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ABSTRACT 

IGFBP -2, - 3 , 4  and -5 transcripts were observed in oviduct primary cultures and 

bovine blastocysts. IGFBP-1 transcripts were not detected in any samples and 

IGFBP-6 transcripts were detected inconsistently in oviduct cells. Ligand blot 

analysis with ~UI]-IGF-lI revealed four polypeptide bands in oviductal conditioned 

media samples. Western immunoblot analysis confirmed the identity of the 24 

kDa, 31 kDa and 36 kDa species as IGFBP 46, and -2 respectively. The IGF-II 

release from ovidudal vesicles was greater than from monolayer cultures 

(pc0.005). No difference in IGF-I release between monolayer and vesicle 

cultures was observed. Pools of ten fertilized blastocysts released 36.2 - + 3.9 pg 

of IGF-l l/embryo/24h, significantly greater levels than rebased from 

parthenogenetic embryos. Parthenogenetic blastocysts expressed IGFBP 2-5 in 

an identical pattern to fertilized blastocysts. The results suggest that the 

biological availability of maternally derived IGF may be regulated by IGFBPs in 

support of bovine preattachment development. 

Keywords: bovine culture, embryo development, oviduct, insulin-like growth 

factor binding protein, parthenogenesis 
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CHAPTER 1 LITERATURE REVIEW 

7.1 INTRODUCTION 

1.1.1 The Preatfachmenf Period of Mammalian Embryo Development 

Fertilization, beginning with the fusion of a single sperm cell with an 

oocyte, represents the beginning of new life. This union results in the joining of 

two haploid sets of chromosomes, thereby restoring the diploid complement of 

chromosomes. The ovary is the site of oocyte production and initiation of 

maturation. Each oocyte develops within a fluid filled structure called the follicle. 

Follicubr oocytes are arrested at diplotene of the first meiotic division. Ovulation, 

the release of usually one oocyte in the cow, occurs upon the rupture of the 

follicle wall and results in the completion of the first meiotic division. Following 

the extrusion of the first polar body the oocyte again arrests awaiting sperm 

penetration (Xu & Greve, 1988). The oocyte migrates into the oviduct during this 

period. The oviduct provides passage for the sperm and becomes the site of 

fertilization. The oviduct then provides passage for the transport of the 

developing zygote to the uterus, where attachment to the uterine wall, 

placentation and fetal development occurs (Bazer 8 First, 1983). 

The ovidudal fluid provides an environment in which fertilization and early 

embryonic growth take place (Leese, lg88; Gandolfi et a/., 1989a,b; Heyner et 
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a/.. 1 993). The embryo begins rapid mitotic divisions immediately following 

fertilization. This developmental interval is known as the early cleavage stages, 

and is characterized by rapid DNA replication (period S of cell cycle) and mitosis 

(period M) and almost no G, and G, periods (Xu & Greve, 1988). Little mRNA 

transcription occurs during this period and the mRNA present is the result of 

maternal transcripts stored in the oocyte (Plante et a/., 1994; Barnes 8 First, 

1991 ; Barnes & Eyestone. 1990). The number of cells, called blastomeres, in the 

zygote continues to increase with the progression of these early divisions. Early 

cleavage occurs by partitioning of the cytoplasmic material, and little increase in 

zygote size occurs. 

Compaction and Cavitation 

The first rnorphogenic event of early development is called compaction. 

Compaction is a process that includes an increase in intrablastomeric cell to cell 

contact that obscures the individual cell outlines forming an uniform embryonic 

structure called a morula (Pratt et al., 1982). This stage arises at the 32-64 cell 

stage of bovine development (McLaren, 1982). The morula begins to produce 

gene products necessary for the establishment of cell polarity (Kidder & 

McLachlin, 1985; Wiley et a/., 1990; Ziomek & Johnson, 1980). The 

differentiation of outer blastomeres into a polarized epithelium is a critical 

component for the next morphogenic event, cavitation. Cavitation results in the 
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formation of a fluid-filled structure called a blastocyst. A blastocyst is composed 

of two cell types, an outer epithelial trophectoderm (first epithelium) and the inner 

cell mass (progenitor cells of the embryo proper, Watson, 1992). Several gene 

produds play a role in the onset and establishment of the blastocyst cavity; tight 

junction associated polypeptides (20-1 ), NalK-ATPase, uvomorulin , gap 

junction, and growth factors (such as transforming growth factor-a, insulin-like 

growth factor (IGF) and epidermal growth factor) are all believed to participate in 

the events that coordinate trophectoderm cell polarity (Kidder & Watson, 1990; 

Watson, 1992). It is hypothesized that the blastocoel cavity may arise as a 

consequence of water movement into the cavity, driven, in part from the 

establishment of a trans-trophectoden Na' gradient, that arises from a 

basolaterally localized trophectoderm Na+/K+ATPase (Watson & Kidder, 1988). 

The final morphogenetic event of early development involves the release of the 

zygote from the zona pellucida (zona hatching). Preattachment development, 

initiated in the oviduct at fertilization and leading to the formation of a hatched 

blastocyst, is essential for further embryonic development. 

in vitm Bovine Culture 

Understanding the events necessary for successful fertilization and 

development leading to a healthy pregnancy and birth will increase our ability to 

treat infertility. It is likely that many spontaneous abortions occur undetected 
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during early stages of pregnancy resulting in implantation failure steming from 

errors in early development. Bovine embryo production in v h  is an important 

vehicle for the study of the biological processes of oocyte maturation. fertilization 

and early embryo development. It is clear that the female reproductive tract is the 

optimal environment for embryo production, and it is unlikely that culture 

conditions can ever fully mimic these conditions. This is highlighted by the fact 

that in vitm produced embryos contain fewer cells. display morphological 

differences and lag in developmental rate compared to their in vivo counterparts 

(Bavister, 1988; Bowman 8 McLaren, 1970; Walker et a/., 1992; lwasaki et a/., 

1990). Culture methods employed for the mouse embryo have had limited 

application to the development of sucessful bovine embryo culture environments; 

however our ability to culture embryos to the blastocyst stage is steadily 

improving. Embryo co-culture employing primary bovine oviductal epithelial cells 

represents one such culture system that is effective for supporting cow (Xu et a/., 

1992; Werner et at., 1991) sheep (Watson et aL, 1994; Gandolfi and Moor, 

1987) and pig early development (White et al., 1989). The role of the oviduct in 

regulating development in vivo is not clearly defined. The production of IGF-I and 

IGF-II by the oviduct has been established for several species (Carlsson et a/., 

1993; Wseman et a/., 1992; Pfeifer & Chegini, 1994), including the cow (Kirby el 

al., 1996). The expression of IGFs in the oviduct supports the hypothesis that the 

oviduct exerts some capacity to regulate early embryo development. Oviduct 
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specific glycoproteins, that are capable of binding to cow embryos, have been 

detected in oviductal fluid (Bavister, 1988; Boice et al., 1990; Gandolfi et al., 

1989b). Furthermore, a recent study investigating the expression of Hoxa-10 

indicates that this gene product is necessary for sucessful embryo implantation. 

Animals with a disrupted Hoxa-10 gene are sterile due to implantation failure 

(Satokata et a/., 1995) and Noxa-10 mRNAs are preferentially expressed in the 

distal oviduct and uterus. Gene products such as the ones mentioned above 

may account for improved rates of embryo development that occur with co- 

culture systems. 

One of the possible roles of the oviductal cells in culture is to provide 

"embryotrophic factors" capable of enhancing development. In vivo, the 

presence of growth factors in the oviduct may support the rapid cleavage period 

following fertilization (Wiseman et a/., 1992). Several growth factors when added 

exogenously to in vitm culture stimulated embryo development including; IGF 

(Harvey & Kaye, 1991 b, 1992), platelet derived growth factor (PDGF) (Larson et 

a/., 1992a) epidermal growth factor (EGF) and transforming growth factor (TGF- 

a, TGF-P) (Dardik & Schultz, 1991; Larson et a/., 1992b). All are possible 

candidates for further study into their effects on bovine embryo development. 

The present study is focused on characterizing the insulin-like growth factor 

family to demonstrate a possible role of maternal paracrine growth factor circuits 

in regulating early embryonic development. The IGFs are present throughout the 
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maternal environment during early embryo development. The oocyte, within the 

follicle, is held h an environment high in lGFs and insulin-like growth factor 

binding proteins (IGFBPs) (de b Sota et a/., 1996). Seminal fluid contains both 

IGF-I. IGF-ll and IGFBPs (Rosenfeld et el., 1990; Baxter et al., 1984; 

Rasasharrna et a/., 1986). The zygote, following fertilization, is maintained in an 

IGF containing environment while free-living in the oviduct and the uterus 

(Geisert et a\., 1991; Wiseman et a/., 1992; Kirby et al., 1996). For these 

reasons, my study was directed at characterizing the expression and presence of 

oviductal IGFs and IGFBPs. 

Growth Factors in Cultured Early Bovine Embryos and Bovine Oviduct Cell 

Cultures 

Bovine oviductal primary cell cultures express transcripts encoding bFGF, 

TGFu, TGF-PI, TGF-p2. PDGF, IGF-I and IGF-If as detected by applying 

reverse transcription-polymerase chain reaction (RT-PCR) methods (Watson et 

al., 1992). Bovine preattachrnent embryos express mRNAs encoding these 

growth factors and the receptors for IGF-I (type4 receptor), IGF-ll (mannose-6- 

phosphate receptor) and the insulin receptor (Watson et ai., 1992). In the mouse. 

the presence of the type 1 receptor was detected by cell surface binding of IGF-I 

and IGF-II at the morula and blastocyst stages of development (Mattson et a/.. 

1988) and by gold-labelled IGF-I binding as early as the eight cell stage (Smith et 
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a/., 1993). An intact type4 receptor was detected by chemical cross-linking of 

'=I-IGF-I using disuccinimidyl suberate (DSS) applied to freshly isolated and 

cultured pig trophoden cells at day 15-1 9 of pregnancy (Corps et al.. 1990). The 

type1 receptor was however, undetected in sections of day 4-10 intact pig 

embryos by immunocytohistochernistry but type-1 receptor was detected at day 

20 of pregnancy. The IGF-IIIMBP receptor was detected in 2-cell stage mouse 

(Harvey & Kaye, 1991a) and day 4 to 10 pig embryos (Chastant et a/., 1994). 

The presence of mRNA encoding both the lGFs and their 

embryos and the presence of type-1 receptor in 

preimplantation embryos, indicates that JGFs expressed 

receptors in bovine 

other mammalian 

by the embryo or 

maternal tissues could exert receptor mediated actions on the embryo and 

therefore influence growth and development. The distribution of polypeptides 

and transcripts encoding IGF-I and IGF-II has been recently mapped out in 

bovine oviductal monolayer and vesicle primary cultures (Xia et al., 1996). 

1.2 INSULIN-LIKE GROWH FACTORS 

1.2.1 lGF-l 

stnlctum 

Bovine IGF-l is a 70 amino acid, basic, single chain polypeptide, with a 

molecular weight of 7649 daltons. The bovine cDNA is 93% identical to the 

human sequence, and the amino acid sequence is 96% conserved (Fotsis et a/., 
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1 990). Three d isulfide bridges maintain tertiary structure of the molecule 

(Raschdorf et a/.. 1988; Smith et a!.. 1988). 

The rat IGF-l gene produces two distinct mRNAs by differential splicing of 

six exons, differential polyadenylation and the use of multiple promoters. IGF-la 

is produced from exons I or 2 and 3, 4, and 6, while IGF-b is the product of 

exons 1 or 2 and 3,4, 5 and 6. Exons 1 and 2 contain the 5' untranslated region 

including multiple translation initiation sites (Roberts et a/., 1987a,b). 

Transcription is regulated by two different promoters; the major promoter 

produces mRNA containing exon 1, the second produces mRNA containing exon 

2 (Adamo et a/., 1993). Expression from the major promoter is found in all 

tissues, while mRNA derived from the second promoter is restricted to the liver 

(Lowe et a/., 1987; Hall et a/., 1992; Adamo et al., 1989) The major promoter 

lacks TATA, CAAT and GC-rich regions, but contains a protein binding site 

isolated to nucleotides -1 8 to +78 of exon 1 (Ra An & Lowe, 1995; Adamo et a/., 

1989, 1991). Promoter and repressor elements have been identified 500 kb 

upstream of exon 1 of the rat IGF-l gene (Huang et al., 1995). 

Regulation 

Levels of circulating IGF-I are regulated by growth hormone (GH) 

(Mathews et al., 1986; Roberts et a/., 1987 b; Hynes et el., 1987; Chin et al., 

1992). Hypophysectomy reduces serum IGF-I, and IGF-I in the liver, skeletal 
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muscle, heart, white adipose tissue, kidney, spleen, and testes, but not in the 

brain (Gosteli-Peter et al., 1994). Infusion of exogenous GH restores the normal 

level of expression of IGF-l in these tissues. Dietary influences such as fasting 

and protein restriction, and disease such as diabetes reduce IGF-I expression 

(Clemmons & Undemood, 1991 ; Goldstein et a/., 1988; Bornfelt et al., 1989). In 

these situations, supply of IGF-I in a maternal environment prior to implantation 

may be inadequate to support proper growth and development. Regulation of 

IGF-I in the fetus is independent of GH, and IGF-I is expressed by most tissues 

during early development (Han et al.. 1987, 1988a). In the uterus estrogen 

regulates IGF-I and is independent of GH levels (Murphy st a/., 1987; Norstedt et 

a/., 1 989). 

1.2.2 IGF-I/ 

Structure 

The IGF-II protein is highly consenred between species (within the 180 

amino acids that produce the mature bovine and ovine IGF-ll clones are 

identical) and rat, human, bovine and ovine forms differ at only one amino acid 

(Brown et a/., 1990). The precursor molecule contains a 24 residue amino- 

terminal signal peptide, a 67 amino acid mature IGF-I1 polypeptide and an 89 

amino acid carboxyl terminal. Bovine IGF-II has over 60% homology with IGF-I 

(Brown et el., 1990; Fotsis et a/., 1990). The rat IGF-ll gene contains 6 exons, 1, 
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2, and 3 are non-coding, 4, 5 and 6 encode pre-pro IGF-II (Frunzio et a/., 1986; 

Yamamoto et al., 1990). Rat IGF-II contains 3 promoter regions Pi. P2 and P3 

initiating transcription of 3.8, 4.6 and 3.6 mRNAs respectively (Soares et el., 

1986). P2 and P3 contain TATA and GC-rich sequences recognizing 

transcription factor Spl, and produce the more abundant transcripts (Evans et 

al., 1988; Matsuguchi et a/., 1990). P I  lacks both TATA and GC-rich regions 

(Ueno et ai., 1989). 

Regulation 

IGF-II levels are reduced in the rat by fasting (Phillips et a/., 1989) and in 

the liver by treatment with glucocorticoids (Beck et al., 1988). Protein and mRNA 

levels are high in the rat fetus and decline after birth (Moses et al., 1980; Soares 

et al., 1985, 1986; Brown et al., 1986). In contrast human and bovine IGF-II 

serum levels are higher in the adult than in the fetus (Boulle et el., 1993). In the 

mouse IGF-II is maternally imprinted and produces transcripts from only the 

paternal allele, except in the choroid plexus and leptomeninges where genomic 

imprinting does not arise (DeChiara et al., 1990, 199 1). 

1.2.3 IGF-Imype-1 receptor 

The actions of IGF-I and IGF-II ate largely mediated through the IGF-I 

receptor (Jones & Clemmons, 1995). The IGF-I receptor is synthesized as a 
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single chain polypeptide. Post-translational modifications include cleavage of a 

signal polypeptide and further cleavage into a 707-amino acid extracellular a- 

subunit and a 626-amino acid transmembrane p-subunit. The a- and p-subunits 

are linked by disulfide bonds. Two ap complexes are joined by additional disufide 

bonds creating the mature a#, receptor. Binding of IGF ligands is mediated by 

the extracellular a-subunit within a cysteine-rich region. Tytosine kinase activity 

occurs in the cytoplasmic p-domain. Binding of IGF ligand to the cysteine-rich 

region of the a-subunit stimulates phosphorylation of both tyrosine and serine 

residues (Steele-Perkins et at.. 1 988; Kato et a/. , 1 993). lntracellular tyrosines 

1 131, 1 135 and 11 36 within the kinase domain of the P-subunl are the primary 

phosphorylation sites on the IGF-I receptor (Kato et a/., 1993; Li et ai., 1994). 

Autophosphorylation then occurs where the tyrosine kinase of one p-subunit 

phosphorylates residues on the other p-subunit (Frattali et a/., 1993). 

Autophosphorylation of the IGF-I receptor results in multiple signalling pathway 

cascades leading to the stimulation of cell growth (Izumi et a/., 1987; Chuang et 

a/., 1993; Sun et el., 1993; Blenis, 1993; M i t e  8 Kahn, 1994; LeRoith et a/., 

1995). 

1.2.4 IGF-ll/mannose-&phosphate receptor 

The IGF-II/M6P receptor is a monomeric 215 kDa glycoprotein with high 
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IGF-II binding affinity, binding IGF-I at 500-fold lower level then IGF-ll, with no 

affinity for insulin. Sequence comparisons of the lGMl receptor and the cation- 

independent mannose-6-p hosp hate receptor revealed identical molecules (Lo be1 

et a/., 1987; Kiess et a/., 1988). The binding sites for IGF-ll and M6P are distinct 

and both ligands can bind simultaneously (Braulke et al., 1988). The IGF-ll 

receptor protein contains a large extracellular domain, which comprises 93% of 

the total receptor, a single transmembrane domain and a small cytoplasmic tail. 

Fifteen repeat sequences of 8 conserved cysteine residues, a single fibronectin 

type II repeat and 19 N-linked glycosylation sites are located on the extracellular 

domain (Morgan et a/., 1987). The binding of IGF-ll to the receptor results in 

internalization and degradation of the IGF-II (Oka et ai., 1985). It is still unclear if 

the IGF-II receptor has a biological role in addition to regulating levels of IGF-ll 

by a scavenger like action. Experiments using blocking antibodies against the 

M6P receptor applied to various cell types show that IGF-ll responses were not 

blocked (Mottola 8 Czech, 1984; Kiess et a/., 1987a). Similarly experiments 

blocking the IGF-I receptor with alR3 antibody blocked IGF-II biological 

responses, indicating that IGF-II signals through the IGF-I receptor and not the 

IGF-II receptor (Adashi et a/., 1990; Conover at a/., 1 986). A soluble form of the 

IGF-IIIM6P receptor generated by proteolytic cleavage of the membrane bound 

form has been identified in rat (Kiess et el., 1987b) and human serum (Causin et 

a/., 1988). In response to treatment with IGF-I, IGF-II, insulin or EGF the number 
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of IGF-IIIM6P receptors found on cell membranes increase, as a result of 

redistribution from internal membranes to the cell surface (Braulke et al., 1989). 

1.3 BIOLOGICAL ACTIONS OF IGFs 

The actions of IGF in vifro include effects on protein and carbohydrate 

metabolism, and effects on cell replication and differentiation (Giudice, 1992a; 

Cohick & Clernmons, 1993). IGF-I acts as a progression factor in the cell cycle. 

