MODELLING GEOMORPHOLOGY
[N LANDSCAPE EVOLUTION

by

YVONNE MARTIN

B.A. {Hons.}, The University of Western Qntario, 1989
M.Sc.. The University of British Columbia, 1991

A THESIS SUBMITTED [N PARTTAIL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES

(Department of Geography)

THE UNIVERSITY OF BRITISH COLIUMB!IA
April [998
© Yvonne Martin, {998



i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre reférence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriéié du
droit d’auteur qui protége cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimes
ou autrement reproduits sans son
autorisation.

0-612-27198-6

Canada



ii

ABSTRACT

Many landscape evolution models have considered the interaction of exogenic and
endogenic processes. However, geomorphological processes have not been successfully
incorporated in landscape evolution models. The thesis begins with a critical analysis of
methodologies for the study of large-scale geomorphological processes. A framework based on
a generalization of the relevant processes is recommended.

Hillslope and channel submodels, which are based on typical processes operating in
coastal regions of British Columbia, are introduced. The following hillslope processes are
considered: (i) slow, quasi-continuous mass movements; (ii) fast, episodic mass movements; and
(iit) weathering. The transport relation for fast, episodic mass movements was found to be
nonlinear. Fluvial transport in both low and high-gradient channels and debris flow transport are
considered in the channel submodel. A bed load transport equation, which is a revised version of
the Bagnold stream power formula, is derived. Suspended load is calculated using a suspended
load/contributing area correlation. Connections between hillslope and channel processes are
considered to ensure adequate representation in the model.

The hillslope and channel submodels are explored in one-dimensional and surface model
runs for small drainage basins in the Queen Charlotte Islands, British Columbia. Tests of the
fluvial submodel demonstrate the robustness of the bed load equation used in this study. A
conceptualization of the landscape into unstable and stable regimes is introduced. Results of
surface model runs emphasize the key role of low-order channels in transferring sediment from
hillslopes to main channels. The exercise of constructing and running the model highlighted
major gaps in our present understanding of geomorphological process operation and sediment
routing. Suggestions for future research are extensive and are outlined in the concluding chapter

of the thesis.
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CHAPTER 1: INTRODUCTION
“The ball is now in the geomorphologists’ court.”
-Anderson and Humphrey (1989, p. 350)

Anderson and Humphrey made this remark in considering the requirements of modellers
studying the combined interactions of tectonics and geomorphology at large scales. The
adoption of a numerical modelling approach for the study of combined exogenic and endogenic
processes represented a relatively recent development at the time. Researchers were turning to
the geomorphological literature to extract information about the operation of surface transport
processes at large scales in order to model the response of the lithosphere to erosion and
sedimentation. Anderson and Humphrey found that the existing geomorphological research did
not meet the requirements necessary for successful implementation in landscape evolution
models.

Much progress has been made in the modelling of landscape evolution.
Geomorphological processes have been incorporated into several landscape models. However.
there still remain many unanswered questions about the physical representation of basic transport
processes. A methodological framework for large-scale process studies in geomorphology.
which is defined clearly, must be adopted by the geomorphological community in order for
progress to occur. This would contribute to an increased understanding of transport operation
and interactions at large scales, and to an improvement in the representation of geomorphological
processes in regional numerical models of landscape evolution. By addressing these issues, this
thesis attempts to take on the challenge presented to geomorphologists by Anderson and
Humphrey.

The study of landscape evolution represents a formidable task for several reasons. The

present-day morphology of the earth is a legacy of past geomorphological and tectonic processes,
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and their interactions. The configuration of any landscape at a particular point in time affects its
subsequent development. Because of the historical nature of landscape evolution, past
landscapes are not directly observable. Therefore, it is not possible to ascertain past
configurations of the landscape, which influence the sequence of following events. Moreover.
the operation of processes and their interactions are very complex.

W.M. Davis™ “cycle of erosion” epitomizes early approaches to landscape evolution
(Davis, 1899). He considered developmental sequences of landscapes, which are governed by
both geomorphological and tectonic processes, in a conceptual manner. However, as the
discipline of geomorphology evolved throughout the twentieth century, geomorphologists began
to focus increasingly on the mechanics of process operation at smaller scales. Numerical
representations of processes, which are most often based on a mechanically-oriented approach,
are much easier to consider at smaller scales. There is greater control over variables, and
transport data, which are necessary for the calibration of equations, are easier to procure.

In recent years there has been a renewed interest in the study of landscape evolution.
Most of the models adopt an approach in which tectonic and geomorphological processes are
represented numerically. Unfortunately, the geomorphological rules adopted in these models
must rest on a weak foundation. Geomorphologists have not explored adequately the operation
of transport processes at large scales. An attempt is made to repair this shortcoming in this
thesis.

Although models must uitimately strive to integrate geomorphology and tectonics, this
thesis focusses on geomorphological processes.  For this reason, the operation of
geomorphological processes is studied independently of tectonic processes. The landscape
configurations resulting from model runs, therefore, cannot truly reflect the diversity of

processes that are involved in landscape formation. When the primary focus of a model is the
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tectonic component, formulations of geomorphological principles can be more generalized
versions of those incorporated into the present model.

Landscape changes resulting from both hillslope and channel processes are considered in
this thesis. This combination is of fundamental significance in driving landscape change nearly
everywhere on the terrestrial surface of the planet. Landscape changes resulting from glacial
processes are not considered, despite their obvious importance in many world regions. Erosional
and depositional processes occurring during large-scale glaciations are complex and require
much further study before they can be incorporated effectively into models.

The overriding objective of this thesis is to construct a model of landscape evolution in
which the resolved geomorphology is constrained by field observations. Small drainage basins
in coastal British Columbia represent the “prototype”™ landscape used in model development and
in subsequent model runs. The suite of precesses considered in the model typifies this region.
Calibrations of transport equations are based, when possible, on data collected in coastal regions
of British Columbia.

Progress in numerical landscape modelling has been very rapid. For this reason, it
prudent at this time to “step back™ and explore its foundations. A major objective of this thesis,
which is addressed in Chapter 2, is to define a framework for the quantitative study of large-scale
geomorphological processes within the context of landscape evolution. In order to achieve this
goal, methodological issues surrounding the implementation of geomorphological processes in
landscape evolution models are explored thoroughly. In addition, the strengths and weaknesses
of past approaches are assessed to guide the development of the present model.

A second objective of this thesis is to define a set of equations describing the operation of
hillslope and channel processes, and their interactions at the valley bottom, over large spatial and
temporal scales. Such equations must reflect adequately the large-scale operation of processes,

while remaining computationally feasible. Unlike most previous research, the equations used in



4
the present study are calibrated using field data. Hillslope, channel and valley processes are

discussed in Chapters 3, 4 and 5.

A third objective of this thesis is to incorporate the hillslope and channel equations into
an initial model constrained by observed conditions on real landscapes. The results of model
runs, which are based on small drainage basins in the Queen Charlotte Islands, British Columbia
are presented in Chapters 6 through 8.

A final objective of this thesis is to define clearly further research requirements for large-
scale geomorphological research. The very act of defining process equations and implementing
them in the numerical model has served to highlight many aspects of geomorphological research
which require further investigation. These suggestions are outlined in the concluding chapter of

the thesis.



CHAPTER 2: NUMERICAL MODELLING OF LANDSCAPE EVOLUTION:
RECONCILING PROCESS AND HISTORY IN GEOMORPHOLOGY
2.1 INTRODUCTION

Methodologies adopted to study landscape evolution have evolved throughout this
century in response to dominant themes in geomorphological research and reasoning. In the
early 20" century, geomorphological studies became entrenched in geography departments and
as a result earlier concern to consider the effects of processes acting in the earth’s interior on
geomorphology decreased (Merritts and Ellis, 1994). In recent years, there has been an
increasing geophysical interest in landscape modelling and a rebirth of interest in the role of
tectonics in landscape evolution (Rind, 1992). This development can be associated with the
success of the plate tectonics paradigm. Much recent research was inspired by influential papers
by Adams (1980), Molnar and England (1990) and England and Molnar (1990), all of whom
investigated the connections between uplift and erosion (Merritts and Ellis, 1994).

From a geomorphological perspective, there remain many unanswered questions
regarding the nature and rates of geomorphological processes at large scales. Many
geomorphological relations should be considered at best tentative because they have been
subjected to no rigorous evaluation. For example, a linear relation between gradient and soil
creep has been posited and incorporated into several landscape evolution models in the form of a
diffusion equation (e.g., Anderson, 1994). This relation has not been demonstrated at the
landscape scale in the geomorphological literature - indeed the scanty available evidence appears
to contradict it (Kirkby, 1967; Martin and Church, 1997). This type of problem arises frequently

in geomorphology because of the difficulties associated with design of detailed observations in
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the environmental sciences. There still remains significant uncertainty regarding the nature and

rates of geomorphological processes at even small and medium scales.

Before significant progress can be made in improving geomorphological components of
landscape evolution models, it is critical to examine carefully the methodology surrounding the
representation of landscape evolution and to ascertain reasonable approaches for its study. An
attempt is made herein to outline the major methodological issues involved in the development
of a numerical landscape evolution model. A central theme that is developed in this chapter is
the necessity of unambiguous scale definition and the appropriate specification of

geomorphological processes for the chosen scale.

2.2 THEMES IN GEOMORPHOLOGICAL RESEARCH

Geomorphological phenomena have been studied throughout the period during which
natural physical mechanisms have been invoked to explain the development of the earth and its
associated features. W.M. Davis’ (1899) “cycle of erosion” set the stage for the first dominating
research theme in the emerging discipline of geomorphology. Starting at the end of the Ch
century and up until about 1950, geomorphological research focussed primarily on large-scale
physiographic and historical studies. Many of the researchers from this era whose names are
most recognizable in the present day, such as W.M. Davis and W. Penck, were conceptual
modellers of landscape evolution. Theories of landscape formation were placed in a Darwinian
framework and “evolutionary” sequences of landscape formation were put forward. A notable
exception was G.K. Gilbert, whose research has been particularly influential for modern process
studies. His work introduced a research paradigm based on Newtonian mechanics.

The work of the conceptual modellers provided the template for geomorphological

research during this era, which sought to explain the history of landforms (both general and
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specific) and to elucidate relations between topography and the controlling variables, such as
climate and geology, over large temporal and spatial scales. As such, the perspective of
geomorphological research was predominantly historical in context. Historical studies focus on
the formation of particular landscapes. On the other hand, the conceptual models were attempts
to formulate somewhat more general sequences of landscape evolution. However, despite their
seeming generality, they were designed to explain patterns of development in particular regions.
They did not incorporate the flexibility required to render them generalized landscape evolution
models. The models have been subject to frequent criticism for their inability to reflect
adequately the nature of landscape evolution in different regions. Herein lies a major dilemma
facing large-scale studies. Research conducted at large scales has usually examined in detail the
formation of particular landforms, which are not obviously generalizable. Yet a major objective
in science is the determination of “generalized” laws.

A widely acknowledged shift in the nature of geomorphological investigations began ca.
1950. Modermn process studies began to flourish, perhaps partly as a backlash against the “arm-
waving” geomorphological inquiry that existed up until this time. In addition, this quantitative
movement may have occurred in part as a response to the positivist movement in science, which
was flourishing at this time. The positivists demanded that science not rest itself on the shaky
foundation of theories but on observable entities and “real” correlations. In an attempt to
increase the rigor of the discipline and make it more “scientific”, there was an increase in process
quantification. Even those researchers still conducting research at the large scales during this
latter era tended to reject the historical and evolutionary mode of thinking. For example, Hack
(1960) proposed that landscape morphology is determined by a modemn functional dependence
between topography and controlling variables; his is essentially an ahistorical view of landscapes.

This focus on process studies was coincident with a decrease in the dominant scales of
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geomorphological research, which more readily led to quantification, and a new wealth of

modern-day process knowledge was obtained. Schumm and Lichty (1965) attempted to reconcile
the historical and process-oriented views of geomorphology by formulating the distinctions
between studies at different scales. This thesis provides a framework which recognizes both the
uniqueness and linkages among studies at all scales.

There has been a renewed interest in large-scale geomorphological studies in recent years.
Papers by M. Summerfield have documented this trend (e.g., Summerfield and Thomas, 1987:
Thomas and Summerfield, 1987). Within geomorphological circles, there has been concern
regarding the role of large-scale studies in the context of existing geomorphological research.
For example, the particular issue of linking modern processes studies with large-scale landscape
evolution was the theme of a recent issue of Earth Surface Processes and Landforms (March,
1997). However, the combined outcome of the papers suggests that there is, as of yet, no
generally acknowledged consensus by geomorphologists regarding the resolution of this issue.

[ndeed, an answer to the issue of scale linkage in geomorphology has been developing,
but not within traditional geomorphological circles where the initial discussions occurred. The
numerical modelling of landscape evolution, which has been undertaken by researchers in earth
science and geology departments (primarily in the U.S.A., but also in Canada and France), may
represent the vital key for the resolution of the dilemmas encountered in the study of large-scale

geomorphological phenomena.

2.3 RECONCILING HISTORICAL AND PROCESS-BASED STUDIES
2.3.1 HISTORY AND IMMANENCE
The historical component of geomorphology does matter at large scales. Evidence of the

importance of past events can be detected in many landforms and processes in the present day
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(e.g., valley fill deposits that represent paraglacial sedimentation; Church and Slaymaker, 1989).

It is proposed herein that numerical landscape evolution modelling can be viewed as an attempt
to reconcile historical and process studies by “explaining” historical geomorphological
landscapes in terms of physically-based processes. At the crux of large-scale modelling are the
problems of how to: (i) structure the “laws” governing large-scale processes and (ii) connect the
results obtained from the “laws” with specific (historical) landscapes.

The historical and process studies, which have dominated geomorphological research
respectively, coincide closely with two categories of phenomena discussed by Simpson (1963).
He contrasted the character of geological phenomena with those in other physical sciences by
assessing the relative roles of: (i) configuration and (i1) immanent processes. The former refers
to the changing nature of realised phenomena over long time scales, which prevents definition of
basic laws for historical processes. The latter refers to unchanging physical principles as
described by the “laws” of nature, such as Newtonian mechanics.

An examination of the fundamental nature of generic versus historical phenomena
highlights the need to adopt appropriate methodologies at different scales. The determination of
immanent laws entails general key relations that exist, al/ else being equal. Factors other than
those under direct consideration must be controlled adequately in order to establish laws. Studies
at smaller scales allow greater experimental precision, which increases the possibility for

adequate control. Alternative approaches must be found for the study of large-scale phenomena.

2.3.2 SCALE AND PROCESS IN GEOMORPHOLOGY
Strict experimental control is rarely obtained in the environmental sciences (Church,
1984). Even at smaller scales of geomorphological inquiry, the variability in controlling

variables found in nature often confounds data and relations remain difficult to establish.
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Despite the limitations for experimental control in the environmental sciences, adequate control

of variables to the degree that is possible has not been achieved in geomorphological research.
Many studies that claim to be experiments are no more than field measurement programs
(Church, 1984). While such studies can provide important insights into the behaviour of a
particular phenomenon, they do not lend themselves to the rigorous development of governing
process equations. In order to achieve this result, a greater knowledge is required of the relations
between controlling variables and the dependent variable.

The issue then becomes how to approach the study of geomorphological processes at
large scales for which experimental manipulation is effectively impossible. As scale increases,
the complexity in the variation of controlling variables increases and only summary measures
(e.g., sediment yield) are possible. The results of smaller scale studies cannot be transferred
directly to the large scale as the details found in smaller scale process equations are not
resolvable at the landscape scale. The importance cf configuration (or contingency) increases in
the study of landscape evolution. Other things are never equal, which makes the determination
of immanent laws problematic. Significant changes in variables such as climate, lithology and
tectonics occur which cannot be ignored. As a result there has been minimal study of the actual
equations governing transport processes at extended scales. Instead, large-scale studies have
focussed on the estimation of erosion and deposition rates based on analyses of landforms and
sedimentary deposits. This approach is faced with the difficulties presented by the very nature of
transport processes and the accompanying erosion, which are such that the original surfaces are
eliminated and only the deposits remain for observation. A critical step in understanding the
nature of long-term erosion and deposition is to link deposition sites to particular erosion or

source sites.
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Parameterizations of process at large scales must remain resolvable and yet maintain the
essential nature of landscape evolution. In order to meet this objective, it is suggested that a
greater emphasis should be placed on defining: (i) the structure of such equations and (ii) the
methodology necessary to elucidate the nature and rates of processes at large scales. Exploration
of methods for the estimation of transport rates over extended scales could lead to an improved
knowledge of large-scale transport behaviour. In the past several years, exciting advances in
cosmogenic isotope dating have occurred that increase the potential to estimate long-term
process rates (Bierman, 1994). Further exploration of these methods may prove to be a key step
in establishing rates of process operation in landscape evolution, which is critical for the

calibration of process equations at large scales.

24 SCALE

Scales are a set of natural measures that are intrinsic to the system. Careful consideration
of scale is necessary as the chosen scale guides the appropriate specification of processes. At
smaller scales, greater detail can be resolved in process equations whereas larger scales require
an approach in which “generalized” equations are defined. Careful consideration has to be given

to scale in order to achieve appropriate representation of processes.

2.4.1 SPATIAL SCALE

When studying landscape evolution it seems intuitively clear that we are referring to
something greater in size than small-scale features such as river bars or local topographic
irregularities on hillslopes. Summerfield (1991, p.13) states: “..while it is appropriate to
consider a small section of a stream channel in terms of static, steady-state, and perhaps even

dynamic equilibrium, it is inappropriate to discuss long-term landscape evolution and the
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-

attainment of decay equilibrium in terms of such a restricted spatial scale.” In this section, a
rigorous approach is adopted in order to define appropriate scales of study for landscape
evolution.

[f scales are based on natural measures in a system, then some defining criterion for a
natural measure must be selected. One basis for the delineation of a natural measure is to locate
natural breaks in some relevant attribute of the system. In landscape evolution studies, the
primary attribute of concern is the morphological change of major landforms which define the
landscape. Therefore, natural morphological breaks in the landscape can be used to guide the
selection of appropriate scales for its study. Three alternative choices for the scale of landscape
evolution studies are explored in this section (table 2.1): (i) tectonic units; (ii) drainage basins;

and (iii) hillslopes.

Tectonic Units

The largest landscape unit for which there may be greater morphological variability
between units than within a unit is the “tectonic unit”. I[n many textbooks, the largest scale of
landscape categorization is based on tectonically-driven topographic patterns (e.g., Strahler and
Strahler, 1988; Summerfieid, 1991). Although there are a number of different types of tectonic
units, such as orogens located at subduction zones, continental/continental collision zones and
rift zones, landscapes that fall under one such category display a reasonable degree of similarity
to one another in surface form. Factors such as geology, climate, and length of time since an
episode of tectonism was initiated determine the individual characteristics of a particular
landscape falling under one category. However, there are gross similarities in both processes and

resulting morphology, which allow landscapes to be grouped into categories



Table 2.1 Length and time scales for study units.

Study Unit Ranges of diameter for study | * Ranges of virtual Time scale
unit (km) velocity (km/yr) (yr)
Lower: 10 10'-10
Tectonic Unit 10 - 10°
Upper: 10° 10°-10°
Lower: 10° 10%10°
Drainage Basin 10 - 10°
Upper: 10° 10°-10°
Lower: 10™ 10"-10°
Hillslope 10 -10°
Upper: 10 10 - 107

* Virtual velocities cover a broad range due to the difficulties associated with the estimation of
this parameter. Therefore, the time scales show a great range. In order to ensure that significant
landscape changes are observed, the upper ranges of time scales may be the :nost appropriate for
landscape evolution studies.
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based on tectonism. The tectonic unit represents the fundamental unit for the definition of the
balance between uplift and downwearing that exists in evolving landscapes. Several recent
numerical models use the tectonic unit as the scale of study. For example, Anderson (1994)
examined the evolution of the Santa Cruz Mountains, California. The evolution of rift zones was

explored in the models of Tucker and Slingerland (1994) and Kooi and Beaumont (1994).

Drainage Basins

There is a basic similarity in morphology among drainage basins, making them an
appropriate study unit for landscape evolution. Drainage basins are spatial units containing areal
and linear pathways for sediment movement within structural/tectonic units. The particular
characteristics of a drainage basin vary depending on the order of the basin and the geological
and climatic characteristics. However, all drainage basins have the similarity that gradients are
arranged so that as water and sediment are routed through the system, all paths are focussed on
the drainage outlet. The drainage basin has long been recognized as an appropriate study unit for
hydrological research and analyses of sediment delivery rates (e.g., Chorley, 1969). The
drainage basin has been a study unit for research which examines the development of the fluvial
system over large scales (e.g., Davis, 1899; Schumm, 1977). It has also been the focus of studies

in which drainage initiation is investigated (e.g., Dunne, 1980).

Hillslopes

The smallest scale at which landscape evolution reasonably can be studied is the hillslope
scale. All hillslopes have a general morphological similarity by their very definition. They are
bounded by a slope base and a crest at the top of the hillslope. Hillslopes are planar or quasi-

planar features which when assembled together make up the drainage basin surface. Sediment is
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transported from the upper portions of the hillslope and is generally deposited along the slope

base. Hillslopes have often been the study unit when considering topographic profile

development (Penck, 1953 (translation); Culling, 1960; Kirkby, 1978).

Geomorphological studies have made frequent use of the drainage basin as a study unit.
This is justifiable if the primary focus of a model is the erosional/sedimentary development of
landscapes under the influence of exogenic forces. However, if the tectonic component of a
model is relatively more important, then the tectonic unit may be a more appropriate study unit.
Most terrestrial geomorphological processes occur within drainage basin boundaries (with the
exception of perhaps glacial and aeolian processes), but endogenic processes know no such

boundaries.

2.4.2 TEMPORAL SCALE
The selection of spatial and temporal scales for a study cannot be made in isolation. As
spatial scale increases, the detection of what is considered to be a “resolvable’” amount of change
requires significantly longer time periods of observation. An approach is herein explored which
provides a method for evaluating complementary temporal scales for a particular spatial scale.
Time and length are connected to one another via the measure of velocity. Temporal and
spatial scales can also be connected to one another in a similar manner whereby:

length scale

virtual velocity = (2.1)

time scale

Virtual velocity denotes the amount of time it takes sediment, the transport of which induces
morphological changes in the landscape, to move a certain distance (in this case the length scale).
However, as sediment moves through the system, it is not in motion all of the time. In fact, the

particle finds itself at rest during most of the journey, undergoing only intermittent periods of
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actual transport. Virtual velocity refers to the apparent (or average) rate of movement through

the system, including the time spent in storage. Equation (2.1) can be rewritten explicitly for
time as:

length scale
virtual velocity

time scale = (2.2)

The time scale defined by this equation can be thought of as representing a “‘cycle” time of
sediment through the system. The cycle time is defined here as the characteristic (average) time
that it takes sediment to move through the system. This provides some benchmark for defining
time scales for a study. The observation of significant morphological changes in the landscape
(note that what is considered *“significant” depends on the spatial scale of a study) may require
the passing of several cycle times of sediment. In particular, when tectonics are incorporated in a
model, appropriate time scales may exceed the time scale suggested by equation 2.2. Ranges of
time scales that are appropriate for the study of geomorphological processes at each of the
spatially defined study units of landscape evolution introduced in the preceding section are
presented in table 2.1.

