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Abstract

As the need to support larger numbers of subscribers with higher-quality, wire-
less services increases, wireless technology must improve to keep up with the de-
mand. Performance-enhancing techniques which historically have been too costly to
implement are now gaining favour as digital hardware is becoming ever cheaper and
more powerful. Signal-to-noise ratio (SNR) estimation and signal-to-impairment ratio
(SIR) estimation algorithms are examples of techniques that may be used to improve
receiver functions such as diversity combining and synchronization. Historically, the
total signal-plus-noise power or the total signal-plus-impairment power often has been
used in favour of the SNR or the SIR since estimators of the total power are easier to
implement. Today, inexpensive, powerful digital hardware makes the implementation
of SNR or SIR estimators practical so that the performance improvement effected by
their use may be realized. In this thesis, various applications that may benefit from
use of SNR or SIR estimation are identified.

SNR estimation is studied in the context of BPSK signaling in the real AWGN
channel, and 8-PSK signaling in the complex AWGN channel. Several published SNR
estimators are derived and adapted to the assumed system model. The performances
of the SNR estimators are quantitatively compared by the analysis of SNR estimates
produced by computer simulation, and a theoretical bound is derived for both the
real and complex AWGN channels.

SIR estimation in wireless channels is studied by the statistical analysis of SIR
estimates generated by the computer simulation of 7 /4-DQPSK-modulated signals in
five “typical” mobile radio channels. A fading simulator that may be used to model
fading processes with continuous Doppler and delay profiles is described and verified.
Several SIR estimators are derived; some of the estimators are unmodified published
algorithms, others are published algorithms adapted to the assumed system model,

and others are original.

A few selected SIR estimators are used in the simulation of a postdetection, selec-
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tion diversity combining application. The relative improvement in the performances
of the various diversity combiner implementations due to the incorporation of the SIR
estimators is compared. The simulated BER performances of “traditional™ selection
combiners using the total signal-plus-impairment power are provided for reference,
and a simulated lower bound on the BER of postdetection selection diversity com-

bining is also provided.

1i



TO
My Parents.

il



Acknowledgments

I sincerely wish to thank my supervisor, Dr. Norman C. Beaulieu, for his guid-
ance, support, and patience, particularly considering the challenges associated with
supervising an off-campus student. Financial support is gratefully acknowledged from
NSERC Grants STR0181058 and OGP0003986; the Telecommunications Research In-
stitute of Ontario (TRIO); and the Ontario Ministry of Economic Development, Trade
and Tourism: Technology and Training Development Ontario/Singapore Collabora-
tive Research Grant. The staff of the Electrical and Computer Engineering and TRIO
offices are thanked for their administrative help. Thanks also to Dr. David Nairn for
kindly granting me access to the VLSI lab computer resources.

Thanks are given to R. Matzner of the Federal Armed Forces University Munich
in Neubiberg, Germany; B. Shah of the Jet Propulsion Laboratory in Pasadena, Cali-
fornia; P. Hoeher of the Institute for Communications Technology, German Aerospace
Research Establishment, D-8031 Oberpfaffenhofen, Germany; and A. L. Brandao of
the Department of Electronic and Electrical Engineering, The University of Leeds,
Leeds, U.K. for their cooperation and for sharing their resources on this topic.

Thanks to MPR Teltech Ltd. (R.L.P.!) for granting me a leave of absence to pursue
a master’s degree, even though I was called back to work before I could complete my
thesis. Thanks to B.C. Telecom, the former owners of the now defunct MPR Teltech
Ltd., for divesting MPR and for laying off all of the members of the Rural Radio
team (of which I was a part), thus providing me the opportunity to work on my
thesis full-time with severance pay.

I would like to thank Dr. Andrew S. Wright and Mr. Laurence J. Wallace of
DATUM Telegraphic, Inc. in Vancouver, B.C. for providing me with new employment,
and for their patience and encouragement in the final months of my thesis.

Thanks to Aapool Biman and Chris Tan who were vital links to Queen’s as I

completed my thesis several thousands of kilometres away in B.C. I am also grateful

1Rest In Pieces.

iv



R e d B LR L ]

for Chris’ help with setting up my ETEX text processing facilities on my PC.

Thanks to Glen Rempel for his technical insights and advice. I can empathize
with your situation—completing your thesis part-time while working full-time!—I
hope you celebrate a successful defence someday soon.

To my running partners (Chris Tan, Alex Seyoum, Joubin Karimi, and Leo
Cordeau), work-out partners, and soccer and hockey teammates, [ hope you always
manage to balance work with a healthy lifestyle.

Best of luck to all of those I got to know in Kingston with whom I hope to
stay in touch: Captain Aapool¢oyuz Biman, “Bouncing” Bo Tomiuk, Chris Tan,
Dave “Pernacky” Paranchych, Joubin F. Karimi, Sasha Verma, Oguz Sunay, Radde
Majeed, and the three “paesanos”: Alex Seyoum, Andrew Parolin, and Gino Labinaz.
A special note of appreciation goes to the MacDonald family who helped to make my
stay in Kingston feel like home.

Thanks to all of my patient friends in B.C. who provided encouragement: Dave
and Sun Mee Romalo, Raphael and Esther Smith, Bruce and Michiko Dow, Dave
Neufeld, Jeff Chesko, Robert Weaver, Tony and Erika Palcich, Dave Mathur, Ali
Motamedi, and Forrest Stokstad.

[ also appreciate the encouragement from all of my former MPR colleagues, espe-
cially Bob Nicholson, Bob Wilson, Mario Vanin, Ron Scott, Dennis Rosenauer, Martin
Katz, Lee Vishloff, Don Heywood, Hong Liang Zhang, Kartik Mahajan, Cuong Lai,
Soon Shin, Bill Warner, Randy Chapman, Wayne Tressel, Amiee Chan, Paul Thiel,
Steve Bennett, Elsa Willoner, Qiang Wang, and Charles Jeffrey.

I especially would like to thank my colleague and friend, Dave Romalo, who pro-
vided me with much technical assistance, advice on writing style, and moral support,
and with whom I shared the experiences of the MPR divestiture and layoffs, and the
subsequent search for employment.

Last, but certainly not least, I would like to thank my mother, father, sister and

brother for their love, encouragement, and support.



Contents

1 Introduction 1
1.1 Background ... .. ....... ... ... . .. 1
1.2 Applications which may Benefit from Knowledge of the SNR or SIR . 2

1.2.1 Resource Management Algorithms. . . . ... .. .. ... .. 2
1.2.2 Diversity Combining . . . ... ... .. .. ... ..., 3
123 Equalization. . . .. ... ... ... .. ... ... ... 4
1.2.4 Synchronization . . . . . . ... ... ... .. ... ... 3
1.2.5 Adaptive Arrays . . .. . ... .. e 3
1.2.6 Viterbi Equalization and Decoding . . . ... ... ... ... 6
1.3 Literature Review . . . . . . .. ... ... . Lo oL, 6
1.4 Contributions of the Thesis . . . . .. ... .. ... ......... 10
1.5 ThesisOutline. . . . . . . . . .. . . it it iee e 13

2 SNR Estimation in the AWGN Channel 15

2.1 Problem Definition . . . . ... .. ... ... . ... ... ... 15
2.1.1 SNR Estimation by the Physical Separation of Signal and Noise 16
2.1.2 SNR Estimation using a Reference Channel . ... ... ... 17
2.1.3 Data-Aided SNR Estimation . . . . . ... ........... 18
2.1.4 SNR Estimation based on Statistics of the Received Signal . . 19

22 SystemModel . . ... ... ... ... e 20

2.3 SNR Estimators under Study . . ... ... .............. 27
2.3.1 The Split-Symbol Moments Estimator (SSME) . . . . ... .. 28
2.3.2 The Maximum-Likelihood SNR Estimator . . ... ... ... 40
2.3.3 The Squared Signal-to-Noise Variance (SNV) Estimator. . . . 49
2.3.4 The Second- and Fourth-Order Moments (M, M,) Estimator . 54
2.3.5 The Signal-to-Variation Ratio (SVR) Estimator . . . . . ... 58

2.4 Other SNR Estimators of Interest but not Included in this Study .. 62
2.4.1 Use of Limiters for EstimatingSNR . . . . . . ... ...... 62
2.4.2 Autocorrelation Method of SNR Estimation . ... ... ... 63

vi



2.4.3 Implicit Methods of SNR Estimation .. ............ 67

2.5 Measures of Estimator Performance . . . . . . ... ... ....... 67
2.5.1 Tests Based on Sample Statistics .. .............. 63
2.5.2 The Cramér-RaoBound (CRB) . ... ... ... ....... 69

26 SimulationResults . .. ... ... .. ... . ... L. 75
2.6.1 Performance Results for BPSK in Real AWGN . . . . ... .. 78
2.6.2 Performance Results for 8-PSK in Complex AWGN . ... .. 87
2.6.3 Additional Results . . ... ... ............. ... 91

2.7 Implementation Issues . . . . ... ... .. ... .. ... ... ... 99

2.8 SUMMALY . . v v o o et e e e e e e e et e e e e e e 100
2.8.1 Comments on Specific Estimators . . . ... .......... 102

SIR Estimation in Mobile Radio Channels 106

3.1 Problem Definition . .. ... ... ... .. ... . . L. 106

3.2 Environment Assumptions . . . . . . . . .. ...t e e 110

3.3 A Brief Survey of Potential Fading Simulators . . . .. ... ... .. 114

3.4 Implementation of the Monte Carlo Method .. ... ... ... ... 117
3.4.1 Monte Carlo Method for Continuous-Time Signals . . . . . . . 117
3.4.2 Discrete-Time Representation of the Faded Signal . . . . . .. 118
3.4.3 Generation of the Fading Channel Parameters . . . . ... .. 120

3.5 Verification of the Monte Carlo Method . . . . . .. ... ... .... 122
3.5.1 Verification of the Fading Parameters used in the Monte Carlo

Method . ... ... . . . e 122
3.5.2 Verification of the Discrete, Monte Carlo-Based Fading Simu-

lator Modeling Flat-Fading Channels . . .. ... .. .. ... 122
3.5.3 The Correlation between Two Tones on the Frequency-Selective

Fading Channel . . . . . .. ... ... ... ... . ...... 132

36 SystemModels . ... .... .. ... ... . .. . . ... 134
3.6.1 General SystemModel . ... ... ........... .. ... 134
3.6.2 Five Mobile Radio Test Channels . . .............. 139

3.7 SIR Estimatorsunder Study . . . ... ... .............. 151
3.7.1 The Second- and Fourth-Order Moments (M;M,) Estimator . 151
3.7.2 The Signal-to-Variation Ratio (SVR) Estimator . .. ... .. 153
3.7.3 The Absolute Difference of Absolute I and Absolute Q (ADIQ)

Estimator . ... ... .. . ... i e 154
3.7.4 The Maximum-Likelihood Estimator for Post-MF (Pre-DD) Sam-

ples. . . . . e e 156
3.7.5 The Maximum-Likelihood Estimator for Post-DD Samples . . 160

vii



3.7.6 The Pseudo-Maximum-Likelihood (PML) Estimator . . . . . .
3.7.7 The Signal-to-Impairment Variance (SIV) Estimator ... ..

164

3.7.8 The Modified Signal-to-Impairment Variance (MSIV) Estimator 171

3.8 Measures of Estimator Performance . . . . . .. .. ... ... ...
3.9 Simulation Results . .. .. .. ... ... ...
3.9.1 Casel: Complex AWGN Channel . ... ............
3.9.2 Case2: Fast, Flat Fading Channel . . . . .. ... .......

3.9.3 Case 3: Slow, Frequency-Selective Fading Channel . . . . . . .
3.9.4 Case 4: Single Cochannel Interferer . . . . . ... .. .....
3.9.5 Case 5: A “Typical” Mobile Radio Channel ... .......
3.9.6 Composite Plots of SIR/BER Correlation for each Estimator .

3.10 SUMMATY . . v v v e o e e e e e e e e e e e e e e e e e

Application of SIR Estimation to Selection Diversity Combining

4.1 Motivation and Description of Application . .. ............
4.2 Verification of Selection Combiner . . . . . .. ... .. ... .....
4.3 SimulationResults . .. .. ... ... ... ... .. ...
4.4 BER Performance Summary . . . . . . .« .« . ittt oo

Conclusions
5.1 SUMMATY . . . . vt oo vttt e e e e e e e e e e e e e
5.2 Suggestions for Further Study . . . . ... ... .. ... ... ....

Notes on Probability of Error and Noise Power Spectral Density
A.l System Description and Properties . . ... ..............
A.2 Probability of Error for a Single, Binary

Transmitted Symbol in Complex AWGN . . . ... ..........
A.3 Probability of Error for a Single, Binary

Transmitted Symbol in Real AWGN . .. ... .. ..........
A4 Summaryof MainPoints . . . . .. ... ... ... Lo o L

178

261
264

Design of Root-Raised Cosine (RRC) Filter Based on the Frequency

Sampling Technique

The Cramér-Rao Bound (CRB)

D Confidence Interval for the Variance of an Estimator

viil

267

273

276



E Some Basic Fading Terms and Concepts 281
E.l Amplitude Distribution . . . .. ... ... ... ... .00 282
E.2 Frequency Dispersion . . . . .. ... .. ... ... ...c....... 282
E3 TimeDispersion. . . . . . ... ... .. ... ... ... 285

F A Brief Description of 7/4-DQPSK Modulation 289



O e e g

List of Figures

2.1 Discrete, baseband-equivalent, bandlimited model of coherent PSK in
AWGN. . . e e e e e e e 20

2.2 Baseband-equivalent model of wideband BPSK signaling in AWGN. . 29
2.3 Performance of the SNR estimator described in [1]: (a) measured aver-

age power as a function of SNR/(SNR+1), {b) measured average power

asafunctionof SNR. . . . . ... ... ... .. ... 64
2.4 Ratio of biased CRB (based on bias of ML TxDA estimator) to unbi-

ased CRB. . . . . . . . . e e 72
2.5 Comparison of CRB with theoretical variance of reduced-bias ML TxDA

() K=64,(b) K =1024. . . . o o oot 74

2.6 Comparison of theoretical and simulated probability of error curves for
coherent BPSK in real AWGN and coherent 8PSK in complex AWGN. 76
2.7 Normalized bias with BPSK signals in real AWGN with N, = 16 and

(2) Noym = 1024, (b) Ngym =64.. . . . . . . ... ... ... .. .. 79
2.8 Normalized variance with BPSK signals in real AWGN with NV, = 16

and (a) Ngym = 1024, (b) Nym =64. . . . . . . ... ... .. .. 80
2.9 Normalized MSE with BPSK signals in real AWGN with N = 16 and

(a) Nym = 1024, (b) Ngyym =64. . . . . . . . .. .. oL 81
2.10 Normalized bias with BPSK signals in real AWGN with N = 1 and

(2) Nym = 1024, (b) Ngym =64. . . . . . . . .. ... o L. 83
2.11 Normalized variance with BPSK signals in real AWGN with N, = 1

and (a) Nyym = 1024, (b) Nym =64. . . . ... .. e e e e e 84
2.12 Normalized MSE with BPSK signals in real AWGN with N = 1 and

(2) Noym = 1024, (b) Ngym =64. . . . . . ... .. ... ... .. .. 85
2.13 Normalized bias with 8-PSK signals in complex AWGN with Ny, = 64

and (a) N =16, (b) Ns = 1. . . . . . . .o i i i oo 88
2.14 Normalized variance with 8-PSK signals in complex AWGN with Nyym = 64

and (a) N =16, (b) Ns=1. . . . . . ... i L. 89
2.15 Normalized MSE with 8-PSK signals in complex AWGN with Ny, = 64

and (a) N =16, (b) N =1. . . . . . . .o o il 90



2.16 Normalized bias in wideband channel with N, = 16 and (a) :Vyym = 64.

(b) Nyym =1024. . . . . . . .. 93
2.17 (a) Normalized variance in wideband channel with ¥, = 16, (b) Nor-
malized MSE in wideband channel with N =16. . . ... ... ... 94

2.18 Normalized MSE of SSME, in wideband channel with N, = 4 com-
pared with (a) MSE of ML RxDA and CRB (N =4), (b) CRB (N =1). 95
2.19 Comparison of one-sample per symbol pre-MF CRB to post-MF CRB. 98

3.1 Block diagram of system illustrating generation of faded signal only. . 118
3.2 Comparison of plots of cdf’s generated from simulated samples with
theoretical plots of (a) Fy(8), (b) F.(v), and (c) Fr(7). . . ... ... 123
3.3 Representative samples of 125 msec of (a) envelope fluctuations and
(b) phase fluctuations in a flat-fading channel with vmax = 100 Hz and
M=40echos.. . . . ... ... .. o 125
3.4 Comparison of the theoretical Rayleigh cdf with the cdf of simulated
envelope samples for (a) M =6, (b) M =10, (c) M =20, (d) M =40
echos. . . . L L e e e e e e e e e e e 127
3.5 Comparison of the theoretical uniform cdf with the cdf of simulated
phase samples for (a) M = 6, (b) M =10, (¢) M =20, (d) M =40
echos. . . . .. .. e e e e 128
3.6 Comparison of the theoretical LCR with the LCR of simulated envelope
samples for (a) M = 6, (b) M =10, (c) M = 20, (d) M = 40 echos. . 129
3.7 Comparison of the theoretical average duration of fades with the av-
erage duration of fades of simulated envelope samples for (a) M = 6,
(b)) M =10, (c) M =20,(d) M =40echos. . . ... ... ...... 130
3.8 Comparison of the theoretical autocorrelation with the autocorrela-
tion of the faded samples for (a) M = 6, (b) M = 10, (c¢) M = 20,
(d) M =40echos. . ....... ... 131
3.9 Comparison of the theoretical correlation of two tones with the sim-
ulated correlation of two tones for (a) Trms = 3 us, (b) Tems = 6 us,

(€) Tems =9 s, (d) Tems =12 s, . . . L ool i i o oo 133
3.10 Block diagram of end-to-end system showing desired faded signal, faded
CCLLand AWGN. . . . . .. .. .. i i 134

3.11 “Clear sky” reference signal (a) samples after MF, (b) symbol centres
before DD, (c) symbol centres after DD, (d) post-DD symbols with
modulationremoved. . . . ... ... . L L oo, 140

3.12 Received signal for Case 1 with S/N = 18 dB (a) samples after MF,

(b) symbol centres before DD, (c) symbol centres after DD, (d) post-
DD symbols with modulation removed. . . . . . .. ... ... ... 141

xi



3.13

3.14

3.15

3.16

3.17

3.23

3.24

3.25

Envelope of received signal due to Rayleigh fading in the Case 2B
channel over an interval of 150 symbols (6.18 us). This amplitude
fluctuation is replayed for the generation of each SIR estimate. . . . . 143
Received signal for Case 2 with vpae = 100 Hz and S/NV = 40 dB
(2) samples after MF, (b) symbol centres before DD, (c) symbol centres
after DD, (d) post-DD symbols with modulation removed. . . . . .. 144
Received signal for Case 3 with 7rms = 9 us and S/N = oo (a) samples
after MF, (b) symbol centres before DD, (c) symbol centres after DD,
(d) post-DD symbols with modulation removed. . . . .. .. ... .. 146
Received signal for Case 4 with S/C = 12 dB and S/N = oo (2) samples
after MF, (b) symbol centres before DD, (c) symbol centres after DD,
(d) post-DD symbols with modulation removed. . . . .. .. ... .. 147
Envelope of received signal due to Rayleigh fading in the Case 5 channel
over an interval of 150 symbols (6.18 us). This amplitude fluctuation
is replayed for the generation of each SIR estimate. . . . ... .. .. 149
Received signal for Case 5 with vmax = 100 Hz, 7yms =3 s, S/C =18 dB
and S/N = 15 dB (a) samples after MF', (b} symbol centres before DD,
(c) symbol centres after DD, (d) post-DD symbols with modulation re-

moved. . . . ... e e e e e e e e e e e e e e e 150
Illustration identifying the components of the post-DD samples used
in (a) SIV, and (b) MSIV SIR estimation. . .. .. .......... 177
BER as a function of SNR in Case 1 channel. . ... ... ...... 181
Normalized bias of SIR estimates generated by (a) SVR, M, ALy, PML,
and ADIQ estimation, (b) SIV, MSIV, and DDML estimation in Case 1
channel. . . . . . . . . . e e e e 183
Normalized bias of SIR estimates generated by ML estimation (at the
input to the MF) in Case 1 channel.. . . . ... .. ... ....... 184
Normalized variance of SIR estimates generated by (a) SVR, MMy,

PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estima-
tion in Case 1 channel. The post-MF CRB is shown in both plots for
reference. . . . . . . i e e e e e e e e e e e e e e e 185
Normalized variance of SIR estimates generated by ML estimation (at
the input to the MF) in Case 1 channel. The variance curves for the
SIV estimators and the pre- and post-MF CRB’s are shown for reference.186
Normalized MSE of SIR estimates generated by (a) SVR, MM, PML,
ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in
Case 1 channel. The post-MF CRB is shown in both plots for reference.187

xii



3.26

3.27

3.28

3.29
3.30

3.31

3.32
3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

Normalized MSE of SIR estimates generated by ML estimation (at the
input to the MF) in Case 1 channel. The MSE curves for the SIV
estimators and the pre- and post-MF CRB’s are shown for reference.

Correlation between mean estimated SIR (SNR) and probability of bit
error (BER) in Case 1 channel for SVR, MMy, PML, ADIQ, SIV,
MSIV, DDML, and ML estimation. . . . ... ... ..........
Comparison of normalized MSE'’s of ideal M;M; and SVR estimators

to those of compromise M, M, and SVR estimators in Case 1 channel.

BER as a function of Doppler spread in Case 2A channel. . . . . . . .
Normalized variance of SIR estimates generated by SIV, MSIV, DDML,
and ADIQ estimation in Case 2A chapnel. . .. .. .. ... ... ..
Correlation between mean estimated SIR and BER in Case 2A channel
for SIV, MSIV, DDML, and ADIQ estimation. . . . ... ... ....
BER as a function of SNR in Case 2B channel.. . . . . . ... .. ..
Normalized variance of SIR estimates generated by SIV, MSIV, DDML,
and ADIQ estimation in Case 2B channel. . . . ... ... ... ...
Correlation between mean estimated SIR and BER in Case 2B channel
for SIV, MSIV, DDML, and ADIQ estimation. . . . ... ... ....
BER as a function of delay spread in Case 3 channel. . . . ... ...
Normalized variance of SIR estimates generated by (a) SVR, MM,
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estima-
tionin Case 3channel. . . . . .. .. ... ... ... ... .. ...
Correlation between mean estimated SIR and BER in Case 3 channel
for SVR, MMy, PML, ADIQ, SIV, MSIV, and DDML estimation. . .
BER as a function of desired signal power to CCI power in Case 4
chanpel. . . . ... . . ... e e
Normalized bias of SIR estimates generated by (a) SVR, M, M,, PML,
and ADIQ estimation, (b) SIV, MSIV, and DDML estimation in Case 4
channel. . . . . . . . . . e e e
Normalized variance of SIR estimates generated by (a) SVR, M, M,
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estima-
tionin Case 4 channel. . . . . . ... ... ... ... .. .. .. ...
Normalized MSE of SIR estimates generated by (a) SVR, M, My, PML,
ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in
Casedchannel. . . . .. . ... . .. . .. ... ..
Correlation between mean estimated SIR and BER in Case 4 channel
for SVR, M,M,, PML, ADIQ, SIV, MSIV, and DDML estimation. . .
BER as a function of SNR in Case 5 channel. . .. ... .......

xiii

193
194

196

197
200

201

202
204

210

211

212



o r——

3.44

3.45

3.46

3.47

3.48

3.49

3.53

3.54

3.55

3.56

4.1
4.2

4.3

4.4

Normalized variance of SIR estimates generated by (a) SVR, MMy,
PML, ADIQ, and SIV estimation, {b) SIV, MSIV, and DDML estima-
tioninCase S5chanmel. . . ... ... ... . ... ... .......
Correlation between mean estimated SIR and BER in Case 5 channel
for SVR, M, My, PML, ADIQ, SIV, MSIV, and DDML estimation. . .
Composite plot of correlation between mean estimated SIR and BER
for SVRestimation.. . . . . ... .. .. ... ... ... ..
Composite plot of correlation between mean estimated SIR and BER
for MoMy estimation. . . . . . . . . ... .. e e e e .
Composite plot of correlation between mean estimated SIR and BER
for PML RxDA estimation. . ... ... ... .............
Composite plot of correlation between mean estimated SIR and BER
for PML TxDA estimation. . ... ... ................
Composite plot of correlation between mean estimated SIR and BER
for SIV RxDA estimation. . ... . ... ... ... ..........
Composite plot of correlation between mean estimated SIR and BER
for SIV TxDA estimation. . ... .. ... e e e e e e e e e e e
Composite plot of correlation between mean estimated SIR and BER
for MSIV RxDA estimation. . ... ... ... .............
Composite plot of correlation between mean estimated SIR and BER
for MSIV TxDA estimation. . .. .. .. ... ... ..........
Composite plot of correlation between mean estimated SIR and BER
for DDML RxDA estimation. . . . ... ................
Composite plot of correlation between mean estimated SIR and BER
for DDML TxDA estimation. . ... .. ... .............
Composite plot of correlation between mean estimated SIR and BER

for ADIQ estimation. . . . . .. . . ... ... ... .,

Simplified block diagram of postdetection selection diversity combiner.

Verification of postdetection selection diversity combiner in a slow,
Rayleigh fading channel using numerical resultsof [2]. . . . . . . ...
BER performance of selection diversity combining as a function of
SNR in a flat fading channel with vpnax = 100 Hz, S/C = 14 dB,
and N,ym = 30 using (a) SIV, MSIV, and DDML SIR estimation, and
(b) SIV, ADIQ, AVGP, and INSTP estimation. ... .........
BER performance of selection diversity combining as a function of
SNR in a flat fading channel with vpa = 100 Hz, S/C = 14 dB,
and Nyym = 10 using (a) SIV, MSIV, and DDML SIR estimation, and
(b) SIV, ADIQ, AVGP, and INSTP estimation. . .. ... ... ...

Xiv

241



E.3
E.4

F.1

F.3

F.4

F.5

F.6

F.7

F.8

BER performance of selection diversity combining as a function of SNR
in a frequency-selective fading channel with 7oms = 3 s, Vmax = 40 Hz,
S/C = 20 dB, and Nsym = 10 using (a) SIV, MSIV, and DDML SIR
estimation, and (b) SIV, ADIQ, AVGP, and INSTP estimation.

PSD of (2) bandpass white Gaussian noise, (b) lowpass-equivalent com-
plex Gaussian noise, and (c) lowpass-equivalent real Gaussian noise. .

Magnitude response of RRC filter with N, = 16, L = 128 taps, and
o 3 1185 e
Impulse response of RRC FIR filter with N, = 16, L = 128 taps,
and o = 1 (a) before application of rectangular window, (b) after
application of rectangular window. . . .. ... .. ... .......
Self-convolution of RRC impulse response to yield full raised-cosine
impulseresponse. . . . . .. ... .. e

Typical received signal strength variations due to motion of a receiver
through a standing wave pattern. The rms signal level s 0dB. . . . .
Jakes Doppler power spectrum normalized to maximum Doppler fre-
QUENCY, Umaxe « « « = + + ¢ o« o+ o e s o m ot e e e e e e e e
Exponential delay power spectrum with Tme =3pus. . . . . . . . . ..
Correlation of two tones separated by a frequency, Af, in a channel
characterized by an exponential delay profile with 7 = 3 us.

Signal constellation for conventional QPSK or DQPSK using NRZ sig-
nals in an infinite-bandwidth channel. . . . . .. ... ... ... ...
Signal constellation for conventional QPSK or DQPSK using pseudo-
random pulses shaped by raised-cosine filtering. . . ... ... . ...
Eye diagram of in-phase channel for conventional QPSK or DQPSK
using pseudo-random pulses shaped by raised-cosine filtering. . . . . .
Eye diagram of quadrature channel for conventional QPSK or DQPSK
using pseudo-random pulses shaped by raised-cosine filtering. . . . . .
Signal constellation for m/4-DQPSK using NRZ signals in an infinite
bandwidth channel. . . . . . . ... ... ... oo,
Signal constellation for 7 /4-DQPSK before differential-detection using
pseudo-random pulses shaped by raised-cosine filtering. . . . .. ...
Eye diagram of in-phase chanael for 7/4-DQPSK before differential-

243

I\
(=]
(31}

294

detection using pseudo-random pulses shaped by raised-cosine filtering. 295

Eye diagram of quadrature channel for 7/4-DQPSK before differential-

detection using pseudo-random pulses shaped by raised-cosine filtering. 295

Xv



F.9 Signal constellation for 7/4-DQPSK after differential-detection using
pseudo-random pulses shaped by raised-cosine filtering. . . . .. ...

F.10 Eye diagram of in-phase channel for v/4-DQPSK after differential-
detection using pseudo-random pulses shaped by raised-cosine filtering.

F.11 Eye diagram of quadrature channel for 7/4-DQPSK after differential-
detection using pseudo-random pulses shaped by raised-cosine filtering.

T — L AFRR Y e ot

Xvi

o
©
(V7]

[SV]
[te}
o



List of Tables

F.l
F.2
F.3

Some system characteristics specified by the IS-54 digital cellular stan-

Summary of channel characteristics for the five types of test channels. 151
The effect of a single bit error (at n = 2) on differentially-encoded
symbols. . . . .. .. e 159

Mapping of information bit-pairs to absolute phases for coherent QPSK.289
Mapping of information bit-pairs to differential phases for DQPSK. . 290
Mapping of information bit-pairs to differential phases for 7/4-DQPSK.293



Chapter 1

Introduction

1.1 Background

Digital wireless technology has been incorporated into public telephony systems in
many parts of the world, and it is poised to displace the analog cellular technology
(AMPS) that has dominated the North American wireless telephone market for many
years. The digital technology will deliver next to land-line voice quality and increased
subscriber capacity. Every technical advantage is exploited to achieve the best bit
error rate (BER) performance and the highest capacity with the least amount of
power and expense. Complexity is less of an issue today than it has been in the past
with the advent of cheap and powerful digital signal processor (DSP) and gate array
devices, so that algorithms may be implemented in forms that are closer to ideal
rather than simplified forms which typically exhibit inferior performance.

One example of a function that historically has been considered too costly to
implement is the measurement of the signal-to-noise power ratio (SNR). Many algo-
rithms in communications use the SNR as an input parameter but, in practice, the
total signal-plus-noise power has been used instead since it is easier to measure. For
wireless channels, BER performance depends not only on the SNR but also on other
impairments such as fast, frequency-selective fading and cochannel interference (CCI)

so that it is more appropriate to consider a signal-to-impairment power ratio (SIR).



1.2 Applications which may Benefit from Knowl-
edge of the SNR or SIR

In many applications, the total received power is estimated for simplicity rather than
the SNR or SIR. Goldsmith et al [3] discuss power measurement for time-varying
cellular channels, and point out that real-time measurement of the received power
is required for operations such as power control, handoff, and dynamic channel! al-
location. Examples of applications that use total power or received signal strength
estimates are described in [4, 5, 6, 7). In fact, the use of SNR or SIR estimates can
improve the performances of the signal-strength-based algorithms used in these ap-
plications. Some references are listed below which describe applications that ideally

require knowledge of the SNR or SIR.

1.2.1 Resource Management Algorithms

Measurement of the SIR is of great interest today as wireless service providers are
finding that cochannel interference is the greatest factor limiting the extent to which
cell sizes can be reduced in an effort to increase frequency re-use and system capacity
(8, 9, 10, 11]. For this reason, methods to measure the SIR (where the impairment,
in this case, is mainly CCI) are attracting much attention for use in resource man-

agement algorithms such as those used for handoff, dynamic channel allocation, and

power control.
Handoff and Adaptive Dynamic Channel Allocation

The two concepts of handoff (or handover) and adaptive dynamic channel alloca-
tion (DCA) are closely related. Handoff refers to the event that occurs when an
established link between a mobile unit and a base station is “seamlessly” broken and
re-established, usually with another base station. A handoff event is typically caused
by the physical movement of the mobile unit from one cell coverage area to another.

Adaptive DCA refers to a dynamic channel allocation strategy that is adaptive both

[3]



to changing traffic conditions and interference levels.

Beck and Panzer (8] propose an algorithm called DYNINF which can be used for
both handoff and DCA. The operation of the algorithm depends explicitly on the
ability to measure the signal-to-interference level; however, no method to measure this
quantity is offered. Hamabe et ol [12] and Andersson et al [13] also present channel
allocation strategies that require measurement of the SIR. In [13], the link quality is
monitored by checking to see that known preamble bits are correctly detected by the
receiver.

Other handoff and channel assignment schemes are discussed in {14, 135, 16, 17, 18].

Power Control

Zander [9] indicates that power control is important “to adjust the power of each
transmitter for a given channel allocation such that the interference levels at the
receiver locations are minimized.” He points out that, in practice, power control
algorithms typically keep the total received power at a constant level; however, he adds
that keeping the signal-to-interference power ratio constant instead could improve
system capacity. This view is supported by Jalali and Mermelstein in [19]. Zander
admits that a practical implementation of the power control algorithm proposed in
[9] would be difficult since the path gains of the desired signal and interferers are,
in general, unknown. A means to estimate the SIR would facilitate the practical
implementation of this power control algorithm.

Other relevant papers on power control include [20, 21, 22].

1.2.2 Diversity Combining

The classic pre-detection maximal-ratio combiner is described in many sources (see,
for example, [23, 24, 25]). This combiner forms the weighted sum of two or more
diversity branches where the weights are proportional to the amplitude of the signal,

and inversely proportional to the noise variance. The weights for this diversity scheme



are often implemented using the signal-plus-noise envelope as opposed to the signal
amplitude-to-noise variance ratio [2].

If an algorithm were available to estimate the signal and noise powers separately,
the desired weightings for each of the branches of the maximal-ratio combiner could
be formed trivially as the ratio of the square root of the signal power to the noise
power. If the SNR is determined as an inseparable parameter, p = S/N, then the
signal power and noise power could be computed by also estimating the total received
power, P = S + N, so that simultaneous equations for p and P may be solved for S
and N to yield N = P/(1+p) and § = P — N. The branch weights are then formed
trivially as V'S /N.

In [26], Adachi presents an optimal postdetection diversity combiner that weights
the differentially-detected symbols of each of the branches based on a formula which
depends explicitly on both the SNR. and the signal-to-interference ratio. The imple-
mentation of this formula actually requires two separate estimators—one to measure
the SNR, the other to measure the signal-to-interference ratio.

A postdetection selection diversity combiner is described by Hladik, Chennakeshu,
and Saulnier in [27] where the SIR of each diversity branch is measured on a symbol-
by-symbol basis. Each symbol interval, the differentially-detected symbol correspond-
ing to the branch with the largest instantaneous SIR is the one that is presented to
the decision device. The specific SIR estimator is not given in any detail in [27], but
is simply described as an approximation to the maximum-likelihood (ML) estimate
of the SIR. It is highly probable that the SIR estimator used in [27] is the same as
the SIR estimator described by Chennakeshu and Saulnier in Appendix II of [28].

1.2.3 Equalization

Balaban and Corrales [29] describe an equalizer for frequency-selective fading chan-
nels. The tap update algorithm of the equalizer requires both an estimate of the

channel impulse response and an estimate of the SNR, thus illustrating another ap-



plication requiring some means to estimate the SNR. Note that channel impulse

response estimation [30, 31] is a separate topic and is not considered in this thesis.

1.2.4 Synchronization

A maximum likelihood estimator of the bit timing is presented by Wintz and Luecke
in equation (10) of [32] which is a function of the noise variance. For additive white
Gaussian noise (AWGN), the noise variance drops from the estimator expression as
shown by equation (11) of [32]. However, in time-varying channels. the noise variance
cannot be assumed to be constant so it, or the SNR, must be estimated for optimal
performance. Though a noise power estimator is required here, an SNR estimator

could be used together with a total received power estimator to derive the noise

Chennakeshu and Saulnier [28] present a method to achieve timing and frequency
synchronization by maximizing the SIR with respect to the timing and frequency
offset. An approximation to a maximum likelihood SIR algorithm that can be used

to implement this synchronization scheme is proposed in Appendix II of [28].

1.2.5 Adaptive Arrays

Adaptive arrays are used in wireless communications systems to cancel interference
and mitigate fading effects by appropriately weighting and combining the output of
two or more antennas. The optimal weight equation is given by Winters as (12) of
[33] or, equivalently, (9) of [34], and is found to be a function of the noise variance.
Again, using a technique such as that described in Section 1.2.2 an estimate of the

noise power may be found from estimates of the SNR and the total received signal

power.
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1.2.6 Viterbi Equalization and Decoding

The path metric used in Viterbi equalization and decoding is shown by Hagenauer and
Hoeher [35] to depend on what the authors call the “instantaneous” SNR, E,(k)/No,
where E, is the energy per symbol, Ny is the noise power spectral density, and & is
the time index. The time dependence arises as a result of the time-varying nature of

the multipath channel assumed in Section 3.2 of [35].

1.3 Literature Review

To the author’s knowledge, no quantitative comparison of various SNR and SIR es-
timation techniques has ever been reported in the literature. Surveys of BER esti-
mation techniques have been published by Scholz [36] and Newcombe and Pasupathy
[37], but no quantitative comparisons of SNR or SIR estimators are provided. These
BER estimation surveys include techniques such as those described by Hingorani and
Chesler [38], Gooding [39], and Scholz, Cook, and Giles [40] that could be used to
provide a relative measure of transmission quality. However, BER estimation tech-
niques are not considered in this thesis as focus is placed on SNR and SIR estimation
techniques that yield quantities not only useful as relative measures of quality, but
also as absolute measures that can be used as input parameters in applications such
as those described in Sections 1.2.2 to 1.2.6.

Interest in techniques to generate estimates of the SNR began in the mid- to
late-1960’s. The earliest recorded work on SNR estimation that could be found is a
university report written by Nahi and Gagliardi in 1964 [41]. A subset of this work
was published by Nahi and Gagliardi in 1967 [1]. The estimators described in [41, 1]
form estimates of the SNR by measuring the power of a hard limited, received (noisy)
signal at the output of a filter. Both the signal and noise are assumed to be Gaussian
stochastic processes with correlation functions of known shape. An expression is given

in [1] showing the output power as a function of the filter transfer function and the



SNR. The expression is not easily inverted so that, if the output power is known
(measured), the SNR must be found implicitly using iterative techniques or a lookup
table. It is not indicated in [1] whether or not this method is suitable for deterministic
signals as well as stochastic signals.

Other early work on SNR estimation includes that of Benedict and Soong in 1967
[42]. The authors present three different methods to estimate separately the carrier
strength and the noise level based on a finite number of samples. An ML estimator,
an estimator based on amplitude moments, and an estimator based on square-law
moments are presented along with plots of the bias and rms error of the simulated
signal and noise estimates for the three estimation techniques. The SNR can be
formed trivially as the ratio of the estimated carrier strength to the estimated noise
level, but the performance of this parameter (which is of interest in this thesis) is not
considered in [42]. Benedict and Soong refer to work done by Middleton published in
1962 [43] which predates that of Nahi and Gagliardi; however, the estimation method
discussed in [43] assumes that the noise level is known and so is not applicable to this
study.

The ML estimator derived by Benedict and Soong is complicated. The ML SNR
estimation problem was formulated in a different manner by Kerr [44], Gagliardi
and Thomas [45], and Gilchriest [46] to yield much simpler expressions. Kerr (July,
1966) proposes two different variations of a maximum likelihood SNR estimator where
antipodal signaling in AWGN is assumed. In 1968, Gagliardi and Thomas [45] studied
the ML estimator in more detail in a paper stemming from Thomas’ PhD thesis
[47]. The estimators derived by Kerr can be manipulated into the form of the SNR
estimator derived by Gagliardi and Thomas. The pdf of the ML SNR estimator
and analytical expressions for the bias and variance are offered in [45]. In the Jet
Propulsion Laboratory report by Gilchriest dated June, 1966, a simple, intuitive
SNR estimator is proposed based on the absolute mean and variance of an antipodal

(BPSK) signal corrupted by AWGN. An analysis of the pdf of this estimator is
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presented along with confidence intervals. This work was extended in 1967 by Layland
[48] to study the performance of this SNR estimator at low levels of SNR. It is
indicated in [43] that this intuitive SNR estimator is a type of ML estimator.

An analog method for determining the SNR of BPSK signals in AWGN was pub-
lished by Edbauer [49] in 1977. The method is based on the processing of the in-phase
and quadrature branches of a Costas demodulator. In this thesis, only discrete meth-
ods of SNR estimation are considered.

In more recent times (1986), Simon and Mileant [50] introduced an SNR estima-
tor called the split symbol moments estimator (SSME) which is designed for BPSK
signals in wideband AWGN channels. Shah and Hinedi [51] study the SSME in nar-
rowband channels and provide plots of the means and inverse normalized variances
of theoretical and simulated SSME estimates. In a Jet Propulsion Laboratory memo,
Shah and Holmes [52] discuss a modification of the SSME designed to improve per-
formance in narrowband channels. The channel models of [51] and [52] assume that
all of the filtering occurs after noise is added which is different from the model devel-
oped in Section 2.2 of this thesis where filtering is assumed to be split between the
transmitter and receiver.

In 1993, Matzner [53] presented an SNR estimator whose structure was first in-
troduced by Benedict and Soong as the “square-law method” of carrier strength and
noise level estimation. Matzner evaluates the performance of the SNR estimator
(which is of interest in this thesis) as opposed to the performances of the separate
estimators of carrier strength and noise level as treated in [42]. Matzner also provides
more derivation details. The derivation assumes complex baseband signals in complex
AWGN, but the estimator structures developed are also applicable, with relatively
minor modifications, to real baseband signals in real AWGN. The mean square error
(MSE) of the logarithm (dB) of simulated SNR estimates is plotted in [33] as a func-
tion of the block length and as a function of the true SNR. This estimator is derived

using a different approach by Matzner and Engleberger [54], and a hardware imple-



mentation is described by Matzner, Engleberger, and Siewert [55]. The complex form
of this SNR estimator may be modified to be used as a more general SIR estimator
in fading channels with CCI and AWGN.

The “signal-to-variation” ratio (SVR) estimator proposed by Brandio [56] is an
SIR estimator used to measure the quality of M-ary PSK signals in channels cor-
rupted by multipath, CCI, and AWGN. This estimator may be modified to be used
as an SNR estimator for complex signals in complex AWGN, or for real signals in
real AWGN. The SVR estimator is identified as being of the “in-service” type which
is a term sometimes used to refer to an estimator that forms estimates from the
information-bearing received signal, thus avoiding the need to perform SIR or SNR
measurements off-line. Plots are provided in [56] showing the theoretical and simu-
lated SVR estimates as a function of signal power for three different fading channels.

Yoshida, Tan et a/ [57] and Yoshida, Hirai et al [58] describe an in-service esti-
mator that, like the SVR estimator, also reflects the multipath spread and level of
CCI in a wireless channel. This estimator can be used with any QPSK-like signal.
The mean simulated SIR is plotted as a function of the delay spread of the channel,
and as a function of the CCI level. Also included is a plot showing the correlation
between the measured BER of the channel and the mean estimated SIR. This esti-
mator can be used to measure SNR in complex AWGN but, as presented in [58], the
actual estimated values do not correspond in an absolute sense to the true SNR of
the channel; however, it is shown in Section 3.7.3 of this thesis how the estimator can
be modified to yield true estimates of the SNR. Note that this estimator cannot be
modified to operate with real signals in real AWGN since the algorithm requires a
signal with both in-phase and quadrature components.

In Appendix II of [28], Chennakeshu and Saulnier derive an ML SIR estimator
based on the pdf of the phases of differentially-detected samples. The estimator is
specifically referred to as a “signal-to-impairment ratio” estimator and its applica-

tion to timing and frequency synchronization is described. Simulation results of the



BER resulting from the incorporation of the SIR estimator into this synchronization
application are provided.
Other recent examples of estimators designed to measure the SIR in wireless chan-

nels are presented by Andersin et a/ [59] and Austin and Stiiber [60].

1.4 Contributions of the Thesis

The purpose of the thesis is to compare quantitatively various SNR and SIR esti-
mation techniques in common channels using common performance metrics. Some
performance results have been published in the literature, but the assumed channel
conditions and the performance metrics are not consistent from one source to the
next making a quantitative comparison difficult. Some of the estimators under study
have been collected from the literature and are used without modification, others
are modifications of published estimators that have been modified for the assumed

channel conditions, and others are original. The specific contributions of the thesis

are itemized below.

1. The SSME for real, wideband channels is derived and compared to the expres-

sion given in [51].

5\3

Two modified SSME algorithms are developed based on an approach similar to
that described in [52] in attempts to improve the performance of the original

SSME algorithm in real, narrowband channels.

3. The ML SNR estimator tailored to the real AWGN channel of Chapter 2 is
derived and compared to the ML SNR estimator presented in [45). The ML
SNR estimator operates on the samples at the input to the matched filter in the
receiver, and requires the transmitted data sequence to form SNR estimates.
Two ML structures are identified: one that uses known transmitted data, and

another that uses receiver decisions. Reduced-bias forms of these estimators are

also provided.
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. The ML SNR estimator tailored to the complex AWGN channel of Chapter 2
is derived. This is a new contribution as the derivation for complex channels
does not appear elsewhere in the literature. This estimator also operates on the
samples at the input to the matched filter in the receiver and, as in the real case,
two ML structures are identified: one that uses known transmitted data, and

another that uses receiver decisions. Reduced-bias forms of these estimators are

offered.

. The intuitive SNR estimator of [46] is derived for real signals in real AWGN
and is shown to be an ML SNR estimator for the baud-spaced samples after the
matched filter in the receiver. One estimator structure using known transmitted
data and another using receiver decisions are identified. Reduced-bias forms of

these estimators are offered.

. An intuitive SNR estimator for complex channels similar to the intuitive SNR
estimator of [46] for real channels is derived using a modified version of the ML
SNR estimator for complex channels. This SNR estimator structure does not
appear elsewhere in the literature. Biased and reduced-bias forms of estimators

using known transmitted data and using receiver decisions are presented.

. The SNR estimator of [53] is derived for complex channels and compared to
the published expression. A corresponding estimator for real channels is also
derived. The derivation details for the real case do not appear elsewhere in the

literature.

. SNR estimator structures are derived for real and complex AWGN channels
applying the approach used in [56] for the derivation of the SVR estimator. The
resulting SNR estimator for complex channels is very similar to that presented
in [56], but the SNR estimator for real channels does not appear elsewhere in

the literature.

11



10.

11.

13.

14.

15.

16.

Cramér-Rao bounds for real and complex AWGN channels are derived using the
approach described in [47] for real channels. The Cramér-Rao bound (CRB)

for complex channels does not appear elsewhere in the literature.

The biases, variances, and MSE’s of the simulated SNR estimates generated by
the various SNR estimators under study are presented for BPSK signals in real
AWGN, and 8-PSK signals in complex AWGN. The variance and MSE results
are compared to the appropriate CRB’s. A discussion of results is provided and

strengths and weaknesses of the various SNR estimators are identified.

Issues to consider regarding the hardware implementation of an SNR estimator

are discussed.

A brief survey of potential fading simulators which could be used to model the

assumed channel characteristics is provided.

The estimator described in [53] is modified for use as an SIR estimator in general,

wireless channels.

The SVR estimator of [56] is derived for use as an SIR estimator and compared

with the published SVR expression.

The SIR estimator of [57, 58] is stated in a form consistent with the assumed
channel environment of Chapter 3. In a complex AWGN channel, the estimator
given in [57, 58] produces estimates that differ in an absolute sense from the
true SNR of the channel. A modified form of this estimator is offered which

generates estimates that correspond to the true SNR.

An ML SNR estimator for samples at the input to the matched filter is described
as an ad hoc SIR estimator given the assumed system model of Chapter 3.

Strengths and weaknesses of two forms of this estimator are identified.



17. The derivation of an ML SIR estimator presented in [28] based on the pdf of
the phase of samples at the output of a differential detector is sketched. Two
forms of this estimator are identified: one that uses known transmitted data,

and another that uses receiver decisions.

