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Abstract 

The basic goal of the Adaptive Optical Music Recognition system presented herein is to 

create an adaptive software for the recognition of musical notation. The focus of this 

research has been to create a robust framework upon which a practical optical music 

recognizer can be built. 

The strength of this system is its ability to learn new music symbols and handwritten 
notations. It also continually improves its accuracy in recognizing these objecis by 

adjusting intemal parameten. Given the wide range of music notation styles, these are 

essential characteristics of a music recognizer. 

The implementation of the adaptive system is based on exemplar-based incremental 

learning, analogous to the idea of "learning by examples," that identifies unknown 

objects by their similarity to one or more of the known stored examples. The entire 

process is based on two simple, yet powefil algorithms: k-nearest neighbour classifier 

and genetic algorithm. Using these algorithms, the system is designed to increase its 

accuracy over time as more data are processed. 

iii 



Résumé 

Le systéme de reconnaissance optique de la musique proposé ici a pour but de créer un 
logiciel adaptif qui permet de reconnaître la notation musicale. L'objectif principal de 

cette recherche a été de concevoir une structure solide sur laquelle on peut construire un 

système pratique de reconnaissance de la musique. 

La force de ce systéme rdside dans sa capacité d'apprendre de nouveaux symboles 

musicaux et des notations manuscrites. En adjustant ses paramètres internes, le système 

accroit sa précision dans la reconnaissance des divers éléments. Étant donné le vaste 

éventail de styles de notation musicales, ces caractéristiques constituent l'essentiel d'un 

syst&rne de reconnaissance de la musique. 

La mise en oeuvre d'un tel système est basée sur le concept de l'apprentissage par 
l'exemple >> : le système identifie des élernents inconnus en les comparant avec un ou 

plusieurs éléments connus déja emmagasinés. Le processus tout entier s'appuie sur deux 

algorithmes simples mais puissants : l'algorithme du plus proche voisin et l'algorithme 

génétic. Ces algorithmes permettent au système d'augmenter sa précision d'opération en 

fonction de la quantite de données qu'il a traitdes. 
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1. INTRODUCTION 

1.1 The goal 

The basic goal of the Adaptive Optical Music Recognition (AOMR) project is to design 

an adaptive system for computer recognition of musical natation that works with a certain 

degree of user interaction. The focus of this research has been to create a robust 

framework within which a practical optical music recognition (OMR) system can be 
buiIt. 

1.2 Overall design 

The AOMR system descnbed here is composed of a database and three interdependent 

processes: recognizer, editor, and lemer. Operating on the scanned image of a musical 

score, the recognizer locates, separates, and classifies music symbols into musically 

meaningful categories. The classification is based on the k-nearest neighbour (k-NN) rule 
aided by a database of symbols and their features collected from previous sessions. 

The output of the recognizer is comcted by a musically trained human operator using a 

music notation editor. The editor can provide both visual and audio feedback of the 

output. Glen Diener's Nutation, a public-domain music editor, which displays and 

playbacks the result of the recognition process. was experimentaily used for this purpose. 

Commercially available music editors may be used. The result is stored in the symbol 

database used by the classifier and the leamer. This database can aiso be used as a basis 

for constructing a representation of the score suitable for other applications. The leamer 

improves the specd and accuracy of future recognition sessions by continuously 

rearranging the database and optirnizing classification strategies. 



1.3 Adaptive systems 

The most interesting feature of this system is its ability to l e m  and adapt incrementally 
to its environment. Rather than using statistical or deterministic methods of pattern 
recognition, commonly used by engineers and other OMR systems, an adaptive 

exemplar-based system is used here to recognize music scores. 

13.1 What is an adaptive system? 

An adaptive system is characterized by the ability to undergo modification of its 
behaviour in response to new conditions, demands, and circumstances of the surrounding 
environment. For a recognition system it means that the system will be able to leam 
novel objects and that it will continudly improve its accuracy in recognizing those 

objects. Given the wide range of music notation typefaces, this is an essential component 
for a music recognizer. 

1.3.2 Implementation of the adaptive system 

The present implementation of the adaptive systern is based on an exemplar-based 
incremental learning system. An exemplar-based pattern recognition scheme classifies an 
unknown object by comparing it to the known exarnples already stored in its database. 

"Incremental" here means that the system learns gradually as new samples are added to 
the database. 

Typically, a learning system is nurtilred with training data. Once the designer is satisfied 
with the performance of the system, the various parameters of that systern are fixed. In 

other words, no modification takes place when the system is actually used in the field. 

Here, no distinction is made between training data and reai data: al1 incoming data are 
treated as training data, and the system parameters are continually changing. 

The reorganization of the recognition tactics, such as the parameter tuning, is managed by 
the system itself rather than the human expert. This process seerns to correspond to 
human incremental developrnent of expertise. The adaptiveness of the system is founded 

on two very simple yet powemil concepts: k-NN rule and genetic algorithm. 

Using these algorithms, the system is designed to increase its accuracy over time as more 

data are processed. The accuracy of the recognizer can be increased by having many 



examples and by selecting the appropriate importance attached to each feature used to 
recognize the symbols. If required, the system cm decrease the recognition time on its 
own. In the k-NN classification system the recognition time is proportional to the size of 

the database. By reducing the size of the database, therefore, the recognition tirne cm be 

reduced. 

Exemplar-based systems have often been criticized for their relatively large storage 
requirement and for inefficiency. The ment dramatic increase in economically available 

memory space dong with similar increase in the speed of desktop computers have made 

the use of exemplar-based systems quite feasible. It is not unreasonable to demand 
rnegabytes of RAM, gigabytes of hard disk space, and a fast rnicroprocessor. 

Furthemore, the efficiency of this particular application is not crucial as manual 

preparation of a score by a human copyist could take over an hour per page. Also, as most 
desktop computers are persona1 computers (in other words, they are not used constantly) 
there are many free cycles that cm be exploited by the learning system. 

13.3 The advantages of an adaptive music recognition system 

There are three main reasons why an adaptive music recognition system is desirable. It 
should be able to recognize a large number of symbols and the arrangements of these 
symbols that make up the score; it should be able to leam new music symbols; and it 
should be able to recognize handwritten scores. 

Similarities between the recognition of printed text and of music are often cited, yet there 
are important differences. In music there is a basic set of symbols, such as rests, clefs, and 

accidentals, that have fixed size and orientation, comsponding to the letters, digits, and 

punctuation symbols in printed text. But unlike text, music scores contain many symbols 

that Vary in size and orientation, such as arpeggio marks, slurs, ties, barlines, pedal 

markings, and voice-leading lines. Also, noteheads are often grouped together with other 

such components as stems, flags, and beams. Thus, the recognition system for music must 

be able to recognize a very large number of configurations of symbols. 

Another very important difference is that in the case of alphabets, although there are new 

font designs, it is unlikely that a new alphabet symbol will be added within the next few 

years. Music notation on the other hand, is a more evolving system with new symbols 



continually k i n g  added. Consequently the set of music symbols is much larger than that 

of alphabet symbols. Read's book of notation Iists about four-hundred different symbols 

that are currently in use (Read 1979). The leamer section makes the system adaptive both 

to the evolving nature of music notation in general, where new symbols are created as 
performance or compositional requirtments dictate, and to specific notational "dialects," 
including handwritten scores and different historical notations. 

Until very recently, most scores of new compositions were prepared by hand owing to the 

expensive process of engraving music. These scores are generally of very high quality; 

because music must be sight-read in real time, there is an enormous pressure to have the 

music easily legible. Not only do performers tend to be discouraged by music that is 

difficult to read, but the processing resources and time devoted to decoding the music 

notation will presumably reduce the resources and time needed to perfom it. For this 

reason, many high-quality handwritten scores should be recognized by the system. And 

there is another reason why machine recognition of handwntten notation would be 

valuable. Because of the availability of music editing software on microcornputers today, 

music that would once have been copied by hand is now often done on the computer. Yet 

because of the awkward user-interface (screen, keyboard, and mouse), many musicians 

prefer using the pen-and-paper method of setting music down, although they do 

appreciate the output of high-resolution laser pnnters. Note that the user interface to 

cornputers grew out of and remains a tool primarily for alpha-numeric input. Sirnilarly, 
many graphic artists and draftsmen still prefer the traditional working tools, not 

surprisingly, since the tools these artists and craftsmen use have k e n  tailored over the 

years to their needs. Thus, an ideal scenxio is to draft the music by hand, scan it into the 

computer, edit, if necessary, and then pnnt it out. 

There are other benefits to adaptive systems. Different copies of the system may evolve 

dong different lines, much in the same way as natural selection, each system developing 

its own expertise according to the needs of the users. Consequently, a copy of the system 

can be made to specifications, either with a tubula rasn database or primed for one 

particular notational repertûire, publisher, or composer. Another important advmtage 

from the designer's point of view is that various adjustable parameters in the recognition 

process need not be predetennined. The wider implication of similar adaptive systerns 

both in music and other domains will be discussed in the conclusions. 



1.4 Applications 

There are many areas of possible application of the machine-readable representation of 
musical scores. For music publishers, it cm be used to produce new editions based on old 
editions and manuscnpts. It can be used to preserve out-of-pnnt editions for which the 

master plates are either lost or no longer usable. It can be used to create automatically 

engraved-quality scores based on manuscnpts. 

Musicologists can use it for various purposes including the preparation of scholarly 
editions that compare concordances between manuscnpts and printed scores. Performers 
and cornposers can use it for part extraction and transpositions, Braille translation. 
automatic MIDI file creation, and thus automatic playback which in mm would allow 

score-assisted recognition of musical performance via audio, and "what-if' demos for 
music theory and orchestration studies. Such a playback system would also allow for 
cornputer-aided music practice in the form of intelligent music-minus-one for chamber 
music, concertos. and conducting practices. It would also simplify the preparation of 
music psychology experiments such as the study of music expression. 

Although some of these applications can be performed now with comrnercially availabie 
music editing software, the tedious task of entering music manualiy has hindered 
development of most of these applications. For reviews of other methods of input see 
Carter et al. (1988) and Fujinaga (1988). 

Once a suficiently large amount of music is scanned and stored in a database, there are 

further applications. Music scholars can use the database to study musical structures and 

style, either manually or automatically. In the latter case, the computer can be used to 

verify algonthmic analytical tools and theones. Music publishers may establish an on- 

demand music-score printing, where music can be printed on a customer's local printer. 

In a multimedia environment, a database may be used for a low-bandwidth, high-quality 

audio distribution system. Rather than sending high-bandwidth CD-quality audio on the 
network, which may be difficult because of the amount of data involved, scores cm be 

sent to the local workstation, where audio is ncreated localiy through the use of 

synthesizers. Ako, music scores can be searched and viewed on screens on the network 

for browsing or sight-reading purposes where printed music is not necessarily required. 



1.5 Design of the dissertation 

In the next chapter, some recent papers on other OMR research will be reviewed. Many 
of the image processing and pattern classification techniques used in the prograrn are 
explained in Chapter 3. Chapter 4 describes the program, and concluding remarks are 
presented in Chapter 5. 



2. REVIEW OF OMR RESEARCH 

Until recently, research into OMR has been restricted to two MIT doctoral dissertations 

(Pmsslin 1966, Prerau 1970). With the availability of inexpensive optical scanners, much 
research began in the 1980's. More recent research projects have k e n  reported in issues 

of Computing in Musicology (Hewlett and Selhidge-Field, 1987-94). An excellent 

historical review of OMR systems is given in Blostein and Baird (1992). Here, some of 

the Japanese-only papers and other research not covered in that review will be 
surnmarized. Commercial software is now avaiIable from Musitek (MIDISCAN), Grande 
Software (Note Scan), and Yamaha. 

2.1 Aoyama and Tojo (1982) 

This relatively early paper, published only in Japanese, contains many techniques that are 

used by more recent research in optical music recognition systems. The system is divided 

into three stages: input, segmentation, and recognition and syntax check. In the input 

stage, the image is binarized, staffiine height and staffspace height are obtained, and 

stafflines are located. In the segmentation stage, the stafflines are removed and symbols 

are segrnented using connecied component analysis. Finally the segmented symbols are 
classi fied and verified. 

The following obsentations about the music score are made: 
1 ) It is two-dimensional. 
2) Spatial information is important. 
3) Line drawing, image, and characters are rnixed, and their position is not specified. 
4) Because of fine lines, high resolution scanning is necessary. 
5) Symbols having the same meaning may have different graphic representations, 

6) Syrnbols are placed according to spatial syntactic d e s .  



From the recognition viewpoint, scores contain symbols that are 
1) suitable for template matching and 
2) suitable for a structural analysis method. 

The input score is assumed to be printed and free of broken symbols, but can be of any 
size (within limits) and staves may be bent or slightiy broken. The system uses a 254-dpi 

(dots per inch) cimm scanner with 8-bit gray level. 

The image is scanned twice. In the first scan, groups of vertical scan lines are obtained (a 
figure shows nine groups across the page, each group containing a few lines separated by 

1 mm). The stafflines are located as follows: 
1) Binarization of the scan lines are achieved through the use of a histogram. 
2) Y-projection of each group is taken, and if each group contains n lines. projections 

with n or n-1 pixels are considered to be staffline candidates. 
3) By using the result of 2) and creating a histogram of black runs and white runs 

from the staffline candidates, staffspace height and staffîine height are obtained. 
4) The candidates for staffiines are finalized using the information obtained in 3). 

In the second scan, because of the large arnount of information involved, each staff is 

considered separately. In each staff window, the pichire is vertically run-length coded 

(this is the direction in which the page is physically scanned in their drum scanner). 

The system removes most of the staffiines, but to avoid excessive segmentation of 

symbols such as half-notes and flats when the stafflines are removed, the regions of the 

staffline Ieft and right of the mns adjacent to the symbol are marked so as not to be 

deleted (see Figure 2.1). At the end. mns that straddle the staffline position and that have 

the staffline width are removed. 

