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Rate  I / 2  SJ-stemat ic recursi~ve convolut ional codes over integer rings modulo-q a re  

invest igated for t heir performance. T h e  investigation examines the  performance in 

severe fading and  addit ive white Gaussian noise for codes wi t h various const raint 

lengths. T h e  arithrnet ic for the  codes is m o d u b q .  where the  value of q is within the  

range of 2 t o  16. -An exhaustive search is carried out for codes with short constraint 

lengt hs. -4 reduced search is developed for larger const raint lengr hs which rest rict s 

the  tap  polynomials to  irreducible polynornials over Z,. The  irreduci ble po1~-nomials 

are  generated and  the  ones not found in the  literature are presented in tables. The 

search algorit hms  are  outlined and t h e  results for the codes a re  tabulated. 

The  performance of selected codes a r e  verified by 51onte-Carlo simulation tech- 

niques. Se\-eral codes have bet ter performance t han comparable codes presented in 

t he  literature for t h e  Rayleigh fading channel. In srne of cases. the codes found ha\-e 

better performance on the  .4\\-GS channel t han the best known ring codes. 

The characteristics of rotat ionally invariant ( RI) ring codes presented in t h e  

erature a r e  used in an exhaustive search for codes over Z ,  which are  i n ~ a r i a n t  

phase shifts of Z;;/q. Tables of RI codes optimized for the Rayleigh fading chan 

are presented along with codes which a r e  optimized for the .4\\-GS channel. 
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Chapter 1 

Introduction 

In 19-15. Claude Shannon published --A .\lathematical Theory of Communicationa- 

[ l ]  in which he dernonstrated t hat reliable cornniunication could be achie\-ed o l r r  a 

noisy channel. Proper encoding of the  information and a transmission rate leas than 

the channel capacity are required to  achieve reliable communication of information. 

.Absent from his ivork was a method for constructing good codes. This startetl an 

area of research to find good codes and methods to construct these codes. The 

problem is to find an encoding/decoding strateg- which adds the minimum amount 

of redundanc-. and can meet the  error performance and delay requirernents of the 

Tradit ionaIl>-. coding t heorists have developed Forward Error Correcting ( FEC' ) 

codes wit h a lot of structure. n-hich [ends itself to efficient decoding strategies. In 

man>- cases. the arit hnietic for these codes is O\-er an algebraic structure knoivn as 

a Galois field [.?O!. --\ Galois fieid is the basis for se\-eral n-ell-Linou-n codes such as 

t h e  binary BCH codes [3S] and Reed-Solomon codes [36]. In these cases. a ntimber 

of information symbols enter the  encoder and redundant sl-nibois are added to form 

a codeword. The codeword is transmitted and the receii-er decodes the codeword 

independent of pre\-ious or future codewords. This t>-pe of coding is called block 

coding. 

-4nother type of coding is convolutional coding. This type uses a finite state 

machine ii-hich adds mernorJ- into the informat ion sequence to form a coded output 

sequence. Each state has a defined output for a specific input symbol. The cur- 

rent state is dependent on al1 previous inputs and the start ing state of the encoder. 

The coded output sequence is transmit ted and the receiver observes the noisy coded 

sequence and uses the input-output relationship of the encoder to  estimate the infor- 
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mat ion sequence. 

In both cases. the distance spectrum between coden-ords for block codes. or  coded 

sequences for convolutional codes. will define the performance of the code. Here. 

distance spectrum means the set of al1 possible distances between codeu-ords or se- 

quences. The choice of the distance met ric depends on the channel t hat r he s>-stem is 

transmit t ing on and the code used. For block codes. a common distance met ric is the 

Hamming distance between codeit-ords. For convolut ional codes operat ing O\-er the 

additive white Gaussian noise (.\\\'GS) channel and utilizing a soft-decision decoder. 

the metric is the Euclidean distance between the code sequences. If a hard-decision 

decoder is used then the Hamming distance is used. The sj-mbol or bit error perfor- 

mance of the codes at high signal-to-noise ratios I S S R  is determined mainl>- bj- t he 

niininiiim distance. However. at  lower S S R  ot her terms in the distance spect rurn will 

contribute to the error rate of the system. 

On a mobile radio channel. the user's signal is affected by mult i-pat h fading where 

the recei\-ed signal power ff iict uates due to addit ive and destructive int erference from 

multiple dela~ved copies of the transmit ted signal. In se\-ere fading. it has been shown 

for trellis coded modulation (TCU)  t hat the product distance is the correct metric 

to masimize along with the symbol distance [?O]. In TCSI systenis. the signal set 

is espanded. The signal set expansion provides the rediindancy necessary for coding 

[l;]. The symbol distance is rhe number of symbols dong an error pat h which differ 

froni the correct symbols. 

Ring codes utilize arit hmetic 01-er an integer ring. This can be applied to bot h 

block and con\-olutional codes. This research seeks to find good convolutional ring 

codes which can operate in the fading environments of bot h the niobile satellite and 

mobile terrestrial channels. The terrestrial cellular channel is subjected to Rq-leigh 

fading since no direct pat h bet~veen the mobile and the base station usuallj- esists. 

The mobile satellite channel is subjected to shadowing and fading [.i.i]. For Low Eart h 

Orbit (LEO) and lledium Earth Orbit (1 lEO) satellites. the channel statistics can 

change rapidly as the satellite mo\-es with respect to the user [Z2]. -4s the channel 

can change quicklj-. it is necessary for the codes to perform well in severe fading as 

well as on the ALYGS channel. To sat isfj- t hese requirements. ive first mavimize the 

effective length and the squared product distances of the codes and then from this 
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set of codes we find the codes wit h maximum squared Euclidean distance. 

1.1 Related Results 

Boztas et al. [JO] introduced two families of Cphase spreading sequences. ( One of 

the families had first been discovered by P. Solé [4l] unbeknownst to Bozta3 ci al.). 

These families haïe loiver cross-correlat ion value t han binarj- sequences. This fact is 

interest ing because: the sequences were designed using rings rat her t han Galois Fields. 

and they are formed with a linear feedback shift register using modulo-4 arithmetic 

[4:3]. The sequences prior to  mapping ont0 a Q PSk' modulation fornis a linear c>-clic 

quaternary code. -4s the sequences have ION- correlation values the>- also have large 

minimum Euclidean distance indicating a potential for use in error-correction coding 

[ 4 4 .  

Hammons et al. [44] shoived that several non-linear cj-clic binarj- codes. such as 

Sordst rom-Robinson. Iierdock. and Preparata codes. are linear in Z4 ( the integers 

mod-!). The modification from the classical theor'. is to view the  codes as ideals in 

polynomial rings over a ring of integers modulo 4 rather than over finite fields. This 

is of interest as linear codes are easier to decode than non-linear codes. 

Gir-en Hammons et al. [44] results in cj-clic coding. and working in rings. the 

question naturallj- arises if good codes can be found by rvorking in integer rings 

modulo-q for an arbitrary q and rnapping the q-ar>- symbols naturally ont0 a q-PSI\' 

niodulat ion set. There are several benefits in using t hese codes. One benefit is t hat 

no special circuitry is required in modern computers and digital signal processors 

as t h e  are rvell suited to rnodulo-q arithmetic. -Uso. a ring code requires no set 

part itioning as does trellis coded modulation [:Il. Ring codes can be made systemat ic. 

i.e.. separating the informat ion symbols from the parity sj-mbols rvhich is impossible 

when using t rellis coded modulation (1 71. 

-4lt hough t his dissertation is concerned wit h convolut ional codes. t here are sev- 

eral papers of interest for block ring codes. Shankar (461 presented BCH codes over 

arbitrarp integer rings. In papers by Blake [.j 1. l:3] ring analogs of Hamming. Reed- 

Solomon and BCH codes rvere presented for certain rings. He  suggested t hat a q-ary 

cornmiinication channel might be  better for computers to communicate than a b i n a -  
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one. \Vhen computers are capable of q-ary logic. utilizing a q-ary code rvould seem 

to  be a natural choice. -4 good introduction on block coded modulation over integer 

rings is presented in Baldini and Farrell [ 2 ] .  The rings presented were Z4. Za and Z Iti. 

In Chen [ZS]. 6 PSI.; ring codes are made up from a linear binary and a linear ternary 

code. 

For con\-olutional codes. there have been man>- recent papers using cont-olutional 

coding O\-er integer rings. Ring coded Continuous Phase hlodulation (C'PI[)  [vas con- 

eidered in Rimoldi and Li [14] and Yang and Taylor [15]. The! bot h used an encoder 

and a continuous phase modulator with the same arithnietic. thus eliminating a hi- 

nary to  Il-ar>- mapping. l ' m g  and Taylor worked wit h Cont inuous Phase Frequenq- 

Shift lie>-ing (C'PFSK) and obtained significant coding gains over prcvioiis work in 

coded C'PFSIi. Rimoldi and Li compared their results with hinary codes with the  

same complesity and found t hat using codes over rings can impro\-e the performance 

of man! coded C'P.\[ systems [I-Il. They also found it was beneficial to feedback the  

state information from the rnodulator t o  the encoder [14]. B!- utilizing t his feedback. 

t hey u-ere able to achiei-e a small coding gain over a non-feedback coded s>.steni. 

Iiaram et al. [16! used trellis coded CPFSIi over rings for quaternar!. and octar!- 

modulations and showed t hat ring-coded C'PFSK techniques out perforiti pre\-ioiis1~- 

known coding approaches. 

In Baldini and Farrel [3! coded modulation using convolutional codes Iras pre- 

sented. The>- searched for sj-stemat ic rate 1/2. -1/3 and 3 / 4  codes for 4. S. and 16 

PÇIi. respect ii-ely. .\lassq- et al. [SI also considered s>-stemat ic coni-olutional codes 

oi-er Z,. In  fact both of these papers choose q to  be a power of 2. The choice of a 

power of '2 allon-s for an  easy mapping froni a binary information source ont0 a ring 

i i.e.. an integer nuniber of bits define the  ring s-mbol). .\lasse!. e t  al. presented [dl 

coni-olutional codes for Zy and z16. 
Baldini and Farrel [3] and I l i t  telholzer [6]. searched for rotat ionally in\-ariant 

codes. These are beneficial as no absolute phase reference is necessar- at r he receii-er 

allowing for a less comples receii-er and a large number of errors are ai-oided i f  the  

channel has slow phase rotations. 

Baldini and Farrel in [ 2 .  51 worked on coded modulation using ring codes. Trellis 

Coded l lodulat  ion (TC.\[). proposed by Ungerboeck [l  71. shorved t hat the system 
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could achieve a significant coding gain bu expanding the number of modulat ion signals 

and designing the code considering the actual channel and modulation to be used. The  

de\.elopment of T C l l  in il;. 1s. 191 considered the Caussian channel. Divsalar and 

Simon 120. 211 showed that the performance criteria for the code design are different 

on fading channels. In fading channels. the product t rellis and the minimum effective 

lengt h [?O] tiominate the asymptotic performance of the code. Lsing t hese criteria. 

TCl I  codes for fading channels have been found or constructed. .-\ sood O\-ervie~v of 

the work done on coded modulation for fading channels can be found in Jamali and 

Le- Tgoc [:32]. 

1.2 Contributions 

In t his dissertation. ive present the results of an eshaustive and rediicetl search for 

ring codes suitable for severe fading en~mironments. The codes and their characteristics 

are present ed. 

Based on pre\*ious rvork from Baldini and Farrell [il] and works from \lasse!- and 

.\littelholzer et al. 5 - 1  for good codes on the .-\k\'C;S channel. ive search for 

s?-stemat ic recursi\-e convolut ional codes rvhich perform ive11 in a fading en[-ironnient. 

The codes with masimum effective length and squared product distance to  achiew 

good performance in Ra>-leigh fading are found. From this set. ive then search for 

codes \rit h niair imum squared Euclidean distance. as t his affects the performance on 

the .\\\-C;S' channel and is a factor at low signal-tenoise ratios. 

Also. codes optimized for the Ak\'GS channel are included for means of comparison 

rvith the performance of the codes designed for fading. The .-\Lt-GS codes perform 

well on the .\N*GS channel and in some cases bet ter t han the fading codes at SION- 

signal-t O-noise ratio. 

An eshaostive search is carried out over codes \vit h short constraint length. -4 

reduced search is then carried out oïer longer constraint lengths. Irreducible polj.- 

nomials oïer  Z, where q is a non-prime number were found and used in the reduced 

search for codes suitable for fading. 

The polynomials may be useful for the development of cyclic codes over Z, and 

are presented in -4ppendix A. 
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1.3 Thesis Outline 

In C h a p t e r  2 .  fundamentais  of rings and  an introduction t o  the  digital  cornmunicat  ion 

.;>-stem a re  presented. 

C'hapter 3 presents t h e  eshaustii.e search algorithm a n d  tables of t h e  codes founcl 

a n d  their  characteristics. .A reduced jearch is necessary as t h e  t in ie  required for a n  

e s h a u s t  ive search becomes quickly inipract ical for longer const raint  lengt lis a n d  larger 

values of q. T h e  dei-elopment of t h e  reduced search is described a n d  t h e  codes found 

a r e  presented. T h e  e s h a u s t  ive a n d  rediiced search algorit hnis were designcd t o  search 

For codes soitable for fading environments: however. they  were also designed t o  f n d  

codes which were op t imal  on t h e  .\\\'CS channel. These  codes a r e  also presented in 

( 'hapter 3. 

In C'hapter 4. t h e  simulation mode1 for t h e  s'-stem is presented. T h e  coded s>-s- 

t e m  is simulated t o  verify r he performance on t h e  Ra!-leijh fading channel.  T h e  

performance of t h e  codes found here a re  compared wit h known codes from t h e  liter- 

a ture .  Also. ive compare  t h e  performance difference between t h e  codes designed for 

t h e  fading channel a n d  codes designed For t h e  ;\\\*GS chanriel. 

In C'hapter 5 .  t h e  results of a search for rotational1~- in\-ariant codes a re  presented. 

T h e  codes a r e  r o m p a r e d  [vit h codes from Iiterat tue as well a s  codes found in C h a p t e r  3. 

C'hapter 6 contains concluding remarks and  suggestions for fiiture investigations 

based o n  t h e  results presentecl in t his dissertation. 



Chapter 2 

Fundament als 

2.1 Introduction 

This chapter wil1 introduce con\-olotional ring coding. the system diagram of the 

digital communication s>-stem and some of the distance measures. In Section 2.2.  ive 

introduce some basic def nit ions and properties of rings which [vil1 be used in later 

chapters. In Section 2.3. a system description and an aven-iew of h o ~ v  the ring codes 

will fit into t h e  system is given. In Section 2.4 ive introduce convolutional ring codes 

for l[PSI\: modulation. The distance measures ~vhich define the performance over 

Ciaussian and Fading channels are presented in Section 2.6. 

2.2 Rings 

.A rtng is an algehraic structure consisting of a set of elements R and two binar~-  

operations: addit ion and multiplication. such t hat for al1 elements a .  b  and c in R 

addition is associative. i.e. ( a  + b )  + c = a + ( b  -i c ) .  

O addit ion is cornmunitat ive. i.e. a + b = b + a .  

O there is an element ro in R. called the additi\-e identity. with the propert?. that 

r o + a  = a + ro = a for al1 a in R. 

each element a in R has an additive inverse. -a. such t hat a + ( - a )  = -a  + a - - ro. 

O multiplication is associat i\-e. 

O multiplication is distributive over addition. i.e. a ( b  + c )  = ab  + ac and ( a  + b)c  = 

ac  + bc. 



-Addition of an  addit ive inverse is calted subt ract ion. 

.An element. a. in an arbitrary ring R. is called a unit if t here esists anot her 

element 6 .  such t hat ab = 6a = 1. The element b is called the mult iplicatit-e inverse 

of a and can be written a- ' .  -An element a E R is called a zero dirisor if there esistç 

anorher non-zero element b # O such that ah = O or Sa = O [94]. 

In Z,. an  element is a unit only if  i t  is relatively prime to the modulus q. Li'hen q is 

a prime number. al1 elements are units and have multiplicati\-e inverses and therefore 

di\-ision is defined. Then Z, is a field [:3-4]. 

