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Abstract

During a process identification experiment, it often occurs that the process output
variable drifts outside the acceptable operating region due to process disturbances. In
this situation, the operator will attempt to bring the process output variable back inside
the desired operating region by adjusting the manipulated input variable. This thesis
studies the effects of such operator intervention on the accuracy of the identification re-
sults and proposes the use of correct noise models in the design of a process input-output
data prefilter to remove the resulting biasing effects. In addition, this thesis develops
a modified generalized least squares algorithm to simultaneously estimate the process

model and the noise model.
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Chapter 1

Introduction

1.1 Motivation

In the chemical process industries, design of a control system requires a mathematical
model of the process. The process model may be used as the basis for controller design,
or incorporated directly in the control law. Not all process control strategies use a
model explicitly in their implementation. However, most strategies are “model-based”
in the sense that some characteristics of the process must be known in order to carry
out the design. Model Predictive Control (MPC) represents a family of process control
algorithms which make direct use of an explicit and separately identifiable model (Prett
and Garcia, 1988).

To develop a dynamic model of the process, either a first principles approach, or a
black-box approach may be used. With the first principles approach, the process model
is derived from physical and chemical principles such as the conservation laws. With the
black-box approach, the model is developed directly from process input-output data.
There exist many identification techniques for obtaining a process model from black-
box experiments (Ljung, 1987). In this thesis, process modelling using the black-box
approach is considered.

Data used to identify a mathematical model of the process are obtained from
plant experiments, where the process inputs are perturbed and process outputs are

measured. The identification experiment can be carried out in open-loop, where a pre-
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determined input signal is applied to the process without any concern for whether the
process output drifts outside a desired operating range. However, many systems must
remain in closed-loop under feedback control due to safety and production restrictions.
The feedback control can be either continuous or intermittent. Feedback control caused
by an operator who intervenes and adjusts the process input when the process output
drifts out of a desired range is an example of intermittent feedback.

Several important issues related to closed-loop identification have been reviewed
in the recent paper by MacGregor and Fogal (1995). In this paper, the authors indicated
that problems arise with the identification of high order finite impulse response (FIR)
models under closed-loop conditions. Because these conditions are typical of how iden-
tification experiments are conducted in the chemical process industries combined with
the popularity of FIR-type models in the design of many modern control strategies, the
problems cited by MacGregor and Fogal (1995) have raised many questions about the
proper use of these types of models. This thesis will revisit and attempt to clarify some
of the issues raised by MacGregor and Fogal and will also examine some new issues

which go beyond the scope of their earlier work.

1.2 Literature Review

1.2.1 Closed-loop System Identification

Much of the existing theory on system identification was developed in the 1970’s
(Gustavsson et al., 1977). Several methods have been proposed and can be catego-
rized as either non-parametric or parametric methods. With non-parametric methods,
a finite-dimensional parameter vector is not explicitly used in the search for the best
model description. With parametric methods, a candidate model structure must be first
selected.

The popular non-parametric approaches are commonly known as correlation anal-
ysis and spectral analysis. These methods can be successfully used to identify a process
using data obtained from open-loop experiments. It is well known that these techniques

yield no information about the true system if the data are generated from purely feed-
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back operation. It has been shown in the literature that the presence of an external
signal or dither signal is necessary in the closed-loop case in order to make a process
identifiable (Wellstead, 1977; Fang and Xiao, 1988).

The most well-known parametric approach is the prediction error method (PEM).
Within the prediction error method, three different approaches are available for identi-
fying a system working in closed-loop: the direct method, the indirect method, and the
joint input-output method. With the direct method, the experimental data are used
as if no feedback was present, i.e. knowledge of the controller is not required. With
the indirect method, the external setpoint must be measurable and the feedback law
must be known. With the joint input-output method, the input-output process is first
modelled jointly as the output of a system driven by white noise. The plant dynamics
are subsequently derived from the joint model by matrix operations. The direct method
has a major advantage over the other two in that it allows for a wider variety of possible
structures for the unknown regulator, namely the regulator can be time varying, whereas
the indirect method requires prior knowledge of the regulator and the joint input-output
method is limited to systems with a linear and time-invariant regulator (Anderson and
Gevers, 1982). In the case of the intermittent feedback introduced via operator inter-
vention, the dynamics of the feedback controller may be quite complicated (e.g. perhaps
nonlinear and time varying). Therefore, the direct method will be adopted in this thesis.

A few new closed-loop identification methods have been developed recently.
Based on the concept of an observer for reducing the effect of noise in the identification
of a state-space representation of the process working in open-loop (Chen et al., 1992;
Juang et al., 1993) , Phan et al. (1994) proposed an identification technique dealing
with the case where the feedback controller is known. To deal with the case where the
feedback controller is unknown and assumed to be linear and time-invariant, Juang and
Phan (1994) developed a similar method. These methods result in an unbiased estimate
of the process model for systems working in closed-loop operation as long as the excita-
tion signals are sufficiently rich, and the measurement noises are white, zero-mean, and

Gaussian. Moreover, Van Den Hof and Schrama (1993) proposed a Two-Step method
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(TS) which consistently estimates the process transfer function regardless of whether
the noise contribution to the data can be modelled exactly. They also formulated an
explicit expression for the asymptotic bias distribution of the identified model when the
transfer function of the system cannot be modelled exactly. With different identification
objectives, Huang and Shah (1996) proposed a similar two-step closed-loop identification
method which asymptotically retains the accuracy of open-loop identification through

the design of the sensitivity function decoupling filter.

1.2.2 Operator Intervention

Dither Signal Disturbance
+ +
y-S-P——-E(A)ﬁo Operator p “ JpProcess| = ﬂ-——y—u

Figure 1.1: Conceptual block diagram of the procedure of operator intervention

The procedure of operator intervention can be described using Figure 1.1. During an
identification experiment, a dither signal is introduced to the system input to excite the
process, while the process output, y, is observed and compared with a set-point value,
Ysp- When the difference between the set-point and the measured output (error, e) is

outside an acceptable range, the operator makes an adjustment to the process input
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to bring the process output back towards the target value. Because the operator in-
tervention is not continuous, i.e. it happens only at the sampling instants when the
process output is outside its acceptable range, we use a dashed line in Figure 1.1 to
represent this intermittent feedback path. In the chemical process industries, identifica-
tion experiments are often performed under such conditions. In this thesis, “open-loop”
will refer to the situation where a pre-determined input signal is applied to the process
without any concern for whether the process output drifts outside the desired operating
range. “Closed-loop” will refer to the situation where the input is a combination of a
pre-determined sequence or dither signal plus additional moves made by an operator to
bring the process output back into the desired operating region.

As mentioned previously, several important issues related to process identification
using data collected under various closed-loop conditions have been reviewed by Mac-
Gregor and Fogal (1995). They analyzed the role of the noise model and data prefilters
on the identifiability of the process model. Also, they estimated higher order FIR-
type models with data containing operator intervention, and implied that identification
problems arise when trying to estimate high order FIR-type models under closed-loop
conditions even when the data is properly prefiltered.

If the identification experiment is carried out entirely under open-loop conditions,
Ljung (1987) shows in his Theorem 8.4 that the process model can be consistently
estimated using the PEM approach without careful attention to the estimation of the
noise transfer function as long as the process model and noise model are independently
parameterized, the process model is sufficiently complex to capture the true process
transfer function, and the noise model is stable. When the data is collected under
closed-loop conditions, Ljung shows in his Theorem 8.2 and 8.3 that both process model
and noise model can be consistently estimated using a PEM approach as long as the
process and noise models are sufficiently complex to capture the true process and noise
transfer functions. An alternative approach under closed-loop conditions is to estimate
just the process model using prefiltered data. However, to obtain consistent estimates

for the process model, the prefilter must be designed using a good estimate of the true
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noise model. Otherwise, the process model will be estimated incorrectly (Ljung, 1987).

1.2.3 Process Model Representation

High order finite step response (FSR) or FIR models estimated directly from plant
data are frequently used to characterize the process dynamics. The reasons for their
popularity are that these types of models fit naturally into the design of many MPC
algorithms, and the multivariable processes on which these algorithms are typically
applied are not well represented by lower order transfer function models (Cutler and
Yocum, 1991; MacGregor et al., 1991). In addition, these models are a straightforward
representation of the process dynamics, and the parameters of these models, such as the
sampling period and the model order, have a relatively simple physical interpretation.

Although FSR/FIR type models have their advantages, they have a few widely
recognized problems. Firstly, it is difficult to obtain good estimates for their respec-
tive parameters due to their high dimensionality (Ricker, 1988). Secondly, these model
structures often result in ill-conditioned solutions when applying a least squares estima-
tor since the data matrices associated with these models are often poorly conditioned
(MacGregor et al., 1991). MacGregor et al. (1991) have studied biased regression tech-
niques (e.g. ridge regression) and the projection to latent structures (PLS) method as
alternatives to least squares. Ricker (1988) studied the use of PLS and a method based
on the singular value decomposition (SVD). All these approaches attempt to reduce the
variances and improve the numerical stability of the solution with the result being biased
parameters.

The frequency sampling filter (FSF) model structure is a candidate model struc-
ture which has many of the same attributes as the FSR/FIR type models but does not
suffer from their problems to anywhere near the same degree. The FSF model is ob-
tained from a linear transformation of the FIR model and consists of a set of narrow
bandpass filters. Combined with a standard least squares estimator, the FSF model can
be used to directly estimate the process frequency response. Recent work by Wang and

Cluett (1996a) has shown that the FSF model is a much more efficient way to estimate
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the process step response. The advantages of the FSF model structure over the pop-
ular FIR model are that the number of parameters to be estimated is independent of
the choice of sampling interval and is generally far fewer than the number required by
the FIR model to obtain an accurate estimate of the step response. In addition, the
general conditioning of the correlation matrix is better with the FSF model due to the
reduction in the number of parameters that need to be estimated and to the narrow
bandpass nature of the frequency sampling filters themselves. Furthermore, with the as-
sumption that the errors in the estimated process model are largely due to the presence
of noise and disturbances, Cluett et al. (1996) extended the statistical confidence bound
in Goberdhansingh et al. (1992) from a set of point-wise bounds to a bound over the
entire frequency region. From this frequency domain model information, a time domain

uncertainty bound for the corresponding step response model was also derived.

1.2.4 Process and Noise Model Structure Determination

Model structure determination is an important step in system identification. For para-
metric methods, most of the existing identification methods assume that the structure of
the system is known a priori, (i.e. transfer function order and delay), or that the selected
model structure is at least within the true model class. At this point, the identification
scheme is in reality a parameter estimation procedure. Alternatively, high order FIR
models can be used but lead to the estimation problems mentioned above. With the
F'SF model, lower order models maybe used but the question remains how to choose the
best order of the FSF model.

A natural approach to searching for a suitable model structure is to test a number
of different model structures and to compare the resulting models. To perform such
comparisons, a discriminating criterion and data sets are needed. For example, with a
cross-validation approach, the criterion could be the sum of squared prediction errors or
the misfits between the actual outputs and the model predicted outputs using a fresh data
set. An attractive feature of this method is that the comparison makes sense without any

probabilistic arguments and without any assumptions about the true system. The only
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disadvantage is that we have to save a fresh data set for the comparisons and therefore
we are not using all of the available information to build the model in the first place.

