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Abstract 

George Perle, American composer and theorist, has authored an innovative theory 

called Twelve-Tone Tonality (1977; znd ed. l996), a compositional system based on the 

conjunction of interval cycles and inversional symmetry. Perle's theory is the result of his 

search for an atonal analogue to the precornpositional structures and hierarchical 

organization of tonal music. The theory is not widely known in the theoretical 

community, partly due to its compositional purview and idiosyncratic terminology. 

This dissertation explicates Perle's theory in a reorganized, accessible format, and 

includes the most recent developments to the theory that appear in the second edition of 

Twelve-Tone Tonaliv (1996). The study also explores the properties of the cyclic sen, 

the fimdamental entities of the theory, outside the context of twelve-tone tonality. 

Through the process of imbrication the cyclic sets generate close associations of pitch 

class set classes identified as ICS families (for -'imbricated cyclic set"). The set classes in 

these families share a number of structural properties, including inversional symmetry, 

transpositional combination (as developed by Richard Cohn l987), and equivalence in 

other modular universes. The study also introduces an original simiiarity relation, the 

Rsvnfrela&ion, to reflect the symmetrical nature of the intervdlic similarity between pairs 

of set classes in the ICS families. 

The dissertation provides detailed analyses of two etudes from Perle's Six E~zrdes for 

Piano (1973-76). The analyses differentiate between the abstract dimension of twelve- 

tone tonal constructs and their concrete realization at the musical surface, and show both 

local and long-range structure. Further, although the analyses are guided primarily by 

Perle's theory of twelve-tone tonality, they are supplemented by observations from the 

perspective of pitch class set theory, as developed by Allen Forte (1973) and extended by 



Robert Moms (1995b). This multifaceted analytical approach highlights distinctive 

features of the etudes. 

Through the presentation of the tenets of twelve-tone tonality, the theoretical 

exploration of the cyclic sets, and the analysis of selected works, the dissertation aims to 

show the depth and potential of the theory, both within and outside its own context. 

Keywords: atonality, axis of symmetry, Richard Cohn, equivalence classes, 

Allen Forte, IcVSIM, interval cycles, inversional symmetry, Eric Isaacson, 

modular equivalence, Robert Morris, George Perle, pitch-class set theory, 

similarity relations, transpositional combination, twelve-tone tonality 
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Chapter One 

Introduction 

George Perle @. 19 15) is one of America's foremost contemporary composers. He is 

also a respected theorist, and has written extensively on twentieth-century music. Perle is 

a recognized scholar of Alban Berg's music, and is the author of one of the first analytical 

studies of the compositional method of the Second Viennese School. Serial Composition 

and Atonality (Perle l962,6" ed. 199 1). In addition, Perle is the creator of a unique 

approach to composition, a system based on the conjunction of interval cycles and 

inversional symmetry, which he calls ';twelve-tone tonality." 

Perle's theory of twelve-tone tonality rests on a foundation of interval cycles. An 

interval cycle is an ordered series of pitch classes @cs) based on a single recurrent 

interval, which is measured by the number of semitones it spans.' Perle alternates the 

elements of two inversionally related interval cycles to form the basic unit of his system, 

the cyclic set. The combination of two cyclic sets forms an array, from which Perle 

derives his compositional resources and which generates the hierarchy of structural 

relationships in the system. As Perle explains in his book Twelve-Tone Tonality ( 1977b, 

znd ed. 1996)' his theory is the result of a search for an atonal analogue to the 

precompositional structures and hierarchical organization of tonal music. 

In 1937, at the age of twenty-two, Perle first happened upon a score of Berg's Lyric 

Suite and recognized that the work uses the twelve pcs of the aggregate as an autonomous 

collection outside the domain of tonality. Perle observed that in the first movement both 

the linear and vertical pitch configurations are structured on the basis of perfect fifth 

cycles. Although he attempted to decipher Schoenberg's twelve-tone method from Beg's 

1 The intervat cycIes are discussed in detail in chapter two of this dissertation, and are notated in 
example 2.1. 



Lyric Suite, he was not successful. In 1939 Perle began composing a string quartet 

according to principles that he assumed constituted Sch~enberg's method. But during a 

composition lesson with Emst Krenek later that year, Krenek informed Perle that he had 

misunderstood Schoenberg's method, but called Perle's work a "discovery." Perle 

subsequently decided to continue with the development of his own method (1 990a, 

126-3 4). 

Two years later Perle published his first article on his fledgling method, entitled 

"Evolution of the Tone-Row: The Twelve-Tone Modal System" (1 941). Numerous 

analytical articles on other composers' works followed; those particularly relevant to the 

development of his own theoretical ideas ~ ~ 1 1  be discussed below. During a three-year 

span fkom 1969 to 1972 Perle collaborated with former pupil Paul Lansky; this 

coilaboration resulted in an expansion of the theory's scope and compositional potential. 

In the preface to the second edition of Twelve-Tone Tonaliq (1996, xv-xvi) Perle relates 

how he gradually interpolated his theory in the appendices in the first three editions of his 

book Serial Composition and Atonality, until his editor suggested publishing the 

appendices as a separate book, which resulted in the first edition of Twelve-Tone Tondiiy 

in 1977. More general discussions of the theory appear in the articles "Berg's Master 

Array of the Interval Cycles" (1977a) and "The First Four Notes of Lulu" (1989)- Perle 

gives a derailed exposition of the theory in the fifth chapter of his book The Listening 

Composer ( 1  990a) and in the article "Symmetry, the Twelve-Tone Scale, and Tonality" 

(1 992). A second edition of Twelve-Tone Tonality appeared in 1996, which includes the 

most recent extensions and refmements to the theory. 

Perle's analytical studies of twentieth-century works 

Through his analytical studies of the works of certain twentieth-century composers, 

especially those of Berg and Bartbk, Perle discovered points of contact with his own 

theory, most notably in the use of interval cycles as an organizing force. Perle comments: 

My principal work as a theorist and, above all, as a composer since then [I9411 has 
concerned itself with discovering and developing the implications of twelve-tone 
tonality, and not the least interesting result has been the realization of the extent to 
which these principles are anticipated in shared elements in the music of mainstream 
composers of the twentieth century-Scriabin, Stravinsky, Bart6k, and Varese, as well 



as Schoenberg, Berg, and Webem- The connections are evident not only in the extent 
to which the foundational concepts of the interval cycle are shared, but also in d l  sorts 
of surprisingly detailed ways (1990% 163). 

On the basis of his analytical studies, Perle has concluded that a normative referential 

language emerges fkom commonalities in the composers' works, one based on interval 

cycles and inversional symmetry. 

In his article "Symmetrical Formations in the String Quartets of BOla Bartok" (1 955) 

Perle discusses how Bart6k uses symmetrical formations as a means of progression in the 

suing quartets. Contrary to the impressionistic use of symmetrical formations to suppress 

a sense of key, motivic development, and harmonic motion, Perle contends that Bart6k 

used them to promote these parameters actively. In his analysis of Bart6k's Fourth String 

Quartet Perle identifies three symmetrical tetrachordaf set classes (scs) derived from 

interval cycles. "Set x" (sc 4-1) is a segment of the interval-l cycle, and "set y" (sc 4-21) 

is a segment of the interval-2 cycle. The third tetrachordal sc (sc 3-9, which Perle calls 

"fig-x" in this article) comprises two interlocking interval-6 dyadsS2 Perle describes how 

these symmetrical formations may be used to invoke modulatory procedures. All 

symmetrical sets imply a midpoint or axis of symmetry; transposing a symmetrical set 

establishes a new axial center. Further, repeatedly transposing such a set by its generating 

interval or intervals establishes a hierarchy of axial centers or "keys" of sets in relation 

the original set. Perle finds these three tetrachordal scs at the musical suface and in the 

background of Bart6k's quartets, serving as generators and goals of motivic and harmonic 

motion. 

In "Scriabin's Self-Analyses" (1984) Perle asserts that 'Yhe interval cycle is a means 

of symmetrically partitioning, and thus imposing an ordering upon, the functionally 

undifferentiated pcs of the twelve-tone scale" (1995b, 23). Perle contends that the 

octatonic collection (sc 8-28) forms the basis of Scriabin's musical language, and shows 

how Scriabin exploits the cyclic properties of this collection in both linear and vertical 

dimensions to define harmonic areas. 

Leo Treitler later labelled the set as cell 2, to correspond with the other two sets in the context of  his 
discussion of Bart6k's Fourth Quartet (Treitler 1959, 292-98). 



The octatonic collection has only three distinct transpositions, as it comprises two 

interval-3 cycles. Perle argues that Scriabin oRen circumvents these restricted 

transpositional possibilities by employing a heptachordal subset of the octatonic 

collection, sc 7-3 1 (which Perle calls a "heptatonic scale"). Each octatonic collection 

contains eight distinct forms of this subset, thus yielding a total of twelve forms related 

by transposition and twelve by inversion. Perle introduces a codiguration he calls a 

"master scale," which may be described as an octatonic collection that recognizes 

enharmonic spellings in order to present four transpositionally related heptachordal 

subsets. These master scales are illustrated in example I. 1 a, with the heptachordal 

subsets indicated by s lu~-s .~ 

Example I. I .  Scriabins 's master scales (a), interval-2 cyclic segment created by altered 
pc within the 7-31 subset of the octatonic collection (b), and the interval-I and 
internal-4 cyclic segments created by addition of non-octatonic pc to 7-31 szrbsets (c) 

segment or interval-2 cycle 
t , 1 

segment of interval- l cycle 

Examples 1. la  and b are derived &om Perle's examples 8 and 9, respectively (1995b, 7). 



Perle shows how in Scriabin's Seventh Sonata (Op.64), the composer achieves 

harmonic contrast by chromatically altering a single pc in the heptachordal subset. This 

alteration creates a pentachordal segment of the interval2 cycle which Scriabin exploits 

compositionally (example 1.1 b). Perle also demonstrates how in the Five Preludes 

(Op.74) Scriabin often adds to an octatonic collection a pc fiom outside the collection, to 

create either an interval-1 or interval-4 cyclic segment (example 1 .c). Perle states that in 

Scriabin's compositional process "symmetrical partitionings of the semitonal scale by 

means of interval cycles generate new, totally consistent, referential harmonic structures" 

(19)- 

Perle discusses the role of interval cycles in many of his writings on Alban Berg's 

music. As he describes in his article "Berg's Master Array of the htervai Cycles" 

(1977a), Perle detected early signs of Berg's interest in interval cycles in a letter Berg 

wrote to Schoenberg, dated July 27, 1920 (1995b, 207). In this letter Berg included a 

chart of an array of interval cycles, referring to it as an "oddity . . . a theoretical trifle." 

This array comprised twelve rows, each containing one of the twelve interval cycles. The 

cycles also lie in the columns of the chart. Figure 1.1 represents Berg's chart in pcs rather 

than pitches, and substitutes interval cycle integers instead of the diatonic interval 

names.' 

F e e  I .  I .  Berg 's array of interval cycles 

12 
1 I 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

? interval 
cycle + 

C etc. 
G~ F etc. 
c ~h~ etc. 
G~ E~ C A etc. 
C E C Ab etc. 
G~ D~ Eb B~ F C 
C eb C F$ C F< C 
G ~ c ~ E A D G C  
C E A ~ C E  A ~ C  
G~ A C Eb F: A C 
c D E F$ B~ c 
G~ G Ab A Bb  B C 

4 Dave Headlam aIso reproduces Berg's array in pitch-classes (1996,54, figure 2.1). 



Perle comments that "in fact, Berg's array of the interval cycles, far fiom being a mere 

'trifle,' reflects a significant and persistent feature of his musical language, fkom the 

second song of Opus 2 . . . through to his last work, the twelve-tone opera Lulu" (209). 

Perle argues that interval cycles in Berg's music function primarily to generate themes 

and to establish harmonic areas. Berg's interval cycles also provide means of progression. 

both locally, to fill in registral space, and at deeper levels of structure, to outline extended 

progressions. In his discussion of the second song of Berg's Op.2, Perle shows how the 

opening measures may be reduced to a series of descending vertical 4-25 sets ("French 

sixth" chords), as illustrated in example 1.2. These sets also unfold four linear (7- 1) 

segments of interval-1 cycles,' while the bass line unfolds an ascending (7-35) segment 

of the interval-5 cycle. Perle comments that the simultaneous unfoldings of different 

cycles helps to mask the repetitiveness o f  the verticalities (2 10). 

Example 1.2. Interval-cycle segments in Berg 's Op. 2, No. 2 

7-35 (segment of inrefid-5 cycle) 

Perle also discusses the pervasive presence of interval cycles in the opening measures 

from the first movement of Berg's String Quartet, Op.3. He contends, however, that the 

f is t  ten measures represent the only extended passage in the piece in which virtually 

every note can be viewed as belonging to an unfolding interval cycle. Example 1.3 is 

based on Perle's annotated excerpt of mrn. 1-1 0 (2 12, ex.8). Perle describes how at [a] a 

pentachordal subset of an interval-2 cycle unfolds in the second violin, with an additional 

5 The example beams the uppermost linear 7-1 set only. 



Ewample 1.3. Unfolding interval-cycle segments in first ten measures o f f r s t  movement. 
Berg 's String Quartet, Op.3, No. 3 

non-cyclic note as the penultimate note of the gesture (indicated by the stemless closed 

notehead). The semitonal dyad this note forms with the final note then expands ar [b], 

creating linear subsets of the interval-1 cycle. The viola and cello at [c] simultaneously 

unfold segments of different interval cycles (interval-1 and interval-5, respectively). The 

elements forming the final dyad between the two instruments are then chromatically 

altered at [dl, thereby prolonging the gesture at [c], according to Perle. The opening 

gesture recurs at T9 in m.5, at [el. This transposition generates the pc collection fiorn the 

other interval-2 partition of the aggregate, thereby defining a contrasting harmonic area to 

that of the opening gesture. Perle observes that the pc content of m.6 reverts to the first 

interval-2 collection (at [g), with dissonant non-cyclic notes resolving to cyclic notes! In 

m.9 the pc content derives from the second interval-2 cyclic collection (at [g]), again with 

non-cyclic notes resolving to cyclic notes in the next measure.' Perle concludes that 

Perle only discusses the dissonant F' resolving to F ~ ,  but as example 1.3 [fJ indicates, the D' is also a 
non-cyclic note that resolves immediately to the cyclic D' in m.6 and to the cyclic E~ in m.8. 

7 Perk specifies that the cello (represented by pitches G and A in the bass staff at [g] )  does not revert to 
the other interval-2 cycle until the A at rn. 10. 



"the harmonic language of  [example 1.31 and its musical effect is well accounted for by 

an analysis that demonstrates the various kinds of compositional unfolding of interval 

cycles" (2 13). 

In his examination of Berg's twelve-tone s t k g  quartet, the Lyric Suite, Perle notes 

that in this work Berg's "characteristic preoccupation with interval cycles merges with 

the serial concept" (226). The f i s t  movement's principal row, given in figure 12a, 

comprises d l  eleven intervals, and divides into two hexachords belonging to sc 6-32. 

Moreover, the row is symmetrical: the second hexachord is a T6 retrograde of the first 

hexachord. In addition, the row possesses cyclic properties: each of its two hexachords 

alternates elements &om inversionally related cycles. The movement actually contains 

three rows; the second and third rows derive £tom the principal row in that they each 

reorder the hexachordal pc content. The second row makes explicit the principal row's 

cyclic origin (figure 1 -2b); the third row reorders the hexachordal pc content in a diatonic 

scalar order (figure 1.2~). 

Figure 1.2. Three rows in the first movement of Berg's Lyric Suite 

(a) F E C A G D I G' C' D' F' A' B 
(b) F C G D A E I B F' C' G"' A' 
(c) C D E F G A I F"' A' B C' D' 

Perle compares the principal row to a cyclic set, which he defines as a row that 

alternates elements from inversionally related interval cycles (229)! Consequently, the 

row also contains alternating sums between adjacent elements. Perle views these 

properties as functioning referentially: "The cyclic set differs radically from the general 

series in that any partitioning generates totally systematic connections among pitch-class 

collections. . . . Any four-note chord comprising two dyads of interval 7 and two dyads of 

sum 9 or sum 4 will occur as a segment of the cyclic version of Berg's primary set-form 

Cprincipal row]. Triadic partitionings produce segments in which each element of the set 

- - - 

' Cyclic sets form the foundation of  Perle's theory of twelve-tone tonality. They are discussed in detail 
in this dissertation both within and outside the context of Perle's theory, in chapters two and three, 
respectively. 



serves as the 'axis note' of a cyclic interval, the perfect fifth" (230). Through this 

statement Perle forms an unmistakable connection between Berg's cyclic practices (as 

evident in the principal row of the Lyric Suite, given in figure 1.3) and his own theory 

of twelve-tone tonality, which is based on the same cyclic set concept. 

Figure 1.3. Cyclic intervals and adjacent sums in the principal row of the first movement 
of Berg 's Lyric Suite 

sums: 9 4 9 4 9 9 4 9 4 9 
F E C A G D I G"' D' F' A' B 

intervals: -7 ---f - 7 2 - 7 1  - 7 1  
-c -I -5-1 -5-1 

In his two-volume work The Operas ofAIban Berg Perle discusses in detail the 

musical language of Wozzeck (vol. 1, 1 980) and Lulu (vo1.2, 1 985). In the latter volume, 

Perle comments on the difficulty, in atonal music, of establishing primary thematic and 

harmonic material and differentiating it fiom secondary or transitional material without 

the recourse to fimctional relationships available within tonality. Perle contends that Berg 

resolves the problem in his use of "basic cells" (which Perle also refers to as "intervallic 

cells"): 

The integrative element [of atonal music] is often a minute intervallic cell, which 
may be expanded through the permutation of its components, or through the free 
combination of its various transpositions, or through association with independent 
details. It may operate as a kind of microcosmic set of fixed intervdlic content, 
statable either as a chord or as a melodic figure or as a combination of both. Its 
components may be fixed with regard to order, in which event it may be employed 
like the twelve-tone set, in its literal transformations. . . . Where it is stated as a 
simultaneity the order is not generally defined (1 985, 87). 

Perle discusses Berg's manipulation of these basic cells in both operas. In ~Vozreck 

Perle demonstrates how the basic cells are employed specifically to defme the sonata 

form of the music for the opening scene of Act II (1 980, 145). The basic cells of Lulu 

have dramatic associations and functions throughout the opera (1 985, 87). Examples 1.4a 

and b give the principal basic cells of Wozzeck and Lulu, respectively, as identified by 



~ e r l e ?  All of these basic cells have cyclic structures. The basic cells in Wozzeck are 

formed from segments of either a single interval cycle with an added non-cyclic tone 

(cells A and D f?om sc 4- 19, and cell B from sc 4-1 8), or combined interval cycles (cell 

C, from sc 4-20). Of the three basic cells identified in Lulu, the first (sc 4-9) may be 

viewed as a combination of two different interval-6 cycles (which Perle labels the 2-cell 

in Bart6k's quartets), while the second (sc 5-20) may be viewed as a gapped segment of 

the interval4 cycle; the third (sc 4-28) comprises a complete interval-3 cycle. 

Example I .  4. Basic ceNS in Berg's Wozzeck (a) and Lulu (6) 

@I 
cell I: 4-9 cell 11: 5-20 c d  111: 428 

A 

In "The First Four Notes of Lulu" (1 989) Perle recalls how his views have evolved 

over the course of the thirty years since his 1955 article on Bart6kYs use of symmetrical 

formations. At the end of the earlier article Perle remained uncertain as to whether 

symmetrical formations could form the basis of a common language for twentieth-century 

atonal music. But he now maintains that interval cycles and inversional symmetry are "a 

natural consequence of the replacement of a diatonic scale of unequal intervals between 

scale degrees by a semitonal scale of a single recurring interval" (1989,284). Perle 

contends that these two concepts form a musical language that connects composers as 

diverse as Bartok and Berg, and demonstrates these connections in the opening of Berg's 

Lulu and Bart6k7s Fifth String ~uartet." 

Example 1.4a is adapted from Perle's Example 1 15 (1980, 146), while example L .4b reproduces 
Perle's Example 28 (1985, 87). 

10 Perle makes a similar point at the end of Tivelve-Tone Tonalip (1977b, 17 1-72), although there he 
specifies that the sum and interval content of pc collections establish connections within and among 
twentieth-century works. 



In his book The Listening Composer (1990a) Perle presents analyses of a number of 

twentieth-century excerpts to bolster his view of a common language based on principles 

of interval cycles and inversional symmetry. In the first chapter Perle provides a detailed 

analyis of Varkse's Density 21.5; he returns periodicaily to the analysis throughout the 

book to offer additional insights. Perle's analysis focuses primarily on the background 

structure of the piece, which he asserts comprises a succession of passages defined by 

octave boundary intervals. According to Perle, Varitse symmetrically partitions each of 

the octave boundaries into interval-6 cycles (as in cLG--D). These in turn are partitioned 

into interval3 cycles (as in c'-E-G-B b - ~ ' ) ,  some of which are filled in at the surface by 

passing tones (as in C~E--F'-G-A-B~-c-D". Varese consistently partitions the tritone 

divisions of the successive octave boundary intervals in this way until the last six 

measures of the piece, where he takes what Perle calls a "new harmonic direction'' 

(1990% 78). In the final passage (mrn.56-61) the interval-6 partitions are not subdivided 

into interval-3 cycles, but into interval-'> cycles. The first three measures of this final 

passage contain pcs fiom one interval-2 cyclic collection. while the final three measures 

contain pcs fiom the other. Perle writes that these symmetrical partitionings "serve to 

unify a series of small-scale pitch relations and to comprehend them within an overall 

large-scale structure" (97). 

In his tracing of common elements of a twentieth-century musical language, Perle 

maintains that 

To look for a series of direct 'influences' fiom one composer to the next as an 
explanation for these connections between Berg, Stravinsky, and Varese is obviously 
fatuous and impossible to support on historical grounds. If such connections are to be 
explained by 'influences,' it is the common influence on all of them of the twelve-tone 
scale, the cyclic/symrnetrical structure of which suggests corresponding 
cyclic/symrnetrical structures derivable from the interval numbers that are factors of 
12. Thus in the most natural way, the differentiating partitions of the universal pitch- 
class set emerge. . . . And though the qualitative transformation in the language of 
music that is implied in all this manifested itself rather suddenly, within a few years in 
the early part of this century, that transformation has a long prehistory in the tonal 
progressions that symmetrically partition the octave in the music of Schubert and 
Chopin and Lisa  and Wagner (l990a, 92). 



Perle sees a line of tradition issuing fiom nineteenth-century composers such as 

Schubert, Chopin, Lisa, Rimsky-Korsakov, and Wagner, who first symmetrically 

partitioned the octave within the context of tonality. Through his analytical wark Perle 

traces the evolution of these practices in twentieth-century works by such composers as 

Scriabin, Bartbk, Stravinsky, Varese, and Berg, who to varying degrees exploited the 

concepts of interval cycles and inversional symmetry, both within and outside the context 

of tonality. Perle therefore views his own theoretical work as continuing the development 

of the musical language that he has traced in his studies of twentieth-century music. 

Other analytical investigations of interual cycles 
in twentieth-century works 

A number of theorists have sought to uncover structural applications of interval cycles 

in the pitch organization of twentieth-century music. In an analysis of Karol 

Szymanowski's Mazurka Op.50, No.3, Ann McNarnee traces the unfolding of the circle 

of perfect fifths at a middleground structural level. In her analysis McNamee asserts: 

"The middleground motion over the span of the entire piece, which combines all of the 

foreground cycles, generates the complete circle of fifths" (I  985, 7 1). McNamee 

generates the foreground cycles fiom two T3-related dyads drawn from the boundary 

notes in the left and right hand in the fust four measures of the piece, c'-G' and E-B, 

which she calls "source dyads." The "foreground cycles" to which McNarnee refers are 

actually four overlapping segments from the cycle of perfect fifths that emanate fiom the 

source dyads and divide into inversionally related segment pairs. McNarnee's foreground 

cycles are given in figure 2 -4. 

Figure 1.4. Foreground cycles in McNamee S analysis of S~rnanowski 's Mazurka, 
Op.50, No.3 

Cycle I: E-B-F'-c '-G' Cycle EI: G ~ C  ' -F~B-E- A-D-G-C-F 
Cycle 11: B-E-A-D-G-C-F Cycle N: c"G'-D"[A']-F 



McNarnee traces the middleground progression of these four cycles, observing instances 

where they overlap, where they intersect through invariant cyclic elements, and also 

where they shift to an inversionally related cycle at the foreground through a "change of 

direction" of the cyclic progression. At the formal recapitulation, McNarnee notes that all 

four foreground cycles combine to bring the piece to its conclusion. 

Following J. Peter Burkholder, J. Philip Larnbert divides the music of Charles Ives 

into two categories, music to be performed in public and "experimental" music (1990; 

1997). The latter consists of musical sketches that explored new avenuzs of organization 

but were not intended for public c~nsurn~t ion .~ '  In this latter category, Larnbert finds 

explicit usage of interval cycles in three basic formats: as single cycles, as combination 

cycles, and as "Omnibus" progressions (1997, 170). 

Lambert observes a "wraparound technique" of interval cycles employed by Ives in 

several experimental works. In the sketch entitled Song in j 's, for example, a passage 

presents a succession of chords, each constructed of stacked interval 7s, as illustrated in 

figure 1.5 (1990,49). A complete interval-7 cycle continues from one chord to the next 

by following a path from the top to the bottom of the first chord, wrapping around to the 

top of the second chord, and so on. The bottom note in each chord repeats as the top note 

of the next chord, thus the wraparound technique continues the cycle within and among 

the chords. 

Figure 1.5. Interval-7 cycle in series of chords in Ives 's Song in 5's 

To expand his palette of available resources, Ives experimented by combining different 

interval cycles. The resulting "combination cycles" comprise a pair of transpositionally 

'' Lambert paraphrases this opinion expressed by I. Peter Burkholder in Char/es Ives: The Ideas 
Behind the Music (New Haven: Yale University Press, 1985), 48, 



related interval cycles, with elements of each cycle given in alternation, in a manner 

analogous to Perle's cyclic sets. Lambert labels a combination cycle according to the 

intervals formed by adjacent elements in the cycle, and places integers representing these 

intervals inside angle brackets. Hence some combinations of transpositionally related 

interval4 cycles, for example, may include <32>, <98>, and <4 1 > . I 2  Figure 1.6 iliustrates 

a 0 2 >  combination cycle derived f?om interval4 cycles and a <95> combination cycle 

derived fiom interval-2 cycles (with the cycles differentiated by upper and lower case). 

The combination cycles, like single interval cycles, may be manifested in either the linear 

or vertical dimension. 

Figure I .  6. <32> combination cycle fi-om interval-5 cycles (a) and < 95> combination 
cycle porn interval-2 cycles (b) 

Lambert introduces another cyclic model employed by Ives that he names the lves 

Omnibus: "The Ives Omnibus is a series of musical entities, often simultaneities, ordered 

according to a gradual expansion or reduction in the sizes of the formative intervals" 

(1 997, 1 70).13 Such a series may entail a progression of chords, wherein the first chord 

comprises orJy adjacent interval4 cycle pcs, the second chord comprises only 

interval-2 cycle pcs, and the third chord only interval-3 cycle pcs, continuing in this 

manner to some designated interval. Alternatively, the series may involve a combination 

cycle, in which the generating intervals of the chords change systematically, as fiom -G6> 

to <67> to <58> to <49> and so on, as illustrated in example 1.5. Lambert concludes: 

"Thus does the Omnibus bring together the main features of systematic composition: it is 

" Lambert changes his nomenclature for combination cycles in his book The Murk of Charier h s  
(1997). In his earlier article (1990), Lambert did not employ angle brackets; he simply separated the 
integers by a slash (as in 3/2 and 9/5). 

13 Lambert reports that his use of the term omnibus was "inspired" by Victor Fell Yellin's use of the 
word in conjunction with cyclic chromatic chord progressions in music by Mozart and Schubert. Larnbert 
says that while thcre are some similarities his usage of the term, he prefers the word for the sense of 
pervasiveness it conveys (1 997,228, n.5). 



Example 1.1 Series of chords generated by combination cycles as an Ives Omnibus 

a carefidly calculated structural model based on a self-generating, pitch-class-saturated 

transformational pattern" (1 70). 