I I l7m at#.trç ; . t - . / m  2 I 
Figure 2.1 Image after coarse segmentation (Aoyama and Tojo 1982). 

Next, black noteheads are searched with a template on stafflines or between staffiines, 

and temporarily removed if found. The black noteheads are only temporarily removed 

because the real goal of this section is to find holes (in flats, haif noteheads, and whole 

noteheads). Once found these symbols cm be marked so that when the rest of the 



stafflines are removed the symbols will not be fragmented. The holes are detected by the 

system looking for short horizontal white runs between stafflines. Once the holes are 

marked the black noteheads are restored, and stafflines are finally removed. 

The resulting image is segmentai through connected component analysis. The height and 

the width of the bounding box of each segment are used to coarsely separate the 

connected components into ten groups (see Figure 2.2). The height and width are 

nonnalized using the staffspace height. 

Figure 2.2 Coarse classification (Aoyama and Tojo 1 982). 

In the group with flagged notes and beamed notes, flags and bearns are separated frorn 

noteheads by removing thin regions (stems). Analysis of the note configuration is 
perfonned by way of features such as width, height, center of gravity, ratio of area / area 

of the bounding box, head count, flag count. and H-type (any of 1 1 head-stem 

configurations). 

In another group of accidentals and rests, a tree classifier based on horizontal and vertical 

run-lengths is used to separate the members of this class. A table containing information 

about relative position of components is employed to recognize composite symbols (e.g. 

x $ $ p p ) .  



Finally, syntax rules conceming the position of symbols and the constant number of beats 
in a measure are used to doublecheck the recognition result. The spatial niles are: 

1) key signatures appear after the clef symbol; 
2) if there is a treble clef and key signature starts with a sharp, the sharp must be on 

the top starnine; 
3) accidentals appear to the lefi of the notehead. 

Although not implemented, the possibility of recognizing expressive markings @p. 

andante, a tempo, etc.) by their character count is suggested. 

2.2 Maenaka and Tadokoro (1983) 
Maenaka and Tadokoro aimed at building a system that would be portable, compact, 

easy-to-use, and inexpensive. To meet these design goals, they used an 8-bit 
microprocessor (MC68091 and a TV carnera as input device. They mention the possibility 

of using a facsirnile machine as an alternate inexpensive input device. The overall system 

architecture is shown below (see Figure 2.3). 

Figure 2.3 Overall architecture (Maenaka and Tadokoro 1983). 

Since the maximum address space on an 8-bit processor is 64K bytes, which is not large 

enough to address the entire image information, a separate independent memory is used 

for the image. Although the memory had the capacity to store 1024(H) x 5 12(V) x 4-bit 



of video information, the camera's hardware limitations resulted in only 4 16(H) x 480(v) 

x 2-bit subset of usable rnemory. 

A simple memory access method is devised to access a pixel and its square neighbouring 

pixels so that filtering, projection calculations, and other basic pattern recognition 

algorithms can be performed efficientiy. The TV camera is equipped with zoom lens and 

close-up lens is fixed on a camera stand. Three standard 100-watt lamps are used for 
lighting. Due to camera limitations. sheet music size of A4 format had to be divided into 

four sections. Adjusting the gain and the bias of the analog-to-digital converter and the 

lighting eliminated the need to use the histograrn method or notchless binary 

transformation method for preprocessing. A simple fixed binary threshold method was 

sufficient for successful pattern recognition. Yet, because of the optical characteristics of 

the close-up lens, the four corners of the images were badly distorted. The paper also 

discusses the problem of the change in the aspect ratio during the acquisition. 

The processing time of the system will be of an order of magnitude slower than if it uses 
a minicornputer system; hence, an effort was made to keep the processing algorithms 
simple and to avoid excess access to large image areas. It was decided not to implement 

expensive algorithms such as high-order pattern matching and spectral analysis. 

The following symbols are considered a bare minimum set of music fonts and are used as 

recognizable objects: treble clef, bar line, double barline, repeat barline, final barline, 

whole note, half note, quarter note, eighth note. sixteenth note, beamed eighth and 

sixteenth notes, whole rest, half rest, quarter rest, flat, sharp, natural sign, and dot of 

prolongation. 

In order to find a fragment of the target object, the pattern in the ith space of a staff, Si(x)  

is defmed as: 

O, if pixel is white; 
where f ( x ,  y) = 

1, if pixel if black. 

y&), is the position of the middle line in the y-direction (the vertical axis), and a is the 

space between stafflines. 



counts the number of spaces, at x, contained in the object fragment. P ( x )  can be used to 

Iocate a symbol but it c m  also be used for classification. 

To track the position of the five stafflines the following dgorithm is used. B(i)  shows the 

correlation against the position of the current five Iines and is defined as 

Thus the position of the rniddle staffline at the next position, y5(x + 1). is incremented or 

decremented by 1 relative to y&), the current position of the middle staffiine. 

Because a simple method usually means shorter processing time, the fixed-point 

sampling method and the Sonde method (counting of black-to-white transitions) are used 

for recognition of the objects. 

The objects are first coarsely classified into three groups. At any point x if P ( x )  > O and 
4 
C[si ( x )  * Si ( x  + 1) ] > O (to allow for noise), then the object is classified as follows: 
i=O 

Class A if P(x) = 1, 

Class B if P ( x )  = 2 ,  and 
Class C if P(x)  1 3. 

To further classify the object, certain number of fixed regions are sampled to find any 

black pixels. For exarnple, to find eighth rests, six regions are sarnpled. The six-bit long 

vector is compared with the standard pattern. If a series of tests fails, the object is 
considered to be a musical note and proceeds to the next stage. The size of the region for 

sampling is adjusted according to the size of a staffline height. 



2.2.1 Classification of notes 

If P(x ) ,  which is a note candidate, has the value 1 or 2, it is either stem-less or has stem 

up (remember that P(x)  basically counts spaces that have black pixels in them), so that 
the srnallest i with Si = 1 is chosen as the possible position. If P(x)  1 3, it is considered 

to be a note with stem down, and thus the largest i with Si = 1 is chosen as the possible 

position of the notehead. 

Given i, there are still three possibilities for the position of the notehead: the notehead 

cm be in the space. on the Iine above, or on the Iine below (see Figure 2.4). To precisely 

deterrnine the position of the notehead, the area below and above the enclosing stafflines 

is traced. 

Figure 2.4 Possible position of the notehead (Macnaka and Tadokoro 1983). 

The existence of stems and flags cm be determined by sampling fixed neighbounng 

regions. To distinguish between a black notehead and a white notehead, two different 

algorithms are used depending on whether the note is placed on the staffiine or between 

the stafflines. 

For the notehead between two staffiines, the lines equidistant from the two staffiines are 
scanned from Ieft to right. If the black pixel changes to white before the notehead ends 

the note is considered white, otherwise it is considered black. For the notehead that is on 

a staffiine, the area around the notehead is scanned vertically to look for black-to-white 

transition. This scan is performed several times at different positions dong the horizontal 

axis. If only a very smaii number of vertical scans have the transition, then it is 

considered black; otherwise it is considered white (see Figure 2.5). 



Figure 2.5 Finding white noteheads (Maenaka and Tadokoro 1 983). 

2.2.2 Classification of beams 

When there is a beam, P(x)  2 1, so that the existence of beams must be checked before 

proceeding with classifications for notes and rcsts. The vertical sums of black pixels are 
calculated for regions wider than the width of a notehead. If there is a sudden change in 
the sum, the position is noted, and P ( x )  is reduced by one and then passed onto one of 
the three classes (see Figure 2.6). 

Figure 2.6 Finding beams (Maenaka and Tadokoro 1983). 



2.2.3 The output format 

As real-time process was not possible and as there was no need to share the data, the 
output was coded in a way convenient to the sound generating device (MIDI was not yet 
available). 

2.2.4 The experirnental results and observations 

The various algorithms are coded in Pascal and simulated on a computer system with the 
same microprocessor; thus it is estimated that it ran probably ten times slower than if 

everything had been coded in an assembler language and if a specialized memory access 
method had been used. 

2.2.5 Recognition results 

Because of the poor quality of the image and the noise, some of the aigorithms are not as 
robust as expected. Also, owing to the large number of parameters involved, such as 
weights for the fixed sampling and bearn windowing width, the correct choices were 

difficult to find. Further, the values had to be changed depending on the contrast level of 
the input image. The error rate is reported to be less than 1 error per image (1/4 of page); 

the accuracy can be increased by increasing the sampling points, but that also results in 

increase in process time. The process time for 3 measures of music containing 1 quarter 
note and 23 beamed eighth notes was 4 minutes and 1 1 seconds. In general, depending on 

the score, it took 4 to 10 minutes to process one Iine of rnonophonic music. 

2.3 Kim, Chung, and Bien (1987) 
This paper presents a complete OMR system using a TV carnera as input and mechanical 
robot for playback. Unlike the WABOT-2 system (Matsushima 1985), this one is 
designed to recognize music scores with different font size under poor illumination and 

without special hardware. The five major processing steps are: preprocessing, coarse 

classification, fine classification, music syntax check, and interface to music performing 

device. 

The music symbols recognized include: flagged and bearned notes and rests up to 16th 

note value, treble and bass clef, single and double bar lines, sharp, flat, natural, five 



simple time signatures, and key signatures up to three accidentals. The system also makes 
the following assumptions: 

1) music symbols are darker than background; 
2) music symbols are randomly distributed on the staves; and 
3) the distance between two symbols is larger than a quarter of the staffspace. 

In preprocessing, an input gray-image is enhanced by the 3x3 Laplacian convolution 
operator: 

to remove blurring between adjacent symbols. 

The staff detection algorithm is as follows: 
1) Create histograrn of average gray-level of horizontal lines. 
2) Assign threshold that maximizes the expected value of the between class variance. 
3) Label horizontal lines as staffline candidates depending on the threshold. 

A gray-level input image is converted to a binary image by adaptive thresholding. At the 

same time each staff nucleus (staff and symbols belonging to that staff) is separated from 
the others. 

To remove the stafflines, each point x on a staffline, is kept if the vertical neighbourhood 

satisfies one of three conditions: If only one pixel above is black, or if both of two pixels 

below are black, or if the four pixels above and four pixels below contain at least five 

black pixels. Otherwise, the point x is removed. 

X-projection is used for symbol segmentation. Coarse classification is performed on each 
segmented symbol using the height and the width of the minimum bounding box after 

normalization by staffspace height. The symbols are classified into one of the nine 

groups. Four of the nine groups or regions in the heightlwidth space (Prerau 1970) need 

no further processing since there is only one type of symbol within these classes. For the 

rest of the classes, fixed partial template matches and the Sonde method are used to 
finalize the classifications of the unknown symbols. Simple music syntax is invoked to 
check and correct relative duration and pitches of notes. 



2.4 Martin and Bellissant (1991) 
In the project by Martin and Bellissant (1991) a neural network is used both for staffline 
removal and connected component object classification. 

2.4.1 Skew correction 

For the skew correction of stafflines, the concept of chord is introduced. The chord of 

orientation 0 in P is the discrete line segment of slope 0 inscnbed in connected 
component C, where P belongs to C (see Figure 2.7). 

Figure 2.7 Chord of orientation 8 in P (Martin and Bellissant 199 1 ). 

The chord length L(P, 0) is defined as the distance between the two boundary points of C 

that intersect with the chord. In the continuous case, there wouId be an infinite number of 

chords of 8 at P, but the number is finite in a discrete case, and if one limits 0 to be f a 

few degrees, the number is greatly reduced. 

Assurning that the whole page is skewed at some number of degrees ("less than one 

degree practically" Martin & Bellissant 199 1 b, 4 18]), al1 points in the center column of 

the entire image are considered P and a few values of 8 are exarnined to find PO and 60 
so that L(Po, 80) is maximized. Then rotation with -80 center at Po is applied to the 

entire image for deskewing. The chord length is caiculated using an efficient line-tracing 

algorithm. 



2.4.2 Finding and tracking the staves 

Coarse approximation of the position of the staffiine is derived by taking the y-projection 
of the entire unskewed image. This information is used to erase s a i n e s  not overlaid by 

music symbols. Also, the upper and lower bounds of each staffline are computed, 

enabling greater accuracy in evaluating the position of the noteheads. 

To erase the stafflines, each column is scanned; if a black mn-length is found near the 

position of the y-projection histogram. has similar width and does not belong to a symbol, 

then it is erased. The problem is how to determine if the black runs belong to a symbol or 

not. In other words, the black run has the width of the staffiine but it may be part of a 

symbol, e.g., slurs, bass clef, etc. To solve this problem. a larger context is considered. 

Ideally, if the point does not belong to a symbol, there will only be one "long" chord at 

the horizontal, Le., at 8 = O. Yet in practice, due to noise and distortion, the longest chord 

may not actually occur at 8 = O,  so a multi-layered neural network with 228 inputs using 

gradient back propagation is used to recognize whether a point belongs to a symbol or 
not. The window used for chord calculation is 50x30 pixels centered at the center of the 

possible staffline (the black-run). This prevents most of the points belonging to a symbol, 
but also part of starnine, to be erased. The procedure ais0 leaves some points not 

belonging to symbols intact. That artifact will be removed at a later stage. 

Apparently, the notes are classified by some ad-hoc rule-based system using elliptical 

shaped template matching. The vertical and horizontal Sonde method is used to count the 

number of flags and beams attached to noteheads and stems. The other symbols are 

classified by thinning the symbols which are then processed by another neural net. After a 

classical thinning operation is performed, some points are rnarked as endpoints, junction 

points, and "bending" points. The minimum enclosing rectangle, which has been size- 

normalized, is arbitrarily partitioned into windows. A set of binary valued variables is 
used as input to the net. There are two classes of variables. One is of the type ( t ,w),  

where t is one of end point, junction point, and bending point, and w is a window. The 
other type is of the form (wi9 wj ), i f j, for al1 i and j, where ( wi, w j )  = 1. if at least one 

segment of the skeleton has one of its extxemities in wi and the other in wj  , otherwise 
(wi,wj) = O. 



