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Abstract

Crazing is a form of tension-induced deformation consisting of microscopic cracks spanned
by load-bearing fibrils. This is generally considered to be the primary source of plastic
strain response of rubber-modified thermoplastics subjected to applied tensile stress. An
understanding of the mechanisms involved in crazing is, therefore, valuable as a means of
identifying structure-property relationships. Extensive studies on single crazes in thin films
have been done,'”% however, experiments on crazing in bulk materials have been fraught
with problems, such as difficulties with the production of uniform crazes and accurate term-
perature control.” A new apparatus has been designed to overcome many of these problems;
a symmetric tensile stretching mechanism and a radiant heating technique combined with
real-time small-angle x-ray scattering (RTSAXS) is used to examine craze fibril structure.

The analysis of small-angle x-ray scattering (SAXS) data is highly model-dependent
requiring precise structural models to ensure accurate interpretation. Recently, improved
measurement techniques have called into question some aspects of the long accepted mod-
els applied to SAXS interpretation of craze structures.®% A detailed examination of the
models applicable to craze fibril structure is presented here, including a newly proposed
model involving power-law density distributions within the fibrils. It is shown that the best
description of craze fibrils comes from a Gaussian density distribution. This is in contrast
to the traditional models which describe the fibrils as having uniform density with sharp
boundaries. !+?

RTSAXS studies of High Impact Polystyrene (HIPS) and Polystyrene (PS) blended with

2 wt.% Polybutadiene (PB) were performed using a constant strain rate of 5 x 10~% s~!



and temperatures from 30 to 70° C. Crazing deformation modes were identified and the
macroscopic deformation characteristics for the two materials were compared revealing a
significantly lower mobility of the polymer in the PS-PB blend than in HIPS. The craze
fibril structure observed in the two materials was found to be nearly identical with slightly
smaller and more uniform fibrils in the PS-PB blend material. This suggests that both
materials follow similar craze formation mechanisms with a reduced polymer mobility in
the blend material. The identification of this mechanism through temperature-dependent
studies is found to be compromised since current theories describing crazing deformation
rely heavily on determination of the craze fibril surface energy, a parameter which is poorly

defined in the case of diffuse boundaries.
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Chapter 1

Introduction

Over the past few decades, there has been a tremendous growth in the polymer industry,!3: 14
Thermoplastic polymers are becoming an increasingly popular choice as a manufacturing
material. Their uses in new applications will require the ability to engineer thermoplastic
alloys with specific properties. In the case of glassy thermoplastics, an enhanced tensile
strength combined with optimized density and long-term durability are obvious goals. To
achieve this, one needs a fundamental understanding of the structure-property relation-
ships involved in polymer deformation. These relationships are quite complex due to the
entanglements that result from the interactions of the long chain molecules in a polymer
system.

Three distinct macroscopic modes of deformation are known to occur in thermoplastic
polymers: shear deformation!!5 describes the case wherein a polymer deforms through

the bulk flow of polymer chains; crazing!3-16

involves the formation and growth of small
cracks bridged by load-bearing fibrils; and rubber-particle cavitation'?!® describes the cre-
ation of microscopic voids in rubber-particle additives to relieve local shear stress. Each
mode exhibits distinct sensitivities to temperature, applied stress, strain rate, and sample
morphology.3: 141819

Crazing is known to occur as the primary deformation mode in many thermoplastic poly-

mer materials, accounting for up to 90% of the strain energy.?® Its presence has been linked



with enhanced toughening in polymer blends such as High Impact Polystyrene (HIPS).2!
The formation and growth of crazes depend upon both the large scale structure of the poly-
mer material and interactions between individual polymer molecules in the craze fibrils. A
study of craze formation and growth thus provides information regarding structure-property
relationships and clues to the fundamental mechanisms of polymer-polymer interactions.

Although it is relatively easy to confirm that crazing has taken place by examining the
resultant damage in a deformed or fractured material, little information may be obtained
regarding the crazing process through post-deformation analysis. Upon fracture or removal
of tension, the craze structure undergoes significant changes with relaxation and slow re-
absorption of the craze fibrils back into the bulk material. In addition, processes such as
microtoming, required for transmission electron microscopy (TEM) studies, cause irrepara-
ble alterations to the craze form, obliterating much of the information on its structure. A
non-invasive tool is needed to accurately probe the craze structure.

Craze fibrils are highly oriented and on the order of 100 A in diameter, thus small-angle
x-ray scattering (SAXS) measurements, combined with a 2-dimensional detector, provide a
non-invasive tool for examining their properties. This method of studying craze structure
has been popular for some time.">?2 More recently, the techniques of real-time small-
angle x-ray scattering (RTSAXS) have been applied to the study of craze fibrils in bulk
thermoplastic polymers.*2325 Real-time measurements face several difficulties, however,
since the production of crazes must be performed within the restrictive confines of the x-ray
beampath in a manner which allows for unobstructed passage of the x-ray beam.

Several different techniques have been employed for this purpose. The most common
involved flexing the sample rather than applying pure tension.>?* This method results in
large variations in the local strain conditions leading to nonuniformities among the crazes
produced.! The group of Bubeck et al.2® dealt with this problem by fixing one end of the
sample to a table with translational capabilities, employing a hydraulic ram mounted on
the table to pull on one side of the sample, and then using the translational stage of the

table to approximately align the sample center with the x-ray beam. The drawback to this



method is that one cannot maintain observation of the same region in the sample over the
duration of the experiment. Ijichi et al.?® employed a method of symmetric stretching by
applying equal tension to opposite ends of the sample. Their design, however, was limited
to only one strain rate. In addition, none of the techniques mentioned above were capable
of providing temperature-dependent studies which are valuable for investigating the driving
forces behind craze formation and growth.®5

A method of generating consistent craze deformation while allowing the in-situ use
of SAXS is required. This involves the application of tensile deformation over a wide
range of strain rates while holding the sample center motionless relative to the x-ray beam.
Temperature control, accurate measurements of applied stress, and strain response are also
desired.

The interpretation of SAXS data is a complex issue since it is highly model-dependent.
A description of the scattering from crazes, produced by Paredes et al.! and refined by
Brown et al.,2 has been the accepted standard for over a decade. Recently, due to the
novel use of second generation synchrotron sources which provide access to lower scattering
angles and better signal-to-noise ratios, some aspects of these models have been called into
question.®? A careful reexamination of the accepted models for craze fibril structure is
therefore warranted.

A new apparatus is presented, capable of nondestructive, in-situ measurements of the
craze deformation mode in bulk polymer materials. The technique is based on time-
dependent transmission x-ray measurements made in conjunction with precise measure-
ments of applied stress.'7-25 This system is unique in that it is capable of in-situ x-ray mea-
surements of bulk polymer deformation mechanisms with varying temperature and strain
rate. It can be used to examine four deformation histories: constant strain rate, constant
strain, constant stress, and free relaxation.

Data obtained with this apparatus include measurements of the stress applied to the
deforming sample, x-ray absorption by the sample, and SAXS diffraction patterns from the

sample using a 2-dimensional wire-based detector. The data are used to identify stages at



which the deformation proceeds via the craze deformation mode and to examine the craze
fibril structure for two representative thermoplastic materials over a temperature range from
30 to 70° C with a common strain rate. Details of the fibril structure are examined in light
of different possible mechanisms of craze formation. Changes in the applied stress and fibril
diameter with temperature are compared with predictions from the theory of craze growth

by forced reptation.



Chapter 2
Polymer Material Basics

2.1 Polymer Materials

The term ‘polymers’ is used to describe a broad class of large molecules with carbon based
structures. Unlike conventional molecules which are composed of relatively few atoms, a
single polymer molecule may contain 10 000 atoms or more. Polymers are composed of many
repeat units, called monomers. The repeat units involved can be as simple as ethylene, or
as complex as the amino acids which make up a protein or DNA molecule. Due to their
large size, polymer molecules tend to become entangled with each other. For this reason
physical interactions between molecules dominate over chemical interactions in determining
the properties of high polymers. As a result, many polymers behave in a similar manner
despite great diversity in their chemical makeup. This has led to their establishment as a

distinct class of materials with distinct properties.

2.1.1 Molecular Weight

It is impossible for synthetic polymers to contain chains all of exactly the same length, thus
they cannot be described by their total chemical composition, such as Cyo97H596. [nstead,

an average molecular weight may be used. The number-average molecular weight, My, is



defined as the average molecular weight of each chain.

> NiM;
My = =4/ 2.1
2 N; 1)

where &; is the number of molecules of mass M;.

Experience has shown that this molecular weight does not adequately describe the prop-
erties of a material. For example, in a sample composed of 1000 polymer molecules of weight
100 combined with one molecule of weight 100 000 the number average molecular weight
would be =~ 200. The single heavy meolecule, however, will have a much more significant
influence on the material’s properties than will the many small molecules. Situations such
as this have given rise to the development of the weight-averaged molecular weight, M,

defined by:
_ T NiM?

My, = S NGM,

(2.2)

as a practical standard because of its use as a predictor of material properties. To continue
with the previous example, the single large molecule will dominate the weight-averaged
molecular weight giving M,, ~ 50 000.

It is also of value to have a measure of the variation in the chain lengths. The polydis-

persity defined as:
(M?)

Ml M = agye

(2.3)

will be 1 for a material with all chain lengths identical and will increase with increasing size
distribution. A typical value for the polydispersity of a synthetic plastic such as Low-Density
Polyethylene (LDPE) is 2. For natural polymers, such as proteins, the polydispersity will

be 1.0, but for synthetic polymers the lowest values obtained are around 1.02.!%

2.1.2 Polymer Conformation

Polymer molecules are not necessarily linear; a polymer can have one main chain with
many side branches such as LDPE; it can be composed of two or three linear chains bound

together at a common point; it can even take the form of a large mesh of linear polymers



joined together at random intervals, as in the case of epoxies. The process by which polymer
chains are bonded together, known as cross-linking, can sometimes be so complete that the
end product, such as vulcanized rubber, is in fact one gigantic molecule.

Today’s commercial materials rarely consist of only one type of polymer molecule. Some,
known as copolymers, consist of two or more chemically distinct polymers covalently bonded
together. Composites can be formed from polymer-metal or polymer-glass combinations,
such as fiberglass, as well as from different polymers blended together without bonding.
Just as metals can be combined to form alloys with unique properties, polymers can also
be mixed and matched to form new materials with specific properties. An example of this
is HIPS in which Polystyrene (PS) is blended with a small amount of Polybutadiene (PB)
to form a much tougher material. This particular material will be discussed further in
section 2.2.2.

Polymer molecules will rarely exhibit an extended-rod conformation; instead, their form
is composed of buckles and twists coiling in upon themselves resulting in a rather globular
outline. This coiling can be modeled as a random walk problem where each successive
segment can have any orientation relative to its neighbouring segments. This results in an

average square end-to-end distance, < R? >26

< R? >=cNa® (2.4)

where ¢ is the length of a segment determined from the number of monomers which need
to be grouped together to mask all information regarding bond angles, N is the number of
segments in a chain, and c is a constant. This coiling of the molecules causes them to be
entangled together much like spaghetti. Molecular entanglement considerably complicates
the dynamics of polymer motion and gives them many of their unique physical properties.
A more general quantity than R, is the radius of gyration, Ry, which is well-defined

not only for a linear chain (random walk), but for any shape of object or any collection of



objects. The radius of gyration is defined by

(2:5)

Here r; is the distance from the center-of-gravity to the ith link and Ny is the number of

links. Clearly R, is proportional to the mean end-to-end distance described in equation 2.4.

2.1.3 Polymer Dynamics

The mechanical behavior exhibited by polymers was first described by viscoelastic fluid flow,
discussed further in section 2.2.1. Empirical models have been proposed which combine
spring and dashpot characteristics to describe the observed behavior of the material under
some form of external stress.!?

The first molecular theory of polymer motion was that of the Rouse bead and chain
model®® which describes a polymer chain as a sequence of beads connected by springs
moving through a viscous fluid. There are three fundamental assumptions in this model
which hinder its predictive capabilities. Firstly, localized responses are assumed. This
means that the force on a given bead is influenced only by its nearest neighbours. Secondly,
the polymer chains are considered to have ideal elasticity whereas, in reality, there are ways
in which elastic energy can be absorbed by the chain. Finally, the most critical problem for
large polymers is the assumption of phantom chains which allows two parts of a polymer
chain to pass through each other. This eliminated any role played by entanglement.

The reptation model?® did away with the phantom chain shortfall of the Rouse model by
describing a polymer chain as confined to a narrow tube defined by its neighboring polymer
chains. The chain moves by Brownian motion inside of the tube creating and destroying
tube lengths on opposite ends as it moves. The time required for the chain to move a given

distance can be described in terms of a diffusion coefficient, Drp,

_wmT _ R:
DTeP - N2 - T - (2-6)



Here 1 is the mobility constant, T is the temperature, N is the number of segments
in the chain, R, is the mean end-to-end distance defined in equation 2.4, and 7; is the
length of time necessary for all memory of the original conformation to be lost. As will be
shown in section 2.3.3, the reptation model continues to be the basis for most of the current

understanding of polymer motion in situations such as the formation of craze fibrils.

2.1.4 Glass Transition Temperature

Amorphous polymers do not exhibit the distinct phases of solid, liquid, and gas. The appar-
ently solid state has liquid-like properties when examined on sufficiently large timescales.
However there is a temperature at which a distinct change in the physical properties of
the material occurs. This is known as the glass transition temperature!®!® (T,). Above
this temperature there is a decrease in the strength of the material and an increase in the
mobility of the polymer molecules; the polymer is said to be in a melt state. It should
be noted, however, that a polymer in this state is not well-described by conventional fluid
dynamics and that models which describe the polymer dynamics above the glass transition
temperature can often be applied below the glass transition with a suitable change in the
timescale.

Although general theories of molecular motion are well-established, translating these
theories into practical models of macroscopic motion has proven difficult in the case of
polymers. The behavior of a polymer material in response to external stress is described
in terms of macroscopic models, but modifications to existing materials through changes in
processing and structure occur at microscopic levels. In order to bridge the gap between
general molecular theories and specific macroscopic models, a detailed understanding of the
deformation processes which occur in polymers is necessary. Without this, the ability to

design new materials and tailor their properties will be severely limited.



2.2 Polymer Deformation

2.2.1 Macroscopic Deformation

Materials in the real world are subjected to numerous forces. The response of a material
to these forces is a primary criterion determining its suitability for a particular application.
To understand the material response to external applied stress we must first establish a
definition of these forces and the material’s response.

The forces acting upon a material are described by the stress tensor o;;;

g1 021 O3t
Oij = | o9 0O o |- (2.7)

J31 023 033

We assume here that the center of mass is fixed and that no net rotation of the material

occurs so that the tensor is symmetric. 427

The stress can be divided into two parts: dilatational and shear. The dilatational

component accounts for volume change and is given by:
1
Op = -3—(0'11 + g9 + 033) (2.8)

The shear stress tensor is obtained by subtracting the dilatational stress from the total
stress tensor. If no shear stress is present, the stress tensor will be diagonal.
The response of the material to both external and internal stress is described by the
resulting strain. The total strain is also a second rank tensor with identical form to that of
the stress tensor (equation 2.7) Dilatational and shear portions of the strain tensor can also

be identified in which the normal components of the dilatation (e;1,690,633) are defined by:
€ii = — (2.9)
where 6l; is the change in length of a material of length [; in a given direction.
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Figure 2.1: An example of plane strain. At the notch point the strain normal to the sample
surface may be approximated as zero

In general, the stress and strain components in differing directions are interrelated.
Stress applied in one direction may result in a strain response in all directions. Likewise,
strain in one direction may cause local non-zero values for all of the stress tensor components.
However, there are some cases in which the stress-strain relations can be simplified. In stress
applied to a thin sheet, one can approximate the stress normal to the sheet surface, o33,
as zero. This is known as plane stress. Plane strain (€33 = 0) may be approximated at
concentrated stress points in relatively thick sheets,'* as shown in figure 2.1.

The simplest form of material response to stress is elastic deformation in which the

relation between stress and strain follows Hooke's law;

(022 + 033)- (2.10)

s

g11
€11 = v "~

Here Y is the elastic constant of the material, known as Young’s modulus, and v is Poisson’s
ratio which describes the material’s attempt to maintain constant volume. For small strain
values elastic deformation is an excellent approximation of the behavior of most solids.

In amorphous polymers below the glass transition temperature, molecules are not able

11



to move past each other and elastic deformation is primarily due to bond rotation. This
rotation is limited in nature due to the restrictions of the bond angles and interactions
between molecules. The result is a short or nonexistent elastic region for most polymer
materials.

Polymer deformation is better described by viscoelastic models, such as the spring and
dashpot model described in section 2.1.3, where energy loss due to chains sliding past each
other is taken into account. Unlike elastic deformation in which the elastic constant is
only a function of the material and temperature, the viscoelastic stress-strain curve is also
a function of the testing rate, duration, and sample history. In viscoelastic deformation
there exists a time lag in the response of the strain to an applied stress; repeated loading
and unloading of the material will also change the strain response function. Therefore, the
results one obtains are dependent on the type of loading measurements one makes.

There are six primary types of loading tests which can be used to examine deformation:
constant strain, constant stress, constant strain rate, constant stress rate, and periodic stress
or strain. A material in constant strain is held at a fixed extension. In constant stress, a
fixed force is applied and the material is unconstrained in its response. For constant stress
and strain rate, the stress or strain is increased at a fixed rate. For periodic stress and
strain, the material is cycled through stages of loading and unloading where one of stress
or strain is forced to follow an oscillating pattern while the other is measured.

In some cases it is necessary to abandon the assumption of linear stress-strain response
implied in viscoelastic motion. In this case one must resort to non-Newtonian fluid mechan-
ics®® in which:

é

g =(£)o, (E—) v , (2.11)

-Q
where o is the applied stress, é is the shear strain rate, (&) indicates the positive or
negative sign of the strain response and 7, 0., and &, are material-related constants which

are phenomenologically determined.
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2.2.2 Microscopic Deformation

Elastic, viscoelastic, and non-Newtonian models are used to describe the three distinct
modes of deformation known to occur in thermoplastic polymers: shear, cavitation, and
crazing. These deformation modes are the link between molecular models of motion and
macroscopic processes.

Shear yielding!* involves a constant volume deformation; the material responds to the
applied stress by changing shape. In shear deformation a polymer deforms through the
bulk flow of polymer molecules. During bulk flow, the material behaves as a continuum
responding to shear stresses, and the contributions of individual molecules to the total
motion cannot be resolved.

Cavitation'”!® describes the creation of microscopic voids to relieve local shear stress.
The dilatation component of the stress is relieved by causing a change in volume. Cavitation
is often a precursor to crazing and may also combine with shear yielding when crazing is
suppressed. It is also more common in crack tip deformation than in unijaxial stress.

13,16 involves the formation and growth of small cracks bridged by load-bearing

Crazing
fibrils and will be dealt with in more detail in section 2.3. Individual molecules play a
significant role in the properties of craze fibrils. The formation and growth of these fibrils is,
consequently, an excellent mechanism for examining the links between theories of molecular
dynamics and macroscopic properties of polymer materials.

Since crazes are capable of absorbing significant amounts of strain energy, it is of-
ten in the interest of a manufacturer to modify a material in order to encourage craze
growth.'42:2% It has long been known that this can be done by incorporating 10 to 20
weight percent of an impurity such as PB with an amorphous polymer like PS.!* The PB-
PS boundaries act as craze nucleation sites®® by reducing the energy required to nucleate
crazes, and thus encouraging craze formation instead of brittle failure. It has been suggested
that the PB in HIPS may also perform another function; the PB domains may cavitate and

the resulting voids merge to form crazes.!”"?! Recently it has also been suggested that

cavitation and crazing in HIPS act independently of each other and that cavitation may
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also support shear yielding.% 3!

Another mechanism of toughening thermoplastics involves the addition of small (up to
4%) amounts of low molecular weight PB to PS.?® When sufficient (greater than 0.05%) PB
is added, domains of rubber are formed in the PS matrix. These pools of liquid rubber are
too small to initiate crazes, instead, the liquid is absorbed into the active region surrounding
a craze and plasticizes it. This greatly increases the craze velocity and thus increases the
strain energy which can be absorbed by a craze.>32 This mechanism is quite distinct from
that expected to occur in HIPS and the craze structure observed in these two materials is
expected to reflect this difference. In addition, thin film deformation tests on this mate-
rial have reported toughness comparable to that of HIPS with an order of magnitude less

additive.®32 No such results have been reported for bulk samples of this material.

2.3 Crazing

Crazing is a very common form of polymer deformation. occurring in almost all polymers
under suitable conditions —although suitable conditions may vary greatly from one material
to another. Crazing is also a highly efficient method for polymer deformation, absorbing
up to 90% of the strain energy.?® At the same time, crazes often develop into pure cracks
making them a precursor to failure. This has led to a great interest in understanding the
crazing mechanism.

Crazing, despite its complexities, is easier to study than other deformation mechanisms
since it results in significant volume and density changes in the material. Its distinctive
form remains even after the material has fractured. Because of the electron density contrast
between voids and the polymer material in a craze, it is ideally suited for scattering studies.
The deformation process in crazes is also controlled by the response of individual molecules,
thereby providing an excellent opportunity to link theories on polymer molecule motion with

macroscopic deformation.
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2.3.1 Craze Structure

As mentioned earlier, craze is a crack spanned by load-bearing fibrils. It is usually in the
shape of an oblate spheroid 50-1000 gm in length and 0.1-2 zm wide (figure 2.2). Although
crazes contain a significant number of irregularities due to impurities and imperfections in
the material, they can, with reasonable accuracy, be modeled as having a regular struc-
ture,?'3%34 consisting of several hundred thousand parallel fibrils 200-300 A apart and
50-300 A in diameter.® Individual fibrils are themselves composed of oriented polymer
chains where each chain will be within 4-5 nearest neighbours of the fibril surface.?> The
fibrils maintain a constant diameter throughout the crazing process and are connected at
random intervals by cross tie fibrils as shown in figure 2.3. These cross ties, which can com-
pose up to 15% of the fibrillar matter, are of little consequence in the formation and growth
of crazes,'® except for the fact that they tend to pull the craze fibrils out of alignment with
each other by up to 5°. Surrounding the craze is a strain-softened area, typically 200-900 A
wide, known as the active region. It is from this region that the craze draws new material
as it grows. Outside of this region the material is assumed to be completely unaffected by

the presence of the craze.

2.3.2 Craze Growth

The energy required to initiate a craze is significantly larger than the energy required for
craze growth; once the critical stress for craze formation is reached and crazes have formed,
strain relief will be due to craze growth rather than the formation of new crazes. Craze
growth involves dilatation only in the direction of the applied stress. Strain relief, therefore,
is limited to this specific direction only; no lateral contraction occurs due to craze growth.?!

A craze will grow both by lengthening (horizontal growth in figure 2.2) and by widening
(vertical growth in figure 2.2). It lengthens by a process known as Meniscus Instability
growth.?1'2® New fibrils are formed at the craze tip in a process much like that which
occurs in peeling tape from a glassy surface. The strain-softened polymer in the active zone

around the craze tip is modeled as a non-Newtonian fluid. As the craze tip surface moves
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Figure 2.2: A cutaway view of a craze structure with arrows indicating the direction of the
tensile force and only a few fibrils shown, for the sake of clarity.
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Figure 2.3: The surface of a craze showing the strain-softened region from which the fibrils
grow and the bending of fibrils due to cross ties.
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undulatory disturbances form (figure 2.4) and develop into fibrils.