Elliott Antokoletz, a former pupil of Perle, expands Perle's investigations into cyclic 

and symmetrical structures in twentieth-century works. In his study "Interval Cycles in 

Stravinsky's Early Ballets" (1 986), Antokoletz shows how interval cycles underlie the 

pitch materials in The Firebird, Petrzishka, and The Rite of Spring. In numerous examples 

drawn from the ballets Antokoletz identifies pc segments as belonging to specific types of 

cyciic collections: octatonic, whole-tone, or diatonic. Throughout the study Antokoletz 

shows that these segments may either be juxtaposed, merged gradually into one another. 

or interlocked in a hybrid collection. He then reorders these collections as simple, gapped. 

or overlapping segments of interval cycles. Antokoletz frequently partitions the aggregate 

into literally complementary sets fkom scs 7-35 and 5-35, which he refers to as "white- 

key" and "black-key" segments of the interval-5 cycle, respectively." He also examines 

modal collections as representing distinct segments of the interval4 cycle.15 

Antokoletz employs similar analytical techniques in his book The Music of BPla 

Bartbk (1984). AntokoIetz discusses how Bartok's folk-based melodies, which are of 

modal origin, may be expressed as interval-cycle segments: the diatonic modes (members 

of sc 7-35) and the pentatonic mode (sc 5-35) may be reordered as segments of the 

'' Antokoletz does not utilize Allen Forte's pc sc labels as set forth in Forte's The Srrucmre ofrlronal 
Mzaic (1 973). 

" For example, a modal change fiom a G-Dorian to a C-Dorian diatonic collection implies a shift by 
one increment along the interval-5 cycle. 



interval-5 cycle (1984, 5 1-66). In addition, Bart6k employs non-diatonic modes; 

Antokoletz contends that Bart6k extracts segments of these non-diatonic modes and then 

extends the segments symmetrically by adding pcs to create larger octatonic, whole-tone, 

or diatonic formations, which also may be reordered to show their cyclic properties 

(204ff). 

Building on Perle's study of Bart6k's string quartets (1955) Antokoletz expands 

considerably Perle's initial observations about the symmetrical tetrachordal sets (scs 4-1, 

4-2 1, and 4-9), which Antokoletz formally identifies as the X, Y, and Z cells. 

respectively. In his discussion of the various properties of the cells, Antokoletz illustrates 

how different transpositions of a cell may combine to generate an interval-cycle segment 

(69-77). These include the juxtaposition of two 4-1 sets (X-cells) a semitone apart to form 

an eight-note segment of the interval-1 cycle, two 4-21 sets (Y-cells) a whole tone apart 

to form an eight-note segment of the interval-2 cycle, two 4-9 sets (2-cells) in a T3- 

relation to form an octatonic collection, and so forth. In addition, other combinations of 

these cells may generate different cells. For example, the boundary notes of two Y-cells a 

semitone apart will form a 2-cell (0-6 and 1-7). Antokoletz also describes a cell's role in 

cyclic expansion, whereby a cell segmented in the music is augmented by the symmetrical 

addition of pcs to form a segment of an interval cycle. Antokoletz exposes the surface and 

middleground presence and interaction of the three cells in a number of Bart6k7s works, 

primarily the Fourth String Quartet. He traces the cells' interaction and progression, 

establishing different axial centers which he claims are analogous to tonal centers in 

traditional tonal music. 

In htokoletz's view interval cycles and symmetry constitute the fimdarnental 

structural principles underlying Bart6kYs works. In the preface of The Music of Bdu 

Bartdk Antokoletz writes that he 

senses in Bart6kYs total output an all-encompassing system of pitch relations . . . [one] 
primarily based on the equal subdivision of the octave in the total complex of interval 
cycles. The fundamental concept underlying this equal-division system is that of 
symmetry. The fimctions and interactions of symmetrical pitch collections are 
significant both in the generation of the interval cycies in a given composition and in 
the establishment of central tonal or sonic areas. Although Bart6k7s music is 
permeated by nonsymrnetrical pitch collections (including the traditional major and 
minor triads) as well as symmetrical ones, properties of the former in the organic 



growth of a work can generally be understood as having latent symmetrical 
possibilities; that is, nonsymmetrical collections often emerge in the course of a 
composition as segments of larger symmetrical formations (xii). 

Gary Karpinski extends Antokoletz's exploration of interval cycles in his dissertation 

"The Interval Cycles in the Music of Bart& and Debussy though 19 18" (1 99 1). Karpinski 

draws parallels between the types of cyclic collections the two composers employed, and 

the contexts in which they employed them, at both local and longer-range structural 

levels. 

In his dissertation "Interval Cycles and Symmetrical Formations as Generators of 

Melody, Harmony, and Form in Alban Berg's String Quartet, Opus 3" (1 989) Charles 

Porter finds 'Vleines" derived &om segments of interval cycles at foreground, 

middleground, and background levels of structure. Under the rubric of "theme" Porter 

recognizes both m~t ives  and complete melodies, regardless of their length (15). These 

themes occur chiefly as interval cycles and cyclic segments embedded in other longer- 

range interval cycles and cyclic segments. Porter concludes: "Berg's use of intervaf cycles 

in the linear dimension of Opus 3 . . . demonstrates at the very least an intuitive grasp of 

the importance of interval cycles to the development of a new musical language as 

directors of motion to or from a particular pitch. The use of interval cycles on the largest 

scale to generate formal division is an important kind of solution to the problem of large- 

scale form in an atonal idiom" (102). 

In his book The Music of Alban Berg (1996) Dave Headlam acknowledges the 

customary division of Berg's music into tonal, atonal, and twelve-tone creative periods, 

yet maintains that Berg's use of interval cycles transcends these distinctions. He contends 

that these are more chronological distinctions, representing differences in degree rather 

than in kind (1 1). Headlam shares Perle's view that Berg's works are generally cycle- 

based with incorporated dissonances, which are analogous to non-chord tones in tonal 

music. Headlam asserts that since purely cyclic passages are static, Berg limits them to 

infrequent, short passages. More typically, Berg inserts one non-cyclic tone in a cyclic 

collection. According to Headlarn, Berg does this for two reasons: (1) to generate forward 

motion toward some resolution of the dissonant note, although it is never attained, and 



(2) to create contrasting cyclic collections over surface and long-range spans (60-62). 

Headlam labels such collections with a plus sign, as in a "whole-tonet collection," or a 

"5-cycle+ collection." The dissonant note also allows for the possibility of 

reinterpretation, whereby collections may serve as pivots into other cyclic systems. For 

example, sc 4-2 (0 124) can be interpreted as a 1 -cycle+ or a 2-cycle+ collection (73). 

While acknowledging that Berg establishes cycles over long-range spans, Headlam 

does not identifl this as a cyclic prolongation: "In my view, the cyclic collections in 

Berg's atonal music are referential and the basis of the pitch language, but they are not 

prolonged in a tonal sense. CycIic collections are quickly superseded, are not 'in force' in 

their absence, and require constant reiteration for their continuing referential status. Thus, 

I do not posit large-scale cyclic collections comprised of largely non-adjacent notes 

spanning a piece or large sections" (63-64). 

In discussing how Berg's twelve-tone techniques differ from those of Schoenberg and 

Webern, Headlam contends that even in Berg's twelve-tone works the interval cycle is 

still the underlying principle, although now b t i o n i n g  in conjunction with 

considerations of aggregate completion and order positions. Headlam believes Berg 

considered the row to be a means rather than an end: 

Since the rows are not central, their treatment of relationship to the surface need not be 
consistent. Thus Berg can reorder rows and even add or omit notes without disturbing 
the language. Although he often carefully related derived materials to the original row, 
the use of row-derived materials in non-row contexts, the reordering of row segments, 
and the free addition of non-row-derived notes suggests that the basis of the language 
is not the rows but the smaller derived and non-derived materials, which are mostly, as 
in his atonal music, cyclic-based collections (1 97-98). 

Theoretical inuestigations of interval cycles 

Interval cycles have interested composers and theorists from perspectives other than 

the analytical. In his book Composition with Pitch-Classes (1987) Robert Morris 

discusses the twelve-tone operators of transposition, inversion, and multiplication (by a 

factor of 5 )  as generators of cycles of pcs. Morris describes how a twelve-tone operator 

(TTO) acting on each of the 12 pcs generates a list of mappings (1987, 128). Cycles are 

formed by linking together mappings that ultimately return the original pc. For example, 



the TTO T4 maps pc 0 into pc 4, notated as 0+4. Morris links this with the 4 mapping 

of 4-+8, and then with the T4 mapping of 8-0. The resulting cycle is (0-4-8). Morris 

uses the term periodicity to denote the number of repeated applications of a TTO required 

to generate a cycle (126). In the above example, the TTO T4 has a periodicity of 3, since 

three applications of T4 are required to complete the cycle. The periodicity is notated as 

( T ~ ) ~ ,  and expressed as ''T4 to the third poweryy (126). 

For each TTO there is an inverse TTO which negates or c'undoesoes" the original 

operation. The inverse of TTO T4 is Tg. The cycles generated by inverse TTOs have the 

same length and content, but their pcs occur in retrograde order. The T4 cycles are 

(0-4-8), (1-5-9), (2-6-10), and (3-7-1 1). The T8 retrogrades are (8-4-O), (9-5-I), (10-6-2), 

and (1 1-7-3). Morris labels as involurions those TTOs that are their own inverses. The 

TTOs To and T6 are involutions, for example, as are all of the T,I operations. The cycles 

of an involution have a periodicity of 1 or 2. 

Morris asserts that the powers of a TTO form a cyclic group (151). The number of 

TTOs within a cyclic group is determined by the periodicity of the TTO. Table 1. l a  lists 

the cyclic group of TTOs formed by the powers of Tz; this TTO has a periodicity of 6. 

Some cyclic groups contain cyclic subgroups, as indicated in table 1.1 b and c. For 

example, the cyclic group of T4 is a subgroup of cyclic group T2 since the powers of T4 

are also the second, fourth, and sixth powers of T2. These two cyclic groups thus coincide 

in the TTOs T4, Tg, and To. In the same way, the cyclic group of T6 is a subgroup of cyclic 

group T2 since the powers of Tg are respectively the third and sixth powers of T'. T'nese 

two cyclic groups coincide in the TTOs T6 and To. 

Tab1 e I .  I .  The cyclic group of T2 (a) and cyclic subgroups of Tr (b) and T6 (c) 



In appendix 2 of his book, Moms lists the cycles generated by the 48 TTOs.16 They 

are divided into four types: T,, TnI, T,M, and T,MI. The TTOs of each type may be 

divided M e r  into classes according to the structure of their cycles: six classes of Tn: 

two classes of T,I, three classes of T,M, and four cIasses of TnMI. These classes are 

listed below in table 1.2. Within each class, the cycles generated by the specific TTO 

reveal transpositionally related cyclic patterns. Figure 1.7 illustrates how one pair of 

TTOs, TIM and TIM, belong to the same class based on the transpositional relationship 

between their corresponding cycles. 

Table 1.2. Classes of ITOs according to transpositionally related cyclic structures 

class membership 

( I )  n = odd integer 
(2) n = even integer 

( I )  n = 0,4,8 
(2) n = 2,6,lO 
(3) n = odd integer 

Figure 1.7. Transpositional relationship between cycles of TTOs Tl M and T'M 

John Clough explores interval cycles in the context of a diatonic universe of seven pcs 

in his article "Diatonic Interval Sets and Transformational Structures" (1979-80). He 

measures intervals between pcs in ascending diatonic steps, and disregards the chromatic 

l6 A similar version of this appendix and much of the related discussion appears in an earlier article 
written in collaboration with Daniel Starr (Starr and Morris, 1977) and in a separate article by Starr (1978). 



notes between certain steps, asserting that his depiction of the diatonic system is not as a 

subset of the twelve-pc universe. Instead Clough depicts a universe of seven pcs, where 

all diatonic intervals of the same numerical name are considered equivalent, regardless of 

'' 
Clough lists the ascending intervals between adjacent pcs in an ordered string, which 

he calls an interval series ( I S ) .  The equal-interval series (=IS)  is a specific type of IS 

consisting of a string of intervals of the same size. Clough recognizes six classes of =IS 

(excluding interval zero). He notes that all six classes produce all seven pcs of the 

diatonic system before any pcs are repeated (1 979-80,468). 

Clough argues that the melodic sequence is an example of diatonic serialism: although 

"in a weaker sense than that of classical 12-note serialism" (470).18 Clough recognizes a 

sequence as having "serial" properties if it unfolds a complete diatonic interval cycle 

(=IS), or can be decomposed into two or more intcrval cycles, each of which produces all 

seven pcs before any repeat. Clough proposes three procedures for detecting such a serial 

process underlying a given melodic sequence. He identifies the first procedure as 

"decomposition into parallel lines." If a sequence contains two or more different intervals 

in a repeating interval series (RIS), it can be divided into the same number of parallel 

lines, each exhibiting a different =IS. Example 1.6a decomposzs the RIS (14) into two 

parallel =IS, which may be interpreted as diatonic interval4 cyclic segments. I g  The 

second procedure, "straightforward enumeration," applies to a sequence generated by a 

single interval. Example 1.6b shows how a single =IS sequence may be interpreted as a 

segment of a diatonic intenral-2 cycle. When verticalized, the parallel chords that result 

also reveal three linear segments of diatonic interval-6 cycles. The third procedure is 

identified as "grouping." A sequence may be segmented into discrete groups of pcs 

which, when reordered, produce a succession of parallel chords corresponding to an =IS, 

- 

" Clough refers to this aggregate of seven pcs as the "total diatonic" or "TD" (1979-80,469). 

I8 CIough's use of the term "sequence" does not incIude considerations of register and rh>.thrn. 

19 Examples 1.7a, b, and c are adapted kom Clough's exampks 6,7, and 9 respectively (1979-80). 



Example 1.6. Melodic sequences that illustrate "serial" properties in their component 
diatonic interval cycles 

(a) diatonic interval-5 cyclic s m e n t  
1 I I 

V I 1 I 
diatomc imemd-5 cyclic segnenr 

IS: 1 4 1 4 . .  

I diatonic ~ntenml-l cvclic xnment 
I I 1 t I 

-- 

diatonic interval4 cyclic segment 

as illustrated in example 1.6c.~' As with the second procedure, grouping results in parallel 

chords that reveal linear diatonic interval cycles. 

Clough also discusses regulrrr extraction and regular interpolation (476-80). The first 

term refers to a process of selecting pcs at regular intervals from an =IS in order ti, 

generate another =IS. The result of this process may be interpreted as a diatonic interval 

cycle embedded in another diatonic interval cycle. Conversely, the second term refers to a 

" Clough hrther stipulates that repeated notes are treated as  tied notes, and are not considered members 
of subsequent groups. 



process of adding pcs to form fixed intends between each of the intervals of a given =IS. 

Clough contends that both processes may generate hierarchical structures in the diatonic 

system. 

Analytical studies of Perle's theory of twelve-tone tonality 

Perle has won acclaim for his compositions, and his analytical contributions to the 

study of twentieth-century music are widely recognized, particularly in the area of Berg 

scholarship. But his theory of twelve-tone tonality is not well known in the theoretical 

community, perhaps in part due to its compositional purview, idiosyncratic terminology. 

and high level of abstraction. Only in the last decade or so have other expositions of 

Perle's theory appeared. These include dissertations by T. Patrick Carrabre (1 993) and 

Steven Rosenhaus (1995), a chapter by Elliott Antokoletz in his textbook Twentieth- 

Centtuy Music (1992), and articles by Dave Headlam (1995) and Charles Porter (1 995). 

Porter's work focuses on the manifestation of the 5:4 proportion in the parameters of 

rhythm, tempo, phrase, form, and elapsed time in 'T\locturne," the third movement of 

Perle's Sonata a Quatho, and does not extend to pitch. 

In the chapter devoted to Perle's theory of twelve-tone tonality in T~venfieth-Centmy 

Music (1992,426-47), Antokoletz introduces the basic elements of the system and 

provides short analyses of excerpts from three works. These works are drawn from three 

different periods of Perle's compositional output, and are meant to be representative of 

the evolution of the system and its expanding possibilities. Antokoletz only briefly 

mentions the more abstract relations among the elements, focusing instead on the 

construction, interpretation, and relationships of chords in progressions at the 

compositional surface. 

T. Partick CarrabrC divides his dissertation "Twelve-Tone Tonality and the Music of 

George Perle" (1993) into three chapters. The first chapter presents the theoretical 

principles of Perle's theory. In the next two chapters Carrabre adopts a chronological 

approach in order to trace the theory's evolution. Beginning with the inception of Perle's 

theory in the 1 N O S ,  Carrabrk divides Perle's compositional output into several periods: 

the twelve-tone modal system, the expanded modal system, the twelve-tone tonal system, 



as described in Perle's book Ttvelve-Tone Tonality of 1977, and the more mature system 

that includes Perle's formulation of synoptic arrays." 

Carrabrk supplements each stage of his presentation with analyses, in which he 

employs voice-leading graphs that typically include multiple levels of reduction. Further, 

CarrabrC employs a number of Schenkerian concepts, such as the L'rlinie, prolongation. 

register transfer, cover tones, reaching-over, and initial ascent to the primary tone. The 

voice-leading graphs show diminutions of neighbour gestures, passing motions, 

arpeggiations, and segments of interval cycles. Carrabre modifies the Schenkerian terms 

to fit within the context of the twelve-tone tonality system. For example, three of his 

graphs show a descending fbndamental line, but the lines are of chromatic semitonal steps 

to an axial note, rather than diatonic steps to a tonic." Carrabrk asserts that harmonic 

motion, like voice leading, is generally directed by long-range neighbour gestures, 

passing gestures, cyclic segments, T6-related verticalities, or prolongation of dyads of the 

same interval or sum. 

In his dissertation "Harmonic Motion in George Perle7s Wind Quintet No.4" (1 995) 

Steven L. Rosenhaus presents the main tenets of the system of twelve-tone tonality in the 

form of ten "general principles" based on information distilled fiom Perle's Twelve-Tone 

Tonaliw and Carrabre's dissertation. Rosenhaus then proceeds to discuss Perle's Wind 

Quintet No.4 (1987) in detail. In what he describes as an "eclectic approach," Rosenhaus 

represents the large-scale relationships of twelve-tone tonality in simple line graphs and 

relationships of synoptic arrays in tables. As did Carrabre, Rosenhaus illustrates 

prolongational relationships and voice leading in the form of reductive graphs. Rosenhaus 

opts not to perform an exhaustive analysis that accounts for every pitch of the quintet, 

stating that "with the inherent flexibility of the twelve-tone tonality system, arrays can 

change, and do change in the Quintet, fkequently. The same may also be said of array 

alignments. . . . To attempt a chord-by-chord analysis under those circumstances would 

ultimately prove fi-uitless" (1 995,260). As a result, Rosenhaus limits his foreground 

" Synoptic arrays are fully explained in chapter two of this dissertation. 

Carrabri (1993) gives the graphs in his examples 2-1 1 (1 52), 3-12 (207), and 3- 19 (230). 



analysis mostly to cadence points, and focuses his attention instead on how the larger 

relationships of tonality and synoptic arrays direct the formal structure of the work. 

Dave Headlam's article "Tonality and Twelve-Tone Tonality: The Recent Music of 

George Perle" (1995) combines a presentation of Perle's theory with a detailed analysis 

of the third movement from his Piano Concerto No. I. [n a pedagogically oriented 

approach, Headlam unfolds the tenets of the theory gradually. He begins by making some 

general observations about the pervasiveness of certain intervals in the opening six 

measures of the movement. Headlam uses these observations to introduce some of the 

basic elements of the theory. He then reexamines the musical excerpt in the context of the 

theoretical elements he has just presented. Headlam repeats this three-stage presentation 

throughout the article, moving from the most basic elements to the more abstract 

relationships of the theory. He discusses briefly Perle's increased use of dissonance in the 

context of twelve-tone tonality, defined as pcs that do not belong to the prevailing array 

(307-8).= The only significant relationship not discussed by Headlam in this article is that 

of synoptic arrays. This is perhaps due to the fact that while Perle presents the topic in the 

first edition of Twelve-Tone Tonality, the concept of synoptic arrays is not fully formed 

until the second edition of 1996. 

Headlam makes limited use of pc set theory, in order to relate segmented groups of 

pcs according to their transpositional or inversional equivalence. Headlam presents his 

analyses of the movement in reductive graphs. Although the graphs employ the 

Schenkerian notational conventions of beams, slurs, and stemless noteheads, the 

relationships they represent are not prolongational in the Schenkerian sense. Rather, 

Headlam's graphs focus on the patterns of sums and intervals and interval-cycle 

unfoldings within linear and vertical segments. 

Arrays in the context of twelve-tone tonality are combinations of cyclic sets, and are discussed in 
detail in chapter two of this dissertation. 



Although there are some points of intersection, the approach taken in this dissertation 

departs from previous expositions of Perle's theory in several ways. Chapter two presents 

the tenets of twelve-tone tonality, taking into account the most recent developments of 

the theory as set forth in the second edition of Twelve- Tone TonaZity ( 1  996). The topics 

have been reordered here, however, for greater clarity. Some of the more abstruse topics 

are not included, due to my determination that they are not applicable, or not absolutely 

necessary to the discussion at hand, or because Perle himself has indicated that the topics 

are still not fully developed, or have not proved fruitful. 

Following this exposition of Perle's theory of twelve-tone tonality, the next two 

chapters branch off in two very different directions; chapter three is of a speculative 

nature, while chapter four is analytical. Chapter three unfolds a theoretical investigation 

entirely outside the context of twelve-tone tonality, although it takes Perle's cyclic sets as 

its point of departure. The chapter explores the properties of the cyclic sets, utilizing 

selected tools of pc set theory to generate families of pc set classes from the cyclic sets. 

The chapter reveals close structural relationships within and among these families. 

Readers interested in analytical applications of concepts from Perle's theory as 

presented in chapter two may wish to proceed directly to chapter four, which marks a 

return to the context of twelve-tone tonality. Chapter four presents analyses of the first 

and fourth etudes of Perle's Six Etudes for Piano ( 1  973-76). The chapter aims to uncover 

compositional strategies at both local and deeper stmctural levels. The analyses challenge 

Rosenhaus's contention, in his study of Perle's Wind Quintet No../, that "there are too 

many arrays to account for, and elements of prolongation . . . to rely solely on a chord-by- 

chord description. Such examinations would never describe the work as a whole, for most 

of its internal relationships operate at the highest, that is, synoptic, level" (1 995,245-46). 

In the detailed analyses of both etudes presented in chapter four, it is clear that the more 

local relationships are reflected in a variety of ways, not only at the compositional 

surface, but also at higher levels. 

The analyses of the selected ehtdes are guided primarily by Perle's theory of twelve- 

tone tonality, but are supplemented by observations from the perspective of pc set theory, 

as developed by Allen Forte (1 973) and extended by Robert Morris (1 995b). The set- 



theoretical approach provides insights that complement those of the twelve-tone tonal 

approach. In addition, many compelling observations of Perle's music are evident only 

from the perspective of pc set theory. The combination of approaches provide a multi- 

dimensional view of the etudes." 

Finally, chapter five will review the insights and contributions of the previous 

chapters, discuss the critical reception of Perle's theory, and offer suggestions for areas 

of future research. 

- - - - - -  - - 

In addition to cyclic and symmetrical patterns, formations, and progressions, the analyses in chapter 
four uncover techniques more closely related to serial twelve-tone practices, such as the operations of 
transposition, inversion, retrograde, retrograde-inversion, and rotation. This finding speaks to the influence 
of the composers of the Second Viennese School, especially Berg, on Perle's own compositional methods. 



Chapter Two 

The Theory of Twelve-Tone Tonality 

Perle's system of twelve-tone tonality evolved from some initial misconceptions he 

had formed about Schoenberg's twelve-tone system. Perle writes: "My understanding of 

the nature of the twelve-tone row and of how it could hnction as a source of pitch class 

relations differed in the most radical way from Schoenberg's" (l990a, 127).' First, Perle 

was unaware that Schoenberg, unlike Berg, did not employ the technique of rotation. 

Perle assumed that the last pitch class (pc) of the row had as its closest neighbours the 

first and penultimate pcs of the row. Second, Perle did not realize that the twelve pcs of a 

row followed a strict linear ordering. "Uninstructed as I was in Schoenberg's 'twelve- 

tone system,' I correctly assumed that the adjacencies comprised in the forty-eight 

different forms of a given twelve-tone row were a collective statement of the relations 

assigned to each element of the semitonal scale, but it did not occur to me that the tone 

row in itself was to be construed as a unitary linear structure" (1977b, ix). 

Perle observed that any given pc has neighbours in the prime form of the row, and two 

other neighbours in the inverted form. For example, in figure 2.1 a, C is flanked on either 

side by B and D in the prime form of the given row segment, and by F5 and A in the 

inverted row. Perle reasoned that since these four neighbour notes constituted the closest 

relationships with the axial tone, then that tone could proceed in either direction to or 

fiom any of these pcs and could move freely between the prime and inverted forms of the 

' Perle's first exposure to music composed in the twelve-tone method occurred in 1937, when he 
encountered Berg's Lyric Suite. Perle began an intensive study of  the work, hoping to deduce Schoenberg's 
method fkom it. In 1937 very little was known in the United States about Schoenberg's twelve-tone method. 
Contemporary commentaries on the Lyric Suite gave fleeting reference to the work's twelve-tone aspect. 
Moreover, access to Schoenberg's own twelve-tone music was severely limited, due to the outbreak of 
World War 11. Hence it was not until 1939, during a composition lesson with Ernst Krenek, that Perle 
learned of his misunderstanding o f  Schoenberg's method (1 WOa, 123- 134). 



row. Hence Perle interpreted the four neighbours as forming a cluster around a central 

tone, as in figure 2. lb. Each neighbour tone may in turn become an axial tone, likewise 

moving fieely within its own neighbour-note cluster. We see this in figure 2. lc, with pc 

A now the axial tone. Perle believed that any given pc could move back and forth 

between neighbouring pcs in both the prime and inverted forms of the twelve-tone row. 

Figure 2. I .  Ne ighbo ur-note relationships around axial tones 

(a) row segment in prime form: B C  D F A A' G F" D" B' C" (B 
row segment in inverted form: B B~ F C' D D' E G F' C A (B 

(b) neighbour-note duster around axial-tone C: F' 
B C D  

A 

(c) neighbour-note cluster around axial-tone A: C 
F A A' 

B 

Perle was soon to learn of his error, but the notion of inversionally related row forms 

and neighbour-note relationships intrigued him, and sparked the genesis of his own theory 

of twelve-tone tonality. 

This chapter will first introduce the more concrete elements of Perle's theory, and then 

proceed to a description of the basic relationships and means of progression among these 

elements followed by an exploration of the most abstract structural relationships. The 

chapter will conclude with a discussion of the theory's potential for f i rher  development. 

Cyclic sets 

Perle builds his system of twelve-tone tonality on a foundation of interval cycIes. An 

interval cycle is an ordered series of pcs based upon a single recurrent interval, which is 

measured by the number of semitones it spans. The interval cycle is completed by the 

return of the initial pc. There are twelve different cycles, generated by the intervals of 

each of the six different interval classes (ics). These are notated in example 2.1, along 



with corresponding pc integer notation? Cycles generated from complementary intervals 

form successions of pcs in retrograde order. Hence an ic-cycle represents both 

complementary intervals within the same ic. Members of an ic therefore include a given 

interval, its complement, and all octave equivalents. The octave divides equally into one 

semitonal or ic 1 -cycle, two whole-tone or ic2-cycles, three minor-third or ic3 -cycles, 

four major-third or icCcycles, and six tritone or ic6-cycles. is only one perfect- 

fourth or ic5-cycle. 

Perle generates the basic unit of' his system by alternating members of inversionally 

related interval cycles (example 2.2). He gives this construct the name cyclic set.' Perle 

differentiates between the complementary cycles by designating the ascending form the 

P-cycle (prime), and the descending form the I-cycle (inverted), and by listing the P-cycle 

members in italic font. In this formation any given pc is referred to as an axis nore and is 

flanked by a neighbour note on either side. Each pair of neighbour notes or axis notes 

derives from the same interval cycle, and thus represents the set's cyclic interval. In 

addition, each axis note maintains the same combination of sums with its neighbours. In 

the cyclic set of example 2.2a the cyclic interval is 1, and the alternating adjacent sums 

are 0 and 1. These surns are called the "tonic sums.'* The tonic sums pinpoint the specific 

pc alignment of the inversionally related cycles. Each pair of neighbour notes in example 

2.2b preserves the cyclic interval 7, while each pair of adjacent members (the axis pc 

paired with each of its neighbours) forms a repeating tonic sum couple of 0,7. Hence the 

cyclic set needs only three consecutive elements for its identification. The segment 4 8 e, 

for example, enclosed in a rectangle in example 2.2b, identifies the cyclic interval 7 (as 

e-4=7) and the two tonic sums 0 (as 4+8) and 7 (as 8+e). Moreover, the cyclic set is 

symmetrical: its retrograde ordering of pcs is identical to its prime ordering, and the 

' Integers 0 to 1 I represent the 12 pcs, with C=O, C'I DLI, and so on. Integers 10 and I I ,  when 
representing pcs, sums, or differences, will be replaced by "t" and "e" respectively. 