When we cannot spare fresh data sets for cross-validation purposes, other meth-
ods can be applied. An extensive survey of the literature regarding model structure
selection was given by Stoica et al. (1986). The rank test is 2 method which is inde-
pendent of the estimates of parameters (Fang and Xiao, 1988). Other methods which
are dependent on the parameter estimates are the F-test, Akaike’s information criterion
(AIC), the final prediction error criterion (FPE), penalty for model complexity, etc.
(Ljung, 1987). In practice, one should not use just one method for model structure se-
lection but it is recommended that a combination of statistical tests and plots of relevant
signals be used (SGderstrom and Stoica, 1989).

For noise model structure selection, it is standard practice to examine auto-
correlation functions (ACFs) and/or partial auto-correlation functions (PACFs) (Box
and Jenkins, 1976). This is an off-line procedure which requires a certain amount of
expertise to interpret these plots.

To take the advantage of cross-validation without suffering the loss of data in-
formation, PRESS is a candidate model structure selector for linear regression type
problems (Wang and Cluett, 1996b). PRESS is defined as the sum of the squared true
prediction errors, where the true prediction error is calculated using data which is not
part of the data set used to estimate the process model. Unlike the cross-validation
approach where the entire data set is split into two parts, PRESS is calculated on each
and every data point with the remaining data points used for model estimation. Wang
and Cluett (1996b) show that the PRESS criterion provides a consistent and robust
estimate of the model order. Application examples of the PRESS statistic for model

structure selection are available in Patel et al. (1996).

1.3 Contributions of this Thesis

The first major contribution of the thesis (Chapter 2) is a thorough study of the role

of operator intervention in process identification. In industry, when estimating step re-
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sponse models for model predictive control applications, sometimes the test data which
contains operator intervention is discarded. In addition, research by MacGregor and
Fogal (1995) implied that non-parametric models lead to biased step response estimates
due to the presence of operator intervention. In this thesis, we have shown that operator
intervention may lead to better models due to the fact that operator intervention often
improves the overall signal-to-noise ratio. With proper data prefiltering, there is cer-
tainly no need to discard data which contains feedback when estimating FIR models. In
addition, we show that there are some factors which can affect the process identifiability,
e.g., whether the operator intervention is delayed or immediate, and if the unit delay is
included in the model.

The second major contribution of the thesis (Chapter 3) is the study of the design
of the prefilter. Both theoretical analysis and simulation examples are used to illustrate
that the process input-output data must be prefiltered using an accurate estimate of the
true noise model. In addition, the study shows that the autoregressive-type dynamics
of the noise model are the most important components when it comes to designing the
prefilter.

The third major contribution of the thesis (Chapter 4) is that a modification of
the well-known generalized least squares algorithm (GLS) is proposed for simultaneous
identification of both process and noise models. The proposed algorithm provides a sim-
ple approach to remove the effect of any feedback on the process step response estimate,
and to produce “white” residuals to permit presentation of statistical confidence bounds
for the step response models. This algorithm makes novel use of the PRESS criterion
for both process and noise model order selection. The performance of the proposed al-
gorithm is demonstrated using simulation examples and by application to an industrial

data set.



Chapter 2

The Role of Operator Intervention
in Process Identification

2.1 Introduction

In this chapter, the topic of closed-loop system identification is investigated with partic-
ular emphasis on the case where the feedback is introduced via operator intervention. A
description of the procedure of operator intervention is given in section 2.2. In section
2.3, the identifiability of non-parametric models versus parametric models under these
types of closed-loop conditions is investigated. In section 2.4, the effect of the extent of
operator intervention on the resulting model quality is studied. In section 2.5, the effect
of different types of intervention strategies is examined. Concluding remarks are given

in section 2.6.

2.2 The Procedure of Operator Intervention

The closed-loop system under operator intervention can be conceptually described using
Figure 2.1 from a process identification point of view. In this diagram, the process is
represented by the transfer function Go(z), the process output target value is given by
the set-point, y,p, and the process input and output variables are denoted by u, and y;,
respectively. All unmeasurable process disturbances are characterized by a white noise
sequence a, filtered through a noise model transfer function, Hy(z).

In the identification experiment, we add a dither signal to the process input to

10
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a,
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Y
ysp', + + yf
2R Go(a) [0

i e e imamai it meimiim cmeime eimeimeemeimimren

Figure 2.1: Closed-loop system under operator intervention

excite the process. The dither signal is typically a random binary signal with some
specified magnitude and switching frequency. The process output, y;, is measured and
compared with a set-point value, y,, .. When the process output ¥, is outside an accept-
able range, which is specified by & LIM in this thesis, the operator adjusts the input to
draw the process output back towards the target. Here we assume that the operator has
knowledge of the sign of the process gain and makes a step change adjustment. There-
fore, the input signal u; is the combination of the dither signal and the step changes
introduced by operator. In order to determine whether the adjustment has the desired
effect, the operator waits a certain period of time between two successive adjustments.
This operator intervention procedure can be illustrated using the following simulation

example.
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Simulation Example 2.2.1:

Consider the system described by

0.1z7}

W= gt (2.1)
1

U= T g™ 2.2)

where y, is the measured process output, u, is the process input, v, represents the effect
of all unmeasured disturbances on y;, a, is a white noise sequence with zero mean and
variance of 0.3, and z is the mathematical shift operator defined by z~'y, = y,_;.

The dither signal used to excite the process is a binary signal with a magnitude of
1, minimum switching time of 10 sampling intervals, and a 50% probability of switching.
During the experiment, when the measured process output moves out of &= LIM from its
target value at a given sampling instant, a step change of magnitude %5 is superimposed
on the dither signal at the next sampling instant to attempt to bring the process output
back to its target value. The operator then waits 25 sampling intervals after giving an
adjustment to determine whether the action has the desired effect. For one experiment,
10 000 sets of input-output data are collected. In order to simulate different realizations
of the stochastic disturbance, repeated experiments are performed by using the same
random binary signal but with different seeds for generating the white noise sequence
{a:}-

This simulation example closely matches Example 2 in MacGregor and

Fogal (1995) and will be used frequently throughout this chapter.

2.3 Estimating Process Step Response Under
Closed-loop Conditions

The true process is assumed to be given by:

Y = Go (Z)'ltg + v (2.3)

v = Hy(2)a, (2.4)
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The system is then estimated using the assumed model structure
ye = G(z,0)u, + H(z,0)a, (2.5)

where 8 can be either an infinite or a finite dimensional vector of parameters.
Taking H(z,0) = H(z) as a user-selected prefilter, so that y;, = H~!(2)y,

uge = H™Y(z)u,, we have
Yre = G(Z, H)Uf,t + a; (26)

Ljung (1987) shows in his Theorem 8.2 and 8.3 that both Gy and Hy can be consistently
estimated from data collected under closed-loop conditions using a PEM approach pro-
vided that the models G(z,8) and H(z,6) are sufficiently complex to capture the true
process and noise transfer functions, Go(z) and Hy(z). This indicates that G(z,6) can
be estimated using Equation (2.6) with the prefiltered process input-output data pro-
vided that the prefilter H(z) is designed using a good estimate of the true noise transfer

function Hy(z).

2.3.1 Non-parametric and Parametric Models

For a linear, time-invariant process, the process transfer function can be written as

o
~I
o —

Go(z) = h(k)z"* (2.
k=0

where the sequence {A(k)} is the impulse response of the process.
Another example of a popular non-parametric model of the process is the step
response model {g(k)} where
k
g(k) = _ k(i) (2.8)
i=0
fork=0,1,-~,00.
Two examples of popular parametric models are the equation error or ARX model

structure

A(2)ye = B(z)ue +a (2.9)
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and the output error (OE) model structure

Y= DE ;Ug +a, (2.10)

where A(z) = 1l +a1z7' + -+ ap . z7™, B(z) = byz7t + -+ + bp,z™™ and D(z) =
1+diz7t 4+t dp 2™
Another popular parametric model used to represent stable processes is the finite

impulse response model (FIR), where
v = B(z)u, + a, (2.11)

and ny = N, where N is an estimate of the process settling time. From Equations
(2.9), (2.10) and (2.11) we can see that the FIR model can be considered a special case
of the OE model structure with D = 1, or a special case of the ARX model structure

with A = 1.

2.3.2 Non-parametric and Parametric Estimation Methods

Methods for determining estimates of nonparametric models are called non-parametric
methods since they do not explicitly use a finite-dimensional parameter vector in the
search for a model (Ljung, 1987). For estimating a finite number (V) of terms in the
impulse response {h(k)}, correlation analysis is a popular non-parametric method. This

method produces an estimate of the first N + 1 impulse response coefficients by solving

Ryy(7) = Zh k) Ruu(k = 7) (2.12)

k=0
for 0 <7 < N, where

M

Ry(r) =37 Z s Yt (2.13)

Ruu(r) = wzuc Ut (2.14)
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and M is the number of observed sets of input-output data. Using a matrix form,

Equation (2.12) is equivalent to

By (0) Bu(0)  Rull) 0 Ru(V) A(0)
Rm,i(l) _ Riﬂfl) Ru(0) -+ Ruu(N-1) h(:l) (2.15)
Fuy(V) RuaN) Rua(N=1) - Ru(0) h(V)

These equations are derived from Equations (2.3} and (2.7) under the assumption
that the identification experiment has been carried out under open-loop conditions,

thereby,
) 1M
== ~ 2.
RILU (T) A/[ ; ut—Tvt O ( 16)

i.e. the process input u, and the disturbance v, are uncorrelated for all lags 7 > 0.
When the experiment is carried out under closed-loop conditions, this assumption does
not hold because u, and v; are no longer independent, and correlation analysis will
produce erroneous results.

Methods for estimating the parameters within a selected model structure (e.g.
ARX, OE, FIR) are called parametric estimation methods. To evaluate the quality of
the estimated model, the concept of the prediction error is often used. The prediction

error, €, is defined by:
ec =y — u(0) (2.17)

With prediction error identification methods (PEM), the objective is to choose §
such that some measure of the size of {e;} is minimized. We often use a quadratic norm
where § is chosen to minimize i zﬁﬁl e?. For the ARX and FIR model structures, this
can be accomplished with the well-known least squares method (LS). For example, the

equivalent linear regression form of the FIR model is given by:
Ye = & 6o + vt (2.18)
where

B¢ = [Uet weoa---uey] (2.19)
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and
87 = [by ba---by) (2.20)

The LS estimate for the parameters 8 is given by
1M 1M
§=[— Tt — 2.
[1‘/[ ; ¢t¢t ] M ; ¢tyt ( 21)

By comparing Equation (2.15) for estimating the impulse response model {A(k)}
and Equation (2.21) for estimating the N parameters in the FIR model, it can be seen
that the correlation analysis estimates and the LS estimates are identical (A(k) = &)
except for the fact that the leading coefficient, by, of the FIR is not estimated. This
discrepancy arises from the fact that the unit delay has been included in the FIR model.
However, the nonparametric method of estimating the impulse response model and the
parameter estimation method (i.e. least squares) for estimating the FIR model can
be made identical by either estimating by in the FIR model or by forcing A(0) = 0 in
Equation (2.7).