.As an esample of rings . consider the ring of integers Z. For any two elenients: a 

and 6 .  ire see t hat ab. o + 6 E Z. Sow let us denote Z,  as the integcr rfridue ring. 

It consists of the set {O. 1.. . . .q - l }  and al1 addition and multipiication is carried 

out m o d u b q .  Any integer c can be represented bj- r + tq. and as the arithmetic is 

modulo-q. it is said t hat c is congruent to r. or 

c r mod q. (2.1) 

L\é now consider the ring of polynomials denoted as R( r ]  with coefficients in R. 

R is a finite commutati\-e ring with multiplicative identitj- 1. The lfadirig cotfiricrlt 

(trailing c o ~ f i c i c n t )  of a non-zero polj-nomial is the coefficient of the largest (srnallest ) 

power of r whose coefficient is non-zero. If a(  s 1 and b( s ) are polytiomials and i f  the 

leading coefficient of b ( s )  is a unit in R. then there esist unique polj-nomials g ( s )  and 

T ( S )  such that a ( s ) = q ( s ) b ( s ) + r ( s )  and deg[ r ( s ) ]  < deg[b(s)] [9]. 

For the ratio of polynornials a ( x ) / b ( x )  to be a rational function. the trailing coef- 

ficient of b( r ) must be a unit in R [9]. 

2.3 System Description 

The system block diagram is shown in Fig. 2.1. The  input to the cont-olutional 

encoder is a sequence of q-arj- s-mbols. The encoder convolutionally encodes at a 

rate of k / n  where k and n are the number of input and output symbols. respect iuely. 

per encoding interval. The n encoded symbols are mapped onto an .\IPSIi signal set. 

Here. there is a natural labeliing of the signal points of I I P S k  by elements of the 

ring. 0.1.2.. . . . q - 1. In other words. the q-ary synibol 1 corresponds to  the SIPSI\: 



signal. sc b!- 

where i = d7. Sote. t hat q must be equal to t h e  number of signal points i r i  the  

constellation ( i-e.. q = .II ). The sequence of coded sj-mbols can be represented b>- 

The  encoded sequence r is t hen interleaved and transmitted over a channel. In the 

channel. the sequence is subjected to  fading and .-\i\*GS. T h e  receiver deinterleaves 

the encoded symbol sequence and decodes the information by applj-ing a soft-decision 

Viterhi decoding algorit hm [ 3 5 ] .  

The  i ï te rb i  algorit hm combined [vit h con\-olut ional codes works well ml!- IV hen 

the channel errors are independent. Howei-er. on a mobile fading channel. amplitude 

fades tvill produce bursts of channel errors. Interlearing is used to  scranible the order 

of the  coded sequence before transmit t ing i t 01-er the channel. .A fter deinterlea\-ing 

( descrambling ) a burst of channel errors is broken int O several smaller burst s or  ideall~. 

independent errors. There are several met hods of interleaving: block. convoliitional 

and pseudo-random [:H. 391. Throughout this document. ire ivill consider the case 

t hat the interleaving is ideal and t hat the channel is rnemor-less. This resiilts in the 

fading arnplit udes being independent between symbol intervals. \lé assume t hat the 

Fading is slow enougli to be considered constant 01-er one channel 51-mbol inten-al. 

2.4 Convolutional coding on Z, 

This section introduces the rate 112 con\-olut ional encoder over Z,. t hat is st udied in 

t his dissertation. 

Follotving the nomenclature presented il1 [:il. the codes are defined as G( D ) where. 

Hereg( D )  = g s D s + g s - ~ D s - l  +...g l D + g o  and / ( D )  = fsDs+f,-ID'-' +.../ iD+fo 

define the feedforward and feedback taps as shown in Figure 2.2. T h e  boses are 

delay elements that delay a q-ary symbol by one clock c>-cle. The  circles n-ith a 

coefficient inside denote m o d u b q  multiplication and the f elements denote rnoduleq 
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Figure 2.2 .  Block Dingrarn O/ the encoder definincd b y  G ( D )  of Eq. W . ,  

addit ion. The codes will be defined t hroughout t his dissertation b ~ -  the tap polynoniial 

coefficients froni G ( D ) .  (i-e.. g,g,-, . . .go/ f, f.-[ . . . fo ) -  

.As an esample. consider the code defined by g( D )  = D + 1 and f ( D )  = 2 D + 1 

over S3 ( 1 1/21 code 1. The generator mat  r i s  is defined as: 

and the  encoder is shown in Figure 2 . 3 .  The input. output and state  transition 

information for this encoder are presented in Table 2.1- 

The codes examined here are systernatic. which means that the information SJ-mbol 

appears unaltered in the out put of the encoder. Sj-stematic codes are considerecl to  

eliminate the possibility of finding a catastrophic code. -4 catastrophic code has error 

pat hs t hat are a finite distance from t h e  correct pat h but have an infinite number of 

errors. \\-ith this characteristic a small amount of noise can cause the decoder to lose 

the correct pat h and never recover and t hus. continue to out put incorrect symbols. 

2.5 MPSK signal s e t  

The  MPSK signal constellation is shomn in Fig. 2.1. -4 benefit in the  code design using 

this modulation scheme is the convenient mapping between the squared Euclidean 



Figure 2.3. 

Table 2.1. Statc description of'thc 11,/i'I encodcr- ocer  Z3 



Figure 2.4. .\[PSI< C'onstellation 

distance and  t h e  modulo-q ditference of their squared Euclidean weight [6]. C'onsider 

ttvo y-arj* synibols a and 6. which a r e  mapped onto an  1IPSIi signal set b>- Equar ion 

2.2. The squared Euclidean distance b e t w e n  t h e  tiro signai points is si\-en by c l ' (  a. 6 )  

tv h e  re 

Here. u$(-) is t he  squared Euclidean weight of a symbol. 



2.6 Performance Estimates 

In this section. ive use performance estimates from the literature to  introduce the  

parameters that affect a code's performance on the  -AI\-GS and fading channels. In 

Section 2.6.1. the uncoded performance of the  moduiat ion is $\-en for t he  .l\\-C;S' and 

Ra!-leigh fading channel. These formulas will be used to determine the  coding gain 

achieved by the  coded system over the  uncoded systeni. In Section 2.6.2. squared free 

distance d;,,, . and the as~xnpto t  ic gain of the  coded system over an uncoded system. 

are introduced. In Section 2.6.4. the  development of' the performance estimate of t he  

coded system on the Rician fading channel is shown. The definit ion of the  paramet ers 

which affect the  performance on the  fading channel are presented. 

2,6.1 Uncoded Performance 

The  syrnbol error rate of 11 PSI< on the  A\.\-GS channel trit h a amplitude gain of p is 

approsimated for high signal-to-noise ratios b>- [:32] 

ivhere the energj- per SJ-mbol is Es = log, JI R, Eb. Es is the energ>- per bit. .\[ is the  

niimber of modulation signals in an 11-ar~-  PSIi modulation. R.: is the  rate  of the  

encoder used. and 

Equat ion 2 . ;  can be rvrit ten in terms of Eb/.\; as 

where m = log? .ll and : h  = Eh/-\;. In Rayleigh fading. the uncoded symbol error 

rate can be calculated by a\-eraging t h e  conditional probability with respect t o  t h e  

fading amplitude p [32]  over the Rayleigh dens i t -  funct ion. 

The density funct ion of Ra~ le igh  fading is 



here. for the normalized case Ive set E[p'] = 1. which resiilts in a: = 1/2. 

Alter a\-eraging Equat ion '1.9 ot-er the normalized Ra~eleigh fading. the  s~ -mbol  

error rate is given b>- [El. 

This equation was used to  calculate the  uncoded performance for AIPSI< modulation 

t o  obtain the coding gain of t h e  coded system. The coding gain is the  the  difference 

in Eh/.\;. bet ween the  coded and uncoded (or  reference) SJ-stems. reqiiired to achiei-e 

a given sjembol error ra te  (SER)  or  bit error rate ( B E R ) .  

2.6.2 Performance in AWGN 

. i n  error e\-ent occurs when the  transmitter sends the s!-niboi sequence. x and t h e  

receiver decides .i tvhere s + .i. T h e  minimum error ei-ent is defined as the  error 

e\-ent rvith the smallest distance. .At high SSR. the performance of t hc code can hc 

approsirnated b>- the distance of the  minimum error e\-ent. In .Ai\-GS. t he  appropriate 

distance measure to masiniize is the  Euclidean distance. The sqiiared Euclidean 

distance of the minimum error e\-ent is defined as 

rvhere the set is r he set of ail n along the minimum error ~ a t  h such t hat r ,  f .in 

The as>-mptotic gain in d B  on an .\l\-GS channel is given b ~ -  [31 

gs = LOlog,, Rc 
log-If, di,,,., 1 

rvhere R, is the coding rate. .IL. J I ,  and d; ,,,.,. 6; ,,,.u are the  number of moclulat ion 

signals and the di,,, of the  coded and  reference system. respectively. 

2.6.3 Performance Estimat e for the Rician Channel 

SIasimizing d;,,, is effectil-e on  t h e  ;\\I7GS channel. However. in fading. the  product 

distance and the effectil-e length of the  code (also knon-n as t h e  minimum symbol 



distance) are import anr parameters [-O]. Here. ive include sections of the  development 

in I-201. to de\-elop the code search cri teria for codes ot-er fading channels. 

Consider the I I - a r -  con\-olutional encoder shown in Fip. 2. I .  The signal recei\-ed 

a t  t h e  decoder is 

ri = /.),Sr I l i .  (2.14) 

where s; is the 1IPSIi signal. p ,  is t he  amplitude of t h e  fading process and TI, is 

addit  ive white Caussian noise \vit h spectral densir! of 

For Rician channels. the density function of p is denoted by 

where l i  is the  ratio of energ*  of the  direct component t o  the  ene rg -  in the diffused 

multipat h component. I o ( -  ) is the zero-th order niodified Bessel function of the first 

kind. i.e.. 

~ O W  = + JO e s p ( r  cos t ~ d t .  
, I l  

The decoder's rnetric after observing 1 coded symbols is 

where 6; is the estirnate of the fading amplitude a t  t ime i. The decoder i d 1  niake 
- a n  error i f  it decides si = (.2,. 3 2 . .  . . il) when si = ( . sr .  .i;-. . . . . -.i) was sent. The 

probabilit?. of this occurring is known as the the  pairwise error probability and this 

is denoted as P2(sl .  ). 

For the  case with ideal CS1 where the  fading ampli tude estirnates are alwaj-s 

correct ( i-e.. il = pl ). the met ric can be espressed as 

T h e  decoder incorrectlj- decides ji i f  

The pairwise error probabilit?. is given by 



LV here 

is the  condit ional pairwise error probability condit ioned on the fading ampli tude p; .  

I-sing the Chernoff bound technique t h e  condit ioned pairwise error probability 

averaged over t hr  Rician density function is given bj- ['LOI 

i -[,-.LI - 'T lth' 1"' - " I l -  

P ~ J S ~ .  .;l) 5 n t e s p  
t =  1 1 + [<+ +si -l .y0 - S i ! ?  1 + [i + -J--l.si 4 .yo - .s,I? - 1 

;\t high SSR.  Equation 2.22 can be simplified t o  

where di = nié, Is, - di['. L is Ie8. r )  is the  error event with the minimum number of 

s>-mbols which differ from the correct pat h. L = icB is the effect i\-e lengt h of t h e  code 

and is defined as the minimum number of differing s>mbols d o n g  an>- error path.  

\\é introduce the notation of sqiiared product distance and define it for tr1.o symbol 

sequences as 

ivhere the  set 11 is the set of al1 12 where x ,  f -?,. 

I'sing the pairwise error probability de\-eloped in Equation 2.23. Ive can upper  

hound the  error probability on the Rician fading channel for high S S R  as 

where a ( ( 1, ). d;r,,i ( 1, ) ) is the average number of code sequences ha\-ing effect i\-e lengt h 

1 ,  and squared product distance d;,,, and h' is the  ratio of power in the direct pa th  

to  the  power in the multipath (321. T h e  as)-mptotic performance of the code is 

approximated by the te rm with the smallest dirgd and l e f i .  



Sote that error rate is proportional to 

tvhere Ë,/.\; is the averase signal-to-noise ratio ( SXR) .  and L = lCd is the niinimuni 

nurnber of differing s>-mbols along an error path. In an uncoded s>-stem. 1,* = 1 

is typical. Thus. large gaini coiild be achieved by rnasimizing the ley of the code. 

This being the case. ive seek to marimize dirgd and l e f i  for the class of codes under 

investigation. 

2.7 Summary 

In t his chapter. Ive int roduced some of the fundamental definit ions and performance 

criteria that will be used in later chapters. In Section 2.2. clefinitions for rings and 

arit hmetic on rings were given. The O\-erall digital communication systern \vas pre- 

sented in Section 2.:3. Definition and an introduction to the cIass of codes to be 

considered were presented in Section 2.4. In Section 2.6. t h e  distance rneasures. per- 

formance est imatej and the parameters t hat affect the codes' performance on fading 

and =-\I\'C;S channels ivere presented. 



Chapter 3 

Some Rate 1/2 Convolutional Ring 
Codes 

Introduction 

In t his chapter. the search algorithms are described and resrilts are presented. .An 

exhaustive search was carried out for short codes. Hotvever. this search technique is 

intractable for large rings and longer const raint lengt hs as t h e  number of states and 

pat hs. t hat m u t  be considered. increase exponent iallj.. -4 reduced search algorit hm 

searches oi-er a siibset of the possible codes. The reduced search criteria ivere de\-el- 

oped from t heory as ive11 as empirical data from the partial resiilts of the eshaiist i\*e 

search. 

Rate 112 s>-steniatic codes are considered here to  elimiiiate the possibility of find- 

ing catastrophic codes as well as to reduce the number of candidate codes. C'odes 

with fo = I in the feedback pal>-nornial f ( s )  are considered. This condition ensures 

t hat the encoder is rat ional and forma1 long division of g( D ) by f ( D )  is allowed [3. SI. 

Consideration is also restricted to codes with a fully reachable trellis and no parallel 

transit ions. Fully reachable trellis means t hat it is possible to reach al1 possible states 

i r i  the trellis. The fullj- reachable condition rvas chosen as it ivas felt t hat ivhen t--ing 

to masimize the le8 or syrnbol distance a trellis with more states would ha\-e a longer 

efTective pat h. Parailel transitions wit hin the trellis limit the effective lengt h of the 

code ['O. 221 and thus the search was restricted to codes rvithout parailel transitions. 

The search kvas carried out to find codes with the maximum dEmd and l e8 .  From 

this set of codes. the codes with minimum number of paths and the minimum num- 

ber of errors along those pat hs were selected. When multiple codes wit h identical 
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l,, esisted then additional terms in the product transfer function were used in the  

select ion process. Following t hat select ion. codes rvi t h maximum squared Euclidean 

distance. dfm, were chosen with a minimum number of paths with that  distance. ni,, 

are selected. 

As previously stated. ive ivere looking for codes that ivould work ive11 in a variety 

of fading environments. A s  such. ive chose to masirnize the codes' perforn~ance for 

Rayleigh fading and t hen select the  best codes for t h e  ;\\\-C;S channel froni these 

codes. -At loiv S S R .  the performance is dorninated by noise rather  than by fading. 

t hus it is important to  have good performance in -4iI-C;S as n-el1 a s  in fading. 

3.2 Exhaustive Search 

1 t sliould be not ed t hat the search space rvas reduced b>- half as  t he code defined bj- 

g( s ) /  f ( z )  had the same characteristics as -gis)/ f ( x  ). I'nless ot hertvise specified. r he 

tables present only g(r)/ f(r) as the calculation of -g(x ) /  f ( r )  gi ten  t his information 

is t ririal. For esample. in t h e  first line of Table 3.1 in S-, the code 1 1 /2  1 is presented. 

Thus. g(.r j  = s + 1 and - g ( x )  = -r - I = 2~ + 2 .  so 2 / 2 1  is also a good code. 

In the tables the polj-nomials g ( s  f and f rx) are denoted as g,y,- ...go/ f,j,-, ... fo. 

The asymptotic gain on an ;\\\'GS' channel in dB is given bj- Equation 2.13. 

