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Abstract 

The Bayesian statisticai inference theory is studied and applied to two prob- 
lems in applied physics: spectral analysis and pararneter estimation in time 
series data and hyperfine parameter extraction in blossbuaer spectroscopy. 

The applications to spectral analysis and parameter estimation for both 
single- and multiple-frequency signals are presented in detail. S pecifically, 
the marginal posterior pro babilities for the amplitudes and frequencies of 
the signals are obtained by using Gibbs sampling without performing the 
integration, no matter whether the variance of the noise is known or unknown. 
The best estimates of the parameters can be inferred from these probabilities 
together with the corresponding variances. When the variance of the noise 
is unknown, an estimate about the vaxiance of the noise can also be made. 
Comparisons of Our results have been made with results using the Fast Fourier 
Transformation(FFT) method as well as Bretthorst 's met hod. 

The same numerical approach is applied to some complicated models and 
conditions, such as periodic but non-harmonic signals, signals with decay, and 
signals with chirp. Results dernonstrate that even under these complicated 
conditions the Bayesian inference and Gibbs sampling can still give very 
accurate results with respect to the true result. Also through the use of the 
Bayesian inference methods it is possible to choose the most probable model 
based on known prior information of data, assuming a model space. 

The Bayesian inference theory is applied to hyperfine pararneter extrac- 
tion in Mossbauer spectroscopy for the first time. The method is a free-form 
model extraction approach and gives full error analysis of hyperfine parame- 
ter distributions. Two applications to quadrupole splitting distribution anal- 
ysis in Fe-57 M6ssbauer spectroscopy are presented. One involves a single 
site of ~ e ~ +  and the other involves two sites for ~ e ~ +  and Fe2+. In each case 
the method gives a unique solution to the distributions with arbitrary shape 
and is not sensitive to the elemental doublet parameters. 

The Bayesian inference theory is also applied to the hyperfine field dis- 
tribution extraction. Because of the complexity of the elemental tineshape, 
al1 the other extraction methods can only use the first order perturbation 
sextet as the lineshape function. We use Blaes' exact lineshape model to ex- 
tract the hyperfine field distribution. This is possible because the Bayesian 
inference theory is a free-form model extraction method. By using Blaes' 



l inesha~e functiori, different cases of orientations between the electric field 
gradient principle axis directions and the magnetic hyperfine field can be 
studied without making any approximations. As an example the ground 
state hyperfine field distribution of Fe65Ni35 Invar is extensively studied by 
using the method. Some very interesting features of the hyperfine field dis- 
tribu tion are iden tified. 
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Chapter 1. Introduction 

In thiç thesis the powerful Bayesian inference theory is studied in detail and applied 

to two problems in applied physics: 1) spectral analysis and parameter estima- 

tion in discrete time signals; and 2) hyperfine parameter distribution extraction in 

Mossbauer spect roscopy. 

The first chapter (the current one) presents introductions to al1 the chapters to 

give readers an idea of the thesis structure. 

Chapter 2, Inference in Science[S], is a rnini course on inference in science. The 

syllogisms of deductive and plausible reasoning are discussed in detail. The inference 

in science fits into the plausible reasoning syllogisms and is an iterative process. Two 

generic investigation models (1 1 in scient ific ressoning are introduced. Discussions on 

the advantages of the Bayesian inference theory in plausible reasoning are followed. 

Chapter 3. Bayesian Inference Theory[ll, is a crash course on Bayesian inference 

theory. First a brief survey about probabiiity is presented. This is aimed to define 

some vocabulary which will be a necessary background to the following chapters. 

Then the Bayes' theorem is introduced. Generic applications to both linear mode1 

and non-linear models in standard normal inference problems are shown. This builds 

up a solid mathematical foundation for chapter five and chapter six. 

Chapter 4, Gibbs Sampling[G]-[11] - a numerical technique in applications of 

Bayesian inference method. As a numericai technique, Gibbs sampling is used to 

calculate marginal posteriors instead of using the integration which, sometimes , is 
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very difficult to do both analytically and numerically. Because the method is a ver- 

sion of the Monte Carlo method b a s 4  on the Markov chains, a brief introduction to 

Markov chains is presented first. Then the procedures of Gibbs sampling technique 

are followed. 

Chapter 5, Spectral Analysis and Parameter Estimation in Discrete Time Sig- 

nals. In this chapter the Bayesian inference theory and the Gibbs sampling technique 

are applied to an old and well known problem - spectral analysis and parameter es- 

timation in discrete time signals. First a historical review on the problem is given. 

Then the application to the signals with multiple frequencies and white noise are 

presented. This includes the numerical models for the problem, the numericd algo- 

rithm and procedure, the computer simulated examples and the cornparison of the 

results to the results from other approaches to the same problems. In practice, how- 

ever, there are always situations that the models and the real problem do not match 

to each other. So some applications to the problems which violate the conditions 

in the model are conducted to test the robustness of the method. Again the results 

are compared with the results from other approaches. The application mentioned 

above are based on known models. Also in most of the real situations, the model 

itself is unknown. The only thing which is known is that the possible model space. 

Besides finding the parameters, the most probable model for the problem from the 

model space has to be found. So the 1 s t  section of this chapter is dedicated to the 

model selection. The numerical procedures and examples are presented. 

Chapter 6, Hyperfine Parameter Distribution Extraction in Mossbauer Spec- 

troscopy. In this chapter the problems involving hyperfine parameter distribution 

extraction in Mossbauer spectroscopy are studied extensively by using the Bayesian 
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inference theory and Gibbs sampling. In the first section a background introduc- 

tion to Mossbauer spectroscopy and hyperfine interactions in Fe57 (which is the 

main focus of the application) is presented in detaii as well as a review of previ- 

ous work in hyperfine parameter distribution extraction. Also the method called 

Voigt-based fitting is described in detail because this method is the most powerful 

fitting method for the extraction at present and the results for the same problems 

by using the Bayesian inference method are compared with the results by using the 

Voigt-based method. The numerical procedures and algorithms are described in 

the second section. What folluws next is the application to both single generalized 

site and multiple generalized sites quadrupole splitting distributions(QSJ3) extrac- 

tion which is the simpler case where only electric quadrupole interaction exists. 

When both electric quadrupole interactions and magnetic hyperfine interactions ex- 

ist, things are more complicated because the elemental lineshape function involves 

more hyperfine parameters and is in a more complex format. The fitting methods 

can only deat with the approximated elemental lineshape function from the first 

order perturbation treatment because they use a fixed distribution-type mode1 to 

do the extraction. What they try to extract are the model parameters. Because 

Bayesian inference theory is a model free method, any kinds of elemental lineshape 

function can be used. A detailed description onf the elemental lineshape models is 

given and followed by applications to some simulated spectra which demonstrate the 

robustness of the Bayesian inference theory in the hyperfine parameter extraction 

with known eiemental lineshape functions. The last section is dedicated to a very 

complicated and well known problem in Mossbauer spectroscopy, the ground state 

hyperfine distribution of FessNiss Invar. Different elemental lines hape models are 

used to study the sensitivity of the hyperfine field distribution(HFD) at low fields 
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to the way how the electrical field gradient(EFG) is represented. 



Chapter 2. Inference in Science 

2.1 Deductive and Plausible Reasoning 

In our everyday lives, we often make decisions, judgments, and propositions about 

our lives and the world we live in. In most of the cases there is not enough infor- 

mation in Our hands when we make decisions; but still we must decide immediately 

what to do. For example, on a summer morning the sky is very dark and from 1s t  

night's forecast we know there is an 80% chance of rain the next rnorning. What are 

we going to do, take an umbrella to work or not? Of course almost everybody would 

take an umbrella. But by what reasoning process do we arrive at this decision'? A 

moment's thought makes it clear chat Our decision is not a logical deduction From 

the information we have. The information does not make 'it is going to rain' certain, 

however the information makes it extremely plausible. In fact we are hardly able to 

get through one waking hour without facing some situation where we do not have 

enough information to permit deductive reasoning. The syllogisrns in the next two 

sections give clear definitions for deductive reasoning and plausible reasoning. 

3.1.1 Deductive reasoning 

Deductive reasoning can be analyzed ultimately into the repeated application of two 

strong sy llogisms: 

Syllogism 1: 

If A is true, then B is true 
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A is true 

Therefore, B is true 

and its inverse: 

Syllogism 2: 

If A is true, then B is true 

B is false 

Therefore, A is faise 

For example, we know x + y = 3. Let : " A  = x is 2" and "B  = y is 1". So if A is 

true, without any doubt we know that B is true; or in the opposite case where B is 

false (y is not equal to 1) then A is faise (since x + y = 3, y is not equal to 1, x can 

not be 2).  These are the kinds of situations in which we have sufficient information 

to allow this kind of reasoning, i.e. deductive reasoning. But in almost al1 of the 

situations confronting us we do not have the right kind of information to do this. 

We have to fa11 back on some weaker syllogisms according to which the plausible 

reasoning can be analyzed. 

2.1.2 Plausible reasoning 

The first weaker syllogism is: 

Syllogism 3: 

If A is true, then B is true 

B is true 

Therefore, A becomes more plausible 

In this situation, the evidence does not prove that A is true, but verification of one of 

its consequences does give us more confidence in A. This is the plausible reasoning 
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syllogism that we use to decide upon taking an umbrella to work since there is an 

80% of chance of rain and the sky is dark which rnakes 'it is going to rain' very 

plausible. 

Another weak syllogism, using the same major premise, is 

Syllogism 4: 

If A is true, then B is true 

A is false 

Therefore, B becomes less plausible 

In this case, the evidence does not prove that B is false. However one of the 

possible reasons for its being true has been eliminated, and so we feel less confident 

about B. 

The human brain, in doing plausible reasoning, not only decides whether some- 

thing becomes more plausible or less plausible, but it evaluates the degree of plau- 

sibility in some way. The brain also makes use of old information (from experience, 

we know that the plausibility of rain very much depends on the darkness of those 

clouds) as well as the specific new data of the problem (the weather man predicted 

t hat it is going to rain). i n  deciding what to do we try to recall our past experiences, 

with clotids and rain, and what the weather man predicted last night. The reasoning 

of a scientist, by which he/she accepts or rejects his/her theories, consists almost 

entirely of the third and fourth kinds. 
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2.2 Reasoning in Science and the Bayesian Approach 

2.2.1 Reasoning in science 

Scientists conduct experiments in order to postulate and test deductions about the 

world in which we üve. We learn quickly that the world is too complicated for us 

to  analyze al1 at once. Rarely can a series of logical deductions be made which lead 

from data to theory. We can progress only if we dissect problems into little pieces 

and study them separately. Sometimes we can invent a mathematical model based 

on the available information (incomplete), which reproduces severai features of one 

of these pieces, and whenever this happens we feel that progress has been made. As 

knowledge advances, more information is availsble, we are able to invent better and 

better models? which produce more and more features of the real world, and do so 

more and more accurately. 

Scientific investigation is a controiied learning process in which various aspects 

of a problem are illuminated as the study proceeds. It can be thought of as a 

major iteration within which secondary iterations occur. The major iteration is 

that in which a tentative conjecture suggests an experiment , appropriate analysis 

of the data so generated leads to a modified conjecture, and this in turn leads to 

a new experirnent, and so on. An idealization of this process is seen in Figure 

2.1, involving an alternation between conjecture and experiment carried out via 

experimentai design and data analysis. 

Because we can never be sure that a postulated model is entirely appropriate, 

we must proceed in such a manner that inadequacies can be taken account of and 

their implications considered as we go along. To do this we must do more than 

merely postulate a model; we must build and test a tentative model at each stage of 
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the investigation. Only when the analyst and the investigator are satisfied that no 

important fact has been overlooked and that the model is adequate to the purpose, 

should it be used to  further that major iteration. The iterative model building 

process taking place within the major iteration is depicted in Figure 2.2. 

2.2.2 The Bayesian approach 

The Bayesian inference theory is a statistical inference t heory. The method of rea- 

soning under the circumstances in which we do not have cornplete information is 

called iiiference. The Bayesian inference theory provides us a unique mathemati- 

cal language to describe the essential features of this plausible reasoning. Among 

different systems of statistical inference, that derived from Bayes' theorem will be 

seen to have properties which make it particularly appropriate to its role in scientific 

invest igat.ion. In particular: 

1. Precise assumptions introduced on the left in Fig. 2.2 lead, via a leak-proof 

route to consequent inferences on the right. 

2. It follows that, given the model, Bayesian analysis automatically makes use of 

al1 the i~iformation from the data. 

3. I t  further follows that inferences that are unacceptable must corne from in- 

appropriate assumptions and not from inadequacies of the inferential system. 

Thus al1 parts of the model, including the prior distribution, are exposed to 

appropriate criticism. 

4. Because this system of inference may be readily applied to any probability 

model, much less attention need be given to the mathematical convenience of 

the modeIs considered and more to their scientific merit. 



5. Awkward problems encountered in sampling theory ( anot her statistical infer- 

ence method [II), concerning choices of estimator and of confidence intervals, 

do not arise. 

6. Bayesian inference provides a satisfactory way of explicitly introducing and 

keeping track of assumptions about prior knowledge or ignorance. (It should 

be recognized that some prior knowledge is employed in al1 inferencial systenis.) 

These properties suggest that Bayes' theorem provides a system of statistical 

inference intrinsically suited to iterative mode1 building, which is in tu rn an essen- 

tial part of scientific investigation. The detailed introduction about the Bayesian 

inference t heory will be given in chapter 3. 

In the last decade, there have been an increasing number of successful appli- 

cations of the Bayeçian inference theory as more and more people have begun to 

realize that this theory has the intrinsic properties suited to the inference problems 

in scientific investigation. Most of the applications face the extreme challenge of the 

computational aspects (as we will see in chapter 5 and 6 of this thesis). It would 

not be possible to apply the theory broadly in science without modern high speed 

cornputers. Two major contributions tc  the use of the Bayesian inference theory 

are the development of the theory and the algorithrns to reconstruct large images 

[3]in Cambridge, England and the work [4], at Washington University, St. Louis, 

U.S.A., of demonstrating the power of the Bayesian spectrum analysis and parame- 

ter estimation which will be quantitatively compared to the results of the study in 

t his t hesis. 

For t hose readérs who are interested in probability theory in scientific investiga- 

tion and the Bayesian inference theory in statistical analysis, more detailed materials 
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are available in the book of Jaynes [.LI, which is still incomplete, and the book by 

Box and Tiao [II .  
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Figure 2.1: Iterative process of scientific investigation (the alternation between con- 
jecture and experiment). 

Figure 2.2: Statistical analysis of data as an iterative procesç of mode1 building. 



Chapter 3. Bayesian Inference Theory 

In this chapter some background of probability theory and a brief introduction about 

Bayesian inference theory are presented. The intention of this chapter is to give 

general readers a neccessary probability and Bayesian inference theory backgroud 

to understand the rest of the chapters. For readers who are interested in the detail 

of these theory, please refer to References: [2] and [Il 

3.1 Some Background of Probability Theory 

3.1.1 Experiments and sample spaces 

The word .'experiment" is used here in a very general sense to describe virtually 

any process of which al1 possible outcomes can be specified in advance and of which 

the actual outcome will be one of those specified. The outcome of an experiment 

may be random or non randorn. For the purpose of this study, the interesting 

feature of an experiment is simply that its outcome is not definitely known by the 

experirnenter before hand. The set of al1 possible outcomes of an experiment is 

called sample space S of the experiment. For a given experiment, the nurnber of 

outcomes and the name of the outcomes in S may be chosen differently by different 

people. The basic requirernents are that S must include al1 possible outcomes and 

that each outcome must be described with al1 essential detail. The sample space S 

of any experiment is conveniently regarded as a set of elements, each element being 

a possible outcome of the experiment. 
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3.1.2 Events and probabilities 

An event refers to the result of a trial which refers to the occurrence of an experiment. 

The limiting cases of events are also considered to be events. Let Q denote the total 

or certain event characterized by every possible outcome of a trial, and the nuU 

or impossible event containing no outcornes. Both R and Q are viewed as  events. A 

complete or exhaustive set of events is a collection whose union is the total event il. 

The notation of probability corre~ponds to the chance that some event of interest 

will occur. Probability can be called a mesure  applied to the events that cm occur 

when an experiment is performed. Formally a probability function is a real-valued 

set function defined on the class of al1 subsets of the sample space S; the value that 

is associated with a subset A is denoted by P ( A ) .  The value of a probability P ( A )  

ranges from O to 1 inclusively. The probability of the nul1 event is O and that of the 

total event is 1; that is P ( 9 )  = O and P(R)  = 1. Actual specification of the value 

of P ( A )  must corne from analytical considerations of the experiment performed and 

the mechanism behind it. 

A set of events is independent if the events have no effect on each other. A set 

event is called dependent if it is not independent. In other words, at l e s t  one event 

affects at least one other event in the set. The joint probability of a collection of 

iridependent events is given by the product of their respective probabilities. 

where A and B are independent. 

The joint probability of a collection of dependent events must take into account 

the conditional probability that characterize their dependence. The conditional 
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probability is the probability of the occurrence of an event A when additional infor- 

mation about the outcome of the experirnent has been obtained from the occurrence 

of sorne other event B. Then 

P ( A B )  = P ( A  1 B)P(B) (3-2) 

where we cal1 P ( A  1 B) the conditional probability of A occurring, given rhat B has 

occurred. 

3.1.3 Random variables and probability density distribution(PDD) func- 

t ions 

A random variable X is a variable that might assume any one of several values in 

triais conducted under identical conditions. Each of the alternative values corre- 

sponds to a different outcome. Random variables may be classified broadly into two 

categories: a discrete random variable and a continuouç random variable. A random 

variable X is discrete if its range forms a discrete (countabie) set of real nurnbers. 