As a craze widens, it has been observed that a constant fibril volume fraction, vy, is
maintained.®2! This indicates a widening process which is not due to the thinning of
preexisting fibrils, but rather is a result of new material being drawn out of the active
zone. The size of the inter-fibril spacing is a constant determined by the growth process,?®
implying that the diameters of the fibriis should remain constant.

Craze widening can also be modeled as non-Newtonian fluid flow in which polymer at
the edge of the active zone is responding to a lateral stress gradient (foy) between the stress

immediately above the center of fibrils (o.)and the stress at the midpoints between fibrils

(om)- The rate of widening é; is then proportional to

¢ oc | goyl" (2.12)
where
| G| =~ 22‘5-50—"!‘-. (2.13)

with D, being the average inter-fibril distance and 7 being the power-law exponent from
the non-Newtonian flow.
The stress directly above the craze fibrils, o, is considered to be proportional to the
applied stress,
0. =E&0, (2.14)

where g, is the applied stress and ¢ is a dimensionless constant less than or equal to
one. The stress at the void surface between fibrils, oy, can be considered to be due to the
work required to increase the fibril length by an incremental amount. If the energy required
to lengthen the fibril comes exclusively from the energy (I'y) required to create new fbril

surface area, then from geometrical arguments:

Om = 4—=—. (2.15)
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Figure 2.4: An illustration of fibril formation from the bulk polymer by the meniscus
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This equation assumes that the polymer material can be treated as a viscous fAuid and that
the surface stresses are negligible. In this way, the meniscus-producing surface tension can
be equated with the thermodynamic definition of the Gibbs surface energy. It is reasonable
to assume that the craze with the largest velocity at any given time will determine the
strain rate and stress. When oy is chosen to produce the maximum velocity, the applied

stress becomes

0. =8 (2.16)

£D;’
2.3.3 Surface Energy And Forced Reptation

The value of the surface energy, [y, is determined by the forces governing intermolecular
interactions. There are three major forces which can be at work when new polymer surfaces
are formed: Van der Waals, scission, and reptation.5:19:36:37 The Van der Waals force is due
to covalent bond energy between molecules and will be a constant for a fixed configuration.
The scission force is due to the energy required to break a polymer chain and depends on
the molecular weight and density. The reptation force is due to the energy required for
polymer chains to move past each other and depends on molecular weight, strain rate and
temperature. The rate of craze growth and hence the toughness of the material will be
determined by the dominant force.

As mentioned above, the scission force, f; is determined by the force to break a single
bond. That is,

U

fo~ % (2.17)

where U is the energy required to break a bond and a,, is the bond length.!3:36 The

reptation force, f, is determined by the chain mobility, pr:

fr~vpg' 5 (2.18)

where v is the rate of chain pullout, My is the mean molecular weight of the chains, and
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M, is the molecular weight of a monomer.%'° The chain mobility is given by:

prt = it [ a exp (UQ)/T}dl (2.19)

with #1_1 being the high temperature mobility, a the monomeric length parameter, U(!)
the potential energy trapping the individual polymer segments, labelled ! along the chain
contour, & the Boltzmann constant, and the integral being over the length of a chain.%7

Below the glass transition temperature in polymers with a large molecular weight, the
Van der Waals force is small compared to the scission and reptation forces and can be
neglected.!® ¥ The scission and reptation forces are generally of the same magnitude and
the determination of which force is dominant will depend on the temperature, strain rate and
molecular weight. One can define a critical temperature, strain rate, and molecular weight
at which the force for chain pullout becomes less than the force for chain scission.5+19

At low temperatures, the surface energy of the craze fibrils should be independent of
temperature since the scission force is temperature-independent. Above some critical tem-
perature, a decrease in the surface energy is predicted as a result of the tramsition from
scission-dominated forces to disentanglement-dominated forces.® This decrease in surface
energy is expected to continue up to the glass transition temperature.

To identify the transition from craze growth by scission to that of craze growth by rep-
tation, and thus verify that reptation processes are involved in the crazing mechanism, the
surface energy governing the craze growth process may be measured as a function of temper-
ature. Equation 2.16 states that the surface energy may be calculated from measurements
of the applied stress and craze fibril diameter and, as will be shown Chapter 3, the craze
fibril diameter may be determined using the techniques of SAXS. This process of identifi-
cation of the crazing mechanisms is essential to any further attempts to test fundamental

models of polymer molecule dynamics through bulk deformation measurements.
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Chapter 3

Small-Angle X-ray Scattering

Basics

Ever since von Laue first used x-rays to examine crystalline copper sulfate, they have proved
to be a useful tool for probing the structure of materials. Because of their higher energies,
x-rays can penetrate much farther into materials that are opaque at the visible wavelengths.
At the same time, x-rays are low enough in energy that they will interact with electrons.
X-rays used for scattering measurements typically have wavelengths between 0.5 and 2.5
A, similar in size to that of interatomic spacings, making them ideally suited for resolving

regular crystalline structures and molecular details.

3.1 X-ray Production

X-rays are produced in two ways: through the acceleration of electrons, and through electron
energy band transitions between core shells in metals.3® In ar anode source, both of these
processes occur. Electrons are accelerated by a high voltage and strike a metal anode. The
energetic electrons will either be stopped by multiple interactions with valence electrons,
producing bremsstrahlung x-rays, or they may collide with a core electron knocking it free
and producing transition line x-rays as valence electrons drop down to replace the missing

core shell electrons.
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Anode source energies are dictated by the characteristic spectrum of the metals used for
the anode. The primary factor limiting the x-ray intensity from these sources is the dissi-
pation of heat generated by electron collisions. A significant increase in intensity is possible
with the use of a rotating anode source; the target position on the anode is continually
changing, allowing for better heat dissipation and thus higher specific loading.

Several orders of magnitude higher intensity may be obtained by abandoning the luxury
of an in-house apparatus for the centralized facility setting of a synchrotron source. Syn-
chrotron x-rays are produced by changing the direction of motion of fast moving electrons
or positrons.?® This is accomplished by the action of a magnetic field produced either by
bending magnets, required to keep the electrons moving in a circular orbit, or by insertion
devices, placed in straight sections of the synchrotron.

The x-rays produced from bending magnets have a continuous energy spectral distri-
bution over several orders of magnitude with an upper energy limit at some critical value
which is a function of electron energy and magnetic field. Insertion devices can be cus-
tomized to produce a spectral distribution similar to that of a bending magnet, but with
a much higher critical energy. They can also be designed to concentrate energy at certain
wavelengths giving a large increase in spectral brightness — which is proportional to the
photon flux over a 0.1% bandwidth3® — and thus much greater useable flux. Because the
electrons are moving near light speed, the x-rays are concentrated in a small cone parallel
to the direction of motion.?%*® This adds to the brilliance of a synchrotron’s x-rays by
reducing the source size and angular divergence.

Unlike anode sources, the x-rays produced from synchrotron sources are linearly polar-
ized in the plane of the electron orbit. The polarization becomes elliptical away from the
orbital plane. This results in a complex, non-randomly polarized beam, valued for some

spectroscopic experiments.3®
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3.2 X-rays and Materials

The electric field from an x-ray can interact with an electron in a material and cause it to
accelerate. The resultant electron motion may then be converted back into an x-ray with
the same wavelength and a m radian phase shift. This process is called elastic scattering.

Scattered x-rays are coherent with an intensity (I.) is given by:

efl
fe=lnzas [y + ¢: cos?(26)] (3.1)

€

where I, is the incident x-ray intensity, e is the charge of an electron, r, is the distance
from the electron to the point of detection, m, is the mass of an electron, c is the speed of
light, ¢, and (. are the relative proportions of the electric field polarization in the z and y
directions for an x-ray traveling in the z direction (¢, + ¢: = 1), and 28 is the angle of the
scattered x-ray relative to the incident direction. The factor [¢, + ¢; cos®(26)] is called the
polarization factor. In the case of randomly polarized incident x-rays, such as from anode
sources, this becomes [1 + cos?(26)]/2. For synchrotron sources, where the polarization is
non-random, the polarization factor must be determined from measurements of the system.

X-rays can also undergo Compton scattering. In this case a photon collides inelastically
with a valence electron, knocking it free from the atom and transferring to the electron

some of the x-ray’s energy. This results in a change in the wavelength of the x-ray;
AN x 1 — cos(26) (3.2)

Compton scattering is incoherent; that is, the phase of the outgoing x-rays bears no relation

to that of the incoming x-rays. The lack of phase information means that these x-rays will
not contribute to the diffraction process and will add a smooth background to the x-ray
scattering pattern. At the small angles associated with SAXS the probability of observing
Compton scattered photons is quite low and the contribution of incoherent scattering to
the diffraction pattern can be ignored.

X-rays can also be absorbed by materials, resulting in heating or chemical reactions.
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The absorption of x-rays is related to the material density and thickness by
I.= Iine—(#z/P]PZ (3.3)

where p is the density and z is the thickness. The ratio %’- is a mass absorption coefficient
and depends upon the material and the wavelength of the x-rays with an approximate form
far from an absorption edge of%8

% ~ kN Z8. (3.4)

Here % is a constant, A is the x-ray wavelength, and Z is the atomic number of the material.

In summary, four things can happen to an x-ray photon as it passes through a material:
It can exit the material without any interaction; it can be absorbed by the material; it
can undergo Compton scattering, changing its energy; or it can undergo elastic scattering.
The relative probabilities of these events occurring depends on the material and the x-ray
wavelength. Of these four, the one which is of primary interest here is the elastic scattering
because the x-ray intensity as a function of scattering angle will be dependent upon the

macroscopic structure of the material.

3.3 X-ray Diffraction

X-rays scattering from neighboring electrons will combine to form a diffraction pattern.
Constructive and destructive nodes in the pattern will depend on the relative phase of the
x-rays coming from the different scattering centers. For any two scattering centers, the

phase difference depends on the displacement of the electron sites and is determined by:
2T 2 s -
<p=T(k—-lco)~r (3.5)

where £ is the outgoing unit wave vector, ko is the incoming unit wave vector, and 7 is
the vector joining the two scattering centers.*! This assumes that each x-ray undergoes

at most one scattering event while inside the material. Setting ¢ = 27 and noting that
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|k — ko| = 2sin#, one obtains the familiar Bragg’s Law
A = 2dsind (3.6)

where d is the distance between the two scattering centers and ¢ is half the angle between
the incoming and outgoing wave vectors.

The lengthscales one can examine are determined by the wavelength used and the angu-
lar diffraction range available. It would seem logical to increase the wavelength in order to
examine structures on larger lengthscales. This is not practical in many cases because the
higher wavelength x-rays are more readily absorbed by a material, as shown in equation 3.4.
As a result, it is necessary to go to small angles to examine large structures in materials

which are strong absorbers at high wavelengths.

3.4 Small-Angle X-ray Scattering

At small angles one can make several approximations about the x-ray scattering observed:
the scattering is assumed to be purely elastic (ie. no measurable Compton scattering), the
polarization factor of equation 3.1 can be treated as one, and the phase factor in equation 3.5

can be rewritten as:

4rsinf®  4nf
XX (3.7)

p=—q-7 with |q|=

Because small angle scattering usually involves transmission, one must be concerned with
the sample thickness. An increase in thickness will result in a linear increase in scatter-
ing intensity. At small angles, however, it will also result in an exponential increase in

absorption.384! The optimum thickness for small angle scattering is therefore:

topt = 1/t (3.8)

where u. is the linear mass absorption coefficient used in equation 3.3. When the sample

1s close to the optimum thickness one can assume that an x-ray photon will interact with
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only one electron as it passes through the material. This means that one can ignore the
possibility of multiple scattering confounding the diffraction pattern.38
In order to calculate the amplitude, A(8), of the scattered wave one must combine the

waves scattered by every portion of the material taking into account phase differences:
A@©) = [ av p(ee, (3.9)

where p(7) is the electron density at 7, V' is the entire volume irradiated by the x-ray beam,
and ¢(7) is the phase factor defined in equation 3.7. The intensity observed is proportional

to the absolute square of the amplitude, I <« AA*. Using equation 3.7 one has:
1) =1 [ [ @ridra pli)p(r)ei®ri=r, (3.10)

where [ includes factors from the incident intensity, absorption by the sample material,
and scattering from a single electron. In the discussion to follow, I will be set to one as this
can be done with no loss of generality.

The scattering intensity depends only on the relative displacement of scattering centers
and on variations in the density of these centers. If one assumes that only two electron
densities provide the structural contrast; it is convenient to subtract the mean density,
which does not contribute to the scattering, and define a correlation function, which is

independent of absolute electron density and depends only on the structure:

1) = BoRV [ dra (oot — 1) — 7). (3.11)

with 7 = (7 — 1), p° being the square of the average electron density, V being the total

volume irradiated by the x-ray beam, and (Ap)? the mean square electron density contrast.

The fundamental scattering equation thus becomes:

1) = BoPRV [ dr (e, (3.12)
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Figure 3.1: Ideal scattering from the cross-section of a single cylinder, showing the peaks
that result from such a regular structure.

3.5 Direct Interpretation of SAXS Data

3.5.1 Scattering Peaks

The most common use of wide angle x-ray diffraction is in the identification of Bragg scat-
tering peaks from crystal structures. This type of analysis is also applicable to SAXS data
where ordering exists. If long range order is present, the familiar Bragg’s law (equation 3.6)
applies just as it does for wide angle scattering. For systems in which the ordering is only
short range in nature, Bragg’s law can only give approximate values, and a knowledge of
the scattering geometry is required for more accurate lengthscale measurements?*?

Regular interparticle distances are not the only source of peaks in SAXS data. The
form factor for a single regular object will also give a series of peaks, as shown in figure 3.1.
Applying Bragg’s law to these peaks will result in misleading information regarding the
structure under observation. Care must always be taken in identifying the type of structure
under observation before interpreting peaks observed in SAXS data.

Variations in particle size or irregularities in the particle structure will often reduce these
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peaks to the point where they are completely smoothed out. Interpretation of apparently
smooth scattering intensities is accomplished by Fourier transforms of the scattering data,
to regain the correlation function, or by assuming structural models to generate a theoretical

scattering curve with one or two free parameters which can be fit to the actual data.

3.5.2 Fourier Transform

As noted earlier, the scattering intensity is a Fourier transform of the correlation function, so
that the most straightforward method for data interpretation involves a Fourier transformn
of the scattering intensity. There are several drawbacks to this approach. First of all, the
scattering intensity is obtained over a finite range in g and has a finite resolution. Effects
from the cutoff points in the intensity data can often introduce significant amounts of error
into the transform solution. This problem has been partially solved using the indirect

10-12 i1 which the

transform method introduced by Glatteri!'43 and developed by Svergun
intensity is fit to a polynomial series which is invariant under Fourier transformation. Using
this procedure, the pair distribution function (r%v,(r)) may be determined.

In the direct-indirect transform method the scattering data is represented by a series
of orthogonal Hermite polynomials where the coefficients of the polynomials in the series
may be evaluated using the method of least squares. To ensure fast conversion of the series
in both q space and real space, a scale factor is applied to g such that the scaled value
corresponding to the maximum ¢ is of the order of 1 to 10, where the Hermite polynomials
are known to converge rapidly. This scale factor may be determined from the maximum and
minimum ¢ limits combined with the selection of the number of polynomials to be included
in the series.!! Because the number of polynomials included in the series affects the value
of the scale parameter, the choice of the ideal number of polynomials is not well-defined. In
the method described by Svergun,!9-# the identification of the ideal number of polynomials

to use in the transform is based on a series of tests of the solution. These tests include a

x? test, a test for systematic deviations, and a test of the smoothness of the solution.
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3.6 Standard SAXS Analysis Models

In addition to the mathematical complexities of the transformation itself, there are difficul-
ties in interpretation of the results. The relation between the correlation function and the
physical structure it represents is not always obvious. For simple objects such as spheres,
the correlation function has been calculated. However, for objects with intricate form or for
systems with interactions between objects (non-random placement relative to each other),
the interpretation of the correlation function is not a trivial task. It is often preferable to
sacrifice generality in order to extract more specific information from the scattering data.
Additional assumptions are often made regarding the structure of the materials and the
scattering intensity to develop maodels from which parameters relating to specific structural
properties may be extracted through fitting procedures.

Over the years, standard models have been developed for use with SAXS scattering
patterns which can be applied to a broad scope of materials. These standard models use
two fundamental assumptions. Firstly, it is assumed that the system is statistically isotropic.
In other words, there is no preferred orientation in the system. Secondly, it is assumed that
there is no long range order.*!

The second assumption implies that at sufficiently large r the density distribution will

approach the mean density, resulting in
~Yo(r) = O for large 7. (3.13)

This condition is necessary in order to place a meaningful maximum limit to the integral
in equation 3.12
From the first assumption one can average the exponential factor from equation 3.12

over all orientations as follows

7Y = _Sm;f’)_ (3.14)
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Combining this with equation 3.12 gives

sin(gqr)

I(q) = (Ap)'zlf‘[;xl dnridr Yo(r) p

(3.15)

3.6.1 Invariant

The most general of the standard model parameters is the invariant, obtained by setting
r =0 in equation 3.15. An inverse Fourier transform of this expression combined with the
fact that at r = 0 the correlation function is equal to the average electron density fluctuation

(a constant) gives

Q= [ fdata) =BV, (3.16)
The invariant is dependent only on the volume of the scatterers and their electron density
contrast, not on the their relative placement. This means that reordering of the system,
while it might change the scattering pattern considerably, will not affect the invariant.

The true invariant for a closed system does not produce much useful information regard-
ing the objects under investigation. The effective invariant, which measures the contribution
to the invariant from the scattering range under investigation, provides information regard-
ing the volume of scatterers with lengthscales corresponding to the ¢ range used. While the
true invariant must always remain constant, the effective invariant may change significantly
as a result of changes in the structure being examined.

In some cases it is of interest to obtain absolute scattering intensities by calibrating the
scattering intensity from a particular x-ray source using a known standard. If the average
electron density fluctuation is known, the absolute scattering intensity may be used to

calculate the volume of the scatterers within the appropriate range of lengthscales.

3.6.2 Guinier Approximation

The Guinier approximation deals with the coarse features in the structure. If interparticle
interactions are ignored, the correlation function of a particle can be approximated by an

averaging of the particle in space and orientation giving a Gaussian distance distribution
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function.??

Yo(r) = (=3 [4R) (3.17)

where R, is the radius of gyration.
Applying a Fourier transform to the correlation function of equation 3.17 one obtains
Guinier’s law,

I(q) = [(0)e~RiT*/3)  (qR, < 1). (3.18)

This equation is valid in the limit of q approaching zero, where the details of the particle’s
internal structure are not seen. In order to obtain an adequate measure of R, using Guinier’s
law, a rule of thumb states that*!

GminD S (3.19)

where qnin is the lowest ¢ point obtained and D is the particle diameter.

Guinier’s law allows one to obtain a measurement of the average particle size without
making any assumptions about the particle shape. Corrections to the law can also be made
for flat platelets and long thin rods.*! Guinier’s law will fail, however, when significant inter-
particle interaction occurs. In those situations particles are no longer distributed randomly

and the correlation function is not well described by a Gaussian distribution.

3.6.3 Porod’s Law

Porod’s law is derived by ignoring the large lengthscale features and focusing on individual
particle details. It relies on the assumption introduced in equation 3.11, namely that the
surfaces of the particles in the system have well-defined boundaries with sharp changes in
the density.

The correlation function can be written as a polynomial expansion in 7:
Yo(r) =1—ar+br24erd~.... (3.20)

For uniform particles with sharp boundaries, v,(r) will differ from one at small are by a
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ratiol?

’Yo(T‘)El—(%)Tﬁ-.... (3.21)

Applying this to equation 3.15 gives, to a first order approximation,

S e _ S

o~ 2
I(q) = (Ap)°V =y 0 "y

g~ = Kq™, (3.22)

where S and V are the surface area and volume of the particle, respectively, and K is
referred to as the Porod constant. Porod's law is valid even with very anisotropic particles,
densely packed particles, and non-particulate scatterers, since it is based on scattering from

r values which are small compared to the overall particle size (large ¢ values).

3.6.4 Babinet Principle

Since Porod’s law is not affected by relatively large lengthscale features, it is still valid
for materials with strong interparticle interference, such as a close-packed structure. In
materials of this nature, however, Babinet’s Principle of reciprocity*! cannot be ignored.
This principle states that it is impossible to distinguish between scattering from particles
and scattering from voids; ie. scattering from a random collection of spheres will be the
same as scattering from a solid with a random collection of spherical holes of identical
dimension and distribution. In a dilute system, particle scattering dominates and void or
interparticle scattering may be ignored. In the case of densely packed particles, both inter-
and intraparticle lengthscales contribute to the observed scattering intensity, adding a factor
1/vyus, to the electron density contrast, where v, and ve are the volume fractions of the
particles and the void spaces between particles, respectively,

The form of Porod’s law remains the same when this principle is appiied. However,
the surface-to-volume ratio contains contributions from both the voids and particles. A
determination of the average particle size, [}, requires a knowledge of the volume fraction

of the particles:i!

) oy S a_ 4

Q m;lvzvq T rvaly (3.23)
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3.6.5 Deviations from Porod’s Law

In practice, the high-q scattering intensity is often not proportional to ¢=* and modifications
to Porod’s law are necessary for applications in non-ideal systems. Ruland*® examined the
scattering behavior in Porod law regions for non-ideal systems and categorized them as being
either positive or negative deviations. Positive deviations describe scattering patterns in
which the intensity decreases less rapidly than g~* and negative deviations more rapidly
than ¢=*. The positive deviations are generally ascribed to structure within the particles
and the negative deviations to poorly defined boundaries.

Many structural models and empirical corrections for positive deviations have been
described in the literature.*”-5! The simplest correction for positive deviations! is the in-
troduction of a constant background term (Constant Background model) to equation 3.22.
This correction assumes that the structure within the particles causing the positive devi-
ations is at sufficiently small lengthscales that the scattering from it may be treated as
constant in the region of interest. The surface-to-volume ratio of the particles can then be
determined from the intercept on a plot of ¢*I(q) vs. ¢.

Another explanation for positive deviations in Porod’s law is the presence of a fractal-
type structure.®™5* A fractal is a complex geometrical object which is self-similar on dif-
ferent lengthscales. The volume and surface area of such an object are not well-defined and
are functions of the lengthscale used to measure them. The scattering from a fractal object
follows the form:

I{q) < q™® (3-24)

where « describes the fractal dimension and is within the ranges:

2<a<3 — Dpass =@ mass fractal
(3.25)

I<a<4d — Di=4—-« surface fractal

For a in the mass fractal range the particles are fractal in nature throughout and their
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characteristic parameter is Dpyass. For @ in the surface fractal range the particles are solid,
but their surface is fractal and their characteristic parameter is D;. The case of o = 3
corresponds to a uniform solid with no surfaces, resulting in no scattering being observed.
The case of o = 4 corresponds to the traditional Porod’s law.

Several models have also been proposed to account for negative deviations from Porod’s
Law. A technique for describing diffuse boundary conditions, introduced by Ruland,*6
describes the particle profile as the convolution of an ideal particle with sharp boundaries
and a smoothing function. As discussed in appendix C, the convolution method is useful
because the diffuse boundary correction may be treated separately from the ideal particle
structure under Fourier transformation. The effect of the smoothing function is dealt with in
more detail in section 7.2.1. In the Sigmoidal-Gradient model,*®'% this smoothing function

is a Gaussian distribution and the model predicts an intensity distribution given by
K 2,22
I{q) = Ege_“" 7T, (3.26)

where K is the Porod constant and ¢? describes the diffuse boundary thickness.
Another model, similar to the Power-Law model described in appendix C, developed to
deal with boundaries possessing a finite width describes the change in electron density as a

power law function of the form®3-36

A(z) = Ao(z/A)P. (3.27)

Here A(z) is the change in electron density as a function of distance perpendicular to the
boundary, A is the thickness of the boundary region, and 3 is a model-dependent parameter.