18. The Pseudo-ML (PML) SIR estimator, the Signal-to-Impairment Variance (SIV)
SIR estimator, and the Modified Signal-to-Impairment Variance (MSIV) SIR

estimator are derived. All of these algorithms are original.

19. The statistical properties of the simulated SIR estimates generated by the var-

ious SIR estimators under study are presented for five different representative

wireless channels.

20. A description of a postdetection selection diversity combiner is provided incor-
porating a few selected SIR estimators from Chapter 3. BER performances of
diversity receivers employing SIR estimators and diversity receivers employing

conventional received signal strength estimators are compared.

1.5 Thesis Outline

The main body of the thesis is broadly divided into three chapters. Chapter 2 is
devoted to SNR estimation in the AWGN channel, SIR estimation in wireless channels
is discussed in Chapter 3, and the application of SIR estimation to postdetection
selection diversity combining is treated in Chapter 4. The problem of SNR estimation
in AWGN merits a chapter all on its own since this is a classical problem which is
well defined. The relatively simple Gaussian statistics of this channel often lead
to tractable problems, and classical estimation techniques (such as the method of
maximum likelihood) yield closed-form solutions.

In Chapter 2, the problem of SNR estimation in the AWGN channel and the
concept of SNR is defined, the system model is described, the SNR estimators under

13



study are presented, measures of SNR estimator performance are given, the CRB’s for
real and complex channels are derived, simulation results are offered and compared
to theory (where appropriate), and a discussion of results concludes the chapter.

The problem of SIR estimation in wireless channels! is discussed in Chapter 3 and
compared to the problem of SNR estimation in the AWGN channel. Environment
assumptions are stated and various potential fading simulators are identified to model
the assumed channel characteristics. Details of the implementation of the chosen
fading simulator are provided and statistical verification results are presented. The
general system model is described and five specific, representative mobile radio test
channels are identified in which the SIR estimators are tested. The SIR estimators
under study are then described, measures of SIR estimator performance are given,
simulation results are offered and compared, and a discussion of results concludes the
chapter.

In Chapter 4, the postdetection selection diversity combining application is de-
scribed, the BER of the software implementation of the combiner is compared to
published data, simulation results are presented, and a discussion of results concludes

the chapter.

Chapter 5 concludes the thesis with summary remarks and suggestions for further

work.

l«Wireless channels” include, for example, high-capacity, land microwave digital radio links;
low-data rate, point-to-point links; satellite/earth station links; indoor channels; and mobile radio
channels. In Chapter 3, the mobile radio channel is chosen for study as all of the channel impairments
typically observed in wireless channels are present, under certain conditions, in the widely-variable
mobile radio channel. In the sequel, the terms “wireless channels” and “mobile radio channels” are

used interchangeably.
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Chapter 2

SNR Estimation in the AWGN
Channel

2.1 Problem Definition

The goal is to find the “best” estimate of the signal-to-noise power ratio (SNR) in
a digital receiver with the least cost. The SNR of interest is the ratio of discrete
(sampled) signal power to discrete noise power at optimal sampling instants at the
input to the decision device in the receiver. The estimators under consideration
generate estimates by averaging observable properties of the received signal over many
symbols.

The SNR of the discrete, optimally-sampled signal at the input to the decision
device in the receiver is not to be confused with the analog SNR after the matched
filter (MF) (in a system in which an analog MF is employed). For an analog signal
at the output of the MF, an expression for the SNR is [61]

é R
NO Beﬁ

SNRfana!og =

where E, is the energy per symbol, Ny is the noise power spectral density (PSD), Beg
is the effective noise bandwidth of the receiver filter, and R is the baud rate. For the

discrete, binary signal in real AWGN (both signal and noise are one-dimensional),
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the discrete SNR is (see [62] and (2.21) of Section 2.2

E, E,
NRiscrete L2—=2—
S Rd te,real = lVo .'Vo

where equality holds if a MF receiver is employed, and the energy per symbol, £, is
equal to the energy per bit, E}, for discrete, binary signaling. For a discrete signal
constructed from a set of M = 2* k-bit symbols in complex AWGN (both signal and
noise are two-dimensional), the discrete SNR is (see (2.19) of Section 2.2)

E,
" < —
SNRdlscrete,complex = No

where, again, equality holds if a MF is employed. Note the factor of two difference
between SNRyiscrete,reat ad SNRyiscrete,complex-

Note that both E, (or £:) and Ny are analog quantities typically measured at the
input to the receiver, but E,/Np, as a measure of discrete SNR, is best understood
as a property of the sampled output of the MF. In the sequel, any reference to SNR
implies SNRgiscrete.real OF SNRdiscrete,complex- Also, p is a variable often used here to
represent the SNR (real or complex).

A few general SNR estimation strategies are introduced in the following sections.

2.1.1 SNR Estimation by the Physical Separation of Signal
and Noise

Assume it is possible to isolate the message portion and noise portion of a signal
corrupted by additive white Gaussian noise (AWGN). This isolation may be achieved
by separation in time, frequency, or space. For example, space isolation may be
achieved in the laboratory by connecting one of either a “clean” signal or the output
of a noise generator to the input of a device such as a receiver or power meter. Let the
sampled output of the MF be denoted by s, when only the clean signal is presented

to the receiver, and z, when noise is the only input. The discrete SNR in this case is

simply

_E{s?} _
PEEEY

zZ|ln
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where § = E{s?} is the average discrete signal power, N = E{:2} is the average
discrete noise power, and E{-} denotes expectation.

This method obviously suffers from the fact that it is impossible to isolate the
desired signal and noise except under very artificial, controlled conditions (for exam-
ple, in the lab). Also, if the desired signal and noise are combined some time after
the separate measurement of the discrete signal and noise powers, the claim that the
SNR of the combined signal is still S/ is true only if both the signal power and

noise power do not change with time.

2.1.2 SNR Estimation using a Reference Channel

A somewhat more practical approach is to consider two channels, one carrying a
desired signal, s,, plus noise, z,,, the other carrying only noise, zp,. As before,
S = E{s2} and it is assumed that the noise power in both channels is equal so that
N = E{z2 } = E{22,}. Further, the signal and noise processes are assumed to have
zero mean and are mutually independent.

Let the sampled output of the receiver in the first channel be denoted by r, so

that

Th = Sn + zﬂn
and
E{ri} = E{si} +2E{sn}E{zn, } + E{Zﬁl} =S+ N

where use is made of the assumed first- and second-order properties of the signal and
noise. Taking the ratio of the discrete power of the two channels, one obtains

E{r?} S+N _

B2y N Pt
so that
_ E{ri}
"By

The drawback of this approach is that a channel isolated by time, frequency, or space

must be set aside on which no data can be sent during the SNR estimation. This
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resource overhead implies a throughput penalty since time, bandwidth, or space must
be reserved as a reference channel in which no information may be sent. Note that it
is assumed that the noise power in the reference channel and the noise power in the

information channel are equal for all time.

2.1.3 Data-Aided SNR Estimation

SNR estimators which extract the SNR from a single channel on which both a desired
signal and noise are present using knowledge of the transmitted message sequence
are referred to as data-aided (DA) estimators. A DA SNR estimator performs best
when the message sequence used by the estimator is identical to the true transmitted
message sequence.

An example of this type of SNR estimator may be implemented using the cor-
relation between the noisy signal and the known transmitted signal as suggested in

[63, 64] and expressed in general terms as

2
__P

where ¢ is the correlation between the noisy received samples and known transmitted
signal sequence. Equation (2.1) is an idealized form of a DA SNR estimator.

Various specific DA SNR estimators are discussed in more detail in later sections,
but there are two general types classified according to whether the data used to aid
the SNR estimation is known or estimated. An estimator that uses an exact, known
copy of the transmitted message sequence will be referred to as a TzDA estimator.
A DA SNR estimator that uses an estimate of the transmitted message sequence
provided by receiver decisions will be referred to as an RzDA estimator. As a further
classification, any SNR estimator that can generate SNR estimates from the unknown,
information-bearing portion of the received signal is often referred to as an in-service
estimator [56, 58]. RxDA SNR estimators are of the in-service type.

In TxDA SNR estimation, the fidelity of the message sequence used for SNR es-

timation is assured by making an exact copy of the transmitted message sequence
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available to the receiver. As an example, short blocks of known data may be in-
serted periodically into the information-bearing sequence. DA equalization techniques
[63] use so-called training sequences for a similar purpose. A throughput penalty is
incurred since some channel capacity must be devoted to the transmission of non-
information-bearing data (training sequences are not considered to carry information
because the data is already known to the receiver). However, in systems which al-
ready employ training sequences for equalization or synchronization, there would be
no additional throughput penalty since those same known sequences could be used
to maximize the performance of a DA SNR estimator. Note that since TxDA SNR
estimates can only be generated when known data is available at the receiver, the use
of a TxDA estimator may not be appropriate in some situations where a continuous
stream of SNR estimates is required.

Since receiver decisions are subject to error, the performance of RxDA SNR esti-
mation is inferior to that of TxDA SNR estimation at low SNR where decision errors
are more likely. An advantage of RxDA SNR estimation is that the SNR information
is extracted directly from the information-bearing signal with no loss of through-
put due to resource overhead. Since RxDA estimates may be generated whether the
transmitted symbols are known or unknown, RxDA SNR estimators may be used in

applications that require a continuous stream of SNR estimates.

2.1.4 SNR Estimation based on Statistics of the Received
Signal

This class of SNR estimators generates estimates of the SNR assuming knowledge only

of the statistics of the signal and channel. These estimation techniques are usually

moment-based methods. Since no knowledge of the transmitted symbols is required,

these techniques can derive SNR estimates from the information-bearing portion of

the received signal and so are classified as in-service estimators.
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Figure 2.1: Discrete, baseband-equivalent, bandlimited model of coherent PSK in
AWGN.

2.2 System Model

The search for the “best” in-service estimator is carried out by a performance compar-‘
ison of several published techniques. The performance of each estimator is evaluated
by the software simulation of a discrete, PSK signal in an AWGN channel.

Figure 2.1 illustrates a discrete, baseband-equivalent, bandlimited model of coher-
ent PSK in AWGN. The model, as illustrated, applies equally well to coherent A -ary
PSK in complex AWGN as to coherent BPSK in real AWGN. In the development
that follows, the general complex case is assumed, but the results are equally appli-
cable or easily adapted to the case of real signals. Perfect carrier and symbol timing
recovery are assumed throughout.

A block of Nyym M-ary source symbols is upsampled to N = 16 samples per
symbol, shaped by a root raised-cosine (RRC) filter (with roll-off, @ = 0.5, and
L = 127 tap coefficients), scaled by a constant attenuation factor, and corrupted by

sampled, complex AWGN. The sequence of M-ary source symbols is represented by
a, =€, ne{0,1,..., Nym—1} (2.2)

where 8, is one of M phases spaced evenly around the unit circle. In the real, binary

case, a, = 1. The upsampled, M-ary message sequence is

be = anbinn,,
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where
5o = 1l i=j
Y7 1 0 otherwise

is the Kronecker delta. The sampled, pulse-shaped, information-carrying signal is

me = b ®hx
= Zanhk_,mr” (2.3)

where hi, k € {—(L - 1)/2,...,-1,0,1,...,(L — 1)/2} represents the RRC filter
tap coefficients! for |k| > (L — 1)/2, and ® denotes discrete convolution. The RRC
coefficients are derived from the analog transfer function of the full, raised-cosine filter
using the frequency sampling technique of FIR digital filter design. A sketch of the
derivation of the RRC coefficients is provided in Appendix B.

The signal presented to the receiver is
T = \/S_mk + \/Nzk (2.4)

where z; is sampled, zero-mean, complex AWGN of variance, o2, S is a signal power
scale factor, and NV is a noise power scale factor. The samples of the received signal

after the MF can be expressed as

e = (VSme+VNz)@h~,
= VS himp+ VN Y bz (2.5)
] 7

where @ denotes discrete convolution, * in the exponent denotes the complex con-
jugate, and hZ, = h; because the RRC impulse response is real and even. Finally,
the optimally-sampled, intersymbol-interference-free output of the MF (the decision

variable) is
Yn = Yklenn,, = VS ngo + VN w, (2.6)

I'The range of k specified above implies a non-causal filter which is chosen for mathematical
convenience. Though a non-causal filter is not realizable, this does not invalidate its use for analysis
purposes since the only difference between a causal and a non-causal filter (having the same finite
number of taps) is a shift in time. An odd number of filter taps is chosen for the analysis but an
odd or even number of taps may be implemented affecting only the sampling time at the output of
the MF in the receiver.




where go is the peak of the full raised-cosine impulse response given by
g =hi @hZ, = hihky,
1

and

w, = 2 h'l = hizp_
n £E® i p—— ; 12k lk—N
—TliVse

represents the filtered AWGN at symbol-spaced sampling instants.
The first- and second-order statistics of the desired signal, AWGN, and filtered
AWGN are expressed as

E{a,} = 0 (2.72)
E{a.imal} = &mp (2.7b)
Var{aa} = Eflaa’} - (E{aa})? = o7 (2.7¢)
E{z} = 0 (2.82)
E{zenzi} = o0 (2.8b)
Var{zi} = E{|zl’} - (E{z})?= o2 (2.8¢)
E{wk} = Zh,—E{zk_,-} =0 (293.)

E{wkHw;} = F {Z hizepr-: z fljzz__j}
£ J
= 22 hihiE{zeaizij}

2
= 0'3 Z h,'h,'_l

= o2) hihii= ol (2.9b)
Var{wi} = E{fwil’} - (E{wi})?

= o

= a’fgo (2.9C)

3]
3]



where use has been made of the facts that
E{zipi-izi_;} = 028

and

hj1 = hi_;

due to the symmetry of the RRC filter coefficients about the peak of the impulse
response at k = 0. Var{-} denotes variance. Equation (2.9b) shows that the auto-
correlation of the noise taken at optimal sampling instants after the MF has a shape
described by the impulse response of the full, raised-cosine filter which crosses zero
every Ny samples (the baud period). The implication is that the noise sampled at
the baud rate after the MF is white. Also, from (2.7b), (2.8b), and (2.9b) it can be
seen that the signal, AWGN, and filtered AWGN processes are wide sense stationary.
Further, the desired signal and noise are assumed independent (and thus uncor-

related) so that
E{a,z} = E{a}}E{z:} =0 (2.10)

and

F{a,w,} = E{a }E{w,} =0. (2.11)

Since y, is the decision variable, the ratio of the discrete signal power component of

Yn to the discrete noise power component of y, is the SNR. That is,

E{|VSa.go|’} _ Soigj
= =y = . (2.12)
Var{VNw,} Nal

The bit error probability may be stated in terms of this quantity. As an example, the
bit error probability for coherent BPSK in real AWGN is

P,gpsk = Q(\/p) = Q (‘5—";"") (2.13)

where
1 o
Q(I) = ﬁ/‘r e 4\7/2 d/\

is the Q-function [62].



It will now be shown that, given the MF system model presented here, p = E,/Np
for complex signals in complex AWGN, and p = 2E,/Np = 2E,/ Ny for real, antipodal
signals in real AWGN. The derivation of the symbol energy below assumes complex
signals but the results are equally applicable to real signals. The main difference
between the complex and real cases is in the treatment of the noise PSD which is
explained later in this section.

The energy per symbol, E,, is an analog quantity and can be expressed as [62]
E,= avg,signalT (2-14)

where T is the baud period and P,cg signal is the average (analog) desired signal power
at the input to the receiver which may be found from the autocorrelation of the
desired signal, v/Smy. It is convenient to derive the autocorrelation of m; by an
extension of the autocorrelation for continuous signals [63] to the discrete case.

Consider, for the moment, a continuous signal, s(t), of the form

0

s(t)y= Y. anh(t—nT)

n=-—-00
where the sequence of information symbols is denoted by an, as before, and Ah(t) is the
impulse response of some arbitrary pulse-shaping filter (note that s(t) is analogous
to the discrete signal, my). The autocorrelation of s(t), R.(t + 7,t), is evaluated as

given in [66, page 298] as
R, (t+1,t) = E{s(t+7)s*(t)}
= E{s(t+7)s"(t)}
= S5 E.{amai}h(t + T — mT)a(t — nT)
= ;3 an Smnh(t + T —=mT)h(t — nT)
= o Em: h}t + 17 —=nT)h(t —nT)

where the expected value, E,{-} is performed with respect to the information se-

quence, a,.



The autocorrelation, R,(¢+7,t), is a function of both ¢ and T so it is not stationary.

It is, however, cyclostationary so that
R(t+7+T,t+T)= R,(t+1,t).

The ¢ dependence may be removed by taking the expected value of R,(t + T,t) with

respect to the start time, . Assume a uniform probability density function (pdf),

pe(A), for ¢ such that
L 0<A<T
p(A) = { r 0SA4<

0 otherwise.

Taking the expected value with respect to ¢ one obtains
1 /T
E{R(t+m0)} =a2Y] T/ B(A + 7 — nT)h(A — nT)dA.
. 0

After some manipulation, one finds that

R,(T) E{R,(t+ T,t)}

o2 oo
= Z /_ _ h()R(A 1) dA
= %‘,’-h(r)*h(—r)

o:
Tg(f)

I

where * denotes continuous-time convolution, and h(7) * A(—7) = g(T) because h(r)
is even. By analogy with the continuous case just derived, the autocorrelation, R ({),

of m; can be written as

Ra(l) = N”TSZh ho-iTs

2
[e3

= —Zq. 2.15
N (2.15)

where T = N,Ts, and Ts is the sampling period. The average power of m; may be

stated simply as
o?

E{lmi[’} = Ra(0) = —go, (2.16)

[\]
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and so (2.14) in terms of discrete signals becomes

E, = SRn(0)NuTs
S 2
= TqNuTs

= SolgoTs. (2.17)

Next, the noise PSD is related to the variance of the sampled noise. For this
derivation, the noise PSD for the complex case is different from that of the real case
by a factor of two (see Appendix A). Specifically, for the complex case it is Ny
(see Figure A.1(b) and (A.10) of Appendix A), and for the real case it is Ng/2 (see
Figure A.1(c) and (A.29) of Appendix A). The complex case is treated first.

Sampled WGN may be conceptualized as continuous WGN filtered by an ideal
lowpass filter centred at DC having a cutoff frequency of +£1/2Ts [51]. Given the
complex noise PSD of magnitude Ny, the variance of the sampled noise (the noise

power) may be expressed as

Var{VNz,} = No? = %' (2.18)

Putting together equations (2.9c), (2.12), (2.17), and (2.18) yields

E{I\/gango 2}

p= Var{vVNw,}

50495

No?

Soads

Noigo

Sa390

N¢?

So?(E,[Sa2Ts)
N(No/NTs)

E,

= —, 2.1
= (2.19)

In a similar manner, for the real case, the noise power may be expressed in terms of
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the real noise PSD of magnitude Ny/2 as

Var{VNz,} = No? = '2% (2.20)

Putting together equations (2.9¢), (2.12), (2.17), and (2.20) yields

_ Salg

P = No2
Sa:;’(E',/SaZTs)
N(No/2NTs)

_ b

No

B

IVQ

(2.21)

From (2.2), it may be seen that Ja,[ = 1 by design so that ¢? = 1. If the noise
variance is normalized such that o2 = 1, and if the RRC coefficients are scaled such

that go = s h2 = 1, the decision variable (2.6) reduces to

yn = VS an + VN w,, (2.22)
and the discrete SNR of (2.12) reduces to
_3
PEN

so that the SNR may be set solely by the appropriate selection of S and N.

2.3 SNR Estimators under Study

All of the SNR estimation techniques under study estimate the discrete SNR by
averaging one or more observable properties of the received signal over a number of
received symbols. The SNR estimators under consideration fall into one of the two
categories described in Sections 2.1.3 and 2.1.4.

Estimator algorithms for both real and complex channels are provided for each of
the SNR estimators considered in this study except for the SSME’s which are designed
to operate exclusively with BPSK signals in real AWGN (see Section 2.3.1).
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Where possible, estimator names and acronyms are those used by the original
authors; otherwise, names and acronyms are arbitrarily assigned for ease of refer-
ence. All but one of the estimators are applied to the bandlimited channel model of
PSK signaling in AWGN described in the previous section—the SSME, is the only

algorithm designed specifically for wideband channels so it is treated separately.

2.3.1 The Split-Symbol Moments Estimator (SSME)

The SSME is based on the first- and second-order moments of the received signal
and was developed at JPL in Pasadena, California for use in Deep Space Network
receivers designed by NASA [51]. The original SSME algorithm, as formulated by
Simon and Mileant [50], assumes a wideband channel since it was designed for low data
rate transmission in the deep space channel where bandlimiting effects are minimal.
Shah and Hinedi [51] studied the performance of the original SSME in narrowband
channels. A modified SSME algorithm, presented in an unpublished, internal JPL
memo [52], was developed to improve upon the performance of the original SSME in
bandlimited channels.

Three different SSME algorithms are considered here. They are referred to as the
SSME,, SSME,, and SSME; for ease of reference; their definitions are:

1. SSMEq: the original algorithm [50] for wideband channels.

2. SSME;: a modification of SSME, for operation in narrowband channels mo-
tivated by the modified SSME algorithm for narrowband channels presented
in [52].

3. SSME;: an alternate SSME algorithm for narrowband channels proposed here

in an attempt to improve upon the narrowband performance of the SSME;.

All three of the SSME algorithms investigated use all of the N samples per symbol

available to the receiver. This is in contrast to SNR estimation techniques discussed in
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Figure 2.2: Baseband-equivalent model of wideband BPSK signaling in AWGN.

Section 2.3.3, Section 2.3.4, and Section 2.3.5 which use just one sample per symbol.
All three SSME algorithms are of the in-service type. The published SSME techniques
(50, 51, 52] are designed strictly for BPSK signals in real AWGN. None of the SSME

algorithms is easily extended to higher orders of modulation.

The SSME Algorithm in Wideband Channels (SSME;q)

All of the SNR estimation techniques considered in this study except for the SSMEq
can be applied to the bandlimited channel model described in Section 2.2. In order
to investigate the SSME, algorithm, a suitable wideband channel model is required.
The wideband system model adopted here is illustrated in Figure 2.2 which is a pared
down version of Figure 2.1. The development that follows borrows some notational
conventions from [51].

The original formulation of the SSME algorithm [50, 51] assumes the transmitted
message sequence is represented as a stream of square NRZ pulses, a;;, to which an

AWGN sequence, z;;, is added to form the received signal,

PR .. . iE{O,I,...,Nss-].} 9
ri; = VSai; + VN z; { F €40,y Nym— 1} (2.23)

where the subscripts (i, j) denote the i*" sample of the j*" symbol, Ny is the number

of samples per symbol, and Ny, is the number of symbols upon which an estimate



of the SNR is based. The binary source samples are given by

A 1 i€{0,1,...,Ng—1}
v VN” je {0’17-'~1-'\rsym‘-1}

so that E, is unity when S = 1. Also, as before, the noise source power is set to
unity so that E{z%} = 1. Two parameters, m, and m,,, are used to compute the
SNR estimate from observations of the received signal samples, r;;. The SSME SNR

estimator is expressed in terms of these two parameters as [51)

au m
PisME = 77— (2.24)
2 (Im,_’ - mp)

where m, and m,, are derived from operations performed on the first half and last
half of each symbol. Let Y,; and Yp; be the sum of the first Ny /2 samples and last

N,/2 samples, respectively, of the j*P symbol expressed as

Ne/2-1
Yoi= D (2.25)

$=0

and
N1

Yaj= 3 i (2.26)
t=N,, /2

The quantities, Y,; and Yg;, are used to compute m, and m,, according to

1 Niym=1

mp = D YoiYa (2.27)
sym ;=g
| Nagm-1 ,

my = 5 3, (Yoj +Y3)) (2.28)
sym j=0

so that my is the product of the sum of the samples over the first half and last half of
every symbol averaged over a block of Nym symbols, while m,, is the square of the
sum of the samples over the first and last half of every symbol, again averaged over
Ngym symbols.

The following analysis shows that the SSME, is unbiased in the limit that
Nyym — 00. Substitution of (2.23) into (2.25) yields

Nu/2-1
Y;j = Z (\/§d,‘j+\[ﬁ2‘§j)

=0
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_ ﬁ)’:( \/— )+¢‘”’§"

i=0 =0
1 Nuf2-1
= i*z- SN + \/lv Z - (2.29)
=0
Similarly, substitution of (2.23) into (2.26) gives
Nys—1
Yo = ) (VSay+VNz)
=N, /2
1 Nu—-1
= \/SN +VN Y oz (2.30)
=N f2

Substituting (2.29) and (2.30) into (2.27) one obtains

[ 5 (g 5 )

t=0 I—JV" /2

m, =
p
Nym i3

Multiplying out terms and taking expected values gives

N‘ m=—1 Ngg/2-1
1 4 SN, VSNGN
E{m,} = > + Y. E{z;}
Nsym j=0 4 2 =0
/E; N“—'l
Ml Z E{Z'J}
2 =Ny /2

Nu/2-1 Ny-1

+N 3 X E{Zij'a"kj}]- (2.31)

i=0 k=N, /2

The terms with E{z;;} vanish since the AWGN is assumed to be a zero-mean process.
The term E{z;;zi;} vanishes also since i is never equal to k in the double summation

so that (2.31) reduces to

Neyym—-1
E{m,} = le Y. SNy/4 = SN.[4. (2.32)
sym =0

Substitution of (2.29) and (2.30) into (2.28) yields

1 Naym-l Nu/2-1
Mey = Nsym [( VSN +\/_ : Zsj)

7=0 —0

+ (ﬂ:% SN, + \/I_V_ Nfl Z;j)]

=N, /2

N-ym -1 Na—1
= N (&:\/SN +VN Y z.,) :
sym

j=0 =0

31



Expanding terms and taking expected values gives

E{m,,} =
1 N‘ym—l Nu—l N“—l
mog= = =
After simplification, (2.33) becomes
E{mss} = Ny (S + N) (234)

The expected value of this SSME SNR estimator may be written as

~e _ E{m,} 9 2=
E{pssme} = 5 (%E{m,,} ~ E{m,,}) (2.35)

if Nyym is large enough [51]. Substituting (2.32) and (2.34) into (2.35) one obtains

e S _E

E aAn = = e T4 e—
{Pssms} 2(%1‘1 ¥ N,ZN + _S_::_fa) 2N No

Evidently, p3syg is an estimator of E,/Np, not S/N. With a trivial modification,

however, an SSME estimator for S/V is obtained as

Mp

PSSME, = 2Pss\ME = T
%m,, - m,

The expected value of fssmg, is

. _.(S\_S
Bpsswe} =2 (37) = 5

which demonstrates that the SSME, estimator is unbiased for large values of Ngym.

An SSME Algorithm for Narrowband Channels (SSME,)

In [51], it is concluded that the ad hoc application of the SSMEq algorithm (designed
for wideband channels) to narrowband channels is not entirely satisfactory. In [52], a

modified SSME is presented which takes into account the bandlimiting of a receiver



filter. The modified-SSME SNR estimator of [52] is presented here in notation consis-
tent with that used in the previous discussion of the SSMEq estimator. The modified

SSME estimator is expressed as

!’

52 =T (2.36)
SSME,modified 2(%172,, _ m;)
where
N‘.—l Nn"'l
m,=mp—a Yy D Rui-k
=0 k=0

Ry i-k = E{w;w;} is the autocorrelation of the coloured noise, and the subscripts i
and k denote samples taken at the sampling rate (N,s samples/symbol). In [52], it
is assurned that the shape of the autocorrelation of the noise is known (specified by
Ry ;i) but the amplitude is unknown, thus the scale factor, a.

The assumptions made for the derivation of (2.36) in [52] are not consistent with
the model presented in Section 2.2, so an independent derivation of an SNR algorithm
based on the modified-SSME of [52] is presented below. The main difference between
the model assumed in [52] and the model presented in Section 2.2 is that, in the former,
bandlimiting is due to a receiver filter only, while the latter considers bandlimiting due
to both a transmitter and a receiver filter. The modified-SSME, tailored to the model
of Section 2.2, will be referred to as SSME, to distinguish it from the modified-SSME
of [32].

Starting with the output samples of the MF, y;, given by (2.5), the substitution

of the transmitted signal, mg, by (2.3) gives
VS Y ki + VN Y bz
1 ]
= V§Y .Y hthionnp-t + VN (2.37)
n 1

I

Yr

Assume that the coefficients of the RRC filter are non-zero over the range

l € {0,1,...,L — 1}, and let kK = ko denote the start of valid data at the output
of the causal MF. The double-subscript, 7, used in the derivation of the SSME,

is dropped and a single subscript, &, is used instead since the :7 notation becomes
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awkward in the analysis of a pulse-shaped signal (whose amplitude is not constant
over the duration of a symbol). Re-writing (2.25) and (2.26) in terms of the output
of the matched filter and the single subscript, &, one obtains

ko+iNus+Nyf2-1
Yo,; = Y Yk
k=ko+jN:s 9 QQ
ko+iNu+Niy -1 (2.33)
Y = ) Y-
hko‘l’le:‘f‘qu/z

Substituting (2.37) for yi in (2.38) yields

ko+iNe+Nes /21
Yo; = > (\/52 @n Y hthk_ny, -1+ \/—I\ka)
k=ko +jN“ n I
ko+j1‘ru+Nn"1

Yz = 3 (\/§ ;an zljh,h,,-mv..-; + \/ka).

k=’¢0 +jNu +Nn/2
The product of ¥,; and Ys; may be expressed as
ko+jNu+NuI2"l ko+jtvn+Nu-l
Yo; Y = > Z T2 (2.39)
k1 =h)+jNu k2=k0+jlvn +J\'“/2

where

z; = ‘/gzaﬂl Zhhhkl—nu\'“—ll + \/-lvwkl
1 I[

and

Iy = \/§Zanz Zhbhk:—nzNu—lz + \/ﬁwk,.
nz 2%

Recall from (2.27) that

] Nem-t
m, = Y,;Ys;.
P Nsym JZ=% 2+ P2
Substituting (2.39) into the expression for m, above, and taking expected values gives
Nyym=—1
E{m,} = N > (A+B+C+D) (2.40)
sym ;=g

where
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A = S Z Z Z Z E{aﬂl aﬂ2} z Z hllhlzhkl‘"l*vu—!l hka—nzt“'n—lz
ky kz np nz h I
B = VSNZZZE{aankz}Zhllhkl_nl‘vl‘—l‘
ki k2 ™ i
C = v SNZZ:Z E{anzwkl}Zhlzhkz-ﬂzNu—l:
ki ka2 n2 (7}
D =

NZZ E{wklwk,}.
kr k2
Using the real forms of (2.7), (2.9), and (2.11), one obtains

E{aﬂlwk?} = E{aﬂl}E{wkz} =0
E{anz wkl} = E{aﬂz}E{wkl} =0
E{wkl wka} = Gki-k2

E{anlan’.’} = a-:é-ﬂl "2 = 6"1"‘2'
Equation (2.40) may then be written as

E{m,} =aS + BN

where
1 Nyym-—1 kO+J'Nu+'AL2u‘-1 L-—1
a = = 2 {2 > 2 hihkeaNa-
sym =0 n ki=ko+jNye 0=0
ko+iNu4+Nes~1 L—1
X > Y hihiyngNu—ty
ky=ko+jNa+ 22 12=0
and

Nas/2—1 Ny —-1

B= 3. Y gu-k-

k=0 k=N, /2

The limits of the summation over n are determined by the limits of the summation

over [ as

0<k—=—nN,—-{(<L~-1

k—-l—-L+1 k=1
it <ns [~—N”J (2.41)
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where |z]| denotes the largest integer less than or equal to z, and [z] denotes the

smallest integer greater than or equal to z.

Next, recall from (2.28) that

1 Ngym-l
M = >, (Yo +Y5;)%
sym  j—g

The squared sum of Y,; and Yp; is expressed as

(Yoj + Y5;)% =
ko+iNus+352—1

Z: (‘/S:Zam Ehllhkl“nlNu—ll + \/kax)
n 4y

ky=ko+jNas
k°+jN"+N.'-l

+ Z (\/gz: Qn, Z hlz hkz—nzNu—lz + \/kaz):l

ka=ko+jNus+ 252
ko+iNu+ 22 —~1

X Z (‘/'?Z CGns ; hishis—ny N, -1 + \/N:wk:x)

k3=ko+1 Ny
k0+chs+Nu"'1

+ > (‘/E?Gn. zlv_:hhhlq-m.N.,q‘ + \/ﬁwh)] )

ky=kg +J'1V“+£é’~

(2.42)

After substitution of (2.42) into (2.28), expanding, and taking expected values, one

obtains after some simplification that

Neym—1 ko+jN“+-h-'”-—lko+J.N“+£u'—l
1 Y 2 2

E{mss} = §

N’Ym Jj=0 n ky=ka+iNu k3=ko+3Nas

ko+iNu+ 2L —1 kg 4Ny +Nug—1

+ Z Z T1T4

ki =ko+3iNes k4=ko+jN,,+§2u
ko+jNe+Ne—1 kO’f'jN"-l-Eiﬂ-_l

+ 2 Z Za2Z3
ka=ko+iNy+ 232 ka=ko+iN,
ko+iNy+Nyg=1 ko+jNes+Nas—1
+ Z Z T2T4
ka=ko+iNse+ 235 ky=ko+jNuut+ 532
Nu—-1 N, -1

+NZ zgkl-kz

k1=0 k=0
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where

zi = ) btk -t;-
l.

The sums in (2.43) may be consolidated so that E{m,,} reduces to

E{m,} =45 +dN

where \
1 Noym—1 k+jNss+Nys—1L-1
7= N Z Z Z Z hlhk"nlvu—l
sym j=0 n k=k0 +jN“ I'—'-O
and
N“—l N’l“l
6= Z Z Gky~kz -
k=0 k=0

The limits on n are as specified in (2.41).

In summary, given the two observables, m, and m;,,, the solution of the system of

equations given by

m, = aS+ N

meyy = S +6N

yields an estimator for the signal power, .S.'ssm.;l , and an estimator for the noise power,

NSSME: , so that the SSME, SNR estimator is stated as

. SsSME,
PSSME, = =———.
SSME,

Note that the coefficients, a, 8, 4, and § are functions of the filter taps and so are

not constant among systems with different channel impulse responses.
A Second SSME Algorithm for Narrowband Channels (SSME;)

An alternate SSME-type algorithm for narrowband channels is provided below based
on a modification of SSME,. This extension of the SSME algorithm has not been

found in the literature. This new estimator will be called SSME, for convenience.
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Recall that the original SSME strategy sums samples over half-symbol intervals

as expressed in (2.38) and reproduced below for convenience as
ko+jNus+Nes f2-1

Yoj = > Y«
ko 3 Nes

ko+iNss+Nes—1
Y = > W
k=ko+jNes+Nuu (2

These half-symbol sums are averaged over Nyym symbols to form the observed quanti-

ties, m, and my;,, as given in (2.27) and (2.28) and reproduced below for convenience:

| Noym-1
m, = > YaiYs;
Nsym =0
1 N.ym—l
My = N. Z (Y;i + Y’ﬂj)2'
sym =g

These observed quantities are used to compute an estimate of the SNR.

In bandlimited channels, the variance of the half-symbol sums, Y,; and Yg;, from
symbol to symbol is relatively large. If the half-symbol sums are averaged over the
entire block of symbols first and then used in the expressions for m, and m,,, perhaps
this would make a better SNR estimator. Of course, if the half-symbol sums are
performed over the whole block on the the samples themselves, the result of the sums
will be zero since the expected values of the transmitted message sequence and the
coloured WGN out of the MF are zero. However, consider the half-symbol sums
performed on the square of the samples, and let m, and m,, be replaced by m, and
my, which are defined as

1 Noym—1kotji N+ 521 , | Nerm=1 ko+j2NestNee—1 ,
mq = N Z Z yk[ Nsy Z Z yk2

sym j1=0  ky=ky+1Ne M 1220 ky=ko+ja Nust ¥t

1 lem-l kl)‘i'jNu‘l’Nu—l
4

Myq Ye-

S NN 0 iTon
The expected values, E{m,} and E{m,} are given by (the results are given without
the lengthy derivations)

E{m,} = 0152+ﬂ[SN+’nIV2

2.44
E{m,q} = 0252 + B2 SN + 72N2 ( )
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where

2 7]

B
;Bll

.812

Bra

B4

a2

B2

Y2

1 Nyym—1 ko+5i Nas+Nogf2-1 [L-1 2
N2 Z Z Z Z hi,hiey ~nN,, -1y
sym h=0 n ky=ko+3j1 Nas =0
NO!’m-l k0+12Nu+Nn"l 2
x Z )OS Z hiyhicy—nNuw—tz
Jj2=0 n h—k0+12le+Ntt/2 ;=0

B + Bz + bz

ZZZ

2N’Ym j=0 n k=ko+jNaus
Nss Nym=-1 ko+leu+Nu—l (

2Ngym z

j=0 n k‘ko-l-JNu-l-—”-

2
Z hlhk-nN..-l)
1=0

2

> hlhk—nN..—l)

=0

I S Y >

sym =0 5=0 ki=ko+iiNeu  ky=ko+j2 N+t

L-1 L-1
(Z z hl; hk. —nN..—ll) (Z Z hlzhkz—ﬂNu-lz) gkl—kz]

n ;=0 n =0

N’ym-'l Ngym—l k0+JlNﬂ+_a-1 ko+JzN.’+Ng‘—l [

N:ym—l Nnym“l k0+Jl Nll‘*'—a-l ko+]2N:l+Ng|-l

> > )3 S (426 k)

2
Nsym h=0 2-0 kr=ko+j1Nas k2=k0+].2Nu+£2”'
Niym—=1  ko+iNas4+Nww—1 fL—1 4
YA N Yo > (Z hihi—nn,, -1)
sym j=0 = k=ko+JjN,s =0

Nnym"'l ko+iNsuu+Ny—1 (L -1 )2

N,,mN Z z Z Z hihg—nnN, -t

n k=ko+jN:s =0
3.

The bounds on n are given by (2.41).

The following outlines the method to generate an estimate of the SNR using the

SSME; method:

1. Generate the two observables, m, and m,,, from a sequence of Ny, symbols.

2. Substitute the observed quantities, m, and m,,, for E{m,} and E{m,,}, re-

spectively, in the system of equations identified by (2.44) to get

m, = oS*+ /SN +mN?
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My = @52+ 2SN + 12 N?

3. Solve the system of equations to obtain an estimate of the signal power, S'SSME,,

and an estimate of the noise power, NSSME-Q.

4. Using SSSNIEQ and A}SSMEQ, the SSME; SNR estimator may be expressed as

. SssME,
PSSME; = == .
SSME;,

As in the case of the SSME,, the coefficients of the SSME; are functions of the filter

tap coefficients and so are different for channels with different impulse responses.

2.3.2 The Maximum-Likelihood SNR Estimator

An SNR estimator based on classical maximum-likelihood (ML) estimation theory
[67] was introduced by Kerr [44], and Gagliardi and Thomas [45]. In the latter, more
detailed treatment, based on work done by Thomas [47], the ML SNR estimator for
coherent BPSK signals in AWGN is derived and studied.

In the this section, some general theory of ML estimation is first presented, fol-
lowed by a derivation of the ML SNR estimator for coherent BPSK signals in real
AWGN. Lastly, the ML SNR estimator is extended to the case of general, coherent
M-ary PSK signals in complex AWGN.

Some General Estimation Theory

The following treatment is based on concepts developed in [67, 47, 68]. Consider some
observable random variable, z, whose value is dependent on a set of L fixed, unknown
parameters, 8 = (6,,0,,...,0L). Assume K such observations are available to form
the observation vector, x = (z1,22,...,Zx). The objective is to find an estimator,
6(x), which generates estimates of 8 based on the observations, x.

The a posteriori pdf of 6 conditioned on x is written as p(8|x). The maximum

value of this function occurs at the value of 8 which is most likely given the observa-
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tions, x. The estimator that generates estimates of 8 based on the maximization of
p(81x) is called the mazimum a posteriori (MAP) estimator.
Since p(x|8) is often easier to find than p(@|x), consider the identity [66] expressed
p(8ix) = &%—), (2.45)
where p(@) represents a priori knowledge of the distribution of 8. Since the MAP
estimator maximizes p(8|x) with respect to 8, and since p(x) is not a function of
0, the value of 8 that maximizes (2.45) also maximizes p(x|8)p(@). The natural
logarithm is a monotonic function so that the value of § that maximizes p(x|8)p(8)
also maximizes
In p(x|8)p(8) = In p(x|6) + In p(8). (2.46)
[t is often mathematically more convenient to work with the logarithm.
The value of 8 that maximizes (2.46) is found by taking partial derivatives with
respect to each of the unknown parameters, 6;, ¢ € {1,2,...,L}, and setting the
results equal to zero as

=0,:1€ {1,2,...,L}. (2.47)
8;=6,(x)

7] a
— In p(x|8) + Eg—jlnp(e)

a6;

8, =6;(x)
Assume that all values of @ are equally likely; that is, assume that @ is uniformly
distributed for all values of interest so that all partial derivatives of Inp(6;) vanish
and (2.47) becomes

-2

= 1 2.... 2.
80{ 0: le{li ] vL} ( 48)

i=fur,i(x)

L)

)
38, I P(x16)

8i=bumy,i(x)
where ['(8) = ln p(x|0) is the likelihood function of 8. Solving (2.48) for 6 in terms

of x yields the mazimum likelihood (ML) estimator for 8, Qyy(x).
Derivation of the ML SNR Estimator for Real Channels

The ML estimator described above is now applied to the model presented in Sec-

tion 2.2 and illustrated in Figure 2.1, with complex signals replaced by real ones.
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The received signal is given by (2.4) as
T = VS mg -+ vN Zk.

The observation vector in this case is the sequence of K* = Nyym N, received real
signal samples,

r= {T‘o, Tlyeesy T'[\'_.l_}.
The two unknown parameters to be estimated are S and N (L = 2). All that is
required to find the ML estimators for S and V is the likelihood function,

[(S,N) =lnp(r|S,N).

Let vx = v/ N z so that the pdf of the noise term may be written as

1 -unn (2.49)

p(ue) = SN

Using (2.4) and (2.49), the pdf of r; conditioned on S and N may be expressed as

1 (Tk - \/§mk)2
—\/‘77}—"5[‘6!{}) - N .

Since ry represents samples of the received signal before the MF, the noise samples

p(f‘le, N) =

are independent and the joint pdf for all A" observed samples of r¢y may be written as

K-1
p(rlS,N) =TT p(relS, V)
k=0

R ] K-l
(27rN)'£z\‘exp {—;)-N Z (Tk - ﬁmk)z} 5
<V k=0
so that the likelihood function is

[(S,N) = Inp(r[5,N)
K 1 R-1 2
—?ln(21rN) ~ 5N > (T'k - \/§mk) .

Strictly speaking, I'(S, V) also depends on the specific message sequence, my, that

was transmitted. Let mg) denote the i*" sequence out of 2V= possible transmitted
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binary sequences. This data dependence may be explicitly included in the likelihood

function as

. K 1 K-l (%) 2
[(S,N,i) = =5 ln(2rN) = 7 Z% (re = VSm)". (2.50)
The estimators for S and N are the solutions of the system of equations
0 I['(S,N, =0 2
ﬁ ( ) ,t) s=§. - ( '513')
v
—‘?-P(s N, i) =0 ' (2.51b)
N Wl e s = U .
N=N

=i

Taking the partial derivatives of ['(S, N, z') with respect to 5, one obtains

rkm Z (m( ))2 =0,

N"'N f k=0 k=0

=i

r(s Ni)|

and solving for S gives the ML RxDA estimator for S for real channels as

5 K-t rkmg)
SML RxDA,real = -—0———(‘)—2- . (2.52)
Theo (my')

Similarly, taking the partial derivative with respect to /V, one obtains

ad K
Ferv. == —-VS (‘)2=01
N (5 i) 5% o T 2N2 ,cz_(:,(r” ™)

and solving for N gives the ML RxDA estimator for NV for real channels as

. 1 K-
NMLRxDAreal = Zrk 2\/——Zrm +.S'-—Z(m
1 K- ] K=l

= Z T‘k - S—- Z (m ‘) (253)

Finding the ML estimate of i is a detection theory problem [67]. Consider the expan-
sion of (2.50) as

K 1 K, VERR
D(S,N,i) = =5 In(2rN) = 5 > rk+ == > m{ — Z(m M2,
k=0 k=0 k—O
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Since the objective is to maximize the likelihood function, i denotes the transmitted
sequence that maximizes the inner product of ry and mk) [45]. This is precisely
the task of a ML receiver [65, page 239] which consists of a device that selects the
largest output of a bank of 2Vw= correlators, where the i*® correlator performs the
inner product of the received signal with a copy of the #*! possible binary transmitted
sequence. The sequence associated with the correlator having the largest output is
chosen as the most likely sequence and is denoted by i.

Given (2.52), the ML estimator for S, and (2.53), the ML estimator for V, the ML
SNR estimator may be found using the property [45] that the ML estimate of the ratio
of two parameters is the same as the ratio of the two separate ML estimates. This
fortunate property allows the in-service, ML RxDA SNR estimator for real channels
to be written directly as

SML RxDA real _ N& [I\ Tico rkmﬁ)}

PML RxDA real = =

(259
NMLRsDAreal L Ftr2 - N, [A Kl eml )]2

where (2.16) has been used to evaluate the average power of the transmitted message

sequence according to

[
[<]]
n
g

2 ) = Ra0) = % = 1/, e.

k=0

Note that in [45], it is assumed that R, (0) = 1.
The TxDA form of the ML SNR estimator is identical to (2.54) except that ¢ does
not need to be estimated because the transmitted sequence is known exactly by the

receiver. The ML TxDA SNR estimator for real channels may be expressed as

2
1
N2 [— o0 rkmk]

(-1, K-1 2
* Tico 12— N |7 Tiso T

PML TxDA real = (2.56)

where my represents the true, pulse-shaped, transmitted samples given by (2.3). The
ML TxDA SNR estimator given in [45, 47] appears different from (2.56) due to the
assumption in [45, 47] that R,(0) = 1.
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Thomas [47] shows that the ML TxDA SNR estimator exhibits a small bias. It
can be shown that the bias of the ML TxDA SNR estimator given by (2.56) is

(2.57)

E{pML TxDA real} = [{I: 3 (P + Nslym) ,
where p = S/N represents the true SNR. As pointed out in [47]. this bias can be
minimized by scaling Nup T<Da reat by 1/(K —3) instead of by 1/K". Letting Ay <D
denote the “reduced-bias” ML TxDA SNR estimator, one has

["‘ koo 7":"‘/:]2
75 Thoo T — RdSy) [Zk=o Tkmk]r

The expected value of the reduced-bias ML SNR estimator given by (2.58) is

L
R
w
@&

N

af
PML TxDA,real =

E{pMLTxDA real} =P + N,
sym

The difference between the biased and reduced-bias estimates is small unless A is

very small.