This approach for the definition of temporal scales requires a knowledge of virtual
velocity. This, in turn, requires an understanding of sediment storage times in the hillslope and
fluvial systems. Unfortunately, sediment storage has been a neglected topic in modern process
studies. Perhaps this is because the actual movement of sediment is more obvious and
“interesting” to study than a state of non-motion. However, given the extreme rapidity of many
transport processes when they actually occur (such as landsliding, debris flows and fluvial
transport during significant flood events), it is the time spent in storage, in between transport
events, that ultimately determines how quickly material is evacuated from the system. A major
component of historical studies in geomorphology has been the attempt to date sedimentary

deposits. Such information can be used to deduce long-term storage times of sediment.
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However, because of the division that has existed between historically-based and modern process

studies, a reconciliation of the relative roles of movement and storage has not been forthcoming.

Storage times must be evaluated for sediment residing on hillslopes, the valley flat and in
the active channel. Shreve (1979, p. 168) recognized that: “...the characteristic time scales of
slope processes typically are orders of magnitude longer than those of channel processes.”
Creep processes are very slow and landsliding is episodic in space and time. Therefore, sediment
may reside on hillslopes for long periods before it is transported to the valley flat. If the sediment
then enters the active channel (and remains a part of the active sediment load), it moves quickly
through the fluvial system. However, if sediment entering the valley flat does not enter the active
fluvial system, it may enter long-term storage. Sediment that enters the active system, but is then
deposited during an aggradation phase, may also go into long-term storage. Significant lateral or
vertical erosion by the river into the valley fill is required to entrain such material into the active
channel system.

The issue of sediment storage has been receiving increasing attention in recent years.
Sediment budget studies, which consider changes in storage, have provided a framework for the
study of sediment storage (e.g., Dietrich and Dunne, 1978). Further research in this direction,
with a particular focus on the evaluation of long-term residence times of stored material, is

required in order to improve understanding of sediment routing and its associated time scales.

2.5 PROCESS SPECIFICATION

Appropriate process specification requires that the level of detail incorporated into
process equations is suitable for the particular scale of a study. As the study scale increases, it is
not realistic to expect to resolve the same degree of morphological detail as at smaller scales. At

the hillslope scale, relatively small changes in morphology are resolvable over time and space.
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The frequency of sampling or grid points for the evaluation of elevation changes in numerical

models can be relatively dense and relatively small changes in elevation may indeed be
resolvable. Therefore, the parameterization of processes may include some mechanistic
parameters, such as shear stress or stream power. Climate, geology and vegetation may be
treated as independent parameters which are constant over time. Some spatial differentiation
may be possible for these parameters because of the relatively large sampling frequency that is
possible.

As the scale of study is increased to that of drainage basins and tectonic units, local
irregularities in morphology are no longer important. A high degree of detail in process
equations is not suitable to this scale of study as detail focusses attention on small-scale features
and events that are relevant only in some integral, or summary, fashion. Furthermore. any
attempt to include such details will not be successful as it is impossible to achieve such detailed
knowledge of controlling variables over large time and space scales because of difficulties
associated with error propagation and the sparse sampling associated with large-scale models. At
large scales, the major climate, vegetation and geology changes should be considered. although
the large space and time steps in such models necessitate the inclusion of only relatively
significant changes. Local variability of key parameters should be averaged out using
appropriate techniques. Schumm and Lichty (1965) considered climate to be an independent
variable at cyclic time scales. However, more recent research has suggested that there may be
very complex feedbacks and interactions between landscape evolution and climate change
(Molnar and England, 1990). Furthermore, variables which are considered to be independent at
the hillslope scale may now have to be considered dependent variables. For example, at the

hillslope scale vegetation may be an independent variable, which may be appropriate for a
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process study bounded within the slope. As scales increase and the possibility of long-term

climate change is introduced, vegetation varies in response to the climatic forcing.

The overall objective of process studies at large scales is to ensure that parameterizations
of processes replicate the essential character of landscapes as they evoive, without focussing on
unresolvable detail. This objective is critical to this thesis and underpins the model that is
presented herein. The concept has also been developed in recent numerical models of landscape
evolution (e.g., Anderson, 1994; Kooi and Beaumont, 1994; Tucker and Slingerland. 1994). We
have to move beyond the restrictions imposed by our own limited range of observation and
perceptions of space and time, and consider carefully which phenomena are significant to the
formation of landscapes over thousands or millions of years and how to parameterize them

appropriately.

2.6 DRAINAGE INITIATION VERSUS LANDSCAPE EVOLUTION

The creation of a landscape evolution model requires an initial surface upon which the
chosen processes operate. This initial surface must be defined clearly as different specifications
of the initial surface lead to studies which address different major questions. Two categories of
numerical models of landscape evolution are explored in this section: (i) drainage initiation and
(11) subsequent landscape evolution.

The central issue of concemn to drainage initiation studies is the determination of where
and when channels will begin to emerge (i.e., Ahnert, 1976; Wiligoose et al., 1991a,b). The
standard approach is to devise a set of quasi-mechanistic relations that define critical conditions
required for incision by flow. These equations act on some initial landscape that exists before
drainage is initiated. Typical initial landscapes for such studies are planar surfaces and fractal

surfaces (Willgoose et al., 1991a,b; Kirkby, 1986).
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Drainage initiation is supposed to begin with rill development and therefore requires

knowledge of the relevant processes at reasonably small scales. In the early stages of rill
evolution, a considerably detailed knowledge of hydrological variables and substrate properties
must be included in the equations. However, as rills develop and the channel system enlarges, the
inclusion of detail which was required to calculate rill incision becomes impractical.

The latter stage of landscape evolution is herein referred to as “subsequent landscape
evolution”. Subsequent landscape evolution refers to changes in the landscape morphology that
occur after the fluvial system has developed into an integrated drainage network which is at least
approximately stable. Instead of focussing on details associated with rill incision, which
necessitates smaller scales of study, attention must now be focussed on the issue of how to
parameterize equations that are resolvable at extended scales.

It is a weakness of some landscape evolution studies that both of these stages of
landscape evolution are incorporated into one model (Ahnert, 1976; Willgoose et al., 1991;
Rinaldo et al., 1995). The contrasting scales of drainage initiation mechanisms and subsequent
landscape evolution suggest that such studies should be approached as two separate phenomena.
Attempting to incorporate these issues into one model will lead to parameterizations of processes

which may not be appropriate at either the early or later stages of landscape evolution.

2.7 INITIAL SURFACE FOR SUBSEQUENT LANDSCAPE EVOLUTION

What is a suitable “beginning” point for the study of subsequent landscape evolution?
Summerfield (1991) states that, except in a few rare situations, drainage development does not
occur on “pure” surfaces. Pre-existing drainage and topography almost always exist for any
point in time at which we choose to enter the system for study. Summerfield (1991, p. 412)

summarizes this point eloquently: “...drainage systems have a heritage rather than an origin.”
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For the purposes of the current research it is not necessary to define a surface on which to
initiate drainage. Since there is no one correct beginning point of subsequent landscape
evolution then the modeller must make a decision as to what initial configuration lends itself best
to the study of the particular aspects of landscape evolution that are being studied. The decision
should be justified in relation to the aims of the research.

For landscape evolution studies it may be preferable to set the initial surface so that it
approximates a real landscape as opposed to some artificial surface. A real landscape does not
necessarily have to be defined in the strict sense of the term. An alternative to using a real
landscape (data for which can be obtained from a DEM) as the initial surface is to create a
landscape that displays essential characteristics of real landscapes, as perhaps summarized in

measures such as hypsometric integrals, fractal dimensions and drainage density.

2.8 THE ROLE OF MODELLING IN LANDSCAPE EVOLUTION STUDIES

Process can be studied in a quantitative manner at any scale if the process specification is
adapted to suit the particular study. Past approaches to geomorphology have not generally been
concermned with parameterizing processes at the large scales dictated by studies of landscape
evolution. Although a few pioneering attempts were made to establish process relations at large
scales over the past several decades (e.g., Culling, 1960; Scheidegger, 1970; Hirano, 1975), such
work has not been in the mainstream of geomorphological research.

The calculation of process equations at the large scales of landscape evolution studies
requires a computing capability that was not possible until relatively recently. The numerical
modelling approach has shown itself to be a flexible and useful framework around which to
focus the study of landscape evolution. This approach promises to reconcile process and

historical studies.
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How can numerical models be used to study landscape evolution? The objective of a
modelling exercise should not be to attempt to replicate exactly the details of development of a
particular landscape. Any attempt to do so is bound to meet with failure as the boundary
conditions and variability of controlling variables cannot practically be reconstructed. In order to
define the role of numerical modelling in landscape evolution studies, the issues underlying
model verification, validation, calibration and confirmation as discussed by Oreskes et al. (1994)
are explored:

1. Model verification is the process of determining the “truth” of the model and its reliability.
Earth science models are generally considered to be “open” due to an incomplete knowledge of
input parameters. The models are effectively underspecified. This occurs because of: (i} spatial
averaging of input parameters found in models; (ii) nonadditive properties of input parameters;
and (iit) inferences and assumptions underlying model construction. This “incompleteness of
information” means that model verification is not possible in open systems.

2. Model validation (a term that is often confused with verification) requires that a model
contains no known or detectable flaws and is internally consistent. Earth science models should
not be considered as definitive representations of physical reality due to the complexity of the
systems being studied.

3. Model calibration involves the manipulation of parameters to improve the degree of
correspondence between the simulated and observed results. However, obtaining consistent
results does not imply a model’s representation of reality is “correct”. Oreskes et al. (1994) refer
to the calibration procedure as “forced empirical adequacy”. Moreover, just because a model has
been forced to fit a certain set of data, it may not perform adequately for data collected at another

time or location.
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4. Model confirmation can be established by examining the ability of a model to match
prediction with observation. However, the model performance can never be definitively
confirmed because of our inability to know that our model will always predict the correct results
- future testing may prove the model to be inadequate. Furthermore, more than one model may
predict the correct results.

Greene (1997) wams of the dangers of accepting constrainis in model construction as
legitimate constraints on theory. If models, by their very nature, are going to be imperfect
representations of reality what, then, can numerical modelling contribute to the study of
landscape evolution? Even if modelling exercises cannot be used to absolutely confirm or
validate the ideas contained within, then they can nevertheless be useful tools for the
investigation of scientific phenomena. Landscape evolution models can be used to support or
more thoroughly explore ideas and hypotheses that have been partly established in other ways
(Oreskes et al., 1994). Transport relations, which may have been shown to provide reasonable
results, either in the field or experimentally in the laboratory, can be explored more fully in the
model. Various controlling variables can be held constant, while others are allowed to vary and
the implications of such manipulations over long time scales can be provisionally assessed.

Perhaps the most important role of models is as a tool for the exploration of various
“what-if” questions (Oreskes et al., 1994). Sensitivity analyses can be performed by changing
the nature or intensity of various processes and observing the effects on the morphological
evolution of landscapes.

In addition, numerical landscape models can be used to explore theoretical ideas and
conceptual models about which there is much conjecture, but little quantitative research. For
example, Kooi and Beaumont (1996) recently explored the ideas of Davis and other classic

modellers using their numerical model of landscape evolution.
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Numerical modelling permits the exploration of joint or sequential action by several
processes (geomorphological and/or tectonic) in a distributed field. This exercise usually
confounds our analytical abilities and often our intuition. Hence, a modelling exercise provides
an approach for assessing the plausibility of ideas about historical landscapes. This is not to say
that landscape evolution studies should be restricted to numerical modelling exercises. The ideas
contained within such models should be based on ideas, theories and equations that are derived
from real-world observations. In order for significant progress to be made in landscape evolution
studies both numerical modelling and field approaches should be integrated and be used to

provide new insights for one another.

2.9 HISTORY OF APPROACHES TO LANDSCAPE MODELLING
2.9.1 INTRODUCTION

There are four main factors that influence the nature of landscape evolution models
created at a certain time period: (i) dominant themes of research in the discipline; (ii) available
knowledge (i.e., existing research); (iii) available technology; and (iv) background and beliefs of
the researcher. Three main groups of landscape evolution studies are now considered: (i) classic
models; (ii) mechanistic models; and (iii}) models incorporating generalized physics .

Until the mid-20" century geomorphological research was largely conducted at larger
scales and a focus of much research was the development of conceptual landscape evolution
models. W.M. Davis, W. Penck and L.C. King were, in effect, landscape modellers and
therefore a review of landscape evolution modelling returns us back in time about a century.

It is interesting to note that although there has been a significant amount of research
conducted at the large scale, very few actual models of landscape evolution have been proposed.

This may be because most research of large-scale earth history has been undertaken within a
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purely historical paradigm. This tendency may be further exacerbated by the paucity of direct

observations, thereby often necessitating space/time substitutions, and by the complexities
encountered in large-scale geomorphological studies. The classic conceptual models represent
the initial attempts by geomorphologists to explain how landscapes evolve. Throughout the latter
half of the twentieth century geomorphologists made use of the new quantitative techniques and
technology available to them and as a result severai quasi-mechanistic and generalized physics
models were created. Numerical modelling is the timely attempt to reconcile classic landscape

evolution and historical studies with modern process studies.

2.9.2 CLASSIC MODELS OF LANDSCAPE EVOLUTION

The classic landscape evolution models were created during the period 1890 to 1950
(Davis, 1899; Penck, 1953 (translation); King, 1962; Budel, 1982 (translation)). During this time
most research focussed on historical and regional studies, making this a fruitful period for the
creation of large-scale landscape evolution models. The large scale of study allowed for the
incorporation of internal earth processes (e.g., uplift) into most of the models. Due to the fact
that the entire modern approach to earth sciences was in its early stages, minimal exogenic
process data and research existed, although such studies increased in number after the turn of the
century. Endogenic knowledge consisted of such hypotheses as isostatic principles and the
geosynclinal theory of sedimentary basin and mountain evolution. Technology posed a
significant constraint. Equipment and techniques available at this time were considerably less
advanced than those available in more recent years.

The early geomorphologists were all acute “observers” of landscapes. In effect, they were

studying the “observable” end products of the long-term processes involved in landscape
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evolution. These researchers turned to space-time substitution in an attempt to make conjectures
about the unobserved stages of landscape development.

The most well-known of all landscape evolution models is that of W.M. Davis (1899).
He proposed that, after a period of brief and episodic uplift, landscapes underwent downwearing
and passed through a series of predictable stages referred to as the cycle of erosion. In later
writings, Davis discussed various factors, such as climate change and renewed uplift, which
might complicate this simple model. Penck (1953, translation) rejected the notion of disparate
uplift and erosional events and instead focussed on their continuous interaction. Penck
advocated the concept of slope replacement whereby the steep part of a slope retreats rapidly and
leaves behind a lower angle debris pile at its base. King (1962), like Davis, believed that uplift is
episodic. He proposed that slopes undergo parallel retreat and leave behind concave pediments
at their base which eventually coalesce to form a pediplain. Budel (1982, translation) introduced
the concept of etchplanation, which described the relation between the weathering mantle and
removal of material. He asserted that tectonic and climatic stability result in the equality of
weathering and denudation rates and the stability of weathering mantle depth. This stability can
be offset by changes in controlling variables which strip the weathering mantle, thereby creating
a situation of disequilibrium.

An important observation to make about these classic models is that they are all
qualitatively conceptual in nature and that, with the exception of Budel, both exogenic and
endogenic processes are considered. Perhaps the most frequent criticism of these models is that
exogenic processes are treated in a superficial and non-quantitative manner. This criticism is
made in light of our increased understanding of process in recent years. These models also show
a progressive tendency over time to focus on the hillslope system at the expense of the fluvial

system. This perhaps reflects the increasing realization that hillslopes are the fundamental areal
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unit of landscapes. I[n addition, interest in hillslope evolution may be further stimulated by the
conundrum that although hillslope operation rates are slow, these processes seemingly lead to
major morphological changes over the long term. The resolution of this enigma poses an

interesting research challenge.

2.9.3 MECHANISTIC MODELS OF LANDSCAPE EVOLUTION

The landscape evolution models of Ahnert (1976 ) and Kirkby (1976) are based on quasi-
mechanistic process equations. The dominant themes of research during the period when these
models were created and revised had changed enormously from those encountered by the classic
landscape modellers: (i) the dominant scale of study decreased to small/medium scales; (ii)
process quantification was a critical component of much geomorphological research; (iii) the
degree of specialization of researchers increased; and (iv) endogenic processes came to be largely
ignored by geomorphologists (this development is related to (i) and (iii)). These changes
coincided with the advent of the so-called “quantitative revolution” in geomorphology.

The exogenic process information available to landscape modellers during this era
increased at a rapid rate whilst plate tectonics theory was changing the nature of endogenic
studies. Unfortunately, at the time that this new wealth of endogenic process information
became available, geomorphologists' interests focussed on smaller scale studies in which
endogenic processes were largely ignored.

Ahnert (1976, p.31) described the basic outline of his model: *“...the model starts with
identification of the initial surface, followed by bedrock weathering (i.e., waste production) base
level lowering, if any, denudation processes, and finally recomputation of the resulting surface
and its various parameters (slope etc.). This resulting surface then becomes the "initial surface"

for the next passage through the sequence of processes.” The processes included in this model
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are weathering of bedrock and the movement of sediment by rainsplash, viscous flow, plastic

flow. and wash. A computer program was created for the model runs, increasing the efficiency
of process calculations. Uplift is not directly modelled; it is indirectly incorporated into the
model through its effect on base level lowering. The model can be run in profile or surface form.
The calibration of process equations was not discussed, suggesting that results of the basic model
cannot be compared directly to real data.

The model of Kirkby (1971) involves the calculation of the sediment transport rate for a
variety of processes (slope wash, rainsplash etc.). These results are inserted into the continuity
equation. Soil profile evolution and rapid mass wasting events are explored in his later
modelling efforts. Endogenic processes are not included in this model. Kirkby kept the
mathematics in the model tractable by focussing on the evolution of landscape profiles. Once
again, the results have arbitrary units.

The models of Ahnert and Kirkby are: (i) quantitative in nature; (ii) focus on exogenic
processes; and (iii) have inadequate scale definition. These models introduced a quantitative
sophistication that was not possible during the earlier period in which the classic models were
created. Despite the obvious attraction of their quantitative rigor, it should not be overlooked
that both of the models demonstrate a lack of adequate scale definition. The detail of the process
equations and the overall neglect of endogenic processes show that these models are not suitable
for very long time scales. Despite the detailed process specification found in his model, Ahnert
applied the model to a variety of scales, ranging from individual point locations through to entire
mountain ranges. [t is not reasonable to apply this one representation of physics to such a large
range of scales, as the parameterization must vary with scale. However, Kirkby (1971, p. 15-16)
did demonstrate an awareness of the scale issue: “In considering the evolution of slope profiles

through time, we are necessarily considering a system in ‘cyclic time’...our specification of
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variation in process must be in terms appropriate to cyclic time; that is to say, not in terms of

hydraulic variables but in terms of relief variables only, even if the process is hydraulic in
nature.” Nonetheless, his process equations show an amount of detail which is not suitable for

the cyclic time scale as defined by Schumm and Lichty (1965).

2.9.4 GENERALIZED PHYSICS MODELS OF LANDSCAPE EVOLUTION

Generalized physics models have been created over a period starting about 1960 and
lasting up until the present day. These models represent an attempt to overcome the constraints
of mechanistic modelling. The earlier modellers of the genre (Culling, 1960; Hirano, 1975;
Smith and Bretherton, 1972) were subject to many of the same intellectual and technological
constraints as the mechanistic modellers. As a result they share some similarities, such as their
focus on exogenic processes. Around the mid-1980's there was a renewed interest in large-scale
studies accompanied by an interest in re-examining how processes are dealt with at these scales
(Anderson and Humphrey, 1989). In addition, there has been an increasing recognition of the
importance of endogenic and exogenic process interaction (e.g., Molnar and England, 1990).
The increasing geophysical interest in landscape evolution may be an outgrowth of the maturing
of plate tectonic theory. A notable characteristic of the most recent modellers in this category is
that many of them are working in earth science departments in North America and, hence. this
may restrict interaction between these modellers and European geomorphologists, who often are
working in geography departments.

A recurring theme in the description of the models that follows is the frequent use of
diffusion to simulate hillslope processes. The diffusion equation is derived from a
transport/gradient relation, which is inserted into a basic mass continuity equation. This equation

constitutes a generalized physics approach in the sense that processes, which may actually be
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quite variable in rate or occurrence, are assumed to act “continuously” over appropriately long
time intervals. In addition. it is assumed that the details of the actual processes, such as exact
initiation and deposition sites and the resulting morphometry of the depositional landforms
produced by such events, “average” out in a manner that can be represented by one simple
relation at large scales of space and time. Linear diffusion has been used in many landscape
evolution models. In this form, a linear relation between sediment transport rate and gradient is
assumed. In the less commonly used nonlinear equation, which is somewhat more complicated
in structure, the rate of activity significantly increases at steeper gradients.

Culling (1960, 1963, 1965) and Hirano (1975) recognized the potential of using a
generalized transport relation, based on a linear diffusion model, to simulate transport processes
at large scales. Culling (1960), working at the very beginning of the era of scientific computing,
had to solve the equations analytically, making them cumbersome to manipulate and [imiting the
complexity that could be incorporated into his model. The model of Smith and Bretherton
(1972) is based on a modified version of the diffusion equation. The particular strength of this
model is the recognition that drainage initiation and subsequent landscape evolution represent
two distinct stages in landscape evolution.