Quiescent cells in G, when treated with a competence factor (PDGF, bFGF) will 

progress to G, and will arrest. Treatment with IGF-I will induce the progression 

through the cell cycle leading to DNA synthesis and cell proliferation (Porcu et 

a/., 1992). This G, progression is believed to be Ras related (Lu 8 Campisi, 

1992). IGF-I and IGF-II are able to promote cell differentiation in myoblasts 

(Flon'ni et al.. 1 WI), osteoclasts (Mochizuki et a/. . 1 9W), chondrocytes, 

(Geduspan & Solunh, 1993). and neural cells (Pahlman et al., 1991). 

IGF-I when added exogenously to culture stimulates a number of effects 

on preimplantation embryos including; an increased cell number in the inner cell 

mass (ICM) (without increasing the number of trophectoderrn cells in cow 

(Herrler et a/., 1992) and pig (Xia et el.. 1994)) and also increased 

developmental frequencies with greater numbers of embryos reaching the 

blastocyst stage in the mouse (Harvey 8 Kaye, 1991 b, 1992). IGF-ll has similar 

effects when added to culture media, as higher rates of development to the 
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biastocyst stage occur with an increase in the number of ICM cells (Rappolee et 

a!., 1992). Rao et al. (1 990) reported that insulin stimulated significant increases 

in DNA, RNA and protein synthesis. 

The functions of IGF-I and IGF-ll on fetal development have been studied 

using gene targeting and transgenic approaches. Mice carrying copies of the 

human IGF-I gene fused to the metallothionein-l promoter have elevated IGF-I 

levels (Mathews et a/., 1988). These mice displayed increases in body weight 

largely due to increased muscle, brain, spleen, kidney and pancreas mass. Most 

mice with a disrupted IGF-l gene die at birth and those that survive have growth 

retardation. reaching only 60% of normal birth weight (Baker et a!., 1993; Liu et 

a!., 1993). A genetargeted mouse line for IGF-I1 produced live pups with birth 

weights 60% of normal size with prenatal growth defects starting around day 

13.5 (DeChiara et a/., 1990; 1991). However, the effect of the IGFs on normal 

development is best observed in murine IGF-I and IGF-ll double 'tknocked-outs". 

These mutants have complete neonatal lethality and birth weights 30% of 

normal. The phenotype of mice deficient for the type-1 receptor displays greater 

fetal growth deficits at 45% of normal birth weight and complete neonatal lethality 

(Liu et al., 1993). The IGF-IIIGF-lr mutants displayed the same phenotype as the 

IGF-lr (-I-) mice, thus indicating that the essential functions of IGF-I are mediated 

through the IGF-lr. The phenotype of IGF-IIIIGF-lr (-I-) mutants is similar 

producing a lethal phenotype with slightly lower birth weights. These results 
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suggest that IGF-ll is acting only in part through the IGF-I receptor. IGF-MGF-lr 

knockouts result in lower fetal birth weight then IGF-lr knockouts alone, 

suggesting that IGF-ll must be acting by a route in addition to IGF-lr pathways. 

The more severe phenotype obsewed for the IGF-IIIGF-II and the IGF-IIIIGF-lr 

knockout further supports IGF-II acting through a mechanism other than the IGF- 

Ir. Mice deficient in the IGF-IIIMGP receptor result in larger birth weights and 

lethality in nearly all mutants. If in these mice the IGF-II gene is knocked-out in 

combination with the IGF-IIM6P receptor the phenotype is rescued and normal 

birth weights are observed (Filson et a/., 1993; Lau et a/.. 1994; Wang et a/., 

1994). This indicates that in the embryo the function of the IGF-IIM6P receptor is 

to control IGF-II levels which can be lethal if elevated. Imprinting of the IGF-II 

gene may represent an addition control measure important for regulating levels 

of IGF-ll (Rappolee el al., 1992; Vu 8 Hoffman, 1994). The phenotypes resulting 

from the gene targeting method provide a functional map of IGF ligand and 

receptor regulation and demonstrates their importance during mammalian 

development. 

1.4 INSULIN-LIKE GROWH FACTOR BINDING PROTEINS (IGFBP) 

The IGFs are almost entirely bound in vivo to one of six IGFBPs. All 

lGF BPS contain structural homology, bind IGF-I and IGF-II specifically and have 

a negligible affinity for insulin (Jones 8 Clemmons, 1995). Sequence alignments 
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of the six IGFBPs reveal regions of homology within the amino- and -carboxyl 

terminal regions. The position of 18 cysteines, which participate in the formation 

of disulphide bridges and contribute to three-dimensional structure, are 

consewed in IGFBPs 16 (Shimaski et al., 1991). The rat IGFBP-6 sequence is 

missing 2 and the human IGFBP-6 sequence lack 4 of the 18 conserved 

cysteines found in the other IGFBPs. This omission results in the absence of the 

invariant Gly-Cys-Gly-Cys-Cys sequence found in the amino terminal region 

(Shimaski et a/., 1991). The maintenance of the disulfide bridges is important for 

IGF-I binding as reduction of lGFBPs or mutation of the conserved cysteines 

results in loss of IGF binding (Brinkman et a/., 1997). In serum approximately 

75% of the circulating IGF is complexed with IGFBP-3, and an 88 kDa 

glycoprotein, the acid labile subunit (AM)  forming a 150 kDa protein complex 

(Baxter & Martin, 1989; Leong et a/., 1992). The ALS contains several leucine- 

rich domains that facilitate protein-protein binding of IGFBP-3. IGF-I or IGF-lI 

binds to the IGFBP-3-ALS complex and stabilizes the ternary complex (Baxter & 

Martin, 1989). This 150 kDa complex prolongs the half-life of IGFs in serum to 

12-1 5 h, which is considerably longer than the 10 min half-life of free lGFs (Guler 

et a/., 1989; Hodgkinson et a/., 1989). The half-life of free binding proteins is 

between 30-90 min (Zapf et a/., 1986). IGF binding to IGFBP-3 is dependent on 

amino acids 3, 4, 15 and 16 of the p-chain of the ligand. Mutant IGF-I in which 

these amino-acids have been substituted for the insulin amino acids result in a 
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100-fold reduction in binding affinity (Bayne et ai., 1988). The ability of lGFBPs 

to regulate IGF action is not easily discerned from the current literature. IGFBPs 

can inhibit (Zapf et a/., 1979). and potentiate IGF action (Elgin et al., 1987; Blum 

et a/. , 1989) under various conditions. The characterization of specific proteases 

for the IGFBPs has further complicated the story as these proteases cleave 

binding proteins into forms with altered affinity for the IGFs. Thus experimental 

responses of systems to the effects of exogenous IGFBP may be modulated by 

protease levels in the system. Proteolysis occurs in IGFBPs 2-5, by calcium- 

dependent serine proteases, specific for each IGFBP. IGFBPs may also be 

affected by postranslational modifications and localization of IGFBPs in different 

systems resulting in different levels of interaction with IGFs. iGFBPs may 

themselves elicit direct cellular effects in which binding to IGF ligand is not 

necessary (Oh et a/., 1993; Bar et a/., 1989). These actions may in turn be 

regulated by the levels of lGFs present in the system (Jones 8 Clemrnons, 

1995). Serine phosphorylation of IGFBP-I, -3, and -5 has been detected and is 

proven to lower IGF affinity of IGFBP-1 (Jones et a\., 1991, 1992; Mukku & Chu, 

1990). Klinked glycosylation occurs in IGFBP-3 and IGFBP-4, and 0-linked 

glycosylation is present in lGFBP-5 and IGFBP-6. IGFBP-I and IGFBP-2 contain 

an Arg-Gly-Asp (RGD) sequence at the C-terminal end which may be involved in 

binding to cell surface receptors (Ruoslathi & Pierschlaber, 1987). IGFBP-1 

binds specifically to the a5pl-intregrin receptor molecule and stimulates 
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migration in Chinese hamster ovary cells through an RGDdependent 

mechanism. IGFBP-3 and IGFBP-5 bind to different unidentified molecules on 

the cell surface (Jones et a/., 1993a). The IGFBPs contain many similarities as a 

family, individual differences prevent the formulation of a common mechanism of 

action. 

1.5 BIOLOGICAL ACTIONS OF IGFBPs 

In the mouse pre-implantation blastocyst transcripts encoding insulin-like 

growth factor binding proteins (IGFBP) -2, -3, -4, and 6 have been detected by 

RT-PCR (Schultz et a/., 1993a; Hahnel & Schultz, 1994). Six IGFBPs bind with 

high affinity to lGFs and regulate IGF biological action by transporting IGFs, 

influencing ligand half-life, contributing to tissue and cell specific distribution and 

modulating and potentiating IGF action with receptors (Clemmons, 1993; Jones 

& Clemmons, 1995). IGFBPs may have the additional capacity to directly 

influence metabolic events as exemplified by IGFBP-3 action on human breast 

cancer cell growth (Oh et al., 1993). 

IGFBPs have been detected in the ovary of several species, and their 

expression varies between species (de la Sota et a/., 1996; Mason et a/., 1996; 

Kirby et el., I 996; Grimes et a/., 1 994; Mondschein et a/., 1990). The developing 

oocyte grows within an IGFBP rich follicular fluid during follicular development. 
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IGFBPs 2-5 have been identified in bovine follicular fluid, and an increased level 

of IGFBP -2, 4 and -5 have been detected within atretic follicles (de la Sota et 

a/., 1996). Human follicular fluid contains IGFBPs 14, with IGFBP -2 and 4 

being the most abundant, and the level of expression of each is follicle stage 

dependent (Giudice ef a/., 1990; Mason et a/., 1996). The dominant follicles 

contain decreased amounts of IGFBP -2 and 4 when compared to non- 

dominant and atretic follicles. In the pig, transcripts encoding IGFBPs 2-5 were 

detected in the corpora lutea (Gadsby et al., 1996). Analysis of follicular fluid 

collected from pig ovaries demonstrates that IGFBP -2 and 3 were the two most 

abundant IGFBPs in pig follicular fluid (Mondschein et a/., 1990). Quantification 

of IGFBP levels showed that IGFBP-2 levels were greater in atretic follicles and 

IGFBP-3 levels were greater in large healthy follicles (Grimes et a!., 1994). This 

increase in IGFBP-2 production in atretic follicles was also observed in sheep 

(Monget et a/., 1993), cow (de la Sota et a/., 1996) and human ovaries (San 

Roman 8 Magoffin, 1993; Cataldo & Giudice, 1992). 

Murphy and Ghahary (1990) characterized IGFBPs in murine uterine 

luminal fluid and detected the same IGFBPs present in serum samples. The 

production of IGFBPs in the rat uterus is under regulation by growth hormone 

and oestradiol (Yallampalli et a/., 1993). In addition a dramatic increase in 

IGFBP-4 levels were observed in the mouse uterus at the time of implantation 

(Markoff et al., 1995). In the cow, IGFBP-2 mRNA levels increased between 
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days 10 and 18 of the estrous cyde and during early pregnancy indicating that 

progesterone may be involved in the upregulation of lGFBP-2 (Geisert et a/., 

1991). Human endometrial stroma cells produce increased amounts of IGFBP I- 

4 when cultured in vitro in the presence of mouse embryos (Liu et al., 1 995). This 

suggests that the endometrial cells are responsive to stimuli produced from the 

embryo. 

In the bovine oviduct IGFBP-2 and IGFBP-3 mRNAs are detected at equal 

levels in both pregnant and non-pregnant animals (Kirby et a/., 1996). IGFBPs 1- 

4 have been detected in the human oviduct (Giudice et a/., 1992b; Pfeifer & 

Chegini, 1994). These studies suggest a possible presence of lGF BPS in the 

reproductive tracts of other mammalian species. 

A pig trophoderrn cell line released an IGF specific binding protein of 

molecular weight 3242 kDa detected by Western ligand blot technique (Corps et 

al., 1990). This result suggests the possible release of IGFBPs from developing 

preimplantation pig embryos. 

Recent gene "knock-out" studies and transgenic overexpression studies 

have started to elucidate the functional roles of IGFBPs (Dai et a/., 1994; 

D'Ercole et el., 1994; Murphy & Banon, 1993, Wood et a/., 1993). 

Overexpression of IGFBP-1 resulted in no significant differences in growth and 

fertility. Those mice that expressed the IGFBP-I construct in the brain however, 

displayed brain growth retardation (Dai et a/., 1994). IGFBP-1 is not normally 
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found in the brain and growth may be restricted by the inhibition of IGF action by 

the IGFBP-1 expression (Dai et el., 1994). The lack of other phenotypic 

abnormalities suggests that the lGFBP system is able to compensate by altering 

levels of expression of other IGFBPs. Levels of IGFBPS may be reduced in 

these mice in order to compensate for the increase in IGFBP-1 (D'Ercole et al., 

1994). Mice with a null mutation of the IGFBP-2 gene display increased 

expression of other IGFBPs resulting in mice with normal phenotypes wood et 

a/., 1993). In order to demonstrate essential functions of IGFBPs by gene 

"knock-out" studies, double "knock-outs", similar to the IGF ligand and receptor 

studies may be required. 

1.6 IGFBP-1 

St~cture 

The first structural information regarding any of the IGFBPs arose from 

the amino acid sequencing of IGFBP-1 purified from human amniotic fluid 

(Pavoa et ai., 1984). The gene was characterized following the isolation of a 

cDNA product (Brinkman et al., 1988). In the rat, cDNA sequencing revealed 

coding of a 247 amino acid peptide, with molecular weight of 32 kDa and an Arg- 

Gly-Asp (RGD) recognition sequence in the carboxyl-terminal domain (Murphy et 

a/., 1990). Rat IGFBP-1 is a 5.2 kb gene spanning four exons. The promoter 

region includes TATA and CAAT boxes and a putative horneodomain, AP-1, and 
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at least one insulin and glucacorticoid response element (Goswami et a/., 1994). 

Human, rat and bovine IGFBP-1 proteins are identical for 152 of 234 amino- 

acids (Lee et at., 1993; Sneyers et al., 1991). The human IGFBP-1 gene spans 

5.2 Kb of genomic DNA including 4 exons of 514 bp, 170 bp, 129 bp and 701 bp 

respectively. Analysis of human IGFBP-I transcripts suggests that there is only 

one cDNA present for this molecule and that differential splicing does not occur 

(Cubbage et a/., 1989). Human IGFBP-1 mRNA contains 1.55 kb containing a 

777 bp coding sequence. The 612 bp 3'-untranslated region contains 5 Al7TA 

motifs which are characteristic of transcripts with short half-lives (Shaw 8 

Kamen, 1986). The human IGFBP-t protein consists of 234 amino-acids and a 

molecular mass of 25.3 kDa. The 25-residue N-terminal signal peptide and the 

cysteine rich N-terminal of the molecule are extremely hydrophobic, while the 

remaining areas are hydrophillic (Lee et a/., 1988). Dividing the protein based on 

structural characteristics produces three regions. The first is 79 amino-acids 

containing the N-terminal cysteine cluster, which is conserved at 82% sequence 

identity between human, cow and rat. Residues 30-53 form a hydrophobic 

domain, that is involved in IGF binding, and are conserved in human, rat and 

cow (Lee et al., 1988). The second region from residue 80 to 144 displays a 

reduced identity. Only 40% of residues are conserved between human, rat and 

bovine proteins. In addition homology between IGFBP-1 and other IGFBPs is 

also very low in this region. Wthin this region Pro-GluSer-Thr (PEST) domains 
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are found in all three species (Juikunen et a/-, 1988). PEST sites are 

characteristic of proteins with rapid turnover rates (Rogers et al.. 1986), and 

along with the presence of A m A  motifs in the mRNA allows IGFBP-1 levels to 

fluctuate rapidly. The final region spans residues 145-234 including the C- 

terminal cysteine cluster, and is 68% identical among rat, human and bovine 

proteins. The RGD sequence is located in region 3 at residues 221-223 in all 

three species (Lee et a/., 1993). 

Regulation 

In adult serum circulating levels of IGFBP-1 are low but are increased in 

individuals with diabetes, low GH or glucocorticoid levels and while fasting (Ooi 

st a\., 1990; Senevirante et a/., 1990; Murphy et a/., 1991; Luo et al., 1990). 

IGFBP-1 transcription is inhibited by increased insulin levels in rat hepatoma 

cells (Orlowski et a/., 1991). 

Post-translational modifications 

IGFBP-1 is modified by serine phosphorylation, resulting in four different 

p hasp horylated forms with a greater affinity for IGF-I . P hosphorylation principally 

occurs at Ser-101 (70%). Ser-169 (25%) and Ser-119 (5%) in the human. Rat 

and cow have Ser-I 01 and Ser-119 conserved but do not have Ser-169 (Frost & 

Tseng, 1991 ; Jones et al., 1991). The phosphorylated forms have been shown to 
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inhibit IGF action while the unphosphorylated form stimulates IGF actions (Jones 

eta/., 1991). 

8iological actions 

IGFBP-I potentiation was demonstrated by an increase in DNA synthesis 

in porcine aortic smooth muscle cells when purified human IGFBP-I was added 

with a low concentration of platelet-poor plasma (Elgin et a/., 1987). IGFBP-1 

added alone had no effect. In addition MDA-231 breast carcinoma cells grew 

better in the presence of IGFBP-1 alone, and it was found that IGF-I binding to 

IGFBP-1 was essential for potentiation (Carnacho-Hubner et a/., 1991). It may be 

important in studies involving potentiation to regulate closely the concentrations 

of the constituents added. In human fibroblast cells incubation of 20 nglml IGF-I 

with 20-50 nglmg IGFBP-1 resulted in increased DNA synthesis (Koistinen et al., 

1990), while addition of 2 and 200 ng/ml IGFBP-1 enhanced the proliferative 

response to IGF-I by 3-fold (Kratz et a/., 1992). Interestingly the same responses 

were not elicited by IGF-ll, indicating that the effects are specific for IGF -I. 

The presence of an RGD recognition sequence within IGFBP-1 suggests 

that this binding protein may bind to cell surfaces, specifically to the a5pl- 

integrin receptor. Binding of IGFBP-1 to the a5gl-integrin receptors on cultured 

CHO fibroblastic cells results in the stimulation of cell migration independent of 

lGFs (Jones et al., 1993b). 
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The addition of molar excess of IGFBP-1 in serum-free culture clearly 

results in the inhibition of IGF action. IGFBP-1 when added in a 4:l molar excess 

to IGF-I, inhibited DNA synthesis in cultured human granulosa and luteal cells 

(Angervo et al.. 1991). It is possible that the inhibition is due to the formation of 

IGFIIGFBP-1 complexes preventing binding of IGF to the cell surface receptors. 

Rutanen et a/.. (1988) showed that direct inhibition of receptor binding by the 

addition of IGFBP-1 led to the inhibition of IGF-I effects in human endometrial 

membranes. This influence of IGFBP on IGF action was observed in other cell 

types including: thyroid cells (Frauman et a/., 1989), human osteosarcoma cells 

(Campbell 8 Novack, 1991), and porcine aortic smooth muscle cells (Busby et 

al., 1988). In vivo injection of supraphysiological amounts of IGFBP-1 into rats 

resulted in a small increase in blood glucose suggesting excess exogenous 

IGFBP-1 inhibits the glucose-lowering actions of IGF-I (Lewit et a/., 1991 ). 