In the first edition of Twelve-Tone Tonality (1977b) Perle used the terms "cyclic sets" and "set forms" 
interchangeably. In the second edition (1996) he uses the term "cyclic set" exclusively throughout the new 
chapters of Part 11. 

' Perle refcrs to these surns as "adjacency sums" and "primary sums" in the first edition of Twelve-Tone 
Tonality; he identifies them consistently as "tonic sums" in Part I1 of the second edition of Twelve-Tone 
Tonality (1 996). 



Example 2. I .  Interval cycles 

n icl qck 
Y 

second half of the cyclic set is both the tritone transposition and the retrograde of the first 

half.' 

Perle uses the tonic sums to name the cyclic sets, with each sum preceded by the 

lower-case letter p or i. Perle applies a formula which is based on whether the pcs 

involved belong to P or I cycles, and whether the tonic sums they form are even or odd. If 

the tonic sum is even and the left element of the dyad belongs to the P cycle, then the sum 

will be preceded by a p. But if the left element belongs to the I cycle, then an i precedes 

the sum. If the tonic sum is odd, the opposite situation obtains. Once the p- and i- 

designations have been determined, the tonic sums should then be ordered so that the 

The cycIic sets for all cyclic intervals (mod 12) are listed in appendix one. 



Example 2.2. Cyclic sets of interval I@) and interval 7 (b) 

tonic sums 0. 1 
-171- 

O O I e Z t 3 9 4 8 5 7 6 6 7 5 8 4 9 3 ~  2 e I O O  - 

cyclic interval may be determined consistently by subtracting the left sum from the right. 

Thus, in example 2.2a the cyclic set is labelled as pOp1; the cyclic set is constructed from 

inversionally related interval 1 cycles, and its tonic sums are 0 and 1. In the same way, the 

cyclic set in example 2.2b is pOp7; this cyclic set derives fiom invenionally related 

interval 7 cycles, and its tonic sums are 0 and 7.6 

In the first edition of Twelve-Tone Tonality Perle contends that the ordering of the tonic sums in a 
cyclic set is irrelevant. Whether a cyclic set is identified as pop7 or p7p0 the ordering of the pcs and the 
cyclic interval within the set are the same. To determine the cyclic interval Perle instructs the analyst to 
"subtract the even sum from the odd for p and vice versa for i. Thus pop7 and i5i0 are both interval-7 cyclic 
sets" (1977b, 21). Yet Perle does not explain here how to determine the cyclic interval for a cyclic set that 
includes both p- and i-designations and whose tonic sums are either both even or both odd, as in poi2 In a 
later article, however, Perle advises the analyst to "count up fiom an even 'p' or odd 'i' sum and down From 
an odd 'p7 or even 'i' sum" (1993, 300, n.2). This rule obtains for both even and odd cyclic intervals. Hence 
the cyclic interval of the poi2 set is 2, whereas p2iO's cyclic interval is t. Likewise, pOp5's cyclic interval is 
5, while i5i07s cyclic interval is 7. 

T. Patrick Carrabrk suggests a simple method for determining the cyclic interval: subtract the tonic sum 
on the left from the tonic sum on the right (1993, 33). But this method may lead to the assumption that 
interval-7 generates pOp7, while interval -5 generates p7p0. The assumption that pop7 and p7p0 are 
generated by different cyclic intervals contradicts Perle's intention. Clearly, the ordering of the tonic sums 
themselves is also significant. Perle acknowledges this fact in the newly added chapter 33 in the second 
edition of Twelve-Tone Tonality, wherein he stipulates that "even p-sums and odd i-sums [be placed] on the 
left, and odd p-sums and even i-sums on the right, so that the left tonic sum of the set is subtracted from its 
right tonic sum to determine the cyclic interval" (1996, 183). 



Arrays and array segments 

Perle vertically aligns two cyclic sets to form what he calls an array. The array takes 

its name from its component cyclic sets; hence both pairings in figure 2.2a and b are 

identified as the array pOp7/p4pe. The cyclic set p4pe in figure 2.2b has been shifted one 

position to the right to create a different alignment between the two cyclic sets. 

Figure 2.2. Two alignments of array pop 7/plpe 

Perle segments arrays into units of varying sizes, primarily dyads, trichords, 

tetrachords, and hexachords7 He identifies the main unit as the axis-dyad chord, a 

collection of six pcs formed by pairing trichordal segments fiom each of the cyclic sets. 

In figure 2.2% a rectangle encloses one such axis-dyad chord, formed by aligned trichords 

9 3 4 and 4 0 e.  An axis-dyad chord comprises three vertical dyads. The middle dyad is 

the axis dyad (identified as 3/0 in the segmented axis-dyad chord of figure 2.2a), which is 

surrounded by the outer neighbour dyads (914 and 4/e in the same figure). Two 

consecutive neighbour dyads omitting the axis dyad form a neighbour note chord (figure 

2.3a). Perle usually refers to it as a cyclic chord because its horizontal dyads contain the 

cyclic intervals of each cyclic set (4-9=7 and e-4=7). This pair of cyclic intervals forms 

the may's interval system, which is represented by a pair of integers denoting the cyclic 

intervals. Perle constructs arrays with cyclic sets of either the same or different cyclic 

intervals. Thus, the interval system of pOp7Ip4pe is identified as 7,7, whereas the interval 

system of i7i8h3p5 is 1,2.' 

- -- 

7 Perle recognizes repetitions of a pc within a segment as independent entities rather than multiple 
instances of a single member of a collection. Since any collection may include pc duplication, a hexachordal 
colIection in Perle's terms may contain less than six distinct elements. The same obtains for dyads, 
trichords, and tetrachords. Further, these collections must comprise contiguous pcs, but they do not 
necessarily occur as verticalities or in single lines. 

Arrays are formed by a combination of any two cyclic sets (as listed in appendix one), including those 



Another typical segmentation of the array yields the sum tetrachord, which consists 

of an axis dyad and only one of its neighbour dyads (figure 2.3b). Given any sum 

tetrachord, it is possible to ascertain two of the four tonic sums (one &om each cyclic 

set), thus indicating the particular pc alignments of the two cyclic sets. The cyclic 

intervals comprising the interval system cannot be determined, however, and thus there 

is no way to identify the array itself from an isolated surn tetrachord. 

Figure 2.3. Cyclic chord and sum tetrachord ofpOp 7/prCpe axis-dyad chord 

(a) cyclic chord: 9 - 4 (b) surn tetrachord: 9 3 - 
4 - e 4 0 -  

Each array contains twelve different axis-dyad chords; that is, for each of the twelve 

trichords of one cyclic set there are twelve possible alignments of triadic segments in the 

other cyclic set.g 

Certain alignments of the cyclic sets produce a special type of axis-dyad chord Perle 

calls the tonic mis-dyad chord. It is the only array segment granted hierarchical status in 

Perle's system, due to its high degree of pitch-class duplication. To achieve tonic status 

an axis-dyad chord must meet several conditions. First, the sum of its axis dyad must 

duplicate a tonic sum (as in figure 2.4a, wherein the axis-dyad of sum 7 duplicates the 

tonic sum of p7). Second, the pcs of the axis dyad must also be present simultaneousIy in 

a trichordal segment of one of the cyclic sets (figure 2.4b). A third condition arises when 

the cyclic interval is the same for each of the cyclic sets of the array (figure 2.4~).  When 

this is the case, the pcs of the neighbour dyads must be found in a tetradic segment of the 

other cyclic set. But if an array's interval system comprises different cyclic intervals, the 

cyclic chord cannot be found as a tetradic segment of either cyclic set; each cyclic set 

comprises only one of the two cyclic intervals that form the cyclic chord. Hence the third 

arising f?om either the same or different partitions of the same cyclic interval, or from different cyclic 
intervals. 

Although there are actually twenty-four possible alignments, twelve of these are duplicates, since the 
second haIf of the array is a retrograde of the first halt and will thus render the same twelve axis-dyad 
chords. 



condition of tonic chords does not apply to chords from arrays of differing cyclic intervals 

(figure 2.4d). 

Thus, duplicated tonic sums and pcs are the distinguishing features of a tonic chord in 

twelve-tone tonality. Yet it is not merely the phenomenon of horizontal and vertical 

duplication that gives the tonic chord its significance; rather, it is the ease with which 

such a chord may be used as a pivot chord to other arrays, as will be discussed below in 

the section on modulation. 

Figure 2.4 Attributes of tonic axis-dyad chords 

Transposition and inversion 

For each cyclic interval there are twelve cyclic sets, which Perle subdivides into two 

groups: six related by transposition and six by semi-transposition.'' The labeis of the 

cyclic sets related by transposition have matching p and/or i designations. Their 

corresponding tonic sums differ by a constant even integer. This integer is actually an 

even sum, since it represents the addition of either the same odd or even integer to each of 

the two component pcs of the tonic sum. Thus, the labels pop7 and p2p9 indicate that the 

two cyclic sets are transpositionally equivalent. Figure 2.5a illustrates the transpositional 

relationship between pop7 and p2p9. The T2 applied to the tonic sums of the cyclic sets 

indicates the application of TI to each of the component pcs. Hence the relationship 

between the tonic sums may be expressed as TTS2. 12 

lo  Instead, the cyclic chord is a tetrachordal segment from a derivedset. See chapter 18 of Tdve-Tone  
Tonality ( 1  977b, 69-72). 

I 1  Perle's concepts of semi-transposition and semi-inversion (to be discussed below) are not iabelled as 
such until the second edition of Twelve-Tone Tonality (1 996, 122, n.34). 

" This dissertation introduces an unconventional notational practice in the discussion of the various 
parameters of twelve-tone tonality. The operation of transposition is typically associated with pitches and 



Conversely, the cyclic sets pop7 and ili8, whose p/i designations do not match, are not 

transpositionally equivalent. Their corresponding tonic sums both differ by an odd 

integer, indicating that each pc within the cyclic set could not be transposed by the same 

value. Instead, the two cyclic sets are said to be related by semi-transposition; that is, the 

axis pcs are nut transposed by the same interval as neighbour pcs (figure 2Sb). 

Figure 2.5. Cyclic sets related by  transposition (a) and semi-iransposition (b) 

(a) pop?: 0 0 7 5 2 t 9 3 (b) pOp7: 0 0 7 5 2 t 9 3 

Analogous to the transposition of cyclic sets, the transposition of arrays entails adding 

a consistent even integer to each of  the four tonic sums, thereby preserving their p/i 

aspects. For example, the addition of 2 to each tonic sum in transposing the array 

pOp7/p4pe to pZp9/p6p l translates into the addition of 1 to each pc, as illustrated in the 

two axis-dyad chords of figure 2.6a.13 On the other hand, adding the same odd number to 

each tonic sum in an array changes each of the corresponding tonic sums' p/i 

designations. Since an odd slim is  not divisible into two identical even or odd values, the 

addition of an odd integer to a tonic sum involves two different values being added to the 

individual pcs. Thus, a uniform transposition is not possible; that is, the axis-dyad and the 

cyclic chord will not be transposed by the same interval, as may be seen in the addition of 

- - 

pcs. If, however, transposition is acknowIedged as an arithmetical operation (addition) between two objects, 
then the term may be applied to different types of objects, in a manner analogous to the transposition of 
pitches and pcs. In this dissertation the term transposition may be used to describe the relation between 
tonic sums, interval systems, modes, or keys, as discussed below. To make the context clear, the particular 
parameter under transposition will appear in abbreviated form in the subscript after the T-label. For 
example, T with no subscript will refer t o  transposition of pcs; Tp wi1I refer to transposition of pitches; TTS 
wi1I refer to tonic sums in cyclic sets; Tls will refer to interval systems; TM, to modes; and TK, to keys. 
Furthermore, different elements within a parameter may be transposed by complementary values, which wilI 
be indicated by a k symbol preceding the value. 

l 3  Perle's operations of transposition and semi-transposition are thus two-stage processes involving 
muItiple operators. The transposition of pcs triggers a transposition in the corresponding tonic sums (and 
vice versa), although not by the same values. 



Figure 2.6. Axis-dyad chords related by transposition (a) and semi-trunsposition (6) 

3 to each tonic sum of pOp71p4pe in figure 2.6b. Both transposition and semi- 

transposition preserve the cyclic intervals of cyclic sets and arrays so related." 

To invert cyclic sets and arrays Perle subtracts the tonic sums &om a consistent even 

integer (figure 2.7a). The tonic sums of the inverted cyclic sets and arrays will retain the 

same pli designations, but will comprise the complementary cyclic interval. Since an odd 

integer is not divisible into two identical even or odd values, it is not possible to subtract 

the two component pcs of a tonic sum fiom the same value. The individual pcs must be 

14 In the second edition of Twelve-Tone Tonality Perle states that he will not differentiate behveen 
transposition and semi-transposition beyond this point, leaving it to the reader to "recognize the distinction" 
(1996, 185). 

IS Although the particular inversion notation of TnI suggests a hierarchical priority of inversion about pc 
0 (followed by transposition by a value of n), Perle views inversion as an sum-preserving operation that may 
occur about any axial pcs. From a similar viewpoint Lewin (1977) proposes an inversion symbol that is not 
dependent on pc labels, and does not prioritize inversion about pc 0. His expression IUV(s) denotes the 
inversion of a pc s about an axis u/v. (In more recent writings Lewing verticalizes the d v  symbols in his 
notation.) For instance, the axial pcs 5/6 lie between inversionally related pc pairs O/e, Ilt, 2/9,318, and 417. 
Nonetheless, if n represents the sum of the axial pcs u and v, the same inversionally related pc pairs are 
produced by the operation T,I (s). 

This study introduces a new notational system to denote transpositional operations on other objects in 
addition to pcs (see n. 12 above). As illustrated in figure 2.7, this notation is also used for inversional 
operations. Using Lewin's symbols in conjunction with this study's notational system, the inversional 
operation in figure 2.7a would be notated as ITS"! But since both the expressions Iuv(s) and T,I (s) yield the 
same result, I have elected to represent transposition and inversion operations of the parameters of twelve- 
tone tonaIity by the symbols T, and TnI, in an effort to maintain a degree of uniformity of operational 
symbo Is. 



Figure 2.7. Axis-dyad chord related by inversion (a) and semi-inversion (3) 

(a) pOp7: 0 0 7 
p4pe: 4 0 e 

(b) pOp7: 0 0 7 
p4pe: 4 0 e 

subtracted from different values (figure 2.7b). Hence the resulting cyclic sets or arrays 

wili not be inversionally equivalent; instead, they are related by semi-in~ersion.'~ 

All pairs of cyclic sets with the same tonic sums but with opposite p- and i- 

designations are semi-equivalent. Sets so related have the same ordering of pcs. but these 

originate in opposite P and I cycles. Thus, semi-equivalent cyclic sets comprise 

complementary cyclic intervals. " 

The cognate relation 

Perle introduces the cognate relation as another form of association between cyclic 

sets and arrays, in which adjacent pairs of pcs are held invariant between cyclic sets. 

More specifically, two cyclic sets are in the cognate relation if they are related 

inversionally and if they share a "single series of dyads" (1977b, 20), which implies that 

they share an invariant tonic sum. Two such cyclic sets are pop7 and p2p7, of cyclic 

l6 As with transposition and semi-transposition, inversion and semi-inversion are two-stage operations 
with multiple operators. Please see n. 13 above. 

17 For example, in the segment (9 6 1) fiom the cyclic set i3p7 (cyclic interval 4) the neighbour notes 
derive from the P cycIe and the axis note derives fiom the I cycle. The same segment in i7p3 of the 
complementary cyclic interval 8 (9 6 I )  derives its neighbour notes from the I-cycle and its axis note from 
the P-cycle. 



intervals 7 and 5 respectively. These cyclic sets share complementary cyclic intervals and 

the tonic sum 7 (figure 2.8a). Sets that share one of their tonic sums will also share that 

sum's component pcs. The cognate relation is apparent when the two cyclic sets are 

arranged so as to align the invariant pcs. The latter will appear in pairs of adjacent linear 

dyads of retrograde order. Each vertical dyad will add up to the shared tonic sum, referred 

to here as the cognate sum. 

Figrire 2.8. Cognate relation betweev! cyclic sets 

sum: 7 7 7 7 7 7 7 7  sum: 0 0 0 0 0 0 0 0  

The cognate relation also obtains between cyclic sets of the same cyclic interval if the 

sets share a tonic sum.'' Figure 2.8b illustrates the cognate relation between cyclic sets 

pop7 and i5i0. These sets share the same cyclic interval 7 and tonic sum 0, and are related 

by semi-transposition. In his chapter on Perle's twelve-tone tonal system in Twerztieth- 

Century Music Ellion Antokoletz observes that "all 12 forms of the cyclic set-the 6 

primes and the 6 inversions-form a closed system through the cognate relation, just as 

the circle of fifths forms a closed system for the scales of the major-minor system" (1992, 

433). Figure 2.9 illustrates this phenomenon in its anmgement of the twelve cyclic sets of 

interval 7, with sets related by transposition organized into rows, and those related by 

inversion in columns. The vertical and diagonal lines indicate the cognate relation. 

Although Perle stipulates that cognate sets must be related inversionally, a partial 

cognate relation might also be said to exist between sets whose cyclic intervals are neither 

complementary nor the same. In such sets the common pcs forming the invariant tonic 

- - -  -- 

18 Such cognate relations are possible through the relation of semi-equivalence. The semi-equivalent 
cyclic sets p2p7 and i7i2 share the same tonic sums, but comprise complementary cyclic intervals. As such, 
their pcs occur in the same order, although they derive fkom opposite P / I cycles. Hence just as pop7 shares 
a cognate relation with the inversionally related p2p7, it also shares a cognate relation with the semi- 
transposed i7i2. In figure 2.8b above, pop7 shares a cognate relation with the semi-transposed i5i0, just as it 
does with the inversionally related pOp5. 



Figure 2.9. Closed system of cyclic sets through rhe cognate relation 

sums do not occur in adjacent dyad pairs; rather, they coincide only when the dyadic 

pairs add up to the cognate sum. Figure 2.10a illustrates this partial relation in the array 

pOp?/i7iS, whose cyclic sets share tonic sum 7 and whose interval system is 7,l. 

The cognate relation may be detected not only between cyclic sets within an array, 

but also between arrays that share a tonic sum (figure 2. lob). The degree to which the 

cognate relation is present depends on whether the arrays' interval systems contain 

identical or complementary cyclic intervals between the cyclic sets of each array and 

between the arrays themselves. For example, the cognate relation is maximized between 

arrays pOp71i5iO and p2p9/i7i2, which share tonic sum 7 (figure 2.1 Ob). Both arrays have 

interval systems of 7,7 and are related by transposition; each array comprises cyclic sets 

related by semi-transposition. 

Figure 2.10. Partial cognate relations 



As illustrated in figure 2 . 1 0 ~ ~  the cognate relation is weaker between the arrays 

p2p3/i3i0 and p8p9/pOp9, which share the cognate sum 0, since their individual interval 

systems (1,9) contain different component cyclic intervals. Nonetheless, these partial 

cognate relations demonstrate that arrays which share a tonic sum are related to some 

degree through invariant adjacent dyads. 

Secondary differences and sums 

Perle forms arrays by aligning the cyclic sets in one of two ways: either their 

respective P-cycles and I-cycles are aligned (as in figure 2.2a), or the P-cycle of one 

cyclic set is aligned with the I-cycle of the other, and vice versa (figure 2.2b). Perle 

characterizes an array as being in a difference alignment when the P-cycles and I-cycles 

of its component cyclic sets are aligned. As a result, the array's vertical dyads yield a 

consistent pattern of altemating intervals referred to as its secondary differences. The first 

alignment of array pOp7/p4pe in figure 2.1 la produces a repeating pattern of secondary 

differences 1/9.19 Rotating one of the cycles in a difference alignment relative to the other 

by an even number of places generates other patterns of secondary  difference^.'^ In 

comparison to its setting in figure 2.1 la, the p4pe cyclic sets in figures 2.1 1 b and c rotate 

their members by two and four places to the left, respectively. In figure 2.1 1d the cyclic 

set p4pe rotates its members two places to the right. 

Whereas parallel cycles are aligned in figure 2.1 1, opposite cycles may also be aligned: 

that is, P-cycles with I-cycles and vice versa. Perle refers to this as a sum alignment, 

which preserves a consistent pattern of alternating secondary sums. Figure 2.12 

demonstrates two of the possible sum alignments of pOp7/p4pe. Figure 2.12b rotates 

- -- 

19 Axis-dyads and neighbour-dyads in a difference alignment belong to opposite PA cycles. As a result, 
Perle calculates differences or intervals in opposite directions for axis dyads and neighbour dyads. Thus, 
either one may subtract the top integer fiom the bottom for those dyads t?om the P-cycle and subtract the 
bottom integer fiom the top for those dyads from the I-cycle, or vice versa. (This dissertation adopts the 
former order.) This stipulation plays a vital role in the calculation of an array's mode, to be discussed 
below. 

" Rotating a cyclic set by an odd number would align the P-cycle with the I-cycle, thereby converting 
the difference alignment to a sum alignment. 
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Figure 2.11. Various dzfference alignments of arraypOp7/p4pe resulting$-om rotation of 
cyclic set p4pe 

Figure 2.12. Various sum alignments of arraypOp7/p4pe resultingfrom rotation of cyclic 
set p;(Pe 

(a) pOp7: 0 0 7 5  2 t 9 3 (b) pOp7: 9 0 7 5 2 t 9 3 
p4pe: 1 t 6 5 e 0 4 7 p4pe: 6 5 e 0 4 7 9 2 

sums: 1 t 1 t 1 t 1 t s u m s : 6 5 6 5 6 5 6 5  

the p4pe cyclic set of the array two places to the left? 

Whereas cyclic intervals and tonic sums define the structure of the individual cyclic 

sets, secondary differences and sums define the particular relationship between the two 

cyclic sets of the array. 

Modes 

Perle describes the relationships between an array's cyclic sets in terms of the may's 

mode and key. The mode reflects the basic intervallic relationship between the cyclic sets; 

Perle names the mode according to the difference between the corresponding tonic sums 

of the cyclic sets in a difference alignment. Thus, the array pOp7/p4pe has a modal 

designation of 8,8, since 0 - 4 4  and 7-e=8 (fibwe 2.13a). 

The mode manifests itself in the collection of secondary difference patterns generated 

by all the difference alignments of the cyclic sets in an array. Fi=we 2.1 1 subjected the 

" Rotating an odd number of places would align parallel cycles, thereby converting the sum alignment 
to a difference alignment. 



array pGp7/p4pe to successive realignments of its cyclic sets, which generated four 

difference alignments and four pairs of secondary differences, 1/9, 8/4, 3/e, and 6/2. 

These pairs are related by transposition, with each pair maintaining a difference of eight 

between its component elements. The remaining difference alignments for this particular 

array will also show differences of eight: 2/t, 4/0,5/1, 7/3,9/5, t/6, e/7, and 0/8. This is 

because every array has a consistent intervallic pattern underlying the various difference 

alignments of its cyclic sets. This intervallic pattern is the mode. Thus, an alternative 

method of determining the array's mode is to find the difference between the axis-dyad's 

interval and each of its neighbour-dyad's intervals (figure 2. ljb)." 

Figure 2.13. Calcztlation of an array's mode 

(a) PO p7 (b) pOp7: 0 0 7 (c) ili6: I 0 6 

Modes offer a means of relating arrays fiom either the same or different interval 

systems. Arrays of any combination of interval systems may belong to the same mode if 

they preserve the same differences between their corresponding tonic sums. The array 

iei2/p3p6 (interval system 3 3  also belongs to mode 8,8, as does iOil/p4p5 (interval- 

system 1,l). Thus, mode 8,8 contains all mays whose adjacent secondary differences 

differ by eight. In the same way, mode 0,O contains all arrays whose adjacent secondary 

intervals differ by zero. A mode with two different elements in its name, such as mode 

2,4, results from mays whose interval systems comprise different cyclic intervals. 

Examples include array i 1 i6/iei2 of interval system 5,3 (figure 2.13~) and i 1 i7/iep3 of 

interval system 6,4. Both of these arrays belong to mode 2,4. Consequently, the 

alternating secondary differences emerging from any difference alignment of these arrays 

will display alternating differences of 2 and 4. 

" Modal designation offers fUnher evidence of the necessity for consistent ordering of tonic sums. Had 
the array pOp7/p4pe been ordered as pOp7/pep4 instead, the mode would have been identified as 1 3 ,  
implying an alignment of secondary difference pairs showing differences of 1 and 3, rather than of 8 and 8. 



Each array belongs to only one mode. Each mode contains twelve interval systems, 

and thus 144 arrays (twelve from each of the twelve interval systems). Finally, there are 

144 modes (twelve with identical elements in their names, twelve modes whose elements 

differ by one, twelve modes whose elements differ by two, and so on). 

Keys 

In Perle's theory the key indicates the relationship between an array's cyclic sets in a 

sum alignment, and is calculated as the sum of oppositely aligned tonic sums. Thus, the 

key of array pOp7/p4pe is identified as eye, since O+e=e and 7+4=e (figure 2.14a). 

An array in a sum alignment generates a consistent pattern of alternating secondary 

sums between its axis dyads and neighbour dyads. For example, the array pOp7/p4pe may 

be aligned to show any of the following secondary sum patterns: O/e, l/t, 2/9, 3/8,4/7, 

and 5/6. These pairs are all related by sum transposition, with each pair showing a sum of 

eleven. Every array contains a consistent symmetrical pattern underlying the various sum 

alignments of its cyclic sets, which defines the array's key. Thus, the key may also be 

calculated as the sum of the axis dyad's sum and each of its neighbour dyad's sums 

(figure 2.1 4b) .23 

Figure 2.14. Calculation of an array 's key 

(a) PO p7 (b) pOp7: 0 0 7 (c )  i l  it (d) ilit: 9 4 6  
+ =  + &  p4pe: + 6 5 e + g  + g  iSi6: -i 3 3 2 

sum: e e sum: 6 5 6 sum: 7 3 sum: 0 7 8 
'-e J '-7 J 

L e  J '-3J 

A key may relate arrays of the same or different interval systems. The same key 

relationships will be generated by any of the other sum alignments that show the same 

patterns of secondary sums. Therefore key eye comprises all arrays whose adjacent 

secondary sums add up to eleven. Likewise, key 4,4 contains all arrays whose secondary 

Key designation also supports the argument for consistent ordering o f  tonic sums. Had the array 
pOp7/p4pe been ordered as pOp7/pep4 instead, the key would have been identified as 4,6. Please see n.2 1 .  



sums add up to four. Key 7,3 contains arrays whose adjacent pairs of secondary sums add 

up to seven and three in alternation (figures 2.14~ and d). Just as there are 144 different 

arrays in each mode, there are also 144 different arrays in each key (twelve different 

arrays for each of twelve different interval systems), and 144 different keys in the twelve- 

tone tonality universe. 

Thus, the tonic sums provide much information about the structure of an array. The 

specific combination of tonic sums in each cyclic set describes the particular pitch 

alignment of the cycles within aach cyclic set. The differences between the tonic sums in 

each cyclic set indicate the cyclic intervals. The differences between parallel-aligned 

tonic sums disclose the underlying modal structure. The sum of oppositely-aligned sums 

yields the key.24 

Finally, within an array the relationship between a mode's elements corresponds to the 

relationship between its key's elements and its cyclic intervals. For array pOp7/p4pe, the 

mode is 8,8, the key is e,e, and the interval system is 7,7. The difference between the 

elements in each aspect of the array is These relationships all underscore the internal 

consistency within an array. 

Synoptic arrays 

Relationships among arrays are established by transposition, inversion, and 

membership in the same interval system, mode, or key. Yet collections of arrays lacking 

these associations may still be related at a more fundamental level. Perle establishes such 

connections in his concepts of synoptic arrays and tonality. Arrays in the same synoptic 

relationship share structural similarities among their interval systems, whereas arrays in 

the same tonality share the same axis of symmetry. 

Each synoptic array contains what Perle calls a master array, a group of arrays sharing 

the same difference or sum relationship between their component cyclic intervals, despite 

" The particular combination of tonic sums also determines the array's synoptic mode, synoptic key, 
and tonality, as will be discussed below. 

This issue is discussed in more detail below, in the section on synoptic arrays. 



differences in interval systems, modes, or keys. The synoptic array divides into the 

synoptic mode and synoptic key.26 Arrays whose cyclic intervals show the same 

difference belong to the same master array of the synoptic mode, whereas arrays whose 

cyclic intervals show the same sum belong to the same master array of the synoptic key." 

Perle identifies seven different master arrays in the synoptic mode, numbered from 0 

to 6,  determined by the ic difference between the two cyclic intervals in the interval 

system. The arrays listed in table 2.1 all belong to master array 0 of the synoptic mode? 

