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Abstract

The complexity issues associated with the finite state machine (FSM) framework
for analyzing partially-observable discrete-event system (DES) control problems are
reviewed. Methods that take advantage of system structure to provide better es-
timates of the size of the state space of FSMs which recognize the projection of
partially-observable systems are presented. The computational advantages or disad-
vantages of each method are discussed. The applicability and effectiveness of these
methods are illustrated using a number of simple. vet illustrative, examples. The ex-
ample problems illustrate cases where our methods are both effective and ineffective

in improving upon the standard complexity results.

The existing set of DES software tools is reviewed. and used to form a basis for
the development of a new more flexible and intuitive DES environment which may
be used to design. analyze and solve DES problems. The design of this tool is such
that it can be implemented in a reasonably simple manner using common proven

computational tools. and graphical user interface (GUI) building tools.

In conjunction with the development of a new DES software tool. matrix-based
data structures and DES operations are presented and developed for a selection of
common DES functions. This approach is designed to take advantage of high-level
matrix operations available in a number of commercial off-the-shelf (COTS) software
applications, and to take advantage of sparse-matrix data structures which allow
DES information to be stored and processed in an efficient manner. Finally. the set
of matrix-based DES operations is designed so that it is straightforward to write

high-level scripts which perform more complex DES analysis tasks.
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Chapter 1

Introduction

The Discrete-Event System (DES) framework can be used to model an increasing
number of engineering problems arising in industry today. Applications including
flexible manufacturing systems [LMMB88], communications protocols [RW92a], fail-
ure diagnosis systems [SSL*95], [SSL+96], task scheduling. and database management
[Laf88] illustrate why a system that focuses on the discrete nature of these applica-
tions is in increasing demand. While a body of research pioneered by [RW82] and
discussed in [RW39]. [CLO93]. [ThiY6] has provided a basis for this type of system
modeling and control. 2 number of issues remain that prevent the broad acceptance

of this research in industry applications.

One of the key issues in the field of DES is the problem of state-space explosion.
which occurs when modeling large (typical) syvstems. A number of methods have
been developed that attempt to address the problem of computational complexity in
large and/or partially-observable systems [BH93]. [CLLY2]. [HL94}. [LW93]. [LW94].
[OW90]. In general. state-space explosion may occur while modeling the problem
or while devising a suitable controller. In various instances. the number of states
of the system that a controller must keep track of becomes intractable. making the
control problem difficult to solve in a reasonable amount of time. or using a reasonable

amount of computer resources.

Our work represents an attempt to understand the reasons for state-space explo-
sion. notably in the worst case scenario where a controlling agent is only aware of
a subset of the events occurring within a system—and thus must keep track of all
possible states of the system. We examine the structure of the modeled system, and

present reasons why. when developing the model. state-space explosion accurs or does



not occur. We then take advantage of this knowledge to devise a series of tests that
are performed while modeling the system to estimate the extent of the state-space
explosion. The results of these tests identify how the system model can be modified
to minimize the problem. This would correspond to recommending that additional
sensors be installed in the system, or that various events be prevented from occurring
or eliminated entirely from the system. In devising these tests, it is necessary to take
care not to introduce computationally expensive procedures into our test algorithms,

thereby possibly invalidating the usefulness of the test.

Computational complexity issues are generally associated with the development
of efficient algorithms that can then be implemented as software tools. Therefore, as
part of this thesis, we develop matrix-based data structures and algorithms which can
be used to model and analyze DES problems. By coupling complexity analysis with
these data structures and algorithms. we provide an efficient and flexible environment

for building and analyzing partially-observable discrete-event systems.

1.1 Partial Observability and DES

The work contained in this thesis focuses specifically on cases where only a sub-
set of the events in a modeled system are observed by controlling agents [LW83],
[CDFV8S]. [Tsi89]. [RW90], [RW9I2b]. [RW95]. Since in cases such as these. the con-
trolling agent needs to keep track of all the possible states the system may be in at
any one time. the resulting supervisor may need to store control information for all
possible combinations of states of the system. This vesults in a supervisor which could
require up to 2" amount of time to generate. and which could take up to 2" amount
of storage space. where n is a measure of the size of the partially-observable system.
The exponential growth of the supervising agent is computationally intractable when
working with problems where n is large.

Partially-observable systems are common to DES problems. specifically in the
areas of decentralized control and fault diagnosis. The structures created when solving

these types of problems can exhibit the exponential growth described above. [t has

N



been noted [SSL+95], [SSL*96], [OW90] that this type of exponential growth is seldom

observed.

1.2 Tools for Computing and Displaying Discrete Event Sys-

tems

Throughout the process of creating and analyzing example problems, we noted
that existing DES software tools were of limited use in a number of areas. In general,
there existed no simple method for processing large numbers of problems: no method
for writing high level scripts for solving specific types of DES problems that require the
use of a number of different basic DES operations; no method for easily expanding the
functionality of existing tools by adding new DES functions as required: and finally
no method for displaying plants or controllers (finite-state machines) in a simple and

understandable format.

[n this thesis. we provide some background on a number of existing DES tools for
reference, and then proceed to propose a DES software design based on prototype
software that we believe satisfies a number of our requirements. We also develop in
detail some matrix implementations of a subset of DES operations —specifically those

which relate to modeling partially-observable systems.

1.3 Research Contributions

The following list summarizes the research contributions of the material presented

in this thesis.

e Matrix-Based Tools: Matrix-based data structures. together with a set of matrix-
based implementations of existing DES operations have been provided. These
data structures and operations have been implemented using MATLAB [Mat92]

software.



e Front-End Graphical User Interface (GUI) Requirements: A set of requirements
has been developed and a prototype GUI has been implemented using Tecl/Tk
[Ous94] software.

e Complexity Analysis for Partially-Observable DES Problems: A set of DES
structural properties that tighten the complexity bounds for solutions to partially-

observable problems has been identified.

1.4 Thesis Outline

e Chapter 2 provides a brief review of the areas of research which form the basis
for the results presented in this thesis. The Discrete-Event Systems (DES)
framework first introduced in [RWS82] is presented. followed by some selected
background topics in the fields of Computational Complexity. Automata Theory

and Graph Theory.

e Chapter 3 describes the specific problem of state-space explosion when consid-
ering partially-observable DESs. and presents methods of analysis which take
advantage of the structure of the system to make worst-case estimates about the
resulting state-space explosion. A detailed analysis of the sensitivity of DESs
to various structural properties is presented. Finally, methods for identifying
and modifying problem structures within a system to minimize the resulting

state-space explosion are presented.

¢ Chapter 4 provides a review of existing DES software tools. proposes some high-
level architectural requirements for a new set of tools. and presents algorithms
used to implement the structure-based analysis presented in Chapter 3. includ-
ing a DES MATLAB toolbox with specific procedures for testing and analyzing

partially-observable systems.

e Chapter 3 illustrates hiow typical DES problems may be analyzed and, in some
cases. modified for control based on partial observation using the tools presented

in this thesis.



@ Chapter 6 provides conclusions about the work presented in this thesis.



Chapter 2

A Review of DES and Automata Theory

2.1 Automata Theory

In general, the work done in DES does not require that the system be modeled
using any single methodology. Typically. however. much of the work done in the
field to date borrows models from the body of work in computer science on automata

theory.

2.1.1 Deterministic Finite-State Automata

A Deterministic Finite-State Automaton (DFA) is formally denoted by the 5-tuple
(@R,5.0.9,, Q). where @ is a finite set of states. ¥ is a finite input alphabet. 4 is
a partial transition function mapping Q x ¥ to Q. ¢, is an initial state, and @, 1s
a set of terminal states. [n DES theory, terminal states are often called marked or
marker states. Figure 2.1 shows a simple example of a DFA! where an initial state
is indicated by a left-pointing arrow () in the state box. and marked states are
indicated by right-pointing arrows (—) in the state box. If the initial state is also a
marked state. then a double-headed arrow () is used in place of the left-pointing

arrow.

LAll the Finite-State Machines (FSMs) with labeled states are generated using the prototype

DES software toolkit presented in tius thesis.



jm| Not_ldle -——

Figure 2.1: A Simple Deterministic Finite-State Automaton

2.1.2 Nondeterministic Finite-State Automata

A Nondeterminstic Finite-State Automaton (NFA) is formally denoted by the
5-tuple (@, L.d.9,.@m). where Q. ¥, g,. and @,, have the same meaning as for a
DFA. and where d maps Q x ¥ to 2¢9. Whereas the transition function in a DFA
maps @ x ¥ to single elements in @ (e.g.. 4(q1.a) = ¢q2). the transition function for
an NFA maps Q x T to subsets of Q (e.g.. 3(q1.o) = {q2.q1.q5}). It follows that a
DFA is a special case of an NFA, where ¢ maps @Q x ¥ to single-element subsets of Q.
Figure 2.2 shows a simple example of an NFA. Note that the transition é(Idle. Start) =

{Working. Broken} is the source of the nondeterminism in the automaton.

2.1.3 Nondeterministic Automata with s-Transitions

Nondeterministic Automata with z-transitions (NFAz) are automata defined in
the same manner as NFAs. with the additional property that the automaton may
make a transition on the empty input . Refer to Figure 2.3 for an example of a

simple nondeterministic automaton with s-transitions.



Figure 2.2: A simple nondeterministic finite-state automaton

Figure 2.3: A simple NI'A with an s-transition
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2.1.4 Minimum-State DFA

Theorem 2.1 [HU79] (see below) together with Algorithm 2.1 (also from [HU79])
provide a polynomial-time method for constructing an output DFA which is a minimum-
state recognizer for the language recognized by an input DFA. [t should be noted that
no such algorithm exists for NFAs. Indeed, it can be proven [JR93] that the deci-

sion problem associated with the conversion of a DFA to a minimum-state NFA is

PSPACE-complete 2.

Theorem 2.1 [HU79] The DFA constructed using Algorithm 2.1. with inaccessible

states removed (trim), is the minimum state DFA for its language.

Algorithm 2.1 : Minimum-State GFA Construction

~

. for qn € Qm and € Q — Qm do flag(qm.q);

[

for each unordered pair of states (q.q,).1 F J
define an empty list L, ,)

end

J. for each pair of distinct states (q,.q,)
in Qm X Qm or (Q —Qn) x (Q —Qm) do
if for some input symbol &, (d(q.0).8(q,.0)) is flagged then
RecursiveFlag(q..q,) (Algorithm 2.2
else
for all input symbols o do
if d(qi.0) # 6(q,.)
put (q..q;) on Lisiy.msy,.0n
end
end
end

end

*Section 2.3.1 provides some discussion on PSPACLE-complete problems

Y



Algorithm 2.2 : The RecursiveFlag Function

~

. input unordered pair (qi,q,)

()

- flag (g, q,)

Y

. for each unordered pair (¢m,q.) in the list Ly, , )
if the unordered pair (qm,q,) is not flagyed then
RecursiveFlag(qm. q,)
end

end

2.2 Discrete-Event Systems

A Discrete-Event System model can be thought of as a representation of a real
system which exhibits asynchronous, event-driven behaviour. Typically such a system
can be described using a state-transition structure. Abstractly. this model can be

represented by a five-tuple deterministic automaton (D[FA)

Cr' = (Q. Sd—- qo- Qm.)

where (@ is a set of states.
¥ is a set of event labels,
3 :Q x ¥ = Q,is a partial function defined for some states g € Q,.
and for some events ¢ € &, such that d(o.q) = ¢’ where ¢’ € Q,
7, 1s the initial state.

and Qm C Q is the set of marked states.

Let £ denote the set of all strings over ¥ U {z}. We extend the definition of ¢ in

the usual manner. as follows:

3" :Q x 7 = Q. where

10



§*(q,e) = qforqe @,
6*(q,0) = 6(q,0)forqe@,0 € X,
8°(q,s0) = 8(é7(q,s),0)forqeQ,0€ E,s € X",

For simplicity, we use § to represent both § and 4°, recognizing that when § operates

on a state and string (of length greater than 1), then we are implicitly using §-.

Given ¥~ and ¢ as defined above, the languages generated by G and marked by

G (denoted by L(G) and L,,(G), respectively) are

L(G):= {s € 7| d(q,.5) is defined }.

Lo(G):={s € X |3¢-.5) € Qn}

An example of a typical finite-state plant is shown in Figure 2.4. For this example.
the event set is © = {start_job. finish_job. repair. break_down}. the labels for the
state set @@ are {Idle. Working. Broken}. the initial state is ¢, = Idle and the marked
state set is @ = {ldle}. The partial transition function is defined for this example

as

d(ldlestart _job)

Working.
[dle.

d(Working.finish_job)
§(Working,break-down) = Broken.
(

d(Broken.repair) = I[dle.

The event set of a plant (¢ can be partitioned for the purposes of supervisor design
into two disjoint subsets. the first set ¥. composed of all ~controllable™ events. and
the second set ¥,. composed of all “uncontrollable™ events. Note that ¥ =S, . U X, ..
Controllable events are those events which a supervising agent (S in Figure 2.5) may
enable or disable in accordance with some control strategy. Uncontrollable events
arc considered to always be enabled. Enabled events are those events shich may

occur in the plant. whereas disabled events are those events which are prevented from

occurring.
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blant
Figure 2.4: A simple plant
Control Plant
Commands A\ Events

S

Figure 2.5: A plant/supervisor system

A (nonempty) plant (¢ may be “controlled”™ by a supervising agent S. where the
supervising agent sends control commands to &G which serve to enable or disable events
based upon the observed sequences of events occurring in the plant (Figure 2.5). These
actions by the supervising agent limit the general behaviour of (¢ to some specified
legal or desired behaviour in a closed-loop system 5/, This is equivalent to saying
that S restricts the language L(G) to some legal sublanguage L(S/G).

Now. suppose that the legal behaviour is represented by the language A’ C ¥-.

Before a supervisor may be constructed, it is necessary to determine if it is possible

to restrict L((') to A'. The language A" is said to be controllable with respect to G if



and only if
K. NLG)CK

where K represents the prefix-closure of A’ (i.e.. the language composed of all prefixes
of K), and the notation K'S,. stands for the set {ko | k € K,o € Y.} Thus,
controllability states that given any prefix of A, there is no uncontrollable event
which when appended to the prefix of A'. generates a string which is contained in

L(G), but which is not contained in A

We now define the supervising agent model as the pair S = (7. ¢). The supervisor

S is represented by an automaton
T =(X.X.£¢.Xn),

and a control mapping v : ¥ x X' — {enable.disable}. The automaton T accepts
as input the sequences of symbols in ¥ generated by (. and then generates control
commands based on the control mapping v'. which enables or disables controllable

events in (.

2.2.1 DES Building Blocks

The following sections review a set of operations which are used to construct and
manipulate DES models [Won96]. The DES plants shown in Figure 2.6 will be used

in examples of how the meet and synchronous product operations work.

2.2.1.1 Trim

A frim automaton is defined to be an automaton with all states being “reachable”
and “coreachable”. For a state ¢ to be reachable. there must exist a path (possibly of
length zero) from the initial state ¢, to the state ¢q. For a state ¢ to be corcachable.

there must exist a path (possibly of length zero) from ¢ to a marked state ¢, € Qm.

13



Figure 2.6: Plants (;; and G,
2.2.1.2 Meet
The meet of n languages L. L,..... L. 1s defined to be
Lyee: =Li0La0...0VL,.

This definition can be used to construct a generator G,,,., which generaies ihe lan-
meet g8

guage L. based on generators G, = (Q,.%,.4,.¢,,.Qm,) for 1 =1 to n:

Qmeee = {(@1.G2-- - qn) ¢ €Qii = 1.....n}.

