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ABSTRACT 

The main purpose of t his thesis is to study the solut ion systems of delay-differential 

equations in L2. An interesting observation is that the systems are closely related 

to some extreme cases in the t heory of non-harmonic Fourier series. We will exploit 

some fundamental properties of these solutions by developing some theorems on com- 

p leteness, series expansion, frames and bases. 

Specifically, by extending a stability theorem of Sedletskii, we can show that the 

solution systems are complete in L2 with excess E2 = 1, but that they can not be 

Schauder bases. Furthermore we generalize a result of Fujii to the case of two cornplex 

sequences located in a curvilinear strip. Also the properties of a Lambert  W function 

are employed to discuss the series expansion which is related to f-theorems. Finally 

some numerical methods are provided to compute the finite optimal solution of such 

equat ions, 

The results estabilished in this thesis may have applications to signal and image 

processing as well as general delay-differential equat ions. 

Key words: completeness, series expansion, frame, basis, approximate solution, 

Paley- Wiener space, delay-different ial equations 
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Chapter 1 

Non-harmonic Fourier series an-d 

the Lambert W functions 

1.1 Introduction 

It is well known (see, for example, Bellman and Cooke) t hat the solut ions of dinfferential- 

difference equations can be expressed as a surn of the exponentials C where 

each iX, is a characteristic root with A, E C. Here for sirnplicity, we asswme that 

al1 the roots are simple. (i.e. that the A, are al1 distinct). The coefficient ts of this 

series could not be found systematically until the residue method was devedoped by 

Bellman and Cooke [1963]. Verblunsky [1961] introduced the technique okf Cauchy 

exponential series to address a similar problem. With these methods, a solut ion can 

be approximated pointwise for a nice initial condition g ( t )  (say, belonging a0 Co, or 

Cl). This thesis was motivated by the problem of finding an optimal finite nnumerical 

solution to a delay-differential equation with a given initial condition in Lm. A rea- 

sonable beginning to this study is to Iook at the structure of the exponentiaiü systems 

{ei"nt) where each i X ,  is a characteristic root. 



It is worth mentioning that in general, the characteristic function of a delay- 

differential equation is not of sine-type, but that the imaginary parts of its zeros 

differ from integers by about $, and the real parts increase only a t  a logarithmic rate. 

We will see t hat t his situation is analogous to several extreme cases in the t heory of 

non-harmonic Fourier series, 

Apparently, series of the type %eiXnt were first studied by Paley and Wiener who 

called them non-harmonic Fourier series to emphasize that they are not trigonomet- 

ric series. The theory of non-harmonic Fourier series thus contains the study of the 

completeness and series expansion properties of sets of complex exponentials {c'"nt). 

Because the study of frames and bases has flourished in recent years, non-harmonic 

Fourier series have received more attention than ever before. One of the famous early 

results in this theory (Paley-Wiener [1931] and Levinson [1940]) is that the trigono- 

metric systern {eint )?, is stable in L2(-x, ii) in the sense that the systern {e iAnt )Fm 

will form a Riesz basis for L2(-K, 1;) only if IX, - nl 5 L is small. Furtherrnore, 

Iiadec [1964], and Redheffer and Young [1983] showed that the optimal perturbation 

is L < a. Such ! theorems have many applications in the theory of completeness, 

frames, bases and interpolation. On the other hand, many systems in the studies 

require that the An's be located in a strip parallel to the real axis [Young, 19SO] or 

near by the zeros of a function of sine-type [Adovion, 19881. 

This thesis will develop some theorems on completeness, series expansion and 

stability of frames by exploiting various fundamental properties of these solution 

systems. Also a new method for the finite optimal solution will be given. Finally, we 

show that the solution system does not constitute a basis in L2. 



1.2 Definitions and notations 

In this paper, we denote by C (respectively by R) t h e  set  of al1 comples (respectively 

real) numbers. Z denotes the  set of al1 integers, a n d  C' a n d  n' mean summation a n d  

multiplication, respect ively, through all the  integers except O. 

LVe Say that  an entire function i(z) is of exponential type 7 if tliere is a constant 

A > O such that  

a n d  an entire function f is said to be of sine type if it is of exponential type sr, i ts 

zeros {A,) are separated, i.e. id,+, IX, - A, 1 > 0, a n d  there exist positive constants 

-4, B and H such that  

whenever lyl 2 K. 

T h e  totality of al1 entire functions of exponential type  a t  most T tha t  are square 

integrable on the real axis is known as t h e  Paley-Wiener space [Young, 19801 which 

is a Hilbert space with respect to  the  inner product (f, g) = 1: /(x)g(x)dx. 

In the  next chapters, f will always denote a n  ent i re  function of exponential type  

y 5 i i .  T h e  Phragmén-Lindelof indicator function h(6)  of f is defined by 

h ( 0 )  = lim r-COO sup  r-' log 1 f (reie)  1. 



Definition 1.1 [Duffin]. Let {A,}, n E 2, be a sequence 01 distinct comptez 

numbers. Then the set of functions {exp(iX,t)} is an exponential frame over an 

interual ( - 7 , ~ )  ï j  there exist positiue constants -4 and B, which depend exclusit.efy on 

y and the set of functions {exp(iA,t)}, such that 

for every function g ( t )  E L2( -y :  y), where the index n nins  through ail positive and 

negative integers and zero. In this case, (A,) is calfed a frame sequence. 

For a general frame in a Hilbert space, we have the following definition: 

Definition 1.2 [E. Hernandez]. A collection of distinct elements{gi, 92, ...) in a 

Hilbert space H is said to be a frame i f  there exist positive constants .4 and B with 

O < A < B < cm such that 

for every g E H .  The numbers A and B are called the bounds for the frame. When 

A = B,  we Say that the frame is tight. 

Definition 1.3. Two sequences {x,) and {y,} in  a Hilbert space H are said to 

be biorthogonal if 

for every m and R. 

Definition 1.4. A systern {e'"nt} of cornplex exponentials is complete in LP(-y, y),  



I 5 p < m, if the relations 

for  ail n with f E LP, imp ly  t h a t  f = O a-e.  ln this  case {A,) is caiied a cornplete 

sequence- 

Definition 1.5. A frame (or cornplete systern) {eiAnt) in L P  that  ceases t o  be n 

f rame ( o r  complete) when a n y  o n e  of its elements is remoued is said t o  be an exact 

frarne ( o r  complete sys tem) .  W h e n  exactiy rn. e lements  have t o  be removed ( o r  added) 

in order  that  the n e w  s y s t e m  be exact, t hen  the excess E,(A) of t he  s y s t e m  is rn (o r  

-ml- 

Remark 1.1. As we shall see (Theorem 1.4), the  particular functions eiainL added 

or  removed are arbitrary; onIy their number is important. 

Definition 1.6. A sequence {A,) o f  real o r  cornplex numbers  h a s  a uniform 

density d, d > O ,  i f  there are cons tan ts  L and 6 such  that  

f o r  a n y  integer n ,  and  

Definition 1.7. A compfex  sepuence {A,} is of  dens i ty  d (> O )  wi th  deviation 

d w  



IL -LI 2s > 0 (n # m )  

for any integer n ,  where 4 (n )  = o(n)  + oot and 6 is a constant. 

Definition 1.8. A sequence { f l ,  f2; ...) in an injînite-dimensional Banach space 

X is said to be a Schauder basis for X if for each f E X, there is a unique sequence 

oj scalars {cl, c*, ...) such that 

Henceforth, the term basis will always mean a Schauder basis. 

Definition 1.9. A basis {ek) in Hilbert space is called a Riesz basis ifthere are 

constants A and B where O < A 5 B < oo such that foor each x = Cr=L a k e k  

Note: a Riesz basis is a basis which is also a frame [see Young, 19801- 

1.3 Some important known theorems 

The following result of Paley and  Wiener plays a key role t o  connect sampling theory 

with frarnes: 



Theorern 1.1. i f  f (2) is an entire function ofexponential type y and f. considered 

as a function on the r e d  line, befongs to LZ( -oo ,m) ,  then there is a function g ( t )  E 

L2(-?,  y)  svch that 

Furthermore, 

Conversely, a function f in the f o m  (1 -1) is an entire function of exponential type  

y satisjijng j E L'(-m. CO). 

This theorem shows that any function in the Paley-Wiener space can be espressed 

in the form (1.1). In t h e  next theorem, due to Levinson, the form (1-1) is associated 

to an incomplete system: 

Theorem l.l[Levinson, 19401. For the system {e iL t }  to be incomplete in C ( - y ,  y) 

(or in Lp(-y ,  y),  1 < p < m), it is necessary and suficient that there ezists a non- 

t~-ïvial entire function f ( z ) ,  which vanishes at every A, and is expressible in the form: 

f ( z )  = eiztdu(t ) ,  

where w ( t )  is of bounded variation on ( -y7  y )  (or w ( t )  E Lq(-y, y), l/p + l / q  = 1). 

To prove the incompleteness of the systern {eiXnt }, we often construct a function 

as an infinite product involving the  {A,) and then show that it is in the Paley-Wiener 

space. To reach t his goal, rve will employ the following lemma due to Sedletskii [19S5]. 



Lemrna 1.1. Szlppose G(z) is in the Pnley- Wiener space and its zero set is 

{ n o .  T h e  l m  C exists. 
O<lznl<r 

-n 

Furthermore, suppose the Hadamard's factorization of G(z) is 

..lssurne the cornplex sequence {iu,} satisfies wo = zo. lim & ezists and 
n+co Iwn [<n 

If (P(i)I 5 k,-IG(r)( o n  some  horizontal line Dz = h with constants k and h ,  then 

there is a real constant a such that the function eh 'P( z )  is in the Paley- Wiener 

space. Consequently, { e i w n L ) ~ ! o  is incornpiete in  L2(- r ,  a ) .  

The following resiilt presents some intrinsic properties of the functions in the  

Paiey-Wiener space: 

Theorem 1.3 [Levinson,  19351. Suppose f(z) is a n  entire function of exponential 

type a and {A,) is its zero set. Let n+(r) be the counting function for  i ts  zeros i n  the 

right ha[/ disc lzl < r ,  and n-(r)  for the lefi haif one. If 

Lm 1% If (4 I 
t=l+oo 1x1 

5 0 
=ER 

and 

then the following hold: 

1) C 1321 < 03; 

"+(') - Lirn 2)  lim 7 - 
r-rm 

= A for sorne constant A. 
r+cu 



Finally, we int roduce t wo t heorems o n  exponential secluences. 

Theorem 1.4 [Levinson: 19401. T h e  completeness o f t h e  s y s t em  { e i A n t )  in L P ( - 7 ,  Y), 

1 5 p < w o r  in C ( - 7 , ~ )  is unagected i/ a single A, is r e ~ i a c e d  b y  ano ther  number  

which is not  in the set  {A,}. 

Theorem 1.5 [Dufin, 19.521. T h e  remouai of  a uector f rom  a frarne leaues either 

a f m m e  o r  a n  incomplete set-  

In t he  next section, a special function will be introduced, which applies t o  the  

ext reme cases of various t heorems- 

1.4 A modification of the Lambert W functions 

T h e  entire function g(z) = z - ae-' is the characteristic function of the  delay- 

differential equation 

TJ'(~) = ay( t  - 1). 

and the  distribution of i t s  zeros is typical to those of general differential-difference 

equations. So a thorough understanding of the locations of its zeros is not only nec- 

essary for the  study of this kind of equation, but also usefui for further generalization. 

Note that  when a # -$, al1 the  zeros of g(r) are  simple; when a = -' e there is a 

double zero a t  z = -1. We first assume a # -5 and write the zero r of g ( r )  as 



Then  from r + log r = log a' we get that  

logr  + i4 + qI + il72 ioga (mod 2nL)- 

This  yields tha t  for -j?- < arg  a 5 n 

q i  = log la1 - l o p r  7 2  = arg a + Lrk - 4. ( 1.2) 

Now suppose a is real. It is known (see [Wight,  19591 or [Verblunsky, 19611) tha t  

1) If a does not satisfy - f < a 5 0: t hen there is a zero corresponding to each 

integer k for al1 k E 2. 

2) If a satisfies -$ < a < O, then there is a zero corresponding t o  each integer k 

for al1 k in Z \ {-1, O } ,  and t o  k = O there correspond two zeros zo and z-1 satisfying 

-1 < zo < O and Z-I < -1. Note tha t  from ( 1 2 )  the  case k = - 1  cannot happen 

when a < O and z < O. So we stiil have the  one-one correspondence between the zeros 

and al1 the integers. 

3) if a = -;, there is a zero of order two at -1, and thus after  naming the  dou- 

ble zeros zo = r - ~  = - 1, the  zeros are  again in exact correspondence with al1 integers. 

From the above classification, we have that when a > O o r  a < -$ 

for al1 k E 2; when -$ 5 a < O,  we have that zo and  z - ~  a r e  real, a n d  (1.3) holds 

for 1 k E Z \ - 1 ,  O In summary,  to  each integer k; there corresponds a unique 

zero of g which depends on t h e  variable a. This defines a function I'Vk(a) caIled the  



Lambert CY function (see [Corless, 19951). The follorving asymptotic property of these 

funct ions was proved by  Verblunsky [L961]. 

Lernrna 1.2. Suppose CVk(a) is the Lambert IV function for k E 2. and a = g, 
then 

(1) when a > 0 .  jor ail k # O ,  we have 

a 1 logk 2 
- + - s i p ( k )  + O(-) } W ( a )  = {log lkl 4k k 

and i/Vo(a) > 0 ;  

(2) when - a  < a < 0 ,  for ail k E Z \ (-1, O), u e  have 

O! 1 1 logk 2 
N'k(a) = { l ~ g ~ - ( ~ - - s i p ( k ) )  2k 4k + o ( ~ )  } 

and - t < CIJo(a) < O ,  W-i(a) < -1; 

(3) when a = -f ,  we have (1.4) for a[l k E Z \ {-1,0), and CVo(a) = vv- , (a)  = 

(4) when a < -$, we have ( 1  -4 )  for al[ k E Z \ { O ) ,  and W o ( a )  is not real. 

Now if we suppose that a is real and that t k  satisfies ziezk = a ,  then 5, also 

satisfies &eZ: = a. In fact we have 

1) i f  a > O ,  CVo(a) is real, and IV , (a )  = CV-k(a) for al1 k > 1; 

Y )  i f  - 5  5 a < O ,  only W o ( a )  and W-, (a )  are real, and the others satisfy W k ( a )  = 

W - k -  ( a )  for al1 k > 1. 



3) if a < -2: none of the Wk(a) are real and we have  that W k ( a )  = CPlk-,(a) for 

al1 k 2 O. 

To obtain more symmetry in the index, ive modify the &(a) in the following ways: 

when a > O, let 

2 
vn(a )= - -K(a )  %r for n e  2: 

when a < O, let 

( a )  n > O  

O n = O  

- W n ( )  n  < 0. 

Furthermore set I / , (a )  = pn(a) + ion(a). 

After the above modification, we find that {Vn(a)) has one element Iess than 

{Wk(a)} for a < O. But it gives us a nice symmetrical index on both of {p,(a)) and 

{V,(a)). From the definition of Vn(a) and Lemma 1.3, we immediately get that (see 

[Verblunsky, 19611) 

Proposition 1.1. Under the definition above, V,(a) and p, satisfy that V,(a) = 

-V-,(a) and p,(a) = -p-,(a) for al1 integers n and real a. Moreover it has the 

f o l h i n g  asymptotic property: 

when a > O! 



{n + t - eL2)(a)} + i{& log In[ + O(1)) n > O 

O n=O 

{n - f + @(a)} + i { t  log In1 + O(1))  n < 0; 

where @ ( a )  = ~ ( w )  and cn)(a)  > O, j = ï,:! for suficiently large n depending 

O R  a .  