The neural net used here seems to include a decision-tree building aigorithm to include 

speciaiized hidden cells that are connected only to certain input cells (features), as well as 
totally connected hidden cells, those that are connected to d l  input cells. 

The authors conclude, despite the reported 96.5% recognition rate of the net, that 

"'performance in the classification area is less impressive when compared to statistical 
methods; we noticed, as others before, that a nearest neighbour classifier is usually 

enough to reach the sarne recognition rate [as] best multi-layer percepuon .... But it should 

be noted that nearest neighbour can also be irnplemented as multi-layer automata 

networks" (Martin and Bellissant 199 1 b, 1 109). 

2.5 McGee and Merkley (1991) 
The subject of recognition is lined notation of chant with square neurnes (see Figure 2.8). 

The elimination of four stafflines is perfonned by finding "sufficiently long" thin 

horizontal lines. At the sarne time they are straightened. Classification is performed using 

a set of bounding rectangles for each neume. The authors have also experimented with a 
"'thin-line coding" method originally developed for fingerprint identification for neume 
classification. The input resolution is 300 dpi. 

Figure 2.8 Sarnple notation (McGee and Merkley 199 1 ). 

2.6 Sicard (1992) 

Sicard uses a rather low-resolution 100 dpi input. The staffline detection uses a y- 

projection and fails if the skew is more than f 10°. The entire page seerns to be rotated 

and stafflines are removed "using an algorithm similar to Boach (1988)j." Different 

dgorithms are specialized for different classes of symbols: vertical run-lengths are 

calculated for finding thick lines (beams); vertical lines (stems and barlines) are located 

by using the x-projections; accidental identification involves a thinning aigorithm; 

noteheads are localized using "edge detection, break-point extraction, and diameter 



evaluation methods" (Sicard 1992,575); and other symbols are identified using 
templates. Sicard reports an average 97% accuracy , where the 3 1  error is attributed to 
notehead location errors, with a process time of about three minutes per page on a Sun 

SPARC workstation. 

Yadid-Pecht et al. use a neural network, narned M, to recognize music symbols. 
The net used is a one-dimensional version of the two-dimensional Neocognitron 

(Fukushirna and Miyake 1982). The Neocognitron is a multi-layered net that has variable 

connection between the cells in adjoining layers. It is shifbinvariant, and selectivity to 
deformed pattern is adjustable. The net can learn supervised or non-supervised. RAMIT 

has two hidden layers in addition to the input layer, which presumably responds to each 
pixel. Layer 1 responds to "horizontal lines of 1 I x 1 pixels and Layer 2 responds to three 
elements of Layer 1" (Yadid-Pecht et al. 1992, 128). During the preprocessing, the skew 
of staffiine is detemiined, and coarse rotation of the whole page is perfonned. For finer 

adjustment, the stafflines are sheared. 

2.8 Miyao et al. (1992) 
The two interesting features of this system are that it incorporates a music notation 
grammar to aid in recognition, and that, unlike most systems, the stafflines are removed 

after the notes (including noteheads. stems, flag, and beams) are extracted. (The 

description of the research is available only in Japanese). 

Three observations are made about music notation characteristics: 
1) The position of the clef, key signature, and time signatures cm be predicted from 

the position of the staff and bar lines. 
2) Other symbols, including dots, ties, slurs, tenuto, accent, staccato, fermata, etc., are 

positioned relative to stems, badines, and notes. 
3) The size of symbols are relative to staffspace height. 

The system fin& the position of the staves, then notes are searched and removed. M e r  
the stafflines are removed, the remaining symbols are coarsely grouped according to their 

size and position, and symbols are classified by using structurai features or template- 

matching. 



A piece-wise linear Hough Transfomi is used to find the staffline based on the staffline 

and staffspace height calculated from vertical black and white run-lengths. Bar lines that 

span two staves are located using x-projections. The black noteheads are extracteci using a 

rectangular mask (staffspace height x width of notehead, which is 2 x staffspace height). 

The position on the stafflines and another between the stafflines are scanned with the 

mask. White noteheads are distinguished from black noteheads by the number of white 

pixels in the mask area. The half note and whole note are distinguished using template 

matching. 

Note candidates found outside of the staff are verified by searching for ledger Iines. If no 
ledger line is found, the candidacy is revoked. Given a notehead, stems are searched by 

looking at the left and the right edges. If a stem is not found. the note candidacy is 

rescinded as well. Notational d e s  such as "no three stems to a notehead" are applied to 

make sure that recognized symbols are grammatically correct. The number of flags and 

beams are determineci by counting the number of black runs near the stems. After 

removai of the stafflines, connected components are grouped, by the height, width, and 

relative position from the middle staffline. Al1 measurements are nomalized with 

staffspace height. 

Coarsely grouped fixed-size symbols are further classified using 6x6 meshed templates. 

The symbol is divided into a 6x6 mesh and each mesh is represented by the ratio of the 

number of black pixels to white pixels. The thirty-six numbers are represented as a vector 

and compared with the vectors of prototypes using Euclidean distance measures. The 
unknown symbol is classified to be the same as the closest prototype above a certain 

threshold. Unclassified symbols are reconnected by inserting the stafflines that are 

removed, and then distance calculation is repeated. For size-varying symbols, such as 
slurs and dynamic hairpins, vertical and horizontal run-lengths are used for classification. 

Finally, spatial rules are used to finalize the classification decisions. 

An accuracy of 93% to 98% with a processing time of 3 to 20 minutes per page using a 

Sony (NWS-82 1) workstation is reported. The input scanner has a resolution of 240 dpi. 



2.9 Modayur et al. (1992) 

The bi-level system described here uses morphological algorithms for symbol detection at 

a low-level and a high-level module that verifies the output of the low-level module and 

then incorporates notational syntax to aid in the spatial positioning of the symbols. The 

authon claim that the recognition task can be performed in near real time and achieves 

accuracy in excess of 95% on the sarnple they processed, with a peak accuracy of 99.7% 

for the quarter and eighth notes. 

Some of the assumptions made include: 
The stafflines are equally spaced and there are five lines to a staff. 
The size of the difierent symbols is relative. 
The image does not have a large skew. 
The notes are proportionally spaced relative to note duration. 
Accidentals are placed directly in front of the note they alter. 
Stems, in general, go d o m  when attached to the left of the note. They go up when 
attached to the right of the note. 
The stem length is normally the length of one octave. 
A quarter rest is at the center of the staff. 
A hdf rest touches the third line above, while a whole rest touches the fourth 
staffline below. 

To locate stafflines, the image is opened with a 35-pixel wide horizontal line, but the 

stafflines are not removed. The structuring elements employed throughout this symbol 

detection phase would "loosely" follow the shape of the media1 axis (the skeleton) of the 

feature shape king sought. This is done to incorporate a certain degree of tolerance in the 

detection process. Thus, a few rnissing foreground pixels, broken edges, blurred corners, 

etc., do not affect the output of the symbol detection process. 

The system is able to recognize twelve symbols: treble and bass clefs, sharp, flat, whole 

noteheaà, half notehead, quarter notehead, eighth rest, quarter rest, stem, bearn, and half- 

bearn. The system runs on an MVI- Genesis 2000 image processing workstation and 

takes 2 minutes to process a 5 12x480 image. 



2.10 Kobayakawa (1993) 
A very efficient recognition system (10 seconds per page) is descnbed. This is achieved 

by actively searching for common music symbols. The system consists of Sun SPARC 2 

and Omron Luna workstations, the latter k ing  connected tc a 200 dpi scanner and a 

Yamaha DX7 MIDI synthesizer. 

To locate the stafflines, thirty-two vertical lines spread across the page are scanned for 

black runs. Any runs whose length is less than the median of the black run lengths are 

considered as a candidate for a staffline. For each of these candidates, the image is 

scanned horizontally and if a horizontal line is found to cover 70% of the score width 

then that line is considered a staffiine. These stfl ines are removed if there is a white 

pixel a certain distance above and below the center of the stafflines. 

To locate the black noteheads, the image is scanned horizontally for black runs at 

staffline positions and center point between the stafflines. Two maxima are found from 

the histograrn of these run lengths. The maximum with few pixels ("about 2 pixels") are 

considered to come from vertical line segments (stems and barlines) and the second peak 
("about 15-1 8 dots") is assumed to be contributed by black noteheads. In the rhombic 

(diarnond-shape) region around the center of the longer mm, the number of black pixels 

is counted. If the count is greater than 95% of the region then it is considered to be a 
black notehead. 

The sharp and the naniral signs are distinguished from the noteheads by detennining that 

the distance between two nearby vertical line segments are close together. The badines 

are separated from other vertical line segments because of their height k i n g  the same as 

the height of the staff or longer. If these barlines are close together they are considered 

double barlines, in which case, two small dots indicating repeat signs are sought. The 

remaining vertical lines are considered stems if they are close to a notehead or if there are 

noteheads between the two endpoints of the line segment. 

After the stems are removed, the side opposite to the noteheads is scanned in the vertical 

direction to look for flags or beams. If any black pixels are found, a connected component 

is assembled. If the widtb of the component is less than twice the width of the notehead 

and the slant (presumably the angle of the line connecting midpoints of the left and the 

right edges of the component) is steep, then it is considered a flag. 



The remaining symbols are recognized using template-matching. These templates are 

prepared from various example scores, edited with a bit-map editor, then encoded in run- 
length format. The reported recognition rates are: 

Scenes from Childhood, op. lW6 (Schumann): 99.6% 
Fantaîie-Impromptu, op. 66 (Chopin): 98.3% 
Turkish Match (Mozart): 94.8% 

2.11 Roth (1994) 
The systern consists of the following seven steps. 

2.11.1 Rotation 

To correct skews, the image is rotated by shearing honzontally and vertically. The actual 

amount of shearing is determined rnanually. 

2.1 1.2 Vertical run-length statistics 

The median lengths of vertical runs of black and white pixels are used to estimate the 

staffline height (from black runs) and the staffspace height (from white runs). The size of 
al1 the staves on a page is assumed to be the sarne. 

2.113 Locate and deIete stafflines 

The stafflines are located by searching for groups of five peaks in the y-projection, then 

they are tracked from the middle outwards to get accurate y-position in each image 

column. This operation corrects slightly skewed or bent stafflines. Once located, the 
stafflines are deleted from the image. In order not to affect symbols too much, lines are 
deleted only when their width is close to the overail staffline height. 

2.11.4 Locate and delete vertical lines 

By examining the x-projections of each staff, vertical lines are located. This task is 
refined later through application of the technique of mathematical morphology. Note that 

any vertical line segments (thin objects) are removed, which include stems, bar lines, and 

lines within sharps, flats, and naturais. 



2.11.5 Connectecl component labeling 

The remaining components are identified. A list of cornponents and references from each 

pixel to the component it belongs to is created. "A fixed space above and below the staff 

is included in the region of interest, the total height of the region is three times the staff 

height. This allows for recognition of up to four ledger lines. For this region connected 

components are denved" (Roth 1994, 18). 

2.1 1.6 Symbol recognition 

Before symbols are classified, "separated white notehead (due to staffline removal) are 

merged and connected black noteheads (due to chords) are separated using heuristics" 

(Roth 1994, 19). In addition, Roth employs a fairly cornplex decision tree to classify 

various music symbols using the following features: height, width, area, and center of 

gravity. The location with respect to other components, vertical lines, and stafflines is 

also taken into consideration. 

2.1 1.7 Lipsia document generation 

Finally the recognized element is reproduced using the Lipsia music notation editor. 
Preliminary but successful use of mathematical morphology operators is also reported. 

2.12 Sumrnary 
Although many innovative OMR systems have k e n  developed over the last decade, there 

are major limitations to their use as practical OMR. As rnentioned, the number of 

different music symbols commonly used exceeds four hundred, yet, most of the available 

programs can recognize no more than a few dozen symbols. This is a serious limitation 

because these programs are not designed to l e m  new symbols. The lack of learning 

capability limits the recognition of handwritten music as well. The automatic recognition 

of well-formed handwritten music will be extremely useful for musicians. The AOMR 
described here overcomes these limitations by incorporating a flexible learning 

mechanism thus enabling it to recognize vimially unlimited numben of music symbols, 

including handwritten manuscripts. 



3. TECHNICAL BACKGROUND 

3.1 Pattern recognition system 

In general, a pattern recognition process consists of three major phases (see Figure 3.1). 

Figure 3.1 Pattern recognition system. 
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In the segmentation phase, objects to be classified must be found and isolated from the 

rest of the scene. This is accomplished by partitioning a digital image into disjoint (non- 
overlapping) regions. Features are sets of the measurable properties of a given symbol, 

such as size and shape. The feature extraction phase measures these properties, producing 

a set of measurements called feature vector. A decision regarding the classes to which the 

object belongs is made dunng the classification phase. Classification is based on the 

features vector. 

3.2 Pattern recognition system design 

Segmentation 

During the designing stage of a pattern recognition system, strategies and algorithms to 

be used for each of the three phases in pattern recognition must be determined. 
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An object locator is a set of algorithms that isolates the images of the individual objects 

in the complex scene. In music recognition this is not a triviai problem. Stafflines connect 
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most of the symbols. Also, there are some music symbols that are made up of dis- 

connected cornponents: for example, bass clef, fermata, and octavo lines. Furthemore, 
many symbols such as beamexi notes are made up of more eiementary objects: noteheads, 

stems, and bearns. In AOMR, mn-length coding (Section 3.5), projections (Section 3.6), 
and connected component analysis (Section 3.7) are used dong with other specialized 

algorithms to remove the staffiines then segment the symbols. 

