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Abstract 

During a process identification experirnent, it often occurs that the process output 

variable drifts outside the acceptable operating region due to process disturbances. In 

this situation, the operator will attempt to b ~ n g  the process output variable back inside 

the desired operating region by adjusting the manipulated input variable. This thesis 

studies the effects of such operator intervention on the accuracy of the identification re- 

sults and proposes the use of correct noise models in the design of a process input-output 

data prefilter to remove the resulting biasing efFects. In addition, this thesis develops 

a modified generalized least squares algonthm to simultaneously estimate the process 

mode1 and the noise model. 
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Chapter 1 

Introduction 

1.1 Motivation 

In the chemical process industries, design of a control system requires a mathematical 

mode1 of the process. The process model may be used as the b a i s  For controiler design, 

or incorporated directly in the control law. Not al1 process control strategies use a 

model explicitly in their implementation. However, most strategies are "model-based" 

in the sense that some characteristics of the process must be known in order to car- 

out the design. Mode1 Predictive Control (MPC) represents a farnily of process control 

algorithms which make direct use of an explicit and separately identifiable model (Prett 

and Garcia, 1988). 

To develop a dynamic mode1 of the process, either a Brst principles approach, or a 

black-box approach may be used. With the k s t  principles approach, the process model 

is derived from physical and chemical principles such as the conservation laws. With the 

black-box approach, the model is developed directly from process input-output data. 

There exist many identification techniques for obtaining a process model Erom black- 

box e-xperiments (Ljung, 1987). In this thesis, process modelling using the black-box 

approach is considered. 

Data used to identi& a mathematical model of the process are obtained from 

plant experiments, where the process inputs are perturbed and process outputs are 

measured. The identification experiment can be carried out in open-loop, mhere a pre- 
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determined input signal is applied to the process without any concern for rvhether the 

process output drifts outside a desired operat ing range. However, many systems mus t 

remain in closed-loop under feedback control due to safety and production restrictions. 

The feedback control c m  be either continuous or intermittent. Feedback control caused 

by an operator who intervenes and adjusts the process input when the process output 

drifts out of a desired range is an example of intermittent feedback. 

Several important issues related to closed-loop identification have been reviewed 

in the recent paper by MacGregor and Fogal(1995). In this paper, the authors indicated 

that problems anse with the identification of high order finite impulse response (FIR) 

models under closed-loop conditions. Because these conditions are typical of how iden- 

tification experiments are conducted in the chernical process industries combined with 

the popularity of FIR-type models in the design of many modern control strategies, the 

problems cited by MacGregor and Fogal (1995) have raised many questions about the 

proper use of these types of models. This thesis will revisit and attempt to clarify some 

of the issues raised by MacGregor and Fogal and rvill also examine some new issues 

which go beyond the scope of their earlier work. 

1.2 Lit erat ure Review 

1.2.1 Closed-loop System Identification 

Much of the existing theory on system identification was developed in the 1970's 

(Gustavsson et al., 1977). Several methods have been proposed and can be catego- 

rized as eit her non-parametric or parametric methods. With non-parametric met hods, 

a finite-dimensional parameter vector is not edupLicitly used in the search for the best 

rnodel description. With parametric methods, a candidate model structure must be first 

selected. 

The popular non-parametric approaches are commonly k n o m  as correlation anal- 

ysis and spectral analysis. These methods can be successfully used to i d e n t i ~  a process 

using data obtained £rom open-loop e-xperiments. It is well k n o m  that these techniques 

yield no information about the tme system if the data are generated Born purely feed- 
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back operation. It has been shown in the literature that the presence of an external 

signal or dither signal is necessary in the closed-loop case in order to make a process 

identifiable (Wellstead, 1977; Fang and dXao, 1988). 

The most well-known parametric approach is the prediction error rnethod (PEM). 

Within the prediction error method, three different approaches are available for identi- 

fying a systern working in closed-loop: the direct method, the indirect method, and the 

joint input-output method. With the direct method, the esperimental data are used 

as if no feedback was present, i.e. knowledge of the controller is not required. With 

the indirect method, the external setpoint must be measurable and the feedback law 

must be known. With the joint input-output rnethod, the input-output process is first 

modelled jointly as the output of a system driven by white noise. The plant dynamics 

are subsequently derived from the joint model by m a t r k  operations. The direct method 

has a major advantage over the other two in that it allows for a widcr variety of possible 

structures for the unknown regulator, namely the regulator can be time varying, whereas 

the indirect method requires prior knowledge of the regulator and the joint input-output 

method is limited to systems with a linear and time-invariant regulator (Anderson and 

Gevers, 1982). In the case of the intermittent feedback introduced via operator inter- 

vention, the dynamics of the feedback controller may be quite cornplicated (e.g. perhaps 

nonlinear and time varying). Therefore, the direct method will be adopted in this thesis. 

A few new closed-loop identification methods have been developed recently. 

Based on the concept of an observer for reducing the effect of noise in the identification 

of a state-space representation of the process working in open-loop (Chen et al., 1992; 

Juang et  al., 1993) , Phan et al. (1994) proposed an identification technique dealing 

with the case where the feedback controller is known. To deal with the case where the 

feedback controller is unknom and assumed to be linear and tirne-invariant, Juang and 

Phan (1994) developed a similar method. These methods result in an unbiased estimate 

of the process model for systems working in closed-loop operation as long as the escita- 

tion signds are sufficiently nch, and the measurement noises are white, zero-mean, and 

Gaussian. Moreover, Van Den HoE and Schrama (1993) proposed a Two-Step method 
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(TS) which consistently estimates the process transfer function regardless of whether 

the noise contribution to the data can be rnodelled exactly. They also formulated an 

explicit expression for the asymptotic bias distribution of the identified mode1 when the 

transfer function of the system cannot be modelled exactly. Wi t h different identification 

objectives, Huang and Shah (1996) proposed a sirnilar two-step closed-loop identification 

method ivhich asymptotically retains the accuracy OF open-loop identification through 

the design of the sensitivity function decoupling filter. 

1.2.2 Operator Intervention 

Dither Signal Disturbance 

Figure 1.1: Conceptual block diagram of the procedure of operator intervention 

The procedure of operator intervention can be described using Figure 1.1. During an 

identification experiment, a dither signal is introduced to the system input to excite the 

process, while the process output, y, is observed and compared with a set-point value, 

y,. When the difference betmeen the set-point and the measured output (error, e) is 

outside an acceptable range, the operator makes an adjustment to the process input 
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to bring the process output back towards the target value. Because the operator in- 

tervention is not continuous, i.e. it happens only a t  the sampling instants when the 

process output is outside its acceptable range, we use a dashed line in Figure 1.1 to 

represent this intermittent feedback path. In the chernical process industries, identifica- 

tion experiments are often performed under such conditions. In this thesis, "open-loop" 

will refer to the situation where a pre-determined input signal is appliecl to the process 

without any concern for whether the process output drifts outside the desired operating 

range. "Closed-loop" will refer to the situation mhere the input is a combination of a 

pre-determined sequence or dither signal plus additional moves made by an operator to 

bring the process output back into the desired operating region. 

.4s mentioned previously, several important issues related to process identification 

using data collected under various closed-loop conditions have been reviewed by Mac- 

Gregor and Fogal (1995). They analyzed the role of the noise model and data prefilters 

on the identifiability of the process model. Also, they estimated higher order FIR- 

type rnodels with data containing operator intervention, and implied that identification 

problems anse mhen t rying to estimate high order FIR-type models under closed-loop 

conditions even when the data is properly prefiltered. 

If the identification ek~eriment is carried out entirely under open-loop conditions, 

Ljung (1987) shows in his Theorem 8.4 thnt the process model can be consistently 

estimated using the PEM approach without careful attention to the estimation of the 

noise transfer functioû as long as the process model and noise model are independentiy 

parameterized, the process mode1 is sufficiently complex to capture the true process 

transfer function, and the noise model is stable. When the data is collected under 

closed-loop conditions, Ljung shows in his Theorem 8.2 and 8.3 that both process model 

and noise mode1 can be consistently estimated using a PEM approach as long as the 

process and noise models are sufkiently complex to capture the true process and noise 

t ransfer functions. .An al ternative approach under closed-loop conditions is to estirnate 

just the process model using prefiitered data. However, to obtain consistent estirnates 

for the process model, the prefilter must be designed using a good estimate of the true 
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noise model. Othenvise, the process model will be estimated incorrectly (Ljung, 1987). 

1.2.3 Process Mode1 Representation 

High order finite step response (FSR) or FIR models estimated clirectly from plant 

data are frequently used to characterize the process dynamics. The reasons for their 

popularity are that these types of models fit naturally into the design of many MPC 

algorithms, and the multivariable processes on which these algorithms arc typically 

applied are not well represented by lower order transfer function models (Cutler and 

Yocum, 1991; MacGregor et al., 1991). In addition, these models are a straightforward 

representation of the process dynamics, and the parameters of these modeIs, such as the 

sampling period and the model order, have a relativeiy simple physical interpretation. 

Although FSRIFIR type rnodels have their advantages, they have a few wiclely 

recognized problems. Firstly, it is difficult to obtain good estimates for their respec- 

tive parameters due to their high dimensionality (Ricker, 1988). Secondly, these rnoclel 

structures often result in ill-conditioned solutions when applying a l e s t  squares estima- 

tor since the data matrices associated with these models are often poorly conditioned 

(MacGregor et al., 1991). LIacGregor et al. (1991) have studied biased regression tech- 

niques (e.g. ridge regression) and the projection to latent structures (PLS) method as 

alternatives to least squares. Ricker (1988) studied the use of PLS and a method based 

on the singular value decomposition (SVD). AU these approaches attempt to reduce the 

variances and improve the numerical stability of the solution with the result being biased 

parameters. 

The frequency sampling filter (FSF) mode1 structure is a candidate model stmc- 

ture which has many of the same attributes as  the FSRIFIR type models but does not 

suffer from their problems to anynrhere near the same degree. The FSF model is ob- 

tained from a linear transformation of the FIR model and consists of a set of narrow 

bandpass filters. Combined with a standard least squares estimator, the FSF' model can 

be used to directly estimate the process frequency response. Recent work by Wang and 

Cluett (1996a) has s h o m  that the FSF mode1 is a much more efficient way to estimate 
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the process step response. The advantages of the FSF model structure over the pop- 

ular FIR model are that the number of parameters to be estimated is independent of 

the choice of sampling interval and is generally far fewer than the number required by 

the FIR model to obtain an accurate estimate of the step response. In addition, the 

general conditioning of the correlation matrk is better with the FSF model due to the 

reduction in the number of parameters that need to be estimated and to the narrow 

bandpass nature of the frequency sampling filters themselves. Furthermore, wit h the as- 

sumption that the errors in the estimated process model are Iargely due to the presence 

of noise and disturbances, Cluett et al. (1996) extended the statistical confidence bound 

in Goberdhansingh et al. (1992) from a set of point-wise bounds to a bound over the 

entire frequency region. From this frequency domain model information, a time domain 

uncertainty bound for the corresponding step response model tvas also derived. 