A random variable X is continuous if its range forms a continuous (uncountable) 

set of real numbers. 

A random vaxiable X is characterized completely by its PDD function which de- 

fines the relative likelihood of assuming one value over the others. The PDD function 

has a different meaning depending on whether the random variable is discrete or 

continuouse. For discrete distributions, the PDD is defined as the probability of 

observing a particular outcome. The PDD is denoted by P(X = xi), where xi is a 

possible value that X takes. For the continuous case, the PDD function, P(X) at a 

value xi, is not the probability of observing the value xi. The probability of observ- 

ing any particular value is zero. To get a probability over an interval a 5 X 5 6 ,  
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one needs to integrate the PDD function over the interval as follov~s: 

Here F ( a  < X 5 h )  is the probability of a 5 X < b. 

For two continuouse random variables X and Y, we can define the joint distri- 

bution density function PDD 

The marginal PDD of X can be obtained by integrating out Y i.e. 

In the discrete case, summation signs replace integrds. 

3.1.4 Moments of the distribution 

We have seen that the probability density distribution can evaluate probability 

statements about randorn variable X. Frequently, problems are phrased that require 

the notion of the average or expected value of X, the measure of the volatility of X 

etc., not merely a statement of the probability that X will lie in a certain interval. 

The expectation of a random variable locates its center of m a s .  For discrete random 

variables, the expec tation is 

For the continuous case, 
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A measure of the  volatility of X is found in the expected value of its squared 

deviation from the center of m a s .  This is called the variance of X: 

V a r ( X )  G E { [ x  - E ( x ) J ~ }  (3-8) 

Since E ( X )  is the center of mass for vaxiable X, the transformed quantity X' a 

X - E ( X )  is called the centralized form of X .  In other word, the centralized version 

of a random variable is its deviation from the mean. 

3.2 Bayesian Inference Theory 

3.2.1 Bayes' theorem 

Suppose that Y = [yl, . , is a vector of N observations from an experiment 

whose probability distribution P(Y 1 8) depends on the values of L parameters 

8 = [Ol, and 8 itself has a probability distribution P(8). Here 8 could be 

either discrete or continuous. Bayesian theory then tells us: 

Given the observed data Y, the conditional distribution of 8 is 

For a given Y, P(Y 1 8) in the above equation rnay be regarded not as a function of 

Y ,  but a function of 8. When so regarded it is called the likelihood function of 8 for 

given Y and can be written as L(9  1 Y). P(Y) can be regarded as a normalization 

constant, so that Bayes' formula can be written as 
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where we cal1 P(8 ( Y) the probability density distribution (PDD) posterior to Y. 

P ( 8 )  is the PDD for 8 prior to the data, and L(8 1 Y )  is the likelihood function 

for 8 given Y. Here the likelihood function plays a very important role. It is 

the function through which the data Y modifies the prior knowledge of 8. It can 

therefore be regarded as representing the information about 8 corning from the 

data. 

3.2.2 Application to the linear mode1 in standard Normal inference 

problems 

We consider a linear mode1 as follows: 

where Y is an N x 1 vector of observations, X is an N x L matrix of known 

constants, 8 is an L x 1 vector of unknown parameters, and E is an N x 1 vector 

of random variables distributed as Normal N ( 0 ,  g2) (often referred to as statistical 

error). Explicitly, the mode1 is 

and in particular, for the ith observation, 

Given the observations Y,  the constant rnatrix X, and knowing Ei  is a normally 

distributed random error with zero mean and variance a', we want to find the best 

estimates for 0. 
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First, suppose a2 is known. According to Bayesian theoq, the posterior PDD of 

8 given Y and a* is 

P(8 1 Y, 2) oc L ( 8  1 Y,  0 2 ) p ( 0 ) .  

If we don't have any specific information about 9 prior to the observation data Y,  

we may employ P(8) cc constant as a non informative reference prior for 0 [Il, 

If we have the true model, the difference between the data Y and the model X e  

is just the noise. Then the likelihood, or the probability that we should obtain the 

data Y given X and 9, is [11 

w here 

v = I V - L ,  

P = xe. 
L is the rank of the rnatrix X . It then follows that: 

(a). 8 is a vector of statistics jointly sufficient for 8 if oz is known. 
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(b). 8 and s2 are jointly sufficient for (8, a2) if o2 is unknown. 

(c). 8 has the rnultivariate Normal distribution N L [ ~ ,  O ~ ( X ~ X ) - ' ] .  

(d). us2 is distributed independently of 0 as a2X> 

Since a2 is known 

and 

where R is the region -w < Oi 4 oo, i = 1,2, - a . ,  L. Rom this we have 

Therefore all the relevant inferences about 8 can now be made from the knowl- 

edge that the posterior distribution of 8 is the multivariate Normal distribution 

iVL[6, Q'(X~X)-']. P ( 8  1 Y, a2) is rnaximized at 8, so î) is our best estirnate for 

8 with variance equal to U ~ ( X ~ X ) - ' .  This is just identicai to least-squares fitting 

for 8, but Bayesian inference gives a reasonable justiiication for the procedure. 

In some cases the variance a2 is unknown, and information about a* coming 

from the observations is us&. In this case the joint PDD of 8 and o2 is 

By using a non informative pnor with 8 and Ioga approximately independent and 

locally uniform [Il, Le. 
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we can then follow the same reasoning as when a' is known. The likelihood in this 

case is given by 

and t hus 

Integrating out o2 from the above equation and 

posterior distribution function for 8 becomes 

doing a normalization, the marginal 

which is a multivariate (L-dimensional) Student-t distribution, often denoted as 

t L(8, S?(X*X)-', v ) .  Once again P(8 1 Y )  is rnaxirnized at 8. 
We can also obtain an  estimate about the variance of the noise by finding the 

marginal PDD of 02. Integrate out the Bi's from equation ( 3.25) and do a normal- 

ization. The marginal PDD of a* is then 

we find that  
n 
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which is a y2 distribution witb u = N - L degrees of freedom. So a' is distributed 

a posteriori as usZX;'. The value of the point which gives the maximum marginal 

PDD of o' is the best estimate for o'. 

3.2.3 Linear approximation to non-linear models 

Unfortunately, most real experimental data are from non-linear models as follows: 

m .  

where Y is an N x 1 vector of observations, =. 1s a set of known constants {tl, . . . , SN), 

8 is an L x 1 vector of unknown parameters, and E is an N x 1 vector of random vari- 

ables distributed as Normal N ( 0 ,  02). G(E, 8) is a non-linear function of 3 and 8. 

To be able to  use the theory described in the previous section we have to introduce 

some reasonable approximations to linearize the non-linear model hnction. Box 

and Tiao [l] have shown a very simple method for doing this. In general the specific 

form of the posterior distributions which we shall obtain for the linear case will often 

provide reasonably close approximations even when the model functions G(2 ,8 )  are 

nonlinear in 8. This is because we need only require that the model functions be 

approximately linear in the region of the parameters space covered by most of the 

posterior distribution, say within the 95% highest posterior density (H.P.D.) region. 

For moderate N ,  this can happen with functions which are highly nonlinear in the 

parameters when considered over their whole range[l]. Then, in the region where 

the posterior probability mass is concentrated (the 95% H.P.D. region), we may 

expand the model functions aroynd the mode 8 (8 rninirnizes 1 Y - G(E, 8) 12) ,  
giving 
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which is in the form of a linear model. Thus the posterior distributions found for 

linear models can now be used t o  provide a close approximation to the true distri- 

bution. This iinear approximation will be applied to solve the problems presented 

in Chapter Five. 



Chapter 4. Gibbs Sampling - A Numerical Technique in 

Applications of Bayesian Inference Met hods 

4.1 Introduction 

In the previous chapter, applications of the Bayesian inference theory to the linear 

or non-linear model in standard Normal inference problems were presented. We 

ended up with a joint posterior probability distribution for the unknown parame- 

ters 8 = {O1, 02,. . . , BL) (see equation ( 3.21) and ( 3.27)). What we want is to 

determine the best estirnate for each parameter as well as the uncertainty about the 

estimate. To do this, we have to find the marginal posterior probability distribution 

for each parameter. Generally for the parameter of interest we can get rid of nui- 

sance parameters from the joint posterior using integration. However there are some 

technical difficulties in the calculations as we mentioned in the previous chapter. In 

the last few pars there have been a number of advances in numerical and analytic 

approximation techniques for such calcuIations!6]-[1 l] , but implementation of these 

approaches typically requires sophisticated numerical or analytic approximation ex- 

pertise and possibly specialist software. 

Fortunately, there are alternative ways for the calculation of marginal posteriors. 

These are the sarnpling-based approaches, which, by contrast , are essentially trivial 

to implement. The basic idea is to generate a sample of marginal distribution for the 

interested parameter. Then consequently al1 the information about the interested 

parameter can be drawn fiom the sample. Since we do not have the marginal 
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distribution function for the parameter this can not be done directly. What we can 

do is to use sorne special sampling algorithm to generate the sample from the joint 

or the conditional posterior probability distributions. 

There are three well developed sampling algorithms: the data-augmentation al- 

gonthm described by Tanner and Wang[l2] and detailed in Tanner's book "Tools for 

S tatistical Inference" [U],  the Gibbs sampler algorit hm introduced by Geman and 

Geman [Hl, and the form of importance-sampling algorithm proposed by Rubin[LS] 

[le]. Among them the Gibbs sampler has been widely taken up in the image- 

processing literature and in ot her large-scale models. There is a close relat-ionship 

between the Gibbs sampler and the data augmentation algorithm which are both 

it erative Monte Carlo procedures. The importance-sampling algorit hm involves a 

non iterative Monte Carlo integration approach to calculating marginal distribu- 

tions. Since in this study only the Gibbs sampling will be employed, we will only 

give a detailed introduction about the Gibbs sampling. For those readers who are 

interested in the ot her two techniques? please refer to the references. 

4.2 Gibbs Sampling 

The Gibbs sampling is a version of the Monte Carlo method based on the Markov 

chains and is a cornputer-based technique which allows us to generate the marginal 

probability density distributions to any degree of accuracy from the conditional 

probability density distributions. In the procedure the objective is to generate a 

sample distribution ~ ( x )  which can not be done directly. However, if we can con- 

struct a Markov chain in the same state space, having an equilibriurn distribution 

~ ( x ) ,  then by running the chain for a long time, simulated values of the chain can 
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be used as a ba i s  for summarizing those features of ~ ( x )  which are of interest. To 

better understand the Gibbs sampling technique, first a brief introduction about 

Markov chahs is presented, 

4.2.1 Markov c h a h  

Suppose X is a random variable which takes only two possible values O or 1. X = 1 

means a certain machine works, X = O means a certain machine dose not work. 

Adding the time factor, at time a, if X, = O i.e. the machine is down, then suppose 

and 

P(Xn+r = O  1 X, = 1) = (4.2) 

we want to  know the limiting probability that a machine is functioning, i-e. 

lim P(X, = 1) 
n-aa (4.3) 
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This implies 

P ( X , = O )  = (1 

where P(Xo = 0) and P(Xo = 1) are known as the initial probability distribution 

obvious that 

This implies that we may generate Xnls using the conditional probabilities. For large 

enough n' the value of X, generated will be random variable from the marginal. 

4.2.2 Gibbs Sampler 

PVe now consider a particular form of Markov chain scheme to help us  generate 

marginal probability distribution samples from the conditional probability distri- 

butions. Suppose for a set of random variables {xi, x 2 , .  . + ! xN}, we know the 

conditional densities P ( x i  1 xi, - , xi-1, - , x N ) ,  i = l , 2 , ,  - , N .  Gibbs 

sampling then proceeds in the following manner; first arbitrary starting values 

x 1 , (o ) .  xz,(o) Y . . . . x ~ ~ ( 0 )  are chosen; then random drawings are made from the con- 



After one iteration, we obtain 

{ ~ l , ( l ) ,  - 7 X*,(l) ,  . 7 W,(l)l 

and after K iterations, we obtain 

It has been shown [17, 181 that for large eriough K ,  x i , ( ~ ) ,  i = 1, 2, . . , N ,  will be a 

random variable drawn from the marginal densities 

i = l , 2 , - ,  N 

Thus in order to estimate the marginal densities of x i ,  P ( x i ) ,  i = 1,2, - . - , N ,  we 

need to generate several values of z i , ( ~ )  

T lien 

are random variable samples of size &ICI, kom the marginal densities P ( z i ) ,  i = 

1,2, - N .  The determination of K depends upon the particular application. This 
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will be discussed further in Chapter 5. By plotting the marginal histogams, we can 

draw information from them, such as the mean, the variance, as well as the position 

corresponding to the maximum marginal probability, etc.. Of course the larger the 

size of the sample the more accurate the information that we can draw from it. 



Chapter 5. Spectral Analysis and Parameter Estimation 

in Discrete Time Signals 

5.1 Introduction 

5.1.1 The problem 

In brief, spectral analysis and parameter estimation in discrete time series is the 

fit ting of model functions, most commonly the sinusoid functions, to a data set in 

order to determine the parameters, such as frequencies and amplitudes (or phases). 

There are different ways to formulate the problem. We must be very clear what 

we already know and what we want to know. For example, if we know the model 

functions for the data are sinusoidal and how many periodicities there are, we might 

want to estimate their parameters; aiternatively we might know there is a number 

of periodicities but we do not know exactly how many, we want to estimate that 

number; or even a more complicate case where there are a few probable model 

functions, we want to know which one is the most probable. The problern is old 

and well known. Comprehensive histories of the spectral analysis methods are given 

by Robinson[i9] and Marple[2O]. In what follows, a brief historical introduction of 

these methods is presented. 

5.1.2 Historical review 

The first significant advance in the spectral analysis and parameter estimation prob- 

lem took place in the early nineteenth century, when two methods came into being: 



the use of probability t heory, and the use of the Fourier transform. It was Laplace[2 11 

who formulated the probabilistic methods in some generality in the late 18th cen- 

tury. Then the method was applied by ~egendre[22] and Gauss(231 who firsst used 

the method of least squares to estimate model parameters in noisy data. Some 

idealized model function is postulateci to represent the signal and the criterion of 

minimizing the sum of the squares of the residuals is used to estimate the parameters 

in the model. This approach is usually too restrictive. It assumes more about the 

problem than is really known. Usually, we don't know which model functions will 

fit the data best, or how many parameters are required to Nr the rnodel functions. 

The spectral method of dealing with the problem dso occurred in the early 19th 

century. The Fourier transform is one of the most powerful tools. Since Cooley 

and Tukey (241 introduced the fast Fourier transform technique in 1965, followed 

by the rapid development of cornputers, the discrete Fourier transform has b e n  

widely used in spectral analysis. In a typical situation in spectral analysis, one is 

attempting to gain information about an underlying signal in a time series which 

has been sampled discretely over a finite time, and which is compounded by the 

addition of noise and possible distortion. In this situation, the Fourier transform 

consists of the signal transform plus a noise transform. As such, the relationship of 

the Fourier transform to the underlying time series is a nontrivial technical pro Hem. 

One of the central questions then becomes: under what conditions is the discrete 

Fourier transform an optimal frequency estimator? 

Bretthorst [4] has shown that the discrete Fourier transform is able to give op- 

timal frequency estimates to a signal with noise if certain conditions are met: 

1. The number of data values N is large. 
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2. Tliere is no constant component in the data. 

3. There is no evidence of a low frequency. 

4. The data contain only one frequency. 

5. The frequency must be stationary. 

6. The noise is white. 

If any of these conditions are violated, the discrete Fourier transform rnay give 

misleading or simply incorrect results in light of more realistic models. This is not 

because the discrete Fourier transform is wrong, but because it is attempting to 

answer the wrong question. In practice, as long as certain conditions are satisfied, 

the zero-padded discrete Fourier-transform power spectrum is the best estimator of 

the frequencies in the signal. Bayesian analysis gives added justification to this [%]. 

The discrete Fourier-transform power spectrum is essentially the logarithm of the 

posterior probability of a single stationary sinusoidal frequency, or the logarithm of 

the posterior probability of a series of weil-separated sinusoids. 

Schuster(251 introduced the periodogram near the beginning of this century as 

a method of detecting a periodicity and estimating its frequency. The periodogram 

is essentially the squared magnitude of the discrete Fourier transform of the data. 

It has al1 the drawbacks of the Fourier transform. Since Jaynes (271 derived the 

periodogram directly from the principles of probabiüty theory and demonstrated it 

to be a "sufficient statistic" for inferences about a single stationary hequency in a 

time-sampled data set when a Gaussian probability distribution is assigneci for the 

noise, much attention has been paid to the relationship between Bayesian inference, 

spectral analysis and parameter estimation. FoIlowing Jaynes' work, Bret t horst [4], 
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[28]-[32] has done some excellent work in this area and his approach has  been applied 

to various NblR signals [26], [33]-[36]. (Since we will give quantitative comparisons 

between our results and Bretthorst's results, a detailed backgrouud introduction t o  

Bretthorst's method will been given in next section.) However the calculations in his 

work are quite complicated and the method can only give the joint probabilities of al1 

paramelers. The only way to find the marginal probability for a specific parameter 

is to integrate out al1 the nuisance parameters. When more and more parameters 

are involved. there is usually no analytical result for the integral and the numerical 

calculation of the integral can be very complicated and difficult. 

