
LOCAL DENSITY OF STATES OF A N  ISOLATED VORTEX 

IN THE QUASICLASSICAL LIMIT 

-4 Thesis 

Presented to 

The Faculty of Graduate Studies 

of 

The Cniversity of Guelph 

In partial fulfilment of requirements 

for the degree of 

?ifaster of Science 

August , 1998 

@William Chi-Fai Wong, 1998 



National Librâry I J c l l  ,,nada 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Wellington Street 395. rue Wellingtoci 
ûttawaON KtAON4 OttawaON K1A ON4 
Canada Canada 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exclusive permettant à la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou 
copies of this thesis in microfom, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfiche/nlm, de 

reproduction sur papier ou sur format 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyxight in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels 
may be printed or otheI7Kise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



ABSTRACT 

LOCAL DENSITY OF STATES OF AN ISOLATED VORTEX 

IN THE QUASICLASSICAL LIMIT 

Killiam Chi-Fai Wong 
hivers i ty  of Guelph. 1993 

,kivisor: 
Professor E.J. Xcol 

It  is well knoit-n that wheri a magnetic fieid is applied to so-called type II su- 

perconductors. magnetic flus is able to penetrate in quantized amounts by forming 

cylindrical doniains known as vortices. LVithin a vortex core. the superconductivity 

is suppressed. and single-particle excitations are observed. In tiiis thesis. ive calculate 

the local density of states for an isolated vortex using a variet? of order parameters. 

The calculat ions are performed ni t  hin the framework of the quasiclassical Eilenberger 

theory. We find that the states within the core do not represent those of the normal 

region. Instead. the distribution of the local density of states is characterized by the 

order paramet er. 
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Chapter 1 

Superconduct ivity 

Certain materials. when cooled belotv a critical ternperat ure Tc. undergo a transition 

into the superconducting phase. which is characterized by zero dc electrical resis- 

tance and perfect diamagnetism. Since its discover? in 1911. superconductivity has 

been observed in a variety of materials. such as metals. alloys. cerarnics and organic 

compounds. thereby creating an esciting area of study for both esperimental and 

t heore t ical physicists. 

-4 fundamental problem in superconductivity is to determine the spnmetry of a 

superconductor's energy gap. One possible tool for extracting this information is the 

scanning tunneling microscope. which can directly image the local density of stares 

around a vortex in a type II superconductor. As we shall see. the local density of 

states reflects the symrnetry of the order parameter. 

However, before turning our attention to vortices and their bound states. let us 

first review the history of superconductivity. Since the following section is limited to 

introducing some essential terminology. the reader may also wish to consult Refs. [ I I .  

[21, and [31. 



1.1 History of superconductivity 

In 1908. H. Kamerlingh Onnes[-l] succeeded in liquefying helium. thus initiating the 

field of loiv temperature physics. Three years later. he observed that  the dc resistance 

of mercury dropped to zero a t  4.15li. At any temperature T below this critical tem- 

perature. the normal resistance could be restored by applying a minimum rnagnetic 

field H,-(T). 

Several years passed before the second distinguishing feature of superconductivit~ 

iras observed. In 1933. W. Hans Sleissner and Robert Ochsenfeld[5] found tha t  rvhen 

a superconductor is cooled below its transition temperature in a magnetic field. it 

excludes the magnetic flux. This phenornena. known as the Meissner effect. distin- 

guishes a superconductor from a perfect conductor. as the latter would lock in the 

flus according to Lenz's law. The superconductor's ability to exclude any magnetic 

flus is a property knon-n as perfect diamagnetism. 

1.1.1 P henomenological t heories 

-4 number of phenornenological t heories were proposed ne11 before the formation of 

a full quantum mechanical treatment. The London theory introduced in 1933 by 

the brothers Fritz and Heinz London[G], noted that an external magnetic field decays 

exponentially in the bulk of a superconductor over a distance knorvn as the penetration 

depth A. In 1953. AB.  Pippard[i] estended the London theory by defining another 

length scale. knomn as the coherence length c7 to account for nonlocal interactions of 

the electron assembly. Pippard's coherence Iength measures the distance in which a 

significant change could occur in the superconductor's electronic structure1. 

'In the microscopic theory, the spatial extent of the BCS tvavefunction is interpreted 
coherence lengt h. 

as the 



Meanwhile. a therrnodynamic mode1 was proposed by V.L. Ginzburg and L.D. 

Landau[8] in 1950. They assumed that the current in the superconducting state tvas 

carried by "super electrons" with effective mass m* . charge e'. and density n:. It was 

later shown that thesc variables are related to t heir electron counterparts m. e. and 

n; = =in. ' .. 
At Tc. the super electrons start to form. and increase in number as the temperature 

decreases. Thus. their density n; is a measure of the order that exists within the 

superconducting state. Accordingly. the Ginzburg-Landau (GL) theory defines a 

cornplex order parameter c ~ ( r ) .  whose magnitude 1 ~ ( r )  1 is related to the super electron 

Abore Tc. the order parameter is zero. and its magnitude increases srnoothly as T is 

reduced belom Tc in zero field. The GL equations are obtained by minimizing the free 

energ. density. expanded in powers of the order parameter. near Tc* 

One result from the GL theory is that the interphase surface energv density be- 

tween the normal and superconducting phases a,, is dependent on a dimensionless 

parameter called K. To esplain the hleissner effect. a very large positive energv is 

required. which resuks when K « 1. 

Ginzburg and Landau noted? but did not pursue. that for K > 1/& O,,, became 

negative. This was later recognized as the defining difference between type 1 and 

type II superconductors. In type 1 superconductors, a sharp transition between the 

superconducting and normal state is observed when Hc(T)  is applied. For type II 



superconductors. the hleissner effect is observed when the applied field st rengt h is 

below a Iower critical field Hci (T). For field strengths above Hci (T). it becomes 

energetically favourable for the superconductor to allow some magnetic Aux to p a s  

through by creating normal regions. This rnised state exists until the field strength 

reaches an upper critical field Hc2(T).  in which the normal state is restored. In 19.57. 

I . A .  Abrikosov[9] proposed that the magnetic flux in the mised state penetrates the 

superconductor in discrete amounts by forming domains called uortzces. Section $1.4 

discusses t hese vortices in furt her detail. 

1.1.2 Microscopic theory of superconductivity 

In 1987. Bardeen. Cooper. and Schrieffer[lO] developed a rnicroscopic theory of su- 

perconductivity. which is commonly called BCS theory. Section § 1.2 outlines some of 

the properties of this theor .  

The original BCS ivork nas based on a variational solution of the Schrodinger 

equation for a gas of electrons ni th  a pairing interaction. The BCS theory may 

also be described using a field theory technique known as Green's functions. Csing 

this met hod. L.P. Gor'kov[l l] developed the Green's function equations for super- 

conductivity in 1958. The quasiciassicai limit was expressed - Eilenberger[l?]. and 

independently by Larkin and Ovchinnikov[l3]. in 1968. 

1.1.3 High-Tc superconductors 

Interest in high temperature superconductors started in 1986: with K.A. Müller's and 

J.G. Bednorz's[l-l] discovery of superconductivity in lanthanum and barium copper 

oxides (Ba,La5_,Cu.50,) a t  temperatures below 35K. Although still below the boil- 

ing point of liquid nitrogen (77K) :  this discovery focused attention on the copper 



oxide compounds. Within a year. the yttrium-barium systems (YBa2Cu307-d) were 

discovered with transition temperatures in the low 901i's. Cc'it hin another Fa r .  the 

Tc rose to 110K with the discowry of Bi2Sr2Ca2Cu30L0 ~ ~ p e r ~ ~ n d u ~ t o r ~ .  and then to 

125K for T12BazCaPCu30io. In 1993. the mercury compounds (HgBa2Ca2Cu30ais) 

boosted the transition teniperature to 133h-. Cnder extremely high pressure'. TC's in 

escess of 150K have been obserwd. 

