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The Navier-Stokes equations ciriven by a random st imng force have k e n  ueated with 

the RenormaIization Group (RNG) methods by Yakhot and Orszag and other authors to 

obtain theoretical predictions of various constants of turbulence without empirical l y 

adjusted parameters. The analysis contains many approximations, some of which may be 

justified when the ratio of the resolution cutoff wavenumber (AC) to the wavenumber 

under consideration (k) is very large. However, when this ratio approaches one {local 

interactions) many of the approximations required by RNG are no longer valid. Various 

methods attempting to extend RNG to include the local interactions have failed to 

produce results that could be validated. These attempts have k e n  outlined and 

discussed in the first part of this study. In part two of this work, further attempt 

is made to extend the RNG method to produce turbulence models valid near the cutoff. 

specifically an eddy viscosity as a function of the wavenumber ratio (UAL') with ;1 

cusp up behavior for WAC 1. General properties of the partial averasing 

operation have been presented and modified to ailow different methods of averaging 

subgrid Fourier triads. Three methods of deriving an eddy viscosity function hri\.é 

been proposed. The results do not match the most likely form of eddy viscosity 

obtained in other studies. The vaiidity of the temporal approximations made in the 

RNG are andyzed. 
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Notation 

1. General Remarks 

The surnmation convention is used throughout where repeated tensor indices are taken 
to be surnmed without the summation symbol being needed. 

Ensemble averages are denoted by Dirac brackets <..>. The partial ensemble average 
introduced in chapter 8 is denoted as <..P. 

If a(x,t), a(k,t) or a(k,o) is an instantenous value of the variable a then: 

- 
a is the filtered variable o r  a variable invariant under partial averaging. 

a' is the fluctuating portion of the variable with respect to the partial or ensemble 
averaging. 

Bold font indicates a vector (eg. x), the sarne variable in standard font indicates 
the vector magnitude (eg. x) the component of a vector is the vector magnitude with a 
subscript (eg. xa). 

Variable units are indicated in square brackets. The symbol [ l ]  indicates a 
dimensionless variable. 

2, Variables in x-t space 

x, r position vectors in configuration space &] 

t time [t] 

T,T'.T" time variables in correlation tensors and convolution integrals [t] 

( k )  advective time constant of an eddy at k [t] 

k )  dynarnic time constant of an eddy at k [t] 

u(x,t) velocity vector v t ]  

p(x.t) hydrostatic pressure [mass/(Lt')] 

f(x,t) stirring force per unit mass in configuration space [Ut2] 

Tap Reynolds stress tensor [L2/t2] 

Qu (r) two point velocity correlation EVt'] P 



Qap(r.r) two point, two time velocity correlation k2/t21 

E(sy) Kernel of a convolution filter integrai [Il 

E ensemble averaged dissipation rate L2/t3] 

3. Variables in k-t Space 

Note: Coefficients of a discrete Fourier summation have the same dimensions ris the 
corresponding variable in x-t space- Variables uansfomed using a Fourier integrd 
in three spatial dimensions get a factor of L3 muitiplying their x-t units. A Fourier 
transform frorn time domain to frequency cause a factor of t to multiply the s-t 
units. 

k, j, wavenumber vectors IL-'] 

u(k,t) spatial Fourier velocity vector [L4/t] 

p(k,t) spatial Fourier hydrostatic pressure [massL2/t2] 

f(k,t) stining force per unit mass in configuration space [Wt'] 

u,;L(k.t) component of u>(k,t) due to the triple products [L4/t] 

v,, v(k,Ac) effective (eddy) viscosity PVt] 

v,,(k) Yakhot-Orszag eddy viscosity [L2/t] 

$1) dimensionless eddy viscosity [LI 

1 )  dimensionless eddy viscosity derived over fixed wavenumber averaging I l ]  

- 
v,(l) dimensionless eddy viscosity derived over fixed plus Iow 

wavenumber averaging [ 1 ] 

v,(l) dimensionless eddy viscosity derived over fixed plus high 
wavenumber averaging [1] 

IF(!) Integral function of the trigonometric factors and stimng 
force for fixed wavenumber [ 11 

I,(O Integral hinction of the trigonometric factors and stirring 
force for fixed plus low wavenumber > k i l ]  



Q,(k,t) velocity correlation tensor in Fourier space k5/tz] 

~ , , ( k , t )  correlation tensor of velocity components invariant under partial 
averaging & W ]  

- f 

Q ,(k,t) correlation tensor of velocity component invariant and 
fluctuating under partial averaging 

Qij(k.t) correlation tensor of velocity components affected by partial 
averaging &5/t2] 

E(k,t) energy spectnim per unit mass L3/tz] 

q(k,t) energy density spectmm per unit surface of a wavenumber 
sphere [LVt'] 

V(k),,, combined advec tive velocity [LJ/t] 

W(k) correlation of the stimng forces L5/t3] 

W constant coefficient in the correlation of the stirring forces 
W maybe considered a function of E E6-E/t3] 

v, characteristic velocity of the shell A - M  to A ut] 

Kolmogorov wavenumber cutoff [L-11 

A intermediate wavenumber cutoff, also wntten as A(1) [L-11 

A, Grid wavenumber cutoff IL-'] 

A, hypothetical low Iimit on partial averaging [L-'1 

A, boundary between the production and inertial range CL-'] 

A, maximum wavenumber of the flow [L-11 

4. Variables in k-o space 

o, R frequency [t-11 
(R is also used to denote spatial domain in chapter 2) 

q frequency region typical for an eddy centered at wavenumber j [t-'1 



COADv(k) advective frequency [t-11 

%(k) dynamic frequency [t- 

aA cutoff frequency of a hypothetical low-pass filter [t-11 

oc frequencies lower than wA. unaffected by the low-pass filter [t-l] 

clv frequencies higher than oh, filtered out by the low-pass filter [t-'1 

u(k.o) spatial and temporal Fourier velocity vector [L-'] 

p(k,o) spatial and temporal Fourier velocity vector [massLVt] 

5. Constant properties of fluid and flow and proportionality coeff~cients 

Units of constant properties will be invariant under Fourier uansforms. 

v, kinematic, molecular viscosity of the fluid [LVt] 

p density of the fluid [mass/L3] 

E ensemble averaged dissipation rate bVt3] 

U background advective velocity [Ut] 

C ,  Kolmogorov constant [Il, Y0 value of 1.61 used throughout 

Cm, RNG constant of proportionaiity [ I l  

y - lower integration lirnit coefficient or 
Kolmogorov wavenumber constant of proportionality [ 11 

D temporal constant [l], 0.494 used throughout 

6. Important Formulas and Mathematical syrnbols 

6,p Kronecker delta [ 11 

6(x) Dirac Delta function of a scaiar [x-l] 

6(x) Dirac Delta function of a vector [x-31 



i imaginary number (-1)O-5 [l]  

d = 3 number of space dimensions Cl] 

31 bookkeeping parameter in the perturbation expansion o f  the 
Navier Stokes equation [ l ]  



h effective expansion parameter in the non-dimensionalized Navier-Stokes equations 
r 11 

E = 3 + y - d  
expansion parameter for the Renormalization Croup [ l]  

2w5, 
Cmg E = - (Cmg value of 1.59 used in this work) b2/t3] 

(Wd 

S ,  - area of a d-dimensional sphere of unit radius, S3 = 41~ [ I l  



1. Introduction 

1.1 The neeà to mode1 fluid turbulence 

Turbulent flows occur in many geophysical and engineering applications. The 

prediction of weather and climate, the fluid flow around fast moving bodies. and the 

prediction of the rates of mixing and combustion are al1 exarnples of problems which 

require forecasting of turbulent flows. Turbulence is interesting from an academic as 

well as an applied perspective, since it is an integral part of many problerns in 

physics and engineering. The non-linear, chaotic. multi-scale dynamics of turbulent 

flow has so far eluded analytical solution, and is of considerable academic interest 

as one of the unsolved problems of classical physics. Current trends in turbulence 

research include the study of coherent structures in turbulent flow. intermittency. 

backscatter. and the unpredictability problem. 

Early theories and models of turbulence relied on expenmental data for 

verification. but today computer simulation data is available as well. The exact 

computation of al1 scales of a turbulent flow is called a direct numerical simulation 

(DNS). Present ciay DNS computations are limited to Reynolds numbers of the ordcr of 

lW. Speziale [l]. However, in many realistic flows the Reynolds numbers are rnuch 

larger. For instance flow in the atrnospheric boundary layer c m  have a Reynolds 

number of the order of 107, Stull 121. Unfortunately, each time the Reynolds nurnber 

doubles, DNS simulations require an order of magnitude increase in computer 

capability, as discussed by Yakhot and Orszag (refered to here as YO) [3]. For this 

reason, the direct simulation of turbulence will be limited in the forseeable future 

to moderate Reynolds numbers and carried out for the purpose of acadrnlic 

investigation. Redistic flows will be computed with the aid of turbulence models. 

When turbulent flows are computed for the purpose of meteorological or engineering 

applications, the usual objective is to accurately simulate motion on scales 

comparable to the boundaries of the flow. The reason is that the largest scales of 

the turbulence cany most of the kinetic energy, govem bulk scalar transport. and 

impart mechanical stresses to structures such as buildings, airplane wings etc. Thesc 



scales of motion u e  strongly affected by the boundaries of the flowfield. The 

srnaller size fluctuations are somewhat more homogeneous and isotropic. and their 

behavior becomes independent from the flow geometry. For numerical simulation 

purposes, it is convenient to select a grid resolution in the range of the boundary 

independent scales, because the scales smaller than the grid (herein called the srnidl 

scales) may then be represented by a universal (geometry independent) model. Small 

scales need to be modeled since they affect the resolved (herein also called large) 

scales through non-linear interactions. This interaction must be accounted for. 

particularly with regard to the rate of kinetic energy uansfer. Thus, if the effects 

of the small scales can be modeled with an accuracy acceptable for the application of 

interest, this alternative is generally preferred. This leads to the Large Eddj. 

Simulation methods (LES), where the turbulent scaies are explicitly computed until a 

certain cutoff wavelength, while ail the smailer scales are represented by a subgrid 

model. This model, which is a function of the resofved velocity scales. hils output 

that is intended to simulate the effects of the unresolved scales on the equation of 

motion so that the large scale solution is acceptably close to the exact solution. 

1.2 The search for a universal subgrid model and the Renormalized Group method 

Most subgrid models contain empirical constants which are adjusted to suit the 

conditions of the particular flow field considered. The lack of universality ot' 

turbulence models reduces the user's confidence in the results since it is possiblc 

that certain features of the flow were not anticipated a priori and thus the model 

parameters were not adequately adjusted. 

The application of the Renormalization Group Analysis (herein referred to as RKG) 

to turbulence modeling has k e n  carried out by a number of researchers since the 

early 1970's and culrninated with the Y0 [3] derivations of some fundamental constants 

for high Reynolds number, isotropic turbulence. The RNG values of the Kolmo_aoro\.'s 

constant. turbulent Prandtl number, Batchelor constant, and the skewness factor \vcrc 

found to be in general agreement with experimental values and were derived without 

any empirically adjusted coefficients. The method also yielded a value of the 



Smagorinsky constant for use with LES computations, and the coefficients for the 

mode1 kinetic energy and dissipation equations used in the RNG k-E turbulence model. 

The latter model has k e n  adopted for some computational fluid dynamics (CFD) 
commercial software and promoted as supenor to the standard k-E model for many floup 

configurations [4]. These facts show that the RNG method has provided solutions to at 

least some of the problerns of turbulence theory and there is a potential for funher 

progress. However, the procedure originated in other areas of physics and its 

adaptation to Navier-Stokes turbulence by Y0 has been made under very restrictive and 

sometimes contradictory assurnptions. 

The Y 0  analysis is somewhat controversial in the research community because it 

contins some apparent mathematical inconsistencies and doubts exist about the 

convergence of the method in the Kolmogorov range. Also, the results are strictly 

valid only for the Iimit of the largest turbulent scales or  equivdently. for 

wavenumbers close to zero. In view of the success of the RNG k-E model in simulating 

many industriai flows, the problematic development of the theory has been subjected 

to some criticai review by Smith and Reynolds [SI, Lam [6], and others. However. no 

one has arrived at a successful reconciliation of the ad-hoc analysis with the 

correct answers it has produced, nor has any alternative procedure been proposed to 

avoid the contradictory analytical steps of YO. 

Nothwithstanding the prornising results to date, the performance of RNG in the 

context of turbulence has so far fallen short of its achievements in other rireris of' 

physics, such as critical phenornena and quantum electrodynarnics, where agreement \vith 

experiments extended to ten significant digits in some cases (Smith and Woodniff 

173). The unorthodox steps required in the derivation of the RNG turbulence models 

caused a division of opinion in the research community as to the suitability of the 

method for the Navier-Stokes equations. The present snidy reviews the application of 

RNG to turbulence modeling and attempts to extend the range of the resuits. The 

detailed objectives of the present work are discussed in the next section. 



1.3 Objectives of the present work 

The objectives of the present work are to clarify and validate the RNG analysis 

and to extend the range of application of its results. The scope of the study is 

lirnited to the following stages: 

1. A comprehensive review of the RNG method as applied to turbulence is presented. 

Assumptions and concepts are examined and clarified. This work surnmarizes the cumnt 

state of efforts to extend the procedure to finite wavenurnbers. The aim of these 

investigations has been to recover the cusp of the eddy viscosity at maximum resolved 

wavenumbers as predicted by other analytical theories. 

3. The analytical tools of RNG have been developed to represent the effect of 

interactions between very different magnitudes of wavenumbers (non-local 

interactions). The current study examines whether these tools may be used to 

represent local interactions, between wavenumbers of similar magnitudes. 

3. This study proposes to extend and modiQ the RNG method in order to recover the 

cusp of the eddy viscosity at maximum resolved wavenumbers. The results are compared 

to other theories. 

1.4 Outline of the thesis 

This thesis is divided into two parts 

di fferentiating between the published theory and 

The method of presentation is to first discuss the 

and then to give the mathematical details. 

with the objective of cl~:irI>~ 

the results of this investigation. 

general concepts of a given topic 

Part 1 sumrnarizes the necessary background material. The general principles of 

turbulence modeling are discussed in chapter 2. The concepts of the RNG application 

to turbulence are described in chapter 3. Chapter 4 presents the RNG method as 

adapted by Y0 [3]. Chapter 5 outlines the attempts of Zhou, Vahala, and Hossain [8] 



(herein referred to as ZVH) and Zhou and Vahala 191, 1101 (herein referred to as ZV) 

to apply a discrete version of RNG to finite wavenumbers and to recover the cusp in 

the eddy viscosity curve. Chapter 6 presents the work of Carati [ I l ]  who s h o w  that 

the continuous lirnit of RNG applied to finite wavenurnbers leads to results which no 

longer represent the physics of the Navier-Stokes equations. 

Part 2 contains the contributions of this study. A detailed introduction is g iwn 

in chapter 7. Chapter 8 presents some general properties of the partial averriging 

operator and the expansion series used in the RNG method. Derivations of three 

different versions of the RNG equations for eddy viscosity at finite wavenumbers are 

presented in chapter 9. The eddy viscosity equations are solved numericaliy in 

chapter 10. Some theoretical arguments for validation of the proposed models and 

cornparison with published Literature are also presented in this chapter. Chapter 1 1 

contains general conclusions and recommendations for future work. 



2. Fundamentah of turbulent flow computations 

The fundamental mathematical formulation of the turbulent flow problem is 

discussed in this chapter, both in physical space (XJ) and in Fourier space (k.t) or 

( k , ~ ) .  A bnef description is included of the large range of scales of motion or  eddy 

sizes in turbulent flow and of the Kofmogorov energy cascade from the Iarger to the 

smaller scaies. Al1 modeling approaches split the flow scales into the resolvrd 

motion (which is computed) and the small scale motion (which is averagrd and 

modeled). The different methods of averaging the turbulent scales and modeling their 

effect on the resolved scales are introduced in this chapter. 

2.1 Flow equations 

The scope of this study is restricted to Newtonian, constant property fluids. 

Accordingly, the flow is described by the incompressible version of the continuity 

equation and the Navier-Stokes equations: 

Herc ua(x,t) is a component of the velocity vector u(x,t), and p(x.t) is the 

pressure. The variables p and v, are the fluid density and the kinematic viscosity. 

respectively, both assumed constant in space and time. Also. fa(x.t) is the (Y. 

component of a body force per unit mass, f(x,t). A well posed problem must incIudc 

the appropriate boundary and initial conditions. 

Analytical solutions to the above equations have been obtained for cases of 

iaminar flow. However, flows with high Reynolds numbers are transitional or fully 

turbulent and impossible to solve analyticaliy. An approximate solution may be sought 



by modeling some or al1 of the turbulent scales of the flow. For the purpose of 

modeling using the RNG method, an idealized problem is considered where there are n o  

boundaries or initial conditions and the flow is due to the body force source term 

f(x,t). In the RNG procedure, f(x,t) is specified as a random 'stirring' force with a 

Gaussian probability distribution. As will be discussed in chapter 4. additional 

characteristics of this force are selected to obtain an approximate solution to 

equations 2.1 - 1 and 2.1-2 that is statistically 'similar' to turbulence. Some 

fundamentals of obtaining turbulence statistics are discussed below. 

2.2 Description of turbulence through an ensemble average 

Consider a turbulent flow expriment repeated a Iarge number of times with a set 

of initial and boundary conditions that were as close as possible to the sarne for 

each realization of the flow. For each realization, velocity and pressure wers 

recorded. The mean, variance, and higher order moments of each variable are computed 

from this population. The quantities <u(x,t)>, <p(x,t)>. <u"(x,t)>. etc. are called 

the ensernble averages. The turbulent variables, u'(x,t) and p'(x,t) Vary each time 

the experiment is repeated, presumably due to the nonlinear amplifications of srnail 

differences in the initial and boundary conditions. These quantities are called 

quasi-random, or chaotic components of the flow because it is speculated that if it 

were possible to maintain the initial and boundary conditions exactly the same. the 

behavior of the turbulent variables would also be exactly the same. so the): arc 

deterrninistic in principle but not in practice. This idea is equivalent to the beliet' 

that the deterrninistic Navier-Stokes equations are sufficient to recover r e d  

turbulence, Frisch [ 161. 

Therefore, it is not the spatial or temporal averaging but the 'ensemble' 

averaging which provides the distinction between the deterrninistic. mean variables. 

and the random, turbulent flow components, a point often obscured in introductoq 

textbooks. However. in cases where the mean variables do not Vary with sprice. the 

spatial average is equivalent to the ensemble, and when the mean variables do not 



Vary wich tirne. the temporal average is equivalent to the ensemble. Osborne Reynolds 

pioneered the following decomposition: 

where <..> indicates the ensemble average. An equivalent decomposition is applied to 

the pressure. 

The following properties resuit: 

Equation 2.2-3 establishes that there is no correlation between the mean and the 

fluctuating flow variables. Equations 2.2-3 and 2.2-4 are strictly m e  only for 

ensemble average but not for the filtering operations which will be considered in 

section 2.3, Leonard [18]. Substituting the mean and the turbulent components into 

the Navier-Stokes equation and averaging term by tenn yields the goveming equrition 

for Cuor>: 

where the mean of the body force has been taken as zero, <Fa(x,t)> = O. Equation 2.2-  

5 includes the variables <u>, <p>, and <u'ut> and illustrates the famous closurs 

problem of turbulence, since the quantity <,aut > contains six unknown variables. 
P 

The ciosure problem occurs if one wishes to solve for only the average quantities. 

since for three dimensional flow, there are four equations and ten unknowns in this 

case. 



The equation of motion for the turbulent velocity is obtained by subtracting 

equation 2.2-5 from the instantaneous Navier-Stokes equation yielding: 

1 ap' a W a  - - + v,- 
P axa 

+ f,(x*t) 
a x ~ 2  

It should be noted that while the mean and the turbulent scales are uncorrelated 

(equation 2.2-3) they are coupled in individual flow realizations [12]. so that the 

behavior of the turbulent variable affects the solution for the mean variable and 

vice versa. 

The ensemble average of equation 2.2-6 is zero. If equation 2.2-6 is multiplied by 

uf$x,t) pnor to averaging, an equation for the single-point. single-time second 

moment is obtained. This equation includes the triple velocity product <U'~U'~U'S 
and begins the so-cailed moment hierarchy - another fonn of the closure problem. If 

instead, equation 2.2-6 is multiplied by u'$xfTtf) prior to averaging. the t\ipo- 

point, two-moment hierarchy is generated. The second approach is n e c e s s q  to study 

spatial and temporal correlations in turbulence. The single point moments are applird 

in engineering models while the two point correlations are useful in more fundamental 

studies of the physics of turbulence, [13]. 

For 'steady state', o r  'stationary' turbulence, the probability distribution of 

the turbulent variables is constant with time, and the amplitudes of uf(s.t) and 

p'(x.t) are constrained within a statistical envelope. The probability distribution 

of uf(x,t) at a point is close to Gaussian, but odd moments do exist: the third 

moment. <u'ufu'>, is responsible for turbulent energy transfer. This point is crucial 

to understanding the limitations of the various quasi - Gaussian models of turbulcncc 

because a tmly Gaussian variable cannot exchange energy between the mean and the 

turbulent flow and between the different scales of the turbulent flow. The original 



Quasi-Normal (QN) [14] closure, for exarnple, assumed Gaussian behavior of the even 

velocity moments but relaxed the restriction of zero odd moments. This limitation 

affects the RNG model which is related to the QN and uses a Gaussian stirring force 

as an energy source but must allow the velocity to depart from a Gaussian behavior. 

2.3 Estimation of turbulent flows with models using Reynolds decomposition 

For manp engineering requirements, only the average values of the flow rate. shear 

stress, pressure gradients, and energy loss are required. These variables rnay be 

obtained from the solution of the Reynolds-averaged Navier-Stokes equations ( 2 . 2 -5 )  

and the continuity equation provided that the effects of the single-point. single 

time, second moment <u' u' > are properly represented. Thus, the objective is to a B 
~<u',u '~> 

model Cu' u' > as a function of the mean flow variables. The tenn " P is often 
axp 

moved to the right hand side of equation (2.2-S), so  that the term -p<,',,fp> is 

regarded as an additional stress tenn called the turbulent stress or the Reynolds 

stress tensor. 

Two broad categories of turbulence modeling are the eddy viscosity models and the 

Reynolds stress models. Both methods will be discussed below but since the eddy 

viscosity concept forms the groundwork for the current work, the discussion of thess 

models will be more detailed. 

2.3.1 Eddy viscosity models 

The oldest proposai for modeling the turbulent stresses was put fonvard by 

Boussinesq in 1877 [15]. In analogy to viscous stresses in laminar flows. the 

turbulent stress is assumed proportional to the gradient of the mean variables: 



The proportionality coefficient, v,, is the turbulent or eddy viscosity. The 

quantity E represents the kinetic energy of the turbulent fluctuations: <E> = 
1 
7 - 

(<u,''> + Cu- + <u,'">), ofien represented by the symbol k in the literature. 

Including the kinetic energy term in the eddy viscosity expression ensures the 

correct value of 2E for the sum of the nomai  stresses when a = B. The eddy viscosity 

is a property of the turbulent flow and not of the fluid and therefore may v q  

significantly from one point in the flow to another, unlike the kinematic viscosity 

v, which is constant for isothermal flows. 

The physical and mathematicai interpretation of the eddy viscosity concept will br 

developed and refined in this and subsequent chapters as one of the key topics of the 

present work. A brief outline of the histoncal development of the eddy viscosity is 

given by Frisch, [16]. The idea originated in the nineteenth century with the work of 

Saint-Venant ( 185 1 ) and his former student Boussinesq ( 1870). The analogy between the 

turbulent transport and molecular transport was conceived by Prandtl (1925) brised on 

the role of the rnolecular viscosity as determined by the kinetic theory of gases. 

The roIe of viscosity in the dissipation of the kinetic energy is crucial for thc 

derivation of the RNG mode1 since the eddy viscosity is a function of the average 

dissipation rate. if the momentum equation is converted into an equation for the 

kinetic energy, it is seen that the rnolecular viscosity appears in the diffusion 

a?(uz) t e m ,  v0- , and in the dissipation term, -2v , (g )z ,  the diffusion term being 
a X? 

generally much smaller and usudly neglected relative to the dissipation. Stull [21. 

Thus, the role of the molecular viscosity is to diffuse momentum and to dissipate the 

kinetic energy of the fluid into heat- The turbulent or eddy viscosity h a  analogous 

functions with respect to the average flow, transporting monientum with mean tlow 

gradients (equation 2.3-1) and dissipating the kinetic energy of the mean flow into 

the turbuient fluctuations. This anaiogy is expressed in equation 2.3-2: 



where &(x,t) is the ensemble average dissipation rate. This pararneter should really 

be written as <E>(x,t) but the established notation will be followed. 

Prandtl proposed that the turbulent velocity fluctuations play the role of 

molecules. while a typical distance that a fluid panicle travels (the mixing Irngth) 

plays the role of the mean free path, so that v, = ZCL. The methods of determining 

the appropriate values of the velocity T( and the Mxing length, k, are generall). 

classified as zero equation, one equation, or two equation models. 

The most widely used zero equation model is the Prandtl rnixing length model. which 

has been successful in the prediction of two-dimensional, thin sheâr layers. One 

equation models usually involve the solution of a prognostic equation for the 

turbulent kinetic energg (k in the engineering literature) so that V, = k"2*l;,,. and 

4, is empirically specified. The widely used k-& model utilizes partial differential 

equations for the turbulent kinetic energy k and for the dissipation, E, and the rddy 

'' where cp is an empirical pararneter. A total of viscosity is obtained as v, = cp E, 

five empirical parameters must be assigned values for the k-E model. [15]. The use of 

empirical parameters is typical of most turbulence models and implies that these 

models are not universal, but instead are tuned to the geometry of the problem. In  

contrast, the present work andyzes the RNG approach which allows the analyticrtl 

determination of heretofore adjustable model parameters for the limited case ou 

homogeneous, isotropie turbulence. 

2.3.2 Reynolds stress models 

The Reynolds stress models predict components of <u 'u '> using transport a P  
equations for each stress component. The most advanced of these are the differential 



Reynolds stress models (DSM) requiring the solution of six partial different id 

equations for the six components of the Reynolds stress tensor plus a length scale 

equation - usually determined via the dissipation rate, E. The results are superior 

tu the two equation eddy viscosity d e l s  for flows with abrupt changes of strain 

rate, separation, rotation, and strong curvature, [17] but at a much greater 

computational cost. The algebraic stress models (ASMs) solve aigebraic equations for 

the stresses and have k e n  used to yield good predictions of flows with secondas 

motions and for flows with rotation and curvature. 



2.4 Description of turbulence through filtering 

The ensemble average concept is limited to the theoretical study of turbulence. 

since it is not usually practical to repeat an expriment a very large number of 

times. Instead, it is preferable to use a temporal average with a sufficiently long 

sampling time T: 

The operation 2.4-1 assumes that ariy turbulent time scale r << T. Any 

deterministic part of the variable which varies rapidly with time, say a periodic 

pressure fluctuation due to the propeller in the wind tunnel, will be filtered out 

dong with the random, turbulent fluctuations. When the sampling time is limited. the 

integral 2.4-1 is not a proper statistical average but a iow - pass filter. passin2 

through fluctuations with frequencies lower than . In turbulence. the spatially 

large scaies tend to have low frequencies relatively to the small and fast scales. 

Engineering applications deal with the large scales of the flow. whether 

deterrninistic or turbulent cornponents, and therefore, a filtering operation is usrd 

instead of the ensemble average. An equivalent discussion applies to spatial 

f i l  tering. 

For these applications where al1 of the turbulent fluctuations are to be replaceci 

with averaged quantities, the filtering takes place in the time domain. treatin~ al1 

flow motions with a time scale smaller than a given cutoff as turbulence. while the 

resolved motions are the 'average' flow. The relations 2.2-3 and 2.2-4 are assumed to 

hold at least approxirnately, implying a large separation of time scales or a spectral 

gap berween the mean motion and the turbulent motion. Such spectral gaps often occur 

in atmospheric flows, 121, where the 'average' quantities still Vary with time. For 

industrial flows such as pipe flows, the mean may often be rime invariant. 



