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Abstract 

Crossover designs are widely used in clinical trials. The main advantage 

of this type of design is that the treatments are compared within subjects. 

That  is, every subject provides a direct cornparison of the treatrnents he or 

she has received. In general, a smaller number of subjects is needed to obtain 

the same precision than with a cross-sectional design. However, because of 

the correlations within subjects arising from the repeated measurernents, 

the usual analysis of variance based on ordinary least squares (OLS) may 

be inappropriate to analyze crossover designs. Some approximate likelihood 

based tests that take into account the structure of the covariance matrix have 

recently been proposed in the literature. 

The aim of this thesis is to compare the performance of the OLS method 

and two of the approximate likelihood based tests to a non-likelihood based 

method, the generalized estimating equations, for testing the treatment and 

carryover effects, in crossover designs, under the assumption of multivariate 

normality. 



Résumé 

Les plans croisés sont souvent utilisés dans les essais cliniques. Le princi- 

pal avantage de ce type de plans est de comparer les effets de traitement avec 

la variabilité intra-sujet. En d'autres termes; chaque sujet fournit une com- 

paraison directe entre les traitements qu'il reçoit. Donc, en général, un nom- 

bre moindre de sujets est nécessaire pour obtenir la même précisioii qu'mec 

un plan d'analyse de variance classique. Cependant, à cause des corrélations 

entre les mesures répétées d'un même sujet, l'analyse de variance basée sur la 

méthode des moindres carrés ordinaires peut être inappropriée pour l'analyse 

des plans croisés. Quelques tests approximatifs basés sur la vraisemblance 

et qui tiennent compte de la structure de la matrice de covariance ont été 

proposés récemment dans la littérature. 

L'objectif de ce mémoire est de comparer la performance de la méthode 

des moindres carrés ordinaires e t  de deux tests approximatifs basés sur la 

méthode du maximum de vraisemblance à une méthode qui n'est pas basée 

sur la vraisemblance, soit la méthode des équations généralisées d'estimation, 

pour confronter les hypothèses d'absence d'effets de traitement et d'effets 

rémanents dans les plans croisés sous le présupposé de multi-normalité. 
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Chapter 1 

Introduction 

Nowadays, longitudinal data are frequently found in research studies, espe- 

cially in epidemiology and in clinical trials. In a cross-sectional study, only 

one observation of the response variable is taken for each subject. On the 

other hand, in longitudinal studies, a sequence of repeated measurements 

of the response variable is observed over time. Longitudinal studies can be 

viewed as a large number of short time series, one for each subject. An im- 

portant advantage of longitudinal studies is that it can discriminate changes 

over time within individuals from between individuals differences (i.e. dif- 

ferences among subjects in their baseline levels). Although, in general, a 

smaller number of subjects is needed in longitudinal studies to obtain the 

same precision than in cross-sectional studies, the multiple observations per 

subject in the former design rnay involve higher costs. The choice, if the 

researcher has any, between using a longitudinal design or a cross-sectional 

design will depend, among other things, on the relative cost of recruiting sub- 



jects and the cost of taking repeated measurements on the subjects. Another 

drawback of longitudinal studies is the special and more complex statistical 

rnethods required because of the correlations between the set of observations 

from each subject. 

In longitudinal studies, a subject may receive only a single treatment that 

is evaluated a t  different time points (repeated measures studies) or he may 

receive a sequence of several treatrnents with the order of presentation of the 

treatments varying between subjects. The latter type of longitudinal study is 

commoiily called a crossover design. An overview of the analyses of repeated 

rneasurements studies can be found in the books by Diggle, Liang and Zeger 

(1994) and Crowder and Hand (1990). In this thesis we will consider the 

analysis of a very important particular class of longitudinal studies : crossover 

designs . 

The classical analysis of data from a crossover design, assuming that the 

vector of observations for a subject follows a multivariate normal distribu- 

tion, is the analysis of variance based on ordinary least squares (OLS) (Jones 

and Kenward, 1989). However, for this analysis to be valid, the covariance 

matrix must have a sphericity structure (Bellavance, 1994). Since this latter 

assumption is most of the time violated in practice, Bellavance, Tardif and 

Stephens (1996) proposed and studied the performance of some approximate 

likelihood based tests for the analysis of crossover designs that take into ac- 

count the covariance structure. In particular, they considered two rnethods 

that use an estimate of the covariance matrix. Another method exists that 

allows the  use of different structures of the covariance matrix in the case 

where the vector of observations has a multivariate normal distribution; this 



is the generalized estimating equations (GEE) method introduced by Liang 

and Zeger (1986). The method is useful because of the lack of tests available 

for the case where the distribution of the data  is not multivariate normal. 

Thus, the GEE rnethod can also be used with different distributions like the 

Poisson, binomial or gamma. However, the purpose of this thesis is to com- 

pare the performance of the GEE method, the analysis of variance based on 

the ordinary least squares and two of the approximate tests studied by Bella- 

vance, Tardif and Stephens (1996) in the case of small and medium sample 

sizes and for different structures of the covariance matrix with observations 

coming from a multivariate normal distribution. In Chapter 2, the OLS and 

two approximate likelihood based tests are presented. In Chapter 3, the GEE 

method is described. A numerical example is presented in Chapter 4 and the 

Monte-Carlo simulations and their results are given in Chapter 5. Finally, 

some conclusions are drawn in Chapter 6. 



Chapter 2 

Crossover designs and 

likelihood based methods 

2.1 Crossover designs 

Two sources of variation in data from experimental designs with repeated 

measures are the within-subject and between-subjects variations. However, 

most of the information for treatment comparisons is contained in the within- 

sub ject variation. Hence, to achieve sufficient precision from small trials for 

treatrnent comparisons, it is desirable, when possible, to reduce or eIiminate 

the between-subject variation and to  maximize the information obtained from 

each subject. This is the main advantage of repeated measurement designs 

in generai and of crossover designs in particular. 

In crossover designs, each subject receives a sequence of treatments over 

different periods of time. Although the main aim of crossover trial is to 



compare the effects of two or more treatments, there are some nuisance pa- 

rameters that need to be considered in the model. Indeed, even if two treat- 

ments have identical effects, a large difference between two measurements on 

a subject might be obtained if, for some reason, the measurements in one 

treatment period were significantly lower or  higher than those in the  other 

treatment period. To avoid confounding period and treatment effects, more 

than one sequence must be used. Hence, the subjects are randomly assigned 

t o  prespecified sequences of treatments, and it is therefore possible to ac- 

count for the presence of a period effect in the statistical model and obtain 

unbiased est irnates of the treatment effec ts. 

The use of repeated measurements on the sarne subject brings with it 

great advantages, but it  also brings a potential disadvantage. This disadvan- 

tage can be largely overcorne if three or more treatment periods are used, 

and is only serious in the simplest crossover design known as the 2 x 2 design. 

The disadvantage to which we refer to is the possibility in drug trials that 

the effect of a drug given in one period might still be present a t  the start 

of the following treatment period. The effect of a treatment that persists 

after the end of the treatment period is called the carryover effect. In the 

standard 2 treatment - 2 period crossover design where each subject receives 

both treatments, which are conventionally labelled as A and B, the test for 

carryover effects lacks power because it is based on between-subject variation. 

Moreover, in the presence of a carryover effect, it is not possible to get an 

unbiased estimate of the treatment effect using the within-subject variation; 

using a "wash-out" period between the two treatment periods should lessen 

the chances of a significant carryover effect. However, the use of a "wash- 



out" period increases the length of the study. Furthermore, it is often not 

ethical t o  include a wash-out period when a standard and effective treatment 

exists. The use of higher-order designs, designs including either more than 

two sequences or more than two treatment periods or both, would yield un- 

biased within-subject estimates of the treatment and carryover effects. For a 

thorough discussion of the advantages and disadvantages of using crossover 

designs, see Jones and Kenward (1989). 

Here are some examples of different crossover designs (note : the different 

letters represent different treatments) . 
Ex. 1 : The standard 2 treatments x 3 periods x 2 sequences crossover 

design 

Period 

1 2  
Sequence 

Ex. 2 : Three possible 2 treatments x 3 periods x 2 sequences crossover 

designs 

Period Period 

1 2 3  1 2 3  
Seq. Seq. 

1 A A B  1 A B B  



Period 

1 2 3  
Seq. 

1 A B A  

Ex. 3 : Two possible 4 treatments x 4 periods x 4 sequences crossover 

designs 

Period Period 

1 2 3 4  1 2 3 4  

1 A D B C  1 A B C D  
Seq. Seq. 

3 C B D A  3 C D A B  

4 D C A B  4 D A B C  

Clearly, it is possible t o  choose among a large number of designs to corn- 

pare a specific number of treatments. The problem of deciding which design 

to  use to estimate the treatment effects has been considered by a number 

of researchers (see Jones and Kenward, 1989, for a review). The "optimal" 

designs chosen provide minimum-variance unbiased estimates of the effects 

of interest. 

In general, consider a p -period crossover design comparing t -treatrnents 

with n subjects. If the responses are continuous and are put in a single np 



dimensional vector Y, then the usual linear model for analyzing these data 

is 

where Y = ( ~ l l r ~ 1 2 ,  . ~ l p r  y211 ~ 2 2 r  . . . 9 Y2p,. . i Ynir Yn2, , !/np)l, Y j k  be- 

ing the response of subject j in period k ,  j = l, 2 , .  . . , n, k = l ,  2 , .  . . , p, 

x =  (lnp 1 (In @ lp) 1 (ln @ Ip )  1 X; 1 XA), Pt = ( / A  T I  T' At), 

I,,, is the identity matrix of order m and 1, is an m-dimensional vector of 

ones. The symbol @ denotes the Kronecker product. In model (2.1) E = 

~ 1 2 ,  . . . , E ~ ~ ) '  is a vector of normally distributed errors with zero mean. 

A~so, p, = (a l ,  . . . , an)', 7~ = ("1, 7 ~ 2 ,  . . . , rp)', T = (r1, 72, . . . , rt)', and 

X = (A1, X2, . . . > At)' represent the overall mean, fixed subject, period, direct 

treatment and carryover efFects respectively. The n p  x t matrices & and A\ 

are the design matrices associated with T ,  and X respectively. For example, 

in the case of the crossover design with the two sequences ABB and BAA 

and two subjects per sequence, the above design matrices are the following : 





(Note : here, TI and T* represent the effects of A and B respectively.) 