BCS theory 

The simplest mode1 for superconductivity is t hat of a gas of elect rons interacting wit h 

each other through some two-particie interaction. In 1936. CooperjlJ] considered the 

problem of two electrons which lie above the Fermi sphere. He demonstrated that if 

the electrons could be paired bu sorne interaction that  was attractive. then a bound 

state could forrn. 

Although an? niechanism leading to a net attractive interaction would also lead to 

a superconducting state. Cooper argued that a plausible mechanism arises from the 

motion of the ions. or phonons. (Esperimental evidence of the direct involvement of 

phonons in the superconducting transition is provided by the isotope effect. in which 

the critical temperature is dependent on the ionic mass.) Even though the direct 

electrostatic interaction is repulsire. the ionic motion can overscreen the Coulomb 

interaction. This yields a net attraction between electrons in the Cooper pair. The 

pair is also prevented from occupying states below k F .  due to the Pauli exclusion 

principle of the remaining electrons in the Fermi sphere. 

In 1957. Bardeen. Cooper, and Schrieffer[lO] extended the pairing idea such that 

al1 electrons within hl, of e~ participated in one of the bound states (where the 

'Pressures on the order of 25-30 GPa. 



Debye frequency d~ is a measure of the maximum phonon frequency. and e~ is the 

Fermi energy). In the BCS theory. the ground state ivavefunction of .V conduction 

electrons is the product of $ - paired bound-state wavefunctions. The product is 

antisymmetrized to incorporate the exclusion principle. The antisymmetry prevents 

a one-electron level frorn being doubly occupied. but places no such restrictions on a 

tn-O-electron level. Thus. t hc pair of electrons can behave statist ically like bosons. As 

well. the paired ivavefunctions are takcn to be singlet States (the triplet state leads 

to magnetic properties not observed in conventional superconductors). 

The BCS theory provides a rnicroscopic interpretation of the phenomenological 

parameters. The spatial estent of the BCS wavefunction is known as the coherence 

length 6. A simple estimate of Co is given by: 

where Li is the energu gap for a homogeneous and isotropic superconductor (see 

Section $1.9.2). In typical loir-Tc superconductors. is 10' times A. and k F  is of 

the order 108 cm-I. giving a coherence length of 10"k 

1.2.1 BCS order parameter 

The mathematics of BCS theory is best described b~ second quantized notation. 

where the fermion creation operator GL (x) ..creates" a fermion with spin O = i$ at 

a position x. -4 similar annihilation operator &(x) rernoves a fermion with spin o at 

a position x. These operators have the following anticommutation relations: 



Csing these operators. the superconducting order pararneter3 is naturally defined as: 

F:, (x. x') = ( i*~ (x) IL.: (XI)) . (1.5) 

along nith its comples conjugate: 

ivhere the angular brackets imply a thermal average taken over al1 states. The an- 

ticommutation relations indicate t hat the order parameter is antisymmetric under 

exchange of coordinates and spin: 

FaJ (x. x') = - FJa (x'. X)  . (1.7) 

For a spin singlet state. separation of Eq. (1.7) into its spin and coordinate 

components gives: 

where = -\J,. It follows that the space part of the order parameter is symmetric 

since the overall order paramet er is ant isymmet ric: 

F (x. x') = F (x'. x) . (1.9) 

Another useful operator to define is the translation operator ~ ( a ) .  which when 

acting on a field operator Ü.,(x). gives: 

Thus. applying the translation operator to the order parameter in the absence of a 

magnetic field gives: 

F ( x ,  x') = F ( x  + a' x' + a). (1.11) 

3h the theory of phase transitions. an order parameter is a quantity that vanishes in the dis- 
ordered (or symmetric. or high-temperature) phase, while in the ordered phase it has a non-zero 
value. 



Since a is an arbitrary translation. Eq. (1.11) implies that the spatial order parameter 

is only dependent on the relative posit.ion: 

F(x.x') = F(x - x'). (1.12) 

1.2.2 BCS gap equation 

The nest step is to introduce4 a yap  function: 

I(x - x') = F(x - XI)\-(x - x'). 

where 1 -(x - x') is the interaction potential between electrons. 

I t  is convienent to  express F ( x  - x') . L'(x - x') and l ( x  - x' ) in terms of t heir 

Fourier t ransforms: 
* 

n-here R is the volume of the system. Convolution gives the relationship between Fk' 

l k  and Ai, to be: 

Using Eqs. (1.5) - ( 1.17). a Hamiltonian for an electron system can be diagonalized 

by a transformation known as the Bogoliubov transformation. The details are not 

presented here, and may be found in Refs. [l] and [2]. 

'.41though not presented here, the motivation for such an introduction arises from solving the 
potential energy component of the Harniltonian, where the product Fa3 (x, x' ) LF(x - x') appears 
frequently. The gap equation also has a physicai meaning, which we tvill soon see. 



Without further discussion. we state that the finite temperature solution to the 

energy gap is defined self-consistent ly as: 

rvherr f (E) is the Fermi-Dirac distribution function. and ck is the energy of a state 

relative to the  Fermi surface. In the original BCS niodel. the pairing interaction 

lk,kl = I O  is a non-zero positive constant for a range of energies jek/ < hD and 

Ifk' ( < hD. 

M'hen lk has non-trivial solutions. the excitation spectrum (1.19) has a mini- 

mum value of Ak. In other words. single-particle excitations must supply at least a 

minimum gap energy to excite the superconducting coridensate. 

In the literature. commonlv encountered order parameters include: the s-wave. 

u-hich has an energv gap that is finite and single-valued for ail Il directions. and the 

d,?-,:-wave. which has a gap that vanishes whenever k: - k; = O. The d,~-,r-wave 

is a likely order parameter for the high-Tc copper oxides. 

1.3 Scope of the thesis 

We focus our attention on the following situation: Within a vortes of a type II 

superconductor. the superconductivity is suppressed. The vortex can bo viewed as 

a quantum mechanical potential weii, whereby single-particle escitations can forrn 

bound states. We study these states using the quasiclassical Eilenberger t heory. The 

quasiclassical approach applies to superconductors which have a coherence length 

much longer than the inverse Fermi momentum, kFco » 1. Previous theoretical work 



describing the excitations in an isolated vortex based on the  quasiclassical t heory has 

been put forth bu Klein (s-inive) [NI. Gygi and Schlüter (s-wave) 120. 2 11. Schopohl 

and Maki (d,2 -,2 -waïe) [22] . and Hayashi et al. (anisotropic s-wave) [23. 241. 

Csing a scheme similar to tha t  of Schopohl and SIaki(22j as well as Havashi et 

al. 1231. ive calculate the local density of states around an isolated vortex. First. ive 

reproduce the above aut hors results for the s-wave. d , ~  -,'-wave (or d-\rave for short). 

and anisotropic s-wave gaps. Then. rve continue with a study of the follo\ving four 

order parameters: 

d,2+ + ~ad,~-ivave (d + iad). 

g-wave. 

s + ad,z-,i ( s  + a d ) .  

0 and d,;-,: + as-ivave (d + as). 

The motivation of t tiis t hesis stems from the follorving experirnental and t heoret i- 

cal situations: (1) Direct imaging of the bound states. or local density of states. is now 

possible with STN spectroscopy. Future STSI erperiments on different superconduc- 

tors. including the high-Tc copper osides. are anticipated. (2)  A parameterizat ion of 

the Eilenberger equations has been developed which greatly reduces the numerical 

calculat ions. Remarkably. the quasiclassical Green's funct ions can be calculated by 

solving an initial value problem of an ordinary different ial equat ion. 

We conclude this chapter by discussing vortices in more detail. Chapter 2 will 

describe the theory of the Eilenberger equations and how it is applied to our work. 

Chapter 3 is dedicated to presenting the results of our calculations. Finally, in Chapter 

4. a summary and conclusion of the work done in this thesis will be given. 



