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ABSTRACT

LOCAL DENSITY OF STATES OF AN ISOLATED VORTEX
IN THE QUASICLASSICAL LIMIT

William Chi-Fai Wong Advisor:
University of Guelph. 1998 Professor E.J. Nicol

It is well known that when a magnetic field is applied to so-called type II su-
perconductors. magnetic flux is able to penetrate in quantized amounts by forming
cvlindrical domains known as vortices. Within a vortex core. the superconductivity
is suppressed. and single-particle excitations are observed. In this thesis. we calculate
the local density of states for an isolated vortex using a variety of order parameters.
The calculations are performed within the framework of the quasiclassical Eilenberger
theory. We find that the states within the core do not represent those of the normal
region. Instead. the distribution of the local density of states is characterized by the

order parameter.
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Chapter 1

Superconductivity

Certain materials. when cooled below a critical temperature 7. undergo a transition
into the superconducting phase, which is characterized by zero dc electrical resis-
tance and perfect diamagnetism. Since its discovery in 1911. superconductivity has
been observed in a variety of materials. such as metals. alloys. ceramics and organic
compounds. thereby creating an exciting area of study for both experimental and
theoretical physicists.

A fundamental problem in superconductivity is to determine the svmmetry of a
superconductor’s energy gap. One possible tool for extracting this information is the
scanning tunneling microscope. which can directly image the local density of states
around a vortex in a tvpe I superconductor. As we shall see. the local density of
states reflects the svmmetry of the order parameter.

However, before turning our attention to vortices and their bound states. let us
first review the history of superconductivity. Since the following section is limited to
introducing some essential terminology. the reader may also wish to consult Refs. [1].

(2], and [3].




1.1 History of superconductivity

In 1908. H. Kamerlingh Onnes|[{] succeeded in liquefving helium. thus initiating the
field of low temperature physics. Three vears later. he observed that the dc resistance
of mercury dropped to zero at 4.15A". At any temperature T below this critical tem-
perature, the normal resistance could be restored by applyving a minimum magnetic
field H.(T).

Several vears passed before the second distinguishing feature of superconductivity
was observed. In 1933. W. Hans Meissner and Robert Ochsenfeld[5] found that when
a superconductor is cooled below its transition temperature in a magnetic field. it
excludes the magnetic flux. This phenomena. known as the Meissner effect. distin-
guishes a superconductor from a perfect conductor. as the latter would lock in the
flux according to Lenz's law. The superconductor’s ability to exclude any magnetic

flux is a property known as perfect diamagnetism.

1.1.1 Phenomenological theories

A number of phenomenological theories were proposed well before the formation of
a full quantum mechanical treatment. The London theory. introduced in 1933 by
the brothers Fritz and Heinz London[6], noted that an external magnetic field decays
exponentially in the bulk of a superconductor over a distance known as the penetration
depth \. In 1953. A.B. Pippard[7] extended the London theory by defining another
length scale. known as the coherence length £, to account for nonlocal interactions of
the electron assembly. Pippard’s coherence length measures the distance in which a

significant change could occur in the superconductor’s electronic structure’.

'In the microscopic theory, the spatial extent of the BCS wavefunction is interpreted as the
coherence length.




Meanwhile. a thermodynamic model was proposed by V.L. Ginzburg and L.D.
Landau([8] in 1950. They assumed that the current in the superconducting state was
carried by “super electrons” with effective mass m*. charge e*. and density n;. It was
later shown that these variables are related to their electron counterparts m. e. and

n as follows:

m* = 2m

et = =2e. (1.1)
. __ 1

71,,l = §n.

At T.. the super electrons start to form, and increase in number as the temperature
decreases. Thus. their density n; is a measure of the order that exists within the
superconducting state. Accordingly. the Ginzburg-Landau (GL) theory defines a
complex order parameter v(r). whose magnitude |w(r)| is related to the super electron

density.
\u!(l‘)' = \/n;{r). (1.2)

Above T.. the order parameter is zero. and its magnitude increases smoothly as T is
reduced below T in zero field. The GL equations are obtained by minimizing the free
energy density. expanded in powers of the order parameter. near T..

One result from the GL theory is that the interphase surface energy density be-
tween the normal and superconducting phases o, is dependent on a dimensionless
parameter called k. To explain the Meissner effect. a very large positive energy is
required. which results when x <« 1.

Ginzburg and Landau noted, but did not pursue, that for & > 1/ V2. ons became
negative. This was later recognized as the defining difference between type I and
type II superconductors. In tvpe I superconductors, a sharp transition between the

superconducting and normal state is observed when H.(T) is applied. For type II




superconductors. the Meissner effect is observed when the applied field strength is
below a lower critical field H.(T). For field strengths above H.(T). it becomes
energetically favourable for the superconductor to allow some magnetic flux to pass
through by creating normal regions. This mixed state exists until the field strength
reaches an upper critical field H.,(T). in which the normal state is restored. In 1957,
A.A. Abrikosov[9] proposed that the magnetic flux in the mixed state penetrates the
superconductor in discrete amounts by forming domains called vortices. Section §1.4

discusses these vortices in further detail.

1.1.2 Microscopic theory of superconductivity

[n 1957. Bardeen. Cooper. and Schrieffer{10] developed a microscopic theory of su-
perconductivity. which is commonly called BCS theory. Section §1.2 outlines some of
the properties of this theory.

The original BCS work was based on a variational solution of the Schrodinger
equation for a gas of electrons with a pairing interaction. The BCS theory may
also be described using a field theory technique known as Green's functions. Using
this method. L.P. Gor’kov[l1] developed the Green’s function equations for super-
conductivity in 1958. The quasiclassical limit was expressed by Eilenberger[12]. and

independently by Larkin and Ovchinnikov(13], in 1968.

1.1.3 High-T, superconductors

Interest in high temperature superconductors started in 1986, with K.A. Miiller’s and
J.G. Bednorz’s[14] discovery of superconductivity in lanthanum and barium copper
oxides (Ba;Las_.Cus0,) at temperatures below 35K. Although still below the boil-

ing point of liquid nitrogen (77K), this discovery focused attention on the copper
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oxide compounds. Within a vear. the vttrium-barium systems (YBa;Cu3zO;_;} were
discovered with transition temperatures in the low 90K s. Within another year. the
T, rose to 110K with the discovery of Bi,Sr,Ca;CuyO,9 superconductors. and then to
125K for Tl;BasCayCuzOyp. In 1993. the mercury compounds (HgBa;Cay,Cuz0g.5)
boosted the transition temperature to 133A". Under extremely high pressure?. T,’s in

excess of 1350A" have been observed.

1.2 BCS theory

The simplest model for superconductivity is that of a gas of electrons interacting with
each other through some two-particle interaction. In 1956. Cooper{15] considered the
problem of two electrons which lie above the Fermi sphere. He demonstrated that if
the electrons could be paired by some interaction that was attractive. then a bound
state could form.

Although any mechanism leading to a net attractive interaction would also lead to
a superconducting state. Cooper argued that a plausible mechanism arises from the
motion of the ions. or phonons. (Experimental evidence of the direct involvement of
phonons in the superconducting transition is provided by the isotope effect. in which
the critical temperature is dependent on the ionic mass.) Even though the direct
electrostatic interaction is repulsive, the ionic motion can overscreen the Coulomb
interaction. This vields a net attraction between electrons in the Cooper pair. The
pair is also prevented from occupying states below Ag. due to the Pauli exclusion
principle of the remaining electrons in the Fermi sphere.

In 1957, Bardeen, Cooper, and Schrieffer[10] extended the pairing idea such that

all electrons within fuwp of ¢ participated in one of the bound states (where the

2Pressures on the order of 25-30 GPa.




Debyve frequency wp is a measure of the maximum phonon frequency. and ef is the
Fermi energy). In the BCS theory. the ground state wavefunction of .V conduction
electrons is the product of % paired bound-state wavefunctions. The product is
antisvmmetrized to incorporate the exclusion principle. The antisymmetry prevents
a one-electron level from being doubly occupied. but places no such restrictions on a
two-electron level. Thus. the pair of electrons can behave statistically like bosons. As
well. the paired wavefunctions are taken to be singlet states (the triplet state leads
to magnetic properties not observed in conventional superconductors).

The BCS theory provides a microscopic interpretation of the phenomenological
parameters. The spatial extent of the BCS wavefunction is known as the coherence

length &. A simple estimate of & is given by:

ﬁ.’UF €r
~ —_— ) 1.3
o : o (1.3)

where \ is the energy gap for a homogeneous and isotropic superconductor (see
Section §1.2.2). In typical low-T, superconductors. e is 107 times \. and kf is of

the order 10® cm~!. giving a coherence length of 10°A.

