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Abstract 

In this work, two control strategies that include model-based kiction compensation are 

introduced. These strategies are usefid for eliminating steady state error and stick-slip 

motion in precision control problems at low velocity. The state variable fkiction model 

used for compensation is found to capture frictional lag, the Stribeck effkct, presiiding 

displacement, and stick-slip motion, The first control strategy uses a fiction observer 

whose state estimation error converges to zero. It was found to be accurate but slow. A 

second control strategy is developed to d o w  fsster error dynamics. In this strategy, a more 

complex dynamic feedback is introduced. The theoretical properties of both contro11e.m are 

investigated and verified experimentally. These model-based friction compensation schemes 

are shown to be superior to standard PD controUers in low-velocity regimes- 
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Chapter 1 

Introduction 

Fkiction is a phenomenon that is not yet thoroughly understood. However, un- 

derstanding and compensating for its effects becomes very important in precision control 

problems; particularly when velocity is low or there are velocity reversals. With propor- 

tional and derivative feedback control, unmodeled nonlinear fiction effects can lead to 

steady state errors and stick-slip motion. Integral action can reduce steady state error, but 

with friction, it can also induce limit cycles or hunting [25]. An alternative is to employ 

Ection compensation within the control law to "cancel" nonlinear friction effects. This 

requires an accurate model of the friction forces present in the mechanical system [8]. 

Classical linear fiction modela have traditionally been used by the controls com- 

munity. Among these models are Coulomb (kinetic) fiiction, which is independent of veloc- 

ity; viscous friction, which arises in lubricated systems and is proportional to velocity; and 

static friction, which is the friction force at zero velocity, and is known to be greater than 

kinetic fiction. Combinations of these three fiction types are usually used by control en- 

gineers, often with PD or PID control. The classical fkiction models are adequate for many 

applications, but do not capture the nonlinear nature of friction neat zero velocity. Thus 

tribologists and control engineera are motivated to develop nonlinear models for friction. A 

state variable Kction model is proposed in [7] for the purposes of fiction compensation. 

The purpose of this work is to study model-based friction compensation in simple 

positioning and tracking problems, using the state Mdable friction model from (71. Exper- 

iments are conducted using a high precision tracking device, with one degree of heedom. 

The simplicity of the test equipment allows us to isolate fiction effects. 

The overall value of fiction compensation for high-precision tracking will be ex- 



amined in this thesis. Theory indicates that, with a good model for fkiction, model-based 

compensation can eliminate tracking ermrs and result in a stable, smooth performance- 

However, experimental implementation will determine how friction compensation performs 

with an inexact model, and in the presence of disturbances. Two model-based fiiction 

compensation controllers will be tested. The first was proposed in [7]. The second is devel- 

oped here. Both combine proportional and derivative control with friction compensation, 

which is achieved via dynamic output feedback. The performance of each will be assessed 

in comparison to that of a hear PD feedback controller. Experimental results should in- 

dicate whether these controllers are practical, and if they are preferable to standard linear 

feedback techniques, 

Chapter 2 includes a discussion of known fiiction characteristics, and reviews some 

Mction models and compensation techniques used by the controls community. Chapter 3 

describes the experimental apparatus. Chapter 4 reviews the state vatiable Kction model 

of [7], discussing the properties of the model, and the friction characteristics it captures. 

Chapter 5 outlines the off-line model identification techniques used with the experimental 

servo apparatus. Results are presented to validate the adopted model. Chapters 6 and 7 

introduce two model-based friction compensation controllers, and present experimental re- 

sults for tracking and positioning. In Chapter 6 the control strategy of [7] is presented, and 

experimental issues pertaining to friction compensation on the servo sys tem are discussed. 

The controller of [7] is compared to a PD controller, which is introduced as a baseline exper- 

iment. Finally, in chapter 7 a new dynamic feedback control law with friction compensation 

is developed for a more general class of systems. An explicit controller is derived for the ex- 

perimental sew0 apparatus, and tested in positioning and tracking tasks. The performance 

of the new dynamic feedback controller is compared to that of a PD controller, and to the 

fiiction compensation control strategy of [?I. 



Chapter 2 

Friction, Models, and 

Cornpensat ion Techniques 

In 1994, B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit published a 

comprehensive survey of kiction models, analysis tools and friction compensation tecbniqua 

as applied to control systems [4]. This was apparently the 6rst survey of its kind, and 

the authors combined information about fiiction frcrm the fields of tribolagy, lubrication 

engineering, physics, acoustics, and control systems engineering. The publication begins 

with a discussion of fiiction characteristics, then surveys studies of 6ciction dynamics over 

the past 50 years, focusing on control systems applications. 

Since the survey of Armstrong-Helouvry e t  al. was published, further studies have 

emerged that tackle the issue of friction compensation in control systems. Techniques for 

parameter identification have been introduced, and new models for Ection compensation 

proposed. This chapter outlines some of the concepts discussed by Armstrong-Helouvry et 

al. including: characteristics of frictional behaviour fiom the perspective of tribology; a 

brief history of friction models; and some compensation techniques for friction in control 

systems. In addition, it includes a survey of recent fiction compensation techniques as 

applied to high precision control and tracking problems. 

2.1 Friction and Friction Models 

Friction has been studied in one form or another for centuries. One of the early 

recorded studies of the subject was done by Leonardo Da Viici during the fifteenth cen- 



tury. Classical models for Mction have been devised to predict its most notable behaviour. 

Coulomb's model captures a force independent of velocity, but proportional to normal load. 

This model is often referred to as kinetic Ection. Static fiction, which prevents slipping 

at zero velocity, has also been modeled as propottional to normal load. l3aditionally, the 

Ection coefiicient for static fiction, ps, is higher than that of kinetic fiction, p t  Viscous 

friction, another classical model, is proportional to velocity and notably goes to zero when 

motion stops. 

The hear nature of Coulomb and viscous friction models makes them an attractive 

choice for many engineering problems. Often, the simple linear model for viscous friction 

will suffice. The most common model for friction used in engineering applications is a 

combination of static friction, coulomb (kinetic) fiction, and viscous fiction [4]. However, 

nonlinearities exist in the friction-velocity relationship. In recent years, the source of these 

nodinearities has been explored and attempts have been made to account for them in 

fiction models. 

Tkibology is the study of rubbing contact surfaces. Research in this area has done 

much to broaden the understanding of the mechanisms of fiction. Tkibology studies have 

usually been motivated by the need to reduce wear in machines, thereby prolonging machine 

life. However, a theoretically motivated model for friction, arising from tribology studies, 

would have wide applications in control theory. 

The mechanisms of fkiction can best be described by considering rubbing s h c e s  

on the microscopic level. All surfaces, even those that appear to be smooth, have tiny 

asperities. Contact between the two surfaces occurs where asperities come together [4]. 

There is a degree of deformation of these asperities under load [4], and Kction is a funetion 

of shear strength at  the asperity junctions. This motivates the need for lubrication to reduce 

friction forces. A fluid lubricant will form a barrier between surfaces, supporting the load. 

The shear strength of a fluid depends on its viscosity, but is generally much Iower than that 

of a solid. Hence fiction is reduced. 

Armsttong-Helouvry et a1. present a lengthy discussion of the four dynamic 

regimes of friction within a lubricated system. These four regimes are: static friction; 

boundary lubrication; partial fluid lubrication; and full fluid lubrication. During the static 

friction phase, no sliding occurs and force is entirely a result of interaction between surface 

asperities. In the boundary lubrication regime, sliding begins and some fluid is drawn into 

the contact area. At this point, the fluid layer is thinner than the height of the asperities, 



and does not support any part of the load. Thus the source of fkiction remains metal-on- 

metal contact. The thud regime is partial fluid lubrication, in which the layer of Lubricant 

between the opposing sudaces thickens with increased speed. As this layer becomes thick-, 

pockets of fluid begin to share the load with the asperities, which usually means a drop in 

fiction. The ha1 regime is Cull fluid lubrication in which the fidl load is supported by a 

fluid layer and viscous &&ion dominates. It should be noted that in systems that are not 

lubricated, oxide films will form on the s h e  of steel and other engineering materials to 

produce a boundary layer [4]. 

Static fiction occurs when the relative velocity between opposing Surfaces is zero, 

so it is not a consequence of sliding. As a tangential load is applied to the contacts, 

the asperity junctions deform both elastically and plastically [4]. The elastic deformation 

implies that, for small movements, the asperity junctions exhibit springlike behaviour. The 

range of motion of this elastic deformation before sliding occurs is classified as presliding 

displacement. As in a spring, the force induced by the presliding displacement (static 

friction) is approximately linear with respect to the defiection s [3]. The relationship is 

governed by Fs = Kx, where K is the s t f iess  of the asperity junction. The magnitude of 

presliding displacement is minute; deflections of 2-5 microns have been measured in steel 

[3]. Presliding displacement has become important to the controls community. A number 

of models have been introduced that account for the spring-like behaviour of the asperity 

junctions at the onset of motion [9]. The h t  of these was proposed by Dahl in 1968, based 

on observations of small rotations of ball bearings [4]. The spring-like behaviour associated 

with presliding displacement is refmed to as the Dahl effeet [3]. The asperity junctions will 

deflect until the applied force exceeds the break-away force and sliding begins. 

Consider the sLiding mass in figure 2.1. The mass is subject to an applied force, 

produced by a spring deflecting at a constant rate, u. The force applied by the spring 

increases linearly with time until it exceeds the break-away force and the mass slides. When 

sliding commences, there is a drop in friction force, velocity increases and viscous friction 

rises. Furthermore, the spring relaxes and the applied force decreases. The mass slows to 

a stop, and the cycle begins again. This type of motion is c1assSed as stick-slip. For a 

constant rate of spring deflection, v ,  the stick-slip motion is a stable limit cycle [4]. Stick- 

slip motion is a result of many contributing fridion factors including: stiction or static 

fkiction; rising static friction; and the Stribeck effect. 

Studies indicate that the break-away force can increase when the rate of change 



Figure 2.1: Mass-Spring system. The applied force on the mass increases at a constant rate. 

of the applied force is decreased [7]. This phenomenon, known as rising static friction, has 

also been attributed to an increase in dwell time, or time spent "stuck" [4]. In either case, 

the break-away force will vary up to a maximum value, which is static friction for the mass 

when it has been at rest for a prolonged period of time. 

Another characteristic of frictional behaviour is the tendency for fiction to drop 

shortly aRer sliding begins. This effkct is known as the Stribeck effect. The generalized 

S tribeck curve, figure 2.2, displays what is widely accepted as the shape of the steady-state 

Eriaion-velocity curve (c.f. [3], [9], [ll]). It is often used to illustrate the four dynamic 

regimes. The S tribeck effect, shown in region B of figure 2.2, occurs during the period of 

partial fluid lubrication. At this time, some of the load is taken up by the fluid layer, which 

has a Iower shear strength than the asperity junctions and reduces fkiction. This drop in 

friction can have destabilizing effects in control applications and can lead to limit cycling 

or unstable responses [9]. The general shape of the Stribeck curve clearly indicates the 

dependence of fiction upon velocity. It should be noted that the Stribeck curve is a plot 

of steady state fiiction versus velocity and does not display transient behaviour. 

Stick-slip motion can destabilize a control system. Haessig and Friedland simulated 

a series of different friction models to see how they represent stick-slip motion [ll]. They 

define static Ection to be greater than friction during slip, and account for the fact that 

static friction is a function of position. The spring of figure 2.1 is a physical realization 

of a proportional controller. Adding a dash-pot includes damping in the system, which 

corresponds to a PD controller. Dupont determined that for systems with friction Iinearized 



Figure 2.2: Generaked Stribeck curve, F& versus velocity 

about a velocity I(), stick-slip can be eliminated by stiffer control [9]. 

In addition to stick-slip behaviour, many systems exhibit fictional memory. This 

is prevalent in the partial boundary lubrication regime. It implies that there is a Lag between 

a change in velocity, and a response to that change in friction force. Dupont noted that 

friction is dependent on the history of motion [9]. Similar observations have been made by 

Rice and Ruina (221. Kctionai memory delays the onset of the drop in friction described 

as the Stribeck effect- 

Hess and Soom [12] conducted various experiments to examine friction under un- 

steady sliding velocities in %o-stick" motion. Their experiments use different normal loads 

and lubricants with oscillating velocity above the critical velocity for sticking. The fke- 

quency of the velocity oscillations is varied to study the effect on the friction co&cient. 

Their experimental results show evidence of fictional memory. A hysteresis loop is observed 

in the curve of friction coefficient versus velocity. The bigher the hquency, the wider the 

loop. They attribute this behaviour to changes in frietion lagging a change in velocity. Hess 

and Soom propose that modeling this lag a a constant time lag, captures this phenomenon. 

It is dif3icult to derive an analytical model that captures all friction behaviour for 

all regimes. A number of fiction models have been proposed to capture s p d c  properties, 

at least under a restricted range of conditions. The Dahl model depicts fiction as a stifF 

nonlinear spring [4], the form of which is, fmm [7], 



where v represents sliding velocity, Fc represents Coulomb Ection and oo represents spring 

stifhess. fictional memory is captured by the Dahl model but the only steady state 

characteristic predicted is Coulomb tiiction, which is independent of velocity. Extensions 

of the Dahl model have since been proposed. One such model is introduced by Canudas de 

Wit, Olssen, Astr6m and Lischinksy for control applications (71. It extends the Dahl model 

to capture the dependence of steady state Kdion on velocity: the Stribeck effect. This 

model will be explored in more depth in subsequent chapters. 

Hess and Soom propose a model that indudes a pure time lag to capture the 

phenomenon of hictional memory [12]. Their model is largely dependent on s&e material, 

and lubricant properties [4]. An alternative type is the state variable model, which includes 

an internal "state" describing the behaviour of the contact surface. State variable models 

have been proposed by members of the rock community [22] to capture the mechanisms of 

slip as applied to movements in the earth's crust. Rice and Ruina discuss the behaviour of 

their state variable model in experiments on stidr-slip motion [22]. The state variable model 

outlines a relationship between the shear force opposing sliding and the sliding velocity- The 

shear force depends on the "state" which depends on slip history [22]. The model, in general, 

reflects a dependence on instantaneous velocity and on prior velocity. It appears that the 

internal state evolves, via exponential decay, to a value dependent only on the current 

velocity. This implies that the the "staten tends toward a steady state value, delayed by 

transient &eets, which are dependent on slip history [22]. The Dahl model is an example 

of a state variable model, as is the model of Canudas de Wit et aL 

Deriving a model for steady-state fiiction as a function of velocity is also important. 