1.4 Vortices in type II superconductors 

In type II superconductors. the normal and superconducting states coenist over a 

range of magnetic field strengt hs. The normal regions in the mixed state forni tubes. 

or vortices. ivhich estend the length of the superconductor. The order parameter 

vanishes at the center of the vortex. and increases on the length scale Co. This defines 

a region known as the vortex core. The magnetic field is largest in the core. and 

decays over a length scale A. Circulating currents flow around the core. screening 

the field frorn the bulk of the superconductor. Each vortex encloses one quanta of 

magnetic Aux hc/2e (see Figure 1.1). 

1.4.1 Experimental studies of vortices 

The electronic structure of vortices may be studied using scanning tunneling mi- 

croscopy (STSI) esperiments. The scanning tunneling microscope consists of a probe. 

or tip. which can be positioned with atomic resolution. The tip scans the surface of the 

superconductor a t  a frxed height. The tunneling current through the  tip is measured 

a s  a function of voltage: the differential conductance d I / d l -  is directly proportional 

to the local density of states (LDOS). 

In 1989. Hess et a1.[16. 17. 181 esamined the vortex structure of 2H-SbSe?. a 

Iayered hexagonal superconduct ing compound. which is t hought to have an s-wave 

order parameter. The? found a zero-bias voltage peak in the rneasured differential 

conductance at the vortex center. which splits into two (ie: a positive and negative 

bias voltage peak) as one moves farther away from the core center. As well, the LDOS 

was star shaped. with the orientation of the star being dependent on the bias voltage. 



Specifically. the characteristic features of the LDOS observed in NbSe2 are sum- 

marized in detail as follows. when a magnetic field H is applied perpendicular to the 

hexagonal plane[23]: (1) The LDOS for quasiparticle excitations has a sixfold star 

shape centered at  the ror tes  center. (2 )  The orientation of this star depends on the 

energu. At zero bias. a ray of the star estends away from the x mis  (or a axis) in 

the hexagonal plane of SbSe*. Cpori increasing the bias voltage. the star rotates by 

30". (3) In the intermediate bias voltage. a ray splits into a pair of nearly parallel 

rays. keeping its direction fised. (4) In the spectral evolution which crosses the vortex 

center. there esist inner peaks in addition to the outer peaks which evolve from the 

zero bias peak at  the vortex center into the bulk BCS-like gap edges far from the 

vortex. The iriner peaks v a r -  with the angle of the direction in which the spectral 

evolution is taken. 



external magnetic 
field lines 

Figure 1.1: Sketch of a vortex. 



Chapter 2 

Theoretical Methods 

The foundation for alniost al1 theoretical work on type II supercondiictivit~ has been 

laid by Gor'kov[l 11. with the formulation of a set of equations for four Green's func- 

tions supplemented by two self-consistent equations for the gap equation A and vec- 

tor potential -4. However. information on the order of k F - '  contained in the Gor'kov 

equations is unnecessary co describe the STlI results. The length scale of interest for 

most superconductivity experiments is on the order of the BCS coherence length Co. 

The quasiclassical formulation. derived by Eilenberger [13] and independently by 

Larkin and Ovchinnikov [13]. simplify the Gor'kov equations by solving for what 

is called the <-integrated form of the Green's functions. These integrated Green's 

functions still contain much more information than is needed in most cases. yet the 

resulting equations benefit from a reduction in complexity and provide a promising 

starting point for numerical calculat ions[l2]. 

In this chapter. Section 52.1 provides a brief overview of Gor'kov's and Eilen- 

berger's methods for describing superconductivity with Green's functions. For a full 

mathematical description, refer to [25]. In Section 82.2. the quasiclassical formalism is 

presented. Sections 82.3 describes a parameterizat ion which reduces the Eilenberger 



equation to a initial value problem of an ordinary differential equation. Csing this 

met hod. the local density of states around a vortex core is calculated. 

2.1 Green's function method 

The concept of a 'propagator' or .Green's function' was originally developed in the 

study of quantum electrodynamics. but has since been applied to man? areas in 

physics. It provides a useful set of niathematical techniques for deriving physical 

results with minimum use of ausilia. and unobservable functions. In principle the 

wavefunction of a quantum state contains al1 the physical information about the state. 

The propagator is a closely related function. which represents the correiation between 

the states of the system at different times[26]. 

The original BCS derivation demonstrated that superconductivity cannot be ob- 

tained by a perturbation expansion in powers of the effective potential. As a result. 

a single propagator G cannot solve a mode1 Hamiltonian mith pairing interactions. 

However. Gor'kov showed hom the Green's function may be calculated by introducing 

new anomalous propagators. F and Fi.  which destroy or create a Cooper pair in the 

superconducting ground state. The matrix propagator G is a compact representation 

of these Green's functions: 

The rnatrix propagator satisfies a Dyson equation together with a prescription for 

calculat ing the self energy: 

(Go1 - 2 ) G  = i. (2.2) 



Here Go is the free-electron propagator. 

In the quasiclassical fornialisni. the Green's funct ions appenr in the &-integrated 

form: 

where & = fLCp(k - kF) and E, defines a cut off energy which is much larger than 

energies associated n-it h the superconducting state ksTc. but much smaller t han the 

Fermi energ-- F F .  The cutoff appears in no physical cluantities["ï]. 

2.2 Quasiclassical for malism 

The solutions to the Eilenberger equation. 

( h  = kB = 1) are the quasiclassical Green3 funct ions 

where [A. BI = AB - B A  denotes a commutator. The Eilenberger equation is sup- 

plemented bu the norrnalization condition 

Here. ;, = (2n + l)s;T is the Matsubara frequenc- r is the center of mass coordinate 

of the Cooper pair. and the unit vector k is the direction of the relative momentum 

of the Cooper pair. (In this planar geometry. a n  isolated vortes line situated at the 

ongin is orientated parallel to the r auis, and both r and k lie in the x-y plane.)[%] 

In an applied magentic field, the gap function depends on both r and k. 
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The m a t r ~ ~  form of (2.5) is a compact representation of the following three coupled 

differential equations (omitting the arguments iw,. r. and k for brevity where no 

confusion c m  occur) : 

vF(k) - GS = A*/ - 1ft. 

A fourt h equation is obtained bu the normalizat ion condit ion (7.7): 

-4s suggested by Eilenberger. Eqs. (2.8)  - (2.11) resemble transformed transport 

equations (V resernbles the convection terrn. 2w, can be interpreted as the trans- 

formed 2 ) .  The difference between these and genuine transport equations is the fact 

t hat f and f cannot be interpreted as probabilities. and a cornplex l ( r .  k)  malies 

these functions comples[lZ] . 

The appearance of a pole near the real d-auis in the propagator g(iw,. r. k)  defines 

a quasiparticle or long-lived excitation. -4 local. directional-dependent density of 

states for quasiparticles of energv E and momentum direction 0 is given bu: 

Here. q is a positive infinitesimal quantity. which physically represents an impurity 

parameter (ie: q shortens the lifet ime of quasiparticle). 

From X(r. 8. E). the local density of states :V(r. E) is obtained by averaging wit h 

respect to al1 0 directions: 

-iV(r, 6: E ) .  !v(r; = 1'' i: 



Figure 2.1: The coordinate sustem for the Riccati transformation method. 

2.3 The Riccati transformation met hod 

The Fermi velocity. vF(k) reflects the anisotropy of the Fermi surface. An isotropic 

cylindrical Fermi surface is assumed for the work presented here: 

In a n e a  frame. spanned by the orthogonal unit vectors û = cos 0% + sin By and 

Y = - sin8îc + cos69. a fxed point r = r,X: + r,y niay also be represented by 

r = rllû + r L i .  The unit vector k is denoted by the angle B rneasured from the I 

a~ i s .  while o represents the angle from the r avis to the position vector r (see Figure 

T l ) .  [24 

In this coordinate sustem. the straight line defined by: 

is orientated parallel to k and intersects the point r at  u = q. Along this line, the 



directional deri~ative vF(k) - 9 in (2.5) - (2.10) is equivalent to an ordinary derivat ive: 

Eq. (2.13) is known as the quasiparticle path and rL has the natural meaning of an 

impact parameter. 

