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ABSTRACT

In this thesis. the lowest-order gluon condensate contributions to the QED vertex
are calculated. The conclusions appear to be that the presence of a gluon condensate
eliminates any possibility of an anomalous magnetic moment.

Single instanton contributions to pseudo-scalar tinite energy sum rules are derived
both asvmptotically and theoretically. The one-resonance finite energy sum rule fit
in the scalar channel is explored. in an effort to see if such sum rules support the
existence of a very light (o) scalar resonance.

Cancellation of infrared singularities in two-gluon condensate conrributions to
finite energy sum rules are demonstrated not to be peculiar to the chiannels i which
they are studied. The explicit cancellation of quark-mass singularities via operator
mixing is also demonstrated for the channels in which theyv naively occur.

The hard photon spectrum in radiative leptonic © decays 7 — jp,v-~ is analvzed
in the presence of possible 77+ anomalous couplings. The possibility of ancmalous
-7~ couplings is also examined in the unpolarized ditferential cross section for the

scattering process e7e” — 771~ at both LEP [ and LEP II energies.
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Chapter 1

Introduction

1.1 Overview of the Standard Model

The Standard Model [1] describes the interactions of three generations of quarks and
leptons defined by a non-Abelian gauge theoryv based on the group S0 (3) =S50 (2) =
(y-(1). Quantum Chromodynamics (QCD) is the theory of strong interactions based
on the colour SU¢(3) group. This group acts on the quarks swhich are the elemenrary
constituents of matter and the interaction force is mediated by the gluons (¢) which
are the gauge bosons of the group. The quarks and the gluons are colored fields. One
consequence of the non-Abelian nature of the colour svinmetry is the existence of self-
couplings of the gluons. The ~Coupling™ (fine structure constant) between quarks and
gluons is denoted by a; which can be > 1. Under some conditions. however. o is
very small and perturbation theory applies [2]. The SC-(3) colour symmetry is exact
and consequently the gluons are massless.

SU(2) @0 (1) is the gauge group of the unified weak and clectromagnetic inter-

actions. where SU(2) is the weak isospin group. acting on left-hand fermions. and
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from LEP data on hadronic 7 decay [3]. Another recent application uses very general
properties of QCD sum rules to set lower bounds [4. 5. 6] on the light quark masses.

The physical vacuum of QCD is not the vacuumn state which one uses in per-
turbation theory. Physical effects like spontancous chiral svimmerry breaking and
/or confinement do not appear in an order-bv-order perturbative rreatment of QCD.
Unfortunately. most physical processes involve both low energy (large-distance} and
high energy (short-distance) aspects. Since it is difficult to separate the short-distance
from the long-distance effects. perturbative QCD is modified bv non-perturbarive of-
fects at short-distance. The non-perturbative effects in rwo-point funcrions evaluared
at large (* values appear as inverse power corrections in (Q°. Thev can be svs-
tematically evaluated by utilizing Wilson’s operator product expansion (OPE) [7] in
the physical vacuum. The power corrections then appear as the product of Wilson
coefficients. which are calculable perturbatively. with universal non-zero vacuum ex-
pectation values of gauge invariant operator. the so called QCD-vacumn condensates
which. although excluded by definition in purely perrurbative field theory. can have
non-zero values in the physical vacuum. Tvypical examples are the lowest dimension

quark condensate (¢q) and gluon condensate (a,G?).
1.3 Beyond the Standard Model

Despite all these successes. there are theoretical motivations for guing bevend the
Standard Model. First of all, in the electro-weak svmmetry breaking sector. the
Higgs mechanism. which is invoked by the Standard Model to generate the Z° and
IT"= mass. predicts the existence of a new scalar particle. still to be discovered. From

the theoretical point of view, if the Standard Model is embedded within a large



cauge theorv based upon a unifving symmetryv. the Hives mechanism suffers from rhe
so-called hierarchy [8] problem: radiative corrections would tend to equilibrate the
vastly different electroweak (mz) and unification mass scales. Furthermore. the com-
plexity of the fermionic and gauge structures makes the Standard Model look like an
improbable fundamental theory. It provides no explanation for the duplication of par-
ticle families. the elementarv particle quantum numbers (colour. electroweak isospin.
hypercharge). and it contains many free parameters ey, the three cauge coupling
constants. the nine fermion masses and the four Cabibbo-Kabavashi-Naskawa mix-
ing parameters): these correspond to important physical quantities. but can not be
computed in the context of the Standard Model. Simplifying the Standard Model
structure and predicting its free parameters are therefore basic tasks of a success-
ful theory. In fact. there exist many theories bevond the Standard Model such s
Grand Unified Theories [9]. Supersymmetry [10]. Supersymmetric GUT [11;. Techni-
colour {12] etc. Among many other possible ways to explore new physics bevond the
Standard Model is to study the anomalous coupling of heavy Havor fermions to the
conventional SN gauge bosons. i.e.. Z. 1. ~ and g. With the joint efforr of experi-
ments and theory. we are likely to unravel the mystery of the tundianental princrples

of particle interactions lyving bevond the Standard Model.
1.4 Content of the Thesis

The main objective of this thesis is to explore non-perturbative topies in QCD as well
as perturbative non-Standard Model contributions ro the clecrro-weak interactions
that may be manifest in the radiative leptonic = decay v — -~ and in the

ete” — TVT” scattering process.



In Chapter 2. gluon condensate (a,G*) contributions to the quark’s electromag-
netic F), form factor are calculated. We find that the gluon condensate does not appear
to contribute to the anomalous magnetic moment of quarks. once the renormalization
procedure for the electromagnetic vertex is suitablv redetined to acconnt for diver-
sent order-unity condensate contributions. [n Appendix A, we have also shown that
the self-energyv contributions to the vertex involving (,G?) do not contribute to the
anomalous magnetic moment of quarks.

In Chapter 3. we derive the direct single-instanton contributions ro fnite-energy
sum rules Fiy; in the pseudo-scalar meson channel. This conrribunion i~ very impor-
tant for understanding why isosinglet and isovector mesons in both the scalar and
pseudo-scalar channels differ in mass.

In chapter 4. a one-resonance finite energy sum rule fit is constructed in the scalar
channel in an effort to see if such sum rules support the existence of a very light ()
scalar resonance.

In Chapter 5. we demonstrate explicitly the cancellation of infrared singulariries
of two-gluon condensate contributions to finite energy sum rules in pseudo-scalar.
scalar. vector and transverse component of the axial-vector channels. The explicit
cancellation of quark-mass singularities via operator mixing is also demonstrated for
the channels in which such singularities naively oceur.

[t Chapter 6. electroweak physics bevond the Standard Model is investigated.
we calculate the hard photon spectrum in radiative leptonic 7 decays & — po,v.~
in the presence of possible 77+ anomalous couplings. We analyze the unpolarized

differential cross section in the scattering process ¢”¢~ — 77~ with the possible



anomalous couplings at LEP 200 energies.
Finally Chapter 7 presents a summarv and concluding remarks as well as some

possible directions for future research.
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Chapter 2

Gluon Condensate (G*) Contributions to the

Quark’s Anomalous Magnetic Moment

2.1 The Purely-Perturbative Electromagnetic Vertex Cor-

rection: A Methodological Review

The purelyv-perturbative three-point Green's function G, as shown in Fig. 2.1 contain-
ing the truncated fermion-antifermion-photon vertex Green'’s funcrion —:eQU,, (pa. py)
is expressed in terms of the vacuum expectation values of time-ordered products of

Heisenberg fields ¥. ¥ and .-lﬁ as follows:

—t (P — pylgtpr — prs
G, (pa. = | — w — (1= .
ulpe- 1) [(PQ - m)? (g, toa (2 — pr)* ”

[ﬁg — m] {—eQT (p2.p1)} [Iﬁl — HEJ

/d“r'/d*y’ < O|TE (L) ARO)Y By IO >0 2 e ovy 2]

¢ is the electromagnetic fermion charge and a is the gauge parameter. The one-loop
correction to this vertex is obtained via a Wick-Dyson expansion of the time-ordered
product of Heisenberg fields [13].

The Heisenberg-field vacuum expectation value in Equation (2.1) can be written



Figure 2.1: The fermion-antifermion-photon three point Green’s function

in terms of interaction-picture fields v. v and A, as

< OiT¥(s") ~lh( YN0 >hes = <0|Tu(r)erp '—/r()/ dhw et o) A-(w)

A 0) e (g0 >.

(2.2)
with a one-loop(1L) correction given by
<oA= i(eQ)? < 0T w () Ulm lﬁ(.m-.-'e.-(.r).x-t.m}
[/ d'y u-'(y)f/"u'(y)_-{d(y)] {/ dPz (e 1AL
cly')A4,(0)0 > (2.3)

Putting Equation (2.3) back into Equation (2.1). the one-loop correction to the

Green's function G,(p2, p1) is found to be [Fig. 2.2]
AGulpaepr) = (—ieQ) [ds [diy e moy
-{/d"r/d*y/d": < OITe (el 0 > =7
< O0|Te(r)ew)o > ~7 < 0iTelyiez) 0 > =¥

- < OITw(z)e(y)|0 >< 01T A, (0) A, (y)0 >

- < 0T AHx)Ap(2)]10 >} i2.4)
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. L‘/_d4Q4 e—tqn:—y')(’j‘* o
(2m)4 g3 —m?
—tk1{0—~y)

. d4k1 e
*‘9“"/(2,—.)4 K2

. d»lkz (J-lk';'(.r—t\}
'["‘”"’ T

1o
=1

Performing the integrals over £’ and y’ before doing anv uther integrals. we find that

/dl 'gtpa’ _iq":'/d“y'e_'p"y’e‘q"y’ = (27)%0 gy — p2)o gy — py) (2.8)

If one then integrates over ¢; and ¢; variables. one finds that AG,, (p2.py) can be

rewritten as follows:

. (o — )
AGu(p2-py) = [/%}
p3 — m?

3 d*qs / drqy o odky podik,
(—eeQ) /(‘)rr)'l (')—.)‘/ (‘27.")"/ n;’:)‘\”
yjo-%-m ;13+m ~ G0 (:_1

" T\ A 3

| -m? ' g5 —m?

/d I/dlu/([i,_e —qar=k:ir e Sy =k oy

lanmpi—kars | (PLE 'm]l ”
[}v = -

. we obtain the product of three o-

[ntegrating over x. v and z variables in (2.9)

functions:

(27) 284 (2 — g2 — k2)8* (g — 43 + k1)8 (g3 — p1 + ka)
= (27) 20 ky = (p1 = p2))0t (g2 = (p2 — kan1dt gy — 1py — o 12,10
Substituting this result into (2.9) and integrating over A:. g, and ¢, we fiind that

{i(pQTIIZ)J [ Yo .):l (—te(Q}

~Cule ) = pi—m? | [(p2—p)?
—i(eQ)? rdky . (po~f2+m)
(2m)4 k3 (2 = ka)? = m?
(p1 — k2 + m) A }}l:t p,+m)] 311
(P —ky)2=m? 7| [ | pt —m? =
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Figure 2.3: The one loop purely perturbative contritbution ro the ver-

tex function in momentum space.

Equation (2.11) shows the same factorization of the external legs as in the interme-
iate line of (2.1). As is evident from the d-function integrals (2.8) and (2.10). this
factrorization is a direct consequence of the explicit rranslation invariance of (2.5 and
(2.6) which guarantees the translational invariance of all vacuum expection values in
(2.4). We equate the curly-bracketed terms in both equations ro obtain the usual
perturbative expression for the one-loop correction to the vertex function. as shown

in Fig. 2.3 :

Al (p2.pi} =
The unrenormalized one-loop vertex correction \7ip,.py1 can be writren as
I“0'=~/‘7+_\‘7+... (_)13}

The unrenormalized vertex correction &{p:)\7u(p,)} is defined as

5 5 'lqu/-'\ . 1
Apa.p1) =eQ)” | R(¢™ )~ — ——ip] ~ ] iJ (2.14)

mn



where ¢7 = pJ — p{. This unrenormalized vertex can be expressed as follows in rerms
of the renormalized vertex form factors Fi(¢”) and KF,(¢”} via applving the Gordon

decomposition of the current @(ps)+*u{p;)

o =+ a Lot )y — I L,.' _
(P2 +p)* P2 = p1) |t 2 15)

a(p2)~*u(p} = it(p2) [ I : I

and substituting (2.14) into (2.13). we find that

a(p2)C*(p2, plulp) = @pa)[+* + \u(pr)
= a(p2) [(1 + EQ*[R(¢*) +4S(q)]) ~*

—2e*Q*S(¢*)io*"y, m] w(py)

1]

Za(ps) |[FLigh)~* = KF g SIE wipy) 2016

The rescaling in the final line of (2.16) is accomplished through rhe renormalization
condition that F1(0) = 1. in which case the (divergent) constant Z is given to order-¢*
by

Z=1+¢€Q*R(0) + 4501 (2.17)

To the leading order in e”. one then finds that

) L +e2Q% [Riq?) + 4S5(¢%);
Fig) = LreQ@[Rld) (q]).

1 +€e2Q? [R(0) + 45(0)
= 1+eQ*[(R'(0) +48'(0)) ¢* + Olg")] + Ole*) (2.18)

—1e?Q%5(¢?)
L+ e2Q?[R(0) + 15(0)]

= —4*Q*S(¢?) - Oteh (219}

1

KF(q

The ¢°> — 0 limit of Equation (2.19) gives the O(a) anomalous magnetic morment of
QED {14] via explicit evaluation of the coefficient S(¢*) of (p{ + p3). as defined by

(2.14). within the vertex correction AI'Y (2.12). The eventual result first obtained by
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Pi

Figure 2.3: An example of photon self-energy corrections tu the QED

vertex function I'?.