Aiternatively, the filtering operation rnay be perfonned in the spatial domain. or. 

equivalently, in the spatial wavenumber domain, in preparation for the large eddy 

simulation method (LES). The scales with a wavelength smaller than the grid mesh Ax 

are elirninated by applying a low pass filter to the flow variables, f(x,t): 

where R is the spatial domain of 

The function E(X-~) defines 

a 

the flow. 

the filter properties, and may be taken as independent 

of the position vector x for the case of uniform grids. The forma1 application of 

such filters to the Navier-Stokes equations for the purpose of LES has been 

introduced by Leonard [18]. The most cornmon forms of G(X-~)  include a box hat filter 

in physical space, a Gaussian filter in physical space, or a box hat filter in 

Fourier space. The last of these filters, also known as the sharp Fourier cutoff. 

will be used implicitly in the current work. The resulting filtered equation of 

motion is: 

where the subgrid scale tensor is given by: 

- 
Introducing the decomposition u = u + u'; and substituting into the expression for 

T,P, the resulting expression is: 



where the 

called the 

in terms 

unknown. 

- - - - 
term U ~ U  - U a U p  is known as the Leonard tensor, while ; u ' and u u are P a P " P 
'cross' terms. The Leonard tensor is an explicit term that may be computed 

of the filtered variables, but the remaining terms in equation 3.4-5 are 

The reason for the appearance of these extra terms is that the filtered 

quantity ; undergoes a variation within the filter length scaie. Ax, [18]. If the - 
maximum wavelength of u' a filter wavelength « minimum wavelength of u. relations 

2.2-3 and 2.2-4 are approximately applicable, and the above equation reduces to T,P = 

- U ' ~ U ' ~  as for ensemble averaging. 

The Leonard 'cross' terms are relevant to the curent investigation. The RNG 

method utilizes an approximation cailed the 'partial ensemble averaging' of the smrill 

scales, in which the scales smaller than an arbiuary cutoff are averaged. while the 

scales larger than the cutoff are assumed to be constant. This procedure is 

equivalent to a box hat filter with the Leonard terms neglected. As seen from the 

above discussion, this approximation is acceptable if the ratio of the wavelengths of 

the averaged and the 'constant' terms is small so that there is a large sepration 

between the large, resolved scales and the small, averaged scaies. Physically. small 

turbulence scales will go through many cycles relatively to a much larger eddy. thus 

approximating the ensemble average. However, a problem arises from the differènt 

treatment of terms whose scaies of motion straddle the filter boundary. thereby 

leading to errors in the srnailest resolved scales. Aithough it is difficult to 

estimate the magnitude of such errors, further discussion of this problem will be 

presented at various stages of this study. 

2.5 Governing equations in Fourier space 

The discussion of the physics of the different scaies of the turbulent flow and of 

the Large Eddy Simulation methods is aided by introducing the Fourier transform of 

the velocity, pressure, aiid stirring force fields. The physical flow domain is 

assumed to be of infinite size so chat the Fourier transform of the velocity üa'x . t )  

is given by: 



Expressions sirnilar to 2.5-1 hold for the force and pressure. The wavenumber 

21c - vector k = (k,, k2, k,), the magnitude of the wavenumber, 1 k 1 = k, ranges from L - 
AL to a maximum wavenumber A, which corresponds to the minimum scale of the flow. 

Here L is the side length of a 'periodicity box', [16], so that u(x.t) are L- 

periodic. The case of unbounded domain will be recovered Iater by letting L j w. 

It is noted that the Fourier transfonn integral 2.5-1 diverges since u(x.t) docs 

not vanish at infinity, 1201. Therefore, u(k,t) exists only as a generalized function 

or a distribution. [14]. However, the Fourier transform of the correlation 

<ua(x.t)u (x+r,t+~> = QaB(r..r) is weii defined, since Q goes to zero as r + - or as P 
T + - so the energy and force spectra are bounded functions- These considerations 

yield the requirement that the L + . x ~  lirnit is taken after the averaging operation. 

i 131. 

In the present work, the Fourier modes of the velocity field are referred to 

interchangeably as the flow scales or the turbulent 'eddies7- The implied meaning is 

that large scales or eddies contain a range of Fourier coefficients at smrill 

wavenumbers, while small scales and eddies contain a range of large wavenurnbers. A 

more precise definition of an idealized eddy in terms of its wavenumber content is 

given by Tennekes and Lumely [2 11. 

The Fourier uansformed continuity equation is: 

Equation 2.5-2 shows that the Fourier velocity coefficient is orthogonal to its 

wavenumber vector for incompressible flows. This property leads to important 

simplifications during the Fourier analysis of the flow equations and is uscd 

extensiveIy in this work. 



The details of Fourier transforrning the Navier Stokes equations are given in 

references [13] and 1141. The final result is: 

The continuity equation 2.5-2 is used to eliminate pressure from the momentum 
equation 2.5-3. This goal is accomplished in two steps presented in detail by McCornb 

[13]. First, the Iinear velocity terms are eliminated from 2.5-3 to obtain a Poissons 

equation for the pressure. Then 2.5-3 is multiplied by ka, summed ovcr u. and 

rearranged with the use of equation 2.5-2 to obtain: 

Equation 2.5-4 is a Poisson expression for the pressure in t e m s  of the nonlinear 

velocity term. The second step is to multiply equation 2.5-4 by - -ka and substitutr 
k ' 

the expression into 2.5-3. Collecting like ternis and renaming dummy index variables 

as appropriate yields the solenoidal form of the momentum equations: 

w here 

and 



The RNG analysis makes extensive use of ensemble averaging and the properties of 

tensor quantities. If the flow field is homogeneous, the Fourier uansform of the 

covariant velocity tensor is: 

where Qa (k) = <ua(k)u (-k)> and the homogeneity property was used in substituting O P P 
for x. If the flow field is further constrained to be isotropie (as well as 

incompressible) the spectral tensor Q k) may be written as: 
'LP' 

where the scalar Q(k) is only a function of the wavenumber magnitude. k. 

The momentum equation 2.5-5 shows that every Fourier mode is coupled to e v q -  

other mode in the Navier-Stokes equations and thus presents a difficult nonlinear 

problem. The process of energy transfer between different scales in the flow field is 

cailed the energy cascade. The main concepts of the energy cascade will be revic\vsd 

next. 

2.6 Kolmogorov's energy cascade in turbulent flow 

In turbulent flows there is a wide, continuous range of scales of motions. ranging 

from the size of the flow boundaries down to the dissipation Iength scale. also known 



as Kolmogorov's length scale, 4-1. The range of scales increases with Reynolds 

number since the dissipation scaie decreases. Due to the rolling and swirling 

appearance of the flow, the turbulence is often described as consisting of 'eddies'. 

roughly circula motions with many different diameters corresponding to different 

fIow scaies. 

2.6.1 The energy cascade 

The eddies of different sizes interact in a non-linear fashion, and on average the 

large eddies are uansformed into srnaller ones. This process is called the energy 

cascade (first proposed by Richardson [ 2 ] ) .  Vortex stretching, tocai interrict ion 

hypothesis, and return to isotropy are some of the key concepts generally used to 

explain the turbulent energy cascade. 

Vortex suetching is a rnechanism where eddies are distorted and stretched by the 

strain field of other eddies and their vonicity intensifies. Peter Bradshaw has 

proposed a vortex tree mode1 to illustrate this concept [21]. A good discussion is 

presented by Tennekes and Lumley 1211. 

It is widely believed that the interactions most effective at tramferring energ). 

to smaller flow scdes occur between eddies of similar sizes. Thus eddies are most 

effectively stretched by the strain field of slightly larger eddies leading to energy 

transfer to higher wavenumbers on average, However, for eddies very different in 

size, the smaller eddies are advected by the Iarger ones without much stretchins 

action taking place. This advection leads to a change of phase of the small eddies 

but does not affect their vorticity or energy, while the effect on the larse eddiss 

is a small, viscous-tike drain of energy. Primarily, it is the latter effect which is 

modeled by the eddy viscosity. For the present study of RNG eddy viscosity. the 

important questions are: i) just how local is the local enerw transfer. or ho\\. 

rapidly does the rate of energy transfer change as the ratio of interacting 

wavenumbers increases; and ii) what is the asymptotic behavior of the energy transkr 

as the wavenumber ratio becomes very large or very small? 



The vortex streching mechankm tends not to transmit directional preferences so 

that smaller scales are more isotropic than large ones. This effect is called 'return 

to isotropy' . 

For high Reynolds numbers, the specuum of turbulent energy consists of three 

distinct regions as indicated in figure 2.1, the production range. the ineniül 

region, and the dissipation range. The peak of the energy spectrum is located in the 

production region. 

The production range. The largest eddies obtain energy from large scale pressure 

gradients or from the shear stress created by boundary motion relative to the fluid. 

The range of eddy sizes created in this way is cdled the production range. The 

eddies will tend to be aiigned with the boundaries and so will have a directionai 

preference. These scaies of the turbulent flow in the production range are non- 

homogeneous, non-isotropie, and their energy content is flow dependent and thus non- 

universal. In the RNG method, the effects of the production range are replaced by a 

stirring force. 

The inertial range. If the Reynolds number is sufficiently large, experiments have 

confirmed that over a range of eddy diameten known as the inertial range. ihe 

cascade approximately conserves kinetic energy as the molecular-viscous dissipation 

and the effects of the production range c m  be neglected. In the inertial range. the 

directional preferences of the large eddies have disappeared due to the many stages 

of interactions, and the turbulent motions which belong to these scales ;ire 

homogeneous and isotropic. The rate of energy transfer from the wavenumbers loufer 

than k to wavenumbers Iarger than k, iI(k), is constant with wavenumber. so that il! k )  

= E. According to Kolmogorov's hypothesis, the energy spectrum is dependent only on 

the energy transfer rate and on the wavenumber in this range. From dimensional 

arguments, the form of the energy spectrum is: 



where Ck is the Kolmogorov constant, usually taken to be between 1.4 and 1.5. McComb 

[13]. Equation 2.6.1 is subject to minor corrections due to intermittency effects 

beyond the scope of the present study, Frisch [16]. 

An eddy of wavenumber magnitude k, has associated with it a characteristic IocriI 

time, 7, dependent only on k and E(k) and proportional to: 

where D is the coefficient of the characteristic frequency of the eddy. According ro 

a theory due to Kraichnan, the foIlowing relation holds: 

The t, may be interpreted as a typical turnover time of an eddy at wavenumber k. 

It should be noted however that while 2.6.1 has an unambiguous rneaning. the concept 

of the characteristic time is less well defined in the context of turbulence. and has 

been the subject of different interpretations and assumptions in the litcriiture. 

Leslie [22]. The meaning of t, and its probable value will turn out to be important 

for the eddy viscosity investigation in the current work. 

The upper boundary of the inenial range rnay be taken as the wavenumber A,,. g i \m 

by: 

where y is usually assigned a value of about 0.1, Yakhot and Orzsag [3]. 

The inertial range of wavenumbers gets wider with increasing Reynolds number. and 

for sufficiently large Reynolds numbers, this range contains most of the turbulent 

energy. For the purpose of the current study, it is significant that the behavior of' 

the inertial range of scales is universal and independent of the details of thc 



production region. This justifies replacing the effects of boundaries and initial 

conditions by a stimng force and still recovering inertial range statistics. 

The dissipation range. For wavenumbers larger than , viscous dissipation 

dominates over the nonlinear interactions and the energy spectrum decreases at an 

approximately exponential rate. This third stage of the energy cascade extends from 

&, to A, (A, is the highest wavenumber present in the flow) and is called the 

dissipation range. For high Reynolds nurnber flows where the inertial range is wide. 

the amount of energy contained in the dissipation range is relatively negligible. 





2.7 Large Eddy flow simulations 

The objective of large eddy simulations is to correctly predict the behavior of 

the large scales of the flow, while scales smaller than the grid mesh. Ax. rire 

filtered out. The formalism of the LES approach has been discussed in section 2.4. 

dealing with the filtering description of turbulence. The effects of the filtered 

scaies on the resolved scaies are represented by the subgrid mode1 which approximatrs 

T,P. equation 2.44. This section introduces the methods of formulating the subprid 

models in wavenumber space. 

To set the stage for discussion of the large eddy simulations. the maximum 
resolved wavenumber magnitude, 4 = WAX, is selected. This is also called the curoft' 

wavenumber. The majority of LES models assume that the cutoff boundary between the 

resolved and filtered scales occurs in the inertial range of turbulent flow scales 

and this is also m e  for the RNG method. 

The flow field u(x,t) is set equal to u(x,t)< + u(x,t)> where: 

and 

for a finite-size flow domain with periodic boundaries. The flow variable. u(s.t)< 

constitutes the 'large eddies', while the u(x,t)> are the 'subgrid scales' and their 
effects must be modeled due to the non-linear coupling between these two variriblcc;. 

The decornposition above is cailed spectral splitting and may be viewed as a tilterins 

operation using a sharp Fourier cutoff as discussed in section 2.4, so that u(s.t)< 

and u(x.t)> correspond to and u'. 



The majority of the subgnd models are simple eddy viscosity closures but in 

recent years rnany new models have been proposed, Lesieur [19]. The most popular eddy 

viscosity model was proposed by Smagorinsky in 1963: 

where; 

The Srnagonnsky constant Cs is adjusted so that the ensemble averaged. subgrid 

kinetic energy dissipation is identical to E. An approximate value for Cs is: 

Given C ,  = 1.4 (Sm11 [2] discusses measurements of C, for turbulence in the 

atmosphere made by Champagne et al 1977) relation 2.7-6 yields Cs = 0.18. Howrvei-. 

the value Cs = 0.1 has been found to work better in practice. The Smagorinsky 

constant value of 0.19 has been obtained by Y0 [3] using the RNG method. 

2.7.1 The concept and applications of spectrai eddy viscosity 

It is shown in equation 2-3.2 that a major role of the eddy viscosity. V, is to 

provide the correct rate of energy drain from the resolved scales. In Fourier space. 

the spectral eddy viscosity, v(k,A,), replaces the nonlinear energy drain liom a 

given. resolved mode (k I A,), by al1 the subgrid modes k 2 A,. Kraichnan [ 2 3 ] .  This 

subgrid model is the research subject of the present work. This section introduces 

the concept of the spectral eddy viscosity and surnrnarizes its successful forms and 

applications. 



The spectral kinetic energy equation is: 

where SE(k,p,q) is the non-linear, spectral energy uansfer integrand. 4k is a 

notation for the constraint that k, p, and q form the sides of a triangle. and the 

magnitudes, p and q, range from O to &, with l\o representing the highest wavenumber 

present in the fiow. Also, P(k) represents the extemal power input to the k mode. 

For the purpose of large eddy simulations, the modes A, 5 k 5 & are the subgrid 

modes while O 5 k I Ac are the resolved modes. Using this spectral splitting 

approach, the limits of integration in equation 2.7-7 are changed to include only the 

resolved wavenumbers and the spectral eddy viscosity, v(k,Ac) is introduced to 

compensate the energy transfer: 

The eddy viscosity v(k,A,) is obtained by isolating that portion of the integral 

in the right hand side of 2.7-7 where one or both of p and q is greater than k, and 

dividing this term by -2k2E(k,t). However. the integrand SE(kTp,q) is made up of the 

triple moments of the velocity and hence is unknown. Various theories approximate the 

forni of SE(k,p,q) and of v(k,AJ. Assurning that A, is in the inertial range. the Eddy 

Damped Quasi-Normal Markovian (E.D.Q.N.M.) approximation due to Orszag [21] gives: 



- k 
where E(AJ is the kinetic energy spectrum at the cutoff A,, and v -  is a 

Ac 

nondimensional eddy viscosity. It was noted in section 2.3 that the turbulent 

viscosity is proportional to a characteristic length scale and a velocity. (v, = 
) Ln the spectral domain, the lengtb scale A - , and the characteristic 

- k velocity is [A&(A,)]l". The constants and the form of v( ) Vary depending on  the a 
theory. A consensus in the research 

1 for Wh, c = 0.3, but increases 

UA, = 1, Kraichnan [23]. However, 

k community is that v( ) is constant and equal to K 
for higher values of k and exhibits a cusp nsar 

there is no consensus as to where the cusp starts. 

how steep it is, and what its peak value is. The cusp is taken as evidence of the 

local character of the energy transfer. For isotropie turbulence, the existence of 

the cusp (but not its exact fonn) has k e n  confirmed by Lesieur & Rogallo and others 

(Lesieur & Metais 1131). Representative plots of two different theoretical forms of 

k ?(K) are shown in figure 2.2 where it is seen that the theory due to McComb [13] 
C 

does not yield a cusp. 





For many engineering problems, the geomeûy considered is such that transforming 

to spectral space is difficult. This will be the case when the physical extent of the 

domain is insufficiently large relatively to AC-' to assume isotropy of small scales 

and the boundaries cannot be assumed to be periodic. In cases where the solution 

domain is the physical space (x,t), the spectral eddy viscosity, v(k.A,). is not 

usehl since individual values of k are not available. The remedy is to remove the 

cusp by averaging over k and then applying the criteria that the subgrid-scrile 

kinetic energy dissipation be equal to E, Leslie & Quarini [XI. The overall result 

is: 

This result is close to the Smagorinsky's mode1 and to the Y0 RNG eddy viscosit~ 

model which will be derived in chapter 4. 

2.7.2 Additional LES subgrid models 

Many additional Iarge eddy simulation models have been developed. both in 

wavenumber space, and in physical space. These models will not be discussed in detriil 

here since they do not directly impact the RNG eddy viscosity on which ttiis 

investigation is focused. The majority of the LES rnodels are of the eddy viscosity 

type. However an important limitation of the eddy viscosity approach has been exposed 

by the DNS data obtained by C!ark, McMillan & Ferziger, and by the experimental dala 

of Liu et al as discussed by Lesieur & Metais [13]. lmplicit in the eddy viscosit>, 

closure is the assumption of a one to one correlation between the subgrid scale 

stress and the large scale strain rate tensors. However. the findings by the abo\,t. 

listed researchers shows very little correlation between the two tensors. This 

rnisrepresentation of the flow physics by the eddy viscosity closure provideci 

motivation for the development of the scale sirnilarity model, Bardina et al [26]. and 
the dynamic model of Germano [27]. The implication for eddy viscosity models is that 

the resolved, near-grid scales will not be computed with the correct phase. This 



phase error will then propagate to larger scales, a phenornenon known as 'error 

backscatter', Lesieur [14]. Thus, the LES results will provide large scale flow 

statistics such as energy, maximum expected velocity magnitude, average mixing rates. 

etc. However, information related to phase such as the position of vortices will not 

be reliable. It is noted that this unpredictability problem affects al1 LES 

formulations regardless of which subgrid mode1 is used, Lesieur & Metais [13]. The 

objective is to find a subgrid mode1 that maximizes the decorrelation time between 

the 'real flow' and the LES simulation. These limitations of the eddy viscosity 

approach are beyond the scope of the present study. 



3. Renormaiization Group methods and turbulence modeling 

The goal of this chapter is  to outline the concepts of the Renormaiization Group 

method as applied to turbdence. The presentation is qualitative and the mathematical 

details of the RNG are deferred to chapters 4, 5 and 6. 

The concept of the Renormalization Group Method may be introduced with the examplr 

of the tree diagram shown in figure 3.l.a. The tree structure consists of layers of 

branches with the branches of  each layer differing from the branches of the previous 

layer by only a scaiing factor. Such a structure is called self-similar. Imagine now 

that random forces are acting on al1 the branches of the uee. Assume that the 

amplitude and frequency of the random forces are proportional to the size of the 

branches in each layer. Suppose that it is desired to determine the effective force 

acting on the trunk of the tree. One way to proceed is to first average the forces 

acting on the smallest branches (the fust layer), then eliminate that layer from the 

diagram (figure 3.l.b) and add the averaged force to al1 the remaining branches. One 

then proceeds to average the random force component for the second layer (figure 

3 . 1 . ~ ) ~  add the increment to d l  the layers below and so  on, until dl the branches 

are removed and the effective force on the trunk is obtained. This is an example of 

the iterative scale removal procedure of the RNG method. 

The above example illustrates important features and problems of the RNG method. 

primarily concerning the statistical averaging of only one layer at a time. ri 

procedure called 'partial averaging'. Adding the average force from the first layer 

to the trunk of the tree is correct but adding this force to the adjacent. second 

layer in the sarne way is in error because each branch is affected by only t ~ v o  

branches of the first layer. The forces transmiaed between layers widely separritcd 

in scale c m  be treated accurately in average terms but large errors result if 

adjacent layers are treated in this manner. The question is whether such errors 

accumulate and affect the value of the resultant force on the tree trunk. 



Figure 3.1 Self-similar tree structure. 
lterative removal of branch layers. 



3.1 Renormalization Group (RNG) methals in turbulence 

Objective: The study of turbulence yields scaling laws (such as &X3k-p3 for the 

energy spectmm) and numerical coefficients (such as the Kolmogorov constant CI; for 

the energy spectmm). The scaling laws may be obtained by a correct selection of the 

relevant parameters (Iike E and k for the above example) and simple dimensional 

analysis. However, the numericd coefficients cannot be obtained in this manner and 

one must resort to experimentd measurements or to a comprehensive analyticai theory 

for which the RNG is a candidate. 

The first objective of the RNG analysis is to derive the various coefficients of 

the turbulent flow such as the Kolmogorov constant, the skeweness coefficient. the 

turbulent Prandtl number etc. These turbulence constants are readily mensureci 

experimentally within a reasonable accuracy and will serve to venfi the RNG results 

so that the method may be considered at least partidly vaiidated. The RNG values 

must be obtained without any empincally adjusted coefficients. 

If the RNG predictions of the fundamental constants of turbulence are vülidated. 

there is justification to use this method for turbulence modeling. For the large eddy 

simulation of turbulence, the aim is to denve the Smagorinsky eddy viscosity 

constant or in a more advanced form a wavenumber function for the eddy viscosity. the 

k-E mode1 equations coefficients and so on. 

Overview: The RNG procedure applied to fluid turbulence is similar to the esample 

of the tree with random forces. First, the RNG involves the scaling away of ri small 

range of the shortest wavelengths of the flow. This procedure is called spectral 

splitting. The average effect of the discarded rapid fluctuations on the longer 

wavelength coefficients is represented as an incremental change in the effective 

fluid viscosity in the momentum equation. The modified momentum equation is n o a  

redefined on a reduced range of wavenumbers and the procedure is iterated until the 

largest wavenumbers in the momentum equation fall within the range of the 

computational resolution. 



After the removal of a range of flow scales, the RNG method utilizes scaling 

transformations (hence the tenn 'renormalization'), to dernonstrate that the equation 

coefficients approach a so called jked point. At the fixed point. the renormalized 

viscosity becomes a constant. The fixed point offers a short cut to the finai form of 

the eddy viscosity without going through a large number of iterations. 

A number of issues and concepts associated with the RNG approach are discussed 

below. 

The RNG turbulence model utilizes a stirring force. The derivations of RXG 
turbulence models require statistical symmetry and thus statistically homogeneous. 

isotropic. stationary turbulence. ZV [IO] have aiso considered the case of k e l y  

decaying turbulence. It is to be noted that while the derivation uses idealized 

assumptions, the results are applied to practicai flows. For stationary flows. the  

RNG method inuoduces a random stimng force as a source term in the Navier-Stokes 

equations. This force serves as a 'zero order' model of the turbulent fliictuations 

when the nonlinear terms in the Navier-Stokes equations are set to zero. Higher order 

approximations are constructed by 'nesting' convoiution integrais of the forces to 

mirnick the original non-linear terms. The stirring force has a Gaussian distribution 

of amplitude and is usually specified in terms of its correlation in Fourier spacc. 

This correlation of the forces is selected to reproduce inertial range tlow 

statistics. Therefore, the stirring force is only a mathematical expedienr to 

reproduce a stationary, homogeneous, unbounded flow field and to yield the correct 

first and second moment statistics. However, some researchers sought a phpical 

interpretation of this force, generating debate in the RNG literature. Smi th  and 

Woodruff [7] interpret the force as the renorrnalized, particuiar class of non-linerir 

interactions responsible for the inertid cascade rather than an actual esternal 

force. A different interpretation is offered by Lam [6] ,  who asserted that the force 

cannot be scale invariant - thus challenging the inertial range analogy. 

The idea that the statisticai characteristics of real turbulence may be 

reproduced by a properiy selected small scale force and without the knowledge of the 

boundaries or initial conditions of the flow has been labeled by Y0 as the 



'correspondence principle'. This term is used as an analogy to the well known 

correspondence principle of quantum physics where the statistical laws of quantum 

physics (microscopie level) yield the results of classical physics (macroscopic 

level), 

The model problem vs. the turbulence problem. The current author is of the 

opinion that added insight may be obtained by alternating between two points of view 

The 'model problem' is the Navier-Stokes equations with an external stirring force 

input. The statisticd parameters of the force are varied and the resulring 

approximate solutions of the Navier-Stokes equations are examined. The 'turbulence 

problem' has the sarne mathematical form, but here the stimng force has the 

interpretation of a renormalized energy cascade. If one maintains a clear distinct ion 

between the two interpretations throughout the analysis, some of the ambiguity 

encountered in the literature may be avoided. 

The RNG scale elimination is confined to the inertial range. The iterative 

spectral splitting and averaging of the RNG is confined to the inertial range. A, - 

&. The RNG rnethod ignores the dissipation range, (A, - A, in Figure 2.1 t .  and 

considers the turbulence to start at the upper end of the inertial range. A,,. 

(equation 2.6-3). It will be assumed that the Reynolds number is large so that the 

inertial range is wide and it contains most of the turbulent kinetic energy of the 

fluid. Under those conditions, the energy contained in the dissipation range may be 

ignored. For very large Reynolds numbers, some theorists neglect the production range 

as well, so that: 

Elimination of a spherical shell. Since the flow field is considered to be 

homogeneous and isotropie, the Fourier space domain of the inertial range is a hollow 

sphere of inner radius AL and outer radius &, (the inertial range extends equally in 

al1 directions of the wavenumber vector). Attention is foçused on the outer shell of 



the sphere, where the thickness of the shell can be either finite or infinitesimally 

thin. If the method is iterated using shells of finite thickness, A where -4th 

= &e-, [ and Af is a discrete incrernent of the scaling variable, the resulting RNG is 

called 'recursive'. ZVH [8]. An exarnple of such a method will be discussed in some 

detail in chapter 5. The Y0 method considers infinitesimally thin shells and converts 

the recursion into a differential equation for the eddy viscosity. The Y0 procedure 

wi11 be presented in chapter 4. The effects of the Fourier velocity components in the 

shell on the momentum equation for wavenumbers smaller than the shell radius Lire 

replaced by an increment of the viscosity, Av. Then the shell is discarded. The RNG 

procedure of Forster, Nelson and Stephen [28] (herein referred to as FNS) and Y0 [ 3 ]  

estimates the statistical effects of the small and fast eddies (high wavenumbers and 

frequency) on the large and slow ones so that the viscosity increment AV is valid 

only for die Fourier velocity u(k,o) where 1 k 1 + O and w - O. ZVH [8] and ZV [IO] 

da im that their recursive RNG yields an eddy viscosity valid for O S 1 k 1 5 At l )  but 

their procedure and results have become a point of dispute. This issue wiIl br 

examined in this study. 

New non-linear terms are discarded. After the elimination of the wavenurnber shell. 

new non-linear terms appear in the mornentum equation, namely the triple and quadruple 

velocity products. In the version of RNG due to FNS [28]. and adapted by Y 0  131 these 

new products were discarded to recover approximate rnomentum equations which appertr 

the same as the initial Navier-Stokes equations. This allows for application of ri 

recursive procedure, where the next shell rnay be removed with the same form of ihe 

results as before. Another version of RNG, originated by Rose [28] and expanded b!. 

ZVH [8] and S V  [IO] retains and re-expands the triple velocity products on subsequent 

shells. The quadruple velocity products are almost universally discarded in the 

published Iiterature, but the b a i s  for doing so is not well understood except in the 

limit of very srnaII wavenumbers. Still other variations of RNG as applied to 

turbulence make extensive use of field-theoretic methods [31]. [l6], and are beyond 

the scope of this study. 

The Navier-Stokes equatiom may now be rescaled. Pnor to removing the second 

shell, the original version of the RNG procedure rescaled the wavenumber domain to 



the original size and al1 the other variables were rescaled to suit. The purpose of 

rescaling was to demonstrate asymptotic limits for the various terms as a large 

number of shells was removed. In particular, the molecular viscosity becornes 

negIigible and the rescaled coefficients of the momentum equations approach constalit 

values. This condition is called the f ied point of the renormalized Navier-Stokes 

equations which now give self-similar solutions (related by a scaling factor) at any 

wavenumber. This condition is consistent with the charactenstics of the inertial 

range of turbulence. The RNG tenninology is derived from the rescaling process. 