1.2.1 BCS order parameter

The mathematics of BCS theory is best described by second quantized notation,
where the fermion creation operator ¢} (x) “creates” a fermion with spin ¢ = £3 at
a position x. A similar annihilation operator v, (x) removes a fermion with spin o at

a position x. These operators have the following anticommutation relations:

{a(x), wh(x)} basd(x — X'},

{va(x). ¥5(x)}

0




Using these operators. the superconducting order parameter® is naturally defined as:

F!(x.x) = <z[‘f,(x)'¢'3(x')>. (1.5)
along with its complex conjugate:
Foslx.¥) = (a(x)ea(x)). (16)

where the angular brackets imply a thermal average taken over all states. The an-
ticommutation relations indicate that the order parameter is antisymmetric under

exchange of coordinates and spin:
Fo3(x.x') = —Fja(x'. x). (1.7)

For a spin singlet state. separation of Eq. (1.7) into its spin and coordinate
components gives:

Fos(x.x') = xasF(x.X). (1.8)

where \o3 = —\3o. [t follows that the space part of the order parameter is symmetric

since the overall order parameter is antisymmetric:
F(x.x") = F(x'.x). (1.9)

Another useful operator to define is the translation operator T(a). which when
acting on a field operator v, (x). gives:

T(a)u,(x)T!(a) = vo(x +a) (1.10)

Thus. applying the translation operator to the order parameter in the absence of a
magnetic field gives:

F(x,x') = F(x +a,x' + a). (1.11)

3In the theory of phase transitions, an order parameter is a quantity that vanishes in the dis-
ordered (or symmetric, or high-temperature) phase, while in the ordered phase it has a non-zero
value.

=]




Since a is an arbitrary translation. Eq. (1.11) implies that the spatial order parameter

is only dependent on the relative position:

F(x.x') = F{x - x). (1.12)

1.2.2 BCS gap equation

The next step is to introduce* a gap function:
Ax —x') = F(x - x")V(x - x), (1.13)

where 1'(x — x’) is the interaction potential between electrons.

[t is convienent to express F(x — x'), V'(x — x’) and A(x — x’) in terms of their

Fourier transforms:

1 .

Flx-x)= a }k :e"‘(x-x )Fy. (1.14)

- ! 1 tk(x—x')y7- -

x(x—x)=5§k:ek< k. (1.15)
1 )

Alx—x) = ol §k : etk(x=x) \ . (1.16)

where Q is the volume of the syvstem. Convolution gives the relationship between Fi,
1% and Ay to be:

1 . -
Ak= ﬁg‘k_k/Fk'. (11!)

Using Egs. (1.3) - (1.17), a Hamiltonian for an electron system can be diagonalized
by a transformation known as the Bogoliubov transformation. The details are not

presented here, and may be found in Refs. {1] and [2].

*Although not presented here, the motivation for such an introduction arises from solving the
potential energy component of the Hamiltonian, where the product F,;(x,x')V(x — x’) appears
frequently. The gap equation also has a physical meaning, which we will soon see.



Without further discussion. we state that the finite temperature solution to the

energy gap is defined self-consistently as:
1 ; 1 —2f(Eyw
AMdT) = 5 D Viewdwe(T) (—M) : (1.18)

(1.19)

where f(E) is the Fermi-Dirac distribution function. and ¢y is the energy of a state
relative to the Fermi surface. In the original BCS model. the pairing interaction
Tew = Vp is a non-zero positive constant for a range of energies x| < hwp and
[Ek/[ < hwp.

When Ag has non-trivial solutions. the excitation spectrum (1.19) has a mini-
mum value of Ag. In other words. single-particle excitations must supply at least a
minimum gap energy to excite the superconducting condensate.

In the literature. commonly encountered order parameters include: the s-wave.
which has an energy gap that is finite and single-valued for all & directions. and the
d:_,-wave. which has a gap that vanishes whenever k2 — k; = 0. The d,:_,:-wave

is a likely order parameter for the high-T. copper oxides.

1.3 Scope of the thesis

We focus our attention on the following situation: Within a vortex of a type II
superconductor. the superconductivity is suppressed. The vortex can be viewed as
a quantum mechanical potential well, whereby single-particle excitations can form
bound states. We study these states using the quasiclassical Eilenberger theory. The
quasiclassical approach applies to superconductors which have a coherence length

much longer than the inverse Fermi momentum, kg& > 1. Previous theoretical work



describing the excitations in an isolated vortex based on the quasiclassical theory has
been put forth by Klein (s-wave)[19]. Gygi and Schliiter (s-wave)[20. 21|, Schopohl
and Maki (d,2_,2-wave){22|. and Hayashi et al.(anisotropic s-wave)[23. 24].

Using a scheme similar to that of Schopohl and Maki[22] as well as Hayashi et
al.[23]. we calculate the local density of states around an isolated vortex. First, we
reproduce the above authors results for the s-wave. d;2_,2-wave (or d-wave for short).
and anisotropic s-wave gaps. Then. we continue with a study of the following four

order parameters:
o d;: 2o + iad,,-wave (d + iad).
e g-wave.
e s+adz:_p» (s+ad).
e and d,:_,: + as-wave (d + as).

The motivation of this thesis stems from the following experimental and theoreti-
cal situations: (1) Direct imaging of the bound states. or local density of states. is now
possible with STM spectroscopy. Future STM experiments on different superconduc-
tors. including the high-T, copper oxides. are anticipated. (2} A parameterization of
the Eilenberger equations has been developed which greatly reduces the numerical
calculations. Remarkably. the quasiclassical Green’s functions can be calculated by
solving an initial value problem of an ordinary differential equation.

We conclude this chapter by discussing vortices in more detail. Chapter 2 will
describe the theory of the Eilenberger equations and how it is applied to our work.
Chapter 3 is dedicated to presenting the results of our calculations. Finally, in Chapter

4, a summary and conclusion of the work done in this thesis will be given.
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1.4 Vortices in type II superconductors

In type II superconductors. the normal and superconducting states coexist over a
range of magnetic field strengths. The normal regions in the mixed state form tubes.
or vortices, which extend the length of the superconductor. The order parameter
vanishes at the center of the vortex. and increases on the length scale &. This defines
a region known as the vortex core. The magnetic field is largest in the core. and
decavs over a length scale A. Circulating currents flow around the core. screening
the field from the bulk of the superconductor. Each vortex encloses one quanta of

magnetic flux hc/2e (see Figure 1.1).

1.4.1 Experimental studies of vortices

The electronic structure of vortices may be studied using scanning tunneling mi-
croscopy (STM) experiments. The scanning tunneling microscope consists of a probe.
or tip. which can be positioned with atomic resolution. The tip scans the surface of the
superconductor at a fixed height. The tunneling current through the tip is measured
as a function of voltage: the differential conductance dI/dV" is directly proportional
to the local density of states (LDOS).

In 1989. Hess et al[16. 17, 18] examined the vortex structure of 2H-NbSe,, a
layered hexagonal superconducting compound, which is thought to have an s-wave
order parameter. Thev found a zero-bias voltage peak in the measured differential
conductance at the vortex center, which splits into two (ie: a positive and negative
bias voltage peak) as one moves farther away from the core center. As well, the LDOS

was star shaped, with the orientation of the star being dependent on the bias voltage.

11




Specifically. the characteristic features of the LDOS observed in NbSe; are sum-
marized in detail as follows. when a magnetic field H is applied perpendicular to the
hexagonal plane[23]: (1) The LDOS for quasiparticle excitations has a sixfold star
shape centered at the vortex center. (2) The orientation of this star depends on the
energy. At zero bias. a ray of the star extends away from the r axis (or a axis) in
the hexagonal plane of NbSe,. Upon increasing the bias voltage. the star rotates by
30°. (3) In the intermediate bias voltage. a ray splits into a pair of nearly parallel
rays. keeping its direction fixed. (4) In the spectral evolution which crosses the vortex
center. there exist inner peaks in addition to the outer peaks which evolve from the
zero bias peak at the vortex center into the bulk BCS-like gap edges far from the
vortex. The inner peaks vary with the angle of the direction in which the spectral

evolution is taken.
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Chapter 2

Theoretical Methods

The foundation for almost all theoretical work on tyvpe II superconductivity has been
laid by Gor'kov[11]. with the formulation of a set of equations for four Green’s func-
tions supplemented by two self-consistent equations for the gap equation \ and vec-
tor potential 4. However. information on the order of k"' contained in the Gor kov
equations is unnecessary to describe the STM results. The length scale of interest for
most superconductivity experiments is on the order of the BCS coherence length &;.