3.2.2 Feature selection 

Feature selection involves deciding which features best distinguish among the various 
object types and should thus be measured. (For features considered in AOMR see Section 

3.9 below.) The procedure of selecting "good" features is not formalized; as Castleman 

States: "frequently intuition guides the listing of potentiaily useful features" (Castleman 
1979,321). Cover and Van Campenhout (1977) rigorously showed that in deterrnining 

the best feature subset of size m out of n features, one needs to examine al1 possible 

subsets of size m. For practical consideration, some nonexhaustive feature selection 

methods must be employed. Many methods exist for finding near-optimal solutions to 

this problem in a finite time, such as sequential forward selection, sequential backward 

elimination (Kittler 1978), and branch and bound algorithm (Narendra and Fukunaga 

1977, Hamamoto et al 1990). The latter method guarantees the optimal features subset 

without explicitly evaiuating al1 possible feature subsets under the assumption that the 
criterion function used satisfies the "monotonicity" property. Unfortunately, in AOMR 
there is no guarantee that this constraint, or even the more relaxed "approximate 

monotonicity" (Foroutan and Sklansky 1987) cm be met. Furthermore, although branch 

and bound can reduce the search space drastically, the calculation may become 

impracticai in cases where there are many features (more than 1&20). It should also be 

noted, however, that Hamarnoto et al (1990) have shown that the "monotonicity" 

constraint need not be satisfied in order to obtain successful results in practice. 

The problem becomes more complex as Cash and Hatarnian (1987) have shown. The 

weighting of each feahire used in a similarity mesure can markedly improvc the 

recognition rate. In other words, the optimal use of features involves not only choosing 

the correct subset of the features but how much of each feature should contribute to the 

final decision. In the branch and bound method, the goal was to find a set of binary 

weights for the features (O or 11, but the problem now is to determine the weights which 



cm be any real number. In AOMR, the genetic algorithm (3.1 1) is used to find the near- 

optimal set of weights from this infinite possibility. 

3.2.3 Classifier 

Designing a classifier consists of establishing a mathematical basis for the classification 

procedure and selecting the type of classifier structure. 

1 Pattern Classif iers 

Statistic Syntactic 

1 Parametric Non-Parametric 

Figure 3.2 Different types of pattern classifiers. 

There are two major types of pattern classifiers: syntactic and statistic. The latter can be 

further divided into parametric and non-parametric classifiers and any of them can be 

trained with or without supervision (Figure 3.2). 

Syntactic pattern classification explicitly exploits the composite nature of a shape in the 

classification process. Syntactic pattern classification is based on obtaining a grammar 
relating certain strings of patterns to each other. For example, a gramrnar cm be 

constructed for describing an eighth note consisting of a notehead, a stem, and a flag. 

Statistical classification is based on a statistical measure of shapes. A classifier that 

assumes a probability distribution iùnction of a given sample is called a parametric 
classifier. The Bayes classifier is an example of pararnetric classifiers. The non- 

parametric classifiers do not assume any probability distribution hinctions of the given 

sample. The k-NN classifier described below falls into this category. 

3.2.3.1 Classifier training 

Once the basic decision rules of the classifier have been established, the particular 

threshoid values that separate the classes must be determined. This is generally done by 

training the classifier on a group of known objects called the training set. A number of 



objects from each class, previously correctly identified. constitutes the set. The 

measurement space is partitioned by decision lines that rninimize the enor of the 

classifier when tested with the training set. The idea is that if the training set is 

representative of the objects to be encountered in the field, then the classifier should 

perform about as well on the real objects as it did in the training set. 

3.23.2 Performance evaluation / Error-rate estimators 

The process of leaming requires a method of evaiuation or self-monitoring. A leaming 

system must be able to evaiuate its own performance so that it cm be improved. Here the 

leave-one-out error rate estimator is used to evaluate the expected error rate of the 

classifier. This estimator is a special case of the general class of cross-validation error 
estimates. In k-fold cross-validation, the known objects are randomly divided into k- 
mutually exclusive partitions of approximately equal size. The objects not in the test 

partition are independently used for training and the resulting classification is tested on 

the corresponding test partition. The average error-rates over ail k partitions is the cross- 

validation error-rate. Thus, when k is one, every sample in the training set is classified 

using al1 the other samples in the set. 

3.3 Nearest neighbour classifier 

Lofksgaarden and Quesenbery (1965) proposed a very useful and simple method for non- 

pararnetric estimation of the probability density function p(X) of a random variable X 

from N observations of X. This method is known as the k-NN method. The application of 

this method to the classification problem is the k-NN rule that classifies an observation 

with unknown classification by assigning it to the class rnost heavily represented among 

its k-nearest neighbours. 

33.1 Bayes probability of error 

Let each of the objects to be classified belong to one of M classes denoted by 
Ci, i = 1,2,. . ., M. Let P(C, ) denote the a priori probability of occurrence of objects 

d belonging to class Ci. Let x = (xl  , q,. .. , xd ), x E E denote the set of d measurernents 

(features) made on an object and let p(XI C, ) denote the probability density fùnction of x 
given that the pattern on which x was observed belongs to class Ci. Then it is well 

known that the decision rule that minirnizes the expected probability of error (mis- 



classification) in making a decision on xis to choose class Ci if: 
p(xiCi)P(CJ > p(xlC,)P(C,) for al1 j # i. 

It is also known that the resulting Bayes probability of error, which is optimal, meaning 

that the error is the smallest possible, is given as: 

To be able to use the above Bayes decision rule it is required to know the a priori 
probabilities P(C,) and the class conditional probability density functions p(xl Ci) for 

al1 i. 

33.2 Non- paramehic classifkation 

Non-parametric decision rules, such as the k-NN rule, are attractive because no a priori 

knowledge is required concerning the underlying distributions of data. In the non- 

parameaic classification problem, we have available a set of n feature vecton taken from 
a collected data set of n objects (the set of pre-classified samples) denoted by {x,@) = 

{(xl, 9,). (x2, &), . . . ,(x,, , en)}, where xi and 8, denote, respectively, the feature vector on 

the ith object and the class label of the ith object. The labels 0, are assumed to be correct 

and are taken from integen (1,2,.. ., M}, i.e., the patterns may belong to one of the M 

classes. 

33.3 Nearest neighbour d e  

The nearest neighbour search consists in finding the closest point to a query point among 

N points in a d-dimensional space. The NN mle assigns an unclassified sample to the 

same class as the nearest n stored, correctly classified sample. The only means by which 

the NN method can improve its performances, given a similarity measure, is by 

increasing the number of training set pattems: these then have to be stored and compared 

individually with any test patterns presented to the system. The most interesting 

theoretical property of the NN rule is that, for any metric, and for a variety of loss 

functions, large-sample risk incurred is less than twice the Bayes error. 

Let x be a new object (feature vector) to be classified and let x i  E {x, , x,, ..., x,} be the 

feature vector closest to x, where closeness is measured by some similarity measure such 
as Euclidean distance between x and x i  in E ~ .  The nearest neighbour rule classifies the 



unknown object to class 8;. Let P:(NN) = Pr{@ # 8;) denote the resulting probability 

of misclassification (error), where 0 is the hue class of X, and let P,(NZV) denote the 

limit of P: ( N N )  as n + -. 1 has been shown by Cover and Hart ( 1967) that as n + = , 

the nearest neighbour error is bounded in ternis of the Bayes error by: 

Thus, the probability error of the NN-rule is bounded above by twice the Bayes error. 

Therefore the asymptotic probability of error of the NN rule is close to optimal. 

(Asymptotic here refers to a very large number of samples). Furthemore, using a suitable 

modification such as the k-NN rule, one can decrease the probability of error to closer to 

the optimal. 

The main cnticism directed at the NN method is the large amount of storage and the 

resulting cornputation involved because it stores al1 the sample data. Thus there has been 

considerable effort in "editing" or "thinning" the data in an attempt to store only a subset 

of it. Some of these techniques are described below. 

3.4 Modified k-NN classifiers 

The apparent necessity to store al1 the data and the resulting excessive computational 

requirements have discouraged many researchers from using the d e  in practice. In order 

to combat the storage and computation problems, many researchers, starting with Hart 
(1968), propose schemes to "edit" the original data so that fewer feature vecton need be 

stored. These schemes are based on the idea of selecting a small representative subset of 

the training set so that NN classification with the reduced subset achieves a performance 

that is close to or better than the performance of NN classification with the complete set. 

The editing procedure creates a decision boundary defined by a small number of samples 

belonging to the outer envelopes of the clusten. Clearly, samples that do not contribute to 

defining the boundaq+.g., those deeply imbedded within the clusters-may as well be 

discarded with no effect on subsequent performance. This is the idea behind the 

condensing technique f'irst suggested by Hart (1968). 



The goal of condensing is to constnict a consistent subset which, when used as a stored 

reference set for the k-NN d e ,  correctly classifies dl remaining points in the sarnple set. 
The following algorithm creates a consistent subset: 

Setup two bins STORE and GRABBAG. 

The first sample is placed in STORE. 
The second sample is classified by the NN rule, using as a reference set the 
contents of STORE. If the second sarnple is classified comectly it is placed in 

GRABBAG; otherwise it is placed in STORE. 
Proceeding inductively, the ith sample is classified by the current contents of 
STORE. If classified correctiy it is placed in GRABBAG, otherwise it is placed 

in STORE. 
After one pass through the original set, the procedure continues to loop 
through GRABBAG until termination. which can occur in one of two ways: 

a) GRABBAG is exhausted. 

b) One complete pass through GRABBAG with no transfer to STORE. 

3.4.2 Edited k-NN 

Edited k-NN was introduced by Wilson (Wilson 1972. Wagner 1973). criticized by 

Penrod and Wagner (1977) and modified by Devijver and Kittler (1980). An editing 
algorithm is used to reduce the number of pre-classified samples and to improve the 

performance of the nile: 

For each i: 
1) Classi@ sample 4, using k-NN mle as though it has not been 

classified. 
2) If Si is mis-classified then discard it. 

Thus the edited k-NN edits out "poor" samples and not only reduces storage requirements 

of the k-NN for the future classification of unlabeled samples but also daims to have a 

better asymptotic performance. M e r  the criticism of Penrod and Wagner (1977), mostly 

on Wilson's leavesne-out procedure, Devijver and Kittler (1980) modified it based on 
"holdout" or partitioning technique: 

1) Make a random partition of the sarnple set into N subsets SI, S,, . . . , SN. 
2) ClassiS, the patterns in Si using S(i+l)mod N, i = 1.2,. . . , N. 

3) Discard d l  the patterns from the sample that were mis-classified at step 2. 



Furthemore, they suggested the multi-editing method where the algorithm above is 

repeated until the last iteration produces no editing. 

3.4.3 Other improvements 

Dudani (1976) introduced a k-NN mle called the distance-weighted k-NN rule. This is a 

k-NN classification rule with the facility to weigh more heavily the evidence of samples 

nearer to the unknown observation. This is intuitively appealing and promised more 

accurate results, albeit at the expense of more cornputation overhead. 

In a recent paper, Parthasarathy and Chatte j i  (1990) showed that for large sarnple-size 

problems, the best perfortnance of the traditional k-NN rule with a mechanism to resolve 

ties (either by randomly choosing the winner or by finding one more neighbour to break 

the tie) is comparable to the performances of hidani's classifier and is preferred because 

of the improved computational efficiency. 

The use of the k-NN rule in practical applications has been frequently ruled out because 

of the storage and computational complexity. The difficulty can be partly remedied by 

fast algorithms for searching nearest neighbours. 

In the effort to make the computation more efficient, Ramasubramanian and Paliwal 

(1992) have proposed an algorithm, based on work by Vidal (1986), to reduce the arnount 

of distance calculations when searching for nearest neighbours. By pretalculating the 

distance between al1 the library points and some arbitrary-fixed anchor points in the 

space, then using triangle-inequality, much of the distance caiculations between the 

unknown sarnple and the stored sarnples can be elirninated. Expenmental results show a 

savings of over 90% in calculation time. The penalty for this method is increase in 
storage of O(n(rn + l)), where m is the number of anchor points used. Because of the 

rather large n used in AOMR, probably a small m would be preferable. If m = 1, it will be 

possible to order the vectors for an even faster search. 

3.4.4 Voronoi diagram and Gabriel graph 

Optimal selection of those sarnples that define the boundary with the complete set can be 

obtained using Voronoi diagrams. Unfominately construction of a Voronoi diagram is 



quite demanding in terms of storage and computational complexities. A similar Gabriel 

graph can be used which seems to exhibit performance sirnilar to the Voronoi diagrarn. 

yet is much less demanding with respect to storage and computation. The worst case for 
Voronoi diagrarn calculation for n elements in d dimensions will take at least ~ ( n [ ~ ' * ~ )  

time, while computation time for the Gabriel editing algorithm is between 0(dn2) and 

0(dn3) (Bhattacharya et al. 1992). 

3.5 Run-length coding 

Run-Iength coding is a simple data compression method where a sequence of identical 

numbers is represented by the number and the length of the run. For example, the 

sequence ( 3  3 3 3 5 5 9 9 9 9 9  9 9 9 9  9 9 9  6 6 6 6 6 }  can becodedas {(3,4) (5.2) (9, 
12) (6,5) j. In a binary image, used as input for the recognition process here, there are 

only two values: one and zero. In such a case, the run-length coding is even more 

compact, because only the lengths of the mns are needed. For example, the sequence 

{ 1  1 1  1 1  1 10000  1  1 1  1 1  1 1 1 1 1 1 1  1 0 0 0 0 0 0 0 0  1 1 )  canbecodedas {7,4, 

13, 8.2}, assuming 1 starts a sequence (if a sequence starts with a 0, the length of zero 

would be used). By encoding each row or column of a digitized score the image can be 

compressed to about one tenth of the original size. Furthemore, by wnting programs that 
are based on run-length coding, a drarnatic reduction in processing time cm be achieved. 



