
MATRIX-BASED ALGORITHMS AND AN ANALYSIS OF

SYSTEM STRUCTURE FOR PARTIALLY-OBSERVABLE
DISCRETE-EVENT SYSTEMS

A thesis submitted t o the

Department of Electrical and Computer Engineering

in partial fulfillment of the requirements for

the degree of Master of Science (Engineering)

Queen's University

Kingston. Ontario; Canada

August 1997

Copyright @ Adrian Victor Payne: 1997

National Library 8ibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 WelTington Street 395, nie Wellington
OttawaON K1AON4 Ottawa ON K1A ON4
CaMda canatda

The author has gmted a non- L'auteur a accordé une licence non
exclusive licence dlowing the exclusive permettant à la
National Library of Canada to Bibliothèque nat iode du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distniuer ou
copies of this thesis in microform, venche des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

The complexity issues associated with the finite state machine (FSM) framework

for analyzing partially-observable discrete-event system (DES) control problems are

reviewed. Methods that take advantage of system structure to provide better es-

timates of the size of the state space of FSMs which recognize the projection of

part ially-observable systems are presented. The corn put a t ional advantages or disad-

vantages of each method are discussed. The applicability and effectiveness of these

methods are illustrated using a number of simple. yet illustrative. examples. The ex-

effective and ineffective ample problems illustrate cases where our methods are both

in improving upon the standard cornplexity results.

The existing set of DES software tools is revie~ved. and used to form a basis for

the development of a new more flexible and intuitive DES en\-ironment whicti rnay

be used to design. analyze and solve DES problems. The design of this tool is such

that it can be implemented in a reasonably simple marlner iising common proven

computational tools. and graphical user interface (C U I) building tools.

In conjunction with the developrnent of a new DES software tool. matrix-based

data structures and DES operations are presented and clewlopccl for a selcction of

common DES functions. This approacli is designecl to t-ake aclvantage of high-level

matrix operations available in a number of cornniercial off-t lie-shelf (COTS) software

applications. and to take advantage of sparse-matris data stroct,ures which allow

DES information to he stored and processecl i r i an efficient mariner. Finally. the set

of matris-based DES operations is designcd so tliat i t is straiglit forward to tvrite

liigh-level scripts which perform more corn ples rl ES aiialysis t asks,

Acknowledgement s

I would like extend a special thank you to my thesis supervisor Dr. Ka-ren Rudie for

her guidance, encouragement, and friendship throughout the past two years, without

whom this work would not .have been possible.

Great appreciation goes to the School of Graduate Studies at Queen7s University

for its hancial support through the Queen's Graduate Awards program, and to Dr.

K. Rudie for the financial support she provided through her NSERC operating grant.

1 would like to thank the members of my examining cornmittee, specifically Dr.

N. Manjikian, Dr. R. Dawes, Dr. S. Tavares, and Dr. E. W. Grandmaison for their

very helpfd cornments and suggestions, regarding the content of this thesis.

I would also like to thank my family, especially my mother, Matthew and Annette,

and friends such as Moira, Justin, Lucy, and Michelle who helped me maintain a

positive outlook on life, and who were a constant source of moral support.

1 thank my fellow students in the DES group, particularly Laurie, Gino, and Kari,

for sharing some of their ideas with me and generally making the DES group an

interesting place to work and l e m .

Finally 1 want to extend a special thank you to my good friend Wade who, through

endless movies, pool nights and Wellington outings, ensured that 1 kept a proper

balance in my life.

Contents

List of Tables . v

. List of Figures vi

. 1 . Introduction 1

1.1 Partial Observability and DES . 3 .

1.2 Tools for Compiiting and Displ-ing Discrete Event Systems 3

1.3 Research Contribiitions . :3

1.4 Thesis Otttliric . 4

2. A Review of DES and Automata Theory 6

2.1 Automata Theory . 6

2.1.1 Detcrministic Finitc-Statc :\Lutonlata G
-

1 . 2 Xondeterministic Finite-State Autoniata I

-
'2.1..3 Lioncieterministic Automata tvit h 5-Transitioris I

2.1 . 4 1Iinimum-State DF.4 . 9

2 Discrctc-Event Systcrns . .. 10

2.2.1 DES Building Hlocks 13

2.2.1.1 Trini . 13

. 2.2.1.2 ,\ Ioct 14

.) -.-.) 1 Synchrorious Procluct 1.5

. 22.2 Supcrvisory C'oritroi wit ti Partial 0bservat.ioii 16

2.2.3 Diagnosabili ty . 24

4.2.2 Visual Reqiiirements . 58

4.1.2.1 T h e V i s u a I P l a n t . 59

. 4.2.2.2 FSbf Interactions 60

4.3 A Matrix-Based Implementation of DES Operations 60

4.3.1 T h e File Format . 61

1.3.2 Basic Matrix Operations . 67

4.3.3 The TRIM Operation . 6S

1.3.4 Tlie MEET Operation . 73

4.3.5 The SYXC Operation . SO

1.3.6 The PROJ Operation . S4

4.3.; T h e MIN1 Operation . Sg

5 . Examples . 91

.5 .1 The Tw-Tra i r i Prohleni . 01

9.1.1 O-Reacliabili t> . Arialysis Restilts 93

3.2 .+\ n HV.4C Systeni . $14

5 . 2 . o-Rcactiabil i t~ . .A nalysis Results 9.j

5.3 The Tsitsiklis Problern . 101

5.3.1 rr-Rcac1iahilit~- Arialysis Resiilts 102

5 .4 A 10-state Cycle Problem 10:3

.5.. 1.1 a-Rcacliahili t J . .-\ rialysis Rcsiilts 107

6 . Conclusions and Discussion 110

List of Tables

2.1 An example of computational complexity 28

5.1 a-reachabiiity results for the two-train problem 94

3.2 a-reachability resuits for the HV-AC system 95

3 a-reachability results for the Tsi tsiklis problern IO3

5.4 a-reachability results for the cyclic esample 107

List of Figures

1.1 A Simple Deterministic Finite-State .A utornaton

2.2 A simple nondeterministic finite-statc automaton

2 3 A simple NF.4 with a n E. transition

2.4 .A simple plant .

2.5 A plant/siipervisor system .

2.6 Plants Gl and C2 .

2.7 T h e meet o f C 1 and C:?

7.S T h e synchrorioiis product of C;, and Ci'?

2.9 A plant/siiprrvisor system with partial observatioii

2.10 -4 system/cliagnoser pair .

2.1 1 Complexity classes (assuming P # iv P and . \'P f CO- . 1.P)

2-12 A n example of the Iiierarchical breakdown of an SP-complete problem

3.1 Unobservable event transitions .

3 . 2 Tree sr riic t iirc esarn plr .

3 . 3 n-reacliahility csarnplc .

3.4 The cj-clic NF:! .. 1, .

3 . 5 D l v i t X , .

3.6 :! modificcl DI.':\ it-itlt a E Su, .

.3.7 : ! " r i x r ~ ' ~ c o r i s t r ~ ~ c t i o n f o r ~ ~ = : I .

4 . 1 Ttic 'F(."I' r t ia i i i riicnii .

4.2 'I'hc 'I'CT FSM oiitput .

4-13 Two csamplc FSMs .

4.4 Tlir TRIM of FSM C;, .

. 4.5 The MEET of FSMs Gl and C2 $0

. 1.6 The example FSMs with self-loops 82

. 4.7 T h e S Y N C o f F S M s G t a n d C z 83

. 4.8 The PROJ of FSM G! 89

. 5.1 A block diagram of the two-train problem 92

. 5.2 The component models for the two-train problem 92

. 5.3 -4 biock diagram of the HVAC system 94

. 5.4 The component models for t he HVAC system 96

. 5.5 IvIatriir structure for the unobservable events 9S

. 5.6 Matrix structure for the la-reachability matrix 99

. 5.7 Matris structure for the 20-reachability matris 100

. 5.S Theadjacency matrixfor the FONevent 101

. 5.9 Matris structure for the lo-reachability matris 104

. 5.10 The adjacency matrix for the "1" event 105

. 5-11 -4 cyclic FShl with 10 states 106

. J.12 The adjacency matrix for the a event 108

. 5-13 Reachable state-sets via al1 5-lengtli strings 109

Chapter 1

Introduction

The Discrete-Event System (DES) frarneivork can be iised t.o model an increasing

number of engineering problenis arising in industry today. Applications including

flexible manufacturing systems [LiLIkLBS8]: communications protocols [RW92a], fail-

ure diagnosis systerns [SSL+95], [SSLf S G] , task scheduling. and database management

[LafSS] illustrate why a system that focuses on the discrete iiat.iire of these applica-

tions is in increasing dcmand. CVhile a body of research pioneered by [RCVSV] and

discussed in [RL\'S9]. [CLO95]. [Thi'JG] has provided a I~asis for tliis type of system

modeling and control. a nuriiber of issues reniain rliat pre\-cnt the l~roacl acceptance

of this researcli iii itidustry applicatioiis.

One of the key issues in the field of DES is the problcrri of statc-space explosion.

which occurs rvhen niodeling large (typical) systems. A niiniber of methods have

been developed t liat at tempt to address t h e problem of cornpiitat ional complexitj. in

large and/or partially-observable systems [B HSR]. [C'LLY?]. [H LW]. [LW93]. [L\V94].

[O WgO]. In general. s t atc-space e s plosion may occiir wlii le motleling the prohlem

or ivhile devising a siiitahle controller. Iii irarious instances. the niimher of states

of the system that a controller must kecp track of beconies intractahle. making the

control problem difficiilt to solve i r i a reasonable aniount of t irtie. or iising a reasonable

amoont of computer resources.

Our work represcnts an at tcmpt to unclcrstnnd th<- rrasoiis for statc-space csplo-

siori. notably in tlic worst case scenario wticrc a corit rollirig ageiit is oril!- awarc of

a stibset of the events occiirring within a system-ancl t.1iiis rniist keep track of ail

possiblc states of the system. WC examine tlic st~rticture of ttic modeled system. and

present reasons why. wlirn clevelopirig ttir rnodcl. st nt r-spacc csplosiori occurs or does

not occur. We then take advantage of this knowledge to devise a series of tests tha t

are performed while modeling the system to est imate the extent of the state-space

explosion. The results of these tests identify how the system model can be modified

to minimize the problem. This would correspond to recommending that additional

sensors be instailed in the system, or that various events be prevented from occurring

or eliminated entirely from the system. In devising these tests, it is necessary to take

care not to introduce computationally expensive procedures into our test algorithms,

thereby possibly invalidat ing the usefulness of the test.

Cornputational complexity issues are generally associated with the development

of efficient algorithms that can then be irnplemented as software tools. Therefore. as

part of this thesis, we develop matrix-based data structures and algorithms which can

be used to model and analyze DES problems. By coupling complexity analysis with

tliese data structures and algorithms. we provide an efficient and flexible environment

for building and analyzing partially-observable discrete-event systems.

1.1 Partial Observability and DES

The work contained in this thesis focuses specifically on cases where only a sub-

set of the events in a niodeled system are observed by controlling agents [LCVSS].

[CDFVSS]. [TsiSg]. [RLVOO]. [RWWb]. [RW95]. Since in cases such as these. the con-

trolling agent needs to keep track of al1 tlie possible states the systern in- be in at,

any one time. the resulting supervisor may need to store control information for al1

possible combinations of states of the system. This results in a supervisor wliich could

require up to 2" aniount of tirrie to generate. and ivhicli coultl take u p to '2" amount

of storage space. where r i is a measure of the sizc of tlie partially-observable system.

The exponential growt h of the supervising agent is coniputat ionally int ractable when

working with problems wher t rz is Iargc.

Partially-observable systems are common to DES prohleins. specifically in the

areas of decent ralized cont rol and fault di agnosis. Tlie s t i-i.tc t, ir res crcated w heu solvi ng

t liese types of problcms cari exliil~i t i.lic csporicrit,ial growt li dcscrilxd aI>ovc. I t has

been noted [SSL+95], [SSLC9G], [OWQO] tha t this type of exponential growth is seldom

observed.

1.2 Tools for Computing and Displaying Discrete Event Sys-

t erns

Throughou t the process of creat ing arid analyzi ng esairi pie problenis. ive noted

tha t existing DES software tools were of limited use in a nunibcr of areas. In general,

there existed no simple method for processing large niiinhers of problcnis: rio method

for writing high level scripts for solving specific types of DES problems t hat require the

use of a number of different basic DES operations; no met hocl for easily espanding t h e

lunctionality of existing tools by adding new DES fiinctioris as required: and Anally

no method for displaying plants o r controllers (fitiite-st,atc niacliines) i r i a simple and

understandable format.

In this thesis. we provide some background on a ii~iiiibcr of csisting DES tools for

reference. and then procced to propose a DES soitwart. design bascd on prototype

software tliat we believe satisfies a number of our reqiiiretiierits. also develop in

clet ail sorne rriatrix implcrnentations of a subset of DES operatioris -specifically those

which relate i,o modeling partially-obser\rable systciris.

1.3 Researcli Contributions

The following list suniniarizes the researc-II cotit.ril>iit.ioris of t lie itiaterial prescnted

in th i s thesis.

0 Matris-Bascd Tools: Matris-basecl da t a striict.iiirs. iogctlicr rvitli a set of matr ir-

bascd iniplcnieritations of csist irig D ES qit-rat.ioiis Iiavc* I)cm providecl. 'i'hesc

da ta structiircs ancl oporations liaw Leciri inipl~~rtwiit c u l iisiiig 11.-\TL:\B [hlat,SZ]

software.

O Front-End Graphical User Interface (GUI) Requirements: A set of requirements

has been developed and a prototype GUI has been implemented using Tcl/Tk

[Ous94] software.

a Complexity Analysis For Partially-Observable DES Problems: A set of DES

structural propert ies t hat t ighten the complexi t y bounds for solutions to partially-

observable pro blems has been ident ified.

1.4 Thesis Outline

O Chapter 2 provides a brief review of the areas of research wliicli form the I~asis

for the results presented in this thesis. The Discrete-Event Çystems (DES)

framework firs t int roduced in [RWS-1 is presented. followed by some selected

background topics in the fields of Cornputational Complesity. Automata Theory

and Graph Theory.

O Cliapter :3 describes the specific problem of state-space espiosion when consid-

ering partially-observable D ESs. and presents met liods of analysis which talie

advantage of the structure of the systern to make worst-case estimates about the

result ing state-spacc esplosion. :\ cletailecl aiialysis of t tie scnsitivi ty of DESs

to various structural properties is presented. Finally, metliods for identifying

and modifying prohlerri structures within a systern to minimize the resulting

statc-space esplosion are presented.

0 Chaptcr 4 provides a review of existing DES software tools. proposes some high-

level arclii tect ural rcquirenients for a iiew set of t 001s. ancl prescrits dgorithms

used to irnplement the structure-hased analysis presentcd i I I C'hapter 3 . includ-

ing a DES M:\TL.AB toolbox ivitli specific procediircs for tcsting and analyzing

part.iall~*-obscrvat~lc sys t cms.

Chapter 5 illustratcs Iiow typical DES prol~lertis riiajp I>r arialyzcci and. in some

cases. modificd for control hascd or1 partial ol>scrvattiori iisirig t lie tools presented

ir i tliis tlicsis.

Chapter 6 provides conclusions about the work presented in this thesis.

Chapter 2

A Review of DES and Automata Theory

2.1 Automata Theory

In general, t he work done in DES does not require tliat t lie system be modeled

using any single methodology. Typically. however. mucli of t he work done in the

field to date b o r r o w modeIs froni t he body of work in cornputer science on au toma ta

t heory.

2.1.1 Deterministic Finite-State Automata

.A Deliorministic Finite-State .4utonnton (DF.4) is formally denoted by t h e 5-tuple

(Q, S. S. q,, Q,). wliere Q is a finite set of states. X is a finite input a lphabet . 3 is

a partial transition fiinctioii niappirig Q x 5 t o (S. q, is a n initial s t a t e , and Q , is

a set of terminal states. In DES tlieory. terminal states are often called marked or

marker s ta tcs . Figiirr 2.1 stiotvs a s imple esarnplc of a DF.4' ivhere a n initial state

is indicated by a left-pointmg arrorv (t) in t h e statcS box. and marked s ta tes are

indicated by right-poiriting arrows (4) in t h e s ta te box. I f the initial s t a t e is also a

marked s ta te . t h e n a double-tieaded arrow (H) is tisecl in place of t h e left-pointing

' AI1 the Finite-Stati? hlactiiiies (FSiLIs) witli labclcd statcs are geiicrated iisirig the prototype

DES software toolkit prcstii1tcic.l iri tliis tlicsis.

Figure 2.1: A Simple Deterininistic Finit e-Statc .-lu tomaton

2.1.2 Nondeterministic Finite-State Aiitomata

A .Vorldetcnninistic Finite-Strrte =l utomcrtor~ (SF:\) is forrrially denoted by the

-5-tuple ((1, S . S.q,. Q,). where Q. Y. q,. ancl Q,, ha\-e t h e sanie meaning as for a

DF.-1. and where 5 maps Q x !: to 2 Q . Mvhereas t tir trarisitiori functiori in a DF-4

maps Q x S to single eiemerits in Q (e.g.. d(ql.o) = <il). the transition functiori for

an 3F.A maps Q x 5 to subsets of Q (e .g . . S(qt. a) = {ri? y.!. q 5 }) . It follows that a

DI?.-\ is a special case of ari .\'Fi\. wlicrc 5 iiiaps Q :< X to single-element subsets of (2.

Figure 2.2 shows a simple esample of aii Si?:\. 9 o t e t Iiat ~ l i c transition &(Idle. S t x t) =

{Working. Broken} is the source of t lie nondctcrrninisiti i r i the automaton.

2.1.3 Nondeterministic Automata wit 11 r-Tkaiisitions

Soridetcrniiriistic Automata witli r- /rctr~si trort .~ i SF.-1:) arc ai1tomat.a dcfiriecl in

the sanie manner as NFr1s. mitli ttic additional propt-rty t liat tlic atitornaton niay

makc a transition on tlte enipty input E. Refer io Figiirc 2-11 Cor an csarnple of a

simple nonclctcrniiriistic aiitornatoii tri t i i r-t raiisit ioris.

Repair

Figure 2.2: :\ simple riondeterrninistic finitc-state autoniaton

Figure 2.3: A siniplc NF:\ witli ail f-transitioii

2.1.4 Minimum-State DFA

Theorem Y. 1 [HU79] (see below) toget her witli .Algorit h m 2.1 (also from [HU79])

provide a polynomial-tirne method for constructing an output DFA which is a minimum-

state recognizer for the language recognized by an input DFA. I t should be noted that

no such algorithm exists for NFAs. Indeed, it can be proven [JR93] that the deci-

sion problem associated with the conversion of' a DFA to a minimum-state NF.4 is

PSP.\CE-complete 2 .