Pi

Figure 2.6: An example of bremmstralung corrections ro the QED

vertex function [7.



calculation of S(g?) presented above is the replacement of the momentum-k photon
internal-line in Fig. 2.3 with gluons. with appropriate colour factors Ay, /2 at each
terminus of the gluon line G*. The net effect in Equation (2.11) is to replace (¢Q)?
with (eQ)? + (4/3)g?. where g, is the SU(3). group-theoretical factor (A$A%,)/4. Not-
ing that a, > a at any soft momentum scale. we see that the anomalous magnetic
moment of a quark will naively be obtained by replacing the QED couplings a()?
with the QCD coupling (4/3)a,. thereby leading to rhe following purelv-perturbative

QCD contribution to the quark’s anomalous magnetic moment:
KF5(0) = 2a,(0)/3= (2.20)

An immediate problem arises when one attempts to discuss a. at very soft mo-
menta. Because of asymptotic freedom [2]. a, is known to increase as momentim
decreases until perturbative QCD is no longer valid. For (2.20) to have any meaning
at all. the strong coupling has to be assigned a not-purely-large phenomenological
value appropriate for infrared region. Mattingly and Stevenson ‘16; have argued that
o, should freeze out to a value somewhat less than unity (0.82) at soft momentum
scales. Baboukhadia. Elias and Scadron [17] have obrained a similar estimate (0.72)
by exploring the linkage between linear-sigma-model hadronic phenomenology and
low energy QCD. It has also been argued [18] that values of e, near unity (a, = 3/7)
induce the chiral symmetry breaking responsible for a transition from a gauge theory
of quarks to a chiral-Lagrangian theorv of mesons. Finallv. a number of authors have
argued for the existence of a non-zero infrared fixed point within the full QCD  3-
function [19. 20]. although contrary arguments based upon Pad¢ summation methods

have also been advanced [21].
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with
1 )
OF: A (x)4,(2) = 10) = 3 [C(.z' - ) (r ==, - Elr - :)’f/-/)] ({2.24)
where coefficients C and E are related to the dimeusion-tour condensates 27
C-2F = L((}'2) (2.25)
— — 24 - o .
I 5
3C+2F = —1(Q| 2 (0 - A7 ). (2.26)

where [Q) is the non-perturbative vacuum. The gluon-condensate components of C

and E are

Q
=1

= 227

144
5(G2) ‘
E=-2210. .. (2.23
288 !

We choose to work in the covariant gauge (as opposed to Fock-Schwinger or axial
gaug pp 2

gauges) because only covariant gauge exhibits the explicit rranslational invariance

required for factorization of the external lines from a Pl vertex funcrion ['7. Substi-

tuting (2.24) in place of the internal-photon-line propagator (2.23) in (2.7). we tind

. 2 ¢ \b dtqs ; d'qy [ dik, 9
——_] (—ieQ)(~igs) T’.(? 2 ! (27)"/ (2 / (27! t

T d2+m oy ﬂ;;"f‘m ) 1 Yus
g3 — m? g3 — m? hs
. /d“l' / (!'l!//d‘a: (,“P'-‘_'l.'.' ftl gr—ryi =Ny ( IR

1 Upr — )
= |C(x —2){x —2),+ E(x — 2)g-p| | 55— (2.29)
5106 =2tz =)+ B = o] | L5
where g, is the strong coupling constant. 2~ and & are SU(3) color matrices. and «a
and b indices correspond to the gluon color states. Since Tr(3-%) = %r)'“”. then

PLD U S B L

<
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Figure 2.7: The leading gluon condensate contributions to the one
loop vertex function in configuration space with the non-
perturbative propagator replacing the photon propaga-

tor.
[n order to evaluate integrals in (2.29). one defines the following coordinate rtransfor-
mation:

"=y Z=:~-ur {2.31}

-
il
3]
|
ty
-
il

and the inverse of this transformation can be found as follows:

I =

_ B 1 . _
(Z+X). y=Y.:=21Z-X| (2.32)

| —

The transformation between the integral elements arc calculated through the Jacobian

of this transformation.

d'rd'ydi: = 2L PNV A2



Changing variables z. y and z into X. Y and Z in the last two lines of Equation (2.29).

one then can evaluate the configuration-space integrals as follows:

/dl /d‘ly‘/(l{-Pl(p) y2 ) r 1(,],-4“4-[\1 Y, Py =Pyl

SO =2 = 2+ Elr = 2]

= [t [y [ dizemicengmsgas g
s[Ct—9ew =2+ B - 2%,]
— . 1 /d4\’/d4 /d Z q.'—tu*kll} :‘IH'P b=ty N
2
L prepi)mtagm—a)] -7 o o .
PR p1)—5(q2 13)] é'\a_\J g [Cgmgj,, + E!},,j_f/.«pj e
) @ [T [atgetm ¥ b iy

ez[, Q——(lh—-‘l:l)] A% é [Cg(u.gdp -+ E(]a ‘]-,) N

_ Ly 09
= d g (Cgafg.}p + Egadg‘rp) (‘2') (—(.)Pn L)_P, {(—)"} B by — (['.2,)‘
L ]l .
[3((12 +q3) — PJ 0 [3(‘1‘.} —q3) — Q]} e (2.34)

where 2 and @ in above equation are defined as the new momentum variables in

terms of fermion momentum p, and p,.

1
P = s{p+p)

1 -
Q = 'j)‘(p) [)1) (_)5)]

Substituting (2.34) into (2.11). we find the gluon condensate component of the vertex

Green's function to be

)y +m
Sttt = [ g s
1
g(cgargdp + EJudg'rp)

J d dq, dtyy dth,
P, 0P; {/ (27)3 / (27)¢ / (27)4



cilfa+m) Lids+m) =g

(@ -m?) " (¢g—m?) K
1 o fl i
(50127020 iy~ gy — )1 8* [t = ) = P
e iy —
g* ["(QQ —q3) — Q” M $2.36)
2 {p1 —m-)

We now evaluate the integrals inside the curly bracket i (2.30.

1 ) : (ﬂ':; - m) — 1 Yur
- [ /d [(m co s ),
2 ./ ? 4 b qq—m) (g5 — m?) I
(1 1
5 s = (s = )1 6* [5a2 + as) = P| 6" [ 002 = a1 = Q|
= (3 [ ' [ e (g2 m) s+ 000, =G

g —m?) (qgF—me gy =gt

g1 - 1
o' [;(qg +q3) — P} g* [7((12 —a3) = Q],
/, 1? ﬂS + m . f}g + m 2 —lYuoc
= [ d'qzv i
)P —q3)?—m? ¢33 -m? gy — P)]
(B +Q@)+m o (P —Q@)+m 0 Yus
P+Qr—m? (P-QPF-m 1Q?

=0t gy — (P = Q)

We substitute (2.37) into (2.36) to find that

. + m)
AGil[)—_:.[)l] = [’5" — ‘—J(JQ —--J) (Cq“ Y, —E_(/n‘)!/__

a 9 | ., LI?TQ+m L = rm)  —igue | (P —m)
JP, 0P; ’ (P+Q):—m? (P -Q)—m? (20)*] pi—m°

_ [m+m}[—@w4 WQMWPQ[!LJq 238
p3—m?| [(p—m)? pro

[u the above equation. AL (pa. py) is the gluon condensate contribution to the trun-
cated vertex Green's function. which is analogous to the purely perturbative photon

correction (2.12). Therefore we then see from (2.38) that

2

AF;(P Q) = ‘—Tgs(cgafgﬁp + Egodgrp)

N a a g (H+Q+nl) T ([7—(2+’”) -;)_igll”
P, 0P; | (P+Q2—m® (P-QF—m? (2Q)

(2.39)



V]
o

The renormalized form factors F{(¢*) and KFY (¢~ can incorporate 2luon conden-
sate contributions by making the following transtormation on factors in 12,180 and

(2.19)

eQ*R(¢*) = iR (¢*) = (o,GHYRU(¢”) (2.40)

. - 9 4y P . Y N B
e2Q°S(g*) = ¢28%(¢") = {a.GHSY(¢" 2.1
The gluon condensate contribution to the vertex correcrion can then be written as

a(p2)T% u(pr) = a(pa) [(1 + (. GHRU(¢*) = g7 AR (g7
+4a,GHS(¢%) ~ g1 ASY(¢7)) -~
—'2(0:.,-(?2)59((13\m‘“’qu/m] Hip

= Z, a(ps) [qu(qz)"“ + KF g va*y, m Hip S22

As before. the renormalization implicit in the last line of (2.42) is accomplished

through the renormalization condition that F7(0) = L. in which case the (divergent)

constant Z, is given to order-g2 by

Z, = 1+ {a,GHRY0) — Oty.c")

+4a,G*IS0) = Qigt o f 243
To the leading order in g2. one then finds that
" 1 + {a;GHRI(¢?) + H{a;GHSY(¢°) + Otgl. ¢*

F9(q%) = (asGT)R(¢°) : ( 151q ) gz €7) 944)

1 + {a,G?) [R9(0) + 159(0)]

i _ 2 '] 2 — ') 'J. ‘._’)
ICFr_iq(q')) _ ‘1<OSG )S (4 ) Alys.c 915

T 1+ (a,G?) IRY(0) — 48910
As before. we would like to interpret the ¢ — 0 limit of Equation (2.43) as the gluon

condensate contribution to the quark’s anomalous magnetic moment.



2.3 Calculation of AI'](p2, p1)

From Equation (2.39). we define the following variables:

fasrap — 9 0 [W, P+ +m , P=Q) —m }
OPa 0P; " (P+Q)2 —m2 (P —-Q)*—m
D=[(P+QP -m][(P-Q) -mi=CV
U= (P+Q)7 —m"
V"= (P-Q) —m-
pr=P+Q
p=P-Q

H* =B+ @) +m]~"[( = Q) +mj=1p,—m)=~T1p, —m)

We substitute (2.47-2.52) into (2.46) to find that

Jd o S
adTop — S B [U.’;le
d P, 9P, [D
= ,:'eraJa,.’p
We evaluate
d o 1
LS —
“ = 5P, op,
from the quantities
a 1 2 5. 3y
A4 = —(= ——(pV +pi0).
g 0 .1
BaJ = — (=
dP, dP; (D)
9 3
= 2D474° — = |’(]“J((' =1 =2pipt = pp

12500



to find that

1 9 9
ajde  _ ad ryo (PP Ada TN
¢ BYH + papap, )
= B"H? + —g(“”",a";" a0 (2.57)

We then see that the overall gluon-condensate coutribntion ro the verrex correction

is given by

2
a —9s T .
AFg (p'l-pl) = ( 6 )(anrgdp+Egadgrp)F' G o -p
= (_ﬁgs A/C!GQBUA/J + E"‘/TGQJUQQJA’?)
—3; 1 |
= .?,) C :'aBuiHU"J*B'.,!‘ i"T"';"‘J‘J}"i
b 2 ]
-
] ! )
+E _(]a_jBQJ"" Ha,.’ . DJnJ- '-J_j’__u _ “'",J‘,J)‘A'. (ZJS)
3

[n Equation (2.38). Terms (1). (2) and (3) are calculated separately as follows:

Term (1)

-)
"B H = 2DAHTA ~ S (U= Vit =2 H e = paH

(ﬁoH"lﬁo‘ P+ p HOp U ~ FU’ Hpy — pr H pa)

Ol

2
—;(L + V)Y H vq (2.59)

Term (2):

=20~7 (2.6

Term (.3):
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By substituting (2.39).(2.60) and (2.61) into (2.58). we obtain:

, -g; 20 . 5.
Al7(p2.p) = | gs) EgosB*7 - 5;(( ~ 1 )‘: ~TH- .
i
1 3C " i,
+B(20C"'SE)"UT ‘5‘71”3[“[‘7p1‘ - —[Ii[‘[‘TIIIL "'L

I

+ﬁ£ﬁ2flaﬁt -i—[hH"ﬁg (2.62)

(6) )

[n obtaining (2.62) we have used the following identiries:

ot = g 263
~a Pt = APT (2.64)
a” AT DaT (2.63)
g = 4 i2.66)
We also use identities
%?:—;Z)u([ll) = z—iﬁu([n? 207
&(Pz)(p’?__;nzj = 5517(112) 12.63)

which follow from the momentum-space Dirac equations for on-shell spinors:

(p—muipy) =40 (2,69

a(p2)(p—m) =40 $2.70)

Terms (4). (3) and (6) in Equation (2.62) are calculated by using Equations (2.64-
2.68):
Term (4):

v R

2=

@(p2)v Hoveu(pr) = &(pz){[4p1-pz—



>
(g -+-pﬂ)}u(p;)
m

2

= alp) {RUPH + =S = pibutpy 271

m
Term (3):
A p2) (P2 H PV 2 + L H U u(pr) = alpy {{4”1',1'[ A
—mcil - ["‘\E -
=2m(pllt + p.’jﬁ"}} n(py)

a(ps) {Rf—’,(qz)‘

9
Z—LS%’(!["‘.([)‘]’*[)._fl}u(p[) i2.72}

2

Term (6):

a(p2) (P2 H Py + pLH pa)u(pr) = a(p2) {[4"1[ + pyopa)? = a0 =10

cv 3 ,
T (2m)? (201 po ~ ”l'l] =
21 P2 .- . v 5
#M(pg‘ - 0+ _)—x;)'{ —[)._,)} wipy)
m 2
= u(ps ){ TR

[ 2
=1
A
-

SJ( J(p{ -—p,,}u(pn ("

Substituting (2.71). (2.72) and (2.73) into (2.62). we then find that

11 a o 9s aJd 20
@(p2) AL (p2. pr)u{p) = U(Pz)(—g){[Ef}n;B —b—_( -1 J
9
[Riv" + =S ~ MJ}
X m
+ ! (20C + 8E)~
52
8C e 2o o]
+ﬁ I:Rg"v + ;b-{([)l =+ ol

2
3[R + =St + 00

[

} uipy)
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5 -
= a(ps) [R”"a + ;'S"’(pf ~plil wipy). (2.74)
I B
in which case
RI(G) = (_ﬁ {[Eg LB E((- ~ ‘-J RY
6 * p: -
I . 8C ., 4C_, g -
+—5(20C+8E)+b—_.5724,;~ﬁlz;(}. (275
o 2 gf It} -)(’ - . o
Siq7) = (_E){[EQL'JB J—ﬁe(, + 1 )“ S
sC' ., HC _, -
We see from Equation (2.75) that
3 2 r . . .
gusB®” = 2DA%A, - 5 MO+ 17 =2py - po
8 area . agw . = . .
= ﬁ(p_)l TPEL )_‘-D_j([ ”“ ) — o e (2.0

2.73) and (2.76). we obtain

R = (—%?){[Sb—fc*’(p‘z’ +p3) — %‘2(-3(- — 1 p2)
—QD—C__,"ZL'J (4p: - p2 — _)—L; +20) - —[%(QOC ~SE)
+% [4;714 +Hpr-p)r=2p - U = 1’:_, (20 - o~ m"’)]
+SL’)—C;2mﬁ(4L"-’p, -pg-é—L"’)} (2.78)
Siq*) = (—%3) {[%—‘EL’% 1 +p3) - 8[’)—‘2(2& — 1o p) - E)—C;(zt >] (L)
+§)—C;(— %) Jz—C._:(—Pt pl” + %)} (2.49)

When ¢* = (pa — p1)? = 0. then p, - po = 0 became p{ = p; = n® on shell. Noting

further that ' = V" = 0 on shell we find that the gluon -condensate corrections to



the vertex function lead to divergent contributions to both R(0) and S(0):

m? i
g — 1 —_— - —_
RI0) = th.% {96(E + C)C"‘ 9(¢ 4EJ{._,
SS(C =2 g - BRE
(3 (_',,,.'J T
S9(0) =L1;nh{_%(45+3c*) + %ucﬁ‘f‘;m} (2.81)

2.4 Discussion

Unlike the purely perturbative case in QED. the gluon condensare conrrthutions to
S(y¢7). as calculated from the vertex diagram alone. wre divereent on shell. To under-
stand this result completely. it is necessary to review rhe renormalization procedure.

