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Abstract

The growth rate of low-frequency Farlev-Buneman waves is so small that the insta-
bility switches from absolute to convective. The inhomogeneity of the medium then

has to be taken into account for a proper description of the wave evolution.

In Fourier analysis this means that the eigenfrequency is a function of position
which requires a mode-coupling formalism. Alternatively. one can shy awayv from
Fourier analysis and use a WKB type description by considering the instantaneous
phase and amplitude of a particular wave train which is then allowed to grow and
propagate.  Oune result from this is that the parallel wavenumber is a predictable

function of time and space and not a free parameter.

[ have simulated the wave evolution by using a mumericallv stable rav-tracing
algorithm. This has allowed me to determine the spectrum of a particular wave train
without having to resort to Fourier analysis at all.

Reywords:  Farley-Buneman waves. fonospheric [rreqularitics. Nonlocal convective

plusma mnstabilities
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Chapter 1

INTRODUCTION

1.1 The Ionosphere

The ionosphere for the Earth begins at about 70 km altitude. [ts characteristic is
being ionized. and it behaves like a collisional plasma. with the importance of collisions
depending on the altitude. through the exponential decay in nentrai density. [t has

three distinetive regions:

D-region. from 70 90 km. This is the region where the plasma density becomes
measirable. However. the neutral density is still very large. so that electrons
and ions have a large collision frequency. Although there is a plasma density.
these collisions with the neutrals make ions and electrons behave like the nentral

atmosphere.

E-region. from 90 150 km. Here. the neutral density becomes so small that the
electron-neutral collision frequency is much smaller than the electron’s Larmor
frequency 2, = eB m,. so that the electrons can follow the E x B drift. The

ions on the other hand follow the neutral gas because of their smaller Larmor



frequency for altitudes up to about 120 km. Above 120 km the collision fre-
quencies become small enough even for the ions. and thev start E x B drifting

LOO.

F-region. from 130 300 km. In this region. the neutral densitv ix verv small. and

both electrons and ions are mostly free of collisions.

The irregularities this thesis deals with. Farlev-Buneman waves. are excited bv a
Hall ciurent in the E-region. therefore it is worthwhile to have a closer look at this

region.

1.2 The E Region

in this region. electrons are E x B-drifting and tons follow the nenrral wind. This
creates a Hall current perpendicular to B that enables Farlev-Buneman instabilities

to grow. so it is useful to look at it more thoroughly.

As mentioned in section .1, the E-region extends from 90 km to 150 km. At
these altitudes. the neutral density has fallen sufficiently to allow electrons to move
with very few collisions compared to their gvro-frequency. The temperature increases
steadily from about 100 K at the bottom of the E-region np to a maximum value
between 600 K and 1000 K at the top. depending on solar activity. This increase in
remperature is due to the absorption of solar UV radiation. which also contributes to

the increase in plasma density.

This plasina density is tvpically of the order of 10! m ™" which is a relatively small
value compared to the neutral density of about 10 m™*. However. the important
conditions for plasma behavior are still met. as the Debve length is to the order of

0.1 cm. and consequently the number of particles in a Debve sphere N is about 10%.

[ V]



From the large Np we can see that it really is a plasma. however onlyv the electrons
have a small enough collision frequency v, and can E x B drift. Thus. the electrons are
“magnetized” because v, is much less than their cvclotron frequency €2,. whereas the
ions have 11, > €, for most of the E-region. so that thev mostly follow the neutral gas.
i.e. thev are collisional. [t is only above about 120 kin that the collision frequency

1, s low enough and the ions start E x B drifting too.

1.3 Electron and Ion motion

[n the plane perpendicular to B. it is only the balance between collisions and electro-
magnetic forces rhat matters. all other forces are negligible. Therefore. the steady

state ion and electrou equations of motion are in this case

0=nE-v, xB) = puv,iv, —v, (1.3.1

0= —ne(E-v. xB)—p,(v. —v,i i1.3.2)

From this we get for the ions

um( V.| E Vv, X B (1.3.3)
—\V, =V, == —=
Q, B B
ated
Uin E() Vin X B .
Cvm =5 —F (1.3.4)
where
-3
0, == (1.3.5
m,
Eq) =E*Vq x B (1.3.6;
Vin =V, =V, (L.JT)



To set an expression for v, x B. we take the cross product of equation (1.3.4) with

B and get:

vmxB QE;xB Q

-~

= y —vV 11.3.8)
B Ui B2 Vin "
which we can put into (1.3.4) to obtain

v, Uin Eq

_ EQXB 139
()—jvm-— ) T — Vi (1.3.9}

b -]

Ol

% E() l E() X B

vV, =V, ~ —— — = 11.3.10)
o - B o B
0 0
and the corresponding equation for the electrons
%:‘ E() 1 E” x B .
V. =V, — — 'E - 7 ne (L3
l 7;-} 1 - 3N )

However. in the E-region. we have v €2, very small for the electrons. and Q, v,

very small for the jons. so that the velocities can be approximeted as

E,xB ExB

vV, = Vv, B B (1.3.12)
O, E,

RV, m —— 1.3.1;

\% v " B (1.3.13)

Theretore. electrons E x B drift and ions mostly follow the nentrals. with a small
component in the Ey direction. This difference in electron and ion velocity has an
important consequence. which is a Hall current in the E x B direction. This current
ix i source of free energy. and can then be used to excite waves in urder to dissipate

this energy. These waves are the Farlev-Buneman instabilities.



1.4 Farley-Buneman Waves

The following linear model of traditional. “local” Farlev-Buneman waves see Furley.
1963: Buneman. 1963: was developed by J.-P. St-Maurice. [ts originality ties in the
fact that it can explain the waves without having to dv a Fourier analysis. which

makes it casier for some to understand the physies behind the waves.

We will assume that the electric field Ey is perpendicnlar to B. This is usually
the case in the E-region. because parallel electric fields can casiiv be shorted out by
the electrons. We then choose the Eq x B direction to be the s direction. : is along

thie magnetic field lines. which is true at high latitudes.

1.5 Motion of the waves

First. we want to concentrate on the motion of the waves. and derive the velocity.

Then. we can later add terms that determine growth or decay of the waves.

The model behind this derivation is actually quite simple.  Suppose there is a
chimp in plasma density. a local enhancement with an arbitrary shape on ny = fir:

as dlustrated in Hgure 1.1

We will show that it propagates in the direction of the current. Actuallv. this
derivation is in terms of the By x B drift rather than the current. but both are

equivadent. and the derivation can easily be generalized to other enrrents.