The quasiclassical formulation. derived by Eilenberger [12] and independently by
Larkin and Ovchinnikov {13]. simplify the Gor’kov equations by solving for what
is called the &-integrated form of the Green's functions. These integrated Green's
functions still contain much more information than is needed in most cases. vet the
resulting equations benefit from a reduction in complexity and provide a promising
starting point for numerical calculations[12].

In this chapter, Section §2.1 provides a brief overview of Gor’kov's and Eilen-
berger’s methods for describing superconductivity with Green's functions. For a full
mathematical description, refer to [25]. In Section §2.2, the quasiclassical formalism is

presented. Sections §2.3 describes a parameterization which reduces the Eilenberger

14




equation to a initial value problem of an ordinary differential equation. Using this

method. the local density of states around a vortex core is calculated.

2.1 Green’s function method

The concept of a "propagator’ or "Green's function™ was originally developed in the
study of quantum electrodynamics. but has since been applied to many areas in
physics. It provides a useful set of mathematical techniques for deriving physical
results with minimum use of auxiliarv and unobservable functions. [n principle the
wavefunction of a quantum state contains all the physical information about the state.
The propagator is a closely related function. which represents the correlation between
the states of the system at different times{26].

The original BCS derivation demonstrated that superconductivity cannot be ob-
tained by a perturbation expansion in powers of the effective potential. As a result.
a single propagator G cannot solve a model Hamiltonian with pairing interactions.
However. Gor 'kov showed how the Green’s function may be calculated by introducing
new anomalous propagators. F and F'. which destroy or create a Cooper pair in the
superconducting ground state. The matrix propagator G is a compact representation

of these Green’'s functions:

. G F
G = : (2.1)
F' -G
The matrix propagator satisfies a Dyson equation together with a prescription for

calculating the self energy:
(G5! -£)G =1. (2.2)

= ¥(G). (2.3)

(NgE




Here G, is the free-electron propagator.

In the quasiclassical formalism. the Green’s functions appear in the §-integrated

form:

E. i
j= / dEC (2.4)

E.

where & = hvp(k — kr) and E. defines a cut off energy which is much larger than
energies associated with the superconducting state kgT.. but much smaller than the

Fermi energyv ex. The cutoff appears in no physical quantities{27].

2.2 Quasiclassical formalism

The solutions to the Eilenberger equation.

ivn  =A(r.k)

—

ive(k) - Vjliwn. r. k) + Jgliwn.r. k)| =0. (2.

o
W
~—

A(r. k) —iwn
(h = kg = 1) are the quasiclassical Green’s functions

A gliwn.r. k) if(iwn.r.k)
gliwn.r. k) = —im ) . (2.6)
—iff(iwn.t. k) —gliwn.r. k)

where [A. B] = AB — B denotes a commutator. The Eilenberger equation is sup-

plemented by the normalization condition

2

Gliwn. 1. K)§(iwn.1. k) = =72, (2.

[$%)
~1
~

Here. », = (2n +1)#T is the Matsubara frequency, r is the center of mass coordinate
of the Cooper pair. and the unit vector k is the direction of the relative momentum
of the Cooper pair. (In this planar geometry, an isolated vortex line situated at the
origin is orientated parallel to the z axis, and both r and k lie in the -y plane.)[28)]

In an applied magentic field, the gap function depends on both r and k.

16




The matrix form of (2.3) is a compact representation of the following three coupled
differential equations (omitting the arguments iw,. r. and k for brevity. where no

confusion can occur):

ve(k) - Vg =A"f - AfF (2.8)

1 -~ = )
(w‘n - Evp(k) - V) ff=Ag. (2.9)
(Jn + %vp(fc) : 6) f=Ag. (2.10)

A fourth equation is obtained by the normalization condition (2.7):

Sy

g=(1-7f)". (2.11)

As suggested by Eilenberger. Eqs. (2.8) - (2.11) resemble transformed transport
equations (V resembles the convection term. 2w, can be interpreted as the trans-
formed ﬁ). The difference between these and genuine transport equations is the fact
that f and f' cannot be interpreted as probabilities. and a complex \(r. l::) makes
these functions complex[12].

The appearance of a pole near the real w-axis in the propagator g(iw,.r. k) defines
a quasiparticle or long-lived excitation. A local. directional-dependent density of

states for quasiparticles of energy E and momentum direction 8 is given by:
N(r.0.E) = Re{g(iwn — E + in.r.0)}. (2.12)

Here. 1 is a positive infinitesimal quantity, which physically represents an impurity
parameter (ie: 1 shortens the lifetime of quasiparticle).
From N(r. 0. E), the local density of states :N(r, E) is obtained by averaging with

respect to all 8 directions:
4
N(r.E) =/ _)—N(r, 6.E). (2.13)
o 2w
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Figure 2.1: The coordinate svstem for the Riccati transformation method.

2.3 The Riccati transformation method

The Fermi velocity. vg(k). reflects the anisotropy of the Fermi surface. An isotropic

cvlindrical Fermi surface is assumed for the work presented here:
VF(R\) = L‘FR. (2.1-1)

In a new frame. spanned by the orthogonal unit vectors G = cosfx + sin 8y and
V = —sinfX + cosfy. a fixed point r = r,X + r,y may also be represented by
r = ryi + r, V. The unit vector k is denoted by the angle § measured from the r
axis. while o represents the angle from the r axis to the position vector r (see Figure
2.1).[22]

In this coordinate syvstem. the straight line defined by:
plu) =ul +r. v, (2.13)

is orientated parallel to k and intersects the point r at u = r||. Along this line, the

18



directional derivative vg(k)-V in (2.8) - (2.10) is equivalent to an ordinary derivative:

- d
ve(k) V= vr o (2.16)

Eq. (2.15) is known as the quasiparticle path and r, has the natural meaning of an
impact parameter.

Therefore. the Eilenberger equations along the quasiparticle path are given as:

3gliwn. p(1).8) = X (p(u). 8) fliwn. p(u).8) — N(p(u).0) f1(iwn. p(u).0).  (2.17)
{ %(0:1 iauo)} f(iwin. p(u).0) = X*(p(u). 0)g(iun. p(u).6). (2.18)
{an + %(a” + iBw)} Fliwn. p(u).8) = Mp(u). 0)g(iwn. p(u). 8). (2.19)

whered) = L. Jjo=~"s.and r = VuZ +r_ 2 The phase ' = (r,+ir,)/r has been
factored out of the anomalous Green's functions and pair potential for convenience
(fe: f = fe®. fi = flem®. A = Ne*°. and A" = A e™*°). All energies and lengths
are measured in units of the uniform gap )y at T = 0 and the coherence length
& = vr/\q. respectively([28].

The Riccati transformation method uses the parameterization devised by Schopohl

and Maki[22]:
2a . 2b 1 -ab
-. ff= . = . 2.20
1+ ab T+ab 7 7 (2:20)

f:

This transformation decouples the Eilenberger equations and enormously simplifies
the numerical computation.
Substituting (2.20) into (2.17) - (2.19) results in the Riccati equations (for a given

“n. ro.and @}):

-j—ué(u) = A(u) - {2.;;,t -+ Z\'(u)a(u)} a(u) (2.21)
;;E(U) = —-A"(u) + {an - L—J; + L\.(u)i)(u)} b(u) (2.22)




For iw, situated in the upper half of the complex plane. the physical solution
for a(r;) is found by integrating (2.21) as an initial value problem from u = —c to
u = ry with increasing u-values. On the other hand. the physical solution for b(ry) is
found by integrating (2.22) as an initial value problem from u = > to u = r| with
decreasing u-values[29].

Initial values for (2.21) and (2.22) are obtained by looking at solutions far from

the isolated vortex:

_ Ve +[3(p(=2¢).O)]2 = wn

A I (p(=).0)
G = Ve +13(p(+0¢). 0)]” = wn (2.23)
A(p(+<).6)

The gap function for an isolated vortex is expressed as a decomposition of its

spatial and momentum components:
A(r.8) = A(r)A(8). (2.24)

At the core center. the spatial component is zero. It increases to a finite. temperature-
dependent value as one moves into the bulk region. This behaviour is modeled by{22.
23. 24]:

A(r) = A(T) tanh(r) (2.25)
where A(T) is the uniform temperature-dependent gap given by BCS theory. Here.
we set \(T) = 1.

The k-space variation of the gap function A(f) determines the nature of the pair-
ing. Table 2.1 defines the seven different gaps investigated in this thesis. several of
which are considered as possibilities in high-7, superconductors.