5.2 Stationary Sinusoid Signals wit h White Noise 

5.2.1 Numerical model of the problem 

The time series y(t) we are considering is postulated to contain a signal f ( t )  plus 

a noise e ( t ) .  The basic model is : we have recorded a discrete data set D = 

( d l , d 2 , .  . . . d N } T  sampled from y(t) at discrete time {tl, t - , .  . . . t N I T  with a mode1 

equat ion: 

di = y ( t i )  = f ( t i )  + e ( t i )  1 5 i 5 N (5-1) 

Here we cal1 / ( t )  the model function. Different models corresponds to different 

choices of the model function f (t). In this section we suppose the mode1 function is 

known(we will talk about model selection in 5.4) as a single or multiple stationary 

harmonic signal. The function model for this signal can be written as: 
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which has 3M parameters {Bji, Bjz,  w j } ,  j = 1,2, . . . , M.  The white noise means 

e ( t i )  i = 1,2, . . . , N is independently normaly distributed, e ( t i )  N (0, 02), Le. the 

magnitude of the noise at each datum point has a Gaussian distribution with zero 

mean and variance CT'. Now based on this model and the data set D with a2 known 

or unknown, we want to make the best estimates for al1 the 3M parameters using 

the Bayesian inference methods described in 3.2. 

5.2.2 The likelihood and the prior 

According to the Bayesian theorem, given the model function and the data D, the 

joint posterior probability of the parameters is: 

when o2 is known or 

when &s unknown. 

where 
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If we have the tme model, the difference between the data di and the function 

model j ( t i )  is just the noise e ( t i ) .  Then the likelihood, or the probability, that we 

should obtain the data D given the rnodel and the parameters is the probability of 

the noise. As we know 

when o2 is known, and 

when a2 is unknown. 

If we do not have any information about the parameters and a2(if O* is un- 

known) before we analyse the data, we may use the non informative prior for 

P({Bji), {Bj2}7 { ~ j ) ) r  SO 
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and 

Then the joint posterior probability distribution is 

when a' is known, and 

when a2 is unknown 

Now the question is how to make the estimates about each parameter from the 

joint posterior? In the next section we wiil see how the Gibbs sampling and linear 

approximation help us to answer this question. 

5.2.3 Why do we need Gibbs sampiing? 

If just Bayesian theory is applied to the mode1 described above, we end up with the 

joint posterior probability distribution of ( B j l ,  B j2 ,  w j ) ,  j = 1,2, , M shown in 

equation( 5.12) and ( 5.13). To find the marginal distributions, we have to integrate 

out al1 the nuisance parameters from the joint distribution. For example, to find 

P(wj 1 D, 02) we have to evaluate the integral: 
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where 

As nre can see this integration is not easy to compute since the model functions 

are non-linear in the parameters. By using the linear approximation we have to find 

( {Ê j1 ) ,  { B ~ ~ ) ,  {Wj}) which rninimizes the exponent in equation ( 5.13), then expand 

the model function around the minimum up to a linear order. The multivariate 

minimization, however, is not trivial and sometimes only the local minimum can be 

found. In order to avoid computing the integrals or the multivariate minimization, 

Gibbs sampling can give us an alternative way to find the marginal distribution for 

each parameter by dealing with just a single parameter at each sampling step. Since 

only the frequency is non-linear in our model function, we only need to do linear 

approximation for each frequency which only involves a univariate minimization. 

We will see that this method is very successful. 

Before we go to the numerical procedures of our method, a brief introduction 

about Bret thorst's approach is presented in the next section since we quantitatively 

compare our results with his results in the numerical examples. 

5.2.4 Brett horst's approach 

Starting with a general model function 
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Gj( t ,  R )  are functions of a parameter set R = {wl, W Z ,  . . - , uk)  which may represent 

frequencies, phase shifts, decay rates, etc. 

If we substitute the model function, equation( 5-15), into the expression for the 

it then takes the form, 

where 

N 

gj* = C e j ( t i ) ~ k ( t i )  
i= I 

In the above, d? = CE, d:- 

In order to carry out the integration over the nuisance parameters, it is necessary 

to make the matrix gj* diagonal, effectively introducing new model functions H j ( t i )  

which are orthogonal [4]. This diagonalization process yields a new expression for 

the model function, 

where the new 

and where ek ,  

gjk, with Al aS 

amplitudes Ak are related to the Bk, by 

represents the jth component of the kth normalized eigenvector of 

the f t h eigenvalue. 
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Substituting these expressions into the expression for the Iikelihood function, 

and defining 

to be the projection of the data onto the orthonormal mode1 functions Hj, we can 

then proceed to perform the m integrations over the A j  to obtain, 

with 

representing the mean-square of the observed projections. 

If a2 is known, and assuming that we have no prior information, the joint pos- 

terior probabdity function of the { w )  parameters, conditional on the data and our 

knowledge of a is given by 

If there is no prior information about the noise, then o is a nuisance parameter and 

must also be eliminated by integating it out. Using the Jeffreys pnor [l] l/a and 

integrating over O gives 

This has the form of the "S tudent t-distribution" . 

As well as determining the values of the {w ) parameters for which the posterior 

probability is a maximum, it is also desirable to compute the variances associateci 

with these parameters. If we assume the case where a is known, and let (G} repre- 

sent the values of { w )  for which the posterior is a maximum, then we can expand 
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the function h2 in a Taylor series, such that the posterior probability function is 

proportional to 
b j k  

j,,, 2 < a2 > A,&} 

with bjk defined as 
rn a2P 

bjk -- 
2 awjawh 

and A W - w j for the single- frequency case. 

In calculating the mean and standard deviations for the { w }  parameters, the 

Gaussian integals are evaluated by f h t  changing to the orthogonal variables as 

was done above with the amplitudes. The new variables are obtained from the 

eigenvalues and eigenvectors of bjk. If we let u j k  represent the kth component of 

the jth eigenvector of b j k ,  and let v j  represent the eigenvalue, then the orthogonal 

variables are given by, 

From these, the d a n c e  y: of the posterior distribution for wc is 

Thus the estimated w j  parameters are 

where Gj  is the location of the maximum of the probability distribution as a function 

of the ( w )  parameter. 

One can also show that the expectation values of the parameters {A} are given 

by < Aj >= hi, which when transformed to the parameters {B} become 
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The uncertainty in the Aj  is f o, so that the corresponding variance in the {Bk) is 

5.2.5 Numerical procedures 

Let's consider a single harmonic-frequency mode1 described by, 

Suppose B2, and w are given, leaving Bi as the only unknown linear parameter. 

According to the theory in Section 3.2.2 , we know that mhen a2 is known P ( B l  1 

Bz, w, D, 02) is a univariate Normal distribution N&, cr2(~TXl)- ' ) ,  where 

When a' is unknown, P(Bi  1 B2, w ,  D) is a univariate Student-t distribution 

tl(Ê1, S ~ ( . Y ~ X ~ ) - ~ ,  N - 1) where 

with 
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and whe O* is unknown, P(& 1 Bi, w, D) is a univariate S tudent-t distribution 

t ( B?, s:(x&Y2)-', N - 1) where 

with 

When Bi and Bz are given, w is a non-linear parameter. We then have to 

linearize the function with respect to u. By using the approximation presented in 

Section 3.2.3, we have that 
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where W minirnizes zEl[di - Bicos(wti) - B ~ s ~ ~ ( L & ) ] ~  with Bi and Bz being given. 

Then when a* is known, P(w 1 Bi, B2, Dl a2) is also a univariate Normal distribution 

Ni (W , a2 (x~x,) -'), where 

L 

when O' is unknown, P ( w  1 Bi, BQ, D ) is a univariate Student-t distribution tl(W, S;(X:X,)-~. 

1) with 

and 

In Our numerical calculation when u2 is known we start with a set of initial 

guesses (Bi,(o), B2,(o), w(*)), and the Gibbs sampler generates random numbers as 

follows: 
t 
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After one iteration, we get (Bi,(i), B2,(l), ql)). After K iterations , we obtain 

u(~)). For a large enough K ,  BI , (K)  can be considered as a ran- 

dom variable from P(B1 1 Dl oz); a random variable from P(Bz ( D, u2); and 

q ~ )  a random variable fkom P (w 1 D, 02). Repeat this M, times we obtain three 

randorn number samples of the same size Ads, ( B : , ( ~ ) ,  B$,, , . . , B&)) from the 

marginal distribution P ( B I  1 Dl a", ( B & ~ ) ,  B & ~ ) ,  - . - , f3ZKj) from P(& 1 D. 02) 

and (w(IC), utK), . . ,ut')) h m  P ( w  1 D, a'). Rom each sarnple, al1 of the estimates 

about the corresponding parameter can be $und, such as the most probable value 

for the parameter, the mean value, the variances with respect to the rnost probable 

va lw  and the mean, etc.. For multiple harmonic frequency signals, the procedures 

are analogous to the above. 

When o' is unknown, we do the same thing as above except that the random 

numbers are generated from the Student-t distribution. However in this case we 

must also obtain an estimate for the noise level or the noise variance. Since the 

marginal posterior probability of a2 is V S * ~ ; ~ ,  a first set of random numbers {xi} 

are generated from a chi-square random number generator. Then a set of random 

numbers {a?) which distribute as vs2X;2 can be calculated from { z i )  as (0:) = 

V S ' { X ~ } - ' .  Once again the best estimate for o2 can be made from this random 

numbers sample. 

Before we discuss the cornputer simulateci examples, there is something we need 

to say about the display of the results. The usual way to display the results from 

a spectral analysis is in the form of a power spectral density. As we know, in 

Fourier transform spectroscopy this is typically taken as the squared magnitude of 

the discrete Fourier transform of the data. Here, in order to display our results in 

the form of a power spectral density, we need to give some attention to the definition 
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of the power spectral density. The power spectral density shows how much power 

is contained in a unit frequency. Following Bretthorst's [4] definition, when o2 is 

known the power spectral density is related to the joint posterior probability in the 

single-frequency mode1 as 

Performing the integrals over Bi and B2, we get 

When O? is unknown, we find 

where the following approximations have been used, 
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If there is more than one frequency in the signal, it won't be easy to do the 

integral in equation ( 5.48) and it will only give the joint power spectral density. 

For multiple-frequency signals only the line power spectral density was computed in 

Bretthorst's [4] work, which is the indication of the energy carried by each fiequency 

line. In our calculation, since we have already found our best estimates for each 

frequency and the conesponding amplitudes, we can always use equation ( 5.49) or 

( 5.50) to find the power spectral density for each frequency. For example, suppose 

there are two frequencies in the signal, 

Using Bayesisn t heory and Gibbs sampling, the marginal posterior probabilities, 

P(wl ( D, 02) and P(wl 1 D, a*), are found and (Ëll,&, ~ 1 )  and ( ~ 1 1 ,  h l , ,  2 1 )  

are Our best estimates for (BIi, Biz,  w i )  and (B21, Bn, w2) from the corresponding 

posterior probabilities. The power spectral densities for w l  and w2 are 

In the next section, we will present some numerical examples to show how well 

this technique works. 
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5.2.6 Computer simulated examples 

In our fint example, we generate the data set from the following equation 

Here ti r u s  over the symmetric interval -T to T in (2T + 1) = 512 integer steps 

and E i  T* N(0, l) .  TO ensure that the data have zero mean value the average value 

of the data is computed and subtracted from each data point. Figure 5.1 is a plot of 

this cornputer simulated time series, and Figure 5.2 shows the posterior probability 

density for w generated from samples of size 103 with 40 bins. The sequence length 

K in Gibbs sampling for this calculation is five. Different values for K have been 

tested and it turns out that five is a good choice for both accuracy and CPU time 

saving. The starting values for the parameters didn 't affect the results signifiant ly 

since after a few iteration steps the process is relaxed and stable. The only effect 

of the starting values may be on the K value. If the starting values are close to the 

true values, then the value of K does not have to be large. Further investigation 

about this problem will be conducted. 

The best estimates, i.e. the values which maximize the marginal posterior prob- 

abilities, are tabulated in Table 5.1 together with the true values. 
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Table 5.1: The Best Estimates of Parameters For A Single F'requency Mode1 

As we can see, the computed values are very close to the true values, especially 

the frequency w which is the most important parameter in spectral analysis and 

Parameters 
w 

& 

parameter estimation. Comparing our estimate for w 

Estimated Values 
0.29999428 

0.546 

True Values 
0.3 

0.5403 

with Bretthorst's estimate [4] 

Est imated Variances 
0.2 x 10-~ 
0.004 

for the same example we can see the difference in the level of accuracy. Figure 5.3 

is the power spectral density calculated by using equation ( 5.56). It is very sharply 

peaked at the true frequency. This example gives us an indication of the level of 

accuracy that can be obtained with this approach. 
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As our second exarnple, we consider two close frequencies: 

The time interval and the size of the sample are the same as in the first example. The 

sequence length K is 10. Figure 5.4 shows the time series, and Table 5.2 contains 

the estimated values, variances and true values for ( B I ,  &, wl) and (Bi, di,  di). 

Here again the computed values are ail very close to the true values and the 

two frequency lines are clearly resohred. This is also clearly evident from the power 

spectral density, shown in Figure 5.5. In Figure 5.6 the Fourier transform power 

spectral density for this signal is shown. It can be seen that the FFT shows only 

a single peak in between the two frequencies. Actually with the Fourier transform 

when the separation of two frequencies is l e s  than the Nyquist step 1 w l  - w? (< 

2 * / N ,  the two frequencies are indistinguishable. This is simply because there are no 

sample points in between the two frequencies in the frequency domain. Even when 

1 w l  - w? (> 27rlN theoretically the two frequencies can be distinguished. However, 

if 1 ïrl - wz 1 is not large enough the resolution will be very poor. Figure 5.7 is the 

FFT of a two-frequency signal separated by 1.5 x ( 2n lN) .  It is hard to tell where 

the two frequencies are located. This is just the inherent problem of the discrete 

Fourier transform. In this example the two frequencies are separated by 0.01, which 

is less than 2 a / N  = 25r/512 = 0.0123. There is no way by using FFT that one can 

resolve the two frequencies, however Bayesian inference and Gibbs sampling give us 

very good results with high accuracy. 
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Table 5.2: The B a t  Estimates of Parameters For a Two Close Ftequency Mode1 

1 Parameters 1 True Values 1 Estimated Values / Estimatecl Variances 1 

For the two-frequency model we have also investigated the dependence of the 

results on the sequence length K. Figure 5.8 shows how wl  fluctuates with increasing 

K. It is obvious that as K increases, there is a definite decrease in the scatter, wit h 

a tendency to a value very close to the exact value. The variance associated with 

this w l  value is also shown as a lunction of K in Figure 5.9. Near K = 20 there is 

a clear settling of the variance to a value near 7 x W7. Plots for the coefficients 

Bll, BI2,  etc show a similar tendency. We are thus satisfied that for these examples, 

a value of 20 for the sequence length is suitable. 

Finally we consider a multiple harmonie-frequency model: 

The tirne series is shown in Figure 5.10. The best estimates and the variances for 

al1 the parameters are tabulated in Table 5.3l with the true values and Bretthorst's 

results for the same example. 

'ln order to compare Our resuits with Bretthorst's 141 in this example we converted 

{Bji,  B j 2 , w j )  t* { B j , d j , w j )  where B j  = Jm, # j  = . . dan( -Bj2 /Bj i ) ,  j = 1, ---,5- 
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Table 5.3: The Best Estimates of Parameters For a Multiple Frequency Model 

By comparing the estimated values in colum 3 and colum 4 with the true values 

Parameters 

w 1 

BI 
dr 

in colum 2,it is obvious that our results are closer to the true values than those 

of Bretthorst 's considering the estimated standard deviation from the both method 

True 
Values 
0.1 

1 
1 

are in the same order. Once again al1 the frequencies have been well resolved, even 

the third and the fourth frequencies which are too close to be separated by FFT. 

Estimated 
Values 

0.09999359 
k0.0004 

0.966 & 0.06 
0.987 & 0.06 

Tliat is why in Figure 5.11, which is the FFT power spectral density, it only shows 

Bret thorst 's 
Results 
0.0998 

&0.0001 
0.9 * 0.08 

NIA 

four peaks. The Bayesian spectral density plot for this example shows five sharp 

peaks. Once again the advantages of Bayesian inference and Gibbs sampling are 
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Table 5.4: The Best Estimates of Parameters For A Single Frequency iModel with 
Unknown Noise Variance 

demonstrated by these results. 

Let us now return to the first example. This time we suppose that the variance 

of the noise is unknown. We have repeated the samo calculation except that the 

random numbers are generated from the Student-t distribution. Al1 of the estimated 

values are tabulated in Table 5.4 together with the true values. As we can see, even 

when the noise level is unknown Bayesian inference and Gibbs sampling can still 

give very accurate results together with an estimate of the noise level. 

Parameters 
w 

BI 
B2 
u2 

Estimated Values True Values 
0.3 

O. 5403 
-0.8415 

1 

Est imat ed Variances 
0.3000352 
0.525 
-0.779 
1 .O02 

0.2 x 
0.004 
0.004 
0.004 
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Figure 5.1: Time series of example one. 
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Figure 5.2: Posterior probability distribution for example one. 
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I ime 

Figure 5.4: Tirne series of example two. 
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Angular Frequency 

Figure 5.5: Posterior probability distribution for example two. 
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Figure 5.8: Dependency of w i  on K value. 



. . 

Figure 5.9: Dependency of variance of wl on K value. 
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Figure 5.10: Time series of example three. 
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Figure 5.11: FFT Power spectral density for example three. 



