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ABSTRACT

The Navier-Stokes equations driven by a random stirring force have been treated with
the Renormalization Group (RNG) methods by Yakhot and Orszag and other authors to
obtain theoretical predictions of various constants of turbulence without empirically
adjusted parameters. The analysis contains many approximations, some of which may be
justified when the ratio of the resolution cutoff wavenumber (Ac) to the wavenumber
under consideration (k) is very large. However, when this ratio approaches one (local
interactions) many of the approximations required by RNG are no longer valid. Various
methods attempting to extend RNG to include the local interactions have failed to
produce results that could be validated. These attempts have been outlined and
discussed in the first part of this study. In part two of this work, further attempt
is made to extend the RNG method to produce turbulence models valid near the cutott.
specifically an eddy viscosity as a function of the wavenumber ratio (k/Ac¢) with a
cusp up behavior for k/Ac — 1. General properties of the partial averaging
operation have been presented and modified to allow different methods of averaging
subgrid Fourier triads. Three methods of deriving an eddy viscosity function have
been proposed. The results do not match the most likely form of eddy viscosity
obtained in other studies. The validity of the temporal approximations made in the

RNG are analyzed.
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Notation

1. General Remarks

The summation convention is used throughout where repeated tensor indices are taken
to be summed without the summation symbol being needed.

Ensemble averages are denoted by Dirac brackets <.>. The partial ensemble average

introduced in chapter 8 is denoted as <.>>.

If a(x,t), a(k,t) or a(k,w) is an instantenous value of the variable a then:

a is the filtered variable or a variable invariant under partial averaging.

a’ is the fluctuating portion of the variable with respect to the partial or ensemble
averaging.

Bold font indicates a vector (eg. x), the same variable in standard font indi_cates
the vector magnitude (eg. x) the component of a vector is the vector magnitude with a
subscript (eg. Xg)-

Variable wunits are indicated in square brackets. The symbol [l] indicates a
dimensionless variable.

2. Variables in x-t space

X, r position vectors in configuration space [L]

t time [t}

T.7.t” time variables in correlation tensors and convolution integrals [t]
Tapv(K) advective time constant of an eddy at k [t]

Tp(k) dynamic time constant of an eddy at k [t]

u(x,t) velocity vector [L/t]

p(x.t) hydrostatic pressure [mass/(Lt?)]

f(x,t) stirring force per unit mass in configuration space [L/t2]

TaB Reynolds stress tensor [L2/t2]

QaB(r) two point velocity correlation [L2/t2]



QaB(r,t) two point, two time velocity correlation [L2/t2]

a(x-y) Kemel of a convolution filter integral {1]

€ ensemble averaged dissipation rate [L3/t3]
3. Variables in k-t Space

Note: Coefficients of a discrete Fourier summation have the same dimensions as the
corresponding variable in x-t space. Variables transformed using a Fourier integral
in three spatial dimensions get a factor of L3 multiplying their x-t units. A Fourier
transform from time domain to frequency cause a factor of t to multiply the x-t
units.

k. j, wavenumber vectors [L-!]

u(k.t) spatial Fourier velocity vector [Lt]

p(k,t) spatial Fourier hydrostatic pressure [massL?/t?]

f(k,t) stirring force per unit mass in configuration space [L/t?]

u"*(k.t) component of u>(k,t) due to the triple products ([L#t]

V.. V(k,Ac) effective (eddy) viscosity [L3/t]

Vyo(k) Yakhot-Orszag eddy viscosity [L3/t]
v(/) dimensionless eddy viscosity [l]
Ve(l) dimensionless eddy viscosity derived over fixed wavenumber averaging [1]

Vg (/) dimensioniess eddy viscosity derived over fixed plus low
wavenumber averaging [1]

Vey(H) dimensionless eddy viscosity derived over fixed plus high
wavenumber averaging [!]

Ie(/) Integral function of the trigonometric factors and stirring
force for fixed wavenumber [1]

1;1(1) Integral function of the trigonometric factors and stirring
force for fixed plus low wavenumber > k [I]



Q;(k.t) velocity correlation tensor in Fourier space [L5/?]

Q,(k.t) correlation tensor of velocity components invariant under partial

averaging [L5/t?]

Q ij(K,t) correlation tensor of velocity component invariant and
fluctuating under partial averaging [L5/t?]

’

Qji(k,t) correlation tensor of velocity components affected by partial

averaging [L5/t?]

E(k,t) energy spectrum per unit mass [L3/?]

q(k,t) energy density spectrum per unit surface of a wavenumber

sphere [L5/t?]
V(k),py combined advective velocity [L#t]
W(k) correlation of the stirring forces [L5/t3]

W constant coefficient in the correlation of the stirring forces
W maybe considered a function of € [L$€/3)

7, characteristic velocity of the shell A-AA to A {LA]
Ay, Kolmogorov wavenumber cutoff ([L-!]
intermediate wavenumber cutoff, also written as A(§) [L-!]
Ac Grid wavenumber cutoff [L-!]
A hypothetical low limit on partial averaging [L-']
Ap boundary between the production and inertial range [L-']

A, maximum wavenumber of the flow [L-!]
4. Variables in k-0 space

w, Q frequency [t!']
(Q2 is also used to denote spatial domain in chapter 2)

J

o, frequency region typical for an eddy centered at wavenumber j

[t1]



®,pv(k) advective frequency [t!]
wp(k) dynamic frequency [t!]

®, cutoff frequency of a hypothetical low-pass filter [t'!]

A

o< frequencies lower than ® A unaffected by the low-pass filter [t!]

@ frequencies higher than wp, filtered out by the low-pass filter [t!]
u(k.w) spatial and temporal Fourier velocity vector [L4]

p(k.w) spatial and temporal Fourier velocity vector {massL2/t]
S. Constant properties of fluid and flow and proportionality coefficients
Units of constant properties will be invariant under Fourier transforms.

Vo, kinematic, molecular viscosity of the fluid [L.2/]

p density of the fluid [mass/L3]

€ ensemble averaged dissipation rate [L2/t3]

U background advective velocity [L/t]

C, Kolmogorov constant [1], YO value of 1.6]1 used throughout
Cne RNG constant of proportionality [1]

Y - lower integration limit coefficient or
Kolmogorov wavenumber constant of proportionality [1]

D temporal constant [1], 0.494 used throughout
6. Important Formulas and Mathematical symbols

SaB Kronecker delta [1]
d(x) Dirac Delta function of a scalar [x-!]

8(x) Dirac Delta function of a vector [x-3]



QaB(r,t) = <ua(x,t)uB(x+r,t+‘r> [L2/t3]
<ua(k,t)uB(k',t> = 8(k+k’)Qa|3(k,t) L8]
Qap(k:t) = Dagk)Q(k.t) [L]

Ekk) = Ce¥3k53 [L3?]

v(k,A) = EBAY3 v() [L2A]

Qik.t) = Qyk.t) + 2 Qykp + Quk.n) [L

tk = D-lg-1/3-23 [t]

D = 0.1904 C.2
_k

[ = x [
_ k

= & (1)

AG = Agel L]
keu(k,t) = 0

k_k
Dag(k) = dqgf - —?(?E [1]

MaByk) = 7Papyk) L]
Pogyk) = { kgDoryck) + kyDop(k) } (L]

Glk.w) = *l___;._
iw + kv

[t]
{ imaginary number (-1)°5 [1]
d = 3 number of space dimensions [1]

A bookkeeping parameter in the perturbation expansion of the
Navier Stokes equation [1]



A  effective expansion parameter in the non-dimensionalized Navier-Stokes equations

(1]

e =4+y-d
expansion parameter for the Renormalization Group [1]

2WS§, . .
Cmg € = ) (Cmg value of 1.59 used in this work) [L3/t3]

Sy - area of a d-dimensional sphere of unit radius, S; = 4n  [1]



1. Introduction

1.1 The need to model fluid turbulence

Turbulent flows occur in many geophysical and engineering applications. The
prediction of weather and climate, the fluid flow around fast moving bodies. and the
prediction of the rates of mixing and combustion are all examples of problems which
require forecasting of turbulent flows. Turbulence is interesting from an academic as
well as an applied perspective, since it is an integral part of many problems in
physics and engineering. The non-linear, chaotic. multi-scale dynamics of turbulent
flow has so far eluded analytical solution, and is of considerable academic interest
as one of the unsolved problems of classical physics. Current trends in turbulence
research include the study of coherent structures in turbulent flow. intermittency.
backscatter, and the unpredictability problem.

Early theories and models of turbulence relied on experimental data for
verification, but today computer simulation data is available as well. The exact
computation of all scales of a turbulent flow is called a direct numerical simulation
(DNS). Present day DNS computations are limited to Reynolds numbers of the order of
10*, Speziale [1]. However, in many realistic flows the Reynolds numbers are much
larger. For instance flow in the atmospheric boundary layer can have a Reynolds
number of the order of 107, Swull [2]. Unfortunately, each time the Reynolds number
doubles, DNS simulations require an order of magnitude increase in computer
capability, as discussed by Yakhot and Orszag (refered to here as YO) [3]. For this
reason, the direct simulation of turbulence will be limited in the forseeable future
to moderate Reynolds numbers and carried out for the purpose of academic
investigation. Realistic flows will be computed with the aid of turbulence models.

When turbulent flows are computed for the purpose of meteorological or engineering
applications, the wusual objective is to accurately simulate motion on scales
comparable to the boundaries of the flow. The reason is that the largest scales of
the turbulence carry most of the kinetic energy, govern bulk scalar transport. and
impart mechanical stresses to structures such as buildings, airplane wings etc. Thesc



scales of motion are strongly affected by the boundaries of the flowfield. The
smaller size fluctuations are somewhat more homogeneous and isotropic. and their
behavior becomes independent from the flow geometry. For numerical simulation
purposes, it is convenient to select a grid resolution in the range of the boundary
independent scales, because the scales smaller than the grid (herein called the small
scales) may then be represented by a universal (geometry independent) model. Small
scales need to be modeled since they affect the resolved (herein also called large)
scales through non-linear interactions. This interaction must be accounted for.
particularly with regard to the rate of kinetic energy transfer. Thus, if the effects
of the small scales can be modeled with an accuracy acceptable for the application of
interest, this alternative is generally preferred. This leads to the Large Eddy
Simulation methods (LES), where the turbulent scales are explicitly computed untl a
certain cutoff wavelength, while all the smaller scales are represented by a subgrid
model. This model, which is a function of the resolved velocity scales. has output
that is intended to simulate the effects of the unresolved scales on the equation of
motion so that the large scale solution is acceptably close to the exact solution.

1.2 The search for a universal subgrid model and the Renormalized Group method

Most subgrid models contain empirical constants which are adjusted to suit the
conditions of the particular flow field considered. The lack of wuniversality of
turbulence models reduces the user’s confidence in the results since it is possible
that certain features of the flow were not anticipated a priori and thus the model
parameters were not adequately adjusted.

The application of the Renormalization Group Analysis (herein referred to as RNG)
to turbulence modeling has been carried out by a number of researchers since the
early 1970’s and culminated with the YO [3] derivations of some fundamental constants
for high Reynolds number, isotropic turbulence. The RNG values of the Koilmogorov's
constant. turbulent Prandtl number, Batchelor constant, and the skewness factor were
found to be in general agreement with experimental values and were derived without
any empirically adjusted coefficients. The method also yielded a value of the



Smagorinsky constant for use with LES computations, and the coefficients for the
mode! kinetic energy and dissipation equations used in the RNG k-€ turbulence model.
The latter model has been adopted for some computational fluid dynamics (CFD)
commercial software and promoted as superior to the standard k-€ model for many flow
configurations [4]. These facts show that the RNG method has provided solutions to at
least some of the problems of turbulence theory and there is a potential for further
progress. However, the procedure originated in other areas of physics and its
adaptation to Navier-Stokes turbulence by YO has been made under very restrictive and

sometimes contradictory assumptions.

The YO analysis is somewhat controversial in the research community because it
contains some apparent mathematical inconsistencies and doubts exist about the
convergence of the method in the Kolmogorov range. Also, the results are strictly
valid only for the limit of the largest turbulent scales or equivalently. for
wavenumbers close to zero. In view of the success of the RNG k- model in simulating
many industrial flows, the problematic development of the theory has been subjected
to some critical review by Smith and Reynolds [5], Lam (6], and others. However. no
one has arrived at a successful reconciliation of the ad-hoc analysis with the
correct answers it has produced, nor has any altemative procedure been proposed to
avoid the contradictory analytical steps of YO.

Nothwithstanding the promising results to date, the performance of RNG in the
context of turbulence has so far fallen short of its achievements in other areas of
physics, such as critical phenomena and quantum electrodynamics, where agreement with
experiments extended to ten significant digits in some cases (Smith and Woodruff
[7])). The unorthodox steps required in the derivation of the RNG turbulence models
caused a division of opinion in the research community as to the suitability of the
method for the Navier-Stokes equations. The present study reviews the application of
RNG to turbulence modeling and attempts to extend the range of the results. The
detailed objectives of the present work are discussed in the next section.



1.3 Objectives of the present work

The objectives of the present work are to clarify and validate the RNG analysis
and to extend the range of application of its results. The scope of the study is
limited to the following stages:

I. A comprehensive review of the RNG method as applied to turbulence is presented.
Assumptions and concepts are examined and clarified. This work summarizes the current
state of efforts to extend the procedure to finite wavenumbers. The aim of these
investigations has been to recover the cusp of the eddy viscosity at maximum resolved

wavenumbers as predicted by other analytical theories.

2. The analytical tools of RNG have been developed to represent the effect of
interactions  between very  different magnitudes of wavenumbers (non-local
interactions). The current study examines whether these tools may be used to
represent local interactions, between wavenumbers of similar magnitudes.

3. This study proposes to extend and modify the RNG method in order to recover the
cusp of the eddy viscosity at maximum resolved wavenumbers. The results are compared

to other theories.

1.4 Outline of the thesis

This thesis is divided into two parts with the objective of clearly
differentiating between the published theory and the results of this investigation.
The method of presentation is to first discuss the general concepts of a given topic
and then to give the mathematical details.

Part 1 summarizes the necessary background material. The general principles of
turbulence modeling are discussed in chapter 2. The concepts of the RNG application
to turbulence are described in chapter 3. Chapter 4 presents the RNG method as
adapted by YO [3]. Chapter S outlines the attempts of Zhou, Vahala, and Hossain [8]



(herein referred to as ZVH) and Zhou and Vahala [9], [10] (herein referred to as ZV)
to apply a discrete version of RNG to finite wavenumbers and to recover the cusp in
the eddy viscosity curve. Chapter 6 presents the work of Carati [11] who shows that
the continuous limit of RNG applied to finite wavenumbers leads to results which no
longer represent the physics of the Navier-Stokes equations.

Part 2 contains the contributions of this study. A detailed introduction is given
in chapter 7. Chapter 8 presents some general properties of the partial averaging
operator and the expansion series used in the RNG method. Derivations of three
different versions of the RNG equations for eddy viscosity at finite wavenumbers are
presented in chapter 9. The eddy viscosity equations are solved numerically in
chapter 10. Some theoretical arguments for validation of the proposed models and
comparison with published literature are also presented in this chapter. Chapter 11
contains general conclusions and recommendations for future work.



2. Fundamentals of turbulent flow computations

The fundamental mathematical formulation of the turbulent flow problem 1s
discussed in this chapter, both in physical space (x,t) and in Fourier space (k.t) or
(k,w). A brief description is included of the large range of scales of motion or eddy
sizes in turbulent flow and of the Kolmogorov energy cascade from the larger to the
smaller scales. All modeling approaches split the flow scales into the resolved
motion (which is computed) and the small scale motion (which is averaged and
modeled). The different methods of averaging the turbulent scales and modeling their
effect on the resolved scales are introduced in this chapter.

2.1 Flow equations
The scope of this study is restricted to Newtonian, constant property fluids.

Accordingly, the flow is described by the incompressible version of the continuity
equation and the Navier-Stokes equations:

u
= = 0 2.1-1
axa
dugy Bugy 1 8 82ugy ,’
=~ 2B 2.1-2
at * “Bax[3 pax, * Yo oxg’ + fo

Here ug(x,t) is a component of the velocity vector u(x,t), and p(x.t) is the
pressure. The variables p and v, are the fluid density and the kinematic viscosity.
respectively, both assumed constant in space and time. Also, fg(x.t) is the o
component of a body force per unit mass, f(x,t). A well posed problem must include
the appropriate boundary and initial conditions.

Analytical solutions to the above equations have been obtained for cases of
laminar flow. However, flows with high Reynolds numbers are transitional or fully
turbulent and impossible to solve analytically. An approximate solution may be sought



by modeling some or all of the turbulent scales of the flow. For the purpose of
modeling using the RNG method, an idealized problem is considered where there are no
boundaries or initial conditions and the flow is due to the body force source term
f(x,t). In the RNG procedure, f(x,t) is specified as a random ’stirring’ force with a
Gaussian probability distribution. As will be discussed in chapter 4. additional
characteristics of this force are selected to obtain an approximate solution to
equations 2.1-1 and 2.1-2 that is statistically ’similar’ to turbulence. Some
fundamentals of obtaining turbulence statistics are discussed below.

2.2 Description of turbulence through an ensemble average

Consider a turbulent flow experiment repeated a large number of times with a set
of initial and boundary conditions that were as close as possible to the same for
each realization of the flow. For each realization, velocity and pressure were
recorded. The mean, variance, and higher order moments of each variable are computed
from this population. The quantities <u(x,t)>, <p(x.1)>. <uw'(x,t)>. etc. are called
the ensemble averages. The turbulent variables, u’(x,t) and p’(x.t) vary each time
the experiment is repeated, presumably due to the nonlinear amplifications of smail
differences in the initial and boundary conditions. These quantities are called
quasi-random, or chaotic components of the flow because it is speculated that if it
were possible to maintain the initial and boundary conditions exactly the same. the
behavior of the turbulent variables would also be exactly the same. so thev are
deterministic in principle but not in practice. This idea is equivalent to the belief
that the deterministic = Navier-Stokes equations are sufficient to recover real
turbulence, Frisch [16].

Therefore, it is not the spatial or temporal averaging but the ‘ensemble’
averaging which provides the distinction between the deterministic. mean variables.
and the random, turbulent flow components, a point often obscured in introductory
textbooks. However, in cases where the mean variables do not vary with space. the
spatial average is equivalent to the ensemble, and when the mean variables do not



vary with time, the temporal average is equivalent to the ensemble. Osborne Reynolds

pioneered the following decomposition:
u(x,t) = <u(x,t)> + u'(x.t) 2.2-1

where <.> indicates the ensemble average. An equivalent decomposition is applied to

the pressure.

The following properties result:

<u'(x,t)> =0 2222
<<Lu(x,t)>u’(x.1)> = <u(x,)><u’(x,t)Y> = 0 223
< <u(x,t)><u(x,t)> > = <u(x,t)><u(x.t)> 224

Equation 2.2-3 establishes that there is no correlation between the mean and the
fluctuating flow variables. Equations 2.2-3 and 2.2-4 are strictly true only for
ensemble average but not for the filtering operations which will be considered in
section 2.3, Leonard [18). Substituting the mean and the turbulent components into
the Navier-Stokes equation and averaging term by term yields the governing equation

for <Ua>:
L SR
a<uy> a<ug”> Ugu 5<p 82<ugy>
—%-' + uB> axa + 3X B = - % oa<x > + Vo a,, 2.2-5
B B o g

where the mean of the body force has been taken as zero, <fg(x,t)> = 0. Equation 2.2-
5 includes the variables <u>, <p>, and <u‘u”> and illustrates the famous closure
problem of turbulence, since the quantity Sw'qu’p> contains six unknown variables.

B

The closure problem occurs if one wishes to solve for only the average quantities.
since for three dimensional flow, there are four equations and ten unknowns in this

case.



The equation of motion for the turbulent velocity is obtained by subtracting
equation 2.2-5 from the instantaneous Navier-Stokes equation yielding:

g ., &ug” Mg 3 . )
T‘PUB—X—-B-—-‘F uB>—gx—B+WB UaUB-<UaI.Iﬁ>}—

1 ap’ 3’y " A
- = + V + fy(x,t 2.2-6
p 6xa OaxB2 0..( )

It should be noted that while the mean and the turbulent scales are uncorrelated
(equation 2.2-3) they are coupled in individual flow realizations [12], so that the
behavior of the turbulent variable affects the solution for the mean variable and

vice versa.

The ensemble average of equation 2.2-6 is zero. If equation 2.2-6 is multiplied by
u’}.(x,t) prior to averaging, an equation for the single-point, single-time second
moment is obtained. This equation includes the triple velocity product <“'aU'BU'~/>
and begins the so-called moment hierarchy - another form of the closure problem. I[f
instead, equation 2.2-6 is multiplied by u’(x’.t) prior to averaging. the t(wo-
point, two-moment hierarchy is generated. The second approach is necessary to study
spatial and temporal correlations in turbulence. The single point moments are applied
in engineering models while the two point correlations are useful in more fundamental
studies of the physics of turbulence, [13].

For ‘’steady state’, or ’stationary’ turbulence, the probability distribution of
the turbulent variables is constant with time, and the amplitudes of w'(x.t) and
p’(x.t) are constrained within a statistical envelope. The probability distribution
of uw(x,t) at a point is close to Gaussian, but odd moments do exist: the third
moment, <u’'w'u’>, is responsible for turbulent energy transfer. This point is crucial
to understanding the limitations of the various quasi - Gaussian models of turbulence
because a truly Gaussian variable cannot exchange energy between the mean and the
turbulent flow and between the different scales of the turbulent flow. The original



Quasi-Normal (QN) [14] closure, for example, assumed Gaussian behavior of the even
velocity moments but relaxed the restriction of zero odd moments. This limitation
affects the RNG model which is related to the QN and uses a Gaussian stirring force
as an energy source but must allow the velocity to depart from a Gaussian behavior.

2.3 Estimation of turbulent flows with models using Reynolds decomposition

For many engineering requirements, only the average values of the flow rate. shear
stress, pressure gradients, and energy loss are required. These variables may be
obtained from the solution of the Reynolds-averaged Navier-Stokes equations (2.2-5)
and the continuity equation provided that the effects of the single-point. single
time, second moment <u’au’B> are properly represented. Thus, the objective is to

<uwou’~>

a8 U U
model <u'au’B> as a function of the mean flow variables. The term axﬁ B_ i often
moved to the right hand side of equation (2.2-5), so that the term —p<u'aufﬁ> is

regarded as an additional stress term called the turbulent stress or the Reynolds

stress tensor.

Two broad categories of turbulence modeling are the eddy viscosity models and the
Reynolds stress models. Both methods will be discussed below but since the eddy
viscosity concept forms the groundwork for the current work, the discussion of these

models will be more detailed.

2.3.1 Eddy viscosity models
The oldest proposal for modeling the turbulent stresses was put forward by

Boussinesq in 1877 [15]. In analogy to viscous stresses in laminar flows. the
turbulent stress is assumed proportional to the gradient of the mean variables:

10



a<u
B } - 2 <E> 88 2.3-1

a<u
-<u’au = v{ a

The proportionality coefficient, v, is the turbulent or eddy viscosity. The
quantity E represents the kinetic energy of the turbulent fluctuations: <E> = ,_lz

(<u,/>> + <u,> + <uy;®), often represented by the symbol k in the literature.
Including the kinetic energy term in the eddy viscosity expression ensures the
correct value of 2E for the sum of the normal stresses when o = B. The eddy viscosity
is a property of the turbulent flow and not of the fluid and therefore may vary
significantly from one point in the flow to another, unlike the kinematic viscosity

v, which is constant for isothermal flows.

The physical and mathematical interpretation of the eddy viscosity concept will be
developed and refined in this and subsequent chapters as one of the key topics of the
present work. A brief outline of the historical development of the eddy viscosity is
given by Frisch, (16). The idea originated in the nineteenth century with the work of
Saint-Venant (1851) and his former student Boussinesq (1870). The analogy between the
turbulent transport and molecular transport was conceived by Prandtl (1925) based on
the role of the molecular viscosity as determined by the kinetic theory of gases.

The role of viscosity in the dissipation of the kinetic energy is crucial for the
derivation of the RNG model since the eddy viscosity is a function of the average
dissipation rate. If the momentum equation is converted into an equation for the
kinetic energy, it is seen that the molecular viscosity appears in the diffusion

a 3*(u3)
ax2

term, ——, and in the dissipation term, _2\;0(3;_;1)_)2, the diffusion term being

generally much smaller and usually neglected relative to the dissipation. Stull [2].
Thus, the role of the molecular viscosity is to diffuse momentum and to dissipate the
kinetic energy of the fluid into heat. The turbulent or eddy viscosity has analogous
functions with respect to the average flow, transporting momentum with mean flow
gradients (equation 2.3-1) and dissipating the kinetic energy of the mean flow into
the turbulent fluctuations. This analogy is expressed in equation 2.3-2:

11



<uy>  8<ug”
Vo dug %Y 2 v, 3ugy B 12 5
= —_— - = 2.3-2
£E=7 Xg * X >=73< { axg * By } >

where €(x,t) is the ensemble average dissipation rate. This parameter should really
be written as <e>(x,t) but the established notation will be followed.

Prandtl proposed that the turbulent velocity fluctuations play the role of
molecules, while a typical distance that a fluid panticle travels (the mixing length)
plays the role of the mean free path, so that v, = 16[. The methods of determining
the appropriate values of the velocity %, and the mixing length, [, are generally
classified as zero equation, one equation, or two equation models.

The most widely used zero equation model is the Prandtl mixing length model. which
has been successful in the prediction of two-dimensional, thin shear layers. One
equation models usually involve the solution of a prognostic equation for the
turbulent kinetic energy (k in the engineering literature) so that v, = k'?ef_  and
[, is empirically specified. The widely used k-€ model utilizes partial differential
equations for the turbulent kinetic energy k and for the dissipation, €. and the eddy

24

viscosity is obtained as v, = ¢ l—(-, where ¢;; is an empirical parameter. A total of

five empirical parameters must be assigned values for the k-€ model., [15]. The use of
empirical parameters is typical of most turbulence models and implies that these
models are not universal, but instead are tuned to the geometry of the problem. In
contrast, the present work analyzes the RNG approach which allows the analytical
determination of heretofore adjustable model parameters for the limited case of

homogeneous, isotropic turbulence.

2.3.2 Reynolds stress models

The Reynolds stress models predict components of <ua’u[3'> using transport
equations for each stress component. The most advanced of these are the differential

12



Reynolds stress models (DSM) requiring the solution of six partial differential
equations for the six components of the Reynolds stress tensor plus a length scale
equation - usually determined via the dissipation rate, € The results are superior
to the two equation eddy viscosity models for flows with abrupt changes of strain
rate, separation, rotation, and strong curvature, [17] but at a much greater
computational cost. The algebraic stress models (ASMs) solve algebraic equations for
the stresses and have been used to yield good predictions of flows with secondary
motions and for flows with rotation and curvature.

13



2.4 Description of turbulence through filtering

The ensemble average concept is limited to the theoretical study of turbulence.
since it is not usually practical to repeat an experiment a very large number of
times. Instead, it is preferable to use a temporal average with a sufficiently long

sampling time T:

t+T
x(t) =.}, I x(t)dt 2.4-1
t

The operation 2.4-1 assumes that any turbulent time scale T << T. Anyv
deterministic part of the variable which varies rapidly with time, say a periodic
pressure fluctuation due to the propeller in the wind tunnel, will be filtered out
along with the random, turbulent fluctuations. When the sampling time is limited. the
integral 2.4-1 is not a proper statistical average but a low - pass filter. passing

. . 2 .
through fluctuations with frequencies lower than 17-':- In turbulence, the spatially

large scales tend to have low frequencies relatively to the small and fast scales.
Engineering applications deal with the large scales of the flow. whether
deterministic or turbulent components, and therefore, a filtering operation is used
instead of the ensemble average. An equivalent discussion applies to spatial

filtering.

For these applications where all of the turbulent fluctuations are to be replaced
with averaged quantities, the filtering takes place in the time domain. treating all
flow motions with a time scale smaller than a given cutoff as turbulence. while the
resolved motions are the ’average’ flow. The relations 2.2-3 and 2.2-4 are assumed to
hold at least approximately, implying a large separation of time scales or a spectral
gap between the mean motion and the turbulent motion. Such spectral gaps often occur
in atmospheric flows, [2], where the ’average’ quantities still vary with time. For
industrial flows such as pipe flows, the mean may often be time invariant.

14



Alternatively, the filtering operation may be performed in the spatial domain. or.
equivalently, in the spatial wavenumber domain, in preparation for the large eddy
simulation method (LES). The scales with a wavelength smaller than the grid mesh Ax
are eliminated by applying a low pass filter to the flow variables, f(x.t):

f(x,t) = If(y,t)(__‘u(x-y)dy 2.4-2
Q

where Q is the spatial domain of the flow.

The function (_}(x-y) defines the filter properties, and may be taken as independent
of the position vector x for the case of uniform grids. The formal application of
such filters to the Navier-Stokes equations for the purpose of LES has been
introduced by Leonard [18]. The most common forms of a(x-y) include a box hat filter
in physical space, a Gaussian filter in physical space, or a box hat filter in
Fourier space. The last of these filters, also known as the sharp Fourier cutoff.
will be used implicitly in the current work. The resulting filtered equation of

motion is:

dug - dug | ap dug -  0Tq
——— 4+ U =— = - = + Vg + fo + 2.4-3
at B axﬁ p X, asz axB
where the subgrid scale tensor is given by:
TaB = EaGB - UauB 244

’

Introducing the decomposition u = u + u’; and substituting into the expression for

Tan the resulting expression is:

19
N
(V]

TaB = EQEB - GQGB - ( Il-auB, + Ua,EB + U’aU’B )
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where the term GaE - GaG is known as the Leonard tensor, while ;auﬁ’ and ua’EB are
called the ’cross’ terms. The Leonard tensor is an explicit term that may be computed
in terms of the filtered variables, but the remaining terms in equation 2.4-5 are
unknown. The reason for the appearance of these extra terms 1is that the filtered
quantity u undergoes a variation within the filter length scale, Ax, [18]. If the
maximum wavelength of u’ « filter wavelength « minimum wavelength of u. relations
2.2-3 and 2.24 are approximately applicable, and the above equation reduces to Ta[} =

- u’au’B as for ensemble averaging.

The Leonard ’cross’ terms are relevant to the current investigation. The RNG
method utilizes an approximation cailed the ’partial ensemble averaging” of the small
scales, in which the scales smaller than an arbitrary cutoff are averaged. while the
scales larger than the cutoff are assumed to be constant. This procedure is
equivalent to a box hat filter with the Leonard terms neglected. As seen from the
above discussion, this approximation is acceptable if the ratio of the wavelengths of
the averaged and the ’constant’ terms is small so that there is a large separation
between the large, resolved scales and the small, averaged scales. Physically. small
turbulence scales will go through many cycles relatively to a much larger eddy. thus
approximating the ensemble average. However, a problem arises from the different
treatment of terms whose scales of motion straddle the filter boundary. thereby
leading to errors in the smallest resolved scales. Although it is difficult to
estimate the magnitude of such errors, further discussion of this problem will be

presented at various stages of this study.

2.5 Governing equations in Fourier space

The discussion of the physics of the different scales of the turbulent flow and of
the Large Eddy Simulation methods is aided by introducing the Fourier transform of
the velocity, pressure, and stirring force fields. The physical flow domain s
assumed to be of infinite size so that the Fourier transform of the velocity ugi(x.t)

is given by:
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uk,t) = J. u(x,t)ei"‘k d3x

-00
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Expressions similar to 2.5-1 hold for the force and pressure. The wavenumber

-
vector k = {k,, k,, k;}, the magnitude of the wavenumber, |kl =k, ranges from —15 =

Ap to a maximum wavenumber A, which corresponds to the minimum scale of the flow.
Here L is the side length of a ’periodicity box’, [16], so that w(x.t) are L-
periodic. The case of unbounded domain will be recovered later by letting L — .