The scattering intensity from this system will be

I(g) o g~+28), (3.28)
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Figure 3.2: A craze structure showing the resultant scattering from the crack walls and
craze fibrils.

3.7 Interpretation of Anisotropic SAXS Data

In section 3.6 assumptions of statistical isotropy and lack of long range order were intro-
duced. If one removes the first assumption of a statistically isotropic system, then equa-
tion 3.14 is no longer valid and must be replaced with an integration factor which reflects
the anisotropy of the system. Here we will examine the case of oriented rod-shaped par-
ticles which is applicable to the craze structure — consisting of a crack with load-bearing
fibrils spanning the opening — as described in section 2.3.1. X-rays impinging upon such
a structure will scatter from both the walls of the crack and from the fibrils (figure 3.2).
Because these fibrils are ideally all aligned in the direction of the applied tensile stress, the
resultant scattering perpendicular to the applied stress may be modeled as due to scattering
from the cross-sections of a system of oriented rods.

The general scattering equation for oriented rod-shaped particles has been determined
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by Brown et al.> with smearing effects due to a one-dimensional slit detector directly in-
corporated into the derivation. The smearing effect has only a minor influence on the form
of the equation, resulting in a change in the dependence of the scattering intensity on the
length of the rods. A detailed derivation which does not include smearing effects, more
relevant to the scattering obtained using a highly collimated synchrotron source, is given in
appendix A.

To obtain the scattering equation describing craze fibrils, the general equation 3.14 can
be separated into two parts representing the long axis and the cross-section of the craze
fibrils. Only the cross-sectional term, I¢(g), is of interest, and a two-dimensional phase

average results in a scattering equation of the form
If(q) =27 cos(Aw)(Ap)2AL? / rdr v¢(r)Jo(qr) + Interaction Terms, (3.29)

with ¢(r) the correlation function for the craze fibril cross-section, A the cross-sectional
area of the craze fibrils, L the length of the fibrils, Aw the small angular variation in the
orientation of the craze fibrils, and Jy the zeroth order Bessel function.

In order to extract information regarding the fibril structure and mean diameter, mod-
ifications must be made to the equations of section 3.5. The fibril scattering intensity
(equation 3.29) differs from the standard model (equation 3.12) due to the phase factor of
equation 3.14 being replaced with a Bessel function. With this modification, the derivations
of section 3.5 proceed in a similar manner.

The oriented rod model results in a change in the invariant of equation 3.16 to?
o0 PRCE——,
Qr= [ adals(a) = AwlBpVP2nAL?. (3.30)
0

Guinier’s law (equation 3.18) requires only a change in the exponent due to the fact

that it is now dealing with a 2-dimensional rather than a 3-dimensional object*

I5(q) o eREE/D, (3.31)
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For Scattering Intensity [ oc g~¢
«a Description Dimension
1 <a <2 Random walk mass fractal Dinass = ¢
2 <o <3 Surface fractal on rod bound- Di=4—-q«
aries
a=3 Porod’s Law for Oriented Dmpgss =2,D5=1
Rods

Table 3.1: Fractal dimensions and power-law exponents for oriented rods

The modification of Porod’s law (equation 3.22) for oriented rods is

Ir(q) 4 3
g _ 4 - 3.32
0; ~7D; (3.32)

with Dy being the mean fibril diameter. This equation has been in use for some time, %257
yet no derivation or proof of its validity has been found in the literature. For the sake of
completeness, and to verify the equation, a derivation is in appendix B.

The interpretation of fractal scattering is also modified due to the change in the un-
derlying Euclidean dimension® and fractal dimensions associated with various power law
exponents («) for anisotropic scattering is summarized in table 3.1.

This suite of modified equations may be applied to the scattering from polymers un-
dergoing tensile deformation to determine the structure and size of resultant craze fibrils.
In addition, parameters such as the x-ray transmission and applied stress can be combined
with time-resolved SAXS data to look for indications of non-crazing deformation mecha-
nisms and to determine the onset time for crazing. The surface energy involved in the
extension of craze fibrils may also be determined. With this information, it is possible to
critically examine current theories of polymer molecular motion which provide predictions

of the fibril surface energy.5:13:37
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Chapter 4

Craze Structure & Measurements:

Literature History

As polymers were developed for an increasing number of applications, the unique deforma-
tion properties of these materials underwent considerable study. A desire to understand the
mechanisms which occur during the deformation and failure of polymers was realized as the
demand for new materials tailored to specific applications grew. Of the different deforma-
tion modes observed in polymers, crazing attracted much interest. Crazes were identified as
a major source of energy absorption in the deformation process.!* Crazes were observed to
occur in a wide variety of polymer materials under quite different circumstances.® Crazes
were also easy to study because they resuited in distinct changes in the material structure.

Craze deformation provides an opportunity to study the microscopic processes which
govern the motion of polymer molecules below the glass transition temperature. This is
possible because significant amounts of stress are transferred onto individual molecules and
craze growth is controlled by the response of these molecules to the applied stress.?® Mea-
surements of craze growth are, therefore, indicative of the motion of individual molecules,
and the dependence of temperature, molecular weight, and applied force on the motion of

polymer molecules may be examined through appropriate measurements of craze dynamics.
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4.1 Craze Growth and Reptation

Very early in the study of craze processes it was noted that there exists a distinct relationship
between molecular weight and craze growth.’® At that time, however, no theoretical basis
was available to provide a quantitative explanation of the link between molecular structure
and the craze phenomenon.

Paredes and Fischer! first provided this link when they observed that the applied stress,
0, multiplied by the fibril diameter, D f» was a constant. They interpreted this factor,
oo D f» as being proportional to the surface energy, [, required to lengthen craze fibrils.

This interpretation of craze growth was expanded upon by Kramer? using the Meniscus
Instability growth model as applied by Fields and Ashby.?® They determined that the

‘surface energy’ factor measured by Paredes and Fischer should be
0Dy =L /o7 (4.1)

where vy is the volume fraction of fibrils in the craze, and £ is a constant (0 < § <1).

Berger and Kramer3® examined the requirements for the surface energy term in equa-
tion 4.1. From this they developed an explanation of the molecular weight influence on
crazing observed earlier by Gent and Thomas.®® By measuring the interface velocity as a
function of molecular weight they were able to observe a change from a chain scission dom-
inated surface energy to one dominated by disentanglement forces. They also noted that
the disentanglement times scaled with molecular weight in agreement with that predicted
by the reptation model, described in section 2.1.3.

26 was intended to describe Brownian

The reptation model, as developed by deGennes,
motion in which there is no net force on the system. McLeish et al.3” modified the reptation
model for the case where a polymer chain is experiencing a net force on one end. This is
argued to be the case in craze growth where fibrils, and hence individual polymer chains,

are being drawn out of the material.

The forced reptation model developed by McLeish was applied by Plummer and Donald®
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to crazes growing in polymer films. They measured the mean fibril diameter in a craze by
means of TEM and calculated surface energy values using the equation (4.1) developed
by Kramer.® From this, they observed a change in the surface energy which compared
favorably with that predicted by the forced reptation model of McLeish. Plummer and
Donald also used the forced reptation model to describe the stress-to-fracture in PS films
due to craze fibril breakdown!® thereby illustrating that this microscopic model could be
used to predict macroscopic behavior.

Recently, Krupkin and Taylor®® proposed a new model of forced reptation in which
the extrapolation to zero applied force is dealt with more carefully. This is important
for situations of polymer fatigue in which a material is subjected to repeated transitory
applications of external stress lower than the yield stress for the material. The authors
admit that the new model does not include surface energy effects which are critical to the
crazing process. They claim that it is possible to include these effects in their model, and
plan to do so at a later time.

A coil-strand-transition model has been proposed to describe the microscopic process
of craze formation and growth.’! This model is based on an order/disorder transition
between the undeformed polymer {coil) and the extended fibrils (strand). The authors
claim that it is superior to the Meniscus Instability model because it includes an entropy
term. In the process of developing their model, however, they claim that the entropic
contribution is minor. They also assume that the surface energy is a constant whereas, it
has been unequivocally demonstrated!:5:13:37 that the surface energy is dependent on both
molecular weight and temperature. The experiments performed by the authors to test their
theory were done at only one temperature with only one thin film sample material (constant
molecular weight) being deformed at only one strain rate. The results of their tests, not
surprisingly, indicated that surface energy could be treated as a constant.

At present, the Meniscus Instability model of craze growth combined with the forced
reptation theory appears to be the best description of craze growth. The experimental ver-

ification of craze growth by forced reptation has been limited to TEM studies of the growth
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of a single craze in a thin film, where the craze fills the entire thickness of the material. It
has been reported that macroscopic properties, such as the glass transition temperature,
may exhibit large differences between thin films and corresponding bulk materials.62:6% [t
cannot, therefore, be stated with certainty that the Meniscus Instability model of craze
growth and forced reptation are also applicable to bulk materials, where deformation pro-

duces thousands of crazes much thinner than the width of the material.

4.2 Production of Crazes in Bulk Materials

The study of crazes in bulk materials is not as straightforward as that in thin films, where
one is dealing with a single craze produced under well-controlled conditions. In bulk ma-
terials one is dealing with many crazes and the conditions under which those crazes are
produced cannot be readily controlled. The measurement of crazes in bulk materials is also
complicated by the difficulties of probing a bulk material and interpreting results of mea-
surements averaged over many crazes. There exists several techniques for examining crazes
at surfaces but small-angle scattering, by either x-rays or neutrouns, is the only practical
method for probing the interior of the sample.

When bulk materials are produced, the resulting polymer structure may be slightly
anisotropic. As well, internal stresses are often introduced into the material during the
molding process. Internal residual stresses and structural anisotropy make it difficult to
identify stress and strain processes at a microscopic level and deformation measurements
may often give irreproducible results. The issue of the manufacture of bulk polymer material
with consistent material properties is an enormous field of research on its own!® and will
not be discussed further here.

In order to effectively study crazes in bulk materials, samples containing uniform crazes
in a localized region are desired. Large variations in crazes throughout the sample limit the
accuracy of averaging techniques necessary for the study of bulk deformation. It is desirable
to have the crazes localized to ensure that active deformation occurs only in the region under

examination. There are several methods in use for producing crazes in a sample, each with
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its own advantages and disadvantages.

Until recently, the most commonly used method for inducing deformation was three-
point bending.% 142429,30,64 Thjs j5 3 simple technique for producing crazes at a consistent
location. However, it has inherent problems in that the applied stress is not uniform across
the material resulting in significant variations in craze structure.

Commercial machines are available for applying tensile stress to a material in a very
accurate manner. Unfortunately, the machines are large and the samples must be removed
from the stress environment prior to measurements of the crazes.?®965 The importance
of maintaining tension on the deformed sample while the crazes are being measured was
discussed by Brown and Kramer,? who demonstrated that unloading the samples caused
the fibrils to buckle with a loss of orientation and size alteration. They designed a special
rig to maintain tension on their samples after being removed from the stretching apparatus.

An apparatus to apply stress while using x-ray scattering to simultaneously monitor
the deformation microstructure was designed by Bubeck et al.!”23:57 This consisted of a
stretching rig supported by an optical table placed in the x-ray beam path. The sample
was pulled from one side while the entire table top was moved in the opposite direction to
keep the center of the sample in the beam path. This design resulted in the sample being in
constant motion relative to the x-ray beam with no guarantee that the same region of the
sample was being examined at all times. Another drawback to this design is its obvious lack
of portability which limits its use to one x-ray source and detector configuration. Ijichi et
al.?® used an in-situ rig in which both sides of the sample were pulled on at the same rate,
resulting in a symmetric deformation of the sample and a stationary sample region relative
to the x-ray beam path. This design has been the best concept to-date and provided the
basis for the present design discussed in chapter 5

In the majority of experiments to-date, crazes in bulk polymer samples have been pro-
duced at room temperature. Craze measurements in bulk polymers at temperatures other
than room temperature have only been reported by Westbrook et al.5% They used an In-

stron tensile tester equipped with a temperature-controlled sample chamber to examine
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craze structures at a few selected temperatures. In this case the samples were heated,
strained, released, and cut into sections before being examined by x-ray scattering. This
paper concentrated on systematic strain rates rather than a systematic temperature study.
As mentioned above, the necessity of removing the samples from the stress and temperature-
controlled environment prior to any craze structure measurements resulted in the loss of
much of the information.

The poor thermoconductivity of polymers has been the primary reason for the lack of
temperature-dependent studies of crazes. This limitation makes it difficult to ensure a uni-
form temperature throughout the material. The problem of providing accurate temperature

control for bulk polymers is discussed in further detail in section 5.2.3.

4.3 SAXS Analysis of Craze Structure

For bulk samples, the size of the material prevents in-situ study of the craze structure by
TEM. As well, the process of microtoming and staining the material destroys the structure
one is attempting to observe.?% For this reason, alternative microstructural measurement
techniques are required. The technique of SAXS has proved to be an excellent tool for
examining craze structure in bulk materials and thus probing the dynamics of polymer
motion.28:9:23,57,64

In early work, Zhurkov?? used SAXS to detect submicrocracks forming in some polymer
materials when tensile stress was applied. He noted that these long thin cracks formed in
large numbers with distances between the cracks on the same order as the dimensions of
the cracks. These cracks, later designated as crazes, became the subject of intense study
which is still going on today.

The analysis of data obtained from SAXS is highly model-dependent and therefore its
interpretation is not as straightforward as the pictures obtained from TEM. The x-ray scat-
tering from crazes is extremely anisotropic; it typically appears as two long thin streaks
approximately perpendicular to each other, as shown in section 3.7. As a result of this

anisotropy, craze scattering is far more complicated in structure than the standard amor-
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phous particle models permit. It has therefore been necessary to develop models of scatter-
ing which are specific to crazes. This has been a slow process because our understanding of
craze microstructural details has developed in conjunction with the development of these
scattering models.

In 1979 two German scientists, Edgar Paredes and Erhard Fischer,! developed the first
model of SAXS scattering from crazes. By examining the anisotropic scattering, they
identified the streak parallel to the tensile direction as coming from the crack walls and
the streak perpendicular to the tensile direction as coming from the craze fibrils. Since
scattering in different directions comes from different sources, the interpretation and study
of these two orthogonal profiles is best done separately.

The study of the SAXS patterns from crazes can be separated into several topics in-
cluding the interpretation of the scattering pattern parallel to the tensile direction, the
measurement of craze fibrils, the calculation and meaning of the invariant (a SAXS pa-
rameter proportional to the volume of the scatterers), and methods of distinguishing craze
deformation from other mechanisms. A brief description of the development of these topics,
along with a discussion of existing controversies regarding data interpretation, is presented

in the following sections.

4.3.1 The Scattering Pattern in the Tensile Direction

Small-angle scattering in the tensile direction was examined by Brown and Kramer,? who
refer to it as anomalous scattering. By tilting a sample back and forth through smali angles
parallel and perpendicular to the tensile direction while noting changes to the observed
x-ray scattering pattern, information regarding sources of scattering was obtained. They
observed that rotation about the tensile axis produced no change in scattering intensity —
an effect consistent with x-ray diffraction. Rotation about the axis perpendicular to both the
tensile axis and the x-ray beam, however, resulted in significant changes to the anomalous
scattering while exhibiting no changes to the scattering perpendicular to the tensile axis.

From this it was concluded that the anomalous scattering was due to reflections from the
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craze surface rather than from diffraction processes.

In 1994, Hristov et al. re-examined Brown'’s assertion? that the anomalous scattering
pattern produced by crazes in the tensile direction is due to reflections from partially smooth
surfaces. A fractured sample was placed in the beam path and rotated about the two axes
perpendicular to the axis normal to the fracture surface. A maximum reflection intensity was
obtained from this and compared to the anomalous intensity from a crazed sample. Surface
areas were compared in both cases and it was determined that the maximum possible
intensity resulting from total external reflection off of the craze surfaces was four orders of
magnitude lower than the actual scattering measured. In addition, the anomalous scattering
pattern was shown to follow Porod’s Law. The source of the scattering perpendicular to
the tensile direction is well accepted as being due to x-ray diffraction from craze fibrils.
Interpretation of the scattering in the tensile direction is, at present, relatively incomplete
making it unsuitable for studies of craze growth.

In order to resolve the apparent contradictions in the interpretation of the scattering
parallel to the tensile direction a systematic study of both scattering theory and craze
structure will be needed. In the absence of this basic information, the study of craze

structure is focused on the interpretation of scattering from the craze fibrils.

4.3.2 Fibrils

The scattering from crazes fibrils has not suffered from interpretation problems of the tensile
direction scattering. Paredes and Fischer! applied a phenomenologically modified Constant

Background form of Porod’s law, as described in sections 3.6.3 and 3.7.

I(q) = g- +b (4.2)

in which K is the Porod constant, which is related to the diameter of the fibrils and b
is the constant background term which is said to be due to inhomogeneities in the craze
fibrils. The ¢* term accounts for the fact that the fibrils are oriented parallel to each

other. This relation Las been the most accepted interpretation in the analysis of craze
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fibrils,?3:9:17,23,24,29,57,64,66 b1t ig challenged by the results of this work.

Brown and Kramer? expanded on the fibril scattering analysis done by Paredes and
Fischer. They derived an intensity function for the scattering from fibril cylinders, including
a correction factor for the volume fraction of fibrils in the crazes. They also showed that
equation 4.2 was valid when the size distribution of the craze fibrils followed a Gaussian
form.

In later work, Brown et al.? introduced a power-law size distribution function based on
the Meniscus Instability model.3 He shows that if the craze velocity is governed by non-
Newtonian dynamics, described in equation 2.11, the fibril size distribution, Ny(D), should

follow a form

1= Dpin/D\"
Nj(D) = (_B‘_"/_) (4.3)
where Dpip is determined from the applied stress and surface energy by:
Dpin = 4I‘fc”a \/W/E (4.4)

Brown et al. calculated theoretical v,(r) curves in which they observed little variation for
different size distribution functions. From this they concluded that x-ray scattering from
craze fibrils is not sensitive to the form of the size distribution in craze fibrils. It has been
shown that it is possible to obtain precise measurements of the polydispersity.'? Therefore,
their results indicate a low polydispersity or large noise in their v,(r) data.

The fibril diameters for crazes produced in HIPS at impact speeds were measured using
Porod’s law.57 It was observed that the fibril diameter remained constant for the different
strain rates examined. This suggests that examining craze growth as a function of strain
rate may not provide information on polymer dynamics and that some other parameter,
such as temperature, needs to be varied to obtain this information. The strain rates used
in this paper, however, were quite high and it is possible that knowledge of the mechanisms
involving crazing is obtainable from variations among much lower strain rates, where the

relaxation times are longer.
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Westbrook et al.5® used Guinier analysis to measure a mean fibril radius. They ac-
knowledged that the Guinier approximation is valid only where no interparticle interference
exists. However, Westbrook argues that no such interference was observed in the fibril
scattering. The results from Westbrook et al. are marred by the fact that tension was not
maintained on the samples during the x-ray analysis. After the samples were deformed,
they were unloaded and cut using a diamond saw. Westbrook claims that the cutting had
no effect on the scattering pattern, however, he is unable to test the effects of unloading on
the sample shape.

The standard model of craze fibrils as straight parallel cylinders has long been known
to be overly simplistic. Deviations from precise orientation will result in a broadening
of the craze fibril scattering band. Observations of this effect in HIPS, made by Bubeck
et al.,% were attributed to the disordering effects of the rubber particle inclusions. The
presence of these particles is said to deflect the applied stress slightly causing variations in
the orientation of crazes relative to each other. In 1990, Kramer and Berger!® discussed the
effect that cross-tie fibrils had on craze scattering. They noted that the volume fraction of
these fibrils is sufficiently small that scattering from the cross-ties themselves is relatively
insignificant. These cross-ties, however, have the effect of bending the craze fibrils up
to 5° off of the idealized parallel rods picture. Kramer and Berger demonstrated that
it was possible to use low-angle electron diffraction (LAED) to resolve these bent rods
as two separate scattering streaks approximately 5° on either side of the normal fibril
scattering direction. The model describing craze fibril scattering, mentioned above, is based
on the assumption of perfect orientation among the fibrils. Observations of non-ideal fibril
orientation, particularly in rubber-toughened materials such as HIPS, point to the necessity

of examining the validity of the Constant Background model of section 3.6.5.

4.3.3 Interpretation of the Invariant

The invariant, a measure of the total volume of scatterers, is also used in connection with

Porod’s Law to calculate the fibril diameter. Thus, its calculation and accuracy is significant
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both in the measure of craze fibrils and in the measurement of craze growth.

In his 1981 paper,? Brown and Kramer determined the form of the invariant applica-
ble to fibril scattering. In later work, Brown et al. examined a large single craze in PS
generated by three-point bending using both SAXS and optical microscopy.®% From this
they demonstrated that the invariant calculated from the fibril scattering pattern is a good
measure of craze volume. They also observed that the craze maintained a constant width
over most of its length.

Brown and Kramer also used the invariant to calculate the mean fibril diameter.? He
determined the relation between the value of K, from equation 4.2, and the mean fibril

diameter, Dy, to be:

2Qs

Dy= = o)k (4.5)

where Q; is the invariant and vy is the volume fraction of the craze fibrils.

Bubeck et al.?3:57 discussed the uncertainties in the calculation of the invariant. They
noted that the largest uncertainty is due to the limited range over which the scattering
is measured. The contribution to the invariant in the limit as ¢ — 0 is considered to be
small. However, the contribution to the invariant in the limit as ¢ — oo is expected to
be quite significant. An additional term may be added to the invariant to account for the
high-q scattering. This term is calculated by assuming that the scattering follows Porod’s
law up to ¢ — co. Bubeck calculates the contribution to the invariant from this term to
be approximately 30% of the total value. These results suggested that the accuracy of the
invariant is governed by Porod’s law measurements.

The invariant is used by Bubeck et al.!7+23:57 a5 a measure of craze strain. They assumes
that the fibril volume fraction is independent of strain rate and conclude that, for craze
growth, the invariant should be proportional to the strain and therefore linear with time for
constant strain rate tests. The constancy of the fibril volume fraction has been generally
accepted,3” 13 however, they neglect to account for the loss of scattering material out of the

region irradiated by the x-ray beam.
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4.4 Other Deformation Mechanisms

Although an accurate interpretation of craze structure is of primary importance to this
type of work, the ability to distinguish between craze formation and other deformation
mechanisms is also a fundamental requirement. In order to isolate effects attributable to
crazing, an understanding of how crazes interact with other mechanisms in the deformation
process is needed. Current theories? developed for the analysis of craze scattering have been
used to examine the relationship between crazing and other deformation processes.

There exist two different types of crazes resulting from the application of tensile stress;
Dettenmaier®® identifies these as intrinsic and extrinsic. Extrinsic crazes, or Crazes I,
are the ordinary crazes examined thus far. Intrinsic crazes (Crazes II) are a secondary
phenomenon, occurring only after the polymer has undergone considerable deformation
through some other mechanism, and showing considerable differences in size and structure
to that of ordinary crazes. Intrinsic crazes are significantly smaller and occupy a much
larger fraction of the sample volume than do extrinsic crazes. The number density of the
craze fibrils occurring in intrinsic crazes is also larger than that of ordinary crazes. Number
and size differences between these two types of crazes is explained by the fact that the
polymer has generally undergone significant orientation prior to the formation of intrinsic
crazes and nucleation sites for intrinsic crazes are much more numerous.

