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Abstract 

As the need to support larger numbers of subscri bers wit h higher-quality, wire- 

less services increases, wireless technology must improve to keep up with the de- 

mand. Performance-enhancing techniques which historically have been too costly to 

implement are now gaining favour as digital hardware is becoming ever cheaper and 

more powerful. Signal-to-noise ratio (SXR) estimation and signal-teimpairment ratio 

(SIR) estimation algorithms are examples of techniques that may be used to improve 

receiver functions such as diversity cornbining and synchronization. Historically, the 

total signal-plus-noise power or the total signal-plus-impairment power often has been 

used in favour of the SNR or the SIR since estirnators of the total power are easier to 

implement. Today, inexpensive, powerful digit al hardware makes the implementat ion 

of SNR or SIR estimators practical so that the performance improvement effected by 

their use may be realized. In this thesis, various applications that may benefit from 

use of SNR or SIR estimation are identified. 

SNR estimation is studied in the context of BPSK signaling in the real AWGX 

channel, and 8-PSK signaling in the complex AWGN channel. Several published SNR 

estimators are derived and adapted to the assumed system model. The performances 

of the SNR estimators are quantitatively compared by the analysis of SNR estimates 

produced by computer simulation, and a theoretical bound is derived for both the 

real and complex AWGN channels. 

SIR estimation in wireless channels is studied by the statistical analysis of SIR 

estimates generated by the computer simulation of irlCDQPSK-modulated signals in 

five utypicaln mobile radio channels. A fading simulator that rnay be used to model 

fading processes with continuous Doppler and delay profiles is described and verified. 

Several SIR estimators are derived; some of the estimators are unmodified published 

algorithms, others are published algorithms adapted to the assumed system model, 

and others are original. 

A few selected SIR estimators are used in the simulation of a postdetection, selec- 



tion diversity combining application. The relative improvement in the performances 

of the various diversity combiner implementations due to the incorporation of the SIR 

estimators is compared. The simuiated BER performances of 't radit ional' select ion 

combiners using the total signal-plus-impairment power are provided for reference, 

and a simulated lower bound on the BER of postdetection selection diversity com- 

bining is also provided. 
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Chapter 1 

Introduction 

1.1 Background 

Digital wireless technology has been incorporated into public telephony syçtems in 

many parts of the world, and it is poised to displace the analog cellular technology 

(AMPS) that has dominated the North American wireless telephone market for many 

years. The digital technology will deliver next to land-line voice quality and increased 

subscriber capacity. Every technical advantage is exploited to achieve the best bit 

error rate (BER) performance and the highest capacity with the least amount of 

power and expense. Complexity is les of an issue today than it has been in the past 

with the advent of cheap and powerful digital signal processor (DSP) and gate array 

devices, so that algorithms may be implemented in forrns that are closer to ideal 

rather than simplified forms which typically exhibit inferior performance. 

One example of a function that historically has been considered too costly to 

implernent is the measurement of the signal-tenoise poiver ratio (SNR). XIany a lge  

rithms in communications use the SNR as an input parameter but, in practice, the 

total signal-plus-noise power has been used instead since it is easier to measure. For 

wireless channels, BER performance depends not only on the SNR but also on other 

im pairments such as fast, frequency-select ive fading and cochannel i nt erference ( CCI) 

so that it is more appropriate to consider a signal-teimpairment power ratio (SIR). 



1.2 Applications which may Benefit from Knowl- 
edge of the SNR or SIR 

In many applications, the total received power is estimated for simplicity rather than 

the SNR or SIR. Goldsmith et al (31 discuss power measurement for time-varying 

cellular channels, and point out that red-time measurement of the received power 

is required for operations such as power control, handoff, and dynamic channel al- 

location. Examples of applications that use total power or received signal strength 

estimates are described in [4, 5, 6, 71. In fact, the use of SXR or SIR estimates can 

improve the performances of the signal-strength-based algorithms used in t hese ap- 

plications. Some references are listed below which descri be applications that ideally 

require knowledge of the SNR or SIR. 

1.2.1 Resource Management Algorit hms 

Measurement of the SIR is of great interest today as wireless service providers are 

finding that cochannel interference is the greatest factor limiting the extent to which 

ce11 sizes can be reduced in an effort to increase frequency reuse and system capacity 

[S, 9, 10, I 11. For this reason, methods to measure the SIR (where the impairment, 

in this case, is mainly CCI) are attracting much attention for use in resource man- 

agement algorithms such as those used for handoff, dynamic channel allocation, and 

power control. 

Handoff and Adaptive Dynarnic Channel Allocation 

The two concepts of handoff (or handover) and adaptive dynamic channel alloca- 

tion (DCA) are closely related. Handoff refers to the event that occurs when an 

established link between a mobile unit and a base station is "seamlessly" broken and 

re-established, usually with another base station. A handoff event is typically caused 

by the physical movement of the mobile unit from one ce11 coverage area to another. 

Adaptive DCA refers to a dynamic channel allocation strategy that is adaptive both 



to changing traffic conditions and interference levels. 

Beck and Panzer [SI propose an algorithm called DYNINF which can be used for 

both handoff and DCA. The operation of the algorithm depends explicitly on the 

ability to measure the signal-teinterference level; however, no method to measure this 

quantity is offered. Hamabe et al  [12] and Andersson et al [13] also present channel 

allocation strategies that require measurement of the SIR. In (131, the link quality is 

monitored by checking to see that known preamble bits are correctly detected by the 

recei ver. 

O t her handoff and channel assignment schemes are discussed in (14, l5,16, 17, 1 SI. 

Power Control 

Zander [9] indicates that power control is important "to adjust the power of each 

transmitter for a given channel allocation such that the interference levels at the 

receiver locations are minimized." He points out that, in practice, power control 

algorithms typically keep the total received power at a constant level; horvever, he adds 

that keeping the signal-to-interference power ratio constant instead could improve 

system capacity. This view is supported by Jalali and hlermelstein in [NI. Zander 

admits that a practical implementation of the power control algorithm proposed in 

[9] would be difficult since the path gains of the desired signal and interferers are, 

in general, unknown. A means to estimate the SIR would facilitate the practical 

implementat ion of this power cont rol algorit hm. 

Other relevant papers on power control include [20, 21, 221. 

1.2.2 Diversity Combining 

The classic pre-detection maximal-ratio combiner is described in many sources ( s e ,  

for example, [23, 24, 231). This combiner forms the weighted sum of two or more 

diversity branches where the weights are proportional to the amplitude of the signal, 

and inversely proportional to the noise variance. The weights for this diversity scheme 



are often implemented using the signal-plus-noise envelope as opposed to the signal 

ampli tudeto-noise variance ratio (-1. 
If an algorithm were available to estimate the signal and noise powers separately, 

the desired weightings for each of the branches of the maximal-ratio combiner could 

be formed trivially as the ratio of the square root of the signal power to the noise 

power. If the SNR is determined as an inseparable parameter, p = SIN,  then the 

signal power and noise power could be computed by also estimating the total received 

power, P = S + N, so that simultaneous equations for p and P may be solved for S 

and N to yield N = P/(1+ p )  and S = P - N. The branch weights are then formed 

trivially as m ~ .  
In [26], Adachi presents an optimal postdetection diversity combiner t hat weights 

the differentially-detected symbols of each of the branches based on a formula which 

depends explicitly on both the SNR and the signal-teinterference ratio. The imple- 

rnentation of this formula act ually requires two separate estimators-one to measure 

the SNR, the other to measure the signal-to-interference ratio. 

A postdetection selection diversity combiner is described by Hladik, Chennakeshu, 

and Saulnier in [27] where the SIR of each diversity branch is measured on a symbol- 

by-symbol basis. Each symbol interval, the differentially-detected symbol correspond- 

ing to the  branch with the largest instantaneous SIR is the one that is presented to 

the decision device. The specific SIR estimator is not given in any detail in [27], but 

is simply described as an approximation to the maximum-likelihood (ML) estimate 

of the SIR It is highly probable that the SIR estimator used in [27] is the same as 

the SIR estimator described by Chennakeshu and Saulnier in Appendix II of [2S]. 

Balaban and Corrales [29] describe an equalizer for frequency-selective fading chan- 

nels. The tap update algorithm of the equalizer requires both an estimate of the 

channel impulse response and an estimate of the SNR, thus illustrating another ap- 



plication requiring some means to estimate the SNR. Note that channel impulse 

response estimation (30, 311 is a separate topic and is not considered in this thesis. 

1.2.4 Synchronization 

A maximum likelihood estimator of the bit timing is presented by Wintz and Luecke 

in equation (10) of [32] which is a function of the noise variance. For additive white 

Gaussian noise (AWGN), the noise variance drops from the estimator expression as 

shown by equation (11) of [32]. However, in time-varying channels. the noise variance 

cannot be assumed to be constant so it, or the SXR, must be estimated for optimal 

performance. Though a noise power estimator is required here, an SXR estimator 

could be used together with a total received power estimator to  derive the noise 

power, as described in Section 1.2.2. 

Chennakeshu and Saulnier [28] present a method to achieve timing and frequency 

synchronization by maximizing the SIR with respect to the timing and frequency 

offset. An approximation to a maximum likelihood SIR algorithm that can be used 

to implement this synchronization scheme is proposed in Appendix II of [?SI. 

1.2.5 Adaptive Arrays 

Adaptive arrays are used in wireless comrnunicatioos systems to cancel interference 

and mitigate fading effects by appropriately weighting and combining the output of 

two or more antennas. The optimal weight equation is given by Winters as (12) of 

(331 or, equivalent ly, (9) of [34], and is found to be a funct ion of the noise variance. 

Again, using a technique such as that described in Section 1.2.2 an estimate of the 

noise power may be found from estimates of the SNR and the total received signal 

power. 



1.2.6 Viterbi Equalization and Decoding 

The path metric used in Viterbi equalization and decoding is shown by Hagenauer and 

Hoeher [35] to depend on what the authors cal1 the 'instantaneousn SNR, Es(k)/~Vo, 

where Es is the energy per symbol, No is the noise power spectral density, and k is 

the time index. The time dependence arises as a result of the time-varying nature of 

the multipath channel assumed in Section 3.2 of [35]. 

1.3 Literature Review 

To the author's knowledge, no quantitative cornparison of various SNR and SIR es- 

timation techniques has ever been reported in the iiterature. Surveys of BER esti- 

mation techniques have b e n  published by Scholz [36] and Newcombe and Pasupathy 

[3ï], but no quantitative cornparisons of SNR or SIR estimators are provided. These 

BER estimation surveys include techniques such as those described by Hingorani and 

Chesler [38], Gooding [39], and Scholz, Cook, and Giles [do] that could be used to 

provide a relative measure of transmission quali ty. However, BER estimation tech- 

niques are not coosidered in this thesis as focus is placed on SNR and SIR estimation 

techniques that yield quantities not only useful as relutice measures of quality, but 

also as absolute measures that can be used as input parameters in applications such 

as those described in Sections 1.2.2 to 1.2.6. 

Interest in techniques to generate estimates of the SNR began in the rnid- to 

late-1960's. The earliest recorded work on SNR estimation that could be found is a 

university report written by Nahi and Gagliardi in 1964 [dl]. A subset of this work 

was published by Nahi and Gagliardi in 1967 (11. The estimators described in [41, 11 

form estimates of the SNR by measuring the power of a hard limited, received (noisy) 

signal a t  the output of a filter. Both the signal and noise are assumed to be Gaussian 

stochastic processes with correlation functions of known shape. An expression is given 

in [l] showing the output power as a function of the filter transfer function and the 



SNR. The expression is not easily inverted so that, if the output poiver is known 

(measured), the SNR must be found implicitly using iterative techniques or a lookup 

table. It is not indicated in [l] whether or not this method is suitable for deterministic 

signals as well as stochastic signas. 

Other early work on SNR estimation includes that of Benedict and Soong in 1967 

[42]. The authors present three different methods to estimate separately the carrier 

strength and the noise level based on a finite number of samples. An ML estimator, 

an estimator based on amplitude moments, and an estimator based on square-law 

moments are presented dong with plots of the bias and rms error of the simulated 

signal and noise estimates for the three estimation techniques. The SNR can be 

formed trivially as the ratio of the estimated carrier strength to the estimated noise 

level, but the performance of this parameter (which is of interest in this thesis) is not 

considered in [42]. Benedict and Soong refer to  work done by Middleton published in 

1962 1431 which predates that of Nahi and Gagliardi; hoivever, the estimation method 

discussed in [43] assumes that the noise level is known and so is not applicable to this 

study. 

The ML estimator derived by Benedict and Soong is complicated. The ML SNR 

estimation problem was formulated in a different manner by Kerr [Ml, Gagliardi 

and Thomas (451, and Gilchriest [46] to yield much simpler expressions. Kerr (July, 

1966) proposes two different variations of a maximum likelihood SNR estimator ivhere 

antipodal signaling in AWGN is assumed. In 1968, Gagliardi and Thomas [45] studied 

the ML estimator in more detail in a paper stemming from Thomas' PhD thesis 

[47]. The estimators derived by Kerr can be manipulated into the form of the SNR 

estimator derived by Gagliardi and Thomas. The pdf of the ML SNR estimator 

and analytical expressions for the bias and variance are offeid in [ 4 ] .  In the Jet 

Propulsion Laboratory report by Gilchriest dated June, 1966, a simple, intuitive 

SNR estimator is proposed based on the absolute mean and variance of an antipodal 

(BPSK) signal corrupted by AWGN. An anaiysis of the pdf of this estimator is 



presented along wit h confidence intervals. This work was extended in 1967 by Layland 

[48] to study the performance of this SNR estimator a t  low levels of SNR. It is 

indicated in (451 that this intuitive SNR estimator is a type of ML estirnator. 

An analog method for determining the SNR of BPSK signals in AWGN was pub- 

lished by Edbauer (491 in 1977. The method is based on the processing of the in-phase 

and quadrature branches of a Costas demodulator. In this thesis, only discrete meth- 

ods of SNR estimation are considered. 

In more recent times (1986), Simon and Mileant [50] introduced an SNR estima- 

tor called the split symbol moments estimator (SSME) which is designed for BPSK 

signals in wideband AWGN channels. Shah and Hinedi [5l] study the SSLIE in nar- 

rowband channels and provide plots of the means and inverse normalized variances 

of theoretical and simulated SSME estimates. In a Jet Propulsion Laboratory memo, 

Shah and Holmes (521 discuss a modification of the SSME designed to improve per- 

formance in narrowband channels. The channe1 modeis of [51] and [52] assume that  

al1 of the filtering occurs after noise is added which is different from the mode1 devel- 

oped in Section 2.2 of this thesis where filtering is assumed to be split betiveen the 

transmit ter and receiver. 

In 1993, Matzner [53] presented an SNR estimator whose structure was first in- 

troduced by Benedict and Soong as the "square-law methodn of carrier strength and 

noise level estimation. Matzner evaluates the performance of the SNR estimator 

(which is of interest in this thesis) as opposed to the performances of the separate 

estimators of carrier strength and noise level as treated in [42]. Matzner also provides 

more derivation details. The derivation assumes cornplex baseband signais in complex 

AWGN, but the estimator structures developed are also applicable, with relatively 

minor modifications, to real baseband signals in real AWGN. The mean square error 

(MSE) of the logarithm (dB) of simulated SNR estimates is plotted in [53] as a func- 

tion of the block length and as a function of the true SNR. This estimator is derived 

using a different approach by Matzner and Engleberger [XI, and a hardware imple- 



mentation is described by Matzner, Engleberger, and Sietvert [55]. The complex form 

of this SNR estimator may be modified to be used as a more general SIR estimator 

in fading channels with CC1 and AWGN. 

The "signal-tcwa.riationn ratio (SVR) estimator proposed by Brand50 [56] is an 

SIR estirnator used to measure the quality of AI-ary PSI< signals in channels cor- 

rupted by multipath, CCI, and AWGN. This estimator may be modified to be used 

as an SNR estimator for complex signals in complex AWGN, or for real signals in 

real AWGN. The SVR estimator is identified as being of the "in-servicen type which 

is a term sometimes used to refer to an estimator that forms estimates from the 

information-bearing received signal, thus avoiding the need to perform SIR or SNR 

measurements off-line. Plots are provided in [56] showing the theoretical and sirnu- 

lated SVR estimates as a function of signal power for three different fading channels. 

Yoshida, Tan et al [57] and Yoshida, Hirai et al [SI  describe an in-service esti- 

mator that, like the SVR estimator, also refiects the multipath spread and level of 

CC1 in a wireless channel. This estimator can be used rvith any QPSK-like signal. 

The mean simulated SIR is plotted as a function of the delay spread of the channel, 

and as a function of the CC1 level. Also included is a plot showing the correlation 

between the measured BER of the channel and the mean estimated SIR. This esti- 

mator can be used to measure SNR in complex AWGN but, as presented in [XI, the 

actual estimated values do not correspond in an absolute sense to the true SNR of 

the channel; however, it is shown in Section 3.7.3 of this thesis how the estimator can 

be modified to yield true estimates of the SNR. Note that this estimator cannot be 

modified to operate with real signals in real AWGN since the algorithm requires a 

signal with both in-phase and quadrature components. 

In Appendix II of [28], Chennakeshu and Saulnier derive an ML SIR estirnator 

based on the pdf of the phases of differentially-detected samples. The estimator is 

specifically referred to as a usignal-to-impairment ration estimator and its applica- 

tion to timing and frequency synchronization is described. Simulation results of the 



BER resulting from the incorporation of the SIR estimator into this synchronization 

application are provided. 

Other recent examples of estimators designed to measure the SIR in wireless chan- 

nels are presented by Andersin et al [59] and Austin and Stiiber [60]. 

1.4 Contributions of the Thesis 

The purpose of the thesis is to compare quantitatively various SNR and SIR esti- 

mat ion techniques in common channels using common performance metrics. Some 

performance results have been published in the literature, but the assurned channel 

conditions and the performance metrics are not consistent from one source to the 

next making a quantitative cornparison difficult. Some of the estimators under study 

have been collected from the literature and are used without modification, others 

are modifications of published estimators that have been modified for the assumed 

channel conditions, and others are original. The specific contributions of the thesis 

are itemized below. 

1. The SSME for real, wideband channels is derived and compared to the expres- 

sion given in (511. 

2. Two modified SSME algorithms are developed based on an approach similar to 

that described in [52] in attempts to improve the performance of the original 

SSME algori t hm in real, narrowband channels. 

3. The ML SNR estimator tailored to the real AWGN channel of Chapter 2 is 

derived and compared to the ML SNR estimator presented in [4]. The ML 

SNR estimator operates on the samples at the input to the matched filter in the 

receiver, and requires the transmitted data sequence to form SNR estimates. 

Two ML structures are identified: one that uses known transmitted data, and 

another that uses receiver decisions. Reduced-bias forms of these estimators are 

also provided. 



4. The ML SNR estimator tailored to the complex AWGN channel of Chapter 2 

is derived. This is a new contribution as the derivation for complex channels 

does not appear elsewhere in the literature. This estimator also operates on the 

sarnples at the input to  the matched filter in the receiver and, as in the real case, 

two ML structures are identified: one that uses known transrnitted data, and 

another t hat uses receiver decisions. Reduced-bias forms of these estimators are 

offered. 

5. The intuitive SNR estimator of [46] is derived for real signals in real .UVGN 

and is shown to be an ML SNR estirnator for the baud-spaced samples after the 

matched filter in the receiver. One estimator structure using known transmit ted 

data and another using receiver decisions are identified. Reduced-bias forms of 

these estimators are offered. 

6. An intuitive SNR estimator for complex channels similar to the intuitive SNR 

estimator of (461 for real channels is derived using a modified version of the ML 

SNR estimator for complex channels. This SNR estimator structure does not 

appear elsewhere in the li terature. Biased and reduced-bias forms of estimators 

using known transmitted data and using receiver decisions are presented. 

7. The SNR estimator of [53] is derived for complex channels and compared to 

the published expression. A corresponding estimator for real channels is also 

derived. The derivation details for the real case do not appear elsewhere in the 

literature. 

8. SNR estimator structures are derived for real and complex ACVGN channels 

applying the approach used in [56] for the derivation of the SVR estimator. The 

resulting SNR estimator for complex channels is very sirnilar to that presented 

in [56], but the SNR estimator for real channels does not appear elsewhere in 

the literature. 



9. Cramér-Rao bounds for reaI and complex AWGN channels are derived using the 

approach described in [47] for real channels. The Cramér-Rao bound (CRB) 

for complex channels does not appear elsewhere in the literature. 

10. The biases, variances, and MSE's of the simulated SNR estimates generated by 

the various SNR estimators under study are presented for BPSK signals in real 

AWGN, and 8-PSK signals in cornplex AWGN. The variance and MSE results 

are compared to the appropriate CRB's. A discussion of results is provided and 

strengths and weaknesses of the various SNR estimators are identified. 

11. Issues to consider regarding the hardware implementation of an SNR estimator 

are discussed. 

12. A brief survey of potential fading simulators which could be used to  mode1 the 

assumed channel characteristics is provided. 

13. The estimator described in 1531 is modified for use as an SIR estirnator in general, 

wireless channels. 

14. The SVR estimator of [56] is derived for use as an SIR estimator and compared 

with the published SVR expression. 

15. The SIR estimator of (57, 5S] is stated in a form consistent with the assumed 

channel environment of Chapter 3. In a complex AWGN channel, the estimator 

given in [57, 581 produces estimates that differ in an absolute sense from the 

true SNR of the channel. A modified form of this estimator is offered which 

generates estirnates that correspond to the true SNR. 

16. An ML SNR estimator for samples at the input to the matched filter is described 

as an ad hoc SIR estimator given the assumed system mode1 of Chapter 3. 

Strengths and weaknesses of two forms of this estimator are identified. 



17. The derivation of an M L  SIR estirnator presented in [-Y] based on the pdf of 

the phase of sarnples at the output of a differential detector is sketched. Two 

foms of this estirnator are identified: one thai; uses known transmitted data, 

and another that uses receiver decisions. 

18. The Pseudc+hlL (PML) SIR estimator, the Signal-tdmpairment Variance (SIV) 

SIR estimator, and the Modified Signal-tdmpairment Variance (XISIV) SIR 

estirnator are derived. A11 of these algorithms are original. 

19. The statistical properties of the simulated SIR estimates generated by the var- 

ious SIR estimators under study are presented for five different representative 

wireless channels. 

20. A description of a postdetection selection diversity combiner is provided incor- 

porating a few selected SIR estimators from Chapter 3. BER performances of 

diversity receivers employing SIR estimators and diversity receivers employing 

conventional received signal strengt h est imators are compared. 

1.5 Thesis Outline 

The main body of the thesis is broadly divided into three chapters. Chapter 2 is 

devoted to SNR estimation in the AWGN channel, SIR estimation in wireless channels 

is discussed in Chapter 3, and the application of SIR estimation to postdetection 

selection diversity combining is treated in Chapter 4. The problem of SNR estimation 

in AWGN merits a chapter al1 on its own since this is a classical problem which is 

well defined. The relatively simple Gaussian statistics of this channel often lead 

to tractable problems, and classicd estimation techniques (such as the method of 

maximum likelihood) yield closed-form solutions. 

In Chapter 2, the problem of SNR estimation in the AWGN channel and the 

concept of SNR is defined, the system mode1 is described, the SNR estimators under 



study are presented, measures of SXR estimator performance are given, the CRB's for 

real and complex channels are derived, simulation results are offered and compared 

to theory (where appropriate), and a discussion of results concludes the chapter. 

The problem of SIR estimation in wireless channels' is discussed in Chapter 3 and 

compared to the problem of SNR estimation in the AWGN channel. Environment 

assumptions are stated and various potential fading simulators are identified to model 

the assurned channel characteristics. Details of the implementation of the chosen 

fading simulator are provided and statistical verification results are presented. The 

general system model is described and five specific, representative mobile radio test 

channels are identified in which the SIR estimators are tested. The SIR estimators 

under study are then described, measures of SIR estimator performance are given, 

simulation results are offered and compared, and a discussion of results concludes the 

chapter. 

In Chapter 4, the postdetection selection diversi ty combining application is de- 

scribed, the BER of the software implementation of the combiner is compared to 

published data, simulation results are presented, and a discussion of results concludes 

the chapter. 

Chapter 5 concludes the t hesis wit h summary remarks and suggestions for furt her 

work. 

luWireless channels" include, for example, high-capacity, land microwave digital radio links; 
low-data rate, point-tepoint links; satellitelearth station links; indoor channels; and mobile radio 
channels. In Chapter 3, the mobile radio channel is chosen for study as al1 of the channel impairments 
typically observecl in wireless channels are present, under certain conditions, in the widely-variable 
mobile radio channel. In the sequel, the terms "wireless channels" and "mobile radio channelsn are 
used interchangeably. 



Chapter 2 

SNR Estimation in the AWGN 
Channel 

2.1 Problem Definition 

The goal is to  find the &bestn estimate of the signal-tenoise power ratio (SNR) in 

a digital receiver with the least cost. The SNR of interest is the ratio of discrete 

(sampled) signal power to discrete noise power at optimal sampling instants at the 

input to the decision device in the receiver. The estimators under consideration 

generate estimates by averaging observable properties of the received signal over many 

symbols. 

The SNR of the discrete, optimally-sampled signal at the input to the decision 

device in the receiver is not to be confused with the analog SNR after the matched 

filter (MF) (in a system in which an analog MF is employed). For an analog signal 

at the output of the MF, an expression for the SNR is [61] 

where Es is the energy per syrnbol, No is the noise power spectral density (PSD), BeK 

is the effective noise bandwidth of the receiver filter, and R is the baud rate. For the 

discrete, binary signal in real AWGN (both signal and noise are one-dimensional), 



the discrete SNR is (see 1621 and (2.21) of Section 1.2) 

where equality holds if a MF receiver is employed, and the energy per symbol, Es, is 

equal to the energy per bit, Eb, for discrete, binary signaling. For a discrete signal 

constructed from a set of M = 2k k-bit symbols in complex AWGN (both signal and 

noise are two-dimensional), the discrete SNR is (see (2.19) of Section 2.2) 

Es 
SNRciïscreteIcompiex 5 7 

1) O 

where, again, equality holds if a MF is employed. Note the factor of two difference 

between SN%ïscrete*rea~ and SN%i-te.cornptcx 

Note that both Es (or &) and No ar- analog quantities typically measured at the 

input to the receiver, but Es/No, as a measure of discrete SNR, is best understood 

as a property of the sampled output of the MF. In the sequel, any reference to SNR 

implies or SN%ismk*mmpiex. Also, p is a variable often used here to 

represent the SNR (real or complex). 

A few general SNR estimation strategies are introduced in the following sections. 

2.1.1 SNR Estimation by the Physical Separation of Signal 
and Noise 

Assume it is possible to isolate the message portion and noise portion of a signal 

corrupted by additive white Gaussian noise (AWGN). This isolation may be achieved 

by separation in time, frequency, or space. For example, space isolation may be 

achieved in the laboratory by connecting one of either a "cleann signal or the output 

of a noise generator to the input of a device such a s  a receiver or power meter. Let the 

sampled output of the M F  be denoted by s, when only the clean signal is presented 

to the receiver, and r, when noise is the only input. The discrete SNR in this case is 

simply 



where S = E{s:)  is the average discrete signal power, Ar = E { z i )  is the average 

discrete noise power, and E{- )  denotes expectat ion. 

This method obviously suffers from the fact that it is impossible to isolate the 

desired signal and noise except under very artificial, controlled conditions (for exam- 

ple, in the lab). Also, if the desired signal and noise are combined some time after 

the separate measurement of the discrete signal and noise powers, the daim that the 

SNR of the combined signal is still SIN is true only if both the signal power and 

noise power do not change with time. 

2.1.2 SNR Estimation using a Reference Channel 

4 somewhat more practical approach is to consider two channels, one carrying a 

desired signal, s,, plus noise, zn,, the other carrying only noise, z.,. As before, 

S = E{sn} and it is assumed that the noise power in both channels is equal so that 

N = E{zz, ) = E(tn,}. Further, the signal and noise processes are assumed to have 

zero mean and are mutually independent. 

Let the sampled output of the receiver in the first channel be denoted by rn so 

t hat 

where use is made of the assumed first- and second-order properties of the signal and 

noise. Taking the ratio of the discrete power of the two channels, one obtaios 

so that 

The drawback of this approach is that a channel isolated by time, frequency, or space 

must be set aside on which no data can be sent during the SNR estimation. This 



resource overhead impiies a throughput penalty since time, bandwidth, or space must 

be reserved as a reference channel in which no information rnay be sent. Note that it 

is assumed that the noise power in the reference channel and the noise power in the 

information channel are equal for al1 time. 

2.1.3 Data-Aided SNR Estimation 

SNR estimators which extract the SNR from a single channel on which bot h a desired 

signal and noise are present using knowledge of the transmitted message sequence 

are referred to as data-aided (DA) estimaton. A DA SNR estimator performs best 

ivhen the message sequence used by the estirnator is identical to the true transmit ted 

message sequence. 

An example of this type of SKR estimator may be implemented using the cor- 

relation between the noisy signal and the known transmit ted signal as suggested in 

[63, 641 and expressed in general terms as 
.l 

where 9 is the correlation between the noisy received samples and known transmit ted 

signal sequence. Equation (2.1) is an idealized form of a DA SNR estimator. 

Various specific DA SNR estimators are discussed in more detail in later sections, 

but there are two general types classified according to whether the data used to aid 

the SNR estimation is known or estimated. An estimator that uses an  exact, known 

copy of the transmitted message sequence will be referred to as a TzDA estimator. 

A DA SNR estimator that uses an estimate of the transmitted message sequence 

provided by receiver decisions will be referred to as an RzDA estimator. As a further 

classification, any SNR est imator that can generate SNR estimates from the unknown, 

information-bearing portion of the received signal is often referred to as an in-sentice 

estimator [56, 581. RxDA SNR estimators are of the in-service type. 

In TxDA SNR estimation, the fidelity of the message sequence used for SNR es- 

timation is assured by making an exact copy of the transmitted message sequence 



available to the receiver. As an exarnple, short blocks of knomn data may be in- 

serted periodically into the information-bearing sequence. DA equalization techniques 

[65] use so-called training sequences for a similar purpose. A throughput penalty is 

incurred since some channel capacity must be devoted to the transmission of non- 

information-bearing data (training sequences are not considered to carry information 

because the data is already known to the  receiver). However, in systems which al- 

ready employ training sequences for equalization or synchronization, there ivould be 

no additional throughput penalty since those same knoivn sequences could be used 

to maximize the performance of a DA SNR estimator. Note that since TxDA SXR 

estimates can only be generated when known data is available a t  the receiver, the use 

of a TxDA estimator rnay not be appropriate in some situations where a continuous 

stream of SNR estimates is required. 

Since receiver decisions are subject to error, the performance of RxDA SNR esti- 

mation is inferior to that of TxDA SNR estimation a t  low SNR where decision errors 

are more likely. An advantage of RvDA SNR estimation is that the SNR information 

is extracted directly from the information-bearing signal with no loss of through- 

put due to resource overhead. Since RxDA estimates may be generated whether the 

transmitted symbols are knoivn or unknown, RxDA SNR estimators rnay be used in 

applications that require a continuous stream of SNR estimates. 

2.1.4 SNR Estimation based on Statistics of the Received 
Signal 

This class of SNR estimators generates estimates of the SNR assuming knoivledge only 

of the statistics of the signal and channel. These estimation techniques are usually 

moment-based methods. Since no knoivledge of the transmi tted symbols is required, 

these techniques can derive SNR estimates frcm the information-bearing portion of 

the received signal and so are classified as in-service estimators. 



Figure 2.1: Discrete, baseband-equivalent bandlimited mode1 of coherent PSIi in 
AFVGN. 

k = n N ,  
' a n  b k  

2.2 System Model 

The search for the "best" in-service estimator is carried out by a performance compar- 

UpsampIe Rx L- y. Source 

ison of several published techniques. The performance of each estimator is e d u a t e d  

by the software simulation of a discrete, PSI< signal in an APVGN channel. 

Figure 2.1 illust rates a discrete, baseband-equivalent , bandlimit ed mode1 of coher- 

ent PSI< in AWGN. The model, as ihstrated, applies equally well to coherent dl-ary 

PSI< in complex AWGN as to coherent BPSK in real AWGN. In the development 

that follows, the general complex case is assumed, but the results are equally appli- 

cable or easily adapted to the case of real signals. Perfect carrier and symbol timing 

h ?k 

-4 

recovery are assurned throughout. 

A block of N,, M-a.ry source symbols is upsampled to N, = 16 samples per 

symbol, shaped by a root raised-cosine (RRC) fiiter (with roll-off, a = 0.5, and 

L = 127 tap coefficients), scaled by a constant attenuation factor, and corrupted by 

sampled, cornplex AWGN. The sequence of M-ary source symbols is represented by 

an = n E {O, 1,. .. , N W m  - 1) (2.2) 

where On is one of M phases spaced evenly around the unit circle. In the real, binary 

case, an = f 1. The upsampled, M-ary message sequence is 



where 
1 i = j  & = {  O otherwise 

is the Kronecker delta. The sampled, pulse-shaped, information-carrying signal is 

tap coefficients1 for (X.1 > (L - 1)/2, and @ denotes discrete convolution. The RRC 

coefficients are derived frorn the analog transfer function of the full, raised-cosine filter 

using the frequency sampling technique of FIR digital filter design. A sketch of the 

derivation of the RRC coefficients is provided in Appendix B. 

The signal presented to the receiver is 

where zk is sampled, zeremean, complex AWGN of variance, oz, S is a signal power 

scale factor, and N is a noise power scale factor. The samples of the received signal 

after the M F  can be expressed as 

where @ denotes discrete convolution, * in the exponent denotes the complex con- 

jugate, and h:, = hk because the RRC impulse response is real and even. Finally, 

the optimally-sampled, intersymbol-interference-free output of the MF (the decision 

variable) is 

~n = Y&=~N,.  = &ango + f i w ,  (2.6) 

'The range of k specified above implies a non-causal filter which is c h a n  for mathematical 
convenience. Though a non-causal filter is not realizable, this does not invalidate its use for anafysis 
purposes since the only difference between a causal and a non-causal filter (having the same finite 
number of taps) is a shift in time. An odd number of filter taps is chosen for the analysis but an 
odd or even number of taps may be implemented affecting only the sampling tirne at the output of 
the MF in the receiver. 



rvhere go is the peak of the full raised-cosine impulse response given by 

and 

represents the filtered AWGN at symbol-spaced sarnpling instants. 

The first- and second-order statistics of the desired signal, AWGN, and filtered 

AWGN are expressed as 

(2. Ïa) 

(2.7b) 

( 2 . 7 ~ )  



where use has been made of the facts that 

and 

hjWi = hl-j 

due to the symmetry of the RRC filter coefficients about the peak of the impulse 

response at k = O. Var{-} denotes variance. Equation (2.9b) shows that the a u t e  

correlation of the noise taken at optimal sampling instants after the M F  has a shape 

described by the impulse response of the full, raised-cosine filter which crosses zero 

every N, samples (the baud period). The implication is that the noise sampled at 

the baud rate after the M F  is white. Also, frorn (2.7b), (Mb) ,  and (2.9b) it can be 

seen that the signal, AWGN, and filtered AWGN processes are wide sense stationary. 

Further, the desired signal and noise are assumed independent (and thus uncor- 

related) so that 

E{a&) = ,!?{a,) E ( z c )  = O (3.10) 

and 

Since y, is the decision variable, the ratio of the discrete signal power component of 

y, to the discrete noise power component of y, is the SNR. That is, 

The bit error pmbability may be stated in terms of this quantity. As an example, the 

bit error probability for coherent BPSK in real AWGN is 

w here 

is the Q-funct ion [62]. 



It will noiv be shown that, given the hIF system mode1 presented here, p = Es/& 

for cornplex signals in complex AWGN, and p = 2 Es/No = 2 Eb/No for real, antipodal 

signals in real ALVGN. The derivation of the symbol energy below assumes complex 

signals but the results are equally applicable to real signals. The main difference 

between the complex and real cases is in the treatment of the noise PSD rvhich is 

explained later in this section. 

The energy per symbol, Es, is an analog quantity and cm be expressed as  [62] 

where T is the baud period and PWgapd is the average (analog) desired signal power 

at the input to the receiver which may be found from the autocorrelation of the 

desired signal, &zk. It is convenient to derive the autocorrelation of r n k  by an 

extension of the autocorrelation for continuous signals [65] to the discrete case. 

Consider, for the moment, a continuous signal, s(t), of the form 

where the sequence of information symbols is denoted by a,, as before, and h(t) is the 

impulse response of some arbitrary pulse-shaping filter (note that s ( t )  is analogous 

to the discrete signal, mk). The autocorrelation of s(t  ), Rs(t + r, t ), is evahated as 

given in [66, page 2981 as 

where the expected value, E&) is performed with respect to the information se- 

quence, a,. 



The autocorrelation, Rs(t +T, t ), is a function of bot h t and r so it is not stationary. 

It is, however, cyclostationary so that 

The t dependence may be removed by taking the expected value of &(t + r, t ) mit h 

respect to the start time, t. Assume a uniform probability density function (pdf), 

. pt(X), for t such that 
O S X c T  

O otherwise. 

Taking the expected value with respect to t one obtains 

After some manipulation, one finds t hat 

where + denotes continuous-time convolution, and h ( r )  + h(-T) = g ( ~ )  because h ( r )  

is even. By analogy with the continuous case just derived, the autocorrelation, &(i), 

of r n k  can be written as 
.-. 

where T = N,Tç, and Ts is the sampling period. The average power of mk may be 

stated simply as 
n 



and so (2.14) in terms of discrete signals becomes 

Next, the noise PSD is related to the variance of the sampled noise. For this 

derivation, the noise PSD for the complex case is different frorn that of the real case 

by a factor of two ( s e  Appendix A). Specifically, for the complex case it is No 

(see Figure A.l(b) and (A.lO) of Appendix A), and for the real case it is No/2 (see 

Figure A.l(c)  and (A.29) of Appendix A). The complex case is treated first. 

