment is temporarily subject to pseudosteady-state flow after the end of the 

transition from infinite-acting radial flow. The responses due to this period of 

pseudosteady-state flow are characterized by flattening (first plateau) of the profile. A 



Figure 7.1 : Cartesian denvative responses to detect poor hydraulic 
communication between compartments. 



similar observation has been made in a systern comprised of a srnall compartment in 

communication with a big compartment as analyzed in Section 6.3. Chapter 6. Applying 

pseudosteady-state analysis during this penod enables estimation of the hydrocarbon 

pore-volume in the producing cornpartment. A two-cornpartment system possesses two 

plateaus: the first is due to the producing compartment and the next is due to the entire 

system. This observation can be extended to any number of compartments, where the 

number of plateaus will be equal to the number of compartments. On the other hand, for 

perfect communication between compartments ( s = O ), no such plateau appears before 

the system reaches pseudosteady-state flow. So, the appearance of multiple plateaus in a 

p,,,' vs. r plot is an indication of the existence of poor hydraulic communication between 

compartments. The order of appearance of each plateau will be in accordance with the 

way the compartments are arrangeci. However, the definition of such a plateau depends 

upon the value of the skin factor, a Iarger skin factor causes a longer plateau. 

A similar approach for detecting poor communication between upper and lower sand 

bodies in a stacked channel realization has been shown by Rahman and Ambastha (199%) 

by taking advantage of the fact that the partially-communicating barrier acts as a sealing 

barrier for some time before the entire system reaches pseudosteady state. 

7.3.2 Cornpartment Volumes and Hydrocarbon Reserve 

With the well producing at a constant rate in the first compartment, the Cartesian 

derivative, pWD' ( = dp,ddi, ) during the first appearance of pseudosteady-state flow is 

given by (from the solution in a two-dimensional system, expressed by Eq. (3.40), with a 

modification suggested by Eq. (3.63), Chapter 3), 



In this analysis, the reference parameters are taken with respect to the first comparîment 

(produchg cornpartment). Eventually the entire system undergoes pseudosteady-state 

flow. Then the late-time solution for the system stated above is given by, 

' - ....................................................................................... p w ~  _1 - qD hpD 1 (el Al + e2 A2) (7.5) 

Dimensionalization of Eqs. (7.4) and (7.5) yields, 

................................................................................................................. p i l  = - q / N S l  (7.6) 

pw; = - 4 / (N, , + K 2 )  ................................................................................................... (7.7) 

where, 

N, = Q I  c,] VI 1 BI ......................................................................................................... (7-8) 

........................................................................................................... N, 2 = g2 cr2 VZ 1 B2 (7-9) 

The values of p,', and p,'? are read from the first and second flattened intercepts 

(plateaus), respectively, in a plot of Cartesian derivative responses at the wellbore, p,', 

versus time, Z, on a Cartesian plot (or log-log plot). Figure 7.2 illustrates how these 

intercept values can be detennined from a plot of p,' vs. t, drawn corn a set of 

data. Solving Eqs. (7.6) and (7.7) for N, , and IV, 2, one gets, 

weli test 

....( 7.10) 
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Figure 7.2: Determination of intercept values from Cartesian denvative 
profile ploned with well test data from a compaxtmentalized system. 



Therefore, the hydrocarbon reserve in standard volume per unit pressure drawdown in 

each compartment ( N, and N' 2 ) is known, and the total hydrocarbon reserve in standard 

volume per unit pressure drawdown in the resewoir, Ns, *ui be cornputed from the 

following relationship, 

This method for estimating the hydrocarbon reserve in each cornpartment can be extended 

to any number of compartments, provided the corresponding number of plateaus are 

available on thep,' vs. t plot. The higher the resistance to flow at an interface (higher skin 

factor), the longer will be the corresponding pseudosteady-state period. If one has some 

prior information about formation volume factors and total compressibiIities, then the 

respective hydrocarbon pore-volumes from Eqs. (7.8) and (7.9) cm be determined. The 

approach taken here is based on pseudosteady-state flow. Therefore, this procedure may 

be extended to other compartrnentalized systems regardless of the shape of the 

compartments. 

A similar method for estimating the hydrocarbon pore-volume has been developed by 

Rahman and Ambastha (1997b), for a stacked channel realization using exrende. 

drawdown data. In the case of a stacked channel realization, the late-time approximation 

of the general solution for a three-dimensional sy stem, expressed b y Eq. (4.54), has been 

used taking into account the proper rewmmendation in Section 4.3.7, Chapter 4, for 

having dl the extreme boundaries of the closed-type. Equations for the hydrocarbon 

reserve in standard volume per unit potential drawdown in each compartment, similar to 

Eqs. (7.10) and (7.1 1 ), have been derived in terms of the intercepts of the Cartesian 

derivative of dimensionai potential responses from a plot of 0' vs. r .  



From the drawdown data in the infinite-acting, radiai-flow regirne (semilog analysis), the 

permeability of the producing compartment can be estimated following Tiab (1995) as, 

Subscript, r, refers to a data point in the idmite-acting, radial-flow regirne. 

7.33 Average Reservoir Pressure 

Figure 7.3 shows the effect of the values of the skin factor at the interface on the buildup 

profile at the shut-in well in the first cornpartment. This figure shows that a longer 

buildup time is required to reach the average reservoir pressure for a higher value of the 

skin factor. Table 7.1 shows the dimensionless buildup times and the corresponding 

buildup times in hours with respect to a set of reference parameters for different values of 

S. For s > 0, the buildup times required to the average reservoir pressure are very high and 

such long buildup times may not always be feasible for practical reasons. As an 

alternative to a buildup test ninning for such a long time, here we will develop a method 

to calculate the average reservoir pressure from stabilized drawdown data. 

Simplification of Eq. (7.1) into dimensional form yields, 

The dimensionless wellbore pressure of the system under consideration at pseudosteady 

state can be approximated by, 



Figure 7.3: Buildup behavior at a well in the fint cornpartment for different 
values of skin factor after a production period of t, = 100. 

TABLE 7.1: BUILDUP TIME REQUIRED FOR DIFFERENT SKIN FACTORS 

Skin factor, s 1 Dimensionless buildup time 1 Buildup time', hours 

Baced on rejrence parameters: 



where Cw is a constant. Mathematically, Cw is a fundon of the location of the well 

within the producing compartment and the skin factor, arnong other parameters, of a given 

system. To take into account the effect of well location on C, identical values of rock and 

fluid properties are considered in a compartmentalized system. Values of C, for sy stem s 

with different well locations comesponding to the aspect ratio of the producing 

compartment, NY = 0.5, 1 and 2 (Fig. 7.4) are presented in Tables 7.2 through 7.10. 

Ramey and Cobb (1971) made a similar observation with respect to pseudosteady-state 

flow in a closed, hornogeneous square as in Eq. (7.15) where the late-time dirnensionless 

pressure is shown to be a linear function of dimensionless time. Nevertheless, a 

cornparison of the values of C, in Tables 7.2 through 7.10 indicates that while C, is a 

nrong function of the skin factor, it is only a weak function of the well location in the 

producing compartment. Based on this observation, average values of C,, caiculated from 

those presented in Tables 7.2 through 7.10, are proposed in Table 7.1 1,. These values can 

be used for the purpose of estimating the average reservoir pressure, the procedure for 

which will be explained later. 