5.3 Violating the Conditions 

In the previous chapter we applied the Gibbs sampling approach to signals which 

were harrnonic, containing one or more frequencies. It was demonstrated that it was 

possible to determine the frequencies with a fair degree of accuracy, in the presence 

of white noise. We now' proceed to examine a few situations where these simple 

assumptions are no longer true. Our objective is to see if we can still extract the 

key properties of the signal, and to also compare the use of approximate integral 

Bayesian methods with the Gibbs sampling approach. 

5.3.1 Periodic but non harmonic signal 

Initially we will look at extending the results of Our earlier work by applying the 

harmonic model to a time series which is periodic but non harrnonic. Three examples 

will be studied: a ramp function, a triangle function, and a Gaussian-based non- 

harrnonic signal. Assuming we have no knowledge of the form of the underlying 

signal, we will assume a liarmonic signai model function. In practise, when noise is 

added, it  is often very dificult to determine the form of the underiying signal. 

The ramp signal is built by repeatedly running a counter fiom O to 15, and then 

subtracting 7.5 from each point so that the mean value is zero. Gaussian white noise 

is tiien added, with a variance of one. For the triangle wave, a counter is run from 

O to 16, and then from 15 to 1. This cycle is repeated, and also adjusted to have 

a zero mean. Our third non-harmonic signal is constructed by first counting from 

i = 1 to i = 9 with the function exp[(i - 5)2/2], and then by counting from i = 9 

to i = 16 with the function - exp[(i - 13)~/2].  A section of this latter waveform 

is shown in Figure 5.12 without noise, and with noise added in Figure 5.13. In al1 
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three cases we have employed N = 1024 points. 

We have focused Our attention on determining the frequency of the underlying 

signal. For the ramp and Gaussian signals, the exact frequency is 2*/ 16, whereas for 

the triangle function it is 2 ~ 1 3 2 .  If we apply the FFT to each of these, we observe a 

number of alias frequencies. In the case of the triangle hnction, the amplitudes of 

these aliases are quite smali in cornparison with that at the hindamental frequency. 

The ramp function displays a series of alias frequencies, of decreasing amplitudes, 

at multiples of the fundamental, and the Gaussian function shows a large number 

of aliases, many with significant amplitudes. 

We then proceed in the same manner as described in section 5.2. Our mode1 is 

and we want to find the best estimates for w given the data set D = { d l ,  d2, . . . , d N } .  

Applying the approximate Bayesian formalism, using equation ( 5.25), we are 

able to cornpute the posterior probability function for each of these three examples. 

The form of the plot of the posterior as a function of frequency is very similar to 

that of the FFT except that there is an enormous difference in the amplitudes of the 

peaks. For example, for the ramp function, in the FFT plot the ratio of amplitudes 

of the largest peak to the second largest is approximately 2:l: while in the plot of 

the posterior function of equation ( 5.25) the same ratio is roughly 1 0 ~ ~ ~  : 1, an 

enormous difference. In the latter case this is a signal of the lewl of probability 

for each of the frequencies. In the case of the gaussian function, the ratio of the 

amplitude of the Iargest peak to the next largest drops to only 10~'  : 1. 

Table 5.5 summarizes the results of the computations for al1 three signals. The 

estimated value of the Erequency in each case is obtained from the location of the 
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Table 5.5: Estimated frequencies for non-harmonic signals 

largest peak in the plot of the posterior probability The associated variance is 

computed using two different procedures. For the approximate integral approach of 

Gaussian 
0.3922 

f 7  x 
0.3920 

i 5  x 10-~ 
0.392699082 

Bretthorst, we have employed the method outlined above, wherein the probability 

Triangle 
O. 19637 

f2.3 x 1 0 - ~  
O. 19626 

i 2  x 10-~ 
0.196349541 

Signal: 
Bretthorst 

Gibbs 

Exact 

function is expanded in a Taylor series about the maximum, and the coefficient of 

Ramp 
0.39265 

*3 10-~ 
0.39258 
f4 x 10-~ 
0.392699082 

the quadratic term is used to compute the variance. In the Gibbs sampling case, we 

consider the values of the probability in the vicinity of the maximum (everything 

beyond is zero in cornparison), normalize the total area to one, and compute the 

marginal variance from the data points. The uncertainty quoted in the table is the 

standard deviation. The frequency estimates given here are of the same order of 

magnitude as one can obtain if the tme signal actually met the assumptions of the 

model. 

5.3.2 A Signal with non-stationary and non-white noise 

The theory developed earlier for spectral estimation is partially based on the as- 

sumption that the noise involved in the signal is both stationary and white. As a 

consequence the noise is distributed as a Normal distribution with zero mean and 

variance O* (we suppose c2 is known). If instead the noise values are increasing with 

time and are also correlated, then the noise data are no longer Normally distributed 
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random numbers. 

In this section we investigate the application of the theory which is based on 

stationary, white noise to signals which have non-st ationary and correlateci noise 

added to them. 

The basic time series is generated from the series, 

Different types of noise signals are then added to this time series. A non-stationary 

noise signal is obtained by ~nultiplying a standard white noise signal by 0.1 + 0.002t. 

In addition we can introduce correlation by applying a four-point averaging filter. 

In our analysis, we have investigated these cases separately, as well as together. 

The non-stationary noise signal quickly dominates the combined signals, as can 

be seen in Figure 5.14. Even so, application of the FFT to this signal gives a 

maximum very close to w = 0.3. Many other small peaks also occur, but the ratio 

of the amplitudes of the peak at 0.3 to the others is a t  least 5:1. If only correlations 

are introduced, then this ratio improves considerably, as the amplitude of the srnaller 

peaks are much less. 

In Table 5.6 to 5.8 we summarize and compare the calculations for the frequency 

estimation using the approximation method of Bretthorst, and the Gibbs sarnpling 

approach for three different situations: non-stationary noise; four-point averaging 

filter; and both together. As can be seen, the results are very similar. There is 

no difficulty in obtaining an accurate estirnate of the frequency. It is clear from 

this that we are still able to obtain very good estimates of the signal frequency in 

au three cases. The amplitudes are much more difficult to deduce in this kind of a 

situation. This should not be surprising given the amount of noise in the signal. 
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Table 5.6: The Best Estimates of Parameters For A Signal with Non-Stationary 
Noise 

Table 5.7: The Best Estimates of Parameters For A Signal with Correlated Noise 

True values 
0.3 

Table 5.8: The Best Estimates of Parameters For A Signal with Non-Stationary and 

Gibbs 
O .3000 

f i  x 1 r 4  

Pararneter 
w 

Correlated Noise 

Integration 
0.2998 

k2 x 10-~ 

Tnie values 
0.3 

0.5403 

-0.8415 

- 

Gibbs 
O. 3002 

f 2  x 104 
0.57 
&O. 1 
-0.80 
k0.08 

Parameter 
w 

BI 

B2 

Integation 
O .2998 

17 x 10-~ 
0.3 1 
i~0.04 
-0.86 
k0.04 

L 

True values 
0.3 

0.5403 

-0.8415 

Gibbs 
0.3001 

12 x 10-~ 
0.56 
&O. 1 
-0.80 
k0.08 

Parameter 
w 

BI 

& 

Integation 
O. 2998 
fl x 1 r 4  

0.44 
=t0.04 
-0.79 
Jt0.04 
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5.3.3 A signal with Lorentzian decay 

In experiments one often encounters signals which are not stationary, i.e. they decay 

as a function of time. A particular example is the fiee-induction decay time series 

associated with NMR (Nuclear Magnetic Resonance) spectroscopy. In our next 

example we apply the Gibbs sampling approach to actual NMR experimental data. 

The data used are of a free-induction decay shown in Figure 5.15. NMR time series 

consist of two data channels: the real channel and the irnaginary channel, 90' out 

of phase with each other. It is well known (401 that the decay in NMR time series 

is Lorentzian decay, so that the model we use here is 

Fkom a preliminary study of the data using FFT, we observe that there are two 

frequency lines in both data channels. Therefore we have analyzed the data using a 

two-frequency model, i.e. hl = 2 in equation ( 5.66). With this assumption we have 

four parameters to estimate for each frequency line, Bi j ,  B2j, w j ,  and cr j ,  j = 1,2. 

Four of these, w j  and aj, j = 1 , 2 ,  are non-linear parameters. 

In applying the integal approach, we follow essentially the same procedure as 

for the previous examples, employing equation ( 5.26) to compute the posterior 

probability. The difference now is that this probability is a function of the four 

vanables, w j  and aj. Hence we locate the values of these variables which make this 

function a maximum. This is accomplished using standard quasi-Newton seerch 

procedures. Once these have been found, we can then estimate the values of Bu 

and B2j as before. The results for the reai channel, including the standard deviations 

as computed using equations ( 5.27) and ( 5.29) are displayed in Table 5.9. 
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In order to apply the Gibbs rnethod, the linex approximation described in Sec- 

tion 3.2.3 of Chapter 3 has been used to linearize the sinusoidal functions with 

respect to frequency, and the Lorentzian decay functions with respect tu the decay 

rate. Following similar numerical procedures to those used in the two-frequency 

model studied in 5.2.6, the marginal posterior probability distributions for all the 

parameters have been computed. Rom these distributions the best estimates for 

the parameters can be made with corresponding variances. The results for the real 

channel are given in Table 5.9. These parameters have been used to generate the 

real NMR signal, shown in Figure 5.16. It can be seen in comparing Figure 5.15 

with Figure 5.16 that the model signals and the experimeutal signals look essen- 

tially identical except that there is a certain amount of random noise in the latter. 

In Figure 5.17 the residual of the experimental signal and the model signal for the 

real channel is shown, which looks like white noise. In addition we calculated the 

FFT spectral density for the two residual signds (real and imaginas, channeis). The 

results for the real channel are shown in Figure 5.18. There appear to be some very 

small effects in the two residuals. However these effects are not the same in both 

channels. We think that these small effects may be due to an instrumental artifact. 
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Table 5.9: Best Parameter Estimates for Lorentzian Decay Signal 

1 Parameter 1 Integration Gibbs 

5.3.4 A signal with chirp 

Chirp signals are common in several areas of science and engineering (e-g., physics, 

sonar, radar, communicatio~is). In one application they are used to estimate the 

trajectories of moving objects with respect to fked receivers. In long-haul optical 

communications systems, one of the primary parameters that determines perfor- 

mance is the frequency chirp. A number of schemes have been developed in order 

to estimate the chirp parameters from a signal [38]. 

Sometimes the phase shift in signals is instantaneous, e.g. the phase could be 

varying slowly with time. A signal with chirp is one example of these kinds of 

signals. In what follows we will dernonstrate that the Bayesian inference and Gibbs 

sarnpling procedure can also deal with these kinds of signals. Here we will apply 
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Table 5.10: Best Parameter Estimates for A Signal with Chirp 

n u e  Value 

the Bayesian analysis to a real chirp signal. Figures 5.19 and 5.20 show plots of the 

signal generated by using the following formula 

Integratioo Gibbs 

w here 

B = 1, w = 0.3, ct = 0.01, q5 = 1 

0.2988 
f 6 x 1 0 - ~  
0.0100044 
f8 x 1od7 
0.888 

ziO.004 
0.90 
*o. 1 

and represents a Normally distributed randorn noise with zero mean. Here again 

we have four parameters (B,  w ,  a, #) to estimate. We have used the same linear 

approximation as was introduced in Chapter 3 to linearize the function with respect 

to w and <r respectively. In this situation, however, the mode1 functions used when 

applying the method of Bretthorst are cos@ + at2) and sin(wt + oit2). In this 

approach we search for the values of w and a which give the maximum of the 

posterior. In the Gibbs sampling approach the marginal posterior probabilities for 

each of the four parameters are obtained. The best estimates for the four parameters 

(B,  W ,  a, #), are tabulated in Table 5.10 together with the true values. 

Just for cornparison, in Figure 5.21 we show the discrete Fourier transform of 

the chirp signal. Obviously nothing can be estimated from it. This is due to the 

0.29979 
f 4 x 10-" 
0.01000063 
f 2  x 1 0 - ~  

1 .O66 
kO.04 
1 *O 

M . 2  
1 
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fact that there is more structure in this signal than in a simply periodic signal. 

Intrinsically FFT is not able to Qve the correct answer to this problem. 
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Without Noise 1 
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Figure 5.12: Time series of non-harmonic signal without noise. 

Figure 5.13: Time series of non-harmonic signal with noise. 
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Figure 5.14: Time series of a signal with non-white and non-stationary noise. 
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Figure 5.15: Real channel NMR data £rom a real experiment. 
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Figure 5.16: Real channel NMR data kom a mode1 with extracted parameters. 
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Figure 5.17: Residual. 

Figure 5.18: FFT spectrum of the residual. 
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Figure 5.19: Time serise of a signal with chirp (no noise). 
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With Noise 

Figure 5.20: Time series of a signal with chirp (a i th  noise). 
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Angular Frequency 

Figure 5.21: FFT spectrum. 
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5.4 Model Selection 

5.4.1 Model space 

When analyzing a spectrum from experimental data, it is not always knom which 

model applies. We need a way to chose the best model hom several possible 

models. For example, according to some prior information about the experiment, 

we may already know that the mode1 functions are sinusoidal, and we may also know 

that the maximum number of fiequency lines in the model is k. Hence there are k 

possible models, each with a different number of frequency lines. What we need to 

do in this situation is find out which one of the possible models is the best choice, 

and determine the corresponding parameters. Sometimes the situation may be even 

worse in that we don't even know what kind of function applies. We only know that 

there are several possible functions, any one of which could be the tnie hnction. In 

this situation there is one more step to carry out in cornparison to the first case - 
that is choosing a best model hnction. In the following, a general procedure, which 

can deal with both of the above situations, is presented. 

According to our knowledge about the experiment, al1 the possible models, (mi, 

m?. . . ., mi), are enumerated, which is Our model space. For each rnodel there are 

some undetermined parameters. As a first step these parameters have to be found. 

The procedure for accomplishing this has already been described in 5.2. Now the 

question which can also be answered by Bayesian inference theory is "Given the 

model space and looking only within that model space, which model is most likely 

according to the information from ail the data in conjunction with known prior 

information'? Furthermore, how strongly is the most possible model supported rela- 

tive to the others in the model space?" If the inferences we made are unacceptable, 
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are unacceptable, the problem must corne from inappropriate assumptions about 

the model and the prior information and not from inadequacies of the inferential 

system, since given the model Bayesian analysis automatically rnakes use of aJi the 

information from the data. When this happens, at l e s t  we know that our rnodel 

space is not a proper one, and other possible models need to be considered. In this 

way Bayesian theory is the kind of theory which either gives us the most possible 

answer or tells us that something is wrong with our assumptions. The latter case 

may then be regarded as prior information for a further investigation. 

5.4.2 The best choice from a model space 

In this section we will confine our attention to the model space which contains al1 the 

possible models (ml, mz, . . . , mk) according to our knowledge about the problem. 

There is no reason to favor any one model over another. Therefore each of the 

models is equally possible. We may then assign a uniform a priori probability to 

the data D on the model space., Le.: 

p ( w )  = P(m2) = . . . = P(mk)  = const 

From Bayesian theory the posterior probability of model m, is 

where 

if the noise in the data is Normally distributed with zero mean and known variance 



Now what we need to do is to compare the posterior probabilit ies of the models 

in Our model space. Because we don't know P(D) which is independent of the 

model, we may calculate the relative posterior probabilities or posterior odds, 

From these posterior odds the most probable model can be chosen and the con- 

fidence of choosing this model can be described by the posterior odds as well. TO 

make al1 these ideas more clear, two numerical examples are presented in the next 

section. 

5.4.3 Numerical examples 

Consider a signal, Figure 5.22, which contains three close harmonie frequency lines 

generated as follows: 

Here i runs over the symmetric interval -T to T in integer steps, (2T + 1) = 512, 

and êi N (0 , l ) .  The discrete Fourier transform of this signal, Figure 5.23, only 

shows one peak. Rom the plot of the signals itself, however, it is evident that there 

is more than one frequency involved. There rnay be one, two, three, or even four 

frequency lines, so in our model space we assume four models {mi, rnzl m3, md), 

each of which consists of a sinusoidal function as the model function, but with a 

different number of frequency lines. 

Now for each model, the best estimates of the parameters which fully fi?< the 

model are made by maximizing the marginal posterior probabilities for each pa- 

rameter. We can then compute the posterior probability for each model, and then 
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Table 5.11: The Best Estimates of Parameters and Posterior Odds For a Signal with 
Three Close Frequencies Using Different Models 

Sum-of-Squared 
Mode1 Frequency Amplitude Phase Residuals and 

Posterior Odds 
One 0.3101 2.04 1.8 0.919 x lo3 

Frequency f 0.0002 k0.08 k0.3 0.3 x 10-'~ 
0.3101 2.16 1.9 

Two &0.0002 i~0.09 k0.2 0.517 x lo3 
Requencies 0.3299 0.87 2.79 0.3 x 

&O -0004 i~O.08 3~0.07 
0.3000 0.91 1 .O 

&0.0004 k0.05 &O. 3 
Three 0.3 100 2.0 2.0 0.512 x lo3  

Frequencies 310.0002 &O. 1 &O. 2 1 
0.3300 0.95 2.90 
k0.0004 k0.08 , iz0.08 

Four k0.0004 M.8 k0.8 9.871 x lo3 
Frequencies 0.310 1 2.0 2.0 O 

*0.0002 *o. 1 k0.2 
0.329 0.9 2.9 
&0.008 k0.3 k0.2 

obtain the posterior odds relative to the model with three frequency lines. Finally 

the best choice for the model can be made from these posterior odds. In Table 5.11 

the best estimates of the parameters for each model are tabulated together with the 

corresponding uncertaint ies, and the posterior odds for each model relative to the 

three-frequency model. 

