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Abstract.

The optical parametric oscillator (OPO) is a source of tunable laser radiation which possesses
a rich array of pattern formation capabilities and has applications to optical communication and
information processing. In this thesis, I derive the QPQ equations - a coupled pair of nonlinear
dispersive partial differential equations - which model the patterns generated by this device. In the
literature, the large detuning limit of the full OPO system has been modeled by the parametrically
forced nonlinear Schrodinger equation (PNLS). The OPO and PNLS are in good agreement in one
space dimension, however, in two space dimensions the PNLS fails to capture significant dynamics of
the full OPO. Specifically, the PNLS possesses L* blow-up solutions akin to those of the nonlinear
Schrodinger equation (NLS) while blow-up is arrested by higher order terms in the OPO.

The limit of large pump detuning in QPO is singular, and [ propose that the pump field is slaved
to the signal field, permitting a reduction of OPO to a single equation. The relation between
pump and signal fields is complicated but admits a natural family of approximations; the leading
order approximation recovers the PNLS equation. The second order approximation includes higher
order nonlinear and dispersive terms, and the resulting equation - the saturating parametrically
forced nonlinear Schrodinger equation (SPNLS) - is a more faithful model of the full OPO. Via
detailed numerical analysis using moving mesh methods, [ demonstrate that the PNLS exhibits an
L™ blow-up in two space dimensions. However the OPO and SPNLS share a complex dynamic
in which the rapid growth in L* norm saturates and leads to decaying temporal oscillations and
dispersive radiation. Following Fibich and Papanicolau, I employ intermediate asymptotics to show
the saturation phenomena in the SPNLS is governed by two coupled nonlinear ordinary differential
equations which permit an identification of the saturation mechanism.
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Chapter 1

Introduction

1.1 Historical Development

Interest in the nonlinear effects in optical crystals predates the study of fiber optics. In 1961, one
year after the first successful demonstration of a working laser, [1], second-harmonic generation was
discovered in optical crystals. It was not until 1966 that optical fibers were suggested as a mechanism
for optical transmission. In 1973, in the ground-breaking work of Hasegawa and Tappert, [2], it was
shown that the propagation of an optical pulse in a fiber optic cable is governed by the much bally-
hooed nonlinear Schrodinger equation (NLS). However, it was not until 1980 that pulse propagation
in optical fibers was demonstrated experimentally {3]. In the last 15 years, these three technologies:
laser, optical crystal, and fiber optic cable have been brought together to form optical parametric
devices such as the optical parametric cecillator (OPO) and the optical fiber parametric amplifier.

1.2 Physical Description

The optical parametric oscillator is a device for tuning laser frequencies. Light at one frequency
is directed into a cavity - a piece of crystal bounded by mirrors - and through interactions with
the crystal the frequency is changed. In the down-conversion case, one photon with frequency w;
is converted into photons with frequencies w3, w3 satisfying ws + w3 = wy. In the degenerate case,
which we address in this thesis, w3 = wy = %. In the case of up-conversion, two photons of lower
frequency combine to form one of higher frequency. Non-linear effects of crystals were first observed
in the case of up-conversion, also called second-harmonic generation. The devices and models for up
and down conversion are quite similac; the difference lies in the frequency of the pump. A schematic
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of the device is presented in figure (1.1).
, %* Material ,
mirror migrar

Emitted Signal U
Applied

Emitted Pump V

Pump Field

Figure 1.1: Schematic of the OPQ

1.3 Derivation of the OPO equations

We derive the model equations from the Maxwell equations under the assumption that the electric
fields are nearly mono-chromatic modulated plane waves. It is interesting to note that while this is the
accepted leading order model for a doubly-degenerate optical parametric oscillator [4, 5,6, 7, 8, 9, 13],
a complete derivation appears nowhere in the literature.

We begin with Maxwell's equations for the propagation of an electro-magnetic field in a dielectric
medjum free of currents and point charges

v-D= 0 (1.1)
v-B= 0

VxE= -%?—

VxH= %?.

Here B and D are the magnetic and electric inductions respectively and H and B aze the magnetic
and electric fields. We also have the constitutive relations

B= uH (1.2)
D= toE +P

The permittivity of free space, ¢o, and the magnetic permeability, , are related to the speed of
light in free space, ¢, by €ou = ¢~2. The polarization, P, describes the macroscopic effect of the
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displacement of bound electrons in the presence of an applied electric field. Recognizing that for an '
arbitrary vector in 3 dimensions, V x (V x V) = ~V?V + V(V - V), and that E is divergence free,
V -E =0, we can rewrite (1.1} - (1.2) as a wave equation

3E 14%°P
c’V’E - 3‘7 = aw (1.3)

Because we are studying the degenerate case, the electric field has two distinct components: E,
for the pump field and E, for the signal field. The frequencies wp and w, satisfy w, = 2w, = .
Under the approximation of a linear dispersion relation (see equation (1.8)) and assuming there
is no phase-mismatch in the direction of propagation we have relations for the the wave numbers
k, and k,, k, = 2k, = 2k. Formally, our assumption that the field takes the form of two nearly
mono-chromatic modulated plane waves allows us to write

Ep = Ep(r,t)etilks-vtlk (14)
Pp= Py(r,t)edilk:-wtlk
E, = E,(r,t)eils-wtl
P,= P,(r,t)eiks-wtlk

Here k is the unit vector in the z-direction, r is the co-ordinate in the transverse plane, ¢ is time,
E and P are the electric and polarization vectors respectively and £ and P are the electric and
polarization envelopes. It is noted in [10] that from experimental evidence in a x{?) material with
N interacting electric ﬁelds', E; j = 1..N, an appropriate expansion for P';, the j-th polarization is
P; = Pj¢;k where

N N
Pigi=exV85+ Y xS EnEndmbn+ Y. XimnEmEndmén (15)
ma=l mn=1

with the phases given by

¢j = C‘(kj‘-wi.).

The tensors x! and x? denote the first and second order susceptibilities respectively, which
measure the magnitude of the nonlinear response of the medium at different frequencies. Higher
order terms, eg. the contribution from the x® tensor, have been neglected because for the materials
in question [x?| 3 |x3|. The polarization is expressed as a convolution over time of the susceptibilities
and the electric field, however, assuming that the response of the material is nearly instantaneous
this relation reduces to equation (1.5). With this general constitutive relation between E; and Pj,
we can return to (1.3) and (1.4) to derive the governing equations for the envelopes E, and E,.

The near monochromaticity assumption implies the phases of the signal and pump envelopes
have the form

b = e1'(&:--«.4&) and é' - ‘.'l'(kx-ut).
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These functions enjoy the properties

¢3 = ¢p and ¢p¢: =é,.
Taking1=s,2=pand N =2in (1.5) we can express the polarization for the signal field as

Pibs = cox(MVEuds + X3V E; Epds + X33 E26] + (33 + XG4 EL Bpd] +
S;;) Ezé‘ +X£§?E:E: + ng) E.El‘b‘ + anp E.EP

Here the subscripts indicate the fact that the susceptibilities are truly functions of w and the geometry
of the crystal - eg. xg,) = xg:) only when the crystal has a particular symmetry. Dividing through
by ¢, leaves only the first two terms with constant phase, all other terms are highly oscillatory in
time and will be neglected in what follows. Retaining only these resonant terms we arrive at the
following constitutive equations for the amplitudes of the polarization fields

P, = exVE, + x®E,E; {1.8)

Po= exME, +xE2.
Formally the susceptibilities are functions of the frequency, x = x{(w), but it is reasonable for the
frequency range and time-scale of these devices to take them to be constant [5].

Inserting these forms for E,,E,, P,,Pp, k, and k; into (1.3) we have
8E, Ak -uwi(1+xY)

kel ¢ 3
I e s X
; ow . .02 1 x® )
. S 1.
2eu(l+x1) BBy - i3a (%E' 2eou(l+x1)E’E: (L1
3E, ¢k —wi(1+xY) &,
& w(l+x) Bp+i Tt 1)v B

2a 2 20
x*w 0 X B
o ' (%E’+2(w(l+_x‘) )

Assuming a perfect cavity to be dispersionless gives rise to the linear dispersion relation
k= % T+x" (18)

derived by setting the coefficients of the first terms on the right hand side of (1.7) to zero. From
subsequent analysis it becomes apparent that the second order temporal derivative terms appearing in
(1.7) are insignificant at optical frequencies and may be omitted. With this additional simplification
and using the dispersion relation (1.8) equation (1.7) reduces to

3E, . C’ 2 x W

- =z f———3E, i F, 9
at '2u(1+x1)v' ) EpE;, (19)
8E’, - c’ 2 - 2‘&! 2

& - '4«.:(1+x1)v'E’+'2e.,(1+x1)E"
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The derivation of {1.9) has assumed a perfect cavity where no energy is lost out through the mirrors
and that the length is an integral number of wave-lengths. A more physically reasonable system ‘
is described by adding a linear damping and dispersion term to each of the above equations. The

damping comes from leakage out of the cavity over one period and the damping coefficients can be
expressed [4]

L
where T, and T, are the transmittivities of the mirrors at the indicated frequencies and L is the

transverse length of the cavity. Similarly the signal and pump detuning coefficients, 4, and §p, take
the form, [4],

T = and H=

§=w-w ad 4 =(wz—?w)%'-
?

where w; and w3 are fundamental modes of the cavity. In the application under consideration the
system is being forced at a frequency 2w with strength P. This leads to the inclusion of a constant
P to the driving field equation. With these modifications equation (1.9) takes the form

OE, _ . W . ;

5= ity V2Es + iy By Es — mE, 8, E, (1.10)
OE, . et . oy, .