This relationship generates the generaiizeci Stribeck curve, the shape of which will vary with 

Loading and lubrication properties- Fkom papers surveyed in [4], a steady state fiction model 

of the form 

is presented, where Fs represents the maximum level of static friction, Fc represents the 

minimum level of Coulomb friction, Fu represents the viscous ikiction coacient, and v,, 6 

are empirical values. The viscous term was added by the authors. 



Armstrong-Helouvry proposes a seven parameter general friction model that cap 

tures several Merent Kction phenomena [4]. This model is actually a composite of two 

different models. The first represents non-sliding characteristics such as stiction and pres- 

liding displacement. The other captures sliding characteristics such as the Stribeck &kt; 

Coulomb and viscous ftiction; and frictional memory. A full description of the model and 

the parameter ranges is presented in [4]. 

It should be noted that in mechanical systems, contributions to the total fiction 

are made by various different mechanisms. 7hnsmission eiements are often the dominant 

contributors [9]. It is usually impossible to isolate the contributions made &om each ele- 

ment so Ection models are identified to encompass the total friction within the mechanical 

system. 

2.2 Cornpensat ion Techniques 

The control community uses friction studies to predict when slip will occur, to 

predict and compensate for stick-slip motion, and to compensate for fi-iction and reduce 

steady-state error in positioning and tracking applications. This knowledge has been applied 

to studies of robotic manipulators (c-f. [3], [2], [8], [6]). In these cases, fiict ion compensation 

is used for precise motion control. Other applications include servcwalve control [lo], AC 

servo motor position control [15], and high precision positioning tables [18]. 

The literature available on fkiction compensation and control systems is vast. Re- 

search in the area covers a wide range of mechanisms, control tasks, friction models, analysis 

techniquea and compensation techniques. Armstrong-Helouvry et al. condense this exten- 

sive body of work, and discuss widely-used compensation techniques as applied to control 

systems [4]. Four types of control tasks in which fkiction compensation is useful include: 

the regulator, tracking with velocity reversals, tracking at low velocities, and high speed 

tracking. Some methods of fiction compensation include: high gain PD and PID feedback, 

dither, impulsive control, and model-based friction compensation. 

At this time, both PD and PID feedback control are widely used in industrial 

applications (c.f. [18], [4], (91). These controllers are relatively simple to implement, and 

assume a linear system model. A PD controller is known to exhibit stable behaviour in 

point-to-point positioning and tracking, but may result in a large steady state error [24]. In 

tracking problems, if the feedback gains are too low, PD control may also result in stick-dip 



motion [9]. This can be elimiaated by increasing the damping and s t i fbess  in the system 

[9]. Unfortunately, studies have noted osciUatory motion associated with high proportional 

gain in real systems [I]. Integral control is generally used to reduce steady state error 

in positioning, but is not effective in tracking problems [la]. In addition, limit cycles, or 

hunting, can arise due to stiction & k t s  [24], [25]. 

Stiction effects can be reduced with dither or impulsive control [25]. Dither involves 

the addition of a high frequency signal to the control input, which is introduced to modify 

system behaviour. This method can prevent the system fkom entering the static fiction 

regime. However, the motion never actually stops, and wear may be accelerated [25]. 

Alternatively, static fiction may be overcome by impulsive control, wherein a series of high 

magnitude impulses, of very short duration, are applied to a system at rest. Implicit in this 

method is the requirement that system be in the "stuckn phase when the pulse is applied 

[4]. Here the i m p b  themselves carry out the desired motion, and must be calibrated 

accordingly [4]. An example of impulsive control was presented by Yang and Tomizuka 

[25]. They experiment with an adaptive pulse width controller for precise point-tepoint 

positioning. The method of [25] is a variable structure control. The pulse width controller is 

designed for £he motion control only, and a conventional controller is used for coarse control. 

Impulsive control was also employed by Armstrong-Helouvry [3] in the control of a PUMA 
robot arm. There it is used in combination with feedforward control and position-dependent 

fiction compensation. 

An alternative method of compensation is to "cancel" friction forces. With model- 

based friction compensation, a term is added to the control law that applies a force equal and 

opposite to the iiiction within a system [4]. This requires accurate knowledge of system 

friction [a]. An appropriate model can be identified off-line, prior to use, or on-line, by 

adaptive means. The primary differences in model-based friction compensation techniques 

are found in the source of velocity used to compute friction, and in the complexity of the 

friction model [4]. All studies surveyed by Armstrong-Helouvry et d include a component 

of Codomb fiiction in the model. 

When on-line identification is employed during friction compensation, the result 

is adaptive control [4]. One example is suggested by Canudas de Wit et a&. [B], where a 

model that captures static, Coulomb, and viscous friction, as well as the Stribeck effect, 

is introduced. Here, adaptive fkiction compensation is used in the control of a robot ma- 

nipulator. Canudas de Wit et ul. actually employ a combination of on-line and off-line 



identification, Preidentification is used to identify constant values for mass and moment of 

inertia to simplify on-line computations. A similar example of adaptive control is found in 

[MI, where it is used for precise control of a positioning table. Here, the model for fiction 

is discontinuous and includes static and Coulomb fiction. The structure of the control law 

combines proportional and derivative control with inertial and fiction compensation. Ex- 

perimental results show superior performance of the compensated system, when compared 

to PD control. 

Although on-line identification detects variations in the fkiction force, it add com- 

plexity in implementation [4]. An alternative is ked Kction compensation, based on a 

model that has been identified by off-line methods. Off-line identification determines param- 

eter values using data collected from the experimental open-loop response of the mechanical 

system. The inputs must be carefully chosen, in order to isolate different model parameters 

[4]. Difficulties arise with off-line experiments because a good estimate for acceleration may 

be needed. However, some techniques use long, steady glides, so do not require acceleration 

information [3]. Publications surveyed by Armstrong-Helouvry et at. suggest a variety of 

techniques [4]. If the parameters enter the friction model linearly, standard identification 

techniques can be applied [41. 

Bona and Indri explore fixed Ection compensation with a model that captures 

the negative slope of fiiction at low velocities, but is simply Coulomb fkiction at higher 

velocities [6]. Their primary interest is in maintaining stability when friction arises between 

the end effector of a robot manipulator and the contact surface. Their results show that 

stability can be maintained if care is taken not to over-compensate for friction in the model. 

Tataryn et al. [24] experimentally compare friction compensat ion techniques, using 

a robot manipulator. They examine modified integral action in combination with PD con- 

trol, and PD feedback with nonlinear friction compensation. Two nonlinear fridion models 

are tested; both contain static and Coulomb friction. Their results show that smooth non- 

linear compensation is more accurate in both regulator and tracking problems than integral 

action and discontinuous compensation. 

Because fiiction depends on velocity, the source velocity estimate used to compute 

the friction force is important. A natural choice is measured velocity, However, the quality 

of friction compensation is aflected by the resolution and noise of the sensors used [6]. For 

model-based fiction compensation, different combinations of linear and nonlinear friction 

models have been employed (c.f. [MI, [a], [I], [24]). Studies show that performance is 



enhanced with a more complete model [4]. 

2.2.1 A brief word about analysis and simulation 

Control systems are usually analyzed mathematically, by techniques such as phase 

plane analysis, functional analysis, and algebraic analysis [4]. Armstrong-Helouwy et al. 

discuss these techniques in [4]. In addition, valuable insight about system behaviour can 

often be gained from simulation, helping to bridge the gap between theoretical analysis and 

real system behaviour. It is also a valuable tool for validating identified models [4]. 

For discontinuous fiction models, impIementation problem can arise. Discontinu- 

ities are present in the system of difkentiai equations, which must be accounted for when 

integrating the equations. One solution is to approximate the discontinuity at zero velocity 

with a -ion of £bite slope. Another solution, proposed by Kamopp [16], models frietion 

as a function of velocity everywhere except in a neighborhood about zwu-velocity. There it 

is determined by other factors, This type of modeling can capture the multi-valued nature 

of Ection at zero velocity. 

An alternative solution is to model fiiction as a function of position at zero veloc- 

ity. The state variable models of Dahl and Canudas de Wit et ai. [7] have this property. 

Although state vaxiable models require that a stable observer be constructed for the unmea- 

surable internal state, they seem better adapted for friction compensation with low velocity 

[4]. This is the approach used in this thesis. 



Chapter 3 

Experiment a1 Apparatus 

3.1 Laboratory Hardware 

Figure 3.1: Photo of cart and track assembly 

The laboratory apparatus consists of a cart and track assembly as seen in figure 

3.1. The track, appmximately 2 rn in length, has two carts that move on recirculating ball 

bearings. A DC servo motor is comected to cart 1 by a cable and pulley system. The motor 
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Figure 3.2: Schematic diagram of hardware set-up 

contains a built-in optical encoder that measures the position of cart 1. A second encoder is 

mounted at the opposite end of the assembly. It records the position of cart 2. Wiies from 

both encoders carry position data signals to a motion controller board within a Pentium 

133 personal computer. The computer outputs a voltage signal to a PWM amplifier which 

drives the DC servo motor. This can be seen in figure 3.2. 

3.1.1 Linear Bearing System 

The cart and track assembly is a Techno/Isel Double Rail Linear Bearing System. 

The double rail is composed of two parallel hardened and ground steel shafts, 12 mm in 

diameter. The steel shafts are secured into an alnminum extrusion which acts as a frame 

holding the components together. These components make up the track. The system is 

machined and designed for high precision and low fiction. Each linear bearing is a single 

core with two circulating ball bearing circuits of 3.5 rnm diameter balls. Two bearing cores 

are mounted on a machined plate to make up one carriage or cart. 

3.1.2 DC Servo Motor 

The motor used to drive the carts is a Yaskawa Minertia J series permanent magnet 

24V DC servo motor. It is a brush type motor with terminal resistance of 10 Ohms. It has 



a built-in optical encoder with 2 channel quadrature output. The encoder has a resolution 

of 3600 quadrature counts per revolution. At 24 volts, with no load, the speed of the motor 

is 1275 rpm. 

3.2 Computer and Interface Board 

A Pentiurn 133 computer equipped with an Omnitech Robotics MC-1000 i n t h e  

board is used to compute and output the control voltage to the s m  motor. The MGlOOO 

motion controller board has an 8 bit DAC (Digital to Analog Converter), and two digital 

input channels that allow constant measurement of position data from the encoders. The 

board is also equipped with a counter that allows measurements of motor position at speeds 

up to 9000 radls. 

3.3 Software 

3.3.1 The Motor Programming Intertace - MPI 

The MPI is a series of Borland C files that provide menu driven access to motor 

control comm;mdn and an interEace of intempt driven control routines. It is able to monitor 

position sign& from the MG1000 interEace board, record data, and output control voltage 

signals as specified by a control subroutine. The MPI was written by Serge Mister for 

Mat hemat ics and Engineering Control Robotics lab in the department of Mat hematics and 

Stat istic, Queen's University. 

The control subroutine is developed by the user and requires the modification 

of only one Borland C file. The user has the freedom to declare any variables, initialize 

variables as desired, program calculations, and record data fkom any declared variable. 

The MPI may be used within a DOS or Widows environment. 

3.3.2 Velocity Estimates 

To increase nonlinear fiction, and to simplifv the mathematical model, the carts 

were locked together and behaved as one. Position data was read from the built-in the 

motor encoder, attached to cart 1. 

The velocity of the carts is estimated by 



Since position meaurements are quantized, high sampling frequency results in a noisy 

estimate for velocity. There are several ways to handle this problem. Lowering the sampiing 

fkequency reduces noise in the velocity estimate. Unfortunately, some applications require 

a high sampling fkequency, and the velocity estimate must be filtered to produce a smooth 

signal. Because of the nonlinear nature of our model, the constmction of a Leuenberger 

observer to estimate velocity is extremely difficult. 

3.3.3 Simulation Programs 

Real time simulations can be conducted with the MPI. The simulations are coded 

in Borland C and can be run as part of the MPI subroutine. Results can be plotted with 

recorded data for comparison. However, to examine the chazacteristics of an unknown, and 

possibly unstabIe, dynamical system, there are more appropriate simulation packages. 

Simulations were also conducted using Simnon/PCW 2.0, a Wiidows version pack- 

age for the simulation of the nonlinear systems. It is a product of SSPA, Gateborg, Sweden, 

with a 1995 copyright by SSPA Systems- The version is 2.01.0000/Regular, student version. 



Chapter 4 

The Friction Model 

Classical fiction models such as Coulomb and viscous friction are often used in 

control applications, but do not capture the nonlinear nature of fkiction about zero velocity. 

F'riction is not completely understood and its bebaviour changes for Werent loading and 

lubrication conditions. It would be useful to obtain an analytic model for friction that 

captures nonlinear effects, at least within a range of conditions. 

Figure 4.1: Schematic of bristle interactions. For simplicity, one set of bristles has been depicted 

as rigid. 

For low velocity, high precision positioning systems, one should consider the ef- 

fects of st ict ion, stick-slip ma tion, t he S tribeck effect, presliding displacement and frictional 



memory. Canudas de Wit, Olssen, Astr6m and Lischinsky propose a dynamic model for 

fiction in control systems that incorporates the spring-like behaviour of the Dahl &it ,  

while including the destabilizing drop in fiction of the Stribeck &ect [?I. 
Wction at low velocities is a product of contact between asperities on opposing 

surhces. It is reasonable to idealize these asperities as flexible bristles that deform as they 

interact, as in figure 4.1. When the tangential force upon the bristIes is sufliciently high, 

the bristles defiect to a degree that allows slip to occur. 

