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Infiltration and drainage are important natural processes in ecology, agriculture and water- 

resources management. The goal of this study was to further our understanding of the 

movement of water during infiltration and drainage through heterogeneous field soils. 

Specific objectives included developing a new analpical solution of Richards' equation for 

soil water flow. new field measurement techniques, and inverse procedures for estimating 

soil hydraulic parameters. A series of constant flux infiltration and subsequent drainage 

expenments were conducted on a heterogeneous sandy soil. Two hundred Multipurpose 

Time Domain Reflectometry probes were installed along a 7.5 m transect at 4 depths. n e  

probes measured soil water storage, W(t), as a fùnction of tirne and pressure head during 

both transient and steady state conditions. The local water flux at each location was 

detennined using the measured water storage during constant infiltration. Measurements at 

steady state were used to obtain the effective hydraulic conductivity and retention curves for 

the site. The uniqueness and stability of the inverse problern for estimating the local 

hydraulic pmpertia from measured water storage during transient infiltration were analyzed. 

With two pressure head measurements, one at initial condition and the other at steady-state, 

a single transient W(t) provided unique and stable estimates of saturated hydraulic 



conductivity. Ks. inverse capillary length scale. a. another shape parameter and saturateci 
r\ 

water content. 0,. The estimated parameten and a proposed Haines Jump mode1 of hysteresis 

accurately predicted the soil water storage during drainage for different initial conditions. 

A method of a priori estimation of the Haines Jump was proposed and tested. To account for 

the spatial variability of hydraulic parameters in the horizontal direction, a unified stochastic 

analytical solution for infiltration and drainage was developed using a small perturbation 

method. The solution had very good agreement with Monte Car10 simulation for two 

extremes of spatial correlation between a and Ks fields. The average soi1 water storage to 

a fixed depth. (W), in the heterogeneous soil was essentially identical to that of a 

homogeneous soi1 with soi1 hydraulic properties equal to the mean hydraulic properties of 

the heterogeneous soil. The variance of soil water storage to a fixed depth, however, 

depended on (W), the variances of soi1 hydraulic properties, water flux density, and cross- 

correlation of the soi1 hydraulic properties. The new unified stochastic solution cm also be 

used for inverse determination of the mean, variance, and correlation length scale of 

hydraul ic parameters. 
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Chapter 1 

General Introduction 

1.1. Background 

In efforts to better monitor and manage the migration of chemicals in the soil and 

subsurface, scientists and engineers over the past several decades have developed analytical 

and numencal models describing how water and chemicals move into and tluough the 

unsaturated zone. These models have becorne indispensable tools in research for quali-g 

and integrating the most pertinent physical and chemical processes operative in the 

unsaturated zone of soils (van Genuchten and Leij, 1992). Since many contaminants are 

transported as dissolved components in the water phase, water flow is the most important 

process for modeling . 

For water flow in field conditions, the flux boundary condition is most pertinent to 

rainfall and sprinkler imgation. Numerous analytical and numerical solutions have been 

proposed to describe infiltration under flux boundary conditions and subsequent drainage. 

Though numencal solution is more general in ternis of soil hydraulic properties and flexible 

to accommodate variable initial and boundary conditions, analytical solutions have its 

irreplaceable advantages (Lindstrom et al., 1989); ( 1) analytical methods are probably the 

most efficient alternative when the data necessary for identification of the system are sparse 

and uncertain; (2) where applicable, these methods are the most economical approach; (3) 



analytical solutions provide physical insight into the problem; (4) analytical solutions 

provide a benchmark for numerical solution; (5) experienced modelers and complex 

numerical codes are not required; (6),  analytical solutions can be used to test the uniqueness 

of an inverse problem. For these reasons, analytical solutions are continued to be sought and 

help in our understanding of the physics of water flow and chemical transport through soil. 

The reliable application of models to field-scale flow and chemical transport 

problems implies a cornmensurate effort in quantifjmg the mode1 parameters, especially the 

unsaturated hydraulic properties. The properties are those which define the relationship 

between hydraulic conductivity (K), volurnetrk soil water content (O), and soil water 

pressure head (y) For field soils, these relationships are nonlinear and Vary considerably in 

space (Nielsen, et al., 1973). To characterizing the hydraulic properties of a field. one 

usually needs to sarnple the field in dense grids. The sampling intervals must be small 

enough to capture relevant features of the field soil. The interval varies fiom soil to soil and 

range between 0.1 to a few meters (Russo et al.. 1992). Thus, adequate characterization 

requires measunng a large number of samples in a small area. Methods of rapidly and 

accurately measuring field hydraulic properties are required. 

Scientists in the past 30 years have proposed numerous methods to measure and 

estirnate the soil water characteristic functions, y@), and hydraulic conductivity functions, 

K(0), both in laboratory and in in-situ fields. ïhese methods can be classified as direct 

methods, indirect methods, and prediction methods. Indirect methods are those relating 

statistically the soil hydraulic properties to soil texture and other soil properties, including 

bulk density, organic matter content and / or cation exchange capacity, clay mineraiogy and 

2 



soil structure by ernpirical procedures (van Genuchten et al., 1992) or by semi-empincal 

procedures through analytical expressions denved under highly idealized assumptions(e.g., 

Arya and Paris, 198 1 ; Haverkamp and Parlange, 1986). Direct methods are those measuring 

directly soi1 hydraulic properties or estimating them from measured dependent variables 

under steady or transient conditions. There are also extensive investigations on prediction 

methods, that is to predict the hydraulic conductivity from pore-size distribution models, 

where the water retention curve of a porous medium is interpreted as statistical measure of 

its equivalent pore-size distribution. in this approach, the conductivity is estimated by 

applying the concept of viscous fluid flow through capillaries and by using a conceptual 

mode1 to describe pore interactions and pore connectivity (Mualem, 1976). 

Indirect methods and prediction methods, using available information or easily 

measured soil properties, are accurate for unstmctured, repacked coarse material. However, 

for estimation of hydraulic properties of field soils. the most accurate methods are direct 

measurements on undisturbed sample in the laboratory or field measurements. While 

laboratory experiments are more controlled and generally more convenient than in-situ field 

experiments, the utility of soil properties deterrnined on typical small core sarnples is limited 

. This cm cause problerns for predicting in situ behavior. This thesis concentrates on in situ 

direct field methods. 

Field soil hydraulic properties have considerable spatial variability, even in 

apparently homogeneous soils (Nielsen et al., 1973). Therefore, the spatial structures of 

hydraulic properties need to be identified. This requires small sarnpling intervals and a large 

number of samples. 



One approach is to take point or local scale measurements when boundary condition 

are set and repeated for many locations. This inciudes method using one-dimensional 

analysis such as single or twin-ring infiltration and three-dimensional analysis such as the 

Guelph Permemeter (Reynolds and Elnck, 1985; Elrick et al., 1992), and disk tension 

infihometer( Perroux et al., 1988; Reynolds and Elrick, 199 1 ; Zhang, 1997). These methods 

are fast and cost-effective for determination of soil hydraulic properties for a single point in 

a field. However, when the purpose is to determine the spatial stmcture of soil hydraulic 

properties of a field, which is usually required for stochastic analysis of soil water flow and 

chemicals transport, these methods can be tedious and time-consuming. Since these methods 

are either destructive (e.g.. ring methods and bore hole methods) or measurement scale is too 

large (al1 the three dimensional methods). which do not allow small sampling intervals. 

Another approach is to apply water over a large area and take many simultaneous 

measurements (Parkin et al., 1992). This approach is facilitated by the recent measurement 

tec hnique-t ime domain reflectometry (TDR), which allows rapid, nondestructive, and 

autornated measurernent of water storage from many locations. Measurements made by TDR 

with a vertical probe are direct measurements of water storage, the measurement volume is 

defined and does not change with water content. 

When a non-point source water application is adopted, the water flow can be 

simplified as one dimensional and vertical (Hopmans et al., 1988; Prospapas and Bras, 

199 1 ). The flux boundary condition is easy to control and most pertinent to rainfall, sprinkler 

imgation and gravity drainage. Focus of this thesis is on detemination of hydraulic 

properties and modeling water flow for a constant flux boundary. In the following we give 
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a review of the Iiterature relevant to: ( 1 ) analytical solutions of one-dimensional infiltration 

and gravity drainage; (2) methods for detennining soil hydraulic properties based on 1-d 

infiltration and gravity drainage; (3) stochastic models for transient infiltration and drainage. 

At end of this chapter, the objectives of this thesis are outiined. 

1.2. Analytical solutions for constant flux boundary condition 

For one-dimensional vertical flow, a combination of the equation of continuity for 

conservation of water mass, together with the Buckingham-Darcy law for unsaturated flow, 

leads to the familiar Richards conservation equation for water content for rigid and uniform 

soils. 

Where t (s) is time, z (m) is depth, O( rn3 rn-" is soi1 water content, D( rn' s-' ) is soil water 

diffusivity and K(m S.') is the unsaturated hydraulic conductivity. Eq. [l-11 is a highly 

nonlinear second order partial differential equation. To solve it, appropriate initial and 

boundary conditions must be provided. For this thesis. the constant flux boundary conditions 

are used which include infiltration and drainage. 

1.2.1 Analytical solutions for constant flux infdtration 



1.2.1.1 Approximate solutions. 

Parlange ( 1972) described an approximate integral procedure for the solution of 

infiltration by exploiting the rapid change in difisivity with water content. The 

shortcomings of this solution are discussed in detail by Knight and Philip ( 1974). Parlange 

( 1972) does not give a clear or consistent account of the physical meaning either of his initial 

approximation or of the subsequent steps in his method. Furthemore, Parlange ( 1972) has 

nothing in the procedure to ensure convergence (Knight and Philip, 1974). In addition, Philip 

and Knight(1974) showed how Parlange's method could be improved to any desired 

accuracy through use of a concept called the flux-concentration relation F (Philip, 1973). 

The use of the flux-concentration relation, in principle. pennits quasi-analytical solution of 

the highly nonlinear flow equation to be found for a wide range of flow phenornena in soils. 

In general, F is a function not only of soil water content, but also of initial and surface water 

content, and tirne. Moreover, F is, in most cases, unknown a prion. To use F to predict the 

important aspects of flow in porous media, either the iterative procedures of Philip and 

Knight (1974) mut  be followed, or a sufficiently accurate estimated for F rnust be made. For 

tlow problems subject to general flux boundary conditions, iterative procedures are not 

available and approximations to F must be used. 

Subsequent work by White et al.( 1979) used simple time-independent 

approximations for F. These approximations, which greatly simpli& computation, were 

chosen to be consistent with the lcnown behavior of F fond  by Philip ( 1973) for the linear 

soil and Green& Ampt soil and with Philip's hypotheses on the general regime of F for the 

relevant boundary conditions. The choice of an approximate F, however, can only be 
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justified empirically. 

White at al. (1 979) analyzed constant flux adsorption using an approximate flux- 

concentration relation. Expenments using a fme sand confirmed the approach and showed 

both the surface water content and the water content profile could be predicted accurately 

for the horizontal adsorption of water supplied to the sand at a wide range of constant flux 

rates. They found that the time dependence of F(8,t) for constant flux adsorption into 

Bugendore fine sand was negligible and the measured F(O,t) was only slightiy above the line 

F(O,t)=O. After examining a number of approximations for F(O,t), they concluded that 

predictions of surface water content and water content profile were more sensitive to the 

errors encountered in determining D(0) than they were to errors arising from the use of 

approximate flux-concentration relations. 

Perroux et al. ( 198 1 ) extended the solution to constant flux infiltration and concluded 

suficiently accurate predictions of moisture profile development c m  be made by using the 

simpler adsorption analysis of White et al. ( 1979). Boulier et al. ( 1984) confirmed the ability 

and the versatility of the flux-concentration relation-based approach to predict water 

infiltration into soils and expanded the solution to nonunifonn initial conditions. 

1.2.1.2 Exactly-solvable solutions. 

For one dimensional flow, there exists usehl integrable nonlinear parabolic 

equations closely related to the Richards equation. These equation may be characterized by 

the existence of Lie-Bâklund symrnetries, or by certain infinite dimensional symrnetry 



b 

groups. Through certain transfom. the integrable second-order partial di fferential equations 

are classified by Broadbridge et al ( 1996) in one of four classes. 

( 1 ). The linear class, with canonical form 

including the linear mode1 for Richards equation 

with D, K,, es, and 8, constant; 

Braester ( 1973). Iinearized Eq. [l- 11 to Eq. [l-31, and denved expressions for both 

the variation of surface moisture content and movement of the wetting front during constant 

flux infiltration. His approach assumed constant soi1 water diffùsivity (independent of soil 

water content), but also required the hydraulic conductivity at the initial soil water content 

to equal zero and the hydr,ulic conductivity to be exponentially related to the pressure 

potential. Such linearized solutions can only be expected to predict, approximately, the 

integral properties of soil-water system. Parlange ( 1976) has pointed out that the disparity 

between surface moisture contents calculated from this linearized solution and those 

calculated numerically are unacceptable. In addition, the linear convection term does not 

permit the development of a traveling wave solution at large infiltration times. 

(2) The Burgers' class, with canonical form 
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including the weakly nonlinear Burgers' mode1 for the Richards equation 

Burgers' equation retains important characteristics of the soil-water flow equation of real 

soil by preserving nonlinearity. Therefore, the solution to Burgers' equation satisfactorily 

described rainfall infiltration in an undisturbed field soil (Clothier et al., 198 1). However, 

like the linear soil, Burgers' solution treats diffisivity as constant, even though many 

materials exhibit soil water diffisivity that Vary over several orders of magnitude across the 

water content range of interest. There are analytical solutions for Burger's equation over a 

wide range of boundary conditions, such as constant flux (Clothier et al., 1981)' and 

monotonically increasing flux with time (Broadbndge et al., 1987). 

(3) The Fijita class with canonical form 

including the strongly nonlinear form of the Richards equations 



The Richards equation based on Fujita form have solutions for constant flux 

boundary conditions for finite and semi-infinite systerns (Hills and Warrick, 1993; 

Broadbridge and White, 1988; Sander et al., 1990). For variable-flux boundary conditions, 

Bany and Sander( 199 1 ) generalized the work by Sander et al.( L 988), and obtained a quasi- 

analytical solution, containing a function that is specified by a Volterra integral equation, 

which must be evaluated numerically. Warrick et al. (199 1) presented an analytical solution 

for any initial condition as well as arbitmy surface infiltration rates as a senes of step inputs. 

The solution is approximate since numerical integration is needed. Different from those of 

Bany and Sander ( 199 1)  and Warrick et al. (199 l), Broadbridge et al. (1  996) presented 

another closed form solutions for specitic flux boundary conditions using a quite different 

sequence of inverse transformations, including the hodograph transformation. This method 

is that it does not require numerical solution of an integral equation, but does require specific 

soi1 hydraulic properties and specific boundary conditions, restricting their application. 

Parkin et al. ( 1992) derived an analytical solution for water storage to a fixed depth 

based on the anaiytical solution of Broabridge and White ( 1988) and Sander et aL(1988). 

The mode1 result can be used directly to interpret the measurement fiom vertically instailed 

TDR probes. However, like the solutions of Broabridge and White (1988) and Sander et 

a1.(1988), solutions of Parkin et al. require specific fonns of diffisivity and hydraulic 

conductivity dependence of water content. 

(4) The Freeman-Satsuma class, with canonical form 



including the Richards equation with plant root absorption term, 

Other exact solutions include those presented by Ross and Parlange ( 1994), which 

are analytical solutions valid for the boundary condition where the flux on the surface is 

proportional to the surface waier content dunng infiltration and drainage. This unusual 

boundary condition leaves the application of the solution for largely assessing the numerical 

solutions. 

1.2.2 Analytical solution for redistribution and drainage. 

The redistribution of soi1 water is an important natural process in ecology, agriculhire 

and water-resources management. In addition, controlled redistribution has been used by 

Nielson et al. ( 1  973), Jones and Wagnet (1984) and many others ( Rose, 1965; Watson 

( 1966); Chong et al., 198 1 ; Libardi et al., L 980; Sisson et al., 1980) to rneasure soi1 hydraulic 

properties. 

1.2.2.1. Exact solutions to Richards equation 

Raats (1983), assuming exponential dependence of hydraulic conductivity upon 



pressure head and water content, obtained analyticai solutions for drainage for specific initial 

condition, which allows separation of space and time variables. An analytical solution for 

drainage c m  be obtained by assuming constant diffisivity and linear dependence of 

hydraulic conductivity upon water content. This solution exaggerates the effect of gravity, 

resulting in a faster depletion of water storage than reality. Broadbridge and Rogers (1990) 

and Warrick et al. ( 1995) independently solved the Burgers' equation for gravity drainage. 

The solution expresses soil water content as a direct function of time and depth, which is 

convenient for application. Broadbridge and Rogers ( 1990) and Warrick et ai. ( 1990) solved 

the Richards' equation for drainage for semi-infinite system and Sander et al. (1993) for 

finite system with realistic hydraulic properties. Ross and Parlange (1993) developed 

analytical solution for drainage for general soil hydraulic properties, but for restricted 

boundary condition. 

1.2.2.2 Unit-gradient solutions 

Chong et al. ( 198 1 ), derived an ana1ytical expression for the K(e) dependence on the 

depth averaged water content, based on two assurnptions: unit gradient and a power law 

dependence of depth average water content with tirne. Libardi et al. (1980) adopted three 

assumptions: unit gradient, linear water content-storage relationship, and an exponential K( 

0) relationship. They produced the relationship between 8 and time t either by the flux 

method or solving Richards equation directly. 

Sisson et al. ( i98O), assuming unit gradient in vertical direction, solved the Richards 

equation which takes the form of well-known convection equation, using the Lax solution. 

However, in this solution, surface water content drops immediately to the background level, 
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0,. In fact, at 2-0, the zero-flw boundary of the redistribution problem requires that the 

downward gravitational component of flux should be balanced by upward (including 

difhsive ) components so that the unite gradient approximation cannot be valid near the 

surface. Under this circumstance, it would seem unlikely for the weaker condition of 

negligible capillary-flux gradient to hold and we share, along with the previous users of 

convection equation, a distnist of its predictions near FO. Parlange ( 1982) modified the 

fundamental solution of Sisson et al. ( 1980) by adjusting the profile upwards and time to 

conserve mass. This modification was quite successfÙl in term of agreement with the fùlly 

numerical solutions. However, the modification, though physically sound is approximate. 

Broadbridge and Rogers ( 1990), provided an improved solution of Sisson et al. ( 1980) , and 

obtained a better prediction of surface water content. They also compared their exact 

solution, to Burgers' equation and the Lax solution, and concluded that the unite gradient 

solution is worse than the solution of Burgen' equation when compared with the exact 

nonlinear solution. The advantage of the unite gradient solution is that it allows general 

hydraulic properties and analytical inversion of hydraulic parameters. The drawback is the 

solution generally appl ies only to deep soils. 

1.23 Connection between infiltration and drainage 

Richards equation has exact solutions for both constant flux infiltration and gravity 

drainage based on Eq. [I-11, which is the diffision form of Richards equation. There are 

unified solutions able to predict drainage from infiltration or predict infiltration from 

drainage in the absence of hysteresis (Wan-ick et al., 1990). #en hysteresis exists, Eq. [l .1] 

becornes invalid because D(0) is no longer single-valued. The solutions for infiltration and 
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drainage will have different sets of hydraulic parameters, making the two continuous 

processes unpredictable from one another. Progress has been made in describing numerous 

scanning c w e s  of a soi1 using simple models (Muelem, 1984% l984b; Parlange, 1976). The 

hysteresis models of Parlange ( 1976) and Mualem ( 1984) only need one branch of a 

scanning Ioop t o  predict al1 the scanning cwes.  However, the models of Parlange( 1976) and 

Mualem( 1984) do not have exact analytical solutions for infiltration or drainage. 

1.3. Determination of hydraulic parameters using inverse procedures 

Forward problern and identifiability 

Given a parametric model of the physical systern and values of the model pararneters, 

the prediction of the system output (response) to any input is referred as the forward 

problem. In some cases. different sets of parameters may lead to different output, that is, the 

parameters are identifiable. In other cases. different sets of pararneters lead to the same 

output. That is, the parameters are unidentifiable. The un-identifiability may stem from their 

over-parametrization, or from a lack of suficient information to distinguish alternative 

parameter sets. An example of un-identifiability is the constant flux or concentration 

adsorption with goveming equation 

where 8 is water content, t is time, x is spatial coordinate, D(B)=Ks C(C- 1) /[a A0(C-0)2 ] 

for the Broadbndge &White ( 1988) fonn. The saturated hydraulic conductivity Ks and the 
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inverse capillary length scale a are not identifiable simultaneously, since different Ks and 

a result in the same output if the ratio of the two remains the sarne. In this simple example, 

the unidentifiable parameters can be easily found. However, it is usually very difficult to 

detemine a priori whether parameters can be identified or not. 

Identi fiability depends highly on the model structure. Russo et al. ( 1992) showed that 

the two pararneters (Ks, and a) in the Gardner & Russo form of hydraulic functions are 

identifiable for a given infiltration rate (ponded infiltration), since the contours of infiltration 

rate intersect only at one point in the Ks-a plane. On the other hanci, contours of infiltration 

rates for different infiltration times, merge into a single contour for the two shape pararneters 

of the van Genuchten & Mualem form. Thus. to reduce un-identifiability, fewer pararneters 

are needed or simpler model structure must be adopted. 

Inverse problem and ill-posedness. 

The estimation of model parameters given the pararnetnc system model and an input- 

output relationship is known as the inverse problem. An inverse problem is well-posed if (1) 

the solution exists and (2) is unique and (3) stable, which means small change in the 

response does not result in large change in the parameten ( Carerra and Neuman, 1986). If 

one of the three requirement is not satisfied, the problem is ill-posed. The first two of these 

requirements insure that mathematically there is a unique solution. The third requirement 

insures that the inverse solution is physically meaningful (not overly sensitive to 

measurement error). In most physical cases, the existence of a solution is guaranteed on 

physical grounds so that the last two requirements are the main concem of inverse problems. 



Tikhonov and Arsenin ( 1977) indicated how a nonunique and unstable problem with 

linear forward operator can be trmsfonned into a well-posed problems by appropriate 

regularization. This has been used in steady state flow problem, such as the recovexy of the 

release history of a groundwater contaminant (Skaggs and Ka bala, 1 994) and to measure the 

apparent electrical conductivity of soils by electromagnetic induction (Borchers et ai., 1997). 

For transient unsaturated flow with a nonlinear forward operator, there are usually 

two steps to estimate hydraulic parameten. The first step is the parametrization of the 

hydraulic properties. The second step is to condition the parameters on the rneasured 

response through Richards equation or its linearized form. In the first step, the relationship 

between y and 8 and between K and 8 or g are expressed through functions with a few 

hydraulic parameters. These finctions usually have 3 to 5 parameters each. To be 

panimonious and to reduce arnbiguity in the parameten, closed functional forms of 

hydraulic properties are adopted in routine applications. Usually, an empincal form of yr(0) 

or K(v) is assumed, and the corresponding K(8 ) or ~ ( 0 )  relationship is derived through 

either Mualem or Burdine's capillaiy bundle theories. Some examples of this are the Brooks 

& Corey, van Genuchten & Mualem, and Gardner & Russo functions. On some occasions, 

the ~ ( 0 )  and K(g) are purely empirical to achieve an analytical solution of Richards 

equation. A typical example is the Broadbridge and White (1988) form. Those functions 

greatiy simp l i e  the representation of hydraul ic properties and reduce the dimensionality of 

the estimation problem. 

With parsimonious parametrization of hydraulic properties and high quality response 

measurements, the inversion of Richards equation in some applications becomes well- 
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posed. However, the well-posedness of such a nonlinear inverse problem is generally not 

known a priori and has to be analyzed case by case. The task is to tuid under which situation 

the inversion become unique and stabie, and what idormation is needed to make an ill-posed 

pro blem, well-posed. 