# = IWV;‘:EP + lmEf ~ 2By ~ 16, Ep + P.

Notice now that the dispersion is determined by material properties of the system, not strictly of
the incident wave as in (1.7).

To properly scale the equations we introduce the dimensionless quantities

v = Yabp
%
-
V = la'{,E,,
2
T
s = Lp
Vab
Y
Ts
4,
A, = —,
' Ys
4,
A = 2,
? T
r = 1t
V2
P = —n
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where a, b are the coefficients of the nonlinear terms

25

. = X
2¢(1 + x1)’
xuu
e(l+x!)
We arrive at the dimensionless OPO equations
U 2 . .
y iV,U - (1+iA)U + UV, (1.11)
Fr- = 5V,V~(0+IA3)V+S-U .

in which 7 is time, p is the transverse spatial coordinate, A; and A; are the cavity detuning pa-
rameters, a is the ratio of the transmittivities of the mirrors in the cavity to the pump and signal

frequencies respectively, S is the normalized pump strength and I/ and V' are the normalized complex
amplitudes for the signal and pump fields.

These equations may also be derived in a similar physical device with an entirely different ge-
ometry - the phase sensitive amplifier [11]. In this context, one is concerned with the amplitude
as it changes in the direction of propagation. However, the focus is on a much faster time scale
and the so-called optical co-ordinates are used where the Laplacian is with respect to the temporal

coordinate (and is thus always in 1 dimension) and the first derivative terms are with respect to the
longitudinal spatial variable z.

1.4 Reduction to SPNLS in the large detuning limit

A consequence of using real mirrors and a real nonlinear crystal is that the pump detuning Az can
be moderately large [12]. It may at first seem counterintuitive that the pump detuning would depart
significantly from the signal detuning, but the geometry of the cavity is chosen so as to maximize
the output of a coherent signal frequency and while the w, = 2w,, due to the physical imperfections
of the system it is not necessarily true that wy ~ 2. Also, the detuning parameters ate inversely
proportional to the transmittivities of the mirrors at the respective frequencies.

In this thesis, we will consider the so-called focusing case, A; and Az > 0. Focusing is a common
occurrence in nonlinear optics. In the case of NLS, focusing is distinguished from defocusing by the
sign of the non-linearity. Depending upon the space dimension the focusing in NLS can produce (as
we shall see) an L™ blow-up. Generically, focusing systems concentrate mass whereas defocusing
systems equidistribute mass. In one dimension, the canonical solution to a focusing problem is a
sech, whereas for defocusing it is a tanh.
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In the case of large pump detuning, Az >» 1 (1.11) has been reduced (7, 13] to the parametrically
forced Nonlinear Schrodinger equation (PNLS). As we shall see, this reduction is adequate in one
space dimension but is not a faithful representation in two dimensions. We derive PNLS and a next

order correction - saturating PNLS (SPNLS) - which includes higher order dispersive and nonlinear
terms, as reductions of the full OPO equations.

From the assumption Ay 3 1 define

e= -
—A:.

In order to compensate for the dispersion in the pump signal, the pump strength must be increased
proportionally so that - ~ O(1). This leads us to introduce

7=

Az
Keeping with convention we redefine

a=A1.

In order to simplify the full OPO system in the large detuning limit we rescale U

1
U= 74 (1.12)
to form a rescaled version of OPO (1.11)
b = iV~(1+ia)p+ip"V (1.13)
V = i(¢*-v)+e (M + -;-V’V+iaV) .

It is clear from (1.13) that the large detuning limit is a singular perturbation. In such limits, it is often
the case that after a rapid initial transient the solution comes to reside on a sub-manifold. Numerical
calculations show that V' approaches the manifold rapidly for initial conditions |Valee €= } but that
it may not for very large initial data, see figure (1.2a). The form of (1.13) leads us to hope that V'
is functionally dependent on ¢ and thus make the following assumption on the form of V

V=W($) (1.14)
where the unknown function W admits an expansion
W =Wy + W, + O(e2). {1.15)
With V given by (1.14) the OPO reduces to a single equation which we call the outer equation

¢ =iV — (1 +ia)é + i"W(9). (1.16)
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The first order approximation W = W, recovers the PNLS equation, while keeping terms to second
order, W = Wy + eW,;, in (1.18) yields the SPNLS equation. The numerical evidence in chapter 2 '
indicates that the reduction of OPO to SPNLS is qualitatively accurate, even through the dynamics
of the saturating blow-up and subsequent radiation and oscillations. We remark here that (1.15)

is not a regular perturbation expansion of OPO, such an expansion would include terms for both U/
and V of the form

U = U+l +...
V = v+ i+

This method agrees with ours to first order, (for the derivation of PNLS (7, 13]), but produces a

pair of coupled equations for each subsequent order. Such a system is not amenable to the analysis
employed here (see chapter 3}.

We substitute (1.14) into (1.11) in order to determine Wy and W, as a perturbation series in
the order parameter ¢,

> z .
%(Wo + er) = ';‘ v (Wo +€W1) + % - %‘ - (0 + %) (Wo +€W1) . (1.17)

At O(1} we have the algebraic relation,

Wo = i(¢? —9). (118)
The equation at O(¢) is

a 1 R
EWU = %VzWo -QWo -IW1,

and a substitution for Wy from (1.18) yields

W = -%& + -;-V’é’ -a($’-1). (1.19)

At this point we can clearly see the form of all subsequent orders and write down a recursive definition
of W

o
W=Y W,

n=0

where

Wo = i8—1) (1.20)
War 1

Wa = i—-8-t—+-2-V’W,.-1+iaW,._l n>1l
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This expansion is formal and we may expect convergence only when ¢ and all ite derivatives are
uniformly bounded. An analysis of the importance of higher order terms at blow-up is given in
section 3.5. In figure (1.2a) we see the convergence to the manifold for various initial data V; -
Vo = Wo(¢), —Wa(¢),0 and purely random data. However, for large initial data {V| ~ O(L) the

solution does not converge. The convergence of the expansions of W in one dimension are presented
in (1.2b).

Exparammg o'W
e
w‘uu.uuv
-2 -‘L -4 -; L} 2 (] [ ] ;
(a) Convergence onto the manifold. (b) Convergence of W.

Figure 1.2: Agreement with the manifold

From (1.14), (1.18), (1.19) and the equation for I/ in (1.11) we can find the evolution equation
for the rescaled signal field ¢

-
e =iVip—(1+ia)p+¢° (iqs’ -y 4ie (‘%"*’%V""“"f" -a¢’)) +0(e?).
The equalities

a¢* ¢
]

_ 1,, (%)
Vgt = (¢v ¢+(8,) )

lead us, after dropping O(e?) terms, to a more familiar equation for ¢; PNLS with higher order
corrections,

6+ V2 o+ 1912+ (i~a)p—v¢" =
ic (<2l¢2 o +il6P V29 +i(4r)24° —70é° +alsl*¢) (1.21)
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All the terms on the right-hand side of (1.21) ate small except when ¢ is near blow-up in which _
case the quantities | (¢,) |, |¢¢| and |V3¢| dominate |¢]. Re-writing (1.21) by gathering like terms
we have SPNLS

ibe(L+26|) + V26(L+eld’) +16°6 + (i —a)p - 76" +e()?¢" =0.  (1.22)

A different formulation is obtained by dividing (1.22) through by (1 + 2¢/¢|%)

T C . P . I N )'e° _
et VT aeer T Tr2der T T oaer " TTw2aen T ieager -0 (1)
which is suggestive of the saturating NLS (SNLS)
. 2 6%
b+ Vi + =0 gL (1.24)

The SNLS equation has been derived as a regularization of NLS in many physical contexts - see [17]
and the references therein.

We also note that the case ¢ = 0 in (1.22) permits us to recover the parametrically forced
nonlinear Schrodinger equation

ite + V29 + (6% + (i - a)p — y6° =0. (1.25)

which has been derived not only as a model for the optical parametric cacillator but also for Faraday
resonance in water, parametric instabilities for plasma waves, the parametric generation of spin
waves and also magnetic solitons in ferro-magnets and anti-ferro-magnets (see {14] and the references
therein). PNLS has been studied analytically in [13, 14, 15]. Although much of the analysis for PNLS
is similar to that of NLS, it is not identical as the addition of the conjugate term means that PNLS
is not a Hamiltonian system.



Chapter 2

Numerical comparison of OPO,
PNLS and SPNLS

Although the OPO equations are naturally posed in two spatial dimensious, it is reasonable to
discuss the equations in one space dimension assumiag uniformity in the transverse direction or when
considering the phase sensitive amplifier. In the defocusing case OPO and PNLS have been shown
to be in good agreement [5]. The stability of pulses and fronts for the focusing and defocusing PNLS
respectively has been established [13] for a wide range of parameters for which the PNLS is a goed
reduction of the full OPQ. We compate pulse solutions to OPO to exact solutions of PNLS, and
compare atability properties of both systems.

For a discussion of the numerical methods used, please refer to chapter 4.

2.1 Exact PNLS solutions in 1D

Because NLS is well-pased in one spatial dimension, one would expect solutions of SPNLS, PNLS
and, hopefully, OPOQ to be well-behaved as well. Indeed, in this setting, SPNLS exhibits only small
quantitative differences from PNLS and so we restrict our attention to PNLS in one space dimension

2
2 TS+ (-0 - 3o =0 @.1)

as a reduction to (1.22).

