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Abstract. 

The optical parametric cecillator (OPO) is a source of tunable laser radiation which possesees 
s rich array of pattern formation capabilities and has applications to optical communication and 
information proceseing. h thia thesis, 1 derive the OP0 equations - a coupled pair of nonlinear 
dispersive partial differential equations - which model the patterns generated by thm devia. In the 
literature, the large detuning limit of the full OP0 system haa been modeied by the parametncally 
f o d  nonlinear Schrodinger equation (PNLS). The OP0 and PNLS are in good agreement in one 
space dimension, however, in two space dimensions the PNLS fails to capture significant dynamics of 
the full OPO. Specilicdy, the PNLS poesesses Lm blow-up solutions akin to those of the noalinezu 
Schrodiigu quation (NU) whüe biow-up is amated by higher order terms in the OPO. 

The ümit of large pump detuning in OP0 is singular, and 1 propose that the pump field is slaved 
to the signai field, permitting a reduction of OP0 to a single equation. The relation between 
pump and signal fields is complicated but adrnits a natural family of approximations; the leadmg 
order approximation recovers the PNLS equation. The second order approximation includea hgher 
order nonlinear aad dispersive terms, and the resulting equation - the saturating parametricdiy 
l o r d  nonlinear Schrodinger equation (SPNLS) - is a mon faithful model of the full OPO. Via 
detailed numerical analysis using moving mesh methods, 1 demonstrate that the PNLS exhibits an 
L" blow-up in two apace dimensions. Eowever the OP0 and SPNLS share a complut dynamic 
in which the rapid grawth in Lœ nom saturatea and leads to decaying temporal d a t i o a s  and 
disperaive radiation. Following Fibich and Papanicolau, 1 employ intumediate asymptotiu to show 
the saturation phenornena in the SPNLS is governed by two coupled nonlinear ordinaty diffenntial 
equations which permit an identification of the saturation mechanism. 
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Chapter 1 

Introduction 

1.1 Historical Development 

Interest in the nonlinear effects in o p t i d  crystals pdates  the study of fiber optics. In 1961, one 
year &et the first succeseful demonsttatioa of a working laser, [l], second-harmonic generation was 
diiovered in optical crystals. It was not until1966 that opticai fibers were suggested aa a mechanhm 
for opticai transmiseion. In' 1973, in the giound-breaking wotk of Haeegawa and Tappert, [2], it waa 

shown that the propagation of an optical pulse in a fiber optic cable is governeci by the much baüy- 
hooed nonlinear Schrodinger equation (NLS). However, it waa not until1980 that pulse propyation 
in optical fibers wae demastrateci experimentally [3j. In the last 15 Yeats, these three technologies: 
laser, opticai crystal, and fiber optic cable have been brought together to form optical parametric 
device such as the opticai parametric wcillator (OPO) and the optical fiber parametric amplifier. 

1.2 P hysical Descript ion 

The optical parametric osciüator is a device for tuning laser fkequenaes. Light at one fbquency 
is directeci into a cavity - a p h  of crystal bounded by minors - and through interactions with 
the crystal the freciuency is changai. in the down-convenion case, one photon with hquency Ur 

is converteci into photons with ûequench w l ,  ws &h&hg wr + ws = wl .  In the degenerate cane, 
which we adrimm in thie thesis, w2 = wa = 9. h the case of upconversion, two photons of lower 
frequency combine to form one of WU fraciuency. Non-linau decb of rr;yst& wue first obsured 
in the caat ofupco~vemion, a b  deà second-hannonie genuation. The devices and models for up 
and down convuQian are guite aimüu; the di&uence lice in the fhquency of the pump. A schmatic 
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of the device is presented in figure (1.1). 
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Figure 1.1: Schematic of the OP0 

1.3 Derivation of the OP0 equations 

We derive the model equations fiom the Maxwell equations under the ammption that the electric 
fields are nearly rnonduornaticrnodulated plane waves. It is intecesting to note that wbile thie is the 
accepteci leading otder model for adoubly-degenerate opticai parametricdator [4,5,6,7,8,9,13], 

a complete derivation appeara nowhere in the iiterature. 

We begin with Mol~weli's equations for the propagation of an clectmmagnetic field in a dielectric 
medium free of currents and point charges 

Here B anà D are the magnetic and eiectric inductions respectively and H and E are the magnetic 
and eiectric fields. We a h  have the constitutive relations 

The permittivity of fie space, €0, and the magnetic pexmesbility, p, art d a t a i  to the spad of 
light in h e  apace, e, by €op = c - ~ .  The polarbation, P, describes the ~~pic &kt of the 



displacement of bound eleetions in the pnsence of an applied electric field. hognizing that for an 
arbitrary vector in 3 dimensions, V x (V x V) = -V2V + V(V -V), and that E is divergence fm, 
V - E = O, we cm rewrite (1.1) - (1.2) as a wave equation 

Because we are studying the degenerate case, the electric field hm two distinct componeata: Ep 
for the pump field and E, for the signai field. The frequenciea wp and w, aatiafy wp = flw, = 'Lw. 
Under the approximation of a lineac dispersion telation (me quatian (1.81) and amuming there 
is no phase-mismatch in the direction of propagation we have nlationa for the the wave numbers 
kp and k,, kp = 2kr = 2%. Fonndly, our aesumption that the field takes the fom of two nearly 
monechromatic modulateci plane waves allows us to write 

Here k is the unit vector in the z-direction, r is the ceordiate in the transverse plane, t is time, 
E and P are the electric and polariaation vectors cespectively and E and P are the electric and 
polariaation envelopes. It is noted in [IO] that from experimental evidence in a x(=) materiai with 
N interacting electrk fieldi Ej j = l..N, an appropriate expansioii for Pi, the j-th polMaation ia 
Pi = Pjdjk where 

with the pham given by 

The tensors x1 and x2 denote the first and second order suaceptibüities reapectively, which 
meaure the magnitude al  the nonlinear response of the medium at dinmnt ûequencies. Higber 
order terms, eg. the contribution h m  the X3 tensor, have been neglected because for the materials 
in question lx2( > (xSI. The polariaation ia expresseri as a convolution over t h e  of the suaceptibities 
and the electric field, however, assuming that the nsponse of the d a i  kt nearly instantaneous 
this relation reduces to equation (1.5). this generai constitutive relation between Ej and Pj, 
we cm return to (1.3) and (1.4) to derive the governing equatioos for the envdopes Ep and Es. 

The netu monochromaticity aaaumption implies the phases of the signai and pamp endopa  
have the f o m  
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Theae functions enjoy the properties 

Taking 1 = s, 2 = p and N = 2 in (1.5) we can exprese the polarisation for the signai field M 

Here the subscripts indicate the fact that the susceptibiiities are truly functions ofw and the geometry 
of the crystai - eg. X!?;) = Xi$) only when the crystai haa a partidar symmetry. Dividing through 
by 4, leaves only the h t  two ternis with constant phase, al1 other terms are highiy oscillatoty in 
tirne and wiU be neglected in what follows. Retaining oniy these naonant terms we arrive st the 
following constitutive quatiow for the amplitudes of the polarbation fields 

Formaüy the susceptibilities are tuactions of the fcequency, x = ~(w) ,  but it is reasonable for the 
h u e n c y  range and time-scaie of these devices to take them to be constant [5]. 