2.3.3 Comparison of Estimation Results Using Parametric and
Non-parametric Models

In simulation example 2.2.1, LIM was set equal to 6 which matches the value chosen
by MacGregor and Fogal (1995). A section of 1000 sample periods is plotted in Fig-
ure 2.2. The input-output data was prefiltered with the inverse of the correct noise
model as illustrated in Equation (2.6). The impulse response model in Equation (2.18)
was estimated using the LS method with u, and v, replaced by u;, and yg, in Equa-
tion (2.21). The estimation was performed using the MATLAB ARX command with
NN =[0 50 1] (see Appendix B). Fifty different experiments with 50 different seeds for
the white noise sequence were performed yielding 50 estimates of the impulse response
model. The corresponding unit step response estimates were generated from Equation
(2.8) (with the unit step occurring at the first sampling interval) and the results are
plotted in Figure 2.3. Compared with the true process step response shown in Figure

2.4, the estimates are clearly unbiased.
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Figure 2.2: Process input-output data with LIM= 6.

MacGregor and Fogal (1995) suggest that, even if the prefilter is designed using
the true noise model, when estimating a “non-parametric” model such as the impulse
response, one might expect to identify some weighted combination of the process model
and the negative inverse of the controller. Our result would seem to contradict the
suggestions made by MacGregor and Fogal (1995), but it can be validated by the fol-
lowing explanation. Due to the nature of the operator intervention in this simulation
example, correlation exists between {u:y;} and {v;}. Because the disturbance {v;} is
autocorrelated, then Ruu('r) # 0 for all 7 > 0. Therefore, estimates of the impulse
response would be biased if they had been generated from Equation (2.21) using u, and
y:. However, with », and y, being filtered by the inverse of the correct noise model, the
impulse response model is estimated using the LS method with u, and y; replaced by uy,
and yy, in Equation (2.21). Because correlation exists between {u;y} and {v.}, then
correlation also exists between {u;+:} and {a,}. However, because {a.} is a white noise

sequence, R, ;a(7) = 0 for all 7 > 0. Then the estimated models are unbiased according
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Figure 2.3: Estimated unit step responses with FIR model including unit delay (LIM=
6).

to Equation (2.186).

Although an unbiased estimate of the step response has been generated from an
FIR model which includes the unit delay, the fact that 2, a(0) = 0 would indicate that
even if the unit delay had not been included the estimates would be unbiased. This
result was verified by re-estimating 50 estimates of the impulse response model from
the same 50 experiments used to generate Figure 2.3 (MATLAB ARX command with
NN =1[0 50 0]). The corresponding 50 step response estimates are plotted in Figure
2.5. By comparing with the true step response shown in Figure 2.4, the estimates are
seen to be unbiased. Compared with the estimation results shown in Figure 2.3, the only
difference is that the first term of the step response estimate §(0) = k(0) is no longer
exactly zero but has its own distribution with zero mean.

These results indicate that under the closed-loop conditions described in simu-
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Figure 2.4: True unit step response

lation example 2.2.1, unbiased estimates of the process step response can be obtained
using correlation analysis or equivalently the LS estimates of the FIR model provided
the input-output data have been prefiltered with the inverse of the correct noise model.

In addition, we are also interested in investigating the identifiability of parametric
models to see if they provide significantly different results. From the same 50 experiments
used above, 50 estimates of a lower order transfer function model were obtained using
the MATLAB OE command with VN =[1 1 1] and NNV =[2 1 0] after the input-
output data was prefiltered with the inverse of the correct noise model (see Appendix
B). The corresponding 50 step response estimates are plotted in Figure 2.6 and 2.7 for
NN =[1 1 1Jand NN =[2 1 0], respectively. By comparing Figure 2.3 with
Figure 2.6 and Figure 2.5 with 2.7, it is clear that the non-parametric estimates and the
parametric estimates have similar distribution properties, the only difference being that

the parametric estimates are smoother.
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Figure 2.5: Estimated unit step responses with FIR model not including unit delay
(LIM= 6).
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Figure 2.6: Estimated unit step responses with OE model including unit delay (LIM= 6).
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Figure 2.7: Estimated unit step responses with OE model not including unit delay
(LIM= 8).
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2.3.4 Convergence of Estimated Models

With the previous simulation results, in all cases we assumed a process model structure
which was sufficiently complex to capture the true process transfer function. Ljung’s
(1987) asymptotic results tell us that the model estimates will converge to the true
process as the data length, M — oo. To evaluate the convergence behaviour, 500 000
sets of input-output data were collected in one simulation experiment. Then, this data
sequence was cut into different lengths by taking the first 10 000 data points, the first 20
000 data points, etc. up to the entire data length. This results in 50 data sets of different
lengths. Based on the 50 data sets, unit step responses were estimated from the impulse
response model with the LS method (MATLAB ARX command with NV =[0 50 1))
and from a low order transfer function model with the output error method (MATLAB

OE command with ¥V =[1 1 1]) with the data correctly prefiltered. The results are

1.6
1.4}

1.2F

0.6

0.4}

'0'20 5 10 15 20 25 30 35 40 45 50

Sampie Intervals

Figure 2.8: Convergence of Estimated Models: FIR model including unit delay (LIM=
6).
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Figure 2.9: Convergence of Estimated Models: OE model including unit delay (LIM= 6).

shown in Figure 2.8 and 2.9, respectively.

By comparing Figure 2.4 with 2.8, and Figure 2.4 with 2.9, it is clear that both
FIR generated estimates and the low order transfer function generated estimates con-
verge to the true step response. In addition, by comparing Figure 2.3 with 2.8 and Figure
2.6 with 2.9, it is also clear that two estimates have similar convergence behaviour, the
only difference being that the low order transfer function generated estimates are some-

what smoother.
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2.4 The Effect of Operator Intervention on Model
Quality

In industry, data which contains feedback operation is often discarded when a FIR model
is to be estimated. This is because of the well-known result that non-parametric methods
such as correlation analysis lead to biased estimates of the process model when applied
to process input-output data which contains feedback. The results in section 2.3 clearly
indicate that this need not be the case with proper data prefiltering. In this section,
this issue is explored one step further by examining the effect of the frequency of the
operator intervention on the model quality.

To carry out this study, two more sets of 50 experiments were performed under
the conditions described in Example 2.2.1 with LIM set equal to 3 and 100. Example
sections of 1000 sample periods for LIM= 3 and 100 are shown in Figure 2.10 and
Figure 2.11, respectively. From comparing Figure 2.2, Figure 2.10 and Figure 2.11, it

Input
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Output

—
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4] 100 200 300 400 500 600 700 800 900 1000
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Figure 2.10: Precess input-output data with LIM= 3.
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Figure 2.11: Process input-output data with LIM= 100.

is clear that the value of LIM directly determines the amount of operator intervention.
For instance with LIM=100, the process output never drifts outside 100, and the
process input consists solely of the random binary signal with no operator intervention.
This is equivalent to the open-loop situation. On the other hand, with LIM= 3, the
process output is frequently outside the acceptable range of %3, resulting in frequent
interventions from the operator. With LIM= 6, the process output drifts less frequently
outside the acceptable range of +6 leading to fewer operator moves. Impulse response
models were estimated using the LS method with u, and y, replaced by uy; and yy, in
Equation (2.21) (MATLAB ARX command with NNV = [0 50 1]). The corresponding
50 step response estimates are shown in Figure 2.12 and Figure 2.13 for LIM= 3 and
100, respectively.

In addition, using the same two sets of data as described above corresponding to
LIM= 3 and 100, 50 estimates of a lower order transfer function model were obtained

using the MATLAB OE command with NN ={1 1 1], after the input-output data was




Chapter 2. The Role of Operator Intervention in Process Identification 27

1.8

1.6

1.4fF

1.2

— L 1 I

0 5 10 15 20 25 30 35 40 45 50
Sample Intervals

_0‘2 1 L 1 L

Figure 2.12: Estimated unit step responses with FIR model including unit delay (LIM=
3)..

prefiltered with the inverse of the correct noise model. The corresponding step response
estimates are shown in Figure 2.14 and Figure 2.15, respectively.

By examining Figure 2.12, Figure 2.3 and Figure 2.13 for LIM= 3, 6 and 100,
respectively, a very clear trend is present. Also, by examining Figure 2.14, Figure 2.6
and Figure 2.15 for LIM = 3,6 and 100, respectively, the same trend can be seen. First,
all three cases yield unbiased estimates. Second, the more frequent the operator inter-
vention, the tighter is the distribution of the estimates around the true step response.
Third, in all three cases, the distribution of the estimates broadens as steady-state is
approached with the largest uncertainty being associated with the steady-state gain es-
timate. With LIM= 3, 6 and 100, the step response estimates are approximately within
+10%, +20% and +£80% of the true gain. The results indicate that the operator inter-

vention can actually produce input-output data sets which subsequently lead to better
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Figure 2.13: Estimated unit step responses with FIR model including unit delay (LIM=
100).

models, particularly with respect to estimation of the steady-state gains. This has im-
portant practical implications because the steady-state gain is one of the more important
pieces of information to be determined from the identification experiment.

To explain these results, we may use a frequency domain interpretation of the
asymptotic process model estimate or limit model. It has been shown in Ljung (1987)
that, for the open-loop case, when prefiltering with the inverse of the correct noise model,
the limit model is a best mean-square approximation of the true process with a frequency

weighting Q(w) given by

 u(w)
QW) = g, ey

where ®,(w) is the power spectrum of the process input {u,}. When the process is under
continuous feedback control with an external dither signal, the limit model becomes a

function of the sensitivity function associated with the true and modelled closed-loop
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Figure 2.14: Estimated unit step responses with OE model including unit delay (LIM=
3).

system in addition to the power spectrum of the dither signal (MacGregor and Fogal,
1995). With operator intervention, where a mixture of open-loop and feedback operation
exists, it seems reasonable to treat the power spectrum of the filtered process input {uy,}
as the weighting function where the process input in this case is the combination of a
dither signal plus intermittent operator moves.

In all of our simulation work, we use finite data sets. However, we believe that
we can still use the limit model results to explain the differences in the distribution of
the various step response estimates. For instance, the larger the frequency weighting
is in a given frequency region, the more accurate the model should be in that same
frequency region. The frequency response of the noise model Hg(z) in Equation (2.2)
has a large magnitude at the low and median frequencies and a small magnitude at the

higher frequencies. Therefore, the frequency weighting function in Equation (2.22) will
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Figure 2.15: Estimated unit step responses with OE model including unit delay (LIM=
100).

tend to de-emphasize the low and medium frequency regions and emphasize the high
frequency region. This explains why all of the distributions in Figure 2.12, Figure 2.3
and Figure 2.13, and Figure 2.14, Figure 2.6 and Figure 2.15 broaden as steady-state is
approached. In addition, for a given experimental time, if the input signal has a larger
power spectrum at all frequencies, then the estimated model will be more accurate
because of the larger signal-to-noise ratio. Figure 2.16 shows a comparison of the three
discrete power spectrums of the filtered process input {uj,} taken from the sets of
simulations with LIM= 3, 6 and 100. It is clear that as the operator intervention
becomes more frequent, the magnitude of the filtered process input power spectrum
increases leading to tighter distributions of the estimates around the true step response.

This explains why the distribution becomes tighter as LIM goes from 3 to 6 to 100.
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Figure 2.16: Power spectra of filtered process input with LIM= 3, 6 and 100.

