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Abstract 

The complexity issues associated with the finite state machine (FSM) framework 

for analyzing partially-observable discrete-event system (DES)  control problems are 

reviewed. Methods that take advantage of system structure to provide better es- 

timates of the size of the state space of FSMs which recognize the projection of 

part ially-observable systems are presented. The corn put a t  ional advantages or  disad- 

vantages of each method are discussed. The applicability and effectiveness of these 

methods are illustrated using a number of simple. yet illustrative. examples. The ex- 

effective and ineffective ample problems illustrate cases where our methods are both 

in improving upon the standard cornplexity results. 

The existing set of DES software tools is revie~ved. and used to form a basis for 

the development of a new more flexible and intuitive DES en\-ironment whicti rnay 

be used to design. analyze and solve DES problems. The design of this tool is such 

that it can be implemented in a reasonably simple marlner iising common proven 

computational tools. and graphical user interface ( C U I )  building tools. 

In conjunction with the developrnent of a new DES software tool. matrix-based 

data structures and DES operations are presented and clewlopccl for a selcction of 

common DES functions. This approacli is designecl to t-ake aclvantage of high-level 

matrix operations available in a number of cornniercial off-t lie-shelf ( COTS) software 

applications. and to take advantage of sparse-matris data stroct,ures which allow 

DES information to he stored and processecl i r i  an efficient mariner. Finally. the  set 

of matris-based DES operations is designcd so tliat i t  is straiglit forward to  tvrite 

liigh-level scripts which perform more corn ples rl ES aiialysis t asks, 
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Chapter 1 

Introduction 

The Discrete-Event System (DES) frarneivork can be iised t.o model an  increasing 

number of engineering problenis arising in industry today. Applications including 

flexible manufacturing systems [LiLIkLBS8]: communications protocols [RW92a], fail- 

ure diagnosis systerns [SSL+95], [SSLf S G ] ,  task scheduling. and database management 

[LafSS] illustrate why a system that  focuses on the discrete iiat.iire of these applica- 

tions is in increasing dcmand. CVhile a body of research pioneered by [RCVSV] and 

discussed in [RL\'S9]. [CLO95]. [Thi'JG] has provided a I~asis for tliis type of system 

modeling and control. a nuriiber of issues reniain rliat pre\-cnt the l~roacl acceptance 

of this researcli iii itidustry applicatioiis. 

One of the key issues in the field of DES is the problcrri of statc-space explosion. 

which occurs rvhen niodeling large (typical) systems. A niiniber of methods have 

been developed t liat at tempt to  address t h e  problem of cornpiitat ional complexitj. in 

large and/or partially-observable systems [B HSR]. [C'LLY?]. [H LW]. [LW93]. [L\V94]. 

[O WgO]. In general. s t  atc-space e s  plosion may occiir wlii le motleling the prohlem 

or ivhile devising a siiitahle controller. Iii  irarious instances. the niimher of states 

of the system that  a controller must kecp track of beconies intractahle. making the 

control problem difficiilt to solve i r i  a reasonable aniount of t irtie. or  iising a reasonable 

amoont of computer resources. 

Our work represcnts an at tcmpt to unclcrstnnd th<-  rrasoiis for statc-space csplo- 

siori. notably in  tlic worst case scenario wticrc a corit rollirig ageiit is oril!- awarc of 

a stibset of the events occiirring within a system-ancl t.1iiis rniist keep track of ail 

possiblc states of the system. WC examine tlic st~rticture of ttic modeled system. and 

present reasons why. wlirn clevelopirig ttir rnodcl. st nt r-spacc csplosiori occurs or does 



not occur. We then take advantage of this knowledge to devise a series of tests tha t  

are performed while modeling the system to est imate the extent of the state-space 

explosion. The results of these tests identify how the system model can be modified 

to minimize the problem. This would correspond to recommending that  additional 

sensors be instailed in the system, or that various events be prevented from occurring 

or eliminated entirely from the system. In devising these tests, it is necessary to take 

care not to introduce computationally expensive procedures into our test algorithms, 

thereby possibly invalidat ing the usefulness of the test. 

Cornputational complexity issues are generally associated with the  development 

of efficient algorithms that can then be irnplemented as software tools. Therefore. as 

part of this thesis, we develop matrix-based data structures and algorithms which can 

be used to model and analyze DES problems. By coupling complexity analysis with 

tliese data structures and algorithms. we provide an efficient and flexible environment 

for building and analyzing partially-observable discrete-event systems. 

1.1 Partial Observability and DES 

The work contained in this thesis focuses specifically on cases where only a sub- 

set of the events in a niodeled system are observed by controlling agents [LCVSS]. 

[CDFVSS]. [TsiSg]. [RLVOO]. [RWWb]. [RW95]. Since in cases such as these. the con- 

trolling agent needs to keep track of al1 tlie possible states the systern in- be in at, 

any one time. the resulting supervisor may need to store control information for al1 

possible combinations of states of the system. This results in a supervisor wliich could 

require up to 2" aniount of tirrie to generate. and ivhicli coultl take u p  to '2" amount 

of storage space. where r i  is a measure of the sizc of tlie partially-observable system. 

The exponential growt h of the supervising agent is coniputat ionally int ractable when 

working with problems wher t  rz is Iargc. 

Partially-observable systems are common to DES prohleins. specifically in the 

areas of decent ralized cont rol and fault di agnosis. Tlie s t i-i.tc t, ir res crcated w heu solvi ng 

t liese types of problcms cari exliil~i t i.lic csporicrit,ial growt li dcscrilxd aI>ovc. I t  has 



been noted [SSL+95], [SSLC9G], [OWQO] tha t  this type of exponential growth is seldom 

observed. 

1.2 Tools for Computing and Displaying Discrete Event Sys- 

t erns 

Throughou t the process of creat ing arid analyzi ng esairi pie problenis. ive noted 

tha t  existing DES software tools were of limited use in a nunibcr of areas. In  general, 

there existed no simple method for processing large niiinhers of problcnis: rio method 

for writing high level scripts for solving specific types of DES problems t hat require the 

use of a number of different basic DES operations; no met hocl for easily espanding t h e  

lunctionality of existing tools by adding new DES fiinctioris as required: and Anally 

no method for displaying plants o r  controllers (fitiite-st,atc niacliines) i r i  a simple and  

understandable format. 

In this thesis. we provide some background on a ii~iiiibcr of csisting DES tools for 

reference. and then procced to propose a DES soitwart. design bascd on prototype 

software tliat we believe satisfies a number of our reqiiiretiierits. also develop in 

clet ail sorne rriatrix implcrnentations of a subset of DES operatioris -specifically those 

which relate i,o modeling partially-obser\rable systciris. 

1.3 Researcli Contributions 

The following list suniniarizes the researc-II cotit.ril>iit.ioris of t lie itiaterial prescnted 

in th i s  thesis. 

0 Matris-Bascd Tools: Matris-basecl da t a  striict.iiirs. iogctlicr rvitli a set of matr ir-  

bascd iniplcnieritations of csist  irig D ES qit-rat.ioiis Iiavc* I)cm providecl. 'i'hesc 

da ta  structiircs ancl oporations liaw Leciri inipl~~rtwiit c u l  iisiiig 11.-\TL:\B [hlat,SZ] 

software. 



O Front-End Graphical User Interface (GUI) Requirements: A set of requirements 

has been developed and a prototype GUI  has been implemented using Tcl/Tk 

[Ous94] software. 

a Complexity Analysis For Partially-Observable DES Problems: A set of DES 

structural propert ies t hat t ighten the complexi t y  bounds for solutions to  partially- 

observable pro blems has been ident ified. 

1.4 Thesis Outline 

O Chapter 2 provides a brief review of the areas of research wliicli form the I~asis 

for the results presented in this  thesis. The Discrete-Event Çystems (DES) 

framework firs t int roduced in [RWS-1 is presented. followed by some selected 

background topics in the fields of Cornputational Complesity. Automata Theory 

and Graph Theory. 

O Cliapter :3 describes the specific problem of state-space espiosion when consid- 

ering partially-observable D ESs. and presents met liods of analysis which talie 

advantage of the structure of the  systern to  make worst-case estimates about the 

result ing state-spacc esplosion. :\ cletailecl aiialysis of t tie scnsitivi ty of DESs 

to various structural properties is presented. Finally, metliods for identifying 

and modifying prohlerri structures within a systern to minimize the resulting 

statc-space esplosion are presented. 

0 Chaptcr 4 provides a review of existing DES software tools. proposes some high- 

level arclii tect ural rcquirenients for a iiew set of t 001s. ancl prescrits dgorithms 

used to irnplement the structure-hased analysis presentcd i I I  C'hapter 3 .  includ- 

ing a DES M:\TL.AB toolbox ivitli specific procediircs for tcsting and analyzing 

part.iall~*-obscrvat~lc sys t cms. 

Chapter 5 illustratcs Iiow typical DES prol~lertis riiajp I>r arialyzcci and. in some 

cases. modificd for control hascd or1 partial ol>scrvattiori iisirig t lie tools presented 

ir i  tliis tlicsis. 



Chapter 6 provides conclusions about the  work presented in this thesis. 



Chapter 2 

A Review of DES and Automata Theory 

2.1 Automata Theory 

In general, t he  work done in DES does not require tliat t lie system be modeled 

using any  single methodology. Typically. however. mucli of t he  work done in the  

field to date b o r r o w  modeIs froni t he  body of work in cornputer science on au toma ta  

t heory. 

2.1.1 Deterministic Finite-State Automata 

.A Deliorministic Finite-State .4utonnton (DF.4) is formally denoted by t h e  5-tuple 

(Q, S. S. q,, Q,). wliere Q is a finite set of states.  X is a finite input a lphabet .  3 is 

a partial transition fiinctioii niappirig Q x 5 t o  (S. q, is a n  initial s t a t e ,  and Q ,  is 

a set  of terminal  states. In DES tlieory. terminal states are often called marked or 

marker  s ta tcs .  Figiirr 2.1 stiotvs a s imple  esarnplc of a DF.4' ivhere a n  initial state 

is indicated by a left-pointmg arrorv (t) in t h e  statcS box. and marked s ta tes  are 

indicated by right-poiriting arrows (4) in t h e  s ta te  box. I f  the initial s t a t e  is also a 

marked  s ta te .  t h e n  a double-tieaded arrow ( H )  is tisecl in place of t h e  left-pointing 

' AI1 the Finite-Stati? hlactiiiies ( FSiLIs) witli labclcd statcs are geiicrated iisirig the prototype 

DES software toolkit prcstii1tcic.l iri tliis tlicsis. 



Figure 2.1: A Simple Deterininistic Finit e-Statc .-lu tomaton 

2.1.2 Nondeterministic Finite-State Aiitomata 

A .Vorldetcnninistic Finite-Strrte =l utomcrtor~ ( SF:\ ) is forrrially denoted by the 

-5-tuple ((1, S .  S.q,. Q,). where Q. Y. q,. ancl Q,, ha\-e t h e  sanie meaning as for a 

DF.-1. and where 5 maps Q x !: to 2 Q .  Mvhereas t tir trarisitiori functiori in a DF-4 

maps Q x S to single eiemerits in Q (e.g.. d(ql.o) = <il). the transition functiori for 

an 3F.A maps Q x 5 to subsets of Q (e .g . .  S(qt. a) = {ri? y.!. q 5 } ) .  It follows that a 

DI?.-\ is a special case of ari .\'Fi\. wlicrc 5 iiiaps Q :< X to  single-element subsets of (2. 

Figure 2.2 shows a simple esample of aii Si?:\. 9 o t e  t Iiat ~ l i c  transition &(Idle. S t x t  ) = 

{Working. Broken} is the source of t lie nondctcrrninisiti i r i  the automaton. 

2.1.3 Nondeterministic Automata wit 11 r-Tkaiisitions 

Soridetcrniiriistic Automata witli r- /rctr~si trort .~ i SF.-1:) arc ai1tomat.a dcfiriecl in 

the  sanie manner as NFr1s. mitli ttic additional propt-rty t liat tlic atitornaton niay 

makc a transition on  tlte enipty input E. Refer io Figiirc 2-11 Cor an csarnple of a 

simple nonclctcrniiriistic aiitornatoii tri t i i  r-t raiisit ioris. 



Repair 

Figure 2.2: :\ simple riondeterrninistic finitc-state autoniaton 

Figure 2.3: A siniplc NF:\ witli ail f-transitioii 



2.1.4 Minimum-State DFA 

Theorem Y. 1 [HU79] (see below) toget her witli .Algorit h m  2.1 (also from [HU79]) 

provide a polynomial-tirne method for constructing an  output DFA which is a minimum- 

state recognizer for the  language recognized by an input DFA. I t  should be noted that 

no such algorithm exists for NFAs. Indeed, it can be proven [JR93] that the deci- 

sion problem associated with the conversion of' a DFA to a minimum-state NF.4 is 

PSP.\CE-complete 2 .  

T h e o r e m  2.1 [HU791 The Dfil co~ist  rirctcd rrning .-llgor-ith rri 2.1. with inaccessible 

states rernoved (trirn), is the minimum s t d c  DFA jar- its language. 

Algor i thm 2.1 : Minimum-Sta te  DFA Construction 

2. f o r  each unordered pair  of s t a t e s  ( q t . q J ) i  j J 

define an empty Zist L(qt ,v , l  

end 

-9. f o r  each p a i r  of d i s t i n c t  s t a t e s  ( q , . qJ )  

i n  Qrn x Qrn ( Q  - Q m )  ( Q  - Q m )  do 

i f  for some input symbol O ,  ( d ( q , . a ) .  & (qJ .  o)) i s  f Zagged then 

Recurs iveFZ ug(q, . q, ) (.-llgorithrrl 2-21 

e tse  

for al2 input symbots o d o  

i f  < i (q i .  u) f  CS((^. o) 

put ((II. on L(6(r/..~).6(71 -0)) 

end 

end 

end 

end 

'Section 2.3.1 providcs sortic dis(-iissioii 0 1 1  PSP:\(:I<-c.oriiplcte prol>lcliris 

9 



Algorithm 2.2 : The RecursiveFlag Function 

1 .  input unordered pair (q,  , q, ) 

3. /or each unordered pair (q,, q,) in the list L(,,,) 

if the unordered pair (q,, qn)  is not Jagyed thcn 

RecursioeFlulag(q,. q,) 

end 

end 

2.2 Discrete-Event Systems 

.A Discrete-Everit Systern mode1 can  be tlioiiglit of as a representation of a real 

system whicti exhibi ts  asyriclironous, event-driven behaviour. Typically such a system 

can be descri bed iising a state-transition striict tire. Ahst ract ly. this mode1 can b e  

represented by a five-t iiple deterniinistic autoniatoii  ( D F.4) 

rvhcrc Q is a set. of states. 

S is a set of cvent labels, 

8 : Q x 5 i Q, is a partial lunct ion tlcfiiied for sonie s ta tes  q E Q,. 

a n d  for sortie events a E S. siicli t liat d (a .  q )  = g' ivlicre q' E Q ,  

qo is t.lic initiai state. 

and  Qm C Q is t h e  set of rnarkccl st.at.cs. 

Lct S' dcnotc  tlic set of ail strings ovcr ': U {s} .  IL* ~ s t c r i t l  tlic definition of 6 in 

t, hc usiial iriariricr. follows: 



For simplicity, ive use 6 to represent both b and 6-. recognizing that when d operates 

on a state and string (of length greater than l ) ,  then we are implicitly using 6'. 

Given S' and 6 as defined above, t he  languages generated by G and marked by 

G (denoted by L(G) and L,(G). respcctively) are 

An esample of a typical finitestate plant is sliou-n in Figiire 2.-I. For this esample. 

the event set is S = {start-job. firiislijoh. repair. hreali-clo~vn}. the labels for the 

state set Q are {Idie. Woorkirig. Broken}. tlie initial state is 4, = Itlle and 

state set is Q,  = {Idle}. partial t ransitiori fiiriction is defined for t 

c a s  

the marked 

tiis esample 

The event set of a plarit C; caii he part i r  iorictl for t,lic piirposcs of supcr\risor design 

irito trvo disjoint siibsets. tlie first scr 5,  coiiiposcd of al1 ~coritrollablc" cvcnts. and 

the second set Z,, composcd of a11 ~~ii~icoritrollal)lc" cvrrits.  Xotr that \' = Sc U S,',. 

Cont rollable events are tliosr w r r i t  s rvliicli a supoi*\.isirig iiatirit (.< i r i  Figurc 2.5) ma). 

cnahlc or disablc in accorclanc(~ tvit  l i  s o i ~ i < ~  coiit rol .;t rat I ~ricorit.rollahle cvcnts 

are considerecl to always he criabled. 1:nahlctl cvrrits art8 those tavents rvtiicli may 

occur in the plant. whereas disabled e\x:rit.s arc! t l l o s~  ev<:iits wllicli are preventccl from 

occurring. 



/' finish j o b  

1 

Broken - & 
b reak-down 

Figure 2.4: .A s inipk plant 

Control 
Commands 

I 

Figure 2.5: -4 pIant/super\.isor systeiii 

.A (nonernpty)  plant Ci rnay b e  -~controlleci" L>>- a supervisirig agent S. where  t h e  

supervising agent sencls cont roi commands  t O G tvhidi s w v c  t o  eriatde o r  disable events 

based iipon the observecf secluences of e \ ~ e n t s  occiisring in the plant (Figure  2 . 5 ) .  These 

actions by the supervising agent limit tlic general  I)cliaviour of C to some specified 

legal o r  dcsired behaviour in a closed-loop s>.steiii .5/G'. This  is equivalent t o  saying 

t h a t  S restricts t h e  language L(G') t o  sonw legal siil>laiiguage L ( S / C ) .  

Now. suppose t h a t  the  legal behaviour is representeci by the  language I ï  5'. 