In [47], expressions are also given for the variances of the biased and reduced-bias

ML TxDA SNR estimators, again assuming R.,(0) = 1. The expressions in {47] may

be modified to represent the theoretical variances of the ML TxDA estimators given
by (2.56) and (2.38) (for which R, (0) = 1/Ny) as
Var{fML TxDAreal} = ﬁ%—? [p + 2Np (1 2) + M (1 - 7‘2—)] (2.59)
Var{fur Tapaseal} = T3 [Pz + 2Nssp (1 - %) + 5 (1 - %)]
Analytical expressions for the bias and variance of the ML RxDA SNR estimator are
difficult to derive since receiver decision errors must be taken into account. In [47], no
derivation is given for the bias and variance for the RxDA case, but the assumption

is made here that NMLR:DA'MI may be modified in the same manner as described

above for NMLT,‘DA'ml in order to obtain a reduced-bias, in-service ML RxDA SNR

estimator from (2.54) as

[I\ k=0 T'kmk] (2.61)

()
75 Theo TE — KOS [Zk—-o remy; ]

~r
PMLRxDA,real —
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The reduced-bias ML SNR estimator expressions given by (2.58) and (2.61) are the
ones used in this study for real channels (coherent BPSK signals in real AWGN).
Note that these expressions may be used unchanged in any coherent BPSK system
using an arbitrary pulse-shaping filter as long as the sum of the squares of the filter
coefficients is unity so that the average power of the transmitted message sequence
is 1/N. In the case that the sum of the squares of the filter coefficients is not unity,
modified expressions may be derived assuming the pulse-shaping filter coeflicients are

known.
Derivation of the ML SNR Estimator for Complex Channels

The ML estimator for complex channels is derived from samples of the complex, noisy
received signal given by (2.4) which may be re-written explicitly in terms of real and

imaginary parts as
Ty =Tp -{-jTQ,t = \/§(m[k +ijk) + \/IV(ZI,‘ -{-jZQk). (2.62)

Let v, = VNz;, and vg, = VNzg, represent the in-phase and quadrature com-
ponents of the noise, respectively, each having zero mean and variance, N/2. The
in-phase and quadrature components of the noise are assumed independent so that

their joint pdf can be written as

I 2402 YN .
fn,v,) = —ze Vi, (2.63)

Using (2.62) and (2.63), the joint pdf of the in-phase and quadrature components of
a received signal sample, given S is the signal power, N is the noise power, and i

denotes the i*h sequence of M™M= possible transmitted message sequences, may be

expressed as

ri. = V3P + (rg, — vVEm@)?
f(Trk,erIS,N,i)=-$v—exp -(Ik I") N( o Q") . (2.64)
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The independence of the signal and noise sequences allows the joint pdf of the A" =
Ngym Nys received samples to be written as

R-1
flrLrqiS, N,i) = ] f(re.,7.lS, N,i)

k=0
() exp |- C; (rie — V3m)" + z (re. — VEmE)') | 69
where r; = {rp,rn,---,71,_, } and rq = {rg,,7@,;---,T@x_, }- The likelihood func-
tion, ['(S, N, 1), is given by
[(S,N,t) = In f(r1,rq|S, N,t)
= —RAlIn(xN) - -;—/ Ez-% (r;k \/-m(')) + z (er “) } (2.66)
Solving the system of equations given by (2.51) using (2.66), one obtains the ML RxDA

signal power estimator for complex channels as

- 1\ I[c\—Ol(r[km[g '*'ermg?l) 5 @7
SMLRxDA.compIex = 1 e 2 (2.61)
# TEG [(my))2 + (mQ,,) ]

and the ML RxDA noise power estimator for complex channels as

1= 2 LS [(m)2 4 (mi®)?
IVK\I[LRXDA ,complex = [\’ Z(r[k + er ST\T Z: [(m[:‘) + (ka) ] . (2-68)
k=0 k=0

In a similar manner to that shown by (2.55) for the real case, the average power of

the complex transmitted message sequence simplifies to

[( D)+ (m8)’] = Bn(0) = “"“—l/zv (2.69)

As mentioned earlier, the ML estimate of the ratio of two parameters is the ratio of
the ML estimates of the two parameters so that, in a similar manner to that shown
by (2.54), the ML RxDA SNR estimator for complex channels may be written as

2 K- - (]2

SML RxDA ,complex __ Ns2s [% Zk:ol Re {rkmk' }]

PAML RxDA,complex = = = o 12
1 K-1 1 R~1 « (1
M[LRxDA.complex g E k=0 |rk|2 - IV” [-1? E :k=0 Re {r,‘mfc)}]

(2.70)
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where i corresponds to the sequence of received symbols estimated by a ML receiver,
as before, and Re{-} denotes the real part of a complex quantity.

The ML TxDA SNR estimator for complex channels is obtained by replacing the
estimated symbol sequence, denoted by i, with the known, transmitted pulse-shaped
samples, denoted by my, to yield the desired estimator as

- SML TxDA complex _ NZ [1‘" Tio Re {T'ka}]z

PML TxDA complex = = = y 5.
K-~1 RK-1 =
NMLT:DA,complcx -}% Zk—:ﬂ [rk|2 - Ns, [-,% k=0 Re {rkmk}]

(2.71)

It was shown earlier that multiplying NMLTXDA,m; by A/(R —3) yields a reduced-
bias ML SNR estimator for the real case. It was found by simulation that the ad hoc

application of this factor to ZVML TxDA.complex dO€s not improve the performance of the
ML SNR estimator in the complex case as the bias becomes worse. In order to obtain
the correct multiplier factor, the pdf of Smr, TxDA complex Must be derived so that the
bias of the complex ML TxDA SNR estimator may be evaluated as Thomas did for
the real case in [47]. This derivation is complicated.

Instead, in a heuristic attempt to find a reduced-bias estimator, consider com-
puting an estimate of the noise power as the unbiased sample variance of the noisy

received signal® so that an expression for a reduced-bias ML TxDA SNR estimator

for complex channels may be written as

. 2
N2 [ % =85 Re{rim}|

L K-1]. 2 N K-~1 . 2’ (2.72)
Tt Lkeo TR *K-(—A-“_T)[Zk= Re{rkmk}]

~y —
ML TxDA,complex —

By simulation it was observed that this form of the ML TxDA SNR estimator in a sys-
tem with 8-PSK-modulated signals corrupted by complex AWGN performs marginally
better than the form given by (2.71).

Similarly, a reduced-bias, in-service ML RxDA SNR estimator for complex chan-

2The idea to try the unbiased sample variance in an attempt to find a reduced-bias ML SNR
estimator for complex channels was inspired by the SNR estimator proposed by Gilchriest [46]
described in Section 2.3.3.
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nels may be written as

. i 2
NZ [ TS Re {rgm{"} ]

- - - ; 2°
o SRS rel? — gy [SES! Re {rim )]

ML RxDA complex = (2.73)
The reduced-bias ML SNR expressions given by (2.72) and (2.73) are the ones used
in this study for complex channels. These expressions may be used unchanged in
any system where coherent M-ary PSK modulation is employed in a complex AWGN
channel, and where the sum of the squares of the pulse-shaping filter coefficients is
unity. These estimators are easily extended to other coherent modulation schemes,
such as QAM, and other systems using arbitrary pulse-shaping filters as long as the
impulse response of the pulse-shaping filter in the transmitter is known.

The ML estimators and the SSME series of SNR. estimators are the only SNR
algorithms in this study that operate on more than one sample per symbol. The
remaining algorithms discussed in subsequent sections operate on the one optimal

sample per symbol at the output of the MF.

2.3.3 The Squared Signal-to-Noise Variance (SNV) Estima-
tor

This estimator is based on the first and second moments of the optimally-sampled
output of the MF, and is probably the simplest and most straightforward approach to
SNR estimation. It was studied by Gilchriest in 1966 at the Jet Propulsion Laboratory
(JPL) in Pasadena, California, and reported in an internal company document [46].
Benedict and Soong [42] describe an estimation procedure based on first and second
moments, but it is computationally more complicated (the signal power must be
solved implicitly), and only the separate estimation of carrier level and noise level
is considered. The SNV estimator studied by Gilchriest [46] estimates explicitly the
ratio of signal power to noise power. Coherent BPSK signaling in the real AWGN

channel is assumed.

In this section, the original formulation of the SNV RxDA estimator for coherent
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BPSK signals in real AWGN is first presented, followed by a description of the TxDA
counterpart. The SNV SNR estimator is then extended to the case of general, coherent

M-ary PSK signals in complex AWGN. Reduced-bias forms of the SNV estimators

are provided for both the real and complex cases.
Derivation of the SNV SNR Estimator for Real Channels

The SNV RxDA SNR estimator for real channels proposed by Gilchriest [46] is simply
the ratio of the square of the mean of the absolute value of the signal to the noise
variance. Recall from equation (2.22) in Section 2.2 that the sampled output of the
MF may be expressed as
Yo =VSa, + VN w,.
Let
Tn = |ya] = yn al (2.74)

where i denotes one of the 2V= possible symbol sequences estimated by the receiver.
The latter equality holds because a., given by (2.2), is either 1 or -1 for BPSK signals

in real channels. Due to the independence of the signal and the noise sequences, the

mean of z, is evaluated as
E{z,} = VS E{a.a®} + VN E{w,}E{a?} = VS (2.75)

where the assumption is made that there are no receiver errors so that ag') = a, and,

consequently,

E{a.a)} = E{a®} = 1.
The variance of z, is evaluated as

Var{z,} = Var{|y.|}
= E{lyl’} - E{lyal}*
= E{yi} ~ E{lv.|}". (2.76)

Using the real forms of (2.7), (2.9), and (2.11), one has
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E{y’} = SE{a’}+2VSN E{a,w.}+ N E{u?}
= S+ N (2.

o
-1
-1
~—

Substituting (2.75) and (2.77) into (2.76), one obtains
Var{z,} * (S+ N)~S =N,

where the result is approximate due to the assumption of no receiver errors. The

SNV RxDA SNR estimator for coherent BPSK in real AWGN may then be expressed

as

- — E{.’tn}z —_ E{lyn|}2 D ~Q
PSNVRxDA.real - Va.r{In} - var{lynl}' ("‘"b)

In practice, ergodicity is assumed to hold so that the statistical mean, E{z,}, and
the statistical variance, Var{z,}, in (2.78) may be replaced with the sample mean,

Z, and the unbiased sample variance, s2, respectively. For a finite number of received

symbols, Nyym, the sample mean is evaluated as

1 Nyym—1
2. Zn
sym n=0
and the unbiased sample variance is
sym—l N
R o
ivsym - n=0 Ivsym - 1

so that the in-service, SNV RxDA SNR estimator for coherent BPSK in real AWGN

based on sample statistics may be expressed as

z? [Feohery I]
- N, n—o n a
PSNVRxDAreal = =5 = = (2.79)
s2 1 Niym~1 2 _ 1 [ Nyym~—~1 [ I]
Negym—~1 &on=0 Ya Niym(Nsym—1) ""—0 Yn

This is essentially the result of {46].
Consider now SNV TzDA SNR estimation where a copy of the transmitted data
sequence, an, is made available to the receiver. In a similar manner as shown previ-

ously by (2.74), define a variable, z,, as

ZTn = YnQn (2.80)

-
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where a, represents the true transmitted symbols. Again invoking the independence

of the signal and noise sequences allows the mean of (2.80) to be evaluated as
E{z.} = VS E{d®} + VN E{w,}E{a.} = V5.
The variance of z, is evaluated as

Var{z.} = E{zi} - E{z.}’
= E{yld}}-S
= E{yi}-S§
(S+N)-S = N.

Note that E{y2a2} = E{y?} since a, = %1 for real BPSK signals. The SNV TxDA
SNR estimator may be expressed in terms of the received sequence, y., and the known

transmitted sequence, a,, as

. _ E{zn}z _ E{yn an}2
PSNV TxDAreal = Val'{l'n} - Var{yn an}.

In terms of sample statistics, the SNV TxDA SNR estimator is expressed as

2
1 Naym—l
[ Noym 2a2s  Yn an]

N.ym—l 2 1 N,ym—-l

1 3 (2.81)
Noym-1 Lazo Y3 Noym(Noym=1) [Z,,=o Yn an]

PSNV TxDA real =

This SNV TxDA SNR estimator is a simple extension of the SNV RxDA SNR estima-
tor presented in [46]. There is no mention of it in the literature, but its performance
is of interest and it can be used to advantage in systems where known sequences are
inserted into the transmitted data.

The SNV expressions given by (2.79) and (2.81) are remarkably similar to the
ML expressions given by (2.61) and (2.38), respectively. In fact, the structure of the
intuitive SNV estimator is identical to the structure of the ML estimator operating
on the samples after the MF. The ML method may be applied to those baud-spaced

samples, given by (2.22), because in the context of the system model described in
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Section 2.2, the information symbols are ISI-free and the noise is white at those
instants.

Replacing A with Nyym, 7% (the received signal before the MF) with y, (the baud-
spaced received signal after the MF), and m; with a, in the ML expression given by
(2.58), and acknowledging that Ny = 1 in the SNV case, one obtains a reduced-bias,

SNV TxDA SNR estimator for coherent BPSK in real AWGN as

e 2 ]

at — Niym n=0 .y
PSNV TxDA real = N1 3 3. (2.82)
N T 2 __ 1 [ Noym=1 ]
Naym~3 n=0 Ya Nyym(Niym—3) n=0 Yn@n

This expression differs from (2.81) only in that the factor 1/(Nsym —3) appears in the
denominator of (2.82), whereas the factor 1/(Nsym — 1) appears in the denominator
of (2.81). In a similar manner, one obtains a reduced-bias form of the SNV RxDA
SNR estimator for coherent BPSK in real AWGN as
Neyym— 2
|7z Ta2s ™ Lyl

af —
PSNV RxDA,real = Niym—1

o (2.83)
1 1 Nsym—1 2
Naym—3 Zn:O yrzx T Nuym(Naym—3) [Z;:Om Iynl]

The reduced-bias expressions given by (2.82) and (2.83) are the expressions corre-
sponding to the SNV TxDA SNR estimator and the in-service, SNV RxDA SNR
estimator, respectively, used in this study for coherent BPSK in real AWGN. These
expressions can be used unchanged in any coherent BPSK system that employs a

root-Nyquist filter (not necessarily a RRC filter) in the transmitter and receiver.

Derivation of the SNV SNR Estimator for Complex Channels

In the above derivation of the SNV SNR estimator for real channels, it was found
that the SNV estimator is actually the ML SNR estimator operating on the baud-
spaced samples given by (2.22). Using this fact allows one to write the reduced-bias,

SNV TxDA SNR estimator for coherent M-ary PSK in complex AWGN as

[7h= Tas ™' Re {y,'.au}]2

1 ZN,,.,..~1 Neym—1 Re {y;an}]

T T ——
Niym—1 n=0 n Niym (NVoym—1) n=0

- (2.84)

N
PSNV TxDA,complex =
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which is an adaptation of the reduced-bias, complex ML TxDA SNR estimator given

by (2.72).

Similarly, an in-service, reduced-bias, SNV RxDA SNR estimator for coherent

M-ary PSK in complex AWGN may be expressed as

v SN Re {320}

Niym

af
PSNV RxDA,complex = 1 Niym—1 l l2 _ 1 [ZNsym—l Re{ .a(i) }]2
Nyym~1 &n=0 Yn Nym(Niym~1) n=0 Ynln

(2.85)

which is an adaptation of the in-service, reduced-bias, complex ML RxDA SNR es-
timator given by (2.73). In (2.85), i denotes the i*" sequence of M™»= possible
transmitted symbol sequences formed from receiver decisions.

Equations (2.84) and (2.83) are the SNV estimators used in this study for com-
plex channels. These expressions can be used unchanged in any coherent Af-ary PSK
system that employs a root-Nyquist filter (not necessarily a RRC filter) in the trans-
mitter and receiver, and they can be extended to other forms of coherent modulation

such as QAM.

2.3.4 The Second- and Fourth-Order Moments (M,M,) Esti-
mator

The earliest mention of the application of the second and fourth moments to SNR
estimation was in 1967 by Benedict and Soong [42] who consider only the separate
estimation of carrier strength and noise level (as opposed to the estimation of the
ratio of carrier strength to noise level) in AWGN. No derivation details are provided.
The estimation of signal power to noise power using the method of second and fourth
moments is treated in papers by Matzner [53], and Matzner and Engleberger [34]
(both published over two decades after the work of Benedict and Soong) in which
more derivation details are provided. A patent application has been submitted as
a result of the modern-day work [69]. Mathematically, the modern-day derivation

yields the same expressions as those given in [42].



The results given in [42] and [53] are based on the assumption of complex signals
in complex AWGN, while in [54] an overview is given of the real case using a different
approach. The detailed derivation of the A,A/, estimator for real channels is offered
here first, followed by a sketch of the derivation of the A>3/, estimator for complex
channels. The development is very similar to that given in [33]. No precise name or
acronym has previously been assigned to this technique, so “M2M," is used for easy

reference.
Derivation of the M;M; SNR Estimator for Real Channels

Consider the sampled output of the MF receiver previously given by (2.22) as
yn = ﬁan + V .’an

where all quantities are assumed real. Let M, denote the second moment of y, as

."‘[2 = E{y,z,}
= E{(VSan+VNw.)}
= SE{a’}+2VSN E{a,w,} + N E{w?}.

Since the desired signal and noise each have zero mean and are mutually independent,

M, reduces to
My, =5+ N. (2.86)

Similarly, let My denote the fourth moment of y, as
My = E{y}

= S?E{a’} +4SVSN E{aiw,} +6SN E{a?w?
+4NVSN E{a,wl} + N E{w}}.

Again, due to the statistical independence of the desired signal and noise, the expected

values of the products of signal and noise may be written as the products of the
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expected values. Thus

E{aw,} = E{a®}FE{w.}=0
E{a.wi} = Ef{a.} E{wp} =0
E{diwi} = E{a}}E{w;}=1.

Let k, be the kurtosis of a,, and &, be the kurtosis of w, expressed as

E{a}l}
n ») [ond
ko AL (2.87)
_ E(w}) -
T B .
then M, may be written simply as
My =Fk,S? +6SN + k,N2. (2.89)

Equations (2.86) and (2.89) form a system of two equations in two unknowns, S and
N. The solution of the system of equations yields an expression for the signal power

estimator for real channels as

) My(ky — 3) £ /(9 — kaky) My? + My(ks + ko — 6)

SApM, real = (oo + ko —6) ) (2.90)
and an expression for the noise power estimator for real channels as
Nty ryeal = Mo — Sapyas, real- (2.91)
The MM, SNR estimator for real channels is the ratio
PAf2 M, real = M (2.92)

A”g Arh .real

For BPSK in real AWGN, k, =1 and k,, = 3 so that (2.92) simplifies to

- L\V6My? — 20, (2.93)

PAL M, = ’
My - LfeMy? — 20,

where the negative root of (2.90) is chosen so that gar, s, real is positive.
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Derivation of the AM;M; SNR Estimator for Complex Channels

For the complex case, M; and M, must be re-derived assuming the signal given by

(2.22) is complex. The second moment in this case is expressed as

M, = E{yay;}
= S E{|as?} + VSN E{anw:} + VSN E{c.w.} + N E{|w.[?}, (2.94)

and the fourth moment is given by
My = E{(yay:)’}
= S?E{|an|'} + 2SVSN(E{|a.|Panw.} + E{|aa]’a;w,.})
+ SN(E{(axw};)’} + 4E{[an]*[wal} + E{(a7wa)*})
+ 2NVSN(E{|w.|Panw:} + E{|lwa|*asw.}) + N2 E{Jwa{*}. (2.95)
Again, assuming the signal and noise are zero-mean, independent random processes,

and assuming the in-phase and quadrature components of the noise are mutually

independent, (2.94) and (2.95) reduce to
My=S+N (2.96)
(as in the real case), and
M; =k, S* +4SN + k, N?, (2.97)

respectively, where k, = E{|a,|*}/E{|ea|*}? and k., = E{|wa[*}/E{|wn[|?}* are the
kurtosis of the complex signal and the kurtosis of the complex noise, respectively.

Solving for S and N, one obtains the M; M estimators for the signal power and noise

power for complex channels as

X Ma(ky — 2) £ /(4 ~ kaku) Ma® + Miy(ka + by — 4)
Sle\rh ,complex = o+ ko — 4 (298)
and
&\!zM'hcomplex = A"[2 - S&Igbfq,complex- (299)
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Equation (2.99) is equivalent in form to (2.91).
For any M-ary PSK signal, k, = 1, and for complex noise, k,, = 2, so that the

M, M4 estimator for this special case reduces to

. _ S'MzM.a.complex — v 2My" — M, (2.100)

PA My, complex = =

NMzM..complex B M, — \/21"[22 ~ M, ’

where the negative root in (2.98) is selected so that jap,az,, complex 1S positive.

For the purpose of implementation, M> and M, are approximated by their respec-

tive time averages [54] as

Niym=—1
My = > lwl (2.101)
sym  n=0
and
] Nym-l
My = > lyal', (2.102)
IVSY'“ n=0

which, as written, are applicable to both the real and complex cases.

The M, M, estimator is of the in-service type, and has the advantage that knowl-
edge of the transmitted data need not be known or estimated (which is why the TxDA
and RxDA labels are not applied to this estimator). The A, estimator given by
(2.100) is applicable to any coherent or differentially coherent M-PSK modulation,
and is easily extended to systems employing other modulations such as QAM. Note
that carrier phase is not typically recovered in differentially coherent systems. The
M, M, estimator has the advantage that carrier phase recovery is not required (since
the second and fourth moments of the received signal carry no phase information)
which is why it is applicable to both coherent and differentially coherent systems.
The expressions given by (2.93) and (2.100) may also be applied to systems in which
the system impulse response is different from that specified in Section 2.2 as long as

the transmit and receive filters are root-Nyquist.

2.3.5 The Signal-to-Variation Ratio (SVR) Estimator

In 1994, Brandao et al [56] presented the SVR estimator as a means to measure

the quality of a received signal in a multipath fading channel. Though intended

58



for (complex) fading channels, this estimator may be adapted to any coherent or
differentially coherent M-ary PSK modulated signal, including BPSK in real AWGN.
It is not applicable, in general, to other modulation schemes such as QAM. This
method is based on the autocorrelation properties of the square of the sampled output
of the MF. The derivation of the SVR SNR estimator for BPSK in real AWGN is
presented first, followed by an extension to M-ary PSK in complex AWGN. The

derivation presented here is similar to the development given in [56].

Derivation of the SVR SNR Estimator for Real Channels

Recall the expression for the sampled output of the MF from (2.22) written as
Yn = \/§ an + \/N Wy,

assuming real quantities. The SVR estimator is a function of the parameter, 3, which

is expressed for real signals as

2,2

= T BT (2103

After expansion of the right-hand side of (2.103) using (2.22), an expression may be
found for p = S/N as a function of 8. This expression is the SVR estimator for real
AWGN channels, gsvr real, which generates SNR estimates from measurements of 4.

The term, E{y}, may be recognized as M, of the M, M, estimator derived in

Section 2.3.4, and given by (2.89) as
M, = k,S* + 6SN + k,N2.
In order to expand the other term in (2.103), consider the product

y2y_, = (Sa®+2VSNa,w, + Nw?)(Sa_, +2VSNan_wn1 + Nw?_))
= S%%a®_| +2SVSNdla,_wn

n-n-—

+ SNaiwﬁ_l +2SVSN anaﬁ_lwn

+4SNapap_ywawny +2NVSN a,,wnw,zl_1
+ SNa?_ w? + 2NVSN ap_jw,_ w2 + Nwliw?_,. (2.104)
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In order to evaluate the expected value of (2.104), note that considerable simplification
results from the fact that the expected value of any product with a single signal or
noise term vanishes due to the assumed mutual independence of the signal and noise.

Exploiting the independence properties of the signal and noise further, one has

E{aiai_l} = E{a:} E{a:-l} = a: =1

E{ajw;_,} = E{a;_jup} = 0j0;, =1

E{wiw; i} = E{w;} E{w,_,} =0, =1

n-1

E{a,a,1waw,-} = E{apnan-_1} E{wawn_,} =0.
Using these relations allows the expected value of (2.104) to be written as
E{y*y?_,} = §* + 2SN + N%. (2.105)

Substituting (2.89) and (2.105) into (2.103), one obtains
5 = 52+ 2SN + N?
" (ke —1)S2 + 4S8N + (k, ~ 1)N?
Pr+2p+1 5
- ) 2.106
oD T ap+ (ko = 1) (2.106)
The SVR estimator is then found by solving (2.106) for p in terms of 8 yielding the

general expression for real channels as

. _(26-1)£\/(26—1)2 — (L = B(ks — D][L = B(ku — 1)]
PSVR,real = 1— Bk - 1) .

Specifically, recall from Section 2.3.4 that k&, = 1 for BPSK signals and %,, = 3 for

(2.107)

real AWGN so that, taking the positive root, (2.107) simplifies to

PsVRreal = (28 — 1) +/26(28 — 1). (2.108)
Derivation of the SVR SNR Estimator for Complex Channels

In the complex case, the SVR estimator is a function of the parameter 3 expressed

as
E{ynyayn-197_1} 5
= n n 2.109
E{(y232)*} = E{yn¥ryn-19n-1} (2.109)
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where y, is given by (2.22). The term, E{(y.y )}, is recognized as M, of the complex

form of the M, M, estimator of Section 2.3.4 given by (2.97) as
M, =k, 5> +4SN + k, N°.
The other term in (2.109) simplifies to
E{yaynyn¥ni} = S*+ 25N + N?, (2.110)

again exploiting the independence properties of the signal and noise samples. Substi-

tuting (2.97) and (2.110) into (2.109}, one obtains

PP+2p+1 5
= 2.111
A= it + =) (2111)

which may be solved for p to yield the general SVR estimator for complex channels

as

) _(B=1)£J(B-1)2 =1 = Blks = DI[L = Blkw —1)]
PSVR, complex = 1— B(ka — 1) . (

2.112)

Specifically, recall from Section 2.3.4 that k, = 1 for M-ary PSK signals and &, = 2
for complex AWGN so that, taking the positive root, (2.112) simplifies to

ﬁSVR,complex = ﬂ -1+ V :B(.B - 1) (2113)

In practice, 8 is computed in terms of time averages as

(2.114)

Neym—1
_ T Tns |Yal lyn-1f?
'B - 1 Neym—1 1 Nayra—1

Noym 2-n=0 |yalt Naym &-n=0 |yn[?|yn-1/?

which, as written, could be applied to both real and complex channels.

Just as the M, M, estimator, the SVR estimator is of the in-service type, and has
the advantage that the transmitted data need not be known or estimated. The SVR
estimator given by (2.113) is applicable to any coherent or differentially coherent M-
PSK modulation. As mentioned in Section 2.3.4, in differentially coherent systems,

the carrier phase typically is not recovered, but this is not a problem for the SVR
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estimator since the phase information of the signal is removed in the estimation pro-
cess. As mentioned earlier in this section, the SVR estimator is not easily extended to
systems employing other modulations. The expressions given by (2.103) and (2.113)
may be applied to systems in which the system impulse response is different from that

specified in Section 2.2, as long as the transmit and receive filters are root-Nyquist.

2.4 Other SNR Estimators of Interest but not In-
cluded in this Study

This section lists a few SNR estimation strategies which are mentioned for complete-
ness, but which were judged to be unsuitable for this study. The reasons for excluding

these estimators are given in the brief descriptions that follow.

2.4.1 Use of Limiters for Estimating SNR

Nahi and Gagliardi {1] discuss an unusual method of SNR estimation which is ac-
complished with a hard limiter, a filter and a power meter. The method exploits the
autocorrelation properties of the desired signal and noise. In [1], the assumption is
made that both the desired signal and noise are Gaussian stochastic processes. There
is no mention in [1] or elsewhere in the literature of the application of this method
to discrete, random signals corrupted by AWGN. Although the method is attractive
since the measurement of SNR is accomplished by a simple power measurement, it
was judged unsuitable for this study of SNR estimators based on the results reported
in [1] as explained below.

In [1], the desired signal and noise are Gaussian stochastic processes having dif-
ferent autocorrelation functions (the autocorrelation functions cannot be identical in
order for this method to work). The SNR is related to the average power, Poy, of the
filtered output of the corrupted signal after hard limiting. An expression for Po,: may
be derived explicitly in terms of the SNR, but the expression is not easily inverted.

That is, the SNR cannot be expressed explicitly as a function of Py, so that the SNR
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must either be solved implicitly by iterative techniques, or found with the use of a
look-up table.

A more serious problem is the fact identified in [1] that the relationship between
P, and SNR/(SNR + 1) is linear, at least for the case in which both the desired
signal and noise are Gaussian stochastic processes. At a first glance, this linear
relationship seems encouraging since it is easy to estimate empirically a straight line
which can then be used to convert measurements of P,,. to SNR. However, consider
Figure 2.3. Figure 2.3(a) displays some arbitrary linear relationship between P, and
SNR/(SNR+1). Figure 2.3(b) shows Py, plotted as a function of SNR. It can be seen
that for SNR > 10dB (almost the entire SNR range of interest), Poy. is essentially
“saturated”; that is, even a small inaccuracy in the measurement of Py, can result
in a very large error in the estimation of the SNR, as the 5% error bars demonstrate.

Though these results are based on Gaussian stochastic transmitted signals, sim-
ulation results indicate a similar sensitivity in the case of binary, discrete random
signals. With this degree of sensitivity, a very large number of samples is required to
obtain reasonable SNR. estimates—the number of required samples is orders of mag-
nitude more than the number of samples required by the other estimators described

to this point for the same quality estimate. This method was not considered further

since it was judged to be too impractical.

2.4.2 Autocorrelation Method of SNR Estimation

This SNR estimation method is also based on the autocorrelation properties of the

desired signal and noise. A discussion of this particular estimator has not been found

in the literature.

The estimate of the SNR is derived from the samples, y, of the output of the MF

which, from (2.5), are expressed as
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Figure 2.3: Performance of the SNR estimator described in [1]: (a) measured average
power as a function of SNR/(SNR+1), (b) measured average power as a function of
SNR.
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Ye = (\/§mk + \/lv::k) @ hZ,
\/gz hymg_; + \/IVZ hizk_t-
! 4

Let the filtered samples of the desired signal be denoted by (i and, as before, let w;

denote the coloured noise samples so that the output of the MF may be expressed as
Yk = \/§Ck + VN wy.

The normalized autocorrelation of y, denoted by ¢y, is required in order to proceed
with this method. An expression for ¢, is derived below by considering the autocor-
relations of the desired signal and noise separately.

First, consider the autocorrelation of the desired signal. Recall from (2.15) that

the autocorrelation of the transmitted signal, mg, can be expressed as

o2 1
Bu(l) = 91 = §-9-

Since ( is the result of the discrete convolution of my with Ay, the autocorrelation of
( is evaluated as

R(l) = mM®hi®Ra(l)

1
= 9 (579)
_ 1(91891)
" N\ «

= %w(l) (2.115)

where ©¢(l) is the normalized autocorrelation of {, and

a = g®aglie
= Z gkgl—kll=0
£

= Y gi.
k
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From (2.9b), the normalized autocorrelation of the coloured noise can be written as
eull) = g (2.116)

Using (2.115) and (2.116), the normalized autocorrelation of y may be written as
Foc(l) + Nou(l)

=+ N
pr=wc(l) + pull)

Pr; +1

]

wy(l)

where, as always, p = S/N. Solving for p, the SNR is obtained as

p= s (M) : (2.117)
a \¢y(l) = cll)

Both ¢¢(!) and ¢u(l) are known, as are Ny and a, so that a measurement of the

autocorrelation of the output of the MF may be used to find an estimate of the SNR.

Consider the special case of [ = nN; that is, consider the optimally-sampled output

of the MF. In this case,
Saw(nl\r“) = gnN,, = 0? n # 0

so that (2.117) simplifies to

_&s_ ©y(nVss) ) n
=" (soc(nNss)—w(nNss) »n#0.

It is immediately apparent that this SNR estimator will not work well for high

SNR since ¢, (nNss) approaches ¢¢(nNy) implying that the measurement of @, (nN,)
would have to be extremely accurate in order to obtain meaningful (finite and positive)
SNR estimates. Computer simulation tests of this estimator at moderate values of
SNR (around 10 dB) revealed that the number of symbols must be very large (on the
order of 104 symbols or more) for meaningful SNR estimates to be generated. Apart
from this estimator, the one described in Section 2.4.1, and the SSME; and SSME,,
all of the other estimators described in Section 2.3 require many fewer symbols (on
the order of just 10 to 100 symbols) to generate meaningful SNR estimates. Given

this fact, this method was not considered further for extensive simulation testing.

66



2.4.3 Implicit Methods of SNR Estimation

All of the methods discussed so far have been treated explicitly as methods of SNR
estimation. Some SNR methods arise implicitly in the discussion of other subject
areas. Two examples are provided here.

In the context of blind identification and equalization, Tong et a! [70, page 346]
show how the noise variance may be found from the singular value decomposition
of the covariance matrix of the received signal. Since the authors had no need to
compute the signal power, no method for signal power estimation is offered in [70],
but it is presumed that one may simply estimate the total signal-plus-noise power
(by averaging the squares of the noise-corrupted received samples), and then subtract
from this the estimated noise variance (obtained using the method presented in [70]).
In this study, only explicit SNR estimators are considered so this implicit method is
omitted.

Another example of an implicit SNR estimator is given by Proakis in [65] in the
context of equalization. This SNR estimation method is not considered in this study
since it is not an explicit method. On page 564 of [63], an expression is offered to
compute the SNR at the output of a linear adaptive equalizer based on the MSE
criterion. This implicit method assumes the signal power is normalized to unity. No
method is offered to compute the SNR if the signal power is not unity and, most
importantly, no expression is offered to relate the SNR after the equalizer to the

unequalized SNR to facilitate a comparison with all of the other SNR estimation

methods studied here.

2.5 Measures of Estimator Performance

The performance of the SNR estimators may be characterized by an analysis of the
sample statistics. A few tests based on sample statistics are listed below, followed by

the description of a bound on estimator performance.

67



2.5.1 Tests Based on Sample Statistics

The SNR estimators are assessed by statistical tests of the mean, variance, and mean-
squared-error (MSE) of the SNR estimates. Let p represent estimates of the SNR for
a particular estimator, let f(5) be the pdf of the estimates, and let p be the true

SNR, then the statistical mean is given by
E{p} = [ (5 db, (2.118)
the statistical variance is given by
Var{s} = E{(3 — B3} = [(5 - EXpV*S(5) dp, (2.119)
and the statistical MSE is given by
MSE{p} = E{(6 - p)*} = [(5— )" () d5. (2.120)
The bias of an estimator is defined as
Bias{p} = E{p} — p.
Note that the MSE reflects both the bias and the variance of the SNR estimates.
The expressions given by (2.118), (2.119), and (2.120) above can be used to gener-
ate analytical expressions for the mean, variance, and MSE, respectively, for a given
estimator, but it is not always possible to obtain analytical results because either a

closed-form expression cannot be obtained for f(5), or the integrals are too unwieldy

to evaluate.

On the other hand, the performance of all estimators may be characterized by
computer simulation to an arbitrary degree of accuracy. The processes underlying the
generation of the SNR estimates are assumed ergodic so that the sample mean, sample
variance, and sample MSE may be computed rather than attempting to evaluate
closed-form expressions for the statistical mean, statistical variance, and statistical
MSE. This assumption allows estimator performance to be evaluated by the analysis

of a statistically significant number of SNR estimates.
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Let j; denote one of N, SNR estimates generated by a particular estimator, then

the unbiased sample mean is given by

_ 1 Nt
p Ivt ‘—1 pl!

the unbiased sample variance is given by

55

t— L=l

and the unbiased sample MSE is given by

MSE{5} = ;— Z(p. - p)*.

t =1

The sample bias in this case is expressed as
Bias{} = 5 — .

The “best” estimator is the one that is unbiased (or has the smallest bias) and has

the smallest variance and MSE.

2.5.2 The Cramér-Rao Bound (CRB)

The CRB is an analytical lower bound on estimator variance [67, 47]. A general ex-
pression for the CRB of the variance of an SNR estimator is presented in Appendix C,
and is used below to find the CRB for SNR estimators operating in the channel de-
scribed in Section 2.2. The derivation of the CRB for real channels is presented first,
following a development similar to that provided by Thomas in [47]. Subsequently,
the derivation of the CRB for complex channels is presented which does not appear

in [47] and has not been presented elsewhere in the literature.
Derivation of the CRB for Real Channels

Recall the likelihood function for real channels appropriate to the model of Section 2.2

given by (2.50) as

[(S,N,7) = —--Iiln(27rN - — z (r,c - \/—m ) .
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Re-write (2.50) in terms of p = S/N and N, instead of S and N, to obtain
1 A=t N\ 2
T(p, N,i) = _£‘. In(2rN) ~ 5 > (rk - me{_") :

This form of the likelihood function is substituted into (C.4) of Appendix C so that

the CRB for p may be written as

:(apE{z}) E{azrz .. (2.121)
{ar {ar} E{a%rﬁ

The required second partial derivatives of (2.121) are

Var{p} 2

ar _ Z remy

dp? 4\/p5N ,

or K 3

N2 — aNz N3 Z t7 V5 Z emy
a*r
8pdON 4\/p1V§ Z km

where K = NgynNys is the total number of received samples. Using (2.16), the

expected values of the partial derivatives may be expressed as

o*r K
g {-675} ~ 4N,
E{_&_"’_E} _ _K(2 + p/Nss)
ON? 4N?
E{ °r } _ K
OpdN 4N N

Substituting these results into (2.121), one obtains the CRB of the variance of an

SNR estimator operating in real channels as

V >2 + —F . 2.122
w5) 22 (3= + =) (5550 (2122

If p is unbiased, then dE{5}/0p = 1 so that (2.122) reduces to

2 2
Var(3) > 2 (N" + 5 F;v ) . (2.123)
sym ssi{Vsym
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Normalizing (2.123) by p? shows explicitly the asymptotic behaviour of the estima-
tors with increasing SNR. The normalized variance and MSE for an unbiased SNR
estimator operating in real channels are bounded by
MSE{5s} Var{p} ( 2 1 )
= >2 + 2.124
p2 P2 - P Nsym N. ss N,ym ( )
where MSE{p} = Var{p} because p is assumed unbiased. At high SNR, the nor-

malized variance (or normalized MSE) is ultimately determined by the number of
received independent samples, A" = Nyym Ny, used to generate estimates of the SNR.
At low SNR, the lower bound on the normalized variance is inversely proportional
both to the SNR and the number of symbols used to form an SNR estimate.

No unique expression exists for the CRB of biased estimators since it is dependent
on the bias of a particular estimator. Consider the biased ML TxDA SNR estimator

of Section 2.3.2 for real channels whose expected value is given by (2.57) as

- K 1
E{pmrTxDrreat} = 73 (p + ) ]

Noting that @ E{fMLTxDAreat}/Fp = K/(K" — 3), the normalized CRB for this biased

estimator may be written as

Var{fuL TxDA real } 2R? 2 1 _
- > . 2.12
p? — (A —=3)? PNsym * NgsNoym ( 2

The ratio of the normalized, biased CRB (using the bias of the ML estimator) given
by (2.125) to the normalized, unbiased CRB given by (2.124) is plotted in Figure 2.4
for values of K in the range from 64 to 1024 samples. It can be seen that the difference
between the two expressions becomes small very quickly with increasing K.
Consider briefly the issue of estimator efficiency®. An “efficient” estimator is one
that meets the CRB for any sample size. If an efficient estimator can be proven
to exist, then it is the ML estimator. Comparison of (2.123) and (2.124) with the

analytical expressions for the biased and reduced-bias ML TxDA SNR estimators for

3The following definitions and concepts regarding efficiency and other properties of ML estimators
may be found in [67].
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Figure 2.4: Ratio of biased CRB (based on bias of ML TxDA estimator) to unbiased
CRB.

real channels given by (2.59) and (2.60), respectively, reveals that the CRB is not met
in either case, so an efficient estimator does not exist (otherwise, it would be the ML
estimator). Since an efficient estimator does not exist, there may exist some other
estimator which has a variance smaller than that of the ML estimator; however, since
the CRB and the analytical variance are so close, it seems that the search for this
hypothetical, “better” estimator would have little practical value. Under reasonably
general conditions [67], ML estimators are at least asymptotically efficient which
means that as the number of independent observed samples increases, the variance of
the ML estimator asymptotically approaches the CRB.

To illustrate the asymptotic efficiency of the ML estimator, the normalized, unbi-
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ased CRB given by (2.124) and the variance of the reduced-bias ML estimator given
by (2.60), normalized to the square of the true SNR, are plotted for A" = 64 and
K = 1024 in Figure 2.5. It is clear that, as the sample size increases, the variance of

the ML estimator approaches the CRB.

Derivation of the CRB for Complex Channels

The likelihood function applicable to this complex case is given by (2.66) which is
re-written as a function of p and N to obtain
F(p,N,i) = In f(r1,rqlp, N,?)
1 R-1 \N2 R-1 (@)
= -—A’ln(ﬂ’N) — ‘1\7 [Z (T[k - me([‘k)) + Z (er - prm i )

k=0 k=0
2.126)

The second partial derivatives of (2.126) required for the evaluation of (2.121) are

a*r i

3p? = \/p_3_N Z (rlkmlk + erm(Ql)

o*r K

O - Z(m +r)+ 35 Z(mmu + roumg))
o*r i
9p0N pN Z(r"‘m’* +reumg,)

Using (2.16), the expected values of the partial derivatives are expressed as

0T K
ot _ _ 2.12
E{BP’} 2pNss (2.127)
PrY _ K@+p/Ny) S
o {azvz} =TT (2.126)
92T K
= e 2.
E{apaN} 2NN’ (2.129)

Substituting these results into (2.121), one obtains the CRB of the variance of an

unbiased SNR estimator operating in complex channels as

2

2p P
Var{p} 2 + . 2.130
2§ ot NV (2130
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Therefore, the normalized variance and normalized MSE for an unbiased SNR esti-

mator operating in complex channels are bounded by

MSE{s} Var{p} 2 1
= > 2.
p2 P2 T pNym + NesNyyen’ (2.131)

where, as mentioned in the derivation of the CRB for the real case, MSE{p} = Var{p}
because § is assumed unbiased. Comparing (2.131) with (2.124), it is apparent that
the lower bound on SNR estimator variance is a factor of two smaller in complex

channels as compared to real channels.

2.6 Simulation Results

The model described in Section 2.2 is implemented in C for Monte Carlo simula-
tion. A hard limited uniform random number generator provides the source data
and a Gaussian random number generator supplies independent WGN samples. The
random number generator algorithms are taken from Chapter 7 of [71].

For a given SNR, an SNR estimate is generated from a block of Ny, = 64 or
1024 received symbols. Many such estimates are generated and the bias, variance,
and MSE are computed as described in Section 2.5.1 (the plotted bias, variance, and
MSE curves are shown normalized to the true SNR). Each estimator from Section 2.3
is tested over an SNR range spanning 3-30 dB in discrete steps. Enough estimates
are generated in each case to ensure that the error in the variance is less than 20%
with 95% confidence (see Appendix D).

Both real and complex channels are modeled. Specifically, BPSK-modulated sig-
nals in real AWGN, and 8-PSK-modulated signals in complex AWGN are simulated.
A verification of the simulators is provided in Figure 2.6 by a comparison of the
theoretical probabilities of error, P,, for coherent BPSK and coherent 8-PSK to the
simulated results. The solid curve represents the theoretical probability of error for

coherent BPSK given by (2.13). The dashed curve represents the theoretical proba-
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Figure 2.6: Comparison of theoretical and simulated probability of error curves for
coherent BPSK in real AWGN and coherent 8-PSK in complex AWGN.

bility of error for coherent 8-PSK approximated by [65]

1 /
P[,,s-ps[( =~ §erfc ( 3% sin g) .

All simulated points are accurate to within at least 20% error with 95% confidence.
The SNR, p, plotted on the abscissa is equal to 2E;/Np for BPSK (in real AWGN)
and E,/Ny = 3Ey/Np for 8-PSK (in complex AWGN). The simulated points show
good agreement with theory.

The unbiased expressions for the CRB, given by (2.124) for real channels and
(2.131) for complex channels, are included in the plots of normalized variance and

normalized MSE for comparison with the simulated results. The unbiased forms
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of the CRB are selected to avoid having the CRB’s be estimator specific since the
bias for each estimator is different. The CRB is included for reference in the plots of
normalized MSE with the understanding that, strictly speaking, the CRB expressions
as given in Section 2.5.2 are really bounds on estimator variance.

For the ML estimators, the constants to be used in (2.124) and (2.131) are N = 16
and Ngym = 1024 or 64. A CRB expression that uses Ny, = 16 will be referred to
here as a pre-MF CRB since the ML estimator operates on the Ny = 16 samples
per symbol at the input to the MF. The SSME algorithms also use 16 samples per
symbol, except they are taken at the output of the MF. Strictly speaking, the variance
and MSE of the SSME algorithms should be compared to a different CRB that takes
into account the correlation of the noise samples after the MF. It is more interesting,
however, to compare the SSME results to the ML estimator and pre-MF CRB, so the
more complicated, multiple-sample per symbol CRB with correlated noise samples is
not presented here.

For the estimators that operate on the one sample per symbol (taken at the
optimal sampling instant) at the output of the MF (or, equivalently, at the input to
the decision-device), the constants to be used in (2.124) and (2.131) are NV, = 1 and
Noym = 1024 or 64. A CRB expression that uses Ny = 1 will be referred to here as
a post-MF CRB. The expressions given by (2.124) and (2.131) are applicable to the
post-MF samples in this case because the baud-spaced noise samples at the output
of the root-Nyquist receiver filter are uncorrelated (see (2.9b)).

The simulation results are presented in the next three sections. The first sec-
tion gives results for estimators operating with BPSK signals in the real form of the
narrowband, AWGN channel described in Section 2.2. The second section gives per-
formance results for estimators operating with 8-PSK signals in the complex form
of the narrowband, AWGN channel. The third section presents additional results of
some interest: the performances of a couple of selected estimators are simulated in

the wideband, real AWGN channel described in Section 2.3.1, and one-sample per
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symbol ML SNR estimation before and after the MF is compared.

2.6.1 Performance Results for BPSK in Real AWGN

Performance Results for Estimators using Sixteen Samples per Symbol

The estimators that use sixteen samples per symbol to generate SNR estimates in the
narrowband channel of Section 2.2 are the SSME,, SSME,, ML TxDA, and ML RxDA
SNR estimators. Plots of the normalized bias, normalized variance, and normalized
MSE are presented in Figures 2.7 to 2.9 for BPSK signals in real AWGN. Note that
curves for the SSME, and SSME; are absent from Figures 2.7(b), 2.8(b), and 2.9(b).
These curves are omitted because the SNR estimates generated by SSME, and SSME,
using a block length of 64 symbols are poor—the estimates are not always real,
positive numbers since the systems of equations used to generate the SNR estimates
are ill-conditioned with so few samples.

It is immediately apparent from Figures 2.8 and 2.9 that the normalized variance
and MSE curves of the ML TxDA SNR estimator are almost indistinguishable from
the corresponding pre-MF CRB’s. The variance of the ML RxDA SNR estimator
is almost as good as its TxDA counterpart, but its MSE diverges from the MSE of
the ML TxDA estimator at low SNR due to the bias caused by receiver decision
errors. The low-SNR gap between the MSE of the ML TxDA estimator and that
of the ML RxDA estimator narrows as the block length, Nym, is shortened. This
observation may be explained by observing in Figure 2.7 that the bias of the ML RxDA
estimator at low SNR is relatively unchanged as the block length is decreased from
1024 to 64 symbols, whereas Figure 2.8 reveals that the variances of the ML RxDA
and ML TxDA estimators (and the CRB) increase by an order of magnitude. Recall
that the MSE reflects both the bias and variance of an estimator. As the block length
decreases, the effect of the inherent variance of the estimator on the MSE becomes
comparable to the effect of the error-induced bias.

Judging by the plots of the variance of the ML TxDA estimator in Figure 2.8,
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it appears, at first glance, that this estimator is efficient; however, it was noted
in Section 2.3.2 that the ML TxDA SNR estimator is not efficient since the CRB
for unbiased estimators (2.124) does not equal the variance of the reduced-bias ML
estimator (2.60). It was also noted that the difference between the variance of the
ML TxDA SNR estimator and the corresponding CRB is so small that it would seem
of little practical value to search for a more efficient estimator.

The performances of the SSME; and SSME, algorithms are generally not as good
as those of the ML TxDA and ML RxDA estimators. The performance of the SSME,
is slightly better than that of the SSME,, as is evident from Figures 2.7, 2.8, and 2.9.
The bias of the SSME; at low SNR (less than about 9 dB) is better than that of
the ML RxDA estimator, but its variance and MSE are worse over the entire tested
range of SNR. The SSME, and SSME; are examples of estimators based on higher-
order moments that tend to have poor convergence properties in bandlimited channels
(other examples are the autocorrelation-based methods discussed in Sections 2.4.1
and 2.4.2). The SSME, was also adapted to operate on the samples at the input to
the MF rather than the output, but similar poor performance was observed and those

results are not plotted.
Performance Results for Estimators using One Sample per Symbol

The estimators that use one sample per symbol to generate SNR estimates are the
SVR, M,M,, SNV TxDA, and SNV RxDA SNR estimators. Plots of the normalized
bias, normalized variance, and normalized MSE are presented in Figures 2.10 to 2.12.
Results are shown for block lengths of 1024 and 64 symbols for each of the three
performance metrics.