1.2.4 Process and Noise Model Structure Determination 

Model structure determination is an important step in system identification. For para- 

rnetric methods, most of the esisting identification methods assume that the structure of 

the system is known a priori, (i.e. transfer function order and delay), or that the selected 

model structure is at Least within the true model class. At this point, the identification 

scheme is in reality a parameter estimation procedure. Alternatively, high order FIR 

models can be used but lead to the estimation problerns rnentioned above. With the 

FSF model, lower order models maybe used but the question remains how to choose the 

best order of the FSF model. 

A natural approach to searching for a suitable model structure is to test a nurnber 

of different model structures and to compare the resulting models. To perform such 

comparisons, a discriminating criterion and data sets are needed. For euample, with a 

cross-validation approach, the criterion could be the sum of squared prediction errors or 

the misfits between the actual outputs and the mode1 predicted outputs using a fresh data 

set. .An attractive feature of this method is that the cornparison makes sense without any 

probabilistic arguments and nrithout any assumptions about the true system. The o d y  
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disadvantage is that we have to Save a fresh data set for the cornparisons and therefore 

we are not using al1 of the available information to build the model in the first place. 

When we cannot spare fresh data sets for cross-validation purposes, other meth- 

ods can be applied. An extensive survey of the literature regarding model structure 

selection was given by Stoica et al. (1986). The rank test is a methocl which is inde- 

pendent of the estimates of parameters (Fang and Xiao, 1988). Other methods which 

are dependent on the parameter estimates are the F- test, Akaike's information criterion 

(AIC), the final prediction error criterion (FPE), penalty for model complexity, etc. 

(Ljung, 198'7). In practice, one should not use just one method for model structure se- 

lection but it is recommended that a combination of statistical tests and plots of relevant 

signals be used (Soderstrom and Stoica, 1989). 

For noise model structure selection, it is standard practice to examine auto- 

correlation functions (ACFs) and/or partial auto-correlation functions (PACFs) (Box 

and Jenkins, 1976). This is an off-line procedure which requires a certain amount of 

expertise to interpret these plots. 

To take the advantage of cross-validation without suffering the loss of data in- 

formation, PRESS is a candidate model structure selector for linear regression type 

problems (Wang and Cluett, 1996b). PRESS is defined as the sum of the squared true 

prediction errors, where the true prediction error is calculated using data which is not 

part of the data set used to estimate the process model. ünlike the cross-validation 

approach where the entire data set is split into two parts, PRESS is calcuiated on each 

and every data point with the remaining data points used for model estimation. Wang 

and Cluett (1996b) show that the PRESS cntenon provides a consistent and robust 

estimate of the mode1 order. Application examples of the PRESS statistic for model 

structure selection are available in Patel et al. (1996). 

1.3 Contributions of this Thesis 

The first major contribution of the thesis (Chapter 2) is a thorough study of the role 

of operator intervention in process identification. In industry, when estirnating step r e  
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sponse models for model predictive control applications, sometimes the test data which 

contains operator intervention is discarded. In addition, research by MacGregor and 

Fogal (1995) implied that non-parametric models lead to biased step response estirnates 

due to the presence of operator intervention. In this thesis, we have s h o w  that operator 

intervention may lead to better rnodels due to the fact that operator intervention often 

improves the overall signal- to-noise ratio. With proper data prefiltering, there is cer- 

tainly no need to discard data which contains feedback when estimating FIR models. In 

addition, we show that there are some factors which c m  affect the process identifiability? 

e.g., whether the operator intervention is delayed or immediate, and if the unit delay is 

included in the model. 

The second major contribution of the thesis (Chapter 3) is the study of the design 

of the prefilter. Both theoretical analysis and simulation esamples are nsed to illustrate 

that the process input-output data must be prefiltered using an accurate estimate of the 

tme noise model. In addition, the study shows that the autoregressive-type dynarnics 

of the noise model are the most important components when it cornes to designing the 

prefilter. 

The third major contribution of the thesis (Chapter 4) is that a modification of 

the well-known generalized least squares algorithm (GLS) is proposed for simultaneous 

identification of both process and noise models. The proposed algorithm provides a sim- 

ple approach to remove the effect of any feedback on the process step response estirnate. 

and to produce "white" residuals to permit presentation of statistical confidence bounds 

for the step response models. This algorithm makes novel use of the PRESS critenon 

for both process and noise model order selection. The performance of the proposed ai- 

gorit hm is demonstrat ed using simulation examples and by application to an industrial 

data set. 



Chapter 2 

The Role of Operator Intervention 
in Process Identification 

2.1 Introduction 

In this chapter, the topic of closed-loop systern identification is investigated with partic- 

ular emphasis on the case where the feedback is introduced via operator intervention. A 

description of the procedure of operator intemention is given in section 2.2. In section 

2.3, the identifiability of non-parametric models versus parametric models under these 

types of closed-loop conditions is investigated. In section 2.4, the effect of the extent of 

operator intervention on the resulting model quality is studied. In section 2.5, the effect 

of different types of intervention strategies is esamined. Concluding rernarks are given 

in section 2.6. 

2.2 The Procedure of Operator Intervention 

The closed-loop system under operator intervention can be conceptually described using 

Figure 2.1 from a process identification point of view. In this diagram, the process is 

represented by the transfer function Ga (z ) ,  the process output target value is given by 

the set-point, y,,,, and the process input and output variables are denoted by ut and yt; 

respectively. AU unmeasurable process disturbances are charactenzed by a white noise 

sequence a, fltered through a noise model transfer hinction, Ho(z). 

In the identification experiment, we add a dither signal to the process input to 



Chapter 2. The Role of Opera tor Intervention in Process Identification 

DRher Signal 

I 

Figure 2.1: Closed-bop system under operator intervention 

excite the process. The dither signal is typically a random binary signal with some 

specified magnitude and switching frequency. The process output, yr, is measured and 

compared Mth a set-point value, y,,yt. When the process output a is outside an accept- 

able range, which is specified by I LIM in this thesis, the operator adjusts the input to 

draw the process output back towards the target. Here Ive assume that the operator has 

knowledge of the sign of the process gain and makes a step change adjustment. There- 

fore, the input signal ut is the combination of the dither signal and the step changes 

introduced by operator. In order to determine whether the adjustment has the desired 

effect, the operator nmits a certain period of t h e  between two successive adjustments. 

This operator intervention procedure can be illustrated using the following sirnulat ion 

example. 
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Simulation Example 2.2.1: 

Consider the system described by 

ut = 
1 

1 - 0.97r1 (2.2) 

where yt is the measured process output, ut is the process input, ut represents the effect 

of al1 unmeasured disturbances on y,, ut is a white noise sequence with zero mean and 

variance of 0.3, and I. is the mathematical shift operator defined by 2 - l ~ ~  = gt+ 

The dither signal used to excite the process is a binary signal with a magnitude of 

1, minimum switching time of 10 sampling intervals, and a 50% probability of switching. 

During the experiment, when the measured process output moves out of I LIM from its 

target value at  a given sampling instant, a step change of magnitude f 5 is superimposed 

on the dither signal at  the next sampling instant to attempt to bring the process output 

back to its target value. The operator then waits 25 sampling intervals after giving an 

adjustment to determine whether the action has the desired effect. For one esperiment, 

10 000 sets of input-output data are collected. In order to sirnulate different realizations 

of the stochastic disturbance, repeated experhents are performed by using the same 

random binary signal but mith different seeds for generating the 

{ a d *  

This simulation example closely matches Esample 2 

Fogal (1995) and will be used fkequently throughout this chapter. 

white noise sequence 

in MacGregor and 

2.3 Estimating Process Step Response Under 
Closed-loop Condit ions 

The true process is assumed to be given by: 
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The system is then estimated using the assumed model structure 

where û can be either an infinite or a finite dimensional vector of parameters. 

Taking H(z ,  8) = H ( z )  as a user-selected prefilter, so that g f V t  = H - ~ ( Z ) ~ , ,  

u f , ~  = H - L ( ~ ) z ~ t ,  we have 

Ljung (1987) shows in his Theorern 8.2 and 8.3 that both Go and Ho can be consistently 

estimated from data coI1ected under closebloop conditions using a PEM approach pro- 

vided that the models G ( z ,  8 )  and H ( z ,  O )  are sufficiently complex to capture the true 

process and noise transfer functions, Go(r )  and Ho(z).  This indicates that G(z,  8) can 

be estimated using Equation (2.6) with the prefiltered process input-output data pro- 

vided that the prefilter H ( z )  is designed using a good estimate of the true noise transfer 

func t ion Ho (2). 

2.3.1 Non-parametric and Parametric Models 

For a linear, time-invariant process, the process transfer hinction can be wi t ten  as 

Go (z )  = h ( k ) ~ - ~  

where the sequence { h ( k ) )  is the impulse response of the process. 

Another example of a popular non-parametric model of the process is the step 

response mode1 { g ( k ) )  where 

Two examples of popular parametric models are the equation error or ARK model 

structure 
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and the output error (OE) rnodel structure 

where A(%) = 1 + alt-l + --• + a,~- "~ ,  B(z)  = blz-L + + bn,z-"b and D ( z )  = 

1 + d l& + . --+ d,,z-"d. 

Another popular parametric rnodel used to represent stable processes is the finite 

impulse response model (FIR), where 

and nb = N ,  where N is an estimate of the process settling time. From Equations 

(2.9), (2.10) and (2.11) we can see that the FIR model can be considered a special case 

of the OE model structure with D = 1, or a special case of the ARX model structure 

with -4 = 1. 

2.3.2 Non-pararnetric and Pararnetric Estimation Methods 

Methods for determining estimates of nonparametric rnodels are called non-pararnetric 

methods since they do not explicitly use a finite-dimensional parameter vector in the 

search for a model (Ljung, 1987). For estimating a finite number ( N )  of t e m s  in the 

impulse response {h(k)), correlation analysis is a popular non-parametric method. This 

method produces an estimate of the first iV + 1 impulse response coefficients by solving 

for O 5 T 5 N ,  where 
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and 1I.f is the nurnber of observed sets of input-output data. Using a matrix form, 

Equation (2.12) is equivalent to 

These equations are derived From Equations (2.3) and (2.7) under the assumption 

that the identification experiment has been carried out iinder open-loop conditions, 

t hereby, 

i.e. the process input ut and the disturbance ut are uncorrelated for al1 lags r 2 0. 

When the experiment is carried out under closed-loop conditions, this assumption does 

not hold because ut and ,ut are no longer independent, and correlation analysis will 

produce erroneous results. 

Methods for estirnating the parameters within a selected model structure (e-g. 

ARX, OE, FIR) are called pûrametric estimation methods. To evaluate the quality of 

the estimated model, the concept of the prediction error is often used. The prediction 

error, et,  is defined by: 

With prediction error identification methods (PEM), the objective is to choose e 
such that some measure of the size of { e t )  is rninirnized. We often use a quadratic n o m  

where is chosen to rninirnize & C& e:- For the .4RX and FIR rnodel structures, this 

can be accomplished with the well-knom least squares method (LS). For example, the 

equivalent linear regression f o m  of the FIR model is given by: 

where 
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and 

The LS estimate for the parameters 6 is given by 

By comparing Equation (2.15) for estimating the impulse response mode1 {h(k)  } 

and Equation (2.21) for estimating the N parameters in the FIR model, it can be seen 

that the correlation analysis estirnates and the LS estimates are identical (h (k )  = bk) 
except for the fact that the leading coefficient, 60,  of the FIR is not estimated. This 

discrepancy arises from the fact that the unit delay has been included in the FIR moclel. 