To obtain the local density of states (2.13), the Green's function g(iw, — E +

in.r,8) is calculated using the Riccati transformation method with w, = n—iE. The
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Order Parameter A(6)

s 1.0

dr2_y2 cos(28)
sixfold anisotropic s 1 + 0.5 cos(68)
dz2_y2 + ioudy, cos(26) + 0.2:¢sin(26)
dx;z_yz + as cos(28) + 0.2
s+ adgp_ 2 1 + 0.2 cos(26)

g cos(48)

Table 2.1: Order parameter definitions with o = 0.2.

differential equations (2.21) and (2.22) are numerically integrated using an adaptive
stepsize fourth-order Runge-Kutta scheme. The integration in (2.13) is performed

using Simpson'’s rule of integration. which is also good to fourth-order.




Chapter 3

Results and Discussions

This chapter presents a study of the local density of states .V(r. £) using the method
described in Section 2.3. As a reminder. all quantities are dimensionless: the energies.
lengths. and density of states are quoted in units of Ay (the uniform gap at zero
temperature). & (the coherence length). and .Vy (the normal metal density of states

at the Fermi energy). respectively.

3.1 Local density of states in the bulk

Before focusing attention on the vortex core. it is perhaps beneficial to first consider
the superconducting bulk. In this region (r — oc). the directional-dependent density

of states is given by:

. _ |E|
N@.E) = Re{m} (3.1)

which is nonzero only when £ > |A(8)]. In Figure 3.1, the local density of states vs
energy E is calculated for a point far from the vortex center. Shown are the s-wave.
d-wave, d + iad-wave, and sixfold anisotropic s-wave gaps.

For an s-wave superconductor, there are no states for energies less than |A|. The

(S
[§™)



3.0 T

LN BN B S S S S B

LDOS
LDOS

L J ]
s el A

0.0 ‘it

-2.0 -1.0 0.0 1.0 2.0
E
3.0 LENER S S A IS N SN L LA S AR S S B B R

LDOS
LDOS

Figure 3.1: Local density of states V(E.r) vs energy E far from the vortex center
(n = 0.001). The results are calculated for the point r = 10 along the r-axis. but
represents the bulk LDOS in general. Shown are the s-wave gap (upper left). d,2_,-
wave gap (upper right), d;2_,2 + 0.2id,,-wave gap (lower right) and an anisotropic
s-wave gap. A(f) = 1 + 0.3 cos(68). (lower left).



addition of anisotropy to the s-wave causes a broadening of the peak edge. As seen in
the anisotropic s-wave gap. the broadening extends over arange E=1-atol +a
(here. @ = 0.3). In contrast. a pure d-wave order parameter vanishes along certain 8
directions. thereby allowing states to exist for all values of E. The behaviour of the
d + iad-wave order parameter (with @ = 0.2) is similar to the d-wave since the d,
component is small. However. the order parameter is fully gapped. and for |E} < a.
there are no states.

In the vicinity of a vortex. single-particle states exist and Eq. (3.1) no longer
holds. In the following calculations. only the positive energy values are discussed.

since the local density of states is a symmetric function of £

3.2 Comparison between s-wave and d,2_,-wave
The local density of states around a vortex core is considered for the s-wave:
A(f) = 1. (3.2)

and d;:_,2-wave:

A(8) = cos(26), (3.3)

order parameters. Our calculations (shown in Figure 3.2) are in good agreement with
those of Schopohl and Maki[22].

Figure 3.2 illustrates the spatial dependency of the LDOS for energies £ = 0.
E = 0.2. and £ = 0.6. The quasiparticle excitation is circular for the s-wave case.
and has a fourfold symmetry in a d-wave superconductor. At £ = 0, both feature
a large, zero-bias peak at the vortex center. The d-wave also has small peak ridges

extending along the line y = £z.
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Figure 3.2: Comparison of the local density of states N(E, r) vs r between the s-wave
and d;2_,2-wave. Results for s-wave are shown for energies a) E = 0.0, b) E = 0.20.
and ¢) £ = 0.60. Results for d;2_,2-wave are shown for energies d) £ = 0.0, e)
E =0.20, and f) E = 0.60. The height of the zero-bias peak at the vortex center has

been truncated in (a) and (d).
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Figure 3.3: Plot of the peak energy vs distance r from the vortex center for an s-wave
superconductor (dotted line). Also shown is the function £ = tanh(r) (solid line).

For the s-wave case. as E increases. the zero-bias peak splits (into a positive
and negative bias peak). and the peak is found further from the center. Due to the
isotropic nature of the s-wave pairing, a circular distribution is seen in Figures 3.2(b)
and (c). Figure 3.3 shows how the zero-bias peak evolves with increasing energy. This
plot represents the energy and corresponding radius of the peak in the LDOS. For

comparison, the relationship:

E = tanh(r) (3.4)

is plotted as well. As a rough approximation, the excitations occur when £ ~ |A(r)|.

Figure 3.4 shows the LDOS for an s-wave superconductor as a function of energy
at three different radial distances from the vortex center. The shape of the peak is
not symmetric about its maxima, but rather smears out towards lower energies, while

decaying rapidly for higher ones.
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Figure 3.4: Local density of states .VN(E.r) vs energy E for an s-wave superconductor.
The position r is held fixed with magnitude of r = 0.1 (upper). r = 0.5 (middle)}. and
r = 1.0 {lower). The value of the smearing parameter is n = 0.03 (solid line) and
n = 0.01 (dashed line).



Figure 3.5: Local density of states V(E.r) as a function of energy E and distance
r from the vortex center. along the direction o = 0° (left). 0 = 15° (middle), and
o = 15° (right) for a pure d,:_,:-wave order parameter. The height has been truncated

in all figures.

Also shown in Figure 3.4 are the effects of the impurity parameter n. Lower values
correspond to fewer lifetime effects resulting from impurity scattering. etc.

In contrast to the s-wave. the d-wave has a fourfold symmetric local density of
states. As shown in Figures 3.2(d) and (e). the quasiparticles form a distribution
which curve around the vortex core. forming a ‘square’-like structure at the center.
In the limit £ — 0. the distribution rotate 45° and the curvature closes in on the core.
As shown in Figure 3.2(c). there are peaks that still exist along the lines y = *r.

Figure 3.5 shows the evolution of the zero-bias peak. which splits into various
peaks depending on the radial direction. Figure 3.6 shows the LDOS at nine different
points (three points with the same magnitude of r as those in Figure 3.4, taken along
three separate directional lines extending from the center).

The same results for the d,2_,2-wave order parameter are found when the form
| cos(26)| is used instead of cos(268). This corresponds to the case where the sign of

the pair potential Eq. (2.24) does not change. As might be expected. the LDOS is

sensitive only to the magnitude of the order parameter.
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Figure 3.6: Local density of states .V(E.r) vs energy E for d;:_,2-wave superconduc-
tivity (n = 0.03). The position r is held fixed with magnitude of r = 0.1 (solid line),
r = 0.5 (dash-dot line), and r = 1.0 (dotted line). The angle of r from the r-axis
corresponds to 0 = 0° (upper figure), @ = 15° (middle figure). and ¢ = 45° (lower
figure).



3.3 Sixfold anisotropic s-wave
In this section. the properties of a sixfold anisotropic s-wave gap:

A(f) = 1 + acos(66).

W
Ut
~

with o = 0.5 are presented. An order parameter of this form was first proposed
by Hayashi et al.[24] to help explain the features found in STM experiments on the
compound NbSe,. However. instead of Eq. (2.23). Hayashi calculated a self-consistent
solution to A(r). Nevertheless. the results found here are in good agreement with
their work. This indicates that the structure of the local density of states originates
from the k-space variations of the order parameter A(f).

Figure 3.7(a) reveals a sixfold svmmetry in the spatial structure of the local density
of states. The plot is for E = 0.2 with an impurity parameter of n = 0.03. To help
clarifv the behaviour. an outline of the quasiparticle paths is shown in 3.7(b).

The evolution of the quasiparticle excitations along different radial lines is shown
in Figures 3.7(c).(d). and (e)}. The zero-bias peak splits into several peak ridges in
each plot. Along all directions. the common characteristic is the formation of a lower
peak at E =~ 0.5 and an upper peak at £ = 1.5 as the radial distance increases.
These directionallv-independent peaks are a result of the anisotropy of the s-wave
gap. which is distributed from E =1 —-a to E = 1+ a. As well. the LDOS as a
function of energy is shown in Figures 3.7(f) and (g) for three separate spatial points.