Canudas de Wit et al. propose a model that is based on the notion of bristle 

deflection (71. Denoting average bristle deflection as z, their model is 

where v is the relative sliding velocity. The total sliding friction between the surfaces is 

then given by 

F = uoz + ali  + ozu. (4-2) 

The model of equations (4.1) and (4.2) is an example of a state variable model, where z 

represents the internal state. The total friction force in equation (4.2) depends on both 

the instantaneous velocity, u, and on the state z. We note from the first term of equation 

(4.1) that z is proportional to the integral of v.  Thus the model captures the dependence 

of fiiction on the history of motion. 

One can also consider the steady state characteristics of the model. Fkom equation 

(4.1) , it can be shown that z approaches a steady state d u e  given by 

A proposed parameterization for g(u) that captures the Stribeck effect is 

where Fc represents the Coulomb fiction, and Fs the resting static fiiction. This is similar 

to the exponential model of steady state kiction discussed in (41 with 7 = 2. The character- 

istic Stribeck velocity, us, represents the velocity at  which the system changes born static 

to kinetic friction. This velocity marks the change fiom dominant metal-on-metal fiction 

to fluid lubrication, and is usually determined empirically. 

The expression for total fkiction given by (U), is composed of a nonlinear friction 

part, dependent on t, and a Linear viscous fkiction part that is proportional to sliding 



velocity. We expect the viscous friction term to be dominant at high velocities. The 

nonlinear deflection terms should contribute more for low velocities, where nodinear effects 

come into play. Nonlinear fiction is given by 

which accounts for the spring-like behaviour of friction at zero velocity, the Dahl efEect. The 

stiffness of the bristles is represented by 00 and the damping by 01. Note that uo represents 

the stifllness of the asperities, not the bulk material. 

4.1 Properties of the Model 

4.1.1 Finite Deflection 

Because z represents bristle deflection, intuition leads one to believe that z is finite. 

Property 1 Assume 0 < g(u) < a; g(v) is positiue and bounded above. If Iz(O)I < a, then 

(z(t)l 5 a v t > 0. 

Prop- 1 can be proven by Lyapunov-We analysis, the details of which can be found 

in [7]. Property 1 implies that z is bounded, assuming that g(v) is bounded and that 

z has a sufliciently small initial value. Furthermore, the maximum magnitude for z is 

no greater than that of g(u). Consider the parameterization of g(v)  fiom equation (4.3). 

CIearly, if Fs > Fc, then g(u) is decreasing for all v.  It is also evident that g(v) > 0 for 

Fs > 0, Fc > 0. Therefore, g(v) of equation (4.3) is bounded. In the case where static 

friction exceeds Coulomb Kction, i.e. Fs > F', g(v)  5 g. Then, Property 1 implies that 

iz(t)l 5 $ for all t 2 0, if Fs > Fc. 

4.1.2 Dissipativity 

One would also expect friction to dissipate energy. Canudas de Wit et aL claim 

in [7], that equations (4.1) and (4.2) describe a dissipative system. Dissipativity is best 

described in terms of system energy. In general, the rate of change of energy of any system 

is the sum of net energy input and internal energy generation. The net internal energy 

generation of a dissipative system is negative. Define the mapping: (I : u -t y, where u is 



the input and y is the output of a system. The mapping, & is prrssiue with respect to an 

energy function V, if V is loner bounded and the time derivative of V verifies 

where g( t )  2 0 and represents the internal energy change [23]. With no external input or 

output, the energy change within the system relies solely on the internal energy dissipation, 

and v < 0 for all t. Hence the internal energy in a passive system is non-increasing. 

Slotine and Li [23] define a dissipative system as one that is passive and has the 

property that 

[ g u d t  # 0 * 1 &)dt > 0. 
J 

Consider, as an example, equation 

D&e energy as V = f .  Taking 

yields 

the time derivative of V along solution cwves of (4.1) 

The input, in this case, is velocity and the output is average bristle deflection, z. Clearly V 

is bounded below by zero. From equation (4.3), we know that g(v) is positive, so $$$ 2 0 

and equation (4.1) describes a passive system. Integrating both sides &om 0 to t yields 

If equation (4.1) is dissipative, then the last term in (4.4) is strictly positive, which implies 

that lt u(r)z(r)dr > V( t )  - V(O). 

Therefore, a sufficient condition for this system to be dissipative is that 

for all z,v # O .  



Property 2 The map $J : u + z, as defied by equation (4.I) ,  is dissipative with respect to 

the function V(t) = $9 Ce., 

The proof of property 2 can also be found in [7]. 

4.2 Friction Characteristics Captured 

Canudas de Wit et al. conducted a series of simulations, using their Sction model, 

to determine whether it accurately depicts presliding displacement, fictional memory, stick- 

slip motion, and varying breakaway force (rising static friction) [7]. Their results show a 

qualitative agreement with documented experiments. 

The bending bristle interpretation of the model suggests that it predicts presliding 

displacement. The bristle model is an extension of the Dahl model, which is known to 

capture this phenomenon [?I. Simulations show that, for forces smaller than the resting 

static fiction (Fs) the bristles behave as a nonlinear spring. 

To test for frictional memory prediction, simulations were conducted in a manner 

similar to the experiments of Hess and Soom [12]. While operating outside of the stiction 

regime, hysteresis appears in the fiction-velocity c m  fat simulations of the response to 

increasing and decreasing velocity. Increased rates of acceleration and deceleration widen 

the hysteresis loop in Hess and Soom's experiments, and a similar result is predicted by the 

model from equations (4.1) and (4.2). 

Canudas de Wit et al. simulated the spring-mass system of figure 2.1 to test for 

stick-slip motion. The model predicts a cycle of sticking and sliding. Irregular behaviour in 

the friction force around the point where sliding stops is noted, and the simulated motion of 

the mass behaves as expected. Stick-slip motion simulations were then used to determine if 

the break-away force remains constant, or if it varies with the rate of change of the applied 

force. The model predicts that the break-away force decreases with an increase in force rate 

of change. This also agrees with experimental results. 

Finally, the model was used to simulate a PID feedback control regulator. It is 

well known that nonlinear fiction can lead to unstable behaviour or Limit cycling (hunting) 

when a PID controller is used (251, [24]. This is because static friction is greater than 

slip fkiction [ll]. The controller integrates the error until the control output is sd6cimt 



to overcome static fiction forces [25]. Sliding commences and the fiction drops, which 

can result in overshoot. For some PID gains, a stable Limit cyde can result. SirnuIating a 

closed-loop system with PID feedback control and their fiction model, Canudas de Wit et 

al. show that hunting results for some choices of controller gains. 

4.3 Summary  

Canudas de Wit et ab present a state variable model for friction where the internal 

state corresponds to the average deflection of bristles on opposing contact Surfaces [7]. They 

performed simulations using their model and found that it captures presliding displacement, 

frictional memory, rising static friction and stick-slip motion. Furthermore, the steady state 

fiction-velocity relationship captures the Stribeck effect. These characteristics of ficiction 

are important in control systems, for low velocity, high precision positioning and tracking. 

Thus it is a good model for use in fixed friction compensation for low velocity control. 



Chapter 5 

Model Identification 

Our model for the motion of the servo motor-cart system that was described in 

Chapter 3, is 

where u is the control voltage signal output to the motor, and the K is the motor torque 

constant. The position of the cart is represented by x and the total mass of the cart-motor 

system is denoted by rn. The total Ection force is represented by F.  The motor torque 

constant is known to be K = 0.667 N / V .  

Here, F models the fkiction within the entire mechanical system. Thus F includes 

brush and bearing ikiction in the motor, friction between bearing elements on the carts, and 

friction between the cart elements and the track. It is impossible to isolate individual sources 

of friction and model each separately. However, it has been found that a generabed model, 

when identified using empirical data, is appropriate to model the combined friction effects 

within the system [4]. Thus the parameters identified for the cart and track system model 

of equation (5.1) encompass the Gietion e fk t s  from all moving parts, and approximate the 

total Kction in the mechanical system. 

5.1 The Friction Model 

The dynamic bristle model horn [7] describes the nonlinear dynamics of Mction 

at low velocities. Equations (4.1) and (4.2) model the average bristle deflection, z, via the 



nonlinear differential equation 

and the total Wction between the sliding surfaces by 

R d  also that the steady state bristle deflection, z,,, is given by 

This f o h s  &om setting i = 0 in equation (4.1). With the parameterization for g(v) fkom 

equation (4.3), the steady state friction force can be described by 

where Fc represents Coulomb fiction, Fs represents static fiction, and us represents the 

characteristic Stribsck velocity. This means that there are 6 parameters, q, q,u2, Fs, Fc, 

and v,, to be identified for our fiction model. 

5.2 Least Squares Estimation 

Because equation (5.2) is linear in all parameters except v,, it lends itself to least 

squared error parameter estimation. Given a reasonable estimate for us, and a suitable 

number of observed values for Fs,, a preliminary estimate for the system parameters can 

be found by least squares methods. 

The aim of least squares estimation is to minimhe the sum of the squares of the 

difference between actual observations, and values calculated from a model. Ekom [5], any 

model of the form 

is a candidate for least squares estimation, where y ( t )  represents the observation at time t .  

The set (el, ..., On), is the set of unknown parameters, and is denoted by 8 in vector form. 

For each observed variable there is a corresponding regressor, q5(tlT = [&(t), ..., #n(t)]: a 



known vector containing measured experimental dues .  Given m discrete observations, a 

system of m linear equations arises, which can be expressed as the matrix equation 

Heze Y is the vector of m observed variables, and 9 is an rn x n coeficient matrix. The 

i'th row of Q, denoted t$(ti), contains the coefficients for (el, ..., 0,) corresponding to the 

observed value of y at t = ti. The n-vector 8 remains the set of parameters to be identified. 

If !DT@ is invertible, then the value of 8 that minimizes 

A proof of this well-known fact can be found in [S]. 

Recall equation (5.2) and, for simplicity, assume positive velocity. It f o b  that 

steady state friction is given by 

In vector form this can be expressed as 

where 
1 - e-(usm/us)2 Fc 

a =  ( e-(;;d2 ) ,  x =  (: ) .  

With n observed values for steady state tiiction, the column vector Fss can be constructed. 

Since Fss is a function of steady state velocity, each component of Fss corresponds to a 

particular value of us,. For F-(ti), and uSs(ti), a vector a(v&)) of coefficients exists. 

With n observed values of Fss, the matrix equation that arises is 

Fm = A%, (5-7) 

where A is an n x 3 coeflicient matrix. The the least squares estimation of x is then given 

by 



5.3 Identification Procedure 

Recall our cart-motor system model (equation (5.1)) 

It is clear &om this equation that, for steady state velocity, the acceleration term becomes 

zero, and Ku = F. Thus the steady state hiction can be determined from the constant 

voltage signal sent to the servo motor. Velocity is estimated by APosition/Atirne. 

To identify the eff'ive mass of the carts, linear viscous fkction is included in the 

system model. High velocity data was used, so as to minimize the effects due to nonlinear 

friaion. The linear system model is given by 

Of 

mu+pu = Ku, 

where v is the velocity of the carts and f l  is the viscous fiction coeflicient. T a g  the 

Laplace transform of (5.9) yields 

which is of the form 
V(s)  C -=- 
U(s) rs + 1' 

The time required for a system to achieve 95% of steady state is 37- An estimate of r can 

be obtained from the velocity response of the cart to a step input. Etom equations (5.10) 

and (5.ll), it is clear that c = KIP and r = m/P. If the magnitude of the step input is A, 

then the velocity-time graph can be fit to the curve 

For a step input, the dynamical system (5.9) will reach steady state for large t. Hence 

The steady state velocity can be approximated &om recorded data; both K and A are 

known. Therefore, can be calculated fiom equation (5.13), and mass can be determined 



with the estimate of r. A value of m = 2.0 kg was adopted for total equivalent mass in the 

servo motor-cart system. 

With our servo system, steady glides can be achieved using constant voltage signals 

ranging fiom 4V to 13.5V. The steady state velocity can be approximated &om the open- 

loop response. Twenty steady state data points were obtained £iom voltage signals in the 

necessary range. With measured values for Fss and us,, a least squares estimate for the 

parameters Fc, Fs and Q was computed using (5.8). 

It is important to note the limitations of least squares estimation for this applica- 

tion. Although steady motion is easily achieved at high vebcity, it is difEcult to realize on 

the sera, system at low velocity. Thus only high velocity data was used. The least squares 

approximation gives a good estimate for the viscous fiction coefficient, 02, which is the 

predominant source of Ection at higher velocity. However, the low velocity region of the 

steady state fiction-velocity relationship was found by extrapolat ion. Therefore, only an 

initial estimate for Fs and Fc could be obtained by this method. These parameters were 

adjusted empirically to better represent system behaviour. 

The characteristic Stribeck velocity, us, which appears in the equation (5.2), has 

a strong influence on the shape of the Stribedc curve. Fkiction changes from static to 

kinetic at v = us. The value of us depends on material and lubricant properties, and 

is usually determined empirically. A reasonable estimate for us was needed for the least 

squares estimation. The Stribeck velocity ranges from 0.00001 m/s to 0.1 m/s [4] so v, = 

0.01 m/s was used initially. Later, this value was modified to better match observed system 

behaviour. 

The least squares method provides an estimate for parameters found in the steady 

state equation for Kction. However, steady state fiction data does not yield information 

about m, which represents bristle stifbess, and 01, which is related to damping during 

friction traosients. Examining the equations of motion in the stiction regime can yield 

appropriate choices for these parameters. Within this regime, there is presliding motion 

which is governed by 

m5 = uox + uli  + c2x. 

Here 3: represents the displacement of the mass. The above equation can be linearized about 

z = 0 and 5 = 0. Within a s d  operating range of this point, the total displacement can 

be attributed to the bending of the bristles. Therefore x = z, and x = 2. It then follows 



that 

mE + (ol + a2)x + uox = 0, 

which is a damped second order system with s t f i e s s  GO, and damping (al + u2). 

Simulations were conducted by Canudas de Wit et al. [7] using a stiffness value 

of 00 = 10' N/m. Adopting this value in the model for the servo motor and cart predicts 

an open-loop response that is comparable to the actual system response. Simulations also 

indicate that smal l  variations in a0 do not a.Ei?ct the open-loop response. Hence uo = 

lo5 N/m was adopted for all experiments. 

