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ABSTRACT

The main purpose of this thesis is to study the solution systems of delay-differential
equations in L?2. An interesting observation is that the systems are closely related
to some extreme cases in the theory of non-harmonic Fourier series. We will exploit
some fundamental properties of these solutions by developing some theorems on com-

pleteness, series expansion, frames and bases.

Specifically, by extending a stability theorem of Sedletskii, we can show that the
solution systems are complete in L? with excess £, = 1, but that they can not be
Schauder bases. Furthermore we generalize a result of Fujii to the case of two complex
sequences located in a curvilinear strip. Also the properties of a Lambert W function
are employed to discuss the series expansion which is related to ;-theorems. Finally
some numerical methods are provided to compute the finite optimal solution of such

equations.

The results estabilished in this thesis may have applications to signal and image

processing as well as general delay-differential equations.

Key words: completeness, series expansion, frame, basis, approximate solution,

Paley-Wiener space, delay-differential equations
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Chapter 1

Non-harmonic Fourier series and

the Lambert W functions

1.1 Introduction

It is well known (see, for example, Bellman and Cooke) that the solutions of diafferential-

iXnt where

difference equations can be expressed as a sum of the exponentials }_ cne
each i\, is a characteristic root with A, € C. Here for simplicity, we assuvume that
all the roots are simple. (i.e. that the A, are all distinct). The coeflicientts of this
series could not be found systematically until the residue method was deve=loped by
Bellman and Cooke [1963]. Verblunsky [1961] introduced the technique otf Cauchy
exponential series to address a similar problem. With these methods, a solwution can
be approximated pointwise for a nice initial condition g(t) (say, belonging tto C°, or
C'). This thesis was motivated by the problem of finding an optimal finite nnumerical
solution to a delay-differential equation with a given initial condition in L*. A rea-

sonable beginning to this study is to look at the structure of the exponentiall systems

{e**»t} where each A, is a characteristic root.
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It is worth mentioning that in general, the characteristic function of a delay-
differential equation is not of sine-type, but that the imaginary parts of its zeros
differ from integers by about }T, and the real parts increase only at a logarithmic rate.
We will see that this situation is analogous to several extreme cases in the theory of

non-harmonic Fourier series.

Apparently, series of the type 3~ c,e**»t were first studied by Paley and Wiener who
called them non-harmonic Fourier series to emphasize that they are not trigonomet-
ric series. The theory of non-harmonic Fourier series thus contains the study of the
completeness and series expansion properties of sets of complex exponentials {e****}.
Because the study of frames and bases has flourished in recent years, non-harmonic
Fourier series have received more attention than ever before. One of the famous early

results in this theory (Paley-Wiener [1934] and Levinson [1940]) is that the trigono-

metric system {e'—"‘ ®  is stable in L?(—m, ) in the sense that the system {ei,\": 2
will form a Riesz basis for L?(—n,w) only if |A\, — n| < L is small. Furthermore,

Kadec [1964], and Redheffer and Young [1983] showed that the optimal perturbation

is L < Such 3 theorems have many applications in the theory of completeness,

1
T
frames, bases and interpolation. On the other hand, many systems in the studies
require that the A,’s be located in a strip parallel to the real axis [Young, 1980] or

near by the zeros of a function of sine-type [Adovion, 1988].

This thesis will develop some theorems on completeness, series expansion and
stability of frames by exploiting various fundamental properties of these solution
systems. Also a new method for the finite optimal solution will be given. Finally, we

show that the solution system does not constitute a basis in L2.



1.2 Definitions and notations

[n this paper, we denote by C (respectively by R) the set of all complex (respectively
real) numbers. Z denotes the set of all integers, and 3~" and []’ mean summation and

multiplication, respectively, through all the integers except 0.

We say that an entire function f(z) is of exponential type v if there is a constant

A > 0 such that
[f(2)] < Ae*H,

and an entire function f is said to be of sine type if it is of exponential type w, its
zeros {A,.} are separated, i.e. infzm |An — A} > 0, and there exist positive constants

A, B and H such that
AeM < |f(z +iy)| < B

whenever |y| > H.

The totality of all entire functions of exponential type at most # that are square
integrable on the real axis is known as the Paley-Wiener space [Young, 1980] which

is a Hilbert space with respect to the inner product (f,g) = [, f(z)g(z)dz.

[n the next chapters, f will always denote an entire function of exponential type

v < 7. The Phragmén-Lindeldf indicator function ~A(8) of f is defined by

h(6) = lim sup r~! log [ f(re®)].

reR



Definition 1.1 [Duffin]. Let {\.}, n € Z, be a sequence of distinct complex
numbers. Then the set of functions {exp(iA.t)} is an ezxponential frame over an
interval (—v,v) if there exist positive constants A and B, which depend ezclusively on

v and the set of functions {exp(iAnt)}, such that

Sl 1, g(t)e=tdi?
O

for every function g(t) € L?(—v,~), where the index n runs through all positive and

1
A< 2=

negative integers and zero. In this case, {\,} is called a frame sequence.
For a general frame in a Hilbert space, we have the following definition:

Definition 1.2 [E. Hernandez]. 4 collection of distinct elements{g,,g2,...} in a
Hilbert space H is said to be a frame if there exist positive constants A and B with

0 < A< B < oo such that

Allgll? < 3 19, 9a) < Bllgll?

n=1

for every g € H. The numbers A and B are called the bounds for the frame. When

A = B, we say that the frame is tight.

Definition 1.3. Two sequences {z,} and {y.} in a Hilbert space H are said to
be biorthogonal if

(xm’ xn) = Jmn

for every m and n.

Definition 1.4. A4 system {e**"t} of complezr exponentials is complete in LP(—7v,7),



1 < p < oc, if the relations

[ roerde =0

for all n with f € LP, imply that f = 0 a.e. [n this case {),} is called a complete

sequence.

Definition 1.5. A frame (or complete system) {e**t} in LP that ceases to be a
frame (or complete) when any one of its elements is removed is said to be an exact
frame (or complete system). When exactly m elements have to be removed (or added)
in order that the new system be eract, then the excess F,()\) of the system is m (or

—m).

Remark 1.1. As we shall see (Theorem 1.4), the particular functions e*~* added

or removed are arbitrary; only their number is important.

Definition 1.6. A sequence {\,} of real or compler numbers has a uniform
density d, d > 0, if there are constants L and § such that

Yl<t

l/\n—d

for any integer n, and
[An — Al 2>26>0

if n #m.

Definition 1.7. A compler sequence {\.} is of density d (> 0) with deviation
é(n) if

An — Z1 < é(n)



and
l’\n_/\m|26>0 (n#m)
for any integer n, where ¢(n) = o(n) — o0, and § is a constant.

Definition 1.8. A sequence {fi, f2,.-.-} in an infinite-dimensional Banach space

X 1is said to be a Schauder basis for X if for each f € X, there is a unique sequence

of scalars {cy,c2, ...} such that

F=3cufu
n=1
”f‘-zn:c,-fi >0 as n — oo.

Henceforth, the term basis will always mean a Schauder basis.

Definition 1.9. A basis {er} in Hilbert space is called a Riesz basis if there are

constants A and B where 0 < A < B < oo such that for each z = 332, arex

k=1

A lal)t < llzll < B(S lal)?.
k=1

Note: a Riesz basis is a basis which is also a frame [see Young, 1980].

1.3 Some important known theorems

The following result of Paley and Wiener plays a key role to connect sampling theory

with frames:
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Theorem 1.1. [f f(z) is an entire function of exponential type v and f. considered
as a function on the real line, belongs to L*(—oco,c0), then there is a function g(t) €

L*(—~,v) such that

f(z) = \},; [ styeat. (1.1)

Furthermore,

[ i@ ldz = [ gz,

Conversely, a function f in the form (1.1) is an entire function of ezponential type

v satisfying f € L?*(—o0,00).

This theorem shows that any function in the Paley-Wiener space can be expressed
in the form (1.1). In the next theorem, due to Levinson, the form (1.1) is associated

to an incomplete system:

Theorem 1.2[Levinson, 1940]. For the system {e**"'} to be incomplete in C(—~, )
(or in LP(—~,7v), | < p < 00), it is necessary and sufficient that there exists a non-

trivial entire function f(z), which vanishes at every A\, and is expressible in the form:
Y P2t
fz) = [ etdut),
bt 4
where w(t) is of bounded variation on (—v,v) (orw(t) € LI(—v,7), l/p+ 1/qg=1).
To prove the incompleteness of the system {e**»*}, we often construct a function

as an infinite product involving the {A,} and then show that it is in the Paley-Wiener

space. To reach this goal, we will employ the following lemma due to Sedletskii [1985].
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Lemma 1.1. Suppose G(z) is in the Paley-Wiener space and its zero set is

{zn}52,- Then lim 3= L exzists.

r—o0 0<[Zn|<r “n

Furthermore, suppose the Hadamard’s factorization of G(z) is
G(z) = Be®*(z — ) [J (1 — ~;)
n=1 “n

Assume the complez sequence {w,} satisfies wo = z5. lim 3 —u}n erists and
n—oo
|lwa|<n

lim 2 = 1. Set
n—oc Wn

P(z) = Be®™(z —wo) [[ (1 — ).
n=1 Wn
If |P(z)] < k|G(z)] on some horizontal line Sz = h with constants k and h, then
there is a real constant o such that the function € **P(z) is in the Paley-Wiener

space. Consequently, {e™n'}%2, is incomplete in L*(—w, ).

The following result presents some intrinsic properties of the functions in the

Paley-Wiener space:

Theorem 1.3 [Levinson, 1935]. Suppose f(z) is an entire function of ezponential
type a and {A,} is its zero set. Let nt(r) be the counting function for its zeros in the

right half disc |z| < T, and n=(r) for the left half one. If

im 8@

e I=

and

[ 8y, o
—00 1 + .‘132 ’
then the following hold:

1) Z185] < oo;

2) lim 3—?’—) = lim 2 = A for some constant A.

r—o0



Finally, we introduce two theorems on exponential sequences.

Theorem 1.4 [Levinson, 1940]. The completeness of the system {e**'} in LP(—v,7),

1 < p < oo orinC(—v,7) is unaffected if a single A, is replaced by another number

which is not in the set {\,}.

Theorem 1.5 [Duffin, 1952]. The removal of a vector from a frame leaves either

a frame or an incomplete set.

In the next section, a special function will be introduced, which applies to the

extreme cases of various theorems.

1.4 A modification of the Lambert W functions

The entire function g(z) = z — ae™7 is the characteristic function of the delay-
differential equation

y'(t) = ay(t - 1).
and the distribution of its zeros is typical to those of general differential-difference

equations. So a thorough understanding of the locations of its zeros is not only nec-

essary for the study of this kind of equation, but also usefui for further generalization.

Note that when a # —¢, all the zeros of g(z) are simple; when a = —2, thereis a

double zero at z = —1. We first assume a # —L and write the zero z of g(z) as

r=m i =re® (—m<g <)
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Then from z + log = = log a. we get that
logr +to+n +in2 =loga (mod 2w1).
This yields that for —7 < arge < @
n = log|a| — logr N = arga + 27k — ¢. (1.2)

Now suppose a is real. It is known (see [Wright, 1959] or [Verblunsky, 1961]) that

1) If a does not satisfy —1 < a < 0, then there is a zero corresponding to each

integer k for all £ € Z.

2) If a satisfies —2 < a < 0, then there is a zero corresponding to each integer &
for all £ in Z\ {—1,0}, and to & = 0 there correspond two zeros zg and z_, satisfying
—1 < 20 < 0 and z_; < —1. Note that from (1.2) the case & = —1 cannot happen
when a < 0 and z < 0. So we still have the one-one correspondence between the zeros

and all the integers.

3) if a = —1, there is a zero of order two at —1, and thus after naming the dou-

ble zeros zg = z_, = —1, the zeros are again in exact correspondence with all integers.

From the above classification, we have that when a > 0 or @ < —1

n{") = log|a| — log s ny = arga + 2k — b (1.3)

for all k € Z; when —1 < a < 0, we have that z and z_, are real, and (1.3) holds
for all £ € Z\ {—1,0}. In summary, to each integer k, there corresponds a unique

zero of g which depends on the variable a. This defines a function Wy (a) called the
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Lambert W function (see [Corless, 1995]). The following asymptotic property of these

functions was proved by Verblunsky [1961].

Lemma 1.2. Suppose Wi(a) is the Lambert W function for k € Z, and a = ._5,57-__1,
then

(1) when a > 0. for all k£ # 0, we have

«

1
Wi(a) = {log A + R:sz'gn(k) + O(

log &
Oi )2}

. 1. log i log [&]
+ {2x[k — Zszgn(k)] + ok + O(-—kz—-)},

and Wy(a) > 0;

(2) when —% < a <0, for all k € Z\ {—1,0}, we have

a 1 L . log k2
W, - - (= - — 8 )
Vi(a) {log A ('.?.k 4kszgn(k))-{—0( p ) } (1.4)
NP B U log 7i1 log [K] 5
+ if2alk + 5 — psign(k)] + 51 +O(T)}’ (1.5)

and —1 < Hfo((l) <0, W_l(a) < -1,
(3) when a = —%, we have (1.4) for all k € Z\ {—1,0}, and Wy(a) = W_,(a) =

_]_,-

(4) when a < —1, we have (1.4) for all k € Z \ {0}, and Wy(a) is not real.

Now if we suppose that a is real and that z; satisfies zxe™ = a, then Z also

satisfies Zpe®* = a. I[n fact we have
1) if a > 0, Wy(a) is real, and Wi(a) = W_i(a) for all & > 1;
2) if —1 < a < 0, only Wo(a) and W_,(a) are real, and the others satisfy Wi(a) =

W_r_1(a) forall £ > 1.
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3)ifa< —i, none of the Wy(a) are real and we have that Wi(a) = W_,_,(a) for

all £ > 0.

To obtain more symmetry in the index, we modify the Wi (a) in the following ways:

when a > 0, let

Vi(a) = —:217;W,.(a) for n € Z,

when a < 0, let

Va(a) = 0 n =
—ﬁ n—1(a) n < 0.

Furthermore set V,(a) = pn(a) + ion(a).

After the above modification, we find that {V;(a)} has one element less than
{Wi(a)} for @ < 0. But it gives us a nice symmetrical index on both of {p.(a)} and

{V.(a)}. From the definition of V,(a) and Lemma 1.2, we immediately get that (see

{Verblunsky, 1961])

Proposition 1.1. Under the definition above, V,(a) and p, satisfy that V,(a) =
—V_.(a) and pn(a) = —p_a(a) for all integers n and real a. Moreover it has the
following asymptotic property:

when a > 0,

{n - % —ell(a)} +i{2‘—xlog ln| +0(1)} n>0
Va(a) = 0 n=0

{n+L+el(a)}+i{Ltlog|n| +O(1)} n<0;
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when a < 0,
{n+ 1 —P(a)} +i{5logn] +O(1)} n>0
Va(a) = 0 n=0
{n—:+ea)}+i{Etlogln| +0(1)} n<0;
where ) (a) = 0(1_9[87‘1'!1.[) and eV(a) > 0, j = 1,2 for sufficiently large n depending

on a.

Remark 1.2. As we shall see, the study of the sequence {V;(a)} will allow us to
address questions concerning completeness (Propostions 2.4 and 2.5), frame property

(Proposition 4.1) or basis property (Theorem 5.5) of the original sequence {I¥,(a)}.

[n this paper, we only consider the case when a is real. For a complex, a similar
modification can be made to W (a), so our method can be used to evaluate the excess

of the system {e"*(2)¢}. But this will not be presented here.



Chapter 2

Completeness of complex

exponentials

2.1 Introduction

From the definition of completeness, we know that only the null function is perpen-
dicular to all elements of {e*~*} if it is complete in LP(—m, ). On the other hand,
we say that the above sequence is closed in LI(—m,w) if every f € LI(—=, ) can be
approximated in L? norm by linear combinations of the functions e****. Duality shows
that closure in L7 is equivalent to completeness in L? if xl: + § =1l,and 1 < p < 0.
Especially, when p = q = 2, completeness is equivalent to closure in L?(—m, =) (see

[Levinson, 1940] or [Young, 1980}).

For completeness, Levinson [1940] showed that {e***t} is completeif [A, —n| < §,
and incomplete if A, = n+(; +¢€)sign(n), Ao = 0 for any € > 0. So it is not surprising
that the two special cases {¢"**} and {e"*~} have received a lot of attention (see

[Redheffer, 1983][Sedletskii, 1977, 1983, 1988][Young 1980, 1984, 1987]), where the

L4



Al and A; are defined by:

o |-

and

To study the completeness of the solution system {e"*(2)}  this chapter begins
with two special sequences {p,(a)} defined in Section 1.4 which are analogous to the

above {A*} and {A™}, and then returns to the solution system itself.

2.2 Two special sequences

As mentioned in the last chapter, Theorem 1.2 gives a necessary and sufficient condi-
tion for the incompleteness of exponential systems, but for the convenience of appli-

cations, Levinson [1940] gave a more practical result which can be expressed in the

following general form.

Given a sequence {\,} of complex numbers, let n,(¢) denote the number of points

A in the disc [z] < ¢ and let
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Theorem 2.1. [f the sequence {\,} of compler numbers is such that
. 2y 1
limsup{NV(R) - —R+ —In R} > —oo,
R—co ™ p
then the system {e***'} is complete in LP(—v,7) (1 < p < 00). Especially if A, satisfy:
1
Pnl < Il + 5=0m € Z,
2p

then the system {e***} is complete in LP(—wn, 7). The constant 2—15 is the best possible.

Remark 2.1. Although the constant # is best possible, the next condition is

obtained via the “shining light” density of Beurling and Malliavin (see [Koosis, p70]).

Theorem 2.2 [Sedleckii, 1977]. Let {A.} and {u.} be two real sequences and
0 < v < oo. Then the exzcess E2()\) is equal to the excess FEo(pu) in L?*(~v,7) only if
one of the following conditions holds:

1) for some 0 < s < 00, 3 |An — pal® < o0,

2) |An — pin| L an, @n = 0, as |n| - oo andZ'Tﬁ < oo.
Now we will extend the result above to the case of complex sequences:

Theorem 2.3. Let {\.} and {u.} be two sequences of distinct compler numbers

satisfying
l)‘n - #nl ,<_ Q’)(ln]) (2'3)

where ¢(|n|) is nonincreasing and tends to 0, and ' 2 < oo. Then the ezcesses

[nl

of the two ezponential system {e*'} and {e"*"'} satisfy that E.()\) = E.(p).-
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The proof of this theorem will be given in the next section.
For a particular regularly distributed sequence, a stronger result can be obtained:

Theorem 2.4 [Redheffer and Young, 1983]. Let A, be an arbitrary positive number

and let An=n+%+5%forn >2uwhere3>0,1 <p< oo and;‘;-{—é = 1. Then the

set {1,e**=} is complete in LP(—m,7) if B < min(s, ﬁ) and not if § > max(z, 2%, .

As shown in [Redheffer and Young, 1983], the fact that such a regular distribution
of {An} can lead to completeness without satisfying Levinson’s condition (Theorem

2.1) is surprising.
The following results are direct consequences of Theorem 2.1:

Corollary 2.1. If {\,} is either {A}} or {A]} as defined by (2.1) and (2.2), then

{e***} is a complete system in L*(—m, ).
Proposition 2.1. Under the definition in Section 1.4, if a > 0, then {e**(®)t n €
Z} is complete in LP(—m,m) for | < p < oo, and if a < O, then {8} n € Z} is

complete in LP(—m,mw) for 1 < p < 2.

Proof: When a > 0, from Proposition 1.1, we see that |p,(a)| < |n| for large n,

and so from Theorem 2.1, {e##(2)t} is complete in LP(—=,7) for 1 < p < 0.

A similar proof also holds in the case of a < 0.
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We note that for the case of @ > 0 and the case of a < 0, the numbers of elements
in the exponential system {e*~(*)} are different. In fact, when a < 0, the element
s=SW(—1,a) is removed from the set {£SW(k,a)}. That means that the exponen-
tial system of the imaginary part of Lambert W functions is complete with excess

E; > 1 for a < 0. This suggests the same might be true for a > 0.