Upon dimensionalization of Eq. (7.15) and substituting Eq. (7.14) in it, one gets, 

- 
Therefore, p c m  be computed from the flowing bottomhole pressure using Eq. (7.16), 

provided the system has reached pseudosteady state. This equation shows a linear 

relationship between the average reservoir pressure and the flowing bottomhole pressure 

at pseudosteady state in a compartmentalized sy stem. 



communicating 
well location O 
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Figure 7.4: Well locations considered for detennining C, for 
different values of X/Y. 

TABLE 7.2: VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED 

WelI location 
1 

1 

cw 
3 .O33 



TABLE 7.3: VALUES OF C,, FOR WELL LOCATIONS M A COMPARTMENTALIZED 
SYSTEM WITa XIY = OS, s = 1000 

b - 

TABLE 73:  VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED 

Well location 

TABLE 7.4: VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED 
SYSTEM WITH X/Y = 0.5, s = 10000 

SYSTEM WlTH X/Y= 1, s = 100 

cw 

Well location 
I 

1 

2 

3 

4 

5 

6 

c w  
469.9 

I 

469.97 

469.89 

470.1 5 

470.0 

470.03 
L 

WeIl location 

1 

2 

3 

cw 
3.26 

3.26 

3.18 



TABLE 7.6: VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZlED 
SYSTEM 

TABLE 7.7: VALUES OF CD FOR WELL LOCATIONS IN A COMPARTMENTALIZED 

Well location 

1 

cw 
41.84 

TABLE 7.8: VALUES OF C' FOR WELL LOCATIONS iN A COMPARTMENTALIZED 

SYSTEM WITH WY = 1, s = 10000 

SYSTEM WlTH W Y =  2, s = 100 

Weil location cw 

WeIl location cw 



TABLE 79:  VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED 
SYSTEM W 

TABLE 7.10: VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED 

~ H X ; / Y = ~ , S =  1000 

SYSTEM W 

Weil location 

TABLE 7.11: 
COMPARTn 

cw 

rH m= 2,s = 10000 

WelI location cw 

AVERAGE VALUES OF C, FOR DIFFERENT VALUES OF SKIN FACTOR IN A 
ENTALIZED SYSTEM 

Skin factor 

1 O0 

1000 

cw 
3 .26 

41 -9 



Figures 7.5 and 7.6 show the cornparison of the predicted dimensiodess wellbore 

pressures at late time using the recommended values of C, from Table 7.1 1 with those 

from the analytical solution. As mentioned earlier, the values of C, are valid at 

pseudosteady suite. The onset of pseudosteady-state flow in Figs. 7.5 and 7.6 is 

indicated by flaîtening of the Cartesian denvative corresponding to a skin factor. These 

figures show that the predicted values (discrete points) of dimensionless pressure at late 

time match well with the values from the and ytical solution. 

In this Chapter, a simple diagnostic technique has been developed to identiQ poor 

hydraulic-communication between compartments fiom p,' vs f plots. Procedures leading 

to the computation of the hydrocarbon reserve in each compartment and in the entire 

reservoir, and the average reservoir pressure from the extendeci drawdown data have also 

been developed. 



Figure 7.5: Comparison of the predicted dimensionless wellbore pressure 
at late time with that from the analytical solution with X / Y  = 2. 

Figure 7.6: Comparison of  the predicted dimensionless wellbore pressure 
at late time with that fiom the analytical solution with WY = 0.5. 



CHAPTER 8 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

8.1 General Discussion 

In this study, the necessary analytical solutions have been developed to help understand 

the transient behavior of a number of corn partmentalized sy stem S. Pwr  communication 

between an adjoining pair of compartments has been comprehensively modeled as being 

due to the presence of a thin skin at the interface. As a result of this, the rate of fluid 

crossing the interface is primarily dependent on the amount of pressure (or potential) 

drop occming across the skin. The value of the skin factor regulates the amount of 

pressure (or potential) drop. The higher the value of the skin factor, the higher pressure 

(or potential) drop that will occur across the interface, while the other parameters of the 

system remain the same. This approach of estimating the amount of fluid communication 

is more comprehensive than that which has been considered in the literature using the 

concept of banier transmissibility. 

New analfical solutions have been developed for transient flow in comparbnentalized 

systems with the flow govemed by one-, two- and threedimensional Cartesian 

representations. Attempts have been made to include more complicated situations by 

extending one-dimensi onal to three-dimensionai sy stem S. These solutions are more 

rigorous than models based on the material balance technique (tank models) because of the 

fact that these new analytical solutions include the shape, size, i n t d  resistance to flow 

and the contrasts of rock and tluid properties of a compartmentalized system. 

Nevertheless having more parameters with regards to rock and fluid propenies and the 

geometry of the system in the analytical solutions makes the problem of non-uniqueness 

wone. This problem can be minimized when an estimation of some (if not dl) of the 

parameters, with a high confidence level, is available. Despite the problem of non- 



uniqueness, the analysis proposed in this shidy niables a better production (or pressure) 

match in compartmentalized systems. That is, this new approach is expected to overcome 

the shortcomings of the material balance techniques. 

In order to develop the new solutions, an intepl-transforrn technique for finite, 

composite domains has been used. The properties of this technique that are considered to 

be important include: 

it is applicable to finite, composite domains; 

it is capable of dedng with multidimensional variables (e-g., 3 dimensionai 

space variables); 

it has convenient transformation and inversion processes. 

To the best of the author's howledge, this method has not been used in the Petroleum 

Engineering literature. This integral-transform technique has proved itself to be very 

efficient and usehl in corn plicated scenarios like cornpartmental ized reservoirs. Al so. 

there are a lot possibilities for improvement of the simple solutions that are already 

known in the well-tesûng literature. Attempts to improve such solutions have usually 

faiied because of the inability to deal with multiple independent variables or the process 

of inversion, as sometimes occun when using the Lapl ace-transform technique. 

Application of a very powerful technique, such as the integral-transform technique, may 

prove to be useful when revisiting some of these simple solutions in the literature for the 

purpose of improving their utility. This could lead to increasing the number of tools that 

are currentl y available for anal y ring and interpreting well-test data. 

Equivalent production rates o f  compartmentalized sy stems wi th multiple wells and 

multiple rates have been developed with respect to the same compartmentalized system 

and to homogeneous systems. The ideas of equivalence have been illustrated by generating 

results from the mathematical expressions. The purpose of such equivalence is to 

integrate the interference of wells due to production into an equivdent system. 



New solutions have been used for studying the transient behavior of different 

compartmentalized systems. The systems that have been considered include a linear 

systern, a system with a small cornpartment in communication with a big one, a two- 

compartment system and a stacked channel realization. The effects of the inclusion of the 

resistance to flow and the contrast of the rock and fluid properties have been investigated. 

Correlations and time criteria have been proposed with the help of identiGing different 

flow regimes. 

An extended drawdown analysis for a compartmentalized system has been presented. 