Sampled WGN may be conceptualized as continuous WGN filtered by an ideal 

iven the lowpass filter centred at DC having a cutoK frequency of f l/2Ts [51]. G' 

complex noise PSD of magnitude No, the wiance  of the sampled noise (the noise 

power) may be expressed as 

Putting together equations (2.9c), (2.12), (2.17), and (2.18) yields 

In a sirnilar manner, for the real case, the noise power may be expressed in terms of 

26 



the real noise PSD of magnitude No/' as 

Putting toget her equations (2.9c), (Z.l2), (2. U ) ,  and (2.20) yields 

- - s ~ : ( E / s ~ : T s )  
N( NoI2NTs) 
E s  = 3- 
1Vo 

- Eb - 2-. (2.21) 
!v, 

From (2.2), it may be seen that [an[ = 1 by design so that CT; = 1. If the noise 

variance is normalized such that 0; = 1, and if the RRC coefficients are scaled such 

that go = CL h: 

and the discrete 

so that the SNR 

2.3 SNR 

ALI of the SNR 

averaging one or 

= 1, the decision variable (2.6) reduces to 

SNR of (2.12) reduces to 

may be set solely by the appropriate selection of S and N .  

Estimators under S tudy 

estimation techniques under study estimate the discrete SNR by 

more observable properties of the received signal over a number of 

received syrnbols. The SNR estimators under consideration fa11 into one of the two 

categories described in Sections 2.1.3 and 2.1.4. 

Estimator algorithms for both real and cornplex channels are provided for each of 

the SNR estimators considered in this study except for the SSME's which are designed 

to operate exclusively with BPSK signals in real AWGN (see Section 2.3.1). 



Where possible, estimator names and acronyms are those used by the original 

authors; otherwise, names and acronyms are arbitrarily assigned for ease of reter- 

ence. Al1 but one of the estimators are applied to the bandlimited channel mode1 of 

PSK signaling in AWGN described in the previous section-the SSMEo is the only 

algorithm designed specifically for wideband channels so it is treated separately. 

2.3.1 The Split-Symbol Moments Estimator (SSME) 

The SSME is based on the fint- and second-order moments of the received signal 

and was developed at  JPL in Pasadena, California for use in Deep Space Network 

receivers designed by NASA [XI. The original SSME algorithm, as formulated by 

Simon and Mileant [50], assumes a wideband channel since it was designed for low data 

rate transmission in the deep space channel where bandlimiting effects are minimal. 

Shah and Hinedi [51] studied the performance of the original SSME in narrowband 

channels. A modified SSME algorithm, presented in an unpublished, interna1 J P L 

memo [52], was developed to improve upon the performance of the original SSME in 

bandlimited channels. 

Three different SSME algorithrns are considered here. They are referred to as the 

SSMEo, SSME1, and SSMEz for ease of reference; their definitions are: 

1. SSMEo: the original algorithm [50] for wideband channels. 

2. SSbfEI: a modification of SSMEo for operation in narrowband channels me 

tivated by the modified SSIIE algorithm for narrowband channels presented 

in [52]. 

3. SSMEa: an alternate SShlE algorit hm for narrowband channels proposed here 

in an attempt to  improve upon the narrowband performance of the SSMEi. 

Al1 three of the SSME algorithms investigated use al1 of the N, samples per symbol 

available to the receiver. This is in contrast to SNR estimation techniques discussed in 



Sampled LI-T-~ 
Source Cj 

Figure 2.2: Baseband-equivalent model of wideband B PSK signaling in AWGN. 

Section 2.3.3, Section 2.3.4, and Section 2.3.5 which use just one sample per symbol. 

Al1 three SSME algorithms are of the in-service type. The published SSME techniques 

[50, 51, 521 are designed strictly for BPSK signals in real AWGN. None of the SSME 

algorithms is easily extended to higher orders of modulation. 

The SSME Algorithm in Wideband Channels (SSMEo) 

Al1 of the SNR estimation techniques considered in this study except for the SShlEo 

can be applied to the bandlimited channel model described in Section 2.2. In order 

to investigate the SShIEo algorithm, a suitable wideband channel model is required. 

The wideband system model adopted here is illustrated in Figure 2.2 which is a pared 

down version of Figure 2.1. The development that follows borrows some notational 

convent ions from [5 11. 

The original formulation of the SSME algorithm [XI, 511 assumes the transmitted 

message sequence is represented as a stream of square NRZ pulses, aij,  to which an 

AWGN sequence, zij, is added to form the received signal, 

r, = &a, + JNz, i {OJ, ..., Ns - 1) 
j E {O, L -  , Nsym - 1) 

where the subscripts (i, j) denote the ith sample of the jth symbol, N, is the number 

of samples per symbol, and N,,,, is the number of symbols upon which an estimate 



of the SNR is based. The binary source samples are given by 

so that Es is unity when S = 1. Also, as before, the noise source power is set to 

unity so that E{z$)  = 1. Two parameters, m, and m,,, are used to compute the 

SNR estimate from observations of the received signal samples, ri,. The SSSIE SNR 

estimator is expressed in terms of these two pararneters as [51] 

where rn, and m,, are derived from operations performed on the first h d f  and last 

half of each symbol. Let Yaj and Ypi be the sum of the first NJ2 samples and last 

N 4 2  samples, respectively, of the jth symbol expressed as 

and 

The quantities, Yaj and YBj, are used to compute m, and m,, according to 

m,, = - C (Yaj + Gj)' 
NsYm j=o 

so that mp is the product of the sum of the sarnples over the first half and last half of 

every symbol averaged over a block of N,,, symbols, while m,, is the square of the 

sum of the samples over the first and last half of every symbol, again averaged over 

Nsym symbols. 

The following analysis shows that the SSMEo iç unbiased in the limit that 

Nsy, -t W. Substitution of (2.23) into (2.25) yields 



Similarly, substitution of (2.23) into (2.26) gives 

Na* - 1 

= &;JE+ fi c zij-  

Substituting (2.29) and (2.30) into (2.27) one obtains 

Multiplying out terms and taking expected values gives 

The terms with E { z i j )  vanish since the AWGN is assumed to be a zero-mean process. 

The term E{zGay)  vanishes also since i is never equal to la in the double summation 

so that (2.31) reduces to 

Substitution of (2.29) and (2.30) into (2.28) yields 



Expanding terms and taking expected values gives 

After simplification, (2.33) becornes 

E{m,) = N, (S + N ) .  

The expected value of this SSME SNR estimator may be written as 

if Nsym is large enough [XI. Substituting (2.32) and (2.34) into (2.35) one obtains 

Evidently, is an estimator of EstNo, not SIN. With a trivial modification, 

however, an SSME estimator for S/N is obtained as 

The expected value of is 

which demonstrates that the SSMEo estimator is unbiased for large values of N,,,,. 

An SSME Algorithm for Narrowband Channels (SSMEI) 

In [51], it is concluded t hat the ad hoc application of the SSMEo algorithm (designed 

for wideband channels) to narrowband channels is not entirely satisfactory. In (521, a 

modified SSME is presented which takes into account the bandlimiting of a receiver 



filter. The modified-SSME SNR estimator of [52] is presented here in notation consis- 

tent with that used in the previous discussion of the SSMEo estimator. The rnodified 

SSbIE estimator is expresseci as 

where 

LqiWk = E(wiwk)  is the autocorrelation of the coloured noise, ônd the subscripts i 

and k denote samples taken a t  the sampling rate (1V, sarnples/symbol). In (521, it 

is assurned that the shape of the autocorrelation of the noise is known (specified by 

but the amplitude is unknown, thus the scale factor, a. 

The assumptions made for the derivation of (2.36) in [52] are not consistent with 

the model presented in Section 2.2, so an independent derivation of an SNR algorithm 

based on the modified-SSME of [52] is presented below. The main difference between 

the model assumed in [52] and the mode1 presented in Section 2.2 is that, in the former, 

bandlimit ing is due to  a receiver filter only, while the Iat ter considers bandlimiting due 

to both a transmitter and a receiver filter. The modified-SSM E, tailored to the model 

of Section 2.2, will be referred to as SSME, to distinguish it from the modified-SSME 

of [ S I .  

Starting with the output samples of the MF, yk, given by (2.5), the substitution 

of the transrnitted signal, mk, by (2.3) gives 

Assume that the coefficients of the RRC filter are non-zero over the range 

1 E {O, 1,. . . , L - 11, and let k = ko denote the start of valid data at the output 

of the causal MF. The double-subscript, ij, used in the derivation of the SSMEo 

is dropped and a single subscript, k, is used instead since the ij notation becomes 



awkward in the analysis of a pulse-shaped signal (whose amplitude is not constant 

over the duration of a symboi). Rewriting (2.25) and (2.26) in terms of the output 

of the matched filter and the single subscript, k, one obtains 

Substituting (2.37) for yk in (2.38) 

The product of Yaj and Ypj may be expressed as 

w here 

and 

Substituting (2.39) into the expression for rn, above, and taking expected values gives 

w here 



Using the real forms of (2.7), (2.9), and (2.11), one obtains 

Equation (2.40) may then be written as 

where 

and 

The limits of the summation over n are determined by the limits of the summation 

over 1 as 



ivhere LxJ denotes the largest integer less than or equal to x, and rxl denotes the 

smallest integer greater than or equal to z. 

Next , recall from ('2.2s) that 

The squared sum of Y, and Ypj is expressed as 

After substitution of (2.42) into (2.25), expanding, and taking expected values, one 

obtains after some simplification that 



w here 

The sums in (2.43) may be consolidated so t hat E{m,,) reduces to 

where 

and 

The limits on n are as specified in (2.41). 

In sumrnary, given the two observables, m, and m,,, the  solution of the system of 

equations given by 

yields an estimator for the signal power, SsçbiE,, and an estimator for the noise power, 

iVsçh.IEt, 50 that the SSMEl SNR estirnator is stated as 

Note that the coefficients, a, p, 7, and 6 are functions of the filter taps and so are 

not constant among systems with different channel impulse responses. 

A Second SSME Algorithm for Narrowband Channels ( S S M E a )  

An alternate SSMEtype algorithm for narrowband channels is provided below based 

on a modification of SSMEl. This extension of the SSME algorithm has not been 

found in the literature. This new estimator will be called SSM& for convenience. 



Recall t hat the original SSME strategy sums samples over half-symbol intervals 

as  expressed in (2.38) and reproduced below for convenience as 

ko+j& +&/2-1 

These half-symbol sums are averaged over Nwm symbols to form the observed quanti- 

ties, rn, and m,,, as given in (2.27) and (2.28) and reproduced below for convenience: 

These observed quantities are used to compute an estimate of the SNR. 

In bandlimited channels, the variance of the haif-symbol sums, Yaj and G, from 

symbol to symbol is relatively large. If the half-symbol sums are averaged over the 

entire block of symbols first and then used in the expressions for m, and m.,, perhaps 

this would make a better SNR estimator. Of course, if the half-symbol sums are 

performed over the whole block on the the samples themselves, the result of the sums 

will be zero since the expected values of the transmitted message sequence and the 

coloured WGN out of the M F  are zero. However, consider the half-symbol sums 

performed on the square of the samples, and let m, and m,, be replaced by rn, and 

rn, which are defined as 

The expected values, E(m,) and E{m,) are given by (the results are given without 

the lengthy derivations) 



The bounds on n are given by (2.41). 

The following outlines the method to generate an estimate of the SNR using the 

SSME2 method: 

1. Generate the two observables, m, and m,,, from a sequence of Nsy, symbols. 

2. Substitute the observed quantities, m, and m.,, for E{m,) and E(m,,), re- 

spectively, in the system of equations identified by (2.44) to get 



m,, = azS2 + P2SN + 7 2 ~ 2  

Solve the system of equations to obtain an estimate of the signal power, SSSME?, 
4 

and an estimate of the noise power, NSÇM4. 

Using S Ç Ç M ~  and fissMEz, the SSMEz SNR estimator may be expressed as 

As in the case of the SShIEI, the coefficients of the SSME2 are functions of the filter 

tap coefficients and so are different for channels with different impulse responses. 

2.3.2 The Maximum-Likelihood SNR Estimator 

An SNR estimator based on classicd maximum-likelihood (ML) estimation theory 

[67] was introduced by Kerr [44], and Gagliardi and Thomas (451. In the latter, more 

detailed treatment, based on work doae by Thomas [47], the ML SNR estimator for 

coherent BPSK signals in AWGN is derived and studied. 

In the this section, some general theory of M L  estimation is first presented, fol- 

lowed by a derivation of the ML SNR estimator for coherent BPSK signals in real 

AWGN. Lastly, the ML SNR estimator is extended to the case of general, coherent 

M-ary PSK signals in complex AWGN. 

Some General Estimation Theory 

The following treatment is based on concepts developed in [67,47,68]. Consider some 

o b s e r ~ b l e  random variable, z, whose value is dependent on a set of L fixed, unknown 

parameters, 0 = (O1, O*, . . . ,OL). Assume h' such observations are available to form 

the observation vector, x = (xl, x?, . . . , zA). The objective is to find an estimator, 

d(x), which generates estimates of 0 based on the observations, x. 

The a posterion pdf of 0 conditioned on x is written as p(B lx). The maximum 

value of thjs function occurs at the value of û which is most likely given the observa- 



tions, x. The estimator that generates estimates of 8 based on the maximization of 

p(8lx) is called the mazimum a posteriori (MAP) estirnator. 

Since p(xl8) is often easier to find than p(Blx), consider the identity [66] expressed 

where p(0) represents a priori knowledge of the distribution of O. Since the àIAP 

estimator maximizes p(8lx) with respect to 8,  and since p(x) is not a function of 

8, the value of û that maximizes (2.45) also maximizes p(xl@)p(O). The natural 

logarithm is a monotonie function so that the value of B that maximizes p(xl8)p(8) 

also maximizes 

lnp(~ le )p(8)  = hp(xl0)  + ln p ( 0 ) .  (2.46) 

It is often mathematically more convenient to work with the logarithrn. 

The value of B that rnaximizes (3.46) is found by taking partial derivatives mith 

respect to each of the unknown parameters, Bi, i E {1,2, . . . , L), and setting the 

results equd to zero as 

Assume that al1 d u e s  of 9 are equally likely; that is, assume that 19 is uniforrnly 

distributed for all values of interest so that al1 partial derivatives of In p(0; )  vanish 

and (2.47) becomes 

where r(B) = ln p(xlO) is the likelihood function of 8. Solving (2.48) for 0 in terms 

of x yields the rnatimurn likeiihood (ML) estimator for 0, dblL(x). 

Derivation of the M L  SNR Estimator for Real Channels 

The ML estimator described above is now applied to the mode1 presented in Sec- 

tion 2.2 and illustrated in Figure 2.1, with cornplex signals replaced by real ones. 



The 

The 

received signal is given by (2.4) as 

rk = JSmk + J N r k -  

observation vector in this case is the sequence of K = NsymNs received real 

signai samples, 

r = (rO,rl ,... , r ~ - l } .  

The tivo unknown parameters to be estimated are S and N (L = 2). Al1 that is 

required to fînd the ML estimators for S and N is the likelihood function, 

r(S7 N) = ln p(rl S, N). 

Let v k  = so that the pdf of the noise term rnay be written as 

Using (2.4) and (2.49), the pdf of r k  conditioned on S and N may be expressed as 

Since r k  represents samples of the received signal before the MF, the noise samples 

are independent and the joint pdf for al1 K observed samples of r k  may be written as 

so that the likeiihood function is 

Strictly speaking, r(S, N) also depends on the specific message sequence, r n k ,  that 

was transrnitted. Let m f )  denote the ith sequence out of 2N*7m possible transrnitted 



binary sequences. This data dependence may b e  explicitly included in the likelihood 

function as 

The estimators for S and N are the solutions of the system of equations 

= O 

Taking the partial derivatives of ï(S, N, i) with respect to S, one obtains 

and solving for 3 gives the ML RxDA estirnator for S for real channels as 

Similarly, taking the partial derivative with respect to N, one obtains 

and solving for fi gives the ML RxDA estimator for N for real channeis as 

Finding the ML estimate of i is a detection theory problem [67]. Consider the expan- 

sion of (2.50) as 



Since the objective is to maximize the likelihood function, î denotes the transmitted 

sequence that maxirnizes the inner product of rk and mp) [45]. This is precisely 

the task of a M L  receiver [65, page 2391 which consists of a device that selects the 

largest output of a bank of 2 N y m  correlators, where the ith correlator performs the 

inner product of the received signal with a copy of the ith possible binary transmitted 

sequence. The sequence associated with the correlator having the largest output is 

chosen as the most likely sequence and is denoted by i. 

Given (2.52), the ML estimator for S, and (2.53), the M L  estimator for N, the M L  

SNR estimator may be found using the property [45] that the ML estimateof the ratio 

of two parameters is the same as the ratio of the two separate ML estimates. This 

fortunate property allows the in-service, ML RxDA SNR estimator for real channels 

written directly as 

where (2.16) has been used to evaluate the average power of the transmitted message 

sequence according to 

Note that in [45], i t is assumed that &(O) = 1. 

The TxDA form of the ML SNR estimator is identical to (2.54) except that i does 

not need to be estimated because the transmitted sequence is known exactly by the 

receiver. The ML TxDA SNR estimator for real channels may be expressed as 

where r n k  represents the true, pulse-shaped, transmitted samples given by (2.3). The 

ML TxDA SNR estimator given in (45, 471 appears different from (2.56) due to the 

assumption in [45, 471 that &(O) = 1. 



Thomas [47] shows that the ML TxDA SNR estimator exhibits a small bias. I t  

can be shown that the bias of the M L  TxDA SNR estimator given by (2.56) is 

where p = S/N represents the true SNR. As pointed out in [lï]. this bias can be 

minimized by scaling NbrLTxDA,rrd by l/(K - 3) instead of by l/K. Let ting $ML,TxDA 
denote the "reduced-bias" ML TxDA SNR estimator, one has 

The expected value of the reduced-lias ML SNR estimator given by (2.53) is 
1 

The difference between the biased and reduced-bias estimates is small unless i< is 

very small. 

In [47], expressions are also given for the variances of the biased and reduced-bias 

M L  TxDA SNR estimators, again assuming &(O) = 1. The expressions in (471 may 

be modified to represent the theoretical variances of the blL TxDA estimators given 

by (2.56) and (2.58) (for which &(O) = 1/NJ as 

Analytical expressions for the bias and variance of the M L  RxDA SNR estimator are 

difficult to derive since receiver decision errors must be taken into account. In (471, no 

derivation is given for the bias and variance for the RvDA case, but the assurnption 

is made here that iYh(LRrDA,Ed rnay be modified in the same manner as described 

above for f?bILTxDA,Ral in order to obtain a reduced-bias, in-service ML RxDA SNR 

estimator from (3.54) as 



The reduced-bias ML SNR estimator expressions given by (3.5s) and (2.61) are the 

ones used in this study for real channels (coherent BPSK signals in real ALVGN). 

Note that these expressions may be used unchanged in any coherent BPSK system 

using an arbitrary pulse-shaping filter as long as the sum of the squares of the filter 

coefficients is unity so that the average power of the transmitted message sequence 

is l/!V,. In the case that the sum of the squares of the filte: coefficients is not unity, 

modified expressions may be derived assuming the pulse-shaping filter coefficients are 

known. 

Derivation of the ML SNR Est imator  for Complex  Channels 

The M L  estimator for complex channels is derived from samples of the complex, noisy 

received signal @en' by (2.4) which may be re-wri t ten explicitly in terms of real and 

imaginary parts as 

Let u~~ = al, and UQ, = a z q ,  represent the in-phase and quadrature corn- 

ponents of the noise, respectively, each having zero mean and variance, N/2 .  The 

in-phase and quadrature components of the noise are assumed independent so that 

their joint pdf can be written as 

Using (2.62) and (2.63), the joint pdf of the in-phase and quadrature components of 

a received signal sample, given S is the signal power, N is the noise power, and i 

denotes the ich sequence of M ~ S Y ~  possible transmitted message sequences, may be 

expressed as 



The independence of the signal and noise sequences allows the joint pdf of the Ii = 

NsymNs received samples to be written as 

where r1 = {q,, r ~ ,  , . . . , rr,-, ) and r~ = {rg, ,  FQ,, . . . rQ,-,). The likelihood func- 

tion, r(S, N ,  i), is given by 

Solving the system of equations given by (2.51) using (2.66), one obtains the ML RxDA 

signal power estimator for complex channels as 

and 

In a 

the ML RxDA noise power estimator for complex channels as 

similar manner to that shown by (2.55) for the real case, the average power of 

the complex transmitted message sequence simplifies to 

As mentioned earlier, the ML estimate of the ratio of two parameters is the ratio of 

the ML estimates of the two parameten so that, in a similar manner to that shown 

by (2.54), the ML RxDA SNR estimator for cornplex channels may be written as 



where î corresponds to the sequence of received symbols estimated by a M L  receiver, 

as before, and Re{-) denotes the real part of a complex quantity. 

The ML TxDA SNR estimator for complex channels is obtained by replacing the 

estimated symbol sequence, denoted by il with the known, transmit ted pulse-shaped 

samples, denoted by mk, to yield the desired estimator as 

It was shown earlier t hat rnuitiplying NhlLTxDA,d by K/ (K  - 3) yields a reduced- 

bias ML SNR estimator for the real case. It was found by simulation that the ad hoc 

application of this factor to kL TxD4compiex does not improve the performance of the 

ML SNR estimator in the complex case as the bias becomes wone. In order t o  obtain 

the correct multiplier factor, the pdf of ~ L T x D A , c o m p l e x  must be derived so that the 

bias of the complex ML TxDA SNR estimator may be evaluated as Thomas did for 

the real case in [47]. This derivation is complicated. 

Instead, in a heuristic attempt to find a reduced-bias estimator, consider corn- 

puting an estimate of the noise power as the unbiased sample variance of the  noisy 

received signal2 so t hat an expression for a reduced-bias bl L TxDA SNR estimator 

for complex channels may be written as 

By simulation it was observed that this form of the ML TxDA SNR estimator in a sys- 

tem with 8-PSK-modulated signals corrupted by complex AWGN performs rnarginally 

better than the form given by (2.71). 

Similarly, a reduced-bias, in-service ML RxDA SNR estimator for complex chan- 

'The idea to try the unbiased sarnple variance in an attempt to find a reduced-bias M L  SNR 
estimator for complex channels was inspired by the SNR estimator propoçed by Gilchriest [46] 
describecf in Section 2.3.3. 



nels may be mritten as 

The reduced-bias M L  SNR expressions given by ('7.72) and (2.73) are the ones used 

in this study for complex channels. These expressions may be used unchanged in 

any system where coherent hl-ary PSK modulation is ernployed in a cornplex AWGN 

channel, and where the sum of the squares of the pulse-shaping filter coefficients is 

unity. These estimators are easily extended to other coherent modulation schemes, 

such as QAM, and other systems using arbitrary pulse-shaping filters as long as the 

impulse response of the pulse-shaping filter in the transmitter is known. 

The M L  estimators and the SSME series of SNR estimators are the only SNR 

algorithms in this study that operate on more than one sample per symbol. The 

remaining algori t hms discussed in subsequent sections operate on the one optimal 

sample per symbol a t  the output of the MF. 

2.3.3 The Squared Signai-to-Noise Variance (SNV) Estima- 
tor 

This estimator is based on the first and second moments of the optimally-sampled 

output of the MF, and is probably the simplest and most straightforward approach to 

SNR estimation. It was studied by Gilchriest in 1966 at the Jet Propulsion Laboratory 

(JPL) in Pasadena, California, and reported in an interna1 Company document [16]. 

Benedict and Soong [42] describe an estimation procedure based on first and second 

moments, but it is computationally more complicated (the signal power must be 

solved implicitly), and only the separate estimation of carrier level and noise level 

is considered. The SNV estimator studied by Gilchriest [46] estimates explicitly the 

ratio of signal power to noise power. Coherent BPSK signaling in the real AWGN 

channel is assumed. 

In this section, the original formulation of the SNV RxD.4 estimator for coherent 



BPSK signals in real AFVGN is first presented, followed by a description of the TxDA 

counterpart. The SNV SNR estimator is then extended to the case of general, coherent 

dl-ary PSI< signals in complex AIVGN. Reduced-bias forms of the SSV estimators 

are provided for both the real and complex cases. 

Derivation of the SNV SNR Estimator for Real Channeis 

The SWV RxDA SNR estimator for real channels proposed by Gilchriest [46] is simply 

the ratio of the square of the mean of the absolute value of the signal to the noise 

variance. Recall from equation (2.22) in Section 2.2 that the sampled output of the 

MF may be  expressed as 

y, = JSa, + a w , .  

where i denotes one of the 2 5 y m  possible symbol sequences estimated by the receiver. 

The latter equality bolds because a,, given by (24, is either 1 or -1 for BPSIi signals 

in real channels. Due to the independence of the signal and the noise sequences, the 

mean of x, is evaluated as 

where the assurnption is made that there are no receiver errors so that a:) = a, and, 

consequent Iy, 

The variance of x, is evaluated as 

Using the real forms of (2.7), (2.9), and (2.1 l), one has 



Substituting (2.75) and (2.77) into (%.76), one obtains 

where the result is approximate due to the assumption of no receiver errors. The 

SNV RxDA SNR estimator for coherent BPSK in real ALVGN may then be expressed 

In practice, ergodicity is assumed to hold so that the statistical mean, E{xn}, and 

the statistical variance, Var{zn),  in (2.78) may be replaced with the sarnple mean, 

5, and the unbiased sample variance, s:, respectively. For a finite number of received 

symbols, N,,, the sarnple mean is evaluated as 

and the unbiased sample variance is 

so that the in-service, S N V  RxDA SNR estimator for coherent BPSK in real AWGN 

based on sarnple statistics may be expressed as 

This is essentially the result of [46]. 

Consider now SNV TzDA SNR estimation where a copy of the transrnitted data 

sequence, a,, is made available to the receiver. In a similar manner as shorvn previ- 

ously by (2.74), define a variable, z,, as 



where a, represents the true transmitted symbols. Again invoking the independence 

of the signal and noise sequences allows the mean of (2.80) to be evaluated as 

The variance of xn is evaluated as 

Note that E{yza:) = E(y:) since a, = k1 for real BPSK signals. The SNV TxDA 

SXR estimator may be expressed in terms of the received sequence, y,,, and the knocvn 

transmit ted sequence, a,, as 

In terms of sample statistics, the SNV TxDA SNR estimator is expressed as 

This SNV TxDA SNR estimator is a simple extension of the SNV RxDA SNR estima- 

tor presented in [46]. There is no mention of it in the literature, but its performance 

is of interest and it c m  be used to advantage in systems where known sequences are 

inserted into the transmitted data, 

The SNV expressions given by (2.79) and (2.81) are remarkably similar to the 

ML expressions given by (2.61) and (2.5S), respectively. In fact, the structure of the 

intuitive SNV estimator is identical to the structure of the ML estimator operating 

on the samples after the MF. The ML method may be applied t o  those baud-spaced 

samples, given by (2.22), because in the context of the system mode1 described in 



Section 2.2, the information symbols are ISI-free and the noise is white a t  those 

instants. 

Replacing I< wit h lVsym, r k  (the received signal before the MF) wit h yn (the baud- 

spaced received signal after the MF), and rnt with a, in the ML expression given by 

(%.58), and acknowledging that Ns = 1 in the SNV case, one obtains a reduced-bias, 

SNV TxDA SNR estimator for coherent BPSK in real AWGN as 

This expression differs from (2.81) only in t hat the factor l/(iV,,, - 3) appears in the 

denominator of (2.S2), whereas the factor 1/(N..,,, - 1) appears in the denominator 

of (2.81). In a similar manner, one obtains a reduced-bias forrn of the SNV RvDA 

SNR estimator for coherent BPSK in real ACVGN as 

The reduced-bias expressions given by (2.S2) and (233) are the expressions corre- 

sponding to the SNV TxDA SNR estimator and the in-service, SXV RxD.4 SSR 

estimator, respectively, used in this study for coherent BPSK in real A W G X  These 

expressions can be used unchanged in any coherent BPSIi system that ernploys a 

root-Nyquist filter (not necessarily a RRC filter) in the transmitter and receiver. 

Derivation of the SNV SNR Estimator for Complex Channels 

In the above derivation of the S N V  SNR estimator for real channels, it was found 

that the SNV estimator is actually the M L  SNR estimator operating on the baud- 

spaced samples given by (2.22). Using this fact allows one to write the reduced-bias? 

SNV TxDA SNR estimator for coherent Al-ary PSI< in complex AWGN as 



which is an adaptation of the reduced-bias, compler AIL TxDA SNR estimator given 

by (2.72). 

Similarly, an in-service, reduced-bias, SNV RUDA SXR estimator for coherent 

IV-ary PSI< in complex AWGN may be expressed as 

(2.S5) 

which is an adaptation of the in-service, reduced-bias, complex M L  RxDA SSR es- 

timator given by (2.73). In (2.S5), î denotes the i th sequence of iClAXym possible 

transrnitted symbol sequences formed from receiver decisions. 

Equations (2.84) and (2.85) are the SNV estimators used in this study for corn- 

plex channels. These expressions can be used unchanged in any coherent AI-ary PSIi 

system that employs a root-Nyquist filter (not necessarily a RRC filter) in the trans- 

mitter and receiver, and they can be extended to other forms of coherent modulation 

such as QAM. 

2.3.4 The Second- and Fourth-Order Moments (1\.[21\14) Esti- 
mat or 

The earliest mention of the application of the second and fourth moments to SNR 

estimation was in 1967 by Benedict and Soong [42] who consider only the separate 

estimation of carrier strength and noise level (as opposed to the estimation of the 

ratio of carrier strength to noise level) in AWGN. No derivation details are provided. 

The estimation of signal power to noise porver using the method of second and fourth 

moments is treated in papers by Matzner [53], and blatzner and Engleberger [54] 

(both published over two decades after the work of Benedict and Soong) in which 

more derivation details are provided. A patent application has been submitted as 

a result of the modern-day work [69]. Mat hemat ically, the modern-day derivat ion 

yields the same expressions as those given in [42]. 



The results given in [QI and (531 are based on the assumption of cornples signals 

in cornplex AWGN, ivhile in [54] an overview is given of the real case using a different 

approach. The detailed derivation of the L\~~L\I~ estimator for real channels is offered 

here first, followed by a sketch of the derivation of the 1\f2.\4 estirnator for complex 

channels. The development is very similar to that given in [ S I .  No precise name or 

acronym has previously been assigned to this technique, so ' M 2 M . "  is used for easy 

reference. 

Derivation of the kf2M4 SNR Estimator for Real Channels 

Consider the sampled output of the M F  receiver previously given by (2.22) as 

where al1 quantities are assumed real. Let 1k12 denote the second moment of y, as 

Since the desired signal and noise each have zero mean and are mutually independent, 

AI2 reduces to 

hl2 = S + N .  

Similady, let hl'' deente the fourth moment of y, as 

Again, due to the statistical independence of t he desired signal and noise, the expected 

values of the products of signal and noise may be written as the products of the 



expected values. Thus 

E {azw,)  = E { a i }  E {w,)  = O 

E{a,w?) = E{a,} ~{w:) = O 

~ ( a n w n }  = E{an} ~{w:) = 1. 

Let ka be the kurtosis of a,, and kW be the kurtosis of W. expressed as 

then hl4 may be written simply as 

Equations (2.86) and (2.59) form a system of two equations in two unknoivns, S and 

iV. The solution of the system of equations yields an expression for the signal power 

est imator for real channels as 

and an expression for the noise power estimator for real channels as 

The &hl4 SNR estimator for real channels is the ratio 

For BPSK in real AWGN, ka = 1 and k, = 3 so that (2.92) simplifies to 

where the negative root of (2.90) is chosen so that &.ll,,rea~ is positive. 



Derivation of the i\12hf4 SNR Estimator for Complex Channels 

For the complex case, 1Cr2 and hl4 must be re-derived assuming the signal given by 

(2.22) is cornplex. The second moment in this case is expressed as 

and the fourth moment is given by 

Again, assuming the signal and noise are zeremean, independent random processes, 

and assuming the in-phase and quadrature components of the noise are mutually 

independent, (2.94) and (2.95) reduce to 

(as in the real case), and 

respectively, where ka = E {la, 14)/E{Ian I2I2 and kW = E { [w ,  1 4 ) / E { ( ~ n  1 2 ) *  are the 

kurtosis of the complex signal and the kurtosis of the complex noise, respectively. 

Solving for S and N, one obtains the 1W21Cf4 estimators for the signal power and noise 

power for complex channels as 



Equation (2.99) is equivalent in form to (2.91). 

For any M-ary PSK signal, k, = 1, and for complex noise, X; = 2, so that the 

1 & d 4  estimator for this special case reduces to 
A 

Shh J4 .cornplex - 
PX12M4, complex = - 

N f i  ~4 .cornpiex kt2 

where the negative root in (2.95) is selected so that b,rr2nr, ,compiu is positive. 

For the purpose of implementation, fil2 and hl4 are approximated by their respec- 

tive time averages [54] as 
Nwm-1  

and 

which, as written, are applicable to both the red and complex cases. 

The kf2n/14 estimator is of the in-service type, and has the advantage that knowl- 

edge of the transmitted data need not be known or estimated (which is why the TxDA 

and RxDA labels are not applied to this estimator). The M2A4 estimator given by 

(2.100) is applicable to any coherent or differentially coherent M-PSK modulation, 

and is easily extended to systems employing other modulations such as QAXI. Note 

that carrier phase is not typically recovered in differentially coherent systems. The 

b f 2 ~ 1 . f ~  estimator has the advantage that carrier phase recovery is not required (since 

the second and fourth moments of the received signal carry no phase information) 

which is why it is applicable to both coherent and differentially coherent systems. 

The expressions given by (2.93) and (2.100) may also be applied to systems in which 

the system impulse response is different from that specified in Section 2.2 as long as 

the transmit and receive filters are root-Nyquist. 

2.3.5 The Signal-to-Variation Ratio (SVR) Estimator 

In 1994, Brand50 et al 1561 presented the SVR estimator as a means to measure 

the quality of a received signal in a multipath fading channel. Though intended 



for (cornplex) fading channels, this estimator may be adapted to any coherent or 

differentially coherent M-ary PSK modulated signal, including B PSI< in real ALVGN. 

It is not applicable, in general, to other modulation schemes such as QAM. This 

method is based on the autocorrelation properties of the square of the sampled output 

of the MF. The derivation of the SVR SNR estimator for BPSK in real AWGN is 

presented first, followed by an extension to M-ary PSI< in compiex ALVGN. The 

derivation presented here is similar to the development given in [56]. 

Derivation of the SVR SNR Estimator for Red Channeis 

Recall the expression for the sampled output of the MF from (2.22) written as 

assuming real quantities. The SVR estimator is a function of the parameter, P ,  which 

is expressed for real signals as 

After expansion of the right-hand side of (2.103) using (2.22), an expression rnay be 

found for p = SIN as a function of P. This expression is the SVR estimator for real 

AWGN channels, PSVR,rrdi which generates SNR est imates from measurements of P.  
The term, E{y; f ) ,  may be recognized as M4 of the M2Itl4 estimator derived in 

Section 2.3.4, and given by (2.89) as 

In order to expand the other term in (2.103), consider the product 



In order to evaluate the expected value of (ZlO1), note that considerable simplification 

results from the fact that the expected value of any product with a single signal or 

noise term vanishes due to the assumed mutual independence of the signal and noise. 

Exploit ing the independence properties of the signal and noise furt her, one has 

Using these relations allows the expected value of (2.104) to be written as 

Substituting (2.59) and (2.105) into (2.103), one obtains 

The SVR estimator is then found by solving (2.106) for p in terms of ,8 yielding the 

general expression for real channels as 

Specifically, recall from Section 2.3.4 that ka = 1 for BPSK signals and kW = 3 for 

real AWGN so that, taking the positive root, (2.107) simplifies to 

Derivation of the SVR SNR Estimator for Complex Channels 

In the complex case, the SVR estimator is a function of the parameter P expressed 



where y, is given by (2.22). The t e m ,  E{(ynyn)2)7 is recognized as -14 of the complex 

form of the içlzM4 estimator of Section 2.3.4 given by (2.97) as 

The other term in (2.109) simplifies to 

again exploiting the independence properties of the signal and noise samples. Substi- 

tuting (2.97) and (2.110) into (3.109), one obtains 

which may be solved for p to yield the general SVR estimator for complex channels 

as 

Specifically, recall from Section 2.3.4 that ka = 1 for 111-ary PSK signals and kW = 2 

for complex AWGN so that, taking the positive root, (2.112) simplifies to 

~ W R .  complex = P - 1 + ~ P ( P  - 1)- 

In practice, p is computed in terms of time averages as 

which, as written, could be applied to both real and complex channels. 

Just as the hf2R/f4 estimator, the SVR estimator is of the in-service type, and has 

the advantage that the transmitted data need not be knoivn or estimated. The SVR 

estimator given by (2.113) is applicable to any coherent or differentially coherent Bf- 

PSK modulation. As mentioned in Section 2.3.4, in differentially coherent systems, 

the carrier phase typically is not recovered, but this is not a problem for the SVR 



estimator since the phase information of the signal is removed in the estimation pro- 

ces .  As mentioned earlier in this section, the SVR estimator is not easily extended to 

systems employing other modulations. The expressions given by (2.108) and (2.113) 

may be applied to  systems in which the system impulse response is different from that 

specified in Section 2.2, as long as the transmit and receive filters are root-Xyquist. 

2.4 Other SNR Estimators of Interest but not In- 
cluded in this Study 

This section lists a few SNR estimation strategies which are mentioned for complete- 

ness, but which were judged to be unsuitable for t his st udy. The reasons for exciuding 

these estimators are given in the brief descriptions that follotv. 

2.4.1 Use of Limiters for Estimating SNR 

Nahi and Gagliardi [l] discuss an unusual method of SNR estimation which is ac- 

cornplished with a hard limiter, a filter and a power meter. The method exploits the 

autocorrelation properties of the desired signal and noise. In [l], the assumption is 

made that both the desired signal and noise are Gaussian stochastic processes. There 

is no mention in [l] or elsewhere in the literature of the application of this method 

to discrete, random signals corrupted by AWGN. Although the method is attractive 

since the measurement of SNR is accomplished by a simple power measurement, it 

was judged unsuitable for this study of SNR estimators based on the results reported 

in [l] as explained below. 

In [Il, the desired signal and noise are Gaussian stochastic processes having dif- 

ferent autocorrelation functions (the autocorrelation funct ions cannot be ident ical in 

order for this method to work). The SNR is related to the average power, P..,, of the 

filtered output of the corrupted signal after hard limiting. An expression for PWt rnay 

be derived explicitly in terms of the SNR, but the expression is not easily inverted. 