3.6 Projections 

Projections are the count of black pixels dong parallel Iines. Hem, only the count dong 
the vertical lines (x-projections) and horizontal Iines (y-projections) are used (see Figure 
3.3). 

.t 
y-projection 

Figure 3.3 X- and y- projections. 

The generalized projection transform, called Radon transform of g(x,  y) at (s, O), for the 

two-dimensional case is: 

[R~](s, 8 )  = 1 g(s cos O - usin 9). ssin 8 + u cos @)du. 

This is the integral of g dong a line that passes through the point (scos 8,ssin 8) with 

dope -ctn8 (Heman 1979,8 1-104). When 9 is K 1 2 and 0, the transforms result in x- 

and y-projections, respectively: 

In the discrete case, given P(i, j) of an m x n digital image, the equations above become: 
m n 

x ( j ) = E ~ ( i , j ) ,  OS j < n  and ~ ( i ) = z ~ ( i , j ) ,  O < i s r n  
i=O j= O 

In the eatly part of this research, the projections were used extensively for the music 

recognition process. Cunently, the projections are used only during the process of 

staffiine detection. 



3.7 Connected component 

The connected component is an important concept in image segmentation when 
determining if a group of pixels is considered to be an object. A connected set is one in 

which al1 the pixels are adjacent or touching. The formal definition of connectedness is as 
follows: 

Between any two pixels in a connected set. there exists a connected path 

wholly within a set. 

Thus, in a connected set, one can trace a connected path between any two pixels without 

ever leaving the set. 

Point P of value 1 (in a binary image) is said to be 4-connected if at least one of the 

immediate vertical or horizontal neighboun also has the value of 1. Similarly, point P is 
said to be 8-connected if at least one of the imrnediate vertical, horizontal, or diagonal 

neighbours has the value of 1 (see Figure 3.4). 

Figure 3.4 Possible neighboun of 4- and 8-connected components. 

Two algorithms to find connected components in a binary image are explained below. 

The first method requires two scans but is simple. The second method, the one that is 
currently implemented in AOMR requires only one scan, but recursion is involved. 



3.7.1 Method 1: Two-pas comected component labeling 

The main task is to label each point in each cornponent with a unique value. In the first 
scan, for each black pixel P, the three neighbouring pixels above and the left-hand pixel 

of P are exarnined (see Figure 3.5). 

1) If al1 four art not labeled; P gets a new label; 

2) if only one of them is labeled, then P gets that label; or 

3) if two or more are labeled, then P gets one of the labels and the fact that 

the labels are equivalent is recorded (i.e., they belong to the same 

component). 

Figure 3.5 Pixels examined on the fint scan. 

At the end of the fint scan, every black pixel has a label, and labels in different 8- 

connected components are guaranteed to be different. Within a component, however, 

there may be several different labels. The equivalent pairs that were recorded are sorted 

into equivalent classes and one label is chosen, arbitrarily, to represent that class, and 
therefore the component In the second scan each point in a component will receive the 

same unique number (see Figure 3.6). 



Input 

A  A  A 

A A A  A A 

1 Afkr scanning the f l t  row: 

1 After scanning the sxond row: 

1 D D D  C E @=B) 

1 Afkr ranning the third row: 

After the second scan: 

B B C 

B B B  C C 

B F C 

Figure 3.6 Two-pass connected component labeling. 

3.7.2 Method 2: Depth-first tree traversal 

Since the entire page is converted to vertical run-length representation in AOMR, an 

algorithm to find connected components using this representation was developed. 
The goal of  this analysis is to label each pixel of a connected component with a unique 

number. This is usually a timetonsuming task involving visiting each pixel twice, 

labeling and re-labeling (see above). By using graph theory (depth-first tree traversal) and 

the vertical black run-length representation of the image. the processing time for finding 

connected components can be greatly reduced. 



Here is the overall algorithm: 

1. All vertical runs are first labeled, UNLABELED. 
2. Start at the Ieftmost colurnn. 

3. Start at the first run in this column. 

4. If the mn is UNLABELES), do a depth-fint search. 

5. If not last run, go to the next a n  and repeat Step 4. 

6. If not last column, go to next column and repeat Step 3. 

The basic idea, of traversing the tree structure, is to find al1 runs that are connected and 

label thern with a same nurnkr. A run X on column n is a father to another run Y, if Y is 
on the next column (n + 1) and X and Y are connected. Y is called a child of X. In a 

depth-first search, dl children of a given father are searched first recursively, before 

finding other relatives, such as grandfathers. Note that, a father cm have any number of 

sons and each son may have any number of fathers. Aiso, by definition of run-length 

coding, no two runs in the same column can be connected directly. The result is a 
representation of the image that is run-length coded and connected-component labeled, 

providing an extremely compact. convenient, and efficient structure for subsequent 

processing. 

3.8 Features 

Features are sets of the measurable properties of a given symbol. The feature extraction 

phase measures these properties, producing a set of measurements called a feature vector. 

There are many special characteristics of music scores that can be exploited to select 

appropnate features that may aid in the classification. Scores are often shared in the 

orchestra and in the church, and therefore tend to be rather large and have gross and 

global graphical features so that they can be read from a distance. The scores are also 

meant to be read in real time; thus, they are designed to be read quickly which also led 

the designers of music symbols to concentrate on global features rather than on details. 

The following features are currently used in the AOMR system: width; height; area of the 

object (Ao); and area of the bounding box (Ab = width x height); rectangularity: Ao / Ab, 

which represents how well an object fills its bounding box; aspect ratio: width / height, 

which c m  distinguish slender objects from roughly square or circular objects; number of 

holes, and normalized central moments which provide a more detailed numericai 

description of the shape. 



Other potential features are listed below but are not currently implemented (Figure 3.7). 

One of the reasons they are not currently implemented is that most of these require 

boundary points. Because boundaries in many music symbols can be noisy and broken, 
features involving boundary points were thought to be unreliable. But if these boundaries 

can be smoothed (by filters), or if the broken parts of symbols can be restored before 
features are extracted, then features below, involving boundary points, should become 

useful. 

1 Perimetec length of boundary 

Radii: Rmin, R,, are the minimum and the maximum distances, 1 respectively, to boundary h m  the center of mass 

Euler nwnbec number of connectai region - number of holes 

(perimeter)2 
Roundness or compachsess: y = 

4 ~ ( a r e a )  ' 
for a disc, y is minimum and equals 1 

Fourier descriptors 

C h u t  coding 

Figure 3.7 Features not used in AOMR. 

3.8.1 Moment 

Moment is one of the main features used in AOMR and it has many attractive attributes. 

The moment techniques have an appealing mathematical simplicity and are very versatile. 

The method of moments provides a robust technique for decornposing an arbitrary shape 

into a finite set of characteristic features. In general. moments describe numenc quantities 

at some distance from a reference point or axis. Moments are cornrnonly used in statistics 

to characterize the random variable distribution and in mechanics to characterize bodies 

by spatial distribution of mass. Here, the image is considered to be a two-dimensional 

density distribution function. Moments have a very interesting property that cm be stated 

in the following theorem. 



Moment Representation Theorem: 
The in t i re  sets of moment {mm, p, q = 0,1,. . .} uniquely detemine f (x ,  y) and vice 
versa. 

What this means is that any image can be completely described by an infinite series of 

numben. In practice this is not feasible, yet king able to obtain a series of numbers. 

especially the low-order moments that describe a shape, is nonetheless very useful. In 

fact, the low-order moments tend to describe more global shape characteristics than 

higher-order moments which tend to be noisy and unreliable shape descriptors in digital 

images. 

Prokop and Reeves state that "a major strength of this approach is that it is based on a 

direct linear transformation with no application-specific 'heuristic' parameters to 

determine." On the other hand, "a major limitation of the moment approach is that it can 
only be directly applied to global shape identification tasks" (Prokop and Reeves 1992, 

458). This fits precisely with the objectives of music symbol recognition where global 

shape is the most distinguishing feature, as opposed to, for exarnple, alphabets or Chinese 

ideograms where the details are more important. The objects of recognition using 

moments in other machine classification systems include aircraft (Dudani et al 1977). 

ships (Smith and Wright 1971), buildings, and bridges (Gilmore and Boyd 198 1 ). Note 

that these objects are classifiable by global shapes. 

3.8.1.1 Cartesian moment defrnition 

The two-dimensional Cartesian moment, rn,, of order p + q, of a density distribution, 

f (x ,  y), is defined as 

The two-dimensional moment for a (M x N)digitized image with discrete density 

distribution g(x, y), is 

A moment set of order n consists of al1 moments, m,, so that p + q 5 n and contains 

*(n + l)(n + 2) elements. 



Various types of moments are avaiiable (orthogonal, rotational, and complex moments, as 

well as moment invariance). Here, relatively simple nonnalized centrai moments are used 

as only the size and location invariance is needed for music symbols; orientation 

invariance is not required. 

3.8.13 Properties of moments 

The low-order moment values represent well-known fundamental geornetric properties of 

a distribution or a body. 

3.8.1.2.1 Zeroth-order moments: Area 
The definition of the zeroth-order moment m,, of the image g(x, y), 

represents the total mass or the area, if g(x,y)  is binary, of the given image. 

3.8.1.2.2 First-order moments: Centre of m a s  
The fiat order moments. {qO,q,},are used to locate the center of mass of the object. 

The coordinates of the center of mass (5,y) are given by 

If the object is moved so that the centre of mass is at (O, O), then the moments computed 
for that object are referred to as central moments and are designated by p,. The central 

moment of order (p + q) becomes 

M-1 N-I 

P, = C Z ( ~ - ~ Y  - n q g ( x * y ) .  

(Note that pl, = p,, = O.) 



The normalized central moments denoted by q, are invariant to size: 

where 

These normalized central moments are invariant to the scaling and translation of an 
image. 

3.8.1.2.3 Second-order moments 
The second-order moments, {%,y, ,%} , known as the moments of inertia, can be used 

ro determine the principal axes of the object, where the principal axes may be descnbed 

as the pair of axes about which there are the minimum and the maximum second moment. 

Other useful object features involving the second-order moments include: 

Orientation: 

Oriented bounding rectangle: the smallest rectangle enclosing the object that is 
also aligned with its orientation. 

Best-fit ellipse: the best-fit ellipse is the ellipse whose second moment equals that 

of the height. 

Eccentricity : indicates the distribution of the mass. 



R d i  of Gyration : "the radii of gyration about the ongin is the radius of a circle 

centered at the origin where al1 the mass may be concentrated" 

(Prokop and Reeves 1 9 9 2 , M ) :  

3.8.1.2.4 Higher-order moments 
The two third-order central moments. {p,,pO3), describe the skewness of the image 

projection. Skewness is a classical statistical measure of a distribution's degree of 

deviation from symrnetry about the mean. Two of the fourth-order central moments, 
{p,,p,}, describe the kurtosis of the image projection. Kurtosis is a classical statistical 

measurement of the "peakedness" of a distribution. 

3.8.13 Moment computation 

In the actual software implementation of moment calculation the following equalities are 

used to drasticall y decrease computation time: 

3.9 Similarity measure 

Once the features of the objects are measured and assembled into a vector, a method to 

compare these vectors for "similarity" is needed. There are many ways to define 

"similarity" or "closeness" of two vectors. Since these are subjective tenns, the similarity 

measure that results in accuracy and efficiency is chosen. Unlike other classifien, where 

one measure is decided in advance, for adaptability purposes many different measures 

can be implemented in AOMR. Hence different measures can complement each other in 



classification design (in ternis of confidence levels). In different environments some 

measures may be more useful than others. 

3.9.1 Common metrics 

Three common metrics used are called City-block. Euclidean. and Chessboard. these 
king spocid cases of the Minkowsky metric which is defined as: 

Note: The variable x repnsents the known vecton in the stored library and y represents 
the unknown vector to be classified. 

Euclidean (p = 2) 

Chessboard (p = -) 

Another metric proposed by Chaudhur et al. (1992) is defined as: 

where lxi - yil is maximum for i = Urj, a d  

LoJ indicates the integral part of a, i.e., the largest integer _< a. 

The following similady measures require statistics about the existing feature vectors 

already in the library. 



3.9.2 Mahanalobis distance 

This measure (Cash & Hatamian 1987,303) is attractive because the number of 
cornparisons required is constant regardless of the size of the library. 

3.9.3 Weigh ted normalized cross correlation 

(Cash & Hatamian 1987,303) 

where w, are the weights. 

Some of the possible definitions for the weight are: 

3.9.4 The problem of evaluating weights 

The weights can be used in measures other than the weighted nomalized cross 

correlation (3.9.3). For exarnple, weighted Euclidean distance can be defined as: 

where w, are the weights. 

Those features that are found to be more reliable than others should be given more 

importance when making classifications. The idea behind this is to try to make the intra- 

class distance as small as possible. For the Euclidean distance measure, weights cm be 
adjusted so that the mon reliable features make larger contributions to the distance 
between two feahire vectors. The problem now is how to select the appropriate weighting 

factors. 



Determining which weights will result in the most accurate classification is an extremely 

cornpute-intensive task, for the optimal set can only be obtain by examining al1 possible 

combinations (Foroutan and Sklansky 1987). Fortunately, the task can be pefformed both 

through background processing and by using idle resources of workstations on a network. 

The exhaustive search for optimal set of weights, however, remains intractable (testing 

with five different values for weights for al1 feahires would take several thousand years 

on the fastest workstations available today). Some improvements can be made to speed 

up this calculation as described below, yet, the vast improvement for this problem came 

from applying the genetic algorithm in the selection process as explained in Section 3.10. 

3.9.5 Reducing sirnilarity measure computation time 

As Bryant (1989) notes, it is almost never necessary to finish the distance calculations, 

since the current minimum distance is known. In summation-type similarity mesures, 

one cm exit the loop when the running total exceeds the minimum distance already 

calculated. 