Evidence has also been presented in Sub-Section 6.3.1, Chapter 6 and Sub-Section 7.3.1, 

Chapter 7, to show that a partially-communicating fault or bamïer acts as a sealing fault 

temporarily for some time. During this penod, by taking advantage of pseudosteady-state 

flow, it is possible to obtain information about a comparûnentalized system from 

extended tests. A new, but simple, diagnostic technique has been developed to identiS 

any poor hydraulic communication between comparmients fkom drawdown data. It has 

been shown that estimation of the hydrocarbon pore-volume in each compartment, the 

total reserve and the average reservoir pressure, is possible from the late-time data. 

8.2 Conclusions 

Based on the study presented in the preceding Chapters, the following conclusions are 

drawn : 

1. New generalized solutions for transient flow in one-, two- and three- 

dimensional coordinate systems have been developed analytically. These solutions 

have been validated by cornparhg a number of simplified cases with those 

avaiIable in the literature. 



2. The principle of reciprocity has been found to be applicable with the new 

solutions, provided the conditions at the exîreme boundaries of a 

compartmentalized system are of the homogeneous Dirichlet-, Neumann-type or a 

combination of these. 

3. The slope of the dimensionless pressure profile with respect to dimensionless 

time on a log-log plot increases to slightly more than 1/2 as the infinitely-acting 

linear flow period ends for a non-zero value of the skin factor in a linear 

compartmentalized system. 

4. Time criteria for the start of the pseudosteady-state flow period confilm that a 

higher value of the skin factor delays the onset of the pseudosteady-state flow 

period in a compartmentalized system. 

5. The effect of the boundaries staris, or the infinite-acting radial tlow ends, at tDR 

= 0.101, regardless of the combination of boundary conditions or of the value of 

the skin factor in a system compnsing a small, producing cornpartment in 

communication with a big one. In such a system, the dimensionless time required 

to reach steady state becomes shorter with an increase of the surface area for fluid 

communication with the same value of the skin factor. Dimensionless wellbore 

pressure at steady state decreases with an increase of the surface area for fluid 

communication with the same value of the skin factor. The presence of a 

mnmunicating boundary with a higher value of the skin factor requires a longer 

hme to make up the pressure drawdown in the small cornpartment. 

6. A higher, or lower, value of the mobility ratio in the supporting compartment 

has little effect on the Cartesian derivative of the dimensionless pressure 



responses at the wellbore in the producing compartment. This is due to the fact 

that the resistance to 80w at the in tdace boundary dominates the intemal 

resistance to flow in the supporting compartment. 

7. The storativity ratio in the supporting compartment has an effect on the 

Cartesian derivative profiles, especially at a hi& value of the storativity ratio 

during late times. 

8. For low storativity of the supporting cornpartment, the system behaves as if 

there is no communication of potential support to the producing compartment. 

9. A partially-communicating barrier between a pair of adjoining compartments 

behaves as a sealing banier temporarily for a certain period of time. This period 

lasts longer for a higher value of the resistance to fluid communication (skin 

factor). 

10. Based on the observation made in Item 9, a simple diagnostic technique has 

been developed to detect any poor hydraulic communication between 

compartments from drawdown data. Observation of multiple plateaus in p,' 

(Cartesian derivative of wellbore pressure or potential) vs. t is an indication of the 

presence of pressure (or potential) support through partially-communicating 

barriefls). 

11. The observation made in Item 9 has also been utilized to develop a method for 

cornputing the hydrocarbon reserve in each compartment and in the entire 

reservoir fiom extended drawdown data. 



12. A new method has been proposed to compute the average reservoir pressure 

from the flowing bottomhol e-pressure data. 

8.3 Recom mendations 

Upon the conclusion of this study, the following areas are recommended for fûrther 

study : 

1. Developing analytical solutions of some simple problems with enhanced 

features to improve the current level of understanding of the transient-pressure 

behavior for the flow of fluids, taking advantage of the ability of the integrai- 

transform technique to deal with multidimensional flow situations. 

2. Developing solutions for the flow of natural gas in compartmentalized systems 

using the necessary transfomations for pressure-sensitive gas properties. If the 

potential formulation is used, it must be considered in ternis of energy per unit 

mass to make it consistent wi th the ideas of Hubbert (1 940). 

3. Extending the solutions for the flow of multiphase fluids in compartmentalized 

systems by using the necessary transformations for pressure-sensitive fluid 

properties. 

4. Using the solutions for transient flow developed in this study for understanding 

reservoir heterogenei ty . 

Item 1 is concemed with developing the analytic. solutions for more complicated 

problems than the existing ones. One of the obstacles to obtaining such solutions has been 

the limited ability of the techniques in use (eg.,  Laplace transform) to deal with multiple 



independent variables (e-g., space coordinates). The development of such new solutions 

by utilizing an integral-transfomi technique for finite domains is expected to improve the 

understanding of transient-pressure behavior, as compared to that obtained using 

conventional techniques. With the proposed solutions in Items 2 and 3, different time 

criteria for compartrnentalized systems should be developed for the purpose of 

understanding the transient behavior of the flowing fluids. Item 4 necessitates the use of 

an analyticai solution for understanding the reservoir heterogeneity in temis of the 

vaxiations of rock and fluid properties. The solutions developed in this study, and thost: 

recommended to be developed in the fuhire, take proper account of the intemal resi stance 

to flow and the contrasts in fluid and rock properties, including anisotropy. 

Consequently, these solutions c m  be used to characterize reservoir systems wherein the 

corn partmental izati on i s not as prominent as the reservoir heterogeneity . 
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APPENDICES 

APPENDIX A 

COMPUTER PROGRAM FOR ONE-DIMENSIONAL FLOW SYSTEM 

This appendix presents the cornputer program for computing the numerical values fiom 
the andytical solution for a one-dimensional linear, compartmentalized sy stem as 
developed in Chapter 2. 

A.l Source Code 

Program: 1. f 

NC = Number af cornpartrnents . K X D (  1: = L o c a t r o n s  of S c u n d a r ~ e s  along x - a x ~ s  
t ( I 1  = S r a r a t i v r t y  r a t i o  r n  r t h  cornpar tment  
EM(I1 = M o b ~ l i t y  z a t l a  rn  r c h  cornpar tment  
U i I )  = D e f l n e d  r n  E q .  I 7 . 7 )  . E ( I )  = D e f ~ n e d  r n  Eq. 13.6:  . U = i!s (S = s k r z  f a c t o r  a t  a n  interface) 

AD(1) = 3 r r n e n s ~ o n l e s s  l o c a c l o n  of a p r o d u c ~ n g  w e l l  at s:n 2smFartrner: 
NTS:I) = Number o f  v a r l a b l e  r a t e s  c h a t  t h e  w e l l  a: r t h  zompar rmen r  p z m ü c e s  

8 QD(1, J )  = S:rnenslonless p r o d u c t ~ o n  r a t e  f rom :th comparcner r  w::k j:?. r a z e  
TPD(1, 2 )  = D r m e n s r o n l e s s  t rme  at whrch 2 t h  p r o d u c r i ~ n  r a c e  r c m m e n c e s  r n  rhe 

w e l l  at r:h cornparzment 
TSD( 1, J) = D ~ m e n s i o n L e s s  t rme  a t  which  1 t h  p = o d u c r r o r  za=e c e a s e s  rr, t h e  

w e i l  a t  r t h  cornpartment 
T D  = D r m e n s r o n l e s s  tirne 
PD = D r m e n s l o n l e s s  p r e s s u r e  
DfRL = ? a r : l r u l a r  d e r ~ v a t L v e  for l n f ~ n i t e - a c = : n ç  linear f l o w  
CDER = C a r t e s r a n  d e r l v a t r v e  

8.*~t~.****.**.******************t******.*.t+****.******~*+.**~***.9*9*. 