ïnserting these forms for Es,Epl P,,Pp, ka and kp into (1.3) we have 

BE, 2 k 3  - wa(l + x' )  -= c2 
61 h ( l +  X I )  + i2w(1 + YI) O$, 

Asauming a petteet cavity to be dispersionlesa gives rise to the iineat diapersion relation 

k = =dm, 
C 

(1.8) 

deriveci by setting the caf6cients of the k t  krms on the tight hand side of (1.7) to zero. h m  
anilmequent aaaiysis it becornai apparent that the second order temporal duivative terms appearing in 
(1.7) are insignibicant at opticai îrequenciea and may be omitkd. With thia addition$ aimpiitication 
and using the dispasion dation (1.8) equation (I l )  reduees to 
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The derivation of (1.9) bas aseurneà a perfect cavity where no energy is 1- out through the mirrom 
and that the length is an integral number of wave-lengths. A more physidy masonable system 

ia describeci by adding a linear darnping and dispersion tenu to each of the above quations. The 
damping cornes from leakage out of the cavity over one period and the damping coefficients can be 

=p==d [dl 

where Tp and T, are the transmittivities of the mimors 'at the indicated ftesuenck a d  L is the 
trsasverm length of the cavity. Similarly the signal and pump detuniag eoefiicients, 8, and Jpi tdre 
the form, [4], 

Ts 6 , = w l - w  and bp=(w2-2w)-  
TP 

where wi and w2 are fundamental modes of the cavity. In the application under connideration the 
system is beiig forced at a fquency 2w with strength P. This le& to the inclusion of a constant 
P to the driving field equation. With these modifications equation (1.9) takea the form 

Notice now that the dispersion is determined by material prapertia of the system, not strictly of 

the incident wave as in (1.7). 

To ptoperly scde the equations we introduce the dimensioniess quautitiea 
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where a, b are the coefücients of the nonlinear km 

We arrive at the dimensionless OP0 quations 

in which r is t h e ,  p is the transverse spatial coordinate, AL and Al are the cavity detuning pa- 
rametees, a is the ratio of the transmittivities of the rnirrors in the cavity to the pump and signal 
ûequencies respectively, S is the normaliaed pump stmgth and U and V are the normaihed complut 

amplitudes for the signal and pump fields. 

These equations may also be derived in a similac physical device with an entirely Merent ge- 

ometry - the phase sensitive amplifier [Il]. In this context, one is conmed with the amplitude 
as it changes in the direction of propagation. However, the locus is on a much faatu t h e  =ale 
and the -calleci optical mordhates are used where the Laplacian is with respect to the temporai 
coordinate (and is thus always in 1 dimension) and the first derivative t e m  are with respect to the 
longitudinai spatial variable z. 

1.4 Reduction to SPNLS in the large detuning limit 

A consequence of using teal mirrors and a na1 nonlineu crystal ia that the pump detuning A2 can 
be rnoderately large [12]. It may at h t  seem counterintuitive that the pump detuning would depart 
agnificmtly fmm the signal detuniag, but the geometry of the cavity is chmn so as to m a x h h  
the output of a coherent signal kquency and while the wp = flw,, due to the phyaicd imperfectiom 
of the system it is not nece!mady true that w2 .- 2wl. Also, the detwiing parameters are inversely 
proportionai to the transrnittivitics of the mirrom at the respective üequenaes. 

In this thesis, WC wïii considet the si~caiied f m i n g  case, AL and A1 > O. F o c h g  is,a mmmon 
ocnurence m nonlinear optics. In the casc of NLS, focusing is disthguished from d d b m i q  by the 
aign of the na~lineacity. Deptnding upon the spaa dimension the f m  in NLS cm p d u a  (M 

ne &di aee) an Lm blow-up. Genericaiiy, f d g  systems concentrate miw whemm defocuiring 
ayatems tquidwtribute mas. In one dimension, the canonicai solution to a f d g  pmb1em is a 
scch, whenas for defocusing it is a tanh. 
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In the c w  of large pump detuning, A2 > 1 (1.11) hae ban d u c d  [7,13] to the pantmetricaliy 
f o r d  Nonlinear Schrodinger quation (PNLS). As we shdl se, thia reduction is adepuatt in one 
space dimension but is not a faithfd representation in two dimensions. We derive PNLS and a next 
order correction - saturathg PNLS (SPNLS) - which includes higher otdet dispersive and noniinear 
tetma, as reductions of the full OP0 quations, 

Rom the assumption Ar > 1 dehe 

In order to compensate for the dispersion in the pump signai, the pump strength mut be incread 
pmportionally so that 5 - O(1). This le& us to introduce 

Keeping with convention we cedefine 

In order to simplify the full OP0 system in the large detuning limit we necde U 

to form a rescaled version of O P 0  (1.11) 

It is ciear fiom (1.13) that the large detuning limit W a singular perturbation. In such limib, it is ofttn 
the case that aftet a rapid initial transient the solution cornes to mide on a a u b d o l d .  Numerid 
calculations show that V appK)&Che% the manifold rapidly for initialconditions IVola <= 5 but that 
it may not for very large initial data, see figure (1.2a). The form of (1.13) bads us to h o p  that V 
is htnctionaiiy dependent on t$ and thus make the foilowing sesumption on the form of V 

where the unhowu hindion W sdmits an expansion 

Wlth V given by (1.14) the OP0 reduces to a single quation which we cdl the outer cpuation 
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The first ordet approximation W = Wo movcrs the PNLS quation, while keeping terma to second 
order, W = Wo + rW1, in (1.16) yields the SPNLS equation. Tb numerical evidena in chapter 2 
indicatea tbat the reàuction of OP0 to SPNLS ie qualitatively accurate, even through the dynamim 
d the saturathg blow-up and subeequent radiation and d a t i o n s .  We temark hue that (1.15) 
is not a regular perturbation expansion of OPO, such an expansion would inc1udc terms for both U 
and V of the form 

Thie method agrees with o m  to k t  order, (for the derivation of PNLS (7, 131)) but produces a 
pair of coupled equations for eacb subsequent order. Such a system is not amenable to the andysia 
employed here (se chapter 3). 

We substitute (1.14) in80 (1.11) in order to determine Wo and Wi ae a perturbution series in 
the oder  parameter cl 

At U(1) we have the algebraic relation, 

Wo = i(42 - y) .  (1.18) 

The equation at O(€) is 

and a substitution for Wo h m  (1.18) yields 

At thia point m can clearly ace the fom of al1 subecquent orden ad arik d o m  a ieeursive defiaition 

of W 
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This expansion is formal and we may expect convergence only when 4 and dl ita derivatives are 
d o r m l y  bounded. An analyais of the importance of higher order terms at blow-up ia given in 
section 3.5. In figure (1.2a) we see the convergence to the manifold for various initiai data Vo - 
Vo = W&), -WO(~), O and purely random data. However, for large initiai data 1K~l - O($) the 
solution does not converge. The convergence of the expansions of W in one dimension an pcesenteà 
in (1.2b). 

(a) Conwtgence ont0 the manifold. (b) Convetgence of  W. 

Figure 1.2: Agreement with the manifold 

Fmm (1.14), (1.18), (1.19) and the quation for U in (1.11) we cm And the evolution equation 
fot the nscaled signal field 4 

The qualities 

lead us, after dmpping 0(c2) t e m ,  to a mon familiar equation for 4; PNLS with bighu O* 

corrections, 



AU the terma on the right-hand side of (1.21) are s m d  except when 9 is near blm-up in which 
caae the quatities 1 (&12 I119t1 and IVz41 dominate 141. Rewriting (1.21) by gathering i i i  terms ' 

we have SPNLS 

A dinuent formulation is obtained by dividing (1.22) through by (1 + 24411) 

which is suggestive of the saturating NLS (SNLS) 

The SNLS equation has been derived as a reguiariaation of NLS in many physicai contexts - 8ee [ln 
and the references therein. 

We also note that the case r = O in (1.22) permit8 us to tecover the parametrically forcd 
noniineac Schrodinger equation 

which haa b e n  derived not only as a mode1 for the optical parametric oecillator but aina for Faraday 
cesonance in water, parametric instabilities for plasma waves, the parametric genetation of spin 

waves and a h  magnetic soiitona in fermmagnets and anti-femmagneb (aee [14] and the references 
therein). PNLS ha been studied analytically in [13,14,15]. Although much of the sndysia for PNLS 
is similar to that of NLS, it is not identicai as the addition of the coqjugate km means that PNCS 
is not a Hamiltonian system. 