2.5 The Effect of Intervention Strategies on Identi-
fiability

2.5.1 Delayed vs. Immediate Intervention

“Delayed intervention” refers to the case where the operator makes an adjustment one
sampling instant after the unacceptable deviation is detected. “Immediate intervention”
refers to the case where the operator makes an adjustment of the process input at the
same sampling instant that the unacceptable deviation in the process output occurs. It is
believed that the delayed intervention described in Example 2.2.1 is more typical of what
happens with human intervention where an operator needs a minimum response time
(say one sampling period) to make an adjustment to the process input. However, the
immediate intervention strategy is closer to what happens with an automatic feedback

control mechanism which adjusts the process input at the current sampling instant based
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on the current deviation of the process output from its target value. The objective in
this section is to study the effect that this subtle difference might have on the accuracy
of both estimated FIR and low order transfer function models.
Simulation Example 2.5.1

This simulation example is identical to simulation example 2.2.1 except that when
the process output moves more than £LIM (LIM= 6) away from its target value at a
given sampling instant, a step change of magnitude +5 is superimposed on the random
binary signal at the same sampling instant to attempt to bring the process back to its
target value. This is what is referred to as an immediate intervention strategy. The im-
pulse response model in Equation (2.18) was estimated using the lease squares method
with u, and y, replaced by uy, and vy, in Equation (2.21) (MATLAB ARX command
with NN ={0 50 1j). Fifty different experiments with 50 different seeds for the white
noise sequence were performed yielding 50 estimates of the impulse response model. The
corresponding unit step response estimates were generated and the results are plotted
in Figure 2.17. Compared with the true step response, the estimation results are unbi-
ased. Due to the nature of the operator intervention in Example 2.5.1, correlation exists
between {u.} and {v,} and as a result correlation also exists between {us,} and {a:}.
However, because {a.} is a white noise sequence, Rufa(r) ~ 0 for all 7 > 1. Therefore,
because the unit delay has been included in the FIR model, the estimates are unbiased.
On the other hand, if models are estimated without including the unit delay, the esti-
mates should be biased since R, ;a(0) # 0. The 50 estimates generated from the same
50 experiments using instead the MATLAB ARX command with NV =[0 50 0} are
plotted in Figure 2.18 where it is clear that the estimates are biased. These are in fact
the conditions under which correlation between the process input and the disturbance
cause identifiability problems.

However, these problems exist not only for the FTR models but also for the low
order transfer function models. From the same 50 experiments used above, 50 estimates
of a low order transfer function model were obtained using the MATLAB OE command

with NN = [2 1 0] after the input-output data was prefiltered with the inverse of
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Figure 2.17: Estimated unit step responses with FIR model including unit delay for
immediate operator intervention (circles denote the true process step response).

the correct noise model. This means that we have not included the unit delay in the
output error model structure. The corresponding 50 step response estimates are plotted
in Figure 2.19. By comparing Figure 2.18 and Figure 2.19, it is clear that the two sets of
estimates have similar distribution properties (both are biased) with the only difference

being that the low order transfer function generated estimates are smoother.

2.5.2 Waiting for Consecutive Unacceptable Deviations

Another situation which might happen during the identification experiment is that the
output may drift outside the acceptable region due to a disturbance at one sampling
instant, but may return to within the acceptable operating region at the subsequent
sampling instant without requiring any intervention. Therefore, it may be the case that

the operator intervenes only if there are several consecutive unacceptable deviations.
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Figure 2.18: Estimated unit step responses with FIR model not including unit delay for
immediate operator intervention (circles denote the true process step response).

Here we investigate what will happen to the estimated model under these circumstances.
Simulation Example 2.5.2

This simulation example is identical to Example 2.2.1 except now the operator
does not intervene until there have been a certain number of consecutive process out-
put samples outside either +LIM or —LIM. In this simulation example, the operator
intervenes after two consecutive unacceptable output deviations have occurred.

Fifty experiments were performed using 50 different seeds for generating the white
noise sequence yielding 50 sets of input-output data. Impulse response models were
estimated using the LS method with u, and y; replaced by uy,; and y;, in Equation 2.21
(MATLAB ARX command with NV ={0 50 0]). The corresponding 50 step response
estimates are shown in Figure 2.20. Also, using the same data sets, low order transfer

function models were estimated using the MATLAB OE command with ¥V ={2 1 0]
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Figure 2.19: Estimated unit step responses with OE model not including unit delay for
immediate operator intervention (circles denote the true process step response).

after the input-output data were properly prefiltered. The results are shown in Figure
2.21. Comparing Figure 2.20 with 2.5, and Figure 2.21 with 2.7, it is clear that the
only difference is that the distributions of the estimates around the true step response
are tighter with the earlier results. This can be explained by comparing the number of
operator interventions that occurred for these two cases. The number of interventions
that occurred in the first 9 simulations for the two cases are shown in Table 2.1. It is clear
that waiting for two unacceptable consecutive output deviations decreases the number of
interventions. As explained in section 2.5.1, less frequent operator intervention decreases
the magnitude of the filtered process input power spectrum. Therefore the signal-to-
noise ratio is lower with fewer interventions and the distribution of the estimates around

the true step response broadens. However, the estimates remain unbiased.
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Figure 2.20: Estimated unit step responses with FIR model not including unit delay
(circles denote the true process step response).

Operator Intervention Strategy

Number of interventions

Intervene after one deviation

21

6

22

23

23

34

29

24

Intervene after two consecutive deviations

17

[SV N TS

1

15

18

18

20

12

19

19

Table 2.1: Number of interventions in first 9 simulation experiments

2.6 Concluding Remarks

In this chapter, the identification of FIR models and low order transfer function models

under closed-loop operation conditions was studied. Several conclusions can be made

from this work:

1. Operator intervention may improve the overall signal-to-noise ratio, thereby lead-

ing to better models, particularly with respect to estimation of the steady-state gains.

With proper data prefiltering, there is certainly no need to discard data which contains

feedback .
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Figure 2.21: Estimated unit step responses with OE model not including unit delay
(circles denote the true process step response).

2. With delayed operator intervention, the least squares estimate of a finite impulse
response (FIR) model is unbiased after prefiltering data with the correct noise model.
This conclusion holds regardless of whether the unit delay is included in the FIR model.
The estimates of lower order transfer function models after prefiitering with the correct
_noise model have similar distribution properties to the FIR estimates, the only difference -
being that the lower order model estimates are smoother.

3. With immediate operator intervention, both FIR and low order transfer function
model estimates are unbiased after prefiltering with the correct noise model if the unit
delay is included in the model. If the unit delay is not included in the model, both

models lead to biased estimates.



Chapter 3

Issues in the Design of the Prefilter

3.1 Introduction

In this chapter, the role of prefilters in closed-loop process identification is examined.
This study is an extension of chapter 2, and therefore the identification results are ob-
tained by combining the FIR model structure with a least squares estimator (LS). In
section 3.2, the LS estimate of a simple FIR process under feedback control is theoret-
ically analyzed. Also, a comparison is made between the case where the correct noise
model is used in data prefiltering, and the case where no data prefiltering is performed.
In addition, the asymptotic expression for the least squares objective function is used
to further explain the role of noise model. In section 3.3, a study which looks at the
relative importance of the components of an autoregressive-integrated-moving average
(ARIMA) noise model in the design of the prefilter is carried out. Further study is then
carried out to evaluate the effect of errors in the parameters of these components on the

estimation results. Concluding remarks are given in section 3.4.
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3.2 Theoretical Analysis

3.2.1 Without Data Prefiltering

at
Dither Signal Hy(z)
,V[
gt
Yot 0% 0@ O Got) y; -

Figure 3.1: Closed-loop process with dither signal

The true system is assumed to be described by Equations (2.3) and (2.4). For a general
closed-loop system in Figure 3.1, the process input u,, with y,,(¢) = 0 V ¢ and dither
signal, d;, is given by

Uy = —-C'(z)yt + dt (3.1)

where C(2) is a time invariant, linear feedback controller. Combining Equations (2.3),

(2.4) and (3.1) results in

T 14+ C(2)Go(2)

di — C(z)w) (3:2)

Uy
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Here we can see that the process input signal u, is correlated to the process disturbance
v;. Now we examine what will happen to the estimated model when the process input
is in the form of Equation 3.2.

If the process is represented by an FIR model structure, the process given in

Equation (2.3) can be equivalently written in its linear regression form:
T
Ye=¢, 6o+ vt (3.3)
and the parameter vector 6y can be estimated by
1M 1M
§=[— -t — ' 3.4
37 ; @l 3 ; ol (34)

where M denotes the number of data points.
The error between the true and the estimated parameter vector is derived in

Séderstrom and Stoica (1989) as

1 M | M LM
5 _ - [ T[> Y T
66 = [5; ;m] 37 ;mt 7 2 4l
1M 1M
- (= T)-1[_*_ =
=[5y 2 ol 7gp 2 6l (3.5)
This expression indicates that a consistent estimate is obtained under the conditions
that
E[¢:6]] is nonsingular (3.6)
El¢u] =0 (3.7)

Condition 3.6 requires that the data be sufficiently exciting. Condition 3.7 will be
satisfied if v, is uncorrelated with ¢,. If v; is not white noise, it will normally be correlated
with past inputs u, through Equation (3.2) and past outputs y, through Equation 3.3.
Hence 3.7 will in general not hold and the LS estimate 8 will be biased. Let us examine

the bias issue in more detail using the following example.




Chapter 3. Issues in the Design of the Prefilter 41

Example 3.2.1
The true process is given by the following FIR model

e = b]_’u.t + bg‘dg._[ + v (38)
where u, is generated according to the control law.
u = —C(z)y. (3.9)

With delayed intervention as described in chapter 2, there is a unit delay between
when a unacceptable deviation occurs and when the operator intervenes. To impose the
same delayed correlation structure on this example, we will take the controller to be of

the form
C(z) = Kzt (3.10)

Now, we want to examine the LS estimate of the process on the data collected
under the above experimental conditions. First, we want to use ¢’ to denote the noise-free

process output shown in Figure 3.1. Then
Ye =Yy + U (3.11)

Equation (3.9), (3.10) and (3.11) result in
u =-Ky,_; — Kvp—, (3.12)

The process given in Equation(3.8) can be expressed in its linear regression form

by defining

¢’T = [up U] (3.13)

6o = [b1 bo] (3-14)

The LS estimate of 6y can be obtained by Equation (3.4)

-1
r 1 M 2 1 M 1 M
6 = b | _ M 2at=1 Ut M Doy Ue—1Ut A 2= Utlt (3.15)
- T - 1 M ) L M 2 1 Zl\r[ 2 -
b M Zt=1 Us—1Ue 37 2oe=1 Yt—1 M 2ot=1 Le—1Yt
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The summations in Equation (3.15) converge in quadratic mean and hence in probability

to their expected values (Goldberger, 1964), i.e.