In purelv perturbative QED. the anomalous magnetic moment contribution S(0)
to the electromagnetic vertex is explicitly finite. Feyvnman {14 aud Schwinger “15]

calculated the anomalous magnetic moment KF,>(0) in QED 1o be

Si0)
K-FJ(U) = —
R(U) —- 1S510)
_ e” /8%
T 1 +eX(Dir)
2
= 5+ 0 (2.82)
872
where
R(O) = 1 = e (Div) 12N
Q e”
= _—= — YR
SO) = —=55 (2.84)
(Div) = DivergentConstant (2.85)

In the non-perturbative QCD. the gluon condensate contributions to R(g¢?) arising
from the vertex diagram alone are even more divergent. The remaining gluon con-

. . B . . .
densate contributions to R(g*) arise from self-energy insertions that are calculared



by Bagan et al [27]. and these contributions do not cancel the verrex-diagram diver-
gences contributing to R(¢?). Even though S(g”) is divergent. we see from (2.80) and
(2.81) that the gluon condensate contributions to R and S satisty

_ | S9(q?)
= \\im ———

— 0 2 86
RI(0) — 0 RI(G) (2.86)

The condensates are supposed to be RG-invariant structures.  Thus the true
dimension-4 gluon condensate should be {F(a,1G7 oo mstead of just G700 Sim-
ilarlv. the true dimension-4 quark condensate is {im,qq, instead of just <gq).;. To the
lowest order. the QCD J function is proportional to a7, so the gluon condensate can
be defined to be (a,G?) = (0| : g?G%,G*** : |0). Thus. two powers of coupling con-
stant g, are absorbed in the definition of the condensate. in which case RY9(q" i and
SY(¢*y are order-unity in the perturbation series. Includine borh cluon condensate
contributions in addition to other contributions ( perrurbative — other condensates

we find that

R(0) = 1+ (a;G*)(Div)

+g2(Div) = e (D~ - - -

= I‘TI'RQ(())-.'OICJ.l/j} CYNT
. A
S0) = (aGHDiv) + (¢’ + 393N g) =
= 39(0)‘*0(82,93) (2.88)

Therefore the lowest-order gluon-condensate contribution to the quark’s anomalous

magnetic motnent is found via (2.86) to be

_ S(0)
KE(0) = R{0) + 45(0)
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S9(0) + O(e*. ¢?) ~ |
1+ R9(0) + 159(0) + O(e?. ¢2) 0 (2.89)

All other condensate and purelyv-perturbative contributions to K F,{0} are suppressed
by g2 or 2.

Thus. it appears that the presence of a QCD-vacuum gluon condensate precludes
the possibility of an anomalous magnetic moment occurring at all. We have also
calculated the gluon condensate contribution to self-energy diagrams which contribute
onlv to R(0). and not to S(0) [for detailed calculations see Appendix Al but these
contributions do not alter Equation (2.86). The main consequence of this equarion.
even though both R(0) and §(0) are divergent. appears to be the complete absence of
an anomalous magnetic moment. a direct consequence of divergent gluon-condensate
contributions (which do not occur in purely-perturbative QED). This result suggests
that constituent quarks act like massive Dirac fermions (¢ = 2). as in the naive
constituent quark model.

To summarize. we find for gluon-condensate conrributions to the QED vertex
that rwo factors of g, are absorbed into the condensare itself. which has a known
numerical value (0.045Gel™) even larger than that corresponding to a (non-coupling-
constant-suppressed) QCD scale (\*). Because two powers of ¢, are absorbed into
the definition of the condensate. the coefficient of i G*) in the verrex correcrions
R and S are order-unity. Thus the gluon-condensate contribunion to rhe anomalous

magnetic moment is

lim Slg’)

— =0 (2.90)
7*-0 R(q?) + 45(q?) '

Because all other condensate and perturbative contributions to R and § involve two

additional powers of g, this relation will be perturbatively unaltered by adding such
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contributions to the gluon condensate contribution. Thus. if the eluon condensate is
non-zero. the quark’s anomalous magnetic moment appears to be zero!

We have used a single constant quark mass throughout these calculations. This is
consistent with a dvnamical. rather than just a Lagrangian. quark mass. as is argued
by Elias and Scadron {24] on grounds of gauge invariance. The Fevnman rule QED
and QCD vertices remain unaffected by the use of a single dvnamical mass. as long
as that mass is taken to be constant rather than momentum-dependent 28 Thus.
the quark magnetic moment appears not to change at all from its naive Dirac vahie

eQ/2m. where m is about 300 Mel .



Chapter 3

Extracting the Instanton Contribution to Finite

Energy Sum Rules

3.1 Approximate Instanton Contribution to Finite Energy

Sum Rules

[n the instanton liquid model [29]. the direct single-instanton contribution to Laplace

sum rules based on the pseudo-scalar(p) current correlation function is

Ry(s)

1 r=x !
-/ Im[(ITP () JanseJe " dt
=~ Jo
d7ingg?\ 37 oL (0 L
= ( :3"2:3 ) 87{2,536 v [[\I) (3—‘) -+ [\l (-)_:)}
I P A P 31
= 87:.253(:’ ‘o 2—.:: =+ I E (3.1)

where p is the instanton size (= 1/600.Mel’). 5 is the Borel parameter (s = 1/1/[7).

and Ay. A are the modified Bessel functions of the second kind. [17{¢°) denotes the
correlator of appropriate light-quark pseudo-scalar current g--¢. [n the instanton
liquid model the quantity n. parameterizes the instanton density and m. is the self-
consistent dvnamical mass.

The pseudoscalar correlation function is defined as

(%) = i [ d'zePS0IT (j)50)) (0) (3.2)
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where j(r) = v(r)vse(r) is the pseudoscalar current with ¢ being the quark field.
In Equation (3.1) (IIP(¢)).ns. is the portion of the pseudoscalar correlation function
which arises purely from instantions.

The finite energy sum rules (see Section 4.1.2) we wish to obtain are
IAL . Dk
FP(s0) = —/ [m[(TI(E) ) r FRclt (3.3)
T Jo

To evaluate (3.3). we see that Ry(s) in (3.1) is itself a Laplace transform:

1 .
RS(S) = E[;[nl(np(t)’umt (3.1)
Clft)] = / F(t)e"tdt (3.3)
0
From (3.3) and (3.5) we see that
d P -7 pp N 9 o
EFk(t) =L7TRY (S (3.6)

Upon taking the Laplace transform of both sides of (3.6) and noting from 13.3)

that Fi(0) = 0. we obtain [30]

IS
FP(t) = L [l (—;—l> RY (<) 13.7)

~ (lS

Approximate expressions for the inverse Laplace transforms (3.7) in terms of ele-
mentary trigonometric functions may be obtained via asymptortic expansion methods

in the complex plane. We begin with the asymptotic expansion 31,

T nl]  Tw+h=14)
KR,(z) = /—e" —)* i Oz 3.8
SR Lgu(z: v 138

Calculating Ay and K| from Equation (3.8). we can find
Ro(2) + Ky (2) ~ (—)7e™* Y anz™" (3.9)

2

t

n=u



34

where

L 3 15
ay = 2. = - U3 =—-——.0Uy = . """ 13.10)
TS ME BT T M TR
Given the inverse Laplace transform
—-a/s 1
-1{¢ — —1y2 gl 2,002 211
L l: 7 ] \/Ftt cos{2t' ~a'’*) (3.11)

we repeatedly differentiate both sides of (3.11) with respect to ¢ ro find rhe following

identities:
e 4/’ I . SN
o [ =73 J = —/:a‘[’l.sm('lfl 2al?) (3.12)
§3/2 VT
—1 f:'_u/'s 1 1 —3/2 .. 1/2,1/2 12 —1 N2 1,0 . )
L 572 Z—T —-5a “sin(2tVCa )+t CaT cos(2 Ta ) {3.13)
5 T 2

3 - oy e B '5 <y ’ ')\-.
(1a"’/2 - ta“‘/')) sin(?tl"u' T) = Sfl T Tcos 2t Tat T

300
el Lo/ _; . L
-1 |€ _ P, SO ST S SRS R
(5] = (s
15 ., R o )
+ (—Tdtl/'a_3 + t“"a") cos(2t' Fat ')] (3.15)
-1 e~e/s 1 105 _,., 45 I N
L I:S“/g] = _\/:‘ [<—16u —T—f a ) ~ine2tt Ta }
105 , , Y . ,
‘*(“{fl et =5t cu '):us('_’_t TR 3100

Through the application of (3.11), (3.12). (3.13). (3.14). (3.15) and (3.16). we can

calculate FJ as:

s
3p 22 I e
= L1 ST T ) —[Lh 77, |
47—%{ ( ) 1p?
—-32p4 (s™ e ’)-rl_zspb.l., (s 2 ) + J



3 -
= 4% [-—ltsin(?p\/z) + BV'tcos(2pv'H
1 _
+Csin(2pVt) + D—=cos(2pV't) + - - - (3.17)
Vit
where
- - -
_ -3 - o= B L . -
A=—-p7. B= 4/) . C = 32;) D= G SRR

Finally. we find that F§ finite energy sum rule can be expressed in terms of elementary

trigonometric functions:

o 3 12 4 25 !
FP(se) = gpy {Sm(.Zpso« ) {_p-’sg T O(V"-"u !
0T 15 L]
~.-(;u.s(12p.5$ ) i.——/).sl“, - _—)f - 1 N
—l 1._)')/1-‘” /l'\, - JI

Given an instanton size 1/p = 600.Mel . Equation (3.19) is seen to oscillate slowly
as sy increases past 1 Gel ™. going from positive to negative as s, increases past 2.9
Gel ™. Since the purely-perturbative contribution is also positive and quadratic in
5o [4. 32]. we see the effect of instanton contributions is to enhance the size of field-
theoretic contributions to £} at low s¢. but to diminish somewhat the magnitude of
ficld-theoretic contributions for values of the continuum threshold chosen to be above

2.9 Gel ™. The same methods as above leads to the following instanton contribution

to F? -
FI' — [:_l l _ng(b)
! s s
. ) - ISV, -2
- [—4 N Fe ) 9L s T T = 2L e BT
1672 S
21 ., _s _& 405 ., s e
Tapl e Tyt e
3465 1 _g?
L7(s77e77) + 3.20
soasp s ) ] (3.20)
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Through the application of equations from (3.11) to (3.16). finite energy FY sum rule

can be rewritten as:

3 D ) - v N
Flp(t) = 16;)72 [.4t~.sm(2p\/f] + Bti"'(,'u.s('l/)v ty = Ctsan2pv t)

+Dt'2cos(2pVt) + Esin(2pVt) = Ft72cos(2pvt) + - -

where

, (29 .
A=—dp™. B=~1lp™ = ==
b
331 _. 3843 - 3465
D=_ _h.Ez— _A. — _ -~
32 ¥ 512 7 20187

3.22)

Again. we find that FY finite energy sum rule can be expressed in terms of elementary

trigonometric functions:

v 129, 3343

Ffisy) = - .sirz(?ps[‘/z) —dptsl = S50 — -
! 6 0 {) <

: 4o 331 . 3463
+eos(205%) [-umss Bl e B
32 20485,

-)l; ,‘I‘I\

{3.23)

Once again. the leading instanton contribution to F? is seen to be lower-degree in sq

than the O(s3) purely-perturbative contribution.

3.2 Explicit Expressions for F{(t)

In this section we present the derivation of explicit expressions for the instanton

contributions to finite energy sum rules F7(f). We begin the derivation with the

identity [33]

1 25 1 - x . :
e VB E(1/2) = =7 [ dptanyyege ™ vde
2s 0



= L —%./0( v H YV E)

Llf(t)]

where

flty = —’%-]l)(\/’?”;)( v f

\We differentiate both sides of (3.24) with respect to s. and applv A7)z

dLHS) 1y 1 Lo e L e L
Tas et Mg g g
d
wzc[_tf(“
ds

Equating (3.26) and (3.27). the following relation can be obrained:

L 25 - S
HQ(-S) = 5 J e”! f_[\u(»l/._).h'} ~ I L, 2

= LU+ 3L-t]

—

= L[h(t)
Applving the convolution theorem.

Llf+g] = Lifl-Lly
t
= - ~dr.
(f *g) /0 flt=7)g(7)
and knowing that £[1] = 1/s. we find that
ht) = L7{Hy(s)]

rl
L2s

= L' E f)]-r.—[.[ tf(t

w

= Zh(VOYs(VE) + L7 [——L L—/o(\fn T
= TtR(VDY(VE) - / Jo(VE (V)

|
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(3.24)

13,250

b= =N

(3.26)

(3.27)

(3.28)

3.29)

3.30)

(3.31)
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Comparing (3.28) with (3.1). we see that

3 )
RS == Hy(s/p7. 13.32)
T2p
using the rescaling relation
G(s/p*) = p*L[g(p*t)]. for G(s) = Lg(t)!. (3.33)
We find via (3.7) and (3.32) that
FP(t)y = LA -t 3.
k( ) = m(}k(ﬂ ! 13344
where
VAN o x s
o(t) =L - | == Hyl(s) =/ Fh(T T (3.33)
s ds 0

We then find from substitution of (3.31) into (3.35) that

4
!