To find a reasonable value for 01, one must consider damping in a second order 

system. Any second order spring-mass-damper system can be expressed in the tiequency 

domain as 

s2 + 2&,s + wn2, (5.15) 

where w, is the natual  frequency of the system and is the damping factor. Taking the 

Laplace transform of equation (5-14) yields 

It then follows that 

which yields wn = 250 rad/s for m = 2 kg. The choice of is somewhat arbitrary and 

determines how quickly oscillations die away with changes in the system. For < = 0.5, 

moderate damping occurs in the linearized system of (5.14), which yields = 495 Ns/m 

for u2 = 4.6 Nslm. Increasing the value of results in more damping, but tests show that 

minor variations in a0 and a1 have Little affect on the open loop response. 

Variations in Fs and Fc influence the low velocity response. These parameters 

were adjusted by cornpasing the predicted response of the nonlinear system model, to an 

actual measured response. The test inputs used were a ramp input, and an input that 

decreases with time; both exhibit the eftits of low velocity Ection, but at different stages 

in the motion. Experiments and simulations show that higher values of Fs and Fc are 

required for the model to accurately predict the response to decreasing input, than are 

required to predict the response to a ramp. Parameters were adjusted to reach a somewhat 



optimal compromise. The model cannot perfectly predict the response of the real servo 

system to all inputs. It is our hope that the model prediction can closely resemble the red 

behaviour, and capture the major effects of nonlinear fiction. 

5.4 Results and Model Validation 

The final model parameters adopted were 

The steady state fiction-velocity relationship for the adopted model is shown in figure 

5.1. The curve has the desired characteristic Stribeck shape. One might note that the 

destabilizing friction drop is small, and that viscous friction quickly becomes the dominant 

fiiction force for this model. 

Figure 5.1: Steady state €&ion versus velocity. 

The graphs in figures 5.2 to 5.3 indicate the system's open loop response to different 

inputs. The solid line, labeled "Actual System Response", shows the position of the cart 

as measured by the encoder. The two dashed lines show the simulated position of the cart 

generated by two difEerent system models. The line labeled "Linear Model Predictionn 
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Figure 5.2: Response to ramp input of u = 2t 

is the response predicted by a system model with linear fkiction; F = &. A viscous 

friction coefficient of p = 5.5 Ns/m has been identified for previous experiments with the 

servo system, and was adopted for these simulations. The line labeled "Nonlinear Model 

Predicfion" indicates the response predicted by the system model with the friction given 

by equations (4.1) and (4.2). 

The response to a ramp input is displayed in figure 5.2. The nonlinear prediction, 

unlike the linear one, follows the actual system performance closely. Here, the error in the 

nonlinear model prediction is within 10%. The linear model predicts the position of the 

cart to be more than 3 times greater than the actual position. The notable failing of the 

linear model prediction is that it exhibits no static fiiction effects. In the linear system 

simulation, motion begins as soon as a force is applied. This contradicts the behaviour of 

the real system and that of the nonlinear model prediction. 

The system response to a decreasing input was also tested. The results are shown 

in figure 5.3. As observed in previous tests, the nonlinear model predicts the real response 

with less than 10% error. At t = 1 s, the linear model prediction overestimates the cart 

position by about 100%; the error in this prediction increases with time. The position in 

both the nonlinear simdation and the actual system, tends to a constant value when the 

input is sufEcientIy low. The position in the Linear simulation does not. 
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Figure 5.3: Response to decreasing input, u = 10/(l t 2t )  

The response to a sinusoidal voltage input is represented in figure 5.4. Once again, 

the prediction of the nonlinear model is within 10% of the actual cart position, the error 

increases when the direction of motion changes- It should be noted that the actual system 

response shows a tendency to move farther to the left than to the right, under the same 

magnitude of force applied. This indicates that the Ection in the real system is direction 

dependent and is higher in the direction of positive motion. Neither simulation exhibits this 

asymmetric behaviow because the parameters of each model are constant. Nonetheless, the 

accuracy of the nonlinear model is much higher than that of the linear model which tends 

to underestimate fkiction entirely. Static fiction is clearly a significant phenomenon at low 

veloci t i a  . 
Canudas de Wit et al. tested their model to determine whether it captures fric- 

tional memory, presliding displacement and stick-slip motion. The results of similar sim- 

ulations and experiments are included here. Figure 5.5 dispiays the simulated relation- 

ship between applied force and presliding displacement of the cart. The applied force was 

ramped slowly up to approximately 1.7 N, held constant for a short period of time, was 

slowly ramped down to -1.7 N, then back up to 1.7 N. The maximum force, 1.7 N, is less 

than the identified static friction. The shape of the curve in figure 5.5 is similaz to that 

in [7], which indicates that our model predicts presliding displacement. Figure 5.6 shows 
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Figure 5.4: Response to sinusoidal input, u = 6sin(2t) 

the simulated fkiction-displacement relationship from a slightly different perspective. Here 

both the positive and negative fiction-displacement curves, horn zero initial conditions, are 

displayed- Figure 5.6 clearly indicates that the simulated presliding displacement behaves 

like a nonlinear spring. The predicted position response, as a function of time, is shown in 

figure 5.7. The maximum predicted deflection is approximately 3.2 x correspondi~g 

to the maximum applied force of approximately 1.7 N. 

It is natural to conduct similar tests with experimental hardware to determine 

whether the actual system exhibits the behaviour predicted by the model. Because we 

do not have a measured value of friction, an accurate fiction-deflection curve (similar to 

figure 5.5) cannot be displayed for the red system. However, the position response is 

shown in figure 5.8. Clearly motion is detected, despite the fact that the applied force 

does not exceed the modeled Fs. Here the encoder records a deflection of approxhnateiy 

1 mm, for an applied force of 1.7 N (figure 5.8), which is much greater than the predicted 

displacement (figure 5.7). The actual detected motion should probably be described as 

smal l  scale unsteady sliding, instead of presliding displacement, because of its magnitude. 

Thus our model may overestimate static fiction. One can aIso note from figure 5.8 that 

initially, there is no movement detected for very small applied forces. 

Simulations were also conducted to determine if our model captures frictional lag. 



Figure 5.5: The model exhibits presliding displacement for applied forces lower than F . .  

Canudas de Wit et al. compared their simulation results to the experimental results of 

Hess and Soom [12]. Similarly, input used here produced a constant amplitude velocity 

oscillation with variable frequency, u = Asin(&) m/s. Figure 5.9 shows the relationship 

between velocity and Sction force for w = 10 rad/s and w = 25 rad/s. Clearly hysteresis 

arises; the Ioop is wider for bigher frecluency. The behaviour exhibited in figure 5.9 is 

qualitatively similar to behaviour seen by Canudas de Wit et al. [?I, and by Hess and Soom 

[12]. Therefore, our model predicts frictional memory. Unfortunately, the nature of servo 

motor-cart apparatus prohibits experimental testing for mctional lag because prolonged 

unidirectional motion is required. 

Finally, the model was tested for predicting stick-slip motion- An applied force 

was generated by simulating the constant velocity deflection of a linear spring of stiffness k, 

as depicted in figure 2.1. Figwe 5.10 shows the position of the cart, z, and the displacement 

of the end of the spring, y. The results in figure 5.10 show the response of the mass to forces 

applied by a st= spring being slowly deflected; k = 20 N/m and y = 0.01 m/s. The path 

of the mass, 2, clearly indicates that stick-slip motion occurs. The position response of the 

real system, to the same input, is plotted with the predicted response in figure 5.11. Both 

exhibit stick-slip motion, although the motion of the actual system is less uniform than that 



Figure 5.6: The friction force versus presliding displacement curve indicates behaviour similar to a 

nonlinear spring. 

of the simulation. In this case, the break-away force is lower for the real system than for 

the simulation. Nevertheless, the predicted response! is very dose to that of the real system. 



Figure 5.7: Simulated open-loop position response to an oscillating ramped input that does not 

exceed the modeled static fiction, Fs. 

Figure 5.8: Actual open-loop position response to an oscillating ramped input that does not exceed 

the rnodded static friction, Fs. 



Figure 5.9: The model predicts frictional memory for oscillating velocity outside the stiction regime. 

Figure 5.10: The model predicts stick-slip motion for a constant inaeae in applied force. Here y 

represents the displacement of the end of the spring and z represents the position of the cart. 
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Figure 5.11: Simulated and real position response to a constant increase in applied force. Stick-slip 

motion appears in both the actual response and in the prediction of the model. 



5.5 Summary  

The results of this chapter clearly indicate that the nonlinear bristle S t i o n  model 

&om equations (4.1) and (4.2) better represents the fiction within the servo system than 

the linear viscous friction model. Simulations with both fiction models were compared 

to the servo system's actual response, and the predictions of the nonlinear system closely 

resemble actual behaviour. Predictions of the linear system do not include stiction effects 

and tend to underestimate the total fiction. 

The nonlinear bristle model was also tested for dynamic fiction behaviour. It 

was found to capture presliding displacement, fkictional memory, and stick-slip motion, in 

simulation. Tests for presliding displacement and stick-slip motion were also conducted on 

the experimental hardware. S d  displacements are detected for an applied force that is less 

than the identified static fkiction. The magnitude of these displacements was significantly 

larger than those predicted by the model, which may imply that the model overestimates 

static fiction. Some displacements were not detected for very small applied forces because 

of quantization in the position encoder. Results aIso indicate that stick-slip motion occurs 

in the real system, under the same conditions as predicted by the model. 

The bristle model, identified for the servo system, is not perfect. When included in 

the servo system model, the predicted response does not exactly fit the response of the real 

cart. This can be attributed to a number of causes. The interfsce between the cart and track 

is not uniform; other components that contribute to fiction forces are also non-uniform. 

Minor variations in the surface of the track, the motor brushes and bearings, and in the 

ball beatings, can lead to inconsistent tespoases of the red system. It has also been noted 

that the responses to different inputs suit different sets of parameters. In order to capture 

such behaviour, a recursive parameter identification technique for thevarying parameters 

could be implemented. We chose not to pursue this avenue. With constant parameters, the 

system response using the nonlinear friction model of [?I gives a vast imptovement over the 

standard linear model. 

The fact that friction is asymmetric is evident in figure 5.4. Asymmetries can 

arise due to imperfections in the ssrvo motor, and unbalances in the motor shaft [8]. The 

recirmlating ball bearings may also contribute. In future work, it may be useful to identify 

a %tion model in which parameters d i f k  for each direction of motion. 



Chapter 6 

The C-0-A-L Dynamic Feedback 

Controller 

6.1 Introduction 

Regulator problems are those that involve positioning and pointing. Tracking 

control requires a trajectory to follow a desire path. In both cases, the goal is to drive the 

position error, e = x - xd, to zero. kiction can compromise a system's performance in high 

precision, low velocity tracking problems. Tracking control with velocity reversals poses a 

particular challenge became of the nonlinear nature of friction near zero velocity. 

Ftiction compensation can be achieved, given a reasonable friction model, by 

adding to a feedback controller, a term that cancels friction forces. The bristle model 

for friction discussed in Chapter 4 is a good candidate for friction compensation. Because 

the model of (4.1) and (4.2) is a state variable model, many difficulties associated with im- 

plementing a discontinuous kiction model a t  zero velocity are overcome [4]. Uniortunately, 

the bristle deflection, z, is an unmeasurable internal state; an observer must be constructed 

to estimate z. Canudas de Wit, Ohsen, Astriirn and Lischinsky propose an observer for 

z based on equation (4.1). In addition, they present a dynamic feedback controller with 

Kction compensation [7]. Their control law shall be refwed to in this work as the GO-A-L 

controller. 

In this chapter, the GO-A-L controller is presented and conditions for stability 

are discussed. The C-0-A-L controller takes the general form of u = ul+ F,  where F is the 



model-based frietion estimate, and ul is a feedback controller. In this work, ul represents 

proportional plus derivative feedback, so the performance of a PD controk is discussed, 

and used as a basis of comparison for the GO-A-L controller. Experiments are conducted 

using the cart-motor servo system, to test the controller's proficiency at regulating the cart's 

position to a fixed point. The versatility of the controller is also explored to determine 

whether tuning is required for each task. In addition, the GO-A-L controller is used to 

track a sIow moving path. The experimental considerations for implementing model-based 

fiction compensation on the servo system are also discussed. 

6.2 Definitions 

6.2.1 Strictly Positive Real Transfer Functions 

Deanition 6.1 ([23]) A tmnsfer /unction G ( s )  is Positive Real ( P R )  i f  Re[G(s)] 2 

0 V slRe[s] 2 0. G(s) is Strictly Positive Red (SPR) if G(s - E )  is PR for some E > 0 

Theorem 6.1 ([23]) A tmnsfer function G ( s )  is strictly positive real (SPR) i f  an only if 

1. G(s )  is a strictly stable transfer fvnction 

2. The real part of G(s) is strictly positive along the iw &; V w 2 0, Re[G(iw)] > 0 

Remark 6.1.1 A set of necessary conditions for a tmnsrfer function G(s) to be SPR am 

[23] : 

1. G(s) is strictly stable, ie., all poles of G ( s )  lie strictly in the left half of the complex 

plane. 

2. The Nyquist plot of G(s) lies entirely within the right half wmplez plane 

3. G(s) has d a t i v e  degree of 0 or 1 

4 .  G(s) is strictly minimum phase, which implies that all the zems of G(s)  lie strictly 

within the right half complez plane 

The following result provides a nice restatement of Theorem 6.1 in state space 

represent at ion: 



Lemma 6.1.1 (Kalman-Yakuboviteh Lemma, [23]) 

Given the wntmilable linear system 

the transfer jbnction 

G(s) =  IS - A)-'6 

is SPR if and only if there exist matrices P > 0 and Q > 0 such that 

6.3 The PD Controller 

In linear control systems, a standard feedback contro11er for tracking problems 

is the proportional plus derivative (PD) controller. The general form of a PD controller 

is u = b d  + b e ,  where e = x - xd reprecents the tracking error in the system. For 

our servo system, x represents cart position. For many engineering applications, a hear 

viscous friction model is employed. Suppose F = ox, where P represents the viscous friction 

coefficient. Then, following (Sl), the model governing the motion of the cart is 

If a PD controller, K u  = -be - b e ,  is used to close the feedback loop, the resulting system 

is 

m2 + PX = -b (X - xd) - ICp (2 - xd) - @*l) 

Equation (6.1) resembles a damped spring-mass system. Both ,t3 and k. contribute to the 

total damping and kp determines the stiffhem of the system. Thus, in the frequency domain, 

the transfer function between the desired path xd and actual position x becomes 

For optimal performance of a second order linear system, the poles of the transfer function 

should be placed on the 45 degree line in the left half of the complex plane. This gives a 

good trade-off between speed and accuracy. 