It is noted that the Fourier transform integral 2.5-1 diverges since u(x.t) does
not vanish at infinity, [20]. Therefore, u(k,t) exists only as a generalized function
or a distribution, [14]. However, the Fourier transform of the correlation
<ua(x.t)uB(x+r,t+r> = QaB(r,‘r) is well defined, since Q goes t0 zero as r — < or as
T —> oo so the energy and force spectra are bounded functions. These considerations
yield the requirement that the L — oo limit is taken after the averaging operation.

[13].

In the present work, the Fourier modes of the velocity field are referred to
interchangeably as the flow scales or the turbulent ‘eddies’. The implied meaning is
that large scales or eddies contain a range of Fourier coefficients at small
wavenumbers, while small scales and eddies contain a range of large wavenumbers. A
more precise definition of an idealized eddy in terms of its wavenumber content is

given by Tennekes and Lumely [21].

The Fourier transformed continuity equation is:

[E®]
L|J|
19

keuk,t) = 0

Equation 2.5-2 shows that the Fourier velocity coefficient is orthogonal to its
wavenumber vector for incompressible flows. This property leads to important
simplifications during the Fourier analysis of the flow equations and is used

extensively in this work.
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The details of Fourier transforming the Navier Stokes equations are given in
references [13] and [14]. The final result is:

(Zl)Jd-"j uo(k-4.0ugG0) - ke %p(k,t) + fok.D)
T

S+ vkugkat) = - ikg

19
(¥ 1)
)
'_)J

at

where k2 = |k[2 =K + K3 + KB

The continuity equation 2.5-2 is used to eliminate pressure from the momentum
equation 2.5-3. This goal is accomplished in two steps presented in detail by McComb
[13]. First, the linear velocity terms are eliminated from 2.5-3 to obtain a Poissons
equation for the pressure. Then 2.5-3 is multiplied by kg, summed over o. and
rearranged with the use of equation 2.5-2 to obtain:

22 = - 1 3 -3 H R
&5 pck.) d\akB(zn)Jd juo(k-§.Dug(.0 2.5-4

Equation 2.5-4 is a Poisson expression for the pressure in terms of the nonlineur

velocity term. The second step is to multiply equation 2.5-4 by —kTa and substitute

the expression into 2.5-3. Collecting like terms and renaming dummy index variables
as appropriate yields the solenoidal form of the momentum equations:

2+ vkug(kt) = Mgyk) 21)4Id3j uyh-§.0ug G0 + ok 255

2r

where

!J
&'Jl
o)}

MaByk) = 7Poyk). Popyk) = { kgDory®) + kyDap(k) }

and
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The RNG analysis makes extensive use of ensemble averaging and the properties of
tensor quantities. If the flow field is homogeneous, the Fourier transform of the

covariant velocity tensor is:
<ua(k)uﬁ(k’)> = Id3x Id3r eickex-k’er) <ua(x)uB(x+r)> = 2.5-8a
J'd3x Id3r eikex-k’er) <ug(0)ug(0+r)> = QogkId(k+k’) 2.5-8b

where QaB(k) = <“a(k)“[3(’k)> and the homogeneity property was used in substituting O
for x. If the flow field is further constrained to be isotropic (as well as
incompressible) the spectral tensor QaB(k) may be written as:

!J
L|J|
O

QaB(k) = DaB(k)Q(k)
where the scalar Q(k) is only a function of the wavenumber magnitude, k.

The momentum equation 2.5-5 shows that every Fourier mode is coupled to every
other mode in the Navier-Stokes equations and thus presents a difficult nonlinear
problem. The process of energy transfer between different scales in the flow field is
called the energy cascade. The main concepts of the energy cascade will be reviewed

next.

2.6 Kolmogorov’s energy cascade in turbulent flow

In turbulent flows there is a wide, continuous range of scales of motions. ranging
from the size of the flow boundaries down to the dissipation length scale. also known
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as Kolmogorov’s length scale, Ay'. The range of scales increases with Reynolds
number since the dissipation scale decreases. Due to the rolling and swirling
appearance of the flow, the turbulence is often described as consisting of ‘eddies’.
roughly circular motions with many different diameters corresponding to different

flow scales.

2.6.1 The energy cascade

The eddies of different sizes interact in a non-linear fashion, and on average the
large eddies are transformed into smaller ones. This process is called the energy
cascade (first proposed by Richardson [2]). Vortex stretching, local interaction
hypothesis, and return to isotropy are some of the key concepts generally used to
explain the turbulent energy cascade.

Vortex stretching is a mechanism where eddies are distorted and stretched by the
strain field of other eddies and their vorticity intensifies. Peter Bradshaw has
proposed a vortex tree model to illustrate this concept [21]. A good discussion is
presented by Tennekes and Lumley {21].

It is widely believed that the interactions most effective at transferring energy
to smaller flow scales occur between eddies of similar sizes. Thus eddies are most
effectively stretched by the strain field of slightly larger eddies leading to energy
transfer to higher wavenumbers on average. However, for eddies very different in
size, the smaller eddies are advected by the larger ones without much stretching
action taking place. This advection leads to a change of phase of the small eddies
but does not affect their vorticity or energy, while the effect on the large eddies
is a small, viscous-like drain of energy. Primarily, it is the latter effect which is
modeled by the eddy viscosity. For the present study of RNG eddy viscosity. the
important questions are: i) just how local is the local energy transfer. or how
rapidly does the rate of energy transfer change as the ratio of interacting
wavenumbers increases; and ii) what is the asymptotic behavior of the energy transfer
as the wavenumber ratio becomes very large or very small?
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The vortex streching mechanism tends not to transmit directional preferences so
that smaller scales are more isotropic than large ones. This effect is called ‘return

to isotropy’.

For high Reynolds numbers, the spectrum of turbulent energy consists of three
distinct regions as indicated in figure 2.1, the production range, the inertial
region, and the dissipation range. The peak of the energy spectrum is located in the

production region.

The production range. The largest eddies obtain energy from large scale pressure
gradients or from the shear stress created by boundary motion relative to the fluid.
The range of eddy sizes created in this way is called the production range. The
eddies will tend to be aligned with the boundaries and so will have a directional
preference. These scales of the turbulent flow in the production range are non-
homogeneous, non-isotropic, and their energy content is flow dependent and thus non-
universal. In the RNG method, the effects of the production range are replaced by a

stirring force.

The inertial range. If the Reynolds number is sufficiently large, experiments have
confirmed that over a range of eddy diameters known as the inertial range. the
cascade approximately conserves Kkinetic energy as the molecular-viscous dissipation
and the effects of the production range can be neglected. In the inertial range. the
directional preferences of the large eddies have disappeared due to the many stages
of interactions, and the turbulent motions which belong to these scales are
homogeneous and isotropic. The rate of energy transfer from the wavenumbers lower
than k to wavenumbers larger than k, [I(k), is constant with wavenumber, so that TT(k)
= €. According to Kolmogorov's hypothesis, the energy spectrum is dependent only on
the energy transfer rate and on the wavenumber in this range. From dimensional

arguments, the form of the energy spectrum is:

E(k) = C,g¥3%k-5 2.6.1
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where C, is the Kolmogorov constant, usually taken to be between 1.4 and 1.5. McComb
[13]. Equation 2.6.1 is subject to minor corrections due to intermittency effects

beyond the scope of the present study, Frisch [16].

An eddy of wavenumber magnitude k, has associated with it a characteristic local
time, T, dependent only on k and E(k) and proportional to:

19
o
io

T, o [K3E(K)]'2 = D-12g-153k-23

where D is the coefficient of the characteristic frequency of the eddy. According to
a theory due to Kraichnan, the following relation holds:

19
o))
9}

DIC; = 0.1904

The T, may be interpreted as a typical turnover time of an eddy at wavenumber K.
It should be noted however that while 2.6.1 has an unambiguous meaning. the concept
of the characteristic time is less well defined in the context of turbulence. and has
been the subject of different interpretations and assumptions in the literature.
Leslie [22]. The meaning of T, and its probable value will turn out to be important

for the eddy viscosity investigation in the current work.

The upper boundary of the inertial range may be taken as the wavenumber A,. given
by:

Ao = HEY™ 26
Vo

where v is usually assigned a value of about 0.1, Yakhot and Orzsag [3].

The inertial range of wavenumbers gets wider with increasing Reynolds number. and
for sufficiently large Reynolds numbers, this range contains most of the turbulent
energy. For the purpose of the current study, it is significant that the behavior of
the inertial range of scales is universal and independent of the details of the
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production region. This justifies replacing the effects of boundaries and inital
conditions by a stirring force and still recovering inertial range statistics.

The dissipation range. For wavenumbers larger than A, viscous dissipation
dominates over the nonlinear interactions and the energy spectrum decreases at an
approximately exponential rate. This third stage of the energy cascade extends from
Ay to A, (A, is the highest wavenumber present in the flow) and is called the
dissipation range. For high Reynolds number flows where the inertial range is wide.
the amount of energy contained in the dissipation range is relatively negligible.
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2.7 Large Eddy flow simulations

The objective of large eddy simulations is to correctly predict the behavior of
the large scales of the flow, while scales smaller than the grid mesh. Ax. are
filtered out. The formalism of the LES approach has been discussed in section 2.4.
dealing with the filtering description of turbulence. The effects of the filtered
scales on the resolved scales are represented by the subgrid model which approximates
Top. equation 2.4-4. This section introduces the methods of formulating the subgrid

models in wavenumber space.

To set the stage for discussion of the large eddy simulations, the maximum
resolved wavenumber magnitude, A, = MAX, is selected. This is also called the cutotf
wavenumber. The majority of LES models assume that the cutoff boundary between the
resolved and filtered scales occurs in the inertial range of turbulent flow scales
and this is also true for the RNG method.

The flow field u(x,t) is set equal to u(x,t)< + u(x,t)> where:

u(x,t) = u(x,b)< + u(x,t)® 2.7-14
AC
u(x.t)< = ; ug(k.t)exp{ ikex } 2.7-2
ik =0
and
Ag
u(x,t)> = F ug(K.t)exp{ ikex } 2.7-3
|k [>A,

for a finite-size flow domain with periodic boundaries. The flow variable. u(x.t)<
constitutes the ’large eddies’, while the wu(x,t)> are the ’subgrid scales’ and their
effects must be modeled due to the non-linear coupling between these two variables.
The decomposition above is called spectral splitting and may be viewed as a filtering
operation using a sharp Fourier cutoff as discussed in section 2.4, so that u(x.p)<
and u(x.t)> correspond to u and u’.
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The majority of the subgrid models are simple eddy viscosity closures but in
recent years many new models have been proposed, Lesieur [19]. The most popular eddy
viscosity model was proposed by Smagorinsky tin 1963:

V(Ax) = (CsAx)2(2§aB§aB)“‘~’ 274

where;

The Smagorinsky constant C, is adjusted so that the ensemble averaged. subgnd
kinetic energy dissipation is identical to €. An approximate value for C is:

1 3C
G = T (T) 2.7-6
Given C, = 14 (Swll [2] discusses measurements of C, for turbulence in the
atmosphere made by Champagne et al 1977) relation 2.7-6 yields C, = 0.18. However.
the value C, = 0.1 has been found to work better in practice. The Smagorinsky

constant value of 0.19 has been obtained by YO [3] using the RNG method.

2.7.1 The concept and applications of spectral eddy viscosity

It is shown in equation 2-3.2 that a major role of the eddy viscosity. v, is 1o
provide the correct rate of energy drain from the resolved scales. In Fourier space.
the spectral eddy viscosity, v(k,A. ), replaces the nonlinear energy drain from a
given. resolved mode (k < A.), by all the subgrid modes k = A,.. Kraichnan [23]. This
subgrid model is the research subject of the present work. This section introduces
the concept of the spectral eddy viscosity and summarizes its successful forms and

applications.
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The spectral kinetic energy equation is:

Ao
2+ 2vk? JEk) = J‘ Idp dq Se(k.p.q) + P(k) 2.7-7
o Ak

where Sg(k,p,q) is the non-linear, spectral energy transfer integrand. Ak is a
notation for the constraint that k, p, and q form the sides of a triangle. and the
magnitudes, p and q, range from O to A, with A, representing the highest wavenumber
present in the flow. Also, P(k) represents the external power input to the k mode.

For the purpose of large eddy simulations, the modes A. < k < A, are the subgrid
modes while 0 < k < A, are the resolved modes. Using this spectral splitting
approach, the limits of integration in equation 2.7-7 are changed to include only the
resolved wavenumbers and the spectral eddy viscosity, wv(k,A.) is introduced to
compensate the energy transfer:

AC

(2 + 2vgk? + 2v(kAJK? ECkY) = j j dp dq Sc(k.p.q) + P(k) 2.7-8
o Ak

The eddy viscosity v(k,A)) is obtained by isolating that portion of the integral
in the right hand side of 2.7-7 where one or both of p and q is greater than k. and
dividing this term by -2k?E(k,t). However, the integrand Sg(k.p.q) is made up of the
triple moments of the velocity and hence is unknown. Various theories approximate the
form of Sg(k,p.q) and of v(k,A). Assuming that A_ is in the inertial range. the Eddy
Damped Quasi-Normal Markovian (E.D.Q.N.M.) approximation due to Orszag [24] gives:

C

E(Ac) If2~ K
V(k,Ac) = 0.441 Ck-3,2 T— V(r) 2.7-9
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where E(A.) is the kinetic energy spectrum at the cutoff A, and 3(%"—) is a

nondimensional eddy viscosity. It was noted in section 2.3 that the turbulent
viscosity is proportional to a characteristic length scale and a velocity. (v, =
7e(). In the spectral domain, the length scale A_' ~ Ax, and the characteristic

velocity is [A.E(A.)]"2. The constants and the form of G(—)\(—) vary depending on the
C

theory. A consensus in the research community is that G(%) is constant and equal to
C

1 for K/A, < = 0.3, but increases for higher values of k and exhibits a cusp near
KA. = |, Kraichnan [23]. However, there is no consensus as to where the cusp starts.
how steep it is, and what its peak value is. The cusp is taken as evidence of the
local character of the energy transfer. For isotropic turbulence, the existence of
the cusp (but not its exact form) has been confirmed by Lesieur & Rogallo and others

(Lesieur & Metais [13]). Representative plots of two different theoretical forms of

G({—) are shown in figure 2.2 where it is seen that the theory due to McComb [I3]

does not yield a cusp.
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v (k) = v(k)/ ck1/281/3kc-4/3

Figure 2.2 Comparison of subgrid eddy viscosities for
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For many engineering problems, the geometry considered is such that transforming
to spectral space is difficult. This will be the case when the physical extent of the
domain is insufficiently large relatively to Ac! to assume isotropy of small scales
and the boundaries cannot be assumed to be periodic. In cases where the solution
domain is the physical space (x,t), the spectral eddy viscosity, V(k.A)). is not
useful since individual values of k are not available. The remedy is to remove the
cusp by averaging over k and then applying the criteria that the subgrid-scale
kinetic energy dissipation be equal to g Leslie & Quarini [25]. The overall result
is:

2.7-10

<

12

This result is close to the Smagorinsky’s model and to the YO RNG eddy viscosity
model which will be derived in chapter 4.

2.7.2 Additional LES subgrid models

Many additional large eddy simulation models have been developed. both in
wavenumber space, and in physical space. These models will not be discussed in detail
here since they do not directly impact the RNG eddy viscosity on which this
investigation is focused. The majority of the LES models are of the eddy viscosity
type. However an important limitation of the eddy viscosity approach has been exposed
by the DNS data obtained by Clark, McMillan & Ferziger, and by the experimental data
of Liu et al as discussed by Lesieur & Metais [13). Implicit in the eddy viscosity
closure is the assumption of a one to one correlation between the subgrid scale
stress and the large scale strain rate tensors. However. the findings by the above
listed researchers shows very little correlation between the two tensors. This
misrepresentation of the flow physics by the eddy viscosity closure provided
motivation for the development of the scale similarity model, Bardina et al [26]. and
the dynamic model of Germano [27]. The implication for eddy viscosity models is that
the resolved, near-grid scales will not be computed with the correct phase. This
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phase error will then propagate to larger scales, a phenomenon known as ‘error
backscatter’, Lesieur [14]. Thus, the LES results will provide large scale flow
statistics such as energy, maximum expected velocity magnitude, average mixing rates.
etc. However, information related to phase such as the position of vortices will not
be reliable. It is noted that this unpredictability problem affects all LES
formulations regardless of which subgrid model is used, Lesieur & Metais [13]. The
objective is to find a subgrid model that maximizes the decorrelation time between
the ’'real flow” and the LES simulation. These limitations of the eddy viscosity
approach are beyond the scope of the present study.
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3. Renormalization Group methods and turbulence modeling

The goal of this chapter is to outline the concepts of the Renormalization Group
method as applied to turbulence. The presentation is qualitative and the mathematical
details of the RNG are deferred to chapters 4, 5 and 6.

The concept of the Renormalization Group Method may be introduced with the example
of the tree diagram shown in figure 3.l.a. The tree structure consists of layers of
branches with the branches of each layer differing from the branches of the previous
layer by only a scaling factor. Such a structure is called self-similar. Imagine now
that random forces are acting on all the branches of the tree. Assume that the
amplitude and frequency of the random forces are proportional to the size of the
branches in each layer. Suppose that it is desired to determine the effective force
acting on the trunk of the tree. One way to proceed is to first average the forces
acting on the smallest branches (the first layer), then eliminate that layer from the
diagram (figure 3.1.b) and add the averaged force to all the remaining branches. One
then proceeds to average the random force component for the second layer (figure
3.1.c), add the increment to all the layers below and so on, until all the branches
are removed and the effective force on the trunk is obtained. This is an example of

the iterative scale removal procedure of the RNG method.

The above example illustrates important features and problems of the RNG method.
primarily concerning the statistical averaging of only one layer at a time. a
procedure called ’partial averaging’. Adding the average force from the first laver
to the trunk of the tree is correct but adding this force to the adjacent. second
layer in the same way is in error because each branch is affected by only two
branches of the first layer. The forces transmitted between layers widely separated
in scale can be treated accurately in average terms but large errors result if
adjacent layers are treated in this manner. The question is whether such errors
accumulate and affect the value of the resultant force on the tree trunk.
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Hgure 3.1 Self-similar tree structure.
Iterative removal of branch layers.




3.1 Renormalization Group (RNG) methods in turbulence

Objective: The study of turbulence yields scaling laws (such as €¥3k-5? for the
energy spectrum) and numerical coefficients (such as the Kolmogorov constant Ck for
the energy spectrum). The scaling laws may be obtained by a correct selection of the
relevant parameters (like € and k for the above example) and simple dimensional
analysis. However, the numerical coefficients cannot be obtained in this manner and
one must resort to experimental measurements or to a comprehensive analytical theory
for which the RNG is a candidate.

The first objective of the RNG analysis is to derive the various coefficients of
the wrbulent flow such as the Kolmogorov constant, the skeweness coefficient. the
turbulent Prandtl number etc. These turbulence constants are readily measured
experimentally within a reasonable accuracy and will serve to verify the RNG results
so that the method may be considered at least partially validated. The RNG values
must be obtained without any empirically adjusted coefficients.

If the RNG predictions of the fundamental constants of turbulence are validated.
there is justification to use this method for turbulence modeling. For the large eddy
simulation of turbulence, the aim is to derive the Smagorinsky eddy viscosity
constant or in a more advanced form a wavenumber function for the eddy viscosity. the
k-&¢ model equations coefficients and so on.

Overview: The RNG procedure applied to fluid turbulence is similar to the example
of the tree with random forces. First, the RNG involves the scaling away of a small
range of the shortest wavelengths of the flow. This procedure is called spectral
splitting. The average effect of the discarded rapid fluctuations on the longer
wavelength coefficients is represented as an incremental change in the effective
fluid viscosity in the momentum equation. The modified momentum equation is now
redefined on a reduced range of wavenumbers and the procedure is iterated until the
largest wavenumbers in the momentum equation fall within the range of the
computational resolution.
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After the removal of a range of flow scales, the RNG method utilizes scaling
transformations (hence the term ’'renormalization’), to demonstrate that the equation
coefficients approach a so called fixed point. At the fixed point. the renormalized
viscosity becomes a constant. The fixed point offers a short cut to the final form of
the eddy viscosity without going through a large number of iterations.

A number of issues and concepts associated with the RNG approach are discussed
below.

The RNG turbulence model utilizes a stirring force. The derivations of RNG
turbulence models require statistical symmetry and thus statistically homogeneous.
isotropic, stationary turbulence. ZV [10] have also considered the case of freely
decaying turbulence. It is to be noted that while the derivation uses idealized
assumptions, the results are applied to practical flows. For stationary flows. the
RNG method introduces a random stirring force as a source term in the Navier-Stokes
equations. This force serves as a ’'zero order’ model of the turbulent fluctuations
when the nonlinear terms in the Navier-Stokes equations are set to zero. Higher order
approximations are constructed by ’nesting’” convolution integrals of the forces to
mimick the original non-linear terms. The stirring force has a Gaussian distribution
of amplitude and is usually specified in terms of its correlation in Fourier space.
This correlation of the forces is selected to reproduce inertial range flow
statistics. Therefore, the sturring force is only a mathematical expedient to
reproduce a stationary, homogeneous, unbounded flow field and to yield the correct
first and second moment statistics. However, some researchers sought a physical
interpretation of this force, generating debate in the RNG literature. Smith and
Woodruff [7] interpret the force as the renormalized, particular class of non-linear
interactions responsible for the inertial cascade rather than an actual external
force. A different interpretation is offered by Lam [6], who asserted that the force
cannot be scale invariant - thus challenging the inertial range analogy.

The idea that the statistical characteristics of real turbulence may be

reproduced by a properly selected small scale force and without the knowledge of the
boundaries or initial conditions of the flow has been labeled by YO as the
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‘correspondence principle’. This term is used as an analogy to the well known
correspondence principle of quantum physics where the statistical laws of quantum
physics (microscopic level) yield the results of classical physics (macroscopic

level).

The model problem vs. the turbulence problem. The current author is of the
opinion that added insight may be obtained by alternating between two points of view.
The ’'model problem’ is the Navier-Stokes equations with an external stirring force
input. The statistical parameters of the force are varied and the resulting
approximate solutions of the Navier-Stokes equations are examined. The “turbulence
problem’ has the same mathematical form, but here the stirring force has the
interpretation of a renormalized energy cascade. If one maintains a clear distinction
between the two interpretations throughout the analysis, some of the ambiguity
encountered in the literature may be avoided.

The RNG scale elimination is confined to the inertial range. The iterative
spectral splitting and averaging of the RNG is confined to the inertial range. A -
Ay. The RNG method ignores the dissipation range, (A, - A, in Figure 2.1). and
considers the turbulence to start at the upper end of the inertial range. A,
(equation 2.6-3). It will be assumed that the Reynolds number is large so that the
inertial range is wide and it contains most of the turbulent kinetic energy of the
fluid. Under those conditions, the energy contained in the dissipation range may be
ignored. For very large Reynolds numbers, some theorists neglect the production range
as well, so that:

An Ao
E = fE(k)dk ~ JE(k)dk 311
e A

Elimination of a spherical shell. Since the flow field is considered to be
homogeneous and isotropic, the Fourier space domain of the inertial range is a hollow
sphere of inner radius A; and outer radius A, (the inertial range extends equally in
all directions of the wavenumber vector). Attention is focused on the outer shell of
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the sphere, where the thickness of the shell can be ecither finite or infinitesimally
thin. If the method is iterated using shells of finite thickness, A(/)Al, where A(/)
= Aoe‘l. and Al is a discrete increment of the scaling variable, the resulting RNG is
called ’recursive’, ZVH [8]. An example of such a method will be discussed in some
detail in chapter 5. The YO method considers infinitesimally thin shells and converts
the recursion into a differential equation for the eddy viscosity. The YO procedure
will be presented in chapter 4. The effects of the Fourier velocity components in the
shell on the momentum equation for wavenumbers smaller than the shell radius are
replaced by an increment of the viscosity, Av. Then the shell is discarded. The RNG
procedure of Forster, Nelson and Stephen [28] (herein referred to as FNS) and YO [3]
estimates the statistical effects of the small and fast eddies (high wavenumbers and
frequency) on the large and slow ones so that the viscosity increment Av is valid
only for the Fourier velocity u(k.w) where Ikl — 0 and @ — 0. ZVH [8] and ZV [10]
claim that their recursive RNG yields an eddy viscosity valid for 0 < k| < AW but
their procedure and results have become a point of dispute. This issue will be
examined in this study.

New non-linear terms are discarded. After the elimination of the wavenumber sheil.
new non-linear terms appear in the momentum equation, namely the triple and quadruple
velocity products. In the version of RNG due to FNS [28]. and adapted by YO [3] these
new products were discarded to recover approximate momentum equations which appear
the same as the initial Navier-Stokes equations. This allows for application of a
recursive procedure, where the next shell may be removed with the same form of the
results as before. Another version of RNG, originated by Rose [28] and expanded by
ZVH (8] and ZV (10] retains and re-expands the triple velocity products on subsequent
shells. The quadruple velocity products are almost universally discarded in the
published literature, but the basis for doing so is not well understood except in the
limit of very small wavenumbers. Still other variations of RNG as applied to
turbulence make extensive use of field-theoretic methods [31]. [16], and are beyond

the scope of this study.

The Navier-Stokes equations may now be rescaled. Prior to removing the second
shell, the original version of the RNG procedure rescaled the wavenumber domain to
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the original size and all the other variables were rescaled to suit. The purpose of
rescaling was to demonstrate asymptotic limits for the various terms as a large
number of shells was removed. In particular, the molecular viscosity becomes
negligible and the rescaled coefficients of the momentum equations approach constant
values. This condition is called the fixed point of the renormalized Navier-Stokes
equations which now give self-similar solutions (related by a scaling factor) at any
wavenumber. This condition is consistent with the characteristics of the inertial
range of turbulence. The RNG terminology is derived from the rescaling process.

The unscaled eddy viscosity is of interest in turbulence modeling. As shells of
wavenumbers are eliminated, the rescaled viscosity approaches a constant value. while
the wunscaled eddy viscosity increases. It is the latter quantity which is used to
construct the subgrid turbulence model. For this reason. most recent versions of the
RNG method applied to turbulence dispense with the rescaling process while retaining
the terminology even though it strictly does not apply.

3.2 A brief history of RNG methods in turbulence

The RNG methodology has its origins in a wide range of scientific research. Part
of the RNG mathematical framework is borrowed from earlier Renormalized Perturbation
Theories of turbulence (RPT) due to Kraichnan [23], Edwards [13]. and others. A
comprehensive overview is given by McComb [13]. These sources gave rise to the use of
stirring forces and the perturbation series. Other RNG tools such as spectral
splitting, partial averaging, rescaling and fixed point analysis are taken over from
quantum physics and from the study of critical phenomena. The works cited here are
those most relevant to the current investigation.

The ’recursive’ RNG vs the €-RNG. Among the initial applications of RNG to
turbulence is the work of Rose in 1976 [29] who applied the method to model the
diffusion of a passive scalar in a randomly prescribed frozen velocity field. Shortly
after, FNS ({28] used the RNG method to study the large-distance and long-time
behavior of velocity correlations generated by the Navier-Stokes equations for a
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fluid stirred by a random force. These two works have originated two somewhat
different schools of thought on RNG in turbulence, with some researchers labeling the
method originated by Rose as the ’recursive’ RNG and the analysis of FNS and their
successors as the €-RNG [8]). The two methods are similar in many respects but the
‘recursive’ RNG deals with finite shells of wavenumbers and numerically iterates the
recursive algorithm until the desired range of scales is eliminated. The €-RNG takes
the limit of infinitesimally thin wavenumber shell so the recursion is converted into
a differential equation which is then integrated. As the name implies, the parameter
€ (to be defined in chapter 4) is of central importance in the €-RNG theory.
Initially a small value of € is assumed to obtain convergence of a power series.
However, € is later set equal to 4 in order to recover the Kolmogorov energy

spectrum, presumably invalidating the series convergence result.

The authors ZVH [8] and ZV [10] have criticized the €-RNG based on the two
contradictory € values and have proposed the ‘recursive’ RNG as a viable alternative.
However, ZV do not offer an alternative method to show series convergence. Instead.
they justify truncating the series based on the analogous procedure for RNG applied
to critical phenomena. For example, when the RNG was applied to the Kadanoff model of
magnetism in metals near the Curie point, it was found that excellent agreement with
experiment was obtained from a model using second order terms. Also. when higher
order terms were included, the model results deviated from the experimental findings.
[31]. However, while critical phenomena and inertial range turbulence have
superficially similar governing equations, these are very different physical problems
and success in one area does not guarantee satisfactory results with the other. [32].

It should be noted that since the €-RNG originated by FNS was limited to very
large scales, it really excluded the turbulence problem. Nonetheless their work was
used to provide the foundations for the practical application of RNG to turbulence
modeling. In 1979 DeDominicis and Martin {33] (herein referred to as DM) showed that
a proper specification of the stirring force in the €-RNG model will vield the
Kolmogorov energy spectrum. Fournier and Frisch [35], [36] published several papers
in the early 1980’s extending the analysis of FNS and DM. In 1986, Yakhot and Orszag
[3] built on the work of FNS and DM and took the €-RNG method into the realm of
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practical application by deriving many of the hereto adjustable turbulent model
parameters. The resulting turbulence models were the Smogarinsky eddy viscosity
coefficient for large eddy simulations, and the RNG k-€ model.

The YO analysis has been somewhat controversial in the research community mainly
because of the inconsistent € value problem. The success of the YO k-¢ model in
simulating many industrial flows has renewed the interest of the research community
in the theory during the late 80’s and early 90’s. Smith and Reynolds [5] have
duplicated the YO analysis, identifing and correcting some algebraic errors.
Subsequent corrections and extensions of the theory have been published by Dannevik.
Yakhot, and Orszag, [36], and Yakhot and Smith [37]. Lam [6] analyzed the YO method
by dimensional analysis and challenged some of its fundamental assumptions. Other
insights and comments on the €-RNG turbulence models have been made by Kraichran
[38]. McComb [13], and others.

Independently from the work of FNS and YO, researchers Zhou, Vahala and Hossain.
(ZVH) have extended the work of Rose {29], in a series of publications [8]. [9]. and
[10], to also develop a large eddy simulation eddy viscosity model which has not been
implemented in practice. These researches claim that their analysis is free from the
contradictions which cast doubt on the validity of the YO development. ZVH also claim
that the eddy viscosity they obtained is valid for all resolved wavenumbers including
those close to the cutoff between the resolved and unresolved scales. This means that
the ’recursive’ RNG is allegedly able to capture the ’local’ interactions. energy
transfer between wavenumbers of similar magnitude and straddling the cutoff boundary.
Smith et al [39], and Carati [11] have disputed this claim and purport to show that
only ’'non-local’ interactions may be handled with RNG methods. One of the aims of
this study is to provide new evidence for one side of this argument if not to resolve
it. Accordingly, the formulations and results of YO, ZVH, and Carati are reviewed in
detail in chapters 4, 5, and 6.
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4. The YO Application of RNG Theory to the Navier-Stokes Equations

The analysis given here follows that of Yakhot and Orszag [3], Smith and Reynolds
[5]. Yakhot and Smith [38], and Dannevik, Yakhot and Orszag [37] with some
clarifications and explanations added. A brief discussion of the physical units of
the various terms has been added following the later work of Lam [6]. Only the parts
of the analysis which deal with derivation of the RNG relation between the stirring
forces and the dissipation rate, the Kolmogorov constant, and the Smagorinsky eddy
viscosity are presented here. YO went further to derive the RNG versions of the
turbulent Prandil number, the Batchelor constant, the skewness factor. and the

constants for the k-g& model.