A — n

—meet - =1 —*

Smet = AU @) (i pa) | o)
Py G € Q,l =1l..... n /\lnzl ‘)-x(([na') = pz}

Qomeee = {{qoy-Goze---- Gou) }-

Qmm:er = {(qu-qmz """ qm. ) | qm, € Qm.- t=1oo.. n}'

Thus. the automaton G e generates (resp.. recognizes) only those strings which can
be generated (resp.. recognized) by all the (¢, automata. In many applications. it is
desirable that (/... be a trim automaton. In this case. (¢ .., only recognizes those
strings which are recognized by all the ¢, automata. No similar claim can be made

for generated strings.
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Figure 2.7: The meet of &} and G,

An example of the meet of the plants G and &, in Figure 2.6 is shown in Fig-

ure 2.7. Note that for this example. in plant ;. a and ~ are distinct events which
p p

take the system from state 1 to state 2. For simplicity. we only show one arrow for

these two transitions. A similar simplification is made in the plant (5.

2.2.1.3 Synchronous Product

Whereas the meet of a group of languages captures only those strings which are
contained in all the languages. the synchronous product contains all possible interleav-
ings of strings in the group of languages. A generator (,,,. can be constructed which
generates the language L,,.. based on the generators GG, = (Q,.%,.4,.¢,,.Qm,) for 1 =

! to n as follows:

Qsyne = {lq1-q2.---. ga) | g € Qi =1..... n}.

Esyne = UL, t.

Ssyne = {Uq1eq2e .- qn). . (propa.. ... Pa)) |
p=30d(q.o)ifa e, (2.2)
m=qifocé I }.

Gorgne = {401 Gop-----Gou) }-

Qmygne = 1y Gy - - qma) | m, € Qum. }-



Figure 2.8: The synchronous product of &, and G

As with meet, in general. it is desirable to express the result of the synchronous

product operation as a trim automaton.

An example of the synchronous product of the plants (¢ and G in Figure 2.6 is

shown in Figure 2.8.

2.2.2 Supervisory Control with Partial Observation

[n many applications. full knowledge about all the events occurring in a plant &G
is not available to the supervising agent S. In these cases, it is useful to partition
the event set into two disjoint subsets. £, representing the set of observable events,
and ¥, representing the set of unobservable events. Note that ¥ = £, U ¥,,. and
also that there is no particular relationship between ¥, and the set of controllable
events Y.. Practically, such a system would correspond to a plant where there exists
an array of sensors that arc capable of detecting a subset of all the possible events

that may occur. In such cases. it may not be cconomically or practically feasible
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Figure 2.9: A plant/supervisor system with partial observation

to install enough sensors to monitor all plant events. Figure 2.9 illustrates such a
svstem, where a subset of the events occurring in the plant are passed (via sensors)
to the supervising agent.

Informally. if a plant is modeled using a finite state machine (FSM) G. containing
states q1.¢; € Q. and d(q1,0uw) = G2, where o, is an unobservable event, then any
supervising agent upon seeing the plant enter state ¢, must provide for the possibility
that the plant could be in either state g or state ¢,. since it is impossible to detect the
occurrence of the unobservable event g,,. Thus. it is useful to construct a modified
model of the plant G. which erases all occurrences of unobservable events, and which
contains states (in the modified model) which correspond to subsets of states in G
which are indistinguishable to the supervisor 5.

Formally. the process of removing events from strings contained in a language is

called natural projection

P.L =3

i



and can be recursively defined on strings as

P(s) = =,
o ifoel,
P(o) = { o (2.3)
¢ otherwise
P(sag) = P(s)P(og)forse 0 X.

Since in many cases, problems in DES are described in terms of FSMs which
generate languages, it is useful to apply the concept of projection directly to FSMs.
To do this, first it should be observed that all partially-observable FSMs used in
DES applications can be thought of as nondeterministic finite state automata with
s-transitions, where the s-transitions represent transitions in FSMs that cannot be
observed.

[n [HUT9] induction on the length of strings is used to prove the following two

theorems:

Theorem 2.2 [HUT9] If L is accepted by a nondeterministic finite automaton (NFA)

with s-transitions, then L is accepted by an NFA without z-transitions.

Theorem 2.3 [HU79] Let L be a set accepted by an NFA. Then there exists a de-

terministic finite automaton (DFA) that accepts .

Using these two theorems in combination. it is possible to convert an NFA with z-
transitions to a DFA (without z-transitions). By labeling all unobservable events in
the plant DFA as s-transitions. thereby creating an NFA with z-transitions. we can
then convert the resulting NFA with s-transitions to a DFA without :-transitions.
Thus. we have ~erased” the occurrence of unobservable events. A construction method
based on the proofs given in [HU79] is provided below. Let ¢ = (Q.X.4. ¢,.Qm) be

a DFA with SUZ,, where U stands for disjoint union. For a state q € Q. define
£-CLOSURE(q) = {r | (3s € £%)d(q.s) = r and P(s) = =}.

and

nq,o0) = {l‘ | 8(q.s) = r. where pls) = o'}_
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Construct NFA G’ = (Q,%,,%,¢,,Q5,)- The marked state set @, and ' are

constructed as follows.

o = QmU{q} ifs—CLOSURE(q,) contains a state of @m
" Qm otherwise
and &’(q,0) = n(q,0) for ¢ € @ and o € ¥,. Note that the size of the state space for
G’ remains the same.
The second part of the construction requires that the NFA be converted to an

equivalent DFA. The construction is: Let (' = (Q., ,.4".¢,. Q") be the above NFA.

Construct G, = (Q,. 5. 0,. 40, @m,) where:

Q, = 22 (the power set of Q).
qop = qo'
Qm, = {4 € Qp | 3q where q is contained in the label of ¢, and ¢ € Qn}.

Thus. single states ¢, € @, use some subset of states ¢ € O as labels. For example,

the label of some q, € Q, could be {q;.q2..... qc }. Now define:

SHaq.qoe - ak}o o) = U n(q. o).

As it is rarely the case that all 29 states are reachable in (7,. the construction can be

made more efficient [Rud38] using an iterative approach as follows:

o Flag the initial state ¢,, as a "new.”

e For each "new” state, remove the "new” flag from the state. and construct all
states reachable from that state via some ¢ € &,. If these states do not already

exist, flag them as “new” states.

e Repeat the secoud step until no states with a “new” flag remain.

[n this way. only those states which are reachable from the initial state are gener-
ated. Note however. that it can be shown by example that the resulting DFA is not
necessarily a minimum-state DFA. To obtain a minimum-state DIFA. the algorithm

presented in 2.1 can be used. If G, is a DFA that recognizes the language P(L,(G))
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for some DFA G, we use the notation &, = p(G). A complete pseudo-code algorithm
for constructing p(G) is provided in Algorithm 2.3. Note that for step 3(c), line 6 of
Algorithm 2.3 (which contains the statement “for each q € ¢,”), the state-set ¢, is

itself a subset of Q.

Algorithm 2.3 : A Projection Algorithm for FSMs

1. Inputs: Automaton G ={Q.%,d,¢,Qm}
2. Define a new automaton (' = {Q,%,,d. .. Q" }

(a) if there ezists ¢, € Q,, such that q, € :—CLOSURE(qy,) then

Q’m =QnU {qo}
else

Q:n = Qm
end

(b) set &§'(-.-) =10
for each ¢ € Q do
for each q, €Q do
for each o€ Y, do
if d(q.c)=gq, then
¥qi.o) =g,
else if 4(q.,s) =gq, for some s&€ X"
such that P(s) =0 then
Figr.0) = (g 0) U {g,}
end
end
end

end

3. Convert the NFA (' to a DFA (G,

(a) Set Gop = Go



(b) flag G, @S ‘‘new’’
set (, = {qop}
set Qm, = )
(c) while states flagged as ‘‘new’’ ezist, do
for each state q, € (Q, flagged as ‘‘new’’, do
remove the ‘‘new’’ flag
for each o €%, do
set qp,., =0
for each q € q, do
Tonene = Ypnew U 0'(q. 0)
end
if Qpn., £Qp and q,,.. #0 then
let Qp = Qp U {([P":u-}
flag qp,. as '’
if 3q€q,.., such that ¢ € Qm then
let Qru,, = Qmp U {(Ipnw}

new’’

end
end
if gp... 70 then
define 3,(¢p.0) = qp,...
end
end
end

end

{. Output the DFA G =(Q,.K,.0,.4,,.Qm,) as p(G)

The Algorithm 2.3 is based upon the two existing algorithms discussed in [HUT79)
and [Rud88]. While this algorithm constructs an output automaton that recognizes

the projection (as defined by (2.3)) of the language recognized by an input automaton.
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some state information that can be useful to the observer is lost. We consider an
example FSM G where the initial state is q,, and where for some ¢ € ©,,, §(¢,,0) = ¢
is defined for some g € Q where ¢ # ¢,. In this case, the initial state in G, = p(G)
is labeled by q,, = q,. However, if the supervising agent does not observe any events
(and thus remains in the initial state), the plant G could be in state g, or in state
g. The labeling of the initial state using Algorithm 2.3 does not provide this type of
information. In order to construct an automaton that both generates the projection
language and contains useful state label information, we present an algorithm from
[Rud88} in Algorithm 2.4. Algorithm 2.4 labels states so that each label identifies the

states the plant could be in after the observation of a sequence of events.

Algorithm 2.4 : A Modified Projection Algorithm for FSMs
[. Inputs: Automaton G = {Q.%,0,¢,,Qm}

2. Define a new automaton (' ={Q.5,.8'. Q. Q! } with a set of initial

m

states Q)
(a) let Q) = {Gorqi-q2----.qn | ¢ € QA 3Is € &7 such that 8(q..s) =
q.. P(s) = =}

(b) set &'(-.-) =10
for each g, € Q do
for each g, € Q do
for each o €%, do
if 8(qi.s)=gq, for some s € T*
such that P(s) =0 then
8'(q.0) = §(q. o) U {g,}
end
end
end

end

ty
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3. Convert the NFA G' to a DFA G,

(a) Set q,, =Q,
(b) flag q., as ‘‘new’’

set Qp, = {q,}
set Qm, =0

(c) while states flagged as ‘‘new’’ ezist, do
for each state g, € Q, flagged as ‘‘new’’, do
remove the ‘‘new’’ flag
for each o €%, do
set qp,., =0
for each q € q, do
Tpnew = Ypnow U 0'(q.0)
end
if . € Qp and qp,., #0 then
tet Qp = QpU {gpu.n}
flag qp,... as ‘‘new’’
if 1q€qp,,. such that q€ Q,, then
let Qmp = Qmp U {([pnrw}

end

end

if Gpn.. #0 then
define d,(q,.0) = qp,...
end
end
end

end

4. Output the DFA (i) = (Qp.Ts.0p, o, Qm,) as p(()



[t should be noted that the check done at line 9 in step 3(c) of Algorithm 2.4 could
cause computational problems if not implemented efficiently. There exist a number
of methods (“path compression” [CLR90], for example) that can efficiently check for

set inclusion.

2.2.3 Diagnosability

Diagnosability is a branch of DES theory which addresses the problem of fault
detection and isolation in large complex systems. In [SSL*95] and [SSL*96], a sys-
tematic procedure for analyzing systems and constructing FSM diagnosers for the
purposes of fault detection is developed. with specific emphasis on application to
heating, ventilation and air-conditioning (HVAC) systems. This section reviews the
fundamental concepts relating to diagnosability. and discusses why the application
of some of the theoretical results of this thesis are of interest in fault detection and

isolation applications.

When analyzing a system to determine if that system is diagnosable, we first need
to understand what it is that we are “diagnosing.” We start with a FSM G with
event set ¥ which represents a plant containing observable and unobservable events
(€ = Z,US,,). A subset of events in € are considered to be “failure” events (call the
subset ) in the system. The event ol event in Figure 2.10(a) is an example of such
a failure event. We are not concerned with the failure events which are observable
(l.e.. ¢ € £y N I,). since by definition a supervisor can observe these events. and
therefore “diagnose™ that they have occurred. Thus. without loss of generality. we can
consider only those cases where all the failure events are unobservable (i.e.. £, C ,,).
Diagnosability theory considers the behaviour of a system after the occurrence of a
failure event. and determines if it is possible to know in some finite amount of time
that the failure event has occurred. A more generalized scenario can be achieved by

partitioning the set of failure events into “classes™ of failure events
S/ = S“U - .US],H.
In this case, for all oy € ;. the diagnosing agent need only determine in a finite
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(a) The System (b) The Diagnoser

Figure 2.10: A system/diagnoser pair

amount of time that a failure of type Y., where o, € S(,. has occurred. It does
not need to determine exactly which failure event occurred. Figure 2.10 shows an
example system (G) and diagnoser (Gq). The diagnoser is a FSM that records the
possible states the system may be in after observing a string of events. and infers

what fatlures may have occurred.

For the example system G shown in Figure 2.10(a)?. o1 is the only failure event.
[nitially, the diagnoser (G; only knows that the system has started in state 1. After
observing the 3 event. the diagnoser knows that the system could be in state 2. with
no failures having occurred. or state 5 with failure o1 having occurred. Thus. at this
stage the diagnoser is not able to determine if failure o1 has occurred or not. However.
after observing the string Ja. the system can only be in state 3. and therefore the
failure ol cannot have occurred. If instead. the diagnoser observes the string 3. then
it knows that the failure ol must have occurred. Since it is possible to detect the

occurrence of all failure events in a finite amount of time (i.e.. after a finite number of

FThe circle to the right of state 3 indicates that a self-loop of event ~ may occur.



events have occurred) in this system, then the system is considered to be diagnosable,
with diagnoser Gy4.

Note that the the diagnoser is a DFA which recognizes the language given by the
projection of the language recognized by the system. The method used to construct
the diagnoser DFA is slightly different from the methods described in previous sec-
tions. In this case, each state in the diagnoser represents the set of states in the system
which can be reached from an existing set of states via string s where s = s,,0,, where
Suo is a string of (possibly zero) unobservable events, and o, is an observable event. In
all the other constructions presented in this thesis, the string s is constructed in the
opposite manner (i.€e.. 5 = G,5,,). [t can be shown that both methods of construction
recognize Ln(p(G)) [SSL*95]. [Rud8y].

Diagnosability theory can be extended to cover systems which are considered to
be "i-diagnosable.” [-diagnosability is a looser condition than diagnosability in that
after the occurrence of a failure event. the diagnoser need only identify that a failure
of that type has occurred after the occurrence of an observable indicator event. Thus,
for sct of failure event types {Ey..... Y /m} there is a corresponding set of indicator
event types {[,..... [}

[t is apparent from the informal description of the diagnoser presented above.
that diagnosability theory presents a direct application of the projection operation.
combined with a set of rules for the labeling of states in the diagnoser such that
they contain information relevant to the failure status of the system. and with a set
of conditions placed on the system to determine if such a system is diagnosable or
i-diagnosable. It is mentioned in [SSL*96] that the “two crucial issues regarding the
applicability of our theory to [IVAC units or other classes of systems are: 1) building
the system model and 2) dealing with the computational complexity of the diagnostics
process.” [t is also noted however. that with regards to the computational complexity
issue: “our experience so far. while limited in scope. tends to indicate that the system
often has enough structure so that the worst case computational bounds rﬁay be rarely
attained.” Finally, [SSL*96] states that if an approach which constructs diagnoser

states on-line [HL94] is adopted. the problem can be solved with a computation of
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polynomial complexity at each observed transition of the system. Unfortunately,
if a system is not diagnosable or i-diagnosable, and if an off-line analysis of the
system is not done, the on-line diagnoser may arrive at states where it will never be
possible to know if a failure has or has not occurred. We attempt to address this
problem by analyzing the previously-mentioned “structure” of the system to make
better estimates of the complexity of the computation required to construct a full

diagnoser.

