UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INGÉNIERIE

par Nathalie Bouchard

Pyrolyse de divers brais utilisés dans la technologie Söderberg et analyse des matières volatiles

Janvier 1998

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

335, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre reference

Our file Notre reférence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-37777-6

Canadä

À mon mari, Dany,

à ma mère el

à la mémoire de mon père.

REMERCIEMENTS

Je tiens tout d'abord à témoigner toute ma gratitude envers mon directeur de maîtrise le professeur André Charette pour son support tant du point de vue scientifique que moral. Son expérience et ses nombreux mots d'encouragement m'ont permis de bien achever ce projet.

Un merci très spécial à mon co-directeur, M. Amir Mirtchi, scientifique principal au Centre de Recherche et de Développement Arvida (CRDA) pour la suggestion de cette étude et pour toutes les discussions si enrichissantes sur le sujet.

Je tiens à remercier Patrice Paquette, technicien au GRIPS, pour sa contribution à la mise en fonction du montage expérimental et ses précieux conseils techniques. Au technicien, André Barrette, merci pour les nombreux travaux de soufflage de verre.

Un gros merci aux membres du centre analytique du CRDA pour avoir effectué les analyses très rigoureuses sur les condensats de HAP sans quoi il aurait été impossible d'atteindre l'objectif fixé. Je profite de l'occasion pour souligner la compétence de M. Luc Noël dans le domaine.

Je ne peux passer sous silence l'aide de M. Jean-Luc Simard de la compagnie SEDAC qui a bien voulu remettre en bon état le chromatographe.

Finalement, mes remerciements vont aussi au CQRDA et Alcan pour leur aide financière qui a permis la réalisation de cette étude.

RÉSUMÉ

Dans les alumineries, l'anode, le réducteur de la cellule d'électrolyse, est composée de coke et de brai ce dernier agissant comme liant. Lors de la cuisson de la pâte anodique de nombreux HAP sont dégagés essentiellement par la technologie Söderberg. Le brai obtenu par la distillation du goudron est le principal responsable de l'émission de HAP. Certains de ces HAP sont reconnus pour leurs effets néfastes sur les organismes vivants. Les efforts ont amené vers la réduction des émissions totales de HAP et par la suite vers la fabrication de brais à bas HAP, c'est-à-dire au potentiel génotoxique réduit. Il devient toutefois de plus en plus ardu de minimiser la libération de HAP du brai sans connaître l'influence des transformations chimiques du brai et de la pâte en cours de chauffage. Le présent travail vise à étudier le comportement de divers brais et pâtes soumis à la pyrolyse.

Deux montages expérimentaux ont été utilisés. Le premier enregistre la perte de masse en fonction de la température, recueille les hydrocarbures lourds émis aux gammes de température voulues et analyse en continu les gaz non condensables. Le second permet de quantifier la fraction massique de gaz condensables et non condensables ainsi que de recueillir les matières volatiles condensables. Dans les deux cas, quatorze HAP et le taux de matières solubles ont été analysés sur les échantillons de condensat. Les expériences ont été effectuées avec un brai de référence, deux brais réguliers avec leur pâte respective et deux brais à bas HAP possédant eux aussi leur pâte respective. Les échantillons dont la masse était de 10 g ou 50 g étaient soumis à un chauffage pouvant aller jusqu'à 1050 °C à des vitesses de chauffe de 10 °C/h, 30 °C/h, 50 °C/h et 100 °C/h.

Ce travail décrit les courbes thermogravimétriques, la distribution des gaz non condensables H_2 et CH_4 en fonction de la température et celle des gaz condensables à des intervalles de température: 250-350 °C, 350-450 °C, 450-550 °C et 550-650 °C. Les résultats obtenus prouvent que la diminution de la masse favorise le dégagement des matières volatiles. La gamme de température de dégagement des gaz non condensables est prolongée par l'augmentation de la masse à faible vitesse de chauffage. On constate que les HAP légers se dégagent en majorité aux basses températures et diminuent avec l'élévation de la température tandis que les HAP à poids moléculaire élevé suivent le cheminement inverse. Les HAP émis sont principalement génotoxiques et la quantité libérée est en général inférieure à la composition intrinsèque. Les résultats obtenus par la 1^{ère} et 2^e partie expérimentales sont homogènes.

TABLE DES MATIÈRES

DÉDICACE ii
REMERCIEMENTS iii
RESUME iv
TABLE DES MATIERES v
LISTE DES FIGURES viii
LISTE DES TABLEAUX xi
LISTE DES ANNEXES xii
NOMENCLATURE xiv
CHAPITRE 1 1
INTRODUCTION
1.1 Mise en situation
1.2 Objectifs
1.2.1 Objectif général
1.2.2 Objectifs spécifiques
1.3 Revue des travaux antérieurs
1.4 Apport scientifique de ce travail
1.5 Bref aperçu du contenu de ce mémoire
CHIMIE ET DDODDIÉTÉS DUVSIONES DES DDODUITS CADDONÉS
CHIMIE ET FROFRIETES FRISIQUES DES FRODUITS CARBONES
2.1 Introduction
2.2 Rappel de quelques éléments de chimie organique
2.3 Brais: production et propriétés physiques
2.4 Structures dans les matériels de carbone
2.5 Les produits carbonés et l'industrie de l'aluminium
2.6 Origine et évolution du charbon
CHAPITRE 3
DISPOSITIFS ET PROCÉDURES EXPÉRIMENTAUX
3.1 Introduction

3.2 HAP à analyser	. 38
3.3 Échantillons à analyser	. 39
3.4 Description du montage expérimental	. 44
3.5 Analyse des gaz non condensables	. 49
3.5.1 Principe de la chromatographie en phase gazeuse	. 50
3.5.2 Corrections à apporter aux chromatogrammes	. 52
3.5.3 Calcul de la concentration	53
3.6 Analyse des gaz condensables	. 54
3.7 Procédure expérimentale	54
3.7.1 Méthodologie de la thermogravimétrie	55
3.7.2 Méthodologie de la récupération des condensables	57
3.7.3 Taux de chauffage et masses	57
3.7.4 Creuset	. 59
3.8 Montage expérimental modifié pour la détermination des quantités	
totales de matières condensables dégagées	. 60
3.9 Procédure expérimentale avec le montage modifié	62
3.9.1 Méthodologie	. 63
3.10 Conclusion	64
3.10 Conclusion	64
	- v -r

4.1 Introduction	65
4.2 Analyse des résultats de la 1 ^{ère} partie expérimentale	66
4.2.1 Analyse thermogravimétrique	66
4.2.1.1 Brais	66
4.2.1.2 Pâtes	72
4.2.1.3 Comparaison entre brais et pâtes	73
4.2.2 Analyse chromatographique des gaz non condensables (H, et CH,)	75
4.2.2.1 Brais	
4.2.2.2 Pâtes	83
4.2.2.3 Comparaison entre brais et pâtes	
4.2.3 Analyse des matières condensables (HAP)	85
4.2.3.1 Brais et pâtes	
4.2.3.2 Comparaison entre brais et pâtes	
4.3 Analyse des résultats de la 2 ^e partie expérimentale	
4.3.1 Analyse des résultats de pesée	
4.3.2 Analyse des résultats des HAP	100
4.4 Cohérence des résultats de la 1 ^{ère} et 2 ^e partie	106
4.4.1 Résultats de pesée	106
4.4.2 Analyse des résultats des HAP	113

4.5 Influence d'un taux de chauffage lent	
4.6 Conclusion	
CHAPITRE 5	
CONCLUSION GÉNÉRALE	
5.1 Faits majeurs	
5.2 Suggestions pour les travaux futurs	
RÉFÉRENCES	

LISTE DES FIGURES

Figure 2.1:	Quelques HAP	14
Figure 2.2:	Production de brai	17
Figure 2.3:	Structures cristallines du carbone	21
Figure 2.4:	État smectique ou nématique	23
Figure 2.5:	Évolution du carbone en fonction de la température	24
Figure 2.6:	Passage de la forme isotrope à anisotrope	26
Figure 2.7:	Passage du carbone non graphitique au carbone graphitable	26
Figure 2.8:	Cellule d'électrolyse Söderberg à goujons horizontaux	30
Figure 2.9:	Cellule d'électrolyse Söderberg à goujons verticaux	31
Figure 2.10:	Cellule d'électrolyse à anodes précuites	31
Figure 3.1:	Composition intrinsèque du brai B par rapport à sa pâte P1	42
Figure 3.2:	Composition intrinsèque du brai C par rapport à sa pâte P2	42
Figure 3.3:	Composition intrinsèque du brai D par rapport à sa pâte P3	43
Figure 3.4:	Composition intrinsèque du brai E par rapport à sa pâte P4	43
Figure 3.5:	Schéma général du montage	45
Figure 3.6:	Système de pièges	48
Figure 3.7:	Schéma explicatif de la chromatographie en phase gazeuse	51
Figure 3.8:	Taux de chauffe utilisés	58
Figure 3.9:	Schéma du montage modifié	61
Figure 4.1:	Évolution de la perte de masse à différents taux de chauffe pour une masse de 50 g de brai A	67
Figure 4.2:	Évolution de la perte de masse pour deux masses distinctes de brai A	
-	à un taux de chauffe de 30 °C/h	69
Figure 4.3:	Évolution de la perte de masse pour tous les brais d'une masse de 10 g (figure 4.3a) et 50 g (figure 4.3b) à un taux de chauffe de 50 °C/h	70
Figure 4.4:	Évolution de la perte de masse pour toutes les pâtes d'une masse de 50 g à un taux de chauffe de 50 °C/h	73
Figure 4.5:	Distribution de la concentration d'hydrogène (figure 4.5a) et de méthane (figure 4.5b) pour une masse de 10 g de brai A à différents taux de chauffe	77
Figure 4.6:	Distribution de la concentration d'hydrogène (figure 4.6a) et de méthane (figure 4.6b) pour une masse de 50 g de brai A à différents taux de chauffe	78
Figure 4.7:	Distribution de la concentration d'hydrogène (figure 4.7a) et de méthane	

	(figure 4.7b) pour tous les brais d'une masse de 10 g à un taux de chauffe de 50 °C/h
Figure 4.8:	Distribution de la concentration d'hydrogène (figure 4.8a) et de méthane
0	(figure 4.8b) pour tous les brais d'une masse de 50 g à un taux de
	chauffe de 50 °C/h
Figure 4.9:	Distribution de la concentration d'hydrogène (figure 4.9a) et du méthane
	(figure 4.9b) pour toutes les pâtes d'une masse de 50 g à un taux de
	chauffe de 50 °C/h 84
Figure 4.10:	Proportion de HAP pour chaque classe de HAP pour une masse de
	10 g et 50 g de brai A à un taux de chauffe de 50 °C/b 87
Figure 4 11.	Proportion de chaque classe de HAP pour une masse de 10 g (figure
1 iguio 4.11.	$4 1 a$) et 50 g (figure 4 11b) de brai Δ à différents taux de chauffe 88 80
Figure 4 12.	Proportion de chaque classe de HAP nour une masse de 50 g de brai P
1 iguie 4.12.	et 50 g de sa pâte P1 à un tour de chauffe de 50 °C/h
Figure 4 12.	Porte de marge des substances condencebles et non condencebles neur
Figure 4.15.	una massa da 50 a da brai P à un taux da chauffa da 50 80/h
Figure 4 14.	Porte de masse des substances condensables et non condensables acur
rigule 4.14.	una massa da 50 a da brai C à un taux da abaufía da 60 °C/h
Figure 4 15.	Derte de masse des substances condensables et non condensables que substances
rigule 4.15:	vene masse des substances condensables et non condensables pour
Figure 4 16.	Derte de masse de 50 g de pale PT a un taux de chauffe de 50 °C/n
rigule 4.10:	rene de masse des substances condensables et non condensables pour
Figure 4 17	une masse de 50 g de pare P2 a un taux de chautre de 50 °C/n
rigure 4.17:	Proportion massique de substances condensables par rapport à la perte
F : 4 10.	de masse totale pour le brai B et la pate P1
Figure 4.18:	Proportion massique de substances condensables par rapport a la perte
F '	de masse totale pour le brai C et la pate P2
Figure 4.19:	Pour le brai B, comparaison entre la composition intrinseque en HAP
F ' 4 9 0	et les emissions a un chauffage de l'amb jusqu'a 550 °C 104
Figure 4.20 :	Pour le pate P1, comparaison entre la composition intrinseque en HAP
F ² 4 01	et les emissions a un chauffage de l'amb jusqu'a 650 °C 104
Figure 4.21 :	Pour le brai C, comparaison entre la composition intrinseque en HAP
T : 100	et les emissions a un chauffage de l'amb jusqu'a 550 °C 105
Figure 4.22:	Pour le pate P2, comparaison entre la composition intrinsèque en HAP
	et les emissions a un chauffage de l'amb jusqu'a 650 °C
Figure 4.23:	Perte de masse à chaque étape de chauffage obtenue par la l'ét et 2 ^e
	partie pour une masse de 50 g de brai B à un taux de chauffe
	de 50 °C/h
rigure 4.24:	Evolution de la perte de masse pour une masse de 50 g de brai B à
	un taux de chauffe de 50 °C/h
Figure 4.25:	rerte de masse a chaque etape de chauffage obtenue par la l ^{ete} et 2 ^e
	partie pour une masse de 50 g de brai C à un taux de chauffe
	ae 50 °C/h 109

Figure 4.26:	Évolution de la perte de masse pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h	09
Figure 4.27:	Perte de masse à chaque étape de chauffage obtenue par la 1 ^{ère} et 2 ^e partie pour une masse de 50 g de pâte P1 à un taux de chauffe	
	de 50 °C/h 11	10
Figure 4.28:	Évolution de la perte de masse pour une masse de 50 g de pâte P1 à	
	un taux de chauffe de 50 °C/h 1	10
Figure 4.29:	Perte de masse à chaque étape de chauffage obtenue par la 1 ^{ère} et 2 ^e	
	partie pour une masse de 50 g de pâte P2 à un taux de chauffe	
	de 50 °C/h 11	11
Figure 4.30:	Évolution de la perte de masse pour une masse de 50 g de pâte P2 à	
-	un taux de chauffe de 50 °C/h 1	11
Figure 4.31:	Concentration de HAP de Tamb à 350 °C obtenue par la 1 ^{ère} et 2 ^e partie	
	pour une masse de 50 g de brai B à un taux de chauffe de 50 °C/h I	15
Figure 4.32:	Concentration de HAP de Tamb à 350 °C obtenue par la 1 ^{ère} et 2 ^e partie	
•	pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h 1	15
Figure 4.33:	Concentration de HAP de Tamb à 350 °C obtenue par la 1 ^{ère} et 2 ^e partie	
•	pour une masse de 50 g de pâte P1 à un taux de chauffe de 50 °C/h 1	16
Figure 4.34:	Concentration de HAP de Tamb à 350 °C obtenue par la 1 ^{ère} et 2 ^e partie	
0	pour une masse de 50 g de pâte P2 à un taux de chauffe de 50 °C/h 1	16

LISTE DES TABLEAUX

Tableau 1.1:	Émission de HAP selon le type de technologie	2
Tableau 2.1:	Résines α , β et γ	18
Tableau 3.1:	HAP à analyser	38
Tableau 3.2:	Type de brais utilisés	39
Tableau 3.3:	Type de pâtes utilisées	40
Tableau 3.4:	Caractéristiques des brais	40
Tableau 3.5:	Caractéristiques des pâtes	41
Tableau 3.6:	Conditions opératoires du chromatographe à phase gazeuse	50
Tableau 3.7:	Répartition et conditions des expériences	59
Tableau 3.8:	Dimensions des creusets utilisés	60
Tableau 3.9:	Répartition des expériences de la 2 ^e partie	63
Tableau 4.1:	Perte de masse totale des brais	72
Tableau 4.2:	Perte de masse totale des pâtes	73

LISTE DES ANNEXES

ANNEXE I	28
MÉTHODOLOGIE D'ALCAN POUR L'ANALYSE DES HAP	
ANNEXE II	30
THERMOGRAMMES DES BRAIS ET DES PÂTES	
ANNEXE III	35
DISTRIBUTION DES CONCENTRATIONS D'HYDROGENE ET DE MÉTHANE POUR LES BRAIS ET LES PÂTES	
ANNEXE IV 1	45
PROPORTION DE CHAQUE HAP POUR LES BRAIS ET LES PÂTES	
ANNEXE V	54
PROPORTION DES HAP SELON LEUR CLASSE DE GÉNOTOXICITÉ	
POUR LES BRAIS ET LES PÂTES	
ANNEXE VI 1	59
PROPORTION DES HAP SELON LEUR B[a]P ÉQUIVALENT POUR LES	
BRAIS ET LES PATES	
ANNEXE VII 1	.68
CONCENTRATION DES HAP SELON LA QUANTITÉ DE CONDENSAT RECUEILLIE POUR TOUS LES ESSAIS	
ANNEXE VIII	87
EXPLICATION DU CALCUL "DÉTERMINATION DE LA CONCENTRATION	
DES HAP SELON LE RAPPORT DES DÉBITS"	
ANNEXE IX	92
COMPARAISON DE LA CONCENTRATION DES HAP ENTRE BRAIS ET PÂTES	
ANNEXE X	97
VÉRIFICATION DE LA PROPORTION DE CHAQUE HAP ENTRE LA 1 ^{ère} et 2 ^e PARTIE	

ANNEXE XI	204
VALEURS NUMÉRIQUES DE TOUS LES ÉCHANTILLONS DE CONDENSAT	

NOMENCLATURE

ρ _{Ar}	Densité de l'argon en kg/m ³ .
%air	Pourcentage d'air dans l'échantillon gazeux.
%N	Pourcentage d'azote dans l'échantillon gazeux.
%Nétal	Pourcentage d'azote dans le gaz d'étalonnage.
% _{sc}	Pourcentage de gaz qui se dirige dans la sonde des gaz condensables.
A	Aire sous le pic du composé i de l'échantillon gazeux donnée par l'intégrateur.
A' _i	Aire sous le pic du composé i de l'échantillon gazeux après correction pour les fuites d'air.
AN	Surface sous le pic d'azote de l'échantillon gazeux.
ANétal	Surface sous le pic d'azote du gaz d'étalonnage.
Aétal,	Aire sous le pic d'un composé i du gaz d'étalonnage.
B[a]Péq	Benzo(a)pyrène équivalent.
C	Concentration d'un composé i de l'échantillon gazeux.
Cétal _i	Concentration d'un composé i du gaz d'étalonnage.
DMAR	Débit massique d'argon injecté à la base du four en kg/s.
$\mathrm{DM}_{\mathrm{\acute{e}chf}}$	Taux de perte de masse selon le thermogramme durant un intervalle de
	température en kg/s.
DM _f	Débit massique total à la sortie du four en kg/s.
DM _{sc}	Débit massique dans la sonde des condensables en kg/s.
DTA	Differential thermal analysis.
DTG	Derivative thermogravimetry.
Fr,	Facteur de réponse du composé i.
HAP	Hydrocarbure aromatique polycyclique.
HAP _{2e}	Masse de HAP trouvée avec la 2 ^e partie expérimentale.
HAP _{éch}	Masse de HAP générée par l'échantillon trouvée par le rapport des débits.
HAP _{sc}	Masse de HAP récupérés dans un système de pièges.
HS	Goujons horizontaux (horizontal stud).
HPR	Haut point de ramollissement.
IB	Fraction insoluble dans le benzène.
IQ	Fraction insoluble dans la quinoléine.
IT	Fraction insoluble dans le toluène.
Р	Pression en kPa.
PR	Point de ramollissement du brai en °C.
Q _{Ar}	Débit d'argon à l'entrée du four le four en m ³ /s.
Q _{sc}	Débit de la sonde des gaz condensables en m ³ /s.
R	Constante de l'argon en kJ/kg K.
RD	Ratio de dilution.

SB	Fraction soluble dans le benzène.
SQ	Fraction soluble dans la quinoléine.
ST	Fraction soluble dans le toluène.
Т	Température en K ou °C.
Tamb	Température ambiante en °C.
TG	Thermogravimetric.
VS	Goujons verticaux (vertical stud).

CHAPITRE 1

INTRODUCTION

1.1 Mise en situation

Il est connu que la combustion incomplète du brai de goudron dégage des hydrocarbures aromatiques polycycliques (HAP) dont certains sont génotoxiques. Plus précisément, l'exposition aux HAP dont la masse se situe entre 200 et 300 avec 4 à 6 anneaux benzéniques peut causer des effets néfastes à long terme sur les organismes vivants [1, 2]. Ils attaquent l'ADN ce qui provoque une altération du code génétique et, par la suite, une prolifération de cellules cancéreuses [3]. Outre les sources naturelles émettrices de HAP telles que les feux de forêt, la plus importante source, les activités humaines contribuent elles aussi à leur génération.

Dans les alumineries, le brai, utilisé comme liant dans la fabrication de la pâte anodique, est le principal responsable de l'émission de HAP. C'est un produit très complexe, obtenu par la distillation du goudron, qui contient des milliers de substances aromatiques pour la plupart des HAP. Lors de la cuisson des anodes (mélange brai et coke) des HAP sont libérés. Avec la technologie Söderberg, la pâte est cuite directement dans la cuve tandis que les anodes précuites sont préalablement cuites dans un four où les matières volatiles dégagées sont partiellement brûlées. Ainsi, tel qu'indiqué dans le tableau 1.1, la technologie Söderberg à goujons horizontaux (HS) émet davantage de HAP que les autres types de technologies [2].

Tableau 1.1: Émission de HAP selon le t	ype de technologie [2]
Söderberg à goujons horizontaux (HS)*	1.3 kg HAP/t Al
Söderberg à goujons verticaux (VS)	0.2 kg HAP/t Al
Précuite	0.007 kg HAP/t Al
* Dâte sheke sure DD à 122.90	

* Pâte sèche avec PR à 132 °C

Du point de vue environnemental, la forte émission de HAP par le brai avec la technologie Söderberg HS limite la durée de vie de ce type de technologie [2]. Un vaste projet visant la réduction des HAP a été démarré en 1982 par Alcan avant d'atteindre l'objectif ultime qui demeure, à long terme, le remplacement de la technologie Söderberg à goujons horizontaux par la technologie de cuves à anodes précuites [4]. Les principales activités du programme de réduction à la source sont: l'optimisation du procédé d'électrolyse, la modification des caractéristiques de la pâte Söderberg et l'amélioration de l'efficacité d'épuration sur les HAP [4]. De 1983 à 1993, les efforts consacrés à ce projet ont permis une réduction de 60 % des émissions de HAP provenant des cuves Söderberg à goujons horizontaux. Cette amélioration a été rendue possible par un meilleur contrôle du procédé d'électrolyse, l'augmentation de la qualité de la pâte, l'implantation de pâte sèche (avec moins de brai) et de pâte avec un brai à plus haut point de ramollissement [2]. La réduction future des émissions devenait limitée en poursuivant avec ces approches. Les

efforts ont donc été orientés vers la fabrication et l'utilisation de brais à bas HAP qui réduisent le potentiel d'émission des composés génotoxiques.

Toutefois au terme de ces études, il devient de plus en plus difficile de poursuivre la lutte contre la réduction des HAP sans connaître le comportement des brais seuls et du brai dans la pâte en cours de chauffage. Au cours de la cuisson des anodes, il y a une série de réactions de polymérisation-polycondensation du brai. Des matières volatiles dites "condensables", porteuses de HAP, se dégagent entre 150 °C et 550 °C; elles proviennent essentiellement de la distillation des composés les plus légers du brai. C'est sur cette fraction que l'attention doit se porter. À plus haute température, des réactions complexes de polymérisation-polycondensation et/ou de craquage produisent des matières volatiles dites "non condensables" constituées principalement de substances non toxiques, en particulier d'hydrogène et de méthane [5].

1.2 Objectifs

Le présent projet consiste donc à caractériser le comportement à la pyrolyse de divers brais utilisés dans la technologie Söderberg HS. Par cette étude, une meilleure compréhension du phénomène de libération des matières volatiles indiquera de quelles manières les conditions de chauffage affectent l'émission des gaz sur lesquels il faut s'attarder: les HAP. Il s'agira par la suite d'établir une corrélation entre la teneur en HAP trouvée dans le brai et celle retrouvée dans les matières volatiles libérées en cours de

chauffage. De plus, il est nécessaire d'évaluer le comportement à la pyrolyse du brai mis en contact avec le coke (pâte) puisque la résistance au dégagement des matières volatiles due à la masse agglomérée et l'éventuel effet catalytique des impuretés présentes dans le coke peuvent affecter les transformations chimiques qui se produisent en cours de chauffage. L'examen conduira à la caractérisation de brais de nouvelle génération, ce qui aura une incidence directe sur la technologie future en électrolyse et prolongera la vie des installations des salles de cuves de type Söderberg à goujons horizontaux.

1.2.1 Objectif général

L'objectif général de ce travail de maîtrise est d'établir l'éventuelle relation entre l'émission des volatiles (aromatiques, non aromatiques) du brai et de la pâte durant une évolution de température, et son contenu initial en HAP.

1.2.2 Objectifs spécifiques

Afin de mieux comprendre l'ampleur de cette étude, les objectifs spécifiques sont décrits ci-dessous:

- Évaluer le comportement des différents brais et pâtes soumis à différentes conditions de pyrolyse par l'analyse des courbes thermogravimétriques TG.
- Connaître la distribution des concentrations des gaz non condensables en particulier l'hydrogène et le méthane émis lors de la pyrolyse des brais et des pâtes.

- Déterminer la nature (composition/concentration) des HAP émis lors de la pyrolyse du brai et de la pâte et tenter d'établir une relation entre la composition initiale et les émissions.
- 4. Tirer les différentes conclusions sur les résultats obtenus par les courbes TG et l'analyse des gaz non condensables et condensables des brais en comparaison de ceux des pâtes.

1.3 Revue des travaux antérieurs

On retrouve dans la littérature de nombreux articles scientifiques traitant des brais et des HAP en passant de l'analyse thermogravimétrique des brais, à la réduction des émissions de HAP provenant des salles de cuves, jusqu'à l'impact des HAP sur les travailleurs près de la source d'émission et la présence des HAP sur le milieu environnant.

À l'UQAC, en 1988, A. Charette et F. Tremblay [5] ont évalué la cinétique de dégagement des substances libérées lors de la cuisson des anodes. Les résultats cinétiques sont rapportés pour l'hydrogène, le méthane et le goudron. Un dispositif thermogravimétrique a été mis au point dans le cadre de cette étude. L'utilisation d'une masse suffisamment élevée pour apprécier la résistance au dégagement dû à la masse et d'une faible vitesse de chauffage a permis de simuler l'environnement industriel. Durant le chauffage, la perte de masse et les concentrations des gaz non condensables sont mesurées.

Ce montage a aussi été utilisé pour comparer la performance au chauffage d'électrodes de carbone imprégnées de brai [6, 7]. Tout comme l'étude précédente [5], un modèle cinétique basé sur une réaction de premier ordre a été élaboré. Il est à noter qu'une méthode expérimentale a été développée pour déterminer la quantité de matières volatiles provenant du brai d'imprégnation et du brai de ressuage. L'étude qui a porté sur trois échantillons d'électrode de carbone imprégnée [7] a été complétée par la mesure des concentrations de HAP libérés lors de leur pyrolyse [8]. Quatorze HAP ont été soumis à cette analyse. On a trouvé que les HAP constituent 70 % du poids total des gaz condensables. Certains HAP ont fait l'objet d'une étude sur la cinétique de dégagement.