It is also common to discuss second order systems in terms of their natural fre- 

quency w,, and damping ratio t$. The characteristic equation for a second order system, 

given by the denominator of the transfer function, is of the form 

The pole placement, and subsequent choice of gains, uniquely determines the d u e s  of w, 

and c- Speed of response versus settling time is governed by damping in the system. Purely 

imaginary poles gives a value of = 0, which indicates that no damping is present, and 

results in a marginally stable response. If < 1, then the poles of the system are complex 

conjugates. Placing poles on the 45 degree line results in a damping ratio of approximately 

< = 0-707, which is widely accepted to be an optimal value. If the system has real poles, 

then > 1; the system is over-damped, which produces a slow response and no overshoot. 

The advantages of PD control are: a relatively simpIe closed-loop system, and the 

fact that theory exists to analyze stability and ensure optimal performance- In order to 

benefit &om these advantages, a linear system model is required. Thus fiction must be 

modeled linearly, which wil l  fail to capture its dominant characteristics near zero veloci@. 

Experiments with a PD feedback controller were conducted using the servo con- 

trolled cart system. A linear viscous friction co&cient of 4.6 Ns jm has been identified in 

Chapter 5. Thus for equation (6.2), = 4.6 Ns/m was adopted. A sampling frequency of 

250 Hz was used for a l l  experiments. This results in a relatively smooth velocity estimate 

and precludes the need for velocity atering. 

In regulator problems, the main deficiency associated with PD control is large 

steady state error, For a particular task, controller gains can be tuned to provide good 

perf'ormance. However, the controller Iacks versatility. Re-tuning is required to achieve 

similar performance in other applications. 

Figure 6.1 illustrates the steady state error associated with PD control- For this 

test, the poles of the system were placed on the 45 degree line at -4 * 4i. Although this 

pole placement should result in good performance, the gains are insdcient to overcome 

friction eE"s .  The result is a steady state error of about 30%. Placing the poles further 

from the origin on the 45 degree line will increase the controller gains, and should produce 

a more accurate response. The response of the cart when the poles are place at -13 f 13i 

is shown in figure 6.2. Clearly the response is more accurate with higher gains; the steady 

state error is less than 5%. This type of tuning can be effective, but is specik to the control 



Figure 6.1: System response to z d  = 10 cm using a PD controller and hear fi-iction model with 

poles at -4 k 4i 
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task. The need for re-tuning is displayed in figure 6.3, which shows the response of the P D 

controller to xd = 1 cm with poles placed at -13 & 13i. This task requires h e  control. 

With the adopted PD controller, the steady state error is almost 30%. 

The PD gains can be increased again to improve the response to q = 1 c m ,  but a 

significant increase is necessary. Figure 6.4 shows improved accuracy with poles at -20f 20i, 

but the control voltage output is truncated, as seen in figure 6.5. This illustrates one gap 

between theory and experimentation; one must take into account the physical limits of the 

system. For our system, a constraint is produced by the 24V output limit of the servo 

motor. When the control voltage is truncated by the limits of the motor, the system no 

longer behaves as the model predicts. In addition, high gain feedback amplifies noise and 

oRen stimulates high fkequency unmodeled dynamics, which produce severe vibrations. In 

some cases, using high gains can destabilize the system. Thus an accurate controller that 

does not require high gains is desirable. 

When a PD controller is used for tracking with low velocity or velocity reversals, 

stick-slip motion may occur. Figure 6.6 shows an example of this type of behaviour. Studies 

have shown that sufficiently large control gains will eliminate stick-slip motion [9]. However, 

steady state enor and stiction effects at  velocity reversals may still be present. The response 
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Figure 6.2: System response to xa = LO ara using a PD controller and linear Ection model with 

poles at -13 f 13i 

of a PD controller tracking zd = O.lsin(t) m is displayed in figures 6.7 and 6.8. horn figure 

6.7, it appears that the PD controller has performed this tracking task well. However, closer 

examination of the response in figure 6.8 shows that the cart's trajectory lags that of the 

desired path, indicating steady state error. There are also prolonged periods of zero vebcity 

at direction changes, which can be attributed to unmodeled static friction. 

It is clear that the PD controller does not overcome nonlinear fiction effects. 

The addition of model-based fiction compensation should improve the overall tracking 

performance. 
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Figure 6.3: System response to z d  = 1 an using a PD controller and linear kietion model with 
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Figme 6.4: System response to xd = 1 an using a PD controller with poles at -20 & 20i 
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Figure 6.6: System response to tracking z d  = O.lsin(t) m using a PD controller with poles at 

-2 f 4i 
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Figure 6.8: Segment of figure 6.7. System response to tracking xd  = O.lsin(t) m using a PD 

controller with poles at -13 & 13i 



6.4 The C-0-A-L Dynamic Feedback Controller 

The bristle model of equations (4.1) and (4.2) seems well suited to model-based 

friction compensation, but an observer is required to estimate the unmeasured internal state 

z. Canudas de Wit et d. developed an observer for z and a dynamic feedback controller 

with model-based friction [7]. 

Recall our model for the motion of the servo controlled cart of equation (5.1) 

and the bristle model for fiction of (4.1) and (4.2) proposed in [7] 

The friction observer proposed by Canudas de With et al. [7] is given by 

dZ - = v - -  
dt 

''I i - ke, k > 0, 
du) 

I4  = q ~ Z + a ~ ( u  --f - ke) + q v .  
g(v) 

The control law with friction compensation presented in [7] is given by 

where h = L-'[H(s)] and means convolution. The hiction estimate is denoted P and xd is 
the desired path or position of the eart. The term K(s)  is defined in the frequency domain 

and allows error feedback. An appropriate choice for R(s) wiU yield a stable control system. 

The resulting closed-loop system is 

Canudas de Wit et al. present a theorem that, for certain H(s) ,  guarantees that both the 

observer error and position error tend to zero asymptotically if u satSes  (6.6). 



Theorem 6.2 ([?I) Using We system (5.1) with the friction model ( 4 4 ,  (4.2), friction 

observer (6.4), (6.5), and the control (6.61, i f  H(s)  is chosen so that 

is strictly positive red (SPR), then (F  -- P) -r 0 and e + 0 asyrnptotieolly. 

The proof of Theorem 6.2 can be found in [7]. Theorem 6.2 does not ensure fast convergence 

of e and P to zero. The theorem also restricts H(s) to guarantee that G(s) is SPR In our 

case, such restrictions lead to difficulties in experimental implementation. 

6.4.1 Selection of H(s) 

horn equation (6.8) we have the transfer firnction, 

A natural choice for H(s )  is 

H(s)  = kzs + kl ,  

which results in a control law (6.6) that combines proportional and derivative feedback with 

fkiction compensation. This choice of H(s) satisfies the conditions that G(s) have a relative 

degree of 1 and be strictly minimum phase. The definition of an SPR transfer function also 

requires that G(s) be strictly stable. With H(s )  defined in (6.11) the poles of G(s) are 

given by 

Note that, for kl > 0, kz > 0, we have Re[s] < 0. 

Finally, for G(s) to be SPR, the Nyquist plot must be strictly contained within 

the right half of the complex plane. This is essentially the result of Theorem 6.1 and is both 

a necessary and sufficient condition for G(s) to be SPR. Assume Theorem 6.1 holds. Then 

for all w we have 

Re [G (iw) ] 



When w = 0, we need uokl > 0, and hence kl > 

Therefore, the restrictions on G ( s )  which imply 

0. When w # 0, we require that 

SPR via Theorem 6.1 are 

The parameters for the servo system haw been identified as m = 2.0 kg, 00 = lo5 N / m  

and ol = 495 Ns/m. Thus the restrictions placed on kl and k2 for our servo system are 

A controller that combines PD feedback with Kction compensation should allow 

us to take advantage of linear theory in choosing the proportional and derivative gains, as 

long as choices remain within the limits set by Theorem 6.2. Correct placement of the poles 

of G(s) predicts the values of kl and k2 that result in optimal performance for a system 

without friction. Therefore, placing the poles of G(s) on the 45 degree line is the natural 

choice to achieve a fast and accurate response. Unfortunately, the strong SPR restrictions 

on kl and k2 prohibit the use of reasonable complex poles. Because k2 must be at least 400, 

kl must be approximately 20 000 in order for the poles to be complex, and approximately 

40 000 for the poles to be on the 45 degree line. Clearly these values are unrealistically 

large. Thus PD gains that place the poles of G(s) on the real axis must be employed, which 

results in om-damping. 

A value of k2 = 450 k g / s  was adopted for experimental purposes. Choosing a 

"best" value for kl depends on the nature of the test. Larger kl should increase the speed 

of response. However, high gains coupled with large error result in mechanical problems 

and voltage truncation. Ideally, a large kl that avoids control saturation should be used 



6.4.2 Friction Observer 

The choice of k in the observer (6.4) is left unrestricted e x ~ p  t that k > 0. Consider 

the case where x2 = 0 but e # 0, i-e. the cart has stopped, but not at the desired position. 

Then 

2 = -ke, 

and 

Ku = -kle + uoZ + ar(-ke) + mgd. 

When the cart is in the stiction regime, the term croi provides integral action to the con- 

troller. This raises the question of whether hunting, often associated with integral action 

and uncompensated stiction [25], might occur. At zero velocity, the integrator gain, oak, 

is large unless k is very small. In addition, we noted in Chapter 4 that 121 5 FS/oo. With 

F, = 2.15 N and 00 = 10' N/m,  lzl is approximately 2 x loa5. With a s m a l l  d u e  for 

k, ke will  not dominate the equation governing i. The term -6e is also included in the 

control law, and contributes to the gain associated with position error- For this reason, it is 

diBicuIt to isolate the effect that increasing or decreasing 2, by altering k, has on the overall 

system's performance. 

A Lyapumnr function for the linear system with transfer function G(s) is defined 

as V = eTp( + $ [7]. The derivative is 

Here the change in control energy associated with observer error 5 is inverseiy proportional 

to k. Therefore, it follows from (6.13) that a small magnitude for k should lead to a fster 

convergence of H to zero; a small value for k is desirable, 

It appears that there is no lower limit on k. However, a very small value of k 

implies that there is little error in the observer, which is not realistic. Figure 6.9 shows 

the simulated GO-A-L controller response to sd = 10 cm, for Merent values of k. The 

simulations indicate that for k = 0.001 s - I  and k = 0.00001 s-I ,  the response of the system 

is the same. A value of k = 0.001 s - I  was adopted for all experiments. In this case, the 

integrator gain is approximately 100, which is smaller than the proportional and derivative 

gains used. 
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Figure 6.9: Sirndated response of C-0-A-L controlkr while varying the observer constant k. (kl = 

350 kg/s2,  k2 = 450 kg/s) 

6.4.3 Experimental Implementation 

The GO-A-L control law was tested using the servo motor system. The observer 

estimate was calculated using Euler's method to integrate the ordinary Merent i d  equation 

governing z. Euler's method requires a s m d  stepsize to achieve accuracy in approximating 

a derivative. The estimate for bristle defIectionl 2, changes very quickly and has a very low 

magnitude. Therefore, a high sampling fiquency was necessary to accurateIy model rapid 

dynamics, and to keep error small  relative to the magnitude of i. Unfortunately, a high 

sampling frequency produces a noisy estimate for velocity. This is due to the method 

of computing velocity, and the quantized nature of the position data. With a very high 

sampling rate and low velocity motion, there can be periods of time where the encoder does 

not record movement. When motion is detected, it is perceived as a very large change in 

position over a small time interval. The result is noise ir, the velocity estimate, which is fed 

back by the PD controller. This discretization noise also introduces considerable error into 

our estimation of 2. Figure 6.10 shows i computed with simulated velocity data for changes 

in direction of motion. It is evident from the graph that the change in bristle deflection is 

very rapid through a velocity reversal. For this reason, i is particularly sensitive to noise 

when the velocity of the cart is close to zero. Figure 6.11 depicts the obaemd value of i 
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Figure 6.10: Simulated d u e  of f in response to tracking a xd = O.lsin(t) m. (kL = 300 kg/s2,  

kz = 450 kg/s) 

computed with real velocity data. Notice the large fluctuations when the observer changes 

sign. Thus a tradeoff between high sampling frequency for derivative calculation, and low 

hequency to reduce noise, is required. 

The unfiltered velocity estimate for a sampling Cequency of J = 2500 Hz, in re- 

sponse to step input, is shown in figure 6.12. Open loop experiments were used to determine 

the best method of reducing the noise present in this velocity estimate. One method is to 

average the velocity over several sampling intenmls. Using this method provides a velocity 

estimator with a iarger At? and a larger change in position over that time interval. Fig- 

ure 6.13 shows the velocity estimate for f = 2500 HZ, calculated every 10 cycles. A vast 

improvement in the signal can be seen, and no large lags are introduced. 

Additional smoothing may be achieved by fltering the velocity signal. The sim- 

plest smoothing filter that can be used to reduce noise is the first order filter 

The choice of smoothing constant, a, is critical. Larger values for a result in less smoothing 

so that vS-& closely follows vnoisy. If a is too large the filter is ineffective. However, if a 

is too small, lag is introduced into the system. This negatively affects system performance 

and stability. Figure 6.14 shows the smoothed velocity estimate for a = 120 at f = 2500 



Figure 6.11: Observed value of 2 in response to tracking a zd = O.lsin(t) m. (kl = 300 kg/s2, 

k2 = 450 kg/s) 

Hz. There is improvement over the d t e r e d  data of figure 6.12, but noise is still present 

at higher velocities. For f = 1000 EFz the smoothed velocity with a = 30 is compared to 

the unfiltered velocity in figure 6.15. The filtered signal is clearly better than the unfiltered 

one. However, for this value of a the smoothed velocity estimate lags the original one. 