2.3 Likelihood based methods 

2.3.1 The ordinary least squares analysis 

The hypotheses of interest are 

Ho, : r = O, Le. no treatment effects or TI = 7 2  = . . . = TL = O 

and HOA : X = O, i.e. no carryover effects or XI = X2 = ... = At = 0. 

In order to present the statistics used to test these two hypotheses, it is useful 

to first expose some important concepts of linear algebra. Let B be a matrix 

of dimension p x p : 



1. The trace of the matrix B is the sum of the diagonal elements of B : 

2. The matrix B is idempotent if B B = B2 = B. 

3. A generalized inverse of a matrix B is defined as any matrix B- that 

satisfies the equation BB-B = B. 

4. The matrix B is nonnegative definite if X'BX 2 O for al1 vector X of 

dimension p. 

5. A covariance matrix C of dimension p x p with a cornpound symrnetry 

structure has the form 

C = o2 

6. A covariance matrix C = (akk/),  k ,  k' = 1,2,. . . , p has a sphericity 

structure if C has elements of the form : 

o k k t  = a k  + ctkl + X S k p  where cuk are constants, k = 1,2,. . . , p ,  X > O 

and akk1 is equal to 1 if k = k' and O otherwise. 



Note that the compound symmetry structure is a particular case of the 

sphericity structure. 

Now, define the following matrices : 

where 

Also, define : 

E = [ 1 - X  

[X (X'X) -XI - MT ( M i  MT) - M:] , 

where B- is a generalized inverse of the matrix B. Note that there exists a 

multitude of generalized inverse B- for a matrix B (Searle, 1987). However, 

the operations performed in the statistical methods presented in this thesis 

are invariant to  the choice of the generalized inverse. 

In the ordinary least squares analysis (OLS), the following F -ratio tests 

are used for testing the treatrnent effects adjusted to carryover effects (i.e. 

testing for the presence of treatment effects considering that the carryover 

effects are already included in the model) and for testing carryover effects 

adjusted for treatment effects : 



where r ( B )  is the rank of B. 

For both F -ratios, F, and FA, in the case where Y has a multivariate 

normal distribution, the covariance structure of the vector of errors, E, has to 

have a sphericity structure for the quadratic forms of the numerator and de- 

nominator to be independent and x2 -distributed (Bellavance, 1994). Urider 

these assumptions, the F -ratios FT and FA have an esact F -distribution. 

Hence, we will reject the nul1 hypotheses Ho, and HOA for large values of F, 

and FA respectively. Unfortunately, in practice the assumption of sphericity 

structure for the covariance matrix is rarely met. This is why Bellavance, 

Tardif and Stephens (1996) proposed and compared three alternative like- 

lihood based tests that take into account the covariance structure. Two of 

these tests will be used in this study and will be presented in the next two 

sections. 

2.3.2 Modified F-test approximation (MFA) 

Suppose that  in mode1 (2.1), the vector E has a multivariate normal distri- 

bution with mean zero and positive definite covariance matrix C (C > 0). 

Thus, Y - N ( X P ,  C). In general, the quadratic forms of the numerator and 

denominator of both F -ratios in section 2.3.1 are dependent. To present 

the alternative test, the following results on quadratic forms are needed. Let 



Q = Y'DY for a matrix D symmetric and nonnegative definite. Therefore 

W )  

where the Bis are the T ( D )  nonzero eigenvalues of the matrix DC and X; 

represents a random variable having a chi-squared distribution with h degrees 

of freedom. In equation (2.2) the X: are independent. In the case wliere the 

covariance structure of the vector of errors, c ,  is spheric, al1 eigenvalues of 

DE are equal, Bi = 8, Say, i = 1 , 2 , .  . . , r (D) .  Therefore 

that is, Q has a x2 -distribution with r(D) degrees of freedom multiplied by 

a scalar O. In general, the expectation and variance of Q are 

and 

where tr(B)  is the trace of the matrix B. 

Box (1954 a, b) proposed the following approximation for the distribution 

o f Q :  

where c and h are such that Q and cx; have the same first two moments, 

that is 



and Var(Q) = ~ ~ T ( D C ) ~  = Var(cxh) = 2c2h. 

Therefore, 

Now, consider two nonnegative quadratic forms Q1 = InDIY and Q2 = 

Y f D 2 Y  approximated by cl& and c2& respectively. QI and Q2 need not be 

independent. A simple approximation to  the distribution of the ratio 

is the distribution of a constant b times an F -distributed random variable 

with ( h l ,  h2) degrees of freedom where 

Back to the hypotheses testing of 6, and HOA in the analysis of crossover 

trials, the following approximations can be used : 

where 

and 

where 



Unfortunately, in practice C is unknown and an alternative is to  estimate 

C from the data and use this in place of the true value. In section 2.3, an 

estimate of C will be presented. 

Note that when C has a sphericity structure, the above approsimate tests 

are then exactly equivalent to the OLS method. To prove tliis, we first riote 

that the matrices A,, AA and E are al1 idempotent and furthermore, under 

the assumption of sphericity for the structure of C, the following identities 

hold (Bellavance, 1994) : 

AJA, = BA,, AxCAx = BAA, ECE = BE, A,CE = Oand AxCE = 0. 

Thus, the last two identities indicate that the quadratic forms If',4,i' and 

Y'AxY are Doth independent of the quadratic form Y E Y .  Moreover, we 

have for D = A,, Ax and E 

tr(DC) = t r(DDC) (because D is idempotent) 

= tr(DCD) 

= tr(6D) (first three identities above) 

= 0 tr(D) 

= 19 r (D) (because D is idempotent), 

and 



Hence, 

2.3.3 Empirical generalized least squares (EGLS) 

The empirical generalized least squares technique has been suggested by 

Jones and Kenward (1989) for the analysis of crossover designs. Basically, it 

consists of a transformation of the vector of observations Y and of the design 

matrix X. Since C is positive definite, there exists a non singular matris I< 

such that C = 1-IF. The following transformations are performed : 

Z = K-'Y, W = K-'X and q = K-IE. 

The following transformed mode1 is then obtained 

Z = W p  + q,  where 7 - N ( 0 , I ) .  

Then the OLS method can be conducted on the transformed vector of obser- 

vations Z and the transformed design matrix W to make infereiices about P. 

Here again, C is needed to be able to find Ii, but in practice it is replaced 

by an estimate. 



2.4 Estimation of C 

If we assume that the errors on each subject are independent and have the 

same dispersion matrix V of order p, then 

The experimental design has s sequences and we suppose that ni 2 2 subjects 

per sequence, i = 1,2,. . . , S.  Then an unbiased estimate of V is given by the 

within-sequence sample dispersion matrix 

where 



Chapter 3 

Generalized estimating 

equations (GEE) met hod 

3.1 Introduction 

As rnentioned in the last chapter, models for longitudinal data with multi- 

variate Gaussian outcomes already exist (Laird and Ware, 1982; Ware, 1985). 

For the particular case of crossover trials, Jones and Kenward (1989) present 

the ordinary least squares and the empirical generalized least squares meth- 

ods. Bellavance, Tardif and Stephens (1996) proposed the rnodified F-test 

and a Pearson curve approximation. However, al1 these methods assume that 

the observations are multivariate Gaussian. In the case of binary outcomes, 

likelihood based analysis is possible but computation is difficult (Stiratelli et 

al., 1984). With other types of outcomes, multivariate distributions for yjk 

(k = 1, . . . , p j )  similar to  the multi-normal distribution are not available. 



Therefore, likelihood based method cannot be used. On the other harid, both 

discrete and continuous responses can be modeled with the generalized es- 

timating equations (GEE) approach (Liang and Zeger, 1986). Data coming 

from Poisson, binomial or gamma distributions are some exarnples that can 

easily be anaIyzed with the GEE method. This method also takes into ac- 

count the time dependance structure of the data with the introduction of a 

working correlation matrix which will be presented in section 3.4. Another 

interesting point is that different subjects can have different numbers of re- 

peated measurernents and these measurements do not need to be taken a t  

the same time intervals for al1 subjects. As for the OLS and EGLS methods, 

GEE provides estimates of the coefficients B, which is not the case for the 

MFA. This is one advantage of the GEE approach over the modified F-test 

approximation. 

The GEE method estimates mode1 parameters by iteratively solving a sys- 

tem of equations based on quasi-likelihood distributional assumptions (Mc- 

Cullagh and Nelder, 1983). Because i t  is based on quasi-likelihood, this 

method does not need a complete specification of the joint distribution of 

the responses but only a pre-determined form of the marginal distribution 

and the form of the expectation and variance. The GEE method gives con- 

sistent estimators of the regression parameters and of their variances under 

weak assurnptions. 

The remainder of this chapter presents the details and properties of the 

generalized estimating equations approach and its application to crossover 

designs. 



3.2 Data layout 

3.2.1 General layout for longitudinal studies 

Repeated rneasurements (observations) are taken for each subject in longi- 

tudinal studies; the structure of each observation contains a subject identifier 

(subject id), an observation number, a time identifier, a response and some 

covariates. The time identifier variable can take different forrns: time points 

equally spaced or not, identical for al1 subjects or not, and same number of 

time points for each subject or not. Here are three different esamples : 

Ex. 1. Same number of observations for al1 3 subjects at the same time 

points (equally spaced) : 

Time points 

Ex. 2. Different time points not equally spaced between subjects but same 

number of observations for al1 3 subjects : 

Time points 

1 1 2 3  4 
Subject 



Ex. 3. Different tirne points between subjects and different number of 

observations for the 3 subjects : 

Time points 

1 1 2 4 5  6 8 9  
Subject 

2 1 4 5 1 0  

In this example, only subject 3 has equally spaced time points. 

The notation for the pj time points of subject j is the vector (tj17 tj2,- . . , tjpj)'> 

j = 1,2,...,72. 