Chapter 2 

Numerical cornparison of OPO, 
PNLS and SPNLS 

Although the OP0 eguatians are uaturally posed in two spatial dimensions, it is tewonable to 

discuta the equationa in one space dimension assuming uniformity in the transverse direction or when 
considering the phase sensitive amplifier. in the defocusing cm OP0 and PNLS have ben shown 
to be in goad agreement [5]; The stabity of pulses and fronts for the focusing and defocusing PNLS 
respectively bai been cstablihed Il31 for a wide range of parametera for which the PNLS i~ a g d  

duction of the hiil OPO. We compare pulse solutions to OP0 to exact solutions of PNLS, and 
compare atability pmperties of bath systems. 

For a àktmion of the numericd methoda used, please refer to chapter 4. 

2.1 Exact PNLS solutions in ID 

Because NLS is well-poaed ia one spatial dimenaion, one wodd cxpcct solutboas of SPNtS, PNCS 
and, hopefully, OP0 to be weii-behaved as w d .  Indeai, in this setting, SPmS exhibits ody maiI 
quantitative dinenneés h m  PNLS and so we testrict out attention to PNLS in one spacc dimcnn'on 

84 B4 i-+-+141'4+(i-u}#-y$' = O  
ût 8ta tw 

as a nductioa to (1.B). 

Exact atationary pulse-Iikc solutions to PNLS csn by constructed hm the form 9 = f(z)ei' 
whue  the mal-dued fuuction f ( t )  and mastant U are to be dekrmiacd. inserthg t b  anaata into 



2.1 Numerical cornparison of transverse OP0 to 1D PMS 13 

(2.1) we obtain the equation 

For both a and y reai, we separate (2.2) into its real and irnaginary parts producing two quations 

The relation (2.4) implies that B = -q sin'L 1 
1 

which requires y > 1. This inequality cornes as 
no surprise; it indicates a critical pumping strength necessary to oveicome the damping. Indeeà for 
y < 1, it is easy to see that any solution to the initiai value pmblem associatecl to (2.1) decays 

exponentidy to zero. With 8 prescribed as above the quation for f reduces to 

where a* = a f m. The two values a* arise h m  the two branches of sin'L. Equation (2.5) 
is eady solved undec the conditions that iim,+, f(z) = O, b,, g = O and ai 2 O 

thue the mlutions to (2.1)' are 

whece di = -#sin-' 5 correspond to a* rapeetively with O+ E (-i, 4 and 9- = B+ + n. 

2.2 Numerical cornparison of transverse OP0 to 1D PNLS 

By extension onto the manifold W ,  stationary solutions of PNLS yield approximatc atationary 
solutions of the rescaid OPO, 

= i(#2 - y). 

The sxdled d o m  solution, 4,, can be ahown to bt unstable to perturbations [14]. The OP0 shm~ 
this pmpe~& that Yi solutions intcgitcd hout initiai data U = 9, V = i(45 - 7) deuy to sera 
exponmtially fut. The agreement between OP0 b initiai condition of the foim U = Sf, V = 
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i(+t -y), and PNLS is quite good mer a wide sct of parameters. The amplitude of the up solution, 

O+* to PNLS with parameter d u e s  a, 7 is seen fmm (2.6) to be g i n  by by 4-i. Quite . 

good agreement to this ia achieved by OP0 as weii, as seen in figure (2.la). The a a c t  mlutiona of 

PNLS, qL, with amplitudes J*', are matable and ae O P 0  sham that iMability no 
nearby solutions are obtainable. Tùe kmwn stability of I$+ 1131 in the (a, y) plane is indicated by 

(a) Bifumtion in the amplitude of & with 5 =fi. (b) Stability of PNLS and OPO. 

Figue 2.L: Agreement with the manifold 

the dashed lines in figure (2.lb). For y < 1 #+ is unstable, for 1 < y < it ie stable and 

for y > d m * ,  #+ id unstable and leads to roli solutions. To compate the stability proputics of 
OP0 to PNLS we have numerically inaegrated OP0 with varioua values of S and Ai at fixed A2 
with initial conditions 

where g is a s m d  ( max[gl < .QI) random perturbation. The resuits of these computations are 

summariaed in figure (2.lb) where we see thete is excelient qualitative agreement, + 

It is not ody the amplitudes that sgrrc weli in the stable region, but the fidl p d e .  There ia an 
ernientid b i i o n  for y = dmi  in the over-pumped region, 7 > JE1', the m a t  intueeting 
behavbus is obtained and the srst quaiitative Merences be- OP0 and PNLS caa be san. 
Taking se initiai data a pecturbtd pdst  for bath OP0 and PNLS, we cm compare the two qdtms 

aa they evolve in time. We set that .bout the fmd centrai pulse two new p u h  @ow out on either 



8 

Figure 2.2: Cornparison of profiles of solutions to PNLS and OP0 
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side in a process we have (6)narned Buddig. The buds on OP0 gow out from the tip of t k  

pulse akin to puise splitting, while those for PNLS arise kom the base of the central pulse and gmw. 
The cornpariaon of puise profiles and roll solutions for PNLS and OP0 is described in Rgure (2.2). 
Most interesting ie the fact that the OP0 pulse dots not bud locally but rather distributa mme 
mass ali dong the line first. in particular it takes longer for OP0 to bud on a lqu domain, which 
ia not the case for PNLS. In practice this rnight mean that OP0 would not bud as the boundaq 

&ecb could becorne very important. 

The long term behaviour for both systems is qualitatively the same - each develops a dain of N 
pulses with the amplitude for PNLS given exactly by Sla+ and approximately so for OPO. Although 
OP0 can appeair stable, the pulses joetle endlesaly, but on a much slower t h e  ficale than PNLS. 
Theae periodic solutions are really roll solutions as have been observed in the 2 dimensional case in 
a dinemt parameter regirne. Close to the essential bifurcation one can d u c e  OP0 to a modined 
Swift-Hohenberg equation [4] so the rolls are perhape expected. Once the roll state has been reached, 
PNLS again captura the features of OP0 very w d .  The roüs for both OP0 and PNLS have very 
simiiar ampiitudes and periods. However, it is not clear that OP0 would reach a roll state for other 
than perioàic boundary conditions, whereas PNLS seems quite happy to. 

2.3 Numerical cornparison of OP0 to 2D PNLS and SPNLS 

While in one space dimension PNLS is a ceasonable reduction of OPO, in t m  dimensions, this 
is not aiways the case. Figure (2.3) shows that PNLS exhibits blow-up for many initiai conditiom 
and parameta vaiues. 

In contrast, we see in figure (2.4) that both OP0 and SPNLS saturate even for the small d u e  of 
r = 10-~. Notice that for this value of c both and OP0 and SPNLS cloeely foiiow PNLS well into 
the biow-up stage. 

Motivated by the numericd evidence of blow-up in the PNLS and that in the limit of lis& 4 , O P O  
foilows PNLS for some t h e ,  we consider the blow-up in PNLS more carehilly. 
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Figure 2.3: Blow-up in PNLS for variow parameta and initial data. 

Figure 2.4: Saturation of OP0 and PNLS 



2.4 Numm'cd of blow-up in 2D PNLS 18 

2.4 Numerical analysis of blow-up in 2D PNLS 

It is well hown that solutions to NLS in more than 2 dimensions are self-sirniiar and that they 
are appiouimately selt-similar in 2 dimensions [17]. Self-similar meam that there exiat luactions f 
and g and a profile P such that the function 4 satisfying 

solves NLS and momver with limt+. f = O and lirnt,pg = O. One observes the same form with a 
small correction for approximately self-airnilar solutions 

Thus for self-similar problems we can concentrate on hding the blow-up rate, f(t), the spatial 
reacaling g(t) and the profile P(p) .  It is weU known for NLS that the spatid profile is determinai 
by the Townes soliton (section 3.2) which we denote R(p). Ignoring the details of the profile for 
the moment, we can see that the solutions to PNLS do in fact approach the Townes near blow-up. 
Taking the Townes as the spatial proilic in the aeymptotic iimit, in figure (2.5) we plot ? over 
O < p < 8 with L = w, p = f for variou tirnes approacbg the blow-up - IO-' < L < 10-~. 