The pseudocode in Section 3.2.1 is included to show t tie general outline of the 

search algorithni. The  code is written to illustrate the functioning of the algorithni 

only. The out put of the  search algorit hm is the t runcated Euclidean t ransfer funct ion 

and the truncated product t ransfer function. Both transfer functions contain iip to  

20 terms and contain the  following information: the squared distance measure. the 

nuniber of paths and the number of information symbol errors d o n g  t hat pat h. and 

for the product transfer function. the number of coded syrnbols tha t  differ froni the 

correct pat h. 

The search tvas carried out  in t his way because the transfer f t~nct ion [vas desired. 

This information can then be  used to select the best codes based on the  performance 

estimate. -4s the codes are linear. ive assume. without Ioss of generalitj- tha t  the 

all-zero sequence is transmit t ed. 

In the following sections. t he  pseudo-code of the search algorit hm is presented 
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and the search results are tabulated. The tables present the first t hree terms of the 

product and Euclidean t ransfer funct ion for the result ing codes. The as>-mptot ic 

coding gain over BPSK on the .\L\'GS is presented in the tables ivith the Euclidean 

t ransfer funct ion to enable a comparison between the various codes. 

3.2.1 Search Algorithm 

;\ brief esplanarion of the search algorit hm is presented here. For each encoder 

considered. the algorithm initially advances in the trellis along the path from input 

(1.0.0.. ..) until either i t  merges with the all-zero path or the masiniuni depth of 

the search. The depth-tesearch is an input parameter into the algorithm and is set 

to ensure that the first terms of the transfer function are included in the triincated 

t ransfer funct ions. 

For each ad\-ance. the Euclidean distance and the product distance are calculateci 

for each node in the trellis along the search pat h. kj'hen a merger [vit h the all-zero 

path occurs. the distance characterist ics are recorded and the nomber of pat hs for the 

distances is updated. .\fter a merger (or going to the masimorn search dept h ) the 

algorithm backtracks along the path bj- one node. The input symbol is increniented 

from the pret-ious path t hat was considered. If i t  is eclual to q t hen the algorit hm 

sets i t  to zero and backt racks one more node. The algorit hni again acit-ances using 

the current node-s distance characterist ics. 

If the algorit hm hits the masimum dept h to be searched rvit hout rnerging. it will 

backtrack along the search pat h bj- one node and continue the search. I t  does not 

record the distance information in this case. 

The search terminates when after the search path ( q  - 1. y - 1. q - 1.. . .) as it will  

back track to the beginning of the t rellis and t hen increment the sj-mbol to q which 

is an invalid input when working with elements from 25,. 
The details of the search are outlined in the pseudo-code belon-: 
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begin; 

input parameters of search: 

init iaiize riieniorj-: 

Coder: Is t here anot her encoder to test? 

if XO { 

goto Finish: 

}else { 
set nest encoder taps: 

} 
create trellis: 

Is trellis f d l y  reachable*.' 

if S O  { 

goto Coder: 

1 

Init: set m a s d e p t h  from input:  

set pointer to O: 

set symbols for first error pat h to 100000 ... : 
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Search: 1s pointer between O and mas-depth:' 

if l'ES { 

Alove forward t o  nest  s tate:  

if pointer = mas-dept h- L and n o  nierge nest  srate { 

move pointer back one node aiong path: 

get nest  symbol on path: 

goto Search: 

} 
L-pdate distance rneasu res a t  t re1lis node: 

1s t here a merger with the  correct pat  h? 

if l'ES { 

1s pointer Iess than mas-depth..' 

if )-ES { 

record the distances for the error event: 

move pointer back one node along pat h: 

get nest symbol on  path: 

goto Check: 

} else { 

1s pointer equal t o  mas-depth'.' 

if )-ES { 

record t he  distances for the error event: 

move pointer back two nodes along path: 

get nest  synibol on path: 

goto Check: 

1 
} 

) else { 

1s pointer equal to  mas-dept h3 

if 1-ES { 

move pointer back one node along path: 

get nest symboI o n  path: 

goto Search: 

1 
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Check: Are distances tvorse than the best code on record? 

if IVES{ 

terniinate search on t his  code: 

goto Coder: 

} else { 

goto Search: 

1 

Finish: Save to disk summary results and truncated transfer function: 

end: 

3.2.2 Unit Memory Codes 

In the tables. truncated transfer fiinctions are $\-en for the codes t hat were founcl. In 

Tables 9.1 and 3 . 2 .  the first t hree terms in the product transfer fiinct ion are presentecl. 

The terms r z .  cl'. e. 1 are the number of paths ivith the squared prod~ict distance of 

6'. the number of errors wit h that distance and the length (number of non-zero 

s!-mhols for t hose par hs. respect ive1'-. The Eucliclean t ransfer funct ion is presented 

in Tables 3.3 and 3.4. The  search depth t hrough the  trellis for the constraint Iengt h 

one codes is 7 informat ion s>-mbols. 

In some cases. t here are multiple codes presented for a given ring. The first code 

has the best asymptoric performance as the performance is doniinated b!- the lrB and 

the sqiiared product distance of paths with lefi (Le.. di,,i(l,8 ) ) .  Hoivever. at  loiv 

SSR. other terms in the transfer function will contribute to the error performance. 

The second code. tvhich is marked wit h an  asterisk. takes into considerat ion up to ten 

terms in t h e  product transfer function. -4s these codes are considercd for low S S R  

perforniance. masimizing l C g  and di,,, ( l e p  ) is less important t han minimizing the 

summat ion in Equat ion 2-25.  These codes have bet ter Euclidean distance properties 

than the fading codes. This is beneficial when operating in low SSSR conditions. as 

the noise will affect the ~erformance of the code [:El. 
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Table 3.1. Product distance profiles for unit memory codes for S2 to Z l l  

i 
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Table 3.2. Product distancf un i t  rnErn0r.y c o d ~ s  jor Zi2 to 
1 



3. S o m e  Rate 1 /2  Conrolutional Ring Cmks 27 

Table 3.3. Truncated transjer junetions for unit menlory codr for codes prfscnted 

in Table -3.1 &or Z2 to Z l l  
r i  

I Z , ~  Codes 
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Table 3.4. Truncat~d trclnsfer finctions for unit memory code jor codes 

Pr Z12 to Z l6  

C'odes 

in Table il. 1 
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Table 3.5. Product distance profiles codes lcith constraint lcngth two for Z2 to Za 

Constraint Lengt h Two Codes 

Tables 13.5 and 3.6 present results for codes that masimizr the and d;n,i. The 

esliaust ii-e search iras carried out for codes over Z,. irhere q = {2.3.  . . . -8) .  The 

search t hrough the t reIlis was set to at least seven sj-mbols. -As the number of pat hs 

increases esponentially wit h the  dept h of the search. the search is t riincated between 

sel-en and nine symbols. I t  is possible that some long paths with small Euclidean or 

product distances are missed due to the truncated search. Hoivever. the search path 

LI-as set to a reasonable Ieng~ h to find the paths that dominate the  performance of 

the codes. 

3.3 Reduced Search 

-4s the eshaust i\-e search t ime grows exponent iallj- wi t h the number of elements in 

the ring and t h e  constraint length of the code. this search method soon becomes 

impractical due to the required computational time. In order to find good codes in 



Table 3.6. 
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Truncated transfer functions codes r i t h  constraint length tuVo for Z3 to 

a reasonable amount of time. it is imperative that the number of candidate codes be 

reduced. In the follou-ing section. we develop bounds on the effective lengt h of t he  rate 

1/2 systemat ic recursive convolut ional codes. Lsing t his result and sonie propert ies 

of good fading codes from the eshaust ii-e search in Section 3 .2 .  ire placed const raints 

on the tap pal>-nomials /( D )  and g( D).  The reasoning and the restrictions will be 

presented in Section 3.3.2.  Reducing the number of codes to be searched allon-s us 

to search for longer constraint lengt h codes. The results of the reduced search are 

presented in Section 3.3.3- 

3.3.1 Bounds on I e f f  

In this section. ire invest igate the maximum lCLf possible for the encoder shown in 

Figure 2.2. 

The message polynomial input into the encoder is defined as 
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L V i  t h a convolut ional encoder. the message polynomials can have infini t e lengt h. 

i\é follow the convention t hat the symbols are transmitted in ascending order. In 

ot her words. if the message begins to enter the encoder at t ime 0. the symbol entering 

the encoder at time i will be m,  where i can range from O to infinit. Lie also follow 

the convent ion t hat any zero term is left out of the expression and if nt, is non-zero 

and nz, = O. Vi > .s the degree of m( x ) is s or deg(m(x ) ) = s and the message length 

will be considered to be S .  

Recall t hat the encoder performs simultaneous multiplication by g ( r  ) and division 

by f ( x ) .  \\-hen working over a field. the division algorithm states t hat i f  f ( x )  # 0. 

then there esist pol-nomials q ( s )  and r (x)  such that for any arbitrary pal>-nomial 

YW 

where deg(r( . r ) )  < dey( f ( r  1). The polyomials q ( r )  and r ( r )  are kriown as the 

quotient and reniainder polynomials defined as 

u-ith (1 = deg( f ( r ) )  and q, .  r, E Z,. 

\\-hm Z ,  is not a field. the existence of q(s) and r ( x )  is not guaranteed. L\-e wi11 

deal with this case in the following section. 

LIÏth respect to the encoder shown in Figure 2.2. q (x)  is the output r? of the 

encoder and r (x  ) defines the state of the encoder. The out put symbols of the encoder 

at t ime i are in, and (gorn, + q, ) mod q. Sote t hat q is the size of the s>.mboI alphabet 

and q, is the coefficient of the quotient polyomial. 

\\é rvant to find the shortest message. m(x) .  that leaves and reenters t h e  zero 

state as < ' l(deg(m(x) + 1)). Stated another way. ive wish to find the m ( x )  ivith 

smallest degree such t hat 

m(r)g(r) = O mod / ( r ) .  ( 13 . 5 ) 

where r(r)  = 0. 
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Consider in Equation 3.6 ive are looking for the smallest multiple of g(s)  ~rhich is 

divisible bj- f ( s ) .  ;\ solution satisf>-ing this restriction is 

where c is an arbitrary constant in Z ,  and lm (j.gJ is the least comnion niiilt iple of 

f ( x )  and g(s j .  

For riotational convenience ire d l  refer to m(s) .  f(s! and g( s) as m.  f and y. 

respect i \-el'-. 

Consider t hat o-'fg = [cm( f. g ) gcd( f. g )  [.50]. tvhere n is the leading coefficient 

of fg. t'sing t his result . ive can define t hat the dejree of km( f. g )  

From Ecluatiori 3.7 the degree of m(s ) is defined by 

des( ni) = deg(lcm( 1 . g ) )  - deg(g). 

= deg(f)-deg(gcd(f .gl ) .  

Therefore the masimum lcâ for a code is bounded by 

This also jives an insight into how \.O find codes with masimum I r # .  \\-hen 

gcd( f . g )  = 1 then leB 5 2(deg( f )  i 1). 

For the case when Z, is a field and gcd(1.g) = 1. ive concliide that for the code. 

g ( r ) /  f ( r ) .  the masimum effective length is bounded by ltB 5 Z(deg(1) + 1 )  and the 

shortest path is defined b>- a multiple of f (x). 

In the case when Z, is not a field. we need to set restrictions on the di\-isor such 

t hat division is defined. Recall from Section 2.2 t hat if the leading coefficient of the 

divisor is a unit in the ring. then t h e  division algorithm can be applied. Thus. the 

bound in Equation i3.11 holds as tvell in this case. 

However. ive can bound tighter if ive look at the case when the divisor contains 

zero divisors. K e  assume that gcd( f. g)  = 1 t hus m ( x )  = cf ( x )  is the smallest 

message which can set the remainder to zero. ne choose c such that ive achieke the 



maximum number of zero coefficients in t h e  message. Then ive can lower the bound 

on l cB b>- the  number of zero divisors t hat produce zero when multiplied bj- c.  

Thus. if the dii-isor. f( s ). cont ains zero di\-isors. it is possible t o  reduce the bound 

n-here n,:i is the rnas imu~n nuniber of zeredivisors in f( x )  which are set t o  zero by 

multiplication by an arb i t ra r~ .  constant c.  

To illustrate t his. consider the  ring Sa and f(r ) = r3 + Zr' + 4s  + 1 gcd(/. g) = 1 

so m ( x )  = cf(s). If c = 4. then m ( r )  = 4x3 + 4  and two zero divisors become zero. 

Tlius. t he  maximum l e f i  is bounded by 6 frorn Equation 3.12 and not 8 as in Eqiiation 

3.1 1. 

From this section ive can conclude from Equation 3.12 t hat t he  bouiid on l,* is 

masirnized ivhen f (x )  and g(s) hai-e no cornmon factors. and Equation i1.12 provides 

a bound on  lea.  

3.3.2 Search Definition 

Esamining the results from the eithausti\-e search in Section 3.2 for codes !vit h cori- 

st  raint lengt h t ~ o .  presented in Tables 9.5 and 3.6. one finds t hat for t he  tap pol>.n+ 

rnials clefining the codes. rnaiiy of the polynomials are  irreducible. In Section 3.3.1. it 

ivas shown t hat Iefl was masirnized when the  greatesr common di\-isor of the niimer- 

ator  and denominator pol~*nomials was one. This condition is guaranteed tvhen bot h 

pal>-nomials are irreducible as the  polynomials have no divisors of lesser de, cree. 

Restrict ing the search to irreduci ble polynomials for f ( D )  and g( D )  is more rest ric- 

tive than reqiiiring gcd( f ( D ) .  g( D ) )  = 1. hoive\-er. results from Section 3.2 indicate 

tha t  irreducible pol>*nomials are  a good choice to  search for good codes. 

;\not her reason for t his restriction is the  connect ion to  shift regist er sequences. 

Leaving a non-zero s tate  ivill cycle t hrough a number of States before ret urning to  the  

original state.  If the  poi~momial is primitive than the  length of the  cycle is masimized. 

From the  results in Section 3.2. the  good codes were not necessarily primitive and  

thus the  problem here is to  find irreducible polynomials over Z,. There are severai 

tables of irreducible pol~-nomials in Z, = G F ( p )  where p is prime tha t  are presented 

in [5O]. However. the tables did not provide al1 of the  polj-nomials t hat were required. 
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To obtain the necessary polj-nomials. ive used the Eratost henes sietse met hod to find 

t hem. To find the irreducible polynomials of degree n using t his met hod. one first 

creates a list of al1 possible polynomials of degree n .  Then al1 poljmomial factors t hat 

form a degree n poli-nomial are multiplied together. and the resulting po1~-nomial is 

removed from the list. This is repeated unt i l  al1 possible combinat ions of factors have 

been used. ;\fter t his process the polynomials remaining in the list have no factors 

wit h degree less t han n.  

This method is inefficient to find po1~-nomials with a high degree. due to  the Iarge 

nuniber of multiplications of polynomials recluired. The Eratosthenes sieve methoci 

was acceptable for finding the polynomials used in this dissertation as t hel- dict not 

require polj-nomials ivith large degree. Tables of the poil-nomials can be loiind in [50] 

when q is prime and in Appendis -4 for seiected degrees and t-alues of q n-hen q is not 

prime. 

-4s the numher of states increases. so does the search time. ive will restrict our 

search to codes wit h 256 states or less. 

The search \vas carried out in the same manner as the exhaustive search. escept 

for the addit ional condit ion t hat f ( D I. g( D )  w r e  forced to be irreducible in the ring. 

This is in addition to the conditions alreadj- used for the eshaust ive search. i.e.. f i i l1~-  

reachable trellis. j ( 0 )  = 1. deg( f ( D ) )  = deg(g( D ) )  

3.3.3 Search Results 

The results are presented in the folloiving tables. The tables present the  code char- 

acteristics nj,, . d;=, . .\;,, which are the number of paths wit h r he free distance. the 

square of the free distance and the a\-erage number of errors for pat hs wit h the free 

distance. respectively. The parameters n,,d. di,,* and .\,., are the number of paths 

with the minimum squared product distance. the squared product distance and the 

a\-erage number of errors along pat hs wit h the squared product distance. respect ivel- 

The effective minimum lengt h of the code is also presented. 

