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ABSTRACT

Rate [/2 systematic recursive convolutional codes over integer rings modulo-q are
investigated for their performance. The investigation examines the performance in
severe fading and additive white Gaussian noise for codes with various constraint
lengths. The arithmetic for the codes is modulo-q. where the value of ¢ is within the
range of 2 to 16. An exhaustive search is carried out for codes with short constraint
lengths. A reduced search is developed for larger constraint lengths which restricts
the tap polynomials to irreducible polynomials over Z,. The irreducible polynomials
are generated and the ones not found in the literature are presented in tables. The
search algorithms are outlined and the results for the codes are tabulated.

The performance of selected codes are verified by Monte-Carlo simulation tech-
niques. Several codes have better performance than comparable codes presented in
the literature for the Ravleigh fading channel. In sme of cases. the codes found have
better performance on the AWGN channel than the best known ring codes.

The characteristics of rotationally invariant (RI) ring codes presented in the lit-
erature are used in an exhaustive search for codes over Z, which are invariant to
phase shifts of 27/q. Tables of RI codes optimized for the Rayleigh fading channel

are presented along with codes which are optimized for the AWGN channel.
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Chapter 1

Introduction

In 1943. Claude Shannon published ~A Mathematical Theory of Communications™
[1] in which he demonstrated that reliable communication could be achieved over a
noisyv channel. Proper encoding of the information and a transmission rate less than
the channel capacity are required to achieve reliable communication of information.
Absent from his work was a method for constructing good codes. This started an
area of research to find good codes and methods to construct these codes. The
problem is to find an encoding/decoding strategy which adds the minimum amount
of redundancy. and can meet the error performance and delay requirements of the
svstem.

Traditionally. coding theorists have developed Forward Error Correcting (FEC)
codes with a lot of structure. which lends itself to efficient decoding strategies. In
many cases. the arithmetic for these codes is over an algebraic structure known as
a Galois field [30]. A Galois field is the basis for several well-known codes such as
the binary BCH codes [38] and Reed-Solomon codes [36]. In these cases. a number
of information symbols enter the encoder and redundant symbols are added to form
a codeword. The codeword is transmitted and the receiver decodes the codeword
independent of previous or future codewords. This tvpe of coding is called block
coding.

Another type of coding is convolutional coding. This tvpe uses a finite state
machine which adds memory into the information sequence to form a coded output
sequence. Each state has a defined output for a specific input symbol. The cur-
rent state is dependent on all previous inputs and the starting state of the encoder.
The coded output sequence is transmitted and the receiver observes the noisy coded

sequence and uses the input-output relationship of the encoder to estimate the infor-
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mation sequence.

In both cases. the distance spectrum between codewords for block codes. or coded
sequences for convolutional codes. will define the performance of the code. Here.
distance spectrum means the set of all possible distances between codewords or se-
quences. The choice of the distance metric depends on the channel that the system is
transmitting on and the code used. For block codes. a common distance metric is the
Hamming distance between codewords. For convolutional codes operating over the
additive white Gaussian noise (AWGN) channel and utilizing a soft-decision decoder.
the metric is the Euclidean distance between the code sequences. [f a hard-decision
decoder is used then the Hamming distance is used. The symbol or bit error perfor-
mance of the codes at high signal-to-noise ratios (SNR) is determined mainly by the
minimum distance. However. at lower SNR other terms in the distance spectrum will
contribute to the error rate of the syvstem.

On a mobile radio channel. the user’s signal is affected by multi-path fading where
the received signal power fluctuates due to additive and destructive interference from
multiple delaved copies of the transmitted signal. In severe fading. it has been shown
for trellis coded modulation (TCM) that the product distance is the correct metric
to maximize along with the symbol distance [20]. In TCM syvstems. the signal set
is expanded. The signal set expansion provides the redundancy necessary for coding
[17]. The symbol distance is the number of symbols along an error path which differ
from the correct symbols.

Ring codes utilize arithmetic over an integer ring. This can be applied to both
block and convolutional codes. This research seeks to find good convolutional ring
codes which can operate in the fading environments of both the mobile satellite and
mobile terrestrial channels. The terrestrial cellular channel is subjected to Rayvleigh
fading since no direct path between the mobile and the base station usually exists.
The mobile satellite channel is subjected to shadowing and fading [55]. For Low Earth
Orbit (LEO) and Medium Earth Orbit (MEQ) satellites. the channel statistics can
change rapidly as the satellite moves with respect to the user [32]. As the channel
can change quickly. it is necessary for the codes to perform well in severe fading as
well as on the AWGN channel. To satisfy these requirements. we first maximize the

effective length and the squared product distances of the codes and then from this
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set of codes we find the codes with maximum squared Euclidean distance.

1.1 Related Results

Boztag et al. [10] introduced two families of i-phase spreading sequences. (One of
the families had first been discovered by P. Solé [41] unbeknownst to Boztas et al.).
These families have lower cross-correlation value than binary sequences. This fact is
interesting because: the sequences were designed using rings rather than Galois Fields.
and they are formed with a linear feedback shift register using modulo-4 arithmetic
[43]. The sequences prior to mapping onto a QPSK modulation forms a linear cyclic
quaternary code. As the sequences have low correlation values they also have large
minimum Euclidean distance indicating a potential for use in error-correction coding
[43].

Hammons et al. [44] showed that several non-linear cvclic binaryv codes. such as
Nordstrom-Robinson. Kerdock. and Preparata codes. are linear in Z, (the integers
mod4). The modification from the classical theory is to view the codes as ideals in
polynomial rings over a ring of integers modulo 4 rather than over finite fields. This
is of interest as linear codes are easier to decode than non-linear codes.

Given Hammons et al. [44] results in cyclic coding. and working in rings. the
question naturally arises if good codes can be found by working in integer rings
modulo-q for an arbitrary ¢ and mapping the g-ary svmbols naturally onto a ¢-PSK
modulation set. There are several benefits in using these codes. One benefit is that
no special circuitry is required in modern computers and digital signal processors
as thev are well suited to modulo-g arithmetic. Also. a ring code requires no set
partitioning as does trellis coded modulation [3]. Ring codes can be made systematic.
i.e.. separating the information symbols from the parity symbols which is impossible
when using trellis coded modulation [17].

Although this dissertation is concerned with convolutional codes. there are sev-
eral papers of interest for block ring codes. Shankar [46] presented BC'H codes over
arbitrary integer rings. In papers by Blake [31. 13] ring analogs of Hamming. Reed-
Solomon and BCH codes were presented for certain rings. He suggested that a g-arv

communication channel might be better for computers to communicate than a binary
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one. When computers are capable of g-ary logic. utilizing a g-arv code would seem
to be a natural choice. A good introduction on block coded modulation over integer
rings is presented in Baldini and Farrell [2]. The rings presented were Zy. Zs and Z .
In Chen [28]. 6 PSK ring codes are made up from a linear binary and a linear ternary
code.

For convolutional codes. there have been many recent papers using convolutional
coding over integer rings. Ring coded Continuous Phase Modulation (CP\) was con-
sidered in Rimoldi and Li [14] and Yang and Tavlor [15]. They both used an encoder
and a continuous phase modulator with the same arithmetic. thus eliminating a bi-
nary to M-ary mapping. Yang and Tayvlor worked with Continuous Phase Frequency
Shift Keying (CPFSK) and obtained significant coding gains over previous work in
coded CPFSK. Rimoldi and Li compared their results with binary codes with the
same complexity and found that using codes over rings can improve the performance
of many coded CPM systems [14]. They also found it was beneficial to feedback the
state information from the modulator to the encoder [14]. By utilizing this feedback.
they were able to achieve a small coding gain over a non-feedback coded syvstem.
Karam et al. {16] used trellis coded CPFSK over rings for quaternary and octary
modulations and showed that ring-coded CPFSK techniques outperform previously
known coding approaches.

[n Baldini and Farrel [3] coded modulation using convolutional codes was pre-
sented. They searched for syvstematic rate 1/2. 2/3 and 3/4 codes for 4. 3. and 16
PSK. respectively. Massey et al. [3] also considered systematic convolutional codes
over Z,. In fact both of these papers choose g to be a power of 2. The choice of a
power of 2 allows for an easy mapping from a binary information source onto a ring
(i.e.. an integer number of bits define the ring symbol). Massev et al. presented [3]
convolutional codes for Zg and Z .

Baldini and Farrel [3] and Mittelholzer [6]. searched for rotationally invariant
codes. These are beneficial as no absolute phase reference is necessary at the receiver
allowing for a less complex receiver and a large number of errors are avoided if the
channel has slow phase rotations.

Baldini and Farrel in [2. 3] worked on coded modulation using ring codes. Trellis

Coded Modulation (TCM). proposed by Ungerboeck [17]. showed that the system
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could achieve a significant coding gain by expanding the number of modulation signals
and designing the code considering the actual channel and modulation to be used. The
development of TCM in [17. 18. 19] considered the Gaussian channel. Divsalar and
Simon [20. 21] showed that the performance criteria for the code design are different
on fading channels. In fading channels. the product trellis and the minimum effective
length [20] dominate the asymptotic performance of the code. Using these criteria.
TCM codes for fading channels have been found or constructed. A good overview of
the work done on coded modulation for fading channels can be found in Jamali and

Le-Ngoc [32].

1.2 Contributions

In this dissertation. we present the results of an exhaustive and reduced search for
ring codes suitable for severe fading environments. The codes and their characteristics
are presented.

Based on previous work from Baldini and Farrell [3] and works from Masseyv and
Mittelholzer et al. [5]-[11]. for good codes on the AWGN channel. we search for
systematic recursive convolutional codes which perform well in a fading environment.
The codes with maximum effective length and squared product distance to achieve
good performance in Rayleigh fading are found. From this set. we then search for
codes with maximum squared FEuclidean distance. as this affects the performance on
the AWGN channel and is a factor at low signal-to-noise ratios.

Also. codes optimized for the AWGN channel are included for means of comparison
with the performance of the codes designed for fading. The AWGN codes perform
well on the AWGN channel and in some cases better than the fading codes at slow
signal-to-noise ratio.

An exhaustive search is carried out over codes with short constraint length. A
reduced search is then carried out over longer constraint lengths. Irreducible poly-
nomials over Z, where g is a non-prime number were found and used in the reduced
search for codes suitable for fading.

The polynomials may be useful for the development of cvclic codes over Z, and

are presented in Appendix A.
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1.3 Thesis Outline

In Chapter 2. fundamentals of rings and an introduction to the digital communication
svstem are presented.

Chapter 3 presents the exhaustive search algorithm and tables of the codes found
and their characteristics. A reduced search is necessaryv as the time required for an
exhaustive search becomes quickly impractical for longer constraint lengths and larger
values of ¢q. The development of the reduced search is described and the codes found
are presented. The exhaustive and reduced search algorithms were designed to search
for codes suitable for fading environments: however. they were also designed to find
codes which were optimal on the AWGN channel. These codes are also presented in
Chapter 3.

In Chapter 4. the simulation model for the svstem is presented. The coded syvs-
tem is simulated to verify the performance on the Rayvleigh fading channel. The
performance of the codes found here are compared with known codes from the liter-
ature. Also. we compare the performance difference between the codes designed for
the fading channel and codes designed for the AWGN channel.

In Chapter 3. the results of a search for rotationally invariant codes are presented.
The codes are compared with codes from literature as well as codes found in Chapter 3.

Chapter 6 contains concluding remarks and suggestions for future investigations

based on the results presented in this dissertation.



Chapter 2

Fundamentals

2.1 Introduction

This chapter will introduce convolutional ring coding. the system diagram of the
digital communication system and some of the distance measures. In Section 2.2. we
introduce some basic definitions and properties of rings which will be used in later
chapters. In Section 2.3. a svstem description and an overview of how the ring codes
will fit into the system is given. [n Section 2.4 we introduce convolutional ring codes
for MPSK modulation. The distance measures which define the performance over

Gaussian and Fading channels are presented in Section 2.6.

2.2 Rings

A ring is an algebraic structure consisting of a set of elements R and two binary
operations: addition and multiplication. such that for all elements a. b and cin R

e addition is associative. i.e. (a +b}+c=a + (b+ c).

e addition is communitative. i.e. a + b = b + a.

e there is an element ry in R. called the additive identity. with the property that
re+a=a+rg=a forall ain R.

e each element a in R has an additive inverse. —a. such that ¢ + (—a) = —a+a = rq.
e multiplication is associative.

e multiplication is distributive over addition. i.e. a(b+ ¢) = ab+ ac and (a + b)c =

ac + be.
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Addition of an additive inverse is called subtraction.

An element. a. in an arbitrary ring R. is called a un:t if there exists another
element b. such that ab = ba = 1. The element b is called the multiplicative inverse
of a and can be written a™'. An element a € R is called a zero divisor if there exists
another non-zero element b # 0 such that ab =0 or ba = 0 [34].

In Z,. an element is a unit only if it is relatively prime to the modulus q. When q is
a prime number. all elements are units and have multiplicative inverses and therefore
division is defined. Then Z, is a field [34].

As an example of rings . consider the ring of integers Z. For any two elements: a
and b. we see that ab.a + b € Z. Now let us denote Z, as the integer residue ring.
[t consists of the set {0.1..... q — 1} and all addition and multiplication is carried
out modulo-g. Any integer ¢ can be represented by r + tq. and as the arithmetic is

modulo-q. it is said that ¢ is congruent to r. or
c = rmod q. (2.1)

We now consider the ring of polvnomials denoted as R[r] with coefficients in R.
R is a finite commutative ring with multiplicative identity 1. The leading coefficient
(trailing coefficient) of a non-zero polynomial is the coefficient of the largest (smallest)
power of r whose coefficient is non-zero. I[f a(x) and b(x) are polvnomials and if the
leading coefficient of b(x) is a unit in R. then there exist unique polynomials ¢(x) and
r(x} such that a(x)=q(x)b(x)+r(x) and deg[r(r}] < deg[b(r)] [9].

For the ratio of polyvnomials a(.r)/b(r) to be a rational function. the trailing coef-

ficient of b(r) must be a unit in R [9].

2.3 System Description

The system block diagram is shown in Fig. 2.1. The input to the convolutional
encoder is a sequence of g-ary svmbols. The encoder convolutionally encodes at a
rate of &/n where k& and n are the number of input and output symbols. respectively.
per encoding interval. The n encoded symbols are mapped onto an MPSK signal set.
Here. there is a natural labelling of the signal points of MPSK by elements of the

ring. 0.1.2..... q — 1. In other words. the g-arv symbol [ corresponds to the MPSK
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signal. s; by

q

where i = \/—1. Note. that ¢ must be equal to the number of signal points in the

-
S| = exp (:) . (2.2}

constellation (i.e.. ¢ = M). The sequence of coded svmbols can be represented by
I =JIgiro2..--Lon-Li1l2---Lipeee - INIITN2---. TN oo - (2.3)

The encoded sequence r is then interleaved and transmitted over a channel. In the
channel. the sequence is subjected to fading and AWGN. The receiver deinterleaves
the encoded symbol sequence and decodes the information by applying a soft-decision
Viterbi decoding algorithm [35].

The Viterbi algorithm combined with convolutional codes works well only when
the channel errors are independent. However. on a mobile fading channel. amplitude
fades will produce bursts of channel errors. Interleaving is used to scramble the order
of the coded sequence before transmitting it over the channel. After deinterleaving
{descrambling) a burst of channel errors is broken into several smaller bursts or ideally
independent errors. There are several methods of interleaving: block. convolutional
and pseudo-random [38. 39]. Throughout this document. we will consider the case
that the interleaving is ideal and that the channel is memorvless. This results in the
fading amplitudes being independent between symbol intervals. We assume that the

fading is slow enough to be considered constant over one channel symbol interval.

2.4 Convolutional coding on Z,

This section introduces the rate 1/2 convolutional encoder over Z,. that is studied in
this dissertation.