We ea. iho clwrly see that the blow-up rate is @en by f = A~W. Plottbg fi(f)14(oy 1) 1 
with 

against a scaled time r = log & we see that $@# grows whe- J-~(0, t ) ~  rppovbp  
a constant. in t h  plot 19) ranges tiom 20 to 350000. For com&bon we a h  indude d e d  
aolutions to OP0 and SPNLS with c = 10-% Hen the centrai pulse rqiops sgm m u ,  but not the 
distant behaviour. 
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Figure 2.5: Convergence of PNLS to seif-similar aolutioas. 

Whüe the rate and ptoîüe for blow-up are the same for NLS and PNLS, initiai conditions that 
lead to bbw-up in one do not amssarily lead to blow-up in the other. For instance, for a value of 
y = 1.2, and the commonly used initial conditions, 40 = 4e'" PNLS d m  not blow-up while NLS 
does. This efkt  is perhaps nlated to what is obeervd in stochastic NLS [16] 

with d being a maü raadom parameter, where blow-up can be amskd for moderate d u e s  of (P). 
Aa seen in 6gure (2.8) for large pumping, same smaii initial data can lead to blow-up in PNLS 
wheress the correspondhg solutions of NLS do not. 
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Figure 2.6: Cornparison of blow-up of NLS and PNLS with Muent initial data. 



Chapter 3 

Analysis of the sat urating blow-up 

3.1 Review of focushg NLS in 2 dimensions 

Numetical simulation in twtxiimensions of eliïptical and non-symmetric initiai data suggest that 
blow-up b a tachl phenornenon, hence while working in two spatial dimensions we wi i i  consider only 
raàially symmetric solutiona. For NLS the case of two dimensions is critical because for d < 2 there 
b no blow-up and for d > 2 there is seif-simiiar blow-up. Roth numerical and rigoroua analysis are 

notonowly düficult in two dimensions. 

We can study the blow-up in PNLS in mudi the same manncr as in NLS due to th& similarities 
(section 2.4). There is much numerical and snalytical cvidence (see [lq and the referencea therein 
and [26]) that the NLS quation 

i4t + ~ ' 4  + 141" = O 13-11 

4 h  t) = 40(d 
paciecss appmximately self-simiiar finitetirne blow-up solutionri in two space dimensions. Finite 
tirne blow-up in the context of NLS means them cxists t* < ao aueh that a solution # eaets for 
O < t < î* but that iiq,p Ilt#(r,t)llao = m. It is easily demopetmteà that drong solutions must 
break d o m  in h i t e  t h e ,  The NLS equation hari inflnitely many c o n a d  quaatities, one of ubich, 
the Hamiltonian, is ddined in d a 1  variables aa 

If we a b  define the variance ari 
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then a simpIe caiculation shows that 

but for a classical solution % = 0, and we c m  integrate (3.4) immediately ta obtain 

Fiom its definition V(t) > 0; but if H = If(#@) < O then we reach a contradiction. hdeed for 
H(do) < O (3.5) implies that there exists a t h e  t* such that V(t*)  = O which contradicta (8.3). 
Thus the solution must loge regularity befon t = t*. This is seen h m  numeticai calculations as 
lh+r* Il#(t, -)Il, = ou despite conservation of mlrse which implies Limt+t* Ild(t, -)II1 = Ildol12! 

3J.1 The Townes Soliton 

Much of the analysie of NLS involves a speciai solution calied the Townes soliton which is the 
spatial component of a separable solution of the form I$ = eitR(r). The Townes mliton, R, is defined 
as the paeitive, monotonically decreasing solution to 

lim R = 0. 
r+OD 

Tt can been shom, [la], that (3.6) has a unique solution given the constrainta on positivity and 
monotoniaty. The Townes is important in the study of NLS because numeridy ib is scm ([lv and 
section 2.4) that near blow-up solutions are roughly rescded Townas solitons, 4 - i~(i). As we 

have already sen, thie is tnie for PNLS as weli. This is urpected since the terma by which PNLS 
and NLS difer are lineat and are asymptotically weak blow-up where the nonlinearity and derivative 
terma dominate. 

For the Townes soliton we have two important fack the Hamihonian f i (R)  z O and for any 
initial data 4 the conespondhg solution may blow-up in finite t h e  oniy if JF 140l~rdr 2 Ne 
when we have defined Ne E JO R2rdr. Also, using the Townea soliton one can coaetruct an exact, 

seif-~irnilar blow-up solution of the form 

This solution is unstable and is not seen numericaiiy. Numerical evidena, (lq, show8 the spiitting 
of the pulse into two distinct pieces, 4 = 4, + I$,d where is the modulateci Townea scilitoa siid 

consisb of mall smplitude dispening radiation. 
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3.2 Modulational approach to perturbed NLS equations 

Following the analysis for blow-up in perturbed NLS equations by Papanicolau and Fibich [19], 
ut c m  mnstruct an ordinary differential equation for the modulation parameter, L(t) .  

The overwhelming evidence is that near blow-up solutions to NLS have asymptotic form 

where lim,t- V = R, lin4,t. L = O and p, is a constant. For the solution to the SPNLS equation 
we take the fotm above with S = C + f (p ,  L,  L,), resulting in the ansatz 

where 

rcpreeenta the perturbation terms present in (1.22). 

To balance the nonlinearity and derivative t e m  we chm a = 1 and CI = b. With these 
sealings we ntm to (3.8) to determ.int f  

that the coefficient of the V, term be ra>, we ûnà ttmt j = $4~. ~ h e  d c i e n t  of 
the v ttnn k m a ,  $3 with p = -L&. 



Putting the wmpleted ansata iato SPNtS and cbanging variables, me get a PDE for V 

where 

We aaurne that 8, CF and 1;' are small, and tbat to leaàing order V ie the Townes soliton, We 
mite V = R + u + iu + O(€ ,  8, L2) for u and u teal, and separate (3.10) into d and imaginary 
parte. Under a quasi-ateady state asaumption (sa Fibich and Papanicolau [19]) on u and u and find 
at second order 

where the operators C+ and t- are given by 

Becauae we are laolting for radialsolutiorie which decay at infinity, we impose the boundaty maditions 

Due ta the qwi-&ady atate ammption, C 4ppeots only as a psramckr in the forcing knna. We 
amune u bas the fonn 

Insechg this form for u into (3.14) aud epnathg eafficienb of r, f i  and L' g k  the fdlowiag 
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equations for g, h and 1 

Note that for h and 1, C is a parameter which affects oniy the right hand sides. Mthough uot 
solvable explicitly, each of these equations can be solved - as will be aeen ahortly. 

3.2.1 Soivability conditions 

To be able to solve (3.15), we need a solvability condition. Working in a radiai space 

with the nocm 

then the operatom L+ and L- arc self-adjoint with respect to the inner produca 

and the following lemmas hdd. 

whcm R is the Tourne8 soliton and q u a mal-oirlmed radial funciion ihrn a solntion for f e M i s  (f 

and onlj if 

PROOP. TO determine the mlvabiity condition for f, we n a d  to determine the ndqace of the 
operator C,. Recall that C-R = O. To look for additionai cornponds of the kemd ne use variation 
of parsmetem. Assume that u = u R and that L u  = O, then 



Solving tbis ditectty yields u = R f  hds .  But, recaiiing the asymptotic bebaviow of R, 
R - m see that o $ L!(R+;R) and thus not in the keml. As N ( L )  = span{R), the 
Freàholm aiternative requires that q Rrdr = O to solve (331). ir 

To be certain tbat we can aoive (3.18) - (3.20) we also m u t  consider L+. Despite the daim of 
Fibich a d  Papanicolau ta the contrary, [NI, 

that is, R, is not in the kemel of t+. To better understand the kernel of L+ it is best to consider 

the full twdimeasional ptoblern and then look for solutions with radial symmetry. Firat we need 
to constnicb some eigenfunctions of 

From the caiculation above we aee immediately that 

where of course & si@) = R, and & coe(8) = R, are the translationai symmetries of the Townes 
in two dimensions. A cakulation subgtantively identical to that presented in Lemma 1 shows that 
thew are no additional separable aolutioni in K (L:)). Eigenfunctiolr arise with symmetrie in 
equatioas - with 1P, correspoading to translational invariance - thus it is natural in tao dimensions 
to find & and R, rather than R in the kemel; only in one space dimension is Rt = R E h/ (L+). 