Exact stationary pulse-like solutions to PNLS can by constructed from the form ¢ = f(z)e*
where the real-valued function f(z) and constant 4 are to be determined. Inserting this ansata into

12
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(2.1) we obtain the equation
af

o7 +34+(i-a)f —yfe ¥ =0. (2.2)
For both a and v real, we separate (2.2) into its real and imaginary parts producing two equations

d?

P -a+remti)f = 0, (23)

f(1+ysin20)= 0. (24)

The relation (2.4) implies that § = —3sin™" 1 which requires ¥ > 1. This inequality comes as
no surprise; it indicates a critical pumping strength necessary to overcome the damping. Indeed for
¥ < 1, it is easy to see that any solution to the initial value problem associated to (2.1) decays
exponentially to zero. With @ prescribed as above the equation for f reduces to

2
Hip-ass=n, (25)

where ay = a /37 - 1. The two values a; arise from the two branches of sin~!. Equation (2.5)
is easily solved under the conditions that limy f(2) =0, limeo ﬂ‘; =0andaz >0

f& =\/2assech\/azz,

thus the solutions to (2.1) are

b1 =e%1/2(a + /77— Dsech(y/a + /77 - 12), (26)

= correspond to ay. respectively with 4, € (-3 ,] and 0_ =0, + .

where 03 = -} sin™! 2

2.2 Numerical comparison of transverse OPO to 1D PNLS

By extension onto the manifold W, stationary solutions of PNLS yield approximate stationary
solutions of the rescaled OPO,

¢
v=1"
V = Wa(é)
= i(¢?-1).

The so-called down solution, ¢, can be shown to be unstable to perturbations [14]. The OPO shares
this property, that is solutions integrated from initial data U = &3, V' = i(¢2 — 7} decay to zer0
exponentially fast. The agreement between OPO for initial conditions of the form U = fﬁ, V=
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i(¢2 —v), and PNLS is quite good over a wide set of parameters. The amplitude of the up solution,
&4, to PNLS with parameter values a, ¥ is seen from (2.6) to be given by by \/26 +2y/4? - 1. Quite
good agreement to this is achieved by OPO as well, as seen in figure (2.1a). The exact solutions of

PNLS, ¢_, with amplitudes \/2a —2¢/4% = 1, are unstable and as OPO shares that instability no
nearby solutions are obtainable. The known stability of ¢4 [13] in the (a,4) plane is indicated by

. Agiuaten ity it sshaitrs of OFO) vt PULS Supily ngs of OFO ing LS
¥ - l Y — ¥ 2 r 18 T T T 2
i
ure
29 9 ]
mas. mam g, b
. '
1 org-g= 0 % ‘3# :
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Figure 2.1: Agreement with the manifold

the dashed lines in figure (2.1b). For 4 < 1 ¢ is unstable, for 1 <y < VvT+a? it is stable and
for ¥ > VI + a?%, ¢, is unstable and leads to roll solutions. To compare the stability properties of
OPO to PNLS we have numerically integrated OPO with various values of S and A; at fixed A3
with initial conditions
$1(1+9)
Uy = _'*'_72__
o = il¢}-v)

where g is a small ( max|g| < .01) random perturbation. The results of these computations are
summarized in figure (2.1b) where we see there is excellent qualitative agreement.

It is not only the amplitudes that agree well in the stable region, but the full profile. There is an
essential bifurcation for ¥ = vaZ + 1, in the over-pumped region, ¥ > V1 + a2, the most interesting
behaviour is obtained and the first qualitative differences between OPO and PNLS can be seen.
Taking as initial data a perturbed pulse for both OPO and PNLS, we can compate the two systems
as they evolve in time. We see that about the fixed central pulse two new pulses grow out on either
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side in a process we have (mis-)named Budding. The buds on OPO grow out from the tip of the
pulse akin to pulse splitting, while those for PNLS arise from the base of the central pulse and grow.

The comparison of pulse profiles and roll solutions for PNLS and OPO is described in figure (2.2).
Most. interesting is the fact that the OPO pulse does not bud locally but rather distributes some
mass all along the line first. In particular it takes longer for OPO to bud on a larger domain, which

is not the case for PNLS. In practice this might mean that OPO would not bud as the boundary
effects could become very important.

The long term behaviour for both systems is qualitatively the same - each develops a chain of N
pulses with the amplitude for PNLS given exactly by \/2a; and approximately so for OPO. Although
OPO can appear stable, the pulses jostle endlessly, but on a much slower time scale than PNLS.
These periodic solutions are really roll solutions as have been observed in the 2 dimensional case in
a different parameter regime. Close to the essential bifurcation one can reduce QPO to a modified
Swift-Hohenberg equation (4] so the rolis are perhaps expected. Once the roll state has been resched,
PNLS again captures the features of OPO very well. The rolls for both OPO and PNLS have very
similar amplitudes and periods. However, it is not clear that OPO would reach a roll state for other
than periodic boundary conditions, whereas PNLS seems quite happy to.

2.3 Numerical comparison of OPO to 2D PNLS and SPNLS

While in one space dimension PNLS is a reasonable reduction of OPO, in two dimensions, this

is not always the case. Figure (2.3) shows that PNLS exhibits blow-up for many initial conditions
and parameter values.

In contrast, we see in figure (2.4) that both OPO and SPNLS saturate even for the small value of

€ = 10~%. Notice that for this value of ¢ both and OPO and SPNLS closely follow PNLS well into
the blow-up stage.

Motivated by the numerical evidence of blow-up in the PNLS and that in the limit of lngé A,, OPO
follows PNLS for some time, we consider the blow-up in PNLS more carefully.
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2.4 Numerical analysis of blow-up in 2D PNLS

It is well known that solutions to NLS in more than 2 dimensions are self-similar and that they
are approximately self-similar in 2 dimensions [17]. Self-similar means that there exist functions f
and g and a profile P such that the function ¢ satisfying

#09= 7 (5)

solves NLS and moreover with lim;_,¢- f = 0 and lim_¢«g = 0. One observes the same form with a
small correction for approximately self-similar solutions

1 r
dr.t) = 7P (m) +O ()

Thus for self-similar problems we can concentrate on finding the blow-up rate, f(t), the spatial
rescaling g(t) and the profile P(p). It is well known for NLS that the spatial profile is determined
by the Townes soliton (section 3.2) which we denote R(p). Ignoring the details of the profile for
the moment, we can see that the solutions to PNLS do in fact approach the Townes near blow-up.
Taking the Townes as the spatial profile in the asymptotic limit, in figure (2.5) we plot % over
0<p<8with L= 80l o= § for various times approaching the blow-up - 10~* < L < 107%.

We can also clearly see that the blow-up rate is given by f = A\/ lgllogt™~H Plotting fi(t)|4(0, ¢)]

with
__A _ 4 [log|logt® —1|
fi=—7=—= and fr= A =50

against a scaled time 7 = log ,'—‘_‘ we see that I&gﬂl grows whereas '231-:%55:—‘-'1|¢(0, t)| approaches
a constant. In this plot |¢| ranges from 20 to 350000. For comparison we also include rescaled
solutions to OPO and SPNLS with € = 10~%. Here the central pulse regions agree well, but not the

distant behaviour.
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While the rate and profile for blow-up are the same for NLS and PNLS, initial conditions that
lead to blow-up in one do not necessarily lead to blow-up in the other. For instance, for a value of
4 = 1.2, and the commonly used initial conditions, ¢g = 4¢~"" PNLS does not blow-up while NLS
does. This effect is perhaps related to what is observed in stochastic NLS [16]

ide + V29 + |61’ +5(t)}¢ =0,

with § being a small random parameter, where blow-up can be arrested for moderate values of (§7).
As seen in figure (2.6) for large pumping, some small initial data can lead to blow-up in PNLS
whereas the corresponding solutions of NLS do not.
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Chapter 3

Analysis of the saturating blow-up

3.1 Review of focusing NLS in 2 dimensions

Numerical simulation in two-dimensions of elliptical and non-symmetric initial data suggest that
blow-up is a radial phenomenon, hence while working in two spatial dimensions we will consider only
radially symmetric solutions. For NLS the case of two dimensions is critical because for d < 2 there
is no blow-up and for d > 2 there is self-similar blow-up. Both numerical and rigorous analysis are
notoriously difficult in two dimensions.

We can study the blow-up in PNLS in much the same manner as in NLS due to their similasities
(section 2.4). There is much numerical and analytical evidence (see [17] and the references therein
and {26]) that the NLS equation

ide+Vo+1676=0 3.1}
$(r,t) = do(r)
possess approximately self-similar finite-time blow-up solutions in two space dimensions. Finite-
time blow-up in the context of NLS means there exists t* < oo such that a solution ¢ exists for
0 <t < t* but that lime_e ||§(r, t)[lcc = 0. It is easily demonstrated that strong solutions must

break down in finite time. The NLS equation has infinitely many conserved quantities, one of which,
the Hamiltonian, is defined in radial variables as '

B = (168~ J08) rar 3.2)

If we also define the variance as
v = [ 6P rar (33)

2l
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then a simple calculation shows that

‘%,‘f =8 H(t), (3.4)

but for a classical solution %’{- =0, and we can integrate (3.4) immediately to obtain

V(t) =4 HE? + V'(0)t + V(0). (3.5)

From its definition V(t) > 0; but if H = H(¢o) < 0 then we reach a contradiction. Indeed for
H(¢o) < 0 (3.5) implies that there exists a time t* such that V(t*) = 0 which contradicts (3.3).
Thus the solution must lose regularity before ¢ = t*. This is seen from numerical calculations as
lime—¢e )|é(2, -)lloo = 00 despite conservation of mass which implies limg_,¢« [|6(2, -JI|2 = ||doll2!