Before a supervisor may be constructed,  it is necessary ro determine if i t  is possible 

t o  restrict L ( G )  t o  I<. T h e  language I< is saicl to hr rot~t io l l r ib l~ with respect t o  G' if 



and only if 

where K represents the prefix-closure of 1; ( i .e.. the language composed of al1 prefixes 

of Ii), and the notation TT,, stands for the  set {kcr 1 k E f, o E S.,). Thus, 

controllability states that given any prefix of I<, there is no uncontrollable event 

which when appended to  the prefix of I<. generates a string which is contained in 

L(G), but which is not contained in K. 

LVe noow define the supervising agent mode1 as the pair S = (T. b) .  The supervisor 

S is represented hy a n  automatori 

and a control mapping c : S x S - {enahlc.disable). T h e  automaton T acccpts 

as input t he  sequences of syrrilmls iri  S gerierated 1 ) ~ .  G. and theri generates control 

commands based on the control mapping t*. ivliicli enables or  disables controllahle 

events in G'. 

2.2.1 DES Buildiiig Blocks 

T h e  following sectioris revicrv a set of operations ~vliicli are used to construct and 

manipulate DES niodels [LVonlX]. Tlie DES plants sliown ir i  Figure 2.6 \vil1 bc  usecl 

in eramples of horv t lie rrieri atid synclironous proditct operat ions ivork. 

2.2.1.1 Trim 

A trim autornat,ori is clcfitlcri to I)c an autoniat.oti rvitli al1 s ta tns  hciirig .-rcacliabic" 

and 'coreachablc". For a stat.c (1 t,o Ilc rrnchablr. tliere mrist csist a pat h ( possibly of 

Icngth zero) from tlic iriit.ial s tate  q,, to tlic statc  q .  For a statc (1 to I>c (.or-cachable. 

there must er is t  a path ( possil>ly of lerigth zero) froni q to  a niarkcd statc  (1, E Q,. 



Figure 2.6: Plants Gi  and C;? 

The meet  of n languages L 1.  L 2 .  . . . . L ,, is defiriecl to I>e 

This definition can be used to construct a generator C;,,,, w l i i i i i  gçiiei&o ihe  lm- 

guage Lm,., based on generators G, = (Q,. Z,.d,.q c,t. Q,.,) for i = 1 to n: 

Thus.  the automaton Grneet generates (resp. .  rccogriizes) onl!. those strings which can 

b c  generated (resp.. recognized) b>r al1 the Ci, aiiioriiat a. 1 1 1  iiiany applications. it is 

clesirable that G,,,, l ~ e  a trini autoniaton. I I I  t.iiis case. C,,,ct oniy recognizes thosc 

strings which are recognized by al1 tlic C;, aiitoiiiata. S o  similar claim can be made 

for generated strings. 



Figure 2.7: T h e  meet  of C;l and C& 

An esample of t h e  meet of the  plants Gi ancl Ci2 i i i  Figure 2.6 is shown in Fig- 

ure 2.7. Note ttiat for this example. in plant Cil. a aricl 7 are  distinct events which 

take the systern from state L to  s ta te  2. For siriip1icit~-. ive only show one arrotv for 

these two transitions. .-1 siniilar simplification is niacle i n  tli i .  plant G?. 

2.2.1.3 Synchronous Product 

Whereas t he  rneet of a group of languages captures orily t liose strings whicli are  

contained in al1 the  languages. the  syncltr~onous product coritains al1 possible interleav- 

ings of strings in t he  group of languages. -4 generator Ci',,,,, cari be constructed which 

generates the  language L ,,,, based on the  generators Ct', = (Q,. 1,. d,. qol. Q,,) for i = 

1 t o  n as follows: 



Figure 2.8: The synctironoiis prodiict of Gi and C2 

-4s with meet, in general. it is desirable to  espress the resoit of the synchronous 

product operation as a trim automatori .  

An exarnple of tlie syriclironoiis procliict of tlic piarits Cii a n d  C;? in Figure 2.6  is 

shown in Figure 2.8. 

2.2.2 Supervisory Control wit 11 Partial Observation 

In many applications. full knowledge about, al1 the events occurring in a plant C: 

is not available to the siipervising agent .S. In  t,licsc cases. i t  is iisefiil to partition 

the event set into t,wo disjoint sithsets. X, rcprrsrriting t h e  set of observable events. 

and Xu, representing t h e  set of i inol~srrvablr  cvrrits. Note tliat E = X, U Z,,,. and 

also tliat tliere is rio particular rcIat.ioiisliip hctitxwi X,, aiid i hc sct of coritrollablc 

evcnts Sc.  Practically, siicli a systcni tvoiild corrqmricl to a pinrit wlicre thcrc  exists 

a n  array of sensors tliat arc capable of clctccting a siibset of al1 tlic possible events 

tliat may occur. Ir1 sitcli cases. i t .  ~liaj- r10L II<' v ~ ~ ~ i o n l i c a l l y  o r  p r a c t i c a l l ~ ~  fcasiblc 



Control 
Actions 

O bserved 
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Figure 2.9: A plant/supervisor system wi t li part ial  observation 

to install enough sensors to moni to r  al1 plant event,s. Figure 2.9 illustrates such a 

system.  ivhere a subset  of tlie events  occurring in tlie plant  a r e  passed (via sensors) 

t o  t h e  supervising agent.  

Informally. if a plant  is mocleled using a finite s t a t e  mach ine  (FSM) G. containing 

s ta tes  q l .  q, E Q. a n d  d(ql .  a,,) = q . 2 :  where a., is a n  unobser table  event '  then any 

supervising agent upon seeing t he  plant enter s t a tc  (1, niiist provide for t h e  possibility 

t h a t  t h e  plant could b e  i n  e i the r  s t a t e  q, or s t a te  q2. sincc it is impossible t o  detect t h e  

occurrence of t h e  unobservable event a,,. Thus, i t  is usefiil t o  construct  a modified 

model of the  plant G. rvhich erases al1 occurrences of unobservable events, and which 

contains states ( in  t h e  modified model)  wtiicti correspond to s u l ~ s e t s  of states in G 

rvliich are indistingiiis hable  t o  t h e  supervisor .<. 

Forrnally. tlic process of renioving everits f ro~i i  str ings coiit,aiiiecl in a langiiage is 

rallcd ~ i n l i r r d  pr,ojcctioti 

p : 5- 'r- 
d~ 



and  can be  recursively defined 011 strings as 

Since in rnany cases, problems in DES are  described in terms of FSMs which 

generate languages, it is useful t o  apply t h e  concept of projection directly t o  FSMs. 

To do  this, first it should be observed tliat al1 partially-observable FSMs used in 

DES applications can be thought of as noncleterministic finite s t a t e  au toma ta  with 

t-transitions. where the  E-transitions reprcsent transitions in FShIs t hot cannot be 

observed. 

L n  [HU791 induction on t he  length of strings is risetl to  prove t h e  following two 

t heorems: 

Theorem 2.2 [HU791 If L is uccepted by (r nondeterntinistic finite (rulornnlon (.VF'AJ 

with 5-transitions. then L is (rccepted b y (in :\'F.-l u*L.itfio«t - I rnns i t  ions. 

Theorem 2.3 [HU791 Let L 6c ri set nccepted bg  riri  :VF.-î. Theri [ h e m  exzsts (L d e -  

terministic j n i t e  nnlorrrntoti (DE-\) t h d  accepts L .  

Gsing these two theorems in coriibinatiori. it is possible to coiivcrt an  NF-\ rvith r- 

transitions t o  a DF.4 (wi t  lioiit 5-transi tions). By labeling al1 iiriobservable events in 

the  plant DF.4 as :-transitions. t,herehy creatirig an XF.4 [vit l i  r-transitions. we cari 

then convert the  resiilting YI':\ witli E-t raiisitions 1.0 a D F.4 wit liout 6-transi tions. 

TIiiis. we have -*crasecl'' t lie occurrence of tirio1)servabir~ cvcnts. .-\ coristriic tion met hod 

baçed on the proofs givcri in [ F I  L X ]  is providcd I)~loiv. Lr-i C = ((S. 5. S. qo. Q,,, ) hc 

a DFr\ with SUS,,, rvhere u stnritls for disjoint iiniori. For a statr q E Q. dcfine 



Construct NF.4 G = ( Q ,  Co, 6',qo, Qm). The marked state set Q& and 6' are 

constructed as follows. 

Q,  U { q o }  i f  E - CLOS(IRE(q,)  contains a state of Q, 

Qm otherwise 

and br(q, c) = q(q, a) for q E Q and o E S.. Note that t lie size of the state space for 

G' remains the same. 

The second part of the construction requires that  t.he YFA be converted to an 

equivalent DF.4. The construction is: Let G' = (QI 2,. 5'. q,. Qm ) Ile the above NFA. 

Construct G, = (Qp. 2,. 5,. q,,. Q,,)  where: 

Q, = 2Q ( t h e  power set of Q ) .  
- 

Qo, - Clo. 

Q,, = {qP E Q p  1 34 wtiere g is cont,ained in tlic Iabrl of rl, aiid q E Q m } .  

Thus. single states q,, E Q,  use some subset of states q E CJ as labels. For esample. 

the label of sonie qp E Q,  could be {qi: qz.. . . . qr;}. Xoir defirie: 

A s  it is rarely the case that al1 24 states are reaclinblc i r i  (;,,. tlic coristriiction can be 

made more efficient [RudSSI iising a n  iterative approacli a5 follows: 

Flag the initial statc qo, as a --nerv." 

O For each .-new- state. remove the  '.nerv" Rag frotri the state. arid construct al1 

states reactiable frorn that state via some CT E 2,. I f  tticse statcs do not already 

esist. fiag t . h m  as *-neive states. 

0 Repent. the s(:coiicl step ~int,il rio states wi t l i  a "iiriv" flag rmiain. 

[ri  tliis way. orily thosc states whicli arc rcarlial>lr frorii tlie initial state are gener- 

ated. Note Iiowever. that it can be  shown hy esariiple tliat, the resulting DF.4 is not 

necessarily a minimum-statc DFA. To obtain a rnininium-state DI."\. the algorithm 

presentecl in 2.1 can he iised. If C, is a DFA that rccognizcs tlic languaçc P( L,(G')) 



for some DFA G, we use the notation CG = p(G). A cornpiete pseudo-code algorithm 

for constructing p(G) is provided in .Algorithm 2.3. Note that for step 3 ( c ) ,  Iine 6 of 

Algorithm 2.3 (which contains the statement --for eacli q E q,")' the state-set qp is 

itself a subset of Q. 

Algorithm 2.3 : A Projection Algorithm for FSMs 

1 .  Inputs: Automaton G =  { Q . ~ ~ C ~ ~ ~ ~ , Q ~ }  

2. Def ine  a neu automaton Gr = {Q,  x,, 6'. q,. Q m )  

( b )  s e t  &'(-. - )  = 0 

f o r  each ci, E Q d o  

f o r  each q, E d o  

f o r  each O E IL, do 

if &&..) = a t hen 

&lt* 4 = y, 

e l s e  if d(q , . s )  = %  f o r  some s E 5' 

such t h a t  P ( s )  = a  then 

s'iqa. a) = Wh- 4 U { q , }  

end 

end 

end 

end 

9. Convert t h e  N F A  C;' t u  a DFA G p  



T tie Algorithm 2.3 is based upon tlic t.wo esistiiig algpritliins ciiscussed in [II Li91 

and [RudSSl. While tliis algori t. hm coiistriicts ail oiit put- aiitomaton t hat recognizes 

the projection (as defined by (2.3))  of tlic laiigtiagc rccogiiizcd bj. a n  input aiitomaton. 



some s ta te  information t ha t  can be useful to  the  observer is lost. We consider an 

example FSM G where t h e  initial s ta te  is go, and where for some o € Y,,, 6(q0, a) = q 

is defined for some q E Q where q # q,. In this case, t h e  initial s ta te  in G, = P(G) 

is labeled by qop = q,. However, if the  supervising agent does not observe any  events 

(and thus remains in t he  initial s ta te) ,  the plant G could be in s ta te  q, or  in s t a t e  

q. T h e  labeling of the initial s ta te  using Algorithm 2.3 does not provide this type  of 

information. In order to construct an  automaton tha t  bot h generates the projection 

language and contains useful s ta te  label information, we present an algorithm from 

[RudSS] in Algorithm 2.4. Algoritlim 2.4 labels states so  tha t  eacli label identifies t h e  

states the  plant coiild b e  in alter the  observation of a sequence of events. 

Algorithm 2.4 : A Modified Projection Algoritlim f o r  FSMs 

1. Inputs: Automaton C = { Q . X ~ 6 , q o , Q m }  

3. Define a new automaton C' = { Q .  S,.dJ.Q:. QnL} w i t h  a s e t  of i n i t i a Z  

s t o t e s  Q: 

( a )  l e t  Q: = { q , , q i . g z . - .  . .cl, 1 q, E Q A 3s E Y such that  6(q0 .s )  = 

P ( s  ) = 5)  

( 6 )  s e t  5 ' ( - .  - )  = 0 

f o r  each q, E Q do 

f o r  each y, E Q do 

f o r  each O f 2, do 

i f  &(q , . . s )  = q, /or somc .s E Y' 
such t h a t  P ( s )  = 0 then 

w71- 4 = ht(q*. 0 )  U { q l }  

end 

end 

end 

end 



3. Convert the  W A  G' t u  a  DFA C, 

(6) f Z ag qop a s  ' 'new 

s e t  Q p  = { q o p }  

s e t  Q,, = 0 

(c) while s t a t e s  f lagged as  "newJJ  exist, do 

r I f o r  each s t a t e q p € Q ,  f lagged as n e w J J ,  do 

remove t h e  " n e w J J  f lag  

f o r  each u E 5, do 

end 

end 

end 



It should be noted that  the check done a t  line 3 in s tep  3(c) OF Algorithm 2.4 could 

cause computationai problems if not implemented efficiently. There exist a number 

of methods ("path compression" [CLRSO], for e rample)  that can efficiently check for 

set inclusion. 

2 -2.3 Diagnosability 

Diagnosability is a branch of DES theory which addresses the problem of fault 

detection and isolation in large complex systems. In [SS L+%] and [SSL+96], a sys- 

tematic procedure for analyzing systems and constrocting FSbI diagnosers for the 

purposes of fault detection is developecl. with specific emphasis on application t o  

heating. ventilation and air-conditioning (HLr.4C) systems. This section reviews t h e  

fundamental concepts relating to diagnosability. and discusses why the application 

of some of the theoretical results of this tliesis are of interest in fault detection and  

isolat ion applications. 

Wheri analyzing a systeni to  determine if  t hat systerii is dirigriosable. we first need 

to understand wiiat it is that WC are -diagnosirig." W e  start  with a FSM G with 

event set 2 which represents a plant containing observable and unobservable events 

( 5  = S,US,,). A subset of events in 5 are consiclered to bc .-failure" events (cal1 t h e  

subset X I )  in the  system. The event 01 event in Figure 2.10(a) is a n  esample of such 

a failure event. We are not concerned with the failiire events which are observable 

(i-e,. O E S I  n 5,). since by definition a supervisor can observe thesc events. and  

t herefore *'diagnose" tliat t hcy have occurred. Thos. wi t Iioiit loss of generali ty .  we can 

consider only those cases where a11 the failiire events a re  ~ir io~~scrvahle (i-e.. SI C Su,). 

Diagnosability theory considers tlic lxhairioiir of a sj-stem aftcr the occurrence of a 

failitre event. and determines if it is possible to know iii sornt' fînitc amount of t ime 

that the failure event lias occorrccl. A more gcricralized scenario c m  bc achieved by 

partitioning the set of failure c\rcrits into .'classes" of failtire cvcnts 

In this case, for al[ o1 € 5,. tllc tliagiiosiiig agciil. necd only dctcrniinc in a finitc 



(a) The System 

i- 

(b) The Diagnoser 

Figure 2.10: -A system/diagrioser pair 

amount of time tliat a failurc of type Si,. where 0, E Y,,. lias occurred. It does 

not need to  determine exactly rvliich lailure everit occiirred. Figure 2.10 shows an 

example system ( G )  and diagnoser ( G d ) .  The  diagnoser is a FSM tha t  records the 

possible states the  system may be in after observing a string of events. and infers 

what failures may have occurred. 

For the example system G shown in Figure 210(a)". 01 is t h e  only failiire event. 

Initially, the diagnoser Gd only knows that  t he  system lias startecl in s ta te  1. ..\fter 

observing the B event. t h e  diagnoser knorvs that the sj-stem co~ilcl be in  s ta te  2. with 

no failures having occurred. or s t a t e  5 with failure al liaving occurred. Thus. at this 

stagc the  diagnoser is not able t o  determine if failiire al has occurrecl o r  not.  However. 

after observing the string d a .  tlic system can orily IF  i i i  statr J. and therefore the 

failure a L cannot have occurred. If  instead. t lie cliagnoscr ol>scri.es t h e  string . i ~ .  then 

it knows tha t  the  failure ni most Iiaw occiirretl. Siricc i t  is possible to detect the 

occurrence of all failure events in a finite arnount o l  tinie (i-e:. after a firiite number of 

3. t'lie circle to ttic rigtit of state 5 i~iclicates tliat a self-loop of rvciit -,. rnny occur. 



events have occurred) in this system, then the system is considered to be diagnosable, 

with diagnoser Gd. 

Note that the t h e  diagnoser is a DFA which recognizes the language given by the 

projection of the language recognized by the system. The method used to construct 

the diagnoser DFA is slightly different from the  metliods described in previous sec- 

tions. In this case, each state in the diagnoser represents the set of states in the system 

which can be reached froni an existing set of states via string s where s = s,,~,, where 

su, is a string of (possibly zero) unobservable events. and a, is an observable event. In 

a11 the other constructions presented iri  this thesis, the string s is constructed in the 

opposite manner (i.e.. s = o,.~,,). It cari be sliorvri tliat both rnethods of construction 

recognize Lm ( p ( G )  ) [SS Lf 951. [RiidSS]. 

