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Abstract 

The usefulness of any Navier-Stokes solver is directly related to the speed at which it 

converges. Multigrid has proven to be effective in dramatically reducing solution times 

for a range of solvers. In this thesis, the application of multigrid to an approximately- 

Factored implicit Navier-Stokes solver for airfoils is discussed. Optimization of the solver 

and the multigrid process is carried out. The best type of cycle, restriction method, and 

number of srnoothing passes at each level is determined. Six test cases are used to ensure 

the robustness of multigrid. Compared to a single-grid solver, a multigrid solver converges 

to steady state in one-quarter to one-sixth the time. 
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Chapter 1 

Introduction 

The multigrid met hod is used to accelerate the numerical solution of partial differential 

equations. Multigrid theory was originally developed to be used in the solution of elliptic 

differential equations. Since then it has been applied to other types of systems, such 

as the compressible Navier-Stokes equations governing viscous fluid flows. Consider an 

approximate rnethod For solving these equations. Normally an iterative method is applied 

to the spatially discretized equations, obtaining the final result in some number of steps. 

Iterative solvers can be regarded as error srnoothers. They tend to reduce different error 

frequencies at different rates. Usualiy, the higher frequencies are eliminated much more 

quickly than the lower. Multigrid methods exploit this characteristic. Note that frequency 

in this context does not refer to the physical value of cycles per unit distance, but instead 

refers to cycles per node. Consider an error of one frequency only in a one dimensional 

system, with uniform node spacing. If every other node is removed, the frequency of this 

error is doubled. If the smoother operates more quickly on higher frequencies, then the 

error can be removed more effectively on the second grid, with fewer nodes. However 

the first, finer, grid is still necessary to achieve the required flow resolution. Multigrid 

combines at least two grids, using the coarser grids to help eliminate the long frequency 

error. Thus the effectiveness of multigrid is in a large part based on the error darnping 

characteristics of the smoothing method, in this case the approximately factored method. 

Considerable effort has been expended in adapting multigrid to different solvers. It 

has been particularly useful when an explicit method, such as a Runge-Kutta method, is 



used. Martinelli [l] has used this method to solve transonic and supersonic flows around 

airfoils. Maksymiuk, Swanson, and Pulliam [2] present a comparison of two schemes 

for solving for viscous flow around airfoils. They conclude that the Runga-Kutta solver 

using multigrid is considerably faster than an approximate factorization implicit method 

without multigrid. Hulshoff [3] and Arnone and Swanson [4] have solved rotor and cascade 

flows with a Runge-Kutta method accelerated using multigrid. 

Multigid with implicit time stepping has also been proven effective. Jameson and 

Yoon [5] and Caughey [6] have used rnultigrid with the approximate factorization and al- 

ternating direction implicit rnethods to solve the Euler equations around airfoils. 0'Callaha.n 

and Thompson [7] provided a comparison of multigrid with three different methods: ap- 

proximate factor k a t  ion, line gauss-seidel and zebra. They solved the Euler equat ions 

on a transonic test case. They achieved convergence rate increases of better than three 

t imes. A multiblock two and t hree dimensional Euler solver using the alternating direction 

implicit method with multigrid was presented by Wang and Caughey [8]. 

The solution of the Navier-Stokes equations using implicit methods has also been 

aided by using multigrid. Varma and Caughey [9] used the alternating direction implicit 

method to solve viscous flow over airfoils. Jespersen, Pulliam, and Buning [l O] descri be 

the results of adding multigrid to OVERFLOW, a three dimensional Navier-Stokes code, 

which uses a variety of implicit methods. 

This thesis discusses the application of rnultigrid to the approxirnately-factored im- 

plicit Navier-Stokes solver ARCSD. The new code is called ARC2D-MG. Resdts are 

presented for the flow around the NACA 0012 and RAE 2822 airfoils under a variety of 

Bow conditions. The convergence histories of ARC2D and ARCPD-MG are compared to 

establish the benefits of rnultigrid in each case. 



Chapter 2 

This section discusses the governing equations and the basic numerical methods which 

ARCZD uses, concentrating on those parts relevant to multigrid. ARC2D may solve either 

the Euler equations, in the case of inviscid Bows, or the thin-layer Navier-Stokes Equations 

in the viscous case. This paper will deal exclusively with the Navier-Stokes equations. 