The response variable can be continuous or discrete. For example, the 

response could be the level of blood pressure (continuous), the presence or 

absence of a disease (1 or O), or the number of asthma attacks over the last 

time period (counts). The responses for subject j ,  Y,, are written as the 

vector (yji7 yj2, . . . , 1 ~ ~ ~ ~ ) ' ~  j = 1, 2, . . . , n. The mean will be addressed 

as E(Y,) = pj = (pjl, pj lr  . . . , pjpj)'- Finally, the covariates (predictors) 

can also be continuous or discrete and can Vary with time or not. A time 

varying covariate can take different values over the time line; for example, 

the proportion of carbon monoxyde (CO) in the air a t  a certain location 

varies in time. On the other hand, in al1 but extraordinary cases, the sex 

would not Vary with time. The predictors of Pjk form the vector of covariates 

Xjk = (xjkli Xjk2, . . . , xjkm)', k = 1, 2, . . . , pj and j = 1, 2, . . . , n. The 

following layout represents the general structure of the data for longitudinal 

studies. 



subject observation # t ime response covariat es 

(j > (k) t jk Yjk x j k l  . . . xjkm 

Y11 

Y12 

Ylp1 

Y21 

Y22 

Y2p2 

zljl 

Yj2 

1 J j ~ j  

Ynl 

Yn2 

Y ~ P ,  



3.2.2 Part icular layout for crossover s t  udies 

In crossover designs, each subject j (j = 1, . . . , n) has a vector of p re- 

sponses = (yjl, yjl, . . . , yjp)  and a design matrix X; of m = [l + p + 
t + t] covariates that represents the intercept, p -period, t -treatment and 

t -carryover effects : 

Xj = 

This means that a t  time tjkr for subject j a t  period k, the following vector 

is observed, 

(yjk, q k l ,  xjk2, - - - ,  xjkrn) . 

In this vector, yjk is the response, the p covariates xjkl, Xjk2,  . . . , xjkp Te- 

present the p period effects ( T ~ ,  nz, . . . , %), the t covariates xjk(p+l)7 xjk(p+2), . . . , 
Xjk(p+l) represent the t treatment effects (r l ,  72 ,  . . . , rt) and the last t covari- 

ates Zjciç(,+t+l), Xjh(p+t+2), . . . , xjkm represent the t carryover effects (Al, X2, . - . , At). 

A11 these covariates will take the value O or 1. 

Hence we have a design matrix for analysis of variance (ANOVA) models 

and we can then add the usual constraints on the mode1 parameters, without 

lost of generality, i.e. 

Due to these constraints, the p periods can be represented by (p-1) covariates 

and the t treatments and t carryovers by (t - 1) covariates respectively. Also, 



the values taken by the covariates will be such that the sum over periods 

(treatments or carryovers) equals zero. For example, let p = 5; then the 

covariates Xjkl, xjk2, xjka and Xjk4  COU^^ take these values for the 5 different 

periods : 

The transformed design matrix obtained with these new (p- 1)+ (t - 1)+ (t - 1) 

covariates is of full rank. 

Let's consider the example of the crossover design with three treatments 

(A, B and C), three periods (1, 2 and 3), six sequences (ABC, ACB, BAC, 

BCA, CAB and CBA) and two subjects per sequence. Let subjects 1 and 

2 receive the treatment sequence ABC, subjects 3 and 4 the sequence ACB, 

subjects 5 and 6 the sequence BAC, subjects 7 and 8 the sequence BCA, 

subjects 9 and 10 the sequence CAB and subjects 11 and 12 the sequence 

CBA. The matrices of covariates for the twelve subjects are the following, 

where the first column represents the intercept, the second and third the 

period, the fourth and fifth the treatment and the last two the carryover 

effects : 





Although not needed in crossover designs, the GEE method allows the 

observations to be taken at different times for different subjects, and a dif- 

ferent number of observations taken for different subjects. If the notation 

tk (k  = 1, . . . , p) is used, the same number of observations will be taken 

for each subject, a t  the same time points, as in the type of crossover design 

looked at in this thesis. 

3.3 Details and properties of the generalized 

est imating equat ions met hod 

The generalized estimating equations method is an extension of generalized 

linear models to the analysis of longitudinal data. The latter are themselves 

an extension of classical linear rnodels. 

In classical linear models with a single observation for each subject (i.e. 

pj = 1) we have E(Yj) = pj where /Lj = X,!P and B' = (Pl ,&.  . . ,Pm) is 
the vector of unknown parameters that we want to  estimate from the data. 

Assuming that the responses Y,, j = 1,2,. . . , n, are independent Normal 

variables with constant variance a2, the density function is 

and the log-likelihood fiinction is given by 

n 1 " 
log C (Yl, K, . . . , Y,, B )  = - log (2n02) - - C (Y, - p j )  '. 

202 j=i 



The maximum likelihood estimator of /3 is the solution of the score equa- 

tions : 

For the introduction of the generalized linear models, modifications t o  

the specification of the model need to  be presented : 

1. The responses Y,, j = 1 ,2 ,  . . . , n, are independent and have a probability 

density function in the exponential family, taking the form 

for some specific functions a, b and c, and where $ is the dispersion param- 

eter. When 4 is known, this is an exponential-family model with canonical 

parameter 0 .  The expectation and variance of 5 are given by 

E(Y,) = pj = bl(Bj) and V U T ( Y ~ )  = bU(Bj) a(+). 

Thus, the variance of Y,  is the product of the function b1'(Oj) which depends 

on the mean pj oonly, and of a($) independent of B j .  The variance function 

bt1(Bj) considered as a function of pj is referred to as V ( p j ) .  



2. The linear combination of the P's is equal to some function of the expected 

value pj of Y,, that is 

where g is a monotone, differentiable function called the link function. In 

this generalized mode1 formulation, classical linear models have a normal 

distribution and the identity function for the link function. 

The most important distributions used with generalized linear models are 

presented with tlieir canonical link and variance functions in table 3.1. 

Table 3.1 Link and Variance functions 

For the exponential farnily, and thuç for the generalized linear models, 

the likelihood is 

and the log-likelihood is 

Distribution 

Normal 

Poisson 

Binomial 

Gamma 

S(P) 

1 

1% (PI 
logit(p) = log (&) 

- 1 
Cc 

Notation 

N ( P , u ~ )  

P b )  

Bin(1, p) 

G ( p , v )  

v(d 
1 

P 

p ( 1  - p)  

P2 

a@) 

o2 

1 

1 

v - 1  



Using the chain rule, the score equations are 

We have, 

and 

Therefore, the score equations reduce to 

When # is a known constant, the score equations can be written as 

and the maximum likelihood estimator of ,û is the solution of these score 

equations. It is important to mention that the score equations obtained in 

the case of the classical linear models have the same form, where a@) = g2 

and I'(pj) = 1. 

For both classical linear moclels and generalized linear models, the form 

of the distribution function of the Y,'s is known. In practice it may be 

unknown, but in most cases some characteristic features of the data will 

be : how the mean response, p, is affected by external stimuli or treatments 

(covariates X j ) ;  how the variability of the response changes with the average 

response; whether the observations are statistically independent; etc. With 

this information we have an idea of the form of the distribution even though 



a complete specification of the distribution is not possible. This is the under- 

lying principle of the quasi-likelihood theory, where the relationsliip between 

the mean pj and the covariates is 

with g being the link function, and the variance is assumed to be a known 

function V of the mean, that is 

where 4 > O is a dispersion pararneter. Where the classical linear models 

and the generalized linear models require a complete specification of the 

distribution of the response variable to find the likelihood function, here only 

the form of the mean and variance are needed t o  find the quasi-likelihood 

function. The quasi-likelihood estirnator of P is the solution of the score like 

equations 

Here again, we see that the equations in (3.1) have the same form than the 

score equations for the classical and generalized linear models. For more 

details about the quasi-likelihood theory in the regression context, see Wed- 

derburn (1974) and McCullagh (1983). 

The generalized estimating equations can be thought of as an extension 

of quasi-likelihood theory to the case where there is more than one observa- 

tion per subject (i.e. pj > 1). Hence we have, for subject j ,  the vector of 

observations Y, = (yji, y j z , .  . . , gjpj)'  and its expectation and variance are 



given b~r E(Y,) = pj = ((/ljl, ~ j * ,  - - . , kpj) and Var(%) = a(4)Cj .  Also, 

we suppose the following relationships : 

for j = 1,2,.  . . , n and k = 1,2,. . . ,pj.  The variance-covariance matris  Cj 

çan be rewritten in the following form : 

where Rj(<r) is the correlation matrix for Y,  and Aj is the ( p j  x p j )  diagonal 

matrix whose kth element on the diagonal is V(pjk) The (s x 1) vector ct 

fully characterizes the structure of Rj (a). The dimension of the correlation 

matrix Rj (a) may Vary from one subject to another depending on the number 

of repeated observations, but the structure is the same for al1 subjects. Since 

the nuisance parameters al,  as,. . . , as are usually unknown and need to be 

estimated, we refer to Rj(a) as a "working" correlation matrix. Also the 

name "working" correlation matrix for R ~ ( ( Y )  is used since the structure is 

not expected to be correctly specified. The extension of the equation systern 

(3.1) to the repeated measurements case is 

where 

and 



C j  could be referred to as the "working" covariance matrix. It is interesting to 

note that GEE reduce to score equations and maximum likelihood estimates 

for /3 when the responses are multivariate Gaussian. 

Derivat ion 

Suppose n independent multivariate responses YI,  6, . . . , Y,. Suppose 

also that Y, = ( y j l ,  yjz, . . . , g j p j )  has density functions N ( p j ,  C j )  where pj = 

Xi& /? is unknown and X j  has the form presented in section 3.2.2. The 

multivariate normal density of Y, iç 

The likelihood of the I'j's, j = 1,2,. . . , n is 

and the log-likelihood is 

The score estimating equations arise by differentiating the log-likelihood 

with respect to  p. By the chain rule we have 



We can see that if we put Cj = a(4)Cj in equation (3.3), the generalized 

estimating equations are identical to the score estimating equations in the 

multivariate Gaussian case. 

Going back to the generalized estimating equations (3.3), to find the 

solution for the parameters estimates b, an iteration between a modifiecl 

Fisher scoring for P and a moment estimation of cr aiid q5 was proposed by 

Liang and Zeger (1986). The iterative procedure for the cornputation of ,h 
given current estimates of â and 4 of the nuisance parameters is 

where Dj (A )  = $ l p j  > 7 m) = a(d)x j  [â,&{R, J(bi))]7 

sj(Pi) = (5 j j i  j i  = (/+i(Pt)?~jLi2(Pi),.-- ? ~ j p ~ ( B i ) ) /  where 

pjk(fii) = g - l ( ~ i k & ) .  The GEE design insures that the regreçsion coeffi- 

cients estimates are consistent if the link function g is correctly specified 

(Zeger and Liang, 1986). The correlation structure Rj(a) does not need to 

be correctly specified as long as the subjects are independent. 