Diagnosability theory can be estended t,o cover systems which are considered to 

be 3-diagnosable." I-cliagnosabili ty is a looser condition t, han ciiagnosabili ty in t hat 

after the occurrence of a failure event. t h e  diagnoser neecl only identi- that a failure 

of tliat type has occurred after the occurrence of an observable indicator event. Thus, 

for set of failure everit types {S,I.. . . . X,,} there is a corresponding set of indicator 

event t,ypes { I I . .  . . . I,}. 

It is apparent from tlie infornial d ~ s c r i ~ t i o r i  of t he  diagnoser ~resented above. 

tliat diagnosability theory presents a direct. applicatioii of the projection operation. 

comhined witli a set of ritles for t h  labeling of states in tlie diagnoser such tliat 

they contain informatiori relevant to {.lie failure statirs of tlie systern. and with a set 

of conditions placed on the system to determine if such a system is diagnosable or 

i-diagnosable. It is mentioriecl i r i  [SS LC96] t h a t  t h e  ~ w o  crucial issues regarding the 

applicahility of oiir t,hcory to IIL:-\C iiiiits or ot lier classes of systkrns are: 1 )  building 

tlie system niodel aricl 2 )  dcalirig wit.li t h e  coriipiit nt ioiial coiriplesity of tlie diagnostics 

proccss." [t is also riotcd tiowever. tliai w i t l t  regards t,o t,lie conipiitational cornplexit- 

issue: -*otir esperience so far. ivliile liriiit.cc1 i i i  scopc. tends to iiiclicate t l i a ~  the system 

oftcn has enougti structure so i liat t tic worsi. c ~ u c  cofripiitational hounds niay be rarely 

attainecl." Finally, [SSL+96] statcs tliat i f  a n  approacli wliich constructs diagnoser 

stat.cs on-line [HL941 is adoptecl. thc prohlein cari I>r solvcd witli a coniputation of 



polynomial complexity at each observed transition of the system. Unfort unately, 

if a system is not diagnosable or  i-diagnosable, and if an off-line analysis of the 

systern i s  not done, the on-Iine diagnoser rnay arrive at  states where it wili never be 

possible to know if a failure has or has not occurred. bVe at tempt to address this 

problem by analyzing the previously-mentioned ustructuren of the system to make 

better estimates of the complexity of the computation required to construct a full 

diagnoser. 

2.3 Computationd Complexity 

Since the motivation for developing DES theory is to be able to solve control 

problems in real systems, it i s  necessary to examine the efficiency with which DES 

operations can be implemented as algorithms. It rnay be a simple task to understand 

how an algorithm which implements a DES operation works. However. when the 

solution is actually cornputed, if the algorithm which does the cornputing takes an 

unreasonably long period of time, or uses an unreasonably large amount of computing 

resources, then the DES formalism becomes less useftil as a control tool for real 

systerns. The following sections outline some of the  key ideas and tools in complexity 

theory which can be used to better understand the  efficiency of algorithms which are 

used to solve common DES problems. 

2.3.1 Complexity Classes: Background 

C'urrent research in  cornplexity theory allows us to iiiakc sornc initiai observations 

about the computational difficulty associaicd witli DES problems. To provide a 

motivating example for why it is useful to groiip prol~lrn~s  into complexity classes, 

consicler t h e  cases presented in 'rable 2.1 takcii froiii [C;.J;!)]. ~vticre t hc t ime for each 

operation on some CP U is lps. For esamplc. if  a prol~lciii is of -.size'' it = 20 and its 

solution is O(nZ) complexity. then it woultl takc Llrs - -10' = 0.0004s to compute the 

solution o n  a CPU. 



Table 2.1: An esample of' conipiit a t  ional complexity 

If the values presenteti in Table 2.1 are intcrpreteci to correspond to  the amount  

of t ime rcquired to  solve a prohlem of size 20. 40. and 60. where the solution takes 

cittier a polynomial or exponcntial amourit of rime. it becomes clear tha t  in general. 

problerns which require an esponential amount of tirne to salve become intract(dde 

when the  size of t he  problem gets large. LiÏliat coiriplesity tlieory allorvs iis to  d o  is: 

a determirie i f  problerns arc irit.ractal~lc. arid 

GO 

0.00006 s 

0.0036 s 

0.316 s 

13.0 min 

:366 centuries 

1.3 x loL3 centuries 

suggest rnethods for simplilyirig intractalde prohlenis by esamining approximate 

solutions. or subproblems whicli can be solred in a polynomial amount of time. 

40 

0.00004 s 

0.0016 s 

0.064 s 

1.7 niin 

12.7 daq's 

3833 centuries 

Time 

Complexity 

Funct ion 

n 

n2 

n3 

n5 

y 

:3 n 

Formally. decision problenis can he grouped into complesity classes. .-ln inclusion 

diagram for thesc classes is provided i i i  1-igiire 2.1 1. taken froni [C:.179]. Decision 

problerns are placed in  group 1' i f  tlicrc csists ail algorit.liiii wliicli can solve the  de- 

cision problem iii  polyiioir~ial tiriio. :\ decisioii probleiii is placecl i r i  tlie larger4 iVP 

group i f  there exists ari algoritliin wliicli cari clicck thc corrcctiicss of a --ycsW' answer 

LO tliat decision problerii ici pal!-iioiiiial t . i i t ic .  Iii  order to iiiiclerstnnd the concept of 

the  NP-complete ( NPC) groiip. Ive first tlisctiss tlie iclea of prol>leili transformations. 

Ciiven two languages L I  and L2,  tve s a y  tha t  L i  5; x Lz C 5; il tlierc exists a 

20 

0.00002 s 

0.0004 s 

0.008 s 

:3.2 s 

1.0 s 

58 min 

'It is widely bclicved, but has not I)ct?ri provciri. thai. P is n strict siibsct of .VP 

2s 



Figure 2.11: Complexity classes (assuming P # .V P and ;VP # C O - N P )  

function / such that f : Ci  i X;, and s E L I  i f f  f ( s )  E L 2 .  and where f can be 

computed in polynomial tirne. By extending the idea of t h e  polynomial transforma- 

bility relation lrom languages to decision problems ( refer to [GJ 791 for details) t hen 

for two decision problems i l l  and II2, the relationship I?, x II2 can be interpreted 

to mean *il2 is at least as hard as ill". The two problems are considered to be 

polynornially equivulent if nl  m Ilz and Il2 cr: Il,. Since it can also be proven that 

polynomial transformabili ty is transitive. t lien t lie rclat ion -- x" imposes a partial or- 

dering on al1 equivalence classes of decisiori problems i n  XE'. where P represents the 

computationally "easiest" problems. and NPC reprcsent.~ t. lie computationally "hard- 

est- problems. Thus. a decision problem TI E N P  can be provcn to be NP-cornplete i f  

for some II' E NPC,  il' a il. This metliod is used in [TsiSS] where Tsitsiklis reduces 

an instance of the "3-satisfiability" problem whicti is known to he NP-complete to a 

specific class of part ial-observat ion DES prohlrnis. 



The  complexity class co-NP represents the cornplernent decision problems for al1 

the  decision problems wliich comprise the class 'IP. Given a decision problem in NP 

such as "Given 1, is X true for I?", t he  complementary decision problem would be 

"Given 1, is X false for I ? -  . I t lias not yet been proven that CO-XP # NP. Indeed if this 

could be  proven, then it rvould have to be tlie case that P # iV P. 

While the P versus 3 P complexity classes focus primarily on the time which 

algorithms take to solve problems. the  PSPACE and E X  PS PAC E complexity 

groups focus on the amount of memory required to solve problems. Specifically 

PS P.4C E (resp.. E S  PS P.4C E) decision problems require a polynomial (resp.. ex- 

ponential) amount of memory to solve. By adopting a siniilar method as used 

to  define NP-complete problems. problems can he ordered such that  a subset of 

problerns in PS P.4C'E (resp.. E.Y P S  P.AICE) represents the computationally most 

difficult problems iri the set. Tliese subsets are referred to as PSP.-IC E (resp.? 

El; PSP.4CE) complete problems. Again. as wi th  tlie SP-complete class of decision 

problems. a decision problem il E PS P.4C E (resp.. E.Y PS P.-IC E) can be proven to 

be P S  P.4C E-cornpletc (resp.. E.Y PS P.-IC E-complete) if  for some II' E PSP.4C E 

(resp.. E S  P S P - 4 C E ) .  il' x TI. 

2.3.2 Working with NP-Complete Probleins 

I f  a problem is proven to be NP-complete (or P.?P;(CE/ES PSP.-LC E-complete), 

then a mcthod needs to be devised for solving t liat tjFpe of probleni in a computa- 

tionally feasible marincr. For esampie. i t  may he possil)lo to construct an heuristic 

algorithm which prodiices a correct rcsult i i i  riiast cascs. I-Io\vm.er. currcnt DES for- 

malisrns primari[' nioclei safety-cri tical systcrris. aiid t.11~-reforc rcqiiirc correct resul ts 

al1 of the time. :\lterriatively. it may be possiblc to rrstrict tlir set of problems to 

a subsct of allowablc problenis wliicli we know (and can pro\-e) to be solvable in a 

polynomial amourit of tirne. I f  it is coniptitatioiially feasihlc to test. whether a prob- 

lein belongs to this sitbsct. arid i f  tlie s u l m t  captiircs a large cnough class of DES 

applications. tlicn wc will Iiaw fourid a coiiipiit at ioiinll>. f<rasil>lc met hod for solving a 



The original NPmmplete 
pro blem 

NP-compIete 
problcms 

Open Problems 
(no proofs for NPamplete or for P) 

Problems in P 

Figure 2.12: An example of the hierarchical breakdown of an NP-complete problem 

subset of partial-observation DES problems. Furthermore. for those problems which 

do not fa11 into this subset of computationally feasible problems. it would be useful if 

there were methods for identifying the characteristics of the problem which disqualify 
.. . 

it for inclusion in the subset. If ttre could identify "problern a reas .  it is possible tha t  

the component DES models could be modified such that the solution can be com- 

puted in a computationally feasible manner. Figure 2-12 taken from [GJï9]  provides 

an  example of the hierarchy of subproblems for some XP-complete problem. 

2.3.3 Complexity Tlieory and DES 

There are two areas in DES Theory tvhere computational complexity issues make 

the solutions to large problems intractable. First. as noted ir i  [CVon96] and [WRSS], 

when the synchronous product or meet of n FS4Is (Cl .  G 2 . .  . . . G.) is computed, then 

it is possible that the s tate  space of the resulting FSM G' = hl EET(Gi .  G'?. . . . , G,) 

could have a state  space as large as k n .  where k is t h e  rnasimiim of the sizes of the 

state-spaces of Ci . . . . C;, . Since the number of states in G increases exponentially 

tvith n. the problem becomes intractable for large n (i.ci. for a large number of 

component models in a typical DES problem). .\ Petri-net method for efficiently 

modeling a class of problems wliere many of tlic n componcnt rnodcls are identical 



(i.e., parallel or additive machines) is presented in [LW931 and [LW94]. The results 

to be presented in Chapter 3 of this thesis do not focus on DES complexity problem 

where the components are identical FSMs. 

The second area of DES theory which presents us witli computationally intractable 

problems is in the area of partially-observable and/or decentralized DES problems. 

While in many cases it has been noted that the actual results obtained while working 

with these types of DES problems are good, it was proven by Tsitsiklis [Tsi89] that 

for a specific class of partial-observation problems. t here exists a polynornial trans- 

format ion which maps a n  instance of the Boolean logic - t h e e  sat isfiabili tyn problem 

(a restricted version of Cook's theorem for the satisfiability problem). which has been 

proven to be NP-complete [GJ79], to this class of partial-observation DES problems. 

This means that iinless it is proven that P = iVP .  there is no polynomial-time algo- 

rithm which can constriict a FSM which marks the projection of the language marked 

by a given FSM. Horvever. even though this type of problern has been proven to be 

XP-cornplete. the favoiirable results obtained in manu partial-observation applica- 

tions suggest that there may exist a class of sub-problems (Le.. a class of FSbls) for 

which there exists an algorithm which takes significantly less than an exponential 

amount of time to complete t h e  same task. Chapter 3 of this thesis atternpts to 

identify some of the properties of this type of FSbl. 



Chapter 3 

Structure-Based DES Analysis 

While in theory projection can lead to an exponential increase in the  number of 

states, in practice it has been noted [SSLC95], [SSLf 961, and [OW90] tha t  in many 

cases the number of states generated is typically inuch less than the  exponential limit. 

This suggests that there exist subproblems which can be solved efficiently. If these 

types of subproblems can be characterized and identified in a simple and time-efficient 

rnanner. t hen we would have a test we could run on large systems which would ident ify 

whether the system wiil project efficiently, or  could identify problern structures within 

the system rvhich could cause exponential explosion. 

In designing this type o i  test' two things need to be considered. First. an  algorithm 

(or series of algorithms) needs to be designed wliicli calculates upper limits for the  

projection state-space. If such an algorit hm can show t hat the  projection state-space 

is going to  be small relative to the exponential lirnit. tlien we can go ahead and 

calculate the  projection, knowing tha t  the  resulting automaton can be Found in a 

reasonable amount of time. 

When the upper bound algorithms do not show any signifiant reduction on the  

exponential limit on the projection s t a t e  space. algorithms that indicate lower bounds 

are helpful (for flagging problcm areas). I n  these cases. we iicetl to iinderstand what. 

structures within the system are causing problems. in orcier to effect changes in the 

mode1 (perhaps by adding more scnsors in the physical system) so that when the upper 

bound algorithrns are re-run. the resultirig estimate of the projection state-space is 

significantly better than the exponential limit. Tli&se lower*louiicl algorit hms woitld 

indicate that the projection state space will he at  least a certain size. and would 

identify the structiires rvhich arc primarily responsible for tliis lowcr I~otincl. 



I t  is conceivable that  t he  results of t h e  upper bound algorithms show no significant 

reduction relative t o  t he  exponential limit, and  tha t  t h e  lower bound algorithms can 

identify no structures which cause state-space explosion. T o  date. it is not clear how 

many DES models which are  based on  physical problems fit into this category. 

An important  consideration when designing algorithms which estabiish either up- 

per o r  lower bounds is tha t  al1 algorithms must be able  t o  identify properties o r  

structures within plant models in an efficient manner.  Algorithms ivhich run in low- 

order poiynomial tinie will result in tests wliicli a r e  simple and  fast to run on sys- 

tems, w hereas tiigh-order polynoniial o r  exponential t ime  algori t hins serve no purpose, 

since the projection operation itself is an exponential tinie algorithm. In effect, ive 

ivould be better off just  running the projection algorithni itsclf. ratlier than running 

esponential-time algorithms that test Iiow cqoickly projection can I>e cione. 

3.1 Structures: Upper Limits on State-Space Explosion 

rn establishing algorithms wliich can be used t o  icleritify iipper limits on the pro- 

jection st a t e  space. we first consider tiow t lie presencc of iinobser\~able events affects 

projection. For a system to be partialljr observable. tliere miist exist at least one 

unobservable event. LVe examine the propertics of arbitrary systems containing sin- 

gle and double unobservable event transitions. a n d  establish some upper bounds for 

don't significantly 

limit. the' at least 

unobser\.able event 

the size of the  projection state-space. While t hese iipper hoiinds 

reduce the  projection state-space estimate below t h e  esponeiitial 

serve as a star t ing point in oor a t tempt  to iinclcrstand t l i ~  effect of 

strircturcs ivitliiri DES niodels. 

W e  ttien dcfine a propcrty of a plant wc cal1 / tu - i - roc l inb i l i t y  to I)c t h  set of 

states wliich cari I>c reacliecl hy starting at an!. s ta t  r in tlic plant. and following the 

string s E 1- w l ~ e r e  P ( s )  is a string of i r  ohscrvrrblt* < * v ~ i i t s .  \Vc use tliis concept 

to  calculate subscts of s ta tcs  wliich can bc iisecl Io clcfiiic. al1 possihlv siibsct-labels 

in tlie projection s t a t e  spacc. This tias tlic cfrert of rcdiicirig tlir esponent iised to  

calcidate ttic projcctioii s ta te  spacc. aiid thiis allows for soilit- sigriificant sediictions 



in the estimated size of the state space (relative to the exponential limit) to be made. 

The computational cornplexity of this algorithm is O(IC,In [QI2), where C, is the set 

of observable events, and Q is the set of states. 

hrthermore,  by examining the cases when the estimated projection state size 

is significantly reduced, some conjectures may be drawn about desirable structural 

properties of the system. These rnay be used as a guide when modifying systems 

which do lead to exponential explosion. 

3.1.1 The Significance of Aut omat a wit h E-Transitions 

It has been shown that when a n  NFA is converted to an DF-4 which recognizes the 

sarne language? the state set for the DFA is a subset of zQ. rvhere Q is the state set of 

the 3F.A. If IQI = n i t  is not necessarily t h e  case that al1 'Ln - 1 nonempty states will 

be generated using the subset-const ruction niet hod given in Algori t hm 2.4. However. 

it can be shown that in some cases. not only are al1 2" - 1 nonempty states generated. 

but also that the DFA is. in fact, a minimal-state DF.4 according to [HU79]. 

In DES theory. plants are represeritcd as DF.\s. Xondcterminism is introduced 

when the unobservable events are relabeled as E-transitions. and the resulting NFA 

with ,=-transitions is converted to an NFA witliout ,=-transitions. We want to take 

advantage of tlie structure in this NFA to make somc observations about the upper 

limit on the number of states generated when converting tlie NFA to an equivalent 

DF.4. The first way t his can be done is by eramining the structure of the 5-transitions. 

The following list provides five separate E-transition structures ( Figure 3.1 ) which will 

be discussed in f~ i r the r  detail: 

(d )  d(qI, E )  = q, and 6(qk . f )  = r -  i #. J # k # 1 



Figure 3.1: Cnobservable event transitions 

( e )  S(q,. 5 )  = y, arid & ( q J .  c )  = q k .  i # . j # li 

3.1.1.1 The Single :-Transition 

An almost irnmediate observation tha t  cari be niade about  the construction in 

Algorithm 2.-1 is tliat if tlierc is at least orle t rarisitiori labeled by an unobservable 

rvent  ( Figure 3.1 ( a )  ). tlien the state-space of the projectiori will never exceed 3/4 -2IQI. 