T [t . . " e —
or(t) = IL (lTTk I:T]()(\/T_-))Q(\/I:) —/ 11(1‘.10(\//11‘))‘;(\/"(l')J

0

T t - S —_ . "
- 4_(A_+_I)/o [k + 2)78 50 = ST Y (v Tl (3.36)

Substitution of (3.36) into (3.34) vields a closed-form expression for the instanton

contribution (3.3) to finite energyv sum rules:

3 30 S - . —
./ (h+ ekt = .sﬁ'l_%-/”l/)\/u.'))U(/)V u (3.37)

FeGo) = o

Applyving a change of variables in (3.37). using the identity
. 1, . . .
/;r.]g(x)io(x)dx = =22[Jo(2)¥o(x) = Ji(+)¥5 () (3.38)
and performing an integration by parts results in the expression

3 s . .
FP(so) = —1:/0 * WE T (TN VT due (3.39)
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The integrand is easily seen to be smaller than the leading perturbative contribution.

From comparison of (3.39) and (3.3) it is also possible to make the identification

1 . 3 — ..
:Im[fl”(w)}mst = —Fu'.ll(p\/u'»‘z NS

" i

(3.40)

For Ak =0 and & =1 we can find Fy(sy) and F(sy) via changing variables py/u = =

3 [so —
F&(So) = —-4—/ U.'J[([)\/U')} ;(/J\/T}(/H'
7 Jo
3 PIVETI A
= —‘2:;)4/0 oY sids
P 3 o, -
Fi(s¢) = —— W (pV e Y e idee
T Jo
3 VT .
= - ,/V STV )de
27p° Jo

Performing the definite integration over z we find

,5 'P\JTI .
(=) = -3 /)"/ Y ds:
Ky 0
-1
= —-—:-;;[.]ﬂ:)}}(:)*./-JI:})TJ(:JE

The following identity is emploved above:
. 1 .
/:3.11(:)11(:)@ = LAY = b))
Using Equation (3.44) and
.6

/ZSJ'_)(Z)}:_Q(z)dZ = fa[Jz(i)}i(i) <~ Jy(2)Ya(z)

we integrate by parts to derive the following identity:

- . 4 x- l .
.'.")Jl(:.))'[(:)dz = -—8—[.]1(;')}[(:) + 'j»]-_)(:])‘_){:l - '_;.]-;( ) {(:}‘

D)

(.3.41)

£3.42)

(3.43)

(3.4

{3.46)
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Therefore. we find that

3

FP(2) = ——=:
t(2) 167 pb [

UIIJ—

. l S -
(=5)¥(z) + :m(:)—g.f.-;(:n»‘(:)_a (3.47)

Substituting = = py/w back into (3.43) and (3.47). F} and F{ are expressed as follows

in terms of sq:

Ef(""()) = -I“[J[ p\/— /)\/ 3()) - I l[)v N,i) Jl/) (348)
353
Fl(s0) = 16;°G[Jl pV/50)Y1(p/50) *—1 (pv/30) Y 2(py/50)

—g.fg(p\/so)}}(p\/sol] (3.49)
\We can show in (3.48) and (3.49) that

llm FP(0) -0

bo—o

llm FF(0) — (3.50)

50—’
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Chapter 4

Finite Energy Sum Rules and Subcontinuum

Resonances in the Scalar Channel

4.1 Finite Energy Sum Rule Phenomenology
4.1.1 The Correlation Functions and Dispersion Relations

The correlation functions of local operators are defined as the Fourier transforms of
the vacuum expectation value of the time ordered product of a local current ./, (r)

rimes its hermitian conjugate. i.c.
O,.(¢") = L’/d“re"” 0| T (./u(.m./V(U}:) O (4.1}

where the current J,(z) is one of the Noether currents associated with global gauge
transformations of flavor degrees of freedom. like a vector current ¢ ~# ¢. or an axial-
vector current ¢ *~sq. It has been shown by Kallen and Lehmann 34, 350 during
1950°s that two-point correlation functions obey dispersion relations. The dispersion
relation follows from the analvticity properties of [1(¢%) as a complex function of
¢”. the only energy-momentum invariant which appears in a two-point correlation
functions. In general [I(¢?) is an analytic function in the complex ¢*-plane but for
a cut in the real axis 0 < ¢? < oc. as illustrated in Fig. 1.1. With .J,(r) a current

with specific quantum numbers. the imaginary part of the correlation tunction is



Physical Region

Complex s-Plane

Figure 4.1: Representation of the complex s-plane.
then directly related to the total cross section for the production from the vacuum of
hadronic states with those quantum numbers. For example. with the electromagnetic

hadronic current light quarks.

2 I - l
JH(x) = §&(r)7“u(r} - gd(i‘)"_u”d(.z') - 55(1.')*<“.-u‘1 4.2)
the relation to the total eTe™ annihilation cross-section into hadrons is
9 o, 1 )
a(q-)e"‘e‘—ohudrwts = 3 e —lmll,.(q7). (-£.3)
q? <
4.1.2 Finite Energy Sum Rules
The finite energy sum rules are defined to be the integrals {32]
1 k
Fi(s0) = 57— ds s Tmll(s) (4.4)
271 Jo(se
with & = 0.1.2.---. The contour C(sp) is an open circle of radius ~. in the complex

s-plane that does not cross the real s-axis as shown in Fig. 4.2, For the hadronic con-
tribution to the FESR’s F*(so) . the contour C(sg) can be distorted into a line running

below and above the physical singularities on the positive real s-axis (Fig. 4.3):



Ims

S0

Res

| Complex s-Plane

Figure 4.2: Contour of integration C(sg) in the complex s-plane.

Ims

Complex s-Plane

Figure 4.3: Distorted contour of integration in the complex s-plane.
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Fé‘(so) = /m ds 5~ é[!nﬂ"f.ﬂ 14.3)

0

Finite energy sum rules are calculable quantities in QCD. provided that the upper
limmit s, is sufficiently large. In general non- perturbative 1/¢% power corrections and
instanton corrections can also contribute to this integral. As one increases the k-
power in the finite energy sum rule. one becomes more and more sensitive to the
detailed high energy behavior of the hadronic spectral function.

One of the successful example of finite energy sum applicarions is the determi-
nation of the QCD coupling constant from the hadronic tau decayvs. From the phe-
nomenological point of view. the quantity which can be measured by experiments
is the hadronic tau decay branching ratio R-. [t is related to the contribution of

hadrons to the spectral function. i.e.. the imaginary part of the correlation funcrion.

(1t — v, + hadrons)

B = [(r— = ve0.)
m? g s
~ / —i(l-—q)'flllln(.s)) (4.6)
0 mz m:

R. has been calculated explicitly by Diberder and Pich [36] as follows:
R = No (IVial + [VsP) Seu {1 =7, = 6% =i, ) T

where S, = 1.0194 and ¢!, = 0.0010 are the contributions from the leading and

ew

next-to-leading electroweak corrections. and where
-)

-0} a,(m?) as(m2)\~ alms) ) aL(m?) !
= ——I2 + 52023 ——— | +20366 | —— | + O | ——— (4.3)

-~
" . o

is the result of the perturbative QCD calculation in the chiral hmits.  The re-
maining factor d,, = —0.016 = 0.005 includes the estimated effects of small quark
mass-corrections and non-perturbative power correctivns. The experimental value of

a,(m?) = 0.370 £ 0.033 [3] is in good agreement with the theoretical value.



4.2 Perturbative Contribution to F; and F| Scalar Sum-Rules

[n this section we extract [1(Q?) of scalar correlation tunction from the three-loop
order QCD radiative corrections of the D function :37.. This D function is related to
the total hadronic decay width of a scalar Higgs boson which is determined by the
imaginary part of the correlation function of the quark scalar currents.

The mathematical form of the D is given as

> , [—[,!(_)""l ‘
D)(Q7.m,.qy) = Q'E; [ Q._, } (4.9)

where [T,(Q%) is the correlation function of the scalar current
[L,(Q? = —¢%) = i/d*ze"ﬂ(om.fj(.r).,';(u)5u;> L4.10)
with the scalar current as follows:
Ji(r) =m;q,q,. q =u.d.c.s. bt (4+.11)

where ¢, = u.d.s.c.b.t are quarks. m, are their corresponding masses. In ref. 37]

the general expression obtained from the D function has the form

2 d(R)m? _ Q)
'DJ(Q.,—.mJ,as) = (—)Zi [1+a~’(dlu-d“[u(i‘))
ik 87 T e

- 2 , Q7
-%-(&)“ (d-_:o —i—d-_)u'n((')—_,) —rd-_,gln‘(i,,j)J (4.12)
T I j=

where p the renormalization subtraction point. and the analytical expressions for the

coefficients d,; are as follows:

17 3
do = T’Cp, diy = =5CF.

dy = % [(? - 6‘2((3)) Ca— (65— 163¢(3) T\
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+ <6‘(j—1 - 36g(3)) C,.~) .

Cr [ 284
lyy = — (——— + =T Ny = 105C, | .
SR T G TN -0 )
Cr :

In Equation (4.13) the Casimir operators for the adjoint and defining representations
of the group SU(NV) are Cy = N and Cr = [(N? = [, 2], N, d(R: 1s the dimension
of the representation R. {(3) is the Riemann Zerta function. T° = 1 2 corresponds
to the normalization condition T° of SU(N) via the relation Tr(T9T") = To*" for
the generators of SU(N) group. and .Vy is the number of flavors. For the standard
representation of SU(3) group. one has d(R) = 3. C'y = 3. and (' = 4/3. Therefore

the coetficients in {4.13) take the following forms:

17
(1“) = T‘ ([11 = =2
10801 39 6y 2 H
dy = —— — — — = = =J3| N
20 (11 2%(3) 5 3\,._}JJ ,
106 11 19

dyy = ——+ —=N;. do _—-———\ (4.14
21 3 T g =Yy )

We solve the differential equation (4.9) by multiplving an integrating factor

e_J.'lQ: 27 = QL Therefore the scalar correlation function has the torm
Q%) = @ [ dQ* 5 0,12 115)
Using the expression of the D function (4.12) and the integration results that
/dQ Qz/“ ) - %znl(Q'—’/u‘-’). (4.16)
/dQ [0 Q /,u = %ln"(()"/u"}. 4.17)

we obtain the scalar correlation functions IT,(Q%) as [uiluws:

. 3 2 ‘ :
HJ(QZ) — ’n Q ln (Q )|:1-1- (%) (( 10-%-6[1[!1((—2_,—))

8"'('2 a e



s 2 ( = . ¢ P
+(a—) (ego+82lln(i_,) +f—-_>-,ln'(i,))} {-1.18)
T - -

where the coefficients of e;; can be written in terms of d,,

e
€10 = dyo- €11 = 57 2 =
d-)l s

ey = —é- £y = —3— i1 19)

s and using m, = myz = m. we obtain the scalar spectral function

Defining —Q* =

via the following relations

Im [ln (Q:-)] = —x P L20)
e
Im {Hn (Q—:) )"J = =27/ \, : 2L
M j1-
Im [(ln <97-))Jl = -3 ([n(%}) + (-1.22)
I I

in which case. the scalar spectral function is

~

1 , 3m?s a, ‘
L] = 21 (2) o

~

]
a2 -
"T'(_’) [((:’_:0*2("-_:1[”[-;) ~ e _::/Il'yf -
- T

e
(4.23)

Substituting Equation (+4.23) into the definition of the finite energy sum rule. we use

the following integration relations

so 5 L, ~0 Ll _

/(; .SZII(P)(I.S = 336 l’llll—l—_l; - EJ 1.24

So 2 S ]. > 9 0 S 1 a=
/0 sin™(—)ds = 7% {l ”(F) - 1”(17';) + :} (4.23)
(4.26)
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s0 9 o, S 1 ) 50 -)
/ s°In*(=)ds = =5 [ln (=) - —[rz(*-) - —] (4.27)
0 3 2 30 u? Y

I &

S8~

to find that the perturbative contributions to Fy and F, are

v = [ [

T

3m?s? Q 52
= 2 1+<—) (6’10—‘“’11)“"2611/'1("—‘.);)
167= w =

)

as)? -
+(—) (€20 = €a1) + (20, — Bew) lint =)

T j-
. Sy 3 , !
+3epmin(—) + (= — rr')(_.._.J} 123)
ik 2
pert J0 ]' ert
FPet(sg) = / —[m[l"[” (s )]5(15
0 @
2.3 2
m-s 3
= L 810——(11 )(n/n(—)]
82 1=
Y ) -
‘r‘((—‘) [((’20—7611)*3(':1 —ex) i ”.)
pre 3 ji-
Nq) 2 , |
+3€9, [”.(_‘))‘T'(.— — T ) _|_»‘ i-4.29)
- 3 i

4.3 Non-Perturbative Contribution to F; and £, Scalar Sum-
Rules

Within the frame work of perturbative QCD. the perturbative QCD results are mod-
ified by non-perturbative effects at short distances. In the physccur vacum we can
evaluate these non-perturbative effects in the correlation functions calculated at large
(Q*-values. Those values appear as inverse power corrections in (Q° by using Wilson's
Operator Product Expansion (OPE) in the physical vacuum. The power corrections
appear as the product of Wilson coefficients times the universal non-zero vacuum
expectation value of gauge invariant operators called condensates. Theretore the

correlation function can be expressed as the sum of both the perturbative and non-
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perturbative contribution

Q%) = Cperel@®) + Co(@%)(mdq) + Cu(Q*)(4G - 0q) + Ci2(Q*){(a,G?)
+Ce3(Q%)(95G?) + Claq2(Q*)astqq)™ + -+ 130
where Cpere(Q?) is the contribution from the perturbative etfecrs ¢y 70
Ce2(Q?). Ces(Q*) and Cigyy2(Q7) are Wilson coefficients. Their corresponding con-

densates are defined as follows:

(mgg) = (0] : mGa(0)qa(0) : [0} (4.31)
(GG -oq) = %gs(OE D (0o, (N ) oy g G (0) 0 ) i 1.32)
(,G*y = (0] &, GL0G*10) = 0 BT
(9:G°) = ysfunc{0] : GE0)G101GH0) = 0 1 4.34)
(a5(Gq)*) = o ((mgg))*/m’ (4.33)

These quantities are respectively called the quark condensate. the quark gluon mixed
condensate. the two-gluon condensate. the three-gluon condensare and the four quark
condensate.  Their corresponding Fevnman diagrams are shown from Fig. 1.4 to
Fig. 4.8. Our focus in this chapter in on the scalar correlation function. for which the
relevant coefficients in (4.30) have been calculated as follows in retf. 38

(1 —¢)(1 +2¢
Co= - ) ’ (1.36)
m2(1 + v)

_ (1 — e
T 2m3(1 + o)
f(e?2 =)@+ eHN(e) =23 - 7)1
_ ! o
FEe: = Ir el (1.38)

]

1437

L - :
9 -+ b .\, ,
5760mwgivé(1 — v?) (15(1 — v*)?(23 + 190 + 53¢ + ") X (v)

—2(345 — 290¢? - 216¢* + 5008 + 150%)] (+.39)
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Fignre 4.6: Fevnman diagram representation of twou-sluon condensare contributions

Figure 4.7: Feynman diagram representation of three-gluon conden-

sate contributions
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Figure 4.8: Fevnman diagram representation of contributions from

the four-quark condensate

where for ¢* < 0.