Therefore. the Eilenberger equations dong the quasiparticle path are given as: 

i\*here ai = -&. i)lio = - i. r -  and r  = Jw. The phase elo = ( r ,  + i r , ) / r  has been 

factored out of the anomalous Green's functions and pair potential for convenience 

(ie: f = felo. 1' = fie-? 1 = &'O. and 1' = A'~- 'Q) .  Al1 energies and lengths 

are measured in units of the uniform gap A, at T = O and the coherence length 

6 = cF/AO. respect ively[%]. 

The Riccati transformation niethod uses the parameterization devised by Schopohl 

and .\laki[2'2]: 

- 26 i - a b  
- f= -à f t--  g = -  

1 + ab' 1 + ab' 

This transformation decouples the Eilenberger equat ions and enormously simplifies 

the numerical cornputation. 

Substituting (2.20) into (2.17) - (2.19) results in the Riccati equations (for a given 

rl: and 0): 



For W, situated in the upper half of the cornplex plane. the physical solution 

for ü(r l l )  is found by integrating (2.21) as an initial value problem from u = -x; to 

u = rl with increasing u-values. On the other hand. the physical solution for b ( r l ; )  is 

found by integrating (2.22) as a n  initial value probleni from t r  = x7 to u = ri, with 

decrewing rr-values[29]. 

Initial values for (2.21) and (2.22) are obtained by looking at  solutions Far From 

the isolated vortex: 

The gap function for an isolated vortex is espressed as a decomposition of its 

spatial and momentum compoiients: 

At the core center. the spatial component is zero. It increases to a finite. temperature- 

dependent value as one rnoves into the bulk region. This behaviour is modeled by[22. 

23. 241: 

I ( r )  = &T) tanh(r)  (2.25 j 

s-here &T) is the uniform temperature-dependent gap given by BCS theory. Here. 

ive set I(T) = 1. 

The k-space variation of the gap function A(@) determines the nature of the pair- 

ing. Table 2.1 defines the seven different gaps investigated in this thesis. several of 

which are considered as possibilities in high-Tc superconductors. 

To obtain the local density of states (2.13). the Green's function g(iw, + E + 
iq: r, O )  is calculated using the Riccati transformation method with un = q - iE. The 



Table 2.1: Order paranieter definitions with n = 0.2. 

Order Parameter 
S 

d12 

sixfold anisot ropic s 
dll-y~ + iadZy 
d12-y2 + as 
.s + a d , ~ ~ 2  

Y 

differential equat ions (2.2 1) and (2.22) are numerically integrated using an adapt ive 

stepsize fourt h-order Runge-Kutta scherne. The integration in ('2.13) is performed 

using Simpson's rule of integrütion. which is also good to fourth-order. 

X e )  
1 .O 

cos (20) 
1 + 0.5 cos(68) 

cos(28) + 0.22 sin(28) 
cos(20) + 0.2 
1 + 0.2 cos(28) 

cos (40) 
I 



Chapter 3 

Results and Discussions 

This chapter presents a study of the local density of states .V(r. E) using the rnethod 

described in Section 2.3. -4s a reminder. al1 quantities are dirnensionless: the energies. 

lengths. and density of states are quoted in units of lo (the uniforni gap at zero 

temperature). 6 ( the coherence length). and .& (the normal metal density of states 

at the Fermi energy). respectively. 

3.1 Local density of states in the bulk 

Before focusing attention on the vortex cote. it is perhaps beneficial to first consider 

the superconduct ing bulk. In t his region (r + x ) . the directional-dependent density 

of states is given by: 

which is nonzero only when E > (A(@) 1 .  In Figure 3.1. the local density of states vs 

energy E is calculated for a point far from the vortex center. Shomn are the s-wave. 

d-wave. d + lad-wave. and sixfold anisotropic s-wave gaps. 

For an s-wave supercond~ctor~ there are no states for energies less than 1A1. The 
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Figure 3.1: Local density of States .V(E.r) vs energy E h r  from the vortex center 
( 9  = 0.001). The results are calculated for the point r = 10 along the x-auis. but 
represents the bulk LDOS in general. Shown are the s-wave gap (upper left). d,2-,2-  

wave gap (upper right). d , ~ , 2  + O.Zd,,-wave gap (lower right) and an anisotropic 
s-wave gap. l ( 8 )  = 1 + 0.5 cos(66). (lower left). 



addition of anisotropy to the s-wave causes a broadening of the peak edge. -1s seen in 

the anisotropic s-wave gap. the broadening estends over a range E = 1 - a to 1 + a 

(here. a = 0.5). In contrast. a pure d-wave order parameter vanishes along certain 0 

directions. thereby allowing states to exist for al1 values of E. The behaviour of the 

d + iad-wave order parameter (with cr = 0.2) is similar to the d-wave since the d,, 

component is small. However. the order parameter is full- gapped. and for /El < ru. 

there are no states. 

In the vicinity of a vortex. single-particle states esist and Eq. (3.1) no longer 

holds. In the following calculat ions. only the positive energv values are discussed. 

since the local density of states is a symmetric function of E. 

3.2 Comparison between s-wave and d,z-,z-wave 

The local density of states around a vortex core is considered for the s-ivave: 

order parameters. Our calculations ( show in Figure 3.2) are in good agreement mith 

those of Schopohl and Slaki[22]. 

Figure 3.2 illustrates the spatial dependency of the LDOS for energies E = 0. 

E = 0.2. and E = 0.6. The quasiparticle excitation is circular for the s-wave case. 

and has a fourfold syrnmetry in a d-wave superconductor. At E = 0: both feature 

a large. zero-bias peak at  the vortex center. The d-wave also has small peak ridges 

extending along the line y = dzx. 



Figure 3.2: Cornparison of the local density of States N ( E ,  r) vs r between the s-mave 
and d,l-,?-wave. Results for s-wave are shown for energies a) E = 0.0, b) E = 0.90. 
and c )  E = 0.60. Results for dz2-,~-wvave are shown for energies d) E = 0.0. e) 
E = 0.20, and f )  E = 0.60. The height of the zero-bias peak at the vortex center has 
been truncated in (a) and (d). 



Figure 3.3: Plot of the peak energy vs distance r from the vortes center for an s-mave 
superconductor (dotted line). Also shown is the function E = tanh(r)  (solid line). 

For the s-n-ave case. as E increases. the zero-bias peak splits (into a positive 

and negative bias peak). and the peak is found further froni the center. Due to the 

isot ropic nature of the s-ivave pairing. a circular distribution is seen in Figures 3.2(b)  

and (c). Figure 3.3 shows how the zero-bias peak evolves with increasing energy. This 

plot represents the energv and corresponding radius of the peak in the LDOS. For 

cornparison. the relationship: 

is plotted as well. As a rough approximation. the escitations occur nhen E Il(r)l .  

Figure 3.4 shows the LDOS for an  s-wave superconductor as a function of e n e r e  

at three different radial distances from the vortex center. The shape of the peak is 

not symmetric about its maxima. but rat her smears out towards lower energies. while 

decaying rapidly for higher ones. 
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Figure 3.4: Local density of States Y ( E .  r)  vs energ- E for an s-n-ave superconductor. 
The position r is held fised with magnitude of r = 0.1 (upper). r = 0.5 (middle). and 
r = 1.0 (loiver). The value of the smearing parameter is q = 0.03 (solid line) and 
q = 0.01 (dashed line). 