3.1.1 The Townes Soliton

Much of the analysis of NLS involves a special solution called the Townes soliton which is the
spatial component of a separable solution of the form ¢ = e R(r). The Townes soliton, R, is defined
as the positive, monotonically decreasing solution to

V2R+R*-R=0 (3.8)
R(0)=0
lim R=0.

r=x0

It can been shown, [18], that (3.6) has a unique solution given the constraints on positivity and
monotonicity. The Townes is important in the study of NLS because numerically it is seen ([17] and
section 2.4) that near blow-up solutions are roughly rescaled Townes solitons, ¢ ~ {-R(i-). As we
have already seen, this is true for PNLS as well. This is expected since the terms by which PNLS

and NLS differ are linear and are asymptotically weak blow-up where the nonlinearity and derivative
terms dominate.

For the Townes soliton we have two important facts: the Hamiltonian H(R) = 0 and for any
initial data ¢q the corresponding solution may blow-up in finite time only if [~ |do/*rdr > N
where we have defined N, = fo°° R3rdr. Also, using the Townes soliton one can construct an exact,
self-similar blow-up solution of the form

é(r,t) = ‘/1_“_.;&,-_1_.711(-,_) _

t* -t Ll |

This solution is unstable and is not seen numerically. Numerical evidence, [17], shows the splitting
of the pulse into two distinct pieces, ¢ = ¢, + $rad Where ¢, is the modulated Townes soliton and
érad consists of small amplitude dispersing radiation.
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Additionally it is known, (18], that R takes the form R = .—,‘7; with A, ~ 3.52, asymptotically
as r — c0.

3.2 Modulational approach to perturbed NLS equations

Following the analysis for blow-up in perturbed NLS equations by Papanicolau and Fibich [19],
we can construct an ordinary differential equation for the modulation parameter, L(t).

The overwhelming evidence is that near blow-up solutions to NLS have asymptotic form

_ )8 ifr<pl(t);
brad, else.

1 is
¢J ~ ZV(CIP)C )

where lime,¢e V = R, limey¢« L = 0 and p. is a constant. For the solution to the SPNLS equation
we take the form above with S = ¢ + f(p, L,L.), resulting in the ansatz

$a(r,8) = == V(C, p) € CHILLA, 3.7)

L(t)
withp = 1.'(%)7 and a,  and f to be determined. Inserting the ansatz in SPNLS we have

Le ; 1 ;
'( sz“' VCCH' VpPH" (Cc+fe))¢'3+51+za 5 (ve') + 3|V|2V¢s
U 7 O V.
i _IS__ iS5 -S| = .
+ (i a)Le LA +eF(Le) 0, (3.8)

where

F =2l¢1¢e + 161V 6+, ()4 (3.9)
represents the perturbation terms present in (1.22).

To balance the nonlinearity and derivative terms we choose @ = 1 and §; = 5. With these
scalings we return to (3.8) to determine f

(3V(+|VPV+V2V V) e|S+_(' G)VC'S 7V. .y
+( 1’;;; 2‘ * V;f f’) Vel + ( "pr-l-?zfp) Ve =0.

Demanding that the coefficient of the V), term be zero, we find that f = & L. The coefficient of
the V term becomes %p’ with 8 = =L, [3.
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Putting the completed ansata into SPNLS and changing variables, we get a PDE for V'
Ve + VIV =V 4 IVIPV + 207V + L{(i— )V — 7S

+L3%F (Me“) e S =0 (3.10)

L()
where
S=C+ L_ti.z’., (3.1)
6=z (3.12)
== L3 (3.13)

We assume that 8, ¢F and L? are small, and that to leading order V' is the Townes soliton. We
write V = R+u + iv + ol¢, 8, L?) for u and v real, and separate (3.10) into real and imaginary

parts. Under a quasi-steady state assumption (see Fibich and Papanicolau [19]) on u and v and find
at second order

Lou= -pi PR+ L*(a+ycos25)R ~ LR (F (%J’) e’ s) : (3.14)
L_v=—L*1+7sin25)R - (u)¢ — L3Q (F (E’;—)e‘ 5) e"'s) , (3.15)

where the operators £, and £_ are given by
Ly=Vi43R ~1 and L=V +R*-1. (3.16)
Because we are looking for radial solutions which decay at infinity, we impose the boundary conditions
Ou
'07((9 = 0) =0,
lim u=0,
P00
&
a_P(Cv = u) =0,
lim v =0.
pra0

Due to the quasi-steady state assumption, { appears only as a parameter in the forcing terma. We
assume u has the form

u~ Bg(p) +€h(C, p) + LUC, p) + 08, ¢, L7). (3.17)

Inserting this form for u into (3.14) and equating coefficients of ¢, # and L? gives the following
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equations for ¢, h and |

- _l 2 ) - : -
Lig= i R, ¢'(0) =0, ‘l_l.q.lu g=0 (3.18)
R\ .
Loh=-I'R (F (Ze S) ¢ '5) . BGp=0)=0, limh=0 (3.19)
L4l =(a+7cos25)R, 5 p=0)=0, ’l_i.lgl =0. (3.20)

Note that for h and [, { is a parameter which affects only the right hand sides. Although not
solvable explicitly, each of these equations can be solved - as will be seen shortly.

3.2.1 Solvability conditions

To be able to solve (3.15), we need a solvability condition. Working in a radial space
L}R4;R) = {f : (0,00) = (=00,00) | || ffl2 < o0, £'(0) = 0}
with the norm
<0
M= [~ firir
then the operators £, and £_ are seif-adjoint with respect to the inner product

(ho)= " fordr

and the following lemmas hold.

Lemma 1 Given
L f=Vf+RY—f= q(r) (3.21)

where R is the Townes soliton and q is a real-valued radial function then a solstion for f ezisis if
and only if

/:' Rgrdr =0.

ProoF. To determine the solvability condition for f, we need to determine the nullspace of the
operator £_. Recall that £_ R = 0. To look for additional components of the kernel we use variation
of parameters. Assume that v = u R and that £_v =0, then

2u,R,+Ru"+§Ru,=o.
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Solving this directly yields v = R [ ;jsds. But, recalling the asymptotic behaviour of R,
R~ 7’},& we see that v ¢ L3(R4;R) and thus ot in the kernel. As A(£_) = span{R}, the
Fredholm alternative requires that [;° ¢ Rrdr =0 to solve (3.21). *

To be certain that we can solve (3.18) - (3.20) we also must consider £,. Despite the claim of
Fibich and Papanicolau to the contrazy, [19],

%ﬁ-ﬂ: 0L R, = %—,
that is, R, is not in the kernel of £,.. To better understand the kernel of £, it is best to consider
the full two-dimensional problem and then look for solutions with radial symmetry. First we need
to construct some eigenfunctions of

# 10 18&
£$)=§r_f+;a_l: r—z‘wi‘:‘ﬂz—l. (3.22)

From the calculation above we see immediately that
£ (sin(6)R,) = L (cos(9)R.) =0

where of course R, sin(@) = B, and R, cos(f) = R, are the translational symmetries of the Townes
in two dimensions. A calculation substantively identical to that presented in Lemma 1 shows that
there are no additional separable solutions in A (l',g’). Eigenfunctions arise with symmetries in
equations - with R, corresponding to translational invariance - thus it is natural in two dimensions
to find R, and R, rather than R, in the kernel; only in one space dimension is R, = R, € N (£4).

Lemma 2 Given
Lof =V +3R - f=p(r)

where R is the Tounes soliton and p is a real-valued radial function then a solution for f erists

for all functions p(r) in the space L3(R4;R), that is there is no function v € L3(R4;R) such that
£+b‘ =0.

PROOF. An eigenfunction of £, in L3(R4;R) solves

Vi+(3R*~1lu=0 . (3.23)
v'(0)=0.

Although not solvable exactly, because R — 0 exponentially as r - co, we may reduce (3.23)toa
solvable problem asymptotically as » ~ 00,

Vi —v=0. (3.24)
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By comparison of solutions of (3.23) to those of (3.24) we have, by Sturm’s comparison theorem,
[21], that a solution to (3.23) can have at most one 2ero for r € (0,00). A simple calculation,

2R%v) = (L+Ryv)
= (RLy)

= 0 for v, asolution to (3.23),

shows that v is either identically zero or not sign definite and thus has at least one zero. Hence, if
a non-trivial function v solves (3.23), then v has exactly one zero. Without loss of generality we
take v(0) = 1; any solution bounded at the origin is then of the form av for some constant a. A
solution which is unbounded at the origin is clearly not in L2(R4;R) and needs no further attention.
To show that there is no solution to (3.23} with v(0) = I we we consider a hybrid numerical proof.
Defining polar co-ordinates

v(r) = p(r)cos(8(r})) and ¢/(r) =p(r)sin(é(r)),
from (3.23) we have a differential equation for &{r)

L = 10,7) = (1~ 3R cos’(9) -

td

ms(o):in(ﬂ) ~sin®(9), (3.25)

from which we have

1. when v=0,8 = §( mod 7), and £ <0,

2. when v' = 0,0 =0( mod #), and 4 has the same sign as 1 — 3R2.