In Table 3.7. codes [vit h constraint lengt h two for Z9 and Zlo are presented. The 

codes with maximum djm, are marked tvith a '. The' do not have the masimuni la 

as shown by the ot her codes also included in the table. Here. g, is the  asymptotic 

gain over BPSK. The table does not include many codes above Z lo  as the  search 
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time \vas prohibitive. The results for Z 1-> are from a partial search of the codes. The 

codes over Z I i  presented have the  best distance properties for the partial search. The 

search was terminated early because of time restrictions. t hus. t here may be better 

codes available in Z12. 

The restriction that the codes must have a full>- reachable trellis forces the code 

for constraint length two to have q' states in ~ h e  trellis. Each state has q branches 

esiting and entering the state. Thus a search of depth ni has ( q  - 1 ) * q m - L  possible 
- 

paths to search. .As an esample. consider q = 11 and a search depth rn = t .  has 

1.77 x 10' branches to consider. when q = 16 the algorit hm must consider 2-31 x 10" 

pat hs. The algorit hm eliminates a large number of t hese pat hs as it does not continue 

to search pat hs t hat have merged wit h the all-zero pat h. 

In Table 3.5 codes from the reduced search of constraint lengt h t hree codes are 

presented. It should be noted from the table that when q is prime l C p  is less than 

or eqiial to S. Eqiiality occurs in ttiis table when q is 5 and 7 .  escept. for g = 3 the 
- 

codes have lC8 = 1 .  When q is non-prime the masimum lefi = 6. The codes also had 

masimum d!rc, for the redticed set of codes escept for the q = 7 case. 

Table 3.9 presents constraint length 4 codes for Z3 and Z4 and constraint length 5 

codes for Z1. The encoders for Z3 have d l .  and 243 states for defining PO[>-noniials of 

degrees 4 and 5 .  respectively. The Z4 codes have 2.56 statec;. For t lie 2.56 state codes 

in Z4 t here are a large num ber of pat hs wi t h 6jR, and the 1 cloes not i ncrease as 

the number of states increases from 64 (see Table 3.S) to 256 states. -41~0- the 2.56 

state codes ha\-e four times the number of branches as the 64 state code as well as 

a commonl!- used binary convolutional code. -4s it pro\.ides no gain in asymptotic 

fading performance over the 64-state code. it is highly unlikely that the 1.2 dB gain 

on the ;\i\'GS channel is worth the added complesity to implement the 256-state 

code rather than the 64-state code. 
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Table 3.8. C'odes orer Z3 to  Z8 wifh  constmint kng th  3 

polynomials 

1021/2211.1022/1'221 



3. Som€ Rate 1/2 Conrolutionnl Ring Codes 38 

Table 3.9. Codes occr Z3 a n d  Z4 trith constraint ltngth grtat t  r than .3 
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3.4 Gaussian Codes 

;\lthough the main thrusr of this dissertation iras to find codes for use on  the  fading 

channels. the search routines also looked for codes with masimuni djR,. In some 

cases. the best codes found for fading also have niaximum d+mt. In the  following 

tables. the characteristics are presented for the codes. and 1,* is included to  allow for 

a comparison irith the codes found for the  fading channel. In man>- cases the best 

code for the Catissian code has a smaller le8 for the same ring and constraint length 

t han the code for fading. This is t o  be  expected as le# is not being opt  imized in the 

search. 

In the reduced search. the  polynomials were chosen to masiniize the  effective 

length of the code. Because of t his t h e  Gaussian codes found in t ha reduced search 

ma'. not be the optimal code for the .A\!'G'\' channel for the gi\-en ring and constant 

lengt h. Here. optimal means having < he maximum djm, over the set of al1 codes wit h 

the $\.en const raint lengt h and given ring. The codes do ha\-e the maximum d;mt in 

the search space. The .-\\\'CS codes found by t h e  reduced searcti for codes O\-er Z, 

where q 2 9 for degree 2 and for q 3 4 for constraint length 3 codes a re  presented in 

Tables 13-12 and 3.13. 



,Table 3.10. Gaursian unit rnemory codes occr  Z3 to Z l l  

1 / Ring, polynorniais / nJR, 
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Table 3.11.  Guussian unit m~rnor -y  codes orer Z i 2  to z16 

Table 3.12.  C-Inu.~.sian codes with consfra in t  l ~ n g f h  n r c r  Z3 t n  Zs 

i Partial Search 
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Table 3.13. Caussian codes aith constraint length thrcc occr Z3 to Zs 

Ring polynomials 1 nJme djec 
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3.5 Summary 

In t his chapter. details of the eshaust ive search were given in Section 3.2.  Codes found 

using the exhaustive search were presented in Sections 3 - 2 2  and 3 - 2 3 .  The results 

from the eshaust ive search chowed t hat desirable codes shared similar characterist ics. 

In Section 3.3. a reduced search using these results and a bound on lefi \vas developed. 

The code generator polynomials were restricted to irreducible po&momials as it was 

shown in Section 3.3.1 t hat I e B  could be maximized if the feedforward and feedback 

polynomials had no common di\.isors. The reduced search ivas used ro search for 

codes with higher constraint lengths and values of q which were impractical for an 

eshaust i\.e search. 

Codes which have masimum djm, were presented in Section 3.4. These were in- 

cludecl for two reasons: first. at lorv S S R  values. djm, plays a significant role in the 

error probabilit!.. and second. to be able to compare the codes found [vit h masimum 

l P f l  and the codes found with masinium d&, on the Rayleigh fading channel. 

The codes found i r i  the reduced search are not necessarily opt imiim. Hoive\-er. 

most of the best codes foiind in t his chapter have the maxinium effect i\-e lengt h for the 

const raint lengt h. This indicates t hat t hey will have a good asymptotic performance 

in set-ere fading. 

The obsen-ation iras made that the codes over Z, ivhen q is prime have a iarger 

ftB than when q is non-prime. Also the bound in Equation 3.1'1 is loose ivhen q is 

non-prime and for larger constraint lengt hs. For example. for constraint lengt h 3 the 

codes found have one zero divisor in the denominator and Equation 3.12 predicts the 

masimum of 7. The maximum number found ivas 6. ;\lso. the only non-prime q code 

wit h const raint lengt h 4 t hat was in\-estigated liad le# = 6 while the bound for this 

code was S. 

The search routine stored the first 20 terms of the transfer funct ion. and selected 

the codes based on [,fi. diR, and d;rod. These terms can be used to estirnate the 

asymptot ic performance. hoivever. t here are ot her terms t hat may affect the perfor- 

mance at lolv S S R  values. Thus. we simulate the performance of of selected codes in 

the nest chapter. 



Chapter 4 

Performance Results for Selected 

Codes 

In this chapter. ire present simulation results of selected codes and cornparisons with 

pre\-iously found codes in the li terat ure. where applicable. 

-4s the bounds or est imates approsimate the performance of the codes. we sini- 

ulated the coded system to verify the expected performance of the various coded 

sj-stems. Some of the results for codes from the literature are included. In sonie cases 

the original aut hors' simulation results are used or a bound iras computed ~ising t heir 

results. 

In the folloiring section. the simulations are described. The block diagrarii of 

the fading cliannel simulator is included. The simulator was designed to handle nian- 

different channel conditions. including correlated fading and shadowing For Rician and 

Ra~eleigh channels. The following sections present the simulation resiilt s for several 

codes over different rings. The results are  compared \vit h ot her codes in the literat ure. 

the best .4i\-Cr S codes of the same ring or the u~icoded moditht ion. 

4.1 System Simulation 

The simulation results are frorn )Ionte-Car10 simulations of the s>.stem. In t hese sim- 

ulat ions. a random symbol enters the encoder and t h e  coded symbols are seq~ient iallj- 

mapped ont0 an .\IPSK signal. The s-mbol is multiplied by the channel gain which 

is supplied by the fading channel simulator. Gaussian noise is added to the resultant 

signal before entering the receiver. -4 Yiterbi decoding algorithm is used to decode 

the informat ion symbols. The decoder observes approsimately 6 t imes the constraint 
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Figure 4.1. Block diagram for fading sint ulator u s t d  in ..in2 ulntions 

length of the code before making a decision on an information s>-mbol I3.51. .An er- 

ror counter is incremented. if the symbol decision is in error. The entire process is 

repeated until one of the termination criteria is niet. 

The prograrn stops when 300 independent error bursts are obser\.ed. .An error 

burst is defined as one or more s>-mbol errors precedecl and foIlowed b ~ .  a number of 

correct symbol decisions. This number of correct synibols i.; referred to as a guard 

interval [Tl! and in the simulations this interval was set to 12 s!-nibols. The prograrn 

also stops i f  an upper limit on the nuniber of simiilation intervals is reached. This 

usual1~- occurred at the lower error rates. In this case. the point \vas included in the 

plot if t here ivere at leasî 100 synibol errors obserïed 

The fading channel simulator is capable of simulating the Rician channel. lognor- 

nia1 shadowed Rician and lognormal shadowed Ra~eleigh channels [60].  The model 

origiriated in [55] and has been used in several studies for fading channels for satellite 

and terrestrial digital cornniunications such as [59. $3. 57. 601. .A basic system block 

diagram is shown in Figure 4.1. 

L i e  used a K=O dB Rician setting for this model to simulate R-leigh fading. For 

the  simulations. ideal interleaving was employed t hat adjacent s>-mbols are affected by 



independent Rayleigh fading. As in !59]. ive make the slow fading assuniption. that is. 

that  the  fading is constant over a t  least one symbol interval and  can be approximated 

by a single fading sample per channel symbol inter\-al. 

The ideal channel state information (C'SI) of the channel (i.e.. the fading ampli- 

tude)  is provided to the decoder. The decoder uses the C'SI information to cornpute 

the met ric using Equat ion 2.1s. In practical implementat ion. the C'SI inforniat ion 

must be est imated and the estimate is noisy or imperfect. When the C'SI is irnper- 

fect. the code performs imrse than in the case of perfect CSI. The  amount of loss is 

dependent on the  channel and the method used to estimate t h e  C'SI. The ideal CS1 

case will lower boiind the performance of an act ual aystem. 

4.2 Codes over Za 

Sirnulat ion results for the 3. 9. and 27 state codes over Z3 are  presented in Figure 4.2. 

The  codes are 11/21. 11 1/21 1 and 1102/1221. The codes ha[-e the  best e,, and I e d .  

irhich means that the' are the best codes found for Rayleigh fading and . - \ \ \ 'CX  The 

gains O\-er uncoded :)PSI\' at the Çymbol Error Rate ( S E R )  of 10-%on the Rajvleigh 

fading channel are 21.4 dB. 2'1.7 dB. and 23.9 dB. respective1~-. The  efficiericy of the 

code is 0.792.5 bit jsymbol. where efficiency is defined as the number of bits transmitted 

driring each channel use. 

4.3 Codes over Z4 

The  rate 1/2 ring codes for Z4 presented in Section J.2 have an efficirncy of 1 

bit/symbol. In Rhee et al. [26]. a four state binar>- trellis code is presented with 

the  same efficiency. This code is a rate 1/2binary code n-hich was designed for the 

Ra>*leigh fading channel. Their ( 5 .  has a ie8 = 3 and di = 32 [26]. The code tvas 

designed for the Rayleigh channel as [vas our 11/21 code. T h e  octal representation 

of the code means that  the top tap  polynomial is 101 and t h e  bottom poli-nomial is 

010. S o t e  that  there is no feedback in their trellis codes. From Table 3 .1  the 11/21 

code has a le8 = 3 and di = 64. 

The asynptot ic  coding gain difference in the Rayleigh channel associated rvit h a 
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Figure 4.2. Performance reaults for code.; orer Za 



different di. but the saine lrB is given by [d?] 

where L is the lengt h of the minimiim error e\-ent and a, is the  average number of 

code sequences having the  effecti\-e length and squared ~ r o d u c t  dis tance di,. Froni 

Equation -4.1 Ive would espect  a performance difference of 3.3 + log(?)  = 1 dB. T h e  

5)-stem \vas simulated to  \-erifl- t h e  performance of the s>-stem on t h e  Rayleigh fading 

channel. In Figure 4.3. t he  results of ou r  simulation are shotvn. T h e  simulation resitlts 

for the trellis code a re  taken from [26]. As secn in the  figure a t  10-". t h e  difference 

in performance is slight1~- &O\-e 1 dB. Here. we assumed in oiir system t h e  binar)- bit 

streani is mapped t o  Zi t o  actiieve a C;ra>- mapping on the  4PSK modiilation.' 

Ii'ith a mapping. ive approsiniate  t h e  bit error ra te  assuniing 1 bit errer 

per syrnbol. ( If ive assume a natiiral mapping' . then Ive ir-ould approsiniate  1.5 bit 

errors per symbol error and t h e  gain would be reduced to  approsirnate1~-  0.7 d B  a t  

[O-' ). Regardless of t h e  mapping. t h e  Z4 code is still better t han t h e  optinial  rate 

1/2 4PSIi hinar!. trellis code f rom [261 designed for the  sanie channel conditions as  

t he  11/21 code. 

;\ four state feedback convolutional code fur Zi using 4PSIi is presentecl in [3]. 

T h e  search \vas for good r i n j  codes O\-er the  .-\i\*C;S channel. Hoive\-er. t h e  1 1 ,'2 1 

code over Z4 presented here has  t h e  same free distance as  their 0 2 2 1 / 2 3 1  code. 

\ té compare the  first three ternis in the  Euclidean and  prodiict transfer functions 

iri Table 4.1. The error coliinins in the  table are 5'-mboi errors. T h e  table s h o w  

tha t  when the niimber of errors a r e  considered the 1 i /2  1 code should ha\-e bet ter  

performance t han t lie O22 1 I'L'LS 1 for bot h the -i\l-C;S and  Ra~sleigh fading channels. 

T h e  reason is the  022 1 / 2 3  1 ('21 a n d  t h e  1 1 12 1 code have the  sanie nurnber of pat hs for 

the first four terrns. but the  022 l/'Z?:il code has more symhol errors associated with 

t h e  paths with the exception of o n e  path. In the code search presented citeBaldini1. 

the>- masiniized the G, and minimized t h e  number of paths with t h e  squared free 

'-1 Gray mapping ensures that the nearest signals in a modulation differ by only one bit. To 

achieve this for this sustem. there ia a mapper before the encoder lvhich maps a binar). input strearn 

onto 4-ary s~rnbols by: 00 c-, 0.01 c, 1. 11 ct 2 .  IO rf 3 
' ~ h e  naturai mapping uses the binary representation of the syrnbol. That  is. 00 c, 0.01 ci 

1 . 1 0 e  2. l t  - 3  
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Table 4.1. Tramfer junctions for thc  0221/'>31 code and 11/21 

i 0221/'22:31 from [:31 
1 
I 

-- 

1 Euclidean 11 Product 1 I 

1 11/21 code 
1 Euclidean /I P roduc t 

distance. They did not consider multiple ternis in the t ransfer function or the ntimber 

of errors associated with the paths with d&, . Both the 11/21 and the O.'L>l/1'.-'31[?! 

rvere simiilated and the results are shown in Figure 4.3. On the .\\\'C;X channel the 

11/21 code is about 0.2 dB  better than the 0'121/2231 code and on the Ra>-leigh 

fading channel the performance is about 0.5 dB better at a B E R  of 10-5 The sains 

are also achieved ivit h a less cornplex encoder. For esample. the 1 1 / I  1 encoder has 

delay element. 1 multiplier. and '1 adders \\-hile the 0221/2231 has :3 delay elements. 

4 multipliers and 3 adders. 

\\le compare the performance of the 16 state code over Z4. 123/3:31 presented in 

Table 3.5 with the codes in literatiire. Here. ive compare the 16 state binary code 

for 1-PSK. namel~: the (64 .32)s  code (261. with the 6; = 12Y.O and le# = 5 .  For 

the  123/331 froni Table 3.5. d; = 1024 and l C B  = 5. Comparing the two codes using 

Equation 4.1 ive expect about 1.8 dB coding gain b>- using the Z4 code. Figure 4.1 

shows the bit error performance on the  .UVGS and Rayleigh channels. The figure 

shoivs that the Z4 16-state codes outperforms the 16-state TC11 code (64. 5Z)a [26] by 



@ - -0 0221t2231 code - 11/21 code 

1 
I 

Avg. Eb/No (dB) 

Figure 4.3. Simulation r~sults  for 4-staf f  JPSIi  rate I /2 codes with L bit/syn2601 

c f i c i cncy .  