That is, the SNR cannot be expressed explicitly as a function of Pour so that the SNR 



must either be solved implicitly by iterative techniques, or found with the use of a 

look-up table. 

A more S ~ ~ O U S  problem is the fact identified in [l] that the relationship betwveen 

Po,, and SNR/(SNR + 1) is linear, a t  least for the case in which both the desired 

signal and noise are Gaussian stochastic processes. At a first glance, this linear 

relationship seems encouraging since it is easy to estimate empirically a straight line 

which can then be used to convert measurernents of PouL to SNR. However, consider 

Figure 2.3. Figure 2.3(a) displays some arbitrary linear relationship between Pou, and 

SNR/(SNR+l). Figure 2.3(b) shows Pou, plotted as a function of SNR. It can be seen 

that for SXR > 10dB (almost the entire SNR range of interest), Po,, is essentially 

"saturatedn; that is, even a small inaccuracy in the measurement of Pou, can result 

in a very large error in the estimation of the SNR, as the 5% error bars demonstrate. 

Though these results are baçed on Gaussian stochastic transrnitted signals, sim- 

ulation results indicate a similar sensitivity in the case of binary, discrete random 

signals. With this degree of sensitivity, a very large number of samples is required to 

obtain reasonable SNR estimates-the nurnber of required samples is orders of mag- 

nitude more than the number of samples required by the ot her estimators described 

to this point for the sarne quality estirnate. This method was not considered further 

since it was judged to be too impractical. 

2.4.2 Autocorrelation Met hod of SNR Estimation 

This SNR estimation method is also based on the autocorrelation properties of the 

desired signal and noise. A discussion of this particular estimator has not been found 

in the literature. 

The estimate of the SNR is derived from the samples, yk, of the output of the MF 

cvhich, from (2.5), are expressed as 



p, SNR, dB 
(b) 

Figure 2.3: Performance of the SNR estimator described in [Il: (a) measured average 
power as a function of SNR/(SNR+l), (b) measured average power as a function of 
SNR. 



Let the filtered samples of the desired signal be denoted by Ck and, as before, let wk 

denote the coloured noise samples so that the output of the M F  may be expressed as 

The normalized autocorrelation of y, denoted by p,, is required in order to proceed 

with this method. An expression for y, is derived below by considering the autocor- 

relations of the desired signal and noise separately. 

First, consider the autocorrelation of the desired signal. Recall from (2.15) that 

the autocorrelation of the transmitted signal, mk, can be expressed as 

Since C is the result of the discrete convolution of mk with ha, the autocorrelation of 

C is evaluated as 

where ~ ( 1 )  is the normalized autocorrelation of C, and 



From (2.9b), the normalized autocorrelation of the  coloured noise can be written as 

Using (2.115) and (2.116), the normalized autocorrelation of y may be written as 

where, as  always, p = SIN. Solving for p, the SNR is obtained as 

Ns ( ~ ~ ( 4  - ~ ~ ( 1 ) )  p z -  
a 9 d w - ~ c t l )  - 

Both ~ ~ ( 1 )  and ~ ~ ( 1 )  are known, as are iV, and a, so that a measurement of the 

autocorrelation of the output of the MF may be used to find an estimate of the SNR. 

Consider the special case of 1 = RN,; that is, consider the optimally-sampled output 

of the MF. In this case, 

so that (2.11 7) simplifies to 

It is imrnediately apparent that this SXR estimator will not work well for high 

SNR since y, (n N,) approaches yC(nN,) implying that the measurernent of y, (nN,) 

would have to be extremely accurate in order to obtain meaningful (finite and positive) 

SNR estimates. Cornputer simulation tests of this estimator a t  moderate values of 

SNR (around 10 dB) revealed that the number of symbols must be very large (on the 

order of 104 symbols or more) for meaningful SNR estimates to be generated. Apart 

from this estimator, the one described in Section 2.4.1, and the SSMEl and SSME2, 

al1 of the other estirnators described in Section 2.3 require many fewer symbols (on 

the order of just 10 to 100 symbols) to generate meaningful SNR estimates. Given 

this fact, this method was not considered further for extensive simulation testing. 



2.4.3 Implicit Methods of SNR Estimation 

Al1 of the methods discussed so far have been treated explicitly as methods of SNR 

estimation. Some SNR methods arise implicitly in the discussion of other subject 

areas. Two examples are provided here. 

In the context of blind identification and equalization, Tong et al [?O, page 3461 

show how the noise variance may be found from the singular value decomposition 

of the covariance matrix of the received signal. Since the authors had no need to 

compute the signal power, no method for signal power estimation is offered in [TOI, 

but it is presumed that one rnay simply estimate the total signal-plus-noise power 

(by averaging the squares of the noise-corrupted received samples), and t hen subtract 

from this the estimated noise variance (obtained using the method presented in [TOI) .  

In this study, only explicit SNR estimators are considered so this implicit method is 

omitted. 

Another exarnple of an  implicit SNR estimator is given by Proakis in [65] in the 

context of equalization. This SNR estimation method is not considered in this study 

since it is not an explicit method. On page 564 of [65], an expression is offered to 

compute the SNR at the output of a linear adaptive equalizer based on the .\[SE 

criterion. This implicit method assumes the signal power is normalized to unity. No 

method is offered to compute the SNR if the signal power is not unity and, most 

importantly, no expression is offered to relate the SNR after the equalizer to the 

unequaiized SNR to facilitate a comparison with al1 of the other SNR estimation 

met hods studied here. 

2.5 Measures of Est imator Performance 

The performance of the SNR estimators may be characterized by an analysis of the 

sample statistics. A few tests based on sample statistics are listed below, followed by 

the description of a bound on estimator performance. 



2.5.1 Tests Based on Sample Statistics 

The SNR estimators are assessed by statistical tests of the mean, variance, and mean- 

squared-error (MSE) of the SNR estimates. Let fi  represent estimates of the SNR for 

a particular estimator, let f (b)  be the pdf of the estimates, and let p be the true 

SNR, then the statistical mean is given by 

the statistical variance is given by 

and the statistical &ISE is given by 

The bias of an estimator is defined as 

Note that the MSE reflects both the bias and the variance of the SNR estimates. 

The expressions given by (2.118), (2.1 El), and (2.120) above can be used to gener- 

ate analytical expressions for the mean, variance, and MSE, respectively, for a given 

estimator, but it is not always possible to obtain analytical results because either a 

closed-form expression cannot be obtained for f ( f i ) ,  or the integrals are too unwieldy 

to evaluate. 

On the other hand, the performance of all estirnators may be characterized by 

computer simulation to an arbitrary degree of accuracy. The processes underlying the 

generation of the SNR estimates are assumed ergodic so that the sample rnean, sample 

variance, and sample MSE may be computed rather than attempting to evaluate 

closed-form expressions for the statistical mean, statist ical variance, and statistical 

MSE. This assurnption allows estimator performance to be evaluated by the analysis 

of a statistically significant number of SNR estimates. 



Let pi denote one of Nt SNR estimates generated by a particular estimator, then 

the unbiased sample mean is given by 

the unbiased sample variance is given by 

and the unbiased sample MSE is given by 

The sample bias in this case is expressed as 

The "best" estimator is the one that is unbiased (or has the smallest bias) and has 

the smallest variance and &ISE. 

2.5.2 The Cramér-Rao Bound (CRB) 

The CRB is an analytical lower bound on estimator variance [67, 471. A general ex- 

pression for the CRB of the variance of an SNR estimator is presented in Appendix C, 

and is used below to find the CRB for SNR estimators operating in the channel de- 

scribed in Section 2.2. The derivation of the CRB for real channels is presented first, 

following a development sirnilar to that provided by Thomas in [4ï]. Subsequently, 

the derivation of the CRB for complex channels is presented which does not appear 

in [47] and has not been presented elsewhere in the Iiterature. 

Derivation of the CRB for Real Channels 

Recall the likelihood function for real channels appropriate to  the mode1 of Section 2.2 

given by (2.50) as 



Rewrite (2.50) in terms of p = SIN and N, instead of S and N, to obtain 

This form of the likelihood functioo is substituted into (C.4) of Appendix C so that 

the CRB for 6 rnay be written as 

The required second partial derivatives of (2.121) are 

where K. = Nsym N, is the total number of received samples. Using (2.16), the 

expected values of the partial derivatives rnay be expressed as 

Substituting these results into (2.121), one obtains the CRB of the variance of an 

SNR estimator operating in real channels as 

If is unbiased, then a E { p ) / a p  = 1 so that  (2.122) reduces to 



Normalking (2.123) by shows explicitly the asymptotic behaviour of the estima- 

tors with increasing SNR. The normalized variance and MSE for an unbiased SNR 

estimator operating in real channels are bounded by 

where MSE{b) = Var{b} because is assumed unbiased. At high SNR, the nor- 

rnalized variance (or normalized MSE) is ultimately determined by the number of 

received independent samples, lï = &,N,, used to generate estimates of the SHR. 

At low SNR, the lower bound on the normalized variance is inversely proportional 

both to the SNR and the number of syrnbols used to form an SKR estimate. 

No unique expression exists for the CRB of biased est imators since it is dependent 

on the bias of a particular estimator. Consider the biased ML TxDA SNR estimator 

of Section 2.3.2 for real channels whose expected value is given by (2.57) as 

Noting that a E { / h , ~ , ~ ~ , , ~ ) / â p  = K / ( K  - 3), the norrnalized CRB for this biased 

estimator may be written as 

V ~ C { ~ M L  ~ r ~ ~ . r c a l )  2 (2.125) 
p2 

The ratio of the normalized, biased CRB (using the bias of the ML estimator) given 

by (2.125) to the  normalized, unbiased CRB given by (2.124) is plotted in Figure 2.4 

for values of K in the range from 64 to 1024 sarnples. It can be seen that the difference 

between the two expressions becomes small very quickly with increasing K. 

Consider briefly the issue of estimator efficiency3. An "efficientn estimator is one 

that m e t s  the CRB for any sample size. If an efficient estimator can be proven 

to exist, then it is the ML estimator. Cornparison of (2.125) and (2.124) with the 

analytical expressions for the biased and reduced-bias ML TxDA SNR estimators for 

=The following definitions and concepts regarding efficiency and ot her properties of M L  est imators 
may be found in [67]. 
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Figure 2.4: Ratio of biased CRB (based on bias of ML TxDA estirnator) to unbiased 
CRB. 

real channels given by (2.59) and (3.60), respectively, reveals that the CRB is not met 

in either case, so an efficient estimator does not exist (otherwise, it would be the ML 

estimator). Since an efficient estimator does not exist, there may exist some other 

estimator which has a variance smaller than that of the ML estimator; however, since 

the CRB and the analytical variance are so close, it seems that the search for this 

hypot hetical, 'bet tern estimator would have lit tle practical value. Under reasonably 

general conditions [67], ML estimators are at Ieast asymptotically efficient which 

means that as the number of independent observed samples increases, the variance of 

the ML estimator asyrnptotically approaches the CRB. 

To illustrate the asymptotic efficiency of the ML estimator, the normalized, unbi- 



ased CRB given by (2.124) and the variance of the reduced-bias ML estimator given 

by (2.60), normalized to the square of the true SNR, are plotted for IC = 61 and 

I< = 1024 in Figure 2.5. It is clear that, as the sarnple size increases, the variance of 

the ML estimator approaches the CRB. 

Derivation of the CRB for Complex Channels 

The likelihood function applicable to this cornplex case is given by (2.66) which is 

re-written as a function of p and N to obtain 

The second partial derivatives of (2.126) required for the evaluation of (2.121) are 

Using (2.16), the expected values of the partial derivatives are expressed as 

Substituting these results into (2.121), one obtaios the CRB of the variance of an 

unbiased SNR estimator operating in complex channels as 
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Figure 2.5: Comparison of CRB with theoretical variance of reduced-bias M L  TxDA 
(a) h' = 64, (b) 1< = 1024. 
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Therefore, the normalized variance and norrnalized LISE for an unbiased SXR esti- 

mator operating in complex channels are bounded by 

MSE(6) - - Var{b) 2 I 
2- + (2.131) 

pz pz p iV ,m 1VS NSY, ' 

where, as mentioned in the derivation of the CRB for the real case, MSE{i) = Var{b) 

because 6 is assumed unbiased. Comparing (2.131) wit h (3. E4), it is apparent that 

the lower bound on SNR estimator variance is a factor of two smaller in complex 

channels as compared to r ed  channels. 

2.6 Simulation Results 

The mode1 described in Section 2.2 is implemented in C for Monte Car10 simula- 

tion. A hard limited uniform random number generator provides the source data 

and a Gaussian random number generator supplies independent WGN samples. The 

random number generator algorithms are taken from Chapter 7 of [71]. 

For a given SNR, an SNR estimate is generated from a block of Ns,, = 64 or 

1024 received symbols. Many such estimates are generated and the bias, variance, 

and BISE are cornputed as described in Section 2.5.1 (the plotted bias, variance, and 

MSE curves are shown normalized to the true SXR). Each estimator from Section 2.3 

is tested over an SNR range spanning 3-30 dB in discrete steps. Enough estimates 

are generated in each case to ensure that the error in the variance is less than 20% 

with 95% confidence (see Appendix D). 

Both real and complex channels are modeled. Specifically, BPSK-modulated sig- 

n a l ~  in real AWGN, and 8-PSK-modulated signals in complex AWGN are simulated. 

A verification of the simulators is provided in Figure 2.6 by a cornparison of the 

theoretical probabilities of error, Pb, for coherent BPSK and coherent &PSI< to the 

simulated results. The solid curve represents the theoretical probability of error for 

coherent BPSK given by (2.13). The dashed curve represents the theoretical proba- 
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Figure 2.6: Cornparison of theoretical and simulated probability of error curves for 
coherent BPSK in real AWGN and coherent 8-PSK in complex AWGN. 

bility of error for coherent &PSK approximated by [65] 

Al1 simulated points are accurate to within at le& 20% error with 95% confidence. 

The SNR, p, plotted on the abscissa is equal to 2Eb/No for BPSK (in real AWGN) 

and ES/lV, = 3Eb/No for &PSI< (in complex AWGN). The simulated points show 

good agreement wi th theory. 

The unbiased expressions for the CRB, given by (2.124) for real channels and 

(2.131) for complex channels, are included in the plots of normalized variance and 

normalized MSE for cornparison with the simulated results. The unbiased forms 



of the CRB are selected to avoid having the CRB's be estimator specific since the 

bias for each estimator is different. The CRB is included for reference in the plots of 

normaiized MSE with the understanding that, strictly speaking, the CRB expressions 

as given in Section 2.5.2 are really bounds on estimator variance. 

For the ML estimators, the constants to be used in (2.124) and (2.131) are = 16 

and N,, = 1024 or 64. A CR% expression that uses N, = 16 will be referred to 

here as a pre-MF CRB since the ML estimator operates on the N, = 16 samples 

per symbol at the input to the MF. The SSME algorithms also use 16 samples per 

symbol, except they are taken at the output of the MF. Strictly speaking, the variance 

and hISE of the SSbIE algorithms should be compared to a different CRB that takes 

into account the correlation of the noise samples after the It is more interesting, 

however, to compare the SSME results to the hIL estimator and pre-MF CRB, so the 

more complicated, multiple-sample per symbol CR% with correlated noise samples is 

not presented here. 

For the estimators that operate on the one sample per symbol (taken at the 

optimal sarnpling instant) at the output of the MF (or, equivalently, at the input to 

the decision-device), the constants to be used in (2.124) and (2.131) are IV, = 1 and 

N,,, = 1024 or 64. A CRB expression that uses iV, = 1 will be referred to here as 

a post-MF CRB. The expressions given by (2.124) and (2.131) are applicable to the 

post-MF samples in this case because the baud-spaced noise samples at the output 

of the root-Nyquist receiver filter are uncorrelated (see (2.9b)). 

The simulation results are presented in the next three sections. The first sec- 

tion gives results for estimators operating with BPSK signals in the real form of the 

narrowband, AWGN channel described in Section 2.2. The second section gives per- 

formance results for estirnators operating with &PSI< signals in the complex form 

of the narrowband, AWGN channel. The third section presents additional results of 

some interest: the performances of a couple of selected estimators are simulated in 

the wideband, real AWGN channel described in Section 2.3.1, and one-sample per 



symbol ML SNR estimation before and after the M F  is compared. 

2.6.1 Performance Results for BPSK in Real AWGN 

Performance Results for Estimators using Sixteen Samples per Symbol 

The estimators that use sixteen samples per symbol to generate SXR estimates in the 

narrowband channel of Section 2.2 are the SSMEl, SSME*, ML TxDA, and LIL RxDA 

SNR estimators. Plots of the normalized bias, normalized variance, and normalized 

MSE are presented in Figures 2.7 to 2.9 for BPSK signals in real AIVGN. Note thaf 

curves for the SSMEI and SSME2 are absent from Figures 2.'i(b), 2.$(b), and 2.9(b). 

These curves are omitted because the SKR estimates geheratc.d by SSN El and SS SIEz 

using a block length of 64 symbols are poor-the estimates are not always real, 

positive numbers since the systems of equations used to generate the SNR estimates 

are ill-conditioned with so few samples. 

It is immediately apparent from Figures 2.5 and 2.9 that the normalized variance 

and MSE curves of the ML TxDA SNR estimator are almost indistinguishable from 

the corresponding pre-MF CRB's. The variance of the ML RxDA SNR estirnator 

is almost as good as its TxDA counterpart, but its RISE diverges from the MSE of 

the M L  TxDA estimator at low SNR due to the bias caused by receiver decision 

errors. The low-SNR gap between the MSE of the hlL TxDA estimator and that 

of the ML RxDA estimator narrows as the block length, N',, is shortened. This 

observation may be explained by observing in Figure 2.7 that the  bias of the XIL RxDA 

estimator a t  lorv SNR is relatively unchanged as the block length is decreased from 

1024 to 64 symbols, whereas Figure 2.8 reveals that the variances of the XIL RxDA 

and ML TxDA estimators (and the CRB) increase by an order of magnitude. Recall 

that the MSE reflects both the bias and variance of an estimator. As the block length 

decreases, the effect of the inherent variance of the estimator on the MSE becomes 

comparable to the effect of the error-induced bias. 

Judging by the plots of the variance of the ML TxDA &mator in Figure 2.8, 
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Figure 2.7: Normalized bias with BPSK signals in real AWGN with N, = 16 and 
(a) N.,, = 1024, (b) N,, = 64. 
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Figure 2.8: Normalized variance with BPSK signals in real AMEN with 1V, = 16 and 
(a) NIym = 1024, (b) NIym = 64. 
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Figure 2.9: Normalized MSE with BPSK signais in real AWGN tvith N .  = 16 and 
(a) Nsym = 1024, (b) N,, = 64. 



it appears, at first glance, that this estimator is efficient; hotvewr, it \vas noted 

in Section 1.3.1 that the ML TxDA SNR estimator is not efficient since the CRB 

for unbiased estimators (2.124) does not equal the variance of the reduced-bias RIL 

estimator (2.60). It was also noted that the difference between the variance of the 

ML TxDA SNR estimator and the corresponding CRB is so small that it would seem 

of little practical value to search for a more efficient estimator. 

The performances of the SSMEl and SSME* algorithms are generally not as good 

as those of the ML TxDA and ML &DA estimators. The performance of the SSàIE2 

is slightly better than that of the SSMEl, as is evident from Figures 2.7, 2.8, and 2.9. 

The bias of the SSXIEz at  low SSR ( l e s  than about 9 dBj is better than that of 

the ML RxDA estimator, but its variance and MSE are worse over the entire tested 

range of SNR. The SSMEi and SS41E2 are examples of estimators based on higher- 

order moments that tend to have poor convergence properties in bandlimited channels 

(other examples are the autocorrelation-based methods discussed in Sections 2.4.1 

and 2.42). The SSME2 was also adapted to operate on the samples a t  the input to 

the MF rather than the output, but similar poor performance was observed and those 

results are not plotted. 

Performance Results for Estimators using One Sample per Symbol  

The estimators that use one sample per symbol to generate SNR estimates are the 

SVR, M2b14, SNV TxDA, and SNV RxDh SNR estimators. Plots of the normalized 

bias, normalized variance, and normalized MSE are presented in Figures 2.10 to 2.12. 

Results are shown for block lengths of 1024 and 64 symbols for each of the three 

performance metrics. 

The performances of the SNV estimators parallel those of the ML estimators. 

The SNV TxDA estimator is asymptotically efficient (the number of samples is small 

enough in Figure 2.11(b) to  see that the SNV TxDA estimator is not perfectly ef- 

ficient). The variance of the SNV RxDh estimator is almost identical to that of 
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Figure 2.10: Normalized bias with BPSK signals in real AWGN with N, = 1 and 
(a) NsYm = 1024, (b) Nsym = 64. 
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Figure 2.12: Normalized MSE with BPSIi signals in real AWGN with iV, = 1 and 
(a )  Nsym = 1024, (b) Nsym = 64. 



the SXV TxDA over the tested range of SNR. The blSE of the SNV RvDh esti- 

mator is identical to that of the SNV TxDA estimator a t  high SNR, but begins to 

diverge as the SNR is decreased to the point rhere receiver errors induce a bias in 

the SNV RxDA estimates. The gap between the MSE of the SNV TxDA estimator 

and that of the SNV RxDA estimator decreases with decreasing block length as the 

efTect of the estimator variance (which grows as the block length is shortened) on the 

MSE becomes comparable to the effect of the error-induced bias (which is relatively 

insensi tive to the block length). 

The Il12h..4 estimator is asyrnptotically efficient a t  high SNR, as is evident by 

comparing Figure 2.1 1(a) with Figure 2.11(b). At Iow SSR ( p  2 S dB) and for long 

block lengths (N., - 1000 symbols), the MSE of the fb12hfJ estimator is smaller 

than that of the SNV &DA estimator, but the advantage becomes less significant 

with decreasing block length so that, at N,, = 64, the MSE of the M2M4 estimator 

is greater than that of the SNV RxDA estimator over the entire range of tested 

SNR. Though it has been observed by simulation that some SNR estimators based on 

higher-order moments (such as the SSME algorithms) suffer degraded performance at 

high SNR, the h12hf4 estimator is an example of an exception since its bias, variance, 

and AISE are "well-behaved"; that is, they asymptotically approach some constant 

value at high SNR. 

The SVR estimator generally does not perform as well as the hl2 hl4 and SNV 

estimators, though in Figures 2.10 and 2.12(a) it can be seen that, under some con- 

ditions, the bias and MSE curves of the SVR estimator are better than those of 

the SNV RxDA estimator at very low SNR. Along with the SSME algorithms, the 

SVR estimator is another example of an estimator whose bias, variance and MSE 

begin to rise at larger values of SNR. The mechanism behind this degradation is not 

fully understood, but the effect is more pronounced as the block length is shortened. 

In fact, for Nvm = 64 and for p > 20 dB, the degradation is so severe that some 

of the generated estimates are meaningless; that is, the expression given by (2.108) 



generates estimates that are negative. For this reason, some high-SNR points have 

been omitted from the plots of the bias, variance, and MSE of the SVR estimator in 

Figures 2.10 to 2.12. 

2.6.2 Performance Results for &PSK in Complex AWGN 

In Section 2.6.1, the performances of the real SNR estimators of Section 2.3 operating 

in a narrowband, real AWGN channel were presented and the effect of different block 

lengths was illustrated. In this section, the block length is fixed at N,, = 61 and the 

performances of the complex estimators of Section 2.3 are investigated with &PSI< 

signals corrupted by complex AWGN. The performances of the complex forms of the 

ML TxDA, ML RxDA, SNV TxDA, SNV RxDA, SVR, and bf2hf4 estimators are 

illustrated in Figures 2.13 to 2.15. The ML estimator results are plotted separateiy 

from the results of the other estimators since the M L  estimators are the only a l p  

rithms investigated in this 8-PSK environment that use multiple samples per syrnbol. 

The performances of the SSME algorithms in the CPSK case were not studied since 

these algorithms were derived specifically for BPSK in real AWGN and are not easily 

adapted to M-ary PSK modulation in the complex AWG?: channel. 

Comparing Figure 2.8(b) with Figure 2.14(a), and comparing Figure 2.1 1 (b) with 

Figure 2.14(b), it can be seen that the pre-MF and post-MF CRB's are a factor of tivo 

srnaller in the BPSK case relative to the respective CRB's in the BPSK case. Since 

the ML and SNV estimators are nearly efficient, the variances of these estimators are 

also a factor of two srnaller in the complex channel. However, comparing Figure 2.9(b) 

with Figure 2.15(a), and comparing Figure 2.12(b) with Figure 2.15(b), it can be seen 

that the low-SNR performances of the ML RxDA and SNV RxDA estimators with 

8-PSK signals are inferior to their respective low-SNR MSE performances with BPSK 

signals. The reason for these differences in performances is that receiver errors are 

more likely with &PSI< signals given that the signal poiver and noise power in the 

S-PSK and BPSK cases are the same. 
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In contrat to the post-MF CRB and the variance of the SKV TxDA estimator. 

rvhich are both a factor of two smaller in complex channels as  cornpared to real 

channels, the variance of the M2M4 estimator is close to identical in red  and complex 

channels, as is evident from a comparison of Figures 2.1 1(b) and 2.14(b). However, 

the fact that the M2M4 performance is almost unchanged in the BPSK and SPSK 

cases coupled with the fact that the performance of the SNV &DA estimator is 

relatively worse at  low SNR with &PSI< as compared to BPSK means that the relative 

performance advantage of the estimator over the SNV &DA estimator at low 

SNR improves as the number of constellation points, k1, increases. This behaviour 

may be observed by comparing Figure 2.12(b) with Figure 2.15(b). 

Similarly to the ikf2M4 estimator, the bias, variance, and MSE of the SVR es- 

timator with $-PSK signals change very little as cornpared to the bias, variance, 

and hlSE of the SVR estimator with BPSK signals as is seen by a comparison of 

Figures 2.10(b), 2.11(b), and 2.12(b) with Figures 2.13(b), 2.14(b), and 2.lZ(b), re- 

spectively. As a result, the SVR estimator, too, has a low-SNR performance that 

improves relative to the low-SNR performance of the SNV RxDA estimator as the 

order of the modulation increases. However, as in the BPSK case, the degradation in 

performance observed at  high SNR is still present with S-PSK signals. At high SNR, 

some of the SVR estimates are negative which is why some high-SNR points have 

been omitted from Figures 2. U(b), 2.14(b), and 2.15(b). 

2.6.3 Addit ional Results 

Some additional results of interest are reported here. In particular, the performance 

of the SSMEo algorithm, designed specifically for operation with BPSK signals in 

wideband, real channels, is investigated and compared to the performance of the 

ML RxDA estimator. Also, a comparison is presented of one-sarnple per symbol ML 

SNR estimation before and after the MF. 



Performance in the Wideband Channel 

As discussed in Section 2.3.1, the SSMEo SNR estimation algorithm is designed for 

BPSK signals in wideband, real AWGN channels. A simulation mode1 based on 

Figure 2.2 was developed in which the SSBIEo was tested. For cornparison, the ML 

&DA estimator was also tested in this wideband channel after making the necessary 

adaptations to its algorithm. Simulations were run with block lengths of N,,, = 61 

and Nwm = 1024, and the results are shown in Figures 2.16 and 2.17. Figures 2.16(a) 

and 2.16(b) show the bias plots for Nsym = 64 and N,,, = 1021, respectively (the 

plots are separated in order to avoid clutter). Figure 2.17(a) shows the variance for 

both N,, = 64 and Nsym = 1024, and Figure 2.17(b) shows the hISE. It is interesting 

to note in Figure 2.17 that the variance and MSE of the SSMEo using N,, = 1024 

approach the CRB for N,,, = 64 at high SNR. This is a curious result. 

In order to investigate this result further, another set of simulations was run in the 

wideband channel with four samples per symbol rather than sixteen. Figure 2.18(a) 

shows the MSE curves for this case (the corresponding bias and variance plots are 

omitted since they do not reveal any additional information). Cornparison of Fig- 

ures 2.17(b) and 2.18(a) reveals that the MSE curves of the SSMEo appear to be 

independent of the number of samples per symbol used to generate an SNR estimate. 

Further, Figure 2.18(b) shows that the SSEIIE* MSE curves appear to be asyrnptot- 

ically efficient at high SNR with the CRB's for one sample per symbol; that is, the 

SSMEa algorithm does not appear to take advantage of the amilable multiple samples 

per symbol. In contrast, the MSE performance of the ML RxDA estimator improves 

as the number of samples per symbol is increased since it takes advantage of the 

multiple samples per symbol by processing the samples in such a way as to effect a 

digital matched filter 172). 
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Figure 2.16: Normalized bias in wideband channel with N, = 16 and (a) iV&, = 64, 
(b) N,, = 1024. 
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Figure 2.18: Normalized MSE of SSMh in wideband channel with N .  = 4 compared 
with (a) MSE of ML RxDA and CRB ( N ,  = 4), (b) CRB ( N ,  = 1). 



Cornparison of Pre-MF Estimation to Post-MF Estimation in the Narrow- 
band Channel 

In Section 2.3.3, it kvas explained that the SNV estimator is essentially the M L  esti- 

mator applied to the output sarnples of the MF taken at the optimal, baud-spaced 

sampling instants. It is interesting to consider the performance of a similar estimator 

using one sample per symbol before the MF. For simplicity, the system in which this 

cornparison is conducted assumes BPSK signals in real ALVGN. 

The sequence of pre-MF samples is formed by sampling the  received signal, given 

by (2.4) as 

r k  = &rnk + \/;iT:g, 

at a sampling point corresponding to the symbol centres. Since the signal portion, 

mt,  of the received, pre-MF signal is corrupted by ISI (by design, due to the fact that 

mk is the output of a root-raised cosine filter), the baud-spaced, pre-MF sarnples will 

not have constant magnitude; however, the average magnitude of the symbol centres 

will be equal to f l h o  where hl represents the taps of the transmit filter and ho is the 

peak of the impulse response. For the system mode1 of Section 2.2, 

The performances of the onesample per symbol pre-MF and post-MF ML esti- 

mators are compared here analytically by plotting the post-MF CRB and a modified, 

one-sample per symbol pre-MF CRB. The derivation of the CRB in Section 2.5.2 for 

real signals in real AWGN assumes the power of the sequence of information symbols 

is given by (2.55) as 

In Section 2.2, 0: and go are set to unity. For illustration purposes, maintain the 

assumption here that 00 is set to unity, but leave go as a variable parameter. The 



post-MF CRB may then be ivritten using (2.124) with N, = 1 as 

The pre-MF CRB for real signals in real AWGN cannot be obtained using (2.124) 

since the expression for the power of the sequence of information symbols given by 

(2.55) is not applicable. Instead, the power of the Nsym, baud-spaced pre-MF samples 

is given by 

Using (2.134), the one-sample per syrnbol pre-MF CRB may be expressed as 

Note that post-MF CRB given by (2.133) and the one-sample per symbol pre-MF 

CRB given by (2.135) have the same high-SNR asymptote, and differ only at low 

values of SNR. Figure 2.19 shows plots comparing these two expressions (substitut- 

ing go = 1, and substituting (2.13'2) for ho) using block lengths of Nsym = 61 and 

N,, = 1024. Figure 2.19 clearly shows that the performance of a post-MF estimator 

becomes increasingly superior to t hat of a one-sample per symbol pre-MF est imator 

with decreasing SNR. At high SNR, the CRB curves approach a common asyrnp- 

tote. The performance of the post-RIF ML SNR estimator is better than that of the 

one-sarnple per symbol pre-MF ML SNR estimator because the effect of the MF is to 

maximize the SNR at the optimal sampling instant; in other words, the effect of the 

MF is to make go > hg. 

These observations confirm that, if only one sample per symbol is available for SNR 

estimation in a particular implementation (for example, due to hardware processing 

speed limitations), then the estimation should be performed aBer the MF (at the 

optimal sampling instant) rather than before, as expected. 
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Figure 2.19: Cornparison of one-sample per symbol pre-MF CRB to post-MF CRB. 



2.7 Implementation Issues 

An estimator is not chosen for a particular application based on its performance alone. 

If an estimator performs very well, but it is extremely dificult to implement, then it 

may not be the best choice. Factors that affect the ease of implementation are: 

1. The computational power required to carry out the operations of a particular 

algori thm. 

2. The peripheral circuitry required to present the received signal to the estimator 

in the required form. 

The issue of computational power is considered first. The available computational 

power varies depending on the specific technology used to realize an algorithm. For 

example, it is much simpler to  implement arithmetic multiplication and division in a 

DSP chip than it is in a programmable gate array device. Al1 of the estimators tested 

here require the ability to compute the ratio of two numbers which makes a gate 

array realization difficult, unless there is a way to create a modified implementation 

that does not require division operations (an example of a gate array implementation 

of the A& hl'' estimator is presented in (731). The M2M4 and SVR expressions each 

have a square-root operation which is difficult to perform in DSP and even more 

di6cult in a gate array implementation. The square-root operation would need to 

be approximated, perhaps by a series expansion or a lookup table. Probably the 

most complicated estimator to implement is the SSME2 algorithm which requires the 

solution of a quadratic system of equations. An iterative technique, which demands 

much computing poiver, is often used to arrive a t  a solution in such a case. 

Next consider the issue of "peripheral" circuitry which includes al1 of the pieces 

of the receiver between the receiver antenna and the est imator including: 

Low-noise amplifier (LNA). 

Frequency down-converters. 



Analog filters. 

Analog-to-digital converters. 

Matched filter. 

SymboI timing recovery (STR). 

Carrier phase recovery (CR). 

For example, al1 of the estimaton require symbol tirnin g recovery in order to fu 

properly, but not al1 estimators require carrier phase recovery. Those estimators not 

requiring CR are those that operate on even powers of the received signal which 

include the SSME2, SVR, and M2M4 estimators. 

Each estimator has its own particular constraints and advantages which need to 

be considered separately. For example, consider the following unique irnplementation 

advantage of the ML SNR estimators. In the description of the ML estimators in 

Section 2.3.2, it was pointed out that the ML RxDA estimator must choose the 

sequence, m f f ,  based on receiver decisions which it uses to correlate with the received 

signal. As pointed out in [6], this process is identical to the process of correlation 

detection ahich is equivalent to matched filtering [62].  This fact can be used to 

sirnplify the implementation of the M L  RxDA estimator since many digital receivers 

employ a matched filter. 

Summary 

The performances of the various SNR estimators described in Section 2.3 were corn- 

pared in Section 2.6 in narrowband, real and complex AWGN channels; and in a 

wideband, real AWGN channel. Based on the results presented, the "best" estimator 

to use depends on the given application. 

If known data is a d a b l e  to the receiver, the ML TxDA and SNV TxDA estima- 

tors perform so well as to make it difficult to justify attempts to find better estimators 



for the channel conditions considered here. These TxD.4 est irnators can only generate 

estimates when known data is available to the receiver, but the particular application 

will dictate whether or not this limitation is objectionable. 

If an application demands the continuous generation of SNR estimates, then the 

selection of one of the in-service SNR estimators would be more appropriate. It 

has b e n  demonstrated in Section 2.6 that the choice of the "ba tn  in-service SNR 

estimator depends on the block length (&,), the number of sarnples per syrnbol 

(N,)  available, the type and order ( B I )  of modulation used, and the SNR range of 

interest. The issue of complexity, discussed briefly in Section 3.7, is another factor to 

consider. 

The simulated performances presented in Sections 2.6.1 and 2.6.2 of the SVR, 

M2M4, and SNV estimators are not specific to the system mode1 of Section 2.2 but 

are identical among systems that employ any type of root-Nyquist filter in the tram- 

mitter and receiver. The simulated performances of the M L  estimators are identical 

even among systems which employ filters other than those of the root-Nyquist type 

(Nyquist's criterion for ISI-free transmission need not be sat isfied) in the transmit ter 

and receiver-the only requirement for the results to remain identical is that t he  sum 

of the squares of the filter coefficients be unity. The sirnulated results of the SSblEo 

algorithm are specific to the wideband, real ALVGIL' channel, and the simulated re- 

sults of the SSMEl and SSME, are specific to the particular system configuration 

described in Section 2.2. 

The SSMEl, SSME2, and SVR algorithms exhibit biases, variances, and MSE's 

that rise with increasing SNR. Though the exact mechanism that causes the bias, 

variance, and MSE to rise a t  high SNR is not fully understood, it is not unreasonable 

that this effect should occur. Note that the CRB itself, normalized to the true SNR, 

does not fa11 indefinitely with increasing SWR but, instead, approaches a constant (see, 

for example, Figures 2.11 and 2.12). Since the  performances of the best estimators 

cannot be better than the CRB, the normalized variances and normalized &ISE'S of 



those estirnators, a t  best, also approach a constant at high SNR. Consequently, it is 

reasonable to expect the variance and hlSE of an inferior estimator either to approach 

some larger constant or t o  rise with increasing SXR. 

2.8.1 Comments on Specinc Esthators 
The SSME Algorithms 

From the point of view of overall performance, the SSMEo algorithm is judged to be 

the best of the three SSME algorithms when used in tvideband channels for which 

it was designed. The SSMEo algorithm is the only one of the three that has stable 

performance at high SSR. It \vas pointed out in Section 2.6.3 t hat, t hough the SSXIEo 

operates on multiple samples per symbol, its performance is relatively independent of 

the number of samples per symbol available. In fact, from Figure 2.1S(b) it is apparent 

t hat , regardless of the number of samples per symbol processed by the estimator, the 

performance of the SSMEo is actually comparable to the CRB for one sample per 

symbol. 

In the narrowband channel of Section 2.2, the SSME series of estimaton have 

trouble with NSy, = 1034 and, with Nsym = 64, the generated SNR estimates are 

sometimes negative or non-existent. The exact mechanism behind the poor high-SNR 

performance is not fully understood, but a detailed examinat ion of the simulation data 

reveals that the systems of equations used to generate estimates of the discrete signal 

potver, S, and discrete noise potver, N, are ill-conditioned and become increasingly 

so as A&, is decreased and as the actual SNR is increased. 

Of the two SSME algorithms designed for narrowband channels, SSMEi and 

SSME*, the SSME2 algorithm performs better, thus showing that the approach taken 

in Section 2.3.1 for the development of an improved SSbIE algorithm for narrowband 

channels does, indeed, yield a better estimator. 