The electrons in the clump are E x B drifting. while the ions stav behind because
thev are collisional. This creates an additional electric tield 7E. which accelerates
the jons. and decelerates the electrons in the Eq x B direction. thus tryving to re-

store the equilibrium. We can determine the resulting perturbad ivn veloeity from
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Figure 1.1: A clump in plasma density

equation «1.3.101 to be

#F Ey-JE | IE,-4EI xB

vV, =V, =V, — . - - LA b
- B -5 F

From this we can see that the velocity perturbation for electrons and ions is given by

) o 1 JExB

iv, = —— - - . r1.5.2)
- [_;.:_ By %5. B>
. ?T‘ IE l 'E x B -
W, = = = 11.35.3)
| -~ 52 B 1~-% B

Considering only the E x B direction. which we define to be the r axis. we find that

, O NE 151
i = —— (1.0,
v, B
. 1,  E
S o= - 11.5.5)
OB

The equation of continuity for electrons and ions in this direction is then given by

an. J 156
—_— = ——int.) 1.2.0)
ot ar 4

an, '

—_ = ——{nr) (1.5.7)
Ot or



Because a plasma has to remain electrically neutral (n, = n, = n). we can see that

dn,v;) =d(n.e) (1.5.8)

nodr, — ngdr, — v.dn =0 (1.5.9)

The missing term v,dn is negligible. because ions are collisional and have a negligible
velocity relative to the neutrals. Combining this with equations (1.5.4) and (1.3.3).

we get

an ; ; ETQ, 1 L5 10
r,— =0, -, = —— | — = — (LD )
”“ B 1’ Q.
an S? . I’E -
— = o= (L5115
g 7 " Ey
Y'\'kl(\l'(l
v, U,
= — < — .2
7} aa 1 (1O 12

Takine 11.5.4) into (1.3.7). and replacing o E with the value from (1.3, 111, we get

Jon D, O 0E 19, L an\ E, 1513
—_— = —— | ng—— = —Ily— - apen t1.a.13)
Jt or \° v, B Yor \1 - ny /) B
\With the electron-ion drift ¢y = Ey. B. we can write this as
J an rp  J [dn )
—_— — | — (1.3.14)
Of ny 1 -=W¥ar \ ng

Or. 11 A more inoitive way

AN L L.3.15
L()f dr ng - R

Thix is the equation for a wave traveling with the velocity

_ U'p _EQB
T1-0 -

1



and the solution is simply the traveling clump:
an

= f(r =17t (1.5.17)
no

[t is here that the advantage of not using Fourier transforins becomes obvious.
because equation (1.5.17) immediately tells us that the clump is moving. that it
retains its initial shape. and what the velocity is. And even the dispersion relation
can casily be read from equation (1.3.13). By writing d Ot = -/ and d dr = ik,

W get
+=VUhk=0 i1 18

which shows that this is indeed a traveling. non-dispersive wave.

1.6 Growth and Decay

The effects which cause growth and decayv of the wave are ion inertin and a pressure
aradient. respectively. [on inertia makes the slow ions pile up at the end of the clamp
where the lon density is already enhanced. so that the additional clectrie teld oE
becottes vven larger. thus increasing the wave amplitude. This is somewhat ironic.
becanse the ions are trving to catch up with the electrons in order to redice the
clectrie field and restore equilibrium. but thev are too slow and pile wp in a region
with an increased lon densitv. Therefore the ions increase the electric field instead of
Jdecreasing it. and through this thev make the wave unstable and arow.

The decay on the other hand comes from the pressure gradient which the local
increase in density creates. and diffusion because of this pressure eradient makes the
wave decay.

For a4 wave propagating in the plane perpendicular to B. diffusion will act in the

+ and the g directions. therefore it is convenient to write the ion equation of motion

[0 4]



using vectors:

ov e0E A7)
AL N £ (1.6.1)
ot m, nym,
Remembering that Q, =eB.-m, and p = nK'T,. we get
f')v, AE ,on
—_— - =0, ==y, - V— 11.6.2)
at B Y g

where f = AT, m, is the “lon-acoustic™ speed of the ions. Takine the divergence

of 11.6.2). we get

I- Jov !
| ot

- U,:iV,] =0V — -V — i1 1.6.3)

and. with the ion equation of continuity.

J° on A dn IE Y .
_‘—;——ll,‘—-—zfz,v-——-(‘I'V'—— il.6.4)
()T' ny l)f Ny B Ny

We can tind an expression for the electric field perturbarion 4E by looking at the
clectron equation of continnity:

i . . .
—an = —-v. -Von —ngV - ov, ' 1.6.5)
ot 0

Becanse we now allow diffusion. we have to add the appropriate term to equa-

tion 1.5 and get

y v |_E Ve 1.6.6)
IV, = o | = i 1.6.6
Q. l B nym.,
Takinge the divergence of (1.6.6) and using (1.6.3). we find that
JE Q. [0 on ., _,dn
V:i— = — -— — V. -V ———v‘TV'— 1.6,
B v, |ot ng U ny
where oo = AT, m.. This can be combined with (1.6.4) to give us
U &° dn d dn an W, _.on X
S AL T P v AL v S ' 1.6.8)
v, O ny,  ng ng oI ",



where 7 = kT, = T,);, m; is the ion-acoustic speed of the plasma. Then. we have

J v, on LY d* dn N 17
-— - - V| —= - _— = -V-— {1.6.9
{()f 1 - ] Ng I/,(]."\I/) {(f[" ng “ ”l)} !

Because we take 4E to be in the r direction. we can write (1.6.9) in the form

D ["-’ , O? , O
=4l = — P | = 4t (1.6.10
Dt Lot (’Oﬁ] d oy |
wlhere
D ) J
= = = (1.6.11
D~ o or LoD

is the convective derivative. or the time derivative when following the wave with
velocitv Vo=(E B) (1 — W), The growth constant A is given by

7
1= ——— i1.5.12
vl —~ @) ho-121

Becanse both the first and the second time derivatives are present in 1 1.6.10). a
mlti-scaling expansion can be used to solve it. This is equivalent to assuming a
solntion with two independent time scales. one (= = #) for the fast wave oscillations
and one 7, = ¢t) for the growth of the wave. The small constant ¢ means that + has
to be long for 7, to be felt. Therefore we can split {1.6.12) intu two parts. one for

each time scale:
f=folromp —efiiroy) i1.6.13)

and the time derivative becomes

b o Jd Jr, 11.6.14)
a7 Of dr, Jt o
) J
_ (_ — i 1.6.15)
o Jy,

The fast time scale is just the wave equation without growth
1: d J

e =1 .6.101
- OI] fo 11.6.167

10



But for fi. we also have growth. and we get to first order in ¢

d 3 2 o OF )
{; }fl‘é‘;f =4 {t C)T— }fn -l(»,ﬁjn {1.6.17)
() . () -1 0" -’ _l {-)2 . . -

{—: -1 {)—Il fi = C)j]fo -4 { S92 } fo— ’c)y-j') (1.6.13)

fu is an eigenvalue of f; because f; also contains the wave motion itself in addition
to growth or decay. which means that the right hand side has to be zero. or f; would

arow indefinitely. so that we have

() 2l ) (.);' s l‘)-)
—fo= Al =V =—fy — AT —f i1.6.19;
(‘)1-,; f” _H ¢ 5 'O.I"‘j) ¢ ‘U‘f/"jl 1 U 19

This is the equation for the growth of the wave. [n the 4 direction it is a simple
ditfision equation. but in the r direction there is one important difference. In the
case of a4 wave propagating oniy in the » direction. the ditfusion coefficient is D =
Ater = U= and can be either positive or negative. depending on the wave speed 1.
[f V7w et is just ordinary diffusion. and the wave decavs becanse the pressure

aradient is stronger than the ion inertia effects.

However. for V7 > ¢, the diffusion constant is negative. so that we have ~anti-

dithision™: ion inertia inereases the amplitude of rhe wave,

More generally, cousider a wave train propagating at an angle 4 to the E x B
drifr. but still in the r-y plane. This angle is called the ~fuw angle™. Then. the wave
vector is given by

h, = kcos# k, = ksin# (1.6.200

We can now write (1.6.19) in the form

ahl f(] .
f’).—q -

11



with the growth rate = being

}

v = — A = VI = Atk = — AR (e =V cos ) (1.6.22)

.a."', bl L'l ,'%
S C At — \D‘);I)\D [1.6.23)

where - = A&V cos#. This means that for a wave in the r-y plane. we can only have

arowth if Vcos# > .