These results clearly show that the model with three frequency lines has the 

largest posterior odds. (Note that a posterior odds value of zero results when the 
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value is too small for the precision of the cornputer.) 

In the next example, a single-fiequency model with Lorentzian decay is consid- 

ered . 

where 

In this case we will assume that we don% know which decay model applies. We will 

t hen assume t hat it is one of four possible models: a stationary signal B cos(wt i 9) , 
2 1 a Gaussian in time, B cos(wt+d)ëot2, a Lorentzian in tirne, B cos(wt+#)(l+at )-  

and a Lorentzian in frequency, B C O S ( ~ ~  + #)e-Ot, 

For each of the decay models, the associated parameters are estimated by using 

Bayesian inference with Gibbs sampling. Shen the posterior odds for each model 

reiative to the Lorentzian-in-frequency model are calculateci. Ail of the results are 

tabulated in Table 5.12. 

Obviously the Lorentzian-in-frequency decay model gives the largest posterior 

odds, so it is the best choice for the decay model, and the corresponding parameters 

are the best estimates for the amplitude, frequency, phase and decay rate. 
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Table 5.12: The Best Estimates of Parameters and Posterior Odds For a Signal with 
Unknown Decay Mode1 

Decay 
Mode1 

w 

Lorentzian 1 

B 
4 
a 

Sum-of Squared 
Residuals 

Post. Odds 

in Frequency 

1.00 k 0.02 
1 .O2 f: 0.04 

Stationary 

O. 3000 
*O .O00 1 

5.5 Conclusion 

In this chapter we developed and applied Bayesian inference and Gibbs sampling 

to the spectral analysis and parameter estimation problem. It shows that this ap- 

proach to spectral analysis is quite promising. Both frequency and amplitudes ( t  hen, 

of course: the phase shift) can be inferred from experimental data and the prior in- 

formation with high accuracy, especially the kequency, which is the most important 

parameter in spectral analysis. We have also shown that two close frequencies which 

are too close to be distinguished by FFT can be clearly resolved using Bayesian in- 

ference and Gibbs sampling. Even when the noise level is unknown the estimates 

for ail parameters, including the noise variance can be made accu rate!^. The ac- 

curacy of our approach is either comparable with or higher than that employed by 

Bretthorst . Al1 of the calculations are very straightforward. We also demonstrated 

the application to some very complicated models and conditions. We have shown 

Gaussian 
in Time 

O. 29 
zt0.01 

2.5 + 0.3 
0.8 k 0.3 

0.001 
4.682 x 103 

O 

2.5 4~ 0.07 
1.0 0 .  

N I A  
3.246 x lo3 

O 

that this approach can not only give us the best estimates for the parameten when 

Lorentzian 
in Time 

0.301 
*O ,003 

I 

1.6 =t 0.2 
0.5 =t 0.5 
0.001 

4.769 x 103 

O 
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we know what the underlying model is, but it can also tell us which model is most 

probable in situations where we can specify a model space. The cornparison of the 

true model and true parameters with the estimated model and parameters shows us 

the high accuracy and reliability of this approach. 
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1 Without Noise 
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With Noise 
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Figure 5.22: Time series of a signal with three close frequencies. 
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Chapter 6. Hyperfine Parameter and Field Distribution 

Extract ion in Mossbauer Spectroscopy 

6.1 Introduction 

6.1.1 Mossbauer spectroscopy 

Mossbauer spectroscopy is a nuclear spectroscopy technique that has an energy 

resolution sufficient to resolve the hyperfine structure of nuclear levels. This ex- 

traordinary technique is based on a physical phenornenon known as the Mossbauer 

effect, discovered by Rudolf Mossbauer in 1957. The effect allows recoilless emis- 

sion and absorption of y-rays by nuclei imbedded in solid substances. There are 

about 40 elements which have suitable Mossbauer transitions. Among t hem Fe-57 

Mossbauer spectroscopy is the most commonly utilized and is the one used in this 

study. The advantage of Mossbauer spectroscopy is that the probe isotope reveals a 

spectrum which is sensitive to subtle variations in the local electronic and magnetic 

environment. This makes the technique very useful in materials science, rnineralogy, 

chemistry, and condensed matter physics. 

For the readers who are not familiar with the technique and interested in Mossbauer 

spectroscopy, there are many reviews and books which provide complete and excel- 

lent introductions to the technique. Among them Greenwood and Gibb's book 

"Mossbauer spectroscopy" [43] is most recornmended. 
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6.1.2 Hyperfine interactions in Fe-57 

The transition that produces the Fe-57 Mossbauer y r a y  is the decay of the I = 

312 first nuclear excited state to the I = 112 ground state. There is a four fold 

degeneracy((21f 1)) in the excited st ate and a double fold degeneracy in the ground 

state. In an isolated nucleus the transition is a single line (see Figure 6.1) however 

t here are three hyperfine interactions which can either affect the energy levels of the 

states or remove the degeneracies of the states partially or completely. They are: 

1. Center shift. 

2. Electric quadrupole splitting. 

3. Magnetic hyperfine interaction. 

The center shift is a electric monopole interaction which does not split the levels(i.e. 

it does not remove any of the degeneracy) but only affects their precise energy. 

The electric quadru pole interaction partially splits the degeneracies of nuclear staes 

in which nuclei have non-zero quadrapole moments. The magnetic hyperfine field 

interaction completely removes al1 the angular momentum(or spin) related degen- 

er acies. 

Center shift 

The measured center shift(CS) or 6 hast two terms: 

where TS is the isomer shift and SOD is the second order Doppler shift. Both CS 

and IS  are with respect to a standard reference shift such as the CS of metallic 

iron at room temperature (RT = 22OC) 
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The isomer shift is caused by the electric monopole interaction between the 

nucleus and the surrounding electrons. The nucleus has a finite volume and this 

must be taken into account when considering nucleuselectron interactions because 

an s-electron wave function irnplies a non-zero electron charge density within the 

nuclear volume. The effect of this interaction is to shift the energy levels of the 

nucleus with respect to the bare nucleus without lifting the degeneracy of the  two 

states (see Figure 6.2). This shift is written as: 

where 1 &(O)a IZ is the total s-electron density at the nucleus in the absorber, and 

c o n s t ~  depends on the standard reference shift. constl depends only on nuclear 

properties of the 5 7 ~ e  probe. 

In material samples where only the electric monopole interaction operates and 

where al1 probe nuclei are in identical electronic environmen t,  the corresponding 

Mossbauer resonance is a single line called a singlet having a full width at half 

maximum(FWHM) equal to 2r, where the Gamma is the intrinsic linewidth of the 

nuclear transition. 

The SOD shift is caused by the emitting or absorbing atom vibrating on its 

lattice site, which is a temperature dependent contribution. The contribution ap- 

pears as a second order Doppler shift in the energy of the emitted photon. The fact 

that it is second order means that the shift depends on the square of the velocity of 

the atom. To calculate SOD a particular phonon model is required. In the Debye 

model, the SOD can be written as 
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where v is the nuclear vibration velocity, c is the speed of light, ks is the Boltzman 

constant, €ID is the Debye temperature, and T is the temperature. 

Electric quadrupole interaction 

Any nucleus with a spin quantum number great than I = 112 has a non-spherical 

charge distribution which, if expanded as a series of multipoles. contains a quadrupole 

term. The magnitude of the charge deformation is described as the nuclear quadrupole 

moment Q. On the other hand, the electronic charge distribution surrounding the 

nucleus is usually not sphericdy symmetric, resulting in an EFG at the probe nu- 

cleus. The interaction between the nuclear quadrupole moment Q and the EFG is 

called the electric quadrupole interaction. The effect of t his interaction, in addition 

to the electric monopole interaction, partially splits the I = 312 state into substates 

having 1, = &3/2 and I, = f 112. The centroid of the first excited state remairis 

t hat determined by the electric monopole interaction alone. The split ting between 

the two sublevels is given (see Figure 6.3) by an amount 

where Q is the nuclear quadrupole moment, eq is the maximum value of the EFG , 

and t) is the asymmetry parameter. We cal1 A the quadrupole spütting. 

The above situation results in the Mossbauer resonance consisting of two lines 

called doublet. If al1 the probe nuclei in the sample experience identicai EFGs (and 

have identical CSs), then the corresponding absorption spectrum consists of two 

Lorentzian lines, each have FWHM of 2r and being separated by the Delta. 

The relative depths (or intensities) of the two absorption lines in a doublet 

depend on the orientation of the largest EFG principle axis relative to the incident 
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7-ray direction. 

The EFG is a tensor. When a coordinate system is properly chosen the EFG 

tensor can be disgonalized. Then only two independent parameters are needed to 

specify the EFG completely, and the two which are usually chosen are 

and 

where V is the electrostatic potential, and also V,, = eq. Using the convention that 

1 V', 121 V, 121 V, 1 ensures that O 5 q 5 1. 

Magnetic hyperfine interaction 

The magnetic hyperfine interaction is the interaction between the nuclear magnetic 

dipole moment and the magnetic field that the nucleus experiences. This interaction 

splits the degeneracies of both the excited state and the ground state (see Figure 

6.4). The energy shifts, in the absence of an electric quadrupole interaction and in 

addition to the monopole interaction, are given by 

where g r  is the level specific nuclear g-factor, C<N is the nuclear magnetron, and H is 

the magnetic field experienced by the nucleus. The field can originate either within 

the atom itself, within the crystal via exchange interactions or as a result of placing 

the compound in an externally applied magnetic field. The Mossbauer resonance 

corresponds to eight possible transitions between the the two sublevels of the gound 

state and the four levels of the excited state. In this case because of q = O (and 
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in certain cases where q # O), two of the eight possible transitions are forbidden 

by a quantum mechanical selection rule, the Mossbauer resonance consists of six 

lines called sextet. If al1 the probe nuclei in the sample experience indentical HF's 

(and have identical CSs), then the corresponding absorption spectrum consists of 

six Lorentzian lines, each having a FWHM of 2l' and positions that depend on the 

magnitude of H. The relative intensities of the six lines depend on the orientation 

of the HF relative to the incident 7-ray direction. 

In practice, the electric quadrupole interaction and magnetic hyperfine interac- 

tion could both exist at the same time. Then the energy levels have to be deter- 

rnined by the solution of the full hyperfine Hamiltonian. Since both the magnetic 

and quadru pole interactions are direction dependent, the general interaction is quite 

cornplex. However there are some special situations which will make the determi- 

nation simpler. We will discuss these situations in the following sections padually. 

6.1.3 Mossbauer spectrum and static hyperfine parameter distributions 

There are different ways to interpret the Mossbauer spectrum depending on the 

different circumstances. In this study, we exclusively interpret the Mossbauer spec- 

trurn in terms of static HFDs in that we assume that dynamic effects are negligible 

in al1 the cases studied. As we have seen in section 6.1.2, the probe nuclear energy 

levels depend on the three interactions which are characterized by the hyperfine 

parameters, such as 6, A, and Hhl. The following illustration presents a picture of 

how the Mossbauer spectrum is related to the hyperfine parameters. 

Suppose in an absorber al1 the probe nuclei experience the same center shift 

interaction, the same electric quadrupole interaction, and no HF interaction. The 

corresponding Mossbauer spectrurn is then j ust an elemental Lorentzian doublet 
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with the Heisenberg natural line width (see Figure 6.6(a)). If there are two families 

of probe nuclei with the same valence state (we will talk about probe niiclei with dif- 

ferent valence states in section 6.4), but different local surroundings such as different 

bonding anions, local symmetry, local distortions, then the energy levels for nuclei 

in one family wül be different from the energy loevels for the nuclei in the other 

family, i.e. the two 6's are difFerent, as are the two quadrupole splittings. Hence 

the Mossbauer spectrum is a composition of two elemental Lorentzian doublets (see 

Figure 6.6(b)) with different 6 and different A. However various solids of interest 

contain probe nuclei in wide ranges of d8erent local environments which lead to 

effectively continuous distributions of static hyperfine parameters. The correspond- 

ing Mossbauer spectrum is a superposition of elemental Lorentzian doublets with 6 

and A continuously distributed (see Figure 6.6(c) ) .  A simple mathematical model 

can be formulated to describe this: 

M ( v )  = J / E ( ~ , A ; I I ) P ( ~ , A ) ~ ~ ~ A  (6-8) 

where M ( v )  is the Mossbauer spectrum, E(6, A; u )  is the elemental Lorentzian dou- 

blet, and P(6. A)  is the distribution function for b and A. 

In general when al1 the interactions are present, we may have: 

assuming the absence of artifacts such as thickness effects. We cal1 E (pi, p l ,  . . . , p,; v )  

the elemental line shape which is a funct ion of the hyperfine parameters, p i .  p l ,  . . . , p,. 

l'(pl, p2, . . . , pn) is the distribution function for the parameters. The goal of this 

study is to extract rneaningful hyperfine parameter distributions from spectra, baçed 

on the model equation ( 6.9). Before we get iato the study, a brief review of previous 
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work in hyperfine parameter distribution extraction is given in the next subsection. 
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1=312 Excited state 

I 9 I= 1 /2 Ground state 

Figure 6.1: Energy level diagram of Fe-57: the standard isolated nucleus. 

Excited state 

Ground state 

Figure 6.2: Energy level diagram of Fe-57: the effect of the isomer shifts whicli shifts 
both States. 
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I= 1/2 +il2 Ground state 

Figure 6.3: Energy level diagram of Fe-57: the electronic quadrupole interaction 
which splits the excited state into a doublet. 

Excited state 

-1 12 
I= 1/2 Ground state 

- - -  + 112 

Figure 0.4: Eiiergy level diagram of Fe-57: the effects of the magnetic liyperfine in- 
teraction (no quadrupole interaction) which removes the degeneracies of botli states. 
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Excited state 

Ground state 

Figure 6.5: Energy level diagram of Fe-57: the effects of al1 hyperfine interactions 
when e 2 q ~ / 4  << g 3 / 2 p N ~ .  
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Figure 6.6: Reiation between 6 - A distribution and Mossbauer spectnim. 
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6.1.4 Review of previous work in hyperfine parameter distribution ex- 

tract ion 

The extraction of meaningfvl distributions of hyperfine parameters from measured 

Mossbauer spectra is a nontrivial task for which many methods have been proposed 

and developed [451- [571 and about which several reviews have been writ ten [58]- [64]. 

The difFerent approaches can be classified as: i) simple analytical functions where the 

distribution is assumed to have a particular shape (especially Gaussian), ii) Fourier 

methods (e.g. Window's method), iii) step functions used either in conjunction with 

a physical mode1 for the discrete hyperfine parameter values or as an approximation 

to a continuous distribution, iv) improved step function methods with smoothing, 

end point restrictions, positive value restrictions, and so on, v) the Voigt-based 

fitting method of Rancourt and Ping for arbitrary-shape continuous distributions, 

and vi) the combined partial deconvolution method of Ping and Rancourt. Here we 

distinguish fitting methods (i, iii, iv, and v) which use non-linear least-square fitting 

and direct extraction methods (ii and vi) that obtain the distribution in a single 

mathematical operation, usuaily involving matrix inversion that may be equivaient 

to linear least-square minirnization. 

Al1 methods are plagued to various degrees by several problems such as: non 

unique solutions due to tradeoff effects, unphysical oscillations near rapidly varying 

features, unavoidable (and meaningless) negative cornponents, excessive numbers of 

free parameters, overly large and nonlinear program structures leading, respectively, 

to slow and ambiguous convergence, difficulty in handling simultaneous distributions 

of more than one hyperfine parameter with correlation between the different distri- 

butions, difficulty in handling distributions containing both reiatively sharp and 

broad features, etc.. Even the most powerful Voigt-based fitting (VBF) method 
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still has two main disadvantages: (1) the usual perturbation sextet must be used as 

the elernental subspectrum, and (2) as in al1 other methods, error analysis of the 

resulting HFD is not performed. 

In the next sections, we will see for the first time that the Bayesian inference 

theory can solve these problems and permits several different elemental line shape 

models to be tested. Before we get into the next section, a brief introduction about 

the VBF method is presented since we will compare the Bayesian inference method 

with the VBF method. Also a preliminary study using the Voigt-based fitting 

method can give us some useful information about a spectrum. 

6.1.5 Voigt-based fitting method 

As described above, the VBF method is the most powerful fit ting met hod at present. 

This method was devised by Rancourt and Ping for arbitrary-shape continuous dis- 

tributions in 1991 [55]. It has been applied to spectra arising from different materi- 

als and under different conditions. It is applicable in al1 cases involving quadrupole 

split ting distributions or hyperfine field distributions, in the perturbation limit , or to 

coexisting quadrupole split ting distributions and hyperfine field distributions, when 

al1 couplings to non-distributed parameters are at most linear and as long as the 

true distributions are not so patliological that they can not be represented as sums 

of Gaussian components. The central physical assumption in the method is that the 

distribution can be expressed as a sum of Gauçsians with different widths, positions, 
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where 

and 

For quadrupole splitting distributions , it is assurned that the center shift, 6, is 

linearly coupled to A, Le., 

6 = 60 + 61A 

and, with hyperfine field distributions, one assumes that both the center shift, 

and the quadrupole shift , 

E = €0 f ~ 1 9 3 / 2 P ~ H  

are linearly coupled to H. It follows that, given equation( 6-10), the analytical 

expression for the total Mossbauer lineshape is 

where L&(a,,B, r, h; V )  is a Voigt function[l09]. Here, the sum on k two terms 

for quadrupole splitting distributions and six terms for hyperfme field distributions. 