The ML Algorithms 

The variance and MSE of the ML TxDA estimator are indistinguishable from the 

CRB for block lengths of 64 and 1034 symbols using sixteen samples per syrnbol thus 

making the M L  TxDA estimator the best SNR estimator in the category of estimators 

that use multiple samples per syrnbol. Likewise, its in-service, RvDA counterpart is 

also asymptotically efficient for high SNR where receiver errors are negligible, but 

the low-SNR performance of the ML RxDA estimator degrades relative to that of the 

ML TxDA estimator with increasing block length and order of modulation. 

Note that the variance of the M L  RvDA estimator is less than the CRB under 

certain conditions. For example, Figure 2.S(b) shows such a case at Iow SSNR for 

IV,, = 64. Recall that the CRB plotted is for any unbiased estimator. The plotted 

unbiased CRB does not correspond perfectly to the variance of the ML RxDA esti- 

mator since this estirnator exhi bits a strong bias a t  low SSR. It is not a t heoretical 

contradiction, therefore, that the variance of this estimator is less than the unbiased 

CRB at low SNR. 

The SNV Algorithm 

The SNV TxDA estimator performs best of al1 of the estimators studied in the cate- 

gory of estimators using only one sample per symbol in the sense that its variance and 

MSE come closest to  the t heoret ical bound. The variance of the SNV TxDA est imator 

is indistinguishable from the post-MF CRB for a block length of 1034 symbols (see 

Figure 2.11(a)), but there is a noticeable gap between the variance of the SNV TxDA 

estimator and the CRB for a block length of 64 symbols (see Figure 2.1 1(b)) rvhich 

demonstrates that the SNV TxDA estimator is not truely efficient, but is asymptoti- 

cally efficient. 

The variance and MSE of the in-service, ML RxDA estimator behave identically 

to those of its TxDA counterpart at high SNR where receiver errors are negligible, 

but its performance degrades at low SNR, and the  performance gap between the 



M L  ItuDA and ML TxDA estimators widens mith increasing block length and order 

of modulation. The variance of the SNV RxDA estimator dips below the CRB for 

some values of low SNR but, as mentioned above in the discussion of the M L  RxDA 

estimator, this observation poses no theoretical contradiction since the CRB is for 

unbiased estimators, and so it cannot be erpected to correspond well to the variance 

of the SNV RxDA estimator at low SNR where the bias of the estimator is worst. 

The 1\f2 Ad4 Algorit hm 

This met hod, based on higher-order moments, is well-behaved at  both loiv and high 

values of SXR for block lengths of both iV&, = 64 and i\:,, = 1021. The vari- 

ance of the M'M.. estimator approaches the CRB at  high SNR with increasing block 

length, and so is asymptotically efficient, but this estimator is not as efficient as 

the SNV TxDA estimator, which may be seen by cornparison of Figures 2.11(a) 

and 2.11(b). 

The 1U2iLI4 estimator is the best in-service estimator at low SSR given a long 

block length (lVs,, - 1000) or a higher-order signal constellation. Receiver errors at 

low SNR do not deleteriously affect the d&M4 estimator as they do the SSV RuD.4 

estimator. 

Since t his algorit hm is based on even moments of the received signal, the Alz dl, 

estimator has the advantage that carrier recovery is unnecessary. 

The SVR Algorithm 

This estimator performed least well of al1 of the estirnators tested here that employ 

one sample per symbol to generate SNR estimates. Wit h a block length of A,, = 61 

symbols, the SVR estimator exhibits similar poor high-SNR behaviour as the SShIEl 

and SSME2 estirnators (with Nsym = 1024); that is, the bias, variance, and M E  al1 

start to rise. The effect is noticeable, but less pronounced, when the SVR estimator 

uses a block length of N,, = 1021 symbols. 



As in the case of the SSME estimators, the rnechanism behind the  poor higli- 

SNR performance of the SVR estimator is not fully understood. It is noteworth!; 

however, that the SVR estimator is based on the autocorrelatioii properties of a 

received signal. The estirnators discussed in Sections 2.4.1 and 2.4.2 are also based 

on autocorrelation concepts and were judged to be unsuitable for tliis study due to 

the very large number of symbols required in order to obtain finite or non-negatiire 

estirnates. The SVR estimator also appears to have trouble using a relatively small 

number of symbols to generate SXR estimates. 

An advantage of this estimator is that, since the algorithm requires the compu- 

tation of the square and the fourth porver of the received signai, the pliase of the 

received signal is unimportant, meaning that carrier recovery is not required for the 

operation of t his estimator. 



Chapter 3 

SIR Estimation in Mobile Radio 
C hannels 

3.1 Problem Definition 

The goal is to extend the concept of SNR estimation in the AWGN channel to signal- 

teimpairment ratio1 (SIR) estimation in wireless channels such as those encountered 

in mobile radio. Impairments affecting mobile radio channels include AWGN; fast, 

frequency-select ive Rayleigh fading2 ; and cochannel interference (CCI) [2]. The 

performances of many system functions may be improved through use of the SIR. 

In Section 1.2, several applications that require a quantitative measure of channel 

quality were described. 

There are various ways to express the SIR in any given environment, depending 

on the measurement method and the way in which the SIR is to be used. The  

ultimate measure of channel quality is the raw error rate of the channel-the error 

rate without equalization or coding (771. There are a ferv different definitions of error 

rate, but the most common, and the simplest, is the average bit error rate (BER) 

which is simply the ratio of the number of bit decision errors to the total number 

of transmitted bits over some observation interval. The raw, average BER does not 
-- -- 

l Note that some references (see [74,2]) use "SIR" to denote "signal-teinterference ration whereas. 
in this study, the "1" stands for the combined effect of a11 channel "impairments." 

'A brief summary of some basic fading concepts and terms used in this study is offered in 
Appendix E. Tutorial papes on the subject of fading channels include [75, 761. 



reflect the burstiness of errors, but it is an adequate descriptor OF channel quality 

nonetheless. For example, the European second-generation digital cellular standard 

(GSàI) uses the raw, average BER to define reception quality (77, GS]. 

Though the BER is the ultimate meaçure of channel quality, direct estimation 

of the BER may not necessarily be the easiest way to generate estimates of channel 

quality. Instead, some observable property of the received signal is sought that is 

easy to rneasure which, after a simple transformation, yields the SIR of the channel. 

It is proposed here that whatever metric is used to quantify the SIR of a channel, 

it ideally should have a rnonotonic, one-to-one correspondence with the BER. The 

SNR in the AWGN channel is a good SIR metric in this respect since the SXR is the 

onig parameter that determines the BER in the .4CVGN channel. For example, the 

probability of error (or BER) for coherent BPSK is given by (2.13) of Section 2.2 as 

Pb = Q(JP) where p is the SNR. In fading channels, the SXR alone is not sufficient 

to determine the error rate. In fading channels, the BER is found to be dependent on 

the SNR, the overall multipath delay spread of the channel, and the overall Doppler 

spread [75, 251. CC1 must also be taken into account [74, 251. 

SIR estimates are generated from the observation of a number of received sym- 

bols, just as in the case of SNR estimation. The SIR estimators under considera- 

tion are mainly of the in-service type (that is, the SIR is derived directly from the 

in format ion-beari ng received signal). The in-service est imators are ei t her RyD.4 est i- 

mators or moment-based estimators. Sorne TXDA SIR estimators are also considered 

(see Section 2.1 for an explmation of the terms, TzDA and RxDA). 

First, some sort of definition of SIR must be provided before searching for a lge  

rithms to estimate this ambiguous parameter. A few possible definitions of SIR are 

offered here. 

1. The first proposed definition of SIR has the form 

Pwg. daireci signal SIR1 = 
Pms. impairmena 



where P,,, d a i d  signal is the average power of the desired signal in the strongest 

path from the transmitter to  the receiver (usually the shortest path). This 

quantity is measured over a duration long enough to average out short-term 

fading effects. The quantity, P,, im&men, is the total average impairment 

power due to variance in the average amplitude of the desired signal (caused by 

fast fading), multipath-induced ISI, AWGN, and CCI. A similar definition is 

offered by Hladik et al in [27], and Chennakeshu and Saulnier in [%]. SIRt does 

not have a good one-teone correspondence with the BER of the channel since 

it does not distinguish between the various types of impairments. In general, 

different types of impairments bave different statistics and so do not have the 

same deleterious effects on signal detection. SIRi is the SIR definition most 

closely related to the concept of SXR discussed in Chapter 2. Note that this 

definition is an adequate descriptor of SIR in Chapter 2 since the statistics of 

the impairment process ( AWGN) are completely known. 

The second possible definition of SIR has the form 

where y is the correlation between the corrupted received signal and a "cleann 

copy of the transmitted signal. This type of estimator was introduced in C h a p  

ter 2 in the context of DA SNR estimation and is also discussed in 163,641. The 

SNV and ML SNR estimators from Chapter 2 are examples of methods that 

correlate the transmitted message sequence (or an estimate of the transmitted 

message sequence) with the noisy received signal to generate SNR estimates. 

SIR2 suffers from the same drawback as SIRi-SIR2 does not have a one-teone 

correspondence with the BER of the general mobile radio channel since it does 

not distinguish between different types of impairments. 



3. The third variant of SIR has the form 

SI& is an explicit function of the individual impairments on the channel: p is 

the SNR, r,, is the rms delay spread, v,, is the Doppler spread, and SIC 

is the ratio of the discrete signal power to  discrete noise power at the decision 

device in the receiver. It is easily appreciated that the separate estimation 

of each of the impairment parameters is a difficult ta&; however, SIRJ does 

have a one-to-one correspondence with the BER of the channel. The one-teone 

correspondence only holds, however, if the four impairments considered by SIR3 

are the on./ impairments that exist. The existence of unaccounted impairments 

with different statistics (impulsive ignition noise, for example) or impairments 

whose statistics change with time (from Rayleigh to Rician fading, for example) 

spoils the one-to-one correspondence. In other words, SIRJ is dependent on the 

assumed characteristics of the individual impairments. 

4. The final proposed form of SIR is 

SIR, = f (BER). 

The ultimate SIR estimator is one that is an explicit, one-to-one function of 

the BER of the channel. In the most direct form, SIR( could be just the BER 

itself, but this study searches for methods that measure SIR using parameter 

estimation methods, rather than direct measurement of the BER (see [36, 371). 

Most of the SIR estimators investigated in this study have forms similar to SIRl 

and SIR2. 

As in the case of the search for the "best" SNR estimator, the search for the "best" 

SIR estimator is carried out by the cornparison of the performances of various pub- 

lished algorithms in a common channel, using common performance metrics. A few 



novel estimators are also investigated. The performance of each est imator is evaluatcd 

by software simulation in various mobile radio channels. The system environment is 

specified in the next section. 

3.2 Environment Assump tions 

In order to compare the performances of SIR estimators in mobile radio channels, a 

few assumptions must be made in order to put this study in a relevant context. It is 

logical to use the second-generation digital cellular standards3 as a guide since these 

standards define the direction of the wireless communications industry [S, S8, S6]. 

In particular, the North American EIA/TIA 1s-51 standard (791 is selected for this 

investigation of SIR estimation. 

A few pertinent characteristics of the IS-54 standard are Iisted in Table 3.1 com- 

piled using [85, 10, 871 as references. Note that the handoff and diversity functions 

Iisted in the table are two applications that can benefit from SIR estimation as dis- 

cussed in Section 1.2. 

Based on the 1854 characteristics listed above, the channel simulator implemented 

for this study of SIR estimators models 7r/4 DQPSK-modulated signals transmi tted 

at a bit rate of 48.6 kbit/s (baud rate of 24.3 kbaudfs), sent in blocks of 150 sym- 

bols4. Baseband differential detection is employed at  the receiver assuming perfect 

carrier and symbol synchronization. A RRC filter (a = 0.35) shapes the transrnitted 

signal and provides matched filtering at the receiver (Appendix B describes hotv the 

RRC filter may be implemented by an FIR filter using the frequency sampling tech- 

nique). CC1 is modeled as a single cochannel user employing the same 7r/4 DQPSK 

= ~ h e  three main second-generation digital cellular standards are: North American EI.I\/TIA 
IS54 [79], pan-European GSM (80, 81, 821, and Japanese PDC (or JDC) [83, 841. Cornparisons of 
the three systems are provided in [85, 86, 10,871 

4A block length of 150 symbob is chosen instead of exactIy 162 symbols because not a11 162 
symbols are "good". The IS.54 slot structure (see, for example, Figure 5 of (851) allocates six 
leading bits (three syrnbols) as "guard bitsn, and the following six bits (another three symbols) as 
"rampn bits. To be consewative, it was decided that the SIR estimators in this study would use 150 
of the 162 available symbols. 



Forward band 869494 MHz 
Reverse band 824-549 MHz 
Modulation ~ / 4  DQPSIi 
Filtering Raised-cosine (a = 0.35) 
Demodulat ion not specified (coherent , differential, or 

discriminator techniques may be ernployed) 
Access method TDMA 
Gross bit rate 45.6 kbit/s 
Symbol duration 41.2 ps 
Number of bits per time slot 3'24 
Number of symbols per time dot 162 
Time slot duration 6.7 ms 
Adaptive equalization Yes 
Handoff method Mobile Assisted Handoff (MAHO) 
Diversi ty Antenna diversity may be implementec! 

at the mobiles 
Channel coding Convolutional wi t h interleaving 

Table 3.1: Some system characteristics specified by the IS-54 digi ta1 cellular standard. 

modulation. 

The desired signal and the cochannel interferer are subjected to fast, frequency- 

selective fading. The fading process experienced by the desired signal is assumed 

independent of the fading experience by the CCI. The fading channel is assumed 

to be a "wide-sense stationary with uncorrelated scattering" (WSSUS) channel (first 

introduced by Bello 1891) which may be completely specified by its amplitude distri- 

bution, Doppler power spectrum, and delay power spectrurn [go]. 

Cox [91] concluded from measurements of propagation characteristics in New York 

City that the urban mobile radio channel is characterized t e l l  by a Gaussian WS- 

SUS (GWSSUS) mode1 over distances of about 30 metres. "Gaussian" implies that 

the quadrature components of the impulse response of the channel are Gaussian dis- 

tributed which means the signal amplitude variations follow a Rayleigh distribution. 

In this special case, al1 that is required to specify the channel is the Doppler power 

spectrum and delay power spectrum [92]. The WSSUS assumption may be assumed 

to hold at least over short distances which is justified in this study since the time 



slot duration, as specified in Table 3.1, is only 6.7 ms which corresponds to a spatial 

displacement of less than 26 cm at 120 km/hr. 

There is some debate regarding the selection of an appropriate mode1 for the am- 

plitude variations of a received signal in a mobile radio environment. Sorne ( s e ,  for 

example, [93, 941) have advocated distributions such as the Nakagarni-m distribution 

as good models of the signal envelope variations. Others ( s e ,  for example, (751) have 

objected that there is not enough evidence to support proposed distributions such as 

the Nakagarni-m, and that the signal envelope variations in the mobile radio envi- 

ronment are best characterized by the simple Rayleigh distri but ion [95]. Since many 

recent papers related to mobile radio assume a Rayleigh-distributed fading envelope 

(for example, [96, 11, 97, 98, 99, 100, 2]), the Rayleigh assumption is adopted for this 

study. Long-term variations of the average value of the signal (log-normal fading) 

due to shadowing is not of concem in this study due to the WSSUS assumption. 

The Doppler power spectrum for a vertical monopole antenna in isotropic scat- 

tering is characterized by the secalled uJ&es spectrum" [25, 951 (see Appendix E) 

given by 

where Y,, is the maximum Doppler frequency known as the Doppler spread. The 

Doppler spread, um, is related to the speed of travel, V, of the mobile receiver (or 

transmitter) and the wavelength, A, of the RF signal by the expression5 

Some ( s e ,  for example, [101]) have suggested that true isotropic scattering is an 

idealization that is invalid in most cases. Doppler spectra often exhibit a "spiky" 

appearance which is a manifestation of Doppler shifts due to individual, dominant 

scatterers. For the sake of simplicity, isotropic scattering is assumed in this study of 

SIR estimation so that the Jakes spectrurn of (3.1) applies. 

'For example, for a mobile radio operating at 900 MHz in a vehicle moving at 120 km/hr, the 
Doppler spread is 100 Hz. 



The delay power spectrum (or delay profile) of a "typicaln mobile radio channel 

has traditionally been accepted to have an exponential decay [95]. This traditional 

exponential profile, along with the "double-spike" profile and Gaussian profile, are 

often used today to characterize the multipath characteristics of a channel [102, 74, 

103, SI. These three profiles may be expressed 

one-sided exponent ial 

double-spike (3.3) 

Gaussian 

rvhere r,, is the rms delay spread ( s e  [104] and Appendix E), O&) represents the 

normalized delay power spectrum, and it is understood that r 2 O in al1 three cases. 

It has been reported by several authors (for example, [2, 103, 10.51) that the rms 

delay spread has a strong influence on the BER performance, and for rmS/T > 0.1 

or 0.2 (r,. is normalized with respect to the symbol period, T), the shape of the 

power delay profile is important. Recalling that the symbol period specified by the 

IS-54 standard as given in Table 3.1 is 41.2 ps, this rough guideline implies that BER 

performance in an 1s-&cornpliant system is sensitive to the shape of the power delay 

profile for rms delay spreads in excess of 4-8 ps. Propagation tests of some areas have 

revealed that common rms delay spreads for urban areas range from 1-4 ps, and those 

of hilly areas range from 5-8 ps, but rms delay spreads of up to 12 ps or more may 

occur (see [24, 75, 95, 91, 102, 74, 1041). Since these numbers show that the BER in 

typical, real-worid multipath channels can depend on the shape of the delay profile, 

the fading simulator for this study must have the capability of modeling a continuous 

delay profile. 

Some suggestions for the modeling of the fading environment have been made by 

the digital cellular standards. The 1s-54 standard, for exarnple, specifies a "worst- 

casen scenario for the multipath environment which is the double-spike model with 

r,, = T/2. That is, the interfering multipath echo is of equal strength to the 

shorter echo and delayed by exactly one symbol period. This model does not take 



into account continuous shapes of the delay profile as the m d  t ipath phenomenon 

is modeled simply as tivo impulses. Equalizer simulations for the North American 

digital cellular radio system relied heavily on this model. It was found after field 

testing that the simulations yielded optimist ic BER results as compared to operation 

in a real mobile radio environment [106] so it was necessary to refine the equalizers 

using more realistic channel simulation models. 

Proposals for test channels were made for the pan-European GSM cellular mobile 

system as well. The so-called CEPT-COST 207 recommendations specify four differ- 

ent delay profiles for various terrains including: a rural area, a typical urban area, a 

bad urban area, and hilly terrain [92, 107, 10Sj. These models are al1 based on either 

the exponential profile, or the double-spike model with each "spiken having an e x p e  

nential decay. Note that the CEPT-COST 207 report also makes recommendations 

for the Doppler power spectrum. Early echos are modeled by the Jakes spectrum of 

(3.1), while late echos are specified to have Gaussian shapes (see an example in [92]). 

In order to balance the need for realistic channel models with ease of software 

irnplementation, the fading channel simulator chosen for this study models the  Gaus- 

sian WSSUS (Rayleigh amplitude distribut ion) with a normalized Doppler power 

spectrum specified by (3. l) ,  and a delay poiver spectrum specified by the exponential 

profile, given by (3.2), for values of rms delay spread ranging from 3-12 ps. 

Now that the fading channel for this study has been specified, a fading simulator 

which can model this channel must be identified, The simulator should be flexible 

so that it may be easily modified to model more complicated channels for possible 

future study. A few simulators are considered in the next section. 

3.3 A Brief Survey of Potential Fading Simulators 

Various fading channel simulators have been discussed in the li terat ure. A represen- 

tative sample of some of these techniques is presented below. 

Smith [IO91 presents an algorithm which generates a fixed length of Rayleigh- 



faded samples based on the addition of two filtered WGN sequences in quadrature. 

This sequence is multiplied with the transmitted signal to produce a flat-faded signal 

nith a given Doppler spread. Frequency-selective fading models may be simulated 

by incorporating two or more channels of this type, each delayed and scaled with 

respect to the channel representing the shortest path from transmitter to receiver 

(see, for example, [99, 1001). This simulator is relatively easy to implement for flat- 

fading channels (FORTRAN code is provided in [109]), but modeling continuous delay 

profiles with this method is awkivard since a large number of sets of Rayleigh-faded 

samples have to be generated, each scaled and delayed appropriately with respect 

to the first-arriving echo. The generation of each set of fading samples requires two 

calls to an FFT routine. Note that FFT routines typically operate on sets of samples 

which have a length that is some power of two [Tl] so that this places restrictions 

on the number of fading samples generated and could be a cause of inefticiency. For 

example, if only 550 fading samples are required, this algorithm must generate 1021 

samples because that is the smallest number greater than 550 that is a porver of two. 

Another technique that is easy to implement is the "sum-of-sinesn method intro- 

duced by Jakes (-51 and cornmonly used to  simulate mobile radio channels ( s e ,  for 

example, (1 10, I l  11). A number of sinusoids with distinct Doppler frequencies up to 

the maximum Doppler frequency are added to form coloured Gaussian noise which is 

then multiplied with the desired signal to form a faded signal. This is a multiplicative 

(flat) fading process. A frequency-selective fading simulator rnay be constructed in 

a similar manner as described earlier for the simulator presented by Smith; that is, 

a frequency-selective fading channel may be constructed by the generation of many 

flat-faded echos, each of which is scaled and delayed with respect to some reference 

echo. 

A fading simulator which more accurately represents continuous or quasi-continuous 

delay profiles is introduced by Fechtel [112]. This simulator is based on channel or- 

thogonalization techniques in the delay and correlation domain. This simulator is 



able to model continuous delay profiles with significantly reduced complexity as corn- 

pared to the construction of a continuous delay profile with a large number of discrete, 

Bat-faded channels, as described earlier. 

The operation of some fading simulators is based on measurement-based models 

which allow very accurate modeling of real fading channels (see, for example [113, 

114, 1151). Highly accurate modeling of channel fading conditions cornes at the cost 

of having to construct a database of actual channel measurements. 

A method of channel modeling is discussed by D'Aria e t  al in [116] which employs 

a Fourier series approximation of the time-varying channel transfer function. Enough 

hatmonics are included in the sum to mode1 satisfactorily the time-iarying channel 

which is represented either by actual channel measurements, or by proposed delay 

profiles (such as the CEPT-COST 207 recomrnendat ions [107]). 

Dersch and Rüegg [IO11 describe a fading simulator that models the physical 

wave interference process and is based on concepts discussed by Braun and Dersch 

in [94]. The electric field at the receiver antenna is modeled as the superposition of 

many partial waves having characteristics defined statistically by the Doppler power 

spectrum, delay power spectrum, and amplitude distri but ion. 

O ther statis t ically-based simulators mode1 the channel impulse response as a su- 

perposition of many received echos [go, 92, 108, 11 73. Here, too, the Doppler power 

spectrum, delay power spectrum, and amplitude distribution dictate the characteris- 

tics of the individual echos that rnake up the composite received signal. Hoeher [92] 

describes an approximation to the GWSSUS model where the individual echos are 

assigned a random arrival phase, delay, and Doppler frequency according to speci- 

fied probability distributions. The presumed amplitude distribution is Rayleigh and 

is completely determined by the random arrival phases. Mûeller [go] extends the 

method to arbitrary amplitude distributions and coined this met hod the "Monte 

Car10 method." This term is used here to refer to the method described by Hoeher 

as well. 



The model described by Hoeher (921 is chosen as the fading simulator for this 

study of SIR estimation since it models the GWSSUS channel, the simulator is easy to 

implement, it allows the modeling of arbitrary quasi-continuous delay power profiles 

and arbitrary power spectra, and an arbitrary number of fading samples may be 

generated. This simulator is described in the next section. 

3.4 Implementation of the Monte Carlo Method 

3.4.1 Monte Carlo Met hod for Continuous-Time Signals 

Let the instantaneous impulse response of the channel be denoted by f (r; t )  which is 

the response of the channel at time, t ,  to an impulse transmitted on the channel at 

time t - r. The instantaneous channel impulse response rnay be written as (see 19'71) 

where M is the number of echos, 0, is the angle of arrival, v, is the Doppler frequency, 

and T, is the delay (relative to the echo with the shortest delay) of the mth echo. 

The parameters, O,, u,, and Tm are continuous random numbers each having a 

specified probability distribution. The larger the number of echos, M ,  the better the 

approximation to the GWSSUS channel. 

Note that each of the M echos is scaled by the constant factor, 1 / a .  The 

reason why random amplitudes are not required for this model is that the WSSUS 

model is completely stat istically specified by the probability distributions of O,, u,, 

and T,,, [92]. The random phase samples, O,, are uniformly distributed on [O, 2x ) .  In 

Appendix 1 of [92], it is shown that the Doppler power spectrum and delay power 

spectrum are, respectively, proportional to the pdf's of v, and T,,, so that the pdf's of 

v, and r, are, in fact, the normalized Doppler poiver spectrum and the normalized 

delay power spectrum, respectively. The Monte Carlo rnethod can model any arbi- 

trary discrete, continuous, or piece-wise continuous Doppler or delay profile by the 

appropriate specification of the pdf's for u, and r,. 



Figure 3.1: Block diagram of system illustrating generation of faded signal only. 

. a* bk mk 

The normalized Doppler and delay spectra chosen for this study were identified 

in Section 3.2 so that the pdf of v, may be wntten directly as 

and, likewise, the pdf of T, may be written directly as 

T t  

3.4.2 Discrete-Time Representation of the Faded Signal 

hk 

Tx Source 

The block diagram of Figure 3.1 illustrates the generation of the discrete-time faded 

signal (impairments are incorporated into the mode1 later). The source block gener- 

ates N,,, + 1 complex, r/CDQPSIi-encoded symbols, a,, n E {O, 1,. . . , Nsy,), from 

N,, information symbols according to the mapping rule given in Table F.3 of A p  

pendix F. Each encoded symbol corresponds to one of the eight possible points in the 

n/4-DQPSK constellation illustrated by Figure F.5 of Appendix F. The upsampled, 

complex message sequence is expressed as 

where iV, = 16 is the number of sarnples per symbol, as defined in Section 2.2. The 

Upsample 

pulse-shaped, information-carrying signal is given by 

* 



where hr represents the coefficients of a root-raised cosine filter with rolloff factor 

a = 0.33, and length L = 127 taps. The faded signal, qk ,  at the input to the receiver 

is the (discrete) convolution of the scaled message sequence, mk, with the discrete- 

time channel impulse response, frVk. giving 

The discrete-time impulse response of the channel, flPk is obtained from the continuous- 

time representation by letting t = kTs and T = lTs, where Ts is the sample period, 

and by setting a finite limit to  M so that (3.3) becomes 

Finally, the output samples of the MF in the receiver may be represented as 

where gk = h k @  h l k  = hk@ hk (as in Section 2 3 ,  the impulse response of the channel 

plus the transmit and receive filters is denoted by 

h f 

- - 5 [ (2 c kT%AG r m  7 ) g (1  rS - AT,)] 
A=-00 JM ,=, 



and the integers L- and L+ in (3.10) are chosen such that tl.c,k = O (or is negligibly 

small) outside the range L- 5 f 5 L+. 

3.4.3 Generat ion of the Fading Channel Paramet ers 

In Section 3.4.1, it is noted t hat, for the continuous-time case, the random phase sam- 

ples, O,, are uniformly distributed on [O, 2s), the Doppler samples, um, are distributed 

according to (3.4), and the delay samples, Tm, are distributed according to (3.5). This 

section discusses how to generate random samples with a given distribution. 

The phase sarnples, O,, are easily generated by any good uniform random number 

generator [T l ,  118, 1191, and the same algorithm employed in Chapter 2 for the 

generation of WGN samples is used here. The random deviates, v, and r,, rnay 

be generated by the transformation of a uniform random variable using the inverse 

cumulative distribution function (cdf) of the desired parameter. This transformation 

is known as the inverse probability integral tmnsfom [11S] and is applied below to 

the generation of random Doppler and delay samples. 

Let u, represent a continuous, uniformly-distributed random variable taking val- 

ues from [O, 1) ,  and let w, be related to u, by 

where F is the cdf of w,. The random deviates, u, and T,, may be generated by 

the substitution of w, with either u, or Tm, and by the substitution of Fw with Fu 

(the cdf of u) or F, (the cdf of r ) .  (Note that a transformation would be required 

for 8, as well for a mode1 in which the arriva1 phase is not assumed to be uniforrnly 

distributed as it is here.) 

To find the transformation for um, F,(v) is required. The cdf of v is evaluated 

from the pdf of v (given by (3.4)) as 



1 
= - 7r [sin-' (z) + r / g ]  . 

Vm, 

Let u = F,(v) and solve for v to get 

Y = U,,COS KU, u E [O, 1). (3.13) 

This expression is only d i d  for Ivl < vma. Note that (3.13) is slightly different from 

the expression for u given in (921. 

Similarly, to find the transformation for r,, F,(r) is required. First, the pdf of T, 

given by (3.5) must be truncated since a practical simulator c a n o t  mode1 a pdf that  

has an infinite tail. Let r,, denote the longest (finite) delay-delays greater than 

r,, can safely be assurned to have negligible probability. Let a be a normalization 

factor such that 

The pdf for T, over the restricted range [O, T,,) rnay then be expressed as 

The cdf rnay then be evduated as 



3.5 Verification of the Monte Car10 Method 

The discrete formulation of the Monte Carlo method is used in the software irnple- 

mentation of a fading simulator (written in C) for this study. The fading parameter 

transformations of (3.13) and (3.15), and the expression for the discrete, fading chan- 

ne1 impulse response given by (3.9) are verified in the following sections. 

3.5.1 Verzcation of the Fading Parameters used in the Monte 
Carlo Method 

This section verifies t hat the implemented C code correctly generat es random vari- 

ables with the appropriate distributions for e,, v,,,, and rm. The verification is 

performed in each case by generating 10000 random samples from which an estimate 

of the cdf is computed. The verification results are presented in graphical form. 

Figure 3.2(a) compares the cdf of the simulated phase samples, O,, to the t h e  

retical uniform cdf given by 

Figure 3.2(b) compares the cdf of the 

the transform given by (3.13), to the 

simulated Doppler samples, v,,,, generated by 

theoretical cdf given by (3.12). Figure 3.2(c) 

compares the cdf of the simulated delay samples, r,, generated by the transform 

given by (3.15), to the theoretical cdf given by (3.14). The cdf's of the simulated 

samples match theory well in a11 cases. 

3.5.2 Verscation of the Discrete, Monte Carlo-Based Fading 
Simulator Modeling Flat-Fading C hannels 

In this section, the Monte Carlo-based fading simulator represented by (3.9) is tested 

to see how closely it can approximate a fast, Bat, Rayleigh fading channel. 

As a preliminary check, the Bat-fading channel is verified qualitatively by the 

observation of typical amplitude and phase fluctuations over time. Figure 3.3 shows a 
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Figure 3.2: Comparison of plots of cdf's generated from simulated samples with 
theoretical plots of (a) Fe(0), (b) F&), and (c) F,(r). 



125 msec sample of envelope and phase fluctuations for a Rayleigh Bat-fading channel 

having a Doppler spread of u,,,, = 100 Hz approximated by a model with M = 40 

echos. By visual inspection, the envelope fluctuatious displayed in Figure 3 4 a )  

appear consistent with other published plots, such as Figure 3 of [IO01 and Figure l(a)  

of [120]. Figure l(b) of [120] indicates that rapid changes in phase coincide with deep 

amplitude fades; the correlation between rapid phase changes and deep amplitude 

fades observed in Figures 3.3(a) and 3.3(b) is consistent with the reported results. 

Next, the flat-fading simulator is tested more rigorously by statistical tests of the 

complex, faded sarnples. Four different simulators are tested, each using a different 

number of echos, M, to model a Rayleigh Bat-fading channel. The number of echos 

corresponding to the four different simulators is M = 6, 10, 20, and 40. The reason 

for considering various channels comprising different numbers of echos is to determine 

the minimum number of echos required to  ensure Rayleigh statistics. Hoeher (921 cites 

a result published in [25] that the Rayleigh approximation should be good for M 2 6. 

This claim is tested here. Each of the four flat-fading channels is evaluated by gener- 

ating a number of faded samples and computing the cdf's of the envelope and phase, 

the LCR, average duration of fades, and the autocorrelation of the samples. These 

statistical tests are discussed in 121, 95, 1211, and the theoretical expressions (which 

assume an omnidirectional receiver antenna) given below are from these references. 

The LCR is the rate at which the envelope of the faded signal crosses (with positive 

dope) some constant level, r. Letting Nr denote the LCR, it may be expressed as 

The average duration of fades, *, is the average period over which the envelope stays 

below the level, I', and is given by 

The normalized temporal autocorrelation, ~ ( r ) ,  of the (complex) faded signal is given 
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Figure 3.3: Representative samples of 125 msec of (a) envelope fluctuations and 
(b) phase fluctuations in a fiabfading channel with um, = 100 Hz and 1 U  = 40 echos. 



where Jo(x) is the zerworder Bessel function of the first kind. 

The results of the five quantitative tests are presented for each of the channels as: 

1. Plots of cdf of amplitude variations (should be Rayleigh distributed). 

2. Plots of cdf of phase variations (should be uniformly distributed). 

3. Plots of LCR (should be consistent 6 t h  (3.16)). 

4. Plots of average duration of fades (should be consistent with (3.17)). 

5. Plots of temporal autocorrelation (should be consistent wit h (3.18)). 

The rms level of the envelope fluctuations is normalized to O dB, and the maximum 

Doppler frequency, v,,, is 100 Hz. The number of faded samples used to generate 

the cdf's of the envelope and phase samples, the LCR, and the autocorrelation is 

IO6, whereas 5 x IO' samples are used for the generation of the average duration of 

fades. Theory is compared to simulation results in Figures 3.4 to 3.5 corresponding 

to items 1 to 5, respectively, from the list above. 

From Figures 3.4 to 3.7, it can be seen that M = 6 echos are sufficient to generate 

samples that have statistics consistent with a Bat, Rayleigh fading channel, based on 

measurements of the cdf's of the amplitude and phase, LCR, and average duration 

of fades of the simulated, faded samples. Hotvever, the autocorrelation of the faded 

samples based on kf = 6 echos is not very consistent with theory as revealed by 

Figure 3.8(a). In fact, twenty or forty echos appear necessary to generate samples 

that have the required autocorrelation. Although it appears that the claim made in 

[25] that the Rayleigh approximation is good for 1l.I 2 6 is valid based on tests of the 

cdf of the envelope and phase, the LCR, and the average duration of fades of the faded 

samples, the autocorrelation of the faded samples reveals that this claim holds only 
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Figure 3.4: Cornparison of the theoretical Rayleigh cdf with the cdf of simulated 
envelope samples for (a) M = 6, (b) M = 10, (c) hl = 20, (d) M = 40 echos. 



Phase nomalized to 21c radians 

Figure 3.5: Cornparison of the theoretical uniform cdf with the cdf of simulated phase 
samples for (a) 1CI = 6, (b) M = 10, (c) M = 20, (d) hf = 40 echos. 



Figure 3.6: Cornparison of the theoretical LCR with the LCR of simulated envelope 
samples for (a) M = 6, (b) M = 10, (c) M = 20, (d) M = 40 echos. 
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Figure 3.7: Cornparison of the theoretical average duration of fades with the aver- 
age duration of fades of simulated envelope samples for (a) hl = 6, (b) M = 10, 
(c) M = 20, (d) M = 40 echos. 



-0.8 I 1 

0.0 10.0 20.0 
T, Tirne delay, msec 

V 

Theoretical 

Figure 3.8: Cornparison of the theoretical autocorrelation with the autocorrelation ot 
the faded sarnples for (a) M = 6, (b) M = 10, (c) M = 20, (d) M = 40 echos. 



for simulation times of 5 msec or less (for the channel configuration considered here). 

Since, in this study, the autocorrelation of the simulated samples must be good for 

simulation times of about 6.2 msec (corresponding to a block length of 150 symbols), 

hl = 40 echos are chosen to  model Rayleigh, flat-fading channels. 

In a frequency-seleetive fading channel, each delayed echo should have Rayleigh 

statistics. For example, if a minimum of M echos are required to ensure Rayleigh 

statistics in a flat-fading channel, then a tweray, double-spike model (see (3.2)) re- 

quires 2M echos (hl echos for each ray). In a frequency-selective fading channel 

having a continuous delay profile, it is not as clear how many echos are required. (A 

new, more efficient, approach to  the Monte Carlebased fading simulator is presented 

in [Il:] in which the issue of ensuring Rayleigh statistics for al1 delayed echos is ad- 

dressed.) Hoeher [92] presents examples of simulated, fast , frequency-select ive fading 

channels where 500 echos are used "for illustration purposes," so this is the number 

of echos chosen to model fast, frequency-selective fading channels in this study. 

3.5.3 The Correlation between Two Tones on the Frequency- 
Selective Fading Channel 

One way to test the frequency selectivity of the simulated fading channel is to measure 

the correlation between two tones, separated in frequency by Af Hz. Clarke [95] has 

shown that if the multipath delays have an exponential distribution (as is assumed in 

this study) with an rrns delay spread of rm,, then the normalized correlation of the 

two tones as a function of frequency separation may be written as 

This expression is compared to simulation results for four different values of r,, in 

a frequency-selective channel wi t h an exponent ial delay profile, and the results are 

presented in Figure 3.9. It can be seen that the correlation of the two simulated tones 

is very close to theory for al1 delay spreads considered and beyond the frequency range 



Figure 3.9: Cornparison of the theoretical correlation of two tones with the simu- 
lated correlation of two tones for (a) T,, = 3 ps, (b) r,, = 6 ps, (c) rmS = 9 ps, 
(d) r,, = 12 ps- 
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Figure 3.10: Block diagram of end-teend system showing desired faded signal, faded 
CCI, and AWGN. 
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3.6 System Models 
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In this section, the general system mode1 is developed and the specific test channels 

used to evaluate the SIR estimators are described. 

Upsample + Tx 

a n  

3.6.1 General System Mode1 

source 

A block diagam of the general system is provided in Figure 3.10 from which it may 

be seen that the system models a desired signal cormpted by a time-varying fading 

h k  

- b k  

channel, a single cochannel interferer, and cornplex AWGK. The single interferer is 

+ 

%ince root-raisecl cosine filtering with a = 0.35 is ernployed in the transmitter and receiver, and 
since the baud rate is 48.6/2 = 24.3 kbaud/s (see Table 3.1), the signal energy, ideally, only extends 
out (see pp. 535-536 of [65]) to 

-= 1'0.35x24.3=16.4kHz. 
2T 2 

Upsarnple + Tx 

The Yrquency range of interest" thus spans dc to 16.4 kHz. 



subjected to a fading process similar to that expcrienced by the desired signal, but 

the two fading processes are assumed uncorrelated. 