/ im?
v = \/1 _ (1.40)
g~
- 1 T+ D
Ne) = =tn (=) (4.41)

Since the light quark mass is very small. an expansion in powers of light quark mass
will be appropriate. The expansions of (1.36). (4.37). (4.38) and (4.39} in powers of

light quark mass are obtained as follows:

m- m?t m® ' 1
Co=3"——2— +: - (42
T T T Ty T v ’
m m3 m? me
Cy = - 3=+ + O(— 4.43
M Q 0 0" (Q“’) ( )
1 3 m? m? m? m'? e
Ei = — |- p Bl 1875 _ 602l i )
G Y Q2 + 12 o ln( )+ O 6 0" ni oL
4 mﬁ ,2 )t; \
_966?-'--88@[”(@2)—*-444(2“ — lgbb()m
8 10
~132 oizn(’" )+ O(=) (4.44)

1

QU@



1 3 1 m- m"’ m?
E = - ) — 19)
c? 3607 [ m2Q° B T 1805 Q"
m? mt m"
-9 - j — 4308 — — 32692 —
O-l(](")3 In(— o 1508 )_‘ 9 I
mb m' m> _
+16440—— In(— (4.49)

QM Q’ C 21 )
For two and three gluon condensates. the correct coefficients C'¢;: and C'¢;s are obtained

from the naive coefficients Eg2 and Egs in ref. [38]:

m*
Cg: = Een +l—)——CQ——[IZ(—0(‘[
1 Tm? m* Q- _
307 T s08 Qi [Il(;-: -~ Q' (-1.4G6)

1 1
Cer = E
¢ G T 3607m2 @ 12=m M
135 2 2 2
= — Dm.—‘m .lrl(g,—)*-(?(m'i (A7)

The dimension six quark condensate is obtrained via rhe vacummn ~aniration hvpothe-
sis [39]

T+ O(m=) (4.48)

Finally we have

I(s) = Col{mdq) + Cr{GG - oy —Crs 00 G

-%-Cc;x (ySGJ> + C(qq).' \u,(r]([)“}g - (4.4Y)
Using the relations
In —1)"2m
e Q2 (n — 1)sg

We then find that [Q? = —s]

1
Fo'(so) = 3(mgq) + g:(a,(r}



m* : IneQ? _
-5 (.G >——/( ds

270 Q?
m"’ 3 (nQ?
—— s — —d
27 { ' omi Clsoj Q" 7
1 y m?
= 3(mQ_Q) + 8_“’((156-) - —(Q C ) —
it —A‘ “”
__2<a G-‘*)—_l LS
2 1 ? 2.55 .

Since higher dimensional condensates are all suppressed by additional powers ot the

light quark mass. the leading order non-perturbative contribution is given by

1, , ]
Fs°™(s0) = 3(mqq) + 8-,(6156") + O(m”) (1.52)
Similarly
Ferd(sy) = 2m*(mdq) - :m'\“ G o= migG o Ty
‘ 127
+£ln(— (G =+ 1«(1 ch L
27 ) S
176w .
22 (0 (da))
Tom o -
= 5 {ag(qq)”) + Otm) (4.33)

4.4 One Resonance Finite Energy Sum Rule Fit

Hadron properties can be extracted by relating phenomenological and tield theoretical
expression for integrals over the scalar current correlation functions. In the previous
two sections we presented the field theory contributions to Finite Energy Sum Rules.
The phenomenological expressions are generally extracted through the narrow reso-
nance approximation.

In the narrow resonance approximation. hadronic contributions to the imaginary

part of current-current correlation functions are proportional to o-function at the



o
[e]]

resonance mmass

Im[I*(s)] = 3 7g,d(s — m}) + Ols — sy [P0 (4.54)

-
The summation r in (4.34) is over all scalar resonances. i.e.. whose quantum nuimbers
are consistent with the choice of currents in the current correlation function| such that
m? is less that sp. Above this hadron-continuum threshold. the hadronic contribution
[1"(s) to the correlation function is assumed to be the same as the contribution [17(5)
from perturbative QCD.

Substituting the narrow resonance approximation (4.34) into £ sy, one finds

that
h 1 o k h
Fl(so) = —/ dss® [m{I1* (5)]
7 Jo
= S gm¥* = Flis)i (-4.35)

The field theoretical expressions for the Fy{sg) and £ v~ finite cnerey sim rudes are

obtained through (4.28). (4.32). (3.48). (4.29). (4.53) and (3.491:

FU{""O) = Fé)ert(SQ) + Fomnd(S()) + F(;"sc(b'o)

_ 3,20 ( %s ) +19 8‘7‘73( < ) - 302 11m<“‘ )3
165 |° 3 \3/) o \vm) T VU

1 2
+3{mqq) + 87<05G->

53 . —_— _— -
-ﬁ [(Ji(pv/s0)Yi(p/50) + J2(py/s0iYeloy'su), Hob)
Fi(so) = FP(s0) + FF%(sq) + FI™*(s0)
3 2 3
- X {1 LB ( = ) +43.3640( f‘_‘,) —213.5157( “ﬂ,> }
ey 3 Sa VA v oY

1767 oy
+ .)T <O"-ﬁ'(qQ)->




3sp .. i ;‘ .
—80—‘(')'[0.][([)\/%)} l(P\/;l;) + 4 Lalpy s Yatpysg

—JIS(p\/SO)};S(p\/SO)] i-b.07)

Corresponding expressions for the resonance contributions to £, and F; are obtained
P g exp ) 1

from (4.53):

Folsa) = 3 gr = EE™ (s0) = ES™ i1 = FZ i) 133)
FI(SO) — Zgr’n.}z — F[pcrt(.’_o) - Flcumt(h_u) = F{’“I‘M)} |4')9)
-
Using (4.58) and (41.39). the upper bound on the o mass can be obtained:

Filso) _ 2rgemy o 1 4.60)
Fy(s0) > 9r

This upper bound can be identified with the 7 mass itself. if the o is the only
resonance contributing to the sums (4.38) and (4.39) the assumption implicit in a
one-resonance fit. Such a fit has been obtained from the field-theoretical expressions
(4.26) and (4.57) in unpublished work by K.B. Sprague. His calculation indicates that
m2 < 1Gel ™ provided that s < 1.72Gel ™. But other work 21 has shown that the
perturbative contribution to FESR's converge very slowlv. if at all.if 5 < L.3G V.
suggesting that a o lighter than 1 Gel™ is unsupported by a one-resonance fit to finite

energy stim rules.
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Chapter 5

Cancellation of Gluon Condensate Mass
Singulartities in FESR’s for the Scalar, Vector and

Axial-Vector Correlation Functions

5.1 Real and Imaginary Parts of Gluon-Loop Integrals

The axial-vector correlation function is defined as

[ e eI jus(2)s(0)10) = g = B Tt + 2 My’ (5

with the axial-vector current being j,5(r) = alr)~,~ d(r). The purely perturbative
contribution to the longitudinal component [1; of the axial-vector correlation function

can be obtained from ref. [38]

iHL(pz)}pert = Cpert(pz)
Im? 2 -LT;[‘) " -
= 272 |:_n~4_~,&--—/”(—;—”—2—-) -"[([) )J (.)__2)
where
/ dz ln [1——1(1—1)—/5] 2> 0 (5.3)

For p* < 0. we follow Bagan et al [38] in defining the following function characterizing

gluon loop contributions to correlation functions

1 (o4 [(p) =2
X(e)= = 1n (‘ * 1) LAY B (5.4)

v —1 =




with

4im? - -
r=4/l - — 15.3)

p’.Z

If p? < 4m?. the argument of the logarithm in (5.3} is positive definite. and the
iz factor is irrelevant to the evaluation of the integral. [t is straightforward to find
rthat Cpere is real provided p® < 4m?. Direct evaluation of the integral [(p*) vields

the following results:

—

. Tt (1 1-
2y = -9 —_— ¥y P 2 - T
I(p”) 2+4/1 = {n v/?"_%_‘._ Tk poo< 0 ).6)
- im? o 4m? e ‘ . , - -
[{(p7) =-2+2 5~ — 1 tan ‘ (l—,, — l) .’ T Y (3.7)
p P ]

One easily finds from either expression that lim,:_, [(p®) = 0. and from the latter
expression that limp2_(ym2)- [(p?) = —2. The results (5.2) and (5.6) above are con-
sistent with Chper as calculated in ref. [38]. The relationship (5.4) between X (¢) and
[(p?). the latter quantity defined via the integral (3.3). can be utilized to determine
the real and imaginary part of \'(v) when p? > 4. as shown below. We will need
this information to determine gluon-condensate contributions to finite-energy sum
rules.

If p> > 4m?. the argument of the logarithm in the integrand of (3.3) can be

factorized as follows:

[(p*) =/ drin [ﬁj(l‘ T i TV /;"'i} (3.3)
0 m=
where
l :t 1 - -ln:-
Ty = 5 £ (5.9)
and with
=T = Sy (5.10)
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Figure 5.1: Integration contour along the real s-axis with the location

of the 7= singularities in the complex s-planc

Performing some integration by parts. one finds that

Y p’ L ! :
I{(p) = In|— +/ drln(r—-r-——z’;‘")-/ doilner — -~ 2"
m- Q I
= ln(ﬁ;)-ﬁ-[n[(l—a)(l*-'-ﬂ
m?
L dr
—2—(7‘.;-+z'5")/ . —
Q I — T, — 1
! dr
—{7_ —1 " —_—_— 5.11
( le)/o r—7.+i" o4

Note that if p?2 > 4m?. then 0 < 7. < 7. < L. and . henee. that 27 > 0. Con-
sequently. the pole in (5.11) at (7. + t€”) is above the read o oaxis. and the pole a

(7— — ¢=") is below the real r axis. permitting the cquivalent contours of Fig. 5.2

obtained from Fig. 5.1 to run below 7. and above r_. Using the contours of Fig.5.2.

with C_. and C_ assumed to be semi-circles of radius ¢ about + = 7. and 7_. re-
spectively. one finds that {C. : z = 7. + dexp?=: range of #_ : = — 27 ranuc of
H_ :x — 0

! dr . T4+—d dr g d.r : dz
/ ——— = lim / _ +/ _ 7./ —_
0 I — T, —ic" =0 {Jo L — 7, N e o . T — T,
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Figure 5.2: Distortion of the integration contour of Fig. 5.1 to ac-

commodate the =" — 0 limit

and

r—T7_ +" T_

1 To
/ L:lm—‘ - (3.13)
0

Substituting (5.12) and (5.13) into (5.11}. we find for p= > 4m” that

[(pH=-2~r¢ {!n (L-:—:) -7

(5.14)

This result (5.14) for p? > 4m? implies that the real and imaginary parts are as

follows:

[}
—
|

ReX(v) = lln(%_——[) ..

ImX(v) = —-— (3.16)

Equation (5.13) and (5.16) will be utilized throughout the calculation in this chapter.
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5.2 Evaluation of the Gluon Condensate Contribution to Fj

The ~heavv-quark™

(h.q.) two-gluon condensate contribution to Il,.

as detined in

(5.1). is obtained from Appendix B.3 of ref. [38] as the sum of coetficients [C¢;2 154

and [Cag2]n.q. for the axial-vector current function [.s =pie= V9= 4m‘~’/sl:

[Me(p?)] . = (Crg2 + Caz ey G
where
Ciglhy. = -18"'su-[3( )N () = 6L + o
(Coczp, = 96~314[3(1 — VDAL + )N () = 23 — 2t =

We define

Cigr + Coriyy, EeEe = alkL, = a0\

-t

and we find that pure-pole contributions and branch-singularitv contributions

respectively given by

F a, |18 14 ‘ 24m?
Qs Lpote = — - 5 72
pole 967 | s s — 4m* (5 —4m*)2]
. 1 30 .
(lsCJ:‘\'(U) = '-_()%"ll [.53 lv"l ‘\A.,‘{‘_ \ ]

The gluon condensate contribution to the finite encergy sum rules £/

1

FOL = - HL(S)d.S
271 JC(s0)
1 9
= —(@G) [ dsClii-s)
2T Clso)
L 1
Fl = n[‘(a‘).s'(l.s‘
271 JC(so)
1 .
= —(a;G% ds ~Ck.(—s5)
271 C(so) !

and Fll'

24

dre
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Figure 5.3: Distortion of the C'(sq) contour Fig. 4.2] for «.(:* con-

tributions to Fy ; sum rules

can be obtained from the direct evaluation of the integrals
Go = / Egeds 13.23)
C(so)

G, = / Eesds 15.26)
C(Sf))

with the contour C(sp) distorted as in Fig. 5.3 to encompass any pole singularities
of Eg: at s = 0 or 4m? as well as the branch singularity for » > 4m?. Using

Equation (5.20) and (5.25). one finds that

Go = / E poteds + C.N(e)ds
C(so)

Cl(sy)
= [ Bpueds+ [ Epucds
C') .hn-'
+ Epoeds + ELods
C'>4im-? C<tm-

+ C_,_.\’(v)ds+/ C.X(v)ds
Co C'-Im3

+ C.X(v)ds + C.X(v)ds

C>4m? C<im?