Lemma 2 Giwen 

when R is the T o m e s  soiiton and p iS a ROI-udmed radid f i n c t i a ~  îhen a saMion JO+ f & 

for dl fincfiotu p(r) in the sj?ace Lf @+;IR), tiAd is there jS 110 findion v E L;@I+;R) srch that 
L+v = O .  

Aithough not salvable exactly, because bccaitse R O eqmentiaüy as r -, oo, n ms;y d u c e  (3.23) to a 

solvable problem asymptotidiy a t + oo, 



By cornparison of solutions of (3.23) to those of (3.24) we have, by Sturm's cornparison theorem, , 

[2Lj, that a solution to (3.23) can have at m a t  one zero for r E (0,oo). A simple calculation, 

shows that v is either identically zero or not sign defiaite and thus hae at least one xero. Hence, if 
a non-trivial function v solvea (3.23), tben v has exactly one zero. Without loea of generality we 
take v(0) = 1; any solution bounded at the origin is then of the form av for some coostant a. A 
solution which is unbounded at the origin is clearIy not in Lg(lR+;lR) and needs no furthet attention. 
To show that there is no solution to (3.23) with u(0) = 1 we we consider a hybrid numerical proof. 
Dttining polar c*ordinates 

~ ( r )  = p(r) c ~ ( e ( r ) )  and vr(r) = p(r) sin(l(r)), 

from (3.23) we have a differential equation for @(r) 

from which we have 

1. when v = 0, @ $( mod n), and $ < 0, 

2. when v' = 0, 0 = O (  mod n), and bar, the aame sign as 1 - 3R2. 

Additiondy (3.23) gives a diffetential quation for p(r) 

Hence the thkd quadrant is pogitively invariant under (3.25) whenever 1 - 3R2 > O; thus if 
3R2 - 1 < O, u < O and v' < O simultaneously then vv' > O and d ia strïctly inaeasing. Dehing t t  

such that v(ri) = O, r2 such that 3R2(tz) - 1 = O and r' = max(ri, r2) then we need only inkgrate 
(3.23) numerically to r = r* and check al1 the negativity conditions. Performing such an integration 
shows that the conditions are met, thas li-,u(t) = -oo and u Q L?(R+;R). * 

Additiondy, from (3.25) see that În the limit r + CQ, the sksdy date solutions are 0 = 
and y, with 9 = 9 beiig stable and 4 = unstable. (We need only consider limiting d u e s  of 
0 € (5, $1 aa @(O) = O and we have & c m  tr h44 CXaCtty one am.) Equation (3.26) showa that lot 
r > 1,4 - psin(28). thu when 8 - 9, p' - p and u hae urpouentiai p w t h ,  but wheu 9 - $, 
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# - -p and v dccays exponentially. For r < rmit - 1.4575 the third quadrant ie not trapping and , 

it is possible for solutions to enter the fourth quadrant. In figure (3.la) we have plotteà (3.25) for 
r = Pmit and r = 00. Because ail solutions to (3.23) which are bounded at r = O are iinear rnultiplea 
of the solution seen in figure (3.lb) the unstable fixeci point must cornapond to a solution which is 
not baunded at r = O and thus not in L:(lR+;lk). Note that if B(tmit )  > Bdt - 2.7971 then B f 
as r + CO, Nurnerically B > n V r > O, so we are never even cloee to the unstable manifold. 

(b) Solution in the (v, ut) p h .  

Figure 3.1: Phase plane maiysis of C+v = 0. 

Because we can solve (3.18) - (3.20), the solvabity condition, IO Rptdt = O, applicd to (3.15) 
yields a diffenntiai equation for L(t) 

in the foUowing sections we aimplify and analyze (3.21). 

h ordu to apply the lemma h m  the pnvious section we neeà to evduak integrais invo1vh.g R, 
Rg, Rh and RI. We begin with identities for the Townes soliton. Taking the innu pmduct of (3.6) 
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with ri? 

and integrating by parta we obtain 

Similady, taking the inner product of (3.6) with R yields 

ushg (3.28), and integrating by parte we derive 

Because the equations (3.18) - (3.20) all bave a similar form, we conaider the followhg gencrd 
lemma. 

Lemma 3 For c E L?, if f salues 

PROOF. D k t  caiculation shows that 

&+ ( R  + g r )  = 2R 

however, C+ is aelf-adjoint, hence 
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Even though ue cannot solve (3.18) - (3.20) exactly, with this lemmain hand we are nell on out 
way to writing d o m  a modulation equation lrom the condition (3.27) because dl that ia cequimi 
are integrais of the solutions to (3.18) - (3.20) and R. 

Using lemma 3 with c = - i ~ d  and f = g we have 

Similady, with c = (a + 7 cos(2S)) R and j = 1 we have 

Lastly, talàag c = -L3R (F (FeiS) e"') and f = h we have 

for any perturbation F. There is still mudi calcdation to be done, but ail the heavy lifting b 
complete. We are ready to state the evolution equation for the modulation parameter L(t). 

3.3 Modulation equations 

Rccognizing timt = L ~ & ,  we on evaîuate each tpm in (3.V) (aee Appendi. A) to obtain 
an ordiaaty dütenntiai quarion for B. C o m b i g  this with the definition # = -L3,&, WC bave a 
syatem of quations deaaibing the evolution of the modulational scding faetor, L 

w h u t  the co~stants above are given by 
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and the functions J, by 

Recall that 

M> (3.32) is really a nonlinear integro-dinerentiai quation with the integrai t em buried in 
integrais of trigonometric functions. 

A number of thing can be gleaned about these ODE'S before we attempt to integrate them. 
First notice that the dispersion coefficient a does not appear in (3.32) ae it multiplies a consetvative 
term. Also notice that the unpleasant tem involving the integrals Jn al1 aria? due to the forcing 
term. Inspection of (3.32) sbows that then are no steady states, that is there is no combination of 
L and /3 such that Ltt, Lt and fit are di zero. Now, lets consider two speciai cases. 

For PNLS, r =O, and as L + O aie have that & - -%. Rem m have aeaumed th& the iakgral 
t e m l  Ji, ate adequately oscilatory (they contain cos (J h)) to be neglected. This duced  system 

cm then be solved. Integtating the second equatiou of (3.33) &es 

Assuming that i i ~ ~ + t -  = O, then near the biow-up t h e  t' we can appmximate, /3 - $ with 

Now we caa aolve the f i  quation of (3.33) 
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where t' is the unhown blow-up time. This is a teasonable estimate and is similar to the rates . 

previously calculated by MalLin [20] and Fibich (191 foc blow-up in NLS. Inspection of figure (2.5) 
shows that this rate ie sensible but too slow. A more detaileci anaiysis shows [19] that the rate of 
blow-up for NLS is actually 

log 1 log(lS - t) / 
L, -A,/-. 

As was seen in scetion (2.4) this appeara to be the correct rate for PNLS a h .  This logarithmic 
correction is very subtle and was obtained many para after the initial work of Fibich, Mallio, 
Papanicolau and others. It requirea a detaiied analysw of the matching of the centrd puise 9, to the 
distant smaii amplitude solution brod. This rate is obtained by aàding a conection tem to (3.lO), 
working in a dimension, d, greater than 2 and t a h g  the l i t  d + 2+. It ie not clcar what, if any, 
effect the conjugate term in PNLS has on the rate of blow-up. A detailed numerical study of tb 
effect has yet to be undertaken. 