To approximate the spatial derivatives, a second-order centered difference is used. Time 

marching is accomplished wi th an implicit met hod. Approximate factorization allows 

the use of banded matrix solvers, which results in drastic time savings per iteration. 

Computational work is further decreased through the use of diagonalization. Pulliam 

gives an overview of the operation of .ARC2D[ll]. 

2.1 The Thin-Layer Navier Stokes Equations 

The Navier-Stokes equations may be used to predict aidow with viscosity. In the case 

of the solution of flow conditions around an airfoil, a good approximation may be made 

by using the thin-layer Navier-Stokes equations. These assume that the viscous terms 

caused by derivatives along the body are negligible. This assurnption does not hold for 

low Reynolds numbers, or in a case with large regions of separated flow. 

The thin-layer equations in curvilinear coordinates are given below: 



P 

with Q = J - 1  
PU 

PU 

e - 

J is the Jacobian matrix: 

The pressure is given by: 

2.2 Time Marching Method 

ARC2D uses first order implicit Euler time marching. When this is applied to equation 

2.1 the foilowing results: 



where h is the time step. The flux vectors Ê, F, and are Iinearized as follows: 

* ab, Ê=e a , d ~ ~ = ~ n + i - ~ n  where A = - acs a~ ' a~ 

To speed up the solution process, approximate factorization is used. This reduces the left 

hand side matrix to two block tridiagonal matrices. These are then inverted in two simple 

steps, instead of the time consuming inversion of a sparse matrix. 

Diagonalization also helps to simplify the equations. The Jacobian matrices may be 

diagonalized as follows: 

A( = T;'AT< (2.7) 

A,, = T;' BT, (2.8) 

These decomposi tions are applied to 2.6 giving: 

The final form is obtained when the eigenvector matrices T, and TF are factored out of 

the spatial derivatives: 

Variable time stepping is used to further increase the convergence rate, by roughly 

equalizing the Courant numbers of each cell. Since the grids used have highly stretched 

ceiis, the majority of the Courant number variation may be eliminated by scaling with 

the Jacobian: 

(2.11) 



To further eliminate fluctuation of the Courant number, the time step may be scaled by 

both the Jacobian, and characteristic speeds: 

In general, the former expression is used, since it seems adequate in smoothing the Courant 

number, and it requires less overhead. 

2.3 Boundary Conditions 

ARCZD may use both O-grid and C-grid topologies. The latter type will be used ex- 

clusively in this thesis. As shown in figure 2.1, there are four boundary types seen in 

ARCBD. The first two are the far field and outflow boundaries. They are both handled in 

the sarne manner, since there is free flow into and out of the region here. This boundary 

condition is enforced by the use of Riemann invariants. The second type of boundary 

condition is seen at the body. In viscous flows, the velocity at the surface is set to zero. 

The final boundary occurs at  the wake cut. This may be solved explicitly or implicitly 

by integrating across the cut. The latter method is used in ARCPD-MG. 



Figure 2.1: ARC2D boundary types 



Chapter 3 

Multigrid 

3.1 Mult igrid Cycles 

Jarneson provides an introduction to the operation and analysis of multigrid [12]. Much 

of the following is based on this paper. Before al1 the details of a multigrid cycle axe 

considered, it is best to discuss the simplest possible cycle. Consider a rnethod using two 

levels, solving for airfiow in a one dimensional system. The discretized and implicit time 

differenced equations on the top or finest grid can be represented by the following: 

The matrix A represents the matrix portion of the appropriate equations after they have 

been spatially discretized and linearized. RHS(Q) is the residual vector of these equat ions. 

0 holds the flow variables at each node. 

Because the Navier-Stokes equations are non-linear, full approximation storage multi- 

grid must be used. This requires that two vectors be copied from the fine grid to the 

couse grid. The first, Q, contains the flow variables. The second vector, R, is the fine- 

grid residual, and ensures that the coarse grid is actually correcting the fine grid solution. 