2.3 Computational Complexity

Since the motivation for developing DES theory is to be able to solve control
problems in real systems, it is necessary to examine the efficiency with which DES
operations can be implemented as algorithms. [t may be a simple task to understand
how an algorithm which implements a DES operation works. However. when the
solution is actually computed, if the algorithm which does the computing takes an
unreasonably long period of time, or uses an unreasonably large amount of computing
resources, then the DES formalism becomes less useful as a control tool for real
systems. The following sections outline some of the key ideas and tools in complexity
theory which can be used to better understand the efficiency of algorithms which are

used to solve common DES problems.

2.3.1 Complexity Classes: Background

Current research in complexity theory allows us to make some initial observations
about the computational difficulty associtated with DES problems. To provide a
motivating example for why it is useful to group problems into complexity classes,
consider the cases presented in Table 2.1 taken from [G.J7Y]. where the time for each
operation on some CPU is lus. For example. if a problem is of “size”™ n.= 20 and its
solution is O(n?) complexity, then it would take lys - 20° = 0.0004s to compute the

solution on a CPU.
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Table 2.1: An example of computational complexity

Time
Complexity 20 40 60
Function
n 0.00002 s 0.00004 s 0.00006 s
n? 0.0004 s 0.0016 s 0.0036 s
n3 0.008 s 0.064 s 0.216 s
n’s 3.2s 1.7 min 13.0 min
2n 1.0s 12.7 days 366 centuries
3 58 min 33855 centuries 1.3 x 10'3 centuries

[f the values presented in Table 2.1 are interpreted to correspond to the amount
of time required to solve a problem of size 20. 40. and 60. where the solution takes
either a polynomial or exponential amount of time. it becomes clear that in general,
problems which require an exponential amount of time to solve become intractable

when the size of the problem gets large. What complexity theory allows us to do is:
e determine if problems are intractable. and

e suggest methods for simplifying intractable problems by examining approximate

solutions. or subproblems which can be solved in a polynomial amount of time.

Formally. decision problems can be grouped into complexity classes. An inclusion
diagram for these classes is provided in Figure 2.11. taken from [G.J79]. Decision
problems are placed in group P if there exists an algorithm which can solve the de-
cision problem in polynomial time. :\ decision problem is placed in the larger* VP
group if there exists an algorithin which can check the correctuess of a “ves™ answer
to that decision problem in polynomial time. [n order to understand the concept of
the NP-complete (NPC) group. we first discuss the idea of problem transformations.

Given two languages L, and L,, we say that L; C £] x L; C Ij if therc exists a

It is widely believed. but has not been proven. that P is a strict subset of VP,
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Figure 2.11: Complexity classes (assuming 7 # VP and VP # co-NP)

function f such that f : &7 — ¥3, and s € L, iff f(s) € L,. and where f can be
computed in polynomial time. By extending the idea of the polynomial transforma-
bility relation from languages to decision problems (refer to [G.J79]| for details), then
for two decision problems [I, and II,. the relationship I, x I, can be interpreted
to mean “II, is at least as hard as I[;”. The two problems are considered to be
polynomially equivalent if [1; « I, and I, « [I;. Since it can also be proven that
polynomial transformability is transitive. then the relation “x" imposes a partial or-
dering on all equivalence classes of decision problems in NP. where P represents the
computationally “easiest” problems. and NPC represents the computationally “hard-
est” problems. Thus, a decision problem [I € VP can be proven to be NP-complete if
for some [1' € NPC, 1" < [1. This method is used in [Tsi89] where Tsitsiklis reduces
an instance of the “3-satisfiability”™ problem which is known to he NP-complete to a

specific class of partial-observation DES problems.
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The complexity class co-NP represents the complement decision problems for all
the decision problems which comprise the class NP. Given a decision problem in NP
such as “Given [, is X true for [?”, the complementary decision problem would be
“Given [, is X false for [?". [t has not yet been proven that co-NP#NP. Indeed if this
could be proven, then it would have to be the case that P # N P.

While the P versus VP complexity classes focus primarily on the time which
algorithms take to solve problems, the PSPACE and EXPSPACE complexity
groups focus on the amount of memory required to solve problems. Specifically
PSPACE (resp., EXPSPACE) decision problems require a polynomial (resp., ex-
ponential) amount of memory to solve. By adopting a similar method as used
to define NP-complete problems. problems can be ordered such that a subset of
problems in PSPACE (resp.. EXPSPACE) represents the computationally most
difficult problems in the set. These subsets are referred to as PSPACE (resp.,
EXPSPACE) complete problems. Again. as with the NP-complete class of decision
problems. a decision problem [1 € PSPACEFE (resp.. EXPSPACE) can be proven to
be PSPAC E-complete (resp.. EXPSPAC E-complete) if for some I[I' € PSPACE
(resp.. EXPSPACE), 1" x< II.

2.3.2 Working with NP-Complete Problems

[fa problem is proven to be NP-complete (or PSPACE/EX PSP AC E-complete),
then a method needs to be devised for solving that type of problem in a computa-
tionally feasible manner. For example. it may be possible to construct an heuristic
algorithm which produces a correct result in most cases. However. current DES for-
malisms primarily model safety-critical systems. and therefore require correct results
all of the time. Alternatively. it may be possible to restrict the set of problems to
a subset of allowable problems which we know (and can prove) to be solvable in a
polynomial amount of time. If it is computationally feasible to test whether a prob-
lem belongs to this subset. and if the subset captures a large enough class of DES

applications. then we will have found a computationally feasible method for solving a
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Figure 2.12: An example of the hierarchical breakdown of an NP-complete problem

subset of partial-observation DES problems. Furthermore. for those problems which
do not fall into this subset of computationally feasible problems. it would be useful if
there were methods for identifying the characteristics of the problem which disqualify
it for inclusion in the subset. If we could identify “problem areas.” it is possible that
the component DES models could be modified such that the solution can be com-
puted in a computationally feasible manner. Figure 2.12 taken from [GJ79] provides

an example of the hierarchy of subproblems for some NP-complete problem.

2.3.3 Complexity Theory and DES

There are two areas in DES Theory where computational complexity issues make
the solutions to large problems intractable. First. as noted in [Won96] and [WRSS],
when the synchronous product or meet of n FSMs (G . G5, .. .. (r,) is computed, then
1t is possible that the state space of the resulting FSM G = M EET(G,.G,y. ..., GL)
could have a state space as large as k", where & is the maximum of the sizes of the
state-spaces of Gy, ....( . Since the number of states in (& increases exponentially
with n, the problem becomes intractable for large n (i.c.. for a large number of
component models in a typical DES problem). A Petri-net method for efficiently

modeling a class of problems where many of the n component models are identical
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(i.e., parallel or additive machines) is presented in [LW93] and [LW94]. The results
to be presented in Chapter 3 of this thesis do not focus on DES complexity problem

where the components are identical FSMs.

The second area of DES theory which presents us with computationally intractable
problems is in the area of partially-observable and/or decentralized DES problems.
While in many cases it has been noted that the actual results obtained while working
with these types of DES problems are good, it was proven by Tsitsiklis [Tsi89] that
for a specific class of partial-observation problems, there exists a polynomial trans-
formation which maps an instance of the Boolean logic “three satisfiability” problem
(a restricted version of Cook’s theorem for the satisfiability problem), which has been
proven to be NP-complete [GJ79], to this class of partial-observation DES problems.
This means that unless it is proven that P = NV P. there is no polynomial-time algo-
rithm which can construct a FSM which marks the projection of the language marked
by a given FSM. However. even though this type of problem has been proven to be
NP-complete. the favourable results obtained in many partial-observation applica-
tions suggest that there may exist a class of sub-problems (i.e.. a class of FSMs) for
which there exists an algorithm which takes significantly less than an exponential
amount of time to complete the same task. Chapter 3 of this thesis attempts to

identify some of the properties of this type of FSM.



Chapter 3

Structure-Based DES Analysis

While in theory projection can lead to an exponential increase in the number of
states, in practice it has been noted [SSL¥95], [SSL*96], and [OW90] that in many
cases the number of states generated is typically much less than the exponential limit.
This suggests that there exist subproblems which can be solved efficiently. If these
types of subproblems can be characterized and identified in a simple and time-efficient
manner, then we would have a test we could run on large systems which would identify
whether the system will project efficiently, or could identify problem structures within

the system which could cause exponential explosion.

In designing this type of test, two things need to be considered. First. an algorithm
(or series of algorithms) needs to be designed which calculates upper limits for the
projection state-space. If such an algorithm can show that the projection state-space
is going to be small relative to the exponential limit. then we can go ahead and
calculate the projection, knowing that the resulting automaton can be found in a

reasonable amount of time.

When the upper bound algorithms do not show any significant reduction on the
exponential limit on the projection state space. algorithms that indicate lower bounds
are helpful (for flagging problem areas). In these cases. we need to understand what
structures within the system are causing problems. in order to effect changes in the
model (perhaps by adding more sensors in the physical system) so that when the upper
bound algorithms are re-run. the resulting estimate of the projection state-space is
significantly better than the exponential limit. These lower 'bound algorithms would
indicate that the projection state space will be at least a certain size. and would

identify the structures which are primarily responsible for this lower bound.
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It is conceivable that the results of the upper bound algorithms show no significant
reduction relative to the exponential limit, and that the lower bound algorithms can
identify no structures which cause state-space explosion. To date. it is not clear how

many DES models which are based on physical problems fit into this category.

An important consideration when designing algorithms which establish either up-
per or lower bounds is that all algorithms must be able to identify properties or
structures within plant models in an efficient manner. Algorithms which run in low-
order polynomial time will result in tests which are simple and fast to run on sys-
tems, whereas high-order polynomial or exponential time algorithms serve no purpose,
since the projection operation itself is an exponential time algorithm. In effect, we
would be better off just running the projection algorithm itself. rather than running

exponential-time algorithms that test how quickly projection can be done.

3.1 Structures: Upper Limits on State-Space Explosion

In establishing algorithms which can be used to identify upper limits on the pro-
jection state space. we first consider how the presence of unobservable events affects
projection. For a system to be partially observable. there must exist at least one
unobservable event. We examine the properties of arbitrary systems containing sin-
gle and double unobservable event transitions. and establish some upper bounds for
the size of the projection state-space. While these nupper bounds don't significantly
reduce the projection state-space estimate below the exponential limit. they at least
serve as a starting point in our attempt to understand the effect of unobservable event

structures within DES models.

We then define a property of a plant we call no-reachability to be the set of
states which can be reached by starting at any state in the plant, and following the
string s € L7 where P(s) is a string of n observable events. We use this concept
to calculate subscts of states which can be used to define all possible subset-labels
in the projection state space. This has the effect of reducing the exponent used to

calculate the projection state space, and thus allows for some significant reductions
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in the estimated size of the state space (relative to the exponential limit) to be made.
The computational complexity of this algorithm is O(|Z,|" - |Q|?), where I, is the set

of observable events, and @ is the set of states.

Furthermore, by examining the cases when the estimated projection state size
is significantly reduced, some conjectures may be drawn about desirable structural
properties of the system. These may be used as a guide when modifying systems

which do lead to exponential explosion.

3.1.1 The Significance of Automata with s-Transitions

[t has been shown that when an NFA is converted to an DFA which recognizes the
same language, the state set for the DFA is a subset of 29, where Q is the state set of
the NFA. If |@| = n it is not necessarily the case that all 2" — | nonempty states will
be generated using the subset-construction method given in Algorithm 2.4. However.
it can be shown that in some cases. not only are all 2* — | nonempty states generated,

but also that the DFA is, in fact, a minimal-state DFA according to [HU79].

In DES theory. plants are represented as DFAs. Nondeterminism is introduced
when the unobservable events are relabeled as s-transitions. and the resulting NFA
with :z-transitions is converted to an NFA without s-transitions. We want to take
advantage of the structure in this NFA to make some observations about the upper
limit on the number of states generated when converting the NFA to an equivalent
DFA. The first way this can be done is by examining the structure of the s-transitions.
The following list provides five separate z-transition structures ( Figure 3.1) which will

be discussed in further detail:

(a) 8(gi,g) = q) 1 # J,
(b) g, 2) =¢q, and (qi. ) = qr. t . F &

(c) 6(q,,€) = qi and 8(qr,¢) = qi, ¢ #,J # K

(d) 6(qi2) = q, and 8(qu.c) = qr. t . J F k # !
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Figure 3.1: Unobservable event transitions

(e) 8(qi.s) =q, and dq,.2) =qu. t # .J # k

3.1.1.1 The Single =-Transition

An almost immediate observation that can be made about the construction in
Algorithm 2.4 is that if there is at least one transition labeled by an unobservable

event (Figure 3.1(a)). then the state-space of the projection will never exceed 3/4-2191.

Proposition 3.1 Given plant G with event set QQ. unobservable cvent set ©,,, and
transition function &. and FSM G, with event sct Q, such that G, = p(G). [f

q.o)=q, for some q,.q, € Q. 1 # j and for some o € &, then:
3yl
Q< 29— 1

Proof: From Algorithm 2.4 lines 5-8 of step 2(b) and lines 6-8 of step 3(b). the set

(2, can not contain states with state-set labels that contain ¢, but do not contain g;.
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Now, if @, cannot contain state-sets which include ¢; but not g¢;, all we need to
do is count the number of states of this type. Simple combinatorics shows us that
this number is 2I91~2. Discounting the empty state-set, we can show that |Q,] <
3/4-21Q1 -1,

Ezample:

Take an automaton G, with state set @ = {q1, g2, ¢3, ¢4}, and with an unobservable
event o where 6(q1,0) = ¢2 is defined. Observe that any state label in @, which
includes g; must also include g2 since if the automaton G could be in state ¢, then it
may also be in state ¢ via d(q1,0) = ¢2. Thus the set of subsets of 29 which cannot

appear as labels in @, are:

{{ql}f {(Ilaq3}’ {QI,Q{}: {Qh qs. Q-l}}'
and the set of labels which may be included in @, is at most:

{{fh}» {(Ih fiz}? {Qh qz2. fls}r {1 qo. Q4}- {‘Ihfh- q3. fh}s {QS}~
{as}- {a2. 3} - {q2. @u}. {93- 91} {92, 93, 94} }-

Since |@| = 4 we can see that ), contains at most 3/4 - 212 — | = | elements.

3.1.1.2 Double s-Transition Geometries

In this section. we attempt to improve upon the results presented for single -
transition geometries by applyving those results to the four geometries which can result
when at least two unobservable events appear in an arbitrary plant (Figure 3.1(b)-
(e))

Formally. we present Propositions 3.2-3.5. which provide upper bounds for plants

which contain structures illustrated in Figure 3.1(b)-(e). respectively.

Proposition 3.2 Given plant GG with event set @, unobservable event set ©,,. ard
transition function §, and FSM G, with event set Q, such that G, = p(G). If
8(qi.0o1) = q, and 8(qi.02) = qi for some qi.q).qr € Q. 1 # j #F k and for some
01.00 € Y, (Figure 3.1(b)) then:

Qe <

R

[ 73 1]
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Proof: As claimed earlier, if for some G, 4(¢',0) = ¢” and o € E,,, then @, as
constructed by Algorithm 2.4 can contain no states with state-set labels that contain
q', and that do not contain ¢”. We can now break down a problem where d(g;, 0,) = g;
and §(q;,02) = qx for o,,0; € £,,. The transition (¢, 7,) = ¢, implies that @, will
contain no state-sets containing ¢; but not ¢,. Further, the transition é(qi,02) = g
implies that @, will contain no state-sets containing ¢, but not ¢.. By applying
combinatorics together with a counting argument. and providing that ¢ # 7 # k. it

can be easily shown that

|Q,] < 2191 — 2lQI=2 _glel=2 | Hlel-3,

where the first term represents all state-sets in the power set. the second term rep-
resents all the state sets which include ¢ but not ¢,. the third term represents all
the state-sets which include ¢; but not ¢. and finally the fourth term represents all
the state-sets which include ¢,. but do not contain ¢, or ¢ {and therefore have been
counted twice when calculating second and third terms). These calculations result in
Proposition 3.2 when the null state-set is discarded.