Actually, Redheffer[1983.p107] and Young[L980] have noted the difference of (2.1)

and (2.2) on their excesses. and proved the exactness of (2.1) and the over-completeness

of (2.2), respectively:

Theorem 2.5. [f {A\.} is defined by (2-1), then {e™*'n € Z} is exact in
L3*(—=,w), and if {\.} is defined by (2.2), then {e**,n = £1,4+2 ...} is exact and

complete in L*(—=, 7).

Now suppose {p.(a)} is defined as in Section 1.4, {\}} and {A} is defined as in

(2.1) and (2.2), then from Proposition 1.1 we see that for a <0,

log |n|
w(a) =X =0 ,
lpo(a) = 351 = OCZE ™)
and for a > 0,
- log ||
(a)=A =0 )-
lpala) = 71 = O,

Combining with Theorems 2.2 and 2.5 we immediately get that

Proposition 2.2. Ifa < 0, then {e°"®)} n € Z} is an ezact complete sequence
in [*(—w,7), and if a > 0, then {e?*(®)t n = £1,42, ...} is ezact and complete in

L (—w,m).
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Next we consider some basis properties. Note that if {e;,e,,...} is a basis for a

Banach space X. then every vector z in the space has a unique series expansion of

the form

co
I = chﬁn.

n=1

[t is clear that each coefficient ¢, is a linear function of z, so we may write

r= i fn(z)en-

n=1

The functionals f, are called the coefficient functionals associated with the basis {e,}-
Based on the above definition, it is proved in [Young, 1984, 1987] that

Theorem 2.6. [f {\}'} and {A[} are defined by (2.1) and (2.2), respectively, then

neither {e™%t n € Z} nor {e?*=t,n € Z \ {0}} is a basis for L?(—=, 7).

There is a natural question as to whether {e'°*(*)t} is a basis in L?(—=,7) when

a <0 or a> 0?7 We first give a stability result:

Theorem 2.7. Suppose {\n} and {in} are two sequences of distinct real numbers.
Suppose {e*"} is a basis and {e'**'} is complete in L[*(—m, 7). If {un} satisfies
™ A = pial < o0, (2.4)
then {e'*~'} is a basis in L2(—m,w).

In order to prove Theorem 2.7, we will need the following two lemmas (see [Young

1980, p23 and p40]).
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Lemma 2.1. [f{z.} is a basis for a Banach space X and if {f,} is the associated

sequence of coefficient functionals, then there exists a constant M such that

L<flznllllfall € M (n=1,2,..).

Lemma 2.2. Let {z,} be a basis for a Banach space X and let {f,} be the

associated sequence of coefficient functionals. If {y.} is complete in X and if

O
> llza = yallll fall < oo,
n=l1
then {yn} is a basis for X.
Proof of Theorem 2.7:
Suppose {fn} is the associated sequence of coefficient functionals of {e**~t}. Since

An is real, |[e*"!|| = 1. By Lemma 2.1, || f,,|| < M.

Take a real sequence {yu,} satisfying (2.4), then we have

[ (/_1(6i““‘ — efnt)(efunt — eixn*)dt)%
= /1.—(1 _ ei(un—An)t)(l _ e—i(y.n—)‘")r_)dt)%
= .2 / (sm t)zdt)
Since
| sin

2 — An T
) t| < §|aun_)‘n|a

we have that

N

d_llent — et fall < MY fletnt — |
7!'\/27?[\/{2 [ttn — An| < o0,

IN
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by (2.4). Thus Lemma 2.2 guarantees that {e**~‘} is a basis in L?(—=.w). This ends

the proof.

Now suppose {p,} is defined as in Section 1.4 and {A.} as in (2.1) or (2.2). Note

that |pn — An| ~ 1351, so it does not meet the convergent condition (2.4). However

we still have

Proposition 2.3. Neither the exponential systems {e'**(®) n € Z} when a < 0,

nor {8 n € Z\ {0}} when a > 0 is a basis for L*(—=,w).

A sketch of the proof will be presented in Chapter 5.

2.3 Stability properties of completeness

As mentioned in the last section, Sedletskii has shown that given an exponential
system, the excess will remain the same upon small variations of its sequence {A,}
(Theorem 2.2). If we know that the variations are only vertical displacements, it is
possible to relax such conditions. Actually, Elsner [1969] and Young [1976] indepen-

dently proved that

Theorem 2.8. Let {\.} and {g.} be two sequences of complez numbers which

lie in a fired horizontal strip, and suppose that
R(An) = R(pn)-

If {e"*'} is complete in L?(—w, ), then {e"t} is also complete in L*(—n, 7).
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Almost at the same time, Peterson and Redheffer [1977| gave a stronger form:

Theorem 2.8°. Let {A\.} and {u.} be two sequences of complex numbers, and

suppose that
R(A) =R(pn) and  [SA — Sua| < const

then the L? ezcesses of the two ezponential systems {e*"%} and {e'*"'} are equal, i.c.

Ea(X) = Ex(p).

Sedletskii[1978] pointed out that the above theorem fails to be true in L!(—m,7)
or C(—m,w). Furthermore, in {1985] he constructed in L*(—=,w) an example which
shows that, in general, the boundedness conditions on the imaginary parts in the
above two theorems can not be removed. But for some particular cases he proved the

following two theorems:

Theorem 2.9. Suppose {h.} is a real sequence, them {e' ")t} is complete in
C(—m,w) provided

h2

Z'—" < oo.

n?

Theorem 2.10. Suppose {h.} is a real sequence, and E, is the ezcess of the
ezponential system {e‘("+ihn)t} in [2(—7 7).

1) for some a € [0, 0c) let
lhn] < alogln|  (In] = no)-

Then E; < [arx]+ 1. If, in addition, {aw} < 3, then E> < [an]. Here (z] and {z}

denote respectively the integral and fractional parts of x.



2) if moreover

hz
d ' <o (2.5)

n?
and

lhn]| > alog|r| (|n| > no,a € [0,00)),

then E; > [ax|. [f, in addition, {arw} > 1/2, then E; > [ax] + 1.

In particular, if condition (2.3) is fulfilled and h,[flog|n| — o0 as n — oo, then

the system {e'(n+ihn)t}oc has infinite excess in L*(—m,w).

n=—o0

Note that in Theorems 2.9 and 2.10, the trigonometric system may have vertical
displacements that tend to infinity. For example, if A, = n+sign(n)l—°f—11}’-l, and Aq =0,

then £, = [}] = 0. That is, the system {e**~'} is then complete L*(—m, 7).

It is natural to ask whether this proposition can be translated to non-harmonic
series for which n is replaced by n + ¢ with ¢ > 07 Before answering this question,

we first introduce a nice result required later for our proof.

Theorem 2.11[Sedletskii, 1985]. Assume that the points {\.} and {u.} lie in
the curvilinear strip {z : |y| < ¢(|z|)}, where ¢(z)(z > 0) is a positive non-decreasing

function such that
Y ¢*(n)/n? <oco and RA.=Ru. neZ
n=l

If 2] < [Spal for all n € Z, then Ex(X) < Ex(p).

From the remark following Theorem 2.10, we see that E,(\) increases with the

order of growth of h,. But Theorem 2.10 does not show the difference of the two
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excesses, so here we are interested in the stability of £,(\) in such non-harmonic

cases:

Theorem 2.12. Suppose {A,} is defined by (2.1). and h, = 3-log|n| forn # 0,

and O for n =0. Then {en+ihnlt n € Z} is ezact.

The above result can be obtained from a misprinted claim of Sedletskii’s (we will
discuss it later). But instead of a direct evaluation on the Mittag-Leffler function
as in his paper, we here give our proof based on some properties of the Lambert W

function. First we give two lemmas:

Lemma 2.3. Let U, = —iW,(—1). Then the system {"U"~9¢ n € Z\ {0,-1}}
is itncomplete in C[—%,% (or L”(—%, %), l<p< o).
Proof: To prove this lemma, we only need to construct an entire function in the

Paley-Wiener space which vanishes at every point z, = U, —i = —iW/n(——é) — 1.

Set f(z) = [, e'dw(t) where w(t) = (¢t + A)2. Then f(z) is a nontrivial entire

function of exponential type. Substitute ¢ by ¢ — A, then

_ /2’4 ei2(t—A) 442
0

. f2A
= 2e74° / te*tdt
0

flz) = / et 4 A)?

2e  _iase- " i : 1
_ —tA= . 1(2Az+1) nd
= —° {i{(2Az +1)e + e}.

Notice that for f(z) = 0, ¢(2Az + ¢) must be one of the Wi(—1). So if we take

A = £, then the zeroes {z,} of f(z) come only from {—iW,(—1) ~i}=_.
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On the other hand, from the discussion in Section 1.4, we see that W’n(—i_—) = —1
forn =0orn = —1. So z, = 0 for n = 0,—1. By simple computation. we see

f(0) =1 #0. Thus all the zeros of f(z) are exactly {—iW,(—1)—i,n € Z\ {0.-1}}.

Thus by Theorem 1.2, {€“"~9 n € Z\ {0, —1}} is incomplete in C(—3,3) (or

LP(—3.3). 1 < p < o).

Lemma 2.4. (1) Let un, = oA, o > 0. If {e**'} is complete in LP(—v.7),1 <

p < 0o, then {e*#"t} is complete in LP(—vy/o,v[c), 1 < p < co.

(2) Let pn = A, + 7. If {€"t} is complete in LP(—~,7),l < p < oo, then {e*"'}

is complete in LP(—y —17,v —7), l < p < .

Proof of (1): If {e**~*} is not complete in LP(—2, 1), then there exists an entire

function g of the form

-~

9(2) = [7 edu(t),

such that g(u,) =0, where w(t) isin L¥(—Z,2) and 1/p+1/q = 1.

Replace z by ocw in the above integral, then

2

g(w) = glow)= [ e du(t)

= /:; eiwsdwl(;)

where wi(s) = w(s/o) is in L¥(—7,7), and s = ot. So ¢;(w) is an entire function

satisfying g1(An) = g(un) = 0. By Theorem 1.2, {e*"*} is incomplete in LP(—7,7)



which is a contradiction.
The proof of (2) is the same as that for (1) provided that = is replaced by z + .
Proof of Theorem 2.12:

Since {e"*"*,n € Z} is complete, by Theorem 2.11, {e*+in)t 1 ¢ Z} is complet.e.
Thus to prove the theorem, we only need to show that {e‘*+#=)t n e Z'\ {0}} is

incomplete (see Remark 1.2 4nd Theorem 1.4).

Suppose {U} is defined as in Lemma 2.3, then from Lemma 2.3 and Lemma 2.4,
we see {e?=Us=3t L e Z\ {0,—1}} is incomplete in L?*(—=,w). It follows from Thew-
rem 2.8’ that {ez=Vst k€ Z\ {0, —1}} = {e==":(=2) k€ Z\ {0, —1}} is incomplerte

in L}(—m,w).

Following the approach in Section 1.4, we may reindex the sequence of {Ux} &in
the following way: keep each nonnegative index and add one to each negative index
since Uy = U_;. Let {Q,} denote the new sequence, then the new exponential systemm

{e779t k € Z/{0}} is incomplete in L*(—m, 7).

Furthermore if we set V, = Qn/27 = pn + i0n, then {V;} and {pn} coincide
with {Va(—1)} and {pn(—1)} respectively, as defined in Section 1.4. In addition, by
Lemma 1.2

1
on — — log [n}|| < const.
2w

<
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Thus again from Theorem 2.8°, {e!(?=tizz18Il n £ 0} is incompletein L2(—w, ).

Since p, = pn(—f), and A, is defined by (2.1), then by Proposition 1.1 we have

log n
pn — An| = O(—2

).

It follows that the two sequences {p. + £log|n|} and {A. + 5= login|} satisfy the
condition in Theorem 2.3. Thus the two exponential systems {e‘{#ntzzlo8lnt} and
{efPnt3Tlo8Inlt) have the same excess, and thus E,(p) = E»(A). It follows that

{efCntaTloglnl)t e 7\ {0}} is incomplete. This ends the proof of Theorem 2.12.

From Theorem 2.i1 and Theorem 2.12, the following result is obvious:

Corollary 2.2. Suppose A, is defined by (2.1), pn = A +ion with |o,| < 5= log|n|
forn #£0, and po = 0. Then Ex(X) = Ex(u).

By a similar argument as that for Theorem 2.12, we have

Proposition 2.4. Suppose {V,(a)} is defined as in Section 1.4 with a <0, then

{eV=(@)t n € Z} is ezact in L*(—m, %), i.e. Ea(V) =0.

Proof of Theorem 2.3: To prove the theorem, we only need to show that
{gn} is not a complete sequence if {A,} is assumed to be incomplete in a interval

(=7, 7) (see Remark 1.2 and Theorem 1.4). Without loss of generality, assume v = 7.

From Theorem 1.2, there is an entire function F(z) in the Paley-Wiener space

such that {)\,} is a subset of its zeros. Let {A\,} = {A,} U {ya} be the collection of



[\
[os]

all the zeros of F. We can assume all the elements A, to be distinct. Otherwise, we
may consider F\(z) = ~__l'\_F(3) instead of F(z) for a multiple zero A,. For each 7,,

we choose a v, such that the v, are distinct, v, & {n} and |y, — 75| < 5.

Set {tin} = {un} U {7.}. It follows easily from the hypotheses that |A, — .| <

&(|n|) where @ is non-increasing and satisfies > olnl) o . Note that if the number
g In]

of elements in {v,} is finite, we add {v.} and {7v.} to {\.} and {u.}, respectively,
without changing the original question; if the number of elements in {v,} is infinite,

and if we can show E,(z) < Eg(j\), then both E,(A) and E,(u) are —oc.

So without loss of generality, we assume that {A,} is all of the zero set of F(z).

Then by Theorem 1.3, we have lim,,_ '—\n—"l = a.

From Hadamard’s factorization theorem, F'(z) can be written as

=z

F(zy=e*]]"(1 - /\i)eﬁ.

n

Since |An — pn] < é(n) with 37 22 < oo, we have that

In|

IR e

/\nﬂn

for some constant b.

Now set

F(z) = 2= T"(1 = Z)ein.
J7



Then the canonical product F~(z) is an entire function, and satisfies that

Fr(z) = @D [["(1 - =)= [['e
Hn

= % '(l—i)ef:.
n

From Lemma 1.] with A = 0, to reach our goal we only need to show that

|F~(z)| < const|F(z)|, z € R.

Let A, = pn +10,. With the hypothesis of 3 ﬂIJn"_IQ < 0o, Theorem 2.8’ allow us to
change the imaginary part of i, to agree with that of A,,. Also we can assume o, > 1

for all n. So we may set g, = A, + 7» where 7, is real. It follows that for z € R

(pﬂ_$+Tﬂ)2+0721 ’\nl2l1 T |2
(pﬂ _"1:)2 +0721 Hn An
/\n — Hn
= (L)l + 222 - 2
H An

n

- =P =
fn

where 7, = [27a(pn — ) + 72[/{(pa — £)? + 02}. Note that when 0 < u < 4, we have

k
e

log(l +u) =) ; < 2u.
So 3" log(l 4+ u,) is convergent if 3 u, is convergent.

Since limy_ e Anﬂ = a and |\, — gn| — 0, we have that u, ~ an. From the hy-

pothesis on ¢, 3 log|l + )‘L‘;‘ﬂ[ is convergent.

From (1) in Theorem 1.3, we see that limpo 2 = lim, 00 \T:L = «. Note that

Tn

nl < const ——m8M————
|71 o =21
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Set Ny = [£], and Np = (£]. We consider the following three cases of 7:

1) when 1 < n < Ny, then |z — pn| > pn = O(n)
Np—1 oc or(n)

PR
> lnnl_n;l_{_n

n=1

which is uniformly bounded.

2) when N; < n < N, then

No aiNg ¢(t)
—_ N < .
n;:\ll [7n] < const /;Nl (¥ (z —0) dt < O(e(Ny)log Vy)

Since 3 —(— < oo and ¢(n) — 0, then ¢(n)logn — 0 as n — oo. Thus ZH_NI [7n]

is uniformly bounded.

3) when n > Ny, set p, — T = u,_n,- Then we have
Uk ~ (Pr4ng, — ) ~ alk + Ng) — z ~ ak.

So

Sl < 30 2k M) i k)

n=N, k=1 1+ Uk k= 1+ ’Uk

Thus we finally get |F~(z)| < const|F'(z)| which ends the proof.

2.4 A note on an excess formula

After the proof of a special case, Sedletskii [1978] claims the following formula:

Sedletskii’s claim: Suppose A, = n — Bsign(n) + ialogn, n € Z \ {0}, where

a >0, B real. Define ¢(z) by
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Then |¢(z)| = O(|z]|(®*?8)7) on Sz = —1. Consecquently, the excess E, in L*(—w,7)
of the system {e*"t} satisfies that

1) Ex = [(a+26)7] if {(a +26)7} < L or

2) B2 = [(a+28)7] + 1 if {(a +26)7} > 5.

Unfortunately, the statement above is incorrect. For example, consider the system
{ei("*'%Slgn(”)*#'°5|"”‘}. Then @ = 5=, and 8 = —%. So we have (a+28)r =1 ~-Z =
—1.07 = =2+ 0.93, According to the claim, £, = —1 which is in contradiction with

Theorem 2.12.

So after rechecking the details of the proof, they actually show that:

Remark 2.2: Under the assumption of Sedletskii’s claim, we have that |¢(z)| =
O(|z]°™*?) on Sz = —1, and
1) E; =[om +20] if {ar +28} < % or

2) By =[am + 28] + 1 if {am + 28} > 3.

Corollary 2.3. Suppose {An} is defined by (2.2), p, = A +it, with t, = 5= log |n|,

and to = 0. Then E(u) = [ar + 28] = 1.

Set An =n+(; +¢)sign(n), Ao = 0. Levinson show that the corresponding system
{etrnt}e is incomplete. But it is not true when A, is replaced by A, + ialog|n|.

n=-—00

Actually, we have

Corollary 2.4. Suppose A, is defined as above. Then the excess E- of{ei(’\"+#'°5|“”‘}

satisfies F3 = 0.



Corollary 2.4 and Levinson’s example mentioned above thus gives a simple exam-
ple where all of the two sequences {A,} and {u,} are situated in the curvilinear strip

{z: |yl < log|z|} and Ru. = R\, for all n, but Er(A) # Ep(u) -
From Corollary 2.3, Theorem 2.3 and Theorem 2.8’ we get that

Proposition 2.5. Suppose {V,(a)}22 __, is defined as in Section [.{ with a > 0,

then Eo(V) = 1.

Next if we set f(z) = [_2(t + w)e**'dt, then from the proof of Lemma 2.3, f(z)

can be written in the form
2 = [ - .\ {(2mz+1) 1
f(z) = ——e " {127z + z)e‘( AR —e} (2.6)

which is related to Lambert W functions. With the following proposition about the
function f, we can give a proof of Sedletskii’s claim similar to that of Sedletskii [1978]

but it avoids the long discussion of a function of Mittag-Leffler type.

Proposition 2.6. Suppose an entire function f{z) is defined by (2.6), then it can

be written as

flz)=Be* [ (1 - —0—r)

neZ\{0} V;(—i) ~ 3=
where k and B are real and V, is defined in Section 1.4.

Furthermore, if set G(z) = zf(z), and set

G(2) .
G'(Vn(_i) - #)(: — Vn(—i) + 2_17?)

Gn(z) =

and set

A .
gnlt) = AILEEO f-_A Gn(z)e*dz,
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then {g.}°. is a sequence in L*(—m, =) biorthogonal to {eiVn(=2)=35)) >
Proof: let f(z) be defined by (2.6), then from the proof of Lemma 2.3. we see

that all the zeros of f(z) are {—5=(W.(—21) +1),n € Z\ {0, —1}} which is equal to

{Va(=2) — 55,m € Z\ {0}}.

Recall that Vn(—é) = pn + 10, as in Section 1.4, and that the sequence has the

symmetric property that

Va(—2) = ~Von(=2).

So set op = Vo(—1) — i, then we have that

v T —T it
(1- )1 - =) =(1——=)(1 = =).

Tn 0_n O_n n

Since f(0) # 0, by Hadamard’s factorization theorem, we can write f(z) as

z

f2) = Be= [T (1~ )01 — =) = Bewg(=)
n=1 n

O_n

From the equation (2.6), it is easy to verify that f(z) satisfies f(z) = f(—z).
Combining with the fact that g(z) = g(—z), we get that & = —cz and B = B. Thus

¢ = itk with k real and B is real.