The unscaled eddy viscosity is of interest in turbulence modeling. As shells of 

wavenumbers are eliminated, the rescaled viscosity approaches a constant value. whik  

the unscaled eddy viscosity increases. It is the latter quantity which is used to 

constmct the subgrid turbulence model. For this reason. most recent versions of the 

RNG method applied to turbulence dispense with the rescaling process whi le re tain i n t  

the terminology even though it strictly does not apply. 

3.2 A brief history of RNG methods in turbulence 

The RNG methodology has its origins in a wide range of scientific research. Pan 
of the RNG mathematical frarnework is borrowed from earlier Renormdized Perturbation 

Theones of turbulence (RPT) due to Kraichnan [23], Edwards [13]. and others. A 

comprehensive overview is given by McComb [13). These sources gave rise to the use of 

stimng forces and the perturbation series. Other RNG tools such as spectral 

splitting, partial averaging, rescaling and fixed point analysis are taken over from 

quantum physics and from the study of critical phenornena. The works cited here are 

those rnost relevant to the current investigation. 

The 'recursive' RNG vs the E-RNG. Among the initial applications of RNG to 

turbulence is the work of Rose in 1976 [29] who applied the method to model the 

diffusion of a passive scalar in a randornly prescribed frozen velocity field. Shortiy 

after, FNS 1281 used the RNG method to study the large-distance and long-timc 

behavior of velocity correlations generated by the Navier-Stokes equations for a 



fluid stirred by a random force. These two works have originated two somewhat 

different schools of thought on RNG in turbulence, with some researchers labeling the 

method originated by Rose as the 'recursive' RNG and the analysis of F N S  and their 

successors as the E-RNG [SI. The two methods are sirnilar in many respects but the 

'recursive' RNG deds with finite shells of wavenumbers and numericdly iterates the 

recursive algorithm until the desired range of scales is elirninated. The E -RNG takes 

the limit of infinitesimally thin wavenumber shell so the recursion is converted into 

a differential equation which is then integrated. As the narne implies, the parameter 

E (to be defined in chapter 4) is of central importance in the E-RNG theos. 

initidly a small vaiue of E is assumed to obtain convergence of a power series. 

However, E is later set equal to 4 in order to recover the Kolmogorov energy 

spectrum, presumably invalidating the series convergence result. 

The authors ZVH [8] and ZV [IO] have criticized the E-RNG based on the two 

contradictory E values and have proposed the 'recursive' RNG as a viable alternative. 

However, ZV do not offer an alternative method to show series convergence. Instead. 

they justify tnincating the series based on the analogous procedure for RNG applied 

to critical phenomena. For exarnple, when the RNG was applied to the Kadanoff mode1 of 

magnetism in metals near the Curie point, it was found that excellent agreement with 

experiment was obtained from a model using second order terms. Also. when higher 

order terms were included, the model results deviated from the experimental tindings. 

[31]. However, while critical phenomena and inertial range turbulence ha\.e 

superficially sirnilar governing equations, these are very different physical problems 

and success in one area does not guarantee satisfactory results with the other. [32]. 

Ii should be noted that since the E-RNG originated by FNS was limited to \:cc. 

large scales, it really excluded the turbulence problem. Nonetheless their work was 

used to provide the foundations for the practicd application of RNG to turbulence 

rnodeling. In 1979 DeDominicis and Martin 1331 (herein referred to as DM) showed that 

a proper specification of the stirring force in the E-RNG mode1 will yield the 

Kolmogorov energy spectrum. Fournier and Frisch 1353, [36] published several püpers 

in the early 1980's extending the analysis of FNS and DM. In 1986. Yakhot and Orszag 

[3] built on the work of FNS and DM and took the E-RNG method into the realrn of 



practical application by deriving many of the hereto adjustable turbulent model 

parameters. The resulting turbulence models were the Smogarinsky eddy viscosity 

coefficient for large eddy simulations, and the RNG k-E model. 

The Y0 analysis has been somewhat controversial in the research comrnunity mainly 

because of the inconsistent E value problem. The success of the Y0 k-E model in 

sirnulating many industrial flows has renewed the interest of the research comniunity 

in the theory during the late 80's and early 90's. Smith and Reynolds [ 5 ]  have 

duplicated the Y0 anaiysis, identifing and correcting some algebraic errors. 

Subsequent corrections and extensions of the theory have k e n  published by Dannevik. 

Yakhot, and Orszag, [36], and Yakhot and Smith [37]. Lam [6] analyzed the Y 0  method 

by dimensional anaiysis and challenged some of its fundamentai assumptions. Other 

insights and comments on the E-RNG turbulence models have been made by Kraichnan 

[38], McComb [13], and others. 

Independently from the work of FNS and YO, researchers Zhou, Vahala and Hossain. 

(ZVH) have extended the work of Rose 11291, in a series of publications [SI. [9]. and 

[IO], to also develop a large eddy simulation eddy viscosity model which has not becn 

implemented in practice. These researches claim that their analysis is free from thé 

contradictions which cast doubt on the validity of the Y0 developrnent. ZVH also daim 

that the eddy viscosity they obtained is valid for al1 resolved wavenumbers including 

those close to the cutoff between the resolved and unresolved scales. This means thrit 

the 'recursive' RNG is degedly able to capture the 'local' interactions. rnergy 

transfer between wavenumbers of sirnilar magnitude and straddling the cutoff boundary. 

Smith et al [39], and Carati [ I I ]  have disputed this claim and purport to show ihrit 

only 'non-local' interactions may be handled with RNG methods. One of the aims of 

this study is to provide new evidence for one side of this argument if not to resolve 

it. Accordingly, the formulations and results of YO, ZVH, and Carati are reviewed in 

detail in chapters 4, 5, and 6. 



4. The Y0 Application of RNG Theory to the Navier-Stokes Equations 

The analysis given here follows that of Yakhot and Orszag 131, Smith and Reynolds 

[5 ] .  Yakhot and Smith [38], and Dannevik, Yakhot and Orszag [37] with some 

cl~fications and explanations added. A brkf discussion of the physical units of 

the various terms has been added following the later work of Lam [6]. Oniy the parts 

of the analysis which deal with derivation of the RNG relation between the stirring 

forces and the dissipation rate, the Kolmogorov constant, and the Smagorinsky eddy 

viscosity are presented here. Y0 went funher to derive the RNG versions of the 

turbulent Prandtl number, the Batchelor constant, the skewness factor. and the 

constants for the k-E model. 

4.1 Mathematical framework 

The objective is to detennine the solution of the Navier Stokes equations 2.1-1 

with a stirring force source term f(x,t) and subject to the continuity equation 2.1- 

1. These equations are repeated here for convenience: 

The flow domain is assumed to be infinite in extent. The flow variables rire 

assumed to be statistically homogeneous and stationary so that no boundary or initial 

conditions are specified. The Fourier space correlation of the stirring forcé. 

fa(x,t) will be specified to yield a solution for the statistics of the inertid 

range of turbulence. It is noted that f(x,t) is a force per unit mass with units of 

acceieration Ut? 



For most of the Y0 RNG anaiysis, time is Fourier transformed to frequency. w (with 

the exception of the work of Dannevik et al [37]), so that one  deals with u(k.o). A 

tradition of the Renorrnalized Group Theory carried over from critical phenornena is to 

treat the number of space dimensions as a variable, d, where d = 3 is the case of 

practical interest. Formal solution of the momenturn equation, wntten in tems of the 

Green's function operator G,(k,o), is given here with the addition of the bookkeeping 

parameter h, (equal to unity) in front of the nonlinear tenn: 

where 

The Map$k) has been defined in section 2.5 as: 

with 

It is noted that the Green's function operator, G,(k.w), would appear as 

J G , ( ~ , ~ , T )  d.r in (k,t) domain (see chapter 5) or as G 1 - 1 t .  d3x d r  in 

(x,t) domain, altowing the usual symrnetry w.r.t x and x'. 



The Fourier space correlation of the stirring forces is: 

The amplitude of the force is assumed to be Gaussian with zero mean and 

uncorrelated in time. There is, however, a spatial correlation W( 1 x-x' 1 ) which is 

represented in Fourier space as W(k). The Dirac delta functions S(k + k') and 6(w + 
cd) ensure a homogeneous and stationary force field, and Dap(k) ensures isotropy and 

makes the force divergence free. Since the units of the force correlation in physical 

space are LW, the units of W(k) are L5/t3. 

The wavenumber dependence of W(k) is a power law: 

O for O < k < AL 
W(k) = 

Wk-Y for A, 5 k I 12, 

where A, is a minimum wavenumber required to avoid singular behavior of Wfk) and A,, 

is the maximum wavenumber at which the force acts. 

In the course of the analysis, the parameter E = 4 + y - d will emerge as a 

variable which govems the solution of the RNG procedure. ln terms of E: 

and setting d = 3, 

W(k) = Wk'+ 

It is noted that for dimensional consistency, W must have the units L6-EIt3. Lam [6]. 



4.2 Overview of the RNG procedure 

The mathematicai steps of the RNG method are summarized below: 

1) At the start of the procedure, the wavenumber domain is split into an outer 

shell; k < A,, and an inner sphere of low wavenumbers, O < k < &,e-A( 

2) Next, the velocity is spectrally split: 

with u>(k,o) defined on the outer shell of wavenumbers, and uc(k,o) defined on the 

interior. Analogous splitting applies to the stimng force. 

3) Two coupled momentum equations are then written for u<(k.o), and u Y k . ~ ) .  

4) The hgh wavenumber velocity is expanded as a series in powers of an ubitrriry 

parameter A: 

It should be noted that this series expansion applies to the velocity and 

implicitly also to the pressure, but not to the stirring force. 

5) In order to find expressions for uA(k,o), u'l(k,o), etc., the series expansion 

for u>(k,w) is substituted into the u'(k,o) momentum equation. Matching powers of ic 

yield terms in the series. 

6) The series for u>(k,o) is substituted into the momentum equation for ue(k.o). 

The resulting series expansion for u<(k,m) is truncated to retain terms of 0(h2) .  

7) Ensemble averaging is applied to the high wavenumber forces in the equation for 

uC(k,o>). This yields a viscosity correction term and a triple velocity product. 



SuC.fu'uc. The triple product is discarded in the Y0 method but is important in the 

rnethods of ZVH and Carati. It is also crucial to the present investigation. 

8) The viscosity correction term is integrated with respect to frequency using 

contour integration and calculus of residues. This term is also integrated with 

respect to wavenumber over the spherical shetl. 

9 )  The correction is added to the viscosity and the procedure may be repeated in a 

recursive manner. At an intermediate step in the process, the wavenumber shell is 

~ ( f j e - * ~  I k < A(& where A(0 = ~ ~ e - c  Any parameter with a zero subscript becornes 

instead a function of I; such as v, + v(0. The eddy viscosity recursion is: 

10) Y0 convert equation 4.2-3 into a differential equation for v(0 which is then 

integrated with respect to C from zero ( v(0) = v,, the molecular viscosity) to Il. 

where A(() = AC, the maximum wavenurnber resolved by the grid. 

11) The eddy viscosity derived in this manner contains the arbitrary coefficient 

of the stining force correlation. W (see equations 4.1-3 and 4.1-4). Y0 substitute W 

= 1.59 x2&, relating the power input to the energy dissipation to compleie the 

derivation. 

Each step in the RNG process will be discussed in some detail in the following 

sections. 



4.3 The spectral splitting 

The first step in the RNG procedure is to spectrally split the velocity and 

stimng force: 

The Fourier velocity coefficients of the 'high' and 'low' wavenumbers are: 

for O < k < ~ ~ e - ~ (  
ua<(k,o) = 

for b e - * l  a k 

and 

An analogous definition applies for the stimng forces. f (k .o )  and f'tk-a). In 

addition, some authors [13] spectrally split the projection operator M(k) into M'iki 

and M'(k). Since the functional fonns of ~ < ( k )  and ~ > ( k )  are the sarne. the purpose of 

this notation is to keep track of the domain of k when M(k) appears in convolution 

integrais. The Green's function G(k,o) also has the same fonn for al1 k and is 

usually not spectrally split in the literature. 

For the purpose of cornparison with the recursive RNG and for the discussion of 

higher order series expansion terms, the thickness of the eliminated shell will be 

needed. 

The functions uc(k,o) and u'(k,o) are referred to as the 'high' and 'low' Fourier 

components of the velocity. These high and low Fourier coefficients of velocity and 

stimng force are substituted into equation 4.1-1, to generate two coupled momentum 

equations, 4.3-3 and 4.3-4: 



In the above equations, the directional subscripts have been omirted. The 

wavenumber integration is carried out over the sphere of radius A, while the 

frequency integration domain is 2 .  The cross-tenns uc(k-j,o-R)u'(j .R ) + 
u>(k-j,o-R)u<(j,n) = 2uc(k-j,w-R)u'(j,R) due to the symmetry of the integrrition 

domain. 

4.4 The high wavenumber velocity series 

The objective of the RNG procedure is to mode1 the average effects of the h i sh  

wavenumber veiocity coefficients, u'. on the low wavenumber coefficients. u< as an 

increment of the viscosity. then to eliminate the shell and iterate the process. Thc 

RNG rnethod achieves this by representing u> as a fùnction of uc and P. tiien 

averaging over the f> terms. The exact functional form of u> (uc ,~ )  is unknoufn since 

it requires the solution of 4.3-3 and 4.3-4. The RNG method approximates u>(u<.P) as 

a series expansion in the artificial parameter A: 

where k' = k,o.  

Since )c = 1, this is not a conventional perturbation senes. It will be s h o w  

later that with the proper non-dimensionaiization of equations 4.3-3 and 4 -34 .  the 



effective expansion parameter h (to be defined later) will be a small number under 

certain conditions. 

The series expansion (4.4-1) is then substituted into equation (4.34) for the 

high wavenumber velocity. The notation is further simplified by using the abbreviated 

the coefficients of h' are equated. The first two terms in the series are: 

U" (k') = G,(kt)M'(k) dj' uqk'-j8)uc(j') + I t 

Higher order terms may be obtained in an analogous manner but conventional 

versions of the RNG rnethod utilize only the first two terms of the series. It is 

noted that u>l(k') may easily be wntten in terms of Go, P. and u'. This fiict is 

exploited in section 4.6 since the contribution to the viscosity will be an riverase 

over PP. 

The physical interpretation of the series 4.4-1 depends on the interpretation of 

the stirring force. It is difficult to provide a physical interpretation for the 

various terms of the series 4.4-1 because setting k = O violates the principle of 

Galilean invariance and equation 4.4-2 no longer represents ZF = ma. Equation 4.4-2 

describes the individual decay of each Fourier mode due to viscosity in the absencc 

of non-Iinear interactions. This is a diffusion equation for momentum with a forcing 

source term. The implications of Galilean invariance for the RNG have been discussed 

by Smith et al [30], and will be examined further later in this work. 



4.5 The low wavenwnber velocity series 

Next the high wavenumber series is substituted into the low wavenumber velocity 

equation in order to approximate the coupling between uC and u' as an interaction 

between u< and P up to a given power of )c. This process yields the low wavenumber 

series in h. Traditionally, in the RNG methods, terms up to h' are retained: 

4.6 Partial averaging of the high wavenumber stirring forces 

Terms containing high wavenurnber components of the stirring forces will now br 

averaged in order to obtain a statistical contribution to the eddy viscosity. Lcr 

<..>> be the symbol for the partial ensemble averaging operator which acts only on 

the high wavenumber components of the stimng forces. The variable f< is unaffected. 

A physical justification of this procedure is that high wavenumber tluctuations 

evolve much faster than the very large fluctuations at k -, O. 



T o  the knowledge of the current author, al1 of the RNG literature uses the 

property : 

and. in particular: 

The key points to note about equation 4.6-1 are that i) u< (as well as 1") i.s 

unaffected by the averaging operation, and ii) <LI>>> # O since the averaging affects 

only the high wavenumber stirring forces (as opposed to the high wavenumber 

velocities). The relation 4.6-1 is a standard property fo r  the RNG partial averaging 

as published in the literature. However, this mle will be chdlenged in chapter S of 

this work for the following reason: The series expansion of u q k , o )  in powers of ib 
(3.5-1) contains P components which will 'react' when averaged with the t9 

components of u> to any desired even moment of the forces. For example. relation 4.6- 

3 is only tme to zero order in the k expansion of uC, when uC is represented by Gfc. 

This leads to the conclusion that the result of partial averaging depends on the 

order of A expansion of u' and u>. 

The properties of the partial averaging operator <..>' will be discussed in 

chapter 8 of this study. At chat stage, a modified RNG method will be proposed. whertl 

equation 4.6-2 is no: used. 

However, the work of Y0 uses relation 4.6-2 to cany out the partial averiiging. ris 

well as using the fact that the stimng forces are Gaussian variables with zero merin 

so  that al1 the odd moments are zero. The results of the averaging are erisier to 

demonstrate by first applying the procedure to the high wavenumber series 4.4- 1 and 

then proceeding to average the low wavenumber series 4.5-1. Furthemore. according to 

4.6- 1, the sequence of averaging and substitution is interchangeable. an obsen-ation 

made by ZV [IO] which is also chdlenged in the current investigation. 

Averaging the first two terms of 4.4-1, gives: 



with 

and 

where the last result has been obtained using the property 4.6-1 and 

This is because G(k-j+j) = 6(k) and this Dirac Delta function does not equal zcro 

only if k = O. However. M(k) is proportional to k and so M(0) = 0. 

As noted by Y 0  [3], the root mean square of terms of the form 4.6-6 does not  

vanish but constitutes an 'induced' force at the low wavenumber k due to two 1:irgc 

wavenumbers, j and k-j. This induced force represents a backward cascade of enersy 

(backscatter) from large wavenumbers to small wavenumbers. Carati [40] h m  

incorporated the induced forces into an Iterative Filtering method. very similar to 

RNG. 

Using the mles 4.6-1 to 4.6-5 to average equation 4.5-1 leaves term 4.5-la 

unaltered, so that C4.5-la>' = 4.4-5a. 



The average of term 4.5- lb  takes the form: 

This triple velocity product ucucuc is of central importance in this work. 

However, in the original Y0 analysis, the triple products are discarded so that the 

'renormalized' equations can have the same form as the original Navirr-Stokes 

equations. 

Turning now to term 4.5-lc, the muftiplication is performed and only terms of 

second order or lower in are retained. These tenns are: 

h2M<(k) dj'<uP(kr-j')ul'(j')>. The average of the first term is zero. trquation I 
46-61, and its root mean square is the induced force. The second and third term are 

cornbined by switching the wavenumber labels of (k-j) and 0). Noting that G(j -  

j')G,Of) = 1 GoCi') 1 ', the terni C4.5- 1 0 '  equals: 

Here Av = - l 8~,(k'))c'~(k)~j'~~(k'-j')~'(k-j) 1 Go(jp) 1 'DO) W>O) is a correct ion 
k- 

to the viscosity owing to the averaged out shell of wavenumbers. The low wavenumber 

velocities can now be written as: 



Equation 4.6-9 is the momentum equation without any high wavenumber velocity 

components since these have k e n  replaced by an average linear term, Av. The triple 

velocity products, <4,6-9b> are discarded in the Y 0  procedure discussed here. but are 

retained in other versions of the RNG procedure to be described later in this study. 

If the term 4.6-9b is dropped. the f o m  of the resulting momentum equation is the 

sarne as the original Navier-Stokes equations. 

4.7 Integration of frequency and wavenumber 

An explicit expression for Av is obtained by first substituting into 1.6-8 the 

explicit forms of the Green's functions as G,(j') = l and G ( -  = 
-iR + j'v 

1 and then performing the convotution integral over the frequenq. 
i(w-Q) + 1 k-j 1 zv 

domain R: 

2 ~ :  It b (k-j)D o(j)j-y-2 

{ h ' ~ ~ ~ ~ + k )  Vo Jd@ IrinCl dB 1 j2 dj+ -a + val' + v k-j + 0(l3) ) 
O O ~ e -  AC 

The convolution integral over Cl has been evaiuated over the lirnits -- to usin2 

calculus of residues. Physical limits on the frequency are of the order of the 



inverse of the Kolmogorov time scale; ( v ) ,  so that, approxirnately. 1 Q 1 S 

2n(& 1". 

The subscript notation has been restored in equation 4.7-1 since it will serve to 

show that uac(k.o) is picked out of the upe(k.o) in the process of angular 

integration. 

Note that the k- factor will be exuacted from the right hand side of 4.7-1. sincr 

l@,p-+k) is proportional to k and the other k factor is obtained f r ~ m  the anguliir 

integration of M>Fp(k-j)DpdC/). 

The evaluation of the wavenumber integral is facilitated by changing the wriabie 

j 9 j + W2. Prior to integration, the above expression is expanded in a power 

series of the small parameter and terms containing G' { $ }' or higher powers are 

« 1. Geometricülly. the dropped. Also, the io term is dropped, implying that - 
vQj' 

wavenumber integration domain is the overlap of two spherical shells of thickness 

ML ( assuming a smail A/ for a thin shell ) with centers offset by a distance k. ris 

shown in figure 4.L. The Y0 calculation assumes complete overlap of the shells. This 

implies that the magnitude of the low wavenumber is negligible relative to the 

thickness of the eiiminated sheil ( << 1 or aiternatively &P << AL Smith tx al 

[39]) .  The integration is carried out in spherical coordinates. first with respect ro 

angles and then with respect to the magnitude. The angular integration associrrted 

with the vector j leads to a Kronecker delta which picks out the a component of the 

velocity vector upç(k,o). The details of this procedure are well explained by Leslie 

(1221. The final result is given as: 



/ Av contribution 

,K-J shell 
shell 

Figure 4.1 The wavenumber intearation domain 
for k < shell thTckness. 



where it is recalled that W is the amplitude of the stirring force correlation 

(equation 4.1-4): 

and Sd is the area of the d - dimensional unit sphere. 

Reynolds and Smith [SI have shown that to consistently retain terms of the samr 

power of E (that is E l )  it is necessary to expand % in powers of E: 

- 
and use the zero order term, Ad0 in place of A, (and AB in place of Adj in the sddy 

viscosity calculations, again assuming that E is small. This correction has been 

incorporated into the RNG literature, [6].  

where v ,  is the combined molecular and eddy viscosity obtained after removing the  

band &exp[-Aq < k < rl, of wavenumben. The pararneter & iis given as: 

The pararneter &, has k e n  identified by FNS [28] as the effective expansion 

parameter of the non-dimensionalized Navier-Stokes equations. 

Exarnining equation 4.7-4, the terni O(G) cornes from the contribution of ihs  

fourth moment of the stirring forces, or the so cdled 'induced' force. 



It is noted that the eddy viscosity correction is known to 0(c) but the low 

wavenumber rnomentum equation has been truncated at O(&,') The irnprovement in 

accuracy (assuming that ;h, is smaller than one) is due to the fact that the terms of 

order O(&)) go to zero. Some terms of order 0 ( G 3  are odd moments of the Gaussian 

k 
; O forces and vanish as a result of averaging. Other O(Z:) terms go to zero as - - 

4 1 

due to Galilean invariance requirements, FNS [28]. 

To show that indeed plays the role of an effective Reynolds nurnber. the 

characteristic velocity scde  is selected as: 

The form of vo has k e n  modified by the current author so that it is dimensionaliy 

correct (Ut) for arbitrary E. This modification takes into account that the units of 

W are L6-€/t3 (Lam [6]) .  It is noted that since the units of W Vary with E. W musr bc 

a function of E ,  Lam [6].  but its functional form is unknown. Published Iiteraturs 

use v, = 

scale is 

Wll2 A - 1  

O , valid only for E = 4. The length scale is 1, = 4-1 and the timr 
vo'r- 

&-Vvo. These parameters are characteristic of the eliminated wavenumbèr 

s hell. Non-dimensiondiring the Navier-S tokes equations with respect to these val lies 

volo Wl" &-E - - gives a form of the Reynolds number - - = AD(€ ). It is desired thar 
"O v,3c 

- 
&(E) is less than one to jus@ the series expansion. Clearly. this may be achievrd 

if Ao is treated as an independent parameter and chosen sufficiently large. Houwcr.  

this choice of Ao may faIl in the dissipation range where the use of W - E is n o  

longer appropriate. For lürther discussion see Carati [40]. 



Lam [6] also proposed that W should be a function of A. This interpretation is 

problematic (Smith and Woodmff [7]) since W is intended to correspond to E in the 

inertial range and hence be independent of wavenumber. A possible scenario is that: 

After the range of shells 12, to &e-( are eliminated, the parameters v,, q,. 1,) - 
and &(E), are replaced by v(0, No, l(0, and %LE). It will be s h o w  in the next 

secrion that for sufficiently large 4 Z((E) is proportional to if W is treated 

as a constant (its tùnctional dependence on E is ingored, Lam 161). Then. the series 

expansion in powers of h(&) is justified for srnall E. However, it will bc 

demonstrated shortly that the spectnim of the inertial range requires that E = 4. The 

Y 0  hypothesis is that the results of calculations performed for small E may bc 

extended to the case where E = 4. Some authors such as Theodorovicz [II). have 

suggested that a form of anaiyticd continuation may be used to justify this 

hypothesis but to the knowledge of the current author no such attempt hüs b e n  

successful to date. Smith and Reynolds estirnated the range of ( 0 .  At l = O relating 

Ao to V, through the Kolmogorov relation: Ao - 0.2(dvo)~/-L and using W - e. &,t-l)  - 
- 

25. At l-+ -,  LE ) - 1 1.5 to the lowest order of the E expansion. 



4.8 Recursion relations 

The objective is to obtain a recursion algorithm by successively removing 

wavenumber shells of Fourier coefficients using the same steps as in sections 4.3 - 

4.7. This iterative process will yield a sequence of eddy viscosity corrections. e x h  

of the same forrn but not the sarne value as the previous. After removing the tïrst 

shell of wavenurnbers corresponding to &e(-AO < k S Ao, the low wavenumber momsntum 

equations are: 

Note that equation 4.8-1 is the same as equation 4.6-9 v,  = v, + Av,. The Y 0  

method achieves the recursion by discarding the triple velocity product. 4.8- 1 b. so 

that the momentum equations 4.8-1 have the same forrn as the original Navier-Stokes 

equations. The justification for neglecting the triple velocity product is subject to 

the condition that « AL so that the integration domain of that term goes io zero. % 

Recalling relation 4.7-4; 

the Y 0  procedure first transforrns this equation into a general recursion relation. 

valid after rernoving a range of wavenumben. i\, to &,e-L and the resulting incrçment 
- 

of the eddy viscosity is Av(kA4. Setting v, = v(0. v ,  = v(kA4. and &,' = ib2(6 

in equation 4.7-4 gives: 



w here: 

To transfom 4.8-2 into a differentiai equation, both sides are divided by A l  and 

the limit A l  + O is taken: 

Expanding the exp(~A4 in a series of AC to the fust order, the E and A l  Factors 

cancel and the resulting differential equation is: 

where A(lj = ~ o e - [  Now the parameter is assurned to be srnall, so the 0(Gl is 

neglected and equation 4.8-5 may be easily integrated. The solution 1s obtained 

using the boundary condition, v(M)) = v,, and integrating up to I = L. For the 

purpose of evaluating an eddy viscosity mode1 for large eddy simulation. ( 
controls the 'cutoff wavenurnber AC = &e-4 which is the maximum wavenumber 

resolved by the computationd grid. 

The expression 4.8-6 may be substituted into 4.8-5 in order to obtain an explicit 

relation for h: 



For E > 0, and large Cequation 4.8-7 yields: 

The expression 4.8-8 is crucial for the Y0 RNG method for two reasons. First. as 

becomes large, becomes independent of I - a condition called the 'fixed point'. 

Second. if E is close to zero, the tmncation of the high wavenumber series is 

justified. again for large values of L At the fixed point. the eddy viscosity is 

approximated by equation 4.8-9: 

Once / is large enough for relations 4.8-8 and 4.8-9 to be valid. anp further 

increases of C increase v(4 according to ecf4< The notation v(0.A~) has been used 

by Smith and Reynolds [5]  in the context of RNG and by Kraichnan [38] and others for 

different versions of spectral eddy viscosity. The general form. v(k.Ac) has been 

introduced in equation 3.7-8, (the t subscript has been dropped). For the Y 0  version 

of the RNG rnethod, k/Ac -+ O so that the method obtains the lirnit v ( k A ~ )  - 
v(0.A~). Note that here k/Ac -+ O means k/Ac cc 1. but k is still in the inertid 

range of the turbulent flow. 