The performances of the SNV estimators parallel those of the ML estimators.
The SNV TxDA estimator is asymptotically efficient (the number of samples is small
enough in Figure 2.11(b) to see that the SNV TxDA estimator is not perfectly ef-
ficient). The variance of the SNV RxDA estimator is almost identical to that of
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the SNV TxDA over the tested range of SNR. The MSE of the SNV RxDA esti-
mator is identical to that of the SNV TxDA estimator at high SNR, but begins to
diverge as the SNR is decreased to the point where receiver errors induce a bias in
the SNV RxDA estimates. The gap between the MSE of the SNV TxDA estimator
and that of the SNV RxDA estimator decreases with decreasing block length as the
effect of the estimator variance (which grows as the block length is shortened) on the
MSE becomes comparable to the effect of the error-induced bias (which is relatively
insensitive to the block length).

The M,M, estimator is asymptotically efficient at high SNR, as is evident by
comparing Figure 2.11(a) with Figure 2.11(b). At low SNR (p < 8 dB) and for long
block lengths (Ngym ~ 1000 symbols), the MSE of the M;M, estimator is smaller
than that of the SNV RxDA estimator, but the advantage becomes less significant
with decreasing block length so that, at Nyym = 64, the MSE of the M, M, estimator
is greater than that of the SNV RxDA estimator over the entire range of tested
SNR. Though it has been observed by simulation that some SNR estimators based on
higher-order moments (such as the SSME algorithms) suffer degraded performance at
high SNR, the M; M, estimator is an example of an exception since its bias, variance,
and MSE are “well-behaved”; that is, they asymptotically approach some constant
value at high SNR.

The SVR estimator generally does not perform as well as the MM, and SNV
estimators, though in Figures 2.10 and 2.12(a) it can be seen that, under some con-
ditions, the bias and MSE curves of the SVR estimator are better than those of
the SNV RxDA estimator at very low SNR. Along with the SSME algorithms, the
SVR estimator is another example of an estimator whose bias, variance and MSE
begin to rise at larger values of SNR. The mechanism behind this degradation is not
fully understood, but the effect is more pronounced as the block length is shortened.
In fact, for Nyym = 64 and for p > 20 dB, the degradation is so severe that some

of the generated estimates are meaningless; that is, the expression given by (2.108)

86



generates estimates that are negative. For this reason, some high-SNR points have

been omitted from the plots of the bias, variance, and MSE of the SVR estimator in

Figures 2.10 to 2.12.

2.6.2 Performance Results for 8-PSK in Complex AWGN

In Section 2.6.1, the performances of the real SNR estimators of Section 2.3 operating
in a narrowband, real AWGN channel were presented and the effect of different block
lengths was illustrated. In this section, the block length is fixed at Ny, = 64 and the
performances of the complex estimators of Section 2.3 are investigated with 8-PSK
signals corrupted by complex AWGN. The performances of the complex forms of the
ML TxDA, ML RxDA, SNV TxDA, SNV RxDA, SVR, and M,M, estimators are
illustrated in Figures 2.13 to 2.15. The ML estimator results are plotted separately
from the results of the other estimators since the ML estimators are the only algo-
rithms investigated in this 8-PSK environment that use multiple samples per symbol.
The performances of the SSME algorithms in the 8-PSK case were not studied since
these algorithms were derived specifically for BPSK in real AWGN and are not easily
adapted to M-ary PSK modulation in the complex AWGN channel.

Comparing Figure 2.8(b) with Figure 2.14(a), and comparing Figure 2.11(b) with
Figure 2.14(b), it can be seen that the pre-MF and post-MF CRB’s are a factor of two
smaller in the 8-PSK case relative to the respective CRB’s in the BPSK case. Since
the ML and SNV estimators are nearly efficient, the variances of these estimators are
also a factor of two smaller in the complex channel. However, comparing Figure 2.9(b)
with Figure 2.15(a), and comparing Figure 2.12(b) with Figure 2.15(b), it can be seen
that the low-SNR performances of the ML RxDA and SNV RxDA estimators with
8-PSK signals are inferior to their respective low-SNR MSE performances with BPSK
signals. The reason for these differences in performances is that receiver errors are
more likely with 8-PSK signals given that the signal power and noise power in the

8-PSK and BPSK cases are the same.
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Figure 2.13: Normalized bias with 8-PSK signals in complex AWGN with Ny, = 64

and (a) Ny = 16, (b) N = 1.
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In contrast to the post-MF CRB and the variance of the SNV TxDA estimator,
which are both a factor of two smaller in complex channels as compared to real
channels, the variance of the M, M estimator is close to identical in real and complex
channels, as is evident from a comparison of Figures 2.11(b) and 2.14(b). However,
the fact that the M, M, performance is almost unchanged in the BPSK and 8-PSK
cases coupled with the fact that the performance of the SNV RxDA estimator is
relatively worse at low SNR with 8-PSK as compared to BPSK means that the relative
performance advantage of the M, M, estimator over the SNV RxDA estimator at low
SNR improves as the number of constellation points, M, increases. This behaviour
may be observed by comparing Figure 2.12(b) with Figure 2.15(b).

Similarly to the M,M, estimator, the bias, variance, and MSE of the SVR es-
timator with 8-PSK signals change very little as compared to the bias, variance,
and MSE of the SVR estimator with BPSK signals as is seen by a comparison of
Figures 2.10(b), 2.11(b), and 2.12(b) with Figures 2.13(b), 2.14(b), and 2.15(b), re-
spectively. As a result, the SVR estimator, too, has a low-SNR performance that
improves relative to the low-SNR performance of the SNV RxDA estimator as the
order of the modulation increases. However, as in the BPSK case, the degradation in
performance observed at high SNR is still present with 8-PSK signals. At high SNR,
some of the SVR estimates are negative which is why some high-SNR points have

been omitted from Figures 2.13(b), 2.14(b), and 2.15(b).

2.6.3 Additional Results

Some additional results of interest are reported here. In particular, the performance
of the SSME, algorithm, designed specifically for operation with BPSK signals in
wideband, real channels, is investigated and compared to the performance of the
ML RxDA estimator. Also, a comparison is presented of one-sample per symbol ML

SNR estimation before and after the MF.

91



v wearmasme

Performance in the Wideband Channel

As discussed in Section 2.3.1, the SSMEq SNR estimation algorithm is designed for
BPSK signals in wideband, real AWGN channels. A simulation model based on
Figure 2.2 was developed in which the SSMEq was tested. For comparison, the ML
RxDA estimator was also tested in this wideband channel after making the necessary
adaptations to its algorithm. Simulations were run with block lengths of Ngyym = 64
and Nyym = 1024, and the results are shown in Figures 2.16 and 2.17. Figures 2.16(a)
and 2.16(b) show the bias plots for Nyym = 64 and Ny, = 1024, respectively (the
plots are separated in order to avoid clutter). Figure 2.17(a) shows the variance for
both Nyym = 64 and Ny, = 1024, and Figure 2.17(b) shows the MSE. It is interesting
to note in Figure 2.17 that the variance and MSE of the SSMEq using Nyym = 1024
approach the CRB for Nyym = 64 at high SNR. This is a curious result.

In order to investigate this result further, another set of simulations was run in the
wideband channel with four samples per symbol rather than sixteen. Figure 2.18(a)
shows the MSE curves for this case (the corresponding bias and variance plots are
omitted since they do not reveal any additional information). Comparison of Fig-
ures 2.17(b) and 2.18(a) reveals that the MSE curves of the SSMEg appear to be
independent of the number of samples per symbol used to generate an SNR estimate.
Further, Figure 2.18(b) shows that the SSMEy MSE curves appear to be asymptot-
ically efficient at high SNR with the CRB’s for one sample per symbol; that is, the
SSME;, algorithm does not appear to take advantage of the available multiple samples
per symbol. In contrast, the MSE performance of the ML RxDA estimator improves
as the number of samples per symbol is increased since it takes advantage of the
multiple samples per symbol by processing the samples in such a way as to effect a

digital matched filter {72].
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Comparison of Pre-MF Estimation to Post-MF Estimation in the Narrow-
band Channel
In Section 2.3.3, it was explained that the SNV estimator is essentially the ML esti-
mator applied to the output samples of the MF taken at the optimal, baud-spaced
sampling instants. It is interesting to consider the performance of a similar estimator
using one sample per symbol before the MF. For simplicity, the system in which this
comparison is conducted assumes BPSK signals in real AWGN.

The sequence of pre-MF samples is formed by sampling the received signal, given
by (2.4) as

Ty = Vs mg + VN Zky

at a sampling point corresponding to the symbol centres. Since the signal portion,
myg, of the received, pre-MF signal is corrupted by ISI (by design, due to the fact that
my is the output of a root-raised cosine filter), the baud-spaced, pre-MF samples will
not have constant magnitude; however, the average magnitude of the symbol centres
will be equal to v/Sho where A, represents the taps of the transmit filter and hg is the

peak of the impulse response. For the system model of Section 2.2,
ho =~ 0.0795781. (2.132)

The performances of the one-sample per symbol pre-MF and post-MF ML esti-
mators are compared here analytically by plotting the post-MF CRB and a modified,
one-sample per symbol pre-MF CRB. The derivation of the CRB in Section 2.5.2 for
real signals in real AWGN assumes the power of the sequence of information symbols

is given by (2.55) as
gago
Ny

In Section 2.2, 02 and go are set to unity. For illustration purposes, maintain the

1 K~1 )
7 2 (M) = Ru(0) =

k=0

assumption here that o2 is set to unity, but leave gy as a variable parameter. The
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post-MF CRB may then be written using (2.124) with Ny =1 as

2 1
=2 . 2.13:
CRBPOSK—&[F ( pgo Nsym + Ivsym ) ( 1 3 3 )

The pre-MF CRB for real signals in real AWGN cannot be obtained using (2.124)
since the expression for the power of the sequence of information symbols given by

(2.55) is not applicable. Instead, the power of the Nyym, baud-spaced pre-MF samples

is given by _
1 = @ 2 2
= hg. 2134
T 2 "%l = (2134

Using (2.134), the one-sample per symbol pre-MF CRB may be expressed as

) 1
re— ss — = 2 - 2.1 >
CRBpre-MF(Nes = 1) (,,hg Nom © N,,m) (212)

Note that post-MF CRB given by (2.133) and the one-sample per symbol pre-MF
CRB given by (2.135) have the same high-SNR asymptote, and differ only at low
values of SNR. Figure 2.19 shows plots comparing these two expressions (substitut-
ing go = 1, and substituting (2.132) for ho) using block lengths of Nym = 64 and
Neym = 1024. Figure 2.19 clearly shows that the performance of a post-MF estimator
becomes increasingly superior to that of a one-sample per symbol pre-MF estimator
with decreasing SNR. At high SNR, the CRB curves approach a common asymp-
tote. The performance of the post-MF ML SNR estimator is better than that of the
one-sample per symbol pre-MF ML SNR estimator because the effect of the MF is to
maximize the SNR at the optimal sampling instant; in other words, the effect of the
MF is to make gy > A2.

These observations confirm that, if only one sample per symbol is available for SNR
estimation in a particular implementation (for example, due to hardware processing
speed limitations), then the estimation should be performed after the MF (at the

optimal sampling instant) rather than before, as expected.
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2.7 Implementation Issues

An estimator is not chosen for a particular application based on its performance alone.
If an estimator performs very well, but it is extremely difficult to implement, then it

may not be the best choice. Factors that affect the ease of implementation are:

1. The computational power required to carry out the operations of a particular

algorithm.

2. The peripheral circuitry required to present the received signal to the estimator

in the required form.

The issue of computational power is considered first. The available computational
power varies depending on the specific technology used to realize an algorithm. For
example, it is much simpler to implement arithmetic multiplication and division in a
DSP chip than it is in a programmable gate array device. All of the estimators tested
here require the ability to compute the ratio of two numbers which makes a gate
array realization difficult, unless there is a way to create a modified implementation
that does not require division operations (an example of a gate array implementation
of the M, M estimator is presented in [73]). The M,M; and SVR expressions each
have a square-root operation which is difficult to perform in DSP and even more
difficult in a gate array implementation. The square-root operation would need to
be approximated, perhaps by a series expansion or a lookup table. Probably the
most complicated estimator to implement is the SSME, algorithm which requires the
solution of a quadratic system of equations. An iterative technique, which demands
much computing power, is often used to arrive at a solution in such a case.

Next consider the issue of “peripheral” circuitry which includes all of the pieces

of the receiver between the receiver antenna and the estimator including:
e Low-noise amplifier (LNA).

e Frequency down-converters.
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Analog filters.

Analog-to-digital converters.

Matched filter.

Symbol timing recovery (STR).

e Carrier phase recovery (CR).

For example, all of the estimators require symbol timing recovery in order to function
properly, but not all estimators require carrier phase recovery. Those estimators not
requiring CR are those that operate on even powers of the received signal which
include the SSME,, SVR, and M, M, estimators.

Each estimator has its own particular constraints and advantages which need to
be considered separately. For example, consider the following unique implementation
advantage of the ML SNR estimators. In the description of the ML estimators in
Section 2.3.2, it was pointed out that the ML RxDA estimator must choose the
sequence, mg), based on receiver decisions which it uses to correlate with the received
signal. As pointed out in [45], this process is identical to the process of correlation
detection which is equivalent to matched filtering [62]. This fact can be used to
simplify the implementation of the ML RxDA estimator since many digital receivers

employ a matched filter.

2.8 Summary

The performances of the various SNR estimators described in Section 2.3 were com-
pared in Section 2.6 in narrowband, real and complex AWGN channels; and in a
wideband, real AWGN channel. Based on the results presented, the “best” estimator
to use depends on the given application.

If known data is available to the receiver, the ML TxDA and SNV TxDA estima-

tors perform so well as to make it difficult to justify attempts to find better estimators
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for the channel conditions considered here. These TxDA estimators can only generate
estimates when known data is available to the receiver, but the particular application
will dictate whether or not this limitation is objectionable.

If an application demands the continuous generation of SNR estimates, then the
selection of one of the in-service SNR estimators would be more appropriate. [t
has been demonstrated in Section 2.6 that the choice of the “best” in-service SNR
estimator depends on the block length (Nym), the number of samples per symbol
(Nys) available, the type and order (Af) of modulation used, and the SNR range of
interest. The issue of complexity, discussed briefly in Section 2.7, is another factor to
consider.

The simulated performances presented in Sections 2.6.1 and 2.6.2 of the SVR,
MMy, and SNV estimators are not specific to the system model of Section 2.2 but
are identical among systems that employ any type of root-Nyquist filter in the trans-
mitter and receiver. The simulated performances of the ML estimators are identical
even among systems which employ filters other than those of the root-Nyquist type
(Nyquist’s criterion for ISI-free transmission need not be satisfied) in the transmitter
and receiver—the only requirement for the results to remain identical is that the sum
of the squares of the filter coefficients be unity. The simulated results of the SSME,
algorithm are specific to the wideband, real AWGN channel, and the simulated re-
sults of the SSME, and SSME, are specific to the particular system configuration
described in Section 2.2.

The SSME,, SSME;, and SVR algorithms exhibit biases, variances, and MSE’s
that rise with increasing SNR. Though the exact mechanism that causes the bias,
variance, and MSE to rise at high SNR is not fully understood, it is not unreasonable
that this effect should occur. Note that the CRB itself, normalized to the true SNR,
does not fall indefinitely with increasing SNR but, instead, approaches a constant (see,
for example, Figures 2.11 and 2.12). Since the performances of the best estimators

cannot be better than the CRB, the normalized variances and normalized MSE’s of
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those estimators, at best, also approach a constant at high SNR. Consequently, it is
reasonable to expect the variance and MSE of an inferior estimator either to approach

some larger constant or to rise with increasing SNR.

2.8.1 Comments on Specific Estimators
The SSME Algorithms

From the point of view of overall performance, the SSME, algorithm is judged to be
the best of the three SSME algorithms when used in wideband channels for which
it was designed. The SSME, algorithm is the only one of the three that has stable
performance at high SNR. It was pointed out in Section 2.6.3 that, though the SSME,
operates on multiple samples per symbol, its performance is relatively independent of
the number of samples per symbol avatlable. In fact, from Figure 2.18(b) it is apparent
that, regardless of the number of samples per symbol processed by the estimator, the
performance of the SSME, is actually comparable to the CRB for one sample per
symbol.

In the narrowband channel of Section 2.2, the SSME series of estimators have
trouble with Ngym = 1024 and, with Ny, = 64, the generated SNR estimates are
sometimes negative or non-existent. The exact mechanism behind the poor high-SNR
performance is not fully understood, but a detailed examination of the simulation data
reveals that the systems of equations used to generate estimates of the discrete signal
power, S, and discrete noise power, /V, are ill-conditioned and become increasingly
so as Nyym is decreased and as the actual SNR is increased.

Of the two SSME algorithms designed for narrowband channels, SSME,; and
SSME,, the SSME; algorithm performs better, thus showing that the approach taken
in Section 2.3.1 for the development of an improved SSME algorithm for narrowband

channels does, indeed, yield a better estimator.



The ML Algorithms

The variance and MSE of the ML TxDA estimator are indistinguishable from the
CRB for block lengths of 64 and 1024 symbols using sixteen samples per symbol thus
making the ML TxDA estimator the best SNR estimator in the category of estimators
that use multiple samples per symbol. Likewise, its in-service, RxDA counterpart is
also asymptotically efficient for high SNR where receiver errors are negligible, but
the low-SNR performance of the ML RxDA estimator degrades relative to that of the
ML TxDA estimator with increasing block length and order of modulation.

Note that the variance of the ML RxDA estimator is less than the CRB under
certain conditions. For example, Figure 2.8(b) shows such a case at low SNR for
Ngym = 64. Recall that the CRB plotted is for any unbiased estimator. The plotted
unbiased CRB does not correspond perfectly to the variance of the ML RxDA esti-
mator since this estimator exhibits a strong bias at low SNR. It is not a theoretical
contradiction, therefore, that the variance of this estimator is less than the unbiased

CRB at low SNR.

The SNV Algorithm

The SNV TxDA estimator performs best of all of the estimators studied in the cate-
gory of estimators using only one sample per symbol in the sense that its variance and
MSE come closest to the theoretical bound. The variance of the SNV TxDA estimator
is indistinguishable from the post-MF CRB for a block length of 1024 symbols (see
Figure 2.11(a)), but there is a noticeable gap between the variance of the SNV TxDA
estimator and the CRB for a block length of 64 symbols (see Figure 2.11(b)) which
demonstrates that the SNV TxDA estimator is not truely efficient, but is asymptoti-
cally efficient.

The variance and MSE of the in-service, ML RxDA estimator behave identically
to those of its TxDA counterpart at high SNR where receiver errors are negligible,

but its performance degrades at low SNR, and the performance gap between the
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ML RxDA and ML TxDA estimators widens with increasing block length and order
of modulation. The variance of the SNV RxDA estimator dips below the CRB for
some values of low SNR but, as mentioned above in the discussion of the ML RxDA
estimator, this observation poses no theoretical contradiction since the CRB is for
unbiased estimators, and so it cannot be expected to correspond well to the variance

of the SNV RxDA estimator at low SNR where the bias of the estimator is worst.

The MM, Algorithm

This method, based on higher-order moments, is well-behaved at both low and high
values of SNR for block lengths of both Ny, = 64 and N, = 1024. The vari-
ance of the M, M, estimator approaches the CRB at high SNR with increasing block
length, and so is asymptotically efficient, but this estimator is not as efficient as
the SNV TxDA estimator, which may be seen by comparison of Figures 2.11(a)
and 2.11(b).

The MM, estimator is the best in-service estimator at low SNR given a long
block length (Vsym ~ 1000) or a higher-order signal constellation. Receiver errors at
low SNR do not deleteriously affect the A M, estimator as they do the SNV RxDA
estimator.

Since this algorithm is based on even moments of the received signal, the M; M,

estimator has the advantage that carrier recovery is unnecessary.

The SVR Algorithm

This estimator performed least well of all of the estimators tested here that employ
one sample per symbol to generate SNR estimates. With a block length of N, = 64
symbols, the SVR estimator exhibits similar poor high-SNR behaviour as the SSME,
and SSME, estimators (with Nym = 1024); that is, the bias, variance, and MSE all
start to rise. The effect is noticeable, but less pronounced, when the SVR estimator

uses a block length of Ny, = 1024 symbols.
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As in the case of the SSME estimators, the mechanism behind the poor high-
SNR performance of the SVR estimator is not fully understood. It is noteworthy,
however, that the SVR estimator is based on the autocorrelation properties of a
received signal. The estimators discussed in Sections 2.4.1 and 2.4.2 are also based
on autocorrelation concepts and were judged to be unsuitable for this study due to
the very large number of symbols required in order to obtain finite or non-negative
estimates. The SVR estimator also appears to have trouble using a relatively small
number of symbols to generate SNR estimates.

An advantage of this estimator is that, since the algorithm requires the compu-
tation of the square and the fourth power of the received signal, the phase of the
received signal is unimportant, meaning that carrier recovery is not required for the

operation of this estimator.
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Chapter 3

SIR Estimation in Mobile Radio
Channels

3.1 Problem Definition

The goal is to extend the concept of SNR estimation in the AWGN channel to signal-
to-impairment ratio! (SIR) estimation in wireless channels such as those encountered
in mobile radio. Impairments affecting mobile radio channels include AWGN; fast,
frequency-selective Rayleigh fading?; and cochannel interference (CCI) [24]. The
performances of many system functions may be improved through use of the SIR.
In Section 1.2, several applications that require a quantitative measure of channel
quality were described.

There are various ways to express the SIR in any given environment, depending
on the measurement method and the way in which the SIR is to be used. The
ultimate measure of channel quality is the raw error rate of the channel—the error
rate without equalization or coding [77]. There are a few different definitions of error
rate, but the most common, and the simplest, is the average bit error rate (BER)
which is simply the ratio of the number of bit decision errors to the total number

of transmitted bits over some observation interval. The raw, average BER does not

INote that some references (see [74, 2]) use “SIR™ to denote “signal-to-interference ratio” whereas,
in this study, the “I” stands for the combined effect of all channel “impairments.”

2A brief summary of some basic fading concepts and terms used in this study is offered in
Appendix E. Tutorial papers on the subject of fading channels include [75, 76).

106



reflect the burstiness of errors, but it is an adequate descriptor of channel quality
nonetheless. For example, the European second-generation digital cellular standard
(GSM) uses the raw, average BER to define reception quality [77, 78].

Though the BER is the ultimate measure of channel quality, direct estimation
of the BER may not necessarily be the easiest way to generate estimates of channel
quality. Instead, some observable property of the received signal is sought that is
easy to measure which, after a simple transformation, yields the SIR of the channel.
It is proposed here that whatever metric is used to quantify the SIR of a2 channel,
it ideally should have a monotonic, one-to-one correspondence with the BER. The
SNR in the AWGN channel is a good SIR metric in this respect since the SNR is the
only parameter that determines the BER in the AWGN channel. For example, the
probability of error (or BER) for coherent BPSK is given by (2.13) of Section 2.2 as
Py, = Q(/p) where p is the SNR. In fading channels, the SNR alone is not sufficient
to determine the error rate. In fading channels, the BER is found to be dependent on
the SNR, the overall multipath delay spread of the channel, and the overall Doppler
spread [75, 25]. CCI must also be taken into account [24, 25].

SIR estimates are generated from the observation of a number of received sym-
bols, just as in the case of SNR estimation. The SIR estimators under considera-
tion are mainly of the in-service type (that is, the SIR is derived directly from the
information-bearing received signal). The in-service estimators are either RxDA esti-
mators or moment-based estimators. Some TxDA SIR estimators are also considered
(see Section 2.1 for an explanation of the terms, TzDA and RzDA).

First, some sort of definition of SIR must be provided before searching for algo-

rithms to estimate this ambiguous parameter. A few possible definitions of SIR are

offered here.

1. The first proposed definition of SIR has the form

SIRl - Pavg. desired signal

Pavg. impairments
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where Pyyg, desired signal iS the average power of the desired signal in the strongest
path from the transmitter to the receiver (usually the shortest path). This
quantity is measured over a duration long enough to average out short-term
fading effects. The quantity, Pavg, impairments 1S the total average impairment
power due to variance in the average amplitude of the desired signal (caused by
fast fading), multipath-induced ISI, AWGN, and CCI. A similar definition is
offered by Hladik et al in [27], and Chennakeshu and Saulnier in [28]. SIR; does
not have a good one-to-one correspondence with the BER of the channel since
it does not distinguish between the various types of impairments. In general,
different types of impairments have different statistics and so do not have the
same deleterious effects on signal detection. SIR; is the SIR definition most
closely related to the concept of SNR discussed in Chapter 2. Note that this
definition is an adequate descriptor of SIR in Chapter 2 since the statistics of

the impairment process (AWGN) are completely known.

. The second possible definition of SIR has the form

2

__¥
SIR: = =

where ¢ is the correlation between the corrupted received signal and a “clean”
copy of the transmitted signal. This type of estimator was introduced in Chap-
ter 2 in the context of DA SNR estimation and is also discussed in [63, 64]. The
SNV and ML SNR estimators from Chapter 2 are examples of methods that
correlate the transmitted message sequence (or an estimate of the transmitted
message sequence) with the noisy received signal to generate SNR estimates.
SIR; suffers from the same drawback as SIR;—SIR; does not have a one-to-one
correspondence with the BER of the general mobile radio channel since it does

not distinguish between different types of impairments.
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3. The third variant of SIR has the form
SIRS = f(P’ Tems s Ymaxs S/C)

SIR; is an explicit function of the individual impairments on the channel: p is
the SNR, Tims is the rms delay spread, ¥max is the Doppler spread, and S/C
is the ratio of the discrete signal power to discrete noise power at the decision
device in the receiver. It is easily appreciated that the separate estimation
of each of the impairment parameters is a difficult task; however, SIR3 does
have a one-to-one correspondence with the BER of the channel. The one-to-one
correspondence only holds, however, if the four impairments considered by SIR;
are the only impairments that exist. The existence of unaccounted impairments
with different statistics (impulsive ignition noise, for example) or impairments
whose statistics change with time (from Rayleigh to Rician fading, for example)
spoils the one-to-one correspondence. In other words, SIR; is dependent on the

assumed characteristics of the individual impairments.

4. The final proposed form of SIR is
SIR, = f(BER).

The ultimate SIR estimator is one that is an explicit, one-to-one function of
the BER of the channel. In the most direct form, SIR4 could be just the BER
itself, but this study searches for methods that measure SIR using parameter

estimation methods, rather than direct measurement of the BER (see [36, 37]).

Most of the SIR estimators investigated in this study have forms similar to SIR,

and SIR,.

As in the case of the search for the “best” SNR estimator, the search for the “best”
SIR estimator is carried out by the comparison of the performances of various pub-

lished algorithms in a common channel, using common performance metrics. A few
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novel estimators are also investigated. The performance of each estimator is evaluated
by software simulation in various mobile radio channels. The system environment is

specified in the next section.

3.2 Environment Assumptions

In order to compare the performances of SIR estimators in mobile radio channels, a
few assumptions must be made in order to put this study in a relevant context. It is
logical to use the second-generation digital cellular standards® as a guide since these
standards define the direction of the wireless communications industry [85, 88, 86].
In particular, the North American EIA/TIA IS-54 standard [79] is selected for this
investigation of SIR estimation.

A few pertinent characteristics of the IS-54 standard are listed in Table 3.1 com-
piled using [85, 10, 87] as references. Note that the handoff and diversity functions
listed in the table are two applications that can benefit from SIR estimation as dis-
cussed in Section 1.2.

Based on the IS-54 characteristics listed above, the channel simulator implemented
for this study of SIR estimators models w/4 DQPSK-modulated signals transmitted
at a bit rate of 48.6 kbit/s (baud rate of 24.3 kbaud/s), sent in blocks of 150 sym-
bols*. Baseband differential detection is employed at the receiver assuming perfect
carrier and symbol synchronization. A RRC filter (a = 0.35) shapes the transmitted
signal and provides matched filtering at the receiver (Appendix B describes how the
RRC filter may be implemented by an FIR filter using the frequency sampling tech-
nique). CCI is modeled as a single cochannel user employing the same w/4 DQPSK

3The three main second-generation digital cellular standards are: North American EIA/TIA
IS-54 {79], pan-European GSM (80, 81, 82], and Japanese PDC (or JDC) [83, 84]. Comparisons of
the three systems are provided in [85, 86, 10, 87]

1A block length of 150 symbols is chosen instead of exactly 162 symbols because not all 162
symbols are “good”. The IS-54 slot structure (see, for example, Figure 5 of [85]) allocates six
leading bits (three symbols) as “guard bits”, and the following six bits (another three symbols) as
“ramp” bits. To be conservative, it was decided that the SIR estimators in this study would use 150
of the 162 available symbols.
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Forward band 869-894 MHz

Reverse band 824-849 MHz

Modulation = /4 DQPSK

Filtering Raised-cosine (a = 0.33)

Demodulation not specified (coherent, differential, or
discriminator techniques may be employed)

Access method TDMA

Gross bit rate 48.6 kbit/s

Symbol duration 41.2 pus

Number of bits per time slot 324

Number of symbols per time slot 162

Time slot duration 6.7 ms

Adaptive equalization Yes

Handoff method Mobile Assisted Handoff (MAHO)

Diversity Antenna diversity may be implemented
at the mobiles

Channel coding Convolutional with interleaving

Table 3.1: Some system characteristics specified by the IS-54 digital cellular standard.

modulation.

The desired signal and the cochannel interferer are subjected to fast, frequency-
selective fading. The fading process experienced by the desired signal is assumed
independent of the fading experience by the CCI. The fading channel is assumed
to be a “wide-sense stationary with uncorrelated scattering” (WSSUS) channel (first
introduced by Bello [89]) which may be completely specified by its amplitude distri-
bution, Doppler power spectrum, and delay power spectrum [90].

Cox [91] concluded from measurements of propagation characteristics in New York
City that the urban mobile radio channel is characterized well by a Gaussian WS-
SUS (GWSSUS) model over distances of about 30 metres. “Gaussian” implies that
the quadrature components of the impulse response of the channel are Gaussian dis-
tributed which means the signal amplitude variations follow a Rayleigh distribution.
In this special case, all that is required to specify the channel is the Doppler power
spectrum and delay power spectrum [92]. The WSSUS assumption may be assumed

to hold at least over short distances which is justified in this study since the time
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slot duration, as specified in Table 3.1, is only 6.7 ms which corresponds to a spatial
displacement of less than 25 cm at 120 km/hr.

There is some debate regarding the selection of an appropriate model for the am-
plitude variations of a received signal in 2 mobile radio environment. Some (see, for
example, [93, 94]) have advocated distributions such as the Nakagami-m distribution
as good models of the signal envelope variations. Others (see, for example, [75]) have
objected that there is not enough evidence to support proposed distributions such as
the Nakagami-m, and that the signal envelope variations in the mobile radio envi-
ronment are best characterized by the simple Rayleigh distribution [95]. Since many
recent papers related to mobile radio assume a Rayleigh-distributed fading envelope
(for example, [96, 11, 97, 98, 99, 100, 2]), the Rayleigh assumption is adopted for this
study. Long-term variations of the average value of the signal (log-normal fading)
due to shadowing is not of concern in this study due to the WSSUS assumption.

The Doppler power spectrum for a vertical monopole antenna in isotropic scat-
tering is characterized by the so-called “Jakes spectrum” [23, 95] (see Appendix E)
given by

Bu(v) = ——— e 0] < Vi (3.1)

TVmax\/ 1 — (¥/Vmax)

where vmax is the maximum Doppler frequency known as the Doppler spread. The
Doppler spread, vmax is related to the speed of travel, V, of the mobile receiver (or

transmitter) and the wavelength, A, of the RF signal by the expression®
Ymax = V/A.

Some (see, for example, [101]) have suggested that true isotropic scattering is an
idealization that is invalid in most cases. Doppler spectra often exhibit a “spiky”
appearance which is a manifestation of Doppler shifts due to individual, dominant
scatterers. For the sake of simplicity, isotropic scattering is assumed in this study of

SIR estimation so that the Jakes spectrum of (3.1) applies.

5For example, for 2 mobile radio operating at 900 MHz in a vehicle moving at 120 km/hr, the
Doppler spread is 100 Hz.



The delay power spectrum (or delay profile) of a “typical” mobile radio channel
has traditionally been accepted to have an exponential decay [95]. This traditional
exponential profile, along with the “double-spike” profile and Gaussian profile, are
often used today to characterize the multipath characteristics of a channel [102, 74,

103, 2]. These three profiles may be expressed as

;::n—‘e"'/"m' one-sided exponential
®.(r) ={ 1[6(r) + &(T — 27ims)] double-spike (3.2)
Vi-;r—r;‘:e"z/ (277ma) Gaussian

where T, is the rms delay spread (see [104] and Appendix E), ®,(7) represents the
normalized delay power spectrum, and it is understood that = > 0 in all three cases.
It has been reported by several authors (for example, (2, 103, 105]) that the rms
delay spread has a strong influence on the BER performance, and for 7ims/T > 0.1
or 0.2 (7Trms is normalized with respect to the symbol period, T'), the shape of the
power delay profile is important. Recalling that the symbol period specified by the
IS-54 standard as given in Table 3.1 is 41.2 us, this rough guideline implies that BER
performance in an [S-54-compliant system is sensitive to the shape of the power delay
profile for rms delay spreads in excess of 4-8 us. Propagation tests of some areas have
revealed that common rms delay spreads for urban areas range from 14 us, and those
of hilly areas range from 5-8 us, but rms delay spreads of up to 12 us or more may
occur (see {24, 75, 95, 91, 102, 74, 104]). Since these numbers show that the BER in
typical, real-world multipath channels can depend on the shape of the delay profile,
the fading simulator for this study must have the capability of modeling a continuous
delay profile.

Some suggestions for the modeling of the fading environment have been made by
the digital cellular standards. The [S-54 standard, for example, specifies a “worst-
case” scenario for the multipath environment which is the double-spike model with
Tms = 1 /2. That is, the interfering multipath echo is of equal strength to the

shorter echo and delayed by exactly one symbol period. This model does not take
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into account continuous shapes of the delay profile as the multipath phenomenon
is modeled simply as two impulses. Equalizer simulations for the North American
digital cellular radio system relied heavily on this model. It was found after field
testing that the simulations yielded optimistic BER results as compared to operation
in a real mobile radio environment [106] so it was necessary to refine the equalizers
using more realistic channel simulation models.

Proposals for test channels were made for the pan-European GSM cellular mobile
system as well. The so-called CEPT-COST 207 recommendations specify four differ-
ent delay profiles for various terrains including: a rural area, a typical urban area, a
bad urban area, and hilly terrain [92, 107, 108]. These models are all based on either
the exponential profile, or the double-spike model with each “spike” having an expo-
nential decay. Note that the CEPT-COST 207 report also makes recommendations
for the Doppler power spectrum. Early echos are modeled by the Jakes spectrum of
(3.1), while late echos are specified to have Gaussian shapes (see an example in [92]).

In order to balance the need for realistic channel models with ease of software
implementation, the fading channel simulator chosen for this study models the Gaus-
sian WSSUS (Rayleigh amplitude distribution) with a normalized Doppler power
spectrum specified by (3.1), and a delay power spectrum specified by the exponential
profile, given by (3.2), for values of rms delay spread ranging from 3-12 us.

Now that the fading channel for this study has been specified, a fading simulator
which can model this channel must be identified. The simulator should be flexible
so that it may be easily modified to model more complicated channels for possible

future study. A few simulators are considered in the next section.

3.3 A Brief Survey of Potential Fading Simulators

Various fading channel simulators have been discussed in the literature. A represen-
tative sample of some of these techniques is presented below.

Smith [109] presents an algorithm which generates a fixed length of Rayleigh-
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faded samples based on the addition of two filtered WGN sequences in quadrature.
This sequence is multiplied with the transmitted signal to produce a flat-faded signal
with a given Doppler spread. Frequency-selective fading models may be simulated
by incorporating two or more channels of this type, each delayed and scaled with
respect to the channel representing the shortest path from transmitter to receiver
(see, for example, [99, 100]). This simulator is relatively easy to implement for flat-
fading channels (FORTRAN code is provided in [{109]), but modeling continuous delay
profiles with this method is awkward since a large number of sets of Rayleigh-faded
samples have to be generated, each scaled and delayed appropriately with respect
to the first-arriving echo. The generation of each set of fading samples requires two
calls to an FFT routine. Note that FFT routines typically operate on sets of samples
which have a length that is some power of two [T1] so that this places restrictions
on the number of fading samples generated and could be a cause of inefficiency. For
example, if only 550 fading samples are required, this algorithm must generate 1024
samples because that is the smallest number greater than 550 that is a power of two.

Another technique that is easy to implement is the “sum-of-sines” method intro-
duced by Jakes [23] and commonly used to simulate mobile radio channels (see, for
example, [110, 111]). A number of sinusoids with distinct Doppler frequencies up to
the maximum Doppler frequency are added to form coloured Gaussian noise which is
then multiplied with the desired signal to form a faded signal. This is a multiplicative
(flat) fading process. A frequency-selective fading simulator may be constructed in
a similar manner as described earlier for the simulator presented by Smith; that is,
a frequency-selective fading channel may be constructed by the generation of many
flat-faded echos, each of which is scaled and delayed with respect to some reference
echo.

A fading simulator which more accurately represents continuous or quasi-continuous
delay profiles is introduced by Fechtel [112]. This simulator is based on channel or-

thogonalization techniques in the delay and correlation domain. This simulator is
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able to model continuous delay profiles with significantly reduced complexity as com-
pared to the construction of a continuous delay profile with a large number of discrete,
flat-faded channels, as described earlier.

The operation of some fading simulators is based on measurement-based models
which allow very accurate modeling of real fading channels (see, for example [113,
114, 115]). Highly accurate modeling of channel fading conditions comes at the cost
of having to construct a database of actual channel measurements.

A method of channel modeling is discussed by D’Aria et al in [116] which employs
a Fourier series approximation of the time-varying channel transfer function. Enough
harmonics are included in the sum to model satisfactorily the time-varying channel
which is represented either by actual channel measurements, or by proposed delay
profiles (such as the CEPT-COST 207 recommendations [107]).

Dersch and Riegg [101] describe a fading simulator that models the physical
wave interference process and is based on concepts discussed by Braun and Dersch
in [94]. The electric field at the receiver antenna is modeled as the superposition of
many partial waves having characteristics defined statistically by the Doppler power
spectrum, delay power spectrum, and amplitude distribution.

Other statistically-based simulators model the channel impulse response as a su-
perposition of many received echos (90, 92, 108, 117]. Here, too, the Doppler power
spectrum, delay power spectrum, and amplitude distribution dictate the characteris-
tics of the individual echos that make up the composite received signal. Hoeher (92}
describes an approximation to the GWSSUS model where the individual echos are
assigned a random arrival phase, delay, and Doppler frequency according to speci-
fied probability distributions. The presumed amplitude distribution is Rayleigh and
is completely determined by the random arrival phases. Mieller [90] extends the
method to arbitrary amplitude distributions and coined this method the “Monte
Carlo method.” This term is used here to refer to the method described by Hoeher

as well.
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The model described by Hoeher [92] is chosen as the fading simulator for this
study of SIR estimation since it models the GWSSUS channel, the simulator is easy to
implement, it allows the modeling of arbitrary quasi-continuous delay power profiles
and arbitrary power spectra, and an arbitrary number of fading samples may be

generated. This simulator is described in the next section.

3.4 Implementation of the Monte Carlo Method
3.4.1 Monte Carlo Method for Continuous-Time Signals

Let the instantaneous impulse response of the channel be denoted by f(7;¢) which is
the response of the channel at time, ¢, to an impulse transmitted on the channel at

time ¢t — 7. The instantaneous channel impulse response may be written as (see [92])

1 A
. — H — (am+2ﬂ'l’mt) —
flrit) = Jim 7= 3 ¢ 5(r — Tm) (3.3)

where M is the number of echos, 8, is the angle of arrival, v,, is the Doppler frequency,
and 7, is the delay (relative to the echo with the shortest delay) of the m'" echo.
The parameters, 0,,, v, and 7, are continuous random numbers each having a
specified probability distribution. The larger the number of echos, M, the better the
approximation to the GWSSUS channel.

Note that each of the M echos is scaled by the constant factor, 1/v/M. The
reason why random amplitudes are not required for this model is that the WSSUS
model is completely statistically specified by the probability distributions of 8, v,
and 7, [92]. The random phase samples, ,,, are uniformly distributed on [0, 2~). In
Appendix 1 of [92], it is shown that the Doppler power spectrum and delay power
spectrum are, respectively, proportional to the pdf’s of v, and 7, so that the pdf’s of
Vm and T, are, in fact, the normalized Doppler power spectrum and the normalized
delay power spectrum, respectively. The Monte Carlo method can model any arbi-
trary discrete, continuous, or piece-wise continuous Doppler or delay profile by the

appropriate specification of the pdf’s for v, and 7,.
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Figure 3.1: Block diagram of system illustrating generation of faded signal only.

The normalized Doppler and delay spectra chosen for this study were identified

in Section 3.2 so that the pdf of v,, may be written directly as

1
p(v) =@, (v) = s ] £ Vinax (3.4)
W”max\/l - (’//Vma\x)2
and, likewise, the pdf of 7, may be written directly as
1 ~r/7
pr(7) = @.(7) = —e m o > 0. (3.5)

rms

3.4.2 Discrete-Time Representation of the Faded Signal

The block diagram of Figure 3.1 illustrates the generation of the discrete-time faded
signal (impairments are incorporated into the model later). The source block gener-
ates Nym + 1 complex, m/4-DQPSK-encoded symbols, an, n € {0,1,..., Nyym}, from
Nyym information symbols according to the mapping rule given in Table F.3 of Ap-
pendix F. Each encoded symbol corresponds to one of the eight possible points in the
7 /4-DQPSK constellation illustrated by Figure F.5 of Appendix F. The upsampled,

complex message sequence is expressed as
bk = Zaﬂ(sk,ﬂN“ (3'6)

where Ny = 16 is the number of samples per symbol, as defined in Section 2.2. The

pulse-shaped, information-carrying signal is given by

mp = bk ® h.k (37)

118



where h; represents the coefficients of a root-raised cosine filter with rolloff factor
a = 0.35, and length L = 127 taps. The faded signal, gi, at the input to the receiver
is the (discrete) convolution of the scaled message sequence, my, with the discrete-

time channel impulse response, fi .. giving
@ = VSmk ® fux. (3.8)

The discrete-time impulse response of the channel, f is obtained from the continuous-
time representation by letting ¢t = kTs and 7 = [Ts, where Ts is the sample period,

and by setting a finite limit to M so that (3.3) becomes

1 Mo T
fl.k _- e](ﬂm-i-?:v.-nk S)JIT_;.fm- (39)
VM mzr-l

Finally, the output samples of the MF in the receiver may be represented as

G = q®hl;

= (VSbe®he ® frx) ® A%,

= VSb @ (fix ® gx)

= VSb Qi
Ly

= S > ik be
I=L_
L+

= V5 3 tikara, k€{0,1, .., (Noym + 1) N — 1} (3.10)
=L_ "

where g; = he ® A%, = hi @ ki (as in Section 2.2), the impulse response of the channel

plus the transmit and receive filters is denoted by

Yix = fix® gk

[d

= 3 freg(lTs = ATs)

A=—c0

o 1 Mo
= $ ([ & etwmaimis,, ) s - 510
A=-0 m=1

1 M
= _\/_E_i E eJ(am+2iﬂlkas)g(lTs _ Tm), (3.11)
m=1
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and the integers L_ and L, in (3.10) are chosen such that ¢y s = 0 (or is negligibly

small) outside the range L_ <[ < Lj.

3.4.3 Generation of the Fading Channel Parameters

In Section 3.4.1, it is noted that, for the continuous-time case, the random phase sam-
ples, 8., are uniformly distributed on [0, 27), the Doppler samples, v, are distributed
according to (3.4), and the delay samples, 7, are distributed according to (3.5). This
section discusses how to generate random samples with a given distribution.

The phase samples, 6,,, are easily generated by any good uniform random number
generator [71, 118, 119], and the same algorithm employed in Chapter 2 for the
generation of WGN samples is used here. The random deviates, v, and 7,, may
be generated by the transformation of a uniform random variable using the inverse
cumulative distribution function (cdf) of the desired parameter. This transformation
is known as the inverse probability integral transform [118] and is applied below to
the generation of random Doppler and delay samples.

Let un,, represent a continuous, uniformly-distributed random variable taking val-

ues from [0, 1), and let w,, be related to u, by
Wm = Fg ' (tm)

where F is the cdf of wy,. The random deviates, v, and 7., may be generated by
the substitution of w,, with either v, or 1,, and by the substitution of F, with F,
(the cdf of v) or F; (the cdf of ). (Note that a transformation would be required
for 8,, as well for a model in which the arrival phase is not assumed to be uniformly
distributed as it is here.)

To find the transformation for vn,,, F,(v) is required. The cdf of v is evaluated
from the pdf of v (given by (3.4)) as

F,(v) = / po(e) de

—Vmax
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I :
= da
—Vmax T Vmax \/l - (a/’-’max)z
-1 [sin-l (—”-) + 77/'2] : (3.12)
T Vmax
Let u = F,(v) and solve for v to get
V = Upmax COS TU, u € [0,1). (3.13)

This expression is only valid for |v| < vmax. Note that (3.13) is slightly different from
the expression for v given in [92].

Similarly, to find the transformation for ,, F(T) is required. First, the pdf of 7,
given by (3.5) must be truncated since a practical simulator cannot model a pdf that
has an infinite tail. Let Tmax denote the longest (finite) delay—delays greater than
Tmax Ccan safely be assumed to have negligible probability. Let ¢ be a normalization

factor such that

a / o e~ /Tmidr = 1
0
1

Tems(1 — €~ Tmax/7ms )’

a =

The pdf for 7, over the restricted range [0, Tmax) may then be expressed as

C-T/r"'”
T = ) <7 < Tmax-
p (T) Trms(l e C_Tmaxlfrms) 0 =7 7
The cdf may then be evaluated as
FT = i T d
() = [ prla)de
1-—- e_"'/frrm
= (1 - efma:/‘frmn)’ 0 $ T S Tmax- (3'14)
Finally, let « = F;(7) and solve for 7 to get
T = ~TmsIn(1 — (1 — e7™=/™=)) y € [0,1). (3.15)
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3.5 Verification of the Monte Carlo Method

The discrete formulation of the Monte Carlo method is used in the software imple-
mentation of a fading simulator (written in C) for this study. The fading parameter
transformations of (3.13) and (3.15), and the expression for the discrete, fading chan-

nel impulse response given by (3.9) are verified in the following sections.

3.5.1 Verification of the Fading Parameters used in the Monte
Carlo Method

This section verifies that the implemented C code correctly generates random vari-
ables with the appropriate distributions for 0n, vm, and 7,. The verification is
performed in each case by generating 10000 random samples from which an estimate
of the cdf is computed. The verification results are presented in graphical form.
Figure 3.2(a) compares the cdf of the simulated phase samples, 6,,, to the theo-

retical uniform cdf given by
6
F4(8) = 50 g € [0,2r).

Figure 3.2(b) compares the cdf of the simulated Doppler samples, v, generated by
the transform given by (3.13), to the theoretical cdf given by (3.12). Figure 3.2(c)
compares the cdf of the simulated delay samples, 7,, generated by the transform
given by (3.15), to the theoretical cdf given by (3.14). The cdf’s of the simulated

samples match theory well in all cases.