The transferring of a vector from a fine grid to a coarse is termed restriction, while the 

reverse is prolongation. The following pseudo-code d e h e s  one iteration of the simplest 

possible multigrid cycle. A comprehensive description of the vectors and functions used 

is given in Appendix A. 



Form $', the right hand side for Q; 

3: = RHS(Q:) 

Perform one or more smoothing steps on the fine grid 

QI = SMTH(@$!) 

Forrn q, the right hand side for ~f 

Form Q:, the restricted solution 

Q; = RSTRCT(Q;) 

Form @, the restricted residual 

Form 32, the right hand side for Q: 

3; = RHS(Q;) 

Form D*, the forcing function to be used on the coarse grid 

b2 = 4 - 320 
Form @, the residual used in the smoothing steps 

@ = S,O + D* 
Form Q:, by perforrning one or more smoothing steps on the coarse grid 

Correct the top levei solution 

In the above and all of the following, a vector's subscript refers to the level on which 

that vector is defined. Level one is the top, or finest level. If a vector has a zero as 

a superscript, then the vector OCCLUS before smoothing. A superscript of i represents a 

vector after smoothing. A + superscript on Q shows that the vector has been corrected 

by the lower levels. The vector R has been introduced above. It is defined as: 



In the smoothing iteration on the coarse grid, @ becornes the new right hmd side, instead 

of 3:. This gives the following modified equation which is passed to the smoothing routine: 

In the above, four functions are introduced. PRLNG is the prolongation operator. 

It raises Q to the fine grid. RSTRCT perforrns the opposite function, lowering a vector 

to the coarse grid. There are a nurnber of ways to implement these functions. These 

are discussed in section 3.2. SMTH(Q, R) performs one srnoothing pass on the vector Q, 

using h as the residual vector. Note that on the finest level, the vector 9 is used as the 

residual vector. At al1 subsequent levels, the vector R, which is the sum of the right hand 

side and the forcing function, is used as the residual vector. RHS(Q) forms the right hand 

side, or the vector 9. 
The last step in the multigrid process is known as correcting, since the prolonged 

change from the lower grids is added to the top level. This process reveals that b2 is 
formed by subtracting @ from @. In the case of the simple routine given above, D may 

be expanded, and since only one smoothing iteration is performed on the second level, 

$ = 3:. Equation 3.3 then becornes: 

In this form it is easier to see how b drives the lower grid to correct the upper. However, 

the system sent to the smoother should be left in the form given in equation 3.3. This is 

in case multiple iterations are perforrned on the lower level, in which case a,#@. 
It is easy to see that it may be possible to further increase the effectiveness of the 

multigrid process by adding coarser grids. It is common to use up to four levels. In fact, 

the process is easiest to implement using a recursive subroutine. When more than two 

levels are being used, the smoothing, restricting, and prolonging may be used in different 

combinations than the basic cycle given above. There are three common sequences used. 

The h s t  is a V-cycle. See figure 3.2. This simple case involves smoothing then restricting 

to the lowest level, then smoothing and prolonging back to the top level. An even simpler 

sequence is shown in figure 3.1. This is the sawtooth cycle. It is similar to the V-cycle, 



L d [7 Restriction 

Prolongation 

Figure 3.1: Sawtooth cycle 

0 Srnoothing iteration(s) 

[7 Restriction 

Prolongation 

Figure 3.2: V-cycle 

but does not smoot h on the steps frorn the coarsest to the finest level. The final cornmon 

sequence, called the W-cycle, rnay be seen in figure 3.3. 

Appendix B gives comprehensive pseudu-code with an arbitrary number of levels, and 

a variety of cycles. Tt also allows for other parameters which will be discussed in section 

4.3. 

3.2 Restriction and Prolongation Methods 

R e c d  that vectors need to be transferred both frorn a grid to the next coarser grid and 

back. The functions which perform this are labeled RST RCT and P RLNG respectively. 

In ARC2D-MG, the coarse grids are formed by removing every other node in each direc- 

tion, so that every node on the coarse grid has a correspondhg node on the fme grid. 