Remark 1.2. As we shall see, the study of the  sequence {V,(a)} will alloiv us to 

address questions concerning completeness (Propostions 2.4 and 2.5), frame propertjr 

(Proposition 4.1) or  basis property (Theorem 5.5) of the original sequence {Cli , (a)} .  

In this paper, tve only consider the case tvhen a is real. For a complex, a similar 

modification can be made to  & ( a ) ,  so our method can be used to evaluate the escess 

of the system {eW*(")'). But this will not be presented here. 



Chapter 2 

Completeness of complex 

exponent ials 

2.1 Introduction 

From the definition of cornpleteness, we knorv that only the nul1 function is perpen- 

dicular to al1 elements of {ei"-<) if it is complete in LP(-ii, ii)- On the other hand, 

we say t hat the above sequence is closed in Lq(-rr, a) if every f E Lq(-ii, n )  can be 

approximated in Lq norm by Iinear combinations of the functions eiAn". Duality shows 

that closure in L9 is equivalent to  completeness in LP if $ + = 1, and 1 < p < W. 

Especially, when p = q = 2, completeness is equivalent to closure in  L2(-rr ,  a) (see 

[Levinson, 19401 or [Young, 19SOl). 

For completeness, Levinson [tg401 showed that {e i - ln ' )  is complete if  IX, - nj 5 i, 
and incomplete if A, = n + ( f  + ~)s ign(n) ,  Xo = O for any c > O. So it is not surprising 

that the trvo special cases {e'":) and {ei.'n} have received a lot of attention (see 

[Redheffer, 19831 [Sedletskii, 1977: 1983, lSSS] [Young 19S0, 1984, 19S7]), where t h e  



A n  and A, are defined by: 

and 

To study the completeness of the solution system {eW*(a)t) ,  this chapter begins 

with two special sequences { p , ( a ) )  defined in Section 1.4 which are analogous to the  

above {Af } and {A-), and then returns to the solution system itself. 

2.2 Two special sequences 

As mentioned in the last chapter, Theorem 1.2 gives a necessary and suffcient condi- 

tion for the incompleteness of exponential systems, but for the convenience of appli- 

cations, Levinson [1940] gave a more practical result which can be expressed in the 

following general form. 

Given a sequence {A,} of complex numbers, let nA( t )  denote the number of points 

X k  in the disc Izl 5 t and let 



Theorem 2.1. If the sequence {A,) <3/ cornpler numbers k such that 

then the sy s t em {eiAnt ) is complete in  LP(-y, y )  ( 1  < p < cm). Especially if A, satis/y: 

then Ihe sy s t em is cornplete in LP(-ir, ir). The constant $ is the best possible. 

Remark  2.1. Although the  constant $ is best possible, the next condition is 

obtained via the  "shining light" density of Beurling and Malliavin (see [I<oosis, p701). 

Theorem 2.2 [Sedleckii, 197'i]. Let {A,) and {p , }  be l w o  renl sequences and 

O < y < m. T h e n  the excess E 2 ( A )  is equal t o  the ezcess E2(p )  in L 2 ( - ~ : - / )  only $ 

one of the following conditions holds: 

1 )  for s o m e  O < s < w, C IX, - p,IS < oo, 

" IA, -p,I 5 a,, a, + O ,  a s  In1 + m and C ' z  < m. 

Now we will extend the result above to  the  case of complex sequences: 

Theorem 2.3. Let {A,} and {p,} be two sequences of distinct complez numbers 

sa t i s  fying 

< m. Then the excesses where d(ln1) is nonincreasing and tends to 0, and C 
lnl 

of the two ezponential system { e i k t )  and {e ipnt )  satisfy that E2(X) = E 2 ( p ) -  



The proof of this theorem will be given in the  next section. 

For a particular regularly distributed sequence, a st ronger result can be obtained: 

Theorern 2.4 [Redheffer and Young, 19831. Let Al be an arbitrary positive nu& 

and let  A, = n+&+& f o r ,  > 2 wherep  2 0, 1 < p < co a n d i + $  = 1. Then  the 

set (1, efiAnr) is compZete in LP(-a, T )  if,û 5 min(:, &) and not if > rnax(a, &-). 

As shown in [Redheffer and Young, 19831, the fact that such a regular distribution 

of {A,} can lead to completeness without satisfying Levinson's condition (Theorem 

2-1 )  is surprising. 

The following results are direct consequences of Theorem 2.1: 

Corollary 2.1. Tf{A,) is either { X i )  o r  ( X i }  as  defined 6y (2.1) and (2.2), then  

(eiXnt 1 is  a complete system i n  L2 (-T, T) . 

Proposition 2.1. Under the definition in Section 1.4, $ a  > O ,  then {eipn(a)t, n E 

2)  is complete in LP(-rr, R) for 1 < p < m, and if a < O, fhen { e ' ~ ~ ( ~ ) ' ,  n E 2 )  is 

complete in LP(-n, n) for 1 < p 5 2. 

Proof: When a > O, from Proposition 1.1, we see that Ip,(a) 1 5 In1 for large n, 

and so from Theorern 2.1, {eipn(z)t) is complete in L P ( - K ,  r i )  for 1 < p < W. 

A similar proof also holds in the case of a < 0. 



LVë note that  for the  case of a > O and the  case of a < 0: the numbers of elernents 

in t h e  exponential system {e '~n(~) '}  are  different. In fact, when a < 0. the  element 

'3 2% W(-1, a )  is removed from the set {&SCV(k, a)}. Tha t  means that the  exporien- 

tia1 system of the imaginary part of Lambert W functions is complete with excess 

E2 2 1 for a < O. This suggests the same might be  true for a > 0. 

Actually, Redheffer[19S3~p107] and Young[L9SO] have noted the difference of (2.1) 

and (2.2) on their escesses. and proved the  exactness of (2.1) and the over-completeness 

of (T'1i), respectively: 

Theorem 2.5 .  If {A,} is defineci by (2.L), then {eiAnt, n E 2)  is exact in  

L Z ( - i i , x ) ,  and if {A,} is defined b y  (2.2),  then {e iXn' ,n  = f 1 ,kZ  ,...} is exact and 

complete in L2(- i i ,  i i ) .  

Now suppose { p , ( a ) )  is defined as in Section 1.4, {A:} and { X i }  is defined as in 

(2.1) and (2.2), then from Proposition 1.1 we see that  for a < 0, 

and for a > 0, 

Combining with Theorems 2.1 and 2.5 ive immediately get that 

Proposition 2.2. I f a  < O, then { e ' ~ ~ ( " ) ~ , n  E Z }  is an exact cornpiele sequence 

i n  L 2 ( - » ,  ii), and  if a > O ,  then {eipn(")', n = &l, f 2, ...) is exact and cornpiele in 

L 2 ( - 7 ï ,  7) .  



Next we consider some basis properties. Note that if {el, e*, ...) is a b a i s  for a 

Banach space .il. then every vector x in the  space hw a unique series expansion of 

the form 

It is clear that each coefficient c, is a linear function of x, so we may write 

The functionals fn are called the coefficient functionals associated with the basis {en). 

Based on the above definition, it is proved in [Young, 1954, 19871 that 

Theorem 2.6. If {A:} and {A;} are defined by (2.1) and (2 .2) ,  respectiueLy, then 

neither {ei"kt, n E Z }  nor {ei"~ ' ,n  E Z \ {O)) is a basis for L2(-i;, ii). 

There is a natural question as to whether {eipn(")'} is a basis in L2(-ii, i i )  when 

a < O or a > O? W e  first give a stability result: 

Theorem 2.7. Suppose {A,} and {p,} are  two sequences of distinct real nurnbers. 

Suppose {eiXn'} is a basis and {eipnt) is complete in L2( - i r ,~ ) .  If { p n )  satisfies 

then {eipnt} is a basis in L2(-a,ir). 

In order to prove Theorem 2.7, we will need the following two lemmas (see [Young 

1980, p23 and ~401) .  



Lemma 2.1. 1f {x,} is n basis for a Banach space X and i f  { fn} is the associated 

sequence o_f coeficient functionals, then there exisls a constant M such that 

Lemma 2.2. Let {x,} be a basis for a Banach space -Y and let { j n )  be the 

associaled sequence of coeficient functionak. If is cornpiete in  X and if 

t hen  { y n }  is a basis for X. 

Proof of Theorem 2.7: 

Suppose { f,) is the associated sequence of coefficient functionals of {ei"nt). Since 

A, is real, IleiAnLII = 1. By Lemma 2.1, II f n I I  5 ibf. 

= 3([ (sin '" - 2 t )'dt) '- 
Since 

P* - L 7r 1 sin 
-7) .d 4 < T I P ~  - - LI, 

we have that  



by (2.4). Thus Lemrna 2.2 guarantees that  {eipnt } is a basis in L 2 ( - i i .  7). This ends 

the  proof. 

Noiv suppose {p,) is defined as in Section 1.1 a n d  {A,} as in (2.1) or (2.2). Note 

t hat  Ip, - Ani - F, so it does not meet the convergent condition (2.4). However 

we stiU have 

Proposition 2.3. Neither the exponential syslems {eipn(") '?n E Z }  when a < 0 ,  

nor { e i ~ & 4 t  , n E Z \ { O } )  when a > O is a basis for L'(-ri, 7). 

A sketch of t h e  proof will be presented in Chapter  5 .  

2.3 Stability properties of completeness 

As mentioned in the  last section, Sedletskii has shown that  given an  exponential 

systern, the excess will remain the  same upon smal l  variations of its sequence {A,) 

(Theorem 2.2). If we know t h a t  the  variations a re  only vertical displacements, it is 

possible to  relax such conditions. Actually, Elsner [1969] and Young [1976] indepen- 

dently proved t h a t  

Theorem 2.8. Let {A,) and iP,) be Iwo sequences of complex numbers which 

lie in a jîxed horizontai strip, and suppose that 

R(A*) = R(p*)- 

i f  {eiAn') is complete in L2(-n,  K ) ,  then { e i ~ n ' )  is also cornpiete in L2(-n-, 7). 



Almost a t  the same time, Peterson and Redheffer [197T] gave a stronger form: 

Theorem 2.8'. Let {A,) and { p , }  be two sepuences of compiex nurnbers, and 

suppose that 

then the L2 excesses ojthe two exponential systems { e i A n c }  and {e ipnL}  are equal! i -e .  

E 2 ( 4  = E ~ ( c I ) .  

Sedletskii[l97S] pointed out that  t h e  above theorern fails to  be true in LL(-n, i i )  

or C ( - x ,  T ) .  Furthermore, in [19Sj]  he constructed in L2(-sr, T )  an example which 

shows that ,  in general, the boundedness conditions o n  the  imaginary parts in the 

above two theorems can not be removed. But for some part icular  cases hc proved the  

follocving two t heorems: 

Theorem 2.9. Suppose {h,) is a real sequence, t hen  {e'(nf'hn)t)  is complete in 

C(-T, T )  provided 

Theorem 2.10. Suppose {h,) is a real sequence, and  E2 is the excess of the 

exponential system {ei(n+ihn)t) in L2( - i i ,  i i ) -  

1) /or some a E [ O ,  CG) let 

lhnl <  log ln1 (In1 L no)- 

Then EZ < [ax]  + 1. If? in addition, {a.) < $, then EZ 5 [a~]. Here [ X I  and {x) 

denote respectively the integrai and fractional parts of x. 



In particular, if condition (2.5) is ful'lled and h,/log In1 + a> as n + oo, then 

the system { e i ( n + i h n ) t ) ~ . - ,  has infinite excess in L2(-;r: R )  - 

Note that in Theorems 3.9 and 2.10, the trigonometric system may have vertical 

displacements that tend to infinity. For example, if A, = n + s i g n ( n ) F ,  and Xo = 0, 

then E2 = [SI = O. That is, the system {e iAnL)  is then cornplete L2(-ï ï ,  i i ) .  

It is natural to ask whether this proposition can be translated to non-harmonic 

series for which n is replaced by n + c with c > O? Before answering this question, 

we first introduce a nice result required later for our proof. 

Theorem %.ll[Sedletskii, 195.5]. Assume that the points {A,} and {pn) lie in 

the curvilinear strip { z  : lz~l 5 +(lxl)}, where q5(x)(x 2 0) is a positive non-decreasing 

function such that 

5 d2(n)/n2 < m and RA, = Wp, n E Z. 
n=L 

r/ l û A n l  5 ICJpnl for ail n E 2, then E2(X) < E 2 ( p ) .  

From the remark following Theorem 2.10, we see that E2(X) increases with the 

order of growth of hn. But Theorem 2.10 does not show the  difference of the two 



excesses, so here cve are  interested in t h e  stabiiity of Ez(A) in such non-harmonic 

cases: 

Theorem 2.12. Suppose {A,) is defined b y  (2.1). and  h ,  = & log In[ for  n # O ,  

and  O for n = O. Then {ei("n+ i h - ) t  n E 2) is exact. 

The above result can be obtained from a misprinted daim of Sedletskii's (we will 

discuss it later). But instead of a direct evaluation on the Mittag-Leffler function 

as in his paper, rve here give Our proof based on some properties of the Lambert W 

function. First ive give two lemmas: 

Lemma 2.3. Let Un = -in',(-C). Then the system {ei(un-') ' .  n E Z \ {O, -1)) 

is incomplete  in C[-f, f ]  ( o r  L P ( - i ,  $), 1 < p < ai). 

Proof: To prove this lemma, we only need t o  construct an entire function in the 

Paley-Wiener space which vanishes a t  every point z, = Un - i = -il.If,(-$) - i. 

Set f ( z )  = ~ f - ~  e iLLdu( t )  where w ( t )  = ( t  + A ) ~ .  Then f ( z )  is a nontrivial entire 

function of exponential type. Substitute t by t - A, then 

Notice that for f(r) = O, i ( '2As + i) must be one of the  IV,,(-f). So if we take 

L A = 5 ,  then the zeroes {z,) of f(r) corne only from { - i M / i ( - f )  - i}F-. 



O n  t h e  other hand, lrom t h e  discussion in Section 1.4, we see that  pK(-!) = - 1 

for n = O or n = -1. So z, = O for n = 0, -1. By simple computation. we see 

f (0 )  = 1 # O. Thus  al1 the  zeros of f(r) are  exactly { - i ~ , ( - k )  -i, n E Z\ { O .  -I}}. 

Thus by Theorern 1.2. {e'(un-')L, n E Z \ {O, -1)) is incomplete in C(-$: $) (or 

LP(L 2' ' 2): 1 < P < 4- 

Lemma 2.4. ( 1 )  Let pn = OX, a > O.  I/{ei"nL) is complete in  LP(-y ,y ) , l  < 

p < ai, then {e ipn t )  is complete in LP(-y/a17/cr), 1 < p < CG- 

(2) Let IL,, = An + r .  If {e'"n') is complete in LP(-y, y), 1 < p < co, then {elpnL} 

is cornplete in D'(-y - r: y - T), 1 < p < W. 

Proof of (1): If {ei'n'} is not complete in LP(-3, z ) ,  then there exists a n  entire 

function g of the  form 

- 

such that g(p,)  = O, where w ( t )  is in LQ(-:, z )  and l / p  + l / q  = 1. 

Replace z by a w  in the  above integral, then 

where w l ( s )  = w ( s / o )  is in Lq(-y,?), and s = ot. So g l ( w )  is an entire function 

satisfying g l ( X n )  = g(p.)  = O. By Theorem 1.2, {eiAnt) is incomplete in L P ( - 7 , y )  



cvhich is a contradiction. 

The proof of ( 2 )  is the same as that for (1) provided that z is replaced by z + T .  