However, the nonparametric method of estimating the impulse response model and the 

parameter estimation method (i.e. l e s t  squares) for estimating the FIR model csn 

be made identical by either estimating bo in the FIR mode1 or by forcing h(0) = O in 

Equation (2.7). 

2.3.3 Cornparison of Estimation Results Using Parametric and 
Non-parametric Models 

In simulation example 2.2.1, LIM was set equal to 6 which matches the value chosen 

by MacGregor and Fogal (1995). -4 section of 1000 sample periods is plotted in Fig- 

ure 2.2. The input-output data was prefiltered with the inverse of the correct noise 

model as illustrated in Equation (2.6). The impulse response model in Equation (2.18) 

was estimated using the LS method with Ur and 1 ~ t  replaceci by U I , ~  and y,,( in Equa- 

tion (2.21). The estimation was performed using the MATLAB .UX command with 

iVN = [O 50 11 (see Appendk B). Fifty different experiments Rith 50 different seeds for 

the white noise sequence were performed yielding 50 estimates of the impulse response 

model. The conesponding unit step response estimates were generated Erom Equation 

(2.8) (with the unit step occurring at  the &st s a m p h g  intenml) and the results are 

plotted in Figure 2.3. Compared with the true process step response s h o m  in Figure 

2.4, the estimat es are clearly unbiased. 



Chapter 2. The Role of Operator In tervention in Process Identjfication 
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Sample Intervals 

Figure 2.2: Process input-output data with LIM= 6 .  

MacGregor and Fogal (1995) suggest that, even if the prefilter is designed using 

the true noise model, when estimating a "non-parametric" mode1 such as the impulse 

response, one rnight expect to identify some weighted combination of the process model 

and the negative inverse of the controller. Our result would seem to contradict the 

suggestions made by MacGregor and Fogal (l995), but it can be validated by the foi- 

lowing explanation. Due to the nature of the operator intervention in this simulation 

euample, correlation exists between {ut+l)  and { v t ) .  Because the disturbance {vt) is 

autocorrelated, then &&) # O for all r 2 O. Therefore, estimates of the impulse 

response would be biased if they had been generated from Equation (2.21) using ut and 

yt. Homever, Nith ut and yt being filtered by the inverse of the correct noise model, the 

impulse response model is estimated using the LS method 116th ut and yt replaced by U I , ~  

and YI,, in Equation (2.21). Because correlation exîsts becnteen {ut+i) and { u t ) ,  then 

correlation also exists between { u ~ , ~ + ~ )  and {ar) However, because { a t )  is a white noise 

sequence, &&) sz O for dl r 2 O. Then the estimated models are unbiased according 
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Figure 2.3: Estimated unit step responses with FIR mode1 including unit delay ( L M =  

6). 

to Equation (2.16). 

Although an unbiased estirnate of the step response has been generated from an 

FIR model which includes the unit delay, the fact that &,,(O) zs O would indicate that 

even if the unit delay had not been included the estimates woulcl be unbiased. This 

result was verified by re-estimating 50 estimates of the impulse response model from 

the same 50 experiments used to generate Figure 2.3 (MATLAB .A.K.?C cornrnand with 

NiV = [O 50 O]). The correspondhg JO step response estimates are plotted in Figure 

2.5. By cornparhg with the true step response s h o m  in Figure 2.4. the estimates are 

seen to be unbiased. Compared with the estimation results s h o m  in Figure 2.3. the only 

difference is that the first term of the step response estimate 3(0) = h(0) is no longer 

exactly zero but has its OTM distribution nrith zero mean. 

These results indicat e t hat under the closed-loop conditions described in sirnu- 
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Figure 2.4: True unit step response 

lation esample 2.2.1, unbiased estimates of the process step response can be obtained 

using correlation analysis or equivalently the LS estimates of the FIR model provided 

the input-output data have been prefltered with the inverse of the correct noise rnodel. 

In addition, we are also interested in inves tigating the identifiability of parametric 

models to see if they provide significaotly different results. From the same 50 esperiments 

used above, 50 estimates of a lower order transfer function model were obtained using 

the hIATLAB OE command with N N  = [1 1 11 and NlV = [2 1 O] after the input- 

output data was prefiltered witith the inverse of the correct noise model (see Appendk 

B). The corresponding 50 step response estimates are plotted in Figure 2.6 and 2.7 For 

iVN = [l 1 11 and N N  = [2 1 O], respectively. By comparing Figure 2.3 with 

Figure 2.6 and Figure 2.5 with 2.7: it is clear that the non-parametric estimates and the 

parametric estimates have similar distribution properties, the o d y  dîfference being that 

the parametric estimates are smoother. 
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Figure 2.5: Estimated unit step responses with FIR mode1 not including unit delay 
( L M =  6). 
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Figure 2.6: Estimated unit step responses with OE mode1 including unit delay (LIM= 6). 
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Figure 2.7: Estimated unit step responses wïth OE mode1 not including unit delay 
(LIM= 6 ) .  
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2.3.4 Convergence of Estimated Models 

With the previous simulation results, in al1 cases we assumed a process mode1 structure 

which was sufficiently complex to capture the true process transfer function. Ljung's 

(1987) asyrnptotic results tell us that the model estimates will converge to the true 

process as the data length, hf -t m. To evaluate the convergence behaviour, 500 000 

sets of input-output data were collected in one simulation experiment. Then, this data 

sequence was cut into different lengths by taking the Brst 10 000 data points, the first 20 

000 data points, etc. up to the entire data length. This results in 50 data sets ofdifferent 

lengths. Based on the JO data sets, unit step responses were estimated From the impulse 

response model with the LS method (MATLAB ARY command with N N  = [O 50 1)) 

and from a low order transfer function model with the output error method (M--\TLAB 

OE command with IVN = [l 1 11) with the data correct- prefiltered. The results are 

-0.2~ 1 1 1 I I 1 1 I 1 I 

O 5 10 15 20 25 30 35 40 45 50 
Sample Intervals 

Figure 2.8: Convergence of Estimated Models: FIR model including unit del- (LIAI= 
6)- 
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Figure 2.9: Convergence of Estimated Models: OE mode1 including unit delay ( L M =  6). 

shown in Figure 2.8 and 2.9, respectively. 

By comparing Figure 2.4 with 2.8, and Figure 2.4 with 2.9, it is clear that both 

FIR generated estimates and the low order transfer function generated estimates con- 

verge to the true step response. In addition, by comparing Figure 2.3 with 2.8 and Figure 

2.6 Nith 2.9: it is also clear that two estimates have sirnilar convergence behaviour, the 

only difference being that the low order transfer function generated estimates are some- 

what srnoothet. 
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2.4 The Effect of Operator Intervention on Model 
Quality 

In industry, data which contains feedback operation is often discarded when a FIR mode1 

is to be estirnated. This is because of the well-known result that non-parametric methods 

such as correlation analysis lead to biased estirnates of the process model when applied 

to process input-output data which contains feedback. The results in section 2.3 clearly 

indicate that this need not be the case with proper data prefiltering. In this section, 

this issue is explored one step further by examining the effect of the frequency of the 

operator intervention on the model quality. 

To c a r y  out this study, two more sets of 50 experiments were performed under 

the conditions described in Example 2.2.1 with LIM set equal to 3 and 100. Example 

sections of 1000 sarnple periods for LIM= 3 and 100 are shown in Figure 2.10 and 

Figure 2.11, respectively. From comparing Figure 2.2, Figure 2.10 and Fi y r e  2.11, it 

Figure 2.10: Precess input-output data with L M =  3. 
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Figure 2.11: Process input-output data with LIM= 100. 

is clear that the value of LIM directly determines the amount of operator intervention. 

For instance with LIM=100, the process output never drifts outside f.100, and the 

process input consists solely of the random binary signal with no operator intervention. 

This is equivalent to the open-loop situation. On the other hand, with L M =  3, the 

process output is frequently outside the acceptable range of *3, resulting in frequent 

interventions from the operator. With L M =  6, the process output drifts less frequently 

outside the acceptable range of k6 leading to fewer operator moves. Impulse response 

models were estimated using the LS method with ut and yt replaced by u l , ~  and yj,t in 

Equation (2.21) (WiTLAB .&Y command with IVN = [O 50 11). The corresponding 

50 step response estimates are s h o m  in Figure 2.12 and Figure 2.13 for LIM= 3 and 

10 0, respect ively. 

In addition, using the same tmo sets of data as described above corresponding to 

LIM= 3 and 100, 50 estimates of a lower order transfer function mode1 were obtained 

using the MATLAB OE command with NN = [l 1 11, after the input-output data mas 
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Figure 2.12: Estimated unit step responses with FIR mode1 including unit clel- (LIM= 
3) .. 

prefiltered with the inverse of the correct noise model. The corresponding step response 

estimates are shown in Figure 2.14 and Figure 2.13, respectively. 

By examining Figure 2.12, Figure 2.3 and Figure 2.13 For LIM= 3? 6 and 100; 

respectively, a very clear trend is present. -41~0, by examining Figure 2.14, Figure 2.6 

and Figure 2.15 for LIM = 3,6 and 100, respectiveiy? the same trend can be seen. First, 

al1 three cases yield unbiased estimates. Second, the more Frequent the operator inter- 

vention, the tighter is the distribution of the estimates around the true step response. 

Third, in al1 three cases, the distribution of the estimates broadens as steadpstate is 

approached Nith the largest uncertainty being associated Nit h the steady-state gain es- 

timate. With LIM= 3, 6 and 100, the step response estimates are approxhately Nithin 

H O % ,  f 20% and f 80% of the tme gain. The results îndicate that the operator inter- 

vention can ac tudy  produce input-output data sets which siibsequently Lead to better 
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Figure 2.13: Estimated unit step responses with FIR model including unit delay ( L N =  
100). 

rnodels, particularly with respect to estimation of the steady-state gains. This has im- 

portant practical implications because the steady-state gain is one of the more important 

pieces of information to be determined £rom the identification experiment. 

To e s ~ l a i n  these results, we may use a frequency domain interpretation of the 

asyrnptotic process model estimate or limit model. It has been shonm in Ljung (1987) 

that, for the open-loop case, when prenltering with the inverse of the correct noise model, 

the limit model is a best mean-square approximation of the true process with a Erequency 

weighting Q(w) given by 

where @,(w) is the pomer spectrum of the process input (ut).  When the process is under 

continuous feedback control *th an extemal dither signal, the h i t  model becomes a 

function of the sensitivity function associated wit h the true and modeiied closed-loop 
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Figure 2.14: Estimated unit step responses with OE model including unit delay ( L M =  
3). 

system in addition to the power spectrurn of the dither signal (MacGregor and Fogal, 

1995). With operator intervention, where a mixture of open-loop and feedback operation 

exists, it seems reasonable to treat the power spectrum of the filtered process input { u ~ . ~ }  

as the weighting Eunction where the process input in this case is the combination of a 

dit her signal plus intermit tent operator moves. 