Following the nomenclature presented in [3]. the codes are defined as G(D) where.
GDy=[1 g(D)/f(D) ] (2.4)

Here g(D) = ¢, D° + g1 D*"' +..q1D+go and f(D) = fD*+ foo 1 D> + ... /ID + fo
define the feedforward and feedback taps as shown in Figure 2.2. The boxes are
delay elements that delay a g-arv symbol by one clock cyvcle. The circles with a

coefficient inside denote modulo-q multiplication and the = elements denote modulo-¢q
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Fading
Channel

Data Convolutional MPSK
Source Encoder —  Modulator |—{ [nterleaver
Demodulator
Data Viterbi .
Sink Algorithm g~ Deinterleaver
Channel
Estimator

Figure 2.1. System Model

Y
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a]

Figure 2.2. Block Diagram of the encoder defined by G(D) of Eq. 2.{

addition. The codes will be defined throughout this dissertation by the tap polynomial

coefficients from G(D). (i.e.. gsgs—1..-90/fsfs=1--- fo )-
As an example. consider the code defined by g(D) = D + 1 and f(D) = 2D + 1

over Zs (11/21 code). The generator matrix is defined as:

[V

G(Dy=[1 12£1] (2.3)

2D+1

and the encoder is shown in Figure 2.3. The input. output and state transition
information for this encoder are presented in Table 2.1.

The codes examined here are systematic. which means that the information symbol
appears unaltered in the output of the encoder. Systematic codes are considered to
eliminate the possibility of finding a catastrophic code. A catastrophic code has error
paths that are a finite distance from the correct path but have an infinite number of
errors. With this characteristic a small amount of noise can cause the decoder to lose

the correct path and never recover and thus. continue to output incorrect symbols.

2.5 MPSK signal set

The MPSK signal constellation is shown in Fig. 2.4. A benefit in the code design using

this modulation scheme is the convenient mapping between the squared Euclidean
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a X1
AL
D U1

Figure 2.3. FErample of the 11,21 encoder over Z;

Table 2.1. State description of the 11/21 encoder over Zy

[nput | State, | State.y; | Output{r,.r;)
0 0 0 00
l 0 l 11
2 0 2 22
0 | 1 01
l 1 2 [2
2 1 0 20
0 2 2 02
l 2 0 10
2 2 1 21
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Figure 2.4. MPSK Constellation

distance and the modulo-q difference of their squared Euclidean weight [6]. Consider

two g-ary svmbols a and b. which are mapped onto an MPSK signal set by Equation

2.2. The squared Euclidean distance between the two signal points is given by d?(a.b)

where

df(a.b]

I

)

7
=

Here. w(-) is the squared Euclidean weight of a symbol.
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2.6 Performance Estimates

In this section. we use performance estimates from the literature to introduce the
parameters that affect a code’s performance on the AWGN and fading channels. In
Section 2.6.1. the uncoded performance of the modulation is given for the AWGN and
Rayleigh fading channel. These formulas will be used to determine the coding gain
achieved by the coded system over the uncoded system. In Section 2.6.2. squared free
distance d7,,,. and the asymptotic gain of the coded system over an uncoded system.
are introduced. In Section 2.6.3. the development of the performance estimate of the
coded system on the Rician fading channel is shown. The definition of the parameters

which affect the performance on the fading channel are presented.

2.6.1 Uncoded Performance

The symbol error rate of MPSK on the AWGN channel with a amplitude gain of p is

approximated for high signal-to-noise ratios by [32]

2F, -
P, = 2Q !:p‘/ bmfl—[}J (2.7)

where the energy per symbol is E; = log, M R.Ey. E} is the energy per bit. M is the

number of modulation signals in an M-ary PSK modulation. R. is the rate of the

1 > t3
Q(r):;:/ e\p( )dt (2.

Equation 2.7 can be written in terms of £5/.\p as

encoder used. and

(V]
oL

2mR.~ T )} (2.9)

~ ) —_—
Povlp) = 2Q [ N = sin( - i
where m = log, M and 4, = E,/.Ng. In Rayleigh fading. the uncoded symbol error
rate can be calculated by averaging the conditional probability with respect to the
fading amplitude p [32] over the Rayleigh density function.
The density function of Ravleigh fading is
P P’ ,
poip) = a—g'exp (—F) (2.10)

2
o
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here. for the normalized case we set E[p*] = l. which results in o] = 1/2.

After averaging Equation 2.9 over the normalized Rayleigh fading. the symbol

error rate is given by [32].

I m R~y sin( /M)

)
V l -+-/nR,:-‘.,,5in-’(,-,—/.\[)‘ (2.11)

Py =1-—

This equation was used to calculate the uncoded performance for MPSK modulation
to obtain the coding gain of the coded syvstem. The coding gain is the the difference
in E,/Ng. between the coded and uncoded (or reference) systems. required to achieve

a given syvmbol error rate (SER) or bit error rate (BER).

2.6.2 Performance in AWGN

An error event occurs when the transmitter sends the symbol sequence. r and the
receiver decides & where r # . The minimum error event is defined as the error
event with the smallest distance. At high SNR. the performance of the code can be
approximated by the distance of the minimum error event. In AWGN. the appropriate
distance measure to maximize is the Euclidean distance. The squared Euclidean

distance of the minimum error event is defined as

] , <2 . R
free = Z|‘rn—l'n! (-2~1—))
nen

where the set n is the set of all n along the minimum error path such that r, # r, .

The asyvmptotic gain in dB on an AWGN channel is given by [3]

lOg "[f ([_.;’ree c
= o . - PR
g?\'. ]'0 I()Olo [log -‘[" RL d"}rff'u (—']- ;)

where R. is the coding rate. M.. M, and d%,,, ..d},,, . are the number of modulation

signals and the d%,.. of the coded and reference system. respectively.

free

2.6.3 Performance Estimate for the Rician Channel

Maximizing d%,,, is effective on the AWGN channel. However. in fading. the product

distance and the effective length of the code (also known as the minimum symbol



2. Fundamentals 16

distance) are important parameters [20]. Here. we include sections of the development
n [20]. to develop the code search criteria for codes over fading channels.
Consider the M-aryv convolutional encoder shown in Fig. 2.1. The signal received
at the decoder is
Fe = S T e (2.14)
where s; is the MPSK signal. p, is the amplitude of rhe fading process and n, is
additive white Gaussian noise with spectral density of Ng/2.

For Rician channels. the density function of p is denoted by
po(p) =2p(l + R)exp [—([\. +0°( AN (/A1 + A))Y. (2.13)

where K is the ratio of energy of the direct component to the energy in the diffused
multipath component. [y(-) is the zero-th order modified Bessel function of the first
kind. i.e..

1 2=

lo(r) = 5= J exp(r cos t)dt. (2.16)

The decoder’s metric after observing [ coded symbols is

!
m(r;.sp:pr) :ZInp_\;(rils,.ﬁ,). (2.17)

i=1

where p; is the estimate of the fading amplitude at time /. The decoder will make

an error if it decides §; = (§,.82....8) when s; = (s(.s3.....5) was sent. The

probability of this occurring is known as the the pairwise error probability and this
is denoted as Ps(s.3;).

For the case with ideal C'SI where the fading amplitude estimates are always

correct (i.e.. py = p¢}. the metric can be expressed as

m(r..sip0) = =lri = pis.|? (2.18)
The decoder incorrectly decides §; if

m(r. $izpt) 2 m(risipr). (2.19)
The pairwise error probability is given by

.)1 b[ Z[P) o[ o(lp{ ] (220)
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where
P—_)(S[.édpz) = P[m(r;. Siipr) 2 m(rl.s,-:p‘-)]. (2.21)
is the conditional pairwise error probability conditioned on the fading amplitude p;.
Using the Chernoff bound technique the conditioned pairwise error probability

averaged over the Rician density function is given by [20]

|l + A —[\-ﬁ;m - 3,07
(s1.31) < H —5 exp | ——— ,, (2.22)
i 4_\.0‘5,- — 502 l+ A+ 4—\-0-] 5. ]2

At high SNR. Equation 2.22 can be simplified to

i ((1+ A)e ™)k
P) S[.S <
2sL.se) < ()LL)

(2.23)

where c[;: = [Le, |3 — &if*. Lis Lg. n is the error event with the minimum number of
svmbols which differ from the correct path. L = [,z is the effective length of the code
and is defined as the minimum number of differing svmbols along any error path.

We introduce the notation of squared product distance and define it for two symbol

sequences as
prod‘rl]_Hl“r'!—-rnl (2.24)

nen
where the set 5 is the set of all n where r,, # I,.
Using the pairwise error probability developed in Equation 2.23. we can upper

bound the error probability on the Rician fading channel for high SNR as

P <Z Z prori( ')))

ln q-rud“q)

(1 + R)e R

\ )1 prod([n).

where a((l,).d>,,;([;)) is the average number of code sequences having effective length
l, and squared product distance d},,, and A’ is the ratio of power in the direct path
to the power in the multipath [32]. The asymptotic performance of the code is

approximated by the term with the smallest &2, and l.g.

((1+l\') -RyL
(p )2 (L)

((L) prod(L))

No
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Note that error rate is proportional to

where Es/-\'o is the average signal-to-noise ratio (SNR). and L = [.5 is the minimum
number of differing symbols along an error path. In an uncoded system. [z = 1
is typical. Thus. large gains could be achieved by maximizing the l.g of the code.
This being the case. we seek to maximize d?_; and [z for the class of codes under

pro

investigation.

2.7 Summary

[n this chapter. we introduced some of the fundamental definitions and performance
criteria that will be used in later chapters. In Section 2.2. definitions for rings and
arithmetic on rings were given. The overall digital communication system was pre-
sented in Section 2.3. Definition and an introduction to the class of codes to be
considered were presented in Section 2.4. In Section 2.6. the distance measures. per-
formance estimates and the parameters that affect the codes’ performance on fading

and AWGN channels were presented.
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Chapter 3

Some Rate 1/2 Convolutional Ring
Codes

3.1 Introduction

[n this chapter. the search algorithms are described and results are presented. An
exhaustive search was carried out for short codes. However. this search technique is
intractable for large rings and longer constraint lengths as the number of states and
paths. that must be considered. increase exponentially. A reduced search algorithm
searches over a subset of the possible codes. The reduced search criteria were devel-
oped from theory as well as empirical data from the partial results of the exhaustive
search.

Rate 1/2 systematic codes are considered here to eliminate the possibility of find-
ing catastrophic codes as well as to reduce the number of candidate codes. Codes
with fo = L in the feedback polvnomial f(r) are considered. This condition ensures
that the encoder is rational and formal long division of g( D) by f(D) is allowed [3. 3].
Consideration is also restricted to codes with a fully reachable trellis and no paraliel
transitions. Fully reachable trellis means that it is possible to reach all possible states
in the trellis. The fully reachable condition was chosen as it was felt that when trving
to maximize the [.5 or symbol distance a trellis with more states would have a longer
effective path. Parallel transitions within the trellis limit the effective length of the
code [20. 22] and thus the search was restricted to codes without parallel transitions.

The search was carried out to find codes with the maximum d?_, and l.5. From
this set of codes. the codes with minimum number of paths and the minimum num-

ber of errors along those paths were selected. When multiple codes with identical
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[.5 existed then additional terms in the product transfer function were used in the
selection process. Following that selection. codes with maximum squared Euclidean
distance. d},, were chosen with a minimum rumber of paths with that distance. ny..
are selected.

As previously stated. we were looking for codes that would work well in a variety
of fading environments. As such. we chose to maximize the codes’ performance for
Rayvleigh fading and then select the best codes for the AWGN channel from these
codes. At low SNR. the performance is dominated by noise rather than by fading.

thus it is important to have good performance in AWGN as well as in fading.

3.2 Exhaustive Search

[t should be noted that the search space was reduced by half as the code defined by
g(xr)/f(r) had the same characteristics as —g(r)/ f(r). Unless otherwise specified. the
tables present onlyv g(r)/ f(r) as the calculation of —g(r)/ f() given this information
is trivial. For example. in the first line of Table 3.1 in Z; the code 11/21 is presented.
Thus. g(r)=r+ 1 and —g(r) = —r — 1 =2r + 2. 50 22/21 is also a good code.

[n the tables the polvnomials g(r) and f(r} are denoted as gsgs-1...90/ fs fs—1---fo-
The asvmptotic gain on an AWGN channel in dB is given by Equation 2.13.

The pseudocode in Section 3.2.1 is included to show the general outline of the
search algorithm. The code is written to illustrate the functioning of the algorithm
only. The output of the search algorithm is the truncated Euclidean transfer function
and the truncated product transfer function. Both transfer functions contain up to
20 terms and contain the following information: the squared distance measure. the
number of paths and the number of information symbol errors along that path. and
for the product transfer function. the number of coded svmbols that differ from the
correct path.

The search was carried out in this way because the transfer function was desired.
This information can then be used to select the best codes based on the performance
estimate. As the codes are linear. we assume. without loss of generality that the
all-zero sequence is transmitted.

In the following sections. the pseudo-code of the search algorithm is presented
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and the search results are tabulated. The tables present the first three terms of the
product and Euclidean transfer function for the resulting codes. The asymptotic
coding gain over BPSK on the AWGN is presented in the tables with the Euclidean

transfer function to enable a comparison between the various codes.

3.2.1 Search Algorithm

A brief explanation of the search algorithm is presented here. For each encoder
considered. the algorithm initially advances in the trellis along the path from input
(1.0.0....) until either it merges with the all-zero path or the maximum depth of
the search. The depth-to-search is an input parameter into the algorithm and is set
to ensure that the first terms of the transfer function are included in the truncated
transfer functions.

For each advance. the Euclidean distance and the product distance are calculated
for each node in the trellis along the search path. When a merger with the all-zero
path occurs. the distance characteristics are recorded and the number of paths for the
distances is updated. After a merger (or going to the maximum search depth) the
algorithm backtracks along the path by one node. The input symbol is incremented
from the previous path that was considered. If it is equal to g then the algorithm
sets it to zero and backtracks one more node. The algorithm again advances using
the current node’s distance characteristics.

[f the algorithm hits the maximum depth to be searched without merging. it will
backtrack along the search path by one node and continue the search. It does not
record the distance information in this case.

The search terminates when after the search path (¢—1.¢g—Ll.g—1....}) as it will
back track to the beginning of the trellis and then increment the symbol to g which
is an invalid input when working with elements from Z,.

The details of the search are outlined in the pseudo-code below:



begin;

Coder:

Init:

3. Some Rate 1/2 Convolutional Ring Codes

input parameters of search:

initialize memory:

[s there another encoder to test?
if NO {
goto Finish:
lelse {
set next encoder taps:
}
create trellis:
[s trellis fully reachable?
if NO {
goto Coder:

set max_depth from input:

set pointer to 0:

set symbols for first error path to 100000...:

22
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Search: [s pointer between (¢ and max_depth?
if YES {
Move forward to next state:
if pointer = max_depth-1 and no merge next state {
move pointer back one node along path:
get next symbol on path:
goto Search:
}
Update distance measures at trellis node:

Is there a merger with the correct path?

if YES {

[s pointer less than max_depth?

if YES {
record the distances for the error event:
move pointer back one node along path:
get next symbol on path:
goto Check:

} else {
[s pointer equal to max_depth?
if YES {

record the distances for the error event:
move pointer back two nodes along path:

get next symbol on path:

goto Check:
}
}
} else {
[s pointer equal to max_depth?
if YES {
move pointer back one node along path:
get next symbol on path:
goto Search:
}
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Check: Are distances worse than the best code on record?
if YES{
terminate search on this code:
goto Coder:
} else {

goto Search:

Finish: save to disk summary results and truncated transfer function:

end:

3.2.2 Unit Memory Codes

In the tables. truncated transfer functions are given for the codes that were found. In
Tables 3.1 and 3.2. the first three terms in the product transfer function are presented.
The terms n.d?.¢.[ are the number of paths with the squared product distance of
d*. the number of errors with that distance and the length (number of non-zero
svmbols) for those paths. respectively. The Euclidean transfer function is presented
in Tables 3.3 and 3.4. The search depth through the trellis for the constraint length
one codes is 7 information svmbols.