I M P S I C I T  REALeO(A-H,O-Z) 
CCMMON/TL/XXD ( 4 1 
CûMMON/T2/& 12 ; 
CMON/T3/E ( 2  1 
COMMON/T4/U 
COMMON/TS/N ( 3 ) 
CûMMON/T6/AD 13 1 
COMMON/T7/NTS ( 3 
COMMON/TB/QDi3,2) ,TPD(3,2),TSD(3,2) 
CûMMON/T9/ QDSUM 
COMMON/TlO/GBSUM 
COMMON/T12/COI 3 )  
CûMMON/T13/EI (2000 1 ,KK 
COMMON/T16/AAl, XD 
COMMON/TlSO/ML 
OPEN(4, F I L E = ' r n l d . d '  ) 

OPEN (3, FILE='  rda1d.d * 1 
OPEN(7, FILE='c.o' 1 
NC=2 
NNX=2* NC 
CALL IN PUT ( NC ) 
m L  DATA(NC) 
CALL RADMIN 
F U = O .  1 



FX.i=22.0 
WFtITE(7 ,S l )  

5  1 FORMAT(3X, ' T D 1 , 1 5 X ,  'PD '  ,iSX, ' D E R L " ,  i S X ,  *CDER"  
T B O .  Û L  

DO 5 1 = 1 , 3 0  
INWO 
W L  PRIME (TD, PD, DERL, CDER 1 
WRITE ( 7 , S O  1 TD, PD, D E R L m R  

5 0  FORMAT ( F L 0 . 3 , 5 X 0  F l S . 3 ,  F 1 0 . 3 ,  1 . 3 )  
I F ( T D . L T .  FALITHEN 

TD=TD+O. 0 1  
I N B l  
END1 F 
I F ( I N D . E Q . l I G 0  TO 5 

Xf(TD.GT. FiCL.AND.TD. LT. FALi 1THEN 
TD=TD+2.0 
1 ND= 1 
END1 F 
; F ( I N D . E Q . I : G O  TO 5 

I F ( T E . G T .  F C I T H E N  
TD=2. O'TD 
END1 f 

5 CONTINUE 
STCF 
END 
SUBROUTINE INPUTiNX)  

* THIS SUBROUTINE READS OIMENSIONS, ROCK AND ? L U I 3  PROPERTIES 

CONTINUE 
READING TWISMISSIBXLITY COEFFICI fNT AT EACH INTER-COM?iJiTc(E!;T 

BOUNDARY 
XEXD(4 , ' )S  
W R I T E ( 7 , 5 1 ) S  
FORMAT ( ' S K I N  FACTOR = ' , F 7  - 1 1  
U=l .  o/s 
R m I N G  WHETHER A COMPARTMENT V A S  A WELL, N ( L )  =O MEANS NO KELL 
READ(4, 'I  ( N ( L 1  ,L=L,NXl 
READING LOCATION O F  EACH WELL 
DO 4 I = l , N X  
I F ( N (  1 )  .NE. O) THEN 
READ(4,' IAD(I1 
END1 F 
CONTI NUE 
RETURN 
END 
SUBROUTINE COE f F l E W ,  FA1 

* T H I S  SUBROUTINE CREATS A COEFFIENT MATRIX 













12 CONTINUE 
DO 1 4  I = N , l , - 1  

sw=a ( I 
DO 1 3  J = I + l , N  

SUM=SUM-A(I, J I ' S  ( Z )  
1 3  CONTINUE 

9:?I=SUM/A(I,T! 
1 4  CONTINUE 

RETURtJ 
END 

A.2 Input Files 

Input  f i l e :  

5 . 5  1 . 2  c i o c a t r o n  o f  b c u n d a r r e s ,  :<XE!( Z 1 > 
0.3 <d:mensior.iess ; n r t l a L  p r e s s u z e ,  P X ( ; ) >  
100.3 <rnob~l:cy r a t r o s  ra  c o m p a z t n e n z s ,  CM ( 1  : > 
100.0 < s t o r a : l v l c y  r a t L o s  r n  comparcrner . ts ,  F (  II > 

O O O C  < s k l n  f a c t c r  a t  i n = e r f a c e >  
0 . 7 5  < l c c a t r o n  of  welis, AD(: :>  

Input f i l e :  rda1d.d 

1.3 < c o n s t a n t  zn c a i r u l a t l n g  roo:s o f  a Ilnear, homoqeneous s y s t e >  
0 . 3  < i ~ c a t : c n  w R e r e  a : m e n s l o n i e s s  p r e s s c r o  r e s t o n s e s  :c be c a l c u l a t e a >  
9000 cnumber  sf s e g m e n t s  t o  De c o n s r d e r e c  f c r  = a l c t l a r i c ç  e i g e n v a l u e s ,  K.> 



APPENDiX B 
COMPUTER PROGRAM FOR TWO-DIMENSIONAL FLOW SYSTEM 

This appendix presents the computer program for computing the numerical values fiom 
the analytical solution for a twdimensional compartmentalized system as developed in 
Chapter 3. 

B.l Source Code 

N = Numer  o f  compar tments  - XYDi 1) = L o c a t r o n s  of b o u n d a r l e s  a i a n ç  x - a ~ r s  
YYD(1) = Locations af b o u n d a r i e s  a l o n q  y - a x i s  . ALXiI) = Def lned  l n  Eq. (3.16) . ALY(Ii = Def ined  r n  Eq. (3.171 
EX(1)  = 3ef:ned ln E q .  !3.51) 

f Y ( 1 )  = Def lned  ln Eq. (3.261 
UZ = 11s :s = s k z n  f a c t o r  a t  an ~ n t e r f a c e )  . . - 
F U ) ( ; ,  i), BD(I,J; = Drmens;onLess t o o r d l n a t e s  o f  jt?. p r o d u c l n q  we,, ac - E r  

ccnpa r t rnent  
S W (  1; = N~mDer o f  wells in :ch =ornparcrnenc 
: iTS( I ,  ii = ?lumber rif  ' J a r r a o i e  r a t e s  t n a t  che j t r ,  well arr rt!? :czcar:mer,t 

p r o d u c e s  
nh J, C: = S l m e n s ~ c n l e s s  p r o c u c c z o n  rate frorn r t h  ~~~~~~~~~~c x r = h  :::A 

r a t e  
- - m .  - * -., . r,, , , -, .. , = 2:ner.~~i=z,ess t r x e  at wricr. 2 :k p r G G L c C i 2 ~  r a c e  ~zrr.rer.zes ,r. 