It is a requirement of the RNG method that the fixed point relations apply over ri 

large fraction of the total range of elirninated wavenumbers. Let C = 4. where 4 ib  

a sufficiently large value of C for v(0 and %(O to be close to their fixed point 

values. In the wavenurnber range to ~ ~ e - 4 .  v(fj and n(0 vÿry between thcir 

initial values vo and and their fixed point values and are not useful for 

turbulence rnodeling. In the wavenurnber range A& to A&, h(4 a E ln .  the p o w r  

series expansion in ( 0  is justified for small E, and the fixed point values of 

v(G) and ( 4 )  are accurate for s m d l  E.  The overall vdidity of  the eddy viscosity 



mode1 requires that the range &e-4 to &e-L is much larger than the range A,, to 

- 4  so that the fixed point values may be said to apply over most of the 

eliminated wavenumbers. It may be concluded that the RNG procedure is applicable to 

high Reynolds number turbulence where the inertial range is wide. 

1.9 The inertial range parameters 

So far the eddy viscosity, v(0,A~) has k e n  derived for a small value of E ( E  = 4 

+ y - d) and an arbitrary W, the coefficient of amplitude for the correlation of the 

stirring forces. The objective now is to make a connection to the physics of 

turbulent flows in the Kolmogorov inertial range. The statistics of the inertial 

range will provide constraints on the values of E and W so that the resultins v(O.As) 

wili hopefully be applicable to real turbulence. 

It has been noted that the form of v(k,Ac) has been derived for & cc 1.  Howrw- .  

Dannevik, Yakhot and Orszag [36] (herein called DYO), daim that as E + 0. the eddy 

k viscosity result is correct even as ;C; -+ I .  The validity of this claim will be 

examined in chapter 6. however it will be taken as correct for now so one may replace 

AC by k in equation 4.8-9 to write: 

where AL is the lowest wavenumber of the inertial range. Relation 4.9-1 was used by 

Y0 [3] to obtain the energy spectrum: 

Inspection of 4.9-2 indicates that E must equal to 4 in order to recover the 

Kolmogorov energy spectrum E(k) = CK@3k-5/3. Therefore, Y0 set E = 4. ignoring that 



k > I the convergence critena for the high wavenumber senes as well as the limit - 

require E to be close to zero. Y0 make the ad hoc claim that their theory extends the 

results for E + O to the case of E = 4. Their justification is based on the 

successful derivation of some experimentally known parmeters as the end result of 

the nonngorous procedure. However, with E = 4, DY0 proceeded to derive a relation 

betweeen the amplitude of the stirring force variance, W. and the power transfer rate 

Il(k), equal to E in the inertial range. 

To achieve this goal, DY0 [36] solved the Navier-Stokes equations, 4.1-2 to second 

order in the E expansion to recover the Eddy-Dmped-Quasi-Normal-Markovian (EDQNM) 
equations inuoduced by Orszag [24] in 1970. These equations express the mean 

dissipation rate, E in terms of the energy spectrum and the effective viscosity in 

the Kolmogorov inertial range; 

Combining 4.9-1, 4.9-2, and 4.9-3, and setting E = 4. D Y 0  numerically integrriteci 

the EDQNM equations to obtain the relation: 

where Y 0  established that Cmg = 1.59, in agreement with a previous result by 

Kraichnan [23]. Equation 4.9-4 is the most important relation in the Y0 RNG becriuse 

it establishes the relationship between the arbitrary RNG parameter W and the rcal 

flow parameter E. Substituting 4.9-4 into 4.9-1 and 4.9-2 gives: 

The coefficient 1.61 in equation 4.9-5 is the R ! G  value of the Kolmogoro\. 

constant, C,- Since the accepted range for C ,  from experimental measurements is 1.4 - 

1.7, Y0 concluded that their result is in agreement with experiments. 



Equation 4.9-6 may be rewritten in a form suitable for large eddy simulations. For 

this purpose, k is again replaced with AC in equation 4.9-6. Y0 let denote the 

computational grid spacing while A denotes the width of a filter, where A = ld = 

2dAc. The eddy viscosity, v(hc) is now written as v(A) to make a connection with the 

x-t space. Also, the eddy viscosity must satisQ the equivalence of the dissipation 

rate given by equation 2.3-3: 

where the <..> notation denotes ensemble average as usual and uC(x.t) is the 

resolved, large eddy component of the velocity consisting of Fourier components 

u(k.t) such that 1 k l  5 A Substituting the above relations into equation 4.9-7 

yields: 

Rearranging finally yields: 

where c, = 0.0061 as calculated by the present author ( Y 0  [3] report 0.0062 ). 

Equation 4.9-8 is the well known Smagorinsky eddy viscosity formula which has bcen 

widely used in large eddy simulations. Early users debated which value of c, gave the 

best results, with Deardorff (1971) claiming that c, = 0.005 worked best. Moin and 

Kim pointed out that the computed LES turbulent intensity were insensitive ro 

variations of the constant in 4.9-8 by 40% (Lesieur et al [19]). Therefore Y0 



concluded that their RNG value of the RNG denved Smagorinsky constant is within the 

'experirnental' range as established by early LES computations. 

4.10 Discussion 

The Y0 version of the RNG application to turbulence has a number of controversial 

steps. The main issues are sumrnarized below: 

1)  Interpretation of the stirring forces. 

2) Series expansion in powers o f ,  where % > 1. 

3) Functional dependence of W on E and possibly on A as well. 

3)  Partial averaging of the stimng forces based on wavenumber magnitude with a 

sharp boundary between the averaged and resolved variables. 

5) Wavenumber integration domain is assumed to be a spherical shell. 

6) Triple velocity products are discarded. 

7) Derived eddy viscosity is vaiid only for k/Ac + O. However it is used at the 

next stage for u s .  

Item 1, the various interpretations of the stimng forces will now be brietly 

discussed. The series expansion in powen of % (item 2) will be discussed in chaptcr 

10. Item 3, the comprehensive role of E in the RNG mode1 is beyond the scope of this 

study aithough it is closely related to the series expansion. For the purposes of the 

current investigation E is simply fixed at 4. A possible future study is the modcl 

problem (where the stirring force is interpreted as a real extemal force acting o n  

the fluid) analyzed for the case where E varies from near zero to near 4 in order to 

determine if such a problem is physically realizable and what is the nature of the 



non-linear energy transfer. The functional dependence of W on E can also be 

investigated. The partial averaging operator will be discussed in chapters 8. and 10. 

Items 5 and 6 are related and they will be addressed later in this section. Item 7 

will be addressed in chapter 9. 

The interpretation of the stirring forces should be in the context of the 

'correspondence principle' inuoduced by Y0 [3], largely misunderstood in subsequent 

literature according to Smith and Woodmff [7]. To quote Y0 [3]: 

'A turbulent fluid characterized in the inertial range by scaling laws c m  be 
described in this inertiai range by a corresponding Navier-Stokes equation in which ri 

random force generates velocity fluctuations that obey the scaling of the inertial 
range of the original unforced system. The dynarnical equation with the random force 
is the basis for the systematic elimination of small scaies and calculation of the 
renormalized transport coefficients.' 

The difference of opinion arnong various researchers concerns the nature of this 

stining force. The present author interprets the above statement literally to niean 

that the inertial range statistics of turbulent flow may t>e reproduced by the 'model 

problem' of a Navier-Stokes equation driven by a properly specified external stirring 

force. In this interpretation, the force is real and separate from the effects of the 

energy cascade. The difficulty with the model problem driven by an external stirring 

force is that since the force acts on al1 wavenumbers of interest there can be no 

inertial range energy cascade for the model problem because such a cascade by 

definition excludes externai input. The energy spectnim may still have the required 

k-513 slope. 

Smith and Woodmff [7] interpret the force as a renormaiized effect of the eners- 

cascade. The problem with this interpretation is that since the complete non-lincar 

convolution integrai is still inciuded in the Navier-Stokes equation. there is a 

dupIication in the representation of some non-linear interactions. However. this 

problem may later be alleviated by the truncation of the high wavenumber series ar 

h'. a procedure which discards higher order non-linear tems. A similar 

interpretation is offered by Lam 161, who however relaxes the fundamental Y 0  

requirement that the force correlation W be scale invariant. 



These different interpretations of the stimng force may perhaps be reconciled by 

aiternating one's viewpoint between the literal mode1 problem with an external 

stirring force and the equivalent turbulent problem with a renormalized force. The 

interpretation of RNG results will be less ambiguous if one clearly specifies the 

context. 

An important restriction of the Y0 results is that they are valid only for k - O 

or more precisely for k l ( ~ f )  - O. The resulting eddy viscosity is rather analogous 

to the low frequency 'beats' caused by two superposed linear waves at nearly equal 

frequency. Even though the sheII thickness, M L  is thin (it tends to zero in the 

differential limit), the restriction d ( ~ 4  <c 1 means that only the interactions 

which are nearly opposite in phase contribute to the eddy viscosity. It is noted. 

however, that the RNG catculations are strictly valid only for k values in the 

inertial range due to the isotropie form of the Navier-Stokes equations in Fourier 

space. Therefore. the inertial range must be very wide, so that k / ( ~ d  cc 1 ewn ar 

AC - O. The restrictions on the RNG procedure should be interpretted as relative to 

the limits of the inertial range which are assumed to be very wide. Chapters 8 and 9 

k of this study will examine the extension of Y0 results to the case where -ml- 2 1. 

Y 0  obtain their recursion relation by neglecting the triple velocity products. 

3.8- 1 b. Neglecting the subscripts, term 4.8- 1 b is rewritten below: 

Y 0  show that if the triple products were retained in the renormalized equation of 

motion, these terms would scale as e-id-y),  where e-c is the fraction of rliminated 

scales, d is the nurnber of space dimensions, and y is the negative power law esponcni 

of the stimng force correlation. Therefore, taking d = 3, and letting C becomc 

large, the triple products will diminish in magnitude if y < 3. However. the physics 

of Kolmogorov's turbulence requires E = 4 so that y = 3 and the triple products arc 





not affected by rescaling. Therefore, Y0 state that discarding the triple products is 

not justified but express the hope that the contributions from these terms are not 

too large and Iead only to logarithmîc corrections to their theory. However. the 

magnitude of the triple products vs. the magnitude of the viscosity correction due to 

a single elirninated shell may be assessed by examining their domain of integration in 

wavenumber space. The domains of integration of some RNG terms are indicated in 

figure 4.2 as describeci in the following discussion. 

It is noted chat tenns such as Ju<u>. or .fu>Iu* in the RNG andysis corne in pairs 

obtained by interchanging the j and k-j variables. Due to the symrneuy of the 

integration domain indicated in figure 4.2, the two terms of each pair are equal so 

that .Wl(k-j)u*Cj) + Ju>l(j)us(k-j) is usually expressed as 2 - j u .  The 

integration domain of the Y0 viscosity correction, Av, consists of region A labelled 

in figure 4.2. It should be noted that for each shell, region A is symmetric with 

respect to the angle 0. Region B is the domain of terms of the forrn Su%' and to 

0(x2) ,  these consist of AJu'ud and krJu<u>'. The contribution of Uu<uS to the eddy 

viscosity (a new contribution of the present work) will be taken into account in 

chapters 8 and 9. As demonstrated in section 4.6, the term h = J ~ < u ' ~  gives rise to the 

triple veiocity products (equation 4.6-9). It will be shown in chapter 5 that re$on 

C represents the domain of the re-expanded triple products from previous sheiis - nor 

used in the Y0 analysis. The magnitudes of the respective integration volumes for 

regions A, B, and C, will now be examined. 

Since the flow is isotropie, the vector k may be taken to be parallel to the z 

axis without loss of generality. The intersection angle between two circles both of' 

k radius A centered at origin and (0,O.k). respectively, is 03 = arccos(+. and - 
k similarly. 0 2  = arccos(-) is the intersection angle for circles of radii A ~ - A <  

2Ae- 
The equation for the magnitude of the j vector from the origin to a point on the 

circIe of radius A and centered at (0,O.k) is: 



For thin shells, 8 3  .= 8 2  and the integration volumes of regions A, B. and C .  in 

figure 4.2 may be evaluated as: 

region B = 2 1 r l ~ i n e  de  jr dj + 2ir Sinû de  j2 dj I 4.10-3 

O ~ e - ~ l  O ~ ( k , 8 . ~ e - A $  

region C = 2nJs in8  dû j2 dj + 2 n  Sinû d e  j 2  dj I 1.1 O-C 

O A 0 3  J(k.O.A) 

Since the magnitude limit is a function of angle as given by 4.10-1. the magnitude 

integral must be performed first and the 0 integration follows. Intcgrals 4.10-2 to 

3.10-4 can be evaluated analytically in three dimensions. To 0(M) and with k I AR. 

the volume of region A is 4nAZ(M[ - OSk), while the volumes of regions B and C are 

both 2rcA2k. It is noted that Y0 approximate 4.10-1 as 4nA'M. this approximation is 

equivaicnt to an expansion in p o u e n  o i  [A] to [A]' tf [y] < 1. [A] i. [k] anci 

since the Av integrand is expanded to so  should be the integrai domain and thus 

the Y0 procedure is inconsistent in this aspect. However, as verified by the present 

author, removing this inconsistency does not affect the final result. since the addsd 

terms cancel over the integral domain. 



The integration volume ratio of the triple terms (region C) to the eddy viscosity 

(region A) is k k -+ O. Since the integrand , proportional to mf as ml 
(Ml - 0.30 

of the triple products is finite in this region, the triple products may be neglected 

in this limit. The same argument applies to region B. For values of k not quite so 

k small. where ml< 1, the Y 0  calculation is inaccurate. 

The general conclusion from the above discussion is that while sorne of the Y 0  

analytical steps rnay appear oversirnplified, their results are robust. ;More exact 

definition of the integration domain does not change the answers. 

It is instructive to review the relevant parameters in the RPU'G procedure. The 

Navier-Stokes equations have been non-dimensionalized in section 4.7 in order to 

recover h as the effective expansion parameter, a form of the Reynolds nurnber. It is 

noted that at the start of the procedure, there are three relevant dimensional 

parameters in RNG, W k6-E/t3], A [L-l], and v,. In addition, there are several 

In the Y0 version of W G .  two lirniis are dimensionless parameters: E,  AL and 

k taken in sequence: first + O, second A l  - 0. and ZV [9] daim that rhis 

sequence cannot be interchanged. After a wide range of eliminated scdes. when v,,; << 

3Ad0 W 
E 

inertial effects dorninate viscous effects in the elirninated range of 

flow fluctuations so v, rnay be neglected. The remaining parameters { W A E  } are uscd 

to constnict the values of characteristic velocity, length scale. and eddy viscosiry 

(Lam [6]). The effective expansion parameter is proportional to and so ihr 

series expansion of the high wavenumber Fourier coefficients is justified for small 

E .  However, E = 4 is required to recover the Kolmogorov energy spectrum. 

Y0 assert that their analysis is valid even if E = 4. when the high wavenumber 

velocity series does not appear to converge. Authors such as Theodorovicz [ I l ]  and 

Lam [6]  interpret the extrapolation of results frorn E + O to E = 4 as a form of 

analytic continuation but a rigorous proof has never been given. Y0 justify rheir 

claim by two means of validation; the derivation of several fundamental constants of 



turbulence in good agreement with experirnent and good simulation results with the RNG 

turbulence models. in chapter 10, the current study will address the question whethcr 

the limit of infinitesimally thin shell causes the high wavenumber series to converge 

or whether the approximated solution for u' has at least improved accuracy for this 

case. Also, in view of the non-rigorous analytical steps taken by YO, the question 

arises: what are the criteria for the RNG analysis of turbulence to yield meaningîül 

results? How does one tell if a new term generated by the anaiysis has physical 

meaning and whether the LES results will be more accurate if this tenn is 

incorporated in the model? The present work will attempt to give a partial answer to 

t h s  question. 



5. The recursive RNG method 

This chapter oudines the recursive RNG method as pioneered by Rose [29]. and 

extended by Zhou, Vahala and Hossain, [8], hereafier referred to as ZVH. Rose worked 

with a model of a passive scalar convected by a known velocity field and derived an 

expression for the renormalized eddy diffusivity. ZVH applied similar rnethods to the 

model of stationary, isotropic turbulence, and to free decaying turbulence in order 

to obtain a renorrnalized eddy viscosity for each case. ZVH refer to their stationary 

turbulence model as 'forced' turbulence since energy is supplied at a steady rate by 

a stirring force. Here, the scope is restricted to the forced turbulence case. 

The model equations at the start of the procedure are the same as those used by Y 0  

but the method used by ZVH is different from the E-RNG in several important respects. 

One important difference is that the eddy viscosity contribution is caicuiatsd 

numerically for a finite size shell, and the total eddy viscosity is riccumulated 

iteratively rather than integrated from an approximate differential equation. Also. 

the triple velocity products are retained in the momentum equation and contnbuts to 

the eddy viscosity. A third important difference between the work of Y 0  and the sddy 

viscosity model of ZVH is that the latter model is allegedly valid for al1 O 5 k I AC 

while the Y0 model is valid only for MC -+ O. In chapter 6 of the current study. 

the Y 0  eddy viscosity is extended to finite wavenumbers by reexpanding the triple 

velocity products. However the implementation and the results are different from ZVH. 

The methodology of the present work has common points with both Y0 and ZVH rind (vil1 

be compared to both. 

5.1 The recursive RNG method - mathematical model 

The presentation given here will follow the publication of Zhou. Vahala, rind 

Hossain [8] and also a later work by Zhou and Vahala (ZV) [ i l ]  for the derivation of 

an eddy viscosity for forced turbulence. Their notation is rnodified to match the 

other chapters of this work. Cornparisons with the work of Y0 will be made dong ihe 

way. Small differences in numerical factors will be pointed out since these may 

affect the final RNG results for numerical values of the turbulence constants. 



Emphasis is placed on the assumptions made by ZVH or their methodology which are at 

odds with the procedure adopted in this investigation. 

In contrast to YO, ZVH worked in the time domain so that the spatially Fourier 

transformed mornentum equation is recalled from chapter 2 as: 

with 

and 

Note that ZVH omit the 1/(27c)~ factors from the Fourier integrals. in contrüst to 

YO. The stirring force has a zero mean and ZVH restrict it to a Griussirin 

distribution, ZVH specif'y the Fourier space correlation of the stimng forces as: 

<fa(k,t)fp(k',t')> = W(k)Dap(k)G(k + kf)6(t - t') 5.1-1 

Cornparison of equation 5.1-1 with equation 4.1-3 of Y0 shows that a factor of' 2 

has been omitted by ZVH as well as the (Zr)) factor. The specification of the 

functional dependence on (t-t') as 6(1 - t') in equation 5.1-1 implies a white noise 

temporai correlation of the force. 

The wavenumber dependence of W(k) is a power law exactly the same as for Y0 
equation 4.1-4: 



O for O < k < A, 
W(k) = 

Wk-Y for AL I k < & 

where A, is a minimum wavenumber required to avoid singular behavior of W(k) and il,, 

is the maximum wavenumber at which the force acts. 

The recursive RNG partitions the subgrid region A, c k c & into N shells. rach 

with thickness k(1-h) where k is the outer radius of the shell k i n g  considered anc! h 

is held constant, O < h < 1: 

ZVH use the usual notation to denote variables within a shell with a superscript > 

while the variables below the shell have the superscript <. The resulting equations 

are analogous to 4.3-3 and 4.3-4 except that they are in the time domain. 

The directional indexes have been suppressed for clarity and the artiticial 

parameter h has k e n  inserted. If h is set to zero, equations 5.1-3 and 5 . 1 4  becorne 

linear and may be solved using the Green's function: 



The Green's function 5.1-5 is andogous to that used by Y0 (equation 4.1-2) and 

may be used to write a formal solution for u2(k,t): 

5.2 The high wavenumber velocity series 

Following the same procedure as YO. (equation 4.4-1). the subgrid velocity u't1i.t) 

is expanded in powers of h: 

Substituting equation 5.2-1 into 5.1-6 and matching the powers of )c. the first two 

terms of this power series are: 

Similady, the expression for ~ > ~ ( k , t )  may be written âs: 



5.3 The substitution and partial averaging 

The conventionai sequence of operations in the E-RNG is to first substitute the 

high wavenumber series 5.2-1 up to order A.? ùito the resoivable scales equation 5.1-3 

and then to perfonn ensemble averaging over the subgrid forces. ZVH follow the same 

sequence in their first publication [8] but in their later work ZV [ I l ]  da im to have 

demonsuated that the results of RNG are independent of the order of substitution and 

averaging. This issue is discussed further in chapter 8. where it is shown that the 

significance of the sequence of substitution and partiai averaging is deterrnined by 

the propenies of the partially averaged product cucu'3.  Here the presentation 

follows the convention of performing the substitution first, carrying it out to 0 ( Â 2 1  

for the overall expression, and foliowed by the partial averaging. 

Restoring the directional subscnpts and substituting the high wavenumber series 

(equation 5.2- 1 ) into the momentum equation for low wavenumbers (equation 5.1-3 

y ie lds: 

Turning now to the ensemble averaging of the fine scaie forces. term 5.3-la is 

unaffected. The average of the term 5.3-lb is evalulated below: 



The result in 5.3-2 has been denved using the same principles as utilized in 

chapter 4. The details of tfiis derivation are given in reference 181. Equation 5.3-3 

gives the 'triple veloçity products' which play a centrai role in the work of ZVH as 

weII as for the current study. Averaging term 5.3-Ic gives: 

Expanding the products and temporarily suppressing the subscripts gives: 

Term 5.3-3a contains the product <ud(k-j,t)u*(j,t)>> which yields 6(k) ~vhen 

averaged. Since G(k)M(k) = 0, the term 5.3-3a has a zero average but a non-zero rnis 

value - it is the induced force indentified by YO. The term 5.3-3c is of O(L3) and is 

dropped in the conventional 0(h2)  RNG closure of ZVH. It is noted that the O().') 

closure is artificial since = 1. If the partial averaging is carrieci out on term 

5 -3-3c, the resul t renormalizes M<(k), a so-called 'vertex renormalization ' . FNS [28] 

have shown that such ternis vanish when the ratio of Wj « 1 as a consequence of 



Galilean invariance. Since the work of Y0 satisfies klj << 1 they are justified in 
dropping term 5.3-3c. However, ZVH claim that their analysis is valid even as Uj -i 

1 and so their discarding the vertex renormalization tems is based on the O ( Â 2 )  

closure only and hence is problematic. 

Partial averaging the remaining term 5.3-3b yields: 

t t 

Mypa'Cj) 1 ~ , ( j , t . W ~ ~ ( k , r ) d r  1 Go2( 1 k-j 1 .t.Y)dr' 

where q,(k,t,.r) is a 'non-Iocai' generalized eddy-damping function defined by: 

It is noted that the term Dap(k) is introduced artificially by ZVH in order to 

extract ua<(k.7) from the three tems upe(k,r). This term is convenient for the 

notation in the intermediate expression 5.3-5 but is not necessary. since ua<(li.r) is 

naturally obtained from upqk.r) once the angular j wavenumber inteeration is carricd 

out. 

The term 'non-local' refers to the time convolution integrals also called 'memory 

integrais' or 'history integrals'. Prior to the application of the RNG procedure. ihe 



momentum equations in Fourier space are written for a given instant in time. These 

equations are in effect Markovian, with the rate of change of u(k,t) deterrnined only 

by the state of the fluid at time t. After the application of the RNG method. the new 

momentum equations contain history effects, so that the rate of change of u(k,t) is 

affected by values of u(k,t) via the function qo(k,t,?). The representation of 

physical reality by such a mode1 is questionable since it is well known that 

variables containint two different time arguments do not possess Galilean invariance. 

However, the complete convoIution integral could have Gaiilean invariance. 

It should also be noted that the introduction of the tirne convolution integral 

into the momentum equations in some ways violates the general intent of RNG methods. 

as does the retention of the triple products, [39]. The general principle of the RNG 

is to absorb the effects of small scale variables into enhanced versions of the 

coefficients in a given equation without changing the form of the equation. However. 

in the ZVH procedure, the form of the equation changes only at the elimination of the 

first shell and remains the sarne thereafter. 

5.4 Re-expanding the triple products and the recursion relations 

After eliminating the first shell which is now Iabelled shell number 0. uc(k.t) is 

replaced by u(k,t) and the momentum equations take the form: 



It is , noted that the fmst shell label appears as Mw&j) in order to indicate 

that 1 j 1 or j is constrained to the fxst sshell. 

Following ZVH [8], equations 5.4-1 will still be referred to as the Navier - 
Stokes equations even with the new triple velocity product. Now the ZVH procedure 

departs from that of Y0 since the latter method was to discard the triple product 

while ZVH retain it for the next RNG step. This next step consists once again of 

spectral splitting, expanding the high wavenumber velocity in powers of À. and 

substituting the series into the equation for the low wavenumbers. The equations 

shall be simplified in appearance by dropping directional indexes with the objective 

of showing the main effects of the triple terms on the renormalization procedure. The 

spectrally split equations appear as: 

with an analogous equation for uS(k,t). The high wavenumber velocity is once again 

expanded in a power series of 1: 

As had been shown in section 4.4, expressions for different terms in the series 

may be obtained by substituting the series into both sides of the high wavenumber 

momentum equation and rnatching equal powers of k. The first term is given by: 



This equation is linear and may be solved using a Green's function. G , (  k.t.t). 

defined through equation 5.44: 

where the lower limit of the integral is changed to ensure causality. G,(k.s.t) = O 

if r > s (the cause must precede the effect). The forma1 solution for ud)'(k.t) ma' 

now be written as: 

It is noted that ZVH d o  not present an explicit form for G,(k.t,r) but leave its 

definition implicit in equation 5.4-4. The reason is that ZVH use these Green's 

functions only to formulate a general mathematicai framework. For the purposs of 

deriving an actual eddy viscosity model, ZVH introduce simplifications through 

multiple time scale approximations. 

The expression for u>l(k,t) may be written as: 



After substituting u>(k,t) = us(k.t) + Au>l(k.t).. into the low wavenumbrr 

equation 5.4-2 and ensemble averaging of the fine scale forces. there are two O W )  

contributions to the new non-local eddy-darnping function. The first contribution is 

exactly analogous to 5.3-5 and ZVH label it q,D(k,t..r): 

The cond contribution, due to the re-expanded triple term is labeled q,T(k.t.t): 

/ d f  G,z( 1 k-j / .t,r')D(k-j)Wo 1 k-j 1 -y 

-00 

It is noted that the difference between q , D  and r\ ,T are the factors 

j ) G t , )  in the former and MsCj)Go(j,t,t) in the latter. The integration 

dornain of q , D  is the overlap of 1 j 1 and (k-j ( > l  (ie. the sarne shell radius) whilc 

the domain of q , T  is the overlap of 1 j ( A  and 1 k-j 1 > l  illustrated in figure 5.2. 

Also, q l T  contains Go which contains v,. This point is another deviation from the 

intent of RNG methodology which is to upgrade a given coefficient at each step ot' 

scaie elirnination. For this reason the triple velocity terrn cannot be properly 

renormalized. Both of these points are important to the method used in this 

investigation and will be discussed fwther. 

Thus. the final fonn of the momentum equation after elirnination of the second 

sheli is: 



where 

and qOT(k,t,.t) = 0. 

The above result may be generalized to the removal of the (n+L) subgrid shell: 

where the directionai subscripts have been restored. 

The functions q,(k,t.r) = qiD(k,t,.t) + qiT(k,t,7) are given by the relations: 



t 

1 ds' Gi'( 1 k-j 1 ,t.t')D~+k-j)W, 1 k-j 1 -Y 

-w 

and 

The Green's hinction Gi(k.tTt) is given by ZVH as a solution to the equation: 

5.5 Simplified, renomalized momen tum equa tions 

The above equations are too complex as a model of turbulence to be useful in 

practice. ZVH simplify them through a multitime scale analysis to recover an eddy 

viscosity turbulence model in place of the non-local eddy-damping function. The 

simplifying approximations of ZVH have some a n a l o ~  with the Y0 procedure of setring 

o + O where o is the Fourier transforrn of time for u(k.o) in the eddy viscosii>~ 

expression 4.6-8. However, it is found in the current investigation thar as WA 

increases, the size of terms involving w increases and the non-local behavior of ~ h e  

'eddy viscosity' becomes more important. For this reason, the ZVH approximations \vil1 

be presented here in detail and compared to the equivalent results of ~his 

investigation in chapter 9. 