_Al:—[ A{[?‘:{.l u? _1\];72?_—;} Ug_1 U — }:Zuu(o) I?uu(l)
ﬁZt:lut-lul %{Et:lu?—l Ruu(l) R..(0)

lzﬂ'[ u Ru (0
M 2=t Wele || Sy )
[ ﬁZLﬂut-lyt ] [ Ry (1)
Where

Rag(r) = Elce—rf]

Hence from Frechet’s theorem (Goodwin and Payne, 1977, p. 224)

. . R -1 pF .
[ gﬂ_}{&m(o) Ruu(l)J [ Ruy(O)J (3.16)

Ruu(1) Ru(0) R, (1)
Since
Rul®) Bu(V) |7 _ 1 [ Bl®) ~Run) (3.17)
Ruu(l) Ruu.(o) A —Ruu(l) Ruu(o) .
where
A= R2,(0) - R2,(1) (3.18)

Then, substituting Equation (3.17) into Equation (3.16) vields

0] L[ Aul0)Ruy(0) = Rua(1)Ruy ()
[52 J A [ ~Ryu (1) Ry (0) + Ry (0) Ry (1) ] (3.19)

For simplicity, we assume that Ry,(7) is zero for |r] > 2. Then, from Equations

(3.8) and (3.12), we get

Ruy(0) = b1 Ry (0) + b2 Ry (1) — KRy (1) (3.20)
Ruy(l) = bluu(l) + b2Ruu(0) (321)
Substituting (3.20) (3.21) into (3.19), yields
by by — K Ryu(1) Ruu(0)/ A .
[ 3 } - [ by + K B (1) B (1)/ 2 (0:22)

Thus, 51 and 52 do not converge in probability to the true parameters b, and b,, unless

the noise is white, i.e., Rw(l) is zero.
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3.2.2 With Data Prefiltering Using the True Noise Model

Choosing H(z) = Hy(z) as a user selected prefilter, alternative forms of the process and

controller equations are

yre = G(z,0)us, + ay (3.23)

use = —C(2)yse +dye (3.24)

where yy, = H(z) 'y, upy = H(2) 'w, dy, = H(2)"'d,.
The above Equations (3.23) and (3.24) result in

1
U= T C(2)Gol2)

(dse — C(z)ar) (3.25)

With Equation (3.10), Equation (3.25) becomes

1

Upe = 1+ I{Go(z)z‘l (df't - K (lg_() (326)

The process in its linear regression form is given by
yre = Grebo+a (3.27)

where ¢y, = H ~Y(2)¢,. The error associated with the LS estimate of §; is

M M
n — 1 T 1—-1 1
60— =[5; Z; Sredrel 57 ; 1,0l (3.28)

To check for correlation between ¢y, and a, (Condition 3.7), we must look at the

definition of ¢y, for an FIR model, where
¢>}:, =[upe vpe-1 o Uge-n] (3.29)

Equation (3.26) shows that uy, is not correlated with a,. Therefore, ¢7, is not correlated
with a;. Then, as long as Condition (3.6) is satisfied, an unbiased LS estimate should

be obtained.
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Example 3.2.2
Continuing on with example 3.2.1, with the data now prefiltered by the inverse

of the true noise model Hy(z), the process model is :

Yre = biuge + bougey +a (3.30)

upe = —Kyj, | — Ka,y (3.31)

Applying the same analysis, the LS estimate behaves as

61 by - KRan(l)Ru 4 (0)/A
] o o o

where

A =R, (00— R, (1) (3.33)

Since @, is white noise, Rua('r) = 0 for 7 > 1. Therefore, the error terms
Kf{aa(l)Ru!u!(O)/A and KRaa(l)Ru!u!(l)/A are equal to zero, which yields that 6

converges to g, i.e., the estimate is unbiased.

3.2.3 General Asymptotic Results

Asymptotic expressions developed by MacGregor and Fogal (1995) can be used to further
explain the effect of prefiltering on identification results. The prediction errors of the

estimated model are defined as, for the case of data prefiltering using H(z),
e:(6) = H™'(2)[y. — G(z,0)u,] (3.34)

where y, is given by

1

Ye = 1 ry C(Z)Go(z) (Go(Z)dg + ’Ug) (3-35)

Defining

1

1+ C(2)Go(2) (3:36)

So(2) =
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as the sensitivity function of the true closed-loop system, and substituting Equations

(3.2), (3.35) and (3.36) into Equation (3.34) gives

e(8) = ﬁg)) [(Go(2) — G(2,0))ds + (1 + C(2)G(z, 8))vy] (3.37)

Consequently, the power spectrum of the prediction errors is

|So(e7) 2
| H (e7)[?
(3.38)

Pe(w, 8) = [|Ga(e™) — G(7,0)|*Ru(w) + |1 + C ()G (e, 0) [*®o ()] 27 =iz

Using a prediction error method, the estimated model G(z,8) is determined by
minimizing the sum of squares of e,(¢). The least squares objective function is then

given by

J(B) = E[e0)]= ;/Tp(u,ﬂ)dw

dw bias term

_ 1 oy _ 2]50 |2‘I’d
T |So(e)? |Ho(e)?a
* f L ISE@0)F [H{)P “a.

sensitivity ratio term  (3.39)

where S(e, 9 is the sensitivity function of the modeled closed-loop

) = TeemeEE s
system (MacGregor and Fogal, 1995).

As defined in MacGregor and Fogal (1995). the two terms in the objective function
are the bias term and the sensitivity ratio term. The minimum of J(8) is o2 when the bias
term is equal to zero and the ratio of the frequency dependent terms in the sensitivity
ratio term is equal to unity. This requires that the prefilter H(e’) be selected identical
to the true noise model Hgy(e?v). If H(e/*) # Ho(e’™), then the ratio of the frequency
dependent terms in the sensitivity ratio term cannot be equal to unity if the process
model is correct (i.e. if G(2,8) = Go(z)). This results in an objective function that
is larger than its minimum (o2 ). Therefore a bias of (G¢(z) — G(z,0)) exists. This

theoretically confirms that an unbiased estimate of the process model can be obtained

provided that the prefilter is the exact inverse of the true noise model.
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3.3 Importance of the Accuracy of the Noise Model

According to the analysis in section 3.2, an unbiased estimate of the true process model
can be obtained from data containing feedback if the data are first prefiltered by the
inverse of the true noise model. Mismatch between the true noise model, Hy(z) and
the assumed noise model, H{(z} would be expected to produce a biased estimate. In
this section, the effect of the accuracy of noise model on the identification results is

investigated under two headings, structure mismatch and parameter mismatch.

3.3.1 Structure Mismatch

This study is carried out using simulation example 2.2.1 with LIM = 6, but with different
disturbance characteristics.
Simulation Example 3.3.1

The true noise model has an ARIMA structure

2\ — (l - 002-1) ]
H = T @ - (3:40)

with 6y = 0.3 and o = 0.7. There are three terms in this expression, which are called

the autoregressive or AR-term (1 — ¢oz!), the integrated or I-term (1 — z~!), and the
moving average or MA-term (1 — fpz7}).

Based on the data collected from this simulation experiment, the impulse response
model was estimated using the LS method with u, and y, replaced by uy, and y;, in

Equation 2.21 (MATLAB ARX command with NN =[0 50 1]) according to

use = H(z) 'y, (3.41)

yre = H(z) 'y, (3.42)

where H(z) is a user-selected prefilter. The following choices for H(z) were consid-
ered: (a) H(z) = gopmrhya=s=n (MA mismatch); (b) H(z) = 1203270 (AR mis-

match); (c) H(z) = =332 (I mismatch); (d) H(z) = =i=r (ARMA mismatch); (e)
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H(z) = =gt—=r (IMA mismatch); and (f) H(z) = =%8=" (ARI mismatch). We esti-
mated the process step response models using the same set of raw data prefiltered by
these different choices of H(z).

The study in chapter 2 showed that there is a distribution of the estimated results
arising from different choices of the random number seed used to generate a,. Therefore,
forty experiments with forty different seeds for the white noise sequence were performed
yielding 40 estimates of the step response model for each choice of prefilter. When
looking at the 40 estimation results, one might also want to look at the average model.
For ease of comparison of the effect of using different prefilters, we compare only the

average estimated models with the true process step response. The results are plotted

in Figure 3.2 and Figure 3.3.

1 L L | — S L b L i L

0 5 10 15 20 25 30 35 40 45 50
Sample Intervals

Figure 3.2: Average step response estimated with user-selected prefilters (Solid line:
true process step response; Plus: H(z) = Hp(z); Dashed: MA mismatch, Dashdot: AR
mismatch; Dotted: [ mismatch)
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Figure 3.3: Average step response estimated with user-selected prefilters (Solid line: true
process step response; Plus: H(z) = Hp(z); Dashed: ARMA mismatch; Dashdot: IMA
mismatch; Dotted: ARI mismatch)

Comparing the average estimation results for different prefilters with the true
process step response in Figure 3.2 and Figure 3.3, we can see that any combination
of structure mismatch between the true noise model and prefilter results in estimation
problems except in the case where there is only MA mismatch. The fact that MA
mismatch does not affect the estimation results is somewhat unique to this simulation
example. More detailed discussion about this particular point will be given below. In
general, the mismatch between the true noise model and the prefilter causes estimation
problems because Condition (3.7) is not satisfied. For prefiltered data, Condition (3.7)
requires that E{¢fvys,] = 0.

For the case of MA mismatch, the average of the estimated models in Figure 3.2
is virtually identical to the true process step response model. This result seems to

contradict the earlier analysis that the prefilter must be exactly equal to the true noise
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model if one wants to get an unbiased estimate of the process model. However, this can
be explained by looking at the correlation between uy, and vy,. The process unit step
response model was obtained from the LS estimated FIR model with u, and vy, replaced
by uy, and yy, in Equation (2.21) (MATLAB ARX command with NV = [0 50 1]).
Due to the nature of the operator intervention, correlation exists between {u;.} and
{v} and as a result correlation also exists between {us.+} and {v,}. In the case of
MA mismatch between H(z) and Ho(2), {vs,} has moving average dynamics only. i.e.
vys = a; — 0.3a,—;. However, because {a.} is a white noise sequence, Rul,,('r) ~ 0 for all
7 > 1. Therefore, because the unit delay is included in the FIR model, the estimates
remain unbiased. On the other hand, if models were estimated without including the
unit delay in the FIR model, the estimates would be biased. The 40 estimates, generated
from the same 40 experiments using the MATLAB ARX command with NV = [0 50 0],

were obtained after the data were prefiltered with H(z) = (1_0_72_})“_:_1). The average

of the 40 estimates in each case is plotted in Figure 3.4 and compared with the true
process unit step response. It is clear that the estimates are now biased.

In summary, looking at the estimation problems caused by various combinations
of structure mismatches between the true noise model and the prefilter, we can write
these different mismatches in descending order according to the importance of their
negative effect on the estimation results: (1) ARI mismatch, (2) I mismatch, (3) IMA
mismatch, (4) AR mismatch, (5) ARMA mismatch and (6) MA mismatch. In fact, since
both the AR and I terms appear in the denominator of the general ARIMA model in
Equation (3.40), we can think of the I term as a special case of the AR term. Therefore,

we can conclude that the AR term is the most important term in the prefilter design.