The discrete signals, a,, bk, mk, and qk are described in Section 3.4.2. The cor- 

responding signals for the CCI, à,, hk, rkr, &, are. entirely analogous. Further, flVt 

represents the time-varying impulse response of the channel for the desired signal as 

given by (3.9); f i s  represents the corresponding fading channel for the CC1 (a differ- 

ent set of fading parameters, O,, v,, aod T,, is chosen to make the fading processes 

for the desired signal and CC1 uncorrelated); ht represents the tap coefficients of a 

root-raised cosine filter described in Section 3.4.2; and S, C, and N are real, positive 

scale factors for the desired signal, CCI, and AWGN, respectively. 

Some assumptions regarding the first- and second-order statistics of the desired 

rr/CDQPSK-encoded symbols, a,, the r/CDQPSK-encoded CC1 symbols, a,, and 

the complex noise sarnples, rç ,  must be made for the subsequent analysis. Al1 three 

of the sequences are assumed zero-mean so that 

The autocorrelations of the desired symbol sequence and the CC1 symbol sequence 

are assumed ident ical so t hat 

The power of the desired source symbols and the CC1 symbols are also assurned 

identical such that 

E ( l 0 ~ 1 ~ )  = ~ ( l ~ ~ l ~ )  = O: = 1. 

The sequence of desired symbols and the CC1 sequence are assumed uncorrelated 

giving 

E{a,ii,} = 0. 

The noise is assumed white with autocorrelation 



and the total power in the complex noise is 

The noise samples are uncorrelated with both the information sequence and the CC1 

sequence so t hat 

E{a,ri) = E{Z,z;) = O. 

The received signal, rk, a t  the input to the MF is 

where qk is given by (3.8), and Qk is written similarly as 

The received signal after the MF may be written as 

where hck = hk (since the RRC coefficients are assumed real and even), Ck is given 

by (3.10), Ck is given by 
- 
Ck = Qk 8 h l k  = & B h t ,  

and wk is coloured noise expressed as 

The statistics of the complex coloured noise, wk, are entirely analogous to the statistics 

of the real coloured noise treated in Chapter 2 so that its mean is given by 



and its autocorrelation can be written as 

so that the samples of wk taken at the baud rate are uncorrelated (white). As in 

Chapter 2, it is assumed that go = 1. 

The optimally-sampied output of the MF can be erpressed as 

It is dificult to separate (3.21) into two t e m s  whose ratio represents the SIR. More 

specifically, it is difficult to separate into a "goodn term and an "impairment" term, 

unlike the CC1 and noise terrns in (3.21) which are clearly impairments. It is not valid 

simply to declare that the strongest received, desired multipath ray is the true desired 

signal and d l  other multipath components are pure impairrnents that adversely affect 

BER performance. On the contrary, though al1 delayed multipath rays contribute to 

ISI, the overall effect of some mu1 t ipat h rays (especially the earlies t-arriving delayed 

rays) is to add to the signal power which can counter their contribution to ISI. Aiso, 

the strongest received multipath component itself cannot be identified as a pure signal 

term since i t  is deleteriously dected, in general, by the random phase and amplitude 

fluctuations of fast, Rayleigh fading. 

Instead of debating which part of Ck is pure signal and which parts are impair- 

ments, it is simply assumed that it is possible to re-write (3.21) as7 

where Cdn is the pure, desired signal term and a new variable, Cn, is defined to represent 

the sum of al1 of the impairments. Note that if the channel has no fading and if there 

'In the sequel, it is understood that Ns = 1; that is, only symbol-spaced samples are considered 
so that "1V," may be ornitteci from the subscripts of Cd, and c,. 



where the signal term results from a simplification of (3.10) assuming no fading (i.e. 

+ t . r  = 90 = 1). 

The assumed first- and second-order statistics of cd,, are given by 

For simplicity, the very gross assumption is made that 6 is Gaussian, and that its 

first- and second-order statistics are given by 

where E represents the totd  impairment power. Of course, the Gaussian assumption 

is invalid, in general, for al1 of the impairment processes other than ALVGN; however, 

for the sake of simplicity and unless otherwise mentioned, the estimators are derived 

assuming Gaussian statistics, and then applied ad hoc to channels with non-Gaussian 

impairments. 

Most of the SIR estimators are derived in terms of the symbols at the output of 

the differential detector (DD) given by 



3.6.2 Five Mobile Radio Test Channels 

The aim of t his study is to investigate statistically SIR estimator performance given 

a particular set of channel conditions. Each SIR estimate is generated from a block 

of r/4-DQPSK-encoded symbols compted by fading, CCI, and AWGN. For each 

successive SIR estimate, a new random sequence of data, AWGN, andfor CC1 is gen- 

erated. Five test channels are chosen in ahich to evaluate the performances of the SIR 

estimators, and their characteristics are described in this section. For convenience, 

the five channels are referred to here as  Cases 1-5. 

The parameters used to define the characteristics of each channel are the SNR, 

SfC (the ratio of desired signal power to CC1 power), ums, and rms. The number of 

information symbols used to generate an SIR estimate is fixed at Nwm = 150 (which 

implies N,,, + 1 = 151 differentidly-encoded symbols) for al1 cases. The parameters 

chosen for each of the five test cases were selected by referring to "typicaln values 

for SNR, SIC, um,, rmS, and BER reported in the literature [74, 2, 11, 97, 1001. 

In each case, a particular channel parameter, such as the SNR, is swept (in discrete 

steps), and the SIR is measured using a particular SIR estimator. The sweep ranges 

of the channel parameters are chosen such that the BER of each test channel is some 

"reasonable" value in a range from IO-' to The simulated BER curves for each 

test channel are presented in Section 3.9. 

It is illustrative to see examples of the effect of each channel on the constellation of 

the received, compted, complex baseband signal. For each of the five test channels, 

four different types of signal constellations are shown constructed from samples of 

simulation data. The different constellations portray: 

Typical received samples (16 samples per symbol) at the output of the MF. 

Symbol centres before the DD. 

Symbol centres after the DD. 

Symbol centres de-rotated to the real, positive axis (modulation removed). 



Figure 3.11: "Clear sky" reference signal (a) samples after MF, (b) symbol centres 
before DD, (c) syrnbol centres after DD, (d) post-DD symbols with modulation re- 
rnoved. 

The "de-rotation" referred to above is an effective removal of the modulation from 

the baseband signal after the DD. This de-rotation concept arises in the derivation 

of some SIR estimators in Section 3.7. For reference, Figure 3.11 shows each of the 

four constellations as they would appear in a Wear-sky" channel with no noise, no 

CCI, and no fading. 

Case 1: Complex AWGN Channel 

The only impairment in this channel is complex AWGN. This is the same complex 

AWGN channel used in Chapter 2. The sample signal constellations for Case 1 are 



Figure 3.12: Received signal for Case 1 with SIN = 18 dB (a) sarnples after MF, 
(b) symbol centres before DD, (c) symbol centres after DD, (d) post-DD symbols 
wi t h modulation removed. 

presented in Figure 3.12 with SIN = 18 dB. 

Case 2: Fast, FIat Fading Channel 

This channel models fast Rayleigh fading in a flat channel with AWGN but no CCI. 

The Doppler power spectrum is the Jakes spectrum given earlier in (3.1). The spacing 

between successive amplitude fades due to the fast Rayleigh fading is about the same 

or greater than the block length of = 150 symbols, depending on the specific 

value of v,,, which creates a modeling problem peculiar to this test channel (and 

Case 5, which is discussed later). Specifically, the amplitude and phase fluctuations 



of the Rayleigh model can either be left to evolve over tirne for each successive SIR 

estimate, or the channel conditions can be "replayed" for each successive SIR estimate. 

If the latter model is selected, a specific start time must be chosen. 

For the Case 2 channel, the decision was made to simulate both models. The 

channel that is allowed to evolve over time for each successive SIR estimate is referred 

to as the Case 2A channel, and the Case 28 channel is the name used to refer to 

the model in which the channel conditions are replayed identically for every SIR 

estimate. The Case 2A channel is more realistic since it models a real-world scenario, 

but a severe drawback is the fact that the %uen SIR varies considerably about some 

long-term mean over time (since each SIR estimate is allowed to see only an N&,- 

wide window) which creates a false, misleadingly high variance in the SIR estimates. 

in contrast, the variance of the SIR estimates measured in the Case 2B model is 

attributable solely to the specific SIR estimator tested and not to time-dependent 

channel conditions; however, the model does not reflect well the dependence of the 

SIR on the Doppler spread, v,,, due to the relatively narrow observation window. 

For the Case 2A model, the range of u,, and the other channel variables must 

be specified. In Figure 7 of [ll], it can be seen that for Rayleigh-faded, r/4-DQPSK 

modulated signals, the effect of y,, is negligible for values of SNR less than 30 dB, 

but the effect of u,, for values of SNR greater than about 60 dB is very distinct. 

For this reason, for the Case 2A modei, SIN is held constant a t  70 dB8. The Doppler 

spread, v,,, is swept from 40 Hz to 100 Hz in 30 Hz steps. An example of typical 

amplitude and phase fluctuations observed in this Case 2A channel for u,, = 100 Hz 

was given in Figure 3.3. 

For the Case 2B model, is held constant at 100 Hz while SIN is swept from 

20 dB to  40 dB in increments of 5 dB. This lower range of SNR was chosen since the 

error probability is relatively unchanged for SIN > 50 dB with u,, fixed. The ampli- 

*1t is understood that it may be difficult to find a real-world Rayleigh fading channel with an 
associateci SNR of 70 dB, but this somewhat artificial value of SNR is assumed here in order to 
observe the effect of the Doppler spread on the SNR. 
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Figure 3.13: Envelope of received signal due to Rayleigh fading in the Case 2B channel 
over an interval of 150 symbols (6.18 ps). This amplitude fluctuation is replayed for 
the generation of each SIR estimate. 

tude and phase fluctuations due to the fast fading are replayed every N,, + 1 = 151 

different ially-encoded symbols so that each SIR est imate is generated under ident ical 

channel conditions. The start time is chosen such that a deep nul1 occurs near the 

center of each received block. The amplitude fading profile is given in Figure 3.13. 

The spacing between successive fades is about equal to Nsym = 150 symbols. 

The sample signal constellations for Case 2A are presented in Figure 3.11 with 

v,, = 100 Hz, and SIN = 40 dB. The signal constellations for Case 2B are omitted 

since the effect of Rayleigh fading on the signal constellations is best appreciated by 

observing the effect of the time-evolving channel of Case 2A. 



Figure 3.14: Received signal for Case 2 with v,, = 100 Hz and SIN = 40 dB 
(a) samples after MF, (b) symbol centres before DD, (c) symbol centres after DD, 
(d) post-D D symbols wit h modulation removed. 



Case 3: Slow, Fkequency-Selective Fading Channel 

In this case, it is assumed that the transmit ter and receiver are not moving with 

respect to one another so that v,, = 0, but there is channel distortion due to 

multipath-induced ISI. In other words, the channel is frequency-selective. The chan- 

nel is assumed to have an exponential delay power spectrum given by the first line 

of (3.2). The delay spread of the channel is swept from r,, = 3 ps to 12 ps in 3 ps 

steps, while SIN is held constant at  15 dB. This small amount of ALVGN is included 

since the multipath-induced ISI alone produces a very small BER, especially at srnall 

values of r-, which takes an excessive amount of simulation time. 

The sarnple signal constellations for Case 3 are presented in Figure 3.15 with 

Tm. = 9 ps and SIN = m. No noise has been added to the signal used to generate 

these plots so that the effect of the multipath-induced ISI is isolated. There is a 

dawnward shift in the post-DD constellation (see Figure 3.15(c)) which brings the 

upper two post-DD symbol centres closer to a decision boundary. Note, however, 

that even with T,, = 9 ps, though the post-DD symbol-centres are smeared and 

corne close to the decision-boundaries, not one of the symbols pictured would be 

detected incorrectly-there is only a very small probability of a decision error. It is 

for this reason that a small amount of noise (S IN  = 15 dB) is added for the SIR 

simulations. 

Case 4: Single Cochannel Interferer 

This case assumes a single, 1r/4 DQPSK-modulated cochannel interferer, which im- 

plies the interfering signal has the same statistics as the desired signal. The worst-case 

timing scenario is assumed where the symbols of the desired signal and the symbols 

of the CC1 are precisely time-synchronous. The desired transmit ter, the cochannel 

interferer, and the receiver are assumed fixed in position so that the channel transfer 

function is time-invariant. Some AWGN (SIN = 15 dB) is included, however, as the 

BER curve due to CC1 alone has a "brick-walln shape. That is, in the absence of any 



Figure 3.15: Received signal for Case 3 with T,, = 9 ps and SIN = w (a) samples 
after MF, (b) symbol centres before DD, (c) symbol centres after DD, (d) post-DD 
symbols with modulation removed. 



Figure 3.16: Received signal for Case 4 with SIC = 12 dB and SIN = oo (a) sarnples 
after MF, (b) symbol centres before DD, (c) symbol centres after DD, (d) post-DD 
symbols wit h modulation removed. 

other impairment, as SIC is decreased from infinity, the BER remains zero until SIC 

reaches a threshold a t  which point the BER increases dramatically. Injecting some 

noise causes a more gradua1 degradation in BER with decreasing SIC. 

The sample signal constellations for Case 4 are presented in Figure 3.16 with 

SIC = 12 dB, and SIN = m. No noise has b e n  added to  the signal used to generate 

these plots so that the effect of the CC1 is isolated. Some interesting patterns arise 

from the perfectly time-synchronized CCI. From these plots it is easy to see that, in 

the absence of noise, the BER has a threshold. No errors are produced in the scenario 

shown since the patterns of points after the DD (see Figure 3.16(c)) are contained 



entirely within their respective quadrants. It is only when the CC1 power becomes 

large enough such that the four clusters encroach into other quadrants that errors are 

produced. Once that threshold is crossed, the BER degrades drarnatically. 

Case 5: A "TypicalV Mobile Radio Channel 

The last case considered is a combination of the various channel degradations. Both 

the signal and CC1 are subjected to similar, but uncorrelated fading conditions. That 

is, the shapes of the Doppler and delay power spectra are identical, and the param- 

eters v,, and T,, are equal in both channels, but the sets of random variables, 

(O,, u,, rm), m E {1,2, . . . , M ) ,  in (3.9) are chosen independently. 

Since fast Rayleigh fading is present in this test channel, the same issue arises as 

discussed earlier in the context of the Case 2 channel regarding whether to allow the 

channel conditions to evolve over time, or to replay the exact same channel conditions 

for each successive SIR estimate. For the sake of conciseness, only one type of model 

need be implemented for the Case 5 channel. A model analogous to the Case 2B 

channel is use here; that is, the channel conditions are replayed identicaily for each 

SIR estimate so that the inherent effect of an estimator algorithm on the variance of 

the SIR estimates is isolated from the effect of the time-varying channel conditions. 

The start time for the simulation is chosen so that a deep null, such as is present 

in Case 2B, is avoided since the effect of the null swamps out the effect of the other 

channel impairments. Instead, a segment of tirne is chosen where the amplitude 

fluctuations are less severe. The amplitude profile chosen for Case 5 is s h o w  in Fig- 

ure 3.17. In order to see the amplitude fluctuation more clearly, al1 other impairments 

were omitted for the generation of Figure 3.17. 

The sample signal constellations for Case 5 are presented in Figure 3.18 with 

um, = 100 Hz, T,, = 3 ps, SIC = 18 dB, and SIN = 15 dB. For the Case 5 

simulations, the SNR is the independent variable which assumes values from the set 

{9,12,15,30) dB. 
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Figure 3.17: Envelope of received signal due to Rayleigh fading in the Case 5 channel 
over an interval of 150 symbols (6.18 ps). This amplitude fluctuation is replayed for 
the generation of each SIR estimate. 



Figure 3.18: Received signal for Case 5 with u,, = 100 Hz, T,, = 3 ps, SIC = 18 dB 
and SIN = 15 dB (a) samples after LIF, (b) symbol centres before DD, (c) symbol 
centres after DD, (d) post-DD symbols with modulation removed. 



Channel y,,, Hz rrm~, ps SIC, dB SIN, dB 
Case 1 O O 00 {6,9,12,15,18,24,30) 
Case 2A {30,70,100) O 00 70 
Case 2B 100 O a3 (20,22,30,35,40) 
Case 3 O {3,6,9,12) m 13 
Case 4 O O {6,9,12,1S} 15 
Case 5 100 3 18 {9,12,15,30) 

Table 3.2: Summary of channel characteristics for the five types of test channels. 

The channel parameters for the five cases are summarized in Table 3.2. 

3.7 SIR Estimators under Study 

The SIR estimators under study are described in this section. Some of the estimators 

are adapted from Section 2.3, others make their first appearance here. Where possible, 

estimator names and acronyms are those used by the original authors; otherwise, 

narnes and acronyms are chosen for ease of reference. 

3.7.1 The Second- and Fourth-Order Moments (1.12114) Esti- 
mator 

The M2M4 estimator was described in Section 2.3.4. The form of the dl2iV4 estimator 

applicable to complex signals in complex ALVGN is adapted here to the mode1 de- 

scribed in Section 3.6.1. The hl&'' estimator is applied to the baud-spaced samples 

at the output of the MF (but before the DD) given by (3.22) as 

The general, cornplex hI2M4 estimator for the desired signal power is given by (2.98) 

of Section 2.3.4 as 



and the general, complex &A4 estimator for the noise power is given by (2.99) of 

Section 3.3.4 as 
* 

N i l ~ ~ ~ , . c o m ~ l e ~  = 1\12 - Si%1~~4,cornpiex, (3.27) 

where the constants, ka and b, represent the kurtosis of the signal samples and the  

kurtosis of the noise samples, respectively. 

In the context of the mode1 of Section 3.6.1, the signal power estimator given by 

(3.26) is re-written as 

where kc is the kurtosis of the impairment process, and dl2 and hl4 are given in their 

t ime-average foms  as 
* N,vm 

and 

which 

power 

as 

are sirnilar to  (2.101) and (%.102), respectively, of Section 2.3.1. The noise 

estimator given by (3.27) becomes the impairment power estimator expressed 

The kurtosis of the a/CDQPSK-modulated symbols is ka = 1 and, if it is assumed that 

[,, is a complex, Gaussian process, it's kurtosis is kc = 2. However, if Cn is dominated 

by CC1 so that al1 other impairments (including AWGN) are negligible, the kurtosis 

of [,., is kt = 1 since the CC1 is also a rr/CDQPSK-modulated signal. Clearly, the 

optimal form of the M2M4 estimator depends on the statistics of the impairment 

process so that either the M2M4 estimator must be able to identify different types of 

impairment processes and adapt accordingly, or some compromise must be made so 

that a static Mz& estimator is applicable to a range of channel environments. The 

latter approach is taken here. Specifically, the compromise made is to let ke = 1.5 



so that, using (3.28) (taking the negative root) and (3.29), an d12d4 SIR estimator 

may be expressed as 

3.7.2 The Signal-to-Variation Ratio (SVR) Estimator 

The SVR estimator was described in Section 3.3.5. The form of the SVR estimator 

applicable to complex signals in complex AWGN is adapted here to the mode1 de- 

scribed in Section 3.6.1. Just as the 1C121\14 estirnator, the SVR estimator is applied 

to the N,, + 1 baud-spaced samples at the output of the MF (but before the DD) 

given by (3.22). 

The general, cornplex SVR estimator is adapted from (3.112) of Section 2.3.5 by 

replacing kW tvith kt to yield 

where kc is defined in Section 3.7.1, 1;, is the kurtosis of the signal, and P is given in 

t ime-average form as 

which is very similar to  (2.114) of Section 2.3.5. The kurtosis of the signal is ka = 1, 

and the kurtosis of the noise is chosen to be kt = 1.5 as a compromise between the 

kurtosis of complex AWGN (for which kc = 2) and the kurtosis of a CC1 signal (for 

which kt = l ) ,  as done for the M2M4 SIR estimator in Section 3.7.1. The SVR SIR 

estimator may then be expressed using (3.31) (taking the positive root) as 

~ S V R  = B  - 1 + 1.5). (3.32) 

This is precisely the result given by Brand50 et al in [56].  The idea to use kt = 1.5 

as the kurtosis of the impairment process was originally suggested in [56]. 



3.7.3 The Absolute Difference of Absolute 1 and Absolute Q 
(ADIQ) Estimator 

This method was first introduced by Yoshida et al in [5ï] as a means to measure 

link quality degradation as a result of rnultipath-induced ISI in systems that employ 

a/CDQPSK modulation. In [ S I  it \vas shown that the same method described in 

[57] could be used to  provide a measure of both multipath delay-spread and CC1 

power in systems which employ any type of "QPSK-liken signals. The method is 

quite simple in that the estimator only need be able to  compute the absolute value 

and difference of samples. No name was attributed to this method by the original 

authors, so the descriptive name, the Absolute Difference of Absolute I and Absolute Q 

(ADIQ) Esfimator is assigned here for ease of reference. 

The ADIQ method may be applied to any "QPSIi-liken signal; that is, it may be 

applied to any signal whose complex, baseband signal constellation comprises four 

symbols forming a square centred on the origin. The differentially-detected 714- 
DQPSIi constellation complies \vit h t his requirement . 

Unfortunately, the ADIQ expression given in [FIS, 571 yields estimates that don't 

have any particular meaning in an absolute sense, in contrast to al1 of the other SIR 

estirnators considered in this study. For example, in the complex AWGN channel, 

al1 of the SIR estimators considered in this study except for the ADIQ estimator as 

given in (58, 571 yield estimates that correspond to the SNR. As a consequence, the 

ADIQ estimator as given in (58, 571 can only be used in applications which require a 

relative measure of channel quality. However, it is shown below how the original form 

of the ADIQ estimator may be transformed into a modified estimator which yields 

the SNR in an AWGN channel. The original ADIQ estimator of [jS, 571 is denoted 

by GADIp, whereas the modified ADIQ estimator presented here is denoted by PA DI^. 
The ADIQ estimator operates on the post-DD samples, x,, given by (3.25) which 

rnay be denoted explicitly in terms of real and imaginary parts as x,  = 11, + jzq, 

so that the in-service ADIQ SIR estimator as given by [5S, 571 may be written in 



time-average form as 

where decreasing êADIQ corresponds to increasing signal quality. By inspection of 

(3.33), it may be seen that the magnitude of al1 symbols is normalized. This "in- 

stant aneous automatic gain control" (AGC) was incorporated by the original authors 

(see [5S]) to eliminate fluctuations in the received signal. No detailed explanation is 

offered in [Ml, but it is easy to see that if the AGC were not employed, the amplitude 

of the received signal would impair the function of the ADIQ estimator. For example, 

for a desired signal with a given nominal amplitude corrupted by AWGN with a cer- 

tain variance, the numerator of (3.33) varies depending on the amplitude of the noisy 

received signal (which, in turn, yields correspondingly different estimates of PADrQ); 
however, any SNR (or SIR) estirnate should be independent of the amplitude of the 

sum of the desired signal and noise, thus the inclusion of the instantaneous AGC. 

It was discovered empirically by inspection of the simulated SNR estimates pro- 

duced by (3.33) in the ALVGN channel of Case 1 that the true SNR is proportional 

to the inverse square of êADIp. Specifically, the modified ADIQ SIR estimator which 

yields correct values of the SNR may be expressed as 

where êiDiQ is given by (3.33). The factor, 45, is the same factor that arises 

in the context of the relationship between the sample standard deviation and the 

more robust rnean absolute deviation [133]. Specifically, consider a set of samples 

represented by sr, k E {1,2,. . . , K ) .  It is shown in [122] that if the unbiased sample 

mean of the samples is given by 5 as 



and if the unbiased sample standard deviation of the samples is given by 

then the mean absolute devialion (MAD), given by 

is related to the sample standard deviation, u, by 

in the Iimit that K + m. It seerns reasonable, but not obvious, that this fi factor 

should arise in the context of ADIQ estimation. Proving the empirical observation 

represented by (3.34) is difficult due to the nested absolute value operations in (3.33) 

so a proof is not provided here. 

As discussed in Section 3.7.7, the absolute value operations on zr, and 14, in 

(3.34) and (3.33) imply an RxDA type of estimator. It is possible, therefore, to 

create a TxDA form of the ADIQ estimator by replacing lxr,, 1 and lxq, 1 with (X.j.5) 

and (3.56) (see Section 3.7.7) and by using the true transmitted differential phases, 

A,, instead of the estirnated differential phases, A,, as discussed in Section 3.7.6. 

Though this modification would yield an estimator with better performance at low 

SIR, the TxDA form of the ADIQ estimator is not studied here since the originators 

[58, s i ]  consider only the RxDA form. Any mention of the ADIQ estimator here 

implies the RxDA form of (3.34) and (3.33) even though the  "RxDA" label is not 

explici t ly applied. 

3.7.4 The Maximum-Likelihood Estimator for Post-MF (Pre- 
DD) Samples 

In Section 2.6 the simulated performances of the M L  TxDA and SNV TxDA estima- 

tors (both of which are ML estimators) were found to corne closest to the theoretical 



CRB. I t  would seem reasonable to try a similar blL approach to derive an )IL SIR 

estimator for the channel described in Section 3.6.1. Unfortunately, it is a dificult 

problem to apply the formol ML method to the signal-plus-impairment samples at 

the input to the MF since the overall impairment process consists of several separate 

impairments, each having different statistics. Also, it is difficult to build the fast, 

frequency-selective fading channel into the ML derivat ion. Instead, the ad hoc appli- 

cation of the cornplex M L  SNR estimator, presented in Section 2.3.2, to the general 

system mode1 of Section 3.6.1 is considered here. 

The reduced-bias, cornplex ML TxDA SNR expression is given by (2.72) of Sec- 

tion 2.3.2 as 

2 

4 - N i  [$ x&ôl ~e {ri ma)] 
&IL TxDX,cornplex - 1 h'-1 2 ' (3.35) 

C k = o  Irk12 - [CL' Re{rimk}J 

which 

to the 

takes as input the sequence of lï = N,,N., corrupted samples at  the input 

MF in the model of Section 2.2. In terms of the model of Section 3.6.1, the 

pre-MF sequence is given by (3.30) as 

mhere k E {O, 1,. . . , Ii' - 1) and A = (X&,  + 1) 1VS due to differential encoding. The 

M L  TxDA SNR estimator must form a re-modulated version of the transmitted signal 

from known transmitted symbols. The "cleann version of the transmitted signal to 

use here is given by (3.7) as 

where bk is given by (3.6) as 

and a,  represents the sequence of nl4-DQPSK-encoded source symbols. As described 

in Section 2.3.2, the RvDA version of the ML estimator is obtained by replacing the 

known pulse-shaped sarnples, r n k ,  with estimated pulse-shaped sarnples, mr), forrned 



from receiver decisions. The reduced-bias, comples AIL RxDA estimator is given by 

(2.73) of Section 2.3.2 as 

Recall that the parameter, i, denotes the îth sequence selected by the receiver out of 

iCINsyrn possible transmitted sequences (for x / P D Q  PSI< modulation, d l  = a). 
Apart from the fact that the complex ML SNR estimators of Section 2.3.2 are 

derived specifically for the AVEN channel, there are two other issues of concern that 

make the ML SWR estimators unsuitable for the system mode1 of Section 3.6.1. The 

first issue is the effect of receiver errors in the case of ML RxDA estimation, and the 

second issue is the effect of randorn phase fluctuations caused by Rayleigh fading. 

First consider the effect of receiver errors on the M L  RxDA estimator. The 

ML TxDA SNR estimator given by (3.33) was simulated in the Case 1 channel de- 

scribed in Section 3.6.2 and its performance was found to approach the CRB, as 

expected (see Figure 3.26). The ML RxDA SNR estimator given by (3.36) kvas also 

simulated in the Case 1 channel and vas found to have a performance similar to 

that of its TxDA counterpart at high SNR, but its performance at low SXR rvas 

rernarkably poor due to the catastrophic effect of receiver errors (see Figure 3.26 of 

Section 3.9.1). 

To illustrate the mechanism behind the catastrop hic failure of t his estimator at 

low SXR, consider Table 3.3 (constructed using Table F.3 of Appendix F) ivhich shows 

r/CDQPSI<-encoded source symbols formed from known bit-pairs at the transrnitter 

(Tx), and re-modulated symbols formed from estimated bit-pairs at the receiver (Rx). 

It can be seen that the symbols generated by the Rx are different from the symbols 

generated by the Tx after the single bit error at index n = 3, so that the correlation 

between ~k and the estirnated sarnples, m!), is destroyed. The dflèrential phases 

after the symbol error are not affected, but the absolute phases are. The only way 

the encoded symbol sequences of the Tx  and Rx could become equal again is if a 



Symbol Index, n O 1 3 - 3 4 ... 
Informat ion bit-pairs (Tx) - O0 10 O1 11 --• 

r/-l-DQ PSI<-encoded r / 4  rr/2 -n/4 2 îr/4 
source symbols (Tx) 
Information bi t-pairs (Rx) - O0 00 O1 I I  O - -  

a/CDQPSI<-encoded r / 4  / 3 r / 4  -r/Z -3x/4 - - -  
source symbols (Rx) 

Table 3.3: The effect of a single bit error (at n = 2) on differentially-encoded symbols. 

future, fort uitous receiver error were to occur such that the erroneous di fferential 

phase makes the absolute phases of the Tx and Rx symbols the same. Of course, the 

next error to occur after that would spoil the correlation betiveen the absolute phases 

of the Tx and Rx syrnbols once again. 

Next, consider the random phase fluctuations caused by Rayleigh fading. The 

phase fluctuations (see Figure 3.3(b)) of the pre-DD received samples deleteriously 

affect the correlation of the received signal with the clean, local copy of the trans- 

mitted waveform. This is a problem that affects both the M L  RxDA and ML TxDA 

SNR estirnators. To overcome this problem, the receiver must be able to track the 

random phase fluctuations which implies additional receiver cornplexityg. 

Both of these issues indicate that it ivould seem advantageous to try the ;\IL 

method on the post-DE samples rather than on the pre-DD samples. For the first 

issue, post-DD estimation alleviates the cataçtrophic effect of errors on RxDA esti- 

mat ion since the post-DD symbols contain only differential phase informat ion, not 

absolute phase information. For the second issue, since the Rayleigh fading-induced 

random phase changes are relatively small over the duration of a symbol period, the 

differentially-detected symbols are relatively unaffected by the random phase fluc- 

tuations. The next four sections discuss possible post-DD implementations of SIR 

' ~ o t e  that the 1C[Z1bf4 and the SVR SIR estimators operate on the sarne pre-DD samples, rk,  

but since these estimators are based on even moments (the second and fourth moments) of the 
received signal, the phase information disappears so that the Rayleigh fading-induced random phase 
fluctuations do not affect these estimators the same way that the affect correlation-based, data-aided 
estimators (such as the M L  estimator). 



est imators which are GLILlike" in structure. 

3.7.5 The Maximum-Likelihood Estimator for Post-DD Sam- 
ples 

An M L  SIR estimator ,vas derived by Chennakeshu and Saulnier in [-SI based on 

the pdf of the phase of differentially-detected samples assuming an AWGN channel. 

The resulting ML estimator for AWGN is applied ad hoc to  ivireless channels in 

which exist the additional impairments of fading and CCI. This SIR estimator was 

developed for use in a timing and frequency offset estimation algorit hm described in 

[%]. This estimator is explicitly referred to as a signal-teimpairment ratio estimator 

in [2S], but in order to distinguish it from the other SIR estimators under study, it 

will be referred to here as the DDML SIR estimator (the -DD" in DDML indicates 

that this is an ML expression for post-DD samples). The derivation of the DDML 

SIR estirnator is sketched below based on the development OF [BI. 

Since this ML method is based on the phase of the post-DD samples, (3.25) must 

be re-written in polar form as 

where A, represents the envelope and 4, represents the phase of the impaired samples 

at the output of the DD at time index n. Let A. represent the true transmitted 

phase. The pdf of the phases of the post-DD samples conditioned on A, and the 

"instantaneous" SNR, p,, may then be written using the notation adopted here to 

obtain an expression similar to  equation (A2.3) of [-SI (based on equation (12.103) 

of [65]) as 

Folfoiving [2S], the pdf of 9, is approximated by making the assumptions that p ,  » 1 



and la, - &l < x / 3 ,  so that (3.3s) simplifies to 

Assuming the N,, differential phases are independent, the pdf of the sequence of 

received differential phases may be written simply as 

where # E {41, &, . - . , dN,ym). Taking the logarithm of (3.40) and differentiating 

with respect to pn, one obtains 

Setting (3.41) to zero and solving for pn, one obtains an expression for the DDML 

TxDA SIR estimator as  

1 
~ D D M L . T ~ D A  = 1 A%,, (3.12) - Nsym Cn=l sin2(An - $n) 

This is a TxDA SI& estimator since the transmitted differential phase, A,, is assumed 

known to the receiver. In the case that the received differential phase is estimated by 

the receiver, the DDML RxDA estimator may be expressed similarly as 

where A, represents the estimated different ial phase. 

3.7.6 The Pseudo-Maximum-Likelihood (PML) Estimator 

In Section 3.7.5, the der id ion  of the DDML SIR estimator was sketched based on 

the phases of the post-DD samples-the amplitude information of the samples was 



ignored. It is worthwhile considering an M L  structure for post-DD samples based 

on a Cartesian approach similar to that discussed in Section 3.7.4 for pre-DD sam- 

ples. It is a difficult problem to apply the forma1 M L  method to the signal-plus-noise 

samples at the output of the DD due to the non-linear differential-decection opera- 

tion (though Chennakeshu and Saulnier applied the ML method to the differential 

phases, the resulting pdf had to be approximated by making simplifying assurnptions 

in order to arrive at an ML expression). Instead, consider a "pseudo-MLn estimator 

formulated here based on the general structure of the SNV SNR estimator (a type 

of ?VIL estimator) for complex AWGN channels. The SNV TxDA SNR estimator is 

given by (2.S1) of Section 2.3.3 as 

It can be seen that the general approach of the complex SNV TxDA SXR estimator is 

to correlate the cornplex-conjugate of the symbol-spaced samples at the output of the 

MF, y:, with the the  known transmitted symbols, a,, to estimate t h e  signal porver10 

(the numerator of j k N V  TxDA,cocomplcr). The noise power is estimated by subtract ing the 

estimated signal power from an estimate of the total signal-plus-noise power. The 

SNR is then found trivially as the ratio of the estimated signal and noise powers. 

This general approach of the SNV SNR estimator is applied below to the output of 

the DD as the basis of the PML SIR estimator. 

In order to obtain a PML TxDA estimate of the signal power, the knoivn trans- 

mitted sequence of source symbols (or simply the sequence of phases) is required. 

The symbol-spaced samples of the DD output may be expressed in terms of (3.22) 

and (3.25) as 
6 

la~quivalentiy, the signal power rnay be found as the correlation of y, with ai  since Re (yia,) = 
Re b;yn 1 - 



The phase difference between Cd, and Cd,-i represents the  transmit ted different ial 

phase at time index n (note that there are four possible differential phases-see Ta- 

ble F.3 of Appendix F). Let A, represent the transniitted differeiitial phase so that 

A PML TxDA estimate of the signal power is formed by the correlation of the received 

post-DD symbols with the cornplex conjugate of the transmitted differential symbols. 

Taking advantage of the independence of the signal and noise sarnples, the PML TxDA 

estimate of the signal may be writ ten as 

- 
where E { ~ ~ ' , - i )  = E(Cn} = O usiog (3.21a), and E { [ n [ n - i )  = = Jn,*-t = O using 

(3.24b). 

It is illustrative to consider a graphical interpretation of the samples represented by 

trie-jAn. In Section 3.6.2, plots are provided showing examples of the appearance of 

various signals in the reference Wear-skyn channel and in the five mobile radio chan- 

nels. In particular, Figures 3.11(d), 3.12(d), 3.11(d), 3.15(d), 3.16(d), and 3.1S(d) 

show examples of the "de-rotatedn signal, x,e-jAn, under various conditions. The 

signal is ude-rotatedn in the sense that the post-DD symbols are phase-rotated to 

the real, positive axis, essentially stripping the modulation from the symbols. Fig- 

ures 3.12(d), 3.15(d), and 3.16(d) show that the de-rotated post-DD symbols in 

Cases 1, 3, and 4 are reasonably symmetric, whereas the amplitude variations caused 

by the fast, Rayleigh fading present in Cases 2 and 5 spreads the de-rotated syrnbols 

along the real axis, as is evident in Figures 3.14(d) and 3.1S(d). 

In a similar manner as for the complex SNV SNR estimator, the total power is 



obtained as 

again making use of (3.23) and (3.24), so that an expression for the impairment posver 

is 

Z = E{yny:} - ~ { ~ ~ e - j * " ) .  (3.48) 

In practice, expected values are estimated by time averages so that the P51L TxDA 

SIR estimator may be expressed as 

where the real part of zne-jAn is taken to ensure that the SIR estimate is real. Note 

that the summation starts at n = 1 because of the difFerential detection operation. 

The PML RxDA SIR estimator is identical in form to (3.49), except that A, 

is replaced by b,, which represents the estirnated transrnitted differential phases 

generated by the receiver. The in-service, PML RxDA SIR estimator is expressed 

3.7.7 The Signal-to-Impairment Variance (SIV) Estimator 

This method is essentially an ad hoc application of the real form of the SNV SNR 

estimator (see Section 2.3.3) to each of the in-phase and quadrature components of 

the complex, baseband signal. The de-rotated post-DD symbols are not required for 

this estimation method. 