The covariance of the estimates 6 is given in the theorem stated below. 

This theorem, proved by Liang and Zeger (1986), also gives the result tliat, 

under some assumptions, the estimator ,6' asymptotically follows a multivari- 

ate Gaussian distribution. 

Tbeorem 

Under mild regularity conditions (see Serfling, 1980, pages 144-145) and 

given that : 

I . & is ni-consistent estimator of CY given ,û and 4; 



II . & is ni-consistent estirnator of 4 given B; and 

awcp) III . 1 1 5 H(1: B) which is a function that is O&), 

then ni (b  - B) is asyrnptotically multivariate Gaussian with zero mean and 

covariance matrix 1% given by 

Ml 

A consistent estirnator of Vg can be obtained by replacing cov(l'j) by 

(l'j - pj)(lj - pj)' and a, ,L?, 4 by their respective estimators in Vp. Thus, 

the estimator of the variance of & is 

where, based on the final estirnate obtained frorn the iterative equation 

(3.41, 

and 

The estirnator va@) is called the sandwich estirnator because the matris 

is sandwiched between two instances of the matrix MF'. 



I t  is interesting to note that the asymptotic covariance matrix estimator - 
var(& is robust to the choice of â! and 4, as long as they are ni-consistent 

estimators and that the matrix &Io in Vp converges to a fixed matrix when 

divided by n. Therefore it is not necessary that the observations for al1 

subjects have the same correlation structure. One has to be careful thougli 

when there is missing data (Liang and Zeger, 1986). Since P and l/a?*(fi) 

are robust to  the choice of Rj(a), the confidence intervals and other statis- 

tical tests about /3 are asymptotically correct even if Rj(ai) is misspecified, 

but choosing a working correlation matrix structure close to the actual one 

increases the efficiency of the different tests. That is the case, for example, 

for multivariate Gaussian outcomes (Zeger and Liang, 1986). 

The matrix ~4:' is a non-robust estimator of the covariance matris of b. 
This estimator is more efficient than the estimator var(& only when both 

the working correlation structure and the mean-variance relationship for the 

GEE analysis are correct. Since it is impossible to  know if it is really the 

case, this non-robust estimator of the covariance matrix is rarely used. 

3.4 Working correlation matrix 

As was stated before, in the case of repeated measurements data, the different 

observations for a subject are most often positively correlated. For each 

subject this dependence is represented by the correlation matrix Rj. For 

example, for subject j the correlation rnatrix would have the form 



where pjkkl = corr (qk ,  qk), k, kt = 1,2,. . . , p j  and j = 1,2,.  . . , n. 

As mentioned in the previous section, the dimension ( p j  x p j )  of R, can 

Vary from subject to  subject but the structure is fully specified by a (s x 1) 

vector of unknown parameters, a, which is the same for al1 subjects. Also, 

as can be seen in the iterative equation (3.4), the vector of parameters a will 

depend on the unknown scale parameter 4. Thus, at a given iteration i, both 

a and # can be estimated from the current Pearson residuals defined by 

and where f i j k  is evaluated a t  the current estimated value of 0, i.e. kk = 

g - l ( ~ i k & ) .  Then, the scale parameter q5 can be estimated by 

1 Independence structure. 

The independence structure is the identity matrix of dimeilsion 

( p j  x p j )  This is the simplest form and no nuisance parameter a 

need to  be estimated. 



II Exchangeable structure. 

The exchangeable structure is obtained when al1 correlations are 

the same. This means ~ o r r ( Y , ~ ,  q k l )  = a. for any k ,  kt where 

k # kt. In this case Rj(a>) has the form 

The estimator of a is 

III Stationary r-dependent structure. 

This structure is characterized by the fact that the correlations q 

occasions apart are the same for q = 1, 2, . . . , r and the correla- 

tions more than r occasions apart are zero, i.e. 



The estimator of a,, 1 5 q 5 r ,  is 

IV Auto-regressive (AR-1) structure. 

In the case of the auto-regressive (AR-1) structure, the correla- 

tions between two responses of the same subject are equal to a 

baseline correlation cu to a power equal to the absolute difference 

between the times of the responses. This means corr(yjk, g j k l )  = 

a l t j k - t j k l l .  Here are some examples for Rj (a)  with an A R 1  struc- 

ture. 

Ex. 1 : 

pj = 3, tji = 1, t j2  = 2 and t j3 = 3. 



Ex. 2 : 

pj = 5, t j l  = 1, t j2  = 2, t j3 = 3, t j4 = 4 and tj5 = 5. 

Es. 3 : 

pj = 4, t j l  = 1, t j2 = 3, t j J  = 4 and t j4 = 4.5. 

The estimator of cu is given by the slope from the regressioii of 

the log ( T j k ,  ?.jkf) on log (Itjt - tjk' 1). 

V Unspecified correlation structure. 

For this structure the same number of observations for al1 the 

subjects is needed, Le. pj = p for al1 j .  Here, R j ( a )  has no 

constrained so that the vector cy is of dimension (p(2 x 1). In 

the next example, the explicit form of Rj(cu) can be seen. 



Example : 

The estimator of R(a) is 

Unfortunately, in some specific cases, the solution to the estimators of 

R(a) given for each type of structures may not exist. Crowder (1995) gave 

a counterexample for which there is no real solution for QI in the case of the 

auto-regressive correlation structure and he suggested some other ways to 

estimate R(ol). 



Chapter 4 

Numerical example 

4.1 Description of the experiment 

An illustration of how the different methods presented in chapters 2 and 3 can 

be used in practice is performed using the data  from example 6.2 in Jones and 

Kenward (1989). In this example, a three treatment three period crossover 

design waç considered. The effects of the three treatments on blood pressure 

were to be compared. Treatments A and B consisted of the trial drug a t  20 

mg and 40 mg respectively and treatment C was a placebo. For each of the  

six possible treatment sequences, ABC, ACB, BAC, BCA, CAB and CBA, 

there was two replicates for a total of twelve subjects. The response was the 

level of systolic blood pressure (in mm Hg) taken under each treatment a t  

ten successive times : 30 and 15 minutes before treatment and 15, 30, 45, 60, 

75, 90, 120 and 240 minutes after treatment. For this particular illustration, 

only the response at 60 minutes after treatment will be considered. 



Results from the different statistical meth- 

ods 

The mode1 (2.1) with same dispersion matrix for al1 sequences was assumed. 

The OLS method gave FT = 5.57 with 2 and 18 degrees of freedom and the 

p-value for the test or1 treatment effects was 0.0131. For the carryover effects 

we obtained FA = 0.39 with 2 and 18 degrees of freedom, p-value = 0.6799. 

For the MFA and EGLS methods an estimate of C was first calcuhted using 

the estimator of C presenteci in section 2.4. In the matrix S below, the 

variances are on the diagonal, the covariances are above the diagonal and 

the correlations below the diagonal. 

The MFA method produced the fohwing estimates and level of signifi- 

cance for treatment and carryover effects respectively : h2 = 10.276, hl, = 

2, b, = 1.457 and p-value = 0.0573; hlx = 2, bA = 1.502 and p-value = 

0.7742. The EGLS method gave F, = 20.84 with p-value < 0.0001 and 

FA = 6.62 with p-value = 0.0070. 

With the GEE method, the five diflerent working correlation matrices 

presented in section 3.4 were considered, namely, the identity, exchangeable, 

2-dependent, AR-1 and unspecified structures. A summary of al1 the p-values 

obtained for both the treatment and carryover effects are given in Table 4.1. 



Table 4.1 P - values of the di f f erent statistical metltods to  test the absence of 

treatment and carrpouer e f f ects 

Statistical methods 

1 GEE with working correlation matrix structure 

At the 5% level of significance not al1 methods of analysis lead to the same 

conclusions. For the treatment effects, only the MFA method arrives to the 

conclusion of no treatment effects but the p-value is close to 5% (5.73%). 

For the carryover effects, the significance level of the EGLS rnethod is very 

different than al1 the other statistical tests. The GEE method leads to the 

same conclusions regardless of the working correlation matrix used. Note 

however that the p-values can be quite different from one another (range 

from 0.2572 to 0.8020 for the carryover effects). 

The estimates of the covariates obtained with OLS and the GEE method 

are given in Table 4.2. The corresponding standard errors and p-values are 

also presented. As was mentioned before, one advantage of the GEE method 

is that estimates of the covariates can be calculated. This is not possible 

with the MFA method. 

In light of the differences observed among the tests performed, the need 

for an investigation on the performance of the different methods is justified. 

This is the subject of the next chapter. 

Ef fects 

treatment 

carryover 

OLS 

0.0131 

0.6799 

MFA 

0.0573 

0.7742 

EGLS 

< 0.0001 
0.0070 

Identity 

0.0008 

0.8020 

2 - Dept. 

< 0.0001 
0.3023 

Ezch. 

0.0006 

0.7405 

AR - 1 

< 0.0001 
0.3376 

Unsp. 

0.0002 

0.2572 



Table 4.2 Coeff icients  estimates of the covariates and their standard errors and p - values 

treat. A estimate 

s.e. 

p - value 
-- 

treat. B estirnate 

s.e. 

p - value 
. -- 

curry. A estimate 

s.e. 

p - value 
- -- - 

curry. B estimate 

s.e. 

p - value 

Statistical methods 
- - 

1 GEE with with correlation matriz structure 

OLS Identity 1 Ezch. 

-0.1250 0.5667 -0.0381 

1.6867 l.'i28O 1.7438 

0.9417 0.7430 0.9826 



Chapter 5 

Monte Car10 Simulations 

5.1 Methodology 

Monte Carlo simulations were performed using SAS PROC IML and the SAS 

macro procedure GEE written by R. Karim (1989) in order t o  compare the 

behavior of the OLS, MFA, EGLS and GEE methods. The SAS program is 

given in Appendix A. The three treatments three periods crossover design 

with al1 six possible sequences (ABC, ACB, BAC, BCA, CAB and CBA) 

was considered. This "uniform balance" design is known to havc optimal 

properties when C = 021 (Jones and Kenward, 1989, p.209). Three different 

covariance structures were used in this simulation study and are presented in 

Table 5.1. The first covariance matrix has a sphericity structure, hence the 

OLS tests are exact. The second one has an auto-regressive-1 structure, and 

the third has no specific structure and is basically the estimated covariance 

matrix of the example considered in the previous chapter. 