4.1 Mathematical framework

The objective is to determine the solution of the Navier Stokes equations 2.1-2
with a stirring force source term f(x,t) and subject to the continuity equation 2.1-

I. These equations are repeated here for convenience:

R
I
=)
12
0

19
1
19

The flow domain is assumed to be infinite in extent. The flow variables are
assumed to be statistically homogeneous and stationary so that no boundary or initial
conditions are specified. The Fourier space correlation of the stirring force.
fo(x,t) will be specified to yield a solution for the statistics of the inertial
range of turbulence. It is noted that f(x,t) is a force per unit mass with units of
acceleration L/t
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For most of the YO RNG analysis, time is Fourier transformed to frequency. @ (with
the exception of the work of Dannevik et al [37]), so that one deals with u(k.w). A
tradition of the Renormalized Group Theory carried over from critical phenomena is to
treat the number of space dimensions as a variable, d, where d = 3 is the case of
practical interest. Formal solution of the momentum equation, written in terms of the
Green’s function operator Gy(k,w), is given here with the addition of the bookkeeping
parameter A, (equal to unity) in front of the nonlinear term:

Ue(k.®) = Gy(ko)} AMopyk) nl)"“ [a4feq uykio@ugGow) + fotk } 41l

2

where

L 1.1-2

Sl = Ca s vaR)

The MgpB((k) has been defined in section 2.5 as:

1 (. _
Mogyk) = 5 kgDork) + kyDou(k) } 2.5-6
with
k_k
Dapk) = Sp - op 2.5-7

k2

It is noted that the Green’s function operator, Gyk.w), would appear as

t oot
JGO(k,t,r) dt in (k,t) domain (see chapter 5) or as j I Go(lx-x’l.t.r) d’x dt in

(x,t) domain, allowing the usual symmetry w.rt x and x’.
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The Fourier space correlation of the stirring forces is:
<fo(k.0)R(K"0)> = 2WK)21)* ' Dapk)dk + k)S(@ + o) 4.1-3

The amplitude of the force is assumed to be Gaussian with zero mean and
uncorrelated in time. There is, however, a spatial correlation w(|xx|) which is
represented in Fourier space as W(k). The Dirac delta functions &k + k') and 8w +
') ensure a homogeneous and stationary force field, and DaB(k) ensures isotropy and
makes the force divergence free. Since the units of the force correlation in physical
space are L*/t*, the units of W(k) are L5/A3.

The wavenumber dependence of W(k) is a power law:

0 for 0 <k < Ag
Wk) = 4.1-4
WkY for AL Sk € A

where A, is a minimum wavenumber required to avoid singular behavior of W(k) and A,
is the maximum wavenumber at which the force acts.

In the course of the analysis, the parameter € = 4 + y - d will emerge as a
variable which governs the solution of the RNG procedure. In terms of €:

Wk) = Wkd-d-€ 4.1-5
and setting d = 3,
W(k) = Wk!-€ 1.1-6

[t is noted that for dimensional consistency, W must have the units L6-€/t3, Lam [6].
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4.2 Overview of the RNG procedure
The mathematical steps of the RNG method are summarized below:

1) At the start of the procedure, the wavenumber domain is split into an outer
shell; Aoe'A[ < k < A,, and an inner sphere of low wavenumbers, 0 < k < Aﬂe'A[.

2) Next, the velocity is spectrally split:
uk,0) = u<(k,0) + vk o) 4.2-1

with u>(k,®) defined on the outer shell of wavenumbers, and u<(k.w) defined on the
interior. Analogous splitting applies to the stirring force.

3) Two coupled momentum equations are then written for u<(k.®), and w>(k.).

4) The high wavenumber velocity is expanded as a series in powers of an arbitrary
parameter A:

19
(1]

w(k,0) = ko) + Avwl(k,w) + L2viko) .. 4.

It should be noted that this series expansion applies to the velocity and
implicitly also to the pressure, but not to the stirring force.

5) In order to find expressions for uw?(k,w), w!(k,w), etc., the series expansion
for uw>(k,®) is substituted into the uw>(k,®) momentum equation. Matching powers of &
yield terms in the series.

6) The series for u>(k,0) is substituted into the momentum equation for u<(k.w).
The resulting series expansion for u<(k.®) is truncated to retain terms of O(A2).

7) Ensemble averaging is applied to the high wavenumber forces in the equation for
u<(k,w). This yields a viscosity correction term and a triple velocity product.



Ju<fu<u<. The triple product is discarded in the YO method but is important in the
methods of ZVH and Carati. It is also crucial to the present investigation.

8) The viscosity correction term is integrated with respect to frequency using
contour integration and calculus of residues. This term is also integrated with

respect to wavenumber over the spherical shell.

9) The correction is added to the viscosity and the procedure may be repeated in a
recursive manner. At an intermediate step in the process, the wavenumber shell is
AGe Al < k < A(H, where A(H = Aoe'[. Any parameter with a zero subscript becomes
instead a function of £ such as vy — Vv(§. The eddy viscosity recursion is:

(VS

V(&ADH = v() + AV(&A)D 4.2-

10) YO convert equation 4.2-3 into a differential equation for v(§ which is then
integrated with respect to [ from zero ( v(0) = v, the molecular viscosity) to /.
where A({) = Ac, the maximum wavenumber resolved by the grid.

I1) The eddy viscosity derived in this manner contains the arbitrary coefficient
of the stirring force correlation, W (see equations 4.1-3 and 4.1-4). YO substitute W
= 1.59 n’e, relating the power input to the energy dissipation to complete the
derivation.

Each step in the RNG process will be discussed in some detail in the following

sections.
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4.3 The spectral splitting

The first step in the RNG procedure is to spectrally split the velocity and
stirring force:

The Fourier velocity coefficients of the 'high’ and ’low’ wavenumbers are:

ug(k.®) for 0 < k < Agedf
ua<(k,0)) =
0 for AeeA < k

and
0 for 0 <k < A
ua>(k,0)) =
ug(k,0) for Aoe'A[ <k <Ay

An analogous definition applies for the stirring forces. f(k.®) and f'(k.w). In
addition, some authors [13] spectrally split the projection operator M(k) into M<(Kk)
and M’(k). Since the functional forms of M<(k) and M’(k) are the same. the purpose of
this notation is to keep track of the domain of k when M(k) appears in convolution
integrals. The Green’s function G(k.w) also has the same form for all k and is
usually not spectrally split in the literature.

For the purpose of comparison with the recursive RNG and for the discussion of
higher order series expansion terms, the thickness of the eliminated shell will be
needed.

shell thickness = Ayl - eA) = AAl when Al << | 4.3-2

The functions u“(k,m) and u’(k,w) are referred to as the ’high’ and ‘low" Fourier
components of the velocity. These high and low Fourier coefficients of velocity and
stirring force are substituted into equation 4.1-1, to generate two coupled momentum
equations, 4.3-3 and 4.34:
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) = Golkm) {AMM0—{ds[d0{ usthj.-QuG.) +

(2n)d+
2u<(k-j,0-Q)u>(j,Q) + u>(k-j,0-Qu>(.Q) } + F(k,m) } 4.3-3
> _ > 1 " <l s
u”(k.0) = Gy(k,o) {m (k)(zmd — fd i J’dQ { vkj0-QuG.Q) +
2u<(k-§,0-Qu>(.Q) + u(k-j.0-Q)u>(.Q) }+ £ (k,®) } 4.3-4

In the above equations, the directional subscripts have been omitted. The
wavenumber integration is carried out over the sphere of radius A, while the
frequency integration domain is *eo. The cross-terms u<(k-j,@-Q)>(j.2) +
u>(K-j,0-Qu<(j,Q2) = 2u<(k-j,0-Q)u>[,2) due to the symmetry of the integration

domain.

4.4 The high wavenumber velocity series

The objective of the RNG procedure is to model the average effects of the high
wavenumber velocity coefficients, u>, on the low wavenumber coefficients. u< as an
increment of the viscosity, then to eliminate the shell and iterate the process. The
RNG method achieves this by representing u> as a function of u< and f>. then
averaging over the f> terms. The exact functional form of u>(u<f>) is unknown since
it requires the solution of 4.3-3 and 4.3-4. The RNG method approximates u>(u<.f>) as
a series expansion in the artificial parameter A:

ug”(k) = ug(k’) + Aug'(k) + AugPxK’) + ... 44-1
where k'’ = k,.

Since A = 1, this is not a conventional perturbation series. It will be shown
later that with the proper non-dimensionalization of equations 4.3-3 and 4.3-4. the
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effective expansion parameter A (to be defined later) will be a small number under

certain conditions.

The series expansion (4.4-1) is then substituted into equation (4.3-4) for the
high wavenumber velocity. The notation is further simplified by using the abbreviated

integral symbol fdj’ = 1 _ I ddedQ . To obtain an explicit expression for u>.

d+1
@m A

the coefficients of A' are equated. The first two terms in the series are:

W) = Gyk)P(K) 4.4-2
wik) = GukOM) a7 { ustk’i)usq) +

2us(k’-Hu0G") + u0(k’-j G } 143

Higher order terms may be obtained in an analogous manner but conventional
versions of the RNG method utilize only the first two terms of the series. It is
noted that u>!(k’) may easily be written in terms of G, f>, and u<. This fact is
exploited in section 4.6 since the contribution to the viscosity will be an average
over >f>.

The physical interpretation of the series 4.4-1 depends on the interpretation of
the stirring force. It is difficult to provide a physical interpretation for the
various terms of the series 4.4-1 because setting A = O violates the principle of
Galilean invariance and equation 4.4-2 no longer represents XF = ma. Equation 4.4-2
describes the individual decay of each Fourier mode due to viscosity in the absence
of non-linear interactions. This is a diffusion equation for momentum with a forcing
source term. The implications of Galilean invariance for the RNG have been discussed
by Smith et al [30], and will be examined further later in this work.

48



4.5 The low wavenumber velocity series

Next the high wavenumber series is substituted into the low wavenumber velocity
equation in order to approximate the coupling between u< and u> as an interaction
between u< and f> up to a given power of A. This process yields the low wavenumber
series in A. Traditionally, in the RNG methods, terms up to A? are retained:

uS(k’) = Go(k)AM<(k) Idj’u<(k’-j')u<0') +

— J

—y—

4.5-1a
Go(K)AMS(K) J’ " 2us(k’-) (U () +Au "G H)+OAY) +

L J

v

4.5-1b

Gy(K)AM(k) de’(u?( )+ (K- )+0A))(u® ()+Aul>GH+0(A2)) +

L J

v

4.5-1Ic

Gy(kKHf (k") 4.5-1
—J

4.5-1d

4.6 Partial averaging of the high wavenumber stirring forces

Terms containing high wavenumber components of the stirring forces will now be
averaged in order to obtain a statistical contribution to the eddy viscosity. Let
<..>> be the symbol for the partial ensemble averaging operator which acts only on
the high wavenumber components of the stirring forces. The variable f< is unaffected.
A physical justification of this procedure is that high wavenumber fluctuations
evolve much faster than the very large fluctuations at k — 0.
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To the knowledge of the current author, all of the RNG literature uses the
property:

<usurd>> = u<y>>> 4.6-1
and. in particular:
<u<u>®>> = uKGFH>>> = 0 4.6-2

The key points to note about equation 4.6-1 are that i) u< (as well as f<) is
unaffected by the averaging operation, and ii) <u>>> # O since the averaging affects
only the high wavenumber stirring forces (as opposed to the high wavenumber
velocities). The relation 4.6-1 is a standard property for the RNG partial averaging
as published in the literature. However, this rule will be challenged in chapter 8 of
this work for the following reason: The series expansion of u<(k,w) in powers of A
(4.5-1) contains f> components which will ‘'react” when averaged with the =
components of u> to any desired even moment of the forces. For example. relation 4.6-
2 is only true to zero order in the A expansion of u<, when u< is represented by Gf<.
This leads to the conclusion that the result of partial averaging depends on the

order of A expansion of u< and u>.

The properties of the partial averaging operator <..>> will be discussed in
chapter 8 of this study. At that stage, a modified RNG method will be proposed. where
equation 4.6-2 is not used.

However, the work of YO uses relation 4.6-2 to carry out the partial averaging. as
well as using the fact that the stirring forces are Gaussian variables with zero mean
so that all the odd moments are zero. The results of the averaging are easier to
demonstrate by first applying the procedure to the high wavenumber series 4.4-1 and
then proceeding to average the low wavenumber series 4.5-1. Furthermore. according to
4.6-1, the sequence of averaging and substitution is interchangeable. an observation
made by ZV [10] which is also challenged in the current investigation.

Averaging the first two terms of 4.4-1, gives:
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<w(k’)>> = <uP(k)>> + A<w>l(k)>> + Au>2(K)>> + ... 4.6-3

with
<u(k")>> = Gy(k)<P>(k)>> = 0 4.6-4

and

< '(k,@)> = Go(k,m)w(k)jdj' us(k-§.0-Qu<j.Q) 4.6-5
where the last result has been obtained using the property 4.6-1 and
M7(k) [di" <urd(k-u07)>> = Mo [d7 GGG ISP )R>
= M'(k)|d%G(k™~ )G} IW(j)>d(k-j+j) = O +.6-6

This is because &(k-j+j) = (k) and this Dirac Delta function does not equal zero
only if k = 0. However. M(k) is proportional to k and so M(0) = O.

As noted by YO [3], the root mean square of termms of the form 4.6-6 does not
vanish but constitutes an ’induced’ force at the low wavenumber Kk due to two large
wavenumbers, j and k-j. This induced force represents a backward cascade of energy
(backscatter) from large wavenumbers to small wavenumbers. Carati [40] has
incorporated the induced forces into an lterative Filtering method, very similar to
RNG.

Using the rules 4.6-1 to 4.6-5 to average equation 4.5-1 leaves term 4.5-la
unaltered, so that <4.5-1a>> = 4.4-5a.
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The average of term 4.5-1b takes the form:
<4.5-1b>> = Gy(k")A2M<(k) J' dj'2u<(k'-j')M>(i)J'dp'u<(j'-p')u<(p') 4.6-7

This triple velocity product u<u<u< is of central importance in this work.
However, in the original YO analysis, the triple products are discarded so that the
‘renormalized’ equations can have the same form as the original Navier-Stokes

equations.

Tuming now to term 4.5-lc, the multiplication is performed and only terms of
second order or lower in A are retained. These terms are:

KM<(k)Idj'<u°>(k’-j’)u0>(j’)>, A2M<(K) J’dj'<ul>(k'-j’)u0>(j')>, and

k3M<(k)jdj'<uy(k’-j’)ul’(j')>. The average of the first term is zero. (equation

4.6-6), and its root mean square is the induced force. The second and third term are
combined by switching the wavenumber labels of (k-j) and (j). Noting that G-
GG = 1Gy(") | the term <4.5-1c¢>> equals:

<4.5-1c>>= u<(k’)8G0(k’)fMYk)fdj’Go(k’-j')M>(k-j)lGo(j’)lzD(j)W>(j)

= -u<(k")Avk? 4.6-8

Here Av = ?1 SGO(k’)kzM<(k)Idj’Go(k’-j’)M>(k-j)lGo(j') D(j)W?(j) is a correction

to the viscosity owing to the averaged out shell of wavenumbers. The low wavenumber

velgcities can now be written as:
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(-iw + (v, + AVKIuSK) = AM(K) Idj’ us(k’5 <G’y +

| - ]
<4.6-92>
12M<(k)Idj'2u<(k'-j')Go(i')M’G)J‘dp'u<(j'-p')u<(p') + (< + O3 4.6-9
— J

<4.6-9b>

Equation 4.6-9 is the momentum equation without any high wavenumber velocity
components since these have been replaced by an average linear term, Av. The triple
velocity products, <4.6-9b> are discarded in the YO procedure discussed here. but are
retained in other versions of the RNG procedure to be described later in this study.
If the term 4.6-9b is dropped, the form of the resulting momentum equation is the

same as the original Navier-Stokes equations.

4.7 Integration of frequency and wavenumber

An explicit expression for Av is obtained by first substituting into 4.6-8 the

1

—  and G. (k- =
-iQ2 + jiv at%)

explicit forms of the Green’s functions as Gg(j")

1
(w-Q) + |k-jizv

and then performing the convolution integral over the frequency

domain Q:
ug, (k.m)k2Av = up<(k,m) x
ron T MogotkdDao @
{ BV Mgy [do [sine ao [ j2 =102 PO~ | s } 4.7-1
0 -0 + Vg2 + v k-jl2
0 0 AeAL

The convolution integral over €2 has been evaluated over the limits - to oo using
calculus of residues. Physical limits on the frequency are of the order of the
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inverse of the Kolmogorov time scale; (vy€)'2, so that, approximately. lQl <
2nt(esvy) 2.

The subscript notation has been restored in equation 4.7-1 since it will serve to
show that ug“(k.w) is picked out of the up<(k.w) in the process of angular

integration.

Note that the k2 factor will be extracted from the right hand side of 4.7-1. since
M qpy(k) is proportional to k and the other k factor is obtained from the angular

integration of M"ycp(k'j)DBGCi)-

The evaluation of the wavenumber integral is facilitated by changing the variable
i — j + Kk/2. Prior to integration, the above expression is expanded In a power

series of the small parameter % and terms containing {Kk— }2 or higher powers are
0

dropped. Also, the iw term is dropped, implying that g << 1. Geometrically. the
\

wavenumber integration domain is the overlap of two spherical shells of thickness
AAL[ ( assuming a small A/ for a thin shell ) with centers offset by a distance k. as
shown in figure 4.1. The YO calculation assumes complete overlap of the shells. This
implies that the magnitude of the low wavenumber is negligible relative to the

thickness of the eliminated sheil ( K%—[ << 1 or altematively 75—0 << AL Smith et al

[39]). The integration is carried out in spherical coordinates. first with respect to
angles and then with respect to the magnitude. The angular integration associated
with the vector j leads to a Kronecker delta which picks out the o component of the
velocity vector up<(k.w). The details of this procedure are well explained by Leslie
[22]. The final result is given as:

AvAf = ASXPEAD - | VAXV e 472
0 1%
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Figure 4.1 The wavenumber integration domain
for k < shell thickness.




where it is recalled that W is the amplitude of the stirring force correlation

(equation 4.1-4):

— Sq . — [dl-d-e, 173
Ad—Ad(zn)d. Ad-zm, (3 —4+y-d 4.7-3

and S is the area of the d - dimensional unit sphere.

Reynolds and Smith [5] have shown that to consistently retain terms of the same
power of € (that is €!) it is necessary to expand A, in powers of €:

el S d-d -1
Ag=AL + A€ = ey taEy ©

and use the zero order term, K;O in place of 7\_; (and AL in place of Ay in the eddy
viscosity calculations, again assuming that € is small. This correction has been
incorporated into the RNG literature, [6].

Vi = Vo + ASv, SXREAD - L0R2 L oaY ) 171

where v, is the combined molecular and eddy viscosity obtained after removing the
band Agexp[-Af < k < A, of wavenumbers. The parameter A, is given as:

T2 A2W _
= W 4.7-5
%o VoPAoS

The parameter A, has been identified by FNS [28] as the effective expansion
parameter of the non-dimensionalized Navier-Stokes equations.

Examining equation 4.7-4, the term 0(??04) comes from the contribution of the
fourth moment of the stirring forces, or the so called induced’ force.
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It is noted that the eddy viscosity correction is known to O(Xﬂ") but the low
wavenumber momentum equation has been truncated at O(XOZ). The improvement in
accuracy (assuming that x) is smaller than one) is due to the fact that the terms of
order 0(103) go to zero. Some terms of order 0(%03) are odd moments of the Gaussian

forces and vanish as a result of averaging. Other 0(X03) terms go to zero as 7{‘— — 0
)

due to Galilean invariance requirements, FNS [28].

To show that )T.O indeed plays the role of an effective Reynolds number. the
characteristic velocity scale is selected as:

Wi2 A €7

2 = 4.7-6

V0"2

The form of z has been modified by the current author so that it is dimensionally
correct (L/t) for arbitrary €. This modification takes into account that the units of
W are L&€/t3 (Lam [6]). It is noted that since the units of W vary with €. W must be
a function of €, Lam [6]. but its functional form is unknown. Published literature
W2 Al

—— valid only for € = 4. The length scale is 1, = Ay! and the time
VO <

use 7 =

scale is Ay?v, These parameters are characteristic of the eliminated wavenumber
shell. Non-dimensionalizing the Navier-Stokes equations with respect to these values

. lo Wiz A €R _ .
gives a form of the Reynolds number v = ——— = Ao(e). It is desired that
0 VO e

Xo(e) is less than one to justify the series expansion. Clearly. this may be achieved
if Ao is treated as an independent parameter and chosen sufficiently large. However.
this choice of Ao may fall in the dissipation range where the use of W ~ € is no
longer appropriate. For further discussion see Carati [40].
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Lam [6] also proposed that W should be a function of A. This interpretation is
problematic (Smith and Woodruff [7]) since W is intended to correspond to £ in the
inertial range and hence be independent of wavenumber. A possible scenario is that:

aW(A,e)l - 0
3A €=

After the range of shells A; to Aoe‘[ are eliminated, the parameters v, 7. [, .
and Xo(e), are replaced by v(§, «fH, I(§, and MLe). Tt will be shown in the next
section that for sufficiently large [ X(Ce) is proportional to €!? if W is treated
as a constant (its functional dependence on € is ingored, Lam ([6]). Then. the series
expansion in powers of X(Le) is justified for small €. However, it will be
demonstrated shortly that the spectrum of the inertial range requires that € = 4. The
YO hypothesis is that the results of calculations performed for small € may be
extended to the case where € = 4. Some authors such as Theodorovicz [41]. have
suggested that a form of analytical continuation may be wused to justify this
hypothesis but to the knowledge of the current author no such attempt has been
successful to date. Smith and Reynolds estimated the range of AMOH. At [ = O relating
Ao to v, through the Kolmogorov relation; Ao ~ 0.2(g/vy)!* and using W ~ €. }:,(4) ~
25. At [ — oo, X([e) ~ 11.5 to the lowest order of the € expansion.
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4.8 Recursion relations

The objective is to obtain a recursion algorithm by successively removing
wavenumber shells of Fourier coefficients using the same steps as in sections 4.3 -
4.7. This iterative process will yield a sequence of eddy viscosity corrections. each
of the same form but not the same value as the previous. After removing the first
shell of wavenumbers corresponding to Ae(-A) < k < A,, the low wavenumber momentum

equations are:

(i + vkDugk) = Magy‘(k)xjd“j IdQuY<(k'-j')uB<0') + fo<(k")

+ ﬁMaBY‘(k)J’dj’2uB<(k'-j')Go(j')Mwo>u)J'dp’up<(j’-p’)u 5P + 00 4.8-1
L - J
4.8-1b
Note that equation 4.8-1 is the same as equation 4.6-9 v, = v, + Av,. The YO

method achieves the recursion by discarding the triple velocity product. 4.8-1b. so
that the momentum equations 4.8-1 have the same form as the original Navier-Stokes
equations. The justification for neglecting the triple velocity product is subject to

the condition that % << Al so that the integration domain of that term goes to zero.

Recalling relation 4.7-4;
v, = vo + AV SXREAD - Ly 4 oY) 474

the YO procedure first transforms this equation into a general recursion relation.
valid after removing a range of wavenumbers, A, to A, el and the resulting increment
of the eddy viscosity is Av(&Af. Setting v, = w(f, v, = V(&4AH. and A, = A(f
in equation 4.7-4 gives:
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V(BAG = (5 + ASV(H SREAD - L (52 4 oG ) 4.8-2
where:
4.8-3

T2 AW
Mo = V(JPAHE

To transform 4.8-2 into a differential equation, both sides are divided by A/ and
the limit Al — 0 is taken:

dv(h _ fbm Av(h _ m exp(eAh -1 Y :
A= Al — 0 AP = Al — 0 ATEGE— { ¥4 + 009} +84

Expanding the exp(eAf in a series of Al to the first order, the € and A/l factors
cancel and the resulting differential equation is:

dv(h _ AW Y s
—ar = AdOV([j{ \m—e— + 0()\.") } 4.8-5

where A(§ = Aoce-l Now the parameter A is assumed to be small, so the O(A%) is
neglected and equation 4.8-5 may be easily integrated. The solution is obtained
using the boundary condition, v(&0) = v, and integrating up to [/ = (. For the
purpose of evaluating an eddy viscosity model for large eddy simulation. [
controls the ’cutoff’ wavenumber Ac = Aoe-é which is the maximum wavenumber
resolved by the computational grd.

v = {3ap X el Ly v 5 4 oty 4.8-6
0

The expression 4.8-6 may be substituted into 4.8-5 in order to obtain an explicit
relation for A:



— — 3A,0 - 'Y
Mo = Rgenplll + 2% FREA=Ipe + oGy 487
0

For € > 0, and large [ equation 4.8-7 yields:

2 —s =+ 0o 4.8-8
3ag + 0D

The expression 4.8-8 is crucial for the YO RNG method for two reasons. First. as [
becomes large, A becomes independent of [ - a condition called the ‘fixed point’.
Second. if € is close to zero, the truncation of the high wavenumber series is
justified, again for large values of [ At the fixed point. the eddy viscosity is

approximated by equation 4.8-9:

3A OW
(S

3AL W

13(Age ) €7 = [ —4— ]15AS? = v0.A0) 4.8-9

vis ~ [

Once [ is large enough for relations 4.8-8 and 4.8-9 to be valid. any further
increases of [ increase v(fj according to e€4L The notation v(0.Ac) has been used
by Smith and Reynolds [5] in the context of RNG and by Kraichnan [38] and others for
different versions of spectral eddy viscosity. The general form. v(k.A¢) has been
introduced in equation 2.7-8, (the t subscript has been dropped). For the YO version
of the RNG method, k/Ac — O so that the method obtains the limit v(k.A:) —
V(0,Ac). Note that here k/Ac — O means k/Ac << 1, but k is still in the inertial

range of the turbulent flow.

It is a requirement of the RNG method that the fixed point relations apply over a
large fraction of the total range of eliminated wavenumbers. Let [ = {. where § is
a sufficiently large value of ( for v(§ and 5..-(6 to be close to their fixed point
values. In the wavenumber range A, to Aoe'4, v(§ and A(H vary between their
initial values v, and XO and their fixed point values and are not useful for
turbulence modeling. In the wavenumber range A, ek to Aoe'é, AMD =< €l the power
series expansion in X([) is justified for small €, and the fixed point values of
v(f) and X(Q) are accurate for small €. The overall validity of the eddy wviscosity
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model requires that the range Aoe-4 to Aoe"é is much larger than the range A, to
Aoe‘4 so that the fixed point values may be said to apply over most of the
eliminated wavenumbers. It may be concluded that the RNG procedure is applicable to
high Reynolds number turbulence where the inertial range is wide.

4.9 The inertial range parameters

So far the eddy viscosity, V(0,Ac) has been derived for a small value of € (€ = 4
+ y - d) and an arbitrary W, the coefficient of amplitude for the correlation of the
stirring forces. The objective now is to make a connection to the physics of
turbulent flows in the Kolmogorov inertial range. The statistics of the inertial
range will provide constraints on the values of € and W so that the resulting Vv(0.A.)
will hopefully be applicable to real turbulence.

It has been noted that the form of v(k,Ac) has been derived for % << |. However.
Dannevik, Yakhot and Orszag [36] (herein called DYO), claim that as € — 0. the eddy
viscosity result is correct even as 7‘& — L. The validity of this claim will be

examined in chapter 6, however it will be taken as correct for now so one may replace
Ac by k in equation 4.8-9 to write:

v(k) ~ [ ]“3k€/3 with A, <k < 14.9-1

where A; is the lowest wavenumber of the inertial range. Relation 4.9-1 was used by
YO [3] to obtain the energy spectrum:

d1 173 ”
Ek) = (2 )d]JB(-Z-:L) ki-2€7 1.9-2

Inspection of 4.9-2 indicates that € must equal to 4 in order to recover the
Kolmogorov energy spectrum E(k) = Cyge¥3k-53. Therefore, YO set € = 4. ignoring that
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the convergence criteria for the high wavenumber series as well as the limit AL —
<

require € to be close to zero. YO make the ad hoc claim that their theory extends the
results for € — 0O to the case of € = 4. Their justification is based on the
successful derivation of some experimentally known parameters as the end result of
the nonrigorous procedure. However, with € = 4, DYO proceeded to derive a relation
betweeen the amplitude of the stirring force variance, W, and the power transfer rate
[1(k), equal to € in the inertial range.

To achieve this goal, DYO [36] solved the Navier-Stokes equations, 4.1-2 to second
order in the € expansion to recover the Eddy-Damped-Quasi-Normal-Markovian (EDQNM)
equations introduced by Orszag [24] in 1[970. These equations express the mean
dissipation rate, € in terms of the energy spectrum and the effective viscosity in
the Kolmogorov inertial range;

e = g( E(k),v(k) ) 4.9-3

Combining 4.9-1, 4.9-2, and 4.9-3, and setting € = 4. DYO numerically integrated
the EDQNM equations to obtain the relation:

Cmg £ = 494

where YO established that Cmg = 1.59, in agreement with a previous result by
Kraichnan [23]. Equation 4.9-4 is the most important relation in the YO RNG because
it establishes the relationship between the arbitrary RNG parameter W and the real
flow parameter €. Substituting 4.9-4 into 4.9-1 and 4.9-2 gives:

E(k) = 1.61g¥3k-53 4.9-5

v(k) = 0.49¢!3k-~/3 4.9-6

The coefficient 1.61 in equation 4.9-5 is the RNG value of the Kolmogorov
constant, C,. Since the accepted range for C_ from experimental measurements is 1.4 -
1.7, YO concluded that their result is in agreement with experiments.
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Equation 4.9-6 may be rewritten in a form suitable for large eddy simulations. For
this purpose, k is again replaced with Ac in equation 4.9-6. YO let A denote the
computational grid spacing while A denotes the width of a filter, where A = 28 =
21t/Ac. The eddy viscosity, V(Ac) is now written as v(A) to make a connection with the
x-t space. Also, the eddy viscosity must satisfy the equivalence of the dissipation

rate given by equation 2.3-2:

(1]

(Y]
]

19

E_T<{3“a F>-= V(A)<{3“a ﬂE}

aXQ aXa

where the <.> notation denotes ensemble average as wusual and u<(x.t) is the
resolved, large eddy component of the velocity consisting of Fourier components
u(k,t) such that [k| < A Substituting the above relations into equation <4.9-7
yields:

au < au < -
v(A) = 0.49 (X(QA—I)W F)% + .37(% }-’3 (2R)~3 A3 4.9-7

Rearranging finally yields:

aua< 6u <
v(A) = cA?| g + | 4.9-8

BXa

where ¢, = 0.0061 as calculated by the present author ( YO [3] report 0.0062 ).

Equation 4.9-8 is the well known Smagorinsky eddy viscosity formula which has been
widely used in large eddy simulations. Early users debated which value of ¢  gave the
best results, with Deardorff (1971) claiming that ¢, = 0.005 worked best. Moin and
Kim pointed out that the computed LES trbulent intensity were insensitive to
variations of the constant in 4.9-8 by 40% (Lesieur et al [19]). Therefore YO



concluded that their RNG value of the RNG derived Smagorinsky constant is within the
’experimental’ range as established by early LES computations.

4.10 Discussion

The YO version of the RNG application to turbulence has a number of controversial

steps. The main issues are summarized below:
1) Interpretation of the stirring forces.
2) Series expansion in powers of A, where A > 1.
3) Functional dependence of W on € and possibly on A as well.

4) Partial averaging of the stirring forces based on wavenumber magnitude with a
sharp boundary between the averaged and resolved variables.