While comparing the data obtained from RTSAXS measurements of the deformation
of HIPS and Acrylonitrile Butadiene Styrene (ABS),”® Bubeck et al. noted that shear
deformation does not contribute to the scattering process and that craze formation which
is preceded by shear banding results in crazes which are not perpendicular to the tensile
axis. From this he concluded that crazing and void formation are the primary modes of
deformation in HIPS. The diamond-like scattering pattern from ABS in which the two
streaks were broadened to the point that they were no longer separable was suspected to
be due to shear banding prior to crazing, where the shear bands deflected the direction of
stress so greatly that a preferred orientation for the crazes no longer existed.??

A detailed study of the deformation microstructure of HIPS and ABS was done by
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Bubeck et al.!” Using changes in sample shape determined from changes in x-ray absorption
and craze volume calculated from the invariant, total strain and strain due to crazing were
determined. This involved the assumption that the entire amount of strain applied to the
sample is limited to deformation within the volume irradiated by the x-ray beam. From
this they concluded that crazing accounts for about half of the strain in HIPS and less than
half in ABS. The remaining strain is considered to be due to cavitation in HIPS and shear
banding in ABS. Details of the method for determining relative strain were to be published,
but have not yet appeared.

This work was extended by Magalhaes et al.? Using the peaks in a log-log plot of the
scattering data as a guide, they divided the scattering into a component due to crazing and
a component due to void scattering. This separation was then used to calculate an invariant
which is solely due to crazing. The total strain and crazing strain were calculated using the
x-ray absorption and the invariant following Bubeck et al.!” Magalhaes claimed that the
percentage of strain due to crazing was less than half for HIPS. In this case, however, the
measurements were not on previously stretched samples and did not use RTSAXS. As a
result, it is unclear whether the two mechanisms were at work simultaneously or sequentially.
Magalhaes’ results agree with those of Bubeck et al., however, both groups follow the same
unproven method for determining relative strain.

An examination of HIPS and a blend of Nylon-6 with PolyPhenylEther were examined
at low deformation rates by I[jichi et al.>® They observed the shape of the background-
subtracted scattering pattern and noted a generally amorphous growth in the Nylon sample
whereas the HIPS scattering showed the distinct anisotropy of craze formation. It was
concluded that crazing was the primary deformation mechanism in HIPS and that the
Nylon sample deformed by void formation.

Craze deformation in polymers provides an opportunity to link current theories of poly-
mer molecular motion with the macroscopic properties of polymer materials. The study of
craze dynamics, however, is complicated by the need to isolate craze deformation from other

mechanisms. Identification of crazing processes and the measurement of craze structure may
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be accomplished using the method of RTSAXS. In addition, the literature indicates that
HIPS provides an excellent material for the study of crazes.

At present, the interpretation of data obtained from SAXS and RTSAXS it still in the
process of being established. A clear understanding of the results obtained from SAXS
measurements of crazes will be necessary for it to be possible to use this tool to test the
theory of forced reptation in bulk polymers. These issues are addressed here in the course
of analyzing the RTSAXS data obtained with in-situ measurements of deformation in HIPS

and a PS-PB blend.



Chapter 5

Apparatus Development and

Experimental Techniques

5.1 Apparatus Requirements

The use of SAXS as a tool for the study of polymer deformation and craze growth is
well-established.® Structures of interest range in size from 50 A to 1 um. Thus the non-
invasive tool of SAXS,*! employed in conjunction with a 2-dimensional detector, is capable
of resolving the anisotropic structures of polymer crazes.

Although SAXS analysis of crazes has been in use for more than a decade, the techniques
used to generate and control the deformation process, described in section 4.2, are still under
development. Machines designed for controlled deformation of polymers, such as those made
by Instron”™ | are usually quite large and cannot easily be placed in the confined space of an
x-ray beampath. Samples which are deformed first and then placed in the beampath will
relax, providing limited information and eliminating the possibility of dynamical studies
which are necessary for the identification of specific deformation modes.

Custom-designed tensile stress equipment, intended to fit in a beampath, must satisfy
the constraint that the region of deformation be of comparable size to the x-ray beam and

be maintained in the beam for the duration of the deformation process. As a result, the
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three-point bending method, in which the stress is applied cantilever style, has become
the most common technique for in-situ deformation experiments. This technique, although
fulfilling the above requirements, is limited in that the applied stress in the region of study
is not uniform which greatly complicates the interpretation of the results.

Another important issue is that of sample relaxation. Ideally, tests of deformation
processes should include a measure of the sample relaxation after the applied stress is
removed as this provides significant information regarding deformation mechanisms. In
addition, polymer fatigue (the cumulative damage to a material after a series of small
deformation cycles) is of great interest to industry. The deformation cycles used for fatigue
testing are expected to follow a pattern of applied tensile stress followed by free relaxation;
in practice, the process usually involves alternating between tensile and compression stress.
A mechanism enabling free relaxation of the samples by rapidly removing the applied tensile
stress without inflicting compression stress, bringing the experimental conditions closer to
the ideal scenario, is to be desired.

The amount of strain a sample has undergone is typically inferred from the motion of
the sample clamps. This method is prone to errors as there is always potential for consid-
erable slippage in the clamps and for strain to occur outside the region under investigation.
Resistive strain gauges (commonly used for strain measurements in metals) are inappropri-
ate for measuring strain in polymers as the yield point of most polymers is more than 10
times the maximum which can be measured by standard resistive gauges. A new system for
local strain measurement in polymer materials at the site of x-ray irradiation is, therefore,
desirable.

Temperature control has also been a complex issue for bulk polymer systems. The poor
thermal conductivity of polymers renders conventional contact heating methods inadequate
for thin film polymers and nearly useless in bulk polymer studies. As a result, there have
been few investigations of the temperature dependence of deformation processes. A moare
reliable method of heating and measuring the temperature of bulk polymers would be an

asset, making available information previously unattainable
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This research project has been dedicated to the development of a portable sample cham-
ber capable of state-of-the-art deformation studies of polymer materials using in-situ SAXS.
Symmetric tensile deformation over a wide range of strain rates is a design goal. It is also
required that the chamber be compact enough to be easily placed in the limited space of an
x-ray beampath for portability. Near-instantaneous stress removal is required in order to
allow the samples to undergo free relaxation. The ability to regulate and measure sample
temperature is also a necessary design feature. In addition, the chamber is to be capable of

providing a means of measuring applied stress and true local strain.

5.2 Development Process

The development of a sample chamber which meets the demands described above required
extensive testing and refinement. The chamber has evolved through several test versions
over the course of three years of active refinement. Several experiments were run at the
X12B beamline of the National Synchrotron Light Source (NSLS) at Brookhaven National
Laboratories (BNL) in this time period, during which the chamber’s performance was tested
and initial data acquired for use in refining the data analysis procedures. A brief description
of development stages in the project and improvements yet to be made to the apparatus are
presented here to provide a context within which the present state of the apparatus may be

appreciated.

5.2.1 Deformation Samples

The choice of materials for the deformation experiments was based on materials commonly
used for crazing studies reported in the literature. The most common material used for
studying crazing has been PS,%24:5465 however, this material will not craze when in bulk
form near room temperature.> The next most common material is HIPS.17:23:57 This was
chosen as the primary material for investigation. In addition, a novel blend of PS and PB?°
was examined. Details of these materijals are given in section 5.4 and will not be discussed

further here.
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Figure 5.1: Various sample shapes used. (A) True plane strain, (B) Dog-Bone, (C) Approx-
imate plane strain

Upon the advice of an experienced materials scientist,’” it was decided that rather than
employing the traditional friction clamps, samples would be secured to the clamps via bolt
holes in the end regions of each sample in order to avoid slippage of the sample in the
clamps. In addition, a slotted rectangular sample shape (figure 5.1) was suggested for use
in tensile deformation experiments. This shape was expected to provide true plane strain

conditions!%67

which would simplify the relation between the stress applied to the whole
sample and the stress felt locally at a particular point in the sample. It is not possible
to obtain the dimensions recommended with pre-molded materials. An attempt was made
to use solvent glues to provide the added thickness necessary on the outer portions of the
sample for plane strain effects. Extensive deformation tests later revealed that solvents
weakened the samples at the edge of the plane strain region causing premature failure.
Abandoning the true plane strain shape, samples were then cut in the bow tie form
commonly reported in the literature.?5:37 Circular stress concentrators were cut using a
round sanding disk. This method successfully avoided the premature failure observed with
previous arrangements. Tests on this sample shape revealed that the ideal clamping mech-
anism was a combination of bolts and friction clamps. However, as shown in fig 5.1, the
sample would sometimes fail at intermediate points along the curved region rather than
in the center portion. A lack of reproducibility in the measurement results, attributed to

non-uniformity in sample cutting, was also observed. Attempts were made to correct the

reproducibility problem by directly molding the polymer material into the desired sample
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shape. This attempt failed, largely because design considerations such as oxygen degra-
dation and viscous flow of the polymer melt during molding were far more complex than
originally anticipated.

Based on these results an approximate plane strain shape!* achieved with a custom
built cutting jig to ensure reproducibility was adopted (figure 5.1C) . The initial sample

TM 35 2 mm compression molded

material was received from DOW Chemical Canada inc.
plates. These plates were cut to the sample dimensions using a diamond saw with a cutting
frame attached. The cut samples were then mounted in a separate frame which was used
to guide the milling of the stress region and the placement of clamping holes. Deformation

tests on these samples gave a high degree of reproducibility in their stress-strain curves.

5.2.2 Tensile Apparatus

An initial study was made of the conventional methods for applying tensile deformation
under the conditions described in section 5.1. The use of screw-rods with a gear and chain
assembly was found to be preferable to a hydraulic means of applying force for several
reasons. Firstly, the screw-rod mechanism could be set to ensure symmetric deformation;
this would be difficult, if not impossible, with independent hydraulic rams. Secondly, the
space needed for hydraulic equipment was considerably greater than for a motor-driven
assembly. Finally, the price difference was heavily in favor of the motor-driven assembly.
Further details of this design are given in section 5.3.1.

The force required to break the samples was determined by hanging weights from a
sample until it broke. From this information, the torque necessary to drive the apparatus
was calculated and then increased by a factor of 10 to allow ample margins for friction. Based
on this torque value, the selection of motors to drive the apparatus was made. Initially a
commercial motor control system which could drive the apparatus over several orders of
magnitude in speed was desired. A market survey revealed that while stepper motors could
deliver over an order of magnitude in speed range, they lacked the necessary torque to

operate the apparatus. For this reason, synchronous motors which operated at fixed speeds
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were selected. Several different motor and gear assemblies were purchased which provided
operation at different speeds by interchanging motors, with the maximum speed being set
by the torque limitations.

Early experiments revealed that the speeds available from the faster synchronous motors
(0.04 mm/s) resulted in deformation processes which were too rapid for time-resolved data
acquisition at the X12B SAXS beamline. Use of multiple motors was found to provide an
inadequate range of strain rates. A modified motor controller for the synchronous motors,58
described in section 5.3.1, was therefore designed to allow operation over several orders of
magnitude in speed without a loss of torque.

In the majority of tensile test measurements on polymers, strain measurement is ob-
tained using an estimation of the active volume!” and the known motion of the sample
clamps. This is a relatively inaccurate way of determining the true local strain in the region
of interest. Commercial resistive strain gauges were applied to samples from this project
in an attempt to measure the true strain. These strain gauges failed due to poor adhesion
to the polymer surface and the fact that polymers are able to support strains much larger
than those the gauges were rated for. Modified strain gauges which are designed for high
strains were not considered to be feasible here as their size and mounting mechanisms would
interfere with the acquisition of x-ray data and temperature control. An alternative tech-
nique was proposed for measuring the true strain, involving laser diffraction from reflective
grids deposited on the sample surface. Developing strain in the material leads to a change
in grid line density and concomitant changes in the diffraction pattern. The changes in the
diffraction pattern can be interpreted to provide direct strain measurements. Recent strain
tests have been performed with results suggesting that such a technique is possible. How-
ever, difficulties in both grid deposition and interpretation of complex Fresnel diffraction
patterns have hindered its realization to date. Work on this technique is in progress.

In lieu of a measure of the true strain, the motion of the sample clamp was monitored
to provide an estimate of the total strain. These measurements were obtained by counting

the signals sent to the motor by the controller during the process of applying strain to the

S8



samples. After the most recent set of experiments was performed, it was discovered that
the motor signals were not being measured at the correct point in the circuit, resulting in
low signal and a ringing effect. At sufficiently large motor speeds, this effect did not hinder
measurements, but at slower speeds the counter would sometimes miss measurements and
sometimes count them more than once. From this it became clear that while the strain
rates were consistent and reproducible, the measurements of the strain rate at low speeds
were inaccurate by as much as a factor of 2. The problem was found to be due to a fault in

the controller assembly and has since been repaired.

5.2.3 Temperature Control

Measurements of polymer deformation as a function of temperature are a significant design
feature. To achieve this, early attempts were made to use the interior of the sample chamber
as a small oven through the use of convection heating in a low pressure helium atmosphere.
An outer vacuum chamber with inner and outer walls of stainless steel was used to provide
insulation for the sample chamber. This method of sample temperature control failed due
to extensive heat loss. Even with a 500 watt heater in place, the timescales required to
reach equilibrium were much longer than was practical in the limited time available for
synchrotron experiments.

An alternative to environmental heating was found in radiant heating. Heat lamps with
reflectors were placed around the sample to provide uniform heating while minimizing the
amount of radiation going down the beampath (possibly affecting equipment and detectors
which are part of the beamline assembly). Thermocouples were sandwiched between two
sheets of the polymer material to ensure that the temperature they recorded reflected the
temperature of the bulk sample and placed in several locations around the sample to confirm
the existence of uniform heating. More detail on the temperature control configuration is

given in section 5.3.1.
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5.3 Current Experimental Setup

5.3.1 Sample Chamber

The current apparatus consists of a portable sample chamber designed to allow transmission
mode SAXS.7 It is currently used with an in-house x-ray tube source (Cu and Cr anodes)
as well as at off-site synchrotron facilities of the NSLS at BNL. A direct radiant heating
technique is used to provide temperatures of up to 200 °C with +/- 0.5 °C precision and
uniform temperature across the sample. Symmetric stretching with variable extension rates
ranging from 49.6 pm/s to less than 0.033 pm/s is available. The applied stress is measured
with an Entran” load cell accurate to + 5 N and capable of withstanding loads of up to
4.45x10% N at temperatures up to 120 °C. Sample clamping is arranged to make possible
the rapid removal of applied stress enabling measurement of free relaxation while avoiding
the application of compression stress. As mentioned above, a novel method of measuring
local strain at the site of x-ray transmission by means of laser diffraction is currently being
developed.

The chamber is a stainless steel cylindrical can; 200 mm in diameter and 165 mm
high with 2 mm thick walls. Entry and exit ports were cut, 64 mm in diameter, in the
cylinder wall at opposite ends for transmission mode SAXS (see fig. 5.2). Sealed 0.003 inch

TM

Kapton” " windows may be fitted to the ports to allow for an isolated vacuum or helium

environment in the chamber. KaptonT™

is used because of its low x-ray absorption and
minimal scattering at small angles.5?

The x-ray windows are centered on the middle of the sample and are large enough
to accommodate an unstressed reference blank above the test sample and uninterrupted
beam path below (fig. 5.3A). This makes it possible to supplement the scattering data
from the stressed sample with reference scattering data from the unstressed blank and the
empty beam path without interruption of the x-ray beam. External translational stages are

required to reposition the sample and blank in the x-ray beam when necessary.

Extending radially outwards, 115 mm from the chamber wall on both sides, is the me-
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Figure 5.2: Top view of sample chamber showing heat lamps and sample holders with
clamping slots. (Clamps not shown for sake of clarity.)
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Figure 5.3: Side view of sample chamber, (A) Entire profile showing clamps, load cell,
driving mechanism, and placement of sample and blank. (Sample holders omitted for the
sake of clarity.) (B) Enlargement of region enclosed by double box. (C) Enlargement of a
typical sample showing thermocouple and washer placement.
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chanical device used to provide symmetric stretching. As shown in fig. 5.3A, rods with
# 10 x 80 threads-per-inch ends are coupled to 90° gear assemblies which are linked by
aluminum extension rods to a sprocket and chain set mounted above the furnace. Smooth
motion of the chain produces simultaneous motion of the threaded rods in opposite direc-
tions. A freewheeling third sprocket {(not shown) can be moved perpendicular to the other
two in order to vary the path length circumscribed by the chain. This allows the chain to
be kept taut to minimize backlash or loosened to allow independent motion of the rods.
The entire stretching mechanism can be pivoted by 45° about the axis of the threaded rods,
allowing it to be kept clear of detectors and other equipment in the x-ray enclosure.

The stretching apparatus is driven by a SAIATM UFR4 reversing synchronous motor
with a 1:125 series F reduction gear. The motor is controlled by a custom-designed power
supply which produces two 90° out-of-phase sine waves at 24 volts and up to 300 mA
(see fig. 5.4). The two out-of phase sine waves are encoded as 256 points each onto an
8-bit EPROM and generated by two digital-to-analog converters. The sine wave frequency
is controlled by a pulsed input signal directed to a counter. The input signal can come
from a variety of sources: an internal oscillator, a voltage-to-frequency converter, or an
external function generator. With this arrangement, the system was shown to be capable
of producing extension rates of up to 49.6 um/s at a maximum load of 5x10* N and as low
as 0.033 pgm/s, with the possibility of even lower speeds.

A motor control feedback system between the motor driver and the load cell was im-
plemented such that a constant stress may be maintained on the sample. In addition to
constant stress experiments this system allows one to provide an initial consistent tightening
of the sample clamps prior to the beginning of a constant strain rate experiment. Safety
features were also included in the feedback system to ensure that the motor would stop if
the sample broke, the stress became larger than the equipment tolerances, or the motor
motion triggered limit switches.

The threaded rods of the stretching apparatus fit into clamps 30 mm high by 8 mm

wide. The clamps are connected to sample holders by means of 5 mm diameter pins which
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Figure 5.4: Block diagram of the motor controller circuit. Amplitudes for two 90° out of
phase sine waves are stored in different parts of the EPROM memory. The phase select
chooses between the two address regions. The low pass filter, and power amplifier are
standard circuits.

fit into 12 mm long slots in the sample holders (fig. 5.3B). These slots protect against the
inadvertent application of compression stress when the tensile stress is released through
reversal of the motor motion. The slot and pin arrangement also makes the process of
changing samples relatively efficient, since the sample is released simply by extracting the
pins. This is an important consideration given the restrictive confines of the chamber. The
pair of clamps and sample holders slide back and forth in a smooth, 9 mm wide slotted
track which provides a guide for the stretching motion.

The sample is fastened to the holders by means of two # 4 screws inserted through
holes at either end of the sample (fig. 5.3C). This arrangement ensures that no slippage of
the sample in the holder occurs during stress/relaxation, a common problem with frictional
clamping methods. Each screw is fastened with a steel washer and a 5§ mm square piece of
sample material between the screw head and the sample ensuring that the clamping force
is spread over a large area to minimize breakage at the clamp region.

Temperature control is provided by four 50 watt halogen lamps, as depicted in fig. 5.2,
mounted symmetrically around the inside of the chamber and focused on the sample site.

Lamps on one diagonal are offset vertically from those on the other diagonal by 22 mm in
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order to produce uniform heating and to ensure that the stressed sample and unstressed
blank remain at the same temperature. A Eurotherm”™ temperature controller regulates
the radiant heating of the sample and unstressed blank by controlling the current supply
to the lamps. Tests done on this system using type-J thermocouples sandwiched between
two 30 mm x 12 mm pieces of 2 mm thick high-impact polystyrene (HIPS) indicate that,
with an initial temperature of about 22 °C and a set point of 70 °C, the temperature of the
sample center is within 3 °C of temperatures 10 mm distance to one side, and is stable to
+ 1 °C after 10 minutes of equilibration. The primary thermocouple used in temperature
control is embedded in one of the square pieces of sample material used to hold the sample
as shown in fig. 5.3C. In this way, the temperature probe is as close as possible to the center

of the sample without interfering with the passage of x-rays.

5.3.2 X-ray Source

The apparatus described above was used at the NSLS on the SAXS beamline, X12B.?" This
beamline uses a double mirror monochromator and multiple slit beam shaping to provide a
1.59 A circular beam which is approximately 2 mm in diameter at the sample. During the
alignment process, the width of the beam was shown to correspond to the width of the stress
concentration region, ensuring that the entire stress concentration region was examined.
The sample chamber was mounted between two ionization monitors, approximately 2.6 m
upstream from the detector.

The detector used to examine the x-ray scattering pattern at X12B is a 10 cm x 10 cm
2-dimensional delay line proportional counter™ with 512 x 512 pixel resolution mounted on
the end of an evacuated beampath which could be varied in length to adjust the available
angular range and resolution. For the data presented here, sample-to-detector distances of
275 cm and 100 cm were used. The furnace was mounted such that the stretch direction
was diagonally across the detector with the undeflected x-ray beam focused on its center.
This ensured the widest available symmetric angular range and removed the passibilities of
systematic errors that might have occurred from having the stretch direction parallel to the
detector wires.
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5.4 Samples

Two materials were the primary focus of the deformation experiments: High Impact Polysty-
rene (HIPS) and, following the report of Brown et al.,?® a custom blend of Polystyrene (PS)
and low molecular weight Polybutadiene (PB). The HIPS material was provided by DOW
Chemical Canada, Inc.TM in the form of compression molded 2 mm thick sheets of HIPS
(DOW Canada Styron™ 484C). The custom blend was made by the Industrial Materials
Institute (IMI) from DOW Canada Styron”™ 685D PS with a molecular weight of about
300,000 and a polydispersity of about 2.4 combined with RICON RESINS, Inc.”M PB of a
molecular weight of about 2,000. This material was blended to an 8.5 wt% concentrate with
the PS by passing it twice through a co-rotating twin-screw extruder running at 400 rpm
at a temperature of 175-180 °C. From this concentrate, blends of 5, 2, and 1 wt% were
produced by the addition of neat PS via an extensional flow mixer. These blends were then
sent to DOWTM Canada where they were molded following a procedure identical to that
used for the HIPS material. Preliminary examinations resulted in the selection of the 2 wt%
blend for further experiments as this blend appeared to have the greatest toughness.

Attempts to obtain TEM pictures of the sample material were met with mixed success.
The microtoming process tends to rip out rubber particles and generally distort the struc-
ture. Nevertheless, images of the HIPS material were obtained which were very similar to
typical pictures reported in the literature.?! The results for the custom blend were not so
successful. The low molecular weight rubber would not maintain its structure under the
microtoming stress and no clear pictures were obtained. An obvious solution is to perform
the microtoming at reduced temperatures, unfortunately, microtoming apparatus capable
of such low temperature work was not available at the time.

The glass transition temperature (T) of the materials was obtained using differential
scanning calorimetry (DSC) measurements at the Queen’s University Department of Chem-
istry. The results of these measurements are shown in table 5.1, where it can be seen that,
as expected, increasing amounts of toughening additive result in decreasing Tj,.

The samples were cut into 30 mm by 12 mm pieces. This was done using a water-cooled
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Marterial T, (£0.5°C)

PS 106.7 °C

PS & 1 wt.% PB blend 103.2 °C
PS & 2 wt.% PB blend 102.1 °C
PS & 5 wt.% PB blend 101.0 °C
HIPS 97.6 °C

Table 5.1: Glass transition temperatures for the sample materials
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Figure 5.5: Sample dimensions

diamond saw to minimize the size and number of defects produced by the cutting process.
Slotted indentations of radius 1.5 mm were cut to a depth of 4.0 mm with a resulting
minimum height of 4.0 mm at the middle of the sample (see figure 5.5). This provides a

well-defined region for stress concentration. Holes of 2.0 mm diameter were drilled near the

ends of the sample for attachment to the sample holders.