Plusieurs études d'analyse thermogravimétrique ont été réalisées sur de petites masses (15-17 mg) de brai de houille et de pétrole [9, 10, 11]. Le comportement des brais au chauffage est donné par les renseignements tirés de l'analyse des courbes TG (thermogravimetric), DTG (derivative thermogravimetry) et DTA (differential thermal analysis). Les courbes TG et DTG sont fréquemment utilisées pour déterminer le taux de perte de masse et la température à laquelle elle prend place. Les courbes DTA ont permis d'interpréter les réactions du brai durant le chauffage. Les courbes TG, DTG et DTA ont informé sur l'origine des brais et des procédés thermiques utilisés pour leur fabrication [10] et ont aussi aidé à comprendre les processus qui prennent place durant la pyrolyse du brai [9, 11]. Dans l'étude de A. Martinez-Alonso et al. [9], l'analyse des courbes DTA a indiqué qu'avant 600 °C le brai de houille subit des phénomènes endothermiques tels que

distillation, dépolymérisation et craquage et qu'après 600 °C, les phénomènes exothermiques favorisent la formation de structures planaires aromatiques qui dégagent de l'hydrogène ce qui justifie la faible perte de masse entre 600 °C et 950 °C. Les réactions endothermiques les plus susceptibles de survenir durant la pyrolyse sont la condensation et la polymérisation. La particularité de cette étude a été l'interprétation des pics obtenus avec la courbe DTA du brai par l'analyse des courbes TG, DTG et DTA de 10 HAP.

Selon J. Bermejo et al. [11], "l'extrographie" et l'analyse thermique sont deux techniques intéressantes pour la caractérisation des brais. Le fractionnement par "extrographie" a permis la caractérisation de brais selon leur origine, leur méthode de préparation et a fourni de l'information sur le poids moléculaire des constituants.

Dans le travail de M. D. Guillén et al. [12], la pyrolyse de 9 brais de goudron a été étudiée par l'analyse des courbes TGA (thermogravimetric analysis) et DTG. De plus, les relations entre le comportement thermique et la composition de la fraction volatile obtenue par chromatographie gazeuse ont été étudiées. La valeur de cokéfaction a été exprimée en fonction du taux de perte de masse et des températures correspondantes aux maxima des courbes DTG.

M. Skogland [13] a analysé le problème des HAP dans l'industrie de l'aluminium. L'étude a porté sur 16 HAP émis par la pâte Söderberg et les anodes précuites. Elle a révélé que l'émission de HAP est plus importante par la technologie Söderberg que celle à anode précuite. La distribution massique de HAP en cours de fabrication y est analysée. De l'alimentation totale en HAP, 0,3 % est émis lors du mélange brai/coke, 1,6 % est rejeté durant la cuisson de l'anode et 0,5 % demeure dans l'anode. Ainsi 97,6 % des HAP injectés pour la fabrication de l'anode sont transformés ou brûlés au cours du procédé. Par échantillonnage, le profil des HAP dans la cuve Söderberg a été retracé. De bas en haut de l'anode, la concentration de HAP passe de 0 à 22 000 ppm tandis que sur les côtés, elle est d'environ de 325 ppm.

La méthode de détermination du risque pour chaque HAP basé sur leur potentiel génotoxique respectif est bien décrite par A. A. Mirtchi et L. Noël [1]. Le benzo[a]pyrène, HAP bien connu, a été choisi comme référence pour la génotoxicité des HAP; un facteur de 1 lui a été accordé. Selon leur potentiel génotoxique, les HAP ont été divisés en trois classes: non génotoxiques, génotoxiques et hautement génotoxiques. L'étude a démontré que le potentiel génotoxique d'un brai, le B[a]P équivalent, n'est pas proportionnel au total des HAP; il est plutôt fortement lié à la nature des brais. Déjà, dans cette étude, on a constaté que la concentration totale de HAP d'un brai diminue avec l'augmentation du point de ramollissement.

Un an après cet article, A. A. Mirtchi et al. [2] ont fait état des modifications apportées à la pâte et au brai qui ont amené une réduction des HAP. Les facteurs qui ont réduit de façon significative l'émission de HAP sont l'utilisation de pâte sèche combinée à un brai à haut point de ramollissement. Daus le cadre de cette étude, ils ont en premier lieu conçu un dispositif de laboratoire afin d'accélérer l'identification des solutions les plus prometteuses avant l'implantation en usine. Ce montage a permis de comparer les émissions de HAP du brai ou de la pâte à leur constitution chimique en HAP. Tous les gaz libérés par le chauffage du brai jusqu'à 550 °C à 4 °C/h sous atmosphère inerte d'argon ont circulé à travers des trappes refroidies. Le poids des condensables est déterminé par l'augmentation de masse des trappes. Les matières libérées sont évaluées par la différence de masse de l'échantillon avant et après le test. D'autres tests effectués en usine ont démontré entre autres l'avenir prometteur des brais à bas HAP. En effet, l'usage de brais à bas HAP a réduit de 40 % le B[a]P équivalent par rapport aux brais réguliers.

Une étude faite en laboratoire, en 1996, par M. Eie et al. [14], a comparé les résultats de l'analyse des HAP de divers brais: brais réguliers, brais à haut point de ramollissement, brais coupés avec des HAP non génotoxiques ou des huiles et brais de pétrole. L'étude s'est concentrée sur les gaz émis du brai aux températures de maintien du dessus de l'anode soit entre 150 °C et 220 °C. Ils ont constaté qu'une augmentation de 10 °C du point de ramollissement de certains brais ne donne pas une réduction significative des HAP. De plus, ils estiment que le maintien à basse température du dessus de l'anode est un facteur important pour contrôler les émissions de HAP. Les résultats ont indiqué que les brais à bas HAP peuvent réduire suffisamment le contenu en HAP des fumées générées.

Les brais de pétrole se sont révélés performants pour le B[a]P équivalent mais n'ont pu être acceptés pour des raisons de qualité de fabrication de l'anode.

En 1998, L. Castonguay et al. [15] ont établi une corrélation entre la quantité de HAP trouvée dans le brai et celle émise par les cuves Söderberg à goujons horizontaux. À partir de l'analyse des HAP du brai, l'émission quantitative et qualitative produite par les cuves de type Söderberg à goujons horizontaux peut ainsi être prédite. Un fait important à noter est la diminution significative de la quantité de HAP libérée de l'anode Söderberg par rapport à la quantité initiale mise pour sa fabrication. Pour chacun des HAP, un facteur de destruction a été établi et corroboré par deux usines différentes. Ils en ont conclu qu'une bonne partie des HAP est détruite lors de la cuisson de l'anode. Les tests en usine ont confirmé aussi que l'utilisation de brais à bas HAP pour les anodes Söderberg réduit de 50 % l'émission de composés génotoxiques.

Notons, finalement, que plusieurs auteurs ont porté leur attention sur les concentrations de HAP dans l'environnement de travail des alumineries et dans l'air ambiant avoisinant de telles industries. Nous ne nous étendrons pas davantage là-dessus toutefois, puisque l'étude de l'impact environnemental n'est pas un objectif visé dans ce mémoire.

1.4 Apport scientifique de ce travail

L'effet néfaste des HAP a forcé, ces dernières années, les industries à s'attaquer à la réduction des HAP. À notre connaissance, la littérature ne rapporte aucune étude analysant, sur une longue montée de température, les émissions de HAP par les brais utilisés dans la fabrication de la pâte anodique. Nous n'avons répertorié qu'un seul article dans ce sens [14], la gamme de températures étudié étant toutefois très restreinte (entre 150 °C et 250 °C). Ce travail correspond donc à un réel besoin.

La contribution de ce travail est unique; elle vise à identifier, d'après les conditions de pyrolyse et la température, la nature des émanations, plus particulièrement celles des HAP, venant des brais et des pâtes soumis à une pyrolyse. Jusqu'à maintenant, les études réalisées en usine ne donnent que l'émission globale des HAP générés des salles de cuves [15]. Le montage choisi, utilisé antérieurement [8], a l'avantage de recueillir les gaz condensables aux températures voulues et d'analyser en continu les gaz non condensables.

Nous avons choisi de faire une étude en laboratoire pour bien établir les conditions expérimentales et nous permettre de faire une analyse systématique des résultats.

1.5 Bref aperçu du contenu de ce mémoire

L'actuel chapitre traite de la problématique associée au dégagement des HAP du brai en soulignant l'objectif du présent travail. La revue des travaux antérieurs relatifs à cette étude y est discutée de même que la contribution de cette étude au domaine de la recherche. Des considérations fondamentales sur l'origine et la nature des substances en question (brai de houille et coke de pétrole) sont données au chapitre 2. L'étude elle-même se divise en deux étapes. La première est l'analyse des brais seuls. Des brais de constitutions chimiques connues sont soumis à une pyrolyse sous atmosphère neutre. La perte de masse est enregistrée continuellement en fonction de la température et les gaz émis sont analysés. Dans la seconde étape, on soumet la pâte aux mêmes conditions de pyrolyse que celles du brai qui la compose et on analyse les matières volatiles émises. Le montage expérimental est décrit au chapitre 3 ainsi que la méthodologie expérimentale. L'analyse des gaz non condensables est axée sur l'hydrogène et le méthane tandis que celle des gaz condensables, sur les HAP. Le centre analytique du Centre de Recherche et de Développement Arvida (CRDA) reconnu pour son expertise dans le domaine de l'analyse des HAP assume l'analyse des condensats de HAP recueillis. L'interprétation des résultats est présentée au chapitre 4. Le mémoire se termine par une conclusion générale qui fait état des principaux résultats et présente quelques perspectives de poursuite de ce travail.

CHAPITRE 2

CHIMIE ET PROPRIÉTÉS PHYSIQUES DES PRODUITS CARBONÉS

2.1 Introduction

Les brais sont des substances de composition chimique très complexe. Lorsqu'ils sont chauffés, ils passent par plusieurs stades de transformations chimiques en libérant des produits dont certains sont génotoxiques. Les brais qui entrent dans la composition des électrodes (par exemple la pâte Söderberg) proviennent du traitement de la houille. Ils servent de liant pour des particules de coke de pétrole calciné. Il nous apparaît essentiel ici de bien situer l'origine de ces différentes substances (brai de houille, coke de pétrole) et de rappeler certaines notions de chimie organique. Ce chapitre y sera consacré. La structure du carbone, le carbone isotrope et anisotrope, la formation de la mésophase, l'usage du carbone dans l'industrie de l'aluminium et l'évolution du charbon sont aussi abordés.

2.2 Rappel de quelques éléments de chimie organique

La chimie organique a pour objet le carbone et ses composés. Le carbone est présent dans tous les composés organiques, associé dans la plupart des cas à l'hydrogène

^{*}La majeure partie de cette section a été faite à partir d'un volume de référence [16].

qui peut être remplacé par d'autres atomes. Le carbone permet de former jusqu'à quatre liaisons et l'hydrogène, une liaison. Le partage d'électrons permet de former la liaison dite covalente. Les hydrocarbures, composés organiques qui ne contiennent que du carbone et de l'hydrogène, se divisent en trois catégories: les aliphatiques non cycliques et cycliques et les aromatiques. Les aliphatiques non cycliques sont constitués de chaînes ouvertes (chaînes droites). Les alicycliques (aliphatiques cycliques) forment des chaînes fermées. Les aromatiques, disposés en forme d'anneau, contiennent des cycles où alternent simples et doubles liaisons carbone-carbone. Le terme aromatique provient du fait que ces composés dégagent une forte odeur. Le benzène est le composé de base des hydrocarbures aromatiques. La juxtaposition d'hydrocarbures aromatiques aboutit à une classe de molécules spécifiques nommée hydrocarbures aromatiques polycycliques (HAP). La figure 2.1 suivante montre quelques formes simples des HAP.

Figure 2.1: Quelques HAP [3].

Les composés organiques sont formés de deux groupes: les groupes hydrocarbonés saturés et les groupes hydrocarbonés insaturés appelés aussi groupes fonctionnels. Les hydrocarbures saturés ou paraffines contiennent des liaisons simples carbone-carbone, tandis que les hydrocarbures insaturés renferment des liaisons doubles ou triples. Les oléfines se distinguent par la double liaison et les acétylènes, par la triple liaison. Par la variété des arborescences possibles, les atomes de carbone peuvent s'associer différemment et donner des corps ayant la même composition globale, mais avec une configuration et des propriétés différentes; on les nomme isomères.

2.3 Brais: production et propriétés physiques

Le carbone existe dans la nature, à l'état cristallin et à l'état amorphe. On classe ces variétés de la façon suivante [18]:

- Carbone naturel cristallisé Diamant Graphite
- Carbone naturel amorphe (charbon naturel) Anthracite Houille Lignite Tourbe
- Carbone artificiel amorphe (charbon artificiel) Coke Charbon des cornues Charbon de bois Charbon de sucre Noir animal Noir de fumée

[&]quot;Un document a servi de principale référence pour le corps de cette section [17].

Le traitement thermique de ces différentes formes de carbone donne des sousproduits qui trouvent application dans diverses industries. Le brai de goudron, produit qui nous intéresse, résulte du traitement thermique de la houille. La houille est tout d'abord chauffée à haute température dans un four à coke. On obtient alors un résidu solide, le coke, et des gaz qui seront condensés. La fraction lourde de cette condensation, le goudron, est riche en composés aromatiques.

Les goudrons sont classés en deux grandes familles selon leurs caractéristiques: les goudrons légers et les goudrons denses. Les goudrons légers, à faible densité, ont une teneur en insolubles quinoléine modérée. Ils sont destinés à la fabrication de brais d'imprégnation. Les goudrons lourds, plus riches en insolubles quinoléine, servent à la fabrication de brais liants pour les électrodes utilisées en électrométallurgie.

Le goudron est par la suite soumis à une distillation éclair. Le résidu de cette distillation est le brai. La fraction légère, composée d'huiles, est soumise à une distillation plus fine afin d'en séparer ses constituants. La figure 2.2 suivante décrit le procédé général de production de brai de goudron. Lorsque la houille est remplacée par du pétrole, le brai obtenu est un brai de pétrole. En anglais, nous utilisons le terme "coal tar pitch" et "petroleum pitch" pour bien identifier l'origine du brai.

Le brai est utilisé dans une grande variété de produits carbonés tels que les électrodes de graphite pour les fours à arc électrique, les brosses électriques et notamment pour les anodes et cathodes des alumineries. Les électrodes pour l'industrie de l'aluminium sont fabriquées de coke et de brai, ce dernier agissant comme liant.

Le brai est constitué principalement de carbone et d'hydrogène. C'est un produit chimiquement très complexe qui contient des milliers de composés organiques pour la plupart des hydrocarbures aromatiques polycycliques (HAP). L'azote, l'oxygène et le soufre sont aussi présents en faible quantité. La composition du brai varie selon la matière première et les conditions de production.

Les brais sont caractérisés par différentes propriétés normalisées. Les plus

courantes sont: le point de ramollissement, la densité réelle, la teneur en insolubles (dans la quinoléine ou dans le toluène), la valeur de cokéfaction, le taux de cendres et le ratio C/H.

Le brai, contrairement à la plupart des substances, ne possède pas un point de fusion fixe; il passe plutôt progressivement à l'état liquide. La température à laquelle le brai réagit sous le poids d'une charge est définie comme étant le point de ramollissement.

Les différentes fractions organiques du brai peuvent être dissoutes dans des solvants appropriés. Une terminologie commune a été développée pour trois fractions du brai tel qu'indiqué au tableau 2.1 suivant.

Tableau 2.1: Résines α , β et γ .

Résines α	Fraction insoluble dans la quinoléine (IQ).	
Résines β	Fraction insoluble dans le toluène (IT) ou le benzène (IB) mais soluble dans la quinoléine (SQ).	
Résines γ	Fraction soluble dans le benzène (SB) ou le toluène (ST).	

Les insolubles dans la quinoléine comprennent les IQ primaires et IQ secondaires. Les IQ primaires qui constituent principalement les IQ, sont formés dans les fours à coke. Ils sont le résultat du craquage thermique en phase vapeur du goudron. Ce sont des hydrocarbures polycycliques de haut poids moléculaire dont le diamètre est inférieur à 3 μ m. Les IQ secondaires ou mésophases sont formés dans le brai liquide lors de traitements thermiques prolongés aux environs de 400 °C. La valeur de cokéfaction est le rendement en coke lorsque le brai est carbonisé en laboratoire dans des conditions normalisées. La valeur de cokéfaction du brai est normalement influencée par le point de ramollissement du brai et sa teneur en insoluble dans la quinoléine.

Le taux de cendres signifie les impuretés inorganiques contenues dans le brai. Un taux de cendres élevé est nuisible à la qualité de l'électrode et affecte la pureté du métal en introduisant des impuretés dans le bain électrolytique.

L'indice d'aromaticité du brai est donné par le ratio C/H. C'est le rapport du nombre d'atomes de carbone au nombre d'atomes d'hydrogène. Le brai provenant du goudron est plus aromatique que celui obtenu par le pétrole, ce qui explique son pouvoir liant plus élevé vis-à-vis des particules de coke calciné.

En chauffant le brai, sa viscosité commence à diminuer à partir de son point de ramollissement, elle décroît à mesure que la température augmente et atteint un minimum dans la région 320-400 °C [19]. Un temps de séjour à ces températures fait augmenter la viscosité. L'évaporation et les réactions de polymérisations expliquent ce comportement.

Une description plus complète du comportement du brai au chauffage est introduite à la section suivante 2.4.

2.4 Structures dans les matériels de carbone

Le carbone, très répandu dans la nature, se retrouve dans tous les corps vivants. Il possède quatre électrons de valence. L'isotope radioactif du carbone, le carbone 14, permet de dater les vestiges archéologiques. Le terme carbone désigne aussi toutes les formes noires solides de l'élément atomique carbone. Les carbones sont produits par la décomposition thermique de matières organiques. Ce sont des corps allotropiques; ils ont la propriété de se présenter sous différentes formes, chacune offrant des propriétés physiques particulières. Ainsi, ils sont caractérisés davantage par leurs propriétés que par leur structure.

Les deux formes allotropiques ordonnées du carbone sont le graphite et le diamant. Le diamant est le plus dur des matériaux, sa conductivité électrique est basse et sa densité est élevée (3.51 g/cm³). Avec de telles caractéristiques, ii n'est pas étonnant qu'il soit utilisé dans maintes applications (joaillerie, outils coupants, revêtements protecteurs, semiconducteurs, films isolants, transistors à haute température, lasers). Le graphite est disposé en couches ce qui lui confère des propriétés lubrifiantes et une bonne conductivité thermique parallèlement aux couches et quasi nulle dans l'autre sens.

[•] La plupart des éléments figurant aux sections 2.4 à 2.7 inclusivement sont tirés d'un cours spécial dispensé à l'auteur par le professeur Harry Marsh; ce cours a été donné à l'Université d'Alicante (Espagne) durant l'automne 1996 [20].
Les autres carbones cristallisés sont le "fullerène" et le "nanotube". Le "fullerène" est une sphère constituée de 5 (C_{60}) ou 6 (C_{70}) anneaux dont l'allure est celle d'un ballon de football (soccer). Le "nanotube" est formé de couches de graphite roulées.

Figure 2.3: Structures cristallines du carbone.

On peut dire que les matériaux carbonés se divisent en deux grandes structures: les ordonnées, tel que le graphite et les désordonnées où les défauts sont présents en plus ou moins grande importance. Toutes les variétés de carbone qui ont la structure du graphite avec ou sans défaut dans les trois dimensions sont des carbones graphitiques. Les carbones non graphitiques, ordonnés dans deux dimensions, n'ont aucun ordre cristallin dans la troisième direction. Par traitement thermique, il est possible de passer d'une forme désordonnée à une forme ordonnée (amorphe à cristallin). Le processus de transformation sous l'effet de la chaleur du carbone non graphitique en carbone graphitique est appelé la

graphitisation. La carbonisation est le procédé par lequel la quantité de carbone augmente par la pyrolyse d'une substance organique. Les carbones graphitables sont des carbones non graphitiques qui ont la propriété de se transformer progressivement en carbone graphitique par graphitisation. Les carbones non graphitables sont des carbones non graphitiques qui ne peuvent être transformés en carbone graphitique seulement par un traitement thermique. Rosalind Franklin a été la première, en 1951, à classer les carbones en "graphitables" et "non graphitables".

Pour distinguer les différentes structures du carbone, on utilise entre autres la diffraction par rayons X et la microscopie électronique. La texture optique, par le contraste des couleurs, indique la forme, l'orientation et la grosseur des particules. Pour du carbone isotrope, une seule couleur apparaît tandis que pour le carbone anisotrope une mosaïque de couleurs prend place. Les carbones non graphitables ont une structure interne sans orientation privilégiée allant jusqu'à une absence totale de caractère cristallin: ce sont des carbones isotropes. Ces carbones sont plus adsorbants car ils contiennent davantage de porosités créées par l'orientation aléatoire des couches. Les carbone graphitables ont un bon ordre cristallin; ce sont des carbones anisotropes. Le carbone anisotrope présente les mêmes propriétés physiques dans toutes les directions. Le carbone anisotrope est un carbone dont les propriétés varient selon la direction. Les carbones isotropes sont habituellement préparés à partir d'un solide tandis que les carbones anisotropes sont obtenus à partir d'une phase liquide telle que le brai de houille ou de pétrole.

Il y a plusieurs types d'état de cristal liquide qui dépendent du degré d'ordre du composé. Le cristal liquide smectique est une phase, plus voisine de l'état solide que de l'état liquide, dans laquelle les centres des molécules sont situés dans des plans parallèles. En chauffant l'état smectique, les couches de molécules s'agitent et on obtient l'état nématique. Dans cette phase, les molécules n'ont pas une position précise mais tendent vers la même direction en se déplaçant parallèlement les unes par rapport aux autres. À mesure que la température s'élève la phase nématique devient un liquide isotrope. La figure 2.4 schématise la disposition des couches des cristaux liquides smectiques et nématiques.

Figure 2.4: État smectique ou nématique.

Par traitement thermique, le charbon se convertit en coke. L'augmentation de la température entraîne plusieurs réactions chimiques. Des gaz s'échappent en créant des porosités, les macérals contenus dans le charbon se ramollissent et deviennent isotropes puis la particule de charbon prend de l'expansion. Vers 425 °C, il y a le développement de la mésophase. Cette phase va, peu à peu, consommer le liquide isotrope et former une structure anisotrope. Le dégagement des gaz à poids moléculaire élevé suivi de ceux à

poids moléculaire faible se poursuit jusqu'à environ 700 °C. À 1000 °C, le coke anisotrope est finalement formé. Ce coke, qu'on appelle aussi coke vert, peut être chauffé jusqu'à une température de 2000 °C; on obtient alors du carbone graphitique, polycristallin, graphitisé qui par la suite devient un cristal graphite vers 3000 °C. La figure 2.5 illustre le passage d'une structure à l'autre.

Figure 2.5: Évolution du carbone en fonction de la température.

Le Dr. Geoffrey Taylor a été le premier à suggérer que l'anisotropie du coke soit obtenue par la formation de cristal liquide nématique durant la pyrolyse du charbon. Il a observé un phénomène de formation de la mésophase grandeur nature dans les couches de charbon Wongawillie en Australie. Dans cette étude, il a observé les effets d'une éruption de roches ignées qui en passant à travers une couche de charbon a provoqué un procédé de carbonisation. L'analyse de cette section a révélé le développement de sphères anisotropes dont la croissance est plus accentuée près de l'éruption.

Plus précisément, la formation de la mésophase se déroule de la façon suivante. Lors du chauffage du brai, les petites molécules dont le poids moléculaire est d'environ de 200 amu s'agglomèrent entre elles, formant alors un mésogène d'un poids moléculaire d'environ 2000 amu. Cette union est générée par des réactions de condensation durant la pyrolyse. Plus il y a de mésogènes formés moins il y a de brai. L'accroissement des molécules conduit à une élévation de l'énergie de liaison intermoléculaire. Mais l'énergie cinétique augmente aussi empêchant légèrement la combinaison des molécules. Finalement, l'énergie de liaison l'emporte et ces mésogènes sphériques se joignent à d'autres mésogènes pour former une mésophase d'un poids moléculaire de 8000 amu. Initialement, les mésogènes sont probablement empilés parallèlement, mais la tension superficielle force rapidement l'apparition de forme sphérique lors de la croissance de la mésophase. Ainsi lorsque deux sphères se touchent, elles s'unissent en formant une sphère de plus grande dimension permettant de maintenir une tension superficielle minimum. Les particules nouvellement formées circulent plus difficilement dans le liquide à cause de leur grande dimension et finissent par se serrer les unes contre les autres. Le cristal liquide obtenu est aromatique, nématique et discotique. Le mot "discotique" signifie de forme sphérique. Cette structure forme alors un carbone anisotrope, graphitable. Le brai passe donc au coke anisotrope par la formation de mésophase qui est qualifiée elle aussi d'anisotrope (voir la figure 2.6). Les changements de structure de la mésophase non graphitique jusqu'au carbone graphitable par traitement thermique sont présentés à la figure 2.7.

Figure 2.6: Passage de la forme isotrope à anisotrope.

Figure 2.7: Passage du carbone non graphitique au carbone graphitable.

La structure finale du coke s'apparente à celle de la mésophase à l'étape de solidification. La grosseur de la texture optique finale dans le coke contrôle certaines propriétés: la résistance thermique, électrique, mécanique, à l'oxydation et aux chocs thermiques. Les propriétés du coke dépendent uniquement des propriétés du matériel de départ. Ainsi, il n'est pas possible d'améliorer la structure par des manipulations physiques de la mésophase. Il existe un nombre infini de mésophases toutes directement reliées à la composition chimique du brai de départ. Pour générer une mésophase durant la pyrolyse, le système doit rester fluide entre 400 et 450 °C, ainsi les molécules ont suffisamment de mobilité pour établir le cristal liquide. Si l'activité intermoléculaire des molécules est trop élevée, les molécules se réuniront à des températures inférieures auxquelles la mésophase est formée et le système se solidifiera prématurément en un carbone isotrope.

Différents types de cokes peuvent être définis. Le coke vert est le premier solide obtenu par la carbonisation à une température inférieure à 600 °C. Le coke calciné provient du chauffâge jusqu'à environ 1300 °C du coke vert qui est obtenu par la carbonisation du pétrole ou du charbon. Le coke métallurgique est produit par la carbonisation du charbon ou d'un mélange de charbon à des températures au-delà de 1100 °C. Le coke aiguille, très graphitable, porte ce nom dû à l'orientation parallèle de ses couches. Le "char" est un produit de la carbonisation de substances organiques qui n'ont pas passé par un état liquide durant la carbonisation. La fibre de carbone, carbone non graphitique, est obtenue par la carbonisation de fibres naturelles ou synthétiques, de fibres de résine ou de brai, suivie par un traitement thermique jusqu'à 2700 °C. La fibre de carbone s'emploie dans la production de freins de toutes sortes comme par exemple pour la navette spatiale, les automobiles de course et les avions. La fibre de carbone réalisée à partir de la mésophase est très résistante puisque les liens covalents agissent. Il y a aussi le textile de carbone formé par le carbone isotrope. Le noir de carbone est un groupement de particules colloïdales de carbone dont le diamètre est plus petit que 1000 nm. Ces particules colloïdales ont l'allure d'un oignon; le détachement facile des couches permet d'écrire. Il est aussi utilisé lors de la fabrication d'encres, de peintures et de pneus. Le carbone activé est un matériel de carbone poreux, habituellement le "char", qui a été soumis à des réactions avec des gaz durant ou après la carbonisation pour augmenter sa porosité fournissant ainsi une meilleure capacité d'adsorption. Le matériel de carbone activé sert pour les feux d'artifices et comme poudre à fusil. Les électrodes de graphite sont principalement utilisées dans la production d'acier. Elles sont très graphitiques et présentent une texture optique anisotrope. Elles laissent passer une forte densité de courant à haute température.