The underlying relationship among these seemingly disparate arrays is found in their 

interval systems. Each pair of cyclic intervals displays a difference of 0, as indicated in 

the fourth column, and so belongs to master array 0 of the synoptic mode. Thus all arrays 

in the same master array of the synoptic mode have interval systems that are related by 

transposition. The same relationship is exhibited in the arrays' modes and keys as well. 

Table 2.1. Representative arrays belonging to master array 0 of the synoptic mode 

' 6  Perle f ist  discusses synoptic key in the second edition of Twelve-Tone Tonality (1 996, 195-97). In the 
fist edition Perle's discussion dealt only with the synoptic mode, although the concept had not yet been 
assigned this particular label. Rather, Perle referred to the master arrays of the synoptic mode as "master 
modes and keys," or cotIectively as "master arrays" (1977b, 87,95,99). In the interim between the first and 
second editions both CarrabrC (1993) and Rosenhaus (1995) introduced Perle's mature formuIation of 
synoptic arrays in their Ph.D. dissertations, basing their information on independent correspondence with 
Perle. 

Array 
(a) iSi6h3i4 
( ~ ) P O P ~ / P ~ P ~  
(c) i 1 i4/p6p9 
(d) p2i6/pti2 

" Perle funher divides master arrays into master modes and master keys, to distinguish between arrays 
given in difference and sum alignments (1977b, 95). Thus, arrays in difference alignments that share the 
same difference between their component cycIic intervals belong to the same master mode of the synoptic 
mode, while the same arrays in sum alignments belong to the same master key of the synoptic mode. In the 
same way, arrays in difference or sum aIignrnents that show the same sum between their component cyclic 
intervals belong to the same master mode of the synoptic key, or master key of the synoptic key, 
respectively. 

" In Table 2.1 I have abbreviated the terms "interval system" and "synoptic mode" as "IS" and "SM," 
respectively. As well, the abbreviation "IS diff." represents the difference between cyclic intervals in the 
interval system. 

SM I IS IS diff. 
1-1=0 
7-7=0 
3 - 3 4  
4-4=0 

0 
0 
0 
0 

Mode 
2,2 
8,8 
7,7 
4,4 

1,l 
7,7 
3,3 
4,4 



Each of the seven master arrays of the synoptic mode contains a large grouping of 

arrays. For example, consider that there are twelve combinations of interval systems that 

differ by 1 (0,l; 1,2; 2,3; and so on), and that within each of these interval systems there 

are 144 different arrays. In interval system 0,1, for example, there are twelve cyclic sets of 

cyclic interval 0 to be aligned with twelve different cyclic sets of cyclic interval 1. Thus. 

master array4 of the synoptic mode contains 1,725 (as 12 X 144) different mays  whose 

interval systems differ by 1. This master array also contains those arrays whose interval 

systems differ by e, but this group may be shown to correspond with the former group by 

reordering the cyclic sets within each array. For example, the arrays of i3p5/i56 and 

i5i6h3p5 both belong to master-array 1 of the synoptic mode. 

In contrast to the synoptic mode, in each master array of the synoptic key Perk 

includes all arrays whose pairs of cyclic intervals add up to the same sum. He identifies 

seven such master arrays, numbered fiom 0 to 6.29 Whereas all arrays belonging to the 

same master array of the synoptic mode display the same difference relationships among 

their interval systems, modes, and keys, arrays in the same master m a y  of the synoptic 

key do not necessarily exhibit analogous sum relationships. The reason for this lack of 

symmew is that although complementary interval-system sums are subsumed under a 

single master array designation, they actually generate non-corresponding sets of 

relationships within the same master array of the synoptic key. Only those arrays sharing 

the same interval-system sums will exhibit symmetrical relationships. 

Arrays with the same interval-system sum will necessarily display a symmetrical 

relationship in the corresponding elements of their interval systems, as seen in table 2.2, 

rows a-e. For example, the corresponding left elements in the interval systems of rows a 

and b are related by TIS-2, while the comesponding right elements are related by TIS+~. 

But an analogous relationship among the keys is further determined by each array's 

aggregare sum, defined as the sum of the four tonic sums in an array name. All arrays 

of the same aggregate sum will have keys with symmetrically related corresponding 

elements, as illustrated in rows a-d. Finally, if the sums of the component cyclic sets 

79 In determining the master array of the synoptic key, interval-system sums larger than 6 are replaced by 
their smaller complementary value, mod-12. 



Table 2.2. Representative arrays belonging to master army 3 of the synoptic key 

(d) ili7/i3pe 
(e) p6it/p2iO 

IS sum Agg- 
(cyclic set sums) 

t (7+3) 
t (7+3) 
t (7+3) 

within the arrays are the same, then both the modal elements and the corresponding tonic 

sums of the cyclic sets themselves will be symmetrically related. We see this in in rows 

a-c of table 2.2, wherein the fifth column lists the same cyclic set sums (7+3) for each 

array. 

The aggregate sum in row d (sum t) is formed from different cyclic set sum pairs (8+2) 

than in rows a-c (7+3); consequently, the component elements of the mode in row d are 

not symmetrical with the corresponding modal elements in rows a-c. The aggregate 

sum in row e (sum 6) differs from the aggregate sum in rows a through d (sum t), and so 

the component elements of the key in row e are not symmetrically related to the 

corresponding key elements above them. The array given in row f, although a member of 

the same master array of synoptic key 2, shares no symmetrical relationships with any 

corresponding aspects of the arrays in rows a-e, since its interval system sum (sum t) is 

inversionally complementary. 

As with the synoptic mode, there are 1,728 different arrays in each master array of the 

synoptic key. For example, within synoptic array 2 of the synoptic key there are twelve 

distinct pairs of interval systems that sum to 2 and twelve that sum to t. Within each 

interval system (such as 8,6) there are 144 different arrays, or 12 different cyclic sets of 

one interval each aligned with 12 different cyclic sets of the other interval. 

Key Mode 



Tonality 

Tonality represents the other type of fundamental relation among arrays in Perle's 

theory, and is based on the concept of the axis of symmetv. Any symmetrical collection 

of pcs contains an invisible middle line, or axis, around which the various pcs are 

symmetrically positioned. The smallest such collection is a dyad. All dyads of the same 

sum comprise pcs symmetrically disposed across their axis. Each axis will be represented 

either by a pair of repeating numbers (for dyads of even sums) or by numbers that differ 

by 1 (for dyads of odd sums). For every even sum n the two axes are calculated as n/2 and 

n/2 t 6. For every odd sum n the two axes are calculcated as (r&1)/2 and ((&1)/2) + 6. In 

figure 2.15a, the axis for dyads of sum 8 is 4,4 (or t,t) while in figure 2.15b, the axis for 

dyads of sum 5 is 2,3 (or 8,9). 

Figure 2-15 Dyadic axes of symmetry 

(a) sum 8 dyads have axes of $ 4  and t,f: (6) sum 5 dyah have axes 0/2,3 and 8,9: 

2 3 1 5 6 7 8 9 r  e 0 I  
~ ~ I O e t [ ~ ' 7 6 5 4 [  

Similarly, Perle asserts that axis-dyad chords whose sum tetrachords add up to the 

same sum are also symmetrically related and have the same axis of symmetry. This axis is 

formed from one of three combinations: sum tetrachords of two even sums, two odd 

sums, or one even and one odd sum. Arrays represent concatenations of axis-dyad chords; 

therefore all arrays with the same aggregate sum will be symmetrically related and have 

the same axis of symmetry. 

Arrays so related fall into one of three categories of axial symmetry, which Perle 

identifies as the three tonalities. The fust category is Tonality 0, which constitutes all 

arrays whose aggregate sums are 0,4, or 8. Their axes consist of two repeated even 

integers, and so are simply transpositions of one another by an even value of T,. Table 2.3 

lists these in column a. The second group of arrays whose aggregate sums are represented 

by an odd integer constitute Tonality 1 (table 2.3, column b). Their axes are also 



Table 2.3. Three categories of tonality 

(4 
Agg. sum: 

0 
4 
8 

nalitv 0 I 6) Tc 

2/2 and 8/8 1 3 

axes: 
0/0 and 6/6 

- - 

axes: Agg. sum: 
1 0/1 and 6/7 

1 /2 and 7/8 
2/3 and 8/9 
3/4 and 9/t 
4/5 and t/e 
5/6 and e/O 

rf 
Agg. sum: 

2 
6 
t 

nalitv 2 
axes : 

1/1 and 7/7 
3/3 and 9/9 
5/5 and e/e 

transpositionally related, and include one even and one odd integer that differ by 1 .30 

Third, all arrays whose sum tetrachords add up to 2 ,6 ,  or t belong to Tonality 2 (table 2.3? 

column c). Their axes consist of a pair of identical odd integers, also transpositionally 

related by an even value of T,. Although Tonality 0 and Tonality 2 both contain arrays of 

even aggregate sums, the arrays of the former are not symmetrically equivalent to those of 

the latter, because their axes are formed from evenleven and oddodd integer pairs, 

respectively3 ' 
Since arrays are extensions of axis-dyad chords, the axis of any axis-dyad chord 

represents the tonality of all the axis-dyad chords within the same array, and 

consequently, the tonality of the array itself. Further, Perle contends that all arrays of the 

same category of aggregate sum belong to the same tonality. Thus the symmetrical 

relations extend from pcs within a dyad to massive groupings of arrays. Table 2.4 

compares three axis-dyad chords of arrays all in tonality 0. All three arrays have different 

interval systems, although the fnst two have the same aggregate sum. Although the array 

in column c has a different aggregate sum, the array still belongs to the same tonality, 

since its axis is a transposition of the other axes. 

30 In the second edition of Twelve-Tone Tonaliy Perle formally divides Tonality 1 into subcategories A 
and 8, based on transpositiona1 and inversional equivalence of the arrays: Tonality 1A includes those arrays 
of aggregate sums I, 5, and 9, and Tonality 1 B includes those of aggregate sums of 3, 7, and e (1996. 1 90). 

" In the second edition of Twelve-Tone Tonaliw Perle provides formulae to determine the tonality of an 
array, with n being the value of the aggregate sum. Tonaiity 0 includes arrays of 4n; Tonality IA includes 
arrays of 4n-t 1, Tonality 1 B includes arrays of &-I, and Tonality 2 includes arrays of 4n+2 (1996, 190-9 1). 



Table 2.4. Comparison of three axis-dyad chords ofdifferent arrays in the same tonality 

array: I (a) p6ith7p9 I @) pOp7h3it I (c) ili2h9iO 

interval system: I 4 2  I 7,7 I 1,3 

axis-dyad 
chord: 
dyadic sums: 1 6 9 8 1 3 7 3 1 9  4 7 

dyadic axes: 

aggregate sum: 

Modulation 

array axes: 

tonality: 

An array may modulate to another of the same or different interval system, tonality, 

master array of either the synoptic mode or synoptic key (or both). Modulation is often 

accomplished by replacing dyads of an axis-dyad chord with others of the same difference 

or sum. Perle identifies this as modulation through substitution. A second type of 

modulation occurs when various members of an axis-dyad chord are reordered, resulting 

in a reinterpretation of the axis-dyad chord as a segment of a different array. This type of 

modulation often involves rotation of segments in the cyclic sets. Perle refers to this as 

modulation through reinterpretarion.32 

Substitutional modulation involves either parallel or symmetrical transformations of 

both cyclic sets, with corresponding changes to the tonic sums. An examination of the 

tonic sums reveals the effects of substitutional modulation on array pOp7fp4pe (see table 

2.5, rows a and b). In order to modulate to another array of the same interval system, the 

tonic sums that form each cyclic interval must be altered in a parallel manner, as 

represented by the formulas [+x,+x] or [-x,-x]. Applying the same formula to both cyclic 

3,3 4,5 4,4 
9,9 tye t,t 

8 

" These terms were not formally assigned until the second edition of Twelve-Tone Tonaliry, chapters 35 
and 36 (1996, 198-223). 

4,4 
t, t 
0 

1,2 3,4 1,2 
7,8 9,t 7,8 

8 

4 3  2,2 3,4 
t,e 8,8 9,t 

0 

4,4 
tY t 
0 

0,O 
696 
0 



Table 2.5. Substitutional rnodulationsfi.om array pOp7/p4pe to arrays in the same 
interval system 

Formula applied to cyclic 
sets of initial array I Resulting 

pOp7/p4pe array 
- pOp7/p4pe 

Tonality IS SM SK Mode Key 7-l-L-L 

sets of an array will cause a modulation to another array of the same mode (table 2.5, 

row a). Applying both formulas to an array, one to each cyclic set, will bring about 

modulation to another array of the same key (table 2.5, row b). 

In these types of modulation, either the axis dyads or cyclic chords of axis-dyad chords 

are replaced with others of the same differences or sums. For example, in figure 2.16a, 

first the axis dyad of a chord fiom pOp7/p4peY and then the cyclic chord, are replaced by 

another of the same interval, effecting a modulation to a new array in the same mode. 

Conversely, modulations to arrays in the same key may be accomplished by substituting 

either an axis dyad or a cyclic chord of the same sum (figure 2.16b).-'~ 

Whereas modulation to an array of the same interval system may occur by replacing 

either the axis dyad or the cyclic chord in an axis-dyad chord, modulation to another array 

in a different interval system cannot occur by substituting another axis dyad, since it has 

no direct effect on the cyclic intervals. Rather, the cyclic chord may be replaced by 

- - - - -  - 

33 tn his discussion of substitional modulation, Perle restricts the procedure to tonic axis-dyad chords. In 
such cases, the axis dyad of a tonic axis-dyad chord is replaced by another of the same interval but different 
sum. This new axis dyad must duplicate a tonic sum in the new array, which is transpositionally related to 
the original. Conversely, the axis dyad of the tonic axis-dyad chord may be replaced by another of the same 
sum but different interval. The axis dyad's sum still must duplicate a tonic sum in the new array, which is 
symmetricaIly related to the original array. Perle aIso discusses substituting the neighbour dyads of a tonic 
axis-dyad chord with others of either the same sums or intervals, to form a tonic axis-dyad chord in the new 
array. In its consideration of substitional modulation between non-tonic axis-dyad chords as well as axis- 
dyad chords, this dissertation goes beyond Perle's original conception. 



Figure 2.16. Substitutional modulation with axis-dyad chords us pivots 

(a) pOp7: 0 0 7 

(b) pOp7: 0 0 7 
u 4 ~ e :  e 0 4 
sum: e 0 e 

another of the same differences or SI 

To modulate to an array of a different interval system, changes must be made to one or 

both cyclic intenrals of the original array, necessitating a [+x,-x] or [-x,+x] formula 

applied to each cyclic set. Applying the same formula to both cyclic sets retains the same 

difference relationship between the two arrays, which thereupon belong to the same 

master array of the synoptic mode, and have the same modal and key designations (table 

2.5, row c).  Applying both formulas to an array, one to each cyclic set, resuits in a 

symmetrical modification to the array's interval system; consequently, this type of 

modulation produces arrays in the same master array of the synoptic key (table 2.5, row 

d). This type of modulation involves the contraction of one cyclic interval and the 

expansion of the other.34 

A modulation may also result by changing only two of the tonic sums, involving some 

combination of the formulas [+x,+O], [-x,+O], [kO,+x], and $0,-x] applied to the cyclic 

sets. Substitutional modulation in these cases occurs by holding a sum tetrachord 

invariant, and replacing the remaining neighbour-dyad with another of the same sum or 

difference. This type of modulation may change the tonality, depending on the value of 

the integer added to tonic sums. If the integer 2 is added to two different pcs the agg-rcgate 

sum increases by a total of 4, which means that the new array is in the same tonality as 

the old array. This will obtain for all even values of x, since doubling any even numbers 

34 Perle discusses these types of alterations to the tonic sums of arrays, not in the context of modulation, 
but in the section on symmetrical equivalency relations in the newly added chapter 33 of the second edition 
of Twelve-Tone Tonaliry (1 996, 185-89). Essentially, by altering the tonic sums of an array in a symmetrical 
operation (such that a value n is added to two of the tonic sums and subtracted from the other two), another 
array is generated, and the two arrays are said to be "symmetrically equivalent." 



in mod 12 renders a value of O,4, or 8 (table 2.5, row e). If, however, an odd number is 

added to each pc in the neighbour dyad the tonality may shift, since doubling any odd 

number results in a value of 2,6, or t. If the original m a y  is in tonality 1, the modulation 

will occur within the same tonality, since tonality 1 includes all aggregate sums of odd 

numbers. But if the original array is in tonality 0, such a modulation will affect a change 

to tonality 2, and vice versa (table 2.5, row f). 

It is also possible to modulate by retaining only a neighbour dyad while substituting 

another sum tetrachord with the same dyadic differences or sums. Other such 

combinations may be derived, but since the resulting axis-dyad chords retain fewer 

invariant pcs their effectiveness as pivot chords is reduced. 

The other type of modulation, reinterpretative modulation, involves the reorganization 

of pcs within an axis-dyad chord to pivot into a new array. The simplest method is to 

invert one of the dyads. Inverting a neighbour dyad may change the cyclic intervals if the 

dyad does not contain duplicate pcs (figure 2.17a), while inverting the axis dyad does not 

affect the cyclic intervals (figure 2.17b). Although the dyadic inversion changes some of 

the array's tonic sums, there is no change to the aggregate sum, and consequently no 

change in tonality. 

Figure 2. I 7. Reinterpretative modularion by inverting dyads 

ili2: I 0 2 (a) i7ib: 7 P 1 (b) i5iO: 7 [ 2 
i9i4: e t 6 i9i0: e iei6: e 0 6 
interval system 7,7 interval system e,3 interval system 7,7 
Tonality 2 (agg. t) Tonality 2 (agg. t) Tonality 2 (agg. t) 

Other types of reinterpretative modulation, however, may create a change in the 

aggregate sum, possibly with a corresponding shift in tonality. This results fi-om a 

reordering of the component pcs, which alters the tonic sums and thus the cyclic interval. 

Either one or both cyclic sets may involve reordering of segments (figure 2.1 8a).35 
- 

35 In the newly added chapter 36 of the second edition of Twelve-Tone Tonality Perle describes 
reinterprethtive modulation as a "reinterpretation of the functional implications of a given collection of pitch 
classes" (1996,206). That is, by rotating the elements in a trichordal segment of a pivotal axis-dyad chord, 
either the cyclic interval may be reinterpreted as a tonic sum, or a tonic sum may be reinterpreted as a cycIic 
interval. 



Figure 2.18. Reinterpretative modulation by linear and vertical reordering 

pOp7: 0 0 7 (a) i7p7: 1 7 1  0 (b) i7it: 7 0 t 

i9i4: e t 6 iSi4: e i5pe: 6 e 0 

interval system 7,7 interval system 0,e interval system 3,6 
Tonality 0 (agg. 8) TonaIity 1 (agg e) Tonality I (agg. 9 )  

As well, reinterpretative modulations may combine linear and vertical reordering with 

rotation for many modulatory possibilities (figure 2.18b). 

Reinterpretations of tonic axis-dyad chords as pivots provide the smoothest 

modulations due to the greater degree of pc duplication. In discussing the characteristics 

of tonic chords Perle comments that "a single compositional representation of [a] pitch 

class is often interpreted as a point of intersection between the two [cyclic sets]" (1977b: 

34). Conversely, he notes elsewhere that "a repeated pitch class in the compositional 

statement sometimes represents a single instance of that pitch class in the array, and vice 

versayy (1977b, 59-60). These principles create still more possibilities for reinterpretative 

modulation. Tonic chords may serve as pivot chords in either substitutional (figure 2.19a) 

or reinterpretative modulation (figure 2.19b). In both cases, the axis-dyad of the tonic 

chord must be replaced by one which duplicates a tonic sum in the new array. The axis 

dyad must also be present as a linear dyad in one of the triadic segments of the cyclic sets. 

Figure 2.19. Modzrlation with tonic ais-dyad chords 

sum e sum 7 sum 5 

Although the pc duplication ensures a smooth modulation, the degree of relatedness 

between the arrays themselves varies with each reinterpretation. Perle comments on the 



advantage of this type of modulatory process: "Such reinterpretations of identical pc 

collections open a variety of choices to the composer at every moment in the progress of 

a composition" (1977b, 61). The diverse methods entailed by substitutive and 

reinterpretative modulation thus permit modulation to arrays within the same interval 

system and to arrays in other tonalities with equal facility. 

Perle's theory of twelve-tone tonality continues to evolve. In the second edition of 

Twelve-Tone Tonality Perle solidifies terminology, refines many concepts (most notably 

those of mode, key, tonality, and modulation), and l l l y  develops the concept of synoptic 

array structure. Perle also ventures into new territory in twelve-tone tonality, that of 

prolongation. Perle writes that 'Tust as the universality of the triad presents diatonic tonal 

music with a normative principle that defines the meaning of dissonance-a controlled 

departure fiom the triad, which remains the referential norm even when it is momentarily 

absent-so can analogous departures fiom symmetrical relations provide a basis for 

prolongational procedures in twelve-tone music" (1 996, xiv) . 

Perle incorporates passing tones, suspensions, and anticipations into the theory, with 

their definition and usage analogous to that of tonal practice, namely, as pitches that do 

not belong to the prevailing array segment. Suspensions and anticipations arise through 

rhythmic displacement of the pc elements. But Perle extends the notion of the passing 

tone. Citing Berg's practice as a model, Perle introduces a type of figuration he calls 

cbcyclical passing notes," in which a span between two pitches is filled in by notes that 

belong to an interval cycle. They may unfold the interval cycle directly, as in figure 2.20a, 

or they may be reordered and then transposed to fit in the registral space to be filled, as in 

figure 2.20b. The interval cycle may or may not correspond with those that generate the 

cyclic sets of the array. 



Figure 2.20. Cyclical passing notes prolonging rnotionfi.orn pc 7 to pc6 

(a) 7 - 4 :  7-8-9-t-e-0- 1-2-3-4-5-6 (direct ic 1 cycle) 
@) 7-6: 7-9-e- 1-2-4-6 (reordered ic5 cycle) 

Figure 2.21 illustrates the prolongation of a symmetrical progression between two swn 

9 dyads by the insertion of cyclical passing tones. Figure 2.2 1 a gives the original 

symmetrical progression. In figure 2.2 1 b, the resulting gaps are filled in by members of 

ic 1 and ic3 cycles. 

Figure 2-21. Prolongation of a symmetrical progression of sum 9 dyads 

(a) 6 7  (b) 4-5-6-7 
5-2 5-8-e-2 

Perle writes that "the concept of octave displacement as a means of opening space for the 

prolongation of a progression is as relevant to twelve-tone tonal composition as it is to 

diatonic tonal composition" (1 996, 23 5).  

Perle also introduces the concept of structural levels, specifically that of foreground 

and background cyclic sets (1 996,235-40). Any particular cyclic set possesses a 

"background cyclic set," formed from every third element of the given cyclic set, as 

demonstrated in figure 2.22. Cyclic sets formed fiom icO and ic4 cycles will have 

background cyclic sets of icO; those formed fiom ic 1, i d ,  or ic5 cycles will have 

background cyclic sets of ic3, and those formed from ic2 or ic6 will have background 

cyclic sets of ic6. 

Figure 2.22. Foreground cyclic set pop 7 (ic5 cycle) and its background cyclic set iji2 
(ic3 cycle) 



Cyclic sets that have been symmetrically transposed by increments of 2 will share the 

same background set. In figure 2.23, p4p3 is a +Z-2 sum transposition of the given cyclic 

set pOp7. Its background cyclic set, like that of pOp7, is also i5i2: 

Figure 2.23. Foreground cyclic set plp3 and its background cyclic set iji2 

The background cyclic set i5i2 can thus serve as an invariant structure underlying a 

foreground progression &om pop7 to p4p3. Perle demonstrates how this principle extends 

to successions of arrays (1 996,23 8-40). 

Perle's utilization of figuration as a means of prolongation and his recognition of 

background and foreground structures add a significant level of sophistication and 

elegance to the theory of twelve-tone tonality, and contribute significantly to its potential 

for further growth. 



Chapter Three 

Structural Properties of Cyclic Sets 

Perle's system of twelve-tone tonality builds upon the foundation of the cyclic sets. 

This chapter undertakes a speculative investigation of the nature of cyclic sets in a 

direction not explored by Perle. The investigation moves decidedly outside the context of 

twelve-tone tonality, employing instead labels and tools of pc set theory. 

The process of imbrication is applied to all of the cyclic sets generated from the six ic 

cycles, resulting in set classes (scs) of cardinalities three to nine. These scs form groups 

that I shall call ICS families (the acronym represents the expression imbricated cyclic set). 

Set classes within an ICS family are closely associated in terms of their cyclic origin and 

their possession of the properties of inversional symmetry and transpositional 

combination, the latter concept introduced by Richard C o b  (1 987). These traits also 

obtain among scs of different ICS families. In addition, scs in the ICS families 

demonstrate a form of equivalence when mapped into other modular universes. 

Moreover, the scs also exhibit simiIarity in their ic vectors (icvs). The examination of the 

similarity relations between sc pairs of the ICS families with Forte's R, relations inspires 

the creation of another similarity relation, which I shall call the RsrMreZution. 

The partitions of the interval-class cycles 

Of the six different ic cycles, only the icl and ic5 cycles exhaust the aggregate upon 

completion of their cycles, as illustrated in figure 3.1. The ic 1 and ic5 cycles are 

isomorphic under the multiplicative operation M5; that is, the M5 operation maps each pc 

in the icl cycle into a corresponding pc in the ic5 cycle, and vice versa. The other ic 

cycles do not exhaust all twelve pcs within a single cycle; rather, they partition the 

1 The six different ic cycles are notated in exarnpk 2.1 in chapter two of this dissertation. 



Figure 3.1. Icl and ic j  cycles2 

aggregate into a number of cyclic collections, as shown in figure 3.2. The ic3 cycle 

partitions the aggregate into three cyclic collections (figure 3.2a). The ic2 cycle partitions 

the aggregate into two different cyclic collections, one consisting of even integers, the 

other of odd (figure 3.2b). The ic4 cycle partitions the aggregate into four cyclic 

collections, two comprising even integers, and two comprising odd integers (figure 3.2~).  

Finally, the ic6 cycle partitions the aggregate into six cyclic collections (figure 3.2d). 

Figure 3.2. Parfitions of ic3, ic2, icl, and ic6 cycles 

(a) ic3: 0 3 6 9 (0 1 4 7 t ( l  

(b) ic2: 0 2 4 6 8 t (0 1 3 5 7 9 ( 1  

(c) ic4: 0 4 8 (0 1 5 9 ( I  
2 6 t  (2 3 7 e ( 3  

(d) ic6: 0 6 (0 1 7 (1 
3 9 (3 4 t (4 

Imbrication of cyclic sets 

Allen Forte defines imbrication as %e systematic (sequential) extraction of 

subcomponents of some configuration. . . . [It] is essentially a pre-analytical 

technique. . . . Imbrication represents an elementary way of determining the subsegments 

of a primary segment" (1973,83-84). Since the icl and ic5 cycles exhaust the aggregate, 

the imbrication of the cyclic sets formed from either of these cycles generates a single 

collection of scs. The imbrication of each of the cyclic sets of the remaining ic cycles, 

The single parenthesis in each cycle indicates the completion of the full cycle. Yet since it is a cycle, 
there is no primary initial pc; the cycle can be initiated on any one of its elements, with the full cycle 
completed upon the return of the initial pc. The initial pcs given in the figure were arbitrarily chosen. 



however, generates different collections of pc sets, depending on the cyclic set's 

particular combination of partitions. The partitions of the ic3 cycle generate two 

categories of cyclic sets: (1) a combination of the same partition with itself in inversion, 

or (2) a combination of two different partitions. The two partitions of the ic2 cycle 

contain exclusively even or odd integers, again generating two different types of cyclic 

sets: (1) a combination of the same partition with itself in inversion, or (2) a combination 

of different partitions, which mixes even and odd integers together, a situation described 

below as being of unlike parity. The partitions of the ic4 and ic6 cycles also contain 

exclusively even or odd integers, and generate an additional type of cyclic set: (3) a 

combination of either two different even-integer or two different odd-integer partitions. 

described below as being of like parity. 

For all the cyclic sets except that constructed from ic4, the second half of the cyclic set 

is the tritone transposition of the first half. Further, in cyclic sets of ic1 and ic5, and in 

those of the remaining ics that combine inversionally related forms of the same partition, 

the retrograde of the cyclic set is identical to the prograde, as demonstrated in figure 3.3. 

Figure 3.3. Ic3 cyclic set formedfrorn nvo inversionally related forms of the same 
partition 

These features influence the formation and order of scs produced by the imbrication of 

each of the cyclic sets. First, the scs may unfold in a prograde formation that repeats 

halfway through the cyclic set (at the tritone transposition), as demonstrated in the 

pentachordal imbrication of an ic3 cyclic set in figure 3 -4. 