O Smoothing iteration(s) Restriction I Prolongation 

Figure 3.3: W-cycle 

3.2.1 Jacobians 

If the vector being either restricted or prolonged is Q, then the inclusion of J-' must 

be considered. Refer to section 2 for a discussion of these variables. The restriction and 

prolongation operators rnay or may not remove JL', on the operand, then multiply the 

resuit by J&, if the operation is restriction, or J& if the operation is prolongation. If 

J-' is rernoved, then the operation is effectively being performed on g. This is dso a 

consideration when the residual is res tricted. 

3.2.2 Restriction 

Restriction offers two options. The simplest case uses the nodes on the fine grid that 

correspond directly to the coarse grid. See figure 3.4 for the one dimensional case. This 

is h o w n  as simple injection. The second method uses a weighting scheme over all the 

nodes in the grid. See figures 3.5 and 3.6. The effect of using different restriction methods 

is discussed in section 4.5. 

3.2.3 Prolongation 

When prolongation on a non-uniform grid is carried out, it is necessary to decide whether 

computationd or p hysical space is to be used. There are three positions of fine grid nodes, 

as shown in 3.7. The first, shown as a filied circle, has a corresponding coarse grid node, 



- Copy fuU value 

Figure 3.4: One dimensional restriction using simple injection 

- - - 
Copy full value Copy half vdue Copy quarter value 

Figure 3.5: One dimensional restriction using weight ing 

Fuie and coarse grid node 
Copy quarter value 

Copy eighth value 

Copy sixteenth value 

Figure 3.6: Two dimensional restriction using weighting 



Fine and coarse grid line 

Fine grid Ime 

Fine and coarse grid node 

0 Fine grid node on one 
coarsc grid iine 

* 

I / l \  
fl I \ 1 Fine grid node on no 

coarse grid iines 

Copy ha l fo fvdue  
O - -  -* Copy one quarter of vdue  

Figure 3.7: Two dimensional prolongation in computational space 

and the value of that node is simply copied to the fine grid. The second type, shown as 

an open circle, lies on one coarse grid line, between two coarse grid nodes. The average 

of the surrounding two nodes gives the value for these nodes. The final node type, shown 

as a square, is not on any coarse grid line, and lies between four coarse grid nodes. The 

average of these four nodes is then used. 

if the prolongation is to be carried out in physical space, then a distance weighted 

average is used, as shown in 3.8. In the case of the fine grid node with a corresponding 

coarse grid node, the value is directly copied, as usual. If the fine grid node lies on one 

coarse grid line, t hen the distance frorn each of the t wo surrounding nodes to the fine grid 

node is calculated. Cal1 these Dl and Dz. Then if we cali the surrounding node values 

Qi and Q2, then the fine grid node value QI is given by: 

In the case of a fine grid node which is not on any coarse grid Lines, the distances from 

the four surrounding coarse grid nodes to the fine grid node must be found. The inverse 

of these is taken. Cali them to D;'. The sum of these is C D-'. Then the fine grid 

node value is given by: 



Fime and c o r n  grid node 

Copy half value scaled 
by distance 

- - -  -- Copy quartcr value 
scaled by distance 

Figure 3.8: Two dimensional prolongation in physical space 

The coefficients above are constant, and add very little overhead to the code. 



Chapter 4 

4.1 Testing of Multigrid Method 

The effectiveness of the MG method iç analyzed in two simple ways. First, the residual 

vs. CPU tirne required is examined. The residual refers to the L2 norrn of 9, the right 

hand side, on the finest level. Second, the coefficients of lift or drag vs. CPU time may 

be compared. The results are compared with the appropriate single level solver. 

To ensure t hat the new code is robust, a number of different cases are shown, varying 

the grid, airfoil, angle of attack, and Mach number. Note that if a converged solution is 

obtained, it is independent of the method used. 

4.2 Test Cases 

Six cases were considered when testing the multigrid ARC2D code. They are shown in 

Table 4.2. A wide range of flow situations was used. Case one is relatively easy to solve, 

with a low angle of attack, but a sornewhat high Mach number, leading to a very weak 

shock. Cases two and three are low speed flows. Case three has a very high angle of 

attack, giving high lift. Both of these cases are time consuming to solve. Cases four, five, 

and six all have stronger shocks, due to high Mach numbers and angles of attack. Cases 

four and five are solved on the RAE 2822 airfoil. Al1 other cases utilize the NACA 0012. 