The parameters Ak and Bk are functions of the coupling parameters, 60, 61, €0 and €1, 

which can be treated as fit ting parameters. In their numerical calculation a partic- 

ularly efficient and accurate approximation to the Voigt function is used [109],[55], 

(721 and equation ( 6.16) is incorporated into a l e s t  squares minimization routine. 

For detaïleci applications to hyperfine field distributions see references (551 and [108]. 

For applications to quadrupole splitting distributions s e  references [73] and [74]. 
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6.2 Numerical Procedures and Algorithms 

In t his section the numerical procedures and algorit hms of the Bayesian inference 

method for the general case is introduced in detail. The concrete elemental lineshape 

and parameter distribution hnction could be different for different circurnstances. 

The exact expressions wili be introduced in the applications. 

6.2.1 Numerical expression of the problem 

When ive study a specific problem, equation ( 6.9) can often be simplified to a single 

parameter distribution with coupling to other parameters 

where E(p;  v )  could be a doublet, with p representing the quadrupole splitting; or 

E(p;  v) could be a sextet, in which case p is the hyperfine field parameter when mag- 

netic order is present. What we want to 6nd fiom the spectrum is the distribution 

function of hyperfine parameters, Qven the eiernental line shape E(p;  v).  This is an 

example of an inverse problem involving a Fredholm equation of the first kind [44]. 

As we know there is always noise in any experimental data, so the experimental 

spectrum should be expressed as: 

M(v)  = 

where N represents the noise. In numerical calcuiations, equation ( 6.18) has to be 

made discrete. Using M discrete velocity channels and N regularly spaced values 

of p, equation ( 6.18) can be written in matrix notation as 
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or simply 

M = E P + N .  (6.19) 

Here M is a vector with elements bf (v i ) ,  i = 1,-,M and P is a vector with 

elements P ( p j ) ,  j = 1, - . - ,  N. E is an M x N matrix with elements E ( p j ; v i ) A p ,  

where Ap is the hyperfine parameter spacing Ap = pj+l  - p j .  N is a vector with 

elements n / ( u i ) ,  i = 1, - , M .  N(vi)  is distributed as a Normal distribution with 

zero mean and known variance O;, i = 1, , M, equal to the square root of the 

measured spectrum datum at the corresponding velocity channel [1171. 

For convenience we let 

and equation ( 6.19) becomes 
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where E is a vector and the probability distribution of E is a multivariate Normal 

distribution, NhI(O, 1), of dimension 11.1 where O is a vector with al1 M elements 

equal to zero and I is an bf x M identity matrix. 

Given equation ( 6.24), and given the experimental data b, what is the best 

estimate for X , and what is the uncertainty of t his best est irnate? Bayesian in ference 

theory can answer this question from a statistical point of ~ l e w .  The probabilit-y 

distribution of X posteriori to b  is 

where P(b 1 X )  is the likelihood function of X, and P ( X )  is the prior probability 

distribution of X .  Since P(b)  is just a constant for given b ,  the posterior probability 

distribution of X is simplified to 

P ( X  ( 6 )  a P(b 1 X)P(X) or P(X [ 6 )  a L(X I b ) P ( X ) .  (6.26) 

From a statistical point of view, the best estimate for X should be that x which 

maximizes the posterior probability distribution of X. It is now necessary to derive 

expressions for the likelihood function and the prior probability distribution of X. 

6.2.2 The likelihood function 

The likelihood function of .Y is that function which tells us how likely it is to obtain 

the data b if X is given. Since the elemental lineshape A is known, according to 

equation ( 6.24) the difference between the data b and AX is just the noise E. 

Obviously, therefore, the required likelihood function is equal to the probability 

distribution of the noise E. Since P ( E )  is a multivariate Normal distribution. we 
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have 

1 1 - ezp[ - - (b  - A X ) ~ ( ~  - A X ) ] .  
( 6 ) M  2 

If we don't have any specific information about the distribution of the hyperfine 

parameter before we have the data, we might choose a constant prior, i.e. P(X) = 

const for X .  In this case the posterior probability distribution of X is : 

1 
P ( X  1 6 )  cx ezp[--(b - A X ) ~ ( ~  - A X ) ] .  

2 

Hence the best estimate for X iç that x which rnaxirnizes the posterior or rninirnizes 

the exponent 8 ( X )  = ( b  - A X ) = ( ~  - AX). This is just the maximum likelihood or 

least-square estimator 

Thus Bayesian inference theory gives us a justification to use the least-square esti- 

mator. However the least-square estimator equation ( 6.29) can only give reasonable 

solutions [66] when 1) the data has a sufficiently large signal/noise (SIN) ratio and, 

2) the condition number of the matrix A is small. "Small' here means small enough 

to make the estimator insensitive to the particular noise level in the data. In prac- 

tice rnost inverse problems do not satisfy this condition. This means that we cannot 

expect data to determine the solution accurately by itself. The prior information be- 

cornes crucial. Indeed, the limits of equation ( 6.29) (and its N = M simplification: 

-2 = A%) have been tested extensively in the context of Mossbauer spectroscopy 

Pl - 
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6.2.3 The prior probability distribution and error analysis 

It is quite reasonable that from physics we rnay have some information about the 

distribution of the hypefine parameter before we analyze the data. By imposing 

this prior information into our calculation, we hope to find a solution which is a good 

approximation to  the desired unknown solution. The least-square estimator usually 

gives a solution with such violent oscillations that the real solution is submerged by 

these oscillations [56, 671. The cause for these oscillations is not the least-square 

method, but the problem itself, Le. the problem is ill-conditioned. On the other 

hand, from physics we know that the distribution of the hyperfine parameter will 

often be a reasonably smooth function. In this case, fkom various possible smooth- 

ness conditions, we assume the distribution hinction of the hyperfine parameter to 

have finite second derivatives, i.e. we assume 

where L2 is the second derivative operator. With this constraint we can get rid of 

those solutions with high oscillations from the solution space since those solutions 

have infinite second derivatives. Another reason for choosing this constraint is that 

the prior probability distribution of X constructed from this constraint can be easily 

combined with the likelihood function to give a standard distribution for the poste- 

rior probability distribution of X. Consequently we can obtain analytic expressions 

for the most probable solution and the relevant errors. 

Hesse and Rübartsch [47] used the same smoothness condition ( 6.30) to regular- 

ize their numerical calculation and obtained a similar solution to ours. Because they 

did not work within the framework of Bayesian inference theory, however, they had 
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no way to either: (i) determine the smoothness parameter that affects the solution, 

or (ii) evaluate the error in the resulting solution (i.e. distribution). 

Now the question is how to formulate this constraint ( 6.30) into the prior prob- 

ability distribution of X. Here the maximum entropy principle can be applied (681. 

Note that we use the maximum entropy principle only to obtain the prior probabil- 

ity distribution given constraint ( 6.30), without using the spectral data in any way. 

Brand and LeCaër [53] have used maximum entropy in a totally different way and 

get a totdly different result. They apply it directly to determining the distribution 

from the spectrum by maximizing the entropy of the distribution itself subject to 

the chi squared criterion. 

Suppose there is a set of discrete functions {Xi, X2, - XK} which are the K 

possible solutions for the distribution funct ion of the hyperfine parameter, i.e. the 

possible solutions for equation ( 6.24). We can assign a set of probability values 

{P(X1), P(X2), . - -, P ( X K ) }  to these possible solutions, with normalization condi- 

tion zLl P(&) = 1. According to maximum entropy theory, the Shannon measure 

of the entropy of P ( X k )  

should be maximized sub ject to 

and 

This leads to a prior (see Appendix A) which is a Gaussian function of X: 
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where ~ ~ 1 2  is a Lagrangian constant. If we know the value of the constant Ci, X 

can be determined from it. Unfortunately the value of Ci is unknown. We need a 

way to determine A .  This will be discussed in Section 6.2.4. 

From equations ( 6.26), ( 6.28) and ( 6.32), we obtain the posterior probability 

distribution of X as 

1 T T 
P(X 1 b )  oc e s p  {-2 [(b - A X ) ~ ( L  - A X )  + PX L* L ~ x ] ) .  (6.33) 

Therefore the most probable solution to b = AX + E is that x which maximizes 

this posterior or minimizes the exponent 

By doing some simple calculations (see Appendix B), we obtain 

.* = ( A ~ A  + A ? L ; L ~ ) - ' A ~ ~ .  (6.34) 

This is just the Tikhonov regularization solution (691 to b = AX + E with L2 as the 

regularization operator. Using X, 8 ( X )  can be expresseci as (see Appendix B) 

T T 2 T Q(X) = (X - X) ( A  A + X L2 L 2 ) ( X  - X) + Cz (6.35) 

where C2 = bTb - X*(A=A + X ~ L ~ L ~ ) X ,  which is independent of X. Finally the 

normalized posterior probability distribution of X can be written as, 

This posterior tells us that X is distributecl as a multivariate Normal distribution 
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Thus the marginal distribution of each elernent xj, j = 1,. . , N in X is distributed 

as N ( Î j ,  c j j )  with mean ij and variance cj j  where cjj is the jth diagonal element of 

[ A ~ A  + x*LTL~]- ' .  This means that the tme one-sigma standard deviation error 

in each point tj of the extracted hyperfine parameter distribution is cjj- In other 

words, given our extraction procedure (with particular choice of prior to which 

the solution is not sensitive) and given the particular values of the non-distributed 

hyperfine and spectral parameters, each point in the extracted distribution, for 

many spectral data sets from identically performed experiments, has a Gaussian 

distribution with standard deviation cjj that is a direct consequence of the spectral 

noise. This represents a complete and precise error analysis of the distribution 

problem in Mossbauer spectroscopy. 

6.2.4 Determination of A 

Before we can proceed to the numerical calculation, we have to find a way to choose 

a proper value for A. The best solution x rnaximizes @(,Y). In @(X) there are 

T T two parts, one is X L2 L2X from the prior, another is (b - A X ) ~ ( ~  - A X )  kom 

the likelihood or data. It has been s h o w  (701 that a plot of X ~ L ~ L X ,  where L 

is a general regularization operator, including L2, versus (b - A X ) ~ ( ~  - AX) with 

different A's is almost always shaped like an L-curve as in Figure 6.7. The vertical 

part of the Lcurve corresponds to solutions where X*L*LX is very sensitive to the 

changes in A. The horizontal part corresponds to solutions where (b- A X ) ~ ( ~  - AX) 

is very sensitive tu the changes in A. The A's corresponding to the vertical part take 

less prier and more likelihood into the solution than those A's corresponding to the 

horizontal part. An optimal choice is that  X which corresponds to the corner of the 

L-curve. This A gives a good compromise between the prior and the likelihood. 
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In numerical calcuiations, firçt by calculating xA for different X values, the cor- 

responding X;~L;L& and (b - ~ , t ~ ) ~ ( b  - A x,) can be evaluated for each A value. 

Then by plotting ~ o ~ [ x ~ L ~ L ~ x ~ ]  versus l o g [ ( b  - A X ~ ) ~ ( ~  - AXA)]  and locating 

the corner, that point on the L-curve having maximum cuwature, an optimal value 

for X can be determined. This is an efficient procedure that does not present any 

particular dificulty. 

6.2.5 F inding using generalized singular value decornposition(SVD) 

When we do numerical calculations, the direct use of the expression 2 = ( A ~ A  + 
X ~ L ~ L $ ' A ~ ~  to compute x is not recommended. Instead, a technique called 

generalized singular value decomposition (GSVD) is employed. It has been proven 

[71] that given 

with 

rank(L2) = H and rank KI) = N  
t hen there exist matrices 

u E R*~*, v E l t H x H  

with 

and a nonsingular 

such that 
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w here 

Z = diag(Ci,  - S . ,  CH, 1, ,1) E R~*" 

r = diag(r i ,  , yH) E R H x H  

and such that 

The quantities ai = i = 1, . , H are temed the generalized singular values 

of ( A ,  L2). 

For convenience, the matrices U, Z and W are partitioned as follows: 

where 

The subscript "O" is a short-hand notation for N - H. 
By doing some matrix calculations (see Appendix C), we obtain: 
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where 

F = diag 
A5? 

...... 
( C H / ~ H ) *  f A' ] 

6.3 Application to Quadrupole Splitting Distribution (QSD) 

Extract ion 

We now present an application of the Bayesian direct extraction method to a real 

spectrum that is understood to arise from a quadrupole splitting distribution (QSD). 

6.3.1 A real Fe-57 Mossbauer spectrum of an ~ e ~ + - c h l o r i t e  

The "Fe spectrum of our example was collected at  room temperature (2Z°C) using 

a thin random-orientation powder absorber of an Fe-bearing natural chlorite that 

was non-destructively oxidized by heating in air. The spectrum was folded to obtain 

a Bat background and a zero velocity corresponding to the center shift of a-Fe at 

room temperature. The absorber material is pure chlorite with the so-called modified 

chlorite structure as seen by X-ray diffraction analysis. It has only I?e3+ in both the 

modified hydroxide layer and the octahedrd sites of the T-O-T (or 2 4  layer. No 

Fe is present in the tetrahedral sites (771. 

The same spectrum has also been used to demonstrate the combineci partial de- 

convolution direct extraction method of Ping and Rancourt [57]. The latter method 

has the relative disadvantages that: 1) ideal fits with Voigt lines are required in a 

preliminary step as a way of filtering out noise and to help with the deconvolution, 



2)  errors on the distribution of hyperfine parameters are not obtained, and 3) it 

cannot easily be generalized to treat multisite problems where several (i.e. more 

than one) independent distributions of hyperfine parameters occur simultaneously. 

6.3.2 The elemental line shape and the extracted QSD 

In this case of a QSD. the elemental line shape in equation ( 6.18) is an elemental 

doublet consist ing of two Lorentzian lines: 

where 

is a elemental Lorentzian with height hk, full width at half maximum (FWHM) r, 
and centered on 6 + k A / 2 .  The two lines are separated by A which is given by the 

usual expression: 

The relevant distributed hyperfine parameter is the QS(A). P ( A )  is the distribution 

function which we want to extract from the spectrum. 

In constructing the rnatrix A,  symmetric elemental doublets (having Lorentzian 

lines of q u a i  heights and areas) were assumed and a 6-A coupling of the form 

6 = do + biA was used. When 6i # 0, therefore, there is an associated distribution 

of center shifts having the same shape as P(A) .  
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Given the spectrum (Figure 6.8), we chose to use M = 512, N = 41 and velocity 

and quadrupole splitting ranges of -4 to 4 mm/s and O to 4 mm/s, respectively. 

P ( A )  distributions were extracted using several different trial sets of b0 and bl: 

60 = 0.37 mm/s and b1 = O as might be guessed from a preliminary inspection of the 

spectrum and values such as 60 = 0.355 mm/s and bi = -0.00723 that are typically 

obtained when the spectrum is fitted using the VBF method of Rancourt and Ping 

[55]. In al1 cases the Lorentzian width was taken to be r = 0.222 mm/s[55]. The 

Lorentzian height was constrained to  the value that gives the correct total spectral 

area obtained by background subtraction, and the extracted P(A) distributions were 

equal within error. 

The extracted cuve  for b0 = 0.356 mm/s and = -0.00813 is shown in Figure 

6.9 with the calculated a-enor for each point obtained by the procedure described 

in Section 6.2. The corresponding recalculated spectrum (M = EP) is shown by 

the solid line in Figure 6.8 and gives a reduced chi squared value of 1.23. 

6.4 Extraction of Two Overlapped QSDs Using Gibbs Sam- 

pling 

As we have mentioned in 6.1.1, Mossbauer Spectroscopy is a very useful technique in 

materials science and mineralogy. In this section we present an example of extracting 

QSDs from the spectrum of an oxibiotite sample using both Bayesian inference 

theory and the Gibbs sampling technique. 

Biotite is a kind of layer silicate. Layer silicates are present in virtually ail 

kinds of rocks and are also the main minerals in clays and soils. Microscopic crystal 
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chernical information of layer silicates can make significant contributions to petrol- 

ogy, which is the study of rocks and their formation and transformation. Also Our 

existence on the planet and much of the world's economy is based on soils and 

their properties. These properties emanate from key reactions such as  intercalation, 

ion exchange, dehydroxylation, oxidation, etc.. To have a good understanding of 

these properties, we need to have the microscopic information of the materials. It 

is well understood that the Mossbauer spectrum from biotite sises from electric 

quadrupole splitting distributions. Therefore the success of the QSDs analysis will 

make a big contribution to the study of these materials. 

6.4.1 The problem 

The spectrum, which we are going to study, is from an oxibiotite (sample MOC 266 1 

which was supplied by the Minera1 Sciences Division of the Canadian Museum of 

Nature). It was originally from the Silver Crater Mine, near Bancroft, Ontario. At 

this locality, biotite occurs as large crystals in a calcite-rich band associated with 

nepheline syenite [75]. The study of the oxidation reaction of the same sample was 

presented by Rancourt et al.[76] in 1993. Al1 the details about the sample, such as 

the crystal structure, structural formula etc., can be found in that article. In this 

study we only concentrate on how the spectrum is related to the QSDs and on how 

to extract the  QSDs fiom the spectrum. 

It has been established[761 that in the virgin sample 10% of the iron is ~e~~ and 

the rest is ~ e * + ,  assuming equai F'e2+ and F'e3+ Mossbauer recoilless fraction at room 

temperature(RT). When the sample is heated in air, an oxidation reaction occurs. 

This means that some of the ~ e ~ +  cations in the virgin sample will be oxidized to 

Fe3+ cations. As the sample is heated to higher temperatures, the site population 
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of ~ e ~ +  increases. 