A mean cross-section in the stress concentration region of the samples was determined
to be 9.0 mm?. This provides a conversion factor between measured force from the load cell
and applied stress. The conversion is based on assumptions that the proportion of strain at
a given point in the sample is linearly related to the width of the sample at that point, and
that no strain occurs outside of the stress concentration region. An average cross-section

can be calculated from an average length within the stress concentration region as shown
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Total Area = A + B = hw + w? (l—g)

Average Length = Total Area/w = h +w (1 ~ ?B

Figure 5.6: Calculation of the average length by summing the A and B areas and dividing
by the width.

if figure 5.6. These approximations are commonly accepted and considered to be the best

alternative to measurements of true strain.57

5.5 Experimental Conditions

In the course of an experiment a given sample was heated to a preselected temperature and
allowed time to equilibrate for a minimum of 15 minutes. The sample was then deformed
under a constant tensile strain rate while recording the applied stress. As the sample was
being stretched, a timed series of 25-35 x-ray scattering measurements were recorded using
the beamline’s 2D wire-based detector. Each measurement consisted of an integration time
of 3 to 10 seconds in duration. Prior to these measurements, a long-time (1 minute) scan of

undeformed sample material was performed to provide a background reference. In addition
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to the x-ray scattering and applied stress measurements, the incident x-ray intensity before
and after the sample was recorded for each time slice.

The experiments were limited to the two materials discussed in section 5.4, 2 wt% PS-
PB blend and HIPS, due to time constraints at the X12B site. The use of two materials
provided both a comparison and confirmation of deformation processes. Both materials
are known to craze heavily, but, as discussed in section 2.2.2, the craze formation and
growth mechanisms are predicted to be different. A comparison of the results for these two
materials provides a confirmation of the observations of craze structure and allows one to
look for differences in craze growth mechanisms.

The temperature range chosen for these experiments was from room temperature (~30° C)
to 70° C. The lower limit was dictated by the lack of an active cooling mechanism in the
sample chamber. As described in section 2.3.3, current theories of craze formation and
growth predict that below a critical point (reported as ~60° C in PS®) craze growth is
independent of temperature. For this reason, it is not expected that the low temperature
limit is in any way restricting the study of temperature dependency of craze formation.

The upper limit to the temperature range was chosen for several reasons. Most im-
portantly, the load cell used for measuring applied stress is not accurate above 100° C and
should not be subjected to temperatures above 120° C. The use of radiant heating results in
uneven temperatures throughout the interior of the sample chamber, and this temperature
distribution has yet to be mapped out. It was, therefore, considered prudent to ensure that
the temperature remained well below the load cell limits.

The upper temperature limit was also based on estimates of the onset of reptation-driven
craze growth. This transition point in pure PS was reported to be at 70° C.6 The addition
of toughening agents to pure PS is expected to significantly reduce this temperature. It was
therefore decided that 70° C would be an appropriate maximum.

Measurements were taken at three different strain rates to provide a comparison of
deformation processes with strain rate. The majority of the measurements (65 %) were

domne at the middle strain rate. The three strain rates used were 5 x 1073 s~1, 5 x 10~* 571,
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and 1 x 10~4 s~!, with the primary rate being 5 x 10~* s~!. This is much slower than the
impact strain rate of 3 s—!, used by Bubeck et al.,}” but comparable to the strain rate used
by Ijichi et al.?® of 9 x 10™* s~ %

During the course of the experiments, two different sample-to-detector distances were
used. This provided a means to test the reproducibility of the scattering data and en-
sure that data interpretation was not compromised by detector characteristics. Due to the
difficulties involved in changing sample-to-detector distances (such as realignment and recal-
ibration), this distance was only changed once. As a result, the first third of the experiments
were performed at the large sample-to-detector distance and the remaining two thirds were
done with the detector closer to the sample, providing access to higher scattering angles

With the detector at the largest distance from the sample (2.445 m), the scattering angle
range, in g, was determined to be 5.3 x 10~3A™" - 7.3 x 10~2A"". This corresponds to a
Bragg-type d-spacing range of approximately 1000 A - 80 A. Similarly, with the detector at
the closest distance to the sample of 1.000 m, the range of ¢ measurements was determined to
be 0.01 A - 0.18 A corresponding to a d-spacing range of approximately 450 A — 35 A. This
lengthscale range is more than sufficient to examine the craze fibril structures (section 2.3.1)

of interest to this study.
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Chapter 6

Data Reduction

6.1 Summary of Data Obtained

The data referred to in this chapter was obtained from deformation experiments which were
performed at the X12B Beamline of the NSLS at BNL in August of 1996. The low intensity
of the in-house x-ray source precludes its use for real-time measurements, however, the in-
house setup was used for initial testing and calibration of the apparatus. In addition, two
other experiments were performed at the X12B beamline. These experiments were used to
further the development and testing of the apparatus, described in chapter 5, as well as to
develop the analysis procedures used here. Earlier data contain similar information to that
described in this chapter, however, the experimental conditions vary widely, and in many
cases the resolution was poorer. Thus in the interest of brevity and clarity, only the most
recent data is discussed.

The purpose of these experiments is to identify craze structures in bulk polymer mate-
rials, investigate changes in these structures, and monitor the temperature dependence of
craze growth. To this end, time-resolved x-ray measurements were performed during the
tensile deformation of two different materials undergoing uniform strain rate at varying tem-
peratures and for two sample-to-detector distances. Table 6.1 summarizes the conditions

extant for the data obtained with the two materials.
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Strain Rate | Material [ q Range | Temperature | # Samples
5x 10~*s™! HIPS 0.0053 A—! - 0.073 A~ | 5.0°C Steps 6
5x 10~ st HIPS 0.01 A-!-0.18 A-! 2.5°C Steps 13
5x 1074 s™! | 2 wt% PS-PB blend | 0.0053 A~! - 0.073 A~! | 5.0°C Steps 6
5x10~*s™! | 2 wt% PS-PB blend | 0.01 A-! -0.18 A-! 2.5°C Steps 15

Table 6.1: Experimental conditions for the data

The data obtained from the two-dimensional detector cannot be interpreted directly
in a quantitative way. Several procedures must be followed prior to any model fitting to
ensure that the results are accurate. Firstly, the data must be calibrated; this involves
both a conversion from pixel position to scattering angle and corrections to the intensity
for detector non-uniformity, dead time and incident intensity. Secondly, a subtraction of
the background scattering intensity must be done. Finally, it is necessary to identify the
deformation processes occurring so that scattering related specifically to craze growth may
be studied. In each of these steps, precise data handling is required in order to ensure that

the integrity of the data is maintained and the resulting interpretations are valid.

6.2 Calibration and Reduction

6.2.1 Detector Correction.

As mentioned above, intensity values from the wire-chamber detector, measured as counts
per second, cannot be used directly. Counts recorded must be adjusted for dead time and
detector nonuniformities. Dead time corrections are relatively simple; the counts per second
values are scaled by the time required for the detector to recover from the previous signal
measurement. This dead time factor is calculated automatically by the data acquisition
software.

The detector nonuniformities are compensated using the procedure available on the
X12B beamline. In this procedure, developed by Capel et al.,”® a small amount of air is

allowed into the flight path just in front of the detector. The x-ray beam scatters off of
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this air producing a uniform image on the detector. After adjusting for 1/r? reductions in
intensity by dividing the image by a smoothed version of itself, this image can be used as a
measure of the efficiency for any point in the detector, providing a matrix of pixel-by-pixel

correction factors.

6.2.2 Calibration

Materials with known scattering patterns are used as references to convert detector pixel
positions to angle or ¢ values. For the low angular range, a sample of Europrene SOLT 161B
Styrene-Butadiene-Styrene triblock copolymer (SBS) material, which had been previously
prepared and calibrated in-house, was used. For the high angular range, the beamline
manager provided a calibration standard of cholesterol myristate with a lamellar d-spacing of
50.7 A. Both of these samples produce diffraction patterns containing a perfectly symmetric
primary circular ring which could be readily identified.

The conversion of detector pixel position into g values requires a knowledge of the
location of the beam center. This can be determined from the circular scattering patterns
of the calibration standards. Initially, the beam center is approximated as being at the
center of the 512 x 512 pixel detector. Horizontal and vertical line sections (0°, 90°, 180°,
and 270°) passing through this center are then extracted from the calibration data. By
comparing the position of the peaks at opposite angles, the center position can be correctly
identified in both directions.

Once the new beam center has been determined, the process of extracting horizontal
and vertical lines is repeated to confirm the accuracy of the beam center. Due to the integer
nature of the pixels, the software used to process the data can only accept integer values for
the beam center, and this integer accuracy is the limiting factor in determining its location.

Slight differences in the two sets of delay lines in the detector result in slightly different
pixel sizes in the horizontal and vertical directions. To correct for this, the horizontal and
vertical axial lines passing through the beam center were compared and a scaling factor was

applied to the vertical direction to cause the locations of the horizontal and vertical peaks

73



to coincide.

The q value at which the calibration peak is known to occur can then be associated
with a specific detector position calculated as a distance from the beam center in units of
pixels. Having obtained a q value for one pixel position, the peak position, ¢ values were
then assigned to all pixel distances from the beam center on a linear scale.

A circular beamstop, placed on the front window of the detector, results in a region
of zero intensity recorded by the detector at the beam center. From the calibration and
compensation x-ray patterns, the size of the beamstop was determined to be 11-12 pixels
in radius. To protect against any parasitic scattering from the beamstop edge, a low-q limit
to the data was taken from a radius of 15 pixels. In addition, near the detector edge the
efficiency became so poor that intensity measurements were dominated by detector effects.
The maximum distance from the beam center was set therefore set to 220 pixels instead of
256 pixels.

A verification of the calibration procedure was made using direct measurements of the
angles involved. The distance from the sample to the detector was obtained using the
surveying equipment available at the beamline for both angular ranges. The x-ray wave-
length was determined independently using Bragg’s law and the known angle of the Si III

71

monochromator relative to the incoming white x-ray source.”* The pixel-to-q conversion

was calculated using the definition for g given in equation 3.7

_4r . (tan~Mx/d)\ _ 4w .
¢=sin (———-2 = Tsm@ (6.1)

where A is the x-ray wavelength, d is the sample-to-detector distance, and r is the distance on
the detector plane from the beam center in units of pixels. The calibration values calculated
from the sample-to-detector distance agreed with the values obtained from the calibration
standards to within 1.5%. To allow for additional inaccuracies in the calibration due to
beam center location, X-Y ratios, and nonlinear pixel scaling, the g values were assigned an

error of +2.5%, used in determining the accuracy of peak and breakpoint locations.
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Figure 6.1: A typical two-dimensional scattering pattern

6.2.3 Identification of Crack and Craze Directions

The scattering pattern from a typical craze formation is extremely anisotropic, consisting
of two perpendicular x-ray scattering bands, as shown in figure 6.1. These two bands may
be associated with craze wall and craze fibril scattering. In order to proceed with a study
of craze formation and growth, the craze fibril band must be identified and extracted from
the two-dimensional data.

The band in the direction of the applied stress may be identified as coming from the
walls of the crazes,?? while the band approximately perpendicular to the applied stress is

due to scattering from the craze fibrils (section 3.7). A knowledge of the detector orientation
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Figure 6.2: Craze fibril directions identified through intensity integrations with the solid
line indicating parabolic fitting.

relative to the tensile stress direction will provide a crude estimate of the direction of the
craze fibril band in the 2D scattering pattern. However, a more precise identification of the
azimuthal angle corresponding to craze fibril scattering (orientation angle) is required due
to the possibility of slight irregularities in the samples. To this end, a sum of the intensities
at all radii was calculated for each direction. Using these values, plots of intensity sum
vs. orientation angle were made (figure 6.2), and peaks in these graphs, corresponding to
different scattering bands, could be identified. Parabolic fits to the peaks were used to
select the peak center from which precise orientation angles for the craze fibril scattering
were obtained.

To ensure the accuracy of this method, the peak positions were compared to orientation
angles obtained from contour plots of the two-dimensional data. In most cases the two
results agreed to within 2°, the limit of accuracy in the contour plot measurements. In
the few cases where large discrepancies appeared, the parabolic fitting technique seemed to

be biased by one or two extreme points that can be explained by electronic jitter. Such
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cases could also be identified by large discrepancies between the peak positions at opposite
angles. For these samples, the angles obtained from the contour plots were used.

The craze fibril peak position was quite consistent between different samples, varying
by about 5°. This was a good indication not only of the applicability of this method, but
also of the reproducibility in the samples and tensile deformation mechanism.

One of the PS-PB blend samples examined showed angular peaks quite different from
other samples. This difference indicated that the sample had probably failed due to some
intrinsic fault in the material. Such failure is not expected to occur by the same mechanisms
of craze formation and growth, and therefore the data from this sample was omitted from
further analysis processes.

It is also worth noting that prior to deformation, the samples showed slight anisotropic
scattering at angles above 0.08 A~L.This anisotropy, which was observed in both materials,
but not seen in the calibration standards, is believed to be due to a slight orientation of the
polymer molecules during the molding process. It's location at ¢ values beyond the primary
fitting region and the fact that it is quite faint suggests that it does not have a significant

effect on scattering measurements.

6.2.4 2D to 1D Reduction

Having identified the craze scattering region on the detector, the data was compensated
and converted to one-dimensional scattering profiles. Each x-ray scattering measurement
was compensated for regional variations in detector efficiency, as described in section 6.2.1.
As part of this process, data from pre- and post-sample ion counters was used to normalize
the intensity, making it independent of fluctuations in beam intensity, sample thickness,
and detector dead time.

Pie-shaped sectors 10° wide, centered on the angular peaks associated with craze fibril
scattering, were extracted from each two-dimensional data image. For each sector the
intensity values at equal radii were averaged to produce a one-dimensional intensity profile.

Errors in the intensity for each radius were calculated using counting statistics which assume
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a normal distribution.

The choice of 10° wide sectors is based on previously reported TEM work which de-
scribed the craze fibrils as being out of alignment by up to 5° in either direction.'® QObser-
vations of individual thin film crazes by LAED produced two scattering bands 10° apart.
The scattering average over thousands of crazes causes these bands to merge into one single
band.

Statistically significant systematic differences in the intensity at opposite angles were
observed. It was not possible to reconcile these differences through a simple shifting or
scaling of the radius, as would have been expected if they were due to calibration inaccuracy.
These systematic differences could come from a number of sources, but are most likely due to
a slight wandering of the beam center in the course of a series of time-resolved measurements.
As a result of this effect, the intensity values from opposite angles were not binned, but

were recorded separately as distinct observations.

6.3 Background Subtraction

The observed x-ray scattering in the craze fibril direction is a combination of scattering
from the electron density contrasts between craze fibrils and voids, between the toughen-
ing additive and the polymer matrix, and between the polymer chains and intermolecular
spaces. To isolate the craze fibril scattering, x-ray patterns from all other sources must be
treated as background and subtracted from the observed scattering.

Undeformed polymer material, maintained at the same temperature as the deformed
polymer, was used as a source for background correction. In most cases this came from
a separate piece of identical sample material, placed adjacent to the sample undergoing
deformation. Scattering patterns were obtained from this material prior to the beginning
of each crazing experiment so that, in addition to a background correction, the sample to
be tested could be checked for initial damage. This background data was compensated and
binned in exactly the same manner as was done for the sample data. A preliminary check

of both background and sample data was possible through a comparison of the background
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data with the prestress data from the sample. For a few cases where this background
measurement was unavailable or corrupted, the first few measurements on the sample prior
to its deformation were used. Due to the systematic differences observed in opposite angles,
separate background corrections were produced for both angles. In this way, each sample
was assured of its own unique background correction to avoid systematic errors.

Smoothing was done to the background data to avoid significantly increasing the error
in the intensity values of the sample data. This was divided into three parts as no single
smoothing algorithm could deal adequately with the entire intensity range. At the lowest
q values corresponding to data below the beamstop edge no smoothing was done. Low-g
data, where intensity changes are rapid, were smoothed using the Savitski-Golay algorithm
with zero degree.”? At large q values, the data was smoothed using locally weighted least
squares.”® The data supplied to both algorithms for smoothing included a buffer region
above and below the range of interest to ensure a smooth transition between regions.

A comparison of smoothed background scattering intensities to the original intensities
on both linear and logarithmic scales (figure 6.3) shows a consistent representation of the
original data in the smoothed curve. Examinations of background-subtracted data at low
strain values (prior to the formation of craze structure) were performed to ensure accu-
racy; no systematic deviations from zero scattering intensity were observed. Due to the

complexities involved, no error calculations were performed.

6.4 Volume Contribution

The invariant, discussed in section 3.6.1, is related to the volume of material which con-
tributes to the scattering. It is used as a parameter in the Porod models which provides
a measure of the size of particles. The true invariant cannot be determined from the scat-
tering data, so an approximate effective invariant is used. This effective invariant provides
a measure of the volume of the particles which contribute to the scattering within the ¢
range examined and, thus, it is valuable to examine it more closely to gain insight into the

relative contributions to the scattering volume from different lengthscales. This is done by
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Figure 6.3: Background data in the high-q range showing smoothing on both linear and
logarithmic scales with the solid line indicating the smoothed data. (Data for HIPS at
42.5° C.)
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Figure 6.4: Volume plots for high-¢ (O) and low-¢q (J) range data, indicating the difference
in the effective invariant calculated for these two ranges. (Data from PS-PB blend samples
at 67.5° C and 65° C.)

creating volume plots which are graphs of intensity (/)xq vs. g. The area under such a
curve is the effective invariant.

Typical volume plots for the PS-PB blend material are shown in figure 6.4. From these
plots it can be seen that the volume contribution from different lengthscales contains a
well-defined peak at ¢ = 0.02 and reduces to near zero at the low-q cutoff.

There are two scattering ranges in use which implies two different low-g cutoff values.
Since the I x g values are not zero at the low-g cutoff point, there will be a systematic differ-
ence between the invariant values calculated for the low-q range data and those calculated
for the high-q range. Examinations of the volume plots suggest a difference of about 10%.
Unfortunately, there were far less measurements done at the low-g range and so this data

is insufficient to provide direct corrections to the effective invariant calculations.
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6.5 Deformation Mode Parameters

Prior to the interpretation of the scattering data in terms of models of craze structure, it is
necessary to confirm the appearance of craze formation and growth stages in the deforma-
tion process. No single measurable parameter, however, is sufficient proof of active crazing
and therefore a combination of several different measurement techniques are required to
ensure that the craze growth deformation mode is properly identified. The three measure-
ments used here to aid in identifying deformation modes are those of applied stress, x-ray

transmission and x-ray scattering invariant.

6.5.1 Applied Stress

An examination of the relation between applied stress and resulting strain (fgure 6.5) allows
for initial identification of deformation modes.

Elastic deformation, defined as a reversible strain response to applied stress, is typically
identified with the linear low-strain portion of a stress-strain curve. Such linear stress-strain
behavior was observed for a large portion of the total strain. In some cases, notably at tem-
peratures below 50° C, the slope of the stress-strain curve would suddenly decrease and yet
remain linear. This suggests that the linear strain behavior is not purely elastic. However,
there is currently no suitable method for measuring strain relaxation under the experimental
conditions imposed here. Therefore, the existence of elastic deformation cannot be directly
verified in this data.

As the strain progressed, the samples would typically reach a yield point defined here
as the maximum stress point in the stress-strain curve.!® In general, the maximum applied
stress at the yield point was 10-20% larger in the PS-PB blend than in the HIPS material.
For many samples, most commonly the PS-PB blend, no stress peak was observed, rather,
the linear stress-strain behavior continued for the entire deformation process. Such obser-
vations were interpreted as indicating that insufficient strain was applied to these sample
for it to reach its yield point.

Beyond the yield point, the two samples behaved quite differently. In the PS-PB blend
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a sharp decrease in stress followed the yield point after which sample failure generally
occurred. In the HIPS material a slight decrease in applied stress followed the yield point,
after which the stress remained relatively constant for some time, indicating extensive plastic

deformation.

6.5.2 X-ray Transmission

With each x-ray scattering image observed, ratios of x-ray intensity entering and exiting
the sample () were determined. As described in equation 6.2, two processes could affect

this ratio: a change in sample thickness or a change in sample density.
T = Loyt Iin = e (5P (6.2)

where Ioy:/Iin is the ratio of transmitted intensity to the incident intensity, p is the density,
z is the sample thickness, and %’ is an x-ray mass absorption coefficient.%®
A parameter pz is introduced here, which will be called the reduced thickness-weighted

density. It was determined from the transmission ratio measurements by

== (6.3)

where 1, and pz, are the transmission ratio and thickness-weighted density prior to the
onset of deformation.

In situations where constant sample density may be assumed, such as during elastic and
shear deformation, pz reduces to ez + 1 with €5 being the strain in the direction of the x-ray
beam. For elastic deformation, this strain component is related to the strain in the tensile
direction (e3) by

€ = —vey (6.4)

where v is Poisson’s ratio. Calculations of Poisson’s ratio for data at low strain levels
gave values of about 0.03. In contrast, a Poisson’s ratio of 0.5 indicates constant volume

deformation.?”
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Figure 6.5: Applied stress(Q), pz(4), and invariant(3) curves for PS-PB blend at 67.5° C
(A) and HIPS at 57.5° C (B)
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It is more precise to interpret the parameter pz as a ratio of the number of electrons
in the beam path at any given time, N.(¢), to the initial number of electrons in the beam

path, Ne(0),

=

e(t)
Ne(0)

pE =

(6.5)

At the onset of craze or other void formation, regions of empty space are formed and
electrons are moved out of the beam path. In crazes, the volume fraction of empty space
has been shown to remain constant,® and therefore, the number of electrons displaced may
be given by:

Ne(t) = N(0) —vsVer(2) (6.6)

where V(%) is the craze volume at a given time ¢ and vy is the volume fraction of the craze
fibrils.

During the initial formation of crazes, the relation between the craze volume and the
macroscopic strain is quite complex due to non-linear relations between craze growth in the
tensile direction and in lateral directions.?® As the crazes expand, however, they will begin
to encounter other crazes or the polymer surface. At this point, lateral craze growth stops
and the craze volume expands purely by the lengthening of the craze fibrils, giving a linear
relation between pz and the macroscopic strain. Such linear relations are observed at large

strains (figure 6.5).

6.5.3 Invariant

The effective invariant, described in section 3.6.1, provides an indication of the volume of
the scatterers. The anisotropic nature of craze fibrils requires a modified version of the

invariant, described in section 3.7. An effective invariant may be calculated for the data by:

n
Qr =8q)_als(q), (6.7)
i=1
where I¢(q) is the background-subtracted intensity in the craze fibril direction, dq is the

pixel-to-q conversion factor, and the sum is over all valid data points. For the purposes
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used here, no corrections are attempted for the finite upper and lower ¢ limits as these are
highly model-dependent and changes in the invariant, rather than absolute numbers, are of
interest here.

In the case of polymer deformation, the scattering is due to the electron density contrast
between polymer matter and voids within the material. The invariant, therefore, will not
respond to shear deformation but will indicate the presence of dilatational strain due to
crazes and voids. Thus, the onset of changes in the invariant may be interpreted as the
onset of craze formation. The invariant begins to increase shortly before the stress maximum
is reached in the HIPS materials. In the PS-PB blend materials, the invariant begins to
increase at about the midpoint in the linear stress regime.