1 .Y dB at a bit error rate of 1 0 - ~ .  The '>:l'>/XI 1 Z4 code from Table 3.12 is also shown 

in the figure. This code was selected for its performance on the A\.\'C;S channel. In 

the figure. t his code performs better than the 1'23/:331 code on the ;\iVCS. but worse 

on the Rayleigh chanriel. The performance difference ivill be more pronounced at 

higher SSR as the 232/331 code's performance will be proport ional to SSR-4 irhile 

the l Z / M  1 codes performance is proport ional to SSR-'. 

The squared free distance of the 123/3:31 code is 16 which is better t han the 

I-ngerboeck 16-state TCSI code 131 = 12) but has a higher number of paths 

tv i t  h the squared free distance. -4s found in [2]. the number of nearest neigtibours for 

the ring code is 14 tinies greater than the 4-state TCSL code. 

The cornparison is presented in Table 4.2. For the ;\i\-GS channel. ive use I-nger- 

boeck's code as the reference. and for the Rayleigh fading channei ive use Rhee's 

16-state TC'S1 [26] as the reference as it  iras designed for Rayleigh fading. Sote t hat 

Rhee et al. claimed this code to he the optimal rate 1/2 binary TC'SI scheme for 

4PSIi. \ \ e  have achie\-ed a 1.S dB gain over their code using the ring code working 

O[-er Z4. L i é  haive acbieve simulation results for the 16-state TC'SI code are from 

Figure 1 in - 1-61 

For the coniparison of codes with 64 States. the 64 state code ( 77. Z24)a [26] is 

better as>-mptotical1~- with ItB =S and df,,d = 2.56. The codes in Table 3.9 have 

allra = 6. t hus have worse performance at high SSR.  Hoivever. the 64-state codes. 

presented in Table 3.9. have other paths that are dominant at Ion- SSR.  The first 

three terms of the transfer functions are used to approsimate the performance of the 

Z4 1:311/3321 code (1096. 196.74. 512 with s>-mboI distances of 6. 7 .  and S )  and the 

first term for the (77.224),: code. -4s shown in Figure 4.;. tlie codes perform I-erJ- 

sirnilady on the Rayleigh channel in the bit error range of 1 0 - ~  to 10-\ The gain of 

both codes at o\.er uncoded BPSK is about IS.5 dB. The 1 3  11 /XE1  code appears 

to be slightlj- bet ter in performance at the error rates shown. The complesit- of the 

ring code is greater than t h e  t rellis code. so the slightly better performance is offset 

bj- the additional cornplesity required to achieve it. For esample. the decoder for tlie 

TC11 code from [26] requires 2 additions and 2 comparisons per state per bit and for 

the ring code there are 4 addit ions and 2 comparisons per state per bit. 



code I 
1 1.3 'ind 

1 (6-4.-32)~ [-61 
l 

1 fwdforn-aid TC11 i 1% 

code 

C-ngerboeck TC11 

Table 4.2. C'ompriri.sori of r=I/-> ring codes trith other codes uith th€ snnir nunibcr 

of stntes and cficiency. 

n ,  df I over BPSIi 1 
12 4-77 1 

1 



Avg. EbINo (dB) 

Figure 4.4. Simulation rcsults for 16-.date jPSli rate 1/2 codes with 1 &it/symbol 

f_Biciency. 
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- - 64-state TCM code 
1 1 3 II3321 approx. 
1 1 31 13321 simulation 

Avg. FbINo (dB) 

Figure 4.5.  Sim d a t i o n  rcsul ts  for 64-statc  iPSI< rntr ! / 2  c o d ~ s  u*ith 1 bit[.syrnbol 
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4.4 Codes over Zs 

In [?TI. Zetterberg found two linear 6-state codes for û-PSh: ivith djm, = 9 and 

n ,  = 6. This compares ive11 with the 6-PSK 6-state codes found here. In Table 3.10. 

the  --l\\'GX' codes have the same dfn, but have more paths with the  squared free 

distance. (i.e.. n ,  = 8). The  codes have the same rate of 1.29 bits per si-rnbol and a n  

asymptotic coding gain of 4.64 dB over BPSK on the -\\\*C;S channel. 

The  codes designed for the  Rayleigh fading channel. LX-hich are presented in Ta- 

ble 3.1. have djm, = 6 but a greater dimd = 61. Comparing the fading code wit h 

the  code for the .-\\.\-GY channel. which is presented in Table 3.10 ivit h djR, = 9 

and dirgd = 27.  ive would espect a 1.79 d B  asymptotic ioss on the  *A\\-GS channel 

but should achiek-e an asymptotic pain of 1.25 dB on the Rayleigh channel. Hoivever. 

from simulations of the 11/21 and the 12/31 codes on the Ra>-leigh fading channel the 

12/13 1 performs better on the  Rayleigh fading channel at  low SSR.  T h e  simulation re- 

sults and the upper bound calculated from the truncated t ransfer funct ion are shown 

in Figure 4.6. The iipper bounds shoiv that  t here is a cross-oi-er in performance of the 

rwo codes aroiind 12.5 dB. Thus. the 11/21 code is espected to  do better at higher 

SSR.  The siniulations show the  11/21 code's performance descending at a higher rate 

than the 12/31 code and the  performance is very similar at the 12-13 d B  range. 

The  main reason for this is that other error el-ents contribute to  the error perfor- 

mance and tliere are events wit h small di in the transfer function. ;\lso at  loir. SSR.  

noise affects the performance more t han the fading and t hus the free distance of the 

code will be a factor in the r he error performance of the code. For the  codes presented 

in the  tables. when there was a tie on the first term of the product transfer function. 

multiple terms were considered for the  selection of the codes. The  main selection 

process masimized the asymptotic error performance on fading (i.e.. by finding the  

code wit h the maximum d;r,d and f C 8 .  However ot her codes ivere included when t h e  

selected code had ot her terms which domina~ed  the performance at  low S S R .  

In the case of the 1 l5/541 code over Z6. the code with the  maximum la  does 

not have better performance than the code for the A?VGS channel. This is because 

in .WwGN the performance is influenced by other terms in the transfer function. In 

Table 4.3. for syrnbol distances betiveen 4 and S. the minimum ~ $ , , ~ ( l )  a re  shown for 

the 115/541 and 211/131 codes. When 1 = 6. 7. 8 the G,,(l) for the  115/511 code 



x 11/21 simulation 
0 12/31 simulation 
- - 11/21 Trunc. upper bound 

12/31 Tninc. upper bound 

Avg. EbINo (dB) 

Figure 4.6. P~rformancc cornparison on the Rayleigh fading channel bctween the 6- 

d a t e  Z6 codes orer  6PSl i  with maximum djm, (1>/.31) and rnarimum dirnd (ll/?l). 



Table 4.3. Termsfrom transf~r/unctiori O/ the 11.5/.5$1 and 2 1 , / / 1 J l  code 
11-5/.541 

! Euclidean 11 Product i I 

1 214/131 code 1 

ne 

1 Euclidean II Product 

are  less than those of the  Zl4/131 code. .At loir S S R  these ternis will contribute to 

the  error performance. r\lt hough t h e  1 l.?/.i4 1 code n-il1 perform bet ter asyrnptot ically 

in Rayleigh fading. the  214/131 code is about 0.5 d B  better in the  SER range of 10-" 

to  10-4. On the .-4\\'GS channel the  214/131 has a 2.1 dB gain m e r  the 11.5/541 

code. The simulation results and performance estimates are  shoivn in Figure 4.7. A s  

shown in the figure. t here is a cross-of-er in the  performance on  the  Rayleigh channel 

around 13 dB. Thus. the  1 l5/54l code is better in fading as?-mptoticallj-. however in 

a practical range of interest the 214/ 131 code is bet ter. 

For the constraint length 3 Z6 codes s h o w  in Figure 4.7. the  Gaussian code 

performs only slightlj. ivorse in the  symbol error rate range 10-3 t o  IO-". The codes 

could be considered identical in this error range on  the  Rayleigh fading channel. 

Similar t o  the pre\-ious case. the  upper bound indicates that  there will be a cross- 

over and the fading code ( 1 l51/1131) will perform better than the  Gaussian code 

( 1252//31'21). Hoivever. the Gaussian code has a 0.5 dB performance gain 01-er the 

d;' 1 errors / 
' > , S i  3 / 

n,  d; 1 errors 1 I 

1 1024I 2 / 5  
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Figure 4.7. Simulation rcsults for the 36-statc code orer Za. Conzpariaon b r t u c c n  

21,//'IJI and Ii,i/..j#I codes on the Rnyieigh jading channel. 

fading code on the Ciaussian channei. -4s the two codes perform similar1~- in Ra>-leigh 

fading. the Gaussian code is recornmended at an Eb/.\b below S dB as the  code will 

have better performance in less severe fading since dfme is greater. 

In Figure 4.9. the sirnulated symbol error performance on the Rayleigh fading 

channel is shown for three codes over Es. The codes are the 11/21. 11.5/541 and 

1 l.i-1/5:341 and ha\.-e 6. 36 and 216 states. respectivel~.. The figure also shows the 

asymptotic estimate of the performance which \vas obtained using two terms of the 

product transfer function. The figure shows that the performance of the code ap- 

proaches the theoretical estimate. The coding gains achieved by these codes at a 

symbol error rate of 1 0 - ~  over uncoded 6-PSK are 19.6. 21.8. and 23.6 dB respec- 
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Figure 4.8. Sim ulation resulta for the 216-date codt ocer Z6. Cornparison betueen 

I I-Sj/ljJI and 1>.52/.3121 codes on the Rayleigh fading channcl. 
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1 
1 0-2 ! 1 

4 6 8 10 12 14 
Avg. Eb/No (dB) 

Figure 4.9. Simulation and  asymptotic estirnates /or codrs orcr Z6 trith 6. .36. and 

216 dates.  
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tively. For a symbol error rate  of the gains are 26.5. '19.7 and 3 1.9 d B  over 

uncoded 6-PSI<. 

4.5 Codes over Zs 

In Figure 4.10. the simulation results O\-er the Rayleigh fading channel are presented 

for an S-state code. 19/21. and a 64-state code 32.5/711. The first two terms of the 

product transfer function are used to form a triincated upper bound for the  symbol 

error performance. In t his case. we find the second term of the transfer function is 

dominant in the range of interest for both codes. The dominant paths in the range 

of interest ha[-e a lengt h of 4 and 6 for the S and 64 state  codes. respect ively. At a 

s>-rnbol error rate of 10-3 the gains over uncoded S-PSI\: on the Rayleigh channel are 

24.4 dB and 26.4 d B  for the S and 64 state  code. Considering that  3 bitsiinformation 

symbol are sent. and assuming t hat half the bits are in error ( i-e.. 1.5 bit errors / 
SJ-mbol error ) the gain of t his s>-stem over uncoded BPSIi is 1 1.5 and 29 d B  at  bit 

error rates of 10-3 and IO-". respecti\-ely for the d-state code. For t lie 64 s ta te  code 

the  gains at  the respecti\-e t hreshoids are 13.2 and 31.1 dB. 

4.6 Codes over Zy and Z12 

.A few 9-state 9PSK codes were presented in [?Y] with d;we = 6.9;. The ring codes 

( for -4LVGS) presented in Table 3.1 1 have dfw, = 6.77. or a performance difference 

of 0.06 dB  on the .AL\-GS channel. The  actual code \vas not specified in [?Tl. so the 

performance in fading could not be calculated. 

For the fading case. the fading code ( 12/11) presented in Table 3.1 has le* = 4 and 

(p - 1 .404. The parameters for the -4WGS ring code 24/4 1 presented in Table 3.1 1 p r d  - 
are 3 and '17. respectively Figure 4.1 1 shows the simulation results for the 12/41 and 

24/41 code. The truncated upper bound shows a cross-over in performance a t  13 dB. 

The simulation results indicate that  the ;\ iVGS code performs about  0.4 d B  better 

than the 12/41 code at an SER of 

These codes have the same rate  as uncoded 3-PSI< or 1.235 bits/symbol and the 

asymptotic gain over 13-PSK is 3-53 dB (-1.28 dB over BPSK) on t h e  r\\VGN channel. 
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Avg. EbJNo (dB) 

Figure 4.10. Simulation and  truncatcd u p p e r  bounds for codes o r f r  Ls irith 8 and 

6'4 s t a t ~ s .  



At an SER of IO-". the 12/41 code has a 19.5 dB gain over uncoded 4-PSK. 

Figure 4.12 shows the truncated upper bound and the simulation results for the 

2 3 1 and the 2 - 5  1 1 codes. The  2 .5/ i l  1 code has maximuni d&,d(/c8 ) but the 

2 .i/ 3 1 code performs better a t  low SSR.  There are two possible reasons: one. the 

>.j/:I 1 code does have a larger dj*, than the 2 .i / 1 1 1 code. tivo. the  2 .5/ 1 1 1 code 

has much smaller term for the first term of the error e\-ent with effective length of 4 

than the 1 5 / J  L code. The terms are 0.268 for the 2 5/11 L code and 2 for the 2 5 

/ 3 1 code and at  loiv S S R  t hese terms are dominant rat her than the  terms \vit h the 

effective lengt h of 3. The 2 .i/ 1 1 1 code will perform bet ter a t  high SXR. hoivever. the 

2 .i/3 L code is bet ter at  lotv SXR values. The simulation results shown in Figure 4-12 

indicate t hat the codes perform similarly on the Rayleigh fading channel. wit h the 2 

3 L performing slightiy better in the range simulated. 

The 14 t s t a t e  Z12 codes 13 11 T/l  8 1 and 5 LO 11/ 1 1 1 were found from a 

partial reduced search. The search algorit hm did not search over al1 of the irreducihle 

pol>momials due to  t ime const raints. hoivever. a large number were searched and the 

best of the partial search are included here. The performance estimates for both 

codes indicate that  the 3 11 7,/ 1 S 1 has a 1.76 dB gain O\-er the 5 10 1 1 / 1 7 1 code 

on the ?LLi-CrS channel. The simulation results and the truncated upper botind are 

shown in Figure 4.13 

-4s seen in the figure. the two codes perform similarly on the  R-leigh Fading 

channel until about Eh/.\; = 1.5 dB. For S S R  greater than 1.5 dB the 5 10 11/1 7 1 

code performs better than the 3 11 7/1 S 1 code. However. this is around an ÇER of 

10-'. Thus. for performance around IO-' the 3 11 7 / I S 1 code is recommended. 

The sim~ilation results do not show the cross-mer in performance as the lower error 

rates are impractical to  simulate. 

4.7 Codes over ZI6 

The 3 9/14 1 code from Table 3.2 has a = 3 and a djme = 4-21. In contrast. the 

3 6/14 1 code presented in Table :3.11 has a = 2 and dje, = 5.33. Here it rvould be 

espected t hat the 3 6 /  11 1 code would perform better at  loiv SSR.  but worse a t  high 

S'iR. Figure 4.14 shows simulation results and a truncated upper bound (includes 3 
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Avg. Eb/No (dB) 

Figure 4.1 1. Simulation and truncated upper 6ounds /or codes occr Z9 with 9 state.5. 



I 4 ! 
6 8 1 O 12 14 16 18 20 

Avg. EbINo (dB) 

Figure 4.12. Simulation and truncated u p p e r  bourids for codes orer Z i 2  with 12 

dates.  
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Figure 4.13. Simulation and t r u n c a t e d  u p p e r  b o u n d s  for c o d f s  ocer Z i 2  with 144 

d a t e s .  
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terms from transfer function) for bot h codes. The figure shorvs t hat the 3 6/ 14 1 code 

and the 3 9/ l-l 1 code perform similarly at low SXR. however around Eh/-\; = 10 dB. 

the 3 9/ 1-1 1 code perforrns better as the ot her code begins to diverge. This ~voiild 

indicate that higher SSR the 4 9/14 1 code would perform much better on Ra~*leigh 

fading. 