These cases were taken from Zingg's grid study [13]. 



( Case 1 Airfoil 1 Mach 1 A of A 1 Re 1 Trans Lo 1 Trans Up 1 Grid 1 

I 1 I 1 1 1 1 6 1 NACA 0012 1 0.7 1 3.00 1 9 x 106 1 0 . 0 5 ~  1 0 . 0 5 ~  1 2 1 

1 

1 

4 
5 

Table 4.1: ARC2D-MG test cases 

1 
2 
3 

NACA 0012 
NACA 0012 
NACA 0012 

1 1 1 

RAE 2822 
RAE 2822 

L I L 1 1 1 

3 RAE 2822 385x65 144 49 2- 1 1 1 1 1 1 1 5 x i ~ - 3 1 5 x 1 ~ - 4 1  

0 . 0 5 ~  
0 . 0 5 ~  
0 . 0 1 ~  

Grid 

1 
2 

Table 4.2: ARC2D-MG test grids 

I 

2 
1 
1 

0.7 1 1.49 

0.729 
0.754 

Three grids are used in the study, in order to help demonstrate the dependence of 

multigrid on the grid configuration. The first is used for the low speed cases two and 

three. The second is used for the high speed cases solving around the NACA 0012. The 

third is for the RAE 2822 solutions. Figures 4.1, 4.2, and 4.3 show the grids. Al1 were 

created using HGRD, a hyperbolic grid generator. Table 4.2 gives information required 

by HGRD. 

9 x 106 
2.88 x 106 
2.88 x 10' 

0.16 
0.16 

Airfoil 

NACA 0012 
NACA 0012 

4.3 Opt imizat ion of Mult igrid 

O. 05c 
0 . 8 ~  

0 . 9 5 ~  
6.00 
12.0 
2.31 
2.57 

In order to ensure t hat multigrid is providing the most benefit , a number of optimizations 

Dimensions 

249x97 
385x65 

were carried out. They are detailed in the following sections. In general, case one was 

used as the test case, because of the ease in solving it, as weil as the moderate nature 

of the flow conditions. If it was discovered that this case benefited from the change of 

1 

Body 

100 
144 

parameter, then it was applied to the rest of the cases. The purpose of the optimization 

0 . 0 3 ~  
0 . 0 3 ~  

6.5 x 106 
6.2 x 106 

was to determine the single set of parameten which would provide the fastest solution 

3 
3 

0 . 0 3 ~  
0 . 0 3 ~  

for al1 the test cases. This will hopefully ensure that the code may be used for any case, 

Wake 

25 
49 

without requiring special knowledge to adjust any multigrid parameters. 

Nose 

2 x 1 0 - ~  
5 x 1 0 ' ~  

Off Wall 

I O w 6  
2-6 

Tai1 

2 x l o 4  
5 x 1 0 - ~ '  



Figure 4.1: Grid 1 

Figure 4.2: Grid 2 



Figure 4.3: Grid 3 

4.4 Smoothing Passes 

If one examines a timing profile of a three-level multigrid code, it can be seen that a 

very large portion of time is spent creating the right hand side. This must be done twice 

when going from a fine to coarse grid. One way to decrease overhead significantly is to 

decrease the number of transfers. This can be done by doing multiple smoothing passes on 

each level before restricting. Some caution should be taken though. By performing more 

smoothing passes, the effectiveness of multigrid may be reduced. To determine if this is 

the case, we run the solver five times, beginning with one smoothing pass per level, up to 

five smoothing passes, and compare the number of multigrid cycles required to converge 

to a residual of less than IO-''. The results are shown in Figure 4.4 aad Table 4.3, for a 

sawtooth cycle applied to case one. 

It is obvious that this is an irnportont parameter. The best choice is four smoothing 

passes, which reduces the convergence time by over one third. The third colurnn shows 

the number of multigid cycles required to reach a residual of less than IO-"). The fourth 

column is this number multiplied by the number of smoothing passes per level per cycle. 
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2 Subiterations ---. 
3 Subiterations - - - - 
4 Su biterations B.---.-- 

5 Subiterations ---- 

1 O00 2000 3000 4000 
CPU Time 

Figure 4.4: Effect of number of smoothing passes on convergence history 

Table 4.3: Effect of number of smoothing passes 

Smoot hing Passes 

1 
2 
3 
4 
5 

giving a cornparison of the number of smoothing passes performed on the fine grid. It 

is interesting to note that this number is relatively constant until five smoothing passes 

are used. This indicates that the convergence rate relative to the number of iterations is 

not adversely d e c t e d  when using four smoothing passes. Considerable tirne is saved by 

reducing the number of restrictions and prolongations. 

