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Abstract

Multipath propagation leading to Rayleigh fading in wireless channels can be adequately
modelled through the use of sum-of-sinusoids simulators. We present a quick overview
of the work carried out thus far in this area, culminating with the development of Clarke’s
model [3]. A popular sum-of-sinusoids fading channel simulator is derived from this model
by Jakes [23]. In general, in order to assess the performance of channel simulators one
needs to determine the statistics of the fading channel. A common way of accomplishing
this is sending a sine wave across the channel and then determining the statistics of the
output signal; even this simplified problem may not always be tractable. In the case of sum-
of-sinusoids simulators, however, we are able to derive the envelope and phase probability
density functions of the fading signal produced by the simulator, given that a sine wave was
sent. In addition, we determine the autocorrelation function.

Once the statistics of the sum-of-sinusoids simulators are developed, we apply them
to Clarke’s model and Jakes’ fading channel simulator in order to determine whether the
simplifications made by Jakes are justified. We find they are not. In particular, while the
signal produced by Clarke’s model is wide-sense stationary, the signal produced by Jakes’
simulator is not. We attempt to improve the performance of Jakes’ simulator and find
that introduction of random phase shifts in the low-frequency oscillators does produce a
wide-sense stationary signal. However, the phase shifts of the resulting fading signal are
only uncorrelated; they are not independent, as in the signal generated by Clarke’s model.
Therefore, we do not solve the underlying problem with Jakes’ simulator.

Also presented in this thesis are quality measures of the fading signal produced by
sum-of-sinusoids simulators. These measures are based on the results developed for the
envelope probability density functions, envelope distribution function, as well as the auto-
correlation function. We present examples of how such quality measures may be derived
and how they may aid in the proper choice of the number of low-frequency oscillators, or

equivalently, sinusoids, which need to be incorporated in the simulators.
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Chapter 1

Introduction

Humans communicate. The need to transmit information reliably has been around for as
long as humans have existed. Smoke signals, postal couriers, and telephones, are just a
few of the ways humans have tried to satisfy the need to communicate. Each step, brought
on by the human impetus to push the boundaries of knowledge further, was met with its
unique set of challenges. Today, most would agree the next step in this evolution is wireless
communication. Instant communication to and from anywhere on Earth is an impressive
goal, and it too, presents a daunting set of challenges to be met before the goal is reached.

Unlike the examples mentioned above, where the effects of the medium through which
messages are exchanged are relatively well known, the same can not be said about wireless
communication. The message, in our case a sine wave, is sent through the wireless channel
as electromagnetic radiation. The geography between the transmitter and receiver leads to
the electromagnetic signal being scattered and reflected, such that upon reception, it appears
as a superposition of waves. In addition, natural elements such as clouds, moisture in the
air, and precipitation, further impair the reception by unequally attenuating waves arriving
from different directions at the receiver. Furthermore, these component waves experience
varying degrees of Doppler shift arising from the motion of the mobile receiver. To make
matters worse, the characteristics of the channel vary from hour to hour, from day to day.
Thus, the problem the wireless engineer must solve is that of reliably transmitting voice or

data over a geographically diverse and time-varying channel.



In order to design reliable systems and to assess the performance of existing systems,
the wireless engineer tests them. An obvious approach would be to test the system once it
is built. However, there are some drawbacks to this method. First, it is not cost-effective.
Building prototypes is usually expensive and they are not guaranteed to work upon first
trial. Second, the time-varying nature of the channel would make it hard to distinguish the
shortcomings of a certain design from the impediments of the channel.

Fortunately, one may derive a model for the wireless channel, then implement it in
software, say. The engineer could then test the communication system under study without
leaving the laboratory, or even having to manufacture a prototype. In addition, the effects
of the channel on the system are easier to control because the time-varying nature of the
channel may be removed. One inherent drawback to models, in general, is that they are only
approximations to naturally occurring phenomena. As such, the results obtained by using
these models are close to those measured directly, but not exactly the same. Of course, the
results obtained with a particular model are valid only insofar as the model represents the
natural phenomenon, in our case fading.

Models of fading wireless channels are readily derived from physical considerations of
the fading phenomenon. It should be noted that many types of models exist. They vary in
complexity, time domain implementation, i.e., discrete time vs. continuous time, and un-
derlying design, i.e., deterministic vs. stochastic. The application at hand will dictate the
complexity of the model, what time domain the model will be implemented in, and whether
it will be deterministic or stochastic. For example, one may generate an approximation to
the Rayleigh fading signal by using uniform phase modulation or quadrature amplitude
modulation, i.e., amplitude modulate the in-phase and quadrature components of a carrier
with a lowpass filtered Gaussian noise source [23], [24]. The main problem with the first
model is that the power spectrum is hard to compute. The second model’s main drawback is
that only rational forms of the fading spectrum may be obtained, whereas the fading spec-

tra encountered in practice are often non-rational. Other approaches include generation of



Rayleigh random variates via the Fourier transform [13], [22], [25]. The main difficulty
with this lies in the fact that the entire fading waveform needs to be generated before the
simulation is run. In this thesis, we look at sum-of-sinusoids models of the Rayleigh flat
fading narrowband wireless channel. The sum-of-sinusoids model is simple and may be
implemented in either discrete or continuous time. Another advantage is that the Rayleigh
fading signal is generated in real-time, i.e., as it is needed, in contrast with Fourier trans-
form methods. Most often, these models are described as deterministic, to emphasize that
once the parameters of the model are chosen they do not change over the duration of the
simulation.

A simulator based on one such model, which has received attention lately, is Jakes’
fading channel simulator. The simulator is attractive for a number of reasons. Among these
are its simplicity, making it easily implementable in either software or hardware. Also,
the model parameters are closely related to those of the physical channel, and thus the
effects of the channel parameters on the simulator are easily identifiable. This would lead
us to expect that the results obtained with such simulators would closely approximate those
observed in nature. However, as mentioned above, models approximate real phenomena.
It would be useful to know how well the results obtained with sum-of-sinusoids simulators
characterize the fading channel.

One objective of this thesis is to take an in-depth [ook at the statistical properties of sum-
of-sinusoids models of the Rayleigh flat fading narrowband wireless channel, in general,
and Jakes’ fading channel simulator, in particular. Another objective is to derive some
quantitative measures of the inaccuracies introduced by the limitations inherent in the sum-

of-sinusoids models.

1.1 Outline of the thesis

The thesis is organized as follows. Chapter 2 presents an overview of the development of

sum-of-sinusoids flat fading channel models born from a physical consideration of the fad-



ing phenomenon. In particular, we look at Clarke’s work because it is from Clarke’s model
that Jakes derives his simulator. We show the steps Jakes follows to obtain the fading chan-
nel simulator from Clarke’s model. This development culminates with the presentation of
the simulator in both block diagram and equation form. Recently, there has been much at-
tention devoted to determining the properties of sum-of-sinusoids simulators. In particular,
the works of Pitzold et al. [7], Pidtzold et al. [8], and Pétzold et al. [9] are of relevance;
Patzold’s analysis, as it applies to the topic of this thesis, is also summarized in this chapter.

Chapter 3 determines the statistical properties of Clarke’s model, the reference model,
and those of Jakes’ fading channel simulator, such as the envelope and phase probability
density functions (pdf’s), and the autocorrelation functions. The pdf’s are computed using
a well-known theorem from statistics relating to the computation of the pdf of the sum of
independent random variables. It is found that the signal produced by Clarke’s model is
wide-sense stationary. In addition, it exhibits ergodicity of the mean and autocorrelation,
1.e., the statistical mean is equal to the time average mean and the statistical autocorrelation
1s equal to the time average autocorrelation. The signal produced by Jakes’ fading channel
simulator is not wide-sense stationary, and therefore, it does not possess ergodicity of the
mean and autocorrelation.

In Chapter 4, we look at two methods of improving the performance of Jakes’ simu-
lator. The improvement is measured in terms of whether the fading signal generated by
the simulator has the same statistical properties as that produced by Clarke’s model, i.e., if
the signal is wide-sense stationary. The first improvement proposes the insertion of sin(-)
terms. It is found that this does not result in the generation of a wide-sense stationary sig-
nal. The second approach proposes the insertion of random phases in the low-frequency
oscillators. This does result in the generation of a wide-sense stationary signal. However,
the phase shifts of the components of the resulting fading signal are still dependent. This
may pose problems when higher order statistics are computed.

It is noted that, in general, Clarke’s model can not be simplified, as in the procedure



outlined by Jakes, i.e., by reducing the degrees of freedom corresponding to the phase
shifts. In certain cases, where the angles of arrival exhibit symmetry, the number of Doppler
frequency shifts' observed is reduced. Hence, the number of low-frequency oscillators is
reduced as well, leading to a simplification of the structure of the simulator. In reducing the
number of oscillators, however, we must include the phase shifts of all waves experiencing
the same Doppler frequency shift as appropriate gains for the corresponding low-frequency
oscillator.

Chapter 5 analyzes the errors introduced by the inherent limitations of Clarke’s model.
We illustrate how the formulae derived in Chapter 3 can be used to derive quality measures
which may be used to assess the performance of simulators derived from Clarke’s model.
In particular, we look at how the maximum absolute error between the envelope pdf of
the simulator signal and the desired envelope pdf varies with the number of low-frequency
oscillators. The same is done for the envelope cumulative distribution function (cdf). Also,
we seek an explanation to the deviation of the autocorrelation function from its desired
value at large lags. We develop a formula for computing the point beyond which this devi-
ation becomes large, i.e., relate the breakpoint to the number of distinct Doppler frequency
shifts and the maximum error allowed in the autocorrelation function.

Finally, Chapter 6 presents some concluding remarks and suggestions for further study.

1.2 Contributions of the thesis

In analyzing the statistical properties of Clarke’s model and Jakes’ simulator, we have
discovered previously known and unknown results that may be useful to the engineer mod-

elling the Rayleigh flat fading narrowband wireless channel.

e In Chapter 3, we apply a well-known approach, that of computing the pdf of the

sum of independent random variables via the characteristic function domain, to the

I'Throughout this thesis, the use of the word “shift” includes both positive and negative Doppler frequen-
cies, unless otherwise noted.



computation of the envelope pdf of the fading signal. Using this technique, and rea-
sonable assumptions, we derive the exact envelope pdf, rather than an approximation.

We also show the phase is uniformly distributed over [0, 27x].

e In Chapter 3, we show that the fading signal produced by Jakes’ simulator is not
wide-sense stationary. Previously, it was assumed to be stationary and to exhibit

ergodicity of the mean and autocorrelation.

e In Chapter 4, we show that introduction of random phases in the low-frequency os-
cillators of Jakes’ simulator [eads to the generation of a wide-sense stationary signal.
This method has been previously used to improve the simulator’s operation. How-
ever, the phase shifts of the resulting multipath fading signal are dependent; they are

not independent as in Clarke’s model.

e In Chapter 5, we show how the formulae of Chapter 3 can be used to derive quality

measures, which in turn can be used to analyze the performances of sum-of-sinusoids

simulators.

e In Chapter 5, we present a method for determining the time lag beyond which the
autocorrelation function deviates significantly from the desired value. We relate the
magnitude of this time point to the number of low-frequency oscillators used in the

model or simulator.

1.3 Thesis notation

To aid the reader, the following notational conventions will be followed in this thesis. The
conventions herein follow those of the literature. In cases where authors use different nota-
tion, that notation has been changed to meet these conventions, in order to ease comparisons
between others’ work and this thesis.

Random variables are denoted by capital letters. Values taken by random variables are



denoted by the corresponding lowercase letter. That is, x;,.x,, . . ., X, are the observed values
of the random variables X, X,, ..., X,.

Stochastic processes are also denoted by capital letters, indexed by a time variable,
such as R(r). Corresponding sample functions are denoted by lowercase letters, such as
r(r). Thus, r(z) is an sample function of the stochastic process R(r).

The calligraphic %, denotes statistical (ensemble) autocorrelation. The subscript indi-
cates the stochastic process whose autocorrelation is under study, in our case R(r). We use
angle brackets () to denote time averages, in particular the time-average autocorrelation.

Probability density functions are denoted by the lowercase f indexed by the appropriate
random variable. Thus, fy(x) is the pdf of the random variable X. Furthermore, fz(r1) is
the pdf of the stochastic process R(¢), in particular the envelope pdf of R(r). Note that, in
general, this pdf may also be time-varying; this is emphasized through the inclusion of time
t in the pdf. Similarly, cumulative distribution functions are denoted by the uppercase F.

Characteristic functions are denoted by the uppercase Greek ®. Thus, the characteristic
function of a scalar random variable is ®(w), and the characteristic function of a two-
dimensional random vector (X,Y) is ®(w,,®,). Note that phase shifts are also denoted
by the uppercase Greek ®. However, the context should make it clear whether @ refers
to a characteristic function or a phase shift. In particular, when @ is used to denote a
characteristic function, it will always be followed by an argument in parentheses, as above.

More particular to the topic of sum-of-sinusoids models of fading channels, we will
use N to denote the number of waves making up the received fading signal. We use M
to denote the number of distinct Doppler frequency shifts in the modelled signal, i.e., the
number of rays in the reduced realization of the modelled fading signal. It is always the
case that M < N. We note that in cases where the angles of arrival are symmetric about the
x-axis, as in Jakes’ case, the number of distinct Doppler frequency shifts is given by M + 1
if the maximum Doppler frequency shift @, is included, and M if it is not.

Finally, we use the tilde to denote reduced realizations. Thus R(¢) is a reduced realiza-



tion of the stochastic process R(t). In other words, R(r) may be a more efficient realization

of R(t), i.e., R(t) contains fewer sinusoids than R(r).



Chapter 2

Jakes’ Simulator and Piitzold’s Analysis

In this chapter, we will present a brief review of the work that led to the development of
Jakes’ simulator. While many have contributed to the theory upon which the simulator
is based, Clarke [3], in particular, has collected most of the relevant irformation in one
paper. We present the equations which he developed because it is with these equations
that Jakes started. We present some of the development here, together with the structure
which implements Jakes” simulator. Finally, we conclude the chapter with a presentation
of Pitzold’s work [8], [9] relating to sum-of-sinusoids simulators, and in particular, Jakes’

simulator.

2.1 Previous work

The general problem in communications consists of sending a message through an im-
perfect channel. The channel may introduce noise, fade, or otherwise distort the original
message, such that the output signal is not identical to the input signal. Most often, the ef-
fect of the channel can be quantified through the channel impulse response. In some cases,
however, determination of the impulse response may not be tractable. This is especially
true in the case of fading channels, where the impulse response is usually time-variant.
A common approach for determining the effects of the channel on a message is channel
sounding. This method consists of sending a known signal across the channel and observ-

ing statistically the output signal. To simplify the problem, it is almost always the case that
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the sounding signal is a cosine wave. This is certainly true of the work summarized below.

Ossanna [1] was one of the first to attempt to model the fading phenomena observed
in mobile wireless channels via sum-of-sinusoids models. The simplest model, Ossanna’s
work is based upon a mobile receiver moving through a standing wave pattern due to a
single reflector. For simplicity, he assumed the transmitted signal is vertically polarized.
The model allowed Ossanna to compute theoretical power spectra, which he then verified
against recorded fading waveforms. Although the model could not account for a rise in the
demodulated power spectra at low frequencies in urban areas, it worked well in suburban
areas.

Gilbert [2] expanded on Ossanna’s work. In Gilbert’s model, there are N arriving waves
uniformly spaced around the unit circle about the mobile. The amplitudes of the N arriv-
ing waves are chosen independently from a Rayleigh distribution, while the phases are
chosen independently from a uniform distribution over [0,27]. Like Ossanna, Gilbert also
assumed the transmitted wave is vertically polarized. Although he was mainly interested in
antenna diversity reception systems, Gilbert developed expressions for the energy density
distribution function, correlation coefficients, and the power spectrum of the energy density
observed at the mobile.

Much like Gilbert, Clarke [3] also assumed that the received signal is made up of a
superposition of waves. Clarke generalized Gilbert’s work in that the angles of arrival
of the N waves are independent and are allowed to follow some arbitrary pdf; simplified
answers are obtained in the case where this pdf is uniform over [0,271'], i.e., the angles of
arrival are uniform independent, identically distributed (i.i.d.) over [0, 27x]. The amplitudes
of the N arriving waves are assumed to be constant and equal. Clarke also assumed the
transmitted wave is vertically polarized. He writes expressions for the three fields, i.e.,
the electric field in the z-direction E-., the magnetic field in the x-direction H,, and the
magnetic field in the y-direction H,. From these equations, Clarke derives expressions for

the autocorrelations of the three fields, as well as expressions for the cross-correlations of

10



the possible combinations. Clarke also determines a simple relation between the power
spectral density of the signal at the receiver, and the product of the antenna’s azimuthal
power gain and the pdf of the angles of arrival of the N waves. This relation is further
analyzed by Gans [4].

The general setup is depicted in Figure 2.1. The transmitter sends a continuous wave,
i.e., a cosine. At the receiver we observe the interference pattern generated by the super-

position of N arriving cosine waves. The equations for the three fields, as given by Clarke,

are
N -
E.=Ey Y &, (2.1a)
n=|1
E, ¥ :
Ho=—=23% sinA,e/®, (2.1b)
n=1}
and
E 1V .
Ho==2% cosA,el® (2.1c)
n=1
where

e E is the common real amplitude of the N arriving waves,
o 1) is the intrinsic impedance of free space,
® @, is the random variable (rv) describing the phase shift of the nth arriving wave,

® A, is the rv describing the angle the nth arriving wave makes with the positive x-axis,

and
e jis the complex constant, j> = —1.

Note that the attenuation along all of the N paths is assumed to be the same. As well,
the time variation in the above equations is suppressed and understood to be of the form
e/®!. Also note that the possible time dependence of the phase shifts ¥, is not explicitly

included, i.e., the Doppler effect is not explicitly written.
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\ Y

nth incoming

\(xn
1Y o o
N -
mobile

Figure 2.1. A typical component wave (after [3, p. 961]). Note that the mobile receiver is
moving in the direction of the positive x-axis.

In the remainder of this thesis we will only concern ourselves with the electric field E.-.
The justification for this lies in the fact that we are interested in evaluating the performance
of Jakes’ simulator. Jakes limits himself to simulating only the electric field of the received
signal; hence, our choice to restrict our study to the electric field £.. Furthermore, Jakes’
development can be readily extended to model each of the two magnetic fields H; and H,.

It should be mentioned here, that when computing the first order statistics of the fading
signal, such as the envelope and phase pdf’s, none of the authors mentioned thus far provide
a solution, save to mention that in the limiting case, i.e., as N becomes large, the envelope
pdf is Rayleigh, while the phase pdf is uniform.

From equation (2.1a), Clarke then develops an expression for the autocorrelation func-

tion of the electric field E-,
T .
Ry (x) = NE2 / Fyla)eieoseqg, (2.2)
~ -
where

e f,(a) is the pdf of the angle of arrival of the component waves,

e k= -iﬁ is the free-space phase constant, with A, representing the wavelength of the

transmitted signal, and

e x is distance in the direction of the motion of the mobile, i.e., the distance along the

X-axis.



If the N waves can arrive from any direction with equal probability, i.e., if f,(a) = 1/2x

for - < a < m, then equation (2.2) simplifies to
R (x) = NE§Jo(kx), (2.3)

where J;(-) is the Bessel function of the first kind of order zero.