Proof: Froni Algorithm 2.4 lines 5-Y of step ? ( b )  and lines 6-S o l  step 3 ( b ) .  t h e  set 

Q, can not contain s ta tcs  witli statc-set labels tliat contairi cl, but  do not contain q ] .  



Now, if Q, cannot contain state-sets which include qi b u t  not q,, all we need to 

do is count the number of states of this type. Simple combinatorics shows us t ha t  

this number is 21Q1-'. Discounting the empty state-set, we can show that IQ,I 5 
314 - 2\91 - 1- 

Example: 

Take an  automaton G, with s t a t e  set  Q = { q l ,  qz, 43, q4), a n d  with an  unobservable 

event a where 6 ( q i ,  O )  = q2 is defined. Observe t hat  any  s t a t e  label in Q, which 

includes qi must also include q 2  since if  the automaton G could be in s ta te  q , ,  then it 

rnay also be in s ta te  qz via d(q1: a )  = q2. Thus  the  set of subsets of 2Q which cannot 

appear  as labels in Q p  are: 

3.1.1.2 D o u b l e  Kîransition Geometries 

In this section. we at ternpt  t o  improve upon the  results presented for single a- 

transition geometries by applying those results to t he  four geometries wtiich can result 

when at least two unobservable events appear in an  arhi t rary plant (Figure 3 . l ( b ) -  

(4 1- 
Forrnally. we present Propositions 3.2-3.5. which providc upper bounds for plants 

wtiich contain structures illustrated in Figure 9 . 1  (b)-(e). respect ively. 

Proposition 3 .2  C'iuen plaril Ci wilh event set Q ,  t ~ n o l s e i ~ v ~ l l r  r w n f  s c t  Y , , .  mrd 

Irr~nsiliori jiinclioic (5, and FSA1 G', with euent sr t  Q ,  .5arh ihnt Ci, = p(C). // 

6 ( q g . ~ i )  = q, rrnd S ( ~ . . C T ~ )  = qa /or sonze q , .q , .  q k  E C). i # j + lr and for some 

q . 5 2  E X,, (Figure 3.1(6)) then: 



Proof: As claimed earlier, if for some G, d(q', a) = q" arid c E Cu,, then Qp as 

constructed by Algorithm 2.4 can contain no states with state-set labels that contain 

gr ,  and that do not contain p". W e  can now break down a problem where b(qi, 0 1 )  = qj 

and 6(qi, -) = q k  for o17 02 E Z.,. The transition 6(q i ,  al) = (il implies that Q p  will 

contain no state-sets containing qi but not q,. Further, tlic transition b(q; ,az )  = qc 

implies that Q p  will contain no state-sets containing q, but not m. By applying 

combinatorics together wi th  a counting argument. aiid providing tliat i + j # k; it 
can be easily showri that 

where the first term reprcsents al1 state-sets in the poiwr set.  t lie second terni rep- 

resents al1 the state sets which include rl, but not q,. tliv tliirtl term represents al1 

the statc-sets ii4iicti include q, but not qk. ariïl fiiiall~. t lie fourt h t crni represents al1 

the state-sets ivhich include q,. but  do not contairi q, os q k  (aritl thcrcfore have been 

coontecl twice wheri calculating second and third tesms). Thrsr  calctilations result in 

Propositiori 3.2 when the ni111 state-set is discardctl. 

Exa mple: 

Take an automatori C. wi th  s ta te  set  G) = {qi.q2.q:3.q.1}. aiicl \vit11 unobservable 

events al arid oz where b(qi. ( T I )  = q2 and 5 ( q , ,  0 2 )  = y:, are defiried. Observe that any 

state label in Q p  which includes y1 must also include aiid r f i  since i f  the automaton 

G could be in state (11. then it may also be in statc q2 ( resp.  (fi) via c5(ql,ai) = q2 

(resp. 6 ( q .  0 2 )  = ql).  Thus t he  set of subsets of 2Q ivtiicli cniinot nppear as labels i n  

Q,  arc: 

{{% }. {s,. s}. {41. v 2 1 .  {QI-  9.1 }. {'ii. (l-1- (l.i}}- 

aritl t lie set of labels ivliich [ri- bc incliiclcd i i i  (2, is a; triost.: 

Note tliat this set contairis cxactly :)/LI - 21Q1 - 1 clciiiciits sincc the crnpty set is not 

coiiritcd. 



Proposition 3.3 Ciuen plant C with euent set Q ,  unobservable euent set Cu., and 

transition junction 6 ,  and FSIW with euent set Q, such that Gp = p(G). If 
6(q j ,  ol) = qi and 6(qtr 02) = Q, in G for some q;, q j ,  q k  E Q,  i # j # k and /or 

some 0 1 , 0 2  E SU, (Figure 9.l(c))  then: 

Proofr If for sorne G. 6(q1,a)  = q" and a E Cu,, then  &, as constructed by Algo- 

rithm 2.4 can contain no s ta tes  with state-set labels that contain 4. and t h a t  do  

not contain q". Therefore for this example, d ( q j , u l )  = qi implies t ha t  no s ta tes  ( in 

Q,) can exist which contain q, but not q,.  Similar ly  b(qk ,o?)  = qi irnplies t ha t  no 

s ta tes  (in Q,) can esist  which contain qk but  not  qi. Therefore. as ivith the previous 

proposition. providing t h  i # j # k ive have 

where t h e  first term represents al1 state-sets in t h e  power set. t h e  second te rm rep- 

resents al1 the  s ta te  sets ivhich include q, but not q;. the  third t e rm  represents al1 

t h e  state-sets which include q k  but not qi. and  finally the  fourth t e rm represents al1 

the state-sets which include q, and q k  but not g, ( and  therefore have heen counted 

twice when calculating t h e  second and third terrns). These  calculations result in 

Proposition 5.3 when t h e  riii l l  state-set is discarded. 

Proposition 3.4 Givcn plant C with event set Q .  unobseriwbfe e o m t  set Suo. and 

transition function 6.  riml FSJl C, iuith pl1ent S E I  Q p  such t h 1 1  G', = p(G).  If 
6 ( q z 7 o i )  = q, urtd 6(qk . r r2 )  = q~ in C; / o r .  sorrif q , . q , . q ~ . q  E Q .  i f j # k # 1 

a n d  /or sorrze al. 02 E Y,, (Figure 3 . 1  ( d ) )  then: 

Proof: If for some G. S(q ' .c)  = g" and o E Su,. theii  Q P . a s  constructed by Algo- 

r i thm 2.4 can  contain no states wi th  state-set labels t ha t  contain qf.  ancl tha t  do not 

contain q". Tliercforc Tot tliis esamplc. (j(g,. rr,) = q, iiiiplics tliat rio states ( in Q,) 



can exist which contain qi but  not qj .  Similarlyo d ( q k . 0 2 )  = ql implies that no states 

(in Q p )  can exist which contain q k  b u t  not qi. Therefore we have 

where the first term represents al1 state-sets in the  power set, the second t e rm repre- 

sents a11 the s tate  sets which include q, but not q,, the third terni represents al1 the  

state-sets which include q k  but not ql, and finally the lourth term represents al1 the  

state-sets which include qi and q, bu t  not qk or ql (and tlierefore have been counted 

twice when calculating the  second and third terms).  These calculations result in 

Proposition 3.4 ivheri t lie nul1 state-set is discardecl. 

Proposition 3.5 Giuen plunt G cuith euent sel Q .  u i i o b s ~ i c < i b l e  event set ru,. and 

transition [unction 6. and FSiU C p  ~ ~ 7 i t h  ereirl  .wt (2,. .such i h u f  Ci, = P (C) .  I/ 

S ( g t . a i )  = q, and 5 ( q 1 . c 2 )  = q k  in Ci for sorne ( l t . q , . t i k  E Q .  i # j f k a n d  for 

some 01. - E Su, (Figure 3. I ( e ) )  then: 

Proof: If for some G. 6(q1 ,  o) = q". and a E Y,,,. theii Q p  as constrocted by Algo- 

r i thm '2.4 caii contain no states ivitli statc-set labels tliat contain ci1. and tha t  do  not 

contain q". Therefore for this exaniple. 6(rit. 01)  = ri, iitiplies tliat no s tates  (in Q,) 

can exist ivhich contain q, but not ql .  Similarly. &(O,. 0,) = cik iiiiiplies tliat no states 

(in Qp) can csist rvkicti contain ri, but  not g k .  Tliereforc WC Iia\.c 

w herc t hc  first tcrrri rcpreserits al1 s t a t e s c t s  i i i  t lic potvcr s r t  . t titi sccond terni rcp- 

resents al1 the states which includc g, but riot 1 1 ~ .  t l l r  tliirtl terni  rcprcsents al! thc 

statc-sets whicli include qJ hut.  not  q k ,  Xote t.liat i r i  tliis case. rio tcrms a rc  doublc- 

countcd sincc al1 tlic states counted by the first tcrm do riot. c-oiitain q,. and al1 the 

stat,cs counted by the second tcrm do coritairi ci,. Tlicsc calciilatioi~s rcsult in Propo- 

sitiori 3.5 wlicn the t i r i l l  st,at.c-set is ciiscarcIcd. 



3.1.2 Tree Structures 

We define a lree to be an  automaton that contains a unique path between any 

two states. Note that i f  au tomata  of this type are finite. then they mark only finite 

Languages. This  is true for the  following reason: If d(q;, s) = qj is defined for some 

s E Cu; then there is no otlier s' E S' for which 6(q i7  s') = q, is also defined ( t rue by 

definition of a tree structure).  Therefore, if the tree s t ructure C is trim, then for each 

g, E Q,, there esists a unique s E 2' such tliat 6(qO7 s) = q,. Thus, the rnarked 

language is composed o l  exactly IQ,J unique strings, and is t herefore finite. 

Given a tree structure C;. some observations can also be made about the size of 

the  state space of p(C;). 

Proposition 3.6 Giverl a tree structure G with d a l e  s e t  Q and Ci, with state set Q, 

strch thut G, = p(C;) .  iheii t l ie  jolloming is t r u e :  

Cluim: Any s ta te  q E Q in tree C may appear in at most one of t h e  labels of Q,. 

.Assume otherrvise: takc some s ta te  q E Q siich that q appears in tlie labels of states 

q; and g; where q',. q.', E Q,. Sirice C,  is by definition a DF-4. there must be two 

strings si. SI, E 2, rvliere s', # s; sucli tha t  d p ( r l O p . s ; )  = q; and 6p(q,,, s;) = qi. Thus 

by definition there must be tmo strings s i .  s ?  E 5- wliere p ( s l  ) = s', and p ( s z )  = si 

such that 6(q0.  sl ) = q ancl &(q,,  s2)  = q .  Sirice s; # .s; t hen sl # sz. If tliis is the 

case. there are  two distirict. paths betweeii the initial s t a t e  y, and s tate  q ,  thereby 

contradicting the  defiriition of a tree. 

Finally. using a simple counting argument. it can be sliorvn tha t  the size of the  

s ta te  space IQpI 5 IQI. Each s ta te  q' E Q p  miist I>e labeled I I ~  a nonempty subset 

of Q. Dy the above claim. each s ta te  q E q' is unique 1.0 q'. aricl appears in no other 

s ta te  in QI. If this is the case. then tliere rniist exist ai Icast (Qpl uniqiic stattls in Q. 

i-e.. IQI 2 IQPI* 



Figure 3.2: Tree struct ure exairi pie 

A n  exarnple of a tree-struct~irc is presentccl in Figure 3.2.  Ir1 tllis example. Q = 

{l. 2.3.4.5.6.7.8) and Su, = { E } .  By inspection. it cari Ile seen that the  state-space 

of the projection of the  tree striictiirc. is Q, = { {  1.4) .  (2.3-5).  {Ï}. { G .  8)). 

While the concepts of single and double : geoinetries provide ils w i th  some upper 

bounds which apply to  al1 FSMs. because ilic rrcl~ct~iori  is a simple constant varjring 

from : I / l  to l / Y .  t he  resulting effect on corr iplesi t~ restilts is ncgligil~le when dealing 

witli large systenis. By c o n t r a t .  i f  the systeni i ve  are corisidering is a tree (as defined 

in Section 3.1.2). t l i c~ i  we Iiave sliown tliat tlic conip lex i~y  of t h e  projection algorithm 

is O ( n )  or linear. While  this  result is cornpiitat.iorially good. tlie trce FSM structure 

captures a vcry srnall subset of possible FSiLIs. What is ieedcd to make practical 

analysis of DES partial-observation prohlems possible is sometliirig which can be 

appliccl tm a largc siil>scL of FSSls. alid wliidi proi.itlcs a sigriificarit. (i.e.. O(?")  or 



exponential) improvement on  complexity results. In t h e  following sections we present 

a method which we believe provides significant improvements on complexity estimates 

and  which is not Iimited in applicabiiity t o  tree structures. 

T h e  following intuition can be used to  tighten the upper bound for the  size of the 

s t a t e  space of a projected DES. Any s t a t e  subset. say q,. t h a t  appears as a s ta te  label 

in a projected FSM resulting from Algorithm 2.1 is. />y construction. a reachable 

s ta te .  This means that  some observable event o leads from some set of states in 

t h e  original DES to the  set  c f p .  T h e  set qp cannot be any  larger than the set of 

s ta tes  that couid be reached via a from the  set of ail s ta tes  in t he  original DES. This 

observation leads t o  a concept called "0-reachability." defined as follows. Given FSbLs 

T G = (Q. S.6.qo, Q,) and C;, = ( Q p .  -,. Jp .qo , .  Q m p ) .  rviiere Gp = p(C;).  then we say 

tha t  the  set of al1 nonernpty subsets of t he  set of states Q,  = {q' ( 39 E Q.d(q .  O )  = 

are  10-reachable states in G. Tliat  is. 2Qu contains al1 the  s ta tes  in (3, rvhich the 

system could be in after observing the  a event. For eeample.  for the  FSM C: given 

in Figure 3 . 3  with Q = {1.2.3.1.5). t he  a-reachable set is 2Qo = {{1.4}. {l}. {1}}. 

and  the d-reachable set is zQ3 = {{2. : 3 . 5 } .  {2.3}. {2.5}. { : 3 . 5 } .  {2}. {3}. { 5 } } .  and 

finally the y-reachable set is 9-f = {{s}}. Finally, we need t o  include the initial s ta te  

(1 .4 ) .  since it may not be  included as a subset of any of t hr Q,  sets. Therefore. a 

new estiniate on tlie niaximum number of states i r i  p ( G )  is 12. cortipared tvith the  

3 2 - 1 = 23 state  estimate iising the  upper liniit defined iri Proposition 3.1. 

Note. however tha t  in calculating this nurnl~er. rio a t tenipt  is niade to  account for 

the  duplication of s t a t r  sets. Thus.  for tliis esample.  tlw st .ate sets { 5 }  and { l .  4) 

are  counted twice. 'rtie actual  limit (i.e.. withoiit cioiihle coiinting) for t he  number 

of s ta tc  sets is 10. For al1 0-reacliable based state-cstitnates prcsented in Chapter 5 ,  

note tiiat s ta tc  set duplication has riot beeri accoiiritecl for. and  thus. the estimates 

could be srnallcr tliaii iiitlicatecl. 'I'lieorein 3.1 foritializcs t lic n-reacliabili ty concept 

for tlie case described above, wliere a single ol~scrval>l<i vvriit is sreri hy a supervising 

agent. 



Figure 3.3: rr-reachability csaniple 

Tlieorem 3.1 Ciwn FSJIs G = ( Q. S .  6. rio. Q ,  ) u r i d  Ci, = ( Q,. X,, dp. qop. Q m p  ), 

where C,  = p ( G ' ) .  lhcn 

Recall that  t h e  states in Q p  arc subsets of Q. C'oiisider a i  element gp  E Qp.  

Case 1: rl, = q O p .  Then by observation. CI, E (7,. 

Case 2: q, # qop.  

Then there is a q; E Q, and o E 5, siicli ttiat d,(q;. r r )  = ri, (siricc q,, E Q p  means rl, 

is reachablc from qop via A,). Silice ri; E Q , .  II?. dcfiriit ioii. tI;, 2 Q. 

According to t tic const ructiori ~ i v e n  i r i  Algorit l i i i i  -1.4. h,(rl:,. rr') E Q,, for rr' E S,. 

Thercfore. in particiilar. Jp(qi,.o) Ç Q,. Tliat is. qJ, C QI. wliicti implies tliat q, E 

9Qrr - .  



3.1.3.2 Multiple o-Reachability 

T h e  <T-reachability property described in Section 3.1.3.1 while providing useful 

properties by itself, can be iteratively applied in such a way as to provide improved 

estimatcs for some FShIs. The key observation is as follocvs: Io-reachability dictates 

t ha t  after the occurrence of some event a l ,  the  set  of s ta tes  which t h e  plant may be in 

must be a subset of Q,, . Now consider the following: cal1 the next observable event 

(following ai) OZ- LVe have established that aiter al. t,lie system must be in some 

subset of the states contained in the  set Q,, . W e  can now furt her reduce the subset 

of s ta tes  that  the system could be in by substitiiting Q,, for Q in t he  expression 

Q ,  = bp(Q. oz). Thus. the  possible subsets of states which t.lie systern could be in 

after observing two transitions must be subsets of the  following: 

For the example given in Figure 3.3, the Qmtfl2 srihsets are: 

For tliis example. the total for al! the n0nempt.y siii~scts for al1 tlic QClg2 sels (without 

corrccting for statc-sct, duplication) is 16 (iricliidir~g t Iic additional strate-sets repre- 

senting tlic initiai state-set and the t hrce state-sets wliicli cari 11e reaclied after ob- 

serving t lie first transit ion). If  state-set duplication is accoiirited for. t hc estimate 

reduces to  10. Thiis. For this examplc. no improvcriicrii. is ol)tainetl by iterating the 

o-rcncliability procetlurc. 