2.5 Les produits carbonés et l'industrie de l'aluminium

L'électrolyse de l'alumine permet d'obtenir de l'aluminium. Les réactions impliquées dans ce processus engendrent la réduction de l'alumine par un carbone artificiel introduit dans le bain électrolytique. Le carbone artificiel, le réducteur, est appelé l'anode.

Les réactions chimiques globales de production d'aluminium dans une cellule d'électrolyse sont les suivantes:

$$2 \operatorname{Al}_2 \operatorname{O}_3 + 3 \operatorname{C} \to 3 \operatorname{CO}_2 + 4 \operatorname{Al}$$

$$(2.1)$$

$$Al_2O_3 + C \rightarrow CO_2 + \frac{1}{2}O_2 + 2 Al$$
 (2.2)

Le carbone de l'anode réagit aussi avec d'autres éléments contenus dans la cellule ce qui a pour effet de réduire la durée de vie de l'anode.

$$CO_2 + C \rightarrow 2 CO$$
 (2.3)

$$2 O_2 + 3 C \rightarrow 2 CO + CO_2 \tag{2.4}$$

Les anodes sont constituées de coke calciné et de brai. Le coke calciné est obtenu par la calcination du coke de pétrole. Le coke de pétrole résulte de la pyrolyse (1000-1400 °C) des produits obtenus par craquage des résidus de la distillation des pétroles [21]. Le coke de pétrole renferme un pourcentage élevé de matières volatiles. Sa calcination permet de réduire l'indice des matières volatiles et d'améliorer la structure cristalline ainsi que la conductivité thermique. La calcination du coke se fait dans des fours rotatifs où la température atteint environ 1200 °C. Après broyage et tamisage, le coke calciné est acheminé dans des malaxeurs où il est mélangé à un brai liant formant alors une pâte servant à la fabrication des anodes [22]. Le brai est un résidu de la distillation du goudron de houille. La figure 2.2 au début du chapitre montre le procédé général de production du brai. Le taux de liant dans l'anode Söderberg est d'environ 24 % à 30 %. Le brai permet d'assurer une bonne cohésion des grains en les liant entre eux. Il existe deux types d'anodes: Söderberg et précuite. Les figures 2.8, 2.9 et 2.10 présentent successivement des cuves d'électrolyse de type Söderberg à goujons horizontaux et verticaux ainsi qu'un modèle de cuve à anodes précuites. Dans les deux cas, le brai et le coke sont tout d'abord mélangés ensemble aux environs de 200 °C jusqu'à l'obtention d'une pâte homogène. Pour

le procédé Söderberg, la pâte est déposée directement au-dessus de la cuve d'électrolyse. La cuisson de l'anode se fait sur place. Pour les anodes précuites, la pâte est compressée en forme de bloc puis cuite dans un four à anodes avant d'être envoyée aux cuves d'électrolyse. Dans le procédé Söderberg, les matières volatiles ne sont pas préalablement brûlées comme pour les anodes précuites.

Figure 2.8: Cellule d'électrolyse Söderberg à goujons horizontaux.

Figure 2.9: Cellule d'électrolyse Söderberg à goujons verticaux [23].

Figure 2.10: Cellule d'électrolyse à anodes précuites.

Le brai assure le lien mécanique entre les agrégats de coke. Ce lien entre les particules est influencé par le pourvoir mouillant du brai. Ainsi un mouillage adéquat des particules de coke par le brai et une bonne pénétration du brai dans les pores du coke sont des facteurs qui permettent d'améliorer la qualité de l'anode produite.

Le brai de houille, par rapport au brai de pétrole, accroît la qualité des électrodes grâce à sa très forte aromaticité. Il améliore la densité et augmente la résistance à la rupture de l'anode. De plus, il diminue la perméabilité au gaz, la résistivité électrique et le coefficient d'expansion.

2.6 Origine et évolution du charbon

Il y a 5 milliards années, le Big Bang formait le système solaire actuel. De ce système, il y a une planète où la flore et la faune sont possibles: la Terre. Elle contient en abondance du carbone et de l'oxygène. Ces deux éléments combinés à des facteurs environnementaux durant des millions d'années donnèrent le charbon.

Au début, l'atmosphère de la Terre, influencée par l'activité d'intenses volcans était constituée de dioxyde de carbone, de vapeur d'eau et d'hydrogène. Aucune trace d'oxygène, avant le processus de photosynthèse par des plantes telles que fougères, herbes, champignons, spores et moisissures, il y a 500 millions d'années. Puis, il y a 350 millions d'années, la forêt tropicale de la période Carbonifère composée d'arbres très différents de ce que nous avons aujourd'hui tels que calamite, lépidodendron prenait place. Toute cette végétation relève de la paléobotanique. Avec le temps, le sol s'est compacté entre autres par le poids de cette flore, certaines parties se sont effondrées, ainsi peu à peu le niveau du sol descendait, jusqu'à ce qu'il atteigne pratiquement le niveau de la mer. L'eau s'est alors mise à occuper les dénivellations d'où la formation des marécages. Le meilleur exemple d'un marécage moderne est celui des Everglades dans l'état de Floride aux États-Unis. Ainsi donc, les arbres tombaient dans les eaux qui ont rempli les dénivellations, d'autres mouraient dans celles-ci à cause du manque de nourriture. Les arbres retrouvés au fond des marécages, les fougères et autres furent enterrés sous des dépôts de matières minérales. Les matières végétales se retrouvèrent donc compressées. Le procédé de diagenèse est défini comme étant l'ensemble des phénomènes assurant la transformation d'un sédiment meuble en une roche cohérente. Ce matériel soumis à des agents tels que la température, le temps et la pression durant des millions d'années donna le charbon.

L'évolution du charbon (carbonisation) est plus spécifiquement le procédé par lequel la cellulose/lignine passe en charbon, soit une augmentation du contenu en carbone et un décroissement en oxygène et en hydrogène qui donne respectivement du gaz carbonique et du méthane.

$$C_{6}H_{12}O_{6} \text{ (cellulose, lignine)} \rightarrow C_{x}H_{y}O_{z \text{ (charbon)}} + H_{2}O + CO_{2} + CH_{4(méthane)}$$
(2.5)

Cette évolution produit en plus des macérals qui sont des débris organiques d'arbres, d'herbes, de fougères, de spores et de champignons. Marie C. Stopes a été la première paléobotaniste à identifier des macérals dans le charbon. Il faut environ 50 millions d'années pour faire du charbon et on évalue le taux de transformation du bois en charbon à 0,01%. La formation de pétrole nécessite beaucoup plus d'années que le charbon soit 2 milliards d'années.

Le charbon comme combustible est une source d'énergie thermique importante. En 1996, 5 milliards de tonnes de charbon ont été utilisées dont 87 % en énergie électrique pour le chauffage, 3 % pour la fabrication de béton et 10 % pour la production de l'acier. Le charbon fournit aussi d'autres produits de très grande importance économique incluant le coke métallurgique, le goudron et le brai.

À l'époque de la révolution industrielle, la seule source d'énergie que l'on connaissait était le charbon. Il a fallu attendre 150 ans pour connaître l'huile, le gaz et l'énergie nucléaire. Mais l'emploi du charbon à grande échelle apportait des problèmes de saleté, de danger et de pollution lesquels sont encore associés à son usage sans être justifiés. La vapeur générée par la combustion du charbon fournissait la puissance à la machinerie. Les usines de la révolution industrielle étaient près des bassins de charbon qui fournissaient le combustible. Les transports furent facilités entre les villes par la locomotive. Le plus impressionnant exemple de la puissance et de la grandeur de la machine à vapeur est sans

aucun doute le traversier de l'océan Atlantique: le Titanic. Au début du 20^e siècle, on utilisa pour la première fois le gaz de charbon pour éclairer les rues. De plus en plus, un nuage de fumée provenant de la combustion du charbon pour le chauffage des maisons recouvrait les villes. C'est le côté néfaste de son usage; il faudra attendre encore plusieurs années pour développer une technologie de combustion du charbon sans pollution. La locomotive à vapeur restera opérationnelle jusqu'à la moitié du 20^e siècle avant d'être remplacée par la machine au diesel et à l'électricité. Mais attention, l'électricité n'est pas la première source d'énergie, il dérive souvent des combustibles fossiles.

La demande pour le charbon persiste particulièrement dans l'industrie de production électrique. Environ 90 % du poids total du charbon miné soit 4 milliards de tonnes par année à travers le monde est brûlé pour la production électrique.

Contrairement à ce que l'on pourrait penser, la consommation du charbon est en perpétuelle augmentation. Son usage et son extraction ont évolué considérablement. Le charbon produit moins de pollution qu'il en produisait au début du siècle. Les gouvernements ont forcé les industries à améliorer leurs procédés pour la qualité de vie de la société. La recherche et le développement faits par des ingénieurs et des chimistes en collaboration avec l'industrie du charbon ont permis d'améliorer les procédés afin de réduire la pollution.

Beaucoup de travaux se font dans le domaine du charbon. La recherche est très importante pour comprendre le comportement du charbon, car c'est un matériel hétérogène qui change passablement selon l'extraction et la source.

Les mines de charbon en Europe qui existaient au début du siècle ont été épuisées. Maintenant, le charbon est transporté sur de longues distances venant d'Australie, de l'Afrique du Sud et de l'Amérique du Sud.

Un problème de plus en plus important pour l'environnement est l'effet de serre causé par l'augmentation du dioxyde de carbone dans l'atmosphère. Environ 20 % du dioxyde de carbone injecté dans l'atmosphère provient des matières fossiles. La quantité de dioxyde de carbone produit par le charbon et le pétrole est sensiblement la même.

Malgré les discours de certains politiciens souvent peu en faveur du charbon, ce matériel est encore très important dans la société. On ne voit plus son extraction et sa présence comme auparavant, mais on y voit son application (électricité). Les composés dérivés du charbon s'appliquent dans des domaines aussi récents que l'aviation et l'aérospatiale. Le charbon est un matériel aux multiples possibilités, sûrement de nouvelles applications feront leur apparition.

CHAPITRE 3

DISPOSITIFS ET PROCÉDURES EXPÉRIMENTAUX

3.1 Introduction

Les HAP à analyser sont présentés au tout début de ce chapitre à la section 3.2. La section 3.3 décrit les échantillons soumis à l'étude de même que leurs caractéristiques. Le montage utilisé dans cette étude a déjà servi de base à d'autres travaux [5, 6, 7, 8, 24]. La particularité de ce montage est qu'il permet de récupérer les matières volatiles condensables dans un intervalle de température voulu et d'analyser en continu les gaz non condensables. Une description détaillée en est donnée à la section 3.4. Les sections suivantes 3.5 et 3.6 discutent de l'analyse des gaz non condensables et condensables. La procédure expérimentale est décrite à la section 3.7. Bien que ce montage permette de piéger les matières condensables pour une analyse ultérieure, leurs masses totales libérées ne peuvent être obtenues puisque seulement une faible portion de celles-ci est dirigée vers les pièges réfrigérés. Pour pouvoir obtenir ces données manquantes, une deuxième phase expérimentale a été conçue avec un montage modifié tel que décrit à la section 3.8.

3.2 HAP à analyser

L'analyse des gaz condensables porte sur 14 hydrocarbures aromatiques polycycliques (tableau 3.1) faisant partie des 16 HAP identifiés par l'Agence Américaine de Protection de l'Environnement (EPA), dont 10 sont génotoxiques [15]. Les renseignements [26] tels que le RPF, le poids moléculaire, le point d'ébullition et la formule empirique y figurent. Le RPF (relative potency factor) est le facteur génotoxique d'un HAP par rapport au benzo(a)pyrène [1].

			Poids	Point	Formule	
NOMS	Abréviation	RPF	moléculaire	d'ébullition	empirique	
				(°C)		
H	PHAUTEMI	ENT GEI	NOTOXIQUI	ES		
Chrysène	С	0,260	228	448	C ₁₈ H ₁₂	
Benzo(a)Pyrène	BaP	1,000	252	496	C ₂₀ H ₁₂	
Benzo(g,h,i)Pérylène	BghiP	1,000	276	500	$C_{22}H_{12}$	
Dibenzo(a,h)Anthracène	DahA	1,400	278	518	$C_{22}H_{14}$	
HAP GÉNOTOXIQUES						
Benzo(k)Fluoranthène	BkF	0,010	252	480	C ₂₀ H ₁₂	
Benzo(a)Anthracène	BaA	0,033	228	435	C ₁₈ H ₁₂	
Fluoranthène	FA	0,034	202	375	C ₁₆ H ₁₀	
Benzo(e)Pyrène	BeP	0,050	252	493	$\overline{C_{20}H_{12}}$	
Benzo(b)Fluoranthène	BbF	0,100	252	481	C ₂₀ H ₁₂	
Indéno(1,2,3-c,d)Pyrène	IP	0,100	276	-	C ₂₂ H ₁₂	
HAP NON GÉNOTOXIQUES						
Fluorène	F	-	166	294	C ₁₃ H ₁₀	
Phénanthrène	РН	-	178	340	$C_{14}H_{10}$	
Anthracène	Α	-	178	340	$\overline{C}_{14}\overline{H}_{10}$	
Pyrène	Р	-	202	399	C16H10	

Tableau 3.1: HAP à analyser.

3.3 Échantillons à analyser

Des échantillons de différents brais et pâtes (mélange brai/coke) ont été fournis par le CRDA. Il y a trois groupes distincts de brais: de référence, régulier et à bas HAP (brais de nouvelle génération). L'étude thermogravimétrique porte sur cinq brais (A, B, C, D, E) et quatre pâtes (P1, P2, P3, P4). Le mode de fabrication des brais à analyser est donné au tableau 3.2 de même que celui des pâtes au tableau 3.3. Les brais B et D, qualifiés de régulier, possèdent chacun un brai à bas HAP avec le même point de ramollissement, les brais C et E respectivement (brai régulier B (PR = 110 °C)/brai à bas HAP C (PR = 110 °C) et brai régulier D (PR = 132 °C)/brai à bas HAP E (PR = 132 °C)). Certains brais ont un haut point de ramollissement tels que les brais D et E. Les brais B, C, D et E entrent dans la composition des pâtes P1, P2, P3 et P4 respectivement. Ces brais et pâtes ont été préalablement caractérisés par le CRDA entre autres pour leur teneur en HAP. Ces caractéristiques sont présentées au tableau 3.4 pour les brais et au tableau 3.5 pour les pâtes. Il est à noter que le pourcentage de brai dans la pâte, donné au tableau 3.5, est un chiffre relatif d'usine, il y a donc possibilité de fluctuation de la quantité de brai dans la pâte.

	Type de brais	Source
A	Brai de référence	Brai de goudron
B	Brai régulier	Brai de goudron
С	Brai à bas HAP	Brai hybride: mélange de brai de goudron et de brai de pétrole
D	Brai régulier à haut point de ramollissement	Brai de goudron obtenu par une distillation plus poussée
E	Brai à bas HAP à haut point de ramollissement	Brai de goudron mélangé avec des huiles carbo- chimiques provenant de la distillation du goudron

Tableau 5.2: Types de brais ut	eau 1	3.2:	Types	de	brais	utilisés.
--------------------------------	-------	------	-------	----	-------	-----------

	Type de pâtes	Source	
P1	Pâte régulière	Pâte fabriquée avec le brai B	
P2	Pâte à bas HAP	Pâte fabriquée avec le brai C	
P3	Pâte régulière à haut point de ramollissement	Pâte fabriquée avec le brai D	
P4	Pâte à bas HAP à haut point de ramollissement	Pâte fabriquée avec le brai E	. "

Tableau 3.3: Types de pâtes utilisées.

Tableau 3.4: Caractéristiques des brais.

CARACTERISTIQUES	A	B	С	D	E
Point de ramollissement *	111,8 °C	111,8 °C	113,3 °C	132,6 °C	132,9 °C
Valeur de cokéfaction	59,8 %	62,5 %	59,3 %	67,2 %	65,4 %
Cendres	0,19 %	0,28 %	0,12 %	0,35 %	0,23 %
Densité réelle	1,32 g/ml	1,33 g/ml	1,29 g/ml	1,35 g/ml	1,33 g/ml
Insolubles quinoléine	11,1 %	14,9 %	10,5 %	16,0 %	12,6 %
Insolubles toluène	26,9 %	31,0 %	22,8 %	31,4 %	30,5 %
Ratio C/H	1,86	1,91	1,65	1,96	1,81
HAP (µg HAP/g brai)					
Fluorène	179	883	94	565	1 270
Phénanthrène	11 279	11 925	2 636	3 72 1	8 922
Anthracène	2 483	4 287	1 485	2 035	5 325
Fluoranthène	10 091	11 156	1 857	4 502	10 663
Pyrène	28 782	28 282	15 872	22 1 32	20 398
Benzo(a)Anthracène	9 513	8 361	3 564	6 0 7 8	4 102
Chrysène	23 569	29 820	10 056	20 817	11 651
Benzo(e)Pyrène	9180	10 801	7 241	8 556	4 647
Benzo(b)Fluoranthène	8 797	10 243	5 046	9 362	4 330
Benzo(k)Fluoranthène	5 226	4 574	3 631	4 127	2 543
Benzo(a)Pyrène	13 092	13 085	8 090	13 539	6 1 5 2
Dibenzo(a,h)Anthracène	1 533	1 621	884	1 645	1 124
Benzo(g,h,i)Pérylène	6 942	7 822	4 292	6 965	5 562
Indéno(1,2,3-c,d)Pyrène	10 457	10 601	5 642	11 504	8 805
Total HAP	141 123	153 461	70 390	115 548	95 494
Total B[a]P équivalent	31402	34 255	17 822	31 129	18 386

* Méthode Mettler

CARACTÉRISTIQUES	P1	P2	P3	P 4
Pourcentage de brai	27,1 % de B	27,3 % de C	27,1 % de D	27,3 % de E
Valeur de cokéfaction	90,4 %	89,7 %	90,7 %	90,7 %
Densité réelle	1,77 g/ml	1,74 g/ml	1,74 g/ml	1,73 g/ml
Insolubles quinoléine	77,9 %	77,5 %	79,0 %	76,9 %
Insolubles toluène	82,0 %	80,1 %	81,0 %	81,2%
HAP (µg HAP/g brai)				
Fluorène	535	147	192	1 363
Phénanthrène	6 978	3 795	5 930	10 004
Anthracène	3 391	1 791	2 458	2 527
Fluoranthène	9 919	3 930	4 428	9 802
Pyrène	24 476	16 179	22 391	20 264
Benzo(a)Anthracène	7 336	4 348	5 768	3 608
Chrysène	20 834	11 022	19 594	10 64 1
Benzo(e)Pyrène	8 502	6 762	8 347	3 952
Benzo(b)Fluoranthène	8 609	5 582	8 000	4 187
Benzo(k)Fluoranthène	4 225	2 711	4 565	2 286
Benzo(a)Pyrène	11 410	8 923	11 369	5 857
Dibenzo(a,h)Anthracène	1 317	1 018	1 801	1 018
Benzo(g,h,i)Pérylène	8 838	5 531	8 247	4 612
Indéno(1,2,3-c,d)Pyrène	8 605	5 593	10 546	7 447
Total HAP	124 975	77 332	113 636	87 568
Total B[a]P équivalent	30 277	20 505	29 890	16 497

Tableau 3.5: Caractéristiques des pâtes.

Le B[a]P équivalent est la quantité du HAP multipliée par son facteur de génotoxicité (RPF). Le total des B[a]P équivalent représente donc la somme des B[a]P équivalent [1].

Pour donner une meilleure idée de la différence entre la concentration des brais versus celle des pâtes, les figures 3.1 à 3.4 présentent la composition intrinsèque du brai par rapport à celle de sa pâte (B/P1, C/P2, D/P3, E/P4).

Figure 3.2: Composition intrinsèque du brai C par rapport à sa pâte P2.

Figure 3.4: Composition intrinsèque du brai E par rapport à sa pâte P4.

3.4 Description du montage expérimental

Le montage expérimental comporte quatre sections: la pyrolyse du brai, l'analyse thermogravimétrique, l'échantillonnage des matières volatiles et les analyses chromatographiques. Le montage est automatisé ce qui lui confère une plus grande flexibilité au niveau de la durée des essais. La figure 3.5 donne un aperçu général de l'installation.

La pyrolyse de l'échantillon est effectuée dans un four vertical LINDBERG (1). La section de chauffage est divisée en trois zones indépendantes l'une de l'autre et la température maximale est de 1500 °C. Le four est muni d'un contrôleur de température OMRON ES100 (2) facilement programmable par l'utilisation du logiciel ES100 incorporé dans l'ordinateur. Ce type de contrôleur permet une progression linéaire de la température. Seule la zone du centre est contrôlée, les zones du bas et du haut s'activent par différence de température par rapport à la zone du centre. Un lecteur, relié à un sélecteur, permet de lire la température de ces trois zones munies de thermocouples de type R.

Un tube d'alumine recristallisée de 6,4 cm de diamètre et de 130 cm de longueur, inséré au centre du four, constitue les parois de la chambre de pyrolyse. La chambre est divisée en trois sections: celle du bas est l'unité de préchauffage du gaz inerte, au centre c'est la section de l'emplacement de l'échantillon et en haut, le système d'aspiration des gaz. Une cloche chauffée chapeaute le tube d'alumine, on y retrouve quatre embouchures:

Figure 3.5: Schéma général du montage.

deux pour les sondee, une pour l'échappement des gaz et une pour le passage du fil de suspension de l'échantillon. Les essais sont réalisés sous atmosphère inerte d'argon. Le courant d'argon (3) est préchauffé à la base du four par circulation dans un tube de quartz renversé pour être ensuite diffusé par passage à travers un lit de granules d'alumine calcinée vers la région de l'échantillon. Les granules d'alumine servent de diffuseur pour uniformiser la vitesse des gaz.

L'analyse thermogravimétrique est réalisée au moyen d'une balance METTLER PM2000 (4) qui mesure de façon continue le poids de l'échantillon soumis à la pyrolyse. Le creuset (5) contenant un échantillon de brai ou de pâte est déposé dans une nacelle suspendue à un crochet situé sous la balance. De plus, un thermocouple de type K, placé à environ 1 cm sous le creuset et relié au système d'acquisition de données, permet de lire la température à proximité de l'échantillon. Durant la pyrolyse, la perte de poids et la température sont enregistrées à intervalles réguliers par un logiciel d'acquisition de données (7) (Labtech Notebook version 9.02 prowin).

Deux sondes d'échantillonnage aspirent une fraction des matières dégagées au niveau de la chambre de pyrolyse. Elles sont destinées respectivement au prélèvement des gaz non condensables (8) et condensables (9).

La sonde des gaz non condensables aspire les gaz sans interruption (débit d'environ 230 cm³/min) à travers des conduits chauffés électriquement vers un système de pièges disposé dans une boîte réfrigérée (20). Les canalisations avant les pièges sont maintenues à une température suffisante pour minimiser la condensation sans toutefois provoquer le craquage (de 300 °C à 325 °C dans la gamme supérieure du régime de chauffe du four). La boîte réfrigérée contient cinq systèmes de pièges soit un pour chaque conduit. Un système de pièges comporte un ensemble de cinq éprouvettes en série immergées dans un bain de glace suivi d'une dernière éprouvette à la température ambiante. La figure 3.6 illustre ce système. Toutes les éprouvettes contiennent de la laine de verre pour faciliter la récupération des hydrocarbures lourds. Les gaz passent ensuite dans un tube rempli de résine XAD-2 (10), une valve à trois voies (12), puis dans un débitmètre (13) avant d'être injectés dans un chromatographe (16), modèle VARIAN 3400, pour l'analyse des concentrations de méthane et d'hydrogène. Le chromatographe est relié à un intégrateur (17) VARIAN 4270 qui trace les pics de chaque constituant.

Figure 3.6: Système de pièges.

Les gaz condensables sont, quant à eux, aspirés par une deuxième sonde (9) (débit d'environ 1100 cm³/min) selon une séquence préétablie programmable par un module de contrôle (18). Ce dernier selon la programmation actionne simultanément l'une des quatre valves solénoïdes (11) et la pompe (14). Les gaz aspirés circulent ainsi dans un des quatre jeux d'éprouvettes correspondant à la valve actionnée. L'aspiration est assurée pendant une période fixée, qui peut varier entre 1 et 10 heures selon le taux de chauffe, respectant ainsi l'écart de température correspondant à chaque valve. Ici aussi les canalisations sont préchauffées avant l'échantillonnage. À la fin de l'aspiration, les éprouvettes contiennent alors des hydrocarbures condensables qui peuvent être reliés à la gamme de température choisie. Les pièges d'échantillonnage sont alors démontés et la laine de verre enduite d'hydrocarbures est placée dans une solution d'acétone HPLC. Après le passage dans les éprouvettes, les gaz circulent à travers un tube de résine (10) puis un débitmètre (13) avant d'être évacués vers la hotte. Le tube de résine agit à titre de protection pour la valve solénoïde. Tous les conduits sont chauffés par résistance électrique. La lecture de la température de ces canalisations se fait à 5 endroits: la sonde des gaz non condensables, la cloche, la sonde des gaz condensables tout près de la cloche, à mi-parcours de la sonde des gaz condensables et juste avant la boîte réfrigérée où la sonde des gaz condensables se subdivise en 4 conduits.

Les gaz n'ayant pas emprunté une des deux premières sondes sont aspirés par la sortie pour le gaz d'échappement (6) placée au niveau de la cloche. Ces gaz d'échappement sont débarrassés des hydrocarbures lourds en passant dans deux éprouvettes (19) remplies de laine de verre, la seconde étant placée dans de la glace; leur débit est aussi mesuré (13).

3.5 Analyse des gaz non condensables

Les gaz dits "non condensables" qui arrivent au chromatographe sont exempts de tout hydrocarbure lourd, ceux-ci ayant été piégés dans les trappes. L'analyse ne se fait donc que sur les gaz non condensables, en l'occurrence l'hydrogène et le méthane. L'analyse des autres hydrocarbures légers a été négligée compte tenu de leur faible quantité. Les conditions opératoires du chromatographe pour l'analyse de l'hydrogène et du méthane sont décrites au tableau 3.6.

Chromatographe gazeux	VARIAN 3400				
Colonne	Tamis moléculaire				
	13X 0,31 cm 4,5 m 80/100				
Détecteur	Conductivité thermique				
Injecteur	Automatique				
Volume d'injection	0,5 mL				
Température de la colonne	100 °C				
Température de l'injecteur	80 °C				
Température du détecteur	120 °C				
Température du filament	190 °C				
Gaz porteur	Argon				
Débit du gaz porteur	28 mL/min				

Tableau 3.6: Conditions opératoires du chromatographe à phase gazeuse.

3.5.1 Principe de la chromatographie en phase gazeuse

La chromatographie en phase gazeuse est une technique basée sur les différences de coefficient de partage des produits à séparer entre un gaz et un liquide ou un gaz et un solide. Dans notre cas, il y a séparation des différentes composantes du gaz selon leur degré d'adsorption par le solide. Le gaz étant les matières volatiles de la pyrolyse et le solide, le garnissage de la colonne chromatographique. Lorsque les substances sont entraînées par le gaz porteur, les composants sont ralentis par le garnissage de la colonne. Ce ralentissement dépend de l'adsorption de chacun d'eux à la surface du solide. Prenons l'exemple d'un mélange à trois composés {A, B, C} tel qu'illustré à la figure 3.7. Chaque constituant pénètre dans la phase stationnaire proportionnellement à son degré d'adsorption (figure 3.7a). Le premier composé à être enregistré sera le moins adsorbé puisqu'il est facilement entraîné par le gaz porteur. Les pics apparaîtront du moins adsorbé au plus

adsorbé (figure 3.7b). Le temps de rétention correspond au temps d'apparition du sommet du pic. La surface sous le pic est proportionnelle à la concentration.