-4s uncoded QPSK has the same efficiency of 2bits/symbol. we compare the  

performance of the above codes with that of uncoded QPSK. Both codes ha\-e a gain 

of 1S.Z dB at 10-3 and the 5 7/11 1 and 3 6/14 1 codes have gains of 25.7 d B  and 

2.5 dB at  respectively. 

Cornparing t hese codes wit h known codes. the 9 6/ 14 1 code has the same distance 

properties as the 13 6 / 2  1 found in [9]. The full search algorithni did not find the  

13 6/2 1 as it only searched half of al1 possible codes as the other half would be 

equivalent to a code that had been searched. Here. 3 6/14 1 and 19 6/2 1 are 

equivalent codes. The latter code has the advantage of being rotationally invariant. 

This will be discussed in Chapter .i. 

4.8 Summary 

Tables 1.4 and 4.5. results are present a cornparison and summarJ- of the  results 

for the fading and .4it-C;?; codes found. In the tables. one or two codes have been 

chosen to represent the performance of the fading codes which have maximum l eB  

and dirod and the ;\WC;.\' codes ivhich have masimurn djre,. The number of delaj- 

elements. r and the number of states are shown and the fading and ;\L\'C;S code 

polynomials are given. The effect i\-e lengt h is shown for bot h codes. Also shown for 

both codes is the asymptotic gain. 1,r. for -4CI'GS' and where applicable on the 

Rayleigh fading channel. &x is defined as the asymptotic gain of the fading code 

O\-er the -4I\*GS code on the .\\\-GY channel. As can be seen when the codes differ. 

the gains are negative which indicates that the ALVGS codes perform hetter on the  

Ciaussian channel. This is an expected result since codes designed for fading channels 

should be siib-optima1 on the AiL*GS' channel. In most cases. the fading code loses 

less than 1 dB in performance. but has a greater lc8.  In the case where 1,x is shown 

for the Rayleigh case. the code mith the maximum d&, has the same lefi as the fading 
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Avg. Eb/No (dB) 

Figure 4.14. Sintulation and truncated u p p e r  bounds for  codts o c u  Zlb: with 16 

stntes. -3 9 / I f  1 lias mazimum lC8 and .3 6/14 1 has marirn um d&, . 
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code but has a smaller di,, The gain is defined b -  Equation 4.1 and is only defined 

when the codes have the  same effective length. ll'hen the fading code has a greater 

effective length than the  -ALl*GS code. the asymptotic error performance in fading 

will decrease faster with respect to SSR than the +AI[-GS code. This is a result of 

the as>-mptot ic error performance being proport ional to S S  R - ' e f f .  Therefore. a code 

~vith a larger leB is expected to perform better as>-mptotically on the fading channel. 

Looking at several examples from the tables. the performance losses associatecl 

\vit h using a fading code on the .AL\-C;S channel are generally less t han 1 dB. Hot\-e\-er. 

in the case of Z6 there is a loss of 1.76 and 2.1 dB for the 6 and 36 state codes. 

respect i\-el>-. In Figure 4.6. the code wit h the maximum di,,, perfornis slight ly worse 

at a SER= 10-' but is expected to peform better at higher Ç S R  levels as the fi rst term 

in the product t ransfer funct ion becomes dominant. .At loiver S S  R levels. Gaussian 

noise and other terms in the product function contribute to the error performance. 

In the case of the 36 state code. the code with the masimum l e f i  and dirgd performs 

about 0.5 dB n-orse t han the .A1\-GS code at an SER of IO-? There is a cross-over 

around the IO-" SER le\-el. Howet-er. the code does not niake up for the loss on the 

;\\\'GS channel and does not approach t lie asymptot ic performance quickly. T hus. 

it is recommended that the 214/131 code be used if  the desired error rate is abok-e 

10-6. 

The 9 state Zr code for the .-\\\'GS code also performs better than the fading 

code at low SSR. The simulation results show t hat the tivo codes perform identically 

for the 12 to 14 dB range on the Rayleigh fading channel. This agrees well with the 

t runcated upper bound for the codes. 

The codes presented over Z 12 show that the masimum effective lengt h and dirgd do 

not guarantee the best performance at Ion- SSR. These terms dominate the asymptotic 

fading performance. but other terms will dominate at loiver S S R  values. Thus. it is 

important to consider man>- terms in the distance spectrum and the performance of 

the codes at the SER or BER of interest. 

The 16 state gis fading code performed better than the .A\\'C;S code in fading. 

The performance difference is more pronounced at higher S S R  levels. This is a good 

code as it loses only 0.1 d B  on the -4IVGS channel and performs better t han the 

.Ai\'G S code found wi t h the maximum GR,. 



From Tables 4.4 and -4.5. it is clear that in man!. cases the code with the niasirnurn 

djm, also has the maximum dind and l e f i .  Ii'hen t hese codes are not the same. we 

find t hat in most cases. the efecti\-e lengt h of the  .-\L\.i'C;S code is less than the  code 

for fading. .-\s a result. ive have found codes which are espected t o  perform better 

on a fading channel than the codes optimized for the  .4\\vC;S' channel. The  codes 

for fading will outperform the AI\-CS codes a t  high S S R  on the fading channel and 

perform only slightly worse on the ;\i\-GS channel. In the case of Z6 codes the loss 

on the ;\\\-C;S channnel is above L d B  and the .\LC-GS code performs better t han t h e  

fading code at low S I R  o n  the fading channel. 
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Y 

i -\L\-GS code nia>. perform bet ter at Iorv S S R  

t Partial search result 



4.9 Conclusion 

.At a high SSR. several of the codes designed for the Ra-leigh fading channel out- 

perform the codes designed for the .-\\\'GS channel. At low S S R .  other terms in the 

Euclidean and product transfer functions affect the performance of the code and in 

some cases the code designed for the .-\\.\'GS channel will perform slight ly bet ter t han 

the fading code at loiv SSR. 

The Z4 codes presented outperform comparable binary trellis codes designed for 

Ra!-leigh fading. Also. a 4-state code was found which improves on the performance 

of the Cstate code presented in Baldini and Farrell [:II in bot h .Ai\-GS and Rayleigh 

fading. The 16-state Z4 fading code is also better in fading than the 16-state Z4 code 

designed for .-\I\-GS. This Aii'GS code had the same dfnc as the  16-state Z4 code 

presented in [3]. 

The simulations showed t hat for Z6 and Z9. the .Ai\-GS code performs bet ter r han 

the fading code at low SSR. The truncated upper bounds show t hat t here is a cross- 

O\-er in performance at higher SSR.  For the cases of the 6-state S6 and 8-state Zs 
codes. the simulation results beha\-e similar to the bounds and the fading and .l\\-C;S 

codes perform identically at the high SSR levels simulated. Alt hough the ;\\\-C;S 

code has an = 5 and the fading code has an l e f i  = 6. the 216-state Za fading and 

;\\\'GS codes perform identically on the Re-leigh fading channel at  the error rates 

simulated. In this case. as well as in other cases when q is non-prime. there is only 

one path irith and other paths with longer lengths will dominate in the error 

performance at lotv SSR. 

Similar results were found in a partial search for codes with constraint lengt li 2 

over SI>. For an SER of 10-' the code with the maximum d'*, is recomrnended and 

the fading code should be used at when the S S R  greater than 1.5 dB. 

The 16-state SL6 fading code found in the search performs better in fading than 

the best known rate 1/2 16-state code over Zls [SI. 



Chapter 5 

Rot at ional Invariance 

C'odes which are rotationally invariant ( R I )  are of great practicai interest as a phase 

slip in the demodulator does not cause a large number of errors [2]. They are also 

practical because they eliminate the need to determine the absolute phase at the 

receii~er [SI. For t hese reasons. it is beneficial to find codes over Z, ~vhich are invariant 

to multiples of 2 z / q  phase rotations. These codes are referred to as t rnnspar~nt  codts 

[2. 13. 25.  101 and can be used in conjunction \vit h a differential encoder to eliniinate 

errors caused by phase rotations [ 3 ] .  

In this chapter. ive continue the search for codes whicli are good O\-er fading 

channels wit h the addit ional criteria of rotat ionally invariance. 

5.1 Background 

In 12. 31 the definition of rotational invariance just a requirenient t hat the ail-one 

coden-ord esist within the code. The reason for this condition is a phase rotation 

of ? r r / q  is equivalent to adding r tirnes the all-one codeword to the transmitted 

codeword. If the dl-one codeword is a codeword. then by linearity. the suni of the 

transmitted codeword and multiple of the ail-one codeword is a \alid codeword. 

The ail-one codeword can be defined as follows. 

If I ( D )  and u (  D )  are a codewords. then ( x ( D )  + r u ( D ) )  mod q is also a codeword. 

In Figure 5.1. a convolut ional encoder wit h addit ional different ial encoder and 

decoder processes is shown. To illust rate how the different ial encoding eliminates 
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+ Encoder 1 

A 

x(D) 
4 D d  %D> 

Decoder 

Figure 5.1. Bloch diagra rn O/ transparent encoder/d~codcr 

the phase rotation. consider t h e  transmitted codervord. x( D ) .  The sequence. a(  D). 

is formed b>- a ( D )  = r ( D )  + a ( D ) D  mod q and then encoded and transmitted. The 

channel introduces a phase rotation of 2r;r/q and rve obtain at t he  output of the 

decoder i i (  D). If al1 of the errors dile to noise have been corrected t hen a(  D)  is jiist 

a rotated version of a(  DI. i-e.. â ( D )  = ( a (  D )  + ru (  D ) )  rnod q. 

The output of the encoder is 

-4s u (  D )  is the all-one sequence and subtracting a d e l - e d  version of it results in 

the zero sequence. This removes the phase rotation from the channel and results in 

i ( D )  = x ( D )  

From [SI the definit ion for rotationally invariant ( RI) is t aken from t rellis-coding 

for phase modulation. That is. the  minimum phase shift rvhen applied to al1 compo- 

nents starting at time O or later. yields a word thar differs in at most a finite number 

of positions from another codeword. 

From [Y]. a code is RI  if for every codeword r( D )  t here esists a polynomial pi( D )  
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where i = 1.2.. . . .n such that 

are components of mo t  her codeword y( D). 

Lemma [dl 

-4 rational function r(  D )  E R( D )  differs from by a polynornial iff 

where p( D) is a polynomial ivith p( 1 ) = 1. 

Here ive modify Theorem 1 from [SI to the rate 1/2 case only b!* changing t h e  

notation to maintain consistency. 

Theorem [SI Suppose the coefficients of the i n  - 1 ) x n systematic encoding mat r is  

sat isf'- the tn-O condit ions t hat 

ancl that there is at least one unit  among the elements g(1). f I ( 1 )  . . . . .  f,-,(i). For 

rate 1 / 2  codes t his gives us condit ions on f ( D )  and g( D ) .  i.e.. f ( 1 ) = g( 1 ) and require 

it to be a unit then the code is RI. 
\\ can -almost" generate the all-one codeword hy choosing the input to  be 

T hen 
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The numerator polynomial p( D )  satisfies p( i ) = 1 since p( D) = g( 1 )-If ( D )  and 

g(U = fW- 
Since x( D )  in Equation 5.S differs from the all-one sequence in finitely many 

places. the code is said to be RI. 

Thus. in searching for the codes. we rest rict the  search to codes where f ( 1 ) = g( 1 ) 

and g( 1 ) is a unit in Z,. Rat her t han searching for the all-one codeword. t he abo\-e 

conditions on the code polynomials are used. These conditions allow the search 

routine to quickly eliminate codes which do not meet t hese criteria. -4s a result. the  

search routine can perform an exhaustive search t hrough ai1 possible codes. 

As an example. we consider the convolut ionai code Ci( D ) = [l  ( 1 D + 3  / ( 2D + 1 ) ]  

over Z4. From Equation 5.7 the input sequence for this code is 

When the input is encoded. the encoded sequence differs from the all-one secluence 

only in the first two positions. -4s an esample of how the encoder works \vit h a 

phase shift on the channel. ive will consider an arbitrarj. symbol sequence as an input 

t o  the encoder as shoivn in Figure 5.1. In Table 5.1 the encoding. phase rotation 

and decoding process is shoivn. The input sequence. I( DI. is differentially encoded 

to  form a(  DI. This sequence is input into the convolutional encoder to form the 

encoded sequence. -4 phase shift of ~ / 4  is added to  the synbols at the beginning of 

the sequence. In Figure 5.1. the trellis diagram for the code is shown. I-sing this 

diagram ive can decode the most likely sequence. The decoded statr  path is shoivn 

along with the estimate of a ( D  ). The estimate à( D )  is t hen differentially decoded 

to form . t (D).  which is the estirnate of the original symbol sequence. -4s seen in the 

table. the s ( D )  and f ( D )  differ by oniy one symbol. 

5.2 Search Results 

T h e  trellis search algorithm was carried out as the  exhaustive search presented in 

Section :3.2. The differences between the searches were t hat for t his one. the search 

space ivas not reduced by half and the tap polynomiais were required to have f ( 1) = 
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Table 5.1. Erample of decoding trith a phase shifl for I2/2I codc on Z4 

1 pat h l 

-@) 

1 phase shift 
r 
IDecodeds ta te  

g( 1  1 and  f ( 1 ) a unit. The  t ap  polynornials were checked for t his condition hefore the  

search of the  trellis started. If the code did not meet t hese conditions. t he  code was 

discarded and the algorithm tested the the next code. 

Results for the  rotational ini-ariant ( R I )  unit mernorJ- codes are presentecl in Ta- 

ble 5 .2 .  T h e  effective length of the RI codes is equal to  or less t han non-RI unit  

memor?. codes presented in Chapter 3 .  L\-hen q is prime. the effective lerigth of t h e  

codes is equal to length of the  non-RI codes and in some cases they are t h e  sanie 

code. The  only exception is for q = 3. In this case. the  RI code has an one less 

t han the  non-RI code. This is simiIar to the case n-hen q is non-prime. The  effect i\-e 

Iengt h of the  code is one less t han t h e  masirnuni efkct  ive leiigt h of the non-RI code. 

In some cases. the RI code has a greater dj-, t han the  fading codes. However. the  

jquared free distance is upper bounded by the squared free distance of the  non-RI 

-AL\-GN codes t hat were presented in Tables :3.10 and :3.11. 

T h e  above results are to be espected as the RI code search had additional con- 

straints placed on the  tap polynornials from the  non-RI code search. T h e  codes in 

the  non-RI search were maximized for either the  effective length and sq~iared  product 

distance for fading or  the  squared free distance for the  ALi'GS channel. -4s such. the  

squared free distance of t he  RI-codes is upper bounded by the  squared free distance 

of the  non-RI -AL\-GS codes and the effective length is similarly upper bounded by 

1 ' 2 : 3 2 2 0 1 2  

1 

3 O O 3 3 1 1  2 
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Figure 5 .2 .  Trellis dcfinition for 11/21 code orcr Z4 

the non-RI fading codes effective length. 

The  results for the  constraint length 2 RI-codes a re  similar t o  the unit rnemor?. 

code case. I\'hen q is prime. the  effective length is equal t o  the  non-RI codes. but 

when non-prime the effective lengt h of the code is one less t han the  maximum effective 

lengt h for non-RI codes. These codes are presented in Table 5.:3. 

The RI  codes wit h mas imum squared free distance a re  presented in Table 5.4. 

For q < 7 the  codes in Table 5.3 also had masimum d'me. For q = 7 the .AI\-C;S code 

has an asymptotic coding gain of 0.2s dB and an  as>-mptotic loss of 0.19 dB on t h e  

Rayleigh fading channel bu Equation 4.1. As can be seen. the  performance difference 

between the  fading and  the  .ALt'GS codes is v e r -  small. Similarly. for the case when 

q = 9 the  .AL\-GS coding gain is 0.i-1 dB. Hoivever. t h e  I c g  is 4 where as the  leB of 

the fading code is 6. Thus. the  fading code is espected t o  perform bet ter in fading. 

TTable .-5..5 presents t h e  results for rotationally invariant codes with constraint 

lengt h 4. These codes have the same effective length and  d;rr, as the non-RI codes. 