Note t ha t  if we iterate I times, then xf=, IS,I' computations mus t  be done. Thus, 

t h e  complexity of this type of test  is exponent ial ir i  1.  Based on t h e  results presented 

in Chapter  5, we have found tha t  for t he  systems ana l~zed .  t he  best resuits (without 

correct ing for state-set duplication errors) a re  achieved wi t h trvo o r  t hree iterations, 

and therefore, only a srnall number  of coinputatioris is required. 

3.1.4 Related Work 

Alter completing the  work presented in this thesis on a-reachability. it came to  

our  a t tent ion that  work by Ozveren and  Willsky [OW!)O] uses a very sirnilar approach 

for analyzing the structure of FSMs and  making iniproved estimates for projection 

state-space. 

S~ecifically.  [OWSO] shows t h a t  if we have some syst,erii with s t a t e  space CL). ttien 

Q çan be partitioned into n distinct subsets Q I .  . . . . O,. .-\ notion called t lie persistent 

part of the  state-space of some FSM can b e  inforniall~. defined as that  part  of the 

state-space which captures the long-term bella\-iour of the FSM. T h e  size of the 

persistent part  of the projection state-space Q,, is gi\-eii Iy 

Since this metliod partitions the event set Q itito disjoint sul>sets. t he  double-counting 

problem which tve encountcr in o-reachabili t>- (disciissed in Section 3.1 .:3.2) is avoided. 

3.2 Structures: Lower Limits on State-Space Explosion 

We have shown in t lic prcvious scctions t liat z-gcoirict rics. o-reachability and (in 

special cases) tree structures cari bc iiscd to txst.aldisli iip[wr linii ts on the possiblc s i x  

of t he  projection state-space. Wk liow procced to striictures ~vliicli caii be proven to 

produce nt [eusl a certain riiiniber of stat.cs i i i  tlic st,atc-spacc. of ttic projected DES. 

If  it is possible to  efficiently icltn t ify siicli st,riict,iircs ivi t liin plant motlels, t tien rve 

would be able to modify t he  plant so tha t  tlic striictiirc8 rio loiiger caiiscs the problcm 

to  be consideretl comput~atioiially iiit ractahlc. 



Figure 3.4: Tlie cyciic NF:\ .-\,, 

3.2.1 Cyclic Structures 

We first present a result froni [Leu931 regarding the class of automata presented 

in Figure 3.4.  It is proven in [Leu931 that for XF.4 .A,, rvit,li states Q. the smallest 

DF.4 which recognizes Lm(.-1,) has 2" states. First i t  is sliown tliat for such an  

automaton. al1 the  2Q states  are generated iisiiig a st~anclarcl siibset construction 

rnethod. Second. it is sliowri that no two differerit siihsct s of states are .~cqiiivalent" 

in the sense identificd by t l ~ e  hly hill-Ncrode i,licorwii [ I I  1:711]. aricl t lierefore the DFA 

is a minirniirii-state recogiiizer for t l i t  la~igiiagc. 

Now. it rcmains to show that therc esists a DF:\ wit.11 a rioiicnipt,y set of unob- 

servable events XI,, such tha t  when the iinobscrvat>lc cverits arc carivcrted to E-moves. 

the  resulting automaton recognizes the same languagc as tlir XF.4 in Figure 3.4. :\ 

DF:\ of tliis type is stiown in Figurc 3.5.  



Figure 3.5: :\ W.-\ .-I', w i t l i  n E S,,, 



Thus, for an NFA A, with n + 1 states, a DFA . ln  whose projection is A, has 

n + 2 states. More generally, for a DF.4 of this type with states QI we have shown 

that the size of the projection state-space Q p  is 

We conjecture that by choosing a slightly different type of cyclic structure (Fig- 

ure 3.6) for the plant, it is possible to get exactly 

This structure was chosen since it intuitively allows for al1 single-state state-sets, al1 

double-state state-sets, etc.. . to be generated using Algorithm 2.1. Note that (as is 

the case in this example), if there exist two or more transitions between two states (for 

exarnple, 6(ql, 1) = q?, d(ql, 0) = 42, and 6(q1, cr2) = q2). the  transit ions are indicated 

by a single arrorv, and a label containing a list of al1 the events (for esample O. 1, a-) 

is attached to the arrow. The  n distinct crl, a?. . . . . on events appear to prevent DFA 

reduct ion via Algori t hm 2.1. 

3.2.2 Acyclic Structures 

The results presented in the previous section suggest tha t  particular types of cyclic 

structures cause computational problems w hen comput ing projections. If we exclude 

al1 those FSMs which contain cycles, we are left with acyclic FSMs. Formally, we 

define a plant G = {Q, C, 6, q,, Q,) to be acyclic if there does not exist s E C* and 

there does not exist q E Q such that d(q ,s )  = q. 

Tsitsiklis constructs such an acyclic type of plant in [TsiSS]. Tsitsiklis goes on 

to  prove that a supervising agent would require an exponential number of states to 

keep track of al1 the possible states the plant could be in. The exampie in [Tsi89] 

(Figure 3.7) is constructed so that for the parameter n ,  the number of states in the 

plant is on the order of n2, and the number of states in the projection automaton 



Figure 3.6: :\ niodifiecl DI.':\ witli O E S., 



- n=3 (pairs) 

Figure 3.7: :\ " n  x n" coristriirtion for TI = 3 

is on the order of 2". I t  is shorvn in [TsiS<3] t h a t  no reduction in t he  size of the 

supervisor is possible. Note that  in Figure :3.Ï. thc transitions labeled in brackets 

indicate transitions which are defined in t he  plant. but which are not defined in the 

legal language. 



Chapter 4 

Software Implementat ion 

In practice, discrete-event models describing real systems may require hundreds 

or  thousands of states. In order t o  effectively manipulate these large plant models in 

an  efficient manner. we need to  make use of algorithms whicli can be implemented 

as software programs. CVhile efficient algorithms have been identified for niany of 

the operations which a re  required to solve DES problems [RiidSS]. to t he  best of 

our knowledge there does not esist a software iiriplenieritatiori ivliich provides these 

operations in a flesible. intuitive rnanner. 

In this chapter. ive c-eview sortie of the currently a\-ailable DES software packages. 

we present a niimber of architectural and functional requirenients for a new software 

implementation based on  a prototype package developed to  aid in the research pre- 

sented in this thesis. and finally ive present a series of DES functions implemented 

in M.4TLAB (a commercial software package) [Mat92] whicli ivotild be the  computa- 

tional core of the proposcd software implementat ion. 

4.1 A Review of Current DES Software Tools 

4.1.1 TCT and Object TCT 

T h e  software package 'I'CT [LVon9G] represents t, lie first DES softwarr tool t o  be 

developed. It provides a wide variety of basic DES opcrat.ioris ( I:igiirc -1.1) a n d  a n  

interactive envirorinient wliere t liese operat ions caii bc iisetl. Rcccnt developrncnt 

efforts have fociised on making the  software capable of rcliably working witli large 

D ESs. One immrdiatx clrawback of the TCrI' soft,warr t ool cari Iw wcri in Figure 4.2. 
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Figure 4.1: T h e  TCT main menu 

The TCT software relies on t h e  user t o  interpret lists of states and transit  ions which 

can  be a time consuming process. It should be noted ttiat al1 FShIs must be entered 

as lists of states,  marker states. and transitions. Fiirtherrnore. TCT does not allow 

for t h e  labeling of states or  transitions. Finally. due  to the design of t h e  interactive 

environment. it is impossible to run scripts of commands. If the  user wants t o  repeat 

a sequence of calculations ( perhaps wi t h  some slight modifications to  an  initial plant) .  

al1 the rvork must be done manually. 

Object TCT (OTCT) [0')-921 is a more recent DES softwarc tool writ ten in C++ 

which. while providing essentially t h e  same DES opcration fiinctionality. is designcd 

t o  process batch files wvliicti contain sccperices of conimarids for solvi ng  par t  icular 

DES problems. The  OTCT softwarc is also designcd to work rvith DES probltms 

with  t iming constraints. Unfortunately? i t  is still necessary to  use lists of states. 

rnarker states. and transitions (rcprcscnting DES plants) as input and ou tpu t .  
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Figure 4.2: The TCT FShl output 



4.1.2 StateTime 

The StateTime prototype DES software toolset [Ost 971, which has been designed 

to work with tirned DES problems (i-e., timed transition rnodels combined with a 

real-time temporal logic framework) , provides some of the visual state descriptions 

which allow the user to more easily design and modify inputs, and interpret outputs. 

This feature has been lacking in both of the previously-discussed software packages. 

StateTime is designed to work with a type of Statechart [Hart371 (with timing infor- 

mation) instead of with FSMs. Statecharts are another type of state-machine which 

allow for a more compact visual representation of a regular language. It does not ap- 

pear that the StateTime tool currently has any capability for generating or running 

scripts or batch files. 

4.2 A New Approach for DES Software Tools 

-4fter using some of the other software tools for solving example problems related 

to the work presented in this thesis, it quickly berame apparent that a new. more 

flexible tool was required. A new tool should be able to process script files containing 

(possibly a large number of) basic DES operations. The tool should also be capable 

of accepting (resp., producing) DES plants as input (resp.. output) in a format which 

is intuitive to the user-in this case. as finite state niachines tvhere the states and 

transitions are displayed graphically. not as lists of data. 

These two new high-level DES software requirements effec t i vely determine how 

the  high-level implementation should be done. A core series of DES operations need 

to be irnplemented in some well-established Ianguage which is reasonably well-sui ted 

to solving mathematical problems. If this can Le done properly. tlien this language, in 

conjunction wi th  the implemented set of DES operations. would provide the required 

scripting environment. We present a set of functional requircments for such a DES 

toolkit i n  Section .1.'2.l. PVe have also included rnatrix-based algorithms for a subset 

of the set of DES operations currently available in other DES software tools. 

A Iront-end software tool also needs to l x  clcsigiiccl to crcatc and interpret DES 



plant files, and to send commands to the computational engine in an interactive 

manner. This allows the user to irnmediately see and understand the structure of 

DES FSMs which result frorn using DES operations on an original set of plants. We 

present a set of visual requirements in Section 4 - 2 2  which provide a more detailed 

description of how such a front-end software tool should function. 

4.2.1 Fiinct ional Requirements 

In this section. we discuss in more detail what is requircd in t h e  design of the core 

computat ional engine. 

4.2.1.1 High-Level Scripting and Batch Processing 

In the existing set of DES software tools, it is difficult and tirne-consuming to 

process a large number of plants using an identical DES operation or a sequence of 

DES operatioris. Essentially. for each plant the iiser would l x  required to interac- 

tively enter the plant informat ion, and specify the operat iori or sequence of operations 

required to process t hat plant. While this methocl is siiitable for processing a small 

number of plants. it quickly becornes untenable i r l  cases irlicre t lie number of plants 

is large. Such a situation could occur wliere large nunibers of plants are processed to 

obtain statistical information. 

In addition to enabling large batches of plants to be processed. a design which 

al low for scripting enables the user to define higher-level DES proccdures as required 

to solve specific types of problems. It is conceil-ahle that the iiser could design a 

SIr\T L:\B procedure which solves a cont rol problcm wi t.ti partial observation. where 

the user is asked for a specific set of iriptit nutorrinta riilating t,o plant and legal 

languages. The procedure would be composed of 1)asic DES operations which CIO a11 

t h e  computat,ions required to solve this type of prohlem. 

Finally. by designing a core comptitational engiric t liat accepts a scripted input. 

i t  rvould be ~oss ib le  to record information about interactive sessions in a log file 

whicli would h e  able tto reproduce thc sct of calctilatioris iisirig only tlic klATL.AB 



interpreter. This simplifies t he  process of recording information regarding how specific 

results were obtained, and of reproducing those results. 

4.2.1.2 Extendibility 

Discrete Event Systems theory is still an expanding field. As more research is done 

in this area, it may be  desirable to  add  new procedures and operations t o  t h e  basic 

DES software ~ o o l .  Also, although we only require a subset of the  DES operations 

to  be implemented in the prototype tool (Le.. only those fiinctions required for t he  

research presented in this thesis), we want to ensure that  when more bI.i\TLAB DES 

operations are impiemented. it will be simple t o  incorporate them in the  prototype 

tool. 

4.2.1.3 Capability to Handle Large DES Problems 

As WC mentioned earlier. models of realistic industrial prol>lems t.ypically use hun- 

dreds or thousands of states. Thus, any DES software tool must be able to solve 

these larger problems in a reiiable manner. In t he  prototype tool developed for this 

thesis. Ive took advantage of t he  sparse matrix functionality available in M-4TLAB to  

minimize the amount of information about an  autornaton which needed t o  be stored. 

In the  matrix-based im~lementa t ion .  transitions in autoniat a are r e ~ r e s c n t e d  using 

adjacency matrices. where a '-1" entry represents a t ransitiori hetwecn s ta tes  ( t h e  

specific states are inferred from the  row and column of the entry in the rnatrix).  and  

a -0'' entry represents no  transition between states. Since in  our experience. only a 

smali number of entries contain "l's representirig transitions. i t  is efficient to store 

only the  inforniatiori corresponding to  "1" ent ries. Tliiis for ari ii-state machine with 

d ( q m . 0 )  = qm+i  for ni = 1. . . . . n - 1 being t h e  only definecl transitions. storing the  

wtiole transitiori rriatris for the o traiisitions would rcqiiire O(iiL ) spacc a n d  rvould 



appear as 

where. for example, the transition d(ql,  a) = q2 is capturecl by the "1" ent ry  in row 1 

colurnn 2 (i.e.. a transition s tar t ing at the  s ta te  corresponding with t h e  row number, 

and terminat ing at the s tate  corresponding to  the columri number). 

Storing only those locations in t h e  adjacency matris which correspond to defined 

transitions rvould require only 2 x n space, and would appear as 

where the  first entry in the ordered pair represents the s ta te  where the  transition 

s tar ts  ( t h e  row for the *I"  entry in the  sparse matris).  and the  second entry repre- 

senting the  state where the transition terminates ( t he  coluriiri for the -1' ent  r'. in the 

sparse mat r i s ) .  When the numher of transitions is sniall. the space savings can be 

considerablc. 

BJ. storing information about  t h e  transition structure of plants in the  manner 

outlined above. and by using efficient algoritlims for DES opcrations, ive believe that 

t h e  .\I;\TLr\B environmcnt will Ile able  to  process DES autoniata whicli a re  large 

criough to model coniples problerns. 

We now present some details about  t h e  front-end softwarc package whicli has becn 

developed as a first a t tempt  to satisfy tllc higli-levcl rec~iiircirirnt tliat DES autoniata 



should be able to  be constructed and viewed by the  user in a simple and intuitive 

manner. 

4.2.2.1 The Visual Plant 

This section lists a number of desirable features which have been implemented in 

t he  prototype software tool. 

State Characteristics 

0 Each state in an automaton should be able to be moved to  any desired location 

within the workspace (by the user) so that the  au tomaton  rnay be presented in 

a readable manner. 

Each state in an automaton should be capable of being labeled in a meaningful 

manner. It should be possible t o  rnodify this inforniation i r i  a simple and direct 

manncï. 

O Each state should display information regarding its initial and marked status. 

It should be possible t o  modify this information in a simple and direct manner. 

Transition Characteristics 

O Each transition sliould appear as a n  arrow originating at a state. and terminat- 

ing at (painting to)  a state.  

a Each transition should be capable of txirig lal~elrci in a meaningfiil manner. 

This label should correspond to  a n  cxisting alpliabet rlcnient.. i f  a new label 

is entercd. a corresponding alphabet elcrncnt s l~ould  he adcfed. It shotild be 

possible to modify th i s  information in a simple aricl direct. mariner. 

O It sliould be possible t o  modify (in a siniple niaririer) tlic sliapc of the transition 

line ir i  order to make the overall aiitoriiatoii sinipler 1.0 int-crprct and easier to  

visualizc 



P l a n t  Characteristics 

Çorne work has been done in the area of drawing directed graphs in an aest hetically 

pleasing manner,  for example [GI<NV93]. While the  prototype DES tool which we 

have developed does not provide this function? the  d a t a  structures have been designed 

in such a way so tha t  it would be simple t o  add a MATLAB routine which could 

arrange visible states in an intuitive and understandable rnanner. This  type of layout 

function would be useful specifically in cases where a DES function (PROJ, MEET 

or SYNC for example) generates new state-sets which have a non-trivial relationship 

to the s tate  sets of their argument FSMs. 

4.2.2.2 FSM Interactions 

I n  the sarne way that  it is possible to  trace liow a variable is calculated in a 

sprcadsheet. it would be useful to  be able t o  trace how an automaton is calculated 

in our interactive DES software environment. Furt hermore? i t  would be useful to  

be able to  aut,omatically update automata which are derived from other au tomata  

when any information regarding the input au tomata  o r  the type of DES operation 

performed on the  input automata changes. Finally. it would be useful t o  have a block 

diagram representing the  relat ionships between al1 autornata currently loaded in the 

interactive environment. 

4.3 A Matrix-Based Implementation of DES Operations 

The following suhsections outline the vector and  rnatrix data  structures d o n g  wit h 

the  rnatrix-I-iased algoritlims which were developed as part of this tIiesis. In order to 

illustrate these structiircs and algorithms. we use the two FSMs in Figure 1.3 as 

riinning csaniples. For the remainder of this section. CI refrrs to t.lic FSM sliown in 

Figure 4.3(a) and G2 t o  the FSkl shown in Figure 4.3(1>). 

WC point out  tha t  although ive chose to implenient the structures and algorithrns 

described in this subsectiori in MATLAB? tiiere is no reason why tliey may not bc 

impkmented in o t  her mat  ris- bascd mat liemat ical environrrien ts. Thcrcforc. in the 



- 
(3)m Broken -[ 

Figure 4.3: Two esample FSMs 

following subsections we locus on the matrix operatioris ancl manipulations which 

comprise the DES operations. and omit many of tlie .\IA'I'LAB-specific impiementa- 

t ion details. 