T C
= —2in [0 ZEds
4

m2ye U
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+ /C0 Epoteds + /C Epoietds

tme

+ CI,\'(v)d.s-f-/ C. N vids (3.27)
Co Cin

where the contours Cy and Cy,,,> are clockwise circles of radius = about s = 0 and

s = 4m? respectively. We see from (5.21) that

RY)
Epreds = — (.28
/cu pote®> T g
Eporeds = 3.29)
/C \ poleds = i 1.20)

4m

The remaining three integrals in (5.27) are evaluated as follows. Using the expression

for C; in (5.22). we find that

sa . .
—-zm/ Sfds = —im' I, - 3L (3.30)
im?+<s U i
where
S0 1 sQ 1 ) = -
I :/ 3 -ds =/ STV (s — 4mT) T Tds {5.31)
4m?+< S°U° 4m? e
SQ 1 30 ey Y -y -
I, = / ——ds =/ sV (s — ) T s (3.32)
im2+: SUU im2~=
Both integrals can be evaluated via the trigonometric substitution s = 4m?sec?6.
One then finds that
1 . cos30 1 1 1 I
I = / ——df = (— : + ) e (5.33)
8mt Jo, sint6 24m* sindg  Smt sint) /) Gk
1 (% cos’@ 1 1
L= / 59 4 = — ( + s 16)) . (5.34
27 8m? g, sin3@ Smt \ sint o i 34

where. using the pararneterization of (3.3). we find that

$L2
- 0
8, = sec™ ' { =—
2m
. 4m? I
sinf, =/l — —— =y (5.35)
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and that

2m

6, = sec™! ((4’”2 + 5)1”) .

sinflp = [ ——— ) 13.30)
A~ =

[
oy

Substituting (3.33) and (3.36) into (3.33) and (5.34). we find trom 13.30) that

4ml+e U 8 31.0 (A
im 5im o
— T - O(f) £5.37 )

33 g

The integral around the origin is straightforward to obtain from 13.22) and (5.4). The

integrand

] 1 -3/2 6rn* 8- 3
[-\ ) = —r:-..) [ ] - —_— — -
Cetle) 167" +16s)] L‘——Lm-’ i (s —4m*)? (s —4dmH) 24 (2.38)

has a simple pole at s = 0 because [{0) = 0 as discussed in previous section:

Y]

C.X(v)ds = -3 i7.39)

Co
Note that (3.39) exactly cancels (5.28). indicating that the origin can be excised from
the contour of Fig. 5.3.

This cancellation is not peculiar to the channel we are in. We have verified thar an
identical cancellation occurs in the scalar. vector. and transverse-axial channels be-
tween the contributions of explicit s = 0 poles in E¢;: as in (5.28) and the integrals of
C'. X' (v) portions of Eg2 around Cy [as in (5.39)]. Thus the quantum-field-theoretical
singularities in Gy and G, all occur for s > 4m? on the real s-axis for all of the above
mentioned channels.

The divergence as ¢ — 0 in (5.37} is canceled exactly by the integration of C, \'(¢).

as given in (3.38), over the contour Cy,,» around s = k2. a cancellation which also
n



oceurs in the other three channels mentioned above. This cancellation is most easilv
seen by continuing the expression (5.7) to complex values of 5 in the vicinity of

s = 4m?*:
SRS 1L . .
I(s)+2 = Z[Mjl tan“( : )l

tm? — 5\ '? im? =~ 2 (4 = )" -
= A () () - () - s
." ~ / . ~

On the contour Cype. s = 4m? + z¢*% with a clockwise rotation of ¢ from 27 to
(. When s > 4m?. the correct(negative) sign of the imaginary part 2:/mlis) =

I(s + id]) — I(s — i|d])] is obtained by requiring that

(dm? — )% = —jetimed - AL
as
: 12 2 Q2
: . im® — 5 ) 4 =5 _
2efmli(s) = lim |7 (—) — lim |7 (—-—————) {5.42)
— 1 —J7 ~

with 5 = s(#) = 4m? + |z]e*’. Upon substitution of (3.40) into (5.38) one finds that

S 75, 113 -1 2 S
/(’. )CI‘\(U)dbz—ﬂTl—él:§/(';";: S tdm= — ~i of ~

~ ) N -
—Om- ~ 0 i = s o~
C

'
A=

—8!712/ sTHHAmS = 5)7 s

im?

3 i 9 2
+—] sTYAm® — 5! ds (5.-£3)
C

im?2
The factor —7i/24 is just —2xi times the aggregate residue ar ~ = dm? obtained
from multiplication of (5.40)’s integer power of (4w~ — ~1 inra 5.3%0 This pole

contribution explicitly cancels the pole contribution (5.29). The remaining integrals

in (5.43) result from multiplying the leading w[({rm* — s)/5]'? term of (5.40) into
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(5.38). These integrals are easily evaluated around the clockwise contour C,,: via

(5.41}):

/ TV — )T s = O RAR

Chn-’
~1.2 2 3.2 2/ . g 3 3
/ s dmT - 5)7 YV ds = — Az ) t3.43)

o m=t 2
[ s umt - )7 ! L0y (5.6)
sTHEmMT —5)7ds = — 5 T T YT 2
Cypm2 ’ ° 3ms3? sl

/c sTH2(m? — 5) s = O(77?) (5.47)

4m?2

Substituting (3.44-5.47) into (35.43) we find that

Y Sun o :
- . = 0 - _ .) P .' )
/;'4,,,; C.X(v)ds 51 8_:‘1- e Ot : 1318
explicitly canceling the divergences in (5.37). Since all the s = 0 and s = im?

pole terms contributing to Gy are equ:zi to the upper-bound contribution of the first

integral on the right-hand side of (5.27). we find thart

so 1 2 |
Gy = —‘21'7.’/ —ds = I— [— - e UK
v 33, e |
im? .
g = - (5.50)
S0

To obtain the full contribution of (a;G?) to the Fy sum rule. we substitute (3.30) into
(5.23) and use the following condensate mixing equation ;33!

' . 1 , 7 -
CarlQ?) = EcxQ*) + = Cpgl Q1) = T2 im =1 o). 550

27 =X -
where the quark and quark-gluon condensate Wilson coefficients have the following

eXpressions:




The gluon condensate contribution to FF(Sy) can then be found:

Fl(s = (0. 1 12 3 1
Fi )] gy = (@46 | 757 30 w737

—_—— —— . . -

(5.54)

Since (a,G?) is chiral invariant. its contribution to £, in the longitudinal axial-vector

channel vanishes in the m = 0 limit of Lagrangian chiral svmmerrv, as expectred.
5.3 Evaluation of the Gluon Condensate Contribution to FF

Consider first the integral G, (5.26). which can be evaluated via the tollowing integrals
o o o

arising from the distortion of C,, indicated in Fig. 5.3:

s0 C .
G, = -2ix / “Esds = [ Eu s
-2 U |
‘+'f Epolc"'ds - ¢ Q;-.\-( U ).‘a’f{.\
("1‘"1.-' s
+ [ CaX(vjsds (5.35)
C4m2
One sees from (3.21) that
/ Eppesds =0 '3.36)
Co
/‘ £ / et o
edUS = ——— IS ]
< pole> 3 ’
Using the expression for C; in (3.22). we find that
) sq C o I
—'2z7r/ —Zsds = —imn'[ly + 3] (2.38)
im2+¢c U

where the integrals I3 and [, are evaluated using (5.35) and (5.36). as in the previous

SCCTIOn:

I3

il

$ 1 l u
/0 ! ds = -
1

m2+¢ SQ'L‘S 6”12 .ﬂHJ"H L
1 4 4im + 1 ‘ 2
6m2vd  3el/2  2mst?
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30 1 1 l "
L= [ ds = — [-— 1 &
4

mies 5207 2md L o~
l 1 l Lo -
Sty T~ £5.60)
6mevy  2m=ry  mst -

Substituting (5.59) and (5.60) into {5.538) we find that

3

so (. L1 3 4im®  Tanw ;
—‘2i7r/ — sds =mn” [ —} - ”7’, - '””., (5.61)
4

— + -
m2+: U 6‘(.‘3 2y RESIE 2:02

Using (5.38). we find that C,.\'(v)s has no poles at ~ =0 note that 2 = [i0) = 2. in

which case

ot
[
(8}

/ C,.N(v)sds =) 13.62)
Co
Once again. we note that the origin can be excised entirely from the contour of
Fig. 5.3. We have verified explicitly that integrals (5.36) and (3.62) are zero in the
scalar. vector. and transverse axial channels as well.

As in the previous section. the divergence in (5.61) as : — U 1s exactiv canceled
by integration of C',.X'(v)s around the contour C'y,,-. From (3.33) we tind that

m? mt

[2 + 1(s)] [ - (3.63)

(s —4m?)2 (5 —4m=)}

C:X(v)s=

If we substitute (3.40) into (5.63) and integrate around C'y,,:. we casily separate
a pure-pole contribution from an z-dependent contribution mvoiving half-intesral

powers of (4m® — s):

=2

. nm . . o oy
/ C:X(v)sds = — +‘2ml/ STE2Am? = 57 s
(.lm: 3 Cirn-‘
—‘2m6/ sTV3am? — 5)7 7 ds
C‘-Inn2
- 2 — 3 5
am- (i domn . _
= — + + + O ) (3.64)

3 202 3a

The final line of (5.64) is obtained through use of (5.43) and (5.46). Not only are

the z-dependent terms in (5.61) canceled by the final line of (5.64). but the pure-pole
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contribution (3.37) also cancels against the pole term in (3.6-4). Thus we find thar &,
is equal to the upper-bound contribution of the first integral on the right-hand side
of (5.26):

so (7 " I 3
G, = _zm/ — sds = im? {— - —] 15.65)
;

61 'U" 2 (%))

To obtain the full contribution of (a;G*) to the F, sum rule. we again substitute

Equation (3.65) into (5.24) and utilize the identity (5.51). F[ is then found to be

3

V]
=

F(s0)] ey [ L s 222
[FiG)] o 3 CCN 63 T3] T3

2 2 t . t
m ) 4m 14m 16O R
= 7:(&5@"){14— - — - — ~} (5.66)
TS ‘”-'l) .\a ”"l)

5.4 Gluon Condensate Contribution to F;; in Scalar. Vec-

tor and the Transverse Component of the Axial-Vector

Channels

Utilizing the notation and conventions of Section 2 and Section 3. we obrtain the
following results from scalar. vector and the transverse component of the axial-vector

correlation functions.

5.4.1 Scalar Channel

From Appendix B.1 of ref. [38]. we quote the condensate coetficients of the scalar
current as follows:

I (1 —u)(l=20) - -

P e — {-.bl
Cau m? 1 - b1
1 (1 =) - o

R 0%

[CG"’]h.q. = qsFEq: = a; (Epolc +C N (0) (5.69)
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where E,,. and C; have the following expressions:
(3 —¢?)

E oie = .
pol 167w sv?
(1 — )3+ ¢

C, = - ,
’ 32mwsv?

Referring to the contours of Fig. 5.3. we find that
Epote ds = =

/( pole €27 3
(2.73)

50
/ —ds =
4

-7

Gu = / Eczds =3
C(so) S 'y
Integrating Cy, (5.68) and Cy; (5.69) over the contour C'(5g}. we find that

/ Cyqds = 6w

s

Summing (5.71-3.76) we obtain
l 3
——— —— t'U

[ C'_\[ ds =0

Coy.

3 AN
—— 4+ g+ 4} (asG7)

which implies via (3.51) and (5.24} that
L [
- 167 Ug

[FO(SO)](Q,G'-')

Unlike the case of Fy. the finite energy sum rule £ requires the use of (5.51) to

eliminate a logarithmic mass singularity in G| obtained by summing the following

five integrals:
/ Epote sds =0
Co



3im* .
/ . Epote 5ds = — S (5.82)
4m?2 =
' so (C im? 3 5, b oo
—227’/ —Zsds = — —-——+‘21n(1—v5’)—-—_ (5.83)
im2+e U 2 o e
C, X(v)sds =1 1.5
C\)
: . 3em= 3t - -
/ C, X(v)sds = 5= - —= (5.89)
C-lrn-' - \/:-
We then find that
. ) )
un- 3 4m- -
G, =/ EGZSdS:_’—l:——_ﬂ”( ” (1.36)
(sq) 2 Ly S !
which is not analyvtic in m at m = 0. However the results
/ Cogods = dom- = 15.37)
C,
s
/ Cyvsds = =2 (3.88)
tig!)

used in conjunction with (5.51) and (35.24) eliminate the quark-mass from the loga-

richm:
[Fi(s0)] 1,620 = r_)n_j [—% + % =l ( ;‘:_‘” TN -3.89)
5.4.2 Vector Channel
From Equation (II.19) of ref. [38], we find that
Epie = —2° ;i_:w) (5.90)
c, = U= ;2!}‘_ - 391

We also quote the quark and quark-gluon condensate coetficients from Equation
(IL.13) and Equation (II.17) in ref. [38].

2 (I-u)(2+v0) _
Ciy = 5.92
“ 3m?2 (1 +v) 9-9)
1 (1-vu)? - a-
. = @ ——_— 15.93
Cur 6m3 (1 + ¢) >93]
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We then find Fy (5.23) from Gy (5.25). using (3.31} and the following equations:

l -
/C'o Epole ds = g i3.94)
! e
/C  Eeeds =5, (5.95)
so  (C i 1 Sm? m
-7 *'f'd'z"L'-{'-—————— 3.96
o /4m-’+5 v S 8 [ 0 3!.'{]5 RESEE b2 (3 )
C, X(v)ds = ——j; ' 5.97)
o N
L. / s rn -
fo,, CeXterd = == 5 - o 392
[ Cuds=-uz 5.99)
C(!Q}
/ Cyds =0 (5.100)
C(.vu)
G / Egeds = - ! (5.101)
= 2A8S = — |y — — S
0 Ciaps ¢ s | 3o )
L 1 %] g .
[FO(SO)]/Q.G'-'“ = 1—6—: g + }TJ — _{J (l,(r- o). lU_.,l

Corresponding results for F) are listed below:

/ Epote 5ds =0 (5.103)
Co
2im? _
/ Epote sds = — (5.104)
C{m-‘ '3
—2i:/°° Cegy= i-#—%— 3'”}1 SRULT
dmee-s U 2 Uy Jey Jor e o
C,X(v)sds = (5.106)
Co
. m* dan® 3! o
/sz C. X(v)sds =— 3 +3:_3v__, * 5 (5.107)
16 »
Copsds = ——imm” (5.108)
—L(so) 4 3
/ C_\[SdS:U (5.109)
(sg!)
m? |1 1
G[:/ E(;'.‘.)'(lb‘:l'%[—*' _i] Lo
Cisgs 2w ey

m? 1 1 3 - .
[Fi(s0))a,c2) = = [*LTO t3E 5] (o G7) (5.111)



5.4.3 Transverse Axial Channel

From Appendix B.3 of ref. [38]. we have
[Clelh.q. = a,Eq: = a; (Epolc = CX (v (0.112)
where
(1= -
= = (0. 1L
Epote Soart i2.113)
(5.114)

¢, = ————
167502

We also quote the quark and quark-gluon condensate coefficients tor the transverse

axial-current:
2 (1l =il =20 -
44 Im? (L + ) B
1 (1-) _
C - (5.116
M 6m° (1+c) - 116)
15.117)

We then find that

!
/Cm-. Epore ds = ~ t5. 018
o (C e |1 2m
—w Lds = - |— -ty - —= (3.119
' /lm2+e v ? 4 [LO fu \/::] ’ )
/ C, X(v)ds = -~ (5.120)
0 4
(3.121)

/C CoX(v)ds =~ = 5

am?