ZVH assume that q,(k.t,~) evolves on a much faster time scale than ua(k.r) and so 

the latter terrn is taken outside the integral, with T replaced by t. Also. ua(k.t) is 

taken outside the summation over the shell contributions. This step implies that k < 

Al. 

This approximation reduces the eddydamping function to an eddy viscosity 

coefficient: 

Note that near the cutoff the time constants of uyk.r) and u>(k.~)  are of the 

sarne order, so moving the u'(k.7) outside the temporal integral and then calculsiting 

the eddy viscosity near the cutoff is problematic. 

Once the approximation 5.5-1 is made, the temporal integrals in equation 5.5-2 ma' 

be evaluated exactly. Taking the example of q,(k,t,.r), the exponential Green ' s 

functions of the form 5.1-5 are readily evaluated to yield: 

[ d ~ ~ o ~ i ~ t ~ ~ ) 4 ~ a ~ < ( k ) ~ , p ( k ) ~ j  Wo 1 k-j 1 -y Dpd(k-j)Myp& [dr~i,'( 1 k-j 1 .t.<) 

= 2 h ~ , ~ < ( k ) ~ , ~ ( k ) ~ ~ j  W, 1 k-j 1 -YD pa(k-j ) M W d  >11 v0 k-j 1 zv$ = 8v&) 







Using approximations 5.5-1 and the result 5.5-3, and proceeding to the removal of the 

(n+ l )  shell, ZVH obtain the recursion relation: 

k' '2: 2kMap$k)~ap(k)~  W0 1 k-j 1 -YDpd(k-j)Mypa(j) v,( 1 k-j ) 1 1 k-j 1 ?vi(j)j2 5.5-5 

i d  

with the integration limits k+, < 1 k-j 1 < k,, and k,,, < j c 4, i = O. 1. .... n. It 

will be seen later in this investigation that the presence of previous values of the 

eddy viscosity, vp in the expression for 6v,(k) poses major problems for the 

transformation of the recursion relation into a differential equation for v,. 

The integration dornains in wavenurnber space corresponding to equation 5.5-3 are 

indicated in figures 5.1 and 5.2. Region A represents the intersection of two 

spherical shells of radii &. In three dimensions it is a ring with the cross-section 

shown in figure 5.1. Region A has a volume of order A ( M ) -  and corresponds to the Y0 

k k intersection which is of order AZ(M)  when c< 1 but goes to A ( M ) '  for >> 1 .  

Stining forces at a wavenumber in the nth shell interact with each other throush an 

intermediate wavenumber also in the nth shell. Physically, the intermediate 

wavenumber corresponds to a component of the Fourier velocity coefficient in the nth 

shell so that M>"Cj).fu<uSO conuibutes to u'. It is noted that the variation of the 

parameter Ii is the connecting link between the rnethods of Y0 and ZVH. A 

Region C represents the contributions of the triple velocity products to the eddy 

viscosity. Stimng forces at a wavenumber in the nth (current) shell interact ~vith 

each other through a higher, intennediate wavenumber in a previous shell number n-i. 

This contradicts the general intent of the RNG method which is to eliminate tlic 

turbulent fluctuations in a given shell so that they play no further part in the 

problem and the equation coefficients are increased in compensation. However. the 



partial averaging procedure affects only those components of u' which contain the 

stirring forces. The components of uS with the form M>.fucu< are not affected by the 

partial averaging. These ternis form the triple products, fucM>Jucuc w hen su bstitu ted 

into the equation for uc. 

For the range of wavenumbers from & to 4 - k, region C increases in size with 

the number of the elirninated shell. This is because the interacting shells are o f k r  

by a distance k and the overlap of  shell at radius A with shells of larger radii ii; 

incomplete for A > & - k. For this reason, the range A, to 12, - k has been callrd 

the 'outer' region in this study. The outer region is not well suited for the RYG 

method since the calculation is not self-similar here as the portion of the sheil 

contributing to Av changes from shell to shell. ZVH do not discuss this region. sincr 

their numerical caiculation adjusts the wavenumber limits for each discrece shell 

that is removed. However, for those versions of RNG which formulate a difterentiril 

equation for v(k.Ac), self-similarity is important. Figure 5.1 shows region B in the 

outer range of wavenumbers, while figure 5.2 shows the calculation in the self- 

similar range. 

It is noted that region B is not taken into account by the method of ZVH. This il; 

the overlap of a shell of radius A with shells of smaller radii. This volume contriins 

the interactions of stirring forces in the shell number n through intermedirite 

wavenurnbers in smaller shells, n+i. Assurning that the turbulent velocity coef'ficients 

exists at al1 wavenumbers O I k I A, the region C is always self-similar. The 

contribution of region C will be taken into account in this study by generalizing thc 

properties of the partial averging operator. This is the subject of chapter 8. 

5.6 Renormalized eddy viscosity and numerical results 

ZVH perforrn the transformation: 

and define a renormalized eddy viscosity, v#) by the relation: 



VXE) = @+;'%,(t+,E) for E s 1 

Therefore, the recursive relations 5.51 and 5.5-5 become: 

v,+,(E) = h(y+lm[v,(hE) + &v;(hE)] 

and 

1 with the integration lirnits t < 1 k-j 1 < d 1 < hl: < li. i = 0.1. .... n. 

ZVH numerically solved equations 5.6-3 and 5.6-4 to obtain fixed point values of 

v, as a function of E. The subgrid partition parameter was set at h = 0.7 and various 

values of y were tried. with y = 3 yielding the Kolmogorov energy spectrum. Figure 

5.3 shows the result for y = 3 as compared to Kraichnan's test field model. ZVH daim 

that their eddy viscosity plot has a 'rnild cusp' near E = 1 but inspection of figure 

5.3 shows that their eddy viscosity values first drop at just below 0.2. then riss 

again close to E = L but never exceed their flat region value for E close to O. 

Criticisms of these results by Smith and Woodruff [7] allege that the cornputritions of 

ZVH are very sensitive to the size of the partition parameter h and show no evidence 

of convergence as h O. The present author agrees with this objection regarding 

the ZVH result for eddy viscosity without the contribution of the triple products. A s  

discussed above, such contribution is represented by region A of figures 5.1 and 5.2 

and is of order A(M)~ for a given shell. After the elimination of n shells. i h r  

resulting sum of such volumes will be of order ~A(M)'. and the range of eliminated 

wavenumbers is n M  = & - AC. Therefore, the eliminated volume of wavenumbers is (A,, 

- A.)A(M), which goes to zero as M --> O. In this Iimit. the ZVH recursion beconics 

a differential equation as discussed by Carati [ I l ]  in chapter 6. 



Figure 5.3 Cornparison of subgrid eddy viscosities for 
isotropic turbulence, accordinq to Kraichnan and Zhou, Vahala, 
and Hossain (ZVH). Recursive Che11 thickness 0.3 used by Z\M 

Kraichnan -- Z\M 

I 

products 



5.7 Sumrnary 

ZVH have presented a 'recursive' version of RNG which elirninated finite shells of 

wavenurnbers and re-expanded the triple velocity products. First, a general derivat ion 

was presented involving an eddy damping tùnction q(k,t) coupled to u(k.t) through 

temporal convolution integrals. Whde theoretically correct in the treatrnen t o f  the 

temporal dependence of RNG, the resulting mathematical model is too complex to 

generate a workable turbulence model. Therefore, ZVH removed the time dependence. in 

effect retaining the zero order terrn in a Taylor series expansion of the time 

function. This approximation, suitable for wavenumbers far apart in the specrnim. is 

equivalent to disregarding the o dependence of the eddy viscosity expression by YO. 

ZVH produced a numerically generated plot of the resulting eddy viscosity for h = 

M 0.7. This could be called the 'tbick shell' method since h = - 1. ZVH do noi 

discuss the sensitivity of their results to the variation of h. This issue has been 

investigated by Carati [I I l  and wiIl be presented in the next chapter. The augmented 

rnornentum equation for the resolved velocities contains triple velocity products which 

are difficult to simulate. 



6. Local interactions in renormaiizatioa methods for Navier-Stokes equations 

As described in the previous chapter, ZVH re-expanded the triple velocity 

products in their recursive version of RNG in order to include these in the resultant 

eddy viscosity, v(k,Ac) and to capture the behavior of tehis quantity for wavenumbers 

near the cutoff, k/Ac + 1. The transfer of energy between wavenumbers close in 

magnitude is called 'local'. The application of RNG near k/Ac = 1 is probleinatic for 

a number of reasons, the first of which is that a small ratio of WAC is required to 

justify the partial averaging and the 'viscous-like' effect of small scalzs on larse 

scales. Carati 1 Smith [30], and Smith and Woodruff 171 pointed out other 

problems with the recursive RNG method. Carati [ I l ]  repeated the numerical 

simulations of ZVH for various values of their scaling factor h, and found that the 

ZVH eddy viscosity results are sensitive to the value of h. Carati also carried out 

an approximate analytical calculation for h + 1 (shell thickness approaching O )  to 

show that an unphysical t e m  of order k is obtained in addition to the eddy viscosity 

term. Smith [30] showed that the triple products do not have Galilean invariance. 

Zhou and Vahala [9] responded to the initiai cnticism of Carati. To date. the 

research community remains divided on the abifity of RNG to represent local 

interactions. 

This chapter reviews the work of Carati ( 1  11 in some detail since his approach 

is similar to that of the present work. The subsequent rebuttal of ZV [9] is 

summarized and discussed. The objective is to prepare the background for rhs 

procedure carried out in part 2 of this study. 

6.1 The recursive RNG in the vanishing shell thickness limit 

Carati's formulation is the same as ZVH, except that it is carried out in  the 

frequency domain. The notation will be modified to match that used elsewhere in the 

thesis where sirnilar quantities are represented. The Carati equation for the total 

eddy darnping function is: 



w here 

and 

Figure 6.1 shows that the integration domain cy is bounded by the fdiowing 

inequalities: A,, - Al& < 1 k-j 1 < A.,, and A, - LU% < 1 j 1 < A,. Here An is the radius 

of the current shell and A, is the radius of a previous shell. 

Following YO. Carati carried out the frequency integration using calculus of 

residues. Also, assuming the shell thickness to be small relatively to each of A,. 

A,, and k, j = Aj + +(NA,), and 1 k-j 1 = & + O(AiA,), Carati recovered the following 

expression: 

where: 



ei- 
O Y  u- 



Here Carati introduced u(j) as the local viscous terrn. since it represents the 

energy transfer at the cutoff benveen wavenumbers of equal magnitude. It is noted 

that a portion of the integrand has been moved to the outside of the integral since 

it is approximated as constant over the small volume cy. In connection with the 

previous notation of this study. the volume c;, corresponding to the intersection of 

shell n with shell j, is a part of region C. Also, CO = region A. Carati uses this 

approximation for the remaining integrand as well by first expressing the angle O,, 

between the vectors k and j in terms of 4 and A,. 

Letting j and j ~ ,  represent the longitudinal and the perpendicular components of 
II 

the vector j with respect to k, the following approximations may be made: 

where relation 6.5 was obtained frorn the cosine law: j z  + kz = 1 k-j 1 - Ijkcosû,, 

The above relations are illustrated in figure 6.1: 

Carati uses the identity: 

Now relations 6.5 and 6.6 may be substinited into 6.7. so the dependence oc Atkj )  

on the angle between vectors j and k. O,, is replaced by a dependence on A,. A,. and 

k so that A(k j )  = A(A,,An.k). These quantities are approximated as constant within 

the small integration domain 137 so that A(Aj,A,,,k) is moved outside the integral in 

equation 6.3. This integral is now reduced to the evaluation of the volume Vy of the 

integration domain, ~ f .  Carati evaluates V: in d-dimensions as: 



Here Sd-, is the area of a sphere of a unit 

Taking d = 3, 

V; = Jd3j = 

c; 

Carati now uses relations 6-5 to 

radius in (d-1) dimensional space. 

& Z X ( M ) ~ ~  6.1-9 

6-8 to simpliw equation 6.3. Also. taking AI 

to be an infinitesimal quantity, the sum in 6.3 becornes an integral so  the overrtll 

result is a differential - integral equation: 

It should be noted that equation 6.1-10 is valid only in the self-simila- 

region, A I 4 - k, and not in the 'outer' region, as defined in chapter 5. 

It is noted that Carati evaluated the wavenumber integral 6.1-3 by ttikins ri 

small integration volume VI, resulting from the intersection of two thin shells O!' 

thickness AM, Figure 6.1. The simplification available due to the srnall Vy avoids 

integration with respect to 0y and shifts the complications from 6.1-3 to 6.1-1 0. To 

solve the latter, two integrations are required, the first of which does have a 

complicated analytical solution and the second requires a numerical approximation. 

Further discussion will be found in chapter 10. 



Carati proposed a similarity solution to 6-1-10 of the form: 

Letting k/A = 1. t9e expression for the local viscous term is: 

The objective is to Bnd the exponent c and the function $. Equation 6.10 is 

now rewritten using the dimensionless variables r = k/A and 5 = A'/A: 

The above expression results from factoring out A from the right hand side of 

expression 6.1-10. The derivative on the left hand side of 6.1- 10 may also br 

expressed in terms of the non-dimensional variables by using the chain mie of 

differential calculus: 

Carati equates the right hand side of equation 6.1-15 to the right hand side 

of equation 6.1- 14 to obtain: 



The solution to 6.1-16, +(r), cannot depend on A by definition of a similuity 

solution. Therefore, the exponent of A in 6.1-16 must be zero yielding an equation 

for c: 

In three dimensions and with y = 3 as generally required by RNG rnethods. diis 

gives c = 2/3. Substituting 6.1-17 into 6.1-16, a separable differential equation Cor 

@(r) results with the solution: 

where the integrai apparently cannot be evaluated analytically. Thus. in order to 

k evaluate 6.18, an expansion of F(r) in powers of r = A is necessary. 1301: 

Carati [ I l ]  called this an a posteriori W A  expansion. Substituting 6.19 into 

6.18, the resulting integral can be evaluated term by term to give: 

It will be shown in the second part of this thesis that the above calculrttion 

consists of a symrnetric and an non-symmetric part with respect to the eliminiitcd 

wavenumber shell. The symmetrical portion allows only even powers of r (Wilson [4!]) 



and this is the bais  of the conventional RNG procedure as imported from other 

branches of physics. Odd powers of r indicate a break of symmetry and the validity of 

the RNG method becomes questionable in this case. 

Carati carried out the expansion 6.1-19 to third order. [30]. In three 

dimensions, the result is: 

Expressing c = (5-y)/3 = 2 - €13, and using 6.1-2 1 and 6.1-20 in 6.1 - 1 1. t he  

result is: 

Carati observed that the first term of the series cannot be interpreted as a 

viscous linear tenn since it is proportional to k instead of k'. The behavior of 

h K A )  at large scaies, where khi + O is: 

Thus, the resulting 'eddy viscosity' behaves as k-l at large scaies which is 

unphysicai. Also. letting E = 4, as generally required in RNG theories. i t  is notrd 

that the quantity in 6.1-23 is negative. 

Checking the behavior of h(k,A) at srnail scaies where k/A --+ 1 and using k in 

place of A: 



Substituting E = 4 into 6.1-24, the 'eddy viscosity' at the cutoff is: 

Therefore, up to O ) ,  expression 61-25 has a negative value of 

M approxirnately -0.302 - k43  which is unphysical as an 'eddy viscosity'. in 
@'( 1 ) 

effect indicating a reverse flow of energy from small scaies to large scales. 

Carati also reproduced the numerical calculations of ZVH for a range of shrll 
thicknesses, using the ZVH notation of h to represent the consecutive shell radius 

ratio. His results are shown in figure 6.2, where the sensitivity of  the result to 

the value of h is apparent. Also, for values of h > 0.8 (shell thickness of 0 .X)  the 

'eddy viscosity' becomes negative for much of the range of k/A in agreement with 6.23 

and 6.25. 





Based on the above findings, Carati concluded that the 'recursive' RNG which 

includes the re-expanded triple velocity products is unsuitable for evaluation of the 

'eddy viscosity' and that the RNG methods are only suited to represent very 'non- 

local' interactions in turbulence (kW << 1). This view is in agreement with the 

philosophy of Y 0  E-RNG. 

In their rebuttal publication, Zhou and Vahala [9] acknowledged that their 

eddy viscosity mode1 has a 'parameuic dependence' on the shell thickness AA and 

responded to Carati's criticism concerning the k-1 behavior of their eddy viscosity 

as k --+ O. They claimed that in order to obtain meaningful results. the sequencc of 

the two limits, M --+ O and k -+ O is not interchangeable. 

Considering first the 

remains finite as discussed 

where k 
5 1 rather than 

case of E-RNG, the k -+ O limit is taken first while AA 

in chapter 4. The ZV argument really applies to the case 

k --, O. The outer, unshaded regions of Figure 6.3a and 

figure 6.3b contain the contributions to Avn from the triple products generaied on 

shell n-1 and re-expanded on shell n. These are labelled as regions CL and CR. while 

the Y0 domain is the shaded region A. As discussed in section 4.10. the intesration 

volume associated with the triple products is of order kA2. ZV [IO]  use their ti-ce 

decaying turbulence formula for the discussion, but here their forced turbulence 

formula will be used instead to correspond to the rest of this snidy: 

M+k) is of order k, al1 the integrand ternis are of order A1 + kn. where tlic 

exponents i and n depend on the term except for D (k-j) which is of order unity. 

i 
Pa 

After including the - factor, the whole expression pnor to integration is of ordcr 
k' 

k-1. 





Refemng to figure 6.3, the ZVH calculation includes regions C and A. As 

discussed in section 4.10, the integration volume of region C is proportional to id' 

cancelling with the k-1 factor in the integrand to create a constant value. Region A 

is syrnmetric with respect to 0 and since the odd powers of k have odd powers of cos0 

as coefficients, they vanish after the angu1a.r integration. This elirninates rhe 

k threat of k-l singularity as k + O for I 1. However, N do not address the 

k question whether the contribution of regions C is negative for im 5 1. This question 

will be considered in chapter 9. It should be noted that here ZVH in effect validare 

the Y0 method. since the contribution of region C will go to zero as k + O. It ir 

also noted that the ZVH calculation with h = 0.7. corresponding to M = 0.3. 

corresponds to the Y0 procedure for small values of k although it is not as accurate. 

Having disposed of the singularity problem for 5 1. ZV then considcred the rn 
k case where r 1, corresponding to the Carati analysis. More precisely. ZV let A i l  

-, O. while k is 'small but fixed'. ZV derive the size of the integration volume of 

region A as O(M2). This may also be surmized from figure 6.1 since A = C:. Howe\.rr. 

ZV only admit c:" as the additionai dornain of the triple products. Since the latter 

volume is also O(M2). ZV conclude that Av. the correction to eddy \?iscositj. iz 

0(M2) and so an ordinary differential equation for v(k.A.) cannot be formed and that 

the M i O limit is sinplar for the recursive RNG, when k is finite. 

It is the observation of the author of this study that ZV have considrred only 

k n = 2 with >> 2 which led them to the above conclusion. The correct application of 

the 'recursive' RNG is in the self-sirnilar region. A, - k > A as discussed in 

section 5.6 and indicated in figure 5.2. The ZV argument applies only in the brgining 

of the 'outer' region, as shown in figure 5.1. The Carati analysis implicitly 

discards the 'outer' region which is permissible if WA « 1. 



6.2 Galilean invariance of the triple products 

Smith [30] demonstrated the lack of Gaiilean invariance of the triple velocity 

products and proposed that the unphysical results obtained by Carati rnay be due to 

this fact. It is recalled that the Navier-Stokes equations possess Galilenn 

invariance since the equations are a statement of Newton's law. F = ma. Galilean 

Du(x,t) invariance requires that the solution for a, or .- is invariant under a constant 

velocity shift of the reference frame. The Y0 method ternporarily loses Galilean 

invariance at a given step of the procedure by introducing the h expansion. In 

particular, the Stokes solution, ud ,  does not have Galilean invariance. Also. i t  is 

well known that the two-point, two-time correlations introduced by RNG lack Galilerin 

invariance. However, the white noise correlation of the stirring forces eliminates 

the two-time property of the correlations, and after the h senes is absorbed by the 

eddy viscosity, the Galilean invariance property is restored at each step of tlir 

procedure. For the recursive RNG, the unphysical triple products are retained in the 

modified momentum equation so the Galilean invariance is not recovered untit the v t . ~  

end of the procedure, when the remaining triple products are discarded. Smith [30]  

concludes that the limit k / ~  - O rnay be necessary to obtain physicaily meaningful 

results. Foster. Nelson, Stephen, FNS [28] have also stated that the symmetry of the 

wavenumber shell is implied by the Galilean invariance requirement. Kraichnan (Léslie 

[ X I  explains that lack of  Galilean invariance to random shifts in the velocity of 

the reference frame causes spurious convection effects in the approximate solution. 

This spurious convection causes artificial decay of the energy spectrurn due to 'phase 

mixing' - spurious cancelling of covariances of the velocity Fourier modes. Kraichnan 

recommends a Lagrangian rather than Eulerian formulation in order to preserve 

Gdilean invariance. 

6.3 The iterative filtering method 

Following up on his previous work, Carati [40] has developed the iterative 

filtering method (IF) which is as yet unpublished but was made available to the 

present author through a personal communication. A detailed review of this work is 



beyond the scope of this thesis, however the major principles will be outlined hrre. 

The IF rnethod is applicable to finite k wavenumben. Like the RNG, the IF relies on 

the )L2 closure and incrementally evaluates corrections to the eddy damping function. 

Unlike the RNG, the IF also evaluates corrections to the random stimng force. Since 

any random variable may be decomposed into an average plus a zero-mean fluciuation. 

the IF evaluates the O@') averages on a given shell and retains fluctuations from 

the tem U u < u S  where u d  is the response due to the stirring force on shell (il. 

It is noted that the average Aqu<u=-O> is taken equai to O like the RNG. Proceeding 

to the next shell, spectral splitting and expanding in powers of Â yieldh 

hSui+"OUi~, a zero mean random variable which is now used to augment Pl-' This 

step is a major departure from the FNS and Y0 RNG methods. 

Among the methods discussed so far. only the IF accounts for the Â . f ~ ~ i i ~ ~ ~  trrin 

which contains the stirring forces acting in region B of the shell (il. Howcvcr. 

instead of integrating over region B directly (as will be done in the current study). 

the IF takes these forces into account as secondary induced forces on subsrquent 

shells. An encouraging characteristic of the rnethod is that there is a general 

symmetry of the integrands on each half of the integration contour C. 

6.4 Discussion 

In surnrnary, Carati has correctly extended the ZVH procedure to the case of an 

infinitesimal shell. His results do not represent the physics of an eddy viscosity 

due to the k coefficient of the leading term and also due to the negative sign of 

this term. The leading terrn is considered 'not physical' because it  is not of the 

sarne form as any of the terms present in the original Navier-Stokes equations and 

cannot be identified as the effect of viscosity, the non-linear advection or the 

forcing. Including such terms in the modified momentum equations is unlikely to 

produce the correct solution for the large scales because it changes the mathematical 

characteristics of the equations. Thus, the recursive RNG appears to hil in rhe 

limit of y - O. From a numerical standpoint, the ZVH recursive equation is not 

consistent as a representation of the differential equation for the eddy viscosity. 



In the opinion of the present author, the ZVH rebuttd argument does not address the 

cause of the failure of the recursive RNG. 



7. Objectives and Outline of Part 2. 

7.1 Introduction 

In the context of modeling isotropie turbulence, the objective of the RNG method 

is to mode1 the average effects of the small scales on the large scales where the 

small scales have a high spatial wavenumber or temporal frequency. During the RNG 

procedure, one imagines iterative spatial filtering, as shells of wavenumber radius A 

and thickness M are removed. This aim is unambiguous when there is a wide separation 

k of scales between the resolved velocities, u(k.t) and the subgrid boundary A. n <c 1 .  

This constraint has k e n  labelled 'non-local interactions' in the literature. In the 

<< 1. Considering Y0 andysis, the non-local requirement takes on the exueme form 

the convolution integral, Juyk-j)u>~)d3j, a physical interpretation of this 

constraint is that k is so much smaller than A that the momentum drain from u(k)  by 

wavenumbers of order A is the same in al1 directions on average. Also, both j and k-j 

reach into the unresolved subgrid region in the shell so that the energy transferred 

from eddies at k via the eddy viscosity to the subgrid scales. may be trruisfered into 

both j and k-j. Averaging over a thin shell of the in; ,ration domain corresponds 

unambiguously to elirninating a range of small flow scales. Therefore. as had bcen 

discussed in chapter 4, the RNG method for turbulent flows has some success in 

m o d e h g  the non-local interactions of turbulence. 

However, for ZlrC k >> 1, ( and n S 1 ), the k vector triad includes only one \.ector 

- 1 have been labrllcd in the current shell, say 1 j 1 = A interactions where n 
'local' in the literature. As the vector j travels around the shell. 1 k-j 1 varies 

from supergrid scales (figure 7.1, region B) to the range of subgrid scales (figure 

7.1, region C). In this case, the objective is that the RNG incrementally models thc 

effects of wavenumber triad interactions which involve at least one subgrid 

wavenumber. in the conventional RNG method, these interactions take the form of the 



figure 7.1 



triple products, Ju<(k-j)M>ÿ)Jucuc, where the wavenumber j falls in the subgrid 

range. In this case, the elimination of a sheU of Fourier coefficients cannot be 

interpreted as spatial filtering since higher wavenumbers remain in the equation. For 

a temporal filtering analogy, the term M'Q)Ju<uc rnay be taken as that portion of 

u>(j,co) which falls below the temporal filtering cutoff. In this context. re- 

expanding the triple products on subsequent shells is analogous to gradually lowering 

the low-pass lirnit to reduce the remaining portion of U>U,O). 

Another term which poses difficulty for the RNG is Ju>MCQ)Ju<u'. which onginatrs 

from JUCP and is typicdy set to zero. The Iterative Filtering procedure due to 

Carati deals with such terms as discussed below, while a different method is propossd 

in this study. 

Al1 of the RNG methods discussed up to this point involve integrations o\-rr 

regions C as indicated in figure 7.1. To the best of this author's knowledge. the 

effects of the stirring forces present in regions B are not taken into account in in? 

pu blished literature. The Iterative Filtering method (herein referred to as IF ) 
proposed by Carati takes region B forces into account as secondary induced forces on 

subsequent shells. In this way, region B forces affect the eddy viscosity through tlis 

fourth moment: 

where the 1 k-j 1 is divided into n shells of thickness M to include al1 of region C .  

However, if the region B forces (forces which act through an intermediate wavenumber 

lower than the sheil) were to be treated in the same way as the forces acting in 

regions A and C, these would affect the eady viscosity through the second moment: 

where the 1 k-j 1 is divided into m shells of thickness M to include al1 of region B. 



It may be concluded that a number of difficulties emerge when attempting to use 

the RNG method to moâel 'local interactions'. Carati [ I I ]  and Smith [30] have shown 

that eddy viscosity calculations do not yield physical results. The I t e m  ive 

Filtering method [40] is beyond the scope of this study. In the remaining part of 

this work, the RNG method will be modified to better represent the 'local 

interactions' of turbulence in Fourier space. 

7.2 Objectives and outline 

Refering to section 1.3, for the objectives of the present work, a review of the 

RNG methods for fluid turbulence has been presented in chapters 3 through 6. 

Additionai RNG procedures have been applied to fluid flow, for example those based on 

the field theoretic approach, and also the IF method of Carati. These are beyond the 

scope of this study. The remaining objectives for part 2 are to examine if the RNG 

andytical tools are suitable to represent local interactions, and to attempt to 

obtain an eddy viscosity function v(k,A), hopefully with a cusp behavior as reported 

in llterature dealing with other theories. The investigation will proceed in the 

following stages: 

1.  The RNG method uses several steps which depend on the non-local approximation. 

These are the partial averaging, and the Markovian approximation of the tims 

dependence. Also, the h series expansion is affected by the non-local assumption- The 

impact of local interactions on the above approlrimations will be examined in chapter 

8. First, the partial averaging procedure will be generalized ailowing different 

properties to be specified. Modification of the partial averaging will rillow. 

including region B forces and also possible elimination of the triple veiocity 

products. Second, some characteristics of the A expansion series will be exrimineci. 