In some cases. there are multiple codes presented for a given ring. The first code
has the best asymptotic performance as the performance is dominated by the /.5 and
the squared product distance of paths with l.5. (i.e.. &, ,(l.5)). However. at low
SNR. other terms in the transfer function will contribute to the error performance.
The second code. which is marked with an asterisk. takes into consideration up to ten
terms in the product transfer function. As these codes are considered for low SNR
performance. maximizing /. and d,,,(l.g) is less important than minimizing the
summation in Equation 2.25. These codes have better Euclidean distance properties
than the fading codes. This is beneficial when operating in low SNR conditions. as

the noise will affect the performance of the code [32].
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Table 3.1. Product distance profiles for unit memory codes for Z, to Z,;

Z,| Codes |l.giny di eijny d3 € Ling d3 e3 I3
2 (01/1L.10/K10 3 41 64 21 25 2041 1024 205
3 j1L/2002/101004 {2 %1 204 243 25538 729 3 6
4 11/2003/21 3 |1 64 L]4 32 154]1 2356 2 4
5 112/21.13/313 4 |4 23 2[4 3454925 514 9043125 5
22/41.23/11
6 |11/21.15/411 3 |1 64 12 3 2 4|2 N1 2 1
6*112/31.14/31| 3 |2 27 1]1 64 2 3.1 12 2 4
TO|12/30 157400 4 12 52T 2|2 1712 2 412 2661 2 4
23/11.24/61
32/11.32/21
35/51.35/61
R O13/21.15/610 3 |1 64 1|2 2343 2 4|2 13636 2 4
12/31.16/51
23/51.25/31
9 |12/41.17/511 4 |2 1.404 212 4958 2 412 11.64 2 4
12/71.47/21
9*124/31.25/61] 3 |2 27 1]2 2548 1 4|2 323 1 4
10(14/31.16/71; 3 {1 64 12 1.3% 2 412 3618 2
23/71.27/31
11(53/41.58/71) 4 12 2807 2|2 3324 2 412 4R14 2 4

25



3. Some Rate 1/2 Convolutional Ring Codes

Table 3.2. Product distance profiles for unit memory codes for Z,; to Zys
Z, Codes lglni di elny di e lhny d3 e3 13
12 125/11127/11 L1311 64 112 268 2 |2 3 2 4

52 /111.55/2 1
57 /10 1.5 10/1 1 |
12¢) 25/3125/91 |3 (2 27 111 61 234 200 2 1
27 /3 1.27/91
13 21/51.63/%1 472 1372 212 1873 2 42 2114 2 ¢
23/71.64/21
29/%1.6 10/5 1
69/11 1.2 10/6 1
13*1 35/2145/71 44 L2217 214 %536 2 4i4 16227 2 4
2%/3 1.2 5/10 1
65/4 1.6 3/9 1
33/11 1.4 3/6 1
4] 35/121.39/21 | 311 64 212 0753 2 412 2445 2 4
54/11 1.5 10/3 1
63/51611/91
15 211/ 1.74/21 [ 4R 1.0 2[4 25 2 42 81 2 4
24/7 1T 11/13 1
15* 29/91 212 90 2¢{2 1307 2 4}2 149 2 4
16 39/14 1.37/21 311 64 1]2 04237 2 412 0.9439 2
16*| 36/21.36/141 2|1 16,0 22 0376 2 4|2 0.842 2 4

26



3. Some Rate 1/2 Convolutional Ring Codes 27

Table 3.3. Truncated transfer functions for unit memory code for codes presented
in Table 3.1 for Zy to Zy,

Z,) Codes |ny di € |n2 d; exjns di €3 |g. dB
2 [01/11.10/1E] 1 12.00 2 |1 16.00 2|1 2000 2 | 1.76
3 (11/21.12/1112 1200 2 |4 15.002.5;8 18.00 3 | 3.76
4 [11/25.13/211 4 10.00 1.5{5 12.002.2]6 14.00 3 | 3.98
5 |12/21.13/31| 4 10.00 2 14 11.382.5{8 1276 3 | 4.63
22/41.23/11
6 (11/21.15/4112 6.00 2 |2 7.00 3|2 3.00 4 | 2.88
6™ (12/31.14/31; 8 9.00 L.75] 4 10.00 2 |21 12.00 3.62| 1.64
TOI12/3115/4002 7950 02 12 790 3 (2 8531 2 | 4.35
23/11.24/61
32/11.32/21
35/51.35/61
8 [13/2L.15/61(2 6.39 2 |4 9.17 3|2 941 2 | 3.93
9 [12/41.17/51]2 5.18 3 |2 636 2|2 647 2 | 3.12
12/71.47/21
9= [24/31.25/61]2 6.77 1 |4 7.71 2.5|2 7.82 1 | 4.29
10{14/31.16/711 4 7.00 2 |2 7.38 2|2 753 3 | 4.63
93/71.27/31
11153/41.538/7114 669 3 |2 7.0l 3 (2 7.08 2 | 161
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Table 3.4. Truncated transfer functions for unit memory code for codes presented
in Table 3.1 for Z\> to Z s
Z, Codes ny @2 e iny & eyiny &2 e3|g. dB
12125/ 12¢/11 112 5327 214 554 32 6.00 3.73
52 /11 1.5 5/2 1
57 /10 1.5 10/1 1
127 235/3125/91
27/31.27/91
131 23/7T164/21
24/51.63/8 1
| 29/31.6 10/51
13 169/11 1.210/6 1
13* 35/2145/71 |4 634 414635 24 6.
28/31.25/101
635/4 1.6 8/9 1
38/111.4361 |
14 | 35/121.39/21 [2 574 4[2 575 214 596 4| 4.37
54/11 1.5 10/3 1
63/51.6 11/9 1
15 1 211/81.74/21 {4 4.94:
TL/13 124 /7 1

I
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Table 3.5. Product distance profiles codes with constraint length two for Z, to Zy

!Z., Codes lglni dif ena d3 e lna di e3 I3
2 |101/1L1.E11/10H) 5 |1 1024 212 4096 2 6|4 16334 3.5 7
3L/ 120012/2110 6 160 729 304 2187 3.5 7|26 6561
121/111.122/22]

V2

41113/321.133/3210 5 | 1 1024 2|2 128 3 2|2 1096 3 6
123/311.123/331
5 213/431. 6 (12 125 334 625 1 8
243 /421 6
6 |115/541.155/521] 5|1 1024 22 3 3 6{6 729 3 6
T 1145/531.123/351] 6 |6 49.00 3|8 7.31 3.5 7|4 36.90 3.5 7

153/321.135/541

TOojI4d/221.152/431 6 |4 15.09 314 3151 3 6{6 49.00 3 6
S 1335/761.325/7110 5|1 1024 3|2 469 3 6|2 2731 3 6

335/761.355/721

3.2.3 Constraint Length Two Codes

Tables 3.5 and 3.6 present results for codes that maximize the [,y and d3_,,. The
exhaustive search was carried out for codes over Z,. where ¢ = {2.3..... 8}. The
search through the trellis was set to at least seven symbols. As the number of paths
increases exponentially with the depth of the search. the search is truncated between
seven and nine symbols. [t is possible that some long paths with small Euclidean or
product distances are missed due to the truncated search. However. the search path

was set to a reasonable length to find the paths that dominate the performance of

the codes.

3.3 Reduced Search

As the exhaustive search time grows exponentially with the number of elements in
the ring and the constraint length of the code. this search method soon becomes

impractical due to the required computational time. In order to find good codes in
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Table 3.6. Truncated transfer functions codes with constraint length two for Zs to
Zs

Z, Codes n, di e |na di eslns &3 €3 | g«
2 (101/11L.k11/101} 1 20.00 3 |2 24.00 3 {4 23.00 3.25{3.
311E/121.112/2111 6 18.00 3 {4 21.00 3.5;26 24.00

121/111.122/221

[\
<
=1

it
it
(R

4 123/311.123/331] 4 14.00 3 |3 16.00 3.3{14 13.00 3.9 :5.44

40113/321.133/321| 4 14.00 3.5{ 8 16.00 3.2({14 18.00 4 |5.44

51213/431.243/421112 15.00 3 32 16.91 4.5/84 20.00 1 [6.39

6 |115/541.155/521| 2 38.00 3|2 9.00 2.0{+4 10.00 4 [4.12

T 143/531.123/351) 4 11.70 3.5)2 1242 6 |4 1279 4 16.13
153/321.135/541

S [325/711.365/7711 2 10539 3 14 11.v6 3 |4 12.10 5 |5.98

335/761.355/721

a reasonable amount of time. it is imperative that the number of candidate codes be
reduced. [n the following section. we develop bounds on the effective length of the rate
1/2 svstematic recursive convolutional codes. Using this result and some properties
of good fading codes from the exhaustive search in Section 3.2. we placed constraints
on the tap polynomials f(D) and g(D). The reasoning and the restrictions will be
presented in Section 3.3.2. Reducing the number of codes to be searched allows us
to search for longer constraint length codes. The results of the reduced search are

presented in Section 3.3.3.

3.3.1 Bounds on /g4

In this section. we investigate the maximum /.5 possible for the encoder shown in
Figure 2.2.

The message polynomial input into the encoder is defined as

1

m(_r;:,__-i—ms.rs-i-m,_l.l's_ + ...+ mry + me. (3].)

where m, € Z..
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With a convolutional encoder. the message polvnomials can have infinite length.
We follow the convention that the svmbols are transmitted in ascending order. In
other words. if the message begins to enter the encoder at time 0. the symbol entering
the encoder at time ¢ will be m; where ¢ can range from 0 to infinityv. We also follow
the convention that any zero term is left out of the expression and if m, is non-zero
and m; = 0.V! > s the degree of m(r) is s or deg(m(r)) = s and the message length
will be considered to be s.

Recall that the encoder performs simultaneous multiplication by ¢g(r) and division
by f{r). When working over a field. the division algorithm states that if f(xr) # 0.
then there exist polynomials q(x) and r(x) such that for any arbitrary polyvnomial
g(r)

g(r) = q(r)f(r) + r(r). (3.2)
where deg(r(r)) < deg(f(r)). The polyvnomials ¢(r) and r(r) are known as the

quotient and remainder polynomials defined as

i

e T @+ @ 7T+ Qi+ oo (3.3)

q(r)

-

+...+I‘1-l'[+l'0. (3-1)

rir) = r.i_l.r'j—l-‘.-r,;__;ri-

with d = deg( f(r}) and ¢;.r; € Z,,.

When Z, is not a field. the existence of q(x) and r(x) is not guaranteed. We will
deal with this case in the following section.

With respect to the encoder shown in Figure 2.2. ¢(r) is the output r, of the
encoder and r(r) defines the state of the encoder. The output syvmbols of the encoder
at time : are m, and (gom, +¢;) mod q. Note that g is the size of the svmbol alphabet
and g, is the coefficient of the quotient polynomial.

We want to find the shortest message. m(x). that leaves and reenters the zero
state as [.g < 2(deg(m(r) + 1)). Stated another way. we wish to find the m(r) with
smallest degree such that

m(z)g(r) =0 mod f(r). (3.3)

or equivalently
m(r)g(z) = q(z)f(z). (3.6)

where r(r) = 0.
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Consider in Equation 3.6 we are looking for the smallest multiple of g(x) which is

divisible by f(x). A solution satisfving this restriction is
m(r)glxr) = cx*lem(f(r).g(r)) (3.7)

where ¢ is an arbitrary constant in Z, and lem(f.g) is the least common multiple of
f(x) and g(x).

For notational convenience we will refer to m(x). f(x) and g(x) as m. f and g.
respectively.

Consider that a™!fg = lem( f. g) ged( f.g) [50]. where « is the leading coefficient

of fg. Using this result. we can define that the degree of lem( f. g)

deg{lem( f. g)) = deg(f) + deg(g) — deg(gcd( f. g)} (3.8)

From Equation 3.7 the degree of m(r) is defined by

degim) = deg(lemif.g))— deg(g). (3.9)
= deg(f) — deg(gcd( f.g)). (3.10)

Therefore the maximum /.5 for a code is bounded by
lg <2(deg(f) — deg(ged(f.g)) + 1). (3.11)

This also gives an insight into how to find codes with maximum /. g. When
gced(f.g) = 1 then l.g < 2(deg(f) + L).

For the case when Z, is a field and ged(f.g) = 1. we conclude that for the code.
g(r)/ fir). the maximum effective length is bounded by /.5 < 2(deg(f) + 1) and the
shortest path is defined by a multiple of f(z).

In the case when Z, is not a field. we need to set restrictions on the divisor such
that division is defined. Recall from Section 2.2 that if the leading coefficient of the
divisor is a unit in the ring. then the division algorithm can be applied. Thus. the
bound in Equation 3.11 holds as well in this case.

However. we can bound tighter if we look at the case when the divisor contains
zero divisors. We assume that ged(f.g) = 1 thus m(r) = cf(r) is the smallest

message which can set the remainder to zero. We choose ¢ such that we achieve the
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maximum number of zero coefficients in the message. Then we can lower the bound
on l.g by the number of zero divisors that produce zero when multiplied by c.
Thus. if the divisor. f(x). contains zero divisors. it is possible to reduce the bound

to
l.g <2(deg(f)+ 1) —n.a: (3.12)

where n.; 1s the maximum number of zero-divisors in f(x) which are set to zero by
multiplication by an arbitrary constant c.

To illustrate this. consider the ring Zg and f{r) = r* +2r’ +4dr+ 1 ged(f.g) = |
so m(r} = cf(r). If ¢ = 4. then m(r) = 4r> + 4 and two zero divisors become zero.
Thus. the maximum [z is bounded by 6 from Equation 3.12 and not 8 as in Equation
3.11.

From this section we can conclude from Equation 3.12 that the bound on /.4 is
maximized when f(x) and g(x) have no common factors. and Equation 3.12 provides

a bound on l.5.

3.3.2 Search Definition

Examining the results from the exhaustive search in Section 3.2 for codes with con-
straint length two. presented in Tables 3.5 and 3.6. one finds that for the tap polyvno-
mials defining the codes. many of the polynomials are irreducible. [n Section 3.3.1. it
was shown that /. was maximized when the greatest common divisor of the numer-
ator and denominator polynomials was one. This condition is guaranteed when both
polynomials are irreducible as the polynomials have no divisors of lesser degree.

Restricting the search to irreducible polynomials for f{ D) and g( D} is more restric-
tive than requiring gcd( f(D).g(D)) = 1. however. results from Section 3.2 indicate
that irreducible polynomials are a good choice to search for good codes.

Another reason for this restriction is the connection to shift register sequences.
Leaving a non-zero state will cycle through a number of states before returning to the
original state. If the polvnomial is primitive than the length of the cycle is maximized.

From the results in Section 3.2. the good codes were not necessarily primitive and
thus the problem here is to find irreducible polynomials over Z,. There are several
tables of irreducible polynomials in Z, = G F(p) where p is prime that are presented

in [30]. However. the tables did not provide all of the polynomials that were required.
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To obtain the necessarv polynomials. we used the Eratosthenes sieve method to find
them. To find the irreducible polynomials of degree n using this method. one first
creates a list of all possible polynomials of degree n. Then all polynomial factors that
form a degree n polynomial are multiplied together. and the resulting polyvnomial is
removed from the list. This is repeated until all possible combinations of factors have
been used. After this process the polvnomials remaining in the list have no factors
with degree less than n.

This method is inefficient to find polynomials with a high degree. due to the large
number of multiplications of polvnomials required. The Eratosthenes sieve method
was acceptable for finding the polvnomials used in this dissertation as thev did not
require polynomials with large degree. Tables of the polynomials can be found in [50]
when q is prime and in Appendix A for selected degrees and values of g when ¢ is not
prime.

As the number of states increases. so does the search time. we will restrict our
search to codes with 2356 states or less.