Figure 3.5: Local density of states Y ( E .  r) as  a function of energy E and distance 
r frorn the mrres center. along the direction o = O" (left). o = 15" (middle). and 
o = 45' (right) for a pure d,z-,r-wave order parameter. The height has been truncated 
in al1 figures. 

.-\lso shoan in Figure 3.4 are the effects of the impurity parameter q. Lower values 

correspond to fewer lifetime effects resulting frorn impurity scattering: etc. 

In contrast to the s-wave. the d-wave has a fourfold symmetric local density of 

states. -1s shown in Figures 3.'2(d) and (ej. the quasiparticles form a distribution 

which curve around the vortex core. forming a 'square'-like structure at  the center. 

In the Iimit E + 0. the distribution rotate 45" and the curvature closes in on  the core. 

As shown in Figure 3 .2 (c ) .  there are peaks that still exist dong the lines y = &+. 

Figure 3.5 shows the evolution of the zero-bias peak. which splits into various 

peaks depending on the radial direction. Figure 3.6 shows the LDOS a t  nine different 

points (three points with the same magnitude of r as those in Figure 3.4, taken along 

three separate directional lines extending from the center) . 

The same results for the d,i.+-wave order parameter are found when the form 

1 cos(20) 1 is used instead of cos(20). This corresponds to the case ~ h e r e  the sign of 

the pair potential Eq. (2.24) does not change. As might be expected. the LDOS is 

sensitive only to the magnitude of the order parameter. 



Figure 3.6: Local density of States X ( E .  r)  vs energy E for d,?_,?-wave superconduc- 
tivity ( q  = 0.03). The position r is held fixed with magnitude of r = 0.1 (solid line). 
r = 0.5 (dash-dot line), and r = 1.0 (dotted line). The angle of r from the r-âuis 
corresponds to O = O' (upper figure), Q = 15" (middle figure). and d = 45" (lower 
figure). 



3.3 Sixfold anisotropic s-wave 

In this section. the properties of a sixfold anisotropic s-aave gap: 

w-ith n = 0.5 are presented. An order parameter of this forrn was first proposed 

by Hayashi et al.[24] to help esplain the features found in STN esperinients on the 

compound XbSez. Howewr. instead of Eq. (2.23).  Hayashi calculated a self-consistent 

solution to &r). Nevertheless. the results found here are in good agreement with 

their work. This indicates that the structure of the local density of states originates 

from the k-space variations of the order parameter A(@). 

Figure 3.7(a) reveals a sixfold symrnetry in the spatial structure of the local density 

of states. The plot is for E = 0.2 with an impurity parameter of g = 0.03. To help 

clarik the behaviour. an outline of the quasiparticle paths is shown in 3 . ï (b ) .  

The evolution of the quasiparticle excitations dong  different radial lines is shomn 

in Figures 3.7(c).(d). and (e). The zero-bias peak splits into several peak ridges in 

each plot. Along al1 directions. the conimon characteristic is the formation of a lower 

peak at E z 0.5 and an upper peak at E s 1.3 as the radial distance increases. 

These directionally-independent peaks are a result of the anisotropy of the s-wave 

gap. which is distributed from E = 1 - a to E = 1 + a. As well. the LDOS as a 

function of energy is shown in Figures 3.7(1) and (g) for three separate spatial points. 

In Figure 3.8. the LDOS as a function of r is shown for three increasing energy 

values E = O. E = O. 15. and E = 0.32. The calculations correspond to an impurity 

parameter of r)  = 0.03. however the scale is one that focuses attention on the underly- 

ing structure instead of the peaks (ie: values for N ( E ,  r) > 0.5 are not differentiated 

in the plot). At E = O. a sixfold star centered at the core with the rays oriented 



Figure 3.7: Results for a sivfold anisotropic s-wave order parameter l ( 0 )  = 1 + 
0.5 cos(68). The spatial dependence at  E = 0.2 is shown in (a). The corresponding 
peaks are outlined in (b).  The evolution of the quasiparticle excitations along a radial 
line is shown for radial angles c) Q = O", (d) 4 = lS0, and (e) o = 30". The height of 
the zero-bias peak has beeri truncated. Cross sections of the evolution showing the 
LDOS as a function of energy are shown for ( f )  4 = 0" and (g) qi = 30". In ( f )  and 
(g). three radial distances are shown, r = 0.1 (solid line). r = 0.5 (dot-dash line) and 
r = 1.0 (dotted line). 



Figure 3.5: Local density of states for an anisotropic s-wave superconductor. L(0) = 
1 + 0.5 cos(60). The images are calculated for energies E = 0.0 (left). E = O. 1.5 
(middle). and E = 0.32 (right) on a grid of size .IFo x 45*. 

away from the r avis is seen. At an intermediate energy E = 0.1.5. each ray has 

split into two parallel rays. .As the energy is increased to  E = 0.32. the star becomes 

more extended and the heads of each ray spreads out. The orientation of the star 

has rotated by 30". These results are similar to the description of ST'VI experiments 

on XbSen [16. 17. 181. In this way. the anisotropic s-wave gap well reproduces the 

esperimental feat ures ment ioned in Section 1.4. 

Strictly speaking. no effort was made to fit material pararneters appropriate to 

SbSe2 into these calculations. These results apply to a mode1 superconductor with 

an order parameter given by Eq. (3.5). 

3.4 dZ2+ +i<rd,,-wave and g-wave 

The symmetry of the order parameter can now be observed directly with STM erperi- 

ments. In light of this. we calculate the local density of states for a dZz-,2 +ind,-wave 

superconductor: 

A(0) = cos(20) + ici. sin(20), (3.6) 



and a g-wave superconductor: 

Recently. the d + id gap has been invoked to explain the thermal conductivitp 

data on Bi2srZCaC~208 in finite magnetic fields[30]. Figure 3.9 shows the results for 

the d + iad-wave gap with a = 0.2. -4 fourfold pattern similar to the pure cl-wave is 

seen. however the peaks are slightly skewed. 

Another unconveiitional order parameter is the g-rwe. which has eightfold sym- 

metry. The g-wave recovers information in band mode1 theories involving hopping 

to nearest neighbours[31]. Figure 3.10 shows the resulting local cîensity of States for 

such a gap. 

3.5 Mixing order parameters 

Finallu. we invest igate order paranieters t hat are admixt ures of the conventional s- 

wave and d-wave. In particular. a s + ad-wave gap: 

are presented. In these calculations. a = 0.2 is used. 

Figure 3.11 shows the results for the s i ad-wave gap, an order parameter thar 

is mostly s-wave? with a small rnixing of d-wave. The resulting distribution of the 

LDOS is an elongated circle. with major auis in the x-direction. This order parameter 

is fully gapped. and in the evolution plots, there are directionall-independent ridges 

forming for E = 1 - a and E = 1 + a. 



Figure 3.12 shows the results for the d + a s  order parameter. Here. a twofold 

symmetry is seen. but the overall pattern is closely related to the fourfold structure 

of the d-wwe.  The peaks which flow in the y direction do not approach the core as 

tightly as those in the x direction. The resulting shape in the center is a square t hat 

is elongated in the r-direction. 



Figure 3.9: Results for the  d,:+ + crid,,-wave order paranieter 4 8 )  = cos(2B) + 
0.2isin(96). The spatial dependence at E = 0.2 is shown in (a). The corresponding 
peaks are outlined in (b). The evolution of the quasiparticle escitations along a radial 
line is shown for radial angles c) 4 = O", (d) 4 = 15' and (e) 0 = 45". The height of 
the zero-bias peak has been truncated. Cross sections of the evolution showing the 
LDOS as a function of energy are shown for ( f )  4 = 0" and (g) d = 15'. In ( f )  and 
(g). three radial distances are shown. r = 0.1 (solid line). r = 0.5 (dot-dash line) and 
r = 1.0 (dotted line). 