Figure 3.7: Schéma explicatif de la chromatographie en phase gazeuse.

Le chromatographe utilisé détecte par conductivité thermique. La détection par conductivité thermique est basée sur le fait que la vitesse de diffusion de la chaleur à partir d'une source chaude dépend de la composition du gaz. Le détecteur est composé d'un filament alimenté en courant; ce filament est situé dans une chambre isolée où circule le gaz porteur et le mélange gazeux injecté. Avant l'injection, lorsqu'il n'y a que le gaz porteur qui circule, le voltage est ajusté à environ 0 mV (par un potentiomètre); ce voltage correspond à la ligne de base sur l'intégrateur. Après l'injection, dans la chambre, d'un gaz, dont la conductivité thermique diffère de celle du gaz porteur, le filament s'échauffe par rapport au standard. Cet échauffement fait varier sa résistance et le potentiomètre enregistre une différence de voltage qui se traduit sur l'intégrateur par un pic dont l'aire est proportionnelle à la concentration de la substance présente.

3.5.2 Corrections à apporter aux chromatogrammes

Lors de l'injection des gaz non condensables au chromatographe, une petite quantité d'air s'infiltre dans le montage, malgré toutes les précautions prises. Des pics d'azote et d'oxygène sont alors détectés. L'air infiltré dilue le mélange de gaz (argon et gaz non condensables); ainsi, la surface sous le pic des composés devient inférieure à la valeur réelle. Un calcul de ratio de dilution tiré d'un mémoire [23] où l'injection manuelle dans le chromatographe fait entrer de l'air permet de trouver la surface sous le pic résultante d'une injection en l'absence d'air. Contrairement au mémoire cité, l'azote du gaz d'étalonnage a été utilisé comme référence plutôt que l'azote de l'air ambiant.

Tout d'abord, on établit une relation entre la concentration connue d'azote dans le gaz d'étalonnage et la surface sous le pic correspondante:

$$\%N = \%N\acute{e}tal\left(\frac{AN}{AN\acute{e}tal}\right)$$
(3.1)

Ainsi, le pourcentage d'azote dans l'échantillon gazeux (%N) équivaut au pourcentage d'azote dans le gaz d'étalonnage (%Nétal) multiplié par le rapport entre la surface sous le pic d'azote de l'échantillon (AN) et la surface sous le pic d'azote du gaz d'étalonnage (ANétal). Il faut ensuite établir la quantité d'air entré dans l'échantillon gazeux (%air) par rapport à l'azote détecté:

$$\%air = \%N\left(\frac{100}{78.1}\right)$$
 (3.2)

où 78.1 est le pourcentage d'azote dans l'air ambiant. Le ratio de dilution (RD) s'exprime par le volume total de l'échantillon sur le volume total de l'échantillon moins le volume d'air. Le ratio de dilution est toujours \geq 1 et vaut 1 à la limite lorsqu'il n'y a aucune trace d'air dans l'échantillon.

$$RD = \frac{100}{100 - \%air}$$
(3.3)

En insérant l'équation 3.2 dans l'équation 3.3 on obtient:

$$RD = \frac{78.1}{78.1 - \%N}$$
(3.4)

Il reste à trouver la nouvelle aire sous le pic (A') de chaque constituant i avec le ratio de dilution calculé (RD) et la surface sous le pic donné par l'intégrateur (A_i).

$$A'_{i} = RD * A_{i} \tag{3.5}$$

3.5.3 Calcul de la concentration

La méthode d'analyse choisie est celle du standard externe [24]. L'étalonnage à partir de cette méthode consiste à injecter séparément un mélange de base contenant les gaz d'intérêt dans des concentrations connues (89,923 % Ar, 9,58 % N_2 , 2 469 ppm H_2 , 2 501 ppm CH₄). L'intégrateur donne la surface sous le pic, ce qui permet de trouver le rapport:

$$Fr_{i} = \frac{A\acute{e}tal_{i}}{C\acute{e}tal_{i}}$$
(3.6)

où Fr_i est le facteur de réponse du composé i du gaz d'étalonnage, Aétal_i l'aire sous le pic du composé i du gaz d'étalonnage et Cétal_i la concentration du composé i dans le gaz

d'étalonnage. Lorsque les gaz non condensables sont injectés au chromatographe, l'intégrateur trace les pics de chaque gaz détecté. On utilise le facteur de réponse des composés du gaz d'étalonnage pour déterminer la concentration de chaque constituant selon le rapport:

$$C_{i} = \frac{A'_{i}}{Fr_{i}}$$
(3.7)

où A_i ' est l'aire sous le pic du composé i (H_2 ou CH_4) après correction pour les fuites d'air et C_i la concentration du composé i.

3.6 Analyse des gaz condensables

Le Centre de Recherche et de Développement Arvida (CRDA) d'Alcan s'est chargé d'analyser les HAP. Leur méthodologie est jointe à l'annexe I.

3.7 Procédure expérimentale

La réalisation d'une expérience comprend deux étapes principales: la thermogravimétrie et la récupération des substances condensables pour l'analyse des HAP. Le terme thermogravimétrie inclut ici la pyrolyse, l'analyse des gaz non condensables par le chromatographe et la condensation d'hydrocarbures dans des pièges aux intervalles de températures voulues. La méthodologie chronologique de la thermogravimétrie de même que celle de la récupération des substances condensables est décrite dans les deux

prochaines sections. Des renseignements sont aussi donnés sur les masses, les taux de chauffage et les creusets utilisés.

3.7.1 Méthodologie de la thermogravimétrie

- 1. Préchauffer le chromatographe en ayant préalablement ouvert la bonbonne de gaz porteur.
- 2. Mettre en place le système de captage: laine de verre dans les pièges et tube de résine.
- Préparer une masse (50 g ou 10 g) de brai ou de pâte, la mettre dans le creuset, puis déposer ce dernier dans la nacelle.
- Poser la cloche sur le tube d'aiumine en passant en premier lieu le fil de suspension de la nacelle dans le trou de la cloche à cet effet. Insérer les sondes, puis couvrir la cloche de laine isolante.
- 5. Suspendre la nacelle au crochet sous la balance, mettre la balance au niveau et la tarer.
- 6. Laisser entrer le gaz inerte dans le four à un débit d'environ $2300 \text{ cm}^3/\text{min}$.
- Actionner la pompe des gaz d'échappement et ajuster le débit des gaz d'échappement à 46 %.
- 8. Allumer les deux lecteurs de température (conduits et zone du four).
- 9. Faire circuler l'eau de refroidissement.
- Simultanément régler le taux de chauffage désiré et activer le système d'acquisition de données.

- 11. Débuter le chauffage de tous les conduits. Dans le plus fort du régime de chauffe, la température doit se situer entre 300 et 325 °C.
- 12. Programmer le module de contrôle pour l'ouverture des valves solénoïdes aux températures voulues selon la vitesse de chauffage tout en vérifiant le débit des gaz condensables, celui-ci doit être de 1 100 cm³/min.
- 13. Programmer la séquence d'injection du chromatographe et l'intégrateur.
- 14. Actionner la pompe du chromatographe et poser le débit à 230 cm³/min. Ouvrir la bonbonne d'air comprimé avant d'actionner la séquence du chromatographe.
- 15. Allumer le détecteur du chromatographe juste avant l'injection et le fermer après.

D'après des courbes thermogravimétriques préliminaires, la majorité de la masse est volatilisée entre 250 et 600 °C. On sait que les premières substances dégagées sont condensables [5, 24]. Les gaz non condensables apparaissent à plus haute température, formés par des réactions de craquage et de condensation. La répartition des échantillonnages s'est faite, à l'exception du test à 10 °C/h, dans cet intervalle de manière à couvrir toute la plage de dégagement. Chacun des 4 pièges contient des hydrocarbures pour un intervalle de 100 °C soit de 250 à 350 °C, 350 à 450 °C, 450 à 550 °C et 550 à 650 °C. Les gaz non condensables sont analysés en continu à toutes les 30 minutes à partir de 350 °C jusqu'à 1050 °C, fin du chauffage.
3.7.2 Méthodologie de la récupération des condensables

- Mettre de la laine de verre dans tous les pièges (4 pièges pour les condensables et 1 pour la ligne du chromatographe, 2 pour la sonde des gaz d'échappement).
- 2. Graisser la surface du joint rodé.
- 3. Installer les pièges dans la boîte réfrigérée. Mettre de la glace dans la boîte.
- 4. À la fin du chauffage, lorsque les connexions métalliques entre la sonde et le piège sont refroidis, démonter les pièges. Conserver seulement la laine de verre des pièges pour substances condensables.
- 5. Déposer la laine de verre de chacun des 4 pièges dans un bocal (1 système de pièges 1 bocal). Rincer le piège avec une quantité connue d'acétone. Récupérer la solution et la verser dans le bocal, y ajouter l'agent de conservation: c'est l'échantillon de condensat. Cette étape s'applique aux 4 pièges pour condensables.
- 6. Nettoyer aussi les autres pièges avec de l'acétone.
- 7. Entreposer les bocaux à 4 °C avant l'analyse.
- Remettre de la laine de verre dans les pièges et réinstaller le tout pour la prochaine expérience.

3.7.3 Taux de chauffage et masses

Plusieurs vitesses de chauffage linéaires de 30 °C/h, 50 °C/h et 100 °C/h ont été essayées avec le brai de référence (figure 3.8), afin de trouver un taux de chauffe qui permettrait de récupérer suffisamment d'hydrocarbures. Pour chacun de ces taux de chauffage, lorsque la température atteint 1050 °C, on poursuit avec un plateau d'une heure à cette température. Le test à 10 °C/h permet de se renseigner sur les gaz qui s'échappent du brai à la température de maintien des mélangeurs brai/coke. La température maximale atteinte pour ce taux est de 500 °C.

Figure 3.8: Taux de chauffe utilisés.

À la suite des résultats obtenus, il a été décidé d'utiliser un taux de chauffage de 50 °C/h. Des masses de 50 g et 10 g de brai ont été choisies pour observer l'effet de masse. La masse des échantillons de pâte a été fixée à 50 g afin de recueillir davantage de substances volatiles. Le nombre d'expériences réalisées avec des échantillons de brais et de pâtes est indiqué au tableau 3.7.

Échantillon	Туре	Masse	Taux de	Nombre
			chauffe	d'essais
	A	10 g	30 °C/h	1
	A	10 g	50 °C/h	2
	A	10 g	100 °C/h	3
	A	50 g	10 °C/h	2
	A	50 g	30 °C/h	4
	A	50 g	50 °C/h	3
	A	50 g	100 °C/h	5
BRAIS	В	10 g	50 °C/h	2
	В	50 g	50 °C/h	3
	С	10 g	50 °C/h	1
	С	50 g	50 °C/h	3
	D	10 g	50 °C/h	2
	D	50 g	50 °C/h	2
	E	10 g	50 °C/h	1
	E	50 g	50 °C/h	2
	P1	50 g	50 °C/h	3
PÂTES	P2	50 g	50 °C/h	5
	P3	50 g	50 °C/h	4
	P4	50 g	50 °C/h	2
TOTAL				49

Tableau 3.7: Répartition et conditions des expériences.

Pour la plupart des échantillons, un minimum de deux expériences furent effectuées afin de corroborer les résultats.

3.7.4 Creuset

La cinétique de dégagement dépend d'une multitude de facteurs. La surface exposée au dégagement (fixée par le diamètre du creuset utilisé) est un de ces facteurs. À une exception près, tous les tests ont été faits avec le même creuset. Il s'agit d'un creuset en alumine dont les dimensions figurent au tableau 3.8. Lors de l'expérience avec le brai A, à un taux de chauffage de 100 °C/h pour une masse de 50 g, il y avait un débordement. Pour empêcher ce débordement, il a fallu utiliser un autre creuset (en quartz cette fois) de 6 cm plus haut que le premier mais dont la surface exposée au dégagement était légèrement plus grande (voir tableau 3.8).

Caractéristiques	Creuset en alumine	Creuset en quartz	
Hauteur	7.6 cm	13.7 cm	
Diamètre intérieur	4.4 cm	5.3 cm	
Diamètre extérieur	5 cm	5.7 cm	

Tableau 3.8: Dimensions des creusets utilisés.

3.8 Montage expérimental modifié pour la détermination des quantités totales de matières condensables dégagées

Dans cette étude, il était primordial de connaître la répartition en matières condensables et non condensables des gaz émis. Il faut considérer que les gaz échappés de la zone de pyrolyse parcourent une grande trajectoire dans des conduits chauffés avant d'être piégés. Il importe de savoir, si ce trajet affecte la structure chimique des substances. Ces connaissances sont un complément essentiel à la première partie.

Pour ce faire, les matières volatiles dégagées devaient être condensées dès la sortie du four. Une modification du système de captage était donc nécessaire. Ce nouveau système (en gras à la figure 3.9) est constitué d'un emboîtement de tubes de verre unis par joints rodés. Un premier tube de quartz est inséré dans le tube d'alumine du four (1) en assurant une bonne étanchéité par une feuille d'alumine. Il est suivi d'un second tube (quartz/pyrex) qui dispose d'une tige (7) pour suspendre l'échantillon (2). La partie suivante, le piège principal (3), est rempli de laine de verre. La majeure partie des condensables sont captés dans cette laine. Les gaz passent ensuite dans une série de deux pièges (4) mis dans un bain de glace. Un autre piège (5) précède la pompe aspirante (6). Ces trois derniers pièges contiennent eux aussi de la laine de verre. De l'argon est toujours injecté à la base du four.

Figure 3.9: Schéma du montage modifié.

3.9 Procédure expérimentale avec le montage modifié

Ces expériences constituent la 2^e partie. Il faut reprendre les mêmes intervalles de températures dans lesquels les condensables étaient récupérés précédemment pour l'analyse des HAP. Pour chacun de ces intervalles on doit connaître la quantité de condensables accumulés et la concentration de HAP. Contrairement à la première partie, où la récupération des hydrocarbures aux intervalles de températures voulues se fait en continu (sans interrompre le chauffage), ici, le chauffage s'effectue par étapes et la différence de masse entre deux étapes de chauffage donne les quantités condensées volatilisées durant cet intervalle. Ainsi, on procède à une première étape de chauffage de T_{amb} (température ambiante) à 350 °C, les pièces de verre de même que l'ensemble creuset/échantillon sont pesées avant et après chauffage puis les condensables sont récupérés. On recommence ensuite le chauffage avec une nouvelle masse identique; mais cette fois de T_{amb} à 450 °C; la verrerie et l'ensemble creuset/échantillon sont de nouveau pesés et les condensats récupérés. Cette procédure s'applique à chaque limite de température: 350 °C, 450 °C, 550 °C et 650 °C. En faisant la différence de masse avant et après chaque chauffage de la verrerie et du creuset/échantillon, on peut connaître les quantités volatilisées et condensées à partir de la température ambiante. Puis en établissant la différence de masse entre deux chauffages consécutifs on obtient la quantité durant un intervalle de température.

3.9.1 Méthodologie

- 1. Mettre de la laine de verre dans tous les pièges.
- 2. Préparer une masse (50 g) de brai ou de pâte, la mettre dans le creuset, peser l'ensemble creuset et échantillon puis déposer ce dernier dans la nacelle.
- 3. Peser toutes les pièces de verrerie.
- Monter la verrerie en prenant soin d'accrocher la nacelle à l'aide du crochet suspendu à la tige.
- 5. Laisser entrer le gaz inerte dans le four à un débit de 2300 cm³/min.
- 6. Actionner la pompe des gaz d'échappement et ajuster le débit à 46 %.
- Actionner la programmation du contrôleur selon la limite de chauffage voulue soit 350 °C, 450 °C, 550 °C ou 650 °C.
- 8. Mettre de la glace dans le bain.
- 9. À la fin du chauffage, peser chacune des pièces de verrerie et le creuset avec le résidu.
- Récupérer la laine de verre et la tremper dans un volume connu d'acétone HPLC avec l'agent de conservation.

Pour ces expériences, seuls les brais B et C ainsi que leur pâte respective P1 et P2 ont été utilisés. Le tableau 3.9 indique la distribution des expériences pour ces échantillons.

Échantillons	Masse	Taux	Limite de chauffage			
	initiale	de chauffe	350 °C	450 °C	550 °C	650 °C
Brai B	50 g	50 °C/h	1	1	1	1
Brai C	50 g	50 °C/h	2	1	1	1
Pâte P1	50 g	50 °C/h	1	1	1	1
Pâte P2	50 g	50 °C/h	1	1	1	1

Tableau 3.9: Répartition des expériences de la 2^e partie.

3.10 Conclusion

En bref, la phase expérimentale se divise en deux parties. La l^{ére} partie utilise un montage, fort complexe, constitué de sondes qui recueillent une fraction des matières volatiles. Une des sondes sert à analyser les gaz non condensables tandis que l'autre à piéger des hydrocarbures lourds. De plus, la perte de masse et la température sont enregistrées à intervalle fixe. La 2^e partie recueille quant à elle tous les gaz émis. Les gaz non condensables ne sont pas analysés; seuls les condensables le sont. Le poids de la verrerie et de l'échantillon est mesuré avant et après chaque étape de chauffage.

CHAPITRE 4

TRAITEMENT ET INTERPRÉTATION DES RÉSULTATS

4.1 Introduction

Les résultats obtenus lors de la 1^{ere} partie expérimentale sont discutés à la section 4.2. Dans cette section, on traite les résultats de l'analyse: thermogravimétrique, des gaz non condensables (H_2 et CH_4) et des gaz condensables (HAP). Pour chaque type d'analyse, on présente en premier lieu les annexes qui s'y rapportent puis on aborde les résultats obtenus avec des échantillons de brais et de pâtes et finalement on compare ces résultats entre brai et pâte. Dans la section 4.3, les résultats acquis avec le montage modifié, c'est-àdire la 2^e partie expérimentale, sont traités. Ces résultats sont ceux relatifs à la prise de masse et aux analyses de HAP. La conformité des résultats de pesée et d'analyse de HAP obtenus avec les deux types de montage est vérifiée à la section 4.4. Les résultats du test effectué à basse vitesse de chauffage sont discutés à la section 4.5. La conclusion de ce chapitre suit, à la section 4.6.

4.2 Analyse des résultats de la 1^{ère} partie expérimentale

4.2.1 Analyse thermogravimétrique

Dans la l^{ère} partie, la perte de masse et la température étaient enregistrées à intervalles continus. Tous les thermogrammes des brais et des pâtes sont présentés à l'annexe II. Ceux-ci sont exprimés selon le pourcentage de perte de masse en fonction de la température. Le pourcentage de perte de masse représente la masse volatilisée en gramme par rapport à la quantité initiale de brai en gramme. Sur un même graphique, toutes les courbes thermogravimétriques obtenues avec le brai, sa pâte, s'il y a lieu, sont regroupées au taux de chauffage mentionné.

4.2.1.1 Brais

La figure 4.1 suivante présente les thermogrammes obtenus avec le brai A d'une masse de 50 g à trois taux de chauffage: 30 °C/h, 50 °C/h et 100 °C/h. La courbe thermogravimétrique obtenue à un taux de chauffe de 10 °C/h n'apparaît pas puisque le chauffage se termine à 550 °C (voir cette courbe à l'annexe II figure II.4).

Figure 4.1: Évolution de la perte de masse à différents taux de chauffe pour une masse de 50 g de brai A.

Le dégagement des matières volatiles débute à plus basse température lorsque le taux de chauffe est bas. À 100 °C/h, le dégagement commence vers 260 °C tandis qu'à 30 °C/h, les gaz s'échappent aux environs de 225 °C. L'augmentation du taux de chauffage déplace le dégagement des volatiles vers les températures plus élevées. Ce phénomène a été constaté dans deux études antérieures, la première réalisée avec des échantillons d'électrodes de carbone [5] et la seconde avec des échantillons de brais d'imprégnation [7]. Ceci s'explique notamment par le fait que la quantité de matières volatiles dégagées à une certaine température dépend du temps passé à cette température. Puisque le brai, à basse vitesse de chauffage, passe plus de temps à chaque température on favorise donc le développement de réactions qui génèrent entre autres, des substances volatiles.

L'utilisation d'un creuset dont le diamètre est un peu plus large à une vitesse de chauffage de 100 °C/h (creuset en quartz) n'a, à toute fin pratique, aucune influence sur la perte de masse totale.

Comme on peut le constater sur la figure 4.2, une diminution de la masse favorise la libération de matières volatiles. La volatilisation débute à la même température mais, en suivant l'évolution du chauffage, on constate que la perte de masse est plus faible avec une masse de brai de 50 g qu'avec une de 10 g. D'après le tableau 4.1, qui donne la perte de masse totale pour chaque essai avec tous les brais, la perte de masse totale augmente environ de 8 % en passant d'une masse de 50 g à 10 g pour le brai A à un taux de chauffage de 30 °C/h. L'augmentation de la masse limite le processus de volatilisation à tous les taux de chauffe. Les autres brais se comportent eux aussi de la même façon. D'une masse de 50 g à 10 g, le taux de volatilisation augmente environ de 5 %. À l'annexe II, l'écart de perte de masse entre une masse de 10 g et 50 g pour tous les brais s'observe tout au long de la montée en température. Le mécanisme de l'accroissement de la résistance au dégagement dû à la masse semble jouer un rôle important dans le cas du brai.

Figure 4.2: Évolution de la perte de masse pour deux masses distinctes de brai A à un taux de chauffe de 30 °C/h.

Les courbes thermogravimétriques de tous les essais effectués avec les brais sont juxtaposées aux figures 4.3a et 4.3b. On peut noter que la volatilisation du brai D accuse un léger retard par rapport aux autres brais. L'ordre de la perte de masse totale des brais ne se suit pas d'une masse à l'autre. En effet, pour 10 g de brai (figure 4.3a), la plus grande perte de masse provient du brai A suivi du brai C, B, E et D tandis que pour 50 g de brai (figure 4.3b), c'est le brai C qui précède le A suivi de B, E et D.

Figure 4.3a: Évolution de la perte de masse pour tous les brais d'une masse de 10 g à un taux de chauffe de 50 °C/h.

Figure 4.3b: Evolution de la perte de masse pour tous les brais d'une masse de 50 g à un taux de chauffe de 50 °C/h.

Par la valeur de cokéfaction, l'ordre décroissant de dégagement serait le brai C, A, B, E et D tel qu'obtenu avec une masse de 50 g. Les brais D et E viennent logiquement en bas de liste, étant des brais à haut point de ramollissement.

En comparant l'évolution de la volatilisation des autres brais par rapport à celle du brai A pour une masse de 50 g, on constate que seul le brai C (38,4 %) a un taux de dégagement supérieur à celui de A (36,8 %). On remarque aussi que les brais à bas HAP, C et E, ont une perte de masse totale supérieure à leur brai régulier respectif B et D, ce qui respecte l'ordre logique établi par la valeur de cokéfaction. Par exemple, pour une masse de 50 g, le brai D (30,8 %) dégage moins que celui à bas HAP, le brai E (33 %). Le dégagement des matières volatiles des brais est intimement lié à leur composition intrinsèque.

Brais	Masse	Taux de chauffe	Perte de masse totale
	(g)	(°C/h)	(%)
A	10	30	45
	10	50	43,9
	10	100	41
	50	10	36
	50	30	37
	50	50	36,8
i	50	100	37,4*
В	10	50	41
	50	50	35,6
C	10	50	43
	50	50	38,4
D	10	50	37
	50	50	30,8
E	10	50	38
	50	50	33

Tableau 4.1: Perte de masse totale des brais.

* Utilisation du creuset en quartz (voir les dimensions au tableau 3.7).

4.2.1.2 Pâtes

Tous les thermogrammes obtenus par l'analyse thermogravimétrique des pâtes sont regroupés à la figure 4.4. La perte de masse est rapportée à la quantité de brai contenu dans la pâte. D'après ces thermogrammes, il semble que la volatilisation des pâtes P3 et P4 débute légèrement plus tard que les pâtes P1 et P2. L'ordre de dégagement ne respecte pas la valeur de cokéfaction selon laquelle la pâte P1 dégagerait le plus de matières volatiles suivie de P2 puis à égalité, P3 et P4. La perte de masse totale pour chaque pâte est indiquée au tableau 4.2.

Figure 4.4: Évolution de la perte de masse pour toutes les pâtes d'une masse de 50 g à un taux de chauffe de 50 °C/h.

Pâtes	Masse (g)	Taux de chauffe (°C/h)	Perte de masse totale (%)	Perte de masse rapportée à la teneur en brai (%)
P1	50	50	9,6	35,42
P2	50	50	10	36,63
P3	50	50	8,6	31,73
P4	50	50	8	29,3

Tableau 4.2: Perte de masse totale des pâtes.

La pâte P2 (36,63 %) dégage le plus de matières volatiles suivie de P1 (35,42 %), P3 (31,73 %) et P4 (29,3 %).

4.2.1.3 Comparaison entre brais et pâtes

Aux figures II.5, II.6, II.7 et II.8 de l'annexe II, on a superposé les thermogrammes

du brai et de la pâte correspondante. On semble déceler un déplacement du dégagement

des volatiles vers les températures plus élevées pour le brai par rapport à sa pâte, notable pour les brais réguliers B et D et faible pour les brais à bas HAP C et E.

Les brais à bas HAP suivent tous deux la même tendance à l'effet que la perte de masse totale des brais est supérieure à celle de leur pâte; pour le brai C, elle est de 1,77 % plus grande que sa pâte P2; pour le brai E, l'écart est de 3,6 % avec sa pâte P4. La perte de masse totale des brais réguliers B et D est sensiblement la même que celle de leur pâte respective P1 et P3. En effet, la quantité dégagée par g de brai est équivalente entre le brai B et sa pâte P1; entre le brai D et sa pâte P3, c'est la pâte qui a une perte de masse légèrement supérieure de 0,93 %.

Pour une même masse totale (50 g), le coke de la pâte ne semble pas perturber de façon appréciable le dégagement des matières volatiles pour les brais B et D. Par contre, puisque les brais C et E (bas HAP) présentent des courbes nettement différentes avec et sans coke, ceci laisse suggérer que le coke pourrait produire un effet catalyseur sur les réactions qui se produisent (voir figure II.6 et II.8).

En examinant les courbes thermogravimétriques (annexe II) aux intervalles de température qui nous intéressent, on constate qu'entre 250 °C et 350 °C, la volatilisation débute; qu'entre 350 °C et 450 °C, la vitesse de dégagement s'accroît avant le point d'inflexion et; qu'entre 450 °C et 550 °C, le taux de volatilisation est le plus élevé; puis

finalement, qu'entre 550 °C et 650 °C, la perte de masse atteint un palier dont le début coïnciderait avec la fin de l'évaporation des matières condensables par distillation.