4.5 Restriction and Prolongation 

CPU Time 

4252 
3269 
2946 
2815 
2970 

The methods of restriction and prolongation of the solution vector Q and the restriction 

of the residual vector f7 are considered next. It was discovered that the method applied to 

Cycles 

251 
127 
83 
64 
55 

Normalized Iterations 

251 
254 
249 
256 
275 



is unimportant, as long as the Jacobian is rernoved from the solution before restriction. 

Simple injection and weighted injection in both computational and physical space were 

tried. There was no significant difference in convergence time. On the other hand, the 

residual must be restricted using the weighted injection method in computational space, 

operating on the residuals without Jacobians, in order to ensure convergence. 

4.6 Boundary Conditions 

ARC2DMG is particularly sensitive to when boundary conditions are applied. During 

a one-level code, they are applied after each smoothing iteration. However, during one 

cycle of a multi-level cycle, the boundary subroutine may be cailed every tirne a grid is 

created or changed. For a two-level code, this could be after each of the following: 

Toplevel srnoothing 

r Restriction to second level 

r Bot tom-level smoothing 

O Top level correction 

The vector shown on the right is sent to the boundary routine. Setting the boundary 

conditions at the correct parts of the multigrid routine is critical to success. In general it 

is best to cal1 these routines every time a new solution vector is created. This happens 

after a restriction, correction, or smoothing pass. 

4.7 Full Multigrid 

h an effort to reduce the initiai error, ARC2D uses grid sequencing. This involves per- 

forming a number of iterations on multiple grids, starting with the coarsest grid, then 

moving to successively h e r  grids. Once the solution is transferred from a coarse grid to a 

finer grid, the coarse grid is not reused. The coarse grids, by virtue of the fact that they 

are faster to solve and allow higher time steps, tend to remove the initial error quickly. 



Couse Grid Iterations 1 Middle Grid Iterations ( CPU Time 1 

Table 4.4: Comparison of number of FMG iterations 

Using full multigrid, the same advantages of grid sequencing may be realized. The 

process is similar. A one level solver is used on the coarsest grid. After a number of 

iterations, the solution is transferred to the next grid, and a two level multigrid solver 

is used. This is continued until the finest level is reached, where the familiar multigrid 

process is used. 

It is important to establish how many multigrid iterations are to be performed at each 

level. Table 4.4 shows the CPU time required to reduce the residual to less than I O - ~ O .  

This shows that an appropriate number of iterations is about thirty, and that the code is 

not particularly sensitive to this value. 

Figure 4.7 shows the residual convergence histories of case one with and wi thout FMG. 

-4 speedup of 25% is achieved through the use of FMG. Similar results are seen with other 

cases. 

4.8 Multigrid Cycles 

The type of cycle used c m  have a signifiant effect on the convergence rate. Three cycles 

are considered; the W-cycle, the sawtooth, and various V-cycles. Since the number of 

srnoothing passes may be adjusted, a variety of V-cycles where tried. Figure 4.6 compares 

five cycles; a W-cycle, a sawtooth, and three V-cycles. The V-cycles are designated with 

two numbers. They indicate the number of srnoothing passes performed on the way down 

and the way up, respectively. 

choice. It will be seen that in 

in performance. 

Examining the results shows that 

many cases, the sawtooth cycle is 

the W-cycle is the fastest 

very close to the W-cycle 
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Figure 4.5: Effect of full multigrid on residual convergence, case one 
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Figure 4.6: Cornparison of multigrid cycles, case one 



4.9 Correction Factor 

Recall that the sollltion at any level which is not the coarsest level is corrected by: 

0: = Qi + p(Q:+l - Q:+d (4.1 1 

Jespersen (141 suggests including a correct ing factor, o: 

Q: = Q1+ ~P(Q:+, - QO,,,) (4.2) 

This allows the possibility of amplifying or attenuating the correction returned from lower 

levels. To test the usefulness of this, the code was executed twice, with equal to 0.9 

then 1.1. Both resulted in slightly slower execution times. 