1.7 Altitude Effects

Now. consider a wave train which extends over a range of altitudes. Different altitudes
have a different W factor. because the collision frequencies decrease with height. From
the dispersion relation ¢ 1.3.18) we can see that this implies a changing wave frequency.
or a changing wave munber. We will consider & to be fixed. becanse these waves are
observed with radars nsing a constant wavelength. and let & change with altitude
instead. This changing frequency will mean. that after some time adjacent altitudes
of the same wave train will be out of phase. as illustrated by fignre 1.2.

This phase difference then leads to the development of a vertical strueture in the
wave. and the wave starts to propagate upwards in altitude. The vertical structure
ix ceuivalent to a = component of the wave vector. nsually labeled k. The angle

hetween the plane perpendicular to B and the wave vector. with

. };.
tann = o or. for small & : = T (171

is called ~aspect angle”™.

The aspect angle has usually been taken to be a free parameter to the Farley-

Bunetan problenn. e.g. Schlegel. 1996, This Las of course led to the question as

12
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Figure 1.2: Example wave train plot demonstrating how vertical structure can appear
as resiult from a non-uniform frequency (units are arbitrary)

to what valie one should use for it. since it cannot be measured readilv. However.
with « non-local theory  St.-Maurice. 1985, which takes into account the non-uniform
frequency and the spatial extent of the waves. the aspect angle becomes a predictable

function of time and space. For example in figure 1.2. the aspect angle is zero initiallyv

but then evolves into a non-zero value. Oune such theorv will be shown in the next

chaprter.



Chapter 2

NON-LOCAL DESCRIPTION

This chapter serves to highlight the derivation of an equation for the growth of the
waves. and the relationship between frequency and parallel wave munber as done by
Chen 1996 . These results form the basis of the problem solved using the methods

presented in this thesis.

2.1 Basic derivation

The starting point is the differential equation that describes the density pertirbation.
which can be fonnd in many papers. e. g Sudan. 1983 It is fundamentally the same
procedure which was described in section t.4 except for the presence of additionai

terms deseribing the vertical structure.

Donglei Chen's resulting equation for the densitv perturbation is

- - d 4o\ on
— | — ~ v, =— = A" | —
(‘):" ()f’- ()f’ g

k=2 {02 1 Jd sy I, an
SR DA LI A e N Y R RRT N S
o u( )c}t - gkeve| =0 2L
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With these assumptions. equation (2.1.1) can be used to derive a relationship
between « andd A . as well as an equation for the amplitude. This relation holds even
though « and & are now allowed to be functions of time and space. so that we don’t

have a wave decomposition in the Fourier sense.

2.3 Phase relationship

Taking 12.2.1) into {2.1.1) produces a leading order balance that vields
= o

' k'v[)
S o= — 2.3.
» " (2.3.1)
aned
n-:u-"'-k'vy ‘2;3'
with
& k=02
b=y, =~ — 2.3
R B 12.3.31

Hereo o7 is the frequency determining the growth of the waves. which depends on
the relative electron-ion drift vp. On the other hand. + 15 the time derivative of the
phase S and has to take into account the ion drift itself too. Therefore. «~ & is the
phase speed in the neatral frame of reference. and »” A is the phase speed in the ion

frame of reference.

Ecprations (2.3.1) and (2.3.2) show that the instantancous frequency is a function
of altitude through the variations in vp and ¥. Within the new theoretical framework.
A s also no longer a free parameter. Instead. there is a connection between < ancdd
A as can be secen by taking the mixed derivatives of the phase and equation 12.2.2):

A T T AT 2.3.
3 5- 12.3.4)
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Because of this. a frequency that varies with : must necessarilv implv a time

varving A . and thus an aspect angle that changes with time.

2.4 Amplitude Equation

The first order terms in equation (2.1.1)} lead to

Jln A dln A 1 ok 1 ov 1 ok-vp
—— =ty TS =%~y (3T T - - = (2.4.1)
i Jz 2k J: 1 - oz k- vy oz
which can be written as
Din A v, J 7 i
et R A ) . _ - SR
A=k = ook = 2(lnkevy —in 1= )J 12.4.2)
or
Din A v, d ° o7
-—"D'—T"- = %R — -_%E Llll A | (2.4.3)
where
l..'.',-) - L"(f‘)\p
g = (2.4.1)

(1 - ¥y,
i= the standard Farlev-Buneman growth rate from equation (1.6.19 and D Dt is the

convective derivative.

Also. 1, is the parallel group velocity and is determined by

= ————
! (1 — W) <ol

it reallv is a group velocity as can be verified by taking 0. J/- .

Finallv. tfor conciseness. we will write equation 12.4.1) in the form

Din A4 N

Df A'”ﬁ '2.4.6'

with .7 being the effective growth rate representing all terms on rhe right hand side

of equation (2.4.13

-



2.5 Conservation of wave action

The presence of the convective derivative in (2.4.6) suggests that this equation is the
result of a conservation principle. which in this case is not simple conservation of wave
energy but rather conservation of wave action. This principle. described for example
by Bretherton and Garret 19691, is an approximation and true only if the frequency

changes slowly enough in time and space. [t can be expressed as

7 (2) -7 () =

-

where U is the energy of a wave with wave munber & and 5 is a rerm that we have

added to acconnt for local sinks and sources of free energy, With this term it is not so
much conservation of wave action but rather the balance of wave action that matters

for the waves.

To determine an equation for the amplitude from (2.5.1). we need to know how
enerey and amplitude are related. The energy in the waves is the sum of kinetic
enerey of the electrons and ions as well as electrostatic potential energy. Because of
their smeall mass. the electrons’ contribution to the kinetic energy can be neglected.

<0 that we have from St.-Maurice et al.. work in progress

GE, *

3

- - )
O = 500, OV, T -

v 4
o

For Farlev-Buneman waves. equation (1.5.4) shows how the jon velocity Huctnations

are related to the electrie feld. and we have

. 0, 0E,
vl = = 12.3.3)
y v, B
From equation (1.5.115 we see that
an Q.. OE
= = ._L,. - = (2.35.4)
g v, EU



ol

(51’1 Q, |. - l[l (fEA- - -
DA —_ (2.3.3)
g v, E()_— B B

With equation (1.5.16) for the phase speed 1" = ./ k. we get

!

YEL,  2'dn b,
R Gk (2.5.6)
B hk ng Q)

MR

which means we can write the peak kinetic energyv. equal to the total wave energy. in

the form

s 2
) l it L o
[.k:’u.—l)()lll,j—! — (2.5.71
2 no| A

I'sing this expression in equation (2.53.1). it can be shown that the amplitude

cquintion from conservation of wave action becomes

Jln A dln A ‘ L dk L 2-W Jk-vp Jdlnng

ar T s W d: L—Wdr k-vy - -

v

12.5.8)

This equation is very similar to the one derived from the multi-scaling expansion
of the differential equation (2.1.1). i.e. (2.4.1} A small difference is the third term in
the brackets. which is larger by a factor of (2 — W) 2. This is not sienificant though.
becanse waves will only grow when ¥ is very small. and a large W makes o too small
ro have arowth. The other difference is the last term in (2.3.3). but it turns ont that

it ix siwall enough to be neglected too.