Sensor noise problems may also be solved by constructing an observer to predict 

velocity. Unfortunately, the nonlinear nature of our system model makes constructing a sta- 

ble veiocity observer extremely diSdt. Another standard approach is to add a tachometer 

to our motor and a D to A converter to the computer. This would let us measure velocity 

more directly, although sensor noise and resolution issues also arise with direct velocity 

measurement - 
Experimentation determined that a tiequency of at least 3000 Hz is needed to 

overcome problems associated with fast dynamics of 2. In other words, to guarantee con- 

vergence of the Euler's method algorithm, which was used to integrate the f equation, we 

need to sample at least 3000 times per second. To smooth the velocity estimate, the filter 

of (6.14) m used with a = 80. Velocity was estimated and smoothed every 10 cycles. 

To avoid large errors in Z at high velocity, and to reduce computation, i was set 

to a steady state value for velocity above a designated cutoff velocity. Recall from Chapter 
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Figure 6.12: Unfiltered vdocity at f = 2500 Hz sampling frequency 

4 that z tends to a steady state value; z,, = g(v)sgn(v). SimuIations show that z reaches 

a steady state for u > 0.04 m/s. Thus, for v > 0.1 m/s,  we let i = g(v)sgn(u). 



Time 

Fi- 6.13: Unfiltered, frequency reduced, velocity estimate. Sampling frequency, f = 2500 Ek 

with velocity estimated every 10 cycIes. 
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Figure 6.14: Filtered velocity estimate with a = 120 and f = 2500 HZ. 
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Figure 6.15: Filtered velocity estimate with a = 30 and f = 1000 Bz 



Experimental Results Using the C-0-A-L Controller 
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Figure 6.16: Response of the to C-0-A-L controller using kl = 350 kg/s2,  k2 = 450 kg/s to 

xd = 10 ~ m -  

The GO-A-L control law was used wperimentdy to track a step, and then a 

sinusoidal path. Figure 6.16 shows the closed-loop response of the cart required to move 

10 m. The proportional and derivative gains used were kI = 350 kg/s2 and kz = 450 kg/s. 

The line labeled "Cart Position'' indicates the recorded motion of the cart over time. Note 

that this line is not smooth, which implies vibration, particularly when the tracking error 

is large. The cart reaches the desired position, but begins hunting- 

The C-0-A-L controller pedormance displayed in figure 6.16 is reasonably good, 

except for some undesirable vibration. Direct comparison to the performance of a PD 

controller under the same conditions is di.fEcult because of the high feedback gains necessary 

with the GO-A-L controller. The PD controller with gains of kp = 350 kg/s2 and k, = 

450 kg/s responds with severe vibration due to tlnmodeled dynamics that are stimulated 

by high gain feedback. Thus it is not a good basis for comparison. However, the results 

of figure 6.16 can be compared to the response of a PD controller with x d  = 10 cm and 

with poles at -13 13i. Figure 6.17 shows this comparison. The GO-A-L controller is 

slightly more accurate, but exhibits oscillatory motion. It is dear that the response of the 

PD controller is much faster with relatively low steady state error. 
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Figure 6.17: Comparison of the responses of a PD controller with poIes at -13 =t 13i and the 

GO-A-L controller with kl = 350 kg/s2  and kz = 450 kg/s to x d  = 10 an 

The response of the GO-A-L controller with kL = 350 kg/sZ for xd = 1 m is 

displayed in figure 6.18. Here small vibrations are present, although they are less signiscant 

than those present in the response to zd = 10 cm (figure 6-16}. Significant hunting occurs 

near the desired position. The results in figure are 6.18 are compared to the performance 

of a PD controller for the same task, with poles at -13 & 13i; both are displayed in figure 

6.19. The GO-A-L controller responds more slowly than the PD controUer, but is much 

more accurate. 

There are two obvious problems associated with implementing the GO-A-L con- 

troller: there are vibrations present, and there is hunting near the steady state equilibrium 

position. The vibrations can be attributed to high feedback gains. Consider the output 

voltage from the GO-A-L controller with zd = 10 cm (Figure 6.20). With k2 = 450, noise 

in the velocity estimate is amplified in the voltage signal. Mhermote, kl = 350 results in 

control saturation, even with small error. 

In order to avoid control saturation, we reduced kt, Figure 6.21 displays the voltage 

output by the GO-A-L controller with zd = 10 an, kL = 100 kg/s2 ,  and k2 = 450 kg/s. 

The voltage signa,l is still very noisy, but no truncation occurs. Figure 6.22 graphs the 

position versus time of the cart in response to the GO-A-L controller with kl = 100 kg/s2 
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Figure 6.18: Position response of the GO-A-L Controller with k~ = 350 kg/s2,  4 = 450 kg/sto 

z d = 1 a  

and xd = I0 cm- Here there is Iess vibration in the system. The response is reasonably 

accurate but very slow. 

The second problem noted is that hunting occurs as the cart nears the desired 

position- Noise in the velocity signal neat zero velocity may cause a sign change in 2 when 

the desired direction for friction compensation has not changed. In addition, a model that 

overestimates Ection can result in overshoot [a], [6]. Our model is inexact and, amplified 

by high gains, the modeling errors may lead to hunting. 

The GO-A-L controller was also used to track a slow moving sinusoidal path, xd = 

O.lsin(t) m. Figure 6.24 displays the position response of the C-0-A-L with kl = 350 kg/s2 

and k2 = 450 kg/s. Initially, a s m d  position error can be noted, but over time the actual 

cart position becomes very dose to the desired path. Figure 6.25 is a magnified segment of 

the graph in figure 6.24. It is evident from this picture that the cart continues to vibrate; 

higher amplitude vibrations occur at higher velocity. Nevertheless, the tracking is accurate. 

The actual path of the cart converges quickly to the desired path and there is no evidence 

of stiction effects at velocity reversals. 

The fact that the compensated system does not exhibit stiction effects during 

direction changes could be due to the vibration in the cart's motion. Because the cart is 
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Figure 6.19: Comparison of the response of a PD controller with poles at -13f 1% and the GO-A-L 

controUer with kl = 350 kg/s2  and = 450 kg / s  to z d  = 1 an 

vibrating, friction is modified. In this way, the vibration may behave somewhat like dither 

and prevent the motion of the cart from entering the static fiction regime. 
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Figure 6.20: Output voltage of the GO-A-L ControlIer with kl = 350 kg/sz ,  k2 = 450 k g / s  to 

Z d  = 10 cm 
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Figure 6.21: Voltage output fiom the GO-A-L controller for kl = 100 kg/s2,  k2 = 450 k g / s  with 

2 d  = 10 cm 
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Figure 6.22: Position response of the GO-A-L controller for kl = 100 kg / s2 ,  k2 = 450 kg/s to 

z d  = 10 
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Figure 6.23: System response to tracking xd = O.lsin(t) m using the GO-A-L controller with 

kl = 350 kg/s2, k2 = 450 kg/s. 
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Figure 6.24: Segment of system response in figure 6.24. Tt&g xd = O.lsin(t) m with the 

C-0-A-L Controller 



6.6 Summary 

Restrictions placed on the proportional and derivative gains of the GO-A-L control 

iaw pose experimental problems. Because of the need for a large derivative gain, damping 

is high and the response is slow in regulator tasks. When implemented on the servo motor- 

cart apparatus, large proportional gain results in voltage truncation, and vibration in the 

motion of the cart. 

Moreover, the need for high frequency sampling introduces noise into the velocity 

estimate. This noise is amplified by feedback and can introduce error into the observer for 

the internal state z. A mter was required to smooth the velocity estimate. 

For point-to-point positioning, a linear PD controller proved to be better than 

the GO-A-L controller. Although PD controllem are less versatile, they are fat simpler to 

implement and can be tuned to perform well for a particular positioning task. 

For tracking a moving path, the PD controller encountered problems near zero- 

velocity. A linear fiction model does not allow the PD to counter static friction effects. 

The GO-A-L controller was capable of tracking a sinusoid with relatively high accuracy, 

but continued to exhibit undesirable high fkequency vibrations. 

In theory, the model-based fkiction compensation control law proposed by Canudas 

de Wit et al. [7] should perform tracking tasks better than a simple PD controller. However, 

the need for high gain feedback makes implementing the GO-A-L controller difficult. One 

solution is to construct a dSerent dynamic output feedback cont rok  that allows the use 

of smaller proportionai and derivative gains. 



Chapter 7 

A New Dynamic Feedback 

Controller and Nonlinear Observer 

7.1 Introduction 

Experiments with the C-0-AWL controller from Chapter 6 indicate that accuracy 

in positioning and tracking conk01 can be improved via nonlinear Kction compensation. 

However, a large derivative feedback gain is necessary with the GO-A-L controller, resulting 

in excess damping, sIow response, and noise amplification. Increasing the proportional gain 

achieves faster response, but can lead to control saturation. Hunting is also observed. 

We need the fieedom to choose Smaller proportional and derivative feedback gains, 

so as not to exceed the practical limits of the mechanical system. In [20], Pomet, Hirschorn 

and Cebuhar construct a controller for systems where the unobserved states enter the system 

equations linearly. In [20] it is assumed that the output can be regulated by full state 

feedback. Here, the results of [20] are adapted to systems where some of the requirements 

of [20] are not satisfied. A Lyapunov-based dynamic controller is introduced that can be 

extended to a fairly large class of systems, although it applies to a less general class of 

systems than the strategy of [20]. Our adaptation allows a controller to be developed for 

the servo system, without explicitly constructing an observer for z first. This approach 

permits more freedom in choosing controller gains but results in a more complex observer, 

2, whose state may not converge to z. 

The general form of the adapted control strategy is presented in this chapter. 



An explicit controuer and fiction observer are developed for the servo motor system for 

which stability is verified. Results using this new dynamic feedback controller are presented, 

and this controller is compared to a linear PD controller, and the C-0-A-L control law of 

Chapter 6. 

7.2 The Generalized Formulation 

Consider the dynamical system modeled by 

with input u E l?P and output y E Rk. Here I E R ~ ,  z E 4Zf and (z,z)* E P. 
The unobserved state, z, enters the system equations lineady- Under a prescribed set of 

assumptions, there exist a dynamic controller u = u,,, and an observer 2 such that the 

state (x(t),z(t),i(t)) is bounded and z(t) + 0. The tirst assumption requires that the 

unobserved state z be bounded. This is the first property of the bristle fiiction model of 

equations (4.1) and (4.2). More formally: 

Assumption A1 : There ezists a > 0 such that for Ilz(to)ll 5 a every solution ( x ( t ) ,  z(t))  

to (7.1) satisfies Ilz(t) 11 < a V t >- to. 

Next, we assume that if 2: is a d a b l e ,  it is possible to design a full state feedback 

controller, unom(x, z),  which regulates the output. Assumption A2 allows us to conclude 

that y tends to zero by a Lyapunov-like analysis- It is closeIy related to Assumption A2 of 

(201 but is weaker in the sense that here, V need only be a proper function of I. In [20], V 

must be a proper fwlction of both x and z, which cannot be satisfied for our system. 

Assumption A2 : There exists a continuo& differentiable, positive semidefinite function 

V /ram Rk to R, a positive definite k x k m a t e  W ,  and a map y, j b m  R" to P such 

that 

1. The jbnction V is proper ( i e . ,  the preimage of a compact set is compact). 

2. Defining the function p by 



we haue that 

NOW, we define the n x n matrix E(z,  z),  and the k x n matrix 61 by 

The third assumption is a type of weak observability condition. If E(z, z) = Ey i.e. is 

constant, then the system 

can be stabilized via output feedback and is, therefore, detectable. Note that observability 

implies det ectability. 

Assumption A3 : There ezist a constant positive dejinite n x n mat* Q and an n x k 

matrix K(x, z )  smoothly depending on (x, z) such that, for any (x, z ) ,  

in the sense of symmetric matrices. 

With the above assumptions, we will develop a theorem that yields a noniinear 

dynamic feedback control law such that x(t )  converges to zero, even when z is unavailable. 

First define the notation that a hat over a symbol signifies that it has been evaluated with - 
i, i-e. 61 = at(x, unom(x, S)), At = Al(xY unOm(x, 2)) etc.; a tilde over a symbol signifies 

that it represents the observer error, i.e. i = z - i. 
The dynamic controller fiom [20] becomes 

with 



a d  Q, X = ( ) given by assumption AS. The following theorem is -tially Theo- 

rem 1 &om [ZO]. 

Theorem 7.1 Under assumptions A l ,  A2 and A3, the dynamic eontmller achieves the fol- 

lowing pmperty for the closed loop s ystemr for any initial conditions, the state (x(t) , x(t) , i (t) , i ( t )  ) 

is bounded and x( t )  + 0. 

The proof of this theorem is based on the following lemma: 

Lemma 7.1.1 The denkmtive of the function 

along the solutions of the closed-loop system obtained with the contmller 7.7 is given by: 

The proofs of the Theorem 7.1 and Lemma 7.1.1 can be found in [20]. 

In [20], a special cane exists for Assumption A3 that results in a simplified, reduced- 

order controller. The special case is applicable to our servo motor system. 

Assumption A3' : There exists a (constant) positive definite t x l matrix Q2 such Wat, 

for any (x, a) E Rn, 

The following theorem gives the reduced order controller for the case where assumption 

A3' holds. 

Theorem 7.2 Under assumptions A l ,  A2 and A3', the dynamic controller 

achieves the following property for the closed-imp system: for any initial conditions, the 

state (x(t) , z ( t )  ,2(t))  iP bounded, and x(t) -t 0. 