Set G(z) = zf(z) and
_ G(z) '
G'(on)(z — on)
Since f € P, we have G, € P which satisfies that 20, G.(z)Nn(z)dz = Gu(om) =

Gn(2)

sinwt{r—om)

—(=—on) IS the reproducing function.

Smn where K, (z) =
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Suppose
A
I T v it
9u(6) = Jim [ Gu(z)e=ds

is the inverse Fourier transform of G,(z). Since the complex Fourier transform is an
isometricisomorphism from L?(—, 7) onto all of P and since A'n(z) = 5= [T emfe " dt

is the Fourier transform of e*™!, it is easy to see that its inverse Fourier transform

{gn} is biorthogonal to {e*"*}.

2.5 Difference of excesses in complex domain

In the last section, we have discussed and compared the excesses of two complex
sequences having the same real parts. In this section, we consider some cases when

they have the same imaginary parts.
In 1999, Fujii, Nakamura and Redheffer proved the following result:

Theorem 2.13. Let {u,} be a complex sequence such that [u, —n| < ¢ for

—oo < n<oo. Let \g = pg and
An = pn + a, Acn =pn—5b, n>0,
where a > 0 and b > 0 are constants. Then E,()\) < E2(u) on the interval (—m,w).
As was the case with Theorem 2.8, the condition |z, —n| < cis too strong. Indeed,

we will now extend the result above to complex sequences such that |[Ru, —n| <c.

Details are explained in the following theorem:
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Theorem 2.14. Assume that {A\.} end {u.} are two compler sequences whose
points lie in the curvilinear strip {z = z + 1y : |y| < &(|z|)}, where &(z)(z > 0) is a

posttive non-decreasing function such that

Z ¢’2(n) < oo

n?

Assume that \g = po and

/\n=#n+av ’\—nzﬂ—n_bs Tl>0,
where a > 0, b > 0 are constants. If |[Ru, — n| < c¢ for all integers n, then
Ea(A) < Eq(u) on the interval (—w, ).

Proof of Theorem 2.14:

A simple induction argument using Theorem 1.4 shows that any finite number
of terms can be replaced without altering the completeness as long as no repetition

occurs. Therefore, we assume without loss of generality that g = Ag = 0 and
Ru, <0 for n<0, Ru,>0 for n>0.

This may increase the value of ¢, but it does no harm to our proof.

Now suppose {u,}%, is exact. To finish our proof, we only need to show that

{An}nez\{0} is incomplete.

Set yun, = B, + 10, and A, = a, + i0, where 8., a, and o, are real. Then

an=.8n+a, Q—n=48—n_bv n > 0.
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2
From the conditions of |3, — n| < c and ' 7& < oo, we see that

20 1 l X (p#n=n)+ (p-n +n)
ﬂgl l#—" i #‘"| - nZ { Hnf—n !
< i( 2 + 29 < oo.

=1 Iﬂn“ﬂ—nl I/-‘n”l‘—-nl

Consequently, we can assume 3 o2 l(“lrz + ;l:) = b. It follows from Theorem 1.2 that
there is an entire function Fi(z) corresponding to the sequence {un}nez\(0} such that

Fi(z) € L*(—o0,c). By Hadamard’s factorization theorem it follows that

e > > 1 1
Fi(z) = ele82 1 — )1 — 2)elimtan)?
{2) L1 H—n ( Kn

n=1 -n

- a~H(1

for some constant a.

By a similar argument as above, we set

—)

—_ n.

GZ(Z) = e**
n=1

FQ(Z) = e%* 10_0[

n=1

Acn
Then all three functions G(z), G2(z) and F3(z) are entire. From Lemma 1.1, it
suffices to show that

[F2(z — 1) < C|Fi(z —1)] (2.8)

on the x-axis for some constant C.

From the hypotheses of the theorem, we have that the series Z' < oo. Since
5‘2: = O(%), it follows that 5’ g—% converges. So

2
22| = e HE s+ 3D)
An
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converges to a non-zero constant A. Consequently,

Fy(2) = (-5 - 5)
@l = E[(I—a—i:)(l—i)‘
T @ an (2= A)(2 = AL)
- ,}1 /\—n ’\_n-(z_a—n)(z_an)[
= Alp_(2)ll¢+(2)l
where ¢_(z) = [[52, 222 and ¢4 (z) = [T, =22

Note that

l6-(z—0) = II|

n=1
b ain + 20_,
— nl;[lll+ (l___a_n)2+1|
nt20.n

1
Zlogil-{- (r—a_, )s-l—!.I

which converges. Furthermore |¢p_(z — )| = 1 as £ — +co.

Consequently,

Fg.’L‘
l (

Galz = I/[¢v+(:r ) > A as z — +oo.

Similarly, we get that |¢+(z — i) = 1 as £ —+ —o0, and

Folz —
l (

Galo — )|/|¢> (z—1i)| > A as z — —oo.

Next consider F(z)/G1(z). Similar to above discussion, we have

1 - =)
II| =5
n=1 Bn

Bl ()[|d+(2)]




where

=11 1225, é_(z)=Hf%

n=1 H—n Hn n=13—

—8
[T ]
S
S

3
Il
-

and 64(z) = I] ——5

~M—=n

By the same argument as above, we get that

lp_(z—2)] =1 as zx— +oo;

[e(z —7) =1 as = — —oo.

Consequently
lgliz l/|u+(:l:—z )] > B as z— +oo
lgl((i I/Iv (z —1)| =B as z— —oo.

Note that when n > 0, Ap, = tn + @, and when n < 0, A\, = u, — b. So we have

that
, : X r—1—A,
di(z—1) = nl—:[ll—i—an
_ fjleziza -
n=1 I—Z—a)—ﬁn
= pilz—a—i)
and that

b_(z—i)=v_(z+b—1i).
To prove (2.8) for all £ € R, we consider the three cases: © < —M, z > M and

—M < z < M for some sufficiently large M.
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First for £ < — M, we have that

_ I Fz(l‘

- Gz l‘ - Z)
< 2416 (z — IGa(z — i)

| Fa(z — i) [|Gz — )|

= 2A[p_(x — i + b)||Galz = 1)
< ﬁ F}_(x Z+b)
- BiG(z—i+0b)

1Ga(z — i)l

Next it is sufficient to show that I&Iﬂ)ﬂ is uniformly bounded. Note that

G[(I—l+b)
Gi(z=i)  _ [ (1-32)0-59
G[(I +b _ i) - n=1 (1 - %-inib)(]_ - I_B:H,)

_ ﬁﬁ—nﬁn T—1—a,
A Qan T —1— [+ b

= H L(Tl,l‘),

where

[@—nan + (ban — aa_,) — abl[z — 1 — a,]

Ln.z) = a_non(z —1—an, +a+b)
_ a_pon(T — 1~ an) + (bog —aa_, —ab)(z — 7 — o)
- C_ntn(z —1—an+a+b)
_ { (a + b)aja—, + (ban —aa_, —ab)(—an)}
- a_ntp(z —t—an+a+1b)
+ (z —i)(ba, — acx_, — ab)

Qenan(z —i—an, +a+0b)

Since a, = B, + O(1) = n + O(1) for all n € Z, by a simple calculation, we have
that for sufficiently large M > 0 and z < —M, there are constants A} > 0, and

K, > 0 such that

Kin+ honzx 10
[L(n,.z:)[ < |]. + ‘ml < Il + ?
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Thus when z < —M, we have that

Ga(z — 1)
IGl(r—z’-{-b)‘

< enw: logl1+ H

which is uniformly bounded. So there exists a constant C,(M ) such that [Fa(z ~1)| <

Ci(M)|Fi(z — ?)] for any z satisfying z < —M.

Similarly we can show that [Fa(z —i)| < Co(M)|Fi(z — )| for any r satislying

> M.

From Theorem 2.8, we can assume that o, # —1 for all n € Z. Then it is obvi-
ous that |Fy(z — 7)| < Ca(M)|Fi(z —7)] for any z satisfying —M < z < M. Thus

| F3(z — )| is uniformly bounded by [Fi(z — )| for any = € R. This ends the proof.



Chapter 3

The series expansion of complex

exponentials

3.1 Introduction

In the last chapter, we have discussed under various conditions on A, the complete-
ness of {e"*"*} in L*(—m,w), i.e. if f(z) € L*(—m=,w), and if f] f(t)e'*!'dt = 0, then

f(z) is a null function.

In general, such results do not imply that f(z) can be represented by a series
S an,et**. It only implies that for given any ¢, it is possible to find a polynomial in

{e***}, P,(z), such that
/_: If(z) — P.(z)]dz < e.

Therefore it is of interest to find conditions under which it is possible to get a series
representation for f(z) in terms of {€"***} analogous to the Fourier series. Under the
condition [A, —n| < D < r_,%, such series were studied by Paley and Wiener, and

Levinson extended the result to D < % Furthermore, Levinson showed that his re-

41
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sult is sharp in the sense that if D = 1, then the conclusions no longer hold in general.

For the special sequence {\.} where A, =n + i, n>0, A_, = —A,,and X =0,
Young showed that the conclusion holds in such a extreme {A,}. In this chapter we
will discuss a case under which the above extreme case of {A,} are perturbed, i.e.

we try to get a series representation of f € L?(—m, ) in terms of {e*~*}. The main

result is the following:

Theorem 3.1. [f the {pn} are given as in Section [.{ with a < 0, then each

function f in L?(—m,w) has a unique non-harmonic Fourier ezpansion
ot -
F(0) ~ 3 e
—0o

which is equiconvergent with its ordinary Fourier series uniformly on each closed
subinterval of (—, 7). Specifically, the system {e**"*} possesses a unique biorthogonal
set {gn(z)} such that the series

=) inx

SAS [ F©eede — e [ fie)gn(€)de)

converges uniformly to zero on each closed subinterval of (—m, ).

For a variety of other equiconvergence results on the complex zeros A, of a special
class of entire functions, please refer to Sedleckii[1970, 1972, 1975] or Verblunsky[1956,

1961). For the norm convergence in L?, one may refer to Benzinge.

Since the Fourier series of an L? function converge to the function pointwise al-

most everywhere (see for example [Young, 1980]), we have that
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Corollary 3.1. Under the hypotheses of Theorem 3.1,
f(8) =5 cpet

almost everywhere on (—mw, 7).

3.2 Asymptotic estimation of canonical products

Suppose {A,} is a real sequence. Set

Q=) =T - 3 (3-1)

In 1934, Paley and Wiener proved that if |\, — n| < h where A > 0 is constant,

then the above function @Q(z) satisfies
Kilz|™] < [2Q(2)] < Kalz|*

for z € R, |z| > 1, provided in the case of the first inequality that [z — A,| > Jo for

all n, where A';, K, and & are positive constants.
Later, Redheffer pointed out that the above result can be made more precise:

Theorem 3.2[Redheffer, 1954]. Suppose the real sequence {A.} satisfy |\, —n| <
h for some h > 0 and suppose @ is given by (3.1), then for z € R, zQ(z) = o(z**)
as z — o0o. Ifé(zx) > 0 as  — oo, there exists h > 0 and a sequence A\, with

An —n| < h such that ;Q(z;) > 8(z;)z* for a sequence z; with T; — oo.
J i i) i j

[n 1983, with the aid of the I function, Young showed that if A, = n +  for all

positive integers n, A_, = —A,, and A = 0, then |zQ(z)| = O(ﬁ) as z — oco. Also



in 1983, Redheffer proved that |zQ(z)| = O(I_;_ log_z‘3 r) where A\, =n + i + logn'
Here we give an estimate of z@Q(z) for more general perturbation of n.

Theorem 3.3. Let \y =n+é€n, Apn = =M, and 0 < Ay < €, < hy < L for all
positive integers n. Suppose @ is defined by (3.1), then there exist positive constants

do, Ny and K, such that
[{llxl"(3hz—h1) < |zQ(z)| < [\’2lx|—(3hl—h2)

for sufficiently large =, provided in the first inequality that |z — A,| > & for all A,.

Proof: From the symmetry of Q(z), we assume z > 0. Let A(r) be the number of
An on (0,7) and note that A(n) =n on (An,An41). Then
log|Q(z)] = Z log [1 —

o 2 2

= an(log{l—)\2 —log|l —

)

2
An-&— 1

= —hrn(/r-( / )A(r) —(logll — —|)dr

=0

= lim(/l +-/.r+£ A(r)K (z,r)dr

=0

where

r? 2z

22 =72 ~ r(z? —r?)°

2

d
K(z,r)= —log
Suppose A, < r < An4; for some n, and take
|
4 = Z min{|z — Az], [z — Ang1 }s
then for any 0 < é < é;, we have

r—§ An r—
/; (A(r) = r)K(z,r)dr = /1\ (A(r) —7r)K(z,7)dr +/,\ ls(n — )\ (z,r)dr



and
oo n+l
/ (A(r) = r)K{z,r)dr = / (n —r)K(z,r)dr + / —r}K(z,r)dr.
4§ +é
Note that

( /rﬁs—i—/ il )(n —r)K(z,r)dr

= n(/r 6+/ )[\(Ir r—(/r—s /AHH ';Zizrz

r—§ An 9 1
- n(/ + +‘( + - )dr

r+6 r T—T r+r

r—§ n
_ / +1 1 )dr
+ z -T :1: +r

Any .y Z — Antt
_ (g L 4 log | Z31) — log | 5
/\n+l
R e R L)
—/\n+1 T+ Ant1
+ 2 {(log | 0 — (g IZE22E 1 1og [Z222)
= TlS]_'—.’L'SQ.

Note that when z is sufficiently large, we have

T — An
nS < —nlong:\—i’—l-l +C
and
85, < Ilog[—:—nH-I +C

where the constant C may be different.

Then we have

dr

(/r~(+/ )(n—r)[\(xrdr<(x—n)log|—£|+0
An +e

An

Since [;° =% 2’ s~dr = 0, it follows that

I

r—c 1 9.2
log |Q(z)] = y_gg(/ + [ =K rdr - 1
< (/1 +/; J(A(r) = r)K(z,7)dr + (z — n)log | __/\;H

|+ C.
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From the definition of {A,.}. we see that

—1—h S A(r) —7r < —h,.

Since A(r) — r is almost periodic in [1,00), its graph looks like a sawtooth, so we

have
An ; 1
ogQ(=) < ([ Kz, rdr)(—hi - 3)
(o o] . 1
+([\n+l K(z,r)dr)(~1 = ks + 3)
+(z — n)log Ix_—/\nﬂ-[ + C.
r— A,
Since

An
/ K(z,r)dr =3logz + C,
1

/\°° K(z,r)dr = —logz + log |z — Angs| + C,
Antt
and since log [Q(z)| & —o0 as £ — A,, we always have
1 1
log|Q(z)] < 3(—h.— ;) log z + (—hy — ;)(—log r)+C
= (=3hy+hy~1)logz +C.
So for a sufficiently large |z|, there is a constant A5 such that

lzQ(z)| < Koz~ Ghi-ha),

Similarly, if [z — A,| > € for all n, then

l0g|Q(z)] > (3logz)(~1 — ha + =) + (—log z)(—hs — =)

3 L,
= —(3/12 + 5 —hl - ;)lOg.’L‘

L

= —(3h2 _hl +1)10g1:.



Thus there exists a constant A} such that

|zQ(z)| > Kz~ Chh),
This ends the proof.

When A, = ks = % Young’s estimation follows from the above results.

Now for A, = p, with p, defined as in Section 1.4 with a < 0, let us consider the

corresponding zQ(x):

Set h; = i—c, and hy = i, then after replacing finitely many terms of p, by n+ i,

all p, satisfy the condition in Theorem 3.3. Since replacing finitely many terms in

{pn} does not change the limit of [zQ(z)|, so we have the following estimation:

Kilz|77¢ < |zQ(z)] < ||+,

where € is any positive constant.
It is possible to obtain a slightly more precise estimate:

Lemma 3.1. Suppose A\, = pn, where p, = pn(a) is defined in Section 1.4 with

a <0, and Q is defined as before, then there exist positive constants §;, K|, and K,

such that

R, R,

N lzQ(z)] < 7z

as T — 00, z € R, provided in the first inequality that |z — p.| > 4:.
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Proof: Since p.(a) =n + § + O('ﬁﬁi) for n > 0, we see that the number A, (r) of
pn in (0,7) should satisfy
A(r) < 1\n+%(r) <r-—-.

=7y

On the other hand, since 21—°§—' > lﬁfﬁ for l <n <r <n+1, then we have

logr

Aplr) 27— 1= 7 +0(%ET).

From the proof of Theorem 3.3, we only need to show that

o 1
/ K (z,r) Ofrdr < 0o.
1

Using partial fractions to expand ;?(jf%z), then we see that

oo 22 o0 o
/ i l°grdr=2/ log™ 1+ 01).
1 I

r(z?2—72) r z? —r?

Now set p, = {z : |z —z| = L,0 < argz < T}, then ;—f%dz =0(1) =0(1)
as L — oo, then by integration over a contour in the first quadrant, we can replace

integration over the positive real axis by integration over the positive imaginary axis

and we obtain that

oo 92 oo
/ —”x——log rdr = 2f —loia’u + O(1) = 0O(1).
1

r2(z? — r?) 1 24 u?

This completes the proof.

Lemma 3.2. Suppose {\, = n + sign(n);}lngo, and Qi(z) = [T'(1 — ). Set
G (z) = z@Q\(z), then for z € R,

. N+2
IGi(2)] < Klz|7= [] [M — 2l

k=N
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where N := N(z) = max{n € Nin + ; < |z|}, and K" is constant independent of N,

and .

Proof: Set N = max{n € N,n + { < |z|}, then

I 5
N<N+15|x|§N+%<N+2-

We write the product G(z) in three parts:

N+2
Gu@)l = el H 1= 2= 3 TS - £
-k k=N
x I n-Sin-
k:l::f‘[+3 /\k /\"'k
N+2
= |z|{( I A — =z H (=),
k=N
where H(z) is defined by
ind L N#2p 4l 2 (k+i_z)k+i4x)
H(z) = (k+ - —1z) — 4 — .
He+z-2 0 Gy 1L
From the functional equation ['(1+ z) = z['(z) (see for example, [Artin,1964]), we
know
N-1 (N +L—
H (L‘ + = ( 14 I)a
L1+ 3 —x)
T?w+§+zy_uN+3+§+ﬂWu+§)
i K+ DO+ +2)(N+3+3)
and
ﬁ: (k+:—z)k+1+4+12) _ F(!V[+1+§—x)[‘(11/[+1+}+z)
N 43 (k+1)? T O T(N+3+L—z)(N+3+1L+x)

C2(N +3+ %)
[2(M + 1+ Ly




It follows that

N+ ;—o)I(N+3+5+2)[%(1+ 1)
rl1+3;—nx) T+ + )NV +3+3)

[X(N 43+ 1)
C(N+3+i-z)(N+3+1+0x)
umlww+1+-—xWM[+l+ +ﬂ
Moo F2(M+ 1+ 1)

H(z)

Since the Gamma function ['(z) satisfies

F(Z‘/[ + al)[‘(z\/f -+ ag)

M T(M ¥ b)0(M +62)

provided a; + ap, = b; + b, (see [Artin, 1964]), we get

21+ 40N + L — 1)
F(l+l—:c)[‘(l+§+a:)[’(;’\"+3+i—:z:)
1 sin(z — 1) C(z — l)

H(z) =

= —W1+
( HhAN+k+——rFu+ + )

where the last equality follows from (see [Artin, 1964])

1 1 T
b1 — (= - Z))F(I B Z) ~ sin 7r(71-: - -)
and
1 N(N+3+1—z)
F(N+4 z) = [Mico(N+k+L—-2)
Since

I sinw(z — 1) I_I sinm(N + + — 1) I
Hi:o(N'*'k'*‘i_z) - ITi- o(N‘{‘k‘l““l‘)

all the possible singularities of this function have disappeared. So it is bounded.



On the other hand, since —E{fi—g; ~ |z]*79 (see [Artin, 1964]), we have that

C(z — )
F(1+§+:c)

= lxl—l_%_

Thus |Gy (z)] < K TI252 A — 1'|]1'|'2l, which completes the proof of Lemma 3.2.