Table 5.1 Covariances matrices used for the Monte Carlo simulations 

(variances are on the diagonal, the covariances are aboue 

and the correlations below the diagonal) 

Code T y p e  Covariance Matrix 

3 No structure 0.92 1.04 1.19 

0.57 0.77 2.29 

Four different sample sizes were used, namely 18, 36, 72 and 108 subjects 

per experiment, that is 3 , 6 ,  12 and 18 subjects per sequence respectively. The 

last two sample sizes were used with the covariance matrix 3 only. Hence, a 

total of eight simulation patterns were run. For each simulation pattern, two 

thousand independent samples were generated following model (2.1) with a 

multivariate normal distribution for the response variable Y. For each sample, 

significance tests were carried out for carryover and treatment eRects using 

OLS, MFA, EGLS and GEE methods. The five different working correlation 

structures described in section 3.4 were used for the latter method. The 

empirical percentage of Type 1 error for each test was defined as the propor- 



tion of p-values smaller or equal to a specified nominal alpha. Three values, 

a = 0.01, 0.05 and 0.10 were chosen. A summary of the simulation resuits 

are presented in the next section. 

5.2 Results and comments 

The simulation results for the 5% nominal level alpha are given in tables 

5.2 and 5.3 for treatment and carryover effects respectively. The results for 

the 1% and 10% nominal level give similar conclusions and are presented in 

Appendix B. The standard error of the empirical level of Type 1 error for the 

nominal level a is given by 

where N is the number of independent samples generated for the simulation. 

Hence, for the 5% nominal level and two thousand independent sarnples, we 

have 

If we want a 95% confidence interval for the empirical level of Type 1 error 

(&) at the 5% nominal level, we first need to cornpute the accuracy which is 

equal to  the standard error multiplied by the 97.5% quantile of the standard 

normal distribution, 



and the 95% confidence interval is then 

The first three methods of analysis were already compared by Bellavance, 

Tardif and Stephens (1996) and they obtained very similar results. For the 

class of covariance structure for which the OLS is exact (sphericity), the 95% 

C.I. for the empirical level of Type 1 error includes 5% for tlie OLS method 

for both the treatment and carryover effects. The OLS approach performed 

also well when the covariance structure was of AR-1 type, especially for the 

carryover effect, but very badly with the no structure type. 

For the MFA method, the case of three subjects per sequence for the 

test of treatment effects gives adequate control over Type 1 error but is a 

little liberal with six subjects per sequence and somewhat more liberal for 

the test of carryover effects for both sample sizes considered. For both the 

EGLS and the GEE methods, the results are very liberal for the two lowest 

sample sizes and are getting closer to the nominal level when the number of 

subjects per sequence becornes larger. The 95% C.I. for the empirical level 

of Type 1 error includes 5% for the EGLS method for both the treatrnent 

and carryover effects with twelve subjects per sequence. For tlie treatment 

effects with the GEE rnethod, the 95% C.I. for the empirical level of Type I 

error includes 5% only with the identity working correlation matrix and the 

largest sample size. For the carryover effects with GEE method, this is the 

case for al1 working correlation matrices and the largest sample size. 



Table 5.2 Empirical level o f  Type  I errm (%) for the test 

Covariance t- 
Matrix l 

of treatment e f f ects ut the 5% nominal level 

Nzrm ber o f  

subjects per 

sequence 

GEE with working corr.elutio71. nzatrix 



Table 5.3 Empirical level of T y p e  1 error (%) for the test 

of carryover e f fects ut the 5% nominal level 

Statistical methods 

M F A  

6.80 

6.00 

EGLS 

Covariance 

Alatrix 

C 

Number of 

subjects per 

sequence 

GEE with working correlation matrix 

OLS 

2 - Dept.  

Type  A R -  1 

N o  structure 

In light of the results in tables 5.2 and 5.3, the GLS analysis is not robust 

to  covariance structures that are not in the sphericity class. For the AR- 

1 type of structure, the empirical level of Type 1 error is accurate for the 

test of carryover effects and a little liberaI for the test of treatment effects. 

Note however that the specific AR-1 matrix used here is very L'close" t o  the 



sphericity structure, so these findings are not surprising. For the unspecified 

structure the OLS method gives very liberal results even with as mucli as 

twelve subjects per sequence. Al1 tliese observations about the beliavior of 

the OLS method suggest that the OLS F-tests will be unreliable and could 

lead to  serious errors in inference. 

The EGLS method is almost always too liberal except in the case where 

there is a large number of subjects per sequence. The same conclusion can be 

drawn for the GEE method but the number of subjects per sequence has to  

be slightly larger than for the EGLS method. Also, a different choice of the 

working correlation matrix will give a difFerent empirical level of Type 1 error. 

Even if the parameter estimates are expected to be equal asymptotically, the 

covariance matrix of the parameter estimates may change with the choice 

of the working correlation matrix, even asymptotically, therefore leading to 

different empirical level of Type 1 error (see section 3.3). The 2-dependent 

and unspecified working correlation matrices lead to the most liberal results. 

The identity working correlation matrix gave better results but they were 

still quite liberal. 

Regardless of the choice of the working correlation matrix, the same trend 

was observed : a larger nurnber of subjects per sequence irnply a more accu- 

rate empirical Type 1 error, and the identity working correlation matrix al- 

ways performed better than the other working correlation matrices. There- 

fore, in the case of the three treatment three period crossover design, eighteen 

subjects per sequence (106 subjects total) are needed to get an empirical level 

of Type 1 error near 5% for the GEE method. This is a large sarnple size to  

use with crossover designs, especially in the medical area, since each subject 



h a  multiple observations. Just adding few subjects per sequence can add 

considerable cost and can be very time consuming. 

Finally, with the MFA method, al1 the 95% C.I. of the empirical Type 

I error include the nominal 5% level except for the sphericity case with six 

subjects per sequence where the lower limit is very close to 5% and somewhnt 

less close with three subjects per sequence for the carryover eflects. Aii 

interesting point is that the MFA method performes as well with small sample 

sizes as with Iarger sample sizes. Therefore, the MFA method is the one to  

be preferred over the other rnethods studied here. Moreover, this method is 

very easy to apply in practice. Its principal drawback is that predictions are 

not possible t o  compute since no P-coefficient estirnates can be found with 

this method, only tests of the different effects can be conducted. 

Figure 5.1 prcsents the scatter plot of the p-values oùtained froin the 

GEE and MFA methods with the identity working correlation matrix for 

the simulation case of three subjects per sequence and covariance matrix 1 

(sphericity structure) for the test of treatment effects. In this graph it can 

be seen that the GEE method is more liberal than the MFA method. A 

majority of the  points are below the 45" line x = y and therefore implies 

that the p-values of the MFA method are Iarger than the one with the GEE 

method. Hence the GEE method will conclude to a treatment effects more 

often than the MFA method given Ho = no treatment effects is exactly true. 

This figure represents very well the results found in tables 5.2 and 5.3. 



Scatter Plot of p -values 
Treatment Effect 

Covariance Matrix 1 with 3 Subjects per Sequence 

' 1 " '  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

MFA 

Figure 5.1 Scatter plot of the p-values of the GEE method with identity 
working correlation matrix vs the MFA 



Chapter 6 

Concluding remarks 

In this thesis, the analysis of crossover designs was studied. In this type 

of design, repeated measurements are observed for each subject. The diffi- 

culty arising from this type of data is that  the responses within one subject 

may be correlated. Since the usual, likelihood based, methocl of analysis for 

crossover designs, the ordinary least squares (OLS) method, does not con- 

sider different covariance structures for the responses of one subject, other 

methods were also studied in this project. Two approximate likelihood based 

methods tha t  take into consideration the covariance structure were consid- 

ered, namely, the modified F-test approximation (MFA) and the empirical 

generalized least squares (EGLS) method. Bellavance, Tardif and Stephens 

(1996) examined tests of crossover design analysis with correlated errors for 

these three methods. A covariance matrix needs to be estimated for the use 

of the MFA and EGLS tests. A brief review of the three likelihood based 

methods and  an estimate of the covariance matrix for the MFA and EGLS 



rnethods were given in chapter 2. 

Another type of method w a .  also studied in this work : tlie generalized 

estimating equations (GEE) method. This method does not need a complete 

specification of the joint distribution of the responses since it is based on 

quasi-likelihood distributional assumptions. -41~0, GEE can be used wlieii tlie 

distribution for the vector of responses has forms other than the multivariate 

normal distribution. This is not the case for the other three methods studied 

in this thesis. Moreover, different structures of the covariance matrix can 

be modeled with this method. The details of the GEE method and the 

covariance structures most commonIy used were presented in chapter 3. 

The performance of the four different methods was evaluated for the 3 

period - 3 treatment - 6 sequence crossover design with multivariate normally 

distributed errors and small and medium sample sizes. The simulations per- 

formed were described in chapter 5. In these simulations the GEE method 

needed a large number of subjects per sequence to arrive to  an adequate 

empirical level of Type I error, narnely eighteen subjects per sequence. Since 

the sample sizes in many crossover trials are small and because large sample 

sizes can be very expensive and time consuming, the GEE method is riot 

the best method for the type of crossover designs studied here. The EGLS 

method has similar sample size problems. Referring to the example presented 

in chapter 4, it was observed in table 4.1 that the EGLS method arrived to 

very different results than the  other methods. This may be explained by 

the bad performance of the EGLS method with small sample sizes, which 

was the case in the example of chapter 4 with only twelve subjects for six 

sequences. These results suggest that the EGLS method and also the GEE 



method are very sensitive to the accuracy of the estimate of the covariance 

matrix. The OLS analysis in cases other than when the covariance matris 

h a .  a sphericity structure, does not improve with larger sample sizes. 

On the other hand, the MFA method has good Type 1 error accuracy in 

al1 cases considered, that is, with the three types of covariance structures 

and with both smaller and larger sample sizes. I t  is also easy to apply. The 

only clown point of this method is that no estimates of the coefficients of the 

covariates can be calculated and therefore no predictions can be computed. 