Also, for clarity we use ful l  iiiatrix representations ivht-ii t1cscril)ing liow the various 

steps of the matrix algorithms apply to the example FSMs. tlou.ever. in t h e  kl.4TLAB 

implementations of these algorithms. al1 tlie matrix iiiariipiilat ions are done using the  

spcrrse matrix form. 

4.3.1 The File Format 

The file format used to store DES plants is esseritially a 11.-\TLr\B .m file. -4s no 

klATL.-\B operatioris are performed in this .ni file. tlic oiclrriiig of t lie various vectors 

and matrices mtiicli define tlic FSM is iiot important. Fiirt lier. t Iie front-end prototype 

program has also been designed such that the order of tlie rectors and matrices is not 

important. 'The file contai ris t he  vectors and triatrices c l c s c . r i l d  below. 

The Plant Name Vector 

This vcctor contains ttrc riarne of tlie firiitc statc: riiaclii~ic, This naniri is iised as 



a suffix when naming al1 t he  plant vectors and  matrices. Thus,  for a plant narned 

"G l", the variable would be defined as 

in t he  plant file. 

The Stacked Transition Matrix 

T h e  Stacked Transition Matr ix  is essentially an (nt . n )  x n matrix.  where n is the  

number of states in the  FSM, and  rn is t he  number distinct events. Thus ,  t he  first n x n 

btock represents the  adjacency matr ix  for the first event in the event  set 2, the  second 

n x n block represents t h e  adjacency niat r is  for the second event?  and  so on. Since 

&,[.-\TLAB does not easily s tore  lists of information as matrix elements,  a n d  t h e  current 

version does not support n-dimensional matrices where r2 > 2. this method of d a t a  

storage was chosen as the simplest method for storing al1 the transit ion information 

in a single da ta  structure. The following is a n  esaniple of a stacked transition matr ix  

for t he  example FSM Gl : 

whicli appears in sparse nia t r is  forrri as 

For tliis cxample, the  first evcnt (say  n )  occiiss as a transition hetween s ta tes  1 and  2. 

and  t h e  second evcnt (say ,J) occiirs as t-raiisitioiis Iwt ween states 1 and  3. and s ta tcs  



2 and 1. Note t hat in the sparse matr ix representation. a " 1" signifies the  occurrence 

of a transition starting a t  the  s t a t e  indicated by the row nurnber (modulo m) and 

terminating at the s tate  indicated by the  column number, whereas a "O" (i.e., the  

matrix element is not explicitly defined in a sparse matr is)  represents the  absence of 

a transition. 

The Transition Location Matrices 

The  Transition Location Matrix is used to define the (x.y ) screen positions of the 

spline points for each defined transition occurring between ttvo states. Note that  since 

there  needs to be only one physical line/arrorv to represent a nurnber OF transitions 

between the same start  and termination states. the matris cloes riot need to  be stacked 

to  accommodate an adjacency rnatrix for each event. However. the matrix is stacked 

horizontally to accommodate the  x and y Iocation infortriatiori. and cari be stacked 

vert ically to accommodate (x. y )  locations for spiines w i r  l i  i~iiiltiple points. Thus 

1 [S loc. rnatrix? spline point II ['i- loc. rnntris. sp line point 11 

line point 21 1 T&, = 

1 [S lot. matrix. spline point nl [Y  oc. inatris. splirie point n] 1 .  
[S [oc. matrix, spline point '21 [Y loc. rtiatris. sp 

In the esarnple below (showri in sparse matris forni). the spline associated with 

the  b( 1, a )  = 2 transition has (x,y) coordinates ( 100.120). tvliicli correspond to  the  

sparse matrix elements TScl  ( l .?) ,  and TScl  ( 1.3). :\(lding t l i r  rlernents for the ot her 

transibions in C;, ive get 



The State Label Vector 

The State Label Vector is a list of names corresponding to FSM states. The 

ordering of the state labels corresponds to the ordering of the transitions in the 

transition matrices, and in the initial and marked state vectors. Thus, states indicated 

by the nth  row or coliimn of a matris  are labeled by the nth label in t h e  state label 

vector. An example of a state label vector for the FSM GI is 

The Initial State Vector 

The Initial State Vector iiitlicates the set of initial states by using a --1" at the 

locations corresponding to the states in the set. Note that in DES theory. there can be 

only one initial state. althougli the software rnakes no such restrictions. .-in esample 

of this vector for FSLI CFI is 

which indicates tliat tlie first s ta tc  (statc '-Idle" as defined in the State Lahti Léctor) 

is the initial state of t .hr  FSAI. 

The Marked State Vector 

T h e  Markcd Stat c i'ectot- is defiricd in a sirriilar Inanncr to tlie ini t in1 statc vector. 

the two differences I~eirig tliat tliis vcctor indicatës tlie mârker states of the FSM, 

and that it is possil>le i n  standard DES theory to have multiple markcr states. A n  

example of this vcctor for ttic FSkI C;, is 



which indicates that the first and second states (states "Idle" and "Working" as 

defined in the State Label Vector) are bfkh marker states of the FSM. 

The State Visibility Vector 

The state visibility vector is also defined in a similar nianner to the initial and 

marked state vectors. In this case, the vector indicates those states which are to be 

displayed using the  front-end display program. .An example of this vector for the 

FSM G1 is 

which indicates that ail the states are to  be displayed. 

The State Location Vector 

Tlie state location rnatrix is an n x 2 matris witli eacli row containing an (x.y) 

location For the state which corresponds to the n th  element of the State Label Vector. 

An example of this vector for the  FSM GI is 

which indicates that state I (or .-Idle") is located at screen position (352.65). state 2 

(or "Working" ) is located at screen location (309.1-1 1 ) a n d  so on. 

The Alphabet Label Vector 

Tlie .Alphabet Label Vector is similar to the State La ld  Vector in that it provides 

a list of labels which correspond to the occurrerice of i tir rn"' n x n block in the  

stacked transit ion matris. The Alphabet Controiiahility and O hservability Matrices 



(defined below) also make use of column locations which correspond to  this list of 

alphabet labels. An example of this type of vector for the FSM GI is 

which iodicates that the first n x n block in t he  stacked transition rnatrix corresponds 

t o  a n  event labeled "a," and the  second block corresponds to a n  event labeled "P." 

The Alphabet Controtlability Matrix 

For both the Alphabet Controllability and Observability Matrices. we introduce 

the notion of' multiple supervising agents. Each supervising agent has its own view of 

what occurs in a system and a set of events that  it caii contsol in tha t  systern. While 

the  data-structure defined here allows for ni~iltiple ageiits. t lie hIATL;\B implementa- 

tion of the DES operations currently considers only t liose cases where a single agents 

is clefined. 

The  Alphabet Controllability Matr i s  is a k x i n  niatrix whicli contains information 

about the  controllability of each of the alphabet elernents (nt total)  for each of t h e  k 

supervising agents. This mat r i s  contains a '-1" at row i. coliimn j if. for supervisor 

i: the jth alphabet element (labeled by the j th  cntry i i i  the Alphabet Labcl Vector) is 

controllable. otherwise it contains a -9" at this location. Ari esample of this matrix 

for the FSM Gl is 

wliicli iridicatcs t h .  for t lie first siipcrvisiiig agent.. t lic f i r s~  a l p l i a b i ~ ~  deiiient ( .*a" 

as dcfined in tlic csaniple alphabet label vect,or) is coiitrollablc. anci the second al- 
. .. 

phabct clenierit ( - - $ ' O )  is not coiit rollal>lc. For tlic secoiicl siipcrvising agent, "a is 

not controlIablc, wliilc .-,J'- is co~itrollable. 



The Alphabet O bservability Matrix 

The Alphabet Observability Matrix is defined in a manner analogous to the Al- 

phabet Controllability Matrix, the difference being that ;l"s in this matrix represent 

alphabet elements (indicated by the column) which are observable by some supervis- 

ing agent (indicated by the row). Thus the example rnatrix 

indicates that the first agent cannot observe the first alpliabet element (-a" as defined 

in the example alphabet label matrix) but it can observe the second alphabet element 

( ;B' ' ) .  For the second supervising agent, the opposite is true. 

4.3.2 Basic Matrix Operations 

Before rve can discuss the details of the various DES mat ris-based algorithms. it 

is necessary to define some terrninoiogy. First. let adjacency matrix -4 represent the 

transitions in a FSM. By computing An. a matris which represents the nurnber of 

distinct '-walks" of length n between any two states can be ol~tained [Epp95]. A walk 

between two states qi and y, is a string s E Y' siich tliar d(q, . . ï )  = qJ .  II 

t hen 

rvh i ch  can hc  interpreted to mean that there is oric ~valk of Icngtli 2 from state 1 

to statc 1 ( in  this case v i a  state 2).  and similarly oiic iva lk  of Irrigtli 2 from state 

2 to state 2. There are no  walks of lengtli 2 betweeii statc I and state 2. The -4" 

matris can bc modified so tliat it keeps track of acccssihility. instead of counting the 

niimbcrs of walks l~etween pairs of states. First.. WC M i n r  t Iic fiinctiori NORM to be 



a function which replaces any non-zero mat r ix  elernent with a 1. If A represents the 

adjacency rnatrix for a FSM, then  define 

Thus, if A, has a 1 at location (i  j), then  t here exists a walk of length Iess than or 

equal t o  n between states i and j. 

The rnatrix operator "A" is defined as follows. Given trvo matrices BI and B2 

with the  same dimensions, where t h e  entries of BI ancl B2 are  1's or O's, the resulting 

mat r ix  B = BI A B2 has the same dimensions as  matrices BI and  B2 wit h each elernent 

B(i.  j) being defined as the logical "and" of elements Bl(i, j )  and B2(i, j ) .  

The matrix operator Y* is defined as Follows. Given ttvo matrices CI and & 

with the same dimensions, wtiere t h e  entries of Cl and C2 are  1 's o r  0's. t he  resulting 

matr ix  C' = CL V Gr2 has the same dimensions as niatrices and  CI2 with each elernent 

C(i .  j )  being defined as tlic logical "or-  of elenients C ' [ ( i .  j )  and  C2(i. J ) .  
.. . 

T h e  matr ix  operator - -  1s dcfined to  be the standard operator  for calculating a 

m a t r i s  product. 

Finally, t he  notation 1 DI indicates tlie number of entries in a vector D. 

4.3.3 The TRIM Operatioii 

.A matrix-based irnplenieritation of tlie trim opcration definecl in Section 2.2.1.1 

is presented in this section. W e  present a pseudo-code algorithni. follo~vcd by a 

discussion of some of the lie!. steps in t h e  algorithni. a n d  conclitde witii a simplc. 

illustrative example. 



3. for i = 1,. . . , 1.4iVI 

T X =  T .YVTR[ ( ( i -  1 ) - l S l V l +  1) . . . (  i - 1  S I V I ) , L   SN[] 
end 

4. R = X O R M ( S I  T-Y + S I )  

5- RoId = ( 1  x ISII) al1 zeros uector 

end  

1 O.  while R # RoId do 

C Rold = CI R 

C R  = :VORM(C R T S '  + C R )  

enù 



12. for each nonzero entry i in R I\ C R  do 

remoue corresponding rows /rom SN TRI^ and SLTRIM 

end 

Algorithm 4.1 creates a FSM whicli recognizes the  same languages as the input 

FSM, but which contains only those states which are both  .*reachable'' and *-CO- 

reachable". A state  q is defined to be reuchuble if there exists a string s such that 

b(q,, s)  = q. A state q is defined to be co-reachable if there exists a string s such that 

6 ( q , s )  = qm for some niarker s tate  q, E Q,. 

In order to calculate reachable states. the matris-based implementation of the  

TRIM operation needs to know only that there exists some transition hetween a 

given set of states. It does not need to knoiv the label of the transition. For that 

reason, the MATL.4B fiinction creates a new n x rz adjacency rnatrix based on the 

stacked m n x n transition rnatrix of the original DES. This matr i s  is the logical O R  

of each n x n block (representing the adjacency matrix for a single alphabet elernent) 

in t he  stacked transition matr is .  Formally. for some arbitrary FSM with a stacked 

transition matrix TR. a matrix T',Y is defined as follows: 

This T-Y matris now represcnts a n  adjacent!. niatrix where an unlabeled transition 

is defined be twen tivo states q ,  arid y? i f  S(rli. rr) = rl.1 is defiiied for an!- O E 5. 

The second part of the matrix-based functiori for 'TRI31 calctilates FSSI reactia- 

bility using the T.Y matris.  'I'rivially. thc iriitial statxi ( reprcsctitcd t ~ y  tlic i.ccî,or S I )  

is reachable. The algorithni t,licn uses thc T.Y riiatris to calculatc the sci. of states. 

represented by vector R. wliicli are reaciiable from the  initial s ta te  via at most a singlc 

transit ion as follotvs: 



In general, if T X  is a n  adjacency matrix. and S I  is a matrix representing a subset 

of s tates  (with a 'ln representing t h e  inclusion of the corresponding state in the 

subset), then SI T X *  is a vector where t he  value of each element corresponds to 

t h e  number of distinct paths between states in the subset represented by SI and the  

s t a t e  represented by the  element of t h e  vector S I .  T S n .  Since we are also interested 

in states which were already reachable ( the  initial state vector in this case), we add 

the  previously reachable states t o  our  result. Finally, as we are not concerned about 

how many ways a state is reachable, only that it is reachable. we use the NORiM 

function t o  replace any non-zero elements of a matrix with the value ''1 ." 

In order to  check for states which are reacliable via strings of arbitrary length. 

this process is repeated? substituting the R vector for the initial s tate  vector SI in 

the  previous equation. Thus. 

This is repeated until t h e  number of non-zero entries in R matrix does not increase 

after the application of' (4.2). Note that  for our simple FSbl Gi. all the states are 

reactied after the application of (4. l ) ,  and tlierefore. in this particular case. no itera- 

tions of (4.2) are required. 

\!è have calculated al1 tlie reachable states. The furiction notv calculates the subset 

of reachable states which are also CO-reachable. Tlic algorithm used to  calculate this 

is very similar to the algorithm used to calculate reacliable states. First. the function 

calculates the transpose of the T S  matrix (cal1 it the T.Y1 matris) .  This matrix 

represents the adjacency matrix of a directeci graph wliere t h e  direction of al1 the 

(observable) transitions is reverseci. The furictiori t h i  calculat es  a modified marker 

s t a t e  set by taking the logical A N D  of tlie marker statxi vector 5.11 and the reachable 

s ta te  vector R (i.e., we do not care a l ~ o u t  marker states whicli are not reachable): 

T h e  initial equatiori used to  calculate states wliicli arc c-O-reachahle from the new 

S M  vcctor is 

CR = NORAI(SI21 - T.Y' + .s'.il). 



and the equation which is iterated until the cereachability matrix CR no longer 

increases in its number of non-zero entries is 

C R  = NORM(CR T S '  + C R ) .  (4.5) 

By removing al1 elements in al1 state  and transition vectors and matrices which cor- 

respond to zero entries in the  R and CR vectors, we now have a set of states which 

are both reachable and CO-reachable. 

Example 

To illustrate how t his rnatrix-based algorithni works. we  will use the FSM Gi in 

Figure 4.3 as an input. 

For the  FSL1 CI (i-e.. ri = 3).  t h e  T R matrix appears as 

and thus. the corresponding T S  rnatris is: 

The reachability vector R is calculated for the FSkI Cli as follows: 



Then the new SM reachable marked state vector is 

Finally, the coreachability vector CR is 

We note that as with the reachability calculation. no iterations of (4.5) are required 

for this example. as the  number of non-zero elements in the CR vector does not change 

aRer the application of (4.4). The fi na1 CRo, vector tells us  that only t h e  first two 

states are coreachable. The final step in our esarnple is to remove rotvs and columns 

which correspond to zero e1ement.s in the RG, A C' Rc;, vector (i.e. states which are not 

reachabte and not coreachable). Thus. for esaniple. tlic modifieci TR rnatrix would 

and the SI and S M  vectors rvould appear as  

anci finally. the  resulting FShf is shown in Figure -1.-1. 

:\ matrix-based implementation of the ineet. operation clefinccl in Section 2.2.1.2 

is prcsented in tliis sectioii. WC prcserit a pscii(10-cocl(i algorithni. followed by a 



Figure 4.4: The TRILI of FSM Ci 

discussion of some of t he  key steps in t h e  algorithm. and conclude with a simple, 

illustrative example. 



end 

end 

4- /or each ( p .  q )  such thut .-l.YGI(p) = ;L.\k,(q) do 

.-WLIEET 
-4 ArG ( p ) 

. -~C.I~EET -~C 'O ,  ( p )  

- ~ O . I ~ E E T  -AOC, (P) 

end 
r 

e n d  



Note: TShlEET, SVwEET, SNMEET,  and SLMEET al1 contain information which 

pertains to the displag of the FSM. The information contained in these matrices 

and vectors is not presented here. However, in the MATLAB implementation, 

these vectors are computed using heuristics for screen local ions and Iabe fzng 

rules. 

Algorithm 4.2 creates a FSM that recognizes a language composed of strings which 

are recognized by al1 of the the FShIs used as the arguments to the operation. Thus 

for some arbitrary nurnber of FSMs where 

Cme,, recognizes only those strings. and al1 tliose strings. wliich are recognized by 

The FShI whicli generates the  meet language as clefiiiecl in (2.1 ) can be constriicted 

(i.e.. it is associative). we can simplify our esample. witliout loss of generality. by 

considering hIEET to be the meet of only two FSkls (say Gi and G2). 

The rnatris-based MEET ror t t ine briilds t, he various FSLZI mat rices and vect.ors as 

follows. First. the alphabet label vector ancl the stacked transit ion matrix for G,,,, 

are constructed. Since the language that describes the iiieet, of trvo input  languages 

contains only those elements wliicli are containecl in bot li t lie i r i  pu t  languages. any 

strings i n  either of the two input languages wliicli contain evcnts mhicli arc unique to 

that language will not be included in the nieet laiiguage. Tbtis. X,.,, = Sr;, n Sc,. 