Using (3.45) and (3.46), the DD output can be expressed as 



For notational simplicity, let 

Equation (3.51) may then be expanded to show real and imaginary parts explicitly 

as 

The real form of the SNV RxDA estirnator is given by (2.78) of Section 2.3.3 in terms 

of expected values as 

Following this general form, the SIR estimator is to be written as some function of 

E { I z ~ ~ ~ )  and E{lzQ,l), and Var(lxI,,l} and Var{lxq,j). To facilitate the derivations 

that foliow, consider the replacement of lxr,, 1 and lxQn 1 wi th the equivalent expressions 

and 

respectively, where i\, represents an estirnate of the phase difference between syrnbols 

transmitted at time indices n and n - 1, as discussed in Section 3.7.6, and lm{-) 

denotes the imaginary part of a complex quantity. Using (3.55) and (3.53), the 

expected value of lxln 1 rnay be evaluated as 



E { I X ~  I}/& = E{zr ,  cos A,) 

= S E{COS A, COS A,) + E{ar cos A,) E {b;}  + E{oQ cos A,) ~ { b b )  

+ ~ ( a ;  cos A,) E{bI} + E{ab cos A,} E{bQ) 

+ ~ { b & ) ~ { c o s  A,) + ~ { b & )  E{COS A,). (3.57) 

Using (3.24a) and (3.24b), one has 

Using the fact that A, E {f q, f y). with each of the four possible phases occurring 

with equal probability, one obtains 

E {COS A, COS An} = E{cos(An - &) + cos(& + Ân))/2 

;i E{1+ cos 2An)/2 

= 2 (1 + f cos (5) + a cos (-2) + ; COS (%) + $ cos (+)) 
= 112, (3.59) 

where the approximation is due to the assumption that Ân = A, (rneaning the 

receiver makes perfect decisions). Substituting the expressions given by ( 3 . 3 )  and 

(3.59) into (3.57) yields 

E{ltrn 1) = SI&. (3.60) 

Similady, using (3.56) and (3.53) the expected value of lxqn 1 may be evaluated as 

E{ IZ~ ,  [)/fi = E{zon sin An) 
= 5' E{sin A, sin Â,) + E{ao sin An) ~ { b ; )  - E{ar sin A,) ~ { b b )  

+ E{a; sin Â,) ~ { b ~ }  - E{ab sin À n ) ~ { b r )  

+ ~ { b ~ ) E { b > ) ~ { s i n  A,) - ~ { b ~ ) ~ { b ~ ) ~ { s i n  A,). (3.61) 

Note that 



because the in-phase and quadrature impairment processes are assumed independent. 

By similar arguments used to evaluate E{cos A, cos Â,) in (3.59), one has 

 s sin A, sin a.) = E {cos(A, - Â,) - cos(An + &))/2 

E(1 -cos24,)/2 

1 = (1 - ;COS 1 
2 (f) - cos (-2) - cos (9) - a cos (- 1)) 

= 1/2. (3.63) 

Substitution of the expressions given by (3.5Sa), (3.62) and (3.63) into (3.61) yields 

Finally, using (3.60) and (3.64), an SIV RxDA estimate of the signal power can be 

expressed as 
i 

SSIV,RrDA = - [ E ( [ z I ~  1) + E{lxQn l ) ]  (3.65) fi 
The next step is to derive the SIV &DA estimate of the impairment power. The 

variances of lxrn 1 and IxQ,,l are 

so that E { z ; ~ )  and E{x$, , )  need to be cornputed. Let a = Scos Â, so that zfn may 

be written as 



The expected values of many of the terms on the right-band side of (3.67) vanish. 

Since the signal and noise samples have zero mean and are uncorrelated, then one has 

Also, the in-phase and quadrature signal samples are assumed uncorrelated, as are 

the in-p hase and quadrature noise sarnples, so t hat 

Since the cross-correlation of the signal and noise sequences is zero, and since the 

autocorrelations of the signal and noise sequences are also zero for any nonzero time 

delay (see (3.23b) and (3.24b)), then 

Assume the statistics of A, and 8, are the same so that 



using the fact that E{cos 2A,} = O, which is apparent from either (3.59) or (3.64). 

Again using the independence of the signal and noise samples, one has 
-, - > =  

E { u ~ ) ~ ( ( b ~ ) ~ )  = E ( a 4 )  E { ( b b ) 2 )  = E{(a;)2}E{b:)  = E { ( a b ) 2 )  E{b:) = -. 
4 

Finally, Price's Theorem 1661 may be used to evaluate the squared autocorrelation of 

Gaussian noise giving 

Similarly, for the quadrature channel, one obtains 

The expected value of (3.67) thus simplifies to 

and using (3.60) and (3.65), (3.66a) becomes 

Now let = S sin A,, so that x i n  may be written as 



Using arguments similar to those made for the d e r i ~ t i o n  of the expected value of $. 
the expected values of al1 but the first seven of the expanded terms in (3.10) vanish. 

The first term, whose expected value is non-zero, evaluates to 

Again using the independence of the signal and noise sarnples, one has 

S Z  
E { a g )  ~ ( ( 6 ; ) ~ )  = E{a:) E{(6b)2} = E{(a;)2}~{b$) = ~ { ( a ; ) ) ~ )  ~ ( 6 : )  = 7. 

The expected values of the two remaining terms are evaluated as 

and, very similarly, 

Note that it is not necessary to use Price's Theorem to evaluate the  expected values 

of E { b ~ ( b ~ ) * }  and E{b$(b;)2) since the in-phase and quadrature impairment samples 

are independent. The expected value of (3.70) thus simplifies to 

and using (3.64) and (3.71), (3.66b) becomes 

Summing (3.72) and (3.69), one obtains 

Solving (3.73) in terms of Z and taking the positive root, an expression for the SIV 

RxDA estimate of the impairment power is 



The in-service, SIV RxD.4 SIR estimator is expressed as the ratio of &IV,hDA to 
I) 

=SIV,RXDA as 

In practice, expected values are replaced by time averages, so that (3.65) becornes 

and the sum of (3.12) and (3.69) is evahated as 

The SIV TxDA SIR estimator has exactly the same form as (3.75), except that 

&v,hDA and &fVssrv + 6&,, given by (3.76) and (3.77), respectively, are replaced by 

L 
S ~ ~ ~ . ~ x ~ ~  = - ( X I , ,  COS A, -k zqn sin A,) 

IV,, n=l 

and 

respectively, where (3.55) and (3.56) are used wit h the estimated different ial   hase 
at time index n, Â,, replaced by the actual transmitted differential phase, A.. 

3.7.8 The Modified Signal-t O-Impairment Variance (MSIV) 
Estimat or 

The MSIV estimator is a hybrid of the PML and SIV estimators. The signal power 

is computed by averaging the de-rotated differentially-detected symbols in the same 



rnanner as the PML estimator. Hoivever, the impairment power is computed using 

the variances of the radial and tangentiai components of the post-DD symbols rather 

than the variances of the real and imaginary components as for the SIV estimator. 

The distinction between the two met hods is clarified below, 

The MSlV TxDA expression for the signal power is identical to (3.41) which is 

the expression used by the PML TxDA estimator of Section 3.7.6. The MSIV TxDA 

estimate of the signal power may thus be simply stated as 

The impairment power is computed as a function of the variances of the radial and 

tangeotial parts of the  post-DD symbols, which is identical to the variances of the 

real and imaginary parts of the de-rotated post-DD symbols. The variances of the 

real and imaginary parts of the de-rotated post-DD symbols are evaluated as 

and 

respectively. From (3.47) it is clear that 

~{~rn{x,e-~~~]} = O. (3.84) 

For the evaluation of ~ { ( R e { z , e - ~ ~ ~ ) ) * )  and E { ( I r n { ~ , e - j ~ ~ ) ) ~ ) ,  it is convenient 

to use the notation given by (3.52) in Section 3.7.7. Using that notation and (3.51), 

the de-rotated symbols are expressed as 



Consider first the evaluation of E {(Irn{~,e- j~~})~}.  After expanding terms, the 

imaginary part of (3.85) is found to be 

= (aqb; - aIbb + a;bQ - abbI + b;bQ - bIbb)  COS An 

+ (aIb;  + aQbb + aibI + abbQ + bibi + bQbb) sin A,. (3.86) 

Squaring (3.86), one obtains 

2 1 + cos 211, 
(aQb; - arbb + afbQ - abbI + b;bQ - brbQ) 

2 
+ [(aqb; - arbQ + a;bQ - abbr + b;bQ - bIbb )  

x (a& + aqbk + a;br + abbQ + brb; + bQb&)] sin 2An 
1 - cos 2An + (arb; + aqbb + a;br + abbo + bIb; + bQbQ)2 - (3.87) 

3 

As in Section 3.7.7, the expected values of al1 'cross-terms" vanish. That is, due to the 

assumed independence and correlation properties of the signal and noise, the expect ed 

values of the following products resulting from the expansion of (3.87) vanish: 

0 Al1 products with a single signal or noise term. 

All products in which the cross-correlation of I and Q signal terms and/or I 

and Q noise terrns occur. 

Al1 products in which the correlation of the nth and (n - 1)'" signal and/or noise 

terms occurs in isolation. For example, E{brb i )  = 0, but E{brbIb;) does not 

necessarily evaluate to zero. 

Omitting these vanishing terms, the expected value of (3.S7) simplifies to 



Not ing that 

(3.58) furt her simplifies to 

Substituting (3.84) and (3.90) into (3.82), one obtains 

Var{~m{s,e-~~~)} = S 3 + Z2/2 = Q & ~ ~ ~ .  (3.91) 

Consider next the evaluation of E { ( R e { ~ , e - j ~ n ) ) ~ ) .  The real part of (3.85) is 

found to be 

where, for convenience, A and B are defined as 

and 

B = aqb; - a& + a;bQ - aObI + b>bQ - bIbb,  (3.94) 

respectively. Squaring (3.92), one obtains 

[ ~ e { t , ë j * " ) ] *  = S2 + cos2 A, + B~ sin2 A, 

+ 2(SA cos A, - SB sin A, - AB sin A, cos An) 

= S2 + h [AZ + B2 + (A2 - B2) COS 2An] 

+ 2(SA cos A, - SB sin A, - A B  sin 2&). (3.95) 



Using (3.93), (3.94), and the arguments presented earlier in the derivat ion of 

E { ( I m { ~ , e - j ~ ~ } ) ~ ) ,  one has 

E{A cos A,} = E{B sin A,) = E{AB sin 2A,} = 0. 

Further, the expected values of al1 cross-terrns that arise from the expansion of A2 

and B2 vanish so that the expected value of (3.95) may be written as 

Using (3.89), (3.96) simplifies to 

Substituting (3.83) and (3.97) into (3.81), one obtains 

Summing (3.91) and (3.9S), solving for t and taking the positive root, an expression 

for the MSIV TxDA estimate of the impairment power rnay be obtained as 

A 4 

The MSIV TxDA SIR estimator is expressed as the ratio of S M ~ ~ ~ , ~ ~ D ~  to ~ h r ~ I ~ 9 ~ x ~ ~  



In practice, expected values are replaced by time averages, so that (3.SO) becomes 

and the sum of (3.91) and (3.98) may be evaluated as 

The in-service, MSIV RxDA SIR estimator has exactly the same form as (3.100), 

except that &iv,r.r>A is replaced by &qv,Rxo-a expressed as 

and t?~,BIsIV + 56,hlSN is evaluated as 

where, as before, 6, is the estimated transrnitted differential phase at time index, n. 

The main difference between the general approach of the SIV algorithm of Sec- 

tion 3.7.7 and that of the MSIV algorithm is that the SIV algorithm operates on 

the Cartesian real and imaginary parts of the differentially-detected symbols whereas 

the MSIV algorithm operates on the radial and tangential cornponents. Figure 3.19 

illustrates this idea. 

Cornparison of Figure 3.19(b) with Figures 3.14 and 3.18 reveals that the tangen- 

tial variance of the post-DD symbols is not affected by signal envelope fluctuations 

caused b y  fast Rayleigh fading. The amplitude fluctuations affect only the real parts 

of the de-rotated, post-DD syrnbols (the radial parts of the post-DD symbols before 

de-rotation). In contrast, referring to Figure 3.19(a) and Figures 3.14 and 3.18, the 

sample variances required by the SIV estimator are generated from the Cartesian real 





and imaginary parts of the post-DD symbols. Both the real and imaginary compe 

nents are affected by signal envelope fluctuations caused by fast Rayleigh fading. It is 

not int uitively obvious which est imator should perform better, or even if t here should 

be any performance difference at all. 

3.8 Measures of Estimator Performance 

This section identifies statisticd tests which may be performed on the output of the 

simulated SIR estimators to evaluate their performances in the various test channels 

described in Section 3.6.2. Three useful performance metrics, the bias, variance and 

MSE, were used in Section 2.5.1 to evaluate the performances of the various SNR 

estimators in the real and complex AWGN channels of Chapter 2. As well, a theo- 

retical bound, the CRB, was derived in Section 2.5.2 and compared to the variances 

and MSE's of the various SNR estimators. Similar performance metrics are required 

for the evaluation of the SIR estimators studied in this chapter. 

Recall, the unbiased 

MSE of an estimator, @, 

where pi denotes one of 

estimators of the sample bias, sample variance, and sample 

given in Section 2.5.1 as 

Nt SNR estimates generated by a particular estimator, p is 

the true SNR, and the unbiased sample mean, d, is given by 

1 Nt 

Unfortunately, it is not possible to evaluate the performances of the SIR estimators 

as rigorously as the performances of the SNR estimators because of the fundamental 

challenge to identify the "truen SIR of a given cbannel. The simplest case is the 



complex AWGN channel of Case 1 where the SIR is simply the SNR. SIX. Similarly, 

in the Case 4 channel in which CC1 is dominant over every other impairment, the 

SIR may be expressed as SIC, where C represents the power of the CC1 sequence, 

asswning the interferer is time-synchronized with the desired signal so that the sym- 

bol centres of the interferer digo with the symbol centres of the desired signal. If 

the two signals are not time synchronized, then the degradation caused by the in- 

terferer is less and the SIR could be expressed as some number greater than SIC. 

The situation becomes more cornplicated when considering fading channels (especially 

the frequency-selective fading channel of Case 3), and more confusing still when the 

various impairments are combined (as in Case 5)-t he impairmen ts al1 have differ- 

ent statistics and different deleterious effects on the BER so that a composite SIR 

would have to be formed from some sort of iveighted combination of the individual 

impairment parameters. 

Instead of trying to create a universal definition of the SIR in order to be able to 

compute the bias and MSE performances of the various SIR estimators, it is conceded 

that any universal SIR definition will be arbitrary, so focus is instead placed on 

unambiguous performance metrics: the sample variance, and the correlation of the 

sample mean to the simulated, raw BER of the specified receiver (see Figure 3.10). 

The Ybest" estimator is judged to be the one with the smallest variance, and the 

best correlation of its mean to the BER, for al1 of the various channel conditions 

considered. 

3.9 Simulation Results 

The results of the evaluation of the performances of the SIR estimators discussed in 

Section 3.7 are presented here. The fading simulator implemented for these tests is 

discussed in Section 3.4, and the system models are presented in Section 3.6. 

For the most part, the SIR estimaton are evaluated graphically by plotting the 

variances of a collection of simulated SIR estimates as a function of some channel 



parameter, and by plotting the means of the SIR estimates as a lunction of the 

simulated BER. The collection of SIR estimates is large enough to ensure that the 

error in the estimated variance and the error in the estimated BER is less than 

approximately 20% wit h 95% confidence. 

As mentioned in Section 3.8, it is difficult to compute the bias and MSE of the SIR 

estimates since the "truen SIR of a particular system can be an ambiguous parameter. 

However, the Case 1 channel is simply the complex ACVGN channel in which the SIR 

is unambiguously the SNR, so that bias and MSE results are presented for that 

particular case. In Case 4, the only impairment, in addition to a small amount of 

ALVGX, is CC1 so that the true SIR in that case is simply S / ( N  + C), thus bias and 

MSE results are provided for Case 4 as well. For Cases 2, 3, and 5, in which the SIR 

is not straightforward to define, the estimator perfbrmances must be judged on the 

basis of the variances and the SIRIBER correlations of the SIR estimates alone. 

The normalized, complex CRB given by (2.131) of Section 2.5.2 is provided for 

reference in the plots of variance and MSE for Case 1 since it is applicable to some 

of the estimators. The pre-MF CRB (described in Section 2.6) is applicable to the 

M L  TxDA and ML RxDA estimators, and the post-MF CRB (also described in 

Section 2.6) is applicable to the SVR and M&f4 estimators. The other estimators 

studied in this chapter, namely the ADIQ, DDML, PML, SIV, and MSIV estimators, 

are post-DD estimators to which the CRB given by (2.131) of Section 2.5.2 does not 

apply because the statistics of the signal and noise after the DD are not consistent 

with the assumptions made in the derivation of the complex CRB in Section 2.5.2. 

No CRB is provided for reference in the plots of the variances for Cases 2-5 since the 

CRB derivations become complicated for impairment processes which do not have 

Gaussian statistics. 

The results are presented in the following sections, grouped according to each of 

the five channels tested. 





b ( z )  is the kth-order modified Bessel function of the first kind, and a and b are given 

by 

and 

respectively, where p = 2Eb/No is the SNR. 

The SIR estimators tested in this channel include the SVR, M2M4, PML RxDA, 

PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA, 

DDML TxDA, ADIQ, ML RKDA, and AIL TxDA estimators. The statistical perfor- 

mances of these estimators are presented below. 

Biases, Variances, and MSE's of Estimators in Case 1 Channel 

The estimator biases are plotted in Figures 3.21 and 3.22, the variances are plotted in 

Figures 3.23 and 3.24, and the MSE's are plotted in Figures 3.25 and 3.26. Note that 

the bias and MSE of each estimator are plotted normalized to the true SNR, whereas 

the variance of each estimator is plotted normalized to the estirnated SNR. It is more 

appropriate to norrnalize the variance to the estimated SNR since the normalization 

of the variance of a biased estimator to the true SNR can yield misleading results. 

Due to the large number of estimators tested in the Case 1 channel, each set of 

results is split among t hree different graphs. In order to be able to compare estimators 

from different graphs, the SIV RxDA and SIV TxDA results and the post-MF CRB 

appear in al1 of the graphs of variance and MSE as common benchmarks. 

As was found in Chapter 2, the ML TxDA estimator in the Case 1 channel h a  the 

best overall performance as it can be seen in Figure 3.22 that its bias is very small, 

and it can be seen in Figures 3.24 and 3.26 that its variance and MSE are practically 

indistinguishable from the CRB. It's not surprising that the ML TxDA estimator 

performs much better than the other estimators studied here since it is the only one 
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(a) 

Figure 3.21: Normalized bias of SIR estimates generated by (a )  SVR, iW2 A l J ,  PML, 
and ADIQ estimation, (b) SIV, MSIV, and DDML estimation in Case 1 channel. 



Figure 3.22: Normalized bias of SIR estimates generated by ML estimation (at the 
input to the MF) in Case 1 channel. 
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Figure 3.23: Normalized variance of SIR estimates generated by (a)  SVR, M2it14, 
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 1 
channel. The post-MF CRB is shown in both plots for reference. 
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Figure 3.24: Normalized variance of SIR estimates generated by ML estimation (at 
the input to the MF) in Case 1 channeï. The variance curves for the SIV estimators 
and the pre- and post-MF CRBk are s h o w  for reference. 
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Figure 3.25: Normalized MSE of SIR estimates generated by (a) SVR, IC&M4, PML, 
ADIQ, and SIV estimation, (b) SIV, MSIV, and DDhlL estimation in Case 1 channel. 
The post-MF CRB is shown in both plots for reference. 
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Figure 3.26: Normalized MSE of SIR estirnates generated by ML estimation (at the 
input to the MF) in Case 1 channel. The MSE curves for the SIV estimators and the 
pre- and post-MF CRB's are shown for reference. 



that employs multiple samples per symbol (in this case, sixteen samples per symbol). 

The ML RvDA estimator performs almost identically to its TxDA counterpart at 

values of SNR greater than about 18 dB, but its performance degrades stiarply for 

values of SNR less than 18 dB. The reason for this extremely poor performance is 

that just one receiver error can have a serious effect on estimates produced by the 

ML RxDA algorithm. This effect was discussed in detail in Section 3.7.4. 

Of the estimators that use just one sample per symbol to form SIR estimates, 

the SIV TxDA and MSIV TxDA estimators perform best as their biases and BISE'S 

are smallest. From Figures 3.21(b), 3.23(b), and 3.25(b), one can see that the per- 

formances of the SIV TxDA and USIV TxDA estimators are essentially identical. 

The MSIV TxDA estimator seems to have a slight bias and MSE advantage, but 

the difference is too small to be statistically significant. A similar relationship exists 

between the SIV RxDA and MSIV RxDA estimators. The performances of both the 

SIV RxDA and MSIV RxDA estimators deviate frorn the performances of their TxDA 

counterparts as the SNR is decreased below about 12-15 dB due to receiver errors, 

but the degradation is much less severe than that experienced by the hIL RxDA 

estimator. Though the post-MF CRB is not applicable to the post-DD estimators, 

it is still interesting to compare the performances of the post-DD estimators to the 

theoretical performance bound of post-MF (pre-DD) estimators. As can be seen in 

Figures 3.23(b) and 3.25(b), though the SIV TxDA and MSIV TxDA estimators 

perform best of al1 of the one-sample-per-symbol estimaton, there is a significant 

performance gap between their variances and MSE's and the post-MF CRB. 

Of the estimators using just one sample per symbol which are also of the in-service 

type, the M2M4 estimator appears to have the best overall performance, which is 

most easily seen in Figure 3.25(a), but the SIV RxDA and MSIV &DA estimators 

perforrn better for values of SNR greater than about 9 dB. The performance of the 

ADIQ estimator is next best. In Figure 3.21(a), it is particularly noteworthy that, 

for values of SNR greater than about 15 dB, the bias of the ADIQ is smallest arnong 



al1 of the SIR estimates tested except for the M L  estirnators. Ho~vever, the ADIQ 

estimator also has the second-largest bias (and MSE) a t  very low SNR. 

Though the DDbIL estimators are derived using an ML approach (which is an 

optimum approach) their performances are not as good as the performances of the 

SIV and MSIV estimators. For example, it can be seen frorn Figures 3.21 and 3.25 

that the biases and h1SE's of the DDML estimates are larger than those of the SIV 

and MSIV estimates. Interestingly, even the TxDA form of the DDML estimator 

exhibits a significant bias a t  very low SNR, whereas the TxDA forms of the SIV and 

MSIV estimaton do not. The asymptotic variance of the DDML a t  high SNR is 

about twice as  large as the asymptotic variances of the SIV and h1S IV estimators, as 

can be seen in Figure 3.23. 

The bias, variance, and LISE of the SVR estimator a11 begin to rise at high SNR 

which is consistent with the observations made in Sections 2.6.1 and 2.6.3. It is 

indicated in Chapter 2 that the mechanism behind this degradation a t  high SKR is 

not fully understood but, by simulation, it has been observed that this phenornenon 

is common among some estimators based on higher-order moments. As also pointed 

out in Chapter 2, the variances and MSE's of the "best" estimators can only be as 

good as the CRB which itself does not progressively decrease with increasing SMR, 

but rather approaches a constant value. It is reasonable, therefore, to expect the 

miance  and MSE of an inferior estimator either to approach a constant larger than 

the high-SNR CRB asymptote, or to rise with increasing SNR. 

The performances of the PML TxDA and PML RxDA estimators also degrade 

with increasing SNR which is surprising since the PML, SIV, and MSIV estimators 

are closely related and the SIV and MSIV est imators are well-behaved for al1 values 

of SNR. In order to understand this high-SNR effect better, it may be insightful to 

derive the pdf of bPML*TrDA and/or the pdf of bPMLvRrDA so that the bias, variance, 

and MSE may be computed analytically. This analysis is not performed here. On 

the other end of the SNR range, it is interesting to note in Figure 3.35(a) that the 



MSE of the PiCIL TxDA estimator is slightly inferior both to that of the 5ISIV TxDA 

estimator and to that of the SIV TxDA estimator, again, in spite of the fact that 

the algorithms are very similar. A derivation of the pdf may help to explain this 

behaviour as well. 

It is interesting in Figure 3.23 that the variances of some estimators fall as the 

SNR becomes very small while the variances of other estimators rise. By cornparison 

with Figure 3.21, it may be seen that those estimators whose variances "droopn at 

low SNR also have large low-SNR biases. This observation may be used in those test 

channels (Cases 2A, 2B, 3, and 5) for which bias and hlSE results are not presented. 

That is, in the absence of plots of the bias and AISE, it may be deduced that a 

"droopingn variance indicates a large low-SNR bias. 

Correlation of SIR to BER in Case 1 Channel 

The correlation between the mean estimated SIR (simply the SNR in this case) and 

the probability of bit error, Pb, or BER, of the Case 1 channel is gra2hically portrayed 

in Figure 3.27 for the SVR, hl&, PML RxDA, PbIL TIDA, ADIQ, SIV RxDA, 

SIV TxDA, MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, ML RxDA, 

and ML TxDA estimators. Most of the SIR estimators have very similar good correla- 

tions with the BER, with the exception of the ML RvDA estimator which sometirnes 

generates negative SIR estimates at p = 6 dB (which is the reason why this point is 

omitted from the ML RxDA plot). 

Based on Figure 3.27 alone, there is little to distinguish one estimator from an- 

other. Additional observations regarding the SIRIBER correlations are made in Sec- 

tion 3.9.6. 

Additional Results for Case I Channel 

In Sections 3.7.1 and 3.7.2, the kurtosis of the impairment process, kc, is assumed to be 

equal to 1.5 as a compromise between the kurtosis of complex AWGN (kt,AwGN = 2) 
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Figure 3.27: Correlation between mean estimated SIR (SNR) and probability of bit 
error (BER) in Case 1 channel for SVR, 1&bf4, PML, ADIQ, SIV, MSIV, DDML, 
and M L  estimation. 
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Figure 3.25: Cornparison of normalized MSE's of ideal b12df4 and SVR estimaton to 
those of compromise i\12h14 and SSVR estimators in Case 1 channel. 

and that of a cochannel interferer (kcccr = 1) in the  derivation of the 1\f2M4 and 

SVR estirnators. It is interesting to investigate the effect of this compromise on the 

performances of the hf2h14 and SVR estimators in the complex AWGN channel of 

Case 1. It is sufficient to investigate the MSE performances alone. 

The MSE's of "ideal" and "compromise" hf2h14 and SVR estimators are plotted 

in Figure 3.28. The ideal estimators use kt = 2 while the compromise estimators 

use kt = 1.5. It is evident from Figure 3.28 that the ideal estimators outperform 

the compromise estimators only at very low SNR and otherwise perform essentially 

identically. This observation indicates that there may be little justification to motivate 

the implementation of an estimator that adapts itself to a particular channel based 
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Figure 3.29: BER as a function of Doppler spread in Case 2A channel. 

on the kurtosis of the impairment process of the channel. 

3.9.2 Casez: Fast, Flat Fading Channel 

As indicated in Section 3.6.2, two models of the Case 2 channel are investigated: one 

in which the Rayleigh amplitude and phase fluctuations are allowed to evolve over 

time (Case 2A), and another in which the channel conditions are replayed for each 

successive SIR estimate (Case 2B). Separate results are given for each model. 

Case 2A: Tirne-evolving Rayleigh Fading 

The sirnulated BER of the Case 2A channel is plotted in Figure 3.29 as a function 

of the Doppler spread, v,,. For reference, a theoretical BER curve is also plotted 



based on points obtained by the numerical analysis of Liu and Feber (see (19d) and 

Figure 7 of [Il]). The plotted points are for SIN = 70 dB, which is large enough for 

the BER to be independent of the SNR (due to the error floor caused by the Rayleigh 

fading). There is good agreement between simulation and theory. 

The SIR estimators tested in this channel include the SIV RxDA, SIV TxDA, 

MSIV RxDA, MSIV TxDA, DDML RxDA, DDML TxDA, and ADIQ estirnators. 

Results for the SVR, hf2M4, PML RxDA and PML TxDA estimators are not pre- 

sented since these algorithms fail in this Case 2A channel. Specifically, some of the 

SIR estimates produced by the estimator are imaginary, and some of the SIR 

estimates produced by the SVR, PhIL RxDA, and PML TxDA estimators are neg- 

ative. Since an imaginary or negative estimate of the SIR is meaningless, these four 

estimators are omitted from the performance comparison for Case 2A. It appears 

that these methods fail whenever a deep fade occurs. 

The variances of the SIR estimates generated by the SIV RxDA, SIV TxD.\, 

MSIV RxDA, MSIV TxDA, DDLIL RxDA, DDML TxDA, and ADIQ estimators in 

the Case 2A channel are plotted in Figure 3.30, and the relationships betrveen the 

mean estimated SIR and the BER of the Case 2A channel for the various estimators 

are portrayed in Figure 3.31. 

In general, it is reasonable to expect the variance of SIR estimates to increase with 

decreasing Doppler spread since the SIR estimates begin to track the Rayleigh ampli- 

tude fluctuations as the rapidity of the fluctuations slows relative to the observation 

ivindow of N,, symbols. The SIV and MSIV estimators reflect a behaviour that is 

consistent with this hypothesis while the DDML and ADIQ estimators do not. Since 

the DDML and ADIQ estirnators do not use the amplitude information of the received 

signal, it is reasonable to expect the variances of these particular estimators to have 

a weak relationship, or no relationship, to the Rayleigh amplitude fluctuations. 

Comparing the variances of the SIV and MSIV SIR estimates to those of the 

ADIQ and DDML SIR estimates, the results plotted in Figure 3.30 indicate that 



Figure 3.30: Normalized variance of SIR estimates generated by SIV, MSIV, DDML, 
and ADIQ estimation in Case 2A channel. 
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Figure 3.31: Correlation between mean estimated SIR and BER in Case 2.4 channel 
for SIV, MSIV, DDML, and ADIQ estimation. 



the normalized variances of the SIV and MSIV SIR estimates are almost an order 

of magnitude smaller than those of the DDML and ADIQ SIR estimates at Doppler 

spreads of 70 and 100 Hz, but the variances of the SIR estimates of al1 seven estimators 

tested are almost equal at  a Doppler spread of 40 Hz. One could expect, therefore, 

that SIV and MSIV estimators may perform better in applications in which the 

channel is degraded by relatively fast Rayleigh fading. 

Referring to Figure 3.31, it is interesting that the estimator performance curves 

split neatly into two groups as they do in Figure 3.30. The SIV and MSIV curves 

form one group, and the DDML and ADIQ estimators form the other. More striking, 

however, is the fact that SIR estimates represented by these two groups of curves are 

separated by about 30 dB. As will be shown in Figures 3.50 to 3.53, the SIV and 

MSIV curves correspond to better SIRIBER correlations. 

The reason why there is such a tremendously large difference between the absolute 

DDML and ADIQ SIR estimates and the absolute SIV and MSIV SIR estimates is t hat 

the amplitude of the input samples is ignored in both DDML and ADIQ estimation. 

In DDML estimation, only differential phases are considered. In ADIQ estimation, 

an instantaneous AGC removes al1 amplitude information. The effect of the absence 

of amplitude information is clarified below using the example of ADIQ estimation. 

The effect of the instantaneous AGC of the ADIQ estimator can be appreciated by 

referring to Figure 3.14(c) which shows the post-DD symbols for a channel subjected 

to fast Rayleigh fading. Without AGC (as portrayed in Figure 3.14(c)), the ampli- 

tudes of the post-DD symbols vary greatly due to the random amplitude fluctuations 

(these fluctuations are reflected by the SIV and MSIV estimates). The instantaneous 

AGC of the ADIQ estimator normalizes the amplitudes of the post-DD symbols such 

that the amplitudes of al1 post-DD symbols lie on the unit circle. For example, after 

application of an instantaneous AGC operation, the post-D D symbols portrayed by 

Figure 3.14(c) would appear similar to the post-DD symbols of Figure 3.1 1(c), which 

are the post-DD syrnbols in a clear-sky channel. By this illustration, it is reasonable 



to expect the ADIQ SIR estimator to give an overly optimistic estiniate of the SIR 

in a fast Rayleigh fading channel. 

It is interesting that there is lit tle differentiation between the perforriiances of 

the RvDA and TxDA SIV, M S N ,  and DDML estimators in Figures 3.30 and 3.31. 

This observation indicates that receiver errors due to the channel conditions of the 

Case 2A channel do not have a great impact on the variances of the RwDA SIR 

estimates compared to the effect of the time-varying channel conditions. 

Case 2B: Rayleigh Fading Replayed for each Successive SIR Estimate 

The simulated BER of the Case 2B channel is plotted in Figure 3.32 as a function 

of the SNR. No theoretical BER curve is available in the published Iiterature for 

reference since the Case 2B channel conditions are artificial and atypical (recall that 

the amplitude and phase fluctuations are replayed for each successive SIR estimate). 

The SIR estirnators tested in t his channel are the same ones tested in the Case 2A 

channel, namely the SIV &DA, SIV TxDA, MSIV RUDA, MSIV TxDA, DDML 

&DA, DDML TxDA, and ADIQ estimators. As in the Case 3A channel, results for 

the SVR, 1&iIf4, PAIL RxDA and PML TxDA estimators are not presented in this 

Case 2B channel since al1 of the SIR estimates produced by the i&l\l4 estimator are 

imaginary, all of the SVR SIR estimates are negative, and a large percentage of the 

PML RxDA, and PBIL TxDA SIR estimates are negative. As mentioned earlier in 

the context of the Case 2A channel, "badn SIR estimates seem to  be associated with 

the deep nulls caused by Rayleigh fading. The Case 2B channel is designed to have 

the same deep nul1 occur for each successive SIR estimate so it is not surprising that 

bad SIR estimates would be more prevalent in the Case %B channel. 

The variances of the SIR estimates generated by the SIV RUDA, SIV TxDA, 

I\fSIV RxDA, MSIV TxDA, DDML RUDA, DDhIL TxDA, and ADIQ estimators in 

the Case 2B channel are plotted in Figure 3.33, and the relationships between the 

mean estimated SIR and the BER of the Case 2B channel for the various estimators 
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Figure 3.32: BER as a function of SNR in Case 2B channel. 



Figure 3.33: Normalized variance of SIR estimates generated by SIV, MSIV. DDhIL? 
and ADIQ estimation in Case 2B channel. 

are portrayed in Figure 3.34. 

From Figure 3.33, it is apparent that the variances of the DDML and ADIQ SIR 

estimates are about an order of magnitude Iarger than the variances of the SIV and 

MSIV SIR estimates, which is consistent with the relative performance results ob- 

served in Figure 3.30 for the Case 2A channel. The variances displayed in Figure 3.33 

are due exclusively to the inherent performances of the SIR estimators and are not 

affected by time-evolving channel conditions as in Figure 3.30 which is the reason 

why, in an absolute sense, the variances seen in Figure 3.30 are rnuch larger than 

those seen in Figure 3.33. It is not clear why, in a relative sense, the variances of the 

DDML and ADIQ SIR estimates are so much larger than the variances of the SIV 
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Figure 3.34: Correlation between mean estimated SIR and BER in Case 23 channel 
for SIV, MSIV, DDML, and ADIQ estimation. 



and BISIV SIR estimates. 

It should also be noted that, from Figure 3.33, the variances of the TxDA and 

RxDh forms of the SIV and MSIV estimators are close to identical cven though the 

BER is quite high. This is a somewhat surprising result since in Figure 3.23 it is 

seen that the variances of t h e  RxDA forms of the SIR estimators deviate from the 

variances of the TxDA forms at low SNR (high BER) in the Case 1 channel. In 

contrast, the variances of the RxDA and TxDA forms of the DDM L estimator are 

di Kerent . 

With respect to  the correlation between SIR and BER, it is apparent frorn Fig- 

ure 3.34 that the DDML and ADIQ SIR estimates reflcct (in a rclatiïe sense) the 

BER of the channel quite well whereas the SIV and MSIV SIR estimates are Rat 

throughout the range of tested BER. This observation indicates that the DDML and 

ADIQ SIR estimators are better SIR metrics in the context of the Case 2B channel 

from the point of view of SIRIBER correlation. Also, note that the DDML and 

ADIQ SIR estimates are much larger relative to the SIV and MSIV SIR estimates. 

The reason for these differences was attributed earlier in the discussion of the Case 2.4 

channel to the fact that both the DDhIL and ADIQ estimators ignore the fluctuating 

amplitudes of the post-DD samples, and thus give optimistic estirnates of the SIR. 

3.9.3 Case 3: Slow, Frequency-Selective Fading Channel 

The simulated BER of the Case 3 channel is plotted in Figure 3.35 as a function of the 

delay spread, rm. No theoretical BER curve is plotted for reference as none could 

be found in the published literature corresponding precisely to the characteristics of 

the Case 3 channel. Recall that the SNR of the channel is set to 15 dB to increase 

the BER and shorten the simulation time since the BER due to multipath over the 

range of delay spreads tested can be very low. The optimum sampling instant in 

frequency-selective channels often does not correspond to the sampling instant that 

is optimum in the ACVGN channel [123]. In this frequency-selective Case 3 channel, 
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~i~ure .3 .35:  BER as a function of delay spread in Case 3 channel. 



however, the optimum sampling instant is actualiy the same as that in the .UYGS 

channel to within 1/16 of a symbol period (the resolution of the sirnulator). 

The SIR estimators tested in this channel include the SVR, AI&,, PBLL RsD.4. 

PbIL TxDA, SIV RUDA, S N  TxDA, hISIV RUDA, NSIV TIDA, DDhIL RxDA. 

DDBIL TxDA, and ADIQ SIR estimators. The variances of the SIR estimates in the 

Case 3 channel are shown in Figure 3.36. The results are split between two graphs 

to avoid clutter, but the SIV variance curves are common to both graphs to facilitate 

corn parison. 

The behaviours of the SIR estimator variances in this Case 3 channel appear 

very siniilar to the behaviours of the SIR mriances in the Case 1 channel, shown in 

Figure 3.23, except that the curves are reversed in the sense that increasing abscissa 

corresponds to increasing BER in Figure 3.36, while increasing abscissa corresponds 

to decreasing BER in Figure 3.23. Just as the variances of the RxDA SIR estimators 

in the Case 1 channel "droop" below the variances of their TxDA counterparts for 

low values of SNR (corresponding to high BER), the variances of the RxD.4 SIR 

estimators in the Case 3 channel droop at values of large rm, (again corresponding 

to high BER). Counter-intuitively, the smaller (drooping) variances of the RxDA 

estimates do not imply better estimator performances. For example, it can be seen 

in Figures 3.21 to 3.26 of Case 1 that a drooping variance a t  low SNR is associated 

with a growing estimator bias and a growing M E .  Thus it can be deduced that 

whenever the variance of an RxD.4 estimator droops below the variance of its TxD.A 

counterpart, the reason is not because the performance of the RuD.4 estimator is 

superior to that of the TxDA estimator, but rather because the RxDA estimator is 

manifesting a bias which implies inferior performance. This deduction is useful in 

cases such as this Case 3 channel where bias and &ISE curves are not available due 

to the difficulty of identifying the true SIR of the channel. 