Remark 3.1. Actually from the proof of Lemma 3.2, we have got that

. N+2 i . N+2
Rilz|™7 T 1A — 2] < {Gu(z)| £ Kalz[72 ] Ak — =
k=N k=N

where A| and A’ are positive and NV is the same as in Lemma 3.2.

Lemma 3.3. Suppose that in Lemma 3.2, {\,} is replaced by {pn(a)} which is

defined in Section 1.4 with a < 0, and Q(z) = [T'(1 — =). Set G(z) = zQ(z), Ehen

Pn

we have that for all z € R,

ng+1

IG(2)| < Klz|7% [ lpx — =l

k=ng-—1

where K is a constant and ng is an integer dependent on r.

Proof: Suppose Q(z) = [1'(1 — =), and Q.(z) is defined as in Lemma 3.2, then
both of @Q(z) and @Q(z) are even functions. So we only need to consider the case of

z>0.

Since replacing finitely many terms of {p,} does not change the behaviour of GG(z)
as z tends to infinity, we assume p, < A, for all positive n. Let A, be the intexval
(Pn,An) for all n > 1. Suppose Ax(t) and A,(t) are the numbers of {\.} and {p. } in

the interval (1,t). Then we have

! te U2, A,
Ap(t) — Ax(¢) =
0 te(l,00)— U, A,
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(V]

From the proof of Theorem 3.3. we see

log |Q(z)}| — log |Q:(z)] = /m(z\p(r) — A\(r)A(z,r)dr + C (3.2)
= Z/ K(z,r)dr +C (3.3)
n=2
1
- ,;2/;.. r+r+x—r)dr+c' (3-4)

Since

i/'\"(g—- 1 )drS?i//\nl <2 ZPL

n=2"v#n r T + T n=2"Y#n r
and A, = A — pn = 0(19;‘2), and p, ~ n, the first two terms of the right side of

the equation 3.2 are bounded by a constant which is independent of z. Thus

dr + C.

i<y [T

n=2 r—rTr

Now suppose z satisfy p,, < T < pno+1 for some integer ng, then

e S

n=2 k=-—1 Ang+k
no—2
O AR Ol S
n=2 Y Pn n=ng+2 |.’L’—'T‘I

Recall that |A,| = O(lﬁgf—"), so we get that

S " tar < ooy Ll

no+27Pn IIL‘—TI n=n0+2pn—x Pn

< oy L loglen—z),

n=ng42Pn — I (pn — 1)

lo
= o% )

where ur = pryny,4+1 — - Since l—"fg'ﬂ‘- ~ %ﬁ, it is uniformly bounded by a constant
k

independent of z.



Note that

IN

I
|
i
I

Since

no —2 ng =2
logpn /" [Ogrdr = O(log® pr,) = O(log” z),

n—'Z

and since

no—2 r—1 z—1 -
Z log pn < logx/ dr < loga:/ d_u = O(log® z),
1 1 u

=3 T— Pa rT—r

we get that

ng—2 .\, 1 1 2
Z / dr < %2 — 0
n=2 vPn T—r z

as £ — oo. Thus

Qz) _ & [ Pro
1 = dr+C < log | ———— |+ C.
N g/ ——adr :,; og|I_An°+kl

Set G(z) = zQ(z) and G (z) = zQ.(z), then the above deduction yields that

G| < KIGi(=)] TI | Stk

k=—1 T = Anotk

Recall that N in Lemma 3.2 and ng defined above satis{y the conditions
Pro ST < pPnyt1 and Ay < T < Anga,

50 if £ € [png,Ano), then ng = N + 1. In this case, Lemma 3.2 guarantees that
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1G(z)] < KIG ()| T[] [>=2X5 ) < K272 ] |2 = pagssl-
k=0 T~ ,\N+k k=-1

So the lemma is true in this case. If z € [A,;, pPng+1), then ng = N. Similarly we

have

IG(z)| < Kz~ znlx— ANkl H| — PNtk

k=—1 /\N-i-k
P /\1\’-{»-2
< Kad ] Je - proel E3222
k=-1 N-1

_1
< 2z72 H Il‘ pﬂo+kl'

This completes the proof of the lemma.

Remark 3.2. By changing the roles of @Q(z) and @Q,(z) in the above proof, we

can show that

. ng+1 ; ng+1
Kalz|™7 ] lox — 2| <|G(z)| < Kalz[72 [T ok — =l
k=ng—1 k=ng—1

where A3 and Ky are positive and ng is the same as in Lemma 3.3.

Next we use a different evaluation method to prove a lemma which plays a key

role in Young’s proof.

Lemma 3.4. Under the assumption of Lemma 3.3, the following estimation holds:

oil T ogn
[ 17 e = 02T

I —

and

[ 12 = 02y

- T — Pn



when n — oo.

Proof: Assuming n is a large and positive number, we write

[=.fﬂﬁ@$m

—00 l‘—pn

Pn“‘ Pn+i oo G
e [
—L Pn— prtt’ T — pn

= [1+[2+[3+[4+[5.

Then from Lemma 3.1 and Lemma 3.3, we see that

__-t_ G(.’L‘ 2
Lo = /—oo Ix——pn dz </ 1'(1'—-,0,1)2[&(;r
1
= O(;;),
and
=3 G(x) d —t— G(x 2
L= _LI:I:— f +/ +/ x—pn dz
< (/ / )| 2ldz + O(—5)
log n
= O fz )-
Thus
== G 1
[ [(xﬁm—n+h~oﬁyﬁ
—oo T — Pn
Similarly, we get
pn=3 G(.‘L‘ 2 K3 [Pn—3 1
= < —
I3 n1 Ix—pnld n Jes (x-—pn)zidx
1
= O(—)’

W]

NI



and

had G(z) .,
L=/, E) 2ge = 0(2).

n+%‘ I _pn

Now consider z € (pn — 3,pn + 3). From the definition of no in Lemma 3.3, we

also have

Png S T < Prg+1,
1

then pn, < pn + 5 and prg+1 > pn — %— [t follows that

n—1<no<n+l.

Thus n € {ng — 1,nq,n0 + 1}. Combining with Lemma 3.3, we get

nti i
[4 = /p 12 I.G(_x)lzdr
Pn—=3

T — pn
< K/"""';'L Hllczhl(pno+k_x)|2dl,
- -t || T —pPn

1
= 0(2).
()

Therefore [ = O(%) as n — oo, which ends the proof.

For complex variable z, the value [zQ(z)} was estimated by Levinson[Lemma 16.1},

who proved that if {A,} satisfies |\, —n| < & < }, and Q(z) is defined as above, then

Kily[(1+ |z])71 %™ < |2Q(2)] € Ko(1 + [z|)45etlyl.

Young([1983] noted that the above is true for § = %. Since |p.(a) —n| < 1 for large

n, we have the following lemma:
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Lemma 3.5. [f )\, is replaced by pn(a) in Section 1.4 for a < 0, and G(z) =

:Q(z), and z = = + 1y, then there ezist positive constants Ny, Ny and C such that
Rilyl(L +z]) 2™ < |G(2)] < Ao(l + [z])eml¥!

and |G(% + iy)| > C.

3.3 Integral expression of canonical products

Let A =n+ 1, A, = —A,, and A = 0. Redheffer and Young[2] pointed out that

the system {e**~‘} is orthogonal to the system {g./G’()\.)} where
: t :
ga(t) = —ie™ [ f(z)ePwdz,

with f(t) = (cos £)"7sin £ and G(z) = [T, f(t)e*dt. Since p, —n is different from
An —n in that the former is dependent on n, we cannot use Levinson’s method to find
such an explicit formula. Before continuing on this topic, we first give the following

result:

Theorem 3.4. Let {un} be a real symmetric sequence satisfying [pn —n — 3| <
lpn — n — 1| where {p.(a)} is defined in Section 1.4 with a <0, and let

2

Q) =T[(1—2).

2
n=1 Hrn

Then Q(z) is expressible in the form
Q) = [ byt

with ¢(t) in L*(—r, ) satisfying #(t) = &(—t) a.e. in (—w, 7).



il
(04]

Proof: We already know from Proposition 2.2 that ifa < 0, {e***!,n = £1,4£2,...}
is incomplete. Then by Theorem 1.2 there is a nontrival entire function fi(z) of

exponential type 7, vanishing at each ., and expressible in the form

filz) = [ : S(8)e =t dt

with @(¢) in L?(—m, 7). We will show that Q is a multiple of f;.

First we see f{(0) # 0. Otherwise, such ¢ would be orthogonal to all {e****,n € Z}

which is complete in L?(—m, ). [t would follow that f; = ¢ = 0.

Now set fp(z) = —'(%)l Let n(r),n1(r),n2(r) be the number of zeros of Q, f, and

f2 in the disk |z| < r.

From Proposition 1.1, we see that n(r) =2[r — ] + O(l“") and thus

[2a s uf Sao [oioliizy

0 t
rr —_—
y 1 0(—5; ) 4
0 t

= 2r — glogr + O(1).

On the other hand, since f; is of exponential type =,
Ifl(reia)l — O(err[sinﬂl).

By Jensen's formula, we have

roy(t),, L P 0
/O—t dt = 27(/0 log | f(re®®)|d8

2r
= L [T rlsing]do + 0(1)

27 Jo

2r 4+ O(1)

IA



Thus
r r t r
[0y o [ty ey,
o ¢ o ¢ o ¢
< glogr-l-O(l)
which implies that ny(r) < 1, so f,(z) has at most one zero, say at = = zg. Since

Q@(z) is at most of order one, by Hadamard’s theory,

fi(z) = A(0)(1 — i)”e“cz(z) 0<p<l.

Now to finish the proof, we only need to show that f; is even on R, since 1t will

then follows that A =p = 0.

Set

F(z) = / (SO A gy,

Since [7_o(t)dt = [T_¢(—t)dt, we have that F(0) = f,(0). By the symmetry of
{gn}, we also have F(u,) = 0 for n = +1,42,.... It follows that fi(z) — F(z) =
- (M) =tdt vanishes at all of {u,}°2 __ . Since {e*}22 __ is complete (by

Corollary 2.1 and Theorem 2.2) in L*(—m, ), then we have that ¢(¢) = ¢(—t) a.e on

(—m,m).

Furthermore it guarantees that

fil=z) = /_’; H(t)etdt = /_r_ B(—s)e*ds = fi(z).

Since both of @ and f, are even, we have A = p = 0 which completes the proof.
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From Theorem 3.2, we see that @ is in the Paley-Wiener space with || @ ||=]|| ¢ ||-

This gives a short proof of a part of Lemma 3.5

Corollary 38.1. Under the assumption of Lemma 3.3, there ezists a constant

M > 0 such that, for all z = z + 1y,

|Q(2)} < Me™.

Proof: Since Q(z) is in the Paley-Wiener space and satisfies [22 |Q(z)|?dz =
ST |#(8)|2dt < oo, we see that Q(z) is bounded on the real axis, namely by M.

Then the corollary follows from Young[1980, p.82].

Now set G(z) = zQ(z) and define G,(z) by

_ G(z) _ 1 z
T Gpa)(z —pn)  Ghlpa) 2 — pa

Gn(z) Q(z)v

then G,(z) also belongs to the Paley-Wiener space. Next take the integral as a limit

in the mean of the L? space, then we define

gn(z) = [ Gt s,

Lemma 3.6. The sequence {g.(t)} defined as above is a biorthogonal system of
{ett,n € Z} in L*(—w,7), and gn(t) vanishes almost everywhere outside (—w,w).

Furthermore {gn(t)} is not a Riesz basis.

Proof: As in the proof of the Paley-Wiener theorem (see Young[1980, pp.101-103]),

we obtain g,(f) = 0 almost everywhere outside (—m,w). By the Fourier inversion
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formula, we have that
1 ¥ ixt
Go(z) = ;/ ga(t)edz.
So

1 = .
tpmt _— r' —
5= /_rgn(t)e dt = Gn(pm) = dum

forn = 0,+1,+2,.... Thus {g.(¢)} is the unique biorthogonal sequence dual to {efrnt}.

Furthermore {gn(t)} is not a Riesz basis since {€*"'} is not a basis (Proposition 2.3).

Note that {e*’"*} is complete and exact, and thus any f in the Paley-Wiener space

is uniquely determined by its values at {pn}. So

oo Gz
fley= 3> f(pn)G,(pn)((z)_pn)

n=—oo

is valid for every function f in the Paley-Wiener space.

3.4 Proof of Theorem 3.1

For the entirety of the proof, we only summarize the ideas and unchanged calcula-

tions in Levinson’s proof and Young’s proof, but set forth the necessary modification

explicitly.

Let C denote a rectangular path in the complex £ plane with vertices at (N + 3 +

iM, =N =L 4+iM,—-N -2 —iM,N + § —iM). G(2) is defined by
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where p, is defined in Section 1.4 with a < 0. By Lemma 3.6. {g.(¢)} is a biorthogonal

system of {e'**'}. Then using residues, Levinson shows that

l —tuy lEI
All—rnf}o 472 /— du/ G(€)(u — 6
ipnz _ sin(V + 3)(z — y)
f%gn(y)f3 Te—g

Suppose f € L?*(—w, ), then

ipnr = Slﬂ(.‘\r + %)(I - y) 5 =
;e / f(Y)gn(y)dy / fy) o) dy (3.5)

= 4:2/ f(y)dy hrn/ G(u)e ‘"ydu/%%—)df.

Now by well-known results from the theory of Fourier series, to show

lﬂ.J.'

— [ f©emtde — ™ [ f()gn(6)de} =0,

we only need to show the left side of equation (3.5) tends to zero as N — ooc. Next

we consider the right side of that equation:

Let [,(z) denote the absolute value of that part of the right side of (3.5) for which

¢ varies over the upper horizontal side of the rectangle C. Then

T . A —iu N+% el(E-{-u’VI):r
I(z) = |/_,, fly)dy Jim /_A G(u)e™du /;N~§ GEE+iM)(u—¢— iM)dfl'

Since G(z) = O(ﬁ), we have G—J(:)% € L'Y{—o00,00). Appealing to Levinson’s

argument, the order of integration can be changed, i.e.

ei({«i—l‘x\/f)r

co - ‘V'*'%
Li(z) = [/_w G(u)f(u)du /_N_% G+ iM)(u—E— iM)dq
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where f(x)/\/‘27r is the Fourier transform of f(y). Clearly

G(u)
u—§&—

for M > 1 and |} < 2N. So

C(u

l ) < VI——

z G(u f (u)
I(z) < C NeM”/N__ IG(£+1MI/ T
Since Theorem 3.4 guarantees that € is in the Paley-Wiener space, by Holder’s
inequality, we have
o G(u) f(u) G(u 2
[P < (/ du)t([" 1f(u)Pdu)t (3.6)

= (3.7)

By Lemma 3.5, |G(§+iM)| > BM(M?*+ N?)"'e™ for €] < N + 1. Thus for any

rin [—746, 7=38], [} (z) < CaN?(M?+ N?)e~M(==I=) which tends to zero as M — oo.

Next let [>(z) denote the absolute value of that part of the right side of equation

(3.5) for which & varies over the right vertical side of the rectangle C. Then

6—17]1:

T A .
h(z) = i/;w fly)dy Ah—rn;lo /—A G(u)e_“‘ydu G(N +:+in)(u—N—3— zn)dnl‘

By interchanging the order of integration, we find that

e—nT

o R M
L(z) = |/;oo G(u) f(u)du ./;M GIN+i+iM}{(u—N—-3— ir])dn‘.

Then with a change of variable, Levinson shows

dnl.

1 1 M Glu+ N + 3)e=
L(z) = I/_m flu+ N+ 5)du /.M G(in + N + L) (u —in)
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Let o, = —N + pxyn- then
IG(U+N+%)IZ(}t+%_#O)ﬁ U+ :—pa U5 —pg
Glin+ N +3) in+i—pe Sin+ti—pain+i—pa
Set
Gn(u)=u l———
: ]:[1 Hn H-n

Using the above two equations, together with Lemma 3.5, Levinson shows that
G (u +

id T 1) Pdut

biz) = ﬁflsxlz(/_:o— u+z—p
Ce ot N(u’f- 2 1
( lu+__ dwi(f, |l 5) )’

+ T — |z|?
b Ol [ 1t 3)Pdu).

u

)

P-n

Following Young’s method, from the definition of u,, we see that
=5 Ho- o
g § A )

H»o

IIa- H—n)(l - #_n) =

Note that pg =0, pn = —p—n, g—n = —N, and pg = py — N = ¢, 50

L -5 _ (e = N)(N +w)
1_;—1% IV(pN—IV—u) ?
then
1 co (1 — N )] — wbN
[Ia- )1 - "._”_r) _ 1! pn;,v)( )
n=1 Pn 1\ - N ne=l (]. — )(]_ —_ n)
NG(u + N)
(u + N)G(N)
[t follows that
G(u+ N)
— —_Ny=xrt)
(v = N) G(N)

GN(U) =



So
= Grlu+ L N—= N, [ Glu+4 N+ 1)
—00 ll+§—[£0 G(N) -0 ll.+5+l\ — PN
py — N 2j°° G(z) .
= (————— dr.
Comy ) ol

Since by Lemma3.1, |&2=¥|2 = O(N) as N — oo, and by Lemma 3.4, [ | EEL 2z =

G(N) Topn
O(+), we see that [22, l%ﬁ?lzdu is bounded as N — co.
2
Similarly, again by Lemma 3.4,
/“% IGN(u + 1) |2du _ K /-'Qi Gu+ 1+ N) Izdu
T_ ' I 7
—o0 U+§‘—[l0 G(N) —o=0 u+2+1\/—p,v
K EL‘| G(u) {2d 0
= —_— — | du .
G(N)J-oo 'z + —pn
Combining this with the fact that f € L?, we get
L(z) =0 as N — oo (3.8)

whenever |z| <7 —§, § > 0.

If we denote by I3(z) and [s(z) the values of that part of the right side of (3.5) on
the other two sides of the rectangle C, respectively, then clearly (3.6) remains valid

when [,(z) is replaced by [3(z), and (3.8) rema-ins valid when [>(z) is replaced by

[4(23)

Now for any given § > 0, we can have [x(z) + l4(z) < § whenever N is suffi-
ciently large. Fixing N in this way, we may chwose M sufficiently large such that

I (z) + I3(z) < 8. This shows that the right side of (3.5) tends to zero as N — oo.



Chapter 4

Exponential Frames

4.1 Introduction

[n the previous chapters, we have discussed the completeness and pointwise conver-
gence of nonharmonic series. [n this chapter, we will connect our previous discussion
with the concept of “frames”. From the definition (see Section 1.3), it is clear that
a frame is a complete set. But the converse is not true. We will show that typical
examples are provided by {p,} and {V4} which are defined in Section 1.4. Further-
more, the difference between the stability of completeness and the stability of frames

will be illustrated by these examples.

One aspect of sampling theory is to compare in different ways the values of g at
the sampling points with the values of g on a line. For example, Polya first proved

that

limsupn~'log|f(n)] = limsupr~"log|f(r)| = R(0)

neZ reR

for all entire functions f of exponential type v < m, where h(8) is the Phragmén-

Lindelof indicator function.

66
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Here Polya’s theorem compares the exponential rate of growth of the values of a
function at integers and its values on the real line. Furthermore, Cartwright pointed
out that [f(z)| is bounded for z > 0 if |f(n)] < M for all nonnegative integer n.
This time the assumption on the rate of growth is that it is bounded by a constant.
Finally, from the point of view of convergence, Parseval’s identity can be seen as a
theorem where the comparison between the two kinds of values are based on a rate

of growth comparable to 1/z.

We will see that the integers {n} in all of the above three theorems can be replaced

by some sequence {},} with A, close to n. But how close must they be?

4.2 Preliminary results about frames

Bernstein, and Duffin and Schaeffer {1945] extended Polya’s theorem and Cartwright’s

theorem respectively to the following forms:

Theorem 4.1 [Bernstein]. Let f(z) be an entire function of exponential type

v < 7. Then we have
limsup | M|~ ! log | f(An)] = limsupr~"log|f(r)| = h(0)
n—+oo r—oco

withn € N, r € R, provided that {\,}2, is a complex sequence such thai n/A, — 1

as n — 0o, and for some § >0

[An = Ar] = d|n —m|, n#m.