Additionally (3.23) gives a differential equation for p(r)

. 2
:_': = (sin(a) cos(8)(2 - 3R%) - ’";r@) X (3.26)

Hence the third quadrant is positively invariant under (3.25) whenever 1 — 3R? > 0; thus if
3R?-1<0,v<0and v <0 simultaneously then vv/ > 0 and v? is strictly increasing. Defining r;
such that v(r;) =0, r3 such that 3R?(rs) — 1 =0 and r* = max(ry, r;) then we need only integrate
(3.23) numerically to r = r* and check ail the negativity conditions. Performing such an integration
shows that the conditions are met, thus lim,_, u(r) = —0o and v ¢ L3(R4;R). ' *

Additionally, from (3.25) we see that in the limit r - co, the steady state solutions are 8 = 5F
and 3£, with § = 3} being stable and § = 3¢ unstable. {We need only consider limiting values of
0 € (%, %) 28 6(0) =0 and we have shown v has exactly one zero.) Equation (3.26) shows that for
r» 1, o ~ psin(20), thus when § ~ 2£, o ~ p and v has exponential growth, but when § ~ 37,
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¢ ~ =p and v decays exponentially. For r < resie ~ 1.4575 the third quadrant is not trapping and
it is possible for solutions to enter the fourth quadrant. In figure (3.1a) we have plotted (3.25) for
P = Pie and r = 00. Because all solutions to (3.23) which are bounded at » = 0 are linear multiples
of the solution seen in figure (3.1b) the unstable fixed point must correspond to a solution which is
not bounded at r =0 and thus not in L3(R4;R). Note that if (reric) > ferie ~ 2.7971 then 6 — £
as r = o0. Numerically # > # ¥ r > 0, so we are never even close to the unstable manifold.
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Figure 3.1: Phase plane analysis of £L4v =0.

Because we can solve (3.18) - (3.20), the solvability condition, f:’ Rprdr = 0, applied to (3.15)
yields a differential equation for L(t)

[ " (98¢ + e + (LU)¢ + L*(1 + vsin 2S)R + eL3Q (F(Yr)e™*°)) Rrdr = 0. 327)
0

In the following sections we simplify and analyze (3.27).

3.2.2 Useful Integrals

In order to apply the lemma from the previous section we need to evaluate integrals involving R,
Rg, Rh and RI. We begin with identities for the Townes soliton. Taking the inner product of (3.6)
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with rR/
o0 00
0=(V’R+R*-R,rR) = [m(rR')(rR')'dr +/ R’R’r’dr-/ RR'ridr,
] [} )
and integrating by parts we obtain
l 00
= fw Rirdr= / Rrdr. (3.28)
24, 0
Similarly, taking the inner product of (3.6} with R yields
o0 00
0=(V’R+R*-R,R)= f“ (rR') Rdr + / Rrdr - / Rrdr,
a 0 ]
using (3.28), and integrating by parts we derive

/0 " (R)irdr = ]o " Rirdr. (3.29)

Because the equations (3.18) - (3.20) all have a similar form, we consider the following general
lemma.

Lemma 3 Forc € L3, if f solves
Lif=c¢
then f satisfies

j:n Rfrdr:juwc(R+R'r)rdr.

PROOF. Direct calculation shows that

Ly(R+Rr)=2R

thus
Af,R)={f,.L4(R+ R'r))
however, £, is self-adjoint, hence
2Af,R) = (L+f.R+PR'r)
= (¢,R+R'r)

or,

j:n Rfrdr= %j:o ¢(R+ R'r)rdr.
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* -

Even though we cannot solve (3.18) - (3.20) exactly, with this lemmain hand we are well on our
way to writing down a modulation equation from the condition (3.27) because all that is required
are integrals of the solutions to (3.18) - (3.20) and R.

Using lemma 3 with ¢ = —{Rp? and f =g we have
© 1l
/ Rgpdp =3 fx c(R+Rip)pdp
0 0
=- %f R(R+ R'p)pdp
0

=1 2,3

=3 /: R'p’dp
Similarly, with ¢ = (a + 7c0s(2S))R and f =1 we have

j; Rlpdp = % fo (a +7cos(25))(R? + RR'p)pdp. (3.30)

Lastly, taking ¢ = —L3R (F (§¢%) e~'%) and f = h we have

j: Rhpdp = --;-La fnw R (F (%e‘s) e""’) (R+R'p)pdp (3.31)

for any perturbation F. There is still much calculation to be done, but all the heavy lifting is
complete. We are ready to state the evolution equation for the modulation parameter L(t).

3.3 Modulation equations

Recognizing that g = L7, we can evaluate each term in (3.27) (see Appendix A) to obtain
an ordinary differential equation for 8. Combining this with the definition § = —L3L,;, we have a
system of equations describing the evolution of the modulational scaling factor, L

n=-5 (3.32)
ey 3 (10 ) v - (e o)),
where the constants above are given by
N. =[5 RPpdp =1.8612

L =10@N.+3[; Rpdp— [5 (RR)pdp~ [° R(R'\’p*dp) =43.1789
L =} Rdp =.2784
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and the functions J,, by

o0
J= j sin (25) R*pdp il < Ne
4]
Jy= / cos(2S)R*pdp [al < N
0
oo
Jy= / cos(25) B24° dp \Js] < 813
0
Recall that
2
=+ L,
1
7l

g0 (3.32) is really a nonlinear integro-differential equation with the integral term 75 buried in
integrals of trigonometric functions.

A number of things can be gleaned about these ODE's before we attempt to integrate them.
First notice that the dispersion coefficient a does not appear in (3.32) as it multiplies a conservative
term. Also notice that the unpleasant terms involving the integrals J,, all arise due to the forcing
term. Inspection of (3.32) shows that there are no steady states, that is there is no combination of
L and B such that L., L; and ; are all zero. Now, lets consider two special cases.

3.3.1 Unperturbed blow-up

For PNLS, € =0, and as L —» 0 we have that §; ~ -%. Here we have assumed that the integral
terms, J;, are adequately oscillatory (they contain cos ([ 7r)) to be neglected. This reduced system

b = -5 (3.33)
ﬁ‘ - r:
can then be solved. Integrating the second equation of (3.33) gives
ﬂ - po - [‘t
Assuming that lim;_,¢. 5» =0, then near the blow-up time t* we can approximate, 8 ~ 8° with
=g N
F ‘ﬁ - [2‘ .
Now we can solve the first equation of (3.33)
Lie=- il
L= -t

/4
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where t* is the unknown blow-up time. This is a reasonable estimate and is similar to the rates
previously calculated by Malkin [20] and Fibich {19] for blow-up in NLS. Inspection of figure (2.5)
shows that this rate is sensible but too slow. A more detailed analysis shows [19] that the rate of

blow-up for NLS is actually
[log | log(t* — t)]
L~A =1 .

As was seen in section (2.4) this appears to be the correct rate for PNLS also. This logarithmic
correction is very subtle and was obtained many years after the initial work of Fibich, Malkin,
Papanicolau and others. It requires a detailed analysis of the matching of the central pulse 4, to the
distant small amplitude solution ¢ys¢. This rate is obtained by adding a correction term to (3.10),
working in a dimension, d, greater than 2 and taking the limit d —+ 2+. It is not clear what, if any,
effect the conjugate term in PNLS has on the rate of blow-up. A detailed numerical study of this
effect has yet to be undertaken.

3.3.2 Saturating blow-up

In the case where ¢ > 0 and L <« 1 we can ignore all but the first term and consider
Lu = —— (3.34)
B = ki3

where k; > 0 not related to k; above. Integrating the second equation in (3.34) gives
£k1 1

=7
with k2 > 0. Using this definition for 3 in the first equation in (3.34) determines an ODE for L

eky 1k
Ly = ST (3.35)

+ k?v

which permits a Hamiltonian formulation with energy

Ekl 1 kz 1
ST
such that ¢ =0. Writing (3.35) as a fizst order system

afe] [ L
@] (4h-h

we see that there is one fixed point
(L| Ll) - ( 2—k;:o) t

WL, L) = 5L -

™
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which from the Hamiltonian formulation is clearly a center. At this stage we could calculate the
period and the magnitude of oscillations given k2 and #,. However, neither #g nor k3 is known a

priori and neither may determined from the PDE. Instead we will take comfort that |[¢]|e = lTI.—.
scales no worse than /€.

Truly we do not have a Hamiltonian system; adding in just the dissipative term from (3.32) we
consider

e = -5 (3.36)
L N,
B = le-[l-g,--l—:»

Integrating the second equation of (3.36) and using the definition of 3 gives the forced equation

€ky 1 ko~ kat
Lu = -2—Zg - -——La——. (337)

Hence there exists a time ¢* such that ¢ > t* = Ly > 0, which implies limg_, oo L = 00.