The TxDA forms of the DA SIR estimators perform best overall. Among the 

TxD.4 estimators, the SIV TxDA and MSIV TxDA estimators perform best, foliowed 
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Figure 3.36: Normalized variance of SIR estimates generated by (a) SVR, ilf&4, 
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 3 
channel. 



by the PXIL TxDA estimator and the DDML TxD.4 estimator. The variances of the 

SVR and 11144 estimators (which are not DA estimators) are relatively unaffected 

by changing r,,. 

The relationships between the mean estirnated SIR and the BER of the  Case 3 

channel for the various estimators are portrayed in Figure 3.37. This plot shows more 

differentiation among the various estimators t han is observed in Figure 3.27 of Case 1, 

but al1 estimators perforrn similarly with the exception of the SVR estimator whose 

SIRIBER curve is distinctly set apart from the main group. 

3.9.4 Case 4: Single Cochannel Interferer 

The simulated BER of the Case 4 channel is plotted in Figure 3 . 3  as a function of 

the ratio of desired signal power to CC1 power, SIC. No theoretical BER curve is 

plotted for reference as none could be found in the published literature corresponding 

precisely to the characteristics of the Case 4 channel (al1 BER curves plotted as a 

function of CC1 power found in the literature assume a Bat, slowly fading channel, 

whereas the Case 4 channel assumes simply AWGN and CCI, and no fading at all- 

slow or fast). Recall that the SNR of the channel is set to 15 dB to increase the 

BER and shorten the simdation time since the BER due to CC1 alone over most of 

the range of SIC tested can be very Iorv up to a certain threshold and then degrade 

s harply. 

The SIR estimators tested in this channel include the SVR, M21\.14, PSIL RxDA,  

PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, àISIV TxDA, DDML RUDA, 

DDML TxDA, and ADIQ estimators. The biases, variances, and hISE's of these SIR 

estimates in the Case 4 channel are shown in Figures 3.39, 3.40, and 3.41. The biases 

and variances are normaliqed to the estimated SIR, and the MSE's are normalized to 

the true SIR which is given simply in this case by S / ( N  + C). 

The relative ranking of the estimators on the basis of the bias, variance and SISE 

results is consistent with the rankings of the estimators in Cases 1 and 3. The T.uD.4 
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Figure 3.37: Correlation between mean estimated SIR and BER in Case 3 channel 
for SVR, 11.121bf4, PhIL, ADIQ, SIV, hISIV, and DDbIL estimation. 



SC, Signal-to-CCI power ratio, dB 

Figure 3.38: BER as a function of desired signal power to CC1 power in Case 4 
channel. 
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Figure 3.39: Norrnalized bias of SIR estimates generated by (a) SVR, hf21b14, PML, 
and ADIQ estimation, (b) SIV, MSIV, and DDML estimation in Case 4 channel. 
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Figure 3.40: Normalized variance of SIR estimates generated by (a) SVR, M&f4, 
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 4 
channel. 
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Figure 3.41: Normalized MSE of SIR estimates generated by (a) SVR, M2.1,d4, PML, 
ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 4 channel. 
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forms of the SIV and bISIV estimators generate SIR estimates mith the smallest over- 

al1 biases, variances and MSE1s, while the performances of the RxDA forms deviate 

slightly from those of their TxDA counterparts at low SIC. Specifically, the biases 

and MSE's of the &DA SIR estimates become larger, and the variances of the RxDA 

SIR estimates becorne smaller relative to their TxDA counterparts at low SIC. These 

deviations are consistent with the comrnents made in Section 3.9.3 regarding the cor- 

relation between large RxDA estimator bias and MSE, and the droop in the variance 

of RxDA estimates below the variance of corresponding TxDA estimates. In addition 

note that, once again, the mriances of the SIV RxDA and MSIV RxDA estimators and 

the variances of the SIV TxDA and XISIV TxDA estimators are essentially identical. 

The performances of the PML RxDA and PML TxDA estimators are inferior to 

those of the SIV and MSIV estimators, but they are better than those of the SVR, 

M2M4, DDML RUDA, DDML TxDA, and ADIQ estimators over most of the range 

of SIC tested. The significant droop of the variance of the DDML RxDA estimates 

at  low values of S/C is associated with the large bias seen in Figure 3.39(b). 

The ADIQ estimator also exhibits a droop in the variance of its SIR estimates 

as it, too, is an RxDA type of estimator. Though no results of its TxDA form are 

presented for cornparison, it is apparent from Figures 3.39(a) and 3.11(a) t hat a large 

bias and MSE is associated with the droop in variance. 

The relationships between the mean estimated SIR and the BER of the Case 4 

channel for the nrious estimators are portrayed in Figure 3.42. Similar to  the Case 1 

channel, there is little to distinguish one estimator from another in terms of SIRIBER 

correlation. In general, the SIRIBER correlation is good for al1 of the estimators 

tested. 

3.9.5 Case 5:  A "Typical" Mobile Radio Channel 

The simulated BER of the Case 5 channel is plotted in Figure 3.43 as a function 

OF the SNR. No theoretical BER curve is plotted for reference as there is none in 



&--------A SVR 

4 - -4 M2M4 
i+ -VPML RxDA 
* - * PML TxDA 

- -f)ADIQ 
O - - - . - - - - 0 SIV RxDA 
+-a----+ SIV TxDA 
3 - -a MSIV RxDA 
x - - X  MSlVTxDA 
A- - A DDML RxOA 
e - 6 DDML TxDA 

1 O" 1 O" 
Pb, Probability of bit error 

Figure 3.42: Correlation between mean estimated SIR and BER in Case 4 channel 
for SVR, &M4, PML, ADIQ, SW, MSIV, and DDML estimation. 
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Figure 3.43: BER as a function of SNR in Case 5 channel. 



the published literature corresponding precisely to the characteristics of the Case 5 

channel. Recall that this channel comprises a number of impairments including a 

Doppler spread of 100 Hz, a delay spread of 3 ps, and a desired signal-teCC1 power 

ratio of 18 dB. The SNR is swept over the range {9,1?, 15,30) dB. The amplitude 

and phase fluctuations due to the Rayleigh fading are replayed for each successive SIR 

estimate similarly to the Case 2B channel. As mentioned in Section 3.9.3, for optimum 

BER performance in a frequency-selective channel it is sometimes necessary to use a 

different sampling instant than that used in an AWGN channel. This modification is 

unnecessary for the Case 5 chamel, as it was also unnecessary for the Case 3 channel. 

The SIR estirnators tested in this channel include the SVR, dlzM'', PAIL RUDA, 

PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDhIL RxDA, 

DDML TxDA, and ADIQ estimators. Al1 of the estimaton generate "meaningfuln 

estimates, even though Doppler spread is present in this Case 5 channel. Recall from 

Section 3.9.2 that the SVR, MzlZf4, PML RUDA, and PML TxDA estimators were 

described as generating "badn estimates in Rayleigh-faded channels when a deep nul1 

occurs. The time index of the Case 5 channei is purposely designed so that no deep 

fade occurs over the interval chosen to be replayed for each successive SIR estimate 

(see Figure 3.13 of Section 3-62) so that "badn estimates are avoided. In reality, 

channel conditions evolve over time and deep nulls are unavoidable in Rayleigh fading 

so that the SVR, i\f2M4, PML RxDA, and PML TxDA SIR estimators are unsuitable 

for "real-world" Rayleigh fading channels, but it is still interesting to  investigate their 

performances in this specific, albeit artificial, composite channel. 

The variances of the SIR estimates in the Case 5 channel are shown in Figure 3.44 

in which it may be seen that there are two distinct groups of estimators: one comprises 

the SIV, MSIV and blzM4 estimators, the other comprises the SVR, DDML, ADIQ, 

and PML estimators. The distinction between these two groups is the general trends 

of the variances of the SIR estimates. In the former, the variances slope do~vnward 

with increasing SNR while, in the latter, the variances are relatively flat throughout 
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Figure 3.44: Normalized variance of SIR estimates generated by (a) SVR, hf2M4, 
PML, ADIQ, and SIV estimation, (b) SIV, MSIV, and DDML estimation in Case 5 
channel. 



the range of tested SNR, or trending very slightly up\\*ard. 

As in d l  of the other cases, the SIV and MSIV estirnators exhibit the smallest 

variances. Note the  the TxDA and &DA forms of these estimators perforni alniost 

identically, even a t  an SNR of 9 dB where the BER is greater than 10-~. This 

is a curious result since it seems reasonable to assume that receiver errors should 

degrade the performances of RxDA estimators relative to the performances of their 

TxDA counterparts. In fact, the variances of the RxDA estimators in Cases 1, 3, 

and 4 are d e p d e d  (see Figures 3.23, 3.36, and 3.40, respectively) which supports 

the assumption. The  only other exception is Case 2. A cornmon feature of the Case 2 

and Case 5 channels is the presence of Rayleigh fading which suggests tliat one possible 

reason why receiver errors do not cause the variances of the RxDA estimates to diverge 

from the variances of the TxDA estimates is that the  variances of the estimates are 

so large due to  the Rayleigh fading that the effect of receiver errors is negligible. 

In contrast, there is a noticeable difference between the variances of the RxDA and 

TxDA PML estimates, and a significant difference between the ~ r i a n c e s  of the RxDA 

and TxDA DDML estimates. The gap between the variances of the DDàIL RxDA 

and DDML TxDA estimates throughout the range of tested SNR is particularly CU- 

rious since the RxDA estimates have the smaller variance. Frorn the discussion of 

Section 3.9.3, this drooping of the DDML RxDA estimates with respect to the TxDA 

estimates would seem to indicate that there is a strong associated bias throughout 

the tested range of SNR. One could then deduce that  the DDML RxDA estimator 

is more sensitive to receiver errors than the other RxDA estimators in this type of 

channel. 

The kf2M4 SIR estimator is associated with the  SIV and MSIV estimators in 

the sense that the variance of its SIR estimates has a similar downward slope with 

increasing SNR. The variance of the hl2& estimates is about twice that of the SIV 

and MSIV estimates, but it is superior to the variances of the estimates of the other 

estimators over most of the range of tested SNR, with the exception of very low values 



of SNR. 

Among the estimators whose variances are relatively flat over the range of tested 

SNR, the miances of the PhIL RyDA and PML TxDA estimators are the smallest 

and are almost identical over the entire range of tested SNR. The performances of 

the ADIQ, DDML RxDA and DDML TxDA estimators are only slightly worse while 

the SVR estimator exhibits the largest variance of al1 SIR estimators tested. 

The relationships between the mean estimated SIR and the BER of the Case 5 

channel for the various estimators are portrayed in Figure 3.15. The two distinct 

goups of SIR estimators observed in Figure 3.44 also exist in Figure 3.46. The SIV, 

BISIV, and M2i\14 estimators exhibit values of SIR that are smaller in magnitude and 

span a smaller range than the values of SIR exhibited by the SVR, DDLIL, ADIQ, 

and PML estimators so that, on the basis of Figure 3.45 alone, the latter group 

of estimators would be ex~ec ted  to perform better in applications than the former. 

However, the S IR/BER correlations are viewed from a different perspective in the 

next section which makes the relative efficacy of each estimator more clear. 

3.9.6 Composite Plots of SIR/BER Correlation for each Es- 
timator 

It is informative to view the SIRIBER correlat ions from another perspective by plot- 

ting the results for al1 five test channels for each of the SIR estimators separately. 

Figures 3.46 to 3.56 portray these composite plots for the SVR, M3M4, PML RxDA, 

PiCIL TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDbIL RxDA, 

DDML TxDA, and ADIQ estimators. Of course, results from the Case 2A and 

Case 2B channels are not included for the SVR, fi&, and PML estimators since, as 

mentioned earlier, these estimators do not produce meaningful SIR estimates under 

the channel conditions of Case 2A or Case 2B. Error bars are attached to each point, 

and the sizes of the error bars are determined by the square root of the estirnated 

variance associated with each estimated SIR mean. 
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Figure 3.45: Correlation between mean estimated SIR and BER in Case 5 channel 
for SVR, kl2MQr PML, ADIQ, SIV, MSIV, and DDML estimation. 



In these plots, a good SIRIBER correlation is indicated by clusters of points 

grouped tightly together with some reasonably steep, monotonie slope. Ideally, the 

perfect SIRIBER correlation would be reflected by a plot of al1 SIRIBER points 

falling on the same curve; that is, the perfect SIRIBER correlation would be a one- 

to-one correspondence of the SIR to the BER for al1 of the test channels considered. 

In addition to one-to-one correspondence, good correlation also requires SIR estimates 

with a reasonably small variance. 

The SIRIBER correlations for Cases 1, 3, and 4, are similarly good for a11 of the 

estimators under consideration. The main differences in the correlations arise in the 

context of Cases 2 and 5 where Rayleigh fading is present. 

One of the criteria mentioned above for good SIRIBER correlation is that the 

clusten of SIRIBER points be grouped tightly together. From Figures 3.60 to 3.53, 

it may be seen that the SIV and MSIV SIR estimates satisfy this criterion. Though the 

error bars on the points for Case 2A are large, this is mainly due to the time-varying 

channel conditions rather than the inherent variance of the estimator. Unfortunately, 

it is difficult to separate the effect of the channel from the eKect of the SIR algorithm 

itself on the variance, but the Case 2B rnodel helps to accomplish this separation of 

effects by replaying the same amplitude and phase fluctuations for each successive 

SIR estimate, as described earlier, thus maintaining the true SIR constant (whatever 

its value may be). The SIR/BER correlation points for the Case 2B rnodel are quite 

flat for the SIV and MSIV estimators and the error bars are srnall which indicates 

that the contribution of the SIV and MSIV algorithms to the variance is small, but 

the flatness of the plots indicates that the SIRIBER correlation is very poor for the 

speciJic channel conditions of Case 28 which are artificial. 

In contrat ,  the SIR/BER points of the DDML and ADIQ SIR estimates (see 

Figures 3.54, 3.55 and 3.56) for Case 2B have a siope which reveals some correlation 

with the BER, but the points are located some distance away from the main cluster 

of SIRIBER points corresponding to Cases 1,3,4, and 5. The SIRIBER points of the 
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Figure 3.46: Composite plot of correlation between mean estimated SIR and BER for 
SVR estimation. 
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Figure 3.47: Composite plot of correlation between mean estirnated SIR and BER for 
M2M4 estimation. 
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Figure 3.48: Composite plot of correlation between mean estimated SIR and BER for 
PML RxDA estimation. 
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Figure 3.49: Composite plot of correlation between mean estimated SIR and BER for 
PML TxDA estimation. 
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Figure 3.50: Composite plot of correlation between rnean estimated SIR and BER for 
SIV RxDA estimation. 
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Figure 3.51: Composite plot of correlation between mean estimated SIR and BER for 
SIV TxDA estimation. 
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Figure 3.52: Composite plot of correlation between mean estimated SIR and BER for 
MSIV RxDA estimation. 
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Figure 3.53: Composite plot of correlation between mean estimated SIR and BER for 
MSIV TxDA estimation. 
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Figure 3.54: Composite plot of correlation between mean estimated SIR and BER for 
DDML RxDA estimation. 
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Figure 3.55: Composite plot of correlation between mean estirnated SIR and BER for 
DDML TxDA estimation. 
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Figure 3.56: Composite plot of correlation between mean estimated SIR and BER for 
ADIQ estimation. 



DDML and ADIQ SIR estimates for Case ?A are located even farther from the main 

ciuster (by orders of magnitude). The error bars for the Case 2A points are large just 

as the error bars for the SIV and MSIV Case 'LA SIRIBER points are large. Again, 

this large variance is mainly due to the random amplitude and phase fluctuations of 

the Rayleigh-faded chanel.  

The double grouping of SIR estimators identified in Section 3.9.5 in the context of 

the Case 5 results also manifests itself in Figures 3.46 to 3.56. The Case 5 SIRIBER 

points of the M2kI4, SIV &DA, SIV TxDA, MSIV RUDA, and MSIV TxDA SIR 

estimates fa11 below the main cluster of points in their respective plots, whereas 

the Case 5 SIRIBER points of the SVR, PML RxDA, PML TxDA, D D N L  RxDA, 

DDML TxDA, and ADIQ SIR estimates reside above the main cluster of points. The 

main effect of this difference is that SIR estimates made under frequency-selective 

conditions by the former group of estimators are slightly pessimistic, whereas SIR 

est imates made by the latter group of est imators are slightly opt imist ic. 

Summary 

Thirteen SIR estimators were described in Section 3.7: the SVR, M&, PhIL &DA, 

PML TxDA, SIV RxDA, SIV TxDA, MSIV RxDA, h1SIV TxDA, DDhIL RxDA, 

DDhIL TxDA, ADIQ, ML RxDA, and ML TxDA SIR estimators. The PML, SIV, and 

MSIV estimators (both the RxDA and TxDA forms) are original. The performances 

of the SIR estimators were compared using n/PDQPSK-modulated signals in the five 

different test channels described in Section 3.6.2. 

An SIR estimator for wireless applications must be able to function well given any 

channel impairment including AWGN, CCI, and fast, frequency-selective fading. Of 

the thirteen estimators tested in one or more of the five test channels described in Sec- 

tion 3.6.2, only the SIV RxDA, SIV TxDA, MSIV RxDA, MSIV TxDA, DDXIL RxDA, 

DDML TxDA, and ADIQ SIR estimators produce rneaningful SIR estimates under 

al1 of the channel conditions tested. 



Of these seven SIR estimators, none could be considered "perfect*, but it seerns 

reasonable to conclude from al1 of the plots presented in Sections 3.9.1 to 3.9.6 that 

the SIV and MSIV SIR estimators (both the RxDA and TxDA forms) exhibit the 

most favourable characteristics from the point of view of small variances and good 

SIRIBER correlations. The TxDA forms of the SIV and MSIV SIR estimators per- 

form marginally better than their RxDA counterparts, as is most evident in plots of 

bias, variance, and MSE. There is very little to distinguish the performances of the 

SIV estimaton from the performances of the MSIV estimators, and any difference is 

so srnall as to be statistically insignificant. 

The DDML and ADIQ exhibit remarkably similar biases, variances, MSE's, and 

SIRIBER correlations so, based on these results, one would expect applications in- 

corporating these estimators to  perform similarly. 

From the point of view of implementation complexity, the ADIQ SIR estimator is 

the simplest to implement of al1 of the estimators considered in Chapter 3 or Chap- 

ter 2, especially if the AGC operation could be simplified from an explicit division 

to a bit-shift operation, and if the correction formula given by (3.34 need not be 

applied, as is the case in applications which require only a relative measure of SIR. 

If only a relative measure of SIR is required, the SIV and i\ISIV estimators may 

also be simplified, as it is evident from (3.75) or (3.100) that only the ratio 

need be computed instead of the full expression. Comparing the complexity of the 

SIV estimators to that of the MSIV estimators, the SIV estimators are easier to 

implement as the MSIV algorit hm requires complex multiplication, whereas the S IV 

algorithm does not. Furthermore, the TxDA forms have the added complexity over 

the RxDA forms that known data must be identified and extracted from the received 

signal which is an issue of synchronization. 

To irnplement the DDML estimators, the differential phase must be computed 



(which couid be a part of the detection hardware) and the sine fiinction must somehow 

be implemented (perhaps as  a lookup table). Alternatively, it is suggested in [2S] that 

a reduced-complexity form of the DDM L algorithm may be implemented to avoid the 

sine function, but at the cost of performance. Since the reduced-complexity form was 

not considered here, it is not possible to indicate the degree to which its performance 

could be expected to degrade. 



Chapter 4 

Application of SIR Estimation to 
Selection Diversity Combining 

4.1 Motivation and Description of Application 

The performances of various SIR estirnators were investigated in Chapter 3 based on 

the statistical evaluation of simulated SIR estimates. Another strategy to evaluate 

SIR estimator performance is to compare the relative benefit of the incorporation of 

the SIR estimators into a specific application. Though the cornparison results are 

specific to a particular application, they nonetheless provide additional insight into 

the eficacy of the various SIR estimation algorithms. 

Postdetection selection diversity combining ['23] is chosen here as an application 

which is of current interest in wireless communications [27, 2, 124, 1351 since it is a 

relatively simple method to combat the effects of delay spread, AWGN, CCI, and the 

random amplitude and phase fluctuations due to Rayleigh fading. A postdetection 

selection diversity combiner (SDC) is classically described [23] as comprising L an- 

tennas (spaced far enough apart from each other to ensure t hat the fading affecting 

each of the L received signals is uncorrelated or nearly uncorrelated), L detectors, 

and a switch which connects the detector whose output samples have the largest SNR 

to the decision device. In practice 121, the detector whose samples have the largest 

enuelope has been chosen to be connected to the decision device since measurement 
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Figure 4.1: Simplified block diagram of postdetection selection diversity combiner. 

of the SNR has been considered to be too costly historically. Using the measured 

SNR or SIR as the selection criterion rather than the received signal envelope (or 

total received power) should yield better diversity performance. 

A simplified block diagram of the diversity system rnodeled here is illustrated 

in Figure 4.1 with L = 2. Each branch can be represented by the system mode1 

presented in Section 3.6.1. The fading between branches is assumed statistically 

similar but independent; that is, the Doppler and delay profiles are identical, but the 

sets of fading parameters, O,, um, and T,, used in (3.9) of Chapter 3 are different for 

SIR 
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each branch. 

The SIR estimators to  be evaluated with this SDC are the ones identified in Chap 

ter 3 that generate meaningful SIR estimates regardless of the channel conditions. 

These include the SIV RxDA, SIV TxDA, MSIV RxDA, hISIV TxDA, DDML RxDA, 

DDML TxDA, and ADIQ SIR estimators. In addition, two other types of estima- 

tors are implemented for comparison which assess received signal quality based on 

rneasurement of the surn of the signal and impairment components. In one imple- 

mentation, the average power over a block of N,,, symbols is used as the selection 

criterion. This estimation method is referred to here as AVGP ( AVeraGe Power) es- 

. 
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tirnation. In the other implementation, branch selection is based on measurernent of 

the instantaneous power which, in a discrete-time system, is equivdent to measure- 

ment of the envelope of each corrupted symbol. This estimation nietliod is referred 

to here as INSTP (INSTantaneous Power) estimation. The SDC selects the branch 

with the largest AVGP or INSTP estimate. INSTP estimation is the one most often 

associated with postdetection selection diversity combining ( s e ,  for example, [2]). 

The AVGP estimator used here cornputes the total power of the baud-spaced 

samples, y,, at the output of the M F  given by (3.21) of Chapter 3. The form of this 

estirnator is simply expressed as 

The INSTP estirnator is even more simply expressed as 

which is the envelope of the post-DD samples. The INSTP estimator uses the post- 

DD samples in order to be consistent with [9]. 

It is also useful to have some bound on the best possible BER attainable by an 

L = 2 SDC given a certain set of channel conditions and certain block length, LV,,,. 

A simple way to obtain such a bound is to run a simulation in which a copy of the 

transmitted data is used at the receiver to select the branch with the fewest bit errors 

for each block of Nwm symbols. A lower bound on the BER can thus be obtained 

regardless of the statistics of the channel impairments. These results are identified as 

the "Ideal" curves in the BER performance plots that follow in Section 4.3. 

4.2 Verification of Selection Combiner 

As a check of the implementation of the selection combiner pictured in simplified 

form in Figure 4.1, the simulated BER performance is compared to published results. 

The channel chosen for verification purposes is a slow, flat Rayleigh fading channel 
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Figure 4.2: Verificat ion of postdetection select ion diversity combiner in a slow, 
Rayleigh fading channel using numerical results of [2]. 

corrupted by AWGN but no CCI. The simulated BER of this channel is plotted as a 

function of SNR in Figure 4.2 for L = 1 (no diversity) and L = 2, and is compared to 

the numerical results (equation (17) and Figure 4) of For the case of L = 2, it is 

assumed that the SDC is employed with INSTP estimation. These plots show good 

agreement between simulation and theory. 

4.3 Simulation Results 

The BER performance of selection diversity cornbining using various SIR estimators 

is displayed in Figures 4.3 to 4.5 for three different scenarïos. The intention of this 



chapter is not to provide simulation results of the BER performance for an exhaustive 

set of channel conditions, but rat her to illustrate by example the relative improvement 

in BER attainable using SIR estimators in selection diversity combining for a few 

representative system configurations. 

In the first scenario, the propagation medium is characterized by Rat, fast Rayleigh 

fading with v,, = 100 Hz. CC1 is present at a level of S/C = 14 dB, and the SNR is 

swept from 10 to  50 dB in 10 dB steps. The block length is chosen to be &,, = 30 

symbols which is smaller than the block length of 150 syrnbols assumed for al1 tests 

in Chapter 3. The rationale behind the choice of the block length is described below. 

For this selection diversity application, the block length should be chosen as small 

as possible to  minimize the number of correctly detected bits that are discarded. 

Ideally, symbol quality should be assessed on a symbol-by-symbol basis (N,, = 1) 

as in (21. To illustrate, consider an L = 2 SDC with N,, = 100. Assume 10 symbol 

errors occur in the jîrst 50 symbols of the block corresponding to  branch 1,20 symbol 

errors occur in the lad  50 symbols of the block corresponding to branch 2, and the 

SIR of branch 1 is greater than that of branch 2 (based on an observation interval of 

100 symbols) so that the 10û-symbol block of branch 1 is correctly selected. Though 

a block with 10 symbol errors is better than one with 20 symbol errors, if the block 

size had been 50 symbols in length rather than 100, it is possible that branch 2 could 

have been selected for the first 50 symbols and branch 1 could have been selected for 

the last 50 symbols so that, overall, there would have been no symbol errors at all. 

Based on a 100-symbol block size, the selection of branch 1 effectively discards the 

correctly detected symbols of branch 2 which could be used to minimize the BER. It 

is easy to  extend this argument to  show that smaller and smaller block sizes should 

yield increasingly better BER performances to the point t hat , theoretically, the best 

selection diversity BER performance should be attained wi th the smallest possible 

block size; that is, iV,, = 1. This requirement must be balanced with the fact that 

the performances of the SIR estimators improve with increasing block length. As a 
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Figure 4.3: BER performance of selection diversity combining as a function of SNR 
in a flat fading channel with v,, = 100 Hz, S/C = 14 dBy and N,, = 30 using 
(a) SIV, MSIVy and DDML SIR estimation, and (b) SIV, ADIQ, AVGP, and IXSTP 
estimation. 
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Figure 4.4: BER performance of selection diversity cornbining as a function of SNR 
in a flat fading channel with v,, = 100 Hz, S/C = 14 dB, and N,,, = 10 using 
(a) SIV, MSIV, and DDML SIR estimation, and (b) SIV, ADIQ, AVGP, and INSTP 
estimation. 
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Figure -2.5: BER performance of selection diversity combining as a function of SNR 
in a frequency-selective fading channel with T,, = 3 ps, vmax = 40 Hz, SIC = 20 dB, 
and 1VWm = 10 using (a) SIV, MSIV, and DDML SIR estimation, and (b) SIV, ADIQ, 
AVGP, and INSTP estimation. 



first attempt to achieve this balance, a block length of 30 symbols was chosen. 

The BER results for the first scenario are displayed in Figure 4.3. The BER 

performance curves are split between two graphs to reduce congestion, but the SIV, 

"Idealn, and "No diversityn curves are common to both to facilitate comparison. From 

Figure 4.3 it can be seen that the difference in performance among the various SDC 

implementations is not huge, but it is significant. Distinctions arise for values of SNR 

greater than 30 dB where the error floor is visible. Specifically, the SDC1s employ- 

ing SIV TxDA, MSIV TxDA, and DDML TxDA SIR estimation attain almost ideal 

BER performance for N,, = 30. The BER performances of the SDC1s employing the 

SIV RxDA and hISIV RxDA SIR estimators are next best. These BER performances 

are about 17% better than that of a conventional SDC operating with INSTP esti- 

mation. Next best is the BER performance of an SDC employing DDhIL RxDA SIR 

estimation. The high-SNR performance of the DDML RxDA-assisted SDC is similar 

to that of the SIV RxDA- and MSIV RxDA-assisted SDC's and better than that of 

the INSTP-assisted SDC, but the low-SNR (less than about 30 dB) performance is 

inferior to that of the INSTP-assisted SDC. The BER performance of the ADIQ- 

assisted SDC is next best and, not surprisingly, the SDC using AVGP estimation 

performs least well of al1 of the SDC implementations. These performance rankings 

are reasonably consistent with the SIR estimator rankings observed in Chapter 3, 

though the DDML estimators perform better in this SDC application than expected. 

The second scenario is almost identical to the first in t hat the propagation medium, 

the level of CCI, and the range of values of SNR are the same. The only difference 

is that the block length is decreased from N,,, = 30 to IV,, = 10 to see the effect 

of a shorter observation interval. Frorn Figure 4.4, it can be seen that the perfor- 

mances of almost d l  of the SDC implementations improve slightly relative to the 

INSTP implementation which is identical in both plots (recall that the INSTP esti- 

mator measures the post-DD signal enveiope on a symbol-by-symbol basis so that i ts 

estimates are independent of N',). The DDML RxDA-assisted SDC is the only SIR- 



based implementation whose BER performance remains relatively unchanged. -4s a 

result, the SIV RUDA- and MSIV RxDA-assisted SDC's exhibit a marginally superior 

BER performance relative to that of the DDML RKDA-assisted SDC. As ivell? the 

SIV RxD A- and MSIV &DA-assisted SDC implementations maintain t heir small, 

but distinct, BER performance advantage over al1 of the other SDC irnplementations 

using in-service quality estimators. The SDC implementat ions using the TxD A forms 

of the SIV, MSIV, and DDML estimators maintain their superior rankings, achieving 

BER performances that are very close to ideal. 

In the final scenario, the propagation medium is characterized by frequency- 

selective, fast Rayleigh fading with r,, = 3 ps and u,, = 40 Hz (decreased from 

v,, = 100 Hz). The signal-teCC1 ratio is increased frorn S/C = 14 dB to 20 dB. 

As in the other two scenarios, the SNR is swept from 10 to 50 dB in 10 dB steps. 

The block length is maintained a t  N,, = 10 symbols, consistent with that of the 

second scenario. Relative to the BER performances with diversity in the first two 

scenarios, the BER performances with diversity in this frequency-select ive scenario 

are better since the improvement in performance due to the smaller Doppler spread 

and lower interference level is more significant than the degradation in performance 

due to the added frequency selectivity. The high-SNR rankings are unchanged in this 

frequency-selective scenario as compared to the previous flat-fading case (N,,, = 10 

in both cases). 

4.4 BER Performance Summary 

There is some correlation between the ranking of the SIR estimators in terms of rela- 

tive SDC BER performance improvement (for the scenarios considered in Section 4.3) 

and the ranking of the SIR estimators developed in Chapter 3 based on application- 

independent statistical tests. Specifically, it is not surprising that the SDC's em- 

ploying SIV TxDA and MSIV TxDA SIR estimation perform well, approaching ideal 

performance for a given block length, as these estimators were judged to perform best 



in Chapter 3. The SDCys incorporating the RxDA forms of the SIV and JISIV esti- 

mators perform best of al1 the SDC's using in-service estimators. The differences in 

BER performance between SIV-based SDC implenientations and .\ISIV-based SDC 

implementations are negIigible. 

The DDML TaDA-assisted SDC exhibits similar BER performance to the SIV 

TxDA- and MSIV TxDA-assisted SDC1s, even though the DDML TxDA estimator 

appears to be inferior to the SIV and MSIV TxDA estimators based on the bias, 

variance, BISE, and SIR/BER correlation results of Chap ter 3. The BER performance 

of the DDML &DA-assisted SDC, however, is not as good as the performances of 

the SIV R.sD.4- and hlSIV RxDX-assisted SDC7s, and the differerice becomes more 

pronounced wit h decreasing block lengt h. 

In Section 3.10, it was stated that applications incorporating DDML and ADIQ 

estimators should perform similarly since their bias, variance, MSE, and S IR/B ER 

correlation performances are very similar. In fact, the DDML RxDA- and ADIQ- 

assisted SDC1s exhibit similar BER performances using a block length of ten symbols, 

but the BER performance of the DDML &DA-assisted SDC is better using a block 

length of t hirty symbols. The DDML TxDA-assisted SDC performs signi ficantly 

better than either the DDML RxDA- or ADIQ-assisted SDCys regardless of block 

length. It would be interesting to see if the relative rankings of the SIR estimators of 

Chapter 3 change if the block length is reduced from N., = 150 to N,, = 30 or 10. 

Clearly, it is advisable to evaluate the SIR estimators in the context of each intended 

application in order to determine the estimator that is most suitable. 

Recali that the INSTP-assisted SDC, which is the most common SDC implemen- 

tation used in practice, makes selections on a symbol-by-symbol basis which, as men- 

tioned earlier, is the optimal selection strategy to avoid discarding correct symbols. 

However, its BER performance is only better than that of the ADIQ- and AVGP- 

assisted SDC's given a block length of 30 symbols. Given a block length of 10 symbols, 

the BER performances of the ADIQ- and AVGP-assisted SDC's improve to the point 



that they become comparable to the performance of the INSTP-assisted SDC (recall 

that the performance of the INSTP-assisted SDC is independent of L\:,). Further 

investigation is required to determine the optimal block length, and to determine 

whether the optimal block Length depends on the channel conditions. 

Though the BER performance differences among the various SDC implementa- 

tions is small, the simulation results of Figures 4.3 to 4.5 nonetheless indicate that 

the  use of SIR estimation can yield a performance improvement over SDC implemen- 

tations that are based on measurement of the total received power. 



Chapter 5 

Conclusions 

Summary 

In this thesis, SNR estimation in the AWGN channel and SIR estimation in general 

mobile radio channels were investigated, and certain chosen SIR es tirnators were 

implemented in a postdetection selection diversity combining application. 

In Chapter 2, the problem of SNR estimation in the classical ACVGN channel 

was defined, and computer simulation was used to study the relative performances of 

various SNR estimation algorit hms found in the literat ure. Both BPSK-modulated 

signals in real AWGN and &PSI< signals in complex AWGN were considered. The 

structures of al1 of the SNR estimators except one (the SSME series of algorithms) 

were derived for both the real and cornplex cases (in the li terature, the SNR estimators 

are typically presented either for the real or complex channel, but not both). Almost 

all of the published estimators required some modification to be used in the assumed 

channel mode1 of Chapter 2. The SNR estimators studied form estimates either from 

known transmit ted data, estimated received data, or measured statistical propert ies 

of the received signal. The latter tivo types of estirnators (which do not require 

knowledge of the transrnitted data) are referred to as in-service estimators. The 

SNR estimators were simulated under identical channel conditions using common 

performance metrics to facilitate a fair performance cornparison. The performance 

metrics used are the sample bias, sample variance, and sample MSE. In addition, 



theoretical bounds (CRB's) on the variance in both real and compler channels were 

derived and compared with the results of the simulations. 

The choice of the "best" SXR estimator ivas found to 'depend on the specific appli- 

cation in which the estimator is to be used. In the case that known data is available 

at the receiver, the performances of the ML TxDA and SXV TxDA SNR estimators 

were found to exhibit the smallest biases, variances, and MSE's, and came closest 

to their respective CRB1s. Their performances fa11 sliglitly short of the theoretical 

optimum, but it is difficult to justify attempts to find estimaton that corne closer 

to the theoretical bounds. Of the in-service SNR estimators, the &bestn choice was 

found to depend on factors such as the block lengtli, the number of available samples 

per symbol, the type and order of modulation used, the range of SNR over which the 

estirnator is to operate, and the complexity of the implementation. 

In Chapter 3, the problem of SIR estimation in general mobile radio channels 

was defined, and cornputer simulation was used to study the relative performances 

of various SIR estimation algorithms found in the literature and developed in this 

thesis. The basis of the channel model is the IS-54 North American digital cellular 

standard which specifies r/CDQPSK as the modulation scheme. The various impair- 

ment processes incorporated into the channel model include fast, frequency-selective 

Rayleigh fading, CCI, and ALVGN. The amplitude and phase fluctuations caused 

by the channel were modeled as a Rayleigh fading process having a Doppler profile 

described by the Jakes spectrum. The multipath was assumed to have an exponential 

delay profile. Several fading simulators were considered as candidates to  mode1 these 

effects, and the Monte Carlo method for the modeling of GWSSUS channels was 

chosen. Statistical tests were performed on the fading simulator to  verify its func- 

tionality. Five different test channels were presented, each emphasizing a particular 

channel impairment. The published SIR estimators were described followed by three 

new algori thms presented for the first time in this thesis. These SIR estirnators were 

simulated in the five test channels and their performances were compared based on 



their measured variances and the correlations between their mean SIR'S and the BER 

of the channel. 

It was difficult to determine the "best" SIR estimator as the true SIR is difficult 

to detemine in some of the five test channels. However, it was clear that certain 

SIR estimators (the PML, SVR, and M2M4 SIR estimators) do not work well in 

fast Rayleigh fading environments so that the field of candidates for the "bestn SIR 

estimator that can operate under any channel conditions [vas narrowed to the SIV, 

MSIV, DDML, and ADIQ estimators. Based prirnarily on the SIRIBER correlations, 

it appeared that the SIV and MSIV SIR estimators outperformed the DDML and 

ADIQ algorit hms. 

Chapter 4 investigated the performances of the SIV, MSIV, DDML, and ADIQ 

estimators from a different perspective in the specific application of postdetection se- 

kction diversity combining. In this application, the SIR estimators were used to select 

the better of two diversity branches based on observation intervals of N,, symbols. 

For cornparison, SDC's incorporating an average power (AVGP) estimator and an 

instantaneous power (INSTP) estimator (which is used most often in practice) were 

also simulated, and a simulated bound on the lowest attainable BER was provided. 

There is some correlation between the ranking of the SIR estimators based on 

their relative improvement of the BER in the SDC application with the ranking in 

Chapter 3 based on application-independent statistical tests. The S N  TxDA-assisted 

and MSIV TxDA-assisted SDC implementations yielded BER curves that were just 

slightly iderior to the simulated lower bound. The DDML TxDA-assisted SDC per- 

formed similarly which was slightly surprising considering the results of Chapter 3 

which suggested that the SIV and MSIV estirnators should outperform the DDML 

estirnator. Of the in-senice estimators, the incorporation of the SIV RxD.4 and 

MSIV RxDA algorithms yielded the best SDC BER performances, but the curves 

were not too far from the BER curves of the SDC's that incorporated the remaining 

in-service estimators (the DDML RxDA, ADIQ, AVGP, and INSTP estimators). The 



relative rankings were found to be sensitive to the length of the obser~ation intend.  