The conclusion from this is that convective growth and decav can be seen as results
from the conservation of wave action. or more to the point. as the balance of wave

action when spontaneous Farlev-Buneman growth terms are included.
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Chapter 3

NUMERICAL SOLUTION

3.1 Summary of the problem

The important result from chapter 2 is that the svstem can be deseribed by a set of
cottpled partial differential equations. To get a solution. we first need to determine

Aooas atunetion of time and space. We can then calculate all the other parameters.

and finally solve the amplitude equation.

The ser of equations we have to solve is this:

I = —()T S T N 3 §
.;=lf;_v\§*k-w-, (3.1.1by

Din A )

—DT = Tgr i3.1.1c)

All other properties can be calculated from the solution to these equations.

The first two equations can be solved independently from the amplitude equation
because neither depends on the amplitude. and a numerical solution can easily be

obtained by the method of finite differences. In fact. when written as an equation for
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A Aand o k. ie. the aspect angle and phase speed. (3.1.1a) does not even depend on
the wavelength. but only on the background properties. because all the terms present

in equations (3.1.1a) and (3.1.1b) are only in terms of either & & or & A.

From this we can see that the aspect angle can be determined independently and
is in fact the tirst property we have to calculate. Then with the knowledge of & (z.#)

and ~(z04) we can solve for the amplitude 4.

3.2 Finite Differences

The first attempt to solve for the amplitude was to use the method of tinite differences.
It turns ot to be casier to solve for In A instead of the amplitude itself. and we have to
nse regular partial derivatives instead of the convective derivative in equation (3.1 1c).

Thew the value ot A afrer a small time step Af and with a spatial step size b is given

|

A)‘\-
Azt = At = InAdiz.f o ‘ ”[ll.-{(:*-}).f)*lll.—l(:—h,“
= Tl 2. -, 1z,
At 7 / 2h
13.2.14
Hereo the rerm tn Atz — Aoty = Indiz = A.f)) (2h) is an approximation for

Jln Atz This is more accurate than the more obvious (In Atz ./ =In iz =h.t)) h.
but his the disadvantage that it introduces an additional boundary conditions for
the aunplitude. so that we have to supply a boundary condition at both the lower
and upper limits of integration. While this can be worked around by choosing a good

bonundary condition. the other problem is a large gradient in the : direction.

At this gradient. the above approximation for dln 4 d: is no longer accurate
enotigh. and higher order terms would have to be included for sufficient accuracy. so

that the solution is very sensitive to gradients in the : direction.
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However. these are inevitable because of the evolution of & which forces a conver-
sence of ravs. The resulting amplitude from solving (3.2.1) is unreasonably large. [n
rhe vicinity of the gradient. it would grow by a reasonable tactor of 10 or 100. but at
the gradient itself. amplitudes could reach factors of 10 or more. This is impossible
hecause. for the example shown in figure 3.1. the maximum growth rate is 41 s7°.
and even if the wave was growing at that rate all the time. it conldn’t possibly reach

an amplitude larger than ' = 6.4 x 10'" after a second has passed.

Amplitude
150

140
130
120

110

Allitude (km)

100

30

80

0.5 1 1.5
Time (s)

Figure 3.1: Wave amplitude from a finite difference caleulation

Another side effect from this algorithm and the large amplitudes is that each of the
arid points in question will in turn seed a new wave. leading to “Hngers™ trailing each
peak in the amplitude. as can be seen in figure 3.1. Thercfore these amplitudes are
clearly numerical instabilities and the algorithm is unsuitable to solve this differential

rquation.

The reason for this is that {3.1.1cj twrns out to be a stiff equation which is verv



hard to solve using the finite difference method. Decreasing the step sizes helped
sumewhat. but the numerical instabilities were still present. and the incurred penalty
of a much greater cost of computation along with possibly increased numerical ervor
didn't make it worthwhile. A different approach to solving the problem is clearly
necessarvy, one which takes into account both the stiffness of (3.1.1¢) as well as the

convergence leading to gradients in the : direction.

3.3 Method of Characteristics or Ray tracing

The method of characteristics does a much better job of solving the amplitude equa-
tion.  This method is often used to solve Huid equations involving time derivatives

and gradients, for example Euler’s equation from incompressible. irictionless How:
J "
P V-V—-(_y v=F-Vp t3.3.1)

Hereo the term in parentheses is again the convective derivative. and can be abbrevi-
ated as D Dt It is the time derivative when following the motion of the Huid.
The same analysis can be applied to our amplitude equation. which also involves

a convective derivative. Looking again at equation (3.1.1c). we have

Dln A
"L%“ =y (3.3.2)
where
D 9 B .
Dt a7 o- 333

Solving this equation with the method of characteristics amounts to following the
paths of “ravs™. which are given bv z,(¢) such that

dz.(t)
dt

=, (2t (3.3.4)
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where n is the number of the ray. Then we have

din A(z.(t).8)

dt =~,'r:[f(:n(f)-f) (3.3.3)

Equations (3.3.4) and (3.3.3} can be solved independently. and both are simple
tirst-ovder ordinary differential equations. Equation (3.3.4) will give the path of the
ravs, the altitude as a function of time. and 13.3.3) gives the amplitude evolution

along that particular rayv path.

This method is ravtracing in this case even thongh the equations seem to involve

onlv the z and # axes. The reason is that the waves also propagate in rhe o direction.

which ix perpendicular to B. with a constant group velocity of v, = E B. Therefore.
E
A =t = oy 13.3.6)
- B3
<0 that
iz d= (dr\ r -
dr bt \ ddt .

which micans that the ravs propagate in the direction given by

11: [ .
tano = — = —— i3.3.8)
g I',_,_

L.e. the ray path is in the direction of v, itself. From this we can see that taking the
rav path to be =) or ztri is equivalent.

Now we can see that this way of solving the amplitude equation is guaranteed
to work. and both the rav altitudes and the amplitude following the ray have stable
minerical sohutions.  The reason for this is that now thev are just two ordinary
ditferential equations replacing the partial differential equation in space and time.

The comvergence that caused problems for the finite ditference calculation is now

accounted for by the rayv paths. and the stiffness is no longer a problem because we can
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solve for each ray independently of the other rays. However. there is one additional
correction that has to be considered. Where the ravs are converging. the energy is
concentrated in a smaller amount of space. The amplitude equation for the ravs does
not take this effect into account. To get the wave amplitude from the set of ravs. we
must therefore correct the ray amplitude by a factor related to the rav density. A
higher rayv density means the amplitude has to be increased and vice versa. We can
determine the ray density from the average distance to the two adjacent ravs:

22

Pn = - (f) — - . £3.3.9}

where n is the ray number and zg is the initial rayv spacing to normalize the density,
For the first and last ray. this equation is of course modified appropriately. Then the

correction factor can be written as

- .:1.1fnrrr'r:lr'11 = '-l:;/)’l ‘3:3 ll)‘

We correct A7 instead of A because the energy is proportional to A, The correction
factor turns out to be to the order of p &= 40 30 in the region where the amplitude is

largest. or an amplitude correction of a factor of about 7.

Once we have the corrected rav amplitude. we use a linear interpolation technique

o ger a regularly spaced grid of the wave amplitude which allows for casier plotting.