1.7 IGFBP-2 

St~cture 

IGFBP-2 was first purified from Buffalo rat liver (BRL)-3A cells (Lyons 8 

Smith, 1986; Mottola et a/.. 1986). The mature IGFBP-2 contains 284 amino- 

acids with molecular mass 31 -533 kDa (Boumer et a/., 1992). IGFBP-2. like 

IGFBP-1, has an RGD recognition motif and contain no glycosylation sites. 

Bovine IGFBP-2 has a high degree of DNA sequence identity with rat (81%) and 
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human (87%) sequences (Bourner et al., 1992; Upton et a/., 1990). The rat 

IGFBP-2 gene spans 36 kb containing 4 exons (Brown & Rechler, 1990). The 

promoter region lacks TATA and CAAT sequences but contains three GC boxes, 

as well as A?-1 and AP-2 consensus sequences. Transcription factor Sp1 binds 

to the GC boxes and initiates transcription of the gene (Kutoh et al 1993; 

Boisclair et ai., 1993). The bovine cDNA contains 388 nucleotides of 5'- 

untranslated region, 942 base open reading frame and a 381 base 

3'untranslated region. A signal peptide of 33 aminoacids is cleaved to produce 

the mature lGFBP-2 protein (Boumer et a/., 1992). 

Regulation 

IGFBP-2 is present in fetal serum and expressed in many fetal tissues but 

declines postnatally, except in the brain where expression remains high 

(Donovan st al., 1989). Expression of lGFBP-2 increases as a result of fasting, 

hypophysectomy and diabetes and is decreased by glucocorticoid treatment 

(Orlowski et aL, 1990; Ooi et al., 1 990, 1992). Pituitary expression of JGFBP-2 is 

increased by estrogen injection (Michels et a/., 1993). In vitm experiments show 

IGFBP-2 levels increased in response to treatment wlh tetradecanoyl phorbol 

acetate (TPA) in sheep thyroid cells (Eggo et ai., 1991), and decreased under 

treatment with insulin in hepatocytes (Boni-Schnetzler et a/., 1990). and forskolin 

in bovine kidney epithelial cells (Cohick 8 Clemmons, 1991). 
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IGFBP-2 levels are influenced by the day of estrus in cycling cows. 

IGFBP-2 mRNA levels are elevated on days 15 and 18 compared to days 5 and 

1 0 of estrus in samples isolated fmm bovine endometrium (Geisert et a/., 1991). 

Post translational modifications 

IGFBP-2 is not glycmsylated (Boumer et al., 1992) or phosphorylated but 

can be cleaved in plasma by proteases (Jones & Clemmons 1995). 

Biological action 

IGFBP-2 has the ability to elicl both inhibition and potentiation of IGF 

actions in vifro. IGFBP-2 enhanced the IGF induced increase in glucose 

transport and amino-acid uptake in microvascular endothelial cells (Bar el al., 

1989). In this system, IGFBP-2 independent of addlional IGF was able to 

produce similar responses. Porcine aortic smooth muscle cells when treated with 

a combination of IGFBP-2 and platelet-poor plasma displayed an 80% increase 

in IGF-l induced DNA synthesis. When added to serum-free treatment, lGFBP-2 

was a patent inhibitor of the IGF-l stimulated response (Boumer et a/., 1992). 

IGFBP-2 inhibits 'H-thymidine incorporation in a number of in vitro 

systems including, human lung carcinoma (Reeve et el., 1993) and rat astroglial 

cells (Han et a/., 1988b). IGFBP-2 may inhibit the actions of IGF-I and IGF-II by 
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preventing binding to the cell surface thereby limiting accessibility and binding of 

IGFs to their receptors (Ross et al., 1 989). 

1.8 IGF8P-3 

Structure 

IGFBP-3 is the predominant binding protein isolated from adult serum and 

is commonly found complexed with the ALS and IGF-I, forming the 150 kDa 

complex. Bovine IGFBP-3 cDNA displays 80% homology with human IGFBP-3 

and like the human form produces a 264 amino-acid mature protein. The porcine 

sequence encodes a 266 amino-acid protein while the rat form encodes a 265 

aminoacid protein (Spratt et al., 1991). Characterization of the bovine sequence 

reveals three conserved N-linked glycosylation sites at amino-acids 90, 109 and 

172. Rat IGFBP-3 has one additional glycosylation site (Albiston et al., 1990). 

The bovine IGFBP-3 mRNA is 1.65 kb, containing a 992 base open reading 

frame, a 119 nucleotide 5' untranslated region and a 591 nucleotide 3' 

untranslated region (Spratt et al., 1991). Rat genomic IGFBP-3 is 10 kb, 

including a promoter region containing a TATA box and a GC rich box. Also 

within the promoter region are consensus sequences for AP-2, ATF, nuclear 

factor-1, estrogen response elements, glucocorticoid response elements, thyroid 

specific transcription factor4 and -2 and growth hormone response elements 

(Albiston et a/. , I 995). 



Regulation 

Uterine IGFBP-3 may act as a regulator of early development. Uterine 

levels of IGFBP-3 increase in response to estradiol (Huynh & Pollack et a/., 

1994). IGFBP-3 levels are decreased in diabetes, and by fasting and protein 

restriction (Donovan et al., 1991 ; Clemmons & Underwood, 1991). IGFBP-3 

levels are largely regulated by circulating levels of growth hormone and IGF-I 

(Baxter & Martin, 1989). IGF-I when added to cultured cells increases IGFBP-3 

levels in several cell types including; bovine and human fibroblasts (Conover, 

1990), mammary epithelial (Romagnolo el al., 1994) and sertoli cells (Smith et 

al., 1990). In addition to IGF-I, the growth factors TGF-P and EGF also increase 

IGFBP-3 levels (Yateman et a\., 1993; Corps 8 Brown, 1991; Mondschein et a\.. 

1990). 

Post-translational modfications 

IGFBP-3 can undergo extensive post-translation modification involving 

giycosylation, phosphorylation and proteolytic cleavage (Jones & Clemmons, 

1995). Glycosylation is confirmed by the reduction in molecular mass of IGFBP-3 

upon glycanase treatment (Zapf et a/., 1988). IGFBP-3 does not require 

glycosylation to bind to cell surfaces or to potentiate IGF-I action (Conover, 

1991). 
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Proteolysis of IGFBP-3 by a calcium dependent serine protease produces 

a 30 kDa fragment with a lower affinity for IGF-l (Davenport et a/., 1992; 

Gargosky et al., 1902). Fowlkes et al. (1994) suggested that the cleavage of 

IGFBP-3 is also influenced by matrix metalloproteinases. The result of this 

cleavage may be that the 30 kDa fragment potentiates IGF-l action because it 

can release IGF more readily than intact IGFBP-3 (Schmid et al., 1991). The 

addition of the truncated lGFBP-3 alone resulted in a greater increase in cell 

growth than when added with IGF-I indicating that the 30 kDa form may act 

independently. 

Phosphorylation occurs at two major senne residues within the IGFBP-3 

protein (Hoeck & Mukku, 1994). It remains unclear if phosphorylation alters the 

affinity of the IGFBP-3 for the ligand. 

Biological actions 

The addition of IGF-l and 180 ng/ml IGFBP-3 to baby hamster kidney cells 

resulted in a 90% increase in DNA synthesis compared to IGF-I alone. 

Concentrations of lGFBP-3 higher than 180 nglml inhibited the IGF-I mediated 

increase in DNA synthesis (8lum et al., 1989). Bovine IGFBP-3 when 

coincubated with IGF-I resulted in inhibition of aminoisobutyric acid (AIB) uptake 

by fibroblasts. Fibroblasts that were preincubated with IGFBP-3, then treated 

with IGF-I, had a dose-dependent AIB uptake response to IGF-I (Conover et el., 
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1990). In a similar study preincubation of human fibroblasts with IGFBP-3 

resulted in a potentiation of IGF-l induced DNA synthesis and inhibition of DNA 

synthesis if incubated together without preincubation with IGF BP-3 (DeMellow & 

Baxter, 1988). IGFBP-3 binds to a yet unidentified protein on the cell surface and 

bound IGFBP-3 has a 10-fold lower affinity for IGF-I than free IGFBP-3 

(Conover, 1991). This lower affinity of bound IGFBP-3 and the finding that 

preincubation with IGFBP-3 prevents an IGF-I induced down regulation of IGF-l 

receptors (Conover & Powell, 1991) may result in an overall potentiation of IGF 

action. 

Free IGFBP-3 has the ability to inhibl IGF action by preventing IGF 

binding to receptors. The IGFAGFBP-3 complex can bind to the cell surface 

without the involvement of the IGF receptor (Clemmons et a/., 1986; 1987). 

Expression of a recombinant IGFBP-3 cDNA in BALBk3T3 fibroblasts resulted in 

growth inhibition. The cells had a longer doubling time and grew to lower cell 

density (Cohen et a/., 1993). The inhibition of IGF action was demonstrated to be 

concentration dependent. IGFBP-3 inhibited the IGF-I stimulated glucose 

oxidation in pig fat cells, but the inhibition was overcome by increased 

concentrations of IGF-I (Walton et a/., 1989). lGFBP-3 inhibits IGF-I stimulated 

glucose incorporation in BALBlc3T3 cells (Okajima et a/., 1993). Inhibition of 

IGF-I stimulated DNA synthesis by IGFBP-3 was observed in rat granulosa 

(Bicsak et a/., 1990), rat and mouse osteoblasts (Schrnid et a/., 1991 ; Andress & 
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Bimbaum, 1992) and chick embryo fibroblasts (Blat et a/., 1989). 

In vivo infusion of IGFBP-311GF-I complex lowers blood glucose and 

stimulates glycogen synthesis in hypophysectomized but not in normal rats (Zapf 

eta/., 1995). Combined IGF-I and lGFBP-3 application in a wound healing model 

demonstrated accelerated wound healing and increased amounts of wound 

tissue (Sommer et el., 1991). Rats deficient in GH when given combined 

subcutaneous injections of IGFBP-3 and IGF-l had a 2-fold increased weight 

gain and greater epiphyseal width (Clark et al., 1 993). 

Some evidence indicates that IGFBP-3 may inhibit the growth stimulating 

effects of other growth factors like TGF-P (Imbenotte st a!., 1992), and EGF 

(Villaudy et al., 1991 ). 

1.9 IGFBP4 

Strzicture 

Bovine IGFBP-4 cDNA analysis predicts a protein product of 258 amino 

acids (Moser et el., 1992). IGFBP-4 contains one N-linked glycosylation site 

(Shimasaki et a/., 1990). Amino-acid sequence comparisons show near identity 

between bovine IGFBP-4 and human (97%) and rat (92%). The full length cDNA 

product determined by Northern blot analysis is 2.3 kb in length (Moser et a/., 

1992). The molecular weight of bovine IGFBP-4 under non-reducing conditions is 

24-25 kDa for the unglycosylated form and 30 kDa for the glycosylated form. 
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The promoter region of the rat IGFBP4 gene contains TATA and CAAT 

sequences, many cis-elements, three CAMP response elements, three AP-1 

sites and a progesterone response element (Gao et a/., 1993). 

Regulation 

The expression of IGFBP-4 in various tissues is decreased in diabetes 

(Chen et a/.. 1994). Mice overexpressing IGF-II or lacking IGF-If receptor 

produce higher than normal serum levels of IGFBP-4 (Wolf et al., 1994; Lau et 

a/.. 1 994), and hypophysectomy reduces liver IGF BP-4 mRNA levels while 

treatment with GH or IGF-I partially restores IGFBP-4 mRNA levels (Gosteli- 

Peter et al., 1994). IGFBP4 gene expression is stimulated by forskolin, 

parathyroid hormone and parathyroid hormone-related peptide in both rat and 

human cell lines (Torring et al., 1991; Mohan et al., 1989). The effect of IGF 

treatment on the expression of IGFBP4 by cultured cell lines has produced 

conflicting results. Expression of IGFBP-4 mRNA was decreased in human 

fibroblasts in response to IGF-I and IGF-II, unlike an epidermal squamous 

carcinoma cell line in which IGFBP-4 was stimulated by IGF treatment (Neely 8 

Rosenfeld, 1 992). 
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Post-translational modifications 

Treatment with N-glycanase results in the loss of the 30 kOa IGFBP4 

product under ligand blot analysis indicating that this form represents the 

glywsylated form (Moser et al., 1992). The possible alterations of action due to 

glycosylation are not yet proven. 

IGFBP4 protease activity has been detected in several cell types, and is 

enhanced by IGF treatment and inhibited by metallo-serine proteases and 

phorbol ester tumoor promoters (Myers et al., 1993; Cheung et al., 1994; 

Conover et al., 1993; Chemausek et al., 1995). The proteolytic fragments have a 

much lower affinity for the IGF ligands and the ability to inhibit IGF stimulated 

AIB uptake is lost (Jones 8 Clemmons, 1995). 

Bioiogical actions 

IGFBP4 inhibits IGF actions under most experimental conditions. IGFBP- 

4 does not bind to cell surfaces and inhibits IGF action by binding to free lGFs 

preventing their interaction with the IGF-I receptor. IGF BP-4 inhibition is partially 

overcome by the addition of large excess of IGF-I, presumably due to saturation 

of IGFBP-4 binding capacity (Mohan et a/., 1989). IGFBP4 inhibits cell growth in 

neuroblastoma cells (Cheung etal., 1991), granulosa cells (Ui et el., 1989; Lin et 

a/., 1993) and colon carcinoma cells (Culouscou & Shoyab, 1991). 



1.10 IGFBP-5 

Stmcturn 

Rat IGFBP-5 is a 252 amino acid protein, translated from a 6.0 kb cDNA 

(Zhu et al.. 1993a). The promoter region contains TATA and CAAT sites and 

binding sites for AP-1, AP-2 and progesterone receptor. IGFBP-5 is the most 

conserved of the six binding proteins across species (James et a!., 1993). A 

partial amino acid sequence of the bovine IGFBP-5 protein demonstrates 99% 

identity to a human clone (Moser et al., 1992). 

Regulation 

IGFBPd production is increased in response to IGF-I. IGF-ll and insulin in 

a rat thyroid cell line (Backeljauw et a/., 1993). 

Post-translational modification 

IGFBP-5 has the potential for both serine phosphorylation and 0-linked 

glycosylation (Jones & Clemmons, 1995). A specific protease has been 

characterized and found to cleave IGFBP-5 into three smaller fragments. The 

fragmented IGFBP-5 has greatly reduced affinity for IGF compared to the intact 

IGFBP-5. A 23 kDa fragment of IGFBP-5 potentiates the mitogenic effect of IGF-I 

and IGF-Ill and may do so by associating with the cell surface (Andress 8 

Birnbaum. 1992; Andress et a/., 1993). Proteolysis of lGFBP-5 is regulated by 
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IGF-I, the addition of IGF-I preserves intact IGFBP-5 and inhibits proteolytic 

cleavage in conditioned medium (Conover 8 Kiefer, 1993). Proteases. capable of 

degrading IGFBP-5 have been isolated at 97 kDa, and proteases of 52-72 kDa in 

size have been characterized as matrix metalloproteinase-1 and -2 (Thrailkill et 

a/., 1995). 

Biological actims 

lGFBP-5 has the ability to bind to the extracellular matrix (ECM), and 

when associated with the surface reduces IGF-I affinity itfold. This suggests a 

mechanism for increasing the availability of IGF-l to surface IGF-l receptors. 

IGFBPd potentiates fibroblast cell response to IGF-l by 100% (Jones et al., 

1 993a). In addition lGFBP-5 potentiates IGF-I and IGF-I I actions in osteoblasts 

(Bautista et a/., 1991 ; Andress & Birnbaum, 1997). 

Inhibition of IGF-I stimulated DNA synthesis has been demonstrated by 

the addition of a molar excess of IGFBP-5 (Kiefer et al., 1992). IGFBPS also 

inhibited IGF-stimulated steroidogenesis in granulosa cells (Ling et a/. . 1 993). 

1.11 IGFBP-6 

Stnrcture 

Isolation and characterization of cDNAs from human and rat predict 

proteins of 216 a.a. and 206 a.a., respectively. Both sequences lack cysteines 
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two and four of the 18 conserved cysteines in IGFBPs 1-5 (Shimasaki et a/., 

1991). Bovine IGFBP-6 when aligned with human amino acid sequence contains 

84% identity and 73% to rat (Moser et a/.. 1 992). The rat promoter region does 

not contain TATA or CAAT sequences and is not GC-rich but contains Spl. 

estrogen receptor and retinoic acid recognition sites (Zhu et al., 1993b). 

Regulation 

IGF-I and IGF-I1 show stimulation of IGFBP-6 in L6E9 myoblasts 

(Silverman et a!., 1995) and NIH 313 celk (Claussen et a/., 1995). 

Post-translational modifcations 

IGFBP-6 is 0-linked glycosylated as demonstrated by a reduction in size 

upon treatment with O-glycanase (8ach eta/., 1993). 

Biological actions 

IGFBP-6 has a 10-fold greater affinity for IGF-I1 than for IGF-I. This may 

be partly a result of the two deleted cysteine residues (Roghani et al., 1989). A 

possible role of IGFBP-6 is one of selectively regulating the action of IGF-ll. In 

L6A1 myoblasts lGFBP-6 inhibited IGF-II induced cell differentiation (Bach et al., 

1994). 
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1 -1 2 IMPRINTING AND PARTHENOGENESIS 

Parthenogenesis (development of an unfertiiized female zygote) occurs 

naturally in a select group of birds, fish and amphibians resulting in the 

production of viable offspring. Successful full term parthenogenetic development 

has not been recorded in a mammalian species (Whittingham, 1980). The 

"typical" mammalian oocyte maturation pattern (as exemplified by the murine or 

bovine oocyte) involves the vast majority of oocytes arresting at metaphase II 

following ovulation and awaiting fertilization before progressing onto further 

developmental events. Although spontaneous oocyte activation is observed in 

vitm for aged bovine oocytes (King et a/., 1988; Plante and King, l996), in 

mouse oocytes carrying a disrupted c-rnos gene (Vande Woude, 1994; Colledge 

et a/., 1994; Hashimoto et a/.. 1994) and in oocytes from the murine LTfSV 

strain w i t t i ng  ham, 1 98O), these occurrences are otherwise not frequently 

observed. Artificial parthenogenetic activation of mammalian oocytes has been 

demonstrated by a variety of treatments, such as ethanol (Kaufinan, 1982; 

Nagai, 1987; O'Neil and Kaufinan, 1989; Kubiak et a/., 1991 ; Fukui et a/., 1992; 

Minamihashi et el., 1993; Presicce and Yang, 1994a,b) electric shock (Collas et 

aL, 1 993a,b) strontium chloride treatment (Fraser, 7987; O'Neil et al. 1 991) and 

ionomycin treatment (Navara et a/., 1994; Susko-Parrish et a/.. 1994). These 

methods activate matured oocytes by mimicking the transient calcium increases 

in the oocyte at the time of sperm penetration (Swann and Ozil. 1994), and they 
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result in the production of parthenogenetic embryos at a much higher rate than 

spontaneous oocyte activation levels (Kaufman. 1982; O'Neil and Kaufman, 

1989; Plante and King, 1996). 