Proof of Theorem 2.12: 

Since {c'"nt, n E Z }  is cornplete, by Theorem 2.11, {ei("ncihn)t n E Z }  is complet-e. 

Thus to prove the theorem, we only need to show that {e'(*\n+ihn)t7 ri E 2 \ {O)) is 

incomplete (see Remark 1.2 and Theorem 1.4). 

Suppose {CIk) is defined as in Lemma 2.3, then from Lemma 2.3 and Lemma 2.4, 

we see {e?l.(wk-i)c, k E Z \ {O, -1}} is incomplete in L 2 ( - i i ,  T). it follows h m  The- 

rem 2.8' tha t  { e k u k t , k  € Z \ {O, -1)) = {ek'vk(-f)t,k € Z \ {O, -1)) is incornplerte 

in L 2 ( - a , ~ ) .  

Following the approach in Section 1.4, we may reindex the sequence of {Uk} i n  

the following way: keep each nonnegative index and add one to each negative index 

since Uo = Li,. Let {Q,) denote the new sequence, then the new exponential sys tem 

{ e k Q k t ,  k E Z/{O)} is incornplete in L2(-îr,  R ) .  

Furthermore if  we set Vn = Q , / ~ A  = p, + ia,, then {Vn) and {P,) coincide 

with {V,(- f ) )  and {p,(-f )) respectively, as defined in Section 1.4. In addition, b y  

Lemma 1.2 

1 
Io, - - log ln![ < const. 

2~ 



Thus again from Theorern Z S 7 ,  { e ' ( p n f ' ~ l O g l n l ) L .  n # O )  is incornplete in L2(-ii' T ) .  

Since p, = ,on(-;), and A, is defined by ('1.1), then by Proposition 1.1 rve have 

It follows that the two sequences {p, + & log Inl) and { A ,  -+- & log Inl) satisfy the 

condition in Theorem 2.3. Thus the two exponential systems { e ' ( ~ ~ +  &loglnl)') and 

{ e i ( * n + ~ ' O g l n l ) t )  have the same excess, and thus EÎ(p)  = Ez(X). It follows that 

{ei(*'-+k loglnl ) t ,  n E Z \ {O)) is incomplete. This ends the proof of Theorem 2.12. 

From Theorern 2.1 1 and Tbeorem 2.12, the following result is obvious: 

Corollary 2.2. S u p p o s e  A, is d e f i e d  b y  (TL), 11, = A, +ion w i t h  1 0 ~ 1  5 & log ln1 

for n # 0, and ,uo = O -  Then E2(X) = E2(p)- 

By a similar argument as that  for Theorem 2.12, we have 

Proposition 2.4. S u p p o s e  {V,(a)) is d e f i e d  as  in Section 1.4 wifh  a < O, t h e n  

{ p n ( a ) t  ,n E Z }  is e x a c t  in L2(-ri, B ) ,  Le. Ez(V)  = O. 

Proof of Theorem 2.3: To prove the theorem, rve only need to show that 

{,un) is not a complete sequence if {A,} is assurned to be incomplete in a interval 

(-y, y)  (see Remark 1-2 and Theorem 1.4). Without Ioss of generality, assume y = r. 

From Theorem 1.2, there is an entire function F ( z )  in the Paley-Wiener space 

such that {A,} is a subset of its zeros. Let {X,} = {A,} u be the collection of 



al1 the zeros of F.  We can assume al1 the elernents Xn to be distinct. O t h e r w i ~ e ~  we 

rnay consider F L ( r )  = I F ( z )  instead of F ( z )  for a multiple zero X,. For each r,, 
=-A,, 

L we choose a 7; such that the are distinct, y: {P,} and Irn - rkl < 7- 

Set {pin} = {p,} U {y:}. It follows easily from the hypotheses that IL - p'i,l < 

&(lnl) where & is non-increasing and satisfies ' < m. Note that if the nurnber 

of elements in {yn) is finite, we add {yn) and {y;} to {An) and {P,), respectively. 

without changing the original question; if the number of elements in {-y,} is infinite, 

and if we can show E2(fi)  $ E~(X), then both E2(A) and E 2 ( p )  are -m. 

So without loss of generality, we assume that {A,) is al1 of the zero set of F ( z ) .  

1 '  I Then by Theorem 1.3, we have lim,,, ';;" = a. 

From Hadamard's factorization theorem, F ( z )  can be written as 

for some constant b. 

Now set 



Then the canonical product F' ( z )  is an entire function, and satisfies t hat 

From Lernma 1.1 with h = O,  to reach our goal we only need to show that 

'(InI) < CO, Theorem 2.8' allom us to Let An  = pn + ia,. With the hypothesis of 

change the imaginary part of ,un to agree with that of A,. A1so we can assume on 2 1 

for al1 n. so we may set pn = An + Tn where Tn is reai. It follows that for x E R 

where 7, = 12rn(pn - x) + r,21/{(pn - x)* + O:}. Note that when O < u 5 i, we have 

So log(1 + un) is convergent if C un is convergent. 

X Since iim,,, = a and IX, - p,I + O, we have that pn - an. From the hy- 

pothesis on 4, C log Il + 1 is convergent. 

From (1) in Theorem 1.3, we see that lirn,,, = lim,,, = a. Note that 
n 



Set iVL = [k], and No = [El. bVe consider the following three cases of r),: 

1) when 1 5 n < NI, then lx - p,l 2 pn = O ( n )  

which is uniforrnly bounded. 

2) when NL 5 n < No, then 

Since C 93 c KI and +(n) + O, then '(n) logn + O as n + oo- Thus ~ r z ~ ~  Iv,I 
n 

is uniformly bounded. 

3)  when n 2 AG, set p, - x = un-% - Then we have 

U k  ( p k + ~ ~  - 2) - CY(k f ive) - X .̂ Ctk. 

No 
O0 d ( k  + No) c 1v.l i C " +(k)  

'CE- n=Ni k= 1 1 + ~ k  k= L 

Thus we finally get 1 F'(x) (  5 constl F ( x )  1 which ends the proof. 

2.4 A note on an excess formula 

After the proof of a special case, Sedletskii [1975] daims the following formula: 

Sedletskii's claim: Suppose A, = n - @sign(n) + ia logn, n E Z \ { O ) ,  where 

a 2 0, f l  real. Define q5(z) b y  

z d(z) = z U ' ( 1  - - > 
A n  



Unfortunately, the statement above is incorrect. For example, consider the system 

1 1 1 r {ei(n+fsign(n)f & 1 0 9 ~ n l ) t ) .  Then a = ,; and 0 = -,. Ço we have (cl = - = 

-1.07 = -2 + 0.93, According t o  the claim, E2 = -1 which is in contradiction with 

Theorem 2.13- 

So after rechecking the details of the proof, they actually show that: 

Remark 2.2: Under the assumption of Sedletskii's claim. we have that Ic$(r)l = 

O ( J Z ~ * " + ~ ~ )  on D z  = -1, and 

1) E2 = [ar + 201 if {an + 2P} < $; or 

2) E z = [ a r i + 2 @ ] + 1  i f { a ~ + 7 _ B } > f .  

Corollary 2.3. Suppose {A,) is dq5ned by (2.2), p, = A,+it, with t ,  = I?, log In[, 

and to  = O. Then E 2 ( p )  = [ a ~ i  + 2P] = 1. 

Set A, = n + ( f + c)sign(n), A. = O. Levinson show that the corresponding systern 

&\"t 00 { },=-, is incomplete. But i t  is not true when An is replaced by A, + ia log In[. 

Actually, we have 

Corollary 2.4. Suppose A, is d e f i e d  as above. Then the ezcess E2 of {ei(-\n+*'oglnl)t} 

sa t is f ies E2 = 0. 



Corollary 2.4 and Levinson's example mentioned above thus gives a simple exam- 

ple where al1 of the tivo sequences {A,} and { A L , }  a r e  si tuated in the curvilinear strip 

{ r  : lyl 5 log 1x1) and Rpn = RA, for al1 n. but E2(X)  # E 2 ( p )  . 

From Corollary 2.3, Theorem 2.3 a n d  Theorern 2.S' we get that  

Proposition 2.5. Suppose {V,(a)}?=-, is defined as i n  Section 1.4 with a > 0 ,  

then E 2 ( V )  = 1. 

Next if we set / ( z )  = J:= 2( t  + r)ei i 'dt ,  then from the  proof of Lemma 2.3, f(r) 

can b e  written in the form 

2e - f(;) = --'"= { i ( z n z  + i)e'(*r=+i) I 
7 2 + -1 (2.6) - e 

which is related to Lambert PI/ functions. With t h e  following proposition about the  

function f, we can give a proof of Sedletskii's d a i m  similar t o  tha t  of Sedletskii [19TS] 

but  it avoids the long discussion of a function of Mittag-Leffler type. 

Proposition 2.6. Suppose a n  entire function f ( z )  is defined by  (2.6) ,  then it can 

be written as 

where k and 8 are real and V, is defined in Section 1.4. 

Furthemore ,  if set G ( z )  = t f ( t ) ,  and set 

and set 
A 

g,( t )  = lim 



Proof: Let l ( z )  be  defined by ('2.6), then from the proof of Lernrna 2-13. we see 

that al1 the zeros of f ( r )  are {-$(w,(-i) + l ) , n  E Z \ {O, -1)) rvhich is equal to 

IV*(-$) - &,n \ {O)}. 

Recall that V,(- f ) = p, + ion as in Section 1.4, and t hat the  sequence has the 

symmet ric property t hat 

So set on = V,(-$) - &, ' then ive have that 

Since f(0) # O, by Hadamard's factorization theorem, we c m  write f ( z )  as 

From the equation (2.6), it is easy to verify that f (x) satisfies f (x)  = f (-x)- 

Cornbining with the fact that g(x) = CJ(-Z), rve get that = -cx and B = B. Thus 

c = ik with k real and B is real. 

Set G ( z )  = z f ( z )  and 

Since f E P. we have G, E P which satisfies that J_", G,(x)l\m(x)dx = G,(o,) = 

sin n(r-a, ) 
&,Ln d ~ e r e  K r & )  = li(z-Om) is the reproducing function. 



Suppose 

is the inverse Fourier transform of G,(r). Since the comples Fourier transform is an 

isometric isornorphisrn from L2(-rr? ii) onto al1 of P and since li,(i) = I?; Jz, eiumte-izt dt 

is the Fourier transform of eiQmt, it is easy to see that its inverse Fourier transform 

{g,) is biorthogonal to {eirnL}.  

2.5 Difference of excesses in complex domain 

In the last section, we have discussed and compared the excesses of two complex 

sequences having the same real parts. In this section, we consider some cases when 

they have the same imaginary parts. 

In 1999, Fujii, Nakamura and Redheffer proved the follotving result: 

Theorem 2.13. Let {F,} be a complex sequence such tha t  Ip, - ni < c /or 

-W < n < oo- Let  Xo = po and 

where a 2 O and  b > O are constants. Then & ( A )  5 E 2 ( p )  on the interual (-ir, T ) .  

As was the  case with Theorem 2.5, the condition Ip, -nl 5 c is too strong. Indeed, 

we will now extend the result above to complex sequences such that IRp, - nl 5 c. 

Details are explained in the following theorem: 



Theorem 2.14. Assume that {A,) and { p , }  are Lwo cornplez sequences whose 

points lie in  the curuilinear strip { z  = x + iy : lyl 5 + ( l x [ ) ) ,  where @(x)(x > O )  is a 

positive non-decreasing function such that 

Assume that Xo = po and 

where a 2 0, b > O are constants. I f  1 % ~ ~  - nl 5 c for  al1 integers n ,  then 

E2(A) 5 E2(p)  on  the interual (-?r, 7i). 

Proof of Theorem 2.14: 

A simple induction argument using Theorem 1.4 shows that any finite number 

of terms can be replaced without altering the cornpleteness as long as  no repetition 

occurs. Therefore, we assume without loss of generality that po = Xo = O and 

This may increase the value of c, but it does no harm to our proof. 

Now suppose {p,)r, is exact. To finish our proof, we only need to  show that 

{A,}nER~o) is incomplete. 

Set p ,  = ,& + ion and An = CI, + ia, where B,, a, and on are real- Then 

a ,=,&+a,  a_,=@-,-b,  n > 0 .  



From the conditions of 1/3, - nl 5 c and El 3 < ca, we see that  

Consequently, we can assume (A + k) = b- It follows from Theorem 1.2 that  
P-n 

there is an entire function F l ( z )  corresponding to  the  sequence { p n ) , E z \ ~ O )  S U C ~  t hat 

Fl(x) E L2(-cm, LX). By Hadamard's factorization theorem it follows that 

for some constant a. 

By a similar argument as above, we set 

Then al1 three functions GL(;), G2(i)  and F 2 ( z )  are entire. From Lemma 1.1, it 

suffices to  show that  

on the  x-axis for some constant C. 

Frorn the hypotheses of t he  theorem, we have that  the  series C' 2 < a>. Since 

= O(&) it follows that  Cf converges. So QZ, n2 an 



converges to a non-zero constant A. Consequent ly, 

Note t hat 

which converges. Furthermore 1QI-(x - i) 1 + 1 as x + +CO. 

Consequent ly, 

Similarly, we get that IQ+(x - i)l + 1 as x + -ca, and 

Nest  consider Fl ( r ) /G l  (z). Sirnilar to above discussion, we have 



0 3 3  Z - C L - ,  3C " B-n  P n  Z - /Yn 
B =  nl-- 1, o - ( ~ )  = n and o + ( ~ )  = -,Ln n= 1 z - on n=l P-n Pn n=l 

By the same argument as above. vve get tha t  

Consequent Iy 

Note that when n > O, A, = pn + a ,  and when n < O ,  A, = p, - b. So we have 

t hat 

and that 

To prove (2.8) for al1 x E R, we consider the three cases: x < -M, x > M and 

-LW 5 a: 5 iM for some sufficiently large M. 



First for x < -:'LI, we have that 

G2 2-i Next it is sufficient to  show that 1 G,(L-i:b) 1 is uniformly bounded. Note that 

IV here 

- 0 - , a , ( x  - i - a,) + (ban - aa-, - ab)(x - i - a,) - 
a-,an(x - i -an + a  + 6) 

Since a, = Pn + O(1) = n + O(1) for al1 n E 2, by a simple calculation, we have 

that for sufficiently large M > O and x < -iM, there are constants KI > 0, and 

K 2  > O such that 



Thus when x < -kt, we have that 

which is uniformly bounded. So there exists a constant C L  ( M )  such that F2(x - i)l 5 

CI(iLI)I Fl(x  - i) 1 for any x satisfying x < -M. 

Similarly we can show that (F2(x  - i)l 5 C 2 ( M ) 1  F L ( x  - i)l for any x satisfying 

x > LM. 

From Theorem 2.8, we can assume that un # -L for al1 n E 2. Then  it is obvi- 

ous tha t  IF2(x - i)( 5 C 3 ( n / f ) l F l ( x  - i)l for any x satisfying -iV < - x 5 M. Thus 

1 F2(x - i)l is uniformly bounded by IFL(x - i)l for any x E R. This ends the proof. 



Chapter 3 

The series expansion of complex 

exponent ials 

3.1 Introduction 

In the last chapter, we have discussed under various conditions on A, t he  corn~le te -  

ness of {eiAnz} in L2(-T,  ii), i-e. if f (t) E L2(-n, K), and if Jz f ( t )e iAntdt  = O ,  t hen 

f (x) is a nul1 function. 

In general, such results d o  not imply tha t  f ( x )  can he represented by a series 

C a,eiO\n'. I t  only implies t ha t  for given any c, it is possible t o  find a polynomial in 

{e iAnX} ,  P, (z), such t ha t  

L 1 f (x) - pC ( x )  I2dx < c. 