Flemings and Jordan (1989) made use of linear diffusion in their model of foreland basin
development. In this model, the primary concern is to establish realistic rates of erosion over
long time scales in order to simulate the development of basin geometry and stratigraphy.
Crustal shortening and lithospheric adjustment are also incorporated into the model. Anderson
and Humphrey (1989), in response to the work of Flemings and Jordan (1989) and several other
similar models, made a plea for geomorphologists to consider methods for assessing sediment
delivery rates, and hence transport processes, at large scales. Anderson and Humphrey (1989)

assessed the roles of linear diffusion and weathering in landscape evolution in their model runs.
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During this same year, Koons (1989) introduced a surface model that also used the linear
diffusion to simulate hillslope processes. Significant to his research are the lateral and vertical
variations in the diffusion coefficient that are introduced to reflect changes in process rates over
space and time that occur in response to changes in controlling variables. Stream elevations are
calculated using an exponential function that is fitted to the hillslope morphology. Uplift can
vary over both space and time in the model.

The model of Willgoose et al. (1991a,b) includes hillslope, fluvial and endogenic
processes. In particular, the model was used to simulate the initiation and development of
drainage networks over time (see section 2.6). Hillslope and fluvial processes were simulated
using linear diffusion and a stream power relation respectively.

According to Chase (1992), models based on diffusion processes alone are insufficient to
explain landscape evolution. He asserted that diffusion smoothes landscapes, whereas
roughening of the land surface also occurs. Chase believed that, although individual processes
are nonlinear and complicated, their synoptic effect can be reduced to simple, nearly linear laws.
The following exogenic processes are included in the model: (i) diffusive smoothing -
weathering, slope wash, soil creep etc.; (ii) fluvial erosion - suspended and/or bed load; and (iii)
deposition. Tectonic processes are simulated by the vertical uplift of grid cells.

Several landscape evolution models were published in a special issue of Journal of
Geophysical Research (1994) dedicated to the topic of tectonics and topography. These models,
as well as several other publications, represent the state-of-the-art for landscape evolution
modelling.

The model of Howard (1994) includes both hillslope and fluvial processes. Slow mass

movement and failures are modelled using linear diffusion and a threshold-driven equation
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respectively. Both non-alluvial and alluvial river processes are incorporated into the model using
complex variants of basic stream power relations.

Rigon et al. (1994) studied the self-organized nature of channel networks by examining
processes leading to drainage initiation. Linear diffusion is used to simulate hillslope processes
while fluvial erosion occurs when a threshold shear stress is exceeded.

The model of Anderson (1994) includes both tectonic and surface transport processes and
is used to explore the evolution of the Santa Cruz Mountains, California. Slow mass movement
is simulated using linear diffusion and landsliding is simulated using a modified equation that
includes a critical angle for failure. The fluvial model consists of bedrock incision, which is
modelled using a stream power function. Sensitivity analyses were performed to explore various
relations and model performance. Rosenbloom and Anderson (1994) presented a similar version
of this model in which soil creep is the dominant mass movement process.

The numerical landscape evolution model of Kooi and Beaumont (1994) was used to
explore the evolution of escarpments on rifted margins. Hillslope processes (including soil
creep, rainsplash, earth flows, slides and rockfall) are simulated using linear diffusion. Stream
power relations are used to simulate fluvial transport and redeposition along the river. Flexural
isostasy is also included in the model. In a subsequent paper (Kooi and Beaumont, 1996), the
model was used to explore some of the classical conceptual models of landscape evolution
(Davis, 1899; King; 1962; Penck, 1953 (translation)).

Tucker and Slingerland (1994) used linear diffusion to model slow mass movement and a
threshold-driven algorithm to simulate fast mass movement. A stream power relation was used
to simulate fluvial transport. Interactions between flexural isostatic uplift and geomorphological

processes in escarpment retreat were examined.
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Most recently, Avouac and Burov (1996) created a landscape evolution model to examine

the role of erosion in driving intracontinental mountain growth. They hypothesized that removal
of material from areas of high elevation to forelands opposes the spreading of the crustal root that
would otherwise lead to the eventual collapse of the mountain range. Of particular interest is the

fact that hillslope erosion is simulated using both linear and nonlinear diffusion.

2.9.5 DISCUSSION

The approach to process specification followed in the most recent suite of landscape
evolution models demonstrates an appreciation of the need to generalize process equations at
large scales. In particular, many of these models use some variant of: (i) linear diffusion to
simulate slow and/or fast mass movement; (ii) a threshold-based equation to simulate fast mass
movement; and (iii) a stream power relation to simulate fluvial processes. The widespread use of
these generalized equations is an important step towards establishing a sound methodological
framework for landscape evolution studies. However, there are two concerns regarding this most
recent set of numerical models: (i) geomorphological relations used in the models are often not
evaluated rigorously in comparison with field data and (ii) the critical roles ot sediment storage
(particularly in valleys) and river incision through this fill are not recognized. However, it may
be appropriate, when considering tectonic histories over very large time scales, to ignore valley
storage.

The diffusion analogy, which was often used to simulate various hillslope processes in
past models, was not compared or tested rigorously against field data in order to evaluate its
performance. Without this step in the analysis, the suitability of the diffusion concept to model
hillslope processes remains questionable. Furthermore, several potential variants of diffusion

have been proposed and research is needed to see which is most appropriate. Likewise, stream
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power relations used in the various models have not been tested against data to evaluate whether
reasonable results are produced. The final form of the geomorphological equations must be
shown to behave in a manner which is reasonably consistent with the available field evidence.
The importance of the connections between hillslope and fluvial processes is not
recognized in existing landscape evolution models. The storage of sediment in valleys and the
incision of channels through these sediments and the underlying bedrock are all key elements in
determining the morphology of landscapes at time scales over which geomorphological processes
are important (about < 10° years). The features produced by these processes represent the most
interesting elements of landscapes of geomorphological significance at intermediate to large time
scales. These topics have been neglected in the geomorphological literature and in landscape
evolution modelling and must be addressed in order to simulate realistically the routing of

sediment through drainage basins.



CHAPTER 3: HILLSLOPE SUBMODEL

3.1 INTRODUCTION

The modelling of hillslope processes at landscape scales requires resolution over
relatively large temporal and spatial units. When model time scales are order of magnitude 10*
to 10® years, the corresponding model time steps usually range from decades to thousands of
years. The modelling of large regions from 10' to 10° km? requires model grid cell dimensions
ranging from several tens of m” through to several km®. Process parameterization at large scales
must lead to a computationally feasible model while still maintaining critical characteristics of
evolving landscapes. The diffusion analogy was introduced into geomorphological reasoning for
this purpose (see Nash, [980ab for early references). Linear diffusion has been used
subsequently to model the development of scarps (Nash, 1980a,b; Colman and Watson, 1984;
Hanks et al.. 1984). In recent years, diffusion has been employed in large-scale landscape
evolution models to simulate slope evolution over long periods.

The linear diffusion equation is derived from a statement of sediment continuity:
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wherein 4 is height, ¢ is time, x and y are spatial dimensions, g, and g, are the x and y components
of the volumetric transport rate (L3 L'l'I“') and k& is a diffusion coefficient (Lz'l"'). These

equations are combined to form the diffusion equation:
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The equation assumes transport-limited removal of material from the slope (which is a standard
assumption in many long-term models of landscape evolution).

The diffusion analogy is attractive for modelling slope development in landscape
evolution models because it eliminates mechanistic details that are resolvable only at smaller
scales. It is flexible because the diffusion coefficient can be modified to reflect changes in space

and/or time of the controlling variables. However, it remains to be determined if critical features

of landscapes are simulated when using this equation.

3.2 HILLSLOPE PROCESSES IN PAST NUMERICAL LANDSCAPE EVOLUTION
MODELS
3.2.1 MODELS WITH INDIVIDUAL PROCESS SPECIFICATION

The early numerical landscape models of Ahnert (1976, 1977, 1987a, 1987b, 1988) and
Kirkby (1971, 1976) specify individual equations for different hillslope processes. The model of
Ahnert simulates morphological changes resulting from weathering, rainsplash, overland flow.
plastic flow, viscous flow and debris slides. Transport rate is dependent on gradient in all of the
equations. However, the relation for each process is defined by a unique assemblage of
coefficients, exponents and other governing parameters. The empirical relations, which are
based on theoretical-mechanistic principles, are considerably more complicated in structure than
the diffusion equation.

The model of Kirkby (1971, 1976) examines the effects of various transport processes on

hillslope profile evolution. Hillslope processes included in earlier versions of his model are soil
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creep. rainsplash and soil wash. The general form of the transport relation for each of these

processes is:

Cx A"S" G.4)
where C is transporting capacity of the process, 4 is contributing area (surrogate for water
discharge). S is slope, and m and »n are exponents that depend on the process being modelled. For
creep and rainsplash the value of m is 0 whereas it is greater than 1 for soil wash. Transport rates
are inserted into a continuity equation to obtain changes in elevation along the profile. Other
factors considered by Kirkby in various papers over the years include the interactions between
the soil profile and the slope profile (Kirkby, 1977) and the evolution of hillslopes by mass
movements (Kirkby, 1987). Considerable detail is introduced in both of these later additions,
thus limiting their applicability for modelling long-term hillslope evolution.

In the foregoing studies, a dependence on slope is incorporated into the hillslope transport

relations. The equations are then evaluated within a continuity framework.

3.2.2 GENERALIZED HILLSLOPE TRANSPORT

A diffusion analogy for modelling hillslope processes was used by Culling (1960) and
Hirano (1975). Diffusion modelling was expanded in some recent models to include explicitly
episodic processes. Diffusion was now used to model the combined effects of several hillslope
processes including slow, quasi-continuous processes (e.g., creep) and fast, episodic processes
(e.g., landsliding, rock slides) (Koons, 1989; Willgoose et al., 1991a,b; Chase, 1992; Kooi and
Beaumont, 1994, 1996; Rigon et al., 1994). Rigon et al. (1994) discussed “hillslope processes”
in 2 general manner, and did not explicitly consider the individual processes that are simulated
using the diffusion analogy in their model. However, it seems reasonable to suppose that

diffusion is representing both slow and rapid mass movements.
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Kooi and Beaumont (1994, 1996) state explicitly that although in the short term these

processes behave differently because of variations in threshold angles and transport intensity. in
the long term these processes all transport material relatively short distances at a rate that is
dependent on local slope. Assumptions in their model are that (i) changes in porosity and (ii) the
removal of material by solution are both negligible.

A notable feature of the models of Koons (1989) and Kooi and Beaumont (1994) is that
the value of the diffusion coefficient can be changed to reflect variations in climate over space
and time. Kooi and Beaumont (1994) allowed the strength of diffusion to be modified to
simulate transport occurring on either loose sediment or bedrock. Chase included slope wash
transport among the processes modelled by diffusion, whereas Willgoose introduced a slope
dependency into the basic equation for slope wash.

Anderson and Humphrey (1989) and Tucker and Slingerland (1994) studied the combined
effects of weathering and sediment transport on hillslope profile evolution. Weathering rates are
calculated using a relation whereby the weathering rate declines with increasing soil thickness.
Diffusion is used to simulate slow, quasi-continuous hillslope transport processes in both of these
models. Sediment flux cannot exceed sediment supply. In the model of Tucker and Slingerland
(1994), rapid mass movements (including shaillow debris landsliding and rock mass failure)
occur when slopes are steeper than some specified threshold angle which is defined uniquely for
each of sediment and bedrock. The material moves in a downslope direction until a stable
gradient is established. This procedure is repeated during a time step until there are no
oversteepened slopes. Tucker and Slingerland stated explicitly that their weathering model
involves an assumption that weathering is isovolumetric, such that any change in density
occurring when rock is converted to sediment is compensated for by the removal of mass in

solution.
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Rosenbloom and Anderson (1994) used a diffusion equation to model slow mass

movements operating on marine terraces near Santa Cruz, California. Field observations indicate
that the burrowing activity of ground squirrels and moles is the primary transport process
operating on these grassy slopes in the present day. Slow and fast mass movements are treated as
two additive terms in the model of Anderson (1994). Anderson (1994) expanded the model of
Rosenbloom and Anderson (1994) to include the effects of slow, quasi-continuous processes
(e.g., creep), in addition to more discrete processes such as tree throw and rodent burrowing.
Moreover, Anderson (1994) also incorporated a term to account for the effects of landsliding on

hillslope morphology:
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where ¢mqss is mass sediment discharge per unit width of slope, S is local slope, S. is critical
slope, S* is a slope scale which determines the amount of difference between the actual slope and
critical slope which is required for a significant increase in failure, k, is the normal diffusivity
(for slower processes) and &, is the maximum effective diffusivity for landslides.

Howard (1994) also included a hillslope transport equation that consists of two additive

terms:
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where ¢ is the rate of movement of hillslope material, S is the local slope gradient, G(S) is an
increasing function of slope gradient and s is the unit vector in the direction of S. The constants
K, K5, K. and the exponent g are spatially and temporally invariant. Creep and rainsplash

processes, which are represented in the first term, are modelled using linear diffusion. Mass
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movement rates resulting from larger failures, represented in the second term, increase without

limit as a threshold gradient is approached.

In the numerical model of Avouac and Burov (1996), which is used to examine the effects of
geomorphological processes on intracontinental growth, both linear and nonlinear diffusion are
used to model hillslope processes. However, they pointed out in the study that their form of the
nonlinear equation does not conserve mass and to do so would require an additional term. This
shortcoming presents a significant problem as the equations used in a landscape model should

conserve mass.

3.2.3 DISCUSSION OF PAST MODELS

If such a mechanistic approach is chosen for a smaller hillslope study, consideration must
be given to the relative efficacy of the various processes. Some processes operate at significantly
faster rates than others, thereby eclipsing the effects of slower processes. The slower processes
can be eliminated from the model in this event. Moreover, some processes may not even operate
in some regions. A thorough examination of the relative importance of these processes in
different landscapes is an essential step in the application of this model.

While mechanistic approaches (e.g., Kirkby, 1971; Ahnert, 1977) may be reasonable for
studies at the scale of relatively small hillslopes, this approach cannot be applied practically to
large-scale studies. As scale increases the net effect of these various processes may be combined
into a more generalized gradient-driven equation. Further examination is required to determine
at what scales generalized transport models may replace more mechanistic process models.

The sequence of studies outlined in the previous section demonstrates a progression in
broadening the range of processes modelled using diffusion and recognizing that adjustments are

needed when applying this equation to fast mass movement processes.
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The diffusion concept is used to simulate slow mass movements exclusively in some

cases (e.g.. Anderson, 1994; Howard, 1994; Tucker and Slingerland, 1994), while in other
models this equation is used to simulate both slow and rapid mass movements (e.g.. Koons,
1989; Kooi and Beaumont, 1994). The summary effects of various processes over long time
periods may be such that they can be treated uniformly. All of the processes are assumed to be
dependent on gradient. However, the use of a generalized equation requires study over minimum
time scales for which both the quasi-continuous processes (e.g., creep) and episodic processes
(e.g.. landsliding) can be considered continuous. It may take only decades to homogenize the
effects of slow processes, while time scales of 10° years may be required to amalgamate the
effects of fast, episodic processes. Furthermore, if fast, episodic processes can be considered as
continuous for the purposes of representation in models, then diffusion can be used to simulate
the combined effects of both fast and siow mass movements. This representation of fast.
episodic processes may be appropriate at large scales for which detailed individual landslide
erosional and depositional features are unresolvable.

Further examination of field data is required in order to determine which transport
processes can be modelled effectively using a diffusion analogy. Some modified version of the
diffusion equation (e.g., one which incorporates a threshold angle for failure, or a nonlinear form
of the relation) may be more appropriate for the simulation of fast, episodic mass movements
(e.g., Anderson, 1994; Howard, 1994; Martin and Church, 1997). Some researchers have
expressed concern that diffusive processes alone would smooth landscapes (e.g., Chase, 1989).
At the grid scales of most numerical landscape evolution models, local irregularities cannot be
resolved. It is true that diffusion alone acts to smooth out whatever larger-scale irregularities
exist in the initial topography. However, if non-diffusive processes such as the channel system

are also modelled then roughening effects in the landscape can be introduced. In addition, the
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inclusion of infrequent, but nevertheless very important, processes such as deep-seated

landsliding may continue to re-introduce large-scale topographic irregularities as diffusion acts to
smooth the landscape.

Several of the models include weathering in their assemblage of processes (e.g., Ahnert,
1976; Anderson and Humphrey, 1989; Tucker and Slingerland, 1994). In such models. the
thickness of the sediment layer is tabulated in order to determine the availability of sediment for
transport. The thickness of the sediment layer influences overall hillslope gradients as bedrock
slopes remain stable at steeper angies than sediment-covered slopes.

In view of the rich range of possibilities described here, and the specific spatial and
temporal constraints that accompany many of them, it is surprising that there has been very little
testing and calibration of transport relations with field data. Most of the modellers have not
undertaken independent studies to obtain their diffusivity values. It appears that the choices are
either based on past studies (i.e., the scarp studies of Nash, 1980a,b; Colman and Watson, 1984;
Hanks et al., 1984) or are obtained by running the model and seeing which values produce
“realistic results”. In the former case, a problem arises as the scarp studies are limited to profile
sections and hence are not necessarily representative of the larger areas simulated in landscape
evolution models. Moreover, the diffusivity values for the scarp studies may be unique to the
particular region in which they were derived. In the latter case, there is no real knowledge
regarding long-term rates of hillslope processes. Such studies must be undertaken if we are to

obtain an understanding of what constitutes realistic model results (Oreskes et al., 1984).



3.3 DIFFUSION IN THE HILLSLOPE SUBMODEL
3.3.1 INTRODUCTION
Equation 3.3 is rewritten with two diffusion terms in order to incorporate both slow and

rapid mass wasting processes (Martin and Church, 1997):
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wherein « is the diffusivity for slow, quasi-continuous mass movements (e.g., creep processes)

and B is the diffusivity for rapid, episodic mass movements (e.g., shallow landslides). This

approach is analogous with the treatment of molecular and eddy viscosity in fluid mechanics.

The incorporation of A entails the assumption that, over the long-term, rapid mass movement

affects the landscape everywhere that is above some threshold gradient.

This approach is appropriate for landscape regions in which creep and/or landsliding
constitute the principal processes operating on hillslopes. Depending on the characteristics of a
particular region either slow or fast mass movements may dominate. The present model focusses
on landscape evolution in coastal drainage basins in British Columbia, which is a mountainous,
humid region. Other processes, such as earth flows and slope wash, which may be important in
specific environments (e.g., badlands), are assumed to be important only at a local scale in the
present study. Although it is recognized that such processes may require consideration when
modelling landscape evolution in certain environments, they are not included in this version of
the present model. However, such processes could readily be incorporated into the modei at a
later date. Debris flow processes are often considered as hillslope processes and represent an
important mechanism delivering hillslope material to the fluvial system. However, they are
considered to be channel processes in this study and, as such, are considered in the following

chapter.
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The basic fixed coefficient form of the diffusion equation assumes a linear dependence of

transport on slope tangent. These questions are considered by writing the diffusion equation in a

form that take advantage of available transport data:

%=£[m%:l+i mlt (3.8)
Pra T w x| ’

The diffusion coefficient is now represented as a standard mass transfer rate, m (ML''T") at unit
gradient divided by sediment bulk density (ps). This reveals that the transport/gradient relation

can be assessed using either volumetric or mass transport data.

3.3.2 DIFFUSIVITY FOR SLOW QUASI-CONTINUOUS MASS MOVEMENTS
3.3.2.1 EXAMINATION OF PAST CREEP DATA

In order to assess the appropriateness of a diffusion analogy, and to calibrate such an
equation, if it indeed appears to be reasonable, requires long-term transport estimates. But long-
term estimates of total sediment transport on hillslopes are not generally available and what
measurements there are, have not generally been subject to adequate control. Nonetheless. the
calibration of the diffusion equation for slow and fast processes is based on what transport data
are available.

To appraise diffusion coefficients for slow, quasi-continuous mass movements, the
volumetric creep data presented in Young (1974), Saunders and Young (1983) and several more
recent studies were examined (table 3.1) (Martin and Church, 1997). These two compilations,
from which most data are extracted for the present study, were not originally assessed for
reliability of measurements. Therefore, their adoption into the present study involves only a
generalized analysis of the data.

Some results (Owens, 1969; Finlayson, 1981) exhibit a weak, and statistically non-



Table 3.1 Creep transport rates.

Study* Average creep rate Location
(cm’/cm/yr)
Leopold and Emmett 0.2 Washington D.C., U.S.A.
(1972)
Chandler and Pook (1971) 0.3 Central England
Young (1960,1963) 0.5 Northern England
Young (1978) 0.6 Derbyshire, U.K.
Anderson (1977) 0.8 Weardale, U.K.
Finlayson (1981) 1.2 Mendips, U.K.
Carson and Kirkby (1972) 1.3 Maryland, U.S.A.
Lewis (1975) 1.5 Puerto Rico
Williams (1973) 1.9 N.S.W., Australia
Day (1977) 2.0 Wales
Kirkby (1964,1967) 2.1 Scotland
Slaymaker (1972) 2.7 Wales
Williams (1973) 3.2 N.S.W., Australia
Owens (1969) 3.3 New Zealand
Williams (1973) 5.9 Northern Territory, Australia
Everett (1963) 6.0 Ohio, U.S.A.
Dedkov and Duglav 7.1 Tatar, U.S.S.R.
(1967)
Lewis (1974, 1976) 8.0 Puerto Rico
Eyles and Ho (1970) 12.4 Malaya
Barr and Swanson (1970) 15.0 Southern Alaska
McKean et al. (1993) 67 California, U.S.A.
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significant, relation between gradient and creep transport (figure 3.1). Others (Williams, 1973)

exhibit no correlation at all. Most of the studies are short-term and it is possible that a relation is
detectable only at longer time scales when short-term variability of controlling factors, such as
soil moisture and soil cohesion, may average out. It may also be the case that such properties

vary sufficiently over both space and time to disguise the effects of gradient at all scales.

3.3.2.2 DIFFUSIVITY VALUE FOR CREEP

The diffusion coefficient is numerically equivalent to the volumetric transport rate at unit
gradient (45°). All of the observations were made on considerably lower gradients but, since
functional dependence is observed to be weak and in the absence of more definitive evidence. the
median value from several studies of 0.0002 mzyr'[ (figure 3.2) is assumed to represent the
correct order of magnitude value for the creep diffusion coefficient (Martin and Church, 1997).
The data show an extremal distribution with lower values of creep transport rates occurring with
a much greater frequency than high values. In a stochastic approach, the variation of diffusivity
would be represented by an extremally distributed variate. There remains a need for additional

study in order to evaluate the factors responsible for variation in creep rates.