3.4 Initial Conditions

There are two initial conditions that have to be specified. one on the amplitude and
one on A . However. the only physical condition we have is the physical shape of the
wave packet. given by Adexp(/S). This means that we have to find amplitude 4 and

phise S such that theyv give the shape we want our wave train to have. The initial
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conditions should also sarisfy the assumptions made in the derivation. namelv that

Oln.
<k 3l
tdln A , .

The casiest way to satisfv this is to have the amplitude be equal to 1 at all altitudes
su that dInd J:z = 0. and define S in a such way that the real part of dexp(;S)
describes the desired density fluctuation. The amplitude will be proportional to the
initial value of AL so choosing 4 = 1 is as good as any other valie.

The initial shape we chose was a Gaussian distribution of width H centered at
a particular altitude zy to model a local enhancement in plasta densitv, mueh like
rthe chimp discussed in chapter 1. Now we can derive the initial condition for & as

tollows:

R:.-lcxp(lS]] =exp | — (i:—jl) ] 342

H
1
(.‘u*iq—ctp[ o) (3.4.3)
S S 3 [_ I A
. f— 03 9SS OdcosS fdcosS\ 30
nt=0l=— = e R
dz dz aJs
and tinally
2z —zy)cos S . Loy -
ko= : (: 1 —cos? 5] 13.4.3)
H? : : }
with o maxinmun & at : = 35 of
. V2
K o = :11_1.1;_' A = ::—[-{— (3.4.69
The ambiguity in the sign is introduced by writing sin S = =(1 — cos?* Si 2 for

easier manipulation of the equations. It is not important however. because cos S

has the sate value no matter which sign we choose. In our case. we have chosen
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the frequency to be positive. so that & will evolve towards more negative values.
and so we use the negative sign in equation {3.4.5). The reason for this is that
~ 15 increasing monotonically with altitude. therefore equation 3.1, 1a) predicts a
monotonically decreasing A

For the case discussed in chapter 4. with A =5 k. 2, = 95 ki and A\ = 12 m.
We get A g, = £2.828 x 1071 m . which corresponds to a maxinuun aspect angle of
=0.0310 degrees. The initial & value along with the phase and cos > in this particular

case i shown in figure 3.2,

=

- — 2
— “spect arge
—_— Shase

:381S)
| -
_ =001+ L~ 1
N . ! N
g t
> )
3 =
2 2
) ~ ]
5 -0.02 40— 0
S ' b
] £z
5 @
7
< |
-0.03+ - -1

-0.04" -2
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Altitude (km]

Figure 3.2 [nitial aspect angle and phase for # =5 ki 2 = 95 kinand A = 12 m

3.5 Boundary Conditions

I'sing the method of characteristics. no boundary conditions are needed for the am-

plitinde equation because it is solved by two ordinary differential equations which only



need initial conditions.

The solution to equation (3.1.1a) for & does need one boundary condition. how-
ever. We chose the boundary to be at a height of 150 km. where the relative drift
hetween electrons and ions rp is so small that Farlev-Buneman instabilities cannot

arow according to (1.6.23) and wave amplitudes are therefore insignificant.

At this altitude. the phase speed < - & as given by the solution to equation (3.1.1b»
is approximately equal to the E x B drift and uniform. Thus. & is uniform and
theretore

So. the boundary condition is that at 150 k. & does not change in time.

A 0150 k. #) = A (150 kin. 0) 13.5.2

3.6 Background Properties

The next important consideration is what to use for the properties of the background.
These will determine both the evolution of A and thus the rayv paths. as well as the

srowth rate for the amplitude along the path of each ray.

Onr electron. ion and neatral temperature are based on the MSIS-90 model Hedin.
1991 . however the electron temperature has been modified to reflect the additional
clectron heating discovered by Schlegel and St.-Mauriee 1981 : St.-Maurice et al.
1951 which is not included in the MSIS-90 model. The temperature profiles are

shown in figure 3.3.

MSIS-90 has also been used to calculate neutral densities. electron-neutral and
ion- neutral collision frequencies. and the relative drifts between electrons. ions and

nenirals. with the results shown in figures 3.4. 3.5 and 3.6.
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Fioure 3.3 Femperature profiles tor electrons. ions and rhe neutrads
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Figure 3.0: Relative velocities between the rhiree species
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For the purpose of this study. the electric field E and magnetic field B are assumed

to be constant and uniform throughout the experiment.

The next chapter will then describe the results we got from the programs listed
in appendix A. which solve the differential equations using the methods described in

this chapter.
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Chapter 4

RESULTS

[n this chapter we will present the results from the study. We will start with a
detailed analvsis of a particular case. and then compare the results to observations

newde with radars.

We chose the wavelength to be 12 m. corresponding to a radar trequency of
12.5 MHz. because it is a common frequency used by the SuperDARN chain of radars
sce Greenmwald ef al.. 1978019851, Also. the large growth rates associated with much
shorter wavelengths would make the waves become non-iinear before they have time

to move through the ionosphere. so that this linear model would not apply anvinore.

We also took the electron E x B drift to be 1000 m s in this case. corresponding
to an clectric Held of 34 mV' m. This is a relativelv strong field but not wo unusual.
and weaker electric fields do not give as much information about the phase speed for
exanple. Also. these choices give a growth rate which is balanced between not growing
enotteh to make a difference and growing so much that the basic assumption that the
amplitinle can be separated from the phase doesn’t hold anvimore. If the waves grow
tou fast. the derivatives of the amplitude become comparable to the derivatives of the

phase. and the WKB method described in section 2.2 is no longer valid.
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4.1 Aspect Angle Evolution

The aspect angle is the variable which controls the rayv paths and thus convective
effects as well as the growth rate through non-local effects. [t must therefore be the

starting point in the studyv. and can fortunately be determined completely separately.

Aspect Angle [degrees]

150 Q
-0.2
140
-0.4
130 -0.8
g 120 1-0.8
g -1
£ 110 12
100 -1.4
-1.86
a0
-1.8
80 -2
0.2 0.4 0.6 0.8 1
Time (s)

Figure 4.1: Evolution of the aspect angle as a function of altitide and time. Contours
are added for emphasis.

Figure 4.1 shows the evolution of the aspect angle. The initial valie comes from
the use of a finite initial pulse. as described in equation (3.1.5). The magnitude of the
peak initial aspect angle of —0.031 degrees at 95 km is obviousiv nnich less than rhe
evolved values. The kev thing to note here is that & is changing monotonicaliy. In
this study it is decreasing but that is because we chose the frequency to be pusitive.
Negative frequencies imply the opposite sign in & as well. even though initiallv. it
i possible tor both to have the same sign. However. the evolution will alwavs be

siich that a wave travels to higher altitudes. because the group velocity keeps the sign
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when we switch both £ and = to the opposite sign.
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Figure 1.2 Group Velocity as function of altitude and time. Contours of the aspect
angle are superimposed on the plot.

The region of interest is the part of the evolution where parallel electrie Helds have
developed. bt are not vet strong enough to cancel growth of the waves. This is the
case for aspect angles between zero and approximatelv one degree in magnitude. In
particitlar. the —U.3 degree contour is most interesting because. as we will show later.
it turns ot that this is where the amplitides are largest.