A more general class of sum-of-sinusoids channel models was introduced by Bello [11].
These fading channel models are characterized by the wide-sense stationary nature of the
fading signal, at least in the short term. In addition, the channel may be modelled as a
continuum of uncorrelated scatterers. Hence, a channel of this class is commonly referred
to as the wide-sense stationary uncorrelated scattering (WSSUS) channel. In general, the
WSSUS channel impulse response at time ¢, given that an impulse was applied at time ¢ — 7,

may be written as

N .
h(t;t) = A}im Z C"ej(in-%-‘Dn) S(1—Tp), (2.4)

n=l1

where
e C, is the rv describing the attenuation along the nth path,

e Q, is the rv describing the Doppler frequency shift along the nth path, due to the

motion of the receiver,
e @, is the rv describing the phase shift along the nth path, and
e T, is the rv describing path delay along the nth path.

Note that the Doppler effect is made explicit by the inclusion of the 2, terms.

We pause here to note that the phase shifts @, arise due to the reflection and refraction
of the electromagnetic waves from obstructions. The path delays 7, arise because of the
finite velocity with which the waves travel. Different path delays may arise due to the fact
that different paths followed by different rays of the multipath fading signal have different

lengths. Observe that at least in the case of Rayleigh flat fading channel @, and T, have
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no influence upon each other; in fact, they arise from unrelated considerations. It might be
that in the case of line-of-sight channels the phase shifts ®, might be related to the path
delays T,; however, we are not concerned with such channels here.

The next step of complexity and corresponding improvement in fading channel mod-
elling via sum-of-sinusoids was taken by Aulin [6]. Whereas authors previous to him as-
sumed the transmitted waves travelled only horizontally, Aulin allowed for non-horizontal
travelling waves. He argued that in urban centers, where tall buildings dominate, horizon-
tally travelling waves would not reach mobile users at street level. Therefore, it must be
that the tops of buildings scatter these horizontal waves such that they travel at different an-
gles of elevation. In other words, Aulin introduced a third dimension to the fading channel

model.

2.2 Jakes’ fading channel simulator

Jakes’ fading channel simulator attempts to model the fading phenomenon present in radio
mobile channels. A detailed description of the model is presented in [23]. Here we give a
quick overview of this development.

To determine the effects of fading on a particular channel, suppose we transmit an

unmodulated carrier

T(r) = Eycos axt. 2.5
Then, at the receiver we will observe the interference pattern produced by N arriving waves.

Following Clarke, but slightly more general than his equation {3, eq. (1)], i.e., equation

(2.1a) here, the received signal can be written as,

N .
R(r) = R{Ey Y Cpe/(@micosAntPn) g/t ], 2.6)

n=l!

where,

e E, is the common real amplitude of the N arriving waves, i.e., the amplitude of the

transmitted signal,
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e C, is the rv describing the attenuation along the nth path,

o W, = gj{c—v 1s the maximum Doppler frequency shift, with V' representing the speed

of the mobile, and A, representing the wavelength of the transmitted wave,

e A, is the rv describing the direction the nth arriving wave makes with the positive

X-axis,
o @, is the rv describing the phase shift along the nth path, and
e . is the radian frequency of the transmitted wave.

Note that since the C,’s are real, we may re-write the fading signal of equation (2.6) as
N
R(r) = Ey D, Cncos(@ct + Wt cosAp + Pp). 2.7)
n=1|
Without loss of generality, we set E, = /2, i.e., normalize the power transmitted. This
will hold true for the remainder of this thesis, unless otherwise indicated. Then, equation

(2.5) simplifies to

T(r) = v/2cos wt,

and equation (2.7) simplifies to
N
R(t) = V2 Y Crcos(@ct + Wt cosAn +Pp)-
n=1

It should be obvious at this point why simulators which produce signals of the form of
equation (2. 1a), or equivalently equation (2.7), are called sum-of-sinusoids simulators. The
distinguishing feature of this type of simulator is that it contains a low-frequency oscillator
for each Doppler shift Q, = @, cosA,, i.e., is made up of N oscillators. We are interested
in analyzing the performance of simulators which contain fewer than N oscillators. One
such example is Jakes’ simulator, to be introduced shortly. The model represented by
equation (2.6) is slightly more general than that of Clarke, through the inclusion of the path

attenuations C,, and Doppler shifts Q,. As well, the time variation is explicitly indicated,
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unlike Clarke’s model. Actually, equation (2.6) is closer to Bello’s formula of equation
(2.4); it is obtained from the latter by setting 7,, =0 forn=1,2,...,N.

A general relation between the C,’s and the pdf of the angles of arrival is supplied by
Jakes, [23, p. 68]

cg = fAn(a,,)doz,, n=1,2,...,N, (2.8)

where f, () is the pdf of the nth angle of arrival ¢,. The c,’s may be interpreted as the
power ratio received within the small arc da, about the angle of arrival o,.

The first step taken by Jakes is to restrict the angles of arrival from being uniform i.i.d.,
ie., fy, (o)) =...= fy, (0y) = 1/27, 10 being uniformly spaced, i.e.,d0tn = ¢, | — Op =

21 /N, and fixed according to

2nn
a,,zv, 71=].,2,...,N. (29)

This, in turn, leads to the attenuation along the N paths being equal, i.e., equation (2.8)

becomes

cn=1/VN (2.10)

This amounts to observing that since the pdf of the angles of arrival f,_ (aty) is uniform, the
power received in each arc d ¢, is the same, as long as the ¢, are uniformly spaced.

Next, Jakes forces N to be of the form 4M + 2, for some integer M. This restriction
imposes a certain symmetry upon the directions of the arriving waves at the mobile; this
symmetry lies at the heart of the reduction performed by Jakes. This scenario is illustrated
in Figure 2.2 for N = 10. The choice of ¥, and hence A, reduces the number of distinct
Doppler shifts from N to M + 1. Therefore, instead of needing N oscillators to generate N
Doppler shifts, we now need only M + 1 oscillators to generate the smaller number M 41 of
Doppler shifts. It should be noted that while some form of symmetry is required to reduce
the number of terms in equation (2.6), the choice made by Jakes is not unique. For another

choice, see [5].
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Figure 2.2. Symmetry imposed by Jakes on the angles of arrival and the number of rays
following the reduction.

For the mathematical details of the reduction from N to M + 1 oscillators, the reader is
referred to [23, pp. 68-69]. The form of the simulator is now apparent from Figure 2.2, i.e.,
the simulator contains M + | low-frequency osciliators properly weighted and summed to
produce the fading signal. We reproduce this in Figure 2.3.

From Figure 2.3, the fading signal can be readily written in terms of quadrature com-

ponents as!

R(t) = X.(t) cos .t + X;(¢) sin s, (2.11)

where X.(r) and X;(¢) are given by?

) 2 M
Xc(1) = va <\/§cosBM_H COS Wyt +2 Z cos B, cos m,,r) , (2.12a)
n=I1
and
_ 2 . o
Xs(t) = Tﬁ (\/ismBM_}_l COS Wyt + 2 Z sin B, cos cu,,t) , (2.12b)
n=1

IThe tilde “~ is used to emphasize that the signal produced by Jakes’ simulator R(r) may, in general,
differ from that produced by Clarke’s model R(¢). In other words, Jakes’ simulator is a reduced version of
Clarke’s model; we have not shown the two to be statistically identical yet.

2Jakes does not include the constant 72:\7 They are included here to normalize the power in R(¢), similar

to the normalization of the power in R(r) earlier.
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Figure 2.3. Jakes’ fading channel simulator (after [23, p. 70]).
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where @, is the radian Doppler frequency shift undergone by the nth arriving wave, and is
given by
27n

wﬂ = w,ncosan = a)m cOSs "‘N"_.

The terms cos B, and sinB,, are termed oscillator gains; the term is also applied directly
to B,, however. The values for 3,, n = 1,2,...,M + | are chosen such that the phase of

the signal R(z) is uniformly distributed over [0,2r]. Jakes points out that there are several

choices for By, ..., By, . The values chosen by him are
n
Bys1 =0, Ba=g n=L..M (2.13)

For other sets of values see {23, Figure 1.7-2] or [24, p. 78].

The structure of Figure 2.3 together with the choices made in equation (2.13) is com-
monly referred to as Jakes' fading channel simularor 5], [9], [10], [12], [24].

A final note on the value of N, or equivalently M. As mentioned before, for large
enough values of N the envelope pdf is Rayleigh. Jakes [23] quotes the works of Slack [20]
and Bennett [21] to justify that a value of M > 6 is sufficient {23, p. 69]. He points out that
deviations from the Rayleigh distribution are confined mostly to the extreme peaks. Other
considerations stemming from, for example, the autocorrelation function, result in other
choices of N. Jakes indicates that a value of N = 34, or equivalently M = 8, is sufficient

(see [23, p. 69]) to assure required accuracy in the autocorrelation function.

2.2.1 A note on the pdf of B,

In this subsection, we determine the relationship between the oscillator gains B,,..., By,
of Jakes’ simulator and the phase shifts ®@,...,®,, of Clarke’s model. We should mention
here that Jakes [23] does not describe how B, ..., By, | are obtained, or how the oscillator

gains of his simulator are related to the phase shifts of Clarke’s model.

Re-writing the signal generated by Jakes’ simulator under the constraint that it have

19



unit power, we have

~ 2 M
R(t) = cosaxt,/ N (2COSBM+I COS Wt +2V2 Y cos B, cos a),,t)

n=1

. [2 (.. Mo
+ sin @t N (2 smBM+l COS Wyt +2\/§ Z sinB,, cos wpt

n=1

2 M
= W 2cosa),,,tcos(cuct—BM+])+2\/’§Zcosa),,tcos(wct—B,,) ,(2.14)

n=1

where we have used the well-known trigonometric identity
cosxcosy+ sinxsiny = cos(x —y).
Substituting another well-known trigonometric identity,
2cosxcosy = cos(x—y) +cos(x+y),

in equation (2.14) yields

2
R(t) = \/ﬁ[Cos(a)ct—a),,,t—BMH)+COS(O)Ct+w,nt—BM+1)]

) M
+—=Y [cos(@ct — Wt — By) + cos(@et + Wnt — By)]. (2.15)

\/Nn=1

Recall that R(z) is meant to be a more efficient realization of R(t),

5 N
R(t) = ‘/1:\’ Y’ cos(aet + wnt + D).

n=|1
To determine the relation between the B,’s and the @,’s, we equate cosines of the same

frequency. Recalling that @, = w,, cos %’5—" we have forn = 2M + 1
COS(COC[ - Cl),,,t +¢)2M+l) = COS((UC[ - a),nt - BM'{‘I)'

Clearly,
Byi1 = —Poprr1- (2.162)

Similarly, forn = N =4M + 2, we obtain
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from which we infer

By, = —CD4M+2‘ (2.16b)
Comparing equations (2.16a) and (2.16b), we must have
Byi1 = Doy = —DPypria .17

From equation (2.17) it follows that Jakes forces @,,,. | = @y, »; these phase shifts are
no longer independent, as assumed in Clarke’s model.
We can obtain a similar result for By, ..., By,. Equating components of equal frequency,

we have
cos(@et + Wyt +Pp) + cos{ @t + Wt + Dyrrinn) = ﬁcos(wct +wpt —Bp).  (2.18)

Equation (2.18) may be simplified by combining the two cosines on the left side, i.e.,

D, +P
\/2+2cos(®, — Dy, 5_,)COS (a)ct-i—a),,t-i— z 7‘””“‘") = /2 cos(wt + Wt — By).
(2.19)

Comparing the amplitudes of the cosines in equation (2.19), we have
COS((D,l - ¢4M+2—H) = O. (2.20)

Equation (2.20) gives an implicit relationship between ®, and @, , ., forn=1,... M.
We can make the relationship between the two phase shifts explicit by observing that they

must satisfy one of the four equalities

Pr = Pypparn— o (2.21a)
@, = ¢4M+,_nﬁg, (2.21b)
®, = ¢4M+,,_n+g, (2.21¢)
@, = <1>4M+,_n+39f, 2.21d)

foreachn =1,...,M. Again, we note that the phase shifts are no longer independent as in

Clarke’s model.

21



Similarly, we may obtain that the phases @,,,.,_, and ®,;,, ., must satisfy one of

the four equalities

Returning to equations (2.19), we now determine the relationship of B, ...

(D2M+ I—n
(DZ’.M-{-l—rz
(D&W-H—n

CDZM—E- l—n

kY,
q)2M+I+n T g
T
(I)2M+i+n - E’
T
¢2M+1+n+ 5’
3

chM-i—I-'rn + 5

®D,...,Py, . ,- Equating the phases of the two cosines, we have

n =

_ (D” + <D4M+2—n

2

<

Substituting equations (2.21a) — (2.21d) in equation (2.23) we observe that B,,..., B, and

®,,..., P, must satisfy one of the four equalities

Similarly, we may obtain

3T
(I),,+—4-,
—Cbn'l";—zf:
T
ﬂ(I),l_ g’
T
~y =~ -

B = Dot —n T Posts14n
n

2

and we observe that B, and CD2M+I_,, must satisfy one of the four equalities

B, =
Bn =
B, =

Bn

3r

—(D2M+l—n + 3

T

_CD?.M-i-I—n +Z’

T

—¢2M+l—n 3

Iz

~Postii-n~ g
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(2.24b)
(2.24¢)

(2.24d)

(2.25)

(2.26a)
(2.26b)
(2.26¢)

(2.264d)



From equations (2.23) and (2.25), we conclude that the four-tuple of phase shifts ®,,
Doprit—ns Porrotwns Papran_, forn=1,...,M, are no longer independent as in Clarke’s
model.

Returning to equations (2.24a) — (2.24d), we note that B,..., By, depend directly on
D,..., Py Also, because P,...,P,, are uniform i.i.d. over [0,27], we conclude that
B,,...,B, are also independent and uniformly distributed over some interval of length 27.
However, since the B,’s appear only as arguments to either cos(-) or sin(-), we may take

the B, as uniform i.i.d. over [0, 2] without loss of generality.

2.3 Pitzold’s analysis

One author who has done extensive research on the topic of deterministic fading chan-
nel simulators is Pétzold (see, for example, [7] — [9]). The word deterministic, as used
by Pitzold, is meant to emphasize that the simulator parameters, once chosen, remain un-
changed for the duration of the simulation run. Thus, simulators of the form given in
equation (2.6) fall in this category. In particular, Jakes’ simulator is a deterministic model
because once the C,, A,, and B, are chosen they do not change for the duration of the
simulation. We note that this is strictly a choice of nomenclature, and does not affect the
analysis of the model.

Returning to Pétzold’s work, we note that he has computed the statistics of the Jakes’
fading channel simulator [9]. He obtained analytical expressions for the autocorrelation
and cross-correlation functions of the in-phase X.(¢) and quadrature X;(r) components, as
well as the envelope and phase pdf’s of the resulting fading signal R(z).

To derive the results mentioned above, Pitzold notes that the signal produced by the
simulator is deterministic, and thus its properties can be analyzed on the basis of time
averages instead of statistical averages. However, substituting time averages for statistical
averages is meaningful only in the case of (at least) wide-sense stationary and ergodic

signals; Pitzold does not verify that the fading signal R(¢) possesses either property. It
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should be pointed out that in [8] Pitzold justifies this approach by observing that for a single
random-phased sine process the time average does indeed equal the statistical average. To
connect this step to the final answer would require the same to be true of sums of such
processes. This is easily shown to be false through the following counterexample.

Suppose we have the signal
R(t) = cos(t+©) +cos(2r + O),

where © is a random variable uniformly distributed over [0,2m]. It is easily shown that
for each of the signals cos(r + ®) and cos(2r + ©) the time average equals the statistical
average. For example, one may note that both processes are wide-sense stationary and
ergodic, and hence the two averages are equal. Conversely, one may directly compute the
two averages.

Now, we compute the statistical autocorrelation of R(r). It is

E{R(1,)R(1,) }
= E {[cos(t; +©) +cos(2t, + ©)] x [cos(t, +©) +cos(2t, +O)] }
= E{cos(t; +O)cos(t, +©) } + E {cos(t, + O) cos(2t, + O) }
+ E {cos(2r, + ©)cos(t, +©) } + E {cos(2t, + ©) cos(21, + O) }

l l
= 5 [cos(z, — 1)) +cos2(t, — )] + 5 [cos(2t, —1,) +cos(t, — 21)]. @27

Clearly, the statistical average function is not a function of only the time difference ¢, —1,,
as is obvious from looking at the second term of the sum in equation (2.27).
Next, we compute the time-average autocorrelation of R(r). For a particular value of ©,

itis

(R(t)R(r +17))

T
= lim %/T[Cos(t-i-@) +cos(2t 4+ ®)] x [cos(t + T+ O) +cos(2r + 27 + O)] dt

T —eo

1 T
= lim ﬁfT[cos(t+@)cos(t+r+@)+cos(t+®)cos(2t+2t+@)

T —oo
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+ cos(2r+ @) cos(r + T+ O) +cos(2r + @) cos(2r + 2T+ O)] dr

1
= E(cosr+c052r). (2.28)

Comparing equations (2.27) and (2.28), it is clear that the statistical average autocorre-
lation does not equal the time average autocorrelation. Hence, we conclude that, in general,
sums of wide-sense stationary processes may not be wide-sense stationary, thus removing
the possibility that the sum may exhibit any ergodicity properties.

It is also interesting to note that, in general, the statistical autocorrelation is a function of
two variables, 1| and 1, in our case, while the time average correlation is a function of only
one variable, usually the time difference 7 =1, —1,. In the case of wide-sense stationary
processes the statistical autocorrelation depends only on the time difference T=1, —¢,. It
is no surprise, then, that one prerequisite for equating time averages with statistical ones
requires the stochastic process to be at least wide-sense stationary.

Furthermore, the computation of the envelope and phase pdf’s rests on the assumption
that the in-phase and quadrature components are independent, and thus uncorrelated. In [8],
Pitzold notes X.(¢) and X;(¢) are uncorrelated if the sets of frequencies used to generate the
quadrature components are disjoint. With the assumption that the two sets of frequencies
are disjoint, i.e., that X.(¢) and X;(¢) are independent, Pitzold develops expressions for the
envelope and phase pdf’s. He then applies these results to Jakes’ simulator in [9]. However,
the assumption required to validate the answer, namely that the two sets of frequencies are
disjoint, is violated. This is readily obvious from [9, eq. (L1)]. One has to conclude the
results obtained in [9] are unsupported in this sense.

For the sake of completeness, we include below the results derived by Pétzold in [9].
The notation is changed from the original, so that it matches that of this thesis. Also,
we set 207 = 1, i.e., we normalize the average signal power, much like before when we set
E,= v/2. Another difference from the work presented until now lies in the fact that Pétzold

uses lowpass equivalent forms, whereas Jakes uses bandpass forms. The results presented



below also use the lowpass equivalent forms. It should be noted that this is of relevance
only in the case of the autocorrelation and cross-correlation functions. The interested reader
is directed to [9] for details.

The envelope and phase pdf’s of the fading signal R(r) are given by

fa(r) = r/’lr fxs(rcos G)ch(rsine)dG, r>0,
£5(68) = /0 " rfy (reos8) fy (rsin)dr, 6] <,

where,
fe () = 2/: FJO (\/;__> l‘_:[ (\/ji M)} cos(2mvx)dv,
fr () = 2/: —Jo (\/_7_71_) f[ (\/:m_v_ M)} cos(2mvx)dv.