3.3.2.3 NONLINEAR RELATION?

Results of a field study by Schumm (1964) and a controlled experiment by Van Asch et al.
(1989) suggest that there may be a nonlinear relation between creep rate and gradient (figure 3.3).
This finding is supported by Andrews and Bucknam (1987), who proposed a nonlinear relation
between transport and gradient on scarps. Confirmation of nonlinearity would be an important

result because it would necessitate the formulation of a more suitable creep transport equation.



b)

Creep transport rate (cm’/cm yr)

Figure 3.1 Relation between gradient (as slope tangent) and creep transport rate.
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a) Data are from Finlayson (1981). The negative values represent upslope transport.
b) Data are from Owens (1969).

a)
15
¢
=~ 10
-
£
=2 ¢
E 5
L ¢
2 ¢ ¢ R
- 0 &
5 .
a
g 5 L
Q
[1))
Q
° 10
™
-15
0 0.1 0.2 0.3 0.4 0.5 0.6
Gradient
¢
*
®
e 4
&
¢ ®e
¢
¢
- L 4
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Gradient

0.8



48

Figure 3.2 Frequency distribution of volumetric creep rates. Note outlier to the right of
scale break. This creep estimate was obtained by McKean et al. (1993) using an isotope
mass balance model whereas other studies are direct measurements.

Number of observations
w

TNOTHDONDNDO-NNTNONOD OO
~FANOTODONOTIT T T TNN ST TTNYR®®
DO - NOITWVWONMODDOOD O
At ol Sl ol o 5l ol o - i (o)

Volumetric creep rate (cm/cm yr)

Figure 3.3 Relation between gradient and creep transport rate. Gradient is represented
as slope tangent. Experimental data are from VanAsch et al. (1989). Data sets represent
different slope conditions simulated in the laboratory.

140
rOtJ d tl depth fL ’
. rees, rdepthof Om |
120 ] es, groundwater dep i
! U bare, groundwater depth of Om
% : A trees, groundwater depth of 1 m f
E 100 | O bare, groundwater depth of 1 m !
E O
@
® 80
)
a
@ 60
i
a
g 40
© a
20
¢ . 8
0 d Q
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Gradient



49
3.3.3 DIFFUSIVITY FOR RAPID EPISODIC MASS MOVEMENTS: A CASE STUDY OF

THE QUEEN CHARLOTTE ISLANDS
3.3.3.1 INTRODUCTION

In order to approach rapid, episodic sediment transfer at the landscape scale data sets are
required that incorporate many events. This approach is illustrated by using a data set from the
Queen Charlotte Islands (Rood, 1984; 1990), which are located about 160 km off the coast of
British Columbia. Landsliding rates are high due to the high annual rainfall (ranging from about
1500 to 5000 mm yr'), rapidly weathered volcanic and sedimentary rocks. and glacially
oversteepened slopes. The landslide inventory was completed by identifying landslides on aerial
photographs. The data set is believed to cover approximately a 40 vear period as landslides older
than this were not clearly visible on the photographs. In relation to landscape evolution, this
period is very short. Nevertheless, the data constitute a comprehensive, extended record of
landsliding activity. Forested portions of 23 watersheds (clearcut logging occurred in many
basins) were analysed in order to obtain natural landsliding rates. The mean area of forested
terrain in each basin is 12 km’ with a basin average over this area of about 30 landslides (table
3.2).

An underlying assumption when applying the diffusion analogy to simulate fast, episodic
mass movements is that such events can be considered to be continuous over the long time scales
of a landscape evolution study. Rood (1984) estimates the total number of hectares per km® of
forested steepland (> 20°) affected by landsliding per year and obtains a value of 0.03 ha/km®/yr.
At this rate, about 3 000 years are needed for a failure to occur everywhere in the forested,
steepland portion of study basins in the Queen Charlotte Islands. Therefore, optimum time scales

for the simulation of landsliding using diffusion are greater than order of magnitude 10? years.
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3.3.3.2 THE APPROACH

The areas of each watershed that fall under particular slope gradient classes are calculated
in order to evaluate the relation between gradient and transport rate. The following calculation is

performed for each gradient class for each basin (Martin and Church, 1997):

n

q, = Z[V—l] (3.9)

=1 aj

wherein g, is volumetric transport rate (m’m’ per 40 yr), v is landslide volume, / is transport
distance (typically the full length of the slope), a is area, n is the number of landslides and j is
gradient class. This result is divided by the 40 years that the landslide inventory covers.

Gradient distributions for forested regions in each basin are obtained from TRIM maps
(scale 1:20 000) of the Queen Charlotte Islands. An overlay composed of 5mm circles (equal to
100 m on the map) was placed over the map sheet for each basin and numbers of contour lines in
each cell were counted. The proportion of the forested region in each basin falling under a
particular gradient class was calculated. These data were converted into areal values by
multiplying each proportional value by the total forested area in each basin (refer back to table
3.2)

Rood (1984, 1990) compiled data for debris slides and debris flows. Debris flow activity
is included in the channel submodel in this landscape evolution model and is therefore eliminated
from the hillslope analysis. The debris slide data include shallow landsliding events that are
initiated on either open slopes or in guilies. Rood (1984) calculates landslide volumes by the
summation of contributing volumes from the initiation and transport zones.

The landslides are placed into the appropriate gradient class based on the slope angle in
the initiation zone. Transport distance is required in order to obtain dynamic transport rates.

Rood (1984) provided transport distances for approximately half of the landslides. In order to
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determine transport distances for the missing values, correlations between transport distance and

other relevant variables that were consistently measured by Rood (1984, 1990) were examined.
A nonlinear relation between landslide volume and transport distance provided the strongest
relation (figure 3.4). After a logarithmic transformation, the best-fit relation has an R? value of
0.50 and a standard error of estimate of 0.33. The relation between transport distance and
landslide volume with the correction factor for transformation bias (Miller, 1984. Appendix I)
included is:
[ =0.40v"7 (3.10)

where / is transport distance and v is landslide volume.

Finally, sediment transport rates for each gradient class for each of the 23 drainage basins
are calculated according to equation 3.9 (p. 51). The plots of transport rate versus gradient for
each drainage basins are shown in figure 3.5 (see section 3.3.3.4 for discussion of the two groups
identified in the data). A threshold of about 30° is found for landslide activity. At higher
gradients two interpretations are possible. Some basins appear to exhibit a distinctly nonlinear
relation between transport and slope angle, whilst others show a step increase to a finite transport
for slopes in the range 30°-45°. On slope angles greater than about 40° results are variable: this
is not surprising since some cohesion mechanisms must come into play. A step-change is
consistent with the belief that slopes in different gradient classes are dominated by distinct
processes. Theory suggests that mass transport rates may be related to the sine of the slope angle
rather than the tangent. However, this adjustment does not remove the nonlinearities from the

data.

3.3.3.3 DIFFUSIVITY FOR THE LINEAR RELATION

Several landscape evolution models include both creep and landsliding among the



Figure 3.4 Relation between volume and travel distance for landslides in the Queen
Charlotte Islands, British Columbia. Distance was measured to the nearest 5 meters.
Data are from Rood (pers. comm).
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Transport rate (m*/m yr)

Figure 3.5 (a) Landslide transport rate vs. gradient for Group A drainage basins.
Gradient is represented as slope tangent.
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Figure 3.5 (b) Landslide transport rate vs. gradient for Group B drainage basins
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Figure 3.5 (b) Group B drainage basins cont’d (Mountain - Windy Bay).
Gradient is represented as slope tangent.
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hillslope processes simulated using diffusion (Koons, 1989; Kooi and Beaumont. 1994). A

threshold gradient is not incorporated in the diffusion equation in these models. The Queen
Charlotte Islands® data suggest that threshold gradients may be critical for the appropriate
parameterization of landsliding. However, the analysis of the transport/gradient relation is
initially undertaken without consideration for threshold gradients in order to make comparisons
between results found in the present study and diffusivity values used in other landscape
evolution models. The following approach is adopted in order to obtain a representative linear
diffusion coefficient. Best-fit linear relations were determined in order to obtain the transport
rate at unit gradient (45°) for each basin (table 3.3). When the results are tabulated, an extremal
distribution is once again evident, as was the case for the compilation of creep transport rates
(figure 3.6). Therefore, the median value of 0.1 m*/yr is adopted as the best representation of the

value for linear diffusivity.

3.3.3.4 NONLINEAR TRANSPORT RELATION

A nonlinear relation, strictly observed, requires a modification of the governing equation.
Nonlinearity may appear in the transport/gradient relation for several reasons (Martin and
Church, 1997). One is that transport distance itself depends on slope angle. Kirkby (1992) has
elaborated such a model from his general formulation of hillslope evolution. However, a related
possibility is that starting angle and slope length (which enter the transport estimates) are
themselves confounded in the data. In fact, they are independent of each other. It finally must be
acknowledged that the gradient/transport relations are based on slope angle in the detachment
zone. But slopes in the Queen Charlotte Islands are typically relatively short (about several
hundred meters to one kilometer) and nearly rectilinear, so this factor appears not to be a source

of serious bias. It remains to explore more complex models for these data.



Table 3.3 Diffusivities for linear diffusion.

Drainage Basin Diffusivity
(mzlyr)
Armentieres 0.072
Bonanza 0.27
Burnaby Island 0.14
Government 0.029
Gregory 0.41
Hangover 0.18
Inskip 0.28
Jason 0.24
Landrick 0.090
Macmillan 0.25
Marshall Head 0.22
Matheson Head 0.037
Mosquito 0.0062
Mountain 0.16
Powrivco 0.022
Riley 0.11
Sachs 0.14
Security 0.044
South Bay Dump 1.9
Talunkwan Island 0.0041
Tarundl 0.0043
Two Torrent 0.13
Windy Bay 0.28




Figure 3.6 Frequency distribution of landsiide transport rates at unit gradient. The outlier
at the right of the graph is the datum for South Bay Dump Creek.
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Nonlinear best-fit models were initially tested for the transport/gradient relations for each

watershed. However, these models did not capture the key characteristics of the relations. For
this reason. it was decided instead to adopt a suitable nonlinear relation that embodies the critical
patterns observed in the data. A hyperbolic tangent relation was found to replicate reasonably the
transport/gradient relations for the Queen Charlotte landslide data. The present model
incorporates the notion of a critical angle for landsliding. This relation shows zero or low
transport rates at gentle gradients and then rises sharply (figure 3.7), thereafter stabilizing at a
higher value. It was decided to include this latter feature of the curve as in some cases the
transport rates keep rising (e.g., Inskip Creek; see figure 3.5) and in other cases there is a step-
change to a lower value (e.g., Hangover Creek; see figure 3.5). The option of maintaining a
constant value at high slopes seems to express some sort of average for the types of behaviour
that might occur. In reality, landsliding does not generally occur on slopes greater than about 50-
60° (Rood, 1995, pers. comm.), where weathering rates cannot keep up with transport rates. In
this case, the hillslopes are depleted of sediment cover and bedrock slopes appear. An option to
reduce landsliding transport rates to zero at slopes greater than 60° (approximately tangent slope
1.7) can also be included.
The hyperbolic tangent relation used in this analysis is of the form:

g =K, +[0.5%(K, — K,)*(1 + tank(value))| (3.11)

where:

abs(%] —hy
_\x)

x scale

value =

and ¢ is transport rate, tanh is the hyperbolic tangent, Ky and K, are diffusivity parameters

(m*/yr), Ay represents the location on the x-axis of the mid-point of the rise for the tanh function
yr P
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(m/m) and Ay scqre is the width parameter for the rise (which determines the steepness of the rise)

(m/m).

Examination of the data reveals that there are two major patterns of transport/gradient
relations among the 23 drainage basins (table 3.4; figure 3.8). Each group shows similar
threshold gradients and transport rates. The drainage basins in Group A exhibit characteristically
low sediment transport rates and threshold gradients ranging from tangent slope 0.6 to 1.0.
Sediment transport rates remain relatively low at unit gradient and peak at tangent slopes of
about 1.2 and 1.4. In other cases, transport rates show a gradual increase in transport rates over
tangent slopes of 1.0 and 1.2. The threshold transport tangent slope for Group B watersheds is
about 0.8. Transport rates increase abruptly at this threshold. The median transport values for
each gradient class are determined for the two groups. These values are used to define
hyperbolic tangent relations based on equation 3.11 (figure 3.9).

Geological formations found in the drainage basins were examined in order to determine
if geological differences might be responsible for the two distinctive patterns of
transport/gradient relations (refer back to table 3.4). The less active drainage basins of Group A
show a larger proportion of basins composed of hard volcanic and granites. Group B. on the
other hand, has a larger proportion of basins composed of soft volcanic and sedimentary rocks.
Therefore, there appears to be a reasonable basis for the suggestion that geology is a major

determinant of the landsliding transport rates in this study.

3.3.4 COMPARISON OF DIFFUSIVITIES WITH OTHER STUDIES
Previous attempts to estimate linear sediment diffusivities have been based on scarp
erosion studies (table 3.5a). These are local studies in which a diffusion coefficient was fitted to

slope profile development. The primary process in operation on some slopes is slow mass



Table 3.4 Transport/gradient categories and dominant rock types.

Group A Group B

Armentieres (Hard Volcanics) Bonanza (Soft Volcanics)
Bumaby Island (Granites) Gregory (Soft Volcanics)
Government (Hard Volcanics) Hangover (Soft Volcanics)
Matheson Head (Hard Volcanics) Inskip (Hard Volcanics)
Mosquito Creek  (Hard Volcanics) Jason (Hard Volcanics)

Tributary Landrick (Soft Volcanics)
Powrivco (Soft Volcanics) MacMillan (Clastic Sedimentary)
Sachs (Clastic Sedimentary) | Marshall Head (Hard Volcanics)
Security (Hard Volcanics) Mountain (Granites)
Talunkwan [sland (Clastic Sedimentary) Riley (Soft Volcanics)
Tarundl (Clastic Sedimentary) | South Bay (Clastic Sedimentary)

Dump
Two Torrent (Clastic Sedimentary)
Windy Bay (Soft Volcanics)

Table 3.5 (a) Comparison with diffusion coefficients derived from scarp studies.

Study

Diffusion Coefficient (m’/yr)

Present study

Landslides: 2 x 10~
Creep: 2 x 107

Nash (1980a) 1.2x 107

Nash (1980b) 4.4x10”
Colman and Watson (1984) 9x10*
Hanks et al. (1984) 1.1x10”
1.1x10%

1.6 x 107

(b) Comparison with diffusion coefficients implemented in landscape evolution models.

Study

Diffusion Coefficient (m?/yr)

Present Study

Landslides: 2 x 10
Creep: 2 x 10°

Anderson and Humphrey (1989)

0.001, 10

Flemings and Jordan (1989)

1 x10°t0 5 x 10°

15x107 to1.5x 10"

Koons (1989)
Anderson (1994), Order of 10™
Rosenbloom and Anderson (1994)
Howard (1994) 0.004-7.0

Kooi and Beaumont (1994, 1996)

2x10%to 1 x 10
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Figure 3.8 (a) Relation between gradient and transport rate for Group A drainage basins.

Gradient is represented as slope tangent. Note scale change on y-axis in part (b).
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Figure 3.9 a) Transport relation for Group A drainage basins. b) Transport relation for
Group B drainage basins. Gradient is represented as slope tangent.
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movement such as creep and/or transport due to basal undercutting (Colman and Watson. 1984;

Nash, 1980ab). Hanks et al. (1984) stated that diffusion: “...accounts, correctly or incorrectly. for
all the physical processes that contribute to erosional mass transport on the slopes of interest in
this study.” The diffusivity for creep derived in this study is at the lower end of the range of
scarp values and the landslide diffusivity derived here is at least an order of magnitude greater
than these values. From the perspective of landscape modelling, data derived from an ensemble
of many possibly representative hillslopes, as in the present study, are apt to be more informative
than results from individual scarp slopes. However, the scarp slopes are relatively steep. This
may possibly be indicative of diffusivities for a combination of processes operating near unit
gradient, which is what the diffusion coefficient actually represents.

The linear diffusivity estimates (non-threshold) for the present study are compared with
diffusivities adopted in landscape development models (table 3.5b). The diffusivities employed
by Anderson (1994), Rosenbloom and Anderson (1994) and Howard (1994) represent values for
slow mass movements but are greater than the creep diffusivity found in the present study.
Anderson (1994) and Howard (1994) included an additional term to simulate mass movement
activity.

The diffusivities implemented by Koons (1989) and Kooi and Beaumont (1994, 1996)
were assumed to represent all slope processes including fast mass movements. The values at the
higher end of the ranges are used when modelling humid regions. Kooi and Beaumont (1994)
increased diffusivities when modelling landscapes covered in loose sediment and not bedrock.
The values used in these models are higher than the landslide diffusivity estimated in the present
study (and higher even than an upper extreme). The Queen Charlotte Islands are known to have

high landsliding rates; it is unlikely that diffusivities for landsliding would exceed those found in
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the present study by the three orders of magnitude suggested by the upper estimate of Kooi and

Beaumont (1994).

The lower diffusivity value of Anderson and Humphrey (1989) was used for the
modelling of creep processes on scarps and moraines. The higher value of diffusivity used by
Anderson and Humphrey (1989) and the range of values used by Flemings and Jordan (1989)
exceed the diffusivities found in the present study. In the former case, the diffusion coefficient is
derived from an estimate of debris flow delivery rates to fans. The diffusivity values of Flemings
and Jordan (1989) are based on estimates of mean regional gradients in mountain belts and basin

fill rates; both hillslope and fluvial processes may be reflected in these high values.

3.3.5 SUMMARY

On balance, relations between transport rate and gradient appear to be nonlinear. If this is
the case, then the hillslope process equations used in landscape evolution models must be
selected to incorporate these nonlinearities. This has not, heretofore, been the rule. However.
significant variations in the transport/gradient relations among the Queen Charlotte Islands” study
basins were found. It is suggested that geology is a significant factor influencing landsliding
activity.

The linear diffusivity for landsliding found in this study is about 3 orders of magnitude
greater than the creep diffusivity. This result suggests that in susceptible terrain only the latter
need be considered in long-term landscape evolution models (Martin and Church, 1997).
However, if a threshold gradient landslide model is used then creep is the dominant mass wasting
process operating on lower gradient hillslopes. The low value of creep diffusivity suggests that
the morphclogical evolution of hillslopes by creep occurs at very slow rates. In such cases,

channel processes may have a particularly critical role in landscape formation. In steep basins
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showing rectilinear slopes such as those on the Queen Charlotte Islands, significant net hillslope

degradation by landsliding is likely to occur only on the upper slopes, whereas significant
deposition of hillslope material may be focussed at the slope base. When gradients, geology and
vegetation are approximately constant along the slope length, erosion and deposition may be
approximately balanced in the mid-sections of hillslopes.

To confirm current appearances, field data must cover longer time periods and must be
controlled to identify sources of variability. The creep data are confounded by inadequately
controlled measurement programs. The time period of such measurements, often only several
vears. is usually too short for the purposes of long-term modelling. Landsliding activity, on the
other hand, is visible on aerial photographs, making it possible to obtain medium-term
inventories of landsliding rates. Landslide inventories collected for the purpose of estimating
transport rates must include key variables such as initiation angle and transport distance. in
addition to landslide volumes.

There are severe limitations to the time scales of transport rates that are available by
direct measurement. Techniques based on absolute dating methods should be subject to much
further investigation. The study of McKean et al. (1993) uses cosmogenic isotopes for the
estimation of creep rates. The values found in this study are significantly higher than values
obtained by traditional field methods. Further studies are required in order to assess more
thoroughly the ability of isotope dating methods to estimate creep. The ability of such techniques
to estimate transport rates of more rapid, episodic transport processes should also be investigated.

Although laboratory experiments do not provide transport estimates that are
representative of those found in nature, further experimentation (particularly relevant for creep)
might help us to elucidate the nature of the transport/gradient relation. Recently, Densmore et al.

(1997) used a simple physical model (consisting of beans!) to simulate patterns of bedrock
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landsliding across hillslopes. Such experimentation can provide critical insights into landscape

evolution that can be incorporated into existing models.

3.4 WEATHERING PROCESSES

Transport-limited and weathering-limited behaviours are widely acknowledged concepts
in the geomorphological literature. In order to determine conditions necessary for the occurrence
of one of these particular types of transport behaviour, the relative efficacy of erosion/deposition
rates and soil production rates must be known. Despite the relevance of soil production to
geomorphological processes, there have been very few field studies which document its rates. It
1s generally assumed that soil production rates due to bedrock weathering reach a maximum at
either the surface or some intermediate depth of soil thickness (Gilbert, 1877; Dietrich et al.,
1995). Production rates thereafter decline (an exponential decrease is usually assumed) until
such a depth below which the value is zero. In the several more recent studies which consider
this phenomenon, an exponentially declining model has been utilized (Anderson and Humphrey,

1989; Tucker and Slingerland, 1994; Dietrich et al., 1995; Heimsath et al., 1997) (figure 3.10):

% =1x10" exp [- lO(hs -h, )] Andersonand Humphrey (1989) (3.12a)
%"— =5x107" exp[-10(h, —h, )] Tucker and Slingerland (1994) (3.12b)
% =1.9x107 exp[-5(h, - h, )| Dietrichetal.(1995) (3.12c)
% =7.7x107 exp [— 2.3(h, - h, )] Heimsathet al.(1997) (3.12d)

where A; is surface height, 4, is the height of the soil/bedrock interface, and the change in height
is given in m/yr. Anderson and Humphrey (1989) did not discuss the source of the constants

used in their relations. Tucker and Slingerland (1994) followed the approach taken by Anderson
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and Humphrey (1989) when constructing their weathering equation. A value of 10, which was

used by Anderson and Humphrey (1989), was inserted into their equation for the constant in front
of the term for sediment layer depth. These two relations plot below the relation of Dietrich et al.
(1995), and show only negligible soil production rates when soil thicknesses exceed about 0.5 m.
Dietrich et al. (1995) derived their relation from soil production estimates in the field at soil
thicknesses of 1.5 m and 0.30 m. The production rate is 0 m/yr in the former case. In the latter
case, the value of 4.2x107 m/yr is based on an assumption that soil thickness at the chosen site
remained constant over the study period of sediment accumulation in the associated valley.
Accumulation rates are assumed to also represent erosion rates, and in turn soil production rates.
Heimsath et al. (1997) used measurements of in situ produced '°Be and *Al concentrations in
bedrock under soils of different thicknesses. The study was conducted in Tennessee Valley.
Marin County, California. The average rainfall in the area is 760 mm and the vegetation is
grassland and scrub. Results of the study suggest that a model in which soil production rates
decline with increasing depth provides a good fit to the data.