Theorem 4.2 [Duffin and Schaeffer, 1945]. Let {),}32, be a compler sequence of
uniform density [. [f f(z) is an entire function of exponential type v < = such that

| f(An)| <1, then for z =z + 1y

1f(z)] < M(L,8,~v)e"™.

The condition on the sequence {A,} in Theorem 4.2 can not simply be weakened
to |[An —n| = o(n) as in Theorem 4.1. The deviation ¢(n) of {A,} (see Definition 1.6)
is related to the form that the comparison can take. The following result can in some

way illustrate this:

Theorem 4.3 [Boas, 1954]. Let {\,.}2, be a complex sequence satisfying

e(n)
A= Am| > puln—m| and |Ap —n| < ——————
o = Al 2 il =l and. | log(n/<(r))
for some u > 0, where €(z) is increasing and tending to oo, but e(z) = o(z). Suppose

f(z) is an entire function of ezponential type v < w. Then

Iim sup log If(‘r)[ < oo I:f Iimsup lOg If()‘"»)l <
T—+oo e(zx) n—+oo €(An)

Based on the above observation, Boas asked whether the condition |A, — n| < L
in Theorem 4.2 can be weakened to [\, — n| < €(n) with some ¢(n) which becomes

infinite? This question remains open.

In [1952], Duffin extended Parseval’s identity to the following form:
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Theorem 4.4 [Duffin and Schaeffer]. Lefz {\,}32__, be a complexr sequence of
uniform density d, and let 0 < v < =nd. [f f(z=) is an entire function of exponential

type v such that f(z) € L*(—00,00), then

S f )
A= 1= f(o)Pdz

< B,

where the positive constants A and B depend o nly on v and {\.}.

From Theorem 1.1, we see that an entire function of exponential type in L?(—co, o0)
can be expressed as an integral of a function lin L?(—=, ), so Theorem 4.4 can be

written in the following form which is the begimning of the theory of frames.

Theorem 4.4’ [Duffin and Schaefer]. [f { A\ }32_., is @ sequence of uniform den-
sity d, then the set of functions {exp(iA.t)} is az frame over the interval (—v,~y) where

0 <~v<wd.

Similar to the question raised by Boas, it is natural to ask whether the condi-
tion |A, — n| < L in the above theorem can boe replaced by |\, — n| < €(|n]) with
€(|n]) — oco. We will be able to answer (in the negative) this question (see Theorem

4.6 or Proposition 4.1). First, we state a result for the case of a Riesz basis:

Theorem 4.5 [Young, 1980, p.181]. If the .system of ezponentials {e**}S2 _ is
a Riesz basis for [*(—n,w), then the points A\, lie in a strip parallel to the real axis

and are separated.

The above proposition is not only for a Ries:z basis, it also holds for general expo-

nential frames:



Theorem 4.6. [f the system of exponentials {e***} is a frame for L*(—w,w),

then the points A, lie in a strip parallel to the real azis.

Proof: Suppose {e***‘} is a frame for L?(—m, 7). Then it is a Bessel sequence, that
is .| f7. f(t)etdt|? < oo for all f € L?(—m, ). Then from Bari’s theorem|Young,

1980, p.155], there is a constant M such that

1D cae™ 1> < M3 [enl]®

holds for every finite sequence of scalars {c,}.

Take ¢, = 1 when n = NV and 0 otherwise, then

” chei.\nt[lz — /’" e-zSANtdt - 9(\1/\ [62%‘\;\,1-: _ 6_28‘\”7"1,
-1 sy N

So if sup,, [SA.| = oo, then supy || S cne™*t]|> = oo which is in contradiction with

Bari’s theorem.

Proposition 4.1. Suppose V,(a) is defined as in Section 1.4. Then the exponen-

tial system {3t} is not a frame.

Note that even though the sequence {V,(a)} in the above proposition does not
satisfy the sampling conditions for the lower rate of growth in Theorem 4.4, it does
satisfy the conditions in Theorem 4.3 with a function of (rapid) growth ¢(z) = (log z)3.

We thus have:

Proposition 4.2. Suppose {V,(a)} is defined as in Section [.4 with n > 0 and

f(z) s an entire function of ezponential type v < w . Then we have



- L o log | f(V,
i sup SELCN s i i s BN _ o

Proof: Taking e(x) = (log z)?, then ¢(z) satisfies the hypotheses of Theorem 4.3.
From Proposition 1.1, we see that |V, (a) — Vi.(a)| is greater than 3ln — m|, and for

sufficiently large n

e(n)

[Va(a) —n| < Cilogn < Clm.

So Proposition 4.2 follows from Theorem 4.3.

4.3 The stability of frames

[n this section we will discuss the stability of frames. In opposition to complete se-
quences, frames have a uniform constant bound on the variation of their sampling

sequence.

Theorem 4.7 [Duffin and Schaeffer|. Let {e"**!} be a frame over (—v,v). Then
there is a §; > 0 such that {e*"'} is a frame over the same interval whenever

lttn — An| < 61
For an application of this theorem, we first introduce the following definition:
Definition 4.1. An ezact complete sequence {un} is said to be extreme if there

exists a compler sequence {\,} such that |gn — An| = 0 as n — oo, and X\, satisfies

that {\, + esign(n)} is incomplete for any € > 0.
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Corollary 4.1. An extreme sequence is not a frame sequence.

Proof: Suppose {u.} is an exteme sequence and suppose it is a frame. Then by
Theorem 4.7 there is a constant §, > 0 such that {e*'} is a frame for L%(—m, )

provided |on, — un| < &, for all n.

On the other hand, from the extreme property of {u,} there is a sequence {A,}

such that for a given integer N > 0,
d
ln =l €2 when |n[2 N

and {A, + esign(n)} is incomplete for any € > 0.

Now take a, = A, + %’-sign(n) when |n} > N and a, = g, when |n| < N.
Then by Theorem 4.7, {a,} is a frame, and thus complete. Replace {an}, <~ by
{An+ %Lsign(n)},,,i(N, and denote the new sequence by {d,}. Then the system {e*"}
is still complete (see Theorem 1.4). But this is in contradiction with the assumption

on {An}.

Corollary 4.2. After adding (or removing) a finite number of elements from an

extreme sequence {a,}, the newly formed sequence {a.} is still not a frame.

Proof: Suppose {an} is an extreme sequence. We claim that {01, ..., Bk: @n }nen
is not a frame. Actually from Definition 4.1 and Corollary 4.1, we know that {a,} is
complete and not a frame. Thus Theorem 1.5 guarantees that {31, @n}nen is not a

frame but complete. Continuing in this way, we complete our proof.



From Theorem 2.5, we have that {A]}.z0 and {A} }.ez are exact. Furthermore
by the formula in Remark 2.2 with & = 0, it can be shown that {A; + esign(n)}nez\ (o}

and {A} + esign(n)}nez are incomplete. Then Corollary 4.1 and 4.2 gives that:

Proposition 4.3. Suppose p,(a) is defined as in Section [.4 fora >0 ora < 0.

Then the exponential system {e'*~(®)} is not a frame in L*(—w, ).

Next assume {A,} is a (complex) sequence of uniform density d. From Theorem
4.4°, we see that if one removes any finite number of elements from {\,}, the remain-
ing sequence is still a frame sequence for L?(—,v), where 0 < v < wd. Indeed, this
only changes the bound L where |A, —n/d| < L to a larger one. This means that the
excess of the frame system {e**n'} for L?(—7v,v) is infinite. Note that a Riesz basis
is an exact frame (see [Young, 1980]), so {e"*»*} is too overcomplete to form a Riesz

basis for L*(—~,7).

Now we turn to the case of v = 7. Paley and Wiener’s result shows that the sys-
tem {e"**‘} is a Riesz basis for L?(—m, ) provided |A, —n| < § = 5. The constant
L was improved by Duffin and Eachus to L = 22 = 0.2206.... Finally, Kadec proved

T~

that:

Kadec’s theorem. If {)\,} satisfies [An —n| <8 < % withn € Z, then {e?"'} is

a Riesz basis for L*(—m, ).

[n 1983, by studying the biorthogonal sequence, Redheffer and Young proved that

{e**~t} is not a Riesz basis for L?(—m, ) if A, is defined by (2.1). Furthermore they



pointed out that Kadec’s condition above cannot be loosen to [A, —n| < i

Since a Riesz basis is a frame, then from Corollary 4.1 we have

Proposition 4.4. Suppose A, is defined by (2.1) or (2.2). Then {e**"'} is not a

Riesz basis provided pu, — A\, — 0 asn — oo.

The above proposition indicates that the constant § in Kadec’s theorem can not

be replaced by any function §(n) tending to i.

4.4 Explicit bounds for horizontal displacement

In the applications of frames (wavelet theory, irregular sampling as well as our goal
in delay-differential equations), it is very important to have good estimates for the
optimal frame bounds. The reason is that they play a decisive role for the speed of
convergence for some reconstruction algorithms. The constant L allows us to obtain

lower and upper bounds of a frame.

Note that in the last section, Kadec’s theorem discussed the stability of a trigono-
metric system to remain a Riesz basis under small pertubations. For exponential
frames, a similar result also holds true. Balan [1997] and Christensen [1999] indepen-

dently proved the following result:

Theorem 4.8. Suppose {e**'} is a frame for L*(~+,~) with bounds A, B, where



{A.} are real. Set

T 1 .1
L(v) = 1—; — —arcsin(

S v,—_j(l - E))'

[f the real sequence {un} satisfies |, — Aa]l < 8 < L(7), then {e*~t} is a frame for
L*(—~,v) with bounds:

Al —/ %(1 —cosv6 +siny48))?,  B(2 — cos v +sinv4)>2.

Since L(vy) > Lo(v) = %ln(l + \/_‘%_), Balan’s result above is an improvement of

the earlier result of Duffin and Eachus in which the variation of the sequence {\,} is
bounded by Lg(v). [t also extends Kadec’s theorem to tight frames. We next make

some modifications to Theorem 4.8 for some sequences which are “nicely” distributed.

Theorem 4.9. Suppose {A.} is a frame sequence of real numbers for [?(—

-

T, )
with bounds A, B. Let {pn} be a real sequence satisfying 0 < 8 < |p, — A\,| <& < L,
and let o > 0 satisfy (1 + o)“:‘r—ofe < 1. Then {&"*"t} is a frame over L?*(—n,w) with
bounds

Al 0'+\/§(1—(1+a’)(cosrr5—sin775)) 2
) ( - l+o )

and

B(l + o+ (1 —(1+0o)(coswd — siner)))2
il -0

provided § satisfies

1 1 . 1 A
é< 7 — - arcsin (m(l — \/;))
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As an example. if we take % = 0.76 and ¥ = 7, then Theorem 4.8 guarantees the
stability of the frame with L = 0.2211, that is, if [u, — An| < 0.2211, then {e*~'}
is a frame if {e"*"*} is. By Theorem 4.9, we have that {e"‘} is a {rame whenever
{e?*n'} is and & < |pa — An| < 0.2234. Note that since g5 = 0.222.... this case was

5 4.5 i

not covered by Theorem 4.8.

The proof of Theorem 4.9 will be given shortly. But first let us state a theorem

on the perturbation of general frames. In 1995, Christensen proved:

Theorem 4.10. Let {f;}ier be a frame for a Hilbert space H with bounds A and
B. Then any family {g; }:icr of elements in H is a frame for H with bounds A(l—\/g)2

and B(1 +/B)? provided

Ri=Y |Ifi — gl < 4

el

It is interesting that the perturbation condition only depends on the lower bound

A. Later, Cazassa and Christensen improved the above theorem and obtained:

Theorem 4.10°. Let {f:}2, be a frame for a Hilbert space H with bounds A, B.
Let {g:}2, be a sequence H. Assume there ezist nonnegative constants u,, p2, and p

such that maz(p, + ﬁ,#z) <1, and

ISl = a) IS o e I i | e | 443 [e)E

=1

for all ¢y ¢y, ...,cn. Then {g:}2, is a frame with bounds

1+ pe + = + pe + 5=
_'Ll Ha ﬁ)2’ B(l_*_'ul H2 \/§)2.
L+ g2 I — po

Al




Proof of Theorem 4.9:

Let n € ¥V, and ¢ € C (k=1,2,..., n) be arbitrary. Set d; = pr — Ag, and set

U =” z Ck(eipkr _ ei.\k:::) ” .
k=1
The conditions on § and o imply that o € [0,1). So

U <1IY e (1~ (1+ )| + o] Zc e
k=1

Following Kadec’s proof, we expand 1 — (1 + o)e®** in Fourier series to obtain:

. in o
L= (L +o)e® = (1—(1+a—)5m5 £)
WOk
Z( Y726y sin w6y
= 1)726k cos wdy . 1
+ (1+o0) sin((T — =)z).
( gw((f—;)uaz.) (7= )

Since || cos(Tz)¢(z)|| < |4l and || sin((7 — 3)z)d(z)| < ||¢]l, then

sin 7-&) cee™ |

U < uzu—(uo—)

26, sin 7r5k e

+ (1+0) Z{HZW( ke

26y cos w4, iz - ionz
(1 +0) ZHZW((T" kaz)cke"\" H+cr||kz_:lc;ce Pz

+

T=1

Note that

IS apcee™|| < \/E(? laxeel®)F < VBsuplacl (3 llecll?)}
k=1 =1 k=1

Since ¢ satisfies 1 + o < smrre’ then we have

sin o sinwd
1 —(1 <1l-(1
L=+ ) T <= () 2




=]
04}

I‘ZJksinrx&. < 26sinwd
n(r2—6,3) = (1?2 = §2)°

and
| 20 cos Ty < 2§ coswd
w((r—3) = &) = w((r - 3)* — 8%

So combining with the estimation in [Kadec], we get

sm‘rJ K 7551n7'5
U < VB{1—(l+0) — 1+a§ ey
i A..(SCOSM
+ (1 +0’ Z (( 52 }(Z”Ck” 2+O’”Z¢ke:pkr”
= \/E{l—(1+0')Slr_1;5+(1+or)smn6( 6—cot775)

+ (l+o)cosmwédtan 7"‘5}(2 Hckllz)% + ol Z cre o ||

= \/_{1 + (1 -+ 0')(311'1 5— COSs W&)}(z ”Ck“ )2 + 0’“ Z Ckelpk'r”

Note that this implies that
1+ (1l +o)(sinwd —coswd) > 0.

Now taking Theorem 4.10° with gy =0, y; = ¢, and u = \/E{l +(l+o)(sinwd —

cos w6)}, we see that for {e?**} to be a frame over L?(—m, ), we only require u < VA.

L A
l+0c'V B

That means

sinwd — coswd <
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Thus 6§ < L = 1 — %arcsin(m(l — \/%-)). The bounds on the frame now

follows directly from Theorem 4.10°. This completes the proof.

Now we know that {e¥'("+#)} is not a frame over L2(—=, =), but it is a frame over
L*(—~,v) when v < #. To compute the frame bounds in this case, we have to find a
basic sequence {A,} for applying Theorem 4.8 and 4.9, and a reasonable sequence is
all the integers. To figure out the upper and lower bounds of such an integer frame

for L?(—~,~) with v < 7, one may refer to Plancherel and Polya’s work [1937].

Since [ |f(z + ¢)|?dz = [, |f(z){%dz for any real constant ¢, we have that the
bounds actually depend on the distance between any two a,. The following theorem

illustrates this:

Theorem 4.11[Plancherel and Polya]. If fis an entire function of exponential
type v, then for any real increasing sequence {A,} such that A,y — An > & for some

6 > 0, we have

oo v -
n=z_°° If(An)|2 S %[_w If(x)lzdI,
and in particular
n:chn If(n)|2 < %/;Z lf(x)lzd.‘t (4‘1)

Though the constant bound in (4.1) is dependent on the type 7, we have the

following result:

Theorem 4.12. For any entire function f(z) of exponential type v > 0 satisfying



122 | f(z)|?dz < oo, there erists a real constant a such that g(z) = f(z + a) and

oo

4 <
> lgmP < = [ lg(x)dz < oo.

n=—oc -

Proof: Let f(z) is an entire function of exponential type v > 0. Since [f|? is

subharmonic, then for § > 0 and w € R, we have

2 L ~
@l < g [ [ )y

1 ] w+$
< — )| 2 .
< 5[ [ e +iyldedy

Suppose k is a positive integer. Let § = 5% and w = n + % for j = 1,...,25 L
Then it follows that

94 1 § r(n+2L)+s
he<— [ [T iy)[2dzd
|f(n+2k)| =762 /s (nt 2= [f(z + ty)|["dzdy

for j=1,.., 261,
Set fi(z) = f(=+ %ﬁ), then f; is an entire function of exponential type v, and we

have that

28—l

§ roo
; nzZ_Zw |H@)F < ;r%/_&/_m |f(z + iy)[2dzdy
6 o0
< ;léq‘/_s(e?’ﬂyl /;co lf(l’)lzd:z:)dy

298 __ oo
= —— [T ).

7yé% J-

Choose fj, from {f;}such that =2 ___ |fis(n)2 < T2 __ |fi(n)|2for 7 = 1,...,251,

then

oo 22k . 5]
27 3 (P < (eFT — 1) [ |f(x)de.

n=—co Y



So
> 4eFT | feo
3 sl 25— [ 1)

Since E-,l—‘l — 1 as & — oo, we have obtained that
- 2 4 7 2 4 [ 2
> P <= [ 1f@)Pds == [ |fi(e)dz

n=-—Qo

which completes the proof of Theorem 4.12.

4.5 Explicit bounds for vertical displacement

In the last section, we have discussed the stability of frames when the variation occurs

along the real axis and new upper and lower bounds were obtained from the size of

these displacements. Here we will be concentrating on displacements in the direction

of the imaginary axis.

Theorem 4.13. Let A\, = an + 10, be a sequence of uniform density 1 with an, 3,

real, |Bn| < B. If {e"t} is a frame over an interval (—v, v) with bounds A and B, and

f(z) is an entire function of exponential type v with 0 < v < m, and f € L?*(—00,0),

then

-2~ ?10=-oo If(’\ﬁ)lz —B~ \/E —~Bvv12.2v8
A S S e = Bl [ Z(L e

Before giving the proof of this theorem, we state some lemmas.



o
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Lemma 4.1[Duffin and Schaeffer, 1952]. If f(z) is an entire function of exponen-

tial type v and f € L?*(—o0,00), then

[ rO@PR <y [ 1f@)d

The method to prove the following lemma essentially comes from [Duffin and

Schaeffer,1952].

Lemma 4.2. Let {€**'} is a frame over the interval (—v,7v) with bounds A and
B. Then for any given € > 0, there ezists a § > 0 such that when |u, — A\,| < 8§ for

alln € N, we have

2 | f(en)[?
J2 [ f(=)|2dz

(l—e)A< <(l+¢)B

for all entire functions f(z) of exponential type v with f € L*(—o0, 00).

Proof: By Taylor’s series expansion at z = A,,, we have
® fR)(A) !
Flaa) = fO) = 3o L280d e,
k=1 °
and consequently,

|2L

Fln) = FAn) l2<{z'f nlCy 5 len = Ty

Given €, > 0, suppose [z, — An| < § where § > 0 is such that [%—(e“—"‘ —1)?| < ¢,

and choose p = {2}!/2, then by the above inequality, we get

(k) 2 2k
If(,un) f(/\ '2 < {Z [f 2&’;,” }{Z (P6) ’
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Since f(*)(z) is an entire function of type 7, and since {€***'} is a frame over the

interval (—v,v), we can apply the right hand side inequality of frames with upper

bound B. Combining with Lemma 4.1, we get

S Ula) = FOWE S {0 = IHY. = 3 190
k=1 -

=—00 ke 5 H::OO | o
< -0Y o [ PGP
5 2k oo
< {e" — l}Bkzzjl kak! /_m f(z)[2dz
= B(e” —1)(/ — 1)/°° |f(z)Pdz
B
< Bt T 1P
neN

< a S O

n=—oo

By Minkowski’s inequality, it follows that

(3 1f (a2 = (30 1f () = f(Aa) + f(AR)D)Y?

neN neN

< (2 ORI+ (30 1f(a) — FOR)P)Y2

neN neN

< (L+a”)(3 faP)Y2

neN

Thus

Snen [f(a)? w1 f () Enen [fF(An)I?
J26 1 (2)|?dz Znen [ f(An)1? [256 | f(2)]Pdz
< (1+€7%)?B.