Identifiability is different corn uniqueness. Identifiability refers to forward problern, 

w hile uniqueness refers to inverse problem. The relationship between the two depends on 

the formulation of the inverse problem. When the inverse problem is expressed as a exact 

solution of the boundary value problem. the inverse solution is unique if and only if the 

parameters are identifiable (Canera and Neuman, 1986b). However. when the inverse 

problem is not posed in this direct rnanner or approximations occur in the estimation process, 

uniqueness and identi fiability are no longer equivalent. 

Formulation of the inversion problem 

In a saturated confined aquifer, the inverse problem is a typical distributed parameter 

system, where the response of the system is governed by a partial differential equation and 

the parameters imbedded in the equation are spatially dependent. In the unsaturated zone, 

the inverse problem can be also formulated as a distributed parameter, but because of the 

complication of the hi& nonlinearity of the fiow equation, the probiem may be very difficult 

to solve. The strategy is to consider soil properties as discrete in space. The hydraulic 

parameters are first estimated at individual points. The spatial structure of the soil hydrauiic 

properties is then estimated tiom the known point-wise values. Thus, the parameter inversion 

in the unsaturated zone is mainly a lumped parameter system, instead of a distributed 
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parameter system. Nurnerically, the problem is greatly simplifieci. However, the information 

provided by the system is not fully utilized, such as the spatial continuity of the hydraulic 

pararneters. Therefore, the problem is more iikely to be nonunique than the distributed 

systern formulation. 

To solve an inverse problem, we need a estirnator. Generally speaking, the best 

estimators are those which minimize the discrepancy between the measurement and 

predicted response, while best reflecting the hydraulic properties of the medium( 

McLaughlin et al., 1996). There are many ways to fulfil the task, for examples, the least 

square and maximum likelihood methods. However, the most general, intuitively appealing 

and theoretically sound estirnator is the maximum a posteriori estimator (MAP), by 

incorporating additional measurements and prior information into the estimator (Bard, 

1974). In this way, the obtained parameters are guaranteed physically meaningful and may 

convert a degenerate equation into a non-degenerate case (Bard, 1974). The joint probability 

distribution function of the hydraulic parameters, L(P), depends on the distribution of 

measurement error e and pnor p* through the Bayesian theorem. 

Usually, a Gaussian mode1 is adopted for measurement errors and prior information. Since 

the logarithm is a monotonic increasing function of its argument, the value of P that 

maximizes L(P) also maximizes log (L(f3)). Since log L is frequently a sirnpler hc t ion  than 

L, the maximum likelihood estimates are generally obtained by minimizing the negative log 
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of the a postenor likelihood fùnction 

where y is the response variable vector. indicates the estimated value of y. Gy, and Gg are 

covariance matrix of the response, prior information, respectively. f3 is the parameter vector. 

The vector u represents a prior estimate of P based on data other than y. The ma& GB 

represents the accuracy of this pnor estimate. In the combined criterion the third term 

penalizes deviations of mode1 predictions from observations and the last terrn penalizes 

deviations of parameters frorn the prior estimate. The matrix Gg serves to weigh the last 

tenn against the third: the larger the G,  . the Iess important the last term. 

The MAP is equivalent to the generalized least square estimator. 

By hrther assuming unifonn measurement error(constant variance), then MAP is 

equivalent to weighted least square estimator: 

where W is the ratio of the variance of measurement error to the variance of prior estirnator. 
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W is seldom known exactly. W can be treated as either an unknown or known parameter in 

minimizing S. For situations where nonuniqueness is more a problem, W should be treated 

as constant and an approximation for W should be used. 

Justifications for assumptions in the previous description are: 

1 ) The multi-normal distribution of measurement error was assumed in deriving Eq. [1- 

121.There is strong experimental evidence that experimental error is roughly normally- 

distributed. Furthemore, under "central limit condition," theory suggests that data 

distributions should cluster about the normal and not about some other distribution (Box and 

Tiao, 1973). If many observations are avaiiable. the Gaussian assumption is not crucial 

(Schweppe, 1973. P. 442). 

2) It is reasonable to assume independence between response and prior information, because 

the measurements of different responses are usually taken by different instrumentation and 

measured at different times. In addition. the prior information is usually a good guess fiom 

another source of information, thus the error associated with prior estimator is irrelevant to 

the measurement error. 

3). It is also reasonable to assume that the measurement error has a constant variance 

(deviation from the tme value does not likely increase or decrease with the increase of the 

mie value). For example, measurernent errors by TDR do not increase or decrease 

signiticantly with the increase in water content (Topp et al., 1980). However, this 

assumption depends on the rneasurement technique and must be justified. 

4). The assumption of normally distributed prior information is reasonable, since information 

theory suggests that the entropy is maximal for a Gaussian distribution if no additional 
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information but the mean and variance are available (Bard, 1974). In some situations, only 

an approximate range is known about a parameter. In this situation, the most possible 

probability distribution is the exponential distribution (Woodbury et al., 1996). Under these 

conditions, minirnizing Eq. [ 1 - 1 O] is a constrained optimization, which do not help to make 

the inverse problem well-posed. Therefore, for prior information to be useful, the mean and 

variance must be provided. It is dificult to have a prior estimator with an accurate mean and 

variance. A badly chosen u value will detrimentally affect the results. However, not utilizing 

u means failing to take advantage of information and may result in nonunique solutions to 

the inverse problem (Katanidis, 1997). In this situation, adding measurernents of another 

response variable may be an obvious alternative. 

The concept of ''priof information needs to be discussed in more detail. Prior 

information can take any forrn. but the most useful is an estimate (guess) of the average 

values of the parameters and their variances. The actual values of the parameters obtained 

from optimization can differ fiom the estimated average, but the possibility of the parameter 

being wildly different is constrained by the values of the estimated variance. This may seem 

like "cheatingn, but good estimates are available fiom most field soils. For example, a coarse 

sandy soi1 is likely to have a Ks somewhere near 10' mg'. Even if the variance is estimated 

at a standard deviation of I order of magnitude, the pnor estimates is still useful in the 

optimization. 

With the above assumptions, the Map can be simplified as least squares methods. 

The methods can be classified as linear or nonlinear least squares methods. 

Generalized Linear least square method 
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Sometimes, Richards equation can be solved analytically for particular hydraulic 

properties, initial and boundary conditions. In some cases, these solution may be linear in 

the parameters. There are also situations where these analytical solutions are nonlinear in 

the parameters. However, certain transfoms, y1 (f3-[y(P)], may result in the new variable 

y 1 linear in P. Consequently, the inversion problem becornes a linear least square estimation 

problem and the pararneters can be isolated through matru< inversion. This method was very 

popular 10 yean ago. However, there are a few limitations. First, the method requires 

speci fic boundary conditions and hydraulic functions, and thus limited applicability. 

Secondly, the statistical distribution of the errors on the calculated values of y1 - v(y($)) is 

not the sarne as that of the errors in y. Therefore, it may be appropriate to apply the least 

squares criterion to the residuals in y but not in y1 ( Bard, 1974, P79). Bard ( 1974) 

introduced first-order analysis to correct Gy. The transfom v(Y(p)) also introduces bias; 

i.e., if the erron in y have zero means, those in y1 do not. 

The nonuniqueness of a linear least squares method c m  be examined through the 

analysis of rank deficiency of the Jacobian matrix( derivative of SSE with respective to p) 

(Carrera and Neuman, 1986b) . If the rank of the Jacobian matrix is smaller than the number 

of parameters. the matrix is singular and its inverse does not exists. To solve the problem 

a generalized inverse can be employed. However, there are numerous generalized inverse 

solution to the design matrix. Thus such an inverse problem is nonunique (different solutions 

result in the same S). The Penrose-Moore inverse is unique (SAS Institute Inc., 1990), 

however, the resulting pararneters must be interpreted with caution. When the Jacobian 



matrix is singular, the resulting parameters rnay be highly correlated, thus the inverse 

solution would be very unstable. 

The generdized linear least squares method has wide applications in the unit gradient 

approaches (Libardi et al.. 1980; Chong et al., 1981; Sisson et al., 1980), Guelph 

Pemeameter (Elrick and Reynolds, 1992), and tension disc infiltrometer (Reynolds and 

Elrick, 1990; Zhang, 1997); 

Nonlinear least square methods 

When the solution to Richards equation is nonlinear or numerical, the least squares 

rnethods becomes nonlinear. The nonlinear least squares method optimizes the hydraulic 

parameters by successively approximating the nonlinear problem by a linear problem. Thus 

, the analytical tools for analyzing nonuniqueness of linear least squares do not apply in the 

nonlinear least square methods. For non-linear problem, a cornmon procedures are to draw 

the contours of prediction error (SSE) in the parameter spaces. For a well-posed inverse 

problem. there is only one minimum in the parameter space. In the following situations, the 

inverse problem is ill-posed: 

(1). SSE increases or decreases monotonicly in the direction perpendicular to the contour in 

the parameter space, indicating no minimum exists (non-concave). 

(2). Parameter space contains regions over which SSE remain nearly constant. Sometimes, 

the contours show a well-defined valley, and sometimes the valley is very narrow, being 

essentially a line in the parameter space. In this case, any value in the valley may result in 

the same SSE (flat region) 

(3). Parameter space contain multiple points where SSE attains a local minimum (Multiple 
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minimum). 

For cases ( 1 )  and (2), the inverse problem mut be reformulated or additional 

information m u t  be provided. Problem (3) can sometimes cm be solved using a global 

optimization procedure( i.e., simulate annealing, generic algorithm, etc.). However, like the 

Penrose-Moore inverse in the linear problem, the physical meaning of the resulting 

parameters is not guaranteed. 

If the SSE contours are concentric circles, the two parameters are equally sensitive 

and uncorrelated. If the contours are elliptical, the parameter corresponding to the longer 

axis of the ellipse is less sensitive. A tilted ellipse indicates that the two parameters are 

correlated. 

This contour analysis applies only to the case where there are two unknown 

parameters. Because of our limitation of understanding in higher dimensions, the uniqueness 

analysis for problems with three unknowns or more is usuaily carried out in two-dimension, 

by fixing one or more of the other parameters. However. the information provided by the 

contours are nonconclusive regarding the well-posedness, but conclusive regarding the ill- 

posedness of the inverse problem. To judge if the problem is well-posed, numerical 

experknents with different initial guesses are needed. If the local minimum or flat region are 

present, the di fferent estimate mns will likely converge to di fferent sets of parameter 

estimates. For convex SSE, the algorithm will not converge. 

Uncertainty in the parameter estimates can be exarnined from the statistics provided 

by the nonlinear estimation. Unacceptable high variances and high correlation between two 

parameters means possible ill-posedness of the inverse problem. However, the estimated 
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standard error in a parameter is an estimate of the lower bound of covariance matrix based 

on the Cramer-ho theorem(Bard, 1974). It gives good approximation to the standard error 

to the extent that the sum of squares is locally linear in the parameters. 

Due to the generality. this approach has had ever-increasing applications in 

estimating the hydraulic properties in the last two decades (Dane and Hruska, 1983; 

Zachrnann et al., [982; Kool et al., 1985, 1988; Russo et al., 1992; Simunek et al., 1996). 

1.4 Stochastic analysis of unsaturated flow 

1.4.1 Limitations of the deterministic models 

It has been well recognized that soi1 hydraulic properties, such as the hydraulic 

conductivity and water retention curve have strong spatial variability. Thus, in many cases, 

thousands of samples are needed to get estimates within the 95 % confidence interval. Since 

al1 the hydraulic properties are d!'fficult to measure ( costly and time-consuming), it is 

impractical to take the number of sarnples required. By the time suficient samples have ken 

collected, the field would be disturbed so much, that the physical characteristics would 

probably be altered. Therefore, scarcity of measurernents of hydraulic properties is a rule for 

modeling field hydraulic processes. 

Measurement erron are unavoidable. Even very accurate soi1 water measurements 

using time domain reflectometry(TDR), still has a rneasurement error of 1-2% under ideal 

conditions. The presence of gaps around TDR rods and unparalle1 rod insertion cm introduce 

additional measurement error (Ferré, 1997). The propagation of these errors would result in 

measurement or estimation error in the estimated hydraulic parameters. 



Some of the hydraulic parameters are not directly measurable, for exampie the 

inverse macroscopic capillary length scale, a. Usually some kind of assumptions has to be 

made in order to simpliQ the calculations. For example, a popular field methods to measure 

Ks and a, the Guelph Permemeter method assumes the Glover's approximate solution for 

an anger hole and the additivity of the effects of gravity and unsaturated flow. This 

approximations contribute to the uncertainty of the estimated hydraulic parameters. 

The basic hydraulic laws are the Darcy' law and the conservation mass equation. 

Their combination results in the Richards' equation for unsanirated flow, which is a second 

order partial differential equation. Mathematically, this equation has numerous solution ( 

analytical or numerical). To define a solution, initial and boundary conditions need to be 

defined. These conditions are usually difficult to control in the fields; thus approximate 

boundary and initial conditions are often provided. These approximations also lead to the 

uncertainty of the parameten. 

For convenience, 8 ( ~ )  is described in a functional fom,  such as the Brooks & 

Corey( 1963) or van Genuchten( 1980) equations. Furthemore. in order to reduce the number 

of parameters, ad hoc capillary bundle theory such as those of Burdine or Mualem (van 

Genuchten. 1980)are used to derive the hnctional relationship for K(0). This greatly reduces 

the nonuniqueness when inverse approach is adopted. However, because of heterogeneous 

pore water system in soil. there are no simple universal equations that describe the 

relationship perfectly. Therefore, approximations are applied in modeling the hydraulic 

properties. 

The uncertainty associated with the spatial variability, paucity of measurements, 
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measurement errors, and modeling mors exist in the hydraulic parameters. This generally 

exclude the use of deterministic approaches and suggests a statistical approach or stochastic 

approach, which can take into account those uncertainties. 

1.4.2 Statistical representation of heterogeneous soils. 

Field expenments ( Nielsen et al.. 1973; Sudicky, 1986; Unlu et al., 1990; Russo and 

Bouton, 1992; White and Sully, 1992; Russo et al., 1997) suggest that ln(Ks), and ln(a)are 

approximately normally distributed in space. The following relationships c m  be used to 

convert the arithmetic and geometric means and variances (Dagan. 1989). 

Where, K ,  is the arithmetic and K, is the geometric mean, respective1 y, and o', and m, are 

the variance and mean of the log Ks. respectively. The following assumptions which are in 

agreement with field experiments are adopted by most stochastic analyses of heterogeneous 

media. 

( 1). The log saturated hydraulic conductivity, Y(x)=ln(Ks(x)), is assumed as a multi- 

normal random function in space (x) that is expressed through its stationary mean 

<Y> and a spatial covariance with a tinite integral scale. Their spatial structure is 

modeled by the isotropie exponential model(Sydicky, 1986): 

where, C ,  is covariance of Y, a, is the variance of Y and r is lag between two points, 
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and I, is the integral scale of Y. Parameter a is also treated as a random spatial 

fùnction and is assumed statistically homogeneous and isotropie with constant mean, 

<a>, variance da and a similar spatial structure as Eq.[ 1 - 1 O]. 

(2). The a field is assurned to be either perfectly correlated(negative or positive) or 

uncorrelated with the log saturated hydraulic conductivity field Y(x) (Yeh et al., 

1 985). No expenmental evidence supports negative correlation. Some field 

experiments suggest a positive correlation (Unlu et al., 1990; White and Sully, L 992; 

Russo et al., 1997), there are field evidence that a(x) is not correlated with Y(x) 

(Russo et al.. 1992). Thus, perfectly positive correlated flow and uncorrelated flow 

are usually taken as the two extremes. 

(3) The flow domain is much bigger than 1, or 1, such that the ergodicity assumption 

can be invoked. Under this assumption, the spatial average and ensemble average are 

identical. 

The flow domain is usually three dimensional and anisotropical. Therefore, 

representation of a field needs considerable information, which is generally not available. 

Scientists in the last two decades have proposed a few simplifications to approximate the 

three dimensional continuum model. So fa., reasonable approximations are the scale- 

invariance model(Sposito. 1995), parallel column model (Dagan and Bresler, 1983) and 

perfect stratification model(Yeh et al., 1985). 

Scale-invariance approach 

To solve Richards equation for a spatially variable field, hydraulic functions K(0) and 
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yr(0) or D(0) as a function of space position(x,y) must be a priori determined. These 

functions have four to six parameters, each a function of x, and y. A major and considerable 

simplification c m  be achieved by assuming scale invariance. Sposito ( 1995) has presented 

a comprehensive summarization of the scaling approach. 

'One imagines a heterogeneous field to be the union of approximately homogeneous 

spatial domains, each of which can be associated with a small number of characteristic 

length scales that are related to the equilibrium properties and movement of water. 

Heterogeneity is then sirnplified into the spatial variability of these local length scales, while 

the generic functional relationships that describe soil water properties remain unifom. These 

generic fùnctional relationships include not only the dependence of water content and 

hydraulic conductivity on matric potential but also the partial differential equations of 

transport and the empirical flux law they contain." 

The early study of scale-invariance of soil water flow started from Miller similitude, 

which assume a soil is geometrically similar, thus its hydraulic properties of al1 regions of 

the soi1 can be calculated fiom the hydraulic properties of a single reference region if the 

scaling factor distribution is know( Miller et al., 1956). However, field soil heterogeneity 

appears to be described poorly by scale magnification. For example, the porosity of a field 

soil commonly has a CV in the order of 10 %, which violates the assumption of geometric 

similitude, which requires that the porosity be constant. For this reason, scaling of field 

hydraulic properties is usually preceded by dividing water content by the local value of 

porosity, and scaling the properties as a function of relative saturation (Warrick et al, 1977). 

However, analysis of field data suggests that a scaling factor can not account for al1 of the 
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vaïiability in the field (Jury et al., 1987). However, because of its simplicity, the scaling 

approach has wide application in simulation studies of water flow and transport in 

heterogeneous fields (Russo, 199 1 ; Tseng et al., 1993). 

Parallel colurnns model. 

The stochastic continuum model can be sirnplified by assurning that the correlation 

length scale in vertical direction is infmite. This type of model is justified for domains which 

are homogeneous vertically, for formations whose vertical extent is smaller compared to the 

vertical scale of heterogeneity, and for formations where the vertical varïability is small 

compared to the horizontal one. Fhally, in many cases, although variability may exist in the 

vertical direction, the determination of soi1 hydraulic properties through field methods such 

as drainage experiments( Libardi et al., 1980) homogenize the properties vertically, giving 

effective parameten , thus eliminating the variability in the vertical direction in the practical 

sense (Rubin et al., 1993). This model has been utilized by Dagan and Bresler (1979, 1983), 

Hopmans et al. ( 1988), Rubin an Or ( 1993), and Chen et al. ( 1994). 

Perfect stratification model 

The perfect stratification mode1 is a type of stochastic continuum model that 

assumes the horizontal correlation length scale is infinite. This is justified to a certain extent, 

since in general, soi1 properties tend to be correlated horizontally over much larger distances 

than in the vertical direction. This model has been utilized by Destouni(i992), Yeh et al. 

(1989) and Indelman et al. (1  993). 

1.43 Steady-state fiow in unsaturated media 

Parallel to the work on saturated flow phenornena, studies have developed a 
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stochastic approach to flow in the unsaturated zone( Dagan and Bresler, 1979; Yeh et al., 

1985 a.b.c; Yeh, 1989). While in general the approaches for saturated and unsaturated flow 

modeling are similar in the sense that the soi1 hydraulic properties are viewed as random 

functions and a differential flow equation is used to derive the moments of dependent 

variables. modeling flow in the unsaturated zone has unique aspects. The dependence of 

hydraulic conductivity on the pressure head complicates the problem. However, under some 

conditions the flow can be treated reasonably well as one dimensional in the vertical 

direction( Dagan and Bresler, 1979; Russo and Bresler. 198 1 ; Yeh, 1989; Protopapas and 

Bras, 199 1 ; Rubin and Or, 1993; Indelman et al., 1993). 

Yeh et al. (1985) used spectral representation to derive the variance of soil-water 

pressure head and the effective hydraulic conductivity of a stochastic random media under 

steady state infiltration conditions. The results of their studies showed that the head variance 

was mean-dependent and increased with mean soil-water pressure head. The effective 

hydraulic conductivity was shown to be a second-rank tensor and anisotropic. The ratio of 

the horizontal to the vertical hydraulic conductivity depends on the soi1 water saturation. 

This indicates that the mean of water flux.(q(x)), is non-local and non-Darcian. The study 

by Yeh (1989) was based on Monte Carlo simulation for one-dimensional steady-state 

infiltration in heterogeneous soils. The simulation was in good agreement with the analytical 

resu 1 ts. 

The study by Yeh at al. (1985a,b) assumed that the hydraulic head changes slowly 

along the profile relative to the heterogeneous k ( x )  (local stationarity of the hydraulic 
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head), in order to use Fourier-Stieljes integral representations. The assumption is valid for 

the case of average vertical infiltration in an unbounded region where the rnean hydraulic 

gradient is constant (J= l ) .  However, for bounded cases, such as 80w approaching a water 

table, the average gradient is not constant. 

Indelman et al. ( 1933) extended the small perturbation technique to steady-state flow 

through bounded horizontally homogeneous and vertically heterogeneous formations. The 

expansion of expression of hydraulic head to the second-order leads to the analytical solution 

for the mean (second order) and variance (tint-order) of hydraulic head for generic soi1 

water properties; including the Gardner soil. The agreement between moments predicted by 

the mode1 and Monte Carlo simulation was satisfactory but the variances of the Y and a was 

small. In the nonstationary region of the profile. the dependence of pressure head variance 

on mean pressure head was sensitive to both the value of the water flux and the variability 

of soil properties. The stationaiy variance of pressure head ( at large time) exhibited a strong 

dependence on the flux boundary condition and on the cross correlation between Y and 

ln(a). In the absence of cross correlation, it increased monotonically with the reduction in 

q; when there is perfect correlation between Y and ln(a), however, it has a minimum at mean 

pressure head. 

Rubin et al. ( 1993) studied the sarne problem for horizontally heterogeneous and 

vertically homogeneous formations with plant water uptake. These authors used the first 

order perturbation to derive the mean and variances of the water content and pressure head 

for plant water uptake exponentially decaying with depth. 
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1.4.4 Flow in unsaturated media for transient flow 

A general method, which applies to saturateci, and unsaturated flow is Monte Carlo 

simulation combined with the numerical or analytical solution of the flow equations for a 

large number of realizations of the heterogeneous medium. The starting point is now the 

given statistical structure, i.e. the joint probability distribution function of the properties 

values at diRerent points. The flow domain R is partitioned into elements o and by the 

Monte Carlo generation process the value of the property in each element becomes a 

constant but randorn across the domain R. Once the flow problem is solved in each 

realization, various statistical moments can be easily evaluated. The simplest way to 

preserve the given statistical structure of the hydraulic conductivity or other properties is 

with a sufficiently dense partitioning, i.e. one in which the numerical elements are small 

cornpared to the heterogeneity scale. However, this approach has formidable difficulties: it 

requires considerable computing capacity and severe numencal problems are encountered 

for large spatial gradient. Furthemore, the level of information obtained this way is too 

detailed and much of it is redundant (Indelman, 1993) 

Dagan and Bresler ( 1983) were the first attempt to study the stochastic flow for 

infiltration and redistribution. They assumed that the flow was one-dimensional and adopted 

the parallel column model. Their approach to incorporate with spatial variability is similar 

to the Monte Car10 approach, with a different way of carrying out integrations for the mean 

and variance. They concluded that the stochastic approach leads to an accurate value of the 

expectation and variance of the flow variables, even if a simplified model such as piston 
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flow is adopted. However, their approach applies only to suficiently heterogeneous soils 

where the variance of log saturated hydraulic conductivity is greater than 1. The variance of 

log Ks of many soils is less than 1 ( Sudicky, 1986; Russo et al., 1992). Furthemore, their 

approach requires nurnencal integration which can be computationally demanding when 

there are more than one hydraulic parameters treated as random space functions. 

Mantoglou and Gelhar ( 1 98 7) analyzed unsaturated flow in heterogeneous media. 