Erample:

Take an automaton G. with state set @ = {¢1.¢q2.¢3.q4}. and with unobservable
events oy and ¢, where §(¢;.0,) = g, and 8(q,,0,) = ¢y are defined. Observe that any
state label in (J, which includes ¢, must also include ¢, and ¢; since if the automaton
G could be in state ¢,. then it may also be in state ¢, {resp. ¢a) via d(q1,01) = ¢

(resp. 8(q1.o2) = q3). Thus the set of subsets of 29 which cannot appear as labels in

@, arc:

{{a } {‘?l- (13}- {(11- f['z}- {fh- (14}- {’/l-(lf}-‘h}}-

and the set of labels which may be included in Q, is at most:

Har- 2} {q 2o a5} {qr- 2 @u} {2 qs.qa}- {as} {@a}. {@s- au}}

Note that this set contains exactly 3/4 - 2121 — | clements since the empty set is not

counted.
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Proposition 3.3 Given plant G with event set @, unobservable event set ¥,,, and
transition function §, and FSM G, with event set Q, such that G, = p(G). If
d(gj»01) = qi and é(qi,02) = qi in G for some ¢;,q;,qx € Q, t # ] # k and for

some 0,0, € ¥, (Figure 3.1(c)) then:

glel _ .

ol

Qe <

Proof: If for some G. §(q',0) = ¢" and 0 € L,,, then @, as constructed by Algo-
rithm 2.4 can contain no states with state-set labels that contain ¢’, and that do
not contain q”. Therefore for this example, d(q;, 1) = ¢ implies that no states (in
@,) can exist which contain ¢; but not ¢;. Similarly. §(qx,02) = ¢i implies that no
states (in Q,) can exist which contain g but not ¢;. Therefore, as with the previous

proposition. providing that : # ; # k we have

1Q,] < 219! —9l1=2 _lQl-2 4 ylel-3,

where the first term represents all state-sets in the power set. the second term rep-
resents all the state sets which include g, but not g;. the third term represents all
the state-sets which include ¢ but not ¢;. and finally the fourth term represents all
the state-sets which include ¢, and g¢x but not ¢; (and therefore have been counted
twice when calculating the second and third terms). These calculations result in

Proposition 3.3 when the null state-set is discarded.

Proposition 3.4 Given plant G with event set Q). unobservable event set $,,. and
transition function 8. and FSM G, with event set Q, such that G, = p(G). [f
8(qi.on) = q; and ${qr.a;) = q in G for some q.q,.qe-qu € Q. 1t #F J F k # 1
and for some o,.0, € ¥, (Figure 3.1(d)) then:

Proof: If for some G. §(¢".0) = ¢" and ¢ € &,,, then (J,-as constructed by Algo-
rithm 2.4 can contain no states with state-set labels that contain ¢, and that do not

contain ¢”. Thercfore for this example. §(q;, o) = q, implies that no states (in Q)
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can exist which contain ¢; but not g;. Similarly, é(qx, o2) = ¢ implies that no states

(in Q,) can exist which contain g¢ but not ¢;. Therefore we have

|QP| < Qle —9lel=2 _ 5lQl-2 + -_2|QI—4-

where the first term represents all state-sets in the power set, the second term repre-
sents all the state sets which include ¢; but not ¢,, the third term represents all the
state-sets which include gr but not g, and finally the fourth term represents all the
state-sets which include ¢; and ¢; but not g or ¢ (and therefore have been counted
twice when calculating the second and third terms). These calculations result in

Proposition 3.4 when the null state-set is discarded.

Proposition 3.5 Given plant G with event set (). unobservable event set ©,,, and
transition function §. and FSM G, with event set Q, such that G, = p(G). If
3qi.o0) = q, and §(q,.02) = qx in G for some g .q,.q € Q. i # j # k and for

some oy,0, € ¥, (Figure 3.1(e)) then:

1
< —9lQl _
IQPI —_ 2"’ [
Proof: If for some G. §(¢',0) = ¢". and o € &,,. then Q, as constructed by Algo-
rithm 2.4 can contain no states with state-set labels that contain ¢'. and that do not
contain ¢"”. Therefore for this example. §(¢;.o,) = ¢, implies that no states (in Q,)
can exist which contain ¢, but not ¢,. Similarly. §(q,.7,} = ¢, implies that no states

(in @Qp) can exist which contain ¢, but not gi. Therefore we have

IQP‘ < 21Ql _ 9iQl=2 _ 20Ql=2

where the first term represents all state-sets in the power set. the second term rep-
resents all the states which include ¢, but not ¢,. the third term represents all the
state-sets which include ¢, but not gi. Note that in this case. no terms are double-
counted since all the states counted by the first term do not contain q,, and all the
states counted by the second term do contain ¢,. These calculations result in Propo-

sition 3.5 when the null state-set is discarded.



3.1.2 Tree Structures

We define a tree to be an automaton that contains a unique path between any
two states. Note that if automata of this type are finite, then they mark only finite
languages. This is true for the following reason: If §(q;,s) = q; is defined for some
s € I", then there is no other s’ € £* for which (¢, s") = ¢, is also defined (true by
definition of a tree structure). Therefore, if the tree structure & is trim, then for each
gm € @Qm, there exists a unique s € ¥~ such that §(q,,s) = g¢m. Thus, the marked

language is composed oi exactly |@.| unique strings, and is therefore finite.

Given a tree structure (. some observations can also be made about the size of

the state space of p(().

Proposition 3.6 Given a tree structure G with state set Q and (/, with state set Q,
such that G, = p(G). then the following is true:

Qs < 1QI-

Proof:
Claim: Any state ¢ € @ in tree & may appear in at most one of the labels of @,.

Assume otherwise: take some state g € @ such that ¢ appears in the labels of states
qy and ¢; where qi.¢5 € @Q,. Since G, is by definition a DFA. there must be two

strings si.sh € &

o

where s} # s} such that 8,(q,,.s]) = ¢ and d,(q,,.s5) = ¢5. Thus
by definition there must be two strings s;.s; € £~ where p(s,) = s} and p(s;) = s}
such that §(q..s1) = q and 8(qo, s2) = q. Since s # s, then s, # sp. If this is the
case, there are two distinct paths between the initial state ¢, and state g, thereby
contradicting the definition of a tree.

Finally, using a simple counting argument. it can be shown that the size of the
state space |Q,| < |@|. Each state ¢' € @, must be labeled by a nonempty subset
of Q. By the above claim. each state q¢ € ¢’ is unique to ¢'. and appears in no other

state in (Q,. If this is the case. then there must exist at least {@Q,| unique states in Q.

Le.. Q] 2 1Q,l
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Figure 3.2: Tree structure examnple

Example:

An example of a tree-structure is presented in Figure 3.2, In this example. Q@ =
{1.2.3.4.5.6.7.8} and &,, = {z}. By inspection. it can be seen that the state-space

of the projection of the tree structure is Q, = {{I.1}.{2.3.5}. {7}. {6.8}}.

3.1.3 o¢-Reachability

While the concepts of single and double : geometries provide us with some upper
bounds which apply to all FSMs. because the reduction is a simple constant varying
from 3/4 to 1/2. the resulting eflect on complexity results is negligible when dealing
with large systems. By contrast, if the system we are considering is a tree (as defined
in Section 3.1.2), then we have shown that the complexity of the projection algorithm
is O(n) or linear. While this result is computationally good. the tree FSM structure
captures a very small subset of possible FSMs. What is needed to make practical
analysis of DES partial-observation problems possible is something which can be

applied to a large subset of FSMs. and which provides a significant (i.e.. O(2") or
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exponential) improvement on complexity results. In the following sections we present
a method which we believe provides significant improvements on complexity estimates

and which is not limited in applicability to tree structures.

3.1.3.1 1o-Reachability

The following intuition can be used to tighten the upper bound for the size of the
state space of a projected DES. Any state subset, say ¢,, that appears as a state label
in a projected FSM resulting from Algorithm 2.4 is, by construction. a reachable
state. This means that some observable event o leads from some set of states in
the original DES to the set ¢,. The set ¢, cannot be any larger than the set of
states that could be reached via & from the set of all states in the original DES. This
observation leads to a concept called “o-reachability.” defined as follows. Given FSMs
G =(Q.5.8.4,,Qm) and Gp = (Qp. S6.9p, Go,s @m, ). where &, = p(C). then we say
that the set of all nonempty subsets of the set of states Q. = {¢' | 3¢ € Q.d(q.0) = q'}
are lo-reachable states in . That is. 29 contains all the states in @, which the
system could be in after observing the & event. For example. for the FSM G given
in Figure 3.3 with Q@ = {1.2.3.4.5}, the a-reachable set is 29> = {{l.4}, {1}.{4}}.
and the S-reachable set is 29¢ = {{2.3.5}.{2.3}.{2.5}. {3.5}. {2}. {3}.{5}}. and
finally the y-reachable set is 29 = {{5}}. Finally, we need to include the initial state
{1.4}. since it may not be included as a subset of any of the @, sets. Therefore. a
new estimate on the maximum number of states in p(() is 12. compared with the
3/4 -2 — 1 = 23 state estimate using the upper limit defined in Proposition 3.1.
Note. however that in calculating this number. no attempt is made to account for
the duplication of state sets. Thus. for this example. the state sets {5} and {1.4}
are counted twice. The actual limit (i.e.. without double counting) for the number
of state sets is 10. For all o-reachable based state-estimates presented in Chapter 3,
note that state set duplication has not been accounted for. and thus. the estimates
could be smaller than indicated. Theorem 3.1 formalizes the o-reachability concept
for the case described above, where a single observable event is seen by a supervising

agent.
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Figure 3.3: s-reachability example

Theorem 3.1 Given FSMs G = (Q.5.4.6,.Qm) and G, = (Q5. 50,690, Qm,),
where G, = p(G), then
Q,C |29 uq,

acl

Proof:

Recall that the states in @, are subsets of ). Counsider an element ¢, € Q,.

Case l: g, = ¢,,. Then by observation. ¢, € Q,.

Case 2: qp # qo,.

Then there is a q;, € @, and 0 € &, such that d,(q,.) = ¢, (since ¢, € Q, means q,
is reachable from q,, via d,). Since ¢, € Q,. by definition. q, € Q.

According to the construction given in Algorithm 2.4, 4,(q;.0") C Q. for all o’ € &,.

Therefore. in particular. d,(q,.0) € Q.. That is. q, € Q.. which implies that ¢, €
.)Qﬂ'

<



3.1.3.2 Multiple os-Reachability

The o-reachability property described in Section 3.1.3.1 while providing useful
properties by itself, can be iteratively applied in such a wav as to provide improved
estimates for some FSMs. The key observation is as follows: [o-reachability dictates
that after the occurrence of some event oy, the set of states which the plant may be in
must be a subset of (),,. Now consider the following: call the next observable event
(following o) o2. We have established that after o;. the svstem must be in some
subset of the states contained in the set Q,,. We can now further reduce the subset
of states that the system could be in by substituting Q,, for @ in the expression
Qs, = 6,(Q.02). Thus. the possible subsets of states which the system could be in

after observing two transitions must be subsets of the following:
Vo, € ,.¥02 € X, : Qummy, = {¢' 1 3¢ € Q.,.8(q.52) = ¢'}.

For the example given in Figure 3.3, the Q.,,., subsets are:

Qoo = {l.4}.
Qo = {2.3.5}.
Qs = 0.

Qua = 0,

Qus = 0.

Qs = {5}.
Qva = 0

Q. =0

Q. = {5}

For this example. the total for all the nonempty subsets for all the Q. ,, sets (without
correcting for state-set duplication) is 16 (including the additional state-sets repre-
senting the initial state-set and the three state-sets which can be reached after ob-
serving the first transition). If state-set duplication is accounted for. the estimate
reduces to 10. Thus. for this example. no improvement is obtained by iterating the

o-reachability procedure.



Note that if we iterate / times, then 3/_, |,|' computations must be done. Thus,
the complexity of this type of test is exponential in /. Based on the results presented
in Chapter 3, we have found that for the systems analyzed, the best results (without
correcting for state-set duplication errors) are achieved with two or three iterations,

and therefore, only a small number of computations is required.

3.1.4 Related Work

After completing the work presented in this thesis on o-reachability, it came to
our attention that work by Ozveren and Willsky [OWY0] uses a very similar approach
for analyzing the structure of FSMs and making improved estimates for projection
state-space.

Specifically. [OW90] shows that if we have some system with state space Q. then
@ can be partitioned into n distinct subsets Q.. ... .. A notion called the persistent
part of the state-space of some FSM can be informally defined as that part of the
state-space which captures the long-term behaviour of the FSM. The size of the
persistent part of the projection state-space Q,,, is given by

IQpnlz Z 2191,

t=1...n

Since this method partitions the event set @ into disjoint subsets, the double-counting

problem which we encounter in o-reachability (discussed in Section 3.1.3.2) is avoided.

3.2 Structures: Lower Limits on State-Space Explosion

We have shown in the previous sections that :-geometries. o-reachability and (in
special cases) tree structures can be used to establish upper limits on the possible size
of the projection state-space. We now proceed to structures which can be proven to
produce at least a certain number of states in the state-space of the projected DES.
If it is possible to efficiently identify such structures within plant models, then we
would be able to modify the plant so that the structure no longer causes the problem

to be considered computationally intractable.
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Figure 3.4: The cyclic NFA 4,

3.2.1 Cyclic Structures

We first present a result from [Leu93] regarding the class of automata presented
in Figure 3.4. It is proven in [Leu93| that for NFA A, with states Q. the smallest
DFA which recognizes L,.(-,.) has 2" states. First it is shown that for such an
automaton. all the 29 states are generated using a standard subset construction
method. Second. it is shown that no two different subsets of states are “equivalent”™
in the sense identified by the Myhill-Nerode thecorem [[IUTY]. and therefore the DFA
is a minimum-state recognizer for the language.

Now, it remains to show that there exists a DFA with a nonempty set of unob-
servable events £, such that when the unobservable events are converted to s-moves.
the resulting automaton recognizes the same language as the NI'A in Figure 3.4. A

DFA of this type is shown in Figure 3.5.
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Thus, for an NFA A, with n 4 [ states, a DFA A] whose projection is 4, has
n + 2 states. More generally, for a DFA of this type with states (). we have shown

that the size of the projection state-space @}, is

IQP, = 2=t
= 1/2-2Q1 .

We conjecture that by choosing a slightly different type of cyclic structure (Fig-
ure 3.6) for the plant, it is possible to get exactly

[Qpl = 3/4-21°% — 1. (3.1)

This structure was chosen since it intuitively allows for all single-state state-sets, all
double-state state-sets, etc...to be generated using Algorithm 2.4. Note that (as is
the case in this example), if there exist two or more transitions between two states (for
example, §(q;, 1) = qa, 8(q1,0) = q2, and é(q;, a2) = q2). the transitions are indicated
by a single arrow, and a label containing a list of all the events (for example 0. 1, a2)
is attached to the arrow. The n distinct al,a2..... an events appear to prevent DFA

reduction via Algorithm 2.1.