Note that in order to obtain the envelope and phase pdf’s one has to compute at least double
integrals.

As mentioned above, the time-average autocorrelations and cross-correlation functions
are given in lowpass equivalent form. To obtain the corresponding bandpass forms, such
as those used by Jakes, multiply the equations below by cos{@,t). In the limit, as N be-
comes large, the time-average lowpass equivalent in-phase and quadrature autocorrelation

functions are, respectively,

(X ()Xt + TN = S [y (0mT) = Ty (0 T)], (2.292)

5[
and

(R R (r + )P = —[J (@ T) +Jy (0 T)], (2.29b)

where the superscript LP is used to emphasize we are using lowpass equivalent forms.
Pdtzold notes that neither of these time-average autocorrelations matches the desired, sta-

tistical one, i.e.,

R (7) = B (1) = 2Jo(0n).
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However, the time-average autocorrelation function of the complex Gaussian fading sig-
nal, given by the sum of the time-average autocorrelations of the in-phase and quadrature

components, matches the expected one, i.e.,
(R(R(t+ 1)) = (Xo()Xs(t + T)YEF + (Re (1) Rt 4+ 7)) P = Jy (@ T).

The time-average autocorrelations given in equations (2.29a) and (2.29b) hold true only in
the limit, as N — o. For finite N, the reader is directed to [9]. However, it is worthwhile
mentioning that in this case the time-average autocorrelation of the fading signal (R(z)R(s +
7)) matches the expected autocorrelation closely over the interval [0, (M + 1)/(2 fi,)] only.

In [9], the expression for the time-average cross-correlation of the in-phase and quadra-

ture components is left in integral form,
T (¥ e _ L (™2
K%l + TN = / sin(4z) cos(@nTcos z)dz.
0

Note that in general the time-average cross-correlation is non-zero.

Pitzold concludes that Jakes’ approach is useful in the design of fading channel simu-
lators. In fact, he uses this approach to derive a number of similar simulators. The structure
is essentially the same for all of the models derived. The differences lay in the method
chosen to compute the simulator parameters, such as the path attenuation coefficients Cy,
the radian Doppler frequency shifts Q, = @, cosA,, and the phase shifts ®,. For these
other types of simulators, the reader is referred to [7] and [8]. However, the conclusions
drawn herein will apply equally to all simulators derived by Pitzold, with perhaps minor

modifications.

2.4 Problems with the simulator

Despite the simplicity and widespread use of Jakes’ simulator, there are some drawbacks
to its employ. We point out below some of the problems inherent in the simulator.
A potentially serious problem lies in the assumption that the fading signal produced

by Jakes’ simulator is wide-sense stationary. Gilbert [2] noted that choosing the N phases
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independently from a uniform distribution over [0,27] for the N arriving waves, leads to
models generating wide-sense stationary signals. Certainly, in equation (2.6) this condition
is met. However, this condition is not readily verified by analyzing Figure 2.3.

Another drawback to Jakes’ simulator is that there is no obvious relationship between
the gains B,,...,B),, and the parameters of the model of equation (2.6), in particular the
phase shifts ®,, » = 1,...,N. One of the advantages of the model of equation (2.6) is that
it relates in a straightforward manner to the physical world. This obvious relationship is
lost in the derivation leading to Jakes’ simulator. Note that we have already addressed this
problem in Section 2.2.1.

An inherent drawback to fading channel models is that signals generated based on them
are only approximations to the fading phenomena observed over mobile radio channels.
The obvious analogy is that just as representing an analog signal by a digital one introduces
quantization errors, so simulation in our case introduces errors. These errors arise from
the resolution of the continuum of paths present between transmitter and receiver into N
waves. There has been some work done in trying to estimate the errors introduced by this
quantization process, most notably that of Pitzold et al. [7], Patzold et al. [8], and Pétzold
et al. [9]. Conversely, one might be interested in how many low-frequency oscillators one
needs in an implementation, software or hardware, to reduce the error to an acceptable
level. Many authors have provided unsubstantiated answers to this question; for example,
Jakes [23] suggests that more than 6 oscillators are sufficient, while Pédtzold [9] suggests
that 10 are enough. However, when modelling channels some authors resort to using a
much higher number; for example Hoeher [12] uses 500. We need some means of relating
the error introduced during the quantization process to the number of oscillators used in the
simulator.

Finally, two important properties which may be used to advantage by the wireless en-
gineer are stationarity and ergodicity. While there is little known about whether flat fading

channels are indeed ergodic, some models do exhibit this property. A useful property
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of ergodic and stationary channels is that time averages and statistical averages are inter-
changeable. This is useful when the wireless engineer wants to estimate certain statistical
averages and has a limited number of sample functions to work with. It still remains to
verify that the given stochastic process is both stationary and ergodic. Usually this is a
difficult task; an unfortunate solution to the problem is to carry out calculations under the
assumption that the signal under study is both ergodic and stationary. For example, Jakes
[23] implicitly assumes the fading signal is both ergodic and stationary when he computes
the time-average autocorrelation. Pitzold [9] states that (pseudo)random processes can be
studied via time averages. However, without verifying that the fading signal is both ergodic
and stationary, there is no guarantee that substitution of time averages for statistical ones is
warranted, or even meaningful.

A commonly cited problem [5], [9] of Jakes’ simulator is that the in-phase and quadra-
ture components of the simulator are correlated. Pitzold [9], for example, shows that the
time-average cross-correlation of the in-phase and quadrature components is generally non-
zero’. The problem with this approach is that use of time-averages, instead of statistical
ones, assumes ergodicity of the autocorrelation, i.e., that the two averages are equal. We
will see in Subsection 3.2.3 that the signal produced by Jakes’ simulator is not wide-sense
stationary, and therefore does not possess the required ergodicity property. Hence, we can
not justify using the time-average cross-correlation as an estimate to the statistical average.

While the basic idea of simulating the fading signal as a sum of randomly phased
cosines of different frequencies is correct, the simplifications made by Jakes may lead to
a statistically incorrect model. Such simplifications may have been warranted in the past
because of limited computer power and suboptimal receiver and system designs, but such
restrictions do not exist today. However, it would be of great benefit if there were an effi-

cient method of generating flat fading signals, and thus Jakes’ approach may still be useful.

3It is well known that when two independent, zero-mean Gaussian rv’s are added in quadrature, the
resulting amplitude rv is Rayleigh distributed, with the obvious extension to stochastic processes. To start,
then, we need two uncorrelated Gaussian stochastic processes.
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To this end, this thesis tries to answer the question of whether the number of oscillators can

be reduced from N, while still generating a statistically correct fading signal.
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Chapter 3

Statistical Properties of
Sum-of-Sinusoids Simulators

In this chapter, we analyze the statistical properties of sum-of-sinusoids simuiators, of
which Jakes’ simulator is a special case. We start with the development of some theory
relating to the computation of the pdf of the sum of independent random vectors. We then
use the results to compute the pdf’s of the envelope of the signal generated by Clarke’s
model and of the envelope of the signal generated by Jakes’ simulator. As well, we obtain
the phase pdf’s in the two cases mentioned above. We continue by computing the auto-
correlation function of each of the two signals. It will be shown that while the signal of
equation (2.6) is at least wide-sense stationary, the signal produced by Jakes’ simulator is
not. We conclude the chapter with a discussion of the ergodic properties of the signals

generated by Clarke’s model and Jakes’ simulator.

3.1 First-order statistics

In this section, we develop some theory to be used in the calculation of the envelope and
phase pdf’s of the signals produced by sum-of-sinusoids simulators. The approach most
often followed when computing these pdf’s is to observe that the fading signal can be writ-
ten in terms of quadrature terms, as in equation (2.11). Each of the in-phase and quadrature

terms is shown to be approximately a zero-mean Gaussian random process; hence the en-
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velope resulting after combining the two independent random processes in quadrature will
be approximately Rayleigh distributed. There is a considerable body of literature relating
to the computation of the pdf resulting from adding randomly-phased sine waves. See, for
example, the works of Slack [20] and Bennett [21]. As well, Rice has contributed through
his classical papers [14] and [15], as well as [16] and [18]. More recently, see the works of
Pitzold [8] and Helstrom [19].

There are very few results pertaining to the direct computation of the envelope and
phase pdf’s. One such result is presented by Goldman [17]. However, he does not present
a proof of the result. Here we give a simple proof, hoping to gain additional insight into
the problem. We attempt to solve the problem by noting we are adding independent two-
dimensional random variables. We already know that the pdf of the sum of independent
(scalar) random variables can be obtained by the convolution of the pdf’s of the random
variables. In the Fourier transform domain, this amounts to multiplying the characteristic
functions of the random variables. The pdf of the sum is then obtained by taking the inverse
Fourier transform of the product of characteristic functions. A similar approach is followed
here.

We denote the nth random vector in the sum by (X,,,Y,), forn=1,...,N. Here, we may
interpret (X, ¥,) as a vector in the plane, with X, the increment in position along the x-axis
and Y, the increment in position along the y-axis. In general, X, and ¥, are correlated.

Alternatively, we could use polar coordinates (R,,®,) to represent the same random
vector. In this case, R, can be interpreted as a length, while ©, as a direction measured
from the positive x-axis.

In what follows, we assume R, is independent of ©,; this is saying precisely that the
length of the random vector bears no relation to its direction. When applying the results
obtained herein, we must make sure that the above assumption is justified; this justification
may be provided by the nature of the problem. Moreover, the pdf’s of R, and ©, are

easily obtainable from the description of the problem. In particular, when all directions are
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equally likely, the angle pdfis

1
fo,(6n)=5- 0<6,<2m. (3.1)

The independence of R, and ©, will make it much easier to work in polar coordinates.
Observe that the N random vectors (X|,Y;),...,(Xy, Yy) or (R|,0,),...,(Ry,Oy) are in-
dependent of each other; the representation, Cartesian or polar, is irrelevant.
Geometrically, we are interested in determining the joint probability density function
(jpdf) of the resultant vector sum, i.e., the jpdf of the length and direction from the positive
x-axis. Ultimately, however, we want to determine the pdf of the magnitude of the sum R
of the N random vectors, and the pdf of the angle © the final point makes with the positive

X-axis. i.e., the pdf’s of the random variables!

R=+X2+Y? and O =arctan(X,Y), (3.2)
where X and Y are defined by
N N
X=Y Xy,=) RncosO,, (3.32)
n=| n=1
and
N N
Y= Yu= ) Rusin@,. (3.3b)
n=I n=1

We assumed above that R, and ©,, are independent. It is not obvious from this assumption
that R and © are also independent; we will see that they are indeed independent below.
Figure 3.1 and Figure 3.2 illustrate the summation process with one, and two random
vectors, respectively. For the purposes of illustration, we have restricted R, = 1. The circles
represent the sets of reachable points after one and two steps, respectively, i.e., one can not
reach the shaded area.
The technique we will be using to arrive at the desired answer is outlined next. As

mentioned above, the vectors being added are independent. Therefore the characteristic

I'The arctan(x,y) function returns the proper angle, i.e., includes quadrantal information.
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Figure 3.1. First step in summing two-dimensional independent random vectors of unit
length. Note that only points on the unit circle can be reached.
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Figure 3.2. First two steps in summing two-dimensional independent random vectors of
unit length.
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function of the sum is the product of characteristic functions of the random vectors being
added. This result follows readily from the definition of the characteristic function [29,
eq. (7-25)] and the independence of the N random vectors. With the notation of equations

(3.3a) and (3.3b) we have

(0, @) = E{/ ¥}

= E{/@%NFeN) 0 x /@ Xytonly) (3.4)

Because the random vectors (X,,Y;),...,(Xy,Yy) are independent, we can break up the
expectation operator of equation (3.4) and
D(w,0,) = E{/ONFaN}x  x E{e/(OXvtety}
= O (0,0,)x...xOy(w,n,)

N
[ (0, ), (3.5)
n=I1

Il

as claimed.

From [29, Sec. 7-2] we note that either the jpdf or the joint characteristic function is
sufficient to describe a random vector. In fact, the two are Fourier transform pairs. Thus,
we seek to determine the characteristic function of (X,Y) and then, via the inverse Fourier
transform, we obtain the jpdf of (X,Y). Next, we will perform a transformation to polar
coordinates to obtain the jpdf of (R, ®). From this, the envelope and phase pdf’s fz(r), and
fo(B) respectively, are obtained by integrating over the other random variable.

We begin by determining the characteristic function of a typical random vector (X,, ¥z ).
The definition of the characteristic function for a two-dimensional random vector is [29, eq.
(7-23)],

Do (@, ) = f_: /_:fx,.r,, (s yn )&/ (Ot Oy 3.6)

The subscript n is used to emphasize that this is the characteristic function of one random
vector, the nth one in the sum. As observed above, when expressed in polar coordinates,

the random variables involved, R, and ©,, are independent. Thus, we perform the double
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integration in (3.6) by converting to polar coordinates. To perform the change of variables

we use [29, eq. (6-72)]
Sfra(r,8) =rfyy(rcos0,rsinf), r>0. 3.7
Performing the change to polar coordinates in equation (3.6) yields

oo rP21 . ' .
Dp(w), ;) = /0 /0 fi v, (rn€0S B, rpsin 6,) e/ (@105t 50l g, dr,

< rin . L
- /0 /0 SRy, (i On) eI (10T 2S04, i, (3.8)
Next, we use the independence of R, and ©, to separate the jpdf f, o (rn, B), and obtain

oo p21 A .
(@, 05) = [ [ fi ) fo, (B)eT st st o,
0 0 n n

oo 2r |
= /(; S, (ra) [/(; ﬁexp{jrn\/a)f%-a)%cos(e,,—\,(/,,)}d@,,] dru, 3.9)

where y, = arctan(®, , @,). To evaluate the integral inside the square brackets, we use (36,

J X € dﬁ - 3‘10)

Performing the substitution 8 = 6, — ¥, in equation (3.9) and using equation (3.10),
we obtain

‘Dn(wuwz)=/o Fr (ra)o(rar/ @2 + @2)dr. (3.11)

Observe that the characteristic function of equation (3.11) is circularly symmetric, i.e.,
it depends only on the length of the vector (w,,®,). Integrals of the form of equation
(3.11), i.e., in which we integrate against the Bessel function Jy(-), are referred to in the
literature as Hankel transforms. The Hankel transform is useful in other areas of study, such
as optics, in which circular symmetry is inherent. For more on two-dimensional Fourier

transforms and the Hankel transform see [35]3.

2This would be useful in the event one wanted to perform the integration of equation (3.11); [35] contains
a table of Hankel transforms.
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We are now in a position to compute the characteristic function of the sum of indepen-

dent random vectors

X1 _ X X5 Xy "
MR A
Substituting equation (3.11) in equation (3.5) yields

N
(o, ) = []@a(0, 0
n=1

N oo
IT [ A S, (ra)Jo(rny /a)12+cu§-)dr,,} . (3.13)
n=|

To obtain the jpdf of (X,Y) we take the inverse Fourier transform of ®(,, ®,) accord-

ing to [29, eq. (7-24)]

4;2 / / @ (w,, w,)e O 4w, dw,. (3.14)

Sfxr(ny) =
We choose to perform the double integration of equation (3.14) by changing to polar
coordinates

w, =qcosh, ,=gqgsinf. (3.15)

Substituting equation (3.15) in equation (3.14), yields

fxy(x,¥)

1

oo n:
xcos 8+ ]
= 4%2/(.) /(; 11 I: 0 fR (r,, Jo(rnq)drn] e —jg(xcos 8+ysin )dﬂqdq

= 17'[:01,—‘[[ l:/: fr,(rn) Jo(r,,q)dr,,} [/OMCXP{ —Jjaq +y2cos(6 — W)}de] qdq,

1
(3.16)

where y = arctan(x, y). The negative sign in the exponential may be absorbed by the cosine
via a shift of £. We now use equation (3.10) to evaluate the integral in the right set of square

brackets. We thus have

Sy () = / U fo, (ra)do(ragq) drn] Io(gV/x2+y2)qdq. 3.17)
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Next, we convert the jpdf of equation (3.17) to polar coordinates to obtain the jpdf of

the random vector (R, ®). Letting
X =Rcos®, Y =Rsin® (3.18)
in equation (3.17) and substituting in equation (3.7} gives

fre(r8) = rfyy(rcos8,rsin6)

o N oo
= i,—_[) H [/0 fR,,("n)Jo(rnq)d"n Jolgr)qdq. (3.19)

2r n=I

Note that we can separate the jpdf of R and © as

fra(r 8) = fr(r) x fo(6), (3.20)

proving that, indeed, R and © are independent random variables. Furthermore, fro(r, 6)
in equation (3.19) does not depend on 8. From this we conclude that © is uniformly
distributed over [0, 27]

1

fo(B8) = P for0< 6 < 2m, (3.21)

regardless of the number N of random vectors added.
To obtain the pdf of the magnitude of the sum of N random vectors fg(r), we may
integrate the jpdf fpo(r, 8) over the variable 8. Integrating equation (3.19) with respect to

0, we obtain

o N oo
fal) =7 | Q[/o fRn(rn)Jo(rnq)drn] Iy(grigdq, r>0. (3.22)

For the purpose of illustration, we show how to use equation (3.22) in a simple case.
We restrict R, = 1/2/N, i.e., a deterministic pdf as in Figure 3.1 and Figure 3.2. The pdf
corresponding to this choice is

fr,(ra) =0 (r,, - %) , (3.23)

where 0(-) is the Dirac delta function. The random vector length is normalized such that

the variance of the rv’'s X and Y is always one.
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Note that other choices of fp (rn) are possible, depending on the problem at hand. We
chose the pdf of equation (3.23) as this provides the simplest answers. For other applica-
tions, such as modelling hardware errors, the lengths might follow a uniform distribution
over some interval [a,b], or Gaussian, whichever is a better model. One could then com-
pute the pdf of R to determine whether errors in the hardware will have an effect on the
generation of Rayleigh distributed random variables, i.e., Rayleigh fading signal.

Inserting the pdf of equation (3.23) in equation (3.22) yields

N 2
fr(r)=r /O Jo | 4 N Jo(rq)gdq, r=>0. (3.24)

An alternative answer can be obtained by performing the substitution « = g1/2/N in equa-

fr(r) = gr /0 O (qr\/g) qdq.

This last form of the answer may be more suitable for numerical implementation. Figure

tion (3.24). We obtain

3.3 shows the pdf fz(r) obtained for selected values of N.

In some situations, however, one is interested in obtaining the cdf of the magnitude of
the sum of N random vectors, i.e., Fg(r). One approach to computing Fp(r) would be to
integrate the result of equation (3.22) with respect to r. This would require the computation
of a double integral to arrive at the final answer. Although there are numerical routines
available for evaluating such double integrals, the precision one can expect is much less
than in the case of single integrals. Therefore, if we could determine an expression for
Fi(r) in terms of a single integral, its computation would be faster and more accurate.