3.5.2 Verification of the Discrete, Monte Carlo-Based Fading
Simulator Modeling Flat-Fading Channels

In this section, the Monte Carlo-based fading simulator represented by (3.9) is tested
to see how closely it can approximate a fast, flat, Rayleigh fading channel.
As a preliminary check, the flat-fading channel is verified qualitatively by the

observation of typical amplitude and phase fluctuations over time. Figure 3.3 shows a
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125 msec sample of envelope and phase fluctuations for a Ravleigh flat-fading channel
having a Doppler spread of vnax = 100 Hz approximated by a model with M = 40
echos. By visual inspection, the envelope fluctuations displayed in Figure 3.3(a)
appear consistent with other published plots, such as Figure 3 of [100] and Figure 1(a)
of [120]. Figure 1(b) of [120] indicates that rapid changes in phase coincide with deep
amplitude fades; the correlation between rapid phase changes and deep amplitude
fades observed in Figures 3.3(a) and 3.3(b) is consistent with the reported results.
Next, the flat-fading simulator is tested more rigorously by statistical tests of the
complex, faded samples. Four different simulators are tested, each using a different
number of echos, M, to model a Rayleigh flat-fading channel. The number of echos
corresponding to the four different simulators is M = 6, 10, 20, and 40. The reason
for considering various channels comprising different numbers of echos is to determine
the minimum number of echos required to ensure Rayleigh statistics. Hoeher [92] cites
a result published in [25] that the Rayleigh approximation should be good for M > 6.
This claim is tested here. Each of the four flat-fading channels is evaluated by gener-
ating a number of faded samples and computing the cdf’s of the envelope and phase,
the LCR, average duration of fades, and the autocorrelation of the samples. These
statistical tests are discussed in [24, 95, 121], and the theoretical expressions (which
assume an omnidirectional receiver antenna) given below are from these references.
The LCR is the rate at which the envelope of the faded signal crosses (with positive

slope) some constant level, '. Letting N denote the LCR, it may be expressed as
Nr = V2 Vmaxle™ . (3.16)

The average duration of fades, 7r, is the average period over which the envelope stays
below the level, T, and is given by

rs _
Lt (3.17)

V27 Umax

The normalized temporal autocorrelation, ¢(7), of the (complex) faded signal is given
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by
o(7) = Jo(27VmaxT) (3.18)

where Jp(z) is the zero-order Bessel function of the first kind.

The results of the five quantitative tests are presented for each of the channels as:
1. Plots of cdf of amplitude variations (should be Rayleigh distributed).

. Plots of cdf of phase variations (should be uniformly distributed).

(3]

. Plots of LCR (should be consistent with (3.16)).

w

4. Plots of average duration of fades (should be consistent with (3.17)).
5. Plots of temporal autocorrelation (should be consistent with (3.18)).

The rms level of the envelope fluctuations is normalized to 0 dB, and the maximum
Doppler frequency, vmax, is 100 Hz. The number of faded samples used to generate
the cdf’s of the envelope and phase samples, the LCR, and the autocorrelation is
108, whereas 5 x 107 samples are used for the generation of the average duration of
fades. Theory is compared to simulation results in Figures 3.4 to 3.8 corresponding
to items 1 to 5, respectively, from the list above.

From Figures 3.4 to 3.7, it can be seen that M = 6 echos are sufficient to generate
samples that have statistics consistent with a flat, Rayleigh fading channel, based on
measurements of the cdf’s of the amplitude and phase, LCR, and average duration
of fades of the simulated, faded samples. However, the autocorrelation of the faded
samples based on M = 6 echos is not very consistent with theory as revealed by
Figure 3.8(2). In fact, twenty or forty echos appear necessary to generate samples
that have the required autocorrelation. Although it appears that the claim made in
[25] that the Rayleigh approximation is good for M > 6 is valid based on tests of the
cdf of the envelope and phase, the LCR, and the average duration of fades of the faded

samples, the autocorrelation of the faded samples reveals that this claim holds only
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for simulation times of 5 msec or less (for the channel configuration considered here).
Since, in this study, the autocorrelation of the simulated samples must be good for
simulation times of about 6.2 msec (corresponding to a block length of 150 symbols),
M = 40 echos are chosen to model Rayleigh, flat-fading channels.

In a frequency-selective fading channel, each delayed echo should have Rayleigh
statistics. For example, if a minimum of M echos are required to ensure Rayleigh
statistics in a flat-fading channel, then a two-ray, double-spike model (see (3.2)) re-
quires 2M echos (M echos for each ray). In a frequency-selective fading channel
having a continuous delay profile, it is not as clear how many echos are required. (A
new, more efficient, approach to the Monte Carlo-based fading simulator is presented
in [117] in which the issue of ensuring Rayleigh statistics for all delayed echos is ad-
dressed.) Hoeher [92] presents examples of simulated, fast, frequency-selective fading
channels where 500 echos are used “for illustration purposes,” so this is the number

of echos chosen to model fast, frequency-selective fading channels in this study.

3.5.3 The Correlation between Two Tones on the Frequency-
Selective Fading Channel

One way to test the frequency selectivity of the simulated fading channel is to measure

the correlation between two tones, separated in frequency by Af Hz. Clarke [95] has

shown that if the multipath delays have an exponential distribution (as is assumed in

this study) with an rms delay spread of Tims, then the normalized correlation of the

two tones as a function of frequency separation may be written as
1

: 3.19
1+ (T AfTems)? (3.19)

lp(Af)] =

This expression is compared to simulation results for four different values of Tyms in
a frequency-selective channel with an exponential delay profile, and the results are
presented in Figure 3.9. It can be seen that the correlation of the two simulated tones

is very close to theory for all delay spreads considered and beyond the frequency range
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of interest®.

3.6 System Models

In this section, the general system model is developed and the specific test channels

used to evaluate the SIR estimators are described.

3.6.1 General System Model

A block diagram of the general system is provided in Figure 3.10 from which it may
be seen that the system models a desired signal corrupted by a time-varying fading

channel, a single cochannel interferer, and complex AWGN. The single interferer is

8Since root-raised cosine filtering with a = 0.35 is employed in the transmitter and receiver, and
since the baud rate is 48.6/2 = 24.3 kbaud/s (see Table 3.1), the signal energy, ideally, only extends
out (see pp. 535-536 of [65]) to
l+a 1+40.35 _ )
7 = 3 x 24.3 = 16.4 kHz.

The “frequency range of interest” thus spans dc to 16.4 kHz.
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subjected to a fading process similar to that experienced by the desired signal, but

the two fading processes are assumed uncorrelated.

The discrete signals, an, br, mi, and g are described in Section 3.4.2. The cor-
responding signals for the CCI, é,, b, ™k, gk, are entirely analogous. Further, fi;
represents the time-varying impulse response of the channel for the desired signal as
given by (3.9); fix represents the corresponding fading channel for the CCI (a differ-
ent set of fading parameters, 0., ¥m, and T, is chosen to make the fading processes
for the desired signal and CCI uncorrelated); &, represents the tap coefficients of a
root-raised cosine filter described in Section 3.4.2; and S, C, and N are real, positive
scale factors for the desired signal, CCI, and AWGN, respectively.

Some assumptions regarding the first- and second-order statistics of the desired
7/4-DQPSK-encoded symbols, a,, the 7/4-DQPSK-encoded CCI symbols, a,, and
the complex noise samples, z;, must be made for the subsequent analysis. All three

of the sequences are assumed zero-mean so that
E{a,} = E{a,} = E{z} =0.

The autocorrelations of the desired symbol sequence and the CCI symbol sequence

are assumed identical so that
E{ama,} = E{ana,} = 26mn-

The power of the desired source symbols and the CCI symbols are also assumed

identical such that
E{laq’} = E{|an|’} = 02 = 1.
The sequence of desired symbols and the CCI sequence are assumed uncorrelated
giving
FE{ana;} =0.

The noise is assumed white with autocorrelation

E{Zkzl-} = o-fJH,
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and the total power in the complex noise is
E{|=fl} =ol=1

The noise samples are uncorrelated with both the information sequence and the CCI

sequence so that
E{amz;} = E{@mzc} = 0.

The received signal, r¢, at the input to the MF is
r=qe+ G+ VNz (3.20)
where g is given by (3.8), and G is written similarly as
G = VC me ® fix-
The received signal after the MF may be written as

ye = e ®@hl,
= (qr ® ki) + (G ® he) + VN (2 ® k)
= Ck-i-fk-i—\/l_v-wk

where k%, = h; (since the RRC coefficients are assumed real and even), (i is given

by (3.10), (x is given by

Ce = G @ hZ = G ® hy,

and wy is coloured noise expressed as
wr =z Q@ hl, =z Q ke

The statistics of the complex coloured noise, wg, are entirely analogous to the statistics

of the real coloured noise treated in Chapter 2 so that its mean is given by

E{wk} =0,
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and its autocorrelation can be written as
E{wepwi} = Y. hohgE{ziti-azi_g}
a B

= Z hahl-a

=gl

so that the samples of w; taken at the baud rate are uncorrelated (white). As in
Chapter 2, it is assumed that go = 1.
The optimally-sampled output of the MF can be expressed as

Un = Yelimar, = (G + G+ VN[ _ s n€{0,1,..., Nygm}. (3.21)

It is difficult to separate (3.21) into two terms whose ratio represents the SIR. More
specifically, it is difficult to separate ( into a “good” term and an “impairment” term,
unlike the CCI and noise terms in (3.21) which are clearly impairments. It is not valid
simply to declare that the strongest received, desired multipath ray is the true desired
signal and all other multipath components are pure impairments that adversely affect
BER performance. On the contrary, though all delayed multipath rays contribute to
ISI, the overall effect of some multipath rays (especially the earliest-arriving delayed
rays) is to add to the signal power which can counter their contribution to ISI. Also,
the strongest received multipath component itself cannot be identified as a pure signal
term since it is deleteriously affected, in general, by the random phase and amplitude
fluctuations of fast, Rayleigh fading.

Instead of debating which part of (i is pure signal and which parts are impair-

ments, it is simply assumed that it is possible to re-write (3.21) as’
Yn = Cdn + fn, ne {0, 1, ey lvsym} (322)

where (4, is the pure, desired signal term and a new variable, &,, is defined to represent

the sum of all of the impairments. Note that if the channel has no fading and if there

"In the sequel, it is understood that Ny, = I; that is, only symbol-spaced samples are considered
so that “V¢” may be omitted from the subscripts of {4, and &,.
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is no CCI present, then
yﬂ = gdn + Eﬂ = \/§an + \/ann

where the signal term results from a simplification of (3.10) assuming no fading (i.e.

Yrg=go =1).

The assumed first- and second-order statistics of (4, are given by

E{(.} = 0 (3.23a)
E{(4.6.} = Somn (3.23b)
E{ll’y = S (3.23¢)
E{¢q(i} = O (3.23d)

For simplicity, the very gross assumption is made that £ is Gaussian, and that its

first- and second-order statistics are given by

E{&} = 0 (3.24a)
E{€n€} = Zbmn (3.24b)
E{l&.’} = = (3.24c)
E{G.&} = 0 (3.24d)

where = represents the total impairment power. Of course, the Gaussian assumption
is invalid, in general, for all of the impairment processes other than AWGN; however,
for the sake of simplicity and unless otherwise mentioned, the estimators are derived
assuming Gaussian statistics, and then applied ad hoc to channels with non-Gaussian
impairments.

Most of the SIR estimators are derived in terms of the symbols at the output of

the differential detector (DD) given by

Tn = yny;—n neE {11 2,..., Nsym}- (3.25)



3.6.2 Five Mobile Radio Test Channels

The aim of this study is to investigate statistically SIR estimator performance given
a particular set of channel conditions. Each SIR estimate is generated from a block
of 7/4-DQPSK-encoded symbols corrupted by fading, CCI, and AWGN. For each
successive SIR estimate, a new random sequence of data, AWGN, and/or CClI is gen-
erated. Five test channels are chosen in which to evaluate the performances of the SIR
estimators, and their characteristics are described in this section. For convenience,
the five channels are referred to here as Cases 1-5.

The parameters used to define the characteristics of each channel are the SNR,
S/C (the ratio of desired signal power to CCI power), Vmax, and Tems. The number of
information symbols used to generate an SIR estimate is fixed at Nyym = 150 (which
implies Ngym + 1 = 151 differentially-encoded symbols) for all cases. The parameters
chosen for each of the five test cases were selected by referring to “typical” values
for SNR, S/C, Vmax, Tems, and BER reported in the literature (74, 2, 11, 97, 100].
In each case, a particular channel parameter, such as the SNR, is swept (in discrete
steps), and the SIR is measured using a particular SIR estimator. The sweep ranges
of the channel parameters are chosen such that the BER of each test channel is some
“reasonable” value in a range from 10~! to 10~°. The simulated BER curves for each
test channel are presented in Section 3.9.

It is illustrative to see examples of the effect of each channel on the constellation of
the received, corrupted, complex baseband signal. For each of the five test channels,
four different types of signal constellations are shown constructed from samples of

simulation data. The different constellations portray:

e Typical received samples (16 samples per symbol) at the output of the MF.
e Symbol centres before the DD.
e Symbol centres after the DD.

e Symbol centres de-rotated to the real, positive axis (modulation removed).
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Figure 3.11: “Clear sky” reference signal (a) samples after MF, (b) symbol centres
before DD, (c) symbol centres after DD, (d) post-DD symbols with modulation re-
moved.

The “de-rotation” referred to above is an effective removal of the modulation from
the baseband signal after the DD. This de-rotation concept arises in the derivation
of some SIR estimators in Section 3.7. For reference, Figure 3.11 shows each of the

four constellations as they would appear in a “clear-sky” channel with no noise, no

CCI, and no fading.
Case 1: Complex AWGN Channel

The only impairment in this channel is complex AWGN. This is the same complex

AWGN channel used in Chapter 2. The sample signal constellations for Case 1 are
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Figure 3.12: Received signal for Case 1 with S/N = 18 dB (a) samples after MF,
(b) symbol centres before DD, (c) symbol centres after DD, (d) post-DD symbols
with modulation removed.

presented in Figure 3.12 with S/N = 18 dB.

Case 2: Fast, Flat Fading Channel

This channel models fast Rayleigh fading in a flat channel with AWGN but no CCI.
The Doppler power spectrum is the Jakes spectrum given earlier in (3.1). The spacing
between successive amplitude fades due to the fast Rayleigh fading is about the same
or greater than the block length of Nyym = 150 symbols, depending on the specific
value of Vmax, Which creates a modeling problem peculiar to this test channel (and

Case 5, which is discussed later). Specifically, the amplitude and phase fluctuations
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of the Rayleigh model can either be left to evolve over time for each successive SIR
estimate, or the channel conditions can be “replayed” for each successive SIR estimate.
If the latter model is selected, a specific start time must be chosen.

For the Case 2 channel, the decision was made to simulate both models. The
channel that is allowed to evolve over time for each successive SIR estimate is referred
to as the Case 24 channel, and the Case 2B channel is the name used to refer to
the model in which the channel conditions are replayed identically for every SIR
estimate. The Case 2A channel is more realistic since it models a real-world scenario,
but a severe drawback is the fact that the “true” SIR varies considerably about some
long-term mean over time (since each SIR estimate is allowed to see only an Nyym-
wide window) which creates a false, misleadingly high variance in the SIR estimates.
In contrast, the variance of the SIR estimates measured in the Case 2B model is
attributable solely to the specific SIR estimator tested and not to time-dependent
channel conditions; however, the model does not reflect well the dependence of the
SIR on the Doppler spread, Umax, due to the relatively narrow observation window.

For the Case 2A model, the range of vjax and the other channel variables must
be specified. In Figure 7 of [11], it can be seen that for Rayleigh-faded, 7 /4-DQPSK
modulated signals, the effect of ymax is negligible for values of SNR less than 30 dB,
but the effect of vpax for values of SNR greater than about 60 dB is very distinct.
For this reason, for the Case 2A model, S/N is held constant at 70 dB2. The Doppler
spread, Vmax, is swept from 40 Hz to 100 Hz in 30 Hz steps. An example of typical
amplitude and phase fluctuations observed in this Case 2A channel for vpa = 100 Hz
was given in Figure 3.3.

For the Case 2B model, Umax is held constant at 100 Hz while S/N is swept from
20 dB to 40 dB in increments of 5 dB. This lower range of SNR was chosen since the
error probability is relatively unchanged for S/NV > 50 dB with vpay fixed. The ampli-

81t is understood that it may be difficult to find a real-world Rayleigh fading channel with an
associated SNR of 70 dB, but this somewhat artificial value of SNR is assumed here in order to
observe the effect of the Doppler spread on the SNR.
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Figure 3.13: Envelope of received signal due to Rayleigh fading in the Case 2B channel
over an interval of 150 symbols (6.18 us). This amplitude fluctuation is replayed for
the generation of each SIR estimate.

tude and phase fluctuations due to the fast fading are replayed every Nyym + 1 = 151
differentially-encoded symbols so that each SIR estimate is generated under identical
channel conditions. The start time is chosen such that a deep null occurs near the
center of each received block. The amplitude fading profile is given in Figure 3.13.
The spacing between successive fades is about equal to Nyym = 150 symbols.

The sample signal constellations for Case 2A are presented in Figure 3.14 with
Vmax = 100 Hz, and S/N = 40 dB. The signal constellations for Case 2B are omitted
since the effect of Rayleigh fading on the signal constellations is best appreciated by

observing the effect of the time-evolving channel of Case 2A.
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40 dB

100 Hz and S/N =
(a) samples after MF, (b) symbol centres before DD, (c) symbol centres after DD,

Figure 3.14: Received signal for Case 2 with vmax =
(d) post-DD symbols with modulation removed.
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Case 3: Slow, Frequency-Selective Fading Channel

In this case, it is assumed that the transmitter and receiver are not moving with
respect to one another so that vn.x = 0, but there is channel distortion due to
multipath-induced ISL. In other words, the channel is frequency-selective. The chan-
nel is assumed to have an exponential delay power spectrum given by the first line
of (3.2). The delay spread of the channel is swept from Toms = 3 s to 12 us in 3 us
steps, while S/N is held constant at 15 dB. This small amount of AWGN is included
since the multipath-induced ISI alone produces a very small BER, especially at small
values of Tems, which takes an excessive amount of simulation time.

The sample signal constellations for Case 3 are presented in Figure 3.15 with
Trms = 9 ps and S/N = co. No noise has been added to the signal used to generate
these plots so that the effect of the multipath-induced ISI is isolated. There is a
downward shift in the post-DD constellation (see Figure 3.15(c)) which brings the
upper two post-DD symbol centres closer to a decision boundary. Note, however,
that even with Trms = 9 ps, though the post-DD symbol-centres are smeared and
come close to the decision-boundaries, not one of the symbols pictured would be
detected incorrectly—there is only a very small probability of a decision error. It is

for this reason that a small amount of noise (S/N = 15 dB) is added for the SIR

simulations.

Case 4: Single Cochannel Interferer

This case assumes a single, /4 DQPSK-modulated cochannel interferer, which im-
plies the interfering signal has the same statistics as the desired signal. The worst-case
timing scenario is assumed where the symbols of the desired signal and the symbols
of the CCI are precisely time-synchronous. The desired transmitter, the cochannel
interferer, and the receiver are assumed fixed in position so that the channel transfer
function is time-invariant. Some AWGN (S/N = 15 dB) is included, however, as the

BER curve due to CCI alone has a “brick-wall” shape. That is, in the absence of any
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Figure 3.15: Received signal for Case 3 with Trms = 9 ps and S/N = oo (a) samples

after MF, (b) symbol centres before DD, (c) symbol centres after DD, (d) post-DD
symbols with modulation removed.
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Figure 3.16: Received signal for Case 4 with §/C = 12 dB and S/V = oo (a) samples
after MF, (b) symbol centres before DD, (c¢) symbol centres after DD, (d) post-DD
symbols with modulation removed.

other impairment, as §/C is decreased from infinity, the BER remains zero until S/C
reaches a threshold at which point the BER increases dramatically. Injecting some
noise causes a more gradual degradation in BER with decreasing S/C.

The sample signal constellations for Case 4 are presented in Figure 3.16 with
S/C =12 dB, and S/N = oo. No noise has been added to the signal used to generate
these plots so that the effect of the CCI is isolated. Some interesting patterns arise
from the perfectly time-synchronized CCI. From these plots it is easy to see that, in
the absence of noise, the BER has a threshold. No errors are produced in the scenario

shown since the patterns of points after the DD (see Figure 3.16(c)) are contained

147



entirely within their respective quadrants. It is only when the CCI power becomes
large enough such that the four clusters encroach into other quadrants that errors are

produced. Once that threshold is crossed, the BER degrades dramatically.

Case 5: A “Typical” Mobile Radio Channel

The last case considered is a combination of the various channel degradations. Both
the signal and CCI are subjected to similar, but uncorrelated fading conditions. That
is, the shapes of the Doppler and delay power spectra are identical, and the param-
eters Ymax and Trms are equal in both channels, but the sets of random variables,
(Oms¥m,Tm), m € {1,2,..., M}, in (3.9) are chosen independently.

Since fast Rayleigh fading is present in this test channel, the same issue arises as
discussed earlier in the context of the Case 2 channel regarding whether to allow the
channel conditions to evolve over time, or to replay the exact same channel conditions
for each successive SIR estimate. For the sake of conciseness, only one type of model
need be implemented for the Case 5 channel. A model analogous to the Case 2B
channel is use here; that is, the channel conditions are replayed identically for each
SIR estimate so that the inherent effect of an estimator algorithm on the variance of
the SIR estimates is isolated from the effect of the time-varying channel conditions.

The start time for the simulation is chosen so that a deep null, such as is present
in Case 2B, is avoided since the effect of the null swamps out the effect of the other
channel impairments. Instead, a segment of time is chosen where the amplitude
fluctuations are less severe. The amplitude profile chosen for Case 5 is shown in Fig-
ure 3.17. In order to see the amplitude fluctuation more clearly, all other impairments
were omitted for the generation of Figure 3.17.

The sample signal constellations for Case 5 are presented in Figure 3.18 with
VUmax = 100 Hz, 7ems = 3 ps, S/C = 18 dB, and S/N = 15 dB. For the Case 5
simulations, the SNR is the independent variable which assumes values from the set

{9,12,15,30} dB.
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Figure 3.17: Envelope of received signal due to Rayleigh fading in the Case 5 channel
over an interval of 150 symbols (6.18 us). This amplitude fluctuation is replayed for
the generation of each SIR estimate.
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Figure 3.18: Received signal for Case 5 with v/pyax
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Channel vngax, Hz Trmsy US S/C,dB S/N, dB

Case 1 0 0 co {6,9,12,15,18,24,30}
Case 2A  {30,70,100} 0O oo 70

Case 2B 100 0 1o} {20, 25, 30, 35, 40}
Case 3 0 {3,6,9,12} oo 15

Case 4 0 0 {6,9,12,18} 15

Case5 100 3 18 {9,12,15,30}

Table 3.2: Summary of channel characteristics for the five types of test channels.

The channel parameters for the five cases are summarized in Table 3.2.

3.7 SIR Estimators under Study

The SIR estimators under study are described in this section. Some of the estimators
are adapted from Section 2.3, others make their first appearance here. Where possible,
estimator names and acronyms are those used by the original authors; otherwise,

names and acronyms are chosen for ease of reference.

3.7.1 The Second- and Fourth-Order Moments (M;M,) Esti-
mator

The M, M, estimator was described in Section 2.3.4. The form of the AM; M, estimator

applicable to complex signals in complex AWGN is adapted here to the model de-

scribed in Section 3.6.1. The M,M, estimator is applied to the baud-spaced samples

at the output of the MF (but before the DD) given by (3.22) as

Yn = Cd,. +Eﬂ1 ne {0, 1,... 1Nsym}~

The general, complex M, M, estimator for the desired signal power is given by (2.98)

of Section 2.3.4 as

Ma(ky — 2) £ /(8 — kaky)M2® + My(ky + ko — 4)

gMgh!q.comp!ex = ke + ko — 4 ’ (326)




and the general, complex M;M, estimator for the noise power is given by (2.99) of
Section 2.3.4 as

-

M\‘[ﬁl‘r!.g ,complex = 1"[2 S, My My complex, (3.).7)

where the constants, k, and k., represent the kurtosis of the signal samples and the

kurtosis of the noise samples, respectively.

In the context of the model of Section 3.6.1, the signal power estimator given by

(3.26) is re-written as

) Mo (ke — 2) £ \/(4 — kake) My? + Mi(ka + ke — 4)

3.28
MaMy = Tt ke —4 (3.28)

where k¢ is the kurtosis of the impairment process, and A and M, are given in their

time-average forms as
N, sym

M, = n)?
2= N,ym +1 ,,Z_;, a1
and

Nsym

4

n=0

which are similar to (2.101) and (2.102), respectively, of Section 2.3.4. The noise
power estimator given by (3.27) becomes the impairment power estimator expressed

as

éMgA& = M, — -§'M2M4- (3.29)

The kurtosis of the « /4-DQPSK-modulated symbols is k; = 1 and, if it is assumed that
€. is a complex, Gaussian process, it’s kurtosis is k¢ = 2. However, if £, is dominated
by CCI so that all other impairments (including AWGN) are negligible, the kurtosis
of &u is ke = 1 since the CCI is also a 7/4-DQPSK-modulated signal. Clearly, the
optimal form of the M;M, estimator depends on the statistics of the impairment
process so that either the M, M, estimator must be able to identify different types of
impairment processes and adapt accordingly, or some compromise must be made so
that a static M2 M4 estimator is applicable to a range of channel environments. The

latter approach is taken here. Specifically, the compromise made is to let k¢ = 1.5



el B i

so that, using (3.28) (taking the negative root) and (3.29), an A, M SIR estimator

may be expressed as

S 1 [ M+ /10M5% — 60
MMy 1| M2 iz il (3.30)

PMaM, = T
U Saan 3 |20, — (10052 - 6M,

3.7.2 The Signal-to-Variation Ratio (SVR) Estimator

The SVR estimator was described in Section 2.3.5. The form of the SVR estimator
applicable to complex signals in complex AWGN is adapted here to the model de-
scribed in Section 3.6.1. Just as the M; M, estimator, the SVR estimator is applied
to the Ngym + 1 baud-spaced samples at the output of the MF (but before the DD)
given by (3.22).

The general, complex SVR estimator is adapted from (2.112) of Section 2.3.5 by

replacing k,, with k¢ to yield

: _(B=1)£/(B=1)? = [1 = Bka = D][L — Blke = 1))
PSVR, complex — 1 - 6(ka — 1)

(3.31)

where k¢ is defined in Section 3.7.1, k, is the kurtosis of the signal, and 8 is given in
time-average form as

P B Iynlzlyn-ll2
B = =
- 1 N-ym

N
Yonat |yal® — N‘ym =1 |ynl2|yn—l|2

Noym
which is very similar to (2.114) of Section 2.3.5. The kurtosis of the signal is &k = 1,
and the kurtosis of the noise is chosen to be k; = 1.5 as a compromise between the
kurtosis of complex AWGN (for which k¢ = 2) and the kurtosis of a CCI signal (for
which k¢ = 1), as done for the M,M, SIR estimator in Section 3.7.1. The SVR SIR

estimator may then be expressed using (3.31) (taking the positive root) as

psve =B —1++/B(8 —1.5). (3.32)

This is precisely the result given by Brandao et al in [56]. The idea to use k¢ = 1.5

as the kurtosis of the impairment process was originally suggested in [36].
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3.7.3 The Absolute Difference of Absolute I and Absolute Q
(ADIQ) Estimator

This method was first introduced by Yoshida et al in [57] as a means to measure
link quality degradation as a result of multipath-induced ISI in systems that employ
#/4-DQPSK modulation. In [38] it was shown that the same method described in
[57] could be used to provide a measure of both multipath delay-spread and CCI
power in systems which employ any type of “QPSK-like” signals. The method is
quite simple in that the estimator only need be able to compute the absolute value
and difference of samples. No name was attributed to this method by the original
authors, so the descriptive name, the Absolute Difference of Absolute I and Absolute @
(ADIQ) Estimator is assigned here for ease of reference.

The ADIQ method may be applied to any “QPSK-like” signal; that is, it may be
applied to any signal whose complex, baseband signal constellation comprises four
symbols forming a square centred on the origin. The differentially-detected =/4-
DQPSK constellation complies with this requirement.

Unfortunately, the ADIQ expression given in [58, 57] yields estimates that don't
have any particular meaning in an absolute sense, in contrast to all of the other SIR
estimators considered in this study. For example, in the complex AWGN channel,
all of the SIR estimators considered in this study except for the ADIQ estimator as
given in [38, 57] yield estimates that correspond to the SNR. As a consequence, the
ADIQ estimator as given in [58, 537] can only be used in applications which require a
relative measure of channel quality. However, it is shown below how the original form
of the ADIQ estimator may be transformed into a modified estimator which yields
the SNR in an AWGN channel. The original ADIQ estimator of [538, 57] is denoted
by éapiq, whereas the modified ADIQ estimator presented here is denoted by gapiq-

The ADIQ estimator operates on the post-DD samples, z,, given by (3.25) which
may be denoted explicitly in terms of real and imaginary parts as z, = z;, + jTg,

so that the in-service ADIQ SIR estimator as given by [58, 57] may be written in
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time-average form as

1l = el (3.33)

2ADIQ = Nom nz=:l m

where decreasing Japiq corresponds to increasing signal quality. By inspection of
(3.33), it may be seen that the magnitude of all symbols is normalized. This “in-
stantaneous automatic gain control” (AGC) was incorporated by the original authors
(see [58]) to eliminate fluctuations in the received signal. No detailed explanation is
offered in [58], but it is easy to see that if the AGC were not employed, the amplitude
of the received signal would impair the function of the ADIQ estimator. For example,
for a desired signal with a given nominal amplitude corrupted by AWGN with a cer-
tain variance, the numerator of (3.33) varies depending on the amplitude of the noisy
received signal (which, in turn, yields correspondingly different estimates of gapiq);
however, any SNR (or SIR) estimate should be independent of the amplitude of the
sum of the desired signal and noise, thus the inclusion of the instantaneous AGC.

It was discovered empirically by inspection of the simulated SNR estimates pro-
duced by (3.33) in the AWGN channel of Case 1 that the true SNR is proportional
to the inverse square of gapiq- Specifically, the modified ADIQ SIR estimator which

yields correct values of the SNR may be expressed as
1

PADIQ =
\/;Qf\DIQ

where @3piq is given by (3.33). The factor, 1/2/w, is the same factor that arises

in the context of the relationship between the sample standard deviation and the

(3.34)

more robust mean absolute deviation [122]. Specifically, consider a set of samples
represented by zx, k € {1,2,..., K}. It is shown in [122] that if the unbiased sample

mean of the samples is given by 7 as

L
=53 T
A k=t



and if the unbiased sample standard deviation of the samples is given by

1 & }
o= J [\' Z(Ik - :L‘)z,

—1k=1

then the mean absolute deviation (MAD), given by
1 & N
d= E kgl |Ik - Il ’

is related to the sample standard deviation, o, by

/2
d— -0
iy

in the limit that A" — oo. It seems reasonable, but not obvious, that this /2/x factor
should arise in the context of ADIQ estimation. Proving the empirical observation
represented by (3.34) is difficult due to the nested absolute value operations in (3.33)
so a proof is not provided here.

As discussed in Section 3.7.7, the absolute value operations on z;, and zg, in
(3.34) and (3.33) imply an RxDA type of estimator. It is possible, therefore, to
create a TxDA form of the ADIQ estimator by replacing |zr,| and |zg,| with (3.33)
and (3.56) (see Section 3.7.7) and by using the true transmitted differential phases,
An, instead of the estimated differential phases, A,, as discussed in Section 3.7.6.
Though this modification would yield an estimator with better performance at low
SIR, the TxDA form of the ADIQ estimator is not studied here since the originators
{58, 57] consider only the RxDA form. Any mention of the ADIQ estimator here
implies the RxDA form of (3.34) and (3.33) even though the “RxDA™ label is not

explicitly applied.

3.7.4 The Maximum-Likelihood Estimator for Post-MF (Pre-
DD) Samples

In Section 2.6 the simulated performances of the ML TxDA and SNV TxDA estima-

tors (both of which are ML estimators) were found to come closest to the theoretical

156



CRB. [t would seem reasonable to try a similar ML approach to derive an ML SIR
estimator for the channel described in Section 3.6.1. Unfortunately, it is a difficult
problem to apply the formal ML method to the signal-plus-impairment samples at
the input to the MF since the overall impairment process consists of several separate
impairments, each having different statistics. Also, it is difficult to build the fast,
frequency-selective fading channel into the ML derivation. Instead, the ad hoc appli-
cation of the complex ML SNR estimator, presented in Section 2.3.2, to the general
system model of Section 3.6.1 is considered here.

The reduced-bias, complex ML TxDA SNR expression is given by (2.72) of Sec-
tion 2.3.2 as

N3 [ S5 Re{rmu}]’

—I—Zk_o [rel® — ;\(;\ ) [Zlc--ol Re {rkmk}]

at -
PyML TxDA.complex = (‘3 33)

which takes as input the sequence of K* = Ngyn Ny corrupted samples at the input
to the MF in the model of Section 2.2. In terms of the model of Section 3.6.1, the

pre-MF sequence is given by (3.20) as
re =g + @ + VNz,

where k € {0,1,...,A — 1} and A" = (Nyym + 1) N due to differential encoding. The
ML TxDA SNR estimator must form a re-modulated version of the transmitted signal
from known transmitted symbols. The “clean” version of the transmitted signal to
use here is given by (3.7) as

me = b ® h,

where b is given by (3.6) as
bk = Zan(;k,ruv,,,

and a, represents the sequence of 7 /4-DQPSK-encoded source symbols. As described
in Section 2.3.2, the RxDA version of the ML estimator is obtained by repla.cing the

known pulse-shaped samples, m, with estimated pulse-shaped samples, mk , formed
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from receiver decisions. The reduced-bias, complex ML RxDA estimator is given by
(2.73) of Section 2.3.2 as
-_ - i 2
N2 [# TS Re {rim{7}]
- - ) . i 2°
it RS Irl? — sy (TS Re {rim ()]

Recall that the parameter, i, denotes the i*" sequence selected by the receiver out of

ﬁll\lL RxDA,complex = (336)

MNwm possible transmitted sequences (for 7/4-DQPSK modulation, M = 4).

Apart from the fact that the complex ML SNR estimators of Section 2.3.2 are
derived specifically for the AWGN channel, there are two other issues of concern that
make the ML SNR estimators unsuitable for the system model of Section 3.6.1. The
first issue is the effect of receiver errors in the case of ML RxDA estimation, and the
second issue is the effect of random phase fluctuations caused by Rayleigh fading.

First consider the effect of receiver errors on the ML RxDA estimator. The
ML TxDA SNR estimator given by (3.33) was simulated in the Case 1 channel de-
scribed in Section 3.6.2 and its performance was found to approach the CRB, as
expected {see Figure 3.26). The ML RxDA SNR estimator given by (3.36) was also
simulated in the Case 1 channel and was found to have a performance similar to
that of its TxDA counterpart at high SNR, but its performance at low SNR was
remarkably poor due to the catastrophic effect of receiver errors (see Figure 3.26 of
Section 3.9.1).

To illustrate the mechanism behind the catastrophic failure of this estimator at
low SNR, consider Table 3.3 (constructed using Table F.3 of Appendix F) which shows
7 [4-DQPSK-encoded source symbols formed from known bit-pairs at the transmitter
(Tx), and re-modulated symbols formed from estimated bit-pairs at the receiver (Rx).
It can be seen that the symbols generated by the Rx are different from the symbols
generated by the Tx after the single bit error at index n = 2, so that the correlation
between r; and the estimated samples, mf), is destroyed. The differential phases
after the symbol error are not affected, but the absolute phases are. The only way

the encoded symbol sequences of the Tx and Rx could become equal again is if a
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Symbol Index, n 0 1 2 3 4

[nformation bit-pairs (Tx) — 00 10 01 11

7 /4-DQPSK-encoded /4 wf2 —-w/4 =f2 w/4
source symbols (Tx)

Information bit-pairs (Rx) — 00 00 01 11
7/4-DQPSK-encoded w4 ®f2 3z/4 —-mf2 -=3r/4

source symbols (Rx)

Table 3.3: The effect of a single bit error (at n = 2) on differentially-encoded symbols.

future, fortuitous receiver error were to occur such that the erroneous differential
phase makes the absolute phases of the Tx and Rx symbols the same. Of course, the
next error to occur after that would spoil the correlation between the absolute phases
of the Tx and Rx symbols once again.

Next, consider the random phase fluctuations caused by Rayleigh fading. The
phase fluctuations (see Figure 3.3(b)) of the pre-DD received samples deleteriously
affect the correlation of the received signal with the clean, local copy of the trans-
mitted waveform. This is a problem that affects both the ML RxDA and ML TxDA
SNR estimators. To overcome this problem, the receiver must be able to track the
random phase fluctuations which implies additional receiver complexity®.

Both of these issues indicate that it would seem advantageous to try the ML
method on the post-DD samples rather than on the pre-DD samples. For the first
issue, post-DD estimation alleviates the catastrophic effect of errors on RxDA esti-
mation since the post-DD symbols contain only differential phase information, not
absolute phase information. For the second issue, since the Rayleigh fading-induced
random phase changes are relatively small over the duration of a symbol period, the
differentially-detected symbols are relatively unaffected by the random phase fluc-

tuations. The next four sections discuss possible post-DD implementations of SIR

9Note that the M.M; and the SVR SIR estimators operate on the same pre-DD samples, ry,
but since these estimators are based on even moments (the second and fourth moments) of the
received signal, the phase information disappears so that the Rayleigh fading-induced random phase
fluctuations do not affect these estimators the same way that the affect correlation-based, data-aided
estimators (such as the ML estimator).
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estimators which are “ML-like” in structure.

3.7.5 The Maximum-Likelihood Estimator for Post-DD Sam-
ples

An ML SIR estimator was derived by Chennakeshu and Saulnier in [23] based on
the pdf of the phase of differentially-detected samples assuming an AWGN channel.
The resulting ML estimator for AWGN is applied ad hoc to wireless channels in
which exist the additional impairments of fading and CCI. This SIR estimator was
developed for use in a timing and frequency offset estimation algorithm described in
[28]. This estimator is explicitly referred to as a signal-to-impairment ratio estimator
in [28], but in order to distinguish it from the other SIR estimators under study, it
will be referred to here as the DDAL SIR estimator (the “DD” in DDML indicates
that this is an ML expression for post-DD samples). The derivation of the DDML
SIR estimator is sketched below based on the development of [28].

Since this ML method is based on the phase of the post-DD samples, (3.25) must

be re-written in polar form as
Tn =Yn¥ao; = Ane®, n € {1,2,.... Niym} (3.37)

where A, represents the envelope and ¢, represents the phase of the impaired samples
at the output of the DD at time index n. Let A, represent the true transmitted
phase. The pdf of the phases of the post-DD samples conditioned on &, and the
“instantaneous” SNR, p,, may then be written using the notation adopted here to
obtain an expression similar to equation (A2.3) of [28] (based on equation (4.2.103)

of [63]) as

1 An—
FGrlBurpe) = 2o ® [+ 1/2mpncos(Bn — gueFeooren)

X (l - %erfc (\/?ZE) cos(A, — qé,.))] . (3.38)

Following [28], the pdf of ¢, is approximated by making the assumptions that p, > 1
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and [A, — éa| < 7/2, so that (3.38) simplifies to

f(éalAn,pn) =/ .—% cos(An — ¢a)e~ F o0 (Bndn), (3.39)

Assuming the Ny, differential phases are independent, the pdf of the sequence of

received differential phases may be written simply as

Ntym

f(@|An,pn) = H f(@nlAny pa), (3.40)

n=1
where ¢ € {¢1,02,...,8N,,m}- Taking the logarithm of (3.40) and differentiating

with respect to p,, one obtains

a 8 Tl 1
= 9 — 7 In(27 n— ®n
Bpn n1Pn) 3 712=:1 [2 lnp, 2In( 7) + lncos(A, — ¢,)

P nl (A —
- 23m (Aa ¢,.)]

= N’in —L_lSinz(ArA"¢n) . (3.41)
n=1 2p" 2

Setting (3.41) to zero and solving for p,, one obtains an expression for the DDML
TxDA SIR estimator as

1
N "1'“ smz(A qﬁn)

PDDML,TxDA = — (3.42)

Nnym

This is a TxDA SIK estimator since the transmitted differential phase, A, is assumed
known to the receiver. In the case that the received differential phase is estimated by

the receiver, the DDML RxDA estimator may be expressed similarly as

PDDML,RxDA = N3 , (3.43)
N.lym Eone” sin?(An ~ ¢n)

where A, represents the estimated differential phase.

3.7.6 The Pseudo-Maximum-Likelihood (PML) Estimator

In Section 3.7.5, the derivation of the DDML SIR estimator was sketched based on

the phases of the post-DD samples—the amplitude information of the samples was
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ignored. It is worthwhile considering an ML structure for post-DD samples based
on a Cartesian approach similar to that discussed in Section 3.7.4 for pre-DD sam-
ples. It is a difficult problem to apply the formal ML method to the signal-plus-noise
samples at the output of the DD due to the non-linear differential-detection opera-
tion (though Chennakeshu and Saulnier applied the ML method to the differential
phases, the resulting pdf had to be approximated by making simplifying assumptions
in order to arrive at an ML expression). Instead, consider a “pseudo-ML” estimator
formulated here based on the general structure of the SNV SNR estimator (a type
of ML estimator) for complex AWGN channels. The SNV TxDA SNR estimator is
given by (2.84) of Section 2.3.3 as

1 Nayrn-l = 2
[N,,m n=0 Re {ynaﬂ}]
N‘ym—l

. (3.44)
Niyym-—1 - 2 (
Tt T ™ ynl? — e [T Re {704}

at
PSNV TxDA,complex =

It can be seen that the general approach of the complex SNV TxDA SNR estimator is
to correlate the complex-conjugate of the symbol-spaced samples at the output of the
MF, y;, with the the known transmitted symbols, a,, to estimate the signal power!®
(the numerator of ANy TxDA complex) L he noise power is estimated by subtracting the
estimated signal power from an estimate of the total signal-plus-noise power. The
SNR is then found trivially as the ratio of the estimated signal and noise powers.
This general approach of the SNV SNR estimator is applied below to the output of
the DD as the basis of the PML SIR estimator.

In order to obtain a PML TxDA estimate of the signal power, the known trans-
mitted sequence of source symbols (or simply the sequence of phases) is required.
The symbol-spaced samples of the DD output may be expressed in terms of (3.22)

and (3.25) as

Tn = YnYnot = (alday + nbnr +6nla,, +&nénor- (3.45)

10Equivalently, the signal power may be found as the correlation of y, with a;, since Re {y a,} =
Re{ajyn}.



The phase difference between (y, and (y,_, represents the transmitted differential
phase at time index n (note that there are four possible differential phases—see Ta-

ble F.3 of Appendix F). Let A, represent the transmitted differential phase so that
(4G, = S (3.46)

A PML TxDA estimate of the signal power is formed by the correlation of the received
post-DD symbols with the complex conjugate of the transmitted differential symbols.
Taking advantage of the independence of the signal and noise samples, the PML TxDA

estimate of the signal may be written as

E{zne™} = SE{ 2} + B{G e} ELE )
+ E{&.}E{C,_ e} + E{€aba1 }E{e772"}
= S (3.47)

where E{€_,} = E{&} = 0 using (3.24a), and E{{nén-1} = Zdnn-1 = 0 using
(3.24b).

It is illustrative to consider a graphical interpretation of the samples represented by
.73 In Section 3.6.2, plots are provided showing examples of the appearance of
various signals in the reference “clear-sky” channel and in the five mobile radio chan-
nels. In particular, Figures 3.11(d), 3.12(d), 3.14(d), 3.15(d), 3.16(d), and 3.18(d)
show examples of the “de-rotated” signal, z,e™%=, under various conditions. The
signal is “de-rotated” in the sense that the post-DD symbols are phase-rotated to
the real, positive axis, essentially stripping the modulation from the symbols. Fig-
ures 3.12(d), 3.15(d), and 3.16(d) show that the de-rotated post-DD symbols in
Cases 1, 3, and 4 are reasonably symmetric, whereas the amplitude variations caused
by the fast, Rayleigh fading present in Cases 2 and 5 spreads the de-rotated symbols
along the real axis, as is evident in Figures 3.14(d) and 3.18(d).

In a similar manner as for the complex SNV SNR estimator, the total power is
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obtained as

E{ynyn} = S+ E{C.}E{G} + E{&IE{G} + E{6:6}
= S + -:-:1

again making use of (3.23) and (3.24), so that an expression for the impairment power

is

= = E{y.y.} — E{zne77%"}. (3.48)

In practice, expected values are estimated by time averages so that the PML TxDA
SIR estimator may be expressed as

1 N, -jA
N on=t. Re {zne™7%"}
Neym

—, (3.49)
TV (ynvi — Re {zaei5n})

PPML,TxDA =

where the real part of z,e774" is taken to ensure that the SIR estimate is real. Note

that the summation starts at n = 1 because of the differential detection operation.
The PML RxDA SIR estimator is identical in form to (3.49), except that A,

is replaced by A,, which represents the estimated transmitted differential phases

generated by the receiver. The in-service, PML RxDA SIR estimator is expressed

explicitly as
1 ZNnym Re {xne—j.&n}

n=1

~ Nsym -
PPML,RxDA = Naym . A1)’ (3.50)
ﬁ n=yl (yﬂyn - Re {xﬂe J8n })

3.7.7 The Signal-to-Impairment Variance (SIV) Estimator

This method is essentially an ad hoc application of the real form of the SNV SNR
estimator (see Section 2.3.3) to each of the in-phase and quadrature components of
the complex, baseband signal. The de-rotated post-DD symbols are not required for

this estimation method.

Using (3.45) and (3.46), the DD output can be expressed as

Tpn = YnYnoy = S et + (e énr + fncc;,._l + &nén-1- (3.51)
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For notational simplicity, let

G4, = ar+jaq (3.52a)
(ot = @p+Jag (3.52b)
§n = br+jbg (3.52¢)
§n-1 = b+ by, (3.52d)

Equation (3.51) may then be expanded to show real and imaginary parts explicitly

as

zn = I, +JT0,
= ScosAn + arb] + agby + atbr + agbq + brb; + babg
+ 5 (Ssin An + agh] ~ arbly + atbg — aby + boby — brby) .  (3.53)

The real form of the SNV RxDA estimator is given by (2.78) of Section 2.3.3 in terms
of expected values as

. _ E{ly.l}? -
PSNV RxDAreal = 37— (o (3.54)

Following this general form, the SIR estimator is to be written as some function of

E{|zr,|} and E{jzq,|}, and Var{|z;,|} and Var{|zq,|}. To facilitate the derivations

that follow, consider the replacement of |z, | and |zg,,| with the equivalent expressions
|z1.| = z1,V2Re {3} = V2 1z, cos A, (3.35)

and

lzo.| = 2, V2Im {ej‘i"} =V2zq,sinA,, (3.56)
respectively, where A, represents an estimate of the phase difference between symbols
transmitted at time indices n and n — 1, as discussed in Section 3.7.6, and Im{:}
denotes the imaginary part of a complex quantity. Using (3.55) and (3.53), the

expected value of |z, | may be evaluated as



E{Il’[,,l}/\/i = FE{z, cos A,,}
= SE{cosAncosA,}+ E{ascos A }E{b}} + E{aq cos Z\u}E{b’Q}
+ E{a}cos A} E{b;} + E{ay cos An} E{bo}
+ E{bsb} E{cos Ap} + E{bgbly} E{cos A, }. (3.57)
Using (3.24a) and (3.24b), one has
E{b;} = E{b]} = E{bg} = E{bp} =0 (3.58a)
E{bib}} = E{bgbg} = Zénpn-1 = 0. (3.58b)
Using the fact that A, € {:Ef, :1:34—"}, with each of the four possible phases occurring
with equal probability, one obtains
E{cosAncos A} = E{cos(An — An) + cos(An + An)}/2
~ E{l+cos2A,}/2
=1 (1 + % cos (%) + L cos (-—g) + 1 cos (3‘2—") + % cos (—37”))
= 1/2, (3.39)
where the approximation is due to the assumption that An = A, (meaning the

receiver makes perfect decisions). Substituting the expressions given by (3.58) and

(3.59) into (3.57) yields
E{lc1|} = S/V2. (3.60)

Similarly, using (3.56) and (3.53) the expected value of |zg,| may be evaluated as
E{lzq.[}/V2 = E{zq,sinA,}
= SE{sinAnsinA,} + E{agsin A.}E{b]} — E{arsin A} E{b}
+ E{a)sin A} E{bo} — E{agsin An}E{br}
+ E{bg} E{b;} E{sin A,} — E{b1} E{bp} E{sin A,}. (3.61)
Note that

E{bgb}} = E{bo} E{t}} (3.62a)
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E{biby} = E{b/}E{b,} (3.62b)

because the in-phase and quadrature impairment processes are assumed independent.