4.2.2 Analyse chromatographique des gaz non condensables (H₂ et CH₄)

Lors de l'analyse des gaz non condensables, la valeur de l'aire sous le pic de chaque constituant donnée par l'intégrateur était tout d'abord corrigée afin de tenir compte de l'air entré (section 3.5.2) et la concentration était calculée par la méthode du standard externe (section 3.5.3). On obtient alors une concentration d'hydrogène et de méthane en ppm. Celle-ci est ensuite rapportée par g de brai, ce qui permet de superposer sur un même graphique les courbes de différentes masses de brais et de pâtes. La distribution de la concentration des gaz non condensables de chaque expérience en fonction de la température et du temps figure à l'annexe III. Il semble approprié de clarifier dès maintenant le concept du temps et de la température. La quantité totale de gaz dégagée d'une certaine masse d'un échantillon est la même peu importe la vitesse de chauffage. Il est mathématiquement normal que l'échantillon libère sa quantité de gaz sur une plus courte période à une vitesse de chauffage élevée. Par contre, lorsque la vitesse de chauffage est modérée, le passage d'une température à l'autre qui permet la libération des substances volatiles se fait plus lentement et le dégagement se fait sur une plus grande période. La dernière page de l'annexe III (figures III.17 et III.18) présente clairement cette distinction.

Dans les discussions qui vont suivre, les résultats seront davantage analysés en fonction de la température étant donné que l'étude s'intéresse plus particulièrement aux températures de dégagement des gaz condensables et non condensables.

4.2.2.1 Brais

Nos résultats bruts exprimés en ppm concordent tout à fait aux réalités physiques qui veulent que l'élévation du taux de chauffe force les gaz à se dégager sur une plus courte période donc à augmenter la concentration maximale à une température donnée et que l'augmentation de la masse augmente la concentration de façon corrélative. En comparant les chromatogrammes, ci-joints en annexe III, obtenus avec le brai A (figures III.1 à III.8), on remarque que le taux de chauffage influence les résultats. Les figures 4.5a et 4.5b montrent à quel point l'augmentation de la vitesse de chauffage accroît la concentration maximale de l'hydrogène et du méthane pour une masse de 10 g de brai A à une température donnée. Les figures 4.6a et 4.6b présentent respectivement la distribution de la concentration d'hydrogène et de méthane pour une masse de 50 g de brai A; le même effet de la vitesse de chauffage peut être observé. Il est à noter que la distribution de la concentration des gaz non condensables du test à basse vitesse de chauffage (50 g, 10 °C/h) a été incorporée à ces figures (4.6a et 4.6b).

Figure 4.5a: Distribution de la concentration d'hydrogène pour une masse de 10 g de brai A à différents taux de chauffe.

Figure 4.5b: Distribution de la concentration de méthane pour une masse de 10 g de brai A à différents taux de chauffe.

Figure 4.6a: Distribution de la concentration d'hydrogène pour une masse de 50 g de brai A à différents taux de chauffe.

Figure 4.6b: Distribution de la concentration de méthane pour une masse de 50 g de brai A à différents taux de chauffe.

Avec une masse plus grande nous sommes plus en mesure d'observer le comportement des gaz sur toute la durée de la pyrolyse. Une augmentation de la masse prolonge la période de volatilisation de l'hydrogène qui se termine autour de 1050 °C avec une masse de 50 g (figure 4.6a) comparativement à 750 °C avec une masse de 10 g (figure 4.5a) à une vitesse de chauffage de 30 °C/h. Le phénomène est aussi bien représenté à la figure III.1 où l'on voit clairement la différence entre les courbes à 10 g et 50 g. Il semble ici qu'une masse plus grande, donc une plus grande obstruction à la libération des gaz, favoriserait des réactions additionnelles productrices d'hydrogène. Ce comportement est aussi observé, avec moins d'ampleur toutefois à des vitesses de chauffe de 50 °C/h et 100 °C/h (figures III.3 et III.5), probablement parce que les réactions secondaires ont moins le temps de s'établir. Le taux de chauffe semble aussi avoir un effet similaire. En effet, comme on peut l'observer à la figure 4.5a, pour une masse de 10 g, la volatilisation prend fin à 750 °C à un taux de chauffe de 30 °C/h tandis qu'elle se poursuit jusqu'à 850 °C à 50 °C/h et 1050 °C à 100 °C/h. Spécifions toutefois qu'au taux de chauffage le plus bas le temps de dégagement est plus long (voir les figures III.2, III.4 et III.6)

Tous les autres brais ont des chromatogrammes (annexe III figures III.9 à III.16) de même allure que celui du brai A. Ces derniers sont juxtaposés sur les quatre graphiques présentés aux figures 4.7 et 4.8. Les figures 4.7a et 4.7b illustrent la concentration de l'hydrogène et du méthane pour une masse de 10 g de tous les brais, tandis que les deux figures suivantes présentent le même genre de résultats pour une masse de 50 g (figures 4.8a et 4.8b). Le pic maximal d'hydrogène se retrouve dans 10 g de brai E tandis que celui du méthane est obtenu avec 10 g de brai C. Néanmoins, il semble que la courbe d'hydrogène pour 10 g de brai E soit incorrecte si on la compare aux résultats des autres brais. Les courbes de 10 g et 50 g de brai pour les autres brais B, C, D (figures III.9 à III.14) sont très rapprochées. Pour le brai E, aux figures III.15 et III.16, la concentration d'hydrogène pour 10 g de brai est beaucoup plus élevée que celle de 50 g. À part cette courbe, une masse plus grande ne fait qu'élargir la plage de la distribution de la concentration d'hydrogène et de méthane pour les brais B, C, D, et E (figures III.9 à III.16 et 4.7a, 4.7b, 4.8a, 4.8b). En effet, avec une masse de 50 g de brai, la volatilisation débute à 400 °C au lieu de 425 °C avec une masse de 10 g. Il est intéressant de constater que pour une masse de 10 g de brai A, le dégagement d'hydrogène est quasi nul après 850 °C, si on le compare aux autres brais (figure 4.7a); ce phénomène ne s'observe pas avec une masse de 50 g (figure 4.8a).

En faisant le rapprochement avec les thermogrammes présentés à la section 4.2.1 où un changement abrut de pente à été noté autour de 500 °C, on voit qu'au-dessus de cette température des quantités importantes d'hydrogène et de méthane sont dégagées par les réactions de craquage mais aussi que ce processus s'était déjà amorcé autour de 400-425 °C, c'est-à-dire aux températures où le dégagement des substances condensables était le plus fort (voir aussi section 4.3.1).

Figure 4.7a: Distribution de la concentration d'hydrogène pour tous les brais d'une masse de 10 g à un taux de chauffe de 50 °C/h.

Figure 4.7b: Distribution de la concentration de méthane pour tous les brais d'une masse de 10 g à un taux de chauffe de 50 °C/h.

Figure 4.8a: Distribution de la concentration d'hydrogène pour tous les brais d'une masse de 50 g à un taux de chauffe de 50 °C/h.

Figure 4.8b: Distribution de la concentration de méthane pour tous les brais d'une masse de 50 g à un taux de chauffe de 50 °C/h.

4.2.2.2 Pâtes

Selon les chromatogrammes des pâtes (annexe III figures III.9 à III.16), regroupés à la figure 4.9a pour la distribution de la concentration d'hydrogène et la figure 4.9b pour celle du méthane, on remarque que les pics d'hydrogène et de méthane les plus élevés sont ceux de la pâte P2; suivent ensuite dans l'ordre les pâtes P4, la P3 et P1. La concentration d'hydrogène, au-delà de 900 °C, est assez importante pour les pâtes P3 et P4 tandis qu'elle est pratiquement nulle pour les pâtes P1 et P2. La présence de méthane prend fin vers 550 °C pour les pâtes P1 et P2 et vers 700 °C pour les pâtes P3 et P4. Il est fort probable que la composition de la pâte peut expliquer cette différence. Le dégagement des gaz non condensables s'étend sur une plus longue période pour les pâtes P3 et P4. Ce phénomène pourrait s'expliquer sommairement par le fait que les brais D et E (brais à haut point de ramollissement) qui les composent sont obtenus par une distillation plus poussée; ils contiennent donc davantage d'hydrocarbures lourds qui à haute température réagissent en libérant de l'hydrogène.

Figure 4.9b: Distribution de la concentration de méthane pour toutes les pâtes d'une masse de 50 g à un taux de chauffe de 50 °C/h.

4.2.2.3 Comparaison entre brais et pâtes

Pour un brai et une pâte de même type, la distribution des gaz non condensables est semblable. Il est intéressant de remarquer que pour les pâtes P1 et P2, il y a peu de traces d'hydrogène après 900 °C (figure 4.9a), mais pour leur brai respectif B et C, l'hydrogène disparaît seulement à 1050 °C (figure 4.7a et 4.8a). Cette différence s'observe aisément aux figures III.9 à III.12. Un effet catalytique dû à la présence du coke dans la pâte pourrait expliquer ce comportement. Les pâtes P3 et P4 suivent quant à elles la courbe de leur brai respectif D et E (figures III.13 à III.16). Seule la concentration maximale de méthane se retrouve à la fois dans la pâte P2 et son composant, le brai C. Pour tous les essais, le pic maximal d'hydrogène apparaît aux alentours de 700 °C et celui du méthane vers 500 °C.

4.2.3 Analyse des matières condensables (HAP)

Il y a eu deux types d'analyse, faites par le laboratoire analytique du CRDA, sur les échantillons de condensat. Les résultats de la 1^{ère} analyse des gaz condensables donnent la quantité de chaque HAP retrouvé dans un échantillon de condensat. Avec cette analyse, la quantité de chaque HAP est rapportée à la quantité totale de HAP. La seconde détermine la masse de substances condensables mises en solution dans l'acétone ce qui permet de rapporter les quantités de HAP par g de substances condensables.

Ainsi, les résultats ont tout d'abord été exprimés sous forme relative, soit la quantité d'un HAP par rapport à la somme de tous les HAP mesurés (µg HAP/µg HAP total), pour toutes les expériences effectuées lors de la l^{ère} partie (annexe IV). Cela permet de voir l'évolution de la proportion de chaque HAP, dont le nom a été abrégé, par tranche de 100 °C, de 250 °C à 650 °C. L'annexe V présente la proportion de chaque classe génotoxique. La somme de la concentration de chaque HAP formant une catégorie (génotoxique, non génotoxique ou hautement génotoxique) est rapportée à la quantité totale de HAP. Les graphiques sont présentés de façon à juxtaposer soit une masse de 10 g et 50 g du même brai ou 50 g de brai avec 50 g de sa pâte pour les essais de la 1^{ère} partie expérimentale. De plus, les résultats de chaque essai de la 1^{ère} partie ont été exprimés selon la proportion de génotoxicité (B[a]P éq./B[a]P éq. total) des HAP génotoxiques et hautement génotoxiques à l'annexe VI. La quantité de HAP a aussi été exprimée par g de substances condensables (résultats de la 2^e analyse) tel qu'affichée à l'annexe VII pour tous les essais qu'ils soient de la 1^{ère} ou 2^e partie. Il est à noter que les résultats bruts d'analyse de tous les échantillons de condensat (1^{ère} et 2^e partie expérimentale) sont présentés sous forme de tableau à l'annexe XI.

4.2.3.1 Brais et pâtes

l^{ère} analyse: quantités rapportées à la totalité des HAP

Il semble y avoir un spectre d'émission, sans être tout à fait défini, respectif pour chaque type de brais et de pâtes selon leur constitution (voir annexe IV). Durant l'évolution du chauffage, une tendance générale s'observe pour les brais et les pâtes, peu importe la masse ou le taux de chauffe: la proportion de HAP non génotoxiques (F, PH, A, P) diminue, celle des HAP génotoxiques (BkF, BaA, FA, BeP, BbF, IP) demeure stable et celle des HAP hautement génotoxiques (C, BaP, BghiP, DahA) augmente. Ceci corrobore la réalité à l'effet que les HAP à faibles poids moléculaires, les non génotoxiques, se dégagent à basse température alors que les HAP à poids moléculaires élevés, les hautement génotoxiques, se dégagent à haute température. La figure 4.10 suivante, tirée de l'annexe V, met en évidence ce phénomène.

À l'annexe V, on peut constater pour chacun des cas, que le phénomène de rétention causé par l'augmentation de la masse, constaté sur les thermogrammes, n'influence pas la proportion de chaque classe de HAP émis.

Figure 4.10: Proportion de HAP pour chaque classe de HAP pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 50 °C/h

Règle générale, pour chaque intervalle de température, les HAP génotoxiques sont les plus présents. On constate toutefois à la figure V.8 que la proportion de HAP non génotoxiques émis de la pâte P4 entre 250 °C et 350 °C est très élevée. La figure IV.15 confirme que le phénanthrène a contribué à cette augmentation. Ceci s'explique probablement par le fait que le brai utilisé pour fabriquer cette pâte est obtenu par distillation à très haute température puis il est ensuite coupé avec des huiles à bas HAP.

Par ailleurs, le taux de chauffe n'agit pas distinctement sur la proportion de chaque classe de HAP comme on peut le constater aux deux figures suivantes 4.11a et 4.11b pour une masse de 10 g et 50 g de brai A.

Figure 4.11a: Proportion de chaque classe de HAP pour une masse de 10 g de brai A à différents taux de chauffe.

Figure 4.11b: Proportion de chaque classe de HAP pour une masse de 50 g de brai A à différents taux de chauffe.

Pour l'évaluation de la génotoxicité d'un produit, il n'est pas suffisant de comparer la proportion de HAP; encore faut-il tenir compte du potentiel d'émissions génotoxiques, le B[a]P équivalent [1]. En effet, un HAP présent en faible quantité avec un facteur de génotoxicité (RPF) élevé affecte davantage les organismes vivants qu'un HAP en quantité élevée mais non génotoxique (RPF inexistant). À l'annexe VI, chaque composé a été exprimé sous forme de B[a]P équivalent et rapporté au total des B[a]P équivalent. Le benzo(a)pyrène, composé cancérigène bien connu, est malheureusement présent à tous les intervalles de température. Il représente, à lui seul, environ 40 % du potentiel génotoxique.

2^e analyse: quantités rapportées à la totalité des substances condensables

La seconde analyse porte sur la quantité totale de matières solubles (MStotal). contenues dans les échantillons de condensat. Cette valeur inclut la masse de plusieurs constituants tels que les HAP, d'autres hydrocarbures condensables et l'agent de conservation. Le poids de ce dernier a été retranché du MStotal.

Quelques échantillons de condensat ont donné une valeur de MStotal inférieure au poids de l'agent de conservation. Aux intervalles de température où le problème apparaît, la quantité de substances condensables est posée nulle. La liste des échantillons de condensat dont la masse de l'agent de conservation dépasse celle des substances condensables est donnée ci-dessous.

Échantillons	<u>Masse</u>	Taux de chauffe	Intervalle de température
Brai A	10 g	30 °C/h	250-350
Brai A	50 g	50 °C/h	250-350
Pâte P2	50 g	50 °C/h	550-650
Pâte P4	50 g	50 °C/h	250-350

Cette erreur s'explique principalement par le fait que la quantité de matières volatiles dégagées à ces intervalles de température (250-350 °C et 550-650 °C) est faible. Qui plus est, ces résultats erronés ne représentent qu'une très petite portion de tous les échantillons analysés (4/74). Pour la quasi totalité des échantillons, le taux de matières solubles est excessivement élevé ce qui facilite le retrait du poids de l'agent de conservation et laisse présager des résultats très fiables.

Au début de l'annexe VII, les concentrations de HAP par g de substances condensables de tous les essais de l^{ère} partie sont présentées pour chaque intervalle de température (figures VII.1 à VII.15).

Le comportement de la concentration en HAP (mg HAP/g condensable) pour le brai A selon le taux de chauffe et la masse s'explique difficilement. À une même vitesse de chauffage, un simple changement de masse affecte la répartition de la concentration (figures VII.1 àVII.7). Chaque type de brai et de pâte possède son propre spectre d'émission, tout comme à l'annexe IV, selon sa composition intrinsèque. On constate aisément que le brai C dégage le moins de HAP (figure VII.10).

Il est possible de vérifier rapidement la cohérence entre la concentration en HAP exprimée par µg HAP total (annexe IV) et celle exprimée par g condensable (annexe VII) en rapportant les mg HAP/g condensable en µg HAP/µg condensable (diviser par 1 000 les valeurs de l'annexe VII). La concentration rapportée en µg HAP/µg condensable doit être et est en effet inférieure à celle exprimée en µg HAP/µg HAP total puisque la quantité appréciable de condensable comprend les HAP ainsi qu'une autre fraction d'hydrocarbures non analysée.

4.2.3.2 Comparaison entre brais et pâtes

On note une similitude évidente entre la distribution de HAP des brais et celle de leur pâte (annexe IV figures IV.8 à IV.15). Conséquemment, cette similitude se poursuit dans le spectre d'émission du potentiel génotoxique (annexe VI figures VI.8 à VI.15). La figure 4.12, extraite de l'annexe V, montre la cohérence de la distribution de HAP classée par catégories pour le brai B et sa pâte P1. Le coke calciné, utilisé pour fabriquer la pâte, contient des impuretés comme par exemple: le soufre, le nickel et le vanadium qui peuvent interagir avec le brai lors du chauffage. Basé sur ces résultats, il ne semble pas y avoir un effet catalytique des impuretés du coke (Ni, V, S, etc...) sur l'émission des HAP de la pâte comparativement au brai.

Figure 4.12: Proportion de chaque classe de HAP pour une masse de 50 g de brai B et 50 g de sa pâte P1 à un taux de chauffe de 50 °C/h.
La distribution de la concentration de HAP exprimée en mg HAP/g condensable du brai versus celle de la pâte est similaire. Cette similitude est très marquée pour le brai D avec la pâte P3 (figures VII.12 et VII.13). Les résultats affichés aux figures VII.1 à VII.15 sont repris aux figuress VII.16 à VII.31 pour mettre en évidence la différence de concentration entre le brai et sa pâte à un intervalle de température. On constate pour le brai B que la concentration est sensiblement la même entre le brai et sa pâte (figures VII.16 à VII.19). Toutefois pour le premier intervalle de température, la quantité de HAP émis par g de substances condensables de la pâte est en général supérieure à celle du brai. Cela pourrait s'expliquer de la façon suivante. L'erreur que l'on fait en soustrayant le poids de l'agent de conservation du MStotal, dans cet intervalle de température (250-350°C), est assez importante puisque le poids des substances condensables dégagées de la pâte est faible par rapport au poids de l'agent de conservation. La quantité de condensables obtenue étant inférieure à la valeur réelle, la concentration émise par la pâte est surévaluée, dépassant celle du brai dans cet intervalle. Aux températures plus élevées, soit l'intervalle 550-650 °C, la concentration émise par le brai devient plus grande que celle émise de la pâte P1.

Pour le brai C, on constate aussi que dans l'intervalle 250-350 °C (figure VII.20), la pâte émet plus de HAP par g de matières condensables que le brai. Mais cette fois, on ne peut conclure de la même façon que pour le brai B dans cet intervalle. En effet, dans les intervalles qui suivent (350-450 °C et 450-550 °C) (figures VII.21 et VII.22) la pâte P2

émet encore davantage que le brai C. Pourtant dans ces intervalles, la masse de substances condensables est appréciable par rapport au poids de l'agent de conservation. Il semblerait à l'égard de ces résultats qu'il y ait peut-être un certain effet catalytique par le coke sur le brai C favorisant le dégagement de HAP. Il est important de mentionner que c'est la seule pâte dont la composition intrinsèque de la plupart des HAP (10/14) dépasse celle de son brai (voir la section 3.2). En général, le brai D libère moins de HAP par g de substances condensables que sa pâte P3 (figures VII.24 à VII.27). Nous ne nous attarderons pas toutefois sur cette légère différence. L'écart entre la concentration du brai E et de sa pâte P4 est lui aussi à négliger (figures VII.28 à VII.31) si l'on fait exception de l'intervalle 550-650 °C, où quelques HAP sont émis plus intensément par la pâte P4.

Les spectres d'émission d'un brai et de sa pâte sont pratiquement identiques pour les deux premiers intervalles de température (250-350 °C et 350-450 °C) (voir les figures VII.16 /VII.17, VII.20/VII.21, VII.24/VII.25 et VII.28/VII.29). À partir de 450 °C, ce spectre d'émission change considérablement. Il y a moins de HAP à faible poids moléculaire (PH, A, FA, P, C) et davantage de HAP à poids moléculaire élevé (BeP, BbF, BkF, BaP, BghiP, IP). Les deux derniers intervalles de température (450-550 °C et 550-650 °C) possèdent eux aussi sensiblement la même distribution (voir les figures VII.18 /VII.19, VII.22/VII.23, VII.26/VII.27 et VII.30/VII.31). Ce phénomène est constaté pour les brais B, C, D et E avec leur pâte P1, P2, P3 et P4 respective.

On a tenté d'exprimer la concentration de HAP par g de brai en partant du fait qu'il est possible de rapporter la quantité de HAP retrouvée dans un système de pièges à celle dégagée directement au-dessus du creuset par un rapport des débits. Ce genre de calcul présenté à l'annexe VIII, n'a pas donné les résultats escomptés dû entre autres au fait qu'il repose sur un rapport de débits dont les valeurs peuvent varier en cours d'expérience d'une durée de 10 à 48 heures selon le taux de chauffe. Cette tentative d'évaluation a donc été abandonnée ainsi aucun résultat n'est traité par cette méthode.

4.3 Analyse des résultats de la 2^e partie expérimentale

4.3.1 Analyse des résultats de pesée

Les figures 4.13, 4.14, 4.15, 4.16 ci-dessous présentent les résultats de pesée de la 2^e partie, pour les brais B et C et leur pâte P1 et P2. Pour chaque étape de chauffage, on a la masse des matières condensables (cond.) obtenue par la différence de masse de la verrerie avant et après chauffage, celle des substances non condensables (non cond.) qui provient de la différence entre la perte de masse totale et la masse des substances condensables et, dans l'encadré, la perte de masse totale qui correspond à l'écart avant et après chauffage de l'ensemble creuset/échantillon.

Figure 4.14: Perte de masse des substances condensables et non condensables pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure 4.16: Perte de masse des substances condensables et non condensables pour une masse de 50 g de pâte P2 à un taux de chauffe de 50 °C/h.

La quantité de matières condensables à la dernière étape de chauffage Tamb à 650 °C est inférieure à celle de l'étape de chauffage précédente Tamb à 550 °C pour les brais B et C ainsi que la pâte P2. Deux hypothèses ont été formulées pour expliquer ce phénomène:

- les substances condensables piégées à la sortie du four avant 550 °C se sont volatilisées de nouveau par l'apport de chaleur supplémentaire fourni entre 550 °C et 650 °C;
- en cours de refroidissement les gaz condensables piégés se sont liquéfiés et ont coulé le long de la paroi jusque dans le four.

Entre 550 °C et 650 °C, la carbonisation commence; les matières volatiles émises proviennent des molécules qui n'ont pas réagi et des molécules à faible poids moléculaire produites par des réactions de craquage par conséquent, l'écart quantitatif de la perte de masse des substances condensables entre Tamb-550 et Tamb-650 est assez faible. Il y a davantage de gaz non condensables pour le brai C (figure 4.14) probablement parce que c'est un brai hybride, à bas HAP, formé de brai de pétrole et de goudron. Le total des HAP analysés suit la distribution des condensables pour les brais B (figure 4.13), C (figure 4.14) et la pâte P1 (figure 4.15), à l'effet que pour les trois premières étapes de chauffage les quantités de HAP et de substances condensables croissent, puis décroissent à la dernière étape de chauffage (voir les tableaux XI.16, XI.17 et XI.18 de l'annexe XI pour les valeurs brutes des quantités de HAP de la 2^e partie expérimentale).

À partir des quatre graphiques précédents, on a exprimé la proportion des substances condensables par rapport à la perte de masse totale. Les figures 4.17 et 4.18 montrent le taux de substances condensables émises du brai et de sa pâte.

Figure 4.17: Proportion massique de substances condensables par rapport à la perte de masse totale pour le brai B et la pâte P1.

Figure 4.18: Proportion massique de substances condensables par rapport à la perte de masse totale pour le brai C et la pâte P2.

Plus de 50 % des matières volatiles libérées à chaque étape de chauffage sont des condensables. En général, le brai a un taux de dégagement des matières condensables moins élevé que sa pâte à une même étape de chauffage. À la première étape de chauffage, Tamb-350 °C, les pâtes P1 et P2 enregistrent une perte de masse inférieure à la masse des substances condensables (la proportion de substances condensables par rapport à la perte de masse totale est plus élevée que 100 %). Le faible écart de masse de la verrerie avant et après cette étape de chauffage limite la précision des mesures, ce qui explique cette erreur. En réalité, la totalité des matières dégagées sont des condensables.

4.3.2 Analyse des résultats des HAP

Dans cette 2^e partie expérimentale, toutes les matières volatiles sorties du four durant une étape de chauffage passent dans des pièges. La laine de verre qui a capté la plupart des hydrocarbures lourds est déposée dans de l'acétone. On détermine, par la suite, la quantité de chaque HAP contenu dans cette solution. Tel que mentionné précédemment, une seconde analyse a été effectuée afin d'évaluer la quantité totale de matières solubles dans cette solution. À l'annexe VII, présentée antérieurement à la section 4.2.3, on retrouve les résultats des échantillons de condensat exprimés par mg HAP/g condensable de la 2^e partie (figures VII.32 à VII.35). Le problème rencontré avec les échantillons de condensat de la 2^e partie est que la différence de quantité de HAP entre deux chauffages consécutifs pour cadrer l'intervalle de température donne souvent des valeurs négatives à l'exception, bien évidemment, du premier intervalle, car on considère qu'il équivaut à la première étape de chauffage.

On remarque malgré tout que pour l'intervalle 250-350 °C, la concentration de HAP se répartit de la même façon entre les brais et leur pâte. On note de plus que les valeurs des concentrations sont voisines pour le brai B et la pâte P1 (figures VII.32 et VII.33), alors qu'elles diffèrent de façon substantielle pour le brai C et la pâte P2 (figures VII.34 et VII.35) toujours dans ce même intervalle de température. Cette observation a déjà été constatée avec les échantillons de condensat de la 1^{ère} partie (figures VII.16 et VII.20).

On a trouvé que la quantité de substances condensables détectées dans la solution (contenant les matières volatiles condensées et récupérées d'une étape de chauffage, i.e. le "MStotal" sans le poids de l'agent de conservation), est inférieure à celle obtenue par la différence de masse de la verrerie avant et après chauffage. Les matières condensables mesurées n'ont donc pas été toutes acheminées à l'analyse des HAP; une certaine quantité de substances condensables n'est pas captée dans la laine, elle colle à la feuille d'alumine qui est pesée mais pas envoyée à l'analyse. Néanmoins, connaissant exactement la quantité de HAP et de matières condensables (MStotal sans agent de conservation) dans la solution envoyée à l'analyse, on peut déterminer la quantité de HAP émis selon la masse réelle de matières condensables dégagées pesées et ensuite l'exprimer par g de brai. C'est ce qui a été fait à l'annexe IX, où l'on a comparé les concentrations de HAP ainsi obtenues pour les brais et les pâtes (B/P1, C/P2).