T h e o r e m 2.1 [HU791 The Dfil co~ist rirctcd rrning .-llgor-ith rri 2.1. with inaccessible

states rernoved (trirn), is the minimum s t d c DFA jar- its language.

Algor i thm 2.1 : Minimum-Sta te DFA Construction

2. f o r each unordered pair of s t a t e s (q t . q J) i j J

define an empty Zist L(qt ,v , l

end

-9. f o r each p a i r of d i s t i n c t s t a t e s (q , . qJ)

i n Qrn x Qrn (Q - Q m) (Q - Q m) do

i f for some input symbol O , (d (q , . a) . & (qJ . o)) i s f Zagged then

Recurs iveFZ ug(q, . q,) (.-llgorithrrl 2-21

e tse

for al2 input symbots o d o

i f < i (q i . u) f CS((^. o)

put ((II. on L(6(r/..~).6(71 -0))

end

end

end

end

'Section 2.3.1 providcs sortic dis(-iissioii 0 1 1 PSP:\(:I<-c.oriiplcte prol>lcliris

9

Algorithm 2.2 : The RecursiveFlag Function

1 . input unordered pair (q, , q,)

3. /or each unordered pair (q,, q,) in the list L(,,,)

if the unordered pair (q,, qn) is not Jagyed thcn

RecursioeFlulag(q,. q,)

end

end

2.2 Discrete-Event Systems

.A Discrete-Everit Systern mode1 can be tlioiiglit of as a representation of a real

system whicti exhibi ts asyriclironous, event-driven behaviour. Typically such a system

can be descri bed iising a state-transition striict tire. Ahst ract ly. this mode1 can b e

represented by a five-t iiple deterniinistic autoniatoii (D F.4)

rvhcrc Q is a set. of states.

S is a set of cvent labels,

8 : Q x 5 i Q, is a partial lunct ion tlcfiiied for sonie s ta tes q E Q,.

a n d for sortie events a E S. siicli t liat d (a . q) = g' ivlicre q' E Q ,

qo is t.lic initiai state.

and Qm C Q is t h e set of rnarkccl st.at.cs.

Lct S' dcnotc tlic set of ail strings ovcr ': U {s} . IL* ~ s t c r i t l tlic definition of 6 in

t, hc usiial iriariricr. follows:

For simplicity, ive use 6 to represent both b and 6-. recognizing that when d operates

on a state and string (of length greater than l) , then we are implicitly using 6'.

Given S' and 6 as defined above, t he languages generated by G and marked by

G (denoted by L(G) and L,(G). respcctively) are

An esample of a typical finitestate plant is sliou-n in Figiire 2.-I. For this esample.

the event set is S = {start-job. firiislijoh. repair. hreali-clo~vn}. the labels for the

state set Q are {Idie. Woorkirig. Broken}. tlie initial state is 4, = Itlle and

state set is Q, = {Idle}. partial t ransitiori fiiriction is defined for t

c a s

the marked

tiis esample

The event set of a plarit C; caii he part i r iorictl for t,lic piirposcs of supcr\risor design

irito trvo disjoint siibsets. tlie first scr 5, coiiiposcd of al1 ~coritrollablc" cvcnts. and

the second set Z,, composcd of a11 ~~ii~icoritrollal)lc" cvrrits. Xotr that \' = Sc U S,',.

Cont rollable events are tliosr w r r i t s rvliicli a supoi*\.isirig iiatirit (.< i r i Figurc 2.5) ma).

cnahlc or disablc in accorclanc(~ tvit l i s o i ~ i < ~ coiit rol .;t rat I ~ricorit.rollahle cvcnts

are considerecl to always he criabled. 1:nahlctl cvrrits art8 those tavents rvtiicli may

occur in the plant. whereas disabled e\x:rit.s arc! t l l o s~ ev<:iits wllicli are preventccl from

occurring.

/' finish j o b

1

Broken - &
b reak-down

Figure 2.4: .A s inipk plant

Control
Commands

I

Figure 2.5: -4 pIant/super\.isor systeiii

.A (nonernpty) plant Ci rnay b e -~controlleci" L>>- a supervisirig agent S. where t h e

supervising agent sencls cont roi commands t O G tvhidi s w v c t o eriatde o r disable events

based iipon the observecf secluences of e \ ~ e n t s occiisring in the plant (Figure 2 . 5) . These

actions by the supervising agent limit tlic general I)cliaviour of C to some specified

legal o r dcsired behaviour in a closed-loop s>.steiii .5/G'. This is equivalent t o saying

t h a t S restricts t h e language L(G') t o sonw legal siil>laiiguage L (S / C) .

Now. suppose t h a t the legal behaviour is representeci by the language I ï 5'.

Before a supervisor may be constructed, it is necessary ro determine if i t is possible

t o restrict L (G) t o I<. T h e language I< is saicl to hr rot~t io l l r ib l~ with respect t o G' if

and only if

where K represents the prefix-closure of 1; (i .e.. the language composed of al1 prefixes

of Ii), and the notation TT,, stands for the set {kcr 1 k E f, o E S.,). Thus,

controllability states that given any prefix of I<, there is no uncontrollable event

which when appended to the prefix of I<. generates a string which is contained in

L(G), but which is not contained in K.

LVe noow define the supervising agent mode1 as the pair S = (T. b) . The supervisor

S is represented hy a n automatori

and a control mapping c : S x S - {enahlc.disable). T h e automaton T acccpts

as input t he sequences of syrrilmls iri S gerierated 1) ~ . G. and theri generates control

commands based on the control mapping t*. ivliicli enables or disables controllahle

events in G'.

2.2.1 DES Buildiiig Blocks

T h e following sectioris revicrv a set of operations ~vliicli are used to construct and

manipulate DES niodels [LVonlX]. Tlie DES plants sliown ir i Figure 2.6 \vil1 bc usecl

in eramples of horv t lie rrieri atid synclironous proditct operat ions ivork.

2.2.1.1 Trim

A trim autornat,ori is clcfitlcri to I)c an autoniat.oti rvitli al1 s ta tns hciirig .-rcacliabic"

and 'coreachablc". For a stat.c (1 t,o Ilc rrnchablr. tliere mrist csist a pat h (possibly of

Icngth zero) from tlic iriit.ial s tate q,, to tlic statc q . For a statc (1 to I>c (.or-cachable.

there must er is t a path (possil>ly of lerigth zero) froni q to a niarkcd statc (1, E Q,.

Figure 2.6: Plants Gi and C;?

The meet of n languages L 1. L 2 L ,, is defiriecl to I>e

This definition can be used to construct a generator C;,,,, w l i i i i i gçiiei&o ihe lm-

guage Lm,., based on generators G, = (Q,. Z,.d,.q c,t. Q,.,) for i = 1 to n:

Thus. the automaton Grneet generates (resp. . rccogriizes) onl!. those strings which can

b c generated (resp.. recognized) b>r al1 the Ci, aiiioriiat a. 1 1 1 iiiany applications. it is

clesirable that G,,,, l ~ e a trini autoniaton. I I I t.iiis case. C,,,ct oniy recognizes thosc

strings which are recognized by al1 tlic C;, aiitoiiiata. S o similar claim can be made

for generated strings.

Figure 2.7: T h e meet of C;l and C&

An esample of t h e meet of the plants Gi ancl Ci2 i i i Figure 2.6 is shown in Fig-

ure 2.7. Note ttiat for this example. in plant Cil. a aricl 7 are distinct events which

take the systern from state L to s ta te 2. For siriip1icit~-. ive only show one arrotv for

these two transitions. .-1 siniilar simplification is niacle i n tli i . plant G?.

2.2.1.3 Synchronous Product

Whereas t he rneet of a group of languages captures orily t liose strings whicli are

contained in al1 the languages. the syncltr~onous product coritains al1 possible interleav-

ings of strings in t he group of languages. -4 generator Ci',,,,, cari be constructed which

generates the language L ,,,, based on the generators Ct', = (Q,. 1,. d,. qol. Q,,) for i =

1 t o n as follows:

Figure 2.8: The synctironoiis prodiict of Gi and C2

-4s with meet, in general. it is desirable to espress the resoit of the synchronous

product operation as a trim automatori .

An exarnple of tlie syriclironoiis procliict of tlic piarits Cii a n d C;? in Figure 2.6 is

shown in Figure 2.8.

2.2.2 Supervisory Control wit 11 Partial Observation

In many applications. full knowledge about, al1 the events occurring in a plant C:

is not available to the siipervising agent .S. In t,licsc cases. i t is iisefiil to partition

the event set into t,wo disjoint sithsets. X, rcprrsrriting t h e set of observable events.

and Xu, representing t h e set of i inol~srrvablr cvrrits. Note tliat E = X, U Z,,,. and

also tliat tliere is rio particular rcIat.ioiisliip hctitxwi X,, aiid i hc sct of coritrollablc

evcnts Sc. Practically, siicli a systcni tvoiild corrqmricl to a pinrit wlicre thcrc exists

a n array of sensors tliat arc capable of clctccting a siibset of al1 tlic possible events

tliat may occur. Ir1 sitcli cases. i t . ~liaj- r10L II<' v ~ ~ ~ i o n l i c a l l y o r p r a c t i c a l l ~ ~ fcasiblc

Control
Actions

O bserved
I Events

Figure 2.9: A plant/supervisor system wi t li part ial observation

to install enough sensors to moni to r al1 plant event,s. Figure 2.9 illustrates such a

system. ivhere a subset of tlie events occurring in tlie plant a r e passed (via sensors)

t o t h e supervising agent.

Informally. if a plant is mocleled using a finite s t a t e mach ine (FSM) G. containing

s ta tes q l . q, E Q. a n d d(ql . a,,) = q . 2 : where a., is a n unobser table event ' then any

supervising agent upon seeing t he plant enter s t a tc (1, niiist provide for t h e possibility

t h a t t h e plant could b e i n e i the r s t a t e q, or s t a te q2. sincc it is impossible t o detect t h e

occurrence of t h e unobservable event a,,. Thus, i t is usefiil t o construct a modified

model of the plant G. rvhich erases al1 occurrences of unobservable events, and which

contains states (in t h e modified model) wtiicti correspond to s u l ~ s e t s of states in G

rvliich are indistingiiis hable t o t h e supervisor .<.

Forrnally. tlic process of renioving everits f ro~i i str ings coiit,aiiiecl in a langiiage is

rallcd ~ i n l i r r d pr,ojcctioti

p : 5- 'r-
d~

and can be recursively defined 011 strings as

Since in rnany cases, problems in DES are described in terms of FSMs which

generate languages, it is useful t o apply t h e concept of projection directly t o FSMs.

To do this, first it should be observed tliat al1 partially-observable FSMs used in

DES applications can be thought of as noncleterministic finite s t a t e au toma ta with

t-transitions. where the E-transitions reprcsent transitions in FShIs t hot cannot be

observed.

L n [HU791 induction on t he length of strings is risetl to prove t h e following two

t heorems:

Theorem 2.2 [HU791 If L is uccepted by (r nondeterntinistic finite (rulornnlon (.VF'AJ

with 5-transitions. then L is (rccepted b y (in :\'F.-l u*L.itfio«t - I rnns i t ions.

Theorem 2.3 [HU791 Let L 6c ri set nccepted bg riri :VF.-î. Theri [h e m exzsts (L d e -

terministic j n i t e nnlorrrntoti (DE-\) t h d accepts L .

Gsing these two theorems in coriibinatiori. it is possible to coiivcrt an NF-\ rvith r-

transitions t o a DF.4 (wi t lioiit 5-transi tions). By labeling al1 iiriobservable events in

the plant DF.4 as :-transitions. t,herehy creatirig an XF.4 [vit l i r-transitions. we cari

then convert the resiilting YI':\ witli E-t raiisitions 1.0 a D F.4 wit liout 6-transi tions.

TIiiis. we have -*crasecl'' t lie occurrence of tirio1)servabir~ cvcnts. .-\ coristriic tion met hod

baçed on the proofs givcri in [F I L X] is providcd I)~loiv. Lr-i C = ((S. 5. S. qo. Q,,,) hc

a DFr\ with SUS,,, rvhere u stnritls for disjoint iiniori. For a statr q E Q. dcfine

Construct NF.4 G = (Q , Co, 6',qo, Qm). The marked state set Q& and 6' are

constructed as follows.

Q, U { q o } i f E - CLOS(IRE(q,) contains a state of Q,

Qm otherwise

and br(q, c) = q(q, a) for q E Q and o E S.. Note that t lie size of the state space for

G' remains the same.

The second part of the construction requires that t.he YFA be converted to an

equivalent DF.4. The construction is: Let G' = (QI 2,. 5'. q,. Qm) Ile the above NFA.

Construct G, = (Qp. 2,. 5,. q,,. Q,,) where:

Q, = 2Q (t h e power set of Q) .
-

Qo, - Clo.

Q,, = {qP E Q p 1 34 wtiere g is cont,ained in tlic Iabrl of rl, aiid q E Q m } .

Thus. single states q,, E Q, use some subset of states q E CJ as labels. For esample.

the label of sonie qp E Q, could be {qi: qz.. . . . qr;}. Xoir defirie:

A s it is rarely the case that al1 24 states are reaclinblc i r i (;,,. tlic coristriiction can be

made more efficient [RudSSI iising a n iterative approacli a5 follows:

Flag the initial statc qo, as a --nerv."

O For each .-new- state. remove the '.nerv" Rag frotri the state. arid construct al1

states reactiable frorn that state via some CT E 2,. I f tticse statcs do not already

esist. fiag t . h m as *-neive states.

0 Repent. the s(:coiicl step ~int,il rio states wi t l i a "iiriv" flag rmiain.

[ri tliis way. orily thosc states whicli arc rcarlial>lr frorii tlie initial state are gener-

ated. Note Iiowever. that it can be shown hy esariiple tliat, the resulting DF.4 is not

necessarily a minimum-statc DFA. To obtain a rnininium-state DI."\. the algorithm

presentecl in 2.1 can he iised. If C, is a DFA that rccognizcs tlic languaçc P(L,(G'))

for some DFA G, we use the notation CG = p(G). A cornpiete pseudo-code algorithm

for constructing p(G) is provided in .Algorithm 2.3. Note that for step 3 (c) , Iine 6 of

Algorithm 2.3 (which contains the statement --for eacli q E q,")' the state-set qp is

itself a subset of Q.

Algorithm 2.3 : A Projection Algorithm for FSMs

1 . Inputs: Automaton G = { Q . ~ ~ C ~ ~ ~ ~ , Q ~ }

2. Def ine a neu automaton Gr = {Q, x,, 6'. q,. Q m)

(b) s e t &'(-. -) = 0

f o r each ci, E Q d o

f o r each q, E d o

f o r each O E IL, do

if &&..) = a t hen

<* 4 = y,

e l s e if d(q , . s) = % f o r some s E 5'

such t h a t P (s) = a then

s'iqa. a) = Wh- 4 U { q , }

end

end

end

end

9. Convert t h e N F A C;' t u a DFA G p

T tie Algorithm 2.3 is based upon tlic t.wo esistiiig algpritliins ciiscussed in [II Li91

and [RudSSl. While tliis algori t. hm coiistriicts ail oiit put- aiitomaton t hat recognizes

the projection (as defined by (2.3)) of tlic laiigtiagc rccogiiizcd bj. a n input aiitomaton.

some s ta te information t ha t can be useful to the observer is lost. We consider an

example FSM G where t h e initial s ta te is go, and where for some o € Y,,, 6(q0, a) = q

is defined for some q E Q where q # q,. In this case, t h e initial s ta te in G, = P(G)

is labeled by qop = q,. However, if the supervising agent does not observe any events

(and thus remains in t he initial s ta te) , the plant G could be in s ta te q, or in s t a t e

q. T h e labeling of the initial s ta te using Algorithm 2.3 does not provide this type of

information. In order to construct an automaton tha t bot h generates the projection

language and contains useful s ta te label information, we present an algorithm from

[RudSS] in Algorithm 2.4. Algoritlim 2.4 labels states so tha t eacli label identifies t h e

states the plant coiild b e in alter the observation of a sequence of events.

Algorithm 2.4 : A Modified Projection Algoritlim f o r FSMs

1. Inputs: Automaton C = { Q . X ~ 6 , q o , Q m }

3. Define a new automaton C' = { Q . S,.dJ.Q:. QnL} w i t h a s e t of i n i t i a Z

s t o t e s Q:

(a) l e t Q: = { q , , q i . g z . - . . .cl, 1 q, E Q A 3s E Y such that 6(q0 .s) =

P (s) = 5)

(6) s e t 5 ' (- . -) = 0

f o r each q, E Q do

f o r each y, E Q do

f o r each O f 2, do

i f &(q , . . s) = q, /or somc .s E Y'
such t h a t P (s) = 0 then

w71- 4 = ht(q*. 0) U { q l }

end

end

end

end

3. Convert the W A G' t u a DFA C,

(6) f Z ag qop a s ' 'new

s e t Q p = { q o p }

s e t Q,, = 0

(c) while s t a t e s f lagged as "newJJ exist, do

r I f o r each s t a t e q p € Q , f lagged as n e w J J , do

remove t h e " n e w J J f lag

f o r each u E 5, do

end

end

end

It should be noted that the check done a t line 3 in s tep 3(c) OF Algorithm 2.4 could

cause computationai problems if not implemented efficiently. There exist a number

of methods ("path compression" [CLRSO], for e rample) that can efficiently check for

set inclusion.

2 -2.3 Diagnosability

Diagnosability is a branch of DES theory which addresses the problem of fault

detection and isolation in large complex systems. In [SS L+%] and [SSL+96], a sys-

tematic procedure for analyzing systems and constrocting FSbI diagnosers for the

purposes of fault detection is developecl. with specific emphasis on application t o

heating. ventilation and air-conditioning (HLr.4C) systems. This section reviews t h e

fundamental concepts relating to diagnosability. and discusses why the application

of some of the theoretical results of this tliesis are of interest in fault detection and

isolat ion applications.

Wheri analyzing a systeni to determine if t hat systerii is dirigriosable. we first need

to understand wiiat it is that WC are -diagnosirig." W e start with a FSM G with

event set 2 which represents a plant containing observable and unobservable events

(5 = S,US,,). A subset of events in 5 are consiclered to bc .-failure" events (cal1 t h e

subset X I) in the system. The event 01 event in Figure 2.10(a) is a n esample of such

a failure event. We are not concerned with the failiire events which are observable

(i-e,. O E S I n 5,). since by definition a supervisor can observe thesc events. and

t herefore *'diagnose" tliat t hcy have occurred. Thos. wi t Iioiit loss of generali ty . we can

consider only those cases where a11 the failiire events a re ~ir io~~scrvahle (i-e.. SI C Su,).