In all of Our simulation work, ive use finite data sets. Hontever, me believe that 

we can still use the Iimit model results to e-xplain the differences in the distribution of 

the various step response estimates. For instance, the Iarger the frequency weighting 

is in a given frequency region, the more accurate the model should be in that same 

frequency region. The frequency response of the noise model &(z )  in Equation (2.2) 

has a large magnitude at the Iow and median fiequencies and a small magnitude at  the 

higher frequencies. Therefore, the frequency weighting function in Equation (2.22) dl 
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Figure 2.15: Estimated unit step responses with OE model including unit delay ( L M =  
100). 

tend to de-emphasize the low and medium frequency regions and emphasiee the high 

frequency region. This e.xplains why al1 of the distributions in Figure 2.12, Figure 2.3 

and Figure 2.13, and Figure 2.14, Figure 2.6 and Figure 2.15 broaden as stead-state is 

approached. In addition, for a given experimental time, if the input signal has a larger 

power spectrum at  al1 frequencies, then the estimated model M U  be more accurate 

because of the larger signal-to-noise ratio. Figure 2.16 shows a cornparison of the three 

discrete power spectmms of the 6itered process input {q1} taken from the sets of 

simulations with L M =  3, 6 and 100. It is clear that as the operator intervention 

becomes more fiequent, the magnitude of the fiitered process input power spectrum 

increases leading to tighter distributions of the estimates around the tme step response. 

This explains why the distribution becomes tighter as LIiM goes from 3 to 6 to 100. 
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Figure 2.16: Power spectra of filtered process input with LIM= 3; 6 and 100. 

2.5 The Effect of Intervention Strategies on Identi- 
fiability 

2.5.1 Delayed vs. Immediate Intervention 

"Delayed intervention" refers to the case where the operator rnakes an adjustment one 

sampling instant after the unacceptable deviation is detected. 'Tmmediate intervention" 

refers to the case where the operator makes an  adjustment of the process input at  the 

same samplinginstant that the unacceptable deviation in the process output occurs. It is 

believed that the delayed intervention described in Example 2.2.1 is more typical of aha t  

happens mith human intervention where an operator needs a minimum response time 

(say one sampling period) to make an adjustment to the process input. However, the 

immediate intervention strategy is closer to what happens with an automatic feedback 

control mechanism which adjusts the process input at the current sampiing instant based 
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on the current deviation of the process output from its target value. The objective in 

this section is to study the effect that this subtle difference might have on the accuracy 

OF both estimated FIR and low order transfer function models. 

Simulation Example 2.5.1 

This simulation exarnple is identical to simulation example 2.2.1 except t hat when 

the process output moves more than f L I M  (LIM= 6) away from its target value a t  a 

given sampling instant, a step change of magnitude f 5 is superimposeci on the random 

binary signal at the sarne sampling instant to attempt to bring the process back to its 

target value. This is what is rcferred to as an immediate intervention strategy. The im- 

pulse response model in Equation (2.18) was estimated using the lease squares method 

with and replaced by uj,t and yjIt in Equation (2.21) (MATLAI3 AR?( conimand 

with NN = [O 50 11). Fifty different experiments with 50 different seeds for the white 

noise sequence were performed yielding 50 estimates of the impulse response model. The 

corresponding unit step response estimates were generated and the results are plot ted 

in Figure 2.17. Compared with the true step response, the estimation results are unbi- 

ased. Due to the nature of the operator intervention in Example 2.5.1, correlation esists 

between {u t )  and {ut}  and as a result correlation also exists between { q t )  and {a t} .  

However, because (a t )  is a white noise sequence, &,,(T) = O for al1 T 2 1. Therefore, 

because the unit delay bas been included in the FIR model, the estimates are unbiased. 

On the other hand, if models axe estimated Nithout including the unit delay, the esti- 

mates should be biased since 5J0)  # O. The 50 estimates generated from the same 

50 experiments using instead the MATLAI3 ARY command with iVN = [O 50 O] are 

plotted in Figure 2.18 where it is clear that the estimates are biased. These are in fact 

the conditions under which correlation between the process input and the disturbance 

cause identifiability problems. 

However, these problems exist not only for the F R  models but also for the Low 

order transfer function models. From the same 50 experiments used above, 50 estimates 

of a low order transfer function model were obtained using the M A T L M  OE command 

nrith IVN = [2 1 O] after the input-output data m s  prefiltered with the inverse of 
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Figure 2.17: Estimated unit step responses with F R  model including unit delay for 
immediate operator intentent ion (circles denote the crue process step response) . 

the correct noise model. This rneans that we have not included the unit delay in the 

output error mode1 structure. The conesponding 50 step response estimates are plot ted 

in Figure 2.19. By comparing Figure 2.18 and Figure 2.19, it is clear that the twvo sets of 

estimates have similar distribution properties (bot h are biased) Nith the only difference 

being that the low order transfer function generated estimates are smoother. 

2.5.2 Waiting for Consecut ive Unacceptable Deviations 

Another situation which rnight happen during the identification eqeriment is that the 

output rnay drift outside the acceptable regîon due to a disturbance at one sampling 

instant, but rnay return to Nithin the acceptable operating region at the subsequent 

sampling instant Nithout requiring any intervention. Therefore, it may be the case that 

the operator intervenes only if there are several consecutive unacceptable deviations. 
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Figure 2.18: Estimated unit step responses with F R  model not including unit delay for 
immediate operator intervention (circles denote the true process st ep response) . 

Here me investigate what d l  happen to the estimated model under t hese circums t ances. 

Simulation Example 2.5.2 

This simulation esample is identical to Example 2.2.1 except now the operator 

does not intervene until there have been a certain nurnber of consecutive procesç out- 

put samples outside either + L M  or -LIM. In this simulation esample, the operator 

intervenes after two consecutive unacceptable output deviations have occurred. 

Fifty experîments were performed using 50 different seeds for generating the white 

noise sequence yielding Z0 sets of input-output data. Impulse response rnodels were 

estimated using the LS method Nith ut and y, replaced by UJ., and in Equation 2.21 

(MATLN3 command with N N  = [O JO O]). The correspondhg 50 step response 

estimates are shom in Figure 2.20. -&O, using the same data sets, Iom order transfer 

function rnodels were estimated using the hL4TL.m OE command Nith iVM = [2 1 O] 
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Figure 2.19: Estimated unit step respomes ~ 5 t h  OE mode1 not including unit delay for 
immediate operaror intemention (circles denote the true process step response) . 

after the input-output data ivere properb prefiltered. The results are shown in Figure 

2.21. Comparing Figure 2.20 a-ith 2.5, and Figure 2.21 wïth 2.7: it is clear that the 

only diifference is that the di~tnbutions of the mimates around the true step response 

are tighter ni th the earlier renilts. This can be explained bp comparing che number of 

operator intementions that occurred for these two cases. The number of interventions 

that occurred in the first 9 simulations for the txo cases are shom in Table 2.1, It is clear 

that TFaiting for two unacceptabIe consecutive output detiations decreases the number of 

interventions. -4s explained in section 2Zi.1: less fiequent operator inten-ention decreases 

the magnitude of the filterd process input power spectnün. Therefore the signal-to- 

noise ratio is lower Rith femer intementions and the distribution of the estimates around 

the true step response broadens. However, the estimates remain unbiased. 
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Figure 2.20: Estimated unit step responses witith FIR mode1 not including unit delay 
(circles denote the true process step response). 

1 O~era tor  Intervention Stratem 1 Number of interventions 1 

Table 2.1: Xumber of intementions in b t  9 simulation experiments 

v- 

Intervene after one deviation 
Intervene after ~ V O  consecutive deviations 

Concluding Remarks 

In this chapter: the identification of FIR models and lom order transfer function models 

21 
17 

under closed-loop operation conditions mas studied. Several conclusions can be made 

frorn this work: 

1. Operator intervention may improve the overall signal-to-noise ratio: thereby lead- 

26 
21 

ing to better models, particularly with respect to estimation of the steady-state gains. 

22 
15 

With proper data prefltering, there is certainly no need to discard data mhich contains 

23 
18 

feedback . 

34 
20 

23 
18 

22 
12 

24 1 23 
19 1 19 
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Figure 2.21: Estimated unit step responses with OE model not including unit delay 
(circles denote the true process step response). 

2. With delayed operator intervention, the least squares estimate of a finite impulse 

response (FIR) model is unbiased after prefiltering data with the correct noise model. 

This conclusion holds regardless of whether the unit delay is included in the FIR model. 

The estimates of lower order transfer function models after prefiltering Mth the correct 

n o i ç e m d d  have similardistribation propectis 0 the-FW. estimates, theonlydifference - - - - - -  

being that the lower order mode1 estimates are smoother. 

3. With immediate operator intervention, both FIR and low order transfer hnction 

model estimates are unbiased after prefiltering with the correct noise model if the unit 

delay is included in the model. If the unit delay is not included in the model, both 

modeis lead to biased estimates. 



Chapter 3 

Issues in the Design of the Prefilter 

Introduction 

In this chapter, the role of prefilters in closed-loop process identification is erarnined. 

This study is an  extension of chapter 2, and therefore the identification results are ob- 

tained by combining the FIR rnodel structure with a l e s t  squares estimator (LS). In 

section 3.2, the LS estimate of a simple FIR process under feedback control is theoret- 

ically analyzed. Also, a comparison is made between the case where the correct noise 

mode1 is used in data prefiltering, and the case where no data prefiltering is performed. 

In addition, the asymptotic expression for the least squares objective function is used 

to further explain the role of noise model. In section 3.3, a study which looks a t  the 

relative importance of the cornponents of an autoregressive-integrated-moving average 

(ARIM-4) noise model in the design of the prefilter is carried out. Further study is then 

carried out to  evaluate the effect of errors in the puameters of these components on the 

estimation results. Concluding remarks are given in section 3.4. 
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3.2 Theoretical Analysis 

3.2.1 Without Data Prefiltering 

Dither Signal 

I 

Figure 3.1: Closed-loop process with dither signal 

The true system is assumed to be described by Equations (2.3) and (2.4). For a general 

closed-loop system in Figure 3.1, the process input ut, with y,,(t) = O V t and dither 

signal, dt, is given by 

where C (z )  is a time invariant, linear feedback controller. Combining Equations (2.3) , 
(2.4) and (3.1) results in 
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Here we can see that the process input signal ut is correlated to the process disturbance 

ut. Now we examine what will happen to the estimated mode1 rvhen the process input 

is in the form of Equation 3.2. 

If the process is represented by an FIR mode1 structure, the process given in 

Equation (2.3) can be equivalently written in its linaar regression form: 

and the parameter vector e0 can be estimated by 

where liLl denotes the number of data, points. 