In the case in which the random vector lengths are deterministic, i.e., whose pdf’s are
expressible in terms of the Dirac-delta function 8(:) as above, we may turn to a result in
Watson [26, Sec. 13-48]. The result is due to Kluyver, and is obtained in the context of

random walks in the plane. He obtained
Fp(r) = r/ H Jo(r,,q J,(rq)dq, (3.25)
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Figure 3.3. Envelope pdf of the signal generated by Clarke’s model for various numbers of

low-frequency oscillators.
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where the r, represent the lengths of the individual steps. It should be noted that such a
case does occur; Clarke’s model with constant ¢,’s would be an immediate example. The
result of equation (3.25) is used later, in Section 5.1.

Unfortunately, there seems to be no such result in the more general case, where the R,
are allowed to follow any distribution. For these cases we are forced to perform the double

integration as mentioned above.

3.1.1 The envelope and phase pdf’s of Clarke’s model

We presented in Section 3.1 a method for computing the jpdf of the random vector repre-
senting the sum of N independent random vectors in the plane. Here we will apply this
method to compute the envelope and phase pdf’s of the signal produced by Clarke’s model.
Of course, to be able to apply the results of Section 3.1, we must first recast the problem
in terms of a sum of independent vectors, i.e., in the form of equations (3.3a) and (3.3b).
Also, we must justify the assumption that R, and @, are independent. In addition, we must
verify that the ©,,’s follow the pdf of equation (3.1).
Recall that we are trying to simulate the fading signal of equation (2.6). Here, we
re-write this signal split into in-phase and quadrature components,
N5 N2
R(t) = cos co,:tg,l ¥ cos(Wnt + P,) — sin wct,,; i sin(wut + Dy). (3.26)

By comparing equation (3.26) to equations (3.3a) and (3.3b), we note,

Ri=1/=, n=1,...,N (3.27)

enzm"t'*'(pn, n= 1,..-,N. (3.28)

Z|

and

To justify the independence 3 of R, and ®, we turn to the model of equation (2.6). In

this equation, the parameters C,, A,,, and @, are all independent. From equation (3.27) we

30ne may also note that R, constant is sufficient to guarantee R, and ©, are independent.
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note R, is a function of C,, only. From equation (3.28) we note O, is, in general, a function
of A, and ®,,. From the independence of C,, A, and @, it follows that R, and O, are also
independent.

From equation (3.27), the length pdf of the nth random vector is given by the pdf of
equation (3.23), i.e.,

frnlra) = 8lra— 1/ ).
In equation (3.28) we have a deterministic component @, and a random one ®,,. Therefore,
the pdf of ©, will be the same as that of ®,, except that it will be shifted by an amount equal
to w,t. Recall that the pdf of @, is uniform over some interval of length 27r. However, due
to the periodicity of the functions involved, i.e., cos(-) and sin(-), this is sufficient and we
may take the @, to be uniform i.i.d. over [0,2x]. This satisfies the requirement of equation
(3.1). We now proceed with the computation of the envelope pdf of the signal produced by
Clarke’s model.
To determine the envelope pdf, we need to substitute the appropriate pdf fR"(r,,) in
equation (3.22). We note the required result appears in the worked example at the end of

Section 3.1. From equation (3.24), we have

© N 2
fR(")=r/O Jo (@ N Jo(ra)gdg, r=0. (3.29)

We note that the envelope pdf of the signal produced by Clarke’s model is independent of
time r. We plot the result in Figure 3.4.

The phase pdf is given by equation (3.21)
fo(6) = 5}; for0 < 6 < 27. (3.30)

3.1.2 The envelope and phase pdf’s of Jakes’ simulator

In this subsection, we determine the envelope and phase pdf’s of the signal produced by

Jakes’ simulator.
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Figure 3.4. Variation with time of the envelope pdf of the signal produced by Clarke’s
model, for N = 34.



As in the case of Clarke’s model, our first task is to recast the fading signal produced by
Jakes’ simulator in terms of the sum of M + | independent random variables. We re-write

the signal of equation (2.11) in terms of quadrature components

- 2 M
R(z) = cosat V2cos By, | coS @yt +2 )" cos Bncos wyt
\/N n=1

2 M
-i—sina)ct\/ﬁ (\/isinBM_Hcos Wit + 2 Z sinB, cos a),,t) . (3.31)

n=1

Similar to the procedure in the previous section, we compare equation (3.31) to equations

(3.3a) and (3.3b). We see that the random vector lengths are described by the random

variables

4
—=cos@yt, n=1,...,M,

Ry =
vN
22
Ry = 7_—\{V—cosw,,,t. (3.32)

The corresponding random vector directions are described by the random variables
O,=8B,, n=1,...M+1. (3.33)

As done in the previous section, we must first verify that R, is independent of ©,. We note
that R, is, in general, a function of C, and A,. ©p, on the other hand, is a function of B,,, and
hence, @, only. We have already argued that C,, A,,, and ®,, are independent from physical
considerations in Section 2.1. It follows, then, that R, and ®, are also independent.

From equation (3.32), the pdf’s of the random vector lengths are given by

4
IR, (rp) =290 (r,, - \/—Ncosa)nt> , n=1,...M (3.34a)
and
2V2
fRM+!(rM+1) =0 (rMH —TN—COSO)mt> . (3.34b)
Recall from Subsection 2.2.1 that we may take the rv’s B|,..., By, | uniformi.i.d. over

[0,2r]. Thus, the rv’s @,...,0,,, | are uniformi.i.d. over [0, 2], satisfying equation (3.1).
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Thus, substituting equations (3.34a) and (3.34b) in equation (3.11) yields

4¢0s Wyt |/ 0} + 03

(Dn(wl,a)z) =Jo \/N ) n= 1,...,M, (3-358.)
and
2v/2¢0s Wt |/ 02 + w2
By 1 (@1, 05) = Uy T : (3.35b)

Next, following a procedure similar to that in Section 3.1 we obtain

_ s 2gcos wpt M 4qcos Wyt
ffz(’)—rfo [Jo(—m) I17% W Jo(gr)qdq. (3.36)

n=|

We note that the pdf of the envelope of the signal produced by Jakes’ simulator is a function
of both the envelope level r as well as time t. We plot the result of equation (3.36) in Figure
3.5. Analyzing Figure 3.5 we note that the variance of the fading process is time-variant.
That is, the signal produced by Jakes’ simulator is not stationary, nor even wide-sense
stationary. The non-stationary character of the signal will be observed in a different form
in Section 3.2.2.

The phase pdf is given by equation (3.21)

1

f5(8) =5~ for0<6 <o (3.37)

It is interesting to note that this result contradicts Pdtzold’s development in [9]. Pétzold
derives his resuics based on time averages. Here, we have computed a statistical average.
We have also shown that the first-order pdf of R(¢) is time-variant, and thus suspect the
random process R(z) is not wide-sense stationary; we will show this directly later. This
point further illustrates that one may not readily substitute time averages for statistical ones;
such substitutions are meaningful only for random processes which satisfy some ergodic

theorem, i.e., which exhibit ergodicity of the mean and autocorrelation.

3.2 Second order statistics

In this section, we compute the statistical mean and autocorrelation functions of the sig-

nals produced by Clarke’s model and Jakes’ simulator. We find that the signal produced
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Figure 3.5. Variation with time of the envelope pdf of the signal produced by Jakes’ simu-
lator. Here, the value of M = 8 corresponds to N = 34 in Figure 3.4.
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by Clarke’s model is wide-sense stationary, while that produced by Jakes’ simulator is not
wide-sense stationary. As well, we determine the time-average mean and autocorrelation
functions. These computations are readily carried out from appropriate definitions of the
mean and autocorrelation functions. Comparisons of the two sets of averages, i.e., statisti-
cal and time-average, are made in the general framework of ergodicity. We find that in the
case of Clarke’s model, the statistical mean and autocorrelation functions are equal to the
corresponding time-average functions. In the case of Jakes’ model, this is true of only the

mean function.

3.2.1 Clarke’s model

In this subsection, we determine the autocorrelation Zgg(2),2,) of the stochastic process
R(r) represented in equation (2.6), a second order statistical property. For the sake of
completeness, we also compute the mean function pg(r). Recall that the fading signal R(r)

can be written as

N
R(t) = \/; z cos( @t + Wnt +DPp), (3.38)

n=]

where @, = W, cos(2xn/N). This re-formulation is equation (2.6) with the ¢, and &, as
given by equations (2.9) and (2.10) in Section 2.2. In other words, the only rv’s are the ®,,
which we recall are uniform i.i.d. over [0,27]. This simplifies the computation of the mean
and autocorrelation functions of the fading signal R(z).

Applying the definition of the mean function as defined in [29, eq. (10-7)], we obtain

successively

pp(e) = E{R(r)}

5N
E {1 / N,Z'l cos(@et + a)nt+(D,,)}

2 N
= /ﬁ Y E{cos(wct + wnt + n)}
n=1l

\/3 N 2r 1
= N,Z]‘/O COS((Dct‘l'a)nt'{'q)n)Ed(pn
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= 0, (3.39)

where we have used the linearity of the expectation operator, and the fact that the integral

of a sine wave over one wavelength is zero.

To compute the autocorrelation function, we also start from the definition [29, eq. (10-

8)]. We obtain successively

E

R(t))R(t,)}

cos(Wct| + Winl| COS Oty + Pp) COS(Wety + Wint, COS 0 + D) }

e

Rrr(tyst)

Z|w
n
—
M=
M=

=
'll
»
= T

{cos [@c(t, +1;) + On(t, COS Oy + 1508 01 ) + P + D]

=~
1

—
~

[}

il
2|~
ty
—

M=

+c0s [@c(ty ~ 1) + @n(t, COS Oy — 1y cOS 0) + Dy — D, ] } } (3.40)

The first line in the development of equation (3.40) comes from substituting the definition

of R(r). To obtain the next line, we use the well-known trigonometric identity,

2cosxcosy = cos(x+y) +cos(x—y). (3.40D)

Taking advantage of the fact the @, are uniform i.i.d. rv’s over [0,27] we obtain the fol-

lowing results,

E{cos(®p+P,)} =0, 1<kn<N,

0 ifn k7
E{COS(‘Dn—(Dk)} = { 1 ifnik,

E{sin(®,£®,)} =0, 1<kn<N.

This allows us to further simplify equation (3.40) to

L v
Rrr(t)ty) = N Y cos [@c(t), —t;) + @m(t; — 1,) cOS o] - (3.42)
n=1\

We observe that upon expanding cos[@.(f; — ;) + Wn(t; —1,) cos 222] we should have two

quadrature terms. The in-phase one corresponds to cos(@t), while the quadrature one
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corresponds to sin(@.z). We observe, however, that for NV even

N 2
Y sin [co,,,(:l —1,) cos %] —o0. (3.43)

n=1

To prove the result of equation (3.43), we observe that

2 (X
COSM = COS (n‘.}. _2_7r£>

N N
= —cos 27n (3.44)
= N .
Therefore,
2 (Y +n 2
sin lia)m(fl —1,) €OS —(—;'VT—)J = —sin [a),,, (t; —1t,) cos %1—} . (3.45)
For N even, we can re-write the summation of equation (3.43) as
y o 2nn
p> sin | @y (t, — ;) cos A
N/2 o1 2r (Y 4n
= Z sin [O)m(fl —1,)COs Tn] +sin [a),,,(rl —1,)cos %] . (3.46)
n=1

Upon substitution of equation (3.45) in equation (3.46), the result of equation (3.43) is
obvious.

For N odd, the approximation
N
Y sin [co,,,(tl -tz)coszNﬂ ~0 (3.47)
n=1

holds true for 0 < w,(r) —1,) < %’ This result can be verified graphically, or by using a
method introduced later in Section 5.2.

Thus, in general, equation (3.42) can be approximated by

2rthn

1 N
Rt ty) = NCOS[“’C(H —1,)] Zlcos[wm(r[ —t,)cos T]’ (3.48)
n=

for0<n -4 < 5‘%"— It should be noted that most sum-of-sinusoids simulators use an even
number of oscillators N, and thus the approximation of equation (3.48), with no restriction

ont; —1,, becomes exact.
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As an aside, we relax the assumption that the a,, n = 1,...,N are uniformly spaced
around the unit circle, as in Section 2.2. However, we still maintain that the A, are uniform
i.id. random variables over [0,2x]. Furthermore, the A, are independent of the ®,, as
assumed by Clarke [3] and Jakes [23], for example. This assumption seems physically
reasonable as it states that the phase shift is independent of the angle of arrival. Recall
that the angle of arrival is affected by the pecsition of the obstacles between transmitter and
receiver, whereas the phase shift depends on the material characteristics of the obstacles.
Because of the independence of the two sets of rv’s, the statistics computed thus far still
apply; we only need to average the results obtained over the pdf of A,. Thus, we still have

) N
t) = E<{ — Y cos(Wet + Wntcos oy + D,
Hp(t) {\/Nn; (Wt + Wyt cos oy + ,)}

= 0.
We turn our attention now to the re-computation of the autocorrelation function. We
know from Gans [4] that the power spectral density* of the fading signal of equation (2.6)
is given by

3E?2 2
S(w) = =2 ,
2 \/0),‘7’,— (w_wc)?.

The autocorrelation of the signal can then be computed by taking the inverse Fourier trans-

a)c - CU,N < 0) < a)c + a)yn- (3.49)

form of the power spectral density S(w),

4

Zr(T) = 356 cos( . T)Jo( W T)- (3.50)

In our case, £, = /2, and equation (3.50) simplifies to
Fr(T) = 3cos(w:T)Jy(WmT). (3.51)

Here we present a time-domain derivation, starting with the fading signal R(¢) as given

in equation (3.38). Because A, and ®, are independent, the derivation is identical to that

+This also appears in Jakes [23, eq. (1.2-11)].
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presented above. We pick things up at equation (3.42). At this point, we have to average
the expression of equation (3.42) over the pdf of A,. Thus,

1 N
n=1

= l—i/—c:os[a)c(tl —1,)]E { ‘IS_V: cos[Wy (1, — £2) cosA,,]}
n=}

L. A
- ﬁsm[coc(tl —rz)]E{ Y sin[@m(r, — 1) cosA,,]} , (3.52)
n=|
where we have used the well-known trigonometric identity
cos(x-+y) = cosxcosy—sinxsiny.

As well, we have moved the deterministic factors cos .t and sin @.f outside the expectation
operator.

The next step is to compute the expectations in equation (3.52) as appropriate integrals
1 N
Rrp(t| 1)) = Z—\,,—cos[coc(t1 —1,)] Z‘[/o Egcos[cum(tl —1,) COS O }d Oty
L TN 1
-5 sinf@e (1, — £5)] HZ‘I /0 T sin[@ (1, —t,) cOsCn]dty.  (3.53)
From [36, eq. 3.715.13] with n =0 we have

T
/ sin(zcosx)dx =0. (3.54)

-z
Thus, substituting equation (3.10) and equation (3.54) in equation (3.53) yields the desired
answer, namely
Rrr(t):ty) = cos[wc(t; — )| Jo(@m(t; — 12))- (3.55)
We note that the fading process defined in equation (2.6) is indeed wide-sense station-
ary, so that we may write

Rp(T) = cos(@:T)Jo(WnT). (3.56)

The result of equation (3.56) is the same as that of equation (3.51), except for a factor of 3

in the latter. This difference occurs because in Gans’ work, the effect, i.e., the gain, of the
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This is generally true of

L.
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A plot of the lowpass equivalent form of the autocorrelation function given by equation

antenna is also included. As it happens, the gain of an omnidirectional antenna, the type
used by Gans in his analysis, is 2. Also, inclusion of both negative and positive frequencies

(3.42) is shown in Figure 3.6. From this diagram, the independence of the autocorrelation
function of time origin is obvious. In particular, the surface can be readily obtained by

Figure 3.6. Lowpass equivalent form of the autocorrelation function of R(r), for N = 34,
introduces a factor of two. We conclude, then, that the two results are identical up to the

translating a slice parallel to either axis along the line f,

inclusion of antenna gains.
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wide-sense stationary processes.

3.2.2 Non-stationarity of Jakes’ simulator

In this subsection, we compute the autocorrelation function %4(1,1,) of the signal pro-
duced by Jakes’ fading channel simulator R(z), a second order statistical property. As well,
we compute the mean function [,(r) of R(r), paralleling the developments of the previous
subsection.

For ease of reference, we copy equations (2.11) of Section 2.2 here

R(t) = X.(¢) cos{@,t) + X,(¢) sin( @) (3.57)

where the in-phase and quadrature components, X.(¢) and X;(¢) are given by equations

(2.12a) and (2.12b)

7 ( ’7\/— B + — E By, (3.58a)
) = ——COS COS QL COS COS Wt 2.004
< ) /N M+1 / n
and
X (¢ Sl[lB COS Oyt + —— SlnB COS . 3.58b
.s‘( )= /——N M+1 n N ,,2 l, Wn ( )

We recall that the purpose of Jakes’ fading channel simulator is to efficiently generate the

fading signal of equation (2.6)

[2 X 2
R(t) = N Z cos( ¢t + Wt cOs % +d,). (3.59)
n=1

We begin with the computation of the mean function (4(r). From Subsection 2.2.1, we
have that B, ..., By, are uniform i.i.d. over [0,27]. Knowledge of these pdf’s allows us
to compute the expectations

E{cosB,} =E{sinB,} =0, n=1,...M+1. (3.60)
We can now compute
., 22 4 M
E{X.(t)} = E { \/\/N—cosBMJrl COS Wit + —= 7N 2 Z cos B, cos w,,t}
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Il

2V2 4 M
——F{cosB,,., }co t+—= E{cosB t
JN {cos A’I-rl} S Wl + TN Z {cosBp}cos w,

n=1

Similarly, we obtain E{X(¢)} = 0. Therefore,

a(r) = E{R(r)}
= cosWtE{X.(t)} +sinw s E{X;(t)}

= 0. (3.62)

To make the derivation of the autocorrelation function simpler, we re-write the signal

produced by the Jakes’ simulator by expanding the expressions for the quadrature terms.

That is,
R(r) = (% oS By, | COS Wt + —= \/_ Z cos B, COS Wyt ) COS Wt
el
+ (7\/\{1\7— sinBy, . | COS Wt + —= \/._ Z sin B, cos wyt ) sin .t
= 2\/\/N_ cos BM 1 COS Wyt COS Wt + \;1_ i{’ cos B, cos w,t cos @t
+ _2_\/_1v2 sinBy,, | cOS Wit sin et + % n; sinB,cos wyzsinw.tz.  (3.63)

We can further simplify equation (3.63) by grouping the deterministic terms and making

the substitutions

COS Wit COS Wt = aypy | (2), (3.64a)
cosptcos Wt = ay(t), n=1,...,M, (3.64b)
and
COS Wt Sinwet = by, (1), (3.64c¢)
coswptsinw:t = by(t), n=1,....M. (3.644d)
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Substituting equations (3.64a) — (3.64d) in equation (3.63) yields

" 4
R(r) = \/\Z/V_aMH(t)cosBM_l_l+\/_Za,z cos B,
n=1
2V2 4
\/Nbu ((t)sinBy, | + \/_Zb t) sin By. (3.65)

Next, we determine the autocorrelation function according to the definition [29, eq.