Diagnosability theory considers tlic lxhairioiir of a sj-stem aftcr the occurrence of a

failitre event. and determines if it is possible to know iii sornt' fînitc amount of t ime

that the failure event lias occorrccl. A more gcricralized scenario c m bc achieved by

partitioning the set of failure c\rcrits into .'classes" of failtire cvcnts

In this case, for al[o1 € 5,. tllc tliagiiosiiig agciil. necd only dctcrniinc in a finitc

(a) The System

i-

(b) The Diagnoser

Figure 2.10: -A system/diagrioser pair

amount of time tliat a failurc of type Si,. where 0, E Y,,. lias occurred. It does

not need to determine exactly rvliich lailure everit occiirred. Figure 2.10 shows an

example system (G) and diagnoser (G d) . The diagnoser is a FSM tha t records the

possible states the system may be in after observing a string of events. and infers

what failures may have occurred.

For the example system G shown in Figure 210(a)". 01 is t h e only failiire event.

Initially, the diagnoser Gd only knows that t he system lias startecl in s ta te 1. ..\fter

observing the B event. t h e diagnoser knorvs that the sj-stem co~ilcl be in s ta te 2. with

no failures having occurred. or s t a t e 5 with failure al liaving occurred. Thus. at this

stagc the diagnoser is not able t o determine if failiire al has occurrecl o r not. However.

after observing the string d a . tlic system can orily IF i i i statr J. and therefore the

failure a L cannot have occurred. If instead. t lie cliagnoscr ol>scri.es t h e string . i ~ . then

it knows tha t the failure ni most Iiaw occiirretl. Siricc i t is possible to detect the

occurrence of all failure events in a finite arnount o l tinie (i-e:. after a firiite number of

3. t'lie circle to ttic rigtit of state 5 i~iclicates tliat a self-loop of rvciit -,. rnny occur.

events have occurred) in this system, then the system is considered to be diagnosable,

with diagnoser Gd.

Note that the t h e diagnoser is a DFA which recognizes the language given by the

projection of the language recognized by the system. The method used to construct

the diagnoser DFA is slightly different from the metliods described in previous sec-

tions. In this case, each state in the diagnoser represents the set of states in the system

which can be reached froni an existing set of states via string s where s = s,,~,, where

su, is a string of (possibly zero) unobservable events. and a, is an observable event. In

a11 the other constructions presented iri this thesis, the string s is constructed in the

opposite manner (i.e.. s = o,.~,,). It cari be sliorvri tliat both rnethods of construction

recognize Lm (p (G)) [SS Lf 951. [RiidSS].

Diagnosability theory can be estended t,o cover systems which are considered to

be 3-diagnosable." I-cliagnosabili ty is a looser condition t, han ciiagnosabili ty in t hat

after the occurrence of a failure event. t h e diagnoser neecl only identi- that a failure

of tliat type has occurred after the occurrence of an observable indicator event. Thus,

for set of failure everit types {S,I.. . . . X,,} there is a corresponding set of indicator

event t,ypes { I I I,}.

It is apparent from tlie infornial d ~ s c r i ~ t i o r i of t he diagnoser ~resented above.

tliat diagnosability theory presents a direct. applicatioii of the projection operation.

comhined witli a set of ritles for t h labeling of states in tlie diagnoser such tliat

they contain informatiori relevant to {.lie failure statirs of tlie systern. and with a set

of conditions placed on the system to determine if such a system is diagnosable or

i-diagnosable. It is mentioriecl i r i [SS LC96] t h a t t h e ~ w o crucial issues regarding the

applicahility of oiir t,hcory to IIL:-\C iiiiits or ot lier classes of systkrns are: 1) building

tlie system niodel aricl 2) dcalirig wit.li t h e coriipiit nt ioiial coiriplesity of tlie diagnostics

proccss." [t is also riotcd tiowever. tliai w i t l t regards t,o t,lie conipiitational cornplexit-

issue: -*otir esperience so far. ivliile liriiit.cc1 i i i scopc. tends to iiiclicate t l i a ~ the system

oftcn has enougti structure so i liat t tic worsi. c ~ u c cofripiitational hounds niay be rarely

attainecl." Finally, [SSL+96] statcs tliat i f a n approacli wliich constructs diagnoser

stat.cs on-line [HL941 is adoptecl. thc prohlein cari I>r solvcd witli a coniputation of

polynomial complexity at each observed transition of the system. Unfort unately,

if a system is not diagnosable or i-diagnosable, and if an off-line analysis of the

systern i s not done, the on-Iine diagnoser rnay arrive at states where it wili never be

possible to know if a failure has or has not occurred. bVe at tempt to address this

problem by analyzing the previously-mentioned ustructuren of the system to make

better estimates of the complexity of the computation required to construct a full

diagnoser.

2.3 Computationd Complexity

Since the motivation for developing DES theory is to be able to solve control

problems in real systems, it i s necessary to examine the efficiency with which DES

operations can be implemented as algorithms. It rnay be a simple task to understand

how an algorithm which implements a DES operation works. However. when the

solution is actually cornputed, if the algorithm which does the cornputing takes an

unreasonably long period of time, or uses an unreasonably large amount of computing

resources, then the DES formalism becomes less useftil as a control tool for real

systerns. The following sections outline some of the key ideas and tools in complexity

theory which can be used to better understand the efficiency of algorithms which are

used to solve common DES problems.

2.3.1 Complexity Classes: Background

C'urrent research in cornplexity theory allows us to iiiakc sornc initiai observations

about the computational difficulty associaicd witli DES problems. To provide a

motivating example for why it is useful to groiip prol~lrn~s into complexity classes,

consicler t h e cases presented in 'rable 2.1 takcii froiii [C;.J;!)]. ~vticre t hc t ime for each

operation on some CP U is lps. For esamplc. if a prol~lciii is of -.size'' it = 20 and its

solution is O(nZ) complexity. then it woultl takc Llrs - -10' = 0.0004s to compute the

solution o n a CPU.

Table 2.1: An esample of' conipiit a t ional complexity

If the values presenteti in Table 2.1 are intcrpreteci to correspond to the amount

of t ime rcquired to solve a prohlem of size 20. 40. and 60. where the solution takes

cittier a polynomial or exponcntial amourit of rime. it becomes clear tha t in general.

problerns which require an esponential amount of tirne to salve become intract(dde

when the size of t he problem gets large. LiÏliat coiriplesity tlieory allorvs iis to d o is:

a determirie i f problerns arc irit.ractal~lc. arid

GO

0.00006 s

0.0036 s

0.316 s

13.0 min

:366 centuries

1.3 x loL3 centuries

suggest rnethods for simplilyirig intractalde prohlenis by esamining approximate

solutions. or subproblems whicli can be solred in a polynomial amount of time.

40

0.00004 s

0.0016 s

0.064 s

1.7 niin

12.7 daq's

3833 centuries

Time

Complexity

Funct ion

n

n2

n3

n5

y

:3 n

Formally. decision problenis can he grouped into complesity classes. .-ln inclusion

diagram for thesc classes is provided i i i 1-igiire 2.1 1. taken froni [C:.179]. Decision

problerns are placed in group 1' i f tlicrc csists ail algorit.liiii wliicli can solve the de-

cision problem iii polyiioir~ial tiriio. :\ decisioii probleiii is placecl i r i tlie larger4 iVP

group i f there exists ari algoritliin wliicli cari clicck thc corrcctiicss of a --ycsW' answer

LO tliat decision problerii ici pal!-iioiiiial t . i i t ic . Iii order to iiiiclerstnnd the concept of

the NP-complete (NPC) groiip. Ive first tlisctiss tlie iclea of prol>leili transformations.

Ciiven two languages L I and L2, tve s a y tha t L i 5; x Lz C 5; il tlierc exists a

20

0.00002 s

0.0004 s

0.008 s

:3.2 s

1.0 s

58 min

'It is widely bclicved, but has not I)ct?ri provciri. thai. P is n strict siibsct of .VP

2s

Figure 2.11: Complexity classes (assuming P # .V P and ;VP # C O - N P)

function / such that f : Ci i X;, and s E L I i f f f (s) E L 2 . and where f can be

computed in polynomial tirne. By extending the idea of t h e polynomial transforma-

bility relation lrom languages to decision problems (refer to [GJ 791 for details) t hen

for two decision problems i l l and II2, the relationship I?, x II2 can be interpreted

to mean *il2 is at least as hard as ill". The two problems are considered to be

polynornially equivulent if nl m Ilz and Il2 cr: Il,. Since it can also be proven that

polynomial transformabili ty is transitive. t lien t lie rclat ion -- x" imposes a partial or-

dering on al1 equivalence classes of decisiori problems i n XE'. where P represents the

computationally "easiest" problems. and NPC reprcsent.~ t. lie computationally "hard-

est- problems. Thus. a decision problem TI E N P can be provcn to be NP-cornplete i f

for some II' E NPC, il' a il. This metliod is used in [TsiSS] where Tsitsiklis reduces

an instance of the "3-satisfiability" problem whicti is known to he NP-complete to a

specific class of part ial-observat ion DES prohlrnis.

The complexity class co-NP represents the cornplernent decision problems for al1

the decision problems wliich comprise the class 'IP. Given a decision problem in NP

such as "Given 1, is X true for I?", t he complementary decision problem would be

"Given 1, is X false for I ? - . I t lias not yet been proven that CO-XP # NP. Indeed if this

could be proven, then it rvould have to be tlie case that P # iV P.

While the P versus 3 P complexity classes focus primarily on the time which

algorithms take to solve problems. the PSPACE and E X PS PAC E complexity

groups focus on the amount of memory required to solve problems. Specifically

PS P.4C E (resp.. E S PS P.4C E) decision problems require a polynomial (resp.. ex-

ponential) amount of memory to solve. By adopting a siniilar method as used

to define NP-complete problems. problems can he ordered such that a subset of

problerns in PS P.4C'E (resp.. E.Y P S P.AICE) represents the computationally most

difficult problems iri the set. Tliese subsets are referred to as PSP.-IC E (resp.?

El; PSP.4CE) complete problems. Again. as wi th tlie SP-complete class of decision

problems. a decision problem il E PS P.4C E (resp.. E.Y PS P.-IC E) can be proven to

be P S P.4C E-cornpletc (resp.. E.Y PS P.-IC E-complete) if for some II' E PSP.4C E

(resp.. E S P S P - 4 C E) . il' x TI.

2.3.2 Working with NP-Complete Probleins

I f a problem is proven to be NP-complete (or P.?P;(CE/ES PSP.-LC E-complete),

then a mcthod needs to be devised for solving t liat tjFpe of probleni in a computa-

tionally feasible marincr. For esampie. i t may he possil)lo to construct an heuristic

algorithm which prodiices a correct rcsult i i i riiast cascs. I-Io\vm.er. currcnt DES for-

malisrns primari[' nioclei safety-cri tical systcrris. aiid t.11~-reforc rcqiiirc correct resul ts

al1 of the time. :\lterriatively. it may be possiblc to rrstrict tlir set of problems to

a subsct of allowablc problenis wliicli we know (and can pro\-e) to be solvable in a

polynomial amourit of tirne. I f it is coniptitatioiially feasihlc to test. whether a prob-

lein belongs to this sitbsct. arid i f tlie s u l m t captiircs a large cnough class of DES

applications. tlicn wc will Iiaw fourid a coiiipiit at ioiinll>. f<rasil>lc met hod for solving a

The original NPmmplete
pro blem

NP-compIete
problcms

Open Problems
(no proofs for NPamplete or for P)

Problems in P

Figure 2.12: An example of the hierarchical breakdown of an NP-complete problem

subset of partial-observation DES problems. Furthermore. for those problems which

do not fa11 into this subset of computationally feasible problems. it would be useful if

there were methods for identifying the characteristics of the problem which disqualify
.. .

it for inclusion in the subset. If ttre could identify "problern a reas . it is possible tha t

the component DES models could be modified such that the solution can be com-

puted in a computationally feasible manner. Figure 2-12 taken from [GJï9] provides

an example of the hierarchy of subproblems for some XP-complete problem.

2.3.3 Complexity Tlieory and DES

There are two areas in DES Theory tvhere computational complexity issues make

the solutions to large problems intractable. First. as noted ir i [CVon96] and [WRSS],

when the synchronous product or meet of n FS4Is (Cl . G 2 G.) is computed, then

it is possible that the s tate space of the resulting FSM G' = hl EET(Gi . G'?. . . . , G,)

could have a state space as large as k n . where k is t h e rnasimiim of the sizes of the

state-spaces of Ci C;, . Since the number of states in G increases exponentially

tvith n. the problem becomes intractable for large n (i.ci. for a large number of

component models in a typical DES problem). .\ Petri-net method for efficiently

modeling a class of problems wliere many of tlic n componcnt rnodcls are identical

(i.e., parallel or additive machines) is presented in [LW931 and [LW94]. The results

to be presented in Chapter 3 of this thesis do not focus on DES complexity problem

where the components are identical FSMs.

The second area of DES theory which presents us witli computationally intractable

problems is in the area of partially-observable and/or decentralized DES problems.

While in many cases it has been noted that the actual results obtained while working

with these types of DES problems are good, it was proven by Tsitsiklis [Tsi89] that

for a specific class of partial-observation problems. t here exists a polynornial trans-

format ion which maps a n instance of the Boolean logic - t h e e sat isfiabili tyn problem

(a restricted version of Cook's theorem for the satisfiability problem). which has been

proven to be NP-complete [GJ79], to this class of partial-observation DES problems.

This means that iinless it is proven that P = iVP . there is no polynomial-time algo-

rithm which can constriict a FSM which marks the projection of the language marked

by a given FSM. Horvever. even though this type of problern has been proven to be

XP-cornplete. the favoiirable results obtained in manu partial-observation applica-

tions suggest that there may exist a class of sub-problems (Le.. a class of FSbls) for

which there exists an algorithm which takes significantly less than an exponential

amount of time to complete t h e same task. Chapter 3 of this thesis atternpts to

identify some of the properties of this type of FSbl.

Chapter 3

Structure-Based DES Analysis

While in theory projection can lead to an exponential increase in the number of

states, in practice it has been noted [SSLC95], [SSLf 961, and [OW90] tha t in many

cases the number of states generated is typically inuch less than the exponential limit.

This suggests that there exist subproblems which can be solved efficiently. If these

types of subproblems can be characterized and identified in a simple and time-efficient

rnanner. t hen we would have a test we could run on large systems which would ident ify

whether the system wiil project efficiently, or could identify problern structures within

the system rvhich could cause exponential explosion.

In designing this type o i test' two things need to be considered. First. an algorithm

(or series of algorithms) needs to be designed wliicli calculates upper limits for the

projection state-space. If such an algorit hm can show t hat the projection state-space

is going to be small relative to the exponential lirnit. tlien we can go ahead and

calculate the projection, knowing tha t the resulting automaton can be Found in a

reasonable amount of time.

When the upper bound algorithms do not show any signifiant reduction on the

exponential limit on the projection s t a t e space. algorithms that indicate lower bounds

are helpful (for flagging problcm areas). I n these cases. we iicetl to iinderstand what.

structures within the system are causing problems. in orcier to effect changes in the

mode1 (perhaps by adding more scnsors in the physical system) so that when the upper

bound algorithrns are re-run. the resultirig estimate of the projection state-space is

significantly better than the exponential limit. Tli&se lower*louiicl algorit hms woitld

indicate that the projection state space will he at least a certain size. and would

identify the structiires rvhich arc primarily responsible for tliis lowcr I~otincl.

I t is conceivable that t he results of t h e upper bound algorithms show no significant

reduction relative t o t he exponential limit, and tha t t h e lower bound algorithms can

identify no structures which cause state-space explosion. T o date. it is not clear how

many DES models which are based on physical problems fit into this category.

An important consideration when designing algorithms which estabiish either up-

per o r lower bounds is tha t al1 algorithms must be able t o identify properties o r

structures within plant models in an efficient manner. Algorithms ivhich run in low-

order poiynomial tinie will result in tests wliicli a r e simple and fast to run on sys-

tems, w hereas tiigh-order polynoniial o r exponential t ime algori t hins serve no purpose,

since the projection operation itself is an exponential tinie algorithm. In effect, ive

ivould be better off just running the projection algorithni itsclf. ratlier than running

esponential-time algorithms that test Iiow cqoickly projection can I>e cione.

3.1 Structures: Upper Limits on State-Space Explosion

rn establishing algorithms wliich can be used t o icleritify iipper limits on the pro-

jection st a t e space. we first consider tiow t lie presencc of iinobser\~able events affects

projection. For a system to be partialljr observable. tliere miist exist at least one

unobservable event. LVe examine the propertics of arbitrary systems containing sin-

gle and double unobservable event transitions. a n d establish some upper bounds for

don't significantly

limit. the' at least

unobser\.able event

the size of the projection state-space. While t hese iipper hoiinds

reduce the projection state-space estimate below t h e esponeiitial

serve as a star t ing point in oor a t tempt to iinclcrstand t l i ~ effect of

strircturcs ivitliiri DES niodels.

W e ttien dcfine a propcrty of a plant wc cal1 / tu - i - roc l inb i l i t y to I)c t h set of

states wliich cari I>c reacliecl hy starting at an!. s ta t r in tlic plant. and following the

string s E 1- w l ~ e r e P (s) is a string of i r ohscrvrrblt* < * v ~ i i t s . \Vc use tliis concept

to calculate subscts of s ta tcs wliich can bc iisecl Io clcfiiic. al1 possihlv siibsct-labels

in tlie projection s t a t e spacc. This tias tlic cfrert of rcdiicirig tlir esponent iised to

calcidate ttic projcctioii s ta te spacc. aiid thiis allows for soilit- sigriificant sediictions

in the estimated size of the state space (relative to the exponential limit) to be made.

The computational cornplexity of this algorithm is O(IC,In [QI2), where C, is the set

of observable events, and Q is the set of states.

hrthermore, by examining the cases when the estimated projection state size

is significantly reduced, some conjectures may be drawn about desirable structural

properties of the system. These rnay be used as a guide when modifying systems

which do lead to exponential explosion.

3.1.1 The Significance of Aut omat a wit h E-Transitions

It has been shown that when a n NFA is converted to an DF-4 which recognizes the

sarne language? the state set for the DFA is a subset of zQ. rvhere Q is the state set of

the 3F.A. If IQI = n i t is not necessarily t h e case that al1 'Ln - 1 nonempty states will

be generated using the subset-const ruction niet hod given in Algori t hm 2.4. However.

it can be shown that in some cases. not only are al1 2" - 1 nonempty states generated.

but also that the DFA is. in fact, a minimal-state DF.4 according to [HU79].