Figure 3.10: Results for the g-wave order parameter l ( 8 )  = cos(48). The spatial 
dependence at  E = 0.2 is shown in (a). The corresponding peaks are outlined in (b). 
The evolution of the quasiparticle excitations along a radial line is shown for radial 
angles c) Q = 0°, (d) 4 = 15': and (e) 4 = 22.5'. The height of the zero-bias peak has 
been truncated. Cross sections of the evolution showing the LDOS as a function of 
energy are shown for ( f )  Q = 0" and (g) # = 15'. In (f) and (g), three radial distances 
are shown, r = 0.1 (solid line), r = 0.5 (dot-dash line) and r = 1.0 (dotted line). 
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Figure 3.11: Results for the s + crd,?-,2-wave order parameter L(0) = 1 + 0.2 cos(20). 
The spatial dependence at E = 0.2 is shown in (a). The corresponding peaks are 
outlined in (b). The evolution of the quasiparticle excitations along a radial line is 
shown for radial angles c) q5 = O", (d) Q = 1 3 ,  and (e) o = 30". The height of the 
zero-bias peak has been truncated. Cross sections of the evolution showing the LDOS 
as a function of energy are shown for (f)  q5 = 0" and (g) ~5 = 30". In (f) and (g),  three 
radial distances are shown, r = 0.1 (solid line). r = 0.5 (dot-dash line) and r = 1.0 
(dotted line) . 



Figure 3.12: Results for the d,? -,z + as-wave order parameter 1(8) = cos(%) + 0.2. 
The spatial dependence a t  E = 0.2 is shown in (a) .  The corresponding peaks are 
ourlined in (b). The evolution of the quasiparticle excitations dong  a radial line is 
shown for radial angles c) & = 0": (d) 4 = l 5 O ,  and (e) O = 45". T h e  height of the 
zero-bias peak has been truncated. Cross sections of the evolution showing the LDOS 
as a function of energy are shown for ( f )  d = 0" and (g) d = l5*. In (f) and (g). three 
radial distances are shown, r = 0.1 (solid line)? r = 0.5 (dot-dash line) and r = 1.0 
(dot ted line) . 



Chapter 4 

Conclusion 

4.1 Summary 

Here a final review is given of what was done in the precoding chapters. In this work. 

the local density of states around an isoiated vortex is calculated by solving the qua- 

siclassical Eilenberger equations. The approach outlined in this thesis is appropriate 

for clean superconductors. in which a quasiparticle passing near a vortex travels along 

a straight line parallel to the direction of its momentum. In this framework. ive make 

use of a parameterizat ion t hat t ransforms the Eilenberger equations into ordinary 

differential equations. 

In Chapter 3. ive presented the results of our numerical studc We Vend that the 

LDOS is influenced by the k-space variations of the order parameter. and for several 

different order parameters. we catalog t hese effects. 



4.2 Concluding remarks 

Results of the calcuiations in the local density of states for an  anisotropic order 

parameter agree quite well with the esperimental results on NbSe2. However. in 

superconductors such as the high-Tc copper oxides. the coherence length is short. and 

the quasiclassical approach may not be appropriate. WhiIe it is likely that  further 

correct ions are required to  esplain experiment al resul ts for t hese cuprates. ive believe 

that the calculations performed here remain at ieast qualitatively correct. 

Finally. aside from calculating the local density of states. the method presented 

here rnay be used to study other physical observables. For instance. the current 

around a vortex or a self-consistent pair potential. are directly calculated froni the 

quasiclassical Green's funct ions. 
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Appendix A 

Riccat i transformation 

A derivation of the Riccati transformation method is found in Ref. [29]. Here. ive 

simply show the algebra involved in decoupling the  Eilenberger equations. Samely. 

we demonstrate how the parameterization of Schopohl and !daki[Z]: 

decouples the Eilenberger equat ions: 

into t hese two ordinary differential equations: 

(A .  1) 

We use the same coordinate system as described in Section 82.3 with x = p ( u )  -6  = u. 



A. 1 Decoupling the Eilenberger equat ions 

It is easily seen t hat the parameterization satisfies the norrnalizat ion condition: 

NOK to illustrate the decoupling of the Eilenberger equations. (-4.2) - (A.4j. let us 

start bu esamining the derivative of g. 

As it turns out. this expression for $ can be incorporated into $: 

And using (-4.2) for 2 in the last terrn gives: 



-1 sirnilar calculation can be done for g: 

Substituting (A.10) into (-4.4) yields the Riccati equation for a: 

+ ya, - 1 
- l à 6  + (w, + 5ii310)(2ü) = 1 ( 1  - ab)  

d.r - 

And the equation for b is found using (A.  I l )  and (-4.3) : 

(A.  13) 



Appendix B 

Numerical Met hods 

B. 1 First-order differential equations 

For a first order differential equation. the init,ial value problem can be expressed in 

an esplicit forni as: 

The basic strategv for 

mating the derivative as a 

finding a numerical solution to (BA) consists of approxi- 

difference: 

and then cornpute the nest y value as one takes a step in the L. direction: 

where h = x,,, -z,. The solution advances through an interval h. but uses derivative 

information only at the beginning of the interval. resulting in an error term of 0 ( h 2 ) .  

That is, (B.3) is just the power series expansion to first order. 



B. 1.1 Fourt h-order Runge-Kutta Method 

In general. the Runge-Kutta method achieves higher order accuracy by making a 

"trial" evaluation a t  the midpoint of the step interval. Then. the information found 

at the midpoint is used to cornpute the "real' step across the whole iriterval. The 

intermediate steps st ill produce a first order solution. y t  give different coefficients 

of higher-order error terms. By adding up the right combination. error terms can be 

eliminated order by order. 

The recipe for the fourt h-order Runge-Kutta met hod is[32]: 

B. 1.2 Adaptive stepsize control 

For performance reasons. it is beneficial to make frequent changes to the stepsize 

h. so that a solution may be found with minimal computational effort. In order to 

make such stepsize adjust ments. the program must be capable of est imating the error 

during each iteration of the algorithm. 

In our work. ive adopt an embedded Runge-Kut t a  formula[32] to achieve adaptive 

stepsize control. The recipe consists of a fifth-order method from six function evalu- 

ations. where another combination of the six functions gives a fourt h-order method. 

The difference between the two methods is used as a n  estimate of the truncation 

error. and thus provides a mesure on how to adjust the stepsize. 



The general Form of the fifth-order Runge-Kutta formula is: 

The embedded fourth-order formula is: 

and the error estimate is given by: 

where the various coefficients (known as Cash-Karp parameters) are given in Ta- 

ble B.1. 

In order to adjust the stepsize. ive notice that 1 scales as hi. If an error of 11 

results from a stepsize of h l .  we may then estirnate a desired error of Io by taking a 

step given by ho: 

Thus. if A L  is larger in niagnitude that &. then the error is g e a t e r  than our desired 

accuracy and the step must be repeated. We try a shorter stepsize $-en by (B.@. 

Conversely. if Al  is smaller than Io. then (B.8) tells us how much ive can increase 

the stepsize for the nest iteration. 



Table B. 1: Cash-Karp parameters for the embedded Runge-Kutta met hod. 

B .2 Numerical integration using Simpson's rule 

-1 definite integral: 
b 

S = l  f(s)dz 

is solved nuinerically by approrimating the integrand f (1) by functions n-hich can be 

easily integrated. Piecewise quadratic approsimations result in Simpson's rule. which 

is a fourth-order method defined a@]: 

(B. 10) 

ivhere n is even and l x  = ( b  - a) /n .  S o t e  tha t  this method is siniilar t o  the fourth- 

order Runge-Kutta method when J(x. y )  depends only on x. 



Appendix C 

Source code 

C. l  Program listing 

.A set of C functions has been developed to solve the Eilenberger equations. The 

source code of t hese routines is shown here. dong  with a sample main() to illustrate 

the functionality. 