(10-8)]. We have

Zrr(tnta) = E(R(1)R(1)}

N E{[zx\//ﬁ_a/”“( 1)cosBy + —= \/— Zan(fi)COSBn f)\>/1_v_§bM1._l(tl)s;inBM_H
+7—— Z bu(t, )smBn] [%—a‘w ((t)cos By, + Z a,(t,)cosB,

2\/_ 4 M
+ \/NbM+l(t,)51nBM = Zbk(f7 smB]}

(3.66)

To simplify the result of equation (3.66) we use the linearity of the expectation operator to
move it inside the summation signs. To further simplify the result of equation (3.66) we
make use of the following equalities, readily obtainable by noting that the rv’s By,..., By, |

are uniform i.i.d. over [0,2x]. This allows us to compute

E{cosB,sinB,} =0,

ifn=k,

1
E{cos B, cosBk} = E{sinBy, sian} = { 8, sthorwine

for 1 < n,k < M+ 1. Thus, we may simplify equation (3.66) to

Rt 1)
8 8 )
= I‘V‘GMH(’I)GMH(’z)E{COSzBMH}"’ ﬁbMH(’ )by151 (1) E{sin® By, 1}
Zan )a,,(t,)E{cos Bn}+—-— Zb (2,)bn (rq)E{sm Bn}. (3.67)

n...
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Back-substituting equations (3.64a) — (3.64d) in equation (3.67) yields

R 5 (21,15)
4 . .
=3 (COS Wint| COS Wt | COS Winty COS Wely + COS Wiyt SIN Wt} COS Wity SIN WL, )
M
+ N Z (cos Wyt | COS Wt | COS Wyl COS Wely +- COS Wyl SN M| COS Wnl, SIN a)ctz) .
n=l1
(3.68)
We now use the well-known trigonometric identity
cos(x —y) = cosxcosy-+sinxsiny
in equation (3.68) to obtain
Rt ty) =
4 M
= 57COS Winf| COS Wl COSWe(ty — 1) + > COS Wyt COS Wnty COS W (1, —1y)
n=1
4 M
= 7 | c0s Wt cOS Oty +2 D cOS Wnty COS Wnl, | cos ety — 1) (3.69)
n=|

We can re-write the autocorrelation obtained above in a slightly different form, by using

the trigonometric identity of equation (3.41), to obtain

Rps5(t151y) = E{R(t))R(1;)}
2
= ﬁcos wc(t; — 1)) [cOs @ty — 1) + cOs W (t, +1,)]
4 M
+ 57 cos @ty —1;) Y, [coswn(t, — 1) +cosan(t, +1,)] - (3.70)
n=l1

Note that

2 4 M
R5(1,1) = ﬁ(1+coszmmt)+ﬁ Y (1 +cos2aw,t)

n=1

2 2 M
= 4MN+ + N (cos 20yt +2 Z cos 260,,[)

= 1+Jy(20mt) (3.71)

n=1
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gure 3.7. Lowpass equivalent form of the autocorrelation function of R(r), for M = 8

Fi

gure 3.6, and @,, = 1.

=34 inFi1

gtoN

correspondin

23, eq. (1.7-10)] to determine

or equivalently M — oo, where we have used [

as N — oo,

) is time-variant, as

2

the limit of the sum. That is, the variance of the stochastic process R

already observed in Subsection 3.1.2.

A plot of the lowpass equivalent form of the autocorrelation function produced by

Jakes’ simulator is given in Figure 3.7. Upon comparing Figure 3.6 and Figure 3.7, the

non-stationary character of the signal produced by Jakes’ simulator is readily obvious. In

particular, note that unlike the autocorrelation of Figure 3.6, the autocorrelation depicted in

Figure 3.7 does not exhibit translational invariance along the line t; =¢,.
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Furthermore, the form of equation (3.70) emphasizes the dependence of the autocor-
relation function of the signal generated by Jakes’ simulator R(¢) on both the difference
t, —t; and the sum #, +¢,. From this, we are forced to conclude the signal produced by
Jakes’ simulator is not stationary. Indeed, it is not even wide-sense stationary. Observe that
the signal will, in general, not be cyclostationary either, as the frequencies in the fading

signal R(r) are incommensurate.

3.2.3 Ergodicity of the fading signal

In this section we analyze some of Piitzold’s work and determine whether the fading sig-
nals produced by Clarke’s model and Jakes’ simulator possess ergodicity of the mean and
autocorrelation.

A common problem facing the wireless engineer is that of estimating some statistic, i.e.,
average, of a stochastic process given a small number, usually one, of sample functions. In
other words, one uses time averages to estimate statistical ones. In particular, it is of interest
to know when time averages are equal to corresponding statistical averages; this is the topic
of ergodic theorems {32], [33].

A theorem due to Birkhoff and Khinchin [33, p. 177] states that for ergodic and station-
ary stochastic processes the sample, i.e., time, averages converge to the statistical averages
with probability one. The difficulty in applying this theorem lies in the verification of the
ergodicity and stationarity properties. It would seem appropriate that stationarity, in some
sense, is required to apply this theorem, and in general, ergodic theorems. That is, averag-
ing over time removes dependence on a time origin. Similarly, the statistics of stationary
stochastic processes do not depend on time origin. The ergodicity property is required to
ensure that all convergent samples, i.e., time, averages converge to a constant and not to a
random variable.

Due to the technical difficulties® encountered in the verification of the ergodicity and

3 Arguments about the ergodicity and stationarity of processes are most easily handled via measure theory.
For an excellent treatment of the subject, though outside the scope of this thesis, the reader is directed to [32}.
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stationarity properties, the wireless engineer is forced to resort to weaker requirements,
such as wide-sense stationarity instead of strict stationarity. Correspondingly, the state-
ments one would be able to make would be weaker. Another common approach, often
followed in electrical engineering fields, is to classify stochastic processes as possessing
ergodicity of nth order if the nth order time average is equal to the nth order statistical
average in some sense. For example, stochastic processes whose sample, time-average,
mean is equal to the statistical mean are said to possess ergodicity of the mean. Similarly,
stochastic processes whose sample, time-average, autocorrelation is equal to the statistical
autocorrelation are said to possess ergodicity of the autocorrelation.

In this simpler case, conditions exist which help one determine whether a signal pos-
sesses either type of ergodicity. Slutsky’s theorem [29, p. 430], for example, states that
for wide-sense stationary processes, ergodicity of the mean is guaranteed if the autocor-
relation function is bounded and its average value tends to zero. Unfortunately, simple
conditions under which ergodicity of the autocorrelation exists are not given; usually, this
requires knowledge of fourth-order statistics. In the case of normal processes, however,
knowledge of the autocorrelation function is sufficient. This usually means that one has to
compute both the statistical autccorrelation and the time-average one to determine whether
they are equal. We still need to determine in what sense the time-average autocorrelation
converges to the statistical autocorrelation, i.e., we may need to determine the variance of
this estimator if its use is to be of any relevance.

Unfortunately, common practice among some wireless engineers is to assume a given
stochastic process, such as that representing a multipath fading signal, is both stationary
and ergodic. This assumption then serves as justification for replacing statistical averages
by time averages. The flaw in this approach is illustrated by Jakes [23] and later by Pétzold
[9]. The latter author states that pseudo-random processes can be studied on the basis of

time averages providing no explanation why this approach might work. We have already

Also, an excellent introductory text is [33].
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shown the signal of Jakes’ simulator to be not wide-sense stationary. As such, we would
not expect to be able to make any statements about the statistical autocorrelation of the
signal produced by the simulator based on a single sample signal.

We begin by determining whether the signal generated by Clarke’s model exhibits er-
godicity of either the mean or autocorrelation. We have already determined the statistical

autocorrelation function for this signal. From equation (3.42) we have

N
Rp(T) = 5 Y. cOS(@:T + Wi TCOS Ay). (3.72)
n=1
That is, the fading signal
2 N
R(t) = ‘/ﬁ > cos(wet + Wyt cos oy, + D) (3.73)
n=1

is at least wide-sense stationary. We also note that
1 T
= | Pp(t)dt—0
T /0 R( )

as T — oo. Thus, R(r) satisfies Slutsky’s theorem [29, eq. (13-7)] and we conclude that
R(r) exhibits ergodicity of the mean.

To determine whether R(r) also exhibits ergodicity of the autocorrelation, we need to
compute the time-average autocorrelation. To condense the formulae, we make the substi-
tution @, = @y, COs &,. Starting with the definition of the time-average autocorrelation, we

have successively
(R(DHR(t+ 1)) = hrn — / R()R(t+7)dr
= lim —f n; k; {cos(@et + Wat + $) cos[@e(t + T) + @, (t + T) + 9, )| } dt
= lim —/ 2 Z {[cos ¢, cos(@ + o)t — sin ¢y, sin(c + Wy )1]

T=NT J-T ;21 (2]
x [cos ¢, cos(we + @, ) (¢ + T) —sing, sin(w. + @, ) (t + 7)] }dr
N N
= lim — / . Y. Y {cos¢,cos @, cos[(@. + wn)t] cos[(@rc + ay) (¢ + T)]
n=1k=1
+ sin ¢, sin ¢, sin[( @, + @, )1] sin[( @ + @, ) (t + 7)]
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— 59,05 6 Sin[(@e -+ @n )] cos(e. + w,) (r+7)]

—cos ¢,, sin ¢>k cos[(coc + @y )t]sin[(@c + @, ) (r + 7)] }dt

Jim A—,f ’; g, {(COS ¢ cOS ¢ ~ sin @ sin @, )

x cos[(@c + wn)t + (@ + @) (14 7)]

+ (cOS @, cOS @ + sin Py sin @, ) cos[( @ + wn)t — (@ + @) (£ + 7)]
— (sin @ cos @, +cos P sin@, ) sin[(@c + wn )t + (W + @) (£ + 7)]

— (sin cp,, cos ¢, — cos q),, sing,) sin[(@c + wn)t — (@ + @) (¢ + 7)) }dt

& Am 5= / ; ;L { (cos @ cos ¢, ~singnsingy)

x cos[( @ + ;) T] cos[(2w, + W + @, )t]

— (cos @ cos @, — sin @ sing, ) sin[( @ + @) 7] sin{(2@e + Wn + @} )1]
+ (cos Pn cos @, + sin @, sin @, ) cos[( @ + @, ) ] cos[(wn — @, )1]

+ (cos ¢ cos @, + sin @, sin @, ) sin[( @ + @, ) T] sin[ (@, — @, )]

— (sin@r, cos @, + cos @, sin @) cos[ (@ + ;) 7] sin[(20 + @n + @ )1]
— (sin @y cos @, +cos ¢, sin @, ) sin[( @ + @, ) T} cos[ (2 + wn + @, )]

— (sin ¢, cos ¢, — cos P, sing, ) cos[(@c + @, ) 7] sin[(@, — @, )¢]

+ (sin @, cos ¢, — cos @, sin @, ) sinf( @ + @, ) ] cos[(wn — @, )] }dt.

We recognize we are dealing with integrals of the form

T

1
}ﬂﬁ Tacosbtdt: {2

ifb#0,
ifb=0,

1 T
lim ﬁ/-z_asinbtdtza

T —ro0

an interval symmetric about O.
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(3.74)

(3.75a)

(3.75b)

The second integral is always zero because it is the integral of an odd function, sin(-), over

Substituting the identities of equations (3.75a) and (3.75b) into equation (3.74), we note

the only terms which remain are those which contain only cos[(@, — @;)t], and for which



k = n. Thus, we have

(R(1)R(r+ 1))
= ILV i { (cos? ¢, + sin® ¢) cos[(@r + @) 7]
n=1

+ (sin @y, cos @, — cos ¢, sin @) sin[{ @, + ) 7] }

| N

= — » cos{(w:+ o) 1]. (3.76)
N n=I1

Upon comparison of equation (3.42) and equation (3.76), and observing thatz, —#;, =T

and w, = @, cOs C,, We note the two averages are equal, i.e.
(R(A)R(t+ 7)) = Zg(7)-

Note that we have made no attempt to compute the variance of the time-average autocorre-
lation.

We may attempt to simplify equation (3.76) in a manner similar to the simplification
of equation (3.42). Recall that the ¢,’s represent the angles of arrivals of the components
of the multipath signal and that in the case of Jakes’ simulator they are uniformly spaced
around the unit circle, i.e.

2ntn

an=—N—, n=1,...,N.

From equation (3.43) it follows that summations of the form

N
z sin{ytcos2nn/N) =0

n=1
for N even. For N odd, the sum is approximately O for 0 < @,,7 < N/2. Thus, for N even,

we may simplify equation (3.76) to

(R()R(t+ 7)) =
1 N N
= N{ [z cos(w,,,rcosa,,)} COS W T — [Z sin( @, T cos a,,)} sin@,T
n=1 n=1
1 N
=¥ [z cos( W Tcos a,,)} cos(@eT). 3.77)
n=1
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Jakes [23] notes that the summation appearing in equation (3.77), inside the square brack-
ets, is an approximation to the Jy (@ T) encountered in the theoretical model. Note that the
approximation of equation (3.48) is identical to the approximation of equation (3.77).

We now turn our attention to the case of Jakes’ simulator. We have already computed
the statistical autocorrelation of the signal produced by Jakes’ simulator. From equation

(3.70) we have

‘%’Rﬁ(tl’tz) =

2
= 3608 Wc(ty —t;) [cos Wm(t, — 1)) +cos @m(t, +1,)]

4 M
+ 57 €08 wc(ty—1;) D, [coswn(ty —1,) +coswn(t, +1,)] ,
n=l

showing that the signal produced by Jakes’ simulator is not wide-sense stationary. At this
point, we note that the wide-sense stationarity condition required to establish ergodicity of
the mean or autocorrelation is not met. It may well be that the sample, i.e., time averages,
converge to some value, possibly a random variable, but they may not be reliable estimators
for the appropriate statistical averages. This is made obvious in the case of the autocorre-
lation. Note that the statistical autocorrelation Z5(1),2,) is a function of two variables,
while the time-average autocorrelation is a function of only one.

For the sake of completeness, we give below the time-average mean and autocorrelation

functions. It is readily observed that

- 2 T _
(R(r)) = Tﬁrﬁ-ﬂf_rmt)dt

T M

1;1_r*n Tcos et v2cos BM—H CosS @yt +2 Z cos B, cos @yt

n=|
M
+sinat | V2sin Byg. 1 COS @t +2 Z sinB,cos w,t | dt

n=1

= 0.

Pitzold [9], determines the time-average autocorrelation for the fading signal generated

by Jakes’ simulator. First, he obtains the time-average autocorrelation of the in-phase and
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quadrature components

R rp_ 4 [c08* By £ 2
(Xe(D)X(t+ 1)) = Nl coswmT+ Y cos” fpcos wnt | , (3.78)
n=1
and
o 4 (sin’B,,. M
(X ()X (e + ) = i (——g‘yicos Wy T+ 2 sin® B, cos a),,r) . (3.79)
- n=1

Here the superscript LP is used to emphasize the autocorrelations under consideration are
in lowpass equivalent form. To obtain the time-average autocorrelation of the fading signal,

Pitzold observes

(RORC+1) = (R (0) Xt + TNV + (Xo(0) Xs (e + 1)) P
= Ilvcos O T+ % %[" COS Wy T, (3.80)

n=|
where 7 =, —¢,. The autocorrelation of equation (3.80) is the lowpass equivalent form of

the time-average autocorrelation. The corresponding bandpass equivalent is

M
cos T | coswmT+2 ), coswnT | . (3.81)

n=l]

Z| ™

(R()R(t+ 1)) =

Comparing the statistical average autocorrelation of equation (3.70), to the time-average
autocorrelation of equation (3.81), it is immediately obvious that the two averages do
not agree. This illustrates that, in general, one can not study the statistical nature of a
(pseudo)random process based upon time averages. In other words, one can not readily
substitute time averages for statistical ones.

In the introduction, we made a passing remark that some authors [5], [9] have argued
Jakes’ simulator does not work properly because the in-phase and quadrature compo-
nents are correlated. Such arguments are based on showing that the time-average cross-
correlation of the two components is non-zero. We have already discussed that in the case
of Jakes’ simulator replacement of statistical averages by time averages is not warranted.

To further illustrate this point, we compute the statistical cross-correlation below. Starting
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with the definition, we have

Ry 3. (11:12) = E{X(1))X:(2,)}
M

4
= ﬁE{ (\/icosBM_H COS Wyt + 2 Z cos B, cos a},,tl)
n=I

n=1

M
x (\/isinBM+l COS Wity +2 Z sin B, cos co,,t,_,) }

= 0,
where we have used the fact
E{cosBpsinB.} =0, 1<kn<M+1

In conclusion, we found that the signal produced by Clarke’s model exhibits ergodicity
of the mean and may also exhibit ergodicity of the autocorrelation, although this is not
explicitly shown in this thesis. We also found that the signal produced by Jakes’ simula-
tor does not exhibit ergodicity of either mean or autocorrelation; this is due to the non-
stationary nature of the signal produced by Jakes’ simulator. Note, however, that despite
the fact that the signal is not wide-sense stationary, the sample average still converges to a

constant, and may be used as an estimate to the statistical average.

3.3 Summary

In this chapter we have analyzed the statistical properties of sum-of-sinusoids models and
simulators. We have derived a result which may be used to compute the envelope and phase
pdf’s of sum-of-sinusoids simulators. The derivation is based on determining the pdf of the
sum of independent two-dimensional random vectors. We then applied this result to obtain
the first order pdf’s for the signals produced by Clarke’s model and Jakes’ simulator, i.e.,
the envelope and phase pdf’s.

We have found that as long as the fading signal produced by the model or simulator

can be written as a sum of circularly symmetric vectors, the phase pdf is uniform over
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[0,27]. This result contradicts the one given by Pitzold in [9]. The flaw in Pdtzold’s work
lies in the fact that he substitutes time averages for statistical averages seemingly without
justification. Furthermore, we have found that the envelope pdf of the signal produced by
Clarke’s model does not evolve with time, while the envelope pdf of the signal produced
by Jakes’ simulator does.

We then turned our attention to the computation of the statistical autocorrelations of the
signals produced by Clarke’s model and Jakes’ simulator. As expected, we have found that
the signal produced by Clarke’s model is wide-sense stationary, whereas that produced by
Jakes’ simulator is not.

The chapter ends with a discussion of ergodicity and whether it applies in either the
case of Clarke’s model or Jakes' simulator. We note that, in general, substitution of time
averages for statistical ones requires the stochastic process be at least wide-sense station-
ary. The flaw in Pitzold’s work is made obvious at this point: he does not check whether
the signal produced by Jakes’ simulator is wide-sense stationary. We found that the signal
produced by Clarke’s model exhibits ergodicity of mean and autocorrelation. The signal
produced by Jakes’ simulator does not exhibit ergodicity of either mean or autocorrelation.
However, the sample average of the signal produced by Jakes’ simulator does equal the sta-
tistical average. As such, the sample average may be used as an estimator for the statistical
average.

We conclude by observing that Jakes’ simulator does not reproduce the fading signal
of Clarke’s model. We attribute this shortcoming of the simulator to design flaws. In the
next chapter, we attempt to obtain a better understanding of these flaws as well as possibly

improve the simulator’s performance.
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Chapter 4

Improving Jakes’ Simulator

We have seen in Section 3.2.2 that the simulator developed by Jakes in [23] provides a non-
stationary fading signal. In turn, this makes estimation of statistical parameters through
time averages meaningless, as illustrated in Subsection 3.2.3. In this chapter, we try to
implement some simple modifications to Jakes’ simulator in order to improve its perfor-
mance. The improvement is based on generating a wide-sense stationary fading signal. We
will see that, in general, a reduction of terms as performed by Jakes, will always lead to
stationarity problems. However, in cases where the angles of arrival are spaced uniformly
and symmetrically around the unit circle, the number of low-frequency oscillators required
is reduced. This reduction is a direct consequence of the periodicity and symmetry of the
cos(-) function. The phase shifts of the N waves, however, will all need to be included as
appropriate gains for each low-frequency oscillator. This procedure is outlined in the last

section of this chapter.