In DES theory. plants are represeritcd as DF.\s. Xondcterminism is introduced

when the unobservable events are relabeled as E-transitions. and the resulting NFA

with ,=-transitions is converted to an NFA witliout ,=-transitions. We want to take

advantage of tlie structure in this NFA to make somc observations about the upper

limit on the number of states generated when converting tlie NFA to an equivalent

DF.4. The first way t his can be done is by eramining the structure of the 5-transitions.

The following list provides five separate E-transition structures (Figure 3.1) which will

be discussed in f~ i r the r detail:

(d) d(qI, E) = q, and 6(qk . f) = r - i #. J # k # 1

Figure 3.1: Cnobservable event transitions

(e) S(q,. 5) = y, arid & (q J . c) = q k . i # . j # li

3.1.1.1 The Single :-Transition

An almost irnmediate observation tha t cari be niade about the construction in

Algorithm 2.-1 is tliat if tlierc is at least orle t rarisitiori labeled by an unobservable

rvent (Figure 3.1 (a)). tlien the state-space of the projectiori will never exceed 3/4 -2IQI.

Proof: Froni Algorithm 2.4 lines 5-Y of step ? (b) and lines 6-S o l step 3 (b) . t h e set

Q, can not contain s ta tcs witli statc-set labels tliat contairi cl, but do not contain q] .

Now, if Q, cannot contain state-sets which include qi b u t not q,, all we need to

do is count the number of states of this type. Simple combinatorics shows us t ha t

this number is 21Q1-'. Discounting the empty state-set, we can show that IQ,I 5
314 - 2\91 - 1-

Example:

Take an automaton G, with s t a t e set Q = { q l , qz, 43, q4), a n d with an unobservable

event a where 6 (q i , O) = q2 is defined. Observe t hat any s t a t e label in Q, which

includes qi must also include q 2 since if the automaton G could be in s ta te q , , then it

rnay also be in s ta te qz via d(q1: a) = q2. Thus the set of subsets of 2Q which cannot

appear as labels in Q p are:

3.1.1.2 D o u b l e Kîransition Geometries

In this section. we at ternpt t o improve upon the results presented for single a-

transition geometries by applying those results to t he four geometries wtiich can result

when at least two unobservable events appear in an arhi t rary plant (Figure 3 . l (b) -

(4 1-
Forrnally. we present Propositions 3.2-3.5. which providc upper bounds for plants

wtiich contain structures illustrated in Figure 9 . 1 (b)-(e). respect ively.

Proposition 3 .2 C'iuen plaril Ci wilh event set Q , t ~ n o l s e i ~ v ~ l l r r w n f s c t Y , , . mrd

Irr~nsiliori jiinclioic (5, and FSA1 G', with euent sr t Q , .5arh ihnt Ci, = p(C). //

6 (q g . ~ i) = q, rrnd S (~ . . C T ~) = qa /or sonze q , .q , . q k E C). i # j + lr and for some

q . 5 2 E X,, (Figure 3.1(6)) then:

Proof: As claimed earlier, if for some G, d(q', a) = q" arid c E Cu,, then Qp as

constructed by Algorithm 2.4 can contain no states with state-set labels that contain

gr , and that do not contain p". W e can now break down a problem where b(qi, 0 1) = qj

and 6(qi, -) = q k for o17 02 E Z.,. The transition 6(q i , al) = (il implies that Q p will

contain no state-sets containing qi but not q,. Further, tlic transition b(q; ,az) = qc

implies that Q p will contain no state-sets containing q, but not m. By applying

combinatorics together wi th a counting argument. aiid providing tliat i + j # k; it
can be easily showri that

where the first term reprcsents al1 state-sets in the poiwr set. t lie second terni rep-

resents al1 the state sets which include rl, but not q,. tliv tliirtl term represents al1

the statc-sets ii4iicti include q, but not qk. ariïl fiiiall~. t lie fourt h t crni represents al1

the state-sets ivhich include q,. but do not contairi q, os q k (aritl thcrcfore have been

coontecl twice wheri calculating second and third tesms). Thrsr calctilations result in

Propositiori 3.2 when the ni111 state-set is discardctl.

Exa mple:

Take an automatori C. wi th s ta te set G) = {qi.q2.q:3.q.1}. aiicl \vit11 unobservable

events al arid oz where b(qi. (T I) = q2 and 5 (q , , 0 2) = y:, are defiried. Observe that any

state label in Q p which includes y1 must also include aiid r f i since i f the automaton

G could be in state (11. then it may also be in statc q2 (resp. (fi) via c5(ql,ai) = q2

(resp. 6 (q . 0 2) = ql). Thus t he set of subsets of 2Q ivtiicli cniinot nppear as labels i n

Q, arc:

{{% }. {s,. s}. {41. v 2 1 . {QI- 9.1 }. {'ii. (l-1- (l.i}}-

aritl t lie set of labels ivliich [ri- bc incliiclcd i i i (2, is a; triost.:

Note tliat this set contairis cxactly :)/LI - 21Q1 - 1 clciiiciits sincc the crnpty set is not

coiiritcd.

Proposition 3.3 Ciuen plant C with euent set Q , unobservable euent set Cu., and

transition junction 6 , and FSIW with euent set Q, such that Gp = p(G). If
6(q j , ol) = qi and 6(qtr 02) = Q, in G for some q;, q j , q k E Q, i # j # k and /or

some 0 1 , 0 2 E SU, (Figure 9.l(c)) then:

Proofr If for sorne G. 6(q1,a) = q" and a E Cu,, then &, as constructed by Algo-

rithm 2.4 can contain no s ta tes with state-set labels that contain 4. and t h a t do

not contain q". Therefore for this example, d (q j , u l) = qi implies t ha t no s ta tes (in

Q,) can exist which contain q, but not q,. Similar ly b(qk ,o?) = qi irnplies t ha t no

s ta tes (in Q,) can esist which contain qk but not qi. Therefore. as ivith the previous

proposition. providing t h i # j # k ive have

where t h e first term represents al1 state-sets in t h e power set. t h e second te rm rep-

resents al1 the s ta te sets ivhich include q, but not q;. the third t e rm represents al1

t h e state-sets which include q k but not qi. and finally the fourth t e rm represents al1

the state-sets which include q, and q k but not g, (and therefore have heen counted

twice when calculating t h e second and third terrns). These calculations result in

Proposition 5.3 when t h e riii l l state-set is discarded.

Proposition 3.4 Givcn plant C with event set Q . unobseriwbfe e o m t set Suo. and

transition function 6. riml FSJl C, iuith pl1ent S E I Q p such t h 1 1 G', = p(G). If
6 (q z 7 o i) = q, urtd 6(qk . r r2) = q~ in C; / o r . sorrif q , . q , . q ~ . q E Q . i f j # k # 1

a n d /or sorrze al. 02 E Y,, (Figure 3 . 1 (d)) then:

Proof: If for some G. S(q ' .c) = g" and o E Su,. theii Q P . a s constructed by Algo-

r i thm 2.4 can contain no states wi th state-set labels t ha t contain qf. ancl tha t do not

contain q". Tliercforc Tot tliis esamplc. (j(g,. rr,) = q, iiiiplics tliat rio states (in Q,)

can exist which contain qi but not qj . Similarlyo d (q k . 0 2) = ql implies that no states

(in Q p) can exist which contain q k b u t not qi. Therefore we have

where the first term represents al1 state-sets in the power set, the second t e rm repre-

sents a11 the s tate sets which include q, but not q,, the third terni represents al1 the

state-sets which include q k but not ql, and finally the lourth term represents al1 the

state-sets which include qi and q, bu t not qk or ql (and tlierefore have been counted

twice when calculating the second and third terms). These calculations result in

Proposition 3.4 ivheri t lie nul1 state-set is discardecl.

Proposition 3.5 Giuen plunt G cuith euent sel Q . u i i o b s ~ i c < i b l e event set ru,. and

transition [unction 6. and FSiU C p ~ ~ 7 i t h ereirl .wt (2,. .such i h u f Ci, = P (C) . I/

S (g t . a i) = q, and 5 (q 1 . c 2) = q k in Ci for sorne (l t . q , . t i k E Q . i # j f k a n d for

some 01. - E Su, (Figure 3. I (e)) then:

Proof: If for some G. 6(q1 , o) = q". and a E Y,,,. theii Q p as constrocted by Algo-

r i thm '2.4 caii contain no states ivitli statc-set labels tliat contain ci1. and tha t do not

contain q". Therefore for this exaniple. 6(rit. 01) = ri, iitiplies tliat no s tates (in Q,)

can exist ivhich contain q, but not ql . Similarly. &(O,. 0,) = cik iiiiiplies tliat no states

(in Qp) can csist rvkicti contain ri, but not g k . Tliereforc WC Iia\.c

w herc t hc first tcrrri rcpreserits al1 s t a t e s c t s i i i t lic potvcr s r t . t titi sccond terni rcp-

resents al1 the states which includc g, but riot 1 1 ~ . t l l r tliirtl terni rcprcsents al! thc

statc-sets whicli include qJ hut. not q k , Xote t.liat i r i tliis case. rio tcrms a rc doublc-

countcd sincc al1 tlic states counted by the first tcrm do riot. c-oiitain q,. and al1 the

stat,cs counted by the second tcrm do coritairi ci,. Tlicsc calciilatioi~s rcsult in Propo-

sitiori 3.5 wlicn the t i r i l l st,at.c-set is ciiscarcIcd.

3.1.2 Tree Structures

We define a lree to be an automaton that contains a unique path between any

two states. Note that i f au tomata of this type are finite. then they mark only finite

Languages. This is true for the following reason: If d(q;, s) = qj is defined for some

s E Cu; then there is no otlier s' E S' for which 6(q i7 s') = q, is also defined (t rue by

definition of a tree structure). Therefore, if the tree s t ructure C is trim, then for each

g, E Q,, there esists a unique s E 2' such tliat 6(qO7 s) = q,. Thus, the rnarked

language is composed o l exactly IQ,J unique strings, and is t herefore finite.

Given a tree structure C;. some observations can also be made about the size of

the state space of p(C;).

Proposition 3.6 Giverl a tree structure G with d a l e s e t Q and Ci, with state set Q,

strch thut G, = p(C;) . iheii t l ie jolloming is t r u e :

Cluim: Any s ta te q E Q in tree C may appear in at most one of t h e labels of Q,.

.Assume otherrvise: takc some s ta te q E Q siich that q appears in tlie labels of states

q; and g; where q',. q.', E Q,. Sirice C, is by definition a DF-4. there must be two

strings si. SI, E 2, rvliere s', # s; sucli tha t d p (r l O p . s ;) = q; and 6p(q,,, s;) = qi. Thus

by definition there must be tmo strings s i . s ? E 5- wliere p (s l) = s', and p (s z) = si

such that 6(q0. sl) = q ancl &(q,, s2) = q . Sirice s; # .s; t hen sl # sz. If tliis is the

case. there are two distirict. paths betweeii the initial s t a t e y, and s tate q , thereby

contradicting the defiriition of a tree.

Finally. using a simple counting argument. it can be sliorvn tha t the size of the

s ta te space IQpI 5 IQI. Each s ta te q' E Q p miist I>e labeled I I ~ a nonempty subset

of Q. Dy the above claim. each s ta te q E q' is unique 1.0 q'. aricl appears in no other

s ta te in QI. If this is the case. then tliere rniist exist ai Icast (Qpl uniqiic stattls in Q.

i-e.. IQI 2 IQPI*

Figure 3.2: Tree struct ure exairi pie

A n exarnple of a tree-struct~irc is presentccl in Figure 3.2. Ir1 tllis example. Q =

{l. 2.3.4.5.6.7.8) and Su, = { E } . By inspection. it cari Ile seen that the state-space

of the projection of the tree striictiirc. is Q, = { { 1.4) . (2.3-5). {Ï}. { G . 8)).

While the concepts of single and double : geoinetries provide ils w i th some upper

bounds which apply to al1 FSMs. because ilic rrcl~ct~iori is a simple constant varjring

from : I / l to l / Y . t he resulting effect on corr iplesi t~ restilts is ncgligil~le when dealing

witli large systenis. By c o n t r a t . i f the systeni i ve are corisidering is a tree (as defined

in Section 3.1.2). t l i c~ i we Iiave sliown tliat tlic conip lex i~y of t h e projection algorithm

is O (n) or linear. While this result is cornpiitat.iorially good. tlie trce FSM structure

captures a vcry srnall subset of possible FSiLIs. What is ieedcd to make practical

analysis of DES partial-observation prohlems possible is sometliirig which can be

appliccl tm a largc siil>scL of FSSls. alid wliidi proi.itlcs a sigriificarit. (i.e.. O(?") or

exponential) improvement on complexity results. In t h e following sections we present

a method which we believe provides significant improvements on complexity estimates

and which is not Iimited in applicabiiity t o tree structures.

T h e following intuition can be used to tighten the upper bound for the size of the

s t a t e space of a projected DES. Any s t a t e subset. say q,. t h a t appears as a s ta te label

in a projected FSM resulting from Algorithm 2.1 is. />y construction. a reachable

s ta te . This means that some observable event o leads from some set of states in

t h e original DES to the set c f p . T h e set qp cannot be any larger than the set of

s ta tes that couid be reached via a from the set of ail s ta tes in t he original DES. This

observation leads t o a concept called "0-reachability." defined as follows. Given FSbLs

T G = (Q. S.6.qo, Q,) and C;, = (Q p . -,. Jp .qo , . Q m p) . rviiere Gp = p(C;). then we say

tha t the set of al1 nonernpty subsets of t he set of states Q, = {q' (39 E Q.d(q . O) =

are 10-reachable states in G. Tliat is. 2Qu contains al1 the s ta tes in (3, rvhich the

system could be in after observing the a event. For eeample. for the FSM C: given

in Figure 3 . 3 with Q = {1.2.3.1.5). t he a-reachable set is 2Qo = {{1.4}. {l}. {1}}.

and the d-reachable set is zQ3 = {{2. : 3 . 5 } . {2.3}. {2.5}. { : 3 . 5 } . {2}. {3}. { 5 } } . and

finally the y-reachable set is 9-f = {{s}}. Finally, we need t o include the initial s ta te

(1 .4) . since it may not be included as a subset of any of t hr Q, sets. Therefore. a

new estiniate on tlie niaximum number of states i r i p (G) is 12. cortipared tvith the

3 2 - 1 = 23 state estimate iising the upper liniit defined iri Proposition 3.1.

Note. however tha t in calculating this nurnl~er. rio a t tenipt is niade to account for

the duplication of s t a t r sets. Thus. for tliis esample. tlw st .ate sets { 5 } and { l . 4)

are counted twice. 'rtie actual limit (i.e.. withoiit cioiihle coiinting) for t he number

of s ta tc sets is 10. For al1 0-reacliable based state-cstitnates prcsented in Chapter 5 ,

note tiiat s ta tc set duplication has riot beeri accoiiritecl for. and thus. the estimates

could be srnallcr tliaii iiitlicatecl. 'I'lieorein 3.1 foritializcs t lic n-reacliabili ty concept

for tlie case described above, wliere a single ol~scrval>l<i vvriit is sreri hy a supervising

agent.

Figure 3.3: rr-reachability csaniple

Tlieorem 3.1 Ciwn FSJIs G = (Q. S . 6. rio. Q ,) u r i d Ci, = (Q,. X,, dp. qop. Q m p),

where C, = p (G ') . lhcn

Recall that t h e states in Q p arc subsets of Q. C'oiisider a i element gp E Qp.

Case 1: rl, = q O p . Then by observation. CI, E (7,.

Case 2: q, # qop.

Then there is a q; E Q, and o E 5, siicli ttiat d,(q;. r r) = ri, (siricc q,, E Q p means rl,

is reachablc from qop via A,). Silice ri; E Q , . II?. dcfiriit ioii. tI;, 2 Q.

According to t tic const ructiori ~ i v e n i r i Algorit l i i i i -1.4. h,(rl:,. rr') E Q,, for rr' E S,.

Thercfore. in particiilar. Jp(qi,.o) Ç Q,. Tliat is. qJ, C QI. wliicti implies tliat q, E

9Qrr - .

3.1.3.2 Multiple o-Reachability

T h e <T-reachability property described in Section 3.1.3.1 while providing useful

properties by itself, can be iteratively applied in such a way as to provide improved

estimatcs for some FShIs. The key observation is as follocvs: Io-reachability dictates

t ha t after the occurrence of some event a l , the set of s ta tes which t h e plant may be in

must be a subset of Q,, . Now consider the following: cal1 the next observable event

(following ai) OZ- LVe have established that aiter al. t,lie system must be in some

subset of the states contained in the set Q,, . W e can now furt her reduce the subset

of s ta tes that the system could be in by substitiiting Q,, for Q in t he expression

Q , = bp(Q. oz). Thus. the possible subsets of states which t.lie systern could be in

after observing two transitions must be subsets of the following:

For the example given in Figure 3.3, the Qmtfl2 srihsets are:

For tliis example. the total for al! the n0nempt.y siii~scts for al1 tlic QClg2 sels (without

corrccting for statc-sct, duplication) is 16 (iricliidir~g t Iic additional strate-sets repre-

senting tlic initiai state-set and the t hrce state-sets wliicli cari 11e reaclied after ob-

serving t lie first transit ion). If state-set duplication is accoiirited for. t hc estimate

reduces to 10. Thiis. For this examplc. no improvcriicrii. is ol)tainetl by iterating the

o-rcncliability procetlurc.

Note t ha t if we iterate I times, then xf=, IS,I' computations mus t be done. Thus,

t h e complexity of this type of test is exponent ial ir i 1. Based on t h e results presented

in Chapter 5, we have found tha t for t he systems ana l~zed . t he best resuits (without

correct ing for state-set duplication errors) a re achieved wi t h trvo o r t hree iterations,

and therefore, only a srnall number of coinputatioris is required.

3.1.4 Related Work

Alter completing the work presented in this thesis on a-reachability. it came to

our a t tent ion that work by Ozveren and Willsky [OW!)O] uses a very sirnilar approach

for analyzing the structure of FSMs and making iniproved estimates for projection

state-space.

S~ecifically. [OWSO] shows t h a t if we have some syst,erii with s t a t e space CL). ttien

Q çan be partitioned into n distinct subsets Q I O,. .-\ notion called t lie persistent

part of the state-space of some FSM can b e inforniall~. defined as that part of the

state-space which captures the long-term bella\-iour of the FSM. T h e size of the

persistent part of the projection state-space Q,, is gi\-eii Iy

Since this metliod partitions the event set Q itito disjoint sul>sets. t he double-counting

problem which tve encountcr in o-reachabili t>- (disciissed in Section 3.1 .:3.2) is avoided.