The search was carried out in the same manner as the exhaustive search. except
for the additional condition that f( D). g(D) were forced to be irreducible in the ring.
This is in addition to the conditions already used for the exhaustive search. i.e.. fully

reachable trellis. f(0) = 1. deg(f(D)) = deg(g( D))

3.3.3 Search Results

The results are presented in the following tables. The tables present the code char-
acteristics Nrec. di,,. .V,. which are the number of paths with the free distance. the
square of the free distance and the average number of errors for paths with the free
distance. respectively. The parameters n,.,q4. d;,,; and .\, are the number of paths
with the minimum squared product distance. the squared product distance and the
average number of errors along paths with the squared product distance. respectively.
The effective minimum length of the code (.5 is also presented.

In Table 3.7. codes with constraint length two for Zg and Z,q are presented. The

2
free

as shown by the other codes also included in the table. Here. g.. is the asymptotic

codes with maximum are marked with a ™. They do not have the maximum /.4

gain over BPSK. The table does not include many codes above Z,y as the search
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time was prohibitive. The results for Z,, are from a partial search of the codes. The
codes over Z,, presented have the best distance properties for the partial search. The
search was terminated earlyv because of time restrictions. thus. there may be better
codes available in Z ..

The restriction that the codes must have a fullv reachable trellis forces the code
for constraint length two to have ¢ states in the trellis. Each state has g branches
exiting and entering the state. Thus a search of depth m has (g — 1) x ¢™~! possible
paths to search. As an example. consider ¢ = 11 and a search depth m = 7. has
1.77 x 107 branches to consider. when ¢ = 16 the algorithm must consider 2.51 x 10°
paths. The algorithm eliminates a large number of these paths as it does not continue
to search paths that have merged with the all-zero path.

[n Table 3.3 codes from the reduced search of constraint length three codes are
presented. [t should be noted from the table that when ¢ is prime (g is less than
or equal to 3. Equality occurs in this table when q is 5 and 7. except. for ¢ = 3 the
codes have .y = 7. When ¢ is non-prime the maximum {,5 = 6. The codes also had

maximum for the reduced set of codes except for the ¢ = 7 case.

2
Free
Table 3.9 presents constraint length 4 codes for Z3 and Z, and constraint length 3
codes for Z;. The encoders for Z; have 81. and 243 states for defining polynomials of
degrees 4 and 3. respectivelyv. The Z, codes have 236 states. For the 256 state codes
in Zy4 there are a large number of paths with dj,, and the [,z does not increase as
the number of states increases from 64 (see Table 3.3) to 256 states. Also. the 256
state codes have four times the number of branches as the 64 state code as well as
a commonly used binary convolutional code. As it provides no gain in asvmptotic
fading performance over the 64-state code. it is highly unlikely that the 1.2 dB gain
on the AWGN channel is worth the added complexity to implement the 236-state

code rather than the 64-state code.
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Table 3.8. Codes over Z3 to Zg with constraint length 3

3. Some Rate 1/2 Convolutional Ring Codes

Ring polynomials Npee Qe NyelG AB|nprd  d3,;  Noelleg
3 1021/2211.1022/1221 | 4 21 3.0} 6.19 4 2087 3.0} 7
1102/1221.1201 /2211
4 1301/3321.1131/3211 | 2 1§ 4 | 6.54 l 4096 116
| 1113/1321.1333/1231
5 1223/2131.1213/2231 2 17.76 4 | .12 2 238729 4 |8
L143/2421.1343/2441
1322/3121.1312/3221
1312/3221.1242/3411
L442/3431
6 15475231, 1154/5341) 6 15.00 4 | 6.85 4 1096 316
T 1325/3621.1263/5231 14.90 4.5 7.19 6 90.2172 4.33] 3
1422/4651.1364/2241
e 1654/5521.1552/3511 | 2 15.51 4 | 7.36 2 277849 08
3 3635/7761. 3253/1721] 4 15.51 5.5 7.65 2 1096 3
3523/1271
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Table 3.9. Codes over Z3 and Zy with constraint length greater than 3

3. Some Rate 1/2 Convolutional Ring Codes

Zs
degree| polynomials |nfe. df.. V|9 dB|npra fmd Npeiley
4 10111/21121 8 27 43| 7.28 | 3 19633 33| 9
L1101 /22111
10121/22111
12101/22211
5 jlI2111/102101) 4 30 45| 7.74 4 59049 45110
J12[112/202201
Z,
degree| polynomials |[nfr. ({fm N elgx dB|nprq ([jmd Noelleg
1 12213/11021 | 73 24 5.44] 7.78 I 4096 3 |6
13021 /32211
12031/33221
12011 /31221
12233/13021
11223/12031
13223/12011

38



3. Some Rate 1/2 Convolutional Ring Codes 39

3.4 Gaussian Codes

Although the main thrust of this dissertation was to find codes for use on the fading
channels. the search routines also looked for codes with maximum d7,.,. In some
cases. the best codes found for fading also have maximum dj, . In the following
tables. the characteristics are presented for the codes. and /.4 is included to allow for
a comparison with the codes found for the fading channel. In many cases the best
code for the Gaussian code has a smaller . for the same ring and constraint length
than the code for fading. This is to be expected as /.5 is not being optimized in the
search.

In the reduced search. the polyvnomials were chosen to maximize the effective
length of the code. Because of this the Gaussian codes found in the reduced search
may not be the optimal code for the AWGN channel for the given ring and constant

length. Here. optimal means having the maximum dj,, over the set of all codes with

the given constraint length and given ring. The codes do have the maximum 3., in
the search space. The AWGN codes found by the reduced search for codes over Z,
where ¢ > 9 for degree 2 and for ¢ > 4 for constraint length 3 codes are presented in

Tables 3.12 and 3.13.



Table 3.10. Gaussian unit memory codes over Zs to Zy,

3. Some Rate [/2 Convolutional Ring Codes

-
Ring

polynomials

N fre.
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free |-

Nprod

3

prod

Moo

N

11/01

l

12.00

L
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12.00

[ V]

81.00
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o
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Table 3.11. Gaussian unit memory codes over Zys to Zs

Ring] polynomials |nje|dfe. | N,c|Rprod 2 od | Ve lleg
12 [25/3125/91] 2 [6.00 2 | 2 12700 L |3
27/3127/91 S
35/21.35/10 1
37/2 1.3 5/10 1
13 35/21.45/71 1 16.34] 4 4 (L2173 2 (4
14 [ 8/10 1 2 16.06f 2 1 16. 1 |2
15 29/91 2 15.63] 2 2 9 1 2
16 36/21 4 15.33] 4 1 16 212

Table 3.12. Gaussian codes with constraint length over Zs to Zy

Ring| polynomials {nfn.|dj {Nse|Rprod a';:md Nociles
2 111/101 I 120.00f 2 1 {1024.00] 2 |5
3 (|112/2100.0101/1210 6 |13.00] 3 : 6 [ 729.00) 3 16
121/111.122/221 |

1 [212/111.212/131] 14 [16.00[ 3.5 2 | 256.00 | 2.5 | 4
232/331.232/131

5 1213/431.243/421 4 115.00{ 2 12 1125.00] 3 {6
233/441.223/411

6 (214/131.254/131; 10 {13.00{ 3.4 2 |256.00 |2.5]| 4

T1235/651.245/621) 2 |12.31] 3 2 |15.0909| 3 | 6
314/651.364/621

S 232/74L S [1L.51| 6 1 64 213
262/551.464/281| 2 |10.24 2 243 315
134/211.232/541

10 |3537/981.357/921| 2 {10.53| 4 2 (34549 3 |5
367/951.347/951

12 1 3117/181f | 20907+ 2] 81 [+ ]2

7 Partial Search
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Table 3.13. Gaussian codes with constraint length three over Zs to Zg

3. Some Rate 1/2 Convolutional Ring Codes

Ring polynomials Npree | Qe | Nge Mprod | Aoy | Vo | leg

3 1021/2211.1022/2111} 4 (21.00 4 2187 3 1T
1022/2221.1102/1221

1201/2211

4 1123/1311 2 |13.000 4 1 14096 2 | 6

5 1203/2231.1343/2441] 2 |17.76] 4 | 2 |239] 4 | 8
1312/3221.1242/3411

6 1252/3121 30 {17.00(4.470 1 10241 3 | 5

42
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3.5 Summary

In this chapter. details of the exhaustive search were given in Section 3.2. Codes found
using the exhaustive search were presented in Sections 3.2.2 and 3.2.3. The results
from the exhaustive search showed that desirable codes shared similar characteristics.
In Section 3.3. a reduced search using these results and a bound on /.5 was developed.
The code generator polynomials were restricted to irreducible polvnomials as it was
shown in Section 3.3.1 that [.5 could be maximized if the feedforward and feedback
polvnomials had no common divisors. The reduced search was used to search for
codes with higher constraint lengths and values of ¢ which were impractical for an
exhaustive search.

Codes which have maximum df,, were presented in Section 3.4. These were in-
cluded for two reasons: first. at low SNR values. dj,, plays a significant role in the
error probability. and second. to be able to compare the codes found with maximum
l.5 and the codes found with maximum d},, on the Rayleigh fading channel.

The codes found in the reduced search are not necessarilv optimum. However.
most of the best codes found in this chapter have the maximum effective length for the
constraint length. This indicates that they will have a good asymptotic performance
in severe fading.

The observation was made that the codes over Z, when ¢ is prime have a larger
l.z than when g is non-prime. Also the bound in Equation 3.12 is loose when ¢ is
non-prime and for larger constraint lengths. For example. for constraint length 3 the
codes found have one zero divisor in the denominator and Equation 3.12 predicts the
maximum of 7. The maximum number found was 6. Also. the only non-prime q code
with constraint length 4 that was investigated had [, = 6 while the bound for this
code was 3.

The search routine stored the first 20 terms of the transfer function. and selected

)

the codes based on l.g. d7,, and d3,,,. These terms can be used to estimate the
asymptotic performance. however. there are other terms that may affect the perfor-
mance at low SNR values. Thus. we simulate the performance of of selected codes in

the next chapter.
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Chapter 4

Performance Results for Selected

Codes

In this chapter. we present simulation results of selected codes and comparisons with
previously found codes in the literature. where applicable.

As the bounds or estimates approximate the performance of the codes. we sim-
ulated the coded system to verify the expected performance of the various coded
svstems. Some of the results for codes from the literature are included. In some cases
the original authors™ simulation results are used or a bound was computed using their
results.

In the following section. the simulations are described. The block diagram of
the fading channel simulator is included. The simulator was designed to handle many
different channel conditions. including correlated fading and shadowing for Rician and
Rayleigh channels. The following sections present the simulation results for several
codes over different rings. The results are compared with other codes in the literature.

the best AWGN codes of the same ring or the uncoded modulation.

4.1 System Simulation

The simulation results are from Monte-Carlo simulations of the svstem. In these sim-
ulations. a random symbol enters the encoder and the coded symbols are sequentially
mapped onto an MPSK signal. The symbol is multiplied by the channel gain which
is supplied by the fading channel simulator. Gaussian noise is added to the resultant
signal before entering the receiver. A Viterbi decoding algorithm is used to decode

the information symbols. The decoder observes approximately 6 times the constraint
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[0.1]
Gaussian .

Process LPF

[0.1] l\ _—f
Gaussian  |——p| - 2
Process LPF ()
[0.5] |-\ Shadowing
Gaussian  [— | of*) F——e
Process LPF x

I —

Figure 4.1. Block diagram for fading simulator used in simulations

length of the code before making a decision on an information symbol [35]. An er-
ror counter is incremented. if the symbol decision is in error. The entire process is
repeated until one of the termination criteria is met.

The program stops when 300 independent error bursts are observed. An error
burst is defined as one or more symbol errors preceded and followed by a number of
correct symbol decisions. This number of correct svmbols is referred to as a guard
interval {22] and in the simulations this interval was set to 12 symbols. The program
also stops if an upper limit on the number of simulation intervals is reached. This
usually occurred at the lower error rates. In this case. the point was included in the
plot if there were at least 100 symbol errors observed

The fading channel simulator is capable of simulating the Rician channel. lognor-
mal shadowed Rician and lognormal shadowed Rayleigh channels [60]. The model
originated in [33] and has been used in several studies for fading channels for satellite
and terrestrial digital communications such as [39. 33. 57. 60]. A basic syvstem block
diagram is shown in Figure 4.1.

We used a K=0 dB Rician setting for this model to simulate Rayleigh fading. For

the simulations. ideal interleaving was emploved that adjacent svmbols are affected by
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independent Rayleigh fading. As in [39]. we make the slow fading assumption. that is.
that the fading is constant over at least one symbol interval and can be approximated
by a single fading sample per channel symbol interval.

The ideal channel state information (CSI) of the channel (i.e.. the fading ampli-
tude) is provided to the decoder. The decoder uses the C'SI information to compute
the metric using Equation 2.13. In practical implementation. the CSI information
must be estimated and the estimate is noisy or imperfect. When the CSI is imper-
fect. the code performs worse than in the case of perfect CSI. The amount of loss is
dependent on the channel and the method used to estimate the CSI. The ideal C'SI

case will lower bound the performance of an actual system.

4.2 Codes over Z;

Simulation results for the 3. 9. and 27 state codes over Z; are presented in Figure 4.2.
The codes are 11/21. 111/211 and 1102/1221. The codes have the best a"’m and l.5.
which means that they are the best codes found for Rayleigh fading and AWGN. The
gains over uncoded 3PSK at the Symbol Error Rate (SER) of 1072 on the Rayleigh
fading channel are 21.4 dB. 22.7 dB. and 23.9 dB. respectively. The efficiency of the
code 1s 0.7925 bit /symbol. where efficiency is defined as the number of bits transmitted

during each channel use.

4.3 Codes over Z,;

The rate 1/2 ring codes for Z, presented in Section 3.2 have an efficiency of [
bit/symbol. In Rhee et al. [26]. a four state binary trellis code is presented with
the same efficiency. This code is a rate 1/2 binary code which was designed for the
Rayleigh fading channel. Their (5.2)s has a .5 = 3 and d; = 32 [26]. The code was
designed for the Rayleigh channel as was our 11/21 code. The octal representation
of the code means that the top tap polynomial is 0] and the bottom polynomial is
010. Note that there is no feedback in their trellis codes. From Table 3.1 the 11/21
code has a l.g = 3 and &2 = 64.

The asymptotic coding gain difference in the Rayleigh channel associated with a
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different &;. but the same l.z is given by [32]

10 (L) a .
= — 2 =, 1.1
Ag~ I log (f@dl)) o (4.1

where L is the length of the minimum error event and a, is the average number of
code sequences having the effective length and squared product distance J’;’z. From
Equation 4.1 we would expect a performance difference of 3.3 = log(2) = | dB. The
svstem was simulated to verify the performance of the system on the Ravleigh fading
chanrel. In Figure 4.3. the results of our simulation are shown. The simulation results
for the trellis code are taken from [26]. As seen in the figure at 107>. the difference
in performance is slightly above 1 dB. Here. we assumed in our system the binary bit
stream is mapped to Z, to achieve a Gray mapping on the 4PSK modulation.!

With a Gray mapping. we approximate the bit error rate assuming | bit error
per symbol. (If we assume a natural mapping’ . then we would approximate 1.5 bit
errors per symbol error and the gain would be reduced to approximately 0.7 dB at
1073). Regardless of the mapping. the Z, code is still better than the optimal rate
/2 4PSK binary trellis code from [26] designed for the same channel conditions as
the [1/21 code.