4.1 Understanding Jakes’ assumptions

In Subsection 3.2.2 we have seen that the signal generated by Jakes’ fading channel sim-
ulator is not wide-sense stationary. An obvious question to ask is whether the simulator
can be slightly modified such that the signal becomes wide-sense stationary. Then, Jakes
approach would have merit in that it would provide the wireless engineer with an effi-

cient method for generating fading waveforms. The efficiency is achieved by needing to
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use fewer low-frequency oscillators than Clarke’s model, i.e., the simulator would need
roughly N /4 sinusoids, whereas the model contains N.
In general, the fading signal can be written as
N
R(t) = V2 Z Cpcos(Wet + Wt cOSAp + D), 4.1)
n=1
where the C,’s, A,,’s, and ®,’s are random variables, i.e., the model possesses 3N degrees
of freedom. This is the same signal as that of equation (2.6); we copy it here for ease
of reference. A physical interpretation of equation (4.1) is that the received signal is a
superposition of N cosine waves. We recall that the C, can be interpreted as the signal
attenuation experienced by the nth signal component, the A, as the direction of the arrival of
the nth component, and the &, as the phase shift of the nth component. In its most general
form, the expression for R(¢) can not be further simplified without losing some degrees of
freedom. If we assume, as Jakes did, that there is some symmetry to the problem, we may
be able to simplify the above expression; however, we would still incur a loss of degrees of
freedom. Observe that the model of equation (4.1) may be sufficient to model any fading
signal. However, we are interested in modelling flat fading signals; it might be the case that
for such models, we require fewer than 3N degrees of freedom.

We follow Gilbert [2] and assume first that the A,’s are equally spaced around the unit
circle. Next, we select the C,’s equal and time-invariant. Gilbert notes that the choice
of path attenuation is not unique. Thus, one might wish to select the C,’s from a Rayleigh
distribution. The limiting result, Gilbert points out, is the same regardless of the distribution
of the C,’s. The choice of equal and time-invariant path attenuations may be justified on
physical grounds. For example, it may be the case that the environment surrounding the
transmitter and receiver is similar, i.e., same building density and similar building materials.
Furthermore, the nature of the flat fading channel dictates that the channel parameters,
including the path attenuations, do not change over the duration of the message. It should

also be noted that the results obtained in this thesis can be easily generalized for other
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distributions of C,. These two assumptions taken together state that the received energy
density at the mobile is constant, an earmark of Rayleigh flat fading channels. In addition,
as we have seen in Section 2.2, Jakes makes similar assumptions, i.e., he selects C, and A,

according to

1
Co=—= 4.2
n \/N ( )
and
2mn

While the restrictions above reduce the number and type of fading signals we may model,
the set of reduced signals still includes flat fading. Otherwise put, Rayleigh flat fading
channels are characterized by uniform power density around the receiver.

With these assumptions in hand, we may re-write the fading signal (4.1) as

2 O 2nn
R(t)= N Z cos{ @t + Wyt COS N +®,). 4.4
n=1

We note that we have gone from a signal with 3 degrees of freedom, the general case, to
one with N degrees of freedom, a smaller class of signals still including flat fading. We did
not make any assumptions about the phase shifts ©,.

A further assumption made by Jakes, is that N is of the form 4M + 2; this forces a
certain symmetry and therefore allows for the reduction in the number of low-frequency
oscillators needed. That is, the arriving rays are symmetric about both the x- and y-axes.
Essentially, this assumption limits the number of distinct Doppler frequency shifts from N
values to M + 1. This will become a little more obvious in the development of the following
formulae.

We start by decomposing R(r) into orthogonal components

[2 & 27
R(t) = T Zcos(a)ct+a),,,tcosTn+<Dn)

n=I1

[2 N 2nn
= cos .t ﬁ,; cos( @t cos -t d,)
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= X.(r)cosw:t — X(1) sinat.

) [2 X 2mn
—sin .t Nﬂ; sin( @yt cos ~ d,)

(4.5)

We now look at each of the in-phase and quadrature components. Starting with the

in-phase one, we have

Xc(r)

M
v

/2
Nn=l

L
2M
—_ IV—;

It

n=1

2 M
Ve

v 2|

2 M
Vil
9]

[2 & 2mn

— Z cos( wy,t cos — + D)

Nn:l N

2 ¥ 2nn, i 2rn., .
ﬁng‘l cos( yt cos —)cos @, — sin( Wyt cos T) sin®,

2
[cos(co,,,t cos %) cos (D,,]

. 2r
sin( @t cos Tn) sin @n]

2n(2M + 1 —n)

cos( @yt cos N ) cos (DzM-i-l—n}
[ 2r(2M+1—n), .
sin( @yt cos ( N ) )sin CD2M+1—n}

+1/ ﬁ [cos(@mt cos ) cos Doy, | — Sin(@pt cos ) sin Dy | ]

2&[
+ NZ

n=11L

M

e

2%"
+1/_
Nn:lb

M
>
n=1

/2
N
2

rcos(a),,,r cos 27r(2M1;!/— L+n) Jcos Dy, +1+n]
rsin(co,,,tcos 271:(2M1;[+— L+n) ) sinCDZMHM}
cos( @yt cos 27r(4M; 2-n) ) cos <D4M+2_n]
—sin(comt cos 27[(4M; 2-n) ) sin<D4M+2_n]

+1/ 5 [cos(@mt cos27r) cos @y, 5 — Sin(@nt cos 27r) sin®@,4,,,] - (4.6)

We can make use of the following identities, which follow from the periodicity proper-

ties of the cos(-) function

CcOosS

CS27z:n
—COS —
N,

2r(2M+1—n)
4M +2 -
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2r(2M + 1 +n) 2rn
cos = —Ccos —,

M+ 2 N

and
co 2n(4M +2 —n) — cos 27n
ST a2 BN

to further simplify the expression for X.(r). With these identities, we can simplify equation
(4.6) 10

2 M 27n , 2rn.,
X.(t)=4/= z coS( Wyt cOSs —— ) cos @, — sin( @yt cos ——) sin P,
N & N N

2 M 21N 2nn. .
+ T, 2 cos{ Wt cos T) cosDyy |, + sin{ @yt cos ~ )sin®@,y, .,
n=1L N

2 M 2nn . 2nn. . ]
+ N Z cos( @t cos T\f_) cos D,y ., +sin(@pntcos —N—) sin®o, 1y

n=1
[2¥87 2ntn : 27n,
+ Nn; cos( Wyt cos T) cos®, .. »_, —sin(@ptcos —N—) sin@g0.5_,
2

/ /2 . .
+ ﬁcos(co,nt)cosszhl+l+ Nsm(a),nt)s,m(I?'ZMQ.Fl

/2 /2 . :

Substituting @, = ®,, cos 2% in equation (4.7) yields

2 M
Xc(t) = 4/ v > (cosn+cos Doy, +C05 Py, +COSDyys s ) COSWLL
n=|

M
== (sin®p —sinD@yy, | _, —sin®yyy ., +sin®@yyy 5, ) sinwa

N n=1
2

tVw (cos D,y +cOsDyy,. 5) COS Wit
2, . . .

Similarly, for X;(¢) we can write

2 ¥ 27
X:(t) = N z sin( @t cos TVE +o,)
n=I1
9 N 2T .
= 4/ 17,,2'1 [sin(a),,,tcos g;—n) cos @, + cos( Wyt cos —N—n) sm(D,,}
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[7 M

= \/ﬁ 2,1 (cos @, —cos @y g, —COSDyyp ., +COSDyyy 5 ) SiN Wt
n=

[2.4 : , ,
iy Y (sin®p+sin®@opy, |, +5InDopp L, +SINDPyy 5 ) COS Wrt
n=1
2 .
- N(cos(IJZM+l —cosD,y, . ,)sin Wyt
2. .
+ N(51n<I>2M1._l +sin®,,, . 5) COS Wyt 4.9)
It is interesting to note that if we substitute
D =Py | = Popri1in =Puprion=Bn, forn=1,...M, (4.10a)

and
Popr1 = Paprsa = Bz (4.100)
in equations (4.8) and (4.9), we end up with a simulator similar to Jakes’ fading channel

simulator. That is, X,(r) reduces to

2V2
X(r)= \/\/N— cos Dy, . 5 COS Wyt + \/__ z cos P, cos wy!. 4.11a)
The corresponding in-phase component generated by Jakes’ simulator is
_ 2
X(t) = \/_cosB 1 COS Wyt + ——= cos Bpcosw,t. (4.11b)
\/f\—/ M+1 \/—
Similarly, X;(¢) reduces to
2V2 4
X:(t) = —\'/——smd) 2 COS Wit + ~£ sin®, cos @y!, (4.12a)
\/N M+ \/N n=1

The corresponding quadrature component generated by Jakes’ simulator is

) 4 M
X:(t) = z'ﬁ sinBy,_ | COS Wt + —= Z sin B, cOS Wyt. (4.12b)

\/N mn:l

Comparing equations (4.11a) and (4.11b) and equations (4.12a) and (4.12b), we observe
a discrepancy in the oscillator gains. This is easily explained if we observe that Jakes’
development culminating with equations (4.11b) and (4.12b) was carried out under the
constraint that the simplified signal have unity power. There was no such constraint placed

on the development leading to equations (4.11a) and (4.12a).
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4.2 A first attempt at improving Jakes’ simulator

The first fix we propose is the introduction of sine terms, as illustrated in Figure 4.1. The
interested reader might want to compare this to the block diagram of Figure 2.3.
We justify this choice by observing the fading signal

7N
R(t) =4/ N cos(@ct + Wit cOs A + Dp)
1

n=

5 N N
= \/g{cos(a)cr) > cos(@nt + D) —sin(@et) Y, sin(wnr+d>n)} . (4.13)

n=1 n=1

That is, the lowpass equivalent signal

7 N
R(1) = \/1;\/ Y cos(wmt cos &y + Pn)
n=1

2 N
= 4/ ﬁ Z cos D, cos wpt — Z sin®, sin @yt », (4.14)
n=1

n=1
includes both sine and cosine terms.
From Figure 4.1, we can write the new simulator signal, subject to the constraint that it

have unit power, as

R (t) = cos(wet)X,.(r) +sin(awct)X,,(r)

M
2
n=1

M

+—2—sina)ct V2sinB,, . sinwnt +2 Y sinBysinw,t |,  (4.15)
M+1

VN =

where w, = &, cos o,.

We are interested in determining whether the new signal Rl (r) is wide-sense stationary.
As we have seen previously, we can proceed in at least two ways. We can compute the
pdf of the envelope of R, () and determine whether this is a function of time. Or we can
compute the autocorrelation function E{R,(¢,)R,(t,)} and show that this is a function of

only ¢, —t,. Here we choose the second method as it is easier.
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=
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Figure 4.1. Improving Jakes’ simulator by the introduction of sine terms.
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We note that the random variables B, ..., B,,. |, are uniform i.i.d. over [0, 27] as shown
in Subsection 2.2.1. We proceed below with the computation of the autocorrelation func-

tion, starting from the definition. We have

f%-lR-[ (tl’tz) =E {R-[(tl )RI (tz)}
, M

= E {71\7 l:cos @t (\/icosBMH COS Wt; +2 D, cos Bycos m,,rl)

n=1

M
+ sin@et, <\/§sinBM+l sin @yt +2 Y, sin B, sin a),,tl) }

n=1

2 M
X T |coseery V2cos By, | COS Wty +2 D, COSB,COS WL,
k=1

M
+ sin@t, (\/isinBM_i_l Sin Wty +2 2 sin B, sin a)ktz)] } . 4.16)
k=1

We pause here to compute the required expectations, readily obtainable by direct com-

putation. We have

E{cosB,} = E{sinB,} =0, (4.17)

E{cosB,sinB, } =0, (4.18)

ifn=k,

I
5’
0, otherwise. (4.19)

E{cosB,cosB,} = E{sinB,sinB,} = {

With these equalities in hand, we note that the only terms which will appear in the
autocorrelation function will be those in which the random variables B, ..., B,,. | appear
in terms of the form cos?(-) or sin?(-). Expanding the brackets in equation (4.16) and then

substituting the identities of equations (4.17) — (4.19) yields

%Rlﬁl (2:15)

8
= 77 COS @inf| COS Wl COS Wil COS et E {cos’B M1}

M
ol
+5 D’ COS Wnt| COS Gt COS Wnl, COS Wct, E{cos” By}
n=1

8 . ) ) . .
+ 5 Sin Wint | SIN W2, SIN Oty SIN WL E {sm2 By}

76



16 ¥ . : : : :
+— 2 Sin Wyt SIN @l SIN Wyl, SIN Wet, E {sin® B, }
n=1

4

M
+5 )" COS Wnt| COS Wct| COS Wnt, COS Wel,

n=1

4 . . . .

N
M
+ N Z SIN @Wpt | SIN QL) SIN Wyl SIN @,
n=I
2 M
= 5 |cos@m(ty —1) +2 Y cosa(t, — 1)) | cosc(t, — 1)
n=1
2 M
+ 5 | €05 O (y+1,)+2 Y coswu(ty +1,) | cos @c(t, +1,). (4.20)
n=1

For comparison purposes, we also give the autocorrelation of the signal produced by

Jakes’ simulator. It is
R pp(tys1a) = E{R(t))R(1,)}
2

4 M
+5 D" [cos @a(ty —1)) +coswy(t, +1,)] cos e (1, — 1)

n=l1
2 M
=5 COS Wty — 1) +2 Y coswu(t, — ;) | cos @c(t, — 1)
n=1
2 M
+~A7 cosa),n(z2+t1)+2Zcosco,,(t2+tl) cos Wc(ty — ;). 4.21)
n=1

We observe that the signal R, (t), like the signal produced by Jakes’ simulator, is not
wide-sense stationary. We conclude that the introduction of only sine terms, as illustrated
in Figure 4.1, is not sufficient to produce a wide-sense stationary signal. We note in pass-
ing that the first term in the autocorrelation of equation (4.20) depends only on the time

difference ¢, —t,, while the second term depends only on the the time sum #, +1,.
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4.3 A second attempt at improving Jakes’ simulator

The second method we propose to improve Jakes simulator is the introduction of random
phases in the low-frequency oscillators, as illustrated in Figure 4.2. This method has been
suggested and used by some authors, with some degree of success; see, for example, [8,
pp. 263-264], or [31, p. 97].

Justification for using this method is the fact that for small values of time z, the values
produced by the low-frequency oscillators are highly correlated; they are equal at r = 0. By
adding the random phases, the correlation is destroyed.

The signal produced by this simulator can be written, upon analysis of Figure 4.2, again,
under the constraint that it have unit power, as

R, (r) = cos wctX, () + sinact X, (1)

2 M
= —=COS Wt [\/icos By 1 €OS(@mt +Wyy, ) +2 Y, cos Brcos(@nt + LE‘,,)]

\/ﬁ n=1

2 M
+ —=sin @t [\/isinBM+I cos(@mt +¥y, ;) +2 Z sin B, cos(wn! + ‘Pn)] ,

vN

n=|

(4.22)

where \¥',...,'¥,,, | are uniform i.i.d. random variables over [0, 27].

As in the case of the first fix, we need to determine whether the signal R,(r) produced
by the simulator of Figure 4.2 is wide-sense stationary. We proceed by computing the
autocorrelation function, in a manner similar to that of the previous section. We start with

the definition of the autocorrelation function. We then have
Z?Rzﬁz(zl,rz) =E{Ry(t))R,(1y) }

2 M
= F {ﬁ [cos ct, (\/ﬁcosBM+l cos(@Wnt, +¥y ) +2 Z cosB, cos(a)nt1 + ‘P,,))
n=1

M
+ sin @, (\/isinBM+1 cos( @ty +Wy. ) +2 Z sin B, cos(wy!, +‘P,,))}

n=]
2 M
X —= | cos @ty | V2cos By, coS(@mty + ¥y, ) +2 D, cOs By cos(@yt, +Fy)
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Figure 4.2. Improving Jakes’ simulator by the introduction of random phases in the low-

frequency oscillators.
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M
+ sinwet, \/f_7sinBM_i_1 cos( Wity + Py 1) +2 Z sin B, cos(w,t, +'¥;)
k=1
(4.23)

We note that the random variables B,,...,B,,.,, and ¥,,...,%¥,,. ,, are uniform i.i.d.
1 M1 R M+1

over [0, 27x]. Following a procedure similar to that in Section 4.2, we obtain successively

Z -

2

‘z([[?[’_))
8 2 2
= —COS Wyt| COS Wcl| COS Wipl; COS Wl E{cos™ By, cos” ¥y, |}

2

8 . ) 2 . 2
+ 7 SIN Winl| COS Q! SN Winty COS Wct,E{cos™ By, sin" ¥y, 1}

16 M 9 2
+ N Z COS Wt COS Wl COS Wnly COS Wclr B {cos’ Bpcos™\¥,}

n=1

16 ¥ . :
+ N Z SIN Wyt | COS Wet) SIN Wpty COS Wl E {cos2 By sin® ¥, }

n=1

8 . , . 9 2
+ 1§ COS Wl SIN Wl COS Wty SiN Wty E{sin"By,  cos ¥, }

+ % Sin Wyt Sin Wet| SiN Wity SIN WL E {sin?' By sin> ¥ M1}
16 ¥ . : 5 >
+ — Y CcOS Wnt| SiN WL, COS Wnt, Sin WcL,E {sin® B, cos™ ¥y}
n=1}
M
+ N Z Sin @yt Sin @t SIN Wnt, Sin W E {sin2 B, sin? ¥,}

n=1
2 2
4 M M
+ — D COS @yt COS Wl COS Wnt, COS Wty + i Y sin wyt, cos Wt Sin Wyt, COS Wty

n=1 n=1

2 . . 2 . . : .

N
4 M M
+ N Z COS Wyt SIN Wt| COS Wyl sin @ct, + N 2 Sin Wpt| SIn W) SiN Wty sSin ety
n=1 n=1
2 M

n=1

We observe that the signal produced by this second simulator is wide-sense stationary,
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i.e., its autocorrelation function depends only on the time difference T =1, — 1,

2 M
.%’Rz(r) = Ncos T (cos wmr+2"§l cosco,,t) . (4.25)
One has to conclude that the introduction of the random phases ‘¥, ...,'¥,,, ; destroys the

correlation observed earlier between the low-frequency oscillators, and thus leads to the
generation of a wide-sense stationary signal.
Since
1 /T
T./o ‘%’Rz(r)dr—-}O
as T — oo holds, i.e., the signal 1?2 (+) meets the requirements of Slutsky’s theorem [29, eq.
(13-7)], we conclude that R, (¢) exhibits ergodicity of the mean.

With some effort, it may be shown that the time-average autocorrelation is

M
(1'\3, DR, (t+1)) = 3cos . T| cosw,T+2 ) cosw,T ]| . (4.26)
- - N

n=1

We observe that the statistical average autocorrelation is equal to the time-average one
%Ih (1) = (Ry(t)Ry(r + 7).