The anisotropic invariant of equation 3.30 is related to the number of craze fibrils, their
cross-sectional area, and their length. Since the fibrils maintain a constant diameter during
deformation, their cross-sectional area does not contribute to changes in the invariant. At
later stages of craze growth, no new fibrils will be created and changes in the invariant
should be proportional to the square of the length of the craze fibrils.

An additional factor affecting the invariant, however, is the loss of craze material out-
side the irradiated area as the material expands. Following similar arguments to that of
section 6.5.2, the amount of craze fibril within the region of observation decreases linearly
with strain, resulting in a complex relation between the invariant and strain. Near the large
strain limit, the amount of new fibril formed will approach the amount of fibril material
leaving the observed region, causing the effective invariant to approach a constant value.
This is observed in some of the HIPS materials.

Three parameters, applied stress, pz, and effective invariant which directly contribute
information regarding the deformation process have been calculated. An examination of the
changes in these parameters shows that craze formation occurs in both sample materials
under investigation. In chapter 8 these changes will be examined in more detail to map out
the deformation history for both materials.

With the confirmation of the presence of crazes in the samples, the craze fibril scattering
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data which had been isolated previously may now be examined with confidence. The analysis
of the fibril scattering data will be described in chapter 7 where several different models

will be applied to interpretation of the data.
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Chapter 7

Data Analysis

The previous chapter described the calibration of the SAXS data, the identification of the
craze fibril scattering band, and the background subtraction procedure used to isolate the
craze fibril scattering from other sources. Having done this, the resulting x-ray scattering
data may now be interpreted in terms of craze fibril structures.

To begin with, the overall fibril scattering pattern will be examined to obtain relevant
lengthscales and general structural features. This will be followed by an application of
Porod’s law to identify details of the craze fibril structure. Finally, the results from Porod’s

law will be compared with results from other SAXS analysis techniques.

7.1 Identification of Relevant Scattering Lengthscales

The interpretation of SAXS data, as described in chapter 3, is highly model-dependent.
Due to approximations made in both the assumed structure under investigation and the
resulting scattering pattern, the models in most common use do not apply to the entire
x-ray scattering pattern, but are limited to specific angular regions. Analysis therefore
involves a search for peaks on the background-subtracted data followed by an examination
of log-log plots of the data to identify regions in the scattering data corresponding to distinct

structural details.
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Figure 7.1: Scattering data showing a peak in the PS-PB blend material at 67.5° C (3) and
a shoulder in the HIPS material at 45° C (<). In both cases the data is from the high-q
range at a 40% strain.

7.1.1 Scattering Peaks

The most readily accessible information which can be obtained from x-ray diffraction data
is the location of observed peaks. A search for peaks, Bragg-type or otherwise, is therefore,
a reasonable place to begin in interpreting the scattering from a given structure.

Scattering data from deformed HIPS and PS-PB blend material is shown in fig. 7.1. A
peak could clearly be observed between g = 0.015 and ¢ = 0.02 A~! in scattering data from
deformed PS-PB blend material at both the low-g and high-g ranges. This corresponds
to distances of 200-300 A. In addition, several other weak peaks appear to be present
at higher g values. The HIPS data contains possible peak structures at similar q values,
however, these were broader and tend to appear as shoulders rather than as well-defined
peaks.

The locations of the high-q peaks were compared to the flood-frame data used for in-

tensity corrections (section 6.2.1). This comparison revealed that the peak positions are

89



N
— F i ) : : \ 4 A
%) R T ~ F A SN
= 1 [ - WA T ! AT L
= i 4 i ] \ f\ 1 ‘\a'l \ ‘\5' kv “/’ VNS \‘\»" kY
2 EAVAU R :
2 H P
e I
= 7 ! : :
8 ’q —
< RV 4 U Flood Frame Data
g i —— PS-PB Blend Data
& ! C
= L ]
2 !
= :
] o
] Baaaae Lt
l -------------
/
p--d, , . L . N - N N ;
0.01 0.02 0.03 0.04 0.05 0.06 0.07

qA™h

Figure 7.2: Detector compensation data (dashed line) compared with scattering peaks in
the high-g range from PS-PB blend material (©) at 55° C. The dotted lines indicate the

locations of the high-¢ peaks in the PS-PB blend data.

consistent with the wire pattern in the detector, an effect which has been previously noted
in the literature.”® The location of the large peaks at low-q values were observed to occur
at similar g values in the data from both g ranges and do not follow the pattern observed

among the high-q peaks, however, it is conceivable that the wire patterns are affecting these

peak locations as well.
There is no evidence of long range order between the craze fibrils, and their isotropic

nature precludes the use of the interpretation of short range ordering, provided by Klug

and Alexander.®? A standard Bragg interpretation of the low-g peaks is therefore used to

obtain approximate near neighbour distances.

In the background-subtracted data for a few of the PS-PB blend samples, small but
systematic negative intensities at q values greater than 0.07 A~! were observed. This is
best explained as due to a slight orientation of the polymer chains occurring as a result of

shear and crazing deformation. This orientation will cause the polymer chains to exhibit
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a small degree of short range ordering, reducing the amount of scattering at the larger
lengthscales and resulting in negative intensities in the background-subtracted data. The
location of these effects at the extreme high-q end of the data, where signal-to-noise ratios
are poor, inhibits a systematic search for peaks relating to this process. The reason this
was observed in only a few samples is believed to be due to irregularities between samples.
In conclusion, the locations of low-g peak structures are used to infer approximate fibril
spacing distances while detector-based inconsistencies preclude systematic interpretation of

the possible high-q peak structures.

7.1.2 Power Law Regions

Log-log plots of the data were generated to identify scattering associated with particular
data structures, such as rod, fractal, and Porod regions. This is accomplished through an
initial cursory examination of the general trends in the scattering intensity. It was observed
that the x-ray scattering curve could be divided into 3 regions, as illustrated in fig. 7.3. The
first (low-q) region had a slope of -1 or shallower; the middle region’s slope was between -3
and -4 and the slope of the third region was steeper than -4. The observed peaks, mentioned
previously, do not change the trend of the monotonically decreasing intensity.

At this point a digression to clarify terminology is deemed prudent. As described at the
beginning of this chapter, x-ray scattering measurements were taken with the detector in
two different positions, giving scattering patterns in what will be termed high- and low-q
ranges. The actual ¢ values spanned by the two ranges overlapped comnsiderably. Different
ranges refer to distinct experiments performed at different times. Individual scattering
patterns could be readily separated into 3 distinct regions based on their slopes in a log-log
plot. The dividing point between low-, intermediate-, and high-q regions was independent

of the total ¢ range (sample-to-detector distance) under examination.
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Figure 7.3: A typical log-log plot for HIPS data showing the three linear regions. (Data
from high-q range at T=47.5° C.)

q Range | 1st Region | 2nd Region | 3rd Region
Low-¢ 100 150 120
High-q 20 60 65

Table 7.1: Approximate number of data points in each data range

7.1.3 Fitting to Identify Regions

The three identifiable q regions were fit to a segmented power law equation to confirm the
slopes observed on the log-log plots and to systematically isolate particular regions for more
detailed study. The fitting was done using the SASTM statistical analysis package Release
6.09, with a custom-designed fitting algorithm, employing the grid search technique applied
to a three section linear equation in which two breakpoints (where the curve changes slope)
are defined. The approximate number of data points in each range is given in table 7.1.
More details on the fitting methodology are given in appendix D.

To examine the validity of the fitting technique, residuals were examined from the power-
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law fitting before and after the introduction of the breakpoints. Prior to the introduction of
the breakpoints into the data, clear changes in the residuals could be observed (figure 7.4A).
After the two breakpoints were included in the fitting, the residuals remained constant,
showing no systematic trends (figure 7.4B). This indicates that the inclusion of the two
breakpoints is necessary and that the model provides a good description of the data.

A few extreme residual values (on the order of 5 points out of 200) were observed. It is
possible for the corresponding anomalous data points, known as outliers, to have a severe
effect on the fit parameters. These points are, therefore, examined more closely.

Outliers can come from several sources: incorrect detector operation resulting in ex-
tremely large or small intensity values, peaks in the data, or from the transition area
between power law regions. The outliers occurred at extreme low- and high-g values and
thus could not be due to either the observed peaks nor the transition regions. These outliers
are, therefore, most likely due to detector effects such as scattering from the beamstop and
can clearly be discarded. The fitting was repeated with the outliers excluded from the data
resulting in no significant change to the fit parameters. This indicated that the effect of the
outliers need not be a concern in further model fitting of this data.

As noted in section 6.2.4, a systematic difference in scattering at opposite angles was
observed. The same direction was found to consistently give better R? values than did its
opposite. This points to an unknown systematic error in the experimental setup. In order
to appropriately weight the fitting results while tracking the level of deviation, a variable
was included in the fit model which indicated which of the two opposite angles a given
data point came from (see appendix D for more details). This variable was either 1 or 0
depending on which angle a particular data point was associated with. Perfectly symmetric
data would then result in a value of zero for the parameter associated with this variable,
while a non-zero value indicates a significant systematic difference between the two opposite
angles.

Tests of the angle parameter indicated that prior to the removal of the outliers the

probability of it being zero (the ideal case) was greater than 10%. A probability less than
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Figure 7.4: Plots of the residuals from the segmented power law fitting before (A) and after
(B) the inclusion of the breakpoints. (Data for HIPS low-g range at 70° C.)
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Material | 1st Region | 2nd Region | 3rd Region
HIPS a=~102+£065| a=339+0.30 | a~4.88£0.55
PB aex003+055|a=x=3.11£037 | a~x4.48 £0.79

Table 7.2: Weighted averages of the values of a for HIPS and PS-PB blend samples based
on the equation: I < ¢~¢

5% implies that a statistically significant asymmetry in the data indicating that the variable
must be included for accurate weighting. After the outliers were removed, the probability
of the angle parameter being zero dropped to less than 0.1%. The change in the significance
of the angle parameter with the removal of the outliers, indicated a systematic difference
in the data quality between the two opposite angles, probably due to scattering from the
beamstop. The weighting of the fit results by the introduction of the angle parameter allows
the data from both angles to be used while avoiding the possibility of misleading parameters
which would result if the data from opposite angles were simply averaged.

The locations of the two breakpoints obtained from the segmented regression procedure
were observed to be generally independent of strain. A small but distinct decrease in both
breakpoints could be observed as a function of sample temperature. This decrease was of
the same magnitude for both breakpoints and in both materials. It can be understood in
terms of an increase in the fibril diameter with increasing temperature; and is discussed in
more detail in chapter 8.

Weighted averages of the power law exponents obtained from the segmented regression
for all data are given in table 7.2 and are used to provide an indication of general trends.
These values confirm the observations made from the log-log graphs. It should be noted
that in a few cases the scattering from a HIPS sample corresponded to that from a typical
PS-PB blend sample and vice versa. Since the deformation process is highly statistical in
nature, such occurrences are not unexpected.

Porod’s law for oriented rods, described in section 3.6.3 predicts that at high-g the scat-
tering intensity should be proportional to ¢73. As can be seen from table 7.2, scattering

intensities in the second region tend to follow this form. The first region is clearly not asso-

95



ciated with Porod-type behavior, as expected for low-q scattering. A Porod interpretation
of the third region cannot be ruled out at this point. For this reason, the second and third
regions will be examined further in the context of Porod law analysis. The large deviations
from Porod’s law, observed for the third region are considered in chapter 8 along with a
more detailed discussion of the interpretation of the different scattering regions.

The samples being examined initially contained no craze structure and thus, after back-
ground subtraction, the scattering pattern contained no regular structure. It is only during
the course of the deformation that craze structure was formed resulting in the observed
scattering pattern. In order to compare the models in a meaningful way, it is important to
identify the point in the strain progress at which the craze structure first appears.

Upon the advice of Dr. J.T. Smith™ of the Queen’s University STATLAB, a systematic
identification of the point of craze structure onset has been developed. The three standard
deviations associated with the a parameters obtained from the breakpoint fitting procedure
exhibit a sharp decrease at the same strain point before leveling off to a relatively constant
value at larger strains. The point of sharp decrease is considered to be the onset point for
craze structure. Of the three standard deviations the ones associated with the third region
are selected, as they are quite consistent among all of the samples. It was also felt that,
since the following data analysis was going to focus on the second region, the values from
this region should not be used to avoid the possibility of a subtle bias.

The standard deviations from the third region are initially greater than 1.5 and decrease
to values of about 0.5 beyond the point of craze structure onset. To ensure that all relevant
data was applied to the subsequent model fitting a cutoff of value of 1.0 was chosen. Data
with standard deviation values for the third region greater than 1.0 were considered to be

without craze structure and thus not applicable to the craze fibril model fitting to follow.

7.2 Application of Porod’s Law

As discussed in section 7.1.3, the data in the second region may be associated with Porod

Law scattering for oriented rods. The power law values obtained, however, are not obvicusly
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consistent with the ideal value of 3. A modified Porod’s law model is, therefore, needed
to account for the non-integer power law exponents observed. The traditional modification
to Porod’s law used when examining craze structure involves the addition of a Constant
Background term.!'?%57 This background term is attributed to structure within the fibrils
due to the conformation of the polymer chains and has its basis in the fact that at relatively
large ¢, scattering from a complex object containing no long range order should be indepen-
dent of q.*6 Such a positive background term should give rise to a decrease in the  value
associated with the scattering slope (positive deviations from Porod’s law), whereas, the
actual scattering slopes observed gave larger values of @ (negative deviations from Porod’s
Law). The effects on the fibril diameter values obtained through a misapplication of the
Constant Background modification of Porod’s law will be discussed in section 8.3.2. Since
the data obtained in this study were observed to contain negative deviations from Porod’s

law, it seems advisable to apply diffuse boundary variations to Porod’s law.

7.2.1 Diffuse Boundary Models

As discussed in section 3.6.5, Koberstein et al.’® describe a variation to Porod’s law for
negative deviations. Their Sigmoidal-Gradient model results in an intensity relation of the

form:

[ = Kq3e 1012 (7.1)

with I, ¢, and K being the intensity, scattering angle and Porod constant respectively, and
os describing the distance from the nominal particle boundary to the point at which the
density is 0.856 of that at the center of the particle — the standard deviation of a Gaussian
distribution.

To examine the applicability of this model to craze structure, graphs of the form
In(Ig3) vs. ¢ (figure 7.5) were generated for the second and third regions of the data.
These graphs indicated that the model describes the data quite well using the breakpoint
obtained from the power-law fitting.

Another variation on Porod’s law for negative deviations may be obtained by following
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Figure 7.5: Sigmoidal-Gradient variation of the standard Porod plot for HIPS at 70° C in
the low-g range.

the derivation of the Sigmoidal-Gradient model using a limited power-law distribution in-
stead of an exponential distribution to describe the density variations. This model assumes
density distributions at the boundary with shapes similar to that shown in fig. 7.6 with the

resulting intensity being of the form:

[ is a fit parameter indicating the sharpuness of the boundary, and K* is related to the

mean fibril radius, R-f, by:

£ _2 (1-p8)7 25 ~3+24
Qf (21‘(5) cos(ﬁvr/2)) E (7.3)

with Q; being the invariant, and I'(z) being the gamma function.

The Power-Law model of equation 7.2 would appear to be more appropriate to craze
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Figure 7.6: Density distributions in the Power-Law Model for different values of the 3
parameter.

fibrils, as the current theory of craze growth®* predicts 2 power-law strain response to
applied stress and a power-law stress gradient from the center of the fibril to the midpoint

between fibrils. A full derivation of the Power-Law model is described in appendix C.

7.2.2 Model Fitting

The Power-Law and Sigmoidal-Gradient models were fit to the data using identical fitting
techniques, described in appendix D. Fit corrections for opposite angle differences and a
test of the validity of the breakpoint were included in both models. R? measurements of
the goodness-of-fit were obtained and typically found to be in the range between 0.8 and
0.98, indicating a good fit to the data for both models.

In addition to single model algorithms, an algorithm was also applied which selected
between the Sigmoidal-Gradient and Power-Law models for the second and third scattering
regions independently, yet maintained continuity in the intensity over the breakpoint (see
appendix D). A comparison of the R? values showed that the Sigmoidal-Gradient model

best described the data in both regions. The comparison of the R? values provides a method
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for comparing models which is intrinsically the same as the well-known F-test.

To Further compare the two models, ratios of the B2 values were obtained for all data
in which craze structure was deemed to be present. Frequency histograms (figure 7.7) were
then produced from the ratios for the two different materials, based on approximately 150
separate measurements for each material.

These histograms show that for both materials there is a distinct bias towards the
Sigmoidal-Gradient model. While this bias is significant, it is not large. In contrast, the
histogram of R? values for comparison of the Sigmoidal-Gradient and Constant Background
models (figure 7.8) shows an overwhelming bias against the Constant Background model.

To ensure that the bias for the Sigmoidal-Gradient model was not linked to R2, a plot
of R? ratios vs. R? values was produced (figure 7.9) which shows that the R? ratios are
independent of the actual R? values. The lack of a trend in figure 7.9 provides confidence
that the preference for the Sigmotidal-Gradient model is not due to a confounding factor.
For example, the lack of a trend proves that the ratios favoring the Sigmoidal-Gradient
model do not come primarily from the poorer quality data and that the ratios favoring the

Power-Law model do not come primarily from the data sets with the best RZ.

7.2.3 Fit Parameters

Mean fibril diameters and diffuse boundary parameters were obtained for the Sigmoidal-
Gradient and Power-Law models. The fibril diameter, D;, for the Sigmoidal-Gradient

model was obtained using the relation:

e

Q

D, = K (7.4)
The fibril diameter Dp, from the Power-Law model is given by:
PR IS ET LS w5
P | wK* \2I(B) cos(Br/2) )
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Figure 7.7: Histograms of R? ratios comparing Sigmoidal-Gradient and Power-Law models
for each material
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Figure 7.8: Histogram of RZ ratios comparing Sigmoidal-Gradient and Constant Background
models.
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Figure 7.9: R? ratios of the Sigmoidal-Gradient and Power-Law models plotted by the
Sigmoidal-Gradient R? values. The lack of a trend indicates that the distribution of the
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RZ values.
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The invariant, Q, used above to calculate Df is defined by equation 3.30. Its value

may be approximated from the data by:

dmar

Qr= )Y Ilg)aq (7.6)

9min

In this case the accuracy of the calculated invariant is limited by the upper and lower ¢
values of the data, ¢mez and gmin. No reliable method has been suggested to correct the

1.17 claim that the low-q correction

invariant for the lack of low-q intensities. Bubeck et a
is negligible, however, as described in section 6.4, volume plots suggest that the correction
may be as high as 10% for some of the data. It is possible, as described by Bubeck et al.,!”
to correct for the lack of high-q data by extrapolating the models to infinity. This can be
done exactly, for the Power-Law model but not for the Sigmoidal-Gradient model.

The Power-Law model correction to Qy is given by:

K* o5
(Quait)p = 3—55%az - (7.7)

An examination of the magnitude of this correction confirmed that it is on the order of
30%, as reported by Bubeck et al.l”

It is not possible to obtain an analytic solution for the invariant correction of the
Sigmoidal-Gradient model. In addition, no references to invariant corrections have been
noted in the literature for the Sigmoidal-Gradient model,%6:5%:75 Therefore, the correction
for the ideal Porod’s law,

(Qtail).s = aK_’ (7.8)

'maz
was applied. This correction results in a slight over-estimation of the fibrii diameters because
intensities which follow the Sigmoidal-Gradient model will fall off more rapidly, and thus
have smaller @ values than predicted by Porod’s law.

As shown in fig. 7.10 the fibril diameters obtained from the Sigmoidal-Gradient model
are significantly larger than those obtained for the Power-Law model. This is to be expected

due to the high-q corrections to the invariant, as described above.
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Figure 7.10: Fibril diameters obtained from the Sigmoidal-Gradient model (O), and the
Power-Law model (). Data taken at the high-q range for HIPS at 30° C.

The errors in the fibril diameters are significantly larger for the Power-Law model than
for the Sigmoidal-Gradient model. This is believed to be due to the way in which the models
weight the different parameters. An examination of the equations for the fibril diameters
(equations 7.4 and 7.5) show that the calculations for D include the § parameter in the
Power-Law model, providing more opportunity for error propagation effects.

The trends observed in the fibril diameter values obtained from the two models are
similar. However, Power-Law model results are believed to be more accurate due to the
better invariant correction and they will be used for comparisons to values obtained from
other models. The higher precision of the Sigmoidal-Gradient model makes it useful for
examining trends in the fibril diameter which are not discernable with Power-Law model
results.

As described in section 3.6.4, a correction must be applied to the fibril diameters as a
result of the Babinet principle. The accepted value of 0.253 for the fibril volume fraction
in PS based materials was used. This results in an increase in the final values of the fibril
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Figure 7.11: Diffuse boundary parameters: o, (O), from the Sigmoidal-Gradient model,
and 8 (<), from the Power-Law model. Data taken at high-q range for HIPS at 30° C.

diameters by a factor of 4/3.

A direct comparison of the diffuse boundary parameters obtained from the two models
is not possible. The 3 parameter from the Power-Law model measures the steepness of the
decrease in the density at the particle boundary, while the ¢, parameter from the Sigmoidal-
Gradient model measures a width which describes the thickness of the region in which the
density is changing. It is, however, possible to compare trends in the parameters. The
graph in figure 7.11 illustrates a typical variation in the two parameters as a function of
strain. In both cases the parameters indicate a trend toward sharper boundaries as the

deformation progresses.

7.3 Comparison to Other Analysis Techniques

As mentioned previously, the analysis of SAXS data is highly model-dependent; this means
that an alternate technique for measuring the fibril diameters would be valuable. Electron

microscopy allows one to examine structure at these lengthscales, however, the necessary
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process of microtoming and staining often destroys the fibril structure one is trying to exam-
ine. Acoustic measurement techniques can measure structures on this lengthscale without
damaging the material, but these techniques are much more indirect than x-ray scattering
and suffer from more serious model-dependent weaknesses than SAXS analysis.™ 77 With
the lack of a suitable alternate measurement technique, the next best thing is to select

alternate and independent analysis methods for the same data. This is done here.

7.3.1 Failure of Guinier Analysis

The technique of Guinier analysis is one of the most popular methods of SAXS data in-
terpretation. It therefore is reasonable to examine its applicability to the study of craze
structure. One of the primary weaknesses in the Guinier model is its sensitivity to inter-
particle interactions. This model is best used in situations of dilute particles in solution.
In the present situation, the fibrils are far from dilute, as evidenced by the need to ap-
ply the Babinet principle.*! In addition, the peaks at low-q values suggest that there are
strong interfibril interactions. All of this evidence suggests that Guinier analysis is not
appropriate for the study of craze structure, although, several groups?>5° have used it for
measuring craze fibril sizes. Therefore Guinier analysis will be attempted here for the sake
of completeness.

Guinier’s law states that, at low-g values, the relation between intensity and g follows
the form given in equation 3.6.2, implying that a graph of In(I) vs. g2 should be linear.
When such graphs were produced (figure 7.12), two linear sections were observed; the first
being from g = 0.015 to ¢ = 0.03 and the second from g = 0.035 to ¢ = 0.05. It should be
noted that the first section borders on the region used for Porod analysis and the second is
inside the Porod region. It is generally expected that Guinier regions should be located at
g values significantly lower that those used for Porod analysis.