On the other hand,

(S IFOD)IDE = (S 1f(A) = Flia) + Flun)?)7

neN neN



< (ST = AP + (3 1f(ea)l?)2

neN neN

< (IO + (X flu) ).

neN

[t follows that
(L — €223 1P < (OO 1 f(ea)®)-
neN neN
Therefore

ZneN I.f(#ﬂ.)l2 — ZnGN If(#n)lz ZnEN If(,\n)IZ
[Z6 1 f(z)|?dx Tnen [f(AR)1? 22, 1 /() [%dz

> (1-¢f)2A.

1
[t is obvious that the €, can be chosen such that both of (1 —¢7)? > 1 —¢ and

(1 +¢€7)? < 1+¢hold for any given € > 0. Thus the proof of the lemma is completed.

In [Duffin, Lemma 2], if we choose p = (v/M)!/?, then the lemma can be expressed

in the following form:

Lemma 4.3. Let {€"t} be a frame over the interval (—v,~) with bounds A and
B. If {u.} is a sequence satisfying |un — on| < M for some constant M, then any

function f in the Paley- Wiener space, we have

a)[? B
Bt <o oo




o]
[3]]

Proof of Theorem 4.13:

The second inequality follows easily from Lemma 4.3. Next we consider the first
one. Suppose f(z) is in the Paley-Wiener space. By a reflection and a translation,
Duffin and Schaeffer [1952] (or see [Young, 1980, pp.192-195])constructed a new func-

tion f; and a new sequence A} = o, + 18" with |8V < 3/2, such that

E—B-r Zn |f1(/\£ll))|2 < Zn [f()‘n)lz
T2 MA@ ?de = [22, | f(z)|?de”

Now for any given € > 0, choose § > 0 as to satisfy Lemma 4.2. Suppose Aj is

sufficiently large such that
M) — an| = 185 < 18/2%] < 6.

Repeat the above process A times, then Lemma 4.2 guarantees that

ZnEN lf[\'o (’\SLKO) ) lz
JZ% | fro(z)[?d

> (1 —-¢A.

Therefore, after combining these A’y steps, we get that

Lnen [f(Aa)P > 6—7(ﬁ+f3/2+~~-+2Tng) LneN lfh’o()\gf‘b))ﬁ
26 (z)2de = I [ fro(z)Pd
> (1 —e)Ae™ .

Since ¢ is arbitary, the proof is complete.

Theorem 4.14. Under the assumption of Theorem {.13, if vy = =, and |\, —n| <

L for some constant L, then we have

(e <)

-20x n=-—-00 lf()““)l2 < 2L~
A = T o <€




for all entire functions of exponential type = belonging to L*(—oc,o0).

Proof: Actually, it suffices to prove the second inequality. In Lemma 4.3, we set
Y =m,0, =n and g, = A,, then it follows from Parseval’s identity that 4 = B = 1.

The conclusion of Lemma 4.3 can thus be written as

?zo=—co lf()‘ﬂ)l2 2L
= f(@Pde =€

Corollary 4.3. Suppose {A, = n +i8,} is a sequence satisfying |B.| < 3 = L.

2T

then {e**} is a frame over (—m,w) with lower bound e~**% and upper bound e*°L,

respectively.

Remark 4.1. [n Corollary 4.3, the upper and lower bounds cannot be replaced by
cie®™ (¢ < 1) and coe™L (¢, > 1) respectively. It is obvious that c,e??f — ¢; < 1
and ce ™% 5 ¢; > 1as L — 0. But when L — 0, A, = n, Theorem 4.8 and
Theorem 4.13 imply that the upper and lower bounds B and A satisfy By — | and

Ap — 1. It follows that ¢; = ¢z = 1.

Remark 4.2. The two exponents —2v8 and 2v3 in Theorem 4.13 can not be
improved, i.e. e 2" and e?'? can not be replaced by e 2("=98 and eXv=98 Two

examples are given in the next section.
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4.6 Two examples

In this section, two examples are given to show that the exponents of the upper and

lower bounds are precise.

Let y = cosha(w — z), 0 < x < 27, then its Fourier expansion is

2 . har] 1 > a ]
= —sinhaw|— + cos nzj.
- "'2q — a®+n?
[t follows that
i a 7 cosha(m — ) 1
————Ccosnr = — - -
= a*+n? 2  sinhaw 2a

Since cos nz is even, we may extend n to the negative infinity, and get that

i cosnz 7w cosha(m — )
2 2~ :
e, at+n a sinhaw

Now set z = 0 and a = 3, then

0o .9¢) -0
Z B? -]{.- n2 = Ee e - (4-2)

n=-—00 ‘B ewﬁ - e”ﬁ

Next take z = 2y < 27, and a = 3, then

X cos2yn 7 ePF-2) 4 e—A(r-2) 4.3)
ol P! .

We will employ (4.2) and (4.3) in the following two examples.



Example 4.1. Suppose gi(t) = €*, and fi(z) = (3%)"/2 [2, gi(t)e'**dt. Then

fi(s) = (Lt — et
BT Yo (L+z)
Take z = A, = n + i3, we get that
o 2 . l V(L+AR)i —v(1+Xn)i|2
Yo AE = X ;mle —e |
n=-oc n=—o0 “" n
21 1 : .
— Z 0—(1 " )2 . lee—wﬁ+(l+n)vl _ ewﬁ—(l+n)‘vt[2
n=—co <7 n
> 1 1 _
= X srmrarr @ T e 2008 (2901 + )
n=—oco ~
> 1 1
= 3 grprpe+ e —2cos(2m)
ol o oy 1 2. cos2vyn
- 273' [(e + € )nzz—oo n2 + ;82 -'n.:z—co n2 + B2]'

Combining the above equalities with (4.2) and (4.3), we get that

) 1 (e2vﬁ+e—27ﬁ)(em’3 + e—-rrbeza) I elm=21)8 +6_("—_2")'g

> AP = [

. 27 e™8 — =70 Jé] e — =B
_ 1 62‘76+1\'B _ 62‘76—-#5 — e~ 2v8+7p + e—'hﬂ—fﬁ
Y] e™B — =78
e218 _ =28
= 35

By Plancherel’s theorem,

[ @)z = [ lguod =2y,

so we get that

T LA _ 20— 7P

IS fAlz)Pdz 498

= By.

[va]

o
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So if in the upper bound of Corollary 4.3, v is replaced by v — ¢ for any € > 0,
then the above Bg should satisfy Bg < €2(*~9)% for any sufficiently large 3. But this

is obviously impossible.

Example 4.2. Suppose g»(t) = e*t" (s > 0), and

f22) = (=) [ galtyeiat,

—r

Then
eV sH(L+2)) _ o= (s+(1+2)i)

s+ (L+zh

f(2) = (o)

From z = A\, = n + 13, then it follows that

—~v(B=s)+(1+n)yt __ 61(5—5)—(1+n)‘vi12

~ 2 _ L 1/2|e
> 1200017 = (52) B ES ey

Actually the above equality is the same as that in Example 4.1 except that 3 is

replaced by 8 — s, so we obtain that

2v(B-3) _ o~2v(B-s)

o . €
§|f2(An)l - 2(,@—3)

[t follows that 3°%°_ | f2(A.)|? tends to 2y when s tends to 8. On the other hand,

/_o:o |f2($)|2d;r = /:' |gz(t)[2dt _ /-: 25t gy

1
-9;{&2“’ — e %7},

s

I

So it follows that

oo 1f2(An) " 4v3 —2
ffooo |f2(l‘)[2d:r — (]_ — e—478 )e B.

Since the right hand side is less than e=2("=%? for any given € provided 3 is suffi-

ciently large, the lower bound e~2"® can not be replaced by e~2("=9% for any ¢ > 0.



90
4.7 Two reconstruction methods from frames

As we mentioned before, the concept of frames was first introduced in the paper of
Duffin and Schauffer in 1952, but for the next 30 years, there were only a few papers
discussing its properties. The concept of frames did not become prosperous until the
1980’s when people found they played a role in wavelets analysis, where a wavelet

frame can be used to reconstruct a function.

[n this section, we introduce two important methods to reconstruct a function,
and show how the methods are related to frame bounds. Also we will discuss the

possibility of their applications to delay-differential equations in the next chapter.

Suppose that {¢;} is a frame in a separable Hilbert space H. Define the frame

operator S by

Sf = ;(ﬂ‘ﬁ)‘r’r

Then S is a bounded invertible operator. It is also self-adjoint (see Young 1980, p185).

Now if {¢;} is a tight frame with constant A, it can be seen from [Hernandez,

p334] that

f= % D {frwie;

JEJ

converges in H.

For a general frame {p;}, we define (g, f)g = (S7'g,f) for f,g € H, then as

shown in [Hernandez, p400},

o1 o)l = I 1%-
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and A < S5< B/.

So {; :j € J} is a tight frame with frame constant 1 if we use the inner product
(-,-)#- Thus for all f € H, we have
f= Y Afroidewi =D (fidi)w;
JjEJ JEeJ

or
f=Y{fr0i)d;,
J

where 3; = S 1.

But to reconstruct the function f, sometimes it is difficult to compute the ele-
ments ¢3; of this dual frame. So we turn to Duffin’s approach which reconstructs the

function up to a small error.

Suppose B is close to A. Since A/ < § < BI, we may assume S ~ (%)[, then

S_l ~ X_‘E‘g[ Hence,

Let us write

2

f=37B

> (frpidei + RS
J

where B; = [ — ﬁ-S. Then it follows that

B—A1<31§B—A

Il
A+B — A+ B




and
B —-A r
R < =
I8l =355 = 7+
where r = B;“‘. [terating the above procedure, we get

2

&f=A+B

D> (R f,05)0; + Ri(RLf)
J

where [|[Ri(Bif)|| £ (Z5)%IIfll2- So, after k iterations, the approximation error is

smaller than (Z55)*||fll. in L%(R).

Note that Duffin’s method is good only for tight frames or nearly tight frames.
But in many cases the upper and lower bounds are not close to each other (refer to
Theorem 4.8, 4.9 and 4.13). In these situations, a projection method can be employed

that is due to Christensen(1993):

Suppose [ is a countable index set and {/,}32, is a family of finite subsets of [

such that [y C [, C...C [, A/ I. Given a family {¢:}:cr € H we define
Hn = span{ég}iefn.
Note that {¢;}icr, is a frame for H,. The frame operator corresponding to {¢; }:icr.
I

Sn : Hn — Hn’ Snf = Z(f7 ¢i>¢i- (44)
i€ln
The the orthogonal projection on H, then satisfies that
Puf =3 _(f, S )i, [ € H,
i€ln

which will tend to f as n — oo.
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We say that the projection method works if (f,S;'®;) — ¢; as n — oo. Chris-

tensen proved that

Theorem 4.15
1). Let {¢:;} be a frame in a Hilbert space H. Then the projection method works
if and only if ||S7'é;l| < ¢; for any frame {¢;} where c; is constant.

2). Also the projection method works for any Schauder basis {®:}2,.

It is interesting that the coefficients obtained from Theorem 4.15 can be used
to determine whether a given system {¢;} is a basis. If for some 2, the coefficients
c* = (f,S'¢;) do not tend to some constant ¢;, then {¢;} is not a basis. This fact

will be employed in the next chapter.

Furthermore, we will employ this method to approximate the solution of delay-

differential equations.



Chapter 5

Approximate solutions of

delay-differential equations

5.1 Introduction

This part is to study the approximate solution of some differential-difference equations
with constant coefficients. The method developed here represents the approximate
solution as a finite sum of non-harmonic exponentials. We could choose the coeffi-
cients of this expansion to be the exact residues obtained, for example, by Laplace
transform [Wright, 1949], and this would be optimal for large t. But in many applica-
tions, it is more desirable to have a good approximate solution for times comparable
with a few multiples of the delay times w; (see equation (5.1)). In this case, it can
be shown that choosing the coefficients of the expansion by some other methods, as
in this chapter, can produce better results on this time scale, and reduce unwanted

Gibbs-phenomenon-like oscillations.

In order to explain these results, we first introduce the appropriate background

94
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material and notation about these kinds of equations and then discuss some recon-
struction properties of their solutions. We would also collect some possible approxi-
mation methods and implement them with a concrete example in Maple. Finally, a
theoretical proof shows that the solution system of a delay-differential equation does

not form a basis in LZ2.

5.2 Differential-difference equations

The general linear differential-difference equation with constant coefficients and delay

is of the form

iiaijy‘j’(t+w;)=f(t) (5.1)

i=0 7=0

where m and n are positive integers, where 0 = wg < w; < ... < wp,, and where f(t)
is defined in some interval of the real t-axis. The characteristic function A(z) of (5.1}
is defined by

h(z) = i:ia;-zje“"z. (5.2)

=0 j=0

The constants m and n are called the differential and difference order of the equation,

respectively.

In the computation of the solution of the equations mentioned above, the location
of the zeros of the characteristic functions plays a key role. A typical characteristic
function has been thoroughly discussed in Chapter 1. Here we review some general

characteristic functions and the asymptotic properties of their roots.
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Suppose a characteristic function A(s) is

h(s) =D pi(s)e”*, 0=0 <P < ... < Bn (5.3)
=0
where p;(s) is a polynomial of degree m; and 3; € R. Then we can write

h(s) = 32 g5{L + e(s)]s™ €5

7=0

where g; # 0 (7 =0, ...,n) are constants and ¢(s) = O(}s[™!) as |s| = oo.

Theorem 5.1[R. Bellman, p.409]. Suppose h(z) is defined by (5.3), and the m;
are integers such that mj =mpg,;, 7 =0,1,...,n for some real constant m.

(1) If m = 0, there ezist positive numbers ¢; and c; such that all zeros of large
modulus lie a strip |[R(s)| < c¢1. In any rectangle |R(s)]| < c1, |S(s) —a| < b, in which
|s| remains sufficiently large, and on the boundary of which h(s) has no zeros. the

number n(R), of zeros of h(s) satisfies the inequalities

—n + (6/7)(Bn — Bo) < n(R) < n + (6/7)(Bn — Bo)-

(2) If m # Q, the zeros of h(z) are asymptotic to those of the comparison function

n
gi(s) = z pjs™ P,
1=0

The roots of large modulus have the form

mm

)

s = m(log|w| —log|2ram + margw — (

+ m(2rm +argw — g) + o(1),

as T — oo, where w is a complex root of the polynomial 3°7_o p;jz™ .

From the asymptotic properties of these roots, we see that in the case m = 0

the solution system is similar to Fourier series in that the real parts of the roots are
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uniformly bounded and in the case m # 0 the solution system cannot be a frame
or Riesz basis (see Theorem 4.5 and Theorem 4.6). But by the method employed in
Chapter 3, the property of completeness can be exploited. However in this thesis, we

do not continue on that way.

Next we consider a special case of (5.1). Set m = n = I, and let w > 0. Then

(5.1) reduces to
aou'(t) + a1 u'(t — w) + bou(t) + byu(t —w) = f(¢). (5.4)

Definition 5.1. An equation of the form (5.4) is said to be of delay type if ag # 0
and ay = 0. [t is said to be of neutral type if ag # 0 and a, # 0. [t is said to be of

advanced type if ap = 0 and a; # 0.

Since ¢ usually represents time in application, we are mainly interested in continu-

ing a solution in the direction of increasing t and focus on the equations of delay type.

5.3 Series expansions of delay-differential equations

In the case of differential equations, it is often possible to build up a solution as a
sum of simple exponential solutions. A similar case happens in differential-difference

equations. Set

L(u) = aou/(t) + bou(t) + byu(t — w), (5.5)

then L(e*) = h(s)e®* with the characteristic function h(s) given by

h(s) = aos + bg + bye™*“. (5.6)



Let the initial condition of (5.5) be u(t) = ¢g(¢), 0 <t < w. Set
p(s) = aog(0) + [ ~[aog (1) + bog(t:)]e™ dty

po(s) = agg(0)e™" + ble“‘”/o glt1)e= dt, .

Theorem 5.2[R.Bellman p.124]. Let u(t) be the continuous solution of the equa-
tion L = 0 with initial condition g(t) where u(t) = g(t), 0 <t < w. Assume aph, # 0,
g(t) is C'[0,w], and {s,} is the collection of characteristic roots. Then

- srt = st
u(t) = lim IsrXI,;ipr(t)e = Xl:pr(t)e t>0, (5.7)
where p-(t)e*" is the residue ofp—(h’(—);':)i at s.. The series converges uniformly in any fi-
nite interval [to, té)], to > 0. [fall characteristic roots lie in a half-plane R(s) < ¢; < 0,
the series converges uniformly in [to, 00]. If g(t) is merely C°(0,w), the above series

expansion holds for t > w and p.(t)e*** is the residue of @-,E—f:%’i

Now suppose that we are given an arbitary function g(t) of class C! on some
interval [0,w]. As in Chapter 4 we are going to find a series expansion of g(¢) in term

of the zeros of a function A(s) of the form hA(s) = ags + by + b7, agh; # 0.
To do this, we form the differential-difference equation corresponding to A(s), re-
garding g(¢) as the initial function. This initial function can be continued to a solution

u(t) for t > 0. Thus we have

Corollary 5.1[R.Bellman]. Let g(¢) be a given function of class C'(0,w), and let
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h(s) be a given function of the form above. Then for0 <t < w

g(t) = Zpr(t)esrtv
r=1

with uniform convergence in [to,w] for to > 0, where the notation is the same as in

Theorem 5.2.

For example, suppose g(¢) is C'(0, 27w ). We expand it in the form g(t) = S 32 _. px(t)e*

?7s_ The corresponding differential-

where the sp are the roots of h(s) = s — ae”
difference equation is u’(¢) — au(t — 2w) = 0. When a # —21, the zeros si of h(s) are
simple, and sx = 5-W(2ma). So the required expansion is
oo oo
gt) = 3 are™ = Y (areRlr))etxt

k=—c0 k=—0c0

where p; is defined as in Section 1.4 and

— P(Sk) _ 9(27;)6—21::,: + Sk fozx g(t)e-skldt

TR (sk) 1 + 2re=2msx

(3

In view of Theorem 3.1, we see that in C!(0,27) the sequence {p,} can be replaced
by some sequence {p,. +ih,} with h, — oco. Actually, Verblunsky has discussed it in

L.

Theorem 5.3[Verblunsky, 1961]. Suppose f € L'(0,1), ¢ € C and the Fourier
series of f converges to o at the point z in the interval (0,1). Set z; be the zeros of

ze* —a, and
Zk

1 4+ =z

e = /0‘ F(t)e*tdt.

Then YNy cke™* — o provided that (log %)2f0‘ d(u)du = o(l) as t — 0 where

o(t) = f(z +t) — f(z —1).
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Since the zeros z; of ze* — a are the characteristic roots of u’'(¢) + cu(t — 1) =0,
and since f € C°(0, 1) is summable in the term {e**} by Theorem 3.3, Corollary 5.1

can be extended to C°(0,1).

The theorems above suggest that the expansion coefficients can be obtained from
the residue of some meromorphic functions. [s the system {e**‘} a Riesz-Fischer
sequence? i.e. for any square summable sequence of scalars {cit} does there exist an

element ¢ in L2(0,1) such that
!
/ o(t)e*tdt =cp,  (n=1,2...)7
0

Proposition 5.1. Let {z} be the zeros of ze* —a, a € R. Then the system {e**'}

is not a Riesz-Fischer sequence in L?(0,1).

Proof: By a theorem of Boas [1941], who showed that the moment problem
(fi fe) = e (k = 1,2,...) is solvable with f in L2(0,1) for every square summable

sequence of scalars {¢;} if and only if the inequality

m Y laa* <12 anfall? (5.8)

is valid for some positive constant m and all finite sequences of scalars {a.}, we only

need to show that (5.8) fails.

Take a, =1 if n = N and 0 otherwise, and f,(¢) = e™*. Then

1 2 1 N
” Zaﬂfnllz = L le Nt|2dt = EEZ—N(62W~1V - 1).

Since by Proposition 1.1, Rzy = O(—log N), we get || T anfall? = 0 which does

not satisfy (5.8).
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Definition 5.2 4 basis {f.} in a Hilbert space H is a Bessel basis if

52 | Cafn is convergent in H only if 352, [¢a]|? < oo,

Definition 5.3 A sequence {f,} in a Hilbert space H is said to be a Bessel

sequence if

SO Full? < 00

n=l

for every element f € H.