La plupart des HAP sont émis plus intensément par la pâte P1 que son brai B et ce, à toutes les étapes de chauffage (figures IX.1 à IX.4). Ce n'est pas ce qui se dégage de la figure 3.1 où la composition intrinsèque du brai B est supérieure à celle de la pâte P1. On peut donc penser, malgré que l'émission soit inférieure à la composition, qu'il y ait un certain effet catalytique du coke. Aux trois premières étapes de chauffage, la concentration de la pâte P2 est plus élevée que celle du brai C (figures IX.5 à IX.7); donc la présence d'une réaction du coke avec le brai. À la dernière étape de chauffage (figure IX.8), cette tendance se résorbe; la composition du brai C vs la pâte P2 (figure 3.2) se comporte pratiquement comme l'émission montrée à la figure IX.8; à l'effet que la teneur en HAP de la pâte est en général quelque peu supérieure à celle du brai. La distribution des émissions du brai C entre les étapes de chauffage Tamb-550 et Tamb-650 (figures IX.7 et IX.8) est quasi conforme. Il est à noter qu'à la 1^{ère} étape de chauffage (Tamb-350), le dégagement de la pâte est beaucoup plus important que celui de son brai (figures IX.1 et IX.5). Ce phénomène est probablement causé par l'erreur faite en retranchant la masse de l'agent de conservation d'un faible poids de condensables émis par la pâte à cette étape de chauffage. La quantité de HAP détectés devient appréciable par rapport à la quantité de substances condensables analysées et en déterminant la concentration de HAP selon la masse de condensables pesée on accroît sa valeur. Ce même type d'erreur a été souligné à la section

4.2.3.2. Finalement, l'effet catalytique du coke a tendance à se produire aux températures où le taux de libération de matières est le plus important. Pour le brai B, c'est aux étapes de chauffage Tamb-450 jusqu'à Tamb-650. Pour le brai C, c'est pour les étapes de chauffage Tamb-450 et Tamb-550.

Pour comparer les HAP dégagés à la composition intrinsèque en HAP donnée aux tableaux 3.4 et 3.5, on utilise les quantités de HAP correspondantes à l'étape de chauffage où il y a le plus d'émissions de HAP (voir les valeurs numériques aux tableaux XI.16 à XI.19 pour tous les échantillons ou les figures 4.13 à 4.15 pour B, C et P1 seulement). La concentration des HAP émis rapportée à la masse de substances condensables pesées (résultats de l'annexe IX) est comparée à la composition intrinsèque en HAP aux figures 4.19 à 4.22. La figure 4.19 est en réalité composée des résultats du brai B des figures 3.1 et IX.3, la figure 4.20 est composée des résultats de la pâte P1 des figures 3.1 et IX.4, la figure 4.21 des résultats du brai C des figures 3.2 et IX.7 et la figure 4.22 des résultats de la pâte P2 des figures 3.2 et IX.8.

Figure 4.19: Pour le brai B, comparaison entre la composition intrinsèque en HAP et les émissions à un chauffage de Tamb jusqu'à 550 °C.

Figure 4.20: Pour la pâte P1, comparaison entre la composition intrinsèque en HAP et les émissions à un chauffage de Tamb jusqu'à 650 °C.

Figure 4.21: Pour le brai C, comparaison entre la composition intrinsèque en HAP et les émissions à un chauffage de Tamb jusqu'à 550 °C.

Figure 4.22: Pour la pâte P2, comparaison entre la composition intrinsèque en HAP et les émissions à un chauffage de Tamb jusqu'à 650 °C.

Règle générale, l'émission de HAP est inférieure à la composition en HAP. Ces résultats vont dans le même sens d'une étude menée par le CRDA [15] qui démontre que l'émission de HAP en milieu industriel par la cuve Söderberg est inférieure au contenu en HAP de la pâte. Fait rassurant, seules les émissions des composés non génotoxiques, en particulier l'anthracène pour les 4 échantillons, dépassent la valeur de leur composition. On constate aisément que le brai à bas HAP C et la pâte à bas HAP P2 dégagent moins de HAP que le brai régulier B et la pâte régulière P1. Ce phénomène s'observe aussi pour la composition à la figure 3.2 par rapport à la figure 3.1.

Lors des essais de la 2^e partie, on a constaté, après une étape de chauffage qu'une fraction des matières volatiles adhéraient au tube d'alumine du four (la paroi du four était de couleur orangé). Ces particules qui recouvrent la paroi ne sont pas analysées ni pesées. Cela peut être une cause d'erreur sur laquelle nous reviendrons à la section 4.4.1.

4.4 Cohérence des résultats de la 1^{ère} et 2^e partie

4.4.1 Résultats de pesée

Les figures suivantes (4.23 à 4.30), indiquent la perte de masse totale de la 1^{ère} et 2^e partie pour chaque étape de chauffage. Pour la 1^{ère} partie, la perte de masse, mesurée en continu, s'obtient par une lecture du thermogramme à chaque étape de chauffage. Comme il a déjà été expliqué à la section 3.9, la perte de masse de la 2^e partie, pour une étape de

chauffage, est obtenue par la différence de masse de l'ensemble échantillon/creuset avant et après chauffage.

Figure 4.23: Perte de masse à chaque étape de chauffage obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de brai B à un taux de chauffe de 50 °C/h.

Figure 4.24: Évolution de la perte de masse pour une masse de 50 g de brai B à un taux de chauffe de 50 °C/h.

Figure 4.25: Perte de masse à chaque étape de chauffage obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure 4.26: Évolution de la perte de masse pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure 4.27: Perte de masse à chaque étape de chauffage obtenue par la 1^{ére} et 2^e partie pour une masse de 50 g de pâte P1 à un taux de chauffe de 50 °C/h.

Figure 4.28: Évolution de la perte de masse pour une masse de 50 g de pâte P1 à un taux de chauffe de 50 °C/h.

Figure 4.29: Perte de masse à chaque étape de chauffage obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de pâte P2 à un taux de chauffe de 50 °C/h.

Figure 4.30: Évolution de la perte de masse pour une masse de 50 g de pâte P2 à un taux de chauffe de 50 °C/h.

La perte de masse pour les étapes de chauffage Tamb-350 °C, Tamb-550 °C, Tamb-650 °C est sensiblement la même pour les l^{ère} et 2^e parties. Par contre, on constate pour tous ces graphiques qu'à l'étape de chauffage Tamb-450 °C, la perte de masse de la 2^e partie est supérieure à celle de la 1^{ère}. D'après les thermogrammes, à 350 °C la volatilisation est bien enclenchée, à 450 °C le taux de volatilisation est très élevé et à 550 °C le dégagement des matières volatiles est pratiquement terminé. Dans la 2^e partie, quand le contrôleur atteint la limite d'un chauffage donné l'alimentation s'interrompt. L'ensemble creuset/échantillon est retiré du four lorsque la température permet sa manipulation. Ainsi, durant ce refroidissement qui se déroule à l'intérieur du four d'autres substances peuvent avoir été dégagées, particulièrement pour le chauffage jusqu'à 450 °C où le taux de volatilisation à cette température est très élevé. Ceci explique l'obtention d'une perte de masse supérieure dans la 2^e partie comparativement à la 1^{ère} pour cette étape de chauffage. Un test a été effectué avec le brai B de Tamb à 450 °C pour confirmer cette hypothèse. La perte de masse était enregistrée en continu. Celle-ci a été notée à la fin du chauffage, soit à 450 °C, et après refroidissement à l'intérieur du four. Les résultats obtenus attestent que l'écart de perte de masse entre la l^{ère} et 2^e partie est attribuable au refroidissement à l'intérieur du four. Dans l'ensemble, on peut dire que les résultats de la perte de masse sont cohérents pour ces deux méthodes, par conséquent, l'erreur causée par l'adhérence des matières volatiles sur le tube du four, soulignée à la fin de la section précédente, est très négligeable.

Il est préférable de comparer la perte de masse pour chaque étape de chauffage que de comparer la perte de masse obtenue durant un écart de température puisque l'erreur serait multipliée.

4.4.2 Analyse des résultats des HAP

En faisant la différence de chaque quantité de HAP entre deux chauffages consécutifs on obtient la quantité de HAP durant un intervalle de température. Pour différents intervalles de température, la proportion de HAP obtenue dans la 2^e partie est comparée à celle trouvée dans la l^{ère} partie à l'annexe X. Certains intervalles de température n'ont pu être comparés car la différence de quantité de HAP entre deux chauffages consécutifs donne des valeurs négatives (voir les tableaux XI.16 à XI.19 à l'annexe XI). Chaque échantillon (B, C, P1 et P2) possède un intervalle de température dans lequel les résultats n'ont pu être considérés sur une possibilité de quatre. Les proportions de chaque HAP des 1^{ère} et 2^e parties sont assez voisines sauf aux figures X.9 et X.12. À la figure X.9, la quantité de phénanthrène obtenue avec la 2^e partie à 650 °C est inférieure à celle à 550 °C ce qui donne une valeur négative. À la figure X.12, la cohérence entre les 1^{ère} et 2^e parties est moins bonne pour la pâte P2 entre 550 °C et 650 °C. L'atteinte des températures de carbonisation peut expliquer cette inégalité. La perte de masse à ces températures est faible; il y a peu de HAP émis car ce sont surtout des hydrocarbures légers qui se libèrent par l'union de structures à poids moléculaires élevés (voir section 2.4). Puisque dans l'ensemble les proportions de HAP des l^{ère} et 2^e parties sont semblables, on

en conclut que les conduits chauffés du montage de la l^{ère} partie ne provoquent pas de transformations chimiques notables sur les gaz qui y circulent.

On a tenté de comparer les concentrations de HAP trouvées par les 1^{ère} et 2^e parties. Dans l'annexe VII, les résultats de la 1^{ère} partie sont exprimés par mg HAP/g condensable. Dans la 2^e partie, nous avons déterminé quelle était la masse de matières condensables libérées d'un échantillon de brai (figure 4.13 à 4.16). Puisqu'il n'y a pas de dégagement avant 250 °C, les matières volatiles dégagées entre 250-350 °C ou de Tamb-350 °C sont les mêmes. On peut donc appliquer les résultats de la 2^e partie à ceux de la 1^{ère} partie dans cet intervalle. Les unités de l'annexe VII se convertissent par les résultats de pesée de la 2^e

$$\frac{\text{mg HAP}}{\underset{\text{Annexe VII}}{\text{g cond}}} * \frac{\text{g cond}}{\underset{\text{g brai}}{\text{g brai}}} * \frac{1000 \ \mu\text{g HAP}}{\text{mg HAP}} = \underbrace{\frac{\mu\text{g HAP}}{\underset{\text{g brai}}{\text{g brai}}}}_{\underset{\text{Annexe VII}}{\text{p proteins}}}$$

Les résultats de l'annexe VII ainsi modifiés (résultats que nous qualifierons par la suite de "rapportés") sont comparés à ceux de l'annexe IX aux figures 4.31 à 4.34 uniquement de Tamb à 350 °C.

Figure 4.31: Concentration de HAP de Tamb à 350 °C obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de brai B à un taux de chauffe de 50 °C/h.

Figure 4.32: Concentration de HAP de Tamb à 350 °C obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure 4.33: Concentration de HAP de Tamb à 350 °C obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de pâte P1 à un taux de chauffe de 50 °C/h.

Figure 4.34: Concentration de HAP de Tamb à 350 °C obtenue par la 1^{ère} et 2^e partie pour une masse de 50 g de pâte P2 à un taux de chauffe de 50 °C/h.

Pour les brais B et C, la concentration obtenue par ces deux méthodes est similaire. Le brai B affiche une concentration très élevée de phénanthrène d'après l'annexe IX.

Pour les pâtes, la différence entre la concentration obtenue de l'annexe VII et celle de l'annexe IX est notable. Le poids des substances condensables émises de la pâte à cette étape de chauffage étant faible par rapport à celui de l'agent de conservation soustrait pourrait expliquer cet écart. Cette erreur a été discuté à la section 4.3.2.

4.5 Influence d'un taux de chauffage lent

Le but de ce test est de qualifier les gaz qui s'échappent du brai A à une température de 200 °C soit la température de maintien des mélangeurs brai/pâte. Pour ce test nous avons utilisé le montage de la 1^{ère} partie.

Comme nous avons pu le constater sur la figure 4.1, un taux de chauffage bas déplace la courbe de libération des substances volatiles vers les températures plus basses. Pour un taux de chauffage de 10 °C/h, le dégagement débute vers 200 °C. À 550 °C, température maximale atteinte pour ce test, le taux de perte de masse est de 36 %. Pour un taux de chauffe de 30 °C/h, la perte de masse à cette température est d'environ 30 %, à 50 °C/h elle est de 25 % et à 100 °C/h, de 15 %. À la température qui nous intéresse, soit 200 °C, la perte de masse est négligeable.

Alors que les chromatogrammes des expériences habituelles sont tracés à partir de 350 °C, celui-ci a été relevé à partir de 100 °C. L'hydrogène a été détecté à partir de 405 °C et le méthane à partir de 440 °C. Ainsi, comme le confirmait le thermogramme, aucun gaz non condensable n'est volatilisé à la température de maintien des mélangeurs brai/coke.

Les substances condensables ont été récupérées entre 190 °C et 260 °C puis entre 330 °C et 430 °C. Lors de l'ouverture de la l^{ère} valve (190-260 °C), la totalité des substances dégagées sont des condensables (aucune détection par le chromatographe dans cet intervalle). La perte de masse obtenue, soit 0,75 g, ce qui signifie 1.5 % de perte de masse, est donc constituée entièrement de condensables.

4.6 Conclusion

Les thermogrammes obtenus par la pyrolyse jusqu'à 1050 °C mettent en évidence l'effet physiquement normal du changement du taux de chauffage soit le déplacement des courbes de volatilisation vers les températures plus élevées. La perte de masse totale demeure équivalente peu importe le taux de chauffe. Pour un même échantillon de brai, une masse plus grande crée une certaine résistance pour les matières qui tentent de se libérer. Le coke dans la pâte ne semble pas affecter particulièrement la libération de substances volatiles, ou du moins, le comportement de la pâte par rapport à son brai varie d'un type à l'autre dépendant ainsi de sa composition. Par exemple, pour une masse de 50 g, les brais à bas HAP (C et E) ont une perte de masse totale supérieure à leur pâte. Chaque échantillon débute sa volatilisation dans l'intervalle de température 250-350 °C et le taux de volatilisation est plus élevé entre 450 et 550 °C.

La libération des gaz non condensables est sensible à plusieurs facteurs. Tout d'abord, la concentration suit les lois de la physique; la concentration maximale augmente de façon corrélative selon l'augmentation de la masse ou du taux de chauffe à une température donnée. De plus, on constate que l'augmentation de la masse accroît la gamme de température de dégagement des matières volatiles non condensables à faible vitesse de chauffage (30 °C/h). On remarque que les pâtes P3 et P4 dégagent plus d'hydrogène et de méthane à haute température que les pâtes P1 et P2 probablement parce que leur contenu est plus élevé en hydrocarbures lourds ce qui favorise la libération de gaz non condensables. En général, le pic maximal d'hydrogène s'observe vers 700 °C et celui du méthane aux environs de 500 °C.

Les échantillons de condensat ont été soumis à deux types d'analyse. La 1^{ère} analyse évalue la quantité de chaque HAP et la seconde quantifie les matières condensables. Le dégagement des HAP suit la réalité physique à l'effet que les HAP légers se dégagent en majorité aux basses températures et diminuent avec l'augmentation de la température tandis que les HAP à poids moléculaire élevé suivent le cheminement inverse. Les brais et les pâtes possèdent leur propre spectre d'émission. La masse et le taux de chauffe ne semblent pas affecter la proportion des HAP émis. À tous les intervalles de température, les HAP génotoxiques sont les plus présents et le benzo(a)pyrène couvre environ 40 % du potentiel génotoxique.

Lorsque les résultats des concentrations de HAP sont exprimés par g de substances condensables on constate que le fait de retrancher le poids de l'agent de conservation sur une petite masse de substances condensables peut causer une erreur appréciable. Il semble néanmoins que l'émission de HAP tienne compte principalement de la composition intrinsèque en HAP. Par conséquent, les brais et pâtes à bas HAP se distinguent parfaitement bien des autres par leurs faibles émissions. Il semble qu'il y ait un certain effet catalytique du coke sur le brai C favorisant le dégagement de HAP. Notons toutefois, d'après la composition intrinsèque, que c'est la seule pâte dont la teneur en HAP est plus grande que son brai. Pour les deux premiers intervalles de température, le spectre d'émission des brais vs celui des pâtes est identique, pour les deux derniers intervalles, c'est une autre distribution.

Les résultats de la 2^e partie expérimentale portant sur les échantillons B, C, P1 et P2 ont permis de déterminer la fraction massique de substances condensables et non condensables à une étape de chauffage. Le problème rencontré avec ces résultats est que la masse de substances condensables à la dernière étape de chauffage (Tamb-650 °C) est inférieure à l'étape de chauffage précédente (Tamb-550 °C) pour B, C et P2. Pour tous les échantillons, plus de 50 % des substances libérées sont des condensables. Les concentrations de HAP ont été exprimées par g de brai. On note une émission de HAP des pâte P1 et P2 plus élevée que celle de leur brai B et C aux étapes de chauffage Tamb-450 et Tamb-550 ainsi que Tamb-650 pour B et P1 seulement. On peut donc supposer un éventuel effet catalytique du coke aux étapes de chauffage dont la vitesse de dégagement des volatiles est plus élevée. Les résultats de l'étape de chauffage avec le plus de libération de HAP ont par la suite été comparés à la composition initiale en HAP. Règle générale, l'émission de HAP est inférieure à la composition et ce même à l'étape de chauffage où le dégagement est le plus important.

Les deux montages utilisés donnent des résultats cohérents. Tout d'abord, la perte de masse à chaque intervalle de température est équivalente sauf pour l'étape de chauffage Tamb-450 °C parce que durant le refroidissement de l'échantillon à l'intérieur du four lors de la 2^e partie expérimentale d'autres substances se libèrent. Les concentrations exprimées en µg HAP/g brai sont similaires pour les brais et différentes pour les pâtes. De plus, les HAP recueillis se retrouvent dans les mêmes proportions; les conduits chauffés du montage de la 1^{ère} partie n'affectent donc pas les composés.

CHAPITRE 5

CONCLUSION GÉNÉRALE

5.1 Faits majeurs

Voici les points clés relevés par cette étude.

- Le brai est sensible à l'effet de masse. L'accroissement de la masse entraîne une résistance au dégagement des matières volatiles.
- Les courbes thermogravimétriques 50 g de brai vs 50 g de pâte sont cohérentes pour les brais réguliers B et D mais pas pour les brais à bas HAP C et E.
- L'augmentation de la masse favorise le dégagement des gaz non condensables sur une plus longue période à un faible taux de chauffe en raison d'une production progressive d'hydrocarbures légers.
- Les pâtes P1 et P2 dégagent de l'hydrogène jusqu'à 900 °C tandis que les brais correspondant libèrent jusqu'à 1050 °C. Les pâtes P3 et P4 dégagent jusqu'à 1050 °C comme leur brai. Ces pâtes formées de brais à HPR contiennent davantage d'hydrocarbures lourds qui à haute température continuent d'émettre de l'hydrogène.
- Les HAP génotoxiques sont les principaux HAP émis et la présence du benzo(a)pyrène représente 40 % du B[a]P équivalent.

- Les substances dégagées sont en majorité composées de gaz condensables; la pâte dégage en général plus de gaz condensables que son brai.
- Les résultats exprimés par rapport à la quantité de brai semblent démontrer un effet catalytique du coke aux températures où la vitesse de dégagement est élevée (brais B et C évalués). Cet effet se répercute sur les HAP dégagés du brai C exprimés par substance condensable. À noter que c'est la seule pâte dont la composition intrinsèque dépasse celle de son brai.
- Généralement, la quantité de HAP émise est plus faible que la quantité de HAP présente dans le brai.

5.2 Suggestions pour les travaux futurs

Ce mémoire a bien cerné le comportement des brais et des pâtes utilisés durant ces expérimentations. Les objectifs spécifiques de cette étude ont été satisfaits. Cependant d'autres travaux permettraient d'accroître nos connaissances en précisant certaines informations. En cours d'expérience, on se rend compte que certains points du montage ou de la manipulation pourraient être améliorés permettant des résultats plus fiables ou supplémentaires.

Il serait intéressant de raffiner la période d'échantillonnage pour les gaz condensables et non condensables. Pour les gaz non condensables, on pourrait déterminer avec plus d'exactitude dans un intervalle de température resserré quels HAP sont émis. Des injections plus fréquentes de gaz non condensables dans le chromatographe au début du dégagement permettraient d'identifier la température à laquelle débute la volatilisation de l'hydrogène et du méthane.

Les pièges de la 1^{ère} partie devraient être plus gros, cela faciliterait leur nettoyage et leur manipulation. Même si les conduits chauffés n'affectent pas les composés chimiques qui y circulent, il serait préférable d'en diminuer la longueur. En rapprochant les pièges de la sortie du four on réduirait les risques de condensation dans le conduit.

Dans la 2^e partie, le creuset ne devrait pas être placé directement dans le four; il devrait être mis dans un tube de verre qui couvrirait toute la hauteur du four. À la base du tube de verre, l'argon serait injecté et à la sortie, un ensemble de pièges anti-retour recueillerait les gaz condensables. Ces modifications éviteraient les désagréments rencontrés lors de l'analyse des résultats (récupération incomplète des substances condensables entraînant une teneur en HAP d'une étape de chauffage inférieure à la précédente). De cette manière, on pèserait toutes les matières condensables et on éviterait que celles-ci retournent dans le four en cours de chauffage.

RÉFÉRENCES

- [1] Mirtchi AA, Noël L (1994) Polycyclic aromatic hydrocarbons (PAH's) in pitches used in the aluminium industry. In: Carbon 94, Granada/Spain, 794-795
- [2] Mirtchi AA, Proulx AL, Castonguay L (1995) Reduction of the PAH emissions for horizontal stud Söderberg potrooms. In: Light Metals 1995 (Evans J ed), 601-607
- [3] Vollhardt C., Peter K (1990) Traité de chimie organique. Traduit de l'anglais par Paul Depovere. Édition du renouveau pédagogique, Montréal
- [4] Gariépy R, Proulx AL, Violette R (1992) Réduction des émissions de HAP des salles de cuves Söderberg à goujons horizontaux. In: 5^e Conférence sur les substances toxiques 1-2 avril 1992, Montréal, 59-73
- [5] Tremblay F, Charette A (1988) Cinétique de dégagement des matières volatiles lors de la pyrolyse d'électrodes de carbone industrielles. Can J Chem Eng 66, february, 86-96
- [6] Charette A, Kocaefe D, Saint-Romain JL, Couderc P (1991) Comparison of various pitches for impregnation in carbon electrodes. Carbon Vol.29 No.7, 1015-1024
- [7] Kocaefe D, Charette A, Ferland J, Couderc P, Saint-Romain JL (1990) A kinetic study of pyrolysis in pitch impregnated electrodes. Can J Chem Eng 68, december, 988-996
- [8] Charette A, Ferland J, Kocaefe D, Couderc P, Saint-Romain JL (1990) Experimental and kinetic study of volatile evolution from impregnated electrodes. Fuel Vol.69, february, 194-202
- [9] Martinez-Alonso A, Bermejo J, Tascon JMD (1992) Thermoanalyticall studies of pitch pyrolysis: a comparison with polycyclic aromatic hydrocarbons. Journal of thermal analysis Vol.38, 811-820,
- [10] Bermejo J, Granda M, Menendez R, Tascon JMD (1991) Comparative characterization by TG and DTA of different kinds of pitches. In: Twentieth Biennial Conference on Carbon, june 23-28 1991, 116-117

- [11] Bermejo J, Granda M, Menendez R, Tascon JMD (1994) Comparative analysis of pitches by extrography and thermal analysis techniques. Carbon Vol.32 No.5, 1001-1010
- [12] Guillen MD, Dominguez A, Igleasias MJ, Fuente E, Blanco CG (1996) Analysis of coal tar pitch: relations between thermal behaviour and composition. Fuel Vol.75 No.9, 1101-1107
- [13] Skogland M (1991) A survey of the PAH problem in the aluminium industry. In: Light Metals, february 17-21, 1991 (Rooy EL ed), Warrendale/Pennsylvania, 497-502
- [14] Eie M, Sörlie M, Öye HA (1996) Evaporation and vapour characterisation of low-PAH binders for Söderberg cells. In: Light Metal 1996 (Hale W ed), 469-475
- [15] Castonguay L, Mirtchi AA, Proulx AL, Savard G, Simard É, Stewart N, Tremblay C (1998) Prediction of HS Söderberg plant PAH emisions from a laboratory evaluation of a pitch. CMI 1998
- [16] Richards JH, Cram DJ, Hammond GS (1968) Éléments de chimie organique. Mc Graw-Hill
- [17] Couderc P, Perez A, Valorisation et traitements des goudrons de houille. Document interne, Groupe CdF Chimie, École supérieure de chimie de Mulhouse
- [18] Gagné JA (1963) Chimie générale. Séminaire de Québec, Québec, p.198
- [19] Kremer HA (18th september 1982) Recent developments in electrode pitch and coal tar technology. Chemistry and industry, 702-713
- [20] Harry M (September 9 to 19, 1996) Short course aspect of carbon science. Department of inorganic chemistry, University of Alicante, Spain
- [21] Groupe français d'étude des carbones (1965) Les carbones. Collection de chimie physique, Paris
- [22] Dubuisson C (juin 1993) Cinétique de la calcination du coke de pétrole en atmosphère oxydante. Mémoire de maîtrise, Université du Québec à Chicoutimi
- [23] Grjotheim K, Kvande H (1993) Introduction to aluminium electrolysis. 2nd edition Aluminium-verlag, Düsseldorf, p.5

- [24] Ferland J (janvier 1989) Étude de la valeur d'usage de brais d'imprégnation. Mémoire de maîtrise, Université du Québec à Chicoutimi
- [25] McHenry ER, Saver WE (1996) Laboratory pitches PAH and POM study. In: Light Metals 1995 (Hale W ed), 463-468

ANNEXE I

MÉTHODOLOGIE D'ALCAN POUR L'ANALYSE DES HAP
Centre de recherche et de développement Arvida Technologies analytiques

1955, boul. Mellon Jonquière, (Québec) G7S 4K8 Canada

Adresse postale : C.P. 1250 Jonquière, (Québec) G7S 4K8 Canada Tél. (418) 699-6585 poste 3304 Téléc. (418) 699-2919

Le 26 février 1998

Madame Nathalie Bouchard Université du Québec à Chicoutimi Département des sciences appliquées 555, boulevard de l'Université Chicoutimi (Québec) G7H 2 B1

Objet : Résumé des travaux d'analyse des HAP effectués sur des échantillons de condensat

Lors de leur réception, les échantilions ont été entreposés à 4°C en attendant d'être analysés.

Opération 1 : Extraction à trois reprise sur les laines de verre à l'aide d'acétone. Après ce traitement, nous avons constaté que la laine était complètement redevenue blanche.

Opération 2 : Mesure du volume final et filtration d'une portion de près de 7 m*l* sur une membrane d'argent de 0,2 µm. Par la suite, on effectue un prélèvement d'un aliquot de 5 m*l*. Cette portion de 5 m*l* a été remise à sec à l'aide d'un évaportateur rotatif, cryogénique et sous vide de marque Speed-Vac, pour un transfert de solvant, i.e. acétonitrile pour un volume total de 5 m*l*.

Opération 3 : Première dilution des portions de 5 m*l* d'un facteur 100 afin de pouvoir préparer ces dernières à une analyse de l'indice de fluorescence IF B[a]P, i.e. Méthode Alcan 1382R-85. Méthode interne spécifique à Alcan International, non-publiée. Cette première analyse nous permet de préciser davantage son vrai niveau de dilution que nous devons y apporter.

Opération 4 : Exécution du vrai niveau de dilution sur l'ensemble de tous les aliquots qui restent du 5 m ℓ et analyse par HPLC. Cette analyse a été effectuée selon la procédure Alcan 1223-96.

Opération 5 : Compilation de l'ensemble des résultats, i.e. intégration corrigée s'il y a lieu, vérification des contrôles de qualité, linéarité du signal sur cinq niveaux de dilution, etc.