In addition to assessing the relative contributions of the maternal and 

paternal genomes to the developmental program, parthenogenetic embryos are 

invaluable for the investigation of genomic imprinting of specific genes. IGF-II, 

Snrpn, and Xist are among a growing list of imprinted genes in which expression 

is determined by epigenetic modifications (Surani. 1994; Latham et a/., 1994; 

Leighton et el.. 1995). Parthenogenetic embryos may also be of use for the 

establishment of female embryonic stem cell lines and will also certainly be of 

use in determining the comparative developmental potential of parthenogenotes 

among mammalian species. In my study parthenogenetic bovine blastocysts 

were produced to determine the levels of IGF-II released by these emblyos. IGF- 

II expression may be altered in parthenogenetic blastocysts due to genomic 

imprinting. The IGFs are a family of genes regulated by genomic imprinting in 

adult tissues. The study of parthenogenetic blastocysts will provide information 

regarding maternal contribution to regulation of the IGF genes prior to fetal 

development. 
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1 HYPOTHESIS 

The principal hypothesis of my study is that early bovine development in 

vitm is subjected to regulation by growth factors of maternal origin. The focus of 

my study was to investigate the interactions of these putative bovine matemal 

paracrine circuits by characterizing the expression of mRNAs and polypeptides 

encoding IGFBPs in bovine primary oviductal cultures and preattachrnent 

embryos. 

1 RATIONALE 

1. Detection of IGF-I andlor IGF-II in the culture system is imperative for the 

establishment of autocrine and paracrine IGF circuits influencing embryo 

development. 

2. IGFBPs bind IGFs with high affinity and modulate the actions of IGFs. 

Determining the specific IGFBPs released from the oviductal cells will aid in 

understanding potential IGFBP regulation of IGFs. 

3. In parthenogenotes gene expression is solely derived from the maternal 

genome, and thus they allow the maternal contribution to early embryonic 

gene expression to be studied. 



1.1 5 SPECIFIC AIMS 

1. To verify the role and requirement of oviductal cell co-culture to support the 

development of bovine embryos in vfim. 

2. To determine the levels of IGF-I and IGF-I1 ligand released by bovine 

blastocysts and cultured oviductal cells. 

3. To determine the presence of IGFBP mRNA in early bovine embryos and 

primary bovine oviductal cell cultures, and the release of IGFBP polypeptides 

into conditioned media, 

4. To produce bovine parthenogenetic embryos to contrast the release of IGMl 

and the presence of IGFBP mRNAs with fertilized bovine embryos. 



CHAPTER 2 EFFECT OF CULTURE ENVIRONMENT 

2.1 INTRODUCTION 

The ability to sustain bovine development through to the blastocyst stage 

in vitm required the characterization of conditions capable of overcoming a 

culture block at the 8-16 cell stage. Development beyond this culture block is 

largely dependent upon the composition of the culture system (Larson et a/., 

1 9Wa, b; Bavister et a/., 1992). The in vim culture (IVC) system employed in this 

study involved co-culture on bovine oviductal cells in a 10% serum 

supplemented medium (Ellington et a/., 1990; Eyestone 8 First, 1989; Xu et a/., 

1992). Bavister et al. (1992) suggested that the greatest influence the co-culture 

environment provides is in the removal of inhibitory compounds, but 

acknowledged that oviductal cultures also produce factors that likely stimulate 

embryo growth. Efforts to culture bovine embryos in a chemically defined system 

are advancing rapidly and are now reporting comparable blastocyst rates to 

those observed with co-culture systems (Bavister et al., 1992; Keskintepe et al., 

1995; Pinopummintr & Bavister, 1991; Kim el a/., 1990). EGF, bFGF, PDGF, 

TGFa and TGFpl represent several growth factors, possibly released by co- 

culture cells, that may be involved in the regulation of embryo development 

(Paria & Dey, 1 990; Rappollee et a/., 1 988; Larson et a/., 1 992 a, b). 

Both IGFs and IGFBPs have been detected in murine (Markoff et a/., 
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1995). rat (Yallampalli et ai., 1993), porcine (KO el a/., 1991). and bovine (Geisert 

et al., 1991) uterine fluids. lGFs have also been detected in rat (Carlsson et a/., 

1993) and pig oviductal fluids (Wiseman et al.. 1992) and both IGF and IGFBPs 

were detected in the human oviduct (Giudice et al., 1 W2b; Pfeifer & Chegini, 

1994). The presence of growth factors in the reproductive tracts of these 

mammals indicates the likelihood of a maternal regulatory influence on the 

developing zygote. Remy et al. (1 995). using 15 antibodies specific for oviductal 

proteins were able to detect 1 1 of the 15 proteins released into conditioned 

media from bovine oviductal cell monolayen, suggesting that many observed 

oviductal products expressed in vivo are retained by oviductal primary cell 

cultures. 

The objective of the following culture experiments was to establish 

oviductal cell coculture to support development of bovine embryos in vitro. 

Several studies have reported the ability of oviductal co-culture to improve rates 

of development Werner et ai., 1991 ; Watson et a/., 1994; Sirard et a/., 1988; Xu 

et a/., 1992). The present study focused on the capacity of our oviductal cell co- 

culture to improve developmental rates to the blastocyst stage. 

2.2 MATERIALS AND METHODS 

Primary Oviductal Cultures 

Bovine oviductal cultures were established as outlined by Xu et al. (1 992), 
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Xia et 81- (1 996) and Harvey et el. (1 995). For establishment of monolayer 

cultures the epithelial cells were isolated by filling the oviduct lumen with 0.05% 

trypsin in Caw, Mg" free Hank's Balanced Salt Solution (HBSS; GIBCO BRL) 

and incubating at 38.6 O C  for 20 min. The oviduct contents were squeezed into a 

35 mm petri dish. The cells were dispersed by forcing them through a 18 gauge 

needle attached to a 5 ml syringe three times before transferring the samples 

into 15 ml conical tubes containing 10 ml of HBSS for washing by centrihrgation. 

The cells were re-suspended in fresh HBSS and washed 3 more times before 

final re-suspension in the appropriate volume of TCM-199 medium + 10% steer 

serum (SS). The cultures were established by addition of 1 x 10' cells per well to 

24 well plates containing 1 ml of TCM-199 +10%SS medium per well. By 48 h, 

approximately 50% of the surface of each well was covered by attached cells. By 

72 h the monolayers were confluent. The cultures were maintained for up to 8 

days by removing the old medium and adding 1 ml of fresh culture medium every 

48 h. 

For establishment of epithelial vesicle cultures, cell sheets were collected 

from trimmed oviducts and were washed four times with HBSS (GIBCO). Up to 

70 pI of cell suspension was placed into individual 35 rnm petri dishes containing 

3 ml of TCM-I99 medium supplemented with 10% SS. The cell sheets were 

cultured for 24 h under an atmosphere of 5% CO, in air at 38.e°C to allow for the 

formation of vesicles. From this point on, the vesicle cultures were maintained for 
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up to 8days by moving vesicles to new culture dishes containing fresh medium 

every 48 h. 

Bovine Embryo Culture 

Bovine preattachment embryos were produced by standard in v h  oocyte 

maturation, fertilization and embryo culture methods Werner et a/., 1 991 ; 

Watson et al., 1994; Sirard et a/., 1988; Xu el al.. 1992) applied to cumulus- 

oocyte-complexes (COCs) collected from slaughterhouse ovaries. COCs were 

harvested within 4 h of removal of ovaries from the animal, by a razor blade 

slashing technique. The contents were pooled and the COCs collected and 

washed 4 times with oocyte collection medium (Hepes buffered-TCM-199 

medium + 2% SS). COCs were placed into maturation medium consisting of 

TCM-199 medium (GIBCO, BRL) + 10% (vlv) (SS) supplemented with 35 pglml 

sodium pyruvate (Sigma), 5 pglml FSH (Follitropin; Vetrapharm, London, ON, 

Canada), 5 pglml LH (Vetrapharm) and 1 pglml estradiol-17b (Sigma) for 22 h at 

38.6% in a humidified atmosphere containing 5% C 4  in air. Matured oocytes 

were fertilized in vitro with men-thawed bovine semen (Semex Canada Inc., 

Guelph, ON, Canada) prepared by standard "swim-up" procedures (Pamsh et 

a/., 1986). COCs were removed from the maturation medium and washed 4 

times in Hepes-buffered modified Tyrode's solution (Parrish et al., 1986) just 

prior to their placement into pre-equilibrated fertilization drops (50 COCsi300 pI 

drop) consisting of bicarbonate buffered modified Tyrode's solution under light 
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paraffin oil (BDH inc.. Toronto, ON, Canada). The sperrnlCOC droplets (2.25 x 

lo5 motile spermatozo;lldrop) were incubated for 18 h at 38.e°C in a humidified 

5% CO, in air atmosphere before removal of the remaining cumulus cell 

investment. Fertilized oocytes were placed into 50 pl culture drops specified in 

experiments 1 and 2. To sustain development through to the blastocyst stage, 

50 pl of fresh media was added to each culture drop following 48 h of culture. 

No oocyte selection strategy was employed in this study. These conditions 

routinely support an overall cleavage rate of 70% of inseminated oocytes with up 

to 30% of the inseminated oocytes (40% of cleaved zygotes) progressing to the 

blastocyst stage. Pools of 50-100 bovine embryos including l-cell zygotes; 2-5 

cell embryos; 6-8 cell embryos; morulae, and blastocysts were collected by 

removing the embryos from culture at the appropriate developmental times. 

Experiment 7. 

The purpose of experiment 1 is to determine the ability of oviductal cell 

co-culture to support bovine early development in vifro in a 10 % serum 

supplemented media. Cumulus-oocyte complexes were dfected, matured and 

fertilized in vitm as described. A total of 834 presumptive zygotes representing 

up to 6 replicates were allocated into one of 4 groups: 1) oviductal cell 

monolayers established 48h prior to embryo culture in 1 ml of TCM-I99 + 10% 

SS medium (158); 2) oviductal cell monolayer established 72h prior to embryo 
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culture in 1 ml of TCM-199 + SS medium (153); 3) 50 pI culture drops under oil, 

containing up to 40 oviduct epithelial cell vesicles (270); and 4) 50 MI culture 

drops containing no co-culture cells (253). Embryos were cultured for 8 days at 

38.6 "C in a humidified 5% CO, in air atmosphere. 

EKperiment 2. 

In experiment 2 the ability of bovine oviductal cell w-culture to sustain 

development of bovine embryos in vitm in a serum free environment is 

determined. 292 zygotes consisting of 3 replicates were allocated into one of two 

culture groups: 1) 50 ~1 culture drops containing 40 oviductal vesicles (145); or 2) 

50 vl culture drops without cells (147). Embryos were cultured for 8 days at 38.6 

"C in a humidified 5% CO, in air atmosphere. 

Statistical Analysis 

Cleavage frequency and development to the blastocyst stage was 

analyzed by Chi-square test. Values were considered significantly different at 

P<O-05. 

2.3 RESULTS 

The purpose of experiment 1 was to determine if the presence of bovine 

oviductal cell co-culture positively influenced bovine development in vjtm. The 

rates of cleavage were consistently high in the 4 groups, averaging 64.6%. The 
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proportions (mean k SEM) of inseminated oocytes which developed to 

blastocysts were not significantly different (p>0.05) in the 48 h monolayer (29.7 

5.3%. n=3), vesicle (25.2 * 1.2%. n=6) and no cell (20.2 i 1.9%, n=6) groups 

(Figure 2-1). Developmental rates to the blastocyst stage in the 72 h monolayer 

groups were significantly lower (5.8 & 2.2%, n-3) than the other treatments, 

suggesting that monolayer cultures are not supportive of development once 

confluent. 

In experiment 2, serum was removed from the co-culture environment to 

investigate the ability of oviductal co-culture to support development to the 

blastocyst stage independent of serum factors. Frequency of cleavage (mean k 

SEM) did not vary significantly (p>0.05) in the 2 treatments (Fig 2-2). 

Development to the blastocyst stage was significantly greater in the vesicle 

group (21.5 * 1.2%. n=3) compared to the group cultured without celk (3.3 * 
1.4%, n=3). 
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FIGURE 2-1. Comparison of bovine embryo culture in the presence and absence 

of oviductal cell co-culture. 834 presumptive zygotes were allocated into 4 

culture treatments as follows: 48h monolayers (mono 48h. 158 zygotes, n=3), 

f2h monolayers (mono 72h, 153 zygotes, n=3), vesicles (270 zygotes, n=6), and 

no cells (253 zygotes, n=6). The % of oocytes refers to the number of zygotes 

progressing to that developmental stage as a percentage of the total number of 

oocytes in the culture group. Co-culture employing bovine oviductal cells 

positively influenced development (pc0.05). In this and in subsequent figures 

bars with different letters are different at pe0.05. 



FIGURE 2-2. Comparison of bovine embryo development in vitm employing 

oviductal cell vesicle co-culture in the absence of serum. 292 presumptive 

zygotes were allocated into 2 treatments. + vesicles (145, n-3) and - vesicles 

(147, n=3). Both treatments employed culture in 50 pl culture micro drops. 

Vesicles significantly increased ( ~ ~ 0 . 0 5 )  the rate of blastocyst development 

(mean k SEM). The embryos (21.5 - + 1.2%) produced in the vesicle treatment 

represent embryos that developed in an environment conditioned by the oviduct 

cells alone- 
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2-4 DISCUSSION 

The development of bovine embryos to the blastocyst stage can be 

greatly influenced by the culture environment (Eyestone 8 First, 1989; Xu et a/., 

1992; Bavister et a\-, 1992; Keskintepe et al., 1995). It is clear from experiment 1 

that coculture employing serum supports early development. In this experiment 

embryo development to the blastocyst stage was supported by culture without 

cells in the serum only group. Experiment 2 demonstrated that in the absence of 

serum significantly greater numbers (21.5 i 1.2%) of zygotes progress to the 

blastocyst stage in the group employing vesicle co-culture vs culture without cells 

(3.3 + 1.4%). This group represents a pool of embryos that sunrived in an 

environment conditioned only by the oviduct cells. The results support the 

proposition that the oviduct cells were able to condition the medium with 

"embryotrophic factors" that in turn facilitate early development. We hypothesize 

that the insulin-like growth factor (IGF) family represents one of the possible 

growth factor families provided by the oviductal co-culture cells. In the human 

both IGFs and IGFBPs were detected in the oviduct (Giudice et a/., 1992b; 

Pfeifer 8 Chegini, 1994). 

The culture treatment that supported the greatest number of embryos 

through to the blastocyst stage is considered optimal for embryo production. For 

these reasons, I employed a serum supplemented culture environment to 
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maximize embryo production rates and produce all of the zygotes employed in 

the following experiments. 
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CHAPTER 3 IGF-I AND IGF-it RELEASE FROM BOVINE ?REATTACHMENT 

EMBRYOS AND PRIMARY OVIDUCTAL CELL CULTURES 

3.1 INTRODUCTION 

The precise role($) of growth factors in supporting early ovine and bovine 

development remains unclear, but evidence demonstrating that a significant 

number of bovine IVMF zygotes can progress beyond the 16 cell stage, reaching 

the blastocyst stage (Larson et al., 1992a,b) in media supplemented with basic 

fibroblast growth factor (bFGF) and transforming growth factor (TGF-p) suggests 

that growth factors could certainly perform roles expected of "ernbryotrophic" 

factors. These molecules are, therefore, good candidates for further 

experimentation directed at understanding the molecular nature of the beneficial 

co-culture influence on early mammalian development. Bovine oviductal primary 

cultures express transcripts encoding, bFGF, TGF-a, TGF-P, platelet derived 

growth factor (PDGF-A), and insulin-like growth factors I and II (IGF-I, IGF-II) as 

determined by RT-PCR analysis (Watson et al., 1992). Furthermore, bovine 

preattachment embryos express the same growth factor transcripts including 

m RNAs encoding IGF-I receptor, IGF-I I receptor, and insulin-receptors (Watson 

et a/., 1992). We have confined our recent analysis to the IGF family since this 

family is one of the best characterized growth factor families in early 

development. The distribution of both mRNAs and polypeptides encoding IGF-I 
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and IGF-II has recently been mapped out in bovine oviductal monolayer and 

vesicle cultures (Xia et al., 1996) by in situ hybridization and 

immunocytochemistry. 

In order for the oviduct cells to act on the embryo through an IGF 

paracrine circuit, the cells must synthesize lGFs and release them into the 

culture media. The purpose of the following experiments was to measure the 

release of IGF-I and IGF-ll in primary oviductal cell conditioned media. The level 

of release of IGF-If in blastocyst conditioned media is also determined for two 

purposes: first, to determine if the embryo has the capacity to release IGF-ll 

locally as a possible autocrine route of control and secondly, to quantify the 

release of IGF-II in early mammalian embryos for the first time. 

3.2 MATERIALS AND METHODS 

Primary Oviductal Cell Cultures 

Oviductal cells were isolated from fresh oviducts collected from the 

animals at slaughter and cultures were established as described in chapter 2. 

Collection of Conditioned Media 

Oviductal Monolayers 

Conditioned medium was collected from monolayer cultures on days 2, 5 

and 8 by first removing the serum supplemented medium and washing the cells 
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3 times (1 mUwell) with HBSS followed by 2 washes in serum-free TCM-199. The 

final wash medium was collected as a control to ensure that the possible transfer 

of serum proteins into the conditioned medium was avoided. Monolayer 

conditioned medium was prepared by adding 200 p1 of TCM-199 to each culture 

well and incubating the cultures at 38.6OC under a 5% CO, in air atmosphere for 

24 h. Conditioned medium from 8 wells was pooled, filtered through a 0.2 pm 

filter to remove any cells, and stored for up to 3 weeks at -20°C. 

Oviductal Vesides 

Oviductal vesicle conditioned medium was collected from day 2, 5 and 8 

cultures by first pooling the oviductal vesicles from 10 ml cultures into 15 ml 

plastic conical tubes and allowing the vesicles to settle forming a lose 250 p1 

pellet. The pellet was washed 4 times with serum-free TCM-199. The final wash 

was collected and analyzed as a control. Approximately half of the vesicles in 

each sample (ie 125 pl of vesicles) was cultured in 1 rnl of serum-free TCM-I99 

medium. The vesicles were incubated at 38.6% under a 5% CO, in air 

atmosphere for 24 h. Conditioned medium was collected, filtered and stored for 

up to 3 weeks at -20°C. 
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Blastocysfs 

Blastocyst-stage embryos were removed from culture on day 7 and 

washed 3 times in serum-free medium. Groups of 10 blastocysts were placed in 

200 PI of serum-free TCM-190 medium for a 24 h incubation period. Conditioned 

medium was collected, lyophilized and re-suspended in 50 p1 volumes for 

radioimmunoassay (RIA). 