3.2 Structures: Lower Limits on State-Space Explosion

We have shown in t lic prcvious scctions t liat z-gcoirict rics. o-reachability and (in

special cases) tree structures cari bc iiscd to txst.aldisli iip[wr linii ts on the possiblc s i x

of t he projection state-space. Wk liow procced to striictures ~vliicli caii be proven to

produce nt [eusl a certain riiiniber of stat.cs i i i tlic st,atc-spacc. of ttic projected DES.

If it is possible to efficiently icltn t ify siicli st,riict,iircs ivi t liin plant motlels, t tien rve

would be able to modify t he plant so tha t tlic striictiirc8 rio loiiger caiiscs the problcm

to be consideretl comput~atioiially iiit ractahlc.

Figure 3.4: Tlie cyciic NF:\ .-\,,

3.2.1 Cyclic Structures

We first present a result froni [Leu931 regarding the class of automata presented

in Figure 3.4. It is proven in [Leu931 that for XF.4 .A,, rvit,li states Q. the smallest

DF.4 which recognizes Lm(.-1,) has 2" states. First i t is sliown tliat for such an

automaton. al1 the 2Q states are generated iisiiig a st~anclarcl siibset construction

rnethod. Second. it is sliowri that no two differerit siihsct s of states are .~cqiiivalent"

in the sense identificd by t l ~ e hly hill-Ncrode i,licorwii [I I 1:711]. aricl t lierefore the DFA

is a minirniirii-state recogiiizer for t l i t la~igiiagc.

Now. it rcmains to show that therc esists a DF:\ wit.11 a rioiicnipt,y set of unob-

servable events XI,, such tha t when the iinobscrvat>lc cverits arc carivcrted to E-moves.

the resulting automaton recognizes the same languagc as tlir XF.4 in Figure 3.4. :\

DF:\ of tliis type is stiown in Figurc 3.5.

Figure 3.5: :\ W.-\ .-I', w i t l i n E S,,,

Thus, for an NFA A, with n + 1 states, a DFA . ln whose projection is A, has

n + 2 states. More generally, for a DF.4 of this type with states QI we have shown

that the size of the projection state-space Q p is

We conjecture that by choosing a slightly different type of cyclic structure (Fig-

ure 3.6) for the plant, it is possible to get exactly

This structure was chosen since it intuitively allows for al1 single-state state-sets, al1

double-state state-sets, etc.. . to be generated using Algorithm 2.1. Note that (as is

the case in this example), if there exist two or more transitions between two states (for

exarnple, 6(ql, 1) = q?, d(ql, 0) = 42, and 6(q1, cr2) = q2). the transit ions are indicated

by a single arrorv, and a label containing a list of al1 the events (for esample O. 1, a-)

is attached to the arrow. The n distinct crl, a?. on events appear to prevent DFA

reduct ion via Algori t hm 2.1.

3.2.2 Acyclic Structures

The results presented in the previous section suggest tha t particular types of cyclic

structures cause computational problems w hen comput ing projections. If we exclude

al1 those FSMs which contain cycles, we are left with acyclic FSMs. Formally, we

define a plant G = {Q, C, 6, q,, Q,) to be acyclic if there does not exist s E C* and

there does not exist q E Q such that d(q ,s) = q.

Tsitsiklis constructs such an acyclic type of plant in [TsiSS]. Tsitsiklis goes on

to prove that a supervising agent would require an exponential number of states to

keep track of al1 the possible states the plant could be in. The exampie in [Tsi89]

(Figure 3.7) is constructed so that for the parameter n , the number of states in the

plant is on the order of n2, and the number of states in the projection automaton

Figure 3.6: :\ niodifiecl DI.':\ witli O E S.,

- n=3 (pairs)

Figure 3.7: :\ " n x n" coristriirtion for TI = 3

is on the order of 2". I t is shorvn in [TsiS<3] t h a t no reduction in t he size of the

supervisor is possible. Note that in Figure :3.Ï. thc transitions labeled in brackets

indicate transitions which are defined in t he plant. but which are not defined in the

legal language.

Chapter 4

Software Implementat ion

In practice, discrete-event models describing real systems may require hundreds

or thousands of states. In order t o effectively manipulate these large plant models in

an efficient manner. we need to make use of algorithms whicli can be implemented

as software programs. CVhile efficient algorithms have been identified for niany of

the operations which a re required to solve DES problems [RiidSS]. to t he best of

our knowledge there does not esist a software iiriplenieritatiori ivliich provides these

operations in a flesible. intuitive rnanner.

In this chapter. ive c-eview sortie of the currently a\-ailable DES software packages.

we present a niimber of architectural and functional requirenients for a new software

implementation based on a prototype package developed to aid in the research pre-

sented in this thesis. and finally ive present a series of DES functions implemented

in M.4TLAB (a commercial software package) [Mat92] whicli ivotild be the computa-

tional core of the proposcd software implementat ion.

4.1 A Review of Current DES Software Tools

4.1.1 TCT and Object TCT

T h e software package 'I'CT [LVon9G] represents t, lie first DES softwarr tool t o be

developed. It provides a wide variety of basic DES opcrat.ioris (I:igiirc -1.1) a n d a n

interactive envirorinient wliere t liese operat ions caii bc iisetl. Rcccnt developrncnt

efforts have fociised on making the software capable of rcliably working witli large

D ESs. One immrdiatx clrawback of the TCrI' soft,warr t ool cari Iw wcri in Figure 4.2.

Procedure Qesired I ,

t: Edit
5 : Zhou
PI Print
D: DES F i l e d L r r c t o r y

%: E x i t t o m i n =nu : , . .

Figure 4.1: T h e TCT main menu

The TCT software relies on t h e user t o interpret lists of states and transit ions which

can be a time consuming process. It should be noted ttiat al1 FShIs must be entered

as lists of states, marker states. and transitions. Fiirtherrnore. TCT does not allow

for t h e labeling of states or transitions. Finally. due to the design of t h e interactive

environment. it is impossible to run scripts of commands. If the user wants t o repeat

a sequence of calculations (perhaps wi t h some slight modifications to an initial plant) .

al1 the rvork must be done manually.

Object TCT (OTCT) [0')-921 is a more recent DES softwarc tool writ ten in C++

which. while providing essentially t h e same DES opcration fiinctionality. is designcd

t o process batch files wvliicti contain sccperices of conimarids for solvi ng par t icular

DES problems. The OTCT softwarc is also designcd to work rvith DES probltms

with t iming constraints. Unfortunately? i t is still necessary to use lists of states.

rnarker states. and transitions (rcprcscnting DES plants) as input and ou tpu t .

I

i i p u c ü l 5 t d t es : non e
11
Il

i* ip t r a n s i t i o n s : Y6
I!

!press <Enter> to page t r a n s i t i o n t a b l e o r < E X > to abot9 t
. . . . e s . , p : . . - .: , ,

- -- - - + - -
. - . -- - . - - . -. - .- . . - - - - - A A- - -

Figure 4.2: The TCT FShl output

4.1.2 StateTime

The StateTime prototype DES software toolset [Ost 971, which has been designed

to work with tirned DES problems (i-e., timed transition rnodels combined with a

real-time temporal logic framework) , provides some of the visual state descriptions

which allow the user to more easily design and modify inputs, and interpret outputs.

This feature has been lacking in both of the previously-discussed software packages.

StateTime is designed to work with a type of Statechart [Hart371 (with timing infor-

mation) instead of with FSMs. Statecharts are another type of state-machine which

allow for a more compact visual representation of a regular language. It does not ap-

pear that the StateTime tool currently has any capability for generating or running

scripts or batch files.

4.2 A New Approach for DES Software Tools

-4fter using some of the other software tools for solving example problems related

to the work presented in this thesis, it quickly berame apparent that a new. more

flexible tool was required. A new tool should be able to process script files containing

(possibly a large number of) basic DES operations. The tool should also be capable

of accepting (resp., producing) DES plants as input (resp.. output) in a format which

is intuitive to the user-in this case. as finite state niachines tvhere the states and

transitions are displayed graphically. not as lists of data.

These two new high-level DES software requirements effec t i vely determine how

the high-level implementation should be done. A core series of DES operations need

to be irnplemented in some well-established Ianguage which is reasonably well-sui ted

to solving mathematical problems. If this can Le done properly. tlien this language, in

conjunction wi th the implemented set of DES operations. would provide the required

scripting environment. We present a set of functional requircments for such a DES

toolkit i n Section .1.'2.l. PVe have also included rnatrix-based algorithms for a subset

of the set of DES operations currently available in other DES software tools.

A Iront-end software tool also needs to l x clcsigiiccl to crcatc and interpret DES

plant files, and to send commands to the computational engine in an interactive

manner. This allows the user to irnmediately see and understand the structure of

DES FSMs which result frorn using DES operations on an original set of plants. We

present a set of visual requirements in Section 4 - 2 2 which provide a more detailed

description of how such a front-end software tool should function.

4.2.1 Fiinct ional Requirements

In this section. we discuss in more detail what is requircd in t h e design of the core

computat ional engine.

4.2.1.1 High-Level Scripting and Batch Processing

In the existing set of DES software tools, it is difficult and tirne-consuming to

process a large number of plants using an identical DES operation or a sequence of

DES operatioris. Essentially. for each plant the iiser would l x required to interac-

tively enter the plant informat ion, and specify the operat iori or sequence of operations

required to process t hat plant. While this methocl is siiitable for processing a small

number of plants. it quickly becornes untenable i r l cases irlicre t lie number of plants

is large. Such a situation could occur wliere large nunibers of plants are processed to

obtain statistical information.

In addition to enabling large batches of plants to be processed. a design which

al low for scripting enables the user to define higher-level DES proccdures as required

to solve specific types of problems. It is conceil-ahle that the iiser could design a

SIr\T L:\B procedure which solves a cont rol problcm wi t.ti partial observation. where

the user is asked for a specific set of iriptit nutorrinta riilating t,o plant and legal

languages. The procedure would be composed of 1)asic DES operations which CIO a11

t h e computat,ions required to solve this type of prohlem.

Finally. by designing a core comptitational engiric t liat accepts a scripted input.

i t rvould be ~oss ib le to record information about interactive sessions in a log file

whicli would h e able tto reproduce thc sct of calctilatioris iisirig only tlic klATL.AB

interpreter. This simplifies t he process of recording information regarding how specific

results were obtained, and of reproducing those results.

4.2.1.2 Extendibility

Discrete Event Systems theory is still an expanding field. As more research is done

in this area, it may be desirable to add new procedures and operations t o t h e basic

DES software ~ o o l . Also, although we only require a subset of the DES operations

to be implemented in the prototype tool (Le.. only those fiinctions required for t he

research presented in this thesis), we want to ensure that when more bI.i\TLAB DES

operations are impiemented. it will be simple t o incorporate them in the prototype

tool.

4.2.1.3 Capability to Handle Large DES Problems

As WC mentioned earlier. models of realistic industrial prol>lems t.ypically use hun-

dreds or thousands of states. Thus, any DES software tool must be able to solve

these larger problems in a reiiable manner. In t he prototype tool developed for this

thesis. Ive took advantage of t he sparse matrix functionality available in M-4TLAB to

minimize the amount of information about an autornaton which needed t o be stored.

In the matrix-based im~lementa t ion . transitions in autoniat a are r e ~ r e s c n t e d using

adjacency matrices. where a '-1" entry represents a t ransitiori hetwecn s ta tes (t h e

specific states are inferred from the row and column of the entry in the rnatrix). and

a -0'' entry represents no transition between states. Since in our experience. only a

smali number of entries contain "l's representirig transitions. i t is efficient to store

only the inforniatiori corresponding to "1" ent ries. Tliiis for ari ii-state machine with

d (q m . 0) = qm+i for ni = 1. n - 1 being t h e only definecl transitions. storing the

wtiole transitiori rriatris for the o traiisitions would rcqiiire O(iiL) spacc a n d rvould

appear as

where. for example, the transition d(ql, a) = q2 is capturecl by the "1" ent ry in row 1

colurnn 2 (i.e.. a transition s tar t ing at the s ta te corresponding with t h e row number,

and terminat ing at the s tate corresponding to the columri number).

Storing only those locations in t h e adjacency matris which correspond to defined

transitions rvould require only 2 x n space, and would appear as

where the first entry in the ordered pair represents the s ta te where the transition

s tar ts (t h e row for the *I" entry in the sparse matris). and the second entry repre-

senting the state where the transition terminates (t he coluriiri for the -1' ent r'. in the

sparse mat r i s) . When the numher of transitions is sniall. the space savings can be

considerablc.

BJ. storing information about t h e transition structure of plants in the manner

outlined above. and by using efficient algoritlims for DES opcrations, ive believe that

t h e .\I;\TLr\B environmcnt will Ile able to process DES autoniata whicli a re large

criough to model coniples problerns.

We now present some details about t h e front-end softwarc package whicli has becn

developed as a first a t tempt to satisfy tllc higli-levcl rec~iiircirirnt tliat DES autoniata

should be able to be constructed and viewed by the user in a simple and intuitive

manner.

4.2.2.1 The Visual Plant

This section lists a number of desirable features which have been implemented in

t he prototype software tool.

State Characteristics

0 Each state in an automaton should be able to be moved to any desired location

within the workspace (by the user) so that the au tomaton rnay be presented in

a readable manner.

Each state in an automaton should be capable of being labeled in a meaningful

manner. It should be possible t o rnodify this inforniation i r i a simple and direct

manncï.

O Each state should display information regarding its initial and marked status.

It should be possible t o modify this information in a simple and direct manner.

Transition Characteristics

O Each transition sliould appear as a n arrow originating at a state. and terminat-

ing at (painting to) a state.

a Each transition should be capable of txirig lal~elrci in a meaningfiil manner.

This label should correspond to a n cxisting alpliabet rlcnient.. i f a new label

is entercd. a corresponding alphabet elcrncnt s l~ould he adcfed. It shotild be

possible to modify th i s information in a simple aricl direct. mariner.

O It sliould be possible t o modify (in a siniple niaririer) tlic sliapc of the transition

line ir i order to make the overall aiitoriiatoii sinipler 1.0 int-crprct and easier to

visualizc

P l a n t Characteristics

Çorne work has been done in the area of drawing directed graphs in an aest hetically

pleasing manner, for example [GI<NV93]. While the prototype DES tool which we

have developed does not provide this function? the d a t a structures have been designed

in such a way so tha t it would be simple t o add a MATLAB routine which could

arrange visible states in an intuitive and understandable rnanner. This type of layout

function would be useful specifically in cases where a DES function (PROJ, MEET

or SYNC for example) generates new state-sets which have a non-trivial relationship

to the s tate sets of their argument FSMs.

4.2.2.2 FSM Interactions

I n the sarne way that it is possible to trace liow a variable is calculated in a

sprcadsheet. it would be useful to be able t o trace how an automaton is calculated

in our interactive DES software environment. Furt hermore? i t would be useful to

be able to aut,omatically update automata which are derived from other au tomata

when any information regarding the input au tomata o r the type of DES operation

performed on the input automata changes. Finally. it would be useful t o have a block

diagram representing the relat ionships between al1 autornata currently loaded in the

interactive environment.

4.3 A Matrix-Based Implementation of DES Operations

The following suhsections outline the vector and rnatrix data structures d o n g wit h

the rnatrix-I-iased algoritlims which were developed as part of this tIiesis. In order to

illustrate these structiircs and algorithms. we use the two FSMs in Figure 1.3 as

riinning csaniples. For the remainder of this section. CI refrrs to t.lic FSM sliown in

Figure 4.3(a) and G2 t o the FSkl shown in Figure 4.3(1>).

WC point out tha t although ive chose to implenient the structures and algorithrns

described in this subsectiori in MATLAB? tiiere is no reason why tliey may not bc

impkmented in o t her mat ris- bascd mat liemat ical environrrien ts. Thcrcforc. in the

-
(3)m Broken -[

Figure 4.3: Two esample FSMs

following subsections we locus on the matrix operatioris ancl manipulations which

comprise the DES operations. and omit many of tlie .\IA'I'LAB-specific impiementa-

t ion details.

Also, for clarity we use ful l iiiatrix representations ivht-ii t1cscril)ing liow the various

steps of the matrix algorithms apply to the example FSMs. tlou.ever. in t h e kl.4TLAB

implementations of these algorithms. al1 tlie matrix iiiariipiilat ions are done using the

spcrrse matrix form.

4.3.1 The File Format

The file format used to store DES plants is esseritially a 11.-\TLr\B .m file. -4s no

klATL.-\B operatioris are performed in this .ni file. tlic oiclrriiig of t lie various vectors

and matrices mtiicli define tlic FSM is iiot important. Fiirt lier. t Iie front-end prototype

program has also been designed such that the order of tlie rectors and matrices is not

important. 'The file contai ris t he vectors and triatrices c l c s c . r i l d below.

The Plant Name Vector

This vcctor contains ttrc riarne of tlie firiitc statc: riiaclii~ic, This naniri is iised as

a suffix when naming al1 t he plant vectors and matrices. Thus, for a plant narned

"G l", the variable would be defined as

in t he plant file.

The Stacked Transition Matrix

T h e Stacked Transition Matr ix is essentially an (nt . n) x n matrix. where n is the

number of states in the FSM, and rn is t he number distinct events. Thus , t he first n x n

btock represents the adjacency matr ix for the first event in the event set 2, the second

n x n block represents t h e adjacency niat r is for the second event? and so on. Since

&,[.-\TLAB does not easily s tore lists of information as matrix elements, a n d t h e current

version does not support n-dimensional matrices where r2 > 2. this method of d a t a

storage was chosen as the simplest method for storing al1 the transit ion information

in a single da ta structure. The following is a n esaniple of a stacked transition matr ix

for t he example FSM Gl :

whicli appears in sparse nia t r is forrri as

For tliis cxample, the first evcnt (say n) occiiss as a transition hetween s ta tes 1 and 2.

and t h e second evcnt (say ,J) occiirs as t-raiisitioiis Iwt ween states 1 and 3. and s ta tcs

2 and 1. Note t hat in the sparse matr ix representation. a " 1" signifies the occurrence

of a transition starting a t the s t a t e indicated by the row nurnber (modulo m) and

terminating at the s tate indicated by the column number, whereas a "O" (i.e., the

matrix element is not explicitly defined in a sparse matr is) represents the absence of

a transition.