3.3.3 Comparison of SPNLS and quintic NLS

It is woethwhile to note that the quintic NLS equation
ide + 4179 + V36— e|g|% =0

gives, to leading order, the same modulation equations as above,

Le = —'["3‘
Ly
/3; = Ck*L—s

with & > 0. Quintic NLS is known to exhibit saturating blow-up in the limit € — 0+ {17]. In fact,
returning to SPNLS,

ide(1+2€61%) + V26(1 + lg%) + 198 + (i — a) ~ 70* +¢(9,)* ¢* = 0.
dividing through by (1 + 2¢(¢|?) and then expanding in powers of ¢, to O(¢) we find

i6e + V20 + 616 + (i — a)g — 16" + e((¢:)?¢" — 2l - |6I’V?¢) = 0. (3.38)
Certainly this is suggestive of the quintic NLS but the effect of the additional derivative terms is not
immediately evident. But, after calculating the contribution of these different perturbations, it is
evident that near blow-up SPNLS is, to leading order, indistinguishable from the saturating quintic
NLS equation. Because this method is applicable to a broad variety of perturbations it is simple

to compare SPNLS to other equations, such as the quintic NLS or equation (3.38). Presented in

table (3.1) is a comparison of the contributions of 3 different perturbations which are seen to be
very similar in the modulational context.
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Equation Perturbation Coefficient of c%}_
SPNLS | F =264, + |62V%6 + (¢¢)° ¢" 43.1789
(3.38) | F=-2l" - [6]°V?é + (d,)’ ¢° 42.1070
Quintic NLS F = -|¢i% 40.1582

Table 3.1: Compatrison of perturbations.
3.4 Simulation of the modulation equations

One unfortunate fact about this modulational approach is that it provides only intermediate
asymptotics. That is, given an arbitrary initial condition one cannot immediately predict its evo-
lution. Instead we have a method to examine limiting behaviour assuming a number of conditions
are reached. The full PDE problems considered in this problem are very complex and do not easily
permit a simple reduction. [t is perhaps surprising that any agreement is achieved between the
modulation equations and the full PDEs at all - any agreement is only qualitative. The modulation
equations predict blow-up when the PDEs blow-up and saturation when the PDEs saturate. How-
ever, in the saturation regime, the amplitudes, periods and attenuation factors agree at best to an
order of magnitude. In figure (3.1) we provide some typical solutions of (3.2).

| — v v -T'“".'u v - Sayuing coclipomg; 1"
r 1 =
*E’ 1 Ly
=
i1 {i

4 1'1H1 |

!

3

!
§

Figure 3.2: Integration of the modulation equations.
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3.5 Convergence of higher order approximations to OPO

We now find conditions on the amplitude, L, such that the asymptotic expansion for W is
convergent. It is important to recognize that even an exact solution for W still yields an equation
which is only an approximation to QPO as we have assumed that V{r,0) is found, when it is really
presctibed.

For an approximate solution to QPQ of the form

¢ N
U= 7 V=3 eWalg)

n=0

we have an evolution equation for ¢

N
b+ PO+ VI +(i-a)p—16" +6' Y Va=0

n=!

where

Wo= ¢ =1) Wo=igWaor+ 39 Waoy +iaWaot n> L.

Assuming that we are near focusing then the amplitude, E?l, is sufficiently large that the corrections
to PNLS are important we write L = ¢? so that

1
I¢|~e_-° p>0.

From the temporal and spatial scalings derived in section (3.2) we see that

1 1 1 , 1
¢2 ~ =2 |¢|2¢ ~ 6—3;’ v2¢ ~ ot (l - ¢)¢ ~ C-”
.1 1 1
W~z W~ and Wa ~ HZWn-1
thus
. 1
é e‘wn ~

P(Ind3)=n"
The relative importance of each additional corrective term is (multiplying through by €**)
EEWa _ (1-pn
43¢

Hence, as ¢ = 0% or as the solution focuses, each additional correction becomes less important and
we are led to believe that even in saturating blow-up the expansion (1.20) converges, given that
L{0) > €¥ and that all the derivatives of ¢ remain bounded. Furthermore, if L(0) 3 ¢} we would
expect L(t) > et for all time.



Chapter 4

Numerical methods

In this thesis 5 distinct numerical problems have been considered

1. Integration of smooth solutions to OPO and PNLS in 1 and 2 dimensions.
2. Integration of blow-up solutions to QPO and PNLS in 2 dimensions with radial symmetry.
3. Generating the Townes soliton profile over all space.

4. Evaluating integrals over all space of powers of the Townes soliton, it’s radial derivative and
the spatial coordinate.

5. Integrating the modulation equations.

The first two problem posed the most challenge, demanded the most effort and were the most
instructive - a brief discussion of the last three problems is included for completeness.

4.1 The split-step Fourier method

Split-step methods are used to solve a wide variety of problems which take the form

w = Ly(u)+La(u) (4.1)
u(0) = wug

That is evolution equations with two (or more) distinct characters such that the separate problems

ve=Ly(v) and w=Ly(w)

36
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are much easier to solve independently. This type of splitting can be dimensional (as is often seen
in fluid dynamics problems [22]), with the simplest example being

d 8
51—8—2' and £2-5y-'

Or the splitting might be done into linear and non-linear parts to exploit the easy solution of the
linear piece - a3 has been done in this thesis. The method of solution then proceeds by solving the
separate problems sequentially. Formally denoting the solutions to the sub-problems as

o(t) = elo Su(0)  w(t) =els S2u(0)
then a solution over one time step, At would be obtained in the following manner

u* = e““‘ua

u(At) = 62y

When using any splitting method we introduce a splitting error; this is an error due strictly to the
splitting and cannot be overcome by solving the sub-problems more accurately. When the operators
L1, L3 commute then this method introduces no splitting error. Otherwise, it introduces a first-order
splitting error. A better splitting due to Strang introduces a second-order splitting error - as we shall
see. For the problems under consideration here an n-th order error is one proportional to (At)",
where At is the time-step. "

4.1.1 The split-step Fourier method for NLS-type equations

Both the OPO (1.11) and PNLS (2.1) equations may be written in the form
ivi+ Vv +av+ N(v) +F =0 (4.2)

where the vector v = u in the case of PNLS and v = (U, V) for OPO. N is the appropriate non-
linearity and F is the constant forcing term. When smooth in time and space over the time period
of interest, problems of this type are amenable to the split-step Foutier method. The method and
its analysis are identical for both OPO and PNLS, but for the sake of both brevity and clarity only
PNLS will be discussed. Splitting into linear and noo-linear pieces, we can solve PNLS via the
sub-problems '

ive + Vv +(i—au=0 4.3)
iwg —yu' +|wlw=0. 449

This splitting is advantageous for two reasons: the linear equation (4.3) can be solved exactly and
the non-linear equation contains no spatial derivatives. This second point is particularly important
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because it means that the splitting does not introduce any errors related to boundary conditions.
Equation (4.3) may be solved exactly by taking the Fourier transform (hence the name)
¥ = Flu)
ity — (k2 —i+a)i =0
#(t) = e-t(1Hilk*+al)g(0)
or u(t) = F-1 [¢-=(l+-'(*'+°nf[u(0)]] . (4.5)

Because it contains no spatial derivatives, (4.4) may be solved with your favourite time integrator.
All calculations presented in this thesis were done using the fourth-order Runge-Kutta method.

4.1.2 The Strang splitting

Solving each of (4.3) and (4.4) sequentially over a full time-step At yields a method that is first
otder accurate in time when at least a first order method is used to solve (4.4). A more intelligent
splitting, due to Strang [23], involves solving one problem over half a time-step on either side of
solving the second problem. Returning to the notation of the model problem above, we would have

L= el ﬂa‘ Sy
ug = ek ‘°u§
u(At) = NN '

Writing the exact solution to (2.1) as u = f+ig for real-valued functions f and g and the approximate

solution as the vector u = (f1, g1, f2,93, .., fN, gn), where u; = (f;, ;) is the approximate solution
at z = n Az, we can write our problem in the form

u =(4+ B(u))u (4.6)

where A is the 2N by 2N matrix representation of the solution to (4.5) and B is composed of N
2 x 2 blocks along the diagonal with the j-th block having the form

B_=[-yff:' -7—9,3]
Tl b

Because PNLS has the form (4.6), it is useful to consider the following lemma.

Lemma 4 Given a system of ordinary differential equations of the form

u =(A+B(u)u,



4.1 The split-step Fourier method 39

where A and B are square matrices with A constant and B continyous in all its arguments and initial
data

u(0) = ug.
the solution at t = At by the Strang-splitting
U=c¥w (4.7)
where w is the solution et t = At of

w; = B(w)w
w(0) = e¥4u,.

is second order accurate in time. TRat is, the local difference between the approzimate solution U,
and the ezact solution u(At) can be bounded

U - u(At)j} < kAL

for some k independent of time.

PRrOOF. Given initial data at time ¢ = 0 we solve for U the approximate solution to (4.6) at time
t = At in the following manner

w = Ay (4.8)

o= (-3 B (49)

U = ARty (4.10)
Where

B* = B(u*)

B = Bu™)

To understand the convergence properties of this splitting, we need to compafe the approximate
solution U to u; = u(At). We can solve (4.6) formally by integrating

u —ug = / " (A+ B(u)) uds. (4.11)
Denoting

By = B(uy)
By, = B(u,)
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and approximating the integral in (4.11) with the trapezoid rule we find an implicit representation
for u;

t
w-ue = (A4 B)m+(4+ Bo)u)+ (AP

w = (- % (A+B)) ([ + 921 (A+ Bo)) uo + (Atfey (4.12)

where e; are errors whose magnitude is independent of At. In all further calculations, e will indicate
an arbitrary error vector with magnitude independent of At. The local truncation error
E= u - U, (4,13)

is defined as the difference between the exact and approximate solutions at t = At. It is our goal
to show that |E| ~ O(At)3. Because u; has only been calculated to O(At)3, all terms on this order
will be lumped into an unknown vector e. The only thing known about e is that it is independent
of At. Showing that it is truly order 1 will require a more involved analysis for each particular A, B
and u;. It is in this subsequent analysis that any time-step restrictions will be made apparent. For
now, it is assumed At has been chosen such that all the formal manipulations are legitimate.

Expanding (4.13) using (4.11) - (4.10) we have
w-Us [(1- %(A«-m))-l (1+%i(A+Bo))

-eAY (I- %t-B")-1 (I + %B‘) A ¥+ (At e
A?