Therefore it is of interest t o  find conditions under which it is possible t o  get a series 

representation for f (x) in terms of {e iAnr}  analogous t o  t he  Fourier series. Under the 

condition [A, - nl 5 D c f ,  such series were studied by Paley and Wiener, and 

Levinson extended the  result t o  D < i. Furthermore, Levinson showed t ha t  his re- 



sult is sharp in the  sense tha t  if D = $: then the conclusions no longer hold in general. 

1 For the special sequence {A,) where A, = n + 4, n > O,  A-, = -An7  and A. = 0, 

Young showed that  the  concIusion holds in such a extreme {A,). In t his chapter we 

will discuss a case under which the  above extreme case of {A,} are  perturbed, i.e. 

we try to get a series representation of 1 E L2(-ri, T )  in terms of (eipnt) .  The  main 

result is the following: 

Theorem 3.1. If the {p , )  are given as in Section 1.4 with a < O, then each 

function 1 in L2(- ir ,  ri) has a unique non-hamonic Fourier expansion 

f ( t )  -- C cneiPnt 

which is equiconvergent with its ordinary Fourier series un$ormly on each closed 

subinterual of (-ri, n). Specifically, the system {eipnt  ) pussesses a unique biorthogonal 

set {g,(z)) such that the series 

converges unqonnly to zero on each closed subinterval of ( - 7 i - ,  T). 

For a variety of other equiconvergence results on the  complex zeros A, of a special 

class of ent ire funct ions, please refer to Sedleckii[l970, 1972, 19733 o r  Verblunsky[l956, 

19611. For the norm convergence in L?, one ma'; refer to  Benzinge. 

Since the Fourier series of an  L2 function converge to  t h e  function pointwise al- 

most everywhere (see for example [Young. 19SO]), we have t ha t  



Corollary 3-1. Linder t h e  hypotheses of Theorem S - l ?  

f ( t )  = C %ebnt 

almost eve,rywhere on  (-n: n )  - 

3.2 Asymptotic estimation of canonical products 

Suppose {A,} is a real sequence. Set 

In 1934, Paley and Wiener proved that if IA, - nl 5 h where h > O is constant, 

t hen the above function Q (x) satisfies 

for x E R, 1x1 2 I, provided in the case of the first inequality that lx - A, 1 >. & for 

al1 n, where K I ,  1c2 and & are positive constants. 

Later, Redheffer pointed out that the above result can be made more precise: 

Theorem J.I[Redheffer, 19541- Suppose the real sequence {A,) satisfy IA, - n 5 

h /or some h > O and suppose Q is given b y  (3.1),  then for z E R, xQ(x)  = o(z") 

a s  x  + m. I f  6(x) + O as x + ca, there exists h > O and a sequence A, with 

IXn - nl 5 h S U C ~  t h a t  z j Q ( t j )  > 6(xj )x jh  107. iî s e p e n c e  ~j wi th  r, + 00. 

In 1983, with the aid of the î function, Young showed that  if A, = n + $ for al1 

positive integers n, A-, = -A,, and A. = O, then IxQ(x)[ = O(*)  as x + m. .41so 
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1 P in  1983, Redheffer proved that  IzQ(x)l = O ( X - f  log-2J r) where  An = n + + G. 

Here we give an es t imate  of x Q ( x )  for more general ~ e r t u r b a t i o n  of n. 

Theorem 3.3. Let A, = n +en, A-, = -A,, and O 4 h l  < c, 5 h2 5 !j for afl 

positiue integers n. Suppose Q is defined b y  (3.1), then there exist positive constants 

do, and t.C2 such that 

for suficiently large x, provided in the first inequality that lx - A n [  > for al1 A,. 

Proof: From the  symmetry  of Q ( x ) ,  we assume x > O. Let A ( r )  be the  number of 

A, on ( 0 , r )  and note tha t  A(n)  = n on  (An,X,+,). Then 

where 

Suppose An < x < An+1 for some n,  and take 



and 

Note that  

L+L 2 - 6  =C - L+L 
n {(log - + Log 1 - 1 )  - log 1 

A n  x + &  x - A, 
I  

Note that  when x is sufficiently large, we have 

x - An+ 1 
nSl 5 -n log 1 

x - A, I + C  

and 

x s z  5 x log 1 x - L+L 
x - A, I  +c 

where the constant C may be different. 

Then we have 

) (n  - r )K(x , r )dr  5 (x - n )  log 1 X - Xn+l 
x - A, 

] +c. 

Since 1; -dr = O ,  it lollows that 



From the  definition of {A,)? we see that  

Since A(r) - r is almost  periodic in [l, m), its graph looks like a sawtooth, so ive 

have 

Si nce 

1 1 
log IQ(x)l 5 3(-hl  - -) logx  + (-hl - ?)(- l o g x )  + C 

2 - 
= (-3hL + h2 - 1) log x + C. 

So for a sufficiently large 1x1, there is a constant such t h a t  

Similarly, i f  lx - A, 1 3 E for ail n, then 

1 1 
log IQ(x)I 2 (3 log x ) ( - l  - hz + ?) + (- log x)(-hl - -) - 3 

= -(:3h2- h l  + 1) log x. 



Thus there esists a constant Kl such that 

IxQ(x)I L r \ ' l ~  - ( & - h l )  

This ends the proof, 

When h l  = h2 = i: Young's estimation follo~vs from the  above results. 

Now for A, = p, with p, defined as in Section 1.4 with a < O, let us consider the 

corresponding XQ (2): 

Set h l  = - E ,  and h2 = $, then after replacing finitely many terms of p, by n + i, 
al1 p ,  satisfy the condition in Theorem 3.3. Since replacing finitely many terms in 

{ p , }  does not change the  limit of IxQ(x) 1: so we have the  following estimation: 

ri--1121-f-c 5 I ~ Q ( x ) ~  5 ~ x l - t + ~ ,  

where E is any positive constant. 

It is possible to  obtain a slightly more precise estimate: 

Lemma 3.1. Suppose A, = p,, where p, = p , ( a )  is defined in Section 1.4 with 

a < 0 ,  and Q is- defined a s  be fore, then there exist positive constants JI, Ki and [c2 
such that 

as x + cm, x E R, p~ov ided  i n  the Jirst inequality ihat lx - p,l > 61. 



Io n Proof: Since p , ( n )  = n + $ + O(+) for n > O' we see that the nurnber A,(r) of 

p, in (O, r )  should satisfy 

On the other hand, since 2% 2 * n for 1 < - n < - r 5 n + 1, then we have 

From the proof of Theorern 3.3, we only need to  show that 

00 log r 1 K ( x ,  T)-dr < CO- 
r 

üsing partial fractions to expand r,(::'r2,7 then we see that 

2x2 logr  O0 logr /I r ( z 2 - r 2 ,  r 
dr  = 2 d r  + O(1). 

Now set p, = {t : Ir - z[  = L,O 5 argz  5 g}, then Jpz s d z  = O ( $ )  = O(1) 

as L -+ m, then by integration over a contour in the first quadrant, we can repIace 

integrat ion over the positive real axis by integration over the positive imaginary axis 

and we obtain that 

This completes the  proof. 

Lemma 3.2. Suppose {A, = n + ~ign(n)!},+~, and Q+) = nJ(l - 5). Set 

G1 (z) = zQ1(z), then for x E R, 



vhere iV := N ( x )  = mas{n E N ; n  + $ 5 [ X I ) ,  and is constant independent of N ,  

and x. 

Proof: Set !V = max{n E N , n  + f 5 lx[}, then 

LVe write the product G~(x) in three parts: 

where H(x) is defined by 

From the functional equation r(l+ z )  = z I ' ( z )  (see for example, [-4rtin11964]), we 

know 

and 



It folIows that 

Since the Gamma function r(x) satisfies 

provided al + a2 = bl + bz (see [Artin, 1964]), we get 

where the last equality follows from (see [Artin: 19641) 

and 

Since 

al1 the possible singularities of this function have disappeared. So it is bounded. 



r( =+O O n  the other hand, since - lzl0-' (see [Artin, 1961]), we have that 

N t 2  Thus IGi(x)l 5 Link=, / A l  - x l i x [ - t ,  which completes the proof of Lernma 3.2 .  

Remark 3.1. Actually from the proof of Lernrna 3.2, we have got that  

where KI and Ir; are  positive and iV is the same as in Lemma 3.2. 

Lemma 3.3. Suppose that in Lemma 9.2, {A,) is replaced b y  {pn(a)} which is 

defined in Section 1.4 with a < 0 ,  and  Q(r) = n'(L - 2). Set G ( z )  = zQ(z), fhen 

we have that for al2 x E R, 

where lie is a constant and no is an integer dependent on x. 

Proof: Suppose Q ( r )  = n'(1 - h), and QL(z)  is defined as in Lemma 3.2, t h e n  

both of Q(x) and QI(x)  are  even functions. So we only need to  consider the  case of 

x > o. 

Since replacing finitely rnany terms of {p , )  does not change the  behaviour of G ( x )  

as x tends to infinity, we assume p, < An for al1 positive n. Let A, be the intesval  

(p,, A,) for a11 n 2 1. Suppose A.\(t) and h,(t) are t he  numbers of {A,) and {pn> in 

the  interval (1: t ) .  Then  we have 



From the proof of Theorem 3.:3, we sec 

Io n and lAnl = An - p, = O(+), and pn - n,  the first two terrns of the right side of 

the equation 3.2 are bounded by a constant which is independent of x. Thiis 

Now suppose x satisfy p,, 5 x < pno+l for some integer no, then 

1 1 

-dr 5 log 1 - f%tk  

x - r  k=- 1 - &+k 
I 

RecalI that lAnl = O(%), so we get that 

where Z L ~  = pk+no+l - x. Since '- - it is uniforrnly bounded by a constant 
" k  

independent of x. 



Note that  

no -2 c Pno-2 log r 
< Ll d r  = 0(log2 p,, ) = 0(iog2 X) , 

n=2 P n  r 

and since 

no -2 c 10gPn '-1 d r  Z-L d.u 
< ~ o g x j l  - x - r  < i o g x l  - = 0 ( l o g 2 s ) ,  

n=2 - Pn U 

we get that  

s e t  G(x)  = @(x) and Gi(x) = xQl(x), then t h e  above deduction yields that 

Recall t hat N in Lemma 3.2 and no defined above satisfy the conditions 



So the lemma is true in this case. If x E [Ano, pnocl), then no = N .  Similarly we 

have 

This completes the proof of the lemma. 

Remark 3.2. By changing 

can show that 

the roles of Q ( x )  and Ql(x) in the above a roof, we 

where IiJ and I L  are positive and no is the same as in Lemrna 3.3. 

Next we use a different evaluation method to prove a lemma which plays a key 

role in Young's proof. 

Lemma 3.4. Linder the asswnption of Lemrna 3.3, the foifowing estimation holds: 

log n 
= O(T)  

and 



Proof: Assuming n is a large and positive number, we write 

Then from Lemma 3.1 and Lernrna 3.3, we see tha t  

and 

log n 
= O(,,)- 

Similarly, we get 



and 

+ 1 ) -  From the definition of no in Lemma 3.3, we Norv consider x E ( ~ n  - 5, pn 

also have 

Pno < X < P n o + ~ ,  

1 
then Pno I pn + 5 and p, ,+~ > p, - - 2 It follows that 

n - l L n o < n + l .  

Thus n E {no - 1, no, no + 1). Combining rvith Lemma 3.3, we get 

Therefore I = O( ; )  as n + cri, which ends the proof. 

For complex variable r ,  the value IrQ(z) 1 was estimated by Levinson[Lemma 16-11, 

who proved that if {A,) satisfies I X ,  - nl 5 6 < a, and Q ( r )  is defined as above, then 

Young[l983] noted that the above is true for 6 = i. Since Ipn (o )  - nl 5 $ for large 

n, we have the following lemma: 



Lemma 3.5. If An is replaced by p, (a)  in Section 1.4 for a < 0, and G(z) = 

rQ(z),  and z = x + iy, then there erist positive constnnts Ji1, 11-2 and C such that 

a n d  IG($ + iy)l 2 C. 

3.3 Integral expression of canonical products 

Let A, = n + f, A-, = -A,, and Xo = O. Redheffer and Young[2] pointed out that  

the  system {eAnt) is orthogonal to the systern {gn/G'(Xn)) ivhere 

with f ( t )  = (cos 5)-f sin and G(z) = JZr f(t)ei"dt. Since p, - n is different from 

A, -n in that t h e  former is dependent on n,  we cannot use Levinson's method to find 

such an explicit formula. Before continuing on this topic, we first give the following 

result : 

Theorem 3.4. Let {p , }  be a real symrnetRc segoence satisfying Ip, - n - i l  5 

I P ~  - n - $ 1  where { p , ( a ) )  is defined in Section 1.4 with a < 0, and let 

Then Q ( t )  is expressible in the form 

with d ( t )  in L2(-ii, li) satisfying $ ( t )  = 4(-t) a-e. in ( -T ,  rr). 



Proof: We already know from Proposition 2.2 t h a t  if a < O, { e i p m t :  n = fl. f 2, ...} 

is incornplete. Then by Theorem 1.2 there is a nontrival entire function f l ( z )  of 

exponential type 7', vanishing a t  each p,: and expressible in the form 

with d ( t )  in L 2 ( - i i ,  îr). We wiil show tha t  Q is a mult iple of fl. 

First we see f 1 ( O )  # O .  O t herwise, such 4 would be orthogonal to al1 {eipnt7 n E Z }  

which is complete in L2(-T,  n). It wodd follow t hat f 1 = 4 = 0. 

Now set f2(z) = e. Let n ( r ) ,  rrl(r),  n2 ( r )  be t h e  nurnber of zeros of Q, fi, and 

f2 in the  disk Ir1 5 r. 

From Proposition 1.1, we see tha t  n(r )  = 2[r - !] + O(?) ,  and thus 

O n  the other hand, since f i  is of exponential t y p e  r, 

By Jensen's formula, we have 



T hiis 

which implies that n 2 ( r )  5 1, so f 2 ( t )  has a t  most one zero: say at z = zo- Since 

Q ( z )  is at most of order one, by Hadamard's theory, 

Now to finish the proof, we only need to show that f I  is even on R, since it will 

t ben follows t hat A = p = 0. 

Set 

Since Q ( t ) d t  = J', 4 ( - t ) d t ,  we have that  F ( 0 )  = f l ( 0 ) .  B y  the symmetry of 

(p , ) ,  we also have F(p,)  = O for n = +l, f 2, .... It follows that f l ( t )  - F ( z )  = 

a5 t -4(-t) * 13 )entdt  vanishes a t  al1 of {p, )~=- , .  Since {e"nt)~=-,  is complete (by  

Corollary 2.1 and Theorem 2.2) in L2(-ir,  ïï), t hen we have that 4(t)  = <b(-t ) a.e on 

(-T, T I .  

Furt hermore i t guarantees t bat 

Since both of Q and f i  are even, we have A = p = O which completes the proof. 



From Theorem 3.2, we see that Q is in the Paley-Wiener space with I I  Q II = I I  d I I -  

This gives a short proof of a part of Lemma :3.5 

Corollary 3.1. Under  the  a s s u m p t i o n  of  Lemma  3.3, there  exists a constant 

1Vf > O such  that,  j o r  ail z = x + iy, 

Proof: Since Q ( z )  is in the Paley-Wiener space and satisfies J-: lQ(x)12ds = 

J> l+(t)12df < m, we see that Q(x)  is bounded on the real axis, namely by hl. 

Then the corollary follows from Young[lSSO, p.821. 