The Transition Location Matrices

The Transition Location Matrix is used to define the (x.y) screen positions of the

spline points for each defined transition occurring between ttvo states. Note that since

there needs to be only one physical line/arrorv to represent a nurnber OF transitions

between the same start and termination states. the matris cloes riot need to be stacked

to accommodate an adjacency rnatrix for each event. However. the matrix is stacked

horizontally to accommodate the x and y Iocation infortriatiori. and cari be stacked

vert ically to accommodate (x. y) locations for spiines w i r l i i~iiiltiple points. Thus

1 [S loc. rnatrix? spline point II ['i- loc. rnntris. sp line point 11

line point 21 1 T&, =

1 [S lot. matrix. spline point nl [Y oc. inatris. splirie point n] 1 .
[S [oc. matrix, spline point '21 [Y loc. rtiatris. sp

In the esarnple below (showri in sparse matris forni). the spline associated with

the b(1, a) = 2 transition has (x,y) coordinates (100.120). tvliicli correspond to the

sparse matrix elements TScl (l .?) , and TScl (1.3). :\(lding t l i r rlernents for the ot her

transibions in C;, ive get

The State Label Vector

The State Label Vector is a list of names corresponding to FSM states. The

ordering of the state labels corresponds to the ordering of the transitions in the

transition matrices, and in the initial and marked state vectors. Thus, states indicated

by the nth row or coliimn of a matris are labeled by the nth label in t h e state label

vector. An example of a state label vector for the FSM GI is

The Initial State Vector

The Initial State Vector iiitlicates the set of initial states by using a --1" at the

locations corresponding to the states in the set. Note that in DES theory. there can be

only one initial state. althougli the software rnakes no such restrictions. .-in esample

of this vector for FSLI CFI is

which indicates tliat tlie first s ta tc (statc '-Idle" as defined in the State Lahti Léctor)

is the initial state of t .hr FSAI.

The Marked State Vector

T h e Markcd Stat c i'ectot- is defiricd in a sirriilar Inanncr to tlie ini t in1 statc vector.

the two differences I~eirig tliat tliis vcctor indicatës tlie mârker states of the FSM,

and that it is possil>le i n standard DES theory to have multiple markcr states. A n

example of this vcctor for ttic FSkI C;, is

which indicates that the first and second states (states "Idle" and "Working" as

defined in the State Label Vector) are bfkh marker states of the FSM.

The State Visibility Vector

The state visibility vector is also defined in a similar nianner to the initial and

marked state vectors. In this case, the vector indicates those states which are to be

displayed using the front-end display program. .An example of this vector for the

FSM G1 is

which indicates that ail the states are to be displayed.

The State Location Vector

Tlie state location rnatrix is an n x 2 matris witli eacli row containing an (x.y)

location For the state which corresponds to the n th element of the State Label Vector.

An example of this vector for the FSM GI is

which indicates that state I (or .-Idle") is located at screen position (352.65). state 2

(or "Working") is located at screen location (309.1-1 1) a n d so on.

The Alphabet Label Vector

Tlie .Alphabet Label Vector is similar to the State La ld Vector in that it provides

a list of labels which correspond to the occurrerice of i tir rn"' n x n block in the

stacked transit ion matris. The Alphabet Controiiahility and O hservability Matrices

(defined below) also make use of column locations which correspond to this list of

alphabet labels. An example of this type of vector for the FSM GI is

which iodicates that the first n x n block in t he stacked transition rnatrix corresponds

t o a n event labeled "a," and the second block corresponds to a n event labeled "P."

The Alphabet Controtlability Matrix

For both the Alphabet Controllability and Observability Matrices. we introduce

the notion of' multiple supervising agents. Each supervising agent has its own view of

what occurs in a system and a set of events that it caii contsol in tha t systern. While

the data-structure defined here allows for ni~iltiple ageiits. t lie hIATL;\B implementa-

tion of the DES operations currently considers only t liose cases where a single agents

is clefined.

The Alphabet Controllability Matr i s is a k x i n niatrix whicli contains information

about the controllability of each of the alphabet elernents (nt total) for each of t h e k

supervising agents. This mat r i s contains a '-1" at row i. coliimn j if. for supervisor

i: the jth alphabet element (labeled by the j th cntry i i i the Alphabet Labcl Vector) is

controllable. otherwise it contains a -9" at this location. Ari esample of this matrix

for the FSM Gl is

wliicli iridicatcs t h . for t lie first siipcrvisiiig agent.. t lic f i r s~ a l p l i a b i ~ ~ deiiient (.*a"

as dcfined in tlic csaniple alphabet label vect,or) is coiitrollablc. anci the second al-
. ..

phabct clenierit (- - $ ' O) is not coiit rollal>lc. For tlic secoiicl siipcrvising agent, "a is

not controlIablc, wliilc .-,J'- is co~itrollable.

The Alphabet O bservability Matrix

The Alphabet Observability Matrix is defined in a manner analogous to the Al-

phabet Controllability Matrix, the difference being that ;l"s in this matrix represent

alphabet elements (indicated by the column) which are observable by some supervis-

ing agent (indicated by the row). Thus the example rnatrix

indicates that the first agent cannot observe the first alpliabet element (-a" as defined

in the example alphabet label matrix) but it can observe the second alphabet element

(;B' ') . For the second supervising agent, the opposite is true.

4.3.2 Basic Matrix Operations

Before rve can discuss the details of the various DES mat ris-based algorithms. it

is necessary to define some terrninoiogy. First. let adjacency matrix -4 represent the

transitions in a FSM. By computing An. a matris which represents the nurnber of

distinct '-walks" of length n between any two states can be ol~tained [Epp95]. A walk

between two states qi and y, is a string s E Y' siich tliar d(q, . . ï) = qJ . II

t hen

rvh i ch can hc interpreted to mean that there is oric ~valk of Icngtli 2 from state 1

to statc 1 (in this case v i a state 2). and similarly oiic iva lk of Irrigtli 2 from state

2 to state 2. There are no walks of lengtli 2 betweeii statc I and state 2. The -4"

matris can bc modified so tliat it keeps track of acccssihility. instead of counting the

niimbcrs of walks l~etween pairs of states. First.. WC M i n r t Iic fiinctiori NORM to be

a function which replaces any non-zero mat r ix elernent with a 1. If A represents the

adjacency rnatrix for a FSM, then define

Thus, if A, has a 1 at location (i j), then t here exists a walk of length Iess than or

equal t o n between states i and j.

The rnatrix operator "A" is defined as follows. Given trvo matrices BI and B2

with the same dimensions, where t h e entries of BI ancl B2 are 1's or O's, the resulting

mat r ix B = BI A B2 has the same dimensions as matrices BI and B2 wit h each elernent

B(i. j) being defined as the logical "and" of elements Bl(i, j) and B2(i, j) .

The matrix operator Y* is defined as Follows. Given ttvo matrices CI and &

with the same dimensions, wtiere t h e entries of Cl and C2 are 1 's o r 0's. t he resulting

matr ix C' = CL V Gr2 has the same dimensions as niatrices and CI2 with each elernent

C(i . j) being defined as tlic logical "or- of elenients C ' [(i . j) and C2(i. J) .
.. .

T h e matr ix operator - - 1s dcfined to be the standard operator for calculating a

m a t r i s product.

Finally, t he notation 1 DI indicates tlie number of entries in a vector D.

4.3.3 The TRIM Operatioii

.A matrix-based irnplenieritation of tlie trim opcration definecl in Section 2.2.1.1

is presented in this section. W e present a pseudo-code algorithni. follo~vcd by a

discussion of some of the lie!. steps in t h e algorithni. a n d conclitde witii a simplc.

illustrative example.

3. for i = 1,. . . , 1.4iVI

T X = T .YVTR[((i - 1) - l S l V l + 1) . . . (i - 1 S I V I) , L SN[]
end

4. R = X O R M (S I T-Y + S I)

5- RoId = (1 x ISII) al1 zeros uector

end

1 O. while R # RoId do

C Rold = CI R

C R = :VORM(C R T S ' + C R)

enù

12. for each nonzero entry i in R I\ C R do

remoue corresponding rows /rom SN TRI^ and SLTRIM

end

Algorithm 4.1 creates a FSM whicli recognizes the same languages as the input

FSM, but which contains only those states which are both .*reachable'' and *-CO-

reachable". A state q is defined to be reuchuble if there exists a string s such that

b(q,, s) = q. A state q is defined to be co-reachable if there exists a string s such that

6 (q , s) = qm for some niarker s tate q, E Q,.

In order to calculate reachable states. the matris-based implementation of the

TRIM operation needs to know only that there exists some transition hetween a

given set of states. It does not need to knoiv the label of the transition. For that

reason, the MATL.4B fiinction creates a new n x rz adjacency rnatrix based on the

stacked m n x n transition rnatrix of the original DES. This matr i s is the logical O R

of each n x n block (representing the adjacency matrix for a single alphabet elernent)

in t he stacked transition matr is . Formally. for some arbitrary FSM with a stacked

transition matrix TR. a matrix T',Y is defined as follows:

This T-Y matris now represcnts a n adjacent!. niatrix where an unlabeled transition

is defined be twen tivo states q , arid y? i f S(rli. rr) = rl.1 is defiiied for an!- O E 5.

The second part of the matrix-based functiori for 'TRI31 calctilates FSSI reactia-

bility using the T.Y matris. 'I'rivially. thc iriitial statxi (reprcsctitcd t ~ y tlic i.ccî,or S I)

is reachable. The algorithni t,licn uses thc T.Y riiatris to calculatc the sci. of states.

represented by vector R. wliicli are reaciiable from the initial s ta te via at most a singlc

transit ion as follotvs:

In general, if T X is a n adjacency matrix. and S I is a matrix representing a subset

of s tates (with a 'ln representing t h e inclusion of the corresponding state in the

subset), then SI T X * is a vector where t he value of each element corresponds to

t h e number of distinct paths between states in the subset represented by SI and the

s t a t e represented by the element of t h e vector S I . T S n . Since we are also interested

in states which were already reachable (the initial state vector in this case), we add

the previously reachable states t o our result. Finally, as we are not concerned about

how many ways a state is reachable, only that it is reachable. we use the NORiM

function t o replace any non-zero elements of a matrix with the value ''1 ."

In order to check for states which are reacliable via strings of arbitrary length.

this process is repeated? substituting the R vector for the initial s tate vector SI in

the previous equation. Thus.

This is repeated until t h e number of non-zero entries in R matrix does not increase

after the application of' (4.2). Note that for our simple FSbl Gi. all the states are

reactied after the application of (4. l) , and tlierefore. in this particular case. no itera-

tions of (4.2) are required.

\!è have calculated al1 tlie reachable states. The furiction notv calculates the subset

of reachable states which are also CO-reachable. Tlic algorithm used to calculate this

is very similar to the algorithm used to calculate reacliable states. First. the function

calculates the transpose of the T S matrix (cal1 it the T.Y1 matris) . This matrix

represents the adjacency matrix of a directeci graph wliere t h e direction of al1 the

(observable) transitions is reverseci. The furictiori t h i calculat es a modified marker

s t a t e set by taking the logical A N D of tlie marker statxi vector 5.11 and the reachable

s ta te vector R (i.e., we do not care a l ~ o u t marker states whicli are not reachable):

T h e initial equatiori used to calculate states wliicli arc c-O-reachahle from the new

S M vcctor is

CR = NORAI(SI21 - T.Y' + .s'.il).

and the equation which is iterated until the cereachability matrix CR no longer

increases in its number of non-zero entries is

C R = NORM(CR T S ' + C R) . (4.5)

By removing al1 elements in al1 state and transition vectors and matrices which cor-

respond to zero entries in the R and CR vectors, we now have a set of states which

are both reachable and CO-reachable.

Example

To illustrate how t his rnatrix-based algorithni works. we will use the FSM Gi in

Figure 4.3 as an input.

For the FSL1 CI (i-e.. ri = 3). t h e T R matrix appears as

and thus. the corresponding T S rnatris is:

The reachability vector R is calculated for the FSkI Cli as follows:

Then the new SM reachable marked state vector is

Finally, the coreachability vector CR is

We note that as with the reachability calculation. no iterations of (4.5) are required

for this example. as the number of non-zero elements in the CR vector does not change

aRer the application of (4.4). The fi na1 CRo, vector tells us that only t h e first two

states are coreachable. The final step in our esarnple is to remove rotvs and columns

which correspond to zero e1ement.s in the RG, A C' Rc;, vector (i.e. states which are not

reachabte and not coreachable). Thus. for esaniple. tlic modifieci TR rnatrix would

and the SI and S M vectors rvould appear as

anci finally. the resulting FShf is shown in Figure -1.-1.

:\ matrix-based implementation of the ineet. operation clefinccl in Section 2.2.1.2

is prcsented in tliis sectioii. WC prcserit a pscii(10-cocl(i algorithni. followed by a

Figure 4.4: The TRILI of FSM Ci

discussion of some of t he key steps in t h e algorithm. and conclude with a simple,

illustrative example.

end

end

4- /or each (p . q) such thut .-l.YGI(p) = ;L.\k,(q) do

.-WLIEET
-4 ArG (p)

. -~C.I~EET -~C 'O , (p)

- ~ O . I ~ E E T -AOC, (P)

end
r

e n d

Note: TShlEET, SVwEET, SNMEET, and SLMEET al1 contain information which

pertains to the displag of the FSM. The information contained in these matrices

and vectors is not presented here. However, in the MATLAB implementation,

these vectors are computed using heuristics for screen local ions and Iabe fzng

rules.

Algorithm 4.2 creates a FSM that recognizes a language composed of strings which

are recognized by al1 of the the FShIs used as the arguments to the operation. Thus

for some arbitrary nurnber of FSMs where

Cme,, recognizes only those strings. and al1 tliose strings. wliich are recognized by

The FShI whicli generates the meet language as clefiiiecl in (2.1) can be constriicted

(i.e.. it is associative). we can simplify our esample. witliout loss of generality. by

considering hIEET to be the meet of only two FSkls (say Gi and G2).

The rnatris-based MEET ror t t ine briilds t, he various FSLZI mat rices and vect.ors as

follows. First. the alphabet label vector ancl the stacked transit ion matrix for G,,,,

are constructed. Since the language that describes the iiieet, of trvo input languages

contains only those elements wliicli are containecl in bot li t lie i r i pu t languages. any

strings i n either of the two input languages wliicli contain evcnts mhicli arc unique to

that language will not be included in the nieet laiiguage. Tbtis. X,.,, = Sr;, n Sc,.

Next, tlic alphabets of the two FSMs are coniparecl. and for cacli set of common

event labels, the event Iabel is added to the alpliabct lal~el vcct,or .-liV,,,,. and a

new IQc, 1 . [QG, 1 x IQcl 1 - IQG21 block is adtled t a tlic iiew sstackcd t,ransitioti rnntrix

T L e e t . For sorne o E Sc, 0 &. the IQc, 1 x IQcl 1 adjacency matrix for o in G1

(call it AuGI), and the IQc,l x lQsl adjacency matrix for o in G2 (cal1 it AuG2) are

combined to create an adjacency rnatrix (call it A,) for the new FSM in the following

manner. For i, j = 1 . . . IQG, 1,

Equation (4.6) can also be described in a more graphical manner as follows

The new stacked transition rnatrix TRmeet is tlien constructed, with each .-Io
'i- adjacency matrix block correspondirig to some O E 50, n AC,:

The initial state vector is constructed as follows. For each vector element in t h e

initial state vector for Gi. IQc,l vector elements are added to the new initial state

vector by multiplying the vector element for G i I>y the entire initial state vector

(containing IQG2 1 elements) for C;?. Thus. a s t a t r in the meet FSkl is an initial state

if both the corresponding states in Ci and C2 are iiiitial states.

The marked state vector is constriicted usirig the saine itietliod that was used for
r 7 constructing the initial state vector. 1 hos. a stat,e i i i t,lir meet FSkl is a marked state

i f both the corresponding states in CiI and Ci2 arc iiiarkcd states.

The alphabet controllability and observabiiity properties for tliose alphabet ele-

ments o E Sc, which form are taken as tlie clefauit values for the controllability

and observability matrices ic i the riew C,,,,,, FShI. St atc ancl t rarisition locations are

generated automatically accordirig to a simple liciiristic algoritlim.

-4s discussed in Section 2.2.1.2, we are primarily interested in t r im languages.

Thus, the MEET routine includes as a final stage a cal1 t o the TRIkI routine, before

it returns the FSM to the user.

Exampte:

CVe use the two example FSMs Gi and C2 from Figure 4.3 a s inputs t o the MEET

operation to illustrate how this operation works. Equations (1.6) and (4.7) are used

to construct the new T Rmeei stacked transition matrix. Since GI and G2 have the a

event in common, the adjacency matrix A, for Gmeet will contain non-zero elements,

and is constructed iising (4.6). The adjacency matr is can be thought of as a 3 x 3

group of '2 x 2 submatris blocks:

The 2 x 2 submatris blocks are cornputecl w follows. Gi\-en tliat t h e adjacency matrix

for t h e <r event in G2 is

and the adjacency matr is for the a event in Ci is

For each zero entry in the AaGl adjacency matrix. a n all-zero 2 x 2 submatrix block

is inserted in the corresponding entry in t h e -4, adjacency matrix as follows:

Note that for each row in the ..La matrix. a state-pair has been included which illus-

trates how the rows in the matrix correspond t o the elementsof the Cartesian product

QG, x QG,. .A similar labeling applies to the columns of the matrix. Since the top

middle entry of the A,,! adjacency matrix is -1 . *O then the adjacency matrix

is inserted in the corresponding top middle block of t?lie new .4 , acljacenq~ niatris.

completing the matrix:

Since in this case. the only event tliat Cl and G 2 have in common is a. then the

TR,,,, stacked transition matris is sirnply t h e -4,. adjacency matris

Had G , ancl (1:? Ilad niore everits in common. thcri thc TH,,,,,, rriatris would he a

stack of al1 the newly calculatecl adjacency niatrices as iridicated hy (-1:;). C k also

note that in this example. alter the final stage when C;,,,,,, is trimoicd, the resiilting

FSM shown in Figtire 4.5 contairis oiily two st.at.es.

Figure 4.5: The MEET of FSMs Gi and Gz

4.3.5 The SYNC Operation

.A matrix-based implementation of the synchronous product operation defined in

Section 2.2. L.3 is presented in this section. We present a pseudo-code algorithm,

followed by a discussion of some of the key steps in the algorithni. and conclude with

a simple. illustrative esampie.

5. return GsY,vc

Algorithm 4.3 combines the MEET operation with an operation (step 2 of Algo-

rithrn 4.3) that adds event self-loops a t each state of an FSM, to obtain an output

FSM that synchronizes on common events, and otherwise allows for al1 possible in-

terleavings of events, as defined by (2.2). For example. if two FSMs Gi and G2 are

used as input, the output FSM GsyNc can be informally described as follows. If Gi

is at some state ql. and G2 is at some s ta te q,. then for state (q1,q2) in Q. which

corresponds to G1 being in state ql and G:, being in state y?. then & ((q l , q2)? a) is

defined if any of the following are true:

&, (qi, o) is defined and br;, (yz. a) is defined. or

hcl (ql : 0) is defined and o 4 Zc2. or

dc, (qz; 0) is defined and a 6 Sr;, .