4
~B™ (B +B" +A) - A(B" + B**) - (B" + B} A)juo + (At)%

w-Us= [%(Bo +B,-B -8+ 3 (44 B) (B + BY)

This [eaves two equations which require more careful consideration. At O(At) we have
(Bo = B* + B, - B**)Jug =(2B; - 2B* + V By(u; - ug) - VB**(u** —u"))us + At’e
= —2VBi(u; —U) + VBj(u; ~ug —u*" —u") + [Ej*e; + At’e;
Recalling (4.9) - (4.13) we have that

u-u” =y -e¥4y
At .
=E+ TAU'PA! e
u-u' = u -y
At 2
= —A—2—uu +At*e

= -A-Aéiul-l-At’e
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thus,

(Bo - B®* + By - B*)ug = (~29 By(E) + V By{{ - % A)E))up +Atle
= -VB(l+ %A)E+At2e.
At O(At)? we have
(A+B\)(Bo+B\)-B" (B +B*+A)-A(B°+B")~(B*"+B")A

= A(By ~ B*) + A(B, ~ B**) + (B, By -~ B** B*)
+(B}-(B")®>)+ (2B, ~(B* + B™)) A.

But, from the definitions of the B matrices, the norm of each of these differences is O(At). Thus
[B] <At (VB + 5 AlIElJudl + Al

As, [VB,|,|A], |uql, |e] are all independent of At we have that
|E| <k Af3 (4.14)

for some real number k. k will be dependent on A, B,up and how (4.9) is approximated. *

4.1.3 The split-step Fourier method in practice

The Strang splitting is particularly useful for this problem as the two Fourier transforms at the
end of one step and beginning of the next can be collapsed together

F1 [e--'gx(m(k’m) F [}-1 [e-qmﬁ(k’nn f[U"]]]] =F1 [C-At(1+i(k’+a)) }'[U.]] .

This explains why this method enjoys such wide use; a 2nd-order method in time with spectral
accuracy in space is obtained for the price of a first order method in time. The work is on the order

of O(nlog(n)) floating point operations work per time-step to solve a nonlinear parabolic problem,
with a very generous stability constraint.

To achieve second-order accuracy we need to solve the nonlinear problem with at least a 2nd
order method. A higher order method may at first seem wasteful because we will never surpass
the second order splitting error, but higher order methods are also often more accurate. Through a
process of trial and error it was determined that a fourth-order Runge-Kutta step was well-suited
for the problems under consideration. Any method higher than second order results in primarily
splitting error. A third-order Runge-Kutta method also works well, with a marginal speed gain over
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the fourth order method. Higher order methods require more work and provided no visible benefit.
Lower order methods, while cheaper, require a smaller step size for comparable accuracy and may
turn out to be more costly overall. This situation depends upon the FFT algorithm used - a faster
FFT would reduce the cost of the increased steps and make a lower order method such as midpoint

more desirable. Another attractive aspect of this method is that the most work intensive aspect of
each step, the FFT, is naturally parallelizable.

All problems were solved on a physical grid £ € (—L, L — Az] where Az = 3£ for an integer n.
For computations presented in this thesis typically n = 10 was used with At < .005 and L = 20.
Periodic boundary conditions were used to fully exploit the speed of the discrete Fourier transform.

To test the convergence properties of the method, we considered the following one dimensional
model problem

ibe +icds + oz + |00 + (i ~a)p—76° =0
¢(01 3) = ¢+(=)'

This problem has the exact solution

8(z,1) = b(z - at),
with ¢, as given by (2.6).

Presented in tables (4.1) and (4.2} are convergence tesults for the test problem when using
2! modes for the discrete Fourier transform. From these tables we can clearly see the 2nd_ order
convergence as halving the time-step results consistently in reducing the error by a factor ~ 4. It
is also clear that the RK4 method is more accurate for this problem than the midpoint method
and that the midpoint method is unstable for the largest time-step, dt = .4096. For all runs the
parameters a = 1, ¥ = 1.2 and ¢ = 2 were used. Solutions were integrated fromt =0 to ¢t = 10.24
on a physical domain z € [~40, 40]. The rate is computed as

error,
Ratey = logy (crror,.i;) "

The cpu times quoted are for a Sun UltraSparc5.

All of the above comments of course also to 2 space dimensions, except instead of operations on
vectors we have operations on matrices. In 2D, especially for OPO, using midpoint for the nonlinear
term becomes more attractive when using many modes as it has a smaller memory requirement.
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time-step | cpu time (s) | L™ error L3 error | rate
0.00010000 | 306.46922500 | 4.639613e-08 | 3.824585¢-16 | 3.9985
0.00020000 | 152.00974700 | 1.854452e-07 | 6.112852e-15 | 4.0003
0.00040000 | 75.44252900 | 7.420137e-07 | 9.782635¢-14 | 4.0010
0.00080000 | 37.98832700 | 2.970582e-06 | 1.566332e-12 | 4.0021
0.00160000 | 18.87134600 | 1.190276e-05 | 2.509735e-11 | 4.0040
0.00320000 | 9.50189400 | 4.777261e-05 | 4.026846e-10 | 4.0077 |
0.00840000 | 4.71509300 | 1.923509e-04 | 6.477285¢-09 | 4.0137
0.01280000 | 2.37604900 | 7.739887e-04 | 1.046283e-07 | 4.0217
0.02560000 | 1.18103600 | 3.185265e-03 | 1.699476e-06 | 4.0245
0.05120000 | 0.59608700 | 1.319501e-02 | 2.765769-05 | 3.9913
0.10240000 | 0.29687500 | 5.482162e-02 | 4.308699e-04 | 4.2210
0.20480000 | 0.14941400 | 3.084420e-01 | 8.207983¢-03 | -
0.40960000 | 0.07617200 o o -
Table 4.1: Ecrors with 2!' modes using the midpoint method.
time-step | cpu time (s) | L™ error L% error rate
0.00010000 | 484.11483400 | 1.447775e-08 | 4.138145¢-17 | 3.9967
0.00020000 | 240.77233300 | 5.769912e-08 | 6.605954¢-16 | 4.0053
0.00040000 | 119.91713600 | 2.309410e-07 | 1.057316e-14 | 4.0012
0.00080000 | 60.14365400 | 9.242028e-07 | 1.696386e-13 | 4.0033
0.00160000 | 29.97760500 | 3.699925e-06 | 2.726822¢-12 | 4.0067 |
0.00320000 | 15.04738800 | 1.48237%-05 | 4.403033e-11 | 4.0132
0.00640000 | 7.49466800 | 5.947750e-05 | 7.171500e-10 | 4.0257 |
0.01280000 | 3.76171100 | 2.392064-04 | 1.186753e-08 | 4.0486
0.02560000 | 1.87750800 | 9.646452e-04 | 2.015716e-07 | 4.0862
0.05120000 | 0.94314000 | 4.299738¢-03 | 3.532291-06 | 4.1312
0.10240000 | 0.47028700 | 2.025473-02 | 6.197169e-05 | 3.9302
0.20430000 | 0.23632800 | 9.534018e-02 | 9.446841e-04 | 2.3233
0.40960000 { 0.11914100 | 1.994187e-01 | 4.720481e-03 | -

Table 4.2: Errors with 2!! modes using the RK4 method.
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4.2 Moving Mesh methods

Although accurate, simple, and fast, the split-step Fourier method cannot solve problems with
blow-up. Without special re-gridding as the solution focuses, it is impossible to keep a reasonable
resolution. A static rescaling of the problem near blow-up is possible but not nearly as efficient as
dynamically adaptive methods. In the case of PNLS with ¢q = der’, v = 1.2 which, as seen in
figure (2.2), does not lead to blow-up, excellent agreement was achieved between integration with

the split-step and moving mesh methods, Sadly, due to excessive temporal and spatial gradients no
other cases could be reasonably compared.

For the blow-up and saturating blow-up problems the package MovCol [24] was used. The basic
premise is to use the method of lines and require the spatial discretization to evolve with the solution
by equidistributing a specified monitor function, M{z,¢) in the manner

zi(t) L
f M(z,1)dz = f M(z,t)dz.
0 ]

This requires solving a PDE for the mesh as well as for the solution on that mesh. It is a lovely idea
as it puts the grid points where they are required (provided you have a good monitor function!).
Moving mesh methods have been employed successfully for many problems with blow-up [24, 25, 26]
when fixed grids are wholly inadequate.

4.2.1 Choosing a monitor function

The key to moving mesh methods is in the choice of a proper monitor function.

Consider figure (4.1), what is most disturbing is that this figure shows the evolution of time of
PNLS with the same initial condition, ¢g = 5¢~"", computed with sensible parameters and sensible
monitor functions. In fact three of the monitor functions have been shown {26] to preserve the scaling
invariances present in NLS near blow-up. Both M = |¢] and M = \/[¢[* + 2[¢,[? have been used
successfully to compute self-similar blow-up soiutions to NLS in {26]. From numerical experiments
in appears that monitor functions with any radial derivative dependence can develop, (due to the
influence of the conjugate term), a mesh disaster, that is too many points cluster in regions of small
amplitude oscillation and then the solution is lost. In figure (4.2) we see the tracking of spurious
oscillation near blow-up using an arclength monitor function for PNLS whereas for NLS this monitor
function was able to follow blow-up in NLS uatil || ~ 10°, at which point the time-integrator failed
due to error tolerances and a smooth solution was returned.
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Figure 4.1: Comparison of monitor functions.