From [Young, 1980 p37], we see that a basis {f,} is a Bessel basis if and only if

there exist a constant A such that

n n
AY lal* < D ek’
=1 =1
for arbitrary scalars c(,cz,...,cn (n = 1,2,...), i.e. {f.} is 2 Riesz-Fischer sequence.

So we immediately get that

Corollary 5.2. Let {z} be the zeros of ze* — a, a € R. Then the system {e**'}

is not a Bessel basis in L%(0,1).

Proposition 5.2. Let {z;.} be the zeros of ze* —a, a € R. Then the system {e**'}

is a Bessel sequence in L?(0,1).

Proof: Note that Rz, — —oo as |k} — o0, so we have

62922,‘ —~1

Tt - o=
"e ” - 2%2': - 0

as |k| — oo. Then there exists M such that

13" cne™ < 3 lenl®lle™ | < M3 feal®.



Thus Proposition 5.2 comes from Theorem 3 in [Young 1980, p.135].

From Proposition 5.1 and 5.2, we see that the moment space (see [Young, 1980,
p-146]) of {e***} is a strict subspace of (2. It implies that for some coefficient sequences

{c:} in {2, we can’t find a solution f in L?(0,1).

5.4 Finite optimal solutions in L*(0, 1)

Now suppose that s, are the roots of the equation z — ae™® = 0. For a nice func-
tion f € L%(0,1), the above theorems show that |f(z) — i‘i—NH c;e***| can be small
enough for sufficiently large N. But more terms will be required when a — 0 even
for a nice function like f(z) = sinz. Since for a numerical solution it is not neces-
sary to keep the coefficients ¢; fixed for all NV, we are interested here in finding the
optimal coefficients ¢ so that the approximation is best possible at step N. From
Propositions 2.4 and 2.5, we know that the system {e*:!'} is complete, so such an
approximation is definitely possible even for the characteristic equation having one

multiple root, that is, when a = —1.

Now a further question is how to get the optimal coefficients ¢¥? We first give
a projection method which is analogous to Theorem 4.16 for computing the frames’s
coefficients. Since we are only interested in the approximation property (not repre-

sentation), the strong condition like frames or basis can be reduced:

Theorem 5.4. Suppose {e***} is complete in L*(—w,w), and S, is defined by
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(4.4). Then for any f in L*(—~=,=), we have

Tim, [1f = S(f. 5515050l = 0.
i=t
Proof: Set ¢; = €', then all the ¢; are independent in L?(—m, #). Define the sub-
space H, C L*(—m,w) by H, := span{®;}~,. Then, from the assumption on {&;}.
we know that {#;}7_, is a basis in /,. Since it can be obtained from an orthonormal

basis by means of a bounded invertible operator, {¢;}7_; is a Riesz basis for .

Suppose the operator S, is defined by (4.4) in H,. Then from the discussion in

Section 4.7, for any g € S,, we have that

g=> (9.5.'9;)é;.

Jj=1

Suppose P, is the projection operator from H to H,. Then

Pof =3 (Paf, ST'0:)d; =3 (f, Si'¢5)é;.

i=t j=t

Since || f = Pofll < ||f — 7=, cid;ll for any scalars c;, we use the completeness of

{#;} to get ||f — P.fl| = 0 as n — oo. This ends the proof.

The above projection method is easy to implement for the numerical solution
of delay-differential equations. There are also other methods: one is by the direct

derivative, and another is by the Gram-Schmidt process.

As an illustration of these methods, we consider the equation
y'(t) = ay(t - 1) (5.9)

with the initial condition g(¢) =sinwt for 0 < ¢ < 1.
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1) We first discuss the pointwise convergence with the residue method:

Since all the characteristic roots zx of h(z) = z — ae™  are simple except when
a= —i, therefore by Theorem 5.2 we have
. i z ezt
cre™t = Residue of % at z =z

‘ L
= {IT:—e“_zk/o (cosms)e™*ds}e™ ",

A simple calculation shows that

1 zr(z
/ (cos ws)e™*°ds = -—-——k(zk +a)
0 a(zf + w2)
So, for k € Z,
7 z(z+a)
L+ zpa(w?2 + z2)°

Ck

In File 1, numerical solution of (5.9) shows that the performance of this method

is poor when [a| is close to zero.

The approximation method discussed next will be implemented in L2. Note that

that {e*!}%2 __ is overcomplete with excess £, =1 in L?(0, 1), so removing one term
e®* from the system is possible. On the other hand, when a = —2%, there is a double
root zg = z; = —1. So in this case, we will remove one term e** from the system in the

following process. Otherwise it may cause singularity problems or extra computations.

2) The projection method:

Since {e**‘}{2, is completein L?(0, 1), Theorem 3.4 can be applied. If Ty is defined

by Tnf = Zﬁ-\;l_N(f, e**)e™! then the corresponding matrix A can be written as



A = (aij)n-n  with a;; = (e, e¥%).
So Tx' can be expressed with B = A~!. It follows from Theorem 5.4 that
N
Sn(t) =D cie™  with ¢ = (sinwt, Ty'e™).

whete Tle™t = S, bye".
3} The derivative method:

Suppose b = (b1, ..-,6,) is a vector in C™. We reindex the characteristic roots by

Si = Zr_n. Then set

M) = /(Zbe“ £(8)) Zbes- — f(8))d

/o LLdt

To find the minimum value of 1\/[(5), we find the partial derivatives of M(b) with

respect to the real and imaginary parts of 4; and set them equal to zero.

Then for each j, we have

T L U 1
/ LeStdt + / Le'dt =0 and / LeSitdt — / Le'dt = 0.
o] [0} o) 4]

So it suffices to solve [y LeSt*dt = 0, that is

1 " _ 1 _
[ beetstonre = [ puyenar
8] 1 0

forg=1,...,n

Substitute f(t) = sin ¢, then a simple calculation shows that

n

2 __ 5. L _ (a
la_l Sk p / sin mteidt — (ilz-%- 312
k=1 SkSi(sk + 55) 0 5;(37 + a?)
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forj=1,....n.

Set B = [by,...,ba], C = [c1; ..., ¢n] with ¢; = %*’féz)—, and A = [a;k]2n-2n where

la|2 — SiS$; _ Ia|2 — Zk—nZj—n

skSi(sk +8;)  ZkenZj—n(Zken + Zj_n)

a]‘k =

Then we get that B = A~'C.

The numerical result in File 3 shows that this method provides a good approxi-
mation even when |a| is close to zero. But each time N changes, the coefficients b;

change with N.
4) The Gram-Schmidt method:

Since {e**'}2 __, is complete, we may construct recursively an orthonormal sys-

tem e;(t), ex(t),..., ean(t) by the following method:
Step one: Let hy(t) = e~ D = (Jy |A1(2)]2dt)2, and e, (¢) = hy(t)/D,.
Step two: For &k = 2,3,...,2N, let

k 1
hi(t) = e~ = 30 e (t)de)es(t)

J=1

Di = (J& |hx(t)|3dt)? and e(t) = hi(t)/ D
Step three: Son(t) = SV (sinwt, e;(t))ei(t)-

The results in File 4 show that this method has the same effect as that in File 3,
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and all the coefficients change with V.

The methods mentioned above can be used to compute a finite optimal solution
of delay-differential equations. There is an additional question about existence of a
complex sequence {b,} such that f(¢) = 3" b,e™" in the norm L?(0,1)? i.e. Does the
coefficient ¢? computed by projection methods converge to b, as N go to infinity?

Unfortunately, the numerical result in File 5 suggests the opposite.

5.5 The basis property for a special solution sys-
tem

In this section, we discuss the basis property of the exponential system {e**"‘} with
a complex sequence {A,}. In a few papers on this question, a general restriction

[Avdonin, 1988] was imposed on the sequence by
sup{|SA.|} < co.

Minkin [1992] explained the essence of the difficulties to remove the restriction.

Related to the above question, we have shown in Chapter 3 that the system
Wk —L)e : in L—n.7 ., -4 = — 1
{ez= -1} ez\(o} is complete in L*(—n, ) where sup, RW (k,—1) = —oo, so it
can be used to approximate any function in L?(—m,x). In this section, we will show

that it is not a basis:

Lemma 5.1. Suppose V,, = Vn(-i) is defined in Section 1.4, then the system

{ei(v"'z'-vr)t}nez is not a basis for L*(—w, 7).



Proof: Recall that the inner product of two functions F and G in the Paley-Wiener

space P is defined by

(=]

(F,G) =/ F(z)G(z)dz

—_00

and by the virtue of the Paley-Wiener theorem, the complex Fourier transform

10 = 5= [ feeia

is an isometric isomorphism from L?*(—,7) onto all of P.

Set A\, = Va(—1) — &, and assume that {e"***}.cz is a basis for L?(—r, ), so

2r?
that we can write
cost = Y _ cpett (5.10)
neZ

in the sense of L2?. Furthermore the isomorphism of Fourier transform shows that

K.(z):= L -e.\nz izt gy sinw(z — Ap)

97;' 71'(2 - /\n)

forms a basis for P. Let {g.(z)} be biorthogonal to {K,} in P, and write cost =

"—";L_t Applying the Fourier transform to both sides of (5.10), we get that

smr'(z~—l inw(z+1
2{ (z 1) (+1 } 2 enBn(2).

Remembering that $2=E=%) {5 the reproducing kernel for P, and after taking the

w(z—15)

inner product of each side with g,, we get that

en = 3{Gn(1) + 5= 13-
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Next, we try to find the explicit form for {g.}. From Proposition 2.6, we see that

V-h-%

2r

F(2) =/" 2t + m)etdt = Be™ [ (1 -
i neZ\{0}

—_T

which is obviously in the Paley-Wiener space (by Theorem 1.1).

Next set G(z) = zF'(z), and

_ G(z)
T G'(Aa)(z = A)

F.(z)

Then from Young [1980, p127], each of the function {F.(z)} is in P. Note that
(Fny Km) = Fn(Am) = Jnmy

so the system {F,} is also biorthogonal to {A,} in P. But {A,} is complete, so it

has a unique biorthogonal sequence. It follows that £}, = gn.

From Proposition 2.6, we know that f(1) = f(—1) = —4wt and f(—1) = 4w, so

G() = G(—1) = —4mi.

It follows that

11 G | GED)

ST s w ACEb Wi w)
—2m 1 1
= Soouom TR
4mi PG

NGO N -1

A simple calculation (with the aid of Maple) shows that

:G'(z) =

[iﬂ_zeiﬂz _ ei?r: + e—i‘trz] _ 2[_27‘_226{7.': _ iﬁe—x’rz]. (5.11)

[T V]
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Recalling that A, = Vn(——ie) — # then from Lemma 1.2 we have that

T, =

1 .
;[— log |n| — log 2@ + o(1)] + iR,

é{[— log [n| — log 27 + o(1)] + 27i[n + ésign(n) +o(1)]}-

Evaluating (5.11) at z = A,, then for sufficiently large N, when n > N, we have

the following estimate:

ARG (A) =

o( \/_) 22w Ane ™ — imem 0]

—27:'1{2 iTAn)e ™ — e_i”’\“{ + o(1)

—Qwi{((—log [n| — log 2% + o(1)) + 2mi(k + isxgn(n) + o(1))
e%[- log [n[—log 2r+o(1)]+iTRAn __ e'%[‘ log|n|-—log2r+o(1)]—-ir§2.\n}
—2mi{(ek +i0LV2mn)e ™™\ — 021/ 2mne~ R4}

- ZT)%ﬁi{(cﬁ + 10} )(cos R\, + isin 7RA,)

—60%(cos R, — isinaRA, )}

where €, and 0} are real and satisfy that €, — 0,8, — 1,7 = 1,2, as |n| = oo.

Furthermore since R\, =n + ; + o(1) for large n > 0, then

sin R,

= (—1)"%

+o(l) and cosaRA, =(— 1)"\/—-}-0(1))

Thus for sufficient large n > 0, we have that

ARG

Ar)

-i(zw)%(—l)"ﬁ[iei(% izt o(l)

9%7- — i f (1))

or . 62 62 .
= (2m)i(=1)" ‘/_[7:+ﬁ +7';+—\/—§z+o(1)]
= ax2(—1)" V(L +2)(1 + o(1)).
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[t follows that

dwi (=D 1

G VA (L=d)(L+0o(l))
(—1)m ,

= 2\/;5(1-{-2)(1—{—0([))

. 1\yn+l1 _j\n
_ {(91)9_ +if)\/%}(1+o(1)).

So
4w 1
R e W R
i+ o,
If we set ¢, = a, + b, for n > 0, then
(= (=D" .
a, = —Fﬁ_n—(l +o(l)) and b, = 2\/5([ +o(l)). (5.12)

Recall that V, = —V_, and A\, = V}, — 2{,, then we have that X\, = —A_,.

Since

G'(z) = /r etd(t + )2 + 3/. ite' > d(t + 7)2,

—T —_

then it is easy to check that

Thus
- —477 Az,
€on AnG O A2 — 1
—4m /\_,;2

= = Cp.

G () Xy — 1

So ¢, = ¢ = a, — ib,. Since SV, = SV_,, and RV, = —RV_,, it follows that
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€™ 4 cne? Tt = (an + ib,)e P TEN 4 (a, — ib,)e (VT ER)!
= (an + by )e BRI (3¥a—5oN
+(an — an)e-i(mv,,)z—(sv"-:#):
= e~ Va=2)(q, + ib,)(cos(RV, ) + isin(RV, )t)
+(an — 1by){cos(RV, )t — isin(RV},)t)]

= 2(an cos(RV,)t — b, sin(RV;)t)e~Va—z2)t

Using (5.12) to substitute for a, and b, then we obtain

c x\n! +c e!\—nt — uri
ne - vTn
= —V2(27n)"7" % (cos(nm + RV,t)

(cos(RV,)t + sin(RV,)1)(27n) "= (1 + o(1))

+sin(nm + RV,L1))(1 + o(1))

= —2(27n)" 7 % sin(nw + Z + RVLE)(1 + o(1))

= —2(27n)"z " sin((n + i)(t + )+ 0(1))(1 + o(1))

For sufficiently large N > 0, let ¢ satisfy & < (2N + 1)(¢ + ) < %, then

' w
< t<m — <0
TteN+D - ST TN+

and

<t pEt) ST
for ¥ <n <2N 4 1. Thus when t € (—7 + T(zgrl)’ -7+ 8(21—6“—)), we have

sin({n + )(t+ 7) +o(l)) 2 sin — = B;.
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Thus
2N 2N -
tAptpy2 tA\nt
" InI_ZN+l cpe’ " ” Z ” [n|§+l c,e" " ”L’Z(_r-{- ‘6(2;4_” ’...g.f.s(z;_'.” )
2N . . 1
= || Y 2@2rn) 777 sin((n + ) (¢t + )
n=N+1 4

+o(1))(1 + o(1))||2-

(=m+ wEery —~+aersn))
2N

Ny Y — = 2
> Z 2(27n)"2 21-"Bl“L2(—-7.-+16(2;{+”,—1.'+s(2;,"+”))
n=N+1
2N 7
> By)?
2 (7an 2 seN T
> B,

for all large N. This shows that the expansion of cos ¢ does not converge in L?(—m, ).

So the system {e(Y»=37)t} .7 fails to be a basis.
Theorem 5.5 The system {e#"v"(_i"}nez\{o} is not a basis in L*(—m, 7).

Proof: Note that {e''"'},.cz = {eﬁw"(_i'“}nez\{o}, so it suffices to prove that

{e'Y*'} ez is not a basis.

We prove it by contradiction. Take f € L?*(—mw,7), then f(t)e~2= € L*(—=,m).

Thus there exist {cx} such that

/’ If(t)e~% — 5 cre|2dt — 0
- k=—n
as n — o0o. So

/‘. 1£(8) = Y cre’ V27 2dt = / |f(t)e™ 2 — > cne' V™ 2e=dt — 0.

- k=-—n k=-=n
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Thus {e!(¥==2)t} 7 is a basis which is a contradiction.

Further discussion: when a # —-:-, the numerical results in File 5 suggest that

{e"(ka)t} is not a basis in L?(0,1). We are not going to give a proof here.
Proof of Proposition 2.3:

We give a sketch of the proof of Proposition 2.3 with p, = p,(a} a < 0. But this

method also can be applied to the case of a > 0,

Set
F(z)=T]'1->).
Pn
Then from Theorem 3.4, F(z) is in the Paley-Wiener space and is expressible in the

form

F(z) = /: B(t)e = dt

with ¢(t) = ¢(—t) a.e. in [—m, 7. So it follows that F(1) = F(-1).

Set G(z) = zF(z) and

_ G(z) -
G'(pn)(z — pn)

Ga(z)

Then G(1) = —=G(-1), and

C'lpn) = [;dﬂé“%b+m/:ﬁ¢ak%%t

= /f-' é(—u)ei(—pn)“du + (-—pn) /1.' iu¢(-ll)ei(_p")“du
= G’(-—pn) = G'(p-—n)



The third equality follows from the fact that ¢(¢) = ¢(—t) a.e. in (—m, 7).

In the proof of Lemma 5.1, choose the test function sin ¢ instead of cos ¢, then we

have
_iGQa) A
paG'(pn) PE — 1

So combining the symmetry of p, and G/, (pn), we have that

n

__iG) Pin  _ .
p-nG'(p=n) Pin—1 7

Note that G'(p,) = limz—,,, L. Then from Remark 3.2 we have that

Ir'—pn
IG"(pa)| ~ cln|%.

Since (’'(p,) changes its sign everytime when n increases by one, we have that
g g Y
pnG'(pn) ~ (=1)*Kln|#. Thus
AV A . IV N‘
> (ca€?t 4 e_pett) = > cnsinpat = K Y sin(nw + pat).

n=1 n=1 n=1

The rest of the proof will be straightfoward.
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Appendix
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File 1. The Residue Method

> read"Filel.txt";
> #This program is to try solve the equation

# y’(t) = a*y(t-1) with y(t)= sin(Pi*t) on 0<= t<=1

v

>  #we use the residue method to compute the coefficients

> #and then the numerical solution S_N(t).

> Rsum :=proc(n::posint, a::numeric)
> local ¢, k, j, m, s, t, Sno;
> with(linalg):

> alias(W=LambertW) ;

> ¢ := array(-n+1..n);

> for k from —-n+1 to n do

>  clk] := (Pi/(1+W(k,a)))*(W(k,a)*(W(k,a)+a))
> /(ax(Pi~2+W(k,a)"2));
> od;

> Sn := unapply(Sum(c[m]*exp(W(m,a)*t), m=-n+1..n),t);
> print(’abs(Sn(0.5)-sin(Pi*0.5)) ’=evalf(abs(Sn(0.5)-sin(Pi*0.5))));

> print(’abs(Sn(0.1)-sin(Pi*0.1))’=evalf(abs(Sn(0.1)-sin(Pi*0.1})));

> print(’origin-aver’=evalf(int((abs(Sn(s)-sin(Pi*s))

> Y~2,8=0..1)));
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end:
with(numapprox) :

Rsum(1,0.5);
[Sn(.5) — sin(.5 7)| = .3633557275

ISn(.1) —sin(.1 7)| = 1.365259975

origin — aqver = 3749775966

Rsum(2,0.5);
[Sn(.53) —sin(.5 7)] = .06733704055

[Sn(.1) —sin(.1 @) = .9201207000
ortigin — aver = .3314037499

Rsum(1,0.05);
|Sn(.3) — sin(.5 )| = .6541496832

[Sn(.1) — sin(.1 7)| = 6.741099910

ortgin — aver = 12.04967847

Rsum(2,0.05);
[Sn(.3) — sin(.5 )| = .1402610998

ISn(.1) — sin(.1 7)] = 6.924495382

origin — aver = 21.17839096



>

File 2. The Projection Method

read"File2.txt";
interface(echo=2);
#This program is to try solve the equation

# y’(t) = a*xy(t-1) with y(t)= sin(Pi*t) on 0<= t<=1

#To find the mininum difference in the mean of L~(0,1),

#we use the projection method to compute the optimal
#coefficients as well as the sum.