3.2.2 Acyclic Structures

The results presented in the previous section suggest that particular types of cyclic
structures cause computational problems when computing projections. If we exclude
all those FSMs which contain cycles, we are left with acyclic FSMs. Formally, we
define a plant G = {Q, X, 4, qo, @m } to be acyclic if there does not exist s € £ and

there does not exist ¢ € @ such that J(q,s) = q.

Tsitsiklis constructs such an acyclic type of plant in [Tsi89]. Tsitsiklis goes on
to prove that a supervising agent would require an exponential number of states to
keep track of all the possible states the plant could be in. The example in [Tsi89]
(Figure 3.7) is constructed so that for the parameter n, the number of states in the

plant is on the order of n2, and the number of states in the projection automaton
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0,1,a0,0

Figure 3.6: A modified DFA with o € &,



1 0,1 0.1 al (0).1 —

n=3 (pairs)

Figure 3.7: A “n x n” construction for n = 3

is on the order of 2". It is shown in [Tsi89] that no reduction in the size of the
supervisor is possible. Note that in Figure 3.7. the transitions labeled in brackets
indicate transitions which are defined in the plant. but which are not defined in the

legal language.



Chapter 4

Software Implementation

In practice, discrete-event models describing real systems may require hundreds
or thousands of states. [n order to effectively manipulate these large plant models in
an efficient manner. we need to make use of algorithms which can be implemented
as software programs. While efficient algorithms have been identified for many of
the operations which are required to solve DES problems [Rud88]. to the best of
our knowledge there does not exist a software implementation which provides these

operations in a flexible. intuitive manner.

In this chapter. we review some of the currently available DES software packages,
we present a number of architectural and functional requirements for a new software
implementation based on a prototype package developed to aid in the research pre-
sented in this thesis. and finally we present a series of DES functions implemented
in MATLAB (a commercial software package) [Mat92] which would be the computa-

tional core of the proposed software implementation.

4.1 A Review of Current DES Software Tools

4.1.1 TCT and Object TCT

The software package TCT [Won96] represents the first DES software tool to be
developed. It provides a wide variety of basic DES operations (Figure 4.1) and an
interactive environment where these operations can be used. Recent development
efforts have focused on making the software capable of reliably working with large

DESs. One immediate drawback of the TCT software tool can be scen in Figure 4.2.

]
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T CAWORKING\TCT\TETWATCTW.EXE

10T PROCEDURES

: Create H1: Qutconsis N: Haacanflict
: Selflaoop H2: Hicon.is : [<wunarph
2: Trin H3: Higen : Huinstate
3: Sync
4: NHeet L: Edit
5: Supcan S: Shou
6: Hutex P: Print
7: Condat R1: Supnorn D: DES file directary
8: Project
9: Complement ¥: Exit to nain menu

frocedure desired: _

t KB free on heap: 15260
B KB free on disk: 174974

Figure 4.1: The TCT main menu

The TCT software relies on the user to interpret lists of states and transitions which
can be a time consuming process. [t should be noted that all FSMs must be entered
as lists of states, marker states. and transitions. Furthermore. TCT does not allow
for the labeling of states or transitions. Finally. due to the design of the interactive
environment, it is impossible to run scripts of commands. If the user wants to repeat
a sequernce of calculations (perhaps with some slight modifications to an initial plant).
all the work must be done manually.

Object TCT (OTCT) [O°Y92] is a more recent DES software tool written in C++
which. while providing essentially the same DES operation functionality, is designed
to process batch files which contain sequences of commands for solving particular
DES problems. The OTCT software is also designed to work with DES problems
with timing constraints. Unfortunately, it is still necessary to use lists of states.

marker states, and transitions (representing DES plants) as input and output.
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4.1.2 StateTime

The StateTime prototype DES software toolset [Ost97], which has been designed
to work with timed DES problems (i.e., timed transition models combined with a
real-time temporal logic framework), provides some of the visual state descriptions
which allow the user to more easily design and modify inputs, and interpret outputs.
This feature has been lacking in both of the previously-discussed software packages.
StateTime is designed to work with a type of Statechart [Har87] (with timing infor-
mation) instead of with FSMs. Statecharts are another type of state-machine which
allow for a more compact visual representation of a regular language. It does not ap-
pear that the StateTime tool currently has any capability for generating or running

scripts or batch files.

4.2 A New Approach for DES Software Tools

After using some of the other software tools for solving example problems related
to the work presented in this thesis, it quickly became apparent that a new. more
flexible tool was required. A new tool should be able to process script files containing
(possibly a large number of) basic DES operations. The tool should also be capable
of accepting (resp., producing) DES plants as input (resp.. output) in a format which
is intuitive to the user—in this case, as finite state machines where the states and

transitions are displayed graphically, not as lists of data.

These two new high-level DES software requirements effectively determine how
the high-level implementation should be done. A core series of DES operations need
to be implemented in some well-established language which is reasonably well-suited
to solving mathematical problems. If this can be done properly. then this language, in
conjunction with the implemented set of DES operations. would provide the required
scripting environment. We present a set of functional requirements for such a DES
toolkit in Section 4.2.1. We have also included matrix-based algorithms for a subset

of the set of DES operations currently available in other DES software tools.

A front-end software tool also needs to be designed to create and interpret DES
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plant files, and to send commands to the computational engine in an interactive
manner. This allows the user to immediately see and understand the structure of
DES FSMs which result from using DES operations on an original set of plants. We
present a set of visual requirements in Section 4.2.2 which provide a more detailed

description of how such a front-end software tool should function.

4.2.1 Functional Requirements

In this section, we discuss in more detail what is required in the design of the core

computational engine.

4.2.1.1 High-Level Scripting and Batch Processing

In the existing set of DES software tools, it is difficult and time-consuming to
process a large number of plants using an identical DES operation or a sequence of
DES operations. Essentially. for each plant the user would be required to interac-
tively enter the plant information, and specify the operation or sequence of operations
required to process that plant. While this method is suitable for processing a small
number of plants. it quickly becomes untenable in cases where the number of plants
is large. Such a situation could occur where large numbers of plants are processed to

obtain statistical information.

In addition to enabling large batches of plants to be processed. a design which
allows for scripting enables the user to define higher-level DES procedures as required
to solve specific types of problems. It is conceivable that the user could design a
MATLAB procedure which solves a control problem with partial observation. where
the user is asked for a specific set of input automata relating to plant and legal
languages. The procedure would be composed of basic DES operations which do all

the computations required to solve this type of problem.

Finally, by designing a core computational engine that accepts a scripted input.
it would be possible to record information about interactive sessions in a log file

which would be able to reproduce the set of calculations using only the MATLAB
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interpreter. This simplifies the process of recording information regarding how specific

results were obtained, and of reproducing those results.

4.2.1.2 Extendibility

Discrete Event Systems theory is still an expanding field. As more research is done
in this area, it may be desirable to add new procedures and operations to the basic
DES software tool. Also, although we only require a subset of the DES operations
to be implemented in the prototype tool (i.e.. only those functions required for the
research presented in this thesis), we want to ensure that when more MATLAB DES
operations are implemented. it will be simple to incorporate them in the prototype

tool.

4.2.1.3 Capability to Handle Large DES Problems

As we mentioned earlier. models of realistic industrial problems typically use hun-
dreds or thousands of states. Thus, any DES software tool must be able to solve
these larger problems in a reliable manner. In the prototype tool developed for this
thesis, we took advantage of the sparse matrix functionality available in MATLAB to

minimize the amount of information about an automaton which needed to be stored.

In the matrix-based implementation, transitions in automata are represented using
adjacency matrices. where a ~1” entry represents a transition between states (the
specific states are inferred from the row and column of the entry in the matrix). and
a “0" entry represents no transition between states. Since in our experience, only a
small number of entries contain ~1”s representing transitions. it is efficient to store
only the information corresponding to ~1” entries. Thus for an n-state machine with
MGm.0) = Gmer for m =1..... n — 1 being the only defined transitions, storing the

whole transition matrix for the ¢ transitions would require Q(n?) space and would
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appear as

(01 0 0]
0 1 0
000 - 1
000 - 0|

where. for example, the transition (g, 0) = ¢ is captured by the “1” entry in row 1
column 2 (i.e.. a transition starting at the state corresponding with the row number,

and terminating at the state corresponding to the column number).

Storing only those locations in the adjacency matrix which correspond to defined

transitions would require only 2 x n space, and would appear as

(q1-q2).
(q2.q3)-

(Qn—hq:-l)-

where the first entry in the ordered pair represents the state where the transition
starts (the row for the *1” entry in the sparse matrix). and the second entrv repre-
senting the state where the transition terminates (the column for the “1” entry in the
sparse matrix). When the number of transitions is small. the space savings can be

considerable.

By storing information about the transition structure of plants in the manner
outlined above. and by using efficient algorithms for DES operations, we believe that
the MATLAB environment will be able to process DES automata which are large

cnough to model complex problems.

4.2.2 Visual Requirements

We now present some details about the front-end software package which has been

developed as a first attempt to satisfy the high-level requirement that DES automata
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should be able to be constructed and viewed by the user in a simple and intuitive

manner.

4.2.2.1 The Visual Plant

This section lists a number of desirable features which have been implemented in

the prototype software tool.

State Characteristics

e Each state in an automaton should be able to be moved to any desired location
within the workspace (by the user) so that the automaton may be presented in

a readable manner.

e Each state in an automaton should be capable of being labeled in a meaningful
manner. [t should be possible to modify this information in a simple and direct

manner.

e Fach state should display information regarding its initial and marked status.

It should be possible to modify this information in a simple and direct manner.
Transition Characteristics

e Each transition should appear as an arrow originating at a state. and terminat-

ing at (pointing to) a state.

o Each transition should be capable of being labeled in a meaningful manner.
This label should correspond to an existing alphabet element. [f a new label
is entered. a corresponding alphabet element should be added. [t should be

possible to modify this information in a simple and direct manner.

e [t should be possible to modify (in a simple manner) the shape of the transition
line in order to make the overall automaton simpler to interpret and easier to

visualize



Plant Characteristics

Some work has been done in the area of drawing directed graphs in an aesthetically
pleasing manner, for example [GKNV93]. While the prototype DES tool which we
have developed does not provide this function, the data structures have been designed
in such a way so that it would be simple to add a MATLAB routine which could
arrange visible states in an intuitive and understandable manner. This type of layout
function would be useful specifically in cases where a DES function (PROJ, MEET
or SYNC for example) generates new state-sets which have a non-trivial relationship

to the state sets of their argument FSMs.

4.2.2.2 FSM Interactions

In the same way that it is possible to trace how a variable is calculated in a
spreadsheet. it would be useful to be able to trace how an automaton is calculated
in our interactive DES software environment. Furthermore, it would be useful to
be able to automatically update automata which are derived from other automata
when any information regarding the input automata or the type of DES operation
performed on the input automata changes. Finally. it would be useful to have a block
diagram representing the relationships between all automata currently loaded in the

interactive environment.

4.3 A Matrix-Based Implementation of DES Operations

The following subsections outline the vector and matrix data structures along with
the matrix-based algorithms which were developed as part of this thesis. In order to
tllustrate these structures and algorithms. we use the two FSMSs in Figure 4.3 as
running examples. For the remainder of this section. (7 refers to the FSM shown in
Figure 4.3(a) and G to the FSM shown in Figure 4.3(b).

We point out that although we chose to implement the structures and algorithms
described in this subsection in MATLAB, there is no reason why they may not be

implemented in other matrix-based mathematical environments. Thercfore, in the
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Figure 4.3: Two example FSMs

following subsections we focus on the matrix operations and manipulations which
comprise the DES operations. and omit many of the MATLA B-specific implementa-
tion details.

Also, for clarity we use full matrix representations when describing how the various
steps of the matrix algorithms apply to the example FSMs. However. in the MATLAB
implementations of these algorithms. all the matrix manipulations are done using the

sparse matrix form.

4.3.1 The File Format

The file format used to store DES plants is essentially a MATLAB .m file. As no
MATLAB operations are performed in this .m file. the ordering of the various vectors
and matrices which define the FSM is not important. Further. the front-end prototype
program has also been designed such that the order of the vectors and matrices is not

important. The file contains the vectors and matrices described below.

The Plant Name Vector

This vector contains the name of the finite state machine. This name is used as
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a suffix when naming all the plant vectors and matrices. Thus, for a plant named

“G17, the variable would be defined as

PNg, = [-G17]

in the plant file.

The Stacked Transition Matrix

The Stacked Transition Matrix is essentially an (m - n) x n matrix, where n is the
number of states in the FSM, and m is the number distinct events. Thus, the first nxn
block represents the adjacency matrix for the first event in the event set &, the second
n x n block represents the adjacency matrix for the second event, and so on. Since
MATLAB does not easily store lists of information as matrix elements, and the current
version does not support n-dimensional matrices where n > 2. this method of data
storage was chosen as the simplest method for storing all the transition information
in a single data structure. The following is an example of a stacked transition matrix

for the example FSM G:

010
0 00
0 00
0 0 1
I ¢ 0
[0 0 0|
which appears in sparse matrix form as
TRe, = sparse(6.3).
TR; (1.2) = 1.
TR;((4.3) = 1.

TR (5.1) = 1.

For this example, the first event (say a) occurs as a transition between states | and 2.

and the second event (say 3) occurs as transitions between states | and 3. and states
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2 and 1. Note that in the sparse matrix representation, a “1” signifies the occurrence
of a transition starting at the state indicated by the row number (modulo m) and
terminating at the state indicated by the column number, whereas a “0” (i.e., the
matrix element is not explicitly defined in a sparse matrix) represents the absence of

a transition.

The Transition Location Matrices

The Transition Location Matrix is used to define the (x.y) screen positions of the
spline points for each defined transition occurring between two states. Note that since
there needs to be only one physical line/arrow to represent a number of transitions
between the same start and termination states. the matrix does not need to be stacked
to accommodate an adjacency matrix for each event. However. the matrix is stacked
horizontally to accommodate the z and y location information. and can be stacked

vertically to accommodate (z,y) locations for splines with multiple points. Thus

[X loc. matrix, spline point 1] [Y loc. matrix. spline point 1] ]

[X loc. matrix, spline point 2] [Y loc. matrix. spline point 2]

| [X loc. matrix. spline point n| [Y loc. matrix. spline point n] |

In the example below (shown in sparse matrix form). the spline associated with
the d(l,a) = 2 transition has (x,y) coordinates (100.120). which correspond to the
sparse matrix elements 7 5¢,(1.2), and T5¢,(1.3). Adding the elements for the other

transitions in (&) we get

TS, = sparse(3.6).
TS55,(1,2) = 100.
TSe (1.3) = 120.
TS¢ (2.1) = 200.
T5¢,(2,4) = 220.
TSq (1,3) = 300.



TSc,(1.6) = 320.

The State Label Vector

The State Label Vector is a list of names corresponding to FSM states. The
ordering of the state labels corresponds to the ordering of the transitions in the
transition matrices, and in the initial and marked state vectors. Thus, states indicated
by the n'* row or column of a matrix are labeled by the n** label in the state label

vector. An example of a state label vector for the FSM G is

“Idle”
SNg, = | “Working”

“Broken”

The Initial State Vector

The Initial State Vector indicates the set of initial states by using a =17 at the
locations corresponding to the states in the set. Note that in DES theory. there can be
only one initial state. although the software makes no such restrictions. An example

of this vector for FSM & is

Sle, =10 0]

which indicates that the first state (state ~Idle” as defined in the State Label Vector)

is the initial state of the FSM.

The Marked State Vector

The Marked State Vector is defined in a similar manner to the initial state vector,
the two differences being that this vector indicates the marker states of the FFSM,
and that it is possible in standard DES theory to have multiple marker states. An

example of this vector for the FSM () is
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SMGL=[1 1 0],

which indicates that the first and second states (states “Idle” and “Working” as

defined in the State Label Vector) are bith marker states of the FSM.