Second, the scs may unfold in a palindrornic formation that also repeats halfway 

through the cyclic set. Together, the two palindromes, either discrete or elided, form a 

configuration of nested palindromes in one complete cyclic set. Figure 3.5 illustrates the 

nested palindrome of scs generated by a trichordd imbrication of an ic1 cyclic set. 



Figure 3.4. Prograde formation of pentachordal scs in an ic3 cyclic set 

Figure 3.5. Nestedpalindrome of hichordal scs in an icl qcIic set 

The ICS families 

Since the structure of cyclic sets involves inversionally related interval cycles in 

alternation and produces an alternating pair of tonic sums, it is not surprising that the 

imbrication of each of these cyclic sets generates a consistent pattern of a small number 

of closely related scs3 I have organized the scs from each cyclic set imbrication into 

groups called ICS families. Imbrication yields a total of twelve trichordal, thirteen 

tetrachordal, fifteen pentachordal, fourteen hexachordal, eight heptachordal, six 

octachordal, and five nonachordal scs in all of the ICS-families ~ombined .~  Imbrication 

yields two different collections of scs, depending on whether pc duplications are included 

in or excluded from the segments. The former method produces scs of differing 

cardinalities, whereas the latter method produces scs of a single cardinality. Figure 3.6 

illustrates these two methods applied to the cyclic set combining ic4 cycles of the same 

3 Cycles of a different kind are subjected to imbrication by Catherine Nolan (1989). For each trichordal 
sc, Nolan reordered the prime form in its six permutations, and then discarded the retrogrades. Each of the 
remaining three permutations comprises a distinct pair of adjacent intervals (except for the permutations of 
the symmetrical trichords). For each permutation, Nolan constructed cycles by extending each interval of 
the pair in alternation. Once the trichordal cycles were complete, Nolan imbricated each of the cycles, then 
observed the properties pertaining to each cycle's scs. 

4 Appendix two Iists all the scs according to cardinality and ICS-family membership. 



Figure 3.6. Tetrachordal imbrication including pc duplications (a) and excluding pc 
duprications (is) 

partition. In figure 3.6% tetrachordal imbrication that includes pc duplications produces 

scs of three different cardinalities, whereas in figure 3.6b, tetrachordal imbrication that 

excludes pc duplications produces only scs of cardinality four. This study uses the latter 

method, extending the imbricated segment to include the requisite number of distinct pcs 

for each cardinality. 

Profiles of each of the ICS families are provided below, which emphasize their 

internal cohesion and kinships with other ICS families. The accompanying tables 

represent an exhaustive list of all the scs yielded by the imbrication of the cyclic sets. 

Certain features are consistent in every ICS farnily.j Each family contains only those 

trichordal scs whose icvs show an entry in the ic that corresponds to the ic cycle forming 

the cyclic set. For example, the ICS-1 family's trichordal scs 3- 1,3-2, 3-3, 3-4, and 3-5 

are the only trichordal scs with an icl entry in their icvs. In addition, the scs of 

cardinalities larger than three within each family show the highest value in the icv entry 

that corresponds to the ic cycle that forms the cyclic set. These values are highlighted in 

boldface in each table. Further, all the tetrachords, hexachords, and octachords in every 

ICS family are inversionally symmetrical; this is because they segment the consistently 

symmetrical structure of each cyclic set into scs of even cardinality. As well, all of the 

- 

' The term "family" is used in neither a group-theoretical nor a hierarchical sense; rather, it simply 
denotes the collection of scs that emerge tiom the imbrication of each cyclic set. 



all-combinatorid hexachords appear in the imbricated cyclic sets, attesting to the 

symmetrical construction of the cyclic sets! 

The ICS-1 and ICS-5 farnilies 

There are twelve different dignments of two inversionally related icl cycles in the 

formation of cyclic sets. Nonetheless, regardless of alignment, imbrication consistently 

yields the same collection of scs unfolding in a nested palindromic formation in each ic1 

cyclic set. Tables 3.1 and 3.2 list the scs that result fiom the imbrication of the ic 1 and ic5 

cyclic sets respectively, along with their icvs. These tables indicate that the isomorphic 

relation between the ic 1 and ic5 cycles exists between the ICS- 1 and IC S-5 families as 

well. The ICS-5 family comprises the same number of scs, which also unfold 

in a nested palindromic formation, and each sc in the ICS-1 family maps into a 

corresponding sc in the ICS-5 family under the operation MS. Moreover, in addition to 

Table 3.1. The scs of the ICS-l family 

sc icv sc icv sc icv sc icv 
3-1 2IOOOO 4-1 321000 5-1 432100 6-1 543210 
3 -2 111000 4-3 212100 5-3 322210 6-24 432321 
3 -3 101100 4-7 201210 5-6 311221 6-26 421242 
3 -4 1001 10 4-8 200121 5-7 310132 6-7 420243 
3-5 10001 1 4-9 200022 

Set class 6-1 is found in the ICS-I and ICS-2 families, sc 6-7 in the ICS-1 and ICS-5 families, sc 6-32 
in the ICS-2 and ICS-5 families, sc 6-35 in the ICS-2 and ICS4 families, sc 6-8 in the ICS-2 family, and sc 
6-20 in the ICS-4 family. For a discussion of the properties of all-combinatorial hexachords see Milton 
Babbitt (1955). 



Table 3.2. The scs of the ICS-5 family 

- - 

sc icv sc icv sc icv sc icv 
3 -4 100110 4-8 200121 5-7 310132 6-7 420243 

the ten invariant scs between the two families, the remaining scs form pairs in Forte's R I  

relations of icv similarity, to be discussed in detail below. 

The ICS-3 family 

As discussed above, the three partitions of the ic3 cycle generate two types of cyclic 

sets, which yield different pc sets under imbrication. Table 3.3a lists the sets resulting 

from imbricating cyclic sets of the same partition combination, while table 3.3b lists the 

sets resulting from imbricating cyclic sets of the drfferenf partitions combination. Only 

four different pcs emerge fiom the former combination; hence this combination's 

imbrication produces a single representative of sc 4-28 and two overlapping forms of sc 

3-1 0, both of which contain entries in only ic3 and ic6 of their icvs. This result is due to 

the ic content of the ic3 cycle: adjacent pcs in an ic3 cycle form ic3, while non-adjacent 

pcs form either ic3 or ic6. 

When the cyclic set combines two different partitions, eight different pcs emerge. 

Imbrication thus yields scs no larger than octachords, of which there is only one, the 

octatonic 8-28. Set class 7-3 1 occurs in eight overlapping forms related by transposition 

and inversion in alternation. Finally, the scs for each cardinalities three to six emerge in a 

prograde formation that repeats halfivay through the cyclic set at the h tone transposition. 



Table 3.3. The scs of the 

(b) dzrerent partitions 
sc icv sc icv sc icv sc icv 

The ICS-2 family 

The two partitions of the ic2 cycle generate two types of cyclic sets, each yielding 

different scs under imbrication. Table 3.4a lists the scs resulting from imbricating cyclic 

sets of the same partition combination, while table 3.4b lists the scs resulting from 

Table 3.4. The scs of the ICS-2 family 

( (a) same partition I 
sc icv sc icv sc icv sc icv 
3-6 020100 4-22 030201 5-33 040402 6-35 060603 

sc icv sc icv sc icv sc icv 
3-1 210000 4-1 321000 5-1 432100 6-1 5432 10 



imbricating cyclic sets of the dzflerentpartitions combination. Despite the combination of 

same or meren t  partitions, all imbricated scs except the hexachords occur in a nested 

palindromic formation. The hexachordal scs in the dzrerent partitions combination 

unfold in a prograde formation that repeats halfway through the cyclic set, at the tritone 

transposition. 

Only six different pcs emerge from a combination of same partition ic2 cycles. Thus 

imbrication produces a single representative of cardinality six, the whole tone sc 6-3 5, 

and two overlapping forms of sc 5-33. All the scs in table 3.4a contain entries in only ic2, 

ic4, and ic6 of their icvs, reflecting the ic content of the ic2 cycle. 

The ICS-4 family 

The four partitions of the ic4 cycle generate three types of cyclic sets, again yielding 

different collections of scs under imbrication. Table 3.5a lists the sole sc that results from 

combining two inversionally related ic4 cycles of the same partition category. The 

combination of dzflerent partitions of the ic4 cycle divides into those of like pariw and 

those of unlike parity. Only six different pcs emerge from either of the latter 

combinations. As listed in table 3Sb, imbrication of cyclic sets formed from the dzTerent 

Table 3.5. The scs of the ICS-4 family 

(a) same artition 1-1 
(b) dzferent partitions of like parity (evedeven or oddodd integers) 
sc icv sc icv sc icv sc icv 

(c) direrent partitions of unlike parity (evedodd integers) 
sc icv sc icv sc icv sc icv 



partitions of like parity category produces the same scs as those produced by the ic2 

cyclic set of the same partition (compare with table 3.4a), but with six overlapping forms 

of sc 5-33 here rather than two. Those scs of cardinalities three and four unfold in nested 

paiindromic formations. 

Imbrication of cyclic sets of the diferent partitions of unlike parity produces trichordal 

and tetrachordal scs unfolding in prograde formations that repeat. There are six 

overlapping forms of sc 5-21 and a single instance of sc 6-20. As shown in table 3 . 5 ~ ~  

none of these scs contain ic2 or ic6 entries in their icvs. 

The ICS-6 family 

The aggregate partitions into six different ic6 cydes, which combine to form four 

different types of ic6 cyclic sets. The ic6 cyclic set of the same partition category yields 

the dyadic sc 2-6, as given in table 3 -6a. The ic6 cyclic sets fiom different partif ions of 

like parity contain only four different pcs, which segment into whole-tone scs 3-8 and 

4-25 (see table 3.6b). These two scs show entries in only the ic2, ic4, and ic6 of their icvs. 

These scs also belong to the ICS-2 and ICS-4 families. 

The combination of different partitions of the ic6 cycle divides into those of like parity 

and those of unlike parity, with the latter further subdividing into those partitions whose 

corresponding elements differ by icl (as in (06)and ( 17)), and those that differ by ic3 (as 

in {06) and {39)). In each case, imbrication yields a single tetrachordal sc and one 

trichordd sc, the latter unfolding in a series of four overlapping instances related by 

transposition and inversion in alternation. 

The ICS-3 family (same partition) intersects with the ICS-6 family (different 

partitions, unlike parity, evedodd integers of ic3 dzfference) in their common scs of 3- 10 

and 4-28. Both of these scs only contain icv entries in ic3 and ic6; the scs form ic6 cycles 

interlocked at ic3 (see table 3 . 6 ~  and d).' 

7 This intersection is explored fhther below, in the section on transpositional combination. 



Table 3.6. The scs of the ICS-6 family 

1 (3) different partitions of like parity 1 
(evedeven or odd/odd integers) 
sc icv sc icv 
3-8 010101 4-25 020202 

1 (cj dzflerent partitions of zmlike parity I 
(evedodd integers of ic I difference) 
sc icv sc icv 

I (d) dz fferent partitions, unlike parity I 
(evenhdd integers of ic3 difference) 
sc icv sc icv 

Thus, the six ICS families contain scs that share a common cyclic origin and some 

commonalities within their icvs. Further, a number of scs belong to more than one family, 

due to the combination of partitions of the ic cycle to form the cyclic sets. In all six ICS 

families, all of the scs of cardinalities four, six, and eight are inversionally symmetrical, 

due to the even segmentation of the symmetrical cyclic set. But there is another property 

which all the scs except the trichords share, and that is the property of transpositional 

combination, a concept introduced by Richard Cohn (1987). 

Transpositional combination in ICS families 

Transpositional combination is an operation that adds each pc in one set to each pc in 

another set. These sets are identified as the operands. The set of larger cardinality that 

results from the operation is said to "bear the property" of transpositional combination 

(TC). Cohn fiames the operation as a mathematical expression, with an asterisk denoting 

the TC operation, as 3-10 * 3-1 = 9-1; that is, (036) * (0 12) = (012345678). C o h  



displays the TC operation in a matrix, with the pcs of one operand on the horizontal axis, 

and the pcs of the other operand on the vertical axis, as illustrated in figure 3.7. For 

operations involving a dyadic sc as an operand, Cohn omits the cardinality indicator of 2 

and the hyphen. For example, the TC operation that adds the pcs of 4-2 to those of 2-5 is 

expressed as 4-2 * 5 = 8-14. This dissertation employs Cohn's notational practices. 

Figure 3.7. Matrix display of TC operation 3-1 0 * 3- 1 

TC operations that comprise more than two operands are identified as TC chains. The 

order of the operands in a TC operation does not affect the resulting sc. TC is therefore 

both a commutative and an associative operation. A sc generated by the TC operation is 

described as being factored by its operands. Some scs may be factored in several different 

ways. For example, sc 6-9 may be factored by either 3-4 * 2 or 4-1 1 * 2. Cohn 

distinguishes between such scs and those that can be factored only by themselves and 1-1 

with the terms non-prime and prime, respectively: " A  set-class X is prime if its only 

factors are X and 1-1. Otherwise it is non-prime" (1 987, 94). 

In the ICS families all the scs of cardinalities four to nine, and five of the twelve 

trichords, bear the TC property8 It was observed above that all the scs of cardinalities 

four, six, and eight in the ICS families are inversionally symmetrical since they are 

segments of the consistently symmetrical structure of the cyclic set. Similarly, the TC 

operation may be understood as a symmetrical expansion of a sc segmented from the 

cyclic set. This particular TC operation employs a designated segment from the cyclic set 

as one operand and the cyclic ic as the other operand. In the TC operation of figure 3.8a, 

sc 3-4 fkom the ICS-5 family functions as one operand with cyclic ic5 as the other 

w e  trichords bearing the TC property are 3-1,3-6, 3-9,)-10, and 3-12. Cohn lists all scs in the mod- 
12 universe that possess the TC property, together with their factors, in Appendices 2 through 6 of his 
dissertation (1987,498-6 19). 



operand; together they produce a member of sc 5-20, also of the ICS-5 farnily. Figure 

3.8b illustrates the symmetrical expansion of the 3-4 set within the ic5 cyclic set, wherein 

the pcs flanking the 3-4 segment are added to form a member of sc 5-20. In the same way, 

this process may be applied to the 5-20 set, resulting in a member of sc 7-14; in turn, the 

7- 14 set may expand into a member of the sc 9-9. Thus, TC is a generative operation. 

Figure 3.8. TC operation as generator of scs in ICS-5 family 

(a) 3-4*5=5-20  or (015)*(05)=(0156t) 
5-20 * 5 = 7-14 or (Ol56t) * (05) = (01356te) 
7-14*5=9-9 or (01356te)*(O5)=(0134568te) 

r-4- 
(b) ic5 cyclic set segments: 0 5 7 t 2 3 9 8 4.. 

-5-2- 

Applying the TC operation recursively forms a TC chain of scs all belonging to the 

same ICS family. Although there are several ways to factor many TC scs of cardinality 

four or greater, the present study will limit TC equations to those that assign as one 

operand a sc belonging to a specific ICS family with its generating cyclic ic as the other 

operand. Generally, most trichords combine with the cyclic dyadic operand to form 

pentachords, which in turn combine with the dyadic operand to form heptachords, which 

then combine with the dyadic operand to form nonachords. In the same way, most 

tetrachords combine with the dyadic operand to form hexachords, which in turn combine 

with the dyadic operand to form octachords, and so on. The TC chains culminate in a 

final sc, beyond which a recursive application of the TC operation will not result in a 

different, larger set. h the ICS-3 family, for example, the culminating sc is 8-28; 

performing the TC operation with 8-28 as one operand and ic3 as the other results in 

another 8-28 set. 

The TC chains in each ICS family are represented graphically in this chapter using tree 

diagrams. Although the ICS families described above include only cardinalities from 



three to nine, larger cardinalities appear in some TC trees to show the culmination of the 

recursive TC operations. Since the ic 1 and ic5 cycles exhaust the aggregate in one 

complete cycle, the corresponding ICS-1 and ICS-5 families are each represented by a 

single TC tree, culminating in the aggregate 12-1. The other cyclic sets produce distinct 

groups of scs, according to the various combinations of cyclic partitions. Consequently, 

the scs generated by the different partition categories are represented in separate TC trees 

for each of the ICS families. In the ICS-2 family, for example, the scs derived from the 

cyclic set formed fiom the same partilion category occupy one TC tree, while the scs 

derived fiom the cyclic set formed fiom differentparfitions occupy a second TC tree. 

In the ICS family trees below, each line represents the TC operation X * ic, where X is 

the sc to the immediate left of the line functioning as one operand, and ic is the cyclic ic 

of the ICS family, functioning as the recursively applied operand. The TC operation 

results in the sc to the immediate right of the line. In figure 3.9, tracing the line fiom left 

to right beginning with sc 3-5 demonstrates the generative TC process, as 3-5 * 1 = 5-7, 

then 5-7 * 1 = 7-7, then 7-7 * 1 = 9-5, and so on to the culminating sc 12-1. Conversely. 

following the line fkom right to left indicates the factoring of the TC sc. Thus, for 

example, 9-5 = 7-7 * 1, and 7-7 = 5-7 * 1, and 5-7 = 3-5 * 1. The isomorphism between 

icl and ic5 cycles and their associated ICS families extends to the TC relations among 

their respective scs, as can be seen by comparing the two TC trees in figures 3.9 and 

3.10.~ 

The TC trees of figures 3.9 and 3.10 graph the scs given in tables 3.1 and 3.2, respectively. 



Figure 3.9. TC tree of the ICS-I family 

Figure 3.10. TC free of the ICS-5 family 

The two partition categories of the ic2 cyclic set produce two distinct groups of TC scs 

within the ICS-2 family, thereby generating two different TC trees, as illustrated in figure 

3.1 1. Tree (a) graphs those sets from the same partition category. Tree (b) graphs those 

sets fiom the different partitions category. lo  

'O The TC trees of figure 3.1 1 (a and b) graph the scs given in table 3.4 (a and b), respectively. 



Figure 3. I 1. TC frees of the ICS-2 family 

Tree (a): same partition 

Tree 0: dzyerent partitions 

Similarly, the two partition categories of the ic3 cyclic sets in the ICS-3 family 

generate two different TC bees (figure 3.12). Tree (a) contains only two nodes, 

representing the two scs derived fiom the same parlilion category. Tree (b) conta' ins scs 

derived from the ic3 cyclic set formed from the different partitions category. ' 
The three different partition categories of the ic4 cyclic set in the ICS-4 family 

generate three TC trees (figure 3.13). Tree (a) is a trivial example, since it contains just a 

single node. l2 

" The TC trees of figure 3.12 (a and b) graph the scs given in table 3.3 (a and b), respectively. 

" The TC trees of figure 3.13 (a, b, and c) graph the scs given in table 3.5 (a, b, and c), respectively. 



Figure 3.12. TC trees of the ICS-3 family 

Tree (a) :same partition 

Tree (b) : dzrerent partitiom 

Figure 3.13. TC trees of the ICS-4 family 

Tree (a): same partition 

Tree (b) : dzxerent partitions of like parity 

Tree (c): dzfferent partitions of unlike parity 



Finally, the ICS-6 family's scs derive from four different ic6 cyclic set partition 

categories, and so are represented by four different TC trees (figure 3.14). Tree (a) 

comprises a single node, while the other three trees each have only two nodes.'' 

Figure 3.14. TC trees of the ICS-6 family 

Tree (a) : same partition 

Tree (b): dzxerent partitions of like parity 

3-8 4-25 

Tree 0: dzrereent partitions of unlike par@ at icl 

3 -5 4-9 

Tree (4: dzflerent partitions of unlike parity at ic3 

3-10 4-2 8 

It was observcd above that many of the scs belong to more than one ICS family due to 

some commonalities within their icvs and to intersecting combinations of partitions that 

form the cyclic sets. The TC property provides another explanation: these scs may be 

factored by more than one cyclic dyadic operand. For example, sc 5-7 belongs to both the 

ICS-1 and ICS-5 families, and may be factored as either 3-5 * 1 or as 3-5 * 5. Similarly, 

sc 4-26, which belongs to both the ICS-3 and ICS-5 families, is factored by dyadic 

operands as 3 * 5. Thus, the relations among the scs within and between ICS families are 

forged not only by cyclic origin, but also by the TC property. 

13 The TC trees of figure 3.14 (a, b, c, and d) graph the scs given in table 3.6 (a, b, c, and d), 

respectively. 



Similarity relations within ICS families 

Forte introduces the RI, R2, and & relations to measure the similarity between two scs 

of the same cardinality based on their ic content (1973,4849)- Pairs of scs in either the 

R1 or R2 relation have four identical icv entries. Set classes in the R1 relation feature an 

exchange of integers in the two variant entries; scs in the R2 relation lack this feature in 

their variant entries. Set classes in the & relation have no corresponding icv entries. 

Forte's Rn relations by themselves have limited power in establishing similarity 

relations between scs in the ICS families. First, they do not account for sc pairs of the 

same cardinality with just one, two, or three identical icv entries. Second, Forte's R. 

relations are absolute; they do not reflect relative degrees of similarity between scs. A 

cursory examination of the icvs of the scs in any of the ICS families reveals a systematic 

increase in the concentration of larger ics and corresponding decrease in smaller ics in a 

comparison of scs within and between cardinalities. This may be observed in table 3.7 

wherein the changing icv entries of the ICS- 1 tetrachords appear in boldface.14 

Table 3.7. Systematic modifications of icvs in the tetrachordal se fs of the ICS-l famiiy 

I sc icv I 

The assignment of Forte's R, relations to the scs of the ICS- 1 family produces few 

similarity relations, as shown in table 3 -8. Out of all possible sc pairs of the same 

cardinality, only seven have relationships of maximum similarity (Rl or R2), while two 

have minimum similarity (&). The remaining scs receive no similarity measure at all, a 

seemingly counterintuitive situation in light of the systematic modification of the icvs in 

each ICS family, as illustrated in table 3.7. Forte's R. relations thus appear insufficient 

14 TabIe 3.7 is a partial reproduction of  table 3.1. The latter lists all the scs of the ICS-1 family. 



Table 3.8. Sc pairs in the ICS-I family in Forte 's R, relations 

I R relation I sc pairs in ICS- I family I 

for expressing the intemallic relationships of the scs in the ICS families. 

The defining feature of Forte's Rl relation is considered to be the ic exchange between 

the variant icv entries, as illustrated in the pentachordal sc pair in figure 3.15a. Examining 

Forte's Rl relation from a different perspective reveals another significant feature: the 

variant entries are symmetrically related. Figure 3.15b illustrates the symmetrical 

correspondence between the variant entries in the same pair of scs. 

Figure 3.15 R, relation bemeen scs 5-10 and 5-16 with interchange feature emphasized 
(a), and with symmetrical relationship emphasized @) 

(a) 5-10:2 2 3 1 1 1 x (b) 5-10: 2 [ 3 [ 1 1 

5-16:2 1 3 2 1 1 5-16:2 1 3  2 1 1 

Moreover, this feature consistently associates the icvs of all sc pairs in the RI relation, 

since the two pairs of variant entries will always display a symmetrical relationship. For 

every gain in one ic in the icv, there is a corresponding loss by the same value in the other 

ic. This is because scs in the same cardinality have the same total number of intervals. 

Since four icv entries are identical between Rl-related scs, then the two variant entries 

must form a gainfloss relationship. 

This symmetrical relationship is captured graphically in the form of an interval- 

difference vector, a term introduced by Eric Isaacson (1 990, 16). The interval-difference 

vector (idv) gives the difference between respective entries in the ic vectors. The idv 

removes the distinction between Forte's RI and RZ relations. Whether the two variant 

entries use the same or different integers is immaterial, as seen in the idvs of figure 3.16. 



Figure 3.16. ldvs for Rl-related sc pair 5-10 and 5- 16 (a), and Rrrelated sc pair 4-21 
and 3-25 @) 

(a) 5-10: 2 2 3 x1 1 1  
(b)4-21:O 3 0 2 0 1 

5-16: 2 1 3 2 1 1 4-25: 0 2 0 2 0 2 

idv: 0 +l 0 -1 0 0 idv: 0 + 1 0  0 0 -1 

The RSYM relation 

Building on the symmetrical aspect of Forte's RI and Rz categories, I propose the 

introduction of a new category of similarity relations between scs of the same cardinality, 

the RsytHc relation. The RsVM relation permits a broader view of ic similarity between scs 

than that of Forte's relations in that it includes pairs of corresponding variant ic entries. 

The Rsm relation divides into two subcategories: RsYM-I and R ~ Y M - ~ -  Two scs in the 

kYMeI relation have two corresponding entries in their respective icvs that are identical, 

while the remaining four corresponding entries differ symmetrically. Figure 3.17a 

illustrates the hYM-~ relation between scs 3-1 and 3-3; four of the idv entries show 

symmetrical differences of +l or -1, while the remaining two entries show no difference. 

Although the symmetrical differences between their variant icv entries indicate that the 

scs are similar in ic structure, this sc pair does not share a similarity relation in any of 

Forte's terms. 

Two scs in the RSyM relation have no identical entries in their icvs, yet all the 

corresponding entries are symmetrically related? Figure 3.17b illustrates the 

relationship between scs 4-1 and 4-8, which lie in Forte's relation. All RsYM-2-related 

scs are also &-related, but the associations are not automatically reciprocal: not all Ro- 

related sets share an RsuM-2 relation. For example, scs 4-1 1 and 4-28 have no 

corresponding entries in their icvs and so are &-related, but because not all the pairs of 

entries differ symmetrically, the sc pair is not RsYM.*-related (as shown in figure 3.17~). 

IS The RSm-, relation does not necessarily imply a greater degree of simiIarity than the RSYAI-~ reIation, 

as discussed below. 
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Figure 3.17. Scs 3-1 and 3-3 in RSy,u-I (a), scs 4-1 and 1-8 in RsuM-* and Ro (b), and scs 
and 4-28 in Ro but not RSXMMZ (c) 

(a) 3-1: 2 1 0 0 0 0 (b)4-I :  3 2 1 0 0 0 (c) 

idv: +I + l  -1 -1 0 0 idv: + I  +2 -1-1 -1  -2 -1 

The IcVSIM is a function derived fkom the idv introduced by 

idv: +l +2-3  + I  +l -2 

Isaacson (1 990) to 

quantify the similarity between two scs of any cardinality. It accomplishes this by finding 

the standard deviation fiom the mean in the idv of the two scs to be compared, assigning 

IcVSIM values ranging fiom 0.000 (indicating maximal intervallic similarity) to 3 -578 

(indicating maximal intervallic dissimilarity).16 

The IcVSIM is useful in the present study because it enables the transformation of R 

relations into quantifiable measures of relative similarity. Relative similarity measures the 

degree of difference between corresponding icv entries, rather than the number of entries 

that differ. Hence scs in an Rl relation are not necessarily more similar than sets in an R7, 

&YM-lr or &YM-2 relation. For example, the RSYM-1-related scs 4-3 and 4-7 generate a 

fairly level idv of [0 +I +l -1 -1 01, and thus receive a lower IcVSIM value (0.8 16) than 

do the RI-related scs 4-1 and 4-23. This latter pair generates a more jagged idv of [+3 0 0 

0 -3 01, and thus receives a considerably higher IcVSLM value (1.732). Although only two 

entries differ between the latter sc pair's icvs, they differ to a greater degree (k3) than do 

the four variant entries of the former sc pair's icvs (+I). Hence, in this case the hYM-*- 

related pair of scs is judged to be more similar than the Rl-related pair. 

Further, two different pairs of scs in an R1 relation do not automatically receive the 

same IcVSIM value. Rather, IcVSIlM values are consistent among any pair of R-related 

scs only if the variable entries of the idv differ by the same amount (although they need 

not occupy corresponding entry positions). Hence, Rl-related pairs 4- 10 and 4- 17 

[idv: 0 +2 0 -2 0 01, and 4-5 and 4-27 [idv: +2 0 -2 0 0 0] both receive an IcVSIM value 

- - 

l6 An IcVSIM value of 0.000 is assigned in three situations: (1) a sc compared with itself, (2) a sc 
compared with its z-correspondent, and (3) a sc compared with another of differing cardinality but which 
together generate a level idv, as in the paired scs 3-10 and 6-30, which generate idv [+2+2+2+2+2+2]. The 
sc pair of maximum dissimilarity is 6-35 and 8-28, the whole-tone and octatonic collections, respectively. 



of 1.155. Although their idvs are not identical, the variable entries differ by f2. The RI- 

related pair of 4-1 and 4-23 discussed above receives an IcVSIM value of 1.733 because 

its variable entries differ by +? - 

The idvs of R-related scs therefore distinguish degrees of relative similarity, as 

indicated in table 3.9. The three columns under each category of R relation list in order 

the degree of similarity within that R relation, the amount of difference between the 

variable entries in the idvs, and the IcVSIM values for all sc pairs in that degree of R 

relation. 