Now set G(z) = zQ(z )  and define G,(z) by 

then G,(z) also belongs to the Paley-Wiener space. Next take the  integral as a limit 

in the mean of the L2 space, then we define 

Lemma 3.6. T h e  sequence {g,(t)) defined as above is a biorthogonal s y s t e m  of 

{eipnt,n E Z }  in L 2 ( - i r , ~ ) ,  and  g,( t)  vanishes almost everywhere outs ide  (-li,a). 

F u r t h e m o r e  {g , ( t ) )  is no t  a Riesz basis. 

Proof: As in the proof of the Paley-Wiener theorem (see Young[lSSO, pp.101-103]), 

we obtain gn(t) = O almost everywhere outside (-r, li). By the  Fourier inversion 



formulal we have that 

for n = 0: I l ,  &2, .... Thus {g,(t ) }  is the uniclue biort hogonal sequence dual to { e i p n t  }. 

Furthermore {g,(t)) is not a Riesz basis since { e i p n t }  is not a basis (Proposition 2.3). 

Note that { e i p n t }  is complete and exact, and thus any f in the Paley-Wiener space 

is uniquely determined by its values a t  {p,). So 

is valid for every function f in the Paley-Wiener space. 

3.4 Proof of Theorem 3.1 

For the entirety of the proof, we only summarize the ideas and unchanged calcula- 

tions in Levinson's proof and Young's proof, but set forth the necessary modification 

explicitly. 

Let C denote a rectangiilar path in the complex plane with vertices at ( N  + $ + 
iiM, - N  - 1 2 + iM, - N  - 2 - iM, N + 5 - iiM). G(r)  is defined by 



where p, is defined in Section 1.4 with a < O. By LemmaI3.6. {g,(l)) is a biorthogonal 

system of {e 'pmL] .  Then using residues, Levinson shows that  

Suppose f E L2(-a, ri), then 

Now by well-known results f rom the  theory of Fourier series, t o  show 

we only need to show the left s ide  of equation (3.5) tends to zero as N + W. Next 

we consider the right side of t h a t  equation: 

Let I l ( x )  denote the  absolute value of that  part of the  right side of (3.5) for which 

varies over the upper horizontal side of the  rectangle C. Then 

since G ( x )  = O(%), we have L2kL E LL(-m,  03). Appealing t o  Levinson's 

argument, the order of integration can be changed, i.e. 



where j(r)/& is the Fourier transform of f(y) .  Clearly 

Since Theorem 3.4 guarantees that is in t he  Paley-Wiener space, by Hdder's 

inequality, we have 

By Lemma 3.5. IG(6 +iiLI)I 2 BM(A.12 + iV2)-ler" for 5 N + i. Thus for any 

x in [-~+6, X-61, 11(2) 5 C3N2(MZ+ iV2)e-M(z-ltl) which tends to zero as -t a?. 

Next let i 2 ( x )  denote the absolute value of that part of the right side of equation 

(3.5) for which varies over the right vertical side of the rectangle C. Then 

By interchanging the order of integration, we find t h a t  

Then with a change of variable, Levinson shows 



Set 

Using the above two equations, together with Lemma 3.5, Levinson shows t hat 

Following Young's met hod, from the defini tion of p,, we see t hat 

t hen 

I t  follows that  



Since by Lernma3.1, I"!Yl2 = O ( N )  as N -+ CG, and by Lemma3.4, /rm, ~ e l ~ d z  = 

G ( u + l )  2 O(+),  Ive see that I_m, l . e , I  d u  is bounded a s  !V + m. 

SimiIarly, again by Lemma 13.4, 

Cornbining this with the fact that j E L2 ,  we get 

1V + 00 

If we denote by I3(x) and 14(x) the values of that part of the right side of (3.5) on 

the other two sides of the rectangle C, respectively, then clearly (3.6) remains valid 

when I i (x)  is replaced by I3(x), and (3.5) rernains valid when 12(x)  is replaced by 

L ( 4 -  

Now for any given 6 > O, we can have 1 2 ( x )  + f4(x) < 6 whenever N is suffi- 

ciently large. Fixing IV in this way, w e  may chaose M sufficiently large such that 

l i ( x )  + &(x) < 6. This shows that the right side of (3.5) tends to zero as iV + m. 



Chapter 4 

Exponent ial Frames 

4.1 Introduction 

In the previous chapters, we have discussed the completeness and pointwise conver- 

gence of nonharmonic series. In this chapter, we will connect our previous discussion 

with the concept of "frames". From the definition (see Section 1-31, it is clear that 

a frarne is a complete set. But the converse is not true. CVe will show that  typical 

examples are provided by {p,} and {V,) which are defined in Section 1.1. Further- 

more, the difference between the stability of completeness and the stability of frames 

will be illustrated by these examples. 

One aspect of sampling theory is to compare in different ways the values of g at 

t h e  sampling points with the values of g on a line. For example, Polya first proved 

t ha t  

lim sup n-L  log 1 f (n)l = lim sup r-' log 1 f (r)l = h(0) 
n+m r + a  

for al1 entire functions f of exponential type y < ir, where h(0) is the Phragmén- 

LindeIof indicator function. 



Kere Polya's theorem compares the  exponential rate of growth of the  values of a 

function a t  integers and i t s  values on  t h e  real line. Furt herrnore. Cartwright pointed 

ou t  t ha t  1 f (x) l  is bounded for x 2 O if If(n)l 5 M for al1 nonnegative integer n. 

This t ime  the  assurnption on the  ra te  of growth is tha t  i t  is bounded by a constant. 

Finally, from the point of vierv of convergence, Parseval's identity can be seen as  a 

theorem where the cornparison between t h e  two kinds of values are  based on a ra te  

of growth comparable to  Z/x. 

We will see that the integers {n} in al1 of t h e  above three theorems can be replaced 

by some sequence {A,} wit h A, close t o  n. But  how close must t hey be? 

4.2 Preliminary results about frames 

Bernstein, and  Du f i n  and Schaeffer Il9451 extended Polya's t heorem and Cart  wright7s 

t heorern respect ively t o  the  following formç: 

Theorem 4.1 [Bernstein]. Let  f ( z )  be a n  entire function of exponential t y p e  

y < r. Then we haue 

lim sup IA, 1-' log 1 f (A,) 1 = l im sup  r-' log 1 f ( r )  1 = h(0) 
n+co r+oo 

wilh  n E M, r E R, prouided lhaL (A,}?=, is a complex sequence such lhat n / A ,  + 1 

a s  n -+ w, and for some 6 > O 



Theorem 4.2 [Duffin and  Schaeffer, 19451- Let be a cornpler sequence of 

uniJorn density 1. f ( z )  is an entire function of exponential type -, < n such that 

If(A,)I 5 1, then for r = x + i y  

T h e  condition on the sequence {A,} in Theorern 4.2 can not simply be  weakened 

to ( A ,  - nl = o(n)  as in Theorem 4.1. T h e  deviation Q(n) of {A,} (see Definition 1.6) 

is related to  the  form that  the cornparison can take. T h e  following result can in some 

way illustrate this: 

Theorem 4.3 [Boas, 19543. Let {A,)??, be a complex sequence satisfying 

A - A p - r n  and IA, - ni 5 4 4  
k ( n l 4 n  1) 

for some p > O, where r ( x )  is increasing and tending to oo, but e ( x )  = o(x ) .  Suppose 

f(z) is an entire function of exponential t y p e  y < ;ir. Then 

lirn sup log l f ( x ) l  < cm if lirn sup 1% If(M < 
+ ~ ( x )  ,+O €(A,) 

Based on the above observation, Boas asked whether the  condition [A, - n[ < L 

in Theorem 4.2 can be weakened t o  (A, - n[ < s (n)  with sorne c ( n )  which becomes 

infinite? This question remains open. 

In [1932], Duffin extended Parseval's identity t o  the E'ollowing form: 



Theorem 4.4 [Duffin and Schaeffer]. L e e  {An}?=-, be a complex sequence of 

un i fomz  density d ,  and let O < y < ;rd. If f(z) is u n  entire function of exponential 

type y such that /(XI E L2(-oo,oo), then 

where the  positive constants A and B depend O .n[y o n  y and  {A,). 

From Theorem 1.1, we see that an entire function of exponential type in L2(-m, m) 

-. 
can be expressed as an integral of a function :in L2(-r;, n), so Theorem 4.4 can be 

written in the following forrn which is the begimning of the theory of frames. 

Theorem 4.4' [Duffin and Schaefer]. I/ {A,}:=-, is a sequence of u n i f o n  den- 

s i ty  ci, then the set of /unct ions { exp ( iX , t ) }  is ai frame over  the  intenial (-y, y )  where 

O < y  < r d .  

Similar to the question raised by Boas, it is natural to ask whether the condi- 

tion /A, - nl < L in the above theorem can b e  replaced by IAn - nl < €( ln[)  with 

~ ( l n l )  -+ m. We will be able to answer (in the negative) this question (see Theorem 

4.6 or Proposition 4.1). First, we state a result for the case of a Riesz basis: 

Theorem 4.5 [Young, 1980, p.1811. If the  s y s t e m  of ezponentials { e i X n t ) ~ = - ,  i s  

a Riesz  basis for L 2 ( - X ,  ii), t hen  the points A, lie in a s tr ip  parallel t o  t h e  real axis 

and are separated. 

T h e  above propositiori is not only for a Riesz basis, it also holds for general expo- 

nential frames: 



Theorern 4.6. Cf Ihe systern of ezponentials {ei"n'}  is a frnrne for L 2 ( - i i :  z), 

then  the points An Le in a strip parallel t o  the real azis. 

Proof: Suppose {e'"nL} is a frame for L2(-ri, T). Then i t  is a Bessel sequence, that 

is C,  1 J_", / ( t  )e',lntdt l2 < co for al1 / E L2(-lr, îr)- Then from Bari's t heorem[Young, 

1980, p - l j j l ,  there is a constant !LI such that 

holds for every finite sequence of scalars {G}. 

Take en = I when n = N and O othercvise, then 

So i f  sup, (SA, ( = oo, then sup, II c Gei"nL112 = a> which is in contradiction with 

Bari's theorem. 

Proposition 4.1. Suppose V,(a) is defined as  in Sect ion 1.4. T h e n  the  exponen- 

tial sys tem {eiL'n(a)t} is not  a jrame. 

Note that even though the sequence { V n ( a ) )  in the  above proposition does not 

s a t i sk  the sampling conditions for the lower rate of growth in Theorem 4.4, it does 

satisfy the conditions in Theorem 4.3 with a function of (rapid) growth ~ ( x )  = (log x ) ~ .  

W e  thus have: 

Proposition 4.2. Suppose { V n ( a ) )  is defined a s  in Section 1.4 with n > O and 

j(t) is an entire fiinction of exponential type y < 7i- . Then we have 



Proof: Taking É(X) = (log x)*; t hen c ( x )  satisfies the hypotheses of Theorem 4.3. 

From Proposition 1.1, we see that 1 Vn(a)  - V,(a) 1 is greater than 5 ln - ml: and for 

sufficiently large n 

So Proposition 4.2 follows from Theorern 4.3. 

4.3 The stability of frames 

In this section we will discuss the stabili ty of frames. In opposition to complete se- 

quences, frames have a uniforrn constant bound on the variation of their sampling 

sequence. 

Theorem 4.7 [Duffin and Schaeffer]. Let {ei-'nt) be a frame over (--y, y). Then 

there is a Ji > O such that {eipnt) is a /rame ove+ the same interval wheneuer 

I P ~  - A n 1  < J i -  

For an  application of this theorem, we first introduce the following definition: 

Definition 4.1. An exact complete seguence is said to be extreme $ there 

exists a  cornpfex sequence {A,) svch that Ipn - An]  + O as  n + ca, and An satisfies 

that {A, + ~ s i g n ( n ) )  is incomplete for any  É > 0. 



Coroilary 4.1. An extreme sequence is not a frame sequence. 

Proof: Suppose {pn) is an exteme sequence and suppose it is a frame. Then by 

Theorem 4.7 there is a constant JI > O such that {eknL} iç a frame for L 2 ( - i i ,  x) 

provided lan - p,I < Ji for al1 n. 

On the other hand, from the extreme property of {p , }  there is a sequence {A,) 

such that for a given integer iV > 0, 

6, I I 7  - when l ~ l n  - A n  

and {A, + ~sign(n)} is incomplete for any E > 0. 

Now take a, = A, + 9sign(n) when In1 2 N and a, = p, when In1 < N. 

Then by Theorem 4.7, {a,) is a frame, and thus complete. Replace by 

{A, + $ ~ i ~ n ( n ) } ~ ~ ~ ~ ~ ,  and denote the new sequence by {&). Then the systern { e ' ~ - ~ ' }  

is still complete (see Theorem 1.4). But this is in contradiction with the assumption 

on {An}- 

Corollary 4.2. Ajler adding (or removing) a finite number of elements from an 

eztreme sequence {a,}, the newly f o m e d  sequence {a,} is stdl not a frnrne. 

Proof: Suppose {a,} is an  extreme sequence. We claim that {Pi, --., Be, a,}nEN 

is not a frame. Actually from Definition 4.1 and Corollary 4.1, we know that {a,) is 

complete and not a frame. Thus Theorem 1.5 guarantees that {Pl,a,},,N is not a 

frame but complete. Continuing in t his way, we complete our proof. 



From Theorem 2.5, we have that {An)n+o and are exact. Furthermore 

by the formula in Remark 2.2 with n = O, it can be shown that { A n  +c~ign(n)} ,~~\{o)  

and {A: + c ~ i g n ( n ) ) , ~ ~  are incomplete. Then Corollary 4.1 and 4.2 gives t hat: 

Proposition 4.3. Suppose p,(a)  is defined as in Section 1.4 for n > O or a < 0. 

Then the exponentid system {eipn(")'} is not a /rame in L 2 ( - s ,  s ) .  

Next assume {A,} is a (complex) sequence of uniform density d. From Theorem 

4.4', we see that if one removes any finite number of elements from {A,}? the rernain- 

ing sequence is still a frame sequence for L2(--y, y) ,  where O < y < r d .  Indeed, t his 

only changes the bound L where I X n  - n / d [  < L to a larger one. This means that the 

excess of the frarne system {eiAnt } for y )  is infinite. Note that a Riesz basis 

is an exact frarne (see [Young, 19S0]), so {eiXnt) is too overcornplete to form a Riesz 

b a i s  for LZ(-y, -y). 

Now we turn to the case of y = T. Paley and Wiener's result shows that the sys- 

tem {eanL) is a Riesz basis for L 2 ( - K ,  T )  provided (A, - n[ < 6 = 5.  The constant 

- 02-06 .... Finally, Kadec proved L was improved by Duffin and Eachus to L = y - 
that: 

Kadec's theorem. If {A,) satisfies IX, - nl 5 6 < 4 with n E 2, then {eiXnz} is 

a Riesz basis for L2(-T, T )  . 

In 1953, by studying the biorthogonal sequence, Redheffer and Young proved that 

{eiAnt} is not a Riesz basis for L 2 ( - n ,  ir) if A,, is defined by (2.1). Furthermore they 



1 pointed out t hat Kadec's condition above cannot be loosen to (A, - n 1 < ,. 

Since a Riesz basis is a frame, then from Corollary 4.1 we have 

Proposition 4.4. Suppose A, is defined 6y (2.1) or  (2.2).  T h e n  {ei'nt} is not a 

Riesz bask provided p, - A, -+ O as n + m. 

The above proposition indicates that the constant 6 in Kadec's theorem can not 

be replaced by any function b(n) tending to i. 

4.4 Explicit bounds for horizontal displacement 

In the applications of frames (wavelet theory, irregular sampling as well as our goal 

in delay-differential equations), it is very important to have good estimates for the 

optimal frame bounds. The reason is that  they play a decisive role for the speed of 

convergence for some reconstruction algorithms. The constant L allows us to obtain 

lower and upper bounds of a frame. 