Radioimmunoassay (RIA) of IGF-1 and lGF4 

A standard radioimmunoassay method applied routinely to plasm 

samples was modified to determine the concentration of the IGF ligands 

released into oviduct primary culture and Mastocyst conditioned culture media 

(Hill et al., 1984; Swenne et a/., 1987). Recombinant human IGF-I and IGF-If 

(Gro-Pep Pty Ltd, Adelaide, Australia) were iodinated to specific activities of 150- 

250 pCi/pg of protein using a chloramine-T method (Hill, 1990). Oviduct samples 

were concentrated by lyophilizing and re-suspending in a volume of 100 p1 dH,O. 

IGFBPs were removed from all samples using an acidic environment (pH ~ 3 . 4 ,  

formic acid) to release IGFfIGFBP complexes and precipitate the BPS. 100 pI of 

media was combined, in a 5 ml polypropylene tube, with 50 p1 of 8M formic acid 

+ 0.5% Tween-20. This solution was mixed and then 350 p1 of acetone was 

added (Bowsher et a/., 1991). The tube was covered to prevent evaporation and 
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was centrifuged at 4OC for 30 min at 3000 x g. The supernatant (200 PI) was 

removed and neutralized in 1M Tris-base (200 PI). The loss of IGF during 

extraction was deterrnined by the addition of labelled Czl]lGF-I and -11 to 

extraction reactions. The rate of recovery of labelled IGF-I and IGF-II was 52.2% 

+ 1.5 cpm (mean 2 SEM, n=8) per sample. Conditioned media, standard or - 

control samples (1 00 PI) + primary antibody (1 00 pl, anti-human IGF-l or IGF-11, 

GroPep) and RIA buffer (100 p1 of 0.01 mol phosphate bufferll containing 0.1% 

(wlv) sodium aide, O.OiM EDTA and 0.05% (vh) Tween-20, pH 7.5) were 

combined in a 5 ml polystyrene test tube. The tubes were mixed briefly and 

incubated at 4OC ovemight. I00 pl of 'ZSI-IGF was added to each tube at 20,000 

cpm/tube. Tubes were mixed and incubated for a further 3 days before 250ml of 

PEG-2000 (Sigma) mix containing bovine gamma globulin (1 -5 giL, Sigma) was 

added to each tube. After ovemight incubation, the tubes were centrifuged for 30 

min at 6500 x g, the supernatant decanted, and the radioactivity of the pellet 

determined by y spectroscopy. A standard curve was generated using 0.15-20 

nglml recombinant IGF-I or IGF-II (GroPep human recombinant). Minimal 

detectable amounts and half maximal displacement of the radio-ligand occurred 

at 0.35 nglml and 2.2-2.8 nglml for IGF-I and at 0.32 nglml and 3.5-7 nglml IGF- 

II. For IGF-I, the intra- and interassay coefficients of variation were 1 0% and 12% 

respectively. For IGF-ll, the intra- and interassay coefficients of variation were 
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8% and 13% respectively. Unknown samples were assayed in duplicate, with 

results corrected for loss during the extraction. Results are expressed as ng IGF- 

I or I1 released per pg cell DNA. For DNA quantification oviductal cells were lysed 

in 10% trichloroacetic acid rCA)  at 4'C for 20 min. then solubilized in 0.1 M 

NaOH overnight at 38.6"C. The solubilized cells were then assayed for DNA 

content by fluorometric spectroscopy as described in Kissane and Robins 

(1 958). 

Statistical Analysis 

The effects of primary culture (monolayer or vesicle) and culture interval 

(days 2, 5, and 8) on IGF-I and IGF-II release from conditioned media was 

determined by a 2x3 factorial analysis of variance. Results were considered 

signlcant at pe 0.05. Oviductal cell conditioned media samples were collected in 

six replicate samples, and blastocyst conditioned media in four replicates. 

3.4 RESULTS 

RlAs were conducted to measure IGF-I and IGF-II accumulation in 

oviductal cell (Figure 3-1) and bovine blastocyst conditioned media. IGFBP 

extraction in these samples was confirmed by the absence of an IGFBP signal 

following Western ligand blot analysis prior to RIA (Figure 3-2). No significant 

variation in either IGF-I or IGF-II release was detected in either monolayer or 
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vesicle cultures over the 8 day culture interval. However, the release of IGF-ll 

was 25 times that of IGF-I in vesicle cultures (6.25 * 0.88 ng/pg DNA, IGF-II 

versus 0.25 i 0.05 nglpg of DNA. IGF-I). with a 9 fold difference in the 

accumulation of IGF-II over IGF-I h monolayer cultures (2.8 * 0.56 ngfpg DNA, 

IGF-II versus 0.31 i 0.08 nglpg DNA, IGF-I; Figure 3-1). The release of IGF-II by 

vesicle cultures was significantly greater (pc0.005) than that observed for 

monolayer cultures. No significant difference in IGF-I release was observed. 

Pools of ten blastocysts released on average 36.2 i 3.9 pg/embryo of IGF-II. 

Release of IGF-I from blastocysts was below the detectable levels of the assay. 



FIGURE 3-1. Release of IGF-I and IGF-II from oviductal cultures over 24 h into 

serum-free medium. Following the extraction of binding proteins IGF fevek were 

measured by RIA in 24h conditioned media samples collected at days 2, 5 and 8 

of culture. No significant variation in the levels of IGF-I or IGF-ll release was 

detected for vesicle O/) or monolayer (M) cultures over an 8day culture interval. 

IGF-If is released at 25 times higher levels in vesicle cuftures and 9 times higher 

in monolayer cultures than IGF-l release levels. The release of IGF-II from 

vesicle cultures was significantly greater than released from monolayer cultures 

(pc0.005). No significant difference in the levels of IGF-I release between 

monolayer and vesicle cultures was observed. 



v vs M p<o.005 D2 
Time no rig. 
Interaction no sig. days in culture 



FIGURE 3-2. Ligand blot analysis assessing the extraction of binding proteins 

from oviductal conditioned media prior to RIA. Concentrated extracted and non- 

extracted samples were subjected to SDS-polyacrylamide gel electrophoresis, 

transferred to nitrocellulose and incubated with f 2sl]IGF-ll radio-ligand. Molecular 

weight standards predict migration distances at 53, 35 and 29 kDa. Lanes 1 & 2 

are oviductal conditioned media samples from monolayer and vesicle cultures 

respectively, both indicate the presence of IGFBPs. Lanes 3 & 4 in which 

IGFBPs are not detectable are the extracted replicates of lanes I & 2. This blot 

was over-exposed (15 days) to ensure that the lack of detectable IGFBPs in the 

extracted lanes was not the result of under exposure. Similar ligand blots in 

which the exposure time was reduced produced more defined IGFBP bands. 





3-5 DISCUSSION 

Bovine oviductal primary cell cultures express transcripts encoding IGF-l 

and IGF-II and the respective polypeptides (Xia et a/., 1996; Watson et al., 

1992). Our present results have confirmed that detectable amounts of both IGF-I 

and IGF-ll are released by bovine primary oviductal cell monolayers and 

vesicles. IGF-I and IGF-II have been detected in porcine oviductal fluid, and 

porcine oviductal primary cultures also secrete IGF-I and IGF-ll (Wiseman et a/., 

1992). The differences in IGF-l and IGF-ll levels detected in oviduct conditioned 

media are similar to other reports as KO et a\., 1991 observed a 10 fold 

difference in IGF-ll levels we t  IGF-I in day 12 to 14 cyclic and pregnant sheep 

uterine lurninal fluids. The significantly higher levels of IGF-If in vesicle cultures 

over monolayer cultures is particularly intriguing. Xia et a/. (1996) observed a 

restricted pattern of expression of IGF-II in monolayer cultures, a pattern not 

observed for vesicles where IGF-ll expression was uniform. It is possible that the 

monolayers release less IGF-II on a per cell basis than the vesicle cultures due 

to the presence of non-IGF-ll producing cells. It is clear from studies 

investigating early murine development that insulin and both lGFs are capable of 

stimulating physiological responses and increases in cell proliferation (Schulh 8 

Heyner, 1993; Schuttz et al.. 1993; Simmen et a/., 1993; Adamson, 1993; Rao et 

al., 1990; Harvey & Kaye, 1991, 1992; Heyner & Garside, 1994). The results 
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presented here confirm that immunoreactive IGF-l and IGF-If proteins are 

released into the culture environment by the oviduct co-culture cells. 

The presence of IGF-ll in bovine blastocyst conditioned media is the first 

report of bovine blastocysts releasing detectable levels into the media. This 

release of IGF-II by the blastocyst also indicates that IGF-II may potentially act in 

an autocrine pathway to regulate early development. If the embryo is producing 

IGF to act in an autocrine fashion then the receptors must be present to 

transduce the IGF signal. In this experiment embryos are cultured in pools free of 

serum and other cells during the collection of conditioned media. It is possible 

that the level of IGF-II released from the blastocysts represents an increased 

level of production stimulated by the lack of IGF in the culture. Serum and 

oviductal cells present in culture accounts for large amounts of IGF normally 

available to the embryo, and lack of these sources may force the embryo to react 

to this decrease by increasing production. 

Hemmings et a/. (1 992) reported detectable levels of IGF-II released into 

conditioned media from single human blastocysts. They were able to detect up to 

4 nglml of released IGF-ll. Their data is flawed however by the failure to extract 

binding proteins prior to RIA. Binding proteins present in the collected samples at 

the time of the RIA would result in false detection of IGF due to binding of 

labelled IGF to binding proteins (Blum 8 Breier, 1994). In the present study 

controls were carefully completed to ensure IGFBPs were removed prior to RIA. 
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IGFBP extraction was confirmed by the absence of IGFBPs following ligand 

blotting analysis of extracted samples. 

This study is the first report of IGF-I and IGF-II released from primary 

bovine oviduct cell cultures, and IGF-II released from bovine blastocysts. 

Detection of IGFs in the culture environment provides the primary components 

necessary for growth factor regulation of development by IGF growth factor 

circuits. IGF-I and IGF-II growth promoting effects are largely modulated by 

IGFBPs which both inhibit and potentiate IGF actions. The following two chapters 

charaterize IGFBP expression in cultured oviductal cells and early bovine 

embryos, to discern a possible role for IGFBPs in modulating maternal IGF 

regulatory circuits. 
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CHAPTER 4 DETECTION OF TRANSCRIPTS ENCODING IGFBPs IN 

BOVINE PREAlTACHMENT EMBRYOS AND PRIMARY 

OVIDUCT CELL CULTURES 

4.1 INTRODUCTION 

IGF transport and function is modulated by interactions with up to six 

IGFBPs (Murphy 8 Baron, 1993; Heyner et al.. 1993; Clemmons, 1993; Jones & 

Clemmons, 1995). The direct role of the specific IGFBPs in modulating 

embryonic IGF action is unknown due in part to the various inhibitory and 

potentiating actions of IGFBPs. In addition, the role of IGF on regulation of early 

bovine embryo development is not established. However, the characterization of 

expression of the IGFBPs may help to elucidate possible functions by 

determining which specific IGFBPs are present. Preattachment bovine embryos 

release immunoreactive IGF-II, and the production of IGFBPs may regulate 

possible autocrine interactions with IGF, lGFBPs and the receptors on the 

surface of the embryo. In the mouse preimplantation embryo transcripts 

encoding IGFBPZ, -3, 4 and 6 have been detected by RT-PCR (Schultz et a!., 

1993). The present analysis will allow for the comparison between the 

expression of IGFBPs in the mouse and cow. 

Levels of IGFBPs in the in vivo environment of the embryo may be largely 

influenced by the expression of ovidudal IGFBPs. The present study was 



70 

undertaken to investigate further the regulatory interactions of these putative 

bovine maternal paracrine circuits by characterizing the expression of mRNAs 

encoding IGFBPs in bovine primary oviduct cultures and early preattachment 

embryos. 

4.2 MATERIALS AND M€THODS 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

RNA lsolation 

Total RNA was extracted according to Temeles et a/. (7994). Bovine 

zygotes were pooled into the following groups: 1) I-cell (zygotes); 2) 2-5 cell 

stage 3) 6-8 cell stage; 4) day 6 morulae; and 5) day 8 blastocysts. Pools of 50- 

100 bovine embryos were solubilized at room temperature in 100 VL of 4 M 

guanidine thiocyanate, 0.1 M Tris-HCI, pH 7.4, 1 M 2-P mercaptoethanol solution 

in the presence of 20 pg of E. coli rRNA. Oviductal RNA was collected employing 

the same method without the E. coli rRNA. Following vigorous vortex mixing the 

samples were either frozen and stored at -70°C or were fully processed by 

precipitating the RNA by addition of 8 p1 of 1 M acetic acid, 5 p1 of 2 M potassium 

acetate and 250 p1 of 100% ethanol. The samples were precipitated overnight at 

-20°C. The samples were subjected to centrifugation at 10.000 x g for 20 min at 

room temperature. The pellets were washed twice with cold 70% ethanol and 
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were air dried prior to re-suspension in 20 pl of re-suspension buffer (40 mM 

Tris-HCI, pH 7.9. 10 mM NaCI, 6 mM MgCIJ. Genomic DNA was degraded by 

incubating the samples with 1 un l  of RQI DNase (Promega, Biotec) for 30 min at 

37°C. The samples were re-extracted with phenol and reprecipitated by adding 

5 p1 of 3M potassium acetate, pH 5.2 and three volumes of cold 100% ethanol 

for 24h at -20%. The total RNA was collected by centrifugation, the pellets were 

washed with cold 70% ethanol and following air drying the samples were 

dissolved in 10 pl of autoclaved MilliQ water. The embryo total RNA was then 

used for reverse transcription. Oviductal RNA was quantified employing 

spectophotometry and aliquots of I pg of oviduct primary culture total RNA were 

used for reverse transcription. 

Reverse Transcription 

RNA was reverse-transcribed by oligo (dT) priming and Superscript 

Reverse Transcriptase (GIBCO BRL, Burlington. ON, Canada) (Harvey et a/. . 
1995; Watson et a/., 1992; Watson et a!., 1994). The RNA samples were 

incubated with 1 pg of Oligo (dT),,, primer (GIBCO BRL) for 10 minutes at 70°C. 

After cooling on ice, RNA was incubated in 1st Strand Buffer (GIBCO BRL) 

containing 50 mM TrFs-HCI (pH 8.3), 75 mM KCI, 3 mM MgCI,, 10 mM DlT, 0.5 

mM dNTPs and 200 Units of Superscript Reverse Transcriptase (GIBCO BRL). 
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Reverse transcriptions (RT) were incubated at 43OC for 1.5 h. The reaction was 

terminated by heating at 94OC for 4 rnin and flash cooling on ice. The cDNA was 

further diluted with sterile distilled water to a concentration of 2 embryo 

equivalentslpl or the equivalent of 40 ng of oviduct RNA/pI. 

Amplification of Binding Protein cDNAs 

Polymerase chain reaction (PCR) was performed as described previously 

(Harvey et al., 1995; Watson et a!., 1992; Watson et al., 1994). Aliquots of 

embryo and oviduct cDNA (5 PI) were amplified with 1 U of Taq DNA Polymerase 

(GIBCO BRL) in a final volume of 50 )11 containing 10 X Taq reaction buffer (200 

mM Tris-HCI, pH 8.4 and 500 mM KCI), plus 1.5-2 mM MgC12, 0.2-0.24 mM 

dNTPs and 2 pM of each sequencespecific primer. The mixture was overlaid 

with mineral oil and then amplified by PCR for up to 40 cycles in a DNA thermal 

cycler (Perkin Elmer Cetus 480; or Thermolyne, Amplitron; VWR Scientific) with 

each cycle consisting of denaturation at 94OC for i min, re-annealing of primers 

to target sequences at 56°C-580C for 30 sec, and primer extension at 72OC for 1 

min. PCR products (20 PI) were resolved on 2% agarose gels containing 0.5 

pglml ethidium bromide. 
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PCR Primers 

Primer pain were obtained from the Core Molecular Biology Facility, 

London Regional Cancer Center, The University Of Western Ontario. The 

possibility of genomic DNA contamination was assayed for by PCR using p-actin 

primers that bracket an intron and produce a predicted 243 bp fragment for the 

cDNA and a larger DNA fragment (due to the presence of the intron) if genomic 

DNA is present (Harvey et a/., 1995; Watson et al., 1992; Watson et a/., 1994). 

The larger genomic DNA product was not detected in any of the cDNA samples 

employed in this study. Primer pairs were derived from published human, and 

bovine cONA sequences (Hahnel8 Schuk, 1994; Spratt et aL, 1991 ; Shimasaki 

et al., 1991 ; Boumer et ai., 1992) and the sizes of the expected PCR products 

are shown in Table 4-1. To confirm identity, each DNA product was ligated into 

pCRTMll vector and transfected into One Shot? competent bacteria cells 

employing the TA cloningR kit (lnvitrogen, Corp. San Diego, CA). Bacteria 

colonies were grown on Amp'lpgal agar plates and suspected positive colonies 

(white colonies) were identified and transfered into 5 pl of LB broth. Presumptive 

positive colonies were then screened by PCR using 2 p1 of the LB broth 

employing the specific primers used to produce the cloned amplicon fragment. 

Clones determined to contain the desired DNA insert were cultured overnight by 

transferring the remaining 3 p1 of LB broth to 10 ml of Amp+/LB broth. Plasmid 
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DNA was isolated from overnight cultures (see TA cloningR kit) and 1-2 pg of 

plasmid DNA was sequenced by dideoxy sequencing employing base-specific 

termination of enzymecatalyzed primer-extension reactions (Sanger et al., 1977) 

using a T7 sequencing kit (Pharmacia Biotech). 

4-3 RESULTS 

RT-PCR assays were repeated a minimum of three times with embryo 

and oviduct samples derived from replicate cultures. p-actin amplicons 

representing the expected size products (243bps) from cDNA amplification were 

detected in all embryo and oviduct cell samples (Figure 44). The genomic DNA 

P-actin arnpliwn was detected in RNA samples that were not DNA digested 

(Figure 4-1, lane 1). Figure 4-2 displays the typical detection pattern for IGFBP 

mRNAs in cultured bovine preattachment embryos. Figure 4 3  summarizes the 

expression pattern for these mRNAs in both oviductal monolayer and vesicle 

primary cultures. 

IGFBP -2, -3, and -4 transcripts were detectable in all stages of bovine 

preattachment development Transcripts encoding IGFBP-5 were not detected in 

early cleavage stage embryos or morulae but a weak signal was consistently 

observed in blastocyst samples. Transcripts for IGFBP-1 were not detected in 

any preattachment embryo stage (Figure 4-2) although an expected size produd 
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was detected in bovine liver RNA samples (Figure 44). The expected size 

lGFBP-6 amplicon (345 bp) was not detected in any preattachment embryo 

stage. Instead a much smaller (166 bp) amplicon was consistently observed in 

all embryo samples (Figure 4-2). This DNA product was, however, not observed 

in control bovine oviduct samples (Figure 6 3 ) .  Sequence analysis indicated that. 

of the first 84 bp of the 166 bp amplicon (Figure 45), 96% were identical to the 

reported sequence for an E. coli ace€ gene encoding the El component of 

pyruvate dehydrogenase. This analysis was repeated several times on different 

bovine embryo cDNA samples and at no time was the expected IGFBP-6 PCR 

product detected. 