Table 3.9. Degrees of R reIations between sc pairs of the same cardinality 

sc pairs in RI or Rz 

1 i& I 

I etc. I etc. etc. I 

degree 
1 St 

2nd 
3 rd 

4h 
b 

This study employs Forte's R, relations in a manner that differs from Forte's original 

intention. While Forte aims to show icv correspondence between scs of the same 

cardinality, he does not address quantitative issues or relative degrees of similarity 

beyond his distinction between maximum and minimum similarity. In the present study 

Forte's R relations are used as a point of departure for the development and exploration 

of RsVM relations. These RsVM relations establish similarity between scs based on 

symmetrical icv entries. As discussed above, the study employs Isaacson's IcVSM to 

measure degrees of similarity. Isaacson contends that he makes no qualitative assertions 

through the assignment of an IcVSIM value per se: "It is worth observing that all of the 

similarity h c t i o n s  discussed here (IcVSIM included) measure only the quantitative 

similarity between sets; they make no attempt to account for the qualitative differences 

between IcVs. With the IcVSIM relation, even though two pairs of sets produce the same 

sc pairs in Rsu&r-[ 

1 idv I 

-- - 

sc pairs in 

1 idv 
variable -- 
+1 
k2 
t? 
k4 

Ic VSIM 

1.155 
1.732 
2.309 

degree 

2nd 
jrd 

4" 

variable 
?iE-1"-- r l , f  1 

+ 1 , ~  
e , + 2  
+1,+3 

Ic VSIM 
0.816 
1.291 
1.633 
1.826 

1'' 
2nd 
3rd 
4h 

1 
-t1,+1,+2 
+l ,c3_,?2 
+1,?1,,+3 

1.000 
1.414 
1.732 
1.915 



IcVSIM value, that value may arise because of very different conditions in the two set 

pairs" (1990, 25).17 The RsVM relation combines qualitative assertions about symmetrical 

icv correspondence between sc pairs with quantitative assertions about the degrees of 

similarity. 

R relations within ICS families 

There are just ten distinct IcVSIM values for R-related scs in dl the ICS families. 

Table 3.10 gives the R relations among the sc pairs in the ICS- 1 family. A comparison of 

table 3.10 and table 3.8 demonstrates that the ItsVM relation establishes similarity relations 

among a broader range of sc pairs. Virtually all the scs in the ICS-1 family form an R 

relation with another sc of the same cardinality; the exceptions are 7- 1 and 8- 1. 

Table 3.10. R relations between sc pairs in the ICS-I family 

R relation sc pair 

1 ''degree Rz: 1 3- 113-2 

l7 Isaacson reviews a number of measures of intervallic similarity ( 1  990). The IcVSIM is utilized in the 
present study, however, because of the relevance of the idv to the RSm relations. Further, although Isaacson 
uses the !cVSIM to compare scs of different cardinalities, its usage here is restricted to scs of the same 
cardinality, since the present study is concerned with symmetrical icv entries. 



Analogous relations obtain between sc pairs in the ICS-5 family, as seen in table 3.11. 

The only scs that form no R relations within the ICS-5 family are 7-35 and 8-23. They do 

form Rr relations with the 7- 1 and 8- 1 scs of the ICS- 1 family, however. Moreover, scs in 

each category of R relation in one of these ICS families form Rl relations with 

corresponding scs in the same category in the other ICS family. Thus the isomorphic 

relationship between these two ICS families extends to their similarity relations as well. 

Table 3.1 1. R re larions be hveen sc pairs in the ICS-5 family 

sc pair I 

For the remaining ICS families, the tables of R relations distinguish among the cyclic 

partition categories f?om which the scs are derived. The ICS-3 family comprises just one 

trichordal sc and one tetrachordal sc in its same partilion category, so no scs of the same 

cardinality within this category may be examined for ic similarity. Each sc in the dgferent 

partitions category forms an R relation with another sc, however, as listed in table 3.12a. 

In addition, R relations across the partition categories exist: the 3-10 sc £iom the same 

partilion category forms lst-degree &w-l relations with thc trichordal scs of the dzfferent 

partition category, as given in table 3.12b. Set class 4-28 alone forms no R relations 

within the ICS-3 family, since the idvs of the tetrachordal pairs are asymmetrical. Figure 

3.1 8 illustrates two of these sc pairs and their idvs. 



Table 3.12. R relations between sc pairs in the ICS-3 family 

( (a) scs &om ic3 cyclic sets of dffereent partitions I 
I R relation I sc pair I 

- - -  I @) scs &om ic3 cyclic sets of same and dlferent prtitions I 
I R relation sc pair I 

Figure 3.18. Asymmetrical idvs between ICS-3 family sc pairs 4-3 and 4-28 (a) and 4-26 
and 4-28 (b) 

(a)4-3:  2 1 2  1 0  0 (b) 4-26: 0 1 2 2 1 0 
4-28:O 0 4 0 0 2 4-28:O 0 4 0 0 2 
idv: +2 +1 -2 +1 0 -2 idv: 0 +1 -2 +2 +I -2 

A variety of R relations exist in the ICS-2 family, as indicated in table 3.13. The 

trichordal and tetrachordal sc pairs drawn fiom the same partition category form R2 

relations (table 3.13a). Set class pairs fiom the d@$erentpartiiion category form Rl and Rz 

relations (table 3.13 b), while RsYM-I and RsuM-2 relations obtain across the partition 

categories (table 3.13~). Only scs 6-35 and 8- 10 do not form R relations with any other 

scs of the same cardinality in the ICS-2 family. 

Table 3.14 gives the R relations within the ICS-4 family. All the trichordal and 

tetrachordal scs within and between partition categories form is'-degree R relations, 

except the 2"d-degree R2-related sc pair 3-12 and 3-6 (table 3.14d). Only the two pairs 



Table 3.13. R relations between sc pairs in the ICS-2 family 

I (a) scs from ic2 cyclic sets of same partition I 

1 (b) scs fiom ic2 cyclic sets of dzflerent partitions I 

R relation 

lSLdegreeR2: 

sc pair 

3-613-8 1 4-2 1/4-25 

1 (c) scs from ic2 cyclic sets of same and different partitions I 

R relation 

1 "-degree R I : 

1 "-degree R2: 

2"d-degree RI : 

2nd-degree R2: 

3rd-degree RI : 

of pentachordal and hexachordal scs fiom the contrasting different partitions categories 

fail to establish any R relations. 

Finally, table 3.15 gives the R relations within the ICS-6 family. Each partition 

category generates a single trichord and single tetrachord, so R relations are only 

established between scs across partition categories. Set classes 3-10 and 4-28 from the 

dz~erentpartitions of unlike parify at ic3 category do not form any R relations. 

I 3rd-degree Rz: 1 54/5-23 1 5-215-37 1 7-1 17-23 1 7-217-35 1 

sc pair 

R relation 

1 "-degree &YM-I : 

2nd-degree kYM$ 
6"-degree RsuM.2: 

5-23/5-35 
9-719-9 
9- 1 /9-9 

3 -213 -7 

3-1/3-2 
7- 117-2 
3-113-9 

6- 116-8 

4- 1/4-23 

sc pair 

3 -6/3 -2 

4-2 114- 10 

5-3 3/5-2 

9-219-7 

3-70-9 
7-2317-3 5 
5-2/5-23 

6-816-32 

8- 1/8-23 

5-1/5-2 
9- 1 /9-2 
7-2/7-23 

3-813-7 3 -613 -7 

5-3315-23 

3-8/3-2 



Table 3-14. R relations between sc pairs in the ICS-4 family 

(a) scs from ic4 cyclic sets of 

I (c) scs fiom ic4 cyclic sets of I 

(b) scs from ic4 cyclic sets of 
difleren f partitions of unlike pariv 

dzFerent partitions of like and unlike parity 
R relation I sc pair 

R relation 

1"-degree RI: 

Table 3.15. R relations in the ICS-6 family between sc pairsfiom ic6 cyclic s e t .  of 
drfierent partitions of like and unlike parig (at I ic apart) 

sc pair 

(d) scs firom ic4 cyclic sets of same partition 
and dzflerent partitions of Like parity 

R relation sc pair 

3-313-4 
4-714- 1 7 

R relation 

2"d-degree R2: 

sc pair 

3 - 1 Z/3 -6 

3-3/3-11 
47/4-20 

3-4/3-11 
4- 1 7/4-20 



Similarity relations between ICS families 

Certain pairs of ICS families contain considerable sc invariance and similarity. The 

ICS- 1 and ICS-5 families have ten invariant scs between them. Each remaining sc in one 

family forms an R1 relation with a sc in the other family. In each instance the two variable 

icv entries are ic l and ic5. The invariant scs between the ICS-2 and ICS-4 family derive 

fiom the same partition category in the former and the dlzerent partitions of like parity 

category in the latter. Of the variant trichordal scs between the two families, two pairs 

form Rl relations and one pair forms an Rz relation- Further, each trichordd sc in one 

family forms an RsYM-, relation with two trichordal scs in the other family, with two of 

their four variable icv entries found in ic2 and ic4. The scs 4-1 0 and 4- 17 are RI-related, 

again with variable icv entries of ic2 and ic4. The remaining tetrachordal scs between the 

two families form &vM-l-related pairs, with two of their four variable entries also in ic2 

and ic4. 

The ICS-3 and ICS-6 families have two invariant scs, 3- 10 and 4-28, which derive 

fiom the same partition category in the ICS-3 family and the dzrerent partitions of unlike 

parity at ic3 category of the ICSd family. The remaining trichordd scs between the two 

families form k Y M - l  relations, with two of the four variable icv entries in ic3 and ic6. 

None of the tetrachordal scs form R relations, however, since their idvs are asymmetrical. 

Although invariance and R relations exist sporadically in other combinations of ICS 

families, they do not account for all the scs in those pairings. The variable entries in the 

icvs of the R-related sc pairs correspond to the families to which they belong, thereby 

providing another means of establishing relations among ICS families. Whereas the TC 

property generates unifying links among scs within individual ICS families, the R- 

relations form such links within and across ICS families. 

Modular equivalence between ICS families 

Equivalence of sets typically refers to transpositional or inversional equivalence. 

Another form of set equivalence also exists between ICS families, one based on the 

mapping of pc sets into sets in a different modular universe. Mod-x arithmetic reduces the 



infimite range of pitches to a finite universe of x pcs. Hence a mod4 2 universe comprises 

12 pcs, a mod-6 universe comprises 6 pcs, a mod4 universe comprises 4 pcs, and so on. 

Figure 3.19 illustrates how mod- 12 pcs map into the pcs of mod-6, mod-4, modJ, and 

mod-2 universes. The columns of mod- 12 list the pcs and their corresponding mappings 

into the pcs of the other mod-x universes. The rows of mod42 list the x-cycle partitions 

of the aggregate, each of which maps into a single pc in the corresponding mod-x 

universe." The twelve pcs of mod-12 only map evenly into universes of mod-6,4,3. and 

2 since these integers are all factors of 12. Although the integer I is also a factor of 12, 

mod4 arithmetic maps all pcs into a single pc, 0, and as such is trivial. The mod-12 pcs 

will not map evenly into the remaining modular universes, such as mod-5. 

Figure 3.19. Mod-12 pc mappings into pcs of other modular universes 

mod- 12 -+ mod-6 mod- 12 + m o d 4  mod-12 -+ mod-3 mod- I2 + mod-2 
0,6 + 0 0,4,8 + 0 0,3,6,9 + 0 0,2,4,6,8,t 0 
1,7 + I 1,5,9 + 1 1,4,7,t -P I 1,3,5,7,9,e + 1 
2,8 + 2 2,6,t + 2 2,5,8,e + 2 
3,9 + 3 3,7,e -+ 3 

Similarly, the 224 pc scs in the mod-12 universe reduce to thirteen scs in mod-6, six 

scs in mod-4, four scs in mod-;, and three scs in mod-2." Thus, for example, sc 4-7 

(0 145) maps into sc (0 123) mod-6, sc (0 1) mod-4, sc (0 12) mod-3, and sc (0 1) mod-2.20 

Table 3.16 gives the mappings of the mod-12 scs of the ICS-1 family into the other 

modular universes. The twenty-six scs in the ICS-I family map into three m o d 4  scs, one 

mod-2 sc, seven mod-6 scs, and two mod-3 scs. The mod-2 and mod-4 scs are combined 

in table 3.16% while mod-3 and mod-6 scs are combined in table 3-16b. 

- - -  

la Cohn addresses this issue in the context of CYCLE homomorphisms (199 1). 

These fi=wes include the null set. 

" Atthough the set {0,1,4,5) maps into the same pcs in mod-6, the set in normal order in mod-6 is 
(4,5,0,1) , a d  is thus (O,l,2,3) in prime form. 



TobZe 3.16. Equivalence of mod-1 2 scs in the ICS-l family in other modular universes 

(a) mod-12 scs mapped into mod-2 and mod-4 scs 
mod-2: (01) 

The isomorphic relation between the ICS-1 and ICS-5 families extends to the mapping 

of their respective scs into scs of other modular universes. All the RI-related scs between 

the two families map into the same scs in the other modular universes, as revealed in a 

comparison of table 3.16 (a and b) with table 3.1 7 (a and b). 

mod-4: (01) 
mod-12: 3-3 3-4 

4-7 

Table 3.1 7. Equivalence of mod-1 2 scs in the ICS-5 family in other modular universes 

I(a) mod-12 scs mapped into mod-2 and mod-4 scs I 

(0 12) 
3-1 3-2 3-5 

(6) mod-1 2 scs mapped into mod-3 and mod-6 scs 

4-3 4-8 
5-3 5-6 
6 - ~ 4  

- 

(3) mod-1 2 scs mapped into mod-3 and mod-6 scs I 

(0 123) 
4-1 4-9 
5-1 5-7 
6-1 6-26 6-7 
7-1 7-5 7-7 
8-1 8-6 8-9 
9-1 9-5 



For each of the remaining ICS families, certain mappings constitute a "best fit" in 

other modular universes, in that the mappings correspond to the partition categories of the 

scs. For example, table 3.18a shows that in the ICS-2 family the scs derived fiom the 

same partition category ail map into a single mod-2 sc (0) and a single mod4 sc (02). 

This is because they all have en&ies of zero in all three odd-integer icv positions. The scs 

derived from the different partitions category map into one mod-2 sc and two mod4 scs. 

On the other hand, the mod-3 and mod4 mappings of the ICS-2 scs draw fiom both 

partition categories (table 3.18b). 

Table 3.18. Equivalence of mod-12 scs in the ICS-2 family in other modular universes 

I@) mod42  scs mapped into mod-2 and mod-4 scs 

In the ICS-4 family, the scs derived fkom the same partition and diflerent partitions of 

like parity categories map into one mod-2 sc, while those from the dzfferentpartitioons of 

unlike parity map into a second mod-2 sc. The mod-4 sc mappings establish an even 

closer correspondence with the three distinct partition categories. The scs fiom each of 

the three partitions map into three different mod-4 scs, as seen in table 3.19a. The mod-6 

and mod-3 mappings draw scs &om across the partition categories (table 3. lgb). 

mod-2 : (0) - 
mod-4 : (02) 
mod-12: same partition 

3-6 3-8 
4-21 4-25 
5-33 
6-3 5 

(b) mod-12 scs mapped into mod-3 and mod-6 scs 

(0 1) 
(0 12) I (0 123) 

different partitions 
3-1 3-2 
3-7 3-9 

4-1 4-10 4-23 
5-1 5-2 5-23 5-35 
6-1 6-8 6-32 
7-1 7-2 7-23 7-35 
8-1 8-10 8-23 
9-1 9-2 9-7 9-9 



Table 3.19. Equivalence of mod42 scs in the ICS-4 family in other modular universes 

I(a) mod-12 scs mapped into mod2 and mod-4 scs I 

Further, just as the ICS-1 and ICS-5 families map into the same scs in the four mod-x 

(01) 
(01) 

different partitions 

mad-2: (0) 

partition 
3-12 

universes under discussion, the ICS-2 and ICS-4 families map into the same mod-2, mod- 

3 and mod-6 scs. They differ for two of the three mod-4 scs. 

In the ICS-3 family, scs fiom the two partition categories map separately into two 

mod3 scs, constituting a "best fity7 mapping, as illustrated in table 3.20. The two scs from 

the same partition category map into sc (0) mod-3, while those fiom the dzrerenr 

partition category map into sc (0 1) mod-3 (table 3.20a). The mappings into mod-2 and 

mod4 draw fiom across the partition categories (table 3.20b). 

Table 3.2 1 lists the mappings of the scs of the ICS-6 family. The scs map into two 

mod-2 and three mod4 scs in accordance with the two categories of dzflerent partitions 

of like and unlike parity (table 3.21a). The partition categories of the scs map differently 

in the mod-3 and mod-6 universes; the scs from dzyerent partitions of unlike parity at ic3 

mod-4: (0) 
mod- 12: same 

map into one mod-3 and mod-6 sc, while the remaining scs map into the other mod-3 and 

mod-6 scs (table 3.2 1 b). 

(02) 
different partitions 

(3) mad42 scs mapped into mod4 and mod-6 scs 

of like parity 
3-6 3-8 

4-21 4-25 
5-3 3 
6-3 5 

of unlike parity 
3-3 3-4 3-1 1 
4-7 4-17 4-20 
5-2 2 
6-20 



Table 3.20. Equivalence of mod- 12 scs in the ICS-3 family in other modular  universes 

Table 3.21. Equivalence of mod-12 scs in the ICS-6 family in other modular universes 

(a) mod-12 scs mapped into mod-3 and mod-6 scs 

- 

[(a) mod- I2 scs mapped into mod2  and mod4 scs 
I 

mod-3 : (0) 
mod-6: (03) 
mod-12: same partition 

3-10 
4-28 

mod-.: (02) (012) 1 (0123) 
mod- 12: different partitions different partitions 

(01) 
(0 13) I (0 i 34) 

different partitions 
3-2 3-3 
3-7 3-11 

(3) mod-12 scs mapped into mod-2 and  mod-4 scs 
mod-2: (01) 

of Iike parity 
3-8 
4-25 

4-3 4-10 4-17 4-26 
5-10 5-16 5-25 5-32 
6-213 6-223 6-249 6-250 
7-3 1 
8-28 

mod-4: (01) 
mod-12: 3-3 3-11 

4-17 

mod-3 : (0) 
mod-6: (03 
mod- 12: different partitions 

The scs in the ICS-3 and ICSd families all map into the same two mod3 scs, with the 

(6) mod-I2  scs mapped into mod-3 and mod-6 scs 

of unlike parity 

of unlike parity at ic3 
3-10 
4-28 

invariant scs between the two families in one of these scs (O), and their variant scs in the 

I 
5-16 5-32 6-213 6-23 6-250 1 6-249 1 7-31 I 

(012) 
3-2 3-7 3-10 
4-3 4-26 

3-5 
3- I0 

(01) 

other (01). The variant trichordal scs between the two ICS families share &YM-I relations. 

, 
(0 123) 

4-10 4-28 
5-10 5-25 

4-9 
4-28 

(0 1) 
different partitions 

of unlike parity at ic 1 
3-5 
4-9 

Thus, the equivalence of all the scs in other modular universes forges another bond 

(02) 
different partitions 

of like parity 
3-8 

4-25 

among the scs within and among the ICS families. 



This chapter has explored the nature of the cyclic sets, the bases on which Perle 

constructs his system of twelve-tone tonality. Imbrication of each cyclic set generates scs 

unfolding in palindromic or prograde formations. Because the scs resulting from each 

imbricated cyclic set share a number of structural properties, they are grouped together in 

associations identified as ICS families. This chapter provides a profile of each ICS family 

which specifically examines the scs' properties of transpositional combination, similarity 

relations, and equivalence in other modular universes. The isomorphism between the ic l 

and ic5 cycles also exists between the scs of the ICS-1 and ICS-5 families in each of these 

properties. 

The scs within each cyclic set are segments of symmetrical constructs, since the cyclic 

sets combine inversionally complementary ic cycles in alternation. As a result, all the scs 

of even cardinality possess the property of inversional symmetry, and all the scs of 

cardinalities greater than three (and some of the trichordal scs) possess the TC property as 

well. Recursive TC operations that employ as operands the segments fiorn the cyclic sets 

and their generating cyclic ic create TC chains of all the scs within each ICS family, 

which are represented graphically in this study in the form of trees. Since the ic 1 and ic5 

cycles each exhaust the aggregate, all the scs within each of the ICS-1 and ICS-5 families 

are contained within a single TC tree. The remaining ICS families' scs are generated by 

several TC trees, corresponding to the various combinations of cyclic partitions. The 

isomorphic relation between the ICS-1 and ICS-5 families extends to their TC chains as 

well. 

In the effort to establish icv similarity relations among the scs of the ICS families, the 

chapter contends that Forte's R, relations by themselves are inadequate for the task, since 

they do not express similarity relations of a symmetrical nature, nor do they distinguish 

relative degrees of similarity. The study therefore introduces the RsVM relation, which 

recognizes similarity between scs of the same cardinality based on symmetrical 

correspondence between pairs of variant icv entries. The study also employs Isaacson's 

IcVSIM to generate quantifiable measures of relative similarity between sc pairs in the 



Rsm relation and in Forte's R, relations. Through the addition of the Rsm relation most 

of the scs share a similarity relation with at least one other sc within the same ICS 

families. Further, many of the scs are also kuM-related or R,-related to scs in different 

ICS families. Moreover, all the isomorphic sc pairs in the ICS-1 and ICS-5 families share 

the Rl relation. 

Finally, the distinct scs within each ICS family are shown to be equivalent in a smaller 

number of distinct scs in other modular universes. All the RI-related scs between the ICS- 

1 and ICS-5 families map into the same scs in the other modular universes. Further, in the 

remaining ICS families, those mappings that correspond to the partition categories of the 

scs constitute a "best fit" in other modular universes. 

Thus, through its investigation of the cyclic sets, this study demonstrates that the 

symmetrical nature of the interval cycles directly influences the structural properties and 

relationships of cycle-based formations. 



Chapter Four 

Analysis of Etude No.1 and Etude No.4 
from Six Etudes for Piano by George PerIe 

This chapter returns to the context of twelve-tone tonality in its analytical applications 

of Perle's theoretical concepts to the first and fourth etudes fiom Perle's Sir Erudes for 

Piano. Perle composed the Six Etudes for Piano between 1973 and 1976. The two etudes 

to be analysed here both adhere to a tripartite formal organization, but are contrasting in 

nature. The first etude has an improvisatory character, and is described by pianist Michael 

Boroskin as featuring "extremely rapid, staccato, pianissimo chords alternating between 

the hands, which scamper all over the keyboard" (1 987, 14). A more introspective quality 

imbues the fourth etude, which demands intricate peddling and dynamic sensitivity. This 

etude poses a particular challenge to the performer's rhythmic skills, in its shifting tempi, 

specific rubato indications, duple versus triple divisions of the beat, and metric 

modulation. 

The two etudes are also contrasting in texture. The texture of Etude No. 1 consists 

mostly of successive vertical dyads, with a few linear gestures interspersed. Etude No.4 

evinces a more contrapuntal texture. Because so much of the music in the fourth etude 

unfolds linearly, it is useful to discuss its texture in terms of its component voices. Perle 

varies the texture through the systematic addition and subtraction of voices and through 

the combination of voices in alternating and interwoven pairs. 

This chapter begins by discussing large-scale formal organization and abstract 

relationships in each etude, and then proceeds to explore compositional strategies in the 

succession of axis-dyad chords and s m  tetrachords at the local level. The chapter 

continues by demonstrating the realization of these m a y  segments at the musical surface, 

and by examining the results of other compositional techniques employed by Perle. These 

analyses will show how the principles of twelve-tone tonality serve not only as 



precompositional resources, but may also directly influence the compositional process. 

The chapter then offers additional insights into the etudes fiom the perspective of pc set 

theory, as codified by Allen Forte (1973), and with extensions to the theory developed by 

Robert Morris (1 995b). These insights corroborate those gained fiom the context of 

twelve-tone tonality, and reveal other aspects of organization that would otherwise 

remain hidden. Thus, pc set theory contributes another facet to the analyst's 

understanding of the etudes. 

The annotated scores 

Appendices three and four contain annotated scores of Etude No. 1 and Etude No.4. 

The annotations above the staves identify the formal units of the etudes, to be discussed 

below. The annotations below each staff represent the abstract dimension of the music: 

the array labels and segments. The concrete dimension is that of the music itself, in which 

the array segments are realized. A right-angle bracket identifies each array. In appendix 

four, for example, Etude No.4 begins with array pOi4/i9pe in rn. 1, and modulates to 

pti2/i7p9 in m.9. The series of integers following each array label are segments of the 

array's cyclic sets.' Extra spaces between pc integers define the limits of the array 

segments. Axis-dyad chords appear as hexachords divided into three-integer cyclic set 

segments.2 in appendix four, m.1 of Etude No.4 comprises three axis-dyad chords. The 

upper cyclic set segments of each axis-dyad chord confirm the cyclic interval of 4, and the 

tonic sums of 0 and 4, while the lower cyclic set segments confirm the cyclic interval of 

2, and the tonic sums of 9 and e.3 These axis-dyad chords are derived fiom a difference 

alignment, as indicated by the vertically aligned italicized integers. In the passage fiom 

m.83 to m.89, however, the axis-dyad chords are derived from a s u m  alignment.' Array 

1 The cyclic sets for all cyclic intervals (mod 12) are Iisted in appendix one. 

' As noted in chapter two, Perle recognizes each pc occurrence as an independent member of an array 
segment, rather than as multiple instances of a single pc. Hence hexachordal, tetrachordal, and trichordal 
array segments may contain less than six, four, or three distinct pcs, respectively. 

Please see chapter hvo for a detailed explanation of how the axis-dyad chord reveals cyclic intervals 
and tonic sums. 

4 The analyst may choose to present the axis-dyad chords in either alignment. PerIe states: "It is often 



segments of variable size also appear, such as the pair of sum tetrachords at the end of 

m.2, and the octachordal segment in m.7, which may be considered as an extended axis- 

dyad chord. Occasionally only one cyclic set is active at the musical surface. Integer 

notation represents the active cyclic set in such instances, while dashes represent the 

inactive cyclic set. This notation occurs at the first beat of m.5, where cyclic set poi4 is 

temporarily absent fiom the musical surface. 

The following review of some of the applications of the principles of twelve-tone 

tonality wiI1 help clarifL the annotations in appendices three and four, and the analyses in 

the rest of this chapter. The cyclic sets of an array serve as a precompositiond resource 

fiee of any functional hierarchies. In constructing a cyclic set fiom an interval cycle 

which does not erhaust the aggregate, the composer may combine either the same or 

different partitions of the cyclic interval. The composer may then combine cyclic sets of 

the same or different cyclic intervals in the formation of the array. In the process of 

composition the composer may draw cyclic set segments fiom any part of the array, and 

move freely forward and backward in the array. The composer may modulate to any other 

array at any time, since there is no obligation to use the whole array? 

Modulation may occur either directly or through a pivot axis-dyad chord. Both types of 

modulation occur in Etude No. l (appendix three). The notation at the beginning of m.2 

shows two right-angle brackets joined together, indicating a modulation by a pivot axis- 

dyad chord.6 A direct modulation occurs on beat 3 of the same measure, indicated by the 

single iight-angle bracket around the new array. 

In the annotated scores, the brackets underneath the bass staff indicate the segment of 

the musical surface that corresponds with the integers of the array segment. Although the 

abstract array segments themselves are ordered in terms of cyclic intervals and tonic 

possible to choose among several plausible readings in tracing a compositional statement to its pitch-class 
source in an array. Any axis-dyad chord may be derived from either a sum or a difference alignmenty7 
(1977by 59). 

' The modulatory procedures at the composer's disposal are discussed in chapter two. 

6 The pivot axis-dyad chord typicatly denotes a reinterpretative modulation (as discussed in chapter 
two). 



sums, the segments are realized at the musical surface as an unordered collection of 

pitches. In most cases, each integer in the array segment represents a single pitch at the 

musical surface. Occasionally, however, duplicated integers may represent a single 

instance of a pitch. Conversely, a single integer may represent multiple realizations of a 

pc. In addition, a pc may be implied by the array segment although not actually present in 

the musical surface; the integer notation represents this in brackets. Thus the two-voice 

texture suggested by the abstract array may be realized in an infinite number of concrete 

musical settings. 

A perusal of the brackets in the annotated scores shows that while the array segments 

generally correspond with the beat value in Etude No.4, they correspond mostly to groups 

of two and three pairs of dyads in Etude No. I. As well, array segments in both etudes 

5equently correspond with notational clues, such as phrasing slurs, beams, dynamics, and 

tempo changes, and in Etude No.4, with pedal markings. The remainder of this chapter 

will attempt to suggest principles that direct the compositional process in the context of 

twelve-tone tonality. 