The spectrum shown in Figure 6.10 was collected at room temperature after the 

sample was heated in air for 24 hours at 689 K. By looking at the spectrum, we 

immediately know that there are two overlapping doublets in the spectrum. The 

reason for this is that there are now both ~ e * +  and ~e~~ sites in the sample. F'e2+ 

and Fe" cations have different valence states which make their quadruple split-tings 

and center shifts very differently from one to the other. 

As we have shown in 6.1.3, for those sites which have the same valence state 

cations but have different local environments, there is a quadrupole splitting distri- 

bution. Here we cal1 a group of sites with the same valence state a generalized site. 

From each generalized site there is a contribution, called the subspectrum, to the 

total spectrum. Each subspectrum has its own QSD and corresponding set of other 

hyperfine parameters. The mathematical mode1 can be written as: 

W )  = [ E ? + ( ~ * + , A * + ; V ) P ~ + ( A ~ + ) ~ A ~ +  

where E2+(62+, Oz+; u )  and P2+(An+) 

A3+; u)P3+@3+)dA3+ f Nb) (6.46) 

are the elemental doublet and the QSD for 

the generalized site ~ e ~ + ;  E3+(b3+, A3+; V )  and P3+(A3+) are the elemental doublet 

and QSD for the generalized site F'e3+; N(v) is the noise. Rom the spectrum we 

know that the two subspectra are overlapped. This is because the corresponding 

two QSDs are overlapped. Extracting the two overlapped QSDs directly from the 

spectrurn is not a trivial task. It has never been done before by a direct extraction 

method. In the following we will see that the Bayesian inference theory together 

with the  Gibbs sampling technique can give us very encouraging results. 
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6.4.2 Numerical procedures 

Starting with equation ( 6.46), we do the same discretization as we did in 6.2.1. We 

obtain the matrix formulation of the rnodel: 

It is not necessary that N = L. But for the convenience of the calculation, we 

let N = L.  In simplified notation we have: 

Now in equation ( 6.48) there are two unknown QSDs, fi+ and P3+. Direct ap- 

plication of Bayesian inference theory cannot extract both distributions. However 

by using Gibbs sampling with the Bayesian inference theory we can easily solve the 

problern. Suppose frorn our experience we can give an initial gueçç, say PL, about 

P3+ before we analyze the data. If we let 

then we have: 

This equation is exactly the same as equation ( 6.19). We can follow the same 

numerical procedure as in 6.2.1 to extract a P:+ frorn the posterior probability 

distribution of P2+, P(&+ 1 M ,  P:+), with the condition that on P3+ = P:+. Next 

we substitute 9, with PL in equation ( 6.48), then let 

We obtain: 

M:+ = E3+P3+ + N 
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Similarly a fi+ can be extracted from the posterior probability distribution of P3+, 

P(p3+ 1 Ml PL), (conditionally on) Pz+ = PL. After one iteration we have 

(pi+, pi+). After K iterations we obtain (P&, PL). For a large enough K, P& 

can be considered as a random vector from the marginal posterior probability dis- 

tribution of Pgfr P(&+ 1 M), and P& can be considered as a random vector kom 

the marginal posterior probabiiity distribution of P3+1 P(P3+ 1 M ) .  If we repeat 

K 1 K,2 K+wa) and this hl, times, we obtain two random vector samples (PZ; P2+ . . . , P2+ 

(pz1", P ; ~ ,  . . . , P Z ~ ' ) ,  which are from P(P2+ 1 hl)  and P(P3+ 1 M )  respectively- 

Consequently al1 information about fi+ and P3+, such as the best estimates of the 

QSDs, the variances of the estimates, etc., c m  be found from these samples. 

6.4.3 Applications to the spectrum of the oxybiotite sample 

We now show the application of the above algorithm to the spectrum collected a t  

RT after heating the sample MOC 2661 in air for 24 hours at 68g°C. In construct- 

ing the elernental line shapes E2+ and E3+, symmetric elemental doublets (having 

Lorentzian lines of equal heights and areas) were assumed and 6 - A couplings of 

the form 6 = bo + 6iA were used. Given the spectrum, we chose to use M = 512, 

N = 41 and velocity ranges fkom -4 mm/s to 4 mm/s. The quadrupole splittings 

range from O mm/s to 4 mm/s. P2+(A2+) and P3+(A3+) were extracted using a set 

of (&J,~+, 61,2+, 60,3+, &J+)  which are fmm the Voie-based fitting method. On the 

Gibbs sampling stage, different K values, from 2 to 10, were tested. We found that 

for K larger than six, there is no significant improvement in the extracted QSDs. 

The sample sizes are M, = 1000. The two extracted QSDs are shown in Figure 

6.11 and 6.12 and the corresponding recalculated spectrum (solid line) is shown in 

Figure 6.10. We can see that there is an overlspping area between P2+(A2+) and 



13+(A3+) and there are negative values for the QSDs in that area. This is because 

the numerical method has the freedom to allow tradeoff between the two QSDs in 

that area. This is inevitable. The things we could do here to prevent this are: to 

use more redistic models for the elemental line shapes, the coupling relationship 

between 6 and A; and to impose more pnor information, such as positive QSDs. 

This study is a preliminary study to see whether the Bayesian inference theory and 

the Gibbs sampling technique can tackle this problem which has never been solved 

before. Obviously it gives us very encouragîng results. More detailed çtudies will 

be conducted in the future. 
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More Prior, Less Likeli hood 

log[ (b-~X)~ (b- AX)] 

Figure 6.7: The generic form of the L-curve 
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Figure 6.8: The room temperature Mkbauer spectrum (dots) of the Fe3+-chlorite 
and the recalculated spectrurn (solid line) . 





Figure 6.10: The room temperature spectrum (dots) and fitted spectrum of the 
oxibiotite heated in air for 24 hou= at 689 K . 
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Figure 6.12: The extracted quadrupole splitting distribution of the ~ e ~ +  site with 
the standard deviation a . 
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Extract ion of the Hyperfine Field Distributions 

6.5.1 The probiem 

Hyperfine field distributions are probability density distributions, P (H) , of magni- 

tudes of hyperfine fields. They occur in the Fe-57 Mossbauer spectra of magnetically 

ordered materials that have atomic and/or crystallographic disorder. In the absence 

of dynamic line shape effects and artifacts such as thickness effects, the correçpond- 

ing Mossbauer spectrum can be written as 

where E ( H ;  v) is the elemental line shape for one site in the absorber. It  is a 

function of the hyperfine field, H, and other hyperfine parameters for that site (see 

below) or family of sites hnving the same H. P ( H )  is the distribution function for 

the hyperfine field (or HFD). N(v )  represents the experimcntal noise. In this case 

we want to extract the hypefine field distribution P ( H )  from the corresponding 

spectrum. 

In the absorber, al1 three interactions, the center shift , the electric quadrupole 

interaction and the magnetic field interaction, are present. The elemen ta1 line shape 

E (H, 6, c; u )  is much more complicated than the situations where either only CS and 

QS interactions are present or only CS and HF interaction are present. The choice 

of different elemental line shapes depends on how much information we have about 

the sample before we analyze the spectrum. Sometimes different rnodels have to be 

tested to see which one can give the reasonable results. In the next section we will 

give a detailed introduction about the elemental line shapes in the situation wher 

ail three interaction are present. 
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6.5.2 The elemental lineshapes 

A. Perturbation sextet mode1 

It is well known that when the electric field gradient (EFG) parameter K = e Z q ~ / 2  is 

assumed to be much srnder than the excited state Zeeman splitting z =I g 3 / 2 p N H  ( 

( 1  e 2 q ~ / 2 g 3 / 2 ~ N ~  c 0.8 1 is a usable limit [118]), the first order EFG perturbation 

on the Zeeman split excited state level results in a shift 

where 0 and are the polar coordinates of hyperfine field in the usual EFG coor- 

dinate system. The line positions of the six allowed transitions which make up the 

sextet (lines 1 to 6 in order of increasing energy) turn out to be: 

where Z is the ratio of nuclear g-factors Z = g1/1/93/2 = 1.7509 and 6 is the center 

shift. Then the eiemental sextet can be written as: 

where 
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is a Lorentzian with height hk, full width a t  half maximum (FWHM) r, and centered 

on ~ 3 k .  

B. Blaes' exact line shape model 

In Blaes' exact line shape model [119], a super operator formalism is used to yield 

a closed form expression for the Mossbauer line shape in the  presence of magnetic 

dipole and electric quadrupole hyperfine interactions for fixed orientations between 

the EFG principle axes, the magnetic field, and the y-ray direction. Then besides 

the hyperfine field H F  the center shift 6, and the EFG parameter I< = e 2 q ~ / 2 ,  the 

lineshape is also a function of the polar and azimuthal angles of the y-ray direction 

in the laboratory system and a function of the Euler angles a? (3, and 7 which 

transform the principle axes system x' Y' z' of the EFG tensor into the laboratory 

system x y z where the magnetic field is parallel to z. (See Figure 6.13). The details 

of the calculations and the general expression for the lineshape can be found in 

Ref. [l 191 . Alt hough the resulting expressions appear complicated, t hey allow some 

angular averages to be perforrned analytically. 

A great degree of test and comparison with other methods of calculating the 

lineshape, such as the first order perturbation and solving explicitly the hyperfine 

Hamiltonian under certain conditions, has been made. Perfect agreements were 

obtained. This was to make sure that the expressions in Blaes' paper are correctly 

presented and that our further calculations for some special conditions, such as 

the angular averages, were correctly conducted. Such applications of the Blaes line 

shape expressions are given in the following su bsections (CE). 
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C. The exact lineshape for powder samples with symmetric EFG (7  = O) 

This is the case where the orientation of the EFC is fixed and the y-ray direction 

is randomly oriented with respect to the magnetic field. Thus, only the following 

angular average has to be performed: 

which can be calculated analytically. This eliminates y from the line shape ex- 

pression El [IN]. Also, because of the rotational syrnmetry of the  EFG ( q  = 0) 

with respect to its principle component, the nuclear Hamiltonian for the electric 

quadrupole interaction is independent of the angle a. Then the line shape El only 

depends on the hyperfine parameters {H, 6, K }  and the angle ,3 representing the 

orientation between the magnetic field and the principal axis of the EFG. 

D. T h e  lineshape for powder samples with both EFG ( r )  = 0) and magnetic 

field H independently and randomly oriented 

This is the case when both the EFG with rotational symmetry and the magnetic 

field randomly orient with respect to the 7-ray direction. Based on the line shape 

equation for the case described in C, an additional average on the angle P 

is needed. Once again this c m  be performed analytically and results in a closed ex- 

pression for the line shape Ez whicli is simply a function of the hyperfine parameters 

{H, 6, KI. 
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E. Lineshapes with distributed magnitudes of EFG 

We have considered two cases, as follows. 

Firstly, when the magnitude of the EFG is not a single value but has an inde- 

pendent probability distribution, equation ( 6.53) should be written as 

To extract the distribution P(H) based on equation ( 6.60), we have to give a 

reasonable guess for P ( K ) .  Then, instead of imposing a single value for K into 

equation ( 6.53), a known function for P ( K )  is substituted into equation ( 6.60) and 

equation ( 6.60) is simplified as 

where 

is the corresponding elernental line shape. 

Secondly, we assume that K is iinearly coupled with H. That is K = ko + k l H  

with known {ko,kl). Imposing K = ko + k l H  into the lineshape in equation ( 6-53), 

the corresponding line shape, 

is just a function of (X, 6). 

6.5.3 Applications to simulated spectra 

In real spectrum andysis, due to a la& of information about the sample, choosing a 

correct line shape mode1 is not an easy task. Different models have to be used to see 
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which one can give more reasonable results. Having good results also depends on the 

reliability of the numerical method used to analyze the spectrum. Before we go to 

analyze the real spectra, applications of the Bayesian inference method to simulated 

spectra are conducted using the Blaes' line shape model. These applications will 

tell us whether the Bayesian inference method can give the reasonable results when 

the line shape model is exactly h o w n .  

In the following simulation, the line shape mode1 described in subsection D is 

used, Le. both the EFG with rotational symmetry and the magnetic field randomly 

orient independently wit h respect to the y-ray direction. The line shape is a function 

of (H, 6, Q; v ) .  Here, the assumed parameters for both the spectrum simulation and 

the extraction are zero center shift and e 2 q ~  = 1.2 mm/s. The only distributed 

parameter is the hyperfine field. The known Gaussian hyperfine distributions used 

to simulate the spectra, with simulated Gaussian noise, are full or truncated (make 

H 2 O). The standard deviation of the Gaussian distributions is (g3/21pNaB -0.2 

mm/s and the maximum positions of 1g3/21~NHmoz "2, 1, 0.5, and 0.2 mm/s. In 

constructing the matrix A, we choose to use M = 512, N = 41 and the velocity 

ranges from -8 mm/s to 8 mm/s. As we can see from Figure 6.14 to 6.17 in each 

case the Bayesian direct extraction method exactly recovers the correct hyperfine 

distribution and also gives the uncertainty of the distribution which a r i a  from the 

spectral noise. 

The above demonstration clearly shows us that when we have the right model, 

the Bayesian method has excellent reliability and can give us the uncertainty about 

the extraction which is related to the noise level in the spectra. Therefore we can 

Say that in the real spectrum analysis when an unreasonable result cornes out, it 

means the model used is not correct. In this case the Bayesian method sends us the 
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message that the mode1 needs to be refined. 
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6.6 Ground state hyperfine field distribution of Fe65Ni35 

Invar at 4.2 K 

The purpose of this study is to use the Blaes' exact elemental lineshape mode1 with 

BIF-DE method to evtract the ground state hyperfine field distribution of Fe65Ni35 

Invar. By testing different orientations of EFG and HF with respect to the incident 

gamma-ray direction, we try to find out that how the HFD is affected by those differ- 

ent assumptions, especially at the low field area. The results of this extensive testing 

will be compared with the results from the Monte Carlo simulations[l27]-(1281, a 

method which calculates HFDs usiog the spin structure and a phenomenological 

mode1 relating thermal average local moments to resulting si te-spedc hypefine 

fields. In the hope this comparison will help us understand the rnicroscopic struc- 

ture of Invar. Because this comparison involves detailed introduction of the magnetic 

structure mode1 and the Monte Carlo simulation which are out of the scope of this 

thesis, i t  will be present somewhere else[129]. 

6.6.1 Introduction 

In the physics literature related to fcc Fe-Ni alloys, the emphasis has clearly been 

on Invar where low temperature behavior has been given special attention in the 

hope that it might elucidate the higher temperature Invar (Le. magneto-volume) 

behavior. Many low temperature anomalies have been reported and are reviewed in 

Ref. [79]. Many of these are non-intrînsic and arise from precipitates of either body 

centered cubic (BCC) phase (a-phase) or low-moment (LM) face centered cubic 

(FCC) phase ( Y L M - P ~ ~ s ~ ) .  
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Invar itseif is a high-moment (HM) FCC phase (rHM-phase) that is structurally 

metastable and is obtained by quenching fiom the melt. The true equilibrium 

structure at 65 at. % Fe is not the quenched state and its exact nature is still being 

elaborated [SOI. The true structural gound state may be an epitaxial intergrowth 

of Fe-rich rLM-phase and chemicdy ordered FeNi phase (tetrataenite) [81]. The 

present paper is concerned with the magnetic gound  state of Invar in its quenched 

(or metastable) structural state. 

It is important to realize, however, that the quenched structural state of Invar 

is that of a random binary alloy on an FCC lattice only to a first approximation 

and that it has not been hlly characterized. Many structural studies report partial 

Fe and Ni segregation on a length scale of - 15 A[82]. Such non-randomness must 

affect the magnetic properties and the ground state spin structure. 

Different models for the magnetism of Invar have been proposed, notably: the 

two-7-state model [83]- [85], weak itinerant ferromagnetism [86], and latent antifer- 

romagnetisrn [87, 881. Recently, also, it has been suggested that the theoretically 

predicted occurrence of LM phases in metallic Fe [89]-(991, chemically ordered FesNi 

[99]-[101], and Fe-rich random FCC Fe-Ni alloys [102, 1031 is related to lnvar behav- 

ior. In al1 cases, the magnetism is believed to cause Invar behavior via some form 

of magneto-volume or magneto-structural coupling. 

Recently, it has been show [104, 1051 that a simple local moment model with 

three composition-independent pair-specific neareçt neighbor (NN) magnetic ex- 

change parameters (JFeFe, JFeNit and JNiNi)  reproduces d l  of the main purely 

magnetic properties of the quenched FCC Fe-Ni alloys: the Curie point versus com- 

position, the spontaneous saturation moment versus composition, the spontaneous 
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magnetization versus temperature a t  each composition, and the high field (parapro- 

cess) susceptibility at T = O K versus composition. 

Both cluster-method meao field theory (MFT) calculations [104, 1061 and Ising 

approximation Monte Car10 (MC) simulations [105] were used. The MC simulations 

give superior agreement with experiment except for the paraprocess susceptibility 

where the Ising approximation of the MC simulations gives artificial steps, whereas 

the Heisenberg Hamiltonian of the MFT calculations gives realistic behavior wit h 

gradua1 spin rotation. The anomalies in all the magnetic properties are seen to 

arise from an antiferromagnetic NN Fe-Fe coupling (JFsFe < O) in these otherwise 

ferromagnetic rsw-phase alloys. Magnet ic frustration on the FCC lat tice occurs at 

the Fe-rich end. These calculations strongly support the earlier latent antiferromag- 

net ism ideas. 