By reordering the feature vector in descending values of the weights, further increase in 
the efficiency of the calculations can be obtained, since the features with higher weights 

will contribute more to the final distance than those with smaller weights. 

3.10 Genetic algorithms 

Genetic algorithms (Holland 1975, Davis 1987, Goldberg 1989) are used here to find the 

optimal set of weights for the feature vectors during distance calculations. With the 

benefit of this algorithm, the entire AOMR system has a greater chance of survival. It 

allows the system to find within a reasonable amount of time, the near-optimal set of 

weights, whereas under normal circumstances, the exhaustive search would take too long 

to find such a set. 

Genetic algoritiims are currently used in problem-solving systems based on computa- 

tional models of the evolution of individual structures via processes of selection and 

reproduction. More precisely, genetic algorithms maintain a population of individuals 

that evolve according to specific rules of selection and other operators such as crossover 

and mutation. Each individual in the population receives a measure of its fitness in the 

environment. Selection focuses attention on high-fitness individuals, thus exploiting the 



available fitness information. Since the individual's genetic information (chromosomes) 

is represented as arrays of binary data, simple bit manipulations allow the implementation 

of mutation and crossover operations. 

The entire process may be described as follows (see Figure 3.8): 

1) Evaluate the fitness of al1 the individuals in the population. 

2) Select parents, recombine the "genes" of the selected parents to produce 

offspring. 

3) Perturb the mated population stochastically (mutation). 

4) Discard the old population and iterate using the new popuiation. 

Each individual in the population is evaluated for its fitness using a fimess function. 

Given a particular individual, the fitness function retums a single number; this is the 

primary place in which the traditional genetic algorithm is tailored to a specific problem. 

START O 

Parents I 
Produce 

Figure 3.8 Overall process of genetic algorithm. 



During the reproductive phase of genetic algorithrns, parents are selected and mated, 
producing offspnng that will comprise the next generation. A selection operator is used to 
favor the fittest parents for reproduction. High-fitness individuals may be used several 
times for reproduction and low-fitness individuals may not be used at dl. When two 
parents are selected, their chromosomes are recombined to produce new offspring using 
crossover and mutation operators. 
Crossover operators exchange substrings of two parents to obtain two offspnng. The 
purpose of the crossover operator is to combine useful parental information to f om new 
and, one hopes, better performing offspring. Such an operator can be implemented by 
choosing a point at randorn, called the crossover point, and exchanging the segments to 
the right of this point. For exarnpie, let 

Parent 1 = al a2 a3 a4 : a5 a6 a7 

Parent 2 = bl b2 b3 b4 : b5 b6 b7 

and suppose that the crossover point has been chosen randomly as indicated by the colon. 

The resulting offspnng would be: 

Child 1 = bl b2 b3 b4 : a5 a6 a7 

Child 2 = al a2 a3 a4 : b5 b6 b7 

Crossover rate is the probability per individual of undergoing recornbination. 

Mutation randomly alters each gene with a small probability, typically less than 1 %. This 
operator introduces innovation into the population and helps prevent premature 
convergence on a local maximum. The evolution is terminated when the population 
attains certain criteria such as simulation time, number of generations, or when certain 

percentages of the population share the same function value. 

Genetic algorithms have been successfully applied to solve many optimization and other 

computationdly intensive problems (Davis 1991). In music, genetic algorithms have k e n  

used for timbral design (Homer et al. 1992, Homer et al. 1993, Takaia et al. 1993, Vuori 
and Valimaki 1993) and as a compositional aid to generate pitch patterns (Homer and 

Goldberg 199 1). 



4. DESCRIPTION OF THE PROGRAM 

In this chapter, general workings of the AOMR software is described. The program is 

divided into seven sections: 

Staff removal 
Text removal 
Segmentation 
Feature extraction 
Classification 
Score reconstnic tion 
Learning phase 

Given an optically scanned page of a music score, the system first locates and removes the 

staves. The textual matenals, such as lyrics and expression markings are also removed. 

The remaining symbols on the page are then located and separated from one another for 
classification. The classification is dependent on the shape of each symbol. The numencal 

descriptions of the shape are called features, the calculation of which is called the feature 
extraction. Once the features of the symbol are detemiined, they are used for 

classification, which means assigning symbol names to unknown objects. The score is 
then reconstructed to visually verify the accuracy of the classifier. Finally, the system 

attempts to improve its performance in the learning phase. 

4.1 Staff detection and removal 

One of the initial challenges in any OMR systems is the treatment of the staves. For 

musicians, stafflines are required to facilitate reading the notes. For the machine, however, 

they become an obstacle by making the segmentation of the symbols very difficult. The 
task of separating background from foreground figures is a unsolved problem in many 
rnac hine pattern recognition systems in general . 

There are two approaches to this problem in OMR systems. One way is to try to remove 

the stafflines without removing the parts of the music symbols that are superimposed. The 

other method is to leave the stafflines untouched and devise a method to segment the 

symbols (Carter 1989, Fujinaga 1988). 



In the AOMR system described here, the former approach is taken, that is, the stafflines 
are carefully removed, without removing too much from the music symbols. This decision 

was taken basically for three reasons: 1. Symbols such as ties are very difficult to locate 
when they are placed nght over the staf'fiines. (See Figure 4.1). 2. One of the hazards of 

removing stafflines is that parts of music symbols may be removed in the process. But due 
to printing imperfection or due to darnage to the punches that were used for printing 
(Fujinaga 1988), the music symbols are often dready fragmented, without removing the 
stafflines. In other words, there should be a mechanism to deal with broken symbols 

whether one removes the stafflines or not. 3. Removing the stafnines simplifies many of 

the subsequent steps in the recognition process. 

Figure 4.1 Tie superimposed over staff. 

4.1.1 The complexity of the process 

The following procedure for detecting and removing staves may seem overly cornplex, but 
it was found necessary in order to deal with the variety of staff configurations and 

distortions such as skewing. 

The detection of staves is compiicated by the variety of staves that are used. The five-line 
staff is most common today, yet the "four-line staff was widely used from the eleventh to 

the thirteenth century and the five-line staff did not becorne standard until the mid- 
seventeenth century, (some keyboard music of the sixteenth and seventeenth centuries 

employed staves of as many as ftfteen lines)" (Gardner 1979,28). Today, percussion parts 

may have one to several lines. The placement and the size of staves may vary on a given 

page because of an auxiliary staff, which is an altemate or correction in modem editions 
(Figure 4.2); omaments s t a f f  (Figure 4.3); ossia passages (Figure 4.4), which are 
technically simplified versions of diff'icult sections; or more innovative placements of 

staves (Figure 4.5). In addition, due to various reasons. the staffiines are rarely straight and 

horizontal, nor parallel to each other. For example, some staves may be tilted one way and 

another on the same page or they may be curved. 



- 

Figure 4.2. An example of an auxiliary staff. 

Figure 4.3. An example of ornament staves. 

Figure 4.4. An example of ossia staff. 
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Figure 4.5. An example of innovative staff layout. 



4.1.2 The reliability of staffline-height and staffspace-height 

In order to design a robust staff detector that can process a variety of input, one must 

proceed carefully, not making too many assumptions. There are, fortunately, some diable 
factors that can aid in the detection process. 

The thickness of stafflines, the staffiine-beight, on a page is more or less consistent. The 

space between the stafflines, the staffspace-height, also has small variance within a staff. 

This is important, for this information can greatly facilitate the detection and removal of 

stafflines. Furthemore, there is an image processing technique to reliably estimate these 

values. The technique is the vertical nin-lengths representation of the image. 

If a bit-mapped page of music is converted to vertical run-lengths coding, the most 

common black-runs represent the saine-height (Figure 4.6) and the most cornrnon 

white-runs represents the staffspace-height (Figure 4.7). Even in music with different staff 

sizes, there will be prominent peaks at the most frequent staffspaces (Figure 4.8). These 

estimates are also immune to severe rotation of the image. Figure 4.9 shows the results of 

white vertical run-lengths of the music used in Figure 4.8 rotated intentionally 15 degrees. 

It is very useful and crucial, at this very early stage, to have a good approximation of what 

is on the page. Further processing can be performed based on these values and not be 
dependent on some predetermined magic numbers. The use of fixed threshold numbers, as 
found in other OMR systerns, makes systems inflexible and difficult to adapt to new and 

unexpected situations. 



Figure 4.6 Estimating staffiine-height by vertical black runs. The graph shows that the 

staffline-height of 4 pixels is most prominent. 



Figure 4.7 Estimating staffspace-height by veltical white runs. The graph shows that the 
staffspace-height of 14 pixels is most prominent. 



Figure 4.8 Estimating staffspace-height by vertical white runs with multiple-size staves. 



Figure 4.9 Estimating stafîspace-height by vertical white runs of a skewed image. The 
music used in Figure 4.8 is rotated 15 degrees. 



4.13 The process 

The locations of the staves must be detexmined before they can be removed. The first task 

is to isolate staffiines from otiier symbols to find the location of the staves. Any vertical 

black runs that are more than twice the staffline-height are removed from the original. 

(See Figure 4.1 1, Figure 4.10 is the original). A connected component analysis is then 

performed on the filtered image and any component whose width is less than 
staffspace-height is removed (Figure 4.12). These steps remove most objects from the 

page except for slurs. ties, dynamics wedges, stafflines, and other thin and long objects. 

The difference between staffiines and other thin objects is the height of the connected 

component; in other words, the minimal bounding boxes that contain slurs and dynamics 

wedges are typically much taller than the minimal bounding box that contains a staMine 

segment. Removing components that are taller than staftline-height, at this stage, will 

potentially remove stafflines because if the page is skewed, the bounding boxes of 

stafflines will also have a height taller than the staffline-height. Therefore, an initial de- 

skewing of the entire page is attempted. It is hoped that this would correct any gros 

skewing of the image. Finer local de-skewing will be performed on each staff later. The 

de-skewing, here, is a shearing action; that is, a part of the image is shifted up or down by 

some arnount. This is much simpler and a lot less timetonsuming than true rotation of the 

image, but the results seem satisfactory. Here is the algorithm: 

1. Take the narrow strip (currently set at 32 pixels-wide) at the center of the page and 

take a y-projection. Make this the reference y-projection. 

2. Take a y-projection of the adjacent vertical stnp to the right of the center strip. Shifi 
this strip up and down to find out the offset that results in the best match to the 

reference y-projection. The best match is defined as the largest correlation 

coefficient, which is calculated by multiplying the two y-projections. 

3. Given the best correlated offset, add the two projections together and make this the 

new reference y-projection. The offset is stored in an array to be used later. 

4. If not at the end of the page, go back to Step 2. 

5. If the right side of the page is reached, go back to Step 2, but this time move from 
the center to the left side of the page. 

6. Once the offsets for the strips of the entire page are calculated, these offsets are 
used to shear the entire image. (See Figures 4.13 and 4.14). 
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Figure 4.1 0 The original. 



Figure 4.1 1 Vertical black nins more than 2 x staffline-height removed. 



Figure 4.12 Co~e&d-components narrower than staffspace-height removed. 





Figure 4.14 De-skewed image of Figure 4.13 by shearing. 



Note that because the mn-length coded version of the image is used for shearing, only one 
operation per column is needed, making the operation ex~emely efficient. 

Assuming now that the image is relatively level, i.e. stafflines are horizontal, taller 

cornponents, such as slurs and dynamic wedges, are removed. The filter here is still rather 
conservative. since if a long staff line is still skewed, as a component, it may have a 
considerable height (Figure 4.15). This precaution is needed because staves on a page are 
often distorted in different ways. 

The result now consists of mostiy staffiine segments, some flat slurs, and flat beams. At 

this point, y-projection of the entire image is taken again (Figure 4.16). The derivative of 

the y-projection is used to locate the maxima in the projection (Figure 4.17). Using this 
information dong with the known staffspace-height, the possible candidates for the staves 

are selected. For each of these candidates, x-projection is taken to determine if there is 
more than one staff, by searching for any blank area in the projection. Also a rough idea of 

the Ieft and the right edges of the staff can be determined from the x-projection (See 

Figures 4.18 and 4.19). 

At this point, the nui lengths of the region bounding a staff, are calculated in order to 

obtain a more precise estimate of the staffline-height and staffspace-height of this 
particuiar staff. Also, a shearing operation is performed again to make the staff as 
horizontal as possible. 

Using the y-projections employed during the shearing process, the vertical positions of the 

stafflines can be ascertained By taking an x-projection of the region defined by the 

stafflines, the horizontal extents of the staff are determined. 



Figure 4.15 Ta11 connected components removed from Figure 4.12. 



Figure 4.16 Y-projection of Figure 4.15. 



Figure 4.17 Y-projection (maxima only) of Figure 4.15. 
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Figure 4.18 An example of staves placed side-by-side. 



Figure 4.19 X-projection of the top staves of the second system in Figure 4.1 S. 

The next step, knowing the positions of the stafflines, is to remove them. Since the image 

now consists mainly of staffline segments (Figure 4.20), the strategy is to delete 

everythxng but the stafflines; then the image can be XORed with the original image so 

that, in effect, the stafflines are removed. 

Figure 4.20 Isolated staff, from sixth staff of Figure 4.15. 

At this point, the stafflines are assumed to be fiat, so any components taller than the 

stafflines can be removed (Figure 4.21). This operation differs from the sirnilar operation 

performed on the entire image, since the more accurate staffiine-height that applies to this 

particuiar staff is now available. 

Figure 4.2 1 Tai1 connected components removed. 

Also, given the exact positions of the stafflines. components that are between the stafflines 

are removed (Figure 4.22). 

The result is XORed with the original image. Given two bit-mapped images A and A', 

where A' is a subset of A (A' is denved from A), an XOR operation has the following 

important property: Al1 black pixels in A' are removed from A. For example, Figure 4.22 

and Figure 4.23 are XORed resulting in Figure 4.24. 
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Figure 4.22 Objects between the stafflines removed. 