The error between the true and the estimated parameter vector is derived in 

Sodentrom and Stoica (1989) as 

This expression indicates that a consistent estimate is 

that 

obtained under the conditions 

Condition 3.6 requires that the data be sufficiently exciting. Condition 3.7 d l  be 

satisfied if ut is uncorrelated with # L -  Ifut is not white noise, it d l  normally be correlated 

with past inputs ut through Equation (3.2) and past outputs yt through Equation 3.3. 

Hence 3.7 wiil in general not hold and the LS estimate e nriU be biased. Let us examine 

the bias issue in more det ail using the foilowing example. 
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Example 3.2.1 

The true process is given by the following FIR mode1 

where ut is generated according to the control Iaw. 

With delayed intervention as described in chapter 2, there is a unit clelay between 

when a unacceptable deviation occurs and when the operator intervenes. To impose the 

same delayed correlation structure on this exarnple, ive will take the controllcr to be of 

the form 

Now, we want to examine the LS estimate of the process on the data collected 

under the above experimental conditions. First, we want to use y' to denote the noise-free 

process output shown in Figure 3.1. Then 

1/t = y: + ,ut 

Equation (3.9), (3.10) and (3.11) result in 

The process given in Equation(3.8) can be espressed in its linear regression form 

by defining 

The LS estimate of Bo can be obtained by Equation (3.4) 
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The summations in Equation (3.15) converge in quadratic mean and hence in probability 

to their evpected values (Goldberger, 1964), i.e. 

Hence from Frechet's theorem (Goodwin and Payne, 1977, p. 224) 

Then, substituting Equation (3.17) into Equation (3.16) yields 

For simplicity, we assume that &(r) is zero for Ir1 > 2. Then, from Equations 

(3.8) and (3.12), we get 

Substituthg (3.20) (3.21) into (3.19), yields 

Thus, 5, and b2 do not converge in probability to the true parameters bl and b2, unless 

the noise is white, Le., &Ji) is zero. 
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3.2.2 With Data Prefiltering Using the True Noise Mode1 

Choosing H ( z )  = Ho(z)  as a user selected prefilter, alternative forms of the process and 

controller equations are 

where î ~ l , r  = H(r)-Iyt ,  ullt = H(z)- 'u t ,  dlft = H(z)-'cit. 

The above Equations (3.23) and (3.24) result in 

With Equation (3.10), Equation (3.25) becomes 

The process in its linear regression form is given by 

where 41,t = H-'(z)& The error associated with the LS estimate of O. is 

To check for correlation between 41,r and at (Condition 3.7): we must look at the 

definition of for an FIR model, tvhere 

Equation (3.26) shows that u ~ , ~  is not correlated with a,. Therefore. #Et is not correlated 

with ut. Then, as long as Condition (3.6) is satisfied, an unbiased LS estimate should 

be obtained. 
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Example 3.2.2 

Continuing on with example 3.2.1, with the data now prefiltered by the inverse 

of the tme noise rnodel H&), the process mode1 is : 

Applying the same analysis, , the LS estimate behaves as 

where 

Since at is white noise, R&) = O for r 1 1. Therefore, the error terrns 

~&( l )&, , ,  (o)/A and ~ d . ~ ( l ) % , , , ( i ) / ~  are equal to zero, which yields that b 
converges to Oo, Le., the estimate is unbiased. 

3.2.3 General Asymptotic Results 

Asyrnptotic expressions developed by MacGregor and Fogal(1995) can be used to furt her 

explain the effect of prefiltering on identification results. The prediction errors of the 

estimated rnodel are defined as, for the case of data prefiltering using H ( z )  , 

where yt is given by 

1 
Yt = 

1 + C(z)Go(r) 
(Go (4 dt + ut) 
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as the sensitivity function of the true closed-loop system, and substituting Equations 

(3.2), (3.35) and (3.36) into Equation (3.34) gives 

Consequently, the power spectrum of the prediction errors is 

Using a prediction error method, the estirnated model G(z, 8 )  is determined by 

minimizing the sum of squares of e,(B). The least squares objective function is then 

given by 

'w 2 'w 2 
" ISo(' ) '  '*O(' ) '  sensitivity ratio term (3.39) 

+ G e W 2  lH(ejw112 

i 
where S ( e j w )  O] = L+C(e,w)G(eJ@,a) is the sensitivity funct ion of the modeled closed-loop 

system (MacGregor and Fogal, l995) .  

As defined in MacGregor and Fogal(1995). the two terms in the objective function 

are the bias term and the sensitivity ratio t em .  The minimum of J ( 8 )  is 0: when the bias 

term is equd to zero and the ratio of the frequency dependent terms in the sensitivity 

ratio term is equal to unity. This requires that the prefilter H(ejW)  be selected identical 

to the true noise model Ho(&"). If H(eJw)  # Ha(ejw),  then the ratio of the Erequency 

dependent terms in the sensitivity ratio term cannot be equd to unity if the process 

model is correct (Le. if G ( I ,  O )  = Go(z)). This results in an objective function that 

is larger than its minimum (0: ). Therefore a bias of (G&) - G(z,  O ) )  exists. This 

theoreticdy confirms that an unbiased estimate of the process model can be obtained 

provided that the prefiiter is the exact inverse of the true noise model. 
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3.3 Importance of the Accuracy of the Noise Mode1 

According to the analysis in section 3.2, an unbiased estimate of the true process model 

can be obtained from data containing feedback if the data are first prefiltered by the 

inverse of the true noise model. Mismatch between the true noise model, H&) and 

the assumed noise model, H ( z )  would be expected to produce a biased estimate. In 

this section, the effect of the accuracy of noise model on the identification results is 

investigated under two headings, structure mismatch and parameter mismatch. 

3.3.1 Structure Mismatch 

This study is carried out using simulation esample 2.2.1 with LILI = 6, but with different 

disturbance characteristics. 

Simulation Example 3.3.1 

The true noise model has an .ARIlvlA structure 

with Bo = 0.3 and po = 0.7. There are three terms in this expression, mhich are called 

the autoregressive or AR-term (1 - the integrated or 1-term (1 - rL): and the 

rnoving average or MA-term (1 - Boz-'). 

Based on the data coilected from this simulation experiment? the impulse response 

model mas estimated using the LS method with ut and yt replaced by 'uhr and in 

Equation 2.21 (MATLAI3 -AR?( command with NN = [O 50 11) according to 

where H ( z )  is a user-selected prefiiter. The folloming choices for H(z) were consid- 
' 

) (MA mismatch); (b) H ( z )  = 1-0-3'-1 (a) H(4 = ( l - o . f r - L ) ( L - z - L  '-=- (AR mis- 

match); (c)  H ( z )  = - (1 mismatch); (d) H ( z )  = r-==r ' (.ARI.IL4 mismatch); (e) 
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HM = &=ï (IM.4 mismatch); and (f) H ( z )  = -"- L (..\RI mismatch). LVe esti- 

mated the process step response models using the same set of raw data prefiltered by 

these different choices of H ( z ) .  

The study in chapter 2 showed that there is a distribution of the estimated results 

arising from different choices of the random nurnber seed used to generate al .  Therefore, 

forty experiments with forty different seeds for the white noise sequence were performed 

yielding 40 estimates of the step response model For each choice of prefilter. When 

looking a t  the 40 estimation results, one might also want to look a t  the average model. 

For ease of cornparison of the effect of using different prefilters, we compare only the 

average estimated models with the true process step response. The results are plotted 

in Figure 3.2 and Figure 3.3. 

-1 I 1 I 1 f I I I L l t 
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Figure 3.2: Average step response estimated with user-selected prefüters (Soiid Line: 
true process step response; Plus: H ( z )  = Ho(t); Dashed: MA mismatch, Dashdot: .IR 
mismatch; Dotted: I mismatch) 
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Sample Intervals 

Figure 3.3: Average step response estimated with user-selected prefilters (Solid line: true 
process step response; Plus: H ( z )  = Ho@); Dashed: -4RM.4 mismatch; Dashdot: IMA 
mismatch; Dot ted: ..\RI mismatch) 

Comparing the average estimation results for different prefilters with the true 

process step response in Figure 3.2 and Figure 3.3, ive can see that any combination 

of structure mismatch between the true noise model and prefilter results in estimation 

problems except in the case where there is only hI-4 mismatch. The fact that MA 

mismatch does no t afïect the estimation results is somewhat unique to t his simulation 

example. More detailed discussion about this particular point d l  be &en below. In 

general, the mismatch betmeen the true noise model and the prefilter causes estimation 

problems because Condition (3.7) is not satisfied. For prefiitered data, Condition (3.7) 

requires that E[r#17tvf7t] = 0. 

For the case of MA mismatch, the average of the estimated models in Figure 3.2 

is virtually identical to the true process step response model. This result seems to 

contradiet the eariier analysis that the prefilter must be evactly equal to the true noise 
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model if one wants to get an unbiased estimate of the process rnodel. Hoivever, this can 

be explained by looking a t  the correlation between ujlt and vfIt. The process unit step 

response rnodel was obtained from the LS estimated FIR model with ut and y, replaced 

by uj,r and YI,, in Equation (2.21) (MATLAB AR?( command with N N  = [O 50 11). 

Due to the nature of the operator intervention, conelation exists between {ut+1) and 

{u t )  and as a result correlation also exists between and { v ~ , ~ } .  In the case of 

MA mismatch between H ( z )  and H&), (vftl) has moving average dynamics only. i.e. 

ujll = nt - 0.3at-1. However, because {a t )  is a white noise sequence, &&) = O for al1 

r > 1. Therefore, because the unit delay is included in the FIR model, the estimates 

remain unbiased. On the other hand, if models were estirnated without including the 

unit delay in the FIR model, the estimates would be biased. The 40 estimates, generated 

from the same 40 experiments using the M.4TLAB -4RY command with lVlV = [O 50 O], 
1 were obtained after the data were prefiltered with H ( z )  = (l-O.lL-I)(I-z-L). The average 

of the JO estimates in each case is plotted in Figure 3.4 and compared with the true 

process unit step response. It is clear that the estimates are now biased. 

In summary, looking at the estimation problerns caused by various combinat ions 

of structure mismatches between the true noise model and the prefilter, we can write 

t hese different mismatches in descending order according to the importance of t heir 

negative effect on the estimation results: (1) AR1 mismatch, (2) I mismatch, (3) IMA 

mismatch, (4) AR mismatch, (5) ARMA mismatch and (6) MA mismatch. In fact. since 

both the AR and 1 terms appear in the denominator of the general ARIMA model in 

Equation (3.40), we can think of the 1 term as a special case of the AR terrn. Therefore, 

ive can conclude that the AR term is the most important term in the prefilter design. 

3.3.2 Parameter Misrnatch 

It has been identified in the previous subsection that .AR.-type noise model terrns are 

the most important in t e m s  of the data prefilter design. In this subsection, we are 

going to evaluate the sensitivity of the estimation resdts to parameter mismatch in the 

autoregressive term between the true noise model and the assumed noise model. The 
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Figure 3.4: Average estimated unit step response with FIR model not including unit 
delay on data prefiltered by user-selected prefilters (Solid line: true process step response; 
Dotted: H ( T )  = HO(z); Plus: MA mismatch) 

study is carried out using two simulation examples. 