-del1 a =  s t h  tompar tment  
TSDfI, J, h: = 31mens ion less  t l m e  3% w P . i c h  : t h  p r ~ c , = = r ; z  :a:e zeases r -  :r.e 

well a t  :ch cornparcmen: -- _ - ., - d r m e r . s i ~ n l e s s  ::me 
PD = 2imensicr .Less  p r e s s u r e  
Si3 = S e m l l c ç  c e r r v a t i v e  
C3 = C a r t e s l a n  3 e r l v a ; l v e  

*.-. **...~.~*~*.*..t...*.***~..**t.t..o*******+~**...*+**..~...**.~...o* 









S2A(M)=Ç2 ( 1 )  
M=M+ 1 

CObiTINUE 
CONTINUE 
M=M- 1 
RETURtl 
END 
SUBROUTINE N N C T  ( 1, DSQ 1 
IMPLICIT REAL' 8 i A-H, 0-2 
C O M M O N / T ~ ~ ~ / T ~ I ~ ~ ~ ~ ~ ~ , T ~ ~ ~ ~ O O O ~ , S I ~ ~ ~ O C C ~ , S ~ ~ ~ ~ O ~ O ;  
DIMENSION CF ( 3 , 3  1 
MM= O 
CALL Fl(Tl(I),TZ!I),FIO) 
~~~=IT~(I)'TI(I)-TZ!II*T~~I~+D~Q 
CALL DlDL(T1(I),T7(I),Dë~) 
C a L  DLD7(TL(I),Tz(I:,DFZ) 
D!XDT1=2. O'TL ( 1 1  
DF2DT2=-2.0*TZ ( Il 
V=DFl*DFZDT2-CF2'3FZDT!. 
~ l =  (-F10°DF23TZ-E20'DfZ) j ' I  

'ïl(Il=Tl(I)*Ui 
'J2= (-f20*DFl-Fl0'3F2DT1)/V 
T2(I;=T2(II-CZ 
YM=MM+ i 
IF(MM.GZ.5OC!GO ?O 103 
DEL=OASS ( FLOI -%ES ( F201 
IF(DEL.GT.1.3D-*26ITHSN 
:m'A= 
ZLSE 
1 m'A= ' 
ENDIF 

~F~Iq~JIJA*EG*:~~o :ci: 
ZF(I'L'A.EQ.,;t2O T 3  1 ' 3 4  
T: ( 1 )  - 1 d C O O C .  ; 
Tt [ 1) = I O O O O C .  ; 
RETURN 
cri S 
S!J=RCUTI?IE '1 ; E'.-1, Z' I?,  FA) 
IHPS:CIT 3E.X' C Ig.-n, 3 - Z  ; 
SOMMON/Tl /XXZ:  3 ; ,.iiiS i 2 )  
iomorl/ 7," /.=Lx i 1 , , .=L'i : 2 : 
53t-?MCN/Y3./ EX: 2 ,  , Z ' i  ! Z 
CCMMOX/T4 / Y 2  
3L=CSQRT :EX ( 1 ! ; 
X t = D S q R ?  : E X i  2 ;  , 
.LQ.l=Z'Ji* 3: 
.r,.qZ=t'J? ' R' 

X=YXD ( 3 ) -XXD IT ) 
Wl=-ARZ0DCOS(.9n1*XXD(2! ! 'DSIN t A R Z t X l  
W2=ALX(I)*~X(21'AR1*M2*DSIN(ARigXYD(2~ ;*9SIS[AR2*X;/2Z 
Ni=-AL% (1 ) *A. . l*3SIN (ARL'XXD ( 3  1 ) 'DCOS fA.92-X;  
Ci=w:+wz+w3 
SETLTRN 
END 
SUBROUTINE F m  (NM, SU, SSD, SUD ) 
IMPLICIT REAL'8 (A-H, 0 - 2 )  
C W O N /  T2 1 /AR [ 2 i 
COMMON/T201/TlA~1200O),T2A[l2OOO),SIA~I2C)OO) ,SZÂ~~20001 
COMMON/SSl /TD 
COMMON/S52/G(f 1 , H l 2  i 
DIMENSION FFt3,3l,GG(3,3) 
50 1 X=l,hV. 
.U=Tlk( 1 ) 
Bl=TîAi 1 ) 
C l = S l A i  1 1 
Dl=S2A( 1 1 
ALU=Al*Al+Cl*C1 
CALL COEFE(AL, ai, FFI 
W 12 II=lr3 
00 12 JJ=1,3 
GG(II,JJl=FF(II, JJ: 

12 CONTINUE 

















B.2: Input Files 

Input file : 

* Input file: r9d.d 

1 . O  <AM, a ccns:ar.t f o r  s o l l ~ t i o n  of a lrnear syscern> 
0.25 0.5000001 <Location of rneasu~:ng cirner?sionless  pressure responses, XD, YD> 
1000000 <ML, nurnDer of  segments  to be consrdered for calculatinq elgeavalues> 



APPENDiX C 
COMPUTER PROGRAM FOR THREE-DIMENSIONAL FLOW SYSTEM 

This appendix presents tlie computer p r o g m  for computing the numerical values corn 
the analfical solution for a three-dimensional compartmentalized system as developed in 
Chapter 4. 

C.1 Source Code 

COMPARTHENTALIJED RESERVOIRS IN A 3-SIMENSIONAL SYSTEM 
S t a c k e d  Channe l  R e a l i z a t i o n  

**..**.**.....**t...*..*.....*.*.**.******.******.********.*....*****..* 

N = Number cf c o m p a r t m e n t s  
+ mD(I) = L s c a t l o n s  of b o u n d a r r e s  a l o n g  x - a x l s  

?Y9( 1 )  = L s c a t l o n s  o f  b o u n d a z r e s  a i o n g  y - a x l s  
:;3(:) = Loca tLons  of b o u n d a r r e s  alsng Z - a x ~ s  
XE = 3 r m o n s i o n l e s s  w r a t h  o f  e a c h  s a n d  body 
A 2 l ; t I I  = 3 e f ~ n e d  I R  Eq.  ( 4 . 7 2 )  

t " ... 
P,, (1: = Z e f i n e d  r n  E q -  (4.23) 

w X.2": )  = 3ef:ned :n Eq.  ( 4 . 2 4 :  
= ' T I  ,,,, = Z e f r n e d  l n  Eq. iC .35 )  

S:<(I :  = Seflned r n  Zq. ( 4 . 2 8 )  . EY(I: - C e f r n e d  r n  Eq. (4.33) - =,tT1 L) = S e f r n e c  r n  E q .  1 4 - 3 8 ]  .- - ., = - 1 s  :s = çk-n f a c t c r  3t a> r n z e r f a c e ;  . . a.zr :, J I ,  39::,j) = ~ l m e n s i a n l e s s  a r e a l  c o c r d r z a t e s  of :t3 p:ccdssns  w€-- a: 

:=h cornpaztrnenc 
2-1  .,- - -, - ,  - ,  , HDS (II;: = Er.:er.r of procl_ic:n.j ==ne of ;ih procdcrr.4; -del1 a: 

s t n  cornpar tment  (FLs.  4 . 2 :  
' , X ( : :  = Nqxmer 2f uells r n  :th cornpartmen= 
:;TE. :, J ,  = N u m e r  of - j a r r a b l e  r a r e s  :nat :ke ; t h  w e i i  at LEZ :=aCaZ:xer~: 

c roduses ..- - 
d., -, ", KI = D l r n e n s ~ o n l e s s  produc=:or, r a c e  fram iCh c o n p a z z s e r t  xrzr .  :Zr. 

r a E e  "--. .-, , ,,, - 2 ,  K )  = G ~ m e r ~ s ~ o n l e s s  +rme a t  wh lcn  ;:h p r o d u c t r ~ n  r a t e  czrneer.ces :FA 

u e l l  at : th cornpartment 
TC = 3 i m e n s i o n l e s s  t l m e  
?D = D i m e ~ s r c n l e s s  p r e s s u r e  
?.u2  = P a r c i c u l a r  d e r i v a t r v e  ( e g .  l i n e a r ,  r a d l a 1  or s p h e r i c a i ;  
-" -, = S a z t e s r a n  d e r i v a t r v e  

. . * ~ w . . . . . * * * * . . * * . * * * . ~ * . . * . * - * * . * ~ . * * ~ ~ * . * * * * * * . * . * . + * * * * * * * ~ - ~ - * * - ~ ~ -  

TMPLZCIT REAL* 8 (A-H, O-Z ) 
C3MMCtl/Tl/XXD(4),YYD(4).22D(3) 
C3MMON/T2/ALX(2),Af.Y(2)IALZ(21 
ZOFMON/T3/EXl21,EY(Z),EZ(2) 
COMMON/T4/UZ 
COMMON/T5/NW(6 1 