They introduced a small perturbation of additional soil water capacity, and derived a large- 

scale flow equation with the same form as the local Richards' equation. Thus q(x) is 

Darcian. However, the effective hydraulic conductivity is non-local, dependhg on the mean 

soil properties, the stochastic properties of the soil fluctuations (large scale effect of the 

local properties and their fluctuations), the mean flow characteristics ( a nonlinear flow 

model), and the time history of the model output (a hysteresis of the effective 

parameter).The traditional one-dimensional flow model or the steady-state stochastic models 

can not predict these effects. because they do not account for the spatial variability of the 

local properties, the three dimensionality of the local flow processes, and the parametric 

nonlinearity of the local goveming flow equation. They linearized the fluctuation equation 

and solved it using the spectral representation, afier assuming one-dimensional mean flow 

and unbounded flow domain (far fiorn the boundary). The results of their studies also 

indicated that water content dependent anisotropy shows significant hysteresis, depending 

on the mean flow conditions (wetting or drying). 

Chen et aL(1994) presented an upscaled equation to describe water flow for 

infiltration. The upscaled equation only involves the means and variance of Ks, and the 
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equation can be solved once to obtain the average behavior. 

1.5 Objectives 

The geneml goal of this thesis is to M e r  our understanding the movement of water 

during infiltration and drainage through heterogeneous field soils. The focus is on effective 

one-dimensional water flow with a constant flux (infiltration) or no flow (drainage) surface 

boundary condition. The objectives of this thesis are: 

( 1 ) To develop an improved field method of measuring quickiy and non-destnictively the 

in situ average . variance, and spatial structure of hydraulic properties, including hysteresis. 

(2) To present a new analytical solution for transient water storage for a fixed depth under 

constant water flux. The solution allows any generai soil hydraulic function to be used and 

is directly applicable to the field method in objective ( 1 ). 

(3). To develop and evaluate inverse procedures fûr identification of hydraulic parameters, 

from measurements and prediction of transient infiltration in objectives ( i )  and (2). 

(4) To evaluate and incorporate the influence of hysteresis in hydraulic parameter 

identification from transient infiltration and drainage measurements md predictions. 

(5) To develop a unified stochastic analytical solution for transient infiltration and drainage 

of water in heterogeneous soils. The influence of the average, variance, and integral length 

scales of Ks and a, on the average, variance, and integral scale of transient soil water content 

and storage are examined. 
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Chapter 2 

Measurement of hydraulic properties and prediction of soi1 

water storage during constant flux infdtration: field average 

Abstract 

A senes of infiltration experiments in Borden, Ontario, were conducted with a green 

house irrigation system. Using multipurpose TDR probes, we were able to determine the 

local flux at each TDR probe, based on the fact that the rate of increase in water storage 

measured by a vertically-installed TDR probe is linear with time before the wetting front 

passed the end of TDR probes. Our experiments showed that for different application rates. 

water tlow was approximately vertical within the measurement volume of TDR. This 

provided experimental evidence of the Stream tube mode1 of Dagan and Bresler (1983). 

By employing the unit gradient assumption with each depth increment, we were able 

to obtain the hydraulic conductivity at equilibrium phase of constant flux infiltration from 

locally measured flux and water content. With measured water matrix potential by 

multipurpose TDR probes at equilibrium, we obtained the water retention curve at the same 

location. 

With the measured apparent K(8) and ~ ( 8 )  curves for the field, the predicted water 

storage using Parkin's solution ( 1992) was remarkable compared to the measured field- 

averaged water storage for 20 cm and 40 cm long probes during constant rainfall infiltration, 

indicating that the measured K(0) and yr(0) by multipurpose ï D R  probes represented the 



field behavior, 

Introduction 

A quantitative description of water infiltration under constant flux boundary 

conditions in unsaturated soils is fundamental to understanding water balance, imgation, 

movement of chernicals and  more generally, transport processes occurring in surface soils. 

Anaiytical solutions of Richards' equation for constant flux water infiltration into 

homogeneous soil profiles have been developed using integral procedures (Parlange, 1972; 

Philip and Knight, 1974; White et al., 1979; Perroux et ai.. 198 1 ), Kirchhoff, HopfbCole and 

Storm transformations ( Broadbridge et al., 1988; Broadbridge and White, 1988; W d c k  

et al., 1990) and by reciprocal Bkklund transforms (Sander et al., 1988, 1991; Barry and 

Sander, 199 1). These analytical solutions are very usefùl for assessing the accuracy of 

numencal models and estimating soil hydraulic properties by inverse procedures. Analytical 

solutions c m  also be used to test inverse techniques for non-uniqueness and identifiability 

of hydraulic parameters of interest. 

Significant advances have recently been made in the measurement technology for 

field infiltration experiments. Time Domain Reflectometry (TDR) is potentially useful for 

measunng both volumetric water content (Topp et al., 1980) and vertical solute mass flux 

in a nondestructive and rapid fashion during field infiltration experiment (Kachanoski et al., 

1992). Vertically installed TDR probes measure the volume averaged water content, or water 

storage from the surface to bottom of the probes. Parkin et al. (1992, 1995a) presented 

quasi-analytical solutions for cumulative water storage to a fixed depth of soil by ktegration 



of the parametric water content-depth relationships presented by Broadbridge and White 

( 1988) for constant flux infiltration and by Warrick et al. ( 1990) for drainage. However, the 

solutions require particular forms of the hydraulic conductivity function, K(0) and 

di fisivity function, D(8). 

Parkin et al. ( 1995b) used TDR probes installed vertically at the soil surface under 

a constant-rate rainfall simulator to measure cumulative water storage with tirne. They 

estimated the local infiltration rate fiom the slope of water storage versus time during early 

time before the wetting Eont reached the bottom of the TDR probe. Assuming a unit gradient 

and utilizing the spatial variability in local infiltration rate, they estimated directly the 

unsaturated hydraulic conductivity over a wide range of water contents using only two water 

application rates. They also concluded that an unique estimate of K(8) and 8 ( ~ )  with three 

unknown parameters was not possible from measurements of only soil water storage with 

time. Additional measurements of y are an obvious choice to reduce non-uniqueness. 

However, spatial variability may lirnit the usefulness of yr rneasurements taken at spatial 

locations different from the soil water rneasurements. Baumgartner et al. ( 1994) developed 

a soil water TDR probe which measures y and soil water storage at the same horizontal 

location. However. the probe has not been used in field applications, to Our knowledge. 

The objectives of this paper were to extend the method of Parkin et al. ( 1995b) to 

estimate not only the field average K(0), but also the field average water retention 

characteristic, y(@), during constant flux infiltration. In addition, utilizing the estimated field 

averaged parameters, we compare the solution of Parkin et al ( 1992) to in-situ measured 

values of soil water storage as a function of time during constant flux infiltration. The new 
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multipurpose TDR probes of Barmgartner et al. ( 1994) were used in a field expex-iment with 

a rainfall simulator to fulfill the objectives. 

Theory 

Measurement of unsaturated hydraulic properties 

The cumulative storage of water (m3 m-') to depth L, W(L,t), is measured by 

vertically installed TDR probes and is given by 

where @(t) is the average water content (m3 m") over the probe length, L (m). The abrupt 

change of water content at the wetting front does not have significant effect on the 

measurement of water storage (Topp et al., 1982). 

During the penod before the wetting fiont first reaches L under constant water 

application. the denvative of cumulative storage of water measured by TDR with respect to 

time should equal the local water flux at the soi1 surface. qWi, ( Parkin et al., 199%). 

Assuming conservation of mass, one dimensional flow, and the applied water has not 

reached depth L, yet, then 



Eq. [2-21 allows us to calculate the local water flux during the early stage of constant flux 

infiltration. After a long time, the average water content from the soi1 surface to depth L 

reaches a constant value 0 and a corresponding steady-state y rneasurement can be taken 

from the multi-purpose TDR probe. 

Solution of Parkin et al. (1992). 

Broadbridge and White (BW) (1988) and Sander et al (1988) independently 

developed an analytical solution for constant flux infiltration. The BW solution is based on 

the following parametentation of hydraulic conductivity and difisivity functions 

where A0=0;8, and @=(O -0, )/A& 0, and 0, are the saturated water content and residual 

water content, respectively. Ks, a, and C are the saturated hydraulic conductivity, inverse 

capillary Iength scale (Philip, 1985), and a constant introduced by BW, respectively. By 

de finition, 

we have, 



Substitution of Eq. [1-31 and Eq. [2-41 into Eq. [2-61 and integration yields 

where yr, is an integration constant. Following BW, we set v,=O. 

We consider nonhysteretic vertical flow and seek to find expression for time 

dependence for water storage to a fixed depth. The flow of water may be described in this 

process by the continuity equation. 

and Darcy's Law, 

where, t is time. z is vertical coordinate, 0 is the volume water content, q is the volumetnc 

flux of water, and D(0) is the water-content dependent soil-water difhsivity. 

Substitution of Eq.[2-91 into Eq.[2-81 yields the nonlinear Richards' equation used 

to describe one-dimensional nonhysteretic flow in idea soil: 



The initial and boundary condition considered here are 

where R is the constant application rate on soi1 surface. Utilizing Eq. [2- 11 and Eq. [2-21, 

through a series of transforms (Le. Kirchhoff, Storm. and Hopf and Cole transforms), BW 

derived an analytical solution as 

and 

where j is a parameter comecting Eq. [2-131 and Eq. [2-141, u(c,t) is given by Eq. [43] of 

BW, and 

By change of variable of integration, Parkin et al. ( 1992) obtained an analytical solution for 

water storage to depth L for constant flux infiltration, 



A more versatile hydraulic mode1 is the van Genuchten fom( Eq.[2- 171 for soil- 

water characteristic and Burdine fonn (Eq. [2- 181) for hydraulic conductivity (van 

Genuchten, 1980). 

with m= 1 -2/n, and 

K(O) = K o'( 1 -( I -0"")") 

where a,., and n are fitting parameters. 

Materials and methods 

Site description 

The field infiItration measurements were conducted at the Canadian Forces Base 

Borden, Ontario, Canada. Extensive hydro-geological research, including a large scale, 

natural-gradient tracer test and forced gradient test have been conducted by University of 

Waterloo on this site. Details about this site can be found in Sudicky (1986). The spatial 

variability of saturated hydraulic conductivity (Ks) in the saturated zone has been 



characterized in detail by Sudicky ( 1 986) using 1 275 undisturbed cores and re-examined by 

Woodbury and Sudicky ( 199 1). Turcke et al. ( 1996) used 642 undisturbed cores sampled 

near the site of Sudicky ( 1986). The study site at Borden was an area where the water table 

was greater than 4.5 m below the surface. The site was prepared by removing the top 0.5 m 

thick layer of surtàce soi1 over an area 4 x 9.5 m'.The area was covered with a greenhouse 

to prevent effects of wind. precipitation and evaporation. Within the sarnpling area, multi- 

purpose TDR probes for a given depth were installed every 0.1 5 m in a 7.5 m long transect 

for a total of 50 probe per depth. This was repeated in parallel transects O. 1 rn apart for each 

of 4 depths (0.2,0.4.0.6, and 0.8 m) for a total of 200 TDR probes (Fig. 2- 1). 

Each multi-purpose TDR probe consisted of two stainless steel rods constructed in 

a manner similar to Baumgartner et al. (1994). One of the rods was a hollow stainless steel 

tube (6 mm intemal diameter) with a porous stainless steel cup threaded on the bottom (Mott 

Metallurgical Corp, Farmington. Connecticut. Air enûy: 175 cm). The second rod was solid 

stainless steel with the sarne length as the hollow rod plus the porous cup. The rods were 5 

cm apart perpendicular to the transects. The top of the hollow stainless steel rod had a 5 cm 

long transparent plastic tube connected using epoxy resin. The hoilow steel tube was filled 

with water to within 2 cm of the top of the plastic tube and a rubber septum was installed to 

seal the top and create the tensiometer. Each pair of steal rods (hollow, solid) were 

connected to shielded parallel antenna cable to create a TDR wave guide. Groups of 25 

probe were attached to common access boxes allowing rapid and frequent scanning of al1 

probes. 

Water applications. 



An array of eight flat spray nozzles was constnicted. The spray pattern of a single 

nozzle suspended 0.5 m above the surface approximates a narrow rectangle 1.2 x 0.2 ml. The 

novles were installed on the linear array at 0.1 m intervals with their spray mis aligned. 

This produced a uniform narrow wetted area of approxirnately 0.2 x 2 mL. The nozzle array 

was attached 0.5 m above the soil surface to a commercially available, programmable water 

application system designed for green houses (mode1 DCA, Monorail Boom Spray System, 

Waterford, Ontario). The system has a single pressure regulator, elecaic solenoid valve, and 

microprocessor unit attached to a hanging track and conveyor belt. The hanging track is 

mounted to the top of the greenhouse and allows the noule array to go smoothly back and 

forth along a straight line (9 m long) with programmable delay time at either end of the line. 

The water cm be tumed on or off, at either end of the line. The system produces a uniform 

wetted area 2 m wide by 9 m long centered over the TDR insmimented transects (Fig. 2- 1 .). 

Six different infiltration rates were applied over a 60 day penod (Table 2- 1 .). Afier 

each infiltration rate the soil was allowed to drain until daily changes in soil water storage 

were negligible relative to the next infiltration rate. Measurements were taken during 

drainage, but are not described in this paper. The unifomity of the water application system 

was checked by placing 100 cups ( 12 mm high by 9 mm interior diameter) along the 

transects and collecting applied water for 1 hour. The water application was very uniform 

with the coefficient of variation less than 1.5 % (Fig. 2-2.). For example, at the rate of 0.9 

cm hr", the minimum and maximum measured rate was 0.87 cm ld and 0.92 cm hr", 

respectively. 

Measurement of water storage and y 
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Soil water content was measured using the TDR method of Topp et al. ( 1980). The 

readings were taken manually fiom the display screen of two pre-calibrated Tektronix( 1502 

C) metallic cable tester by four operators. The readings were taken just prior to the start of 

water application and every 5-30 minutes depending on infiltration rate and rate of change 

of 8, for al1 the 200 multipurpose TDR probes. After the wetting front was beyond the 80 cm 

depth and al1 0 measurernents indicated little or no change with time, the pressure head yr 

measurements were taken using two tensimeters (Soil Measurernent System, Tucson, 

Arizona). The yr measurements were taken for application rate=0.21, 0.9, 3.3 cm hr-'. At 

other rates, we found the y was small from the above three rates and the yr measurements 

were not made. We also took \y measurements at the initial condition before we started the 

infiltration experiment for application rate = 6.22 cm hr-' . 

Estimation of the hydraulic parameters 

The optimization ut ilized simultaneous fit of model parameters to observed retention 

and hydraulic conductivity. The objective function is: 

where b is the parameter vector (Ks. a, C) for BW model or (Ks, a, and n) for VG model. 

M and N are the number of observations of iy and K, respectively. G is the weight assigned 

to the hydraulic conductivity in order to prevent iy dominating the K data solely because of 

its larger numerical values. Since y value is generally ten times bigger than K, we set G= IO. 

Several nonlinear programs such as secant, Gauss-Newton, Marquardt, steepest decent 

methods (SASIS tat vol 2, 1 994) were adopted and di fferent initial values were tried to ensure 
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a global minimum. We assume that auto-correlations among the rneasurement ermrs in K(B) 

and ~ ( 0 )  are negligible, since they were measured by different equipment and at different 

times. 

Result and discussion 

An exarnple of measured water content as a function of time for individual TDR 

probes is shown in Figure 2-3. The water content measurements are multiplied by the probe 

length, L, to obtain water storage with time which is an estimate of the net water flux along 

the TDR probe. Generally, there existed a Iinear relationship between W(L,t) and t for early 

tirne measurernents (i.e. before the wetting front moves beyond the ends of the probes) (Fig. 

2-2). This suggests that Iocal water flux was relatively constant with depth, for a particular 

probe. For one-dimensional infiltration. the values of the measured water flux should equal 

the applied water application rate and be the same for al1 TDR probes. The average of 

measured local water flux was very similar to the applied rate (Table 2- 1 .). However, there 

was significant horizontal variability of the water flu~ for individual probes (Table 2- 1). The 

absolute variance of local water flux increased as the water application rate increased for al1 

the four depths. This is in agreement with Yeh et al. (1989) for higher rate steady-state flow 

in heterogeneous soils with positively correiated saturated hydraulic conductivity, Ks, and 

macroscopic capillary length scale, a. The variability of local water flux under constant 

water application rate indicates flow is not one-dimensional. However, the strong linear 

relationship between W(L,t) and early time suggests that applied water is redistributing in 



the first few centimeten of the soil surface, and subsequently establishing constant, but 

different local vertical water fluxes in the horizontal plane. This is similar to the stream-tube 

assumptions of Dagan and Bresler ( 1979, 1983). 

The average steady-state soil water content decreased as expected with a decrease 

in application rate (Table 2-2.). The variance of steady-state water content first increased, 

then decreased with increasing water application rate, thus, increasing average water content 

for depth 0-0.2.0-0.6, and 0-0.8 m . This is. again, similar to the theoretical analysis given 

by Yeh et al. ( 1989) for steady-state flow in heterogeneous soils with positively correlated 

saturated hydraulic conductivity, Ks, and macroscopic capillary length scale, a. For 0-0.4 

m depth, however, the variance of water content did not change much as the average water 

content increased. The standard deviation (STD) of the water content for 0-0.4 m (Table 2- 

2.) is sirnilar to the measurement error of water content by TDR (STD=O.O 13, Topp et al, 

1980). Therefore, the measurement error may mask the spatial variability for this depth. The 

average steady state water content for 0-0.2 m is similar to that of 0-40 cm. However, the 

average water content for 0-0.6 and 0-0.8 m decreased significantly for the same application 

rate. Given the steady state flow, the difference of steady-state water contents at different 

depth is a refiection of vertical variability of soil hydraulic properties. Therefore, the 

hydraulic properties of 0.4-0.6 and 0.6-0.8 m should be treated dieerently fiom that of 0-0.2 

and 0.2 and 0.4 m. Based on mass balance, the steady state water content for 0.2-0.4,0.4-0.6, 

and 0.6-0.8 m were calculated (Table 2-2.). The average steady-state water content at the 

same application rate has a difference as large as 0.1 1 along the vertical direction, fùrther 

indicating the significant change of hydraulic properties along the profile. Even with this, 
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the flow is still approximately one dimensional and the flux along a probe remains constant 

(Fig. 2-3). 

In a rnanner similar to Parkin et al. (1995), the variability in measured local water 

fiuxes are utilized to estimate the field average hydraulic conductivity. Constant water flux 

along each TDR probe represents an individual stream-tube with local but different one- 

dimensional tlow. At long times a unit gradient is assumed along each TDR probe and the 

measured local water flux (from early time measurements) is set equal to the hydraulic 

conductivity value associated with the steady-state local soil water content and pressure head 

measurements for each multi-purpose TDR probes. These measurements (L=0.2 m) are 

graphed in Fig. 2-4 and Fig. 2-5. By fucing the residual water content, 0, =0.05. the nonlinear 

optimization procedure NONLIN (SAS. 1994) was used to estimate the parameters Y, C, 

a. and 0, for BW model and Ks, m,n, 8 for VGB model. The fitted 4-parameter van 

Genuchten and Burdine model (VGB) (Eq.[Z- 171 and Eq. [2- 181) and Broadbndge and 

White model, BW (Eq.[2-31 and Eq.[Z-41) are very similar. The parameters for the models 

are given in Table 2-3. The fitted 8, is close to the saturated water content for sandy soils 

(Carsel and Parish, 1988). The C parameter is in the range of in-situ soils as indicated by 

White and Broadbridge ( 1988). The estimated Ks is in the range of sandy soils, but smaller 

than the average vaiue of underground aquifer (Sudicky, 1986). 

In the same manner, the average soil hydraulic conductivity as a function of steady- 

state water content for depths 0.2-0.4,0.4-0.6, and 0.6-0.8 m cm be obtained from Table 2-2, 

by assuming the application rate equal the hydraulic conductivity at steady state (Fig. 2-6). 

The hydraulic conductivities for 0-0.2, and 0.2-0.4 m are quite similar except for water 
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content close to saturation. However, the hydraulic conductivity for 0.4-0.6 and 0.6-0.8 

deviate significantly fiom the curve for 0-0.2 m deph. The change of hydraulic conductivity 

with water content becomes sharper for 0.4-0.6 and 0.6-0.8 m, revealing that the pore size 

distribution becomes narrower for the two depths. This agrees with visual observation of the 

matenal in the soil profile. In the same marner, the average water charactenstic c-mes at 

depth=0.2 and 0.4 rn are compared with the fitted cuwe (Fig. 2-6). The average of measured 

pressure head versus the average of measured steady state water content agree with the fitted 

curve, further indicating the homogeneity of the soil in 0-0.4 m. 

The estimated BW parameters in Table 2-2 were used in the BW solution (Eq. [2- 

161) to predict field average water storage versus time for the 0-0.2 and 0- 0.4 m depth 

dunng constant flux infiltration for the 4 application rates. The predicted water storage was 

very similar to measured values (Fig. 2-7; Fig. 2-8). For 0-0.2 m depth, the predictions for 

rate=0.9,3.3, and 6.22 cm h-' were remarkably similar to the measurements , while a little 

overestimation occurs for application rate = 1.5. and 3.3 cm h-' . For 0-0.4 m depth, the 

prediction underestimates the water storage for rate =0.9, and 1.5 cm h" . but overestimates 

the W(t) for ratr2.59, 3.3, and 6.22 cm h-' . However, in general, the regression of 

predicted versus measured storage among al1 rates were highly significant(R'= 0.95,1,1 ,O.W 

and 1 for application rate= 0.90, 1.5, 2.59, 3.3, and 6.22 cm h-', respectively). The average 

prediction error for water content was * 0.005 with a standard deviation of 0.006, which is 

less than the measurement error of the TDR method (Topp, et al., 1980). We notice that the 

prediction can be further improved by adopting an infiltration rate obtained from the 

regression of W(t) versus time for early time measurements, as listed in Table 2- 1. 
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Summary and Conclusions 

A senes of infiltration expenments in Borden, Ontario were conducted with a 

greenhouse irrigation system. By using multipurpose TDR probes, we were able to 

determine the local flux at each TDR probe, based on the fact that the rate of increase in 

water storage for vertically-installed TDR probes is linear with time before the wetting 

front passes the end of TDR probes. Our experiments showed that for different 

application rates, water flow was approximately vertical within the measurement volume 

of TDR. This provided experirnental evidence of the Stream tube mode1 of Dagan and 

Bresler ( 1983). 

By empioying the unit gradient assumption, we were able to obtain the hydraulic 

conductivity at equilibrium phase of constant flux infiltration fiom locally measured flux 

and water content. With measured water matric potential by multipurpose TDR probes at 

equilibnum. we obtained the water retention curve. 

With measured apparent K(8) and ~ ( 8 )  curves for the field, the predicted water 

storage frorn Parkin et al.( 1992) solution. was remarkably similar to the measured field- 

averaged water storage dunng constant rainfall infiltration, indicating that the measured 

K(0) and ~ ( 0 )  by multipurpose TDR probes and the solution represented the field 

behavior. 
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Table 2-3. Fitted parameters for Broadbridge & White model (BW) and van 

Genuchten & Burdine model (VGB). 

Hydraulic parameter 

cm hr-' cm- 1 cm3 cm-3 

VGB 8.94 0.056 0.45 1 -64 0.76 

Note: *NIA, not applicable. 
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Figure 2- 1. Diagram of wetted sample area( 2 x 9  m') and 
locations of multipurpose TDR probes. 
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Fig. 2-2. Illustration of the of linear relationship at early time before the wetting 
front pass the end of TDR rod at position 3.4 m. The first five points were used 
in the regression. 
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Fig. 2-3. Water content versus time for 40,60, and 80 cm probe in position 
#35 
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Fig. 2-4. Measured and fitted water retention curves for 0-20 cm depth. 
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Fig. 2-5 Measured and fitted hydraulic conductivity curves for 0-20 cm 
depth. 
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Fig. 2-6. Measured hydraulic conductivity as a function of water 
content for depth 0-0.2,0.2-0.4,0.4-0.6, and 0.6-0.8 m. 