5) Wavenumber integration domain is assumed to be a spherical shell.
6) Triple velocity products are discarded.

7) Derived eddy viscosity is valid only for k/Ac — 0. However it is used at the

next stage for u>9,

[tem 1, the wvarious interpretations of the stirring forces will now be brietly
discussed. The series expansion in powers of A (item 2) will be discussed in chapter
10. Item 3, the comprehensive role of € in the RNG model is beyond the scope of this
study although it is closely related to the series expansion. For the purposes of the
current investigation € is simply fixed at 4. A possible future study is the model
problem (where the stirring force is interpreted as a real external force acting on
the fluid) analyzed for the case where € varies from near zero to near 4 in order to
determine if such a problem is physically realizable and what is the nature of the
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non-linear energy transfer. The functional dependence of W on € can also be
investigated. The partial averaging operator will be discussed in chapters 8. and 10.
Items 5 and 6 are related and they will be addressed later in this section. Item 7

will be addressed in chapter 9.

The interpretation of the sturring forces should be in the context of the
"correspondence principle’ introduced by YO [3], largely misunderstood in subsequent
literature according to Smith and Woodruff [7]. To quote YO [3]:

A  wrbulent fluid characterized in the inertial range by scaling laws can be
described in this inertial range by a corresponding Navier-Stokes equation in which a
random force generates velocity fluctuations that obey the scaling of the inertial
range of the original unforced system. The dynamical equation with the random force
is the basis for the systematic elimination of small scales and calculation of the
renormalized transport coefficients.’

The difference of opinion among various researchers concerns the nature of this
stirring force. The present author interprets the above statement literally to mean
that the inertial range statistics of turbulent flow may be reproduced by the ‘model
problem’ of a Navier-Stokes equation driven by a properly specified external stirring
force. In this interpretation, the force is real and separate from the effects of the
energy cascade. The difficulty with the model problem driven by an external stirring
force is that since the force acts on all wavenumbers of interest there can be no
inertial range energy cascade for the model problem because such a cascade by
definition excludes external input. The energy spectrum may still have the required

k53 slope.

Smith and Woodruff [7] interpret the force as a renormalized effect of the energy
cascade. The problem with this interpretation is that since the complete non-lincar
convolution integral is still included in the Navier-Stokes equation. there is a
duplication in the representation of some non-linear interactions. However. this
problem may later be alleviated by the truncation of the high wavenumber series at
A*>. a procedure which discards higher order non-linear terms. A  similar
interpretation is offered by Lam [6], who however relaxes the fundamental YO
requirement that the force correlation W be scale invariant.
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These different interpretations of the stirring force may perhaps be reconciled by
alternating one’s viewpoint between the literal model problem with an external
stirring force and the equivalent turbulent problem with a renormalized force. The
interpretation of RNG results will be less ambiguous if one clearly specifies the

context.

An important restriction of the YO results is that they are valid only for k ~ 0
or more precisely for k/(AA) ~ 0. The resulting eddy viscosity is rather analogous
to the low frequency ’'beats’ caused by two superposed linear waves at nearly equal
frequency. Even though the shell thickness, AA/ is thin (it tends to zero in the
differential limit), the restriction k/(AAl) << | means that only the interactions
which are nearly opposite in phase contribute to the eddy viscosity. It is noted.
however, that the RNG calculations are strictly valid only for k values in the
inertial range due to the isotropic form of the Navier-Stokes equations in Fourier
space. Therefore, the inertial range must be very wide, so that k/(AAH << | even as
Al — 0. The restrictions on the RNG procedure should be interpretted as relative to
the limits of the inertial range which are assumed to be very wide. Chapters 8 and 9

of this study will examine the extension of YO results to the case where A—kA—[Z I.

YO obtain their recursion relation by neglecting the triple velocity products.
4.8-1b. Neglecting the subscripts, term 4.8-1b is rewritten below:

ﬁM‘(k)jdj’zu%k’-j')Goo')M’U)J’dp’u<u'-p’)u<(p’)

YO show that if the triple products were retained in the renormalized equation of
motion, these terms would scale as e-fd‘yi, where e/ is the fraction of eliminated
scales, d is the number of space dimensions, and y is the negative power law exponent
of the stirring force correlation. Therefore, taking d = 3, and letting [ become
large, the triple products will diminish in magnitude if y < 3. However. the physics
of Kolmogorov’s turbulence requires € = 4 so that y = 3 and the triple products are
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not affected by rescaling. Therefore, YO state that discarding the triple products is
not justified but express the hope that the contributions from these terms are not
too large and lead only to logarithmic corrections to their theory. However. the
magnitude of the triple products vs. the magnitude of the viscosity correction due to
a single eliminated shell may be assessed by examining their domain of integration in
wavenumber space. The domains of integration of some RNG terms are indicated in
figure 4.2 as described in the following discussion.

It is noted that terms such as fu<u> or Ju>'u*® in the RNG analysis come in pairs
obtained by interchanging the j and k-j variables. Due to the symmetry of the
integration domain indicated in figure 4.2, the two terms of each pair are equal so
that Jurl(k-jHuX(G) + Jur'(ju>o(k-j) is wusually expressed as 2Ju>'(k-ju>’(j). The
integration domain of the YO viscosity correction, Av, consists of region A labelled
in figure 4.2. It should be noted that for each shell, region A is symmetric with
respect to the angle 6. Region B is the domain of terms of the form Jfu<u> and to
O(A?), these consist of AJu<u> and A2fu<u>!. The contribution of ASu<u>® to the eddy
viscosity (a new contribution of the present work) will be taken into account in
chapters 8 and 9. As demonstrated in section 4.6, the term A2fu<u>! gives rise to the
triple velocity products (equation 4.6-9). It will be shown in chapter 5 that region
C represents the domain of the re-expanded triple products from previous shelis - not
used in the YO analysis. The magnitudes of the respective integration volumes for
regions A, B, and C, will now be examined.

Since the flow is isotropic, the vector k may be taken to be parallel to the =z

axis without loss of generality. The intersection angle between two circles both of

radius A centered at origin and {0,0,k}, respectively, is 03 = arccos( ’,kx). and
similarly, 62 = arccos is the intersection angle for circles of radii Aed!
y (—"A—z Ao P g

The equation for the magnitude of the j vector from the origin to a point on the
circle of radius A and centered at {0,0,k} is:
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J(k,8,A) = kcosO + ij - [7‘;]'(1 - cos208) 4.10-1

For thin shells, 83 = 62 and the integration volumes of regions A, B. and C. in

figure 4.2 may be evaluated as:

0: A n J(k.6.A)
region A = 2nJ'sme de j P2 dj + 21 J’ Sin® de J' P dj 4.10-2
0 J(k.0 Aedh 03 Ae-AL
03 J(k,0,Ae-A 03 Ae-AL
region B = 2x J Sin® de J‘ 2 dj + 2nJ'Sine de J’ P2 dj 4.10-3
0 AeAL 0 J(k,8,AeA)
03 J(k.8.A) x A
region C = ZRISinB de J’ 2 dj + 2njsme de J’ i dj 4104
0 A 83 J(kB.A)

Since the magnitude limit is a function of angle as given by 4.10-1. the magnitude
integral must be performed first and the 6 integration follows. Intcgrals 4.10-2 to
4.10-4 can be evaluated analytically in three dimensions. To O(AA) and with k < AA.
the volume of region A is 4wA2(AA/ - 0.5k), while the volumes of regions B and C are
both 2mA2k. It is noted that YO approximate 4.10-1 as 4mA2AA. this approximation is

0 .
equivalent to an expansion in powers of [ﬁ] to [Kl%] If {%} < 1, [ZKX] > [%—

and

i
since the Av integrand is expanded to [%] so should be the integrai domain and thus

the YO procedure is inconsistent in this aspect. However, as verified by the present
author, removing this inconsistency does not affect the final result. since the added

terms cancel over the integral domain.
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The integration volume ratio of the triple terms (region C) to the eddy viscosity

(region A) is T(Wk-—()_SRT’ proportional to 27%-[ as ﬁ—[ —> 0. Since the integrand

of the triple products is finite in this region, the triple products may be neglected
in this limit. The same argument applies to region B. For values of k not quite xo

small, where nli-[s 1, the YO calculation is inaccurate.

The general conclusion from the above discussion is that while some of the YO
analytical steps may appear oversimplified, their results are robust. More exact
definition of the integration domain does not change the answers.

[t is instructive to review the relevant parameters in the RNG procedure. The
Navier-Stokes equations have been non-dimensionalized in section 4.7 in order to
recover A as the effective expansion parameter, a form of the Reynolds number. It is
noted that at the start of the procedure, there are three relevant dimensional
parameters in RNG, W [L%€/3], A [L!], and v, In addition, there are several

dimensionless parameters; €, Af and % In the YO version of RNG. two limits are

taken in sequence; first Kl;-ﬂ — 0, second Al — 0. and ZV [9] claim that this
sequence cannot be interchanged. After a wide range of eliminated scales. when v, <<

&’:—YA(Z)E, inertial effects dominate viscous effects in the eliminated range of
flow fluctuations so v, may be neglected. The remaining parameters {W.A.€} are used
to construct the values of characteristic velocity, length scale. and eddy viscosity
(Lam (6]). The effective expansion parameter A s proportional to €!? and so the
series expansion of the high wavenumber Fourier coefficients is justified for small
€. However, € = 4 is required to recover the Kolmogorov energy spectrum.

YO assert that their analysis is valid even if € = 4, when the high wavenumber
velocity series does not appear to converge. Authors such as Theodorovicz [41] and
Lam [6] interpret the extrapolation of results from €¢ — 0 to € = 4 as a form of
analytic continuation but a rigorous proof has never been given. YO justify their
claim by two means of validation; the derivation of several fundamental constants of
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turbulence in good agreement with experiment and good simulation results with the RNG
turbulence models. In chapter 10, the current study will address the question whether
the limit of infinitesimally thin shell causes the high wavenumber series to converge
or whether the approximated solution for u> has at least improved accuracy for this
case. Also, in view of the non-rigorous analytical steps taken by YO, the question
arises: what are the criteria for the RNG analysis of turbulence to yield meaningful
results? How does one tell if a new term generated by the analysis has physical
meaning and whether the LES results will be more accurate if this term s
incorporated in the model? The present work will attempt to give a partial answer to

this question.

72



5. The recursive RNG method

This chapter outlines the recursive RNG method as pioneered by Rose [29]. and
extended by Zhou, Vahala and Hossain, [8], hereafter referred to as ZVH. Rose worked
with a model of a passive scalar convected by a known velocity field and derived an
expression for the renormalized eddy diffusivity. ZVH applied similar methods to the
model of stationary, isotropic turbulence, and to free decaying turbulence in order
to obtain a renormalized eddy viscosity for each case. ZVH refer to their stationary
turbulence model as ’‘forced’ turbulence since energy is supplied at a steady rate by
a stirring force. Here, the scope is restricted to the forced turbulence case.

The model equations at the start of the procedure are the same as those used by YO
but the method used by ZVH is different from the €-RNG in several important respects.
One important difference is that the eddy viscosity contribution is calculated
numerically for a finite size shell, and the total eddy viscosity is accumulated
iteratively rather than integrated from an approximate differential equation. Also.
the triple velocity products are retained in the momentum equation and contribute to
the eddy viscosity. A third important difference between the work of YO and the eddy
viscosity model of ZVH is that the latter model is allegedly valid for all 0 < k < A:
while the YO model is valid only for k/Ac — 0. In chapter 6 of the current study.
the YO eddy viscosity is extended to finite wavenumbers by reexpanding the triple
velocity products. However the implementation and the resuits are different from ZVH.
The methodology of the present work has common points with both YO and ZVH and will
be compared to both.

5.1 The recursive RNG method - mathematical model

The presentation given here will follow the publication of Zhou. Vahala. and
Hossain [8] and also a later work by Zhou and Vahala (ZV) [l1] for the derivation of
an eddy viscosity for forced turbulence. Their notation is modified to match the
other chapters of this work. Comparisons with the work of YO will be made along the
way. Small differences in numerical factors will be pointed out since these may
affect the final RNG results for numerical values of the turbulence constants.
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Emphasis is placed on the assumptions made by ZVH or their methodology which are at
odds with the procedure adopted in this investigation.

In contrast to YO, ZVH worked in the time domain so that the spatially Fourier

transformed momentum equation is recalled from chapter 2 as:

2 + Vokug(k) = Mawk)J'dBj w3 DugG) + fak.y 2.5-5

with
Mapyk) = 7; { kgDary) + kyDap(k) } 256

and
Dop(k) = Sap - Xop 257

k2

Note that ZVH omit the l/(21t)3 factors from the Fourier integrals. in contrast o
YO. The stirring force has a zero mean and ZVH restrict it to a Gaussian
distribution. ZVH specify the Fourier space correlation of the stirring forces as:

<fa(k,t)f|3(k’,t’)> = W(k)DaB(k)S(k + k)o@ - t) 5.1-1

Comparison of equation 5.1-1 with equation 4.1-3 of YO shows that a factor of 2
has been omitted by ZVH as well as the (2m)’ factor. The specification of the
functional dependence on (t-t) as &(t - t) in equation 5.1-1 implies a white noise

temporal correlation of the force.

The wavenumber dependence of W(k) is a power law exactly the same as for YO
equation 4.1-4:
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0 for 0 <k < Ap
W) = 4.1-4
WkY for A £k £ Ay

where A; is a minimum wavenumber required to avoid singular behavior of W(k) and A,
is the maximum wavenumber at which the force acts.

The recursive RNG partitions the subgrid region A. < k < Ay into N shells. each
with thickness k(l-h) where k is the outer radius of the shell being considered and h
is held constant, 0 < h < I:

-2

(7]

A, = ky = hNAj < .< k; = hiAj <..< k; = hA; < A

ZVH use the usual notation to denote variables within a shell with a superscript >
while the variables below the shell have the superscript <. The resulting equations
are analogous to 4.3-3 and 4.34 except that they are in the time domain.

2 + vkustkt) = XM<(k)J.d3j { veivusgo +

2us(k-j.0u>G,t) + w(k-j,0u>G.b) } + f<(k.t) 5.1-3

2+ vk)wik.t) = XM>(k)Id3j { ve-jousgo +

-4

v

2u<(k-j.OuG.t) + w(k-§.0u>(.0) } + (k.

The directional indexes have been suppressed for clarity and the artificial
parameter A has been inserted. If A is set to zero, equations 5.1-3 and 5.1-4 become
linear and may be solved using the Green’s function:

GO(kst,T) = e-Uokz([_'t)

h
v
h
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The Green’s function 5.1-5 is analogous to that used by YO (equation 4.1-2) and
may be used to write a formal solution for u’(k,t):

t

w(k,t) = J’ dt { Go(k.t.1) m><k)jd3j { vkj oy +

]

-
1

o))

2usk-J G + Wik OwGD) } + Pk}

5.2 The high wavenumber velocity series

Following the same procedure as YO, (equation 4.4-1), the subgrid velocity u’(k.n)
is expanded in powers of A:

ug”(k.t) = ugPlkt) + Augik.t) + AMugr(k,t) + ... 5.2-1

Substituting equation 5.2-1

into 5.1-6 and matching the powers of A. the first two
terms of this power series are:

t
wok,t) = IGO(k,t,t)P(k,t)dt

5.2-2
Similarly, the expression for u>!(k,t) may be written as:
t
wi(k,t) = M>(k) Id‘c Gy(k.t.T) x
dej{ u<(k-j,Du<G,1) + 2u<(k-j,u>G,T) + uO(k-j. U, T) } 5223
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5.3 The substitution and partial averaging

The conventional sequence of operations in the €-RNG is to first substitute the
high wavenumber series 5.2-1 up to order A? into the resolvable scales equation 5.1-3
and then to perform ensemble averaging over the subgrid forces. ZVH follow the same
sequence in their first publication [8] but in their later work ZV [ll] claim to have
demonstrated that the results of RNG are independent of the order of substitution and
averaging. This issue is discussed further in chapter 8. where it is shown that the
significance of the sequence of substitution and partial averaging is determined by
the properties of the partially averaged product <u<u>>>. Here the presentation
follows the convention of performing the substitution first, carrying it out to O(A?)
for the overall expression, and followed by the partial averaging.

Restoring the directional subscripts and substituting the high wavenumber series
(equation 5.2-1) into the momentum equation for low wavenumbers (equation 5.1-3)

yields:

2+ vokugiky = AMQBY<(k)Id3j ug(k-J0uyG) +

L - )

5.3-1a

MMy [d% 2up (ke uy®G) + Muy'Go) ) +
L — J

5.3-1b

+ kMaBY<(k)Id3j(uB”(k-j,t) + luB>‘(k—j,t))(uf°U,t) + kuf'(j,t)) + o (k.D) 5.3-1
— - J
5.3-1c

Tuming now to the ensemble averaging of the fine scale forces. term 35.3-1a is
unaffected. The average of the term 5.3-1b is evalulated below:
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<5.3-1b>> = AMaBy<(k)J'd3j<2uB<(k-j,t)( Uy G0 + AuytGo)>> =
2k2MaB7<(k)_[d3j uB<(k-j,t)Idt Gy(t,1T) Mwo"(j)Iup<a-p,1)u6<(p,t)d3p 5.3-2

The result in 5.3-2 has been derived using the same principles as utilized in
chapter 4. The details of this derivation are given in reference [8]. Equation 5.3-2
gives the ’triple velocity products’ which play a central role in the work of ZVH as
well as for the current study. Averaging term 5.3-1c gives:

<5.3-1c>> =

(VS ]
]
)

lMaBY<(k)fd3j<( qu(k-j,t) + A.u|3>1(k.j,g) X uy®G.t) + Auy'GGt) )>> 5
Expanding the products and temporarily suppressing the subscripts gives:

AM(K) jd3j<u>0(k-j,t)u>0(j,t)>> + 2xzm‘(k)fd3j<u>l(k-j,t)uw(j,t)» +

\ J |\ J

5.3-3a 5.3-3b

3.3M<(k)J'd3j<u>l(k-j,[)u>l(i,t)>>

\ )

53-3¢

Term 5.3-3a contains the product <u>0(k-j,t)u>9(j,t)>> which vyields &) when
averaged. Since 8(k)M(k) = O, the term 5.3-3a has a zero average but a non-zero rms
value - it is the induced force indentified by YO. The term 5.3-3c is of O(A%) and is
dropped in the conventional O(A?) RNG closure of ZVH. It is noted that the O(A%)
closure is artificial since A = 1. If the partial averaging is carried out on term
5.3-3c, the result renormalizes M<(k), a so-called ’vertex renormalization’. FNS [28]
have shown that such terms vanish when the ratio of k/j << 1 as a consequence of

78



Galilean invariance. Since the work of YO satisfies k/j << 1 they are justified in
dropping term 5.3-3c. However, ZVH claim that their analysis is valid even as k/j —
Il and so their discarding the vertex renormalization terms is based on the O(AY)

closure only and hence is problematic.

Partial averaging the remaining term 5.3-3b yields:
<5.3-3b>> = 2AMgpy (o) [dj<ug k-j. DAy G0 =

Mgy (K)Dgp(k) I W, | k- | YD ked) X

t t
Mypo*®) [ Golitmup ks [ Gl k-l errar

t

=- Jdt No(K.t.7) ug<(k,7) 5.34
where nq(k,t,T) is a 'non-local’ generalized eddy-damping function defined by:
Nok,t,1) =
t
4AM(k)Doyp (k) J'dsj W, | k-j 5.3-5

¥ G Dyo(k-DMype™(i) jcoz( |k-j | .t.0)dv

It is noted that the term Dap(k) is introduced artificially by ZVH in order to
extract uy<(k,T) from the three terms up<(k,t). This term is convenient for the
notation in the intermediate expression 5.3-5 but is not necessary, since ug<(k.t) is
naturally obtained from up<(k,1.’) once the angular j wavenumber integration is carried

out.

The term ’'non-local’ refers to the time convolution integrals also called ‘memory
integrals’ or ‘’history integrals’. Prior to the application of the RNG procedure. the
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momentum equations in Fourier space are written for a given instant in time. These
equations are in effect Markovian, with the rate of change of u(k,) determined only
by the state of the fluid at time t. After the application of the RNG method. the new
momentum equations contain history effects, so that the rate of change of wu(k.t) is
affected by values of wu(k,t) via the function mnyk.tt). The representation of
physical reality by such a model is questionable since it is well known that
variables containing two different time arguments do not possess Galilean invariance.
However, the complete convolution integral could have Galilean invariance.

It should also be noted that the introduction of the time convolution integral
into the momentum equations in some ways violates the general intent of RNG methods.
as does the retention of the triple products, [39]. The general principle of the RNG
is to absorb the effects of small scale variables into enhanced versions of the
coefficients in a given equation without changing the form of the equation. However.
in the ZVH procedure, the formn of the equation changes only at the elimination of the
first shell and remains the same thereafter.

5.4 Re-expanding the triple products and the recursion relations

After eliminating the first shell which is now labelled shell number 0. u<(k.t) is
replaced by u(k.,t) and the momentum equations take the form:

t
56{ + Vok)ug(k.t) + Inou,t,r)ua(k,r) dt =

mawk)jd:*j uyk-j.ugG) + fokn) +

t
2A2Mapk) I djug(k-i.0) J'dr Goli-t. My 670G) J' u,G-p-DuG(p.TIp 5.4-1
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It is noted that the first shell label appears as Mypo’o(j) in order to indicate
that | j| or j is constrained to the first shell.

Following ZVH [8], equations 5.4-1 will still be referred to as the Navier -
Stokes equations even with the new triple velocity product. Now the ZVH procedure
departs from that of YO since the latter method was to discard the triple product
while ZVH retain it for the next RNG step. This next step consists once again of
spectral splitting, expanding the high wavenumber velocity in powers of A. and
substituting the series into the equation for the low wavenumbers. The equations
shall be simplified in appearance by dropping directional indexes with the objective
of showing the main effects of the triple terms on the renormalization procedure. The

spectrally split equations appear as:

t
aﬁt + ookl)u<(k,t) + I NoG.t.Du<(k,T) dt =

).M<(k)'[d3j (usk-j,t) + w(k-i,0)(usGn) + w(n) +

2)»2M<(k)jd3j (us(k-§.0) + w(k-j.v) x
t

fdTGo(i,t,r)M”(i)j‘(uﬂ.i-p,r) + w(-p.0))us(p,1) + v (p.0)dp + f(k.1) 5.4-2

with an analogous equation for u>(k.t). The high wavenumber velocity is once again

expanded in a power series of A:
ug(k,t) = ug>(k,t) + Augikt) + AugXk,t + ...

As had been shown in section 4.4, expressions for different terms in the series
may be obtained by substituting the series into both sides of the high wavenumber
momentum equation and matching equal powers of A. The first term is given by:
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t

2+ vokJukn + J'dr Nk LWk, ) = £(k.b) 5.4-3

This equation is linear and may be solved using a Green’s function. G(k.L.T).
defined through equation 5.4-4:

t

2+ vok?)G, (k1) + J'ds No(k.5,T)G, (k.5,T) = &(t-T) 5.4-4
T
where the lower limit of the integral is changed to ensure causality, G,(ks.t) = O

if T > s (the cause must precede the effect). The formal solution for ug“’(k.t) may

now be written as:

t
u>O(k,t) = IG,(k,t,t)ﬁ’(k,t)dt

-0

I
+
@]}

It is noted that ZVH do not present an explicit form for Gj(k.t.r) but leave its
definition implicit in equation 5.4-4. The reason is that ZVH use these Green’'s
functions only to formulate a general mathematical framework. For the purpose of
deriving an actual eddy viscosity model, ZVH introduce simplifications through

multiple time scale approximations.

The expression for u>!(k,t) may be written as:

t
wick,t) = M>(k) j dt G(k,L.T) ¥

-00

fd3j{ u<(k-j,tu<@g,t) + 2u<(k-j,DHu>9j,t) + u>o(k-j,T)u>(j,1) } 5.4-6
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After substituting u>(kt) = uw?kt) + Auvl(kp).. into the low wavenumber
equation 5.4-2 and ensemble averaging of the fine scale forces, there are two O(A%)
contributions to the new non-local eddy-damping function. The first contribution is
exactly analogous to 5.3-5 and ZVH label it n,P(k,t.7):

n,ok.t1) = 47\02M(k)J‘d3j M ()G (.t 1) D(K) x
t
I dv G,2(|k-j 1 LTDEK-HW, | k- | 5.4-7

The second contribution, due to the re-expanded triple term is labeled n T(k.t.1):

0, TkLT) = -4AMgpyk) J'de M>9(§)G(j.t.1) D(k) x

t
[ a7 Gl LD Wo | k-j |+

(W]
T
o5

It is noted that the difference between n,° and n,T are the factors
M>1(j)G,(j,t,t) in the former and M>(j)Gy(j.t,t) in the latter. The integration
domain of m,P is the overlap of ljl>' and lk-j|>' (ie. the same shell radius) while
the domain of n,T is the overlap of |j|>° and Ik-j|>' illustrated in figure 3.2.
Also, n,T contains G, which contains v,. This point is another deviation from the
intent of RNG methodology which is to upgrade a given coefficient at each step of
scale elimination. For this reason the triple velocity term cannot be properly
renormalized. Both of these points are important to the method used in this

investigation and will be discussed further.

Thus. the final form of the momentum equation after elimination of the second

shell is:
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1 t
(ait + vokAuk.t) + Z Idt Nkt 1) uk,7) =

i=0 -0
f(k.t) + AM(K) |d3ju(k-j,0ud,t) +

1 t

+ 7 2 A2Mk) Hd3jd3j'M>*(j) J'dr Gi(k.t,T) u(k-j.Hudi’ Du<G-j’.t) 549
i=0 o0
where
ni(k.t,7) = NT(k.LT) + NP(K,LT) 5.4-10
and n,T(k,t,t) = 0.

The above result may be generalized to the removal of the (n+1) subgrid shell:

t n

(& + vokdug(k) + [dt T nekiD) ugkkD =

o =0

fo(k.) + AMggy(k) Id3juy(k-j,t)uﬁd,t)

n {

+ 2ZPMaBY(k)Hd3jd3j’MBB'Y>i(j) jdr Gyk.tT) X
i=0 -00

{ uptk-§Dug G Dy G’ 1) } 5.4-11

where the directional subscripts have been restored.

The functions n;(k.t.t) = n,P(k,;,T) + N;T(kt,t) are given by the relations:

i-1
Tk = 4AMopyk) | [dMppy> ()G,GtT) Dory(k)

i’=0
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t
[av Gaclk | ev)Dpyk-yW | ko |- 5.4-12

and

N2kt T) = 4AMaByk) [BMpEy ()G T) Dayk) x

t
f dv G2(|k-j| L 7Dy k-i)W, | kil 54-13

The Green’s function Gi(k,t,1) is given by ZVH as a solution to the equation:

t
2 4+ VG kL) + J-ds N (k.S DG (K.S,T) = 8(t-1) 54-14
T

5.5 Simplified, renormalized momentum equations

The above equations are too complex as a model of turbulence to be useful in
practice. ZVH simplify them through a multitime scale analysis to recover an eddy
viscosity turbulence model in place of the non-local eddy-damping function. The
simplifying approximations of ZVH have some analogy with the YO procedure of setting
® —> O where ® is the Fourier transform of time for u(k.w) in the eddy viscosity
expression 4.6-8. However, it is found in the current investigation that as k/A
increases, the size of terms involving @ increases and the non-local behavior of the
‘eddy viscosity’ becomes more important. For this reason, the ZVH approximations will
be presented here in detail and compared to the equivalent results of this
investigation in chapter 9.
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ZVH assume that m(k,t,T) evolves on a much faster time scale than ug(k.t) and so
the latter term is taken outside the integral, with T replaced by t. Also. ug(k.t) is
taken outside the summation over the shell contributions. This step implies that k <
Aa.

t n t n
fdr T niktt) ug(k,t) = ua(k,:)fdr T niken) 5.5-1
oo =0 o0 i =0

This approximation reduces the eddy-damping function to an eddy viscosity
coefficient:

t n
Voo (K2 = Vok? + j dr | ngkto 5.5-2
o0 4 =90

Note that near the cutoff the time constants of u<(k.t) and u>(k.t) are of the
same order, so moving the u<(k,t) outside the temporal integral and then calculating
the eddy viscosity near the cutoff is problematic.

Once the approximation 5.5-1 is made, the temporal integrals in equation 5.5-2 may

be evaluated exactly. Taking the example of mng(k,,T), the exponential Green's
functions of the form 5.1-5 are readily evaluated to yield:

t
j dt nyk,t,1) =

t t
j d'cGO(j,t,t)47LMaBY<(k)Dap(k)Jd3j W, | k-jl~ Dp k- Mypoi) J’dr'GOz( k-jl.Lt)
= 2AMg By (K)Dep(%) [d3 W, lk=j|*Dg_(k-)Myng()——re— = 8v,(k) 5.5-3
o7 WPt [#5 W kDb Mapo s = v
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Using approximations 5.5-1 and the result 5.5-3, and proceeding to the removal of the
(n+1) shell, ZVH obtain the recursion relation:

Vo(k) = v (k) + dv (k) 5.5-4
where:
ov (k) =
1 - 3 e r . 1 o<
kzzzmam(k)Dap(k)‘[d i W, k-] Dy ik j)MprU)vn([k‘jl)lk_j ETOR 5.5-5

i=0

with the integration limits k,, < |k-j| < k, and k,, < j < k, i = O.l. ..n. I
will be seen later in this investigation that the presence of previous values of the
eddy viscosity, v, in the expression for dv,(k) poses major problems for the
transformation of the recursion relation into a differential equation for v,.

The integration domains in wavenumber space corresponding to equation 5.5-3 are
indicated in figures S.1 and 5.2. Region A represents the intersection of t(wo
spherical shells of radii A,. In three dimensions it is a ring with the cross-section
shown in figure 5.1. Region A has a volume of order A(AA)? and corresponds to the YO

intersection which is of order A2(AA) when EkY << 1 but goes to A(AA)* for % >> .

Stirring forces at a wavenumber in the nth shell interact with each other through an
intermediate  wavenumber also in the nth shell. Physically, the intermediate
wavenumber corresponds to a component of the Fourier velocity coefficient in the nth
shell so that M>(j)Ju<u>® contributes to u> It is noted that the variation of the

parameter K}% is the connecting link between the methods of YO and ZVH.

Region C represents the contributions of the triple velocity products to the eddy
viscosity. Stirring forces at a wavenumber in the nth (current) shell interact with
each other through a higher, intermediate wavenumber in a previous shell number n-i.
This contradicts the general intent of the RNG method which is to eliminate the
turbulent fluctuations in a given shell so that they play no further part in the
problem and the equation coefficients are increased in compensation. However. the
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partial averaging procedure affects only those components of u> which contain the
stirring forces. The components of u> with the form M>fu<u< are not affected by the
partial averaging. These terms formm the triple products, fu<M>fu<u< when substituted
into the equation for u<.

For the range of wavenumbers from A, to A, - k, region C increases in size with
the number of the eliminated shell. This is because the interacting shells are offset
by a distance k and the overlap of shell at radius A with shells of larger radii is
incomplete for A > Ay - k. For this reason, the range A, to A, - k has been called
the ’outer’ region in this study. The outer region is not well suited for the RNG
method since the calculation is not self-similar here as the portion of the shell
contributing to Av changes from shell to shell. ZVH do not discuss this region. since
their numerical calculation adjusts the wavenumber limits for each discrete shell
that is removed. However, for those versions of RNG which formulate a differential
equation for v(k.Ac), self-similarity is important. Figure 5.1 shows region B in the
outer range of wavenumbers, while figure 5.2 shows the calculation in the self-

similar range.