#ifndef PI 
#def ine PI 3.141592653589793 
#endif 

#def ine Kb 1.000 
#def ine EPSILON le-8 

/* DEFINITION STANDARD - FEB 26, 1998 */ 
#def ine DWAVE 1 
#def ine SWAVE 2 
#define NBSE2-5 3 
#define NBSES-3 4 



#def ine DPID-2 
#define DPID-5 
#def ine DPID-8 
#def ine DPID-X 
#def ine SPD-X 
#def ine SPD-5 
#def ine SPD-2 
#def ine DPS-2 
#define DPS-5 
#define ABSD 
#define DPIS-1 
#define DPIS-2 
#def ine DPIS-X 

int gSTATE = SWAVE; 
double g'ïheta ; 
double gWR, gWI; 
double gRperp; 
double gToTc = 0.0; 

FILE *logFILE; 

typedef struct 
C 
double xl; 
double x2; 
double inc; 
int il ; 
int i2 ; 
int iinc ; 
double dfac; 
) LIMIT-TYPE ; 

double ANGFN-RE (doubl 
C 
suitch (@TATE) 

C 
case DPID-2: 
case DPID-5: 
case DPID-8: 
case DPID-X: 
case DPIS-1: 
case DPIS-2: 
case DPIS-X: 
case DWAVE: 



case SWAVE: 

case NBSE2-5: 
case NBSE2-3: 

case SPD-X: 
case SPD-5: 
case SPD-2: 

case DPS-2: 
case DPS-5: 

case ABSD: 

> 

double ANGFN,IM(double c) 
C 
suitch (gSTATE) 

C 
case DWAVE: 
case SWAVE: 
case NBSE2-5: 
case NBSE2-3: 
case SPD-X: 
case SPD-5: 
case SPD-2: 
case DPS-2: 
case DPS-5: 
case ABSD: 

case DPID-2: 
case DPID-5: 
case DPID-8: 
case DPID-X: 
case DPIS-1: 
case DPIS-2: 
case DPIS-X: 

3 
1 

double deltaT0 
€ 
return( 1.0) ; 

> 

return (1.0 1; 

return (1.0+0. 5*cos (6.0*c) 1; 
return (l.O+cos(6.0*~)/3.0 1; 

return (cos(2 .O*C)+~ - 2  
return (co~(2.0*~)+0 . S  

return (0 .O 

return (0.2*sin(2 .O*C) 
return (0.5*sin(2 . O * C )  
return (0.8*sin(2.0*~) 
return (sin(2.0*c> 
return (0.1 
return (0.2 
retum (1.0 

void calGreens (double y [] , double f f g [] ) 



C 
double al,aS,bl,b2, denom; 

ffg[0]=(2*al + 2*al*al*bl + 2*a2*a2*bl) / denom ; 

ffg[1]=(-2*ai*al*b2 - 2*a2*a2*b2 + 2*a2) / denom; 
ffg[2]=(2*bl + 2*al*bl*bl + 2*al*b2*b2) / denom ; 

ffg[3]=(-2*a2*bl*bl - 2*a2*b2*b2 + 2*b2) / denom; 
ffg~4]=(l-a2*a2*bl*bl-al*al*b2*b2-al*al*bl*b1-a2*a2*b2*b2)/denom; 
ffg[S] =(-2*a2*bl - 2*al*b2) /denom; 
return ; 

void f a(doub1e x , double y , double dydx [] ) 

double DR, DI, AR, AI, DRR, DRI, TR, TI; 
double CBIR, CBlI; 
double r; 

r = sqrt (x*x + gRperp*gRperp) ; 

/* FIRST CHANNEL = AR */ 
/* SECOND CHANNEL = AI */ 

CBlR = 2*gWR + DR*AR + DI*AI; 
CBlI = 2*gWI -gRperp/(r*r) - DI*AR + DR*AI; 

dydxCO] = DR - CBlR*AR + CBlI*AI ; 
dydx[1] = DI - CBlR*AI - CBlI*AR; 
return ; 
> 



void fb (double x , double y [] , double dydx [l ) 
€ 
double DR, DI, BR, BI, D M ,  DRI, TR, TI; 
double CB2R, CBSI; 
double r; 

BR = y [O] ; 
BI = y Cl] ; 

/* THIRD CHANNEL = BR */ 
/* FOURTH CHANNEL = BI */ 

void f aOPT(doub1e x , double y [] , double dydx [] ) 
C 
double DR, DI, AR, AI, D M ,  DRI, TR, TI; 
double CBlR, CB1I; 
double r; 

/* FIRST CHANNEL = AR */  
/* SECOND CHANNEL = AI */ 



CBlR = 2*gUR + DR*AR + DI*AI; 
CB11 = 2*gWI - DI*AR + DR*AI; 

dy&[O] = DR - CBlR*AR + CBlI*AI; 
dy&[1] = DI - CBlR*AI - CBlI*AR; 
return; 

J 

void fbOPT(doub1e x , double y [] , double dydr 

double DR, DI, BR, BI, DRR, DRI, TR, TI; 
double CBSR, C82I; 
double r; 

r = sqrt (x*x + gRperp*gRperp) ; 

double 

dydx [ O ]  = -DR + CB?R*BR - CB2I*BI ; 
dydx [l] = DI + CB2R*BZ + CBZI*BR; 
return; 
> 

/* THIRD CHANNEL = BR */ 
/* FOURTH CHANNEL = BI */ 

gFromAB(doub1e rpar, double rperp, double theta, double E, double n) 
< 
double rparPlimit , rparNlimit ; 
double DRR, DRI, DR, DI, TR, TI, WR, WI; 
double ivdm2, ivx, i v y ,  ivr, ivtheta, i v p ,  ivq; 
double y C21, yAB 141 , f f g CG1 , aRe , aIm, bRe, bIm; 
double realInt ; 
int Tindex; 



double h s t a r t ,  eps ,  hmin; 
int kount, inNok, inNbad, exNok, exNôad; 

eps = 1 . Oe-4 ; 
hstart  = 0 . 0 1 ;  
hmin = eps*l.Oe-7; 

/* SET ÇLOBALS */ 
g'ïheta = the ta ;  
gRperp = rperp; 
gWR = WR; 
gWI = WI; 

/* POSITIVE INITIAL VALUE (B-CHANNEL) */ 
DRR = d e l t a T 0  *tanh(sqrt (rpar~limit*rpar~limit+rperp*~e~) ; 

DR1 = 0 . 0 ;  /*  DELTACr) */  

/* DELTA Cr, theta)  */ 

i v x  = WR*WR - WI*WI + ivdm2; 
i v y  = 2*WR*WI; 

if ( ( i v x  >= 0) && ( i v y  >= 0 ) )  
i v t h e t a  = atan(ivy/ ivx)  ; 

e l s e  if ( ( i v x  C 0) &% ( ivy  >= 0 ) )  
i v t h e t a  = atan(ivy/ivx) + PI; 



else if ((ivx < 0) && (ivy < 0)) 
ivtheta = atan(ivy/ivx) + PI; 

else if ((ivx >= 0) && (ivy < 0)) 
ivtheta = atan(ivy/ivx) + 2*PI; 

ivr = sqrt (ivx*ivx + ivy*ivy) ; 

if (cos(ivtheta/2 .O) < 0) 

ivp = -sqrt(ivr)*cos(ivtheta/2.0) - WR; 
ivq = -sqrt(ivr)*sin(ivtheta/:!.O) - VI; 
> 

else 
< 
ivp = sqrt (ivr)*cos(ivtheta/l .O) - WR; 
ivq = sqrt (ivr)*sin(ivtheta/2 .O) - VI; 
3 

y [O] = ( ivp*DR + ivq*DI) / ivdm2; 
y[l] = (-ivp*DI + ivq*DR) / ivdm2; 

> 
if (f abs (gRperp) < EPSILON) 

kount = odeint(y, 2, rparplimit, rpar, eps, 
hstart, hmin, kinNok, &inNbad, fbOPT); 

else 
kount = odeint(y, 2, rparplimit, rpar, eps, 

hstart , hmin, BinNok, &inNbad, fb) ; 