COMMON/T6/AD(6,2),9D(6,2)IHDli6,2),HD2(6,21 
CW?ON/T7/NTS ( 6 , 2  1 
COMMON/TB/QD(6,2.20) *TDT f 6,2,20) 
COPMON/Ti1/AAl,XD,YD, ZD 
~3MMON/T102/T1(1200),S1~1200~,P1(1200~ 
COMMON/T103/T2(1200],S2(12OO),P2(1200) 
~OE.IMO~/î104/T3(1200),S3(12OO)~P3(1200) 
COMMON/T~OS/T~ (l2OO),ç4 (1200) , P4 (1200) 
~ 0 ~ ~ 0 ~ / ? 1 0 6 / T 5 ~ 1 2 0 0 ] , S 5 ( 1 2 0 0 ) ~ P ~ ~ 1 2 0 0 )  
~ ~ ~ 0 ~ / T 1 3 7 / T 6 ( i 2 0 0 ) ~ S r S ~ i ~ O O ) , P 6 [ 1 2 0 0 )  
OPFEl(4, F I L E = ' i n 3 d . d ' :  
0 P E N ( 3 r F I L E = ' r 3 c . d ' )  



* READING DIMENSIONLESS PRODUCTION RATE, DIMENSIONLESS TIMES WHEN PROYCCTIOPI S T m T S  































U U = T ~  (L)*TI(L)+S: (L)'SI(L)+?I (L)*Pl(L) 
SUB=O . O 
DO 400 :=L,6 
IF(NW(1: .EQ.O)GO TO 201 
DO 202 J=l,NW(I) 
?CALL IrC(I,J,TC,QRA?E! 
ZFX=~4:il:I!g9COSiARX(I)tLn(I,J) I + N ( ~ ~ I ) ' D S I N ( M % ( I ~ * A D ~ I , J ~ ;  
DFY=CiI-3i*X3S(ARY(Ij'BD(I,j) jiD(I-3)'DSIN(ARY(I!*5C(IrJ!; 
DFZ=AZllI 1 
DHD=(HDZ(I,;l-HDl(1,J) )/ZZD(ZI 
IF(I4P.Z ( I I  .GT. 1.OD-10)THEN 
'J1=ù,S'~Z(I)*(HDl(I,J~+HD2(I,J)) 
V2=O.S*~Z(I)*(HD2(I,J~-HDl~I,J) 1 
DFZ=F(I-3)'DCOS(V1) * D S I N ( V ~ ] + G ( I - ~ ) ~ D S I N ( V ~ ] * D S I N ( V ~ )  
DPZ=Z. O* DFZ /ARZ ( Il 

END1 F 
SUB=SUB+QRATE' DEX* D F Y t  D FZ/  DHD 
CONTINUE 
CONTINUE 
CONTINUE 
RETURN 
END 
SUEROUTINE ETD(f ,J,T,Q) 
IMPLICIT REAL' 8 ( A-H, 0-2 ) 
CûMMON/T7/NTS(6,2I 
COMMON/T8/QD( 6,2,2OI ,T 'YI ' (6 ,2 ,20 )  
INDEX=l 





AB=A(I)'g(I 1 
XXl=XXD (I+L +XYD ( 1 i 
XXZ=XXD(I+l)-XXD(1) 
)IXRI=ARX(I)'XXI 
XXR2=ARX ( 1 1 'XX7 
SS=O. 5' iAA+BB) ' : U Z  
TT=O. O 
uu=o. O 
IF:ARX(I) .GT.l.OC-IO )THEN 
TT=O.S*(pA-BB)'DCOS::iXRiii3SIN(XXn2J/ARX(~) 
UU=~+DSIN(XXR~)'DSIN(XAR~) / A R x ( i ;  

ENDI F 
FL=E(l)'(SS+TT-UU! 
AA=AYl(Z)*AYL(I) 
Ba=AY 2 1 1 1 '?.Y? ( 1 : 
F2=O. S *  ( M + 9 B )  *?Y: 
~=Azl(I)*AzL(r; 
BB=AZ2(I:'?L?i2(1) 
m=Azl(I)'MZ(I) 
ZZR1=ARZ ( 1  1 'ZZL 
ZZRZ=iiR7(1;'732 
SS=O. 5' !AA+BE) - Z = Z  
TT=C. ' 
LIU=. . 
'F. ,, I. t;.S.ANG.ARt (1: .GY- I -39-LG)THEN 
TT=0.S*I~-aE:~xOSiZZKL~*DSIPJ(Z2R2~/.9RZ:I~ 
UU=AB'DSIN I Z Z R l )  'DSIN 1 ZZR2  1 /AR3 i I J 

END1 f 
F3=SS+TT+UU 
ABN-mN-FI * F2* ' 3  

CONTINUE 
. U L  ; 4 ) =W.: 
AÇ~T4(L)*:lX5t3~*ZSQRT!EK(~; ! 

a: : : ) = M 1 ' 2 S I : i  !As;) /,ccs:nÇ-i. 
i i z ~ ( ~ ) = m  
A S P P 4 f  L)*7ZD(31*2SC;RTIrrf ii-i , - - '  O 

( 4  = P A : - X I N  [.AS=: / 3fSS :.-,ÇD) 
x<; ; 5 ;  =*2 
;zs%?s( r;*:<:<;: 3 ;  *33Q&T c:<-,; 
.Vb2 : 5 ;  =pAL*"c"J 4--. :,:sz, 3 =n=S <.:zz; 

5 : = C 3 " .  
1 - 1  

X t ( S I = G ( 7 :  
?-Y1 ( O i =RQ 
ASbTé(L)-X:<C:3)'ZS;Z5Y;E:a:,I; ; 
.X<: ( O ;  = W . i * S S I N  ;?SZ) / X O S : ? S D I  
iiZl(O;=nAl 
ASbE6cL)-ZZC(3~*=SQRT;E1.~:; : 
X2 ( ô )  =kAi'DSIN i A S 3 j  /CEOS tPSD) 
XXl=XXD ( 3 1 +XXD II 
XX?=XXD(3)-XXDiZ! 
2Z3=ZZS(3l-ZZEiti 
2Z4=ZZC i 3 ) - Z l 2  t Z 1 
30 2 1=4, a 
ia=C(Z-3)*C[I-3) 
3a=0(1-3) *D:;-3j 
AB=C(I-3l*D( 1-3: 
YYl=YYD(I-2) *YYG( 1-3l 
YY2=YYD(I-2) -YYG( 1-3 
YYRl=ARY (1 1 'YYI 
YYRZ=ARY(II*YY2 
SS=O.S'(AA+BB)'YY2 

TT-C . O 
uu=o . O 
IF(ARY (1) .GT. 1-OD-1O)THE.N 
TT=3.5' (AA-BE ) 'CCOS (YYFil; 'DSIN (YYR2 1 /ARY ( 1  1 
UU=AB*DSIN (YYR1) 'DSIN (YYR2 ) /ARY (1 ) 

END1 F 
F4=E(2)'(SS+TT+UU) 
PA=AX1(Il'AXi(I~ 
ûB=AX2(I)'AX2(1) 
P.B=AXli:)*AXZ(I) 
FS=O. 5' (AA+BB)'XE 



A A = A Z l : I ) ' A Z 1 1 1 )  
aB=AZ2(1 ) ' A Z 2 ( I )  
i l B = A Z i ( 1 ) * A Z 2 ~ 1 )  
Z Z R i = A R Z ( I ) * Z Z 3  
Z2!32=AX(I)'ZZ4 
SS=O.S* iAA+BB)'Z74 
TT=O. O 
u u = o .  9 

I F ( I . E Q . 5 . A N D . A R Z ( I )  .GTTI.OD-1O)THEN 
TT-0.5*tAA-BB)*OCOS(ZZRI)'DSIN(ZZR2~/ARZ~ï~ 
UU=AB*DSIN ( Z Z R 1 )  'DSIN ( Z Z R 2 )  /AR2 ( 1 )  

END1 F 
F6=SS+TT*Uü 
ABN=ABPI- F4' -5' F6 
CONTINUE 
RETIRN 
END 
SUBROUTINE LUDCMF~A,N,NP,TNGX,3i  
IMPLICIT REAL '  8 (A-H, O-Z ) 

PARAMETER ( ~ K = 1 0 0 , T I N Y = 1 . 0 3 - Z 0  i 
DIMENSION A(NP,MP: ,  I N D X ( N )  ,V'JtPIPR<) 

3=l.r1 
z a  12 I=l,:r 

. v H l w = C .  
33 i l  J = i , N  - - ,: ( W S ( A (  I, 2 )  ; . G T . M :  .W!Y=R4EO(A:I,;)i 

rONTINU E  - - 
,E  :PJWAX.EQ.Z.: PAUSE 'S:nqular H a t r i x  ' I I '  

Tm( 1 ) = L  - /A.wax 
:ONT INU E 
x, 13 z=L,!; 

X L4 , = 1 , J - 1  
SUM=A( T,,', 
30 1 3  K=l , ; -1  

SYM=SUM-A ( I , K )  'A i K, J 
30PIT IPIVE 

Ai  I,2;=S';M 
'ZONTZNGE 

.3.A?<= O . 
30 L O  :=;,!< 

SUM=A( I, i' 
X) 15 y=:,;-: 
SUM=SUY-A( I ,X : 'A(K,J ,  

CSNT Zt;üE 
A( I,;i=çL'E 
X!Y='Pf i Z ) ' G 3 S  ! X M  , - - 
-: (CUM.Gt .ARW<;  THEX 

:MAX= 1 
ilAMA;3= DUM 

Z N C I  F 
CONTItJt'E - - : 1 J . NE. 1Mii.X) THE& 

m 1' K=L,N 
3UM-A 1 IKW, K 1 
A(IMAX,K)=A(z,K! 
A(J',KI=DUM 

:ONT INUE 
D=-D 
l N ( I M A i ( l = W ( J )  

END1 F  
I N D X (  J)=IMkX 
I F  ( A (  J , J )  .EQ.O. ) A (  J, Jl=TINY 
ZE ( J . N E . N )  THEN 

DUM=L ./A(J,;) 
DO 18 I = J + l , N  

F i I I ,  J ) = A [ I ,  JI 'DUM 
18 CONTINUE 

END1 F 
L9 CONTINUE 

RET'JRN 
END 

SLtBROUTINE LUBKSB (A, P J ,  NP, INDX, 5 ; 



C.2 Input Files 

* Input f i l e :  in3d.d 

* Input F i l e :  r3d.d 

1.0 W, a  c o n s t a n t  f o r  solvinq a linear syscen sf eqüatiot=> 