The Guinier model was fit to both sections, giving Ry values of 60-70 A for the first
section and R, values of 45-50 A for the second section. To compare the R, values from

Guinier analysis to the fibril diameter obtained from Porod analysis, one needs to convert
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Figure 7.12: Guinier plot showing the two linear regions. Data from HIPS at 55° C in the

low-q range.
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radius of gyration to diameter. For an ideal cylinder, the relation can be calculated as:
D =2V2R, (7.9)

For a cylinder with a diffuse boundary, the conversion cannot be determined analytically
and numerical calculations were done to determine the conversion factor.

A comparison of the fibril diameters obtained from Guinier analysis to those obtained
from Porod analysis shows that the Guinier R, values obtained from the first section are
about a factor of 2 larger than the values obtained from Porod’s law, and the R, values
from the second section gives values which are about 20% higher (table 7.3).

The relationship between the Porod and Guinier models was examined by generating
artificial data using Porod’s law with a power-law diffuse boundary and parameters typical
of the data. This artificial data was then fit to the Guinier model in the regions noted above
(figure 7.13). A good fit was obtained, and the resulting R, values were similar to those
obtained from fitting the real data. From this analysis it is clear that the Guinier model
is not appropriate for the craze structure and thus does not provide an adequate test of

parameters obtained by Porod analysis.

7.3.2 Success of the Fourier Transform Technique

As described in section 3.5.2, The direct-indirect transform method is not as model depen-
dent as either Guinier or Porod analysis techniques. In addition, it has been demonstrated
that this technique works well even with a lack of low-q data,’® thus addressing the weakness
in Porod analysis due to its dependence on the calculation of the invariant. The drawback
to this technique is its requirement for complicated nonlinear fitting, and the fact that the
results obtained are often quite difficult to interpret.

To perform the direct-indirect transform analysis the program GNOM Version E4.2,
written by D.I. Svergun, was used.** This program allows one to choose between several
general structural models for analyzing the data. The model selected was that of a system of

monodisperse rod-like particles, with the program output being related to the cross-section
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Figure 7.13: A fit of the Guinier model to ideal Porod model data

of the rods and the resulting pair distribution function obtaired from the GNOM program,

P(r), being defined by:
P(r) = rvys(r) (7.10)

where y¢(r) is the fibril correlation function described in equation 3.29.
In this analysis mode, the GNOM program follows the description of scattering from a
randomly oriented system of rod-like particles, as given in the text by Glatter and Kratky,*!

which is shown to be the product of two terms:
I(q) = L(q) - Iy(q), (7.11)

where [;(q) < ¢! is due to scattering from the long dimension averaged over all orientations
relative to the incident x-ray beam. I¢(q), the term of interest, is related to the cross-section
of the rods. The experimental configuration used here implies near-complete orientation of
rods perpendicular to the incident beam and isolation of the scattering perpendicular to

the long axis. Therefore, the data is directly a measure of I.(g)-
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Since GNOM assumes the standard situation of equation 7.11, input data, I(q) is auto-
matically converted to a ¢f(q) form. This is not appropriate for the data considered here,
and input data is provided to GNOM as I;(q)/q so that it will correctly use the I¢(q) data
in its procedures.

The choice of the best P(r) solution for the indirect transform of the scattering data
is a complex issue. The GNOM program maximizes a parameter involving the weighted
contributions from several different criteria.** These include a measure of x2, a measure of
the smoothness of the solution, a test for the presence of systematic deviations between the
solution and the data, and a test for stability of the solution with respect to the Lagrangian

multiplier. Each criterion is assumed to follow a Gaussian distribution, P.(i), described by:

Am-fnn]‘3

'Pc(z) = e_[T (7.12)

where A(i) is the ideal value of the ith criteria, B(z) is the actual value, and o(z) is a
user-defined distribution width. An estimate of the goodness of a solution (a value between
0 and 1) is obtained from a weighted average of the P.(i) values for each criterion, with

user modifiable weights (w;):

Zgl(%:”" (7.13)
with the sum being over all criteria.

Meaningful variation of these weights requires a priori knowledge of the structure. No
useful information was available regarding the reweighting of any of the fit parameters,
except that of oscillations in the P(r) curve discussed below. Therefore, weights for these
parameters were left at default values. These defaults values were checked by confirming
that small changes in the values for any one parameter did not have a strong effect on the
solution chosen.

As discussed in section 7.1.1, the structure of a craze consists of two quasi-independent

lengthscales: that of the craze fibril diameter and that of the interfibril distance. A

monomodal distribution is, therefore, not expected. To accommodate solutions with mul-
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Figure 7.14: Pair correlation functions obtained from low-¢q range data of HIPS (O) and
PS-PB blend (<) samples at 65° C.

tiple peaks, the weight of the parameter measuring the smoothness of the solution was
reduced by a factor of three.

To apply the method of indirect transform, an estimation of the maximum particle
diameter Dy, is required as input. In this case, the maximum diameter was set to 630 A.
This value was chosen because it corresponds to the minimum g value obtained (Dmpez =
w/q). Larger and smaller values of Dp,,, were tried giving almost identical results. A typical
estimate of the goodness of the solution, determined for a representative HIPS sample, was
given as 0.59 which the programs states to be a ‘reasonable’ solution.

The P(r) solution obtained for HIPS and PS-PB blend samples in fig. 7.14 shows a
primary maximum between 25 and 35 A with a secondary maximum at about 350 A in the
HIPS, and at about 275 A in the PS-PB blend. A region of negative P(r), indicating void
space, is observed in between the two peaks for both materials.

The primary purpose of using the GNOM program was to test the fit results for the
Power-Law and Sigmoidal-Gradient models. The peak in P(r) at low values of r is the

112



Typical Fibril Diameter Values (A)

Material | Guinier | GNOM | Porod
HIPS 115.8 £ 0.7 80 +2 |84 =11
2 wt% PS-PB blend 1032|7635 73+13

Table 7.3: Guinier and Fourier transform results compared to Power-Law model results
from low-g range data for samples at 65° C.

one of interest because it corresponds to the fibril diameters measured by the Porod law
fitting. To examine this peak more closely, the low-q data, which is attributed to inter-fibril
scattering, was removed and only the high-g data were supplied to the GNOM program,
along with a Dppqz of 100 A. In this case, the P(r) is expected to be monomodal and thus,
the smoothness parameter was reset to its default value.

For representative samples of both materials at a range of temperatures, the solutions
obtained for the truncated data had goodness-of-fit estimates greater than 0.9, which the
program declares to be an excellent solution. A comparison of typical fibril diameter values
obtained from GNOM and from the Porod analysis is given in table 7.3. It is clear that
the values agree quite well when GNOM fitting is applied to the high-q regions of the data
where interaction effects are negligible.

In this chapter scattering lengthscales relevant to craze fibril structure have been identi-
fied, the scattering due to interfibril interactions has been examined, and structural models
of the craze fibrils have been identified which provide a good description of the scattering
data observed. In chapter 8 the information obtained here will be interpreted in the context

of current theories of craze formation and growth.
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Chapter 8

Discussion

SAXS experiments were performed on two bulk polymer materials to study the craze defor-
mation process in these materials. Included in this study is an identification of the macro-
scopic deformation modes occurring in the materials, an examination of the overall craze
structure, a measure of the craze fibril diameter, an investigation of the fibril conformation,
and a probe of craze growth mechanisms.

Deformation mode parameters, obtained in section 6.5, will be used to identify distinct
stages in the deformation process. Analysis of the SAXS data, done in section 7.1, will be
used to obtain an indication of the overall craze structure. Porod model fitting applied to the
data (section 7.2) will provide more detailed information regarding craze fibril diameters
and structure. Finally, observations of the temperature dependencies of the craze fibril

diameter and applied stress will be used to provide indications of craze growth mechanisms.

8.1 Macroscopic Deformation

The identification of the macroscopic deformation modes relies on the determination of the
applied stress, scattering invariant and reduced thickness-weighted density. These param-
eters provide information regarding the energy absorbed by the sample, the presence of
dilatational strain, and changes to the sample thickness and density, respectively. A com-

parison of these parameters allows for the identification of the onset of craze formation and
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the craze growth regions of the scattering curve, as discussed in section 6.5.

In the HIPS material, the deformation process begins with a linear stress-strain response
(figure 6.5), a very gradual decrease in the pz parameter, and no detectable change in the
invariant. This can be interpreted as either elastic or shear deformation. As the deformation
proceeds, a change in the slope of the stress-strain curve is observed, accompanied by
changes in the invariant and a more rapid decrease in the pz parameter. This stage is
best described by a mix of deformation modes including cavitation, craze formation, and
shear. At later stages in the deformation, the stress reaches a maximum and levels off. In
addition, the rate of change in both pZ and the invariant increases; both are observed to
be linear with strain at this stage. The approach to a constant stress is considered!*56 to
be an indication of deformation by craze growth, confirmed by the linear change in gz with
strain.

In the PS-PB blend, the deformation process also begins with a linear stress-strain
response and a very gradual decrease in the pz parameter. However, craze formation, as
indicated by increases in the invariant, is observed to begin at an earlier stage than in HIPS.
Either elastic or shear deformation or both, therefore, occurs during the initial stages with
a smooth transition to a multiple mode deformation process involving craze formation and
growth. The rapid drop in applied stress observed at large strain is characteristic of brittle
failure of the material. The lack of a region of constant applied stress, combined with linear
variations in pZ, indicates that a region of pure craze growth does not occur.

It can be seen that the two materials exhibit distinct deformation processes; while both
materials undergo craze deformation, it is only the HIPS material which can be seen to reach
a stage where the deformation process is dominated by the extension of craze fibrils. In the
PS-PB blend, craze formation begins early on in the deformation process, although it never
becomes the dominant deformation mechanism. The observation of ‘elastic’ behavior in the
HIPS material extending to larger strain values than in the PS-PB blend is most readily
attributed to the elasticity of the rubber particle additive. A more precise identification of

the deformation modes will require further testing in which the full range of deformation
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conditions are employed. The apparatus described in this thesis is capable of making these
measurements.

The lack of a pure craze growth deformation mode does not preclude the extraction of
craze structure parameters from both materials. However, analysis of craze mechanisms
requires the assumption that applied stress acts primarily to produce craze extension.

The PS-PB blend has its yield point at higher stress values than in HIPS, but has almost
no extension beyond this point. Both facts point to a poorer mobility of the polymer chains
in this material, indicating that the liquid rubber additive is not as effective as the higher
molecular weight additive in the HIPS material. The lack of a constant stress region suggests
brittle failure. However, brittle failure is generally assumed to occur immediately following
the elastic region,'® while these tests indicate that some form of plastic deformation occurs.
This indicates that current concepts of brittle failure are oversimplified. In addition, the
level of observation provided in this work represents a much more detailed insight into
the performance of these types of toughened thermoplastics than is found in the general
literature.

In both materials stages are observed in the deformation process where a combination
of several deformation mechanisms are at work simultaneously. The measurements of ap-
plied stress, pz, and invariant are not sufficient to isolate contributions from the different
mechanisms. A measurement of the true strain would provide information on the actual
deformation in the sample region under observation and would allow for reversibility tests
of elastic strain. Absolute scattering intensity measurements would allow true volume mea-
surements from pz and the invariant, allowing for a measure of the dilatational contribution
to the strain. With this information available, the full deformation history of a sample may

be accounted for.

8.2 Interfibril Craze Structure

The interfibril craze structure provides valuable information regarding the way in which

crazes form and grow.32! Measurements of the craze structure were obtained from direct-
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indirect transforms of the SAXS data, observations of peaks in the scattering data, and
power-law exponents with their corresponding scattering regions. From this information it

is possible to probe the extent of interfibril interactions.

8.2.1 P(r) Indications of Interfibril Structure

The GNOM program, discussed in section 7.3.2, provides pair distribution functions of
the structure, P(r), which are difficult to interpret for complex geometrical structures. In
general, the P(r) curves obtained show single peaks below 50 A, negative regions from 100~
300 A, and shallow peaks tailing off to zero at large r values. In terms of known structures,
peaks at small r values correspond to the single particle structure of craze fibrils, negative
regions correspond to voids between fibrils, and shallow positive regions may be considered
to be due to interfibril interactions. The two test materials give similar P(r) shapes for
the temperatures considered, but the PS-PB blend material has all the above-mentioned
features occurring at slightly smaller lengthscales than in HIPS. P(r) for the PS-PB blend
material reaches 0 by 400 A, while P(r) from HIPS is still positive at this point. Apparently
HIPS displays craze fibril structures that are similar to those occurring in the PS-PB blend,
but at slightly larger lengthscales. This implies a greater sensitivity to the low-q cutoff in the
HIPS data than with the PS-PB blend. These observations suggest in turn that indications
of long-range ordering in the power-law analysis (section 8.2.3) may be an artifact of the

finite data range.

8.2.2 Interfibril Interaction

The peaks observed in the data may either be attributed to short-range order peaks or
to single-particle scattering from uniform objects, as mentioned in section 3.5.1. Using
a Bragg law approximation, the primary peak observed in PS-PB blend data (figure 7.1)
corresponds well to the maximum at large r in its P(r) curve, a good indication that it
is indeed an ordering peak. Although the pair distribution function does not give a well-

defined maximum at large = for the HIPS material, it seems reasonable to assume that
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the peak shoulder observed in the HIPS material may be interpreted in a similar manner
following the discussion of section 8.2.1. In the absence of well-defined higher order peaks
and given the convergence to zero at large r of the P(r) curves, it appears that no long

range fibril ordering exists.

8.2.3 Power Law Exponents

At low-q values, x-ray scattering from individual oriented rods or fibrils should be indepen-
dent of ¢. In addition to the scattering from individual rods, there will also be scattering
from the inter-rod distances. If there is no long range interaction between rods, this scatter-
ing will also become independent of g at sufficiently low-q. For the PS-PB blend material,
a slope of 0 is commonly observed in the first region; this is not true for HIPS, suggesting
that at distances corresponding to the lowest g values examined, there are still interactions
between craze fibrils. This may be understood from the discussion of the P(r) curves in
section 8.2.1, where it was noted that the larger lengthscales in the HIPS crazes may result
in the apparent of long-range order due to the low-q cutoff limits in the scattering data.

X-ray scattering from oriented rods with sharp interfaces will exhibit I o ¢~3 anisotropic
Porod law behavior. If there is sufficient loss of orientation, 1/g scattering from the long axis
will become significant and the scattering pattern will follow the isotropic Porod scattering,
I « g~*. The orientation limits, at which the scattering from the rod cross-sections can be
isolated from rod axial scattering may be calculated from a knowledge of the rod length
and scattering range using equation A.3. The possibility that there is sufficient anisotropy
in the craze fibrils to warrant the use of the standard I « g¢~* Porod model should be
considered. In such a case, the scattering in the third region would be attributed to Porod
law scattering, and the second region would be considered a transition region with the
1/q® scattering describing surface fractal geometry in the craze structure. Such structures
are not consistent with TEM observations of crazes and the arguments for an anisotropic
interpretation cannot, therefore, be justified.

It must also be considered that the level of orientation causes the scattering to be in an



intermediate state between the oriented I oc g3 and the random I o« g~ states, resulting
in the observed non-integer power-law exponents measured. From numerical simulations it
can be shown that in this intermediate state the resulting scattering will not be linear on a
log-log scale, which is in contrast to the clear linear regions observed in figure 7.3. This is
also supported by the agreement between the fibril diameters calculated from the Fourier
transform and modified Porod’s law fitting.

If the interfaces are diffuse with a power-law density gradient, the Porod Law scattering

for oriented rods will be:

Iq)xq™ [B<a<y (8.1)

The exponents obtained in the middle region for the PS-PB blend samples were often within
error of 3, implying predominately sharp boundaries. For the HIPS material, the exponent
values were consistent with equation 8.1 and less than 4 in the second region, suggesting
diffuse boundaries. The significance of the craze fibril structure will be discussed in more
detail in section 8.3.

The middle g-region of the data was observed to occur between ¢ = 0.02 and ¢ = 0.05 A
for both materials, corresponding to lengthscales between 125 A and 300 A. This reflects
interfibril lengthscales in the craze structure, and thus, the scattering may be interpreted
as coming from the voids in the craze material.

The data in the third region and beyond, for both materials and all temperatures,
decreases more rapidly than the expected I « g~3. It is possible to fit this data to the
same diffuse boundary models applied to the second region, implying that there are two
different fibril structures at different length scales. This is not a particularly satisfactory
explanation, as craze theory does not predict this and there have been no observations of
multiple fibril structures reported in the literature.

A more satisfactory explanation of the general scattering in the third region is that the
polymer chains, composing the craze fibrils, are rearranging themselves along the axis of
the craze fibrils. This type of ordering would result in significant changes to the polymer

scattering, causing the background subtraction to be incorrect in this region. Models of
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polymer scattering in bulk materials is a complex issue,*® and models of orientation pro-
cesses in polymers linked to the formation of craze fibrils have not been reported in the
literature.

To sum up the discussion of section 8.2, the craze structure consists of a forest of well
aligned craze fibrils with weak interfibril interaction. Both the results from the GNOM pro-
gram and the observed scattering peaks indicate that there are preferred distances between
the craze fibrils. The lack of a series of well-defined peaks at regular intervals implies that
the interfibril interaction does not go much beyond nearest neighbours.

Polymer chains within craze fibrils appear to undergo orientation processes. No details
of this orientation can be determined at this time. A model of SAXS scattering which can
account for both the interaction of craze fibrils and polymer conformation within fibrils
would be a great asset for examining the contribution of polymer chain orientation to the

deformation process.

8.3 Fibril Structure

The measure of the craze fibril diameters is key to the principal theory of craze growth,!3:28
where the craze fibril diameter is identified as an indicator of local stresses within a craze
and therefore may be used to determine the energy required for craze growth. (See section
2.3.2 and 2.3.3 for more details.) It is assumed that the craze fibril boundaries are well-
defined; an assumption which has been shown to be inaccurate in this work. It is therefore
important to examine the nature of the fibril boundaries and consider possible effects of
non-ideality on the theory.

Several different approaches are used to examine the fibril structure within the crazes.
Two models of diffuse fibril boundaries, reflecting different boundary structures, were ap-
plied to determine the fibril diameter and identify a possible boundary structure. In addi-
tion, the GNOM program was used to examine the fibril scattering region in order to obtain
alternative measurements of fibril diameter for comparison with those obtained from the

models.
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The commonly used Censtant Background model, which assumes that there is uniform
internal structure within the craze fibrils, has been shown to be inaccurate in a Porod
analysis. An examination of the effect on fibril diameter measurements through incorrect
application of this model is also presented here along with a comparison of the fibril diam-

eters reported in the literature.

8.3.1 Diffuse Boundary Models

The HIPS material is believed to initiate crazing through cavitation at phase bound-
aries.!8:21:32 The Sigmoidal-Gradient model was developed to describe boundaries in two

46:75 and thus, may be consistent with the crazing mechanism of the

phase polymer systems,
HIPS material. The Power-Law model is based on assumptions of non-Newtonian plastic
flow (equation 2.11) which point to a power-law strain-rate gradient between the center of
the craze fibrils and the midpoint between fibrils. This strain-rate gradient will result in a
density gradient while the material remains under tension. The PS-PB blend material is ex-
pected to form crazes through plasticization and plastic flow which follows non-Newtonian
fluid fAow, thus the Power-Law model is expected to hold.

From tests of the two models, it has been shown that the Sigmoidel-Gradient model
provides a better description of the data than the Power-Law model for both materials.
This indicates that the mechanism controlling the formation of craze fibrils is similar in both
materials. Although the Sigmoidal-Gradient model does not have an established theoretical
link to phase boundaries, it has been observed to hold well for two-phase thermoplastic
materials.*6:9%:75 Clearly the void-fibril interface can be thought of in terms of a two phase
system, giving credence to the use of the Sigmoidal-Gradient model in this case. The
fact that it holds better than the Power-Law model demonstrates that power-law strain
gradients, implied in the Meniscus Instability model (section 2.3.2), have little effect on the
density distribution within the fibrils.

The difference in the observed 8 and o, parameters for HIPS and the PS-PB blend

material indicate that the fibril boundaries in the PS-PB blend material are sharper than
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in the HIPS material. A comparison of the o, parameter to its corresponding mean fibril
radius, however, reveals that the value of o, is about half the fibril radius. This indicates
that variations in the density are not limited to a small region at the fibril surface; rather,
the density varies throughout the fibril. This is quite significant for measurements of the
fibril surface energy, described in section 2.3.3 and discussed in section 8.4; a large variation
in the density within a fibril implies that the surface energy required to form the fibril is

not well-defined.

8.3.2 Comparison to Constant Background Model Results

A sample of fibril diameter values obtained from the literature is given in table 8.1. The
accuracy of the values given is not specifically stated. However, from the precision to
which the numbers are quoted, it can be inferred that the variation in the diameters for
similar materials at room temperature is significantly greater than the implied experimental
uncertainty (accuracies of 10 A are obtained in the present work). The large variation
among these values is not well-understood. It is unlikely that the lack of invariant corrections
at low-q can account for the diversity among the values reported by the same group because
the low-q limit would be expected to remain constant. In his 1991 paper, Bubeck!” suggests
that detector saturation is to blame for previously observed lower values, however, no details
are given to support this. It is possible that the variations in the results are due to the effects
of polymer orientation at extremely high-q values. It is also possible that the variation is
due to a misapplication of the Constant Background model.

To understand the effects of an incorrect application of background values, numerical
tests were done by generating ideal data based on the diffuse boundary Power-Law model,

described in appendix C:

_ 4 (L=B)r  \? 3428 -5
If(‘Z)—ﬂ_(l_uf) (2F(ﬂ) e /2)) R™3+26475+28 (8.2)
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Authors Year Material Fibril Diameter
Brown et al.® 1981 PS 60 A
Brown et al.% | 1984 PS 120 A
Bubeck et al.57 | 1986 HIPS 90-104 A
Brown et al.?* | 1987 PS 65 A
Bubeck et al.?® | 1987 HIPS 87 A
Brown et al.?9 1989 | PS PB blend 87 A
Bubeck et al.!” | 1991 HIPS 140 A
Current Results PS PB blend 73+ 10 A
Current Results HIPS 84 +10 A

Table 8.1: Fibril diameter values at room temperature obtained from the literature

with
R = 304A
v = .25
d (8.3)
0 < B8 <1

04i™"t < ¢ < 1147t
The values chosen for R (the fibril radius), vy (volume fraction of fibrils), 3 (Power-Law
model boundary parameter), and ¢ are based on typical values observed in the data. The
chosen values of Ry and vy result in a fibril diameter (D) of 80 A.
This ideal data was then fit to the Constant Background model: A plot of I3 vs. ¢3 is
extrapolated linearly from the highest-q values and the low-q intercept is obtained. From
this intercept value, diameters were extracted using the relation:

= 4

Dy = =)k’ (8.4)

where K is the intercept determined from the extrapolation.
The results of these tests, shown in fig 8.1, demonstrate that a non-integer power-law

relation will appear as a good fit within the Constant Background model.
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Figure 8.1: Constant Background model fit to ideal Power-Law model data

8.3.3 Detector Artifacts

Experimental sources of variations in measured fibril diameters must also be considered. As
mentioned in section 6.1, the fibril diameters were obtained in a time series of measurements
over a range of temperatures. Definite trends are observed in the fibril diameters with
temperature for the HIPS material (figure 8.2), as predicted by the Meniscus Instability
theory of craze growth. Two datasets are considered with significantly different electron
beam current. The initially high beam current dataset is indicated on figure 8.2 by an
‘X’ with the highest temperature data corresponding to the beam current for that run. A
distinct offset in trend between datasets can be seen. This discrepancy can be linked to a
significant difference in both the electron beam current of the synchrotron and the measured
detector live-time.