In the case where this is of interest, a satisfactory method has yet to  be 

developed. Where only the tests of different effects are of interest, the MFA 

method is to be preferred over al1 the other methods studied here, including 

the GEE rnethod, unless a large number of observations is available to the 

analyst . 

The simulations were made only considering the nominal level alpha. 

The MFA rnethod was the only method performing me11 with regards to the 

nominal level in al1 cases. A power analysis would need to be performed 

to ensure tha t  this method meets Our expectations. If this is not the case, 

research should continue to find a method that  will perform well with regards 

to both the nominal level and the power. 



Appendix A 

The following is the SAS prograrn used to perform the Monte Carlo simulations presented 
in Chapter 5. The SAS macro GEEl has been written by Mr. Rezaul Karim from Johns 
Hopkins University. These particular settings are for the simulations with the unspecified 
covariance structure and 3 subjects per sequence. 

option pagesize=30500; 
option linesize=80; 
option nodate nonumber; 
proc printto;run; 

proc printto print=1c:\litte\cross\seq18a.out1 
log=lc:\litte\cross\logl.log'; 

/*********************************************************************** 
************************************************************************ 
f *  ** 
**  GEE1-PC S M :  PC version of GEEl ** 
**  ** 
**  Due tothe differences i n A S C I I  andEBCDIC character sets, and **  
** also due to the differences in translation tables used to convert ** 
** EBCDIC to ASCII (and ASCII to EBCDIC) in different computer ++ 
** instalations, some Ispecial1 characters may get changed ++ 
** unexpectedly when you receive the SAS rnacro at your end. ++  
** **  
** An easy check against this problem is to make sure that the ** 
**  following special characters are correctly represented on the ** 
** SAS f i l e  you have received. If not - -  make global changes for *+ 
**  these characters with the help of any text editor. ** 
**  ** 
** Following is a list of some special characters used in the macro. **  
** **  
** ' 1 '  . . . 'vertical bar1 **  
**  I A l  ... 'NOT signl + + 
** 

l 1 '  . . . l left square bracket l *+ 
** ' 1  ' . . .  'right square bracket' jrjl 

** **  
************************************************************************ 
f**************************f*******************************************/ 

/*  
SAS Macro for ~ongitudinal Data Analysis: 
----------------------------------------- ----------------------------------------- 



GEE is a SAS macro for analyzing longitudinal data. This SAS IML 
macro uses the GEE approach of Liang and Zeger (1986) to mode1 
longitudinal data for a general class of outcome variables including 
gaussian, poisson, binary and gamma outcomes. The program uses an 
iterative procedure to estimate regression coefficients, treating the 
correlation among observation on the same individual as a nuisance. 
Final output from GEE includes: regression coefficients, naive and 
robust estimates of variance and z-score. 

~olîowing command, with appropriate parameters, can be used 
to invoke the macro. Al1 parameters have been assigned default values, 
so that they can be omitted if default values are acceptable. (Defaults 
are shown within ( 1 ) .  Parameters may be given in any order. 

%GEE ( DATA = 
YVAR = 
XVAR = 
ID = 
LINK = 
VAR1 = 
N - - 
CORR = 
M - - 
R - - 
BETA = 
OFFS = 
OUT = 
ITER = 
CRIT = 

1 ; 

SAS dataset, 
y-variable, 
x-variables, 
id-variable, 
link function, 
mean-variance relation, 
binomial denominator variable, 
correlation structure, 
dependence, 
given correlation matrix, 
initial estimate of beta, 
offset variable, 
output dataset, 
maximum iterations, 
convergence criterion 

Date: 7/4/89 
Author: M. Rezaul Karim 
Department of Biostatistics 
The Johns Hopkins University 

%MACRO GEE ( DATA = last-, 
WAR =y, 
XVAR =x, 
ID =id, 
LINK =1, 
VARS =1, 
N - - -1- 1 

CORR =1, 
M =1, 
R =I, 
BETA = O ,  



OFFS =-O-, 
OUT =-rnL-, 
ITER =20, 
CRIT =O.OOL) ; 

OPTION nocenter; 
PROC IML WORKSIZE=999; 
RESET noname; 

USE &DATA; SETIN &DATA NOBS nobs; 

Rl={'~ata File:' &DATA); 
*PRINT / 'Regression analysis using GEE: 
1 I l  

* 
I I I  

* R1; 

( Ver - 1.25 

RI= { ' outcorne variable : l )  ; 
~2={~~ovariates:~); 
*PRINT labely [ROWNAME=Rl] , 
* {&XVAR) [ROWNAME=R2] ; 
~1={'0ffset: l ) ;  

*IF labeloA= { -0- ' ) THEN PRINT labelo [ROWNAME=RI] ; 

- l={l (fdentity) '1; 
- 2={' (Logarithm) 1); 
- 3 = { '  (Logit) l); 
- 4= { (Recipxocal) fi ) ; 
~l={'~ink:~); 
*IF (linkci 1 link>4) THEN PRINT link [ROWNAME=Rl FORMAT=S. O] 
* { ' (Invalid Option ! ! ! )  ' 1 ;  
*ELSE PRINT link [ROWNAME=Rl FORMAT=2. O] -&LINK ; 

- l={' (Gaussian) '1; 
- S= { (Poisson) ) ; 
- 3={l (Binomial) l ) ;  

- 4={l (Gamma) l); 
~l=(~~ariance:l); 
*IF (varicl 1 vari>4) THEN PRINT vari [ROWNAME=R~ FORMAT=S. O] 
* { ' (Invalid Option ! ! ! )  '1 ;  



*ELSE PRINT vari [ROWNAME=R1 FORMAT=S.O] -&VARI ; 
RI= { ' Denominator l )  ; 
*IF variz3 THEN PRINT labeln [ROWNAME=Rl] ; 

FREE -1 -2 -3 -4; 

~l={'~orrelation:'); 
*IF corr=l THEN DO; 
* I F  NCOL(r)=l THEN PRINT 
.~r corr [ROWNAME-RI FORMAT=2.0] { l (Independent ) ) ; 
* ELSE PRINT 
* corr [ROWNAME=Rl FORMAT=2. O] { l (R given) : l ) , 
* r [FORMAT=4.2] ; 
* END; 
~ 2 =  { l  (~tationary' ) ; 
*IF corr=2 THEN PRINT 
* corr [ROWNAME=Rl FORMAT=2. O] 
* m [ROWNAME=R2 FORMAT=2. O] { - dependent) ) ; 
R ~ = { I  (~on~tationary'); 
*IF corr=3 THEN PRIW 
* corr [ROWNAME=Rl FORMAT=2. O] 
* m [ROWNAME=R2 FORMAT=2. O] { l -  dependent) l )  ; 
*IF corr=4 THEN PRINT 
* corr [ROWNAME=Rl FORMAT=S. O] { l (Exchangeable) ' ) ; 
R~={'(AR - ' ) ;  
*IF corr=5 THEN PRINT 
* corr [ROWNAME=Rl FORMAT=S . O 1 
* m [ROWNAME=R2 FORMAT=2.0] { ' )  '1;  
*IF corr=6 THEN PRINT 
* corr [ROWNAME=Rl FORMAT=2 . O ]  { (Unspecified) l )  ; 

~l={l~otal number of records read: l); 
*PRINT nobs [RoWNAME=Rl FORMAT=8. O] ; 

p=NROW (labelx) ; 
dmean=O; imean=O; 

READ VAR { &ID ) INTO idk; 
READ VAR labely INTO par; 
READ VAR labelx INTO xvar; 
IF labelnA={l-i-') THEN DO; READ VAR labeln INTO n; END; 
IF labe10~={~-0-~) THEN DO; READ VAR labelo INTO offset; END; 

vsum=yvarl Ixvar; 
IF NCOL(beta)=l THEN DO; 
xty=xvar'* (yvar/n-offset) ; 
xtx=xvar'*xvar; 
END ; 



DO j = 2  TO nobs; 

READ VAR { &ID ) INTO idj POINT j; 
READ VAR labely INTO yvar; 
READ VAR labelx INTO xvar; 
IF labelnA={l-l-') THEN DO; READ VAR labeln INTO n; END; 
IF labe10~={~-0-') THEN DO; READ VAR labelo INTO offset; END; 

IF idk=idj THEN i=i+l; 
ELSE DO; 
imean=imean+vsum/i; dmean=drnean+vsum; vsum=o; 
ni [k] =i; k=k+l; idk=idj ; i=l; ni=ni//{0) ; END; 

war=war# (war=xvar) ; 
vsum=vsum+(yvarl Ixvar); 
IF NCOL(beta) =1 THEN DO; 
xty=xty+xvarg * (yvar/n-offset) ; 
xtx=xtx+xvarg *%var; 
END ; 
END; 

ni [kl =i; 
imean= (imean+vsum/i) /k; 
dmean= ( (dmean+vsum) /nobs ) //imean ; 
IF NCOL (beta) =l THEN beta=SOLVE (xtx,xty) ; 
ELSE beta=SHAPE (beta, p, 1 , O) ; 
rnaxn=MAX (ni ) ; 
minn=MIN (ni) ; 

RI={ l Total nurnber of clusters : l ) ; 
*PRINT k (ROWNAME=Rl FORMAT=5.0] ; 
~ l = { ~ ~ a x i m u m  and minimum cluster size:I); 
~ 2 = {  'and1 ) ;  
*PRINT maxn CROWNAME=Rl FORMAT=5.0] 
JI minn [ROWNAME=R2 FORMAT= 5. O ]  ; 

RI= { Observations : , ' Cluster Means : l ) ; 
CI=( &YVAR &XVAR ) ;  
*PRINT 'Averages of Outcome variable and Covariates (over all) ' , ,  
* dmean [ROWNAME=Rl COLNAME=Cl] , ; 
*IF A L L ( * w ~ ~ )  THEN PRINT l*** WARNING: No intercept term in the model! * ;  

*PRINT / 'Initial estimate of regression coefficients:', labelx beta; 
FREE dmean i i d j  idk imean j vsum xtx xty xvar p a r ;  
*show names; 
FINISH; / **  INIT 
*******************************************************/ 

START estb; 
/****************+******************************************/ 
us=J(p,l,O) ; 
mO=J(p,p, 0) ; 