A four state feedback convolutional code for Z, using 4PSK is presented in [3].
The search was for good ring codes over the AWGN channel. However. the 11/21
code over Z, presented here has the same free distance as their 0221/2231 code.
We compare the first three terms in the Euclidean and product transfer functions
in Table 4.1. The error columns in the table are symbol errors. The table shows
that when the number of errors are considered the 11/21 code should have better
performance than the 0221/2231 for both the AWGN and Rayleigh fading channels.
The reason is the 0221/2231 [2] and the 11/21 code have the same number of paths for
the first four terms. but the 0221/2231 code has more svmbol errors associated with
the paths with the exception of one path. In the code search presented citeBaldinil.

they maximized the d,, and minimized the number of paths with the squared free

'A Gray mapping ensures that the nearest signals in a modulation differ by only one bit. To
achieve this for this system. there is a mapper before the encoder which maps a binary input stream

onto +-ary symbols by: 00— 0.01— 1. 11— 2. 10— 3
®The natural mapping uses the binary representation of the symbol. That is. 00 — 0.0l —

1.10— 2. 11 — 3
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Table 4.1. Transfer functions for the 0221/2231 code and 11,21

0221/2231 from [3]
Euclidean Product
—
n. | d; | errors | n, | d2 |errors | . |
4 1107 25 11 64 2 3
3 012 2.4 41 32 25 |4
6 | 14 2.7 1} 256 2 4
19§ 16 3.6 4 | 64 25 |5
11/21 code
Euclidean Product
n, | &7 |errors § n, | d? | errors | |
4 110 1.3 1} 64 1 3
5 1121 2.2 4] 32 L5 | 4
6 | 14 3 1 1256 2 4
19116 2.9 4 | 64 25 153 J

distance. They did not consider multiple terms in the transfer function or the number
of errors associated with the paths with d7.,. Both the 11/21 and the 0221/22312]
were simulated and the results are shown in Figure 4.3. On the AWGN channel the
11/21 code is about 0.2 dB better than the 0221/223]1 code and on the Rayleigh
fading channel the performance is about 0.5 dB better at a BER of 1073, The gains
are also achieved with a less complex encoder. For example. the 11/21 encoder has |
delay element. 1 multiplier. and 2 adders while the 0221/2231 has 3 delay elements.
4 multipliers and 3 adders.

We compare the performance of the 16 state code over Z,. 123/331 presented in
Table 3.5 with the codes in literature. Here. we compare the 16 state binary code
for 4-PSK. namely. the (64.52)s code [26]. with the d; = 128.0 and /.5 = 5. For
the 123/331 from Table 3.5. d; = 1024 and [.5 = 5. Comparing the two codes using
Equation 4.1 we expect about 1.8 dB coding gain by using the Z, code. Figure 4.4
shows the bit error performance on the AWGN and Rayleigh channels. The figure

shows that the Z, 16-state codes outperforms the 16-state TCM code (64.352)g [26] by
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Figure 4.3. Simulation results for {-state {PSK rate 1/2 codes with [ bit/symbol
efficiency.
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1.8 dB at a bit error rate of 1073, The 232/331 Z, code from Table 3.12 is also shown
in the figure. This code was selected for its performance on the AWGN channel. In
the figure. this code performs better than the 123/331 code on the AWGN. but worse
on the Rayvleigh channel. The performance difference will be more pronounced at
higher SNR as the 232/331 code’s performance will be proportional to SNR™ while
the 123/331 codes performance is proportional to SNR™>.

The squared free distance of the 123/33]1 code is 16 which is better than the
Ungerboeck 16-state TCM code [3] (d7,. = 12) but has a higher number of paths
with the squared free distance. As found in {2]. the number of nearest neighbours for
the ring code is 14 times greater than the 4-state TCM code.

The comparison is presented in Table 4.2. For the AWGN channel. we use Unger-
boeck’s code as the reference. and for the Rayleigh fading channel we use Rhee’s
16-state TCM [26] as the reference as it was designed for Rayleigh fading. Note that
Rhee et al. claimed this code to be the optimal rate 1/2 binary TCM scheme for
4PSK. We have achieved a 1.8 dB gain over their code using the ring code working
over Z;. We have achieve simulation results for the [6-state TCM code are from
Figure 1 in [26].

For the comparison of codes with 64 states. the 64 state code (77.224)3 [26] is
better asymptotically with /.5 =8 and d}_,; = 236. The codes in Table 3.9 have
all.z = 6. thus have worse performance at high SNR. However. the 64-state codes.
presented in Table 3.9. have other paths that are dominant at low SNR. The first
three terms of the transfer functions are used to approximate the performance of the
Zy 131173321 code (4096. 19654. 512 with svmbol distances of 6. 7. and 8) and the
first term for the (77.224})5 code. As shown in Figure 4.5, the codes perform very
similarly on the Rayleigh channel in the bit error range of 1072 to 10~*. The gain of
both codes at 107> over uncoded BPSK is about 18.5 dB. The 1311/3221 code appears
to be slightly better in performance at the error rates shown. The complexity of the
ring code is greater than the trellis code. so the slightly better performance is offset
by the additional complexity required to achieve it. For example. the decoder for the
TCM code from [26] requires 2 additions and 2 comparisons per state per bit and for

the ring code there are { additions and 2 comparisons per state per bit.
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| AWGN codes |
g.. dB
code n, d* | over BPSK
Ungerboeck TCM | 1 12 177
16-state 4-PSK
232/331 14 16 6.02
123/331 1 14 3.44
Rayleigh fading
gain dB
over BPSK ‘
code leg d;.,4 | BER=107" \
(64.52)s [26] |
feedforward TCM | 3 128 16
| 232/331 1 256 17.3
123/331 5 1024 7.3

|

52

Table 4.2. Comparison of r=1/2 ring codes with other codes with the same number

of states and efficiency.
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Figure 4.5. Simulation results for 64-state {PSK rate 1/2 codes with | bit/symbol
efficiency.
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4.4 Codes over Zg

In [27]. Zetterberg found two linear 6-state codes for 6-PSK with 4., = 9 and
n. = 6. This compares well with the 6-PSK 6-state codes found here. In Table 3.10.
the AWGN codes have the same &, but have more paths with the squared free
distance. {i.e.. n. = 8). The codes have the same rate of 1.29 bits per symbol and an
asymptotic coding gain of 4.64 dB over BPSK on the AWGN channel.

The codes designed for the Ravleigh fading channel. which are presented in Ta-
ble 3.1. have d},, = 6 but a greater d?,, = 64. Comparing the fading code with
the code for the AWGN channel. which is presented in Table 3.10 with d7,, = 9
and &7, = 27. we would expect a 1.79 dB asymptotic loss on the AWGN channel
but should achieve an asymptotic gain of 1.25 dB on the Ravleigh channel. However.
from simulations of the 11/21 and the 12/31 codes on the Ravleigh fading channel the
12/31 performs better on the Rayleigh fading channel at low SNR. The simulation re-
sults and the upper bound calculated from the truncated transfer function are shown
in Figure 4.6. The upper bounds show that there is a cross-over in performance of the
two codes around 12.5 dB. Thus. the 11/21 code is expected to do better at higher
SNR. The simulations show the 11/21 code’s performance descending at a higher rate
than the 12/3] code and the performance is very similar at the 12-13 dB range.

The main reason for this is that other error events contribute to the error perfor-
mance and there are events with small 7 in the transfer function. Also at low SNR.
noise affects the performance more than the fading and thus the free distance of the
code will be a factor in the the error performance of the code. For the codes presented
in the tables. when there was a tie on the first term of the product transfer function.
multiple terms were considered for the selection of the codes. The main selection
process maximized the asvmptotic error performance on fading (i.e.. by finding the
code with the maximum d3,,; and l.5. However other codes were included when the
selected code had other terms which dominated the performance at low SNR.

[n the case of the 115/541 code over Ze. the code with the maximum (.5 does
not have better performance than the code for the AWGN channel. This is because
in AWGN the performance is influenced by other terms in the transfer function. In
Table 4.3. for symbol distances between 4 and 8. the minimum d?_;(!) are shown for
the 115/541 and 214/131 codes. When [ = 6. 7. 8 the d3_,({) for the 115/541 code
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Table 4.3. Terms from transfer function of the 115/541 and 21}/13! code
{

' 115/541
Euclidean Product
n. | & | errors || n, dj errors | |
208 3 1| 1024 2 3
219 2 4 3 3 6
4 110 4 | 3 2 n
2 |11 6 4 3 4 S
214/131 code
Euclidean Product
n. | d2 | errors || np | d; | errors | |
10 | 13 3.4 2 | 256 2.5 4
214 6 2 1 243 3 5
2115 4.1 6 36 3.7 (6
6 | 16 3.5 4 27 T
Il S 36 4 3

are less than those of the 214/131 code. At low SNR these terms will contribute to
the error performance. Although the 115/541 code will perform better asymptotically
in Ravleigh fading. the 214/13! code is about 0.5 dB better in the SER range of 107°
to 107*. On the AWGN channel the 214/131 has a 2.1 dB gain over the 115/541
code. The simulation results and performance estimates are shown in Figure 4.7. As
shown in the figure. there is a cross-over in the performance on the Rayvleigh channel
around 13 dB. Thus. the 113/541 code is better in fading asymptotically. however in
a practical range of interest the 214/131 code is better.

For the constraint length 3 Ze codes shown in Figure 4.7. the Gaussian code
performs only slightly worse in the symbol error rate range 107> to 10~*. The codes
could be considered identical in this error range on the Rayleigh fading channel.
Similar to the previous case. the upper bound indicates that there will be a cross-
over and the fading code (1154/1431) will perform better than the Gaussian code

(1252/3121). However. the Gaussian code has a 0.5 dB performance gain over the
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Figure 4.7. Simulation results for the 36-state code over Zs. Comparison between

214/131 and 115/541 codes on the Rayleigh fading channel.

fading code on the Gaussian channel. As the two codes perform similarly in Ravleigh
fading. the Gaussian code is recommended at an £,/.Vy below 8 dB as the code will
have better performance in less severe fading since d%,, is greater.

In Figure 4.9. the simulated symbol error performance on the Rayleigh fading
channel is shown for three codes over Zs. The codes are the 11/21. 115/54] and
1154/5341 and have 6. 36 and 216 states. respectively. The figure also shows the
asymptotic estimate of the performance which was obtained using two terms of the
product transfer function. The figure shows that the performance of the code ap-
proaches the theoretical estimate. The coding gains achieved by these codes at a

symbol error rate of 1072 over uncoded 6-PSK are 19.6. 21.8. and 23.6 dB respec-
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tively. For a symbol error rate of 10" the gains are 26.5. 29.7 and 31.9 dB over

uncoded 6-PSK.

4.5 Codes over Zg

In Figure 4.10. the simulation results over the Ravleigh fading channel are presented
for an S-state code. 13/21. and a 64-state code 325/711. The first two terms of the
product transfer function are used to form a truncated upper bound for the symbol
error performance. I[n this case. we find the second term of the transfer function is
dominant in the range of interest for both codes. The dominant paths in the range
of interest have a length of 4 and 6 for the 8 and 6 state codes. respectively. At a
svmbol error rate of 1072 the gains over uncoded 3-PSK on the Rayleigh channel are
24.4 dB and 26.4 dB for the 8 and 61 state code. Considering that 3 bits/information
symbol are sent. and assuming that half the bits are in error (i.e.. 1.5 bit errors /
symbol error) the gain of this system over uncoded BPSK is [1.5 and 29 dB at bit
error rates of 107 and 107*. respectively for the 3-state code. For the 64 state code

the gains at the respective thresholds are 13.2 and 31.7 dB.

4.6 Codes over Zg and Z,»

A few Y-state 9PSK codes were presented in [27] with d7,, = 6.97. The ring codes
(for AWGN) presented in Table 3.11 have d},, = 6.77. or a performance difference
of 0.06 dB on the AWGN channel. The actual code was not specified in [27]. so the
performance in fading could not be calculated.

For the fading case. the fading code (12/41) presented in Table 3.1 has (. = 4 and
d}.,4 = 1.404. The parameters for the AWGN ring code 24/41 presented in Table 3.11
are 3 and 27. respectively. Figure 4.11 shows the simulation results for the 12/41 and
24/41 code. The truncated upper bound shows a cross-over in performance at 13 dB.
The simulation results indicate that the AWGN code performs about 0.4 dB better
than the 12/41 code at an SER of 1073,

These codes have the same rate as uncoded 3-PSK or 1.585 bits/syvmbol and the
asvmptotic gain over 3-PSK is 3.53 dB (4.28 dB over BPSK) on the AWGN channel.
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At an SER of 1073. the 12/41 code has a 19.3 dB gain over uncoded 3-PSK.

Figure 4.12 shows the truncated upper bound and the simulation results for the
5/3 1 and the 2 5/11 | codes. The 2 5/ 11 1 code has maximum d;‘:md([eﬁ') but the
5/ 3 1 code performs better at low SNR. There are two possible reasons: one. the

5/3 1 code does have a larger d7,, than the 25 /11 I code. two. the 2 5/ 11 I code

[V RV RV

has much smaller term for the first term of the error event with effective length of 4
than the 2 3/3 | code. The terms are 0.268 for the 2 5/11 | code and 2 for the 2 5
/ 3 1 code and at low SNR these terms are dominant rather than the terms with the
effective length of 3. The 25/ 11 | code will perform better at high SNR. however. the
2 3/3 L code is better at low SNR values. The simulation results shown in Figure 4.12
indicate that the codes perform similarly on the Ravleigh fading channel. with the 2
5/3 1 performing slightly better in the range simulated.

The 144-state Z,, codes 3 11 7/1 8 1 and 5 10 11/ 1 7 1 were found from a
partial reduced search. The search algorithm did not search over all of the irreducible
polynomials due to time constraints. however. a large number were searched and the
best of the partial search are included here. The performance estimates for both
codes indicate that the 3 11 7/1 3 1 has a 1.76 dB gain over the 5 10 11/ 1 7 | code
on the AWGN channel. The simulation results and the truncated upper bound are
shown in Figure 4.13

As seen in the figure. the two codes perform similarly on the Ravleigh fading
channel until about £,/.Vg = 15 dB. For SNR greater than 15 dB the 5 10 L1/1 T 1
code performs better than the 3 11 ¥/1 8 1 code. However. this is around an SER of
10~". Thus. for performance around 107* the 3 11 ¥ / L 3 | code is recommended.
The simulation results do not show the cross-over in performance as the lower error

rates are impractical to simulate.

4.7 Codes over Zig

The 3 9/14 1 code from Table 3.2 has a [.g = 3 and a d},, = 4.21. In contrast. the
3 6/14 1 code presented in Table 3.11 has a [, =2 and 4}, = 5.33. Here it would be
expected that the 3 6/14 1 code would perform better at low SNR. but worse at high

SNR. Figure 4.14 shows simulation results and a truncated upper bound (includes 3
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terms from transfer function) for both codes. The figure shows that the 3 6/14 1 code
and the 3 9/14 | code perform similarly at low SNR. however around £,/ Ny = 10 dB.
the 3 9/14 1 code performs better as the other code begins to diverge. This would
indicate that higher SNR the 3 9/14 1 code would perform much better on Rayvleigh
fading.

As uncoded QPSK has the same efficiency of 2 bits/svmbol. we compare the
performance of the above codes with that of uncoded QPSK. Both codes have a gain
of 13.2 dB at 1073 and the 5 7/14 | and 3 6/14 | codes have gains of 25.7 dB and
25 dB at 107*. respectively.

Comparing these codes with known codes. the 3 6/14 1 code has the same distance
properties as the 13 6/2 1 found in [9]. The full search algorithm did not find the
13 6/2 1 as it only searched half of all possible codes as the other half would be
equivalent to a code that had been searched. Here. 3 6/14 1 and 13 6/2 | are
equivalent codes. The latter code has the advantage of being rotationally invariant.

This will be discussed in Chapter 3.