.Uso. the  codes for Z3 and  z6 have the same characteristics as the non-RI codes 

presented in Table 3.S. T h e  djm, over Z4 and Z5 is less than that  for the  non-RI 

codes. This difference results in 0.51 dB and a 0.21 dB loss. respectively. on the  

.AI\-G S channel. 
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In Table 5.7 ive show the cornparison betiveen the non-RI codes from Chapter 3 

and the RI codes presented in this chapter. ive compare the effective length and the 

as'-mptot ic gain over BPSK on the .\i\'C;S channel. The table presents the codes 

for constraint lengths of 1. 2. and 3. and codes O\-er Z3 to Z A s  can be seen the 

effective lengt h. Ir# of the RI codes are upper bounded b>. the effective lengt hs of the 

non-RI codes. In the case when the effective lengths are identical the non-RI code 

has a greater djm, than t h e  RI code. For t hose cases when the effective lengt h of the 

RI code is less than that of the non-RI code. the djm, of the RI code is greater than 

the RI code. For example. for the Zs code with constraint length 1. the asymptotic 

gain over BPSIi is 0.3; d B  greater for the RI code than the non-RI code although 

the effecti~ne lengt h is one less <han the non-RI code. 

In cornparson with the literature. this search found several codes which were 

previously presented. For esample. the Zis 16-state code 136/-1 was also found 

in hlasse>- et al. [SI. For Z4 codes with 4 and 16 states. 12/21 and 311/221. presented 

in Tables 5.2 and 5.:3 are previouslj- known from Baldini et al. i31. \\é also present 

two additional 16-state Z4 codes. namely. 1 l:I/??l and 1-12/31 1 rvhich have the sanie 

characteristics as the 31 1/21 1 code. 

The code 31 112 11 has djm, = Ir! and the first four terms are shown in Table 5.6. 

Also shown in the table is a code t hat has djm, = 16 and the  same di,,, as t lie 3 1 1 / E l  

code. The 2 12/3 1 1 code does not ha[-e an error pat h of lengt h 5 in r he prodiict t ransfer 

function like the 31 1 / 2 1  code. thus  it is expected that i t  would perform better than 

the 3 1 1/221 code. Hoive\-er. the niimber of errors associated wit h each error pat h is 

greater t han the  31 1 /221 code and t hus may perform worse. 

hlonte-C'arlo simuIat ions ivere used to confirrn the relat ii-e performances of the 

codes. In Figure .i.2. simulation results are shown for the 212/ 131 and 31 1/221 codes. 

The first two paths of the transfer function were used to  generate an upper bound 

on the performance on the Ra!-leigh fading channel. From the bound the 31 1 / 2 1  

code should perform slight ly bet ter t han the 2 12/ 131 code. and the simulation results 

the confirm that the difference between these two codes is estremely small. For the 

AiVGS channel. the 212/ 131 code performs slightly better than the 31 1 / 2 1  code. 

as espected. For the symbol error range presented in the  figure. the codes perform 

pract ically the same. 
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Table 5 .2 .  RI codes with consfraini Iength 1 for Ra yl~igh fading 

Ring pal?-nomiais 1 ni,, dfRc 

16 13 6/ 2 1 1 .3.:3;3 4 1 

5 O 1 (g) 
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Table 5.3. RI codes with corzstraint length 2 for Raijlcigl 
I 

fadii 

1 4  - 
4 

Ring 



5. Rotational Inruriancc 83 

Table 5.4. RI codes 

polynornials 

with constraint Içngth 2 for the ;1II%.\- chanrztl 

Table 5.5. RI codrs with constraint I~nqth 3 for Raglt gh fading 

! 

, g x d B  

6.19 

d e  / npd d ; n d  n p  

2 11.85 4 1 4 15.09 3 

Ring 

6 

polynomials 
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Avg. Eb/No (dB) 

Figure 5.3. Pçrfomnnce cornparison for the 16'-dale Z, codes 22;>/1.)1 a n d  :Il 1/21 1 

on the Rayleigh and  -4 I,i%.I- channel .  
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1 

Product I 

5.3 Summary 

The restrictions o n  t h e  tap pal>-nomials for the rotationail>- inlariant codes were 

tlescrihetl. The reeiilts of a n  exhaustive search for R I  codes were prescnted. The 

srarcti foiincl a tn-O codes rvtiich ha[-e appeareti in the literat lire. namely. lZ/ '>L over 

S, [3! and 13 (i,/ fl ooer Z [SI. -As i v e  iised the resulrs Froni [SI to rest rict the tap 

pol~-noniials. i v e  would expect to Rnd the sanie rate 1 / 2  code o\+er Z i, as the>- did in 

t tiei r search. 

In a few cases. t h e  R I  code has the best lCn and Gr,,* for the ring. For esaniple. 

the constraint lengt h 2 and 3 codes for Z3 hat-e the sanie characteristics as the hest 

codes found in Chapter 3 .  

The effectit-e lcngths of the RI codes are tipper bounded b>- the effective lengths 

of r he non-RI codes. However. there were a few cases where the dfm, ivas greater 

t han the non-RI code when the effective length iras less than the non-RI code. For 

esample. for the constraint lengt h 1 codes. the codes for Z, where q is 6. S. 9. 12. 14 

and 16 al1 have hetter djm, and t h e  le* is one less t han the non- RI codes. This means 
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Table 5.7.  RI c o m ~ a r k o n  wifh  non-RI rina codfs  

Ring 
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tha t  the codes will perform worse asymptotically in fading than the non-RI codes. 

but are better on the .ALVGS channel. 

In most cases the  RI code wit h t he  added restrictions are worse on  the Rayleigh 

fading channel and the ;\L\*GS' channel. Hoivever. t hese codes are st il1 of interest due 

to the rotational invariance propertjv. If the  channel has slow phase rotations t hen 

the RI  codes will perform much better t h a n  the non-RI codes. 



Chapter 6 

Summary of Results and 

Suggestions for Future Work 

Chapter 1 presented a historical background of ring codes and some of the ear1)- work 

which led up to t his dissertation. 

In Chapter 2. fundamentals of the digital communication SJ-stems were presented. 

The basic structure of the con~~olutional codes along rvit h the PSK modulation were 

presented. -4s well. the as).mptotic estimate of the codes' performance was introduced 

and defined the characteristics to be used in the search for good codes. 

Chapter 3 described the  exhaustive search routine and the results of the search. 

The restrictions on the  tap polj-nomial which led to the reduced search algorit hm were 

developed. The codes found b>- the reduced search rvere also presented. ;\lthough 

t his disserta1 ion rvas mainly concerned ivit h maximizing the fading performance hy 

masirnizing the effective length and squared product distance. codes which niaximized 

only the squared free distance were also included. These codes are called .\Li'G.\' codes 

as t heir performance is opt imized for the .-\L\'C;K channel. -4s the performance of t h e  

codes on the Rayleigh fading channel at low S I R  is affected by the dt,,, . t hese codes 

are expected to perform well at low SSR. as well as. on the Ai\'GS channel. 

Simulation results for several codes were presented in Chapter 4. The codes were 

simulated over a Rayleigh channel with ideal interleaving and ideal channel state 

information. This was to confirrn the espected performance and compare the codes 

with known codes from t h e  iiterature. In this chapter. ive found that several codes 

have better performance on the Rayleigh fading channel than known codes. ALso. in 

one case the code had better performance on the AWGS channel than codes in the 

literature. Several cornparisons were done between the code optimized for fading and 
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the codes optimized for the - i W G S  channel. In many cases. it  \vas found t hat a t  lorv 

SSR. the AiVGS codes performed slightly better than the fading codes. The fading 

codes were better asyrnptotically on the fading channel. hoive\-er. in some cases the 

error rate was too low to simulate the system performance accurately in a reasonable 

amount of time. 

Rotationally inlariant codes were introduced in Chapter 5 .  Slassey et al. [SI 
developed restrictions on the  tap polynomials which could be used to find rotationally 

in\ariant ( R I )  codes. These codes are valuable as a phase rotation ivhich is a multiple 

of 2n/q when using q-PSK rvill produce a srnali niimber of errors. .A non-RI code 

would produce errors at the output of the  receiver untii the rotation was corrected. 

-4s the restrictions on the code polynomials allowed the search algorit hm to  eliminate 

codes qiiicklj.. an exhaustive search was carried out. The results of the  search for 

codes over Z,. q E { : 3 . .  . . . 16). were presented in Chapter 5 .  In the case of the  Cstate 

Z4 and 16-state Z L 6  codes. the search found codes also found by exhaustive search 

b>- Baldini and Farrell [2] and Slassey et al. [Y!. respecti\.elj.. -4s in C'hapter 2 .  the 

fading codes as well as .-\i\-GS codes are included in the results of this chapter. 

6.1 Future Work 

The continuation of t his research would include a continuation of the search for good 

ring codes. Rate 112 codes with higher constraint lengths would be of interest. .-liso. 

higher rate codes such as rate=2/3 codes and rate=3/-l codes would be of interest 

due to t h e  increased efficiency. The general structure of a rate 2/13 encoder is shown 

in Figure 6.1. Baidini and Farrell [3] examined codes of bot h rate 2 / 3  over Za. and 

rate 3/1 over Sis and Alasse!; et  al. [SI have exarnined codes of rate=2/:3 over Zs. 

In the case of codes that must work in fading environments. these codes should not 

have paarliel transitions. Thus. al1 input bits must affect the state of the  encoder to 

ensure the code does not have parallel transit ions in the t rellis. 

One of the topics in coding t h e o c  that has recently received much interest is 

Turbecodes. These codes were introduced in Berrou et al. [-!Tl and are also called 

Parallel Concat enated Codes ( PCC) [dg]. .A common structure for r he Turbecodes 

uses multiple Recursive Systemat ic Convolut ional ( RSC ) codes as component codes. 
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O n e  structure is presented in Figure 6.2 although sel-eral ~ a r i a t i o n s  appear in the  

literature. Examples of the  structures of turbo encoders a r e  presented in [4;. 4s. -491. 

Another common structure deletes the bit r' from the  output  to  obtained a rate  L/9 

code. Significant coding gains have been obt ained ut ilizing t his structure. 

-4 continuation of this research ~vould be to use some of the codes found in this 

dissertation as the component codes in a Turbo-code. It is likel?. that the ring codes 

which showed gains over binary treliis codes with the  same  number of states would 

also achieve gains when used in a Turbo-code structure. One  of the goals when 

t his research started kvas t o  develop a turbering-coder o w r  an arbitrary integer ring 

modulo-q. However. sufficient information on good codes for fading and over several 

of the  integer rings was not available. It is hoped that  this research will lead to  the 

use of some of the  codes herein as component codes in a Turbo-coded system. 

The  4-phase spreading sequences presented in Boztag e t  al. [-LOI and Hammotis 

et  al. [45] are applicable to  Code Division Multiple Access (C'Dl[.\) Spread Spectruni 

sj+stems. .An interesting studj- rvould be to  combine the  codes over Z4 and t h e  +phase 

spreading sequences in a CDlI.4 system. Another s tudy of interest is to use codes 

over Z, and g-arj. spreading sequences similar t o  t hose in Boztag et al. [-!O] t o  form 

a q-ary coding/q-ary spreading communication s>-stem. For esaniple. t lie 1 'II 3 1 code 

over Zs had gain over BPSIi of 4.64 dB could be spread using a 6-ar!- spreading 

sequence. .\ 6-ary spreading sequence could be generated b>- a shift register utilizing 

a n  irreducible polynomial from .\ppendis -4. .An investigation to find the polj-nomials 

rvhich gmerate  sequences wit h loir cross-correlat ion would he required. 
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Figure 6 .1 .  Structur~ o f n  rate >/d 

X 

X RSC 
code I 

Interleaver LA 
code 2 Y2 

Figure 6.2. .-ln ~ x a r n p l e  of n rate i/d Turbo code structure 



Bibliography 

[ l ]  C.E. Shannon. -.A Slat hematical Theorj- of  communication^.^ BFII S p t .  Tech. 
J.. vol. 27. pp. 319--423.623-636. 1948. 

['2] R. Baldini F. and P.G. Farrel. -Coded modulation based on rings of integers 
moduleq. Part 1: Block codes." IEE Proc.-Commun. vol. 141. no. 3 .  June 1994. 
pp. 129-136. 

[:Il R. Baldini F. and P.G. Farrel. T o d e d  modulation based on rings of integers 
rnodulwq. Part '1: C'onvolutional codes.- IEE froc.-Commun. vol. 141. no. 3. 
.lune 1994. pp. 137-1-12. 

[l] R. Baldini F. and P.G. Farrel. -Coded modulation with convolutional codes over 
rings.- Presented at EL-ROC0 DE'SO. C-dine Italy. 1990. 

[5] J . L .  .\lassey and T. I l i t  telhozer. Tonvolut  ional codes over ring.- Presented at 
4t h Joint Swedish-Soviet Int . Korkshop on Information Theory. Gotland Sweden. 
-4ug. 1989. 

-- . 
[6] T. l l i  t t elholzer. -1Iinimal Encoders for Convolut ional Codes over Rings. in 

C'ornmunicntions Theory and .-lpplications. B. Honary. I I .  Darnell. and P.C. Far- 
rell (ed.).  pp. 30-36. H\\- Comm Ltd.. 1993. 

[7] J.L. lIassey. T. )lit telhozer. T. Riedel and SI. L'ollenweider. -Ring Convolut ional 
C'odes for Phase Slodulation." Presented at ISIT'SO. San Diego. C-4. Jan. 1990. 

[SI J .L.  1Iassey. T. llittelhozer and F. Tarkoy -Sew IIodulation/C'oding Tech- 
niques for a One-ïser Satellite Channel." Final Report. ESTEC C'ontract no. 
S696/89/XLl IFS Technical Assistance for the CDSI.4 Communications System 
Anaiysis. Nov. 1994. 

[9] J .L.  l lassq- and T. .\lit telhozer. 5iystemat icitj- and Rotat ional invariance of 
conïolut ional codes over rings.- Proc. 2nd Int. Workshop on -4lgebraic ;Ilgebraie 
and Conibinntorial Coding Thheo y. Sept. 16-22. 1990. Leningrad. pp. 154-15s. 

[IO] J.L. .\lasse- and T. Mttelhozer Todes over rings - a practical necessity.- Pre- 
senfed a t  .4.4ECC Symposium. Toulouse France. June 19S9. 

[ I l  ] T. JI  it telholzer. J. L. Massey. Convolut ional Codes and Cohomological Invari- 
ants.- -4bstracts ofpapers I*torkshop on -Applications o/,llgebraic Geornetry. Jan. 
8 - 1'2. 1990. I'niv. of Puerto Rico. Puerto Rico. 



[l?] 1.F. Blake. -Codes over Certain Rings.- Inf. and Control. vol. -20. no. 4. pp. 
1396-404. S l a ~ :  1972. 

[13] I.F. Blake. -Codes over Integer Residue Rings.- Inf. and Control. vol. 29. no. 4. 
pp. 29.5-300. Dec. 197.5. 

[14] B. Rimoldi and Q. Li. -Coded Continuous Phase Slodulation Csing Ring Con- 
volut ional Codes.- IEEE Trans. Commun.. \-ol. 1 3 .  no. 1 1. pp. 2714-2720. Soi-. 
199.5. 

[l.i] R.H.-H. Eang and D.P. Taylor. -Trellis coded continuous phase frequency shift 
keying wit h ring convolut ional codes.- lEEE Tram. I n  forrn. Th heory. vol. 40. pp. 
10.57-1067. Jul>- 1994. 

[16] G.  Karam. K. Gosse. and K. hlaalej. -Trellis coded CPFSK over rings." Proc. 
of K'C09.5. Seattle. \Va.. June  1s-22. 1995. pp. 6713-677. 

[ l  ï] G. Cngerboeck. -Channel Coding ivi t h h1ult ilevel/Phase Signais.- [EEE Trms.  
Inform. Theory. vol. IT-28. no. 1. pp. 56-66. Jan. 198'1. 

[1S] Ci. I-ngerboeck. -Trellis Coded .\fodulat ion wit h Redundant Signal Sets Part 1: 
Introduction." IEEE C'ornrri. . l l a g a z i n ~ .  vol. 2.5. no. 2 .  Februraq- 19SÏ. pp. 5- 11. 