The basic exponentially declining soil production/depth relation of Heimsath et al.
(1997), which is based on cosmogenic data, is adopted for use in the present landscape evolution
model. The study is field-based and makes use of a long-term dating technique. Elevations of
the surface and bedrock/soil boundary are determined at each time step. When the soil layer is
depleted, diffusivity falls to O m?*/yr. Therefore, an additional dependency enters the transport
equation whereby diffusivity is a step-function of soil layer depth. Soil production rate is
dependent on soil layer depth, which is simply the difference between the elevations of the
surface and soil/bedrock interface. The equations should be solved simultaneously in order to

obtain the best results when incorporating weathering in the model runs.
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CHAPTER 4: CHANNEL SUBMODEL
4.1 FLUVIAL TRANSPORT RELATIONS IN LANDSCAPE MODELS
4.1.1 INTRODUCTION

The movement of sediment through the channel system is an integral component of
landscape evolution. The channel system determines the local lowest elevations in the landscape.
which provide the base level and the potential energy gradient, as defined by local relief, for
hillslopes.

The approach used to describe channel processes varies considerably among landscape
evolution models. Several of the early modellers (e.g., Penck, King, Budel) emphasized hilislope
processes and excluded detailed consideration of channel processes. However, unlike the other
classic modellers, Davis (1899) considered carefully both hilislope and channel processes in his
cycle of erosion. Several aspects of fluvial processes, which are important to landscape
evolution, were considered by Davis: (i) sediment delivery from hillslopes to channels; (ii)
quantity and coarseness of load; (iii) fluvial aggradation; (iv) the concept of grade; and (v) river
meandering processes.

Numerical landscape evolution models which incorporate fluvial activity can be grouped
into three major categories based on overall model structure and fluvial process specification:

(i) Certain general models which can be adjusted to simulate either hillslope or stream profile
development by varying the values of some key coefficients and exponents (Culling, 1960;
Kirkby, 1971). Such an approach does not allow for the integration of both hillslope and fluvial
processes into one comprehensive model.

(ii) Some later models explore the initiation of channel networks, with a particular emphasis on

processes leading to channelization (e.g., Ahnert 1976; Willgoose et al., 1991a,b; Rinaldo et al.,



1994).
(ii1) Many of the more recent models include fluvial processes as a significant component of an
integrated model of landscape evolution (e.g., Kooi and Beaumont, 1994; Tucker and

Slingerland, 1994). Transport in smaller debris flow channels is not considered in most cases.

4.1.2 DRAINAGE INITIATION

Several existing landscape evolution models focus on the initiation of channel networks
and not the later stages of landscape evolution. In these models, transporting processes driven by
non-channelized water flow, such as slope wash, operate over the entire model domain. Ahnert
(1976) assessed drainage initiation by resolving the net effects of non-channelized transport
processes over the landscape. Willgoose et al. (1991a,b) included a channel initiation function,
which is nonlinearly dependent on slope and discharge, in order to determine if channelization
occurs. The model of Chase (1992) invokes rules for the transport of sediment by water flow
which allow the model to eventually form its own channels. The model of Rigon et al. (1994)
involves an exploration of the self-organized nature of channel networks by considering the
processes leading to channel initiation. Fluvial erosion occurs when shear stress exceeds some
threshold value.

Smith and Bretherton (1972) recognized the difference between drainage initiation and
subsequent landscape evolution and created a distinct model for each phenomenon. Several
landscape models also do not explicitly focus on the issue of drainage initiation (Tucker and
Slingerland, 1994; Kooi and Beaumont, 1994; Koons 1989; Rosenbloom and Anderson, 1994;
Anderson, 1994). The location of the drainage network is defined at the beginning of a model
run.

The different objectives of these two classes of models and the implications this has for
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model creation have not otherwise been carefully considered in the literature. Because of the

different aims and scales of these types of studies, process parameterization in each case should
distinctly reflect the requirements of the particular approach. The primary objective for drainage
initiation studies is to determine the factors influencing the creation of drainage networks and to
evaluate the resultant patterns. Because of the importance of processes such as rill formation at
the beginning phases of channel initiation, model scales have to be reasonably small in the early
stages of network development. Once the drainage network is established, the scale of study
should become significantly larger as sediment transfers over significant distances are

considered.

4.1.3 LINEAR CHANNEL ELEMENTS IN A SPATIAL MODEL

In many models, hillslopes and streams are not treated as unique physical entities. despite
the specification of unique transport equations for each of these classes of process (Chase, 1992;
Howard, 1994; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994). Hillslope and channel
equations are applied across the entire model domain. The rationale behind this approach has
been based on the contrasting spatial scales of hillslopes and fluvial processes. Typically grid
elements in a model are significantly larger than lateral channel dimensions (channel width).
Therefore, when grid cells are large (in many cases >1 km) an assumption of models has been
that each cell contains channel elements in addition to the hillslope elements. The morphological
changes occurring in the channel are effectively “smeared” across the entire grid cell.

Chase (1992, p. 41) described his rationale for following this approach: “...in a model
intended to work at grid resolutions up to km, there is no point in attempting to distinguish
between hillslope and channel elements of the topography. Each grid cell represents topography

containing both. Therefore, no a priori distinctions are made between slope and channel, and the
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rules are uniform for all grid cells.” Kooi and Beaumont (1994, 1996) also justified their

decision to use this approach on the grounds that the large spatial scale and low grid resolution of
the study do not allow distinctions between hillslope and channels to be made.

The adoption of expedient approaches, such as the smearing of morphological changes
and the operation of all processes across every cell, are necessary because of the difficulties
encountered when incorporating the linear channel system into a numerical model structure based
on grid cells. These assumptions allow for simplicity in the model structure. The question
remains as to whether such approaches reasonably simulate the significant features of evolving
landscapes. The ability of such approaches to provide reasonable results depends on the intended
resolution of a study. However, because of the complexity of many landscape models,
computational expediency may often require a certain degree of generalization.

Other models distinctly define the location of channel cells in the model surface. Smith
and Bretherton (1972), in the second model presented in their paper, applied one set of equations
to hillslopes and treat the channel as a line of zero thickness that exists at the intersection of the
slopes. Koons (1989) defined the position of the main channel although he did not explicitly
calculate fluvial transport rates in his model. Instead, stream elevations are obtained by fitting a
logarithmic function between sea level and the dynamic elevation at the main divide. Willgoose
et al. (1991a,b) applied overland flow and hillslope processes across the entire grid. However,
fully-developed channelled flow occurs only in those grid cells defined as channel grid elements
according to a channel initiation function. Rosenbloom and Anderson (1994) and Anderson
(1994) set the initial location of the stream network, which consists of only lightly etched
channels, at the start of the model run. The channel network is assumed to remain in the same

planform position throughout the course of a model run.
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4.1.4 STREAM POWER TRANSPORT RELATIONS

When simulating fluvial transport in landscape evolution models, the chosen relation
should include variables that are resolved in the model. From this viewpoint, an attractive
formulation is a stream power relation as the principal variates of width, depth and slope are
resolvable at landscape scales. Derivations of this basic relation have been used in many
landscape evolution models.

Stream power per unit length of channel is defined (Bagnold, 1977, 1980, 1986) as:

R=p,08 (4.1)

where 2 is stream power per unit length, g, is density of water, Q is discharge and S is slope.
The right-hand side of the equation should also include the acceleration of gravity, but Bagnold
eliminated gravity from the definition of stream power in his analysis. Stream power per unit
width, @, is obtained by dividing 2 by channel width. Bagnold’s stream power definitions
specify stream power per unit length (and per unit width if @ is used). Because Bagnold's
research represents perhaps the most influential statement concerning stream power/sediment
transport relations his definitions of these terms are followed.

The most basic form of the sediment transport/stream power specification is related to
equation 4.1 such that (see equation 3.4, p. 37):

gxQ"S" (4.2)

where ¢ is sediment transport rate, and m and n are exponents that vary depending on the
particular formulation of the equation. Linear and nonlinear forms of the transport/stream power
relation have been implemented in landscape evolution models by manipulating the exponents m
and n. Area is often used as a surrogate for discharge because of the well-demonstrated relation
between contributing area and discharge:

Q=ad® (4.3)
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where A4 is contributing area and the exponent b is typically less than 1 due to storage of water

throughout the basin.

Kirkby (1971, 1976) adjusted equation 4.2 to simulate sediment transport rates for slope
wash and fluvial activity. The values of the exponents m and n vary depending on the particular
process being modelled. For sediment transport in fully developed channels m is assigned a
value between 2 and 3 and » is assigned a value of 3 (these values were derived from Leopold
and Maddock, 1953). The variable discharge is replaced with area draining to a point in order to
define the models in terms of morphological variables only.

Smith and Bretherton (1972), Kooi and Beaumont (1994) and Tucker and Slingerland
(1994) used the basic stream power relation of equation 4.2 (i.e., m and »n are both set equal to 1).
Howard (1994) introduced a more complex variation of the basic stream power equation.
Willgoose et al. (1991) inserted an additional term into the right-hand side of the basic equation
that adjusts the transport rate to reflect movement by either overland or channelized flow.

Sediment transport equations for channelled flow usually incorporate some threshold
condition before transport occurs (Gomez and Church, 1989). The incorporation of such a
threshold has not been generally adopted in most landscape models. However, in the drainage
initiation study of Rigon et al. (1994) the exceedance of a critical shear stress serves this purpose.
The channel initiation function in the model of Willgoose (1991) also serves this function. The
use of a threshold for transport is well established in gravels but has not been as closely adhered
to for sand rivers (e.g., Einstein, 1950). Practically, a threshold condition is one way to “adjust”
a model to account for the effects on sediment transport rates of surface properties such as grain
size and armouring.

The origin of the final form of the transport equation used in most landscape evolution

models, including the exponents and coefficients, has not been adequately discussed and no
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mention is made of a calibration procedure using field data. Furthermore, most of the models do

not explicitly address the distinct nature of channel processes in low-order mountain streams and
debris flow channels, which differ significantly from processes occurring in low-gradient
streams. These channels are often important mechanisms for the delivery of hillslope material 10
higher-order channels. Stream power relations have been shown in the literature to provide
reasonable estimates of transport rates for streams of relatively gentle gradient. However, the
ability of such equations to describe processes occurring in low-order channels has not been

evaluated.

4.1.5 NET CHANGE IN STORAGE

Once sediment transport rates are calculated, they are often inserted into continuity
equations within the model (Willgoose et al., 1991a,b; Kooi and Beaumont, 1994, Tucker and
Slingerland, 1994). The most basic form of a continuity equation defined for a channel reach is:

AStorage=q, ~q,, (4.4)

However, in more recent models, the channel exists within the hillslope grid cells. The
translation of calculated storage change into elevation changes is an important step in the
numerical coding that is considered explicitly only by Tucker and Slingerland (1994).

Channel elevations cannot be calculated independently of hillsiope elevations, as the
channel provides the base level for hillslope processes. Independent assignment of channel and
hillslope elevation could lead to the absurd situation of a river being perched above its
surrounding valley flat and/or hillslopes if channel aggradation exceeds the rate of aggradation of
the cell in which it resides. The approach that has been adopted by Tucker and Slingerland
(1994) is to obtain the change in elevation by dividing the change in storage by the grid cell

dimensions such that:
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Changes in channel storage are effectively spread out across the entire cell. When grid cells are
significantly greater in size than river and/or valley flat dimensions, this approach may
significantly reduce the apparent elevation changes. As such, it compromises an explicit
representation of channel morphology. The implications of this approach on landscape evolution

should be assessed.

4.1.6 SUMMARY CRITIQUE

Through a careful review of modelling strategies several key issues emerge regarding the
simulation of fluvial processes in landscape models:
(i) It is imperative that both hillslope and fluvial processes be integrated into comprehensive
models of landscape evolution which intend to include meaningful geomorphology. Interaction
between these classes of processes affects their respective rates of operation.
(i1) A clear distinction must be made between models investigating drainage initiation and those
emphasizing later stages of landscape evolution. In the former case, a criterion for channel
initiation must be incorporated into the model, whereas the latter requires careful consideration
of the long-term effects of prolonged aggradation or degradation episodes on landscape

evolution.

(iii) Careful consideration should be given to the selection of resolved variates in the sediment
transport equations. These variables drive the operation of processes and determine transport
rates.

(iv) Most of the equations used in previous models do not recognize the use of a threshold stream

power for transport, although this is the standard for gravel transport equations.
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(v) In most cases, there has been no solid justification given for the particular choice of the final

form of the fluvial transport equation used in the model. There is minimal discussion about the
criteria used in the selection of the coefficients and exponents in the equations. More generally.
the equations used to model fluvial transport must be subjected to much further testing in order
to assess their effectiveness in predicting transport rates. Critical evaluations of performance in
comparison to real data are necessary for the evaluation of the proposed relations.

(vi) Most of the models do not include sediment transport processes occurring in high-gradient
streams or debris flow channels. The high activity rates occurring in debris flow channels
provide an important mechanism for the delivery of sediment from hillslopes to the main stream
channel in many steepland environments.

(vii) Further research is required in order to determine the most effective methods for
incorporating both fluvial and hillslope processes into the grid frameworks used in standard
numerical models. The primary difficulty arises because of the fact that channel widths are
considerably smaller than the usual sizes of grid cells which are implemented in numerical

models.

4.2 THE CHANNEL NETWORK SUBMODEL

The actual channel network occupies only a small portion of basin area in comparison to
hillslopes. Nonetheless, valleys are the location which experience the greatest elevation change
during the early course of landscape evolution. This is because of high activity rates in channels.
Furthermore, the delivery of sediment to the valley flat represents a critical stage in the transport
of material through the basin. From this point, sediment has the potential to be transported very

efficiently to the basin outlet.

An objective of the present study is to develop a channel submodel that accounts for the
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significance of channel processes in the geomorphological development of landscapes. This

channe! submodel will be constructed so that typical patterns of sediment movement through the
channel system based on current configuration can be studied independently of evolving
hillslopes (although both hillslope and channel processes can be integrated in the complete
model).

The channel submodel will incorporate: (i) fluvial transport occurring in streams of
relatively low gradient; (ii) fluvial transport occurring in high-gradient mountain streams
(transport behaviour differs from streams in the first category due to the particular characteristics
of these channels); and (iii) debris flow transport. Each of these transporting regimes occurs in
small, steep drainage basins in coastal British Columbia, the “prototype” region for submodel
development and subsequent model runs. In addition to simulating patterns of sediment
redistribution along the channel network, an objective of the present study is to simulate the
aggradation and degradation in valleys which can, over the long-term, lead to the formation of
significant valley fill deposits, canyons and terraces. Such features are significant as they affect
hillslope base levels and regional gradients. In addition, these features document recent
sedimentary history. However, prior models have not explicitly considered the aggradation and
degradation of valleys.

Both bed load and suspended load are considered in the channel submodel. A generalized
bed load transport formula is adopted which requires the incorporation of several key parameters
such as channel dimensions and gradient. A generalized approach based on sediment yield
patterns is taken to estimate suspended load evacuation rates.

Before further discussing the equations used in the channel submodel, a distinction must
be made between sediment quantities that are measured in the field which are used in the

development of a transport equation for the model, and those that are important in terms of
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morphological change. Bed load and suspended load can be measured in the field. The erosion

and/or deposition of sediments which comprise the bed and lower banks of a river are
responsible for significant channel changes. Such material, herein referred to as bed material,
can be moved as bed load and/or suspended load. Transport rates obtained by direct
measurement at the bed involve only the fraction of bed material moving close to the channel
floor. Bed load transport formulae are calibrated using such measurements and therefore exclude
consideration of the finer portion of bed material. The bed load data sets compiled by Gomez
and Church (1988), which are used to develop the transport equation in this study, have Dsg
values ranging from 0.9 mm to 32 mm. Therefore, the equation can be considered applicable for
both gravel-bed (> 2 mm) and coarse-sand systems, although it does not cover the full range of
bed material grain sizes.

The erosion and deposition of material moved as bed load contributes most significantly
to morphological changes in gravel-bed rivers. The finer portion of bed material load consists of
material moved as bed load (coarse sands) and suspended load. Such material travels greater
distances than coarse bed load and is often deposited as interstitial fill in gravel-bed rivers, and
therefore does not significantly affect channel morphology in these circumstances.

Although data often indicate that suspended load accounts for a considerably greater
proportion of the total load, it is not necessarily always the most important from a channel-
forming perspective. Therefore, transport of both bed load and suspended load must be
considered when modelling sediment transport in gravel-bed rivers.

In sand-bed rivers, bed material can consist of the finer portion of bed load (coarse sands)
and suspended load. Both of these categories of material are also important in defining channel
morphology in this case.

Finer material which is not re-deposited in the channel, and therefore moves through the
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system very quickly, is referred to as wash material. Wash material can be important from a
channel-forming perspective for both sand and gravel rivers. This material usually comprises a
significant portion of material involved in bank erosion. [n addition, it can be deposited on the

floodplain.

4.3 BED LOAD TRANSPORT
4.3.1 BAGNOLD-TYPE RELATION

In order to simulate realistically the development of the fluvial system over large
temporal scales, it is essential to adopt relations that provide reasonable estimates of transport
rates. yet remain manageable from a computational perspective. There are a number of
physically-based equations available for the estimation of bed load transport rates. Most of these
equations incorporate a level of detail that is not resolvable at larger scales. Moreover. a
thorough investigation of the ability of such equations to simulate sediment transport rates over
significantly longer time scales than individual flood events has not been undertaken.

Gomez and Church (1989) evaluated a number of bed load transport relations over
individual flood events and found that the Bagnold formula performed well in comparison to
other formulae. The Bagnold stream power correlation is an appropriate formulation for
landscape evolution modelling as it incorporates parameters that are resolvable at the landscape
scale. It was decided to pursue the Bagnold form of the stream power relation, as opposed to the
more general form of equation 4.2, as the former has been much more widely tested than the
latter.

The Bagnold bed load formula was developed in a series of papers (Bagnold, 1977, 1980,
1986), undergoing significant modifications along the way. The final form of the Bagnold

equation is (Bagnold, 1980; Church and Gomez, 1989):
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wherein #, is specific bed load transport rate (dry weight), y is the specific gravity of fluid. 4 is
the specific gravity of sediment, @ is specific stream power, ay is critical specific stream power,
d is depth, D is characteristic particle size and the subscript ref refers to some reference value
obtained from a reliable data set (Bagnold used data from Williams, 1970). The term

7.!(y,—y)was introduced by Gomez and Church (1989) for the conversion of immersed bed

load weight to dry weight. The latter measure is the standard for most transport formulae. The
following variables also require definition:

w=p,dSu=p, 0S/w (o is density of fluid, § is slope, u is velocity, Q is discharge, w is
river width)
w, =5.75{0.04(r, —y)p.}¥ *(g/p.) *D® *log(12d/D) (g is the acceleration of gravity)

ibref = 0.1; (@ @)rey = 0.5; dres = 0.1; Dyer = 0.0011

For the purposes of the present study, the objective is to derive a simplified form of the
Bagnold relation that eliminates many of the details found in the constants of the original
equation, instead collapsing them into a scaling coefficient. Such a relation would, in essence,
represent a scale relation between bed load and discharge which can be applied to rivers of
various magnitudes. Width, depth and slope are all correlates of discharge and, therefore, form
the basis to expect such a scale relation. The equation also includes grain size, which is a key
factor in providing resistance to transport by the material. The general form of the relation is:

iy = f (discharge, slope, width, depth, grain size) 4.7

The notion that a Bagnold-type relation may be a scale relation of the system, that does

not necessarily reflect the fundamental physics of entrainment and transport, does not present a

concern for its use in landscape evolution models. The time scales of such models are
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sufficiently large that the details of small-scale physics are not resolvable. Therefore, it is

sufficient that the effect of the phenomenon be appropriately preserved.

A seemingly remarkable graph, which suggests the strength of the Bagnold bed load
correlation, is presented in Bagnold (1986) (modified here as figure 4.1). In this graph, excess
stream power (w-ay) is plotted against ip*, which is the bed load transport rate adjusted to a

common flow depth and grain size according to equation 4.6:

d 2/3 D 1712
ref ref

The data collapse onto a straight line, which is the expected result if relations amongst these
variables hold. Bagnold (1986) reassures us that : “In compiling figure 1 there has been no
discarding of awkward evidence, and all the data for it were published before the idea of a
conversion factor appeared in Bagnold (1980)”.

Based on the apparent strength of the Bagnold bed load correlation, an investigation of its
development was undertaken. This investigation and the subsequent re-analysis of the formula
are given in Appendix II. The re-analysis of the formula is based on an extensive data
compilation consisting of transport data for flumes and rivers covering a range of discharges
between orders of magnitude 10° m>/s and 10° m%s. The final form of the relation chosen for
use in the present model is:

i, =0.005(w -, ) *d* D (4.9)
The dimensions of this equation are not balanced, making this a scale correlation, rather than a

physically meaningful relation.

4.3.2 VARIABLES REQUIRED IN THE BAGNOLD RELATION

The Bagnold-type relation chosen for the present channel submodel is such that
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Data sets (see Bagnoid, 1986 for details):
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# Jordan River, Israel
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s Flume (reference)
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10 t } —+— + +— i
10° 107 10° 10°

Excess stream power {kg/m s)

Figure 4.1 The Bagnold relation. Modified from Bagnold (1986).
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discharge, slope, width, depth and grain size must be defined for the calculation of sediment

transport. The determination of these variables in the model is discussed in the following
sections. Their definition in a numerical model requires either: (i) appropriate equations for their
calculation. for which all terms in the equation can be resolved or (ii) some justification for the
assumption that a particular variable can be treated as an independent variable.

Discharge and slope calculations are based on a combination of topographic configuration
and suitable equations in the channel submodel. Grain size is determined on the basis of a
simple relation. These three variables together determine the channel pattern type for a particular
set of conditions (i.e., single-thread vs. braided). Channel pattern type is required for the
selection of appropriate hydraulic geometry equations for the calculation of width and depth.

Once all of these variables are defined, the bed load transport rate can be calculated.

4.3.2.1 DISCHARGE

Discharge values are required for the calculation of stream power, channel pattern, depth
and width along the stream channel, making it a critical variable in the channel submodel. Some
hydrologically based reference discharge is needed for calculations of discharge values along
regional channel networks. It is expected that the mean annual flood should transport significant
volumes of sediment. As channels decrease in size the most significant flows become rarer, and
comparably more powerful. At the limit, it is about the order-of-magnitude 100 year flood in
debris flow channels. For simplicity the 2-year flood is chosen as the reference discharge for the
present study. Further elaborations of this basic approach should include the option of varying
the return flows used in the model over time and space.