It is noted that region B is not taken into account by the method of ZVH. This is
the overlap of a shell of radius A with shells of smaller radii. This volume contains
the interactions of stirring forces in the shell number n through intermediate
wavenumbers in smaller shells, n+i. Assuming that the turbulent velocity coefficients
exists at all wavenumbers 0 < k < A, the region C is always self-similar. The
contribution of region C will be taken into account in this study by generalizing the
properties of the partial averging operator. This is the subject of chapter 8.

5.6 Renormalized eddy viscosity and numerical results
ZVH perform the transformation:

k — k., kK 5.6-1

and define a renormalized eddy viscosity, v;(iE) by the relation:
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vik) = kY (k. K) for K < 1 5.6-2
Therefore, the recursive relations 5.5-4 and 5.5-5 become:
Vi, (K) = ho+0s[vi(hk) + dvi(hk)] 5.6-3
and
~ 1 -~ > - > | =
5vi(K) = — Y 2AM(K)Dgo(K) [d3] W, |R-F | +Dg (K-J)Myy6(d) —— 5.6~
kzsz P I Bo PO (&G DR [2vih3e

=0

with the integration limits I < IE-]’I < % and 1 < h'J < [li i =0.1, ..n

ZVH numerically solved equations 5.6-3 and 5.64 to obtain fixed point values of
v: as a function of k. The subgrid partition parameter was set at h = 0.7 and various
values of y were tried, with y = 3 yielding the Kolmogorov energy spectrum. Figure
5.3 shows the result for y = 3 as compared to Kraichnan’s test field model. ZVH claim
that their eddy viscosity plot has a "mild cusp’ near kK = 1 but inspection of figure
5.3 shows that their eddy viscosity values first drop at K just below 0.2. then rise
again close to k = [ but never exceed their flat region value for k close o 0.
Criticisms of these results by Smith and Woodruff [7] allege that the computations of
ZVH are very sensitive to the size of the partition parameter h and show no evidence
of convergence as h — 0. The present author agrees with this objection regarding
the ZVH result for eddy viscosity without the contribution of the triple products. As
discussed above, such contribution is represented by region A of figures 5.1 and 5.2
and is of order A(AA)? for a given shell. After the elimination of n shells. the
resulting sum of such volumes will be of order nA(AA)2, and the range of eliminated
wavenumbers is nAA = A; - Ac. Therefore, the eliminated volume of wavenumbers is (A,
- Ac)A(AA), which goes to zero as AA —> 0. In this limit, the ZVH recursion becomes
a differential equation as discussed by Carati [11] in chapter 6.
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Figure 5.3 Comparison of subgrid eddy viscosities for
isotropic turbulence, according to Kraichnan and Zhou, Vahala,
and Hossain (ZWH). Recursive shell thickness 0.3 used by ZWH
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5.7 Summary

ZVH have presented a ’recursive’ version of RNG which eliminated finite shells of
wavenumbers and re-expanded the triple velocity products. First, a general derivation
was presented involving an eddy damping function n(k,t) coupled to u(k.t) through
temporal convolution integrals. While theoretically correct in the treatment of the
temporal dependence of RNG, the resulting mathematical model is too complex to
generate a workable turbulence model. Therefore, ZVH removed the time dependence. in
effect retaining the zero order term in a Taylor series expansion of the time
function. This approximation, suitable for wavenumbers far apart in the spectrum. is
equivalent to disregarding the ® dependence of the eddy viscosity expression by YO.
ZVH produced a numerically generated plot of the resulting eddy viscosity for h =

0.7. This could be called the ’thick shell’ method since h = % ~ 1. ZVH do not

discuss the sensitivity of their results to the variation of h. This issue has been
investigated by Carati [11] and will be presented in the next chapter. The augmented
momentum equation for the resolved velocities contains triple velocity products which

are difficult to simulate.
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6. Local interactions in renormalization methods for Navier-Stokes equations

As described in the previous chapter, ZVH re-expanded the triple velocity
products in their recursive version of RNG in order to include these in the resultant
eddy viscosity, v(k,Ac) and to capture the behavior of tehis quantity for wavenumbers
near the cutoff, k/Ac — 1. The transfer of energy between wavenumbers close in
magnitude is called ’local’. The application of RNG near k/Ac = 1 is problematic for
a number of reasons, the first of which is that a small ratio of k/Ac is required to
justify the partial averaging and the ‘’viscous-like’ effect of small scales on large
scales. Carati [11], Smith [30], and Smith and Woodruff ([7] pointed out other
problems with the recursive RNG method. Carati [11] repeated the numerical
simulations of ZVH for various values of their scaling factor h, and found that the
ZVH eddy viscosity results are sensitive to the value of h. Carati also carried out
an approximate analytical calculation for h —> 1 (shell thickness approaching 0) to
show that an unphysical term of order k is obtained in addition to the eddy viscosity
term. Smith [30] showed that the triple products do not have Galilean invariance.
Zhou and Vahala [9] responded to the initial criticism of Carati. To date. the
research community remains divided on the ability of RNG to represent local

interactions.

This chapter reviews the work of Carati [11] in some detail since his approach
is similar to that of the present work. The subsequent rebuttal of ZV [9] s
summarized and discussed. The objective is to prepare the background for the
procedure carried out in part 2 of this study.

6.1 The recursive RNG in the vanishing shell thickness limit

Carati’s formulation is the same as ZVH, except that it is carried out in the
frequency domain. The notation will be modified to match that used elsewhere in the
thesis where similar quantities are represented. The Carati equation for the total
eddy damping function is:

nk.A, - AIA,0) = n(kA,@) +
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2DA%, }: 1

[ Adp kgl x

d-1 &L (omyd+t
=0 B}
Jag rie + vdilapriee + valiglagy 6.1-1
where
AK,) = M, (KM, (§)D.(k)D,,(k-j) 6.1-2
and
Mapyk) = 5 { kaDordk) + kyDop(k) } 2.5-6
k_k
D = o P 257
aB(k) 'S‘IB Tk >

Figure 6.1 shows that the integration domain c'j1 is bounded by the following
inequalities: A, - AIA, < [k-jl < A, and A - AIA, < 'Jl < A;. Here A, is the radius
of the current shell and A, is the radius of a previous shell.

Following YO. Carati carried out the frequency integration using calculus of
residues. Also, assuming the shell thickness to be small relatively to each of A,
Ay, and k, j = A; + O(AIA,), and lk-jl = A, + O(AIA,), Carati recovered the following
expression:

h(k,A, - AA®) = h(k.A,,0) +

Dolzon 1 A‘l’-l‘v dji . >
d-T L2y ulA)u(A,) + u(A)] IdJ Alky) 6.1-3
i=0 -
J
where:
h(k.A) = k2v(k,A) and u@) = h(ljl,lih 6.1-4
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Here Carati introduced u(j) as the local viscous term. since it represents the
energy transfer at the cutoff between wavenumbers of equal magnitude. It is noted
that a portion of the integrand has been moved to the outside of the integral since

n
i
previous notation of this study, the volume c;-', corresponding to the intersection of

shell n with shell j, is a part of region C. Also, c; = region A. Carati uses this
approximation for the remaining integrand as well by first expressing the angle 6,

it is approximated as constant over the small volume c:;. In connection with the

between the vectors k and j in terms of A, and A,

Letting jI| and ji, represent the longitudinal and the perpendicular components of
the vector j with respect to k, the following approximations may be made:

2+ k- Ik-j|2= AR+ k2 - A2

where relation 6.5 was obtained from the cosine law: j2 + k2 = Ik-j |2 - 2jkcosB;;
jL=j2-j, =3 -J,(AAKk) + 0D 6.1-6

The above relations are illustrated in figure 6.1:

Carati uses the identity:

Lo 2 nd-Dk? 2K
Alki) = jL { (Ik-j)ﬁ - } 6.1-7
Now relations 6.5 and 6.6 may be substituted into 6.7, so the dependence of A(k.j)
on the angle between vectors j and k, 8, is replaced by a dependence on Ao A, and
k so that A(k,j) = A(AjA k). These quantities are approximated as constant within
; so that A(A;A k) is moved outside the integral in

equation 6.3. This integral is now reduced to the evaluation of the volume V_? of the

the small integration domain 8

integration domain, 8}. Carati evaluates V' in d-dimensions as:
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Vi J-ddj ~ 28, x(A,.AI)’A’A“ A2 - (a2 + ::2‘ A 6.1-8

n
B;

if Aj <A +k Vi=0if A 2ZA +k

Here S, is the area of a sphere of a unit radius in (d-1) dimensional space.

Taking d = 3,

Vi = J‘ d3j = 2n(AA)2_k__i" 6.1-9

n
€

Carati now uses relations 6-5 to 6-8 to simplify equation 6.3. Also. taking A/
to be an infinitesimal quantity, the sum in 6.3 becomes an integral so the overall

result is a differential - integral equation:

, A+k
ah(k,A) _ _ 2WoA'Sy, J- A
dA (d-1)(2m)ek u(A) u(A) + u(A’)
” 2 2} |42 2 ” 2 A%
A2 (A2 4+ K2 - A2 . [d-Dk2 (A2 + K2 - A2 6.1-10
4k? A2 A

It should be noted that equation 6.1-10 is valid only in the self-similar
region, A < A, - k, and not in the 'outer’ region, as defined in chapter 5.

It is noted that Carati evaluated the wavenumber integral 6.1-3 by taking a
small integration volume V'j', resulting from the intersection of two thin shells of
thickness AIA, Figure 6.1. The simplification available due to the small V] avoids
integration with respect to 8,j and shifts the complications from 6.1-3 to 6.1-10. To
solve the latter, two integrations are required, the first of which does have a
complicated analytical solution and the second requires a numerical approximation.

Further discussion will be found in chapter 10.
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Carati proposed a similarity solution to 6.1-10 of the form:
h(k,A) = A ¢(k/A) 6.1-11
Letting k/A = 1, the expression for the local viscous term is:
u(A) = O(1)As 6.1-12

The objective is to find the exponent ¢ and the function ¢. Equation 6.10 is
now rewritten using the dimensionless variables r = k/A and § = A"/A:

ah(ak,A) = -M AS¥242 E(r) 6.1-13

where M = 2WAY/[(d-1)(2r)4$>(1) and

l+r
S4.
F(r)=—%lfd§1-:écx
1

[ ~ 2 -2 2 o) >
g2 - (&2 *4" - 1) d-hr2 - (& + - 2 6.1-14
r:’. qz

The above expression results from factoring out A from the right hand side of
expression 6.1-10. The derivative on the left hand side of 6.1-10 may also be
expressed in terms of the non-dimensional variables by using the chain rule of
differential calculus:

ahg(e/\) = cA<1o(r) - Ac-nrd%(g) 6.1-15

Carati equates the right hand side of equation 6.1-15 to the right hand side
of equation 6.1-14 to obtain:
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20 = cor) + MAdy3+2 F(r) 6.1-16

The solution to 6.1-16, ¢(r), cannot depend on A by definition of a similarity
solution. Therefore, the exponent of A in 6.1-16 must be zero yielding an equation

for c:
¢ = (d-y+2)/3 6.1-17
In three dimensions and with y = 3 as generally required by RNG methods. this
gives ¢ = 2/3. Substituting 6.1-17 into 6.1-16, a separable differential equation for

o(r) results with the solution:
&) = Mre I dp p<! F(p) 6.1-18
0]

where the integral apparently cannot be evaluated analytically. Thus. in order to

evaluate 6.18, an expansion of F(r) in powers of r = % is necessary. [30]:

Fi) = } Fp 6.1-19
i=0

Carati [11] called this an a posteriori k/A expansion. Substituting 6.19 into
6.18, the resulting integral can be evaluated term by term to give:

.M ¢ F
o0 = =75 yor— 6.1-20
i=0

It will be shown in the second part of this thesis that the above calculation
consists of a symmetric and an non-symmetric part with respect to the eliminated
wavenumber shell. The symmetrical portion allows only even powers of r (Wilson [41])
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and this is the basis of the conventional RNG procedure as imported from other
branches of physics. Odd powers of r indicate a break of symmetry and the validity of
the RNG method becomes questionable in this case.

Carati carried out the expansion 6.1-19 to third order, [30]. In three
dimensions, the result is:

44 2 26-3c

F(r) z + —1—5- —-4—8—['3 + 0(1‘3) 6.1-21

Expressing ¢ = (5-y)/3 = 2 - €/3, and using 6.1-21 and 6.1-20 in 6.1-11. the

result is:

2. -3k 3 18- k2 3 20+ k3 k
1}’\'6’3[*sz s ptems T ot oR! ]

h(k.A) = 6.1-22

¢2

Carati observed that the first term of the series cannot be interpreted as a
viscous linear term since it is proportional to k instead of k2. The behavior of
h(k.A) at large scales, where k/A — 0 is:

M '3 k -~
h O’ = 2-€73 = [-€r3 1-2
O.8) = 5 A28 [ g | = 0 2 Aven [y vt ] 6.1-23

Thus, the resulting ‘eddy viscosity’ behaves as k! at large scales which is
unphysical. Also, letting € = 4, as generally required in RNG theories. it is noted
that the quantity in 6.1-23 is negative.

Checking the behavior of h(k,A) at small scales where /A — 1 and using k in
place of A:

kz_e 3 lS-G 3 20+€ ] =

- 31,3
hek) = S [c37+2 95 + a3 T + 0y

¢2
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18- 3 20+€

M 3 8
[ 35 Y e+3 38

omle3

£ 2 + 0%y | ken 6.1-24

£} —

Substituting € = 4 into 6.1-24, the ’eddy viscosity’ at the cutoff is:

M -3 7 3 k.. <
v(k) = + a7 + O | k43 6.1-25
(k) o2(1) [ 4 7307 13 A ]

Therefore, up to 0(%)4, expression 6.1-25 has a negative value of

approximately -0.302 ¢3A(dl) k<3 which is unphysical as an ‘eddy viscositv'. in

effect indicating a reverse flow of energy from small scales to large scales.

Carati also reproduced the numerical calculations of ZVH for a range of shell
thicknesses, using the ZVH notation of h to represent the consecutive shell radius
ratio. His results are shown in figure 6.2, where the sensitivity of the result to
the value of h is apparent. Also, for values of h > 0.8 (shell thickness of 0.2A) the
‘eddy viscosity’ becomes negative for much of the range of k/A in agreement with 6.23
and 6.25.
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Based on the above findings, Carati concluded that the ‘recursive’ RNG which
includes the re-expanded triple velocity products is unsuitable for evaluation of the
eddy viscosity’ and that the RNG methods are only suited to represent very “non-
local’ interactions in turbulence (k/A << 1). This view is in agreement with the
philosophy of YO €-RNG.

In their rebuttal publication, Zhou and Vahala [9] acknowledged that their
eddy viscosity model has a ’parametric dependence’ on the shell thickness AA and
responded to Carati’s criticism concerning the k! behavior of their eddy viscosity
as k — 0. They claimed that in order to obtain meaningful results. the sequence of
the two limits, AA — 0 and k —> O is not interchangeable.

Considering first the case of €-RNG, the k —> O limit is taken first while AA
remains finite as discussed in chapter 4. The ZV argument really applies to the case

where % < 1 rather than % —> 0. The outer, unshaded regions of Figure 6.3a and

figure 6.3b contain the contributions to Av, from the triple products generated on
shell n-1 and re-expanded on shell n. These are labelled as regions C; and Cg. while
the YO domain is the shaded region A. As discussed in section 4.10. the integration
volume associated with the triple products is of order kA2 ZV [10] use their free
decaying turbulence formula for the discussion, but here their forced turbulence
formula will be used instead to correspond to the rest of this study:

Av (k) =

n

L . . SN A5 .
5 L 2MMoayDap (k) [d4 Wi |k-j | 7D (hi)MPiyp )

1=0

W

w
'

(V]

|
v k-j D) Tk-jT2v )

MQBY(k) is of order k, all the integrand terms are of order A' + k". where the
exponents i and n depend on the term except for DBG(k'j) which is of order unity.

After including the % factor, the whole expression prior to integration is of order

k-l
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Referring to figure 6.3, the ZVH calculation includes regions C and A. As
discussed in section 4.10, the integration volume of region C is proportional to kAZ
cancelling with the k! factor in the integrand to create a constant value. Region A
is symmetric with respect to 8 and since the odd powers of k have odd powers of cos@
as coefficients, they vanish after the angular integration. This eliminates the

threat of k! singularity as k —s O for ka < 1. However, ZV do not address the

question whether the contribution of regions C is negative for % < 1. This question

will be considered in chapter 9. It should be noted that here ZVH in effect validate
the YO method, since the contribution of region C will go to zero as k —s 0. It is
also noted that the ZVH calculation with h = 0.7. comresponding to AA = 0.3.
corresponds to the YO procedure for small values of k although it is not as accurate.

Having disposed of the singularity problem for EkK < 1. ZV then considered the

case where % > I, corresponding to the Carati analysis. More precisely. ZV let AA

— 0. while k is ’small but fixed’. ZV derive the size of the integration volume of
region A as O(AA?). This may also be surmized from figure 6.1 since A = C,. However.
ZV only admit C:" as the additional domain of the triple products. Since the latter
volume is also O(AA2). ZV conclude that Av. the cormrection to eddy viscosity is
O(AA?) and so an ordinary differential equation for v(k,Ac) cannot be formed and that
the AA — O limit is singular for the recursive RNG, when k is finite.

It is the observation of the author of this study that ZV have considered only
n = 2 with Ek( >> 2 which led them to the above conclusion. The correct application of

the ‘recursive’ RNG is in the self-similar region, A, - k > A. as discussed in
section 5.6 and indicated in figure 5.2. The ZV argument applies only in the begining
of the ‘outer’ region, as shown in figure 5.1. The Carati analysis implicitly
discards the “outer’ region which is permissible if k/A << 1.
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6.2 Galilean invariance of the triple products

Smith [30] demonstrated the lack of Galilean invariance of the triple velocity
products and proposed that the unphysical results obtained by Carati may be due to
this fact. It is recalled that the Navier-Stokes equations possess Galilean
invariance since the equations are a statement of Newton’s law, F = ma. Galilean

invariance requires that the solution for a, or %g’:—t) is invariant under a constant

velocity shift of the reference frame. The YO method temporarily loses Galilean
invariance at a given step of the procedure by introducing the A expansion. In
particular, the Stokes solution, u>?, does not have Galilean invariance. Also. it is
well known that the two-point, two-time correlations introduced by RNG lack Galilean
invariance. However, the white noise correlation of the stirring forces eliminates
the two-time property of the correlations, and after the A series is absorbed by the
eddy viscosity, the Galilean invariance property is restored at each step of the
procedure. For the recursive RNG, the unphysical triple products are retained in the
modified momentum equation so the Galilean invariance is not recovered until the very
end of the procedure, when the remaining triple products are discarded. Smith [30]
concludes that the limit k/[AA — 0 may be necessary to obtain physically meaningful
results. Foster, Nelson, Stephen, FNS [28] have also stated that the symmetry of the
wavenumber shell is implied by the Galilean invariance requirement. Kraichnan (Leslie
[25] explains that lack of Galilean invariance to random shifts in the velocity of
the reference frame causes spurious convection effects in the approximate solution.
This spurious convection causes artificial decay of the energy spectrum due to ~phase
mixing’ - spurious cancelling of covariances of the velocity Fourier modes. Kraichnan
recommends a Lagrangian rather than Eulerian formulation in order to preserve

Galilean invariance.

6.3 The iterative filtering method

Following up on his previous work, Carati [40] has developed the iterative
fillering method (IF) which is as yet unpublished but was made available to the
present author through a personal communication. A detailed review of this work is
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beyond the scope of this thesis, however the major principles will be outlined here.
The IF method is applicable to finite k wavenumbers. Like the RNG, the IF relies on
the A? closure and incrementally evaluates corrections to the eddy damping function.
Unlike the RNG, the IF also evaluates corrections to the random stirring force. Since
any random variable may be decomposed into an average plus a zero-mean fluctuation.
the [F evaluates the O(A?) averages on a given shell and retains fluctuations from
the term Afu<u®® where u™® is the response due to the stirring force on shell (i).
It is noted that the average A<fu<u>®> is taken equal to O like the RNG. Proceeding
to the next shell, spectral splitting and expanding in powers of A vields
AJui+t>yi>0 3 zero mean random variable which is now used to augment f>+! This
step is a major departure from the FNS and YO RNG methods.

Among the methods discussed so far, only the IF accounts for the AJu<u>" term
which contains the stirring forces acting in region B of the shell (i). However.
instead of integrating over region B directly (as will be done in the current study).
the IF takes these forces into account as secondary induced forces on subsequent
shells. An encouraging characteristic of the method is that there is a general
symmetry of the integrands on each haif of the integration contour C.

6.4 Discussion

In summary, Carati has correctly extended the ZVH procedure to the case of an
infinitesimal shell. His results do not represent the physics of an eddy viscosity
due to the k coefficient of the leading term and also due to the negative sign of
this term. The leading term is considered ’'not physical’ because it is not of the
same form as any of the terms present in the original Navier-Stokes equations and
cannot be identified as the effect of viscosity, the non-linear advection or the
forcing. Including such terms in the modified momentum equations is unlikely to
produce the correct solution for the large scales because it changes the mathematical
characteristics of the equations. Thus, the recursive RNG appears to fail in the

limit of % —> 0. From a numerical standpoint, the ZVH recursive equation is not

consistent as a representation of the differential equation for the eddy viscosity.
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In the opinion of the present author, the ZVH rebuttal argument does not address the
cause of the failure of the recursive RNG.
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7. Objectives and Outline of Part 2.

7.1 Introduction

In the context of modeling isotropic turbulence, the objective of the RNG method
is to model the average effects of the small scales on the large scales where the
small scales have a high spatial wavenumber or temporal frequency. During the RNG
procedure, one imagines iterative spatial filtering, as shells of wavenumber radius A
and thickness AA are removed. This aim is unambiguous when there is a wide separation

of scales between the resolved velocities, u(k.t) and the subgrid boundary A. % << 1.

This constraint has been labelled ’non-local interactions’ in the literature. In the

YO analysis, the non-local requirement takes on the extreme form ﬁ << . Considering

A
the convolution integral, Iu>(k—j)u>0)d3', a physical interpretation of this

constraint is that k is so much smaller than A that the momentum drain from u(k) by
wavenumbers of order A is the same in all directions on average. Also, both j and Kk-j
reach into the unresolved subgrid region in the shell so that the energy transferred
from eddies at k via the eddy viscosity to the subgrid scales. may be transfered into
both j and k-j. Averaging over a thin shell of the in. .ration domain corresponds
unambiguously to eliminating a range of small flow scales. Therefore. as had been
discussed in chapter 4, the RNG method for turbulent flows has some success in

modeling the non-local interactions of turbulence.

However, for Ek{ >> 1, ( and 71(( < 1 ), the k vector triad includes only one vector

in the current shell, say IJI = A. Interactions where % ~ 1 have been labelled

'local’ iIn the literature. As the vector j travels around the shell. lk—jl varies
from supergrid scales (figure 7.1, region B) to the range of subgrid scales (figure
7.1, region C). In this case, the objective is that the RNG incrementally models the
effects of wavenumber triad interactions which involve at least one subgrid
wavenumber. In the conventional RNG method, these interactions take the form of the
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figure 7.1
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triple products, [u<(k-j)M>(§)Su<u<, where the wavenumber j falls in the subgrid
range. In this case, the elimination of a shell of Fourier coefficients cannot be
interpreted as spatial filtering since higher wavenumbers remain in the equation. For
a temporal filtering analogy, the term M>(j)fu<u< may be taken as that portion of
u>(j,w) which falls below the temporal filtering cutoff. In this context. re-
expanding the triple products on subsequent shells is analogous to gradually lowering
the low-pass limit to reduce the remaining portion of u>(j.w).

Another term which poses difficulty for the RNG is Ju>M<(j)JSu<u>. which originates
from fu<u> and is typically set to zero. The Iterative Filtering procedure due to
Carati deals with such terms as discussed below, while a different method is proposed

in this study.

All of the RNG methods discussed up to this point involve integrations over
regions C as indicated in figure 7.1. To the best of this author's knowledge. the
effects of the stirring forces present in regions B are not taken into account in any
published literature. The Iterative Filtering method (herein referred to as IF)
proposed by Carati takes region B forces into account as secondary induced forces on
subsequent shells. In this way, region B forces affect the eddy viscosity through the
fourth moment:

n
X<ﬁ>f'+i>fl>f*+i>> 7.1-1
j=1
where the lk-j| is divided into n shells of thickness AA to include all of region C.
However, if the region B forces (forces which act through an intermediate wavenumber

lower than the sheil) were to be treated in the same way as the forces acting in
regions A and C, these would affect the eddy viscosity through the second moment:

) <f>f>> 7.1-2

=t
where the |k-j| is divided into m shells of thickness AA to include all of region B.
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It may be concluded that a number of difficulties emerge when attempting to use
the RNG method to model ’local interactions’. Carati [11] and Smith [30] have shown
that eddy viscosity calculations do not yield physical results. The Iterative
Filtering method [40] is beyond the scope of this study. In the remaining part of
this work, the RNG method will be modified to better represent the local

interactions’ of turbulence in Fourier space.

7.2 Objectives and outline

Refering to section 1.3, for the objectives of the present work, a review of the
RNG methods for fluid turbulence has been presented in chapters 3 through 6.
Additional RNG procedures have been applied to fluid flow, for example those based on
the field theoretic approach, and also the [F method of Carati. These are beyond the
scope of this study. The remaining objectives for part 2 are to examine if the RNG
analytical tools are suitable to represent local interactions, and to attempl (0
obtain an eddy viscosity function v(k,A), hopefully with a cusp behavior as reported
in literature dealing with other theories. The investigation will proceed in the

following stages:

I. The RNG method uses several steps which depend on the non-local approximation.
These are the parntial averaging, and the Markovian approximation of the time
dependence. Also, the A series expansion is affected by the non-local assumption. The
impact of local interactions on the above approximations will be examined in chapter
8. First, the partial averaging procedure will be generalized allowing different
properties to be specified. Modification of the partial averaging will allow
including region B forces and also possible elimination of the triple velocity
products. Second, some characteristics of the A expansion series will be examined.
Finally, an observation will be made about the Markovian approximation for local

interactions.

2. Three different variations of partial averaging leads to three differential
equations for the eddy viscosity. These equations will be derived in chapter 9.
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3. The numerical solutions for the eddy viscosity formulations will be presented
in chapter 10. The results will be discussed and compared to the values proposed in
literature. Chapter 11 will conclude the current investigation with recommendations
for future work.
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8. Modified partial averaging of the Navier-Stokes equations for the RNG method

8.1. Introduction

This chapter deals with several steps of the RNG procedure, the partial averaging
of the Navier-Stokes equations in Fourier space, the A series expansion. and the

Markovian approximation.

8.2 The partial averaging operation

Typically, the partial averaging operation is defined as equivalent to the full
ensemble average for those random variables which satisfy certain conditions. If the
conditions for partial averaging are not satisfied, the random variable will be
unaffected and will appear to be statistically sharp (invariant under the averaging).
Such definition is unphysical for variables very close in temporal and spatial scales
that fall on different sides of the defined demarcation line, i.e. for a wavenumber
lower or higher than a given limit, or a temporal frequency lower or higher than a

given limit.

A simple definition of the partial averaging operator is based on wavenumber
magnitude alone. The Fourier coefficients with a magnitude lower than the demarcation
value A are unaffected by the operation, those with a magnitude higher than A are

ensemble averaged:

uk) for0 <k < A
<uk)>> = 8.2-1
<u(k)> for A £ k < A

where <.> is the ensemble average and <.>> is the partial average. It is easy to
show that such a definition is inadequate for turbulence models. Consider the Navier-

Stokes equation for u<(k,t):
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:% + vokl) us(k,t) = AM<(k)|usu< + A2M<(Kk)|u<u> + AM<(K)|u>u> + f<(k) 8§.2-2
—

L J \ ’ \ Y 8.2-2d

Applying the operation (8.2-1) to equation 8.2-2 causes terms 8.2-2b and 8.2-2c to
vanish and clearly, the equation cannot remain valid. Therefore, the properties of

the partial averaging operator must be modified.

Motivated by the above discussion, a general procedure for partial averaging of
the Navier-Stokes equations in Fourier space is presented here. Let u; be a component
of the velocity vector u. First, the following general property is proposed:

< <uin...uk>> > = < Uiuj'...uk > 8-2'3
where < >> again denotes partial averaging.

Next, the Fourter velocity coefficient, u;(k,t) is decomposed as:

u(k,) = ukn + uk.t) 8.2

Further properties of the hypothetical partial averaging are as follows:

< yu..u > = uygy + Am (remainder) 8.

7 7
< u.u.

- ...l’]i > + A (remainder) 8.2-6

’ r s
W4 2> = <y

where m = 3 for the first moment and m = 2 for the second moment. Also. n = 3 for the
first moment and n = 1 for the second moment. Since RNG retains terms up to A-.

higher order moments are beyond the scope of this work. The remainder terms have a

zero average.

For the products of u and u:
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—-—— = s s S - - r e s S Am . ) "
< uupuy vy > = wue, < ey >> 4 Am (remainder 8.2-7

Combining the results of equations 8.2-3 and 8.2-7 leads to the requirement:

< ai[l—j...ak Itllllli'"{ll > =
<y, < YO0 >> > + An< (remainder) > 8.2-8

where the remainder term in equation 8.2-8 will have a non-zero average in general.
If the remainder terms in equations 8.2-5 to 8.2-8 have the wavenumber and temporal
frequency similar to those of u(k.,t) then the properties of partial averaging are

similar to filtering in space or in time.

Further discussion of the partial averaging will be limited to first and second
moments. Recalling from section 2.5 that the spectral correlation tensor is defined

as:
Qi(k) = <u(k.uy(-k.n>

and that <uy(kyG.t)> = o(k+j)Qii(k), the following second moment properties are
compared:

<ukt uGn > = Sk+) Qykb 8.2:9
< gkt uGo > = yko uGn + ORA?) 8.2-10
< ok, G, > = 3(k+j) éij(k,t) 8.2-11

For < Gi(k,t) l’lj(j,t) >>, the following definition is proposed:

8(k+) Qu(k) + M M| uk-p 8G+p) QG0 + OO 8.2-12
———
8.2-12a \ - J
8.2-12b



< uk) 9 > = ykd< uGy > + 02 8.2-13

where it is emphasized that the O(A?) term in equation 8.2-13 has a non-zero average.
< Ei(k't) l'lj(j’t) > = d(k+j) _Q;j(k,t) 8.2-14

Consistency with 8.2-8 requires that Q (k1) is O(A?).

Based on the above results, the Fourier velocity correlation Qij(k.t) may be

decomposed as:

—_— -

Q;k,t) = Qy(k,t) + 2 Q (k) + é;j(k,t) 8.2-15

For stationary flows, the time arguments may be dropped from equation 8.2-15.
Imposing the Kolmogorov constraint, each of the three quantities on the left hand
side of 8.2-15 must have a component proportional to the Kolmogorov spectrum and may
have other components which must cancel in equation 8.2-15, so that this equation may

be expressed as:

C,e?’kB = ( Ck + 2C, + C, Je¥3k-513 8.2-16

It is noted that wu; is a random variable with an average Q; and a zero mean

fluctuating component; (uiuj)’:
uk,Dy k') = 3(k+k) Quk) + (uy)(®) 8.2-17

and similarly:

kDK, = SkHIQuk.D) + (uck.u K ) 8.2-18

The significance of equation 8.2-18 is that the RNG method retains Q(k) but
discards (ui(k,t)uj(k',t))’ at each step of the iteration. For the RNG method to be
valid, it is not required that the rms value of the latter term is smaller than the
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former. What is required is that the cu’mulative value of the fluctuations decreases
while the cumulative value of the Q;(k,t) increases. Physical]y, this may be
interpreted in terms of time scales. The characteristic time of Q;(k,t) is of the
same order as the characteristic time of u(k,t), however, the time constant of

(l;i(k,[)l;j(k',[))' is much shorter.
The decomposition 8.2-4 may also be applied to the stirring force:
£k = fkD) + £k 8.2-19
However, the stirring force is not expandable in powers of A. Therefore. if f, is
substituted for u; in equations 8.2-5 through 8.2-8, all the remainder terms must be

ZEero.