The matrix-based SYKC routine first goes througli the event labels for Ci (Zcl).

and adds self-loops of events t.o each state ii i C2 i f for o E Tc, .o 4. Sc, holds. I t

does an analogous step for each state in Gl . The procedure then cornputes the meet

of these two modified FSMs. and returns it to the user.

Example:

CVe again consider t h e esample wliere the two input FShls are GI and G2. In

this case, a 7 self-loop event is added to G1. and a ii self-loop went is added to G?.

resiilting in the two modifiecl automata (C;; and G:) shown in Figure -1.6.

The MEET of Ci', and is computed using the algorithin prcsented in Sec-

tion 4.3.4. The resultiiig .-\,,. . d l { . and .-\, matrices reprcscnt the adjacency matrices

Figure 4.6: The example FSMs with self-loops

for a. 3 and 7 i r i t, tic ricw FSM Ci',,n,:

Figure 4.7: The SYNC of FSMs G', and G2

Therefore. t he resulting T R,,,,, s tacked transit ion mat r i s (M o r e t r i m m i n g) is

T h e o t h e r FSM vectors and mat rices are calculat,ed in tlie sarne manner as for t h e

- 'il MEET operation. Note. howcver. t h a t for tlir Sk'XC' opcrat ion. X,,,, - ,r;, u Ir;, .

The trimmed FSh4 which is const ructed using tliis procccliirc is shown in Figure ~&.i.

4.3.6 The PROJ Operation

A matris-based implementation of the pojection operation defined in Algorithm 2.4

is given in tliis section. \Ne present a pseudo-code algorithm. followed by a discus-

sion of some of the key steps in the algorithm, and conclude by discussing a simple,

illustrat ive example.

Algorithm 4.4 : GPnoJ = PROJ(G)

f. input: C = (P X . T R . TS , SN. S I , SM, SV. S L . .-W. .AC. -40)

-3. for i = 1. . . (.-lXI do

if .-D(i) = 1 then

i j AO(i) = O then

TXuo = T.iCrro V T R (((i - 1) . lSiVl+ 1). . . (i ISNI). 1 . . . ISNI)

end

while the nurnber O/ non-zero elements in T X is increasing do

T X = NORM(T.YuO + TXuo)

end

5. MAP = [SI - T.YLro + S l ? "new"]

while there exists sorne r-uw (j) labeled %eu?" in the !CI-4 P nicrtrix. do

for i = 1 . . . I - -LV~ fi0

end

if S # .Il .-IP(k. 1 . . . (SNI) for somc k therr

and SLpno j rqectors

cldd neuq rouvs und cohmns [O thr- TRPRoJ clrid T.TPROJ matr2ce.s

end

change ent ries in the T RPRo j clnd 7'spno J mat rices tu *'l"

to r-eflect trnrisitions betioeen stnte s e t s in u s reqaired

und oeclorii is not presented here. Howeaer. i i r the .CIIITLAB implementation,

Lhese vectors are cornputed using heurzst ics Io,. screen locations and labeling

r-des.

:ilgorithm 4.4, which is a matrix-based implementat ion of Algorithm 2.4, con-

s t ruc t s a FSM mhicli generates t h e projection of tlie laiiguage generated by an input

FS M.

First. tlie routine creates a (n x 1 2) T.\'r.io matrix. I r i th is case. t h e TdYuo mat r ix

is based on t h e (rn - n x n) Stacked Transition Sla t r is . bu t includes only unobservable

e w n t s . Thus. for I = {i 1 .40[i] = 0.i = 1.. . nt} .

The TSL:o m a t r i s as definecl above can bc int.erpret,eti to be a n adjacency mat r ix

for any single unobservable event. W h a t tve iiow reqiiirc is a niodified adjacency

mat r i 3 whicti accounts for str ings of unobservable e\-ent S. To accornplish t his. we

i tera te the equation

until tlie n u m l ~ c r of non-zero elements in the T S mat r i s s tops increasing. ive have

notv created a n adjacency m a t r i s where a trarisitioii is defiriecl I~ettveen two s ta tes i f

t lierc esists a chain of unobservable events conricct ing t lie trvo s ta tes in the original

FShI.

Thc PROJ rotitinc ttien crcates a 1 x 11 .\[:\P rnatris tliat tvill contain subset

information for ail the s t a t e s in the new FSh[. Tliis iiiatris s t a r t s as a 1 x n matr ix .

hiit will grotv as iiew s t a t e s a re acidecl to a A- ,d r i i i iatr is . tvit li cacli of the k rows

corrcsporiding tao a s t a t c in t l ir projcction statc-spacr. Row 1 of the hl.-\P m a t r i s

(talie orily row a t tliis stage) is dcfinccl as

This is equivalent to the subset of s tates defined by a-CLOSÜRE(qo), or the set of

states the input FSM could be in after t h e occurrence of a (possibly zero length)

string of unobservable events (Le., no observable events have yet occurred in the

input FSM). This subset represents the initial s t a t e in the output FSM.

This first row of the MAP matrix is flagged as "new." The routine then enters a n

iterative stage. Here. for each "new" row in the MAP matr ir , the routine determines

what subset of states S can be reached from the subset of states represented by t he

"new" row in the M A P matrix via each o E Co followed by a string of unobservable

events. T h e equation is as follows:

This equation uses the subset of s tates represented by the j th (.-new") row in the

MAP matrix. and the observable event with a n adjaceiiry mat r i s represented by the

ith n x n block in the çtacked transition m a t r i s TR. If the S 1-ector does not match

any of the existing rows in the MAP matrix. tlien it is addecl as a new row to the

M.4P matrix. and is flagged as - n e w 7 as follows:

-4s the M.\P matrix is being constructed. corresponding T R . S.V. SM. SI. and

SL matrices (which represent da t a for t h e new FSM) arc updatcci as required with

new transitions and states. The states represented hy the vtlct,oi- elements in the S N :

S M , SI. and S L vectors correspond t o t h e rows in the .\I:\P niatrix: tliat is. t h e first

row in the M A P matrix corresponds to the s t a t e represented bv t.he first element in

the S.V. S M . S (and S L matrices (and the first. sow ancl r-oliiriiri in each block of the

the T R matrix)

hlthoiigh in general. it is desirable to obtain a iriiiiiiriiini s t a t c rcpreseritation of

the language gerierated by the output FSM. tliis routine cloes riot do this by default.

This allows us to examine the structure and size of tlir resiilt ing FSiLI. and make

conjectures about how the structure of t he input FShI impacts the size of the output

FSM (I~cforc riiiriimizing).

To illustrate how the P ROJ matrix algorit hm works, we partition the event set C

of Gl in Figure 4.3 into Cu, = {a} and S, = {$}. The T-Y matrix resulting from

(4.8) and (4.9) is

and the first rotv for the M A P matris as definecl in (4.10) is

Now. ive iteratively apply (4.1 1) to each -rietvS' row in the M=\P matrix. For the first

iteration, we consider the first row of the XIi\P rnatris. and the ,LI event. The -3 event

maps the first state to the third state. and the secorid state to the first state. !Vote?

Iiowever that it is possible to rpach the seconcl statc from the first state via a string

(namely a) of unobservable cvcnts. T tiiis. ,.3 also. i r i effect iiiaps the second state back

to the second state. Tlierefore, the MAP rnatris beconies

WC nonr consider the second rou. of tlic .Il.-1P matrix. ivhich contains the only

--new" flag. After applying (4.1 1) to the row. no new rows are added to the iII.4P

matris. CVe can tlierefore coliclucle tliat tlir oril!. tivo state-sets which make up the

projection state space arc {ldlc.\l'orki~ig} aiid {Iclle.\.\Orki iig.Broken}. The adjacency

mat rices for eacti of the observal>lc c\mits are constructeci as the -11.4 P matrix grows.

Thus, if at sornc stage duririg tlic proccdure. t . 1 ~ .LI .-1 P rriatris contains n rows. then

For each observable event. t lierc csist.s ari rr x 1 1 adjacericy matris. The FSM which

recognizes the projection of L (G I) is s h o w iri Figure ?.S.- For sirnplicity, ive have

renamed the state "{Idle.Working}" as aiid the s ta t r ~{Idlc,CVorking,Brokcn}"

as --Y..

Figure 4.8: The PROJ of FSkl C:,

4.3.7 The MIN1 Operation

T h e matris-basecl M I N I operation presentecl here iniplenients Algorithm 2.1. T h e

algorithm takes an input DFA. and provides a n ou tpu t DF.4 n-liich recognizes t h e s ame

language. but w hich contains the minimum number of s ta tes reqiiirecl to recognize t hat

language. The m a t riz-based implementat ion of t his algori t hni has been developed t o

work with matr ix representations of FSbIs.

First. the M I N 1 routine constructs a three-coliimn n ia t r i s FLAG. The first two

columns of each rotv of t his matrix contain unique i. j pairs. i # j. where i. j represent

distinct states in t he FSM. Thus, there are as man- roms as t liere are combinations

of two distinct s ta tes in the FSM (specifically: (r i (1 2 - 1)/'1) rows). The entry in t h e

third column of each row (with entries i. j in the first two coltimiis) is defined using

the X'larked S t a t e Vector S X I as follows:

Coliimri 3 cntry = 1 i f S.\l{i) + S.\ / (;) . or

Colrimn :3 entry = O i f I ? J l (i) = .q.\l(j).

Tlie routine tlien goes through eacli row of tlic F [,.-\Ci riiatris. ancl for cacti row

containing a zero in t h e third column. it finds the st.at(a-pir (q , , . q ,]) -where qit =

S(q, , o) and q,, = 6 (q l , O) . qt # qJ7 o E S , and g,. q, correspoiidirig to i. j in the first

two columris of the FLAG rnatrix. If the row in t,bc Fl,r\C; rtintris wtiicli corresponds

to the s tate pair (q,;, q J j) has a "1" in tlie tliird column. then the routine enters a "1"

in the third column of the row corresponding to the (qi7 q J) s t a t e pair. This process

is iterated until no new 1's a r e entered in the tliird column of any row in the FLAG

mat rix.

Finally, those pairs of states whicli have not been *FlaggedV in the above iterative

process, are considered to be equivalent states. The matrix-based routine therefore

combines these states, and outputs a minimum DFA to the user.

It should be noted that this implementation of the Myhill-Nerode theorem. while

Fairly simple to code in kL.\TL.AB. is not the most computationally-efficient way to

calculate the minimum DFA [Hop7l]. Specifically. Algorithm 2.1 (step 2. line 6)

uses recursion on lists to efficiently flag iinflagged pairs. In contrast. our rnatrix-

based routine cycles through the list of s tate pairs to test. and in some cases flag,

unflaggeded pairs. This cycle continues ~int i l a complete test of al1 the state pairs is

done wi th no further fiagging.

Chapter 5

Examples

Bef'ore we present a series of example, we first need to define the two types of figures

which are used to present some of our results. First. we display a form of adjacency

matris which illustrates how states map to other states after the occurrence of an

observable event O , followed by a string of unobservable events. Bot h the x-axis and

y-a'ris represent the set of states in these matrices.

bVe also use an no-reachability matrix (sometinies rrferrecl to as a summary ma-

trix). nehere nonzero (i.e., dotted) elements in the matris represent occurrences of

strings of length n in the plant. Thus, while t h e J.-asis still represents the set of

states. the s-axis represents al1 possible strings of observable events of length n.

5.1 The Two-Train Problem

For oiir first example, we chose the simple problem tvliere two trains must share

a common length of track [RWSS], [Won96]. In this prohlem. parts of' t he track

have sensors whicti can detect the passage of t lie t.rairis. aiid parts of the track have

stop lights whicli may prevent the trains froni entering t lie follotving sections of track

(Figure 5.1).

The plant language can be modeied by taking the synclironous product of two finite

state machines (Gvl and Cvz. each representing the brliaviour of a train) which are

provided in Figure 5.2. Let V be the language recognizccl by the resolting automaton

Gr Ci'\- recognizes

Figure 5.1: .-\ block diagrarn of the two-train problem

Vehicle 1

Figure 5.2: Tlic coin poricrit iiio<lcls for I lie two-traiii prohlcni

9 2

In controlling this system, we require t ha t t h e two trains not occupy t h e same segment

of track at t he s a m e tirne, thus the legal language is defined as the language E

recognized by the au tomaton Gv after t h e states (1; l) , (2 , 2) , (3 , 3) , and (4,4) have

b e n removed together wit h al1 transitions leading into and ou t of t h e removed states.

This provides a FSM which recognizes a language which does not include strings

corresponding to t ra in movements which result in the two trains occupying t h e same

section of track a t t h e same tirne.

New' as Figure 5.1 indicates, there is no sensor before section 2 of t h e track. This

means tha t t h e unobservable event set is Cu, = {<r2,h}. As par t of the solution t o

t h e control problem, it is useful to take t h e projection of al1 those strings which are

considered t o be illegal. The language V - E represents al1 the possible strings of

events in t he plant minus t h e legal strings, leaving only those strings which are illegal.

A n automaton G'v-E which recognizes t h e language Cs* - E can be constructed. so

that the FSM which recognizes P (V - E) can be calculated:

As GI . . -~ has 56 states. it is possible t ha t t he FSM wliich generates t h e projection of

b' - E could have o n the order of '2'' states.

5.1.1 o-Reachability Aiialysis Results

Table 5.1 summarizes the results obtained for the o-reachability analysis of t h e

two-train problem. It is interesting t o note that while in the worst case. t h e size of

t h e state-space could be on the order of 10'" evcn a 10-reacliability test indicates

t h a t due to the s t ructure of t h e problem. t he upper liniit is iio greater than 202%. A

30-reachability test further reduces this upper lirnit to 1600 states.

Although a-reachability analysis does riot allow tis t.o strictly d o I ~ e t t c r tlian makc

esponent ial predictions about t lie size of the statc-spacc: of -tlic projection FSM. the

structure of tliis problem allorvs us to improvc otir s t a tespacc cs t imate significantly.

Specifically, by using the number and type of transitions cotipled wi th t tie number

Table 5.1: u-reachability results for the two-train problem

Fan 1 1

State Estimate

Max. Subset

corn plexity

I / ControIIer

Figure 5.3: -4 block diagram of t h e HVAC system

la-reach.

20225

1 3

O (l ~ ~ 0

of states. instead of siinply using the number of states. as the parameter for the

exponential estimate we can reduce our state-space estimate Ily a factor of F3. Thus,

the la-reachability test indicates that the size of the projection state-space is of order

213 versus the state-space of t h e FSX4 which by itself indicates that the size of the

projection state-space could be of order P. In this case. the O-reachability test has

reduced the exponent by a factor of 4.

5.2 An HVAC System

'20-reacfi.

1839

9

Q(lL I2)

A heating. ventilation and air-conditioning (Fi\::\'') DES diagnosahility problem

from [SSLC!lG] (Figure 5 . 3) was chosen as aii esairipli. or a systi-m cvhcrc a large

number of t,hc t,ransitions occurring in thc FSiL.1 arc ririobservable. In trhis case, LIS

of 218. or more than 50% of the t,ransitions in t h e 90-state FS h l arc unobscrvable.

t r i o u r arialysis of tlic problcm. LW assiimc tliaî. é t l l tlic h i l i i r c cvctits are strictly

30-reacli.

1 GO0

9

W L P)

-la-reach.

4980

(i

~ l ~ l ')

50-reach.

37659

3

w015)

Table 5.2: o-reachability results for the HVAC system

unobservable, and tha t al1 other events are observable. For simplicity, we d o not make

use of additional sensors which are used in [SÇ Lt96] when checking for diagnosabili ty.

State Est.

Max. Subset

corn plexi ty

T h e plant can be rnodeled by computing t h e synchronous product of six compo-

nent FSMs. These component FSMs represent models of a Pump, a Valve, a Fan, a

Boiler. a Load, and a Controller (Figure .5.-l(a)-(f). respectively). By taking the syn-

chronous product of these components. a 90-state. 228-transition FSM is obtained.

We then note tha t the set of observable events is

ivith a combined total of 110 transitions in the cornposed 90-state FSkl. and the set

of unobservable failure events is

tvit h a combined total of 1 1s transitions in the cornposed 90-state FSM.

la-reach.

528897

18

5.2.1 a-Reachability Analysis Results

40-reach.

808786

18

0(1~014)

Table j .2 summarizes the results obtained for the 0-reacliability analysis of the

HVAC problem. in this example, while the best results are obtained using a 20-

reachability test. the maximum subset size does riot rrcliire past thc initial lcr-

reacliability value of 18. Thus. a simple Io-reachability test resiilts i r i a-rcdiiction by

a factor of five of the esponent (2" versus 2 / 5 1 - 2'') useci to estimatc t h e sizc of t lie

projection state-space.

50-reach.

913899

18

o (l ~)

20-reach.

26992 1

LS

30-reach.

272966

18

o(lL13) o(l~00 0 (l ~ o 1 2)

B O F F ~ 1 BON

BON i
i i , o

SPD
cv

SPI

) PON

Figure 5.4: T I i c ! conipoiieiit modcls for tlic H V:\C' systcm

It is also of interest to look at tlie matrix structure for some of the transition ad-

jacency matrices and some of the summary matrices. Figure 5.5 shows the adjacency

matrix representing a NFA containing al1 the unobservable events as defined in the

HVAC problem, plus additional unobservable transitions between states as follows:

&(ql, i) = q2 if 3s E Si, such t hat 6(q1, s) = qz.

The adjacency matrix can be interpreted to mean tlie following. For some s ta te

represented by a matrix row, the adjacency matrix shows al1 the states (represented

by the matrix columns) which can be reached by some string of unobservable events.

For example, i f there is a dot in row 1. column 6 and in row 1. column 8' then there

are two strings of unobservable events starting at s tate 1. with one string leading to

state 6 and the other to state S.

Figure 5.6 summarizes the data obtained iv l i i le doing the Lo-reachability test,.

'The matrix rows correspond to states in the FSM in t h e usual manner. Each column

however corresponds to a unique a E E,. Thus. tlie niatris can be interpreted to

mean that after observing some event a (follorvetl by some string of unobservable

events), the system can be in at most some (not necessarily strict) subset of the

states corresponding to the matrix rows containing dots. We can see from Figure 5.6

that the FON event (corresponding to matrix column 1) results in the system being

in at most a subset of 18 states in the 42-65 row range. whereas the FOFF event

(corresponding to matrix column 2) results in the system being in a subset of 9 states

in the 78-90 row range. In fact' since the FON event niaps to a subset of 1s events.

it is the event which bounds the la-reachability estimate (Le.. since there a r e no

other events which map to mort than IS states. thcri FON is one of the events wliich

providcs the O(?'" value).