In the absence of a model to simulate the hydrology of drainage basins, a

discharge/contributing area relation may provide an adequate estimate of discharge for landscape
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evolution models. Contributing area can be resolved in the model based on topographic

configuration and an assumption that drainage occurs in the direction of steepest descent. The

standard form of the scale relation between discharge and contributing drainage area is:
Q,, =ad’ (4.10)

where QO is some reference discharge and A4 is contributing area. The exponent b has a value
less than | in most cases. This suggests that during transmission of the reference flow to
downstream portions of the basin, some amount goes into storage along the route or runoff
production is not uniformly intense. The coefficient, a, reflects the hydroclimatological and
geological conditions found in the particular study region.

An analysis of regional variation in the discharge/area relation across British Columbia
was undertaken by Church (1997). Discharge data were analyzed for a period of approximately
constant climatic conditions from 1965 to 1984. The relation between mean annual flood and
drainage area for British Columbia was found to be:

Oy = kA" (4.11)

where Onaris the mean annual flood and 4, which is the unit area runoff, varies with climate and
geology across the province. Other studies have found that the value of the exponent is
somewhat higher, with values ranging from 0.75 to 0.80 (Dooge, 1986). The value may be
somewhat lower for British Columbia because of the steep landscapes for which the greatest
runoff generation occurs in mountain headwaters. An exponent of 0.70 is chosen for the present
model.

Church (1997) found that coastal regions of British Columbia, which experience higher
rainfall rates, show considerably higher values of 4 than the interior regions of the province. The
analysis shows that the coefficient k varies by 2 orders of magnitude (107-10") with a median

value of about 1. The chosen k value for humid climates should be at the upper end of this range.
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For particularly arid regions the designated k values should be lower than the values found in

Church’s analysis.

4.3.2.2 RIVER GRADIENT

Gradient is calculated on the basis of grid elevations in the model. The locations of
channel points do not necessarily coincide with grid points defined by the basic grid network.
Therefore, each channel point is assigned the elevation of the nearest model grid point. A best-fit
exponential curve is fit to assigned channel elevations. This approach ensures a smooth transition
from lower to higher gradients. Unrealistically abrupt changes in gradient can adversely affect

bed load transport rates calculated using the Bagnold equation.

4.3.2.3 CHANNEL PATTERN

For a given discharge, a braided river has a wider and shallower channel than a single-
thread channel. Therefore, the relations between discharge and width/depth vary according to
channel pattern. [n order to select appropriate hydraulic geometry equations for the model. it is
necessary to first define the channel pattern. The variation is expressed in distinct coefficients in
the empirical equations of hydraulic geometry (Leopold and Maddock, 1953) (see section 4.3.2.4
for further details). There is a continuum of channel patterns found in nature, of which multiple-
channel and single-thread are just two possible end-members. However, differences among
hydraulic geometry relations for different channel types has not been studied systematically.
Therefore, the two general categories, single-thread and multiple-channel, will be retained in the
present study. Rivers of both patterns can be composed of either sand or gravel. It is expected
that the criterion will be different for sand and gravel rivers. A braided channel (multiple thread)

is herein defined (Church, 1996, pers. comm.) as a “channel which, at low and moderate flow,
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divides about channel bars which become drowned at high flow. The bars are unvegetated and

more or less transient, so that alignments of individual channels shift frequently and rapidly.”
It has been found in previous studies that a discharge/slope criterion can be used to
distinguish between channel pattern types. Leopold and Wolman (1957) found a transition from

meandering to braided channels based on the equation:
§=001250,"" (4.12)

where Qs is bankfull discharge. Discharge and slope, when combined, are two of the important
terms in the calculation of stream power. Therefore, this equation suggests that at some
threshold stream power, a river undergoes a transition from a single-thread to a braided pattern.

In this analysis, data compiled by Church (1996, pers. comm.) and the meandering river
data of Neill (1973) are analyzed in order to define a channel pattern criterion. The reference
discharges accepted in the study of Church (1996, pers. comm.) were (i) mean annual flood; (ii)
bankfull discharge; and (iii) the highest observed flow in relatively short records (used in only a
few cases). Grain size data are based on Dsq or Dy sizes of surface samples.

The criteria for both sand and gravel rivers show a fairly sharp transition between
regimes. A common slope of -0.5 is assigned for both types of river. A slope of -0.5 is not
optimum for either data set. However, considering the restricted data base, it is sufficiently close
in both cases and is therefore chosen as the common exponent. The criteria are defined by the
equations (figure 4.2):

Sand rivers: § =0.010™° =0.1Q7"° (4.13a)
Gravelrivers: S =0.0707%° =4.9Q"" (4.13b)

In this case, the relation between slope and stream power is derived from the relation:

S Q! (4.13¢)
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Figure 4.2 (a) Channel pattern criterion for sand rivers.
Gradient is represented as slope tangent.
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4.3.2.4 HYDRAULIC GEOMETRY RELATIONS (WIDTH/DEPTH)

Meandering/Wandering Rivers

Hydraulic geometry relations are an empirical set of equations that link changes in the
river width, depth and velocity with changes in some reference discharge (Leopold and Maddock.
1953). Equations can be established either for changes that occur at-a-station or downstream. [t

is the latter case which is of interest in the present study. The relations have the form:

w=aQ’ (4.14a)
d=cO’ (4.14b)
v=kO" (4.14c¢)

Continuity necessitates that the product of the coefficients must equal 1, and the sum of the
exponents must also equal 1. These equations imply that the river can adjust and scale itself to
the discharge regime. Therefore, these equations ideally should be applied only to alluvial rivers,
and not bedrock rivers. A distinct set of relations should be expected only in situations where
hydrology and alluvial sediment characteristics are the major variables controlling the hydraulic
geometry and other factors such as geology and physiography are kept approximately constant
(Church, 1980). Within a setting, only discharge and grain size change.

Church (1980) compiled discharge, width and depth data for rivers, canals and controlled
experiments for single-thread channels. A re-analysis of this data is undertaken for the present
study. Church (1980) selected data points only when flows were sufficiently regular or flow
patterns were stable. This requirement is necessary for a chosen reference discharge to provide
an adequate flow index. For river data, reported reference discharges are either the 2-year flood
or bankfull flood. Church (1980) recognized that width and depth can be measured with greater
precision than discharge. This violates the critical assumption in regression analysis whereby all

error is attributed to the dependent variables. Therefore, the approach adopted by Church (1980)
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1s followed in which the functional analysis is performed. The error is instead allocated to the

variable discharge in this case.

For data sets in which the Froude number or other potentially significant controls on
channel development changed, regression analyses were performed for several data subsets. This
step ensures the elimination of anomalous data from the analysis. In addition, a correction factor
is calculated to account for the bias introduced in the double log transformations. Plots of width
and depth versus discharge for all data points are presented in figure 4.3. The results of the
regression analysis for each data set show fairly strong relations with R? values ranging from 0.67
to 0.995 (table 4.1).

The mean values of the width and depth coefficients and exponents for both the sand and gravel
rivers were calculated (table 4.2). An independent t-test was performed to see if there are
significant differences between the width and depth exponents and coefficients for sand and
gravel channels. There is no significant difference at the 0.05 significance level between the
width and depth exponents for the two types of channels. While there is no significant difference
between the depth coefficients, there is a significant difference found for the width coefficients.
For the final set of relations it was decided to adopt the mean values of width/depth coefficients

and exponents (refer back to table 4.2):

Sand rivers:  widrth = 7.40Q°* (4.15a)
depth = 0.34Q"* (4.15b)
Gravel rivers: width =3.10% (4.15¢)
depth = 0.220°% (4.15d)

The data of Bray (1972, 1979) are based on Alberta rivers, mostly on the east slope of the
Rockies, which tend to show higher than average widths for a given discharge in comparison to
other rivers. When applying the channel submodel to British Columbia basins, it is most

appropriate to use the hydraulic geometry relations of Bray.



Figure 4.3 (a) Relation between discharge and width.
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Table 4.1 Regression analysis for hydraulic geometry relations.

Study Relation R? Comments
Stebbings w=11.7Q"* (0995 |e Flume/sand
(1963) d=0.124 Q** | 0.98

Ackers w=608Q"" (098 |e flume/sand
(1964) d=0.435Q°* |0.94

Wolman and [ w=8.10Q"" [0.83 o flume/sand
Brush d=0.353Q" |0.67

(1961)

Simons/Bender | w=389Q"* |095 |e canal/sand
data in Simons|d=0.448 Q% |0.96

and Albertson

(1963)

Lane and Carlson | w=322Q"" [0.96 |e canal/gravel
(1953) d=0283Q"* |[0.93

Bray w=429Q"" |0.97 e river/gravel
(1972;1979) d=0.191Q%*® |0.92

Charlton et al. w=250Q"" |087 |e river/gravel
(1978) d=0.197 QY [ 0.81

Emmett w=260Q"° |089 |e river/gravel
(1975) d=0.201 Q% |[0.81

Table 4.2 Mean values of coefficients and exponents for sand and gravel rivers.

94

Width Exponent | Depth Exponent | Width Coefficient | Depth Coefficient
Sand 0.52 0.42 7.4 34
Gravel | 0.53 0.40 3.1 22
-value | 0.31 0.55 0.046 0.22

n = 4 for each category
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Braided Rivers

Drage and Carlson (1977) assessed hydraulic geometry relations for major sub-branches

of braided streams in the Brooks Range in Alaska and the Yukon Territory:

w=4.660°" (4.16a)

d =0.130°* (4.16b)

The different coefficients for braided rivers than for gravel rivers emphasizes that the sub-
channels of these rivers are characteristically wider and shallower (Drage and Carlson. 1977).
However, the width and depth can be calculated only when the discharge of an individual
anabranch is known. It is first necessary to appropriately divide the known discharges among the
appropriate number of anabranches for an individual river.

Howard et al. (1970) studied a range of rivers in the United States and reported a relation

between the number of sub-channels, discharge and gradient of the form:

E=0678"0,.,"" (4.17)

where E is the average number of sub-channels and Qpgs is the mean annual flood in m>/s (it is
assumed in the present model that the mean annual flood is approximately equivalent to the 2-
year flood used in the calculation of other variables). It is also assumed in the present model that
a fractional value, for example 2.4, implies that the number of sub-channels varies between 2 and
3. The discharge is then divided by the lower number of sub-channels (in this case 2). This
discharge value is inserted into equations 4.16ab to obtain values of width and depth. The value
for width is multiplied by the number of sub-channels to obtain the total active width. Following
these calculations, the discharge is then divided by the greater number of sub-channels (in our
example, the value is 3) and a similar procedure is followed to obtain width and depth.

In order to calculate the proportion of reach length represented by the lower number of



96
sub-channels, the following equation is used:

Proportion . .= 1 —(numbermbd,mt,, - integer(number,uwm,,dmw,: )) (4.18)

The percentage of reach length represented by the higher number of sub-channels is determined
by:
Proportion,,,, ... = (1 — Proportion,,,,, ... ) (4.19)

These weights are then used to calculated the weighted averages of width and depth for the lower

and upper number of sub-channels, which represent the final values used in the model.

4.3.2.5 GRAIN SIZE

Grain size can affect sediment transport due to its role in determining flow properties near
the bed and by providing grain inertia. It has generally been supposed that there is a decrease in
grain size along rivers in the downstream direction. Fining occurs in response to selective
transport and/or abrasion of material. The change in grain size along gravel-bed rivers has often
been found to fit an exponential relation (Church and Kellerhals, 1978):

D = D, exp(—a,x) (4.20)
where D is grain size, Dy is a characteristic particle size at a downstream distance x=0 and ap is
the diminution coefficient.

In smaller channels which are strongly coupled with hillslopes, colluvial inputs and the
existence of obstructions such as large organic debris can interrupt the pattern of systematic
downstream fining of channel-bed gravels (Rice and Church, 1995). Rice and Church (1995)
found that, due to random occurrence of log jams, grain sizes varied significantly and
unpredictably over relatively short distances.

Rice (1996) looked at overall fining over distances of about 100 km. He found negligible

fining over a distance of about 100 km due to tributary resetting of grain size at this scale of
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study. Rice (1996) found that the complexity of grain size structure could be explained by: (i)

tributary inputs (ii) non-alluvial sediment inputs and (iii) the legacy of Pleistocene glaciation.
However, within links delimited by significant lateral sediment sources, a downstream fining
structure was detected. The importance of tributary inputs in resetting the grain size distribution
along rivers is also recognized by Church and Kellerhals (1978).

Research at larger scales suggests that geology may significantly affect the breakdown of
particles in the river. For example, Shaw and Kellerhals (1982) studied reaches of order 10° km
in Alberta. The rivers studied by Shaw and Kellerhals (1982) display the following overall
characteristics. Grain size changes in mountain reaches are highly variable with some suggestion
of downstream coarsening. The central reaches show exponentially decreasing grain sizes and.
finally, lower reaches are predominantly sand bedded. In addition, they found that quartzites
break down into larger particles than limestones and, hence, larger material was found in river
reaches with a high quartzite content.

The study of downstream changes in particle size in natural rivers, which are subject to
sediment inputs from various sources, is in its relatively early stages. Furthermore, such research
has been conducted in order to determine spatial patterns at a particular point in time. At present
there is no basis on which to model numerically the changes in sediment size over time along the
river system. Therefore, one option for defining grain sizes in the model is to assume that grain
size is an independent variable in the model that remains approximately constant over time at a
location. When there are no real grain size values available for guidance in the setting of model
grain size values, some mild downstream fining following a negative exponential model is an
option. Grain size can be increased at locations where a tributary enters the channel.
Consideration should also be given to rock type within the basin when defining grain sizes.

Alternatively, sediment transport theory implies that there is some competence limit,
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reflected in the largest grain size able to be moved, in a channel which is dependent on stream
power. Therefore, grain size may be computable from relations amongst grain size, discharge.
gradients and channel width suggested by several researchers (Griffiths, 1981; Parker, 1979;

Henderson, 1963; Kellerhals, 1967). The relation, in each case, has the form:

B CQ2/3s5l6

273
w

D (4.21)

where c is a coefficient. The ability of this equation to predict channel gradient is tested using
the data set of Gomez and Church (1988). A coefficient of 1.26 was obtained by optimizing the
value of ¢ such that the mean of the calculated/observed values is equal to unity (figure 4.4). The
relation between calculated and observed grain sizes shows that although the bias is small, the
precision is very poor. In this case, the low precision might reasonably reflect stochastic effects

which influence grain size.

4.4 BED LOAD TRANSPORT IN STEEP FLUVIAL REACHES

The data used in the derivation of the bed load equation in this study have maximum
slopes of about 0.01 (approximately 0.6°). Therefore, the bed load formula can only be applied
confidently to channels with relatively low gradients. As gradients in natural stream channels
increase above about 1° or 2°, channel characteristics begin to change. High-gradient streams are
made up of step-pool sequences, which are alternating reaches of relatively steep and gentle
gradients (Wohl et al., 1997). Steps, which represent sudden drops in elevation, are composed of
clasts which form imbricate clusters or line, or they may form as a result of the accumulation of
woody debris in the channel. Steps have a high resistance to transport due to these structural
constraints and are generally immobile. Pool reaches in these channels have much lower

gradients and no structural constraints and, therefore, are more apt to be locations of sediment



Figure 4.4 Observed versus calculated grain size. Data shown are individual
points for data sets in Gomez and Church (1988). Data appear grouped as grain
size for each data set is constant.
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transport.

Sediment transport processes in high-gradient streams are not understood. To date, there
has been only minimal research investigating these phenomena. Wohl et al. (1997) explored
sediment transport in step-pool reaches using a revised version of the Meyer-Peter and Muller
equation for bed load revised for high-gradient streams (Smart, 1984). However, this equation
was not designed for the complicated hydraulics of step-pool channels and hence results should
be considered exploratory in nature. Transport rates in step reaches averaged about 55% of rates
calculated for pools.

High-gradient streams in coastal British Columbia drainage basins, the location of study
basins modelled in this thesis, are dominated by log jams. These log jams create a series of
sediment wedges behind them which, like the pool locations in step-pool streams, have lower
than average channel gradients. In this initial model, it is assumed that fluvial transport in steep
reaches is dominated by sediment wedges. Therefore, the effective transport gradients are
reduced to values below average reach gradients. Given the exploratory nature of this model
component and the lack of previous research, this simple assumption seems reasonable as a first
approximation.

Appropriate adjustments must be made in the model to account for this transport
behaviour. In the present study, it is assumed that bed load transport operates normally when
gradients are below 1°; that is, the effective transport slope is equal to the average slope. Above
this gradient, high-gradient channel characteristics are assumed to emerge. This criterion is
supported by a study of bar development in gravel rivers by Church and Jones (1982), in which
they estimated the range of gradients above which bars do not develop under ordinary

circumstances. The value at the lower end of this range was about 1°. Wedge features in coastal

British Columbia develop in streams with average gradients as low as 1°. Above this criterion it
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1s assumed that sediment wedge gradients represent the hydraulically important channel gradient

for sediment transport.

Hogan (1997, pers. comm.) measured average channel gradients and associated gradients
of sediment wedges upstream of log jams in several basins in the Queen Charlotte Islands,
British Columbia (figure 4.5). A nonlinear functional model was fit to the data and the resulting
equation used in the model is:

Gradient,,,, =214 Average gradient'** (4.22)

wedge
with an R? value of 0.86 and the standard error of the estimate is about 0.16 log units. The latter
results indicates that in unlogged units results can be expected to be between 0.7 and 1.45 times
the estimate of wedge gradient. The wedge is steepening faster than the average gradient.
However, the wedge gradient equals the average gradient when the latter reaches a value of about
11°. This value is greater than the cutoff for fluvial transport, hence this does not present a
difficulty in the channel submodel. This equation is used to calculate the effective transport
gradient in high-gradient reaches.

[n addition, the hydraulic geometry of high-gradient streams is expected to change from
that of lower-gradient rivers. Day (1969) studied the hydraulic geometry of steep channels in the
Coast Mountains and found a width relation of the form:

w=0.950°7 (4.23)
The equation given by Day to calculate cross-sectional area is re-arranged in order to obtain an
equation for depth:
d=mQ" (4.24)

Day then provides relations for the calculation of m and »:
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Figure 4.5 Wedge vs. channel gradient. Gradient is represented as slope tangent.
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m = 0.94w*" (4.25a)

n =0.3uw"" (4.25b)

Depth, in this case, is a conceptual depth as real depth will vary dramatically from pool to step.

4.5 SUSPENDED LOAD

Suspended load often comprises between 90% and 97% of total annual load (Schumm.
1977). There is little basis on which to derive a physically-based equation for suspended load
transport as suspended sediment measurements include wash sediment, which is supply
determined. Hence, a more empirical approach based on regional sediment yield data is adopted
(Slaymaker, 1987; Church et al., 1989; Church and Slaymaker, 1991). The sediment yield study
of Church et al. (1989) for drainage basins in British Columbia was examined. They assessed
changes in suspended load with increasing contributing drainage area. Suspended load data were
compiled for 63 stations within the period 1966-1985. It was found that there is an increase in
specific sediment yield until a drainage area of 30 000 km?. Thereafter, specific sediment yield
decreases. This finding contrasts with the conventional model in which sediment yield decreases
downstream due to deposition. Church et al. (1989) suggest that the downstream increase in
sediment yield is due to the erosion of Quaternary sediments along stream banks and valley sides.
The main trend line (until 30 000 km?) has the form:

Specific Sediment Yield = a4 °* (4.26)

wherein specific sediment yield has the units Mg/km*day. The value of the coefficient is 0.003
when only undisturbed basins are considered. Once drainage area exceeds 30 000 km? the main
trend for undisturbed basins can be approximated by the equation:

Specific Sediment Yield = aA™*¢ (4.27)
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where a is equal to about 700.

The sediment yield pattern is for naturally disturbed basins in British Columbia and
provides a way to consider regional disturbance in the channel submodel. Specific sediment
yield is calculated at points along the channel length. The specific sediment yield is then
multiplied by the contributing drainage area to get the total sediment yield transported past a
certain river point. Data are then converted into annual volumetric transport rates. A bulk
density of 1800 kg/m? is assumed.

The difference in suspended sediment transport rates between successive points defines
the net change in suspended load for a reach. Based on this equation, there is expected to be net
eroston of material moved as suspended load along the river up to a contributing drainage area of

30 000 km?>.

4.6 BEDROCK EROSION

The importance of bedrock erosion lies in its ability to carve the bedrock valley thereby
altering the underlying configuration of the landscape upon which weathering and redistribution
of sediments occur. Tucker and Slingerland (1994), in their landscape evolution model.
calculated the rate of lowering by bedrock erosion for a grid cell using a stream power/erosion

relation:

EBR=(k,/4x)QS (4.28)

where k; is the proportionality constant for bedrock channel erosion (L-1) (k, values range from
107 to 10* m™ in their initial model runs) and A x is the space step. Therefore, the lowering of a
cell is proportional to stream power scaled by the grid cell size.

Rosenbloom and Anderson (1994) calculate bedrock incision using the equation:
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(4.29)

h__y40h, [T
ot Ox ox-°

where x is upstream distance, y is a constant describing incision efficiency (L'T") and K. is a
diffusion coefficient. In this case, bedrock erosion is assumed to be proportional to stream
power; in addition. a diffusion component is incorporated into the equation. Area is held
constant in the application of this equation to the model; the effects of changing area contributing
to discharge are assumed to be minimal. The values of & and X, are determined from modelling
of the stream profiles in the marine terraced landscape in Santa Cruz, California and are assumed
to be spatially and temporally constant. The model was found to be insensitive to channel
diffusivities in the order 10-500 m’kyr”'. The incision efficiency constant was found to be about
5t 7x 10-" m'kyr".

Anderson (1994) calculated bedrock incision using a basic stream power/erosion relation:

on =—cARS (4.30)
ot

where ¢ is an empirically determined constant that reflects the proportion of stream power
expended in channel incision and R is the average precipitation rate in the vicinity. The equation
can be adjusted to account for debris flow activity in the upper channel network by making the
change in elevation dependent on s? ,

Seidl et al. (1994) proposed that bedrock erosion is proportional to stream power.
Assuming that discharge of peak runoff events scales directly with contributing drainage area
then the relation, which is related to the basic stream power/transport given in equation 4.2, is:

_9 s 31)
ot

Seidl et al. (1994) assessed bedrock erosion rates for Hawaiian channels. They assumed

that the exponents m and n were both equal to 1. Linear regression analysis was performed to
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determine an equation for bedrock erosion:

-—%:6.1x10"6+6.3x10’”AS (4.32)
where the erosion rate is given in m/yr and drainage area in m’.
Seidl et al. (1994) re-analyzed the bedrock erosion data of Hack (1965) collected in

Michigan and found the relation:

-%:9.8“0" +3.5x107° 4S8 4.33)

It was concluded that the lower coefficients of the Hawaiian channels indicate that the
rivers are downcuftting into material of greater resistance (basalt) than the Michigan rivers
(glacial till and bedrock; sandstone and shale). Therefore, in the present landscape evoiution
model the appropriate equation is selected on the basis of the overall resistance of bedrock in the
chosen study area (equation 4.32 for Group A drainage basins and equation 4.33 for Group B

drainage basins).