Fig. 2-7. Measured and predicted water storage versus time for application 
rate=0.9. 1 -5, 2.59. 3.3, and 6.22 cm hr-' for 0-0.2 m.- 
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Fig. 2-8. Measured and predicted water storage versus time for 
application rate=0.9, 1.5.2.59, 3.3, and 6.22 cm h i 1  for 0-0.4 m. 



Chapter 3 

Estimating the soi1 hydraulic properties from measurements of 

multi-purpose TDR probes using inverse procedure 

Abstract 

There is a need for accurate and cost-effective methods to estimate the hydraulic properties 

of soils. Past work indicated rneasurements of a single hydraulic response will not 

necessarily result in unique and stable estimates of hydraulic parameters when the number 

of unknown is more than two. Pt-ior information regarding the parameters or additional 

measurements are needed for the estimation problem to be well-posed. However, accurate 

prior information is seldom available due to variations of the hydraulic properties in space 

and time. This paper presents a method for estimating hydraulic properties from 

simultaneous measurements of soil water storage to a fixed depth as a function of time 

during constant flux infiltration and steady-state pressure head readings using vertically 

installed multi-purpose TDR probes (MTDR). MTDR probes have a porous steel cup at their 

ends allowing soil water storage and to be simultaneously measured at the same location. 

Our parameter estimation is formulated by an inverse procedure which combines a weighted 

nonlinear least square method with analytical solutions for soil water content and pressure 

head as h c t i o n s  of depth and time during one dimensional infiltration. We analyze the 

possibility of using water storage data combined with the initial and sieady-state pressure 

head readings for the purpose of estimating soil hydraulic properties. The uniqueness 



problem was analyzed by snidying the behavior of response surfaces. The combination of 

water storage measurements during constant flux infiltration with an initiai and a steady- 

state pressure head reading yielded unique and stable solutions of the inverse problem. The 

utility of the parameter estimation procedure is demonstrated using experïmental and 

theoretical data. 

Introduction 

In efforts to better monitor and manage the migration of chemicals in the vadose 

zone, scientists and engineers over the past several decades have developed analytical and 

numencal models describing the rnovernent of water and chemicals into and through the 

unsaturated zone. These models have become indispensable tools in research for quanti@ng 

and integrating the most pertinent physical and chemical processes in the unsaturated soil 

zone. The application of these rnodels to field-scale flow and transport problems relies 

heavily on the quality of the mode1 parameters, especially the unsaturated hydraulic 

properties. 

For accurately describing soil unsaturated hydraulic conductivity, K(0), and soil 

pressure head, y(@), relationships over a wide range of soil water contents, 8, the equations 

of Brooks & Corey (Brooks and Corey, 1963), van Genuchten & Mualem( van Genuchten, 

1980) and Broadbndge &White ( Broadbridge and White, 1988) are good choices (van 



Genuchten and Nielsen, 1985; White and Broadbridge, 1988). These equations have four to 

five independent pararneters. which Vary considerably among soils and are not readily 

available. 

Inverse procedures can be used to estimate the parameters of hydraulic fünctions 

(Dane and Hruska, 1983; Zachrnann et al., 1982; Kool et al., 1985, 1988; Russo et al., 199 1; 

Simunek et al., 1996). For given initial and boundary conditions, Richards' equation c m  be 

solved with appropriate analytical or numerical methods. Particular constitutive functions 

for the hydraulic properties are assumed. The parameters in these hydraulic h c t i o n s  are 

estirnated by minimizing the difference between the predicted and observed hydraulic 

responses, such as pressure head, yr, water content 0, flow rate, or other flow attributes. The 

approach is attractive because few restrictions are posed upon the experimental conditions, 

allowing relatively simple experimental designs. 

A serious problem encountered in the estimation of hydraulic functions stems from 

their over-parametrization, or inclusion of unidentitiable parameten. For exarnple, Parker 

et aL(1985) indicated that the inverse problem for a one-step outflow experiment is non- 

unique when the number of unknown pararneters is three and only outflow volume is 

measured. Russo et a1.(1991) concluded the same for ponded infiltration when only 

infiltration rate is recorded. Steady-state measurements of infiltration rate for a tension 

infiltrometer is also not enough to obtain unique estimation of saturated hydraulic 

conductivity Ks, and two other shape parameters for van Genuchten equations( Simunek et 

al., 1 996). To solve the identification problem, additional information regarding the 

parameten must be provided. There are usually two types of information: (1) additional 
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measurements of one or more response variables such as iy rneasurements as in the case of 

Parker et al.(1985), or another set of experiments ( van Dam et al., 1992; Parkin et al., 1995); 

(2) pnor information about the hydraulic parameters, such as the sahirated hydraulic 

conductivity K, and one of the shape pararneters (Russo et al., 199 1). 

Pnor information about the parameters is a very effective method to remove 

nonuniqueness. Pnor infonnation usually takes the form of an initial guess of the parameter 

values and range based on easily measured soil properties. The actual value of the parameter 

identified in the inverse problem c m  be different from this initial guess. However, this pre- 

specified and approximate value constrains the parameter within the range. An inverse 

problem is always unique if accurate prior information about al1 the parameters is available 

and an appropriate estimation procedure is adopted (Abaspour et al., 1997). Pnor 

information about sanirated water content 0, c m  be obtained through bulk density, and soil 

particle size distribution- Accurate prior information about the shape pararneters and Y is 

seldom available, because the pararneters are highly variable in field conditions. It is usually 

easier to take additional measurements of a response variable such as y than to have accurate 

pnor information about these hydraulic parameters. 

Not al1 additional response measurements are usehl for improving well-posedness 

of an inverse problem. The usefulness of additional rneasurements depends on its sensitivity 

to the hydraulic parameters , independence of the existing measurements, and measurement 

error. For example, measurement dunng transient conditions can be added to steady-state 

measurements of the disk tension infihometer for inverse parameter identification(Simunek 

et al., 1997). The effort needed to take the measurements is also an important factor. 

80 



Pressure head is a good choice for additional measurements if only water flux or water 

content have been measured (Kool and Parker, 1988; Parker et al., 1985). The standard 

rnethods to measure \y is to install a tensiometer at a spatial location different from the soil 

water measurements. This may introduce significant error in spatially varying soils (Tseng 

and Jury, 1993). 

Recentl y, vertically -installed mu1 ti-purpose TDR probes developed by Baumgartner 

et al. ( 1994) were utilized to measure simultaneously soil water storage and pressure head 

at the same spatial location during constant flux infiltration(Chapter 2). This effectively 

alleviates the error due to measurements taken at different locations. The approach of Parkin 

et al. ( 1995) was used to measure directly the field average K(0). The approach utilized the 

spatial variability of vertical soil water flux under constant water application at different 

rates. Multipurpose TDR probes were used to measure field average y(@) after steady-state 

had been reached. Despite the simplicity. these rnethods (Parkin et al., 1995; Chapter 2) have 

the following disadvantages: ( 1 ) multiple water application rates are required. (2) only field 

average K(8) and ~ ( 8 )  are obtained. (3) The method does not make use of transient 

information on the depth integrated shape of the wetting Front collected From water storage 

measurements at each TDR probe. 

The objectives of this paper are to extend the method of Chapter 2 to estimate the 

hydraulic parameters at a single location (TDR probe) From multipurpose TDR 

measurements of water storage W and y during a single constant flux infiltration 

experiment. The method was fomulated as an inverse problem and the full set of transient 

water storage rneasurements are utilized in the estimation process. The need for 
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measurements, to guarantee unique parameter estimates are examined from the response 

surfaces for different combinations of parameter spaces. Analytical solutions for transient 

soil water storage. W(t), and y under constant flux infiltration (Parkin et al., 1992) are 

utilized with the realistic hydraulic fùnction of Broadbridge and White ( 1988). The utility 

of the parameter estimation procedure is demonstrated using experimental and theoretical 

data. 

Theory 

Statement of the estimation problern 

A typical curve of soil water storage as a function of time, W(t), to a fixed depth as 

measured by TDR during constant flux infiltration is shown in Fig. 3- 1. This curve c m  be 

partitioned into three distinct pieces of information. The first piece is the water storage 

during the period that the wetting front remains within the length of the TDR probe. In this 

period, assuming approximate one dimensional flow. the water storage increases linearly 

with the tirne. The rate of change of W(t) dunng this time is equal to the local infiltration 

rate at this location. The second piece of information is the shape (curvature) of the soil 

water storage curve from the time when the wetting front just reaches the end of TDR rod 

to the time when the wetting front completely passes the TDR rod. This section contains the 

depth integrated transient shape of the wetting front and represents the nonlinearity of water 

flow in soil during constant flux infiltration. The third piece of information is the water 



storage value at steady state. 

Under field conditions, uniformly applied water c m  redistribute in the fint few 

centimeters of the soil surface, and subsequently establish relatively constant, but different 

local vertical water fluxes in the horizontal plane (Chapter 2). Therefore, the water flux at 

a point is a priori unknown. The proposed method includes two steps. The first step is to 

estimate the local infiltration rate R from the first piece of the W(t) curve. With R known, 

the second step is to estimate the hydraulic parameters by best fitting the measured water 

storage as a function of time to the analytical solution of Parkin et al. (1992). 

In this paper, the hydraulic parameters Ks, a, C, and 0, are treated as unknowns. The 

purpose is to estimate Ks, a, C, and 8, given the measurements of the full W(t) c m e  , a 

priori information about 8, and the easily-measured y at the initial condition and the final 

steady state condition. Here, the pnor information about 8, is utilized, because the prior 8, 

is easy to obtain. Our intention is not to analyze the influence of prior information on the 

pararneter estimation, but rather to use as much information as possible in the estimation 

problem based on the Bayesian philosophy(Box and Tiao, 1973). The influence of additional 

measurements of steady- state yr are exarnined. 

Parametrization of soil hydraulic properties. 

Broadbridge and White (BW) ( 1988) and Sander et al.( 1988) independently 

developed an analytical solution for constant flux infiltration boundary. The BW solution 

is based on the following parameaization of hydraulic conductivity, K(O) (cm hr*' ) and 

ditfisivity function, D(O) (cm' hr-l ) 



where AbOs-O, and @=(O -0, )/A@. O, and 8, are the saturated and residual water content 

(cm3 cm-' ), respectively. (cm kt ) and a (cm1 ) are the saturated hydraulic conductivity 

and inverse capillary length scale (Philip. 1985), respectively. C is a shape constant 

introduce by BW. By definition, 

we have, 

By assuming y,, as zero as did Broadbridge and White ( 1988), substitution of Eq. [3- 11 and 

Eq. [3-21 into Eq. [3-41 and integration yields 

Forward problem 



Richards' equation used to descnbe one-dimensional nonhysteretic flow in idea soil 

is given by 

where 0(z.t) is the volumetric water content, z (m) is the depth and t(s) is the tirne. The initial 

and boundary conditions considered here are 

where R is the application rate (cm hr-' ) at the soil surface and 0, is the initial soil water 

content (cm3 cm-' ). Utilizing Eq. [3-11 and Eq. [3-21, through a series of transforms (i.e. 

Kirkhoff. Stonn. and Hopf and Cole transforms). BW derived an analytical solution as 

and 

where is a parameter connecting Eq. 13-91 and Eq. [3- 101, u(&,t) is given by Eq. [43] of 

BW, and 



r change of variable of integration, Parkin et aï- ( 1992,1995) denved analytical solutions 

for water storage for infiltration and drainage, respectively. Using the unified solution of 

Warrick et al. ( 1990) for soi1 water content profile, a unified water storage solution for both 

infiltration and drainage can be obtained as following, 

Eq.[3- 121 provides the basic formula for estimation of soi1 hydraulic parameters. 

Formulation of the inverse problem. 

The inverse problem is to obtain parameter vector {Y, a, C, 0, ) by best fitting Eq. 

[3- 121 to measured water storage W(L,t)*. This is repeated under the constraint of ptior 

information about 8, and additional measurements of steady-state y (Eq. [3-51). To obtain 

a good estimate of a particular hydraulic parameter, we need to define an estirnator. A good 

estimaior minimizes the discrepancy between the measurement and predicted response, 

while best retlecting the hydraulic properties of the medium. A general, intuitively appealing 

and theoretically sound estimator is the maximum a posteriori estimator, which incorporates 

additional measurements and prior information into the estimator (Bard, 1974). In this way, 

the obtained parameten are guaranteed physically meaningfbl and may convert a degenerate 

equation into a non-degenerate case (Bard, 1974). Assuming the measurement errors 
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asymptotically follow multi-variate normal distributions, the likelihood function, L(ply*), 

can be formulated as 

where n is the number of observations, det[ ] indicates deterrninant, 

and Y= ( W, qr, p 1, Y *= ( W*, y*, p* ; The values of transient water storage W, and pressure 

head iy are those predicted by Eq. [3-121, and Eq. [3-51 at those times associated with the 

rneasurements; G,, G,, and G, are the covariance matrices of W, yr, and pnor information, 

respectiveiy. The independence between W, yr, and prior information are assumed, as 

indicated by zero non-diagonal terms in the covariance matnx . This is a reasonable 

assumption, because ( 1 ), the measurements of water storage and hydraulic head are taken 

by different instrumentation and measured at different times; (2) the prior information is 

usually a good guess from other source of information or an approximation according to 

characteristics of the solution. Therefore the measurement error associated with the 

hydraulic head or the water storage are not the dominant factor controlling the error of prior 

information. Since the logxithm is a monotonic increasing function of its argument, the 

value of p that maximizes L(f3) also maximizes log (L(f3)). Since log L is fiequently a 

simpler fünction than L, the maximum likelihood estimator is obtained by minimizing the 



negative log of the a postenor likelihood function, 

<P = -ZIog(L(P[v)) = nln(2n) +ln(det[G]) +[(W - W ')'G,( w - w O ) ]  

Assuming unifom measurement error (constant variance) and pnor information available 

only for O,, minimizing Eq. [3- 141 is equivalent to minimizing the following weighted 

nonlinear least squares estimator 

7 7 where aw-, q-, and CS@' are the variances of measurement error in W, of rneasurement error 

in y, and of estimation error in 8, respectively. The inverse problem is to minimize S with 

respect to B given W*, y* and pnor information about O,, O,*. Usually, a,, O,, and CJ* are 

unknown, and could be treated as unlaiown parameters in minimizing Eq. [3- 151. However, 

this introduces more parameters and uncertainty in the inverse problem, which is not 

recommended. Therefore, a,, cV, and a, are selected empirically from other source of 

information or expenence (Bayesian philosophy), which is subjective. A smaller O, means 

a heavier weight on the measurement and the resulting parameters fit the y measurement 



better at the cost of fitting W or pnor information worse. Too much weight on one kind of 

measurement is a waste of information of the other kinds. Therefore, improper selection of 

weights will lead to an ill-posed inverse problem. 

An inverse problem is il1 posed if (1) the solution does not exist, (2) is not unique, 

(3) not stable, which means small change in the response can cause large change in the 

parameters. For this pro blem, the possibili ty of ill-posedness is reduced because: 

( 1 ) As shown by Broadbridge and White ( 1 988), the BW form is fairly realistic and capable 

of incorporating soil properties ranging from those of the weakly nonlinear Burgers' 

equation to those of a highly nonlinear Green-Ampt-like model. Thus, the parametrization 

is simple enough to yield well-posed problem but complex enough to capture the salient 

features of the change of pressure head and hydraulic conductivity or diffisivity with water 

content. 

(2) Three (y, a. 8,) of four parameters in the BW model have clear physical meaning, thus 

more information about the parameters can be projected into the mode1 according to the 

properties of the soil, such as organic mater, bulk density. etc. 

(3) Adopting an advanced technology such as the multipurpose TDR probe allowing 

repeated measurements, measurement error of the response should be reduced. 

(4) An exact analytical solution is used and the model error or the numencal error due to 

discretization in space and time should be minimized. 

(5) Flux boundary conditions are easy to control (Chapter 2) and more sensitive to the 

hydraulic parameters (McLaughl in et al., 1 996). 



(6). Local application rate, R*, c m  be calculated from the solution characteristics: The rate 

of increase in water storage at initial stage equals the local water flux. In this way, the local 

infiltration rate can be obtained, and one unknown reduced from the inverse problem. 

Analysis 

Sensitivity coefficients 

To find the approximate range of applied infiltration rate over which the parameters 

have the maximum sensitivity to the water storage W(L,t). The sum sensitivity coefficients 

over time at specific infiltration rate R were calculated using the h i t e  difference method as 

follows (Yeh, 1986). 

Where e, is the jth unit vector and m is the nurnber of rneasurements. In this paper, only the 

sensitivity coefficients of h as a fùnction of R were calculated and the numerical calculations 

were camed out using the software package Mathcad (version 6.  Mathsoft Inc.). 

Uniqueness and stability analysis 

To investigate the question of nonuniqueness, the global properties of the prediction 

error were examined. If the prediction error surface has a single minimum point, the solution 

is unique. If it has more than one minimum points, the solution is nonunique, and additional 

information must be added to resolve the indeterminacy. When the number of unknown 

parameters is 2 , it may be possible to investigate the shape of the surface by graphical 

techniques(Menke, 1989). 



Thus, the uniqueness of the inverse problem was evaluated from the two-dimensional 

response surfaces of  the objective function as a function of pain of soil-hydraulic 

parameters. This contour analysis applies only to the case where there are two unknown 

parameters. Because of Our human limitation of understanding in higher dimensions, the 

uniqueness analysis for problems with three unknowns or more is usually carried out in two- 

dimension, by fixing one or more of the other pararneters. However, the information 

provided by the contours are nonconclusive regarding the well-posedness, but conclusive 

regarding the ill-posedness of a inverse problem. To c o n f m  the above results obtained by 

analyzing response surfaces, we use the Statistical Analysis System(SAS/Stat User's Guide, 

volume 2. 1994) procedure NONLIN to numencally Find the global minimum of the 

objective functions for different scenarios. To analyze the cases where there are more than 

two unknowns, the above graphical analysis is not conclusive and the problem has to be 

solved several times with different initial parameter estimates, to have confidence. A 

program named FIT-B W.sas written in SAS language was used to carried out the numencal 

inversion. The program makes use of a modified Gauss-Newton nonlinear optimization 

methods. Because of the complicated nature of the derivatives of water storage with 

respective to the parameten Ks, a, and C, a numerical derivative was used. 

Simulated soi1 water storage for s sandy soil. 

A simulated case for a sandy soil with a uniform initial condition of @=O. 1 and a flux 

boundary condition of R=2 cm hr-' is used as an example Parameter values for C, Ks, a, and 

O,, and 0, for a typical sandy soil are assumed to be 1.24, 5 cm hfl, 0.08 cm-', 0.4 1 cm3 cm-' 

, and 0.06 cm3 cmJ, respectively. Water storage data was generated at a time interval of 0.15 



hr fiom O to 7.5 hr using Eq. [3-121 for a TDR probe of length L=20 cm. The generated data 

is error-free. in the sense that it is identical to the predicted data. The generated water storage 

versus time is shown in Fig. [3-31 for error-fiee water storage measurement. 

In practice, measurements of soil water properties are subject to error. For water 

storage measured with TDR, the measurement error mainly corne from improper delineation 

of the reflection point, calibration error, improperly installed TDR probe and so on. A 

normally-distributed rneasurement error source N(0,o) is used to represent the mie 

measurement error for the water storage rneasurement by TDR. The approximate standard 

error a associated with a rneasurement of water storage given by TDR ne& to be defined. 

ARer examining many mineral soils, Topp at al ( 1980) indicated that the water content 

measurement given by TDR had a standard error of 0.013 when the three term Topp's 

calibration equation was used. Thus, for a 20 cm probe, the water storage measurement 

wouid have an approximate standard error of 0.26 cm. if the sarne calibration equation is 

used. To investigate the effect of measurement error on the inverse solution, we considered 

the case where the water storage data are subject to random rneasurement error represented 

as a N(0, <r)xL where ~ 0 . 0  13 cm and L is the length of TDR rods. Theoretically generated 

water storage data for the typical sandy soil example is also shown in Fig. 3-3. 

For the sandy soil exarnple, the error response surface as a function parameter pair 

was calculated according Eq. [3- 141, while keeping other parameters at the "true" value. The 

calculation were carried out with and without error in the water storage rneasurements. 

Response surface contour lines were drawn by Surfer (Golden software, 1995) using the 

inverse distance interpolation algorithm. Response surface were also calculated with pnor 



average 8, estimated at 0.41 with standard deviatior~0.09 (Carsel et al., 1989). Finally, 

response surfaces were calculated assuming either a y measurement was available: 

y(0=0.3)=9 1 cm, or both a final and an initial y(@=0.3)=9 1 cm and y(@=0.2)=20 c m are 

available. We assumed that the 5, is three times bigger than o' , Therefore, al1 the 

unknowns in Eq. (3- 151 are known and the response surface for different scenarios c m  be 

constmc ted. 

Field experiment 

The expenment was conducted at Borden, Ontario, Canada. A detailed description 

can be found in Si et al. ( L 998). Briefly, the expenmental surface area was covered with a 

greenhouse to prevent effects of wind precipitation and evaporation. Within the sampling 

area, multi-purpose 20 cm TDR probes for a given depth were installed every 0.15 m in a 

7.5 m long transect for a total of 50 probes. A hanging track system with spray nozzles was 

used to provide uniform application of water along the transect. The noules were installed 

on the linear array at 10 cm intervals with their spray axis aligned perpendicular to the 

transect. This produced a uniform narrow wetted area of approximately 0.2 x 2 m'. The 

nozzle array was attached 0.5 m above the soi1 surface to a cornmercially available, 

programmable water application system designed for green houses (mode1 DCA, Monorail 

Boom Spray System, Waterford, Ontario). The system has a single pressure regulator, electric 

solenoid valve, and microprocessor unit attached to a hanging track and conveyor belt. The 

hanging track is mounted to the top of the greenhouse and allows the nozzle array to go 

smoothly back and forth along a straight line (9 m long) with programmable delay time at 

either end of the line. The water can be hinied on or off, at either end of the line. The system 



produces a uniform wetted area 2 m wide by 9 rn long centered over the TDR instrumented 

transec ts 

Soil water content was measured using the TDR method of Topp et al ( 1980). The 

readings were taken manually from the display screen of two pre-cdibrated Tektronix( 1502 

C) metallic cable tester by four operators. The readings were taken just prior to the start of 

water application and every 5-30 minutes depending on infiltration rate and rate of change 

of 8. Afier the wetting front was beyond the 80 cm depth and al1 8 measurements indicated 

little or no change with time, the pressure head iy measurements were taken using two 

tensimeten (Soil Measurement System, Tucson, Arizona). The measurements were taken 

for application rate=0.2 1.0.9.3.3 cm h-'. Infiltration expenments were conducted for 6 water 

application rates. AAer each application, the profile was allowed to drain. We also took iy 

measurements at the initial condition before we started an infiltration expenment for 

application rate = 6.22 cm h-' . 

The estimated K(0) and y(0) tùnctions from the inverse procedure and single rate 

were compared with those estimated from steady state measurements fiorn al1 6 application 

rates (Chapter 2). The average water storage measurements for the single application 

rate=3.3 cm h-' was used as W* data. 

Results and discussion 

Sensitivity analysis 

The sensitivity of the objective function to the hydraulic parameter, Ks, C, and a is 

shown in Fig. 3-2. The maximum sensitivity for Ks occun when the water application rate 

R=0.8 Ks. The sensitivity to Ks increases linearly for R s 0.25 Ks and then starts to plateau 
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with almost maximum sensitivity for Rr 0.5 Ks and then decreases again for R > 0.8 Ks. 

Sensitivity to C and a is maximal at approximately R=0.3 Ks, and decreases with higher or 

lower application rates. At approximately R=0.4 Ks, there is very good sensitivity to al1 3 

parameters. Thus for sandy soils, approxirnate constant application rate equal to 0.4 Ks is 

likely optimal for hydraulic parameter estimation. 