By similar arguments used to evaluate E{cos A, cos A,} in (3.59), one has
E{sinA,sinA,;} = E{cos(An. ~A,) —cos(A, + A,)}/2
~ E{l —cos2A,}/2

= 3 (l — +cos (-2’5) — % cos (-—-’,;—) — §cos (9-2’5) — % cos (—37"))

1/2. (3.63)

Substitution of the expressions given by (3.58a), (3.62) and (3.63) into (3.61) yields
E{|zq.l} = S/V2. (3-64)

Finally, using (3.60) and (3.64), an SIV RxDA estimate of the signal power can be

expressed as

Ssvaeor = =5 [Ellznl} + Ellza. ) - (363)

-

The next step is to derive the SIV RxDA estimate of the impairment power. The

variances of [zy,| and |zg,| are

Var{z,} = E{z}}- E{lz5nl} (3.66a)
Var{zq,} = E{z}.} - E{|zq.I}% (3.66b)

so that E{z} } and E{z} } need to be computed. Let a = S cos A, so that z3 may

be written as

g7 = (a+arb}+agby +ajbr + aqbq + brb} + bc,;;bz?)2

= o +(arb])? + (agbp)” + (aibr)* + (agbo)’ + (bsb})* + (bby)’
+2 (aa;b’, + aagby + aatb; + aagbg + abib; + abgby
+ araqgbby + aralbib + aralybgbl + arbr(¥))? + asbibobl

+ a',agb;b'q + aQa'Qbe'Q + aQb[b'Ibb + agbq (b& )2
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+ a',a'Qb[bQ + a',(bl)zb', + a;b[beb
+ a'Qb;b'IbQ + a'Q(bq)%a
+ brbiboby) - (3.67)

The expected values of many of the terms on the right-hand side of (3.67) vanish.

Since the signal and noise samples have zero mean and are uncorrelated, then one has

E{aal}E{b',} = E{aaq}E{b'Q} = E{aa',}E{bz} = E{aaa}E{bq} =0
E{ar}E{b/(b])’} = E{ar}E{bibaby} = E{aq}E{bibibo} = E{aq}E{ba(bp)"} =0
E{a;}E{(br)*61} = E{a7}E{bibaba} = E{ag}E{bibiba} = E{aq}E{(bq)*85} = 0.

Also, the in-phase and quadrature signal samples are assumed uncorrelated, as are

the in-phase and quadrature noise samples, so that

E{ar} E{aQ} E{b1} E{by} = E{ai}E{ag}E{bo}E{b;} =0
E{at}E{a}E{bi} E{by} = E{ai}E{ag}E{bi}E{bq} = 0.

Since the cross-correlation of the signal and noise sequences is zero, and since the

autocorrelations of the signal and noise sequences are also zero for any nonzero time

delay (see (3.23b) and (3.24b)), then

E{Q}E{bIb'[} = E{Q}E{bqbiq} =0
E{aral} E{b1b1} = E{agag}E{bgby} =0
E{bib}} E{bqbg} = 0.

Assume the statistics of A, and A, are the same so that

E{S? cos? An}
5?2 .
= 5 (1 + E{cos 2An})

= 572,

E{a?}
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using the fact that E{cos2A,} = 0, which is apparent from either (3.39) or (3.63).

Again using the independence of the signal and noise samples, one has

S

E{af}E{(67)’} = E{a3}E{(b)’} = E{(a})*}E{b7} = E{(ag)*}E{83} =

~|

Finally, Price’s Theorem [66] may be used to evaluate the squared autocorrelation of

Gaussian noise giving

E{bj(61)’} = 2E*{brb}} + Ez{b }

Jn.n- 1 + _T

|
o
.z:.llll

=2

T
Similarly, for the quadrature channel, one obtains
=2

E{b5(5)} = T

The expected value of (3.67) thus simplifies to

s?2  §= =2 g2 =2
2y _ 90, 0= =0 o° -, =
B{al} = +4 42 =+ 5=+ 3, (3.68)
and using (3.60) and (3.68), (3.66a) becomes
S "'2 SZ 32
Va‘r{la:[nl} =—+ S + _ T = = S:_: ‘)_ = U?,SIV' (3.69)

Now let 8 = S sin A, so that 15" may be written as

g5, = (B+aqby—arby +atbg — agbr + boby — bby)?
B2 + (a@b})® + (a1by)? + (a1be)? + (agbr)® + (bgb})? + (b:by)*
+2 (Bagby — Basby + Baibg ~ Bagbs + Bbab; — Bbry

— araqbiby + agabob] — agagbiby + agbg(by)? — agbibiby

— arapboby + aragbrbly — arbibgby + arbr(by,)?

— ajalybibg + aj(ba)?b, — albrbob

— agbrbibq + ag(br)*b,

— brbboby) - (3.70)
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Using arguments similar to those made for the derivation of the expected value of 27 ,
the expected values of all but the first seven of the expanded terms in (3.70) vanish.

The first term, whose expected value is non-zero, evaluates to

E{B*} = E{S%sin® An}
-i—2 (1 — E{cos 25,,})
= S?/2.

Again using the independence of the signal and noise samples, one has

“"Im

E{aQ}E{(6])°} = E{a]}E{(6g)’} = E{(a])’}E{b} = E{(ag) }E{b}-

The expected values of the two remaining terms are evaluated as

""I{'»!

E{by(b7)’} = E{b1}E{(bg)*} =

and, very similarly, =

E{b} (bQ) b=—
Note that it is not necessary to use Price’s Theorem to evaluate the expected values
of E{b3(by)?} and E{b}(b7)*} since the in-phase and quadrature impairment samples

are independent. The expected value of (3.70) thus simplifies to

s?  S= =2 g2 =2
E{z Qn} —+4-4—+27——"+S +':2- (3.71)
and using (3.64) and (3.71), (3.66b) becomes
52 -'2 52 _ 52 2
Var{|zg,|} = — + S= + 55 = S=Z+ -5- = 05 sIv- (3.72)
Summing (3.72) and (3.69), one obtains
U?'s[v + Ué'sw = 52 + 28z (3.73)

Solving (3.73) in terms of = and taking the positive root, an expression for the SIV

RxDA estimate of the impairment power is

EsIV'RxDA = \/Sglv,RxDA + &?,SIV + &é.SIV - SSIV,R):DA- (374)
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The in-service, SIV RxDA SIR estimator is expressed as the ratio of S'SIV,R,DA to

éSIV.RxDA as
PSIVRDA = — S51v.ReDa -
' \/ S3rv.repa + 0Fs1v + 55 s1v — Ssiv.RxDA
1
B 1 3} syt siv 1 . G719
\/ + STvaaoa
In practice, expected values are replaced by time averages, so that (3.65) becomes
. 1 Nom _
Ss1v,RxDA = N ngl (21| + lzaal), (3.76)

and the sum of (3.72) and (3.69) is evaluated as

~2 22 —- 1 Nyym 2 2
Orsiv +0QsIv = NooTT L=t (-Tl,. + -“’Q,.)

- m’ﬁl';;m_.f)' [(Zf:r:f‘ ll‘[nl)z + (Z::{;yxm Iin)z] . (3.77)

The SIV TxDA SIR estimator has exactly the same form as (3.73), except that
Sstv.rxpa and 6% stv + 63 stv» given by (3.76) and (3.77), respectively, are replaced by

1 Niyem

st,T,DA = Z (z1, cos An + zg, sin A,) (3.78)
Nym =1
and
a2 2 - 1 Noym [ _2 2
Orstv T 0Qslv = NoooT Zon=1 (11,, + -’CQ,,)

( N;’l"’ V2 .z, cos An)z + (Z,.N;’f" V2zq, cos A,,)2
B Nsyrn(Nsym - 1)

respectively, where (3.55) and (3.56) are used with the estimated differential phase

,(3.79)

at time index n, A, replaced by the actual transmitted differential phase, A,.

3.7.8 The Modified Signal-to-Impairment Variance (MSIV)
Estimator

The MSIV estimator is a hybrid of the PML and SIV estimators. The signal power

is computed by averaging the de-rotated differentially-detected symbols in the same
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manner as the PML estimator. However, the impairment power is computed using
the variances of the radial and tangential components of the post-DD symbols rather
than the variances of the real and imaginary components as for the SIV estimator.
The distinction between the two methods is clarified below.

The MSIV TxDA expression for the signal power is identical to (3.47) which is
the expression used by the PML TxDA estimator of Section 3.7.6. The MSIV TxDA

estimate of the signal power may thus be simply stated as
5'M$1V.T:DA = E{z,e”74"}. (3.80)

The impairment power is computed as a function of the variances of the radial and
tangential parts of the post-DD symbols, which is identical to the variances of the
real and imaginary parts of the de-rotated post-DD symbols. The variances of the

real and imaginary parts of the de-rotated post-DD symbols are evaluated as
Var{Re{z,e 7°"}} = E{(Re{z.e™74"})?} — (E{Re{zne"4"}})? (3.81)
and
Var{lm{z,e 72"}} = E{(Im{z,e772"})?} — (E{Im{z.e772"}})?, (3.82)
respectively. From (3.47) it is clear that
E{Re{z.e™*"}}= S (3.83)
E{Im{z,e™/%"}} =0. (3.84)

For the evaluation of E{(Re{z,e~7*"})?} and E{(Im{z.e~74"})?}, it is convenient
to use the notation given by (3.52) in Section 3.7.7. Using that notation and (3.51),

the de-rotated symbols are expressed as

zne" 18" = S + (a7 + jag)(b; — jb&)(cos A, +7sinA,)
+ (b1 + jbg)(at — jag)(cos A, + jsin A,)
+ (b + 7bg) (b — jbg)(cos An + jsin Ay). (3.85)
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Consider first the evaluation of E{(Im{z.e™74"})?}. After expanding terms, the

imaginary part of (3.83) is found to be

Im{z.e™7"} = (a@b] —arbly + ajbg — abbs + bibg — byby) cos A,

+ (arb} + agby + ajbr + agbq + brby + boby) sin A, (3.86)
Squaring (3.86), one obtains

. 2
[Im{:c,,e‘m" }] =
1 4 cos2A
2 n
9

4

(aqb'l —_ (1162? + a}bQ - a'Qb[ + b'[bQ - b[le)
+ [(aQb’, - a;ba + a',bQ - a'Qb[ + b’IbQ —b; :2)
X (arb} + agby + ajbr + agbq + brby + baby)]sin 24,
, ' , , , ¢ \21 —cos2A,
+ (a;b, + aQbQ + a,bz + aQbQ + bIb[ + beQ) ——9— (3.87)

As in Section 3.7.7, the expected values of all “cross-terms” vanish. That is, due to the
assumed independence and correlation properties of the signal and noise, the expected

values of the following products resulting from the expansion of (3.87) vanish:
o All products with a single signal or noise term.

e All products in which the cross-correlation of / and @ signal terms and/or /

and @ noise terms occur.

e All products in which the correlation of the nt* and (n —1)*® signal and/or noise

terms occurs in isolation. For example, E{b;b7} = 0, but E{b;b;b}} does not

necessarily evaluate to zero.

Omitting these vanishing terms, the expected value of (3.87) simplifies to

E{(Im{zne74"})} =
1 U ! 4 / / /
5 [E{aq(57)* + ai(6Q)” + (a])?0h + (a)?b] + (57)703 + b3(bQ)°}
+ E{a}(b])" + aj(b)” + (a])*b] + (ag)?bg + b7(b])* + B(60)"}
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+ E{ag cos 28} E{(67)*} — E{(6)*}) + E{afcos 22} E{(b5)*} — E{(67)*})
+ E{(a})® cos 28, }(E{b3} — E{b7}) + E{(ag)? cos 28 H E{b]} — E{63})
+ E{(b7)265 — b3(8])* + b3(55)? — b3 (by)?} E{cos 2A,}] . (3.88)
Noting that
E{a?} = B{ad} = E{(a})"} = E{(ap)"} = 52 (3.89)
E{b}} = E{bg} = E{(6])’} = E{(65)} ==/2, (3.89b)
(3.88) further simplifies to
E{(Im{z,e 74"})*} = S= + =%/2. (3.90)
Substituting (3.84) and (3.90) into (3.82), one obtains
Var{Im{z,e72"}} = SE+ Z%/2 = 0 \is1v- (3.91)
Consider next the evaluation of E{(Re{z.e™73"})?}. The real part of (3.85) is
found to be
Re{zne™"} = S+ (ab} + agbly + ajb; + anbg + brby + bgby) cos A,
— (aq@b} — arby + atbg — agbr + bbg — brby)sin A,
= S+ AcosA, — BsinA,, (3.92)
where, for convenience, A and B are defined as
A = arb} + aqby + ajbr + agbq + brb + boby, (3.93)
and
B = aqb} — arby + ajbg — agbr + bibg — brby, (3.94)
respectively. Squaring (3.92), one obtains
[Re{.r,,e'jA" }? = S%+ A%cos’ A, + B%sin’ A,
+2(SAcos A, -~ SBsinA, — AB sinA, cos A,)
= 5%+ 1[A?+ B?+(A? - B?)cos 2A,]
+2(SAcos A, — SBsinA, — $AB sin 2A,). (3.95)
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Using (3.93), (3.94), and the arguments presented earlier in the derivation of
E{(Im{z,e 74~})?}, one has

E{AcosA,} = E{BsinA,} = E{ABsin2A,} =0.
Further, the expected values of all cross-terms that arise from the expansion of A?
and B? vanish so that the expected value of (3.95) may be written as
E{(Re{z.e7*"})’} =
§* + 3 [E{aBL)* + aB(ba)® + ()6} + (o8] + BY)? + B3(60)7)
+ E{a}(b7)? + a}(bp)* + (a7)’0% + (ag)?b] + (b7)°6% + b7(bg)*}
+ E{afcos 28, }(E{(67)*} ~ E{(63)’}) + E{ag cos 2A.}(E{(85)*} — E{(67)°})
+ E{(a})? cos 22, M E{b]} — E{b}}) + E{(ag)” cos 28, }(E{b3} — E{b7})
+ E{b3(5})? — (b7)263 + b3 (b)? — b3(bp)*} E{cos2A,}] . (3.96)
Using (3.89), (3.96) simplifies to
E{(Re{z.e7*"})?} = §? + S= + Z?/2. (3.97)
Substituting (3.83) and (3.97) into (3.81), one obtains
Var{Re{z,e 7*"}} = S+ S=+22/2 - S =S=Z+Z*/2 = o] \siv-  (3.99)

Summing (3.91) and (3.98), solving for = and taking the positive root, an expression

for the MSIV TxDA estimate of the impairment power may be obtained as

= S - 22 &
ZMSIV,TxDA = \/ S¥stv,Txpa T Timsiv + G Ms1v — SMSIV,TxDA- (3.99)

The MSIV TxDA SIR estimator is expressed as the ratio of SMSIV,T,‘D,\ to é.\[SIV,TxDA

as
SMsIV,TxDA

o2 22 42 3
V S#stv,TxDa + GTatsiv + GQ . Msv — SMsIV,TxDA

= ! . (3.100)

2 \eorv FOS a3
\/1 + I.MSIV QMSIV "l

S?:(SIV,T:DA

a

PMSIV,TxDA =
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In practice, expected values are replaced by time averages, so that (3.80) becomes

Neyym

Smstv.Txpa = % 3" Re{r.e™72} (3.101)

sym n=1

and the sum of (3.91) and (3.98) may be evaluated as

5 - Niym » .
Gimsiv + Oqusy = r,f::&:’l (Re{z.e774"})? + (Im{zpe74})?

(Shr Refzne))" + (S Imfege))*
- Nsym(lvsym"l) . ( 1 -)

The in-service, MSIV RxDA SIR estimator has exactly the same form as (3.100),

except that .SA'MSIV,T,D,\ is replaced by g_\[slv,RxD,\ expressed as

N,
. 1 Nom I
SMSIV,RxDA = > Re{zne™’?"}, (3.103)
sym n=1
and &7 \stv + 05 mstv is evaluated as
~ ~2 Niym —5A n —1A n
Gimstv +IomMsv = N—,,;T,anx (Re{zne™72"})? + (Im{z,e~72"})?

(Z¥er Re{zae0))" + (D2 Im{zaede)”
B Nsym(lvsym - 1) ( 1 4)

where, as before, A, is the estimated transmitted differential phase at time index, n.

The main difference between the general approach of the SIV algorithm of Sec-
tion 3.7.7 and that of the MSIV algorithm is that the SIV algorithm operates on
the Cartesian real and imaginary parts of the differentially-detected symbols whereas
the MSIV algorithm operates on the radial and tangential components. Figure 3.19
illustrates this idea.

Comparison of Figure 3.19(b) with Figures 3.14 and 3.18 reveals that the tangen-
tial variance of the post-DD symbols is not affected by signal envelope fluctuations
caused by fast Rayleigh fading. The amplitude fluctuations affect only the real parts
of the de-rotated, post-DD symbols (the radial parts of the post-DD symbols before
de-rotation). In contrast, referring to Figure 3.19(a) and Figures 3.14 and 3.18, the

sample variances required by the SIV estimator are generated from the Cartesian real
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Figure 3.19: Illustration identifying the components of the post-DD samples used in
(a) SIV, and (b) MSIV SIR estimation.
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and imaginary parts of the post-DD symbols. Both the real and imaginary compo-
nents are affected by signal envelope fluctuations caused by fast Rayleigh fading. It is
not intuitively obvious which estimator should perform better, or even if there should

be any performance difference at all.

3.8 Measures of Estimator Performance

This section identifies statistical tests which may be performed on the output of the
simulated SIR estimators to evaluate their performances in the various test channels
described in Section 3.6.2. Three useful performance metrics, the bias, variance and
MSE, were used in Section 2.5.1 to evaluate the performances of the various SNR
estimators in the real and complex AWGN channels of Chapter 2. As well, a theo-
retical bound, the CRB, was derived in Section 2.5.2 and compared to the variances
and MSE's of the various SNR estimators. Similar performance metrics are required
for the evaluation of the SIR estimators studied in this chapter.

Recall, the unbiased estimators of the sample bias, sample variance, and sample

MSE of an estimator, g, given in Section 2.5.1 as

Ne

Bias{p} = 3 3.(5i~ )

=1

~N

1 Ne _—
sﬁ = Nt_lg(pi—p)

. 1 & .
MSE{s} = 2 (6i—0p)’
¢ =1
where p; denotes one of N; SNR estimates generated by a particular estimator, p is

the true SNR, and the unbiased sample mean, j, is given by
.
A=t
Unfortunately, it is not possible to evaluate the performances of the SIR estimators
as rigorously as the performances of the SNR estimators because of the fundamental

challenge to identify the “true” SIR of a given channel. The simplest case is the
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complex AWGN channel of Case 1 where the SIR is simply the SNR. §/N. Similarly,
in the Case 4 channel in which CCI is dominant over every other impairment, the
SIR may be expressed as S/C, where C represents the power of the CCI sequence,
assuming the interferer is time-synchronized with the desired signal so that the sym-
bol centres of the interferer align with the symbol centres of the desired signal. If
the two signals are not time synchronized, then the degradation caused by the in-
terferer is less and the SIR could be expressed as some number greater than S/C.
The situation becomes more complicated when considering fading channels (especially
the frequency-selective fading channel of Case 3), and more confusing still when the
various impairments are combined (as in Case 5)—the impairments all have differ-
ent statistics and different deleterious effects on the BER so that a composite SIR
would have to be formed from some sort of weighted combination of the individual
impairment parameters.

Instead of trying to create a universal definition of the SIR in order to be able to
compute the bias and MSE performances of the various SIR estimators, it is conceded
that any universal SIR definition will be arbitrary, so focus is instead placed on
unambiguous performance metrics: the sample variance, and the correlation of the
sample mean to the simulated, raw BER of the specified receiver (see Figure 3.10).
The “best” estimator is judged to be the one with the smallest variance, and the
best correlation of its mean to the BER, for all of the various channel conditions

considered.

3.9 Simulation Results

The results of the evaluation of the performances of the SIR estimators discussed in
Section 3.7 are presented here. The fading simulator implemented for these tests is
discussed in Section 3.4, and the system models are presented in Section 3.6.

For the most part, the SIR estimators are evaluated graphically by plotting the

variances of a collection of simulated SIR estimates as a function of some channel
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parameter, and by plotting the means of the SIR estimates as a function of the
simulated BER. The collection of SIR estimates is large enough to ensure that the
error in the estimated variance and the error in the estimated BER is less than
approximately 20% with 95% confidence.

As mentioned in Section 3.8, it is difficult to compute the bias and MSE of the SIR
estimates since the “true” SIR of a particular system can be an ambiguous parameter.
However, the Case 1 channel is simply the complex AWGN channel in which the SIR
is unambiguously the SNR, so that bias and MSE results are presented for that
particular case. In Case 4, the only impairment, in addition to a small amount of
AWGN, is CCI so that the true SIR in that case is simply S/(N + C), thus bias and
MSE results are provided for Case 4 as well. For Cases 2, 3, and 5, in which the SIR
is not straightforward to define, the estimator performances must be judged on the
basis of the variances and the SIR/BER correlations of the SIR estimates alone.

The normalized, complex CRB given by (2.131) of Section 2.5.2 is provided for
reference in the plots of variance and MSE for Case 1 since it is applicable to some
of the estimators. The pre-MF CRB (described in Section 2.6) is applicable to the
ML TxDA and ML RxDA estimators, and the post-MF CRB (also described in
Section 2.6) is applicable to the SVR and M;M, estimators. The other estimators
studied in this chapter, namely the ADIQ, DDML, PML, SIV, and MSIV estimators,
are post-DD estimators to which the CRB given by (2.131) of Section 2.5.2 does not
apply because the statistics of the signal and noise after the DD are not consistent
with the assumptions made in the derivation of the complex CRB in Section 2.5.2.
No CRB is provided for reference in the plots of the variances for Cases 2~5 since the
CRB derivations become complicated for impairment processes which do not have
Gaussian statistics.

The results are presented in the following sections, grouped according to each of

the five channels tested.

180



10

107" ¥z

al

10

107 L N — N

P,, probability of bit error
S

SETo — o W/4-DQPSK (simulated) [ori s N
T —x n/4-DQPSK (theory) : : =
10°° : e : ; : 5 e
107 : : :
5.0 7.0 9.0 11.0 13.0 15.0
o, SNR, dB

Figure 3.20: BER as a function of SNR in Case 1 channel.

3.9.1 Casel: Complex AWGN Channel

The simulated BER of this Case 1 channel is plotted in Figure 3.20 as a function of
SNR, and the theoretical BER is plotted for comparison. The bit-error probability
of 7/4-DQPSK is essentially identical to that of conventional DQPSK which is given

in [65, page 271] as
Pu.papsk = Q(a,b) — LIy(ab)e~(=*++)/2,
where Q(a, b) is the Marcum @ function given by

o0 a k
Q(a,b) = e~ +2 Y7 (z) I(ab),

k=0
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Ii(z) is the k*"-order modified Bessel function of the first kind, and a and b are given

by

“2\”(1“'}5)’

and

= \r(1+75)
respectively, where p = 2E, /N, is the SNR.

The SIR estimators tested in this channel include the SVR, M, My, PML RxDA,
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, ADIQ, ML RxDA, and ML TxDA estimators. The statistical perfor-

mances of these estimators are presented below.
Biases, Variances, and MSE’s of Estimators in Case 1 Channel

The estimator biases are plotted in Figures 3.21 and 3.22, the variances are plotted in
Figures 3.23 and 3.24, and the MSE’s are plotted in Figures 3.25 and 3.26. Note that
the bias and MSE of each estimator are plotted normalized to the true SNR, whereas
the variance of each estimator is plotted normalized to the estimated SNR. It is more
appropriate to normalize the variance to the estimated SNR since the normalization
of the variance of a biased estimator to the true SNR can yield misleading results.

Due to the large number of estimators tested in the Case 1 channel, each set of
results is split among three different graphs. In order to be able to compare estimators
from different graphs, the SIV RxDA and SIV TxDA results and the post-MF CRB
appear in all of the graphs of variance and MSE as common benchmarks.

As was found in Chapter 2, the ML TxDA estimator in the Case 1 channel has the
best overall performance as it can be seen in Figure 3.22 that its bias is very small,
and it can be seen in Figures 3.24 and 3.26 that its variance and MSE are practically
indistinguishable from the CRB. It’s not surprising that the ML TxDA estimator

performs much better than the other estimators studied here since it is the only one
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Figure 3.21: Normalized bias of SIR estimates generated by (2) SVR, MM, PML,
and ADIQ estimation, (b) SIV, MSIV, and DDML estimation in Case 1 channel.
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Figure 3.25: Normalized MSE of SIR estimates generated by (a) SVR, MM, PML,
ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 1 channel.
The post-MF CRB is shown in both plots for reference.
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that employs multiple samples per symbol (in this case, sixteen samples per symbol).
The ML RxDA estimator performs almost identically to its TxDA counterpart at
values of SNR greater than about 18 dB, but its performance degrades sharply for
values of SNR less than 18 dB. The reason for this extremely poor performance is
that just one receiver error can have a serious effect on estimates produced by the
ML RxDA algorithm. This effect was discussed in detail in Section 3.7.4.

Of the estimators that use just one sample per symbol to form SIR estimates,
the SIV TxDA and MSIV TxDA estimators perform best as their biases and MSE’s
are smallest. From Figures 3.21(b), 3.23(b), and 3.25(b), one can see that the per-
formances of the SIV TxDA and MSIV TxDA estimators are essentially identical.
The MSIV TxDA estimator seems to have a slight bias and MSE advantage, but
the difference is too small to be statistically significant. A similar relationship exists
between the SIV RxDA and MSIV RxDA estimators. The performances of both the
SIV RxDA and MSIV RxDA estimators deviate from the performances of their TxDA
counterparts as the SNR is decreased below about 12-15 dB due to receiver errors,
but the degradation is much less severe than that experienced by the ML RxDA
estimator. Though the post-MF CRB is not applicable to the post-DD estimators,
it is still interesting to compare the performances of the post-DD estimators to the
theoretical performance bound of post-MF (pre-DD) estimators. As can be seen in
Figures 3.23(b) and 3.25(b), though the SIV TxDA and MSIV TxDA estimators
perform best of all of the one-sample-per-symbol estimators, there is a significant
performance gap between their variances and MSE’s and the post-MF CRB.

Of the estimators using just one sample per symbol which are also of the in-service
type, the M, M, estimator appears to have the best overall performance, which is
most easily seen in Figure 3.25(a), but the SIV RxDA and MSIV RxDA estimators
perform better for values of SNR greater than about 9 dB. The performance of the
ADIQ estimator is next best. In Figure 3.21(a), it is particularly noteworthy that,
for values of SNR greater than about 15 dB, the bias of the ADIQ is smallest among
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all of the SIR estimates tested except for the ML estimators. However, the ADIQ
estimator also has the second-largest bias (and MSE) at very low SNR.

Though the DDML estimators are derived using an ML approach (which is an
optimum approach) their performances are not as good as the performances of the
SIV and MSIV estimators. For example, it can be seen from Figures 3.21 and 3.25
that the biases and MSE’s of the DDML estimates are larger than those of the SIV
and MSIV estimates. Interestingly, even the TxDA form of the DDML estimator
exhibits a significant bias at very low SNR, whereas the TxDA forms of the SIV and
MSIV estimators do not. The asymptotic variance of the DDML at high SNR is
about twice as large as the asymptotic variances of the SIV and MSIV estimators, as
can be seen in Figure 3.23.

The bias, variance, and MSE of the SVR estimator all begin to rise at high SNR
which is consistent with the observations made in Sections 2.6.1 and 2.6.2. It is
indicated in Chapter 2 that the mechanism behind this degradation at high SNR is
not fully understood but, by simulation, it has been observed that this phenomenon
is common among some estimators based on higher-order moments. As also pointed
out in Chapter 2, the variances and MSE'’s of the “best” estimators can only be as
good as the CRB which itself does not progressively decrease with increasing SNR,
but rather approaches a constant value. It is reasonable, therefore, to expect the
variance and MSE of an inferior estimator either to approach a constant larger than
the high-SNR CRB asymptote, or to rise with increasing SNR.

The performances of the PML TxDA and PML RxDA estimators also degrade
with increasing SNR which is surprising since the PML, SIV, and MSIV estimators
are closely related and the SIV and MSIV estimators are well-behaved for all values
of SNR. In order to understand this high-SNR effect better, it may be insightful to
derive the pdf of ppmr.1xpa and/or the pdf of ppmr rxpa so that the bias, variance,
and MSE may be computed analytically. This analysis is not performed here. On
the other end of the SNR range, it is interesting to note in Figure 3.25(a) that the
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MSE of the PML TxDA estimator is slightly inferior both to that of the MSIV TxDA
estimator and to that of the SIV TxDA estimator, again, in spite of the fact that
the algorithms are very similar. A derivation of the pdf may help to explain this
behaviour as well.

It is interesting in Figure 3.23 that the variances of some estimators fall as the
SNR becomes very small while the variances of other estimators rise. By comparison
with Figure 3.21, it may be seen that those estimators whose variances “droop” at
low SNR also have large low-SNR biases. This observation may be used in those test
channels {Cases 2A, 2B, 3, and 5) for which bias and MSE results are not presented.
That is, in the absence of plots of the bias and MSE, it may be deduced that a

“drooping” variance indicates a large low-SNR bias.
g 24

Correlation of SIR to BER in Case 1 Channel

The correlation between the mean estimated SIR (simply the SNR in this case) and
the probability of bit error, P, or BER, of the Case 1 channel is graphically portrayed
in Figure 3.27 for the SVR, MMy, PML RxDA, PML TxDA, ADIQ, SIV RxDA,
SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, ML RxDA,
and ML TxDA estimators. Most of the SIR estimators have very similar good correla-
tions with the BER, with the exception of the ML RxDA estimator which sometimes
generates negative SIR estimates at p = 6 dB (which is the reason why this point is
omitted from the ML RxDA plot).

Based on Figure 3.27 alone, there is little to distinguish one estimator from an-

other. Additional observations regarding the SIR/BER correlations are made in Sec-

tion 3.9.6.

Additional Results for Case 1 Channel

In Sections 3.7.1 and 3.7.2, the kurtosis of the impairment process, kg, is assumed to be

equal to 1.5 as a compromise between the kurtosis of complex AWGN (k¢ awen = 2)
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and that of a cochannel interferer (keccr = 1) in the derivation of the AL M and
SVR estimators. It is interesting to investigate the effect of this compromise on the
performances of the M,M,; and SVR estimators in the complex AWGN channel of
Case 1. It is sufficient to investigate the MSE performances alone.

The MSE’s of “ideal” and “compromise” M>M, and SVR estimators are plotted
in Figure 3.28. The ideal estimators use k¢ = 2 while the compromise estimators
use k¢ = 1.5. It is evident from Figure 3.28 that the ideal estimators outperform
the compromise estimators only at very low SNR and otherwise perform essentially
identically. This observation indicates that there may be little justification to motivate

the implementation of an estimator that adapts itself to a particular channel based
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Figure 3.29: BER as a function of Doppler spread in Case 2A channel.

on the kurtosis of the impairment process of the channel.

3.9.2 Case2: Fast, Flat Fading Channel

As indicated in Section 3.6.2, two models of the Case 2 channel are investigated: one
in which the Rayleigh amplitude and phase fluctuations are allowed to evolve over
time (Case 2A), and another in which the channel conditions are replayed for each

successive SIR estimate (Case 2B). Separate results are given for each model.
Case 2A: Time-evolving Rayleigh Fading

The simulated BER of the Case 2A channel is plotted in Figure 3.29 as a function

of the Doppler spread, vmax- For reference, a theoretical BER curve is also plotted
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based on points obtained by the numerical analysis of Liu and Feher (see (19d) and
Figure 7 of [11]). The plotted points are for S/N = 70 dB, which is large enough for
the BER to be independent of the SNR (due to the error floor caused by the Rayleigh
fading). There is good agreement between simulation and theory.

The SIR estimators tested in this channel include the SIV RxDA, SIV TxDA,
MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, and ADIQ estimators.
Results for the SVR, MM, PML RxDA and PML TxDA estimators are not pre-
sented since these algorithms fail in this Case 2A channel. Specifically, some of the
SIR estimates produced by the MM, estimator are imaginary, and some of the SIR
estimates produced by the SVR, PML RxDA, and PML TxDA estimators are neg-
ative. Since an imaginary or negative estimate of the SIR is meaningless, these four
estimators are omitted from the performance comparison for Case 2A. It appears
that these methods fail whenever a deep fade occurs.

The variances of the SIR estimates generated by the SIV RxDA, SIV TxDA,
MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, and ADIQ estimators in
the Case 2A channel are plotted in Figure 3.30, and the relationships between the
mean estimated SIR and the BER of the Case 2A channel for the various estimators
are portrayed in Figure 3.31.

In general, it is reasonable to expect the variance of SIR estimates to increase with
decreasing Doppler spread since the SIR estimates begin to track the Rayleigh ampli-
tude fluctuations as the rapidity of the fluctuations slows relative to the observation
window of Ngym symbols. The SIV and MSIV estimators reflect a behaviour that is
consistent with this hypothesis while the DDML and ADIQ estimators do not. Since
the DDML and ADIQ estimators do not use the amplitude information of the received
signal, it is reasonable to expect the variances of these particular estimators to have
a weak relationship, or no relationship, to the Rayleigh amplitude fluctuations.

Comparing the variances of the SIV and MSIV SIR estimates to those of the
ADIQ and DDML SIR estimates, the results plotted in Figure 3.30 indicate that
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the normalized variances of the SIV and MSIV SIR estimates are almost an order
of magnitude smaller than those of the DDML and ADIQ SIR estimates at Doppler
spreads of 70 and 100 Hz, but the variances of the SIR estimates of all seven estimators
tested are almost equal at a Doppler spread of 40 Hz. One could expect, therefore,
that SIV and MSIV estimators may perform better in applications in which the
channel is degraded by relatively fast Rayleigh fading.

Referring to Figure 3.31, it is interesting that the estimator performance curves
split neatly into two groups as they do in Figure 3.30. The SIV and MSIV curves
form one group, and the DDML and ADIQ estimators form the other. More striking,
however, is the fact that SIR estimates represented by these two groups of curves are
separated by about 30 dB. As will be shown in Figures 3.50 to 3.53, the SIV and
MSIV curves correspond to better SIR/BER correlations.

The reason why there is such a tremendously large difference between the absolute
DDML and ADIQ SIR estimates and the absolute SIV and MSIV SIR estimates is that
the amplitude of the input samples is ignored in both DDML and ADIQ estimation.
In DDML estimation, only differential phases are considered. In ADIQ estimation,
an instantaneous AGC removes all amplitude information. The effect of the absence
of amplitude information is clarified below using the example of ADIQ estimation.

The effect of the instantaneous AGC of the ADIQ estimator can be appreciated by
referring to Figure 3.14(c) which shows the post-DD symbols for a channel subjected
to fast Rayleigh fading. Without AGC (as portrayed in Figure 3.14(c)), the ampli-
tudes of the post-DD symbols vary greatly due to the random amplitude fluctuations
(these fluctuations are reflected by the SIV and MSIV estimates). The instantaneous
AGC of the ADIQ estimator normalizes the amplitudes of the post-DD symbols such
that the amplitudes of all post-DD symbols lie on the unit circle. For example, after
application of an instantaneous AGC operation, the post-DD symbols portrayed by
Figure 3.14(c) would appear similar to the post-DD symbols of Figure 3.11(c), which

are the post-DD symbols in a clear-sky channel. By this illustration, it is reasonable
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to expect the ADIQ SIR estimator to give an overly optimistic estimate of the SIR
in a fast Rayleigh fading channel.

It is interesting that there is little differentiation between the performances of
the RxDA and TxDA SIV, MSIV, and DDML estimators in Figures 3.30 and 3.31.
This observation indicates that receiver errors due to the channel conditions of the
Case 2A channel do not have a great impact on the variances of the RxDA SIR

estimates compared to the effect of the time-varying channel conditions.

Case 2B: Rayleigh Fading Replayed for each Successive SIR Estimate

The simulated BER of the Case 2B channel is plotted in Figure 3.32 as a function
of the SNR. No theoretical BER curve is available in the published literature for
reference since the Case 2B channel conditions are artificial and atypical (recall that
the amplitude and phase fluctuations are replayed for each successive SIR estimate).

The SIR estimators tested in this channel are the same ones tested in the Case 2A
channel, namely the SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML
RxDA, DDML TxDA, and ADIQ estimators. As in the Case 2A channel, results for
the SVR, MaM,, PML RxDA and PML TxDA estimators are not presented in this
Case 2B channel since all of the SIR estimates produced by the M,M; estimator are
imaginary, all of the SVR SIR estimates are negative, and a large percentage of the
PML RxDA, and PML TxDA SIR estimates are negative. As mentioned earlier in
the context of the Case 2A channel, “bad” SIR estimates seem to be associated with
the deep nulls caused by Rayleigh fading. The Case 2B channel is designed to have
the same deep null occur for each successive SIR estimate so it is not surprising that
bad SIR estimates would be more prevalent in the Case 2B channel.

The variances of the SIR estimates generated by the SIV RxDA, SIV TxDA,
MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, and ADIQ estimators in
the Case 2B channel are plotted in Figure 3.33, and the relationships between the

mean estimated SIR and the BER of the Case 2B channel for the various estimators
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Figure 3.33: Normalized variance of SIR estimates generated by SIV, MSIV, DDML,
and ADIQ estimation in Case 2B channel.

estimates are about an order of magnitude larger than the variances of the SIV and
MSIV SIR estimates, which is consistent with the relative performance results ob-
served in Figure 3.30 for the Case 2A channel. The variances displayed in Figure 3.33
are due exclusively to the inherent performances of the SIR estimators and are not
affected by time-evolving channel conditions as in Figure 3.30 which is the reason
why, in an absolute sense, the variances seen in Figure 3.30 are much larger than
those seen in Figure 3.33. It is not clear why, in a relative sense, the variances of the

DDML and ADIQ SIR estimates are so much larger than the variances of the SIV
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and MSIV SIR estimates.
It should also be noted that, from Figure 3.33, the variances of the TxDA and

RxDA forms of the SIV and MSIV estimators are close to identical even though the
BER is quite high. This is a somewhat surprising result since in Figure 3.23 it is
seen that the variances of the RxDA forms of the SIR estimators deviate from the
variances of the TxDA forms at low SNR (high BER) in the Case 1 channel. In
contrast, the variances of the RxDA and TxDA forms of the DDML estimator are
different.

With respect to the correlation between SIR and BER, it is apparent from Fig-
ure 3.34 that the DDML and ADIQ SIR estimates reflect (in a relative sense) the
BER of the channel quite well whereas the SIV and MSIV SIR estimates are flat
throughout the range of tested BER. This observation indicates that the DDML and
ADIQ SIR estimators are better SIR metrics in the context of the Case 2B channel
from the point of view of SIR/BER correlation. Also, note that the DDML and
ADIQ SIR estimates are much larger relative to the SIV and MSIV SIR estimates.
The reason for these differences was attributed earlier in the discussion of the Case 2A
channel to the fact that both the DDML and ADIQ estimators ignore the fluctuating

amplitudes of the post-DD samples, and thus give optimistic estimates of the SIR.

3.9.3 Case 3: Slow, Frequency-Selective Fading Channel

The simulated BER of the Case 3 channel is plotted in Figure 3.35 as a function of the
delay spread, mrms. No theoretical BER curve is plotted for reference as none could
be found in the published literature corresponding precisely to the characteristics of
the Case 3 channel. Recall that the SNR of the channel is set to 15 dB to increase
the BER and shorten the simulation time since the BER due to multipath over the
range of delay spreads tested can be very low. The optimum sampling instant in
frequency-selective channels often does not correspond to the sampling instant that

is optimum in the AWGN channel [123]. In this frequency-selective Case 3 channel,



-1

10 = : : L

-t
o
®

Pt

M.fo—-o simulated BER]

I}

P,, probability of bit error
=]
4
.

by
Q
e

-h
oI
4

40 6.0 8.0 10.0 12.0
1. Delay spread, us

o
o

Figure 3.35: BER as a function of delay spread in Case 3 channel.



however, the optimum sampling instant is actually the same as that in the AWGN
channel to within 1/16 of a symbol period (the resolution of the simulator).

The SIR estimators tested in this channel include the SVR, MaAL,, PML RxDA.
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ SIR estimators. The variances of the SIR estimates in the
Case 3 channel are shown in Figure 3.36. The results are split between two graphs
to avoid clutter, but the SIV variance curves are common to both graphs to facilitate
comparison.

The behaviours of the SIR estimator variances in this Case 3 channel appear
very similar to the behaviours of the SIR variances in the Case 1 channel, shown in
Figure 3.23, except that the curves are reversed in the sense that increasing abscissa
corresponds to increasing BER in Figure 3.36, while increasing abscissa corresponds
to decreasing BER in Figure 3.23. Just as the variances of the RxDA SIR estimators
in the Case 1 channel “droop” below the variances of their TxDA counterparts for
low values of SNR (corresponding to high BER), the variances of the RxDA SIR
estimators in the Case 3 channel droop at values of large 7ims (again corresponding
to high BER). Counter-intuitively, the smaller (drooping) variances of the RxDA
estimates do not imply better estimator performances. For example, it can be seen
in Figures 3.21 to 3.26 of Case 1 that a drooping variance at low SNR is associated
with a growing estimator bias and a growing MSE. Thus it can be deduced that
whenever the variance of an RxDA estimator droops below the variance of its TxDA
counterpart, the reason is not because the performance of the RxDA estimator is
superior to that of the TxDA estimator, but rather because the RxDA estimator is
manifesting a bias which implies inferior performance. This deduction is useful in
cases such as this Case 3 channel where bias and MSE curves are not available due
to the difficulty of identifying the true SIR of the channel.

The TxDA forms of the DA SIR estimators perform best overall. Among the
TxDA estimators, the SIV TxDA and MSIV TxDA estimators perform best, followed
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by the PML TxDA estimator and the DDML TxDA estimator. The variances of the
SVR and M;M, estimators (which are not DA estimators) are relatively unaffected
by changing Trms.

The relationships between the mean estimated SIR and the BER of the Case 3
channel for the various estimators are portrayed in Figure 3.37. This plot shows more
differentiation among the various estimators than is observed in Figure 3.27 of Case I,
but all estimators perform similarly with the exception of the SVR estimator whose

SIR/BER curve is distinctly set apart from the main group.

3.9.4 Case 4: Single Cochannel Interferer

The simulated BER. of the Case 4 channel is plotted in Figure 3.38 as a function of
the ratio of desired signal power to CCI power, S/C. No theoretical BER curve is
plotted for reference as none could be found in the published literature corresponding
precisely to the characteristics of the Case 4 channel (all BER curves plotted as a
function of CCI power found in the literature assume a flat, slowly fading channel,
whereas the Case 4 channel assumes simply AWGN and CCI, and no fading at all—
slow or fast). Recall that the SNR of the channel is set to 15 dB to increase the
BER and shorten the simulation time since the BER due to CCI alone over most of
the range of S/C tested can be very low up to a certain threshold and then degrade
sharply.

The SIR estimators tested in this channel include the SVR, AM3AL;, PML RxDA,
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ estimators. The biases, variances, and MSE’s of these SIR
estimates in the Case 4 channel are shown in Figures 3.39, 3.40, and 3.41. The biases
and variances are normalized to the estimated SIR, and the MSE’s are normalized to
the true SIR which is given simply in this case by S/(N + C).

The relative ranking of the estimators on the basis of the bias, variance and MSE

results is consistent with the rankings of the estimators in Cases 1 and 3. The TxDA
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forms of the SIV and MSIV estimators generate SIR estimates with the smallest over-
all biases, variances and MSE’s, while the performances of the RxDA forms deviate
slightly from those of their TxDA counterparts at low S/C. Specifically, the biases
and MSE’s of the RxDA SIR estimates become larger, and the variances of the RxDA
SIR estimates become smaller relative to their TxDA counterparts at low 5/C. These
deviations are consistent with the comments made in Section 3.9.3 regarding the cor-
relation between large RxDA estimator bias and MSE, and the droop in the variance
of RxDA estimates below the variance of corresponding TxDA estimates. In addition
note that, once again, the variances of the SIV RxDA and MSIV RxDA estimators and
the variances of the SIV TxDA and MSIV TxDA estimators are essentially identical.

The performances of the PML RxDA and PML TxDA estimators are inferior to
those of the SIV and MSIV estimators, but they are better than those of the SVR,
M,M,, DDML RxDA, DDML TxDA, and ADIQ estimators over most of the range
of §/C tested. The significant droop of the variance of the DDML RxDA estimates
at low values of S/C is associated with the large bias seen in Figure 3.39(b).

The ADIQ estimator also exhibits a droop in the variance of its SIR estimates
as it, too, is an RxDA type of estimator. Though no results of its TxDA form are
presented for comparison, it is apparent from Figures 3.39(a) and 3.41(a) that a large
bias and MSE is associated with the droop in variance.

The relationships between the mean estimated SIR and the BER of the Case 4
channel for the various estimators are portrayed in Figure 3.42. Similar to the Case 1
channel, there is little to distinguish one estimator from another in terms of SIR/BER
correlation. In general, the SIR/BER correlation is good for all of the estimators

tested.

3.9.5 Case 5: A “Typical” Mobile Radio Channel

The simulated BER of the Case 5 channel is plotted in Figure 3.43 as a function

of the SNR. No theoretical BER curve is plotted for reference as there is none in
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the published literature corresponding precisely to the characteristics of the Case 5
channel. Recall that this channel comprises a number of impairments including a
Doppler spread of 100 Hz, a delay spread of 3 us, and a desired signal-to-CCI power
ratio of 18 dB. The SNR is swept over the range {9,12,15,30} dB. The amplitude
and phase fluctuations due to the Rayleigh fading are replayed for each successive SIR
estimate similarly to the Case 2B channel. As mentioned in Section 3.9.3, for optimum
BER performance in a frequency-selective channel it is sometimes necessary to use a
different sampling instant than that used in an AWGN channel. This modification is
unnecessary for the Case 5 channel, as it was also unnecessary for the Case 3 channel.

The SIR estimators tested in this channel include the SVR, MMy, PML RxDA,
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ estimators. All of the estimators generate “meaningful”
estimates, even though Doppler spread is present in this Case 5 channel. Recall from
Section 3.9.2 that the SVR, M,M,, PML RxDA, and PML TxDA estimators were
described as generating “bad” estimates in Rayleigh-faded channels when a deep null
occurs. The time index of the Case 5 channel is purposely designed so that no deep
fade occurs over the interval chosen to be replayed for each successive SIR estimate
(see Figure 3.13 of Section 3.6.2) so that “bad” estimates are avoided. In reality,
channel conditions evolve over time and deep nulls are unavoidable in Rayleigh fading
so that the SVR, My My, PML RxDA, and PML TxDA SIR estimators are unsuitable
for “real-world” Rayleigh fading channels, but it is still interesting to investigate their
performances in this specific, albeit artificial, composite channel.

The variances of the SIR estimates in the Case 5 channel are shown in Figure 3.44
in which it may be seen that there are two distinct groups of estimators: one comprises
the SIV, MSIV and M;M; estimators, the other comprises the SVR, DDML, ADIQ),
and PML estimators. The distinction between these two groups is the general trends
of the variances of the SIR estimates. In the former, the variances slope downward

with increasing SNR while, in the latter, the variances are relatively flat throughout
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the range of tested SNR, or trending very slightly upward.
As in all of the other cases, the SIV and MSIV estimators exhibit the smallest

variances. Note the the TxDA and RxDA forms of these estimators perform almost
identically, even at an SNR of 9 dB where the BER is greater than 10-2. This
is a curious result since it seems reasonable to assume that receiver errors should
degrade the performances of RxDA estimators relative to the performances of their
TxDA counterparts. In fact, the variances of the RxDA estimators in Cases 1, 3,
and 4 are degraded (see Figures 3.23, 3.36, and 3.40, respectively) which supports
the assumption. The only other exception is Case 2. A common feature of the Case 2
and Case 5 channels is the presence of Rayleigh fading which suggests that one possible
reason why receiver errors do not cause the variances of the RxDA estimates to diverge
from the variances of the TxDA estimates is that the variances of the estimates are
so large due to the Rayleigh fading that the effect of receiver errors is negligible.