Analysis of  Etude No. I from the perspective of twelve-tone tonality 

Large-scale formal organization 

Etude No. l exhibits a three-part form, with its main sections labelled here as A 

(mm. 1 - 2 O), £3 (mm. 1 1 - 1 9), and C (mm.20-3 5). The content of the first two measures 

helps to articulate the form of the etude. This material returns at the beginning of the B 

section, (mm. 1 1-13), although shifted metrically. It also returns at the beginning of the C- 

section (mm.20-23), here expanded in length by the addition of rests. As well, the B- and 

C-sections tranpose the pitch content of these measures by TP+2 and TP-2, respectively.7 

The B-section continues with additional material drawn from the A-section, albeit in a 

truncated, modified form, whereas the C-section continues with new material. The last 

two measures of the etude are a reprise of the opening two measures of the A-section at 

its original pitch level. 

This type ofnotation was introduced in chapter two (please see n. 12). 



Table 4.1 lists the etude's arrays and associated parameters in chronological order.' 

The table accounts for virtually all of the pitch material in the etude, with the exception of 

a passage that commences at the anacrusis to the third beat in m.9, and extends to the 

second beat of m. 10.9 The fmal column in table 4.1 lists the types of modulation between 

successive arrays. Modulation typically occurs either through two discrete axis-dyad 

chords or through a single axis-dyad chord that hct ions  as a pivot between the two 

arrays. The reinterpretative modulations that utilize pivot axis-dyad chords occur between 

the frrst pair of arrays in each section, in m.2 (between the arrays of rows a-b), in m. 13 

(between the arrays of rows k-l), and in m.21 (between the arrays of rows s-t), as well as 

between the third- and second-last pairs of the etude's arrays, in mm.34 and 35 (between 

the arrays of rows y-z and rows z-aa, respectively). The reinterpretative modulation in 

m.5, however, occurs over two successive axis-dyad chords rather than through a pivot 

axis-dyad chord. The substitutional modulation in m.29 (between the arrays of rows w-x) 

involves an axis-dyad substitution between two overlapping axis-dyad chords. 

Etude No. l also employs a hybrid form of modulation that combines aspects of 

reinterpretative and substitutional modulation. In the first modulation of m. 19 (between 

the arrays of rows p-q), the pcs of a s u m  tetrachord are reordered, as illustrated in the 

squares in figure 4. la, while the remaining neighbour-dyad is replaced with another of the 

same interval. Another hybrid modulation may also be said to generate the new array of 

m.3 1 (row y), in that the outer pcs of the lower cyclic set segment are replaced with two 

others that form the same interval, as shown in figure 4.lb. Conversely, the etude also 

employs a direct form of modulation between two arrays which does not exhibit any of 

the characteristics of substitutional or reinterpretative modulation and does not utilize a 

pivot axis-dyad chord. Some examples of direct modulation are found in mrn.3,6, and 7. 

In the top row of table 4.1 the abbreviations IS, SM, SK, agg. sum, and ton represent the parameters of 
intervat system, master array of the synoptic mode, master array of the synoptic key, aggregate sum, and 
tonality, respectively. 

The pitches unfold crossing interval 9 and interval 1 cycles, and thus lie outside the domain of the 
preceding array of i7iWp8p5. 



Table 4 1. Arrays and associated parameters. Etude No. l 

array bar rneansof IS SM SK mode key agg. ton modulation 
progression from sum £kom 
preceding array preceding array 

A-section: 
a. il i21i3iO 1 - 1,9 4 2 t,2 1,5 6 2 - 

[ b. iliUpOp9 2 invariant cyclic set 1,9 4 2 1,5 t.2 0 0 reinterpretation 

I c. i9it/p8p5 2 transposition I,9 4 2 1,s 2,6 8 0 direct 

d. ptpeIiei8 3 invariant tonic sums 1,9 4 2 e,3 6,t 4 0 direct 

e. ptpeIptp7 5 invariant cyclic set 1,9 4 2 0,4 5,9 2 2 direct 

f. i9itlptp7 5 invariant cyclic set I,9 4 2 e,3 4,8 0 0 reinterpretarion 

g. p8p91ptp7 6 invariant cyclic set 1,9 4 2 t,2 3,7 t 2 direct 

h. p8p9/i9i6 7 invariant cyclic set 1,9 4 2 e,3 2,6 8 0 direct 

i. i7i8/p8p5 9 transposition 1,9 4 2 e,3 0,4 4 0 direct 

I j. i5i61i7i4 10 interval cycles 1,9 4 2 42 9, I t 2 direct 

B-section: 

k. i5i6/i7i4 1 1 - 1,9 4 2 t,2 9,l t 2 - 
I. iSi61p4pI 12 invariant cyclic set 1,9 4 2 I,5 6,t 4 0 reinterpretation 

rn. iliZpOp9 13 transposition 1,9 4 2 1,s t72 0 0 direct 

I n. p2p3Ii3i0 13 invariant tonic sums 1,9 4 2 e,3 2,6 8 0 direct 

o, pOplli3iO 13 invariant cyclic set 1,9 4 2 9,l 0,4 4 0 direct 

I p. pop I/il it IS invariant cyclic set 1,9 4 2 e,3 t,Z 0 0 direct 

q. ptpelilit 19 invariant cyclic set 1.9 4 2 9,l 8,O 8 0 hybrid 

r. i9iViei8 I9  invarianttonicsums 1,9 4 2 f ~ 2  5,9 2 2 direct 

C-section: 

s. i9itIiei8 20 - 1,9 4 2 t,2 5,9 2 2 - 
I t. i9it/p8p5 2 1 invariant cyclic set 1,9 4 2 1,5 2,6 8 0 reinterpretation 

u. i7Wp6p3 22 transposition 1,9 4 2 1,s t,2 0 0 direct 

v. p8p91i9i6 23 invariant tonic sums 1,9 4 2 e,3 2,6 8 0 direct 

w. iji6/p8p5 25 invariant tonic sums 1,9 4 2 9,I t,2 0 0 direct 

x. p2p3/i5i2 29 transposition 1,9 4 2 9,l 4,8 0 0 substitution 

y. p2pM3i0 3 1 invariant cyclic set 1,9 4 2 e,3 2,6 8 0 hybrid 

z. ili2Ii3i0 34 invariant cyclic set 1,9 4 2 t,2 1,s 6 2 reinterpretation 

a. ili2lpOp9 35 invariant cyclic set 1,9 4 2 1,5 52 0 0 reinterpretation 

bb ili2/i3iO 35 invariant cyclic set 1,9 4 2 f2 1,s 6 2 direct 
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Figure 4.1. Hybrid modulation between axis-dyad chords in mm. 18-1 9 (a) and m.3 1 (b) 

(a) row p: pOp1: 6 6 7 U ilit: 6 7 3 i 1 it: 

(b) rowx: p2p3: 7 7 8 rowy: p2p3: 7 7 8 
i52: @ 7 @ i3iO: @ 7 @ 

Despite the varied types of modulation, all the arrays of the etude belong to the single 

interval system of 1,9. This constancy of interval system has a direct impact on the more 

abstract parameters of synoptic mode and synoptic key. They too remain constant, since 

they reflect the relationship between the arrays' cyclic intervals. This corresponding 

consistency of interval system and synoptic arrays emphasizes the Link between the 

surface and abstract levels of pc organization in twelve-tone tonality. 

Conversely, the aggregate sums change with each modulation to a new array 

(except that of m.29), with corresponding fluctuations of tonality, mode, and key. All 

three sections begin and end in tonality 2; while the B-section's remaining arrays stay in 

tonality 0, the A- and C-section's remaining arrays vacillate between tonality 0 and 2." 

Table 4.1 also shows considerable diversity among the modes and keys; nonetheless, a 

consistent relationship underlies these parameters. Although the etude utilizes five 

transpositionally related modes and ten transpositionally related keys, the component 

elements within each of the modes and keys show a difference of 4. This consistent 

difference is related to the fact that the various modulations preserve the cyclic intervals 

while changing the tonic sums. Since the cyclic intervals remain constant, so too do the 

intervallic relationships between the tonic sums within the arrays' cyclic sets. Hence the 

various parameters of an array are closely related, and changes made in any one parameter 

affect other parameters. 

10 All the arrays with aggregate sums of O,4, and 8 fall into tonality 0, while those of aggregate sums 2, 
6, and t fall into tonality 2. 



A specific pattern governs the progression among the f i s t  four arrays in each of the 

three sections, as is apparent in the fouah column of table 4.1. Motion between the first 

pair of arrays in each section (rows a-b, k-1, and s-t) involves one invariant cyclic set and 

one transposed cyclic set. Motion between the second pair involves a transposition of all 

four tonic sums. Motion between the third pair transposes two symmetrically positioned 

tonic sums and holds the other two symmetrically positioned tonic sums invariant. The 

remaining arrays in each section also utilize these means of progression, but not in the 

same order. 

Some transpositional relationships exist between non-adjacent arrays as well. The 

arrays in rows d and fin the A-section, for example, display a TTse relationship. This 

transpositional relationship results from a two-stage process. Between rows d and e, the 

tonic sums of the left cyclic set are invariant while those of the right cyclic set are Trs,- 

related. The situation is reversed between the arrays of rows e and f, which comprise 

invariant right cyclic sets and TTs,-related left cyclic sets. In the succession of these three 

arrays, the middle array hct ions as a link between the two tranpositionally-related outer 

arrays. This two-stage process effects a smooth transition between two different arrays.' 

The progression of arrays throughout Etude No. 1 appears to be guided more by the 

systematic combinations of transposition and invariance than by a specific modulatory 

plan. As will be discussed below, the opposite situation obtains in the organization of 

Etude No.4. 

Coherence in successive axis-dyad chords 

Within an array, Perle moves f?om one axis-dyad chord to another by selecting 

trichordal segments fiom the component cyclic sets. Within a cyclic set segment, the 

neighbour notes and the axis note will always transpose by complementary values, since 

they derive fiom inversionally related interval cycles. In the first two axis-dyad chords of 

figure 4.2a, the neighbour notes in both cyclic set segments transpose by +3 while the 

I 1  The two-stage transpositional process is repeated between the arrays of  rows f to h, as well as in the 
B-section, between the arrays of rows n-p and o-q (although the transposed tonic sums in this section are 
TTst-related). 



axis notes transpose by -3. In this dissertation the symbol + is used to denote the 

complementary transpositional values; hence the motion between the two axis-dyad 

chords is symbolized as - . I 2  An axis-dyad chord's cyclic set segments do not have to be 

transposed by the same value, as illustrated in the succession of five axis-dyad chords 

£?om rnm.5-6 in figure 4.2a. The second axis-dyad chord progresses to the third through a 

+7/k8 transposition, while the third axis-dyad chord progresses to the fourth, and the 

fourth to the fifth, through a W k 7  transposition. 

Figure 4.2. Complementary trcnspositional values between cyclic set trichordul segments 
in successive axis-dyad chords, rnm.5-6 (a), und.mrn.13-15 (b), Etude No.1 

(a) i9it: 3 6 4 k3 6 3 7 &7 1 8 2 I 8  9 0 t k8 5 4 6  
p t p 7 : 7 3 4  +3 t o 7  48 6 4 3  +7 1 9 t  k7 8 2 5  

Perle manipulates these alternating complementary transpositional values in the B- 

section. AS noted above, the arrays in the opening measures of the B-section (rnm. 1 1 - 12) 

are TTS4 trWlspositions of those in mm. 1-2, while the axis-dyad chords are Tz 

transpositions of their counterparts in mm. 1-2. The transpositional plan changes at the 

third beat of m. 13, however (which corresponds to the f i s t  beat of m.3). Figure 4.3 

illustrates how the upper and lower cyclic set segments in m. 13's third and fourth a ~ i s -  

dyad chords exchange their complementary transpositional values reIative to the 

corresponding axis-dyad chords in m.3. The B-section omits the subsequent melodic 

gesture of mm.3-4 and the following six vertical dyads of mm.4-5. In the ensuing 

succession of axis-dyad chords (fiom the end of m. 13 to the beginning of m. 13, the 

upper and lower cyclic set segments once again correspond to the five axis-dyad chords 

of the A-section (from the second axis-dyad chord of m.5 to the third of m.6). Yet, as 

l2 In this dissertation the symbol f always denotes a specijicpartern of transposition of alternating 
cyclic set segment eIements by complementary values, rather than a ftee choice of + or - tranpositional 
values. 



Figure 1.3. Exchange of upper and lower complementary transpositional values between 
corresponding pairs of axis-dyad chords, m.3 (a) and rn. 13 @), Etude No. I 

(a) ptpe: t 0  e t3 I 9  2 (b)p2p3: 0  2 1 +8 8 6 9 
iei8: 0  e 9 k8 8 3 5  i3iO: 2 1 e 53 5  t 2 

seen in figure 4.2b above, Perle replaces the complementary transpositional values of the 

five axis-dyad chords in mm.5-6 with their inversionally related values in mm. 13-1 5. 

Perle frequently employs another technique in successions of axis-dyad chords, in 

which he transposes one cyclic set segment while holding the other invariant. This 

typically results in consistent patterns of secondary differences or sums. A striking 

example of this result occurs in the C-section of Etude No. 1. Figure 4.4a shows the set of 

alternating secondary difference patterns that emerges in the succession of five axis-dyad 

chords beginning in m.27, with altemating trichordal segments held invariant between 

successive axis-dyad chords. In this progression, the non-invariant trichordal segments 

progress at T,,. The fmd axis-dyad chord at m.29 leads into the new array in figure 4.4b 

through substitutional modulation (compare the last axis-dyad chord of figure 4.4a and 

the first of figure 4.4b). The axis-dyad chords of the new array again alternate pairs of 

invariant cyclic set segments and maintain the same sets of secondary difference patterns. 

Figure 4. I. Secondary dzfference palterns and invariant rrichordal segments in 
successive axis-dyad chords in a dzrerence alignment, mrn.27-31. Etude No. I 

(a) rn.27 to first chord of m.29: 
i5i6: 5 0 6 4 5  0 6 3  2 4  + 3  2 4 1 4 2  
p 8 ~ 5 : 8 0 5  6 2 3 + 6 2 3  4 4 1 j 1 4 1  
d i E  3 0 e l t 9  3 0 e i t 9  3 0 e  

(b) second chord of m.29 to penultimate chord of m.3 1 : 
p 2 p 3 : 1 1 2 - + I 1 2  e 3 O + e 3 O  9 5 1  + 9 5 t  7 7 8  
i5i2: 4 1 1  2 3 e 4 2 3 e  O 5 9 j O S 9  t 7 7 + t 7 7  
diR 3 0 e l t 9  3 0 e  I t 9  3 0 e  l t 9  3 0 e  



Reinterpreting this same succession of axis-dyad chords in a sum alignment reveals a 

chain of axis dyad sums increasing by two, simultaneous with two chains of neighbour 

dyad sums decreasing by two in the cyclic chords, as illustrated in figure 4.5a.l' At the 

modulation in m.29, the three chains begin again, completing their cycles of sums before 

the next modulation in m.3 1 (figure 4Sb) .  

Figure 4.5. Three chains of vert ical dyad sum patterns and invariant bichordal segments 
in successive axis-dyad chords in a sum alignment, mm.2 7-3 1, Etude No. I 

(a) m.27 to first chord of rn.39: 
i5i6: 5 0  6 + 5  0 6 3 2 4 + 3  2 4 1 4 2  
p8p5: 5 0 8 3 2 6 - 3 2 6  1 4 4 - + 1 4 4  
sum: t - - 8 - -  6 -  - 4 -  - 2 - -  
sum: - 0 - - 2 -  - 4 -  - 6 -  - 8 -  
sum: - - 2 - - 0 - - t - - 8 - - 6 

(b) second chord of m.29 to penultimate chord of m.3 I : 
p2p3: I 1  2 + I  1 2  e 3  O + e 3 O  9 5 r  + 9 5 r  7 7 8  
i5i2: 1 1 4 e 3 2 + e 3 2  9 5 0 0 9 5 0  7 7 t  + 7 7 t  
S U ~ :  2 - - 0 - -  t - -  8 - -  6 -  - 4 - -  - 7 , -  

sum: - 2 - - 4 -  - 6 -  - 8 -  - t -  - 0 -  - 7 -  - 
sum: - - 6 - - 4  - - 7  - - - 0 - - t - - 8  - - 6 

Thus, through various combinations of transposed and invariant cyclic set segments, in 

either difference or sum alignments, Perle is able to create a cohesive succession of axis- 

dyad chords in the abstract dimension. The next section discusses how these axis-dyad 

chords may be realized at the musical surface. 

Realization of array segments 

As stated above, array segments may be realized in any number of ways at the concrete 

musical surface. The score notation may reflect explicitly the organization of the array 

segments, as in the passage from the preceding discussion (figure 4.4a). In example 4.1, 

the notation and ordering of the pitches at the musical surface in mm.27-3 1 correspond 

with the structure of each axis-dyad chord in its difference alignment. Beginning in m.27, 

l3 Sum and difference alignments are discussed in chapter two under the subheading "Secondary 
differences and sums." 



the left hand's single sixteenth-note dyads of intervals 12 and 14 contain the axis-dyad 

notes of each axis-dyad chord, represented by open noteheads in example 4.1 .14 The 

closed noteheads in the example represent the collections of beamed sixteenth notes 

played by the right hand, which comprise the neighbour notes of each axisdyad chord. 

The upper and lower pairs of pitches alternate the cyclic intervals of iji6 and p8p5. 

Exnmple 4. I .  Correspondence between axis-dyad chord strucrzlre and notation in mm. 2 7- 
31, Erztde No. I 

- 

'' There is one exception: the first note played by the left hmd in m.27 actually belongs to the axis-dyad 
chord's neighbour dyad. 



The relationship between the axis-dyad chords in mm.5-6 and mm. 13-15 was 

described above as the replacement of the complementary transpositional values of the 

axis-dyad chords in mm.5-6 by their inversionally related values in mm. 13- 15. At the 

musical surface these passages comprise successions of vertical dyads. The inversional 

relationship is manifested as an exchange of upper and lower dyadic elements in rnrn. 13- 

15, relative to those in mm.5-7." This exchange occurs at the penultimate dyad of m. 13, 

in correspondence with the fifth dyad of m.5, as illustrated in example 4.2. Further, Perle 

maintains the linear ic successions between the dyadic elements but inverts the melodic 

direction. Consequently, each pc in the B-section passage is inversionally related to its 

counterpart in the A-section (specifically, by TJ). In the integer notation of this passage 

in figure 4.6, one corresponding pair of upper and lower dyadic elements between the two 

passages appears in boldface to facilitate comparison. 

Example 4.3 shows m.25 of the C-section, in which a series of vertical dyads forms a 

transitional passage from array p8p9/i9i6 (of mrn.23-24) to the ensuing array i5i6/p8p5 

(at the end of m.25). Although array p8p9/i9i6 is still in effect in rn.25, the passage 

exploits the tonic sums of both arrays, as illustrated in figure 4.7 (a and b). The four dyads 

in the second half of the measure are tritone transpositions of those in the first half. l 6  in 

figure 4.7% the tonic sums of 8 and 6 form a palindrome in the two halves in the linear 

dyads (as the surface realization of the sum tetrachord array segments). At the same time, 

the tonic sums of 9 and 5 occur in alternation in the vertical dyads' sums (figure 4.7b). 

Moreover, the disposition of the pcs themselves creates a formation of nested 

palindromes of dyadic sums (figure 4.7~). These formations are generated by the tritone 

transposition of each dyadic element. Although the transpositional operation results in 

new pcs within each dyad, it also preserves each dyadic sum. Thus Perle may create 

formations that retain the same sums but which introduce new pc material. 

Is While rnrn.13-15 correspond to m.5-6 in the abstract dimension of axis-dyad chord, the 
correspondence expands to include the first four dyads of m.7 at the surface. 

l6 The €ma1 dyad in the measure is a member of the fust axis-dyad chord in the new array, and as such is 
not included in the transitional passage. 



Example 4.2. Corresponding passages in mm.5- 7 of A-section (a) and mm. 13-15 of B- 
section (b), .Etude No. I 

Figure 4.6. Inversion ofpcs and conlour, and exchange of upper and lower dyadic 
elemenfs, in mm.5- 7 (a) and mm. 13-15 0, Etude No. I 

ics: 3 1 1 1  1 1 2 5 1 ~ 3 4 1 3 3 1 1 3 1 5 1  
intervals: -9 - 1  -e -1  +13 +1 - 2 + 7 - 1 + 1 + 9 - 4  -1 -9 -3+1 - 1  -3 - 1  -5 - 1  

l u p p e r p c s : 4 7 6 7 6 -  - 7 8 6 1 0 1  t 6 5 Q 5 6 5 2 1 8 7 1  
Ilowerpcs:4 3 3  4 3 t o 7 4 2 3 9 9  t 2  5 4 3  2 5 5  5 2 1 1  
intervals: -1  0  -e - 1  -5 -t + 1 9 + 9 - 2 + 1 + 6  0 + I + 4 - 9  - 1  - 1  - 1  -9 0  0 -3 - 1  

ics: 1 0 1 1 5 2 * 3 2 1 6 O I 4 3 1 1 1 3 0 0 3 1  

ics: 1 0 1  1 5 2 ~ 3 2 1 6 0 1 4 3 1 1 1 3 0 0 3 1  
intervals: -s 0 -13+1+5+t-3l  +27+2-1 -6 0  - 1  - 4 + 9 + 1 + 1 + 1 + 9  0  0  +3+1 

u P P e r ~ c s : 7 8 8 7 8 1  e 4 7 9 8 2 2 1 9 6 7 8 9 6 6 6 9 t  
$ w e r ~ c s : 7 4 5 4 5 -  - 4 3 5 t e t 1 5 6 3 6 5 6 9 t 3 4  
intervals: -3 +1 -13 t l  -25 +35 +2 -7 +1 - 1  -9 +4 +1 +9 +3 -1 +1 +3 +1 +5 +l  
ics: 3 1 1 1  I t 2 5 1 1 3 4 1 3 3 1 1 3 1 5 1  



Example 4.3. Transitional passage of sum tetrachords, rn. 25, Etude No. 1 

Figure 4 7. Tonic stun duplication in vertical and h e a r  dyads, m. 25, Etude No. 1 

Rotation of vertical dyads in m.5 results in another symmetrical formation, as 

illustrated in example 4.4. The fust eight dyads in this measure divide into two halves 

each consisting of four discrete tetrachords. The dyads in each tetrachord in the first half 

simply switch places in the corresponding tetrachords in the second half. This rotation 

reverses the ordering of the dyadic sums in corresponding tetrachords. 

Every melodic gesture in Etude No. l embeds a specific formation of dyadic sums. 

Example 4.5 shows how in the opening gesture of m.1, the first six pitches unfold in a 

symmetrical succession of intervals < 1-3 -3 -3 - 1 >. In addition, they present the array's 

cyclic intervals 1 and 9, and the cyclic set sums 3 and 3 (il+i2 and i3+i0), also in 

symmetrical arrangements. 



Example 4.4- Dyadic rotation in alternating tetrachords, m. 5, Etude No. I 

dyadic sums: t 8 e 9 8 t 9 e 

Example 4.5. Linear gesture, rn. 1, Etude No. I 

cyclic intervals: ,-I-, r - n  
successive intervals: 1 - 1 7  1-2-1 I-z7 +-I +-I 

iliYi3iO: 2 3 6 9 0 1 

sum: '3' 
sum: - 3 1  
sum: 3 -  

Example 4.6 gives the melodic gesture spanning mm.3-4. Here the discrete dyads form 

an alternating pattern of sums e, t, and 9, which represent tonic sums culled fiom the 

current array ptpe/iei8 and the array i9it/ptp7, the goal of the two-stage transpositional 

process.17 In addition, the sums formed by symmetrically positioned pairs of dyads 

creates a 7-t-7 palindrornic pattern, adumbrating the tonic sums in the next array. 

17 This process was described earlier in this chapter, under the subheading "Large-scale formal 
organization." 



Example 4 6. Dyadic sum patterns in melodic gesture of array ppehei8, mm. 3-4, Etude 
No. 1 

The third melodic gesture of the etude occurs in m.8 (example 4.7); its symmetrical 

design is shown in figure 4.8. The eight successive pcs form two tetrachords of sum 5 

whose linear dyads are symmetrically positioned, and whose transpositional levels are 

complementary (figurc 4.8a). Further, the pcs themselves are disposed so as to form 

nested dyads of sum 7 and sum t (figure 4.8b). 

Finally, m.9 contains a melodic gesture of crossing interval cycles embedded in 

vertical dyads. Example 4.8 illustrates how, beginning at the eighth dyad of m.9, the two 

interval cycles on which the arrays of the etude are based unfold linearly in two textural 

voices. This becomes evident only at m. 10. The cycles are embedded in the vertical dyads 

in m.9, and cross voices at the penultimate dyad of the measure. This is shown in 

example 4.8b, where the crossed cycles (closed noteheads) are realigned in the integer 

notation to elucidate their motion. These interval cycles lie outside the domain of the 

prevailing array i7i8lp8p5, yet they share a connection with the axis-dyad chords on either 

side (open noteheads). The immediately preceding axis-dyad chord (the third axis-dyad 

chord of m.9, given in example 4.8a) in its sum alignment produces secondary sums of 

exclusively odd integers. The ensuing series of vertical dyads containing the linear 



Example 4.7. Melodic gesture, m.8, Etude No. I 

Figure 4.8. Dyadic and tetrachordal sum pairs in melodic gesture, rn. 8, Etude No. l 

sum 5 sum 5 

interval cycles produce five even sums followed by five odd sums (example 4.8b). The 

switch fkom even to odd sums coincides with the crossing of the interval cycles, after 

which the interval-9 cycle shifis to another of its partitions. The interval-1 cycle skips an 

element @c 4), thereby changing the dyadic sum formed by the two cycles from even to 

odd integers. The cycles continue to their goal, an axis-dyad chord in the new array 

i5i61i7i4. In the difference alignment of this axis-dyad chord the dyadic sums revert back 

to even integers (example 4.8~). 

The preceding analysis has aimed to show that the principles of twelve-tone tonality 

function in the background as precornpositional structures, but may also directly influence 

the foreground, in the realization of array segments at the musical surface. Thus the 

abstract dimension of twelve-tone tonality may intersect with the concrete dimension, or 

the two dimensions may maintain their independence, there by providing the composer 

with rich resources and considerable freedom in the compositional process. 



Example 4.8. Crossing interval-l and interval-9 cycles, mm. 9-1 0, Etude No. I 

(a) m-9 (b) m.9 m.10 
i7i8: 9 t t 9 6 3 0  6 7 8 9  
p8p5: 8 9 e e 0 1 2 2  j 2 e g 
sums: 5 7 9 5 6 4 2 0  l e 9 7 5  

(axis-dyad (crossing interval-9 and interval- 1 cycles) 
chord) 

(c) m. LO 
i5i6: 9 8 t 
i7i4: e 8 8 

8 4 6 
(axis-dyad 
chord) 

Analysis of Etude No. 4 from the perspective of twelve-tone tonality 

Large-scale formal organization 

Etude No.4 also divides into three main sections, labelled in the notated score of 

appendix four as A, B, and A', each section occupying twenty-seven bars. Between each 

pair of sections lies a linking passage. Further 

symmetrical design, each of the main sections 

given in table 4.2. 

emphasizing Perle's attention to 

also divides into t h e e  subsections, as 

Table 4.2. Tripartite formal organization, Etude No. 4 

A 
(m. 1-27) 

a l b l c  

link 
(1nm.28-3 1) 

B 
(mm.32-58) 

d ( e l f  

link 
(mm.58-62) 

A' 
(rnrn.63-89) 

a' I by I c' 



The A-section consists of three subsections, a, b, and c. Each of these subsections 

comprises a subject of two measures, followed by contrasting material, identified as an 

episode. This subject recurs throughout the etude, either in exact repetition, or in 

transposed, inverted, or otherwise modified form. Each unit under discussion wilt be 

identified by its formal description, followed by the main section and subsection to which 

it belongs (such as subject A-a). The three statements of the subject in the A-section 

appear in a transpositional pattern of Tw, TP-[, and TP-2. AS table 4.3 shows, the fust and 

third statements repeat before leading into the episodic rnateriaLt8 The second statement 

does not repeat, however; this is the first instance of truncation, a device used throughout 

the etude. The material identified as subject A-c in rnm. 16- 17 represents a modified 

statement of subject material.lg An exact transposition of the subject resumes at TP-2 in 

mrn. 18-19, and leads to a repeat without modifications. In connecting the A- and B- 

section, the linking passage of mm.28-3 1 inverts the subject material and exchanges 

treble and bass content. 