The State Visibility Vector

The state visibility vector is also defined in a similar manner to the initial and
marked state vectors. In this case, the vector indicates those states which are to be
displayed using the front-end display program. An example of this vector for the
FSM G, is

SVG1=[1 1 l].
which indicates that all the states are to be displayed.

The State Location Vector

The state location matrix is an n x 2 matrix with each row containing an (x.y)
location for the state which corresponds to the n'* element of the State Label Vector.

An example of this vector for the FSM G, is

382 65
Slg, = | 309 141
438 183

which indicates that state I (or ~Idle™) is located at screen position (3382.65), state 2

(or *Working™) is located at screen location (309.1-1) and so on.

The Alphabet Label Vector

The Alphabet Label Vector is similar to the State Label Vector in that it provides

h

a list of labels which correspond to the occurrence of the m** n x n block in the

stacked transition matrix. The Alphabet Controllability and Observability Matrices
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(defined below) also make use of column locations which correspond to this list of

alphabet labels. An example of this type of vector for the FSM G| is

«

ANg, =
J
which indicates that the first n x n block in the stacked transition matrix corresponds

to an event labeled “a,” and the second block corresponds to an event labeled “3.”

The Alphabet Controllability Matrix

For both the Alphabet Controllability and Observability Matrices. we introduce
the notion of multiple supervising agents. Each supervising agent has its own view of
what occurs in a system and a set of events that it can control in that system. While
the data-structure defined here allows for multiple agents. the MATLAB implementa-
tion of the DES operations currently considers only those cases where a single agents

is defined.

The Alphabet Controllability Matrix is a & x m matrix which contains information
about the controllability of each of the alphabet elements (m total) for each of the k&
supervising agents. This matrix contains a “1” at row /. column j if. for supervisor
I, the j** alphabet element (labeled by the j** entry in the Alphabet Label Vector) is
controllable. otherwise it contains a “0” at this location. An example of this matrix

for the FSM &y is

ACa, = |

which indicates that for the first supervising agent. the first alphabet clement (a”
as defined in the example alphabet label vector) is coutrollable. and the second al-
phabet element (*3d7) is not controllable. For the secoud supervising agent, “a” is

not controllable, while =37 is controllable.
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The Alphabet Observability Matrix

The Alphabet Observability Matrix is defined in a manner analogous to the Al-
phabet Controllability Matrix, the difference being that “1”s in this matrix represent
alphabet elements (indicated by the column) which are observable by some supervis-

ing agent (indicated by the row). Thus the example matrix

AQg, = 0

indicates that the first agent cannot observe the first alphabet element (“a” as defined
in the example alphabet label matrix) but it can observe the second alphabet element

(“B"). For the second supervising agent, the opposite is true.

4.3.2 Basic Matrix Operations

Before we can discuss the details of the various DES matrix-based algorithms, it
1s necessary to define some terminology. First. let adjacency matrix A represent the
transitions in a 'SM. By computing A™. a matrix which represents the number of
distinct “walks™ of length n between any two states can be obtained [Epp95]. A walk

between two states ¢; and g, is a string s € £* such that d(q.s) =q,. If

0 1
A=
1 0
then
A% = Lo
0 1

which can be interpreted to mean that there is one walk of length 2 from state 1
to state | (in this case via state 2), and similarly one walk of length 2 (rom state
2 to state 2. There are no walks of length 2 between state | and state 2. The A"
matrix can be modified so that it keeps track of accessibility. instead of counting the

numbers of walks between pairs of states. First. we define the function NORM to be
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a function which replaces any non-zero matrix element with a 1. If A represents the

adjacency matrix for a FSM, then define

.’10 - .‘1,
An = NORM(A™ + A,_)).

Thus, if A, has a 1 at location (i,j), then there exists a walk of length less than or
equal to n between states 1 and j.

The matrix operator “A” is defined as follows. Given two matrices B; and B,
with the same dimensions, where the entries of B, and B, are 1’s or 0’s, the resulting
matrix B = B A B, has the same dimensions as matrices By and B, with each element
B(i. j) being defined as the logical “and” of elements B\(t,j) and Bs(¢, j)-

The matrix operator “V” is defined as follows. Given two matrices C; and C,
with the same dimensions, where the entries of 'y and C, are I's or 0’s, the resulting
matrix C = CV(, has the same dimensions as matrices C'; and (', with each element
C(i.7) being defined as the logical “or™ of elements C'\(t. ;) and Cy(1. ).

The matrix operator =" is defined to be the standard operator for calculating a
matrix product.

Finally, the notation |D| indicates the number of entries in a vector D.

4.3.3 The TRIM Operation

A matrix-based implementation of the trim operation defined in Section 2.2.1.1
is presented in this section. We present a pseudo-code algorithm, followed by a
discussion of some of the key steps in the algorithm. and conclude with a simple.

illustrative example.

Algorithm 4.1 : GTRI.\I = '[R[‘[(C')

[. input: G = (PN.TR.TS.SN.SI.SM,SV.SL. AN, AC. AO)
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g

10.

1.

Cfori=1,...,|AN|
TX =TXVTR[((i—1)- SN+ 1)...(i - [SN]), ... |SN]]

end

. R= NORM(SI -TX + SI)

Rya = (1 x [ST]) all zeros vector

while R # Rya do
Ryt =R
R=NORMR-TX + R)
end

SMU=SMAR
CR=NORM(SM -TX'+ SM)
CRoyuq = (1 x |SI|) all zeros vector

while R # Rold do
CR.ua=CR
CR=NORMCR-TX'+CR)

end

PNtria = PN
SNrpiy = SN
SLrapg = SL
Slrpiyv = S1
SMrriay = SM
SVrpivy = SV
TRrpisvi =TR
T'Stpi =TS
ANTRIAM = AN
ACTRIA = AC
AOrpi = AO
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12. for each nonzero entry1 in RACR do
remove corresponding rows from SNrtgrar and SLrrisv
remove corresponding columns from Slrprnv, SMrrin and SVrary

remove corresponding rows and columns from T Rrpiy and T Sty

end

13. return Graiaze = (PNtrist, TRTRIM . T STRIM. SNTRIM, SITRIM, SMTRIA.

SVrriv, SLrrise. ANTRis, ACTRIM, AOTRIA)

Algorithm 4.1 creates a FSM which recognizes the same languages as the input
FSM, but which contains only those states which are both ~reachable™ and “co-
reachable™. A state ¢ is defined to be reachable if there exists a string s such that
8(qo, s) = q. A state q is defined to be co-reachable if there exists a string s such that
8(q,s) = qm for some marker state ¢gm € Qm.

In order to calculate reachable states. the matrix-based implementation of the
TRIM operation needs to know only that there exists some transition between a
given set of states. [t does not need to know the label of the transition. For that
reason, the MATLAB function creates a new n x n adjacency matrix based on the
stacked m-n x n transition matrix of the original DES. This matrix is the logical OR
of each n x n block (representing the adjacency matrix for a single alphabet element)
in the stacked transition matrix. Formally. for some arbitrary FSM with a stacked

transition matrix T R. a matrix T.X is defined as follows:
TX =TR(1...n.lL...0)\/...\/TR(((m =1)-n+ 1)...(m-n).1...n).

This TX matrix now represents an adjacency matrix where an unlabeled transition
is defined between two states q, and ¢ if 3(q,. ) = ¢, is defined for anv o € ©.

The second part of the matrix-based function for TRIM calculates FSM reacha-
bility using the 7.\ matrix. Trivially. the initial state (represented by the vector ST)
is reachable. The algorithm then uses the T.\" matrix to calculate the set of states,
represented by vector R. which are reachable from the initial state via at most a single

transition as follows:

R = NORM(SI-TX + S1). _ (4.1)
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In general, if TX is an adjacency matrix. and 5/ is a matrix representing a subset
of states (with a *1” representing the inclusion of the corresponding state in the
subset), then SI-TX" is a vector where the value of each element corresponds to
the number of distinct paths between states in the subset represented by SI and the
state represented by the element of the vector S/ -TX". Since we are also interested
in states which were already reachable (the initial state vector in this case), we add
the previously reachable states to our result. Finally, as we are not concerned about
how many ways a state is reachable, only that it is reachable. we use the NORM
function to replace any non-zero elements of a matrix with the value “1.”

In order to check for states which are reachable via strings of arbitrary length,
this process is repeated, substituting the R vector for the initial state vector S/ in

the previous equation. Thus,
R=NORM(R-TX + R). (4.2)

This is repeated until the number of non-zero entries in R matrix does not increase
after the application of (4.2). Note that for our simple FSM (/. all the states are
reached after the application of (4.1), and therefore. in this particular case. no itera-
tions of (4.2) are required.

We have calculated all the reachable states. The function now calculates the subset
of reachable states which are also co-reachable. The algorithm used to calculate this
is very similar to the algorithm used to calculate reachable states. First. the function
calculates the transpose of the T\ matrix (call it the TX’ matrix). This matrix
represents the adjacency matrix of a directed graph where the direction of all the
(observable) transitions is reversed. The function then calculates a modified marker
state set by taking the logical AND of the marker state vector SV and the reachable

state vector R (i.e., we do not care about marker states which are not reachable):
SM =SMNAR. (1.3)

The initial equation used to calculate states which are co-reachable from the new

SM vector is

CR =NORM(SM -TX"+ 5M). (4.4)
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and the equation which is iterated until the co-reachability matrix C'R no longer

increases in its number of non-zero entries is
CR=NORM(CR-TX'+ CR). (4.3)

By removing all elements in all state and transition vectors and matrices which cor-
respond to zero entries in the R and CR vectors, we now have a set of states which
are both reachable and co-reachable.
Example

To illustrate how this matrix-based algorithm works, we will use the FSM &, in
Figure 4.3 as an input.

For the FSM G, (i.e.. n = 3). the T R matrix appears as

01 0]
0 0O
TRs, = 0 00
0 0 1
1 00
(0 0 0]
and thus. the corresponding 7' X matrix is:
(01 0] [oo1
TXs, = [00o0|V|1 00O
_0 0 0_ 0 00
(0 1 1]
= 1 00
(0 0 0]

The reachability vector R is calculated for the FSM G, as follows:

RGI=[100]- 1 00 +[l~00]



Then the new SM reachable marked state vector is

SMg, = [1 1 0]/\[1 L 1]

Finally, the coreachability vector CR is

010
CRG,=[110]-100 +[110]
1 00

We note that as with the reachability calculation. no iterations of (4.3) are required
for this example, as the number of non-zero elements in the C R vector does not change
after the application of (4.4). The final C R¢, vector tells us that only the first two
states are coreachable. The final step in our example is to remove rows and columns
which correspond to zero elements in the R, AC Rg;, vector (i.e. states which are not

reachable and not coreachable). Thus. for example. the modified TR matrix would

appear as
0 1]
0 0
TRrrivy = |—| .
0 0
—1 0-

and the ST and SM vectors would appear as
Slrriv = [ 10 ]

SMrpiv = [ 1 } .

and finally. the resulting FSM is shown in Figure 4.4.

4.3.4 The MEET Operation

A matrix-based implementation of the mmeet operation defined in Section 2.2.1.2

1s presented in this section. We present a pscudo-code algorithm. followed by a
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Figure 4.4: The TRIM of FSM G,

discussion of some of the key steps in the algorithm. and conclude with a simple,

illustrative example.

Algorithm 4.2 : Gyeger = (G1.G,)

I. input: G, =(PNg,.TRz,.TSg,.SNg,.Slg,.
SMea,.SVa,. SLg,. ANg,. ACq,. AOg, )

G2 =(PNa,.TRa,.TSG,.SNg,. Sls,.
SMe,.SVe,. SLe,, ANG,. ACq,. AOg, )

2. TRyger =]
TSveer = (|SNG, | - |SNG, | x2-|SNg,| - |SNg,|) all zeros matrix
SNager = (1 % [SNg,| - 1SNg,|) label vector
Shyveer = |]
SMyeer = ||
SVueer =]
SLyger =]
ANveer = ]
ACyger =]

AOveer =]

3. fori=1...|SNg,| do

for g =1...|SNg,| do
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if Slg,(i) =1 and SIg,(j) =1 then
Simeer((i — 1) - |SNg,| +7) =1
else
Sluger({(t = 1) - [SNg,| +j) =0
end
f SMeg, (i) =1 and SMg,(j) =1 then
SMyger((i — 1) - [SNg, [+ ) =1
else
SMyeer((z — 1) - [SNG, | +7) =0
end
end
end

4- for each (p.q) such that ANg (p) = ANg,(q) do
. ANvEET
ANyeET = )
ANg, (p)
ACyeer = | ACyeer ACq (p)

AOyveer = | AOyeger AOg, (p)
Aog, = TRa,((p— 1) 1SNay [+ 1...p-|SNg | 1. .. |SNa,])
Asy, = TRo((q—= 1) - |SNg |+ 1...q-|SNg, | 1...|SNe, |)
fori=1...|SNg,| do
forj=1...|SNg,| do
(i = 1) |SNG |+ 1...i- [SNa,| .
=D SNVa [+ 1 - [SNG ) = Aap () - A,

end

end

T RygeT }
A,

TRMEET = [

end

-1

]



Note: TSpmeer, SVmeer, SNMEeT, and S Ly ger all contain information which
pertains to the display of the FSM. The information contained in these matrices
and vectors is not presented here. However, in the MATLAB implementation,
these vectors are computed using heuristics for screen locations and labeling

rules.

3. return Gyppr =(PNyeer, TRMeeT, TSMEET, SNMEET, S IMEET, SMMEET,

SVyveer, SLyveer. ANMEET. ACMEET. AONMEET)

Algorithm 4.2 creates a FSM that recognizes a language composed of strings which
are recognized by all of the the FSMs used as the arguments to the operation. Thus

for some arbitrary number of FSMs where

Gmeee = MEET(G.G,. . ... n)-

The FSM which generates the meet language as defined in (2.1) can be constructed

as a |Qg,| X |Qs,| x ... x |Qg,| state machine. Since it can be shown that
MEET(MEET(Gy.G»).G3) = MEET(G . MEET(G,. (1))

(i.e.. it 1s associative). we can simplify our example, without loss of generality. by

considering MEET to be the meet of only two IFSMs (say ) and ().

The matrix-based MEET routine builds the various FSM matrices and vectors as
follows. First. the alphabet label vector and the stacked transition matrix for Gopeer
are constructed. Since the language that describes the meet of two input languages
contains only those elements which are contained in both the input languages. any
strings in either of the two input languages which contain events which are unique to
that language will not be included in the meet language. Thus. ¥, = o, Nig,.

Next, the alphabets of the two FSMs are compared. and for cach set of common
event labels, the event label is added to the alphabet label vector ANV e. and a

new |Qg,| - |Q@c,| x 1Qac, |- |@a,| block is added to the new stacked transition matrix
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T Rneet. For some o € T, NEq,, the |Qa,| x |Qa,| adjacency matrix for o in G,
(call it A,; ), and the |Qg,| x |Qc,| adjacency matrix for o in G, (call it A, ) are
combined to create an adjacency matrix (call it A,) for the new FSM in the following

manner. For i,7 =1...|Q¢,|,

A((i=1)1Qq, [+ ... 1:|Qa| , (1-1)1Qc|+1 ... [Qc,|) = Asg, (i,7) Aoy, (4.6)

Equation (4.6) can also be described in a more graphical manner as follows

[ A (L, 1)- A, Aog, (1.2) - Aoy, -+ (L1Qa,1) - Ao,
o = A,,G‘(Q, 1)- AM2 A, l(2 2)- .—l,,cz a (2 IQmI aG,
A’J'Gl (IQGl Iv 1) - "1002 "LYQI(IQGl I..Z) . "lﬂcg o »'{a'.«_-,-l (Ich I' Ich I) ) ‘4'702 J

The new stacked transition matrix 7 R,... is then constructed, with each .,

adjacency matrix block corresponding to some o € 5, N Eg,

TRoyeer = (+.7)

The initial state vector is constructed as follows. For each vector element in the
initial state vector for Gy, |Qg,| vector elements are added to the new initial state
vector by multiplying the vector element for G, by the entire initial state vector
(containing |Qg,| elements) for (i;. Thus. a state in the meet FSM is an initial state

if both the corresponding states in G| and (75 are initial states.