In Figure 3.8, the LDOS as a function of r is shown for three increasing energy
values E = 0. £ = 0.15, and E = 0.32. The calculations correspond to an impurity
parameter of n = 0.03. however the scale is one that focuses attention on the underly-
ing structure instead of the peaks (ie: values for :V(E,r) > 0.5 are not differentiated

in the plot). At £ = 0, a sixfold star centered at the core with the rays oriented
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Figure 3.7: Results for a sixfold anisotropic s-wave order parameter A(f) = 1 +
0.5 cos(68). The spatial dependence at £ = 0.2 is shown in {a). The corresponding
peaks are outlined in (b). The evolution of the quasiparticle excitations along a radial
line is shown for radial angles ¢) ¢ = 0°, (d) ¢ = 15°, and (e) @ = 30°. The height of
the zero-bias peak has been truncated. Cross sections of the evolution showing the
LDOS as a function of energy are shown for (f) ¢ = 0° and (g) ¢ = 30°. In (f) and
(g). three radial distances are shown, r = 0.1 (solid line), r = 0.5 (dot-dash line) and
r = 1.0 (dotted line).
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Figure 3.8: Local density of states for an anisotropic s-wave superconductor () =
1 + 0.5cos(68). The images are calculated for energies £ = 0.0 (left). £ = 0.15
(middle), and E = 0.32 (right) on a grid of size 4§y x 4&;.

away from the r axis is seen. At an intermediate energy E = 0.15. each ray has
split into two parallel rays. As the energy is increased to E = 0.32. the star becomes
more extended and the heads of each ray spreads out. The orientation of the star
has rotated by 30°. These results are similar to the description of STM experiments
on NbSe, [16. 17. 18]. In this way. the anisotropic s-wave gap well reproduces the
experimental features mentioned in Section 1.4.

Strictly speaking. no effort was made to fit material parameters appropriate to
NbSe, into these calculations. These results apply to a model superconductor with

an order parameter given by Eq. (3.3).

3.4 d,»_p+iad;,~wave and g-wave

The symmetry of the order parameter can now be observed directly with STM experi-
ments. In light of this, we calculate the local density of states for a d;2_,2 +iad,,-wave

superconductor:

A(#) = cos(20) + ia sin(26), (3.6)

32




and a g-wave superconductor:
A(8) = cos(46). (3.7)

Recently. the d + id gap has been invoked to explain the thermal conductivity
data on Bi;SryCaCu,0Og in finite magnetic fields{30]. Figure 3.9 shows the results for
the d + iad-wave gap with a = 0.2. A fourfold pattern similar to the pure d-wave is
seen. however the peaks are slightly skewed.

Another unconventional order parameter is the g-wave, which has eightfold sym-
metry. The g-wave recovers information in band model theories involving hopping
to nearest neighbours{31]|. Figure 3.10 shows the resulting local density of states for

such a gap.

3.5 Mixing order parameters

Finally. we investigate order parameters that are admixtures of the conventional s-

wave and d-wave. [n particular. a s + ad-wave gap:
A(f) = 1 + acos(28). (3.8)

and a d + as-wave:

A(f) = cos(28) + a, (3.9)

are presented. In these calculations, a = 0.2 is used.

Figure 3.11 shows the results for the s + ad-wave gap, an order parameter that
is mostly s-wave, with a small mixing of d-wave. The resulting distribution of the
LDOS is an elongated circle. with major axis in the z-direction. This order parameter
is fully gapped, and in the evolution plots, there are directionally-independent ridges

forming for E=1—-aand E=1+a.
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Figure 3.12 shows the results for the d + as order parameter. Here, a twofold
svmmetryv is seen. but the overall pattern is closely related to the fourfold structure
of the d-wave. The peaks which flow in the y direction do not approach the core as
tightly as those in the & direction. The resulting shape in the center is a square that

is elongated in the r-direction.
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Figure 3.9: Results for the d;2_, + aid;,-wave order parameter A(f) = cos(260) +
0.2isin(26). The spatial dependence at £ = 0.2 is shown in (a). The corresponding
peaks are outlined in (b). The evolution of the quasiparticle excitations along a radial
line is shown for radial angles ¢) ¢ = 0°, (d) ¢ = 15°, and (e) ¢ = 45°. The height of
the zero-bias peak has been truncated. Cross sections of the evolution showing the
LDOS as a function of energy are shown for (f) ¢ = 0° and (g) ¢ = 15°. In (f) and
(g). three radial distances are shown. r = 0.1 (solid line), r = 0.5 (dot-dash line) and
r = 1.0 (dotted line).
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Figure 3.10: Results for the g-wave order parameter A(f) = cos(48). The spatial
dependence at E = 0.2 is shown in (a). The corresponding peaks are outlined in (b).
The evolution of the quasiparticle excitations along a radial line is shown for radial
angles c) ¢ = 0°, (d) ¢ = 15°, and (e) @ = 22.5°. The height of the zero-bias peak has
been truncated. Cross sections of the evolution showing the LDOS as a function of
energy are shown for (f) @ = 0° and (g) ¢ = 15°. In (f) and (g), three radial distances
are shown, r = 0.1 (solid line), r = 0.5 (dot-dash line) and r = 1.0 (dotted line).
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Figure 3.11: Results for the s + ad;:_,:-wave order parameter A(§) = 1+ 0.2 cos(26).
The spatial dependence at £ = 0.2 is shown in (a). The corresponding peaks are
outlined in (b). The evolution of the quasiparticle excitations along a radial line is
shown for radial angles ¢) ¢ = 0°, (d) ¢ = 15°, and (e) © = 30°. The height of the
zero-bias peak has been truncated. Cross sections of the evolution showing the LDOS
as a function of energy are shown for (f) # = 0° and (g) ¢ = 30°. In (f) and (g), three
radial distances are shown, r = 0.1 (solid line), r = 0.5 (dot-dash line) and r = 1.0
(dotted line).
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Figure 3.12: Results for the d,2_,2 + as-wave order parameter A(f) = cos(28) + 0.2.
The spatial dependence at £ = 0.2 is shown in (a). The corresponding peaks are
outlined in (b). The evolution of the quasiparticle excitations along a radial line is
shown for radial angles ¢) @ = 0°, (d) ¢ = 15°, and (e) © = 43°. The height of the
zero-bias peak has been truncated. Cross sections of the evolution showing the LDOS
as a function of energy are shown for (f) @ = 0° and (g) ¢ = 15°. In (f) and (g). three
radial distances are shown, r = 0.1 (solid line), r = 0.5 (dot-dash line) and r = 1.0
(dotted line).
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Chapter 4

Conclusion

4.1 Summary

Here a final review is given of what was done in the preceding chapters. In this work.
the local density of states around an isolated vortex is calculated by solving the qua-
siclassical Eilenberger equations. The approach outlined in this thesis is appropriate
for clean superconductors. in which a quasiparticle passing near a vortex travels along
a straight line parallel to the direction of its momentum. In this framework. we make
use of a parameterization that transforms the Eilenberger equations into ordinary
differential equations.

In Chapter 3, we presented the results of our numerical study. We find that the
LDOS is influenced by the k-space variations of the order parameter. and for several

different order parameters. we catalog these effects.
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4.2 Concluding remarks

Results of the calculations in the local density of states for an anisotropic order
parameter agree quite well with the experimental results on NbSe,. However. in
superconductors such as the high-T, copper oxides. the coherence length is short. and
the quasiclassical approach may not be appropriate. While it is likely that further
corrections are required to explain experimental results for these cuprates. we believe
that the calculations performed here remain at least qualitatively correct.

Finally. aside from calculating the local density of states. the method presented
here may be used to studv other physical observables. For instance. the current
around a vortex. or a self-consistent pair potential. are directly calculated from the

quasiclassical Green's functions.
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Appendix A

Riccati transformation

A derivation of the Riccati transformation method is found in Ref. [29]. Here. we

simply show the algebra involved in decoupling the Eilenberger equations. Namely,

we demonstrate how the parameterization of Schopohl and Maki[22]:

2a 2b 1-a (A1)
l+ab * ' b .

f =

2 = 3 Wfe) - 3@ ) (2.2)
I
d .
-3 (£+5) } ) = S (A3)
{or 3 (5 -15) } ) = 300 (A4
into these two ordinary differential equations:
d . o
—a(@) = A=) - {an - z'%;- + A'(I)ﬁ(.’r}} a(z). (A.3)
d - - R
—b(z) = -A"(z) + {an - z:—‘ + ;\(r)b(r)} B(z). (A.6)

We use the same coordinate system as described in Section §2.3 with z = p(u)-G = u.

44



A.1 Decoupling the Eilenberger equations

[t is easily seen that the parameterization satisfies the normalization condition:

gz

(1 — ab)?
(1 + @b)?

1 — 2ab + (ab)?
(1 + ab)?
1 + 2ab + (ab)® — 1ab
(1 + ab)?
(1 + ab)? — dab
(1 + ab)?