3.3.2 Saturathg blow-up 

In the case where r > O and L < 1 we can ignore ali but the first term and consider 

where k l  > O not related to kL above. Integrating the second equation in (3.34) gives 

with k2 > O. Ushg thi definition for @ in the first equation h (3.34) determines an ODE for t 

which pumite a Hdtonian formulation with en- 

auch that $ =O. Wciting (3.35) as a fiiet order syskm 

we see that then ia one h e d  point 



which h m  the Hamiltoniaa formulation is dearly a center. At thia stage we could dcuiate the 
period and the magnitude of oeciiiatione given ka and 310. However, neither %O nor ka is ùnown a 
priori and neither may determined from the PDE. lnetead we wil i  take cornfort that Il$lloo = 

man 

d e s  no worse than fi. 
Truiy we do not have a Hamiltonian system; adding in just the diasipative term h m  (3.32) we 

coneider 

B Let = -- 
L3 (3.361 

Integrating the second equation of (3.36) and using the definition of @ gives the forced equation 

Hence there exists a tirne t' such that î > 1' =, Ltt > O, which implies Lm+, L = oo. 

3.3.3 Cornparison of SPNLS and quintic NLS 

It is wocthwhile to note that the quintic NLS equation 

u t  + 14124 + v24 - €141'4 = O 

gives, to leading order, the same modulation equations as above, 

with k > O. Quintic NLS is known to exhibit saturating blow-up in the limit é + O+ [ I l .  In fact, 
nturning to SPNLS, 

dividing through by (1 + 2~(41') and then expanding in p e r s  of r, to O(€) we h d  

Certainly this is suggestive of the quintic NLS but the dect  of the additionai derivative terma is not 
immedidely evident. But, aher caiculating the contribution of the* dinuent puturba&oas, it is 
evident that nesr blow-up SPNLS is, to leading order, indistinguishabk h m  the saturating quintic 
NLS quation. Because this method is applicable to a b d  VMCty of perturbations it is h p i e  

to compare SPNLS to other equations, such as the quintic NLS or quation (3.38)- Presenkd in 
table (3.1) b a cornpariaon of the contributions of 3 different perturbations which are am ta k 
very similu in the modulational contut. 
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1 hualion 1 Perturbation ) Coefficient of €4 1 

Table 3.1: Cornpariaon of perturbations. 

SPNLS 
(3.34 

Quintic NLS 

3.4 Simulation of the modulation equations 

One unfortunate fact about this modulational appmach is that it provides only intemediate 
asyrnptotica. That is, given an arbitrary initial condition one cannot immediately pmiict its evo- 
lution. Instead we have a method to examine iimiting behaviow aeeurning a number of conditions 
are nached. The full PDE problems conaiderd in this probkrn are very complut and do not eaaily 
permit a simple reduction. It is perheps surprising that any agreement W achieved between the 
modulation equations and the full PDEs at aiI - any agreement is only qualitative. The modulation 
quations predict blow-up when the PDEs blow-up and saturation when the PDEe saturate. How- 
ever, in the saturation regime, the amplitudes, periods ard attenuation factors agnc at best to an 
order of magnitude. In figure (3.1) we provide some typical solutions of (3.2). 

F = 2iH/% + 1q512~2+ + (&)2p 
F = -21014# - lbi2v20 + (4# 9' 

F = -1449 

Figure 3.2: integretion of the modulation equations. 

43.1789 

43.1070 

40.1582 
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3.5 Convergence of higher order approximations to  OP0 

We now find conditions on the amplitude, LI such that the asymptotic for W is 
convergent. It ia important to mognise that even an exact solution for W etil1 yields aa quation 
which is only an approximation to O P 0  as we have amumed that V(rl O) ia iound, when it is n d y  
pcesCnbed. 

For an appraximate solution to OP0 of the lorm 

we have an evolution equation for 4 

where 

Assuming that we are near focushg then the amplitude, T, is sufficiently large that the corrections 
to PNCS are important we write L = d' so that 

Rom the temporal and spatial scalings derived in section (3.2) we see that 

1 
#''wn ,pt2n+31-n 

The dative importance of each additional corrective term is (rnultiplying through by a) 

Heuce, as c 4 O+ or as the salution focuses, each additionai correction bccomes l e s  important and 
we are ied b believe that evtn in saturating blow-up the expansion (190) mnvuges, giwn that 
L(0) W €4 and that aU the derivatha of # main boudai, hiithumon, if L(0) > r i  ue would 
exp& L(t) > €4 for all t h e *  



Chapter 4 

Numerical met hods 

In this thesis 5 distinct numerical problems have been considered 

1. Integration of smooth solutions to OP0 and PNLS in 1 and 2 dimensions. 

2. Integration of blow-up solutions to OP0 and PNLS in 2 dimensions with radiai symmetry. 

3. Generating the Townes soliton profile over al1 space. 

4. Evaluating integrais over al1 space of powers of the Townes soliton, it's radiai d&vatiw and 

the spatiai coordinate. 

5. integrating the modulation equations. 

The tVst two pmblem posed the m a t  challenge, demanded the most d o r t  and wece the m a t  
instructive - a brief discussion of the last three problema is included for completenes. 

4.1 The split-step Fourier method 

Split-etep methods an used to solve a wide variety of problems which take the form 

That is evolution quations with two (or more) distinct charackni mch that the aeparak pmblems 
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aw much eaeier to mlve independentty. This type of splitting cm be dimensionai (aa is often stèn 
in fluid dynamics proMems [22]), with the ainiplest example King 

Or the splitting might be doue into Iinear and non-linear parts to exploit the easy solution d the 
linear piece - as haa been done in this thesis. The metbod of solution then proceeds by solving the 
sepatate problema sequentially. Fomally deaoting the solutione bo the subproblem as 

then a solution over one tirne step, At wciuld be obkaiued in the following manner 

When using any splitting method we introduce a splitting emr; this is an error due strictly to the 
splitting and c m o t  be ovetcome by solving the aubproblems more accurately. When the operaton! 
Cl, C2 cornmute thtn thie rnethod introducea no splitting m r .  Othecwise, it introàuas a îust-ordes 
splittingemt. A bettet splitting due to Straog introduces &second-order splitting error - aa we shail 
seo. For the pmblema uder consideration here an n-th order e m r  ia one proportional to (At)", 
where At is the timeetep. 

4.1.1 The split-step Fourier method for NLS-type equations 

Both the OP0 (1.11) and PNLS (2.1) equations may be written in the form 

when the vectot v = u in the caee of PNLS and v = (U, V) for OPO. N is the appropriate non- 
lintuity and F ia the constant forcing tem. When smooth in time and spsce over the tirne period 

of interest, problem of this type are amenable to the gplit-step Fouriu method. The method and 
ib andysis are identical fot both O P 0  and PNCS, but for the sake of both brevity and clarity ody 
PmS w i l  be d i s c d .  Spütting into hem and non-hem pieces, rn cm aolve P M S  via the 
subproblems 

This splitting is advantageous for Wu mamns: the linear cquation (4.3) can be d v c d  exactiy and 
the non-hear equatioi contains no spatial detivatiw. T b  sccond point P partieularly important 
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because it means that the splitting d a s  not introduce any m m  nlated to boundary conditions. 
Equation (4.3) may be solved exactly by taking the Fourier trandorm (hence the name) 

Because it contains no spatial derivativcs, (4.4) rnay be aolved with your favourite t h e  integrator. 
AU cdcdations preaeated in this thmis were done using the fourth-ordcr RungKutta method. 