Finally. an observation wiI1 be made about the Markovian approximation for local 

interactions. 

2. Three different variations of partial averaging leads to three difkrential 

equations for the eddy viscosity. These equations will be denved in chapter 9. 



3. The numerical solutions for the eddy viscosity formulations will be presented 
in chapter 10. The results will be discussed and compared to the values proposed in 

li terature. Chapter 1 1 will conclude the current investigation with recommendat ions 

for future work. 



8. Modified partial averaging of the Navier-Stokes equations for the RNG method 

8.1. Introduction 

This chapter deais with severai steps of the RNG procedure, the partiai averaging 

of the Navier-Stokes equations in Fourier space, the Â. series expansion. and the 

Markovian approximation. 

8.2 The partial averaging operation 

Typically, the partial averaging operation is defined as equivaient to the full 

ensemble average for those random variables which satisfy certain conditions. If the 

conditions for partial averaging are not satisfied, the random variable will be 

unaffected and will appear to be statistically sharp (invariant under the asverriging). 

Such definition is unphysicai for variables very close in temporal and spatial scriles 

that fall on different sides of the defined demarcation line, Le. for a wavenumber 

lower or higher than a given limit, or a temporal frequency lower or higher than ri 

given lirnit. 

A simple definition of the partial averaging operator is based on wavenurnber 

magnitude aione. The Fourier coefficients with a magnitude lower than the demarcation 

d u e  A are unaffected by the operation, those with a magnitude higher than A Lire 

ensemble averaged: 

u(k) for O < k < A 
<u(k)>> = 

<u(k)> for A I k I 12, 

where <..> is the ensemble average and <..>' is the partial average. It is erisy to 

show that such a definition is inadequate for turbulence models. Consider the Navier- 

Stokes equation for uC(k,t): 



Applying the operation (8.2-1) to equation 8.2-2 causes t ems  8.2-2b and 8.2-2c to 

vanish and clearly, the equation cannot remain valid. Therefore, the properties of 

the partial averaging operator must be modified. 

Motivated by the above discussion, a general procedure for partial averaging of 

the Navier-Stokes equations in Fourier space is presented here. Let ui be a cornponent 

of the velocity vector u. First, the following general property is proposed: 

where < >' again denotes partial averaging. 

Next, the Fourier velocity coefficient, ui(k,t) is decomposed as: 

Further propenies of the hypothetical partial averaging are as follow s: 

-- -- - 
< uiu, ... u, >> = uiuj ... u, + ;hm (remainder) 

/ I  t / f < uiuj ... ui >> = < uiu i...ui > + An (remainder) 8.2-6 

where rn 2 3 for the first moment and m 1 2 for the second moment. Also. n 2 3 for t lw 

first moment and n 2 1 for the second moment. Since RNG retains tems up to 2,'. 
higher order moments are beyond the scope of this work. The remainder t e m s  have a 

zero average. 

For the products of ; and 6: 



-- - I I  I -- - I I  I < uiu, ... u, u,ui...ui >> = uiuj ... ut < uiu i...~i >> + hm (remainder) 8.2-7 

Combining the results of equations 8.2-3 and 8.2-7 leads to the requirement: 

where the remainder term in equation 8.2-8 will have a non-zero average in general. 

If the remainder terms in equations 8.2-5 to 8.2-8 have the wavenumber and temporal 

frequency sirnilar to those of i(k,t) then the properties of partial averaging are 

similar to filtering in space or in time. 

Further discussion of the partial averaging will be limited to first and second 

moments. Recalling from section 3.5 that the spectral correlation tensor is definsd 
as: 

and that <u,(k.t)u,Ü,t)> = G(k+j)Qij(k), the following second moment propenies are 

compared: 

For < Li(kTt) ;,(j,t) >>, the following definition is proposed: 



where it is emphasized that the O(L2) term in equation 8.2-13 has a non-zero average. 

- 0 

Consistency with 8.2-8 requires that Q ,(k,t) is O ( V ) .  

Based on the above results, the Fourier velocity correlation Qij(k.t) may ht: 

decomposed as: 

For stationary flows, the time arguments may be dropped from equation 8.2-15. 

Irnposing the Kolmogorov constraint, each of the three quantities on the left hand 

side of 8.2-15 must have a component proportional to the Kolmogorov spectrum and may 

have other components which must cancel in equation 8-2-15, so that this equation may 

be expressed as: 

It is noted that uiu, is a random variable with an average Q,, and a zero mran 

fluctuating component; (up,)': 

and sirnilarly: 

I 

The significance of equation 8.2-18 is that the RNG method retains Qij(ki but 

discards (hi(k,t)"j(kO,t))O at each step of the iteration. For the RNG method to be 

vdid, it is not required that the rms value of the latter term is smaller than the 



former. What is required is that the cumulative value of the fluctuations decreases 
/ 

while the cumulative value of the Qij(k,t) increases. Physically, this may br 
I 

interpreted in terms of time scales. The charactenstic time of Qij(k,t) is of the 

s m e  order as the charactenstic time of u(k,t), however, the time constant of 
I I 

(u,(k,t)uj(k',t))' is much shorter. 

The decomposition 8.2-4 may also be applied to the stimng force: 

However, the stirring force is not expandable in powers of h. Therefore. if f, is 

substituted for ui in equations 8.2-5 through 8.2-8, al1 the remainder terms must br  

zero. 

The decomposition 8.2-4, rnay now be substituted into the Navier-Stokes equations. 

yielding two coupled mornentum equations for each component of 8.2-4: 

Next, the &k-j,t) ;ÿ,t)> term in equation 8-2-70 is replaced by the resulr of 

equation 82-12. Term 8.2-12a vanishes while tem 8.2-12b contributes a remainder of 

O(h)  inside the integral or O(A2) overall. The k expansion can therefore be justified 

if the successive remainders generated by iterated partial averaging became smaller 

in magnitude. This point is elaborated upon in the next section. 



8.3 Partial averaging in terms of the stirring forces 

By definition, the stimng forces used in the RNG method are generally considered 

not to be expandable in powers of h, (or equivalently, the stirring forces are not 
f 

expressed as convolution integrals of other variables). Since f,(k.t) is not 

expandable in powers of h, the partial averaging cannot yield a remainder and becornes 

equivalent to ensemble averaging. The tenns of order h in equation 8.2-14 must be set 
I I 8 I 

to zero so that <fi(k,t)fj(-k,t)P = <f,(k.t)q(-k.t)>. 

For the RNG procedure, the partial averaging is perforrned on the high wavenumber 
I 

stirring forces, ( k t )  In this work, the corresponding variable is f(k.t). First. 

the variable ;(k,t) is expanded in powers of k. 

The above expansion is now extended to the correlation Q(k,t): 

Again, in the context of Kolmogorov's turbulence, each terrn of the above series 

8 2 - 2 0  must have a component proportional to the Kolmogorov spectnim. Also. cross 

correlations of the various terms must have the Kolmogorov spectrum or must equril 

zero. To obtain expressions for each term in the series 8.3-1, substitute the above 

series into both sides of equation 8.2-6 and integrate in time: 



For a Fourier space correlation of the stirring forces given by equations 4.1-3 

and 4.14. &(k,t) as defined by equation 8.3-3 has the spectral correlation given 

b y: 

with 

The above is not the Kolmogorov spectrum. There are several potential rernedies for 

this problem: 

k i) Specify the spectral correlation for the stimng forces as ~ k - 3 ( ~ ) u 3 .  

This option is unsatisfactory. since the stimng forces are intended to represent 

the effects of the energy cascade. they should depend only on the wavenumber k. not  

on the cutoff wavenumber, A, at least for E = 4. 

ii) Replace v(k,A) in equation 8.3-3 with a function proportional to k4/3 

The function chosen to replace v(k,A) may be v(k,k) or its average in wavenumber 

space (as Smith and Reynolds [5]  and Lesieur & Metais [19] interpret the Y0 eddy 

viscosity): 



where f(k) is an unknown weight function and C,, is a constant less than 1 in value. 

Note that the Yakhot-Orszag eddy viscosity, vy0 is a function of A, as k - O. v,,,(A,) 

but it is a function of k in two instances, as k + A, and for the purpose of energy 

balance as k - 0. 
For &(k,t) as an estimate of ;(k,t), the ad hoc replacement of v(k.A) with vtk.k) 

is consistent with the overail procedure when h(k.t) = &(k,t) in the wavenumber 

shell. It will yield the correct k dependance for a Kolmogorov spectnim but not the 

correct amplitude. However, &(k,t) = G(vy,(k))f(k) recovers the Kolmogorov spectrum 

based on the work of YO. Hence, both options will be explored in the present study. 

The variable ;o(k,t) may be viewed as a statistical estirnate of u(k.t). with ihe 

correct representation of the first and second moments of the latter variable. 

Further discussion of this problem is presented in section 9.5, Compatibility with 

the Y0 theory. 

It is not clear how to deal with ;l(k,t), in terms of the eddy viscosity form for 

the vertex Green's function. However, for the current study. both v(k.k) and v,.,,tk) 

will be tried in place of v(k,A) in equation 8.3-3. The chief motivation for this 

step is to avoid non-linearity in the resulting equation for eddy viscosity. 

8.4 Partial averaging and A. series expansion of the Navier-Stokes equations 

The aim of this section is to discuss various aspects of the series expansion in 

powers of h, its relation to partial averaging and the problem of convergence. First. 

the question is considered whether a series in k about the stimng force is 

necessary. 

Parts of the RNG treatrnent of turbulence originated from Renormalized Perturbation 

Theory developed by Kraichnan, Edwards, Wyld, and others (McComb [ 1 31 ). These 

theories utilized a senes expansion in b about a stirring force but no spectral 

splitting. The terms of this series are functions of stimng forces onIy, and not of 

the velocity, which is the unknown variable. 



However, the RNG version of the h series expands only u>, and the terms of this 

series include both P and u< (see for example equation 4.3-3 for u"). When this 

series is substituted into the equation for uc, the effect is to substitute u' into 

its own equation, thus increasing the order of the non-linearity of this equation (as 

in the triple products). The higher order of non-Iinearity implies that the new 

equation has additional solutions, spurious from the standpoint of solving the 

onginai Navier-Stokes equation. It is hoped that the partial averaging process is 

able to eliminate the higher order non-linearities, this means that the spurious 

solutions partiai average is zero. Therefore, one would like to select the propertiss 

of the partial averaging so as to eliminate the higher order non-linearities rit each 

step but still be consistent with the physics of the problem. 

Given this undesirable situation, one may conclude that the formal expansion of u' 

as a power series in 3c is not necessary. Instead, u> may be used in its exact fonn ris 

given by its momentum equation. Consider again the spectrally split, coupled Navier- 

Stokes equations written below in an abbreviated fonn and without the stirring 

forces. 

k For a high wavenumber shell of thickness M, if « 1, the integration domain of 

8.4-1b is of order k, while the integration domain of 8.4-lc is of order M (the Y 0  

problem). For this case, equation 8.4-1 may be approximated as: 



A viscous-Iike t e m  may be obtained by substituting equation 8.4-2 in place of one 

u' term but not both in 8.4-3c: 

Note that the convolution integral cannot be doubled up in this case or double 

counting of the same variables would result. Therefore, the eddy viscosity rnay onl?. 

be obtained from one combination of the expanded and unexpanded u>. However. thc 

series expansion about the stirring force demonstrated in chapter 4 utilized boch 

cornbinations, and the partial averaging definition 82-14 has been derived b a e d  o n  

that procedure. Thus, it is concluded that the series expansion about the stirring 

force is needed if the steps of substitution and partial averaging (8.2-14) are to be 

interchangeable. 

Now the partially averaged spectrum of uli' is taken to be the Kolmogorov spectrum 

and a remainder of order h: 

= Cr € 3 3  Dij(k) k-11'3 + O(h) 
Now applying the partial averaging to 8.43a yields: 



The results of averaging 8.4-6a and 8.4-6c equai O plus O(h) remainder. yicldin_r 

an unknown remainder of O(h3) in equation 8.4-6. The result of averaging the term 

8.4-6b is: 

where the wavenumber labels have been restored. 

Clearly, one is able to generate an eddy viscosity correction without resorting to 

stirring forces, provided that the Kolmogorov constant is given. The method is 

similar to that used by ZV [IO] for the decaying turbulence version of RNG. The 

Navier-Stokes equation without a source of energy will have a solution \vit11 a 

decaying amplitude. 

However, the remainder terms of order O(A3) generated by al1 three parts of 8.4-6 

are unaccounted for. Consider the term (8.4-6a> as an example. To generate a term of 

O(h3), one is free to substitute for either u' or one of the uc velocities with the 

corresponding momentum equation. 8.4-2 or 8.4-1, respectively. The complete expansion 

must involve both substitutions giving the relation: 



where (LI>=) irnplies that the momenturn equation has been substituted for u>. It is 

emphasized that equation 8.4-8 would not be valid without the partial averaging 

operator due to the double counting of variables. For the partial averaging. the 

unexpanded variables are equivalent to uo = Gf for the series expansion about the 

stirring force. Again, spurious solutions are introduced in the momentum equation bjv  

increasing the order of the non-linearity from 3rd order on the Left side to 4th 

order on the right side of 8.4-8. 

The substitution for u< (or the equivalent series expansion of uc in powers of À 

as done in the next chapter) appears to be new. To the present author's bèst 

knowledge, other forrns of RNG do not use it. Here, it is justified by the generalized 

properties of the partial averaging operator presented in section 8.2. Conside r t1ie 

Again, each of the terms in 8.4-9 is partially averaged, yielding an ensernblc 

average of the u' terms plus remainders of O(h) inside the integral or 0th-L) ovcrall. 

Clearly, the process could be tenninated if h < 1 or if it could sornehow be shown 



that the successive rernainders were smaller. This however, appears unlikely because h 

= 1, and the re-expansion of u' and LI' to O(@) yield terms of the form: 

rn convolurion intepis 

Apparently, no argument exists to show that terms of the form 8.4-10 reduce in 

size as m increases. It shoutd be pointed out that it is the modified method ot' 

partial averaging which allows u' to take part in the averaging and causes thc 

apperance of the above terms. For example, the term AGMc u<u' may be re-expanded as I 
À ~ G M ~ ~ U - ) ( U ~ = )  to yield GMCIGM<FCUCGM< I uçu<. It appears that sorne constraint musi 

be placed on the re-substitution of the vetocity terms. One possibility is that iit 

least one wavenumber in each triad M uu is in the k' domain. This constraint ensures I 
that at least one wavenumber integration will be over a thin shell in wavenuniber 

space. Integrals over two or more thin shell domains will be O(M2) or  higher and may 

be discarded as M + O, assurning the integrands to be well behaved. This condition 

on partial averaging is expiored in section 9.4. Section 9.1 contains tùrther 

comments on the h. series convergence and its relation to partial averaging. 

8.5 Advective and dynamic temporal frequency ratios 

As demonstrated in chapters 4 and 5, the RNG procedure may be carried out in  the 

frequency domain u(k,m) or in the temporal domain, u(k,t). Typically. for the 

frequency method, eliminating the contributions of udj,o) in the shell A. Y0 [3]. 

O Carati [I l] ,  and Smith [5] treat the frequency ratio as an expansion parameter 



k k independent from and cany out series expansions to (n = 1 for YO. n = 

3 for Carati). Here, the assurnption of independence between the two expansion 

parameters will be examined. 

The temporal frequency variables, o and R are Eulerian variables. When associated 

with eddies centered about a certain wavenumber, k, the frequency variable contains 

two effects: The Galilean shift of the eddies at k occurs due to a background 

advection velocity plus the combined advective effect of the eddies at smaller 

wavenumbers. The dynamic effect of the energy flow through the wavenumber k is the 

Kolmogorov energy cascade and its time constant is proportional to e-l/'k-? So two 

time constants are involved, an advective one, .rADV(k), and a dynamic one. r&). 
Thus. one rnay expect two characteristic values of a; a,,, = s,,,-~ and o, = r,;i. 
These frequency values may be regarded as an approxirnate dornain of o for non-zero 

values of the distribution u(k,w). 

Let U be a background advection velocity at k = 0, for example the average wind 

velocity . Let hp represent the wavenumber corresponding to the peak of the turbulent 

energy spectrum and the start of the inertial range. Consider an idealized eddy 

(Tennekes and Lumely [21]) centered at the wavenumber k. It is assumed that k is in 

the inertial range. This eddy may be considered to be advected by the background 

velocity U plus the root rnean square velocity due to the cornbined turbulent kinetic 

energy of al1 the lower wavenumbers: 

Equation 8.5-1 implies that the integrated energy spectrum will yield a coherent 

advective velocity. In reality, this velocity woutd be smaller due to differencss in 

phase of the various eddies in the region O to k. Thus, equation 8.5-1 may be 

considered an 'upper bound' for the advecting velocity. The kinetic energy is 

composed of the integral of the production spectrum from O up to some peak wavenumber 

A,, plus a portion of the inertial range spectrum from A, to k. Let the energy due to 



the production spectrum be Ep. Then, the advective velocity at k may be approximated 

as: 

Substituting the Kolmogorov inertial range relation E(k) = Ck~9W5". and 

integrating: 

where Ck - 1. 

Taylors 'Frozen Turbulence' approximation [2] yields w,,, = V(k),,,ek may now be 

used to obtain the advective frequency. Taylor used V(k)ADv - U. disregarding the 

turbulent advection. 

The dynamic frequency component % is proportional to ~ ' " k ~ ~ .  To estimate the 

combined effect of the advection and eddy turnover, consider an approximation wherc 

the time variation of the eddy is represented as a product of two sinusoids: 

The effective Eulerian frequency of the eddy will range between the sum and 

difference of the advective and dynamic frequencies: 

The next step is to consider another idealized eddy centered about A and form a 

ratio of the two frequencies: 



where j is a wavenumber such that j = A. Without loss of generality. the angle 

between k and U will be taken to equd zero. In the RNG procedure, j is integrated 

about a spherical shell of radius A, so that its angle w.r.t. k (and U) varies from O 

to n. The average value of the dot product on the surface of a sphere is given by: 

A number of approximations are now possible. Considering first the case where U 
and/or EplE is much larger than the inertial range contributions. The equation 8.5-3 

simplifies to: 

This is equivalent to Taylors approximation [ 121. 

At the other extreme, assurning that the inertial range energy contribution 

dominate over background advection and the production energy spectrum. Such a 

scenario is unlikely [I2] but the resulting relation is: 

If it is assumed that A& -cc 1 and AdA CC 1. so that k-") and A-y3 may both bc 

neglected relatively to Ap-233, then: 



However, the A,,/k <c 1 requirement cannot be met for al1 resolved k which clearly 

will include Ap. A more likely scenario is that only A-1'3 may be discarded as a much 

srnailer quantity than Ap-Ifl while k may range from the same order as A, to several 

orders of magnitude larger. Relation 8.5-9 then becomes: 

O According to equation 8.5-1 1, ri is a function of and and thus may be trenicd a 
k as independent from (due to the extra parameter Ap) and the expansion due to Y 0  is 

justified in this case. Equation 8.5-1 1 is valid only if both the advection velocity 

U and the production specwm of the turbulent energy are negligible relative to the 

k a inertiai range contributions. Also one requires !) << 1, e 1, and < 1. 

k If A -> 1, equation 8.5-10 is again recovered from 8.5-9. 

O It is concluded that only under very specific conditions may be rreated as ;in 

k independent parameter from n. Even for flows where the kinetic energy contnined in 

k the inenial range is dominant, the independence assumption is only valid for <c 1 .  

Othenvise, the two parameters are related and are of comparable size. 
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8.6 Summary and discussion 

General properties of the partial averaging operator have k e n  defined in this 

chapter. These start with an expansion of the variable a into an invariant component 

a and a fluctuating component a' w.r.t. the partial averaging operator, C P. The 

conditions for activating the averaging operation must be defined. In general. the 

partial averaging operation is related to the conventional ensemble averaging by: 

Section 8.2 Iists the relations for the first and second moments of ; and a' undrr 

partial and ensemble averaging. Relation between partial averaging and À scrirs 

expansion or the ce-substitution of the mornentum variable have been discussed. 

k The expansion parameter has been shown to be related to except under special IT 
k circumstances, namely a flow doMnated by the inenial range and cc 1. As with many 

other analytical steps of RNG, it is easy to undermine their validity particulan, for 

k 
7ï - 1. However, it is difficult if not impossible to substitute a more esricr 

analytical procedure. 

ZVH ([8], [IO]) presented a formulation of RNG with an exact time dependance (sec 

chapter 5) much too complex to produce a usable turbulence model. These ririthors 

subsequently carried out 'Markovian' approximation in the time domain as: 

which arnounts to a zero order Taylor series expansion of u(k,r) in the r variable 

about r = ? and is equaivalent to the Y0 calculation with (8)'. 



As discussed in chapter 3, the RNG method may be interpreted as the gradua1 

elimination of fine scaies and the replacement of these scales with an average 

effect. At each step, the fine scales are decomposed into an average plus a 

fluctuation. The average is added to the eddy viscosity and the fluctuating rernainder 

is neglected. In order for the RNG method to be vaiid, it is not required that the 

rms vdue of the fluctuating term be smaller than the average. What is required is 

that the cumulative effect of the unresolved fluctuations on the resolved scalss 

decrease while the cumulative value of the averages increase over a range of 

eliminated scaies. As the smallest resolved scaie increases so does the smallsst 

typicai time scaie. Therefore, one may expect that the effect of fluctuations at much 

shorter time scale on a rnuch slower variable will approach zero. However. it is 

possible that the rapid, subgrid fluctuations will dias into 'induced forces' with 

time scales and magnitudes of the sarne order as the resolved motions. Indeed. this 

appears to be the basis of the Iterative Filtering method of Carati [40]. 



9. Alternatives for partial averaging and eddy viscosity formulations 

The RNG procedures (or the iterative filtering of Carati) use an iterative 

averaging of wavenumber triads involving Fourier coefficients in the narrow waveband 

about A. For the vanishing k case of YO, the averaged triads involve j = A. 1 k-j 1 = 

A, and k - O. For finite k values, the uiads involving A consist of k. A. and 

1 k-k, 1 .  To date. these triads were averaged whenever both j 2 A and 1 k-k, 1 2 A. II 

only one of j, or 1 k-j 1 equal to A, the triad was either discarded (by a zero result 

of the partial averaging) or retained until both j and 1 k-k,I were equal to or 

greater than a reduced value of A. The current work explores several different 

strategies for the removai of triads with oniy one wavenumber equal to A. Since each 

procedure is expected to yield different results, the question of fundamenrd 

importance is: which method more closely represents the physical effects of the small 

scales on the Large scaies of Navier-Stokes turbulence? in thîs chapter. several 

options for the eddy viscosity wiU be derived. The numerical results will bs 

evaluated in chapter 10. 

9.1 Time scales of wavenumber triads and eddy viscosity 

As discussed in chapter 2, an eddy associated with a wavenumber k has ri typical 

frequency represented by De1/3k"3. In addition, each triad of wavenumbers has tl 

typical frequency dominated by the frequency of the highest wavenumber. 

The 'eddy darnping rate' for the Fourier triad interaction has been proposed bjr 

Orszag [24]: 

where D is a coefficient to be determined by a particular turbulence theory (for 

exampls D/CE = 0.1904 according to Kraichnan). The q,,,, may be interpreted as an 

inverse, non-linear time scaie for the triple-velocity correlation to evolve toward a 

quasi-equilibrium state, [14]. This 'quasi-equilibrium' state may be equivalent to ü 

partial average of this particular Fourier triad. 





Considering first the case of Y0 [3], the eddy damping rate of triads (A,. A,. k - 
O) is approximately proportional to 2 A t ,  where the frequency assmiated with k has 

been neglected. This eddy damping rate is also approximately constant around the 

shell. Since the (i , lk-jl)  components of the triangle have rnuch higher frequencies 

than the 'base' (k), the variables associated with the former wavenumbers may be 

treated as a statistical average relatively to the latter. However, for finite k. the 

typical eddy darnping rate varies with k and also varies around the shell for a given 

k. Refemng to figure 9.1, region B contains the 'minimum triad' (k.A,.A,-k) whils 

region C contains the 'maximum triad' (k,A,,A,+k). In the B region. the A,-k 

wavenumber will ofien be lower than k, while in the C region, both A, and A,+k uill 

always be equal to or higher than k. 

The RNG procedure seeks to obtain corrections to momenhim equation coefficients 

and possibIy also corrections to source terms like the stirring force. Since the 

mornenturn equation is for the k Fourier coefficient, eliminating miads over region C 

is consistent with partial averaging of higher wavenumbers or time filtering of high 

frequencies. However, the disadvantage of this approach is that the triple velocity 

products remain at the end of the procedure. These triple products represent 

interactions where only one wavenumber idls into the subgrid range. As discussed in 

section 9.3, the triple products are undesirable from the point of view of numerical 

simulation. In the current study, methods of avoiding the triple products will be 

investigated by averaging over triads with only one subgrid wavenumber. This proccss 

is easier to justify when both j and 1 k-j 1 are greater than k. The triads where one 

wavenumber is subgrid while the other is smaller than k pose special difficulties. 

For the hz truncation suategy, one of the wavenumbers (say j) is associated with 

a randorn velocity correlation while the other (say 1 k-j 1 )  is a 'vertex wavenumber.. 

associated with G( 1 k-j (,Ac) and M(k-j). The Green's îünction is a randorn variable. 

with an average and a standard deviation, driven by the random eddy iriscosity 

V( 1 k-j 1 ,A,). Hence, the partial averaging process affects both j and 1 k-j 1 . 

At the start of the RNG procedure, the random variables within the Navier-Stokes 

equations are the velocity and stimng force Fourier coefficients. However. the 



molecular viscosity, v, is statistically sharp. Afier eliminating a wide range of 

scales, v, is replaced by v(k,A,) which is the expected value of a random variable 

[35]: 

Examining the eddy viscosity expression for the source of randomness. it is 

apparent that E is a random variable which will converge to it's expected value in a 

wavenumber band about A, if a temporal or spatial filtering is used with suficiently 

long averaging interval. The standard deviation may increase with A, leadins to 

considerations of intennittency. The random eddy viscosity wilI fluctuate about it's 

rnean value with a typical time scale proportional to ~ - ~ ' ~ r \ ; ~ ~ .  The dissipation 

tirne scale is k%(k,Ac), and the ratio of the eddy viscosity fluctuation time to the 

dissipation time 

not weiI defined 

k' is - This irnplies that for - 1, the RNG eddy viscosity may be 
A:' K 

in tenns of a statistical average. 

k 
the consideration of the averaging of wavenumber triads. for - - 1 .  

Ac 

1 k-j 1 becomes 

with the eddy 

srnall when k and j are nearly parailel. G( 1 k-j 1 ,Ac) is well definsd 

viscosity approaching v(O,AC). However, the equation for the eddy 

viscosity containing v(l  k-j 1 'A,) is non-linear and d i f f i d i  to solve. RNG procedurc 

proposed in this study also involve G(l  k-j l , l  k-j 1 )  with a much slower fluctuation 

frequency than k. Indeed. the vertex Green's function appears to be a problem for ihc 

RNG theory presented in this study. 

9.2 Alternatives for elimination of wavenumber triads 

Three alternatives will be explored in this study for the proposed characteristics 

of ( k t .  the ensuing behavior of the partial average, and the RNG iteration 

procedures. 



First, the randorn variable Gi(k,t) is considered to be a response at wavenumber k 
to fluctuations 'originating' from the constant wavenumber band A - M  to A. In the 

context of the RNG methods, the source of the fluctuations is the stirring forces 

Po) for Ij 1 = A, and equation 8.24 is equivalent to the decomposition introduced 

by Carati for the IF method. The integration contour is region C plus retion B. 

figure 9.1. 

Second, the randorn variable ;,(k,t) is considered to be a response at wavenumber k 

to fluctuations 'originating' from the variable wavenurnber band 1 k-j I c  for 1 j 1 = A. 

For the RNG method, the source of the fiuctuations is the stirring forces f(k-j.1). 