Ceci complète la procédure que nous avons appliquée sur l'ensemble de vos échantillons.

Luc Noël

c.c. M. Frank Kimmerle M. Amir Mirtchi M. Pierre Jean

M:VrattheVev98Vn-uqac.com

ANNEXE II

THERMOGRAMMES DES BRAIS ET DES PÂTES

Figure II.1: Thermogrammes pour le brai A à un taux de chauffe de 30 °C/h.

Figure II.2: Thermogrammes pour le brai A à un taux de chauffe de 50 °C/h.

Figure II.3: Thermogrammes pour le brai A à un taux de chauffe de 100 °C/h.

Figure II.4: Thermogramme pour le brai A à un taux de chauffe de 10 °C/h.

Figure II.5: Thermogrammes pour le brai B à un taux de chauffe de 50 °C/h.

Figure II.6: Thermogrammes pour le brai C à un taux de chauffe de 50 °C/h.

Figure II.7: Thermogrammes pour le brai D à un taux de chauffe de 50 °C/h.

Figure II.8: Thermogrammes pour le brai E à un taux de chauffe de 50 °C/h.

ANNEXE III

DISTRIBUTION DES CONCENTRATIONS D'HYDROGÈNE ET DE MÉTHANE POUR LES BRAIS ET LES PÂTES

Figure III.1: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 30 °C/h.

Figure III.2: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 30 °C/h.

Figure III.3: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 50 °C/h.

Figure III.4: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 50 °C/h.

Figure III.5: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 100 °C/h.

Figure III.6: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai A à un taux de chauffe de 100 °C/h.

Figure III.7: Chromatogrammes en fonction de la température pour une masse de 50 g de brai A à un taux de chauffe de 10 °C/h.

Figure III.8: Chromatogrammes en fonction du temps pour une masse de 50 g de brai A à un taux de chauffe de 10 °C/h.

Figure III.9: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai B à un taux de chauffe de 50 °C/h.

Figure III.10: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai B à un taux de chauffe de 50 °C/h.

Figure III.11: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure III.12: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai C à un taux de chauffe de 50 °C/h.

Figure III.13: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai D à un taux de chauffe de 50 °C/h.

Figure III.14: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai D à un taux de chauffe de 50 °C/h.

Figure III.15: Chromatogrammes en fonction de la température pour une masse de 10 g et 50 g de brai E à un taux de chauffe de 50 °C/h.

Figure III.16: Chromatogrammes en fonction du temps pour une masse de 10 g et 50 g de brai E à un taux de chauffe de 50 °C/h.

Figure III.17: Chromatogrammes en fonction de la température pour une masse de 50 g de brai A à différents taux de chauffe.

Figure III.18: Chromatogrammes en fonction du temps pour une masse de 50 g de brai A à différents taux de chauffe.

ANNEXE IV

PROPORTION DE CHAQUE HAP POUR LES BRAIS ET LES PÂTES

Brai A Masse: 50 g Taux de chauffe: 30 °C/h 30% 250-350 **350-450** 25% □ 450-550 **5**50-650 20% 15% 10% 20% 5% 0% F PH A FA С DahA Ρ BaA BeP BbF **B**kF BaP BghiP IP

Figure IV.2: Proportion des HAP pour 50 g de brai A à 30 °C/h.

Figure IV.3: Proportion des HAP pour 10 g de brai A à 50 °C/h.

Figure IV.4: Proportion des HAP pour 50 g de brai A à 50 °C/h.

rigute 17.5. Troportion des finit pour to g de blar Ara 100 C/n.

Figure IV.6: Proportion des HAP pour 50 g de brai A à 100 °C/h.

Figure IV.7: Proportion des HAP pour 50 g de brai A à 10 °C/h.

Figure IV.9: Proportion des HAP pour 50 g de pâte P1 à 50 °C/h.

Figure IV.10: Proportion des HAP pour 50 g de brai C à 50 °C/h.

Figure IV.11: Proportion des HAP pour 50 g de pâte P2 à 50 °C/h.

Figure IV.12: Proportion des HAP pour 50 g de brai D à 50 °C/h.

Figure IV.13: Proportion des HAP pour 50 g de pâte P3 à 50 °C/h.

Figure IV.14: Proportion des HAP pour 50 g de brai E à 50 °C/h.

Figure IV.15: Proportion des HAP pour 50 g de pâte P4 à 50 °C/h.

ANNEXE V

PROPORTION DES HAP SELON LEUR CLASSE DE GÉNOTOXICITÉ POUR LES BRAIS ET LES PÂTES

Figure V.1: Proportion des HAP pour le brai A à 30 °C/h.

Figure V.2: Proportion des HAP pour le brai A à 50 °C/h.

Figure V.3: Proportion des HAP pour le brai A à 100 °C/h.

Figure V.4: Proportion des HAP pour le brai A à 10 °C/h.

Figure V.5: Proportion des HAP pour le brai B à 50 °C/h.

Figure V.6: Proportion des HAP pour le brai C à 50 °C/h.

Figure V.7: Proportion des HAP pour le brai D à 50 °C/h.

Figure V.8: Proportion des HAP pour le brai E à 50 °C/h.

ANNEXE VI

PROPORTION DES HAP SELON LEUR B[a]P ÉQUIVALENT POUR LES BRAIS ET LES PÂTES

Figure VI.1: Proportion du B[a]P équivalent pour 10 g de brai A à 30 °C/h.

Figure VI.2: Proportion du B[a]P équivalent pour 50 g de brai A à 30 °C/h.

Figure VI.3: Proportion du B[a]P équivalent pour 10 g de brai A à 50 °C/h.

Figure VI.4: Proportion du B[a]P équivalent pour 50 g de brai A à 50 °C/h.

Figure VI.5: Proportion du B[a]P équivalent pour 10 g de brai A à 100 °C/h.

Figure VI.6: Proportion du B[a]P équivalent pour 50 g de brai A à 100 °C/h.

Figure VI.7: Proportion du B[a]P équivalent pour 50 g de brai A à 10 °C/h.

Figure VI.8: Proportion du B[a]P équivalent pour 50 g de brai B à 50 °C/h.

Figure VI.9: Proportion du B[a]P équivalent pour 50 g de pâte P1 à 50 °C/h.

Figure VI.10: Proportion du B[a]P équivalent pour 50 g de brai C à 50 °C/h.

Figure VI.11: Proportion du B[a]P équivalent pour 50 g de pâte P2 à 50 °C/h.

Figure VI.12: Proportion du B[a]P équivalent pour 50 g de brai D à 50 °C/h.

Figure VI.13: Proportion du B[a]P équivalent pour 50 g de pâte P3 à 50 °C/h.

Figure VI.14: Proportion du B[a]P équivalent pour 50 g de brai E à 50 °C/h.

Figure VI.15: Proportion du B[a]P équivalent pour 50 g de pâte P4 à 50 °C/h.

ANNEXE VII

CONCENTRATION DES HAP SELON LA QUANTITÉ DE CONDENSAT RECUEILLIE POUR TOUS LES ESSAIS

Figure VII.1: Concentration des HAP pour 10 g de brai A à 30 °C/h obtenue par la l^{ère} partie.

Figure VII.2: Concentration des HAP pour 50 g de brai A à 30 °C/h obtenue par la l^{ère} partie.

Figure VII.3: Concentration des HAP pour 10 g de brai A à 50 °C/h obtenue par la 1^{ère} partie.

Figure VII.4: Concentration des HAP pour 50 g de brai A à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.5: Concentration des HAP pour 10 g de brai A a 100 °C/h obtenue j l^{ére} partie.

Figure VII.6: Concentration des HAP pour 50 g de brai A à 100 °C/h obtenue par la 1^{ère} partie.

l^{ère} partie.

Figure VII.9: Concentration des HAP pour 50 g de pâte P1 à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.10: Concentration des HAP pour 50 g de brai C à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.11: Concentration des HAP pour 50 g de pâte P2 à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.12: Concentration des HAP pour 50 g de brai D à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.13: Concentration des HAP pour 50 g de pâte P3 à 50 °C/h obtenue par la l^{êre} partie.

Figure VII.14: Concentration des HAP pour 50 g de brai E à 50 °C/h obtenue par la l^{ère} partie.

Figure VII.15: Concentration des HAP pour 50 g de pâte P4 à 50 °C/h obtenue par la 1^{ère} partie.

250-350 °C.

Figure VII.17: Concentration des HAP pour le brai B et sa pâte P1 dans l'intervalle 350-450 °C.

450-550 °C.

550-650

°C.

250-350 °C.

Figure VII.21: Concentration des HAP pour le brai C et sa pâte P2 dans l'intervalle 350-450 °C.

450-550 °C.

Figure VII.23: Concentration des HAP pour le brai C et sa pâte P2 dans l'intervalle 550-650 °C.

Figure VII.24: Concentration des HAP pour le brai D et sa pâte P3 dans l'intervalle 250-350 °C.

Figure VII.25: Concentration des HAP pour le brai D et sa pâte P3 dans l'intervalle 350-450 °C.

450-550 °C.

Figure VII.27: Concentration des HAP pour le brai D et sa pâte P3 dans l'intervalle 550-650 °C.

Figure VII.28: Concentration des HAP pour le brai E et sa pâte P4 dans l'intervalle 250-350 °C.

Figure VII.29: Concentration des HAP pour le brai E et sa pâte P4 dans l'intervalle 350-450 °C.

450-550 °C.

Figure VII.31: Concentration des HAP pour le brai E et sa pâte P4 dans l'intervalle 550-650 °C.

Figure VII.32: Concentration des HAP pour 50 g de brai B à 50 °C/h obtenue par la 2^e partie.

Figure VII.33: Concentration des HAP pour 50 g de pâte P1 à 50 °C/h obtenue par la 2^e partie.

Figure VII.34: Concentration des HAP pour 50 g de brai C à 50 °C/h obtenue par la 2° partie.

Figure VII.35: Concentration des HAP pour 50 g de pâte P2 à 50 °C/h obtenue par la 2° partie.

ANNEXE VIII

EXPLICATION DU CALCUL "DÉTERMINATION DE LA CONCENTRATION DES HAP SELON LE RAPPORT DES DÉBITS"

Ce calcul vise à rapporter les quantités de HAP captés dans un système de pièges de la 1^{ère} partie expérimentale aux quantités de HAP dégagés réellement de l'échantillon. Pour chaque intervalle de température, on doit connaître la fraction de gaz échappés du four qui a circulé dans la sonde des condensables.

Le débit massique à la sortie du four (DM_f) comprend le débit massique d'argon injecté à la basse du four (DM_{Arf}) et la quantité de matières libérées de l'échantillon $(DM_{échf})$ obtenue par le thermogramme:

$$DM_{f} = DM_{Aff} + DM_{\acute{e}chf}$$
(VIII.1)

$$DM_{Arf} = Q_{Ar} * \rho_{Ar}$$
(VIII.2)

$$\rho_{\rm Ar} = \frac{P}{RT}$$
(VIII.3)

où:	
DM _f :	Débit massique total à la sortie du four (kg/s);
DM _{Arf} :	Débit massique d'argon à l'entrée du four (kg/s);
DM _{échf} :	Taux de perte de masse pour l'intervalle de température voulu selon le
	thermogramme (kg/s);
Q _{Ar} :	Débit d'argon injecté à la base du four (m ³ /s);
ρ _{Ar} :	Densité de l'argon (kg/m ³);
P:	Pression atmosphérique (101,3 kPa);
R:	Constante de l'argon (0,20813 kJ/kg K);
T:	Température moyenne de l'intervalle (K).

Il y a quatre voies d'évacuation possibles: la sonde des gaz condensables, la sonde des gaz non condensables, la sortie des gaz d'échappement et le trou pour le fil de suspension (voir figure 3.5 pour plus d'éclaircissement). Le débit est mesuré à chaque sonde. Le gaz qui circule dans chaque sonde est un mélange constitué principalement d'argon, de gaz non condensables et condensables. On considérera ici, que la densité du mélange équivaut à celle de l'argon. Le débit massique de la sonde où sont piégés les HAP, la sonde des condensables, s'obtient par l'équation suivante:

$$DM_{sc} = Q_{sc} * \rho_{Ar}$$
(VIII.4)

où:

Le débit massique de la sonde des condensables rapporté à celui évacué du four donne la proportion de gaz qui se dirige dans la sonde des condensables ($%_{sc}$).

$$\%_{sc} = \frac{DM_{sc}}{DM_{f}}$$
(VIII.5)

La quantité de HAP retrouvés dans le piège (HAP_{sc}) divisée par le $%_{sc}$ donne celle générée par l'échantillon (HAP_{sc}).

$$HAP_{ech} = \frac{HAP_{sc}}{\%_{sc}}$$
(VIII.6)

Il reste ensuite à diviser cette quantité par la masse initiale de brai afin d'exprimer le résultat en μ g HAP/g brai.

Afin de valider ce calcul, la quantité de HAP dégagés de l'échantillon obtenue par le rapport des débits (HAP_{éch}) a été comparée à la quantité de HAP retrouvés au-dessus de l'échantillon lors de la 2^e partie expérimentale (HAP_{2e}). Cette quantité de HAP devrait être équivalente ou supérieure à celle trouvée par calcul. En effet, les gaz piégés dans les trappes ont circulé dans des conduits où ils peuvent se condenser et la récupération totale des hydrocarbures condensés dans les pièges se fait difficilement. Les quatre échantillons testés dans la 2^e partie ont été utilisés pour vérifier ce calcul. Les données de chaque test sont tirées de l'intervalle de température 350 °C à 450 °C.

Brai B \Rightarrow 15 % d'erreur

1	Parti	<u>e</u>

 $HAP_{2} = 514785 \,\mu g$

<u>2^e Partie</u>

 $DM_{f} = 2,89 \text{ e-5 kg/s}$ $DM_{sc} = 8,74 \text{ e-}6 \text{ kg/s}$ %sc = 30,2 % $HAP_{sc} = 178\ 973\ \mu g$ $HAP_{ech} = 592\ 626\ \mu g$

 \Rightarrow 83 % d'erreur

1^{ere} Partie

Brai C

2^e Partie

 $HAP_{2e} = 794\ 860\ \mu g$

 $DM_{f} = 2,89 e-5 \text{ kg/s}$ $DM_{sc} = 9,94 \text{ e-}6 \text{ kg/s}$ %sc = 34,4 % $HAP_{sc} = 46\ 005\ \mu g$ $HAP_{ech} = 133735 \ \mu g$

Pâte P1	⇒ 7,5 % d'erreur	
1 ^{ère} Partie		2º Partie
$DM_{f} = 2,86 \text{ e-5 kg/s}$ $DM_{sc} = 2,29\text{ e-6 kg/s}$ $\% \text{ sc} = 8 \%$ $HAP_{sc} = 42 345 \ \mu\text{g}$ $HAP_{ech} = 529 \ 312 \ \mu\text{g}$		HAP _{2e} = 572 045 μg
Pâte P2	⇒ 49 % d'erreur	
Pâte P2 1 ^{ère} Partie	⇒ 49 % d'erreur	<u>2° Partie</u>

Le pourcentage d'erreur de chaque exemple est calculé par rapport à la valeur mesurée en HAP (HAP_{2e}). La fiabilité de notre calcul laisse à désirer puisque d'un cas à l'autre le pourcentage d'erreur passe d'acceptable à inacceptable.

ANNEXE IX

COMPARAISON DE LA CONCENTRATION DES HAP ENTRE BRAIS ET PÂTES

Figure IX.1: Comparaison de la concentration des HAP entre le brai B et la pâte P1 de Tamb à 350 °C.

Figure IX.2: Comparaison de la concentration des HAP entre le brai B et la pâte P1 de Tamb à 450 °C.

Tamb à 550 °C.

Figure IX.4: Comparaison de la concentration des HAP entre le brai B et la pâte P1 de Tamb à 650 °C.

Tamb à 350 °C.

Figure IX.6: Comparaison de la concentration des HAP entre le brai C et la pâte P2 de Tamb à 450 °C.

Tamb à 550 °C.

Figure IX.8: Comparaison de la concentration des HAP entre le brai C et la pâte P2 de Tamb à 650 °C.

ANNEXE X

VÉRIFICATION DE LA PROPORTION DE CHAQUE HAP ENTRE LA 1^{ère} et 2^e PARTIE

Figure X.1: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de brai B à 50 °C/h entre 250 °C et 350 °C.

Figure X.2: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de brai B à 50 °C/h entre 350 °C et 450 °C.

entre 450 °C et 550 °C.

Figure X.4: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de brai C à 50 °C/h entre 250 °C et 350 °C.

Figure X.5: Proportion des HAP de la 1^{ere} et 2^e partie pour 50 g de brai C à 50 °C/h entre 350 °C et 450 °C.

Figure X.6: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de brai C à 50 °C/h entre 450 °C et 550 °C.

Figure X.7: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de pâte P1 à 50 °C/h entre 250 °C et 350 °C.

Figure X.8: Proportion des HAP de la 1^{ere} et 2^e partie pour 50 g de pâte P1 à 50 °C/h entre 350 °C et 450 °C.

Figure X.9: Proportion des HAP de la 1^{ère} et 2^e partie pour 50 g de pâte P1 à 50 °C/h entre 550 °C et 650 °C.

Figure X.10: Proportion des HAP de la 1^{ere} et 2^e partie pour 50 g de pâte P2 à 50 °C/h entre 250 °C et 350 °C.

entre 350 °C et 450 °C.

Figure X.12: Proportion des HAP de la 1^{ére} et 2^e partie pour 50 g de pâte P2 à 50 °C/h entre 550 °C et 650 °C.

ANNEXE XI

VALEURS NUMÉRIQUES BRUTES DE TOUS LES ÉCHANTILLONS DE CONDENSAT

Brai A Masse: 10 g Taux de chauffe: 30 °C/h 1ère Partie expérimentale

Intervalles de température		250 °C	-350 °C	350 *0	C-450 °C	450 °C	-550 °C	550 °C	-650 °C
Quantité de condensables (sans agent	de conservation)	-6	mg	373,	72 mg	389,0	06 mg	72,5	8 mg
НАР	RPF	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		10		334		172		1 190	
Phénanthrène	1	857	{	9 060		8 670		827	
Anthracène		1 110		17 100		14 6 00		1 350	
Fluoranthène	0,034	3 400	116	19 200	653	16 600	564	817	28
Pyrène		2 960		19 500	1 1	15 900	1	1 080	
Benzo(a)Anthracène	0,033	1 250	41	15 300	505	11 200	370	1 250	41
Chrysène	0,260	2 160	562	29 500	7 670	20 400	5 304	1 830	476
Benzo(e)Pyrène	0,050	191	10	9 630	482	12 600	630	1 960	98
Benzo(b)Fluoranthène	0,100	281	28	12 400	1 240	13 500	1 350	1 970	197
Benzo(k)Fluoranthène	0,010	168	2	7 300	73	7 580	76	1 080	11
Benzo(a)Pyrène	1,000	206	206	12 400	12 400	17 200	17 200	2 870	2 870
Dibenzo(a,h)Anthracène	1,400	6	8	622	871	2 010	2 814	813	1 1 1 3 8
Benzo(g,h,i)Pérylène	1,000	43	43	3 080	3 080	10 200	10 200	4 020	4 020
Indéno(1,2,3,c,d)Pyrène	0,100	46	5	3 960	396	11 200	1 120	4 590	459
TOTAL		12 688	1 020	159 386	27 369	161 832	39 628	25 647	9 338
TOTAL non génotoxique		4 937		45 994		39 342		4 447	
TOTAL génotoxique		5 336	201	67 790	3 348	72 680	4 1 10	11 667	834
TOTAL hautement génot	toxique	2 415	819	45 602	24 021	49 810	35 5 18	9 533	8 504

Brai A Masse: 50 g Taux de chauffe: 30 °C/h tère Partie expérimentale

Brai A Masse: 10 g Taux de chauffe: 50 °C/h 1ère Partie expérimentale

Intervalles de température		250.0	-350 °C	350 °C	:450 °C	450 °C	550 10	2.022	EED .C
Quantité de condensables (sans agent de c	conservation)	76,7	1 mg	652.5	9 ma	633.8	le mo		
HAP	RPF	Quantité (µg)	B(a)P équiv (µg)	Quantité (ug)	BlalP coun (uo)	Ouantité (un)	Ralp Aniny (un)	Annual Annual	Dialo Amini Amini
		(analyse Alcan)		(analyse Alcan)		(aralise Alean)		(and a maintain the second	And annual field
Fluorène		286		RER		(inclusion)		(mailes Vitati)	
		20-4		3		8		ድ	
Prenantnrene		4 530		16 300		11 000		2 540	
Anthracène		7 238		26 100		22 600		4 260	
Fluoranthène	0,034	9 620	327	29 300	966	8 950	304	3 740	127
Pyrène		9 680		34 300		11 800		4 160	i
Benzo(a)Anthracène	0,033	4 460	147	20 800	686	10 400	343	2 720	8
Chrysène	0,260	8 440	2 194	44 000	11 440	21 300	5 538	4 490	1 167
Benzo(e)Pyrène	0,050	2 930	147	16 900	845	20 500	1 025	4 160	and a
Benzo(b) Fiuoranthène	0,100	3 250	325	18 800	1 880	20 000	000 0	4 160	416
Benzo(k)Fiuoranthène	0,010	1 750	18	10 600	106	11 000	110	022.0	\$
Benzo(a)Pyrène	1,000	3 830	3 830	22 500	22 500	28 900	28 900	5 970	5 970
Dibenzo(a,h)Anthracène	1,400	428	599	1 500	2 100	3 760	5 264	974	1 364
Benzo(g,h,i)Pérylène	1,000	2 640	2 640	10 500	10 500	23 100	23 100	5 220	5 220
Indéno(1,2,3,c,d)Pyrène	0,100	2 600	260	12 500	1 250	24 800	2 480	5 590	559
TOTAL		61 682	10 487	264 958	52 304	218 673	69 065	50 299	15 143
TOTAL non génotoxique		21734		77 558		45 963		11 055	
TOTAL génotoxique		24 610	1 223	108 900	5 764	95 650	6 263	22 590	1 422
TOTAL hautement génotoxi	ique	15 338	9 264	78 500	46 540	77 060	62 802	16 654	13 721

Brai A Masse: 50 g Taux de chauffe: 50 °C/h 1ère Partie expérimentale

Intervalles de température		250 °C	-350 °C	350 *0	C-450 °C	450 •0	-550 °C	550 °C	-650 °C
Quantité de condensables (sans agent de	conservation)	-28	mg	1 275	,77 mg	1951	,4 mg	86,4	9 mg
HAP	RPF	Quantité (µg)	B[a)P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		44		3 010		1 480		95	
Phénanthrène	1	868		40 300	1 1	39 100	}	2 520	
Anthracène	1	651		48 000	{	93 600		4 490	}
Fluoranthène	0,034	1 660	56	92 800	3 155	47 200	1 605	4 690	159
Pyrène		1 498		89 900	1 1	60 800	{ }	4 910	[
Benzo(a)Anthracène	0,033	688	23	46 000	1 518	49 600	1 637	2 440	81
Chrysène	0,260	989	257	87 400	22 724	74 200	19 292	3 750	975
Benzo(e)Pyrène	0,050	336	17	21 400	1 070	65 600	3 280	4 6 1 0	231
Benzo(b)Fluoranthène	0,100	450	45	25 100	2 510	68 100	6 810	4 400	440
Benzo(k)Fluoranthène	0,010	218	2	14 500	145	35 000	350	2 150	22
Benzo(a)Pyrène	1,000	423	423	27 100	27 100	80 700	80 700	6 060	6 060
Dibenzo(a,h)Anthracène	1,400	49	69	1 370	1 918	8 020	11 228	1 220	1 708
Benzo(g,h,i)Pérylène	1,000	176	176	8 560	8 560	43 800	43 800	6 700	6 700
Indéno(1,2,3,c,d)Pyrène	0,100	198	20	10 800	1 080	43 800	4 380	6 120	612
TOTAL		8 249	1 088	516 240	69 780	711 000	173 082	54 155	16 987
TOTAL non génotoxique		3 06 1		181 210		194 980		12 015	
TOTAL génotoxique		3 550	163	210 600	9 478	309 300	18 062	24 4 10	1 544
TOTAL hautement génoto:	kique	1 637	925	124 430	60 302	206 720	155 020	17 730	15 443

Intervalies de température		250°C	350 °C	3-055	0.057	1. U2V	1.025	U39	CEN +D
Quantité de condensables (sans agent de c	conservation)	65,5	2 mg	1 040	01 ma	1 185	94 ma		
HAP	RPF	Quantité (µy)	B(a)P équiv (µg)	Quantité (µg)	B(a)P equiv (µg)	Quantité (Jug)	Bla]P équiv (µg)	Quantité (ug)	BlalP courv (uo)
		(malyse Alcan)		(aualyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		170		1 830		1 140		1 680	
Phénanthrène		5 570		31 600		22 200		2 430	
Anthracène		5 090		42 400		46 300		4 860	
Fluoranthène	0,034	9 460	322	57 500	1 955	22 800	775	15 500	527
Pyrène		8 620	<u> </u>	59 300		26 100		15 100	1
Benzo(a)Anthracène	0,033	3 820	126	35 900	1 185	22 500	743	5 420	179
Chrysène	0,260	6 830	1 776	66 200	17 212	32 000	8 320	7 650	1 080
Benzo(e)Pyrène	0,050	2 530	127	22 500	1 125	40 200	2 010	3210	161
Benzo(b)Fluoranthène	0,100	2 930	293	26 600	2 660	41 100	4110	3 450	345
Benzo(k)Fluoranthène	0,010	1 560	16	14 800	148	22 500	225	1 820	2 2 8
Benzo(a)Pyrène	1,000	3 200	3 200	30 000	30 000	54 700	54 700	3 980	3 080
Dibenzo(a,h)Anthracène	1,400	261	365	2 420	3 388	6 650	9310	421	580
Benzo(g,h,i)Pérylène	1,000	1 460	1 460	9 180	9 180	34 300	34 300	2 160	2 160
Indéno(1,2,3,c,d)Pyrène	0,100	1 430	143	13 300	1 330	36 400	3 640	2 150	215
TOTAL		186 25	7 827	413 530	68 183	408 890	118 133	69 831	10 163
TOTAL non génotoxique		19 450		135 130		95 740		24 070	
TOTAL génotoxique		21730	1 026	170 600	8 403	185 500	11 503	31.550	1 445
TOTAL hautement génotox	ique	11 751	6 801	107 800	59 780	127 650	106 630	14 211	8.7.18