For clay soils, a separate analysis (not shown here) indicates that the sensitivity 

coefficient is maximal at application rate close to 0.5 Ks. Thus, different soils have 

approximately the sarne optimal application rate for identification of soi1 hydraulic 

parameters. 

Uniqueness and stability analysis 

Response surface annalys in two-dimensional parameter planes 

Fig. 3-4 shows the response surfaces of the objective function S(W) with error-fiee 

water storage data for the three different parameter planes, Y-C, &-a, and C-a. The &a 

response surface shows a single well-defined minimum, at the tnie parameter values. Since 

the objective function is the negative logarithm of the joint probability density of K, and a 

at a given value of C, the contour line also refiected the reciprocal of the probability of the 

combination of the two parameters. The width of the contour reflects the spread of the 

probability distribution about the mean of the parameter. Since the contour is elliptical, the 

uncertainty associated with a is bigger than that of the Y. nius, W is more sensitive to 

relative to a. In addition, the contour ellipses are tilted, which means large values of K, are 

especially probable if a is large. Consequently, an increase in K, will likely result in an 



increase in a and vice versa. This suggests a and are positively correlated. The same is 

true for the response curve in the C-a plane since the contours are tilted ellipses. Again, a 

large a, will likely have a correspondhg large C. The response surface in the &-C plane 

shows a well-defined valley which starts at high Y and low C values and extended linearly 

through nearly the entire parameter space. This suggests that increases in Ks and decreases 

in C will Iead to very similar values of the objective function. This indicates possible 

difficulty in finding a unique inverse solution. The absence of a well-defmed minimum in 

the response surface in Fig. 3-4 suggests that identical water storage curves can be generated 

by an infinite number of combinations of parameters, a, C, and Y. Thus, the parameter C 

and K, can not be estimated simultaneously from the water storage measurement only. 

Figure 3-4 suggests that al1 the parameters are possibly correlated. The correlation 

would be reflected in the parameter covariance matrix, if the nonlinear least square 

regression were carried out. For a good estimation, we require not only a simpler covariance 

matrix of the residual error, but a simpler covariance matrix of the pararneter as well. This 

means that the best mode1 has best fit to the experimental data, least number of parameters, 

and l e s t  correlation among parameters (Williams, et al, 1996). We need to remove or d u c e  

the correlation among the y, C, and a as much as possible, in order to get a good estimate 

of a parameter. 

When measurement error is introduced, the Y-C response plane ( similar to Fig.34b) 

has a well-defined valley, which suggests the solution is nonunique (Fig. 3-5). Similar to 

Fig. 3-4q and Fig. 3 4 ,  the Ks-a plane and a-C plane have a well defined minimum, but 



severely deviated fiom the true values of the parameters. This is possibly due to the strong 

sensitivity of al1 the three parameters to the error in the response variable -water storage. A 

small change in the water storage measurement results in a big change in the estimated 

parameters, revealing the strong instability of this objective function. In this scenario. even 

if a minimum of the objective function c m  be located by an algorithm, it can be severely 

biased and the resulting parameters may not have any physical meaning, or may be difficult 

to interpret. This strongly suggests additional information is needed for determining 

uniquely the parameters from the water storage measurements. 

ïhe response surface for Y-C, &-a, and C-a planes for the error-fiee measurements 

with an additionai measurement at the steady state for 0.2 m depth are s h o w  in Fig. 3-6. 

Ail the objective functions have weli-defined minimums. The shape of the contours for &-a, 

and a-C are almost circula. indicating that the sensitivity of a has been improved by 

introducing the y measurement. ïhe  correlation between the parameters is also reduced, 

since especially large values of Y or C are no more or less likely if a is large or small. 

Considerable improvement in the uniqueness was also obtained in the Y-C plane. The long 

valley across the pararneter space in Fig. 3-4 is not present and a single well-defined 

minimum appears at the m e  pararneter values. This is because provides another constraint 

on C. reducing the interdependence of C on Y. This suggests that the solution provided by 

the objective Function S(W,y) is likely unique. The resulting parameters Y and C may be 

slightly negatively correlated because the elliptical contours are tilted on the Y-C plane. 

When measurement error with zero mean and a standard error of 0.26 cm was 
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introduced in the water storage measurements, for the case with an additional y 

measurement, the uniqueness is generall y not affected (Fig. 3-7). There was little migration 

in the minimum of the objective fùnction, and good approximations to the tme values are 

obtained. Therefore, the solution provided by S(W,v) is likely unique and stable even with 

errors in the measurements of the water storage when there are two unknowns. 

Numerical optirnizution anuiysis 

Since the contour analysis of the response surface is not conclusive when there are 

three unknown parameters, parameter values were sought by numerical minimization of S 

with different initial parameter values. Validation of the contour analysis in two- 

dimensional plane was also carried out. 

For the first scenario with error-free water storage measurements, the program 

converged nicely to the true values when only Ks and a, or a and C were considered 

unknown (Table 3- la). However, the program hits the upper bounds set for C for the case 

where only K, and C were treated as unknown, indicating no minimum existed in the 

parameter space. Furthemore, the Jacobian matrix is singular, suggesting high colinearity 

between y and C. There are also moderate positive correlation between parameter and 

a, and between a and C, confirming the graphical analysis of the contour ellipses. It is not 

surprising to see that when al1 three parameters were treated as unknown, the program 

converged to a local minimum, with negative correlation between and a, and between Y 

and C, and positive correlation between a and C. When measurement error was introduced, 

al1 the three combinations converged to local minimums. When al1 three parameter were 

treated as unknown, the program took 182 iterations and converged to unacceptable results. 



For the second scenario, where one steady-state y measurement was available, ail 

cases converge nicely to the tme values, including the case where al1 three pararneters 

treated as unknown (Table 3- l b). When error was introduced, a11 cases with two unknown 

pararneters converged. However the case with three unknowns converged to an unacceptable 

values, suggesting that the problem is not stable with the introduced error. 

When an additional initial y measured, the case with three unknown parameters 

converges to the tme values with relative error less than 2 %, which is acceptable for most 

practical purpose (Table 3 1 -b). This is expected, since the simultaneously measured pressure 

head and water content data at two States should directly define the general shape of the 

water retention curve, and the saturated hydraulic conductivity becomes the main unlaiown 

parameter in the inverse problem. Compared to the other cases with three unknown 

parameters. the correlations between Ks and a. Ks and C were reduced. However, the 

correlation between C and a is still high, suggesting more information such as pnor 

information on y would producer a better estimate. 

Inversion of in-situ data 

We conclude our paper by illustrating the performance of our proposed methodology. 

Water storage data from the average of al1 the 50 probes (L=20 cm; R=2.59 cm h-') are 

s h o w  in Fig. 3-8. As s h o w  in Table 3-2, with only water storage data, the inverse solution 

converged to an unacceptable result, even though the resulting parameters still gave a good 

fit to the measured data ( small residual sum of square). 

With only one steady-state y measurement available, the inverse procedure 

converged to the values close to the estimated true values, despite different initial guesses. 



This is similar to our second theoretical scenario without measurement mor. This may be 

because our data is the average of 50 probes and the error was reduced 50°' times. The 

correlation matrix was higher than expected, indicating a larger measurement error would 

tum the correlation matrix singular, and the estimated pararneters may not be correct. In 

practice, the inverse solution response function depend on the relative measurement error 

and not the absolute rneasurement error. Since the relative error of soil water content 

changes with ?DR are significantly less than 0.013 (Topp et al.. 1980). The inverse solution 

may give accurate relative estimates with only one yi measurement. 

With two yi measurements. the estimated pararneters were very close to the values 

measured using direct method and have small asymptotic standard errors. The correlation 

matrix of estimated pararneters is also reasonable, suggesting a good estimation. 

The estimated parameters in Table 3-2 were used as input to Eq. [3-121 to predict 

water storage as a function of time for application rate =2.59 cm hr-' (Fig. 3-8). n i e  

prediction has an excellent agreement with the rneasurement. The coefficient of 

determination was +0.999 and the standard deviation of prediction is 0.0036 cm3 cm-' for 

the average of water content across the probe length. The prediction error is within the 

rneasurement error suggested by T D R  (Topp et al.. 1980). 

Surnmary 

MTDR combined with inverse procedure provides an accurate, fast, and 

nondestructive way to estimate the hydraulic properties of the soil during constant flux 

infiltration. Water storage and iy measurement are made in the same volume, consequently, 

100 



reducing the error associated with the spatial variability in the hokontal direction. Major 

conclusions are 

( 1). Water storage measurements and a priori 8, during one-rate constant infiltration won? 

yield unique estimates of hydraulic pararneters in the B W fom, because of the interactive 

nature between K, and C in the solution. 

(2) Water storage combined with a steady-state and a priori 0, gave unique estimates of 

hydraulic pararneters, but the inverse solution is not stable with high measurement error. 

(3) Water storage and a priori 0, combined with an initial and steady-state pressure head 

measurements resulted in unique and stable estimates of the parameters. 

The results can be further improved if we have prior information about &, or 

additional measurements using a different water application rate. In the paper, only the 

hydraulic parameters of BW form were estimated by taking advantage of the analytical 

solution of constant flux infiltration the BW form. Parameters for other forms such as those 

of van Genuchten and Brooks and Corey can be used if a numerical or quasi-analytical 

solution is used. The procedure proposed in this paper can also apply to the drainage process. 

The analysis in this paper was based on the assurnption that the measurement error 

is random. In reality, the three-terni equation of Topp et al. ( 1980) may systematically 

underestimate or overestirnate the soil water content From TDR measured dielectric constant. 

The effect of this systematic bias on the estimation of hydraulic parameters from measured 

soil water storage should be examined also. 



The variance of the measurement or pnor information has significant influence on 

the well-posedness of an inverse problem. If the variance of pnor infôrmation is much bigger 

than the measurement error of soil water storage, the inclusion of prior infonnation would 

be of little use for improving the well-posedness of an inverse problem. In addition, if the 

measurement error is much bigger, the inverse (conditioning) method would not be able to 

improve the precision of the pararneters based on prior information. However, our results 

in this paper are very conservative. The variance of rneasurement error for soil water storage 

and prior information about 8, were estimated for a wide range of soils. A good TDR 

calibration equation and pnor 0, is likely much more accurate than we have assumed. 

Therefore, beaer uniqueness and stability of the inverse problem and more accurate 

parameter estimates can be expected in rnost field application. The correlation matrix in 

Table [3-21 is the asymptotic behavior which derived fiom the Cramer-Rao bounds. It will 

hold only approximately in the vicinity of the mie parameter values where the linear 

approximation applies (Bard, 1974). 
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Table 3-2.Estimated hydraulic parameters fkom the inverse solution of measured water 

storage. 

Information 

a (cm-') 0.09" 0.08320.02 0.0894*0.002 

Correlation Matrix --------- 
Ks-a 1 .O0 0.40 0.95 

Ks-C 1 .O0 0.16 -0.68 

a-C 1-00 0.96 -0.7 1 

e5-a 1 .O0 0.98 0.32 
Note: *Jacobian matrix is singular. 
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Fig. 3- 1 .  Delineation of soi1 water storage curve into different regions (phases): 
Phase 1 (Water storage increases linearly with time), Phase 2 ( water storage 
breakthrough phase), and Phase 3 (steady-state flow phase). 
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Fig. 3-2. Sensitivity o f  the q(W) with respect to (a) Ks, (b) C ,  and (c) a 
to the change of relative application rate R/ Ks. 
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Fig. 3-3. Calculated soi1 water storage vs time for error-fiee measurments 
(solid curve) and measurements with error (STD=0.26 cm) (dashed line). 







C Ii- C 
Fig. 3-6. Contours of cp with an additional measurenrent for error-free water storage data as a 
function o f  (a). Ks and a, (b) Ks and C, and (c) a and C. 
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Figure 3-8. Measured and predicted water storage versus tirne (L=20 cm; 
R=2.59 cm h" ). 



Chapter 4 

A new solution for water storage to a fixed depth 

for constant flux infiltration 

Abstract 

A new quasi-analytical solution for water storage to a tixed depth is presented. 

The proposed solution allows general soil hydraulic properties, such as the versatile van 

Genuchten form of hydraulic properties functions to be used . The solution is based on 

the flux concentration relationship of Philip ( 1973) and the approximate flux 

concentration relationship of White et al. ( 1979) for a linear soil. The solution is similar 

io that of Parkin et al.( 1992) for a wide range of realistic hydraulic properties, but does 

not require the Broadbridge and White (1988) form of hydraulic functions. The solution 

was applied to a field soil. Using independently measured soil hydraulic properties, the 

solution predictions were essentially identical to that of Parkin et al.( 1992) and to the 

measurements using the approximate F(O,) relationship of White et al. ( 1979) for linear 

soils. 



Introduction 

A quantitative description of water infiltration under constant flux boundary 

conditions in unsaturated soils is fundamental to understanding water balance, irrigation, 

movement of chemicals and, more generally, transport processes occurring in surface 

soils. Despite the success of numencal solutions, analytical solutions have received 

considerable attention. Analytical solutions are very useful for assessing the accuracy of 

numerical models and provide insight into the physics of flow phenornena. Additionally, 

analytical solutions can be used to test inverse techniques for non-uniqueness and 

identi fiabil ity of hydraulic parameters of interest. In the past thirty years, analytical 

solutions of Richards' equation for constant flux water infiltration into homogeneous soi1 

profiles have been developed using approximate integral procedures (Parlange, 1972; 

Philip and Knight. 1974; White et al., L 979), and exact transform methods such as 

Kirchhoff, Hopf-Cole and Storm transformations(Broadbndge and White, 1988; Warrick 

et al.. 1 990) and reciprocal Backlund transform by Sander et al. ( 1988, 1990). 

The nonlinear Richards' equation was solved by Parlange ( 1972), who descnbed 

an approximate integral procedure for the solution of infiltration by exploiting the rapid 

change of difisivity with water content. Philip and Knight( 1974) showed how 

Parlange's method could be improved to any desired accuracy through the use of a 

concept called the flux-concentration relation (Philip, 1973). The use of the flux- 

concentration relation, in principle, permits quasi-analytical solution of the highly 



nonlinear flow equation to be found for a wide range of flow phenomena in soils. White 

at al. ( 1979) analyzed constant flux adsorption using an approximate flux-concentration 

relation. Experiments using a fine sand validated the approach and indicated both the 

surface water content and the water content profile could be predicted accurately for the 

horizontal adsorption of water supplied to the sand at a wide range of constant flux rates. 

Perroux et al. ( 198 2 )  extended the solution to constant flux infiltration and concluded that 

sufficiently accurate predictions of soi1 water profile development cm be made by using 

the simple adsorption analysis of White et al. ( 1979). Boulier et al. ( 1984) confirmed the 

ability and the versatility of the flux-concentration relation-based approach to predict 

water infiltration into soils. 

Exact solutions for infiltration were developed for linear soils (Braester, 1973). 

Such a linearized solution can only be expected to predict, approximately, the integral 

properties of the soil-water system. Parlange ( 1976) pointed out a significant disparity 

between surtàce water contents calculated From this Iinearized solution and those 

calcuiated nurnerically. In addition, the linear convection term does not permit the 

developrnent of a traveling wave solution at large infiltration times. This problem does 

not arise in the exactly solvable Burgers' equation with its weakly nonlinear convection 

term. The solution to Burgers' equation satisfactorily described rainfall infiltration in an 

undisturbed field soil (Clothier et al.. 198 1 ). However, like the linear soil, Burgers' 

solution treats difhsivity as constant, even though soil water difhsivity varies over 

several orden of magnitude across the water content range of interest. Broadbridge and 

White(B W) ( 1988) and Sander et al. ( 1988) independently presented exact analytical 
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solutions for constant flux infiltration based on realistic nonlinear dependence of 

unsaturated hydraulic conductivity and diffisivity on soil water content. These solutions 

not only predict water infiltration accurately, but also produce al1 the salient features of 

water flow during constant flux infiltration including the traveling wave solution. 

Parkin et al. ( 1992) derived an analytical solution for water storage to a fixed 

depth based on the analytical solution of Broadbridge and White ( 1988) and Sander et al. 

( 1988). The mode1 result can be used directly to interpret the measurement of water 

storage from vertically installed TDR probes. However, the solutions of Parkin et 

al.( 1992) requires specific forms of diffisivity and hydraulic conductivity dependence of 

water content in the Broadbridge and White ( 1988) solution. This limits its applications 

where hydraulic parameters are known only for other forms of hydraulic properties such 

as the van Genuchten and Mualem (van Genuchten, 1980), Brooks and Corey (Brooks 

and Corey, 1966), and Gardener and Russo forms (Russo, 1988). The objective of this 

paper is to present a quasi-analytical solution for water storage to a fixed depth during 

constant flux infiltration based on the solution of White et al. (1979). This solution 

allows functions for general soi1 hydraulic properties. We compare Our solution with the 

solution of Parkin et al. ( 1992) and with the measurements from a field experiment. 

Theory 

We consider nonhysteretic vertical soil water flow under constant water 

application at the soil surface and seek to find an expression for time dependence of 

water storage to a fixed depth. The flow of water is described in this process by the 



continuity equation, 

and Darcy's Law, 

where, t(s) is time. z(m) is the vertical coordinate, 0(m3 m" ) is the volume water content, 

q( m" m-' s") is the volumetric flux of water, D(0) (m2 SI) is the water-content dependent 

soil-water difisivity, and K(8) (m s-') is the hydraulic conductivity. 

Substitution of Eq.[4-21 into Eq44- 11 yields the nonlinear Richards' equation 

used to describe one-dimensional nonhysteretic flow in idea soil: 

The initial and boundary conditions considered here are the uniform initial water content, 

O,, the constant surface water application rate R(m" m-' SI) on the soil surface with Ks 

(m-3 m-' SV'), the saturated hydraulic conductivity. 

An analytical solution based on White et al. (1979). 
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Philip( 1973) introduced the flux-concentration relation, F(@,,t) as 

where 0,=(8-8n)/(0, -O,), 8, is the surface water content. And EC,,(m-' m-' s-') is the initial 

soi1 hydraulic conductivity. Substitution of Eq. [4-61 into 14-21 and integration with 

respect to 8 gives ( White et al, 1979): 

We use the identity 

to transform Eq. [4- 11 to 

Integrating with respect to 0, we obtain 

Substituting for z(8,t) from Eq. [4-71 into Eq. [4- 1 O] and integrating by parts yields 



Water storage at time t, W(L,t) to a fixed depth L, may be obtained by integrating z(8,t) 

with respect to 8 : 

Where 0Jt) is the water content at depth L as a function of time t. Substitution for z(8,t) 

from Eq. [4-71 into Eq. [4- 1 21, and integration by parts leads to 

Equations. [4-71, Eq.[4- 1 11, and Eq.[4- 131, together give a quasi-analytical solution for 

constant flux infiltration. If F(O,t) is known, Eq.[4-71 and Eq. [4-111 can be used to 

predict the time dependence of the surface soi1 water content @&)and the water content at 

depth z, respectively. With &(t) and O&) known, Eq. [4- 131 can be used to predict the 

change of water storage with time. This quasi-analytical solution for water storage to a 

fixed depth L is general in t e m s  of the f o m  of D(O) and K(O). It allows us to use the 

more versatile van Genuchten (VG) water retention curve (Eq. [4- 141) combined with the 

Burdine hydraulic conductivity function (Eq. [4- 1 51) (van Genuchten, 1 980) 



with m= 1-Un, where n and a,, are fitting parameten, respectively. Ks is the saturated 

hydraulic conduc tivi ty. 

This solution is for constant flux infiltration into soil of uniforrn initial water 

content, however, it can also apply to constant flux infiltration into a soil of non-uniform 

initial water content with modification of F(@,,t), B,(t), and 8,(t). 

Generally, we need the iterative procedure of Philip and Knight( 1974) to obtain 

F(O,,t). However, it is well known that the time dependence of F(O,t) is negligible. The 

extreme cases of soi1 hydraulic properties are those of constant difisivity( Linear soil 

and Burgers' soil) and a Dirac fùnction( Green & Arnpt soil). For linear soil, F(O,) is 

exact and can be approximated by F(O,)= O, For Green&Ampt soil, F(Oo) is also 

exact and equal to 0, for constant concentration adsorption. Philip ( 1973) conjectured 

that for constant flux infiltration, F(O,) lies in the narrow band bounded by F(@,,)=O,, and 

F(Oo) = O, 'i ". 

Solution of Parkin et al. (1992). 

Broadbndge and White (BW) (1 988) and Sander et al. ( 1988) independently 

developed analytical solutions for constant flux infiltration. The BW solution is based on 

125 



the following parametrization of hydraulic conductivity and diffisivity functions 

where A&&-8, and @=(O -0, )/AB. 8, and 0, are the saturated water content and residual 

water content, respectively. Ks. a . and C are the saturated hydraulic conductivity, 

inverse capillary length scale (Philip, 19851, and a constant introduced by BW. By 

definition. 

we have, 

Substitution of Eq. [4- 161 and Eq. [4- 1 71 into Eq. [4- 191 and integration yields 

where iy, is an integration constant. Following BW, we set iy,=O. 

Utilizing Eq. [4- 161 and Eq. [4- 171, through a series of transforms (Le. Kirchhoff, 
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Storm, and Hopf and Cole hansforms), BW solved Eq.[4-31, Eq. [4-41, and Eq. [4-51 and 

derived an analytical solution as 

and 

where < is a parameter comecting Eq. [4-211 and Eq. [4-221, u(c,t) is given by Eq. [43] of 

BW. and 

By change of variable of  integration, Parkin et al. ( 1992) obtained an analytical solution 

for water storage to depth L for constant flux infiltration, 

The BW model encompasses a wide range of realistic soi1 hydraulic properties by 

varying the C parameter. As C goes to infinity, the model reduces to the weakly nonlinear 

Burgers' equation, which has been applied in certain field conditions. At the other end of the 

range as C approaches 1, the B W model approaches the Green-Ampt-like model (White and 

Broadbridge, 1 988). 



Materials and methods 

Field infiltration measurements were conducted at the Canadian Forces Base Borden, 

Ontario, Canada. Extensive hydro-geological research, including a large scale, nanual- 

gradient tracer test and forced gradient test have been conducted by University of Waterloo 

on this site. Details about this site can be found in Sudicky( 1986). Water was applied to an 

instmmented transect(7.5 m long) inside a greenhouse using a hanging mck and nozzle 

system(see chapter 2). Multi-purpose TDR probes were installed every 0.15 m at each of 4 

depths (0.2, 0.4, 0.6. and 0.8 m) for a total of 200 TDR probes. Five different water 

application rates were used. Soi1 water content was measured using the TDR method of 

Topp et al. ( 1980). The readings were taken manually from the display screen of two pre- 

calibrated Tektronix( 1502 C) metallic cable testen by four operators. The readings were 

taken just pnor to the start of water application and every 5-30 minutes depending on 

infiltration rate and rate of change of 8. for al1 the 200 multipurpose TDR probes. Here, we 

use the site average of the 50 probes for the 20 cm depth as a illustration. A fit of VG and 

BW models to measured data is given in Fig. 2-4, and Fig. 2-5. 

In the following, we take advantage of the dimensionless variables 

This transfomis both the BW and our solution into equations only involving t*, L*, W*, and 



C parameten. Therefore, the sensitivity of F(@) to different soils can be examined through 

the changes of the C value. 

Results and discussion 

Figure. 4-l(a, b, c) and Fig. 4-2 (a,b.c) depict dimensionless water storage-time 

functions for the new solution and the Parkin et al. (1992) solution for the limiting 

conditions; C= 1 .O 1, appropriate for a repacked coarse material (Green & Arnpt soils); C= 15, 

appropriate for soils with a wide range of pore sizes. The initial increase in storage is clearly 

linear for al1 soils, refiecting the constant surface applied infiltration rate. As the wetting 

Front moves below L, the rate of change of storage gradually decreases for the Burgers' soil 

and abmptly reaches equilibnum for the Green & Ampt soils. 