The decomposition 8.2-4, may now be substituted into the Navier-Stokes equations.
yielding two coupled momentum equations for each component of 8.2-4:

2+ kvg) uky) =

AM(k)J' d3j u(k-j,ud,t) + AM(K) f d3j <uck-j.t) uG.0>> + fk.t) + OA3) 8.2-20

2 4 kevy) GkD) = MM(k)J' u(k-j,)uG,0)
+ A MEO[ { iy GG - <idegn GG0> )+ Tk + 009) 502

Next, the <u(k-j,t) ﬁ(j,t)>> term in equation 8.2-20 is replaced by the result of
equation 8.2-12. Term 8.2-12a vanishes while term 8.2-12b contributes a remainder of
O(A) inside the integral or O(A?) overall. The A expansion can therefore be justified
if the successive remainders generated by iterated partial averaging became smaller
in magnitude. This point is elaborated upon in the next section.
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8.3 Partial averaging in terms of the stirring forces

By definition, the stirring forces used in the RNG method are generally considered
not to be expandable in powers of A, (or equivalently, the stirring ,forces are not
expressed as convolution integrals of other variables). Since fi(kit) is not
expandable in powers of A, the partial averaging cannot yield a remainder and becomes
equivalent to ensemble averaging. The terms of order A in equation 8.2-14 must be set
to zero so that <f (K, t)f -k,t)>> = <f (K, t)fj(—k )>.

For the RNG procedure, the partial averaging is performed on the high wavenumber
stirring  forces, f>(K,t). In this work, the cormresponding variable is f(k.t). First
the variable u(k.t) is expanded in powers of A.

ak.t) = uok,t) + Aulkt) + A0kt ... 8.3-1

The above expansion is now extended to the correlation Qk.,t):

(o]

1,0
1

19

Q) = QoKD + AQIK.D) + A2QXK..) .

Again, in the context of Kolmogorov’s turbulence, each term of the above series
8.2-20 must have a component proportional to the Kolmogorov spectrum. Also. cross
correlations of the various terms must have the Kolmogorov spectrum or must equal
zero. To obtain expressions for each term in the series 8.3-1, substitute the above
series into both sides of equation 8.2-6 and integrate in time:

t
uo(k,t) = I e-k2V(kA)(L-T) %(k.r) dt 8.3-3

t
ul(k,t) = J e KWk A)(t-T) dr x

M(k) fdsj { 2 u(k-j,Ou0G,1) + uo(k-j,r) uo(j,T) - <LUK-j,T) VO, T)>> } 8.3-4
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For a Fourier space correlation of the stirring forces given by equations 4.1-3
and 4.1-4, ﬁo(k,t) as defined by equation 8.3-3 has the spectral correlation given

by:
< Wk, Wk > = QYK 8.3-5
with

@n)* L D;(k) Crme € k= $.3-6
Cy e3A+3 v(k/A)

The above is not the Kolmogorov spectrum. There are several potential remedies for
this problem:

1) Specify the spectral correlation for the stirring forces as Wk'3(§)4’3.

This option is unsatisfactory. since the stirring forces are intended to represent
the effects of the energy cascade, they should depend only on the wavenumber k. not
on the cutoff wavenumber, A, at least for € = 4.

ii) Replace v(k,A) in equation 8.3-3 with a function proportional to k3.

The function chosen to replace v(k,A) may be v(kk) or its average in wavenumber
space (as Smith and Reynolds [S] and Lesieur & Metais [19] interpret the YO eddy
viscosity):

A
1

T l fRVKA) dA = Vyok) = Cyvikk) 8.3-7
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where f(k) is an unknown weight function and Cm,g is a constant less than | in value.
Note that the Yakhot-Orszag eddy viscosity, Vyo is a function of A_ as k ~ 0. vy4(A)
but it is a function of k in two instances, as k — A_ and for the purpose of energy

balance as k — 0.

For (10(k,t) as an estimate of ﬁ(k,t), the ad hoc replacement of wv(k,A) with v(k.k)
is consistent with the overall procedure when ﬁo(k,t) = 1'1>(k,t) in the wavenumber
shell. It will yield the correct k dependance for a Kolmogorov spectrum but not the
correct amplitude. However, wok,t) = G(vyo(k))f(k) recovers the Kolmogorov spectrum
based on the work of YO. Hence, both options will be explored in the present study.
The variable ﬁo(k,t) may be viewed as a statistical estimate of u(k.t). with the
correct representation of the first and second moments of the latter variable.
Further discussion of this problem is presented in section 9.5, Compatibility with
the YO theory.

It is not clear how to deal with ui(k,£), in terms of the eddy viscosity form for
the vertex Green’s function. However, for the current study, both v(k.k) and vy,k)
will be tried in place of v(k,A) in equation 8.3-3. The chief motivation for this

step is to avoid non-linearity in the resulting equation for eddy viscosity.

8.4 Partial averaging and A series expansion of the Navier-Stokes equations

The aim of this section is to discuss various aspects of the series expansion in
powers of A, its relation to partial averaging and the problem of convergence. First.
the question is considered whether a series in A about the stirring force s

necessary.

Parts of the RNG treatment of turbulence originated from Renormalized Perturbation
Theory developed by Kraichnan, Edwards, Wyld. and others (McComb [13]). These
theories utilized a series expansion in A about a stirring force but no spectral
splitting. The terms of this series are functions of stirring forces only, and not of
the velocity, which is the unknown variable.
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However, the RNG version of the A series expands only u> and the terms of this
series include both f> and u< (see for example equation 4.4-3 for u>!). When this
series is substituted into the equation for u<, the effect is to substitute u< into
its own equation, thus increasing the order of the non-linearity of this equation (as
in the triple products). The higher order of non-linearity implies that the new
equation has additional solutions, spurious from the standpoint of solving the
originai Navier-Stokes equation. It is hoped that the partial averaging process is
able to eliminate the higher order non-linearities, this means that the spurious
solutions partial average is zero. Therefore, one would like to select the propertics
of the partial averaging so as to eliminate the higher order non-linearities at each
step but still be consistent with the physics of the problem.

Given this undesirable situation, one may conclude that the formal expansion of u>
as a power series in A is not necessary. Instead, u> may be used in its exact form as
given by its momentum equation. Consider again the spectrally split, coupled Navier-
Stokes equations written below in an abbreviated form and without the stirring

forces.

us(k) = AGKM<(Kk)|u<u< + A2G(k)M<(K)|u<u> + AG(k)M<(K)|u>u> 8.4-1
C . ) 1 ~ J L — J
8.4-1a 8.4-1b 8.3-1¢
w(k) = AGRM>k)|u<u< + A2GKk)M>(k) [u<u> + AG(k)M>(K)|u>u> 8.4-2

For a high wavenumber shell of thickness AA, if 5( << 1, the integration domain of

8.4-1b is of order k, while the integration domain of 8.4-lc is of order AA (the YO
problem). For this case, equation 8.4-1 may be approximated as:
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uik) = AGEKM<«K)|u<u< + AG(k)M<k)|u>u> 8.4-3

[\ J { J
8§4-3a 8.4-3c

A viscous-like term may be obtained by substituting equation 8.4-2 in place of one
u> term but not both in 8.4-3c:

8.4-3c = AG(k)M<(k) |uv>u> =

Azc(k)M<(k)J' w>(k-)G(HM>G) J’ (usu< + 2[usw> + _[u>u> ) 8.4-4a
or

ARG (k)M<(k) j’ w(§)G( | k-)M>(k-j) j‘( u<u< + 2[u<u> + fu>u> ) 8.4-4b

Note that the convolution integral cannot be doubled up in this case or double
counting of the same variables would result. Therefore, the eddy viscosity may only
be obtained from one combination of the expanded and unexpanded u>. However. the
series expansion about the stirring force demonstrated in chapter 4 utilized both
combinations, and the partial averaging definition 8.2-14 has been derived based on
that procedure. Thus, it is concluded that the series expansion about the stirring
force is needed if the steps of substitution and partial averaging (8.2-14) are to be
interchangeable.

Now the partially averaged spectrum of u>u> is taken to be the Kolmogorov spectrum
and a remainder of order A:

< U’i(k)l.l’j(-k) >> =< u>i(k)u>j(—k) > + O\)
= Ck g8 Dij(k) k3 4+ O(A) 8.4-5

Now applying the partial averaging to 8.4-4a yields:
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<8.4-1c>> = AG(k)M<(k) J'< wud> =

xlc(k)w(k)j { <u>GM>J.u<u<>> + <2u>GM>ju<u>>> + <u>GM>fum>» } 8.4-6

L } — — ) \ -~ )

8.4-6a 8.4-6b 8.4-6¢

The results of averaging 8.4-6a and 8.4-6¢c equal O plus O(A) remainder. yielding
an unknown remainder of O(A3) in equation 8.4-6. The result of averaging the term
8.4-6b is:

< 8.4-6b > = <2">GM>I u<ur>> =

u<(k) Ck €¥3 2A2G(k)M<(K) fd3jG(|k-j [HM>k-)DG)j 1173 + OA3) =
u<(k) k* Av + O(A3) 8.4-7

where the wavenumber labels have been restored.

Clearly, one is able to generate an eddy viscosity correction without resorting to
stirring forces, provided that the Kolmogorov constant is given. The method is
similar to that used by ZV [10] for the decaying turbulence version of RNG. The
Navier-Stokes equation without a source of energy will have a solution with a

decaying amplitude.

However, the remainder terms of order O(A3) generated by all three parts of 8.4-6
are unaccounted for. Consider the term <8.4-6a> as an example. To generate a term of
O(A3), one is free to substitute for either u> or one of the u< velocities with the
corresponding momentum equation. 8.4-2 or 84-1, respectively. The complete expansion

must involve both substitutions giving the relation:



A< u>GM>J'u<u< > = A< (w=) GM>J' usu< >> + A%< u> GM>J(u<=)u< >> 8.4-8

where (u>=) implies that the momentum equation has been substituted for u> It is
emphasized that equation 8.4-8 would not be valid without the partial averaging
operator due to the double counting of variables. For the partial averaging. the
unexpanded variables are equivalent to u® = Gf for the series expansion about the
stirring force. Again, spurious solutions are introduced in the momentum equation by
increasing the order of the non-linearity from 3rd order on the left side to 4th
order on the right side of 8.4-8.

The substitution for u< (or the equivalent series expansion of u< in powers of A
as done in the next chapter) appears to be new. To the present author’s best

knowledge, other forms of RNG do not use it. Here, it is justified by the generalized
properties of the partial averaging operator presented in section 8.2. Consider the

term A32< u> GM>J(u<=)u< >>:
A< w GM>J’(u<=)u< > =
MGRoM<k)[ < wGM>[{ GM<[usus + 26M>[ucw + GM=[ww> } us >> =
MGURMW[ { < wGM>[ uGM<[usus > + < wGM>[ uGM<[uw> > +

< u>GM>f u<GM<J'u>u> >} 8.4-9

Again, each of the terms in 8.4-9 is partially averaged, yielding an ensemble
average of the u> terms plus remainders of O(A) inside the integral or O(A*) overall.
Clearly, the process could be terminated if A < | or if it could somehow be shown
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that the successive remainders were smaller. This however, appears unlikely because A
= 1, and the re-expansion of u< and u> to O(A™) yield terms of the form:

lmGM<Iu<GM<Iu<... I u<GM<Iu<u< 8.4-10

C )

v

m convolution integrals

Apparently, no argument exists to show that terms of the form 8.4-10 reduce in
size as m increases. It should be pointed out that it is the modified method of

partial averaging which allows u< to take part 1in the averaging and causes the

apperance of the above terms. For example, the term lGM<Ju<u< may be re-expanded as

k3GM<I(u<=)(u<=) to yield GM<IGM<Iu<u<GM<Iu<u<. It appears that some constraint must
be placed on the re-substitution of the velocity terms. One possibility is that at
least one wavenumber in each triad Mjuu is in the k> domain. This constraint ensures

that at least one wavenumber integration will be over a thin shell in wavenumber
space. Integrals over two or more thin shell domains will be O(AA2) or higher and may
be discarded as AA — 0, assuming the integrands to be well behaved. This condition
on partial averaging is explored in section 94. Section 9.1 contains further
comments on the A series convergence and its relation to partial averaging.

8.5 Advective and dynamic temporal frequency ratios

As demonstrated in chapters 4 and 5, the RNG procedure may be carried out in the
frequency domain u(k,w) or in the temporal domain, u(k,t). Typically. for the
frequency method, eliminating the contributions of wu(j,®w) in the shell A. YO [3].

Carati [I1], and Smith [S] treat the frequency ratio 8 as an expansion parameter
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independent from % and carry out series expansions to (8)0, (%)“ (n =1 for YO. n =

3 for Carati). Here, the assumption of independence between the two expansion

parameters will be examined.

The temporal frequency variables, @ and € are Eulerian variables. When associated
with eddies centered about a certain wavenumber, k, the frequency variable contains
two effects: The Galilean shift of the eddies at k occurs due to a background
advection velocity plus the combined advective effect of the eddies at smaller
wavenumbers. The dynamic effect of the energy flow through the wavenumber k is the
Kolmogorov energy cascade and its time constant is proportional to €13k} So two
time constants are involved, an advective one, T,ny(k), and a dynamic one. Ty(K).
Thus, one may expect two characteristic values of ®; @,py =< T,py! and ®y =< T,
These frequency values may be regarded as an approximate domain of ® for non-zero
values of the distribution u(k,w).

Let U be a background advection velocity at k = 0, for example the average wind
velocity. Let Ap represent the wavenumber corresponding to the peak of the turbulent
energy spectrum and the start of the inertial range. Consider an idealized eddy
(Tennekes and Lumely [21]) centered at the wavenumber k. It is assumed that k is in
the inertial range. This eddy may be considered to be advected by the background
velocity U plus the root mean square velocity due to the combined turbulent kinetic

energy of all the lower wavenumbers:

k
V®apy ~ U+ { J’E(k)dk = 8.5-1
4]

Equation 8.5-1 implies that the integrated energy spectrum will yield a coherent
advective velocity. In reality, this velocity would be smaller due to differences in
phase of the various eddies in the region O to k. Thus, equation 8.5-1 may be
considered an ’upper bound’ for the advecting velocity. The kinetic energy is
composed of the integral of the production spectrum from O up to some peak wavenumber
Ap, plus a portion of the inertial range spectrum from Ap to k. Let the energy due to
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the production spectrum be Ep. Then, the advective velocity at k may be approximated

as:
k
VK)apy -~ U + { Ep + JE(k)dk } 12 8.5-2
Ap
Substituting the Kolmogorov inertial range relation E(k) = Ceg¥3k¥. and
integrating:
VK)apy ~ U + { E, + €3 %- ( ApY3 - kB3 ) }1/2 8.5.3

where Ckx ~ 1.

Taylors ’Frozen Turbulence’ approximation [2] yields w,py = V(k) pv®k may now be
used to obtain the advective frequency. Taylor used V(k),pv = U. disregarding the

turbulent advection.

The dynamic frequency component @ is proportional to €!3k*3. To estimate the
combined effect of the advection and eddy turnover, consider an approximation where
the time variation of the eddy is represented as a product of two sinusoids:

Sin(W, pyt)sin(@pt) =

% { cos((@ypy - Wpt) - cos((Wapy + pt) } 8.5-4

The effective Eulerian frequency of the eddy will range between the sum and
difference of the advective and dynamic frequencies:

L.ll
(]

ke( U + { E, + €23 % ( Ap 3 - kY3 ) }Ifl + gl3k23 ) 8.

The next step is to consider another idealized eddy centered about A and form a
ratio of the two frequencies:
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ke( U + { Ep + € 2 (A - k) Jo £ e )
oc 8.5-6
je( U + { Ep + €¥3 % ( AgY3 - A¥3) }1/2 + glBAM3 )

where j is a wavenumber such that j = A. Without loss of generality. the angle
between k and U will be taken to equal zero. In the RNG procedure, j is integrated
about a spherical shell of radius A, so that its angle w.rt. k (and U) varies from 0
to m. The average value of the dot product on the surface of a sphere is given by:

T
1‘% J‘ sin(8)cos(8)dd = E‘E 8.5-7

0

A number of approximations are now possible. Considering first the case where U
and/or Ep'2 is much larger than the inertial range contributions. The equation 8.5-3

simplifies to:
0] k -
Q oc A 8.5-8

This is equivalent to Taylors approximation [12].

At the other extreme, assuming that the inertial range energy contribution
dominate over background advection and the production energy spectrum. Such a
scenario is unlikely [12] but the resulting relation is:

@ _ 1 k{(AP'2’3—k'2/3) }mikys
Q 8 A {( Ap2? - A3) }l/l + A3

If it is assumed that Apk << | and A/A << 1, so that k-3 and A-¥3 may both be

neglected relatively to Ap¥3, then:
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However, the Apk << | requirement cannot be met for all resolved k which clearly
will include Ap. A more likely scenario is that only A-Y3 may be discarded as a much
smaller quantity than Ap'? while k may range from the same order as A, to several
orders of magnitude larger. Relation 8.5-9 then becomes:

© Lk {( Ap23 - k3) }l/‘l + k173
O " ;K Ap'3

According to equation 8.5-11, 8 is a function of % and 7% and thus may be treated

as independent from % (due to the extra parameter Ap) and the expansion due to YO is

Justified in this case. Equation 8.5-11 is valid only if both the advection wvelocity
U and the production spectrum of the turbulent energy are negligible relative to the

A"<l.

A
inertial range contributions. Also one requires £ << I, % << 1, and 22

If % — I, equation 8.5-10 is again recovered from 8.5-9.

It is concluded that only under very specific conditions may 3 be treated as an
independent parameter from % Even for flows where the kinetic energy contained in

the inertial range is dominant, the independence assumption is only valid for % << .

Otherwise, the two parameters are related and are of comparable size.
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8.6 Summary and discussion

General properties of the partial averaging operator have been defined in this
chapter. These start with an expansion of the variable a into an invariant component
a and a fluctuating component a’ w.r.t. the partial averaging operator, < >> The
conditions for activating the averaging operation must be defined. In general. the
partial averaging operation is related to the conventional ensemble averaging by:

<a’a’™>> = <a’a™> + A(remainder) 8.6-1

Section 8.2 lists the relations for the first and second moments of a and a’ under
partial and ensemble averaging. Relation between partial averaging and A series
expansion or the re-substitution of the momentum variable have been discussed.

The expansion parameter 8 has been shown to be related to % except under special

circumstances, namely a flow dominated by the inertial range and % << |. As with many
other analytical steps of RNG, it is easy to undermine their validity particulary tor
%— ~ 1. However, it is difficult if not impossible to substitute a more exact

analytical procedure.

ZVH ([8], [10]) presented a formulation of RNG with an exact time dependance (see
chapter 5) much too complex to produce a usable turbulence model. These authors
subsequently carried out Markovian’ approximation in the time domain as:

t

t
u(k,t)fn(k,r)dr = Iu(k,t)n(k,t)dt 8.6-2

.00

which amounts to a zero order Taylor series expansion of u(k,T) in the Tt variable

about T =t and is equaivalent to the YO calculation with (?)I)o.
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As discussed in chapter 3, the RNG method may be interpreted as the gradual
elimination of fine scales and the replacement of these scales with an average
effect. At each step, the fine scales are decomposed into an average plus a
fluctuation. The average is added to the eddy viscosity and the fluctuating remainder
is neglected. In order for the RNG method to be valid, it is not required that the
rms value of the fluctuating term be smaller than the average. What is required is
that the cumulative effect of the unresolved fluctuations on the resolved scales
decrease while the cumulative value of the averages increase over a range of
eliminated scales. As the smallest resolved scale increases so does the smallest
typical time scale. Therefore, one may expect that the effect of fluctuations at much
shorter time scale on a much slower variable will approach zero. However. it is
possible that the rapid, subgrid fluctuations will alias into ’induced forces™ with
time scales and magnitudes of the same order as the resolved motions. Indeed. this
appears to be the basis of the Iterative Filtering method of Carati [40].
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9. Alternatives for partial averaging and eddy viscosity formulations

The RNG procedures (or the iterative filtering of Carati) use an iterative
averaging of wavenumber triads involving Fourier coefficients in the narrow waveband
about A. For the vanishing k case of YO, the averaged triads involve j = A. lk-jf =
A, and k ~ 0. For finite k values, the triads involving A consist of k. A. and
|k-kc|. To date, these triads were averaged whenever both j =2 A and |k-kc| = A If
only one of j, or |k-j| equal to A, the triad was either discarded (by a zero result
of the partial averaging) or retained until both j and Ik-kcl were equal to or
greater than a reduced value of A. The current work explores several ditferent
strategies for the removal of triads with only one wavenumber equal to A. Since each
procedure is expected to yield different results, the question of fundamental
importance is: which method more closely represents the physical effects of the small
scales on the large scales of Navier-Stokes turbulence? In this chapter. several
options for the eddy viscosity will be derived. The numerical results will be
evaluated in chapter 10.

9.1 Time scales of wavenumber triads and eddy viscosity

As discussed in chapter 2, an eddy associated with a wavenumber k has a typical
frequency represented by De!3k¥3. In addition, each triad of wavenumbers has a
typical frequency dominated by the frequency of the highest wavenumber.

The ’‘eddy damping rate’ for the Fourier triad interaction has been proposed by
Orszag [24]):

Wjpj = O + @ + @ = De!3( k23 + 3+ Ik-j|3’3 ) 9.1-1

where D is a coefficient to be determined by a particular turbulence theorv (for
example D/CZ = 0.1904 according to Kraichnan). The @y ;x; mMay be interpreted as an
inverse, non-linear time scale for the triple-velocity correlation to evolve toward a
quasi-equilibrium state, [14]. This ’quasi-equilibrium’ state may be equivalent 0 a
partial average of this particular Fourier triad.
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Considering first the case of YO [3], the eddy damping rate of triads (A.. A. k ~
0) is approximately proportional to 2A_ 3, where the frequency associated with K has
been neglected. This eddy damping rate is also approximately constant around the
shell. Since the (j,lk-jl) components of the triangle have much higher frequencies
than the ’base’ (k), the variables associated with the former wavenumbers may be
treated as a statistical average relatively to the Ilatter. However, for finite k. the
typical eddy damping rate varies with k and aiso varies around the shell for a given
k. Referring to figure 9.1, region B contains the ’minimum triad’ (k.A..A.-k) while
region C contains the ’maximum triad’ (k,A,A+k). In the B region. the Ak
wavenumber will often be lower than k, while in the C region, both A, and A +k will
always be equal to or higher than k.

The RNG procedure seeks to obtain corrections to momentum equation coefficients
and possibly also corrections to source terms like the stirring force. Since the
momentum equation is for the k Fourier coefficient, eliminating triads over region C
is consistent with partial averaging of higher wavenumbers or time filtering of high
frequencies. However, the disadvantage of this approach is that the triple velocity
products remain at the end of the procedure. These twiple products represent
interactions where only one wavenumber falls into the subgrid range. As discussed in
section 9.3, the triple products are undesirable from the point of view of numerical
simulation. In the current study, methods of avoiding the triple products will be
investigated by averaging over triads with only one subgrid wavenumber. This process
is easier to justify when both j and |k-j| are greater than k. The triads where one
wavenumber is subgrid while the other is smaller than k pose special difficulties.

For the A’ truncation strategy, one of the wavenumbers (say j) is associated with
a random velocity correlation while the other (say lk—j[) is a ’‘vertex wavenumber’.
associated with G(|k-j[,Ac) and M(k-j). The Green’s function is a random vartable.
with an average and a standard deviation, driven by the random eddy viscosity
v(lk-jI,Ac). Hence, the partial averaging process affects both j and lk-jl.

At the start of the RNG procedure, the random variables within the Navier-Stokes
equations are the velocity and stirring force Fourier coefficients. However. the
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molecular viscosity, v, is statistically sharp. After eliminating a wide range of
scales, v, is replaced by v(k,A.) which is the expected value of a random variable
[35]:

v(k,A) = €8 A3 V(K/A,)

Examining the eddy viscosity expression for the source of randomness. it is
apparent that € is a random variable which will converge to it’s expected value In a
wavenumber band about A. if a temporal or spatial filtering is used with sufficiently
long averaging interval. The standard deviation may increase with A. leading to
considerations of intermittency. The random eddy viscosity will fluctuate about it's
mean value with a typical time scale proportional to €13A 3. The dissipation
time scale is k’v(k,A_), and the ratio of the eddy viscosity fluctuation time to the

4

dissipation time is —: This implies that for %- ~ 1, the RNG eddy viscosity may be
~ C

(o

not well defined in terms of a statistical average.

Returning to the consideration of the averaging of wavenumber triads. for /\L ~ .

Ik-jl becomes small when k and j are nearly parallel. G(lk—jI,Ac) is well defined
with the eddy viscosity approaching v(0,A.). However, the equation for the eddy
viscosity containing v(|k-j|,Ac) is non-linear and difficuli to solve. RNG procedure
proposed in this study also involve G(lk-jl|.Ik-jl) with a much slower fluctuation
frequency than k. Indeed, the vertex Green’s function appears to be a problem for the
RNG theory presented in this study.

9.2 Alternatives for elimination of wavenumber triads
Three alternatives will be explored in this study for the proposed characteristics

of ﬁi(k,t). the ensuing behavior of the partial average, and the RNG iteration
procedures.
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First, the random variable l’li(k,[) is considered to be a response at wavenumber k
to fluctuations ‘originating’ from the constant wavenumber band A-AA to A. In the
context of the RNG methods, the source of the fluctuations is the stirring forces
>(j) for I jl = A, and equation 8.24 is equivalent to the decomposition introduced
by Carati for the IF method. The integration contour is region C plus region B.
figure 9.1.

Second, the random variable u(k.t) is considered to be a response at wavenumber k
to fluctuations ’originating’ from the variable wavenumber band Ik-j|< for | jl = Al
For the RNG method, the source of the fluctuations is the stirring forces f{(k-j.U.
The contour of integration are the regions B, figure 9.1

Third, the random variable fxi(k,t) is considered to be a response at wavenumber k
to fluctuations ‘originating’ from the variable wavenumber band |k-j|>* for l]l = Al
where |k-j|> exceeds A.. For the RNG method, the source of the fluctuations is the
stirring forces f(k-j,t), the contour of integration are the regions C. figure 9.1
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9.2.1 Partial averaging over a constant wavenumber shell (region B plus C)

For the random fluctuations ’originating"” from the thin shell, the high wavenumber
variable u>(k,t) may be decomposed into a random part u>(k.t) and a non-random
component XE>(k,t); where A is a marker for the presence of at least one convolution
integral. Both Eﬁ(k,t) and L'Ji>(k,t) contain convolution integrals but (xﬁ(k.t) may
also contain a source term such as a stirring force. This division is equivalent to
the decomposition introduced by Carati [40] for the IF, where Eﬁ(k.t) contains all
the averaged moments of the shell stirring forces while lef(k,t) contains the

stirring force fluctuations.

ur(k,t) = Aukt) + u>(k.b) 9.2-1

One of the objectives of this work is to find physical analogies for the various
mathematical steps of the RNG. For the partial averaging over a constant wavenumber.
temporal filtering of the flow variable may be appropniate. Since the variable
u(k.t) contains a distribution of energy as a function of @ given by u2kw). a
physical basis may be provided for the partial averaging by writing:

u>(k.w) = lfy’(k,uf) + ﬁi>(k,co>) 9.2.2

The boundary between w< and > will be denoted by ® A The underlying concept is
that the components of u>(k,w) at relatively high o will evolve faster than those at
low . The partial averaging may now be equated to a sharp cutoff filter in ® spuace
with @, as the cutoff.

The corresponding low wavenumber series is:

u<(k,t) = u<(kt) + Au<(k,) 9.2-3
and for u;<(k,w):
u(k,®) = u<(k,09) + AL<(k,0>) 9.2-4
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The reversed position of the A factor indicates that the source of the random

variation is the high wavenumber shell. It is expected that as % << 1, the ® domain

of ﬁf(k,u?) will go to zero since it is unlikely to encounter a turbulent eddy which
varies slowly in space and rapidly in time (see section 8.5). Now the following
hypothesis is made:

< AP’ > < < UG’ > 9.2-5
< u<(k,t)’ > > < Ak’ > 9.2-6
< 0G0’ > > < Ak’ > 9.2-7

A physical argument to support the above assertion is that rapid fluctuations in
time tend to be associated with rapid fluctuations in space. Let @, represent the
frequency region C,2€l3j23 < ® < Usj, typical for eddies with a spatial

fluctuation centered about j. If now the spatial wavenumber is reduced from j to Kk
where ?— << 1 but the frequency is held constant at @, it is reasonable to expect

that the rms value of uk,@) < uQ,). If correct, this hypothesis may provide a
physical basis for the convergence of the A series.

Although the above hypothesis is feasible, it may nonetheless be wrong due to the
non-linear nature of the Navier-Stokes equations.

Returning to the time domain and substituting the results of equations 9.1-1 and

9.1-3 into the Navier-Stokes equations for u<(k.t) and averaging the U variables
according to the results of section 8.2 gives:
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‘a?E + k2v )< us(k,t) + Austkp) >> =

m<(k)J' 4% us(k-j,Hu<G.t) + 212M<(k)f 43 us(k-j,)u.o) +

D1 Bri

212M<(k)I & wk-§.Ou>G.t) + 212M<(k)J'< u<(k-j0) 0>GY) > +
Al Brl

A M<(k)J'< wk-j.t) WG, > + f<(kt) + OAY) 9.2-8

Al

The eddy viscosity correction, Avg,, is obtained from the term

j < ﬁ<(k-j,t)ﬁ>(i,t)>> (see figure 9.1):

Brl

2A2M<(k) j< G<(k-j.t) UGt >> =
Brl

242 f 3% M<(k-j) fdr Go([k-j <0 QGiD) wk) =

Brl

9.2-9a

usk) 28 [ d% Mstkd) [dr Gy(lkil <t QGio)
Brl
u<(k,t) Avg 9.2-9b
The accuracy of the approximation in equation 9.1-4a is questionable. particularly
when % — 1. This approximation is sometimes called Markovian (Orszag. [24]) since

the result of equation 9.1-4a is assumed to depend only on E<(k.t), rather than on
the range of values l_l-<(|(,‘t) within the ’memory’ integral fdt. Its validity will be

further discussed later on in this study.

The resulting momentum equation after the elimination of the first shell is:
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a - -
-a-f + k-Vl) u<(k,t) =

AM=<(k) J’ 4% us(k-j,Hu<G.t +

Dl

2A2M<(k) I &% u<(k-j) j G,(j.t-1)dt M>(j) f dp us(-plus(p) + F£<(k.0) 9.2-10

Brl

where v, = v, + Avg,.