Psum :=proc(n::posint, a::numeric)

local A, B, C, D, i, j, k, k1, k2, m, s, t, Sn;
with(linalg):

alias(W=LambertW) ;

C := array(i-n..n);
D := array(i-n..n);
A := evalm(matrix(2#*n, 2*n, (i,j)—>

evalf(int(exp(W(i-n,a)*t)*conjugate(exp(W(j-n,al)*t)),

t=0..1))));

B := evalm(inverse(A));

for k1 from 1-n to n do

119
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D[k1] := unapply(add(B[ki+n,k2+n]*exp(W(k2, a)=*t),
k2=1-n..n), t);

od;

Sn := unapply(Sum(int(sin(Pist)+*conjugate(D{m](t)),
t=0..1)*exp(W(m,a)*s),

m=1-n..n),s);

print(’abs(Sn(0.5)-sin(Pi*0.5))’=evalf(abs(Sn(0.5)-sin(Pi*0.5))));

print(’abs(Sn(0.1)-sin(Pi*0.1))’=evalf(abs(Sn(0.1)-sin(Pi*0.1))));

print(’Psum-aver’=evalf(int((evalf(abs(Sn(s)-sin(Pi*s)))

)"2,s=0..1)));

end:
with(numapprox) :
Psum(1,0.5);
[Sn(.3) — sin(.5 7)] = .3006823191
[Sn(.1) — sin(.17)| = .2136436567

Psum — aver = .08144540879

Psum(2,0.5) ;
[Sn(.3) —sin(.537)] = .03512159932

ISn(.1) —sin(.1®)] = .07176143571
Psum — aver = .01363608627

Psum(1,0.05);
|Sn(.5) — sin(.57)| = .2749558332



>

|Sn(.1) — sin(.1 7)[ = .1114169245
Psum — aver = .06832310997

Psum(2,0.05);
ISn(.5) — sin(.537)| = .1168893035

ISa(.1) - sin(.1 7)| = .1492003328

Psum — aver = .03216903371
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File 3. The Derivative Method

read"File3.txt";

interface(echo=2);
#This program is to try solve the equation
# y’(t) = a*y(t-1) with y(t)= sin(Pi*t) on 0<= t<=1
#To find the mininum difference in the mean of L~(0,1),
#we let the derivative of the mean to be zero to find
#the optimal coefficients.
Dsum :=proc{n::posint, a::numeric)

local A, B, C, i, j, u, k, m, s, t, Sn;

with(linalg):
alias(W=LambertW);

B := array(1..2#*n);

[}

C :

array(1l..2#*n);

for k to 2*n do

Clk] := evalf(int(sin(Pi*t)*exp(conjugate(W(k-n,a))*t),t=0..1));
od;
A := evalm(matrix(2#n, 2*n, (i,j)->

evalf(((abs(a)) 2-conjugate(W(i-n,a))*W(j-n,a)

)/ (conjugate(W(i-n,a))*W(j-n,a)
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*(conjugate(W(i-n,a))+W(j-n,a))))));

B := linsolve(A, C);

Sn := unapply(Sum(B{m]*exp(W(m-n,a)*t), m=1..2%n),t);

print(’abs(Sn(0.5)~sin(Pi*0.5)) *=evalf(abs(Sn(0.5)-sin(Pi*0.5))));

print(’abs(Sn(0.1)—sin(Pi*0.1)) ’=evalf(abs(Sn(0-1)-sin(Pi*0.1))));

print(’Dsum-aver’=evalf(int((abs(Sn(s)-sin(Pi*s))

)"2,s=0..1)));

end:
with(numapprox) :
Dsum(1,0.5);
[Sn(.5) — sin(.57)] = .3006823194
[Sn(.1) — sin(.17)| = .2136436568
Dsum — aver = .08144540873
Dsum(2,0.5);

ISn(.53) — sin(.57)| = .03512159939
[Sn(.1) — sin(.17)| = .07176143456
Dsum — aver = .01363608626
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Dsum(1,0.1);
[Sn(.3) —sin(.5 w)| = .2793482641

[Sn(.1) — sin(.L )| = .1309307322

Dsum — aver = .07135698326

Dsum(2,0.1);
[Sn(.3) —sin(.57)| = .07438300802

[Sn(.1) —sin(.1 )| = .1360686206
Dsum — aver = .02663195952
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File 4. The Gram-Schmidt Method

read"File4.txt";

interface(echo=2);

#This program is to try solve the equation

# y’(t) = a*y(t-1) with y(t)= sin(Pi*t) on 0<= t<=1.

#wve use Gram-Schmedt process to orthogonalize the system,
#and then to get its Fourier coefficients,

#finally recombine the coefficients to get the optimal solution.

Nsum :=proc(n::posint, a::numeric)

local D, e, h, hO, j, k, ki1, k2,m, s, t, Sn;

with(linalg):

alias(W=LambertW);

D := array(-n+1..n);
hO := array(-n+1..n);
h := array(-n+i..n);
e := array(-n+i..n);

for k from -n+i1 to n do
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hO[k] := exp(W(k,a)*t);

od;

h(-n+1] := exp(W(-n+1,a)*t);

D[-n+1] := evalf(sqrt(int(evalf((abs(h[-n+1]))"2),t=0..1)));
e{-n+1] := exp(W(-n+1,a)*t)/D[-n+1];

for ki1 from -n+2 to n do

h(k1] := hol[k1]-(add(evalf(int(evalf(hO[ki])#*evalf(conjugate(eljl)),
t=0..1)
Y*e(j], j=-n+i..ki1-1));
D[k1] := evalf(sqrt(int(evalf((abs(h[k1]))"2),t=0..1)));
e[k1] := evalf(h(k1])/D[k1];
od;

Sn:=unapply(add(evalf(int(evalf(sin(Pi*t))+*evalf(conjugate(elk2])),
t=0..1)
Y*evalf(e[k2]),
k2=-n+1..n),

t);

print(’abs(Sn(0.5)-sin(Pi*0.5)) ’=evalf(abs(Sn(0.5)-sin(Pi*0.5))));

print(’abs(Sn(0.1)-sin(Pi*0.1)) ’=evalf(abs(Sn(0.1)-sin(Pi*0.1))));



print(’norm-aver’=evalf(int(evalf(abs(evalf(Sn(t)-sin(Pi*t))
)
)72,t=0..1)));

end:
with(numapprox) :

Nsum(1,0.5);
[Sn(.3) — sin(.5 w)| = .3006823188

[Sn(.1) —sin(.1 7)| = .2136436567

norm — aver = .08144540879

Nsum(2,0.5);
[Sn(.5) —sin(.57)| = .03512159941

[Sn(.1) —sin(.L 7)| = .07176143453

norm — aver = .01363608627

Nsum(1,0.05);
ISn(.5) — sin(.57)| = .2749558339

ISn(.1) —sin(.1 )| = .1114169249

norm — aquver = .06852310997

Nsum(2,0.05);
|Sn(.53) ~ sin(.5w)| = .1168893007

ISn(.1) — sin(.1 )| = .1492003252

norm — aquver = .03216903370
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File 5. The Convergence of Optimal Coefficients

> read"FileS.txt";

> interface(echo=2);

> #This program is to test basis property of the solution

> #system of the equation y’(t) = a*y(t-1) with some initial

> #conditions on 0<= t<=1.

> #We use the projection method to compute the optimal coefficients
> #If some coefficients does not converge, then the system is not

> # a basis.

> Coeconv :=proc{(n::posint, a::numeric)
> local A, B, C, D, i, j, k1, k2, m, t;
> with(linalg):

> alias(W=LambertW);

>
> C := array(1-n..n);
> D := array(i-n..n);
> A := evalm(matrix(2#n, 2#n, (i,j)->

> evalf(int(exp(W(i-n,a)*t)+*conjugate(exp(W(j-n,a)*t)),

> t=0..1))));

> B := evalm(inverse(A));:

> D[1] := (evalf(add(B[1+n,k2+n]*exp(W(k2, a)*t), k2=1-n..n)));



>

>

t=0.

>
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print(’ct(1]’=evalf(int(evalf(t*conjugate(D[1](t))), t=0..1)));

print(’ccos[1] *=evalf(int(evalf(cos(t)*conjugate(D[1]1(t))),
-1)));

if (n> 1) then

D[2] := (evalf(add(B[2+n,k2+n]l*exp(W(k2, a)#*t), k2=1-n..n)));

print (’ct[2] ’=evalf(int(t*conjugate(D[2](t)), t=0..1)));
print(’ccos[2]’=evalf(int(cos(t)*conjugate(D[2](t)), t=0..1)));
fi;

end:
with(numapprox):
Coeconv(2,-0.5);

cty = 2077749194 — 1242557283 [
ccosy = —.04798355578 + .03584265369 [
ct, = 07623320530 + 09179614370 /

ccos, = —.01890769139 — .02353101851 /

Coeconv(3,-0.5);
cty = .1208783593 — .1969867657 [

ccos; = —.02577648368 + .06089360636 1
ct, = 1350723909 — .009862843495 I

ccos, = —.03887646064 + .004948514171 [

Coeconv(4,-0.5);
ct, = .07445876431 — .2175948340 /
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ccos; = —.01186459614 + .06809525901 [
cl, = 1185687371 — .06913565114 [

ccos, = —.03449102826 + .02340961069 /

> Coeconv(5,-0.5);
ct; = 04649580936 — .2260129792

ccos; = —.003143868204 + .07103882193
cty; = .09624496157 — .09728085917 [

ccos; = —.02765950451 + .03242743309 [

> Coeconv(6,-0.5);
cty = 02787899728 — .2302756807

ccos, = .002773132955 + .07252626710 /[
ct; = .07801014687 — .1116472180 [

ccos, = —.02190809413 + .03709796715 [

> Coeconv(7,-0.5);
ct; = .01457952188 — .2327675230 [

ccos; = .007050166945 + .07339657282 1
cty = .06397461413 — .1196452948 |

ccos; = —.01741035580 + .03971741376

Coeconv(8,-0.5);
ct; = .004765866572 — .2346681575 [

ccos; = .01233647105 + .07751101354 1
ct; = .05313114586 — .1244204291 |

ccos, = —.01391479396 + .04516530916
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> Coeconv(9,-0.5);
cty = —.003252411189 — .2355237735 1

ccos; = .01280937236 + .07427351576 [
ct; = 04455981150 — .1275096996 [
ccosy, = —.01108128893 + .04227360229 [

> Coeconv(10,-0.5);
ct; = —.009504083352 — .2363574870 [

ccosy = .01488777162 + .07463296481 [
ctz = .03767804280 — .1295616089 [
ccosz = —.008870667353 + .04300767909 [

> Coeconv(11,-0.5);
ct;, = —.01703814826 — .2353185186 1

ccos; = .01907796955 + .06158447084 /
ctz = .02683255631 — 1287477137 [
ccos; = —.007580366371 + .03261671637 [

> Coeconv(12,-0.5);
ct; = —.02223619477 — .2041864513 [

ccos; = 07483026588 + .1885996845 [
ctz = .02223288944 — .1451974626 [

ccosz = 03561811726 + .01953455109 [



Bibliography

[1] E. Artin, The gamma function, New York, Holt, Rinehart and Winston, 1964.

[2] S. A. Avdonin and I. Joo, Riesz basis of exponentials and sine-type functions, Acta

Math. Hung., Vol. 51 (1), 1988, 1-14.

[3] R. Balan, Stability theorems for Fourier frames and wavelet Ries: bases,

J. Four. Anal. Appl., Vol. 3, 1997, 499-504.

[4] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press,

1963.

[5] H. Benzinge, Nonharmonic  Fourier series and  spectral theory.

Trans. Amer. Math. Soc., Vol. 299 (1), 1987, 245-259.
[6] R. P. Boas, JR, Entire Functions, Academic Press, 1954.

[7] R. P. Boas, JR, [ntegrability along a line for a class of entire functions,

Trans. Amer. Math. Soc., Vol. 73, 1952.

(8] M. Bownik, Tight frames of multidimensional wavelets, J. Four. Anal. Appl.,

Vol. 3, 1997, 525-542.

[9] M. L. Cartwright, On certain integral functions of order one, Proc. London

Math. Soc., (2) Vol. 33, 1931.



133

[L10] P. G. Cazassa and O. Christensen, Perturbation of operators and applications to

rame theory, J. Four. Anal. . Vol. 3, , 243-357.
h heory, J. F Anal. Appl. Vol. 3, 1997, 543-557

[L1] P. G. Cazassa and O. Christensen, Riesz frames and approximation of the frame

coefficients, Approx. Theory Appls., (2) Vol. 14, 1998, 1-11.

[12] P. G. Casazza and N. J. Kalton, Generalizing the Paley-Wiener perturbation

theory for Banach spaces, Proc. Amer. Math. Soc., Vol. 127, 1999, 519-527.

[L3] O. Christensen, Frames and the Projection method, Appl. Comp. Harm. Anal.,

Vol. 1, 1993, 50-53.

[L4] O. Christensen, Frame perturbations, Proc. Amer. Math. Soc., (4) Vol. 123, 1995,

1217-1220.

[15] O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc.,

(7) Vol. 123, 1995, 2199-2202.

[16] O. Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl., Vol. 195,

1995, 401-414.

[17] O. Christensen, Frames containing a Riesz basis and approzimation of the frame
coefficients using finite-dimentional methods, J. Math. Anal. Appl., Vol. 199, 1996,

256-270.

[18] O. Christensen, Operator with closed range, pseudo-inverses, and perturbation of

frames for a subspace. Canad. Math. Bull., (1) Vol. 42, 1999. 37-45.
[19] R. Corless, Essential Maple, Springer-Verlag, 1994, 167-168.

[20] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On

the Lambert W function, Advances in Comp. Math., Vol. 5, 1996, 329-359.



134

[21] Z. Cvetkovic and M. Vetterli, Error analysis in oversampled A /D conversion and

quantization of Weyl-Heisenberg frame ezpansions, Mem. No. UCB/ERL M95/48.

May.

[22] I. Daubechies, Ten Lectures on Wavelets, the Society for Industrial and Applied

Mathematics, 1992.

[23] L. Daubechies, From the original framer to present-day time-frequency and time-

scale frames, J. Four. Anal. Appl., Vol.3, 1997, 485-486.

[24] R. J. Duffin and J. J. Eachus, Some notes on an ezpansion theorem of Paley-

Wiener, Bull. Amer. Math. Soc.. Vol. 48, 1942, 850-855.

[25] R. J. Duffin and A. C. Schaefler, Power series with bounded coefficients.

Amer. J. Math., Vol. 67, 1945.

[26] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier Series,

Trans. Amer. Math. Soc., Vol. 72, 1952, 341-366.

[27] N. Fujii, A. Nakamura, and R. Redheffer, On the ezcess of sets of compler

exponentials, Proc. Amer. Math. Soc., Vol. 127, 1999, 1815-1818.
[28] D. Gaier, Lectures on complez approzimation, Birkhauser, 1985.

[29] G. R. Grozev and Q. I. Rahman, Reconstruction of entire functions from irreg-

ularly spaced sample points, Can. J. Math., Vol. 48, 1996.
[30] E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, 1996.

[31] G. Hinsen, Ezplicit irregular sampling formulars, J. Comp. Appl. Math., Vol. 40,

1992, 177-198.



135
[32] G. Hinsen, Irregular Sampling of Bandlimited L?— functions, J. Appro. Theory,
Vol.72, 1993, 346-363.

[33] S. Jaffard and R. M. Young, A representation theorem for Schauder bases in

Hilbert space, Proc. Amar. Math. Soc., (2) Vol. 126, 1998, 553-560.

[34] M. L. Kadec, The ezact value of the Paley-Wiener constant, Sov. Math. Doklady,

Vol. 5, 1964, 559-361.
[35] G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1994.
[36] P. Koosis, The logarithmic integral, Vol.2, Cambridge Univ. Press, 1992.

[37] H. Landau, Necessary density conditions for sampling and interpolation of certain

entire functions, Acta Mathematica, Vol.117, 1967, 37-52.
(38] B. JA. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., 1980;

[39] N. Levinson, On the closure of {e****} and integral functions, Proc. Cambridge

Phil. Soc., Vol. 31, 1935, 335-346.
[40] N. Levinson, Gap and Density Theorems, AMS. Col. Public. 26, 1940.

[41] A. M. Minkin, Reflection of exponents, and unconditional bases of ezponentials,

St. Petersburg Math. J., Vol. 3, 1992.

[42] R. E. Paley and N. Wiener, Fourier transforms in the complex domain,

AMS. Col. Public. 19, 1934.

(43] A. Pfluger, On analytic functions bounded at the lattice points, Proc. London

Math. Soc., (2) Vol. 42, 1936.

[44] M. Plancherel and G. Polya, Functions entieres et integrales de Fourier multiples,

Comment. Math. Helv. Vol. 9, 1937, 224-248; 10, 1938, 110-163.



136

[45] R. M. Redhefter, Completeness of Sets of Compler Erponentials, Advances in

Mathematics, Vol. 24, 1977, 1-62.

[46] R. M. Redheffer and R. M. Young, Completeness and basis properties of complez

ezponentials, Trans. Amer. Math. Soc., Vol. 277, 1983, 93-111.

[47] A. M. Sedletskii, Nonharmonic Fourier series, Sib. Math. Zhur., Vol. 12, 1971,

1100-1114.

[48] A. M. Sedletskii, On biorthogonal ezpansions in ezponential functions,

Math. USSR. Izv., Vol. 6, 1972, 579-586.

[49] A. M. Sedletskii, On the stability, completeness and minimality of a system of

exponential functions in L?, Mat. Zame., Vol. 15, 1974, 213-219.

[50] A. M. Sedletskii, Ezpansions in exponential functions, Sib. Math. Zhur., Vol. 16,

1975, 820-829.

[31] A. M. Sedleckii, Ezcesses of systems of erponential functions, Math. Notes,

Vol. 22, 1977, 941-947.

[52] A. M. Sedleckii, On completeness of the system {ezp(iz(n+1tha))}, Anal. Math.,

Vol. 4, 1978, 125-143.

[53] A. M. Sedletskii, Fzcesses of close systems of exponentials in LP, Sibirskii

Math. Zhurnal, Vol. 24, 1983, 164-175.

[54] A. M. Sedletskii, Purely imaginary perturbations of the exponents A, in the sys-

tem {exp(iAnt)}. Sibirskii Math. Zhurnal, Vol. 26,1985, 151-158.

[55] A. M. Sedletskii, Completeness and nonminimality of systems of exponentials in

LP(—m, ), Sibirskii Math. Zhurnal, Vol. 29, 1988, 159-170.



137
[56] S. Verblunsky, On an erpansion in ezxponential series, Quart. J. Math., Vol. 7.

1956, 231-240.

[57] S. Verblunsky, On a class of integral functions, Quart. J. Math., Vol. 8, 1957,

312-320.

[58] S.Verblunsky, On a class of Cauchy exponential series, Rend. Circ. Mat. Palermo,

Vol. 10, 1961, 5-26.

[59] S. Verblunsky, On a class of infinite products, Proc. Comb. Phil. Soc., Vol. 60,

1964, 847-854.

[60] S. Verblunsky, On the stability of the set of exponents of a Cauchy exponential

sertes, Pacific J. Math., Vol. 16, 1966, 175-188.

[61] E. M. Wright, The Linear Difference-differential Equation with Constant Coeffi-

ctents, Proc. Roy. Soc. Edinburgh, Sec. A, Vol. 62, 1949, 387-393.

(62] E. M. Wright, Solution of the equation ze* = a, Bull. Amer. Math. Soc., Vol. 63,

1959, 89-93.

[63] R. M. Young, A perturbation theorem for complete sets of compler exponentials,

Proc. Amer. Math. Soc., Vol. 55, 1976, 318-320.

[64] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press,

1980.

(65] R. M. Young, On the pointwise convergence of a class of nonharmonic Fourter

series, Proc. Amer. Math. Soc., Vol. 89, 1983, 63-73.

[66] R. M. Young, On a theorem of [ngham on nonharmonic Fourier series,

Proc. Amer. Math. Soc., Vol. 92, 1984, 549-553.



138

[67] R. M. Young, On the stability of ezponential bases in L[*(—=,w), Proc.

Amer. Math. Soc., Vol. 100, 1987, 117-122.

[68] R. M. Young, Interpolation and frames in certain Banach spaces of entire func-

tions, J. Four. Anal. Appl., Vol. 3, 1997, 639-645.