4.8 Summary

Tables 4.4 and 1.5. results are present a comparison and summary of the results
for the fading and AWGN codes found. In the tables. one or two codes have been
chosen to represent the performance of the fading codes which have maximum /. g
and d;,.,; and the AWGN codes which have maximum d3,,. The number of delay
elements. v and the number of states are shown and the fading and AWGN code
polynomuials are given. The effective length is shown for both codes. Also shown for
both codes is the asymptotic gain. \;oc. for AWGN and where applicable on the
Rayleigh fading channel. \;>c is defined as the asvmptotic gain of the fading code
over the AWGN code on the AWGN channel. As can be seen when the codes differ.
the gains are negative which indicates that the AWGN codes perform better on the
Gaussian channel. This is an expected result since codes designed for fading channels
should be sub-optimal on the AWGN channel. In most cases. the fading code loses
less than 1 dB in performance. but has a greater /.. In the case where \;2c is shown

for the Rayleigh case. the code with the maximum d%_, has the same /.5 as the fading

free
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code but has a smaller ;. The gain is defined by Equation 4.1 and is only defined
when the codes have the same effective length. When the fading code has a greater
effective length than the AWGN code. the asymptotic error performance in fading
will decrease faster with respect to SNR than the AWGN code. This is a result of
the asymptotic error performance being proportional to SNR~/-#. Therefore. a code
with a larger .5 is expected to perform better asvmptotically on the fading channel.

Looking at several examples from the tables. the performance losses associated
with using a fading code on the AWGN channel are generally less than | dB. However.
in the case of Zg there is a loss of 1.76 and 2.1 dB for the 6 and 36 state codes.
respectively. [n Figure 1.6. the code with the maximum djm- performs slightly worse
at a SER= 1077 but is expected to peform better at higher SNR levels as the first term
in the product transfer function becomes dominant. At lower SNR levels. Gaussian
noise and other terms in the product function contribute to the error performance.
In the case of the 36 state code. the code with the maximum l.g and d7 _,; performs
about 0.5 dB worse than the AWGN code at an SER of 1072, There is a cross-over
around the 107° SER level. However. the code does not make up for the loss on the
AWGN channel and does not approach the asymptotic performance quickly. Thus.
it is recommended that the 214/131 code be used if the desired error rate is above
10-5.

The 9 state Zg code for the AWGN code also performs better than the fading
code at low SNR. The simulation results show that the two codes perform identically
for the 12 to 14 dB range ou the Rayleigh fading channel. This agrees well with the
truncated upper bound for the codes.

The codes presented over Z)> show that the maximum effective length and 47 ,; do
not guarantee the best performance at low SNR. These terms dominate the asymptotic
fading performance. but other terms will dominate at lower SNR values. Thus. it is
important to consider many terms in the distance spectrum and the performance of
the codes at the SER or BER of interest.

The 16 state Z¢ fading code performed better than the AWGN code in fading.
The performance difference is more pronounced at higher SNR levels. This is a good
code as it loses only 0.1 dB on the AWGN channel and performs better than the
AWGN code found with the maximum d,,.
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From Tables 4.4 and 4.3. it is clear that in many cases the code with the maximum
;. also has the maximum &2, and l.5. When these codes are not the same. we
find that in most cases. the effective length of the AWGN code is less than the code
for fading. As a result. we have found codes which are expected to perform better
on a fading channel than the codes optimized for the AWGN channel. The codes
for fading will outperform the AWGN codes at high SNR on the fading channel and
perform only slightly worse on the AWGN channel. In the case of Zs codes the loss
on the AWGN channel is above | dB and the AWGN code performs better than the

fading code at low SNR on the fading channel.
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Table 4.4. Fading and AWGN comparison for Z, to Zgs codes

Ring|v|states| Fading |l.5{ AWGN |lLg| Ag~ Ag
codes codes dB dB
AWGN|Rayleigh
2 1] 2 ol/it 3] 1101 |3
20 4 101/111 5| Same
3011 3 11/21 4 Same
219 111/121 6 Same
31 27 | 1021/2211 | ¥ | Same
41 81 |l10111/21121| 9 N.A.
1 1) 4 11/21 3| Same
2| 16 123/331 51 232/331 | 4| -0.58
3| 64 | 1311/3321 | 6| Same
41 256 |12214/11021] 6 N.A.
5 11} 5 12/21 4 Same
21 25 213/431 6 Same
30125 | 1213/2231 | 8| Same
6 (1| 6 11/21 3 12/31 31 -1.76 1.25"
21 36 115/541 50 214/131 + 4] -2.10
3| 216 | 1154/5231 | 6 |1252/3121] 5 | -0.54
Ty T 12/31 4 Same
21 49 145/531 6 | 235/651 | 6 | -.22 .33
3 343 | 1325/2621 | 8 [1654/53521| 3 -1 63
S (1] 8 13/21 3 32/41 2| -.36
2| 64 356/761 51 232/741 | 3| -.36
3| 256 | 3655/7761 | 6 N.AL

7 AWGN code may perform better at low SNR

+ did not achieve this gain
N.A. Not Available
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Table 4.5. Fading and AWG.N comparison for Zg to Z g codes

Ring|v|states Fading lgl AWGN  |lg| Agx Ag..
codes codes {dB) (dB)
AWGN|Rayleigh
9 |1 9 12/41 4 24/31 3 -1.1
21 3l 145/211 6| 262/551 |5 -2
21 381 142/241 6| 262/551 |5 | -3
10 |1| 10 14/31 3 Same
2] 100 367/991 5] 257/981 | 4| -.26 1517
1L 1 11 53/41 4 Same
12 1] 12 25/11 1 3 25/31 31 -5 1241
20 144 I01L/1 71905 (311 7/181)4 | -1.76
13 1] 13 24/51 | 4] 33/21 4] -27 | 014
14 1) 14 35/ 121 3 18/101 [ 271 -23
15 1| 15 211/81 11 29/91 121} -0.57
16 [1] 16 39/ 141 3 36141 31 -L.02
36 /21 21 36141 |3 0 0

7 AWGN code may perform better at low SNR

* Partial search result
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4.9 Conclusion

At a high SNR. several of the codes designed for the Rayleigh fading channel out-
perform the codes designed for the AWGN channel. At low SNR. other terms in the
Euclidean and product transfer functions affect the performance of the code and in
some cases the code designed for the AWGN channel will perform slightly better than
the fading code at low SNR.

The Z, codes presented outperform comparable binary trellis codes designed for
Rayleigh fading. Also. a {4-state code was found which improves on the performance
of the 4-state code presented in Baldini and Farrell [3] in both AWGN and Rayleigh
fading. The 16-state Z, fading code is also better in fading than the 16-state Z, code
designed for AWGN. This AWGN code had the same d7,, as the l6-state Z, code
presented in [3].

The simulations showed that for Zs and Zg. the AWGN code performs better than
the fading code at low SNR. The truncated upper bounds show that there is a cross-
over in performance at higher SNR. For the cases of the 6-state Zgs and 9-state Zq
codes. the simulation results behave similar to the bounds and the fading and AWGN
codes perform identically at the high SNR levels simulated. Although the AWGN
code has an [,y = 5 and the fading code has an [,z = 6. the 216-state Z¢; fading and
AWGN codes perform identically on the Rayleigh fading channel at the error rates
simulated. In this case. as well as in other cases when ¢ is non-prime. there is onlv
one path with /5. and other paths with longer lengths will dominate in the error
performance at low SNR.

Similar results were found in a partial search for codes with constraint length 2
over Zyy. For an SER of 107 the code with the maximum 7., is recommended and
the fading code should be used at when the SNR greater than 15 dB.

The 16-state Z,s fading code found in the search performs better in fading than

the best known rate 1/2 16-state code over Z¢ (8].



Chapter 5

Rotational Invariance

Codes which are rotationally invariant (RI) are of great practical interest as a phase
slip in the demodulator does not cause a large number of errors [2]. They are also
practical because thev eliminate the need to determine the absolute phase at the
receiver [8]. For these reasons. it is beneficial to find codes over Z, which are invariant
to multiples of 27 /q phase rotations. These codes are referred to as transparent codes
[2. 3. 25. 10] and can be used in conjunction with a differential encoder to eliminate
errors caused by phase rotations [3].

In this chapter. we continue the search for codes which are good over fading

channels with the additional criteria of rotationally invariance.

5.1 Background

In [2. 3] the definition of rotational invariance just a requirement that the all-one
codeword exist within the code. The reason for this condition is a phase rotation
of 27r/q is equivalent to adding r times the all-one codeword to the transmitted
codeword. If the all-one codeword is a codeword. then by linearitv. the sum of the
transmitted codeword and multiple of the all-one codeword is a valid codeword.
The all-one codeword can be defined as follows.
l
u(D) = i—D
= 1+D+D*+... . (5.1)

If 2(D) and u(D) are a codewords. then (zr(D) + ru(D)) mod q is also a codeword.
In Figure 5.1. a convolutional encoder with additional differential encoder and

decoder processes is shown. To illustrate how the differential encoding eliminates
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x(D) N a(D)

? — Encoder
D

X(D) — a(D)

Decoder

Figure 5.1. Block diagram of transparent encoder/decoder

the phase rotation. consider the transmitted codeword. r(D). The sequence. a(D).
is formed by a(D) = r(D) + a(D)D mod ¢ and then encoded and transmitted. The
channel introduces a phase rotation of 2xr/q and we obtain at the output of the
decoder a( D). If all of the errors due to noise have been corrected then a( D) is just
a rotated version of a(D). i.e.. a(D) = (a(D) + ru(D)) mod gq.

The output of the encoder is

D) = (1 -D)a(D) modgq
= (a(D)+ru(D))—(a(D)+ru(D))D mod ¢
= a(D)—a(D)D + r(u(D) = u(D)D) mod q
= r{(D)+r(u(D)—u(D)D) mod q. (5.2)

As u(D) is the all-one sequence and subtracting a delaved version of it results in
the zero sequence. This removes the phase rotation from the channel and results in
r(D)=1x(D)

From [3] the definition for rotationally invariant (RI) is taken from trellis-coding
for phase modulation. That is. the minimum phase shift when applied to all compo-
nents starting at time 0 or later. vields a word that differs in at most a finite number
of positions from another codeword.

From [3]. a code is RI if for every codeword r(D) there exists a polynomial p;( D)
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where / = 1.2..... n such that

1
yi(D)=I.’(D)+T_—D-+p,'(D) (5.3)

are components of another codeword y( D).
Lemma [3]

A rational function r(D) € R(D) differs from 1—_15 by a polvnomial iff

p(D)

r(d):l_D

. (5.4)

where p(D) is a polvnomial with p(1) = L.
Here we modify Theorem | from (8] to the rate 1/2 case only by changing the
notation to maintain consistency.

Theorem [3] Suppose the coefficients of the (n — 1) x n systematic encoding matrix

N(D)
1 ... 0 ;—(D-)—
GDy=1|: . : (5.5)
fn=1(D)
0 1 eyl
satisfv the two conditions that
n—1
Y A1) =g(1) (5.6)
J=1
and that there is at least one unit among the elements g{1). fi(1)..... fa-1(1). For

rate 1/2 codes this gives us conditions on f(D) and g(D). i.e.. f(1) = g(1) and require
it to be a unit then the code is RI.

We can “almost™ generate the all-one codeword by choosing the input to be

_g(1)~'g(D)
=

_—
Ut
=1

Then

_ f(D)
r(D) = u(D)———g(D)
g(1)~' /(D)
D

Dr—-
~ |

pl
1-D’

Il
—_—

[]]

o
b
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The numerator polynomial p( D) satisfies p(1) = | since p(D) = g(1)~! f(D) and
g(l) = f(1).

Since r(D) in Equation 3.8 differs from the all-one sequence in finitely many
places. the code is said to be RI.

Thus. in searching for the codes. we restrict the search to codes where f(1) = g(1)
and g(1) is a unit in Z,. Rather than searching for the all-one codeword. the above
conditions on the code polynomials are used. These conditions allow the search
routine to quickly eliminate codes which do not meet these criteria. As a result. the
search routine can perform an exhaustive search through all possible codes.

As an example. we consider the convolutional code G{D) = 1 (1D+2)/(2D +1}]
over Z,. From Equation 3.7 the input sequence for this code is

3+2D
u(D) = D
= 3+D+D°+D°... . 15.9)

When the input is encoded. the encoded sequence differs from the all-one sequence
only in the first two positions. As an example of how the encoder works with a
phase shift on the channel. we will consider an arbitrary symbol sequence as an input
to the encoder as shown in Figure 5.1. In Table 5.1 the encoding. phase rotation
and decoding process is shown. The input sequence. r( D). is differentially encoded
to form a(D). This sequence is input into the convolutional encoder to form the
encoded sequence. A phase shift of ©/4 is added to the symbols at the beginning of
the sequence. In Figure 3.1. the trellis diagram for the code is shown. Using this
diagram we can decode the most likely sequence. The decoded state path is shown
along with the estimate of a(D). The estimate a(D) is then differentially decoded
to form zr{ D). which is the estimate of the original symbol sequence. As seen in the

table. the (D) and (D) differ by only one syvmbol.

5.2 Search Results

The trellis search algorithm was carried out as the exhaustive search presented in
Section 3.2. The differences between the searches were that for this one. the search

space was not reduced by half and the tap polynomials were required to have f(1) =
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Table 5.1. Erample of decoding with a phase shift for 12/21 code on Zg

(D) Fr 2 3 2 2 0 1 2

a{ D) I 3 2 o0 2 2 3 1
Encoded 12 33 21 00 20 22 30 11
T/4 23 00 32 [1 31 33 01 22

phase shift
Decoded state | 3 0 0 3 3 1 1 2
path

a( D) 20 3 1 3 3 0 2
r(D) 2 2 3 2 2 I 2
Error 1 0 0 0 O 0 0

g(1) and f(1) a unit. The tap polynornials were checked for this condition before the
search of the trellis started. If the code did not meet these conditions. the code was
discarded and the algorithm tested the the next code.

Results for the rotational invariant (RI) unit memory codes are presented in Ta-
ble 5.2. The effective length of the RI codes is equal to or less than non-RI unit
memory codes presented in Chapter 3. When ¢ is prime. the effective length of the
codes is equal to length of the non-RI codes and in some cases they are the same
code. The only exception is for ¢ = 3. In this case. the RI code has an /.5 one less
than the non-RI code. This is similar to the case when ¢ is non-prime. The effective
length of the code is one less than the maximum effective length of the non-RI code.

In some cases. the RI code has a greater d7,, than the fading codes. However. the
squared free distance is upper bounded by the squared free distance of the non-RI
AWGN codes that were presented in Tables 3.10 and 3.11.

The above results are to be expected as the RI code search had additional con-
straints placed on the tap polynomials from the non-RI code search. The codes in
the non-RI search were maximized for either the effective length and squared product
distance for fading or the squared free distance for the AWGN channel. As such. the
squared free distance of the Rl-codes is upper bounded by the squared free distance

of the non-RI AWGN codes and the effective length is similarly upper bounded by
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0 00
12 21
02
1 o <
10
1 01
3
30 0
3., 11

Figure 5.2. Trellis definition for 12/21 code over Z,

the non-RI fading codes effective length.

The results for the constraint length 2 Rl-codes are similar to the unit memory
code case. When q is prime. the effective length is equal to the non-RI codes. but
when non-prime the effective length of the code is one less than the maximum effective
length for non-RI codes. These codes are presented in Table 5.3.

The RI codes with maximum squared free distance are presented in Table 5.4.
For ¢ < 7 the codes in Table 5.3 also had maximum d},,. For ¢ = 7 the AWGN code
has an asvmptotic coding gain of 0.28 dB and an asvmptotic loss of 0.19 dB on the
Rayleigh fading channel by Equation 4.1. As can be seen. the performance difference
between the fading and the AWGN codes is very small. Similarly. for the case when
g = 9 the AWGN coding gain is 0.81 dB. However. the [.g is 4 where as the [.5 of
the fading code is 6. Thus. the fading code is expected to perform better in fading.