3.51 S.5 6.622 < i o t a t i o n  rif cbservlng Fressure responees, x,, y ~ ,  zp> 
3.01 <WRS, I n l t i a l  quess f o r  e i g e n v a l u e s >  



THREE-DIMENSIONAL FLOW IN A HOMOGENEOUS AND ISOTROPIC 
RECTANGULAR PARALLELEPIPED 

D. 1 Introduction 

Sometirnes a producing well penetrates the formation partially, rather than fully. The 

presence of bottom water and/or a gas cap may lead to such a situation. The pnmary 

objective of this Appendix is to develop analytical solutions for the transieat potential in 

a homogeneous and isotropic rectanguiar parallelepiped which is producing through a 

partially-penetrating well. Here, an extension of the procedure for developing the 

solutions for a two-dimensionai rectangular system, as outlined b y Hova~~essian (1 96 1 ), 

will be followed. 

Muskat (1 949) presented an analytical solution for the potential distribution in a bounded 

reservoir under steady-state conditions producing through a partially-penetrating well . 

This author used a continuous distribution of flux elements, each of which is provided 

with a series of images in the bounding planes such that the net flow across the bounding 

planes canceis to zero. Seth (1968) developed an malyticd solution for transient pressure 

in finite reservoirs in radial systems producing through a partially-penetrating well. 

Karemi and Seth (1969) generated numerical solutions for transient-pressure responses 

using a finite-difference technique for finite and infinite reservoirs producing through 

partially-penetrating welir. These authors examine. the effect of anisotropy and 

stratification on transient-pressure analysis of wells with restricted flow entry. 

Sirehova-Adams (1979) deveioped analytical solutions for transient pressure in an oil 

reservoir producing through a partially-penetrating well in the presence of a gas cap. 

These solutions have been shown to becorne the solution for a situation with impervious 

top and bottom boundaries as a limiting case. Mmett et al. (1991) have derived analytical 



solutions for steady-state pressure distribution due to production through a partially- 

perf'orated well bore in a threedimensional cy lindrical system. 

Ragh~van and O h  (1994) have presented the solutions in Laplace space for transient 

pressure for a line-source well placed inside a homogeneous and isotropi c parallelepiped 

with various boundary conditions using the rnethod of images. These authors considered 

the cases of al1 the boundaries being closed and of where up to four boundaries (out of six 

boundaries) are being maintained at a constant pressure. 

Therefore, in the following Sections, analytical solutions will be developed for transient- 

potential responses in a homogeneous and isotropic parallelepiped producing through a 

partially-penetrating well at a constant rate. Considering the importance of incorporating 

the effects of gravity in the solutions, this problem (with diffusivity equation and 

conditions) is formulated based on the force form of potential as illustrated in Section 4.1, 

Chapter 4. 

D.2 Development of Solutions 

A hornogenews and isotropic rectangular parallelepiped, whose domain is defined by R, 

is producing through a partially-penetrating (or partially completed) well as shown in Fig. 

D.1. In this Appendix, the anaiytical solutions in closed form for the dimensionless 

potential of this system following a procedure similar to that of Hovanessian (1 96 1) are 

developed. Here the solutions are developed for hvo sets of boundary conditions. The 

boundary conditions considered are: 

All boundaries are closed (no flow) 

A11 boundaries are kept at a constant potential. 
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Figure D.l: Schematic of chree-dimensional flow in a homogeneous parailelepiped. 



The dirnensionless fonn of the difisivity equation for a slighdy-compressible fluid wi th 

a constant compressibility in the threedirnensiond, Cartesian ceordinate system due to  

production through a completed interval between s~ = hl D and z~ = h2 L, of the partial1 y- 

penetrating well located at (ao fi bo D) areally (on x-y plane) at a dimensionless rate of q~ 

is given by: 
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The above equation is valid for O < x~ < Xo D. O 5 y, S Y. D, O I ZD I 20 o. t~ > O. The 

dirnensionless variables are defined in S e d o n  4.2, Chapter 4. 

For a uniform, intitial potential, the initial condition to Eq. (D. 1) is prescnbed as: 

In the foilowing Sections, the solutions for a&, y ~ ,  r ~ ,  tD) to Eq. (D. 1) with the initial 

condition, expressed by Eq. (D.2), are derived for two sets of boundary conditions. 

D.3 Case: Al1 Boundaries Closed 

Ail the boundaries are kept closed while the partially-penetrating well is producing. In 

thi s case, the boundary conditions in dimensionless fonn are prescribed as: 