We conclude that R,(r) may also possess ergodicity of the autocorrelation.
We would like to determine the envelope and phase pdf’s of the fading signal produced
by this simulator R,(r). Comparing to the sum of independent random vectors model de-

veloped in Section 3.1 we note

4
R“ = —COS(Cl)nt‘*'\Pn), n

=1,...M
VN
2v2
Ry = —\/%cos(a)mt-{-‘PMH) (4.27)
and
©,=Bn, n=1,...M+1. (4.28)

As in the case of Jakes’ simulator, studied in Subsection 3.1.2, we note that R, is in general

a function of C,, A,, and ‘¥,, while ©, is a function of B,, and hence @, only. Since
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Cn, An, ¥r, and @, are independent random variables, it follows that R, and ©,, are also
independent. This verifies the requirement of Section 3.1, and thus we may use the results
developed in that section. The rv’s @,,...,0,,.  are uniform i.i.d. over [0, 2x], as required.

Using equation [29, eq. (5-13)], we obtain the pdf’s of the random vector lengths

2 4
r)= , 0<r<— (4.29)
0= e =7 VN
forn=1,...,M, and
2 2V2
N=——————r, 0<r<—. (4.30)
fRM-*,-x( ) T /8/N—r2 vN

Note that the choice of pdf’s above for the R,’s ensures that we have no negative lengths.

To compute the characteristic functions, we make use of [36, eq. (6.552.4)] to obtain

o 2
D, (w,, =/ Jo | ray/ @2 + @2 ) dr,
(@, @) 0 m\/16/N—r? O( C VA

2
_ 2 :i) , 431
0 ( ~ (4.31)
and similarly, s
2
Py (@, @) =5 ("\"/*—ﬁq) ; (4.32)

where g =,/ @? + w3. Thus, the envelope pdf is given by

fpz(r) = r/om [JO ([\/2%) J&M (%)] Jo(rq)qdq, r=>0. (4.33)

As expected, the envelope pdf does not depend on time.

The phase pdf is given by
l
, =—, 0<8<L2m. 4.34

Thus far, we have seen that introduction of random phases in the low-frequency oscilla-
tors leads to the generation of a wide-sense stationary signal. The only question remaining

to be answered is whether the addition of the random phases ‘¥',...,'¥';,, ; has changed
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the content of the signal. To determine whether the signal R,(r) still approximates R(r)

we return to equation (4.22) and attempt to re-write it in a more insightful form. We have

successively
_ 2 M
R,(t) = —\/_ﬁcos Wt \/§cosBA,,1‘_l COS( Wt +W¥yy, ) +2 Z cos B, cos(w,t +'¥,)
n=1
2 M
+ Tsin et \/EsinBM_f._l cos(@mt +Pyy. ) +2 2 sin B cos(wnt + ‘¥p,)
N [_ n=1

2\/5 4M

= cos(@ct — By ) cos(@mt + ¥y, ) + Y cos(wct — Bn) cos(@nt + W)

\/N Tﬁnzl

/2

\/__ Z [cos(@ct — @t — By —¥p) + cos(@et + Wnt — By +¥y)] - (4.35)

Recall that the phase shifts ®,,...,®y in the fading signal R(¢) are uniform i.i.d. over
[0,27). In the case of the simulator of Figure 4.2 the phase shifts are represented by the
random variables B, +¥,.., By +¥y ,and B\ =¥ ,.. ., By | — Wy~ Itis inter-
esting to note that in the case of Fiz(t), the phase shifts are no longer independent, as was
the case with the phase shifts @, of R(z). In particular, we note that the phases B, + ‘¥, and
B, — ¥, are dependent, for n = 1,...,M + 1; however, they are uncorrelated. Note that the
envelope pdf of the signal generated by Clarke’s model is not the same as the envelope pdf
of the signal generated by this improved simulator; they do, however, converge to the same
pdf, the standard Rayleigh. Despite the fact that the mean and autocorrelation function
of Clarke’s model are identical to the mean and autocorrelation function of the improved
simulator, we conclude that this improved model does not completely represent the fading

signal of equation (2.6).

4.4 A closer look at Clarke’s formula

Now that we have taken a look at some fixes, we go back to Clarke’s model given in

equation (2.6). We try to obtain a different perspective on why these improvements would
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work or not. Recall that the fading signal we want to simulate may be expressed as

7 N
R(r) =1/ 1;\-/“ Y. cos(@ct + Omt cOsA, + Pp), (4.36)
n=|

where A, and &, are i.i.d. random variables over [0,2x]. This is the signal of equation
(4.1) with Gy = .

One way to interpret the above equation is that there are 2N degrees of freedom, i.e.,
the random variables A,,...,Ay and @, ..., ®,. In the method Jakes outlines, the A, are

chosen in a symmetric manner, according to the formula

2mn
A, = . 4.37
"=y (4.37)

This has the effect of removing N degrees of freedom. Furthermore, Jakes reduces the
number of low-frequency oscillators and their corresponding phase shifts from N to M + I,
where N is assumed to be of the form N = 4M + 2. This has the effect of further reduc-
ing the number of degrees of freedom. As shown in Subsection 2.2.1, this last reduction
leads to waves of different frequencies becoming correlated, and the simulator signal be-
coming non-stationary. From this point of view, we would expect the signal generated by
the simulator to differ from the signal it was intended to reproduce, i.e., the signal of equa-
tion (4.36). To summarize, the loss of phase shift information, i.e., number of degrees of
freedom relating to the phase shifts, leads to the generation of a non-stationary signal.

A more insightful interpretation is obtained by re-writing equation (4.36) in terms of

quadrature components

Af
R(t) = 4/ %cos ! I:Z (cos®, cos Qpt —sin @, sinf,r)

n=1

N
— 4/ %sinwct [Z (sin®, cos Qpt +cos P, sinQ,,t)J . (4.38)
n=|1

From this equation we derive the simulator structure of Figure 4.3.
Note that Jakes’ simulator does not contain the branches corresponding to the sin(€2,z)

terms. This comes about because the restrictions Jakes imposes on the random variables
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An and @, force the sums of the terms coming from the sin(€,¢) branches to be (approx-
imately) zero. In addition to the missing sine branches, the Jakes simulator reduces the
number of cosine oscillators from N to M + 1, through the choice of A,, which in turn
determine the value of the Doppler shift frequencies €2, = @y, COSA,.

Also, by analyzing Figure 4.1 and Figure 4.3 it becomes obvious why the first fix did
not work. Namely, in the former case, we observe the sinB,sin 2.t terms occur in the
quadrature branch. In the latter case, however, the same sin B, sin{2,¢ terms occur in the
in-phase branch. Since the two simulators are different, we would not expect the simulator
in Figure 4.1 to reproduce, or even approximate the signal of simulator in Figure 4.3.

Note that, in general, the restrictions on the phase shifts given by equations (4.10a) and
(4.10b) are not true. Hence, we will not be able to reduce the expressions for X.(¢) and X;(r)
as was done in Section 4.1. That is, we will have to keep all N phase shifts ®,,...,®y. In
some cases, in particular when the angles of arrival are symmetrically and equally spaced
around the unit circle, we reduce the number of low-frequency oscillators, but we still must
ensure inclusion of all N phase shifts. We illustrate this idea for the case N = 4M + 2.

The angles of arrival are given, as usual, by

2rn
Ap = —, =1,...,N.
n N n

Recalling equation (4.8),we write the in-phase component of the fading signal as

2 M
X(r) = 4/ 5 Y (cos®p+cos@pp | +€0s Doy +€OsDPyys. ) COS Wt
n=1
2 ¥ : :
V5 Y (sin®y —sin®@ypp, _, —Sin@opy oy +5INDyyp, 5 ) Sin @yt
n=1

2
+4/ N(cos Dyppy +€OsDyy, . o) COS Ot
2, . . .
+ N(sm @, —sin D p1.0) SID WL, (4.39)
and, recalling equation (4.9), the quadrature component as

[2 ¥ :
I

n—=
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[2 M :
+ N Zl (sin®p +sin®@yy, .| _, +sin<I>2M+[+n+sin¢4M+2_n) COS Wyt
n=

2 .
- v 1—\7 (COS q)?.M-i- | —COs q)4M+2) S10 Wyt

/2

(4.40)

The simulator derived based on the simplified equations for X.(¢) and X,(¢) is shown in

Figure 4.4. The gains corresponding to each sinusoid, or oscillator, in equations (4.39) and

(4.40) are too cumbersome to include in a block diagram. Thus, we make the substitutions

O
Py

+1

Pyt+1

{

C
M+1

QSM-H

cos®, +-cosD,y, ., +cos@y, ;. +COsDyy, o,
sin®, —sin®y,, . —sin®@y, ., +sinDyy,. 5,
sin®, +sin®y,  +sin®@yy, L, FSInDyy, 5,
cos®, —cos D,y —cosD@y, . —cosDyy, o,
cos Dy, +cosDyy . 5,

sin®,y, . —SinDy,, .,

Sin®@opy,  +SIN Dy s,

cos CIJZM_.rl —cos <I>4M+2.

(4.41)
(4.42)
(4.43)
(4.44)
(4.45)
(4.46)
(4.47)

(4.48)

We note that the low-frequency oscillators generate the various Doppler frequency

shifts. In particular, one low-frequency oscillator corresponds to two Doppler frequency

shifts of the appropriate magnitude. Analyzing Figure 2.2 we note that each Doppler fre-

quency magnitude corresponds to four waves arriving at the receiver, except for the waves

arriving from directly ahead and behind at the receiver. In this latter case, the Doppler

frequency magnitude corresponds to just two waves. From this it is apparent that for

N = 4M + 2 each Doppler frequency magnitude should have four phase shifts associated

with it; two phase shifts associated with the maximum Doppler frequency shift. This is

what is illustrated by equations (4.41) — (4.48) and Figure 4.4. To conclude, the savings
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incurred by forcing the angles of arrival to be symmetric about the x- and y-axes, as in
Jakes’ work, occur through the inclusion of only the least number of different Doppler
frequency shifts. However, we must include the appropriate phase shifts corresponding to
each Doppler frequency magnitude. Failure to do so leads to stationarity problems, as was

illustrated in Subsection 3.2.2 for Jakes’ simulator.
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Chapter S

Quantifying the Inaccuracies in Clarke’s
Model

As mentioned in the introduction to this thesis, an inherent drawback in the use of sim-
ulators is that the signal produced is an approximation to the phenomenon observed in
nature. In our case, the problem derives from the fact that the continuum of angles of ar-
rival which exists in the natural fading channel is replaced by N arriving waves uniformly
spaced around the unit circle. We can view this process as some sort of quantization. Of
interest, then, is how much error this quantization process introduces in the statistics of
the fading signal. Various authors have proposed solutions; these solutions usually stem
from some theoretical consideration (see, for example, [9]). However, when the simulators
are implemented in practice, the number of oscillators used is usually larger by at least an
order of magnitude than the theoretical solutions proposed, as in the case of [12]. In this
section, we seek to quantify the quantization error. The derivation of our results is based on
the knowledge of the approximating function, whether it be probability density, cuamulative
distribution, or autocorrelation. We arrive at our conclusions via examples.

An important point to note is that the use for which the simulator is intended will often
dictate the choice of quality measure. The measures used in this section are generally
indicative of the performance of a simulator; they also illustrate how the results obtained

earlier in this thesis can be used to determine other quality measures.
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5.1 First order statistics

In Subsection 3.1.1 we developed a formula to compute the pdf of the envelope of the sig-
nal produced by Clarke’s model. In this section, we obtain a measure of the quality of the
model based on how close the envelope pdf is to the desired Rayleigh pdf. There are many
ways such a comparison can be made, and the approach below is only an example. Such
comparisons can be based, for example, on computation of the maximum absolute error be-
tween the envelope pdf of the signal produced by the model and the standard Rayleigh pdf,
i.e., between the approximating signal pdf and the theoretical, desired signal pdf. It is this
approach that we take below. Of course, one could choose mean square error, comparison
of variances, or other quality measures such as those proposed by Young [22]. Note that
different applications of the simulator may require different quality measures for proper
evaluation.

The pdf of the envelope of the signal produced by Clarke’s model is given by equation

(3.29). For convenience, we re-write this equation below. The envelope pdf is

fRPP(r) = r/OWJg" (q\/%) Jolgr)gdgq, r>0.

The superscript app is used to emphasize that the pdf is an approximation to the standard
Rayleigh, the desired result.

The standard Rayleigh pdf is given by
Falr)=re"12, (5.1)

This result is readily available from a number of probability texts; see, for example, [29, p.
96]L.

As mentioned above, the quality measure we choose to compute is the maximum abso-
lute error between the two pdf’s | fg(r) — fzP?(r)[. The error is computed for various values
of N and then plotted in Figure 5.1. The graph is plotted for values of N > 6,as N =6 is

the smallest number of oscillators suggested in the literature.

ISee also {29, Table 4.1].
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Figure 5.1. Variation of maximum absolute error of the envelope pdf with the number of
oscillators N in Clarke’s model.
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Upon inspection of Figure 5.1 a simple rule of thumb becomes apparent. To reduce the
maximum error in the envelope pdf by an order of magnitude, the number of oscillators
N must be increased by an order of magnitude. That is, approximately 20 oscillators are
needed to reduce the maximum error to 0.01, while 200 oscillators would be needed to
further decrease the maximum error to 0.001.

The equation for the fit line is given by
loglOErrorpdfz —1.0log,o N —0.75. (5.2)
Equation (5.2) can be re-written as
Error, - x N = 0.18, (3.3)

showing that the product of the error and the number of oscillators tends to remain constant.
Analyzing Figure S.1 one may conclude that this relationship becomes more accurate as
N increases, with the relationship being less accurate for small N. Again, the reader is
reminded that this approach is provided only as an example, and that other quality measures
exist. Ultimately, the use of the simulator will dictate the choice of quality measure.

Of course, we are not limited to quality measures relating only to the pdf. We can
also apply these measures to the cdf. Equation (3.25) gives the cdf of the envelope of the

signal produced by Clarke’s model. For convenience, we re-write this equation below. The

o N
ForP(r) = r /0 J,(rq) HIJO (q\/%> dq.

Again, the superscript app indicates the cdf is an approximation to the theoretical one.

envelope cdf is

The standard Rayleigh cdf is easily obtainable either by consulting a probability text,
such as [29], or by integrating the standard Rayleigh pdf of equation (5.1). Either method

produces

Fo(r)=1—~e"12, (5.4)
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Figure 5.2. Variation of maximum absolute error in the envelope cdf of the signal produced
by Clarke’s model with the number of oscillators N.

As before, our quality measure will be the maximum error between the approximating
cdf and the standard Rayleigh cdf |Fg(r) — FZPP(r)|. The error is computed for various
values of NV and the results are plotted in Figure 5.2, again, for N > 6.

Similar to the case of the pdf’s discussed above, we observe the same rule of thumb.
To reduce the maximum error in the envelope cdf by an order of magnitude, the number
of oscillators N must be increased by an order of magnitude. For example, we require
approximately 12 oscillators to reduce the maximum absolute error in the cdf to 0.01, while

we require 120 oscillators to reduce the same error to 0.001.
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The equation of the fit line in this case is given by
loggError ;. ~ —1.0log ;o N —0.93. (5.5)
As done for equation (5.2) we rewrite equation (5.5) as
ErrorcdfozO.IZ (5.6)

and observe that in this case, too, the product of the error and number of oscillators tends
to remain constant. As before, we note from Figure 5.2 that the approximation in equation
(5.5) is best for large values of N.

The reader is reminded that the phase pdf of the signal produced by Clarke’s model is
equal to the desired pdf, i.e, uniform pdf over [0, 2], regardless of the value of N. Quality
measures based on the phase pdf would, therefore, reveal little about the performance of
sum-of-sinusoids simulators.

Another common way of assessing the quality of a rardom variate generator is through
the use of probability plots. Such plots emphasize deviations from the desired behaviour at
the extremes, i.e., tails, of the distribution. In most communication applications, it is these
pdf or cdf tail regions which are of importance. This method entails plotting the cdf of
the generated random variate versus the desired cdf. On such a plot, the desired cdf would
appear as a straight line. A ready measure then, would be how close to a straight line the
approximating cdf appears. In our case, we are plotting FZPP(r) versus Fp(r); this is done
in Figure 5.3.

A close-up of the right tail is given in Figure 5.4. We justify this by observing that
cumulative cdf values on the order of 1075 or less are common. In other words, we are
interested in knowing the cdf in the neighbourhood of values such as 1 — 107%. Such

applications may be found in analysis of error performance.
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Figure 5.3. Probability plot for the envelope cdf of the signal produced by Clarke’s model
for various V.
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Distribution of sum-of-sines approximation to standard Rayleigh
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Figure 5.4. Close-up of probability plot for the envelope cdf of the signal produced by
Clarke’s model for various N.
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5.2 Second order statistics

In Subsection 3.2.1 we determined the autocorrelation function of the fading signal R(r) to

be
Rre(t) 1) = §§ cos[@c(t; — t;) + @ (t; — 1) cOs 2_N7r_n]. (5.7)
For even N, the autocorrelation function Zp4(z;,1,) simplifies to
Trp(ty,15) = cos[a).:(tl z cos|@m(t; —t,) cos —27 (5.8)

n=1

as seen in Subsection 3.2.1. Here we are interested in the low-frequency term

9
REP (1) = Z cos (a)m‘ccos “—:;2—) , (5.9)

where T =t —1,, and the superscript LP is used to emphasize we are using the lowpass
equivalent form.

In the particular case chosen by Jakes, N = 4M + 2, and equation (5.9) simplifies to

Zg (1) =

5
cos(w,T) + 2 cos (a),,,rcos 4M7L'112) (5.10)

2M+1 M+1.5

Jakes [23] notes that (5.10) is an approximation to the Bessel function of order zero,
the autocorrelation one observes in practice. He also notes this approximation breaks down
for large enough lag values T =, —¢,. In this section, we investigate why this breakdown
occurs. We also attempt to determine the lag value 7,4, beyond which the autocorrelation
function diverges from the reference model, and how this point varies with the number of
oscillators N, or equivalently the number of distinct Doppler frequency shifts M + .

We begin by recalling that one can define the Bessel function of order zero [36, eq.
8.411.4] as

7 o
Jo(x) = -;ch;j cos(xcosu)du. (5.11)

We can compute the above integral through a Riemann sum. Let

2
glu)= Ecos(xcosu .
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We divide the interval [0, 5] in 2M + [ intervals of length 577=—. We label every other point,

starting with « = 0. Thus, the nth point along the axis is given by

n

tn = sprge A=0,L M. (5.12)

Then, the integral in equation (5.11) can be approximated through the finite sum

(S/E]

M
b
n=

1 2 M nn
= 2M+Icos.t+2M+lgllcos (xcos M+ 1) . (5.13)

The process of approximating the integral in equation (5.11) by the Riemann sum of equa-
tion (5.13) is illustrated in Figure 5.5.