(A.7)

Now. to illustrate the decoupling of the Eilenberger equations. (A.2) - (A.4). let us

start by examining the derivative of g.

dg  d 1 —ab
dr  dr \l+ab

As it turns out. this expression for f—g can be incorporated into %:

df  d( 2a
dr ~ dzr \1+ab
2 a 2a -
= ( -_-) da _ (__..a_?) i(db)
l1+ab/ dzx (1+ab)?/ dr
2 \da dg
l+ab/) dz ' dz
And using (A.2) for g__% in the last term gives:

L - () Brasi-am
da < _ }

fh

I
~—
+
1
(=]l
SN—”’
—
&

3]
+
b
o
|

Lo

=]

<

(A.9)

(A.10)



. . . t
A similar calculation can be done for %:

dft d( 2b
dr =~ dr\l1+a

+
|

d
db  .: i
){d—~+A'ab-Ab2} (A.11)
Substituting (A.10) into (A.4) vields the Riccati equation for a:

{.dn + 1(i + ia”O)} f = __lg

2dzx

da <., - - 1 _
2 4 30— Rab+ (wa + =ido)(2a) = A(1 — ab
dr 2

~—

da - -
—=3-{2n+ido+la}a (A.12)

And the equation for b is found using (A.11) and (A.3):

d _. _
{uxn - HE - if)uo)} fr=37

dr
db <. : <1 1. S . :
—— — A%ab+ Ab” + (wn + z20y0)(2b) = A (1 — ab)
dr 2
db <. , <y -
el ="+ {2w, + 100+ N°b} b (A.13)
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Appendix B

Numerical Methods

B.1 First-order differential equations

For a first order differential equation. the initial value problem can be expressed in
an explicit form as:
dy

=i B

y(xro) = yo.

The basic strategy for finding a numerical solution to (B.1) consists of approxi-

mating the derivative as a difference:

Q ~ yrn-l - yn (B .))
dr Ln+1 —In’

and then compute the next y value as one takes a step in the r direction:
Yn+l = Yn + h'f(Ine yn)~ (BB)

where h = z,,.; —r,. The solution advances through an interval hA. but uses derivative
information only at the beginning of the interval, resulting in an error term of O(h?).

That is, (B.3) is just the power series expansion to first order.
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B.1.1 Fourth-order Runge-Kutta Method

In general. the Runge-Kutta method achieves higher order accuracy by making a
“trial” evaluation at the midpoint of the step interval. Then. the information found
at the midpoint is used to compute the “real” step across the whole interval. The
intermediate steps still produce a first order solution. vet give different coefficients
of higher-order error terms. By adding up the right combination. error terms can be
eliminated order by order.

The recipe for the fourth-order Runge-Kutta method is[32]:

ki = hf(rn.yn

—

.

k’l = h'f(-rn +

§F
+

ky = hf(-rn+

~—
.

ol >0 >
o~
=~}
+

| T |

ks = hf(rn +h. yn +k3).

k ok k -
=L f"—'+—3+—i+0(h°). (B.4)

n+l = Yn +
Ynst = T e T T TFT T

B.1.2 Adaptive stepsize control

For performance reasons. it is beneficial to make frequent changes to the stepsize
h. so that a solution may be found with minimal computational effort. In order to
make such stepsize adjustments. the program must be capable of estimating the error
during each iteration of the algorithm.

In our work. we adopt an embedded Runge-Kutta formula[32] to achieve adaptive
stepsize control. The recipe consists of a fifth-order method from six function evalu-
ations, where another combination of the six functions gives a fourth-order method.
The difference between the two methods is used as an estimate of the truncation

error, and thus provides a measure on how to adjust the stepsize.
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The general form of the fifth-order Runge-Kutta formula is:

ki = h'f(rn-yn)~

ky = hf{z,+ ash.y, + byk)).

ke = hf(l'n + agh. Yn + bﬁlkl + ...+ bﬁ_;ks).

Yn+stl = Yn T Clk[ -+ Cng + C:;/C:; -+ C4k4 -+ C_-‘,k,-‘, + Cﬁkﬁ -+ O(hs) (BS)
The embedded fourth-order formula is:
Ynit = Un + Clky + Coka + C3ks + Ciky + ciks + chks + O(R?). (B.6)
and the error estimate is given by:
6
A=y —yi =Y (e —c) ke (B.7)
=1

where the various coefficients (known as Cash-Karp parameters) are given in Ta-
ble B.1.

In order to adjust the stepsize. we notice that \ scales as h3. If an error of 1\,
results from a stepsize of h;. we may then estimate a desired error of \q by taking a

step given by hg:

L
5

o

N (B.8)

ho=h1

Thus, if \, is larger in magnitude that )\, then the error is greater than our desired
accuracy and the step must be repeated. We try a shorter stepsize given by (B.8).
Conversely. if A, is smaller than g, then (B.8) tells us how much we can increase

the stepsize for the next iteration.
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i a; | ¢ c; by lj=1 2 3 4 3
37 2825 —
1 378 | 27648 t=1
21 L 0 0 2 L
b} 9
3 3 250 18575 3 3 9
h 10 621 183844 : 10 10
g 3| 125 | 152 O R T B
5 | 394 | 35296 ) 10 5
- 277 - —11 5 —70 35
511 0 14336 & 54 3 27 27
61 I | 512 1 6| 3L 155 575 14275 233
B | 3771 1 53206 312 13a24 110502 1096

Table B.1: Cash-Karp parameters for the embedded Runge-Kutta method.

B.2 Numerical integration using Simpson’s rule

A definite integral:
b
S =/ f(z)dz (B.9)

is solved numerically by approximating the integrand f(r) by functions which can be
easily integrated. Piecewise quadratic approximations result in Simpson's rule. which

is a fourth-order method defined as{33}:

Ar

b
f f(.r)dl' ~ -—?)—{f(.l'o}ﬁ-vlf(l'l)-i-;)f(l'_))+4f(.l'])-°-

+2f(Ln-2) + 4f(rn_t) + f(za)]. (B.10)

where n is even and Ar = (b — a)/n. Note that this method is similar to the fourth-

order Runge-Kutta method when f(z.y) depends only on .



Appendix C

Source code

C.1 Program listing

A set of C functions has been developed to solve the Eilenberger equations. The
source code of these routines is shown here. along with a sample main() to illustrate
the functionality.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <stddef.h>

#include "rkutil.h"

#ifndef PI

#define PI 3.141592653589793
#endif

#define Kb 1.000

#define EPSILON le-8

/+* DEFINITION STANDARD - FEB 26, 1998 %/
#define DWAVE 1
#define SWAVE 2
#define NBSE2_5 3
#define NBSE2_3 4



#define DPID_2 5
#define DPID_S 6
#define DPID_8 7
#define DPID_X 8
#define SPD_X 9

#define SPD_5 10
#define SPD_2 11
#define DPS_2 12
#define DPS_S 13
#define ABSD 14
#define DPIS_1 15
#define DPIS_2 16
#define DPIS_X 17

int gSTATE = SWAVE;
double gTheta;

double gWR, gWI;
double gRperp;

double gToTc = 0.0;

FILE *1ogFILE;

typedef struct

{

double x1;
double x2;
double 1inc;
int il;
int i2;
int iinc;
double dfac;
} LIMIT_TYPE;

double ANGFN_RE(double c)

{

switch (gSTATE)
{
case DPID_2:
case DPID_6S:
case DPID_8:
case DPID_X:
case DPIS_1:
case DPIS_2:
case DPIS_X:
case DWAVE: return (cos(2x*c)

[¥]]
o



case

case
case

case
case

case

case
case

case

}

SWAVE:

NBSE2_5:
NBSE2_3:

SPD_X:
SPD_5:
SPD_2:

DPS_2:
DPS_5:

ABSD:

double ANGFN_IM(double c)

{

switch (gSTATE)

{

case
case
case
case
case
case
case
case
case
case

case
case
case
case
case
case
case

}

double deltaT()
{
return{(1.0);

}

DWAVE:
SWAVE:
NBSE2_5:
NBSE2_3:
SPD_X:
SPD_5:
SPD_2:
DPS_2:
DPS_5:
ABSD:

DPID_2:
DPID_S:
DPID_8:
DPID_X:
DPIS_1:
DPIS_2:
DPIS_X:

return

return
return

return
return
return

return
return

return

return

return
return
return
return
return
return
return

void calGreens(double y[], double ffgll)

33

(1.0

(1.0+0.5%cos(6.0%c)
(1.0+cos(6.0%c)/3.0

(1.0+cos(2.0xc)
(1.0+0.5*c0s(2.0%c)
(1.0+0.2%cos(2.0*c)

(cos(2.0%c)+0.2
(cos(2.0%c)+0.5

(fabs(cos(2.0*c))