Figure 4.23 The original sixth staff of Figure 4.10. 

Figure 4.24 The result of XORing Figures 4.22 and 4.23. 

Several examples of the staffline removd are shown in Figures 4.25 to 4.36. The time the 
program takes to remove the staffiines, including reading the input image and writing the 

resultant image, of 32 pages of different types of music, was approximately 20 minutes, or 

less than 40 seconds per page on a Sun SPARC 2. Al1 of these image processings, such as 

filtering and XORing, are performed either on the nui-length codes or connected 
components and not directly on the bit-map, thus making computations extremely 
efficient. 

4.14 A note on scanning resolution 

The resolution of scanning is 300 dpi (dots-per-inch) which seems to be satisfactory for 

standard piano music or instrumental parts that may have eight to ten staves per page. The 

300 dpi resolution, however, is not fine enough for orchestral scores or miniature scores. 

For these types of scores, scanning resolution of 600-1000 dpi is needed. Ideally, the 

thinnest object (usually the stems) should have the thickness of three to five pixels. 



Figure 4.25 S taffl ines removeâ fkom Figure 4.10. 

72 



Figure 4.26 Staffiines removed from Figure 4.14. 
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Figure 4.29 The original. 



Figure 4.30 Stafflines nmoved fiom Figure 4.29. 



Figure 4.3 1 The original. 
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Figure 4.33 The original. 



Figure 4.34 Stafflines removed from Figure 4.33. 
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Figure 4.35 The original. 



Figure 4.36 Stafflines removed from Figure 4.35. 



4.2 Text removal 

in order to lessen the burden on the classifier. text, such as lyrics and perfomance 

indications, is removed as much as possible. The intention is to use a separate prograrn, 

specialized for optical character recognition, to process the texts on the page. 

Text is distinguished from musical symbols by using the characteristics that text symbols 

have basicdly the same height and are placed side by side. The problem here is similar to 

finding texts in document image aoalysis (Nagy 1989). where texts need to be separated 

from graphics in maps (Taxt, Flynn, and Jain 1989), newspapers (Akiyama and Hagita 

1990), and drawings (Fletcher and Kasturi 1988), or when locating destination address on 

envelopes (Jain and Bhattacharjee 1992; particularly diffmlt here are finding address 

labels on the newspapers and magazines delivered by mailing). 

Simple yet effective heuristics are used to locate texts, which can appear dmost anywhere 

on the page. First, perform a connected component analysis on the entire page. Second, 

determine if each connected component may qualify as a letter; if so it must further 

qualio to be a letter within a word, i. e., a single letter is not removed as dynamic 

rnarkings such as p, f; or numerals for tuplet notation or fingenngs c m  be processed by the 

AOMR program. 

Here are the criteria for a letter: 

1. That its "average height" and "average width" are larger than some predetennined 

minimum value. (this lower lirnit will skip punctuation markings, which are 

considered separately.) 

2. That its aspect ratio (height / width) is within a certain range. This step is needed to 

remove durs and pedal markings; it also removes some connected Ietters. 

Note that staves and everything attached to them becorne very large connected 

components and are discarded by the second criterion. 



Here is the criterion for a letter within a word: 

if another letter can be found that is horizontally close to it, it is considered a letter 
within a word. The cioseness depends on the size of the letters. 

The result of the above processes are three classes of connected components: 
1. Those considered as letters belonging to a word. 
II. Those that were too small to be considered as Ietters. 

III. Those that were possible letters, but rejected because no other letters were found 

that were close to it. 

The connected components in Class II are revisited to see if they may be punctuations 
(period, comma, quotation mark, etc.) belonging to one of the letters in Class I by the fact 

they are close to them. 

Although these simple rules help to eliminate most words on a page, as shown in Figures 

4.37 to 4.47, there are two kinds of cases where this algorithm fails. One is when letters 

are connected to each other. These rrsult in the low aspect ratios, because they have 

relatively wider width than a letter. The other is when the letters are touching the staffline, 

in which case the elimination is difficult because notes that are attached to staves may 
easily be mistaken for letters. 



The ~ a ~ l i f  f b Dau ghter of Islington 
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Shc's up u, fu London gom, 
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10 ' 1 prirbrr, ragtrhtur, anrt thou tell mc 
thou dcrst Laaw 

The h y W s  drughtcr of Iniington 3 ' 
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Figure 4.37 The original with text. 



The ~ a j l i f  f b Daughter of Islington 

?tom hylu Ymdr 4 t& O I l r  na* (W. chppdi) iss3. 
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10. No, not i t  in - time rbe ~ o u l d  An- coun - tro-ance to bim show. 

1 p r i k ,  rwtcthtur, t w t  t h u  tell me 
W b a t  thar thou antt bom ? * 

' At fdngton, Li& Ur,' said sbc, 
' Wh«t 1 have had auny r mm.' 
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The k y W s  drughter o f  Idingron ? 
' Shc's Jad, sir, h g  igo.' 

Figure 4.38 Texts extracted from Figure 4.37. 



Figure 4.39 Text removed from Figure 4.37. 
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Figure 4.40 The original with text. 



Figure 4.41 Text extracted from Figure 4.40. 



Figure 4.42 Text removed from Figure 4.40. 
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Figure 4.43 The original with text. 
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Figure 4.44 Text extracted from Figure 4.43. 



Figure 4.45 Text removed from Figure 4.43. 



Figure 4.46 The original. 



Figure 4.47 Stafflines and texts removed from Figure 4.46. 



4.3 Segmentation 

Segmentation is the process where symbols are separated from each other. This task is 

accomplished by the connected component analysis of the page after the stafflines and 

texts are removed. The analysis naturally separates the symbols because, by convention, 

most music symbols are not comected. In practice, however, symbols do touch and of 
course, notes in a chord touch each other (see Figure 4.48). 

Figure 4.48 An example of attached music symbols. 

In most pattern recognition systems, the segmentation stage precedes the classification 

stage, i. e., al1 the symbols are separated before k ing  classified. In order to successfixlly 

segment symbols, it is necessary to know in advance, the characteristics of al1 the 

symbols. Since this is not possible in an environment where symbols may be connected in 

various ways, such as chords and beamed notes, and new symbols may be introduced, a 

more flexible method, which allows further segmentation during the classification stage, is 
irnplemented. The tactic deployed is explained in the Classification (4.5) section. Pnor to 

the classification, each connecteci component is analyzed to extract its features. 

4.4 Feature extraction 

Features are the quantifiable aspects of a given symbol and are sets of the measurable 

properties of the symbol. The feature extraction phase calculates these descriptions, 

producing a set of measurements called feature vector for each connected component. 

The following features are cumntly used in the AOMR system: width; height; area; area 

of the bounding box (width * height); rectangularity: Ao I Ab, which represents how well 

an object fills its bounding box; aspect ratio: width / height, which can distinguish slender 

objects from roughly square or circular objects; average number holes per horizontal and 



vertical scan lines; and normalized central moments, which provide a more detailed 

numerical description of the shape. 

4.5 Classification 

This phase uses the k-nearest neighbour (k-NN) classification technique to determine the 

class of a given unknown symbol on the basis of its feature vector. There are many 

reasons why the k-NN classification scheme is well-suited to this application. Aside from 

its simplicity and intuitive appeai, the classification requires no a prion' knowledge about 

the underlying distribution of symbols in the feahire space. This enables the system to 

learn new classes of symbols. Furthemore, a symbol class may occupy two or more 

disjunct regions. This is important k a u s e  some musical symbols such as beams and slurs 

Vary greatly in their shape and size; and other symbols such as the quarter rest and the 

tenor clef have completel y different shapes depending on the music publishers (see Figure 

4.49). Finally, the most significant reason for using this classifier is its ability to lem; that 

is, its accuracy improves as more data is collected. 

-- - 

Figure 4.49 Examples of quarter rests and tenor clefs by different publishers. 

As described in 3.3, a measure of the distance between an unclassified symbol and 

previously classified symbols is calculated between their feature vectors. The class 

represented by the majority of k-closest neighbour is then assigned to the unclassified 

symbol. Typically, such classes are actual music symbols, such as treble clef, notehead, 

and eighth rest, in which case, the program moves on to the next object. There are, 
however, four special classes of symbols that require further prucessing. These are: 

1. STEM-COMPLEX (notes, chords, bearned notes) 
2. CURVES (ties, slurs) 
3. SPLIT-x 
4. SPLILY 



When a connected component is identified as a stem-cornplex, stems are automatically 

removed. The connected cornponent is scanned horizontally and any wide black runs are 
removed. Then a connected component analysis is performed on the resulting image, and 

components that are narrow and ta11 are then rnarked for deletion in the original image (see 

Figure 4.50). Simply removing short horizontal black runs will not work because many 

things including flags will be removed (see Figure 4.5 1). 

Figure 4.50 Rernoving stems from beamed notes. 

Figure 4.5 1 Removing stem from an eighth note. 

4.5.2 Cumes 

In order to numerically define the shape of ties and phrase marks, the Bezier curve, 

originally developed for automobile designs (Hearn and Baker 1986, 195), is used. Bezier 
curves can define many types of curves with only four points (two endpoints plus two 
intemediate points) and are used widely in the cornputer-graphics field. Furthemore, the 

Bezier curve is implernented in the PostScript language, used for score reconstruction 

below. 

In engraved-quality music, the phrase, durs, and ties are not simple curves. They are thin 

at the ends and thicker in the middle. The algorithm to find the Bezier points of a curve 



works best if the curve has single pixel thickness. Thus, the phrase marks and ties are first 

"thinned" using a thinning algorithm. Thinning algorithms are used in many pattern 
recognition problems such as fingerprint identification (Karnesawara and Rao 1978), logic 
and electrical schematic interpretation (Jarris 1977), and character recognition (Kumar et 

al. 199 1). Thinning is a method of reducing the width of a digitized pattern to a single 
pixel. The classic algorithm by Zhang and Suen (1984) is implemented here. 

Given the notation of 3x3 window around point Pl : 

the algorithm uses two passes as follows: 

Pixel Pl is deleted from the digital image if it satisfies the following: 
a! P2 * P4 * P6 = O (Le., if any one of the pixel is O )  
b) P4 * P6 * P8 = O 
C )  A(P1) = 1 
d) 2 <= B(P1) <= 6 

In the second iteration, pixel pl is deleted if it satisfies the following: 
a) P2 * P4 * P8 = O 
b) Pl * P6 * P8 = O 
C )  A(P1) = 1 
d) 2 <= B(P1) <= 6 

Where, A ( Pl ) is the number of 0 1 patterns in the ordered set P2, P3 , . . . , ~ 9 ,  and 
9 

In order to use the curve-fitting algorithm, one of the end points must be found. This is 
accomplished by searching, from top to bonom, and left to nght, a point that only has one 
neighbour. Once the endpoints are located, the least-squares method is used to find the 

two Bezier control points (Glassner 1990). 



4.53 SPLIT-X and SPLIT-Y 

Predefined symbols cailed SPLIT-x and SPLIT-Y which, when identified, direct the 

recognizer to further segment a given symbol either horizontally or vertically. The 
separation of the SPLIT-X and S P L K Y  symbols uses the minimum values of x- 

projection and y-projection. respectively. (See Figures 4.52 and 4.53). This method results 

in an efficient and robust recognition of the near infinite configuration of chords and 

attached symbols. 

Figure 4.52 X-projection for SPLIT-X Figure 4.53 Y-projection for S P L X Y  

4.6 Score reconstruction 

Elementary score reconstruction is attempted to visually venfy the accuracy of the 

classifier. The output is a PostScript file with x- and y-coordinates of the syrnbols. For 

stafflines, beams, stems, and barlines, the two endpoints and the thickness of the Iine are 

provided. For slurs and ties, two endpoints dong with two Bezier points are indicated so 

that the PostScnpt interpreter can draw the cuntes (see Figures 4.54 and 4.55). The output 

of the recognition process can be used in various applications, see for example, 

Wilk (1 995), which generates MIDI data. 
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Figure 4.54 The original. 
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Figure 4.55 The reconstnicted PostScript output of Figure 4.54. 



The primary goal of the leaming phase is to improve the accuracy of recognition. 

Enhancing the efficiency of the recognition is a secondary goal for the following reasons: 

After an initial training period, the recognition task can be performed without 

human intervention through background processing and, if necessary, on multiple 

computers. 

The speed of processing is directly related to the number of feanires used and the 

number of symbols stored in the database. The size of random-access memory 

(RAM) commonly found on to&y's cornputer limits the practical size of the 

database. For exarnple, if 20 features are used for each symbol, and if each feature 

requires 4 bytes of storage (80 bytes per symbol), then 100.000 symbols would 

occupy 8 megabytes of RAM. Using Sun SPARC 2, the processing time is 

estimated to be about 500 ms I symbol, so that for a page containing 1 OOO music 

symbols it would take 500 seconds, or about 8 minutes. 

It is estimated that the proofing of a page of music by a trained editor would take, 
depending on the complexity of the music, anywhere from a few minutes to an 
hour (Carter 1994b). Since most OMR systems do not daim, including AOMR, 
100% accuracy, the result rnust be checked by human editors. Therefore, the 

processing time for an OMR system need only be comparable to that of a human 

editor. 

4.7.1 Limiting the size of the database 

Since there is a physical upper lirnit to the size of the database that c m  be stored in RAM, 
there must be a mechanism to d u c e  the size of the database while maintaining the 

accuracy. Thus, the Miting (3.4.1) and the Condensing (3.4.2) methods to reduce the size 

were implemented. Although both of these procedures were successful in reducing the 

size of the database, the accuracy suffered as the result of the reduction in the size of the 

stored library . 