As before. the contour-radius singularity as = — () cancels between (3.119) and

(5.121):

1
Go = EG‘I ds = 'l‘ I:- — L'Q]
C("O’ 4 L'()



Using the expressions for Cy, (5.116) and Cyr (5.116) one finds the following results

over integration contour C(sg):

We find via (3.51) and (5.23) that

L 4

1 . -
(Fa(so)]ia,6n = . [_ T te~ .-] {a,G™

t'o 3 .‘

Corresponding results for £ are listed below:

/ Epote sds =0
Co

. )
/ Epoie 5ds = 1~

am<
. o (C St m
—‘217/ Lids =1m* | — - =
dmd -z U ' v
C:X(v)sds =0
Co
_ o 2m?
/ C.X(v)sds = ~im* — =—
im?3 =
Sim?=x
/ Ciggs5ds = ———
Ciso) 3
/ C‘\[ sds =10
(": i
]
i

Gl——‘/ E(;'.’Sda‘:—
(sg} l‘l)

9 .
m-= m-

Fi(so)la. = (_ - 5,?) (,G?)

27&"L’0

(5.

in.129)

.130)

131)

(5.132)

.133)

5.134)
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sensitive to the existence of this new high mass scale physics. Because many of these
particles have been around for quite some time and much data have been accumulated
about their properties. it seems quite natural to ask if the better-known heavy flavor
fermions possess anomalous couplings or. at the very least. to ask what the limics
are on such couplings from existing data. If such couplings were ever to be found we
would certainly need to investigate and understand how they arose. Our approach to
analvzing the effects of such hypothetical couplings is purely plhenomenological. We
do not seek here to address the possible origin of these anomalous fermion couplings
should they exist.

In fact. the 7 leptons have received some attention in this aspect 42, 43. 44. 45.
16. 47. 48. 50. 51]. especially in regard to a possible C'P violation associated with an
electric dipole moment interaction with the Z. In our study. we concentrate on the

pussible anomalous couplings of the 7 lepton to the photon.
6.2 Four-Body Radiative Decay Process f; — fo+ f3 + fi+~

In this section we derive the squared matrix element in a four-body decay process
fi ~ fo+ f3+ f1 + where f,., fo. f3 and fy are fermions. We then apply this result
to the radiative leptonic T decay 7 — pv, v, ~.
The Fevnman diagrams in momentum space for the four-body decay process fi —
2+ f3+ f; + 7 are shown in Fig. (6.1-6.4).
The Lorentz invariant matrix elements corresponding to Figs. 6.1(a). 6.2(b). 6.3(c)

and 6.4(d) with the standard model couplings can be written as fullows by applyving



Figure 6.1: Feynman diagram (a) for the four body radiative decay

f1—>f-.)+f3+fx+“'

Figure 6.2: Feynman diagram (b) for the four bodyv radiative decay

hi= o+ fi+fi+r



Figure 6.3: Feynman diagram (c) for the four body radiative decay

fi= o+ iR+ fitr

Figure 6.4: Fevnman diagram (d) for the four body radiative decay

fl‘*f:z'*'fs‘l‘f::'i‘"f



relevant Fevnman Rules in the Appendix F of {52]:

M,

i

M,

1l

"

1l

7 g L= (=g g /M)
‘U(Ps)(—lﬁvn)% 5 v(ps) pERSYER

1 —~5 t . \
e SR =reqy - Miupy).

7(pa) (—i—=V10)7
a(p2)( \/5‘12) S ——

P3+ Py

. g - 1= (—g* ~q*q" /MG )
U(Pa)(‘iﬁ‘u) T v(ps) =2
o : A\ % L . g - 1 - ©5
—1 ~Mei(k —‘—,_‘ 2]y .
i(p2)(—tegay”)ei( )(152—65)—"12( VoA u(py)
p3 + Dy
a(py)(—ieqs~)iik) ’ Yoy L
: —leqy” < ) el =13 }-u L
D3 {3 al (}5'1 — /f) S o3 34t 5 Pyl
(=" + q*q" /M) g .. L=
- o) (—i==11)~, . .
PERNRVES i@{pa)( t\/i 12) 7 wipy)

pst+patk

m i3 v~ L : IS AP S
z(p3)( lﬁ‘34)'u SR — Rk )
(=g" +q¢"q" /M) Yy LT

qz_.\[‘_)‘ U([J'_))(—l'\7_—_; 107, 5 (g,

p3+ps+k

(6.1)

(0.4)

where the four-momenta p;. p2, p3, ps and & correspond respectively to the decayving

fi fermion. the f, fermion. the f; fermion. the f; anti-fermion and the phoron =~

The ¢,’s are the corresponding fermion electric charees in umies of o o 1]

Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

, are the

Since the W boson is heavy (M = 80Gel") compared to the mass of 7 lepton. we

can assume that g2 < M3,. The fermion propagators are simplified in Equations (6.1-
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6.1) as follows:

1 = K=y .-
b~ —m, —2py - k 0.5

1 _ (pr— K=y -
(o = ¥) —my —2p, - k 16.6)

1 _ (B3 — K) ~ my 67
(pll - k) — Mg —2py - k

1 (Pa — K) ~my

- 6.3)

(bs — k) -y =2py -k (O

Substituting Equations (6.6-6.8) into Equations 16.1-6. [i. then we can find the Fevn-

man amplitude:

M = Mg +Mp+ M.+ M,y

Gre_ . . . o
= 2\?5134"12 ng u(p.'!)ﬁfp(l “',rs)l'j(:l);)lt(pg)“v‘([ - ‘,—)]u(‘[)lz

4

+ 2 &(p3)vu(l = ~s)e(py)alpa)-til = =5 Kupy
ook
B
4B} ,
o+ ——a(py) L = s )e(py)alp =l — =0k aip o
&)-ku(p.s) el sleipa)ulp. fap
o
+ B ~a(p3) kg v (1 — vs)v(pg) @(p2)~* (1 = ~5)u(py)
bk B
D
qv g . .
— a(p3)pull = ~5) Ke(pgalpa=- ol = =supy 6.9
!).; -k ‘
E j
where G ¢ is the Fermi coupling constant:
G 2
Bl _Q_) (6.10)
The momentum variable B appearing in term A is defined as follows:
Bt =2 ( GPT @by @i ) (G.11)
Pk pa-k py ko pk



We list here the following trace and ~ matrix identities which are used to caleu-

late the squared matrix element. Those identities are derived from the basic rrace

theorems and ~ matrix identities in Appendix A of ref. [13]:

Tr(R(L)~#~"] = 2g

T,,[R(L),_"[JA"V‘(Q_"J] — Q[Q;wgnd . gyugu.i - .{};m

TriR(L)*~ vy )Tr[R(L) vy Yar v 5]
16595

where

612

ia IO

Ol

= TrlR(L)~**~ 7~ TriR(L) a pu™ s,

(6.14)

0. 1)

\We define operators a, a. 4 and A as odd and even combinations of operators

SO SRR
a = dids--dano 16.16)
a = ‘—?i'.’n.—l?l'.’r:"'a. AV
4 = .7.([.7{2"'.}{2" AIRNY
4 = AonAon—1 - A (6.19)
where n = 1.2.3.---. The trace identities in terms of ¢.a. 4. 4 can be derived as
follows:
TriR(LYa~*ITr[R(L)b~, | = =2Tr R(L)jub. 620
Tr(Ra~*)Tr(Lb~,) = 2T r( Rab) (6.21)
Tr(Lavy*)Tr(Rbv,) = 2T r(Lab) -
Tr(Ra*/#ba,-u) = ZTT(RUE) (6.22)
Tr(RAY*By,) = 2Tr(RA)Tr(LB) o



TriR(L)a\v*axy*]Tr[R(L)as a5y, = ATr[RIL)ayay|Tr R( Loy, 6.23)
i ] 16.2:
TI'[R(L).4["{“.".2"{"]T7‘[R(L).—l;;";’u.-l_;"_:,,] = —lTI:FR( L )'lx.‘lthR( L ).'lg.".;li
Tr(R(L)ayv*axv*|Tr{L{R)asv,ay,] = ATr{R(Lywyay, Tr Li Riayay! 6.24)
H.2
TI'{R(L):‘.[",«'“_‘12"/”]7‘"[[‘(R).‘l;;’ft“.'i.{“",,} = 4T1fR( L }.‘l[.-l‘;iTl':Lf [l’)l;“_ﬂ
165.25)

Tr{R(L) A1 A7 |Tr[L(R)asasy,] = ATriR(L) Ay vy
TI‘[R(L)Al‘/“.-l-g'/"]TF{L(R)agff#a4f'u] = 4T7'£R(L)-‘11(-i';.‘l'_lll;z

[n order to calculate the spin-averaged matrix element squared. we must average
over initial 7 states for unpolarized 7 leptons. and sum over the final muon and photon
polarization states. For the neutrinos there is no averaging over initial neutrino
lieliciries. since only left-handed neutrinos participate in the weak interaction (we
assume here that m, = 0). Similarly. there is no sum over final neutrino helicities.
However. for convenience of calculation. we can in fact sum over both helicity states
of hoth neutrinos since the (1 — ~5) factors guarantee that right-handed neutrinos
do not contribute to the matrix element squared. After we have done all the spin
averaging and summations mentioned above. and the spin-averaged matrix element

squared can be written as the products of traces:

IM|? = =Gre*|Vilul? (B BTr(p R~ po- P LT rip R ps~, L)
+([ﬁ)'-’Tr(plgw*Rn.“p.ﬁ"u.\k>T,-(,5;R-.,lp;,-,,L1
+( %r’mmR~«"~r‘m#~.,\~f’L \TripiRe,pse L)
*‘(paq:_l T VTr(paR~ Mpshon~o LiTr(py R~ py-" L)
HCELPTr (bt Ry LoAR Tr (oo L
T Tr(h R b LBIOTr (i R L)

+p . k Tr(pkBR*po~” LYT r(ps R~ p3~ L)
-

+

q.f L LT R ok B L) T Reups L

P2
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+

‘I'?) kTr(ljlR"fﬂgkﬁ'z”'"L)TF(/).; R~,p3~, L)

D2

+p3q? FTr(h By oy L)Tr(paRou Bhpy~ L)

+p3‘1? k Tr(poRy* poy" )T r(ps R upaf B L)

q.
py-k

'pq_‘A-T"(ﬁlRﬂ*‘mw“L;rrm..wm-v“pm,
4
4144 N us oy .- \
T Tr(p Rt o DT i pa R upy=u Lok
Py - kpy - k r(puf 22 VLT pafts, ps )
T (g Rt o LB Tr (i RE~ R s L)
p1-kpy-k
4243 \
———T »-',#n/ .'UL T ,R"-‘ - -uL
+P2"\‘P3~k r(br B akpe " LTy Ropsk )
+—B T (g RoFpofe = LT i pu R hpi L 16.26)
p2-kpy -k

TripR~# P~ LT r(py R~ ps~, LBE)

Applving Equations (6.12-6.23) to Equation (6.26). the squared matrix element

I.M|? becomes

D

I

P 9 - e e 9 q
MT = 3'20?)762“12"3“' 2ps - pa( . - K+ P k)
py A Py
. ¢ 4
+2py - pa(——p3 -k + ! -~y A
pr-k Py b

—d(qaqspy - ps — qLqyp2 - D3)

—p2 - p3( N HB-puyn -k =B -pip;- k)

pr-k  py-k
q:
—p1 - ps( & - + B_\(B-psps-k =B papsy- k)
pa-k  p3-k
1
“33 * Bpa-3 p1 - ps 16.27)

Notice that we have neglected all fermion mass effects since these only contribute
verv small corrections at high energies. The squared matrix element which we ob-
tained agrees with Equation (3) in [533].

With the charges of neutrinos being zero, we find from Equation (6.27) the squared
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matrix element for the radiative leptonic r decay v — puo,v-~:

12 qa2 .2 ) Ps N
IMT = 32GLe {21}-"”31,1-A-*-}m.mm'/"

I—I;")—-IE(B papr- k= C-pipy - k)
L
—E;*;%(B'PBP:)"{ = C - papy - k)
-
1
—;C -Cpy - p3py - p.;} (6.23)
where
4 4
or =B B (6.29)

ps-k  pr-k
6.3 The Radiative Leptonic = Decay with Anomalous Cou-
plings
Consider the radiative leptonic 7 decav ™ — pv,v-~ with anomalous couplings ot the
7 lepton to the on shell photon. In general a photon may couple to a tau lepton

through its electric charge. magnetic dipole moment. or electric dipole moment. We

parameterize this coupling with the following matrix element:

<T(p2)l'].u!r(pl)> = &(p'l)r;x wipy) (6.30)

The most general Lorentz-invariant form of the vertex [, which deseribes the inter-

action between the 7 lepton and on-shell photon is

2 F(¢’) . Fi(¢?)
ry = (Fl(q )A/u + i Ouq + :

<y

O'#ufju"rr,) (6-31)

2m;

where F|(¢?) corresponds to the electric charge with F,{0) = L. Fu(¢*) (F3(¢?)) is the
anomalous magnetic (electric) dipole moment. m. represents the mass of the = lepton

and ¢ is the (out going) moment of the photon.



With che electric charges of neutrinos being zero (¢» = ¢, = 0) and ¢y = ¢3 = -1
in Equation (6.9), the C and E terms vanish. We replace the couplings of the photon

~* with the (SM + anomalous ) couplings (6.31). i.c..