LVe have also included the 20-reacliability niatris (Figiirc 5 . Ï) , which is iriter-

preted the samc way as was the la-reachability rnatrix. witli tlie exception being

that each column now corresponds to soine ii~iique group o f two observable events

(i.e.. FON,FON o r FOFF.CV, etc. . .). It is iritercstiiig 4.0 note Iierc that wliile eacli

of the tcn olxervable cvciits inappeci t.o sonir iiotiri~ipt.y siil,sct of sMcs in Figure 3.6.

Figure 5 .5 : Matris s t ructure for tlic iinobscrval~lc cvents

Figure 5.6: Matris structure for the La-reachability inatrix

only 16 of a possible 100 groups of double events map to nonernpty subsets of states.

Gnfortunately, the largest of these subsets is still 18 states. and tlius. no significant

iniprovement can be expected over the La-reacliability projection state-space size esti-

mate. Indeed. this maximum subset size does riot drop I~cfore tlie state-space estimate

s tar ts increasing due to t h e double counting effect disciissecl in Section 9.1.3.2.

Finally, the adjacency inatrix for the FON event (Figiire 5.S) l i ~ s been included

to illustratc how cach eveiit maps to a small subset of states in tliis system. The ad-

jacency matris for t h e other observable events are sirnilar in structitrc to tliis matrix.

Figure 5.8: The adjacency matrix for tlie FOX event

Note that for this example. tliere is a significant amount o l iiondeterminism due to

strings of unobservable events following tlie FON event.

5.3 The Tsitsiklis Problem

It lias becn proveii ['l'siSgl tliat building supervisors formpartially-observable sys-

tems can be computationally intractable. [ri devising the proof for this . an arbitrarily

large DFA (Figure 3.7) parariieterized by 11 is constriicteci, wi tli ari irr.iobservablc event

set Cu, = {u 1, d l , u2, d-- . . . , un, dn). The control problem in ttiis example is to dis-

able t h e events in brackets in Figure 3.7. In order to do this, the supervisor must

remember the sequence of 1's and 0's which have occurred. Based on which a; event

it observes, the supervisor then must examine the irh event. I f the ith event is a 1

then the supervisor must disable O othertvise it must disal~le L.

When larger versions of the FSM shown in Figure 3.7 are constructed, the size

of t h e state-space of the FSM grows witli n'. However. as the supervisor must a t

each stage remember the sequence of 1's and 0's whicli have occurred, the constructed

supervisor must be of order 2". This example. while contrivetl. is of significant interest

t o us because it provides a scalable exarnple of a case where o-reachability does not

improve the estimate of the size of the projected state-spacc significantly.

The 37-state. %-transition example in Figure 3.7 is constructed by scaling the

general problem to n = 13. For this esample. the nrinilxx- of statcs in the FSAl is

2 - n2 + 6 - n + I or O (d) . The proof found in [TsiSD] stioms tliat the s i x of a

supervisor for such a system is O(?"). Since there are 2 :< 11' + r c occurrences of L

transit ions and the sanie number of occurrences of 0 t rarisi t ions. t lie 1 a-reachability

test will always return t,wo sets of size 2 x nL + n. Tliiis. the Lo-reachahility estimate

grows esponentially tvorse as rz increascs. I\k conjcct. tire r Iiat t lie na-rcachabili t j -

tests will also procfuce estimates ivhicli grow esporient ially r i t i l 1 2 .

While ['l?siSS] shows tliat the size OC a super\.isor iiitist I>c O(?"). 10-reachability

analysis shows that the sizc of the projection s ta te spacr of t tie system (upon which

the supervisor is based) could be as high as 0(.2'""'+"). Thus. it is clear that in th i s

type of cxamplc wiiere the number of occurrences of a spcr-iCic olxervable event is

tiigh. O-reachabili ty does not. offer any irnpro~*oriic~iits t o st ato-spacc sizc estimatcs.

5.3.1 a-Reacliability Aualysis Results

Tahlc 3.3 sutririiarizes ttic rcsiilts ol,taiiitd for I lic a-rcac1iahilit.y analysis of this

example. It is interesting to note that significant, iiiiprov<wiciils on tlic sizc cstiniates

arc rnatlc tip to and includiiig t lie 30-rcacliahility 1 CS! . \\'c coiijccttirr tliat. diic to thc

Table 5.3: cr-reactiability results for the Tsitsiklis problern

nature of the construction, the best estimate will occur at approximately the ntha-

reachability test (with some correction for t iie double-couiiting effect). where n is the

parameter used for the constrrictiori of the system.

Figure 5.9 shows how hoth the 1 and O events (corresponding to the first two

40-reach.

5220

2

I I 1
State Estirnate

Max. Subset

corn plexi ty

columns in t h e matr ix) map to a large subsets of states. This corresponds to t h e large

number of occurrences of 1's and 0's in the system. This matris also shows how each

of the a,-events (corresponding to the iast 3 columns of t lie mat rix) maps to exactly

2 states. as expected. In addition. the adjacency matr i s presented in Figure 5.10

illustrates how the --L" event is defined for a large subset of states. compared to

Figure 5.S in the HLT..\C exairiplc. where the non-zero elernents of the adjacency mat r i s

are more localized. I t is also of interest to note that unlike the HVAC example, no

nondeterminism has becn introduced ir i tliis inatris. as t h e are no places rvhere a

'-1'' can occur followed by a string cornposecl of iinobservahle events.

5.4 A 10-state Cycle Problem

The somewhat contrived esample DES moclel sliown in Figure 5-11 is an instance

of the class of FSiLIs preseiitecl in Figure 3.6 for ri=?). It lias heen included in this

section as an esample of a case where o-reachabili t y oflers tio iniprovement over the

single _=-transition geomctry rcsiilt prcscnted in Sect,iori 3.1.1.1.

30-reach.

260

3

o(12.1~)

la-rcacii.

-1 194317

21

~ (I W

'La-reach.

1083

8

O(IL I~)

Figure 5.9: . \ fatr is stri icturc for t I i c 10-rcacliabi1it.j- i r iatr is

Figure 5.10: The adjaceiicy inatrix for i lie -.I" ci-cnt

Table 5.4: o-reachability results for the cyclic esample

5 -4.1 0-Reachability Analysis Results

State Est.

Table 5.4 presents tlie results of t he O-reachability tests which were done on the

FSkl in Figure 5.11. We can iiiimediately see tha t the la-reachability test gives a

rvorse es t imate than the 4/4 - '1'' - 1 = 767 upper limit for the number of projection

states. and tha t eacli subsequent iteration of t he test serves only to roughly double

the projection state-space est iniate.

1 a - reacli .
1-53?

To try and understand why our o-reachability results do iiot improve the projec-

tion state-space estimate. we look a t the adjacency niatris for the observable event

a (Figure 5.12). Xote that as in tlie previous cases. this adjacency matr ix represents

not only t h e occurrence of a events. but also t he occurreiice al1 possible unobservable

event strings whicti may follow ari a event. Wliereas in the previous example. one

of the events maps to a large subset of states. in tliis esaniple Figure 5-12 illustrates

the less desirable case when a n event (i n tliis case t tic a event) maps to t h e entire

set of states. It follows that when this t ype of rnapping occurs. we can conclude

that no number of iterations of the O-reachability test will reduce tliis set. since t h e

occurrence of a n arbitrarily long string of n events will always niap t o t h e ent i re set

of states. This is rxliil~itcd i i i Figiirc 5-13 for %-reacliability.

2a-reach -

2519

30-reach.

4999

-La- reach .
8911

50- reach.

15871

Figure 5.12: Tlic adjacciic~. n ia t r i s for 1 . 1 1 ~ o ctwit

Figure 5.13: Rcachable state-sets vin al1 5-lerigtli strings

Chapter 6

Conclusions and Discussion

The DES software requirements and the set of mat ris-based algori t hms presented

in this thesis constitute a basis for the design and implernentation of a DES software

toolbox which provides a flexible and visual environment for the design and analysis of

discrete-event systems. This design attempts to combine some of the useful features

of existing software packages with the proven reliabiiity of a high-level matrix-based

computational engine (M..\TL.-'B). In addit,ion. tlir tliesis outlines a series of user-

interface requirements which enable t h e user to design. niodify ancl analyze discrete-

event systems in a simple and intuitive manner.

We have proposed a metliod for storirig DES itiodcls (i r i tlie form of FShls) in

a matrix-baçed computational environment. W-I liave also provicled a set of matrix-

based DES operations rvhich serve as building hlocks lor iiiodeling DES problems.

The logical continuation of this work would include coitipleting the set of rnatris-

based DES operations. At a highcr level. t h e softwarc Iiw been designed so that it

could be possible to include modules whicli incorporate additiorial DES requirements.

sucti as timing or knowledge. into tlic basic DES too1l)os.

Our set of requirenierits arid protot,yptb soft warv iriipleriitritatiori scrvcd as a tooI for

investigating the eflects of striict ortB on t-hc coiti piit ntiorial roriiplcsity of const ruct ing

i?S.\4s wliich generate projectecl 1angiiagc.s. -4 iiiiinlxir of nictliods (I>ased on DES

striictiirn) which attempt to improw tlie cst iriiatt~ of t tir s i z r of tlic projrctiori state-

spacc Iiavc been preseritecl. Tlic effcct ivcricw of t h s type of arialysis is illtistratecl
r~ t hrougli a serics of simple yei illiist rat i v e csairiplcs. 1 Iicsct cxanip

to show cases where our anaiysis improvcs arici docs 1101. iniprovt

projection statc-spacc.

tes have bcen choscn

tlie estimatc of thc

It is our belief (confirmed by the work presented in [O WSO]) t hat by analyzing in

more detail the FSkI propert ies related specifically to a-reacliabili ty. the results pre-

sented h e r e could be improved upon. Further, we believe tha t t o 1~111y take advantage

of the rvork done here? some work could be done wliicli would identify exactly how

problem structures (auch as cycles) could be rnodified so tliat cornputational problems

can be avoided.

Finally. the cornputational corriplexity analysis preseiitecl in tliis thesis could be

implemented in the prototype software tool as a packaga of pre-fi ltering tests which

would provide estimates of the computational complexity of doing projection before

the projection operation is run.

References

Y. Brave and hl. Heymann. Controf of discrete event systems modeled as

hierarchical state machines. IEEE Transuctions on Automatic Controf,

3S(l2):1803-1819, 1993.

R. Cieslak, C. Desclaux, -4. S. h w a z : and P. Varaiya. Supervisory controi

of discrete-event processes wi t h part in1 observations. IEEE Transactions

on .A utomat ic Cont rol. 3:3(3):249-260. 3Iarch 198s.

S. L. Chung, S. Lafortune. and F. Lin. Limitecl lookahead policies in

supervisory control of disçrcte event systems. /EEE Trunsactions on .-tu-

tomutic Control. J7(1 2) : 192 1 -19:3.5. 1'392.

C. G. Cassandras. S. Laforttirle. aricl Ci. .J. Olsdcr. Introduction to the

modelling. control and optimization of discrete event systerns. In Pro-

ceedings of the 1995 Europenn Control Confercnce. pages 1-71. Springer-

Verlag, Sep tem ber 199.5.

T. M. Cornien. C. E. Lciserson. and R. 1,. Rivrst . Irrt~wiuction / O rlfgo-

rithms. hlassachusetts Institute of Tecli~iolog~. Slassacliuset ts. 1990.

S . S . Epp. Discrrte .Wnth~matic.$ icith .-Ippliccition.s. P\\'S Piiblistiing

Company, Boston. 199.5.

M. R. Carey and D. S. .Jolinsori. C'ornpil/r.i:s. utrd Ir~ti~crctcrbtlity: .-I Ciride

lo the Theor-y of' .VP-Corr~pleter1c.s.~. \Y. I I . Frwriian aiid Company. Sarr

Fraricisco. I !)C!).

[GKNVW] E. R. Gansnci.. E. Iioiitsofios. S. C. North. aiicl Ii. P. Vo. .-\ tcciiniqur Cor

tlrawing di rccted graplis. lEEE Tixri.wct iorls orr Sojt uwir Giginrc~.irrg.

l9(:1):214-229. lW3.

[Har87]

[HL941

[Hopil]

[HU 791

[J R93]

[LafSS]

[Leu9:3]

D. Harel. Statecharts: A visual formalism for complex systems. Science

O/ Cornputer Programming, 8 (3) : Z 1-274. 1987.

M. Heymann and F. Lin. On-line control of partially observed discrete

event sys tems. Discrete Euent Dynamic Sgstems. 1:21-236, 1994.

J. Hopcroft. An n log n algorithm for minimizing states in a finite automa-

ton. In Theonj of Machines and Computation. pages 189-196. Academic

Press: New York, 1971.

J . E. Hopcroft and J. D. Ullnian. Iritroductiorr to Automata T h e o q ,

Lmguuyes , and Cornputution. .\ddison-\,!ésley. Reading, MA. 1979.

T. Jiang and B. Ravikumar. Minimal 3F.A problems are hard. SIAM

Journal o j Computation. -?(fi): 11 17-1 1-1 1. 1993.

S. Lafortune. hlodeling and analysis of transaction execut ion in database

systems. IEEE Trunsactions on rlutorri«tic (entrol . 33(j):-t39-4-16. M a y

1WS.

H. Leung. Separating exponentially ambiguous N F.4 from polynomially

ambiguous NF..\. In Algoritlrrris urid C'ompi~tolion. Lecture Notes in Com-

puter Science, Xo. T ï S . pages 45 1-47?. Springer-Verlag. Berlin. 1993.

[LMMBSSI S. C. Lauzon. A. I i . L. Ma. .J. K. llills. aiid B. Benhabib. Application of

discrete-event systems to flexible maniifact iiring. Algorithmica. 3(:3):151-

472. L9SS.

[LCVSS] F. Lin and W. M. Wonhani. Ou ol)scr\xl>ility of ciisrretc-event systems.

Inforrnc~tion Sciences. 44: 173- 1%. 1988.

[LW931 Y. Li and W. hl. Wonhaiti. Coiitrol of *eçtor discrctc-e\-cnt systerns I-

the base model. IEEE Truns«ctiorzs or1 .-l r~iornntic C'ont rol. ; B (Y): 12 l-!-

12'3'1. 19933.

Y . Li and W. M. Wonham. Control of vector discrete-event systems

II-controller synthesis. lEEE Transactions on Automatic Control?

39(3):522-531, 1994.

The Mathworks, Inc., Natick. MA. MATLAB User's Guide, 1992.

J. S. Ostroff A visual toolset for the design of real-time discrete event

systems. IEEE Trunsuclioris on Coritrol Systeins Technology, 5 (3) : 3 2 0 -

:337, May 1997.

J. Ousterhou t. Tc1 and the Tk Toolkzt. Addison- Wesley . Reading. &[.\.

1994.

C. M. ozveren and A. S. CVillsky. Observability of discrete event dynarnic

systems. IEEE Tr-rrns«ctions on .4ritornntic C o n t r d . :3.5(7):797-SOC. .Jiily

1990.

S. D. O'k'oiirig. Object TCrT: Cser's guide. Systems Control C;roiip Re-

port. Department of Electrical Engineering. Cniversi ty of Toronto. 1992.

I i . G. Riidie. Software for the control of cliscrete event systems: .-1 corn-

plexi ty study. Mas ter's t tiesis. Depart ment of Elect rical Engirieering. C'ni-

versity of Toronto. 1'388.

P. J . Ramaclgc and IV. 51. CVonhain. Siipen4siori of discrctr event pro-

cesses. In Procced i r~p of' the ,>lJ IEEE Confii-ericr or1 Drr.ci.siorl n r i d

Control. volunic 3 . pages 12-8- 1229. December 1982.

P. J . Ci. Ramaclge and W. M. LVonliairi. Tlic control of discretr (.vent

systems. PT-ocecdirzgs of the IEEE. 7 ï (1):S 1 -!)S. .Jatiuary 1989.

K. Rudic and W. M. Wmliarii. 'l'lic i ri firtial prclis-closccl aiid obscrval~lc

[RW92a] K. Rudie and W. M. Wonham. Protocol verification using discrete-event

systems. In Proceedings of the J l s l IEEE Conjkrence o n Decision and

Contml , pages 3770-3777, 'Tucson, Arizona. December 1992.

[RWS%b] I i . Rudie and W. M. Wonham. T h i n k globally. act locally: Decen-

t ralized supervisory control. IEEE T~nris«ct io~is on A utomatic Control,

37(1 1) : 1692-17080 November 1992.

(RW9.51 K. Rudie and J. C. Willerns. T h e coniptitational complexity of decentral-

ized discrete-event control problenis. IEEE Tr~nrrsc~ctions o n A utomatic

Control, 40(7):131:3-1319, 1995.

[SSLf95] $1. Sampath. R. Sengupta. S. Lafortiine. K. Sinnamohideen. and

D. Teneketzis. Diagnosability of cliscrete-event systems. IEEE Trans-

actions on :lutomtltir C'ontroi. -IO(!)):1.555-1.575. 199.5.

[SSLf 961 M. Sampath. R. Sengtipta. S. Lafort i i i i r . K. Sinnamohideen. and

D. Teneketzis. Failure diagnosis risi iig discrete-event models. IEFE

Transactions on C.'ontrol Syst enrs ïhhrloloyy. -1(2): 105-1 24, 1996.

[ThiSG] d . G. Thistle. Supervisory control of discret e mrcrit a~.st,ems. Jlrrthernntical

Cornputer i\lodelling. 23(1 1):%-53. 1 !Mi.

[TsiSS] J . K. Tsitsi Mis. 011 t h e corit roi of discrri <w.vt-rir dynamical systems.

.\lathemutics of C'orttrol. Sillncrts. n11d .5'!/.stv1ns. 2'35- 107. 1989.

[LVonNj] W. M. Woriliani. Notes on co11t.tol of cliscrct.t~-weiii systems. Unpublistied

course riotes. 1 !NG.

[i\'RSS] \V. M. Wonliani aiid P. J . Raiiiaclgc.. .\fodiilar siipervisory control of

discrete-cvent systcriis. .\lcr~hrrricrtirs 01' <81tfrol . Signnls. c ~ r l r l Sysfcrn.<.

1:13-:<O. 198s.

TEST TARGET (QA-3)

APPLIED IMAGE, lnc - = 1653 East Main Street - -. , Rochester. NY 14609 USA -- -= Phone: il 6/482-O300 -- -- FBX: 716f28û-5989