The marked state vector is constructed using the same method that was used for
constructing the initial state vector. Thus. a state in the meet FSM is a marked state

if both the corresponding states in (/; and G/, are marked states.

The alphabet controllability and observability properties for those alphabet ele-
ments ¢ € S, which form E,,... are taken as the defaulit values for the controllability
and observability matrices in the new G ,,.., FSM. State and transition locations are

generated automatically according to a simple heuristic algorithm.



As discussed in Section 2.2.1.2, we are primarily interested in trim languages.
Thus, the MEET routine includes as a final stage a call to the TRIM routine, before

it returns the FSM to the user.

Example:

We use the two example FSMs G; and G; from Figure 4.3 as inputs to the MEET
operation to illustrate how this operation works. Equations (4.6) and (4.7) are used
to construct the new T R,,... stacked transition matrix. Since G, and G- have the a
event in common, the adjacency matrix A, for Gn..: will contain non-zero elements,
and is constructed using (4.6). The adjacency matrix can be thought of as a 3 x 3

group of 2 x 2 submatrix blocks:

2x212x2(2x2
Ae =1 2x2[(2x2]2x%x2
2x2(2x2|2x2

The 2 x 2 submatrix blocks are computed as follows. Given that the adjacency matrix

for the a event in (¢ is

Aas, = TRg(l...2.1...2)
0 1
00

and the adjacency matrix for the a event in (7 is

lay, = TRg(L...3.1...3)
01 0
= 1000

-]
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For each zero entry in the AC,Gl adjacency matrix, an all-zero 2 x 2 submatrix block

is inserted in the corresponding entry in the 4, adjacency matrix as follows:

(1) [ o o 00 |

2 x 2
(,2) | 0 0 ‘ 0 0
L_ @D oo o000
@2l oo0]oo]oo
1] oo|loo|oo
32 | 00|00]|00 |

Note that for each row in the 4, matrix, a state-pair has been included which illus-
trates how the rows in the matrix correspond to the elements of the Cartesian product
Qc, x Qc,- A similar labeling applies to the columns of the matrix. Since the top
middle entry of the A, adjacency matrix is “1.” then the Aa;, adjacency matrix
is inserted in the corresponding top middle block of the new A4, adjacency matrix.

completing the matrix:

(l.1) 0o ojo 1l0 0
(1.2) |0 0|0 o]0 0
L. 20 foo0joojoo
(2) |0 0|0 0[0 O
3.1) o olo 0|0 o
(3.2) [0 0/0 0[0 O]

Since in this case. the only event that G; and (', have in common is a. then the

T R e stacked transition matrix is simply the A, adjacency matrix
TRmeet = [.'1,,] .

Had ¢/, and (7, had more events in common. then the T'R,,.., matrix would be a
stack of all the newly calculated adjacency matrices as indicated by (4:7). We also
note that in this example, after the final stage when (..., is trimmed, the resulting

FSM shown in Figure 4.5 contains only two states.
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; [EWoric:Empt]
MEETGIGDY)}— |

Figure 4.5: The MEET of FSMs G, and G

4.3.5 The SYNC Operation

A matrix-based implementation of the synchronous product operation defined in
Section 2.2.1.3 is presented in this section. We present a pseudo-code algorithm,
followed by a discussion of some of the key steps in the algorithm. and conclude with

a simple. illustrative example.

Algorithm 4.3 : Gsyne = SYNC(Gy.Gh)

1. input: G, =(PNg,.TRG,,TS¢,,5Ng,.Sg,.
SMe, .SV, .SLa,. ANg,, ACq,. AOg, )

G2 =(PNg, . TRG,.TSc,.SNg,.S1g,.
SMa,.SVe,.SLg,, ANG,. ACq,. AOg,)

2. for each entry o in ANg, which does not appear as an entry in ANg, do
Put ['s along the diagonal of the A, adjacency matrir
within the T Re;, stacked transition matrir
end
for cach entry o in ANg, which does not appear as an entry in ANg, do
Put ['s along the diagonal of the A, adjacency matrir

within the T Re, stacked transition matrix

end
3. calculate Gyippr = MEET(GL.G)
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4. Gsync = GMEET

5. return Gsync

Algorithm 4.3 combines the MEET operation with an operation (step 2 of Algo-
rithm 4.3) that adds event self-loops at each state of an FSM, to obtain an output
FSM that synchronizes on common events, and otherwise allows for all possible in-
terleavings of events, as defined by (2.2). For example, if two FSMs G, and G, are
used as input, the output FSM Ggsync can be informally described as follows. If G,
is at some state q;, and G is at some state q,, then for state (q;,q;) in Q. which
corresponds to G, being in state ¢, and G, being in state g.. then §((q;,q2),0) is

defined if any of the following are true:

® 4G, (q1,0) is defined and d,(q.. o) is defined, or
® 0c,(q1.7) is defined and ¢ ¢ S¢,. or

® 95,(q2.0) is defined and o ¢ Sg, .

The matrix-based SYNC routine first goes through the event labels for Gy (Zg, ).
and adds self-loops of events to each state in Gy if for ¢ € £4,.0 ¢ S5, holds. It
does an analogous step for each state in ;. The procedure then computes the meet

of these two modified FSMs. and returns it to the user.
Example:

We again consider the example where the two input FSMs are ¢G; and G,. In
this case, a v self-loop event is added to G, and a 3 self-loop event is added to (.

resulting in the two modified automata (G’ and %) shown in Figure 4.6.
g 1 2 g

The MEET of &} and (7, is computed using the algorithm presented in Sec-

tion 4.3.4. The resulting A,. 4;. and A, matrices represent the adjacency matrices



Figure 4.6: The example FSMs with self-loops

for a. 3 and + in the new FSM G,

0 0[{0 L{0 O]
000 0l0 0
L_|00foofoo
0 0[(0 0[0 0
0 00 0{0 0
(0 0[0 00 0
[0 0|0 o|1 o]
0 0{0 0f0 !
|t ofo oo
0 1|o ofo o
0 0l0 0lo o
[0 0fo 0j0 0

(o2
()
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Figure 4.7: The SYNC of FSMs & and G

[0 0{0 0]0 0]
L 0{0 0|0 0
L_|00foofoo
0 01 0/0 0
0 0{0 0|0 0
10 o]0 o1l 0]

Therefore. the resulting T R,, .. stacked transition matrix (before trimming) is

A,
T Rsync = "ld
A,

The other FSM vectors and matrices are calculated in the same manner as for the
MEET operation. Note. however. that for the SYNC operation. ¥,,,.. = S5, U Eg,.

The trimmed FSM which is constructed using this procedure is shown in Figure 4.7.



4.3.6 The PROJ Operation

A matrix-based implementation of the projection operation defined in Algorithm 2.4
is given in this section. We present a pseudo-code algorithm. followed by a discus-
sion of some of the key steps in the algorithm, and conclude by discussing a simple,

illustrative example.

Algorithm 4.4 : Gppos = PROJ(G)

I. input: G = (PN.TR.TS.SN.SI,.SM,SV.5L. AN. AC'. A0)

2. TRpros =]
T'Spros = (]
SNeros = ||
Slpros = ]
SMpros =]

SVpros = {]

SLpros =]
ANpros =]
ACpros = |]
AOppros =[]

3. fori=1...[AN]| do

if AO(1) =1 then
AOproy = - AOpros AO(1)
ACpros = . ACpros AC()

-

ANproy
AN(D)

ANpros =

end

end

4. let TXyo be an all-zero |SN| x |SN| matrir
fori=1.._|AN| do

o



if AO(1) =0 then
TXpo =TXuoVTR(((1 = 1)-|SN|+1)...(:-|[SN]|).1...|SN])
end
while the number of non-zero elements in T X is increasing do
TX = NORM(TXyo - T Xyo + T Xvo)
end

5. MAP =[5 -TXuo + 51, “new”

while there erists some row (j) labeled “new” in the M AP matriz. do
fori=1...]AN]| do
if AO(i) =1 then
S=MAP(.1...|SN]|)-

TR(((t = L)-|SN|+1)...(t-|SN]).1...[SN))-
TXvo
end
if S# MAP(k.1...|SN]|) for some k then
MAP
MAP =
s “new”

add « new element to the SNpros. Slpras. SMpros. SVeroy
and SLproy vectors
add new rows and columns to the T Rproy and T Sproy malrices
end
change entries in the T Rproys and TSproy matrices to 1~
to reflect transitions between state sets in (iproy as required
end
remove the “new” flug from the j** row of the M AP matrir

end

Note: TSPROJ,.S""}:ROJ.SIVPROJ, and SLPROJ all contain information which

pertains to the display of the FSM. The information contained in these matrices

&
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and vectors is not presented here. However, in the MATLAB implementation,
these vectors are computed using heuristics for screen locations and labeling

rules.

6. return Gproy =(PNpros, TRpros. T Spros. S Npros, SIpros. SMproy,

SVpros. SLpros. ANpros. ACpros. AOproy)

Algorithm 4.4, which is a matrix-based implementation of Algorithm 2.4, con-
structs a FSM which generates the projection of the language generated by an input
FSM.

First. the routine creates a (n x n) T X0 matrix. In this case, the T Xy matrix
is based on the (m-n x n) Stacked Transition Matrix. but includes only unobservable
events. Thus. for [/ = {i | AO[{] =0.i = 1...m}.

TNeo= V TRU{((:=1) n+1)...(i-n).l...n). (4.8)
viel

The T X0 matrix as defined above can be interpreted to be an adjacency matrix
for any single unobservable event. What we now require is a modified adjacency
matrix which accounts for strings of unobservable events. To accomplish this, we

iterate the equation
TXpo=NORM(TXro - TXpo + T Xuo) (4.9)

until the number of non-zero elements in the 7\ matrix stops increasing. We have
now created an adjacency matrix where a transition is defined between two states if
there exists a chain of unobservable events connecting the two states in the original
FSM.

The PROJ routine then creates a | x n MAP matrix that will contain subset
information for all the states in the new FSM. This matrix starts as a | x n matrix.
but will grow as new states are added to a & « n matrix. with cach of the & rows
corresponding to a state in the projection state-space. Row 1 of the MAP matrix

(the only row at this stage) is defined as
MAP(LL...n)=SI-TXpo + S1. (4.10)
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This is equivalent to the subset of states defined by e-CLOSURE(q,), or the set of
states the input FSM could be in after the occurrence of a (possibly zero length)
string of unobservable events (i.e., no observable events have yet occurred in the
input FSM). This subset represents the initial state in the output FSM.

This first row of the MAP matrix is flagged as “new.” The routine then enters an
iterative stage. Here, for each “new” row in the MAP matrix, the routine determines
what subset of states S can be reached from the subset of states represented by the
“new” row in the MAP matrix via each o € ¥, followed by a string of unobservable

events. The equation is as follows:
S=MAP(,l...n)-TR(((: = 1) - n+1)...(¢-n).l...n)- T Xpo. (4.11)

This equation uses the subset of states represented by the ;* (“new”) row in the
MAP matrix. and the observable event with an adjacency matrix represented by the
i*" n x n block in the stacked transition matrix T R. If the S vector does not match
any of the existing rows in the MAP matrix. then it is added as a new row to the

MAP matrix, and is flagged as “new” as follows:

MAP
MAP = ) . (4.12)
s “neuw”

As the MAP matrix is being constructed, corresponding TR. SN. SM. SI. and
SL matrices {which represent data for the new FSM) are updated as required with
new transitions and states. The states represented by the vector elements in the SV,
SM, SI.and SL vectors correspond to the rows in the MAP matrix: that is, the first
row in the MAP matrix corresponds to the state represented by the first element in

the S.V. SM. SI and SL matrices (and the first row and column in each block of the
the T R matrix)

Although in general. it is desirable to obtain a minimum state representation of
the language generated by the output FSM. this routine does not do this by default.
This allows us to examine the structure and size of the resulting FSM. and make
conjectures about how the structure of the input FSNM impacts the size of the output

FSM (before minimizing).



Example:

To illustrate how the PROJ matrix algorithm works, we partition the event set &
of G in Figure 4.3 into ©,, = {a} and £, = {#}. The T X matrix resulting from
(4.8) and (4.9) is

010
TX=1000
0 0O

and the first row for the MAP matrix as defined in (4.10) is

MAP = Sl -TX
[I 1 0O New].

Now, we iteratively apply (4.11) to each “new” row in the M AP matrix. For the first
iteration, we consider the first row of the MAP matrix. and the J event. The 3 event
maps the first state to the third state. and the second state to the first state. Note,
however that it is possible to reach the second state from the first state via a string
(namely «a) of unobservable events. Thus. J also. in effect maps the second state back

to the second state. Therefore, the M AP matrix becomes

1 1 0
1 1 1 New

We now consider the second row of the M A/ matrix. which contains the only
new’ flag. After applying (4.11) to the row. no new rows are added to the M AP
matrix. We can therefore conclude that the only two state-sets which make up the
projection state space are {Idle.\Working} and {Idle.\Working.Broken}. The adjacency
matrices for each of the observable events are constructed as the M AP matrix grows.
Thus, if at some stage during the procedure. the M AP matrix contains n rows, then
for each observable event, there exists an n x n adjacency matrix. The FSM which
recognizes the projection of L((/) is shown in Figure 4.8." For simplici'ty, we have
renamed the state “{Idle.Working}" as “1”7. and the state “{Idle,Working,Broken}”

as “27.

,.
o
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Figure 4.8: The PROJ of FSM &,

4.3.7 The MINI Operation

The matrix-based MINI operation presented here implements Algorithm 2.1. The
algorithm takes an input DFA, and provides an output DFA which recognizes the same
language. but which contains the minimum number of states required to recognize that
language. The matrix-based implementation of this algorithm has been developed to

work with matrix representations of FSMs.

First. the MINI routine constructs a three-column matrix FLAG. The first two
columns of each row of this matrix contain unique . j pairs. ¢ # ). where 1. j represent
distinct states in the FSM. Thus, there are as many rows as there are combinations
of two distinct states in the FSM (specifically: (n~(n — 1)/2) rows). The entry in the
third column of each row (with entries i.j in the first two columns) is defined using

the Marked State Vector SM as follows:

Column 3 entry = 1 if SM{t) # SM(y). or
Column 3 entry = 0 if SM () = SM(y).
The routine then goes through each row of the FLAG matrix. and for each row
containing a zero in the third column, it finds the state-pair (q..q,,) where ¢, =
§(gi,o) and q,, = 8(q;.0). ¢ # q;. 0 € £, and g,. q, corresponding to ¢.j in the first

two columns of the FLAG matrix. If the row in the FLAG matrix which corresponds
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to the state pair (qi;,q;;) has a “1” in the third column, then the routine enters a “1”
in the third column of the row corresponding to the (g;,¢;) state pair. This process
is iterated until no new 1’s are entered in the third column of any row in the FLAG
matrix.

Finally, those pairs of states which have not been “flagged™ in the above iterative
process, are considered to be equivalent states. The matrix-based routine therefore

combines these states, and outputs a minimum DFA to the user.