3.3.2 Parameter Mismatch

It has been identified in the previous subsection that AR-type noise model terms are
the most important in terms of the data prefilter design. In this subsection, we are
going to evaluate the sensitivity of the estimation results to parameter mismatch in the

autoregressive term between the true noise model and the assumed noise model. The
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Figure 3.4: Average estimated unit step response with FIR model not including unit
delay on data prefiltered by user-selected prefilters (Solid line: true process step response;
Dotted: H(z) = Hp(z); Plus: MA mismatch)

study is carried out using two simulation examples.
Simulation Example 3.3.2 ( Noise Model Parameter Underestimated)

The simulation example is identical to Example 3.3.1 except that the true noise
model has an AR structure

1
o) = T g g0

and the prefilter was selected to have the same model structure

1

H(z) = ———
(2) 1—-pz!

but with the value of ¢ taken to be different and smaller than 0.99. We have examined

the following choices for ¢: 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.97. As mentioned in

simulation example 3.3.1, due to the distribution of the estimated results arising from
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Figure 3.5: Example 3.3.2: Average step responses estimated with different prefilters
(H(z) = 1_—":;{) (Solid: true process step response; Star: ¢ = 0.99; X-mark: ¢ = 0.97;
Point: ¢ = 0.95; Circle: ¢ = 0.90 Plus: ¢ = 0.80; Dashdot: v = 0.70; Dashed: ¢ = 0.60;
Dotted: ¢ = 0.50).

different choices of the random number seed used to generate a;, 40 experiments with
40 different seeds for the white noise sequence were performed yielding 40 estimates of
the step response model for each prefilter. The average estimated models are compared
with the true process step response. The results are plotted in Figure 3.5. It is clear
that a larger parameter mismatch between the true noise model and prefilter produces
a greater difference between the true process and the estimated model. Moreover, the
estimation results are very sensitive to even subtle differences.

In order to quantitatively evaluate the error between true process step response
and the estimated response caused by the parameter mismatch, the sum of squared errors
in the estimated step response coefficients for each case was calculated and plotted in

Figure 3.6.
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Figure 3.6: Estimation Error as a Function of Assumed Noise Model Parameter

Simulation Example 3.3.3 ( Noise Model Parameter Overestimated)

In simulation example 3.3.2, the parameter in each prefilter had a smaller value
compared with the true value. In this example, we want to look at the case where the
prefilter has a larger parameter value than the true one. We constructed simulation
experiments identical to those in simulation example 3.3.2, except that the true noise
model is given by Hy(z) = ;—5a-—- The prefilter was selected to have the same model
structure as before, with the following values for ¢: 0.95, 0.96, 0.98, 0.985, 0.99 and
1.0. The same approach for obtaining the step response estimates as used in simulation
example 3.3.2 was used. The results are plotted in Figure 3.7. It is clear that as the
parameter mismatch grows, the estimation error increases.

From simulation examples 3.3.2 and 3.3.3, we can conclude that either an under-
estimation or over-estimation of the parameter in the autoregressive term of the assumed

noise model results in identifiability problems. Even for a subtle difference in the pa-
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Figure 3.7: Example 3.3.3: Average step responses estimated with different prefilters
(H(2) = =2==) (Solid: true step response; Dashed: ¢ = 0.96; Dotted: ¢ = 0.97;

l~=pz=1

Dashdot: @ = 0.98 Point: ¢ = 0.985; Circle: ¢ = 0.99; X-mark: ¢ = 1.0 ).

rameter, the estimation problems are obvious. Therefore, an accurate estimation of the
autoregressive terms of the noise model is required in order to obtain a good estimate

of the process model.

3.4 Concluding Remarks

In this chapter, the use of the noise model in prefilter design is studied. Results confirm
that prefiltering data which contains feedback using the correct noise model is necessary
to achieve unbiased estimates of the process dynamics. Specific conclusions from this
chapter are:

1. Unbiased process model estimation using data containing feedback requires that the

data be prefiltered by the inverse of an accurate noise model. Structure mismatch or
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parameter mismatch between the true noise model and assumed noise model causes
process model estimation problems.

2. Mismatch in the autoregressive component between the assumed noise model and the
true noise model causes the most serious identifiability problems. The process estimate

is very sensitive even to a subtle parameter mismatch in this component.




Chapter 4

Simultaneous Identification of
Process and Noise Models

4.1 Introduction

In this chapter, a generalized least squares (GLS) algorithm is developed for simultanecus
identification of both the process and noise models. The FSF model structure is used
to represent the process model and in section 4.2, an introduction to the FSF model
structure and its properties is given. In section 4.3, the least squares estimate of the
FSF model parameters and calculation of the statistical confidence bounds for the FSF-
based step response estimate are presented. Section 4.3 also briefly explains the concept
of the sum of squared true prediction errors (PRESS) and its computation. The use
of the PRESS criterion for selection of both the process model structure and the noise
model structure is a unique feature of the GLS algorithm presented in section 4.4. In
section 4.5 and 4.6, the proposed algorithm is applied to some simulation examples and

an industrial data set, respectively. Concluding remarks are given in section 4.7.

99




Chapter 4. Simultaneous Identification of Process and Noise Models 56

4.2 FSF Process Model Structure and Its Properties

4.2.1 FSF Model Structure

A single input, single output (SISO) process, assumed to be stable, linear and time-

invariant, can be represented by the following discrete-time FIR model

N-1
G(z) =Y hiz™ (4.1)

i=0
where NV is the model order with the impulse response coefficients A; = 0 for all ¢ > NV
and z~! is the backward shift operator. Practically, V is chosen according to N =~ A‘,
where T} is the process settling time and At is the chosen sampling interval.
With the assumption that N is an odd number, the inverse Discrete Fourier
Transform (DFT) of G(z) is

2rks

he = N Z G(el F)e (4.2)

This expression relates the frequency response of the process with its impulse response

coefficients. Substituting Equation (4.2) into (4.1) gives

V-l
G(z) = Z Z ) 2 (4.3)

i=0
Interchanging the summations

z~ N

G(z) = Z elCha Nl—_——z_—L (4.4)

gives the frequency sampling filter model form.

Defining

1 1-2z7N

—— . 4.5
N’]_-eJm:!k -1 ( Z))

Fi(2) =

for kK =0,+1,+2,.., iNT“ gives the frequency sampling filters (FSF) and G(e’ z%k) are
the parameters of the FSF model. Figure 4.1 shows a block diagram of the FSF model,
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Figure 4.1: Schematic diagram of FSF model

where u; is the process input and y, is the measured process output.
The process step response can be obtained directly through
m
gm = hi (4.6)
=0

for m=0,1,..., N — 1. Substituting Equation (4.2) into (4.6), we get

N=-1
N e 11— eI L)
gm = GV )g———=— (4.7)
" Z;-x lV 1- ej_‘vﬁ

k=—i=

2

which gives the step response in terms of the process frequency response G (e’ z‘zﬁ)

4.2.2 Properties of the FSF Model

@ With fast sampling, the FSF model parameters converge to their continuous-time

counterparts at w = 0, 3,—’:, ..-s a7 for a fixed T;. Assampling interval (At) decreases,
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the number of parameters associated with the model increases but only in the high

frequency region.

@ Based on the above property, there exists an odd integer n such that for all k&
where 25! < |k| < %L, the magnitudes of the FSF model parameters, G(e’ 2W"’i),
are approxlmately equal to zero. As At — 0, n becomes independent of the choice
of the sampling interval and is called the effective model order which is generally
much less than . This reduced nth order FSF model can be written in the

following form

G(z) = Z lelCka 'Vl_eJ:—" (4.8)

and the step response model obtained from the reduced order FSF model is given

by:
n -1
-ﬁc ]. 1 - ej"’"(m+l)
= - 4.
mr Y G T (4.9)

k-z

® Due to the reduction in the number of parameters that need to be estimated from N
to n and the narrow bandpass nature of the frequency sampling filters, the general
conditioning of the correlation matrix associated with the least squares estimate of
the FSF model is improved. On the other hand, the correlation matrix associated
with the least squares estimate of an FIR model is only well-conditioned when the
periodogram of the input signal is approximately equal at all frequencies. However,
input signals with only low and medium frequency content are typically used in
the process industries which means the correlation matrix for the FIR model will
almost always be ill-conditioned. This leads to inflation of the covariance matrix

and noisy step response estimates.
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4.3 Least Squares Estimate of the FSF Model

4.3.1 Least Squares Formulation

The frequency sampling filter model of the system to be identified can be written as

Ye = G(F)

k==0—1

2

" Uy + Uy (410)

where v, is the output disturbance which is assumed to be uncorrelated with the process
input u,. The process output can be expressed in an equivalent linear regression form

by defining a parameter vector as
8 =[G(0) G(F) GeF) ... GE"F™) Gle~ 7)) (4.11)

and its corresponding regressor vector as

n=l  _n-l
d’t:[fzo ftl fz-lm i £ ]T (4.12)
where
1 1—2z7V
T = - 4.13
ft .’Vl—ej-:‘;:z"lu ( )

for r =0, %1, ..., 25t Then we can rewrite Equation (4.10) as

Yo = 70 + v, (4.14)
and in matrix form for M sets of process input-output data

Y=00+V (4.15)

where Y7 = [yo Y1 .- yM—l]: VT = [Uu v o... UM—L] and

r a—1

s fo R o f 7

L S - S

.

n=1
0 -1 -5
| for—1 far a—1 - fad |
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The least squares estimate of 8 in Equation (4.15) is given by
§=(0"3)"'0"Y (4.16)

where (*) denotes the complex conjugate transpose, which minimizes the sum of squared

prediction errors

E = (Y - ®)T(Y — ©6) (4.17)

4.3.2 Confidence Bounds

Confidence bounds for the FSF model-based estimate in both the frequency and time
domains are discussed in Cluett et al. (1996). In this thesis, the identification results
are presented using the unit step response. Therefore, the derivation of the confidence
bounds for the process step response estimate is presented here. The basic idea is to
first represent the step response coefficients as a linear transformation of the estimated
FSF parameters and then map the covariance matrix from the frequency domain to the
time domain. Some assumptions are required to guaranteed that § is an unbiased and
normally distributed estimate of 4.

(A1) The process has finite settling time T, and the parameter V is chosen to be greater
than or equal to Zt.

(A2) The disturbance is a zero mean, white and normally distributed random sequence.
(A3) n = N. For the truncated FSF model with n < N, Wang and Cluett (1996b)
and Patel et al. (1996) state that the use of PRESS as a criterion in model structure
selection attempts to ensure that the bias in the model due to unmodelled dynamics
is small relative to the variance error caused by the presence of noise in the measured
process output.

Let the estimated step response be represented by
Gm = S(m)6 (4.18)

where S(m) = [so(m) s1(m) ... sy-1(m)] with si(m) defined by
11— el F(m+1)
sg(m) = N g% (4.19)
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Under assumption Al, the true process step response can be represented by
gm = S(m)0 (4.20)

We need to calculate the variance of the estimated step response coefficients to

obtain a confidence bound for the estimate. The variances are given by

E((gm — gm)*] = E[S(m)(@ - 6)(6 - 6)"S(m)’]
= S(m)(®*®)~'S(m)"0?
= §(m)? (4.21)

Then, the error between the true process step response weight g,, and the estimated

step response weight gn, is bounded by
|gm — gm| < p x §(m) (4.22)

with probability P(p), i.e. the trajectory of the true step response g, for m =
0,1,...,N — 1 lies inside the envelope generated by g, + d(m) with probability P(p).
P(1) = 0.683, P(2) = 0.954 and P(3) = 0.997 according to the specified level of the

normal distribution.

4.3.3 The PRESS Statistic

Definition 1 PRESS residuals: The PRESS residuals, e;_, are also called the true

prediction errors. They are defined as

Ta
€t = Y—&, 0.

= Y — Ye—t (4~23)

where §_, is the estimate obtained using the least squares algorithm without including
¢: and y,. This definition ensures that y, and ¢, _, are independent. Therefore e,
represents the true prediction error.