4.1.2 The Strang splitting 

Solving each of (4.3) and (4.4) sequentiaiiy over a fidI timc-step At yields a method that is b t  
order accurate in t h e  when at least a first order methoci is used ta solve (4.4). A more intelligent 
splitting, due to Strang [23], involves sotving one problem ovet half a timoatep on either aide of 
solving the second pmblem. Retuming to the notation of the mode1 problem above, we would have 

9L ut  =el. 
ut " f 

4L 
u(At) =JO %p 

Writing the exact solution to (2.1) w u = f+ig for mal-ïalued funckiona f and g and the appmximate 
solution as the vector u = (fl,gi, f3,g3, .-., fNIgN), where uj = (jj,gj) is the appmximatt solution 
at z = n Ar, we can write our problem in the form 

where A is the 2N by 2N matrix repreaentation of the solution to 

2 x 2 blocks dong the diagonal with the j-th block having the fimu 

(4.6) 

(4.5) and B is compaatd of N 

Because PNLS has the form (4.61, it in itsdul to consider the following lemma 

Lemma 4 Chen r qdem of o d i n o q  Iif'mniiaI e q s a t i o ~  of tRe form 

Q = (A + W)) a, 
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when A and B are square matrices wiih A constant and B continuow in ail iis argrmenis and initial 
data 

the solution ai t = At by Qc Sirang-splitiing 

u = e Y A w  

when w ~ the solution al  t = At of 

is second order accumfe in tinte. Thot is, the local dfinnce beiwctn the appmnmote solution Ui 
and the ezaci solution u(At) con be bounded 

for some k independeni of tirne. 

PROOF. Given initiai data at tirne t = O we solve for U the approximate solution to (4.6) at time 
t = At in the foliowing rnanner 

At A t  
II** = (1 - (Po)-' (1 + B') up 

To understand the convergence properties of this splitthg, we need to compare the appmximate 
solution U to ui = u(At). We cm solve (4.6) formaüy by integrating 



4.1 The spiit-step Fourier method 40 

and approximating the integrai in (4.11) with the trapezoid rule we find an implicit representation 
for ul 

At A t  
ul  = (1 - (A + Dl))-' (1 + (A + Bo)) uo + ( W 3  (4.12) 

where ei are enors whose magnitude is independent of At. In al1 furthet cdculations, e will indicate 
an arbittary error vector with magnitude independent of At. The local truncation error 

is defintd ae the diierence between the exact and appmximate solutions at t = At. It is out goal 
to show that IEI - 0(At)3. Because UL haa only been calculateri to 0(At)3, al1 terrns on this order 
will be lumped into an unknown vector e. The only thing known about e is tbat it ia independent 
of At. Showing that it is truly order 1 will wuire a more involveci analysis for each particular A, B 
and ui. It is in thia a u b u e n t  anaiysis that any timestep restrictions will be made apparent. For 
now, it is aasumed At h a  ben  chosen such that al1 the formai manipulations are legitimate. 

Expandimg '(4.13) using (4.11) - (4.10) we have 

At At' 
W - U =  [f (&+&-" - ~ * ) + - ( ( A + B L ) ( B ~ + B ~ )  4 

- r o ( B "  +B'+A) -A(B'+B") - ( B ' + B " ) A ) ] ~ + ( A ~ ) ~ ~  

T b i  leaves two equations which require more careful consideration. At O(At) we have 

Recaüing (4.9) - (4.13) we have that 
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At 
(Bo - B' + Bi - B")uo = (-2 0 Bi@) + V Bi((1- A) E))uo + ~ t ' e  

At O(At)' we have 

(A+BL)(Bo +Bi ) -Fm(B. .  +B.+A)-A(B' +B.*) - (B.  +B**)A 

= A(BO - B ' ) + A ( B ~ - B * ) + ( B ~ B ~  -8-B')  

+ (B: - (B.*)') + (2 BI - (Bm + B")) A. 

But, h m  the definitions of the B matrices, the nom of each of these differences is 0(At). Thua 

As, IVB1l, IAl, l ~ l ,  le1 are ail independent of At we have that 

for some real number k. k will be dependent on A, B , u ~  and how (4.9) is approximated. * 

4.1.3 The aplit-step Fourier method in practice 

The Strang aplitting irr partidarly useful for this problem es the two Fourier translorma at the 
end of one atep and beginniig of the next can be coihpeed together 

This explains why this method eqjoys such wide use; a 2nd-onler method in t h e  with spectral 
accuracy in space is obtained for the prie of a first order method in t h e .  The work is on the ordu 
of O(nlog(n)) floating point operations work per the-step to solve a nonlinear paraboiic problem, 
with a very generous stability constraint. 

To achieve secondsrder aecuiaey we necd b solve the aoaüaear problem with at leaat a 2nd 
order method. A higher oldcr method may at first a ~ c m  wmteful because we wiii  n m  
the second order spiittùig emr, but higher ordm methda are dso ofka more accurate. Thugh a 
pmcm of trial and ettor it WIM detemincd that a foutb~rd# RunpKutta step was wdl-auikd 
for the problema under consideratioa. Any methad higher t b  ssaind ordet d b  in primariiy 
splitting mot. A third-order RungeKutta mcthod alPo mrka weli, with a margiuaispced gain o n r  



4.1 The spk't-step Fourier method 42 

the fourth order method. Higher order methods require more work and provideci no visible benefit. . 

Lower order methods, while cheaper, require a srnailes shp size for comparable accuracy and may 
turn out to be more castly overall. This situation depends upon the FPT algorithm used - a faster 
FFT would teduce the coet of the increased stepa and make a lower order method such aa midpoint 
more desirable. Another attractive aspect of this method is that the m a t  work intensive aspect of 
each step, the FFT, ie naturally parailekable. 

Al1 problems were solved on a physical grid z E (4, L - Az] where A+ = & for an integer n. 
For computationa presented in t h  thesis typicaily n = 10 waa uaed with At 5 -005 and L = 20. 
Periodic boundary conditions were used to biiy exploit the speed of the diacrete Fourier transfom. 

To test the convergence properties of the method, we conaidered the foiiowing one dimensional 
mode1 problem 

This problem has the exact solution 

with 4+ as given by (2.6). 

Presented in tables (4.1) and (4.2) are convergence r d t s  for the test problem when using 
211 modes for the discrete Fourier transfom. From these tables we can clearly see the 2nd order 

convergence as haiving the timoatep results coosistently in reducing the emx by a factor - 4. It 
is atm clear that the RK4 method 'uo more accurate for this problem than the midpoint methad 
and that the midpoint method is unstable for the lalgest tirne-shp, dt = .4096. For ail nina the 
parameters a = 1, y = 1.2 and c = 2 were useci. Solutions were integrated h m  t = O to t = 10.24 

on a physical domain z E [-40,401. The rate in computed as 

The cpu times quoted are for a Sun UltraSparcS. 

AU of the above comments of course aiao to 2 space dimensions, except instead of operations on 
vectors we have operationa on matrias. in 2D, especiaiiy for OPO, using midpoint for the nonlinear 
term bccomea more attractive when iroing many modes as it hss a maHu memoty requinment. 
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timeatep 1 cpu time (8) 1 Lœ e m t  ] Li error [ rate 
0.00010000 1 306.46922500 1 4.639613e08 1 3.824585e-16 1 3.9985 

Table 4.1: Errors with 2" modes using the midpoint method. 

thestep 1 cpu t h e  (s) 1 Lm ermr 1 Li 1 rate 
0.00010000 1 484.11483400 1 1.44777&08 1 4.13814%-17 1 3.9967 

Tabk 4.2: Enom with 2" modes using the RK4 methd. 