Note that in the last section, Kadec's theorem discussed the stability of a trigone 

metric system to remain a Riesz basis under small pertubations. For exponential 

frames, a similar result also holds true. Balan [1997] and Christensen [1999] indepen- 

dently proved the following result: 

Theorem 4.8. Suppose {eiXnt  ) is a frame for L 2 ( - y ,  y) with bounds A,  B, where 



{A,) are real. Set  

I/ the  renl sequence {pn} s a t i s - e s  Ip, - X,I 5 b < L(y), then {eip-') is a frame for  

L2(--y7 y )  with bounds: 

- 4  - ( 1  - cos + sin 76j)2? B(2 - cos y6 + rin16)'. 
B 

Since L ( y )  > Lo(y )  = + l n ( l  + &), Balan's result above is an improvernent of 

the earlier result of Duffin and Eachus in which the  variation of the sequence {A,) is 

bounded by Lo(-y)- It also extends Kadec's theorem to tight frarnes. We nest make 

some modifications to Theorem 4.8 for some sequences which are L'nicely" distributed. 

Theorem 4.9. Suppose {A,} is a frame sequence of real numbers for L2(-ii? n )  

with bounds -4, B. Let {P,} be a real sequence satisfying O < 0 5 Ip, - A,( 5 6 5 f ,  

and let o > O satisfy (1 + 0) 9 < 1.  Then  { e i p n ' )  is a frarne over  L2(-a, ii) with  

bounds 

and 

1 1  
6 < - -  - arcsin 

3 n 



As an example. i f  we take 6 = 0.76 and -y = ii, t hen Theorem 4.8 g~iarantees the 

stability of the frarne with L = 0.2211. tha t  is, if I p n  - X,I 5 0.221 1, then ( r i p n t )  

is a frarne if {eiAnt } is. By Theorem 4.9, we have t hat { e i p n t )  is a frame whenever 

ei.\"l { } is and -& 5 Ip, - An[ 2 0.2234. Note that since -& = 0.222 .... this case was 

not covered by Theorem 4.5. 

The proof of Theorem 4.9 will be given shortly. But first let us state a t heorem 

on the perturbation of general frames. In 1995: Christensen proved: 

Theorem 4.10. Let { f i ) i e r  be a frame for  a Hilbert space H with bounds -4 and 

B. Then a n y  farnily {g i } iE I  of  elements i n  H is a frarne f o r  H with bounds A( 1 -fi)2 
and B ( l  + G)2 prouided 

It is interesting that  the  perturbation condition only depends on the lower bound 

A. Later, Cazassa and Christensen improved the above theorem and obtained: 

Theorern 4.10'. Let { f i )= ,  be a frarne for a Hilbert space H with bounds A,  B. 

Let { g i ) Z ,  be a sepuence H .  As sume  there exist nonnegatiue constants  pl, pz, and p 

svch that max(pl + -&, p2) < 1 ,  and 

for al1 cl, c2, ...; c,. T h e n  {gi)PO_l is a /rame with bounds 



Proof of Theorem 4.9: 

Let n E N ,  and c k  E C (12=1,2, ..., n)  be arbitrary. Set = pk - XI., and set 

The conditions on 6 and O imply that  O E [O, 1). So 

Following Kadec's proof, we expand 1 - (1 + o)eid*' in Fourier series to obtain: 

(- l)r2& sin r J k  
cos(rz)  ,=, 4 ~ '  - m 

Note that 

Since CT satisfies 1 + O <  A, then we have 

sin ~ d k  sin ~6 
11 - ( l +  0) 7r6k l <  - 1 - ( 1 + 0 ) ~ :  



and 

I 
' 2 ~ 5 ~  cos ïi6k 26 cos nt5 

I <  
T((T - $)2 - 6:) T((T - $ ) 2  - d2) ' 

So combining with the estimation in [Kadec], we get 

sin ird OQ '26sinrd u 5 J B ( 1  -(l+~)-+(l+o)C a6 
r=L x ( r 2  - a2) 

'26 cos ir6 n 

T ( ( T  - 1 . 2  - 
r=L 2) 62) )(c IC=L ~ [ c i c l l ~ ) ~  + 0 1 1  k=l 

c k e i ~ k Z ~ l  

sin nd 
= JB(1 - (1 +O)- 

1 + (1 + a) sin n6(- - cot na) 
sr6 7f6 

Note that this implies that  

Now taking Theorern 4.10' with pi = 0, pz = O, and p = JB{l+ (1 + o)(sin iib - 
cos ?i6)}, we see t hat for {eip*")  to be a frarne over L 2 ( - T ,  T), we only require p < fi. 

That means 



1 1  Thos 6 < L = - ; a r ~ s i n ( ( , , ~ , ~  (1 - &)). The bounds on the  frarne now 

follows directly from Theorem 4.10'. This completes the proof. 

Now we know t hat {ek'("+f 1) is not a frarne over L2(-n, ii): but it is a frame over 

L2(-y,y)  when y < i;. To compute the frame bounds in this case, we have to find a 

basic sequence {A,} for applying Theorem 4.8 and 4.9, and a reasonable sequence is 

al1 the  integers. To figure out the upper and lower bounds of such an integer frame 

for L'(-y, y)  ivith y < T ,  one may refer to Plancherel and Polya's work [1937]. 

Since I_m_ (f (x + c)I2dx = J'?. 1 f (x)('dx for any real constant c, rve have that the 

bounds actually depend on the distance between any two a,. The following theorem 

illustrates t his: 

Theorem 4.11 [Plancherel and Polya]. If / is an  entire function of exponentiai 

type y ,  then for a n y  real increasing sepence {A,} such that A,,, - A, 2 6 for some 

6 > 0 ,  we have 

and in particdar 

Though the constant bound in (4.1) is dependent on the type y, we have the 

following result: 

Theorem 4.12. For a n y  entire funclion f ( z )  of exponential type y > O satisfying 



J-=", lf(s)I2dz < CO. there erisls a real constant cc such that g ( z )  = f  ( z  + a )  and 

Proof: Let f(z) is an entire function of exponential type y > O. Since 1 f I 2  is 

subharmonic, then for 6 > O and w E R? we have 

.>k- 1 Suppose k is a positive integer. Let 6 = 5 and w = n + for j = 1: ..., - - 

Then it follows that 

+-1- for j = 1, ..., - 

Set f j ( z )  = f ( r  + g), then f j  is an entire function of exponential type 7, and we 

have that 



k -+ 00, we have obtained that 

which completes the proof of Theorem 4.12. 

4.5 Explicit bounds for vertical displacement 

In the last section, we have discussed the stability of frames when the variation occurs 

along t h e  reat axis and new upper and lower bounds were obtained from the size of 

t hese displacements. Here we rvill be concentrat ing on displacements in the direct ion 

of the  imaginary axis. 

Theorem 4.13. Let A, = an + ion be a sequence of unifonn dens i ty  I with an, ,8,, 

real, l&,l < 0. 1f {e"nt) is a frame ove+ an interual (-y, y )  with bounds A and B, and 

f(z) is an entire function of exponential type y with O < y 5 rr, and f E L2( -m,  ca), 

then 

Before giving the proof of this theorem, ive state some lemmas. 



Lemma 4.1[Duffin and  Schaeffer, 19-52]. If f (2) is an entire function of exponen- 

tial type y and f E L 2 ( - o o o c a ) ,  then 

The met hod to prove the following lemma essentially comes from [Duffin and 

Schaeffer, l952j. 

Lemma 4.2. Let {eiXnt) is a frarne over the interual (-y, 7) with bounds A and 

B. Then for any given E > O ,  there exists a S > O such that when Ip, - Ani < S for 

al/ n E N ,  we have 

for al1 entire functions f(z) of exponential type y with f E L2( -CX>,CQ) .  

Proof: By Taylor's series expansion at z = A,, we have 

f ' k ' (Xn)  
f f  k! (pn - L)k7 

k= 1 

and consequent ly, 

Given € 1  > O, suppose Ip, - A,I < 6 where 6 > O is such that ~?(e?' - 1)21 < c l ,  

and choose p = then by the above inequality, we get 



Since f ( " ( z )  is an  entire function of type 7 .  ancl since {c'"nt} is a frame over t h e  

interval ( - 7 ? ~ ) ~  ive can  apply the  right hand side inequality of frames with upper 

bound B. Cornbining with Lemma 4.1, we get 

By Minkowski's inequality, it follows t hat 

T hus 

O n  the other hand, 



Tt follows that  

Therefore 

1 

It is obvious tha t  the  € 1  can be chosen such that  both of (1 - cf )2  > 1 - E and 
1 

(1 + c f  )2 < L + c hold for any  given c > O. Thus  the proof of t h e  lernma is completed- 

In [Duffin, Lemrna 21, if we choose p = (y/iLT)'/2, then t h e  lemma can be expressed 

in the following form: 

Lemrna 4.3. Let (eiunt} be a frame over the intemal (-y, y )  with bounds A and 

B. If {pn} is a sequence satisfying Ip, - a,l 5 !M /or some constant M ,  then a n y  

function f in Ihe Paley- Wiener space, we have 



Proof of Theorem 4.13: 

T h e  second inequali  ty foliows easily from Lemma 4.3. Xext ive consider the first 

one. Suppose f(z) is in the  Paley-Wiener space- By a reflection and a translation, 

Duffin and Schaeffer [1952] (or see [Young, 1980, pp. 192-195l)constructed a new func- 

tion fI and a new sequence A I )  = an + iPiL) with IflkL)l 5 9/2, such that  

Now for any given É > O, choose b > O as t o  satisfy Lemma 4.2. Suppose is 

sufficiently large such that  

Repeat the above process & times, then Lemma 4.2 guarantees that 

Therefore, after combining these A& steps, we get that  

Since E is arbitary, the proof is complete. 

Theorem 4.14. Under the assumption of Theorem 4-23, i f  y = ri, and IX, - nl < 

L for sorne constant L ,  then we have 



for ail entire functions of exponential type ii belonging to  L2(-cm'oa).  

Proof: ActuaIly, it suffices to prove the second inequality. In Lemma 4.3, we set 

y = T, an = n and pn = A,, t hen it follows from Parseval's identity that A = B = 1. 

The conclusion of Lemma 4.3 can t hus be writ ten as 

Corollary 4.3. Suppose {A, = n + ip,} is a sequence satisfying l,&l < , = L .  

then {eiAn'} is a frarne ouer (-T,T) with lower bound e-2"L and upper bound eZrL.  

respect iuely. 

Remark 4.1. In Corollary 4.3, the iipper and lower bounds cannot be replaced by 

cleZ7= (cl < 1 )  and c2e-27L (cz > 1 )  respectively. It is obvious that c i e * ~ ~  + cl < 1 

and ~ ~ e - ~ 7 ~  + C* > 1 as L + O. But when L -t O, A, + n, Theorem 4.5 and 

Theorem 4.13 imply that the upper and lower bounds BL and AL satisfy Br. -t 1 and 

AL +- 1. It follows tha t  CI = c;! = 1. 

Remark 4.2. The  two exponents -2yB and 2yp in Theorem 4.13 can not be 

improved, i.e. e-27fl and e27P can not be replaced by e-2(y-t)P and e2('-')0. Two 

examples are given in the next section. 



4.6 Two examples 

In this section, two examples are given to  show that  t h e  exponents of the upper a n d  

lower bounds are precise. 

Let y = cosh a(ïï - x): O < x < Zn, then its Fourier expansion is 

y = -sinhax[= - + cos ns]. 
I I  'a ,=I a2 + n2 

It follows that 

Since cosnx is even, we may extend n to the  negative infinity, and  get tha t  

cos nz n cosh a(7i- - X )  - - - 
..+n2 a s i n h a n  - n=-00 

Now set x = O and a = 0, then  

Next take z = '27 < 27r, and  a = B, then 

We will employ (4.3) and  (4.3) in the following two examples. 



E x a m p l e  4.1. Suppose gL(t) = eit,  and f I ( z )  = (&) cv gi ( t  )eiztdt. Then 

CO 1 I 
(e2" + e-2rP - 2 cos (%y(l + n))) 

n=-00 

- 
- C k n 2 ; P Z  

(e2'" + e-"O - 2 cos (27n)) 
n=-OO 

Combining the above equalities with (4.2) and (4,3), tve get that 

By Plancherel's t heorem, 

so we get that  



So if in the upper bound of Corollary 1.3: y is replaced by -/ - c for any e > 0, 

then the above Bo should satisfy Bo 5 e2("-')"or any sufficiently large 0. But this 

is obviously impossible- 

Example 4.2. Suppose g2( t )  = es+" (s > 0); and 

Frorn z = An = n + ip, then it follows that  

Act ually the above equality is the same as t hat in Esample 4.1 except that  9 is 

replaced by 0 - s, so we obtain that  

I t  follows that  Cr, 1 f 2 ( X , )  l 2  tends to 27 when s tends to  8. On the other hand, 

Ca 

Ig2 ( t )  12dt = /: e21tdt 

So it follows that  

Since the right band side is less than e-2(Y-L)4 for any given e provided ,B is suffi- 

ciently large, the lower bound e-274 c m  not be  replaced by e-2('-C)P for any t~ > 0. 



4.7 Two reconstruction methods from frames 

As we mentioned before, the concept of frames was first introduced in  the paper of 

Duffin and Schauffer in 195-2, but for the next 30 years, there were only a few papers 

discussing its properties. The concept of frames did not become prosperous until the 

19S07s when people found they played a role in wavelets analysis, mhere a wavelet 

frame can be used to  reconstruct a function. 

In this section, Ive introduce two important methods to reconstruct a function, 

and show how the  methods are  related to frame bounds. Also we will discuss the 

possibili ty of t heir applications to  delay-differential equat ions in the  next chap ter. 

Suppose that  {4,} is a frame in a separable Hilbert space H.  Define the frame 

operator S by 

Then S is a bounded invertible operator. It is aIso self-adjoint (see Young 19S07 pl%).  

Now if {#j) is a tight frame with constant A, it can be seen from [Hernandez, 

~ 3 3 4 1  that 

converges in H. 

For a general frame {cpj}, we define (g, f)# = (S-lg, f )  for f , g  E H, then as 

shown in [Hernandez, p4001, 



and -41 5.55 BI. 

So { p j  : j E J )  is a tight frame with frame constant 1 if we use the inner product 

(-, -)#. Thus for al1 f E H, we have 

But to reconstruct the function f ,  sometimes it is difficult t o  compute the ele- 

ments $j  of t his dual frame. So tve turn to Duffin's approach which reconstructs the 

fiinction up to a small error. 

Suppose B is close to  A. Since A I  5 S < BI ,  w e  rnay assume S -- (*)I, 2 then 

S-' - 2 1 .  A+B Hence, 

Let  us write 

where Ri = I - -&S. Then it follows that 



and 

B - A  - r 
- I I R i l l s A + B  r + 2  

where r = y. Iterating the above procedure, we get 

where IIRI(Ri f ) I I  < - ( - - & ) 2 1 1  f 112. SO, d t e r  k iterations, the  approximation error is 

smaller than (+)YI f 112 in L2(R). 

Note that  Duffin7s method is good only for tight frames or nearly tight frames. 

But in many cases the upper and lower bounds are not close to  each other (refer to 

Theorem 4.5, 4.9 and 4.13). In these situations, a projection method can be ernployed 

that  is due to  Christensen(l993): 

Suppose 1 is a countable index set and is a family of finite subsets of I 

such that  Ii C Iz 2 ... C In /' i. Given a family { $ i } i E I  2 H we define 

Note that  { + i } i E I n  is a frarne for H,. T h e  frame operator corresponding to { & ) i E f n  

i s 

The  the orthogonal projection on H, then satisfies that  

which will tend to f as n +- m. 