For C= 1 .O 1, 1.02, and 1.10. the new solutions with F(O,)=O, and F(O,)=O, '4!" are 

essentially identical to each other and to the solution of Parkin et aL(1992) when the BW 

foms of K(O) and D(O) are used. This suggests that the F(@,), for either a linear soil or the 

Green & Ampt soil. is accurate enough to predict water storage during constant flux 

infiltration. It also indicates the new solution is not sensitive to the value of F(O,) at small 

C. This is reasonable, since difisivity changes abruptly with water content as the value of 

C gets close to 1. Thus, the selection of F(@) from the narrow band is not critical. However, 

when C increases to 1.5 as in Fig 4-Za, diffisivity changes gradually with water content and 

the gravity effect becomes significant. Thus, the dominance of D(O) over F(@) is lost and 

the influence of different F(O,) in the new solution becomes significant. This becomes 

obvious at C=5 (Fig. 4-2b) and C=lS(Fig. 4-2c). Different F(8,) results in significant 



differences in the predicted water storage in the middle cuve region. For these C values, the 

new solution with F(Oo)= 0, "*" for linear soi1 is essentially identical to the solution of 

Parkin et al. ( 1992), while the new solution with F(O,)=@, significantly underestimate the 

water storage relative to the solution of Parkin et al.( 1992). As expected, the predictions at 

initial time and large tirne are identical for al1 C values, since the increase of water storage 

with time is a reflection of applied flux density, while the prediction at large time reflects 

the water content 0 at K(8)=q. Thus, the main difference in the models are reflected in the 

cuwature of W(L,t). 

White ( 1979) found that the time dependence of F(O,,t) for constant flux adsorption 

into Bangendore fuie sand was negligible and that the measured F(Oo,t) lies only slightly 

above the line F(@,)=O,,. Boulier et al (1984) pointed out that the measured flux 

concentration relation can be well approximated by F(O,)=O, and the time dependence is 

not significant. These experiments were based on repacked coarse matenals and it is 

reasonable to infer that the C values for the materials would be dose to 1. Thus, it is not 

difficult to understand why the predictions using both F(O,)=O, and F(O,) = O,'-'1" were 

successttl for the prediction of surface water content and the water content profile during 

constant flux adsorption and vertical infiltration (White et al., 1979: Perroux et al, 1979; 

Boulier et al., 1984). However, based on the above analysis, we suggest that F(Oo)=Oo '-'" 
be used since it applies to most field soils, while F(Oo)=Oo only applies to repacked 

laboratory and coane field soils. 

Application to field data. 

For F(@,) =a, '"". the new F(O,) solution(Eq.[4-71, Eq.[4- 1 11, and Eq.[4- 131) using 
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either BW or VG parameters in Table 2-3 gives almost identical predictions of water storage 

versus time to the measurements and to the BW solutions (Eq. [4-241) (Fig. 4-3a). The 

predictions fiom al1 rnodels are highly correlated with the measurements (Table 4- 1). The 

underestimation using VGB model is more than that using the BW model, suggestïng that 

different forms of hydraulic model have different sensitivity to the form of F(O,). The major 

difference in the solutions, as expected, are in the middle curved regions, which reflect the 

integrated effect of the wetting fiont shape. An alternative choice of F(@) could be made 

by using F(O,)=Q, where O<p< 1 (Kutilek ,1980). An optimal B could be calculated by 

matching the BW solution and the new solution presented here. The average difference 

between predicted and measured average water content (water storage divided by the length 

of TDR rods) is less than 0.0 1 for al1 solutions, which is smaller than the measurement error 

of TDR(Topp et al.. 1980). 

Summary and conclusion 

A new quasi-analytical solution for water storage to a fixed depth was presented. The 

solution is based on the flux concentration relationship of Philip (1973). Using the 

approximate F(O,) relationship of White et al. (1979) for linear soil, the solution is 

essentially identical to that of Parkin et al.( 1992), however, for a wide range of realistic 

hydraulic properties. The solution was applied to a field soil. Using independently measured 

soil hydraulic properties, the predictions were essentially identical to the measurements. 
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Table 4- 1. Statistics for measured versus the predicted water storage (W) to depth L=20 cm 

using the solution of Parkin et al. ( 1992) (Parkin), the new solution with B W  mode1 (BW) 

and the new solution with VG mode1 (VG) for F=@, and F=O, ' 41x .  

R' 0.999 0,999 0.995 0.996 0.981 

AVG (cm3 cm4) -0.0056 -0.0052 0.00 15 -0.00 18 0.0083 

RMSE (cm' cm-') 0.0066 0.0057 0.0050 0.0054 0.013 

MAX(~m'crn-~) 0.011 0.0098 0.01 1 0.0092 0.025 

MIN (cm3 cmJ) 0.0 0.0 0.0 0.0 0.00 

Note: RL--- coefficient of determination; AVG- Average of the difference between 

measured and predicted depth-averaged water content(WIL); RMSE--- Root mean square 

error; MAX- Maximum of the absolute difference between measured and predicted depth- 

averaged water content (WIL); Ml%- Minimum of the absolute difference between 

measured and predicted depth-averaged water content. 
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Figure 4- 1. Cornparison of the new solution using F(O,)=O, " 
and F(O,)=@, and with the solution of Parkin et al. (1992) for (a) 
C= 1 -0 1, (b) C= 1.02, and (c) C= 1.10. 
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Figure 4-2. Cornparison of the new solution using F(@,)=O, '-" * and 
F(O,)=O, and with the solution of Parkin et al. (1992) for (a) C=1.5, (b) 
C=5, and ( c )  C=15. 



New solution: VG mode1 

O 2 4 6 8 

Time (hr) 

Figure 4-3. Water storage to depth L=20 cm measured in filed and 
predicted as a function of time for the new solution with BW model 
and VGB model and for the solution of Parkin et al. ( 1992) in the 
case of (a) F(Oo)=O0 '4' " and (b) F(O,)=O,. 



Chapter 5 

Prediction of drainage from infiltration with hysteresis 

Abstract 

Prediction of drainage From infiltration with hysteresis has practical significance. A 

Haines' Iump mode1 of hysteresis is proposed which is combined with the Broadbridge & 

White ( 1988) form of K(0) and D(8) and allows unified analytical solution for infiltration 

and drainage. The mode1 accounts for al1 of the hysteresis by making the inverse 

macroscopic capillaq length scale, a, hysteretic. Neglecting hysteresis resulted in poor 

prediction of water storage during drainage based on hydraulic parameters estirnated from 

infiltration. This was especially true for drainage with high initial water content. 

Incorporating the proposed hysteresis mode1 resulted in prediction error less than 

measurement error. 

A method of a priori estimating the hysteretic nature of a was proposed. The 

hysteretic change in a was based on 8(yr) hysteresis models proposed by either Parlange 

( 1976) or Mualem ( l984), in combination with the Broadbridge and White ( 1988) hydraulic 

functions. The predicted hysteresis in a was similar to that obtained from inverse 

procedures. 



Introduction 

A quantitative description of water infiltration under constant flux boundary 

conditions in unsaturated soils is fundamental to understanding water balance, irrigation, 

movement of chernicals and, more generally, transport processes occurring in surface soils. 

Analytical solutions of Richards' equation for constant tlux water infiltration into 

homogeneous soil profiles have been developed using the integral procedures( Parlange, 

1972: Philip and Knight, 1974: White et al., 1979). Kirchhoff, Hopf-Cole and Storm 

transforms ( Broadbrodge and White, 1988; Wanick et al., 1990, 199 1) and reciprocal 

Bàckland transform( Sander et al., 1958, 199 1; Bany and Sander, 1991). Parkin et al. 

( 1992,1995) presented analytical solutions for water storage to a fixed depth based on 

solutions of Broadbrodge and White ( 1988) and Warrïck et al. ( 1990). These analytical 

solutions are very usefül for assessing the accuracy of numencal rnodels and to estimate soil 

hydraulic properties by inverse procedures. Analytical solutions can also be used to test 

various inverse techniques for uniqueness and identifiability of various hydraulic parameters 

of interest. The mode1 results of Parkin et al. (1992, 1995) are directly utilizable to interpret 

time-domain reflectrometry measurements. 

To quantitatively predict the rnovement of water through variably saturated soils 

detailed knowledge of the hydraulic properties of the soil are needed. The unsaturated 

hydraulic conductivity, K, expressed as a function of the soil water content 8, or the soil 

water pressure head, yr, and the relation between 0 and q~ must be specified before analytical 



or numencal models can accurately predict water flow during infiltration, evaporation or 

drainage. Unfortunately, because of hysteresis, even in stable, non-swelling soils, these 

relationships are not simple fùnctions, but rather show a great deal of variation between 

wetting and dryng cycles. Hysteresis exists in both ~(8) and K(y) ( Haines, 1930; Staple, 

1969; Kool and Parker, 1987: Jaynes, 1992). However, studies suggest that when the 

hydraulic conductivity is expected as a function of water content instead of pressure head, 

there is little hysteresis or it is so slight as to be masked by the error of the measurements 

and can be ignored ( Gillharn et al.. 1976; Topp, 197 1). 

Considerable effort has been put into the analysis and description of hysteretic soi1 

hydraulic properties. This has led to numerous models for descnbing hysteresis in 8 ( ~ )  ( 

Gillham et al.. 1976: Scott et al., 1983; Mualem, 1974, 1984; Kool and Parker, 1987; 

Parlange, 1976; Hogarth et al.. 1988). These models provide a simple means for detemining 

any scanning curve fiom a limited arnount of data, such as the main wetting and drying 

hysteresis curves. The models of Parlange ( 1976) and Mualem ( 1984) need only one branch 

of the loop to predict al1 the scanning curves. Viaene et al.( 1994), compared different models 

of hysteresis using ten rneasured scanning c w e s ,  and concluded that the best models were 

the conceptual models needing two branches for calibration. Simulation studies canied out 

by Jaynes ( 1984, 1992) have shown that none of the models were consistently better than 

the others. Numerical simulations ( Kool and Parker, 1987) of flow during transient 

infiltration and redistribution using a variety of hysteresis models did not differ greatly and 

agreed reasonably well with experimental water distribution, even when the scanning curves 

were not described very accurately. 



Unfortunately, al1 the models, ernpirical or theoretical, do not allow exact unified 

analytical solutions of infiltration and drainage, even though the hydraulic models of BW 

and Sander allow exact solution independently for infiltration and drainage. As a result, 

completely different sets of parameters have to be used for infiltration and drainage. This 

greatly inhibits the use of the analytical solution and our understanding of role of hysteresis 

in the application of infiltration and drainage. In addition, the effect of hysteresis on water 

storage to a tixed depth has not been reported so fa.. In this paper, we present a mode1 of 

hysteresis which connects the analytical solution of infiltration with that of drainage, thus 

allowing a unified solution of both drainage and infiltration. We apply the mode1 to field 

measured water storage during infiltration and drainage. To test the approach, the hydraulic 

parameters estirnated fkom infiltration are used to predicted the measured soi1 water storage 

during drainage. 

Theory 

Parametrization of soi1 hydraulic properties 

Broadbridge and White (BW) ( 1988) and Sander et al. (SA) ( 1988) independently 

developed analytical solutions for constant flux infiltration boundary. The SA solution is 

based on the following pararnetrkation of the hydraulic conductivity K(O) and diffùsivity 

D(O) functions. 



where A9=8,-9, and @=(O -8, )/AR 0s and 0 ,  are the saturated water content and residual 

water content. respectively. K,,  K2, Kg, Y, and 4 are parameters. Sander et al. ( 1988) 

reduced the parameter number fkom four to two by taking into account two conditions on 

K(O). These are that K(0) = O, which implies that K, = 0, and K(1) = Ks where K, is the 

saturated conductivity. This second condition gives K, in terms of K, and K, or: 

By definition. 

we have, 

Substitution of Eq. [S- 11 and Eq. [5-21 into Eq. [5-31 and integration yields ( Sander, et al., 

1988) 



It can be shown that if K,=O this rnodel reduces to the SA model and if K,=O, this model 

reduce to the BW model: 

where C= l/v and D,,= Ks (C- l )/a@,-0,) (Parkin et al., 1995). 

AnaIytical solution 

The nonlinear Richards' equat ion used to descnbe one-dimensional nonhysteretic 

flow in idea soi1 is given by 

where 0 is the volumetric water content, z is the depth and t is the time. The initial and 

boundary conditions considered here are 

0(z,O) = 8, 



where R is the water application rate and 8, is the initial water content. By utilizing Eq. [5- 11 

and Eq. [5-21. through a series of transforms (Le. Kirkhoff, Storm, and Hopf and Cole 

transforms), the following analytical solution c m  be derived: 

and 

where 

Es- 1 11 



By change of variable of integration, a unified water storage solution for both infiltration and 

drainage was obtained as following, 

Eq.[5-141 was derived using a different series of transforms from that used by SA. It is 

derived tkom the same series of transforms derived as used by BW. However, the form of 

K(0) and D(0) used are similar to that of SA. The equation is a unified solution (both 

drainage and intiltration) that is general for both SA and BW, depending on the definition 

of D,, (Eq. [5-51. 

Hysteresis Models 

Haines' Jump hysteresis tnodel 

Hysteresis is caused by a change of energy status of water when a wetting process 

is switched to a drying process or vice versa. The energy status cm be measured by the 
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capillary maûic pressure (i.e. a 'Haines Jumpn, Miller and Miller, 1 956). We assume that 

the change of capillary pressure is abrupt when the process is switched The scale of the 

change of capillary pressure is modeled by adding a constant change to the macroscopic 

inverse capillaxy length scale, a. Thus, if we assume that the change of energy statu is 

immediate and abrupt, then the a value must jump to another value immediately afier the 

process is switched. Since this model of hysteresis does not change the form of K(0) and 

D(8), the original analytical solution still exists. However, the predicted value of y fiom the 

solution (see Eq. [5-71) is scaled by the value of a-', which changes depending on the process 

( drainage, infiltration). This approach is conceptually consistent with the notion of a change 

in 'effective pore size" associated with the reversal of the flow process(wetting, drymg) and 

the use of a as an integrated macroscopic effective capillary length(Philip, 1985; Miller and 

Miller, 19%). 

It is possible to equate our proposed Haines Jump approach to any model of 

hysteresis such as Parlange (1976) model at Ieast at an integral scale. An analogy is the 

Green-Ampt integral approximation of the K ( y )  and 0(yr) curves. According to Eq. [5-71, 

assuming no hysteresis of C, the value of the effective inverse macroscopic capillary length 

scale a is given by 

where f(8) is a constant non hysteretic function. It follows that an average effective ad+ for 

any drainage scanning curve in form of u, for infiltration can be given by 



where v, is the matric pressure at the reversal point. Thus, the value of ad* can be a prion 

predicted for each initial condition, if q, is known(or vice versa). The Haines Jump is given 

by (a,$a,')-f(0). Equation [5- 161 can be used to calculate "effective Haines Jump" given 

any other model which relates y,(@ to yrd(0) . In addition. any other existing hysteresis 

model can be used to a prion estirnate the "effective Haines lumpn. Two examples, which 

are subsequently discussed, are models by Parlange (1976) and Mualem (1984). Sorne 

hysteresis models may not be compatible with this approach. For example. the Scott et al. 

(1983) model results in a Haines Jump, which is not reversible (Kool et al., 1987). That is, 

an instantaneous switch from drymg to wetting and then back to drying would not leave the 

value of a, the same. 

Parfange Model. The Q i n g  and wetting scanning curves can be related by 

where subscripts d and w refer to drying and wetting and subscript i designates the point on 

the wetting curve where the drytng curve is starting. Thus, knowing one scanning curve ( 8, 

or 8,) the other can be calculated. Comparison with experiments shows that if the shape of 

the drying scaming curves varies smoothly, then the drying boundary of the loop is 

148 



sufficient to predict al1 scanning curves (Parlange, 1976). 

The Parlange ( 1976) hysteresis model has no additional parameter and gives an a 

priori prediction of the yr(8) drymg c w e  fiom ~ ( 0 )  wetting curve. Unfortunately, the ~ ( 0 )  

wetting curve now has a form that does not lead itself to an analytical solution of Richards' 

equation. However, the fùnctional relationship between ~ ~ ( 0 )  and ~ ~ ( 8 )  c m  be substituted 

into Eq. [5- 161 to calculate an " effective Haines Jumpn. 

Mualem universai model. 

Assuming the distribution hnctions of water in the pore domains for drymg and 

wetting are the same for the independent domain model, Mualem (1984) presented a 

universal relationship between the two main curves: 

where y, is the value of pressure head for the starting point of drainage. The predicted drymg 

curve provided a lower boundary of the hysteresis domain for 6 disturbed soils studied by 

Mualem ( 1984). For field soil. there may be less pore water blockage against air entry, since 

there is usually well-developed structure and a wide range of pore size. Therefore, we expect 

this model will be more accurate for field soils. In a manner sirnilar to the Parlange ( 1976) 

model, it is possible to a priori predict an "effective Haines jurnpn using Eq. [5- 161. 

First order error analysis 

The mean E[a] and variance var[.] of a function f(u) cm be denved from its 

uncertainty parameter vector, u, through a first order Taylor expansion: 



w here is the vector of estimated parameter values. Using the expected value operator , Er.], 

on both side of this expression, we obtain 

EVlu)] = A;) 

and 

For linear dependence of f(u) upon u, Eq. 15-201 and Eq.[5-211 are exact. For nonlinear 

relationship, Eq. 15-201 and Eq. [5-2 11 are good approximations provided the coefficients 

of variation of u are small. This fint order analysis provides a way to evaluate the effect of 

uncertainty in the parameters on the function f(u). The derivatives in Eq. [5-211 were 

calculated numencally using the software package Mathcad (version 6, Math Sofi Inc, 

1995)- 

Including the effect of uncertainty in the parameter on the estimated soi1 water 

storage allows a confidence interval to be placed on predicted water storage. Thus, the 

necessity of including a connection in a for hysteresis can be checked by cornparhg 

predicted water storage dunng drainage, from parameters with uncertainty obtained by 
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inverse procedures from infiltration. If rneasured water storage during drainage is outside 

of the 95 % confidence interval of predictions, then the discrepancy cannot be related to 

uncertainty in parameters estimated from infiltration (Table 5- 1 ). Thus, the discrepancy is 

likely tiom a change in parameten due to hysteresis. 

Materials and methods 

Field Experiments 

Field infiltration experiments were conducted at the Canadian Forces Base Borden, 

Ontario, Canada and have been described in detail earlier. Extensive hydro-geological 

research, including a large scale, natural-gradient tracer test and forced gradient test have 

been conducted by University of Waterloo on this site. Details about this site can be found 

in Sudicky (1986). Water was applied to an instrumented transect(7.5 m long) inside a 

greenhouse using a hanging track and nozzle system. Multi-purpose TDR probes were 

installed every 0.15 m at each of 4 depths (0.2,0.4,0.6, and 0.8 m) for a total of 200 TDR 

probes. Five different water application rates were used. Soi1 water content was measured 

using the TDR method of Topp et al. (1980). The readings were taken rnanually From the 

display screen of two pre-calibrated Tektronix( 1502 C) metallic cable tester by four 

operators. The readings were taken just prior to the start of water application and every 5-30 

minutes depending on infiltration rate and rate of change of 8, for al1 the 200 rnultipurpose 

TDR probes. Here, we use the site average of the 50 probes for 20 cm as a illustration. At 

the end of each infiltration rate (Le., after steady-state water content was established in the 

soil profile), the water application was stopped and the soil allowed to drain. TDR reading 



were taken at regular intervals during the drainage until soil water content changes were 

small. 

A single set of hydraulic parameters with their uncertainty were obtained 

independently from the uitiiltration measurements using inverse procedures describeci earlier 

(Chapter 3). Since hysteresis in the K(8) function is assurned to be negligible, the values of 

Ks and C fkom the infiltration data were used as known values to estimate a new value of a 

for each drainage event (Le., ad. The value of ad was obtained using a similar inverse 

procedure and measurements of soi1 water storage during drainage. The need to 

incorporating hysteresis was exarnined by comparing predicted and measured soil water 

storage during the drainage and fi-om the change in estimated a using infiltration verses 

drainage data. The comparison involves an envelope of the uncertainty of water storage 

introduced by the uncertainty associated with the input parameten and general TDR 

measurement error(see discussion of Eq. [5-201). Finally, measured values of a during 

drainage (Le., a, ) from different initial conditions were compared to "effective Haines jump 

values of ad* estimated a priori using Eq. [5- 161 using the hysteresis models of Parlange 

( 1976) and Mualem ( 1984) as examples. 

Results and discussion 

Table 5- 1 gives the hydraulic parameters and their cova.x-iance matrix estimated from 

measured K(0) and ~ ( 0 )  during the infiltration phase of the experiment( Chapter 2). Figure 

5- 1 shows the measured water storage (0-0.2 m) during drainage for three initial conditions 

(8,=0.38, 0.3 1 and 0.27), and the water storage predicted by direct substitution of the 



hydraulic parameters for infiltration (Table 5- 1 ) into Eq. [5- 141. For the wetter initial 

conditions (0,=0.38, 0.3 1 ), the prediction using infiltration parameters underestimates 

measured water storage during drainage. At the ciriest initiai condition, the measured and 

predicted values are similar. At ei=0.38, the measured values exceed the upper 95 % 

prediction limits based on uncertainty ( fkom the first order perturbation approximation). 

This suggests the differences are from a change in hydraulic parameters (most likely 

hysteresis). The Root Mean Square error(RMS) of prediction for depth averaged soil water 

content was 0.03 1. 0.0 14. and 0.0 15 for 0i=0.38, 0.3 1 and 0.27, respectively. This error is 

greater than the average estimated TDR error for absolute soil water content (0.0 1-0.0 15, 

Topp et al, 1980). Relative measurement error using TDR, as would be relevant here, would 

be significantly lower. This also suggests that TDR measurement error c m o t  account for 

the discrepancy. In combination. the parameter uncertainty error and TDR measurement 

error may account for the discrepancy of predicted verses measl1red. 

The analytical solution for drainage (R=O) ( Eq. [5- 14)) was fitted to the measured 

water storage during drainage for each of the three initial conditions. The inverse capillary 

length scale a, was the only fiee-varying parameter. The ad values from the inverse 

procedure(0.037, 0.054, and 0.054 cm" for 0.27, 0.3 1, and 0.38, respectively) are al1 

considerable smaller than the value obtained fiom for infiltration (a =0.098 cm-' ) and 

exceed the lower 95 % confidence interval of a=O.O98 cm-' for infiltration (Table 5- 1). The 

ad values also depend on the initial condition. This again suggests that the discrepancy in 

predicted soil water storage (Fig. 5- 1 ) is fkom hysteresis. Thus, the a parameter is hysteretic. 

Figure 5-2 shows the predicted water storage curves using the best-fit a, value for 
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each of the three initial conditions. The agreement with measured water storage is quite good 

for al1 times. The calculated Root Mean Square Erron (RMS) for depth-averaged water 

content (WIL) were 0.0087.0.006, and 0.006 for $ = 0.38.0.3 1. and 0.27, respectively, and 

are substantially less than the expected measurement error (0.0 13 cm3 cm") of TDR (Topp 

et al., 1980) and much lower than the RMS using (i, for infiltration. 

Application of Parlange (1976) model 

The values of effective ch* predicted using Eq. [5- 161, the Parlange ( 1976) hysteresis 

model and %=0.098 cm-' are 0.049,0.058, and 0.061 cm-', for initial conditions 4 = 0.38, 

0.3 1 and 0.27. These values are only slightly higher than the bat-fit a, values (0.037.0.054 

and 0.054 cm-' ) from inverse procedures. Fig. 5-3 shows the drying scanning curves 

predicted from the original Parlange ( 1976) model and those predicted by the Haines Jump 

model (with effective a, using Eq. [5- 161). As an example, the Parlange ( 1976) model 

underestimates W compared to the Haines Jump model at high soil water content and 

overestimates at low soil water content. However, at the integral scale the curves are 

identical. Fig. 5-3a show a cornparison of the drying scanning curve obtained with the 

Haines jump model using ad fiom soil water storage during drainage using an inverse . 

procedure, and ad * predicted a priori using Eq. [ S -  l6](with Parlange ( 1976) model). The 

slight difference in a,, and a, * results in negligible difference in estimated drymg scanning 

curves. 