4.10 Variable 

Throughout these tests, 

Time Stepping 

variable time stepping has been based only on the geometry of 

the grid, with the time step given by equation 2.11. The alternative method, equation 

2.12 was briefly tried, with the result being an increase in convergence time. For the single 

grid case, Atref is optimized to five. This value is found to give good results for a variety 

of cases. However, it may be that the best value for mul.tigrid is somewhat different. 

Figure 4.10 shows the effect of varying Atref on case four using a sawtooth cycle. If a 

time step of ten is used, the convergence is accelerated by almost 20%. However, when a 

time step of ten is used on case six, with a W-cycle and FMG, convergence is slowed by 

almost 10%. When case eight is solved with similar circumstances, twice as much tirne 

is required. This seems to be a parameter best tuned to each case. Ln keeping with our 

desire to have a code which requires no adjustment though, At,,/ will be kept at five, 

which seems to be adequate for al1 cases. 

4.11 Dissipation 

R e d  that multigrid operates best when there is more damping of the high frequency 

components than of the lower. Jarneson and Yoon [5] suggest that the fiequency damg  

ing characteristics of the method may be modified by having the implicit and explicit 
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Figure 4.7: Effect of changing tirne step, case one 

dissipation not equal. However, rve desire to keep the right hand side of the equations 

equal to the original ARCZD, so that the fully converged solutions are equal. Thus, only 

the implicit dissipation may be modified. Case one with a W-cycle and FMG was solved 

twice, once with the fourth order implicit dissipation raised, and once lowered by about 

10%. Both trials resulted in an increase in convergence time. 



Chapter 5 

Results 

The fully optimized code was used to solve aii six cases. Full multigrid was used along 

with both a sawtooth cycle and a W-cycle, using four smoothing passes on three levels. As 

a reference, ARC3D was executed using three level grid sequencing. Fifty iterations were 

performed on the first two levels, whjch seemed to be optimal for most cases. Parameters 

were not adjusted on a case by case basis for either ARC2D or ARC2D-MG. Both codes 

share the following parameters and set tings: 

Geornetry based variable time stepping (JACDT = 1) 

Wake cut solved implicitly (CMESH = TRUE) 

Viscosity ody in normal direction (VISETA = TRUE, VISXI = FALSE) 

Circulation correction on (CIRCU = TRUE) 

The convergence histories of both the coefficient of lift and the Lz n o m  of the residual 

are shown in figures 5.1 to 5.6. Table 5.1 shows how many times faster ARC2D-MG is 

cornpaxed to ARC1D. Each number is the time required by the grid sequenced solution 

divided by the time required by a W-cycle with FMG. It compares them at four instances. 

The h s t  two are found when the coefficient of lift settles within 0.23% and 0.1% of its 

final value. The last two show when residuals of iess than 10-'O and IO-'* are achieved. 
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Figure 5.1: Lift and residual convergence histories, case one 
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Figure 5.2: Lift and residual convergence histories, case two 
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Figure 5.3: Li f t  and residual convergence histories, case three 
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Figure 5.4: Lift and residual convergence histories, case four 





Table 5.1: Speedup of lift and residual convergence 

' Case 

1 
2 

5.1 Discussion 

Due to the fact that the right hand side is the same in both ARC2D and ARC2D-MG, it 

is expected that fully converged solutions, and therefore the coefficients of lift, will be the 

C1<.25% 

3.8 
6.6 

same. This has happened in al1 cases except four and six, where total convergence was 

not achieved. The turbulence mode1 is likely to blame for the failure to fully converge. 

Case five also does not converge. If the residual histories of these three cases is examined, 

an advantage of the sawtooth cycle becomes apparent. It consistently converges more 

completely than either the W-cycle or ARCZD. The solution seems to be more steady, 

since the fluctuations of the residual and lift coefficient seen in case four are much less 

Cl<.l% 

4.2 
6.3 

pronounced when a sawtooth cycle is used. 