This highlights, for me, the great strength of adaptive methods - they not only focus on particular
aspects of the solution but ignore others as well. The solution with A = |$|? simply did not see any
radiation or noise. All computations in this thesis involving blow-up were generated using M = |9|°.
All saturating computations were done using M = |¢| which for a suitable number of mesh points
was able to track blow-up solutions to ¢ ~ 10* - well beyond the saturation level. M = |¢| was
used because it was typically 10 — 20 times faster for the same problem as M = [$|? due to the
smaller grid spacing near the peak and the subsequent added stiffness.

4.2.2 Computational Parameters

Because both OPO and PNLS are noisier than NLS, and there was some concern about bound-
ary effects, test problems were solved on the grids r € [0, L] with L = 10,20 with both Dirichlet
and Neumann conditions. One exception to this is for the V' component of OPO where Neumann
conditions were used exclusively. No significant difference was noticed between using Dirichlet or
Neumann conditions for solutions with blow-up. For saturating blow-up and large values of ¢, a
difference can be seen when the solutions have meited enough that mass approaches the boundary.
Because the problem has radial symmetry, all problems were solved with all components having a
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Figure 4.2: Spurious oscillation.

Neumann condition at the boundary. Solutions with blow-up were computed on r € [0, 10] and
saturating solutions on r € [0, 20].

MovCol (25] is a highly customizable code with many user-specifiable parameters. In all runs the
spatial smoothing parameter was taken to be ip = 5, the temporal smoothing was chosen r = 10~*
and the relative tolerance for the time integration was chosen rtol = 10~%. While a small absolute
tolerance is desirable for accurate solutions, setting it too stringently can require an excessively small

time-step near blow-up. The absolute tolerance, atol, was decreased as |¢| increased in the following
way

10-¢ if [¢] < 10%,
atol ={10-¢  if 10* < |¢| < 10°
10-4  ifig|>10°

For the solutions without blow-up the tolerances were set: rtol = 10~%, atol = 10~%. For
problems with blow-up, N = 101 spatial nodes were used and for saturating problems, N = 141.
Adjustment of these parameters did not give rise to significantly different solutions.



4.5 Shooting the Townes 47

4.3 Shooting the Townes

The Townes soliton which plays a central tole in the theory of blaw-up of the nonlinear Schrodinger
equation can be stated as the solution to

R"+§R'+R°-n=o

R{0)=0
lim =0

L l--1

r<oo=> R(r)>0,R(r) <0

Despite no closed form representation much is known about this solution, for instance for r 3> 1 =»,
R~ 7?;7, whete A, ~ 3.52.

Formally the definition of R represents a boundary value problem, and with the asymptotic
behaviour of R known, even a solvable one. However boundary value problem solvers are often
delicate requiring a very good initial guess. To construct this guess a shooting method is often used.
This turned out to be adequate. A shooting method was implemented in MatLab that continued
the solution on increasingly larger intervals until a positive, monotonically decreasing solution was
obtained on r € {0, 15]. This was done by using a boundary condition based on the known asymptotic
form of R and penalizing negative or increasing solutions. While this solution could then have been
used for an initial guess for ColSys, this was deemed unnecessary as integrals of the solution agree
exactly with published values.

4.4 Evaluation of integrals

In the modulation equations, numerous integrals involving powers of R, R' and r appear. The
solution for R was returned by the integration routine onto a uniform grid on {0, 10] and then extended
using the asymptotic approximation to [0, 20]. Note that R(20) ~ e=2°. All integrals over all space
were then evaluated numerically on this interval with Az = .01 using the fourth order extended
Simpeon’s rule. The extended Simpson’s tule is derived from applying Simpson’s three-point rule to
non-overlapping pairs of intervals and takes the form

f " f(z)dz = Az Gﬁ + %fz + ‘;-,fa + %fq +..+ %fx—z + ;’fN-l + %fu) +0(AzY).

Here N is odd with Az = £=51 and f,, = f((n —1)Az).
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4.5 Integration of the modulation equations

The third order system (3.32), was re-written as a fourth-order system

L L,
Lo L oy (oL (4.15)
dt |8 pE-E-f ((1 + -Tt) h+23+ (L2} -8) (3 h+ -{4.!4))

¢ o

and integrated with the built-in MatLab stiff ODE solver odel5s. This formulation hides the fact
that we are really aolving an integro-differential equation and introduces a need for the unknowable
initial condition {g. Fortunately, due to the oscillatory behaviour of the integrals J, and the scale
of the initial values for L, L, and 8, varying (o has little effect on the nature of solutions to (4.15).



Chapter 5

Conclusions and future work

Many questions have been raised in this thesis which suggest additional study. In the physics
community it has long been understood that x? materials provide damping. While this is certainly
true when there is one dominant field present, as we have seen interactions can lead to a type of
resonance that makes a x? material behave as a x® material. It would be interesting see how broad
a phenomena this is mathematically and whether or not it can be observed physically.

The numerical investigations undertaken lead one to wonder about the differences between PNLS
and NLS both leading to and at blow-up. Also there is work to be done in understanding the best
way to integrate problems, such as PNLS, with only asymptotic scale invariances and to determine
the true source and effect of the oscillatory radiation seen in the moving mesh calculations. Lastly,
I am curious to know if there is an efficient way to rescale the problem in two dimensions to be able
to integrate arbitrary data in two dimensions with the split-step FFT code.
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Wherein we slay the beast that is the solvability condition

/ ~ (98¢ +€he + (L)¢ + L*(1 + vsin 2S) R + L3 (F(yg)e~*S)) Rrdr =0, (A.1)
0

where g, A and ! come from the equations

~_1, - .
Lig==7p'R, 70)=0, limg=0
R s\ _; )
£+h=-L3R(F (Ee's)e '5), RGp=0=0, Jlim k=0
- a - = H —
L4l = (a+ycos2S)R, 7p=0)=0, pljglol_.ﬂ,

and the perturbation F is given by

F il612e + |92V + 634"

Fi+ F, 4+ F3.

Recalling from lemma 3 that

{--} 1 00
Lof=c> /o Rfpdp=3 L R+ Rp)pdp,

and recognizing that
0 20
x="a
we can begin evaluating (A.1) term by term.
o0 sz' 00
o [“srede = =2 [ R+ Rolodo
2 o0
- -tk / R'odp
8 Jo
L2
= -5t
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51

fo (1 +vsin(25))R?pdp = ft Rpdp+4 r sin(25)R?pdp
[1] 1]
= Nc +.{J[
d [* g o
e j; IRpdp = (wa, +L‘-5‘-) fo LIRpdp
00 - -]
f LURpdp = % f (a +vcas(2S)) R(R + R p)pdp
0 0
=3 /ﬂ R(R+Rp)pdp+] j; cos(2S)R(R+ R'p)pdp
1 7 % 7 [*
= 0+ 3 [: cos(?S)R’pdp-E / cos(25) R pdp + 3 [ sin(25)S, R%pdp
0 a
= I%L-'LL, f sin(25)R% dp
[1]
= Mleyp s,
1
) . 9
ﬁ(LLng) = (Lg +LL¢3) J2+LLg§JQ
00 2 o0
p =2 j con(2S) 2% dp + LT Lt j cos(25)R%5° dp
ot A 2/,
Y
= F-la-{'- t-; L Jy
Hence -
L -]
% (] L’ldep) = v (-E-;—‘Jg +203+ (L2 - 9) (% + %Jg))
]

af L?

% ( ]o B thdp) =5 (--2- [n "R [Fe}(R+ R'p)pdp)

F = 2il$|é +¢PV36 + ¢20°
F+FR+F
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Fy:
A ./o R[Fe~ ] (R+ R'p)pdp

L’ R[ T 5 (Leis) e“s] (R+ R'p)pdp

-2 f ROSy(R+ R p)pdp
0

9 o0 ] 00
1 / R(R+ Rojpdp - Lt Ll j; RYR+ R'p)p* dp

= /Qmpdp-l-o

2N¢
I

Fy:
LS/; R[Fe~S| (R+ Rp)pdp =

t

3 / ®|V? (%e's) I e"s] (R+ R'p)odp
(R” + ;R’ - Sz) RY R+ Rp)pdp

(R -R- L‘—[‘ ’R) R¥R+ R'p)pdp

= m-(. / R‘pdp--j n‘,.dp)

F:
2 ["R{Fe] R+ Rolodp = I° [ R[426°] (R + Ro)pdp

1 8. ~3i
&3 A R[(aﬂes) Re 25] R(R+Rp)pdp

= %/m (R - S3R*) R(R+ R p)pdp

= ([ @rress [ mryey)

L-Is
L2
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Thus

eg?(o thdp) = %( %j@&[i’e"‘s] (R+R’p)pdp)
81
rL?

= - (4&+M-§k+h—k)

= (N ;Ia -ILi+ [5) L
-] R 00
eL / S[Fe'®] Rpdp = €L / [(Fi+ Fa+ Fy)e'®] Rodp
0 )

R

[ ()]

L/ ()’“

- / RYR+ Rp)pdp

= —F/ R'pdp

[ o[5(3) ]we

1 S,
53-/@ R}*R+ R'p)pdp

= 2L3/ R'pdp

L
Nets



F:
o0 2
L /0 R [(L_ﬁs—) %e”“"] Rpdp

2 o0
- & /o (RR'S,)R%dp

Whence

00 o0
el f Q[FeS|Rpdp = €L / S ((F1 + Fa + F3)e*] Rpdp
0 0

L
= -eL—;(m ~N.+N,)

L
= -2eN¢L—;

Assembling this monstrosity we have the modulation equation (3.32)

_ N1 rL 2p2 L e
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