In addition, the water storage values( during drainage) as predicted from the Haines 

Jump hysteresis model using ad* values From Eq. [5-161 and the Parlange(1976) model are 
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in good agreement with measured values(Fig. 5-4), though a slight consistent 

underestimation of water storage occurs. The calculated RMS values of depth-averaged 

water content are 0.0 12,0.006, and 0.008 cm3 cm4 for O,= O.38,0.3 1, and 0.27 cm3 cm-3, 

respectively. The RMS values are lower than TDR measurement error, significantly lower 

than R M S  using a, =0.098, and only slightly higher than the RMS using q fiom the best fit 

inverse procedures. The calculation of confidence interval for the predicted water storage 

in Fig. 5-4 is complicated because the estimation error for ad* is generally unknown. 

However, if we assume no error is introduced when matching the Parlange predicted curve 

with the Haines Jump model, we are assuming a, has perfect correlation with a,,,. Since the 

area under the 8(y) is proportional to llu, the relationship between a, and a, is linear. Thus, 

the estimated variance of a, can be approximated by the variance of a Jivided by (a C a d)', 

since the correlation matrix would be the sarne as in Table 5- 1 (due to the perfect correlation 

between a, and qv,. Assuming the estimated confidence interval in a,* is correct, the 

calculated confidence interval of W was calculated and is shown in Fig. 5-3. Al1 the 

measured water storage values fa11 inside of the 95 % confidence region (Fig. 5-3). This 

suggests that the proposed Haines jump model, with a priori prediction of effective ad* fiom 

K* (or vice versa) using Eq. [5- 161 with the Parlange( 1976) model, may be an accurate way 

of incorporating hysteresis in the unified analytical solution for infiltration and drainage. 

This would allow the development of a single unified inverse procedure for estimating 

hydraulic parameters from combined infiltration and drainage measurements. 



Application of Mualem's universal model(Mualem, 1984) 

The estimated a,* values from Eq. [5-161 using the Mualem (1984) model are 

0.0595.0.0705. and 0.076 cm-', for Oi = 0.38,0.3 1 and 0.27. The values are slightly higher 

than a,* fiom the Parlange ( 1976) model and less sirnilar to the a, value fiom the inverse 

procedures. Thus, as an example. predictions of water storage using the Mualem %* values 

are not as good as the Parlange ( 1976) model(Figure not given). The calculated RMSs are 

0.019, 0.009. and 0.01 t cm3 for Bi= 0.38,0.3 1, and 0.27 cm3 cm". About half of the 

measurements fa11 outside of the 95 % confidence interval. The predictions are still better 

than using the value of =0.09875 cm'' from infiltration. The Mualem ( 1984) model may 

be less accurate because it is a universal model for the lower boundary of hysteresis 

(Mualem, 1984). The result is consistent with the finding of Viaene et al. ( 1994) that the 

one-branch Parlange ( 1976) model fined ten soi1 retention curves better than the Mualem 

Universa1 model. 

For practical purposes. the combination of the Haines' jump model with the 

prediction of a,* from %(or vice versa) from Eq. [5- 16 ] and either the Parlange ( 1976) 

model or Mualem( 1984) model is likely satisfactory. The RMS error would be about 1 - 2 

% of water storage, which is within the measurement error of water storage by TDR. This 

substantiates the conclusion obtained by Jaynes( 1985), that simple hysteresis models usually 

give sirnilar results as complicated models. Totally ignoring hysteresis is unacceptable. 



Conclusion 

A Haines' Jump model of hysteresis is proposed and c m  be combinai with a unified 

analytical solution for soil water storage to a fixed depth as a function of time durhg 

infiltration and drainage. The model accounts for hysteresis by making the inverse 

macroscopic capillary length scale. a. hysteretic. Neglecting hysteresis resulted in poor 

prediction of water storage during drainage based on hydraulic parameten estimated from 

infiltration. This was especially true for drainage with high initial water content. 

Incorporating the proposed hysteresis model resulted in prediction error less than 

measurement error. 

A method of a priori estimating the hysteretic nature of a was proposed. The method 

was tested using hysteretic models proposed by Parlange ( 1 976) and Mualem ( 1984). The 

predicted hysteresis in a was similar to that obtained fiom best fit inverse procedures 

applied independently to soil water storage measurement during infiltration and drainage. 
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Table 5- 1 .  Estimated hydraulic parameters and their correiation matrix from measured 

hydraulic properties during a serries of steady state infiltration experiments. 

Estimate Standard Correlation matrix 

-- -- - - 

Ks (cm hr-') 7.18 0.4 1 1 

a (cm-') 0.098 0.006 0.44 1 

C 1.27 0.03 -0.32 -0.52 1 

@,(cm3 cm") 0.42 0.005 0.77 0.20 0.22 1 
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Figure 5- 1 .  A cornparison of measured and predicted soi1 
water storage during drainage using unified solution with 
no hysteresis, and the value of a from infiltration. 
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Figure 5-2. A cornparison of measured and predicted soi1 water storage 
during drainage using the Haines Jump hysteresis model. and the value of 
a,, from inverse procedures. 
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Figure 5-3. A cornparison of measured and predicted soi1 
water storage during drainage using the Haines Jump 
hysteresis model, and a priori value of a estimated from 
Eq. [] and the Parlange 9 1976) model. 
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Fig. 5-3a. A cornparison o f  the chying scanning c u v e  obtained with the Haines 
jump model using an inverse procedure (u=0.037 cm-') and the eEective (ad' 
=0.0488 cm") predicted using Parlange ( 1976) model. 
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Figure 5-4Comparison of the predicted drying scanning curves fiom the Parlange 
( 1976) mode1 (Dashed line) and corresponding Haines Jump hysteresis model(dotted 
line) for initial water content =0.38,0.3 1 ,  and 0.27. 



Chapter 6 

Analytical stochastic solution for constant flux infiltration and 

drainage in heterogeneous soils 

ABSTRACT 

A unified stochastic-analytical solution for soil water storage (W) as a function of depth and 

time was developed for both infiltration and drainage. The solution is a small perturbation 

of Parkin et al. ( 1992) for homogeneous soils and has excellent agreement with Monte Car10 

simulations for moderate variance of log hydraulic conductivity, inverse capillary length 

scale, and the spatially randorn but ternporally constant surface flux. The predicted expected 

value of soi1 water storage to a fixed depth for a constant flux boundary in a spatially 

variable field depends on the averages of hydraulic parameters only. Therefore, average of 

soi1 water storage, (W). of a heterogeneous field is identical to that of a homogeneous soil 

with hydraulic parameters equal to the average hydraulic parameters. The variance of soil 

water storage increases with the increase in (W). The auto-correlation coefficient of soil 

water storage is positive and decays with the separation distance. For infiltration, the integral 

scale of soil water storage does not change with time and is identical to that of log hydraulic 

conductivity. For drainage, it is time-dependent. The random surface flux, being constant 

temporally and varying honzontally, has no significant effect on (W), but enhances the 

spatial variability in soil water storage during infiltration. 



Introduction 

Infiltration and drainage are important processes occun-ing in surface soils. 

Numerous analytical and numerical solutions have been proposed to solve the infiltration 

equation. Despite their success in repacked soil columns, their application in field soils has 

been hindered by the spatial variability of soil hydraulic properties and scarcity of 

measurements. In recent years, stochastic approaches have been proposed which consider 

hydraulic properties as random space fùnctions (RSFs). These approaches have been very 

successful in saturated aquifers (Dagan, 1989). In the unsaturated zone, the dependence of 

hydraulic conductivity and diffisivity on the water content complicates the mathematical 

treatment of the problem. However, with some assumptions. solutions have been obtained. 

For example. in some conditions the flow can be treat reasonably well as one dimensional 

in the vertical direction (Dagan and Bresler. 1979, 1983; Yeh , 1989; Protopapas and Bras, 

199 1 ; Rubin and Or, 1993). 

Dagan and Bresler ( 1983) examined stochastic infiltration and redistribution. They 

assumed that water flow is one-dimensional and the spatial hydraulic properties do not 

change along any vertical profile, but Vary considerably in the horizontal plane. They 

concluded the stochastic approach leads to a quite accurate value of the expectation and 

variance of the flow variables even if a simplitied mode1 such as piston flow is adopted. 

However, their approach applies only to sufficiently heterogeneous soils in which the 

variance of log saturated hydraulic conductivity is greater than 1. Many soils have a 



variance less than 1 ( Sudicky, 1986; Russo and Bresler, 1982; Russo et al., 1992). 

Furthemore, their approach needs numerical integration and is very time consuming when 

more than one hydraulic parameters are treated as random space hct ions  (RSFs). 

Mantoglou and Gelhar (1987) analyzed three-dimensional unsaturated flow in 

heterogeneous media. Introducing a small perturbation of soil water capacity, they obtained 

a large scale equation of the sarne form as Richards' equation. However, the fluctuation 

equation is nonlinear and can only be solved numerically. To obtain a closed solution, they 

Iinearized the fluctuation equation and solved it using the spectral representation, after 

assuming one-dimensional mean flow and an unbounded flow domain (far from the 

boundary). Although useful results were derived for transient conditions, their results only 

apply to flow under quasi-steady state conditions. 

Chen et aL(1994) presented an upscaled equation describing water flow during 

infiltration. The upscaled equation involves only the average and variance of Ks, and c m  be 

solved to obtain the average behavior. Their approach is numerically efficient compared to 

Monte Carlo simulation, but still requires numerical solution and the solution may not 

converge (Chen et al.. 1994). 

In general, pas& works for heterogeneous transient flow during infiltration and 

drainage used numerical calculations. For models employing the stream-tube model, a 

cornmon assumption is that local flux density in each individual Stream tube is identical to 

each other and to the application rate, under constant flux boundary. Variability arises from 

the variability of water velocity and shape of the wetting front. However, field measurements 

suggest that applied water can redistribute in the first few centimeters of the soil surface, and 
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subsequently establish constant, but different local vertical water fluxes in the horizontal 

plane space (Parkin et al., 1995; Chapter 2). The objective of this paper is to present a 

unified(infi1tration and drainage) stochastic analytical solution for soi1 water storage to a 

fixed depth as a function of time in heterogeneous soils. The solution is the small 

perturbation of the unified solution developed by Parkin et al. (1992) and modified in 

Chapter 2. We compare our solution with the Monte Carlo solution on simulated fields. The 

effect of variations in Ks, a and the application rate, R, on the mean and covariance of water 

storage as s function of time are examined. 

Broadbridge and White (BW) (1988) and Sander et al. (1988) independently 

developed an analytical solution for constant flux infiltration. The BW solution is based on 

the following parameterization of hydraulic conductivity (m s"), K(O), and diffusivity 

functions(m' s-'), D(O), 

K(O) = Ks 
(C- 1) O' 

C-O 



where Aû=8,-0,and @=(O -9, )/AR 8,.  Or and 0 are the saturated water content, residual water 

content, and soil water content, respectively. Ks, a, and C are the saturated hydraulic 

conductivity (m s"), inverse capillary length scale(m-') (Philip, 1985), and a constant 

introduced by BW, respectively. 

Richards' equation for one-dimensional nonhysteretic flow in a uniform soil is: 

where z is the depth and t is the time. 

The initial and boundary condition considered here are 

O = e O  : r = O  ; 220; 

where R, 0, and t, are the water application rate at the surface(z=O), the initial water content 

and ponding time, respectively. If R=O, the flow is a gravity drainage process. Utilizing Eq. 

[6- 11 and Eq. [6-21, through a senes of transfomis (Le. Kirchhoff, Storm, and Hopf and Cole 

transforms), following Broadbridge and White ( 1988), Warrick et al. ( 1990) derived an 

analytical solution as 



and 

7 = (Ca) + 1 )r+(2p + 1 )< -W(SJ))l  

where is a parameter connecting Eq. [6-91 and Eq. [6- IO] and 

By change of variable of integration, a unified analytical solution for both water storage to 

depth L for constant flux infiltration and drainage was obtained (Chapter 2), 



Stochastic characterization of heterogeneity. 

For unsaturated flow, there are five pararneters in the hydraulic functions (Ks, C, a, 

O,, and Or), and each one of them exhibits spatial variation. WhiIe some parameters are highly 

variable, like Ks, others are less variable, such as 0, and B, The variation of C is not well 

known. Without loss of generality, we focus on two of them, Ks. and a, because their 

properties are best known, and because Ks represents the influence of gravity on water flow 

and a represents the ratio of capillary force and gravity ( Philip, 1985). The following 

assumptions are adopted concerning the heterogeneous pararneters: 

( 1 ). The log saturated hydraulic conductivity, Y(x)=ln(Ks(x)), is assumed to be a multi- 

normal random function that is expressed through its stationq mean <Y> and a spatial 

covariance with a finite integral scale. Its spatial structure is modeled by the isotropic 

exponential mode1 : 

-rrl 

C,(r )  = ;Y '(x) Y '(x + r ) /  = Cr ( r )  = a, e y 

where, C ,  is covariance of Y, o, is the variance of Y and r is the lag distance between two 

points, and 1, is the integral scale of Y. This choice of mode1 is supported by field studies 

( Freeze, 1975; Sudicky, 1986). 

(2). The parameter a is also treated as a random spatial function and is assumed to be 

statistically homogeneous and isotropic with constant mean ce, variance q , integrai scale 
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1, and a similar spatial stnicture as Eq.[6- 141. 

(3) The a field is assumed to be either perfectly correlated or uncorrelated with the log 

saturated hydraulic conductivity field Y(x) (Yeh et al., 1985). For perfectly correlated field, 

there may be positive correlation and negative correlation. While some field experiments 

suggests that higher Ks values are associated with coarser media, which in tuni are 

charactenzed by large a (Unlu et al.. 1990; White and Sully, 1 992; Russo et al., 1 997), there 

is field evidence that a(x) is not correlated with Y(x) (Russo et al., 1992). However, no  

experimental evidence supports a negative correlation. Thus, we consider two cases: 

perfectly positively correlated and the uncorrelated a-Y fields. 

(4). The flow domain is much bigger than 1, or 1, such that the ergodicity assumption c m  

be invoked. Under this assumption, the spatial average and ensemble average can be 

exchanged. 

(5 ) .  The flow dornain is assumed to be composed of homogeneous soi1 columns, each with 

different soi1 properties (Ks, and a).This assumption was adopted by Dagan and Bresler 

( 1983) and Rubin and Or (1  993). 

To account for erratic spatial variability and for the uncertainty associated with their 

estimation. the hydraulic parameters are expressed as random functions, each composed of 

an expected value and a random fluctuation: 



where angle brackets denote the expected value operator. Shce soi1 water storage W is 

function of Y and a, we may expand W around the means of Y and a according to Taylor's 

series 

, d W(exp(i Yi,:ai) / d W(exp(\ Yi,\ai) I d' w(exp(! ~i),(aj) 
W( Y,u) = W(exp(\ Y;,\GLI) + a + y/+-  (a')' + 

d(al & Y; 2 d{a/' 

Taking the expectation of the above, an approximate formula for the mean and variance for 

W as a fùnction of depth z and time t, W(L,t) can be expressed to the first order as 

and the covariance as 

Cw(L,t;r) = F:(L ,t)cY(r) +F9(Lt)ca(r) - + 2 F ,  (Lt)F&t)Ca,.(r) 

Where r is the separation distance between two points, and 

Using Eq. [6- 131 and Eq. [6-71, the derivatives F 1 and F2 can be obtained as 
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where 

and 



where erfc(x) is the complimentary error function. Average is the root of the following 

function. 

- ri, =0.5exp( -$)[AB;) +fi%)] 
T 



Effects of unevenly distributed surface flux density 

Tnere are two approaches to assess the influence of  spatially random but temporally 

constant swface water flux R, with a mean ( R) and variance d,. Here we only deal with the 

effect of R on the mean and variance o f  W(L,t). One approach is the small perturbation 

approximation. The mean and variance of W is simply 

and 

where 

The other approach to derive the mean and variance is to use the probability density 

distribution. For an independently distributed flux density R, the mean and variance of the 

dependent variable W can be expressed as: 



and 

This approach was used by van Wensenbeek and Kachanoski ( 1994) for solute breakthrough 

in heterogeneous soils. The differences between Eq.[6-3 11 and Eq. [6-341 are that: (1)  the 

first one is approximate while the second one is exact for given W(R); (2) the first one is 

quasi-analytical while the second one is generally fully numerical. 

Monte Carlo simulations. 

A realization of the two-dimensionai Gaussian random field(g(x))on a grid 100 x 100 

m' with standard normal disiribution N(0, I), which reproduced a prescnbed mean, variance 

and correlation structure of Y and a (with appropriate correlation), was generated using the 

turning bands methods. The program TB3D given in Deutsch and Joumel (1992) was 

employed. The realization was transformed to a normally distributed variate: 

and then subsequently transformed to lognormality: 

The a(x) field was generated using the fint two steps. For perfectly-comelated a field and 

Y field, the same Gaussian random field, g(x). was used. For uncorrelated fields, different 

seed numbers were used to generate Ks and a fields. We used Iy=5 m and I,=3 m for 

uncorrelated a-Y fields and I,=I,= I,,=5 m for perfectly correlated a-Y fields. 
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Ks and a values on each node are used as input to Eq. [6- 131 to produce W on that 

node. The W values of the sirnulated fields were then used to calculate the moments of W 

by invoking the ergodicty assumption. Semivariances of O and W were calculated using 

GS+(Gamma Design Software, Plainweel, USA). 

Results and discussion 

Infiltration 

The analytical solution for W. which included its expected value and spatial 

covariance is given in Eq. [6- 181 and Eq. [6- 191, respectively. The solution is expressed in 

terms of the input soi1 parameters and the boundary conditions. Parameter statistics used for 

illustration are given in Table 1. The analytical and Monte Carlo, MC, simulated (W) and 

a, are shown in Fig. 6-1 at three depths.The case of perfectly correlated a-Y fields are 

considered for al1 the three depths and the case of uncorrelated a-Y fields is considered only 

for L= 100 cm. (W) increases linearly at srnall times with a dope equal to the uniform 

application rate R and gradually reaches a constant value for both correlated flow and 

uncorrelated flow (Fig. 6- lb). This constant values equals the product of the steady-state 

water content and length of TDR rods. The first order approximation to (W) depends only 

on the means of a and Y, and not on the variances and covariance of a and Y (Eq. [6- 181). 

The result of this approximation is essentially identical to the MC simulation for both 

correlated and uncorrelated a-Y fields (Fig. 6- 1 b). 

The variance of water storage at srnaIl time remains practically zero for both 

correlated and uncorrelated flow. This is because the wetting Front is still located completely 



within the depth L, and the water storage deterministically equals the amount of water 

supplied on surface: W(L,t)=R.t. Therefore, o, equals zero. As the length increases, the 

time qv rernains zero increases, because it takes longer for the wetting front to reach L (Fig. 

6- 1 a). As the wetting front passes depth L, o, increases quickly and then gradudly reaches 

the asymptotic limit for both cases of correlated flow and uncorrelated a-Y fields. 

The dependence of o, on (W) is very clear from Fig. 6- 1 a and Eq. [6- 191. As (W) 

increases at srnall time, a, increases and as (W) reaches the asymptotic limit, so does a, 

The stationarity of a, is achieved when (W) attains stationarity and the flow is steady-state. 

Similar results were obtained for steady-state pressure head in a bounded dornain ( Indelman 

et al.. 1993). The duration for zero o', is very short. Thus, the estimated application rate 

from the slope of increase in (W) with time is underestirnated at moderate to long times 

(Chapter 2) 

Water storage variance o', increases with tirne more sharply for uncorrelated a-Y 

fields than for correlated a-Y. 6, decreases with the increase in & a for perfectly correlated 

a-Y fields. This can be explained fi-om Eq. [6- 191. The absolute value of the derivative of 

W with respective to Y, dW/dY, and a, are greater than that of dW/da and oa , respectively. 

Morever, dWIda is always less than or equal to zero, and the increase in aa increases the 

covariance between a and Ks, O,, for perfectly-correlated flow. Thus, the increase in the 

value of the second tem in Eq.16-191 is smaller than the decrease in the third term. 

Consequently, an increase in o, results in a decrease in the variance of W for perfectly 

correlated flow. However, at large times, because dW/da is zero, the variance of W remains 

practically the same regardless of the variation of a. 
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ow increases with an increase in q for uncorrelated a-Y field, because the third term 

in Eq. 16- 191 is zero and the second term increases with the increase in 4. The difference 

between the correlated and uncorrelated cases is relatively small for application rate =2 cm 

day-'. However, the difference can be as large as one half of the STD of W(L,tJ for 

correlated flow for application rate=8 cm day-' (Fig. 6-1 b for C4.2). The curves for 

dependence of a, on (W) for correlated and uncomelated a-Y fields merges at the largest 

( W) value (Fig. 6- 1 b). This suggests the influence of correlation between a and Y disappears 

as (W) reaches its largest value (i.e., the flow reaches steady state) 

The dependence of o, on (W) is influenced by the value of the C parameten. At 

C= 1.05, which is typical for a sandy soil (White and Broadbndge, 1988), o, increases with 

(W) at smaller (W) and reaches its highest value at (W)=6.8, and subsequently decreases 

with (W). However, at C=2.5, which may represent a loamy clay soil, uw increases with (W) 

monotonically. At the same (W), a, always increases with an increase in C. 

The agreements between MC simulation and the analytical solution are excellent for 

different combinations of variances of a and Y for perfectly correlated a-Y fields (Fig. 6- 

2). This indicates that variances of Y and a do not have significant influence on the 

prediction of average storage within this range. This is consistent with Eq. [6-la]. However, 

for CF, <0.5, a, has no effect on the agreement between MC and the analytical solution for 

ow.. For o, >OS, o, has an effect on the agreement between MC and the analytical solution 

for a, As expected, an increase in oa does not lead to overestimation of o, at large time, 

regardless of the magnitude of q, because the derivative of W with respective to a is zero 

at large time. Therefore, as expected, a has no role in steady-state flow in a semi-infinite 
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system. This is different from the results for a bounded system (Rubin and Or, 1993). 

Practically speaking, the agreement between the analytical prediction and MC simulated 

values for the mean and variance of W is very good, even though the predicted variance is 

more sensitive to a,' and oY2 than the predicted mean of water storage. 

Figure. 6-3 and Fig. 6-4 show the effect of application rate on the predicted mean 

and variance of water storage for correlated and uncorrelated a-Y fields. As application rate 

increases, the analytical solution and MC simulated results for (W) are essentially identical 

to each other. This suggests the analytical solution is not sensitive to o', for both correlated 

and uncorrelated a-Y fields. For perfectly correlated a-Y fields, the variance of W increases 

smoothly with time for al1 rates. For the uncorrelated a-Y field, at low application rates(0.2 

and 2 cm day-'), a, increases smoothly with time. However, for high application rates ( 10 

and 16 cm day-'), a, increases abruptly at the begiming, reaches a highest point , and 

subsequently decreases to a constant value. 

At large time. o', increases with an increase of application rate from R=0.2 to 0.2 

cm day-' and then decreases with the increase of application rate From R=2 to 10 to 16 cm 

day". This behavior is for a specific class of soils, namely. corne textured soils. To examine 

this in more detail. we snidy the large time behavior of water content. At large time, or 

steady-state, 



Taking the first order derivative O with respective to Ks. yields 

Substitution of Eq. 16-36] into Eq. [6-371, leads to 

Taking the partial derivative with respect to O. we have 

Assuming there is a maximum of Eq. [6-381 in the range O< (35  1. Eq. [6-381 can be set to 

zero. The maximum of the absolute value of dO/dKs is then Iocated at 

Since C> 1 .O, then W 0 . 6 .  If O= 1 (maximum possible), then C= U0.6 = 1.67. Thus, for C> 

1.67, or -0.6, the variance of O would increase with application rate continuously, and the 

maximum is outside of the admissive O range. 
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Figure 6-5 shows the analytical solution and MC sirnulated semivariance y(h) of 

water storage at different times. The agreement is excellent. y(h) incrases with the increase 

in separation distance (h) for h< 15 m and then gradually reaches a constant, indicating the 

existence of a finite integral scale. The auto correlation function is shown in Fig. 6-6 for 

uncorrelated Y and a with ly = 15 m and 1, =3 m. Clearly, the integral scaies of water storage 

at different times are very similar with each other and with the integral scale of Y. This can 

be explained from Eq.[6- 191 where the first term dominates the others. Similar results were 

obtained by Rubin and Or ( 1993) for steady-state water content at depth far fkom the water 

table. This is of practical significance, because 1, can be determined directly from the 

integral scale of water storage to a fixed depth at any time. This will reduce the number of 

unknowns and greatly improve the uniqueness of the inverse problem in which the spatial 

structure of the Y field is determined fiom structure of measured water storage. 