Simulation Example 3.3.2 ( Noise Mode1 Parameter Underestimated) 

The simulation example is identical to Example 3.3.1 except that the true noise 

model has an AR structure 

and the prefilter was sdected to have the sarne model structure 

but mith the value of p taken to be different and srnaller than 0.99. We have esamineci 

the follonring choices for rp: 0.5, 0.6, 0.7, 0.8, 0.9? 0.95 and 0.97. As mentioned in 

simulation example 3.3.1, due to the distribution of the estimated results arising From 



Chapter 3. Issues in the Design of the Prefilter 

Figure 3.5: Example 3.3.2: Average step responses estimated with different prefilters 
( H ( z )  = ,&,) (Solid: true process step response; Star: p = 0.99; X-mark: p = 0.97; 
Point: rp = 0.95; Circle: p = 0.90 Plus: p = 0.80; Dashdot: p = 0.70; Dashed: p = 0.60; 
Dotted: p = 0.50). 
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different choices of the random number seed used to generate at, 40 eqeriments with 

....... 

1 1 1 t 1 i l 1 1 I 

40 different seeds for the white noise sequence were perforrned yielding 40 estimates of 

O 5 10 15 20 25 30 35 40 45 50 
Sample Intemals 

the step response model for each prenlter. The average estimated models are compared 

with the true process step response. The results are plotted in Figure 3.5. It is clear 

chat a larger parameter mismatch between the true noise model and prefilter produces 

a greater difference between the tnie process and the estimated model. Moreover, the 

estimation results are very sensitive to even subtle differences. 

In order to quantitatively evduate the error between true process step response 

and the estimated response caused by the parameter mismatch, the s u a  of squared errors 

in the estimated step response coefficients for each case was calculated and plotted in 

Figure 3.6. 
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Figure 3.6: Estimation Error as a Function of Assumed Noise Model Parameter 

Simulation Example 3.3.3 ( Noise Model Parameter Overestimated) 

In simulation example 3.3.2, the parameter in each prefilter had a srnaller value 

compared with the true value. In this example, we want to look at the case where the 

prefilter has a larger parameter value than the true one. We constructed simulation 

experiments identical to those in simulation example 3.3.2, escept that t.he true noise 

model is given by Ho ( z )  = ,-,&-, . The prefdter was selected to have the same model 

structure as before, with the folloming values for p: 0.95, 0.96; 0.98, 0.985, 0.99 and 

1.0. The same approach for obtaining the step response estimates as used in simulation 

example 3.3.2 was used. The results are plotted in Figure 3.7. It is clear that as the 

parameter mismatch grows, the estimation error increases. 

From simulation evamples 3.3.2 and 3.3.3, me can conclude that either an under- 

estimation or over-estimation of the parameter in the autoregressive term of the assumed 

noise model results in identifkbiiity problerns. Even for a subtle difference in the pa- 
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Figure 3.7: Example 3.3.3: Average step responses estimated wi  t h different prefilters 
( X ( z )  = +) (Solid: true step response; Dashed: p = 0.96; Dotted: p = 0.97; 
Dashdot: 9 = 0.98 Point: (o = 0.985; Circle: p = 0.99; X-mark: rp = 1.0 ). 

rameter, the estimation problems are obvious. Therefore, an accurate estimation of the 

autoregessive terms of the noise model is required in order to obtain a good estimate 

of the process model. 

Concluding Remarks 

In this chapter, the use of the noise model in prefiIter design is studied. Results confirm 

that prefiltering data which contains feedback using the correct noise model is necessary 

ta achieve unbiased estimates of the process dynamics. Spec5c conclusions from this 

chapter are: 

1. Unbiased process model estimation using data containhg feedback requires that the 

data be prefltered by the inverse of an accurate noise model. Structure mismatch or 
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parameter mismatch between the true noise model and assumed noise model causes 

process mode1 estimation problems. 

2. Mismatch in the autoregressive component between the assumed noise model and the 

true noise model causes the most serious identifiability problems. The proceçs estimate 

is very sensitive even to a subtle parameter mismatch in this component. 



Chapter 4 

Simultaneous Identification of 
Process and Noise Models 

4.1 Introduction 

In this chapter, a generalized l e s t  squares (GLS) algorithm is developed for simultaneous 

identification of both the process and noise models. The FSF model structure is used 

to represent the process modcl and in section 4.2, an introduction to the FSF mode1 

structure and its properties is given. In section 4.3, the least squares estimate of the 

FSF model parameters and calculation of the statistical confidence bounds for the FSF- 

based step response estimate are presented. Section 4.3 also briefly esplairis the concept 

of the sum of squared true prediction errors (PRESS) and its computation. The use 

of the PRESS criterion for selection of both the process model structure and the noise 

mode1 structure is a unique feature of the GLS algonthm presented in section 4.4. In 

section 4.5 and 4.6, the proposed algorithm is applied to some simulation esamples and 

an industrial data set, respectively. Concluding remarks are given in section 4.7. 
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4.2 FSF Process Model Structure and Its Properties 

4.2.1 FSF Model Structure 

A single input, single output (SISO) process, assumed to be stable, linear and time- 

invariant, can be represented by the following discrete-time FIR model 

N- L 

G(z) = h i 8  (4-1) 
i=O 

where N is the model order with the impulse response coefficients hi = O for al1 i 2 !V 

and zdL is the backward shift operator. Practically, N is chosen according to N rr 5, 
where Ts is the process settling time and At is the chosen sampling interval. 

With the assumption that îV is an odd number, the inverse Discrete Fourier 

Transform (DFT) of G(z) is 

This expression relates the frequency response of the process with its impulse response 

coefficients. Substituting Equation (4.2) into (4.1) gives 

Interchanging the summations 

N- 1 

gives the frequency sampling £ilter model form. 

Defining 

for k = O, itl, *2, ..., f y gives the hequency sampling filters (FSF) and G(&%) are 

the parameters of the FSF model. Figure 4.1 shows a block diagram of the FSF model, 
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LIN-II 

Figure 4.1: Schematic diagram of FSF mode1 

where ut is the process input and y, is the measured process output. 

The process step response can be obtained directly t hrough 

for m = 0,1, ..., N - 1. Substituting Equation (4.2) into (4.6), we get 

which givesthe step response in tems of the process fiequency response ~ ( e j F ) .  

4.2.2 Properties of the FSF Mode1 

With fast sampling, the FSF mode1 parameters converge to their continuous-time 

couterparts at w = 0, E, ..., % for a Lued Ts- As sampling interval (At) decreases, 
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the number of parameters associated with the model increases but only in the high 

frequency region. 

Based on the above property, there exists an odd integer n such that for al1 k 

where < Ik( 5 v, the magnitudes of the FSF rnodel pararnetecs, ~(dv),  

are approxirnately equal to zero. .4s At -t O, n becomes independent of the choice 

of the sampling intenal and is called the effective model order which is generally 

much less than N .  This reduced nth order FSF rnodel can be written in the 

lollowing form 

and the step response model obtained from the reduced order FSF model is given 

b y: 

m Due to the reduction in the number of parameters that need to be estimated from N 

to n and the narrow bandpass nature of the Erequency sampling filters, the general 

conditioning of the correlation mat rk  associated wit h the least squares estirnate of 

the FSF model is improved. On the other hand, the correlation rnatrk associated 

rvith the least squares estirnate of an FIR model is only mell-conditioned when the 

penodogram of the input signal is approximately equal at  al1 frequencies. However. 

input signals nrith only low and medium kequency content are typically used in 

the process industries which means the correlation matrix for the FIR model will 

almost dways be ill-conditioned. This leads to inflation of the covariance rnatrk 

and noisy step response estimates. 



Chapter 4. Sirnul taneous Identification of Process and Noise hfodefs 

4.3 Least Squares Estimate of the FSF Mode1 

4.3.1 Least Squares Formulation 

The frequency sarnpling filter mode1 of the system to be identified can be written as 

where ut is the output disturbance which is assumed to be uncorrelated with the process 

input ut. The process output can be expressed in an equivalent linear regression form 

by defining a parameter vector as 

and its corresponding regressor vector as 

where 

for r = 0: &1, ..., I-. 2 Then we can rewrite Equation (4.10) as 

and in rnatrix form for M sets of process input-output data 



Chapter 4 .  Simultaneous Identification of Process and Noise Models 

The least squares estimate of 9 in Equation (4.15) is given by 

where (*) denotes the complev conjugate transpose, which minimizes the sum of squared 

prediction errors 

4.3.2 Confidence Bounds 

Confidence bounds for the FSF model-based estimate in both the frequency and time 

domains are discussed in Cluett et al. (1996). In this thesis, the identification results 

are presented using the unit step response. Therefore, the derivation of the confidence 

bounds for the process step response estimate is presented here. The basic idea is to 

first represent the step response coefficients as a linear transformation of the estirnated 

FSF parameters and then map the covariance rnatriv from the frequency domain to the 

time domain. Some assurnptions are required to guaranteed that b is an unbiasecl and 

normally distributed estimate of 0. 

(A l )  The process has finite settling tirne T, and the parameter N is chosen to be greater 

than or equal to 5. 
(-42) The disturbance is a zero mean, white and normally distributed random sequence. 

(A3) n = N. For the truncated FSF model with n < N: Wang and Cluett (1996b) 

and Patel et al. (1996) state that the use of PRESS as a criterion in model structure 

selection attempts to ensure that the bias in the mode1 due to unrnodelled dynamics 

is srnall relative to the variance error caused by the presence of noise in the measured 

process output. 

Let the estimated step response be represented by 

where S(m) = [so(m) si(m) ... si(m)] with sk(m) defined by - 
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Under assumption Al, the true process step response can be represented by 

We need to calculate the vanance of the estimated step response coefficients to 

obtain a confidence bound for the estimate. The variances are given by 

Then, the error between the true process step response weight g, and the estimated 

step response weight j,,, is bounded by 

with probability P ( p ) ,  i.e. the trajectory of the true step response gm for m = 

0,1, ..., N - 1 lies inside the envelope generated by ij, f b(m) with probability P(p). 

P ( 1 )  = 0.683, P ( 2 )  = 0.954 and P ( 3 )  = 0.997 according to the specified level of the 

normal distribution. 

4.3.3 The PRESS Statistic 

Definition 1 PRESS residuals: The PRESS residuals, el,-l are also called the true 

prediction errors. They are defined as 

where kt is the estimate obtained using the least squares algonthm without including 

4t and yt. This definition ensures that yh and are independent. Therefore et,-< 

represents the true prediction error. 

~ef idt ion  2 PRESS: The PREdiction Sum of Squaxes is defined as 
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which provides a measure of the predictive capability of the estimated model. For model 

structure selection, the value of n which corresponds to the smallest PRESS is adoptecl. 

Using an orthogonal decomposition algorithm, the PRESS residuals et,+ where 

t = 1,2,  ..., M ,  defined in Equation (4.23) can easily be calculated (Wang and Cluett, 

lW6b). 

An important feature of the PRESS is that it does not always decrease as more 

terrns are added to the model. If the PRESS increases when a term is added to the rnodel, 

this indicates that the predictive capability of the rnodel is better without that t e m .  