5.2 Suggestions for f i t h e r  Study 

1. In Section 2.3.2 of Chapter 2, the reduced-bias forms of the complex M L  TsDA 

and ML RxDA estimators are given by (2.72) and (2.73), respectively. It was 

indicated in Section 2.3.2, that the factor used in the reduced-bias forms of the 

complex ML SNR estimators was obtained heuristically. In a manner similar to 

the derivation of Thomas [17] for the real AWGN case, the pdf of the M L  TsD.4 

estimator for complex AWGN could be derived ivhich could then, in turn, be 

used to obtain the proper factor analytically rather than heuristically. 

2. A difficulty that arises in any cornparison of published algorithms is that new 

techniques continually appear in the literature. Also, it is difficult to form a 

comprehensive list of every published technique since the algorithms are some- 

times inconspicuous in the existing literature. As examples, SIR (and SXR) 

techniques which would be interesting to add to the list of tested estimators 

include those described in (591, [ ïO ,  page 3461, and [60]. The references (591 

and [70] appear to describe the sarne technique. These estimators would be 

of particular interest if they prove to operate well under al1 fading conditions 

(particularly fast Rayleigh fading) so that they could be added to the list of 

"robustn estimators which now include only the SIV, MSIV, DDhIL, and ADIQ 

estimators. 

3. The pdf's of the SIR estimators (especially the SVR and PML estimators which 

exhibit rising biases and variances at high SNR) could be evaluated to obtain 

a better insight into the operation of the estimators. 

4. The topic of BER estimation was not considered in this thesis since focus was 

placed on techniques that yield estimates that are not just useful as relative 



measures of quality, but also as absolute quantities required as input parame- 

ters to some algorithms. It wouid still be interesting, however, to compare the 

performances of SNR or SIR estimators to the performances of BER estimators 

(such as the algorithm described in (401) in specific applications that only re- 

quire relative measures of quali ty (for example, postdetection selection diversi ty 

combining). 

5. A more rigorous investigation of the BER performance of SIR estimation applied 

to diversity combining could be performed. Simulations could be run to deter- 

mine the optimum block length given several different channel configurations. 

Other diversity combining techniques (such as maximal-ratio combining) could 

also be simulated for comparison. Before embarking on such a project, however, 

the degree to which BER performance could theoretically be improved over the 

conventional combiner implementations which operate by measuring the total 

signal-plus-impairment power rather than the SIR should first be determined. 

6. The SIV, LISIV, DDML, ADIQ, and AVGP algorithms are all examples of 

"intervaln estimators since their estirnates are based on a block of symbols, 

whereas the INSTP algorithms is an example of a "pointn estimator whose esti- 

mates are made on a symbol-by-symbol basis. It would be interesting to convert 

the S N ,  MSIV, DDML, and ADIQ interval estimators to point-estimator forrns 

and compare SDC implementations using these point estimators with SDC im- 

plementations using interval forms. 

7. Since the performance advantage of using SIR estimators versus total signal- 

plus-impairment power estimators in the selection diversity combining appli- 

cation is relatively small, different applications could be tried in which the 

advantage of SIR estimation is more pronounced. As suggestions, a couple of 

examples of potential applications include timing and frequency recovery (as ex- 

p l~red  in [%] using only the DDML TxDA SIR estimator) and Viterbi decoding 



in fast, frequency-selective fading channels ( s e  [35] ) . 

S. .-\ logical extension of this work is to implement certain SIR estirnators (or 

simplified versions of these estimators) in a hardware implementation for a 

particular application, and perform lab and field tests. 



Appendix A 

Notes on Probability of Error and 
Noise Power Spectral Density 

This appendix is included to  help clarify some of' the assumptions made in this the- 

sis specifically regarding noise power spectral density and the relationship between 

discrete SNR and error probability. It is a constant source of frustration to  try to  

interpret plots of error probability published in papers and textbooks since there is 

a significant lack of consistency in the way axes are labeled and interpreted. Often, 

what one author refers to as the SNR is actually Eb/& or vice-versa, for exam- 

ple. Also, there is little mention made in the literature of the distinction between 

one-dimensional (real) and twedimensional (cornplex) channels and the implications 

on the interpretation of the noise power spectral density (PSD), No. The folloming 

development is not meant to  be rigorous, but attempts to tie together, clarify, and 

highlight pertinent concepts presented and discussed in Chapters 3 and 4 of [65]. The 

notation used here is modified somewhat from that given in [65]. 

The assumed, idealistic system model is first identified which is slightly different 

from the model described in Section 2.2, but the results derived here are general. 

The main difference between the mode1 described here and that in Section 2.2 is 

that the transmitted signal here consists of a single pulse-shaped symbol which is 

nonzero only over a baud interval whereas, in Section 2.2, the signal is a pulse- 

shaped sequence of symbols, each symbol spanning several baud intervals. The baud- 



constrained assumption is made to sim~lify the analysis. Following the descript ion 

of the system model, the probability of error for a single, binary transrnitted pulse 

in complex AWGN (twc+dimensional problem) is derived. Finally, the probability of 

error for a single, binaxy transmitted pulse in real AWGN (one-dimensional problem) 

is derived and compared to  the complex case. The purpose of deriving expressions for 

the probability of error for these two cases is to justify the noise PSD model assumed 

in each case. A summary of the main points that arise in the derivations is given in 

Section A.4. 

A. l  System Description and Properties 

Assume a system in which one of two possible bandpassL, pulse-shaped waveforms, 

sm(t), m E (1,2), is transmitted and corrupted by bandpass white noise, n(t),  to 

form one of the two possible received signals 

The transmitted signal is nonzero only over the interval, O 5 t 5 T, and the noise 

has a twesided PSD given by 

B Nol2 f c  - 2 I If l I f c  + f 
O ot herwise, 

where f, is the centre frequency and B is the bandwidth. It is in the context of the 

bandpass signal, y(t), that the noise PSD is defined and measured in practice. 

The signal and noise may be expressed in terrns of lowpass equivalents as 

'Strictly speaking, a function limited in time cannot be bandlirnited, but it is assurneci here that 
there is insignificant energy outside çame bandwidth, B. 



and 

respectivety, where u, ( t  ) ami z( t  ) are the respective lowpass, corn plex equivalents 

of the signal and noise. Expressions for the energy and correlation of the transmit- 

ted signal, and the autoconelation of the noise are provided below for use in the 

subsequent development. 

The energy of the transrnitted signal is 

Let u,(t) = X ( t )  + jY(t)  and substitute into (A.4) to obtain 

where it is assumed that f, iç much larger than the highest frequency components of 

u,(t) so that the integrals of the sine and cosine terms in (A.5) are approximately 

zero. The correlation of the two possible lowpass-equivalent t ransmitted si p a l s  of 

equal energy, E, is 

It is shown on page 155 of [65] that the autocorrelation of the noise is given by 

where R= is the autocorrelation of the cornplex, lowpass-equivalent of the noise given 

by 

R,(r) = $E{z*( t )z( t  + r)) .  (A-8) 



The relationship between the PSD of the bandpass noise, Sn( f ), and the PSD of the 

lowpass-equivalent noise, S, (f ), is found by taking the Fourier t ransform of (Aï) as 

ivhere S:(- f - f , )  = S,(- f - f,) because S,(f) is real-specifically, it is given by 

(A.l). The implication of (A.9) and (A.1) is that the PSD of z ( t )  is 

No IfII+ 
O otherwise. 

As an illustration of the mode1 developed here, the probability of error for a single 

transmitted, binary pulse is given below for both the cornplex AWGN channel and the 

real AWGN chônnel (the derivation below follows the development of [65] for binary 

signaling in complex AiVGN). 

A.2 Probability of Error for a Single, Binary 
Transmitted Symbol in Complex AWGN 

Consider the lowpass-equivalent , received signal expressed as 

where a explicitly represents an attenuation factor, q5 explicitly represents a phase 

shift in the carrier, and u,( t )  and z ( t )  are the lowpass-equivalents of the bandpass 

signals, s, ( t  ) and n(t  ), as described in Section A. 1. Assume the energies of the 

trvo possible transmitted pulses are identical; that is, El = E2 = E. It is shown 



on page 212 of [65] that the correlator implementation of a RIF receiver performs 

optimum reception on one of the tivo possible signals identified by (A.11) by forming 

the decision variables 

and selecting the Iargest of the tivo. Substituting ( A . l l )  into (A.12) for each of the 

two possible transmitted symbols, one obtains 

and, similarly, 

where 

and use is made of (A.5) and (A.6). 



If Lil > II2, the receiver decides u l ( t )  rvas transmitted; if Irz > I r , ,  the receiver 

decides u2( t )  kvas transmitted. If u i ( t )  is transmitted, the probability of the receiver 

rnaking an error is 

where V = LIl - Clz = 2 4 1  - v,) + Nlr - Nzr. Since Ni, and N2r are Gaussian, V 

is also Gaussian and the probability of error, P{V < 0) may be expressed in terms 

of the mean, rnv, and variance, 4, of V as 

where 

Since u l ( t )  and u 2 ( f )  are transrnitted with equal probability, the binary probability 

of error is 

The mean of V is evaluated as 

rnv = E{V)  = 2 4 1  - y,). 

The variance of V is evaluated as 

Recognizing that N I ,  = Re ( N I )  = :(NI + AT;) allows E{N?,) to be evaluated as 



Letting N1 = XI + jYI, it can be  shown that 

(making the reasonable assumption that the in-phase and quadrature noise powers 

are equal) so that 

using (A.8), (A.10), and the fact that 

where b(s) is the delta function. Equation (A.19) is only approximately true since the 

bandwidth, B, of the bandpass white noise is finite. Very similarly, E{IV$) = %VoE 

Finally, the remaining term is evaluated as 

so t hat 



Equation (A. 16) then evaluates to 

Using (A.15) and (A.22), (A.14) becomes 

using the identity - 

If u l ( t )  and 4) 
binary, antipodal 

erfc(z) = 2Q(\/2s). 

are antipodal signals, then y = -1 and the probability of error for 

signaling in complex AWGN is expressed as 

which is the classic result [65, 621 where a2& is often identified 

bit. 

(A.21) 

as Es, the energy per 

A.3 Probability of Error for a Single, Binary 
Transmitted Symbol in Real AWGN 

The derivation of the probability of error for binary signaling in real AWGN is a 

classic problem which is derived here in a pardlel manner as for the complex case 

discussed in Section A.2. However, some of the expressions given in the description 



of the system mode1 in Section A S  need to be  modified for this real case. Consider 

the received signal given by 

where al1 quantities are real. The energy of the transmitted signal is 

the correlation of the two possible transmit ted signals is 

and the autocorrelation of the real ALVGN process is given by 

The PSD of the noise in this real case is 

= { :I? l f  I 2 B 
otherwise 

so that 

where, again, the expression is only approximate since the bandwidth, B, of the 

bandpass white noise is finite. The magnitude of the PSD of the real noise is different 

from that of the complex noise by a factor of two. Effectively, for this real case, the 

signal may be considered to exist only in one of the in-phase or quadrature channels; 

the complex noise that is orthogonal to the signal may be ignored so that only half 

of the total complex noise power need be considered in the real case. It is shown in 

the derivation below that assuming (A.29) for the PSD of real noise yields the correct 

expression for the probability of error. 



The decision variables in this real case are 

T 

and 

w here 

and 

As before, form the difference V = Ut - U2. The probability of error in terms of this 

variable is given by (A.14), so al1 that remains is to find the mean and variance of V. 

The mean of V evaluates to 

and the variance of V is evaluated as 

oc = E{(V - J!~(V})~) = E { N : )  + E { N f )  - 2 E { N l N 2 ) .  (A.32) 

TL first term in (A.32) is 

and the second term evaluates similarly to E{N:)  = NoE/2. The cross-correlation 

may be evaluated as 



Using t hese results, (A.32) becomes 

Substituting (A.31) and (A.35) into (A.14), the probability of error may be expressed 

Assuming antipodal signals, as before, so that y = -1, the probability of error for 

antipodal signaling in real AWGN is expressed as 

which is identical to the result given by (A.24). Again, the quantity, a2E is often 

identified as the energy per bit, Eb. 

A.4 Summary of Main Points 

1. The two-sided noise PSD of n(t) is defined (and measured, in practice) in the 

bandpass context shown in Figure A.l(a). For the sake of illustration, it is as- 

sumed that the receiver bandpass filter is ideal, centred at /,, and of bandwidth, 

B. The tw-sided PSD has an amplitude of No/2. 

2. The signal, z ( t ) ,  which is the lowpass-equivalent of n(t), is complex. It is 

important to be aware that this is true even if the transmitted signal has a 

one-dimensional lowpass-equivalent (such as BPSK). The PSD of the lowpass- 

e q u i ~ l e n t  of the noise is illustrated in Figure A. 1 (b) having an amplitude of No, 

and is used in Section 2.2 of Chapter 2 to show that the relationship between 

the SNR, p, and EJNo is 

for (in general) complex signals in complex noise. 



complex lowpass noise 
.............. ................ i....ii.....-i., .......-...... No 

real lowpass noise 

Figure A.1: PSD of (a) bandpass white Gaussian noise, (b) Iowpass-equivalent corn- 
plex Gaussian noise, and (c) lowpass-equivalent real Gaussian noise. 



3. In a system where a reai signal (such as a BPSIi-modulated signal at baseband) 

is transmitted and corrupted by real AWGN, it is necessary to use a PSD for the 

noise, illustrated by Figure A.l(c), which lias an amplitude of iVo/2. The real- 

valued signal and real-valued noise of this system effectively can be considered 

to exist solely in either the in-phase or quadrature channel of the cornplex low- 

pass equivalent; that is, in this real case, the lowpass-equivalent of the noise 

is still complex, but the portion of the noise that is orthogonal to the signal 

is ignored. This PSD is used in Section 2.3 of Chapter 2 to show that the 

relationship between the SNR, p, and E 6 / l b  is 

for real, antipodal signals in real ALVGN. 

4. Note that, in this appendix, the energy and autocorrelation functions of complex 

quantities employ a factor of 112 ( s e ,  for example, (A.8)) whereas the energy 

and autocorrelation functions of real quantities do not (se, for example, (A.28)). 

In the main text of Chapters 2 and 3, the factor of 112 that appears in the 

computation of the autocorrelations of complex quantities is dropped (see, for 

example, (2.Sb) of Chapter 2) so that the autocorrelation expressions given are 

applicable to both real and complex signals without regard to the factor of 112. 

Strictly speaking, the factor of 112 is required in the cornplex case in order 

to maintain consistency between the bandpass and lowpass-equivalent forms as 

is evident by (A.5), for example; however, whether or not the factor of 112 is 

employed makes no difference when computing the ratio of signal power to noise 

power as long as the use of the factor of 1/2 is consistent arnong the signal and 

noise expressions. Further, if the derivation of the probability of error given in 

Section A.2 for signals in complex AWGN is performed dropping the factors of 

112 that appear in the energy and autocorrelation expressions, the exact same 

end result is obtained for the probability of error. 



Appendix B 

Design of Root-Raised Cosine 
(RRC) Filter Based on the 
Frequency Sampling Technique 

A method is outlined below to  synthesize the FIR filter tap coefficients (discrete 

impulse response) of a digital filter from a desired analog frequency response using the 

frequency sampling technique [126]. This method is used to find the tap coefficients 

of a RRC filter implemented in Chapters 2, 3, and 4 as a pulse-shaping filter in the 

transrnitter and a MF in the receiver. 

Consider an analog frequency response, H(gw), which is to be approximated by 

an FIR filter. Let Hk denote samples of the analog frequency response as 

where wk = E, k E {O, 1,. . . , L - 11, L is the number of frequency samples (and the 

number of tap coefficients generated by the frequency sampling technique), and Ts is 

the sarnple period (l/Ts is the sampling frequency). Represent Hk in polar forrn as 

where Ak is the magnitude of Hk, and Ok is the phase. 

FIR filters can be designed to have linear phase [126] if Ok is constrained to  be 



The impulse response (or 

discrete Fourier transforrn 

tap coefficients), h,, may be found by taking the inverse 

(IDFT) of Hk as 

For h, to be real, make 

where * denotes the comptex conjugate. 

The design procedure may be summarized as follows: 

ing to 

For h, to be real and have linear phase, construct Hk as 

Compute L samples of the magnitude of the analog frequency response accord- 

. 1 

Hk = A k e - j y * x  

L-' kn k € {O, 1,. . . , M }  
HL-k = A 7 

w here 
- 1 ,  Leven 

- L-l L odd. 2 

Compute the IDFT of Hk using either (B.l) above, or an FFT algorithm [126, 

711. 

In the time domain, apply a rectangular window of appropriate width, or some 

other window, to h, to ensure that the impulse response goes smoothly to zero 

at the tails. 

As an example of the frequency sarnpling technique, the method described above 

is applied below to the synthesis of an FIR RRC filter. The magnitude of the full 

raised-cosine frequency response, ARC(u), is given in (651 as 



where T is the baud rate, and a is the rolloff factor. The magnitude response of the 

RRC filter is simply the square root of (B.2) expressed as 

A sample frequency of 

is chosen where Ns is the number of samples per symbol. The analog magnitude 

response, given by (B.3), is sampled a t  the discrete frequencies specified by 

Ns k 
Wk = Zr-- 

T L' k E {O, 1,. --,  L - 1). 

For N, = 16, L = 125 taps, and o! = 0.5, the sampled magnitude response, 

appears as in Figure B.1 which shows the discrete frequency response up to half the 

Nyquist rate (Fs/2 = N,/(2T) = 8/T). The corresponding impulse response is 

displayed in Figure B.2(a). Notice t hat the tails of the impulse response are not zero. 

A rectangular window (applied in the time-domain) can be used to truncate the first 

and last few samples in order to have the tails of the impulse response go to zero as 

shown in Figure B.2(b). A more gradua1 window may be a better choice to avoid the 

resulting discontinuity of the truncation process. 

As a check on the results, the discrete self-convolution of the RRC impulse response 

shouid yield the  impulse response of the full raised-cosine filter. From Figure B.3, it 

can be seen that  the amplitude of the impulse response is zero for every N, = 16 Sam- 

ples (each sample is represented by a vertical line) which indicates that this impulse 

response satisfies Nyquist's criterion for intersymbol-interference-free transmission, 

thus giving confidence in the tap coefficients obtained for the RRC filter. 

Note that an alternate and easier method to  evduate the tap coefficients is to use 

samples of the continuous-time impulse-response, h( t ) ,  which is given in equation (6) 
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Figure B.l: Magnitude response of RRC filter with AL = 16, L = 125 taps, and 
a = 0.5. 

of [28] for the root raised-cosine filter as 

1 - a + 4a/n,  t = O  
T g[(i + :) sin(%) + (1 - $)cos($)], t = &50 

sin[n(i-a) f ]+sa+ C O S [ I ~ ( ~ + Q ) + ]  

9 ot herwise. 
+ ~ - ( 4 a + ) ~ 1  

Other published expressions of the continuous-time root raised-cosine impulse re- 

sponse (see page 283, equation (4.3.37) of [W]) have a factor of ? r t / f l  in the de- 

nominator instead of ntlT. This difference only scales the impulse response by a 

constant. 
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Figure B.2: Impulse response of RRC FIR filter with N, = 16, L = 12s taps, 
and a = 1 (a) before application of rectangular window, (b) after application'of 
rectangular window. 



168 
Tap coefficient 

Figure B.3: Self-convolution of RRC impulse response to yield full raised-cosine im- 
pulse response. 



Appendix C 

The Cramér-Rao Bound (CRB) 

The derivation of the CRB for biased estimators presented below is based on [12S] and 

[47]. Errors in some intermediate steps of the derivation in [47] have been corrected. 

Consider some observable random variable, z, whose value is dependent on a set of 

h' fixed, unknown parameters B = (Oi, O*, . . . , BK). Assume hl such observations are 

available to form the observation vector x = (xl, x2, . . . , znr). The objective is to find 

the loiver bound on the variance of any estimator, 9(x), which generates estirnates of 

8 based on the observations, x. 

Let the pdf of x conditioned on the unknown parameters, 6 ,  be denoted by p(xl0) 

and let the likelihood function be expressed as 

emphasizing that 0 is the variable of the likelihood function. 

Let the elements of the information matrix [12S] be defined as 

mhere i, j E { l ,2 , .  . . , K).  Let 

E(Q)  = g@) = Bi + bi(8)  



where bi(0)  represents the bias of di(x). Let 

where, again, i, j E {1,2,. . . , K) .  Finally, let 

represent the covariance matrix of Bi and Bj where the elements of V are given by 

It can be shown that V - AJ-'A= is a non-negative definite matrix where J-l is the 

inverse of J, and aT is the transpose of A. Considering, then, the diagonal elernents 

of V - AJ-'A=, the diagonal elements of V may be written 

Equation (C.2) represents a loiver bound, the CRB, on the variance of di. Consider 

the special case of i = 1 and = 2, and let the bias of O1 be independent of B2 so 

that 

and 

Equation (Cl), written out in matrix form, is 

For a matrix of the form 

[C d ] ,  
the inverse is given by 

1 
ad - bc 



so that 

After substitution into (C.3), the CRB on the variance of the estimator of rnay be 

ex~ressed as 



Appendix D 

Confidence Interval for the 
Variance of an Estimator 

Consider a random variable, b, which has an unknown mean, unknown variance, and 

unknown pdf. The problem is to estimate the variance of 6 to within a particular 

error with a certain degree of confidence. 

A confidence interval cannot be stated without knowledge of the pdf, but it is 

possible to take advantage of the Central Limit Theorem (CLT) [65, 661 which states 

t hat the distribution of the sum of a sufficiently large number of statistically indepen- 

dent and identically distributed random variables approaches a Gaussian distribution 

(641. An approximate confidence interval can be constructed by using standard tech- 

niques for a Gaussian random variable with unknown mean and unknown variance 

[129, 1301. Specifically, the Student-t distribution is used below to derive an approx- 

imate confidence i n t e r d  for the variance of a random variable. 

Consider a collection of N sets of estimates of the parameter, p,  each set consisting 

of h' individual estimates: 



- 
where ii = Xi is the sample mean defined as 

and sai = is the unbiased sample variance defined as 

If K is large enough ( K  2 10) the distribution of X;. is approximateiy normal due to 

the summation in (D.1). The distribution of k: is also approximately normal since 

the second term in (D.2) approaches a constant. The random variable, x, has an 

unknown mean, unknown variance, and a pdf that is Gaussian. Further, it is assumed 

that each random variable, k;, i E {O, 1, . . . , N - 11, h a  identical statistics. 

The sample mean of Y; (or, equivalently, the sample mean of the sample variance 

of f i i )  is given by 

cornputed using N trials of Ii estimates each. Further, let 

where s; provides a measure of the variability of the sample variance of from trial 

to trial. As N increases, Y and s; become more reliable in the sense that 

where pu is the true mean of Y (that is, the true variance of P which is sought), and 

oy is the true variance of Y. If N 2 10, Y is approximately normally distributed 

with unknown true mean, pu,  and unknown true variance, O;, and it is possible to 

proceed with the derivation of a confidence interval based on standard techniques for 

a Gaussian random variable with unknown mean and unknown variance [129, 1301. 



Note that, given N x I\' samples of a random variable pi j ,  a direct expression for 

the unbiased sample variance is 

where 

For the unbiased sample variance given by (D.4), E { $ )  = 02, where 02 is the true 

variance of bij. Following the example on p. 189 of [65], it is shown belon- t hat the 

expression given by (D.3) is also an unbiased estimator for 02. 

Rewrite (D.2) as 
t K-1 

where Fi iis given by (D.l). Substituting this expression into (D.3), and taking ex- 

pected values, one obtains 

The first term in (D.7) is the true variance by definition; that is, E{(bi j  - p ) 2 )  = 02. 

The second term may be evaluated as 

( P @ @ i j - P ) ]  E ( i )  = E (h - 



because E{(Pij  - p)(bik - p ) )  = O for j # k. The last term in (D.7) m. be evaluated 

Combining terms, the expected value of I is found as 

so that (D.3) is an unbiased estimator for the variance of bij .  

Assume Y is indeed normally distributed with unknoivn mean, pu,  and unknown 

variance, 0;. The Student-t distribution is applicable in this case [129]. Define the 

normalized pararneter, t, as 
Y - / A y  

t =  
sy/ \ /N-  

The confidence interval is expressed as 

or, rewriting in terms of 9, 

In words, the probability that the true mean, p ~ ,  is in the range Y f ta/* s u / 0  is 

(1 -a) x 100%. The parameter, t,p, is the alZpercentile of the Student-t distribution 



with iV - 1 degrees of freedom. The value, K,  must be chosen large enough such that 

That is, h' must be chosen large enough such that the normalized sample variance of 

Y is less than the quantity specified in (D.8) where c x 100% is the percent error. 

As an example, say that it is desired to find K such that Y may be assumed to 

be within 20% error with 95% confidence using N = 10 trials (the minimum number 

required to assume Gaussian statistics). From a table of the Student-t distribution 

with 9 degrees of freedom (see [129] or [130]), to.os12 = 2.262 so that 

Note that this technique does not produce an expression that gives a value for 4 ï  

explicitly. It is necessary to choose li by trial and error until sF/12, computed frorn 

the collection of N x K estimates of p, yields a number less than Nc2/t&. 



Appendix E 

Some Basic Fading Terms and 
Concepts 

A signal propagating through a mobile radio channel experiences amplitude fluctua- 

tions, and is "smearedn both in tirne and frequency. The underlying mechanism of 

the fading effects is due to the influence of physical topography on the propagation 

of the RF  signal from a transmitter to a receiver. Since the physical topography 

changes from location to location, so do the fading characteristics. A fading chan- 

ne1 can be labeled according to the distribution of the amplitude variations, and the 

characteristics of the time and frequency dispersion. For example, a channel may be 

labeled as a fast, frequency-selective Rayleigh fading channel. Comments on each of 

the three attributes of a fading channel are discussed below based on material found 

in [65, 24, 75, 95, 121, 1051. It is not the intention of this discussion to provide a com- 

prehensive tutorial of fading theory, but to identify a few basic terms and concepts 

used in Chapter 3. 



E.1 Amplitude Distribution 

Due to the presence of many physical scatterers, the received signal is a superposition 

of echos forming a standing wave and, as a result, the received signal strength 

is spatially dependent. A moving receiver passes through the peaks and nulls of the 

standing wave pattern so that the received signal strength, over time, fluctuates in a 

manner exemplified by the plot shown in Figure E.1 where 7 is the amplitude of the 

envelope of the received signal, Ts is the sampling period, and v,, is the Doppler 

spread (the maximum Doppler frequency). The usual assumption is that the received 

signal consists of a large number of echos, each of which is independent and randomly 

phased, so that samples, rk, of the signal envelope are distributed according to the 

Rayleigh distribution with cdf given by (see [95]) 

where the rms value of 7 is 

Samples of the phase of the composite received signal are uniformly distributed on 

[O, 27r). Other distributions used to describe amplitude variations in particular envi- 

ronments are the Rice distribution [65] and the Nakagarni-m distribut ion [l3 1, 941. 

E.2 Frequency Dispersion 

Due to the motion of a receiver, the RF frequencies of the various echos making 

up the composite received signal are Doppler shifted causing frequency dispersion. 

As mentioned in Section E.1, the maximum Doppler frequency, v,,, is known as  

the Doppler spread. The srnearing of the received signal over frequency is evident 

in the Doppler power spectnim or Doppler profle. For a vertical monopole antenna 

'For this discussion, the fluctuation of the signal envelope is placed in the context of a fixed 
base station transmitting to a mobile receiver (forward path), but a similar argument holds for the 
opposite direction (reverse path). 
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Figure E.1: Typical received signal strength variations due to motion of a receiver 
through a standing wave pattern. The m s  signal level is O dB. 



Figure E.2: Jakes Doppler power spectrum normalized to maximum Doppler fre- 
WencY, V m a -  

in isotropic scattering, the Doppler profile can be modeled by the Jakes spectrum 

[25, 951. Let the normalized Doppler power spectrum be denoted by a&), then the 

Jakes spectrum may be expressed as 

which has the classic ubathtub" shape s h o w  in Figure E.2. As u,, increases, so does 

the rapidity of the amplitude and phase variations of the received signal. Slow fading 

refers to the case where Y,, is so small that the amplitude and phase fluctuations 

of the received signal are negligible over a given observation period. Fast fading 

refers to the case where the amplitude and phase variations occur over a period of 

time comparable to, or srnaller than, a symbol period. In the literature, this term is 

also applied to  moderately fast fading channels as well; that is, channels where the 



amplitude and phase variations are negligible over a symbol period, but not over a 

given obserntion period (spanning a number of symbols). 

E.3 Time Dispersion 

Echos arriving at the receiver wi t h different delays contri bute multipat h-induced IS 1 

to the received signal. The delay power spectrvm or deIay profile characterizes the 

tirne-smearing effect of a particular channel. A typical, idealized delay profile has a 

shape that decays exponentially wi th increasing delay [95]. Let the normalized delay 

power spectrum be denoted by a&), then the exponentially-decaying delay profile 

may be exptessed as 

where T- is the nns delay spread [IO41 defined as 

where 

and 7 k  represents samples of the envelope at delay, r k .  The quantity, t, is known as 

the mean ezcess delay and is the first central moment of the delay profile [105]. The 

quantity, r,, is a measure of the spread of the delay profile about 7. 

To illustrate, the normalized exponential delay profile with T,, = 3ps is shown 

in Figure E.3, and r,. and ? are identified (the normalization is such that the area 

under the delay profile curve is unity). If the rms delay spread is greater than 10- 

20% of the symbol period, then some sort of measures (adaptive equalization or 



T Delay, ps 

Figure E.3: Exponential delay power spectrum with T,, = 3 p. 

diversity combining or both) should be taken to counteract the multipath-induced 

ISI [103, 1321. In cases where the delay becomes comparable to or greater than the 

syrnbol period, the channel is said to be frequency seledive. 

Other measures of the delay spread are sometimes used. On page 707 of [65], a 

pararneter called the multipath spread of the channel is used to quantify the range of 

values over which the delay profile is essentially nonzero. A more precise parameter 

is identified on page 44 of [IO51 called the maximum excess delay a t  I: dB down from 

maximum which is the earliest value of delay at which the power delay profile first 

dips below a line z dB down frorn the maximum of the power delay profile. The rms 

delay spread, Tm. is most commonly used to characterize multipath channels 11051. 

Consider two tones (unmodulated sinusoids) of different frequencies transmitted 

on the same fading channel. The fading experienced by any two tones is perfectly 



correlated as long as r,, is zero or very small. As the rms delay spread gets larger, 

the fading experienced by the two tones becomes uncorrelated, and the frequency 

separation between the two tones for which the magnitude of the complex correlation 

is 0.5 is termed the correlation or coherence bandtuidth. 

There is an inverse relationship between the delay spread and the correlation 

bandwidth. As long as the correlation bandwidth is much larger t han the modulation 

bandwidth (T- smdl), the multipath-induced ISI is negligible and the channel is said 

to be a jlat fading channel. When the correlation bandwidth approaches or exceeds 

the modulation bandwidth (r,, approaches or exceeds the symbol period), then the 

channel is said to be a frequency selective channel. 

An expression for the magnitude of the correlation of t wo tones separated by a fre- 

quency, Aw , in a frequency-select ive fading channel characterized by the exponent ial 

delay profile given by (E. 1) is (see [95]) 

This expression is plotted in Figure E.4 (where A f = AS/%). 



100.0 150.0 
df, Tone separation, kHz 

Figure E.4: Correlation of two tones separated by a frequency, A f, in a channel 
characterized by an exponential delay profile with Tm, = 3ps. 



Appendix F 

A Brief Description of n/4-DQPSK 
Modulation 

Conventional QPSK and DQPSK [65] are modulation techniques which encode in- 

formation by the translation of binary pairs into symbols. Each symbol represents 

a phase-shift which may be used to modulate the phases of a complex sinusoid. At 

baseband, a syrnbol may be represented by one of four points in a signal constella- 

tion. The transitions from one point to another are dictated by a phase mapping 

rule. Table F.1 shows an example of the translation of binary bit-pairs to symbols 

represented by an absolute phase for coherent QPSK. Table F.2 shows the phase 

mapping for DQPSK where each bit-pair maps to a differential phase rather than 

an absolute phase. Assurning NRZ signals are transmitted in an infinite-bandwidth 

channel, the idealized signal constellation for coherent or differential QPSK appears 

as shown in Figure F.1. Phase changes of I R  cause transitions through the origin 

which create large fluctuations in the envelope of the modulated signal in a more re- 

Information bits Absolute phase 
O0 d 4  
O1 3x14 
10 4 4  
11 - 3 ~ / 4  
- - - - -- - - - 

Table F.1: Mapping of information bit-pairs to absolute phases for coherent QPSK. 
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Information bits Differential phase 
00 O 
01 +*/2 
10 - -r/2 
I l  +r 

Table F.2: Mapping of information bit-pairs to differential phases for DQPSK. 

Figure F.l: Signal constellation for conventional QPSIC or DQPSK using NRZ signals 
in an infinite-bandwidth channel. 



Figure F.2: Signal constellation for conventional QPSK or DQPSK using pseudm 
random pulses shaped by raised-cosine filtering. 

alistic bandlimited channel. As an example, consider a QPSK signal pulse-shaped by 

a raised-cosine filter with a = 0.5. A sample signal constellation for pseudo-random 

source data appears in Figure F.2, and the in-phase and quadrature eye-diagranis 

are displayed in Figures F.3 and F.4, respectively. As a matter of practical concern, 

these large amplitude fluctuations dictate that a linear power amplifier (PA) be em- 

ployed in the transmitter, instead of a less expensive non-linear PA, to avoid excessive 

adjacent-channel interference due to spectral spread [96]. 

In an attempt to prevent the penalty of spectral spread with the use of a cheaper 

non-linear PA, a scheme was developed (see [133, 1341) which avoids signal transitions 

through the origin, thus reducing envelope fluctuations and, theoreticaily, allowing 

the use of a non-linear PA. The phase mripping rule for this scheme is given in 

Table F.3 and an idealized signal constellation (NRZ signals in an infinitebandwidth 

channel) is given in Figure F.5. 



Figure F.3: Eye diagram of in-phase channel for conventional QPSK or DQPSK using 
pseuderandom pulses shaped by raised-cosine filtering. 

Figure F.4: Eye diagram of quadrature channel for conventional QPSK or DQPSK 
using pseudo-randorn pulses shaped by raised-cosine filtering. 



Information bits Differential phase 
00 + ~ / 4  
O1 +3744 
10 - 3 ~ 1 4  
11 -744 

Table F.3: Mapping of information bit-pairs to differential phases for r/CDQPSI<. 

Figure F.5: Signal constellation for nI4-DQPSK using NRZ signals in an infinite 
bandwidth channel. 



Figure F.6: Signal constellation for ~ /4 -DQPSK before differential-detection using 
pseudo-random pulses shaped by raised-cosine filtering. 

The signal constellation consists essentially of two conventional sets of QPSK 

signal points with one set rotated by n/4 radians with respect to the other. From 

one symbol intenml to another, a constellation point transits from one set of QPSK 

points to the other; that is, referring to Figure F.5, only transitions from @ points 

to @ points, or vice-versa, are permitted. Stated another way, the phase mapping 

rule allows successive phase changes of f r / 4  and f 37r/4 only, eliminating transitions 

through the origin and reducing the amount of envelope fluctuation in a bandlimited 

channel. A sarnple signal constellation for pseudo-random source data pulse-shaped 

by a raised-cosine filter appears in Figure F.6, and the in-phase and quadrature e y e  

diagrams are displayed in Figures F.7 and F.8, respectively. 

Comparing Figures F.2 and F.6, it can be seen that the n/4-DQPSK modulated 



Figure F.7: Eye diagram of in-phase channel for r/4-DQPSK before di fferent ial- 
detection using pseuderandom pulw shaped by raised-cosine filtering. 

Figure F.8: Eye diagram of quadrature channel for n/4-DQPSK before differential- 
detection using pseuderandom pulses shaped by raised-coçine filtering. 



signal passes near the origin far less frequently than the conventional QPSK modu- 

Iated signal, but it is apparent from Figures F.6, F.7, and F.8 that there still is an 

appreciable amount of fluctuation in the signal envelope of the n/CDQPSIi signal. 

Consequently, the theoretical advantage of being able to use a non-linear PA in place 

of a linear PA is not easily realized in practice. 

Note the "2-3-2" pattern of the eye diagrams in Figures F.7 and F.8. This is the 

eye-diagram conesponding to the r/4-DQPSK signal consteliation phased as shown 

in Figure F.5. If that signal constellation were rotated by r / 8  radians so that ail 

signal points straddled the x-y axes, then the eye diagrams would display a V-4" 

pattern instead. 

It is interesting to observe the signal constellation and eye diagrams of the r/4- 

DQPSK modulatrd signal after differential detection. A sample signal constellation 

is displayed in Figure F.9, and the in-phase and quadrature eye diagrams are shown 

in Figures F.10 and F.11, respectively. 

The signal constellation of Figure F.9 exhibits a curious asymmetry whicti is a 

result of the non-linear process of differential-detection applied to this particular 

modulation scheme. Note that the signal constellation of convent ional DQPSIi after 

differential detection doesn't look much different from the signal constellation be- 

fore differential-detection-at least there is no glaring asymmetry as in the case of 

differentiall-detected R I ~ D Q P S K .  

The asymmetry of the r/4-DQPSK signal after differential detection is also visi- 

ble in the eye diagrams of Figures F.10 and F.11. Note that the quadrature channel 

doesn't look much different from that of conventional QPSK (compare with Fig- 

ure FA), but the in-phase channel is affected on negative transitions. The effect is 

visible as a cusp between syrnbol centres. 



Figure F.9: Signal constellation for n/4-DQPSK after differential-detection using 
pseudo-random pulses shaped by raised-cosine filtering. 



Figure F.lO: Eye diagram of in-phase channel for nf4DQPSK after differential- 
detection using pseudo-random pulses shaped by raised-cosine filtering. 

Figure F. 11: Eye diagram of quadrature channel for n/4-DQPSK after differential- 
detection using pseudo-random pulses shaped by raised-cosine filtering. 
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