In contrast, there is a noticeable difference between the variances of the RxDA and
TxDA PML estimates, and a significant difference between the variances of the RxDA
and TxDA DDML estimates. The gap between the variances of the DDML RxDA
and DDML TxDA estimates throughout the range of tested SNR is particularly cu-
rious since the RxDA estimates have the smaller variance. From the discussion of
Section 3.9.3, this drooping of the DDML RxDA estimates with respect to the TxDA
estimates would seem to indicate that there is a strong associated bias throughout
the tested range of SNR. One could then deduce that the DDML RxDA estimator
is more sensitive to receiver errors than the other RxDA estimators in this type of
channel.

The M,M, SIR estimator is associated with the SIV and MSIV estimators in
the sense that the variance of its SIR estimates has a similar downward slope with
increasing SNR. The variance of the M; M, estimates is about twice that of the SIV
and MSIV estimates, but it is superior to the variances of the estimates of the other

estimators over most of the range of tested SNR, with the exception of very low values
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of SNR.

Among the estimators whose variances are relatively flat over the range of tested
SNR, the variances of the PML RxDA and PML TxDA estimators are the smallest
and are almost identical over the entire range of tested SNR. The performances of
the ADIQ, DDML RxDA and DDML TxDA estimators are only slightly worse while
the SVR estimator exhibits the largest variance of all SIR estimators tested.

The relationships between the mean estimated SIR and the BER of the Case 5
channel for the various estimators are portrayed in Figure 3.45. The two distinct
groups of SIR estimators observed in Figure 3.44 also exist in Figure 3.45. The SIV,
MSIV, and M, M, estimators exhibit values of SIR that are smaller in magnitude and
span a smaller range than the values of SIR exhibited by the SVR, DDML, ADIQ,
and PML estimators so that, on the basis of Figure 3.45 alone, the latter group
of estimators would be expected to perform better in applications than the former.
However, the SIR/BER correlations are viewed from a different perspective in the

next section which makes the relative efficacy of each estimator more clear.

3.9.6 Composite Plots of SIR/BER Correlation for each Es-
timator

It is informative to view the SIR/BER correlations from another perspective by plot-
ting the results for all five test channels for each of the SIR estimators separately.
Figures 3.46 to 3.56 portray these composite plots for the SVR, M3 A, PML RxDA,
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ estimators. Of course, results from the Case 2A and
Case 2B channels are not included for the SVR, M;M,, and PML estimators since, as
mentioned earlier, these estimators do not produce meaningful SIR estimates under
the channel conditions of Case 2A or Case 2B. Error bars are attached to each point,
and the sizes of the error bars are determined by the square root of the estimated

variance associated with each estimated SIR mean.
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In these plots, a good SIR/BER correlation is indicated by clusters of points
grouped tightly together with some reasonably steep, monotonic slope. Ideally, the
perfect SIR/BER correlation would be reflected by a plot of all SIR/BER points
falling on the same curve; that is, the perfect SIR/BER correlation would be a one-
to-one correspondence of the SIR to the BER for all of the test channels considered.
In addition to one-to-one correspondence, good correlation also requires SIR estimates
with a reasonably small variance.

The SIR/BER correlations for Cases 1, 3, and 4, are similarly good for all of the
estimators under consideration. The main differences in the correlations arise in the
context of Cases 2 and 5 where Rayleigh fading is present.

One of the criteria mentioned above for good SIR/BER correlation is that the
clusters of SIR/BER points be grouped tightly together. From Figures 3.50 to 3.53,
it may be seen that the SIV and MSIV SIR estimates satisfy this criterion. Though the
error bars on the points for Case 2A are large, this is mainly due to the time-varying
channel conditions rather than the inherent variance of the estimator. Unfortunately,
it is difficult to separate the effect of the channel from the effect of the SIR algorithm
itself on the variance, but the Case 2B model helps to accomplish this separation of
effects by replaying the same amplitude and phase fluctuations for each successive
SIR estimate, as described earlier, thus maintaining the true SIR constant (whatever
its value may be). The SIR/BER correlation points for the Case 2B model are quite
flat for the SIV and MSIV estimators and the error bars are small which indicates
that the contribution of the SIV and MSIV algorithms to the variance is small, but
the flatness of the plots indicates that the SIR/BER correlation is very poor for the
spectfic channel conditions of Case 2B which are artificial.

In contrast, the SIR/BER points of the DDML and ADIQ SIR estimates (see
Figures 3.54, 3.55 and 3.56) for Case 2B have a slope which reveals some correlation
with the BER, but the points are located some distance away from the main cluster

of SIR/BER points corresponding to Cases 1,3,4, and 5. The SIR/BER points of the
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Figure 3.51: Composite plot of correlation between mean estimated SIR and BER for
SIV TxDA estimation.
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Figure 3.52: Composite plot of correlation between mean estimated SIR and BER for
MSIV RxDA estimation.
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Figure 3.53: Composite plot of correlation between mean estimated SIR and BER for
MSIV TxDA estimation.
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Figure 3.54: Composite plot of correlation between mean estimated SIR and BER for
DDML RxDA estimation.
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Figure 3.55: Composite plot of correlation between mean estimated SIR and BER for
DDML TxDA estimation.
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DDML and ADIQ SIR estimates for Case 2A are located even farther from the main
cluster (by orders of magnitude). The error bars for the Case 2A points are large just
as the error bars for the SIV and MSIV Case 2A SIR/BER points are large. Again,
this large variance is mainly due to the random amplitude and phase fluctuations of
the Rayleigh-faded channel.

The double grouping of SIR estimators identified in Section 3.9.5 in the context of
the Case 5 results also manifests itself in Figures 3.46 to 3.56. The Case 5 SIR/BER
points of the M;M,, SIV RxDA, SIV TxDA, MSIV RxDA, and MSIV TxDA SIR
estimates fall below the main cluster of points in their respective plots, whereas
the Case 5 SIR/BER points of the SVR, PML RxDA, PML TxDA, DDML RxDA,
DDML TxDA, and ADIQ SIR estimates reside above the main cluster of points. The
main effect of this difference is that SIR estimates made under frequency-selective
conditions by the former group of estimators are slightly pessimistic, whereas SIR.

estimates made by the latter group of estimators are slightly optimistic.

3.10 Summary

Thirteen SIR estimators were described in Section 3.7: the SVR, M2 AL, PML RxDA,
PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, ADIQ, ML RxDA, and ML TxDA SIR estimators. The PML, SIV, and
MSIV estimators (both the RxDA and TxDA forms) are original. The performances
of the SIR estimators were compared using 7 /4-DQPSK-modulated signals in the five
different test channels described in Section 3.6.2.

An SIR estimator for wireless applications must be able to function well given any
charnel impairment including AWGN, CCI, and fast, frequency-selective fading. Of
the thirteen estimators tested in one or more of the five test channels described in Sec-
tion 3.6.2, only the SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ SIR estimators produce meaningful SIR estimates under

all of the channel conditions tested.



Of these seven SIR estimators, none could be considered “perfect”, but it seems
reasonable to conclude from all of the plots presented in Sections 3.9.1 to 3.9.6 that
the SIV and MSIV SIR estimators (both the RxDA and TxDA forms) exhibit the
most favourable characteristics from the point of view of small variances and good
SIR/BER correlations. The TxDA forms of the SIV and MSIV SIR estimators per-
form marginally better than their RxDA counterparts, as is most evident in plots of
bias, variance, and MSE. There is very little to distinguish the performances of the
SIV estimators from the performances of the MSIV estimators, and any difference is
so small as to be statistically insignificant.

The DDML and ADIQ exhibit remarkably similar biases, variances, MSE’s, and
SIR/BER correlations so, based on these results, one would expect applications in-
corporating these estimators to perform similarly.

From the point of view of implementation complexity, the ADIQ SIR estimator is
the simplest to implement of all of the estimators considered in Chapter 3 or Chap-
ter 2, especially if the AGC operation could be simplified from an explicit division
to a bit-shift operation, and if the correction formula given by (3.34) need not be
applied, as is the case in applications which require only a relative measure of SIR.

If only a relative measure of SIR is required, the SIV and MSIV estimators may
also be simplified, as it is evident from (3.75) or (3.100) that only the ratio

52
need be computed instead of the full expression. Comparing the complexity of the
SIV estimators to that of the MSIV estimators, the SIV estimators are easier to
implement as the MSIV algorithm requires complex multiplication, whereas the SIV
algorithm does not. Furthermore, the TxDA forms have the added complexity over
the RxDA forms that known data must be identified and extracted from the received
signal which is an issue of synchronization.

To implement the DDML estimators, the differential phase must be computed
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(which cou:id be a part of the detection hardware) and the sine function must somehow
be implemented (perhaps as a lookup table). Alternatively, it is suggested in [28] that
a reduced-complexity form of the DDML algorithm may be implemented to avoid the
sine function, but at the cost of performance. Since the reduced-complexity form was

not considered here, it is not possible to indicate the degree to which its performance

could be expected to degrade.
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Chapter 4

Application of SIR Estimation to
Selection Diversity Combining

4.1 Motivation and Description of Application

The performances of various SIR estimators were investigated in Chapter 3 based on
the statistical evaluation of simulated SIR. estimates. Another strategy to evaluate
SIR estimator performance is to compare the relative benefit of the incorporation of
the SIR estimators into a specific application. Though the comparison results are
specific to a particular application, they nonetheless provide additional insight into
the efficacy of the various SIR estimation algorithms.

Postdetection selection diversity combining [23] is chosen here as an application
which is of current interest in wireless communications [27, 2, 124, 125] since it is a
relatively simple method to combat the effects of delay spread, AWGN, CCI, and the
random amplitude and phase fluctuations due to Rayleigh fading. A postdetection
selection diversity combiner (SDC) is classically described [23] as comprising L an-
tennas (spaced far enough apart from each other to ensure that the fading affecting
each of the L received signals is uncorrelated or nearly uncorrelated), L detectors,
and a switch which connects the detector whose output samples have the largest SNR
to the decision device. In practice [2], the detector whose samples have the largest

envelope has been chosen to be connected to the decision device since measurement
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Figure 4.1: Simplified block diagram of postdetection selection diversity combiner.

of the SNR has been considered to be too costly historically. Using the measured
SNR or SIR as the selection criterion rather than the received signal envelope (or
total received power) should yield better diversity performance.

A simplified block diagram of the diversity system modeled here is illustrated
in Figure 4.1 with L = 2. Each branch can be represented by the system model
presented in Section 3.6.1. The fading between branches is assumed statistically
similar but independent; that is, the Doppler and delay profiles are identical, but the
sets of fading parameters, 0,,, Um, and Tm, used in (3.9) of Chapter 3 are different for
each branch.

The SIR estimators to be evaluated with this SDC are the ones identified in Chap-
ter 3 that generate meaningful SIR estimates regardless of the channel conditions.
These include the SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA,
DDML TxDA, and ADIQ SIR estimators. In addition, two other types of estima-
tors are implemented for comparison which assess received signal quality based on
measurement of the sum of the signal and impairment components. In one imple-
mentation, the average power over a block of Nyym symbols is used as the selection

criterion. This estimation method is referred to here as AVGP (AVeraGe Power) es-



timation. In the other implementation, branch selection is based on measurement of
the instantaneous power which, in a discrete-time system, is equivalent to measure-
ment of the envelope of each corrupted symbol. This estimation method is referred
to here as INSTP (INSTantaneous Power) estimation. The SDC selects the branch
with the largest AVGP or INSTP estimate. INSTP estimation is the one most often
associated with postdetection selection diversity combining (see, for example, [2]}.
The AVGP estimator used here computes the total power of the baud-spaced
samples, y,, at the output of the MF given by (3.21) of Chapter 3. The form of this

estimator is simply expressed as

1 leﬂ‘l

- 2
VGP = 1 n| -

2. Noym + 1 "Zd:) |ynl

The INSTP estimator is even more simply expressed as

ONsTP = |Za]| = l¥nyn_1ls

which is the envelope of the post-DD samples. The INSTP estimator uses the post-
DD samples in order to be consistent with [2].

It is also useful to have some bound on the best possible BER attainable by an
L = 2 SDC given a certain set of channel conditions and certain block length, Nyym.
A simple way to obtain such a bound is to run a simulation in which a copy of the
transmitted data is used at the receiver to select the branch with the fewest bit errors
for each block of Ny, symbols. A lower bound on the BER can thus be obtained
regardless of the statistics of the channel impairments. These results are identified as

the “Ideal” curves in the BER performance plots that follow in Section 4.3.

4.2 Verification of Selection Combiner

As a check of the implementation of the selection combiner pictured in simplified
form in Figure 4.1, the simulated BER performance is compared to published results.

The channel chosen for verification purposes is a slow, flat Rayleigh fading channel
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Figure 4.2: Verification of postdetection selection diversity combiner in a slow,
Rayleigh fading channel using numerical results of [2].

corrupted by AWGN but no CCI. The simulated BER of this channel is plotted as a
function of SNR in Figure 4.2 for L = 1 (no diversity) and L = 2, and is compared to
the numerical results (equation (17) and Figure 4) of [2]. For the case of L =2, it is

assumed that the SDC is employed with INSTP estimation. These plots show good

agreement between simulation and theory.

4.3 Simulation Results

The BER performance of selection diversity combining using various SIR estimators

is displayed in Figures 4.3 to 4.5 for three different scenarios. The intention of this



chapter is not to provide simulation results of the BER performance for an exhaustive
set of channel conditions, but rather to illustrate by example the relative improvement
in BER attainable using SIR estimators in selection diversity combining for a few
representative system configurations.

In the first scenario, the propagation medium is characterized by flat, fast Rayleigh
fading with vmay = 100 Hz. CCI is present at a level of S/C = 14 dB, and the SNR is
swept from 10 to 50 dB in 10 dB steps. The block length is chosen to be Ny, = 30
symbols which is smaller than the block length of 150 symbols assumed for all tests
in Chapter 3. The rationale behind the choice of the block length is described below.

For this selection diversity application, the block length should be chosen as small
as possible to minimize the number of correctly detected bits that are discarded.
Ideally, symbol quality should be assessed on a symbol-by-symbol basis (Nym = 1)
as in {2]. To illustrate, consider an L = 2 SDC with Ngym = 100. Assume 10 symbol
errors occur in the first 50 symbols of the block corresponding to branch 1, 20 symbol
errors occur in the last 50 symbols of the block corresponding to branch 2, and the
SIR of branch 1 is greater than that of branch 2 (based on an observation interval of
100 symbols) so that the 100-symbol block of branch 1 is correctly selected. Though
a block with 10 symbol errors is better than one with 20 symbol errors, if the block
size had been 50 symbols in length rather than 100, it is possible that branch 2 could
have been selected for the first 50 symbols and branch 1 could have been selected for
the last 50 symbols so that, overall, there would have been no symbol errors at all.
Based on a 100-symbol block size, the selection of branch 1 effectively discards the
correctly detected symbols of branch 2 which could be used to minimize the BER. It
is easy to extend this argument to show that smaller and smaller block sizes should
yield increasingly better BER performances to the point that, theoretically, the best
selection diversity BER performance should be attained with the smallest possible
block size; that is, Ngym = 1. This requirement must be balanced with the fact that

the performances of the SIR estimators improve with increasing block length. As a
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first attempt to achieve this balance, a block length of 30 symbols was chosen.

The BER results for the first scenario are displayed in Figure 4.3. The BER
performance curves are split between two graphs to reduce congestion, but the SIV,
“Ideal”, and “No diversity” curves are common to both to facilitate comparison. From
Figure 4.3 it can be seen that the difference in performance among the various SDC
implementations is not huge, but it is significant. Distinctions arise for values of SNR
greater than 30 dB where the error floor is visible. Specifically, the SDC’s employ-
ing SIV TxDA, MSIV TxDA, and DDML TxDA SIR estimation attain almost ideal
BER performance for Nyym = 30. The BER performances of the SDC’s employing the
SIV RxDA and MSIV RxDA SIR estimators are next best. These BER performances
are about 17% better than that of a conventional SDC operating with INSTP esti-
mation. Next best is the BER performance of an SDC employing DDML RxDA SIR
estimation. The high-SNR performance of the DDML RxDA-assisted SDC is similar
to that of the SIV RxDA- and MSIV RxDA-assisted SDC’s and better than that of
the INSTP-assisted SDC, but the low-SNR (less than about 30 dB) performance is
inferior to that of the INSTP-assisted SDC. The BER performance of the ADIQ-
assisted SDC is next best and, not surprisingly, the SDC using AVGP estimation
performs least well of all of the SDC implementations. These performance rankings
are reasonably consistent with the SIR estimator rankings observed in Chapter 3,
though the DDML estimators perform better in this SDC application than expected.

The second scenario is almost identical to the first in that the propagation medium,
the level of CCI, and the range of values of SNR are the same. The only difference
is that the block length is decreased from Nyym = 30 to Ny, = 10 to see the effect
of a shorter observation interval. From Figure 4.4, it can be seen that the perfor-
mances of almost all of the SDC implementations improve slightly relative to the
INSTP implementation which is identical in both plots (recall that the INSTP esti-
mator measures the post-DD signal envelope on a symbol-by-symbol basis so that its

estimates are independent of V). The DDML RxDA-assisted SDC is the only SIR-
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based implementation whose BER performance remains relatively unchanged. As a
result, the SIV RxDA- and MSIV RxDA-assisted SDC’s exhibit a marginally superior
BER performance relative to that of the DDML RxDA-assisted SDC. As well, the
SIV RxDA- and MSIV RxDA-assisted SDC implementations maintain their small,
but distinct, BER performance advantage over all of the other SDC implementations
using in-service quality estimators. The SDC implementations using the TxDA forms
of the SIV, MSIV, and DDML estimators maintain their superior rankings, achieving
BER performances that are very close to ideal.

In the final scenario, the propagation medium is characterized by frequency-
selective, fast Rayleigh fading with Trms = 3 ps and vmax = 40 Hz (decreased from
Vmax = 100 Hz). The signal-to-CClI ratio is increased from S/C = 14 dB to 20 dB.
As in the other two scenarios, the SNR is swept from 10 to 50 dB in 10 dB steps.
The block length is maintained at Ny;ym = 10 symbols, consistent with that of the
second scenario. Relative to the BER performances with diversity in the first two
scenarios, the BER performances with diversity in this frequency-selective scenario
are better since the improvement in performance due to the smaller Doppler spread
and lower interference level is more significant than the degradation in performance
due to the added frequency selectivity. The high-SNR rankings are unchanged in this
frequency-selective scenario as compared to the previous flat-fading case (Ngyym = 10

in both cases).

4.4 BER Performance Summary

There is some correlation between the ranking of the SIR estimators in terms of rela-
tive SDC BER performance improvement (for the scenarios considered in Section 4.3)
and the ranking of the SIR estimators developed in Chapter 3 based on application-
independent statistical tests. Specifically, it is not surprising that the SDC’s em-
ploying SIV TxDA and MSIV TxDA SIR estimation perform well, approaching ideal

performance for a given block length, as these estimators were judged to perform best

]
i
[$)]



in Chapter 3. The SDC’s incorporating the RxDA forms of the SIV and MSIV esti-
mators perform best of all the SDC’s using in-service estimators. The differences in
BER performance between SIV-based SDC implementations and MSIV-based SDC
implementations are negligible.

The DDML TxDA-assisted SDC exhibits similar BER performance to the SIV
TxDA- and MSIV TxDA-assisted SDC’s, even though the DDML TxDA estimator
appears to be inferior to the SIV and MSIV TxDA estimators based on the bias,
variance, MSE, and SIR/BER correlation results of Chapter 3. The BER performance
of the DDML RxDA-assisted SDC, however, is not as good as the performances of
the SIV RxDA- and MSIV RxDA-assisted SDC’s, and the difference becomes more
pronounced with decreasing block length.

In Section 3.10, it was stated that applications incorporating DDML and ADIQ
estimators should perform similarly since their bias, variance, MSE, and SIR/BER
correlation performances are very similar. In fact, the DDML RxDA- and ADIQ-
assisted SDC’s exhibit similar BER performances using a block length of ten symbols,
but the BER performance of the DDML RxDA-assisted SDC is better using a block
length of thirty symbols. The DDML TxDA-assisted SDC performs significantly
better than either the DDML RxDA- or ADIQ-assisted SDC’s regardless of block
length. It would be interesting to see if the relative rankings of the SIR estimators of
Chapter 3 change if the block length is reduced from Ngym = 150 to Ngym = 30 or 10.
Clearly, it is advisable to evaluate the SIR estimators in the context of each intended
application in order to determine the estimator that is most suitable.

Recall that the INSTP-assisted SDC, which is the most common SDC implemen-
tation used in practice, makes selections on a symbol-by-symbol basis which, as men-
tioned earlier, is the optimal selection strategy to avoid discarding correct symbols.
However, its BER performance is only better than that of the ADIQ- and AVGP-
assisted SDC’s given a block length of 30 symbols. Given a block length of 10 symbols,
the BER performances of the ADIQ- and AVGP-assisted SDC’s improve to the point
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that they become comparable to the performance of the INSTP-assisted SDC (recall
that the performance of the INSTP-assisted SDC is independent of Ngym). Further
investigation is required to determine the optimal block length, and to determine
whether the optimal block length depends on the channel conditions.

Though the BER performance differences among the various SDC implementa-
tions is small, the simulation results of Figures 4.3 to 4.5 nonetheless indicate that
the use of SIR estimation can yield a performance improvement over SDC implemen-

tations that are based on measurement of the total received power.



Chapter 5

Conclusions

5.1 Summary

In this thesis, SNR estimation in the AWGN channel and SIR estimation in general
mobile radio channels were investigated, and certain chosen SIR estimators were
implemented in a postdetection selection diversity combining application.

In Chapter 2, the problem of SNR estimation in the classical AWGN channel
was defined, and computer simulation was used to study the relative performances of
various SNR estimation algorithms found in the literature. Both BPSK-modulated
signals in real AWGN and 8-PSK signals in complex AWGN were considered. The
structures of all of the SNR estimators except one (the SSME series of algorithms)
were derived for both the real and complex cases (in the literature, the SNR estimators
are typically presented either for the real or complex channel, but not both). Almost
all of the published estimators required some modification to be used in the assumed
channel model of Chapter 2. The SNR estimators studied form estimates either from
known transmitted data, estimated received data, or measured statistical properties
of the received signal. The latter two types of estimators (which do not require
knowledge of the transmitted data) are referred to as in-service estimators. The
SNR estimators were simulated under identical channel conditions using common
performance metrics to facilitate a fair performance comparison. The performance

metrics used are the sample bias, sample variance, and sample MSE. In addition,
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theoretical bounds (CRB’s) on the variance in both real and complex channels were
derived and compared with the results of the simulations.

The choice of the “best” SNR estimator was found to depend on the specific appli-
cation in which the estimator is to be used. In the case that known data is available
at the receiver, the performances of the ML TxDA and SNV TxDA SNR estimators
were found to exhibit the smallest biases, variances, and MSE’s, and came closest
to their respective CRB’s. Their performances fall slightly short of the theoretical
optimum, but it is difficult to justify attempts to find estimators that come closer
to the theoretical bounds. Of the in-service SNR estimators, the “best” choice was
found to depend on factors such as the block length, the number of available samples
per symbol, the type and order of modulation used, the range of SNR over which the
estimator is to operate, and the complexity of the implementation.

In Chapter 3, the problem of SIR estimation in general mobile radio channels
was defined, and computer simulation was used to study the relative performances
of various SIR estimation algorithms found in the literature and developed in this
thesis. The basis of the channel model is the IS-54 North American digital cellular
standard which specifies 7 /4-DQPSK as the modulation scheme. The various impair-
ment processes incorporated into the channel model include fast, frequency-selective
Rayleigh fading, CCI, and AWGN. The amplitude and phase fluctuations caused
by the channel were modeled as a Rayleigh fading process having a Doppler profile
described by the Jakes spectrum. The multipath was assumed to have an exponential
delay profile. Several fading simulators were considered as candidates to model these
effects, and the Monte Carlo method for the modeling of GWSSUS channels was
chosen. Statistical tests were performed on the fading simulator to verify its func-
tionality. Five different test channels were presented, each emphasizing a particular
channel impairment. The published SIR estimators were described followed by three
new algorithms presented for the first time in this thesis. These SIR estimators were

simulated in the five test channels and their performances were compared based on
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their measured variances and the correlations between their mean SIR’s and the BER
of the channel.

It was difficult to determine the “best” SIR estimator as the true SIR is difficult
to determine in some of the five test channels. However, it was clear that certain
SIR estimators (the PML, SVR, and M;M, SIR estimators) do not work well in
fast Rayleigh fading environments so that the field of candidates for the “best” SIR
estimator that can operate under any channel conditions was narrowed to the SIV,
MSIV, DDML, and ADIQ estimators. Based primarily on the SIR/BER correlations,
it appeared that the SIV and MSIV SIR estimators outperformed the DDML and
ADIQ algorithms.

Chapter 4 investigated the performances of the SIV, MSIV, DDML, and ADIQ
estimators from a different perspective in the specific application of postdetection se-
iection diversity combining. In this application, the SIR estimators were used to select
the better of two diversity branches based on observation intervals of Ny, symbols.
For comparison, SDC’s incorporating an average power (AVGP) estimator and an
instantaneous power (INSTP) estimator (which is used most often in practice} were
also simulated, and a simulated bound on the lowest attainable BER was provided.

There is some correlation between the ranking of the SIR estimators based on
their relative improvement of the BER in the SDC application with the ranking in
Chapter 3 based on application-independent statistical tests. The SIV TxDA-assisted
and MSIV TxDA-assisted SDC implementations yielded BER curves that were just
slightly inferior to the simulated lower bound. The DDML TxDA-assisted SDC per-
formed similarly which was slightly surprising considering the results of Chapter 3
which suggested that the SIV and MSIV estimators should outperform the DDML
estimator. Of the in-service estimators, the incorporation of the SIV RxDA and
MSIV RxDA algorithms yielded the best SDC BER performances, but the curves
were not too far from the BER curves of the SDC’s that incorporated the remaining

in-service estimators (the DDML RxDA, ADIQ, AVGP, and INSTP estimators). The
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relative rankings were found to be sensitive to the length of the observation interval.

5.2 Suggestions for Further Study

1.

o

In Section 2.3.2 of Chapter 2, the reduced-bias forms of the complex ML TxDA
and ML RxDA estimators are given by (2.72) and (2.73), respectively. It was
indicated in Section 2.3.2, that the factor used in the reduced-bias forms of the
complex ML SNR estimators was obtained heuristically. In 2 manner similar to
the derivation of Thomas [47] for the real AWGN case, the pdf of the ML TxDA
estimator for complex AWGN could be derived which could then, in turn, be

used to obtain the proper factor analytically rather than heuristically.

A difficulty that arises in any comparison of published algorithms is that new
techniques continually appear in the literature. Also, it is difficult to form a
comprehensive list of every published technique since the algorithms are some-
times inconspicuous in the existing literature. As examples, SIR (and SNR)
techniques which would be interesting to add to the list of tested estimators
include those described in [59], [70, page 346], and [60]). The references [39]
and (70] appear to describe the same technique. These estimators would be
of particular interest if they prove to operate well under all fading conditions
(particularly fast Rayleigh fading) so that they could be added to the list of
“robust” estimators which now include only the SIV, MSIV, DDML, and ADIQ

estimators.

The pdf’s of the SIR estimators (especially the SVR and PML estimators which
exhibit rising biases and variances at high SNR) could be evaluated to obtain

a better insight into the operation of the estimators.

The topic of BER estimation was not considered in this thesis since focus was

placed on techniques that yield estimates that are not just useful as relative

251



measures of quality, but also as absolute quantities required as input parame-
ters to some algorithms. It would still be interesting, however, to compare the
performances of SNR or SIR estimators to the performances of BER estimators
(such as the algorithm described in [40]) in specific applications that only re-

quire relative measures of quality (for example, postdetection selection diversity

combining).

. A more rigorous investigation of the BER performance of SIR estimation applied
to diversity combining could be 'performed. Simulations could be run to deter-
mine the optimum block length given several different channel configurations.
Other diversity combining techniques (such as maximal-ratio combining) could
also be simulated for comparison. Before embarking on such a project, however,
the degree to which BER performance could theoretically be improved over the
conventional combiner implementations which operate by measuring the total

signal-plus-impairment power rather than the SIR should first be determined.

. The SIV, MSIV, DDML, ADIQ, and AVGP algorithms are all examples of
“interval” estimators since their estimates are based on a block of symbols,
whereas the INSTP algorithms is an example of a2 “point” estimator whose esti-
mates are made on a symbol-by-symbol basis. It would be interesting to convert
the SIV, MSIV, DDML, and ADIQ interval estimators to point-estimator forms
and compare SDC implementations using these point estimators with SDC im-

plementations using interval forms.

. Since the performance advantage of using SIR estimators versus total signal-
plus-impairment power estimators in the selection diversity combining appli-
cation is relatively small, different applications could be tried in which the
advantage of SIR estimation is more pronounced. As suggestions, a couple of
examples of potential applications include timing and frequency recovery (as ex-

plored in [28] using only the DDML TxDA SIR estimator) and Viterbi decoding

[{%]
ot
[



in fast, frequency-selective fading channels (see [33]).

8. A logical extension of this work is to implement certain SIR estimators (or
simplified versions of these estimators) in a hardware implementation for a

particular application, and perform lab and field tests.
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Appendix A

Notes on Probability of Error and
Noise Power Spectral Density

This appendix is included to help clarify some of the assumptions made in this the-
sis specifically regarding noise power spectral density and the relationship between
discrete SNR and error probability. It is a constant source of frustration to try to
interpret plots of error probability published in papers and textbooks since there is
a significant lack of consistency in the way axes are labeled and interpreted. Often,
what one author refers to as the SNR is actually E;/Np or vice-versa, for exam-
ple. Also, there is little mention made in the literature of the distinction between
one-dimensional (real) and two-dimensional (complex) channels and the implications
on the interpretation of the noise power spectral density (PSD), No. The following
development is not meant to be rigorous, but attempts to tie together, clarify, and
highlight pertinent concepts presented and discussed in Chapters 3 and 4 of [65]. The
notation used here is modified somewhat from that given in [65].

The assumed, idealistic system model is first identified which is slightly different
from the model described in Section 2.2, but the results derived here are general.
The main difference between the model described here and that in Section 2.2 is
that the transmitted signal here consists of a single pulse-shaped symbol which is
nonzero only over a baud interval whereas, in Section 2.2, the signal is a pulse-

shaped sequence of symbols, each symbol spanning several baud intervals. The baud-

254



constrained assumption is made to simplify the analysis. Following the description
of the system model, the probability of error for a single, binary transmitted pulse
in complex AWGN (two-dimensional problem) is derived. Finally, the probability of
error for a single, binary transmitted pulse in real AWGN (one-dimensional problem)
is derived and compared to the complex case. The purpose of deriving expressions for
the probability of error for these two cases is to justify the noise PSD model assumed
in each case. A summary of the main points that arise in the derivations is given in

Section A.4.

A.1 System Description and Properties

Assume a system in which one of two possible bandpass!, pulse-shaped waveforms,
sm(t), m € {1,2}, is transmitted and corrupted by bandpass white noise, n(t), to

form one of the two possible received signals
y(t) = s1(t) +n(t)

or

y(t) = s2(t) + n(t).
The transmitted signal is nonzero only over the interval, 0 < ¢ < T, and the noise
has a two-sided PSD given by
No/2 fo—3<IfISf+%

0 otherwise,

Sa(f) = { (A.1)

where f. is the centre frequency and B is the bandwidth. It is in the context of the
bandpass signal, y(t), that the noise PSD is defined and measured in practice.

The signal and noise may be expressed in terms of lowpass equivalents as

sm(t) = Re {un(t)e’* '} (A.2)

1Strictly speaking, a function limited in time cannot be bandlimited, but it is assumed here that
there is insignificant energy outside some bandwidth, B.

[\
n
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e — et

and

n(t) = Re {z(t)e?™ "} (A.3)
respectively, where un(t) and z(t) are the respective lowpass, complex equivalents
of the signal and noise. Expressions for the energy and correlation of the transmit-
ted signal, and the autocorrelation of the noise are provided below for use in the
subsequent development.

The energy of the transmitted signal is

/oTs,zn(t) di

/0 ’ (Re{u,,,(t)ef“fcf})2 dt. (A.4)

Em

(«

{f

Let um(t) = X(¢) + jY(t) and substitute into (A.4) to obtain

bn = [ (Rel(X()+ Y () )" at

= 5/0 (Xz(t) + Y?(t) + (X%(t) ~ Y?(t)) cos 4w f.t —2X(t)Y(t)sin47rfct) dt

3 [ len(oP e, (A5)

4

where it is assumed that f. is much larger than the highest frequency components of
un(t) so that the integrals of the sine and cosine terms in (A.5) are approximately

zero. The correlation of the two possible lowpass-equivalent transmitted signals of

equal energy, &, is
1 (T . 1 (T .
=3¢ [ w0t = 55 [ wlui@de (A.6)
It is shown on page 155 of [65] that the autocorrelation of the noise is given by
Rna(7) = Re {R.(7)e/*™"} (A.7)

where R is the autocorrelation of the complex, lowpass-equivalent of the noise given
by
R.(r) = 3E{z*(t)=(t + )} (A.8)
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The relationship between the PSD of the bandpass noise, S,(f), and the PSD of the

lowpass-equivalent noise, S:(f), is found by taking the Fourier transform of (A.7) as

F{Ra(r)}
= /—oo R.(7)e ¥ dr
_ /on Re{Rz(T)ejzxfcr}e-errfrdT

5a(f)

= %/m R.(r)e U~ dr 4 é [/_m R:(T)e"jz"('!'f‘)’dT].
= %[S:(f ~f)+SH-f - fc)]
= 3S(f = fo) + S:(=f = f)] (A.9)

where SI(—f — f.) = S:(—f — f.) because S,(f) is real—specifically, it is given by
(A.1). The implication of (A.9) and (A.1) is that the PSD of z(t) is
No 1<%

0 otherwise.

S:(f)= { (A.10)

As an illustration of the model developed here, the probability of error for a single
transmitted, binary pulse is given below for both the complex AWGN channel and the
real AWGN channel (the derivation below follows the development of [65] for binary

signaling in complex AWGN).

A.2 Probability of Error for a Single, Binary
Transmitted Symbol in Complex AWGN

Consider the lowpass-equivalent, received signal expressed as
r(t) = aePun(t) +2(t), me {1,2}, 0<t< T (A.11)

where a explicitly represents an attenuation factor, ¢ explicitly represents a phase
shift in the carrier, and un,(t) and z(t) are the lowpass-equivalents of the bandpass
signals, sm(t) and n(t), as described in Section A.l. Assume the energies of the

two possible transmitted pulses are identical; that is, & = & = €. It is shown
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on page 242 of [63] that the correlator implementation of 2 MF receiver performs
optimum reception on one of the two possible signals identified by (A.11) by forming

the decision variables
. T
Ur = Re {e"”/o r(t)u;'n(t)dt} , me{1,2} (A.12)

and selecting the largest of the two. Substituting (A.11) into (A.12) for each of the

two possible transmitted symbols, one obtains
T .
Ui = Re {eﬂ‘/ [ae™7%uy(t) + z(t)]u;(t)dt}
0

T 2 5 T .
= Re afo lug () 2dt + & /o (t)u(t)dt
— Re{2af + M}
= 2QE+N1,-

and, similarly,
L fT .
U = Re {e"’]; [ae""’ul(t)+z(t)]u;(t)dt}

T . T
= Re {a fo wy(8)ug(t)dt + e /0 z(t)u;(t)dt}
= Re {?.cr&p + Ng}
= 205‘!"‘ + N2r1

where
N = ejé/ tus(t)dt
1 o z( ) 1( )

Ny = i /OTz(t)u;(t)dt

N[r = Re {Nl}
Nz,- = RC{NQ}
Pr = Re {‘t’}»

and use is made of (A.5) and (A.6).

(V]
(9]
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If U, > U,, the receiver decides u,(¢) was transmitted; if {’; > [y, the receiver
decides u,(t) was transmitted. If u;(t) is transmitted, the probability of the receiver

making an error is
P{U; > U} =P{Ui -U; <0} = P{V <0}

where V = U} - U, = 2a€(1 — ¢} + N1, — Ny, Since Ny, and N, are Gaussian, V
is also Gaussian and the probability of error, P{V < 0} may be expressed in terms

of the mean, my, and variance, o3, of V as

(A.13)

{v—m ]
29, dv = —erfc (

P{V <0} = /_: p(v)dv = \/—a'v)

droy /-

where

2 o 2
erfc(z) = ﬁ/ et dt.

Since u;(¢) and u(t) are transmitted with equal probability, the binary probability

of error is

P. = iP{V<0}+iP{V>0}
= ier['c( ) (A.14)

The mean of V is evaluated as

V2oy

my = E{V} =2a€(1 — ¢,). (A.13)
The variance of V is evaluated as

oy = E{(V-E{V})}
= E{(Nir — Nyr)"}
= E{N{}+E{N;} - 2E{N\ Ny:}. (A.16)

Recognizing that Ny, = Re {N;} = (N; + Ny) allows E{N7.} to be evaluated as
E{N.}=rE{(N}+ 2N N7 +(N)%)}. (A.17)
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Letting N; = X + Y, it can be shown that
E{N?}+ E{(N})*} =2E{X{ - ¥{'} =0,

(making the reasonable assumption that the in-phase and quadrature noise powers
are equal) so that
E{N{,} = E{NN;}
1 T (T .
= ;E { fo [o 2(8)="(T)ui(t)us(r) dt dr}
1 T
= 320 [ fu(o)dt
= %(21\!0)(28)
= 2NoE (A.18)

using (A.8), (A.10), and the fact that

R.(r) = FYS:(N}
x~  Npd(1), (A.19)

where d(7) is the delta function. Equation (A.19) is only approximately true since the
bandwidth, B, of the bandpass white noise is finite. Very similarly, E{N2.} = 2N,€.

Finally, the remaining term is evaluated as

E{Ni-Nor} = LE{(N+ N)(N2+ N;)}
LE{NNy} + E{N{ N3} + E{Ni N3} + E{N] N2}). (A.20)

Letting N} = X, + jY1 and N, = X + jY2, it can be shown that
E{NiN,} + E{N;N;} = 2E{X, X, — 1Y} = 0,
so that
E{N\ Ny} = {E{NiN;}+ E{N;N2})
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- 41( i// = (r)u( )ug(r)dtdr}
+E{ /0 fo z‘(t)z(r)ul(t)u;(r)dtd-r})

= -‘]i' (2[\,0 /;T u;(t)ug(t) dt + 21\’0 /;T ul(t)u;(t) dl)

= 2(4N05<P + 4No&)

Equation (A.16) then evaluates to
0% = ANGE + 2No€ — 2(2NoEp) = ANGE(L — ). (A.22)
Using (A.15) and (A.22), (A.14) becomes

P. = %erfc ( 23;780(1 -9)| =@ ( To(l - ) (A.23)

using the identity

erfc(z) = 2Q(V2z).

If u,(t) and u2(t) are antipodal signals, then o = —1 and the probability of error for

binary, antipodal signaling in complex AWGN is expressed as

2a2&
Pe.complex = Q ( ?VO ) ' (A.24)

which is the classic result [65, 62] where a2€ is often identified as Ej, the energy per

bit.

A.3 Probability of Error for a Single, Binary
Transmitted Symbol in Real AWGN

The derivation of the probability of error for binary signaling in real AWGN is a
classic problem which is derived here in a parallel manner as for the complex case

discussed in Section A.2. However, some of the expressions given in the description
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of the systemn model in Section A.l need to be modified for this real case. Consider

the received signal given by
r(t) = aun(t) + 2(t), me {1,2}, 0<t<T (A.23)
where all quantities are real. The energy of the transmitted signal is
T
£ = / u? (8)dt, (A.26)
0
the correlation of the two possible transmitted signals is
1 (T
o== f wr () uz(t)dt, (A.27)
EJo
and the autocorrelation of the real AWGN process is given by
R.(7) = E{z(t)z(t + 7)}. (A.28)

The PSD of the noise in this real case is

No/2 |fI<E
S.(f) = A.29
(/) { 0 otherwise ( )
so that
No
R.(7) = —9—6(1’) (A.30)

where, again, the expression is only approximate since the bandwidth, B, of the
bandpass white noise is finite. The magnitude of the PSD of the real noise is different
from that of the complex noise by a factor of two. Effectively, for this real case, the
signal may be considered to exist only in one of the in-phase or quadrature channels;
the complex noise that is orthogonal to the signal may be ignored so that only half
of the total complex noise power need be considered in the real case. It is shown in
the derivation below that assuming (A.29) for the PSD of real noise yields the correct

expression for the probability of error.

w
(=]
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The decision variables in this real case are
T
U, = /0 [y (2) + 2(8)]ur(t)dt

= a /0 T a2 (t)dt + /O " ()t

= C!£+1V1
and
T
U, = /(;[aul(t)-{-z(t)]ug(t)dt
T T
= a /0 wy(t)ua(t)dt + /0 =(t)usg(t)dt
= C!gtp-f'lVg,
where
N = / T a(t)un(t)dt
1 = o -4 ul()
and

T
N; = [ 2()ua(t)dt.
0
As before, form the difference V = U} — U;. The probability of error in terms of this
variable is given by (A.14), so all that remains is to find the mean and variance of V.

The mean of V evaluates to
my = E{V} = a&(1 ~ o), (A.31)
and the variance of V is evaluated as
ot = E{(V — E{V})?} = E{N}} + E{N}} = 2E{N:\,}. (A.32)

The first term in (A.32) is

E{N?}=E { /0 ’ [O T () 2(r)ur(tyun(r) dt dr} = % /0 W (t)dt = %‘ﬁ (A.33)

and the second term evaluates similarly to E{N2} = NoE/2. The cross-correlation

may be evaluated as

E{NN} = E{ [T a0zt de dr} = 32 [ w(oua = Y2,
(A.34)
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Using these results, (A.32) becomes

No& + No& _ 2No&p
B ) )

= NoE(1 - ). (A.35)

oy =

Substituting (A.31) and (A.35) into (A.14), the probability of error may be expressed

as

2
Pe=§erfc( %(1—99) =Q( %V;g(lw)). (A.36)

Assuming antipodal signals, as before, so that ¢ = —1, the probability of error for
antipodal signaling in real AWGN is expressed as

2a%8
Pe.m.=Q(\/ = (A37)

which is identical to the result given by (A.24). Again, the quantity, a®€ is often

identified as the energy per bit, Ej.

A.4 Summary of Main Points

1. The two-sided noise PSD of n(¢) is defined (and measured, in practice) in the
bandpass context shown in Figure A.1(a). For the sake of illustration, it is as-
sumed that the receiver bandpass filter is ideal, centred at f., and of bandwidth,

B. The two-sided PSD has an amplitude of Ny/2.

2. The signal, z(t), which is the lowpass-equivalent of n(t), is complex. It is
important to be aware that this is true even if the transmitted signal has a
one-dimensional lowpass-equivalent (such as BPSK). The PSD of the lowpass-
equivalent of the noise is illustrated in Figure A.1(b) having an amplitude of No,
and is used in Section 2.2 of Chapter 2 to show that the relationship between
the SNR, p, and E,/N, is

p=

|

for (in general) complex signals in complex noise.

264



ASO‘)

bandpass noise T
: TNo2 %

£-B2 o f+B2 0  L-BR f f.+BR
(a)

~ f
real lowpass noise
~f
-B/2 0 B2
(c)

Figure A.1: PSD of (a) bandpass white Gaussian noise, (b) lowpass-equivalent com-
plex Gaussian noise, and (c) lowpass-equivalent real Gaussian noise.
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3. In a system where a real signal (such as a BPSK-modulated signal at baseband)
is transmitted and corrupted by real AWGN, it is necessary to use a PSD for the
noise, illustrated by Figure A.1(c), which has an amplitude of Ng/2. The real-
valued signal and real-valued noise of this system effectively can be considered
to exist solely in either the in-phase or quadrature channel of the complex low-
pass equivalent; that is, in this real case, the lowpass-equivalent of the noise
is still complex, but the portion of the noise that is orthogonal to the signal
is ignored. This PSD is used in Section 2.2 of Chapter 2 to show that the

relationship between the SNR, p, and Ep/Ny is

for real, antipodal signals in real AWGN.

4. Note that, in this appendix, the energy and autocorrelation functions of complex
quantities employ a factor of 1/2 (see, for example, (A.8)) whereas the energy
and autocorrelation functions of real quantities do not (see, for example, (A.28)).
In the main text of Chapters 2 and 3, the factor of 1/2 that appears in the
computation of the autocorrelations of complex quantities is dropped (see, for
example, (2.8b) of Chapter 2) so that the autocorrelation expressions given are
applicable to both real and complex signals without regard to the factor of 1/2.
Strictly speaking, the factor of 1/2 is required in the complex case in order
to maintain consistency between the bandpass and lowpass-equivalent forms as
is evident by (A.5), for example; however, whether or not the factor of 1/2 is
employed makes no difference when computing the ratio of signal power to noise
power as long as the use of the factor of 1/2 is consistent among the signal and
noise expressions. Further, if the derivation of the probability of error given in
Section A.2 for signals in complex AWGN is performed dropping the factors of
1/2 that appear in the energy and autocorrelation expressions, the exact same

end result is obtained for the probability of error.
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Appendix B

Design of Root-Raised Cosine
(RRC) Filter Based on the
Frequency Sampling Technique

A method is outlined below to synthesize the FIR filter tap coefficients (discrete
impulse response) of a digital filter from a desired analog frequency response using the
frequency sampling technique [126]. This method is used to find the tap coefficients
of 2 RRC filter implemented in Chapters 2, 3, and 4 as a pulse-shaping filter in the
transmitter and a MF in the receiver.

Consider an analog frequency response, H(e’), which is to be approximated by

an FIR filter. Let A denote samples of the analog frequency response as
Hiy = H(E)umun

where w = 11.;—'2, k€ {0,1,...,L—1}, Listhe number of frequency samples (and the
number of tap coefficients generated by the frequency sampling technique), and T is

the sample period (1/7s is the sampling frequency). Represent H; in polar form as
Hy = Age %

where A; is the magnitude of Hy, and & is the phase.
FIR filters can be designed to have linear phase [126] if 8, is constrained to be

L-1 2rk L-1
0"‘( 2 )(L)‘ L "k
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The impulse response (or tap coefficients), h,, may be found by taking the inverse
discrete Fourier transform (IDFT) of Hg as
LS 2 Hie T, (B.1)
"L k=0
For h, to be real, make
He = (Hp-x)"

where * denotes the complex conjugate.

The design procedure may be summarized as follows:

1. Compute L samples of the magnitude of the analog frequency response accord-

ing to

Ar = H()opegzss k€ 01,0, L= 1}

o

For h, to be real and have linear phase, construct Hy as

= —jtlkx
g’; = i::JAE:kr } ke{o,l,...,z\/[}
where
M % —1, Leven
Tl &L, Lodd

3. Compute the IDFT of Hj using either (B.1) above, or an FFT algorithm [126,
71].

4. In the time domain, apply a rectangular window of appropriate width, or some
other window, to h, to ensure that the impulse response goes smoothly to zero

at the tails.

As an example of the frequency sampling technique, the method described above
is applied below to the synthesis of an FIR RRC filter. The magnitude of the full
raised-cosine frequency response, Arc(w), is given in [65] as
| < LTL
[1 —sin (%(w - %))] = < wl < Wakr

l/\

(B.2)

Apc(w) = { g
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where T is the baud rate, and « is the rolloff factor. The magnitude response of the

RRC filter is simply the square root of (B.2) expressed as

Are(w) = \/Arc(w)- (B.3)

A sample frequency of

1 N
Fs=5 =

is chosen where N, is the number of samples per symbol. The analog magnitude

response, given by (B.3), is sampled at the discrete frequencies specified by

wk=27r—1;%s%, ke{0,1,...,L-1}.

For N, = 16, L = 128 taps, and a = 0.5, the sampled magnitude response,

Ayron = Avrs@)|,_,, -

appears as in Figure B.1 which shows the discrete frequency response up to half the
Nyquist rate (Fs/2 = N/(2T) = 8/T). The corresponding impulse response is
displayed in Figure B.2(a). Notice that the tails of the impulse response are not zero.
A rectangular window (applied in the time-domain) can be used to truncate the first
and last few samples in order to have the tails of the impulse response go to zero as
shown in Figure B.2(b). A more gradual window may be a better choice to avoid the
resulting discontinuity of the truncation process.