Directly related to the aspect angle and proportional to it is rhe parallel group
velocity, or the ray velocity. shown in figure 4.2. [t is positive evervwhere as ex-
pected from the aspect angle being negative. From the group velocity we can then
immediately determine the rav paths through definition :3.3.4). thev are shown in

Houre 4.3,

The most interesting property of group velocity and the ravs is the convergence.
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Figure 4.4: Simplified example of the group velocity for a better understanding of the

convergenca.



This effect occurs in regions above the peak in v, in such a way that the rays all try
to have a group velocity which matches the vertical speed at the altitude where the
ravs are converging. Unfortunately both this speed and the altitude of convergence

arc changing with time. making this process rather complicated.

To better understand this effect. cousider the foilowing simplified scenario. de-
picted in figure 4.4, Let the group velocity evolve in sich a way that the shape of the
vertical profile does not change with time. but is as a whole moving nupwards with a
speed of 1x 10Y ms. which will correspond to the speed of the center of convergence.

All values above this center are smaller and all values below are higher.

This means that ravs that are faster than the center of convergence. i.e. thev are
below it. will move upwards faster and catch up wich it. Thev cannor pass it however.
On the other hand. rays above the center are slower so that thev will eventually get
canght because they don't move upwards fast enough. In the end. all the ravs end

up moving at the group velocity equal to the speed of the center of convergence. and

the oulv place where thev can have that speed is at that center.

[n the results from our calculation. the speed of the ceuter of conversence is

changing with time. as can be seen from the changing slope in Hgure 1.3.

4.2 Growth Rates

There are two growth rates involved in this model. One is ~z5. the local or sponta-
neots growth rate which is that of the standard Farlev-Buneman waves without any
parallel electric field or other non-local effects. Of greater importance is the effective
growth rate .5 which also has non-local terms in addition to ~ 5. They are shown

in Higures 4.5 ana 4.6. respectively.
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Even though ~ g might be expected to stay constant. it does in fact varyv with the
changing phase speed which in turn depends on ¥ through A& 4. shown in figure 4.8.
At first there is an increase in growth up to a value of about 3 =7° but then very

quickly the phase speeds get too small to sustain growth and the growth rate becomes

negative.

For growth. the phase speed needs to be larger than the ion-acoustic speed. and
because it depends on the relative electron-ion drift. it decreases rapidly above 120
k. where the ions start to E x B drift. Another factor inhibiting growth are large
aspect angles of more than 0.3 degrees. For these. the eleetric field has a component
parallel to the electric field. In this direction the electrons are verv mobile and can
casilv short out the electrie field. thereby reducing the amplitude of the wave, as can

be seen in Hgure 4.5,

The etfective growth rate on the other hand is even smaller than = .5, which shows

how the convective effects and the parallel electric tield work to reduce growth.

Figure 1.7 shows the phase speed relative to the neutral frane of reference. which

is what ground based measurements like radars would see.

4.3 Amplitude

From the effective growth rate. we can determine the amplitude along the ravs. to-
gether with the ray path as a function of height. Figures 4.9 and 4.10 show the
amplitude. after the correction for the convergence. i.e. after multipiving it by the
rayv density as desceribed in section 3.3. On figure 4.9 the rav paths are superimposed.
nicely showing how the convergence coincides with the larzest amplitudes. However.

even without the correction for convergence the ampliticde is still maximal in the
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Figure 4.7 Phase Speed in the neutral frame of reference for the propagation of the

Waves
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Figure 4.5: Phase Speed in the ion frame of reference (for the growth of the waves)
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same region. Convergence of the rays and high growth rates are separate processes.

and vet thev oceur in the same region.

The second figure. 4.10. shows how the largest amplitudes depend on the aspect
angle. [t turns out that the region with large amplitudes closelv follows the —0.3 de-

gTees contour.

Ray Amplitude
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0t
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0.2 0.4 0.6 0.8 1
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Fianre £.9: Wave Amplitude. calculated from the ravs and corrected for conversence.
Superimposed are the rav paths.

Both figures show verv nicely that there is indeed a wave. and that it is traveling.
Thev represent ondy a single wave train. the amplitude of which is distributed over a
signiticant region of space. making it obvious why a non-local approach was necessary.
Most of the growth happens in the region from 100 110 kin. Above this. the electron-
on drift has decreased and the lon-acoustic speed . has increased so much that the

growth rate becomes zero or negative.

The wave train however has gained enough amplitude before reaching this height.
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Figure 4.10: Wave Amplitude with aspect angle contours superimposed.

and continues to travel upwards for a while with decaving. but still sutficiently large.
amplitude. Through this process. we can have a significant amplitude even in regions

where the erowth rates are too small to support it.

When trving to compare these results to observations. however. the amplitude
plot s not verv useful by itself. because it cannot be measured experimentally as
funcrion of time and space. All measurements will be subject to averaging both in
rime and in space. and will not be able to detect a single wave train. but rather a
power spectrum of the phase speed. Through finding the echo location. the aspect

angle can be determined as well.

Theretfore the next step will have to be to determine the amplitnde of the wave
rrain as a function of phase speed and aspect angle. and compare these resules to

observations.
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4.4 Fourier Transforms

To get the amplitude as a function of phase speed or aspect angle. we have Fourier
transformed che full solution A exp(:S). This requires determining the phase 5. which
can be done by integrating equations (2.2.2). The result is shown in Hgure 4.11. The
phase plot also shows very nicely how a non-uniform frequency must necessarily lead
to a vertical wave structure. expressed by the parallel wave number & [nitially, the
oscillations are in phase at all altitudes. but the difference in frequiency ensures that
this cannot be true at all times. Instead. the oscillators at rwo adjacent altitudes
will be nereasingly out of phase by an amount given by the non-uniformity of the
frequuency. At higher altitudes. the phase is changing more rapidly than at lower
altitudes. and this difference in phase gives rise to a vertical structure in the wave

rrain. deseribed by a non-zero parallel wave number.

Phase S
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Figure 4.11: Phase of the wave

The results from taking the FFT of this solution with respect o time. space and
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both are shown in figures 4.12. 4.13 and 4.16.
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Figure 1.12: Amplitnde as function of phase speed from the FFT with respect to
e,

Unfortunateiy the FFTs turn out not to be very useful to studyv, The biggest
problem is again the sharp gradient in the amplitude. The gradient oceurs perpen-
dicular ro the rav paths and is thus unimportant for meeting the basic asstumption
about a slowlv varving amplitnde. Nonetheless. the FET does not take rav paths
mnto acconnt. and therefore this gradient will affect the FFT and lead to spillover into
adjacent trequencies or wave numbers. As can be seen from the plots. after abowt
i1t seconds in Hgure 4.12 and for altitudes above 110 km in figure 113 this spillover
becomes larger than the actual range of frequencies. making it impossible to gain any
nseful insight trom the plots. In figures 4.1 and 4.15 we only show the actual range

of phase speeds and aspect angles we see 1n figures 4.1 and L7

Another problem is the inability to give information on how the amplitude changes

with aspect angle and height. because to get the aspect angle. all heighits have to be
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integrated in the Fourier transformation. One could try to circumvent this problem
bv having a moving window over which the transformation is done which would then
give an indication on how the amplitude varies with aspect angle and height. but
the resolution of the plot would have to be much better. which makes it impractical

because of limited computing resources.

4.5 A Better Way

So the FFT is not much of a help in gaining insight. but mayhe there is a better
way? And fortunately. there is. In this setup. FFTs are in fact a large detour: first
to calculate the phase from the aspect angles and phase speeds. and then applving

the FFT to get back to aspect angle and phase speed.