Next, tlic alphabets of the two FSMs are coniparecl. and for cacli set of common 

event labels, the event Iabel is added to the alpliabct lal~el vcct,or .-liV,,,,. and a 

new IQc, 1 . [QG, 1 x IQcl 1 - IQG21 block is adtled t a  tlic iiew sstackcd t,ransitioti rnntrix 



T L e e t .  For sorne o E Sc, 0 &. the IQc, 1 x IQcl 1 adjacency matrix for o in G1 

(call it AuGI), and the IQc,l x lQsl adjacency matrix for o in G2 (cal1 it AuG2) are 

combined to create an adjacency rnatrix (call it A,) for the new FSM in the following 

manner. For i, j = 1 . . . IQG, 1, 

Equation (4.6) can also be described in a more graphical manner as follows 

The new stacked transition rnatrix TRmeet is tlien constructed, with each .-Io 
'i- adjacency matrix block correspondirig to some O E 50, n AC,: 

The initial state vector is constructed as follows. For each vector element in t h e  

initial state vector for Gi. IQc,l vector elements are added to the new initial state 

vector by multiplying the vector element for G i  I>y the  entire initial state vector 

(containing IQG2 1 elements) for C;?. Thus. a s t a t r  in the meet FSkl is an initial state 

if both the corresponding states in Ci and C2 are iiiitial states. 

The marked state vector is constriicted usirig the saine itietliod that was used for 
r 7  constructing the initial state vector. 1 hos. a stat,e i i i  t,lir meet FSkl is a marked state 

i f  both the corresponding states in CiI and Ci2 arc iiiarkcd states. 

The alphabet controllability and observabiiity properties for tliose alphabet ele- 

ments o E Sc, which form are taken as tlie clefauit values for the controllability 

and observability matrices ic i  the riew C,,,,,, FShI. St atc ancl t rarisition locations are 

generated automatically accordirig to a simple liciiristic algoritlim. 



-4s discussed in Section 2.2.1.2, we are primarily interested in t r im languages. 

Thus, the MEET routine includes as a final stage a cal1 t o  the  TRIkI routine, before 

it returns the FSM to  the user. 

Exampte: 

CVe use the two example FSMs Gi and C2 from Figure 4.3 a s  inputs t o  the MEET 

operation to illustrate how this operation works. Equations (1.6) and (4.7) are used 

to construct the new T Rmeei stacked transition matrix. Since GI and G2 have the a 

event in common, the  adjacency matrix A, for Gmeet will contain non-zero elements, 

and is constructed iising (4.6).  The adjacency matr is  can be thought  of as a 3 x 3 

group of '2 x 2 submatris blocks: 

The 2 x 2 submatris blocks are cornputecl w follows. Gi\-en tliat t h e  adjacency matrix 

for t h e  <r event in G2 is 

and the adjacency matr is  for the  a event  in  Ci is 



For each zero entry in the AaGl adjacency matrix. a n  all-zero 2 x 2 submatrix block 

is inserted in the  corresponding entry in t h e  -4, adjacency matrix as follows: 

Note that for each row in the ..La matrix. a state-pair has been included which illus- 

trates how the  rows in the matrix correspond t o  the  elementsof the Cartesian product 

QG, x QG,. .A similar labeling applies to  the  columns of the matrix. Since the  top 

middle entry of the A,,! adjacency matrix is -1  . *O  then the adjacency matrix 

is inserted in the corresponding top middle block of t?lie new .4 ,  acljacenq~ niatris. 

completing the  matrix: 

Since in this case. the only event tliat Cl and G 2  have in common is a. then the 

TR,,,, stacked transition matris is sirnply t h e  -4,. adjacency matris 

Had G ,  ancl (1:? Ilad niore everits in common. thcri thc TH,,,,,, rriatris would he a 

stack of al1 the newly calculatecl adjacency niatrices as iridicated hy (-1:;). C k  also 

note that in this example. alter the final stage when C;,,,,,, is trimoicd, the  resiilting 

FSM shown in Figtire 4.5 contairis oiily two st.at.es. 



Figure 4.5: The MEET of FSMs Gi and Gz 

4.3.5 The SYNC Operation 

.A matrix-based implementation of the  synchronous product operation defined in 

Section 2.2. L.3 is presented in this section. We present a pseudo-code algorithm, 

followed by a discussion of some of the key steps in the algorithni. and conclude with 

a simple. illustrative esampie. 



5. return GsY,vc 

Algorithm 4.3 combines the MEET operation with an operation (step 2 of Algo- 

rithrn 4.3) that adds event self-loops a t  each state of an FSM, to obtain an  output 

FSM that synchronizes on common events, and otherwise allows for al1 possible in- 

terleavings of events, as defined by (2.2). For example. if two FSMs Gi and G2 are 

used as input, the output FSM GsyNc can be informally described as follows. If Gi 

is at some state ql. and G2 is at some s ta te  q,. then for state (q1,q2) in Q. which 

corresponds to G1 being in state ql and G:, being in state y?. then & ( ( q l ,  q2)?  a) is 

defined if any of the following are true: 

&, (qi,  o) is defined and br;, (yz. a) is defined. or 

hcl (ql : 0) is defined and o 4 Zc2. or  

dc, (qz; 0) is defined and a 6 Sr;, . 

The matrix-based SYKC routine first goes througli the event labels for Ci (Zcl ). 

and adds self-loops of events t.o each state ii i  C2 i f  for o E Tc, .o 4. Sc, holds. I t  

does an analogous step for each state in Gl . The procedure then cornputes the meet 

of these two modified FSMs. and returns it to the user. 

Example: 

CVe again consider t h e  esample wliere the two input FShls are GI and G2. In  

this case, a 7 self-loop event is added to G1. and a ii self-loop went  is added to G?. 

resiilting in the two modifiecl automata (C;; and G:) shown in Figure -1.6. 

The MEET of Ci', and is computed using the algorithin prcsented in Sec- 

tion 4.3.4. The resultiiig .-\,,. . d l { .  and .-\, matrices reprcscnt the adjacency matrices 



Figure 4.6: The example FSMs with self-loops 

for a. 3 and 7 i r i  t, tic ricw FSM Ci',,n,: 



Figure 4.7: The SYNC of FSMs G', and G2 

Therefore. t he  resulting T R,,,,, s tacked  transit  ion mat r i s  ( M o r e  t r i m m i n g )  is 

T h e  o t h e r  FSM vectors and mat rices are calculat,ed in tlie sarne manner  as for t h e  

- 'il MEET operation.  Note. howcver. t h a t  for tlir Sk'XC' opcrat ion. X,,,, - ,r;, u Ir;, . 

The trimmed FSh4 which is const ructed using tliis procccliirc is shown in Figure ~&.i.  



4.3.6 The PROJ Operation 

A matris-based implementation of the pojection operation defined in Algorithm 2.4 

is given in tliis section. \Ne present a pseudo-code algorithm. followed by a discus- 

sion of some of the  key steps in the algorithm, and conclude by discussing a simple, 

illustrat ive example. 

Algorithm 4.4 : GPnoJ = PROJ(G)  

f. input:  C = ( P X .  T R .  TS ,  SN. S I ,  SM,  SV. S L .  .-W. .AC. -40)  

-3. for i = 1. .  . (.-lXI do 

if .-D(i) = 1 then 



i j  AO(i)  = O then 

TXuo = T.iCrro V T R ( ( ( i  - 1 )  . lSiVl+ 1). . . ( i  ISNI). 1 . . . ISNI) 

end 

while the nurnber O/ non-zero elements in T X  is increasing do 

T X  = NORM(T.YuO + TXuo)  

end 

5. MAP = [SI  - T.YLro + S l ?  "new"] 

while there exists sorne r-uw ( j )  labeled %eu?" in the !CI-4 P nicrtrix. do 

for i = 1 . .  . I - -LV~ fi0 

end 

if S # .Il .-IP(k. 1 . . . ( SNI )  for somc k therr 

and SLpno j rqectors 

cldd neuq rouvs und cohmns  [ O  thr- TRPRoJ clrid T.TPROJ matr2ce.s 

end 

change ent ries in  the T RPRo j clnd 7'spno J mat rices tu *'l" 

to r-eflect trnrisitions betioeen stnte s e t s  in u s  reqaired 



und oeclorii is not presented here. Howeaer. i i r  the .CIIITLAB implementation, 

Lhese vectors are cornputed using heurzst ics Io,. screen locations and labeling 

r-des. 

:ilgorithm 4.4, which is a matrix-based implementat ion of Algorithm 2.4, con- 

s t ruc t s  a FSM mhicli generates t h e  projection of tlie laiiguage generated by an input  

FS M. 

First. tlie routine creates a ( n  x 1 2 )  T.\'r.io matrix.  I r i  th is  case. t h e  TdYuo mat r ix  

is based on t h e  (rn - n x n )  Stacked Transition Sla t r is .  bu t  includes only  unobservable 

e w n t s .  Thus. for I = {i 1 .40[i] = 0.i = 1.. . nt} .  

The TSL:o m a t r i s  as definecl above can bc int.erpret,eti to be a n  adjacency mat r ix  

for any single unobservable event.  W h a t  tve iiow reqiiirc is a niodified adjacency 

mat r i 3  whicti accounts for str ings of unobservable e\-ent S. To accornplish t his. we 

i tera te  the  equation 

until tlie n u m l ~ c r  of non-zero elements in the  T S  mat r i s  s tops  increasing. ive have 

notv created a n  adjacency m a t r i s  where a trarisitioii is defiriecl I~ettveen two s ta tes  i f  

t lierc esists  a chain of unobservable events conricct ing t lie trvo s ta tes  in the original 

FShI. 

Thc PROJ rotitinc ttien crcates a 1 x 11 .\[:\P rnatris tliat tvill contain subset 

information for ail the  s t a t e s  in the new FSh[. Tliis iiiatris s t a r t s  as a 1 x n matr ix .  

hiit will grotv as iiew s t a t e s  a re  acidecl to a A- ,d r i  i i iatr is .  tvit li cacli of the  k rows 

corrcsporiding tao a s t a t c  in t l ir  projcction statc-spacr.  Row 1 of the hl.-\P m a t r i s  

(talie orily row a t  tliis stage) is dcfinccl as 



This is equivalent to the subset of s tates  defined by a-CLOSÜRE(qo), or  the set of 

states the input FSM could be in after t h e  occurrence of a (possibly zero length) 

string of unobservable events (Le., no observable events have yet occurred in the  

input FSM). This subset represents the initial s t a t e  in the output FSM. 

This first row of the MAP matrix is flagged as "new." The  routine then enters a n  

iterative stage. Here. for each "new" row in the  MAP matr ir ,  the routine determines 

what subset of states S can be reached from the  subset of states represented by t he  

"new" row in the M A P  matrix via each o E Co followed by a string of unobservable 

events. T h e  equation is as follows: 

This equation uses the subset of s tates  represented by the j th  (.-new") row in the  

MAP matrix. and the observable event with a n  adjaceiiry mat r i s  represented by the  

ith n x n block in the çtacked transition m a t r i s  TR. If  the S 1-ector does not match 

any of the existing rows in the MAP matrix. tlien it is addecl as a new row to the  

M.4P matrix. and is flagged as - n e w 7  as follows: 

-4s the  M.\P matrix is being constructed. corresponding T R .  S.V. SM. SI. and 

SL matrices (which represent da t a  for t h e  new FSM) arc updatcci as required with 

new transitions and states. The states represented hy the  vtlct,oi- elements in the S N :  

S M ,  SI. and S L  vectors correspond t o  t h e  rows in the .\I:\P niatrix: tliat is. t h e  first 

row in the M A P  matrix corresponds to the  s t a t e  represented bv t.he first element in 

the  S.V. S M .  S (  and S L  matrices (and the  first. sow ancl r-oliiriiri in each block of the  

the T R matrix)  

hlthoiigh in  general. it is desirable to obtain a iriiiiiiriiini s t a t c  rcpreseritation of 

the language gerierated by the output  FSM. tliis routine cloes riot do this by default. 

This allows us to examine the structure and  size of tlir resiilt ing FSiLI. and make 

conjectures about how the structure of t he  input FShI impacts the size of the  output  

FSM (I~cforc riiiriimizing). 



To illustrate how the P ROJ matrix algorit hm works, we partition the event set C 

of Gl in Figure 4.3 into Cu, = {a} and S, = {$}. The  T-Y matrix resulting from 

(4.8) and (4.9) is 

and the first rotv for the M A P  matris as definecl in  (4.10) is 

Now. ive iteratively apply (4.1 1) to each -rietvS' row in the M=\P matrix. For the first 

iteration, we consider the first row of the XIi\P rnatris. and the ,LI event. The -3 event 

maps the first state to the third state. and the secorid state to the first state. !Vote? 

Iiowever that it is possible to rpach the  seconcl statc from the first state via a string 

( namely a )  of unobservable cvcnts. T tiiis. ,.3 also. i r i  effect iiiaps the second state back 

to the second state. Tlierefore, the MAP rnatris beconies 

WC nonr consider the second rou. of tlic .Il.-1P matrix. ivhich contains the only 

--new" flag. After applying (4.1 1 )  to the row. no new rows are added to the iII.4P 

matris.  CVe can tlierefore coliclucle tliat tlir oril!. tivo state-sets which make up  the 

projection state space arc {ldlc.\l'orki~ig} aiid {Iclle.\.\Orki iig.Broken}. The adjacency 

mat rices for eacti of the observal>lc c\mits are constructeci as the -11.4 P matrix grows. 

Thus,  if at sornc stage duririg tlic proccdure. t . 1 ~  .LI .-1 P rriatris contains n rows. then 

For each observable event. t lierc csist.s ari rr x 1 1  adjacericy matris. The FSM which 

recognizes the projection of L ( G I  ) is s h o w  iri Figure ?.S.- For sirnplicity, ive have 

renamed the state "{Idle.Working}" as aiid the s ta t r  ~{Idlc,CVorking,Brokcn}" 

as --Y.. 



Figure 4.8: The PROJ of FSkl C:, 

4.3.7 The MIN1 Operation 

T h e  matris-basecl M I N I  operation presentecl here iniplenients Algorithm 2.1. T h e  

algorithm takes an  input DFA. and provides a n  ou tpu t  DF.4 n-liich recognizes t h e  s ame  

language. but w hich contains the  minimum number of s ta tes  reqiiirecl to recognize t hat  

language. The m a t  riz-based implementat ion of t his algori t hni has been developed t o  

work with matr ix  representations of FSbIs. 

First. the  M I N 1  routine constructs a three-coliimn n ia t r i s  FLAG. The first two 

columns of each rotv of t his matrix contain unique i. j pairs. i # j. where i. j represent 

distinct states in t he  FSM. Thus,  there are as  man- roms as t liere are combinations 

of two distinct s ta tes  in the  FSM (specifically: ( r i  ( 1 2  - 1)/'1) rows). The  entry in t h e  

third column of each row (with  entries i. j in the first two coltimiis) is defined using 

the X'larked S t a t e  Vector S X I  as follows: 

Coliimri 3 cntry = 1 i f  S.\l{i) + S.\ / ( ; ) .  or 

Colrimn :3 entry = O i f  I ? J l ( i )  = .q.\l(j). 

Tlie routine tlien goes through eacli row of tlic F [,.-\Ci riiatris. ancl for cacti row 

containing a zero in t h e  third column. it finds the st.at(a-pir (q , , .  q , ] )  -where qit = 

S(q, ,  o )  and q,, = 6 (q l ,  O ) .  qt # qJ7 o E S ,  and  g,. q, correspoiidirig to  i. j in the first 

two columris of the FLAG rnatrix. If the  row in t,bc Fl,r\C; rtintris wtiicli corresponds 



to the s tate  pair (q,;, q J j )  has a "1"  in tlie tliird column. then the  routine enters a "1" 

in the third column of the row corresponding to the (qi7 q J )  s t a t e  pair. This process 

is iterated until no new 1's a r e  entered in the tliird column of any row in the FLAG 

mat rix. 

Finally, those pairs of states  whicli have not been *FlaggedV in the  above iterative 

process, are considered to  be equivalent states. The  matrix-based routine therefore 

combines these states, and outputs  a minimum DFA to  the user. 

It should be noted that  this  implementation of the Myhill-Nerode theorem. while 

Fairly simple to code in kL.\TL.AB. is not the most computationally-efficient way to 

calculate the minimum DFA [Hop7l]. Specifically. Algorithm 2.1 (step 2. line 6) 

uses recursion on lists to efficiently flag iinflagged pairs. In contrast. our rnatrix- 

based routine cycles through the  list of s tate  pairs to test. and in some cases flag, 

unflaggeded pairs. This cycle continues ~int i l  a complete test of al1 the state pairs is 

done wi th  no further fiagging. 



Chapter 5 

Examples 

Bef'ore we present a series of example, we first need to define the two types of figures 

which are used to present some of our results. First. we display a form of adjacency 

matris  which illustrates how states map to other states after the occurrence of an 

observable event O ,  followed by a string of unobservable events. Bot h the  x-axis and 

y-a'ris represent the set of states in these matrices. 

bVe also use an no-reachability matrix (sometinies rrferrecl to as a summary ma- 

trix). nehere nonzero (i.e., dotted) elements in the matris represent occurrences of 

strings of length n in the plant. Thus, while t h e  J.-asis still represents the  set of 

states. the s-axis represents al1 possible strings of observable events of length n. 

5.1 The Two-Train Problem 

For oiir first example, we chose the  simple problem tvliere two trains must share 

a common length of track [RWSS], [Won96]. In this prohlem. parts of' t he  track 

have sensors whicti can detect the passage of t lie t.rairis. aiid parts of the  track have 

stop lights whicli may prevent the trains froni entering t lie follotving sections of track 

(Figure 5.1 ). 