. T,
2m.1 - g

Fy(g* Fly* ]
7,\_> [,.’,,/\_*_ 2((1 )o"\"q"-i— st A ' 16.32)

The invariant amplitude with anomalous couplings to 7 lepron can be written as

follows:
M = M, + M,
G € -~ - - ¢
= 2\;:‘34l 12 [2B - 27 @(p3) v, (1 = ~s)eipa(pa)~Hrl — =i py)
+ 4 d(ps)~u(l — ~5)e(pyaipyi~til — =8 havp
'pl-k D3)u 5 gl 2 VE A
) RE (L = vs)e(pa)alps 1701 =~ juipy)
+P1 lkﬁ(l’z)”/u(l — ¥s)v(py)
a(pa)v* (1 — v ) (£ ¥ — £ ) (Fa + tFyulpy)] (6.33)
where
Fl = F_’ . -Fi = [.' 16.34)
dm- 4=

Again using the trace and ~ matrix identities in previous section. and averag-
ing over initial spin states and summing over the final spin states. we obtain the

anomalous contribution to squared matrix element:

M = M+ My
+p2.p3(3 pipr-k—B-pipy-k)
Pl'k
B k=B -pyps-k)
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1
";B'Bl)z'Pspx P4
o,
— !
pr-kps-k

-+

2pr - pypr-hpy ok —poline ko g ppy b

—py-k(pr-paps-k —pr-pype- k)
F
3
pL-kps-k
32G%e?| A (6.35)

(p1 -k — Py k) 2*°? D1y o Pra D }

il

The expression for the photon spectrum in the radiative = decav = — v, v~ using

ref. (5331 can be written as follows:

dl’ aGEw
dw 64mim2(m, — 2w)
l , ! 2z m.fk Y
/ d(costl) / d(cosy) / do / e,
-1 -1 0 m3
1 . . . i . .
A3(mi,. m3;. my)Az(m3y. ma.m3), o
- A4 . 6,30
msis
where o is the photon energyv in the rest frame of the - and
” .
mi, = m-(m- —2.):

<)—
[

AN(z.oy,2) = (22 + y? + 22 = 2oy — 20z — 2y2)

0< < triyomy = ) 1G.37)

The derailed description of the variables relevant 1o the phase <pace can be ob-
tained from [53] by using appropriate values for the charges. masses and colour factor.
The above photon spectrum is reliable for "hard™ photons only (E. > 0.1m.) because
we are ignoring the one loop contributions needed to cancel the relevant infrared di-
vergence. In ref [54] the same radiative decay process was studied in order to constrain
the 7 anomalous magnetic moment. but attention was given mastiv to the end of the

electron spectrum as opposed to the hard photon spectrum studied here.
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Figure 6.5: The photon spectrum for the process v — v, v-~. The
continuous line corresponds to the Standard Model. The
dashed line corresponds to the correction due to £,(0) =
0.11.

In our numerical calculations we use m- = L.784G VU and e, = 0. 106G U respec-
tively. In Fig. 6.3 we plot our results for the hard photon spectrum in 7 — pe,v-=
within the SM as well as the corrections due to F,(0) # 0 if this had a value of
0.11 (present upper limits). Fig. 6.5 shows that the effects of a pure magnetic mo-
ment (F3(0) = 0.11. F3(0) = 0) are roughly two orders of magnitude smaller than
those of the pure standard model contributions. Using the present statie lunits of

F»(0) = 0.11 [33] . we obtain the following ratio of integrated correction rate and
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Figure 6.6: Feynman diagram for the exchange of photon ~ in the

eTe” — 77T scattering process

integratea SM rate in the hard photon region from 0.2G¢17 to 0.3G ¢V

08 T 0.8 (T
'/0‘) (;_')F-_::O.lld‘b'//o) (37)5_\1 do =23 % 107} i.38)

w
The branching ratio of the integrated SM rate for this region is 6.1 x 107", In spire
of the small branching ratio. F5 effects may be marginally improved by measuring

these decays at a tau factory.

6.4 Anomalous Couplings in the eTe™ — 7777~ Scattering Pro-
Cess
In the lowest order of electroweak theory the amplitude for e ¢~ — 7777 is expressed

as the sum of the electromagnetic and the weak amplitude as shown in Figs.6.6 and
6.7. The scattering amplitude can be written according to Fevnman rules [52] as
tollows:

A = A—-_, +Azo

Lgh”

= = Te(p2)(—tevy,)ue(pr)




39

Figure 6.7: Feynman diagram for the exchange of Z in the ¢ ¢~ —

TTTT scattering process

120 Fi(q?)
> (g ‘)Uu,\q’\ + :,(,1 )”u.\‘!'\“ﬁ Coipy)

ghv — uf;,; (1 + i5zdlz q-:}f )

. -1y .
R ¢ — M2 + 0500 )"U(C\‘ — C s )Ue(py)

e (P'z) ( 2()0.5'0‘1'

—ig
- ——— ] (Cy- = Cyns)e-(p.
it-(p3) (26039‘) wu(Cy A= (py)
- 1 - - . . . . 3
= (—16') {?L’e(p'l)‘?#ue(pl)U'T(pil)[n,',u - {H'uﬂ - ﬁ—’u)(-}'-_f - fﬁ;‘-f,)jl',([l;,'
; L L Go(pa)~*(Cy = Cy=s) j
Tsilﬂ(?ﬂu-) q,_, — .\13 " irz.\[zLe p2)~ { AT ULy
i (p3)7u(Cyv — Cavs)e-(ps)} (6.39)
with
: t . X
gsinby =e. o, = ;[‘,ﬂ o (6.40)
Fy F
Fo=—2 Fo= —- (0.41)
4m, dm-
= —— + 25in-thy (6.-42)

My is the mass of Z°, and Cy- and C, denote the vector and axial vector coupling

constants of the Z9 to the electron and the final state  currents. The definition of
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By is sin®fy = 1 — (M3 /M2) = 0.2259 £ 0.0043 {3].
In the present calculation we assume that only the photon has anomalous couplings
to the 7. Under this assumption and ignoring terms of order m=/¢”. m/M3. we obtain

the following expression of the unpolarized differential cross section in center-of-mass

SVSteln:
do Ta” g ol )
deosd = —2*8— {[l +2C7-Cy + ACT + ("J J (L = cos~8)y
+4(CRCy + 2X2CPCY ) cost
2
({ . 2 L) F.) . v 2 i NN
+m(FQZ + F3 )sm g — T [8 - (3(6‘ ~( _U'U.&'U)j } (0.43)
where
c  Re( - ) (6.44)
) = e — )
2 .Sin229[;' S — -\[2 -+ lrz.\[z
3 1 52 _
- = ” (G.42)

seni20y- (S - .\[z)z + F-’,-\[;’

We exhibit representative numerical results in Table 6.1. From Equation 16.43)
we can see that the differential cross section can be used to distinguish berween a
CP conserving Fy(¢*) and a CP violation Fy(¢”) correction. This is due to the fact
that there are no linear terms in £3. Table 6.1 shows that at low energies(S <« M3).
the F, linear terms dominate while F3 has only quadratic terms. The present limits
of F, < 0.02 and F3 < 0.025 come from this region at PETRA 4. 351 . At LEP-I
(/s = Mz). there are no useful limits on F, and F3 under our assumprtion due ro the
dominance of the Z intermediate state. Useful limits can be obrained by assuming
correlated 77~ and 77Z anomalous couplings [43]. At higher encrgies (LEP 200). the

F, and F; effects are most noticeable. We expect that experiments will be sensitive

to F, and F3 = 0.006 or even 0.003.



cos8 | 5 | F=002]F =002 F,=0.006 F; =0.006
‘ Mz/4| -64% 1.6% 22254 013
0 My 0.11% 0.15% A 0.015%
2M, | 78.8% 85.3% 5.7 T
Mz/4| -5.6% 1.0% ~1.90% 0.09%
0.5 | Mz 0.05% 0.09% 0% 0%
20, | 28.4% 31.7% 1.86%% 297
Mz/4| 4.7% 0.38% | -1.3% 0
L 0.8 | My 0% | 0.03% 0 ()
’[ 2\ 8.3% 10.7% 0.23% 0.96%

Table 6.1: Percentage deviation from the SM ¢7¢™ — ~7 -~

section resulting from the non-SM values of F, and Fy
listed in the top row. Results are displayved for scattering

angles 6 and centre-of-mass energies /s listed in the first

two columns

Cross
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Figure 6.8: The unpolarized differential cross section with respect to
the center of mass energy /s in the scattering process

ete” -7t~
We also plot the unpolarized differential cross section in Fie. 6.8 at cost) = 1) 1o
show that at high energv. F,(0) and F3(0) effects are most noticeable.
To summarize. the cross section can be useful to distinguish between Fi(g?) and

F3(q?) effects. The anomalous couplings effects of F) and Fj should be most noticeable

at LEP 200 energies and cosf <« 1.
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Chapter 7

Conclusions

[n this thesis we have investigated both non perturbative QCD as well as the elec-
troweak physics beyond the Standard Model. We began the investigation with the
calculation of the two-gluon condensate’s contribution to the quark electromagnetic
form factor 5. We found that the gluon condensate <ives not appear to contribute tu
the anomalous magnetic moment of quarks. once the renormalization procedure tor
the electromagnetic vertex is suitably redefined to account for divergent order-unity
condensate contributions. In Appendix A. we have also shown that the self-energy
contributions to the vertex involving {a,G*) do not contribute to the anomalous
magnetic moment of quarks.

We obtained instanton contributions to finite energy sumn rules £, and £ via the
asymptotic expansions in Chapter 3. The results (3.19) and (3.23) are not meaningful
unless 2p,/5¢ > 1. Since sg has to be sufficiently large for finite energy sum rules to
be applied. the asvmptotic expansions are appropriate and useful. In the large ~
limit. the leading perturbative contribution to F, (£28) and £ ¢ £29} dominates
the instanton contribution. However. for the value of ~; near 1 Ge V77 the instanton
contribution is shown to be larger than the perturbative contribution. Since purely-

perturbative and QCD-vacuum condensate contributions to scalar-current correlation
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functions can not distinguish between isoscalar and isovector channels. the instanton
component of the QCD vacuum is necessary to distinguish these degenerate states.

We calculated the perturbative and non-perturbative (QCD condensate and in-
stanton) contributions to finite energy sum rules in rhe scalar channel. From a one-
resonance fit to the first two finite energy sum rules . we found rhat the light sigma
resonance can exist only if the continuum threshold s, is smaller than 1.72Gel ™. a
value likelv to be too low for convergence of the purely perturbative contributions ro
the sum rule [21].

The two gluon condensate contributions to the finite-cnersy s rules £, are
respectively calculated for the longitudinal component of the axial vector correlation
functions. This contribution is shown to arise entirely from a net bhranch singularity
when s > 4m?. The cancellation of net pole contributions at 5 = 0. as well as the
cancellation of infrared singularities arising from inteerarion of the exacr expression
along the branch cut against those arising from inregration around the branch cut
terminus at s = 4m? is also demonstrated explicitlyv. We emphasize that all of these
results including the singularity structure described above are applicable to the gluon
condensate contributions to the finite energy sum rules in scalar. vector. and the
rransverse component of the axial-vector channels. The explicit cancellation of quark-
mass singularities via operator mixing is also demonstrated for channels in which such
singularities naively occur.

Finally we addressed deviations from the Standard Model in purely perturbative
clectroweak physics. We analvzed the hard photon spectrum in radiative leptonic 7

decays ™ — pp,v;y in the presence of the possible 77~ anomalous couplings. We



found that the present limits on the 7 anomalous magnetic moment £,(0) could be
marginally improved by measuring those decays. We find as well that the unpolarized
differential cross section in the scattering process e ¢~ — 777 Is quite sensitive to

both F,(0) and F3(0). especially at LEP II energies.
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Appendix A

Gluon Condensate («,G?) Contributions to R(0)

from Self-Energy Diagrams

The Fevnman amplitude of self-energy diagram contribution to the vertex function
['? corresponding to Fig. A.1 and Fig. A.2 is

1 1
A, = a(p-z)'/,‘lj1 — mE(pl)u(pl) + &(pg)S(;)-_))ﬁ, — Sy (A1}

where E(p;) and ¥(p,) are the lowest-order gluon condensate contributions to the
quark self-energy.

In fact the explicit covariant-gauge gluon-condensate contribution to the quark
self-energy have been calculated by Bagan et al [27:

7{a,G?)

9(p? — m2)3 [(pz = 3m?)(p— m) = ”’l)_'] (A.2)

X(p) =

We define the gluonic condensate portion of the quark self-energy C(p) as

S(p) = A@P*) - Bp*)(p — m) (A.3)
and compare (A.2) and (A.3):
) 7 CYSG", )
A(p?) = 9(p§ — mz)'s mp-~ (A
y T, G Y -
B(p7) = ()a 3)3(.3”1“ —p7) (A.D)
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o Aogge?

Figure A.1: Gluon-condensate contributions to self-energy correc-

tions of the electromagnetic vertex tunction: diagram (a}.

20009

29999

Pi

Figure A.2: Gluon-condensate contributions to self-cuergy correc-

tions of the electromagnetic vertex function: diagram (b}.
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Substituting (A.4) and (A.3) into (A.1). we obtain the amplitude A,:

2m )
A = a@lpa)y, [—,————,A(pf) - Bip; J‘ nip,)
py — m? |
_ 2 Y ,
+a(p2) vy | 57— Apy) — Bips) | uipr)
p; — m?
= ua(py) [’Rs(qz)"# + - (p1 —p-_))u} i j {A.0)

Comparing the last two lines in the above equation (A.6]. we can find that the

gluon condensate contribution to the R,(¢?) is as follows:

2 A(p; A(p3 ) .
R.(q) = Qm( > (pl)z + = (p_).)) - (B(p;) + B(p.})) (AT
pi —m*  p3—m?
Si(q®) = 0 (A.8)
Using the following on-shell conditions
pi=pi =" BRI
p3—mi=pl-m’ =0 (A 10}

the R,(0) becomes

(AL

From the above calculations we can conclude that rhe gluon condensate does not
contribute to 8,(0) but only to R;(0). The sum of (A.11} and (2.30) is the net gluon-
condensate contribution to R. which remains sufficiently divergent on-shell to ensure

that (2.86) remains valid.
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