The contour of integration are the regions B, figure 9.1 

Third. the randorn variable &(k,t) is considered to be a response at wavenumber li 
to fluctuations 'originating' from the variable wavenurnber band 1 k-j 1 -  for 1 j 1 = il. 

where 1 k-j 1 exceeds Ac. For the RNG method. the source of the fluctuations is the 

stirring forces f(k-j,t), the contour of integration are the regions C. figure 9.1 



9.2.1 Partial averaging over a constant wavenumber sbell (region B plus C )  

For the random fluctuations 'originating' from the thin shell, the high wavenumber 

variable u>(k,t) may be decornposed into a randorn part k(k.t) and a non-randorn 

cornponent h&k,t); where b is a marker for the presence of at least one convoiution 

integral. Both ( k t )  and ( k t )  contain convolution integrals but ( k t  may 

also contain a source term such as a stirring force. This division is equivalent to - 
the decomposition introduced by Carati [40] for the F where ui>(k.t) contains a11 

the averaged moments of the shell stirring forces while k t )  contains the 

stirring force fluctuations. 

One of the objectives of this work is to find physical analogies for the variolis 

mathematical steps of the RNG. For the partial averaging over a constant wavenumber. 

temporal filtering of the flow variable may be appropriate. Since the variable 

u,'(k.t) contains a distribution of energy as a function of given by u,>(k.o). a 

physical bais  may be provided for the partial averaging by  writing: 

The boundary between wC and W will be denoted by oh. The underlying concept is 

that the components of ui'(k,o) at relatively high o will evolve faster than those al 

low o. The partial averaging may now be equated to a sharp cutoff filter in w spricc 

with oh as the cutoff. 

The corresponding low wavenumber series is: 

and for u,<(k,o): 



The reversed position of the h factor indicates that the source of the random 

variation is the high wavenumber shell. It is expected that as << 1, the o domain 

of bic(k,o>) will go to zero since it is unlikely to encounter a turbulent eddy which 

varies slowly in spacz and rapidly in time (see section 8.5). Now the following 

hypothesis is made: 

A physical argument to support the above assertion is that rapid fluctuations in 

time tend to be associated with rapid fluctuations in space. Let o, represrnt the 

frequency region Ck'"el/3j23 < o < j ,  typical for eddies with a spatial 

fluctuation centered about j. If now the spatial wavenumber is reduced from j to k 

where << 1 but the frequency is held constant at o,, it is reasonable to expect 7 
that the rms value of u(k,o,) < u(j.9).  If correct. this hypothesis may provide a 

physical basis for the convergence of the X series. 

Although the above hypothesis is feasible, it may nonetheless be wrone due to the 

non-linear nature of the Navier-Stokes equations. 

Retuming to the time domain and substituting the results of equations 9.1-1 anci 

9.1-3 into the Navier-Stokes equations for u7k.t) and averaging the variables 

according to the results of section 8.2 gives: 



The eddy viscosity correction, Av,,, is obtained from the terrn 

- 
uc(k,t) 2x2 1 d3j MMc(k-j) Jch Go( / k-j 

The accuracy of the approximation in equation 9.1-4a is questionable. 

k when ji: + 1. This approximation is sometimes called Markovian (Orszag. 
- 

the result of equation 9.1-4a is assumed to depend only on uc(k.t), rather than o n  - 
the range of values u<(k,.r) within the 'memory' integral J ~ T .  Its validity will be 

further discussed later on in this study. 

The resulting momentum equation after the elimination of the first shell is: 



where v, = vo + AvBI. 

9.2.2 The RNG iteration procedure and differential equation for v(k,A~) 

- 
The iteration commences by setting uc(k,t) + u(k,t) on the reduced wavenumber 

interval k< -\ k. The result is: 

The new aspect of equation 9.2-1 is the triple product term residing in 

integration volume Bri. This term is now re-expanded on the second shell. resulting 

in the following equation: 



1 k where m = m(n) = ln{ 1 + ;G; ). 

The triple product expansion in equation 9.2-2 yields an additional contribution 

to the eddy viscosity from the term in the domain crf, for n 5 2. vz = v, + Av,, + 
A v ~ .  The eddy viscosity due to re-expanding the triple products has been inirially 

proposed by ZVH for finite shell thickness and extended to the differentid limit b'. 

Carati [ I l ]  as discussed in chapters 5 and 6. Afier eliminating a range of 

wavenumbers from Ao to Ao - k (which may be neglected due to the low enrirgies 

associated with high wavenumbers) the region C becomes a full arc with an ansulx  

range from arccos(&) to O and its contributions to eddy viscosity becorne self- - 
similar (n 2 m+l). Consider the self-sirnilar portion of region C. after n discrete 

shells have been removed. At the n+l step of the recursion. expanding 9.2- 1. 

substituting relation 9.2-2, and retaining terms up to order gives: 



The following notation is used for the Green's function: 

The eddy viscosity, v,[k] is expected to be of the fom: 

where the contribution of v, is considered negligible for sufficiently large n and 

the function vn[k] is the average, viscous-like effect on u(k,t) due to motions iit 

wavenumbers 2 &. 

Thus, the eddy viscosity contribution Av,,,, for finite k values originates from 

the equation: 

It is emphasized that the eddy viscosity decreases dong the arc Cr of figure 9.1 

as j increases dong this contour. 

The contribution of the first term on the right hand side of 9.2-6 appears to be 

new while the eddy viscosity composed of the last two tems have been examined by ZVH 



[8] and Carati [Il]. The various integration regions are indicated in figure 9.1. For 

finite k values, the magnitude of region A. becomes negligible in the differential 

limit of the sheli thickness and may be dropped. Expanding the first and third terms 

to 0(h2)  and anticipating the results of the averaging based on the results of 

section 8.3: 

4 U M ( k )  / 5 MC(k-j) 1 d* Gj( 1 k-j 1 ,t-T) x 
(2x13 

4h' M(k) 1 J ,f d f '  Gn( 1 k-j / .t-T)<f-(k-j.fO) x 

where Avn:, and Av::, are the eddy viscosity contributions of the two integrrition 

regions. Replacing Gn( 1 k-j 1 ) with G,( 1 k-j 1 ) in 9.2-8a is consistent with replacing 

v(k,A) with v(k.k) in the &(k,t) term as discussed in section 8.2. 

C a l i n g  out the partial averaging with the force correlation tensor: 

and evaluating the wavenumber and temporal integrals containing Dirac delta 

functions gives: 



Bm+I 

t 'r 

1 dr G,( 1 k-j 1 .t-T) uC(k.r) d<G,(j ,r-r') Gn(j.t-r') + 

8k2W M(k) D(k) 1 & M>J(~)  / k-j 1-3 D(k-j) x 

l d r  Gj(j,t-r) uc(k.t) 1 d<Gn( 1 k-j 1 J-?')Gn( 1 k-j 1 .te<) 9.2-S 

where the term D(k) has k e n  inserted to facilitate contraction of tensor indices 

I prior to the spherical integration in wavenumber space and is inserted since the 

trace of D(k) is d-1 = 2. 

Using the relations introduced by Carati [ 1 Il;  

I where M,,,(k) = - Pimn(k). Substituting 9.2-9 and 9-2-10 into 9.2-8 one has thc 

resült: 



The following identities may be recognized in 

k-j 1 ,?-f)Gn( 1 k-j 1 ,t-Y) 

regions Brn and Cm: 

a) Region Brn 

(nd- 1)k' 2kJ 
A(k j) = j l l  { - 2 } = 

k-J - j2  

k A' where 1 = K. r< = are dimensionless variables. The symbols j~ and j represent 
l ! 

the components of the vector j perpendicular to k, and parallel to k, respectively. 

A(k,k-j) = 1 k-j 111 { (nd- 1 )k' 2k 1 k-j 1 
j 7  



A(k.k-j) = 1 k-j 1 1 2  { 
jZ 

where r> = A' 
- 7 ï -  

The factors S B ~  and Scr represent sinzû, where 8 is the angle between vector-3 j 

and k. These factors must always be positive or zero. However. depending on the 

combination of 6 and I ,  the factor B may be negative or positive. This is sigificant 

because some 'eddy viscosity' contributions from regions Br and Cr become negatiw 

for certain range of I  due to the changing sign of the factor B. Thus. the factor B 

is responsible for the 'backscatter' that is energy flow from the small scales to the 

large scales, reverse forrn the average flow of the energy cascade. 

The above relations may be sumarized in the following table: 



The volume integrais are given by: 

and 

where M is the incremental thickness of the shell radius. and A = A,-,. It is 

noted that as k + O, formulas 9.2-15 and 9.2-16 reduce to the votumes of half 

spherical shells of thickness M to order M, 21cA7M- However. as indicated in figure 

9.1, the regions B and C exist due to the offset of size k between the shells j = A 

and 1 k-j 1 = A and must vanish with k. This incorrect limiting behavior of 9.1- 15 and 

9.2-16 suggest that the above formulation is inapplicable in the low k limit. As 

discussed in chapter 6. ZV 191 explained that the limits M + O and k -+ O are not 

interchangeable, The latter limit must be performed first to obtain the correct 

v(0,A) eddy viscosity behavior. This assertion means that it is impossible to obtain 

a transition between the Y0 formulation (k O limit first) and the Carriti 

formulation (M + O limit first) and that a formula valid in both regions does n o t  

exist. For k 5 1, the Y0 formulation applies with a correction O(k), for 2 1. the m 
k Carati formulation is valid. In the present work, the observation is made that for 

I 1, the shell thickness factor M must be replaced by 0Sk in the formulas 9.2-15 

and 9-2-16 to obtain volumes of regions B and C valid to O(k) and 0(M) and equal to 

rrA2k. Clearly. - - 1 is the switchover point which is identifiable if M is tinitr. 



Since the present study is based on the Carati formulation, the evaluation of v(0.A) 

presents a problem which is further discussed in the next chapter. 

Changing the sumrnation of discrete volume increments into a continuous integral. 

necessitates the transition from a discrete to a continuous eddy viscosity function. 

v,(k) -+ v(k,A), so that the Green's fbnction becomes: 

The change of notation from a discrete to a continuous function may lx generalized 

Substituting appropriate variables in each region gives the result: 

Integrating first with respect to T': 



Now integrating with respect to .r and simpliwing: 

The recursion relation in steps of M is converted into a differential equrition 

according to: 

Thus, the differential equation is: 



- 
Substituting W = ~zCrng&, h = 1 ,  and dso usinp the relation v(k.A)Az = EI"  v(l)h2'  

and differentiating with respect to A: 

Converting to non-dimensional variables: 



where Y(I )  has now been labelled ;dl) to indicate that it had been derived using 

iterative averaging over wavenumber magnitude fixed at A. The corresponding righr 

hand side forcing r e m  IL0 is given below. The relations for Scr(r.0 and i3(/.<) 

have been substituted: 

It is noted that Idl) = I,(n + Ifc(l), contributions from regions B and C 

respectively to the fixed wavenumber stimng force. The integral 1 )  may be 

evaluated analytically. Mathematica gives a rather unwieldy expression which will not 

be reproduced here. The explicit solution for is: 



To the knowledge of the present author, the integration in equation 92-27 must be 

performed numericdy. Numeric evaluation of 9.2-26 shall be deferred to the n r s t  

chapter. 

It should be emphasized that afier eliminating al1 the supergrid wavenumbers. i h r  

final form of the momentum equation wiii stiU contain the triple products. This is 

undesirable for the purpose of simulation. This momentum equation is presented below: 

where the symbol M'lu) indicates that j > A. Here, the integration domain of the 

vector j for the triple products is the region between contours C and B. denoted by 

CB(k,A): 

volume ( CB(k,A) ) = 2xk(A2 - k" 
n) 9.2-29 

while the volume of region D(k,A) is given by: 

4A3 k3 volume ( DO(.A) ) = î ~ ( ~  + - UZ) 



as indicated in figure 9.1. In the Limit as k - A, volume of CB(A.A) = #A, while 

5 the volume of region D(A,A) is irA3. Hence, the integration volume of the triple 

product region is over 4 times that of the standard Navier-Stokes convolution 

integral on the resolved wavenumber range. This irnplies a large computational burden. 

According to Zhou and Vahala [10], a simulation of equation 9-3-28 has not bren 

canied out as of 1993 and to the knowledge of this author, this situation has not 

changed. From the point of view of the numerical simulation, the problem resides with 

the high wavenumber j' which ranges in magnitude from the final cutoff, A to A + k. 

Also, as pointed out earlier in comection with the h. series substitution. the higher 

order of non-linearity now present implies an additional, spurious solution to the 

momentum equation. 

The triple velocity product term of equation 9.2-24 merits further discussion. 

This term may be written as: 

where yp>j(j,t) is given by: 

t 

It is noted that u>jÿ,t) is a subgnd variable, u,,>~Q,t) is that component of 

u>j(j,t) which can be expressed as a function of the resolved variables. This 

variable suggests the need CO decouple the partial averaging from the spectral 

splitting. 



The integration volume of u,rÿ, t )  is the intersection of twa spheres of radius 

A separated by j > h. This volume equals D(j,A) where D(ZA,A) = O. Thus. the 

variable rc,,>~(j,t) is a component of u>jÿ,t) in the region A < j < A .  Since 

u t P t )  is not affected by the partial averaging, a comection may be made with 

equation 9.1-2 and it may be speculated that: 

A second problem with retaining the triple products in the momentum equation is 

their Iack of Galilean invariance as mentioned in section 6.2. 



9.3 Partial averaging over the B regions 

In this section, the objective is to average the wavenumber triads where one side 

iength equals A and falls into the shell to be eliminated, while the other 'legs of 

the triangle is less than A. The Navier-Stokes equations in Fourier space are 

reiterated below: 

The condition for partial averaging is that at least one wavenumber in the triad 

k, j, k-j is in the shell A to A - M .  The spectrally split variables are given below: 

( &j,t) if k and 1 k-j 1 < A 
uyj,t) = 

1 6 , )  if k and/or 1 k-j 1 2 A 

where it is noted that c>~ / , t )  = O. For the stimng forces. since these are not 
- 

expressed as non-linear convolutions of other wavenumbers. one has that f,(k.t) = 
r 

fT(k.i) and fi(k,t) = q(k,t) as in 8.2. Expanding the Navier-Stokes equation 9.3- 1 
I 

based on 9.3-2 and 9.3-3 and inserting the partial averaging operator wherever u 

appears: 



The region A will become a second order differential upon taking the differential 

limit and thus is neglected. Taking the partial average of equation 9.3-4 according 
to equations 8.2-5 to 8.2-12 yields: 

where 

Now, the partial averaging pnnciple in ternis of the stimng forces yields: 



u8 M(k) d3j [ dr G( 1 k-j 1 .t-T) MC(k-j) ;(kTr) Q ~ Ü J )  + O(h3) 9.3-7 

Br1 

/ 

OOUS to and Q"(j,t) is given by equation 8-2-20. Canying out a series of steps analo, 

section 9.2, the resulting solution for the eddy viscosity is: 

w here 



As in the case of ILI), Ifi(l) rnay be evaluated analytically but this expression 

is ornitted here to Save space. It is noted that O < I < 1 and so the above equation 

1 contains a singularity as 1 + 1 since 6 -+ O and the t ems  rlln 1 r- and - - p/.s 5 2  - 
become large. Physically, the term 5-11'3 corresponds to the Kolmogorov e n e r p  

density on the wavenumber sphere of radius 6, so as the wavenumber tends to zero, the 

kinetic energy becomes large. 

The formal solution is: 

A plot of ?,(O as computed numencally will be shown in the next chapter. 



9.4 Partial avemging over the C regions 

In this section, partial averaging wiii be carried out over the C regions only. 

This procedure is similar to the iterative filtering procedure of Carati in that the 

stirring forces acting in region B are retained until these can be incorporated into 

successive C regions. The detailed derivation is analogous to that of section 9.2 and 

will not be presented here to Save space. Instead, only the final results are 

presented: 

where ? ( I )  has now k e n  labelled :,(O to correspond to 1 .  Substituting the 

relations for Scc(5,i) and B(1,c): 

where 1, is given as: 

The results will be presented in chapter 10. This formulation of the eddy 

viscosity will also leave triple products of the resolved velocities in the momentum 

equation. See section 9.2 for details. 

9.5 Compatibility with the Y0 theory 

The Y0 version of the RNG procedure for 'vanishing k' yields several self- 

consistent relations between turbulence quantities. These relations. reiterated belonr 

for convenience are mutually dependent: 



with Cm, = 1.59 . From the above relation Y0 obtained 

and 

The resulting relation for W = 1 . 5 9 ~ ' ~  and also v(k) has been used in the 

derivation of the Y0 result for Ck. The latter result has been obtained from the 

approximation: 

with 

and 

1 E(k) = $,kz - 1 d o  Trace <uOa(k,w)uO (-k,-o)P 
( 2 ~ ) ~ ' '  -- P 

It is noted that G(k,o) contains vy,(k) from 4.9-6. The derivations in sections 9.2. 

9.3, and 9.4 of this study use the relation W = 1.59&, but G(k.o) contains v(k.k) 
instead of v,,(k). Since it is expected that v(k.k) > v,(k). uO,(k,o) is expected ro 

be overdamped and inconsistent with the Y0 theory. The energy spectmm evaluatrd 

according to 9.5-1 will have the correct k dependence but too low amplitude. 



9.6 Sumrnary 

Several RNG eddy viscosity formulations have k e n  presented in this chaptsr. 

First, the general properties of partial averaging were specified to act only on the 

stimng forces at A for each stage of the calculation. The resulting calculation 

included the fixed stirring force contribution from both the B and C regions of 

diagrarn 9.1. Also, the denvation of eddy viscosity fro-m regions C for both fixed and 

high components of the stirring force has been presented. The region C triads have 

both averaged wavenumbers in the subgrid region. In both cases, the final version of 

the momentum equation includes the remaining triple products of the low wavenumber 

velocities. This term is undesirable for numerical simulations. As a remedy. a 

different averaging strategy was proposed. including the fixed and low wavenurnber 

stirring forces from regions B of diagrarn 9.1. In this case. one is averaging over 

triads with only one subgrid wavenumber. It is noted that one cannot formulate an 

eddy viscosity v,, as this would involve double counting of the same physical 

interactions. The three versions of the eddy viscosity each model the subgrid 

interactions in a different way, attempting to reproduce the physical effects of the 

srnaIl scales on the large scales. The question which is correct may be ezsier to 

answer once the explicit fonns of these functions are obtained in the next chapter. 



10. Numerical Results and validation 

The objective of this chapter is to obtain numerical solutions for the energy 

drain function and the eddy viscosity as govemed by differential equations derived 

in chapter 9. Then, it is required to ver@ if any of the solutions are suitable for 

use as an eddy viscosity function in a large eddy simulation. The criteria here is 

that for a cutoff wavenumber in the inertial range of the original flow energy 

spectrum, the simulated energy spectrum will also have the same amplitude right up to 

the cutoff. In order to check the suitability of the various proposed solutions. the 

vdidation critena will be discussed first. 

10.1 Criteria for validation of potential eddy viscosity functions 

It is required to vatidate the various candidates for the universal eddy viscosity 

func tion for isotropic, high Reynolds number turbulence- Since the presen t knowledge 

of turbulent energy transfer is incomplete, sufficient validation may only bè 

achieved with extensive large eddy simulation tests which are beyond the scope of the 

cunent  work. Instead, this study examines theoreticai considerations which provide 

necessary but not sufficient conditions that must be met by the eddy viscosity. Also. 

a limited comparison to published literature is carried out since there is a 

consensus about the qualitative shape of the eddy viscosity plot. 

10.1.1 Theoreticai constraints on the eddy viscosity function 

The eddy viscosity function is expected to meet the following criteria: achievc 

the correct energy drain rate, E while maintaining the correct energy specimm 

function E(k) (proportional to k-"3 in the inertial range. A, < k < A,). The former 

of these requirernents may be characterized as global over the resolved wavenumber 

range, the latter is local for each wavenumber mode. The global requirement is 

expressed by the equation: 



Substituting E(k) = Ck~mk-5D into 10.1-1 : 

Equation 10.1-2 is necessary but not sufficient to uniquely detennine v(k.h,). .An 

infinite number of functions v(k,Ac) will satisfy 10.1-1 subject to the constraint 

that E(k) = C k @3k-5'3. Conversely, an infinite number of possible spectra E(k)  will 

satisfy 10.1-1 for a given v(k,AC). Therefore, if a large eddy simulation is 

performed using an eddy viscosity which sausfies 10.1-2, the resulting E(k) rnay 

deviate from the inertial range form. It will satisw 10.1-1 but not necessarily 

10.1-2. 

The above discussion is illustrated with an example. Substituting v(k.A,) = 

e"3A,-43 c(1) into 10.1-2. one obtains: 

For C, = 1-61 as obtained by the Y0 application of RNG, the expected value for 

10.1-3 is 0.31. The constant ?(O = 0.414 will satisfy 10.1-3. However. constant 

values of eddy viscosity yield E(k) spectra which decay closer to k-2 rrtther than 

k-5/3 [ 143. This implies overprediction of low wavenumber Fourier velocity componen ts 

and underprediction of high wavenumber components. 

If the eddy viscosity is too low, particularly at wavenumbers near the cutoff Ai. 

E(k) will form a cusp near the cutoff, [14], rising above the required values. Thih 

will result in overprediction of the Fourier velocity components near the cutoff. The 

analyticd f o m  of such a cusp is unknown. It may be that the eddy viscosity cusp il; 



required to prevent the cusp of the energy spectrurn. If the eddy viscosity is too 

high, E(k) will form a dissipation region where the spectrum decay is faster thlin 

k-*? The complete inertial-dissipation spectrum may be approximated by the relation 

due to Pao [13]: 

The generalized Kolmogorov wavenumber & maybe defined as: 

The relations 10.1-4 and 10.1-5 are normally applicable to a fully developed 

spectrum with a constant viscosity as opposed to a LES truncated one. However. they 

may indicate cases where the inertial range spectrum cannot be maintained due to 

overdamping. Substituting v(k,Ac) = &IJ3Acm v(l), one has the result: 

Previous studies indicate that the eddy viscosity which foIIows a plateau-cusp 

behavior as a hnction of I may be expected to faithfully reproduce the intertial 

energy spectrum. Accordingly, some criteria for a suitable plateau and cusp 

characteristics are discussed below: 

10.1.2 The plateau region 

The plateau region is the constant portion of the eddy viscosity curve at low 

wavenumbers (1 
is the same as 
power input per 

wavenumber is gi 

< 0.3 according to literature). Thus, for low wavenumbers. the eflrct 

increasing the molecular viscosity of the fluid while rnaintaining rlie 

ooro\v unit mass. The Reynolds number is reduced and the new Kolmo, 

ven by: 



As may be seen from figure 2.1, (see also reference [13] for a compilation of 

experimental data), noticeable deviation from the k-Sfl dope occurs for wrivenumbers 

greater than y& where y = 0.1. Hence, in order to maintain the k-"3 dope. k should 

be less than 0.14, leading to the result: 

The published range of I for the plateau region is generaily 1 c 0.3. Substituting 

f = 0.3 and y = 0.1 into 10.1-8 yields: 

This upper bound limit on :(O) is somewhat smaiier than the typical literiiturc 

value of 0.29 [14] and clearly depends on where one wants the plateau to end. 

A similar requirement for the eddy viscosity in the plateau region may be m i w d  

rit by comparing the eddy tumover time versus the viscous diffusion time. The chisf 

difficulty with time arguments in turbulence is that while proportional relationships 

are easily established, the constants of proportionaiity are somewhat arbitra?. 

Prior to any renorrnalization, at a given wavenumber k in the inenial range of 

turbulence. the eddy turnover time scale is much srnaller than the viscous time s d e .  

so that: 

where rk = D-l&-1'3k-"3 is a typical eddy turnover time and D = 0.1901 Ck2 according 

to an analysis due to Kraichnan [25]. Using the Y 0  value of C, = 1.61. D = 0.194. 



After the elimination of a wide range of scales, the v, may be neglected and replaced 

by v(k,A,). If the resulting momentuni equation is still to display inertial range 

turbulence, one now has for WA, « 1: 

At the end of the plateau region, pubiished studies indicate that 1 = 0.3. so that 

it is required that ;(O) cc 2.46. 

10.1.3 The cusp 

In cornparison to the plateau region, the cusp portion of the eddy \.iscosity 

requires rnuch more information to describe. There is the onset 1 vaIue. the rate of 

increase, and the peak cusp value. Unfortunately, theoreticai constraints cannot be 

used without further approximations. At the cutoff wavenumber. A,, an energy 

conservation equation may be written: 

where SE(k,p,q) contains triple correlations of u(k), u(p), and u(q) subject to the 

constra.int that k,. p. and q form a triangle. Also, (k,( = A, and P(A,) is the 

external power input into mode A,. 

Inserting the inertial range forrns for the energy spectrurn and the eddy viscosity. 

and setting P(A,) = O in the inertial range, the following relation results: 



However, the right hand side of equation 10.1-13 is unknown and must be 

approximated in terms of the k expansion and stirring forces. Such approximations 

compromise the potential for validation of the eddy viscosity result. 

At the cutoff, (1 = l),  the eddy turnover time should equal the 'eddy-viscous' 

time. Equation 10.1- 1 1 leads to: 

It is noted that the requirement of equation 10.1-14 does not contirm the 

Kraichnan cusp value of about 1.52, but instead it agrees with the result of YO. 

whose constant eddy viscosity equals 0.49 €1" Ac4? 

10.1.4 The limit $ 1 4 )  

It is the present author's opinion that the denvations presented in chapter 9 art. 

inapplicable in the lirnit of 1 j O. As aiready discussed in section 9.1. the 

votumes of regions B and C do not go to zero with k. Instead. the above derivation is 

limited to a range Al c I < 1. For the range O < I I Al. the dominant contribution 

will be from region A instead of B and C and a modified version of the Y0 caiculrition 

will be applicable. It is not clear what value should be assigned to Al. 

Unfortunately, it appears to be impossible to obtain a transition formula from the 

'vanishing k' to the 'finite k' derivations since the sequence of the limits (k - O 

lirnit first for the former and M 4 O Iimit first for the latter) is not 

interchangeable [9]. 



Smith and Reynolds 151 have pointed out that Y0 use their value of v(0.A) in place 

of v(A,A) at each stage of the elimination process, so that the differential equation 
introduced in chapter 4 as 4.8-5: 

should instead be written as: 

Since A = AM-( 

and using: 

One has to first order in E expansion: 

which simplifies to: 

The solution is: 



The above equation provides a relation between ?(O) and Y(1) based on the Y 0  

derivation, and thus the spherical iteration shell used therein. From the three 

denvations in chapter 9. the B+C region also has a spherical shell. Howew-. 

relation 10.1-17 will be tested on al1 three values of c(1). It is noted that the Y 0  
value (0.49) is a 'break-even' point where $0) = $1).  For G(1) > 0.49. c(0) < 0.49 

and vice-versa. 

In cornparison. Kraichnan obtained $0) = 0.29. and $1) = 1.52. (131. lrading to 

$0) = O.67/?( 1)'. far off from 10.1- 17. suggesting a fundarnentaly different theory. 

10.1.5 Cornparison with iiterature 

The spectral eddy viscosity results obtained in this study will be cornpared to t ~ v o  

published fonns, that due to Kraichnan CS31 (the first one to propose the cusp - 
plateau behaviour) and that due to the cumulative work of Chollet. M&S. and 

Lesieur (referred herein as CML) who proposed the following analytical f o m  for the 

eddy viscosity: 

Subject to the constraint 10.1-2, and using the Y 0  value of C ,  = 1.61. equation 

10.1- 13 may be solved to yield vn - 1.93. The resulting equation for v(0 is: 

Many other spectral eddy viscosity results exist [13] but with a wide discrepancy 

arnong each other. 



10.2 Eddy viscosity solution from averaging B-C regions 4 t h  fmed wavenumber 

averaging 

The equation for is repeated here for convenience: 

As a first step in the examination of the characteristics of 9.2-27, the plots of 

1, and 1,, and their sum, 1, are indicated in figure 10.1. An equation equivalent 

to 9.2-27 but containing only If has k e n  presented by Carati [ I l ] .  

Refen-ing to figure 10.1, the term 1, is negative and relatively small in 

magnitude over the range O < i < 0.519. It is this negative range of Ifc which causes 

the negative regions in the numeric plots of the eddy viscosity as generated by 

Carati [ i l ] .  The negative region implies a backscatter of energy, that is encrgy tlow 

from small to large scales for motions contained in region C and with i in the abo\*e 

range. IfC(1=l) is well-defined and equals 1.42. 