Table 5.1 shows that multigrid is indeed providing substantial speedups. If the first 

two columns are compared to the second two, it is obvious that the coefficient of lift is 

benefitted more than the residual. This indicates that multigrid is working as expected, 

because lift is more sensitive to Low frequency error, which is being removed more rapidly. 

R< 10-'O 

3.5 
4.3 

Re 10-l2 
3.2 
3.5 



Chapter 6 

Conclusions 

Table 5.1 clearly shows that multigrid works well with the approximately factored method. 

If the coefficient of lift convergence is used as an indicator, then the time to convergence 

of ARC2D-MG is between one-quarter and one-sixth of the time required by ARC2D. 

Multigrid is most effective with the shock-free cases. This may be explained by considering 

the initial error of these cases compared to the transonic cases. Because there is no shock, 

the frequency cornponents of the error tend to be comprised of lower frequencies, which 

multigrid is adept at handling. 

The optimized parameters of ARC2D are best left alone when multigrid is applied. 

Four smoothing passes should be performed at each level, and only on the way down the 

cycle. In general, a W-cycle gives the fastest results. Multigrid will work best when the 

high and low frequency errors are damp at the same rate. The W-cycle is fastest likely 

because it balances these rates. However, the sawtooth cycle gives convergence rates very 

close to the W-cycle, and tends to converge further in the cases where the residual does 

not go to machine zero. 



Appendix A 

List of Symbols 

A . l  Vectors 

.4fter spatial discretization, implicit time differeneing, local time linearization, approx- 

imate factorization, and diagonalization, the Euler or Navier-Stokes equations take the 

following matrix form: 

A the matrix left hand side 

AQ Unknown vector 

S Right hand side 

When a multigrid routine is to be used, the following vectors are also necessary: 

D Driving vector 

R Right hand side plus dnving vector 

During a multigrid routine, R is sent to the smoothing routine instead of S .  
A subscript on any of the above vectors indicates what level the vector is defined on. 

Level one is the finest grid. 



The flow variables on level k Before smoot hing 

After smoothing 

After correct ion 

The right hand side Before smoo t hing 

After after smoothing 

Right hand side plus driving vector Before smoothing 

After smoot hing 

After smoothing and restriction 

Driving vector for level k 

A.2 Operators 

RSTRCT Restrict. Operates on Q, R, and 3. 
PRLNG Prolong. Operates on Q. 

RHS Make right hand side. Operates on Q and creates 3. 
SMTH Perform one smoothing pas .  Operates on Q and R. 

A.3 Relations 





Appendix B 

Mult igrid Pseudo-code 

This detailed multigrid process is given in pseudo-code. Since the method lends itself to 

recursion, the main routine, which handles the multigridding, will be presented as a single 

recursive routine, called MG. 

a Do i = 1, subiterations-down 

- Q; =SMTH(Q:, RHS(Q: - Bk)  
- Cal1 B C ( Q ~ )  

a Enddo 

If (lowest-level = TRUE) then 



- caii BC(Q;) 

- Do i = 1 ,  subiterations-up 

* Q; =SMTH(Q~, R H S ( Q ~ )  - Bk) 
* caii B C ( Q ~ )  

- Enddo 

- If (W-Cycle = TRUE) then 

* Q:+, = R(Q;) 
* cal1 BC(Q:+,) 

* $!+i =~W&ok+,) 
* & =RSTRCT(RHS(Q;) + Bk) 
* Bk,, = Fî; - $+, 
* &hl =WQO,+,, B k + ,  ) 
* Q: = Q;+PRLNG(Q:+, - Q:+J 

* Cali BC(Q:) 
- Else 

* Q: = QP 
- Endif 

- Return 0: 

-4 few variables above should be explained. 'subiterations-down' and 'subiterations-up' 

give the number of smoothing passes on the way down and up, respectively. 'lowest-leve17 

is a flag indicating whether the current level, k, is the coarsest grid. 'w-cycle7 indicates 

the cycle used is a W-cycle, or either sawtooth or V-cycle. It will be a sawtooth if 

'subiterations-up' is equal to zero. The subroutine 'BC()' c d s  the boundary condition 

routine of ARC2D on its argument. 
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