We sa). that  t he  projection method works if (l, SiL&) -+ ci as n --+ m. Chris- 

tensen proved tha t  

Theorem 4.15 

1). Let {&} be n /rame in a Hilbert space H .  Then the projection method works 

i f  and oniy if I I S ~ l ~ j l l  5 C, /or an9 frame (6;) where c, is constant. 

2).  Also the projection method works for any  Schauder basis {Oi)zo_,- 

It is interesting that  the  coefficients obtained from Theorem 4.15 can be used 

to determine whether a given system is a basis. If for some i, the coefficients 

C: = (f, d o  not tend t o  some constant c;, then {4i} is not a basis. This fact 

will be employed in the  nest  chapter. 

Furthermore, we will employ this method to approximate t h e  solution of delay- 

differential equat ions. 



Chapter 5 

Approximate solutions of 

delay-different ial equations 

5.1 Introduction 

This part is to study the approximate solution of some differential-difference equations 

with constant coefficients. The method developed here represents the approxirnate 

solution as a finite sum of non-harmonic exponentials. We could choose the coeffi- 

cients of this expansion to be the exact residues obtained, for example. by Laplace 

transform [Wright, 19491, and this would be optimal for large t. But in many applica- 

tions, it is more desirable to have a good approximate solution for times comparable 

with a few multiples of the delay times w; (see equation (5.1)). In this case, it can 

be shown that choosing the  coefficients of the expansion by some other methods, as 

in tliis chapter, can produce better results on this time scale, and reduce unwanted 

Gibbs-phenomenon-like oscillations- 

In order to explain t hese results, we first introduce the appropriate background 



materiai and notation about these kinds of equations and then discuss some recon- 

struction properties of their solutions. We would also collect some possible approxi- 

mation methods and implement them with a concrete example in kfaple. Finally, a 

t heoretical proof shows that the solution system of a delay-differential equation does 

not form a basis in L2. 

5.2 Differential-difference equations 

The generai linear di Kerential-difference equat ion wi t h constant coefficients and delay 

is of the form 
n m 

where m and n are positive integers, where O = c;o < L Ù ~  < ... < w,, and where f ( t  ) 

is defined in some interval of the real t-axis. The characteristic function h(z )  of (5.1) 

is defined by 
n m 

The constants m and n are called the differential and difference order of the equation, 

respect ively. 

In the computation of the solution of the equations mentioned above, the location 

of the zeros of the characteristic functions p l a y  a key role. A typical characteristic 

function has been thoroughly discussed in Chapter 1. Here we review some general 

characteristic funct ions and the asymptotic properties of their roots. 



Suppose a characteristic function h ( s )  is 

where p j ( s )  is a polynomial of degree mj and /3, E R. Then we can write 

h ( s )  = qj [ l  + ~ ( s ) ]  srn'eP' 

where qj # O ( j  = O, ..., n )  are constants and c ( s )  = O(ls1-') as Is[ ++ m. 

Theorem 5.1[R. Bellman, p.4091. Suppose h ( z )  is defined by (5.3), und the rn, 

are integers such that rnj = m&, j = 0,1, ..., n for s o m e  real constant m. 

(1) If m = O, there exist positive nu-mbers cl and cz such that all teros of large 

modulus lie a strip I%(s) 1 5 cl. In a n y  rectangle IR(s) 1 5 ci, JS(s)  - al 5 6 ,  i n  which 

Isl remains suf icient ly  large, and o n  the boundary of  which h ( s )  has no zeros. the 

number  n(R) ,  of zeros of  h ( s )  satisfies the inequalities 

(2) If rn # 0, the zeros of h ( z )  are asymptotic t o  those  of the  conrparïson function 

T h e  roots of large modulus have the form 

a s  r -t ca, where w is a complet root of the polynomial Cgo pjzrn'- 

From the  asymptotic properties of these roots, we see that  in the case m = O 

the  solution system is similar to Fourier series in that  the  real parts of the roots are 



uniforrnly bounded and in the  case rn # O the solution system cannot be  a frame 

o r  Riesz b a i s  (see Theorem 4.5 and Theorem 4.6). But by the  method employed in 

Chapter 3, the property of completeness can be exploited. However in this thesis, we 

do not continue on that  way. 

Next we consider a special case of (5.1). Set m = n = 1, and let cc; >_ O. Then 

(5.1) reduces to 

Definition 5.1. An equat ion of the  form (5.4) is said to be of delay type if a. # O 

and al = O .  It is said t o  be of neutral  type if a. # O and ai # 0. It is said to be of 

advanced type if a. = O and al # 0. 

Since t usually represents t ime in application, we are mainly interested in continu- 

ing a solution in the direction of increasing t and focus on the  equations of delay type. 

5.3 Series expansions of delay-differential eqüations 

In the case of differential equations, it is often possible to  build up a solution as a 

sum of simple exponential solutions. A similar case happens in differential-difference 

equat ions. Set 

L ( u )  = a&) + bou(t) + b l u ( t  - w ) ,  

t hen L(est ) = h(s)ed wit h t he  characteristic function h ( s )  given by 



Let the initial condition of (5.5) be  ~ ( t )  = g ( t ) ,  O 5 t 5 iz. Set 

Theorem 5.2[R.Bellman p.124]. Let u ( t )  be the continuous solution of the equa- 

tion L = O with initial condition g ( t )  where ~ ( t )  = g ( t ) ,  O < t 5 W .  Assume aobl # 0 ,  

g ( t )  zs C L [ 0 7 u ] ,  and { s r )  is the collection of characteristic roots. Then 

p(s)e5' where pr(t)esrt k the residue of - 
U s )  

at sr .  The senes converges unqonnly in any Ji- 

nite interual [to, tk],  to > O.  Ifall characteristic roots lie in a haif-plane R(s) 5 C L  < 0 ,  

Ihe series converges un$omiy in [to7 CG]. I / g ( t )  is rnerely CO(G, w), Ihe aboue sen'es 

expansion hoids for t > w and p,(t)eSrt is the residue of - 
h ( s )  - 

Now suppose that we are given an arbitary function g ( t )  o f  class C L  on some 

interval [ O ,  w] .  As in Chapter 4 we are going t o  find a series expansior? o f  g ( t )  in terrn 

o f  the zeros o f  a function h ( s )  of the form h ( s )  = aos + bo + ble-wS, aobi # O .  

TO do this, we form the differential-difference equation corresponding to  h(s) ,  re- 

garding g( t )  as the initial function. This initial function can be continued to a solution 

u ( t )  for t > O.  Thus we have 

Corollary 5.1[R.Bellman]. Let g ( t )  be a gioen function of class CL(O, w ) ,  and let 



h ( s )  be a giuen function of the form above- Then for O < t < w 

with unïfonn convergence in [to,w] fo r  to > O ,  uhere the notation is the sarne as in 

'Theorem 5.2- 

For example, suppose g( t  ) is C1(Ol 2 7 ~ ) .  We expand it in the  form g( t  ) = Ch-, pk(t)eskt 

where the  s k  a re  the roots of h ( s )  = s - ae-*"' . The  corresponding differential- 

difference equation is d ( f )  - au ( t  - 2 n )  = O. When a # -$, the zeros s k  of h(s)  are 

simple, and sr, = &Wk(%a). s o  the  required expansion is 

where pk is defined as in Section 1.1 and 

In view of Theorern 3.1, we see tha t  in C1(O, 2a) the sequence {p,) can be  replaced 

by some sequence {p, + ih,) with h, + oo. Actually, Verblunsky has discussed it in 

Theorem 5.3[Verbiunsky, 19611. Suppose f E LL(O, l) ,  c E C a n d  the Fourier  

s e n e s  off  converges to a at the point x in the intemal (0,1). Set zk be the zeros of 

zeZ - a, and  

Then ~ k e = ~ '  + CT prouided that (log f)'J,'4(u)du = o(l )  as t -t O where 

o p )  = f (a: + t )  - f (a: - t ) .  



Since the zeros ;k of zeZ - a are the characteristic roots of ut ( t )  + a t ( t  - 1 )  = O, 

and since / E CO(O, 1) is summable in the term { e i r r )  by Theorem 5.3- Corollary 5.1 

can be extended to CO(O, 1). 

The theorems above suggest that the expansion coefficients can be obtained from 

the residue of sorne meromorphic functions. 1s the system { e i k t }  a Riesz-Fischer 

sequence? Le. for any square summable sequence of scalars {ck) does there exist an 

element 4 in L2(0, 1) such that 

Proposition 5.1. Let {rk) Se the zeros of zei - a ,  a E R. Then the system {e'kL) 

is not a Riesz-Fischer sequence in L2(0 ,  1). 

Proof: By a theorern of Boas [1941], who showed that the moment problem 

(f, fk} = cr- (k = 1.2, ...) is solvable with f in L2(0, 1) for every square summable 

sequence of scalars { y )  if  and only if the inequality 

is valid for some positive constant m and al1 finite sequences of scalars {a,}, we only 

need to show that (5.8) faiis. 

Take a, = 1 if n = N and O otherwise, and fn(t) = eznt. Then 

Since by Proposition 1.1, RzN = O(- log N), we get 1 1  C a, f n l 1 2  + O which does 

not satisfy (5.8). 



Definition 5.2 -1 basis { f,) in a Hilbert space H is a Bessel Lasis i /  

f, i~ conuergent in H only $EU, Icn12 < CG. 

Definition 5.3 -4 sequence {f,) i n  a Hilbert spuce H is said to be a Bessel 

sequence i f  

for euery element f E K .  

From [Young, 1980 p371, we see that  a basis { f,) is a Bessel basis if and only if 

there exist a constant A such that  

i= 1 i= 1 

for arbi trary scalars cl ,  c-2, ..., c, (n = 1,2, ...), i-e. {in} is a Riesz-Fischer sequence. 

So we immediately get that 

Corollary 5.2. Let { z k }  be the zeros of zez - a ,  a E R. Then the system {eik') 

is nol a Bessel basis in LZ(O, 1). 

Proposition 5.2. Let { z k )  be the zeros of zez - a ,  a E R. Then the system {eikt) 

is a Bessel sequence in L2(0,  1). 

Proof: Note that %zk i -ca as Ikl + cm, so we have 

as IX-1 -+ m. Then there exists M such that 



Thus Proposition 5.2 cornes from Theorem 3 in [\roiing 19SO: p.l55]. 

From Proposition 5.1 and 5.2, i v e  see t ha t  the  moment space (see [Young, 1980: 

p. 1461) of {est) is a strict subspace of 1 2 .  It implies that  for some coefficient sequences 

{ci} in 1 2 ,  we can7t find a solution f in L2(0, 1)- 

5.4 Finite optimal solutions in L 2 ( 0 J )  

-- New suppose that  sr are the  roots of the equation z - ae - = O. For a nice func- 

N tion f E L2(0 ,  l),  the  above theorems show t h a t  1 f (x)  - xi=-NCL ciesazI can be small 

enough for sufficiently large N .  But more terms will be required when a + O even 

for a nice function like f ( x )  = sinx. Since for a numerical solution it is not neces- 

sarjr to keep the  coefficients ci fixed for al1 N, we are interested here in finding the 

optimal coefficients <v so that  the approximation is best possible a t  step M. From 

Propositions 2.4 and '5.5, we know that  the  system ( e s k ' )  is complete, so such an 

approximation is definitely possible even for t he  characteristic equation having one 

1 multiple root, that  is, when a = -;. 

Now a further question is how to get t he  optimal coefficients cy? ÇVe first give 

a projection method which is analogous to Theorem 4.16 for computing the frames's 

coefficients. Since we are only interested in the approximation property (not repre- 

sentation), the  strong condition like frames o r  basis can be reduced: 

Theorem 5.4. Suppose { e i L t }  is complele in L2( - ; i ,  r i ) ,  and Sn is defined by 



( 4  Then for nny f in L 2 ( - i i ?  ii), we have 

Proof: Set d j  = ei"i t hen al1 the d j  are independent in L 2 ( - i i ,  7). Define the sub- 

space H, c L2(-ir ,  7) by Hn := ~pan{q5,}:=~. Then, from the assurnption on {d,}: 

we know t hat {#j}:=l is a basis in Hn- Since it can be obtained from an ort honormal 

b a i s  by means of a bounded invertible operator, {+j}j"=r is a Riesz basis for H,. 

Suppose the operator Sn is defined by (1.4) in Hn- Then from the discussion in 

Section 1.7, for any g E Sn, we have that 

Suppose P, is the projection operator from H to H,. Then 

{4j) to get II f - Pn f 11 + O as n + m. This ends the  proof. 

The above projection method is easy to implement for the numerical solution 

of delay-differential equations. There are also other methods: one is by the direct 

derivat ive, and another is by the Gram-Schmidt process. 

As an  illustration of these methods, we consider the  equation 

/ ( t )  = ay(t - 1) 

with the initia1 condition g ( t )  = sin nt for O 5 t  5 1. 



L ) We first tliscuss the pointwise convergence with the residue met hod: 

-- 
Since all the characteristic roots zx; of h ( z )  = z - ae - are simple except when 

1 a = -- e Y therefore by Theorem 5.2 we have 

A simple calculation shows t hat 

So, for k E 2 ,  

In File 1, numerical solution of (5.9) shows that the performance of this method 

is poor when la1 is ciose to zero. 

The approximation method discussed next will be  implemented in L2. Note that 

zkt CO t hat {e },=-, is overcomplete wit h excess E2 = 1 in L2 (O, l ) ,  so removing one term 

eZot from the system is possible. On the other hand, when a = -$, there is a double 

root zo = 21 = -1. SO in this case, we will removeone term e'ot from the system in the 

following process. Otherwise it may cause singularity problems or extra computations. 

3) The projection method: 

Since { e C * ' } h ,  is complete in LZ(O, l) ,  Theorem 5.4 can be âpplied. If TV is defined 

by T,v f = c : L ~ - ~ (  f, e i ~ s ) e ' ~ t Y  then the corresponding matrix A can be written as 



A = with a, = ( eZ t3 ,  e"lS). 

So Tc1 can be expressed with B = A-'. It f01l011.s from Theorem 5.4 that 

N 

S N ( t )  = C cies'' with c; = (sin a t ,  T N ~ ~ ~ ~ ' ) .  
i= 1 

3 )  The derivative method: 

- 
Suppose b = ( b l ,  ..., 6,) is a vector in Cn. W-e reindex the characteristic roots by 

sk = ~ k - ~ .  Then set 

To find the minimum value of M ( C ) ,  we find the partial derivatives of M(;) with 

respect to the real and imaginary parts of bj and set t hem equal to zero. 

Then for each j ,  we have 

1' Les;tdt + 1' Ee'ltdt = O and 1' LeS>'dt - 1' zeSi td t  = O. 

So it suffices to solve LL LeSJtdt  = O ,  that is 

for j = 1, ..., n. 

Substitute f ( t )  = sin rt, then a simple calculation shows that 



for j = 1, ..., R .  

n(Ef 3 ) Set B = [bL,  ..., b,],  C = [cl ..., c,] wit h cj = m, and A = [ajr]2n-2, where 

Then we get tha t  B = A-lC. 

The numericai result in File 3 shows that  this method provides a good approsi- 

mation even when [al iç close to zero. But each time N changes, the coefficients 6; 

change with N .  

4) The Gram-Schmidt method: 

Z k t  00 Since {e Ik=-- is cornplete, we may construct recursively an orthonormal sys- 

tem e L ( t ) ,  e n ( t ) ,  ..., e z l v ( t )  by the following method: 

Step one: Let h l ( t )  = e ' l - ~ ~ ,  D L  = (1: 1hl( t ) l2dt)+,  and e l ( t )  = h l ( t ) / D i .  