Table 4.1 IGFBP PCR primer sequences 

IGFBP Primer sequences Amplicon Amplicon 
size (bp) Identity 

5 'primer = 5 'CGAGCCCTGCCGAATAGAAC 
3 'primer =S 'CATCTGGCAGTTGGGGTC 

5 'primer =SACTGTCACAAGCATGGCCTG 
3 'primer -5 ' TCCTCCTGCTGCTCATTGTAG 

5'primer =St ACTTCTCCTCTGAGTCCAAGC 
3 'primer =S'CGTACITATCCACACACCAGC 

s1primet = 5' CTGTGCCCCAGGGTTCCTGC 
3 'primer =S 'TCACCCCCGTCTTCCGGTCC 

5' primer =S'GCTCAAGCCAGCCCACGCAT 
3 'primer = 5 'GTCGAAGCCGTGGCACTGAA 

5 'primer =SIGACGAGGCGCCTLTGCGGGC 
3'primer =5'GGAGGAGCGGCACTGCCGCT 

100% (bovine) 

%.l%@wnan) 

- 

* size of predicted human amplicon 



Figure 4-1. RT-PCR controls employing specific amplification of an intron 

spanning region of the p-actin gene. Lanes (L) bands from top to bottom: 396bp, 

344 bp, 298 bp, 2201201 bp), (1) genomic pactin product (do8 bps) detected in 

oviduct RNA sample without DNA digestion (no RT). (2-6) cDNA pactin 

amplicon detected in oviduct cDNA (RT samples) from DNA digested RNA, (7) 

oviduct isolated RNA sample after DNA digestion (no RT), (8) negative control 

(no cDNA). 





FIGURE 4-2. Detection of mRNAs encoding IGFBPs in preattachment bovine 

embryos by RT-PCR. Lanes are (L) ladder (bands from top to bottom: 506 bp, 

396bp, 344 bp, 298 bp, 2201201 bp), (1) negative control (no cDNA), (2) oviduct 

RT control, (3) 1C zygotes, (4) 2-5C embryos, (5) 6-8C embryos, (6) rnorula, (7) 

day-8 blastocysts. Transcripts encoding IGFBP -2, -3, and 4 were detected 

throughout preattachment development, while IGFBP-5 mRNAs were only 

detected in blastocyst stage embryos. mRNAs encoding IGFBP-1 and -6 were 

not detected in any preattachment embryo stage, however a smaller than 

expected PCR amplicon was detected in all embryo samples. The identities of 

each amplicon were determined by DNA sequence analysis. 



IGFBP- 3 

IGFBP- 5 



FIGURE 4-3. Detection of IGFBP transcripts in nonwltured fresh oviduct 

samples (F), day-2 vesicle cultures (D2V), day-8 vesicle cultures (D8V), day-2 

monolayer cultures (D2M) and day4 monolayer cultures (D8M) by RT-PCR. 

Lanes are (L) ladder (bands from top to bottom: 506 bp, 396 bp, 344 bp, 298 bp, 

2201201 bp), Lanes 1-6 correspond to PCR produds encoding IGFBPs 16, 

respectively. Transcripts encoding IGFBPs 2-5 were detected in both vesicle and 

monolayer primary cultures throughout an 8day culture interval. The detection of 

IGFBP-6 mRNAs occurred inconsistently in only a single culture replicate (for 

example D2V). The identities of each amplicon were determined by DNA 

sequence analysis. 





Figure 4-4. Detection of IGFBP-1 mRNA in bovine liver by KT-PCR. Lanes are 

(L) ladder (bands from top to bottom: 396bp, 344 bp, 298 bp, 220/201 bp), (1) 

bovine liver (239bps), (2) oviduct (3) negative control (no cDNA). 





Figure 4-5. Nucleotide sequences of PCR amplicon fragments of bovine lGF BP 

2-5. PCR products were amplified to verify their identity, against published 

IGFBP sequences. IGF BP-6 amplicon fragment sequence shares similarity to E. 

coii aceE gene encoding the El component of pyruvate dehydrogenase and has 

no homology to IGFBP-6. The RGD sequence in lGFBP-2 is indicated by the 

underlined nucleotides and the primers employed are in boldface. 



IGEBP-2 SEQUENCE (186 bps, 99 -2% @ bovine) 

GATGTCTCTG AACGGGCAGC 
CCGGGAAGCT GATCCAGGGA 
CATCTCTTCT ACAATGAGCA 

ACTTCTCCTC 
GAAATGGAAG 
CAGGGGCATC 
AGCAGTGCCG 
GATA2GTACG 

TGAGTCCAAG 
ACACGCTGAA 
CACATTCCCA 
CCCTTCCAAG 

GCATGGCCTG TACAACCTCA AACAGTGCAA 
GTGGGGAGTG CTGGTGTGTG AACCCCAACA 
GCCCCCACCA TCCGGGGAGA CCCCGAGTGT - CCTTCC 

(210 bps, 100% @ bovine) 

CGTGAGACAG AATACGGGCC CTGCCGCCGG 
CCACCTCAAG TTCCTGAACA TGCTCAGCCC 
ACTGCGACAA GAAGGGCTTC TACAAGAAAA 
GGCAGGAAGC GGGGTTTCTG CTGGTGTGTG 

IGFBP-4 SEQUENCE (222 bps, 100% @ bovine) 

GGAAGAATTC TGTGCCCCAG GGTTCCTGCC AGAGTGAGCT GCACCGGGCG 
CTGGACGGCT GGCCGCCTCA CAGAGCCGCA CCCACGAAGA CCTTTACATC 
ATTCCCATCC CCAACTGCGA CCGCAACGGC AACTTCCACC CCAAGCAGTG 
CCACCCGGCC CTGGATGGGC AGCGCGGCAA GTGCTGGTGT GTGGACCGGA 
AGACGGGGGT GAGGATCCTT CC 

IGFBP-5 SEQUENCE (215 bps, 96% @ human) 

GCAAGAATTC GCT-CA GCCCACCCAT GGTGCCCCGC GCCGTGTACC 
TGCCCAACTG TGACCGCAAA GGGTTCTACA AGAGAAAGCA GTGCAAACCT 
TCCCGTGGCC GCAAGCGTGG CATCTGCTGG TGCGTGGACA AGTACGGGAA 
TGAGCTGCCG GGCATGGAGT ACGTGGACGG GGACTTTCM TGCCACGGCT 
TCGACGGATC CTTCC 

PCR PRODUCT AMPLIFIED BY IGFBP-6 PRIMERS 

GGAAGAATTC GACGAGGCGC CTTTGCGGGC GTCGTGAAGG AACTGWGA 
CAACGTTGGC GATAAAGTGA AAACTGGCTC GCTGATTATG ATCTTCGAAG 
TTAAAGGCGC AGTGCGGCGG CTCCGGCGAA ACAGGAAGCG GCAGTGCCGC 
TCCTCCGGAT CCTTCC 
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The identity of the remaining IGFBP amplicons were confirmed by sequence 

analysis comparing the bovine embryo lGFBP amplicon sequences to published 

bovine and human IGFBP cDNA sequences (Table 4-1, Figure 4-5) (Hahnel & 

Schuftz, 1994; Spratt el a/., 1991 ; Shimasaki et al., 1991; Bourner et a/., 1992). 

Comparison of the embryonic IGFBP-2 DNA product with those of published 

sequences revealed a 99.2% sequence identity to the bovine IGFBP-2 

sequence. Embryonic IGFBP-3 and -4 products displayed a 100% sequence 

identity to their respective bovine cDNA sequences and the IGFBP-5 DNA 

product displayed a 96.1% sequence identity to that of the human cDNA (Figure 

4-5). 

Analysis of IGFBP transcript distribution in oviduct monolayer and vesicle 

primary cultures displayed consistent expression patterns for IGFBP -2, -3, -4, 

and -5 over an 8day culture interval (Figure 4-3). The mRNAs encoding IGFBP- 

1 were never detected in any oviduct cell culture sample while a weak PCR 

signal of expected size (345 bp) encoding IGFBP-6 was detected in only a single 

monolayer and vesicle culture sample. 

4.4 DISCUSSION 

We have demonstrated that bovine oviduct monolayer and vesicle 

cultures both express transcripts encoding IGFBPs 2 5  throughout an 8day 

culture interval. In contrast, IVMF bovine zygotes express mRNAs encoding 
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IGFBPs 2-4 through to the blastocyst stage. mRNAs encoding IGFBP-5 were 

detected in bovine blastocysts while transcripts encoding IGFBP-1 were not 

detected in oviductal cultures or early embryos. IGFBP-6 amplicons were 

inconsistently detected in oviduct cultures and IGFBPB mRNA was not detected 

in early bovine embryos. Each bovine IGFBP DNA product displayed a 96% or 

greater sequence identity to published cDNAs (Hahnel8 Schultz, 1994; Spratt et 

at., 1991; Shimasaki et a/.. 1991; Boumer et a/., 1992). The 166 bp fragment 

derived from the IGFBP-6 primers did not display any identity to published 

lGFBP-6 sequences (Shimasaki et al., 1991). This amplicon was also observed 

by Hahnel and Schultz (1994). using identical primers to investigate the 

expression of IGFBP-6 rnRNAs during murine preimplantation development. The 

IGFBP-6 amplicon of expected size was detected only in murine blastocyst 

samples, however, the 166 bp product was observed in all preimplantation stage 

embryo samples (Hahnel 8 Schultz, 1994). Our result, indicating a shared 

homology with a E. coli aceE gene encoding the El component of pyruvate 

dehydrogenase is intriguing and is worthy of further investigation, especially 

since this DNA product was not detected in bovine oviduct samples. It is possible 

that this amplicon represents an embryo specific gene product. 

Clearly, differences in the expression of mRNAs encoding the IGFBPs 

exist between murine and bovine early embryos as IGFBP-5 transcripts were 

confined to bovine blastocysts and were not detected at any preimplantation 
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rnunne stage. IGFBP-6 rnRNAs were not detected in the cow but were detected 

at the blastocyst stage of murine development (Hahnel & Schultz. 1994). The 

significance of these species differences awaits further investigation. No 

differences in GFBP mRNA expression was detected in oviduct vesicle or 

monolayer primaly cultures over an 8-day culture intewal. The inconsistent 

detection of IGFBP-6 amplicons in both monolayer and vesicle cultures raises 

the possibility that IGFBP-6 expression may be low, transitory, or linked to 

ovarian cycles. This possibility has been investigated in the porcine ovary 

(Samaras et al., 1993; Grimes ef a\., 1994; Gadsby et a!.. 1996), human oviduct 

(Giudice et a/., 1992) and rat (Yallampalli et a/., 1993), mouse (Markoff et a/., 

1995) and bovine (Geisert et el., 1991) uterus. 

The expression of JGFBP mRNA by bovine blastocysts raises the 

possibility that bovine embryonic IGF circuits are modulated during early embryo 

development. IGFBP transcripts present in the oviduct suggest that the oviduct 

may be conditioning the embryonic environment with these regulatory IGFBPs. 

Chapter 5 investigates the release of IGFBPs from cultured oviductal cells to 

determine the presence of IGFBPs in the in vitm w-culture environment. 
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CHAPTER 5 RELEASE OF IGFBPs FROM BOVINE PRIMARY OVIDUCT CELL 

CULTURES 

5.1 INTRODUCTION 

IGF-I and IGF-ll are both present in the in vitm culture environment 

(Chapter 3). In addition mRNAs encoding IGFBPs 2-5 are present in primary 

oviductal cultures (Chapter 4). The embryotropic actions of the IGF family may 

be selectively modulated by IGFBPs released into the culture system by the 

oviductal cells. This chapter focuses on characterizing the release of IGFBP 

polypeptides from the oviductal cells into conditioned media. The presence of 

IGFBPs in the culture environment would support the notion of a direct influence 

of these molecules in modulating IGF actions on the developing embryo. 

5.2 MATERIALS AND METHODS 

Detection of Oviductal IGFBPs by Western Ligand Blotting 

Oviductal monolayer and vesicle conditioned media were collected from 

serum-fiee cultures as described in chapter 3, and were concentrated by 

centrifugal ultrafiltration using a membrane with a molecular weight cutoff of 10 

kDa (Centricon-I 0, Amicon, Danvers, MA). Concentrated samples were 

subjected to electrophoresis using a non-reducing 10% sodium dodecyl sulfate 

(SDS)-polyacrylamide gel. Proteins were then electrophoretically transferred to a 
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nitrocellulose membrane (Bio-Rad, Mississauga, Ont) for 2 h at a constant 

current of 250 milliamps. The membrane was washed for 30 rnin in Tris-NaCI (pH 

7.4), 0.5 mglml sodium azide (Sigma) and 3% Nonidet P-40 (Sigma) before 

blocking for 2 h in Tris-NaCI (pH 7.4). 1 % BSA (Sigma) all at 4OC. The membrane 

was washed twice for 20 min in Tris-NaCI (pH 7.4) + 0.1% Tween-20 (Sigma) 

and was incubated for 20 h with 400.000 cpm r251]IGF-ll, (for ligand control 100 

nglml unlabelled IGF-II was added to incubating solution) in Tris-NaCI (pH 7.4). 

0.1% Tween-20, and 1 % BSA at 4OC (Bradshaw 8 Han. 1993; Hill et al., 1989). 

Following the incubation the membrane was taken through a series of 15 min 

washes, two in Tris-NaCI (pH 7.4) + 0.1% Tween-20 followed by 3 washes in 

Tris-NaCI (pH 7.4) at 4°C. The membrane was air dried at room temperature and 

exposed to X-ray film (XAR, Eastman, Kodak. Rochester, NY) with intensifying 

screens at -70°C for 3-7 days. 

Western irnmunoblots were prepared on the same samples described 

above. Membranes were initially washed for 30 min in 10 mM Tris-HCL 

containing 0.15 M NaCI, 0.3% NP-40 (vh)  and 0.5 mglml sodium azide (pH 7.4). 

The membrane was then blocked for 1 h in Tris-buffered saline (150 mM NaCI, 

50 rnM Tris-HCL, pH 7.4) containing 0.05% Tween 20 (vlv) (ITBS) 

supplemented with 4% BSA (W) and was washed 3 X 10 rnin in TTBS. 

Membranes were incubated for 20 h at 4OC in TTBS + 1% BSA (W) with one of 

the following antibodies: anti IGFBP-2 (rabbit polyclonal antiserum against 
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bovine IGFBP-2 (Boumer et al., l992), dil. 1 :I 000, Upstate Biotechnology Inc, 

UBI, Lake Placid, NY), anti IGFBP4 (rabbit polyclonal antiserum against human 

IGFBP-4 (Carnacho-Hubner et el., 1992), dil. 1:250, UBI) and anti IGFBP-5 

(rabbit polyclonal antiserum against human IGFBP-5, dil. 1 : 100, Austral 

Biologicals, San Ramon, California). Following incubation with primary antiserum 

the membranes were washed with lTBS (3 X 10 min), and then incubated with 

anti-rabbit lgG biotin conjugates (Sigma, dil. 1:30) in 1% BSA (W) l l B S  for 2 

h. Membranes were washed 3 X 10 min in T B S ,  ExtrAvidin (Sigma, 1:30 in 

PBS) for 1 h, and 3 X 10 rnin in TTBS. Bands were visualized using a 3-3' 

diarninobenzidine (DAB) tetrahydrochoride (Sigma)/ 3% hydrogen peroxide 

reaction. The reaction was then quenched in 50 mM Tris-HCL (pH 7.5) and the 

membranes were air dried. 

IGFB P-2 lmmunot7uorescence 

Oviduct cell vesicles and monolayers were prepared for 

immunofluorescence labelling. Vesicles were collected and isolated in the same 

manner as for the conditioned medium procedure. However, the monolayers 

were grown on glass cover-slips for easier processing. Round glass cover-slips 

were soaked in 70%. ethanol prior to coating with lysine (0.1 % poly-L lysine in 

Tris-HCI, pH 8.5) for 15 min, and were air dried overnight under a sterile culture 

Row hood. The cover-slips were then added to each well of the 24-well plates 
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and monolayers were grown on them, and the same procedures previously 

described for establishing these cultures were applied. Monolayers were grown 

to confluency and transferred through a graded methanol series. Monolayen 

were transferred to 125mm dishes on ice, and were taken through the following 

series; 1 :I PHEM (60mM pipes, 25mM hepes, 10 mM EGTA, ImM Mg CI,-6H,O, 

pH 6.9, Schliwa & VanBlerkom, 1981):MeOH (methanol), 1 :2 PHEM:MeOH, 

100% MeOH, 1:2 PHEM:MeOH. 1:1 PHEM:MeOH for 3 4  min per treatment. 

Vesicle cells were fixed through the same series by moving the cells into the 

different solutions (200pl) in 4-well culture dishes. The fixed cells were then 

placed in blocking solution (0.1% Triton X-100, 0.f M lysine, 1% goat serum in 

PHEM buffer) for 45 rnin at 4OC. The cells were removed from the blocking 

solution and were washed for 10 min in PHEM buffer prior to ovemight 

incubation with IGFBP-2 primary antiserum (1:200 dilution, UBI, Lake Placid, 

NY). Unbound primary antibody was removed by 2 washes of 10 min each and a 

final 6h wash in PHEM buffer. The cells were placed in a 1:50 dilution of FlTC 

conjugated goat anti-rabbit secondary antibody, and unbound secondary 

antibody was removed in 3 washes of PHEM with the last wash ovemight. The 

cells were then mounted in a small volume of FITC-guard (Sigma) and were 

visualized on a confocal laser microscope and a Zeiss ICM 405 fluorescence 

microscope at 160 X. 

Preabsorbed ligand control was obtained by incubating IGFBP-2 ligand 
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(200 ng, Austral Biologicals, San Ramon, Cal.) with the primary antibody (400 pl, 

1:200 dil.) for three days at 4OC. the mixture was then centrifuged for 30 min at 

13 000 x g. The upper 200 pf was collected. The non-absorbed primary antibody 

was subjected to the same procedure but incubation with the ligand was omitted. 

In addition slides were processed without the addition of the primary antibody 

present, to control for the possibility of the secondary antibody alone producing 

signal. 

5.3 RESULTS 

Detection of IGFBP-2 in cultured monolayer and vesicle cells 

lmmunofluorescence results employing IGFBP-2 primary antiserum (1 :200 

dilution, UBI, Lake Placid, NY) applied to preparations of primary monolayer and 

vesicle cell cultures revealed a positive signal for IGFBP-2 in both primary 

cultures (Figure 5-1). Three replicate day 8 momlayer and vesicle cell cultures 

were analyzed. In monolayer cultures the majority of cells produce IGFBP-2 

however, not every cell was positive for IGFBP-2. In vesicle cultures it is difficult 

to detect IGFBP-2 in single cells, giving the appearance of uniform expression. 

Controls, both preabsorbed antiserum and secondary antiserum alone 

demonstrate the specificity of the antibody localization. 