As a check on the results, the discrete self-convolution of the RRC impulse response
should yield the impulse response of the full raised-cosine filter. From Figure B.3, it
can be seen that the amplitude of the impulse response is zero for every Ny = 16 sam-
ples (each sample is represented by a vertical line) which indicates that this impulse
response satisfies Nyquist’s criterion for intersymbol-interference-free transmission,
thus giving confidence in the tap coefficients obtained for the RRC filter.

Note that an alternate and easier method to evaluate the tap coefficients is to use

samples of the continuous-time impulse-response, A(t), which is given in equation (6)
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Figure B.1: Magnitude response of RRC filter with N = 16, L = 128 taps, and
a=0.3.

of [28] for the root raised-cosine filter as

1-a+da/n, t=0
h(t) = A+ 2)sin(Z) +(1— 2)cos(E)), t=+xZ

sin[r(1—a) &]+4o % cas{r(14-a) %]
Lg 3 1—(40%)2] ?

otherwise.

Other published expressions of the continuous-time root raised-cosine impulse re-
sponse (see page 283, equation (4.3.37) of [127]) have a factor of =t/ VT in the de-
nominator instead of wt/T. This difference only scales the impulse response by a

constant.
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Figure B.2: Impulse response of RRC FIR filter with N = 16, L = 128 taps,
and @ = 1 (a) before application of rectangular window, (b) after application of

rectangular window.
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Appendix C
The Cramér-Rao Bound (CRB)

The derivation of the CRB for biased estimators presented below is based on [128] and
[47). Errors in some intermediate steps of the derivation in [47] have been corrected.

Consider some observable random variable, z, whose value is dependent on a set of
K fixed, unknown parameters 8 = (6,,0,...,0x). Assume M such observations are
available to form the observation vector x = (z1,z3,...,Zar). The objective is to find
the lower bound on the variance of any estimator, 8(x), which generates estimates of

# based on the observations, x.

Let the pdf of x conditioned on the unknown parameters, 8, be denoted by p(x|9)

and let the likelihood function be expressed as
I'(8) = In(p(x6)),

emphasizing that 8 is the variable of the likelihood function.

Let the elements of the information matrix [128] be defined as

_ 8 8
Jj = E {a—&r(e)%r(a)}

8’1 (8)
'E{ 96;00; } (1)

where ¢, € {1,2,...,K}. Let

E{6;} = ¢:(8) = 8; + b;(8)
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where b;(8) represents the bias of §;(x). Let

dg:
26,

Ay =
where, again, 7,j € {1,2,..., K}. Finally, let
V=V i,je{l,2,...,K}
represent the covariance matrix of §; and 6; where the elements of V' are given by

Vij = E{(6: - 9:)(8; - g;)}-

It can be shown that V — AJ~'AT is a non-negative definite matrix where J~1 is the
inverse of J, and AT is the transpose of A. Considering, then, the diagonal elements

of V — AJ7'AT, the diagonal elements of V may be written

%) i - d i
Vx> Y 5o magg (C2)

Equation (C.2) represents a lower bound, the CRB, on the variance of 8;. Consider

the special case of i = 1 and K = 2, and let the bias of #; be independent of 6, so

that
991 _
06,
and
ad
Vi > ( 63‘) (I )1 (C.3)

Equation (C.1), written out in matrix form, is

o[ 2 e

32r ar
E {39;39:} ~E ﬁ;-

il

For a matrix of the form

the inverse is given by



so that sr
~E{%

= ar 2r\ _ o2r 1%’
E{W}E{’a‘o,’} E {391392

After substitution into (C.3), the CRB on the variance of the estimator of §, may be

(J M

expressed as
2
_ (3 87"
aa.) E {ao;

Vi > .
R R

(C.4)

o
=]
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Appendix D

Confidence Interval for the
Variance of an Estimator

Consider a random variable, g, which has an unknown mean, unknown variance, and
unknown pdf. The problem is to estimate the variance of p to within a particular
error with a certain degree of confidence.

A confidence interval cannot be stated without knowledge of the pdf, but it is
possible to take advantage of the Central Limit Theorem (CLT) [65, 66] which states
that the distribution of the sum of a sufficiently large number of statistically indepen-
dent and identically distributed random variables approaches a Gaussian distribution
[64]. An approximate confidence interval can be constructed by using standard tech-
niques for a Gaussian random variable with unknown mean and unknown variance
[129, 130]. Specifically, the Student-t distribution is used below to derive an approx-
imate confidence interval for the variance of a random variable.

Consider a collection of N sets of estimates of the parameter, p, each set consisting

of K individual estimates:

poo pro .- PN-10
Pol P 11 v PN-1,1
PoK-1  PLK-1 ...  PN-1K-1
N N L N—————
0 = Xo Pl = X[ [P pN‘_l = XN—I
2 2 Vv 2 —
s2=Yy si=Y ... st =Yy,



where p; = X; is the sample mean defined as
_ 1 K-1
ﬁ{=RTZP‘Ej1ie{oqu---qN-l}; (Dl)
j=0
and s}, =Y; is the unbiased sample variance defined as
1 K-1 [\’ _
s2==—> pi- — ()% i€ {0,1,...,N —1}. (D.2)

If K is large enough (K > 10) the distribution of Xj is approximately normal due to
the summation in (D.1). The distribution of Y; is also approximately normal since
the second term in (D.2) approaches a constant. The random variable, Y;, has an
unknown mean, unknown variance, and a pdf that is Gaussian. Further, it is assumed
that each random variable, Y;, i € {0,1,..., N — 1}, has identical statistics.

The sample mean of Y; (or, equivalently, the sample mean of the sample variance

of p:) is given by

_ 1 N-1
=% Y;'v .
Y N ; (D.3)
computed using N trials of A estimates each. Further, let
1 N N
2 _ 2 _ 2
¥ TN ,,2:3 L s 1

where s% provides a measure of the variability of the sample variance of 4 from trial

to trial. As N increases, Y and s} become more reliable in the sense that
Y = py

and
sy — 0%

where puy is the true mean of Y (that is, the true variance of  which is sought), and
o% is the true variance of Y. If N > 10, Y is approximately normally distributed
with unknown true mean, py, and unknown true variance, o}, and it is possible to
proceed with the derivation of a confidence interval based on standard techniques for

a Gaussian random variable with unknown mean and unknown variance [129, 130].
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Note that, given N x K samples of a random variable j;;, a direct expression for

the unbiased sample variance is

1 NzlKR- NK -

2 ~\2
sp' NK -1 g JZO p:] IVI\' R l(p) (D'4)
where Nt Koot
_ 1 Nt
ﬁ ” p‘ (D.5)
NK ; JZ;, 7

For the unbiased sample variance given by (D.4), E{s} = o2, where o2 is the true
variance of p;;. Following the example on p. 189 of [63], it is shown below that the
expression given by (D.3) is also an unbiased estimator for o2.

Re-write (D.2) as
1 R-1

 — A A2
Y= oy 2 (= A (D.6)

where p; is given by (D.1). Substituting this expression into (D.3), and taking ex-

pected values, one obtains
N-1R-1

E{Y} = N(A 5 > X Bl -4

=0 j=0
N-1R-1

= N(Ix Z:o ;, E{[(ﬁij"#)-(f;i"#)]z}
1:1—1;\ 1

= NE=T & & [Bls =m0} =2E{(py - w)(fi — )}
i=0 ;=0
+ E{(h: - n)}] - (D.7)
The first term in (D.7) is the true variance by definition; that is, E{(p;; — pu)?} = o>
The second term may be evaluated as

E{(pi; ~ l‘)(l;i -u)} = {(p'J ) (K Z pij — ) }

Jj=0

= EE{(ﬁ-—j = )(Bio — 1) + (hr — ) + -+ + (Pix-1 — p)]}

- ?1\;15{(/3.7 ~ 1)(i; — 1)}

0.2

K

[Sv]
~!
co



because E{(p:; —p)(pix — 1)} = 0 for j # k. The last term in (D.7) may be evaluated

E{(pi~ w7} = {( ZP )(;A\;” ”)}

'E;E{[(ﬁio — )+ (pa — p) + - + (Bix—1 — p)]
x[(hio — p) + (pir — p) + -+ + (Pik-1 — )]}

= E{(on — )+ (o — u)’ + ...+ (k-1 — p)’}
2

as

"

7
=

Combining terms, the expected value of Y is found as

E(v} = N(A—I)Nfi(" ~2% ?)

=0 ;=0
— 1 2 -
= R NE-D

= 0'2

so that (D.3) is an unbiased estimator for the variance of p;;.
Assume Y is indeed normally distributed with unknown mean, py, and unknown
variance, 0. The Student-t distribution is applicable in this case [129]. Define the

normalized parameter, ¢, as )
Y —py

SY/\/—

The confidence interval is expressed as

Y —py }
P{—ta < <ta =1-
/2—3y/\/__ & ¢

\

or, rewriting in terms of Y,

In words, the probability that the true mean, py, is in the range Y+ tas2sy/ VN is
(1-a)x100%. The parameter, t,/2, is the a/2-percentile of the Student-t distribution
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with N — 1 degrees of freedom. The value, A’, must be chosen large enough such that

75 < mo (D.8)

That is, K must be chosen large enough such that the normalized sample variance of
Y is less than the quantity specified in (D.8) where ¢ x 100% is the percent error.
As an example, say that it is desired to find K such that Y may be assumed to
be within 20% error with 95% confidence using N = 10 trials (the minimum number
required to assume Gaussian statistics). From a table of the Student-t distribution

with 9 degrees of freedom (see [129] or [130]), ¢o.05/2 = 2.262 so that

2 2 2
sy Ne2 10 x(0.2) —~ 0.078.

e S =
Y2 "2 /2 (2.262)2
Note that this technique does not produce an expression that gives a value for A

explicitly. It is necessary to choose K by trial and error until s} /Y2, computed from

the collection of N x A estimates of p, yields 2 number less than Ne?/t2 ,.



Appendix E

Some Basic Fading Terms and
Concepts

A signal propagating through a mobile radio channel experiences amplitude fluctua-
tions, and is “smeared” both in time and frequency. The underlying mechanism of
the fading effects is due to the influence of physical topography on the propagation
of the RF signal from a transmitter to a receiver. Since the physical topography
changes from location to location, so do the fading characteristics. A fading chan-
nel can be labeled according to the distribution of the amplitude variations, and the
characteristics of the time and frequency dispersion. For example, a channel may be
labeled as a fast, frequency-selective Rayleigh fading channel. Comments on each of
the three attributes of a fading channel are discussed below based on material found
in [63, 24, 75, 95, 121, 105]. It is not the intention of this discussion to provide a com-
prehensive tutorial of fading theory, but to identify a few basic terms and concepts

used in Chapter 3.
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E.1 Amplitude Distribution

Due to the presence of many physical scatterers, the received signal is a superposition
of echos forming a standing wave pattern' and, as a result, the received signal strength
is spatially dependent. A moving receiver passes through the peaks and nulls of the
standing wave pattern so that the received signal strength, over time, fluctuates in a
manner exemplified by the plot shown in Figure E.1 where 7 is the amplitude of the
envelope of the received signal, Ts is the sampling period, and vpmax is the Doppler
spread (the maximum Doppler frequency). The usual assumption is that the received
signal consists of a large number of echos, each of which is independent and randomly
phased, so that samples, ¥, of the signal envelope are distributed according to the

Rayleigh distribution with cdf given by (see [95])
P(y) = 1— e/

where the rms value of v is
Yems =\ E{7?} = 0.

Samples of the phase of the composite received signal are uniformly distributed on
[0,27). Other distributions used to describe amplitude variations in particular envi-

ronments are the Rice distribution [65] and the Nakagami-m distribution [131, 94].

E.2 Frequency Dispersion

Due to the motion of a receiver, the RF frequencies of the various echos making
up the composite received signal are Doppler shifted causing frequency dispersion.
As mentioned in Section E.1, the maximum Doppler frequency, vmax, is known as
the Doppler spread. The smearing of the received signal over frequency is evident

in the Doppler power spectrum or Doppler profile. For a vertical monopole antenna

1Por this discussion, the fluctuation of the signal envelope is placed in the context of a fixed
base station transmitting to a mobile receiver (forward path), but a similar argument holds for the
opposite direction (reverse path).
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Figure E.1: Typical received signal strength variations due to motion of a receiver
through a standing wave pattern. The rms signal level is 0 dB.

283



0.80 ; T

T

0.70

0.60

0.50

®,, Doppler power spectrum

0.40

e e e e ]

0.30 = - -
-1.5 -1.0 -05 0.0 0.5 1.0 1.5

v, Normalized frequency
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in isotropic scattering, the Doppler profile can be modeled by the Jakes spectrum

[25, 95]. Let the normalized Doppler power spectrum be denoted by ®,(v), then the

Jakes spectrum may be expressed as

o, (v)=

which has the classic “bathtub” shape shown in Figure E.2. As v, increases, so does
the rapidity of the amplitude and phase variations of the received signal. Slow fading
refers to the case where vpax is so small that the amplitude and phase fluctuations
of the received signal are negligible over a given observation period. Fast fading
refers to the case where the amplitude and phase variations occur over a period of
time comparable to, or smaller than, a symbol period. In the literature, this term is

also applied to moderately fast fading channels as well; that is, channels where the
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amplitude and phase variations are negligible over a symbol period, but not over a

given observation period (spanning a number of symbols).

E.3 Time Dispersion

Echos arriving at the receiver with different delays contribute multipath-induced ISI
to the received signal. The delay power spectrum or delay profile characterizes the
time-smearing effect of a particular channel. A typical, idealized delay profile has a
shape that decays exponentially with increasing delay [93]. Let the normalized delay
power spectrum be denoted by ®,(7), then the exponentially-decaying delay profile

may be expressed as
1

O, (1) = —e /™™ T2 Timax (E.1)
Tems
where Tims is the rms delay spread [104] defined as

Tms = /T2 —T

2

where

Z ‘7;37'1:
k

T =
Sk
k
> ik
pa E__
o
k

and 7; represents samples of the envelope at delay, 7x. The quantity, 7, is known as
the mean ezcess delay and is the first central moment of the delay profile [105]. The
quantity, Tyms is 2 measure of the spread of the delay profile about .

To illustrate, the normalized exponential delay profile with Tms = 3 us is shown
in Figure E.3, and 7rms and T are identified (the normalization is such that the area
under the delay profile curve is unity). If the rms delay spread is greater than 10-

20% of the symbol period, then some sort of measures (adaptive equalization or
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Figure E.3: Exponential delay power spectrum with 7ims = 3 ps.

diversity combining or both) should be taken to counteract the multipath-induced
ISI [103, 132]. In cases where the delay becomes comparable to or greater than the
symbol period, the channel is said to be frequency selective.

Other measures of the delay spread are sometimes used. On page 707 of [63], a
parameter called the multipath spread of the channel is used to quantify the range of
values over which the delay profile is essentially nonzero. A more precise parameter
is identified on page 44 of [105] called the mazimum ezcess delay at z dB down from
maximum which is the earliest value of delay at which the power delay profile first
dips below a line z dB down from the maximum of the power delay profile. The rms
delay spread, Tims is most commonly used to characterize multipath channels [105].

Consider two tones (unmodulated sinusoids) of different frequencies transmitted

on the same fading channel. The fading experienced by any two tones is perfectly



correlated as long as Tus is zero or very small. As the rms delay spread gets larger,
the fading experienced by the two tones becomes uncorrelated, and the frequency
separation between the two tones for which the magnitude of the complex correlation
is 0.5 is termed the correlation or coherence bandwidth.

There is an inverse relationship between the delay spread and the correlation
bandwidth. As long as the correlation bandwidth is much larger than the modulation
bandwidth (7ms small), the multipath-induced ISI is negligible and the channel is said
to be a flat fading channel. When the correlation bandwidth approaches or exceeds
the modulation bandwidth (7.ms approaches or exceeds the symbol period), then the
channel is said to be a frequency selective channel.

An expression for the magnitude of the correlation of two tones separated by a fre-
quency, Aw, in a frequency-selective fading channel characterized by the exponential
delay profile given by (E.1) is (see [95])

1
‘/ 1 + (Aw Tems)? ’

lp12(Aw)| =

This expression is plotted in Figure E.4 (where A f = Aw/27).
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Appendix F

A Brief Description of 7/4-DQPSK
Modulation

Conventional QPSK and DQPSK [65] are modulation techniques which encode in-
formation by the translation of binary pairs into symbols. Each symbol represents
a phase-shift which may be used to modulate the phases of a complex sinusoid. At
baseband, a symbol may be represented by one of four points in a signal constella-
tion. The transitions from one point to another are dictated by a phase mapping
rule. Table F.1 shows an example of the translation of binary bit-pairs to symbols
represented by an absolute phase for coherent QPSK. Table F.2 shows the phase
mapping for DQPSK where each bit-pair maps to a differential phase rather than
an absolute phase. Assuming NRZ signals are transmitted in an infinite-bandwidth
channel, the idealized signal constellation for coherent or differential QPSK appears
as shown in Figure F.1. Phase changes of +# cause transitions through the origin

which create large fluctuations in the envelope of the modulated signal in a more re-

Information bits Absolute phase

00 w /4
01 3n /4
10 —m/4
11 —3r/4

Table F.1: Mapping of information bit-pairs to absolute phases for coherent QPSK.
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Information bits Differential phase

00 0

01 +m/2
10 - -2
11 +7

Table F.2: Mapping of information bit-pairs to differential phases for DQPSK.

“

NN
i

Figure F.1: Signal constellation for conventional QPSK or DQPSK using NRZ signals
in an infinite-bandwidth channel.
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Figure F.2: Signal constellation for conventional QPSK or DQPSK using pseudo-
random pulses shaped by raised-cosine filtering.

alistic bandlimited channel. As an example, consider a QPSK signal pulse-shaped by
a raised-cosine filter with & = 0.5. A sample signal constellation for pseudo-random
source data appears in Figure F.2, and the in-phase and quadrature eye-diagrams
are displayed in Figures F.3 and F.4, respectively. As a matter of practical concern,
these large amplitude fluctuations dictate that a linear power amplifier (PA) be em-
ployed in the transmitter, instead of a less expensive non-linear PA, to avoid excessive
adjacent-channel interference due to spectral spread [96].

In an attempt to prevent the penalty of spectral spread with the use of a cheaper
non-linear PA, a scheme was developed (see [133, 134]) which avoids signal transitions
through the origin, thus reducing envelope fluctuations and, theoretically, allowing
the use of a non-linear PA. The phase mapping rule for this scheme is given in
Table F.3 and an idealized signal constellation (NRZ signals in an infinite-bandwidth

channel) is given in Figure F.5.



Figure F.3: Eye diagram of in-phase channel for conventional QPSK or DQPSK using
pseudo-random pulses shaped by raised-cosine filtering.

Figure F.4: Eye diagram of quadrature channel for conventional QPSK or DQPSK
using pseudo-random pulses shaped by raised-cosine filtering.
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Information bits Differential phase

00 +7/4
01 +37/4
10 ~3r /4
11 —r/4

Table F.3: Mapping of information bit-pairs to differential phases for m/4-DQPSK.

Figure F.5: Signal constellation for #/4-DQPSK using NRZ signals in an infinite
bandwidth channel.



Figure F.6: Signal constellation for w/4-DQPSK before differential-detection using
pseudo-random pulses shaped by raised-cosine filtering.

The signal constellation consists essentially of two conventional sets of QPSK
signal points with one set rotated by 7 /4 radians with respect to the other. From
one symbol interval to another, a constellation point transits from one set of QPSK
points to the other; that is, referring to Figure F.5, only transitions from @ points
to ® points, or vice-versa, are permitted. Stated another way, the phase mapping
rule allows successive phase changes of +7/4 and 37 /4 only, eliminating transitions
through the origin and reducing the amount of envelope fluctuation in a bandlimited
channel. A sample signal constellation for pseudo-random source data pulse-shaped
by a raised-cosine filter appears in Figure F.6, and the in-phase and quadrature eye-
diagrams are displayed in Figures F.7 and F.8, respectively.

Comparing Figures F.2 and F.6, it can be seen that the 7/4-DQPSK modulated

294



/4 ™
N}

y, L ORY

295

Figure F.7: Eye diagram of in-phase channel for 7/4-DQPSK before differential-

detection using pseudo-random pulses shaped by raised-cosine filtering,.

Figure F.8: Eye diagram of quadrature channel for m/4-DQPSK before differential-

detection using pseudo-random pulses shaped by raised-cosine filtering.



signal passes near the origin far less frequently than the conventional QPSK modu-
lated signal, but it is apparent from Figures F.6, F.7, and F.8 that there still is an
appreciable amount of fluctuation in the signal envelope of the x/4-DQPSK signal.
Consequently, the theoretical advantage of being able to use a non-linear PA in place
of a linear PA is not easily realized in practice.

Note the “2-3-2” pattern of the eye diagrams in Figures F.7 and F.8. This is the
eye-diagram corresponding to the 7 /4-DQPSK signal constellation phased as shown
in Figure F.5. If that signal constellation were rotated by /8 radians so that all
signal points straddled the x-y axes, then the eye diagrams would display a “4-4”
pattern instead.

It is interesting to observe the signal constellation and eye diagrams of the 7 /4-
DQPSK modulated signal after differential detection. A sample signal constellation
is displayed in Figure F.9, and the in-phase and quadrature eye diagrams are shown
in Figures F.10 and F.11, respectively.

The signal constellation of Figure F.9 exhibits a curious asymmetry which is a
result of the non-linear process of differential-detection applied to this particular
modulation scheme. Note that the signal constellation of conventional DQPSK after
differential detection doesn’t look much different from the signal constellation be-
fore differential-detection—at least there is no glaring asymmetry as in the case of
differentially-detected = /4-DQPSK.

The asymmetry of the n/4-DQPSK signal after differential detection is also visi-
ble in the eye diagrams of Figures F.10 and F.11. Note that the quadrature channel
doesn’t look much different from that of conventional QPSK (compare with Fig-
ure F.4), but the in-phase channel is affected on negative transitions. The effect is

visible as a cusp between symbol centres.
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Figure F.9: Signal constellation for 7/4-DQPSK after differential-detection using
pseudo-random pulses shaped by raised-cosine filtering.



Figure F.10: Eye diagram of in-phase channel for 7/4-DQPSK after differential-
detection using pseudo-random pulses shaped by raised-cosine filtering.

Figure F.11: Eye diagram of quadrature channel for 7v/4-DQPSK after differential-
detection using pseudo-random pulses shaped by raised-cosine filtering.

298



References

[1] N. E. Nahi and R. M. Gagliardi, “Use of limiters for estimating signal to noise
ratio,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 127-129, Jan. 1967.

[2] F. Adachi and K. Ohno, “BER performance of QDPSK with postdetection
diversity reception in mobile radio channels,” IEEE Trans. Veh. Technol.,
vol. VT-40, pp. 237-249, Feb. 1991.

[3] A. J. Goldsmith, L. J. Greenstein, and G. J. Foschini, “Error statistics of real-
time power measurements in cellular channels with multipath and shadowing,”
IEEE Trans. Veh. Technol., vol. VT-43, pp. 439-446, Aug. 1994.

[4] J. M. Holtzman, “Adaptive measurement intervals for handoffs,” in Proc. IEEE
Int. Conf. Commun., Chicago, IL, June 1992, vol. 2, pp. 1032-1036.

[5] N. Zhang and J. M. Holtzman, “Analysis of handoff algorithms using both ab-
solute and relative measurements,” in Proc. IEEE Veh. Technol. Conf., Stock-
holm, Sweden, June 1994, vol. 1, pp. 82-86.

[6] R. Vijayan and J. M. Holtzman, “Analysis of handoff algorithm using nonsta-
tionary signal strength measurements,” in Proc. [EEE Global Commun. Conf.,

Orlando, FL, Dec. 1992.

[7] J. F. Whitehead, “Signal-level-based dynamic power control for cochannel inter-
ference management,” in Proc. IEEE Veh. Technol. Conf., Secaucas, NJ, May
1993, pp. 499-502.

[8] R. Beckand H. Panzer, “Strategies for handover and dynamic channel allocation
in micro-cellular mobile radio systems,” in Proc. 39th IEEE Veh. Technol. Conf.,
San Francisco, CA, May 1989, vol. 1, pp. 178-185.

[9] J. Zander, “Performance of optimum transmitter power control in cellular radio
systems,” [EEE Trans. Veh. Technol., vol. VT-41, pp. 57-62, Feb. 1992.

[10] K. Raith and J. Uddenfeldt, “Capacity of :ligital cellular TDMA systems,”
IEEFE Trans. Veh. Technol., vol. VT-40, pp. 323-332, May 1991.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

C.-L. Liu and K. Feher, “Bit error rate performance of 7/4-DQPSK in a
frequency-selective fast Rayleigh fading channel,” JEEE Trans. Veh. Technol.,

vol. VT-40, pp. 558-568, Aug. 1991.

K. Hamabe, T. Ueda, and T. Otsu, “Distributed adaptive channel allocation
scheme with variable C/I threshold in cellular systems,” in Proc. [EEE Veh.
Technol. Conf., Secaucas, NJ, May 1993, pp. 164-167.

H. Andersson, H. Eriksson, A. Fallgren, and M. Madfors, “Adaptive channel
allocation in a TIA IS-54 system,” in Proc. IEEE Veh. Technol. Conf., Denver,

CO, May 1992, pp. 778-781.

C. N. Chuah, R. D. Yates, and D. J. Goodman, “Integrated dynamic radio
resource management,” in Proc. I[EEE Veh. Technol. Conf., Chicago, IL, July
1995, pp. 584-588.

E. A. Frech and C. L. Mesquida, “Cellular models and hand-off criteria,” in
Proc. 39th IEEE Veh. Technol. Conf., San Francisco, CA, May 1989, pp. 128-
135.

T. Takenaka, T. Nakamura, and Y. Tajima, “All-channel concentric allocation
in cellular systems,” in Proc. IEEE Int. Conf. Commun., Geneva, May 1993,
vol. 2, pp. 920-924.

R. W. Nettleton and G. R. Schloemer, “A high capacity assignment method
for cellular mobile telephone systems,” in Proc. [EEE Veh. Technol. Conf., San

Francisco, CA, May 1989, pp. 359-367.

D. J. Goodman, S. A. Grandhi, and R. Vijayan, “Distributed dynamic channel
assignment schemes,” in Proc. I[EEE Veh. Technol. Conf., Secaucas, NJ, May
1993, pp. 532-535.

A. Jalali and P. Mermelstein, “Effects of diversity, power control, and band-
width on the capacity of microcellular CDMA systems,” [EEFE J. Select. Areas
Commun., vol. SAC-12, pp. 952-961, June 1994.

S. Ariyavisitakul, “SIR-based power control in a CDMA system,” in [EFE
Global Commun. Conf., Orlando, FL, Dec. 1992, pp. 868-873.

S. Ariyavisitakuland L. F. Chang, “Signal and interference statistics of a CDMA
system with feedback power control,” IEEE Trans. Commun., vol. COM-41,

pp. 1626-1634, Nov. 1993.

A. J. Viterbi, A. M. Viterbi, and E. Zehavi, “Performance of power-
controlled wideband terrestrial digital communication,” IEEE Trans. Com-
mun., vol. COM-41, pp. 559-569, Apr. 1993.

300



[23] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, vol. 47,
pp. 1075-1102, June 1959.

[24] W. C. Y. Lee, Mobile Communications Engineering. New York: McGraw-Hill,
1982.

[25] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.

[26] F. Adachi, “Postdetection optimal diversity combiner for DPSK differential
detection,” IEEE Trans. Veh. Technol., vol. VT-42, pp. 326-337, Aug. 1993.

[27] S. M. Hladik, S. Chennakeshu, and G. J. Saulnier, “Performance of
differentially-detected 7 /4-shifted DQPSK with diversity,” in Proc. {2nd [EEFE
Veh. Technol. Conf., Denver, CO, May 1992, vol. 2, pp. 748-751.

[28] S. Chennakeshu and G. J. Saulnier, “Differential detection of =/4-shifted-
DQPSK for digital cellular radio,” [EEE Trans. Veh. Technol., vol. VT-42,

pp- 46-57, Feb. 1993.

[29] P. Balaban and H. P. Corrales, “Statistical performance estimation of digital
radio over fading channels,” in Proc. IEEE Int. Conf. Commun., Denver, CO,

June 1991, vol. 1, pp. 466—472.

[30] R. A. Ziegler and J. M. Cioffi, “Estimation of time-varying digital radio chan-
nels,” [EEFE Trans. Veh. Technol., vol. VT-41, pp. 134-151, May 1992.

[31] A.P. Clark and S. Hariharan, “Efficient estimators for an HF radio link,” /EEE
Trans. Commun., vol. COM-38, pp. 1173-1180, Aug. 1990.

(32] P. A. Wintz and E. J. Luecke, “Performance of optimum and suboptimum
synchronizers,” IEEE Trans. Commun. Technol., vol. COM-17, pp. 380~-389,

June 1969.

[33] J. H. Winters, “Signal acquisition and tracking with adaptive arrays in the
digital mobile radio system IS-54 with flat fading,” /EEFE Trans. Veh. Technol.,
vol. VT-42, pp. 377-384, Nov. 1993.

[34] J. H. Winters, “Optimum combining in digital mobile radio with cochannel
interference,” IEEE Trans. Veh. Technol., vol. VT-33, pp. 144-155, Aug. 1984.

[35] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs
and its applications,” in Proc. [EEE Global Commun. Conf., Dallas, TX, Nov.
1989, pp. 1680-1686.

[36] J. B. Scholz, “Error performance monitoring of digital communications sys-
tems,” Australian Telecommunications Research, vol. 25, no. 2, pp. 1-25, 1991.

301



[37] E. A. Newcombe and S. Pasupathy, “Error rate monitoring for digital commu-
nications,” Proc. IEEE, vol. 70, pp. 805-828, Aug. 1932.

[38] G. D. Hingorani and D. A. Chesler, “A performance monitoring technique
for arbitrary noise statistics,” J[EEE Trans. Commun. Technol., vol. COM-16,

pp- 430-433, June 1968.

[39] D. J. Gooding, “Performance monitor techniques for digital receivers based on
extrapolation of error rate,” I[EEE Trans. Commun. Technol., vol. COM-16,

pp. 380-387, June 1968.

[40] J. B. Scholz, S. C. Cook, and T. C. Giles, “A scheme for high performance real-
time BER measurement,” IEEE Trans. Commaun., vol. COM-40, pp. 1574~1576,
Oct. 1992.

[41] N. E. Nahi and R. M. Gagliardi, “On the estimation of signal-to-noise ratio
and applications to detection and tracking systems.” University of Southern
California, Los Angeles, CA, EE Report 114, July 1964.

[42] T. R. Benedict and T. T. Soong, “The joint estimation of signal and noise from
the sum envelope,” IEEFE Trans. Inform. Theory, vol. IT-13, pp. 447-454, July
1967.

[43] D. Middleton, “The incoherent estimation of signal amplitudes in normal noise
backgrounds,” in Time Series Analysis (M. Rosenblatt, ed.), New York, Wiley,
1963, pp. 362-394. Proc. of symposium held at Brown University, Providence,
RI, June 1962.

[44] R. B. Kerr, “On signal and noise level estimation in a coherent PCM channel,”
IEEE Trans. Aerospace and Electronic Systems, vol. AES-2, pp. 450454, July
1966.

[45] R. M. Gagliardi and C. M. Thomas, “PCM data reliability monitoring through
estimation of signal-to-noise ratio,” [EEE Trans. Commun. Technol., vol. COM-

16, pp. 479486, June 1968.

[46] C. E. Gilchriest, “Signal-to-noise monitoring,” JPL Space Programs Summary
37-27, vol. IV, pp. 169-184, June 1966.

[47] C. M. Thomas, Mazimum Likelihood Estimation of Signal-to-Noise Ratio. PhD
thesis, University of Southern California, Los Angeles, 1967.

[48] J. W. Layland, “On S/N estimation,” JPL Space Programs Summary 37-48,
vol. III, pp. 209-212, Dec. 1967.

[49] F. Edbauer, “Signal-to-noise ratio estimation of binary PSK signals,” in Na-
tional Telecommunications Conf. Record, Los Angeles, CA, Dec. 1977, vol. 2,
pp. 30:6-1-30:6-4.



[50] M. K. Simon and A. Mileant, “SNR estimation for the baseband assembly,”
Telecommunications and Data Acquisition Progress Report 42-85, Jet Propul-
sion Laboratory, Pasadena, CA, pp. 118-126, May 13, 1986.

[31] B. Shah and S. Hinedi, “The split symbol moments SNR estimator in narrow-
band channels,” I[EEE Trans. Aerospace and Electronic Systems, vol. AES-26,
pp. 737-747, Sept. 1990.

[52] B. Shah and J. K. Holmes, “Improving the split-symbol moments estimator,”
Interoffice Memorandum 3338-90-223, Jet Propulsion Laboratory, Pasadena,
CA, Dec. 19, 1990.

[53] R. Matzner, “An SNR estimation algorithm for complex baseband signals using
higher order statistics,” Facta Universitatis (Nis), no. 6, pp. 41-52, 1993.

[54] R. Matzner and F. Engleberger, “An SNR estimation algorithm using fourth-
order moments,” in Proc. IEEE Int. Symposium Inform. Theory, Trondheim,
Norway, June 1994, p. 119.

[55) R. Matzner, F. Engleberger, and R. Siewert, “Analysis and design of a blind
statistical SNR estimator,” in AES 102nd Convention, Minchen, Germany,

Mar. 1997.

(56] A. L. Brandao, L. B. Lopes, and D. C. McLernon, “In-service monitoring of
multipath delay and cochannel interference for indoor mobile communication
systems,” in Proc. IEEFE Int. Conf. Commun., New Orleans, LA, May 1994,
vol. 3, pp. 1458-1462.

[57] S. Yoshida, G. L. Tan, H. Zhou, A. Hirai, and T. Takeuchi, “Simple method of
multipath delay difference detection for 7/4-shift QPSK,” Electronics Letters,
vol. 27, pp. 1027-1028, June 1991.

[58] S. Yoshida, A. Hirai, G. L. Tan, H. Zhou, and T. Takeuchi, “In-service monitor-
ing of multipath delay-spread and C/I for QPSK signal,” in Proc. {2nd [EEFE
Veh. Technol. Conf., Denver, CO, May 1992, vol. 2, pp. 592-595.

[59] M. Andersin, N. B. Mandayam, and R. D. Yates, “Subspace based estimation
of the signal-to-interference ratio for TDMA cellular systems,” in Proc. IEEE
Veh. Technol. Conf., Atlanta, GA, Apr. 1996, pp. 1155-1159.

[60] M. D. Austin and G. L. Stiiber, “In-service signal quality estimation for TDMA
cellular systems,” in PIMRC, Toronto, Ontario, Canada, Sept. 1995, pp. 836-
840.

[61] K. Feher, Digital Communications: Satellite/Earth Station Engineering. En-
glewood Cliffs, NJ: Prentice-Hall, 1983.

303



[62] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation, and Noise. Boston: Houghton Mifflin, 3rd ed., 1990.

[63] W. H. Tranter and K. L. Kosbar, “Simulation of communication systems,” [EEE
Commun. Mag., vol. 32, pp. 26-35, June 1994.

[64] M. Jeruchim, P. Balaban, and K. Shanmugan, Simulation of Communication
Systems. New York: Plenum Press, 1992.

[65] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2nd ed., 1989.

(66] A.Papoulis, Probability, Random Variables and Stochastic Processes. New York:
McGraw-Hill, 3rd ed., 1991.

[67] H. L. Van Trees, Detection, Estimation, and Modulation Theory. New York:
Wiley, 1968.

[68] J. C. Hancock and P. A. Wintz, Signal Detection Theory. New York: McGraw-
Hill, 1966.

[69] German patent application no. DE 42 20 524 Al, June 1992.

[70] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based
on second-order statistics: A time domain approach,” IEEE Trans. Inform.
Theory, vol. IT-40, pp- 340-349, Mar. 1994.

[71] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. New York: Cambridge
University Press, 2nd ed., 1992.

[72] N. C. Beaulieu and C. Leung, “On the performance of three suboptimum de-
tection schemes for binary signaling,” IEEE Trans. Commun., vol. COM-33,
pp. 241-245, Mar. 1985.

[73] R. Matzner, F. Engleberger, and R. Siewert, “Analysis and design of a blind
statistical SNR estimator,” in AES 102nd Convention, Miinchen, Germany,
Mar. 1997.

(74] M. V. Clark, L. J. Greenstein, W. K. Kennedy, and M. Shafi, “MMSE diver-
sity combining for wide-band digital cellular radio,” IEEE Trans. Commun.,
vol. COM-40, pp. 1128-1135, June 1992.

(75] S. Stein, “Fading channel issues in system engineering,” [EEE J. Select. Areas
Commun., vol. SAC-5, pp. 68-89, Feb. 1987.

[76] S. C. Gupta, R. Viswanathan, and R. Muammar, “Land mobile radio systems—
a tutorial exposition,” IEEE Commun. Mag., vol. 23, pp. 34-45, June 1985.

304



[77] T. Kirner, D. J. Cichon, and T. C. Becker, “Degradation of digital communi-
cation systems in a multipath environment,” in Proc. {4th [EEE Veh. Technol.
Conf., Stockholm, Sweden, June 1994, vol. 1, pp. 170-174.

[78] GSM Recommendation 05.05—DCS Version 3.1.0: European digital cellular
telecommunications system (phase 1): Radio Transmission and Reception,

ETSI/PT12, Feb. 1992.

[79] TIA/EIA IS-54, “Cellular system dual-mode mobile station-base station com-
patibility standard,” Telecommunications Industry Association, Apr. 1992.

[80] M. R. L. Hodges, “The GSM radio interface,” Br. Telecom Tech. J., vol. 8,
pp- 3143, Jan. 1990.

[81] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications.
Paris, 1992. ISBN 2-9507190-0-7.

[82] ETSI GSM Specifications, Series 01-12.

[83] K. Kinoshita, M. Kuramoto, and N. Nakajima, “Development of a TDMA
digital cellular system based on Japanese standard,” in Proc. {Ist IEEE Veh.
Technol. Conf., 1991, pp. 642-645.

[84] Research and Development Center for Radio Systems (RCR), “Digital cellular
telecommunication systems,” RCR STD-27, Apr. 1991.

(85) D. J. Goodman, “Second generation wireless information networks,” [EEE
Trans. Veh. Technol., vol. VT-40, pp. 366-374, May 1991.

[86] J. E. Padgett, C. G. Gunther, and T. Hattori, “Overview of wireless personal
communications,” JEEE Commun. Mag., vol. 33, pp. 28-41, Jan. 1995.

[87] K. Feher, “M/IODEMS for emerging digital cellular-mobile radio system,” I[EEFE
Trans. Veh. Technol., vol. VT-40, pp. 355-365, May 1991.

[88] D.J. Goodman, “Trends in cellular and cordless communications,” /EEE Com-
mun. Mag., vol. 29, pp. 31-40, June 1991.

[89] P. A. Bello, “Characterization of randomly time-variant linear channels,” /EEE
Trans. Commun. Syst., vol. CS-11, pp. 360-393, Dec. 1963.

[90] A. Miiller, “Simulation of multipath fading channels using the Monte-Carlo
method,” in Proc. IEEE Int. Conf. Commun., New Orleans, LA, May 1994,
vol. 3, pp. 1536-1540.

[91] D. C. Cox, “910 MHz urban mobile radio propagation: Multipath characteris-
tics in New York City,” TEEE Trans. Commun., vol. COM-21, pp. 1138-1194,

Nov. 1973.

305



[92] P. Hoeher, “A statistical discrete-time model for the WSSUS multipath chan-
nel,” IEEFE Trans. Veh. Technol., vol. VT-i1, pp. 461468, Nov. 1992.

[93] H. Suzuki, “A statistical model for urban radio propagation,” [EEE Trans.
Commun., vol. COM-23, pp. 673-680, July 1977.

[94] W. R. Braun and U. Dersch. “A physical mobile radio channel model,” /EEE
Trans. Veh. Technol., vol. VT-40, pp. 472-482, May 1991.

[95] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Syst. Tech.
J., vol. 47, pp. 957-1000, July-Aug. 1968.

[96] C.-L. Liu and K. Feher, “Noncoherent detection of = /4-QPSK systems in a CCI-
AWGN combined interference environment,” in Proc. 39th [EFE Veh. Technol.
Conf., San Francisco, CA, May 1989, vol. 1, pp. 83-94.

[97] C. S. Ng, T. T. Tjhung, F. Adachi, and K. M. Lye, “On the error rates of dif-
ferentially detected narrowband w/4-DQPSK in Rayleigh fading and Gaussian
noise,” IEEFE Trans. Veh. Technol., vol. VT-42, pp. 259-263, Aug. 1993.

[98] S. H. Goode, H. L. Kazecki, and D. W. Dennis, “A comparison of limiter-
discriminator, delay, and coherent detection for 7/4 QPSK,” in Proc. 40th I[EEE
Veh. Technol. Conf., Orlando, FL, May 1990, pp. 687-694.

[99] V. Fung and T. S. Rappaport. “Bit-error simulation of /4 DQPSK in flat and
frequency-selective fading mobile radio channels with real time applications,”
in Proc. IEEE Int. Conf. Commun., Denver, CO, 1991, vol. 2, pp. 553-537.

[100] V. Fung and T. S. Rappaport, “Bit error simulation of 7/4 DQPSK mobile
radio communications using two-ray and measurement-based impulse response
models,” TEEFE J. Select. Areas Commun., vol. SAC-11, pp. 393-403, Apr. 1993.

[101] U. Dersch and R. J. Riiegg, “Simulations of the time and frequency selective
outdoor mobile radio channel,” IEEE Trans. Veh. Technol., vol. VT-42, pp. 338-

344, Aug. 1993.

[102] B. Glance and L. J. Greenstein, “Frequency selective fading effects in digital
mobile radio with diversity combining,” IEEE Trans. Commun., vol. COM-31,

pp- 1085-1094, Sept. 1983.

[103] J. C.-I. Chuang, “The effects of time delay spread on portable radio commu-
nications channels with digital modulation,” JEEE J. Select. Areas Commun.,

vol. SAC-5, pp. 879-889, June 1987.

[104) T. S. Rappaport, S. Y. Seidel, and R. Singh, “900-MHz multipath propaga-
tion measurements for U.S. digital cellular radiotelephone,” [EFEE Trans. Veh.
Technol., vol. VT-39, pp. 132-139, May 1990.

306



[105] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation measurements
and models for wireless communications channels,” [EEFE Commun. llag.,
vol. 33, pp. 4249, Jan. 1995.

[106] B. D. Woerner, J. H. Reed, and T. S. Rappaport, “Simulation issues for future
wireless modems,” IEFE Commun. Mag., vol. 32, pp. 42-53, July 1994.

[107) COST-207: “Digital land mobile radio communications,” Final Report. (1939},
EUR 12160 EN, Commission European Community, Luxembourg.

[108] L. Crohn and E. Bonek, “Modeling of intersymbol-interference in 2 Rayleigh fast
fading channel with typical delay power profiles,” IEEE Trans. Veh. Technol.,
vol. VT-41, pp. 438—447, Nov. 1992.

{109] J. . Smith, “A computer generated multipath fading simulation for mobile
radio,” [EEE Trans. Veh. Technol., vol. VT-24, pp. 39-40, Aug. 1975.

[110) M. T. Le and A. U. Sheikh, “Performance of 7/4-QDPSK in a
Rayleigh/lognormal/delay spread/AWGN/co-channel interference environ-
ment,” in Proc. {2nd [EEE Veh. Technol. Conf., Denver, CO, May 1992, vol. 1,
pp. 147-150.

[111] S. Gurunathan and K. Feher, “Multipath simulation models for mobile radio
channels,” in Proc. {2nd IEEE Veh. Technol. Conf., Denver, CO, May 1992,
vol. 1, pp. 131-134.

[112] S. A. Fechtel, “A novel approach to modeling and efficient simulation of
frequency-selective fading radio channels,” [EEE J. Select. Areas Commun.,
vol. SAC-11, pp. 422431, Apr. 1993.

[113] F. Goulam and A. J. Levy, “A statistical model for the simulation of multipath
mobile propagation channel,” in Proc. 42nd IEEE Veh. Technol. Conf., Denver,
CO, May 1992, vol. 1, pp. 135-138.

[114] T. S. Rappaport and V. Fung, “Simulation of bit error performance of
FSK, BPSK, and /4 DQPSK in flat fading indoor radio channels using a
measurement-based channel model,” [EEE Trans. Veh. Technol., vol. VT-40,

pp. 731-740, Nov. 1991.

[115] H. Hashemi, “Simulation of the urban radio propagation channel,” [EEE Trans.
Veh. Technol., vol. VT-28, pp. 213-225, Aug. 1979.

(116] G. D’Aria, F. Muratore, and V. Palestini, “Simulation and performance of the
pan-European land mobile radio system,” [EEE Trans. Veh. Technol., vol. VT-

41, pp. 177-189, May 1992.

307



[117] K.-W. Yip and T.-S. Ng, “Efficient simulation of digital transmission over
WSSUS channels,” ITEEFE Trans. Commun., vol. COM-43, pp. 2907-2913, Dec.
1995.

[118] R. F. W. Coates, G. J. Janacek, and K. V. Lever, “Monte Carlo simulation
and random number generation,” [EEE J. Select. Areas Commun., vol. SAC-6,
pp- 58-66, Jan. 1988.

[119] S. K. Park and K. W. Miller, “Random number generators: Good ones are hard
to find,” Communications of the ACAM, vol. 31, pp. 1192-1199, Oct. 19883.

[120] M. Fattouche and H. Zaghloul, “Equalization of 7 /4 offset DQPSK transmitted
over flat fading channels,” in Proc. IEEE Int. Conf. Commun., Chicago. IL,
1992, pp. 296-298.

[121] G. A. Arredondo, W. H. Chriss, and E. H. Walker, “A multipath fading simu-
lator fer mobile radio,” IEEE Trans. Commun., vol. COM-21, pp. 1325-1328,
Nov. 1973.

[122] P. Huber, Robust Statistics. New York: Wiley, 1981.

(123] N. Amitay and L. J. Greenstein, “Multipath outage performance of digital
radio receivers using finite-tap adaptive equalizers,” [FEE Trans. Commun.,
vol. COM-32, pp. 5397-608, May 1984.

[124] K. Ohno and F. Adachi, “QDPSK signal transmission performance with post-
detection selection diversity reception in land mobile radio,” [EEE Trans. Veh.
Technol., vol. VT-40, pp. 798-804, Nov. 1991.

[125] F. Adachi, K. Ohno, and Al Ikura, “Postdetection selection diversity reception
with correlated, unequal average power Rayleigh fading signals for #/4-shift
QDPSK mobile radio,” I[EEE Trans. Veh. Technol., vol. VT-41, pp. 199-210,
May 1992.

[126] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1975.

(127] L. Korn, Digital Communications. New York: Van Nostrand Reinhold, 1983.

[128] C. R. Rao, Linear Statistical Inference and its Applications. New York: Wiley,
1965.

[129] 1. W. Burr, Applied Statistical Methods. New York: Academic Press, 1974.

{130] H. G. Tucker, An Introduction to Probability and Mathematical Statistics. New
York: Academic Press, 1962.



[131] M. Nakagami. “The m-distribution—a general formula of intensity distribution
of rapid fading.” in Statistical Methods of Radio Wave Propagation (W. C.
Hoffman, ed.), Elmsford, NY: Pergamon, 1960.

[132] D. D. Falconer, F. Adachi, and B. Gudmundson, “Time division multiple access
methods for wireless personal communications,” I[EEE Commun. Mag., vol. 33.
pp- 50-57, Jan. 1995.

[133] F. G. Jenks, P. D. Morgan, and C. S. Warren, “Use of four-level phase modula-
tion for digital mobile radio,” IEEE Trans. Electromagn. Compat., vol. EMC-14,
pp- 113-128, Nov. 1972.

[134] Y. Akaiwa and Y. Nagata, “Highly efficient digital mobile communications with
a linear modulation method,” [EEE J. Select. Areas Commun., vol. SAC-5.
pp- 890-895, June 1987.

309