Effect of variation in flux on water storage. 

Expenmental evidence indicated that uniformly applied surface flux redistributes in 

the first few centimeters and then remains constant (Chapter 2). The significance of this 

variation in R in the evaluation of o', and (W) is examined next . We assume that R is 

normally distributed with a mean (R) and variance of d ,  , independent of Y and a. In this 

example, (R)=2 cm day-' and o,=O. 1,0.2,0.4 and 0.8 cm day' , which represent a coefficient 

of variation (CV) of 5,  10, 20, and 40 %. The first order approximation to (W) is only a 

function of (R}, irrelevant of &, (Eq. [6-321) and o, increases as the variation in R 

increases ( Eq. [6-331). Figure 6-7 shows the theoretical and MC simulated (W) and 02,. 



The variation in R increases the steepness of the increase of o', duruig early time flow. For 

o, =2.0 cm day-' . 1 t needs 1 8, 12, 7, and 5 days for a ,=O, O. 1,0.2, 0.4 and 0.8 cm &y-[ 

respectively. The effect of oR on cW is not obvious at a, =O. 1 and 0.2 cm day-'. However, 

as a, increases to 0.8 cm &y-[, the large time a, increased significantly fiom the value of 

&, at a, =O. Another interesting point at oR =0.8 is that d, increases with time initially, 

and then decreases with the increase of time to the asyrnptotic limit. This indicates that the 

variation in R enhances the spreading of wetting fronts in the field. When a, is smali, the 

variation in Y dominates the variation in W. For the field in Borden (Chapter 1) where the 

CV of q is l e s  than 20 %, the variation can be neglected, and consequently, the field can be 

treated as homogeneous in terms of surface flux. 

Drainage 

For drainage, as expected (W) decreases with time and the rate of decrease is large 

at small time and slows down at large time (Fig. 6-8). o', increases sharply with time at the 

begiming of the drainage and reaches its largest value shortly thereafier. Subsequently, 5, 

decreases with time. +,=O at t=O for a uniform initial condition. At large time, as soi1 water 

content becomes very low. and the variability of soi1 water content becomes smaller and so 

does the water storage variance. 

The dependence of o', on (W) exhibits a bell-shape ( Fig. 6-9). Different From that 

of infiltration. the positive correlation between a and Y fields increases d,, because the 

derivative of W with respective to a is positive for drainage (Eq. [6- 191). 

Figure 6- 10 shows the cornparison of results of Eq. [6- 191 with that of Monte Car10 

simulation for different combinations of variances of Y and a. Similar to the result for 
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infiltration, analytical drainage predictions for {W) are identical to that of Monte Car10 

simulation. For aW, the agreement is good, indicating the solution is accurate. However, o', 

is more sensitive to o?, than to for large time and the opposite is tnie for small time (Fig. 

6- 10). This is because the flow is a gravity-dominated process (Y is more important) for 

srnall time and a diffision-dominated process ( a is more important) for large time. 

Figure 6- 1 1 shows the auto-correlation coefficient as a function oflag distance, p(h) 

for different tirnes for uncorrelated a-Y field. Initially, p(h) is similar to that of Y. However, 

p(h) deviates from that of Y with time towards that of a, M e r  indicating the influence of 

a. 

Summary and conclusions 

In this, paper, we presented a unified stochastic analytical solution for soi1 water 

storage to a tixed depth for both infiltration and drainage. The solution is the srna11 

perturbation of those presented by Parkin et al. ( 1992) for hornogeneous soils. Our analysis 

leads to the following major conclusions. 

1. The expected value of soi1 water storage to a fixed depth for a constant flux boundary in 

a spatially variable field depends on the mean values of hydraulic parameters only. 

Therefore, (W) of a heterogeneous field is identical to that of a homogeneous soil column. 

This conclusion holds for constant flux infiltration and drainage. 

2. The variance of soil water storage is time-dependent and depends on (W). The dependence 

of variance of soil water storage is influenced by the correlation between a and Y fields, the 

value of the C parameter, and the flow process (either constant flux infiltration or drainage). 



3. The auto-correlation coeffkient of soil water storage is positive and decays with the 

separation distance. The integral scale of soi1 water storage does not change with time and 

is identical to that of log hydraulic conductivity for infiltration. However, for drainage, the 

integral scale of W is time dependent. 

4. The surface flux, being constant temporally and varying horizontally, has no significant 

influence on (W), but increases the spatial variability in soi1 water storage. 

5 ,  The first order solutions to the mean. variance and covariance for soil water storage, 

W(L,t) have excellent agreement with Monte Car10 simulations for moderate variance of log 

hydraulic conductivity for both infiltration and drainage. 

The proposed solution can serve as a usefùl tool for validation of numerical codes 

simulating unsaturated transient infiltration in horizontally heterogeneous soils. The 

moments of water storage cm also be used for denving the moments of solute evolution 

dunng constant flux infiltration. The solution has applications for inverse procedures to 

estimate the spatial structures of hydraulic parameters from transient measured water storage 

to a fixed depth through vertically- installed TDR probes. 

In the field, the initial conditions for different columns may be different and exhibit 

spatial variability. This variation may have an effect on the average and variance of soil 

water storage during drainage. We neglected this effect by assuming unifom initial 

conditions across the field. However, the effect can be exarnined using the small perturbation 

technique as we did for infiltration with spatially variable surface flux. 
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Table 6- 1. Statistical parameten, initial and boundary conditions for illustration. 

Variance O O O O O 2 . 5 ~   IO-^ 0.25 

Integral scale a 00 - OQ 5.0 5 .O 
(ml 



Time (day) 

Time (day) 

Fig. 6- 1.  Theoretical (solid) and MC-simulated (synbols) results of 
temporal change of (a)o, and (b) (W) to depth L=IO, 60. and 100 cm 
for perfectly correlated a-Y fields during infiltration under constant 
flux boundary . The theoret ical (das hed line) and MC-simulated 
(cross) results of temporal change of (a)nW and (b) WW) to depth 
L= 100 for uncorrelated a-Y fields are also show. 



r - C= 1.05 uncorrdated 
. . . - C=1.2 uncorrdated 

I - - C=2.5 uncorrdated 
+ C=l.05 correlated 
- -0 . C=1.2 corrdaîd 
, ,- C=2.5 correiaîed 

œ 

m 

1 

Fig. 6- 1 a. The dependence of variance on mean of soi1 water storage for perfectly 
correlated and uncorrelated a-Y fields for constant flux infiltration with 
application rate = 8 cm day-' and different C values. 



Fig. 6-2. Theoretical (Solid) and MC simulated (symbol) temporal 
change of (W) and a, to depth L=60 cm for infiltration under constant 
surface application rate R=0.2.2. 10 and 16 cm day-' for perfectly 
correlated a-Y fields with different variances of a, and a,. 
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Fig. 6-3. Analytical (Solid) and MC simulated (symbol) temporal 
change of (W) and ow to depth L=60 cm for infiltration under 
constant surface application rate R=0.2,2, 10 and 16 cm day-' for 
peifectly correlated a-Y fields. 



Time (day) 

Fig. 6-4. Theoretical (Solidi and MC simulated (syrnbol) 
temporal change of (W) and a,,, to depth L=60 cm for 
infiltration under constant d a c e  application rate R=0.2,2, 
10 and 16 cm day-' for uncmelated a-Y fields. 



Fig. 6-5. Theoretical (Solid) and MC simulated (syrnbol) semivariance ( y )  
of water storage to depth L=20,60, and 100 cm for infiltration under 
constant surface flux rate R= 2 cm day-' for perfectly correlated a-Y fields. 



Fig. 6-6. Theoretical autocorrelation functions as a Function of 
separation distance for soi1 water storage to depth L=60 cm at time 
T=5, 10 and 30 days of infiltration under constant surface flux R=2 
cm day-' for uncorrelated a-Y field. Solid line is the autocorrelation 
coefficient of Y. Integral scale of Y and a are 5 and 3 m 
respectively. 



Fig.6-7. Theoretical (Solid) and MC simulated (symbol) temporal change of (W) 
and a, to depth L=60 cm for infiltration under spatially-random but temporally 
constant surface flux rate R= 2 cm day-' with coefficient of variation (CV) =5, 10, 
20 and 40 % for perfectly comelated a-Y fields. 
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Fig. 6-8. Mean and variance of soi1 water storage to depth. W(L,t), for L=20,60. 
and 100 cm for perfectly correlated a-Y fields during drainage. 
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Fig. 6-9. The depdence of variance of soi1 water storage to depth L=20 cm, 
W(L,t), on the mean of W(L,t) for perfectly-correlated and uncorrelated a-Y 
fields during drainage (0, =0.9). 



Fig. 6- 10. Monte Car10 simulation and analytical result (Eq. [6- 181 and 
Eq. [6- 191) for perfecily correlated a-Y fields during drainage (Q, = 
0.90). 



Fig.6- 1 1 .  Dependence of auto-correlation of water storage to depth L=20 
cm on time during drainage for uncorrelated a-Y fields (1, =5 m and I,=15 
m. 



Chapter 7 

Summary and conclusions 

The major objective of this thesis was to fiirther our understanding of the movement 

of water during infiltration and drainage through heterogeneous field soils. The focus was 

on effective one-dimensional water flow with a constant flux (infiltration) or no fiow 

(drainage) surface boundary condition. The major contributions and conclusions of this 

thesis are: 

1. An improved field method of rneasuring quickly and nondestructively the in situ 

average of hydraulic properties was presented. The method uses a series of 

multipurpose TDR probes that measure both 0 and qt at the same spatial location. 

The local water flux in each location was obtained through measured water storage 

during a series of constant flux infiltration studies. Assuming unit-gradient at steady 

state flow, the local hydraulic conductivity. yr-0 relationships were obtained. In 

addition, our experiments showed that for difkent application rates, water flow was 

approximately vertical within the measurement volume of TDR ïhis provided 

experimental evidence of the Stream tube mode1 of Dagan and Bresler ( 1983). 

2. A new analytical solution for transient water storage for a fmed depth under constant 

water flux was presented. The solution allows general soi1 hydraulic huictions to be 

used and can be used directly to interpret the readings of vertically installed TDR 

probes. Therefore, the solution is directly applicable to the field method to measure 



hydraulic properties. 

3. Inverse procedures for identification of hydraulic parameters fiom measurement 

during transient infiltration were developed. The uniqueness and stability of the 

inverse problem from measufed water storage to a fixed depth during constant flux 

infiltration and y measurements at initial and steady state were evaluated. The 

procedure was unique and stable and was applied to a tield soil. The estimated 

parameters from the inverse problem were very similar to the parameters estimated 

fiom the in situ measured hydraulic properties. 

4. The influence of hysteresis in hydraulic parameter identification was evaluated fkom 

transient infiltration and drainage rneasurements and predictions. A Hainess Jump 

model of hysteresis was presented. Combined with the prediction model of Parlange 

( 1976) and Mualem ( 1984). the proposed model successfully predicted the soi1 water 

storage during drainage fffrorn parameters estimated from infiltration. 

5.  A unified stochastic analytical solution was developed for transient infiltration and 

drainage of water in heterogeneous soils. The influence of the average, variance, and 

integral length scale of Ks and a, on the average. variance, and integral scale of 

ûansient soil water content and storage are examined. The average soil water storage 

to a fked depth, (W), in a heterogeneous soil is identical to that of a homogeneous 

soi1 with soil hydraulic properties equal to the means of the hydraulic properties in 

the heterogeneous soil. The variance of soil water storage to a fixed depth, however, 
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depends on (W) and variances of soil hydraulic properties. This dependence changes 

with tirne, water flux density. and cross-correlation of the soil hydraulic properties. 

The integral scale of W(L,t) is time-independent and can be approximated by the 

i n t ep l  scaie of log Ks during infiltration and is tirne-dependent and varying 

between the integral scale of Log Ks and the inverse capillary length scale a for 

drainage. For in filtration, the spatial1 y variable, but temporally constant surface 

water flux as found in chapterl has no significant influence on the mean or variance 

of water storage. 

Future Research Needs 

Measurement of soil hydraulic properties is fiindamental to modeling hydraulic 

processes and evaluating models existing and under development. Numerous methods have 

been proposed to estimate the hydraulic properties of the unsaturated zone. Since soil 

hydraulic properties have strong spatial variability, information regarding the spatial 

statistics such as the mean, variance, covariance. and cross-covariance among soil hydraulic 

properties is critical for accessing numencal or analytical, deterministic or stochastic models. 

Future study should be conducted to use the inverse procedure presented in Chapter 3 to 

estimate those spatial statistics. Inversion of stochastic solutions to the flow problem like the 

one presented in Chapter 6 provides another alternative. Stochastic inversion may need 

fewer field measurements and lessnumencal computation. In addition, the calculation of the 

spatial statistics of hydraulic properties is straight fonvard. Future research should focus on 



evaluating the uniqueness and stability of the inversion of the stochastic solution and 

examining the correspondence with the methods provided in Chapter 2 and Chapter 3. 

Chapter 2 indicated that onedimensional f los  was a good approximation to constant 

flux infiltration in field conditions. However. future work should examine the 

correspondence of hydraulic properties estimated using 1 -dimensional methodology with 

those obtained from the 2-dimensionaI Iine source (at the sarne site). 

With the spatial statistics known, effort should be made to understand the physical 

mechanism for the spatial redistribution of applied flux density d u h g  constant flux 

infiltration as shown in Chapter 2. The relation between the flux density at each individual 

column and the hydraulic properties may be established through correlation and spectral 

anal ysis. 

Sirnilar to water redistribution at the surface. resident solute mass also redistributes 

during water flow. Jury and Scotter (1994) posnilated that there are two mechanisms; 

(1)The solute mass redistribution is proportional to the local flux, thus solute flux 

concentration is everywhere the same in the field.(2) The solute is uniformly redistributed 

on soi1 surface, such that each individual column receives the same amount of solute. Those 

assumptions, elegant and theoretical l y appealing, remain io be tested. With the method of 

measuring soil water flux density in Chapter 2 and the method of measuring solute flux 

(Kachanoski et al., 1992), along with the data base for soil water flux during infiltration and 

solute flux (not s h o w  in this thesis), the relations benveen the solute mass redistribution and 

soil water flux density should be examined through cross-covariance among soil water flux 

density and solute flux density in each individual column. 
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APPENDIX 1 

Format of file containing rneasured soi1 water storage to depth 20 cm fkom the surface 
measured by b-ertically-installed TDR probe with length =20 cm during constant flux 
infiltration (R=0.9cm/hr). 

Location No. 
time 
(min) 

O 
27 
81 
141 
209 
266 
316 
376 
434 
496 
612 
667 
731 
801 
871 
1006 
Il66 
1281 
1366 



APPENDIX II 

Format of  file containing measured soi1 water pressure head at depth 20 cm from the 
surface measured by venically-installed multipurpose TDR probe with length =20 cm at 
steady-state infiltration (R=0.9 c m h )  

location 



Format of file containing rneasured soi1 water storage to depth 20 cm from the surface 
measured by vertically-installed TDR probe with length =20 cm during gravity drainage 

location 
timethr) 1 2 3 4 5 6 7 8 9 

0.00 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 
0.02 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 
0.40 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 
0.83 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 
1.32 6.67 6.67 6.67 6.67 6.67 6.67 6.67 6.67 6.67 
1.90 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 
2.02 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 
4.70 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 
9.92 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 

22.37 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 
47.20 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 
94.87 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 

190.95 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 
270.62 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 
505.10 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 

1177.37 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 



APPENDIX IV 

A SAS program for fitting Broadbridge & White fom of hydraulic functions to rneasured 
K(0) and y@) data. 

DATA FILE L ; 
INFILE 'KH-S.txt'; 
INPUT ID $ theta HK ; 

PROC NLIN METHOD=DUD SMETHOD= CUBIC converge= 1 E-10 MAXITER=300; 
PARMS C= 1.1 alpha=O. 1 b 9 . 0  thetas=0.42; thetarO.05; 
psiO=O.O; 

S=(t heta-t hetar)/(thetas-thetar); 
if %=O then S=O.OO 1; 
IF S>=l then S=l; 
weight= 17.2; 
IF ID='h' THEN DO; 
MODEL HK= l/alpha*( 1 -S)IS+ I/C/alpha*log((C-S), 
END; 
ELSE IF ID='k' THEN DO; 
HK=HK*weight; 
MODEL HK=Ks*SfS*(C- l)/(C-S)*weight; 
END; 

BOUNDS 1 -0 1 < C ~20.1; 
BOUNDS 0.0 1 calphacO.6; 
BOüNDS 3<Ks< 150; 
BOUNDS 0.26<thetas<=O.95; 
OUTPUT out=est parms-C alpha Ks thetar theias SS E=s P=predict; 



APPENDIX V 

A SAS program for fitting van Genuchten fom of hydraulic functions to measured K(8) 
and ~ ( 8 )  data. 

DATA FILE 1 ; 
INFILE 'K-H-S.tutl; 
iNPUT ID $ theta HK; 

PROC son; BY ID theta; 

PROC NLM METHOD=DUD best= 10 G4 m a ~ i t e ~ 3 0 0  converge 1 E- 15; 
PARMS n=2.2 alpha=(). 1 Ks=7.24 thetas=0.42 rn4.2; 1=2;thetar=0.05; 

weight= 1 7.2; 
S=(theta-thetar)/(thetas-thetar); 
IF S<=O THEN S=0.00 1 ; 
IF S>=I then S=0.999; 
IF ID=%' THEN DO; 

MODEL HK=(S**(- 1 im)- 1 )**( 1 ln)/alpha; 
/** DER.alpha=-(S**(- l/m)- 1 )**( l/n)/aIpha/atpha; 

DER.n=-(S**(- 1 /m)- 1 )**( 1 /n)/alpha/n/n*(log(SC *(- 1 lm)- 1 )- 
log(S)/n/m/m*S**(- 1 /m)/(S**(- l/m)- 1 ));**/ 

END; 
ELSE IF ID=%' THEN DO; 
HK=HK*weight; 
Y=I-S**( l/m); 
MODEL HK=weight*Ks*S**l*( 1 -Y**m); 
I**DER.Ks=S**I*(I-Y**m)**2*weight; 
DER.n=-Unln*Ks*S**l*( 1 -Y **m)*Y **m4(log(Y)+( 1 -Y)/m/Y *log(S))*weight: 
DER.1=Ks*S**lt( 1 -Y **m)**2*log(S)*weight;**/ 

END; 
BOUNDS 1 .O 1 <ne 100; 
BOUNDS 0.0000000 1 <alpha4 ; 
BOUNDS 0.0 1 <Ks<200; 
BOUNDS 0.25<thetas<0.6; 
OUTPUT out=est parms=n alpha Ks thetar thetas SSE=s P=predict; 

DATA -NULL-; 
FILE FN 1; 
FILENAME FN 1 'parms-BW.dat9; 

PUT n -2 alpha -3 Ks -2 thetar 0.2 thetas 0.2 s; 



APPENDIX VI 

A SAS program for estimating hydraulic parameters of Broadbridge & White fom of 
hydraulic functions from measured water storage data during constant flux infiltration or 
drainage. 

DATA FILE 1 ; 
CNFILE 'infil2.txt'; 

W P U T I D $ T W ;  
if lD="w" then do; W=W*20; 
T=T/6O;end; 

PROC NLM METHOD=DUD SMETHOD- CUBIC maxite~200 converge= I E- IO; 
PARMS alpha=0.09 Ks=5 C= 1.5 thets=0.4 1 ; 
weight= 1 ; 
L=30 ; 
Q= 1.59; 
thete=O. 1 2; 
thetr-0.05; 
theta=(thete-thetr)/(thets-thetr); 
Rs tar=Q/Ks; 
Tstar=T*alpha4Ks/(thets-thetr); 
mc=4*C*(C- 1); rho=Rstadmc; t a ~ ~ c * T s t a r :  
lambda=rhos(rho+ 1 ); 
IF ID='wl then do; 
zeta= 1; Z I = l  ; Z d e ~  1 ; Toi= le-S;/** convergence critenon for Root * * /  

/* Calculate Matric Flux Potential for BW Variable V=O */ 
UO=rxp(lambda*tau); 

/* ---- 
The following program used The Newton-Raphason Method to Find the 
parameter V which appears on the original Broadbridge & White Solution, 

---*/ 

DO WHILE (ABS(Z1) gt 0.00000 1) ; 
/*Criterion for Convergence of Newton MethodV 

/*--The folowing variables are the intermediate variables for the matric flux 
potential U **/ 

AO= 1 +Z*rho-C/(C-theta); 



4 1 =zeta/sqrt(tau)-sqrt(larnbda*tau): 
AZ=zeta/sqrt(tau)+sqrt(lam bda* tau): 
B 1 =-0.5*AO*sqrt(tau)-zetalsqrt(tau); 
B 2 - O S *  AO*sqrt(tau)+teta/sqrt(tau); 
IF A 1~3.5 then DO; FAl=exp(A 1 *Al)* ERFC(A 1); MD; 
ELSE DO; FAI=(l-1/2/Al/AI+3/4/AllA1/A1/Al 
- 5/8/A1**6+7/16/A1**8)/Allsqrt(3.14); 
END; 
IF A2~3.5 then DO; FAZ=exp(A2*M)*ERFC(At);END; 
ELSE W; FA2=( 1 - 1 /(2*A2*A2)+3l4fA2/AUAuA2 
- 5/8/AZ* *6+7/ 16/A2**8)/AUsqrt(3.14); 
END; 
IF BlC3.5 then DO; FBl=exp(BI*BL)*EWC(B 1);END; 
ELSE DO; FB~=(I-~/(~*BI*B~)+~~~IB~/B~IB~/BI 
-5/8/B 1 **6+7/ 16/B & **8)/B llsqn(3.14); 
END; 
IF BZc3.5 then DO; FB2=exp(BZ*BZ)*EWC(BZ);END; 

ELSE DO; FBZ=(l- 1/(2*BZ*B2)+3/4/BUBUBUBZ 
-5/8/B2**6+71 1 6/B2**8)lBUsqrt(X 14); 
END; 
U=0.5*exp(-zeta*zeta/tau)*(FA l+FA2+FB 1 -FB2); 

DU=exp(-zeta*zeta/tau)*(sqrt(lambda)*FA2+û.5 * AO* FB2-sqrt(lambda)*FA 1 + 
+OS*AO*FB 1); 

I*-- Calculate the dimensionless Depth Z 1 and its Derivat ive for NR--*/ 

zeta=zeta-Ratio; 
END; 

MODEL W= l/alpha*(thets-thetr)*(2.rho*zeta+LOG(UON))+~etr*L; 
- WEIGHT--weight; 
END; 
ELSE IF tD='h' THEN DO; 
S=(T-thetr)/(thets-thetr); 
MODEL W= Ilalpha*( 1 -S)/S+ 1 lalphalC*LOG((C-S)IS/(C- 1)); 
- W EIGHT-=weight/S; 
END; 
ELSE IF ID='k' THEN DO; 
MODEL W=Ks*(C- 1 )+(u-thetr)/(thets-thetr))**2/(C-(T-thetr)/(thets-thetr)); 
- WEIGHT - =weight; 
END; 



ELSE IF ID='pi THEN DO: 
hl ODEL W-*ets* U9; 
END; 

BOüNDS 1-01 <C<60.1; 
BOüNDS 2.590 <Ks< 15; 
BOUNDS 0.0 1 calphac0.9; 
OUTPUT out=est parrns=C alpha yy SSE=s P=predict; 
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