Definition 2 PRESS: The PREdiction Sum of Squares is defined as

M
PRESS =) e} _, (4.24)

t=1
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which provides a measure of the predictive capability of the estimated model. For model
structure selection, the value of n which corresponds to the smallest PRESS is adopted.

Using an orthogonal decomposition algorithm, the PRESS residuals e, —;, where
t =1,2,.., M, defined in Equation (4.23) can easily be calculated (Wang and Cluett,
1996b).

An important feature of the PRESS is that it does not always decrease as more
terms are added to the model. If the PRESS increases when a term is added to the model,
this indicates that the predictive capability of the model is better without that term.
On the other hand, the sum of squares of the conventional residuals always decreases as

more terms are added.

4.4 GLS Algorithm and the Development

Chapters 2 and 3 showed that an accurate estimate of the noise model is required for the
design of a data prefilter in order to remove the effect of any feedback on the process step
response estimate. In addition, one of the conditions needed to evaluate the confidence
bounds is that the disturbance be a zero mean, white and normally distributed sequence.
The generalized least squares algorithm (GLS) described in Goodwin and Payne (1977)
provides an approach for iteratively determining estimates of the process and noise
models in such a way that an appropriate prefilter is constructed and the “disturbance”
associated with the prefiltered system is close to “white”. In this section, the standard
GLS algorithm is reviewed and then the modified GLS algorithm proposed in this thesis
is presented.

Consider the process description given by
Yo = G{2)ue + v (4.25)
where the disturbance term v, is assumed to be represented by
v = H(z)a, (4.26)

where H(z) is the noise model and a, is a zero mean, white noise sequence.
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[ Initialize noise model ( H=1 ) |

| Prefilter using inverse noise model (™" ) |

v

| Process and noise model estimation Bl

| New process model ( G ) | { New noise model ( H ) |

Converge
?

Figure 4.2: Conceptual block diagram of GLS

The original GLS algorithm consists of the following steps (see Fig. 4.2):
(i) Set H(z) =1
(i) Form y;, = H(z)"'y, and uy, = H(2) 'u,
(iii) Obtain the least squares estimate G using y;, and uy,
(iv) Construct an estimate of the disturbance term, o, = y, — Gu,
(v) Obtain H(z) from
(vi) If G has converged, stop; otherwise, go to (ii)
Note that the structures of both process and noise models (G(z) and H(z)) must be se-
lected before applying this method. The modified GLS algorithm proposed in this thesis
will include the model structure selection procedures inside the iteration loop, so that
the parameters and orders of the process and noise models are identified simultaneously.
In the proposed GLS algorithm, the FSF model is used to represent the process

(G(z)) due to its many advantages. Based on the estimated FSF model parameters, the
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process step response model is estimated and presented as the final process identification
results. In addition, an important assumption in the proposed algorithm is that the
noise model (H(z)) can be described by an autoregressive type model (AR). Based on
Chapter 3, we know that the AR terms are the most important in terms of the design
of the prefilter. This assumption on the type of noise model ensures that the most
important noise model terms will be identified. Clark (1967) used the same assumption
on the noise model type in his application of the original GLS algorithm. The noise

model is given by

1

F—('z—)ag (427)

U =

where F(z) =1+ fiz7' +... + fn,27" and g, is assumed to be a zero mean, white noise

sequence. Therefore, we have

1+ fiz™h ot fo 2™ vt = @

U = —five—1 — ... = fayUin; +ae (4.28)

Here, the issue of the selection of a proper noise model structure becomes a decision on
the best choice for ny.

A unique feature of the proposed GLS is the use of the PRESS statistic as a
criterion for both process and noise model structure selection in steps (iii} and (v). The
modified steps (iii)-(v) are illustrated in Figure 4.3. To begin the algorithm, we need to
provide NV based on an estimate of the process settling time, the maximum FSF process
model order (n), and the maximum AR noise model order (ny). We then choose the
process model order which corresponds to the minimum PRESS as the best FSF process
model order and use the LS method to estimate the process model parameters. Based
on the residuals the noise model order which corresponds to the minimum PRESS is
chosen as the best AR noise model order and the LS method is used to estimate the

noise model parameters.
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| Initialize maximum n,n, |

| Calculate PRESS for process model l

Selectbest n

| New process model (3 |

| Generate residuals ]

| Calculate PRESS for AR noise model |

Select best 71,

[New noise model H |

Figure 4.3: Process and noise model estimation
4.5 Simulation Examples

In this section, two simulation examples are used to assess the convergence of the pro-
posed GLS algorithm. In the simulations, we will use two different noise models. In the
first simulation, the noise model can be exactly represented by an AR structure and in
the second simulation the noise model is taken to be a more complicated structure.
Simulation Example 4.5.1

In this simulation example, the true system is given by

_ 0.8e~45s
"~ 3600s2 + 120s + 1

W Ug + Ve (4.29)

The simulation duration is 2040 seconds. The sampling interval is chosen to be 3 seconds.
The input signal is specified to be a random binary signal with a magnitude of £5 units
and a minimum switching time of 120 seconds.

The noise sequence v, is generated by passing a zero mean, white noise sequence
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a; with variance of 0.0138 filtered by the true noise model Hy(z) given by

1

Ho(2) = 1-271

(4.30)

To apply the GLS method to the process input-output data generated from this
simulation experiment, we selected the maximum process FSF model order, n, to be
27 and the maximum AR noise model order, ny, to be 14. N is estimated to be 170
sampling intervals. The number of iterations performed by the algorithm was set to 6,
i.e. no convergence stopping criterion was used. The results are shown in Figures 4.4 to
4.7. Figure 4.4 shows the PRESS corresponding to different FSF process model orders
from 1 up to 27. The figure shows that the PRESS picks 23 as the best process model
order in the first iteration and 7 as the best process model order in the last iteration.

Actually, the results in the last 3 iterations are almost the same as those in the 3rd
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Figure 4.4: Example 4.5.1: Behaviour of PRESS for process model structure selection in
first iteration (top) and last iteration (bottom) (X’ denotes the number of parameters
corresponding to the minimum PRESS)
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Figure 4.5: Example 4.5.1: Behaviour of PRESS for noise model structure selection in
first iteration (top ) and last iteration(bottom) (‘x’ denotes the number of parameters
corresponding to the minimum PRESS)

iteration, i.e., the results converged in 3 iterations. Figure 4.5 shows the behaviour of
the PRESS corresponding to AR noise model orders from 1 up to 14. The figure shows
that PRESS picks 1 as the best noise model order in the first iteration and the same
order is chosen in the last iteration. The result exactly matches the order of the true
noise model used in the simulation. The noise model in the last iteration is given by:
F'(z) = 1.000 — 0.984z~" , which is very close to the true noise model. The process step
response estimate obtained in the last iteration is shown in Figure 4.6 along with its
99% confidence bounds.

To check whether the prefilter designed from the estimated noise model produces
white residuals, autocorrelation (ACF) analysis is carried out on the initial residuals

obtained after step (iv) of the first iteration (y, — Gu,) and on the final residuals
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Figure 4.6: Example 4.5.1: Process unit step response (Solid: true step response;
Dashed: estimated step response; Dotted: 99 % confidence bounds)

obtained after step (v) of the last iteration (a, = ;E[—fzt). The results are shown in
Figure 4.7. Graph (2) in the figure shows that the ACF is well inside the 20 confidence
bounds after the first lag, and thus the final residuals have the same characteristics as
white noise. For comparison, the ACF of the initial residuals is shown in graph (1).
These results in Figures 4.4 to 4.7 confirm that the proposed GLS provides an unbiased

estimate of the process step response while constructing an accurate noise model.
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M

Figure 4.7: Example 4.5.1: ACF of residuals with 20 confidence bounds: (1) first itera-
tion; (2) last iteration

Simulation Example 4.5.2
This example is the same as example 4.5.1 except that the disturbance model is

now given by

1-0.8z""1
(z) = e oA =05 (4.31)

As in example 4.5.1, N is estimated to be 170 sampling intervals. The maximum
FSF process model order, n, has been initialized to be 27 and the maximum AR noise
model order, ny, has been initialized to be 14. The number of iterations preformed by
the algorithm was set to 6. The estimation results are shown in Figures 4.8 to 4.11.
Figure 4.8 shows the PRESS corresponding to different FSF process model orders from
1 up to 27. The figure shows that the PRESS picks 21 as the best process model order

in the first iteration and 17 as the best process model order in the last iteration. In
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fact, the results converged in 3 iterations. Figure 4.9 shows the behaviour of the PRESS
corresponding to AR noise model orders from 1 up to 14. The figure shows that the
PRESS picks 9 as the best noise model order in the first iteration and the same order is
chosen at the last iteration. The noise model estimated in the last iteration is given by
F(z) = 1.000+0.6551z~' +0.05162~2+0.02422~3 +0.05022~* — 0.01062° +0.15872~5 —
0.0801z77 4+ 0.0121z78 + 0.111127% The process step response estimate obtained in the
last iteration is shown in Figure 4.10 along with the 99% confidence bounds.

As in example 4.5.1, we also check whether the prefilter designed from the es-
timated noise model produces white residuals using autocorrelation (ACF) analysis on
the initial residuals obtained after step (iv) of the first iteration (y, — G'ut) and on the

final residuals obtained after step (v) of the last iteration (a, = -}[—0‘). The results are
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Figure 4.8: Example 4.5.2: Behaviour of PRESS for process model structure selection in
first iteration (top ) and last iteration (bottom) (‘x’ denotes the number of parameters
corresponds to the minimum PRESS)
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Figure 4.9: Example 4.5.2: Behaviour of PRESS for noise model structure selection in
first iteration (top) and last iteration(bottom) (‘x’ denotes the number of parameters
corresponds to the minimum PRESS)

shown in Figure 4.11. Graph (2) in this figure shows that the ACF is well inside the 20
confidence bounds after the first lag, and thus the final residuals have the same char-
acteristics as white noise. For comparison, the ACF of the initial residuals is shown
in graph (1). The results of this simulation example again confirm that the proposed
GLS provides an unbiased estimate of the process step response while constructing an

accurate noise model.
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Figure 4.10: Example 4.5.2: Process step responses (Solid: true step response; Dashdot:
estimated step response; Dotted: 99 % confidence bounds)
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Figure 4.11: Example 2: ACF of residuals with 20 confidence bound: (1) first iteration;
(2) last iteration
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4.6 Application to an Industrial Data Set

The proposed improved GLS algorithm is further investigated by applying it to an
industrial data set obtained from an alkylation unit at Immperial Oil's Nanticoke refinery.
The data set is a subset of a larger data set and consists of three input ([u; w2 u3))
and two output ([y1 ye]) variables. For the purposes of this thesis, the system can be

represented using by a simple block diagram (See Figure 4.12).