(0.0

(0.2*sin(2.0*c)
(0.5*5in(2.0%c)
(0.8*sin(2.0*c)
(sin(2.0*c)
(0.1

(0.2

(1.0



{
double al,a2,bl,b2, denom;

a1 = y[ol;
a2 = y[1];
bl = y[2];
b2 = y[3];

denom = i+alxalxbl+bl + aZ2*a2+b2+b2 - 2*xa2xbh2
+ 2xalxbl + alxal*b2xb2 + a2*a2+blxbil;

ffg[0]=(2+al + 2+al*alsbl + 2xa2+a2+bl) / denom ;
ffg(1]=(-2+al*alsb2 - 2+a2*a2+xb2 + 2+a2) / denom;

ffg(2]1=(2*bl + 2*alsblx*bl + 2*al*b2+b2) / denom ;
ffg[3]=(-2*a2sbl*bl -~ 2%a2*b2*b2 + 2+b2) / denom;
ffgl4]1=(1-a2+a2+«bi*bl-al*al*b2+b2-al*al*bl«bl-a2*a2+b2+b2)/denom;
ffg[5]=(-2*a2+bl - 2*al*b2)/denom;

return;

}

void fa(double x, double y[], double dydx[])
{
double DR, DI, AR, AI, DRR, DRI, TR, TI;
double CB1R, CB1I;
double r;

r = sqrt(x*x + gRperp*gRperp);

AR = y[0]; /* FIRST CHANNEL = AR =/
AI = y[1]; /* SECOND CHANNEL = AI =/
DRR = deltaT() = tanh(r); /* DELTA(r) =/

DRI = 0.0;

TR = ANGFN_RE(gTheta); /* F(theta) =/

TI = ANGFN_IM(gTheta);

DR = DRR*TR - DRI=*TI; /= DELTA(r,theta) =/
DI = DRR#TI + DRI*TR;

CB1R = 2*gWR + DR*AR + DI*AI;

CB1I = 2xgWI -gRperp/(r*r) - DI*AR + DR*AI;
dydx[0] = DR - CB1R*AR + CB1I=*AI;

dydx[1] = DI - CB1R*AI - CB1I*AR;

return;

}



void fb(double

{

x, double y[J, double dydx([])

double DR, DI, BR, BI, DRR, DRI, TR, TI;

double CB2R, CB2I;
double r;

r = sqrt(x*x + gRperp=*gRperp);

BR = y[0];

BI = y[1];

DRR = deltaT() * tanh(r);
DRI = 0.0;

TR = ANGFN_RE(gTheta);

TI = ANGFN_IM(gTheta);
DR = DRR*TR - DRI=*TI;

DI = DRR*TI + DRI*TR;

/%
/*

/

*

/

*

/*

THIRD CHANNEL = BR =/
FOURTH CHANNEL = BI =*/
DELTA(r) =/

F(theta) =/

DELTA(r,theta) */

CB2R = 2»gWR + DR*BR - DI=*BI;

CB2I = 2#gWI -gRperp/(rsr) + DR*BI - DI*BR;
dydx[0] = -DR + CB2R#*BR - CB2I#*BI;

dydx[1] = DI + CB2R*BI + CB2I=*BR;

return;

¥

{

void faOPT(double x, double y[], double dydx[])

double DR, DI, AR, AI, DRR, DRI, TR, TI;

double CB1R, CB1I;
double r;

r = sqrt(x*x + gRperp=*gRperp);

AR = y[0];

AL = y[1];

DRR = deltaT() * tanh(r);
DRI = 0.0;

TR = ANGFN_RE(gTheta);
TI = ANGFN_IM(gTheta);
DR = DRR*TR ~ DRI=*TI;

/%
/*

/

*

/

*

/*

FIRST CHANNEL = AR =/
SECOND CHANNEL = AI */
DELTA(r) =/

F(theta) =/

DELTA(r,theta) */



DI = DRR*TI + DRI*TR;

CB1R = 2#*gWR + DR*AR + DI=*AI;

CB1I = 2*gWI - DI*AR + DR=*AI;
dydx[0] = DR - CB1R#AR + CB1I=*AI;
dydx[1] = DI -~ CB1R*AI - CB1I*AR;
return;

}

void fbOPT(double x, double y[], double dydx([])
{
double DR, DI, BR, BI, DRR, DRI, TR, TI;
double CB2R, CB2I;
double r;

r = sqrt(x*x + gRperp*gRperp);

BR = y(0]; /* THIRD CHANNEL = BR */
BI = y[1]; /% FOURTH CHANNEL = BI =/
DRR = deltaT() * tanh(r); /* DELTA(z) =*/

DRI = 0.0;

TR = ANGFN_RE(gTheta); /* F(theta) =/

TI = ANGFN_IM(gTheta);

*

DR = DRR*TR ~ DRI=*TI; /* DELTA(r,theta) */

DI = DRR*TI + DRI*TR;

CB2R = 2*gWR + DR+#*BR - DI=*BI;

CB2I = 2xgWI + DR+*BI - DI=*BR;
dydx[0] = -DR + CB2R*BR - CB2I*BI;
dydx[1] = DI + CB2R#BI + CB2I=*BR;
return;

}

double gFromAB(double rpar, double rperp, double theta, double E, double n)
{
double rparPlimit, rparNlimit;
double DRR, DRI, DR, DI, TR, TI, WR, WI;
double ivdm2, ivx, ivy, ivr, ivtheta, ivp, ivq;
double y[2], yAB[4], ffg[6], aRe, aIm, bRe, blm;
double reallnt;
int Tindex;




double hstart, eps, hmin;
int kount, inNok, inNbad, exNok, exNbad;

eps = 1.0e-4;
hstart = 0.01;
hmin = eps*1.0e-7;

exNok = 0;

exNbad = 0O;
rparPlimit = 10;
rparNlimit = -10;
WR = n;

WI = -E;

/* SET GLOBALS */
gTheta = theta;
gRperp = rperp;
gWR = WR;
gWwI = WI;

/* POSITIVE INITIAL VALUE (B-CHANNEL) =*/
DRR = deltaT()*tanh(sq;t(rparPlimit*rparPlimit+rperp*rperp));

DRI = 0.0; /* DELTA(r) */

TR = ANGFN_RE(gTheta); /* F(theta) =/

TI = ANGFN_IM(gTheta);

DR = DRR*TR - DRI=TI; /* DELTA(r,theta) */
DI = DRR*TI + DRI=*TR;

ivdm2 = DRxDR + DI*DI;

if (ivdm2 == 0.0)
{
y[0] = 0.
y[11 =0
}

]

0;
0,

else

{

WR*WR - WI*WI + ivdm2;
2*WR*WI;

ivx
ivy

i

if ((ivx >= 0) && (ivy >= 0))
ivtheta = atan(ivy/ivx);

else if ((ivx < 0) && (ivy >= 0))
ivtheta = atan(ivy/ivx) + PI;

[S1}
=1




else if ((ivx < 0) && (ivy < 0))
ivtheta = atan(ivy/ivx) + PI;

else if ((ivx >= 0) && (ivy < 0))
ivtheta = atan(ivy/ivx) + 2*PI;

ivr = sqrt(ivxsivx + ivy*ivy);
if (cos(ivtheta/2.0) < Q)

{
ivp = -sqrt(ivr)#*cos(ivtheta/2.0) - WR;

ivq = -sqrt(ivr)=sin(ivtheta/2.0) - WI;
}
else
{
ivp = sqrt(ivr)=*cos(ivtheta/2.0) - WR;
ivq = sqrt(ivr)*sin(ivtheta/2.0) - WI;
}
y[0] = ( ivp*DR + ivq#DI) / ivdm2;
y[1] = (-ivp*DI + ivq*DR) / ivdm2;
}
if (fabs(gRperp) < EPSILON)
kount = odeint(y, 2, rparPlimit, rpar, eps,
hstart, hmin, &inNok, &inNbad, fbOPT);
else
kount = odeint(y, 2, rparPlimit, rpar, eps,
hstart, hmin, &inNok, &inNbad, £fb);
yAB[2] = y[0];
yAB(3] = y[1];

/* NEGATIVE INITIAL VALUE (A-CHANNEL) */

DRR = deltaT() * tanh(sqrt(rparNlimit*rparNlimit + rperp+*rperp));
DRI = 0.0; /* DELTA(r) =/

TR = ANGFN_RE(gTheta); /* F(theta) =/

TI = ANGFN_IM(gTheta);