Step two: For k = 2 , 3  ,..., 2 N ,  let 

Dk = (J: [ h ç ( t )  12dt)i and ek( t )  = h k ( t ) / D k .  

step three: S2N(t)  = E:>=~ (sin nt, e i ( t ) )e i ( t ) .  

The results in File 4 show that this rnethod has the same effect as that in File 3, 



and al1 t h e  coefficients change tvi t h N. 

T h e  methods mentioned above can be used to compute a Cinite optimal solution 

of delay-differential equations. There is an additional question about existence of a 

complex sequence {b,} such that  f (t) = C b,einc in the norm L2(0, I)? i.e. Does the 

coefficient CF computed by projection methods converge to  6, as iV go t o  infinity? 

Unfortunately, the numerical result in File 5 suggests the opposite. 

5.5 The basis property for a special solution sys- 

tern 

In t his section, ive discuss the  basis property of the exponential system {e i"nt)  with 

a complex sequence {A,). In a few papers on this question, a general restriction 

[Avdonin, LSSS] was imposed on the sequence by 

Minkin [1992] explained the  essence of the difficulties to remove the restriction. 

Related to the above question, we have shown in Chapter 3 that  the system 

{ek 'V(k*- f  )t)kEz\{ol is complete in L 2 ( - K ,  i;) where supk RW(k, -$) = -m, so it 

can be  used t o  approximate any function in L2(-ri ,  T ) .  In this section, we will show 

tha t  it is not a basis: 

Lemma 5.1. Suppose Vn = V , ( - f )  is deJned in  Section 1.4, then the system 

{ei(Vn-*)t) ,Ez is not a &mis for L2(-r;,  K). 



Proof: Recall tha t  the inner product of two functions F and G in the  Paley-Wiener 

space P is defined by 

( F ,  G) = /= F(z)G(r)dz 

and by the virtue of the Paley-Wiener theorem, t h e  complex Fourier transform 

is an  isometric isomorphism from L2( -? i , ï r )  onto al1 of P. 

Set A, = V,(-i) - - 2~ 7 a n d  assume that {e'"n*}nEz is a basis for L2(-r;, r;), so 

that  we can write 

cos t = 1 cne"nt 

in the sense of L 2 .  Furthermore the  isomorphism of Fourier transform shows t ha t  

ei.~n t - izt  s in  7i(z - A, )  
:= - dt = 

n ( z  - A,) 

forms a basis for P. Let {g,(z)) be biorthogonal to { I L )  in P, and write cos t = 

e I ' + e - ' t  
. Applying the Fourier transform to both sides of (5.101, we get that 

1 sin r;(z - 1) sin r i ( i  + 1) 
r{ T ( Z -  1) 

+ 
n ( z  + 1) ) = ~ l G ( z ) -  

sin ~ ( z - 6 )  Remembering that  n(r-w) is the  reproducing kernet for P, and  after taking the 

inner product of each side with g,, we get tliat 



Next? we t ry to  find t he  explicit form for {g,}. From Proposition 2.6, we see tha t  

tvhich is obviously in t h e  Paley-Wiener space (by Theorem 1.1). 

Next set G(z) = z F ( z ) ,  and 

Then from Young [1980, ~1271 ,  each of the  function {F, (z )}  is in P. Note that 

so the  system {F,) is also biorthogonal t o  { I L }  in P. But {fin} is complete, so it 

has a unique biorthogonal sequence. It follows that  Fn = g,. 

From Proposition 2.6, tve know tha t  f(1) = f(-2) = - 4 r i  and f(-1) = 4ni, so 

It follows that  

A simple calculation (with the aid of Maple) shows t h a t  



Recalling that An = v,(-O) - i then from Lemma 1.2 rve have that 
Z r  ' 

1 
i r A ,  = -[- log In1 - log 9ii + O( 1 )] + ia%X, 

3 - 
1 1 = -{[- log In1 - log 2 7  + o( l ) ]  + i?iii[n + -sign(n) + o(l)]) .  
9 - 3 

Evaluating (5.11) at z = A,, then for sufficiently large N, when n > ni' rve have 

the  following estimate: 

1 ( )  = O(-) - - [ - Z ~ ~ X , ~ ' " . ' ~  - iire-'""n 
Jn: 1 

- - -~hi{2( iT~n)ei"*~n - e-ir~n { +  4 1 )  

- 1 - -?ri{((-log1nl - log% f o(1)) + Ziii(kf -sign(n) + o ( l ) )  
4 

.&[- log In[-log 2~+o(l)]+inPA~ -L[- log In(-logZx+o(l)]-ixRXn - e  2 1 
= -2iii{(ej, + ieiJs)ei*"n - ~ ~ J - ~ ~ - ' " ~ * n  } 
= -(?r)!fi{(en + ie,!,)(co~iiWX, + isiniiWX,) 

-0:(cos iiRA, - i sin 7 i ~ X n ) )  

where c i  and 0, are real and satisfy tha t  + 0, 9; -+ 1, i = 1: 2,  as In1 + m. 

Furthermore since RA, = n + $ + o(1) for large n > 0: then 

1 1 
sin TWX, = ( - L ) " ~  + o(l) and  cos xRX, = (-l)n- + o(1)). a 

Thus for sufficient large n > O, we have that  



It follows t h a t  

If we set cn = a, + ibn for n > O, then 

(-l)n+L 
a ,  = ( 1  +o( l ) )  and b, = - 

' 2 6  
( - I In  ( L  + 4 1 ) ) .  
2 6  

- - 
Recall t h a t  Vn = -Ln a n d  A, = li,- &, t h e n  we h a v e t h a t  A, =-A-, .  

t h e n  it is easy to check tha t  

C'(A,) = G'(A-,). 

- S0 c-,, = c, = a ,  - ibn. Since SVn = 9V-, and RV, = -REn, it Follows t h a t  



Using (5.12) to substitute for a,  and b,, then we obtain 

For sufficiently large N > O, let t satisfy $ (2N + l)(t + ir) 5 t, then  

and 

Ir for !V < n 5 2N + 1. Thus when t E (-T + 16(2,V+L), -n + 8(2i<+l)), ive have 

sin((n + ')(t + ii) + o(1)) 2 sin - = Bi. 
4 32 



T hus 

for al1 large N .  This shows that the expansion of cos t does not converge in L2(-n, x). 

So the system { e i ( V n - ~ ) c ) , E z  fails to be a basis. 

Theorern 5.5 T h e  s y s t e m  {ehM. . ( -b i t  )nEZ\(0) is not a basis in L 2 ( - T ,  n ) .  

We prove it by contradiction. Take f E L2(-si, x), then f ( t ) e - k  E L2(- i i ,  x ) .  

Thus there exist {ck} such that 



Thus { e ' ( V n - ~ ) t ) , , Z  is a basis which is a contradiction. 

the numerical results in File 3 suggest that Further discussion: when a # -;, 

{e"(ka)t)  is not a basis in L2(0 ,  1). W e  are not going to  give a proof hem. 

Proof of Proposition 2.3: 

We give a sketch of the proof of Proposition 2.3 with p, = p, (a )  a < O. But this 

method also can be applied to the case of a > 0, 

Set 

Then from Theorern 3.4, F(t)  is in t he  Paley-Wiener space and is expressible in the 

form 

with +(t)  = # ( - 1 )  a.e. in [-IT, ?il. SO it follows tha t  F ( 1 )  = F(-1) .  

Set G ( z )  = t F ( , z )  and 

Then G(1) = -G(- i) ,  and 



11.5 

The thircl eclriality follows from the  fact that 4( t )  = 4 ( - t )  a-e. in (-7, T). 

In the  proof of Lemma 5.1, choose the test function sin t instead of cos t ,  then we 

have 

So combining the symmetry of pn and GR(pn), we have that  

Note that  G'(P,) = lim,,,, S. Then lrom Rernark 3.2 we have that 

Since G1(pn) changes its sign everytime when n increases by one, we have that 

'V N N 
C (cneipnt + C - , ~ ~ P - ~ ~ )  = C C, sin p,t = Ii C sin(nii + p,L). 
n=L n=L n=I 

The  rest of the proof will be straightfoward. 





File 1. The Residue Method 

readUFilei-txt"; 

#This program is t o  t r y  solve the equation 

# y' (t) = a*y(t-1) vith y( t )= sin(Pi*t) on O<= t<=l 

nue use the residue method to compute the coefficients 

#and then tbe numerical solution S , N ( t ) .  

R s m  : =proc(n: :posint , a: :numericl 

local c, k, j, m, s, t, Sn; 

wich(lina1g): 

alias (W=LambertW ; 

c := arrayc-n+i . .n) ; 

for k from -n+l to n do 

ctk] := (Pi/(l+~(k,a)))*(W(k,a)*(W(k,a)+a)) 

/(a*CPi"2+WCk,a>-2) 1 ; 

od; 

Sn := unapply(Sum(c[ml *exp(W(m,a)*t) , m=-n+l. .n) , t) ; 

print('abs(~n(0.5)-sin(~i*0 -5)) '=evalf (abs(~n(0.5)-sin(~i*0-5)))) ; 

print ( ' abs (~n(0 - 1) -sin(~i*0 - 1) ) ' =evalf (abs (sn(0 - 1) -sin(pi*0 - 1) 1) ; 



> end: 

> v i t  h (numapprox) : 
> Rsum(1,O.S); 

ISn(.S) - sin(.5 r)l = -36335.57275 

origin - aver = ,5749'775966 

origin - aver = -3314037399 

origin - aver = 12.04961S47 

on'gin - aver  = 21.17839096 



File 2 .  The Projection Method 

readWFile2-txt"; 

in ter f  ace(echo=S) ; 

#This program is to try solve the equation 

# yl(t) = a*y(t-1) with y(t)= sin(Pi*t) on O<= t<=l 

#To f ind the m i n i n u .  dif f erence in the m e a n  of L" (0,l) , 

nue use the projection method to compute the optimal 

#coefficients as well as the sum. 

Psum :=proc(n::posint, a::numeric) 

local A, B, C, D, i, j, k, kl, k2, m, s, t, Sn; 

vith(1inalg) : 

alias (W=LambertW) ; 

A := evalm(matrix(2*n, 2*n, (i,j)-> 

evalf (intCexpCWCi-n,a)*t)*conjugate(exp(W(j-n,a)*t)) , 

t=o. -1)))); 

for k1 from 1-n to n do 



> D [kl] := unapply(add(B [kl+n, k2+d *exp(~(k2, a) *t) , 
k2=1-n-.n), t); 

> od; 

> Sn : = unapply(Sum(int (sin(Pi*t) *conjugate (D Cm] (t) ) , 
t=O. - i)*exp(W(m,a)*s), 

> p r i n t  ('abs(Sn(0 -5)-sin(Pi*0.5)) '=evalf (abs(Sn(0 -5)-sin(Pi*O-5))) ) ; 

> p r i n t  ('Psum-aver'=evalf (int ((evalf Cabs (Sn(s1-sin(Pi*s) 1) 

Psvm - aver = -01363608627 

> Psum(1, O. OS) ; 
ISn(.3) - sin(5 ir) ( = -2749558332 



ISn(. 1 )  - sin(. 1 sr) [ = -11 14169'745 

Psum - auer = -068.52310997 

Psurn - auer = -03'21690337l 



File 3. The Derivative Method 

readWFile3, t x t "  ; 

interface (echo=2) ; 

#This program is to try solve the equation 

# y'(t) = a*y(t-1) uith y(t)= sin(Pi*t) on O<= t<=L 

#To find the mininum difference in the mean of LA(O,1), 

#we let the derivative of the mean to be zero to find 

#the optimal coefficients- 

Dsum :=proc(n::posint, a::numeric) 

local A, B, C, i, j, u, k, m, s, t, Sn; 

vithclinalg) : 

alias (W=Lamber~W) ; 

B := array(1--2*n); 

C := array(1.-2*n); 

for k to 2*n do 

A := evalm(matrix(S*n, 2*n, (i, j)-> 

evalf (((abs (a) )-2-conjugate(W(i-n,a) ) *W(j-n,a) 

)/(conjugate(W(i-n,a))*WCj-n,a) 



> print ( 'Dsum-aver ' =evalf ( in t  ((abs (Sn(s) -sin(Pi*s) ) 

(Sn(.l) - sin(.l sr) ( = -2136436568 

Dsum - aver = -08144540873 

Dsum - aver = .O1363608626 



Dsum - aver = .O7135698336 

Dsum - aver = -02663195952 



File 4. The GramSchmidt Method 

interface (echo=2) ; 

#This program is to try solve the equation 

# y3(t) = a*y(t-1) with y(t)= sin(Pi*t) on O<= t<=l. 

#ve use Gram-Schmedt process to orchogonalize the system, 

#and then to get its Fourier coefficients, 

#finally recombine the coefficients to get t h e  optimal solution. 

Nsum :=proc(n::posint, a::numeric) 

local D D  e, h, ho, j , k, kl, k2,m, s, t, Sn; 

withclinalg) : 

alias (W=LambertW) ; 

for k from -n+1 to n do 



ho [k] := exp(W(k,a)*t) ; 

od; 

h[-n+l] := exp(W(-n+l,a)*t); 

D [-n+l] := evalf (sqrt (intcevalf ((abs(h[-n+l] ))-2) , t=O . -1) ) )  ; 

eC-n+l] := exp(W(-n+l.a)*t)/D[-n+1]; 

for kl from -n+2 t o  n do 

h[k1] := hO~kl~-(add(evalf(int(evalf(hO[kl])*evalf(conjugate(e~j])), 

t=0. -1) 

1 *e Cjl , j=-n+l . . ki-1) ) ; 

D [kll : = evalf (sqrt (int (evalf ( Cabs (hCk11) ) -2) , t-0. -1) ) ) ; 

e [kl] : = evalf (h [kl] ) /D [kl] ; 

print('abs(SnC0 -5)-sin(Pi*O -5)) '=evalf (abs (Sn(O.5)-sin(Pi*O.5)))) ; 

print('abs(Sn(0- 1)-sin(Pi*O. 1)) '=evalf (abs(Sn(0.l)-sin(Pi*O. 1)))) ; 



> end : 

n o m  - aver = -OS144540519 

n o m  - auer  = -01363608627 

norm - auer = -06852310997 

norm - a v e r  = .O3216903370 
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File 5. The Convergence of Optimal Coefficients 

readUFile5. t x t "  ; 

interface (echo=2) ; 

#This program is to test basis property of the solution 

tsystem of the equation y' (t) = a*y(t-1) with some initial 

#conditions on O<= t<=l. 

#We use the projection method to compute the optimal coefficients 

#If some coefficients does not converge, then the system is not 

# a basis. 

Coeconv :=proc(n::posint, a::numeric) 

local A, B, C, D, i, j, kl, k2, m, t; 

with(1inalg) : 

alias (W=LambertW) ; 

c := array(1-n. .n) ; 

D := array(1-n. .n) ; 

A := evalm(matrix(2*n, 2*n, (i,j)-> 

evalf (int (exp (W (i-n, a) *t) +con jugate (exp (W (j-n, a) *t) , 

t=o. -1)))); 

B := evalm(inverse(b)); 

D Cl] := (evalf (add<B [l+n.k2+nl *exp(W<k2, a) *t) , k2=1-n. -n)) ) ; 



> print ( 'ccos C l 1  >=evaif (int (evalf (cos (t) *conjugate(D Cl] (t) 1 ) , 
t=O.,i))); 

pr in t  ( ccos (21 =evalf (int (cos (t) *conjugate<D C21 ( t )  1, t=O - - 11 1) ; 

fi; 

end : 

with (nurnapprox) : 
~oeconv(2, -0.5) ; 

ct = -2077749194 - . i '24Z. jZXI 1 

ccos;! = --O3887646064 + -004948514171 1 
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