A mwre direct approach is to instead look at the phase speed and aspect angle plots
themselves. and find a way to combine them with the amplitude to give amplitude as

a function of aspect angle and phase speed.

The basic step in this procedure is shown in figure 4.17. for the example of ob-
taining A(z. k). We take a particular altitude. for example 110 km. and basically
do a k -histogram of the amplitude. by going through all time steps and noting the
particular amplitude for the particular & given at that time. The result is a function
defining A(110 km. k. ) with an irregular spacing between the points which is deter-
mined by the shape of & (110 km.t). After interpolating and repeating this for all
other altitudes. we can then plot A(z.k.). The same procedure can be used to replace
any of the original axes = and ¢t with either the aspect angle or the phase speed. to give

all possible combinations. The results of this are shown in figures 4.18 through 4.23.

Of particular importance are the altitude plots. Figures 4.21 and 4.22 predict how
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Figure 14.18: Spectrum of phase speed in time
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Figure 1.19: Spectrum of aspect angles in time. above the peak in k.

48



Amplitude (below kpar peak)

Aspect Angle (degrees)

0.2 0.4 0.6 0.8 1
Time (s)
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the amplitude will change with altitudes and phase speeds respectively altitude and
aspect angles. and figure 4.23 predicts how aspect angle and phase speed relate to

each other.

To compare these results with the FFT plots. we have to compare figures 1.14
and 4.21 as well as figures 4.15 and 4.19. We can see the expected similarities. but
without the spillover problem and low resolution which made the FFT plots relatively

useless.

The dark blue areas in the plots indicate that no data is available. or that the

amplitude has decayed below the threshold of 107!,

The striations that are visible in the time plots are an artifact caused by the
interpolation technique. but this is not much of a problem since the information in
these plots is not something that can be compared with experimental data anyway.
they are only included for completeness. The observations will always have some
averaging. and the time scales for each wave motion of less than a second are too

short to be detected.

One thing to note is that there are two plots for aspect angle versus time. The
reason for this is that the original aspect angle plot. i. e. as altitude versus time. does
not have unique values for all altitudes. Everv aspect angle appears at two different
altitudes. one above and one below the minimum. When applving the technique
deseribed here. this would lead to a mixture of the two different plots which would
confuse the interpolation function and yield nothing useful. Therefore. it had to be
split into a part above and below the minimum aspect angle. However. below the
minimum there is no growth. both because of a negative growth rate and a divergence

of the rays. so that this part of the spectrum does not affect the result.
Figure 4.23 shows that the phase speed does indeed decrease with increasing aspect
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angle. as predicted by equation (2.3.2), where ¥ is increasing with the square of the

aspect angle.

4.6 Summarized Results

The results from these plots. for the particular conditions set in the program. can be

summarized as follows:

1. Waves will converge towards 0.5 degrees aspect angle

(V]

Thev will reach the largest amplitude at 0.3 degrees. with significant spread

from 0 degrees to 1 degree aspect angle

3. The expected phase speeds are from the ion-acoustic speed of 600 m/s up to

the E x B drift of 1000 m/s. with a maximum amplitude at 900 m/s

4. The altitude with significant wave amplitude are from 100 km to 115 km. the

maximum being at 110 km.

5. Any particular wave train will evolve within about a second. Traveling up-
wards at a group velocity of several kilometers per second. it will quickly reach

altitudes where the electron-ion drift is no longer sufficient to sustain growth.

U
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Chapter 5

DISCUSSION

5.1 Comparison with Observations

Comparing our results with observations is difficult. The first problem is that the
background parameter our model needs. in particular the electric field and the tem-
peratures. are not readily available for the radar observations. Therefore we cannot
compare our resilts to any particular experiment. but have to look at general trends

and statistics of the experimental data instead.

Amplitude

The maximum amplitude of our wave train is a factor of about 337 above the noise
level. Because the power of radar echoes is proportional tu (dn: ngy)-. this corresponds

to a power level of 50 dB.

Mcasurements by Foster et al. {1992 and Austov et al. 1994 indicate that the
scattering cross section of coherent scatter radars like SuperDARN is 50-80 dB

stronger than incoherent scatter. However. the problem with the radar measure-
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ments is that it is not clear whether the scattering region fills the beam. If it doesn’t.
the return power will be systematically lower. and this question is still the subject of

an ongoing debate.

Even though the frequency of coherent scatter and incoherent scatter is different.

this nonetheless shows that our amplitude is quite reasonable.

Altitude

In a recent review. Sahr and Fejer {1996 state that the altitude of the echo source
is in the lower E region. from 95-125 km. In our results. the power in this region
is greater than 20 dB. with a power of 30-30 dB from 105 120 k. We have no
growth above 120 km though. but other than that our results agree well with the

measurernents.

Phase Speed

Apart from the power. the Doppler shift and the equivalent Doppler velocity are
probably the best known parameters of the radar echoes. The velocity is therefore
often used to categorize the echoes into four types. see for example Schlegel [1996]
and Sahr and Fejer {1996]. [n short. type [ echves are characterizea Ly a mean
Doppler velocity slightly higher than ¢, and a small spectral width of 100-300 m/s
and are usually attributed to Farlev-Buneman waves. Tvpe II echoes have a small
mean velocity but a large width and are believed to be generated by the gradient-drift
instability Sudan. 1983]. Type III echoes on the other hand have a small width as
well as a small velocity of roughly 0.3 ¢,. It is not clear what instabilities generate
these echoes. Finally. type IV echoes have a large velocity. much larger than the

nsual e, coupled with a small width. They are not very common. usually seen only
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during very disturbed conditions. and are believed to be generated by Farley-Buneman

instabilities with an enhanced ion-acoustic speed.

Looking back at figure 4.21 would suggest that our wave train corresponds to a
tvpe IV echo because of the large velocity and the relatively small width of roughly
100 my/s at half the maximum. However. our background conditions are not partic-
ularly rare. and it seems surprising that type IV echoes are so uncommon if it was

indeed the type our wave train would generate.

On the other hand. studies by Villain et al. {1987] and Providakes et al. [1988] as
well as statistical studies by Hanuise et al. [1991] and Lacroir and Moorcroft 11999

show a clear preference of ¢, echoes for coherent radar backscatter experiments.

Thus. with respect to the phase speed. our results do not seem to agree very well
with observations. although trying to match the conditions under which radars see ¢,

echoes could help improving our results.

The reason for this study was in fact the expectation that allowing the waves to
travel through the ionosphere would allow them to grow until thev reach the threshold
speed of ¢,. and decay quickly afterwards. so that we expected to see a clear peak at
the ion-acoustic speed. which would then be an explanation of the large number of ¢,

echoes seen with radars. Unfortunately the simulation did not fulfill this expectation.

Aspect Angle

Even though there are measurements with large aspect angles of more than 6° ie. g.
Hofstee and Forsyth. 1972]. most experimental setups observe echoes at a range of
aspect angles up to about 2° [Foster et al.. 1992]. but determining the exact aspect
angle is difficult. particularly for HF radars which are subject to refraction. and thus

racdlar beam spread.



Rustov et al. [1994] have studied the variation of the Doppler velocity with aspect
angle and have found that the largest velocity to be at 0% aspect angle. The velocity
has then decreased to 75% at 0.8°. and to 50% at 1.4°. Comparing these results with

figure 4.23 shows a good agreement between our simulation and the measurements.