READ VAR labely INTO yvar POINT i; 
READ VAR labelx INTO xvar POINT i; 
IF labelnA={'-1-') THEN DO; READ VAR labeln INTO n POINT i; END; 
IF label0*={~_0-~} THEN DO; READ VAR labelo INTO offset POINT i; END; 

*** Calculate ui and di; 

IF link=l THEN DO; ui=lp; di=xvar; END; 
ELSE IF link=S THEN DO; ui=EXP (lp) ; di=ui#xvar; END; 
ELSE IF link=3 THEN DO; ui=EXP (lp) ; ui= (n#ui) / (l+ui) ; 

di=(ui#(l-ui/n) )#xvar; END; 
ELSE IF link=4 THEN DO; ui=l/ (lp) ; di=- (ui#ui) #xvar ; END; 

*** Calculate a*zi and a*di; 

END; *** End of beta estimation loop; 

beta=solve (m0, us) ; 
~l={~~stirnatel); 
*PRINT labelx beta [COLNAME=Cl] ; 
FREE di i j mO nj nx us ui vinv xvar yvar zi; 
*show names; 
FINISH; /** ESTB 
*******************************************************/ 

START estr; 

IF corr=l THEN DO; END; / *  given correlation 
* /  
ELSE IF corr=2 THEN alp=J (1, m, 0) ; /* stationary m-dependent 
* /  
ELSE IF corr=3 THEN alp=J (maxn, maxn, 0) ; /* non stationary m-dept 
* /  
ELSE IF corr=4 THEN alp=O; / *  exchangeable 
* /  



/* AR-m 

/*  unspecified 

READ VAR labely INTO v a r  POINT i; 
READ VAR labelx I W O  xvar POINT i; 
IF labelnA={f-l- l )  THEN DO; READ VAR labeln INTO n POINT i; END; 
IF label0~={~-0-~) THEN DO; READ VAR labelo INTO offset POINT i; END; 

IF link=l THEN DO; ui=lp; END; 
ELSE IF link=2 THEN DO; u ~ = E x P ( ~ ~ ) ;  END; 
ELSE IF link=3 THEN DO; ui=EXP(lp) ; ui=(n#ui)/ ( l + u i )  ; END; 
ELSE IF link=4 THEN DO; ui=l/ ( l p )  ; END; 
ei=yvar-ui ; 

IF vari=l THEN ui=l; 
ELSE IF vari=2 THEN u~=~/sQRT(u~) ; 

ELSE IF vari=3 THEN U~=~/SQRT (ui# (1-ui/n) ) ; 
ELSE IF vari=4 THEN ui=l/ABs (ui) ; 
ei=ei#ui ; 
sigma=sigma+SSQ (ei) /nj ; 

IF corr=l THEN DO; END; 
ELSE IF corr=2 THEN DO; 

i=nj/ (nj+l- (1:m) ) ; alp=alp+COVLAG (ei, -m) #i; END; 
ELSE IF corr=3 THEN alp=alp+ei+ei'; 
ELSE I F  corr=4 THEN DO; 

IF (nj>l) THEN alp=alp+ (SüM(ei*ei') -SSQ(ei) ) / (nj#(nj-1) ) ; END; 
ELSE IF corr=5 THEN DO; 

i=nj/ (njtl- (1:m) ) ; alp=alp+COVLAG (ei, -m) #i; END; 
ELSE IF corr=6 TREN alp=alp+ei*ei'; 

END; *** End of working covariance estimation loop; 

IF co r r= l  THEN DO; END; 
ELSE IF corr=2 THEN DO; alp=alp/sigma; alp [l] =l; 

r=SHAPE(alp,l,rnaxn,O); r=TOEPLITZ(r) ; END; 
ELSE IF corr=3 THEN DO; r=alp/sigma; 

DO j=l TO maxn; r[j,j]=l; 
DO i=j+m TO maxn; r[i,j]=O ; r[j,i]=O ; END; END; 
END ; 

ELSE IF corr=4 THEN DO; alp=alp/sigma; 
r=J (l,maxn, alp) ; r Cl] =l; r=TOEPLITZ (r) ; END; 

ELSE IF corr=5 THEN DO; alp=alp/sigma; alp[l]=l; 
r=SHAPE (alp, l,maxn, O) ; 



i=TOEPLITZ(alp[l:m-11); alp=alp[l,2:m] *INV(i) ; 
DO i=m+l TO maxn; DO j=l TO m-1; 
r [il =r [il +alp[j] #r [i-j] ; END; END; 
r=TOEPLITZ (r) ; END; 

ELSE IF corr=6 THEN DO; r=alp/sigma; 
DO j=l TO maxn; r [ j , j l = l ;  END; 
END; 

FREE alp ei i j nj nx ui xvar yvar; 
*show names ; 
FINISH; /** ESTR 
*******************************************************/ 

/*********************************************************************** 
/ 
/ *  Main Program: 
*/ 
/*********************************************************************** 
/ 

RUN init; 
IF NCOL (r) c=l THEN r=I (maxn) ; 

START; /** Check for consistency 
***************************************/ 
crit=l; 
IF corr=l THEN DO; 

IF NCOL ( r) cmaxn THEN DO ; 
* PRINT 'ERROR: Dimension of the given correlation matrix must bel 
* l equal to the maximum cluster size ; 
crit=O; END; 

END; 
IF corr=2 1 corr=3 THEN DO; 

IF mi=minn THEN DO; 
* PRINT IERROR: Gowup size too small for m-dependent correlati~n.~; 
* crit=O; END; 

m=m+l; END; 
IF corr=4 THEN DO; END; 
IF corr=5 THEN DO; 

IF m>=rnim THEN DO; 
* PRINT 'ERROR: Gorup size too srnall for AR-m correlation.'; 
* crit=O; END; 

m=m+l; END; 
IF corr=6 1 corr=3 THEN DO; 

IF maxn=minn THEN DO; END; 
ELSE DO; 
* PRINT IERROR: Unequal gorup size.'; 
crit=O; END; 

END ; 
FINISH; RUN; /** End for consistency check 
*****************************/ 



START; /** Main iteration 
**********************************************/ 
IF crit=O THEN STOP; 

DO iter=l TO &CITER WHILE (crit>&CRIT) ; 

RI= { 1 ===>   te ration : l ) ; 
*PRINT i ter [ROWNAME=Rl FORMAT=3. O] ; 

save=beta; 
IF corr>l THEN RUN estr; 
RUN estb; 

END; *** End of iterations; 
*show names; 

i ter=iter-  1; 
*IF iter>=&ITER THEN PRINT ' ' / 
* { 'No Convergence a£ ter1 ) {&ITER) [FORMAT=3. O] ( iterations . l } ; 
*ELSE PRINT ' ' / 
* { Convergence af ter ' ) iter [FORMAT=3 . O] { iteration ( s )  . ) ; 

IF rnaxn>lO THEN DO; 
save=r[l:lO, 1:10] ; 

* PRINT Working Correlation: , Save ; 
END ; 
*ELSE PRINT Working correlation: l , r; 
FREE Save; 

crit=l; 
FINISH; R n ;  /* End of iteration 
***************************************/ 

START; /** Calculation of variance 
*************************************/ 
IF crit=O THEN STOP; 
RUN estr; 
sigma=SQRT (sigma/k) ; 
mO=J(p,p,O) ; ml=J(p,p,O) ; 
dev= 0 ; 

null={ I-NCJLL-' ) ; 
CI={ FIT RES SRES 1 ;  
I F  nul1 = {&OUT) THEN DO; END; 
ELSE DO; 
out={ O O O ); id=(112345678'); 
CREATE &OUT FROM out [ROWNAME=id COLNAME=Cl]; 
SETIN &DATA; 

END; 



READ VAR labely INTO yvar POINT i; 
READ VAR labelx INTO xvar POINT i; 
IF labelnA= { l 1 THEN DO; READ VAR labeln INTO n POINT i; END; 
IF label0^=(~-0-~} THEN DO; READ VAR labelo INTO offset POINT i; END; 

*** Calculate ui and di; 

IF link=l THEN DO; ui=lp; di=xvar; END; 
ELSE I F  link=2 THEN DO; ui=EXP (lp) ; di=ui#xvar; END; 
ELSE IF link=3 THEN DO; ui=EXP (lp) ; ui= (n#ui)  / (l+ui) ; 

di=(ui#(l-ui/n) )#xvar; END; 
ELSE IF link=4 THEN DO; ui=l/ (lp) ; di=- (ui#ui) #xvar; END; 

ei=yvar-ui ; 
dev=dev+SSQ (ei) /nj ; 
IF nul1 = {&OUT) THEN DO; END; 
ELSE out=uil lei; 

*** Calculate a*ei and a*di; 

IF nul1 = {&OUT) THEN DO; END; 
ELSE DO; 
out=outl lei; 
id=J(nj,l,CHAR(j,8,0)); 
SETOUT &OUT; 
APPEND FROM out [ROWNAME=id] ; 
SETIN &DATA; 

END; / *  End of output file process * /  

END; *** End of variance(beta) estimation loop; 
nvar=IW (mO) ; 
rvax=nvar*ml*nvar; 

FREE di ei i j mO ml nj nx ui vinv xvar yvar; 
*show names; 



FINISH; RUN; /* End of variance 
****************************************/ 

START; /* OutputS 
****************+********************+****************/ 
IF crit=O THEN STOP; 
sigma=sigma#sigrna; 
dev=dev/k ; 
*ns=l/sQRT (VECDIAG (nvar) ) ; 
rs=l/SQRT (VECDIAG (rvar) ) ; 
rbeta=beta#rs; 

*DO i=l TO p; 
* DO j=i+l T o p ;  
* ~var[j,il=nvar~i,j]#ns[i]#ns[j]; 
* rvar l j , il =rvar [il j] #rs [il #rs [ j] ; 
* END; 

* END; 

RI= { ~ c a i e  parameter: ) ; 
R2={'Mean Squared Errer:'); 
*PRINT sigma [ROWNAME=R~], 
* dev [RoWNAME=RS] /; 

*PRINT 'Variance estimate (naive) : , , 
* nvar [ROWNAME=labelx COLXAME=labelx] ; 

*PRINT 'Variance estimate (robust) : I l ,  

* rvar [ROWNAME=labelx C O L N A M E = ~ ~ ~ ~ ~ X ]  , 
* 'NOTE: Covariances are above diagonal and correlations are belowl 
.~r diagonal. , ; 