The homogenews, Neumann-type of boundary conditions, expressed by Eqs. 0 . 3 )  

through @. 5)- suggest that one needs to use the finite, Fourier cosine transform (Sne&on, 

1951). There will be eight auxiliary solutions to Eq. (DA), the algebraic sumrnation of 

which will result in the cornplete solution for QD. Thus, 

Table D.1 shows the kernel fundons (operators) for the finite, Fourier cosine transfom 

used for these awiliary solutions. In the following7 the derivation for . is shown. The 

other auxiliary solutions cm be denved in a similar way. 

To get the Fourier cosine transformation of the diffisivity equation, multiplying both 

c o { m ~ )  1 kD eD dD* sides of Eq. 0. l j by the operator, CO - 

and integrating over the domain of the rectangular parallelepiped, R, one has: 



TABLE D.1: KERNEL FUNCTIONS FOR AUXILIARY SOLUTIONS FOR CLOSED 

BOUNDARIES 

1 

C (an arbitrary constant) 



Simplification of Eq. 0 . 7 )  involves evaluation of integrais and substitution of the 

boundary condition, Eqs. (D.3) through @S). Then, solving the resulting equation with 

the initial condition, one gets, 

where, 

p lnr2 ,p 
........................................................................ ql*m,n# = le (y - - - -) (D. I 1 ) 
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Inversion of Eq. (D.8) results in the following equation (Snteddon, 195 1 j: 

Having derived the other auxi l iq  solutions (for cD2 Q3 .-....-...., a8 D) and then 

s~bstituting dl the auxiliary solutions into Eq. @.6), one has, for the complete solution: 
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where, 

............................................................... (D. 14) 

le r2 
sj,. = - ............................................................................................................. P. 17) 

XOD 



71 n" f$, = - 72 ....""."... ( D m  .............................................................................................. 

Therefore, Eq. @. 13) is the ultimate solution to the problem. 

D.4 Case: All Boundaries Maintained at a Constant Potentiai 

AI1 the boundaries are maintained at a constant potential (initial potential) while the 

partially-penetrating well is producing. Thus, the boundary conditions in dimensionless 

fcnn are as follows: 

- - - ..................... ........S.. 
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Following Sneddon (1951), the homogenous, Dirichlet-type of boundary conditions, 

expressed by Eqs. (D.26) through (D.28), suggest that one should use the finite, Fourier 

sine transfom. Unlike the case of closed boundary system considered in Section D.3, the 

ultimate solution is reached by carrying out the derivation with one kemel fbnction 



(operator) only. Thus, multiplying both sides of the diffisivity equation, expressed b y 

Eq. @. l), by the operator, sin ( r ~ o ~ ) ~ { m ~ y D ) < " ~ ~ ) m ,  - dyD hD, and 

integrating over the dornain of the rectangular parallelepiped, R, and following a similar 

procedure to that descxibed in Section D.3, one obtains, 

where, 

Therefore, Eq. (D.29) is the ultirnate solution to the problem. 



APPENDR E 

PROOF OF APPLlCABlLlM OF PRINCIPLE OF RECIPROCITY 

Consider a compartmentalized system with two hydraulically-communicating 

c o m p m e n t s  A and B. This qstem is nibject to two-dimensional flow when the 

condition at each extreme boundary is of the homogeneous, Dirichlet-type. It will be 

show that the principle of reciprocity holds for b i s  End of situation. Initially. both 

compaments are at an identical, uniform pressure. The points (xD Ri yD A )  and (xD B, y~ B) 

are the wo arbitrary points in these compments ,  respectively, where an active well 

and an observation well are to be located. Let p~ A, y~ A, ID) be the dimensiodess 

pressure response at an observation well, locêted at fxD A, y~ A )  in cornpartment A, due to 

the production through an active well, lucated ai (xD p, y~ 8, tD) in cornpartment B, and 

dso let p,gB(xDB, y. tD) be the dimensionless pressure response at .an observation well, 

located ai (xD B, y2 *) in corn part ment B, due to production through an active well, lxated 

at (xD A, r 7 ~  g) in corn pa m e n t  A, at dimensionless tirne ID. In botb cases, a dimensionless 

productiûn rate of q&) as a function of ta is considered. 

Applyicg the solution for dimensionless pressure responses from Eq. (3.40). taking care 

that an appropriate Dirichlet-type conditions is used at al1 the extreme boundaries 

(Section 3.2.7 in Chapter 3), one gets, 



From Eqs. (E. 1) and (E.2). one has, 

Hence the principle of reciprocity holds when dl the conditions at the extreme boundarîes 

are of the homogeneous, Dirichlet-type. Similady, one cm show that this principle is 

applicable even when the conditions are of the homogeneous, Nuemann-type or a 

combination of homogeneous, Dirichlet- and Nuemann-types. 
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