Define a Lyapunov function candidate by U(z ,  I, 2 )  = v + ( 1 / 2 ) f T ~ ~ i ,  where V is 

the positive d a t e  function defined in assumption A2; Q2 > 0 and is defined in assumption 

A3'. Then, taking derivatives along the system trajectories, we will have 

Using the dynamic feedback controller, un,,(z, i), yields the closed loop system 

For simplicity define 

The derivative of V is given by 

Ftom assumption A2, 

If we add and subtract p(x, 2 )  &om the equation for V ,  it foIlows from (7.17) that 

From assumption A2, we know that V is a funaion of z and not of z, so = V and 

Hence 
av A v = - p ( ~ ,  2 )  + -A1Z as (7.19) 

Taking the time derivative of U along solution curves of the closed loop system (7.16) yields 

u = v + Z * Q ~ ( ~  - 21, (7.20) 



where 

Substituting (7.21) into (7.20) yields 

R e c d  that M ( z )  = Q~-'@ (g) * by definition. Therefore, 

Under assumption A3', Q ~ $  + ZQ* 5 0. Thus, by assumptions A2 and A3', u 5 Z?'WX- 

Hence x + 0 and I is bounded. We know that a is bounded &om assumption Al ,  so it is 

reasonable to conclude that 2 = t + 5 is also bounded. Therefore, under assumptions Al ,  

A2 and A3', it follows that (x ( t ) ,  z( t ) ,  f ( t ) )  is bounded and z(t) + 0. 

7.3 The Servo-Motor Problem 

Recall the model for the servo motor-cart system &om equation (5.l), which is 

m Z = K u - F .  

We know fiom Chapter 4 that g(x2) > 0 for all 22.  Therefore, p(x2)  > 0. With the bristle 

friction model fiom equations (4.1) and (Q), the open-loop system model can be written 



where the observed states are XI E B, z2 E R, and the unobserved state, z E R, enters 

the equations linearly. Hence the above system of equations can be written in the form of 

(W ; 

where 

In order for Theorem 7.2 to apply, we require that assumptions Al, A2 and A3' 

hold. Assumption A1 requires that z be bounded for all time. The first property of the 

bristle model of equation (4.1) is finite bristle deflection, so A1 holds for (z(ta) ( sficiently 

small. 

Assumption A2 allows us to conclude that if a is availabIe, then there exists a 

feedback controller, u,,(x, z ) ,  such that for a positive definite function V, v 5 0 implies 

that x( t )  + 0. Suppose the control input, Ku, in the system (7.25) combines proportional 

and derivative feedback with nonlinear model-based fiict ion cornpensat ion; let 

Then the closed loop system becomes 

This can be written in the form 

where 



and a*? A2 are defined by (7.27). 

If a and P in A are chosen so that the elgenvalues of A fdl in the leR half of the 

complex plane, then x = Ax is a stable system. Thus Lyapunov's equation can be solved; 

given T > 0, there exists a positive definite matrix P > 0 such that 

Let V = SPX. Let p ( z ,  z)  be as defined in assumption A2, i.e. 

It follows from equation (7.32) that 

Hence 

Assumption A2 requires that p(x,z) 2 PWX. Thus, for llT[l 2 i[WII, assumption A2 holds. 

Finally, define Qz = 7, where -y is a positive constant sdar.  With A2 = - p ( z 2 )  

&om (7.27) we have 

(224 + A ~ Q Z  = - 2 ~ ( ~ 2 ) 7  1 0- (7.33) 

Thus assump tion A3' holds. Hence for Ku = unOm(s, 2 )  , where 

wwe have 

Therefore, (xl ( t ) ,  z2 ( t ) ,  z( t ) ,  i ( t ) )  is bounded and (xl ( t )  , x2 ( t ) )  -+ 0 by Theorem 7.2. 



The position error, e = z - xd, and velocity error, e = z - xd, are used in the 

proportional and derivative feedback fot tracking control. D e h e  el = e and e:, = i. Then 

the appropriate dynamic feedback control law is given by 

The closed loop system becomes 

Alternatively, 

The stability of the system given by (7.40) can be v e d e d  using Lyapunov's direct method. 

Theorem 7.3 ([19]) Lyapunov's Theorem Let E be a open subset of Rn containing xo. 

Suppose that f E C1(E)  and that f (xa) = 0. Suppose further that there exists o /unction 

V E CL(E)  satisfying V ( x o )  = 0 and V > 0 if x # xo. Then (a) if V ( X )  5 0 for all 

x E E, x is stable; (b) if V ( X )  < 0 for all z E E ercept xo, xo is asymptotidly stable; (c) 

if V ( X )  > 0 for all x E E ezcept XQ, xo is unstable. 

A proof of Lyapunov's Theorem is available in [19]. 

Define a candidate for a Lyapuw function, 



Define e = [el e21T and V = eTpe where P solves equation (7.31). Note that U 2 0 and 

U = 0 only if (e, 2)  = (0,O). Taking the derivative of U along trajectories of the system 

(7.40) yields 

Hence u 5 0 for all (e, i). By Lyapunov's Theorem, (e, f) = (0,O) is stable. Thus (e, 5 )  

is bounded. In addition, u = 0 implies that e = 0, but does not imply that i = 0. Thus 

e -+ 0 asymptotically and z' is bounded. Because both 2 and z are bounded, we conclude 

that i = z + f is also bounded- Therefore? (e(t ) ,  z ( t )  , i ( t )  ) is bounded for the closed loop 

system (7.39) and e(t )  + 0. 

7.4 Experimental Procedure 

In order to implement the new dynamic feedback controller, the differential equa- 

tion for i must be explicitly defined for the servo system; the term 2 ~ " f ~ e / ~  kern equation 

(7.35) must be explicitly computed- Recall that P is solves Lyapunov's equation with A 

defined in (7.30) and T > 0, i-e. 

We can choose scalars h > 0 and I > 0 so that 

From (?.3O), A is given by 

and P can be determined by solving equation (7.31), which yields 



Given the vector e = [el, e2lT and the matrix A1 &om (7.26) 

an explicit form of the observer i can be expressed in terms of a, fly 7, h, and 1, namely 

7.4.1 PD Control Parameters 

The proportional and derivative gains, a and /3 of equation (7.37), are chosen to 

stabilize the linear system x = Az, where 

The eigenvalues of A are the roots of the characteristic equation, det(ls - A) = 0. The 

characteristic equation for A is given by 

In order for A to be stable, we want the roots of equation (7.45) to be in Re[s] < 0. Let 

s = - b l f  b2i, with b1 > 0 and b;! > 0, 61, E R. Thus the desired characteristic polynomial 

is 

s2 + 2b1s + b12 + b2 = 0. (7.46) 

Hence, from equations (7.45) and (7.46), A has stable eigenwdues for a and given by 

Therefore, for the new dynamic feedback control law of equation (7.37), we have the flexi- 

bility to use optimal gains of any magnitude for the linear feedback; the PD gains for (7.37) 

can be much d e t  than those required for the GO-A-L controller. Note that the linear 

system x = Ax captures no friction effects. 



7.4.2 Observer Parameters 

Ftom equations (7.44), and (7.37), the dynamic feedback controller for the servo 

system is given by 

u,,, = aq+ pe2 + 002 + 01 (z2 - p(z2)i) + -2 + &, 

2 = 2 2  -p(x2)Z+ (-go +or ~ ( 2 2 ) )  (her P + e2 - ermh) 
r a p  

This is similar to the GO-A-L controller &om chapter 6, given by 

The two control schemes diffkr in the structure of the governing equation for 2. 

The observer of (7.50) includes a term that is proportional to the position error, keL . Thus 
an appropriate value for k must be chosen in order to implement the GO-A-L; this was 

discussed in Chapter 6. The dynamic feedback of (7.49) is more complex and includes a 

term that is a function of both position error, and velocity enor. Setting 

we have 

1 = xz - p(x2)2 - q(e). 

To explicitly compute a value of 2 in (7.49), we must first determine suitable values for the 

parameters h, I and 7. 

Choosing 7: 

All three parameters appear in both the governing equation for 2, and in the 

derivative of the Lyapunov function V, defined in equation (7.41). The magnitude of U, 
defined in (7.42), is directly related to the rate of convergence of the states of system (7.40) 

because closed-loop stability implies that u 0 along trajectories of the system. Ekom 

equation (74, we note that the observer error, L, is scaled by y in the same way that it 

is scaled by l/ k in equation (6.13). Theorem 7.2 does not guarantee that E will converge to 

zero, but a large value for 7 results in a small bound on E. 

The magnitude of P in equation (7.49) is influenced by 7 in the same way that 

in equation (7.50) is dected by l/k. In Chapter 6 we noted that k should be kept small 



so that 121 is comparable to 121- By a similar argument, 7 should be large so that q(e) does 

not dominate the difkrential equation governing 2- 

Finally, consider p(e) for e2 = 0 and el # 0. This can occur in point-to-point 

positioning when the motion of the cart stops a distance el Eom the reference point. Ftom 

(7.51)) it follows that 
-ao hel 

de)= ya 9 

and therefore 

In this case, u,,, = set +ao& and the term uoi behaves as integral action. The d u e s  of h 

and 7 Muence the effect of this integral action on the overall performance of the controller. 

Integral action is known to cause hunting in some cases [24], so we wish to keep the integral 

gain small. Thus a moderate value for h, and a large value for 7 is desirable- 

Simulations have shown that, ideally, there is no upper bound on 7. However, for 

finite but very large 7, q(e) has no signScant &kt on i; the observer error i is assumed to 

be very small and converges almost immediately. This is unrealistic in practical situations. 

A value of y = oo(lo4) was used for all experiments. 

Choosing h and I :  

From equation (7.42), 

u = - e T ~ e  + 7.fZp(z2). 

If U represents control energy) then h and I behave as cost coefficients for the states el and 

e2. If both are large, then both el and ez should converge quickly. On the other hand, it is 

possible to weight the matrix T so that priority can be placed on reducing one or the other. 

Choosing a large h relative to I associates a high cost with position error; the controller will 

work to reduce e l  quickly, thereby reducing controller energy. 

Both I and h also arise in equation (7.49) via the term q(e). We wish for h to 

be large relative to 1, but not so large as to increase the impact of integral action on the 

system. Thus a small value for I is desirable. Simulations indicate that there is no lower 

bound on I. However, if 1 is too small, the controller associates almost no energy loss with 

a large velocity error. 



It is difEcult to £ind an optimal cost matrix T. Through simulation, values of 

h = 20 and Z = 0.1, along with 7 = oo(lO"), proved to result in a well-behaved closed-loop 

response for the system (7.40). Thus h = 20 and I = 0.1 were adopted for experimental 

use. It should be noted that with h = 20 and 7 = 00(l~4)T the integral gain = U ~ * ~ / ~ C Y  

for ez = 0, is = 200/a. With poles pIaced at -4 * 44 = 6.3. The magnitude of 

decreases with larger gains. Thus $ 6.3, which is small compared to the PD gains 

employed. 

7.4.3 Experimental Implementation 

The experimental consider at ions for implementing Ect ion cornpensat ion were dis- 

cussed in Chapter 6. Sixnilar issues arise in experiments using the new dynamic feedback 

controller of equation (7.49), with a few notable difllerences. 

The governing equation for 2 here is (7.49), a more complex equation than (7.50). 

Furthermore, the freedom to choose complex pole placement to determine gains a and ,8 

for (7.49) results in a faster response of the cart, and faster rate of change of 2. The farther 

poles are placed from the imaginary axis along the 45 degree line, the faster the dynamics of 

i. Thus, for experiments with the controller of (7.49), a sampling fi-equency of 5000 Hz was 

needed; this is higher than the sampling rate of 3000 & used with the C-0-A-L controller. 

Using a sampling frequency of 5000 Hz increases the noise in the estimate for 

velocity. Velocity was estimated every 25 cycles for experiments with the new dynamic 

feedback controller; the rate used with the GO-A-L controller was every 10 cycles. The 

velocity signal was smoothed at each step with the first order filter 

Here a was reduced from a = 80 to a = 60, to increase smoothing. It should be noted 

that at a sampling rate of 5000 HZ, noise in the velocity estimate cannot be completely 

filtered out. This does not pose problems at high velocities, but may introduce error at low 

velocities where sign changes are critical to 2. 

With both the new dynamic feedback control law in equation (7.49) and the G 

0-A-L controUer, a steady state value for i of $, = g(u)sgn(u) was assigned for velocities 

greater than 0.1 m/s. This reduced computation and observer error. 



Experimental Results 

r I I i 

0.12 - Desired - 
Position 

- 

- 

- 

- 

L a 

0 1 2 3 4 5 

Time 

Figure 7.1: Response of the new dynamic feedback control Iaw with fiction compensation and 

straight PD control to xd = 10 cm with poles at -4 f 4i. 

The new dynamic feedback control s h e  was tested for both point-to-point po- 

sitioning and tracking of a slow moving path. The results of the same tests, using the 

C-0-A-L controller, are discussed in Chapter 6.  Because of the structure of our controller 

(equation (7.49)), it is natural to compare its performance to that of a linear PD controller. 

The comparison allows us to assess the value of friction compensation with optimal PD 

feedback gains. Control engineers usually include linear friction in the model of a mechan- 

ical system. Therefore, we include a viscous kiction term in the system model used with 

PD feedback control. A viscous friction co&cient of 4.6 has been adopted for this purpose. 

7.5.1 Comparison of Dynamic Feedback Control to PD: The Regulator 

Figure 7.1 shows the response of both a PD controller and the new dynamic feed- 

back controller to xd = 10 em. The poles for both the linear component of the new dynamic 

feedback controller, and the PD controller are placed at -4 k 4i. The response of the PD 

controller exhibits high steady state error; it is approximately 35%. In this case the dynamic 

feedback control law responds more quickly than the linear PD. In addition, with kiction 
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Figure 7.2: Response of the new dynamic feedback controller with fkiction compensation, compared 

to that of a PD controiler to zd = LO cm with poles at. -10 f: 10i. 
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compensation, the steady state error is reduced to approximately 2%. 

Figure 7.2 shows the position responses of both the hear PD controller and the 

dynamic feedback controller to xd = 10 an. The input is the same as in figure 7.1, but the 

poles have been pushed out to -10 f 1%. The controller with dynamic feedback, like the 

PD, responds more quiddy with larger proportional and derivative gains. Both controllers 

respond quiddy, but with added friction compensation, the steady state error of the PD 

controller is reduced from about 5% to 2%. 

The new dynamic feedback controller is superior to a straight PD controller for 

this positioning task. Although both can achieve good perfommnce with large feedback 

gdas, the addition of friction compensation provides high accuracy positioning with s d  

feedback gains. 