TTable 5.5 presents the results for rotationally invariant codes with constraint
length 3. These codes have the same effective length and d},, as the non-RI codes.
Also. the codes for Z; and Zg have the same characteristics as the non-RI codes
presented in Table 3.8. The d?

free

over Zs and Zs is less than that for the non-RI
codes. This difference results in 0.51 dB and a 0.21 dB loss. respectively. on the
AWGN channel.
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[n Table 5.7 we show the comparison between the non-RI codes from Chapter 3
and the RI codes presented in this chapter. Ve compare the effective length and the
asymptotic gain over BPSK on the AWGN channel. The table presents the codes
for constraint lengths of 1. 2. and 3. and codes over Z3 to Zs. As can be seen the
effective length. [.5 of the RI codes are upper bounded by the effective lengths of the
non-RI codes. In the case when the effective lengths are identical the non-RI code
has a greater d7,, than the RI code. For those cases when the effective length of the
RI code is less than that of the non-RI code. the dj., of the RI code is greater than
the RI code. For example. for the Zs code with constraint length 1. the asymptotic
gain over BPSK is 0.37 dB greater for the RI code than the non-RI code although
the effective length is one less than the non-RI code.

In comparson with the literature. this search found several codes which were
previously presented. For example. the Z s 16-state code 136/21 was also found
in Massev et al. [8]. For Z4 codes with 1 and 16 states. 12/21 and 311/221. presented
in Tables 5.2 and 5.3 are previously known from Baldini et al. [3]. We also present
two additional 16-state Z; codes. namely. 113/221 and 122/311 which have the same
characteristics as the 311/211 code.

The code 311/211 has d7,, = 12 and the first four terms are shown in Table 5.6.
Also shown in the table is a code that has d,, = 16 and the same d;,,, as the 311/221
code. The 212/311 code does not have an error path of length 5 in the product transfer
function like the 311/221 code. thus it is expected that it would perform better than
the 311/221 code. However. the number of errors associated with each error path is
greater than the 311/221 code and thus may perform worse.

Monte-Carlo simulations were used to confirm the relative performances of the
codes. In Figure 5.2. simulation results are shown for the 212/131 and 311/221 codes.
The first two paths of the transfer function were used to generate an upper bound
on the performance on the Rayleigh fading channel. From the bound the 311/221
code should perform slightly better than the 212/131 code. and the simulation results
the confirm that the difference between these two codes is extremely small. For the
AWGN channel. the 212/131 code performs slightly better than the 311/221 code.

as expected. For the symbol error range presented in the figure. the codes perform

practically the same.
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Table 5.2. R/ codes with constraint length 1 for Rayleigh fading
Ring | polynomials | njme df,. Re | Nprod i Mo | leg 1 gx dB
31 02/11.20/11 2 9.00 2 2 27 213 251
1 12/21 l 3.00 1 L 16 1] 2 3.01
5| 12/21.13/31 4 16.00 2 4 25 2 4 1.63
6 32/41 2 .00 2 l 16 1] 2 1.12
T 23/41.33/51 2 T2 2 3.27HL 2 1 4 4.35
64/21
S o32/41.74/21 2 T2 1 16 1] 2 1.30
9 25/61 2 6.77 1 2 27 1| 3 1.29
10 34/61 2 5.76 2 l 16 |2 3.79
T2/81
94/ 21 (g)
11 34/ 61 2 6.37 2 2 23063 2 1 4 4.40
36/21
12 338/101 I 3.4 3 1 16 1 2 3.95
13 24/ 51 l 5.96 3 2 1.3722 2 4 4.27
63/81
14 136/ 41 2 6.06 2 1 16 1| 2 1.60
15 118/31 2 143 2 2 27 L] 3 3.35
139/ 61 2 5.63 2 2 L] 2
16 136/ 21 | 333 4 l 16 1] 2 1.26
510/14 1 (g)

81
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Table 5.3. R/[ codes with constraint length 2 for Rayleigh fading
Ring polynomials N free d}’m Ne | Nprog ;md n, | l.g | g dB
2 00L/111 1 16.00 2 1 256 2 4 3.01
010/111
100/111
3 112/211.122/221 6 13.00 3 6 29 3 5.32
4| 113/221.122/311 2 1200 1 2 256 1.5 1.77
3117221
5| 133/241.142/331 4 14.15 3.5 4 125 3 6 6.14
432/211. 443/321
6 | 232/511.434/551 10 13.00 3.4 2 256 2.5 6.23
452/131. 254/131
T 433/6510 423/621 2 11.10 3 18 419 3 6 5.91
125/341. 435/561
133/651
S 1 335/641. 533/641 2 11.17  3.23 2 256 1.5 4 6.22
342/711.472/751 |
546/771.614/731
614/731.645/771
2143/771
9| 125/521. 142/241 | 2 843 4 6 9 3 6 5.26
415/271.452 /341

152/251.175/571

T45/871.752/581
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Table 5.4. RI codes with constraint length 2 for the AWGN channel

83

polyvnomials

1 free

2
d}ree

n.

Nyeod

ar.’

prod

np

l.g | g« dB

Ring

71 134/251.254/461
152/431.335/211
553/411.633/221
132/261.655 /441

D

11.85

1

15.09

3

6 6.19

[¢.4)

335/641.333/6-1

(V9]

L1.17

6.22

154/361.163/451
164/371.173/461
346/431.347 /761
367/781. 373/841
613/721

10.24

Table 5.5. R/[ codes with constraint length

3 for Rayleigh fading

polynomials

Ring

n_free

d‘)

free n,

Nprod

2
prod

l.g

g.. dB

31 1112/1211
1121/2111
2011/1121

2122/2221

4

21 3.3

1

2187

{

6.19

1121/3231
1323/1211
3231/1121
3233/3121

[

16.00 4

8V

4096

1142/3431

Ut

16.91 4.5

v d)

N
[
o]

0]

1145/2351

15.00 4.2

(1]

4096 3
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Figure 5.3. Performance comparison for the 16-state Z, codes 212/131 and 311/211
on the Rayleigh and AWGN channel.
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Table 5.6. Transfer functions for the 212/131 and 311/221 code

! 212/131 |
Euclidean Product
n. | d& |errors | n, | d; | errors | 1
14 016§ 35 2256 @ 25 4]
16 [20] 43 |12 26 | 37 |6
267 | 24 5.1 3 | 4096 6
S48 1 28| 5.6 20 | 1024 4 v

311/221 code

Euclidean Product
n. | & |errors || n, | d; |errors ||
> l12] 1 226 ] 15 [4]
IS | 16 2.3 2 6 l 3
30 [20| 3.3 1[10] 236 | 28 |6
317 | 241 4.5 3 14096 3 6

5.3 Summary

The restrictions on the tap polynomials for the rotationally invariant codes were
described. The results of an exhaustive search for RI codes were presented. The
search found a two codes which have appeared in the literature. namely. 12/21 over
Zy 3l and 13 6/ 2 1 over Zys (3]. As we used the results from [3] to restrict the tap
polynomials. we would expect to find the same rate 1/2 code over Z s as they did in
their search.

In a few cases. the RI code has the best [z and d;,,,; for the ring. For example,
the constraint length 2 and 3 codes for Z; have the same characteristics as the best
codes found in Chapter 3.

The effective lengths of the RI codes are upper bounded by the effective lengths
of the non-RI codes. However. there were a few cases where the dj,, was greater
than the non-RI code when the effective length was less than the non-RI code. For
example. for the constraint length 1 codes. the codes for Z, where q is 6. 3. 9. 12. 14

and 16 all have better d7,, and the [ g is one less than the non-RI codes. This means
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Table 5.7. RI comparison with non-RI ring codes

T

vr=1 =2 r=3
Ring | Non-RI RI Non-RI RI Non-RI RI
9= |leg | 9x |leg | 9 |leg | 9= |lg || 9x |[lg | 9x | L7
33567 4 251 3 (3521 6 |532 6 |6.19| T [6.19} 7
141398 3 |301 | 2 }j3444) 5 |[477 ] 4 634 6 |6.02¢{ 6
5914637 4 1463 ) 4 1639 6 16.14| 6 120 8 1691 8
6288 3 |L.12¢ 2 ([412] 5 16.23 | 4 6.835| 6 |6.8>
6= i 4.64 | 3 | 4.12 ] 2
T 435 4 |43 4 ||6.137 6 591 6
S13931 3 (4306 2 |[598] 5 .22
9312 4 [429¢1 3 (679 4 |52 3
104463 3 {379} 2 ||792, 5
[1)461¢{ 4 | 440 ] 4
1213731 3 |39 2 1429 5
131440 4 | 427 4
41437 3 | 460 2
15 || 4.0 4 1335 3
16 {1323 3 [4.26 | 2
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that the codes will perform worse asvmptotically in fading than the non-RI codes.
but are better on the AWGN channel.

In most cases the R code with the added restrictions are worse on the Rayleigh
fading channel and the AWGN channel. However. these codes are still of interest due
to the rotational invariance property. [f the channel has slow phase rotations then

the RI codes will perform much better than the non-RI codes.
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Chapter 6

Summary of Results and

Suggestions for Future Work

Chapter | presented a historical background of ring codes and some of the early work
which led up to this dissertation.

In Chapter 2. fundamentals of the digital communication systems were presented.
The basic structure of the convolutional codes along with the PSK modulation were
presented. As well. the asymptotic estimate of the codes™ performance was introduced
and defined the characteristics to be used in the search for good codes.

Chapter 3 described the exhaustive search routine and the results of the search.
The restrictions on the tap polynomial which led to the reduced search algorithm were
developed. The codes found by the reduced search were also presented. Although
this dissertation was mainly concerned with maximizing the fading performance by
maximizing the effective length and squared product distance. codes which maximized
only the squared free distance were also included. These codes are called AWGN codes
as their performance is optimized for the AWGN channel. As the performance of the
codes on the Rayvleigh fading channel at low SNR is affected by the dy,... these codes
are expected to perform well at low SNR. as well as. on the AWGN channel.

Simulation results for several codes were presented in Chapter 1. The codes were
simulated over a Rayvleigh channel with ideal interleaving and ideal channel state
information. This was to confirm the expected performance and compare the codes
with known codes from the literature. In this chapter. we found that several codes
have better performance on the Rayleigh fading channel than known codes. Also. in
one case the code had better performance on the AWGN channel than codes in the

literature. Several comparisons were done between the code optimized for fading and
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the codes optimized for the AWGN channel. In many cases. it was found that at low
SNR. the AWGN codes performed slightly better than the fading codes. The fading
codes were better asymptotically on the fading channel. however. in some cases the
error rate was too low to simulate the system performance accurately in a reasonable
amount of time.

Rotationally invariant codes were introduced in Chapter 5. Massey et al. [§]
developed restrictions on the tap polynomials which could be used to find rotationally
invariant (RI) codes. These codes are valuable as a phase rotation which is a multiple
of 27/q when using ¢-PSK will produce a small number of errors. A non-RI code
would produce errors at the output of the receiver until the rotation was corrected.
As the restrictions on the code polvnomials allowed the search algorithm to eliminate
codes quickly. an exhaustive search was carried out. The results of the search for
codesover Z,.q € {3..... 16}. were presented in Chapter 3. [n the case of the {-state
Z, and 16-state Z s codes. the search found codes also found by exhaustive search
by Baldini and Farrell [2] and Massey et al. [8]. respectively. As in Chapter 2. the

fading codes as well as AWGN codes are included in the results of this chapter.

6.1 Future Work

The continuation of this research would include a continuation of the search for good
ring codes. Rate 1/2 codes with higher constraint lengths would be of interest. Also.
higher rate codes such as rate=2/3 codes and rate=3/4 codes would be of interest
due to the increased efficiency. The general structure of a rate 2/3 encoder is shown
in Figure 6.1. Baldini and Farrell [3] examined codes of both rate 2/3 over Zs. and
rate 3/4 over Z¢ and Massey et al. (8] have examined codes of rate=2/3 over Zs.
In the case of codes that must work in fading environments. these codes should not
have parallel transitions. Thus. all input bits must affect the state of the encoder to
ensure the code does not have parallel transitions in the trellis.

One of the topics in coding theory that has recently received much interest is
Turbo-codes. These codes were introduced in Berrou et al. [47] and are also cailed
Parallel Concatenated Codes (PCC) [49]. A common structure for the Turbo-codes

uses multiple Recursive Systematic Convolutional (RSC) codes as component codes.
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One structure is presented in Figure 6.2 although several variations appear in the
literature. Examples of the structures of turbo encoders are presented in [47. 43. 49].
Another common structure deletes the bit r’ from the output to obtained a rate 1/3
code. Significant coding gains have been obtained utilizing this structure.

A continuation of this research would be to use some of the codes found in this
dissertation as the component codes in a Turbo-code. It is likely that the ring codes
which showed gains over binary trellis codes with the same number of states would
also achieve gains when used in a Turbo-code structure. One of the goals when
this research started was to develop a turbo-ring-coder over an arbitrary integer ring
modulo-q. However. sufficient information on good codes for fading and over several
of the integer rings was not available. It is hoped that this research will lead to the
use of some of the codes herein as component codes in a Turbo-coded system.

The {-phase spreading sequences presented in Boztas et al. [40] and Hammons
et al. [43] are applicable to Code Division Multiple Access (CDMA) Spread Spectrum
svstemns. An interesting study would be to combine the codes over Z, and the 4-phase
spreading sequences in a CDMA system. Another study of interest is to use codes
over Z, and g-ary spreading sequences similar to those in Boztag et al. [10] to form
a g-ary coding/g-ary spreading communication system. For example. the 12/31 code
over Zs had gain over BPSK of 4.64 dB could be spread using a 6-ary spreading
sequence. A 6-ary spreading sequence could be generated by a shift register utilizing
an irreducible polynomial from Appendix A. An investigation to find the polynomials

which generate sequences with low cross-correlation would be required.
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Figure 6.1. Structure of a rate 2/3

X
X
- RSC
code | Yi
Interleaver
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—+
X' RSC
| I—— code 2 y2
|

Figure 6.2. An erample of a rate 1/{ Turbo code structure
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Appendix A

Tables of Polynomials

In order to reduce the search for good codes over Z,. we restricted the polynomials
g(r) and f(r). which define the code. to have no factors of lesser degree in Z,[r].
When q is prime. this is equivalent to requiring g(r) and f(x) to be irreducible. As
irreducible polvnomials over fields are well known and are tabulated in the literature
(cf. [50]). we will not list them here. However. we want irreducible polynomials over
Z, when ¢ is not prime as well. A polynomial p € R[r] is irreducible over R if p
has a positive degree and p = bc with b.c € R[r] implies that b or ¢ is a constant
polvnomial [30]. In other words. it is irreducible if it allows only trivial factorization.
However. there is the case when working in Z,[r]. that there may exist a factor of
equal or greater degree. For example. let f(r) =2r +3 and g(z) =32 +2r + | in
Zs. then f(r)g(r) = r*+2r+3. Another exampleis f(r) =3r+3 and g(r) = 2r +2
where the product is equal 0.

The polynomials given in the Tables A.1-A.10 are over Z, and have no factors of
lesser degree. By formal definition they are not necessarily irreducible as there may
exist factors of higher degrees. However. the purpose of using these polynomials was
to ensure that two polynomials did not have factors of lesser degree. [n the tables.
the polvnomial a,r™ + a,—,r*~' + ... + ag is abbreviated as a, a,, ... ao.