The most likely explanation for the presence of this offset is the occurrence of non-

linearity in the detector response due to the presence of a field-masking ion cloud in the
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detector gas.”” Such a situation would occur when there is a partial saturation of the
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Figure 8.2: Craze fibril diameters obtained from the Sigmoidal-Gradient fit parameters as
a function of temperature for the HIPS material over two datasets. Note that the two
highest temperature data points from the first dataset, marked with an ‘X’, correspond to
measurements taken at the end of a run.
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detector from a high x-ray beam current. Detector saturation effects, such as those suggested
to be present here, have been reported previously at other facilities.?°

It is worth noting that when similar tests were done using the Power-Law model, the
discrepancy noted in figure 8.2 was not visible. However, the scatter in the data due to
inaccuracies in the model fitting were sufficiently large to obscure such an aberration if it did
exist. Clearly the greater precision available with the Sigmoidal-Gradient model provides
the capability to identify such a detector problem.

In conclusion to this discussion of fibril structure, the craze fibrils have been shown
to follow a Sigmoidal-Gradient diffuse boundary model. This suggests that the power-law
stress gradients expected from the Meniscus Instability model of craze formation and growth
do not influence the density distribution within the craze fibrils. The extent of the density
gradients within the fibrils indicates that any theory of craze fibril formation must take this
factor into account.

The standard technique for obtaining surface energy values describing craze growth
involves the use of the Constant Background model to obtain fibril diameters. From the
numerical tests presented here, it is clear that this model can produce inaccurate results.
A test for linearity in the plot is insufficient. Care must therefore be taken in selecting the
appropriate model to use for determining fibril diameters.

The precision of the fibril diameter measurements from the Sigmoidal-Gradient model
brings to light possible problems with the detector system. A correlation of the observed
offset in fibril diameters of HIPS with the environment variables of electron beam current
and detector live-time indicate that the detector may not be operating linearly through-
out the accessible scattering angle range. This effect is subtle and indicates the need to
thoroughly characterize the detector being used for this type of measurement to a greater

degree than has previously been thought acceptable.

126



8.4 Microscopic Mechanisms of Crazing

As described in sections 2.3.2 and 2.3.3, the growth of crazes, which occurs through the
drawing of new fibrous material out of the active zone at the craze boundaries, is governed
by two competing mechanisms, chain scission and forced reptation. The probability for an
individual chain to undergo scission is independent of temperature, while the probability for
it to undergo forced reptation will increase with increasing temperature. From a knowledge
of the probabilities of these two mechanisms, the energy required to lengthen a craze fibril
by an incremental amount (an increase in the fibril surface), Iy, may be determined.?” It can
be deduced from the temperature dependencies of scission and reptation that at sufficiently
low temperatures, where scission dominates, the surface energy will be independent of
temperature. Above some critical point, reptation will begin to dominate the craze growth
process and the surface energy will decrease with temperature. For pure PS, this critical
temperature has been determined to be approximately 70° C.5

The Meniscus Instability theory of craze growth indicates that the fibril surface energy,
[y, is proportional to the macroscopic parameters of applied stress and fibril diameter
(equation 2.16). The fibril diameter is predicted to increase with temperature and the
applied stress is expected to decrease with temperature during constant strain rate tests.
This results in competing trends of similar magnitudes affecting the surface energy which
should cancel out at sufficiently low temperatures.!»> By comparing the trends observed in
the surface energy with those predicted from the microscopic theory of polymer motion, it
is possible to test equation 2.16 and the Meniscus Instability model of craze growth.

The surface energy derived from equation 2.16, assumes that all applied stress goes into
the formation of new craze fibril surface. For this reason, the equation is only valid where
the deformation is proceeding by pure craze growth. From section 8.1, it has been noted
that this deformation mode is only observed in the HIPS material and thus, only fibril
diameters and stress values from the HIPS data are used here.

As noted previously (figure 8.2), the fibril diameters are observed to increase with in-

creasing temperature, consistent with predictions of the Meniscus Instability model. A close
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examination of the trend in the fibril diameters indicates a possible transition from fibril
formation via chain scission to that of formation via reptation at 55° C. The prediction of
the Meniscus Instability model of decreasing applied stress with increasing temperature,
shown in figure 8.3, can also be seen to hold.

Surface energy values, determined from a product of applied stress and fibril diameter
(equation 2.16 with & = 1), are shown in figure 8.3. From a microscopic viewpoint, the
surface energy is expected to be to be constant with temperature at low temperatures (scis-
sion) and decrease with temperature at high temperatures (reptation). The fibril diameter
data suggests that such a transition occurs at approximately 55° C. It is not possible from
this data to identify a transition point between regions of chain scission dominated and
reptation dominated deformation. In particular, the estimated transition point from the
fibril diameter data cannot be confirmed by the surface energy trends. The change in the
surface energy is also suspiciously similar to that observed for the applied stress and thus
the fibril diameter chanrges are not having as big an effect as suggested by the theoretical
background.!

The equation for surface energy, developed as part of the Meniscus Instability model,
does not take into account the diffuse boundaries of the craze fibrils which have been shown
to exist. However, the observed Gaussian density distribution suggests the possibility that a
mean surface energy might be defined which can account for the fuzzy boundaries. Power-
law denpsity gradients, suggested by the non-Newtonian fluid mechanics of the Meniscus
Instability model, are not observed. Although power-law density gradients are not explicitly
predicted in the Meniscus Instability model, the non-Newtonian fluid flow suggests that
such gradients might be present during dynamical processes. The energy required for fibril
orientation as well as the presence of surface stresses are not accounted for in this model.
These observations thus bring into question the completeness of the model and the usefulness

of the surface energy in accurately describing the mechanisms of craze fibril growth.
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Chapter 9

Conclusion

An apparatus for real-time x-ray scattering measurements of crazes in bulk polymer materi-
als has been designed and tested. The new design features overcome many of the shortfalls
of previously reported techniques discussed in section 4.2. In particular, this apparatus is
capable of symmetric tensile deformation which maintains the sample center in the x-ray
beam (described in chapter 5). Slotted sample holders allow for stress relaxation in samples
without imposing compression stress which obscures observation of the relaxation process.
An Entran load cell is mounted in the system to provide direct measurements of the stress
applied to the sample. A motor control system capable of variable strain rates is linked to
the load cell to enable constant stress tests in addition to constant strain and constant strain
rate experiments. The variety of testing methods allows the mechanical properties of poly-
mers to be investigated with a focus on the differentiation of these properties. Progress has
been made on developing a method of measuring the true polymer strain using laser diffrac-
tion from a reflective grid fixed to the sample. In addition, the radiative heating technique
developed provides an accurate method for temperature-dependent investigations, valuable
for probing the underlying mechanisms involved in polymer deformation. Finally, the en-
tire deformation apparatus is contained in a portable sample chamber which can be readily
adapted to different x-ray synchrotron and in-house sources.

The equipment was used to perform a constant strain rate investigation of two dif-
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ferent polymer materials, HIPS and a novel PS-PB blend, at temperatures ranging from
30 to 70° C. Changes with strain in the applied stress, x-ray absorption by the sample,
and effective scattering volume were used to obtain information regarding the macroscopic
deformation process and identify the presence of craze formation and craze growth stages.

Both materials were observed to undergo craze deformation. A pure craze growth stage
was observed in the HIPS deformation process, but not in the PS-PB blend. It was also
noted that the yield point in the PS-PB blend occurs at higher stress values, followed by
rapid failure. This indicates that the HIPS material has significantly higher polymer chain
mobility than the PS-PB blend material, an unexpected observation given early reports on
the performance of the novel material.

It was not possible to distinguish between elastic and shear deformation occurring in
the deformation stage characterized by a linear stress-strain relationship. Neither elastic
nor shear deformation results in changes to the x-ray scattering pattern in the angular
range observed. In addition, it is not possible to directly link specific deformation modes
with changes to the polymer conformation at monomer lengthscales. Free relaxation tests
— which the current apparatus is capable of — combined with measurements of the true
strain — possible using the laser diffraction technique currently under development — are
required to identify these deformation modes.

The interpretation of SAXS data is highly model-dependent and so it is important to
examine carefully the models used to confirm their applicability before extracting crucial
information such as the fibril diameter. SAXS measurements from the constant strain
rate investigation were used to examine the craze fibril structures. Ordering peaks were
observed in the data, consistent with a regular interfibril distance predicted by the Meniscus
Instability model. The Constant Background model was found to be inappropriate for the
scattering data observed and it was shown that incorrect application of this model to data
similar to that examined here could account for the variation in fibril diameters reported
in the literature.

It was determined that the craze fibrils were best described by a diffuse boundary struc-
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ture following the Sigmoidal-Gradient model. Fibril diameters obtained from diffuse bound-
ary models agreed with those obtained from a direct-indirect transform of the scattering
data. The preference of the Sigmoidal-Gradient model over the Power-Law model indicated
that non-linear stress gradients predicted by the Meniscus Instability model do not have a
significant effect on the structure of the fibrils and must be confined to the regions near the
craze surface.

The Sigmoidal Gradient model has historically been associated with phase boundaries
in polymer materials. Such surfaces could be expected from the HIPS materials if fibrils
are formed from voids created by the separation of the rubber-particle additive from the
PS matrix. The success of the Sigmoidal Gradient model for the PS-PB blend material
cannot be accounted for in this way. Here the additive is in a liquid form and is expected
to act as a plasticizer rather than as a void promoting defect. These observations indicate a
shortfall in the Meniscus Instability model which does not allow for a Gaussian-type density
distribution within the craze fbrils.

Craze fibril diameters were observed to increase and applied stress to decrease with
increasing temperature, as predicted by the Meniscus Instability model. It was not pos-
sible to identify a transition between scission dominated and reptation dominated crazing
regimes. This may be due to the insufficiency of the data, the inadequacy of the surface
energy parameter, or a failure of the forced reptation model.

The surface energy is expected to provide a link between macroscopic parameters and
microscopic chain dynamics. The use of surface energy is called into question by the ob-
servations reported here that the craze fibrils contain diffuse boundaries. The Meniscus
Instability model must be reexamined in light of the evidence presented here to provide a
parameter which can effectively link macroscopic measurements with theories of polymer
chain dynamics. In addition, a more thorough temperature dependent test of the fibril di-
ameters is in order, to obtain a precise determination of the scission to reptation transition.

The Meniscus Instability model also lacks an accounting of the orientation process

among the polymer chains. A correction similar to the entropy term of the coil-strand-
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transition model may be in order. Before such a correction can be accurately made detailed
information on the orientation process is required. Models of scattering which can account
for the polymer chain orientation within the framework of a craze fibril structure are desired
so that the necessary information on this orientation processes may be used in the models
of craze growth.

Possible sources of detector error must be investigated and scattering measurements
must be taken with very high live-times (> 90%). The temperature trends in the fibril
diameters do not appear to be obscured by the detector effects so this is not a critical
problem for the measurements.

In conclusion, a state-of-the-art apparatus for RTSAXS measurements of craze growth
has been produced. This apparatus is capable of detailed investigations of all standard
deformation modes with variable temperature. Two sample materials, HIPS and a solvent-
toughened polystyrene have been examined at temperatures between 30 °C and 70 °C.
The SAXS data from the craze fibrils was analyzed using several techniques including tests
for power-law scattering exponents and a comparison of modified Porod’s law models. The
model comparison indicates a density gradient within the fibrils, which questions traditional
SAXS measurements of these fibrils and the use of the surface energy parameter. Surface
energy results have been examined in light of the molecular-level predictions of polymer
chain dynamics. However, the present results are inconclusive in identifying a scission-to-
reptation transition.

A precise interpretation of the scattering from craze fibrils has thus been developed,
allowing detailed information of the craze structure to be extracted. These analysis tools,
combined with the extensive capabilities of the apparatus, provide a complete suite of
measurement probes allowing access to an unprecedented degree of information at both the
macroscopic and microscopic levels. The potential to obtain such information provides a
means to perform detailed tests of structure-property relationships along with a method for
examining the theory of forced reptation. To further this work, more data is required to

provide a precise measure of the surface energy as a function of temperature. An alternative
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parameter must be considered to the surface energy. And finally, more comprehensive

models of the craze structure need to be developed and tested.
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Appendix A

General Scattering Equation for

Oriented Rods

The derivation shown here closely follows the work of Porod,!! Feigin and Svergun!? and
Brown et al.? With the primary difference being that Porod assumes randomly oriented
rods and Brown et al. incorporate a slit smearing geometry directly into their derivation.
The structure factor, F(q), for a rod-shaped particle can be divided into two parts
(7y and 7, ). The first term accounts for scattering from the long axis of the rod and the

second describes scattering in the radial direction.? 124181

Fo= (ap [dre ™ . [[areitn
———— [
Long Axis Radial Axis

(A.1)

: L

= (ApL— (@7 cost) [[ daemiasressien
|g] 5 cos(wy)

Here (Ap) is the electron density contrast, L is the length of the rod, A is the cross-sectional

area of the rod, wy is the angle of the rod with respect to ¢, w, is the angle between the

projections of 7 and ¢ in the plane of the rod, r = |, |, and ¢; is the magnitude of §

projected into the rod cross-sectional plane.
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The scattering intensity may be approximated by taking the averages of the square for

each factor separately, thus giving:

sin (](j] % cos(w“))

[q1% cos(wy)

1@ = (20PNL? [ [ J d(cos(wy) - 2rA [rdr . (r)Jalasr), (A2)

where IV is the number of rods, A is the rod cross-sectional area, Jg is the zero-order Bessel
function, and v, (r) is the correlation function describing the rod cross-section.

If L > 2 it is possible to approximate the integral in the first term as going from 0
to oo with no loss of accuracy. However, if there is a large degree of orientation among the

rods, one needs to consider the angular range of orientation

I(Gw) = (Ap)*NL? [

cos(w+Aw/2) | sin (]cﬂ% cos(wy)
cos(w—Aw/?2)

2
1G1E cos )} d(cos(wy)) - 27“‘1/7‘47‘ Yo(r)Jo(gLr)

(A.3)
where w is the azimuthal scattering angle with w = 0 being perpendicular to the rod
axis and Aw the angular range over which the rods are oriented. If w is set to zero and

|§]L cos(Aw) <« 27 then the following approximation can be made:

I:sin (11% cos(en)) ] :

iqt % coswy

~1 (A4)
and the scattering intensity perpendicular to the rod axis becomes
() = (Ap)>NL? cos(Aw)27A /rdr vL(r)JalgLr)- (A.5)

In the case of a close-packed system of oriented rods, such as that of craze fibrils, the
scattering intensity due to the rod cross-section will contain additional terms due to the
inter-rod interactions. The general equation for the scattering intensity of craze fibrils then

becomes:

Ii(q) =1 / rdr ¥¢(r)Jo(gr) + Interaction Terms (A.6)
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Appendix B

Porod’s Law for Oriented Rods

Porod’s law for oriented cylinders may be obtained in two ways: through dimensional
arguments from standard Porod’s law and through a detailed derivation following that of
the original Porod’s law. The simpler dimensional arguments will be presented first, and
this will be confirmed by the detailed derivation which will make clear the assumptions

involved.

B.1 Dimensional Basis

The standard Porod’s Law is given by:

I S
Jim T = e (B-1)

where [ is the x-ray intensity, @ is the invariant, q is the scattering angle, S is the total
surface area of the scatterers, and V is the total volume of the scatterers.

It has been shown*! that scattering for randomly oriented long thin rods is proportional
to 1/q. Since this scattering will not be observed in oriented rods, Porod’s law for this type
of structure must take on the form:

Txqg™® (B.2)
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At the same time, for rod-like particles, V can be rewritten as
V=AL ==R:L (B.3)
and S as:
S =2nRsL; (B.4)
where L is the length and R; is the radius of the rods. This gives:

. [f(Q) 2 -3
lim £ _ _%_ .
4> Q wR;q ’ (B.5)

which is Porod’s law for oriented rods.

B.2 Detailed Derivation

As described in section 3.7 the equation for the scattering intensity from oriented rods

(equation 3.29) is given by:
—ee— o (o] (o o}
I4(q) = 2n(BpRAL? /0 rdr 15(r) Jogr) = Q /0 rdr4p(r)Jo(qr),  (B.6)

where @ is the invariant.

t’82

From Guinier and Fournet,®* v¢(r) may be determined by:

Yo(r) = V"g) (B.7)

where Vp(r) is the overlapping volume of two identical particles separated by a distance r.
For infinitely long parallel rods, a shift in the axial direction produces no change in V;,. The

correlation function for oriented rods, ¥¢(r), therefore becomes:

wir) = ®.9
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where Af(r) is the overlapping area of two circles with radius R, such that,

A =4 / Z VR - 2dg (B.9)

The integral may be solved by means of trigonometric substitution, giving a solution

for the correlation function of:

1= Zant T YLy T
yi(r) =1 7rl:a.n (2m> ﬂsm{2tan (zm)} (B.10)

Forr<«< R
tan~! <——L—> = (B.11)
2Rz -r?/4 2R
and
y(r) =1- 2. (B.12)

7R

Having obtained a functional form for v(r), the integral in equation B.6 can be solved.

Using the form of ¢(r) for small r, the solution to two integrals must be determined:

qiz / grJolgr)d(qr)  and (B.13a)
o5 [ dar)den (B.13b)

Using the properties of Bessel functions, the following relations may be obtained:
f zJo(z)dz = zJ, () (B.14a)

/ 22 Jo(z)dz = 220, (z) + zJo(z) — / Jo(z)dz (B.14b)

Combining equations B.6,B.12, and B.14, the intensity due to scattering from infinitely
long cylinders may be obtained. As in the original derivation of Porod’s law, all but one

of the terms is a diminishing oscillatory function of q. Grouping those terms together, the
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intensity can then be given by:

. If(g) _[2 [ .
qli%lg Q—f = [;-R- /0 Jo{qr)d(gr) + Oscillatory terms| ,

thus

. Ir(g) 2 3
lim —— = —
fli’% Qr TR!

1

which is Porod’s law for oriented rods.
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Appendix C

Power-Law Model for Diffuse

Boundary Particles

C.1 Diffuse Boundaries Described By a Convolution Integral

There have been many empirical forms proposed in the literature for the diffuse boundary
modification to particle structure.*6:47:35.56 QOpne method for determining the effect of dif-
fuse boundaries on the scattering intensities involves the use of convolution methods®® in
describing the density function. In this method, the density function p.(r) is modified by

convolution with a smoothing functiorn
o
Pobs(T) = po(r) + A(r) = / o(r)h(rt — r)drt (C.1)
-

where h(r) is the smoothing function.
Following the arguments of Koberstein and Ruland,®:35 the scattering intensity can be

described by:
Lops(@) = F {1e(n)} F {h2(n)} = L(a) H*(q) (C.2)

where F{} indicates a Fourier transform, the exponent *2 indicates a self-convolution, I,(g)

is the Porod law intensity, and H{q) is the Fourier transform of (). This method has an
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advantage when dealing with oriented rod modifications to Porod’s law in that the derivation
of the ditfuse boundary modifications may be dealt with separately from the modifications

to Porod’s law.

C.2 Density at Boundaries From Power-Law Smoothing

A power law smoothing function may be written as:

_ -8
h(r):-]lfé(%l) 0<B<l —A<r<A (C.3)

with r = 0 defining the boundary of the particle and A the width of the diffuse boundary.
It is worth noting that this form is similar to that of Schmidt et al.,*® although, Schmidt
does not employ a density convolution.

Applying the convolution operation with this smoothing function gives a density distri-

bution function described by:

T’)l_ﬂl -A<r<0
oo 1 - (£)] 0<r<A

©
[+)
e
+
—_
|

Pobs(r) = (C.4)

O I

To provide a continuous density in the interior of the particle, A is set to R, the radius of

the particle.

C.3 Intensity From a Power-Law Smoothing Function

The intensity factor, H(q), is the Fourier transform of A(r):

H(q) = /_D:Qh(r)cos(qr)dr (C.5a)
= a-parp [T (C:5b)
_ (1P _(-pm
= (;2)  m@mEm  0<P<! (C.5e)
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and

2y = (—(L=B)m )P (1)
0= (o) Gr) 08 (c4)

Thus, applying equation 3.32, the intensity for oriented rods with power-law diffuse

boundaries has the form:

I 2. (1=8)r  \? 4
T = B (rryeiery) (1)
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Appendix D
Fitting Methodology

D.1 Fitting to Identify Power-Law Regions

A fitting algorithm was designed which would allow for the identification of three power-law
regions within a data set and determine the exponential factor for each power-law region.
The algorithm was composed of a grid search technique applied to a three section piecewise
linear equation.3® The breakpoint locations were determined by fnding the ¢ values which
gave the maximum adjusted R? value (RZ).84:85

The multiple-correlation coefficient, R?, is a measure of the reduction in the variability of
the dependent variable (y) obtained using the given independent variables (z;, 2, T3, --+)
and is useful for determining the optimal model functional form.%-37 The value of R? varies

between 0 and 1, with 1 indicating a perfect fit to the data, and is defined by:

>t (¥ = 7)
R?= =4 A D.1
S 6F ) (-1
where n is the number of data points, y; is the value of y; predicted by the model, and § is
the mean value of y. To guard against the inclusion of unnecessary variables, the adjusted

R? values (R2) are used:

E'sl

=<"—"1)R2+1—("'1) (D.2)

n—p n—p
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where p is the number of regressor variables.

The fitting algorithm proceeded as follows: The power-law intensity relations were

mapped onto the three section linear equation:

Y =Co + C1X + Co(X —a)y + Ca(X — by + Cu X

where
(X-a)y=X—-a for z>a
= 0 otherwise
(X-06)+=X-b for z>0b
= 0 otherwise
and

Y = In(Intensity)

X = In(q)
e = In(q1)
b = In(g)

(D.3a)

(D.3b)

(D.3c)

(D.3d)
(D.3e)
(D.3f)

(D.3g)

with g; and go being the first and second break points respectively and X, = 0 or 1 de-

pending on which of the two opposite angles the data point is associated with. Values of a

and b were varied and for each combination of ¢ and b fit parameters were estimated and

R? was computed, giving a two-dimensional data set of R2 values, as shown in figure D.1.

From this data set, a point of maximum R? was determined.

Having obtained the a and b values which gave the best RZ, values for the two breakpoints

were calculated, and power-law exponents were determined from the estimates of the fit

parameters C, C2 and Cj.
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Figure D.1: Typical R? distribution as a function of a and 6. The maximum on this surface

indicates the location of the two breakpoints.

D.2 Model Fitting

The fitting algorithm used for the Sigmoidal-Gradient and Power-Law models were designed

specifically to compare these two models. To ensure an accurate comparison, the form of

the fitting for the two models was made as similar as possible. The fit equations for the two

models followed the forms:

Y = Co + Cy, X + Cs, Xs,

where
Y = In(Ig’)
Xs = q2
-st = (Xs —b)+
and

Y =0Co +Cp Xp +Cpy Xp,
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(D.4b)
(D.dce)

(D.4d)

{D.5a)



where

Y = In(Iq) (D.5b)
X, = In(q) (D.5c)
Xp = (Xp—0b)s (D.5d)

with (X; — b)4+ and (X, — b)+ being defined in the same manner as in equation D.Jc. In
this way, a comparison of R? for the two models gave a good indication of which model best
described the data.

In addition, the segmented linear equation allows for the testing of combined models

such as:

Y = C’o + C“X_gl + Cp-_’lY 2 (D-ﬁ)

The four possible models based on combinations of X; and X, could then be compared,

using calculated R? values, to determine which best describes the data.
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Famous Last Words:

Of making many books there is no end, and
much study wearies the body.
Now all has been heard; here is the conclu-
sion of the matter: Fear God and keep his
commandments for this is the whole duty
of man.

Ecclesiastes 12:12,13
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