4.7 DEBRIS FLOW ACTIVITY

Debris flow activity is important in the coastal regions of British Columbia as it provides
an efficient mechanism whereby material is transferred from hillslopes to the river system.
Material that collects in gullies is periodically flushed into channel zones of lower gradient.
Moreover, gullies are an important roughness element in such landscapes. They provide strong
downslope, topographically linear perturbations in the landscape.

Rood (1984, 1990) compiled debris flow events for his study basins in the Queen
Charlotte Islands, British Columbia. The present study is concerned with rates of natural
landscape evolution and, therefore, debris flow rates were assessed for the 8 basins in which no

logging occurred. The number of debris flows in each basin was recorded and divided by the
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basin area in order to obtain the number of flows per km” over the 40 year period that the
inventory covers (table 4.3). These values are then divided by this 40 year interval in order to
determine the annual rate of debris flow occurrence. The average of these values, 0.01
flows/km’yr, is assumed to be representative of natural debris flow rates in the Queen Charlotte
Islands. The number of debris flows in a particular drainage basin is obtained by multiplying this
value by both basin area and the number of years in a model time step. These values are
probably in the upper region of values expected in coastal regions of British Columbia because of
the very high rainfall rates. A range of values from 0.001 flows/km’yr to 0.01 flows/km?yr is
probably appropriate for coastal British Columbia

Based on initiation angles reported in this study, a value of 25° is selected as the
threshold channel gradient for debris flow initiation (figure 4.6). The initiation of debris flows in
the model is treated as a random occurrence, as the factors that make one site more prone to
failure than another site are not resolvable at the scales of this study. Moreover, over the
significant time periods considered in the present model (i.e., 10°-10° years), most gullies above
this threshold will experience debris flow activity, thereby making the actual ordering of trigger
initiation sites insignificant.

Debris flows are assumed to evacuate material across their width and to a depth of about
0.1-1.0 m (typical of debris flows in the Queen Charlotte Islands). Rood assigned a scour depth
of 0.5 m in the initiation zone for most of the debris flows in his analysis. Scour depths for
debris flows are slightly greater in the transport zone than in the initiation zone (figure 4.7). In
order to simulate the variability in scour depths, a probability function is used to select a scour
depth for each debris flow event. The probability of a particular scour depth can be

approximated from the function:



Table 4.3 Debris flow activity in unlogged basins in the Queen Charlotte Islands, B.C.

Basin Area (km?) #flows / 40yr | #flows/km’40y | #flows/km’yr
r
Hangover 19.4 3 0.15 0.0038
Government 15.2 6 0.39 0.0098
Jason 14.4 10 0.69 0.017
Inskip 13.4 3 0.22 0.0055
Windy Bay 18.3 1 0.055 0.0014
Marshall Head | 8.6 6 0.70 0.018
Matheson 10.0 0 0 0
Head
Burnaby 11.0 3 0.27 0.0068
Island
average: 0.0078
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Figure 4.6 Initiation angle for debris flows in unlogged drainage basins, Queen
Charlotte Istands, British Columbia. Data are from Rood (pers. comm.).
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Figure 4.7 Depth of scour in the transport zone for debris flows in unlogged drainage

basins, Queen Charlotte Islands, British Columbia. Data are from Rood (pers. comm.).
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- 0.1/-0.05 (4.34)
sumof depths

where P, is the probability of occurrence for the i scour category. There are assumed to be 8
scour categories in this case. The scour categories are numbered from 3 to 10 in order to
represent scour depths ranging from 0.25 to 0.95 in the numerator of equation 4.34. The sum of

the scour depths is obtained from the equation:

10
sumof depths =) (0.1i - 0.05) (4.35)

=

It is assumed that gully width increases as contributing drainage area increases, although
no specific study of this relation has been undertaken for debris flow channels. Therefore. the
width relation defined by Day (1969) for high-gradient channels is applied to debris flow
channels in the present model.

Once a debris flow is initiated material continues to be entrained until it reaches a zone
where the slope falls below 8° (typical of coastal regions of British Columbia). The total volume
of the debris flow event is calculated by multiplying scour depth by gully width along the length
of the entrainment zone (defined as the distance from the initiation point to the start of the

deposition zone):

J
volume = Z( scour depth, x width, ) (4.36)

=
where j is the total number of reaches which are subject to debris flow erosion. The material is
assumed to deposit over a distance that is related to the magnitude of the event. Typical lengths
of deposition range from about 0.1 to 1 km (Church, 1997, pers. comm.). Unfortunately, Rood
did not analyze deposition lengths of debris flows in his study. Based on the magnitudes of the

debris flows in Rood’s study, a relation is suggested which may provide reasonable estimates of
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deposition length:

deposition length = debris flow volume/10 (4.37)
The material begins to deposit downstream of the point at which the gradient is lower than the
debris flow stopping angle. The volume of deposition is calculated for each successive reach in a
downstream direction from the stopping point. The deposition volumes are calculated according
to the following equation until such a point that the cumulative distance between the stopping
point and the lowermost reach boundary exceeds the deposition length:

reach length
deposition length

volume deposited in reach = * debris flow volume (4.38)

At this point the remaining volume is deposited in the lowermost reach such that the total

deposition length equals the value calculated in equation 4.37.

4.8 SEDIMENT BUDGET FRAMEWORK

The channel system is divided according to a gradient criterion based on the predominant
channel process in operation. Channel points having slopes greater than 8° are defined as debris
flow channels and points below this criterion are defined as stream channels. When a reach is
defined by two stream points in the model, it is assumed to be acted on by fluvial processes only,
except in the event that a debris flow is deposited in this reach. Likewise, when a reach is
defined by two channel points with gradients above the threshold, this reach is subject to debris
flow activity.

An appropriate framework for the channel system submodel is a sediment budget
approach. The sediment budget for the case of fluviai transport processes is defined by the
equation (figure 4.8):

bed load,,-bed load,+susp load,-susp load gy +tributaryinpu-debris flow,, = A storage  (4.39)



Figure 4.8 Sediment budget for a fluvial channel reach
added to the change in storage.
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which is evaluated for each reach along the length of the river. The Bagnold equation provides
the fluvial transport rates for incorporation into this equation. Any sediment transport that enters
the river channel from its tributary must be treated as an input to the reach at that location.

The mass transport rate per unit width is obtained from the bed load equation. Therefore, in
order to obtain the total mass transported at a location this value must be multiplied by channel
width. In addition, this rate is calculated per second and therefore must be integrated over the
total length of time the river spends in flood (in our case the mean annual flood was the chosen
reference discharge) per model time step. The stream channel length between each pair of river
points represents a channel reach. The calculated transport rates at either end of a reach represent
the input and output transport values for incorporation into the sediment budget. The net change
is the mass change per reach. In order to obtain the net volume change per reach, the mass value
is divided by sediment bulk density. The sediment bulk density of 1800 kg/m’ used in this study
assumes a porosity of about 33% (the average of typical porosity values ranging from 25% to
40%).

The incorporation of debris flow activity into the model framework differs somewhat
from the approach for fluvial transport, as the actual transport rates are not calculated. Instead.
the actual volumes of material eroded and deposited in a reach are known. Therefore, the
changes in volume for a reach are immediately known; the intermediate step of obtaining this

value by the difference in transport into and out of the reach is not necessary.
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CHAPTER 5: THE VALLEY FLAT

5.1 INTRODUCTION

The valley flat represents the interface between the hillslope and channel submodels. The
fluvial system, which is located in this zone, is one of the most active locations in the landscape.
The valley flat undergoes significant change during the course of landscape evolution.
Moreover, valley fill and subsequent incision through this fill provide sedimentary records and
evidence of erosional activity which contain critical information for the interpretation of
landscape history.

The valley flat is an important location in terms of sediment routing for several reasons:
(1) The characteristics of the valley flat (e.g., valley width, relative position of the channel in the
valley flat) determine the degree of interaction between hillslopes and channels. When sediment
delivered from hillslopes to the valley flat enters the active channel relatively quickly, there is a .
high degree of coupling between these systems. A lower degree of coupling results in longer-
term storage of sediment before it is incorporated into the channel system. In the latter case. a
wider valley flat will result in deposition of material along the foot of the slope. This material
goes into storage, perhaps for long time periods. Stored material is eventually entrained by the
river as the channel migrates across the valley flat and/or incises through the valley fill.
(it) Long-term episodes of fluvial aggradation and degradation involve significant changes in the
elevation of the valley flat. As the elevation of the valley flat changes, so too does the base level
for hillslope processes. In addition, the local relative relief and hence local gradients, are
affected by these elevation changes. These factors are important in determining rates of hillslope

erosion.
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(iii) The fluvial system, which is located within the valley flat, contains short-term (active

channel zone), long-term (floodplain) and very long-term (alluvial fans, terraces) sediment stores.
The patterns of storage and re-entrainment of material in these two locations determines the
transport rates of sediment through the fluvial system.

The purpose of this chapter is to define “typical” patterns for the long-term erosion and
deposition of material in the valley. These aggradational and degradational behaviours must then
be translated into appropriately generalized rules for implementation in the landscape model.
Appropriate simulation of these processes over long time scales allows relative increases or
decreases in the width of the valley flat to be estimated. In addition, reasonable approximations
of the elevation along the valley floor are important as they determine hillslope gradients and
effectively increase or decrease the length of the hillslope from which material may be eroded.

Few field studies have examined the actual processes and patterns of change that occur in
the valley flat. This represents a significant shortcoming in geomorphological research as a
greater understanding of this critical interface is required in order to improve our knowledge of
long-term movements of sediment through the drainage system. Landscape evolution models
have not explicitly invoked rules for the simulation of long-term aggradation or degradation in
the valley. Iftectonic effects on landscapes are the focus of a study then it may be appropriate to
ignore the valley flat. More specifically if the time scale of interest is much greater than the
basin diameter divided than virtual velocity, then details such as valley flat storage may no longer
be important. Anderson (1994) considers only bedrock fluvial processes in his model, thereby
not allowing for long-term aggradation or incision through these deposits, which may be
appropriate given the importance of tectonics in his study. Other models (e.g., Tucker and
Slingerland, 1994) allow for re-deposition of sediment by the river, but given the large size of

grid cells the details of deposition are not resolvable.
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5.2 CAUSES OF LONG-TERM AGGRADATION AND DEGRADATION

Material which is deposited in the valley flat is derived from upstream channel reaches,
tributaries, and laterally from the hillslopes. The erosion of material in channels along the valley
bottom is initiated by either fluvial or debris flow processes. Net storage changes along the
valley are determined by assessing the differences between erosion and deposition rates which
occur in response to changes in transport capacity along the channel. Rivers may experience
alternating episodes of aggradation and degradation over short and medium time scales.
However, such episodes are “superimposed” on underlying longer-term trends (Schumm and
Lichty, 1965). From the perspective of landscape evolution modelling, it is these latter, longer-
term trends that are of particular interest.

Topographic configuration, geology and climate affect long-term patterns of erosion and
deposition in the valley flat. Given the relation that has been shown to exist between gradient
and transport rate for some processes, the topographic configuration represents an important
determinant of relative process rates occurring throughout the basin. Rock type is expected to
affect the efficacy of process operation through: (i) its influence on weathering rates and (ii) its
role in establishing sediment characteristics, which in turn affect transport rates (e.g., cohesive
properties and grain size). Changes in climate over space and time modify the hydrological
characteristics and/or vegetation types found within a basin. Fluvial transport rates are enhanced
when a change in climate increases flood activity. Hillslope processes may respond to a wetter
climate in one of two ways: (i) greater transport rates if vegetation type remains unchanged
(greater groundwater pore pressures) or (ii) reduced transport rates if the amount of vegetation
increases significantly (stabilization of the surface).

Past phases of increased erosion may influence the routing of sediment through river

basins for many years. For example, sediment yield patterns suggest that material eroded during
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the last glaciation in British Columbia has resulted in large “pulses” of sediment which are still

working their way through drainage systems (Church and Slaymaker, 1989).

Increases or decreases in transport rates within a basin cannot result in phases of either
basin-wide aggradation or degradation, except in two specific circumstances. If the basin is very
small, such as headward tributaries, then there can be basin-wide degradation. The basin
diameter is small in this case, making the time for evacuation of material from the basin
relatively short (see equation 2.2, p. 16). Deposition in one location necessitates corresponding
erosion at some other location.

The inclusion of valley filling and channel incision into landscape models may contribute
to an increased understanding of the relative importance of factors responsible for sustained
periods of aggradation and degradation in valleys by providing an appropriate framework within

which to formulate suitable research questions and perform sensitivity analyses.

5.3 VALLEY FILLING

Material which comprises valley fill was originally deposited in one of several locations
(Schumm, 1977): (i) the valley margin (hillslope deposits). (ii) the channel bottom (material at
rest in the bed) (iii) the channel margin (point bar deposits) and (iv) the floodplain (overbank
fine-grained deposits). In the present model, which represents a first modelling effort, the
various fluvial processes which deposit material are not differentiated. As confidence is gained
in the model’s performance, details regarding fluvial deposition may be incorporated into the
model.

In this model, any material which is not defined as “bed load” (in the present study the
bed load equation was calibrated on data > 1 mm) is assumed to be transported directly through

the system once it is entrained. Therefore, it cannot be involved in the valley filling process.
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However, in reality some proportion of this material is either incorporated into the valley fill as

overbank floodplain deposits or as interstitial fill. For simplicity, this material is ignored in the
channel submodel.

The width of the valley flat increases as a channel aggrades. However, when material is
deposited by rivers having a width significantly smaller than the valley flat, the sediment cannot
simply pile up in the channel. If this approach is followed in a model then the eventual result
would be the creation of mounds of sediment many meters high in the middle of the valley flat.
The significant issue then becomes the consideration of how material is spread across the valley
flat so that deposits are approximately level. The lateral migration of the river as it swings across
the width of the floodplain may contribute to the even distribution of river deposits across the
valley flat. In addition to distributing material across the valley flat, this process also mobilizes
previously inactive sediment. An assumption is made in this model that any material which is
deposited by channel processes is evenly distributed across the valley flat.

It is essential to investigate recorded rates of movement in order to understand better the
lateral migration of rivers. Factors which may affect bank erosion rates are the texture of the
valley fill through which the river is migrating, discharge and incoming sediment load. Lateral
migration rates provide information about the time scales over which the deposition of sediment
occurs as the river moves across the valley flat. Hooke (1980) compiled bank erosion data for
meandering rivers and documented lateral migration rates ranging from several cm through to
several hundreds of meters per year. Most of the bank erosion rates in the data are restricted to
rivers in temperate or continental regions in the Northern Hemisphere. Hooke (1980) also found
that there is a nonlinear relation between bank erosion rate and drainage area. His data show that
for a given drainage area, there is generally a 2 order-of-magnitude variation in the bank erosion

rate.
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The length of time required for a river to traverse its valley flat is dependent on both the

rate of lateral movement and the width of the valley flat. The data of Hooke suggest that it may
take anywhere from decades to thousands of years for rivers to complete a traverse of the valley
flat. In any event, these time scales are shorter than the usual time scales associated with
landscape evolution models. This suggests that the approach whereby sediment is “spread”
across the width of the valley flat may be reasonable at the large scales of landscape models.
Bridge and Leeder (1979) provided a useful compilation of floodplain accretion rates over
time scales ranging from individual flood events through several thousands of years. They found

rates of floodplain accretion ranging from 0.1 mm to 10 mm/year.

5.4 VALLEY INCISION THROUGH FILL

Long-term fluvial incision through valley fill leaves its imprint on landscapes in the form
of terraces. Incision may be episodic in nature, with depositional phases interspersed within
longer periods of downcutting. Vertical incision may be accompanied by a lateral component of
erosion. However, the relative roles of vertical and lateral erosion have not been studied in a
rigorous manner and therefore an assumption is made in this model that the river maintains the
same planform position as it erodes vertically downwards.

When a river incises through fill (as opposed to bedrock) the adjacent slopes cannot
maintain an angle greater than some maximum angle of stability. Nearby slopes erode
backwards in order to maintain a gradient below this value and, as a consequence, the eroded
material makes its way to the valley flat.

Long-term degradation rates can be estimated from dated terrace deposits in conjunction
with heights of the terraces above the present river level. The terrace data of Drozdowski and

Bergland (1976) and Personius et al. (1993) indicate incision rates of about 0.5 mm/yr.



120

Degradation rates which are measured below dams over medium time scales may provide an
extreme upper limit of incision rates (Williams and Wolman, 1984) (figure 5.1). The median
value of the median degradation rates calculated for the study rivers is about 25 mm/yr. Natural

rates are expected to be considerably lower than this value.

5.5 INCORPORATING VALLEY PROCESSES IN THE PRESENT MODEL
5.5.1 “VALLEY RULES” FOR THE ONE-DIMENSIONAL MODEL

In the present study, an attempt is made to generalize appropriately the processes leading
to valley filling. The width of the valley flat must first be determined as the deposit is “spread”
across this width in the model. It is necessary to define a criterion which represents the
maximum angle that can exist between two points for them to be considered a part of the valley
flat. A gradient of 1° is chosen to represent this value in the model. The gradients between the
river and its adjacent points are evaluated (figure 5.2). If the gradient between the river grid cell
and its neighbouring grid point is below the criterion angle, then the gradient is considered
negligible and the neighbour point is assigned to the valley flat. The procedure is repeated for
any newly-assigned valley flat grid cells and their neighbours. The procedure continues until the
maximum lateral extent of the valley flat is determined. The net cross-sectional area of the
material to be deposited is then evenly distributed across the width of the valley flat.

The calculation of sediment transfers along the channel requires the implementation of
the channel submodel within a surface model run. Therefore, in one-dimensional model runs a
representative value of channel changes must be inputted directly during model runs. An implicit
assumption in this model is that compaction of the underlying sediment does not occur. It seems
reasonable to speculate that any changes due to compaction that would occur are smaller than the

error bounds of this study, thereby justifying their omission in the model. However, it may be



Figure 5.1 Incision rates below dams. Data are from Williams and Wolman (1984).
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Figure 5.2 Valley filling in the channel submodel.
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Figure 5.3 Fluvial incision in the channel submodel.
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beneficial to consider compaction in further studies which focus on the filling of valleys with
sediment and, perhaps. in later versions of the model.

The rules for valley incision require the definition of a gradient which represents the
maximum angle of stability for slopes adjacent to the incising river. A criterion of 35° is suitable
for a river which is incising through valley fill (see section 5.6 for the case of bedrock channels).
Gradients between the river point and its adjacent points are evaluated to determine if this angle
is exceeded. If the calculated gradient is below 35°, then river incision is initiated (figure 5.3).
In the event that the criterion is exceeded, the angle between the river and the next successive
point is evaluated. This procedure is repeated until the incision width is great enough for
stability to be achieved. The cross-sectional distribution of net erosion is then determined

according to the newly-defined incision width.

5.5.2 “VALLEY RULES” FOR THE SURFACE MODEL

Net channel changes are calculated in the channel submodel for surface (2-dimensional)
model runs. The general principles for the “smearing™ of fluvial deposits are similar to the one-
dimensional case, except that the algorithm to define the portion of the valley flat across which
deposition occurs is more complex. In the algorithm, each river grid point is associated with its
nearest neighbour on the grid network; this point effectively becomes the new river grid point.
The gradients between each of the new river grid points and its eight neighbours are evaluated. If
the absolute value of the gradient is less than the defined threshold for valley aggradation (in this
model it is defined as 1°), then that point is considered to be a part of the valley flat across which
the river will eventually migrate and deposit sediment.

Gradients between the eight neighbours of each new point and the original river point are

evaluated in the next step. If gradients are lower than the criterion then they, too, are assigned as
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part of the valley flat. If a particular point has already been defined as part of the valley flat for

this particular river point, then it is skipped. The procedure continues until all gradients exceed
the criterion. This condition signals that the valley flat associated with a particular river point
has been defined.

The procedure is repeated for the next river grid point. A particular grid point may be
assigned to several river points as long as the gradient criterion is met in each case. This
situation implies that. given enough time, the channel length associated with each of these
several river points migrates towards a particular location in the valley flat and deposits material.

A similar algorithm is applied for the case of fluvial degradation in the surface model as
for the case of aggradation. However, in this case a particular area contributes to river erosion

when the threshold gradient defined for slope stability (35° in our case) is exceeded.

5.5.3 HILLSLOPE/FLUVIAL COUPLING

Depending on the degree of coupling between hillslopes and channels, colluvial material
that reaches the slope base may: (i) be deposited in the active channel and transported
downstream relatively quickly or (ii) go into long-term storage along the valley sides. The length
of time before this material is entrained by the channe! system depends on the particular
characteristics of the valley flat, such as valley width, river location in the valley flat and the rate
of laieral migration by the river. Despite the importance of these processes in the routing of
sediment, there is a paucity of research that explicitly addresses these interactions.

In general, the width of the valley flat is expected to increase as channel order increases.
The width of the valley flat is an important determinant of whether or not hillslope inputs directly

enter the channel, or go into storage.
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Whiting and Bradley (1993) made the following observations about the connectivity of

hillslope and channel systems. In low-order channels, colluvial inputs clog the valley flat, which
is usually narrow at these scales. Water flow is generally incapable of moving material in low-
order channels due to the large grain sizes and relatively low discharge rates found in these
channels. Debris flows are the primary transport mechanism in low-order mountainous channels.
As order increases, the transporting capacity of the flow increases and flood benches may form.
Landslide and debris flow deposits entering the valley flat move variable distances across its
width, in some cases reaching the active channel zone. Increasing discharges are more capable of
eroding slope base and slope base deposits. However, valley widths continue to increase as
channel order increases. In consequence, the potential for material derived from colluvial inputs
to go into longer-term storage also increases.