The polynomials in the tables were computed using the Erastothenes sieve method.
In this method. to find all the polynomials of degree n that have no factors less than
degree n. all of the reducible polynomials of degree n are calculated. The calculation
is done by multiplving all possible factors (less than degree n) which produce a degree
n polynomial and removing it from the set of all polynomials of degree n. After all of
the computation is completed the polynomials remaining in the set have no factors less

than degree n. When ¢ is prime the polynomials are called irreducible. This method
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Table A.1. Polynomials over Z,[r] with no factors of lesser degree for degrees 2 to

7
+

Z, = 4 Degree 2

101 102 111 113 12:

I~
[V
Nawt

133 201

[
—e
by
A
—
w
—

Z, =4 Degree 3

1002 1011 1013 1022 1031 1033 110t 1103 1113 1121
1123 1131 1202 1211 1213 1222 1231 1233 1301 1303
1311 1321 1323 1333 2001 2021 2201 2221

Z, = 4 Degree 4

10001 10002 10011 10013 100: 10023 10031 10033 10101 10103
10121 10122 10123 10202 10203 10211 10213 10221 10222 10231
10233 10301 10302 10303 10321 10323 11001 11003 11013 11021
11023 11031 11102 MIII1 LIIE3 11122 11131 11133 11201 11203
L1281 11221 11223 11233 11302 11311 11313 11322 11331 11333
12002 12003 12011 12013 12021 12022 12031 12033 12101 12102
12103 12121 12123 12201 12202 12211 12213 12222 12223 [223]
12233 12301 12303 12321 12322 12323 13001 13003 13011 13021
13023 13033 13102 13111 13113 13122 13131 13133 13201 13203
13213 13221 13223 13231 13302 13311 13313 13322 13331 13333
20001 20021 20201 20221 22001 22021 22201 22221

B

Nt
A

§
[}

found the irreducible polynomials that are presented [30]. These tables are omitted
here as they are presented elsewhere. The sieve method is impractical for large degree
polynomials. however only polynomials with small degrees were of interest.

The tables present the results of the sieve method. They are not the product of
any polynomial of lesser degree. Constant multiples of the polynomials presented in

the following tables were omitted.
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Table A.2. Polynomials over Z x| with no factors of lesser degree 3

Z, = 4 Degree 3

100002 100022 100101 1t00L03 100121 100123 100202 100222
10030t 100303 100321 100323 101001 101003 101021 101023
10111l 10LLL13 101131 10L133 101201 101203 101221 101223
101311 101313 101331 101333 102002 102022 102101 102103
102121 102123 102202 102222 102301 102303 102321 102323
103001 103003 103021 103023 103111 103113 103131 103133
103201 103203 103221 103223 103311 103313 103331 103333
110013 110031 110111 110113 110131 110133 110211 110233
110311 110313 110331 110333 111011 111013 111031 111033
111101 111103 111121 111123 111210 111213 111231 111233
IT130L 111303 111321 L11323 112001 112033 112011 112113
112130 112133 112213 112231 112311 112313 112331 112333
113011 113013 113031 113033 113101 113103 113121 113123
113211 113213 113231 113233 113301 113303 113321 113323
120002 120022 120101 120103 120121 120123 120202 120222
120300 120303 120321 120323 121000 121003 121021 121023
121111 I20113 121130 121133 121201 121203 121221 121223
121310 121313 121331 121333 122002 122022 122101 122103
122121 122123 122202 122222 122301 122303 122321 122323
123001 123003 123021 123023 123011 123113 123131 123133
123201 123203 123221 123223 123311 123313 123331 123333
130011 130033 130111 130113 130131 130133 130213 130231
130311 130313 130331 130333 131011 131013 131031 131033
131101 131103 131121 131123 131211 131213 131231 131233
131301 131303 131321 131323 132013 132031 132111 132113
132131 132133 132211 132233 132311 132313 132331 132333
133011 133013 133031 133033 133101 133103 133121 133123
133211 133213 133231 133233 133301 133303 133321 133323
200001 200021 200201 200221 202001 202021 202201 202221
220001 220021 220201 220221 222001 222021 222201 222221
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Table A.3. Polynomials over Zgs[z] with no factors of lesser degree for degrees 2 and
3

Z, = 6 Degree 2

101 104 111 112 113 115 122 125 131 133 134 135
142 145 151 152 133 155 205 211 214 221 232 235
241 251 254 311 313 315 331

Z, = 6 Degree 3

101l 1013 1015 1021 1022 1024 1025 1031 1033 1035 1051 1052
1053 1054 105 1105 1112 1115 1121 1123 1124
1125 1132 1145 1151 1154 1201 1204 1211

,_.
—

— Bd 1)

(] ] o1}

— =

— =

¢ A O

—

— —

— =

—_ O

NN

—_— =

— -

- o

[ )

1213 1214 1213 1222 1225 1231 1233 1234 1235 1241 1244 1231
1252 1253 1255 1301 1303 1305 1321 1322 1323 1324 1325 1341
1343 1345 1351 1352 1354 1355 1402 1405 1411 1412 1413 1415
1421 1424 1431 1432 1433 1435 1442 1445 M50 1433 1454 1435
1501 1503 1504 1305 1511 153i4 1321 1522 1523 1523 1331 1334
1541 1543 1544 1345 1552 1335 2011 2012 2014 2015 2041 2045
2102 2105 2111 2114 2122 2125 2132 2135 2141 2044 2152 2135
2201 2212 2215 2221 2231 2234 2245 2231 2254 2311 2312 2314
2315 2341 2342 2344 2345 2405 2411 2414 2425 2432 2435 2441
2452 2455 2501 2504 2512 2513 2521 2324 2531 2334 2542 2545
2551 2554 3011 3013 3015 3031 310f 3103 3105 3121 3123 3125
3141 3143 3145 3211 3213 3215 3231 3233 3235 32531 3233 3255
3301 3321 3323 3325
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Table A.4. Polynomials of degree | over Zg[x] with no factors of lesser degree

Z, = 6 Degree 4

10011 10012 10013
10045 10051 10052
10124 10125 10132
10205 10211 10213
10255 10312 10315
10345 10352 10355
10424 10431 10432
10435 10302 10505
10543 L100L 11002
11032 11035 11041
11113 L1114 11115
144 11151 11152
11223 11225 11241
11311 11313 11315
11351 11353 11354
L4210 11422 11423
11452 11455 11511
11535 11531 11552
12015 12031 12032
12101 12104 12112
12143 12145 12131
12235 12242 12245
12314 12332 12335
12411 12412 12413
12442 12445 12451
12514 12515 12523
13015 13021 13022
13052 13055 13102
13131 13132 13133
13201 13202 13203

10015
10053
10135
10215
10321
10402
10433
10521
11003
11043
11122
11153
11243
11321
11335
11425
11513
11533
12033
12115
12154
12251
12341
12415
12453
12525
13023
13105
13135
13205

10031
10105
101453
10233
10331
10413
10444
10532
11021
11054
11133
11203
11254
11332
11-104
11441
11522
12005
12044
12125
12213
12301
12352
12431
12501
13001
13041
13114
13151
13225

10033
10111
10151
10235
10334
10414
10451
1053+
11023
11101
11134
11205
11255
11333
11405
11443
11525
12011
12051
12131
12215
12302
12355
12433
12505
13003
13042
13115
13153
13232

10035
10114
10154
10251
10341
10415
10453
10535
11024
11104
11135
11221
11302
11335
L1411
L1444
11531
12013
12053
12134
12231
12305
12401
12434
12511
13005
13043
13121
13154
13234

continued on nert page
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Z, = 6 Degree 4 Table 4.{ (continued)

13241
13331
13402
13435
13511
14002
14035
14123
14213
14255
14335

13243
13333
13403
13441
13513
14005
14051
14125
14215
14301
14351
14431
14501
13001
13035
15113
15151
15221
15313
15351

15423

13245
13335
13405
134-43
13515
14011
14053
14131
14222
14302
14354
14433
14505
15002
15041
15115
153153
15223
15314

5353

l
15424

13301
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13411
13444
13531
14013
11054
14134
14225
14305
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14434
14522
15003
15043
15121
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14315
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15045
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15242
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15434
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20501
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21454

13313
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13335
15412
15443
15535
20041
20225
20341
20515
21004
21125
21235
21334

21505

13325
13401
13432

13505

13555
14033
14122
14211
14253
14332
14422
14433
14554
15025
15111
15142
15214
15305
15311
15415
15445
15541
20051
20231
20344
20522
21011
21151
21242
21341

21512
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Z, = 6 Degree 4 Table A.{ (continued)

21515 21521 21524 21532 215335 21542 21545 21551 21554 22001
22012 22015 220301 22034 22045 22111 22114 220141 22144 22205
22211 22214 22225 22232 22235 22241 22252 22255 22301 22304
22312 22315 22331 22334 22342 22345 22411 22414 22441 22502
22505 22511 22514 22522 22525 22532 22535 22541 22544 22552
22555 23011 23014 23021 23024 23035 23041 23044 23051 23054
23101 23104 23105 23131 23134 232001 23204 23212 23215 23222
23225 23231 23234 23242 23245 23252 23255 23305 23311 23314
23321 23324 23341 23344 23351 23354 23401 23404 23431 23434
23435 23501 23504 23512 23515 23522 23525 23531 23534 23542
23545 23552 235335 24001 24025 24031 24034 24052 24055 24121
24124 24151 24154 24205 24212 24215 24221 24232 24235 24245
24251 24254 243001 24304 24322 24325 24331 24334 24352 24355
24421 24451 244534 24502 24505 24512 24515 24521 24524 24532
24535 24542 24545 24551 24554 2500% 25004 25012 25015 25031
25034 25042 25045 23051 25111 25114 25141 250144 23145 25202
25205 25211 23214 23222 25225 25232 25235 25241 23244 25252
25255 25301 25304 23312 25315 25321 25331 25334 25342 25345
25410 25414 25415 253441 25444 25502 25505 23511 25514 25522
25525 2535332 25535 23341 23344 25532 235335 30011 30013 30015
30031 30211 30213 30215 30231 30233 30235 30251 30253 30255
31001 31003 310065 31021 31023 31025 31041 31043 31045 31111
31113 31115 31131 31133 31135 31151 31153 31155 31201 31203
31205 31221 31223 31225 31241 31243 31245 31311 31313 31315
31331 31333 31335 31350 31353 31355 31401 31403 31405 31421
31423 31425 31441 31443 31445 31511 31513 31515 31331 31533
31535 31551 31553 31555 32001 32013 32015 32031 32033 32035
32051 32053 32055 32105 32125 32141 32211 32213 32215 32231
32233 32235 32251 32253 32255 32341 32345 32411 32413 32415
32431 32433 32435 32451 32453 32455 32501 32521 32545 33001
33021 33023 33025 33111 33113 33115 33131 33133 33135 33151
33153 33155 33201 33203 33205 33221 33223 33225 33241 33243
33245 33311 33313 33315 33331
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Table A.5. Polynomials over Zg[r] with no factors of lesser degree for degrees 2 and
3

Z, = R Degree 2
lor 102 103 105 106 111 113 115 Lli7 122 123 124
126 127 131 133 135 137 141 142 145 146 147 151

153 155 157 162 163 164 166 167 171 173 175 177
201 203 221 223 241 243 261 263 421 423

Z, = X Degree 3

1002 1004 1006 1011 1013 1015 10lv 1022 1026 1031 1033 1035
1037 1042 1044 1046 1051 1053 1055 1057 1062 1066 1071 1073
1075 1077 110t 1103 1105 1107v 1113 L11l¥v 1121 1123 1125 1127
1131 1135 1137 1141 1143 1143 1147 1153 1157 1161 1163 1165
116% 1171 1173 1175 1202 1204 1206 1211 1213 1215 1217 1222
1226 1231 1233 1235 1237 1242 1244 1246 1251 12533 1235 1257
1262 1266 1271 1273 1275 1277 1301 1303 1305 1307 1311 1315
1321 1323 1325 1327 1333 1335 1337 1341 1343 1345 1347 1351
1335 1361 1363 1365 1367 1371 1373 LE377 1402 1404 1406 1411
413 415 L4I7 1422 1426 1431 1433 1435 1437 1442 1444 1446
451 1453 1455 1457 1462 1466 1471 1473 1473 1477 1501 1503
1505 1507 1513 1517 1521 1523 1525 1327 1531 1533 1335 1541

15343 1545 1347 1553 1557 1361 1363 1565 1567 L1371 1375 1577
1602 1604 1606 1611 1613 1615 1617 1622 1626 1631 1633 1635
1637 1642 1644 1646 1651 1633 1655 1657 1662 1666 1671 1673
1675 1677 1701 1703 1705 1707 Ivil i715 1721 1923 1725 1727
1731 1733 1737 1741 1743 1745 1747 L1731 1755 1761 1763 1765
1767 1793 1775 1777 2001 2003 2021 2023 2041 2043 2061 2063
2200 2203 2221 2223 2241 2243 2261 2263 2401 2403 2421 2423
2441 2443 2461 2463 2601 2603 2621 2623 2641 2643 2661 2663
4001 4021 4023 4041 4101 4102 4105 4106 4107 4111 4113 4115
4117 4122 4123 4124 4126 4127 4131 4133 4135 4137 4141 4142
4143 4145 4146 4151 4153 4155 4157 4162 4163 41164 1166 4167
4171 4173 4175 4177 401 4421 4423 4441
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Table A.6. Polynomials over Zg[x| and Zo[r] with no factors of lesser degree for

degree 2

Z, =9 Degree 2
1601 103 104 106 107 111 112 114 115 11X 122 124
125 127 128 131 133 134 136 137 141 142 145 147
148 151 152 155 157 158 161 163 164 166 167 172
174 175 177 178 181 182 IS4 IS5 ISX 301 302 331
332 361 362

Z, = 10 Degree 2

102 103 107 108 111 L12 113 115 116 117 119 123
124 123 129 131 133 134 135 137 138 139 141 142
146 147 151 152 133 155 157 13% 139 161 162 166
167 171 173 174 195 177 178 179 183 134 IRR IR9
191 192 193 195 196 197 199 201 209 211 213 216

218 227 229 232 234 237 239 241 243 251 254 256
259 261 263 272 274 277 279 237 289 291 93 296
298 511 513 315 517 519 5351
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Table A.7. Polynomials over Z\»[r] with no factors of lesser degree for degree

Z, = 12 Degree 2

101 102 104 105 LO6 107 109 Lo 111
L1 113 1153 L1y 1LS 119 L 111 122 123
125 126 127 128 1210 1211 131 133 134
135 137 139 1310 1311 141 142 145 146
143 149 1410 1411 1531 152 153 155 157
158 159 1511 161 162 163 164 166 167
1610 1611 171 172 173 175 | Lvs 1v9
1711 IX1 132 L85 136 I 38 1 R9 IR10 IR1I
191 193 194 195 197 199 1910 1911 1102

1103 1105 1106 1107V 110% 11010 11011 1111l 1il2
1ir3 1115 111y 1ils 1119 11111 201 203 205

211 214 217 2110 221 223 225 232 235
238 2311 241 243 245 251 254 257 2510
261 263 263 281 233 285 2101 2103 2105
302 30v 31l 313 315 317 319 3111 321
322 325 326 329 3210 331 337 342 343
346 347 3410 3411 361 362 371 373 375
3v7 379 3711 391 397 401 412 415 413
4111 425 431 434 437 4310 +453 452 455
158 4511 461 435 1105 601 621 623 625

641 643 645 661




Table A.8. Polynomials over Zyr] with no factors of lesser degree for degree
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Z, = 14 Degree 2
101 102
115 116
125 129
138 139
1412 1413
151t 1512
171 172
1713 183
193 195
1105 1106
1117 L1LR
1129 11210
1139 11310
215 219
236 2310
256 25 %
274 278
296 29 R
2116 21110
2135 2139
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Table A.9. Polynomials over Zs5{r]
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with no factors of lesser degree for degree

Z, = 15 Degree 2
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Table A.10. Polynomials over Zs[x] with no factors of lesser degree for degree 2

Z, = 16 Degree 2

101
1011
L1113
1210

102
1013
1115
1211
1311
149
157
166
173
183
1814
1101t
11013
[ 1113
11210
1139
L 147
11553
207
261
2103

103
1014
122

[N
N~

P— g

1

1313
1410
139
L6~
175
L84
191
1102
110 14
11115
L1212
113 11
1149
1157

104
111
123
214
315
412
5311
6 10
177
I R5
193
1103
11015
1121
11213
11313
11410
1159

Pt = pet et e

105
113
124
1215
141
1413
1513
1611
179
I 26
195
1 104
1111
I 122
112 14
11315
1 1411
1 1511

106
115
125
131
142
4 14

10
117
126
133
145
1415
161
1613
1713
1R9
199
1107
1115
1126
1131
1143
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L1414
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241
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— S]]
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1911
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11011
1119
11223
113
1 14
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o
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