4.73 Accuracy 

The main characteristic of the k-NN classifier is that, in theory, its accuracy increases as 

more data is accumulated. Simply storing classified symbols in the database increases its 

accuracy. Another way to improve the classification is by using different distance 

measures. At any time during the development process, different distance measures can 

be tested to see which one of the available methods achieves the best result. This 

approach makes the systern flexible, using the best type of distance measure for the 

particular environment. 

Although it is not complicated or time consuming to try a handful of different measures, 

selecting the optimal weights used in some of the measures is very dificult. This is the 

problem of assigning relative importance of the features when calculating the distances 

within the feanire-space. 

In many classification applications, the features are "selected," hence the term feature 

selection. In this process, whether or not a feature is used in the distance calculations is 

equivalent to deciding whether to assign O or 1 as the weight of each feature. This 

selection process requires a total of 2fnumber of combinations of weights, where f is the 

total nurnber of features. 

The performance or the rate of accuracy of a set of weights is determined by the "leave- 

one-out" method, which means that, for each symbol S in the database, S is assumed to be 

unknown and the remaining symbols in the database are used to identifi S. If the result 

corresponds to the true identity of S, then the system is said to identifi the symbol 

correctly. Al1 members of the database go through this procedure to calculate the global 

accuracy of the system. 

Determining the set of weights that will result in the most accurate classification is an 
extremely computing-intensive task, for the best set can only be obtained by examining 

dl possible combinatioiis (Cover and Van Campenhout 1977). Furthemore, the weights 

of the features can be varied (using reai numbers) so that the coirplete set of possible 

combinations are virtually infinite. With the cumntly available computing power, 

exhaustive search using a relatively small database would take years to calculate. An 

extremely elegant and practical solution to this problem of selecting near-optimal weights 

is provided here by using the genetic algorithm. 



4.73 Application of a genetic algorithm 

To illustrate the use of a genetic aigorithm (see 3.10 above) for finding a good set of 

weights, five randornly chosen pages of music are used. DATA A is created from Figure 

4.54 and Figure 4.56; in DATA B. DATA C, and DATA D. the symbols from Figure 

4.57.4.58, and 4.59 are added respectively. In other words, the symbols from each page 

are combined sequentially to create the four datasets, thus, DATA D, for example, 

contains al1 the symbols from the four pages. Figure 4.60 shows. for each dataset, the 

number of different classes, total number of symbols, and the time required to find three 
best sets of binary weights exhaustively, i. e. by testing al1 possible combinations. 

Figure 4.56 The page is used to create DATA A dong with Figure 4.54. 



Figure 4.57 Sample page used to create DATA B. 



La Diane. 

Ouyemcnt . 

Figure 4.58 Sample page used to create DATA C. 



Figure 4.59 Sample page used to create DATA D. 



The symbol distribution of DATA DT assembled from the four pages, is shown in Figure 

4.6 1. The features currently implemented are listed in Figure 4.62. For each dataset, the 

recognition rates (the rate of 1 .O would mean 100% accuracy) using only one feature are 

shown in Figure 4.63 using 1-NN classification scheme (k = 1). Unfortunately. these 

results are not particularly useful because the combinations of the best individual features 

do not guarantee best results. For example. the feahire 4 (xsentre of gravity) is used in al1 

three of the top three sets for DATA A (Figure 4.64), yet by itself it is the second worst 

feature (0.366412). Conversely. the feature 2 (area) is the top performer by itself in 

DATA B (0.7000405). yet it is not used in two of the top three sets of weights (see Figure 

4.64). The only way to find the set of features that result in the best recognition rate is by 

trying out ail possible combinations. Since there are 15 features used hem, there are 
32767 (2") possibilities for the binary weights, and the caiculation of the recognition 

rates takes inordinate amount of time as shown in last column of Figure 4.60. 

1 nurnbcr of classes number of symbols processing time 

DATA A: 19 

DATA B: 29 
DATA C: 32 
DATA D: 32 

24 hrs 
6 days (estimated) 

12 days (estirnated) 

25 days (estimated) 

Figure 4.60 The size of each dataset and the processing time to find the optimal set of 
binary weights. 



name 
sharp 
flat 
natural 
trebleclef 
dot 
eighthflagdown 
eighthflagup 
sxflagdown 
cornmontirne 
piano 
forte 
barline 
heavybarline 
wholenote 
quarterrest 
eighthrest 
ha1 f res t 
beaml 
beam2 
bearn3 
s temsegment 
brace 
s lur 
halfnotehead 
quarternotehead 
quarternotehead-ledger-below 
quarternotehead-ledger-middle 
quarternotehead-ledger-above 
splitx 
splity 
beam-complex 
ledger-complex 

Figure 4.61 Symbol distribution of DATA D. 

O width 
1 height 
2 area (width * height) 
3 volume (pixel count) 
4 x-centre of gxavity 
5 y-centre of gravity 
6 u20 normalized central moments 
7 u02 " 
8 ull 
9 u30 " 
10 u12 " 
11 u21 " 
12 u03 ' 
13 n-holes-vertical 
14 n-holes-horizontal 

Figure 4.62 Currently implemented list of features. 



DATA A: 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ' l 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

DATA B: 
1 O O O O O O O O O O O O O O O O 6 9 6 / 1 2 3 5  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2 4 / 1 2 3 5  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 6 5 / 1 2 3 5  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 1 / 1 2 3 5  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 2 2 / 1 2 3 5  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 8 6 / 1 2 3 5  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 3 7 / 1 2 3 5  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 0 8 / 1 2 3 5  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 7 6 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 3 7 / 1 2 3 5  
O 0  0 0  O O O O O O 1 0 0  O O O 0  518/1235 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 2 7 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 4 3 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 6 8 5 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 7 7 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 8 9 / 1 2 3 5  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 3 3 / 1 2 3 5  

DATA C: 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  962/1745 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 8 / 1 7 4 5  
O O 1 0  O O O O O O O 0 0  O O 0 0  1138/1745 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  880/1745 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  551/1745 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  618/1745 
O O O O O O I O O O O O O O O O O  833f1745 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 6 / 1 7 4 5  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  714/1745 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  685/1745 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  649/1745 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  587/1745 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  810/1745 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  899/1745 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  757/1745 
O O 0 0  O O O O 0  O O 0 0  0 0 1 0  1054/1745 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  833/1745 

DATA D: 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

Figure 4.63 Recognition rates for individual features. 

I l l  



DATA A: 
1 1  1 O 1 1 O O 1 O O O O 1 1  O 1511/524 0.975191 
1 O 1 O 1 1 1 1 1 O O O O 1 I O 1 511/524 0.975191 
O 1 1 1 1 1 1  O 1 O O O O 1 1 O 1 511/524 0.975191 

DATA B: 
1 1 O 1 1 1 1 O 1 O 1 O 1 O 1 I 1 1213/1235 0.982186 
1 1 O 1 1 1 1 O 1 1 1 O O 1 1 I 1 1213/1235 0.982186 
1 1 1  1 O 1 1  1 1  O 1 O 1 1  1 O O 1213/1235 0.982186 

DATA C:  
1 1 1 1 O 1 1 1 1 1 O O O 1 I 1 1 1714/1745 0.982235 
1 I 1 1 O 1 1 O 1 O 1 1 O 1 1 1 1 1714/1745 0.982235 
1 1 1 1 O 1 1 1 1 O O 1 O 1 1 1 1 1714/1745 0.982235 

DATA D: 
1 1 O 1 O 1 1 O 1 1 1 O O 1 1 1 1 2456/2538 0.967691 
1 1 1 1 O 1 1 1 1 O O 1 O 1 1 1 1 2456/2538 0.967691 
1 1 1 1 1 O 1 O 1 1 1 O O 1 1 1 12456/2538 0.967691 

Figure 4.64 The best three set of weights for accuracy found by genetic algorithm 
for each dataset. 

Furthemore, ideally the number of stored symbols in the database should be much 

greater. For example, using 25000 stored symbols is not unreasonable, since it would take 
about 2 Mbytes of storage (80 bytes per symbol) and if there are lûûû symbols on the 
page of music, processing time would be about 4 minutes. Finding the optimal set of 
features for this database, however, would take over six years! 

This is why the application of a genetic algorithm (GA), which finds the near-optimal set 

of features in much less time, is essential. The results of the four datasets using GA are 
shown in Figure 4.64. The search for each dataset was stopped after 12 hours. Although 
these may not be the best sets (for DATA A, an exhaustive search confimed that these 
are indeed the best sets), the obtained accuracy in the range of 96% to 98% seems more 

than acceptable. 

The necessity of using a GA becomes more evident as there are two further refinements 

that can be made to the classification process: using a different k in the k-NN 
classification and using non-binary weights. In the results above the k was set to 1, but 

other numbers cm be used. Figure 4.65 shows the best sets for k = 3 and k = 5 for DATA 

A, where there are slight improvements (compare with Figure 4.64). Also, any real 
numbers cm be used as the weights for each feature. Implementing this would increase 

the calculation time astronornically, yet, as shown in Figure 4.66, the accuracy is 



improved over the binary weights. Figure 4.65 used four possible weights (0,0.25,0.5, 

and 0.75). thus the total number of combination is increased to 4 l5 or over one billion. 

The calculation for DATA D in this case, would take over 2000 years! Nevertheless, the 

power of GA methods are such that very gwd sets (exceeding the accuracy of the binary 

weights) were found within 24 hours. 

DATA A (k=3) : 
1 O O 1 1 1 1 1 1 O O O O 1 1 O 1 508/518: 0.980695 
1 O O 1 1 1 1 1 1 O 1 O O 1 1 O 1 508/518: 0,980695 
1 1 I O 1 1 O 1 1 O 1 O 1 1 1 O 1 509/520: 0.978846 

DATA A (k=5): 
O O O 1 1  O O 1 1  O O 1 1  1 1  O 1 501/512: 0.978516 
O O O 1 1 O O 1 1 O 1 1 1 1 1 O 1 501/512: 0.978516 
O O O 1 1  O O 1 1  1 1  1 1  1 1  O 1 501/512: 0.978516 

Figure 4.65 Recognition rates for DATA A using k=3 and k=5. Note that some 
samples are rejected because a majority of neighbours could not be 
established. This occurs, for exarnple, in the 3-NN case, al1 three nearest 
neighbours are from different classes. 

DATA C: 
-75 .50 .O0 -50  .O0 .50 .50 -50  .50 -75 .50  .75 .50 .25 .O0 1618/1634: .990208 
.75 .2S .O0 .7S .25 -50 .50 .25 .25 -75 - 5 0  -75 .50 .50 .75 1618/1634: -990208 
.75 .75 -50  -75  -25 -25 .25 -75  - 5 0  .O0 -25  .25 -50  -75 -75 1616/1634: .988984 

DATA D: 
.75 -75 -75  .75 .O0 .25 .25 .75 - 5 0  .O0 .75 .50 .O0 .75 .75 2465/2538: .971237 
-75 -75 .50 .7S .25 -25 .75 -75 - 5 0  .25 .O0 .O0 -25  -75  -75 2464/2538: -970843 
.50 .75 .O0 .75 .O0 -25 .25 .50 .25 .50  .75 .O0 .25 .75 -50  2464/2538 : .97O843 

Figure 4.65 Recognition rates for DATA C and DATA D using four possible weights 
(0,0.25,0.5, and 0.75). 

In general. using the binary weights and the k set to 1, the accuracy of the AOMR 

systern is between 95% to 100% depending on the complexity of the music. the quality 

of typesetting or handwriting and the size of the database. The processing tirne is 5 to 15 

minutes per page, proportionai to the number of symbols on the page and the sim of the 

database. 



5. CONCLUSIONS 

5.1 Future work 

The ultimate test for an adaptive system is to observe passively its performance in various 

environments. From the designer's point of view, this was difficult to achieve because of 

the designer's desire to make the best possible system before it is completely released 

into the field. The tendency has ban to watch the system evolve for a while, and then as 
soon as a problem develops, the system is modified and the process begins again. 
The next step in the development is to make the system run on its own. Some of the 

operations-the genetic algorithms, for example-are manually initiated. Also, the 

evaluation of different similarity measures is not automatic. These different cornponents 

must be completely integrated and made autonomous. 

5.1.2 Extensions 

In this research, the accuracy and the efficiency of the recognition were monitored 

through the leaming system. This can be easily extended so that the accuracy and 

efficiency of various leaming strategies are monitored and optimized. There are certain 

parameters in the genetic algorithm such as the mutation and crossover rate that can be 

adjusted. For error estimation, only the leave-one-out method was used here. There are 
other methods that c m  be implemented and assessed. In other words, the system explores 

other leaming methods and evduates their performance. This is the concept of leaming to 

leam. 



5.2 Final thoughts 

In order to understand music or other manifestations of human nature, one must be aware 

of the bias and limitations of the investigators themselves and the tools used for the 

inquiry. The cornmon serial type of computer and the associated programming language 

are based on procedural and formalized models of thought. In Our education, 

formalization, reduc tions, and generalizations are extremel y valued. In fac t, these are the 
summit of characteristics of intelligence, at least in the modem Western world. Perhaps 

influenced by this, in the history of artificial intelligence, major efforts have gone into 
establishing formalization of human thought and perceptual processes, searching for sets 

of rules. Yet, in many disciplines, building rule-based models of human understanding of 

Our world have not been successful. For example, formalizing music has been very 
diEcult, despite many attempts made by music theorists over the years. There is an 
alternative approach, however. Numerous philosophers and psychologists believe that 

many concepts are learned directly by examples and not by rules. The proposed system 

here is based on that idea and the feasibility of such a system for music notation 
recognition has b e n  demonstrateci. 

Exemplar-based adaptive systems cm potentially be applied in many fields where solving 

problems by formalized rule-based system has failed. In the field of music alone there are 

various possible applications. Music structure recognition (phrase, modulation, themes, 
motives), timbre identification, pitch detection, and tempo tracking are some of the areas 

where the adaptive system can be used for enriching our understanding of music. 
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