4.2 Moving Mesh methods 

Although accurate, simple, and fast, the split-step Fourier method cannot solve problema with 
blow-up. Without special re-gridding tu the solution f iuses,  it is impossible to keep a nasonable 
resolution. A static rescaling of the pmblem near blow-up is pcseible but not nesrly as efficient ae 
dynamicdy adaptive methods. In the case of PNLS with = 4e'ra, 7 = 1.2 which, as atea in 
figure (2.2), does not lead to blow-up, exdent  agreement uas achieved between integcation with 
the split-step and moving mesh methods. Sadly, due to excessive temporal and spatial gradients no 
other caees could be reasonably compare& 

For the blow-up and saturatiag blow-up pmblems the package MovCol [24] was used. The basic 

premise is to use the method of lines and require t h  spatial àiscretiaation to evolve with the solution 
by equidistributing a speciRed monitor function, LW(=, t) in the manner 

This requiies solving a PDE for the mesh as weii  as for the solution on that rnesh. It is a lovely idea 
ae it puts the grid pointa where they are n~uired (provided you have a good monitor function!). 
Moving mesh methods have been ernployed succeasfully for many problems with blow-up [24,25,26] 
when fixed gids are whoUy inadequate. 

4.2.1 Choosing a monitor function 

The key to moving mesh methdds ia in the choin of a praper monitor function. 

Consider figure (4.1)) what is mmt distuibhg is that this figure shows the evolution of tirne of 
PNLS with the same initial condition, $0 =: Se+', mmpukd with sensible parameteni and sensible 
monitor functions. ln fact three of the monitor luncaiom have been shomi (261 to pneerve the sealhg 

invariances present in NLS near blow-up- Both M = 191 and M = have been 4 
mamssfully to cornpute &-similar blow-up soiutions to NLS in [261. From numerical expeciments 
in appears that monitor functions with any radial derivative dependence can develop, (due to the 
Uifluena of the coqjugate hm), a me& cibaster, th& ia tao many points duster in regions of smdl 
amplitude odiation and then the solution is M. In figure (4.2) we aee the tracking of spurious 
d a t i o n  neat blow-up uaing an adength monitot function for P m S  whereaa for NLS thtr monitor 
function was able to foiiow blow-up in MS uatil(4( - 105, at which point the timointegrator failai 
due to error tolerances and a smooth miution was returned. 
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Figure 4.1: Cornparison of monitor iunctioae. 

This highlights, for me, the great atrength of adaptive methods - they not only focus on particular 
aspects of the solution but ignore others aa wd. The solution with M = 1#12 simply did not see any 
radiation or noise. Ali computatiow in this thesis involving blow-up w u e  generakd uaing M = Id12. 
Al1 saturating computatiow were done using M = [bI which for a auitable numbet of mesh points 
was able to track blow-up solutione to 141 - IO4 - well beyond the saturation level. M = 191 waa 
used because it waa typicdy 10 - 20 tirne faster for the same problem ae M = 141' due to the 
srnalier grid spacing near the peak and the subqumt added stü€nas. 

4.2.2 Computationd Parameters 

Because both OP0 and PNLS are noisier than NLS, and there ras some concern about bound- 
ary eftects, kst problems were aolved on the grids r E [O, L] with L = 10,20 with both Diiùùet 
and Neumann conditions. One exception to this b for the V component of OP0 where Neumann 
conditions were used dusively. No sigaificant d i l l i c e  was noticed between using Dichlet or 
Neumann conditions for solutions with bh-up.  For aahvating Mon-up and large values of e, a 
düièrence can be seen when the aolutiona have melted enough that mam appcoaches the boundary. 
Because the probhxn has radid symmetry, aü problems were solval with d componenb having a 



Figure 4.2: Spurious d a t i o n .  

Neumann condition at the boundary. Solutions with blow-up were computed on r E [O, 101 and 
saturating solutions on r E [O, 201. 

MovCol[25] i4 a highly customizable code with many user-specifiable parameters. In al1 runs the 
spatial smoothing parameter waa taken t4 be ip  = 5, the temporal smoothing w a  chœen r = 10" 
and the relative toletance for the tirne integration was c h a n  rfd =  IO-^. Whie a smaii absolute 
tolerance is desirable for m a t e  solutions, setking it too steingently can repuire an exccsaively small 

timoatep near blow-up. The absolute tolerance, atd, was dcneased M 141 increased in the following 

WaY 

For the solutions without blm-up the tolum~a~ acre set: rtd = 10-6, atd = i0-O. For 
problems with blow-up, N = 101 spatial nodea rnrt used ami for saturating problems, N = 141. 
Adjtutment of thait parametas did aot givc r k  ta signifiwtly d i f f c ~ t  mlutions. 
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4.3 Shooting the Townes 

The Townea soliton which playa a centrai mk in the theory of biow-up of the nonlinear Schmdingw 
equation can be stated as the solution to 

Despite no c 1 d  fonn representation much is known about this solution, for instance for t > 1 =+, 
R - *, whete A, - 3.52. 

Formaily the definition of R represents a boundary value ptoblem, and with the aeymptotic 
behaviour of R knowu, even a solvable one. Bowever boundary value pcoblem solvers are often 

delicate tequiring a very good initiai gueas. To cowteuct this guess a shooting method is oftm ustd. 

This turned out to be adequate. A shooting method was implemented in MatLab ahsr continueci 
the solution on incnaeingly larger intervals until a positive, monotonically decnssing mlutioa was 

obtained on r E [O, 151. This was done by using a boundary condition based on the k n m  asymptotic 
fotm of R and penalizing negative or increasing solutions. While this solution could then have been 

used for an initiai gues for ColSys, this wae deemed unnecessaiy as integrah of the solution agree 

exactly with pubilshed values. 

In the modulation quations, numecous integrah involving powm of R, R' and r appeat. The 
solution for R WM ntur~ed by the intesration mutineonto a uairormgrid on [O, 101 and then extended 
using the aaymptotic approximakion to [0,20]. Note that R(20) - C2". AU inkgrah over d space 
were then evaiuated numerically on this intuvd with As = .O1 uahg the fourth order extended 
Simyeon's nile. The i e d e d  Simpeoa's d e  is dtrived h m  bpplying Sunpson's thme-point d e  to 
nonsverlapping pairs of inteivds and takes the form 

Here N is odd with Az = and fa = f ((n - 1)Aê). 
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4.5 Integration of the modulation equations 

The tW order syaiem (3.32), was mwritten as a fourthsrder eystem 

and iatqpated witb the built-in MatLab stift ODE solver del5s. This formdation hides the fact 
that we are really mlving an integcd&ential equation and introduccs a need for the uaknowable 

initial condition 6. Fortunakly, due to the osciliatory behaviour of the intcgrals J, and the acale 
of the initial valuai for L, Lt and 8, varying Ca h a  iittte &ect on the nature of solutiom to (4.15). 



Chapter 5 

Conclusions and future work 

Many questions have been raised in thia thest which suggeat additional study. In the pbysica 

community it hae long been understod that xa materials provide damping. Whiie thia is cettainly 
true when there is one dominant field present, as wc have aeen interactions cm lead to a type of 

maance that m h  a x2 material bebave as a 9 material. It would be intenethg sce how broad 
a phenornena this is mathematically and whether or oot it can be observed physically. 

The numerical investigations dertaken lead one to wondet about the differences between PNLS 
and NLS both leadiog to and at btow-up. Also theie is work to be done in duadtratanding the k t  

way to integrak problems, su& as PNLS, with only asymptotic scale invariances and to determine 
the t ~ e  souce and e&t of the asciiiatocy radiation seen in the moving mesh caiculations. Laatly, 
1 am curiow ta know if there is an efficient way to reacde the pioblem in two dimcwioas to be able 
to integrate arbitrary data in two dimeruions with the spiit-stcp FFT code. 



Appendix A 

Wherein we slay the beast that is the soivabiiity condition 

where g, h and 1 corne ftom the equations 

Reis e- i~ c+n=-L~R(F (, ) ) $(c,P=o)=o, 2 h = 0  

L+i = (a + 7cos2S)R1 g((,p = O) = O, lim i  = O, 

and the perturbation F is given by 

and rec@ig that 

we can begin evaluating (A.1) term by term. 









Asaembling this monstlosity we have the modulation equation (3.32) 
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