[19! Ci. I-ngerboeck. -Trellis Coded Sfodulation with Redundant Signal Sets Part II: 
State of the  Art." lEEE Cornm. .\lagazin€. t-01. 25. no. 2 .  Februrar?. 19S7. pp. 
12-21. 

[?O] D. Divsalar and SI .I i .  Simon. -The Design of Trellis Coded SlPSIi  for Fading 
Channels: Performance Criteria." IEEE Trans. Commun..  vol. 36. no. S. pp. 
1004-1012. Sept. 1988. 

[21] D. Divsalar and h1.K. Simon. -Trellis Coded Slodulation for 4S00-9600 bits/s 
Transmission over a Fading Slobile Satellite Channel.- IEEE J. Select. ;Ireas 
Commun.. 1-01. S.4C'-5. no. 2 .  pp. 162-175. Feb. 19237. 

[?y -4. Lee. -;\nalysis of Amplitude. Phase and Error Distributions for Shadowed 
Mobile Satellite Cornmunicat ions C hannels." Sl.Sc. Thesis. Queen-s h i v e r s i  tr, 

at Kingston. Jan. 198s. 

[23] S. Wlson. )-.S. Leung. -Trellis-Coded Phase llodulat ion on Rayleigh Channels." 
Proc. of ICC'X?. Seattle. Wa.. June  1987. pp. %.Xl-.'j. 

[24] C. Schlegel and D.J. Costello. -Bandwidth efficient coding for fading channels: 
code construction and performance analysis." IEEE J.  Select. -4 mas Commun.. 
vol. 7 no. 9. pp. 1:3.?6-13623. Dec. 1989. 

[25] T. Kasami. T. Takata. T. Fujiwara and S. Lin. -On linear structure and phase 
rotation invariant propert ies of block 41-PSK modulation codes".iEEE Trans. 
Inform. Theo y. vol. IT-:3Ï. 1991. pp. 164-166 



Bibliogmphy 94 

[26] D..J. Rhee. S. Rajpal and S. Lin. 5 o m e  Block- and Trellis-Coded Slodulations 
for the Ra>-leigh Fading Channel.- lEEE Tranr. Commun.. i-01. 4-4. no. 1. pp. 
13-4-42. Jan. 1996. 

2 L.H. Zetterberg. -.A C'lass of Trellis Codes for Phase lloduation Based on Geo- 
metrical Design and C'oset S1appinp.- Presented at 4t h Joint Çwedish-Soviet Int. 
\\orkshop on In format ion Theory. C h  land Sweden. -\ iig. l9M. pp. 3 - 2 3 .  

[?SI C.-J. Chen. T.-1-. Chen and H.-.A. Loeliger. -Constiiction of Linear Ring C'odes 
for 6 PSK.- /EEE Trans. Inform. Theory. t.01. 40. no. 2 .  pp. 5B:3-566. 1Iar. 1994. 

[29] R. De Gaudenzi. F. Giannetti and SI. Luise. -;\dl-ances in Satellite C'DS1.i Trans- 
mission for 11obile and Personal C'ornmtinications.'- froc. of th€ IEEE, 1-01. S4. 
no. 1. Jan. 1996. pp. 1s-39. 

[90] d .  11. Kozencraft and 1.11. Jacobs. Principl~s of C'om m unication Engiiier ring. 
Sew )or k: 117 ley. 196.5. 

[:1I] J . I i .  Cai-ers and P. Ho. -;\nal~*sis of the error performance of t rellis coded modu- 
lat ions in Ra>-leigh-fading channe1s.- IEEE Trnns. Conr m un.. i-01. C'OSI--IO. pp. - 
14-53. .Jan. 1992. 

[:E] S. H. Janiali and T. Le-Sgoc. C'oded-llodulation T~chniquts  j0r Fading C'hanr,eb. 
Kluwer Academic Publishers. 1994. 

[ 3 3 ]  C. Tellambiira. "Performance .Anal!-sis of Trellis C'odes Transmitted 01-er Fading 
Channels.". Ph.D. Theçis. L-nit-ersitj- of \-ictoria. 1-ictoria. B.C'.. Canada. 1993 

[34] D.H. Saracino. .-lbdract .-Ilgçbrn: -4 Fird Cocir.5~. .\ddison-\\ésle?. PublishinR 
Company. Inc. Philippines. 19S0. 

[35] \'.K. B harga~ea. D. Haccoun. R. )fat>-as and P. Siispl. Digitnt C'orri rn u rliratiori~ 
6 y Satclli t~. \\.\'iley Interscience. Seiv Iork. 1981. 

[36] S. \\?chr. and \'.K. B hargava. Refd-Solomon C'odes and Th i r  .4ppliratiorir. 
IEEE Press. Sew Iork. 1994. 

[d;] .J-C;. Proakis. Digital Communication.s. A ird  Edition Sew kork: SlcGran--Hill. 
199.5. 

[4S] Ci. Clark and J .  B. Cain. Error-Correction coding for Digitinl coni rn unica t ions. 
Sew Iork: Plenum. 19s 1. 

[:19] SI. Vogel. --Performance .-Inalysis of 1nterleaving.- .\I..-\.Sc. T hesis. C-ni\-ersi ty of 
C-ictoria. British Columbia. Canada. 1993. 

[-!O] S. Boztag. R. Hammons and P.[-. Iiumar. -&Phase Sequences with Sear- 
Optimum Correlat ion Propert ies." IEEE Trans. Ln form. Throry. vol. :3S. no. 
:3. l lay  1992. pp. 1101-1 113. 

[4 11 P. Solé. -A  Quarternarj- Cyclic Code and a Family of Quadriphase Sequences 



wit h Low Correlation Properties.- Lecture .\otes in C'omp utcr Scicncr 388 
( 1989). pp. 193-2OL. 

[42] R. Hammons and P.\'. Kumar. - On a Recent -!-Phase Sequence Design for 
CDSI.4.- IEICE Trans. Commun.. 1-01. E76-B. no. Y. -Aug. 1993. pp. 804-S13. 

[43] P.\-. Iiumar and O. lloreno. -Polyphase sequences with correlation properties 
better t han binary ~ e q u e n c e s . ~  IEEE Trans. I~tform. Thheory. \-01. 37. no. :3. pp. 
603-616. )la>* 199 1. 

[Il] A.R. Hammons .Ir.. P.V. Kumar. -4.R. Calderbank. S.J..\. Sloane and P. Solé. 
-The Z4-Linearity of lierdock. Preparata. Goethals and Related Cocles.- IEEE 
Trans. Inform. Theory. vol. 40. no. 2. pp. 301-310. lfar .  199-4. 

[-!.il -4.R. Hammons J r .  and P.\-. Kumar. -On the Apparent Dualit?. of the Iierdock 
and Preparata codes.- Proc. O/ ISIT ' 9 1  San Antonio. Texas. Jan. 1993. pp. 
196. 

[46] P. Shankar. -On BCH codes over arbitrary integer rings .*O IEEE Trans. In fonn. 
Tizeo~y. pp. MO-4S-4. JuI. 1919. 

[-!TI C'. Berrou. -4. Glavieus and P. Thitimajshima. -Sear Shannon Limit Error- 
Correct ing Coding: Turbo codes." Proc. 1.993 IEEE Intc rrzational C'onjcru ncr 
on CBrrirnunications. Genei-a. Switzerland. 1 1 3 -  1993. pp. 1064- 1010. 

[4S] D. Divsalar and F. Pollara. -On the Design of Turbo C'odes.- Thhc Tflccomm u- 
ntcations and Data -4cquisition Progress Report 42- 12.1. July-Scpte rri  bc r 199.5. 
Jet Propulsion Laborator\: Pasadena. California. pp. 99- 12 1. So\-. 1.5.1996. 
http://edms-~v~viv.jpl.nasa.gov/tda/progress~report/4'L- 123/ 123D.pdf. 

[4Yj S. Benedetto. and Ci.  SIontorsi. -IVnveiling Turbo C'odes: Sorne Results on Par- 
allel Concatenated Coding Schemes.- IEEE Tians. Inforni. Th €013. vol. -42. no. 
'1. pp. 409-4%. l lar .  1996. 

[.?O] R. Lidl and H. Siederreiter. Finite Fields. Encyclopcdia of .\lathe mafics and Its 
-4pplications. \-01. 20. Reading. 11-4: Addison \Ièsley Ptiblishing Cornpan>-. 1983. 

] I.F. Blake and .J.\Ie. Slark. --A Sote  on C'omplex Çequences wit h Low Correla- 
tien.- IEEE Tram. Inform. Theory. vol. IT-2s. no. 5. Sept. 1982. 

] G. E. C'orazza. C. Ferrarelli and F. Vatalaro. -.A Rice-Lognormal Terrest rial and 
Satellite Channel S1odel.- Proc. of ICI-PC.94. Sept. 94. San Diego. C.A. pp. 
1 5.5- 1 5 9 . 

[53] G.E. Corazza. C. Ferrarelli and F. iatalaro. -A Statistical Slodel for Land Sfobile 
Satellite Channels." IEEE Trans. I h i c .  T~chnol.. vol LT-43. ;\ug. 1994. 

[54] E. Lutz. D. Cygan. SI. Dippold. F. Dolainskx and Li- .  Papke. -The Land 11ohile 
Satellite Communications Channel - Recording. Statistics and Channel lfodel." 
IEEE Trcrns. l ihic. Techno(.. vol. L'T-40. pp. :375-:3S5. May 199 1. 



[55] C. Loo. -.A Statistical bfodel for Land Slobile Satellite Link.- IEEE Trans. I Éhic. 
Twhnol.. vol. 34. pp. 122- 127. . h g .  1985. 

[56] C'. Loo and S. Secord. Tompu te r  models for fading channels with applications 
to digital transmission.- IEEE Tram.  I h i c .  Twhno[.. \-T-40. pp. 700-707. Soi-. 
1991. 

[ 5 ï ]  R. Pichna. R. Iierr. Q. Liàng. i Bhargala and I.F. Blake -CDSI;\ cellu- 
lar net work analysis software.-. Final Report prepared for the Depart ment of 
C'ommunications under contract #36-00 1-2-3.560/01-ST. Ottawa O S .  1993. 

[5S] R. il'. Kerr and P.J. S f cLane. Toheren t  Det ect ion of Interlea\-ed TreIIis Encoded 
CPFSL on Shadowed blobi te Satellite Channels. IEEE Trans. l ih ic .  Twhnol.. 
vol. 41. no.'. pp. 159-169. l laj-  1992. 

[59] P.J. SicLane. P.H. il'ittke. P.Ii.-SI Ho and C'. Loo. -PSI\' and DPSIi Trellis 
Codes for Fast Fading Sliadowed Sfobile Satellite Communication Çhanne1s.- 
IEEE Trans. Commun.. vol. 96. pp. 1242-1246. Soi*. 1l)d.S. 

. i601 . A . J .  Slueller. -Issues in Diversitu and Adaptive Error Control Coding for \.Vire- 
less Communications.- .\I.I\.Sc. Thesis. I'nii.ersit~- of \Ïctoria. Victoria. B.C.. 
Canada. 1995. 



Appendix A 

Tables of Polynomials 

In order to reduce the search for good codes oi-er Z,. ive restricted the polj-nomials 

g(x  ) and f ( r  ). which define the code. to have no factors of lesser degree in Z,[x]. 

L\*hen q is prime. t his is equi\-alent to requiring g( s ) and f ( r ) to be irreducible. -4s 

irreducible polynomials over fields are ive11 known and are tabulated in the literature 

(cf. 1501). we will not List t hem here. However. ive \vant irreducible polynomials o \ w  

Z ,  ivhen q is not prime as well. .A polynomial p E R[x]  ia irreducible over R i f  p 

has a positive degree and p = bc wit h b. c E R [ x ]  implies t hat b or c is a constant 

pal!-nomial [.50]. In other words. it  is irreducible if it  allows onlj- t ri\-ial factorizat ion. 

Hoivever. t here is the case when \\-orking in Z&]. that t here niay esist a factor of 

equal or greater degree. For esample. let f ( x )  = 2x i 3 and g ( x )  = :Ir2 + 2.r + 1 in 

S6. then f ( ~ ) ~ ( . r )  = r 2 + 2 s + 3 .  -inotheresarnple is f ( r )  = 3s+9 andg( . r )  = ? x i 2  

where the product is equal O. 

The polynoniials gi\-en in the Tables .A. 1--4.10 are O\-er Z, and have no factors of 

lesser degree. BJ* forma1 definition they are not necessarilx irreducible as t here m- 

exist factors of higher degrees. Hoivever. the purpose of using these po1~-nomials $vas 

to ensure t hat two pol~~nomials did not bave factors of lesser degree. In the tables. 

the polynomial a n r n  + an-L . rZ -L  + . . . + no is abbrei-iated as a,  a,, . . . ao. 

The polynomials in the tables were com put ed using the Erastot henes sic\-e met hod. 

In this method. to find al1 the polj-nomials of degree n that ha\-e no factors less than 

degree n. al1 of the reducible polynomials of degree n are calculated. The calculation 

is done b ~ .  mult iplying al1 possible factors (Iess t han degree n ) which produce a degree 

n polynomial and removing it from the set of al1 polj-nomials of degree n .  After al1 of 

the computation is completed the polynomials remaining in the set have no factors less 

t han degree n.  Khen q is prime the polynomials are called irreducible. This met hod 



Table A.1. Polynomiais orer S&j trith no factors of l c s s ~ r  degre~ for degrccz  2 to 

Z,, = 4 Degree 2 

1 Z, = 4 Degree 3 

l 
1 Z, = 4 D g r e e  4 

found the irreducible pol~momials t hat are presented [50]. These tables are omit ted 

here as the). are presented elsewhere. The sieve met hod is inipract ical for large degree 

pol~momials. however only polynomials with small degrees were of interest. 

The tables present the results of the sieve method. They are not the product of 

an>- polk-nomial of lesser degree. Constant multiples of r he polynomials presented in 

the following tables were oniitted. 



Table A.2. Polynornials ocer Z4jxj rrith no foctom of lesser degrec -5 



Table A.3. Pofynomiab orer Za[x] with no factors of fesser degrcr  for dcgrces 2 and  

Z, = 6 Degree 2 

Z, = 6 Degree 3 



. - lpy~  rzdix -4 101 

Table A.4. Polynomiab of dcgrct j ortr Zs[x]  with no factors o/Icsser degree 

Z, = 6 Degree 4 

10011 10012 10013 1001.5 10022 1002.7 10031 10033 10035 10042 

1001.5 100.31 100.52 100.53 100.5.5 10102 1010.5 10111 10114 10121 

10124 1012.5 10132 1013.5 10141 10144 1014.5 101.41 101.74 10202 

1020.5 102 1 1 102 13 1 0  1.5 1023 1 102i32 1023:3 1023.j 102.5 1 102.53 

102.5.5 loi3 12 1 O:3 1.3 lOX? 1 1 O X ?  10325 1033 1 103% L O U  f 10342 

continued on nert page 



L, = 6 Degree 4 Table -4.4 (cont inued)  

continued o n  next page 



- 

23, = 6 Degree 4 Table -4.4 (continued) 



Table A.5. Polynornials orer Za[x]  with no  factors of ksscr dcgree for degrecs 2 and  

Z, = r! Degree 2 

1-3-57 

1613 

16.5 1 

170.5 

1743 

'Loo 1 

224 1 

'L6O 1 

4101 

4126 

4 1.53 

440 1 



Table A.6. Polynomiah ocçr Z9[x] and Zio[x] with no jactors oj' lesser degree for 

dcgrrc L) 

Z, = 9 Degree 2 

101 103 10-4 106 107 111 112 114 11.5 11- 122 124 

i 



Table A.?. Polynorninls orer Z i [ x i  with no factors of lesser degrrr for d t g ~ r e  2 

Z, = 12 Degree 2 



Table A.8. Polynomiab orcr Zi4[s] uilh rio factors of lcsser degrre for d f g r ~ ~  
Z, = 14 Degree 2 



Table A.9. Polynomials orer Zi5[r] with no factors of i fsscr d e g i r t  for dtgrct 2 
1 1 



Table A.10. PoIgnorniaL orer  Zin[r] with no factors of lesser  degree for degrec > 
1 Z, = 16 Degree 2 

1 
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