It is also important to assess the merits of friction compensation for fine position- 

ing. Figure 7.3 shows the performance of both the PD and the dynamic feedback controllers 

in response to xd = 1 cm, with pole placement at -10 f 10i. Once again, it is clear that 

Mction compensation significantly reduces steady state error. The steady state error of the 

dynamic feedback controller here is almost 10%. This is relatively large compared to the 

error in figure 7.2. However, the performance is much better than that of the PD controller; 
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Figure 7.3: Response of the new dynamic feedback control law with fiction compensation and 

straight PD control to z d  = 1 m with poles at -10 f 10i. 

there is little need for retuning- 

We expect that reducing the proportional and derivative gains wil l  hamper the 

performance of both controilers in fine positioning. The response of both controllers to xd = 

1 cm, with poles at -4 =t 4i is displayed in figure 7.4. The PD controller does not respond 

here, since the proportional gain, together with the small position error, is insufficient 

to overcome static friction. The dynamic feedback controller responds surprisingly well. 

However, the cart exhibits unsteady motion near the reference point, and slowly overshoots 

the desired position. 

7.5.2 Comparison of Dynamic Feedback Controller to a PD: Tracking 

The new dynamic feedback controller was used to hack a slow moving path. Figure 

7.5 shows the position response to xd = O.lsin(t) m for both the dynamic feedback controller 

and a PD contmiler with poles at -4 f 4i. The straight PD controller encounters stiction 

effects at zero velocity, as well as exhibiting large steady state error. The steady state error 

is much lower in the system with friction compensation. However, static fiction effects are 

present at velocity reversals. 

The position response to the same sinusoidal input, of both the PD and the dy- 
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Figure 7.4: Response of the new dynamic feedback controller with iiiction compensation, compared 

to that of a PD controller to zd = I cm with poles at -4 f 4i. 

namic feedback controller with poles at -10 f 10i, is shown in figure 7.6- It is evident that 

the performance of both controllers has improved over that shown in figure 7.5, but the 

steady state error in the PD response has not been eliminated. The system with nonlinear 

friction compensation tracks very well, but exhibits 4 stiction effects at velocity rever- 

sals. On the other hand, if the stiction effects are viewed as a disturbance, t he compensated 

controller corrects very quickly and returns to accurate tracking. 

To truly test the tracking ability of the system with fiction compensation, a 

more complex desired path was used. The path chosen contains a step, a ramp and a 

sinusoidal segment, with discontinuities. The response of the straight PD controller with 

pole placement at -10 f 10i is displayed in figure 7.7; it exhibits steady state error on all 

segments of the path. The response of the controUer with model-based friction compensation 

is displayed in figure 7.8. The proportional and derivative gains here also correspond to 

a pole placement of -10 f 1%. Comparing the results in figures 7.7 and 7.8 confirms 

that model-based Ection compensation reduces the steady state error of a PD controller. 

However, small errors are present at velocity reversals. 
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Figure 7.5: Response of both the dynamic feedback controller with friction compensation and a 

PD controller to z d  = O.lsin(t) m with poles at -4 f 4i. 

7.5.3 Comparison of New Dynamic Feedback Controller with the 
GO-A-L 

Comparisons were also made between the new dynamic feedback controller and 

the GO-A-L controller from Chapter 6. Figures 7.9, 7.10 and 7.11 display this comparison 

for zd = 10 cm, xd = 1 cm and xd = O.lsin(t) m respectively. It is clear from figure 7.9 

that the new dynamic feedback controller responds more quickly than the C-0-A-L. The 

response of the new controller has slightly larger steady state error, but exhibits none of 

the hunting that is present in the response of the C-0-A& controller. 

Figure 7.10 shows that for fine positioning, the new dynamic feedback controller 

shows a marked improvement over the performance than the GO-A-L. Despite the presence 

of model-based fiiction compensation in the GO-A-L controller, it does not reduce steady 

state error as efktively as our new controller. In addition, the C-0-A-L response continues 

to exhibit hunting. 

Finally figure 7.11, shows that both controllers track a sinusoidal path with com- 

parable accuracy; the tracking error is siightly smaller using the new controller. There is 

small error due to stiction effects at velocity reversals in the response of our controller that 

are not present in the response of the C-0-A-L. However, the response of the GO-A-L con- 
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Figure 7.6: Response of both the new dynamic feedback controller with friction compensation and 

a hear PD to zd = O.lsin(t) m with poles at - 10 =t IOi. 

trolled system exhibits the effects of high gains, including vibration and unsteady motion. 

The response using our controller does not show thig dect. 

The freedom to choose small  gains for the new controller eliminates the vibration 

and noise efkts present in the G O - A 4  response. With the exception of s m d  static 

fiction effects at velocity reversals, the new dynamic feedback controller clearly performs 

much better than the GO-A-L in both high precision positioning and tracking, at least on 

our test apparatus. 

7.5.4 Discussion 

Using the new dynamic feedback controller to track a slow path with velocity 

reversals reveals problems that can arise with this fkiction compensation scheme. When the 

cart slaws to zero velocity, the observed bristle ddection is non-zero, which is consistent 

with simulated values for z. However, friction compensation continues to act in the direction 

of prior motion. A measured change in velocity is needed to alter the value of 2. There are 

two possible solutions to this problem. The first is to increase the magnitude of q(e) in the 

fkiction observer, thereby increasing at zero velocity. The second option is to construct a 

model-based velocity estimate as input to the observer. 



Figure 7.7: Response of a hear PD controller to tracking a discontinuous path y with poles at 

-10 f IOi 

A similar situation arises ia fine positioning, as shown in figure 7.4. Once the cart 

overshoots the reference point and slows, the observer-based friction compensation continues 

to push it away Erom the desired position. Proportional feedback must be great enough to 

counteract this effect for the cart to change directions. The overshoot can be increased by 

over-compensation for fiction with an inexact model. Nevertheless, once the cart comes to 

rest, the observed bristle deflection is altered only by the term q(e). After a bng period 

of time, i will change sign. This can be explained by the fact that the estimation error, 

2, slowly approaches zero. In this case, a high value of q(e) seems appropriate, but the 

increase of integral act ion in the controller could lead to hunting. 

Static Ection effects can be overcome by accurately modeling zero velocity fiction 

forces. In theory, the control law presented here achieves this because friction is modeled 
* 

as a firnction of displacement at zero velocity. Simulations show that when the macroscopic 

motion of the cart is zero, presliding displacement st ill occurs. Applying a force whose net 

direction is opposite to that of bristle deflection, will change the value of XI, and decrease 

r. When this occurs, 2 2  is non-zero, which alters the observed bristle deflection, 2. This, 

in turn, alters the friction compensation. However, presliding displacement is a very small 

quantity; our identified bristle model indicates that the bristles deflect to a maximum of 
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Figure 7.8: Response of the new dynamic feedback controller to tracking a discontinuous path x d  

with poles at - 10 f 10i 

2.15 x 10-5 m. Some miaoscopic motion is not detected by the encoders in the real system. 

Hence there is no measured change in xz, and no change in observed bristle deflection 2. 

For a real system, the position and velocity error must be high enough to induce measurable 

motion via PD feedback, before friction compensation can occur. Constructing an observer 

for velocity that predicts small position changes could improve the performance. 

It should be noted that detecting presiiding motion would not completely eliminate 

the problems associated with direction changes. Tests for presiiding displacement, discussed 

in Chapter 5, showed motion is detected for small applied forces. However, the magnitude of 

the detected motion is much larger than the maximum bristle deflection. Thus small-scale 

sliding occurs in the sem system for applied forces less than the identified value for Fs; our 

model may over-estimate static fiction, which can lead to overshoot [a]. In addition, the 

nonlinear nature of the model makes constructing a stable observer for velocity extremely 

difficult. For many applications, a small increase in controller gains can reduce the effects 

of stiction to an acceptable level. 



Figure 7.9: -4 comparison of the responses of the new model-based dynamic feedback control Iaw 

to the C-0-A-L controller with input xd = LO em. b e  the poles for the new controller are at 

-10 f I O i  and the gains for the GO-A-L are k~ = 350 kg/s2 and k2 = 450 kgls. 
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Figure 7.10: A comparison of the responses of the new model-based dynamic feedback control 

law to the C-0-A-L controller with input xd  = 1 cm. Here the poles for the new controUer are at 

-10 * 1% and the gains for the GO-A-L are kL = 350 kg/s2 and k2 = 450 k g / s .  
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Figure 7.11: A comparison of the responses of the new model-based dynamic feedback control law 

to the C-O-A-L controuer with input xd = O.lsin(t) m. Once again, the poles for the new controller 

are at -10 f 10i and the gains for the C-O-A-L are k1 = 350 kg/s2 and k2 = 450 kgls .  



A new dynamic feedback control Iaw has been introduced for the servo motor-cart 

apparatus. This control law combines proportional and derivative feedback with nonlinear 

model-based Metion compensation using the bristie model of equations (4.1) and (4.2). 

Compensation is achieved via dynamic output feedback. With this controUer, sensible 

proportional and derivative gains can be used. 

The c o n h o k  developed in this chapter was tested for point-to-point positioning 

and for low velocity tracking control. The results of these tests were compared to the re- 

sponse of a PD controllet with only linear viscous friction included in the system model. 

R d t s  indicate that the dynamic feedback controller outperforms the simpler PD. The 

speed of response for positioning is comparable- However, the accuracy improves signifi- 

cantly with the addition of model-based ikiction compensation. In addition, the dynamic 

feedback controller shows less need for re-tuning. In tracking control experiments, the PD 

controller response exhibits steady state error that is not present with model-based Ection 

compensation. The dynamic feedback controller exhibits stiction effects at velocity rever- 

sals, which has been attributed to using sensory velocity data to compute the observed 

bristle deflection. 

F W y ,  the new controller with friction compensation was compared to the G O -  

A-L controller of Chapter 6. The accuracy achieved with the new controller is comparable 

to that of the GO-A-L, but the response is much faster. The new controller does not induce 

vibration, which is observed using the GO-A-L controller, nor does it exhibit hunting. Thus 

the new dynamic feedback controller is preferable to the C-0-A-L controllet- 



Chapter 8 

Conclusions and Future Work 

A study has been conducted to determine whether positioning and tracking control 

in a servo system can be improved through model-based fkiction compensation- The perfor- 

mance of two model-based fiction cornpensat ion controllers was assessed experimentally, 

and compared to that of a PD feedback controller. 

8.1 General Conclusions 

The model adopted for friction compensation was the bristle model of equations 

(4.1) and (4.2), propod  in [7]. This state variable model was identified for our servecart 

system. Experiments and simulation indicate that our model captures known nonlinear 

friction behaviour. The predicted open-loop response to various inputs was compared to 

the actual system response. Our nonlinear model was found to reasonably predict the 

behaviour of the real system- 

Both controllers tested are a combination of proportional and derivative feedback 

and dynamic output feedback friction compensation. The first controller tested was pro- 

posed by the authors that developed the bristle model [?]. The second controller was 

developed as a part of this thesis. The primary difference between the two arises in the 

nature of the nonlinear dynamic feedback. The GO-A-L controller includes an observer for 

the internal state z that is a simple extension of the model for z; the estimated variable, 5, 

converges to a. However, the requirement that the transfer function between position error 

and observer error be SPR means that a large derivative gain is needed. The controller 

developed in Chapter 7 requires a more complex observer, whose state i may not converge 



to z. However, with this scheme, optimal pole placement is possible. 

A PD controller was introduced as a basis of comparison because of the structure of 

both controllers. Thus both dynamic feedback controllers were tested separately and their 

performance was compared to that of the PD controlIer. The GO-A-L controller of Chapter 

6 proved to be more accurate than a PD controller, but slower to respond. Experimental 

problems arose because of high gain feedback, resulting in an overdamped response, noise 

amplification, and control saturation. Thus for our servo system, the GO-A-L controller 

is not the most practical option. Conversely, the dynamic feedback controller developed 

in Chapter 7 was found to have a comparable response time to a PD, with significantly 

increased accuracy for both positioning and tracking problems. It was also noted that 

adding friction compensation reduces the need for -tuning that is encountered with PD 

control. 

The two dynamic feedback controllers were aIso compared to one another. The 

controller of Chapter 7 responded much more quickly than the GO-A-L controller, with 

s h i k  accuracy, but no hunting. Despite the increased compiexity of the dynamic feed- 

back, the controller hom Chapter ? exhibits no serious practical probIems, other than the 

requirement that sufficient speed of computation is needed for real-time implementation. 

8.2 Future Work 

We have determined that our model is not perfect. Some error arises due to 

asymmetric friction that is not captured by the model. Wction is also non-dorm; it varies 

with imperfections in the motor and track. Tests for presliding displacement in Chapter 

4 indicate that the model may over-estimate static Kction. Many of these problems arise 

due to using steady state data, obtained kom motion in only one direction, in the least 

squares estimation. An adaptive identification method could to significantly improve the 

model identiiication. However, it might be usefid to try a fixed model whose parameters 

change for difFerent directions of motion. 

It may also be useful to consider separate fiction models for Werent components 

of the mechanical system and attempt to combine them into a single model. This would 

indicate how effkctively the model captures the total fiiction in the system. 

Other problems encountered arise because of the method used to estimate veloc- 

ity. Significant noise was present in the velocity signal, despite filtering. A higher order 



numerical method for integrating the fiction observer could provide a more accurate esti- 

mate for bristle deflection and may allow us to reduce the sampling frequency. This could 

reduce noise in the velocity estimate. Nonetheless, the estimate for bristle deflection, 2, 

is very sensitive to noise because of its small magnitude and its fast dynamics. There is 

a,lso a limit to encoder resolution and some smal l  motions are undetected. In this case, 

the velocity is considered to be zero, and 2 remaina constant. The nonlinear nature of the 

model would make constructing an observer for velocity extremely difficult. However, with 

such an observer, performance may be improved. 

A more sophisticated controller may achieve higher accuracy. For example, it may 

be worthwhile to test a combination of optimal control and hiction compensation. 

Finally, the cart-motor servo system is an extremely simple apparatus, which was 

used so that Kction effects could be easily studied. Extending the theory of Chapter 7 to 

higher order systems would have wider applications. This appears to be a difficult problem, 

but one worthy of consideration. 
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