9.2.2 The RNG iteration procedure and differential equation for v(k,Ac)

The iteration commences by setting u<(k,t) — u(k,t) on the reduced wavenumber
interval k< — k. The result is:

% + klv,) ukt) =

3 o
A M(k)J‘ (31?); u(k-j.oHug.t) +
DI

22 Mk [ (‘% utks) [dt Goitm) M=G) | (-;’_;I;_s uG-p)u(p) + f(k.0) 9.2-1

Brl

The new aspect of equation 9.2-1 is the triple product term residing in
integration volume Bri. This term is now re-expanded on the second shell. resulting

in the following equation:
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MK | (%})5 utk) [ Goj-nidt MoQ) | (%1% uG-plu(p) =

Bri

9

2 MK [ T wid) [ GoGirndr M@ [ LB us-piwe) +

(27)3 (2m)3
Cr%
3+m

33 . ! . 3 .
2 [ Mo [ Stk [ Goianar M@ [ B uGpse) 9.2-

19

(2r)3
=3 i
Brl

where m = m(n) = i 1n{ | +% }

The triple product expansion in equation 9.2-2 vyields an additional contribution
to the eddy viscosity from the term in the domain o, for n = 2. Vo, = V| + Avy, +
Ave,. The eddy viscosity due to re-expanding the triple products has been initially
proposed by ZVH for finite shell thickness and extended to the differential limit by
Carati [11] as discussed in chapters 5 and 6. After eliminating a range of
wavenumbers from Ao to Ao - k (which may be neglected due to the low energies
associated with high wavenumbers) the region C becomes a full arc with an angular

range from a:ccos(,,kx) to O and its contributions to eddy viscosity become self-

similar (n = m+1). Consider the self-similar portion of region C. after n discrete
shells have been removed. At the n+l step of the recursion. expanding 9.2-1.

substituting relation 9.2-2, and retaining terms up to order A2 gives:

(G + kvy) utk) = A Mo [ (21;1)—3 uk=f.0uG.) + fk.t) +
Dn

n j+m
, d3j .
Yy ooT 2a Mk | —L(zn)3 u(k-j) x

Br

j=n+l-m i=o+l

O
19
[vS}

[ G6anae M) [ SR uG-pruce)
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The following notation is used for the Green’s function:

G, (k.t.1) = eValKIK(t-T) 9.2-4

The eddy viscosity, v [k] is expected to be of the form:

Vo(kl = vo + TAV[K] = €3 A3 G[i} 9.2-5

where the contribution of v, is considered negligible for sufficiently large n and
the function v [k] is the average, viscous-like effect on wu(k,t) due to motions at

wavenumbers 2 A,.

Thus, the eddy viscosity contribution Av,,;, for finite k values originates from
the equation:

kK2Av, u<(k,t) =

2AM(K) f (_%?)_3 <us(k-j.0u0G.0)>> +

Bm+l

2)2M(k) j _L <u>(k-§.0UXG,0>> + AAM(K) X

An+l
n

y J' (T'l)_s <wk-§.0) GGOMG) | (T% u<(j-p.Du(p.1)>> 9.2-6

j=n+l-m j
CI'n-l-l

It is emphasized that the eddy viscosity decreases along the arc Cr of figure 9.1
as j increases along this contour.

The contribution of the first term on the right hand side of 9.2-6 appears to be
new while the eddy viscosity composed of the last two terms have been examined by ZVH
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[8] and Carati [11]. The various integration regions are indicated in figure 9.1. For
finite k values, the magnitude of region An becomes negligible in the differential
limit of the shell thickness and may be dropped. Expanding the first and third terms
to O(A?) and anticipating the results of the averaging based on the results of

section 8.3:
k2Av,, u<k,t) = k2u<(k.D(AvBr, + AVCr)) =

n+l+m t
2 d3' < - -
SYERVT) J‘ (-,_5;')—3 M<(K-j) J’dt G| k-jl.t-1) x
J=n+2 j -0

Brn+I

t t
_p_(’c)i:tp u<(k-j-p.7) IdT’GJp.t-‘t’KP(P,T’) J-df"Gn(j,t-r”)P(j,t”)>> + 9974

t

- - d3' ’ . ’ - ’
an: Mk) T j (_2%_3 dr” G (| k-jl t-v)<ek-j ) x

j=n+l-m Cl’::“.[ -0
t T
ire . d3 3
M>=3(j) [dt G;(.t-1) I(?;tii—} u<(j-p.7) Id‘t’Gn(p.t—t’)P(p.t' )>> 9.2-7b

00

where AvBr, and AvSr, are the eddy viscosity contributions of the two integration
regions. Replacing Gn(‘k-j|) with Gj(|k-j|) in 9.2-8a is consistent with replacing
v(k,A) with v(k,k) in the t'xl(k,t) term as discussed in section 8.2.

Carrying out the partial averaging with the force correlation tensor:

< Pk HFHEKL) >> = 2 W kY Daﬁ(k) d(k+k")d(t-t") (2m)?

and evaluating the wavenumber and temporal integrals containing Dirac delta

functions gives:
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k2Av,, u<(k,t) =

2 1 _dS.J._. -3 <(k_%
8A2W 5 M(k) D(K) j s 2 DO M) %
Bm+l1

t T
Jd‘t Gj(lk-j | 1) us(k,T) I dv'G,(.7-7) G, (.t-1") +

n

w1 Bi i (el Pk
8UW 3 M) D [ [ s M) kg[S DGk x

j=n+l-m ]
Cr:wl

t T
Id‘t G.t-1) us(k,T) J'dt'G,,(lk-jl,t-r')c,,(lk.jl,t-f) 9.2-8

where the term D(k) has been inserted to facilitate contraction of tensor indices
prior to the spherical integration in wavenumber space and =~ is inserted since the

trace of D(k) is d-1 = 2.

Using the relations introduced by Carati [11]:

Atkk-j) = P, (k)P (k-)D,(K)D, () 9.2-10
where Mi,,(k) = - 5 P(k). Substituting 9.2-9 and 92-10 into 9.2-8 onc has the

result:
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k?Av,,u<(k,t) =

2 1 d3) 3 -
swW 5 | oy 17 Aleke) x
Bm+1

t T
J'dt Gy(|k-jl ) u<(k,‘c)J-d1:’Gn(i,1:-r’) G (t-T) +

|
SA2W 5 Z J (—"_JF [k-j|3 Ackj) x
j=n+1-m
Crn+l

T
dt G.t-1) u<k,1) | dvG(lk-jl =-1)G (| k-jl.t-1) 9.2-8
J n

The following identities may be recognized in regions Brn and Crn:

a) Region Brn

: 2 2Kj
Akd) = jo { (lnlc(i#k j;’u } =

{A {A’+k’-A<3} } (nd-l)k’ A3+jk\32-A<3}

A? S(l.L<) B(1,LsD) 9.2-11

where [ = x i< = é{é are dimensionless variables. The symbols j: and ) represent

the components of the vector j perpendicular to k, and parallel to K, respectively.

k2 2k k-jl
Akk-j) = |k-jl.2 (nd. k2 3,1 =
J JiL JZ lk.] I 2 }
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(- { Bfede p p( e 2ot

= A? Sed(l,{<) B(L<,1.0) 9.2-12

b) Region Crn

Aky) = j12 {—l—]—-(“d iz 269, i) -

2 [
{ A>~—{ -~211\(3-k-} } (ndl)k- A>2 +Al>c§-A3}
= A2 Scd(C>.D) B>, 1.0 9.2-13
. o k2 2k lk-jl
Akk-j) = [kijlz { (“‘}2”“ . Ik-jjll" }=
{A>2-{A -A’ k’} } (ncfi;)lz)kl_AZ«fr/k\Z-Aﬂ}
= A2 Sc«§>.) B(1,L.D) 9.2-14

>

where {> = % .

The factors Ssr and Scr represent sin28, where © is the angle between vectors j
and k. These factors must always be positive or zero. However. depending on the
combination of { and [, the factor B may be negative or positive. This is significant
because some ’‘eddy viscosity’ contributions from regions Br and Cr become negative
for certain range of / due to the changing sign of the factor B. Thus. the factor B
is responsible for the ’backscatter’ that is energy flow from the small scales to the
large scales, reverse form the average flow of the energy cascade.

The above relations may be summarized in the following table:
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Bum Cm
| |

Ak ) l A2 SB(1,5<) B(1,L<.D) 1 A2 Sci(C>0) B(G1,D)
AGkk-j) | A2 Se(l.L<) B(G<,1,) | A2 Sed(§>.D) B(1.L.0)

The volume integrals are given by:

A
f @ = 2naA R J’ A<dA< + O(AA) 9.2-15
Bm+1 A-k
and
n A+k
I [ = Id3j = mand j A> dA> + O(AA) 9.2-16
A

j=n+l-m er | Tn+l
n+

where AA is the incremental thickness of the shell radius. and A = A . [t is
noted that as k — 0, formulas 9.2-15 and 9.2-16 reduce to the volumes of half
spherical shells of thickness AA to order AA, 2rA2AA. However. as indicated in figure
9.1, the regions B and C exist due to the offset of size k between the shells | = A
and Ik—ji = A and must vanish with k. This incorrect limiting behavior of 9.2-15 and
9.2-16 suggest that the above formulation is inapplicable in the low k limit. As
discussed in chapter 6. ZV [9] explained that the limits AA — 0 and k — O are not
interchangeable. The latter limit must be performed first to obtain the correct
V(0,A) eddy viscosity behavior. This assertion means that it is impossible to obtain
a (ransition between the YO formulation (k —— O limit first) and the Carati
formulation (AA — O limit first) and that a formula valid in both regions does not

exist. For Eki < 1, the YO formulation applies with a correction O(k), for ZA%Y > 1. the

Carati formulation is valid. In the present work, the observation is made that for %

< 1, the shell thickness factor AA must be replaced by 0.5k in the formulas 9.2-15
and 9.2-16 to obtain volumes of regions B and C valid to O(k) and O(AA) and equal to

nAZk. Clearly, Dié( = | is the switchover point which is identifiable if AA is finite.
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Since the present study is based on the Carati formulation, the evaluation of v(0.A)
presents a problem which is further discussed in the next chapter.

Changing the summation of discrete volume increments into a continuous integral.
necessitates the transition from a discrete to a continuous eddy viscosity function.
v, (k) — Vv(k,A), so that the Green’s function becomes:

G (kt,t) — Gk.ALT) = eVKAKH-T) 9.2-17

The change of notation from a discrete to a continuous function may be generalized

as follows:
f.(k) — f(k,A)

Substituting appropriate variables in each region gives the result:

A
) 2w - 2 2
KAy, us(k,t) = %nﬁ 1omand [ A< A3 G A2 sediLo) BE=LD %
A-k

t T
I dt e VASAIA(ET) <k 1) I dt e VA A)A2(+T-2T)

A+k
8A2W 1 A SRS A3 (B A2 N N
eny} 2 R I A>dA> AP (2‘) A? Scd(&>.) B(&>,1.0) x
A
t T
J’dr e VAT AAZ(T) u(k,1) J'dz' e V(AA)A(1+1-2T") 918

Integrating first with respect to 1"
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(2r)’

A
K2AV,, usk,) = 2% op AR R f A<dA< A3 A? Se(l.§<) B(Cs, LD x
Ak

t
Idf eVIASAIAL(-T) ye(k, 1) e VA AANL-T)

00

A+k

-1

( 2V(ALAA2)

AW om aa R J’ A>dA> A3 A? ScdC>.D) B 1.0 x

3
(2m) A

t

J‘ dt e VA AIIA(-T) ykt) e VIAA)AL-T)

= -]

-1

Now integrating with respect to T and simplifying:

szVnH
A
j A<dA< A3 A? Se(l.{<) B(LS,1.)
Ak
A+k

f A*dA> A7 A? Scd&) B, 1.0 (

A

The recursion relation in steps
according to:

av(k.A)

_NW A 1 y
er)z T K 2vAA)A?

1

( 2V(AA)A2)

1

+
( VIAS,LADA< + V(ALAA2)

of AA is converted

_Iim  Av(k.A)

aA

Thus, the differential equation is:

T AA-0  AA
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avkA) _  RBW 1 A
3A (2m) 2v(A,A)A? K3

A
1
A< < -3 2 1, < <,l,
AJ‘k dA< A3 A? Sed(/,§) B(LS, 1) ( VIAS,A9A< + V(AA)A?) *

A+k

]
A>dA> A3 A2 Sc(£>0) B(G1, =2
IJ\. A A Cf(c [) (c l) ( V(A>9A>)A>2 + V(AQA)AZ ) } ’

Substituting W = m2Cmege, A = 1, and also using the relation v(k.A)A2 = gl’* V(/HAY*
and differentiating with respect to A:

4 ~ d ~ 1 Cmg e A
A3 g3 o - L = - —E —_ =
e (-3 V- fg Vi) = - g S7us
A
1
A(dA( A’3 A2 s I, < B <71i
J. Br(1.8<) B(L<,1,)) ( VIAS,A9A< + V(ALA)A? ) *
A-k
A+k
1
A>dA> A3 A? Scd8>0) B(&1, P2
IJ; c(&>0) B(&> L) ( V(A>,A>A>2 + V(AL A)A? ) }

Converting to non-dimensional variables:

A (-390 -GN ) = - g Cme A g

1
A2 [LdE 3 A2 Ssll) B, LD (

I
B +1) *
1-{
1+
A J ¢df A A2 ScdG.l) B 1.0) (
13

O
19
]
(9]
1,)

|
T )
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4 ~ d ~ l Cmg 1
vil] + i vl =
3 d? V(1) r {

1

[ &dg sadrt) BE1D
1-1
1+

[ 848 sek&h BE1D

S S
(g2 + 1)

_,__1___} 9224
(B +1) T

Cmg l
Vs( 1 )'

TV + G VD = § - L0 9.2-25

where V() has now been labelled V{/) to indicate that it had been derived using
iterative averaging over wavenumber magnitude fixed at A. The corresponding right
hand side forcing term I(/) is given below. The relations for Sc({.)) and B(/Q)
have been substituted:

= l
o = J 8 o

{1-{%-_&}}{71» &%Jp
1
IC“CWI—)

g{é__ﬂ_l F }{2- 5__+’° } 9.2-26

It is noted that I()) = Ig() + L), contributions from regions B and C
respectively to the fixed wavenumber stirring force. The integral I(/) may be
evaluated analytically. Mathematica gives a rather unwieldy expression which will not
be reproduced here. The explicit solution for V{(/) is:
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!
Sy = Lk Cme s J'dg E93 I(E) + [43C 9.2-27
8 V(1) '

0

To the knowledge of the present author, the integration in equation 9.2-27 must be
performed numerically. Numeric evaluation of 9.2-26 shall be deferred to the next
chapter.

It should be emphasized that after eliminating all the supergrid wavenumbers. the
final form of the momentum equation will still contain the triple products. This is
undesirable for the purpose of simulation. This momentum equation is presented below:

2+ kv (kA) ukp) =

A Mk) I &3 uk-§.ouGn) + ko) +
Dk.A)

4
A2M(k) I a3 u(k-j) J‘ G(j.t-tdt MiG) j d3p u(j-p)u(p) 9.2-28

CBk.A) DG, A)

where the symbol M?>i(j) indicates that j > A. Here, the integration domain of the
vector j for the triple products is the region between contours C and B. denoted by
CB(k,A):

volume ( CB(k.A) ) = 2rk(A> - &) 9.2-29

while the volume of region D(K,A) is given by:

volume ( D(k.A) ) = 1:(‘1‘3\—3 + 'T‘; - kAY) 9.2-30
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as indicated in figure 9.1. In the limit as k — A, volume of CB(AA) = -lglm\-‘ while

the volume of region D(A,A) is 1% nA3. Hence, the integration volume of the triple

product region is over 4 times that of the standard Navier-Stokes convolution
integral on the resolved wavenumber range. This implies a large computational burden.

According to Zhou and Vahala [10], a simulation of equation 9.2-28 has not been
carried out as of 1993 and to the knowledge of this author, this situation has not
changed. From the point of view of the numerical simulation, the problem resides with
the high wavenumber §> which ranges in magnitude from the final cutoff, A 10 A + k.
Also, as pointed out earlier in connection with the A series substitution. the higher
order of non-linearity now present implies an additional, spurious solution to the
momentum equation.

The triple velocity product term of equation 9.2-24 merits further discussion.
This term may be written as:

t
AM(K) I d?j u(k-j) I G;(j.+-vdt M2i(j) J- d3p u@-pu(p)

CB(k.A) oG, Ay

= A2M(k) J' & uk-jit) 1,0 9.2-31
CBk.A)

where u,”(j,t) is given by:

t
u(,t) = I G,(j.t-tidt M>i(j) I d’p u(j-p)u(p) 9.2-32
-o° DG, )

[t is noted that uw(jt) is a subgrid variable, 1, >(jt) is that component of
u(jt) which can be expressed as a function of the resolved variables. This
variable suggests the need to decouple the partial averaging from the spectral
splitting.
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The integration volume of u,”(j,t) is the intersection of two spheres of radius
A separated by j > An. This volume equals D(j,A) where D(2A,A) = 0. Thus. the
variable 1w >(jt) is a component of u»(jt) in the region A < j < 2A. Since
u,>(jt) is not affected by the partial averaging, a connection may be made with
equation 9.1-2 and it may be speculated that:

u k) = uw(k,o) 9.2-33

A second problem with retaining the triple products in the momentum equation is
their lack of Galilean invariance as mentioned in section 6.2.
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9.3 Partial averaging over the B regions

In this section, the objective is to average the wavenumber triads where one side
length equals A and falls into the shell to be eliminated, while the other ‘leg” of
the triangle is less than A. The Navier-Stokes equations in Fourier space are

reiterated below:

2+ k) utk.t) = M) futk-j,nuG.n + k.o 9.3-1

The condition for partial averaging is that at least one wavenumber in the triad
k. j, k-j is in the shell A to A-AA. The spectrally split variables are given below:

vkt = (ki) 9.3-2

u<G.v) if k and |k-jl < A
<Gy = | VOV el 9.3-3

u<(j.t) if k and/or |k-j| = A

where it is noted that G>(j,t) = 0. For the stirring forces, since these are not
expressed as non-linear convolutions of other wavenumbers. one has that fi(k.t) =
fs(k,t) and fi(kyt) = f3(kt) as in 8.2. Expanding the Navier-Stokes equation 9.3-1
based on 9.3-2 and 9.3-3 and inserting the partial averaging operator wherever a
appears:

2+ k) us(k) + <o<(k.D>> ) = AM(k)f &3 u<(k-j,t) u<(j.) +

Di

kZM(k)Idf‘j <U<(k-j.t) 0>(.0>> + A2M(K) J &3 < Gk, GG > + k) 9.34

Bl Al
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The region A will become a second order differential upon taking the differential
limit and thus is neglected. Taking the partial average of equation 9.3-4 according
to equations 8.2-5 to 8.2-12 yields:

(Z + kavy) uk) = AM(K) [ &) uskedit) 0G0 + flkt) - k2Avusihen) 9.3-5
D1
where
- kAvu<k,t) = A2M(K) J’ 43 <u<(k-j.t) WG.H>> 9.3-6

Brl

Now, the partial averaging principle in terms of the stirring forces yields:
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<u<(k-j.t) W(@,0>> = <u<(k-j.t) >G> +

< (uO(k-j,ty + Au<(k-j,t) ) UG + 0IGD ) > + O =

A28 M(k)Id3j f dt G(jt-1) M>() uk.t) Q9(|k-jl.0) +

Brl

28 M(k) [ @3 [ dr G(lkg-n) Meched) uckon) Q0.1 + O 9.3-7

Brl

and Q°j.t) is given by equation 8.2-20. Carrying out a series of steps analogous to
section 9.2, the resulting solution for the eddy viscosity is:

Cmg
va(1)?

39D + 15 V0 = § ;—3 Io(D) 9.3-8

where
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1

- 1 1
o = lJ.lCdC (B +1) Qs X

(1 (Y (B avr o )
1
1
(& sy
(1 (LEE ) (- E2pot)

As in the case of I(l), I3(/) may be evaluated analytically but this expression
is omitted here to save space. It is noted that 0 < [ < | and so the above equation

. . . . 1 I P
contains a singularity as / — | since { — 0 and the terms Z@ and AERE

become large. Physically, the term C!''3 corresponds to the Kolmogorov energy
density on the wavenumber sphere of radius £, so as the wavenumber tends to zero. the

kinetic energy becomes large.

The formal solution is:

I
Vo) = 10 J'dg E83 I, (E) + 1M°C, 9.3-10

0

A plot of Vy(l) as computed numerically will be shown in the next chapter.
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9.4 Partial averaging over the C regions

In this section, partial averaging will be carried out over the C regions only.
This procedure is similar to the iterative filtering procedure of Carati in that the
stirring forces acting in region B are retained until these can be incorporated into
successive C regions. The detailed derivation is analogous to that of section 9.2 and
will not be presented here to save space. Instead, only the final results are
presented:

3 VaD + 1S V00 = g S

— I ) 9.4-1
Vn-.(l)' P "

where V(/) has now been labelled Vg (/) to cormespond to I (/). Substituting the
relations for Sc«(C,/) and B(/):

where Iy is given as:

1+

W = jcc T { ¢ {5 Y

{gﬁ{—“l-P+G}+{W-§i§;i}} 9.4-2

The results will be presented in chapter 10. This formulation of the eddy
viscosity will also leave triple products of the resolved velocities in the momentum
equation. See section 9.2 for details.

9.5 Compatibility with the YO theory
The YO version of the RNG procedure for ’vanishing k’ vyields several self-

consistent relations between turbulence quantities. These relations. reiterated below
for convenience are mutually dependent:
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2WS,

Cmg € =
¢ 2n)d

with C, = 1.59 . From the above relation YO obtained

E(k) = 1.61€¥3k53
and
Vyo(k) = 0.49¢!3k~/3

The resulting relation for W = 1.59n% and also v(k) has been used

4.9-4

4.9-5

4.9-6

the

derivation of the YO result for C,. The latter result has been obtained from the

approximation:

Ek) = %Sdkz (21:) — I do Trace <u°a(k,(:))u°ﬁ(-k,-m)>>
with
uy k@) = GKk,)fyk,w)
and

1

Glk.w) = (i + vyo(k)k2)

It is noted that G(k,w) contains vyo(k) from 4.9-6. The derivations in sections 9.2.
9.3, and 9.4 of this study use the relation W = 1.59n%, but G(k.®w) contains v(k.K)
instead of vyo(k). Since it is expected that v(k,k) > vyg(k), ug(k,w) is expected to
be overdamped and inconsistent with the YO theory. The energy spectrum evaluated

according to 9.5-1 will have the correct k dependence but too low amplitude.
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9.6 Summary

Several RNG eddy viscosity formulations have been presented in this chapter.
First, the general properties of partial averaging were specified to act only on the
stirring forces at A for each stage of the calculation. The resulting calculation
included the fixed stirring force contribution from both the B and C regions of
diagram 9.1. Also, the derivation of eddy viscosity from regions C for both fixed and
high components of the stirring force has been presented. The region C triads have
both averaged wavenumbers in the subgrid region. In both cases, the final version of
the momentum equation includes the remaining triple products of the low wavenumber
velocities. This term is wundesirable for numerical simulations. As a remedy. a
different averaging strategy was proposed. including the fixed and low wavenumber
stirring forces from regions B of diagram 9.1. In this case. one is averaging over
triads with only one subgrid wavenumber. It is noted that one cannot formulate an
eddy viscosity vy y as this would involve double counting of the same physical
interactions. The three versions of the eddy viscosity each model the subgrid
interactions in a different way, attempting to reproduce the physical effects of the
small scales on the large scales. The question which is correct may be easier to
answer once the explicit forms of these functions are obtained in the next chapter.
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10. Numerical Results and validation

The objective of this chapter is to obtain numerical solutions for the energy
drain function and the eddy viscosity as governed by differential equations derived
in chapter 9. Then, it is required to verify if any of the solutions are suitable for
use as an eddy viscosity function in a large eddy simulation. The criteria here is
that for a cutoff wavenumber in the inertial range of the original flow energy
spectrum, the simulated energy spectrum will also have the same amplitude right up to
the cutoff. In order to check the suitability of the wvarious proposed solutions. the
validation criteria will be discussed first.

10.1 Criteria for validation of potential eddy viscosity functions

[t is required to validate the various candidates for the universal eddy viscosity
function for isotropic, high Reynolds number turbulence. Since the present knowledge
of turbulent energy transfer is incomplete, sufficient validation may only be
achieved with extensive large eddy simulation tests which are beyond the scope of the
current work. Instead, this study examines theoretical considerations which provide
necessary but not sufficient conditions that must be met by the eddy viscosity. Also.
a limited comparison to published literature is carried out since there is a
consensus about the qualitative shape of the eddy viscosity plot.

10.1.1 Theoretical constraints on the eddy viscosity function

The eddy viscosity function is expected to meet the following criteria: achieve
the correct energy drain rate, € while maintaining the correct energy spectrum
function E(k) (proportional to k-5 in the inertial range. A, < k < A). The former
of these requirements may be characterized as global over the resolved wavenumber
range, the latter is local for each wavenumber mode. The global requirement is

expressed by the equation:
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A

C

I dk 2v(kADk2 EK) = € 10.1-1
Q

Substituting E(k) = C.g¥3k-3 into 10.1-1:
AC
J'dk 2v(k.A) C, e¥k1? = g 10.1-2

(0]

Equation 10.1-2 is necessary but not sufficient to uniquely determine v(k.A)). An
infinite number of functions wv(k,A.) will satisfy 10.1-1 subject to the constraint
that E(k) = C&23k53. Conversely, an infinite number of possible spectra E(k) will
satisfy 10.1-1 for a given v(k,A.). Therefore, if a large eddy simulation is
performed using an eddy viscosity which satisfies 10.1-2, the resulting E(k) may
deviate from the inertial range form. It will satisfy 10.1-1 but not necessarily
10.1-2.

The above discussion is illustrated with an example. Substituting v(k.A) =
€A 3 V() into 10.1-2, one obtains:

I
- 1 .
dal v(h) '3 = 10.1-3
[ arv0 pion
0

For C, = 1.61 as obtained by the YO application of RNG, the expected value for
10.1-3 is 0.31. The constant V(/) = 0414 will satisfy 10.1-3. However. constant
values of eddy viscosity yield E(k) spectra which decay closer to k- rather than
k-33 [14]. This implies overprediction of low wavenumber Fourier velocity components

and underprediction of high wavenumber components.

If the eddy viscosity is too low, particularly at wavenumbers near the cutoff A_.
E(k) will form a cusp near the cutoff, [14], rising above the required values. This
will result in overprediction of the Fourier velocity components near the cutoff. The
analytical form of such a cusp is unknown. It may be that the eddy viscosity cusp is
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required to prevent the cusp of the energy spectrum. If the eddy viscosity is too
high, E(k) will form a dissipation region where the spectrum decay is faster than
k53 The complete inertial-dissipation spectrum may be approximated by the relation
due to Pao [13]):

3C ,
E(k) = Ce2kexp( - =~ (;;0)*'3 ) 10.1-4

The generalized Kolmogorov wavenumber A, maybe defined as:

€ 1/ -
Ak, A) = |———— 10.1-5
ok.A) (V A

The relations 10.1-4 and 10.1-5 are normally applicable to a fully developed
spectrum with a constant viscosity as opposed to a LES truncated one. However. they
may indicate cases where the inertial range spectrum cannot be maintained due to
overdamping. Substituting v(k,A.) = gB3A_3 v(l), one has the result:

AgkA) = A V(D" 10.1-6

Previous studies indicate that the eddy viscosity which follows a plateau-cusp
behavior as a function of / may be expected to faithfully reproduce the intertial
energy spectrum. Accordingly, some criteria for a suitable plateau and cusp
characteristics are discussed below:

10.1.2 The plateau region

The plateau region is the constant portion of the eddy viscosity curve at low
wavenumbers (/ < 0.3 according to literature). Thus, for low wavenumbers. the effect
is the same as increasing the molecular viscosity of the fluid while maintaining the
power input per unit mass. The Reynolds number is reduced and the new Kolmogorov
wavenumber is given by:
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AJOA) = A, VO™ 10.1-7

As may be seen from figure 2.1, (see also reference [13] for a compilation of
experimental data), noticeable deviation from the k373 slope occurs for wavenumbers
greater than YA, where y = 0.1. Hence, in order to maintain the k33 slope. k should
be less than 0.1A,, leading to the result:

Y3 153 2 v(0) 10.1-8

The published range of / for the plateau region is generally / < 0.3. Substituting
{ =03 and vy = 0.1 into 10.1-8 yields:

0231 = V() 10.1-9

This upper bound limit on V(0) is somewhat smaller than the typical literature
value of 0.29 [14] and clearly depends on where one wants the plateau to end.

A similar requirement for the eddy viscosity in the plateau region may be arrived
at by comparing the eddy turnover time versus the viscous diffusion time. The chief
difficulty with time arguments in turbulence is that while proportional relationships
are easily established, the constants of proportionality are somewhat arbitrary.
Prior to any renormalization, at a given wavenumber k in the inertial range of
turbulence. the eddy turnover time scale is much smaller than the viscous time scale.

so that:

D g3 k3

- >> 1 (=) D e k¥ >> v, 10.1-10
VQk'

where 1T, = D-le?k-?3 is a typical eddy turnover time and D = 0.1904 C,? according
to an analysis due to Kraichnan [25]. Using the YO value of C, = 1.61. D = 0.494.
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After the elimination of a wide range of scales, the v, may be neglected and replaced
by v(k,A.). If the resulting momentum equation is still to display inertial range
turbulence, one now has for k/A. << I:

D 8[/3 k2/3

~ 1 (=) DeB® k¥ > vkA)
v(k,A k>

D g3 k%3 >> g3 A 43 v(0)
D #3 >> v( 0) 10.1-11

At the end of the plateau region, published studies indicate that /[ = 0.3. so that
it is required that V(0) << 2.46.

10.1.3 The cusp

In comparison to the plateau region, the cusp portion of the eddy viscosity
requires much more information to describe. There is the onset / value. the rate of
increase, and the peak cusp value. Unfortunately, theoretical constraints cannot be
used without further approximations. At the cutoff wavenumber, A_.. an energy

C

conservation equation may be written:

AC
( 2V(ALADAZ JE(A,) = A J’ Idp dq Spk.p.q) + P(A) 10.1-12
o Ak

where Sg(k,p,q) contains triple correlations of u(k), u(p), and u(q) subject to the

constraint that k., p, and q form a triangle. Also, |kc| = A. and P(A)) is the

external power input into mode A

Inserting the inertial range forms for the energy spectrum and the eddy viscosity.
and setting P(A.) = O in the inertial range, the following relation results:
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AC

2C W) & = 1]’ J'dp dq Se(k.p.q) 10.1-13
‘ o Ak

However, the right hand side of equation 10.1-13 is unknown and must be
approximated in terrns of the A expansion and stirring forces. Such approximations
compromise the potential for validation of the eddy viscosity result.

At the cutoff, (/! = 1), the eddy turnover time should equal the “eddy-viscous’
time. Equation 10.1-11 leads to:

D

n

v(l) = 0.494 10.1-14

It is noted that the requirement of equation 10.1-14 does not confirm the
Kraichnan cusp value of about 1.52, but instead it agrees with the result of YO.
whose constant eddy viscosity equals 0.49 g3 A_~3.

10.1.4 The limit v(/—0)

[t is the present author’s opinion that the derivations presented in chapter 9 are
inapplicable in the limit of / —— 0. As already discussed in section 9.2. the
volumes of regions B and C do not go to zero with k. Instead. the above derivation is
limited to a range Al < [ < l. For the range 0 < [ < Al, the dominant contribution
will be from region A instead of B and C and a modified version of the YO calculation
will be applicable. It is not clear what value should be assigned to Al
Unfortunately, it appears to be impossible to obtain a transition formula from the
"vanishing k’ to the ’finite k’ derivations since the sequence of the limits (k — O
limit first for the former and AA — 0 limit first for the Ilatter) is not
interchangeable [9].
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Smith and Reynolds [5] have pointed out that YO use their value of v(0.A) in place
of V(A,A) at each stage of the elimination process, so that the differential equation

introduced in chapter 4 as 4.8-5:

dvQA) _ 4 A2W
d? ¢ V(0,A)A(HE

should instead be written as:

dv(O.A) _ 2W
T T WALA)ADE

Since A = Aoe'f,

dv(0,A) _ av(0.A) dA _ _ av(0.A)
dir— - T8aX dr T 3R

and using:
aV(K.A) _ A g (- 1 v({) - lélz V() )

3A

One has to first order in € expansion:

S R A (3 ) + 1 VD) ) =

which simplifies to:

P (G0 G D) =y =

The solution is;
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Cme o) V0) = 0.119 10.1-17
V(12 V(1)

w0 = 34

The above equation provides a relation between V(0) and V(1) based on the YO
derivation, and thus the spherical iteration shell used therein. From the three
derivations in chapter 9, the B+C region also has a spherical shell. However.
relation 10.1-17 will be tested on all three values of v(l). It is noted that the YO
value (0.49) is a ’break-even’ point where V(0) = V(l). For v(1) > 0.49. v(0) < 049
and vice-versa.