On the other hand, the sum of squares of the conventional residuals always decreases as 

more terms are added. 

4.4 GLS Algorithm and the Development 

Chapters 2 and 3 showed that an accurate estimate of the noise rnodel is required for the 

design of a data prefilter in order to remove the effect of any feedback on the proccss step 

response estimate. In addition, one of the conditions needed to evaluate the confidence 

bounds is that the disturbance be a zero mean, white and normally distributed sequence. 

The generalized l e s t  squares algorithm (GLS) described in Goodwin and Payne (1977) 

provides an approach for iteratively determining estimates of the process and noise 

models in such a way that an appropriate prefilter is constmcted and the "disturbance" 

associated with the prefiltered system is close to "white". In this section, the standard 

GLS algorithm is reviewed and then the modified GLS algorithm proposed in this thesis 

is presented. 

Consider the process description given by 

where the disturbance term ut is assumed to be represented by 

mhere H ( z )  is the noise model and ut is a zero mean, white noise sequence. 
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1 lnitialize noise model ( H=l ) 1 

I ' Prefilter using inverse noise model ( H -' ) 
I 

Process and noise model estimation 1 
I 

New process model ( G ) New noise mode[( H ) I l -  
End 

Figure 4.2: Conceptual block diagram of GLS 

The original GLS algorithm consists of the following steps (see Fig. 4.2): 

(i) Set &(r) = 1 

(ii) Form pf,r = H(z)-lyt  and î i j , ~  = H(r) -h t  

(iii) Obtain the least squares estimate G using y!,, and z t ~ , ,  

(iv) Constmct an estirnate of the disturbance term, ût = - Gut 

(v) Obtain R(r)  i?om Vt  

(vi) If G has converged, stop; otherwise, go to (ii) 

Note that the structures of both process and noise models (G(r)  and H (2)) must be se- 

lected before applying this method. The modified GLS algorithm proposed in this thesis 

Nil1 include the model structure selection procedures inside the iteration loop, so that 

the parameters and orders of the process and noise models are identified simultaneously- 

In the proposed GLS algorithm, the FSF model is used to represent the process 

(G(z)) due to its many advantages. Based on the estimated FSF model parameters, the 
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process step response mode1 is estimated and presented as the final process identification 

results. In addition, an important assumption in the proposed algorithm is that the 

noise model ( H ( r ) )  can be described by an autoregressive type model (AR). Based on 

Chapter 3, we know that the AR terms are the most important in terms of the design 

of the prefilter. This assumption on the type of noise model ensures that the most 

important noise model terms NiIl be identified. Clark (1967) usad the sarne assumption 

on the noise model type in his application of the original GLS algorithm. The noise 

model is given by 

where F (2) = 1 + f ~ z - l +  ... + fn,z-RJ and al is assurneci to be a zero mean, white noise 

sequence. Therefore, we have 

Here, the issue of the selection of a proper noise model structure becomes a decision on 

the best choice for nf. 

A unique feature of the proposed GLS is the use of the PRESS statistic as a 

criterion for both process and noise rnodel structure selection in steps (iii) and (v). The 

modified steps (iii)-(v) are illustrated in Figure 4.3. To begin the aigorithm, we need to 

provide N based on an estimate of the process settling time, the maximum FSF process 

mode1 order (n), aud the maximum AR noise model order (q). We then choose the 

process model order which corresponds to the minimum PRESS as the best FSF process 

model order and use the LS method to estimate the process mode1 parameters. Based 

on the residuals the noise mode1 order which corresponds to the minimum PRESS is 

chosen as the best AR. noise model order and the LS method is used to estimate the 

noise model paramet ers. 
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1 lnitialize maximum n, n 
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Select best n 
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Figure 4.3: Process and noise model estimation 

4.5 Simulation Examples 

In this section, two simulation examples are used to assess the convergence of the pro- 

posed GLS algorithm. In the simulations, we will use two different noise models. In the 

first simulation, the noise model can be evactly represented by an AR stmcture and in 

the second simulation the noise model is taken to be a more complicated structure. 

Simulation Example 4.5.1 

In this simulation esample, the true system is given by 

The simulation duration is 2040 seconds. The sampling intervd is chosen to be 3 seconds. 

The input signal is specified to be a random binary signal mith a magnitude of 3 5  units 

and a minimum switching time of 120 seconds. 

The noise sequence ut is generated by passing a zero mean, white noise sequence 
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al with variance of 0.0138 filtered by the true noise model Ho(z)  given by 

To apply the GLS rnethod to the process input-output data generated from this 

simulation experiment, we selected the maximum process FSF rnodel order, n, to be 

27 and the maximum AR noise model order, nf, to be 14. !V is estimated to be 170 

sampling intervals. The number of iterations performed by the algorithm was set to 6, 

i.e. no convergence stopping criterion was used. The results are shown in Figures 4.4 to 

4.7. Figure 4.4 shows the PRESS corresponding to different FSF process model orders 

from 1 up to 27. The figure shows that the PRESS picks 23 as the best process rnodel 

order in the first iteration and 7 as the best process model order in the iast iteration. 

Actually, the results in the Iast 3 iterations are almost the same as those in the 3rd 

Number of parameters 
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10 - 

9 - 

8 - 

7 1 1 1 I 

O 5 10 15 20 25 30 
Number of parameters 

Figure 4.4: Example 4.5.1: Behaviour of P W S  for process mode1 structure selection in 
fkst iteration (top) and last iteration (bottom) (Y denotes the nurnber of parameters 
corresponding to the minimum PRESS) 
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Figure 4.5: Esample 4.5.1: Behaviour of PRESS for noise mode1 structure selection in 
first iteration (top ) and last iteration(b0ttom) (Y denotes the number of parameters 
corresponding to the minimum PRESS) 

iteration, i.e., the results converged in 3 iterations. Figure 4.5 shows the behaviour of 

the PRESS corresponding to AR noise model ocders from 1 up to 14. The figure shows 

that PRESS picks 1 as the best noise mode1 order in the first iteration and the same 

order is chosen in the last iteration. The result exactly matches the order of the true 

noise model used in the simulation. The noise model in the last iteration is given by: 

P ( z )  = 1.000 - 0.984z-' : which is very close to the true noise model. The process step 

response estimate obtained in the last iteration is s h o m  in Figure 4.6 along with its 

99% confidence bounds. 

To check whether the prefilter designed from the estimated noise mode1 produces 

white residuals, autocorrelation ( K F )  analysis is carried out on the initial residuals 

obtained after step (iv) of the first iteration (y, - Gut) and on the h a 1  residuals 
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Figure 4.6: Example 4.5.1: Process unit step response (Solid: true step response; 
Dashed: estimated step response; Dotted: 99 % confidence bounds) 

obtained after step (v) of the last iteration (ât = &fi,). The results are s h o m  in 

Figure 4.7. Graph (2) in the figure shows that the ACF is well inside the 2 0  confidence 

bounds after the first lag, and thus the final residuals have the same characteristics as 

white noise. For cornparison, the ACF of the initial residuals is s h o w  in graph (1). 

These results in Figures 4.4 to 4.7 c o b  that the proposed GLS provides an unbiased 

estimate of the process step response while constructing an accurate noise model. 
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Figure 4.7: Example 4.5.1: ACF of residuals with 2 0  confidence bounds: (1) first itera- 
tion; (2) last iteration 

Simulation Example 4.5.2 

This esample is the same as example 4.6.1 except that the disturbance model is 

now given by 

.As in example 4.5.1, N is estimated to be 170 sampling intervals. The maximum 

FSF process model order, n, has been initialized to be 27 and the masimum AR noise 

model order, nf, has been initialized to be 14. The number of iterations preformed by 

the algorithm mas set to 6 .  The estimation results are shown in Figures 4.8 to 4.11. 

Figure 4.8 shows the PRESS corresponding to different FSF process model orders from 

1 up to 27. The figure shows that the PRESS picks 21 as the best process model order 

in the first iteration and 17 as the best process model order in the last iteration- In 
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fact, the results converged in 3 iterations. Figure 4.9 shows the behaviour of the PRESS 

corresponding to AR noise model orden from 1 up to 14. The figure shows that the 

PRESS picks 9 as the best noise mode1 order in the first iteration and the same order is 

chosen a t  the last iteration. The noise mode1 estimated in the last iteration is given by 

P ( z )  = 1.000+0.655lz-~ +0.05l6~-~+0.0242~-~ +0.05022-~ - 0.0106r-%0~1587z-~ - 
0.0801~-~ + 0.0121~-~ + O.llll~-~ The process step response estimate obtained in the 

last iteration is shown in Figure 4.10 dong with the 99% confidence bounds. 

-4s in esample 4.5.1, we also check whether the prefilter designed from the es- 

timated noise model produces white residuals using autocorrelation (ACF) analysis on 

the initial residuals obtained after step (iv) of the first iteration ( g r  - Gut) and on the 

final residuals obtained after step (v) of the last iteration (&, = kû , ) .  The results are 

Number of parameters 

30 r 

Number of parameters 

Figure 4.8: Example 4.5.2: Behaviour of PRESS for process mode1 structure selection in 
first iteration (top ) and last iteration (bottom) ('x' denotes the number of parameters 
corresponds to the minimum PRESS) 
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Figure 4.9: Example 4.5.2: Behaviour of PRESS for noise model structure selection in 
first iteration (top) and last iteration(bottom) ('r' denotes the number of parameters 
corresponds to the minimum PRESS) 

shown in Figure 4.11. Graph (2) in this figure shows that the ACF is well inside the 2 0  

confidence bounds after the first lag, and thus the b a l  residuals have the same char- 

acteristics as white noise. For cornparison, the .\CF of the initial residuals is s h o m  

in g a p h  (1). The results of t his simulation example again confirm that the proposed 

GLS provides an unbiased estimate of the process step response while constructing an 

accurate noise model. 
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Sample Intewals 

Figure 4.10: Esample 4.5.2: Process step responses (Solid: true step response; Dashdot: 
estimated step response; Dotted: 99 % confidence bounds) 
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Figure 4.11: Example 2: -4CF of residuals mith 2 0  confidence bound: (1) 6rst iteration; 
(3) last iteration 
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4.6 Application to an Industrial Data Set 

The proposed improved GLS algorithm is further investigated by applying it to an 

industrial data set obtained from an alkylation unit a t  Imperia1 Oil's Nanticoke refinery. 

The data set is a subset of a larger data set and consists of three input ( [u l  ~ L Q  u3] )  

and two output ([yi y*]) variables. For the purposes of this thesis, the system can be 

represented using by a simple block diagram (See Figure 4.12). 

RAW ALKYLATE 

TO 

FLASH DRUMB 

@PH) 

1 1 M W  ALKYLATE 

ALKYLATE TOTAL CHARGE 
CONTRL rm FLASH DRUMA 

Figure 4.12: Block diagram for the industrial process 

The input-output data, plotted in Appendh A, was provided in four segments. 

The data was recorded a t  one minute intervals and the s e t t h g  tirne ( N )  for each input- 

output subprocess mas estimated to be 60. For a multivariable system, we prefer to 
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treat the process as two binput, single output identification problems. The identifica- 

tion algorithm described in this thesis has been extended to multi-input, single-output 

(MISO) systems in Patel et.al. (1996). This MISO algorithm was applied to the data 

set. We set tp a criterion for checking the convergence of the process mode1 parameters. 