DR = DRR*TR - DRI=*TI; /* DELTA(r,theta) =/

DI = DRR*TI + DRI=*TR;

ivdm2 = DR*DR + DI*DI;

if (ivdm2 == 0.0)
{



y[0] = 0.0;
y[{1] = 0.0;
}
else
{
ivx = WR*WR - WI*WI + ivdm2;
ivy = 2#WR=*WI;

if ((ivx >= 0) && (ivy >= 0))
ivtheta = atan(ivy/ivx);
else if ((ivx < 0) && (ivy >= 0))
ivtheta = atan(ivy/ivx) + PI;
else if ((ivx < 0) && (ivy < 0))
ivtheta = atan(ivy/ivx) + PI;
else if ((ivx >= 0) && (ivy < 0))
ivtheta = atan(ivy/ivx) + 2#PI;

ivr = sqrt(ivxsivx + ivy*ivy);

if (cos(ivtheta/2.0) < O)

{
ivp = -sqrt(ivr)*cos(ivtheta/z.O) - WR;
ivq = -sqrt (ivr)*sin(ivtheta/2.0) - WI;
}

else
{
ivp = sqrt(ivr)*cos(ivtheta/2.0) - WR;
ivg = sqrt(ivr)*sin(ivtheta/2.0) - WI;
}

y[0] = ( ivp*DR - ivg*DI) / ivdm2;

y[1] = ( ivp*DI + ivq*DR) / ivdm2;

¥

if (fabs(gRperp) < EPSILON)
kount += odeint(y, 2, rparNlimit, rpar, eps,
hstart, hmin, &inNok ,&inNbad,fa0PT);
else
kount += odeint(y, 2, rparNlimit, rpar, eps,
hstart, hmin, &inNok, &inNbad, fa);

yAB(0] = y(0];
yAB[1] = y[1];

calGreens(yAB, ffg);
return (£ffgl4]);
}




double gFromABxy(double xyX, double xyY, double theta, double E, double n)

{
double rpar, rperp;

rpar = xyX*cos(theta) + xyY+sin(theta);
rperp = -xyX*sin(theta) + xyY*cos(theta);

return ( gFromAB(rpar,rperp,theta,E,n) );
}

void gVsTheta(double xyX, double xyY, LIMIT_TYPE t, double E,
double n, char »filename)
{
FILE *stream;
int 1i;
double theta;

stream = fopen(filename, "wt");

for (theta = t.x1; theta <= t.x2; theta += t.inc)
fprintf (stream,
"%10.6£%10.6f\n",
theta, gFromABxy(xyX, xyY, theta, E, n) );
fclose(stream);

}

void gVsRpar(LIMIT_TYPE r, double rperp, double theta, double E,
double n, char *filename)

{

FILE *stream;
int 1i;

double rpar;

stream = fopen(filename, “wt");

for (rpar = r.xl; rpar <= r.x2; rpar += r.inc)
fprintf (stream,
"%10.6£%410.6f\n",
rpar, gFromAB(rpar, rperp, theta, E, n) );
fclose(stream);

}

void gVsRperp(double rpar, LIMIT_TYPE r, double theta, double E,
double n, char *filename)

{
FILE *stream;
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int i;
double rperp;

stream = fopen(filename, "wt");

for (rperp = r.xl; rperp <= r.x2; rperp += r.inc)
fprintf (stream,
"%10.6£%410.6f\n",
rperp, gFromAB(rpar, rperp, theta, E, n) );
fclose(stream) ;

}

void rVsLDOSyline(LIMIT_TYPE x, double xyY, double E,
double n, char *filename)
{
FILE *stream;
int 1, thetaPoints, fixer, scount;
double r, xyX, theta, reallnt;
double *integrand;
double *store;
double thetaMLX;

thetaPoints = 1001; /* MUST BE ODD FOR SIMPSON INT =/
thetaMLX = 0.006283; /* USE MULTX SINCE LINUX CAN’T ADD =*/
integrand = allocdv(thetaPoints);

stream = fopen(filename, "wt");

/* FIRST COUNT UP POINTS =/

/+* MAR 7, FIXER ADDED TO FIX LINUX PRECISION PROBLEM #*/

scount = 0O;

for (fixer = x.il; fixer <
scount++;

store = allocdv(scount);

x.12; fixer+= x.iinc)

/* NOW EVALUATE POINTS =/

scount = 0;

for (fixer = x.i1; fixer <= x.i2; fixer+= x.iinc)
{
xyX = x.dfac*(double)fixer;

r = sqrt(xyX*xyX + xyY*xyY);

if (r < EPSILON) /* DISPLACE ORIGIN POINT =/
xyX = 10+EPSILON;

/* CALCULATE g VS theta */
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for (i = 0; i < thetaPoints; i+= 1)
{
theta = (double)i*thetaMLX;
integrand(i] = gFromABxy (xyX, xyY, theta, E, n);
}

reallnt = 0; /* INTEGRATE OVER theta */
simpsonInt (integrand, thetaPoints-1, 0, 2#PI, &reallnt);

store[scount++] = reallnt/(2*PI);

}

/* AND WRITE OUT =/
scount = 0;
for (fixer = x.il; fixer <= x.i2; fixer += x.iinc)
fprintf (stream,
"%8.4£%10.6f\n",
x.dfac*(double)fixer, store[scount++]);
freedv(integrand);
freedv(store);
fclose(streanm) ;

}

void rVsLDOSphi(LIMIT_TYPE x, double phi, double E,
double n, char *filename)
{
FILE #*stream;
int i, thetaPoints;
double r, xyX, xyY, theta, reallnt;
double *integrand;
double thetaMLX;

thetaPoints = 1001; /* MUST BE ODD FOR SIMPSON INT */
thetaMLX = 0.006283; /* USE MULTX SINCE LINUX CAN’T ADD =/
integrand = allocdv(thetaPoints);

stream = fopen(filename, "wt");

x.x1; r <= x.x2; r += x.inc)
{
if (r < EPSILON)

r = 10xEPSILON;

for (r

rxcos(phi);
r+*sin(phi);

xyX
xyY
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reallnt = 0; /* INTEGRATE OVER theta #*/
simpsonInt (integrand, thetaPoints-1, 0, 2+PI, &reallnt);

fprintf (stream, "%8.4f%10.6f\n", E, reallnt/(2+PI) );
}

freedv(integrand) ;
fclose(stream);

}

char *thetime()
{
time_t t;
t = time(0);
return(ctime({(time_t *)&t));

}

void main(int argc, char *argv[])
{
int y, i, T;
char string(80];
LIMIT_TYPE x;
double n, Eval, phiVal;
char IDSTR[4], ESTR{4], PSTR[4];
char DIREC([32];
char exCommand[80] ;

n = 0.03; /* ETA =/

/* SET MAP RANGE =*/
x.x1 = 0.0; x.x2 = 1.0; x.inc = 0.02;

/* MAKE ROOT DIRECTORY */

gSTATE = DWAVE; sprintf (IDSTR, "DX");
sprintf (exCommand, "mkdir %s", IDSTR);
system(exCommand) ;

/* MAKE DIRECTORY FOR PHI DIRECTION */

phival = 0.0; sprintf (PSTR, "00");
sprintf (DIREC, "%s/P%s", IDSTR, PSTR);

sprintf (exCommand, “mkdir %s", DIREC);
system(exCommand) ;

/* CALCULATE MAP =/

for (r = 0; r < 301; ¢ += 2)
{
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sprintf (string,"ﬂs/%s%sR%03d.DAT",DIREC,IDSTR,PSTR,I);
eVsLDOSphi ((double)r*0.01, phiVal, x, n, string);

}
/* AND REPEAT FOR DIFFERENT phiVal x/
gSTATE = DWAVE; sprintf (IDSTR, "DX");
phiVal = PI/12.0; sprintf (PSTR, "15");

sprintf (DIREC, "Y%s/P%s", IDSTR, PSTR);
sprintf (exCommand, "mkdir %s", DIREC);
system(exCommand) ;

for (r = 0; r < 301; r += 2)
{
sprintf (String,“%S/%SZSRZO3d.DAT",DIREC.IDSTR,PSTR,I);
eVsLDOSphi ((double)r*0.01, phiVal, x, n, string);

}
/* AND AGAIN ... =/
gSTATE = DWAVE; sprintf (IDSTR, "DX");
phival = PI/4.0; sprintf (PSTR, "45");

sprintf (DIREC, "%s/P%s", IDSTR, PSTR) ;
sprintf (exCommand, "mkdir %s", DIREC);
system(exCommand) ;

for (r =0; r < 301; r += 2)
{
sprintf (string,"ZS/ZS%SR%OSd.DAT",DIREC,IDSTR,PSTR,I);
eVsLDOSphi ((double)r*0.01, phivVal, x, n, string);
}




IMAGE EVALUATION
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