In comparison, Kraichnan obtained v(0) = 0.29, and V(1) = 1.52, [13]. leading to
v(0) = 0.67/v(1)2, far off from 10.1-17, suggesting a fundamentaly different theory.

10.1.5 Comparison with literature

The spectral eddy viscosity results obtained in this study will be compared to two
published forms, that due to Kraichnan [23] (the first one to propose the cusp -
plateau behaviour) and that due to the cumulative work of Chollet, Metais. and
Lesieur (referred herein as CML) who proposed the following analytical form for the
eddy viscosity:

(4 (S

E A 172 3.7
v(k,A) = 0441C3? ﬁ(T) (1 +v: [7%] ) 10.1-18

Subject to the constraint 10.1-2, and using the YO value of C, = [.6]. equation
10.1-13 may be solved to yield v = 1.93. The resulting equation for v(/) is:

Wy =38 (1 + 193 27) 10.1-19

Many other spectral eddy viscosity results exist [13] but with a wide discrepancy
among each other.
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10.2 Eddy viscosity solution from averaging B-C regions with fixed wavenumber
averaging

The equation for v{(/) is repeated here for convenience:

I
Vv = L Cme pun [ d& &% 1® + e, 9.2-27
0

8 V(1)

As a first step in the examination of the characteristics of 9.2-27, the plots of
Iz and I, and their sum, I are indicated in figure 10.1. An equation equivalent
to 9.2-27 but containing only I has been presented by Carati {11].

Referring to figure 10.1, the term [ is negative and relatively small in
magnitude over the range 0 < / < 0.519. It is this negative range of I, which causes
the negative regions in the numeri¢ plots of the eddy viscosity as generated by
Carati [11]. The negative region implies a backscatter of energy, that is energy flow
from small to large scales for motions contained in region C and with / in the above
range. I (/=1) is well-defined and equals 1.42.

Iig is positive for 0 < [ < 1, reaching a peak value I3(/=0.854) = 0.1255. then
decreasing to approximately 0.1133 for [ — 1. It is noted that [g(/=1) s
indeterminate but the limit is well defined.

Including the region B forces through Iy almost compensated the negative region
of I. The total, I(/) is negative for O < [/ < 0.062 but very near zero. with a
minimum value of the order of 1 x 106 at [/ = 0.048. For [/ = 0.062. I«/) is
positive and rises to a cusp, commencing at approximately / = 0.3. The peak value is
1.5332.
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Next. in anticipation of possible singularities, the behavior of [, and its
components as /| — O is investigated. A series expansions of Iy, I(. and [; about
the point / = 0 have been evaluated to O(#) with the aid of Mathematica as follows:

H=025F + 0311111 P -05 &

- 0.0261023 I5 + 0.0516332 5 + 0.0125787 I’ + 0.00537194 B + O(!%) 10.2-1
I,E(l) = - 0.25 2 - 0.355556 P + 1.16667 I
+ 0.862787 5 - 0.0326003 5 + 0.0504975 I’ - 0.0380794 B + O(P) 10.2-2

and the sum:

I =
- 0.0444444 P + 0.666667 I* + 0.836684 I5 +
+ 0.0190329 5 + 0.0630762 I7 - 0.0327075 B + O(%) 10.2-3

Clearly, If/=0) = 0. It is noted that the coefficient of I* in the expansion for
I{l) is zero, thus eliminating a possible singularity in the solution for v/
Inspection of equation 9.2-27 indicates that I({) is multiplied by {#%3. integrated
with respect to / and multiplied by /3. For the net effect near / = 0. this is
equivalent to a multiplication of I(/) by /3 yielding -0.0444444 as the lowest
order term. Thus, the singularity identified by Carati f[II] has been eliminated by
introducing region B forces.

The numerical evaluation of the integrand &3 I(&) in equation 9.2-27 yields:
I
Id&_, E93 [(E) = 0.516 10.2-4

0

Substituting this result into 9.2-27 and setting / = 1, one obtains the result:

Val) = (0516 £ )" = 0.468 10.2-5
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where Cmg = 1.59 has been used and the integration constant C; has been set to zero
in order to avoid singularity as !/ — 0. The result is close to the YO value of
0.49. The equation for V{/) may now be expressed as:

v = 139 3 10.2-6
v = ! 8(0468,ja§ I4€)

The numerically generated solution is plotted in figure 10.2. Note that the plot
scales are linear. The V{(J) increases monotonically with [ at a slightly higher than
linear rate. There is no noticeable plateau-cusp behavior. The V{(/) becomes negative
at | = 0.1. Extrapolating the plot, the y-intercept should be approximately -0.04.
This value does not conform to 10.1-17. For very small values of [, the plot of v/
appears to have a negative singularity. This anomaly is due to the fact that the
derivation of V{(/) is based on the geometry of two thin, spherical shells with well
defined intersection points. As [ becomes small, the intersection points are no-
longer well defined. Therefore, in the series expansion of I, as generated by
Marhematica, in addition to the terms listed in equation 10.2-3, there are spurious
terms such as O(10'9)/2 etc. These terms affect the solution for small values of [
This problem affects all of the eddy viscosity models derived in this section.
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10.2.1 Validation tests of v{(/)

Numerical integration of the dissipation integral gives:
1
_[dl V) 3 = 0.158 10.2-7
0

which is approximately half of the expected value of 0.31. Therefore, not enough
damping is provided by V{/). As this test is a necessary condition for a realistic
eddy viscosity, it is concluded that V,(I) is unsuitable as a subgrid model for

turbulence.
10.3 Eddy viscosity solution from averaging fixed plus low wavenumbers

Now one considers the equation for Vg(/) as derived in section 9.3, repeated here

for convenience:

I
Vo) = L Em g [ &g & 1,@® + 1, 9.3-8

T By

fl 0
where
[
_ 1 1 !
LD = jlcd§(§m+l)cl,,3x
1-
1 + 2 -021Y2 E 5
({2 5E P ag-ave-0 )
L

l l
Pl @y

(1 (L5 (- B2 L)
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The above relation may be written as [o(/) = Ig() + Ig(), where [gz(/) is the
same as in section 10.3. It is noted that the integrand of Igz(/) is singular at T =
0, (corresponding to [/ = 1, the lower integration limit).

A series expansion of [jz(/) and the total, I(/), about [ = O gives:

Lg()) = -0.25P2 + 0.1333338B + 0.62963/* + 0.975661/° +
1.26938/6 + 1.534860 + 1.78223F + O(l°) 10.3-1

and

[o(l) = 0.444443 + 0.12963/ + 0.949559/5 + 1.32101/ +
1.547430 + 1.7876F + O(P) 10.3-2

Inspection of 10.3-1 indicates that there will not be a singularity at / —s 0 and
also that v4(0) is expected to be positive since:

Va0) ~ 0444444 S22 5 o 10.3-3
8 V(1)2

The significance of this result is the indication that eddy viscosity models
averaging over triads with only one subgrid wavenumber are not expected to exhibit
backscatter at low wavenumbers.

However, it is expected that a singularity appears at / — 1. A series expansion
of vo(l) about [ = 1 gives:

S -0.654545 | 1.33333 _ -0.654545 5.14286 N
l —_ - - 14.0216 -1 10.3-4
Vall) (I-1)53 ton ot (-3 (-3 216 + Od-1) ?
The V4()) function diverges as &(16_51%2 as | — 1. Therefore it is expected

that:
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1

Idé 83 [qE) = oo 10.3-5

0

Numerical calculations confirm that the above integral diverges. The general
remedy for this situation is to provide a low integral limit cutoff as a function of

[ to prevent { from reaching 0. The selection and justification of such a cutoff
limit is crucial to the resulting form of Vgu(/).
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10.3.1 Eddy viscosity solution from averaging fixed plus low wavenumber limited to k.

The cutoff may be justified by restricting the variable averaging of f(]k-jl.t) to
lk-jl > k. Allowing the averaging to extend to [k-jl < k will require that u(k.t) now
participate in the averaging and yield a zero contribution. Therefore, the definition
of Iq(!) is now modified as follows:

r
1

f ig(1Ly) d{ for 0 < [ < 0.5

, -1

W = | 10.3-6
|

J ig(1LY) df for 0.5 <[ < 1

/

\

where i, is the combined integrand from equation 9.3-9.

Equation 10.3-1 indicates that { should not be smaller than [ for partial
averaging. For { = [, both / and { participate in the averaging, yielding a zero
result for the remaining portion of the integration contour (between / and 1-/).

Note that both Igx() and Ig(/) are modified due to the above definition. even
though there is no potential singularity in Ig(/). However, the form of this
integral is Jfu> G(lk-j])M<(k-j)f u<u>® and the term G(|k-j|) is a random variable due
to v(lk-jl,lk-jl) with a time scale proportional to lk-jl-Z’3 and implying an average

over wavenumbers less than k.

Ig(1). Lg()., and the sum l;([) with the limits given by 10.3-6. were evaluated
analytically using Mathematica and plotted in figure 103. It is noted that Iz is
negative over 0 < [/ < 0.38 approximately. The plot of I3(/) increases to a peak at
about / = 0.62, then decreases again.

The numerical integration of Ig(/) as given by equation 10.3-6. may be used to
evaluate the peak
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1
Jdﬁ £93 [(E) = 0.405 10.3-7

0

As before, one can evaluate Vq(1):
V(1) = ( 0.405 Egé )3 = 0432 10.3-8

where the integration constant has been set to zero.

The eddy viscosity Vu(/) as given by equation 9.3-8 was evaluated numerically and
plotted in figure 10.4. Due to the peak of I (/). the plot of Vg(I) also has a peak
value of approximately 0.62 at / = 0.63 and then decreases to a value of about 0.44.
Ignoring the supurious downturn, Vq(! ~ 0) = 0.35. This value does not satisfy
equation 10.1-17.
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10.3.1.1 Validation tests of Vgy(/)

Numerical integration of the dissipation integral gives:
I
Idl VD I8 = 0373 10.3-9
0

which is somewhat larger than the expected value of 0.31. The result of 10.2-8
corresponds to a Kolmogorov constant of 1.34 which is outside the accepted range.

Therefore, too much damping is provided by vq(J).

Comparison of the plots for Vo(/) to these of Kraichnan and CML published
literature is clearly unsatisfactory for the expected shape of the plot. since a
plateau followed by a cusp is expected. It is concluded that the variable averaging
with a cutoff at lk-jl = k does not yield the correct eddy viscosity behavior.

10.3.2 Eddy viscosity solution from averaging regions B with fixed plus low
wavenumber averaging adjusted for dissipation

An alternative for specifying the cutoff on the minimum value of the averaged
wavenumber is a limit A; so that the partial averaging is allowed to extend to A} <
|k-jl < A, even if |k-j| < k. In that case, the RNG theory needs to be extended to
self-consistently provide the A value.

The limit A, could equal Ap, the peak of the energy spectrum. Theories that relate
Ay and V(/) have appeared before, [22]. As pointed out by Leslie, v(/) should be
determined locally, not globally in wavenumber space. To be self-similar. V(/) must
depend only on k and A. Therefore A_ must be a function of k and/or A. Unfortunately.
the current formulation of the RNG does not provide an explicit relation for A.
However, any proposed form of the lower limit should yield a dissipation integral
that complies with 10.1-3 and it will be selected on that basis in this work.
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Two simple and arbitrary forms of the low limit of the partial average are v/
(proportional to k) or y (proportional to A.) where Y maybe selected from 0 < v < 1.

a. Low limit proportional to k.

To satisfy the dissipation integral (10.1-3), the low limit proportional to k s
y{. Equation 10.3-6 is thus modified:

(|
j ig(LY) d for 0 < I < 1%?

, -
[ = ¢ 10.3-10

1

[ a2 ag for ]i—y <l<1
Y!

For v equal to approximately 0.6, the dissipation integral 10.1-2 yields 0.310 and
the C, = 1.61. The plot of vu(/) is presented in figure 10.5. The function rises to
a peak value of vq4(/I=0.85) = 0.59, then decreases in value to vy4(l1) = 055 It is
noted that the peak moves closer to [/ = 1, relatively to figure 10.4, and the plot
becomes closer to that of CML also presented in figure 10.5. It is noted that since
the CML plot satisfies 10.2, the higer cusp of the function due to Kraichnan appears
to be too dissipative for a C, = 1.61.
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b. Low limit proportional to A..

To satisfy the dissipation integral (10.1-3), the low limit proportional to A_ is
v. Equation 10.3-6 is thus modified:

r
1

Iiﬂ(l,C)dC for 0 <l<1-7Y

1-l
() = 1 10.3-10
1

jiﬂ(l,;) d¢ for 1 -y<I<1
Y

.

For the constant limit Yy equal to approximately 0.55. the dissipation integral
10.1-2 yields 0.310 and the C, = 1.61. The plot of Vvu(/) is presented in figure
10.6. The function rises to a peak value of V(/=0.89) = 0.51. then decreases in value
to V(1) = 0.50.
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10.4 Eddy viscosity solution from averaging over regions C

Again, the expression for I; (/) is reiterated below for convenience.

1+

I = {Cdcm{ Cz-{gz—_;’-—p}z }x
{${2§-1-3+§2}+{2n-§%—‘}} 9.4-2

Expanding I5(/) in powers of [ about [ = 0, gives:

[(D = 0.8444445 + 178704 - 0.17425l5 + 0.963649/6
- 0.91049377 + 0.893298B + O(l%) 10.4-1

The above relation may be written as I;() = L(D) + L(/), where [ (/) is the
same as in section 10.3. The three components are plotted in figure 10.7. Integrating
the eddy viscosity integral:

1
f dE E83 [, (E) = 1.472 10.4-2
0

This yields a value of vg(l) = 0.664. The plot of Vg (/) (figure 10.8) appears
nearly a straight line. If one disregards the apparently spurious downturn near the v
axis, the asymptotic y intercept would occur near 0.28. This value is close to the
value of 0.27, predicted by equation 10.1-17.

10.4.1 Validation tests of v.(/)

Numerical integration of the dissipation integral gives:

1
Idl Vo) I3 = 0370 10.4-3
(V]
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which is somewhat larger than the expected value of 0.31. The result of 10.3-9
corresponds to a Kolmogorov constant of 1.35 which is outside the accepted range.
Therefore, too much damping is provided by V(). The shape of the plot does not
exhibit the plateau-cusp behavior.
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10.5 Summary and discussion

Plots of the eddy viscosity integrands I, Iic. Iy, and [z were presented in
this chapter (figures 10.1, 10.3, and 10.8). The integrands [, (figures 10.1. [0.7)
and Iz (figure 10.3) are negative over a range of [ values, 0 < / < 0.52 for [ and
0 </ < 038 for Ig. The negative values are significant because an eddy viscosity
formed from these terms alone (as is the case for ZVH and others [19]) will also be
negative over the low range of /. This results in the phenomenon of backscatter
reported by some researchers in this field ,[19], that is a net energy flux from
small to large scales across the cutoff A.. Such backscatter had been reported at low
[ values for the non-local interactions. These findings contradict the theory of YO
although the latter may be viewed as a type of average eddy viscosity [7].

None of the eddy viscosity models analyzed in this chapter have been in
qualitative agreement with the results due to Kraichnan [23] or CML [I14]. The eddy
viscosity derived by partial averaging of low wavenumbers limited to 0.6k appears the
closest to the model of CML. This model has been adjusted to satisfy the dissipation

integral.

The eddy viscosity results due to Kraichnan are treated as a kind of a benchmark
in the literature quoted herein. Detailed examination of Kraichnans work is beyond
the scope of this study. however several observations are germane to the current
effort. The eddy viscosity relation due to Kraichnan using the Renormalized
Perturbation Theory (RPT) (McComb [13]) is given below:

V(k/A,) = %‘%’-gi k-2 I d3j L(kj) Ik-jl-n/s

j = A,

k13 - 1

k23 + j23 + |kij|2? 10.5-1

where B is a constant related to Cmg, and L(kJj) is a function of k. j. and the
cosine of the angle between k and j, similar to A(kg). It is noted that the term
lk-jl-“’3 will be less than A for values of k near A. Since lk-jl-”’-‘ is the
statistical average energy density, RPT utilizes averaging of wavenumbers less than A
like the variable averaging version of RNG. Also |k-j| = 0 when k = j = Ac. causing a
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possible singularity in 10.3-2, similarly to the variable averaging RNG. However. it
may be shown ([13]) that k'3 - j113 goes to zero fast enough for the integral to
converge as ]k-jl — 0. Unfortunately, the same is not true for the present RNG
formulation. Indeed, Kraichnan identified k-3 as an output term and j!'V* as an
input term in his theory [23]. His physical explanation for the occurence of the cusp
was that the high wavenumbers k and j are subject to coherent straining excitation by
the random shear associated with |k-j|. Kraichnan labelled this a diffusion process
in wavenumber. The following is a quotation from [23]. Note that the notation in the
below quotation has been altered to match that used herein.

"...in which there is a two-way exchange, by stretching and unstretching. across the
boundary A.. The input term ... then describes the "unstretching” whereby excitation
at wavenumbers slightly greater than A_ is transformed to excitation at k. and ﬁhe
output term describes the opposite process. The two terms nearly cancel for low k-j'
triads and the slight excess of output over input gives the net contribution ...
which is responsible for the rise of v(k,A.) to a finite cusp at k = A’

Thus, the eddy viscosity cusp appears to be caused by correlations of small
wavenumbers. This is also the case for the RNG models derived in this study. However.
it is difficult to reconcile the above theory with the theory of vortex stretching by
similar size eddies. A key component of the latter is that that the most effective
stretching of a smaller vorter (higher wavenumber) by a larger vortex (lower
wavenumber) occurs when the strain rate ratio of the larger to the smaller is about
one half, [21]. According to Kraichnan, this ratio approaches zero.

The spatial behavior of motions associated with a very low wavenumber (as in fk-jl
— 0) features a very large kinetic energy and a negligible spatial variation.
Negligible spatial variation should mean negligible stretching. The effect is similar
to the background advecting velocity discussed in section 8.5. The present author
finds it difficult to wunderstand why the local transfer of energy is apparcntly
driven by very non-local wavenumbers. Further study is required to resolve this

issue.

The DNS data available so far concerns turbulent flows at relatively low Reynolds
numbers and so cannot be used to provide a definite verification of the required eddy
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viscosity behavior. The presence of the cusp has been demonstrated by Meétais and
Lesieur [14] in a spectral LES of decaying turbulent flow. Given the real resolution
cutoff wavenumber, A_ these researchers considered an artificial cutoff at AJ2. It
was demonstrated that an eddy viscosity defined with respect 10 AJ2 must have a cusp
in order to simulate the increased energy transfer from wavenumbers just below A /2
to the region between AJ2 and A_.. However, the peak cusp value was lower than
predicted by the Eddy Damped Quasi Normal Markovian method (E.D.Q.N.M.) or the model
due to Kraichnan. Also, a plateau value was found that was close to the 0.267
theoretical value from (E.D.Q.N.M.).

The above spectral eddy viscosity models are intended for high Reynolds number
flows, with an inertial range in the energy spectrum. Examples of the experimental
energy spectra of such flows are given by McComb [13]. Further., the LES cutoff
wavenumber should be inside the inertial range. The correct shape of the eddy
viscosity near the cutoff wavenumber is important to correctly simulate the
statistics of the resolved scales near the cutoff. However, an eddy viscosity which
satisfies the energy dissipation requirement (equation 10.1-2) will correctly
represent the statistics of the large eddies, far from the cutoff. Therefore. the
problem is usually not critical from an engineering standpoint.
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11. Conclusions and recommendations for future work

This chapter contains a summary and evaluation of the achievement of objectives
set out in chapters 1 and 7. Aside from providing a review of the pertinent body of
literature, these objectives were (i) to examine if the RNG analytical tools are
suitable to represent local interactions, and (ii) to attempt to obtain an eddy
viscosity function v(k,A), hopefully with a cusp behavior as reported in literature
dealing with other theories. The results of the current work produced some insights
into the first problem but no conclusive answers. The second aim also met with
qualified success. Several proposed forms of eddy viscosity have been presented in
chapter 10 but no agreement was reached with other published data. Contributions of
the current study are summarized in section 1l.1 while some unresolved issues are
outlined in section 11.2. Plans and recommendations for future work are discussed in

section 11.3.
11.1 What has been achieved?

The single most important contribution of this study is the alteration of the
partial averaging of the product u<u>®. To the present author’s knowledge. all the
published literature uses the property:

< ui(k-jHu@g) > =0 P11
so that the contributions to the eddy viscosity arise only from the term:
< uwl(k-ju>0(j) >> = AkAvu<(k) 11.1-2
In place of 11.1-1, the current work proposes the equation:
< us(k-Hu>0(G) > = 0 + O(n) ti1-3
where the O(A) term is an additional contribution to Av, analogous to 11.1-2.

The consequence of equation 11.1-3 is to cancel a negative term proportional to k
which occurs in the function derived solely from 11.1-2, as indicated by Carati. This
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development indicates that the RNG method may be able to capture local and semi-local

interactions in wavenumber space.

For the purpose of partial averaging, the convolution product u<(K-ju>(j).
contains a vertex wavenumber k-j and an averaged wavenumber j. The vertex wavenumber
is named after the vertex term M(k-j) which appears when the momentum equation is
substituted for u<(k-j). The random variable associated with this vertex is the eddy
viscosity (| k-j | ,A.). Unfortunately, in this form, the differential-integral
equation for eddy viscosity becomes non-linear and difficult to solve. In the current
work, this term has been replaced with V([k-jl.lk-jl). Further study is required as
to the justification of this substitution. The effect is to restore linearity and
symmetry to the eddy viscosity equation. This symmetry causes the first odd power of
k to vanish so that one is able to extract the k2 diffusion factor.

In the ‘fixed wavenumber’ averaging method, the stirring forces at A are averaged
at each iteration. In the B region one allows the vertex Green's function wavenumber
Ik-jf to be less than A while averaging over variables at j. This poses the following
dilemma; since A is greater than k, the forces at A in region B will have an average
effect on u(k), however the intervening Green’s function (defined as an average) has

fluctuations on a time scale smaller than k.

The second important modification of the partial averaging operation is the
proposal to average the effects of all interactions where at least one wavenumber is
greater than Ac. This implies that for the product u<(k-j)u>(j), the vertex
wavenumber and the averaged wavenumber are now interchangeable and both combinations
contribute to the eddy viscosity. The consequence of this modification is allowing
the averaged wavenumber magnitude A’ (equal to [k-jl or j) to be smaller than A..
Several options are available to specify the extended range of averaging. If k < A" <
Ac, the physical justification is that the averaged motions are still smaller (albeit
resolved) scales than the wavenumber k under consideration. The resulting eddy
viscosity is positive but reaches a maximum for k < Ac and so it is not in
qualitative agreement with the expected shape. If 0 < A’ < Ac, the eddy viscosity
increases without bound as A° —— 0. The lower averaging limit as a function of k or
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Ac may be specified so the resulting eddy viscosity satisfies an additional relation
or a physical argument. The inertial range energy balance has been used for this

purpose.

The appeal of the ’low variable averaging’ method is that it does not introduce
triple products of the resolved velocity into the momentum equation. In that sense it
may be considered a more genuine Renormalization Group method, since the form of the
Navier-Stokes equations remains unaltered at each step. The difficulties of numerical
simulation of an equation containing triple products have been acknowledged in the
literature [9] and in the current study (end of section 9.2).

A further contribution of the current work is a generalized formulation of the
partial averaging process and its relation to the A series. The formulation has some
elements in common with that due to McComb and Watt [33], [13]. However. these
authors restrict their version of partial averaging to the narrow wavenumber
bandwidth only. An attempt has been made to relate this operation to the physically
realizable procedure of temporal filtering. The consequence of this work is to
improve the theoretical framework of partial averaging and RNG for future research.

The factors respensible for negative components of the ’‘eddy viscosity™ have been
identified (see figures 10.1 and 10.3) at least for methods that use a A? closure.
These negative ’backscatter terms’ cause an inverse energy cascade observed by some
researchers of LES with eddy viscosity [13]. However, these terms are nearly or
compietely cancelled by the equal and opposite terms generated by the moditted
partial averaging procedure introduced in this work. A widely accepted physical
interpretation is that energy flows both ways across the subgrid cutoff [I9] but the
net balance is the energy cascade equal to € in the inertial range. Indeed. direct
numerical simulation of low Reynolds number turbulence, has indicated that the
inverse cascade of energy may be comparable to or larger than the net transfer rate
[46]. Therefore, it is apparently an open question whether a small energy flux may
reverse direction at very non-local (low k/A) interactions.
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The temporal frequency expansion parameter, 8 has been shown to depend on the

wavenumber expansion ratio %, although these two variables are generally treated
independently in the literature. The issue is one of consistent accuracy for the RNG

expansion which generally retains (8)0 and (%)1, [7]. Taking % < 1, the present study
has shown that 8— will generally vary between (71(()5’3 < 8 < (%)?-’3 when both k and A
are in the inertial range (see section 8.5 for further details). In fact. 8 may be

considered to approach zero independently of (%) only if rather unlikely conditions

are met. First, the kinetic energy contained in the inertial range of the flow must
be much larger than the energy contained in the production range or the background

advecting velocity that usually accompanies real turbulence. Otherwise 8 oc -k using

Taylor’s Frozen Turbulence hypothesis [12]. Second. the values of % considered must

be sufficiently low. Only under these circumstances is the RNG perturbation expansion
as carried out by YO [3] and Smith and Woodruff [7] consistent. This conclusion

suggests that the RNG is suitable only for % << 1 and only for a special class of

turbulent flows without background advection. This point contradicts the qualified

success in deriving eddy viscosity for local interactions.

It has been pointed out that the physical explanation of the cusp in the eddy
viscosity plot as offered by Kraichnan [23] contradicts the generally accepted
mechanism of the local energy transfer in wavenumber space. Kraichnan attributes the
cusp to the balance between stretching and unstretching of the high wavenumbers near
the cutoff by very low wavenumbers. However, the physical characteristics associated
with low wavenumbers are a high kinetic energy and very low spatial gradients. Small
vortexes associated with high wavenumbers are likely to be advected, not stretched by
the former. Indeed, the usual explanation of the local energy transfer is by a
mechanism of stretching the smaller vortex by a slightly larger vortex. The conflict
between these two theories has not been resolved in the current study.

199



The above is a summary of the contributions of the current work to the RNG
treatment of Navier-Stokes equations driven by a stirring force selected to reproduce
the statistics of inertial range turbulence. Some important problems in the RNG
method which had been attempted without success during this investigation will be

discussed next.
11.2 What has not been achieved?

Considerable effort went into investigating the convergence properties of the A
expansion series about a stirring force. Many of the terms of O(A") may be eliminated
due to repeated convolution integrals over thin shells, but some O(A") terms will
contain only convolutions over the k< domain and cannot be assumed to be small. This
problem is aggravated for finite wavenumbers by using the modified partial averaging
equation 11.1-3 instead of 11.1-1.

As discussed in section 8.4, an alternative to the A expansion series is to simply
substitute the momentum equation for u> wherever this variable appears in the
momentum equation for u<. The problem resulting from this course of action is that
the order of the substitution and partial averaging is now not interchangeable.
Partial averaging must be done first if the results are to match those obtained from

the A series expansion about u>0.

Both the series expansion and the substitution method increase the order of the
non-linearity in the momentum equation and so spurious solutions are expected. For
the YO case, where tihe triple velocity products have a negligible domain of
integration, the partial averaging eliminates higher order non-linearities at each
step. For the finite k values considered in the current study. the same is true for
the variable wavenumber averaging which does not generate triple products. For the
constant wavenumber averaging, the triple products remain and so potentially does a
spurious solution of the flow field. Further analysis of this problem is beyvond the
scope of this work.
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The subject of background advection velocity raised in section 11.1 brings to mind
the lack of Galilean invariance of the triple velocity products as discussed in
section 6.2 [30]. The significance of this unphysical behavior has not been explored.

Recovery of the YO limit or the EDQNM plateau value of V( /— 0) from the eddy
viscosity formulation has not succeeded. In particular, the YO method attempts to
capture a type of turbulent interaction that may be described as very non-local so

that Ek( ~ 0. A paradox of this version of RNG is that it successfully models distant

interactions on the assumption that the interactions are for the most part local in
wavenumber space so that the partial averaging is a good approximation even for
nearby scales. Indeed, for 5( ~ 0, the interactions between k-j and j are confined to

the shell bandwidth AA. In contrast, this study deals with finite & values. where the
range of involved interaictions is spread out over the range A-k to A+k. It is now
attempted to model local interactions near % — 1 by averaging over interaction

triads which span from O to 2A. It is the YO paradox in reverse.

Probably the most important shortcoming of this study is the lack of an answer to
the fundamental question: is the Renormalization Group applicable to the Navier-
Stokes equations? At each stage, the removed shell is replaced by statistically
averaged corrections to the coefficients. If the solution for the remaining range of
variables is the same as before the shell removal, then the equation is exactly
renormalizable. However, it is certain that the partial averaging produces errors at
the interface between the resolved and unresoived wavenumbers at each averaged shell.
Do the errors produced at each stage accumulate or cancel out as the procedure
progresses? What are the effects of these errors on resolved scales?
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11.3 Recommendations for future work

Further work on the RNG treatment of Navier-Stokes turbulence could consist of
both theoretical and computational parts. Following the experiences of the present
study, the recommendations for future work in the theoretical branch of this research
must be made with caution since they may prove impossible to carry out
Unfortunately, due to several difficult-to-justify approximations which must be made
in the initial stages of the analysis, further series of self-consistent. analytical

steps may yield meaningless results.

It is the recommendation of the present author that further theoretical
investigation of the problems outlined in this study be scaled down to simpler models
such as the Burger's equation [42] or the problem of scalar transport in a known
velocity field. For example, one simplified version of RNG is discussed by Smith and
Woodruff [7]. It is also of interest to investigate the relationship between the RNG
and multiple scale analysis as discussed by Frisch [16] and the EDQNM theory [13].

The validity of the partial averaging approximation is the size of the fluctuating
residual and, more importantly, the accumulation or cancelation of the residuals from
subsequent shells. Such a study, tantamount to an analysis of induced forces and
related to the work of Carati [40], would improve our understanding of the

limitations of the partial averaging procedure.

A study of the behavior of u(k.w) in isotropic, high Reynolds number turbulence
should be made, relying on experimental data. In particular, it is important to
verify the hypothesis of section 9.1 that u(j,®;) > u(k.w,) as it may justify the IS

series expansion.
On the computational side, the LES simulation of flow fields using the eddy

viscosity functions developed in this study could be attempted without including the
triple velocity products.
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As it stands, the RNG treatment of Navier-Stokes turbulence appears insufficient
to make further progress. On the one hand, very limited representation of the
turbulence is captured by the second statistical moment of the stirring force. For
example, there is no information on intermittency or coherent structures. On the
other hand, even for this simple model, the mathematical analysis is quite involved.
However, the RNG contains many useful analytical tools such as spectral splitting.
partial averaging, the gradual increments of the eddy viscosity, the induced forces
and so on. There is potential for parts of the RNG method to be combined with other
analytical tools to nmake further progress in the analysis of Navier-Stokes

turbulence.
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