5.2 Summary

In this thesis [ have shown the theoretical background for finding a solution to slowly
growing (low frequency) Farlev-Buneman waves in a non-uniform medium. I have
found a numerically stable and efficient algorithm to solve the resulting differential
equations and have shown the results from this calculation. [ have also found a way
to compiute a spectrum of the waves without having to resort to Fourier analysis or
Fourier transforms. by combining the knowledge of the lucal frequency and aspect

angle with the amplitude.

A comparison with the observations shows generally good agreement between the
simulation and measurements. only the phase speed seems to be too high. that is if
compared to type [ echoes which we expect to be what our simulation describes. If.
on the other hand. we are really simulating type IV echoes. then the phase speed is

in good agreement as well.

5.3 Future Work

In view of these results. [ propose that the following be studied with this model and

the corresponding numerical simulation methods:
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Background Effects

[t would be useful to study the effects of the background parameters. particularly the
electron and ion temperatures and the electric field. on the numerical results. We
expect the electron temperature to make a large difference on the spectrum. because
it affects the ion-acoustic speed. and with that the phase speed at which the waves
would stop growing spontaneously. [t also modifies the collision frequencies. and thus

the relative electron-ion velocity. which would also have an impact on the results.

Wave Length and Initial Values

The wave length would probably change mostly the maximum amplitude of the re-
sults. because it does not affect wave propagation. but the convective effects could

have other effects that are not obvious.

The initial aspect angle we have chosen in this study is almost negligible. but it
would be useful to examine how it affects the wave evolution. Evervthing depends
on the rayv paths which are in turn determined by the aspect angle. so changing the

initial value could have a large impact on the results.

Comparison with Observation

[n most cases it is difficult to find the real background properties. but by combining
the data from several measurement methods. including radars. satellites and rockets.
it should be possible to model some of the experiments quite closely. and study how

the simulation corresponds to the measurements.

(S]]
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Echo Types

Since tyvpe [ and type IV echoes seem to be manifestations of the Farley-Buneman
instability at different conditions. it would be useful to find out under which condi-
tions our simulation returns an amplitude peak at either ¢; for tvpe I echoes or a

significantly larger phase speed for type IV echoes.

Comparing these conditions to the real conditions when either tvpe of echoes is

detected should prove quite interesting.

Gradient-drift Instability

[t should aiso be possible to include the gradient drift instabilitv into this model.
This instability occurs when there is a density gradient in the y direction. and is
generally thought to be the origin of type II echoes. Perhaps it is then possible
to find conditions under which the simulation returns the properties of any of the
four echo tyvpes. which could help developing a unified theorv which includes all the

different tvpes of echoes.



APPENDIX A

SOFTWARE

A.1 Fortran Programs

Programs and Subroutines

This is a description of the Fortran programs used for calculating the numerical

solution to this problem.

main_pro.f: The main program. [t does the calculation of the aspect angle. the ray-
tracing and calculates the amplitude as well as all other parameters that change

in time.
nu_elec.f: Calculates electron temperature and collision frequency profiles
nu_ion.f: Calculates ion temperature and collision frequency profiles

tnden.f: Reads the MSIS-90 output file and interpolates to the desired altitude

resolution



gridrays.f: Calculates a regularly spaced grid from the ray-tracing output from

main_pro.f.

gridrays_converge.f: Same as above. but takes the correction cue to convergence

into account. see equation (3.3.10).

Input files

These files are needed by the above programs for proper execution:
parameter.F: File containing all parameters used by main_pro.f. including wave-
length. electric field and numerical step sizes for example.

tnden250.dat: Output from the MSIS-90 model for the neutral temperature and

cotnposition

Output files

Thesc tiles are created by the Fortran programs and are then used as input for making

the plots.
a.dat: The main output file with amplitude. aspect angle. frequency. spontaneous
growth rate. parallel group velocity. and effective growth rate

rays.dat: Output from rav-tracing. with altitude and amplitude as well as ». & and

=" interpolated to the ray altitude.

background.dat: File with background properties. including temperatures. densities.
collision frequencies. ¥ and ¥’. and the velocities in a form easily readable by

Matlab
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raygrid.dat: File created by the ray gridding programs. with a regularly spaced

grid created from the ray-tracing output file rays.dat.

A.2 Matlab Scripts

Plotting Scripts

These scripts have been used to make the plots presented in this thesis. All seripts
have a built-in help text which can be read with the “help™ command in Matlab. e. g.

“help thwa™.

init.m: [nitializes the global variables needed by most of these scripts. It in turn
needs the file parameter.m which is automatically generated by parameter. awk.
in order to supply Matlab with the background and numerical parameters used

in the simulation.

fbwa.m: Shows the altitude-time plots from the file a.dat as well as rav paths and
rav-tracing data from raygrid.dat. Plot scales. sclection and contour tvpes

can be chosen with global variables as described in the help text.

fowp.m: Makes line plots of altitude versus any of the properties in a.dat. for selected

times.

showaxissub.m: Show the plots described in section 4.3. where one axis (or both)

has been replaced by the aspect angle or phase speec.
showbackground.m: Show a set of plots with background parameters
showphase.m: Show plots relating to the phase as well as the Fourier transforms

showrays.m: Like fbwp.m but for the ray-tracing output
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subplotpart.m: Split a figure into several subplots. leaving space for footnotes

Helper Scripts

The following scripts are run by the Matlab files mentioned above and are not intended

to be used directly:
goodlegend.m: Places a legend with the correct size for portrait printing to work
around a bug in Matlab's legend function.

imagesc_log_cb.m: Works similar to Matlab’s imagesc command. but makes an im-
age with a logarithmic scale and automatically creates the appropriate color

bar.
kpcont.m: Superimposes contours of the aspect angle on the current plot
loadrays.m: Loads the ray-tracing output and prepares it for plotting
phase.m: Calculates the phase S by integrating over &

prepare.m: Prepares a figure for printing with footnotes describing the simulation

properties and the program used to make the plot
setprint.m: Adds the footnotes and sets the paper size for printing in letter format

weighedhistogram.m: Calculates the plots used by showaxissub.m using the method

described in section 4.5.

Note that gridrays.m has been made obsolete by gridrays.f and is no longer

needed.



A.3 Supporting Programs

backup: Makes an archive of the current run into the tgz file given on the command

line. Example: backup Novi8Run.tgz

correctamp.awk: Obsolete: was needed to correct Fortran output where numbers
have an exponent larger than +99. which were a result of the problems with

the method of finite differences.

parameter.awk: Generates parameter.m from parameter.F in order to make the
parameters in the Fortran program available to Matlab. Should be run as

parameter.awk < parameter.F > parameter.m

restore.sh: Restores an archive made by backup and automatically calls the above

parameter.awk to generate the right Matlab parameter file

A.4 Availability

A CD-ROM with the described programs is available upon request. For further
information please contact the author or his supervisor. The email addresses are
Josef Drexler jdrexler@julian.uwo.ca
Jean-Pierre St.-Maurice stmaurice@danlon.physics.uwo.ca
Alternatively. one can contact the Physics and Astronomy department of the Univer-
sitv of Western Ontario. The mailing address is
Department of Physics and Astronomy
University of Western Ontario

London. Ontario. Canada. N6A 3K7
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