1, is positive for O c 1 < 1, reaching a peak vahe 1,(1=0.854) = 0.1255. t h r n  

decreasing to approximately 0.1133 for I + 1. It is noted that 1,(/=1) is 

indeterminate but the limit is weli defined. 

Including the region B forces through 1, almost compensated the negative region 

of 1,. The total, IAT) is negative for O < 1 < 0.062 but very near zero. with ri 

minimum value of the order of 1 x 10-6 at f = 0.048. For 1 2 0.062. Ifil) is 
positive and rises to a cusp, comrnencing at approximately 1 = 0.3. The peak value is 

1.5332. 



Next. in anticipation of possible singularities, the behavior of 1, and its 

components as 1 -+ O is investigated. A senes expansions of 1,. 1,. and 1, about 

the point 1 = O have been evaiuated to O(C8) with the aid of Marhemarica as follows: 

and the surn: 

Clearly, IXW) = O. It is noted that the coefficient of P in the expansion for 

I&I)  is zero, thus eliminating a possible singulanty in the solution for v&l> 

Inspection of equation 9.2-27 indicates that I,-(C) is rnultiplied by 5-8/3. intrgratrd 

with respect to 1 and multiplied by 1 4 .  For the net effect near f = O. t h  is 

equivalent to a multiplication of IXI) by l-' yielding -0.0444444 as the lowcsi 

order tem. Thus, the singularity identified by Carati [I I l  has k e n  eliminated by 

introducing region B forces. 

The numerical evaluation of the integrand 6-" I&) in equation 9.2-27 yields: 

Substituting this result into 9.2-27 and setting 1 = 1, one obtains the result: 



where Cmg = 1.59 has been used and the integration constant Cf has k e n  set to zero 

in order to avoid singularity as 1 --+ O. The result is close to the Y0 value of 

0.49. The equation for Y#) may now be expressed as: 

The nurnerically generated solution is plotted in figure 10.2. Note that the plot 

scaies are linear. The :dl) increases monotonicdly with I at a slightly higher thün 

linear rate. There is no noticeable plateau-cusp behavior. The becomes negütive 

at 1 = 0.1, Extrapoiating the plot, the y-intercept should be approximately -0.04. 

This value does not conform to 10.1-17. For very smali values of I ,  the plot of Y,( 1 )  

appears to have a negative singularity. This anomaly is due to the fact that the 

derivation of Ykl) is based on the geometry of two thin, spherical shells with w l l  

defined intersection points. As 1 becomes srnail, the intersection points are no- 

longer well defined. Therefore, in the series expansion of 1, as generated by 

kfarhenraiica, in addition to the terms listed in equation 10.2-3, there are spurious 

terrns such as O(10-16)l-2 etc. These terrns affect the solution for small values of 1. 

This problem affects ail of the eddy viscosity models derived in this section. 







10.2.1 Validation tests of GQ) 

Numerical integration of the dissipation integral gives: 

which is approximately half of the expected value of 0.31. Therefore, not enough 

darnping is provided by GAZ). As this test is a necessary condition for a realistic 

eddy viscosity. it is concluded that ? X I )  is unsuitable as a subgrîd mode1 for 

turbulence. 

10.3 Eddy viscosity solution from averaging fmed plus low wavenumbers 

Now one considers the equation for c,(l) as denved in section 9.3. repeated here 

for convenience: 

where 



The above relation may be written as [,(O = I,(O + I,,(C), where Im(I) is the 

same as in section 10.3. It is noted that the integrand of I,,(1) is singular at < = 

O, (corresponding to 1 = 1, the lower integration limit). 

A series expansion of Il& and the total, I,(i), about 1 = O gives: 

and 

Inspection of 10.3-1 indicates that there will not be a singularity at 1 -+ O and 

also that ?,(O) is expected to be positive since: 

The significance of this result is the indication that eddy viscosity models 

averaging over triads with only one subgrid wavenumber are not expected to cshibit 

backscatter at iow wavenumbers. 

However, it is expected that a singularity appears at 1 + 1. A series expansion 

of :,(O about f = 1 gives: 

The ;,(O fûnction diverges as as 1 4 1. Therefore it is expected 
(1- 1)Sn 

that: 



Numerical calculations confirm that the above integral diverges. The general 

rernedy for this situation is to provide a low integral lirnit cutoff as a function o f  

1 to prevent 5 from reaching O. The selection and justification of such a cutoff 
lirnit is crucial to the resulting form of c,(l). 



10.3.1 Eddy viscosity solution from averaging fmed plus low wavenumber limited to k. 

The cutoff rnay be justified by restricting the variable averaging of f( 1 k-j 1 .CI to 

1 k-j 1 > k. Allowing the averaging to extend to 1 k-j 1 S k will require that u(k.t) now 

participate in the averaging and yield a zero contribution. Therefore, the definition 

of I,(I) is now modified as follows: 

li in(l,&) dc for 0.5 5 1 5 L 

where ifl is the combined integrand from equation 9.3-9. 

Equation 10.3-1 indicates that should not be smaller than 1 for partial 

averaging. For & 2 1, both 1 and participate in the averaging, yielding a zero 

result for the remaining portion of the integration contour (between 1 and 1-1). 

Note that both I,(C) and I,,(l) are modified due to the above definition. e w n  

though there is no potential singularity in Im(T). However, the form of this 

integral is JUS G( 1 k-j 1 )M<(k-j).fu<ufi and the term G( 1 k-j 1 ) is a randorn variable dur 

to V( 1 k-j 1 . 1  k-j 1 ) with a time scale proportionai to 1 k-j 1 -" and implying an average 

over wavenumbers less than k. 

I,(I), I,,(I), and the sum I;(O with the limits given by 10.3-6. were rvaluaied 

analytically using Mathematica and plotted in figure 10.3. It is noted that I,,(I) is 

negative over O < 1 < 0.38 approximately. The plot of increases to a peak at 

about 1 = 0.62, then decreases again. 

The numerical integration of I,([) as given by equation 10.3-6. may be used to 

evaluate the peak 



As before. one can evaluate Yfl(l): 

where the integration constant has been set to zero. 

The eddy viscosity :,(O as given by equation 9.3-8 was evaiuated numerically and 

plotted in figure 10.4. Due to the peak of Ifl(n. the plot of cfl(l) also haî a peak 

value of approximately 0.62 at 1 = 0.63 and then decreases to a value of about 0.44. 

Ignoring the supurious downtum, ( 1  - 0) .; 0.35. This value does not satisfy 
equation 10.1- 17. 







10.3.1.1 Validation tests of $0 

Numencal integration of the dissipation integral gives: 

which is somewhat iarger than the expected value of 0.31. The result of 10.2-8 

corresponds to a Kolmogorov constant of 1.34 which is outside the accepted range. 

Therefore, too much darnping is provided by ?,(f). 

Cornparison of the plots for ?,(O to these of Kraichnan and CML published 

literature is clearly unsatisfactory for the expected shape of the plot. since a 

plateau followed by a cusp is expected. It is concluded that the variable averaging 

with a cutoff at 1 k-j 1 = k does not yield the correct eddy viscosity behavior. 

10.3.2 Eddy vixosity solution fmm averaging regions B with €wed plus low 

wavenumber averaging adjusted for dissipation 

An alternative for speciQing the cutoff on the minimum value of the averaged 

wavenumber is a limit A, so that the partial averaging is allowed to extend to AL c 

1 k-j 1 < A, even if 1 k-j 1 < k. in that case, the RNG theory needs to be extended to 

self-consistentiy provide the A, value. 

The Iimit A, could equal A,, the peak of the energy spectrum. Theories that relate 

A, and Y(!) have appeared before, [22]. As pointed out by Leslie. ? ( I )  should be 

detemiined locally, not globaily in wavenumber space. To be self-similar. c(l)  mus1 

depend only on k and A. Therefore A, must be a function of k ancilor A. Unfofiunatrly. 

the current formulation of the RNG does not provide an explicit relation for AL. 

However, any proposed form of the lower Iirnit should yield a dissipation i n t e p l  

that complies with 10.1-3 and it will be selected on that basis in this work. 



Two simple and arbitrary foms of the low limit of the partial average are 

(proportional to k) or y (proportional to A,) where y maybe selected from O < y I 1. 

a. Low limit proportional to k. 

To satisfy the dissipation integral (10.1-3), the low Iirnit proportional to k is 

yl. Equation 10.3-6 is thus modified: 

For y equal to approximately 0.6, the dissipation integral 10.1-2 yields 0.3 10 and 

the C, = 1.61. The plot of :,(O is presented in figure 10.5. The function rises to 

a peak value of \rfl(I=0.85) = 0.59, then decreases in value to &(1) = 0.53. I t  is 

noted that the peak moves closer to 1 = 1, relatively to figure 10.4, and the plot 

becomes closer to that of CML also presented in figure 10.5. It is noted that since 

the CML plot satisfies 10.2, the higer cusp of the function due to Kraichnan appears 
to be too dissipative for a Ck = 1.61. 





b. Low lirnit proportional to A,. 

To satisfy the dissipation integral (10.1-3). the low Limit proponional to Ai is 

y. Equation 10.3-6 is thus modified: 

1 J ifl<r,c) ci6 for O < < I - y 

For the constant limit y equal to approximately 0.55. the dissipation integral 

10.1-2 yields 0.3 10 and the C, = 1-61. The plot of Y,(O is presented in figure 

10.6. The hinctioii rises to a peak value of Y(kO.89) = 0.51. then decreases in value 

to V"( l )  = 0.50. 





10.4 Eddy viscosity solution from averaging over regions C 

Again, the expression for I,(I) is reiterated below for convenience. 

Expanding Ifh(l) in powers of 1 about 1 = 0, gives: 

The above relation may be wrinen as I,(l) = I& + I,&, where [,(Il is the 

same as in section 10.3. The three components are plotted in figure 10.7. Integrriting 

the eddy viscosity integral: 

This yields a value of c,(l) = 0.664. The plot of ?,(I) (figure 10.8) appears 

nearly a straight line. If one disregards the apparently spurious downturn near the y 

mis, the asymptotic y intercept would occur near 0.28. This value is close to the 

value of 0.27, predicted by equation 10.1-17. 

10.4.1 Validation tests of C,(O 

Numerical integration of the dissipation integral gives: 



which is somewhat larger than the expected value of 0.31. The result of 10.3-9 

corresponds to a Kolmogorov constant of 1.35 which is outside the accepted range. 

Therefore. too much damping is provided by Y,(& The shape of the plot does not 

exhi bi t the plateau-cusp behavior. 







10.5 Summary and discussion 

Plots of the eddy viscosity integrands GC, IhC, lm, and Il, were presented in 

this chapter (figures 10.1, 10.3, and 10.8). The integrands If,, (figures 10.1- 10.7) 

and IIB (figure 10.3) are negative over a range of f values, O < 1 < 0.52 for IK and 

O < 1 < 0.38 for I,,. The negative values are significant because an eddy viscosity 

formed from these tenns done (as is the case for ZVH and others [19]) wili also be 

negative over the low range of 1. This results in the phenornenon of backscatter 

reported by some researchers in this field ,1191, chat is a net energy flux fiom 

smali to large scales across the cutoff Ac. Such backscatter had k e n  reported at low 

1 values for the non-local interactions. These findings contradict the theory of Y 0  

although the latter may be viewed as a type of average eddy viscosity [7]. 

None of the eddy viscosity models anaiyzed in this chapter have been in 

qualitative agreement with the results due to Kraichnan [33] or CML [14]. The eddy 

viscosity derived by partial averaging of low wavenumbers lirnited to 0.6k appears the 

closest to the mode1 of CML. This mode1 has been adjusted to satisfy the dissipation 

in tegral. 

The eddy viscosity results due to Kraichnan are treated as a kind of a benchniark 

in the Iiterature quoted herein. Detailed examination of Kraichnans work is beyonci 

the scope of this study. however several observations are germane to the current 

effort. The eddy viscosity relation due to Kraichnan using the Renormalized 

Perturbation Theory (RPT) (McComb [13]) is given below: 

k-2 J d3j L(k j) 1 k-j 1 - 1  10 
k-Ill3 - 

v(k/A,) = 
j-i I l 3  

47Llj 
10.5- 1 

k23 + jY3 + 1 k-j 3 3  
j 2 A, 

where p is a constant related to Cmg, and L(kj) is a function of k. j. and the 

cosine of the angle between k and j, sirnilar to A(kj). It is noted that the tcrm 

1 k-j 1 - l i n  will be less than A for values of k near A. Since 1 k -  1 -  is thc 

statistical average energy density, RPT utilizes averaging of wavenumbers less than A 

like the variable averaging version of RNG. Also 1 k-j 1 = O when k = j = AC. causing ü 



possible singularity in 10.3-2, similarly to the variable averaging RNG. However. it 

may be shown (1131) that k-"fi - j-11'3 goes to zero fast enough for the integral to 

converge as 1 k-j 1 -t O. Unfortunately, the same is not u u e  for the present RNG 
formulation. Indeed, Kraichnan identified k-'1" as an output term and j-"j3 as an 

input term in his theory [23]. His physical explanation for the occurence of the cusp 

was that the high wavenumbers k and j are subject to coherent svaining excitation by 

the random shear associated with 1 k-j 1 .  Kraichnan labelled b i s  a diffusion procrss 

in wavenumber. The following is a quotation from [23]. Note that the notation in the 

below quotation h a  k e n  altered to match that used herein- 

'...in which there is a two-way exchange, by stretching and unstretching. across the 
boundary A,. The input term .. . then describes the "unstretching " whereby excitation 

at wavenumbers slightly greater than A, is transformed to excitation at k. and he 
output term describes the opposite process. The two r e m s  nearly cancel for low \ k-j 1 

triads and the slight excess of output over input gives the net contribution ... 
which is responsible for the nse of v(k,A,) to a finite cusp at k = A,.' 

Thus, the eddy viscosity cusp appears to be caused by correlations of small 

wavenumbers. This is also the case for the RNG models derived in this study. Howe\.er. 

it is difficult to reconcile the above theory with the theory of vortex stretching b). 

similar size eddies. A key component of the latter is that that the most effecti\.s 

stretching of a smaller vorter (higher wavenumber) by a Iarger vortex (loiver 

wavenumber) occurs when the suain rate ratio of the larger to the smaller is about 

one half, [21]. According to Kraichnan, this ratio approaches zero. 

The spatial behavior of motions associated with a very low wavenumber (as in 1 li-j 1 
+ O) features a very large kinetic energy and a negligible spatial variation. 

Negligible spatial variation should mean negligible stretching. The effect is simihr 

to the background advecting velocity discussed in section 8.5. The present author 

finds it difficult to understand why the local transfer of energy is apprircntly 

driven by very non-local wavenumbers. Further study is required to resolvc this 

issue. 

The DNS data available so far concems turbulent flows at relatively low Reynolds 

numbers and so cannot be used to  provide a definite verification of the required cd+ 



viscosity behavior. The presence of the cusp has been demonstrated by  étais and 

Lesieur [14] in a spectral LES of decaying turbulent flow. Given the real resolution 

cutoff wavenumber, A,, these researchers considered an artificial cutoff at A$. I t  

was demonstrated that an eddy viscosity defined with respect to AJ2 must have a cusp 

in order to simulate the increased energy uansfer frorn wavenumbers just below A)2 

to the region between AJ2 and A,. However, the peak cusp value was lower than 

predicted by the Eddy Darnped Quasi Normal Markovian method (E.D.Q.N.M.) or  the mode1 

due to Kraichnan. Also, a plateau value was found that was close to the 0.267 

theoretical value frorn (E.D.Q.N.M.). 

The above spectral eddy viscosity models are intended for high Reynolds number 

flows, with an inertial range in the energy spectrum. Examples of the experimental 

energy spectra of such flows are given by McComb [13]. Further. the LES cutoft' 

wavenumber should be inside the inertial range. The correct shape of the eddy 

viscosity near the cutoff wavenumber is important to correctly simulate the 

statistics of the resolved scdes near the cutoff. However, an eddy viscosity which 

satisfies the energy dissipation requirement (equation 10.1-3) will correc tl  y 

represent the statistics of the large eddies, far from the cutoff. Therefore. the 

problem is usually not critical from an engineering standpoint. 



11. Conclusions and recommendations for future work 

This chapter contains a summary and evaluation of the achievement of objectives 

set out in chapters 1 and 7. Aside from providing a review of the pertinent body of 

literature, these objectives were (i) to examine if the RNG analytical tools are 

suitable to represent local interactions, and (ii) to attempt to obtain an eddy 

viscosity function v(k,A), hopefdly with a cusp behavior as reported in literature 
- - 

dealing with other theories. The results of the current work produced some insights 

into the first problem but no conclusive answers. The second aim d s o  met with 

qualified success. Several proposed forms of eddy viscosity have been presented in 

chapter 10 but no agreement was reached with other published data. Contributions of 

the current study are summarized in section 11.1 while some unresolved issues rire 

outlined in section 11.2. Plans and recommendations for future work are discussed in 

section 1 1.3. 

11.1 What has k e n  achieved? 

The single most important contribution of this study is the alteration of the 

partial averaging of the product ucus. To the present author's knowledge. al1 the 

published literature uses the property: 

so that the contributions to the eddy viscosity arise only from the term: 

In place of 1 1 .1  - 1, the current work proposes the equation: 

where the O(h) term is an additional contribution to Av, analogous to 1 1.1-2. 

The consequence of equation 11.1-3 is to cancel a negative term proportional to k 

which occurs in the function denved solely from 11.1-2, as indicated by Carati. This 



development indicates that the RNG method may be able to capture local and semi-local 

interactions in wavenumber space. 

For the purpose of partial averaging, the convolution product uç( k-j )UT j 1. 
contains a vertex wavenumber k-j and an averaged wavenumber j. The vertex wavenumber 

is narned after the vertex term M(k-j) which appears when the momentum equation is 

substituted for u<(k-j). The random variable associated with this vertex is the eddy 

viscosity ( 1 k-j 1 A )  Unfortunately, in this form, the differential-intesrd 

equation for eddy viscosity becomes non-linear and difficult to solve. In the current 

work, this term has k e n  replaced with v( 1 k-j l ,(  k-j 1 ). Funher study is required as 

to the justification of this substitution. The effect is to restore linearity and 

syrnmetry to the eddy viscosity equation. This symmeuy causes the first odd power of 

k to vanish so that one is able to extract the kz diffusion factor. 

In the 'fixed wavenumber' averaging method, the stirring forces at A are averaped 

at each iteration. in the B region one allows the vertex Green's function wavenumber 

1 k-j 1 to be less than A while averaging over variables at j. This poses the follou.ing 

dilernrna; since A is greater than k, the forces at A in region B will have an average 

effect on u(k), however the intervening Green's function (defined as an average) has 

fluctuations on a time scale smaller than k. 

The second important modification of the partial averaging operation is the 

proposal to average the effects of al1 interactions where at least one wavenurnber is 

greater than AC. This implies that for the product u<(k-j)u>u), the vertes 

wavenumber and the averaged wavenumber are now interchangeable and both combinations 

contribute to the eddy viscosity. The consequence of this modification is allowin_o 

the averaged wavenurnber magnitude A' (equal to (k-j 1 or j) to be srnaller than AC. 

Several options are available to specify the extended range of averaging. If k < A' I 

AC, the physical justification is that the averaged motions are still smaller (rilbêit 

resolved) scales than the wavenumber k under consideration. The resulting eddy 

viscosity is positive but reaches a maximum for k < A and so it is not in 

qualitative agreement with the expected shape. if O I A' I AC, the eddy viscosity 

increases without bound as A' -t O. The lower averaging limit as a function of  k or 



AC may be specified so the resulting eddy viscosity satisfies an additional relation 

or a physical argument. The inertial range energy balance has k e n  used for this 

purpose. 

The appeal of the 'low variable averaging' method is that it does not introduce 

triple products of the resolved velocity into the momenturn equation. In that sense it  

may be considered a more genuine Renormalization Group method, since the forrn of the 

Navier-Stokes equations remains unaitered at each step. The difficulties of numerical 

simulation of an equation containing triple products have been acknowledged in the 

Iiterature 191 and in the current study (end of section 9.2). 

A further contribution of the current work is a generalized formulation of the 

partial averaging process and its relation to the series. The formulation has some 

elements in common with that due to McComb and Watt [333, [13]. However. these 

authors restrict their version of partial averaging to the narrow wavenumber 

bandwidth only. An attempt has been made to relate this operation to the physically 

realizable procedure of temporal filtering. The consequence of this work is to 

improve the theoretical framework of partial averaging and RNG for future research. 

The factors respcnsible for negative components of the 'eddy viscosity' have been 

identified (see figures 10.1 and 10.3) at least for methods that use a A2 closurc. 

These negative 'backscatter terms' cause an inverse energy cascade observed by sonie 

researchers of LES with eddy viscosity [13]. However, these terms are nearly or 

compktely cancelled by the equai and opposite terms generated by the rnoditkd 

partial averaging procedure introduced in this work. A widely accepted physical 

interpretation is that energy flows both ways across the subgrid cutoff [19] but the 

net balance is the energy cascade equai to ê in the inertial range. Indeed. direct 

numerical simulation of low Reynolds number turbulence, has indicated that the 

inverse cascade of energy may be comparable to or larger than the net iransfer rate 

[46]. Therefore, it is apparentIy an open question whether a small energy flux rriliy 

reverse direction at very non-local (low k/A) interactions. 



The temporal frequency expansion parameter, $, has been shown to depend on the 

k wavenumber expansion ratio although these two variables are generally treated 

independently in the literature. The issue is one of consistent accuracy for the RNG 

k k expansion which generally retains (:)O and ($, [7]. Taking < 1. the present study 

has shown that will generdly Vary between $ < (i)33 when both k and A 

O 
are in the inertiai range (see section 8.5 for funher details). In fact. may be 

k considered to approach zero independently of (x) only if rather unlikely conditions 

are met. First, the kinetic energy contained in the inertiai range of the flow niust 

be much laiger than the energy contained in the production range o r  the background 
k = - using advecting velocity that usually accompanies reai turbulence. Otherwise ri A 

k Taylor's Frozen Turbulence hypothesis [12]. Second. the values of considered must 

be sufficiently low. Only under these circurnstances is the RNG perturbation expansion 

as carried out by Y0 [3] and Smith and Woodniff [7] consistent. This conclusion 

k suggests that the RNG is suitable only for jC 1 and only for a special class of 

turbutent flows without background advection. This point contradicts the qualitied 

success in deriving eddy viscosity for local interactions. 

It has been pointed out that the physical explanation of the cusp in the cdd)? 

viscosity plot as offered by Kraichnan [23] contradicts the generally acceptéd 

mechanism of the local energy transfer in wavenumber space. Kraichnan attributes the 

cusp to the balance between stretching and unstretching of the high wavenumbers near 

the cutoff by very low wavenumbers. However, the physical characteristics associatcd 

with low wavenumbers are a high kinetic energy and very low spatial gradients. Small 

vortexes associated with high wavenumbers are likely to be advected, not stretched by 

the former. Indeed, the usual explanation of the local energy transfer is by a 

mechanism of stretching the smaller vortex by a slightly larger vortex. The conflict 

between these two theones has not k e n  resolved in the current study. 



The above is a surnmary of the contributions of the current work to the RNG 

treatrnent of Navier-Stokes equations driven by a stirring force selected to rcproduce 

the statistics of inertial range turbulence. Some important problems in the RNG 

method which had k e n  attempted without success during this investigation will be 

discussed next. 

11.2 What has not been achieved? 

Considerable effort went into investigating the convergence properties of the i, 

expansion series about a stirring force. Many of the terms of @An) may be eliminated 

due to repeated convolution integrals over thin sheIls, but some O(xn) terms \vil1 

contain only convolutions over the k< domain and cannot be assumed to be small. This 

problem is aggravated for finite wavenumbers by using the modified partial averaging 

equation 1 1.1-3 instead of 1 1.1 - 1. 

As discussed in section 8.4, an alternative to the h expansion series is to simply 

substitute the momentum equation for u' wherever this variable appears in the 

momentum equation for uc. The problem resulting from this course of action is thrit 

the order of the substitution and partial averaging is now not interchangeable. 

Partial averaging must be done first if the results are to match those obtained tkom 

the h series expansion about oA. 

Both the series expansion and the substitution method increase the order of the 

non-linearity in the momentum equation and so spurious solutions are expected. For 

the Y0 case, where rhe triple velocity products have a negligible domain 01' 

integration, the partial averaging eliminates higher order non-linearities at cach 

step. For the finite k values considered in the current study. the sarne is true for 

the variable wavenumber averaging which does not generate triple products. For the 

constant wavenumber averaging, the triple products remain and so potentiall y does ri 

spurious solution of the flow field. Further analysis of this problem is beyond the 

scope of this work. 



The subject of background advection velocity raised in section 11.1 brings to mind 

the lack of Galilean invariance of the triple velocity products as discussed in 

section 6.2 [30]. The significance of this unphysical behavior has not k e n  explored. 

Recovery of the Y0 limit or the EDQNM plateau value of c( 1- 0) from the eddy 

viscosity formulation has not succeeded. in particular, the Y0 method attempts to 

capture a type of turbulent interaction that may be described as very non-local so 

k that - O. A paradox of this version of RNG is that it successfully models distant 

interactions on the assumption that the interactions are for the most part local in 

wavenumber space so that the partial averaging is a good approximation even for 

0. the interactions between k-j and j are confined to nearby scales. hdeed, for irjC - 
k the shell bandwidth M. in conuast, this study deals with finite n values. where the 

range of involved interzctions is spread out over the range A-k to A+k. I t  is now 

k attempted to mode1 local interactions near n -t 1 by averaging over interaction 

triads which span from O to 2A. It is the Y0 paradox in reverse. 

Probably the most important shortcorning of this study is the lack of an answer to 

the fundamental question: is the Renormalization Group applicable to the Navier- 

Stokes equations? At each stage, the removed shefl is replaced by statistically 

averaged corrections to the coefficients. If the solution for the remaining range of' 

variables is the same as before the shell removal, then the equation is esactly 

renorrnalizable. However, it is certain that the partial averaging produces errors iit 

the interface between the resolved and unresoived wavenumbers at each averaged shelt. 

Do the errors produced at each stage accumulate or cancel out as the procedure 

progresses? What are the effects of these errors on resolved scales? 



11.3 Recommendations for future work 

Funher work on the RNG treatment of Navier-Stokes turb~lence could consist of 

both theoretical and computational parts. Following the experiences of the present 

study, the recommendations for future work in the theoretical branch of this research 

must be made with caution since they may prove impossible to carry out. 

Unfortunately, due to several difficult-to-justify approximations which must be made 

in the initiai stages of the analysis, further series of self-consistent. analytical 

steps may yield meaningless results. 

It is the recomendation of the present author that further theoretical 

investigation of the problems outiined in this study be scaled down to simpler models 

such as  the Burger's equation [42] or the problem of scalar transport in a known 

velocity field. For example, one simplified version of RNG is discussed by Smith and 

Woodruff [7]. It is also of interest to investigate the relationship between the RNG 

and multiple scale analysis as discussed by Frisch [16] and the EDQNM theory [13]. 

The validity of the partial averaging approximation is the size of the fluctuating 

residual and, more importantly, the accumulation or cancelation of the residuals from 

subsequent shells. Such a study, tantamount to an analysis of induced forces and 

related to the work of Carati [40], would improve Our understanding of thc 

limitations of the partiai averaging procedure. 

A study of the behavior of u(k,o) in isotropie, high Reynolds number turbulence 

should be made, relying on experimental data. In particular, it is important to 

verify the hypothesis of section 9.1 rhat u(j,o,) > u(k.o,) as it rnay justify the 1, 
series expansion. 

On the computational side, the LES simulation of flow fields using the eddy 

viscosity functions developed in this study could be attempted without including the 

triple velocity products. 



As it stands. the RNG treatrnent of Navier-Stokes turbulence appears insufficient 

to make further progress. On the one hand, very limited representation of the 

turbulence is captured by the second statistical moment of the stirring force. For 

example, there is no information on intennittency or  coherent structures. On  the 

other hand. even for tbis simple model, the mathematical anaiysis is quite involved. 

However, the RNG contains many useful analytical tools such as spectra! splitting. 

partial averaging, the gradua1 increments of the eddy viscosity, the induced forces 

and so on. There is potential for parts of the RNG method to be combined with other 

analytical tools to make further progress in the analysis of Navier-Stokes 

turbulence. 
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