It should be noted that this implementation of the Myhill-Nerode theorem, while
fairly simple to code in MATLAB. is not the most computationally-efficient way to
calculate the minimum DFA [Hop7l]. Specifically, Algorithm 2.1 (step 2. line 6)
uses recursion on lists to efficiently flag unflagged pairs. In contrast, our matrix-
based routine cycles through the list of state pairs to test. and in some cases flag,
unflaggeded pairs. This cycle continues until a complete test of all the state pairs is

done with no further flagging.
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Chapter 5

Examples

Before we present a series of example, we first need to define the two types of figures
which are used to present some of our results. First. we display a form of adjacency
matrix which illustrates how states map to other states after the occurrence of an
observable event ¢, followed by a string of unobservable events. Both the x-axis and

v-axis represent the set of states in these matrices.

We also use an no-reachability matrix (sometimes referred to as a summary ma-
trix). where nonzero (i.e., dotted) elements in the matrix represent occurrences of
strings of length n in the plant. Thus, while the v-axis still represents the set of

states. the x-axis represents all possible strings of observable events of length n.

5.1 The Two-Train Problem

For our first example, we chose the simple problem where two trains must share
a common length of track [RW89], [Won96]. In this problem. parts of the track
have sensors which can detect the passage of the trains. and parts of the track have
stop lights which may prevent the trains from entering the following sections of track
{Figure 5.1).

The plant language can be modeled by taking the synchronous product of two finite
state machines (Gv, and Gvy,. each representing the behaviour of a train) which are
provided in Figure 5.2. Let V' be the language recognized by the resulting automaton
(i Gy recognizes ‘

Gy = SYNC(V'L, 172).
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Train 1
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Train 2

Figure 5.1: A block diagram of the two-train problem
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Figure 5.2: The component models for the two-train problem



[n controlling this system, we require that the two trains not occupy the same segment
of track at the same time, thus the legal language is defined as the language F
recognized by the automaton Gy after the states (1,1),(2,2),(3,3), and (4,4) have
been removed together with all transitions leading into and out of the removed states.
This provides a FSM which recognizes a language which does not include strings
corresponding to train movements which result in the two trains occupying the same

section of track at the same time.

Now, as Figure 5.1 indicates, there is no sensor before section 2 of the track. This
means that the unobservable event set is £,, = {a,,32}. As part of the solution to
the control problem, it is useful to take the projection of all those strings which are
considered to be illegal. The language V' — E represents all the possible strings of
events in the plant minus the legal strings, leaving only those strings which are illegal.
An automaton Gy_g which recognizes the language V" — £ can be constructed. so

that the FSM which recognizes P(V — E') can be calculated:
Gp = p(Gv_g).

As Gv_g has 56 states. it is possible that the FSM which generates the projection of

V' — E could have on the order of 2°¢ states.

5.1.1 o-Reachability Analysis Results

Table 5.1 summarizes the results obtained for the o-reachability analysis of the
two-train problem. [t is interesting to note that while in the worst case, the size of
the state-space could be on the order of 10'°. even a lo-reachability test indicates
that due to the structure of the problem. the upper limit is no greater than 20225. A
3o-reachability test further reduces this upper limit to 1600 states.

Although o-reachability analysis does not allow us to strictly do better than make
exponential predictions about the size of the state-space of the projection FSM. the
structure of this problem allows us to improve our state-space estimate significantly.

Specifically, by using the number and type of transitions coupled with the number
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Table 5.1: o-reachability results for the two-train problem

lo-reach. 2o0-reach. 3o-reach. do-reach. 5o0-reach.
State Estimate 202235 1839 1600 4930 37659
Max. Subset 13 9 9 6 4
Complexity O(|%.]) o(|Z.1?) O(|Z.[%) O(|Z,1Y O(|%.1%)
L] ?
Valve \t =
| He——3
! Controller

Figure 5.3: A block diagram of the HVAC system

of states. instead of simply using the number of states. as the parameter for the
exponential estimate we can reduce our state-space estimate by a factor of 2*3. Thus,
the lo-reachability test indicates that the size of the projection state-space is of order
2!3 versus the state-space of the FSM which by itself indicates that the size of the

projection state-space could be of order 2°¢. In this case. the o-reachability test has

reduced the exponent by a factor of 4.

5.2 An HVAC System

A heating, ventilation and air-conditioning (HVAC) DES diagnosability problem
from [SSL*96] (Figure 5.3) was chosen as an example of a system where a large
number of the transitions occurring in the IFSM are unobservable. In this case, 118

of 228. or more than 50% of the transitions in the 90-state FSM are unobservable.

In our analysis of the problem. we assume that all the failure events are strictly
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Table 5.2: o-reachability results for the HVAC system

lo-reach. 20-reach. 3o-reach. 40-reach. 5c-reach.
State Est. 528897 269921 272966 808786 913899
Max. Subset 18 18 18 18 18
Complexity O(IZ.]) O(I%,]?) O(IZ.]%) O(IZ.]*) O(IZ°)

unobservable, and that all other events are observable. For simplicity, we do not make

use of additional sensors which are used in [SSL*96] when checking for diagnosability.

The plant can be modeled by computing the synchronous product of six compo-
nent FSMs. These component FSMs represent models of a Pump, a Valve, a Fan, a
Boiler, a Load, and a Controller (Figure 5.4(a)-(f), respectively). By taking the syn-
chronous product of these components, a 90-state. 228-transition FSM is obtained.

We then note that the set of observable events is
¥, = {PON,POFF.FON,FOFF.OV.CV.BON.BOFF.SPD,SP!}.

with a combined total of 110 transitions in the composed 90-state FSM. and the set

of unobservable failure events is
Lwo = {PFON1,PFON2 PFOFF1.PFOFF2.5C1,SC2.501.502}.

with a combined total of 118 transitions in the composed 90-state FSM.

5.2.1 o-Reachability Analysis Results

Table 5.2 summarizes the results obtained for the o-reachability analysis of the
HVAC problem. In this example, while the best results are obtained using a 2o-
reachability test. the maximum subset size does not reduce past the initial lo-
reachability value of 18. Thus, a simple lo-reachability test results in a-reduction by
a factor of five of the exponent (2'® versus 3/4 - 2%?) used to estimate the size of the

projection state-space.
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Figure 5.4: The component models for the HVAC system
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[t is also of interest to look at the matrix structure for some of the transition ad-
jacency matrices and some of the summary matrices. Figure 5.5 shows the adjacency
matrix representing a NFA containing all the unobservable events as defined in the

HVAC problem, plus additional unobservable transitions between states as follows:
8(q1,€) = g2 if 3s € £, such that d(qy,s) = q2.

The adjacency matrix can be interpreted to mean the following. For some state
represented by a matrix row, the adjacency matrix shows all the states (represented
by the matrix columns) which can be reached by some string of unobservable events.
For example, if there is a dot in row 1. column 6 and in row L. column 8, then there
are two strings of unobservable events starting at state L. with one string leading to

state G and the other to state S.

Figure 5.6 summarizes the data obtained while doing the lo-reachability test.
The matrix rows correspond to states in the FSM in the usual manner. Each column
however corresponds to a unique ¢ € ¥,. Thus. the matrix can be interpreted to
mean that after observing some event o (followed by some string of unobservable
events), the system can be in at most some (not necessarily strict) subset of the
states corresponding to the matrix rows containing dots. We can see from Figure 3.6
that the FON event (corresponding to matrix column 1) results in the system being
in at most a subset of I8 states in the 42-65 row range. whereas the FOFF event
(corresponding to matrix column 2) results in the system being in a subset of 9 states
in the 78-90 row range. In fact, since the FON event maps to a subset of |8 events.
it i1s the event which bounds the lo-reachability estimate (i.e.. since there are no
other events which map to more than 18 states. then FON is one of the events which
provides the O(2'*) value).

We have also included the 2o-reachability matrix (Figure 5.7), which is inter-
preted the same way as was the lo-reachability matrix. with the exception being
that each column now corresponds to some unique group of two obser.\}able events
(i.e.. FON,FON or FOFF.CV, etc...). It is interesting to note here that while each

of the ten observable events mapped to some nonempty subset of states in Figure 5.6.
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Figure 5.6: Matrix structure for the lo-reachability matrix

only 16 of a possible 100 groups of double events map to nonempty subsets of states.
Unfortunately, the largest of these subsets is still I8 states. and thus. no significant
improvement can be expected over the [a-reachability projection state-space size esti-
mate. Indeed. this maximum subset size does not drop before the state-space estimate

starts increasing due to the double counting effect discussed in Section 3.1.3.2.

Finally, the adjacency matrix for the FON event (Figure 3.8) has been included
to illustrate how cach event maps to a small subset of states in this system. The ad-

jacency matrix for the other observable events are similar in structure to this matrix.
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Note that for this example. there is a significant amount of nondeterminism due to

strings of unobservable events following the FON event.

5.3 The Tsitsiklis Problem

[t has been proven {Tsi89] that building supervisors for partially-observable sys-
tems can be computationally intractable. In devising the proof for this, an arbitrarily

large DFA (Figure 3.7) parameterized by u is constructed, with an unobservable event
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set ¥y = {ul,dl,u2,d2....,un,dn}. The control problem in this example is to dis-
able the events in brackets in Figure 3.7. In order to do this, the supervisor must
remember the sequence of 1’s and 0’s which have occurred. Based on which a; event

h

it observes, the supervisor then must examine the i** event. If the i** event is a 1

then the supervisor must disable 0 otherwise it must disable [.

When larger versions of the FSM shown in Figure 3.7 are constructed, the size
of the state-space of the FSM grows with n?. However, as the supervisor must at
each stage remember the sequence of 1's and 0’s which have occurred, the constructed
supervisor must be of order 2". This example. while contrived. is of significant interest
to us because it provides a scalable example of a case where o-reachability does not

improve the estimate of the size of the projected state-space significantly.

The 37-state. 34-transition example in Figure 3.7 is constructed by scaling the
general problem to n = 3. For this example. the number of states in the FSM is
2-n*+6-n+1 or O(n?). The proof found in [Tsi89] shows that the size of a
supervisor for such a system is O(2"). Since there are 2 < n® + n occurrences of |
transitions and the same number of occurrences of 0 transitions. the lo-reachability
test will always return two sets of size 2 x n® + n. Thus. the lo-reachability estimate
grows exponentially worse as n increases. We conjecture that the no-reachability

tests will also produce estimates which grow exponentially with n.

While [Tsi89] shows that the size of a supervisor must be O(2*), lo-reachability
analysis shows that the size of the projection state space of the system (upon which
the supervisor is based) could be as high as O(2**"*"). Thus. it is clear that in this
type of example where the number of occurrences of a specific observable event is

high. o-reachability does not offer any improvements to state-space size estimates.

5.3.1 o-Reachability Analysis Results

Table 5.3 summarizes the results obtained for the o-reachability analysis of this
example. [t is interesting to note that significant improvements on the size estimates

are made up to and including the 3o-reachability test. We conjecture that due to the
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Table 5.3: o-reachability results for the Tsitsiklis problem

lo-reach. 20-reach. 3o-reach. 4o-reach.
State Estimate 4194317 1083 260 5220
Max. Subset 21 8 3 2
Complexity O(|%.l) O(IZa|?) O(IZ.) O(|Z,]*)

nature of the construction, the best estimate will occur at approximately the n**o-

reachability test (with some correction for the double-counting effect), where n is the

parameter used for the construction of the svstem.

Figure 5.9 shows how both the 1 and 0 events (corresponding to the first two
columns in the matrix) map to a large subsets of states. This corresponds to the large
number of occurrences of 1's and 0’s in the system. This matrix also shows how each
of the a,-events (corresponding to the last 3 columns of the matrix) maps to exactly
2 states, as expected. In addition. the adjacency matrix presented in Figure 5.10
illustrates how the ~1” event is defined for a large subset of states. compared to
Figure 5.8 in the HVA(C example. where the non-zero elements of the adjacency matrix
are more localized. It is also of interest to note that unlike the HVAC example, no

nondeterminism has been introduced in this matrix. as there are no places where a

*1” can occur followed by a string composed of unobservable events.

5.4 A 10-state Cycle Problem

The somewhat contrived example DES model shown in IYigure 5.11 is an instance
of the class of FSMs presented in Figure 3.6 for n=9. It has been included in this
section as an example of a case where o-reachability offers no improvement over the

single z-transition geometry result presented in Section 3.1.1.1.
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Table 5.4: s-reachability results for the cyclic example

lo-reach. 2g-reach. 3o-reach. do-reach. 50-reach.
State Est. 1537 2819 4999 8911 15871
Max. Subset 10 10 10 10 10
Complexity O(|Z.l) O(IZ.[%) O(|Z,/*) O(IZ|") O(IZ,[°)

5.4.1 o-Reachability Analysis Results

Table 5.4 presents the results of the o-reachability tests which were done on the
FSM in Figure 5.11. We can immediately see that the lo-reachability test gives a
worse estimate than the 3/4 - 2!% — | = 767 upper limit for the number of projection
states. and that each subsequent iteration of the test serves only to roughly double

the projection state-space estimate.

To try and understand why our o-reachability results do not improve the projec-
tion state-space estimate. we look at the adjacency matrix for the observable event
a (Figure 5.12). Note that as in the previous cases. this adjacency matrix represents
not only the occurrence of a events, but also the occurrence all possible unobservable
event strings which may follow an a event. Whereas in the previous example. one
of the events maps to a large subset of states. in this example Figure 5.12 illustrates
the less desirable case when an event (in this case the a event) maps to the entire
set of states. [t follows that when this type of mapping occurs. we can conclude
that no number of iterations of the o-reachability test will reduce this set, since the

occurrence of an arbitrarily long string of a events will always map to the entire set

of states. This is exhibited in Figure 5.13 for 5o-reachability.
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Chapter 6

Conclusions and Discussion

The DES software requirements and the set of matrix-based algorithms presented
in this thesis constitute a basis for the design and implementation of a DES software
toolbox which provides a flexible and visual environment for the design and analysis of
discrete—event systems. This design attempts to combine some of the useful features
of existing software packages with the proven reliability of a high-level matrix-based
computational engine (MATLAB). In addition. the thesis outlines a series of user-
interface requirements which enable the user to design. modify and analyze discrete-

event systems in a simple and intuitive manner.

We have proposed a method for storing DES models (in the form of FSMs) in
a matrix-based computational environment. We have also provided a set of matrix-
based DES operations which serve as building blocks for modeling DES problems.
The logical continuation of this work would include completing the set of matrix-
based DES operations. At a higher level. the software has been designed so that it
could be possible to include modules which incorporate additional DES requirements.

such as timing or knowledge. into the basic DES toolbox.

QOur set of requirements and prototype software implementation served as a tool for
investigating the effects of structure on the computational complexity of constructing
[FSMs which generate projected languages. A number of methods (based on DES
structures) which attempt to improve the estimate of the size of the projection state-
space have been presented. The effectiveness of this type of analvsis is illustrated
through a series of simple vet illustrative examples. These examples have been chosen
to show cases where our analysis improves and does not improve the estimate of the

projection state-space.
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It is our belief (confirmed by the work presented in {[OW90]) that by analyzing in
more detail the FSM properties related specifically to o-reachability, the results pre-
sented here could be improved upon. Further, we believe that to fully take advantage
of the work done here, some work could be done which would identify exactly how
problem structures (such as cycles) could be modified so that computational problems
can be avoided.

Finally. the computational cornplexity analysis presented in this thesis could be
implemented in the prototype software tool as a package of pre-filtering tests which
would provide estimates of the computational complexity of doing projection before

the projection operation is run.
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