The plant language can be modeied by taking the synclironous product of two finite 

state machines (Gvl  and Cvz. each representing the brliaviour of a train) which are 

provided in Figure 5.2. Let V be the language recognizccl by the resolting automaton 

Gr Ci'\- recognizes 



Figure 5.1: .-\ block diagrarn of the two-train problem 

Vehicle 1 

Figure 5.2:  Tlic coin poricrit iiio<lcls for I lie two-traiii prohlcni 

9 2 



In controlling this system, we require t ha t  t h e  two trains not occupy t h e  same segment 

of track at t he  s a m e  tirne, thus  the  legal language is defined as the  language E 

recognized by the  au tomaton  Gv after t h e  states (1; l ) ,  ( 2 , 2 ) , ( 3 , 3 ) ,  and  (4,4) have 

b e n  removed together wit h al1 transitions leading into and  ou t  of t h e  removed states.  

This  provides a FSM which recognizes a language which does not  include strings 

corresponding to t ra in  movements which result in the  two trains occupying t h e  same 

section of track a t  t h e  same tirne. 

New' as Figure 5.1 indicates, there is no sensor before section 2 of t h e  track. This 

means tha t  t h e  unobservable event set is Cu, = {<r2,h}. As par t  of the solution t o  

t h e  control problem, it is useful to  take t h e  projection of al1 those strings which are  

considered t o  be  illegal. The language V - E represents al1 the  possible strings of 

events in t he  plant minus t h e  legal strings, leaving only those strings which are illegal. 

A n  automaton G'v-E which recognizes t h e  language Cs* - E can be constructed. so 

that the FSM which recognizes P ( V  - E) can be calculated: 

As GI . . -~  has 56 states.  it is possible t ha t  t he  FSM wliich generates t h e  projection of 

b' - E could have o n  the  order of '2'' states.  

5.1.1 o-Reachability Aiialysis Results 

Table 5.1 summarizes the  results obtained for the  o-reachability analysis of t h e  

two-train problem. It is interesting t o  note  that  while in the  worst case. t h e  size of 

t h e  state-space could be  on the order of 10'" evcn a 10-reacliability test indicates 

t h a t  due to the s t ructure  of t h e  problem. t he  upper liniit is iio greater than 202%. A 

30-reachability test further reduces this upper  lirnit to 1600 states. 

Although a-reachability analysis does riot allow tis t.o strictly d o  I ~ e t t c r  tlian makc 

esponent ial predictions about  t lie size of the statc-spacc: of -tlic projection FSM. the 

structure of tliis problem allorvs us to  improvc otir s t a tespacc  cs t imate  significantly. 

Specifically, by using the number and type of transitions cotipled wi th  t tie number 



Table 5.1: u-reachability results for the two-train problem 

Fan 1 1 

State Estimate 

Max. Subset 

corn plexity 

I / ControIIer 

Figure 5.3: -4 block diagram of t h e  HVAC system 

la-reach. 

20225 

1 3 

O ( l ~ ~ 0  

of states. instead of siinply using the number of states. as the parameter for the 

exponential estimate we can reduce our state-space estimate Ily a factor of F3.  Thus, 

the la-reachability test indicates that  the size of the projection state-space is of order 

213 versus the  state-space of t h e  FSX4 which by itself indicates that the size of the 

projection state-space could be of order P. In this case. the O-reachability test has 

reduced the exponent by a factor of 4. 

5.2  An HVAC System 

'20-reacfi. 

1839 

9 

Q( lL I2 )  

A heating. ventilation and air-conditioning (Fi\::\'') DES diagnosahility problem 

from [SSLC!lG] (Figure 5 . 3 )  was chosen as aii esairipli. or a systi-m cvhcrc a large 

number of t,hc t,ransitions occurring in thc FSiL.1 arc ririobservable. In trhis case, LIS 

of 218. or more than 50% of the t,ransitions in t h e  90-state FS h l  arc unobscrvable. 

t r i  o u r  arialysis of tlic problcm. LW assiimc tliaî. é t l l  tlic h i l i i r c  cvctits are strictly 

30-reacli. 

1 GO0 

9 

W L P )  

-la-reach. 

4980 

(i 

~ l ~ l ' )  

50-reach. 

37659 

3 

w015) 



Table 5.2: o-reachability results for the HVAC system 

unobservable, and tha t  al1 other events are observable. For simplicity, we d o  not make 

use of additional sensors which are used in [SÇ Lt96] when checking for diagnosabili ty. 

State Est. 

Max. Subset 

corn plexi ty 

T h e  plant can be rnodeled by computing t h e  synchronous product of six compo- 

nent FSMs. These component FSMs represent models of a Pump, a Valve, a Fan, a 

Boiler. a Load, and a Controller (Figure .5.-l(a)-(f). respectively). By taking the  syn- 

chronous product of these components. a 90-state. 228-transition FSM is obtained. 

We then note tha t  the set of observable events is 

ivith a combined total of 110 transitions in the  cornposed 90-state FSkl. and the  set 

of unobservable failure events is 

tvit h a combined total of 1 1s transitions in the  cornposed 90-state FSM. 

la-reach. 

528897 

18 

5.2.1 a-Reachability Analysis Results 

40-reach. 

808786 

18 

0(1~014) 

Table j .2 summarizes the results obtained for the 0-reacliability analysis of the 

HVAC problem. in this example, while the best results are  obtained using a 20- 

reachability test. the maximum subset size does riot rrcliire past thc  initial lcr- 

reacliability value of 18. Thus. a simple Io-reachability test resiilts i r i  a-rcdiiction by 

a factor of five of the esponent  (2" versus 2 / 5 1  - 2'') useci to estimatc t h e  sizc of t lie 

projection state-space. 

50-reach. 

913899 

18 

o ( l ~ )  

20-reach. 

26992 1 

LS 

30-reach. 

272966 

18 
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Figure 5.4: T I i c !  conipoiieiit modcls for tlic H V:\C' systcm 



It is also of interest to  look at tlie matrix structure for some of the transition ad- 

jacency matrices and some of the summary matrices. Figure 5.5 shows the adjacency 

matrix representing a NFA containing al1 the unobservable events as defined in the 

HVAC problem, plus additional unobservable transitions between states as follows: 

&(ql, i) = q2 if 3s E Si, such t hat 6(q1, s) = qz. 

The adjacency matrix can be interpreted to  mean tlie following. For some s ta te  

represented by a matrix row, the adjacency matrix shows al1 the states (represented 

by the matrix columns) which can be reached by some string of unobservable events. 

For example, i f  there is a dot in row 1. column 6 and in row 1. column 8' then there 

are two strings of unobservable events starting at s tate 1. with one string leading to 

state 6 and the other to state S. 

Figure 5.6 summarizes the data obtained iv l i i le  doing the Lo-reachability test,. 

'The matrix rows correspond to states in the FSM in t h e  usual manner. Each column 

however corresponds to a unique a E E,. Thus. tlie niatris can be interpreted to  

mean that after observing some event a (follorvetl by some string of unobservable 

events), the system can be in at most some (not necessarily strict) subset of the 

states corresponding to the matrix rows containing dots. We can see from Figure 5.6 

that the FON event (corresponding to matrix column 1 )  results in the system being 

in at most a subset of 18 states in the 42-65 row range. whereas the FOFF event 

(corresponding to matrix column 2) results in the system being in a subset of 9 states 

in the 78-90 row range. In fact' since the FON event niaps to a subset of 1s events. 

it is the event which bounds the la-reachability estimate (Le.. since there a r e  no 

other events which map to mort  than IS states. thcri FON is one of the events wliich 

providcs the O(?'" value). 

LVe have also included the 20-reacliability niatris ( Figiirc 5 . Ï ) ,  which is iriter- 

preted the  samc way as was the la-reachability rnatrix. witli tlie exception being 

that each column now corresponds to soine ii~iique group o f  two observable events 

(i.e.. FON,FON o r  FOFF.CV, etc. . . ). It  is iritercstiiig 4.0 note Iierc that  wliile eacli 

of the tcn olxervable cvciits inappeci t.o sonir iiotiri~ipt.y siil,sct of sMcs  in Figure 3.6. 



Figure 5 .5 :  Matris  s t ructure for tlic iinobscrval~lc cvents 



Figure 5.6: Matris structure for the La-reachability inatrix 

only 16 of a possible 100 groups of double events map to nonernpty subsets of states. 

Gnfortunately, the largest of these subsets is still 18 states. and  tlius. no significant 

iniprovement can be expected over the La-reacliability projection state-space size esti- 

mate. Indeed. this maximum subset size does riot drop I~cfore tlie state-space estimate 

s tar ts  increasing due to t h e  double counting effect disciissecl in Section 9.1.3.2. 

Finally, the adjacency inatrix for the FON event (Figiire 5.S) l i ~ s  been included 

to illustratc how cach eveiit maps to a small subset of states in tliis system. The ad- 

jacency matris for t h e  other observable events are sirnilar in structitrc to tliis matrix. 





Figure 5.8: The adjacency matrix for tlie FOX event 

Note that for this example. tliere is a significant amount o l  iiondeterminism due to 

strings of unobservable events following tlie FON event. 

5.3 The Tsitsiklis Problem 

It lias becn proveii ['l'siSgl tliat building supervisors formpartially-observable sys- 

tems can be computationally intractable. [ri devising the  proof for this .  an  arbitrarily 

large DFA ( Figure 3.7)  parariieterized by 11 is constriicteci, wi tli ari irr.iobservablc event 



set Cu, = {u 1, d l ,  u2, d-- . . . , un, dn). The control problem in ttiis example is to dis- 

able t h e  events in brackets in Figure 3.7. In order to do this, the  supervisor must 

remember the sequence of 1's and 0's which have occurred. Based on which a; event 

it observes, the supervisor then must examine the irh event. I f  the  ith event is a 1 

then the  supervisor must disable O othertvise it must disal~le  L. 

When larger versions of the  FSM shown in Figure 3.7 are constructed, the  size 

of t h e  state-space of the  FSM grows witli n'. However. as the  supervisor must a t  

each stage remember the  sequence of 1's and 0's whicli have occurred, the  constructed 

supervisor must be of order 2". This example. while contrivetl. is of significant interest 

t o  us because it provides a scalable exarnple of a case where o-reachability does not 

improve the  estimate of the size of the  projected state-spacc significantly. 

The 37-state. %-transition example in Figure 3.7 is constructed by scaling the 

general problem to n = 13. For this esample. the nrinilxx- of statcs in the FSAl is 

2 - n2 + 6 - n + I or O ( d ) .  The proof found in [TsiSD] stioms tliat the s i x  of a 

supervisor for such a system is O(?").  Since there are 2 :< 11' + r c  occurrences of L 

transit ions and the sanie number of occurrences of 0 t rarisi t ions. t lie 1 a-reachability 

test will always return t,wo sets of size 2 x nL + n.  Tliiis. the Lo-reachahility estimate 

grows esponentially tvorse as rz increascs. I\k conjcct. tire r Iiat t lie na-rcachabili t j -  

tests will also procfuce estimates ivhicli grow esporient ially r i t i l  1 2 .  

While ['l?siSS] shows tliat the  size OC a super\.isor iiitist I>c O(?" ). 10-reachability 

analysis shows that the sizc of the projection s ta te  spacr of t tie system (upon which 

the  supervisor is based) could be as high as 0(.2'""'+" ). Thus. it is clear that in th i s  

type of cxamplc wiiere the number of occurrences of a spcr-iCic olxervable event is 

tiigh. O-reachabili ty does not. offer any irnpro~*oriic~iits t o st  ato-spacc sizc estimatcs. 

5.3.1 a-Reacliability Aualysis Results 

Tahlc 3.3 sutririiarizes ttic rcsiilts ol,taiiitd for I lic a-rcac1iahilit.y analysis of this 

example. It is interesting to note that  significant, iiiiprov<wiciils on tlic sizc cstiniates 

arc  rnatlc tip to and includiiig t lie 30-rcacliahility 1 CS! . \\'c coiijccttirr tliat. diic to thc 



Table 5.3: cr-reactiability results for the Tsitsiklis problern 

nature of the construction, the best estimate will occur at approximately the  ntha- 

reachability test (with some correction for t iie double-couiiting effect). where n is the  

parameter used for the  constrrictiori of the system. 

Figure 5.9 shows how hoth the 1 and O events (corresponding to the first two 

40-reach. 

5220 

2 

I I  1 
State Estirnate 

Max.  Subset 

corn plexi ty 

columns in t h e  matr ix)  map to a large subsets of states. This corresponds to  t h e  large 

number of occurrences of 1's and 0's in the system. This matris also shows how each 

of the a,-events (corresponding to the  iast 3 columns of t lie mat rix) maps to exactly 

2 states. as expected. In addition. the adjacency matr i s  presented in Figure 5.10 

illustrates how the  --L" event is defined for a large subset of states. compared to  

Figure 5.S in the HLT..\C exairiplc. where the non-zero elernents of the adjacency mat r i s  

are more localized. I t  is also of interest to note that  unlike the  HVAC example, no 

nondeterminism has becn introduced ir i  tliis inatris. as t h e  are no places rvhere a 

'-1'' can occur followed by a string cornposecl of iinobservahle events. 

5.4 A 10-state Cycle Problem 

The somewhat contrived esample DES moclel sliown in Figure 5-11 is an instance 

of the class of FSiLIs preseiitecl in Figure 3.6 for ri=?). It lias heen included in this  

section as an esample of a case where o-reachabili t y  oflers tio iniprovement over the  

single _=-transition geomctry rcsiilt prcscnted in Sect,iori 3.1.1.1. 

30-reach. 

260 

3 

o(12.1~) 

la-rcacii. 

-1 194317 

21 

~ ( I W  

'La-reach. 

1083 

8 

O(IL I~)  



Figure 5.9: . \ fatr is  stri icturc for t I i c  10-rcacliabi1it.j- i r iatr is  



Figure 5.10: The adjaceiicy inatrix for i lie -.I" ci-cnt 





Table 5.4: o-reachability results for the cyclic esample  

5 -4.1 0-Reachability Analysis Results 

State Est. 

Table 5.4 presents tlie results of t he  O-reachability tests which were done  on the 

FSkl in Figure 5.11. We can iiiimediately see tha t  the la-reachability test gives a 

rvorse es t imate  than the  4/4 - '1'' - 1 = 767 upper limit for the  number of projection 

states. and  tha t  eacli subsequent iteration of t he  test serves only to  roughly double 

the projection state-space est iniate. 

1 a -  reacli . 
1-53? 

To try and  understand why our o-reachability results do  iiot improve the projec- 

tion state-space estimate. we look a t  the adjacency niatris for the observable event 

a (Figure 5.12). Xote that as in tlie previous cases. this adjacency matr ix  represents 

not only t h e  occurrence of a events. but also t he  occurreiice al1 possible unobservable 

event strings whicti may follow ari a event. Wliereas in the previous example. one 

of the events maps to a large subset of states.  in tliis esaniple Figure 5-12 illustrates 

the less desirable case when a n  event ( i n  tliis case t tic a event ) maps to  t h e  entire 

set of states.  It follows that when this t ype  of rnapping occurs. we can conclude 

that  no number of iterations of the  O-reachability test will reduce tliis set. since t h e  

occurrence of a n  arbitrarily long string of n events will always niap t o  t h e  ent i re  set 

of states. This  is rxliil~itcd i i i  Figiirc 5-13 for %-reacliability. 

2a-reach - 

2519 

30-reach. 

4999 

-La- reach . 
8911 

50- reach. 

15871 



Figure 5.12: Tlic adjacciic~. n ia t r i s  for 1 . 1 1 ~  o ctwit 



Figure 5.13: Rcachable state-sets vin al1 5-lerigtli strings 



Chapter 6 

Conclusions and Discussion 

The DES software requirements and the set of mat ris-based algori t hms presented 

in this thesis constitute a basis for the design and implernentation of a DES software 

toolbox which provides a flexible and visual environment for the design and analysis of 

discrete-event systems. This design attempts to combine some of the useful features 

of existing software packages with the proven reliabiiity of a high-level matrix-based 

computational engine (M..\TL.-'B). In addit,ion. tlir tliesis outlines a series of user- 

interface requirements which enable t h e  user to design. niodify ancl analyze discrete- 

event systems in a simple and intuitive manner. 

We have proposed a metliod for storirig DES itiodcls ( i r i  tlie form of FShls) in 

a matrix-baçed computational environment. W-I liave also provicled a set of matrix- 

based DES operations rvhich serve as building hlocks lor iiiodeling DES problems. 

The logical continuation of this work would include coitipleting the set of rnatris- 

based DES operations. At a highcr level. t h e  softwarc Iiw been designed so that it 

could be possible to include modules whicli incorporate additiorial DES requirements. 

sucti as timing or knowledge. into tlic basic DES too1l)os. 

Our set of requirenierits arid protot,yptb soft warv iriipleriitritatiori scrvcd as a tooI for 

investigating the eflects of striict ortB on t-hc coiti piit ntiorial roriiplcsity of const ruct ing 

i?S.\4s wliich generate projectecl 1angiiagc.s. -4 iiiiinlxir of nictliods (I>ased on DES 

striictiirn) which attempt to improw tlie cst iriiatt~ of t tir s i z r  of tlic projrctiori state- 

spacc Iiavc been preseritecl. Tlic effcct ivcricw of t h s  type of arialysis is illtistratecl 
r~ t hrougli a serics of simple yei illiist rat i v e  csairiplcs. 1 Iicsct cxanip 

to show cases where our anaiysis improvcs arici docs 1101. iniprovt 

projection statc-spacc. 

tes have bcen choscn 

tlie estimatc of thc 



It is our belief (confirmed by the work presented in [O WSO] ) t hat by analyzing in 

more detail the FSkI propert ies related specifically to a-reacliabili ty. the  results pre- 

sented h e r e  could be improved upon. Further, we believe tha t  t o  1~111y take advantage 

of the rvork done here? some work could be done wliicli would identify exactly how 

problem structures (auch as cycles) could be rnodified so tliat cornputational problems 

can be avoided. 

Finally. the cornputational corriplexity analysis preseiitecl in tliis thesis could be 

implemented in the prototype software tool as a packaga of pre-fi ltering tests which 

would provide estimates of the  computational complexity of doing projection before 

the projection operation is run. 
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