DEISOBUTANIZER CONTROL Y1
(PSIG) RAW ALKYLATE
V1 o
FLASH DRUMB
U, ALKY
I[SOBUTANE TO OLEFIN 2 (BPH)
_——"
(VOL/VOL)
REACTOR
RAW ALKYLATE
Y2 TO
ALKYLATE TOTAL CHARGE U3 >
CONTRL —_— FLASH DRUMA
(BPD) (BPH)

Figure 4.12: Block diagram for the industrial process

The input-output data, plotted in Appendix A, was provided in four segments.
The data was recorded at one minute intervals and the settling time (V) for each input-

output subprocess was estimated to be 60. For a multivariable system, we prefer to
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treat the process as two 3-input, single output identification problems. The identifica-
tion algorithm described in this thesis has been extended to multi-input, single-output
(MISQ) systems in Patel et.al. (1996). This MISO algorithm was applied to the data
set. We set up a criterion for checking the convergence of the process model parameters.
If the sum of the squared differences between parameter estimates in two consecutive
iterations is less than 0.001, the algorithm stops. In this particular application, the
algorithm stopped after 3 iterations. The final results are shown in Figure 4.13 to 4.19.
The FSF-based process model orders are found to be [9 5 1] and [ 5 1] for y; and
Y2, respectively. The final values of the PRESS associated with each output variable are

shown in Figure 4.13. The final noise models are given by:

Fi(z) = 1.000+0.5204z"" +0.3235272 + 0.21642"2 + 0.09012~*
— 0.021427° — 0.096427° (4.32)

Fy(2) = 1.000+0.6551z~" +0.05162~2 + 0.0242z~% + 0.0502z~*
— 0.010627° +0.15872"% — 0.08012~" +0.0121z7% + 0.111127° (4.33)

where £, and F} are the noise models associated with y1 and yo, respectively.

4.6.1 Discussion of results

We compared the process step responses estimated by the aforementioned algorithm
with those estimated by the following approaches:
(I) Estimate of FSF model using the same order found by using the proposed GLS
algorithm, but without noise model estimation.
(II) Estimate of full order FSF model without any noise model estimation.
(III) Estimate of full order FSF model with noise model estimation.

These estimates are also shown in Figures (4.14) to (4.19). Note that full order
FSF model estimates are equivalent to the FIR model estimates. Based on these results,

we can make the following observations.
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Figure 4.13: PRESS for process FSF model-based MISO system structure selection

1. Comparison of estimation results between filtered and unfiltered data

From Figures 4.14, 4.16, 4.17 and 4.19, we can see differences between the step

response models obtained from filtered and unfiltered data corresponding to the pairs u;

and y;, uz and y;, u; and ¥, and u3 and y». This might indicate that there are feedback

connections within these data pairs. However, by examining Figures 4.15 and 4.18, there
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Figure 4.14: Step response models relating u, to ¥, (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

is little difference between the various step response models corresponding to the pairs
ug and ¥y, and up and y,. This could indicate that the process input u; is not dependent
on the process outputs y; and y, through any feedback connections.

2. Comparison of the noise models obtained from the FIR and FSF model
structures

By approach (III), the noise models are given by:

F[(z) = 1.0000 + 0.49582z~" + 0.2918z~2 + 0.1607z° (4.34)

Ei(z) = 1.0000+0.4150z7" +0.23532~2 + 0.08962z~3 — 0.0481z*
— 0.1805z7% —0.19662~° — 0.13592~7 — 0.1168z8 (4.35)
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Figure 4.15: Step response models relating u, to y; (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

The residuals for outputs y; and y, from the estimated models are not white noise
sequences, which is evident from the estimated noise models given by Equations (4.32)
and (4.33) for the FSF model and Equations (4.34) and (4.35) for the FIR model. The
discrepancy between the two sets of noise models can be explained by the fact that
the reduced order FSF models are approximations of the FIR models and therefore the
neglected high frequency dynamics of the process in the FSF model are included in the
noise models associated with Equation (4.32) and (4.33).
3. Comparison of the smoothness between the FSF and FIR model estimates
From Figures 4.14 to 4.19, we can see that the estimated step response models

using the F'SF model structure are much smoother than the estimated ones using the
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Figure 4.16: Step response models relating uj to y; (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

FIR model structure. This is because the reduced order FSF model neglected the high
frequency dynamics of the process. In contrast, the FIR model estimates the parameters
in the high frequency region of the process where we typically face a lower signal to noise
ratio resulting in larger variances of the estimated parameters. Large variances on the
high frequency estimates are reflected by the lack of smoothness of the step response
models. Note that the lower signal to noise ratio in the high frequency region is caused
by the infrequent moves made in the process input signals (see Appendix A).
4. Comparison between the estimation results of extremely low order FSF
model and FIR model

Figure 4.16 and 4.19 show the estimation results obtained from the FIR model
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Figure 4.17: Step response models relating u; to y» (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds: Dashdot: FSF model
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

and the FSF model with order of 1, which was chosen to be the best order by the PRESS.
The reasons for such extremely low FSF model orders needs some further investigation.
This result may be caused by the presence of only pure gain relationships between these
input-output pairs. If this is the case, the PRESS has chosen the correct model order.
However. this result may also be caused by a lack of sufficient excitation in the input
signal (u3). If this is the case, then increasing the frequency content and the magnitude
of the movement in the input signal u3 would increase the FSF model order and provide

more accurate step response estimates.
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Figure 4.18: Step response models relating u; to y» (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF madel
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

4.7 Concluding Remarks

A generalized least squares algorithm (GLS) has been developed in this chapter for
simultaneous identification of both the process and noise models. Convergence of the
algorithm was illustrated through simulation examples. The proposed procedure was
also applied to an industrial data set. The benefits of this algorithm are:

1. Simultaneous estimation of the process and noise models ensures that the biasing
effect of any feedback in the data on the process identification results is removed.

2. The proposed algorithm is able to drive the residuals to behave like white noise so
that statistical confidence bounds can be computed.
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Figure 4.19: Step response models relating u; to y» (Solid: FSF model with optimized
order and noise modelling; Large dots: 99 % confidence bounds; Dashdot: FSF model
with optimized order but without noise modelling; Dotted: full order FSF model without
noise modelling; Dashed: full order FSF with noise modelling)

3. The use of the PRESS criterion for selection of both the FSF process model order
and the AR noise model order makes the proposed algorithm an efficient approach to

identify multivariable processes.




Chapter 5

Conclusions

In this thesis, issues in closed-loop system identification are revisited, where the feedback
is introduced by operator intervention. Here, “open-loop” refers to the situation where a
predetermined input signal is applied to the process without any concern about whether
the process output moves outside the desired operating region. “Closed-loop” refers to
the situation when the process input is a combination of a predetermined sequence plus
additional moves made intermittently by an operator to bring the process output back

within some desired region. The thesis consists of three main parts:
e The role of operator intervention in process identification
e Design of the data prefilter using noise model information
e Development of an algorithm for simultaneous identification of process and noise

models

5.1 The Role of Operator Intervention in Process
Identification

When identifying a process model using data containing feedback due to operator inter-
vention under a delayed intervention strategy (where there exists one sampling interval
of delay between when the unacceptable process output deviation occurs and when the

operator adjusts the process input), the LS estimate of an FIR model is unbiased after
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prefiltering the process data using the correct noise model, regardless of whether the
unit delay is included in the model. The estimates of low order transfer function models
have similar distribution properties, the only difference being that the lower order model
estimates are smoother. This result indicates that with proper data prefiltering, there is
certainly no need to discard data which contains feedback. Because operator interven-
tion can improve the overall signal-to-noise ratio, data containing feedback may actually
result in better models, particularly with respect to estimation of the steady-state gains.

With an immediate intervention strategy (where the operator adjusts the process
input at the same sampling instant that the unacceptable process output deviation
occurs), both the LS estimate of the FIR model and the estimate of a lower order
transfer function model using an OE model remain unbiased provided the unit delay has
been included in the model and the data have been prefiltered using the correct noise
model. If the unit delay is not included, then both the LS estimate of the FIR model
and the estimate of a low order transfer function model are biased. These are in fact
the conditions under which correlation between the process input and the disturbance

cause identifiability problems for both parametric and non-parametric models.

5.2 The Design of the Prefilter

The conclusions with respect to the design of the prefilters are:

1. It is extremely important to filter the process data prior to parameter estimation
when using data that contains feedback. The design of the prefilter must be based on
an accurate estimate of the true noise model.

2. In general, structural mismatch between the true noise model and the user-selected
prefilter causes problems in process model estimation to a certain degree. In a relative
sense, AR-type mismatch affects the accuracy of the estimated model more than MA-
type mismatch. Furthermore, even when the assumed noise model structure exactly
matches the true noise model structure, small errors in the parameters themselves can

also lead to estimation problems.
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5.3 Simultaneous Identification of Process and
Noise Models

An algorithm developed using a GLS approach has been presented to simultaneously
identify process and noise models. The unique features of the algorithm are the combined
application of the FSF model for process model identification, and the PRESS statistic
for both process and noise model structure selection. The proposed algorithm has the
ability to remove the effect of any feedback on the process model estimate as well as
producing “white” residuals to allow for the development of statistical confidence bounds
associated with the process model. This algorithm has been successfully applied to a
data set from Imperial Oil’s Nanticoke refinery for estimating step response models with

statistical confidence bounds.
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Appendix A

Process Data Set from Imperial
Oil’s Nanticoke Refinery
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Figure A.1: Process input u,

89



Appendix

50 100 150 200 250

8.5 \ I__—
8

—t

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750

1 L L

6 L 1 1 b
4380 4400 4420 4440 4460 4480 4500 4520

T v L T T T T J
g -

8.5

7110 7120 7130 7140 7150 7160 7170 7180
Time (minutes)

Figure A.2: Process input u,




Appendix

1.2101
1.21

1.2099

1.2101
1.21
1.2099

1.1
1.05

438

8001
8000
7989

200

250

S S

1650

1700 1750

]

B S

| S

4500

4520

Time (minutes)

Figure A.3: Process input us

7170

7180




Appendix 92

30} ]
zsw ]

20 *

40 T 1 i T L T T L i T

20

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750

25 T 1 L ¥ 1 ) I

i

1 5 I L 1 1
4380 4400 4420 4440 4460 4480 4500 4520

14'.\/\/\-\/\/\/\—\/\/\,/\/\/\_/'\/"\/\/\’—/\"/\/\/\J

13r -

12 —d | . i I |

7110 7120 7130 7140 7150 7160 7170 7180
Time (minutes)

Figure A.4: Process output y;




Appendix

93

40F

SOW

50 T
40

L

1 /] L 1 L

1300

1350

1400

1450 1500 1550 1600 1650 1700 1750

30— . ]
25 I e

L

b I L 1 i

20
4380

4400

4480 4500 4520

22—

1

i S

1

8 |
7110

7120

7140 7150 7160 7170 7180

Time (minutes)

7130

Figure A.5: Process output y»



Appendix B
MATLAB Commands

B.1 TH = ARX (Z,NN)

Computes LS-estimates of ARX-models
A(2)ye = B(2)ue-nk + €

where A(z) = L4+ a127" + ... + apez™™; B(2) = by + boz™! + ... + bz~ "0+L,
TH: Returned as the estimated parameters of the ARX model.
Z : The output-input data Z = [y u], with ¥ and u as being column vectors.

For time series Z = y only.

NN: NN = [na nb nk]. For AR models, NN = na only.

B.2 TH = OE(Z, NN)

Computes the prediction error estimate of an output-error model

= 'B(_Z)Ut—nk te
D(z)
where B(z) = b, + boz™t + ... 4+ bppz ™ D(2) = L+ dyz7! + ... + dpgz™™.
TH: Returned as the estimated parameters of the output-error model.
Z : The output-input data Z = [y u], with y and u being column vectors.

NN: NN =[nb nd nk].
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