If the sum of the squared differences between parameter estimates in two consecutive 

iterations is less than 0.001, the algorithm stops. In this particular application, the 

algorithm stopped after 3 iterations. The final results are shown in Figure 4.13 to 4.19. 

The FSF-based process model orders are found to be [9 5 11 and (5 5 11 for y1 and 

fi, respectively. The final values of the PRESS associated with each output variable are 

shown in Figure 4.13. The final noise models are given by: 

( z )  = 1.000 + 0.52042-' c 0.32352-' + 0.2164r-~ + 0.0901zd4 
- 0.0214~-~  - 0.0964~-~  (4.32) 

where pl and p2 are the noise models associated with y1 and &, respectively. 

4.6.1 Discussion of results 

We compared the process step responses estimated by the aforementioned algorithm 

wit h those estimated by the following approaches: 

(1) Estimate of FSF model using the same order Found by using the proposed GLS 

algorithm, but nithout noise model estimation. 

( I I )  Estimate of full order FSF model wîthout any noise model estimation. 

( I I I )  Estimate of full order FSF mode1 with noise model estimation. 

These estimates are also s h o m  in Figures (4.14) to (.l.lS). Note that full order 

FSF mode1 estimates are equivalent to the FIR model estimates. Based on these results, 

we can make the FoUonting observations. 
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Figure 4.13: PRESS for process FSF model-based MIS0 system structure selection 

1. Cornparison of estimation results between filtered and unfiltered data 

From Figures 4.14, 4.16, 4.17 and 4.19, we can see ciifferences between the step 

response models obtained Erom filtered and unfiltered data corresponding to the pairs ul 

and yl, us and yl, ul and y2 and U )  and y,. This might indicate that there are feedback 

connections within these data pairs. However, by evamining Figures 4.15 and 4.18, there 
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Figure 4.14: Step response models relating ul to y1 (Solid: FSF model with optimized 
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF mode1 
with optirnized order but without noise rnodelling; Dotted: full order FSF mode1 without 
noise modelling; Dashed: full order FSF &th noise modelling) 

is little difference between the various step response rnodels corresponding to the pairs 

u2 and yl, and ~2 and y*. This could indicate that the process input u2 is not dependent 

on the process outputs y1 and y, through any feedback connections. 

2. Cornparison of the noise models obtained fkom the FIR and FSF model 

structures 

By approach (III), the noise models are given by: 

pi (z) = 1.0000 + 0.4958~-' + 0.2918~-~ + 0.160?z-~ 
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Figure 4.15: Step response models relating u2 to y1 (Solid: FSF model nith optimized 
orcler and noise rnodelling; Large dots: 99 % confidence bounds; Dashdot: FSF model 
with optimized order but without noise modelling; Dotted: Full order FSF model without 
noise modelling; Dashed: full order FSF nrith noise modelling) 

The residuals For outputs y1 and y, From the estimated models are not white noise 

sequences, which is evident from the estimated noise models given by Equations (4.32) 

and (4.33) for the FSF model and Equations (4.34) and (4.35) for the FIR model. The 

discrepancy bettveen the two sets of noise models c m  be explained by the fact that 

the reduced order FSF models are approximations of the FIR models and therefore the 

neglected high kequency dynarnics of the process in the FSF model are included in the 

noise models associated with Equation (4.32) and (4.33). 

3. Cornparison of the smoothness between the FSF and FIR model estimates 

From Figures 4.14 to 4.19, we can see that the estimated step response models 

using the FSF rnodel structure are much smoother than the estimated ones using the 
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F i y r e  4.16: Step response models relating UJ to 91 (Solid: FSF mode1 Nith optirnized 
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model 
with op timized order but without noise modelling; Dotted: full order FSF model Nithout 
noise modelling; Dashed: full order FSF with noise modelling) 

FIR rnodel structure. This is because the reduced order FSF model neglected the high 

fiequency dynamics of the process. In contrast, the FIR model estimates the parameters 

in the high frequency region of the process where we typicaiiy face a lower signal to noise 

ratio resulting in larger variances of the estimated parameters. Large variances on the 

high frequency estimates are reflected by the Iack of srnoothness of the step response 

models. Note that the lower signai to noise ratio in the high fiequency region is caused 

by the infrequent moves made in the process input signals (see Appendis A). 

4. Cornparison between the estimation results of extremely low order FSF 

model and FIR model 

Figure 4.16 and 4.19 show the estimation results obtained fiom the FIR model 
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Figure 4.17: Step response models relating ul to y2 (Solid: FSF mode1 nith optimized 
order and noise modelling; Large dots: 99 % confidence bounds: Dashdot: FSF model 
Mth optimized order but without noise modelling; Dotted: full order FSF model wit hout 
noise modeiling; Dashed: full order FSF with noise rnodelling) 

and the FSF model with order of l7 rvhich was chosen to be the best order by the PRESS. 

The reasons for such extremely low FSF model orders needs some further investigation. 

This result may be caused by the presence of only pure gain relationships benveen these 

input-output pairs. If this is the case, the PRESS has chosen the correct model order. 

Hontever, this result may also be caused by a lack of sufiicient escitation in the input 

signal (u3) If this is the case! then increasing the frequency content and the magnitude 

of the movement in the input signai Z L ~  muld  increase the FSF model order and provide 

more accurate step response estimates. 
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Figure 4.18: Step response models relating u2 to y2 (Solid: FSF model with optimized 
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model 
with optimized order but nithout noise modelling; Dotted: full order FSF model without 
noise rnodelling; Dashed: full order FSF with noise modelling) 

4.7 Concluding 

A generalized least squares 

Remarks 

algorithm (GLS) has been developed in this chapter for 

simultaneous identification of both the process and noise models. Convergence of the 

algorîthm was illustrated t hrough simulation examples. The proposed procedure tvas 

&O applied to an industrial data set. The benefits of this a lgo~thm are: 

1. Simultaneous estimation of the process and noise models ensures that the biasing 

effect of any feedback in the data on the process identscation results is removed. 

2. The proposed algorithm is able to drive the residuals to behave like white noise so 

that statistical confidence bounds can be computed. 
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Figure 4.19: Step response models relating u3 to y2 (Solid: FSF model with optimized 
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model 
with optirnized order but without noise modelling; Dotted: full order FSF model Nithout 
noise modelling; Dashed: full order FSF with noise modelling) 

3. The use of the PRESS criterion for selection of both the FSF process model order 

and the .4R noise model order makes the proposed algorithm an efficient approach to 

identik rndtivariable processes. 



Chapter 5 

Conclusions 

In this thesis, issues in closed-loop system identification are revisited, where the feedback 

is introduced by operator intervention. Here, "open-loop" refers to the situation where a 

predetermined input signal is applied to the process without any concern about whether 

the process output rnoves outside the desired operating region. "Closed-loop" refers to 

the situation when the process input is a combination of a predetermined sequence plus 

additional moves made intermittently by an operator to bring the process output back 

within some desired region. The thesis consists of three main parts: 

a The role of operator intervention in process identification 

Design of the data prenlter using noise model information 

Developrnent of an algorithm for simultaneous identincation of process and noise 

models 

5.1 The Role of Operator Intervention in Process 
Identification 

When i d e n t m g  a process model using data containing feedback due to operator inter- 

vention under a delayed intervention strategy (where there evists one sampling interval 

of delay betmeen when the unacceptable process output deviation occurs and when the 

operator adjusts the process input), the LS estimate of an FIR mode1 is unbiased after 
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prefiltering the process data using the correct noise model, regardless of whether the 

unit delay is included in the model. The estimates of low order transfer function models 

have similar distribution properties, the only difference being that the lower order mode1 

estimates are smoother. This result indicates that with proper data prefiltering, there is 

certainly no need to discard data which contains feedback. Because operator interven- 

tion can improve the overall signal-to-noise ratio, data containing feedback may actually 

result in better models, particularly with respect to estimation of the steady-state gains. 

With an immediiite intervention strategy (where the operator adjusts the process 

input a t  the same sampling instant that the unacceptable process output deviation 

occurs), both the LS estimate of the FIR model and the estimate of a loiver order 

transfer function model using an OE model rernain unbiased provided the unit delay has 

been included in the model and the data have been prefiltered using the correct noise 

model. If the unit delay is not included, then both the LS estimate of the FIR model 

and the estimate of a low order transfer function model are biased. These are in fact 

the conditions under which correlation betrveen the process input and the disturbance 

cause identifiability problems for both parametric and non-parametric rnodels. 

5.2 The Design of the Prefilter 

The conclusions with respect to the design of the preEiiters are: 

1. It is extremely important to filter the process data pnor to parameter estimation 

when using data that contains feedback. The design of the prefilter rnust be based on 

an accurate estimate of the true noise model. 

2. In general, structural mismatch between the true noise model and the user-selected 

prefilter causes problems in process model estimation to a certain degree. In a relative 

sense, AR-type mismatch affects the accuracy of the estimated model more than MA- 

type mismatch. Furthemore, even when the assumed noise model structure exactly 

matches the true noise model structure: s m d  errors in the parameters themselves can 

also lead to estimation problems. 
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5.3 Simultaneous Identification of Process and 
Noise Models 

An algorithm developed using a GLS approach has been presented to simultaneously 

identify process and noise models. The unique featiires of the algorithm are the combined 

application of the  FSF model for process model identification, and the PRESS statistic 

for both process and noise model structure selection. T h e  proposed algorithm has the 

ability to remove the effect of any feedback on the process mode1 estimate as ive11 as 

producing ' t h i t e "  residuals to allow for the development of statistical confidence bouncls 

associated with the process model. This algorithm has been successfully applied to a 

data set from Imperia1 Oil's Nanticoke refinery for estimating step response models with 

statistical confidence bounds. 
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Appendix A 

Process Data Set from Imperia1 
Oil's Nanticoke Refinery 
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Figure -4.1: Process input ul 
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Figure A.2: Process input un 
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Figure A.3: Process input UJ 
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Figure -4.4: Process output yl 
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Figure -4.5: Process output y?_ 



Appendix B 

MATLAB Commands 

B.1 T H  = ARX (2, N N )  

Computes LS-estimates of .AR?C-rnodels 

where A(z) = 1 + a& + ... + a n a P a ;  B ( t )  = bl + b / +  ... + b n b f n b i L .  

TH: Retumed as the estimated parameters of the ARY model. 

Z : The output-input data Z = [y u], mith y and u as being column vectors. 

For time series Z = y only. 

NN: lVN = [na nb nkj. For AR models, LVIV = na only. 

B.2 T H  = OE(Z, N N )  

Computes the prediction error estimate of an output-error model 

mhere B(z )  = b1 + b2z-I + ... + bnb~-nML; D ( z )  = 1 + dlz-' + ... + dndz-"*. 

TH: Retumed as the estimated parameters of the output-error model. 

Z : The output-input data Z = [y u] ,  with y and u being column vectors. 

?TN: N N  = [nb nd nk]. 