It follows, based on the above agreement with the macroscopic magnetic p rog  

erties, that Invar is well approximated as a local moment system with large stable 

moments (0.6 p~ and 2.8 ps on Ni and Fe atoms, respectively) and NN-only Ling 

exchange interactions. In this study, we test the degree to which this approximation 

is valid by a detailed cornparison with a microscopie property: the ground state 5 7 ~ e  

hyperfine field distribution (HFD). 

In order to accomplish this, we implement: (1) absorber thickness corrections of 

the Mossbauer spectrum fiom which the HFD is extracted, (2) Our HFD extraction 

method based on Bayesian inference theory that gives error propagation down to 

the measured HFD and that is not lirnited to any particular elemental line shape 

modei, and (3) a simple vector mode1[127]-[128], of the relationship between the 

spin structure and the HFD, that has been extensively tested at al1 compositions 

and that allows a simulated HFD to be uniquely generated from an equilibrium MC 
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spin structure. 

6.6.2 Measurement and data treatment 

Preparation and characterization of the splat quenched Fe65Ni35 sample is described 

elsewhere [IO?, 1081. A 55 pm thick splat quenched flake that showed no grain or 

magnetization orientation texture was used for the present investigation. The RT 

57Fe Mossbauer spectmrn showed no trace of either a-phase or .yLM-phase and the 

measured RT saturation magnetic moment, fint-heating Curie point (measured on 

a separate piece), and RT lattice parameter were consistent with the known values 

for Fed i35 .  

The main " ~ e  transmission Mossbauer spectrum was collected at T = 4.2 K 

in an exchange gas type liquid helium cryostat using a -. 20 mCi 57Co rhodium- 

matrix single-iine thin source on a velocity range of 17.5 mm/s with a constant 

acceleration drive. Data was acquired on 1024 channels and folded to give a Rat 

background (BG) and a zero velocity position corresponding to the center shift (CS) 

of metallic &-Fe at RT in the 512-channel calibrated spectrum. 

Absorber thickness effect corrections were performed by a new met hod [log, 1101 

t hat involves an analyt ic deconvolut ion of the transmission integral. The intrinsic 

absorber resonant cross section is extracted and used to reconstruct a thin-limit 

spectrum that is devoid of any thickness effects. An absorber recoilless fraction at 

T = 4.2 K of 0.9 was assurned, 
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6.6.3 Spectral analysis: obtaining the measured HFD 

A. Overview of the problem 

Fe65b& Invar has been extensively studied by 57Fe Mossbauer spectroscopy [108]. 

A recently reported low temperature anomaly [Ill] was not seen in other studies 

and was later found to  be an experimental artifact arising from a cryogenic problem 

(personal communication wit h J. Hesse). All studies, therefore, show a behavior t hat 

saturates at low temperatures such that the T = 4.2 K spectrum is expected to be 

identicai within error to the T = O K spectrum, if the latter could be measured. 

I t  has been proposed that even the low temperature spectra could be inter- 

preted in terrns of dynamic effects rather than HFDs [82],[112]- [114]. Whereas such 

dynamic line shape effects do occur in broad neighborhoods below and above the 

Curie point, they only start to affect the iow temperature spectral line shape above 

T = 200 K [108]. It is therefore generally accepted that the low temperature spectra 

can be analyzed and interpreted in terms of distributions of static hyperfine field 

magnitudes (i.e. HFDs). This is strongly supported by the present work where the 

estracted HFD, obtained by assuming a static HFD interpretation of the measured 

spectrum, is understood in terms of a simple physical model. 

Although such a HFD analysis is conceptually simple, in practice it is very 

difficult for both mathematical and physical reasons. Several HFD analysis methods 

have been devised and are reviewed in Ref. [115]. In its domain of applicability, the 

most powerful of these is the Voigt-based fitting (VB-F) method [115]. However, 

it has two main disadvantages: (1) the usual perturbation sextet must be used as 

the elernental subspectrum, and (2) as in al1 previous methods, error analysis of the 

resulting HFD is not performed. The Bayesian inference theory direct extraction 
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(BIT-DE) method [116] that we apply here to HFDs for the first time solves both 

these problems and allows several different elemental line shape models to be tested, 

including exact line shapes, angle averaging, independent or coupled distributions 

of ot her hyperfine parameters, etc. 

B. Application to the spectrum of FessNiaJ invar at 4.2 K 

We now present the results from Our study of the thickness corrected spectnirn of 

Fe65Ni35 Invar a t  4.2 K using the BIT-DE method. Based on equation ( 6.53), 

i.e. interpreting the spectrum in terms of distributions of static hyperfine field 

magnitudes, different eiemental line shape models, such as those described in C-E, 

were test ed. 

In Our study we began with the perturbation sextet mode1 for the elemental line 

shape and using the VB-F rnethod [Il51 to extract the HFD. By doing this we can 

have some initial ideas about the distribution and the parameters involved in the 

line shape (see below). 

Figure 6.18 shows the fitted spectrum and corresponding HFD fkom the fitting 

with three Gaussian components for the HFD and aiiowing linear coupling to the 

HFD for both 6 and c (6 = +6& c = so+oi H). Since we used thickness corrected 

data, we let the sextet height ratios {h i /hs ,  h2 /h3)  and FWHM r be fixed at their 

known theoretical values. The resulting fit parameters are given in Table 6.1. 

From this initial study we can see that the extracted HFD has a maximum around 

2.4 mm/s and a long tail in the low field area from 0.0 mm/s to 1.8 mm/s. This 

tells us that there may be some features in the low field area in the true HFD. Since 

VB-F is based on the assurnption t hat the HFD is represented by sums of Gaussians 

with different positions, the details of the true HFD may not be extracted due to  
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Table 6.1: Fit parameters for FessNis using VB-F with three Gaussian components 
for the HFD 

Parameters (units) Values Parameters (units) Values 

h3.1 (counts) 6620.7 
*ZI (mm/s) 0.46891 
201 (mm/s) 1.43485 
h3.2 (counts) 6267.4 

pre-fixed distribution mode1 limitations. Also, the error analysis of the resulting 

HFD cannot easily be performed using this method. 

The latter means that for small features we do not know whether the features are 

caused by true structures in the material or by experimental errors. To further study 

the spectrum, we used BIT-DE with the perturbation sextet elemental line shape 

and allowed linear coupling for 6 and c. Different sets of (60, bi)  and (Q, q), which 

can either be guessed from a preiiminary inspection of the spectrum or obtained 

from Table 6.1., were used to extract the HFD. 

Rom this study we found that when 6* = O, i.e. no coupling for 6, there is no 

signîficant effect on the HFD, but there is significant change on the HFD in low 

field when the coupling for E is changed. This can be seen from Figure 6.19. Also 

from Figure 6.19 the error bars give us confidence that the features in the low field 

are not due to experimental error but to true structure in the material. However, 

at this stage we are still not sure that the true HFD in the low field is correctly 

r (mm/s) 0.194 
60 (mm/s) 0.04716 
6,  -0.00969 
€0 (mm/s) 0.40516 

o z 2  (mm/s) 0.18409 
202 (mm/s) 2.17670 
h3.3 (counts) 29551.0 
023 (mm/s) 0.13018 
203 (mm/s) 2.35370 

€1 -0.17221 .I 
h l / h 3  3 
hz/ h3 2 
Reduced k2 4.306 
< z > d  (mmfs) 2.18422 ' 
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represented by the extracted HFD because the perturbation sextet mode1 is a good 

approximation to the true elemental line shape only when e Z q ~ / 2  is much smaller 

than g * p N H .  

To correctly extract the HFD in the low field range where e Z q ~ / 2  is no longer 

much smaller than g 8 p s X ,  exact line shape models must be employed. Here Blaes' 

exact line shape models described in C to E for different situations were used. 

Figure 6.20 shows the extracted HFD using the line shape described in C with 

single value for the magnitude of the EFG and with angle = O. We also conducted 

one dimensional rnapping for P from O to 90' ( E l  is a function of cos%). It turned 

out that there is no significant effect on the extracted HFD when 0 changes. 

Next the elemental line shape with angle P averaged and single values for both K 

and 6 was used. A two dimensional search of K and b for the  best chi-squared was 

conducted as well. Significant changes in the HFD in the low field range showed up 

with changing values of K .  The extracted HFD with the best chi-squared is shown 

in Figure 6.21. 

To further see how the EFG affects the extraction of the HFD, an independent 

Gaussian distribution and a linearly coupled distribution to H for K were imposed 

respectively. In both cases the angle ,O was averaged. The corresponding extracted 

HFDs are shown in Figure 6.22 and Figure 6.23. 

By comparing the extracted HFDs in Figure 6.18 to Figure 6.23 we see that 

they are almost identical from r = 3 mm/s  down to z "= 0.8 mmls. There is 

almost no difference among the four extracted HFDs without imposing the coupled 

distribution for K. These clearly show us the robustness of the BIT-DE method 

and the sensitivity of the HFD in the low field to the way in which the EFG is 

represented. 
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We observed that all the extracted HFDs have oegative values at low field 

area(see Figure 6.19 to 6.23). As a distribution furiction the negative value of P ( H )  

is unacceptable. From the discussion in section 2.2.2 of Chapter 2 we know that in- 

ferences that are unacceptable must be from inappropriat assumptions and not from 

inadequacies of the inferential system. Al1 parts of the model, including the prior 

information, are exposed to appropriat criticism. The Bayesian inference theory is 

sending us the information that more realistic mode1 and prier information need to 

be used to solve this problem. 
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6.7 Conclusion 

Bayesian inference theory has been used to give an elegant solution to the inverse 

pro blem related to  static hyperfine parameter distributions in Mossbauer spec- 

troscopy. Whereas a constant prior (Le. assuming no a priori knowledge of the 

distribution) leads to the usual (and unsuccessful) least-square estimator approach, 

application of the maximum entropy principle gives a prior that is a multivariate 

Gaussain function which leads to a well behaved extraction algorithm that incorpu- 

rates full error propagation. The result is a fast and robust direct extraction method 

which, for a given assumed elemental line shape model, gives a unique distribution 

that is not sensitive to the spectral noise or to uncertainties in the values of the 

non-distrihu ted hyperfine parameters. 

The method can be generalized to the cases involving 1) multisite problems 

where severai independent distributions of the same hyperfine parameter occur si- 

multaneously, and 2)  several independent or coupled hyperfine parameters that are 

distribu ted simul taneously in a single "site" model. 

Finally, Bayesian inference theory is seen as a general framework which can 

accommodate: more complicated situations involving multiple distributions, more 

highly tuned prior functions resulting from more stringent physical constraints, and 

various error propagation schemes. This is an effective direct extraction procedure 

that uses the data directly without filtering and it represents the first time that  

error propagation to the distribution is performed in Mossbauer spectroscopy. 
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6.8 Appendix A. Deriving the prior probability distribu- 

tion of X 

We maximize the Shannon measure of the entropy of P(Xk) 

subject to 

The Lagrangian is given by 

where ( A i  - 1) and X2/2 are the two Lagrange rnultipliers correçponding to the 

two constraints. Note that (A: - 1) and X2/2 are used as the Lagrange multipliers 

instead of Xo and X as a matter of convenience. Now 

such that 
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Substituting equation ( 6.69) into equation ( 6-65), we obtain 

whicb is juçt a normalization constant. So the prior probability distribution for 
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6.9 Appendix B. Deriving 2 by rninirnizing @(X) 

To minimize the exponent 

@(X) = ( b  - A X ) ~ ( ~  - AX) + X * X ~ L ; ~ L * X  

we have to give an explicit expression for @(X). By using equations ( 6.20) - 

( 6.22) where 

@(;Y) can be written as 

Now, let 
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t hat is, 

This set of linear algebraic equations can be rewritten in matrix notation as 

2 T ( A ~ A  + x L? L ~ ) X  = ~ ~ b ,  (6.76) 

ço the x which rnaxirnizes the posterior pobability distribution P(X ( 6 )  is 

Now we can use x to rewrite @(X), 

2 T T  
@(X) = (b  - A X ) ~ ( ~  - A X )  + X X L2 L2X 

T T T T 2 T T  = b T b - x  A b - b T ~ x + x  A A X f X X  L2L2X 
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T T = X ~ ( A ~ A  + A'L;L~)X  - X A b - b T ~ x  + bTb. (6.78) 

From equation ( 6.7?), we have 

and 

2 T b~~ = X * ( A ~ A  + x L*).  (6.80) 

Substituting equations ( 6.79) and ( 6.80) into equation ( 6.78), we obtain 

which is independent of X. F i n d y  @(X) is expressed as: 
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6.10 Appendix C. Calculating x using GSVD 

Rom equations ( 6.37) and ( 6.40) in Section 3.2, we have 

such t hat 

Now let 

F = diag ...... 
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b 

and 
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Figure 6.13: Illustration of the Euler angles a, P,  and 7 transforming the principle 
/ I f  

axes x , y , r where the magnetic field H is parallel to 2. 0 and 4 represent the polar 
and azimuthal angle of the 7-ray direction in the laboratory system. 
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Figure 6.14: The extracted hyperfine field distribution frorn the simulated spectrum 
using Blaes' line shape model. (a) The simulated spectrum (solid line) and the 
recalculated spectrum (dots); (b) The exact distribution centered at 1 g 3 / 2 L < ~ H  1= 2 
mm/s (solid line) and the extracted distribution with error bars. 
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Figure 6.15: The extracted hyperfine field distribution from the simulated spectrum 
using Blaes' line shape model. (a) The simulated spectrum (solid line) and the 
recalculated spectrum (dots); (b) The exact distribution centered at 1 g 3 / 2 p ~ H  I= 1 
mm/s (solid line) and the extracted distribution with error bars. 



Figure 6.16: The extracted hyperfine field distribution from the simulated spectrum 
using Biaes' line çhape model. (a) The simulated spectrum (solid line) and the 
recalculated spectrum (dots); (b) The exact distribution centered at 1 g 3 / 2 p N H  1= 0.5 
mm/s (solid line) and the extracted distribution with error bars. 



Figure 6.17: The extracted hyperfine field distribution from the simulated spectrum 
using Blaes' line shape model. (a) The simulated spectrum (solid line) and the 
recaiculated spectrum (dots); (b) The exact distribution centered at 1 9 3 / 2 p N H  1= 0.2 
mm/s (solid line) and the extracted distribution with error bars. 
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Figure 6.18: (a) Fitteà thin limit spectrum at T = 4.2K and (b) corresponding 
HFD for Fe65Xi35 Invar using the VB-F method. 
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Figure 6.19: Extracted HFDs using BIT-DE method and perturbation sextet rnodel. 
(a) 6* = 0.04716 mm/s; bi = -0.00969; €0 = 0.40516 mm/s; = -0.17221. (b) 

= 0.026 mm/s; bi = O; €0 = 0.029 mm/s; cl = 0. 
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Figure 6.20: Ext-racted HFDs using BIT-DE method and Blaes line shape model 
described in C with ,û = 45 degrees and single value for K. 
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Figure 6.21: Extracted HFD using BIT-DE and Blaes line shape mode1 described 
in D with single value for K. 







C hapter 7.  Conclusion and Discussion 

Two very comrnon and well known problems in applied physics have been studied in 

this thesis by using the  Bayesian inference theory and Gibbs sampling technology. 

The first one is from the arena of discrete time signal analysis and the second is 

from Mossbuaer spectroscopy which is very useful not only in physics but also in 

material science and mineralogy. 

Rom the applications to both spectral analysis and parameter estimation in 

discrete time signais and hyperfine parameter and field distribution extraction in 

Mossbauer spectroscopy it can be seen that the whole process fits into the plausible 

reasoning and follows the iteration steps depicted in Figure 1 and Figure 2. The 

Bayesian inference t heory provides a unique mat hematical language to descri be the 

essent i d  feat ures of the plausible reasoning. 

The results from the first application showed that the Bayesian approach to spec- 

tral analysis is very promising and robust to the noise and non-honmornic features 

in the signals. Also fiom the results, the shortcornings in the FFT technique which 

is widely used in the signal processing field are overcome. Based on this very promis- 

ing study, potentially the rnethod can be applied to many other axeas such as the 

sunspot data analysis , nuclear magnetic resonance data analysis, etc.. The speed 

of the Bayesian approach in spectral analysis, however, can not be compared with 

FFT due to the many steps of sampling and minimization. Higher speed algorithms 

need to be developed in the future. But with more and more powerful cornputers, 

this shortcoming can be overcome over time. Al1 the applications presented in this 
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study used the non-informative prior which is the most simple type of prior. For the 

applications where a more informative prior is available, studies need to be focused 

on how to tune the prior information into the posterior in the way that the rest of 

the calculations are numerically durable. 

This is the first time that BIF-DE method has been successfully applied to 

Mossbauer spectroscopy. The BIT gives a general framework which can accommo- 

date more complicated situations involving complex line shape functions, multiple 

distributions, more highly tuned prior information functions which the ot her met h- 

ods cannot easily ded with. It is the first time that the error propagation to the 

distribution is perforrned in the extraction. This unique feature can help physicists 

to distinguish the true features of the distributions from the experimental/analysis 

artifacts. 

The method described in this work can be applied to many problems involving 

detailed analysis of time-series data with noise and inverse problems involving differ- 

ential and integral equations. They include varies fields from medical signal/image 

to dynamic systems, speech processing to astronomy. 

The beauty of the Bayesian inference theory is that it allows us to tune more 

and more precise prior information to the investigation with each step we move on 

to. Indeed the Bayesian inference theory provides a system of statistical inference 

intrinsically suited to iterative mode1 building, which is in turn an essential part of 

scient ific investigation. 
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