We are interested in finding a relationship between the error level

1 2 M nn
Jo(max) = | 53 ©OS Xmax + mg}cos XnaxCOS 2 | ||, (5-14)

E level —
|

the number of low-frequency oscillators M + 1, and the breakpoint® x4 beyond which
the approximation to the Bessel function deviates significantly from the desired value. We
have already noted that we are attempting to compute J,(x) as an integral. We evaluate the
integral in question via the midpoint rule. Thus, one relationship between £, ,, M, and

Xmax 18 provided by the error bound on the midpoint rule [34, eq. (7-32)]

— \3
(b a) gl)lﬂ.f (5'15)

lE[evell < 24n2 ’

where

@ g" . is the maximum absolute value? of the second derivative of g(u), i.e., |g"(u)| <

g:),xa.\' for a S u S b1

@ b is the right end point of the interval of integration, in our case b = %,

2Note that Xpar = W Tmax in the autocorrelation function.
30One may use an optimization routine, such as that provided by Maple, to determine the maximum value.
In our case, g(u) = cos(xcosu), and we find g, = X foru= z.
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® ¢ is the left end point of the interval of integration, in our case a =0, and

e 1 is the number of panels used in the integration process, in our case n = M + L; the

comes about because the panel at origin is half as wide as the other ones.

[T

Thus, equation (5.15) specializes to

E 3 )
_(5) S tmax (5.16)
24(M+1)°

However, we found the bound of equation (5.16) to be weak, and thus the relationship

IElevel[ <

between E| evel” M, and x,,,4, is also weak. An alternate approach is needed.

We observe that all quantities in equation (5.14) can be readily computed. We begin by
choosing an error level, and a number of low-frequency oscillators to be included in a sum-
of-sinusoids simulator. Next, we use a search algorithm to determine the smallest value of
Xmax for which equation (5.14) holds. We then plot the points (M, X,nq.) for each error level.
Using this procedure, we obtain the family of lines of Figure 5.6. Observe that a small
increase in the number of oscillators can drastically reduce the error in the autocorrelation
function. We exploit this a little later, in order to derive a rule-of-thumb relating the number
of low-frequency oscillators M to the breakpoint 7,4, in the autocorrelation function.

To illustrate the use of Figure 5.6 consider the following scenario. Suppose we would
like to design a sum-of-sinusoids simulator whose autocorrelation function is within 1073
of the desired value up to a time lag of 200 s. Also, take @, = | rad/s. Choosing the line
in Figure 5.6, i.e., the line corresponding to £E,,,,, = 103, we find the point corresponding
10 Xinar = Om Tnar = 200; on the x-axis we read the corresponding number of low-frequency
oscillators we need. In this case, M = 54. Note that the number of low frequencies needed,
or equivalently, the number of distinct Doppler shifts, we need is M + 1, or 55 here.

In some cases, we are interested in using a small number of oscillators. To this end, we
enlarge the lower-left hand corner of Figure 5.6 and present the result in Figure 5.7.

Upon analysis of Figures 5.6 and 5.7, we observe that the breakpoint T4, in the au-

tocorrelation function depends almost linearly on the number of oscillators. Thus, one
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may derive some approximate relationships between the error level, the breakpoint, and
the number of oscillators. To illustrate this process, we choose to quantify the relationship
between Tnac and M for £, , = 1072, Analysis of Figure 5.7 reveals the slope of the line
corresponding to this error level is approximately 3.5, while the x-axis intercept is roughly

2. This yields
35(M+1)—1.5
W ’

max =

where the reader is reminded that M + | is the number of distinct Doppler shifts, or equiv-
alently, the number of low-frequency oscillators in the sum-of-sinusoids simulator.
Further analysis of Figures 5.6 and 5.7 reveals that the slopes of the family of lines lie
between 2.5 for small values of the error level and few oscillators, and 4 for large values of
error level and many oscillators. Also, the x-axis intercept seems to lie in the interval [0, 3].

This enables us to obtain the following rule of thumb

2.5M +3
Om

(5.17)

Tnax =

We may use equation (5.17) to select an appropriate number of low-frequency oscillators
M given we want the autocorrelation function to be close to the desired value over the in-
terval [0, Tyayr]. Conversely, given a simulator with M low-frequency oscillators, we may
use equation (5.17) to determine the value beyond which the autocorrelation deviates sig-
nificantly from the desired value.

It is important to note that the breakpoint T, depends on the number of distinct
Doppler frequency shifts M, rather than the number of multipath components N. To il-
lustrate this point, we consider two scenarios. In the first, we choose N = 17 and in the

second, N = 8. We still have
_ 2nn

n — N )
as before. Note that in the first case N = 17, there are nine distinct Doppler frequency shifts.

In the second case N = 18, the number of distinct Doppler frequency shifts has decreased
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Figure 5.8. Simulator autocorrelation for N = 17.

to just five. Thus, based on the argument above, one would expect the simulator autocorre-
lation function in the first case to match the desired autocorrelation over a longer interval
than in the second, despite the fact that the second simulator comprises more multipath
components than the first. If @, = 1 rad/s, then according to equation (5.17), in the first
case the simulator autocorrelation should match the desired one over the interval [0,25.5],
while in the second case they should match over the interval [0, 13]. This is readily verified

from Figures 5.8 and 5.9.
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Figure 5.9. Simulator autocorrelation for N = 18.
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5.3 Relating the number of low-frequency oscillators to
the inaccuracies

In previous sections we have seen that the narrowband Rayleigh flat fading signal can be
characterized by
2 Y 27tn
R(t) = 5 >’ cos(wet + @t cos -~ +@,).

n=1!

Note that R(r) represents an approximation to the fading phenomenon observed in nature.
We need to obtain an estimate on how far this approximation deviates from the desired
value.

Beginning with Jakes [23] many authors have stated that the number of low-frequency
oscillators required to simulate the fading signal is usually small. Thus, Jakes [23] suggests
that more than 6 oscillators should suffice for producing a Rayleigh flat fading signal.
Pdtzold et al. [7], Pitzold et al. [8], and finally Patzold et al. [9] have also suggested
that 7 oscillators is enough to generate a fading signal. In his work, Pitzold also uses 10 or
25 oscillators, without an explanation for the increase in number. More recently, Eyceoz
[10] has used the Jakes’ simulator with 10 oscillators to characterize the fading channel,
i.e., to determine the fading coefficients and thus predict the statistics of the fading signal.

However, despite the many suggestions that a small number of oscillators is enough
to generate a Rayleigh flat fading signal, some authors use much larger numbers when
trying to fit simulator data to real life measurements. For example, Hoeher [12] uses 500
oscillators to model a wireless channel impulse response. While it is generally true that
inclusion of more oscillators leads to a better model, it would be helpful if one knew in
advance how many oscillators would be required to achieve a certain level of accuracy.

In the previous two sections, we have developed quality measures for the performance
of Clarke’s model. Thus, we may analyze the performance in terms of the envelope pdf, the
envelope cdf, or the autocorrelation function. The phase pdf is the same as the desired pdf

regardless of the number of sinusoids; for this reason, we do not use it as a quality measure.
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In the former two cases, we are usually interested in generating a fading signal with pdf
and cdf close to the desired value. Knowledge of the pdf is of interest, for example, in the
determination of the level-crossing rate and the average fade duration.

We may also need to know the value of the autocorrelation function. Behaviour of the
autocorrelation, especially at the origin, is required in the computation of the level-crossing
rate and average fade duration. Furthermore, knowledge of the autocorrelation is useful in
designing sampling or diversity schemes; i.e., useful in obtaining independent samples,
or placing antennas at points which experience independent fading. It has been known, as
early as Jakes [23], that the autocorrelation function of the simulator signal breaks down for
large enough time lags. In the previous section we have determined a relationship between
the number of oscillators and the interval over which the autocorrelation function is close
to the desired value.

To use the results of this thesis successfully, the engineer would first have to decide
which statistic is most important to his/her work. Then, using an appropriate quality mea-
sure, as illustrated in this chapter, the engineer may determine the number of oscillators
required by the simulator. If, however, there is more than one statistic relevant to the
project, the engineer may determine the number of oscillators required for each statistic,

and simply pick the largest value for the practical implementation.
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Chapter 6

Conclusion

One method of simulating the multipath fading encountered on Rayleigh flat fading nar-
rowband wireless channels is based upon the sum-of-sinusoids model. Such simulators are
readily derived from consideration of the physical phenomenon. The work of Clarke [3]
summarizes the important characteristics of such simulators, and sets the stage for further
developments, such as those of Jakes [23]. Clarke’s model and Jakes’ fading channel sim-
ulator, as well as other work in the area of sum-of-sinusoids simulators were presented in
Chapter 2. In addition, we presented Pitzold’s results relating to the statistical properties
of Jakes’ simulator.

In Chapter 3, we derived the statistical properties of sum-of-sinusoids simulators in
general. The starting point of the analysis is the assumptions made by Clarke in deriving
a mathematical model of muitipath Rayleigh fading. We noted that this is different from
the starting point in Pétzold’s analysis; his analysis is based on the assumption that the
quadrature components of the fading signal are approximately Gaussianly distributed and
uncorrelated, and hence independent.

The results derived for the envelope and phase pdf’s are applied to determine the statis-
tics of Clarke’s model and Jakes’ fading channel simulator. We also compute the autocor-
relation functions for the signals of the two models. The main reason for doing this is to
determine whether the assumptions made by Jakes in simplifying Clarke’s model are jus-

tified. We show that they are not. The signal produced by Clarke’s model is shown to be
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wide-sense stationary, while that produced by Jakes’ simulator is shown to not be wide-
sense stationary. The chapter concludes with a discussion of ergodicity and how it applies
to sum-of-sinusoids models and simulators.

It is generally desired to have an efficient method for generating fading signals. Viewed
in this light, Jakes’ approach presents an interesting point. That is, if we are able to reduce
the complexity of the model, i.e., the number of low-frequency oscillators, then the gener-
ation of the signal is more efficient. In Chapter 4, we attempt to improve the performance
of Jakes’ simulator through simple modifications. We found that introduction of random
phase shifts in the low-frequency oscillators removes the stationarity problems; that is, the
resulting signal is wide-sense stationary. However, the intuitive relationship between the
physical parameters and the simulator structure is lost. Also, the phase shifts of the com-
ponents of the resuiting multipath fading signal are still dependent. This may have adverse
effects on the determination of higher order statistics through simulation. We conclude the
chapter with a note regarding the possibility of reducing the complexity of Clarke’s model.
We found that the least number of low-frequency oscillators required is equal to the number
of distinct Doppler frequency shifts, counting positive and negative shifts as one. However,
we must be careful in determining the gain of each branch for each low-frequency oscilla-
tor, i.e., we must include all phase shifts corresponding to a particular Doppler frequency
shift.

Another point of interest is how accurate the statistics of the fading signal produced
by the sum-of-sinusoids simulator are. In Chapter 5, we showed how the results obtained
in Chapter 3 can be used to derive quality measures. Depending on the accuracy required
of the simulator, the appropriate number of low-frequency oscillators, or equivalently, si-
nusoids, to be included in the simulator can be determined. The quality measures may be
derived with respect to either the envelope pdf or cdf, or the autocorrelation function. We
do not use the phase pdf as the basis of quality measures. The phase pdf is equal to the

desired pdf, regardless of the number of low-frequency oscillators, and thus conveys little
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information about the performance of the simulator.

To derive the quality measures, we may use criteria such as the maximum error, mean
square error, variance, or an approach similar to that of Young [22]. In the event that we
wish to control the accuracy of the envelope pdf, cdf, and the signal autocorrelation, we pro-
ceed as indicated for each function. Then, for the practical implementation, we select the
largest number of sinusoids obtained through each of the quality measures. We conclude
by noting that the interval over which the autocorrelation function closely approximates
the desired autocorrelation function is directly related to the number of Doppler frequency
shifts. Prior to this, we noted that the wide-sense stationarity character of the fading signal
was dependent upon inclusion of all phase shifts, i.e., combining the phase shifts as an ap-
propriate gain for waves experiencing the same Doppler shift. Failure to do so, as in Jakes’
case, leads to non-stationarity problems.

During the writing of this thesis, the various methods employed and the results derived
have suggested other areas which might be of interest to future researchers. For example,
approaches similar to those used in this thesis may be used to derive other results of in-
terest to the wireless engineer. In particular, the random walk in the plane may be used
to derive analytical results to problems such as determination of level-crossing rates, fade
duration distribution, or the variance of the average fade duration. Another area of interest
is design of fading channel simulators with arbitrary arrival angles pdf. Still another area of
possible interest is design of three-dimensional fading channel simulators based on sum-of-
sinusoids. Such scenarios have been shown to provide better fading channel models in the
case of heavily urbanized areas [6]. Future work in this area would potentially culminate

with the development of a three-dimensional fading channel simulator.

111



References

[I] J. F. Ossanna, Jr., “A Model for Mobile Radio Fading Due to Building Reflections:
Theoretical and Experimental Fading Waveform Power Spectra”, Bell Syst. Tech. J.,

pp. 2935-2971, Nov. 1964.

[2] E. N. Gilbert, “Energy Reception for Mobile Radio”, Bell Syst. Tech. J., pp. 1779-
1803, Oct. 1965.

[3] R. H. Clarke, “A Statistical Theory of Mobile-Radio Reception”, Bell Syst. Tech. J.,
pp- 957-1000, Jul.-Aug. 1968.

[4] M. J. Gans, “A Power-spectral Theory of Propagation in the Mobile Radio Environ-
ment”, IEEE Trans. Veh. Tech., vol. VI-21, February 1972, pp. 27-38.

[5] P. Dent, G. E. Bottomley, and T. Croft, *“Jakes’ Fading Model Revisited”, Electron.
Lert., vol. 29, no. 3, pp. 1162-1163, Jun. 1993.

{6] T. Aulin, “A Modified Model for the Fading Signal at a Mobile Radio Channel”, IEEE
Trans. Veh. Tech., vol. VT-28, no. 3, pp. 182-203, Aug. 1979.

[7] M. Pitzold, U. Killat, and F. Laue, “A Deterministic Digital Simulation Model for
Suzuki Processes with Application to a Shadowed Rayleigh Land Mobile Radio
Channel”, IEEE Trans. Veh. Tech., vol. 45, no. 2, pp. 318-331, May 1996.

[8] M. Pitzold, U. Killat, F. Laue, and Y. Li, “On the Statistical Properties of Determinis-
tic Simulation Models for Mobile Fading Channels”, I[EEE Trans. Veh. Tech., vol. 47,
no.1, pp. 254-269, Feb. 1998.

112



[9]

(10]

[11]

(13]

[14]

(15]

[16]

[17]

(18]

M. Pitzold and F. Laue, “Statistical properties of Jakes’ fading channel simulator”,
VIC ‘98 Conference Record, vol. II, pp. 712-718, Ottawa, Ontario, Canada, May
1998.

T. Eyceoz, A. Duel-Hallen, and H. Hallen, “Deterministic Channel Modeling and
Long Range Prediction of Fast Fading Mobile Radio Channels”, IEEE Commun. Lett.,

vol. 2, no. 9, pp. 254-256, Sep. 1998.

P. A. Bello, “Characterization of Randomly Time-Variant Linear Channels”, I[EEE
Trans. Commun. Syst., vol. CS-11, pp. 360-393, Dec. 1963.

P. Hoeher, “A Statistical Discrete-Time Model for the WSSUS Multipath Channel”,
[EEE Trans. Veh. Tech., vol. 41, no. 4, pp. 461-468, Nov. 1992.

G. A. Arredondo and J. I. Smith, “Voice and Data Transmission in a Mobile Radio
Channel at 850 MHz", IEEE Trans. Veh. Tech., vol. VT-26, no. 1, pp. 88-93, Feb.
1977

S. O. Rice, “Mathematical Analysis of Random Noise”, Bell Syst. Tech. J., vol. 23,
pp. 282-332, Jul. 1944.

S. O. Rice, “Mathematical Analysis of Random Noise”, Bell Syst. Tech. J., vol. 24,
pp. 46-156, Jan. 1945.

S. O. Rice, “Distribution of the Extreme Values of the Sum of n Sine Waves Phased

at Random”, Quart. Appl. Math., vol. XII, no. 4, pp. 375-381, Jan. 1955.

J. Goldman, “Statistical Properties of a Sum of Sinusoids and Gaussian Noise and its
Generalization to Higher Dimensions”, Bell Syst. Tech. J., vol. 53, no. 4, pp. 557-580,
Apr. 1974.

S. O. Rice, “Probability Distributions for Noise Plus Several Sine Waves — The Prob-
lem of Computation”, IEEE Trans. Commun., vol. COM-22, pp. 851-853, Jun. 1974.

113



[191 C. W. Helstrom, “Computing the Distribution of Sums of Random Sine Waves and

[20]

(21]

[22]

(23]

[25]

[26]

[27]

(28]

of Rayleigh-Distributed Random Variables by Saddle-Point Integration”, [EEE Trans.
Commun., vol. 45, no. 11, pp. 1487-1494, Nov. 1997.

M. Slack, “The Probability Distribution of Sinusoidal Oscillations Combined in Ran-
dom Phase”, Proc. [EE, vol. 93, pt. C, no. 22, pp. 76-86, Mar. 1946.

W. R. Bennett, “Distribution of the Sum of Randomly Phased Components”, Quart.

Appl. Marh.”, vol. 5, pp. 385-393, Jan. 1948.

D. J. Young, “The Generation of Correlated Rayleigh Random Variates By Discrete
Fourier Transform and Quality Measures for Random Variate Generation”, M. Sc.

Thesis, Queen’s University, Kingston, Canada, 1997.

W. C. Jakes, Microwave Mobile Communications, [EEE edition, IEEE Press, New
York, 1994.

G. L. Stiiber, Principles of Mobile Communication, Kluwer Academic Publishers,

Boston, 1996.

T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall

PTR, Upper Saddle River, New Jersey, 1996.

G. N. Watson, A Treatise on the Theory of Bessel Funcrions, Cambridge Mathematical

Library edition, Cambridge University Press, New York, 1995.

S. Bochner, Lectures on Fourier Integrals, Annals of Mathematics Studies, Study 42,

Princeton University Press, Princeton, New Jersey, 1959.

R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation,

and Noise, 4th ed., John Wiley & Sons, Inc., New York, 1995.

114



[29] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed.,

McGraw-Hill, Inc., Toronto, 1991.
[30] J. G. Proakis, Digital Communications, 3rd ed., McGraw-Hill, Inc., New York, 1995.

[31] W. A. Gardner, Introduction to Random Processes: With Applications to Signals and

Systems, Macmillan Publishing Company, New York, 1985.

[32] J. L. Doob Stochastic Processes, 3rd printing, John Wiley & Sons, Inc., New York,

1960.

[33] R. M. Gray and L. D. Davisson, Random Processes: A Mathematical Approach for
Engineers, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.

[34] J. Stewart, Calculus: Early Transcedentals, 2nd ed., Brooks/Cole Publishing Com-

pany, Pacific Grove, CA, 1991.

[35] R. Bracewell, The Fourier Transform and Its Application, McGraw-Hill Book Com-
pany, New York, 1965.

[36] L S. Gradshteyn and I. M. Ryzhik; Allan Jeffrey, editor, Table of integrals, series, and

products, 5th edition, Academic Press, Inc., New York, 1994.

[37] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, 10th printing, U. S. Government Printing

Office, Washington, D. C., 1972.

[38] F. Oberhettinger, Fourier Transforms of Distributions and Their Inverses: A Collec-

tion of Tables, Academic Press, New York, 1973.

115