Because the rules in the present model allow the width of the valley flat to vary, the
strength of hillslope and fluvial coupling can also vary. The gradient between the lower valley
cell and the grid cell at the edge of the valley flat induces erosion of sediment according to the
hilislope rules introduced in chapter 3. When the valley flat is narrow, this “valley edge cell” is
equivalent to the river cell and, hence, material is transferred directly into the river. This
immediate transfer of material into the river cell represents a situation of strong coupling. When
the valley flat is wide, perhaps several model grid cells in width, the material from the hillslopes
is deposited into the cell at either side of the valley flat, and not the river cell. In this case, there
is minimal deposition of hillslope material in the mid-valley zone, which indicates a low degree

of coupling.
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5.6 BEDROCK EROSION

Bedrock erosion is an important process in many regions over the long time scales of
landscape evolution. Bedrock erosion is an important process in badlands (Howard and Kerby.
1984) and in mountainous regions (Seidl et al.,, 1994). Furthermore, many reaches that are
generally considered to be dominated by alluvial processes often show indications of significant
bedrock control.

A commonly held assumption regarding bedrock river incision is that erosion occurs
primarily in a downward direction which results in very steep adjacent canyon walls. However.
several studies have suggested that bedrock valley floors underlying valley fills in higher-order
streams are often relatively flat or somewhat irregular in shape and not “V-shaped” (Burrin and
Jones. 1991). Low order streams are more likely to display the characteristic “V-shaped”
bedrock cross-section. The occurrence of bedrock strath terraces also indicates the potentially
significant lateral component to bedrock erosion (Burbank et al., 1996). Crickmay (1974) draws
attention to the potential significance of lateral, vertical and oblique corrasion by rivers through
underlying bedrock, although his ideas have not been subject to rigorous evaluation.

There is an unfortunate lack of knowledge regarding the relative roles of vertical and
horizontal bedrock erosion by rivers. Therefore, it was decided to incorporate the simple rule
into the model that bedrock erosion occurs only in a downward direction (see equations 4.32 and
4.33 for bedrock erosion on p. 106). As knowledge of bedrock erosion processes increases,

consideration should be given to both the horizontal and vertical components of bedrock erosion.



CHAPTER 6: 1-DIMENSIONAL MODEL RUNS
6.1 MODEL OUTLINE

The hillslope and valley submodels presented in this thesis are investigated initially using
a l-dimensional (profile) version of the program. Diffusive evolution of the landscape is
examined using the linear diffusivity found in the present study (0.1 m?/yr) and a range of
diffusivities implemented in previous landscape evolution models (1-100 m*/yr). The nonlinear
transport functions introduced in Chapter 3 are also examined.

An optional sink/source term is incorporated into the model to simulate either the
deposition or erosion of material by the river and associated valley filling or incision. Typical
heights of aggradation or degradation occurring in channels are read into the model in this suite
of runs. In later surface model runs, channel transport rates are determined within the model
itself.

The channel is assumed to be located at the lowermost point in the valley. Typical river
widths expected for the profiles used in this study are smaller than the space step (the grid cell
dimension). The morphological effects of erosion and deposition cannot be resolved for lengths
smaller than the space step. The procedures for simulating aggradation and degradation in the
model were outlined in detail in chapter 5. When there is net channel aggradation over a time
step the material is effectively “smeared” across the width of the valley flat. When there is net
channel degradation, the incision width increases until such a point that the gradient of the valley
sidewalls falls below the threshold gradient.

Partial differential equations are solved in the model using the “method of lines”. An
implicit procedure is used to solve the first term in the right-hand side of the linear diffusion

equation:
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oh_ 3h
ot ox?

+¢ (6.1)

wherein ¢ is the rniver sink/source term. The term ¢ is solved explicitly. In this method the
second-order derivative is replaced by a series of algebraic equations and the time derivative is
initially preserved in its original form. This results in a system of differential equations in time
(t) and since there is now only one independent variable, the equation is an ordinary differential
equation (ODE). An implicit Runge-Kutta scheme, in this case a subroutine called ddriv2.f
created by Kahaner et al. (1989), is used to perform the integration and the new value of h is
calculated.

A flowchart of the model is given in figure 6.1. After the input data are read (including
initial elevations and river input values), the input ¢ value for river activity is used in the
aggradation/degradation subroutines and changes in elevation are calculated. These heights are
then incorporated into the differential equations for the relevant grid points. The subroutine
DERIVS is used to solve the right-hand side of the differential equation. At this point the major
do-loop for the time steps is entered. Within each time step, a call is made to the integrator
ddriv2.f, which in turn continues to call the subroutine DERIVS until the solution converges and
a value for h is obtained. A new phi-value is entered at each time iteration and is incorporated
into the appropriate differential equations. In all cases, model results were checked to confirm

that continuity was preserved.

6.2 STUDY DRAINAGE BASIN
It is preferable for model runs to be of limited spatial extent when initially evaluating model
performance. In addition, an ideal study basin exhibits a simple topographic pattern, which

enhances the interpretability of results. The model can be applied to more complex situations as



START

~__

¢ Read in model variables, input
| elevation data and input river data

Call “report”
Writes initial data to output file

: Initial call to "derivs"
| “derivs” calculates the right- hand side of the differential |
; equation for use in "ddriv2" |

[

Initial call to “phi_caic” !
“phi_caic” distributes input vatues of fluvial ‘
aggradation and degradation across the valley flat !

and calculate values of & |

| Call “ddriv2" i
i "ddriv2" makes internal calls to "derivs” as !
necessary and calculates model elevations [

' t= t_hi

, Calt "report”

If
(t>t_stop

o

L D —

"No
Call "phi_caic"
calculates value of & for next iteration Ji
A
: END

Figure 6.1 Flowchart of 1-dimensional version of model.
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confidence is increased in its ability to reasonably simulate landscape evolution.

The model was run for a drainage basin in the Queen Charlotte Islands, British Columbia
for several reasons: (i) the hillslope analysis in this study is based on Queen Charlotte Islands’
data; (ii) the channel submodel was created with coastal British Columbia drainage basins in
mind. which are typically steep and humid as are basins found in the Queen Charlotte [slands:
and (iii) there is a good regional knowledge of geomorphological processes operating in the
Queen Charlotte Islands, which is supported by a substantial literature. Mosquito Creek
Tributary was chosen as the study basin as it is a small watershed of area 5.5 km? and exhibits a
reasonably simple topographic structure (figure 6.2). Slopes are steep and approximately
rectilinear in this basin. A major channel runs along the length of the basin with a series of
simple gully channels feeding into this main channel. Moreover, Mosquito Creek Tributary has
been a research site in several other studies (Roberts, 1984; Rood, 1984, 1990) and, therefore,
many aspects of this basin have been previously analyzed.

The initial hillslope profiles (time = 0 years) were created using 1:20 000 TRIM (Terrain
Resource Information Management) map data for the Queen Charlotte Islands, British Columbia.
The two profiles investigated in this analysis are (see figure 6.2 for locations): (i) a major
hillslope feeding into the main channel and (ii) a hillslope feeding into a typical gully. In both
cases, the profile actually represents the elevations along the path of greatest descent which
converge to a common point in the channel (nor necessarily a cross-sectional profile
perpendicular directly across the channel). In each case the profile is extended beyond the divide

so that model behaviour at the boundaries does not adversely affect the results.
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6.3 PROFILE DEVELOPMENT OF MAIN CHANNEL HILLSLOPES
6.3.1 LINEAR DIFFUSION
6.3.1.1 BASIC MODEL RUNS

The development of the hillslope profile feeding into the main channel is first assessed
for the case of basic linear diffusion. In these model runs, fluvial processes are not considered.
[nitial values of model variables and diffusivities used in this analysis are given in table 6.1. The
model is run using the creep diffusivity. Although a linear relation may not be strictly
appropriate for creep processes, there is no systematic study of creep available on which to base
an alternative relation. The hillslope analysis in chapter 4 indicated that linear diffusion is not an
appropriate model for rapid landsliding in the Queen Charlotte Islands. Nevertheless, the profile
model is run using the linear diffusivity found in this study and values of several other studies in
order to allow comparison with the preferred nonlinear transport equation.

The resulting profiles for model runs for each diffusivity value are plotted after (figure
6.3): (i) 0 years (initial profile) (i) 3 000 years (ii) 10 000 years (Holocene time-scale) (iii) 30 000
years and (iv) 100 000 years. The results immediately suggest that creep is a relatively
ineffective process, even at long time scales. The morphological changes are not even visible at
the resolution of the graphs and, therefore, are not illustrated. After 100 000 years the landscape
shows only very minor changes in elevation with maximum erosion rates at the divides of about
0.2-0.3 m and a deposition height in the river channel cell of 0.12 m. These values represent
average rates of change of order | mm/1000 yr and suggest that in landscapes for which creep is
the dominant process, rates of change are very slow. The relative roles of lateral and vertical
river activity in landscape evolution are enhanced in such regions.

However, when the linear diffusivity value for landsliding obtained in the present study

(0.1 m%/yr) is implemented, there is much greater activity (figure 6.3a). Significant erosion on



Table 6.1 Input parameters for initial model runs.

Variable Value
Number grid points (nx) 37
Space step (dx) 100 m
Time step (dt) 100 yr
Final time 100 000 yr
0.0002 mZ/yr: Present study (creep)
Diffusivities (k) 0.1 mz/yr: Present study (landsliding)

1 m*yr, 10 m¥yr, 100 m*yr:
Values cover range of other landscape
evolution studies.

Elevation change due
channel processes (¢)

to

0
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the upper slopes and deposition on the lower slopes are observed. After 10 000 years the divides

show decreases in elevation ranging from 8-13 m (800-1300 mm/1000yr). After 100 000 years.
the two divides have eroded about 65 m and 81 m (650-810 mm/1000 yr). In these initial model
runs the sediment supply is assumed to be unlimited (the weathering of bedrock is not
considered), which results in relatively high rates of erosion at the divide. The lower slopes
show aggradation rates slightly lower than the central valley points, while upper slopes show
some minor erosion. The middle zones of the hillslopes represent, in effect. transport slopes.
Material is expected to travel through these areas relatively efficiently, until it reaches the lower
valley slopes where it may enter longer-term storage. This is the expected behaviour for
essentially rectilinear slopes, such as those found in the Mosquito Creek Tributary profiles used
in this study.

There is net aggradation of about 6 m (600 mm/1000 yr) in the valley after 10 000 years
and 50 m in 100 000 years (500 mm/1000 yr). In this model, the hillslope material deposited in
the valley flat becomes tncorporated into the valley fill. The valley filling rate associated with
this deposition rate is 0.6 mm/yr. This value is at the lower end of floodplain aggradation rates
given in Bridge and Leeder (1979). The relatively high aggradation rate suggests that significant
amounts of hillslope material are transferred to the valley flat. In the real world, this material
may go into long-term storage or be evacuated relatively quickly, depending on the transporting
capability of the river and the characteristics of the valley flat (e.g., width). The profile is still
recognizable, even after 100 000 years. The only major topographic differences are the changes
in elevation for the upper and lower slopes, and the associated decrease in gradients along the
slope length.

However, as diffusivities increase to values ranging from 1-100 m?/yr (these values cover

the range of diffusivities used in other landscape evolution models; figure 6.3b-d), erosion and
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deposition rates are considerably greater than changes expected to occur in reality. For a

diffusivity of 1 m?/yr , the elevations of the crests have decreased by about 65 and 8! m and
valleys have increased by about 50 m in 10 000 years (order 10* mm/1000yr). For diffusivities of
100 m?/yr the entire landscape has been reduced to a relatively flat surface in only 10 000 vyears.
The diffusivity value adopted in the present study appears to be more viable than values adopted

in some other studies.

6.3.1.2 CHANGE IN SPACE STEP

The effect on model results of a reduction in space step from 100 m to 50 m was studied
using the landsliding diffusivity of 0.1 m?*/yr obtained in the present study. The differences
between the initial profile for each of the space steps are shown in figure 6.4a. Some minor
topographic irregularities are captured for the 50 m space step profile at time O (initial profile)
which are not observed for the greater space step (figure 6.4a). In particular, there is a high point
on the right-hand drainage divide which is not visible for the 100 m spacing. However, after the
model has run for 100 000 years, these initial differences disappear and only negligible
differences exist between the profiles for most points (figure 6.4b). The difference between the
elevations for two model runs at corresponding points along the slopes are of order 10° m after
100 000 years. The difference in valley aggradation after 100 000 years is only 1.5 m. The
differences between elevations for each space step are considerable for one of the divides (nearly
30 m), while the difference is 1.5 m for the other divide. These results suggest that diffusive
hillslope processes are relatively insensitive when space steps are changed by a factor of 2. Any
large-scale irregularities in the landscape which are captured at the 50 m space step and not at the
100 m space step are efficiently smoothed out in less than 10 000 years when a diffusivity of 0.1

2 . . . .
m~/yr is used. Thereafter, the landscape evolves in a similar manner.
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6.3.2 NONLINEAR TRANSPORT
6.3.2.1 BASIC MODEL RUNS

The nonlinear transport functions defined in Chapter 3 are implemented in the next set of
model runs. Morphological changes for the Group A basins (resistant geology) show that
landscape changes are significantly reduced from those for the linear diffusivity value of 0.1
m*/yr (see figure 6.5a). The transport relation for Group A basins shows an upper limit transport
rate of about 0.04 m*/m yr, which restricts sediment transport rates to low values across all
gradients. Elevation changes at the main divides are about 2.5 m after 10 000 years (about 0.25
mm/yr). Changes at the divides range from 20 to 24 m after 100 000 years, about one-third of the
values obtained when the linear diffusivity of 0.1 m*yr is implemented. Due to the relatively
gentle gradients on the lower slopes adjacent to the grid cell containing the river (for which
transport rates are about 0 m*/m yr), sediment is deposited on these slopes and is not transported
to the river grid cell. The central valley aggrades only 3 mm and 200 mm in 10 000 years and
100 000 years respectively. The lower slopes adjacent to the river grid cell aggraded about 2 m
and 16 m after 10 000 years and 100 000 years.

Nonlinear diffusivity for the Group B basins (non-resistant geology) shows somewhat
greater activity (figure 6.5b) than for Group A basins, but changes in elevation still remain
considerably lower than for linear diffusivity in the present study. Erosion values of about 8 m
and 37 m occurred at the divides after 10 000 years and 100 000 years respectively. The central
valley shows aggradation values of only about 4 cm and 2 m for these same two times, while
aggradation values at points adjacent to the river were about 2.5 m and 25 m.

The very high transport rates that the function defines at high gradients for Group B
basins might lead to the expectation that elevation changes for this function would exceed those

for linear diffusivity. This is not the case. The reason for this lies in the range of gradients found
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in the Mosquito Creek Tributary hillslope profile and the associated diffusivities for both the

linear and nonlinear case over this particular range of gradients (figure 6.6). If there are steep
gradients in a basin, they are worked upon very quickly when the nonlinear transport model is
implemented. Once these exceptionally steep slopes are eradicated, the gradients are no longer in
the range of steep gradients for which high transport rates are expected. Throughout most of the
100 000 years of landscape evolution, the gradients lie in the range where the diffusivities for the
linear equation defined in this model exceed the values for the Group B nonlinear function.

The nonlinear function provided a considerably stronger fit, as shown in Chapter 3, for
the Queen Charlotte [slands’ landsliding data set. The general form of the nonlinear function
provides the basis for a reasonable scenario of changes in transport activity in landscapes as they
evolve. It is only after landscapes are subject to significant events which lead to increased
gradients and an “unstable” landscape that hillslope erosion will proceed at a rapid rate. The
operation of hillslope processes removes the large-scale regional instabilities. Anything that can
increase gradients can lead to the “re-activation™ of significant transport activity. Some possible
causes of steepening are: (i) uplift events which lead to increased incision by the river and
associated increases in hillslope gradients; (ii) deleveling uplift events which cause localized
steepening of certain slopes by tilting; (iii) glaciation; and (iv) lateral river activity. In addition,
changes in climate and geology may also lead to increased landscape activity by changing the
nature of the transport relation and the threshold gradient of stability. This may involve a change
in : (i) the resistance of landscapes (e.g., change in vegetation due to climate change; change in
rock resistance due to exposure of a new surface) or (ii) the hydrological regime, which is a
major factor determining transport activity.

It can be argued that some locally steep areas will remain in a landscape, even after

significant time periods have lapsed. In addition, steep slopes may be recreated by gullying or by
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deep-seated landslides, neither of which is included in the present model.

Because the Queen Charlotte [slands have been subject to recent glaciation and tectonic
activity, and are subject to an exceptionally moist climatic regime, they are notably unstable and
thus transport rates are very high. Because the transport functions in this study are based on a
specific study region. they are not directly transferable to other regions. However, it seems
likely that nonlinear relations may be representative of transport functions in other regions where
there are steep, rough upper slopes and gentler, smoother lower slopes. Many regions of the
world have been subject to recent glaciation and uplift events, so upper slopes may be operating
in the “active” transport zones defined by nonlinear relations. Vertical and lateral erosion by
rivers may destabilize lower slopes and contribute to further instability and transport. The
interplay between hillslope and channel processes is particularly interesting in active landscapes
as the slopes undergo periods of relative stability and instability.

[nstabilities in the landscape may create episodes of high transport rates. After enough
time has elapsed for unstable slopes to be eradicated, the landscape relaxes into a state of ““quasi-
stability” and geomorphological activity proceeds at a reduced rate. Relatively ineffective creep
processes become the dominant geomorphological transport mechanism on hillslopes once
gradients are below the threshold for landsliding (or other rapid transport processes of
significance in a particular region). But in comparison to the overall mass of the mountain range,
transfers by creep processes appear not to result in obvious configurational changes according to
transport rates estimated in this model. Furthermore, the persistence of Holocene-spanning
colluvial footslopes and alluvial fans suggests that processes operating at low gradients are not
effective transporting agents. As another example consider the gentle landscapes found in
southern England or prairie regions of North America. Over most of their area, these landscapes

appear to be relatively inactive in the present day. This situation can be expected to continue for
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some time into the future. Therefore, lateral fluvial activity appears to be the dominant process

in low-gradient landscapes. Further research is required to assess whether other processes, such
as creep and surface wash (depending on the region being studied) can, in paiticular

circumstances, be significant at lower gradients.

6.3.2.2 CHANGE IN SPACE STEP

The effects of a change in space step to 50 m on the nonlinear transport model runs are
now examined (figure 6.7). The differences in elevations at the divides for the Group A
nonlinear transport model are about 5 m in both cases after 100 000 years while the elevation
difference is only about 2 m in the valley bottom. The differences at the divides for the Group B
nonlinear transport model are also about 5 m and the difference at the river grid cell is about I m.
Such discrepancies are likely within the error range of this study. The nonlinear transport model

runs are relatively insensitive to a change in the space step of 2 times.

6.4 VALLEY EVOLUTION BY PROCESSES IN THE MAIN CHANNEL
6.4.1 BASIC MODEL RUNS

In the next set of model runs, hillslope transport was turned off in order to study the
“valley rules” in isolation. The model was run initially with a space step of 100 m and a time
step of 100 years, over a time period of 100 000 years. The input files for the phi values covered
situations of: (i) aggradation over 100 000 years (ii) degradation over 100 000 years and (iii)
alternating periods of aggradation and degradation (60 000 years aggradation; 20 000 years
degradation; 20 000 years aggradation). The assumed magnitude of annual elevation change for
all cases (aggradation and degradation) was 5 mm and the channel width was defined as 25 m

(the latter value is based on channel widths for Mosquito Creek Tributary given in Roberts,
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2. In order to

1984). This defines a cross-sectional area of sediment accumulation of 0.125 m
conserve mass this value is effectively “spread” over the 100 m width of the cell containing the
river (the space step in the model). Direct comparison with degradation rates would be
misleading in this case, as the actual area of sediment accumulation is input into the model. The
purpose of these model runs is to evaluate how the aggradation and degradation algorithms,
which distribute actual channel changes across the grid according to particular “rules”. affect the
final erosion and deposition rates calculated in the model. In order to calculate river changes in
the model which can be compared to real data, the 2-dimensional version of the program must be
run.

Results for continuous aggradation in the valley are plotted after 3 000, 10 000, 30 000
and 100 000 years of evolution (figure 6.8a). Although it is not likely that continuous
aggradation (uninterrupted by erosion) would occur over such long periods, the performance of
the valley rules can be evaluated by testing the model for this simple case. After 10 000 years the
valley flat still consists only of the grid cell containing the river. The aggradation at this point is
12.5 m, which translates into an annual deposition rate across this cell of 1.25 mm/yr. After 100
000 years, the valley flat is defined by 3 grid cells and the annual rate of aggradation over the
entire 100 000 year period is 0.6 mm/yr. The annual aggradation rates reported here are at the
lower end of floodplain aggradation rates found by Bridge and Leeder (1979).

After fluvial erosion has continued for 10 000 years, the river incision width is one grid
cell and the incision depth across the cell is about 12.5 m, which represents an annual incision
rate of about 1.25 mm/yr (figure 6.8b). This value is within the range of incision values (0.5-25
mm/yr) presented in section 5.4. By 100 000 years, the incision width has increased in order to
maintain side slopes of less than 35° (maximum angle of stability). However, in order to achieve

this situation, the river now cuts into the base of the main hillslope and sets off progressive
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upslope erosion. After 100 000 years the entire length of the right-hand main slope has been

affected by “basal undercutting” due to channel incision. The incision rate over the 100 000 year
time period is about 0.5 mm/yr. This value is lower than the rate over the first 10 000 years
because, as time progresses, the incision is distributed across a greater area.

In the third model run aggradation continues for 60 000 years, followed by 20 000 years
of degradation. and a final 20 000 years of aggradation. In order to most effectively demonstrate
patterns of infilling and incision, the results are now plotted at 0 years, 60 000 years, 80 000
vears and 90 000 years (figure 6.8c). For the first 60 000 years the river grid cell aggrades about
46 m and the valley width extends across 3 grid cells. Thereafter, the river erodes at a width of
one grid cell. The minimum width of incision possible in the model is the grid cell width. This,
in many cases, will result in incision widths which exceed values expected in the field. The
remaining outside two points of the old floodplain constitute, in effect a terrace. In all diagrams
the lines between calculated grid points are plotted directly from point to point, thereby
precluding direct observation of the terrace in figure 6.8c. Finally, after 80 000 years, the river
starts to aggrade once again. The aggradation is spread across the width of one grid cell. and

river sediments fill in the earlier incision.

6.4.2 CHANGE IN SPACE STEP

The model runs in section 6.4.1 are repeated using a space step of 50 m. The results are
compared to results for the earlier model runs, which used a space step of 100 m. At the final
time step of 100 000 years the decrease in space step significantly increases the height of
aggradation in the valley, increasing the elevation of the grid cell containing the river by 39 m
(figure 6.9a). The same amount of sediment is effectively spread out over a smaller width (50 m

instead of 100 m) and, hence, there is a greater increase in elevation. In the model runs for
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