*ns=l/ns ; 
rs=l/rs ; 
pval=2* (1 - probnorm (abs (rbeta) ) ) ; 

CI={ 'Estimatel ) ;  
CS=( ' s.e.-Naive' ); 
C3={ ' z-Naive1 ); 
C4={ 'S.@.-Robusta ) ;  
C5={ 'z-Robust1 );  
CG={ 'p-valuet ) ;  
*PRINT / 'Estirnate, s . e .  and z-score:',, 
* labelx beta [COLNAME=Cl] 
* ns [cOLNAME=CS FORMAT=11.3] 
* rs [COLNAME=C4 FORMAT=lI. 31 
* rbeta tCOLNAME=C5 FORMAT=8.2] 
* pval [COLNAME=CG FORMAT=8 .4] , ; 
*IF AL~(*war) THEN PRINT ' * * *  WRRNING: No intercept term in the model!'; 



cperï = {O 1 O O O O O); 
cper2 = {O 0 3 0 0 0 O); 
ctrtl = {O O O 1 O O O); 
ctrt2 = {O O O O 1 O 0); 
ccarl = {O O O O O 1 O); 
ccar2 = {O O O O O O 1); 

cper = cperl / /  cper2; 
ctrt = ctrtl / /  ctrt2; 
ccar = ccarl // ccar2; 

resp = j(nobs,l,O); 
desi = j (nobs, pl 0) ; 

do j=l to nobs; 
READ VAR { &ID ) INTO idj POINT j ; 
READ VAR labely INTO yvar; 
resp[j,]  = yvar; 
READ VAR labelx INTO xvar; 
desi[j,l = xvar; 
end ; 

*numper = t (cper*beta) *inv (cper*rvar*t (cper) ) * (cper*beta) ; 
numtrt = t (ctrt*beta) *inv(ctrt*rvar*t (ctrt) ) * (ctrt*beta) ; 
numcar = t(ccar*beta)*inv(ccar*rvar*t(ccar))*(ccax*beta); 

numm = numtrt 1 1  numcar; 

*PRINT INumtrt, Numcarl; 
"print numm; 

den = t (resp - (desi*beta) * (resp - (desi*beta) ) ; 

pval2 = pvaltrt ( ( pvalcar; 

PRINT 'Pvaltrt, Pvalcarl; 
print pval2; 

*PRINT l ',,'(c) M. Rezaul Karim, 198g1, 
i 'Department of Biostatistics, The Johns Hopkins University1; 
FINISH; RUN; / *  End of outputs - *******************************/ 
QUIT; 



%MACRO sirnul (nombre) ; 

proc iml; 



periode = t (p18) @i ( 3 )  ; 

x= ui 1 1 s u j e t  1 1 periode 1 1 des 1 1 r e s i ;  

xi= u l  ( 1  su j e t  I I  periode I I  des ; 

x2= ul 1 [ su j e t  I I  periode 1 )  resi; 

periodea = pera; 
periodeb = perb; 

do i=l t o  17;  
periodea = periodea / /  pexa; 
periodeb = periodeb / /  perb; 



end ; 

t r t a l  = 
t r ta2 = 
t r ta3  = 
t r ta4 = 
t r ta5  = 
t r ta6 = 
t r t b l  = 
trtb2 = 
trtb3 = 
trtb4 = 
trtb5 = 
trtb6 = 
caral = 
cara2 = 
cara3 = 
cara4 = 
cara5 = 
cara6 = 
carbl = 
carb2 = 
carb3 = 
carb4 = 
carb5 = 
carb6 = 

t rea ta l ;  
treata2 ; 
treata3 ; 
treata4 ; 
treata5 ; 
treata6 ; 
t rea tb l  ; 
treatb2 ; 
treatb3 ; 
treatb4 ; 
treatb5 ; 
treatb6 ; 
carryal ; 
carrya2 ; 
carrya3 ; 
carrya4 ; 
carrya5 ; 
carrya6 ; 
carrybl ; 
carryb2 ; 
carryb3 ; 
carryb4 ; 
carryb5 ; 
carryb6 ; 

do i=l to 2 ;  
t r t a l  = t r t a l  / /  
t r ta2 = t r ta2 / /  

t r ta6 = t r ta6 / /  
t r t b l  = t r t b l  / /  
trtb2 = trtb2 / /  
trtb3. = t r tb3 / /  
trtb4 = trtb4 / /  
trtb5 = t r tb5 / /  
trtb6 = t r tb6 / /  
caral = caral / /  

carbl = carbl / /  
carb2 = carb2 / /  

carb4 = carb4 / /  
carb5 = carb5 / /  
carb6 = carb6 / /  

end ; 

t r ea ta l  ; 
treata2 ; 

t reatbl  ; 

treatb6 ; 
carryal ; 

carrybl ; 
carryb2 ; 



t r ea t a  = t r t a l  // t r t a2  / /  t r t a 3  / /  t r t a4  / /  t r t a5  / /  t r t a6 ;  
t r ea tb  = t r t b l  / /  tr tb2 / /  t r t b3  / /  t r tb4 / /  tr tb5 / /  t r tb6 ;  

carrya = ca ra i  / /  cara2 / /  cara3 / /  cara4 / /  caras / /  cara6; 
carryb = carbl  / /  carb2 / /  carb3 / /  carb4 / /  carb5 / /  carb6; 

do i = 2  to  18;  
id2=id i# i ;  
id=id / /  id2; 

end; 

sig=i18@sigma3; 
wsig=root (sig) ; 

xx=x* (ginv (t (x) *x) ) * t  (x) ; 
xlxl=xl* (ginv ( t  (x l )  -1) ) * t  (x l )  ; 
x2x2=x2* (g inv( t  (x2) *x2) ) * t  (x2) ; 

C=XX - xlx l ;  
t=xx - x2x2; 

e= i - xx; 

rc= trace (cl ; 
rt= trace ( t)  ; 
re= trace(e1 ; 



kk=t ( root  (ss)  1 ; 
ikk=inv (kk) ; 

ee=b* (ginv (t (b) *b) ) *t (b)  ; 
elel=el* (ginv(t (e l )  *el) ) *t (el)  ; 
e2e2=e2* (ginv (t (e2) *e2) ) *t (e2) ; 



bc=ee - elel; 
bt=ee - e2e2; 
be= i - ee; 

brc= trace (bc) ; 
brt= trace (bt) ; 
bre= trace (bel ; 

trcv= trace (c*v) ; 
trtv= trace (t*v) ; 
trev= trace (e*v) ; 

hc= (trcv**2) / (trace (c*v*c*v) ) ; 
ht= (trtv**2) /(trace (t*v*t*v) ) ; 
he= (trev**2) / (trace (e*v*e*v) ) ; 

ssc= t (y) *c*y; 
sst= t (y) *t*y; 
sse= t (y) *e*y; 

p-ec=l - probf (f ec, brc, bre) ; 
p-et=l - probf (fet,brt, bre) ; 

probf ( f c, rc, re) ; 
probf (ft,rt,re) ; 

p-ac=l - probf (fac,hc,he) ; 
p-at=i - probf (fat, ht, he) ; 

CI=( ID Y U1 PERIODEA PERIODEB 
TREATA TREATB CARRYA CARRYB 1; 

out={o O 0 0 0 0  O 0 0  1; 
create donnee f rom out [colnarne=C1] ; 
out=idI ly l  lu11 Iperiodeal lperiodebl ItreataI ItreatbI IcarryaI Icarryb; 



setout  donnee; 
append f r o m  out; 

t i t l e  ' ' ;  
reset n o n a m e ;  

p r i n t  p-ac p-ec p-c; 
p r i n t  p-at p-et p-t; 

quit; 

%GEE ( D A T A = d o n n e e ,  XVAR=ul periodea periodeb treata treatb carrya 
c a r r y b )  ; 

run ; 

%GEE ( D A T A = d o M e e ,  XVAR=ul periodea periodeb t reata  t reatb  carrya 
carryb, CORR=2, M=2 ) ; 

run; 

%GEE ( D A T A = d o M e e ,  XVAR=ul periodea periodeb t reata  t reatb  carrya 
carryb, CORR=4 ) ; 

run; 

%GEE ( D A T A = d o n n e e  , XVAR=ul periodea periodeb t reata  treatb carrya 
carryb, CORR=5 , M = l )  ; 

run ; 

%GEE ( D A T A = d o n n e e ,  XVAR=ul periodea periodeb t reata  treatb carrya 
carryb, C O R R = ~ )  ; 

run; 



Appendix B 

Table B.l Empirical level of Type I error (%) for the test 

of treatment e f f ects ut the 1% nominal level 

Stutistical met hods 

Covariance 

hdatrix 

C 

EGLS OLS 

1.05 

0.95 

1.40 

1.60 

3.95 

4.50 

3.80 

-- 

-- - -  

Number of 

sulijects per 

secpence 

MFA 

1.15 

0.95 

0.90 

1.25 

1.00 

1.10 

0.65 

-- 

GEE with wmking correlation mutriz 

Type .4R - 1 

-- 

No structure 



Table B.2 Ernpirical level of Type I error (%) for the test 

of treatment e f f ects ut the 10% nominal level 

Statistical methods 

Covariance 

Matrix 

C 

Number of 

subjects per 

sequence 

-- . . 

EGLS 

- 

GEE with witlt correlation rnatrix 

M F A  

Identity 

17.95 

13.60 

18.30 

14.50 

19.80 

15.25 

12.75 

10.45 

Exch. 2 - Dept .  Unsp. 

Type AR - 1 

N o  structure 



Table B.3 Empiricai level of Type I error (%) for the test 

of carryover e f f ects at the 1 % nominal leuel 

Statistical methods 

Covariance Number of 

subjects per 

seqvence 

GEE with working correlation matrix 

OLS M F A  EGLS 

3.20 

1.95 

Identity 2 - Dept. AR-  1 Unsp. 

Sphericity 

Type AR - 1 

N o  structure 



Table B.4 Empirical level of Type 1 error (%) for the test 

of carryover e f f ects at the 10% nominal level 

Statistical ntethcids 

Covariance Number of 

subjects per 

sequence 

GEE with with correlation m a t r i z  

OLS M F A  EGLS 

2 - Dept. Unsp. 

Type .4R - 1 

N o  structure 
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