Figure 5-1. lmmunofluoresence localization of IGFBP-2 proteins in oviductal 

monolayer (A, 6. C ) and vesicle cell cultures (D, E . F). B and E represent pre- 

absorbed controls, C and F are secondary antibody controls. IGFBP-2 

localization was observed in 3 replicate vesicle and monolayer cultures. All 

cultures were examined under equal magnification; Bar=l Opm. 
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Detection of lGF8Ps in bovine oviductal cell conditioned media 

Western ligand analysis of conditioned media prepared from monolayer 

and vesicle cultures over an 8day culture period revealed four IGFBPs of 

approximate molecular weights 24 kDa (IGFBP4), 31 kDa (IGFBP-5). 36 kDa 

(IGFBP-2) and a broad band extending from 46 to 53 kDa (IGFBP-3; Figure 5-2, 

lanes 1 and 2). This analysis was repeated four times employing conditioned 

media collected from replicate monolayer and vesicle cultures established from 

separate oviduct collections. No differences in the banding patterns was 

observed between IGF-I and IGF-ll radio-labelled ligand blots (Figure 5-3) 

suggesting IGFBP-6 is not represented in the banding pattern. [laSI]IGF-ll 

produced a more intense signal and was therefore used preferentially for 

subsequent ligand blots. The specificity for IGF binding displayed by these 

polypeptides was verified by control analysis consisting of competitive binding 

assays employing cold IGF-II to displace binding of radio-labelled IGF-II. In all 

cases this procedure eliminated the detection of any IGFBP signal in these 

samples (Figure 5-4, lanes 3,6). Furthermore, media was collected from the final 

washes and no detectable levels of IGFBPs were observed in these controls 

(Figure 5-4, lanes 2.5). Identities of the binding proteins were indicated from the 

relative molecular sizes and were confirmed by immunoblotting using IGFBP 

specific antisera (Figure 5-2,lanes 3-8). A single band of 36 kDa was detected 

employing a rabbit polyclonal antiserum raised against bovine IGFBP-2 (UBI) in 
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both oviductal monolayen and vesicles (Figure 5-2, lanes 3 and 4. arrow). 

Likewise bands of appropriate molecular weights for IGFBP-4 (Figure 5-2, lanes 

5 and 6, arrow) and IGFBP-5 (Figure 5-2, lanes 7 and 8, arrow) were detected in 

oviductal monolayer and vesicle cultures employing rabbit polyclonal antisera 

specific for human IGFBP4 (UBI) and human IGFBP-5 (Austral Biologicals) 

respectively. 



FIGURE 5-2. Western ligand blot and immunoblot analysis of 24 h conditioned 

media collected from oviductal cell monolayer (1,3,5,7) and vesicle (2.4.6,8) 

primary cultures. Concentrated samples were subjected to SDSpolyacrylamide 

gel electrophoresis, transferred to nitrocellulose and incubated with r251]1GF-ll 

radio-ligand. A representative autoradiograph reveals 4 bands with IGF-II binding 

affinity at mot wt 24 kDa, 31 kDa, 36 kDa and a broad band at 46-53 kOa, in both 

monolayer and vesicle cultures (lanes 1,2). Western immunoblot analysis 

employing polyclonal antisera against: IGFBP -2 (lanes 3,4), -4 (lanes 5,6), and - 
5 (lanes 7,8), confirms the identity of the 36 kDa, 24 kDa and 31 kDa bands 

(arrows) respectively; identified by ligand blot analysis. 





FIGURE 5 3 .  Comparison of IGFBP detection patterns produced by ligand blot 

technique employing either r251]lGF-I or r251]lGF-ll. Samples of conditioned 

medium were subjected to SDS-polyacrylamide gel electrophoresis, transferred 

to nitrocellulose and incubated with [1251]IGF-l or r251]IGF-II radkligand. 

Molecular weight standards represent the migration of proteins of 51 kDa, 36.29 

and 21. A representative autoradiograph reveals 4 bands with IGF binding 

affinity at molecular weight 24 kDa, 31 kDa, 36 kDa and a broad band at 46-53 

kDa, in monolayer (lanes 2,5) vesicle cultures (lanes 3,6) and bovine serum 

(lanes 1.4). The banding patterns produced by IGF-l and IGF-II are identical, with 

IGF-II producing a autoradiograph of greater intensity then IGF-I. 





FIGURE 5-4. [lZSI]IGF-II ligand blot controls for the removal of serum from 

cultures prior to establishment of serum-free cultures. To control against the 

possibility of IGFBPs from the culture, oviduct cdls were washed 5 times and the 

last wash was processed as a control. Molecular weight standards represent the 

migration of proteins of 51 kDa, 36, and 29. Lanes I, 2 and 3 represent vesicles 

cultures and lanes 4, 5 and 6 represent monolayer cultures. Lanes 1 and 4 are 

banding patterns produced by 24h oviductal cell conditioned media, and lanes 2 

and 5 correspond to the final washes. Lanes 2 and 5 indicate that binding 

proteins were not present in the final wash media, therefore, IGFBPs present in 

lanes 1 and 4 are the result of lGFBP release. 

Lanes 3 and 6 represent the same conditioned media samples run in 

lanes 1 and 2 respectively, and the r251]IGF-ll binding was subjected to 

competitive binding by the addition of 100 nglml cold IGF-ll. Lanes 3 and 6 

demonstrate that the addition of cold IGF-I1 successfully competed for IGFBP 

binding reducing the intensity of the autoradiograph and indicating that r251]IGF-ll 

occurs specifically. 





lo5 

5.4 DISCUSSION 

Co-culture systems employing bovine oviductal cells remain an effective 

method of facilitating early development of bovine embryos. Xia et a/. (1996) 

detected IGF-l and IGF-ll proteins in both monolayer and vesicle cultures. In 8- 

day monolayers a restricted pattern of IGF-ll localization was observed, in which 

some cells failed to show a signal for the IGF-II. Monolayer cultures display this 

restricted pattern for IGFBP-2 protein also with some cells not expressing 

IGFBP-2. Xia et a/. (1996) report expression of IGF-II in all cells within compact 

vesicles. In the present study lGFBP-2 irnmunofluorescence is also detected in 

every cell. Detection of peptides by immunofluorescence in vesicle cultures is 

more difficult than in the monolayer because the signal is formed from several 

cell layers. Detection of IGFBP, by immunofluorescence, in the bovine oviductal 

cells is the first evidence reporting IGFBP polypeptides present in these cultures. 

This method suggests local production of the IGFBPs but does not indicate 

release of IGFBPs into the culture medium. Of the available IGFBP antiserum 

only IGFBP-2 is bovine specific. Available antiserum for the remaining lGF BPS 

have greater cross reactivity due to regions of high homology between the 

IGFBPs. lmmunofluorescence employing these antisera may result in the 

detection of several IGFBPs. Western analysis provides a method of detecting 

IGFBPs released by the cells into conditioned media, and provides separation by 

molecular weight. Western ligand blots and immunoblots were employed to 
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characterize all of the IGFBPs released by these cultures. 

Western ligand blot analysis detected four IGFBPs of approximate 

molecular weights 24 kDa, 31 kDa, 36 kDa and a broad band extending from 46 

to 53 kDa in oviductal monolayer and vesicle conditioned media samples. The 

IGFBPs are bovine oviductal products since serum was removed prior to 

collection of conditioned media and ligand blots of control wash media did not 

result in the detection of any IGFBP signal- Furthermore, the IGFBP signal was 

eliminated when the blots were co-incubated with unlabelled IGF-11. Bands of 

proteins at 24, 31,36, and 46-53 kDa correspond in molecular weight to IGFBP - 
4, -5, -2 and 3 respectively (Murphy & Baron, 1993; Clemmons, 1993; Jones 8 

Clemmons 1995; Bradshaw & Han. 1993; Hill et al., 1989; Guidice et al., 1992; 

Yallampalli et a/., 1993). The 46-53 kDa band appears to represent a doublet 

consisting of the nonglycosylated and the glycosylated form of IGFBPS, and 

runs at the same size as the dominant band present by Western ligand analysis 

of steer serum. The identity of the 24, 31, and 36 kDa protein was confirmed by 

immunoblot methods. Bands at molecular weight range 29-30 kDa detected in 

the ligand blots and in the IGFBP4 Western imrnunoblot may represent 

glycosylated forms of IGFBP4 (Olney et a/., 1993) or cross reactivity of 

antiserum with IGFBP-2 (Camacho-Hubner et a/., 1 992). Since transcripts 

encoding IGFBP-1 were not detected and lGFBP-6 mRNAs were not 

consistently detected in these primary cultures it is unlikely that the 29-30 kDa 
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polypeptides are related to IGFBP-1 or IGFBP-6. Furthermore, no differences in 

the banding patterns was observed between IGF-I and IGF-ll radio-labelled 

ligand blots (Figure 5-3) suggesting IGFBP-6 is not represented in the banding 

pattern. IGF-II is reported to have a 10 fold higher affinity for lGFBP6 than that 

displayed by IGF-1 (Roghani et a/., 1989). 

In summary IGFBPs 2-5 are readily detected in oviductal cell conditioned 

media. This supports the potential regulation of IGF actions on embyros by 

IGFBPs present in the culture environment. 
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CHAPTHER 6 ANALYSIS OF BOVINE PARTHENOGENETIC 

EMBRYOS FOR THE EXPRESSION OF IGFBPs 

6- 1 INTRODUCTION 

Parthenogenetic embryos contain only matemal genetic material 

representing a set of genes derived completely fmm oogenesis. Imprinting 

implies that through epigenetic modification a particular genetic allele will 

become silenced, with expression resulting from the second (non-silenced) allele 

(Surani, 1994). IGF-ll is an imprinted gene in which expression stems from only 

the paternal allele (Surani. 1994; DeChiara et a/.. 1991). Imprinting of IGF-II has 

been hypothesized to function as a regulatory mechanism to decrease the 

available copies of IGF-ll, since overexpression of IGF-I1 can be detrimental, as 

observed in gene "knock-out" studies (Filson et a/., 1993; Lau et a/., 1 994; Wang 

et a/., 1994; Rappolee et a/., 1992; Vu 8 Hoffman, 1994). The IGF-ll receptor is 

also believed to be regulated by imprinting in an opposite fashion to IGF-II. 

Expession of IGF-ll receptor is the result of the matemal allele only (Stoger et a/., 

1993). The present study employed a bovine parthenogenetic model to contrast 

expression of IGFBP mRNAs between these embryos with in vitm fertilized 

zygotes. Although imprinting of the IGF-II gene is well established by birth 

(Surani, 1994) a debate continues regarding the state of the imprint during 

preimplantation development. Separate reports suggest that IGF-II is imprinted 
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at this early stage (Rappolee eta/.. 1992) and conversely that it is not imprinted 

(Latham et a/., 1994). These studies were concerned with gene regulation at the 

level of transcription, reporting the presence or absence of IGF-II mRNA. In the 

present study I have also measured levels of IGF-ll secretion into conditioned 

media by parthenogenotes and contrasted these levels with those obsenred for 

IVMF embryos. 

Before useful comparisons can be made between the bovine 

parthenogenetic model and in vitm fertilized embryos it is necessary to develop 

reliable methods of producing parthenogenetic embryos. Clearly chromosomal 

complement will impact dramatically on patterns of gene expression. Many 

treatment regimes have been employed in an attempt to produce diploid 

embryos including chemical agents capable of blocking polar body extrusion 

such as cytochalasin D or B (Balakier and Tarkowski, 1976; Kubiak et al., 1991 ; 

Fukui et al., 1992; Minamihashi et a/., 1993;) cycloheximide (Presicce et a/., 

1994a,b; Hagemann et a/., 1995) and 6-dimethylaminopurine (DMAP) (Fulka et 

ai., 1 991 ; Szollosi et a/. , 1993; Navara et a/. , 1 994; Susko-Parrish et a/. , 1 994). 

In order to determine the effectiveness of the diploidization procedure. the 

chromosomal complements of parthenogenetic bovine embryos arising from 

standard oocyte activation and diploidization methods were analyzed. 



6.2 MATERIALS AND METHODS 

Oocyte Activation and Diploidizafion 

Bovine oocyte activation and diploiditation procedures employing ethanol, 

ionomycin, cytochalasin D and DMAP were applied as outlined in Minamihashi et 

al. (1993) and Susko-Pamsh et a/. (1994). The treatments included; 1) oocyte 

activation with ethanol (7% for 5 min) followed by cytochalasin D treatment (5 

pglml; Sigma) for 6 h; 2) activation with ethanol and treatment with DMAP (1.9 

mM, Sigma) for 6 h and 3) activation with ionomycin (5 pM, Sigma) for 5 min and 

treatment with DMAP (1 -9 mM) for 6 h. Treatments involving oocyte activation 

alone were applied as a double activation method with an initial treatment with 

ionomycin or ethanol for 5 min separated by a 4 h culture interval before a 

second 5 min treatment with ionornycin or ethanol (Susko-Pamsh eta/., 1994). 

Following the activationldiploidization protocbl, oocytes were washed and 

placed directly into culture drops. Parthenogenotes were w-cultured in 50 pl 

drops of TCM-199 medium + 10% SS under oil with up to 40 oviductal vesicles 

added per drop (Xu et a/., 1992; Harvey et a/., 1995). To sustain development 

through to the blastocyst stage, 50 pl of TCM-199 + 10% SS was added to each 

culture drop following 48 h. All of the collected COCs were utilized in this study 

and no oocyte selection strategy was employed. 



Chmmosomal Analysis 

Parthenogenetic bovine embryos were removed from culture at either the 

2-11 or blastocyst stages. Parthenogenotes were first incubated in 0.05 pg/ml of 

colcemid in TCM-199 + 10% SS for 12h. They were then exposed to a hypotonic 

1 % Na Citrate solution for 3 min to promote nuclear swelling and cell spreading. 

Embryos were spread on clean glass slides with MeOH (methano1):AcAcid 

(acetic acid) (1:l) while blowing gently with the slide placed under a lamp. The 

embryos were fixed on the slides overnight at 4% in Me0H:AcAcid (3:l) and 

were then air dried and stained in 4% Giemsa for 4 min to reveal chromosomal 

complements (King et a/., 1979; Plante and King, 1996). Metaphase spreads 

were counted under low power while chromosomes were examined at both 400 

and 1000 X under oil to determine the chromosome composition for each 

metaphase spread. 

Detection of IGFBP mRNA 

RNA was isolated from 3 pools of 50 parthenogenetic blastocysts and 

subjected to RT-PCR analysis using primers specific for the six IGFBPs (see 

chapter 3). Parthenogenetic embryos employed in the RT-PCR studies were 

activated in ethanol and diploidized by DMAP incubation, as described. 



112 

Release of IGF-II hrn Parthenogenetic Embtyos 

RIA technique was used to determine the amount of IGF-II released per 

embryo into conditioned media over a 24h period (see chapter 4) 

Statistical Analysis 

Cleavage frequency and development to the blastocyst stage was 

analyzed by Chi-square test. The significant value was pc0.05. Release of IGF-II 

levels was analyzed by a paired t test, significant at pe0.05. 

6.3 RESULTS 

Production of Bovine Parthenogenetic Embryos 

Oevelopment following Oocyte Activation and Diploidization Treatments 

Three oocyte activation and diploidization treatments were compared to 

assess their influence on chromosomal complement and development to the 

blastocyst stage. Oocytes were matured for 24 h prior to artificial oocyte 

activation to lirnl a possible influence of spontaneous oocyte activation on the 

outcomes. In total. 593 oocytes representing three experimental replicates were 

randomly assigned to the experimental groups. The proportion of cleaved 

parthenogenotes varied significantly between treatments (pe0.05) with 68.0 t 

1.8% (mean k SEM, n=3) of the oocytes treated with ethanol and DMAP dividing 

(Figure 6-1). The proportion of cleaved embryos did not vary significantly 
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between the ethanoVcytochafasin D or ionomycinlDMAP treatments (Figure 6-1). 

Blastocyst formation (18.4 - + 2.5%) did not vary significantly between the 

treatments (Figure 6-3). Once again however, the ethanoUDMAP treatment 

group displayed the highest frequency of development with 22.3 - + 3.0% of 

treated oocytes progressing to the blastocyst stage (Figure 6-1 ). 

Development Following Oocyte Activation Wilhout Diploidization 

A comparison between the two oocyte activation treatments alone without 

cytochalasin D or DMAP treatment was made to assess the potential for 

development of activated oocytes to the blastocyst stage. In total, 203 oocytes 

representing three experimental trials were randomly assigned to the two 

treatment groups. The oocytes were subjected to a double activation procedure 

to enhance the cleavage rate of nondiploidized activated oocytes. The 

proportion of oocytes that cleaved following activation with ionomycin (34.7 - + 

5.3%) or ethanol (39.4 - + 8.5%) did not vary significantly. This frequency of 

cleavage was substantially lower than that observed for the cytochalasin 

DIDMAP treatment groups. Development to the blastocyst stage was not 

observed in the oocyte activation alone treatment groups. 
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Chromosomal Complement of Stastocysts 

In total, 44 blastocysts were examined for chromosomal analysis from the 

ethanoVcylochalasin D (n=21), ethanoVDMAP (n=11) and ionomycin/DMAP 

(n=12) treatments (Figure 6 2  A,B,C,D). 21 9 rnetaphase chromosomal spreads 

were examined from the 44 blastocysts representing a mean of 4.97 metaphase 

spreads per embryo. The number of metaphase spreads per blastocyst varied 

from 1 to 21. The number and percentage of chromosomal complements 

displayed by parthenogenetic blastocysts derived from all three oocyte activation 

and diploidization treatments are shown in Table 6-1. The majority of embryos 

displayed tetraploid and mixoploid chromosomal complements (Figure 6-2, A,C) 

consisting of primarily diploidltriploids and diploidltetraploids. Consistent diploid 

complements were only observed in 5/44 (1 1.4%) of the evaluated blastocysts. 

An example of an octaploid chromosomal complement is displayed in Figure 6-2 

B. The analysis suggests that these treatment regimes result in high rates of 

aberrant chromosomal complements. 

Chromosomal Complements of 2-Cell Stage embryos 

Since parthenogenetic blastocysts displayed low frequencies of diploid 

chromosomal complements it was important to address the timing of the events 

that resulted in these aberrant chromosomal complements. For this reason, we 

examined the chromosomal complement of 2-cell embryos treated with ethanol 
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or ionomycin alone. Since the oocytes in these treatment groups were not 

subjected to cytochalasin D or DMAP treatments we were able to also 

investigate whether the aberrant chromosomal complements arose, in part, due 

to the these treatments or could arise simply as a consequence of artificial 

oocyte activation. 

A total of 24 2-11 stage parthenogenotes were analyzed from the ethanol 

alone (n=12) and ionomycin alone (n=i 2) treatments. In total, 57 chromosomal 

spreads were examined from the 24 embryos representing a total of 2.38 

spreads per embryo. The results are displayed in Table 6-2. The number of 

metaphase spreads per 2-cell embryo varied from 0 to 9 (Figure 6-2 D). The 

majority of 2-cell parthenogenotes (76124 66.7%) displayed a haploid 

chromosomal complement (Table 6-2). The mixoploid embryos consisted of 

haploidkiiploids (Figure 6-2 D). Since development to the blastocyst stage was 

not observed in these treatment groups it was not possible to explore the 

influence of culture on the progression of aberrant chromosomal complements. 