/* NEGATIVE INITIAL VALUE (A-CHANNEL) */ 
DRR = deltaT() * tanh(sqrt (rparNlimit*rparNlimit + rperp*rperp) ) ; 
DR1 = 0.0; /* DELTA(r) */ 



ivx = WR*WR - WI*WI + ivdm2; 
ivy = 2*WR*WL; 

y[0] = ( ivp*DR - ivq*DI) / ivdm2; 
y Cl] = ( ivp*DI + ivq*DR) / ivdm2; 
> 

if (fabs(gRperp) < EPSILON) 
b o u t  += odeint (y, 2, rparNlimit , r p x ,  eps , 

hstart, hmin, &inNok,&inNbad,faOPT); 

else 
kount += odeint(y, 2, rparNlimit, rpar, eps, 

hstart , hmin, &inNok, &inNbad, fa) ; 



double gFromABxy(doub1e xyX, double xyY, double theta, double E, double n) 

double rpar, rperp; 

void gVsTheta(doub1e xyX, double xyY, LIMIT-TYPE t, double E, 
double n, char *filename) 

FILE *Stream; 
int i; 
double theta; 

Stream = fopen(f ilename. "ut") ; 

for (theta = t-xl; theta <= t.x2; theta += t-inc) 
fprintf (stream, 

"%10.6f%l0.6f\nU, 
theta, gFromABxy(xyX, xyY, theta, E, n) 1; 

f close (stream) ; 

void gVsRpar(LIM1T-TYPE r, double rperp, double theta, double E. 
double n , char *f ilename) 
C 
FILE *Stream; 
int i; 
double rpar; 

stream = f open(f ilename , "wt " ) ; 

void gVsRperp(double rpar, LIMIT-TYPE r, double theta, double E, 
double n, char *f ilename) 

FILE *Stream; 



int i; 
double rperp; 

stream = fopen(f ilename, "ut") ; 

for (rperp = r.xl; rperp <= r.x2; rperp += r-inc) 
f print f 

fclose(stream); 
3 

(stream, 
"%10.6f%10.6f\n", 
rperp, gFromAB(rpar, rperp, theta, E, n) 1; 

void rVsLDOSyline(L1MIT-NPE x ,  double xyY, double E, 
double n, char *filename) 
€ 
FILE *Stream; 
int i, thetapoints, fixer, scount; 
double r, xyX, theta,  realInt ; 
double *integrand; 
double *store; 
double thet aMLX ; 

thetapoints = 1001; /*  WST BE ODD FOR SIMPSON INT */ 
thetaMLX = 0-006283; /* USE MüLTX SINCE LINUX CANJT ADD */ 
integrand = allocdv(thetaPoints); 

stream = fopen(f ilenme, " w t " )  ; 

/* FIRST COUNT UP POINTS */ 
/* MAR 7, FIXER ADDED TO FIX LIERTX PRECISIDN PROBLEM */  
scount = 0; 
for (fixer = x.il; fixer <= x.i2; fixer+= x.iinc) 

scount++ ; 
store = allocdv(scount); 

/* NOW EVALUATE POINTS */  
scount = 0; 
for (fixer = x.il; fixer <= x.i2; fixer+= x.iinc) 

€ 
xyX = x.dfac*(double)fixer; 

r = sqrt (xyX*xyX + xyY*xyY) ; 

if (r C EPSILON) /* DISPLACE ORIGIN POINT */ 
xyX = iO*EPSILON; 

/* CALCULATE g VS theta */ 



for (i = O; i C thetapoints; i+= 1) 
< 
t he t a  = (double)i*thetaMLX; 
integrand[i] = gFromABxy (xyX, xyY, theta, E, n); 
1 

realInt = 0; /* INTEGRATE OVER theta */ 
simpsonInt(integrand, thetapoints-1, 0, 2*PI, BrealInt); 

store [scount++] = realInt/ (2*PI) ; 
1 

/* AND WRITE OUT */ 
scount = 0; 
for (fixer = x.il; fixer <= x.i2; fixer += x-iinc) 

fprintf Cstream, 
"%8.4f%10.6f\n", 
x. Mac* (double) f i x e r  , store [scount++l) ; 

void rVsLDOSphi(LIM1T-TYPE x, double phi, double E, 
double n, char *filename) 
i 
FILE *Stream; 
i n t  i, thetapoints; 
double r, xyX, xyY, theta, realrnt; 
double *integrand; 
double thetaMLX; 

theteoints = 1001; /* MüST BE ODD FOR SIMPSON INT */ 
thetaMLX = 0.006283; /* USE MULTX SINCE LINUX CAN'T ADD */ 
integrand = allocdv(thetaPoints) ; 

Stream = f open(f ilename, "ut") ; 

for (r = x . x ~ ;  r <= x.x2; r += x.inc) 

< 
if (r < EPSILON) 

r = lO*EPSILON; 
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realInt = 0; /* INTEGRATE OVER theta */  
simpsonInt(integrand. thetsoints-1, 0, 2*PI, BrealInt); 

fprintf (stream, "%8.4f%10.6f\n", E. realInt/(2*PI) 1; 
3 

char *thetirne() 
C 
time-t t; 
t = time(0); 
return(ctime((time,t *)kt)); 
3 

void main ( int argc , char *argv Cl ) 

i n t  y, i, r; 
char string C801 ; 
LIMIT-TYPE x ; 
double n, Eval, phiVal; 
char IDSTR C4I , ESTR C41 , PSTR C41 ; 
char DIREC [32] ; 
char excommand [803 ; 

n = 0.03; /* ETA */ 

/* SET MAP RANGE */  
x.xl = 0.0; x.x2 = 1.0; x.iac = 0.02; 

/* MAKE ROOT DIRECTORY */ 
@TATE = DWAVE; sprintf (IDSTR, "DX");  
sprintf (excommand, "mkdir %su , IDSTR) ; 
system(exCommand) ; 

/* MAKE DIRECTORY FOR PHI DIRECTION */ 
phiVal = 0.0; sprintf (PSTR, "00"); 
sprintf (DIREC, "%s/P%stl, IDSTR, PSTR); 
sprintf (exconmiand, "mkdir %su, DIREC); 
system(exCommand) ; 

/* CALCULATE MAP */ 
for (r = O; r < 301; r += 2) 



sprintf (string, "%s/%s'lsR%O3d. DAT" , DIREC , IDSTR , PSTR, r) ; 
eVsLDOSphi ( (double) r*O .O1 , phival ,  x , n, string) ; 
1 

/ *  AND REPEAT FOR DIFFERENT phiVal */ 
gSTATE = DWAVE; sprintf (IDSTR, "DX") ;  
phiVal = PI/12.0; sprintf (PSTR, "15") ; 
sprintf (DIREC , "%s/P%s" , IDSTR, PSTR) ; 
sprintf (excommand, "mkdir Xs", DIREC); 
system(exCommand) ; 

for (r = 0; r < 301; r += 2 )  
< 
sprintf (S~~~~~,"%S/%~%SR%O~~.DAT",DIREC,IDSTR,PSTR,~); 
eVsLDOSphi((double)r*0.01, phival, x ,  n, string); 
> 

/* AND AGAIN ... */ 
gSTATE = DWAVE; sprintf (IDSTR, "DX"); 
phiVal = PI/4.0; sprintf (PSTR, "45") ;  
sprintf (DIREC , "%s/P%sU , IDSTR, PSTR) ; 
sprintf (exCommand, "mkdir %s", DIREC); 
system(exCommand) ; 

for (r = 0; r < 301; r += 2) 

sprintf (string,"%s/%sï.sR%O3d.DAT",DIREC,IDSTR,PSTR,r); 
eVsLDOSphi((double~r*O.Ol, phiVal, x ,  n, string); 
1 
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