Brai A Masse: 10 g Taux de chauffe: 100 °C/h tere Partie expérimentale

Brai A Masse: 50 g

Taux de chauffe: 100 °C/h 1ere Partie expérimentale

Intervalles de température		250 °C	-350 °C	350 *0	C-450 °C	450 °C	C-550 *C	550 °C	-650 °C
Quantité de condensables (sans agent o	le conservation)	196,	85 mg	3731	<u>47 mg</u>	3 254	.08 mg	936,	07 mg
HAP	RPF	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Aican)	
Fluorène		1 040		10 700		5 750		1 810	
Phénanthrène	Í	16 000		143 000		87 100		25 500	
Anthracène		12 600		152 000		146 000		33 200	
Fluoranthène	0,034	31 000	1 054	276 000	9 384	78 600	2 672	16 700	568
Pyrène		22 100		22 500	{	95 700		23 800	
Benzo(a)Anthracène	0,033	7 940	262	134 000	4 422	82 400	2 719	17 200	568
Chrysène	0,260	14 600	3 796	227 000	59 020	106 000	27 560	23 700	6 162
Benzo(e)Pyrène	0,050	1 540	77	62 700	3 135	106 000	5 300	32 500	1 625
Benzo(b)Fluoranthène	0,100	2 030	203	76 300	7 630	117 000	11 700	34 000	3 400
Benzo(k)Fluoranthène	0,010	1 210	12	44 400	444	62 400	624	17 300	173
Benzo(a)Pyrène	1,000	1 850	1 850	76 100	76 100	139 000	139 000	43 000	43 000
Dibenzo(a,h)Anthracène	1,400	131	183	5 200	7 280	15 900	22 260	7 450	10 430
Benzo(g,h,i)Pérylène	1,000	812	812	29 400	29 400	83 300	83 300	37 300	37 300
Indéno(1,2,3,c,d)Pyrène	0,100	818	82	31 900	3 190	82 900	8 290	38 000	3 800
TOTAL		113 671	8 331	1 291 200	200 005	1 208 050	303 426	351 460	107 025
TOTAL non génotoxique		51 740		328 200		334 550		84 310	
TOTAL génotoxique		44 538	1 690	625 300	28 205	529 300	31 306	155 700	10 133
TOTAL hautement génote	oxique	17 393	6 641	337 700	171 800	344 200	272 120	111 450	96 892

Brai A Masse: 50 g Taux de chauffe: 10 °C/h tère Partie expérimentale

Intervalles de température		190 °C	-260 °C	330.0	-430 °C
Quantité de condensables (sans agent de c	conservation)	135,	31 mg	5206.	19 mg
HAP	Jdy	Quantité (µg)	B(a)P équiv (µg)	Quantité (Jug)	B(a)P équiv (µg)
		(analyse Alcan)		(analyse Alcan)	
Fluorène		1 580		6 920	
Phénanthrène		10 201		129 091	
Anthracène		9 536		186 308	
Fluoranthène	0,034	16 700	568	320 897	10910
Pyrène		11 740	-	288 910	
Benzo(a)Anthracène	0,033	3 843	127	197 712	6 525
Chrysène	0,260	5 065	1 317	298 420	77 589
Benzo(e)Pyrène	0,050	4 218	211	114 392	5720
Benzo(b)Fluoranthène	0,100	4 869	487	144 414	14 441
Benzo(k)Fluoranthène	0,010	2 447	24	78 040	780
Benzo(a)Pyrène	1,000	5 334	5 334	138 280	138 280
Dibenzo(a,h)Anthracène	1,400	572	801	10 310	14 434
3enzo(g,h,i)Pérylène	1,000	2 805	2 805	61 140	61 140
ndéno(1,2.3.c.d)Pyrène	0,100	2 589	259	58 516	5 852
rotal		81 499	11 932	2 033 349	335 671
roral non génotoxique		33 057		611 229	
rotAL génotoxique		34 666	1 676	013 970	44 228
FOTAL hautement génotox	ique	13 776	10 256	508 151	291 444

Brai B Masse: 50 g Taux de chauffe: 50 °C/h

550 °C-650 °C

any de cligation								550.026	200	
1 Are Partie expérimentale				10.000	0.0	450 °C-5		128.44		
		- J+ U+C	50.C	350 10-4:		677,96	Gm		Dialo Anim Ithil	
		20 002		425,521	Bu		(00) Anun (00)	Quantité (µg)	Rially equiv their	
Intervalles de temperature	onservation)	5/'02	E L	Cuantité (iid) B	(a)P équiv (µ0)	Quantite (µg)		(analyse Alcan)		
Quantité de condensables (sans agent de	RPF	Quantité (µ9)	BjajP équiv (199)	(analwe Alcan)		(analyse Alcan)	Ī	490		
ANH		(analyse Alcau)		3 490		1 830		6 030		
		994		25,000		21 300		6 820		
Fluorène		6 320		15 500		30 800	R67	6 640	226	
Phénanthrène		3 540	Cac	34 500	1 173	000 C	5	6 240		
Anthracène	0.034	7 720	707	26.400		24 900	ED4	3 090	102	
Fluoranthène		5 840	ç	12 800	422	18 300	7 540	5 160	1 342	
Pyrène	550.0	2170	21		6 500	29 000		7 430	372	_
Benzo(a) Anthracène		3910	1 017		366	23 300	COL 1	7 660	766	-
Chrysène	0,200	1 520	26		B61	26 400	2 640	2 700	37	-
Benzo(e)Pvrène		1 710	121	8 610	5	13 200	132		8 820	-
Benzo(b)Fluoranthène	0,00	885	6	4 480	a CEO	26 000	26 000	070 0	1 876	-
Benzo(k)Fluoranthène		1 740	1 740	0,50 8	1 082	2710	3 794	020 2	7 070	
Benzo(a)Pyrène	000	212	297	611 9 730	3 730	14 300	14 300	6 330	633	
Dibenzo(a,h)Anthracène	000	1 180	1 180	0010	333	13 100		008 92	21 243	
Benzo(g,h,i)Pényiène	0100	1110			22 562	270 640	58 352			
Indéno(1,2,3,c,d)Pyrene		38.851	4 934	178 9/3		78 830		19 580		1
"POTAL				70 390			6.718	34 850	2 135	- 1
		16 694		050 15	3 200	119 800		000 00	19 108	
TOTAL non genuinver		15 115	701		0.96 0.	72 010	51 634	72 370		
TOTAL génotoxique		040 E	4 233	37 553	19 302					
morral hautement génot	oxique	710/								

XI.9	
Tableau	

Pâte P1 Masse: 50 g Taux de chauffe: 50 °C/h tère Partie expérimentale

Intervalles de température		250 °C	-350 °C	350.0	-450 °C	450 °C	-550 °C	0.055	J. 033
Quantité de condensables (sans agent de	conservation)	42,2	4 mg	5'68	9 mg	639	3 ma	0.17	
HAP	RPF	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B(a)P équiv (ug)	Quantité (uo)	BlaiP courv (no)
		(analyse Alcau)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		446		608		161	Ī	RF	
Phénanthrène		3 473		4 900		3 ABO		3145	
Anthracène		3 925		3 397		4311		2413	
Fluoranthène	0,034	5 136	175	7 262	247	5 303	180	4 292	146
Pyrène		4 093		6142		4 948		4 222	2
Benzo(a)Anthracène	0,033	1 754	83	2 926	97	3 076	102	2 484	RJ
Chrysène	0,260	2 499	650	4 866	1 265	4 665	1 213	3 664	4 ¥
Benzo(e)Pyrène	0,050	1 624	81	2 133	107	3 825	191	2 641	6.1
Benzo(b)Fluoranthène	0,100	1 816	182	2 472	247	4 272	427	2 766	201
Benzo(k)Fluoranthène	0,010	878	6	1 265	13	2 070		1 307	13
Benzo(a)Pyrène	1,000	2 057	2 057	2 639	2 639	4 625	4 625	3 206	3005
Dibenzo(a,h)Anthracène	1,400	278	369	289	405	593	830	637	801
Benzo(g,h,i)Pérylène	1,000	1 384	1 384	1 788	1 788	3 062	3.062	3 263	1 263
Indéno(1,2,3,c,d)Pyrène	0,100	1 342	134	1 658	166	2 728	273	3018	302
TOTAL		307 706	5 118	42 345	6 973	47 119	10 924	36 334	9 264
TOTAL non génotoxique		11 936		15 047		12 900		9.057	
TOTAL génotoxique		12 551	638	17 7 16	876	21 273	1 194	16.507	051
TOTAL hautement génotox	ique	6 2 19	4 480	9 582	6 097	12 945	9 730	10 770	8 3 1 3

Brai C

Masse: 50 g Taux de chauffe: 50 °C/h 1ère Partie expérimentale

Intervalies de température		250 *0	2-350 °C	350 *(C-450 °C	450 *(>-550 °C	550 °C	-650 °C
Quantité de condensables (sans agen	it de conservation)	172,	,93 mg	224	4 mg	257,	83 mg	216,	71 mg
НАР	RPF	Quantité (µg)	B[a]P equiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv. (µg)
		(analyse Alcan)	<u> </u>	(analyse Alcan)		(analyse Alcan)		(anal) se Alcan)	
Fluorène		109		130		216		90	
Phénanthrène		2 240	1 1	2 640		3 820		3 750	
Anthracène		4 180	1 1	5 920		10 200		8710	
Fluoranthène	0,034	3 910	133	3 990	136	3 730	127	2 630	89
Pyrène		5 750	1 1	6 590		7 810		4 160	
Benzo(a)Anthracène	0,033	2 690	89	3 510	116	4 500	149	3 1 1 0	103
Chrysène	0,260	4 910	1 277	6 460	1 680	7 110	1 849	4 790	1 245
Benzo(e)Pyrène	0,050	2 700	135	4 260	213	6 650	333	6 930	347
Benzo(b)Fluoranthène	0,100	1 810	181	2 880	288	4 340	434	5 190	519
Benzo(k)Fluoranthène	0,010	931	9 /	1 470	15	2 020	20	2 380	24
Benzo(a)Pyrène	1,000	2 060	2 060	3 570	3 570	5 100	5 100	6 920	6 920
Dibenzo(a,h)Anthracène	1,400	144	202	335	469	454	636	848	1 187
Benzo(g,h,i)Pérylène	1,000	948	948	2 510	2 510	3 680	3 680	6 360	6 360
Indéno(1,2,3,c,d)Pyrène	0,100	675	68	1 740	174	2 180	218	4 010	401
TOTAL		33 057	5 101	46 005	9 170	61 810	12 544	59 878	17 195
TOTAL non génotoxique	3	12 279		15 280		22 046		16 7 10	
TOTAL génotoxique		12 716	615	17 850	941	23 420	1 280	24 250	1 482
TOTAL hautement géno	otoxique	8 062	4 486	12 875	8 229	16 344	11 264	18 9 18	15 7 13

Pâte P2

Masse: 50 g Taux de chauffe: 50 °C/h tère Partie expérimentale

Intervalles de température		250 °C	-350 °C	350 *0	-450 °C	450 °C	-550 °C	550 °C	-650 °C
Quantité de condensables (sans agent de	conservation)	25,8	8 mg	45,9	7 mg	40,3	3 mg	-6,6	8 ៣ព្
HAP	RPF	Quantité (µj)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		86		94		67		4	
Phénanthrène		1 093		1 347		1 152		115	1
Anthracène		1 586		1 789		2 767		191	
Fluoranthène	0,034	1 883	64	2 180	74	1 015	35	173	6
Pyrène	ſ	1 738		2 077		1 288		201	
Benzo(a)Anthracène	0,033	1 089	36	1 174	39	975	32	95	3
Chrysène	0,260	1 598	415	1 930	502	1 363	354	134	35
Benzo(e)Pyrène	0,050	801	40	1 056	53	1 677	84	180	9
Benzo(b)Fluoranthène	0,100	724	72	975	97	1 431	143	151	15
Benzo(k)Fluoranthène	0,010	360	4	497	5	641	6	66	1 1
Benzo(a)Pyrène	1,000	722	722	1 068	1 068	1 592	1 592	176	176
Dibenzo(a,h)Anthracène	1,400	50	70	73	102	170	238	40	57
Benzo(g,h,i)Pérylène	1,000	398	398	644	644	1 226	1 226	221	221
Indéno(1,2,3,c,d)Pyrène	0,100	283	28	544	54	793	79	155	16
TOTAL		12 411	1 850	15 449	2 639	16 156	3 790	1 902	538
TOTAL non génotoxique		4 502		5 307		5 274		511	
TOTAL génotoxique		5 140	244	6 426	322	6 531	379	820	49
TOTAL hautement génoto	xique	2 768	1 606	3 7 16	2 317	4 351	3 4 10	572	489

Brai D Masse: 50 g Taux de chauffe: 50 °C/h *tère Partie expérimente*le

Intervaltes de température		250 °C	-350 °C	350.0	:450 °C	450 °C	550°C	2.035	650 °C
Quantité de condensables (sans agent de c	conservation)	67,4	42 mg	711.	i6 mg	2 037	7 ma	259	2 ma
HAP	RPF	Quantité (140)	B[a]P equiv (µg)	Ouantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (ug)	BlalP équiv (uq)
		(malyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		278		2 570		3 980		473	T
Phénanthrène		3110		22 400		50 100		5 980	
Anthracène		3 690		26 000		84 700		6320	
Fluoranthène	0,034	4 870	166	34 300	1 166	41 500	1411	3 330	113
Pyrène		4 550		32 700		53 900		5 700	
Benzo(a)Anthracène	0,033	2 970	8	20 600	680	43 700	1 442	2 590	85
Chrysène	0,260	6210	1 615	51 200	13 312	80 300	20.878	4 880	1 269
Benzo(e)Pyrène	0,050	2 300	115	15 400	0//	63 600	3 180	9.670	484
Benzo(b)Fluoranthène	0,100	2 680	268	18 000	1 800	70 000	000 2	9010	Ē
Benzo(k)Fluoranthène	0,010	1 420	14	066 6	ŝ	35 300	353	4 2 20	5 5
Benzo(a)Pyrène	1,000	2 900	2 900	19 000	19 000	74 900	74 900	12 300	10 300
Dibenzo(a,h)Anthracène	1,400	283	396	1 320	1 848	7 590	10.626	2 470	3 458
Benzo(g,h,i)Pérylène	1,000	1 600	1 600	8 570	8 570	45 600	45 600	14 100	14 100
Indéno(1,2,3,c,d)Pyrène	0,100	1 590	159	8 960	896	44 000	4 400	13 200	1 320
TOTAL		38 451	1 331	270 950	48 141	021 669	169 790	94 243	34 072
TOTAL non génotoxique		11 628		83 670		192 680		18 473	
TOTAL génotoxique		15 830	820	107 190	5 411	298 100	17 786	42 020	2 945
TOTAL hautement génotox	ique	10 993	6 511	060 08	42 730	208 390	152 004	33 750	31 127

Pâte P3 Masse: 50 g Taux de chauffe: 50 °C/h t*ère Partie expérimentale*

intervalles de température		250 °C	-350 °C	350.0	-450 °C	450 °C	550 °C	2.033	J. 039
Quantité de condensables (sans agent de c	conservation)	42,2	1 mg	228.7	1 mg	327		814	
HAP	RPF	Quantité (µg)	BlajP équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	BlaiP équiv (uq)	Ouantité (110)	BlalP Aniny (no)
		(analyze Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	(Rel) works while
Fluorène		155		666		347		Ron	Ţ
Phénanthrène		1 796	_	7 310		7 587	-	000	
Anthracène		2 084		0390		14 740		2 050	
Fluoranthène	0,034	2 338	62	12 442	423	9618	775	3 USO 1 265	eV
Pyrène		2 066		11 332	•	11 096		1 826	2
Benzo(a) Anthracène	0,033	1 648	2	8 329	275	666 8	297	1 898	Ľ
Chrysène	0,260	2 895	753	18 451	4 797	13 565	3 527	3.015	784
Benzo(e)Pyrène	0,050	1 575	79	5 023	251	11 153	558	3646	
Benzo(b)Fluoranthène	0,100	1 687	189	6 453	645	13.066	1 307		201
Benzo(k)Fluoranthène	0,010	939	5	3 538	5	6359	64	1 850	ş ç
Benzo(a)Pyrène	1,000	2 0 2 2	2 022	6 875	6 875	13 634	13 634	4647	CF3V
Dibenzo(a,h)Anthracène	1,400	243	341	377	528	1 259	1 763	104	
Benzo(g,h,i)Pénylène	1,000	1 360	1 360	2 635	2 635	7 850	7 850	3 440	000
Indéno(1,2,3,c,d)Pyrène	0,100	1 508	151	3114	311	7.772	222	104 6	
TOTAL		22 516	5 038	96 268	16 777	127 043	30 102	35 187	10 781
TOTAL non génotoxique		6 100		29 031		33 769		7316	
TOTAL génotoxique		9 895	562	38 898	1941	56 967	3 329	091.91	1.056
TOTAL hautement génotox	ique	6 52 1	4 476	28 339	14 836	36, 307	06.773	11211	0.000
							1 011 07	11/11	07/6

Brai E Masse: 50 g

Masse: 50 g Taux de chauffe: 50 °C/h *lère Part*ie exp*érimen*tale

Pâte P4 Masse: 50 g Taux de chauffe: 50 °C/h tére Partie expérimentale

intervalles de température		250 °C	-350 °C	320.0	-450 °C	450 *C	550 °C	J. USS	. USA
Quantité de condensables (sans agent de i	conservation)	4.0	9 mg	818.	53 mg	906.4	14 mg	16	
НАР	RPF	Quantité (µg)	B(a)P équiv. (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (Jug)	B[a]P équiv (µg)	Quantité (up)	BlalP éourv (uo)
		(analyse Alcau)	-	(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		2 666		13 529		912		1 133	
Phénanthrène		27 049		17 891		28.648			
Anthracène		12 176		41 774		34 523			
Fluoranthène	0,034	14 655	498	53 517	1 820	46 541	1 582	7 248	246
Pyrène		10 238		35 574		42 246		6713	2
Benzo(a)Anthracène	0,033	2 221	73	11 134	367	17 717	585	3.962	131
Chrysène	0,260	4412	1 147	22 101	5746	23 773	6 181	5 357	1 303
Benzo(e)Pyrène	0,050	1 234	62	9641	482	29 773	1 489	2 502	- 1 25 7 2 2
Benzo(b)Fluoranthène	0,100	1 407	141	10 543	1 054	30 224	3 022	2 837	284
Benzo(k)Fluoranthène	0,010	724	2	5 533	ŝ	13.327	13	1 248	5
Benzo(a) Pyrène	1,000	1 686	1 686	12 824	12 824	33.620	33.620	2 5 7 2	1 E C C C C C C C C C C C C C C C C C C
Dibenzo(a,h)Anthracène	1,400	203	284	1 155	1616	5 937	8312	6 966 446	5.35 5.35
Benzo(g,h,i)Pérylène	1,000	622	622	8 834	8 834	31 025	31.025	776 6	220
Indéno(1,2,3,c,d)Pyrène	0,100	784	78	10 840	1 084	28 048	2 805	1 786	179
TOTAL		80 078	4 599	314 888	33 883	366 314	88 754	42.621	7 793
TOTAL non génotoxique		52 129		168 768		106 329		12 436	
TOTAL génotoxique		21 026	860	101 207	4 863	165 630	9616	10 583	077
TOTAL hautement génotox	ique	6 923	3 740	44 913	29 020	94 355	79 138	10 603	6816

Brai B

Masse: 50 g Taux de chauffe: 50 °C/h 2e Partie expérimentale

Étapes de chauffage		Tamb-	350 °C	Tamb	450 °C	Tamb	550 °C	Tamb-	650 °C
Quantité de condensables (sans agent de c	conservation)	379,5	51 mg	1 509	,23 mg	9 294	,68 mg	8 160	,1 mg
НАР	RPF	Quantité (µg)	B(a)Péquiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	L
Fluorène		8 536		13 030		44 458		33 477	
Phénanthrène		57 864		120 672		488 536		350 459	
Anthracène		20 553		65 339		360 730		321 970	
Fluoranthène	0,034	45 393	1 543	131 634	4 476	464 724	15 801	391 631	13 315
Pyrène		36 302		115 592		407 573		358 065	
Benzo(a)Anthracène	0,033	11 484	379	50 794	1 676	220 390	7 273	200 531	6 618
Chrysène	0,260	23 729	6 170	99 947	25 986	382 951	99 567	348 757	90 677
Benzo(e)Pyrène	0,050	5 043	252	27 251	1 363	243 573	12 179	232 053	11 603
Benzo(b)Fluoranthène	0,100	6 955	695	36 258	3 626	277 321	27 732	227 444	22 744
Benzo(k)Fluoranthène	0,010	3 660	37	18 606	186	132 338	1 323	113 146	1 131
Benzo(a)Pyrène	1,000	6 991	6 991	36 021	36 021	295 695	295 695	285 413	285 413
Dibenzo(a,h)Anthracène	1,400	917	1 284	4 653	6 514	42 947	60 1 26	38 522	53 931
Benzo(g,h,i)Pérylène	1,000	1 963	1 963	11 609	11 609	171 341	171 341	153 734	153 734
Indéno(1,2,3,c,d)Pyrène	0,100	2 704	270	15 471	1 547	184 022	18 402	202 239	20 224
TOTAL		232 093	19 584	746 877	93 004	3 7 16 598	709 438	3 257 441	659 390
TOTAL non génotoxique		123 256		314 633		1 301 297		1 063 970	
TOTAL génotoxique		75 237	3 177	280 014	12 873	1 522 368	82 7 10	1 367 044	75 635
TOTAL hautement génotox	ique	33 600	16 407	152 230	80 131	892 933	626 729	826 426	583 755

Pâte P1 Masse: 50 g Taux de chauffe: 50 °C/h 2e Partie expérimentale

Étapes de chauffage		Tamh	350.0	Tamh	150.0	T			
Quantité de condensables (sans agent de	Concentral							-dma I	2.000
	cuisei valuuti)		Du to	1 408	gm ru	1 805.	79 mg	2 398,	92 mg
Here	RPF	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)	Quantité (µg)	B(a)P équiv (µg)
		(analyse Alcan)		(analyse Alcan)		(aualyse Alcan)		(analyse Alcan)	
Fluorène		2 492		5 539		6315		31 733	
Phénanthrène		19 105		85 499		74 642		51 854	
Anthracène		10 022		56 370		71 334		88.330	
Fluoranthène	0,034	20 711	704	119 739	4 071	84 392	2 869	102 135	3.473
Pyrène		17 882		113 934		80 549		102 957	
Benzo(a)Anthracène	0,033	6 283	207	54 031	1 783	47 727	1 575	64 171	2118
Chrysène	0,260	13 369	3 476	73 307	19 060	70 585	18 352	104 680	21.27
Benzo(e)Pyrène	0,050	3 938	197	31 699	1 585	53 012	2 651	696 62	3613
Benzo(b)Fluoranthène	0,100	4 380	438	38 357	3 836	58 254	5 825	80 777	8 07B
Benzo(k)Fluoranthène	0,010	2 471	25	19 438	194	27 855	279	38 025	380
Benzo(a)Pyrène	1,000	4 900	4 900	40 808	40 808	63 972	63 972	87 420	R7 420
Dibenzo(a,h)Anthracène	1,400	1 228	1 719	5 529	7 740	9 030	12 642	13 490	18 887
Benzo(g,h,i)Pérylène	1,000	1 432	1 432	16 729	16 729	34 610	34 610	54 752	54 752
Indéno(1,2,3,c,d)Pyrène	0,100	1 291	129	20 569	2 057	38 419	3 842	56 998	5 700
TOTAL		109 505	13 228	681 550	97 864	720 697	146 618	949 599	211 637
TOTAL non génotoxique		49 500		261 342		232 840		274 883	
TOTAL génotoxique		39 075	1 700	283 834	13 526	309 659	17 041	414 375	135.50
TOTAL hautement génotox	ique	20 930	11 528	136 373	84 337	178 198	129 577	260 342	188 275

Brai C Masse: 50 g Taux de chauffe: 50 °C/h 2e Partie expérimentale

Étapes de chauffage		Tamb	Tamb-350 *C		-450 °C	Tamb	-550 °C	Tamb-650 °C	
Quantité de condensables (sans agen	t de conservation)	295,	68 mg	4 703	1,13 mg	8 535	,75 mg	7 229	,64 mg
НАР	RPF	Quantité (µg)	B[a]P équiv (µg)						
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène		159		5 428		5 194		8 072	
Phénanthrène		4 414		87 057		113 007		131 690	
Anthracène		6 706		127 581		309 998		256 645	
Fluoranthène	0,034	7 918	269	75 126	2 554	74 634	2 538	79 528	2 704
Pyrène		10 442		110 026		147 993		134 767	
Benzo(a)Anthracène	0,033	4 113	136	58 608	1 934	91 794	3 029	78 850	2 602
Chrysène	0,260	8 942	2 325	120 979	31 455	158 347	41 170	139 568	36 288
Benzo(e)Pyrène	0,050	4 156	208	85 1 1 2	4 256	203 470	10 174	166 375	8 319
Benzo(b)Fluoranthène	0,100	2 184	218	44 854	4 485	122 554	12 255	98 554	9 855
Benzo(k)Fluoranthène	0,010	1 205	12	23 109	231	55 853	559	45 602	456
Benzo(a)Pyrène	1,000	2 443	2 443	51 270	51 270	159 420	159 420	125 781	125 781
Dibenzo(a,h)Anthracène	1,400	393	551	9 577	13 408	29 461	41 245	22 924	32 094
Benzo(g,h,i)Pérylène	1,000	1 032	1 032	29 134	29 134	142 580	142 580	110 848	110 848
Indéno(1,2,3,c,d)Pyrène	0,100	930	93	22 034	2 203	139 969	13 997	67 297	6 7 30
TOTAL		55 037	7 287	849 897	140 931	1 754 275	426 966	1 466 502	335 676
TOTAL non génotoxique		21 721		330 093		576 192		531 174	
TOTAL génotoxique		20 506	936	308 843	15 664	688 275	42 551	536 207	30 666
TOTAL hautement géno	toxique	12 810	6 350	210 961	125 267	489 808	384 415	399 121	305 010

Pâte P2

Masse: 50 g Taux de chauffe: 50 °C/h 2e Partie expérimentale

Étapes de chauffage		Tamb-350 °C		Tamb	450 °C	Tamb	550 °C	Tamb	650 °C
Quantité de condensables (sans agent r	de conservation)	41,0	19 mg	449,	79 mg	330,	77 mg	1 747	,01 mg
HAP	RPF	Quantité (µg)	B[a]P équiv (µg)	Quantité (µg)	B[a]Péquiv (µg)	Quantité (µg)	B[a]P équiv. (µg)	Quantité (µg)	B(a)Péquiv (µg)
		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)		(analyse Alcan)	
Fluorène	T	335		771		563		1 852	
Phénanthrène		4 322		12 804		9 281]	41 518	
Anthracène		4 453		19 517		17 879	}	78 725	
Fluoranthène	0,034	5 889	200	18 220	619	9 401	320	36 844	1 253
Рутѐне	1	5 459		19 088	1	10 364		42 334	
Benzo(a)Anthracène	0,033	2 539	84	9 585	316	6 482	214	26 593	878
Chrysène	0,260	4 929	1 281	18 289	4 755	11 620	3 021	47 611	12 379
Benzo(e)Pyrène	0,050	2 316	116	10 416	521	9 226	461	41 856	2 093
Benzo(b)Fluoranthène	0,100	2 020	202	7 840	784	7 065	707	31 207	3 121
Benzo(k)Fluoranthène	0,010	1 068	11	3 981	40	3 378	34	14 885	149
Benzo(a)Pyrène	1,000	2 389	2 389	8 8 9 8	8 898	8 244	8 244	37 209	37 209
Dibenzo(a,h)Anthracène	1,400	414	579	1 675	2 344	1 467	2 054	6 734	9 427
Benzo(g,h,i)Pérylène	1,000	1 217	1 217	5 166	5 166	5 806	5 806	27 866	27 866
Indéno(1,2,3,c,d)Pyrène	0,100	1 212	121	5 085	508	4 993	499	24 346	2 435
TOTAL		38 562	6 201	141 334	23 953	105 770	21 360	459 580	96 809
TOTAL non génotoxique		14 567		52 180		38 088		164 428	
TOTAL génotoxique		15 046	734	55 126	2 789	40 546	2 234	175 731	9 927
TOTAL hautement génote	oxique	8 949	5 467	34 028	21 164	27 137	19 125	119 420	86 882

IMAGE EVALUATION TEST TARGET (QA-3)

© 1993, Applied Image, Inc., All Rights Reserved