Expression of IGFB P mRNA in Parthenogenetic Embryos 

Bovine parthenogenetic blastocysts express transcripts encoding IGFBP - 

2, -3. -4 and -5 (Figure 6-3). Transcripts for IGFBP-1 were not obserwd and a 

similar 166 bp amplicon (as found in IVMF blastocysts) was amplified with the 

IGFBP-6 primers. The expression pattern of IGFBP mRNA was identical to the 



pattern detected with IVMF embryos (Figure 4-1). 

Release of IGF-I/ from parthenogenetic embryos 

RlAs were conducted to measure the level of IGF-If released into 

conditioned media from parthenogenetic and fertilized blastocysts. Blastocysts 

produced following fertilization released significantly gr*r ;?er amounts (mean k 

SEM) of IGF-II (36.2 - + 3.9 pglembryo) compared to parthenogenetic embryos 

(9.6 + 2.8 pglembryo, pc0.05, n=6, Figure 64). 



Table 6-1. Chromosomal composition of parthenogenetic blastocysts 

Treatment Haploid Diploid Tetraploid Octa ploid Mixo ploid 
(%I (%I (%) (%) 

Total 1144(2.3) 5144(11.4) 18/44(40.9) W ( 4 . 5 )  18/44(40.9) 



Table 6-2 Chromosomal composlion of 2-11 parthenogentic embryos 

Treatment Haploid Diploid Tetraploid Odaploid Mixoploid 
('w (%I (%I (%I (%I 

lonomycin 8/12 (66.7) 2/12 (16.7) 1/12 (8.3) 0112 (0) 1112 (8.3) 
Eto h 8/12 (66.7) 2/12(16.7) 0112 (0) 011 2 (0) 2/12 (16.7) 

Total 16124 (66.7) 4124 (16.7) 1124 (4.2) 0124 (0) 3/24 (12.5) 



FIGURE 6-1. Development of Bovine Parthenogenotes Following Oocyte 

Activation and Diplodization Treatments. In total. 593 oocytes (three 

experimental replicates) were randomly assigned to experimental groups 

consisting of 1) oocyte activation with ethanol (7% for 5 min) followed by 

cytochalasin D treatment (5 mglml; Sigma) for 6 h; 2) activation with ethanol and 

treatment with dimethylaminopurine (DMAP, 1.9 mM. Sigma) for 6 h and 3) 

activation with ionomycin (5 mM, Sigma) for 5 min and treatment with DMAP 

(1 -9mM) for 6 h. The mean 2 SEM for the proportion of cleaved parthenogenotes 

(48 h following treatment) and blastocysts (day 8 of culture) was determined for 

each group. Oocytes activated by ethanoVDMAP treatment displayed a 

significantly higher cleavage frequency* of 68.0 - + 1 -8% (pc0.05). Blastocyst 

formation did not vary significantly between the treatments. 
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Figure 6-2. Parthenogenetic Bovine Embryo Chromosomal Complements. 

Metaphase chromosomal spreads representing various chromosomal 

complements of bovine parthenogenetic blastocysts and 2-11 embryos. 

Representative chromosomal composition of blastocysts including A) tetraploid 

metaphase spread; under oil with lOOX objective. B) octaploid metaphase 

spread; lOOX objective. C) mixoploid complements. 40X objective. 2D) 

Metaphase spread of a 2-cell multi-nucleated parthenogenote containing 3 nuclei 

consisting of haploid, diploid and tetraploid nuclei; 40X objective. 





FIGURE 6-3. Detection of mRNAs encoding IGFBPs in parthenogenetic bovine 

embryos by RT-PCR. Lanes are (L) ladder (bands from top to bottom: 516i506 

bp, 394bp, 344 bp, 298 bp, 2201200 bp, 154142 bp), (IS) represent IGFBPs 1- 

6. Transcripts encoding IGFBP -2, -3, -4 and 5 were detected. mRNAs encoding 

IGFBP-1 and -6 were not detected in any preattachment embryo stage, however 

a smaller than expected PCR arnplicon was detected for IGFBP-6 in all embryo 

samples. 





FIGURE 64 .  Release of IGF-II from preattachment bovine IVF blastocyst and 

parthenogenetic blastocysts. over 24 h into serumfree medium. Following the 

extraction of binding proteins IGF levels were measured by RIA. Significantly 

greater levels (gw0.05) of IGF-ll release was detected from IVF embryos 

compared to parthenogenetic embryos. IGF-I release was below the detectable 

level of the assay. 



IVF Parth 
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6.4 DISCUSSION 

Bovine parthenogenetic embryos contain genetic material derived only 

from the maternal parent (Surani. 1994). These embryos are useful for 

determining genes that are imprinted, if the silenced allele is from the maternal 

parent. IGF-II is believed to be an example of a gene that undergoes such 

imprinting (DeChiara et al., 1991). RIA results suggest that IGF-ll release is 

significantly less fmm parthenogenetic than from fertilized blastocysts. 

Parthenogenetic embryos display a reduced cell number compared to fertilized 

embryos at the blastocyst stage. The reduction is about half the cell number 

found in normal blastocysts (Du et a/., 1996; data not shown). The results 

presented are applied on a per embryo basis and thus variations in IGF release 

may be reduced if the data were subjected to per cell analysis. However, if 

corrected for cell number the amount of IGF-II released by parthenogenetic 

embryos would still be half the amount released by fertilized blastocysts. In 

conclusion parthenogenetic embryos release less IGF-II then IVMF embryos. 

The fact that parthenogenetic embryos release any IGF-ll is of interest. If 

imprinting influences gene expression (Rappolee et a/., 1992), it is possible that 

the IGF-II released is the result of a leaky imprint that allows the production of a 

few copies of mRNA, aberrant gene expression due to chromosomal ploidy or 

may be due to the release of membrane bound IGF-ll from embryos 

accumulated during IVC. Alternatively, the IGF-ll gene may not utilize the imprint 
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until later stages of embryo development (Latham et al., 1994), or the lower IGF- 

II release is the result of lower overall transcription in less healthy 

parthenogenetic embryos. 

The pattern of expression of IGFBP mRNA determined for the 

parthenogenotes was identical to that found for IVMF embryos. This suggests 

that none of the IGFBPs expressed are silenced at the maternal allele by 

imprinting, at least at the transcript level. 

This study employed parthenogenetic bovine embryos primarily to 

contrast parthenogenotes and fertilized embryos. However, analysis of 

chromosomal complements of parthenogenotes demonstrated that expected 

diploid chromosomal ploidys are not often observed. Nevertheless, these 

embryos were still of use to provide an initial analysis of IGFBP mRNAs and IGF- 

II release. The majority of parthenogenotes displayed polyploid and mixoploid 

chromosomal complements. A high proportion of parthenogenetically activated 

bovine oocytes cleave following activation with ethanol or ionomycin and 

diploidization with cytochalasin or DMAP treatments. The cleavage frequency 

was highest when ethanol activation was combined with DMAP treatment but no 

difference in development to the blastocyst stage was observed. The application 

of diploidization treatment clearly influenced cleavage and development to the 

blastocyst stage since oocyte activation alone resulted in reduced cleavage 

frequency and no development to the blastocyst stage. All three oocyte 



129 

activation and diploidization treatments were linked to high ffequencies of 

abnormal chromosomal complements. Although higher proportions of oocytes 

activated alone displayed an expected (haploid) chromosomal complement at 

the 2-cell stage, multi-nucleated cells were observed and development was not 

supported to the blastocyst stage in these groups. The results suggest that 

haploid oocytes display a reduced developmental capacity and that although the 

diploidization treatments, in part, restore this developmental capacity they also 

result in the establishment of abnormal chromosomal complements. 

Total cell numbers for parthenogenetic blastocysts are reported to be 

substantially lower than those for fertilized (IVF) blastocysts (Du et a/., 1996; de 

la Fuente personnel communication); however, the ratios of trophectoderm to 

total cell number may be similar for both embryo types suggesting that 

parthenogenetic embryos are delayed in their developmental program. The 

appearance of multinucleated blastomeres are reported in bovine 

parthenogenotes (Plante and King, 1996) and in fertilized human zygotes (Hardy 

et al., 1993). These cells may arise by either cell fusion, nuclear amitotic splitting 

or acytokinesis (Hardy et el., 1993). A clear significance of these cells on 

developmental fate is not resolved, but it seems apparent that their presence is 

associated with reduced embryo viability. 

A spontaneous oocyte activation rate of as high as 46% has been 

previously reported by King et al., (1988) and Minamihashi et a/.. (1993) for 
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bovine cultured oocytes and of these 74.4% were haploid displaying low rates of 

development to the blastocyst stage (Plante and King, 7996). Artlcial activation 

of bovine oocytes by ethanol (Fukui et a!., 1992; Minamihashi et al., 1993) or 

ionornycin (Susko-Panish et a/., 1994; Hagemann et a/.. 1995) is reported to 

increase the levels of oocyte activation. When coupled with diploidization 

treatments rates of development to the blastocyst stage are increased (Fukui et 

ai., 1992; Minarnihashi et ai., 1993; Susko-Pamsh et a/., 1994). There are some 

reports of limited viability of parthenogenetic bovine blastocysts following embryo 

transfer as determined by a delay in return to estrous (Fukui et a/., 1992; Susko- 

Parrish et al., 1994). Studies employing chimeric embryos produced by 

combining parthenogenetic and normal embryonic blastorneres have shown that 

parthenogenetic cells can differentiate into precursors of all cell lineages 

(Stevens et a!., 1978; Nagy et a/., 1989). 

Oocyte activation by ethanol or ionomycin treatment is likely mediated by 

stimulating transient Ca" currents that mimic those created by the spermatozoa 

(Collas et a!., 1993; Swann and Ozil. 1994). This induction of Ca" fluxes 

promotes the resumption of meiosis and extrusion of the second polar body but 

not pronuclear formation (Susko-Panish et a/., 1994). Treatment with a 

diploidization agent is required to suppress second polar body extrusion 

(cytochalasin treatment) or inhibit the second reduction division so karyokinesis 

does not occur (DMAP) (Kubiak et a/., 1991; Fukui et a/., 1992; Rime et a/., 
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1989; Szollosi et a/., 1991 ; Susko-Parrish et al., 1994). Both of these treatment 

regimes are effective at stimulating oocyte activation. initiation of early cleavage 

divisions and development to the blastocyst stage. However, our results clearly 

suggest that the majority of parthenogenetic bovine embryos produced by these 

procedures do not develop diploid chromosomal complements. This result has 

important implications for Mure genetic analysis of bovine parthenogenetic 

embryos and may also provide some insight into the limited developmental 

potential obsenred for these embryos following embryo transfer. Fukui et a/. 

(1 992) reported that of 13 parthenogenetic morulae/blastocysts analyzed only 1 

displayed a diploid chromosomal complement. 

This high frequency of chromosomal abnormalities in the bovine 

parthenogenote appears to be at variance with the mouse parthenogenote. 

Balakier and Farkowski (1 976) investigated the production of parthenogenetic 

mouse embryos by applying heat shock oocyte activation and cytochalasin B 

diploidization. They reported that all of the 15 analyzed murine parthenogenotes 

displayed a diploid chromosomal complement. Up to 95% of activated murine 

oocytes cleave and up 86% of oocytes can proceed to the morulae/blastocyst 

stages (Cuthbertson, 1983). Although aneuploidy was noted in up to 18.896 of 

ethanol activated murine oocytes (Kaufman, 1982) it seems clear that the 

percentage of diploid parthenogenetic murine embryos is much greater than that 

for bovine parthenogenotes. 
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Insight into the origin of these species differences may be provided by 

examining the role of the fertilizing sperm in regulating the initial cleavages. 

Schatten et al. (1991) showed that the centrosome is maternally inherited from 

cytoplasmic sites in parthenogenetic murine embryos. A different pattern has 

emerged for the cow, suggesting that the sperm and therefore a paternal factor 

is responsible for centrosome formation in this species and perhaps also the 

human (Navara et el., 1 994). Fertilized bovine oocytes display microtubule 

arrays that form an aster associated with the penetrated sperm head (Long et 

al., 1993; Navara et ab, 1994). While parthenogenetically activated bovine 

oocytes display a disorganized microtubuk pattern (Navara et a/., 1994) that 

may provide a basis for the origin of the abnormal chromosomal complements. 

Furthermore, chromosomal complement appears to have an important 

influence on developmental rate. Henery and Kaufman (1992) reported that 

haploid murine parthenogenotes displayed a longer mitotic doubling time than 

diploid parthenogenotes or fertilized zygotes. Kawarsky et a/., (1 996) observed a 

similar phenomenon for in vitm fertilized bovine zygotes with haploid and 

polyploid embryos displaying slower rates of development than mixoploid and 

diploid embryos. Plante and King (1 996) reported abnormal morphology and low 

cell numbers in parthenogenetic bovine embryos arising from spontaneously 

activated "aged" oocytes. 

Oocyte maturation is regulated by maturation promoting factor MPF 
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(Vande Woude, 1994; Colledge et a/.. 1994; Hashimoto et el., 1994). C-rnos is 

involved in MPF regulation and recent results provided by gene "knockoutt' 

studies for c-mos suggest that inactivation of the c-mos gene product results in 

spontaneous oocyte activation (Cdledge et a/.. 1994; Hashimoto et a!., 1994). 

MPF is a heterodimer of cyclin B and cyclindependent-kinase p34-. 

Inactivation of MPF is prevented by cytostatic factor CSF. Therefore. CSF 

maintains MPF activity arresting the oocyte in metaphase MII. MPF and CSF 

activities are lost following fertilization or parthenogenetic activation (Zernicka- 

Goetzm et a/.. 1995). Metaphase II arrested oocytes fused to 

parthenogenetically activated mouse eggs remain arrested while those fused to 

fertilized eggs become activated. This has clearly revealed an important 

difference between fertilized and parthenogenetically activated oocytes and 

suggests that cytoplasmic maturational events can impact upon early 

development- 

finally, parthenogenetic activation is commonly employed to provide 

oocyte recipients for nuclear transplantation experiments (Du et a/., 1995; Stice 

et a/., 1996; Campbell et a/.. 1996). It is thus important to characterize any 

influence of oocyte activation on oocyte and embryo viability. As the possible 

research applications for the parthenogenetic model continue to increase it is 

essential to investigate the possible variation from normal genetic and molecular 

mechanisms that artificial oocyte activation procedures may place on the 
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ensuing embryos. Future studies utilizing bovine parthenogenetic embryos 

produced by these standard methods should consider the impact of 

chromosomal complement on experimental outcomes. Our results may 

contribute to an understanding of the processes that underlie the reduced 

development of bovine parthenogenotes in vitm and following embryo transfer. 

In addition they highlight a possible difference between mouse and bovine 

oocytes in terms of their capacity to independently support their early 

developmental programs. 
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CHAPTER 7 CONCLUSIONS WITH GENERAL DISCUSSION 

The overall objective of my study was to characterize the expression of 

mRNAs and polypeptides encoding lGF BPS in bovine primary oviductal cultures 

and preattachment embryos. The results were extended to include an analysis of 

IGFBP mRNA expression and IGF-ll release from parthenogenetic embryos, in 

order to examine the contribution of the female genome to the production of 

these components of the IGF system. The study of parthenogenetic embryos 

included a complete analysis of chromosomal complements of parthenogenetic 

embryos following three standard artificial activation and diploidization methods. 

The results of these studies can be summarized as follows: 

1) Development of bovine embryos to the blastocyst stage is dependent on 

the culture environment. Embryo co-culture on bovine oviductal cell vesicles 

(21.5 & 1.2%) vs no cells (3.3 * 1.4%) significantly increased development of 

blastocysts. These results suggest that the oviduct cells condition the culture to 

provide a suitable environment for supporting early bovine development. 

2) Detectable levels of immunoreactive IGF-l and IGF-II are released from 

primary bovine oviduct cell cultures, and IGF-II detectable levels are released 

from bovine blastocysts. This result confirms the presence of both IGF-I and IGF- 

II in the co-culture environment. The release of IGF-II from bovine blastocysts 
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suggests that the embryo may release IGF-ll in support of development in an 

autocrine fashion. 

3) Bovine oviduct monolayer and vesicle cultures both express transcripts 

encoding IGFBPs 2-5 throughout an &day culture interval. In contrast, IVMF 

bovine zygotes express mRNAs encoding IGFBPs 2-4 through to the blastocyst 

stage. mRNAs encoding IGFBP-5 were detected in bovine blastocysts while 

transcripts encoding IGFBP-1 and IGFBP -6 were not detected. 

4) Bovine oviduct monolayer and vesicle cultures both produce and release 

IGFBPs 2-5 into conditioned media. 

5) Parthenogenetic bovine blastocysts express mRNAs encoding IGFBPs 2- 

5, in an identical fashion displayed by IVMF bovine blastocysts. This IGFBP 

expression pattern suggests that the IGFBPs maternal alleles are active and not 

subjected to genomic imprinting during the preattachment development period. 

IGF-I I released from parthenogenetic embryos is sig n+cantly lower then IVMF 

embryos. 

The detection of IGF-I, IGF-ll and IGFBPs 2-5 in the culture environment 

are important findings because they suggest that IGF paracrine and autocrine 

regulatory circuits are present and may contribute to the events that regulate 



137 

early development (Figure 7-1). i h e  next step is to measure the direct influences 

of these ligands on early development and determine the IGFIIGFBP dynamics 

that oversee their actions. Therefore. the analysis of such a culture system is far 

from complete by this study of the lGFs alone. The progression towards a 

chemically defined cukure system forces the focus of investigation onto 

determining the factors necessary to support the early developmental program. 

Our knowledge of bovine embryo culture is enhanced by characterizing 

the IGF circul as a possible molecular mechanism supporting bovine 

development in vitm. The majority of research on preimplantation embryos has 

involved the mouse. Early development in the mouse is not representative of all 

mammals and species differences exist between mouse, cow and human. One 

advantage of the mouse system is the ease of housing and attaining early 

embryos from such a small mammal. Human embryos cannot by utilized for 

research because of ethical concerns. For these reasons bovine embryos 

produced in vitm from slaughter house materials represents a valuable source of 

early embryos. The ability to produce bovine embryos effectively allows the study 

of early developmental events. Current research is directed towards producing 

chemically defined conditions capable of supporting bovine embryo 

development. In my study the detection of IGF-I, IGF-ll and IGFBPs in our in 

vitro system suggests that the IGF family of growth factors should be included in 

defined media for optimal embryo production. Improving our ability to produce 
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bovine embryos will advance basic research involving embryonic gene 

expression and regulation, leading to both greater success in the commercial 

application of embryo transfer, and uncovering some of the mystery that still 

exists regarding human infertility. 

In conclusion the detection of IGF-I, IGF-II and IGFBPs 2-5 in the cow 

culture environment strongly supports the prescence of a paracrine IGF circuit 

existing between the maternal oviduct cells and the developing embryo. The 

release of IGF-11, and the detection of IGFBPs 2-5 mRNA in the bovine embryo 

suggests that lGFs are contributing to the developmental regulation of embryos 

in an autocrine fashion. 



FIGURE 7-1 A schematic representation of putative paracrine IGF interactions 

between primary oviductal celk and developing bovine embryos. 
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