Table 4.3. Subsections ofthe A-secrion, Elude Nu. 4 

subject 
mm. 1-2 

TPO 
-- 

repeated 
subject 
rnm.3-4 

episode 
mm.5-9 

I' Only subject A-a's repeat is indicated by repeat signs; in every other insiance the repeat is written out. 
Hence to conform to the symmetricat arrangement of proportions of the sections these initial repeating 
measures receive their own measure numbers. 

C 
(rnm. 16-27) 

l9 This modification represents the f is t  instance of mutmion, a technique whereby array segments or 
passages from the musical surface (or both) are modified by a combination of processes, such as 
transposition, truncation, reordering, and so on. Mutation is discussed in detail below, under the 
subheadings "Coherence in successive axis-dyad chords" and "Realization of array segments." 

extended subject 
mm. 16- 19 

Tpa 

repeated 
subject 

mm.20-2 1 

episode 
mm.22-27 



The B-section also consists of three subsections, labelled here as phrase groups B-d, 

B-e, and B-f, as seen in table 4.4. Each group contains three loosely related phrases of 

varying lengths, with none forming such tight relations as found between subject and 

episode or antecedent and consequent phrases. But as will be discussed below, the three 

phrase groups maintain symmetrical relationships within some of their twelve-tone tonal 

parameters, such as their interval systems, synoptic arrays, and aggregate sums. 

Table 4.4. Subsections of the B-section, Etude No. I 

The phrase groups of the B-section do show some connections with the A-section, 

however. The third phrase of phrase group B-d (rnm.37-38) recalls subject material from 

the A-section. As well, the f ~ s t  two measures in each of the three phrases in phrase group 

B-f (mm.47-48, 5 1-52, and 55-56) recall the inverted subject found in the linking passage 

between the A- and B-sections (mrn.28-30). The linking passage between the B- and A'- 

phrase group B-d 
(tn111.32-3 8) 

sections also borrows the inverted subject of the A-section, and then diverges into a 

multi-layered gesture (rnm.5 8-62). 

phrase 3 
mm.37-38 

phrase group B-e 
(1nm.39-47) 

phrase 1 
rnrn.32-33 

The A'-section begins with a literal transposed restatement of the A-a and A-b 

phrase 2 
11m.34-36 

phrase group B-f 
(mtn.47-58) 

subsections at Tp2 and TPI, as indicated in table 4.5. But the expected A'-c' subsection 

does not follow; rather, the subject and episode of the A7-b' subsection repeat in 

truncated, modified form. The delayed A'-c' subsection then follows with the subject at 

phrase 3 
mm.44-47 

phrase 1 
1~~n.39-40 

phrase 1 

TPO in m.83. Again the expected subsections do not appear (in this case, a repeat of 

subject A'-c' followed by episode A'-c'). Instead, the subject material is systematically 

phrase 2 
mn.4 1-43 

modified and truncated until the final measure. 

11~n.47-50 mm.5 1-55 rnm.55-58 - phrase 2 phrase 3 



Table 4.5. Subsections of the A '-section, Etude No. 4 

subject 
1~~n.63-64 

TPZ - 
repeated 
subject 

1~~n.65-66 

episode 
rnm.74-77 

episode 
mm.67-7 1 

repeated 
subject 

mrn.78-79 

subject 
mm.72-73 

repeated 
episode 

mm.79-82 

c ' 
( ~ ~ n . 8 3 - 8 9 )  

subject 
mm.83-84 

TPO 
- 

repeated 
subject 

KU~-85-86 
mm.87-88 

rn-89 

Table 4.6 lists the arrays and associated parameters of Etude No.4 in chronological 

order2' The formal designs of Etudes Nos. l and 4 are similar in their three-part 

organization, and by the fact that in both etudes the A- and B-sections conclude with 

arrays that open the next sections. The two etudes differ, however, in the overall means of 

progression among the arrays. In Etude No. 1 the progression among arrays is achieved 

primarily through the transposition and invariance of tonic sums, whereas in Etude No.4 

progression adheres to a systematic modulatory plan. 

Table 4.6 highlights the stability within each parameter of the  section.^' 
Substitutional modulation governs motion between successive arrays, resulting in 

tranpositional relationships betvveen their corresponding tonic sums. The interval system 

is invariant throughout the A-section (see column 5 of tabIe 4.6), and so therefore are the 

master arrays of the synoptic mode and synoptic key (columns 6 and 7). The mode also 

'O Although George Perle graciously shared with me the array labels for Etude No.4, the analytical 
assertions made in this study about the etude are entirely my own. 

In table 4.6, the three phrase groups of the B-section are separated by horizontat lines. Because the array 
in row i ends phrase group B-d and begins phrase group B-e, it is listed twice in the table. In the same way, 
the array in row k ends phrase group B-e and begins phrase group B-f; hence row k is also listed twice. The 
duplicate listing shows more clearly the symmetrical relationships among the parameters of the arrays in the 
three phrase groups. These symmetrical relationships are discussed in detail below. 

'' Subject A-c actually begins in m.16 in the array listed in row c of table 4.6. But this array is merely 
transitional, delaying the onset of the subject statement's array until m. 18, as listed in row d. This event is 
discussed in detail below. 



Table 4.6. Arrays and ussociatedpnrameters, Etude h . 4  

-Y bar means of IS SM SK mode key agg. ton modulation 
progression f?om sum &om 
preceding array preceding array 

A-set tipn: 
a. pOi4/i9pe I transposition 4,2 2 6 3,5 e,l 0 0 - 
b. ptWi7p9 9 transposition 4,2 2 6 3,s 7,9 4 0 substitution 
c. iep3lp8it 15 transposition 4,2 2 6 3,s 9,e 8 0 substitution 
d. p8iOliSp7 18 transposition 4,2 2 6 3,s 3,s 8 0 substitution 
e. pOi41i9pe 24 transposition 4,2 2 6 3,5 e, 1 0 0 substitution 
f p8iO/ilp3 27 sum transposition 4,2 2 6 7,9 e,l 0 0 reinterpretation 

B-section: 
g. p8iOfiIp3 32 - 4,2 2 6 7,9 e,l 0 0 
h. p2pl/p4i8 33 invarianttonicsumse,4 5 3 t,5 t,5 3 I reinterpretation 
i. ptiuSp7 37 invariant tonic sum 4.2 2 6 5.7 5.7 0 0 reinterpretation 
i. ptWi5p7 37 invariant tonic sum 4,2 2 6 5 7  5,7 0 0 reinterpretation 
j. ieiui3p5 42 invariant tonic sums 3,2 1 5 8,9 4,5 9 1 reinterpretation 
k. ptiUi3pS 45 invariant tonic sums 4.2 2 6 7.9 3.5 8 0 reinternretation 
k. ptDi3p5 45 invariant tonic surns 4,2 2 6 7,9 3,s 8 0 reinterpretation 
1. i5peISit 5 1 invariant tonic sums 6,s 1 1 0,l 3,4 7 I reinterpretation 
m. p4p51iep3 54 invariant tonic sums 1,4 3 5 5,2 7,4 e I reinterpretation 
n. p4i81ilp3 61 invariant tonic sums 4,2 2 6 3 3  7,9 4 0 reinterpretation 

A 9 - s e c w  

o. p4i81ilp3 63 - 4,2 2 6 3,s 7,9 4 0 
p. p2i6/iep 1 7 1 transposition 4,2 2 6 3,s 3,s 8 0 substitution 
q. i3p71pOi2 77 transposition 4,2 2 6 3 3  5,7 0 0 substitution 
r. pOi4Ii9pe 82 transposition 4,3 2 6 3,5 e,1 0 0 substitution 
s. pOp3/ptpe 86 invariant tonic sums 3,1 2 4 2,4 e, 1 0 0 reinterpretation 
t. pOi2Iiepe 88 invariant tonic sums 2,O 2 2 1,3 e, I 0 0 reinterpretation 
u. pOpl/pOpe 89 invariant tonic sums 1.e 2 0 0.2 e. I 0 0 reinterpretation 

remains invariant throughout the A-section until the linking passage at m.27 (row f ) ,  

wherein it shifts by TM4 as a result of the reinterpretative modulation (columns 8 and 12). 

This modulation also has a corresponding effect of TTsis on the tonic sums of the array 

(column 2). Although the A-section utilizes four different keys, the interval between the 

component elements in the keys is preserved in each case. Finally, in the arrays of rows 

a-e, the aggregate sums change in increments of 4 (column 10); hence there is no change 

to the overall tonality." 

77 
'- Arrays whose aggregate surns differ by 4 have transpositionally related axes of symmetry composed 

of either two identicai even or odd integers, or of an even and odd integer that differ by I .  Arrays with 
transpositionally related axes of symmetry belong to the same tonality. Please see chapter two for a detailed 
discussion of the three categories of tonality. 



At first glance, the B-section shows considerable diversity in all parameters. A closer 

examination reveals that most of the fluctuations unfold in a pali~dromic fashion, with 

each phrase group containing a closed circle of relations. Phrase group B-d (table 4.6, 

rows g, h, and i) shows such a relationship in its interval systems, with corresponding 

relationships in the master arrays of the synoptic mode and synoptic key. Palindrornic 

patterns also appear in the phrase group's parameters of aggregate sum and tonality. 

While the phrase group's modes, keys, and arrays do not display palindromic patterns, 

they do adhere to a quasi-systematic transpositional plan. Although the successive modes 

in rows g-h and h-i exhibit non-uniform levels of transposition between their 

corresponding component elements, the outer modes (rows g and i) show a Tut 

relationship between their corresponding component elements. Similarly, the successive 

keys in rows g-h and h-i also display non-uniform levels of transposition, although the 

outer keys show a relationship of TK6 between their corresponding e~e rnen t s .~~  Finally, 

while the successive arrays in phrase group B-d also show non-uniform levels of 

transposition between their corresponding tonic sums, the oziter arrays in each phrase 

group exhibit a uniform transpositional relationship between the tonic sums of their 

corresponding cyclic sets. Specifically, between the first two arrays of phrase group B-d 

(rows g and h) the corresponding tonic sums are related by four different transpositional 

values: TTS6 and TTsl in the left cyclic set tonic sums, and TTS1 and TTs in the right cyclic 

set tonic sums. But between the first and last arrays of the same phrase group (rows g and 

i), the corresponding tonic sum relationships are TTsZ in the left cyclic set and TTS4 in the 

right cyclic set. 

The arrays of phrase group B-e display palindromic relationships within the 

parameters of interval system, master arrays of synoptic mode and synoptic key, and 

tonality (see table 4.6, rows i, j, and k). The aggregate sum of the array in row k does not 

return to a value of 0; still, its value of 8 still compels a reversion to tonality 0. A 

transpositional relationship obtains within the modes, keys, and tonic sums of this phrase 

25 These procedures bear some resemblance to the two-stage transpositional process utilized in Etude 
No. 1, described above in thz analysis of Etude No. 1 under the subheading "Large-scale formal 
organization." 



group, similar to those in the previous phrase group: the component elements of the outer 

modes are related by Tm, while those of the outer keys are related by TKt (rows i and k). 

In the outer arrays, the tonic sums of the left cyclic set are TTso-related, while those of the 

right cyclic set are T~S,-related. 

Phrase group B-f (rows k-m) and the subsequent linking passage (rows m-n) together 

establish quasi-palindromic patterns. The parameters of interval system, master arrays of 

synoptic mode and synoptic key, and tonality all display a departure 60m and return to 

their original values (compare rows k, I, m, and n). As in the preceding two phrase 

groups, transpositional relationships obtain between the first and last modes, keys, and 

tonic sums of the arrays of phrase group B-f. The outer modes and keys are 

transpositionally related by T M ~  and TK4, respectively (compare rows k and n). Between 

the outer arrays of the phrase group, the tonic sums of the left cyclic set are TTs6-related, 

while those of the right cyclic set are TTst-related. 

The A'-section marks a return to the A-section's stability in its interval system, master 

arrays of synoptic mode and synoptic key, mode, tonality, and progression by 

substitutional modulation (as shown in table 4.6, rows o to r). In the final subsection of 

the etude (subject A'-c', spanning mm.83-89) the arrays undergo a symmetrical 

modification of their tonic sums. While one pair of oppositely aligned tonic sums remains 

invariant the other pair of oppositely aligned sums is variable, and is systematically 

transposed by values of T T S ~ I  (see rows r, s, t, and u ) . ~ ~  As a result, the key, aggregate 

sum, and tonality remain invariant. 

Because the variable pairs of tonic sums are transposed by complementary values, the 

successive arrays display a symmetrical relationship between the corresponding variable 

tonic sums. Their complementary transpositions affect their arrays' interval systems by 

changing the size of the component cyclic intervals. In turn, the changes in the cyclic 

intervals cause corresponding changes to the mode and the master array of the synoptic 

key. 

'' The oppositely aligned tonic sums include the fmt  tonic sum in the left cyclic set and the second tonic 
sum in the right cyclic set as the invariant pair, and the second tonic sum in the left cyclic set and the first 
tonic sum in the right cyclic set as  the systematically transposed or variable pair. Thus, in array pOi41i9pe of 
row r, the invariant pair of tonic sums is pO and pe, and the variable pair of tonic sums is i4 and i9. 



As in Etude No. 1, Perle's use of dynamics, rests, pedal, tempo, and meter, as well as 

his notational subtleties also underscore the formal organization of Etude ~0.4." Each 

subsection of the etude begins with a dynamic marking that differs from that of the 

preceding subsection, thus d e f ~ g  each of the formal unitsmZ6 As well, the three separate 

dynamic markings at the beginning of each statement of the subject underscore the 

subject's multi-voice texture. 

Rests also define the sections and subsections of the etude. In the A-section, rests 

conclude each of the episodes, demarcating self-contained units of subject and episode. 

In the B-section, rests separate not only the three phrase groups, but also the three phrases 

within the phrase groups. The two linking passages between the main sections (rnm.28-3 1 

and mm.58-62) are preceded by rests. Finally, rests isolate most of the truncated passages 

in the A'-section. 

The tempo changes also contribute to the formal organization of the etude, as 

illustrated in table 4.7. In the A-section fluctuations of tempo occur in the A-a and A-c 

subsections, corresponding with subject and episodic statements, while the A-b section 

proceeds without tempo changes. In the B-section, tempo changes mark the beg i~ ings  of 

the first two phrase groups and the last phrase of the second phrase group. The A'-section 

repeats the tempo changes of the A-section until m.79, at which point the A'-section 

diverges Earn the A-section. All of the tempo changes in the etude are related according 

to simple ratios, as listed in the final column of table 4.7. 

Thus, through the systematic progression between arrays in each section in 

conjunction with the parameters of dynamics, rests, and tempo markings, Perle defines 

the sections and subsections of the etude, thereby generating a clearly structured formal 

design. 

In addition, the dynamic markings, pedalling indications, and rests often coincide with discrete army 
segments. 

' 6  Contrasting dynamics also delineate the phrases within the phrase groups of the B-section. 



Table 4.7. Tempo changes between successive formal units, Etude No.4 

bar formal metronome relationship 
unit marking to Tempo I 

subject A-a 

episode A-a, end of first half 

episode A-a, beginning of second haIf 
subject A-c, end of mutated repeat 

subject A-c, resumption of transposed subject 

subject A-c, repeat 

linking passage 

B-section: 

phrase group B-d, beginning 

phrase group B-d, near end 

phrase group B-d, end 

phrase group B-e, beginning of first phrase 

phrase group B-e, end of second phrase 

phrase group B-f, end of second phrase 

linking passage, end 

A'-section: 

subject A'-a' 

episode A'-a', end of first half 

episode A'-a', beginning of second half 
subject A'-by, end of mutated repeat 

episode A'-b', beginning of mutated repeat 
subject A'-c', beginning of mutated repeat 

Tempo I 

1:2 

Tempo I 

I:2 

2 2  (Tempo 11) 

Tempo I 
4:5 

Tempo I 

Tempo i 

3:4 

2:3 (Tempo 11) 

Tempo I 

Tempo I 

2 2  (Tempo 11) 

Tempo I 

1:2 

Tempo I 

2 3  (Tempo 11) 

Tempo I 

3:4 

Coherence in successive axis-dyad chords 

Etude No.4 makes extensive use of a process I will call mutation, whereby a new 

gesture is formed fiom a systematically modified version of an earlier gesture or gestures. 

Mutation occurs throughout this etude in a variety of contexts. In the abstract dimension 

of array segments, mutation typically involves some combination of array segment 

reordering, neighbour- or axis-dyad replacement, multiple transposition levels, truncation, 

or extension. 

The first instance of mutation in Etude No.4 occurs at the modified statement of 

subject A-c in m. 16. The two axis-dyad chords in this measure represent a hsion of 



dyads fiom the corresponding axis-dyad chords of the two previous subject statements in 

rnm. l and 10. That is, the two axis-dyad chords of m. 16 have the same axis dyads as m. 1 

and the same neighbour dyads as those in m. 10. These dyads are enclosed in rectangles in 

figure 4.9. 

Figure 1.9. Mutation of subject axis-dyad chords of mm. I and 10 in m. 16, Etude No. 4 

Mutation also occurs in the B-section, between phrase groups B-d and B-e. Figure 4.10 

shows how the five axis-dyad chords of mm.39-40 derive fiom those of mrn.32-3 3.  The 

upper cyclic set segments of the five axis-dyad chords in mrn.39-40 are related by TI to 

the corresponding cyclic set segments in mm.32-33, while the lower cyclic set segments 

are similarly related by T2. 

Figure 4-10. Mutntion of phrase group B-d axis-dyad chords (mm. 32-33) in phrase group 
B-e (mm. 3 9-40}, Etude No. 4 

In the A'-section, a mutated repeat of the second subject and episode at mm.78-82 

delays the third statement of the subject until m.83. The mutation of the repeated subject 

A'-by is similar to the conflation of m. 1 and m. 10 in the mutated subject of m. 16 (figure 

4.9), but involves a succession of four axis-dyad chords here, rather than two. Figure 4.1 1 

illustrates how, in the rnm.78-79 passage, the fust and fourth axis-dyad chords retain the 

axis dyads of their counterparts in mm.63-64, and the neighbour dyads fkom those of 

mm.72-73. Conversely, the third axis-dyad chord in the mm.78-79 passage retains the 

neighbour dyads of its m.63 counterpart, and the axis dyad from its m.72 counterpart. The 



second axis-dyad chord in the mm.78-79 passage comprises an unsystematic mixture of 

pcs fiom the second axis-dyad chords in both m.63 and m.72, with the pcs reordered in 

m.78 to conform to the prevailing array. The fust sum tetrachord in m.79 takes its pcs 

fiom the left vertical dyad of the corresponding sum tetrachord in m.64, and from the 

right vertical dyad of the corresponding sum tetrachord in m.73. 

Figure I. I I .  Mutation of repeated subject A '-b ', mrn. 78- 79 (compared to mm. 72- 73 
and mm. 63-64), Etude No. 4 

p4i8: 
ilp3: 

mm. 72-73 : 

p2i6: 

iep I : 

mm.78-79: 

i3p7: 
PO 2: 

Although the final sum tetrachord of m.79 completes -he subject statement, this sum 

tetrachord actually derives fiom the first sum tetrachord of episode A'-b' (m.74), and as 

such initiates a mutated repeat of episode A'-b' (mm.79-82). Example 4.9 compares the 

fust statement of episode A'-by (mm.74-77) with the mutated repeat (mm.79-82). In the 

corresponding integer notation, the sum tetrachord's Linear dyads of m.74 have been 

reordered as vertical dyads in m.79 (example 4.9a). The truncated repeat omits the next 

two sum tetrachords in episode A'-by (at the end of m.74 and beginning of m.75). The 

repeat resumes in m.80 with a mutation of the fmal axis-dyad chord of m.75 (example 

4.9b). The axis-dyad chord in m.80 retains the axis dyad fkom that of the axis-dyad chord 

of m.75, but transposes the latter's neighbour dyads in m.75 by TPI. The opposite 

situation obtains in m.8 1, which derives kom the second half of m.76 (the first axis dyad 

chord of m.76 also having been omitted in the repeat). The axis-dyad chord of m.8 1 



retains the neighbour dyads of the corresponding axis-dyad 

124 

chord in m.76, but transposes 

the axis dyad by Tpl (example 4.9~).  Finally, the order of the two axis-dyad 

m.77 is reversed in m.82 (example 4.9d). The first axis-dyad chord of m.82 

chords in 

is the same as 

the second axis-dyad chord of m.77. The second axis-dyad chord in m.82 retains the same 

neighbour dyads as the first axis-dyad chord of m.77, but replaces the axis dyad with 

another of the same interval. 

Example 4.9. Mutated array segments in the repent of episode A '-b ', Etude No.4 

m.74: 

iep 1 : 

Section A'-c' comprises a complete statement of the subject at Tpo followed by three 

mutated repeats, which are reflected in the systematic changes in the tonic sums of the 



arrays. Figure 4.12 illustrates the succession of arrays beginning in m.83, where Perle 

decreases the second tonic sum in each of the upper cyclic sets, and increases the f ~ s t  

tonic sum in each of the lower cyclic sets. These alterations to the tonic sums are 

manifested in the corresponding axis-dyad chords through the process of mutation. 

Figure 4.12. Systematic alterations of tonic sums in section A '-c ', mm. 84-89, Etude No. 4 

The effects of mutation in the axis-dyad chords are apparent when they appear in a 

sum alignment, as in figure 4.13.~' The subject is f i s t  stated in its entirety in rnm.83-84 

at the transpositional level of the original subject of mm. 1-2 (figure 4.13a). But each 

subsequent statement involves systematic changes to the axis-dyad chords, first to those 

in just the latter half of the subject in the second statement (figure 4.13b), and then to 

those in both halves in the third ststement (figure 4.13~). The fust half of the subject is 

then omitted, replaced by one more modified repeat of the latter half (figure 4.13d). 

Lo the second statement of subject A'-c', the axis dyad of m.86 is related by T,, to its 

counterpart in m.84 (compare the fourth axis-dyad chord of figure 4.13a with the fourth 

axis-dyad chord of figure 4.13 b). Flipping the neighbour dyad (5/4) of this axis-dyad 

chord in m.86 provokes a reinterpretative modulation (figure 4.13b). The sum tetrachords 

which follow are mutated repeats of their counterparts in m.84. Each sum tetrachord in 

m.86 holds one neighbour dyad invariant and replaces the other neighbour dyad with one 

related by Tk 

In the third statement of the subject at m.87, the two remaining axis-dyad chords 

each replace one of their respective neighbour dyads with another of the same sum (figure 

4.13~). Again at rn.88, the axis dyad is related by TkI to its counterpart in m.86, and again 

-- - - 

" A sum alignment presents the transposed and invariant pcs as neighbour dyads and sum tetrachords, 
respectively, whereas a difference alignment positions the transposed pcs in opposite neighbour dyads and 
the invariant pcs in ail three vertical dyads. The annotated score in appendix four gives a sum alignment 
from m.83 to the end of the etude. 



Figure 4.13. Mutation in A '-c ' section, mm. 83-89, Etude No. 4 

pOp3: 1 e 4 8 7 2 1 

ptpe: 6 5 5 e e 8 2 

rn.87: rn.88: 
- - -  2 t 5  3 9 6  2 t  5 

- - -  9 2 8  4 7 3  

8 6  pOi2: 2 t 4 2 0 

iepe: 5 6 5 e 0 8 3 

it flips one of its neighbour dyads in a reinterpretative modulation. The following two 

sum tetrachords each replace a neighbour dyad with another Tkl-related dyad. The final 

mutated statement omits the first half of the subject and its three axis-dyad chords, 

resuming with the fourth axis-dyad chord related by TkI to its counterpart in m.88. This 

final axis-dyad chord flips one of its neighbour dyads to effect the final reinterpretative 

modulation. Only the first of the two sum tetrachords follows, with a neighbour dyad 

replaced by another Tkl-related dyad. 

The mutated subject conc!udes with a tonic axis-dyad Although tonic axis- 

dyad chords appear periodically throughout the etude, they are a significant feature of the 

28 In a tonic axis-dyad chord, the axis dyad pcs duplicate pcs in one of the trichordal cyclic set segments, 
and the axis dyad sums duplicate one of the array's tonic sums. Due to the high degree of pc and tonic sum 
duplication, the tonic axis-dyad chord is the only array segment Perle accords hierarchica1 superiority in 
twelve-tone tonality. Please see chapter two for a more detailed discussion of tonic axis-dyad chords. 



subject: all four axis-dyad chords in the non-mutated statements of the subject are tonic 

axis-dyad chords. In the first mutated subject statement in mm. 16-1 7 of the A-sectioil, the 

mutated portion of the subject involves non-tonic axis-dyad chords; the tonic status of 

subject axis-dyad chords returns with the final axis-dyad chord of m. 17, adumbrating the 

resumption of the transposed portion of the non-mutated subject. In a similar way, in the 

fmal subsection of the etude the mutated portion of the subject statements involve mostly 

non-tonic axis-dyad chords2' Hence the conclusion of the etude in a tonic axis-dyad 

chord marks a return of one of the distinctive features of the subject. 

In Etude No. l coherence between successive axis-dyad chords and between formal 

sections is achieved primarily by establishing consistent secondary difference and sum 

patterns (through combinations of transposed and invariant cyclic set segments), and by 

exchanging and inverting complementary transpositional values between axis-dyad 

chords. While these events occur in Etude No.4, the process of mutation proves to be the 

primary guiding force in achieving coherence between axis-dyad chords within and 

between formal units. 

Realization of array segments 

The musical surface of Etude No.4 also manifests the effects of mutation. Example 

4.10 and the corresponding integer notation show the A-section's mutated subject A-c at 

m. 16 (derived from the previous subject statements in mrn. 1 and 1 o) .~ '  Although the 

upper treble voice of m. 10 is unchanged in m. 16, the lower treble voice alternates its 

pitches C' and D fiom m. 10 and m. 1. The bass dyads comprise pitches from m. 10 and 

m. 1 in alternation (separately stemmed in the example). 

29 The fust axis-dyad chord in m.87 is a tonic axis-dyad chord, the lone exception among the mutated 
axis-dyad chords of this subsection. 

30 Figure 4.9 illustrates the effects of mutation on the axis-dyad chords of these measures. 



Example 4.10. Mzitation of individual voices of mm. I and 10 in rn. 16, Etude No. 4 

Example 

upper treble: 
lower treble: 
bass: 

4-11. Mutation of m.I6 in m.17, Etude No.3 

upper treble: 

Iower treble: 

bass: 



In turn, the content in m. 17 is a mutation of that in m. 16, as seen in example 4.1 1 

above. The upper treble voice's dyads in m. 17 are related by Tp-2 and Tp+z to their 

counterparts in m. 16. The lower treble voice's dyads expand outward by Tp3 and T p k l  in 

m. 1 7, while both bass dyads expand by Tp2. 

The process of mutation connects the diverse phrases in the three phrase groups of the 

B-section. Three different effects obtain between the fust phrases of phrase groups B-d 

and B-e (mm.32-33 and 39-40, respectively), as illustrated in example 4.12. The example 

uses upper and lower beams to show correlations between segments transposed by 

corresponding values. First, the vertical dyads are a semitone smaller in the bass in 

rnrn.3 9-40 than their dyadic counterparts in mm.32-3 3. Example 4.12a demonstrates how 

the decrease in the bass part from interval t dyads to intend 9 dyads results from the 

transposition of the individual upper and lower bass voices by different values: the upper 

bass voice by TPlr the lower bass voice by TpZ Second, the upper and lower treble voices 

of rnm.32-33 are each mutated in mm.39-40 by transpositions of discrete pitch segments 

by Tp and Tp2 (example 4.12b and c). Finally, the durational values of mm.3 2-3 3 are 

augmented in mm.39-40, strengthening the connection between the passages related by 

mutation. 

E m p l e  4-12. First phrase ofphrase group B-e (mm.39-40). derivedfiorn jirst phrase of 
phrase group B-d (mm. 32-33) through mutation, Etude No. 4 

(a) bass part 
mrn.32-33 

C , ..- I 

interval; r t t inrcrval. 9 9 9 

(c)  IOWQ treble pan: 



Mutation also connects the first phrase of phrase group B-f (mm.47-48) with the 

inverted subject in the linking passage in the A-section (rnm.29-30). As shown in 

example 4.13 and the corresponding integer notation, the treble part of mm.47-48 

transposes the treble part of rnm.29-30 at Tp*, although the order of the pitches in the 

second dyad is reversed, and only the E %th e third dyad reappears. The bass part of 

mm.47-48 transposes the bass part of mm.29-30 at TP13 until the penultimate pitch of 

m.48, at which point the bass dyad expands by Tp2 (not shown in the example). The 

integer notation gives the pcs of both passages, which display a TI  relationship. But due 

to the pitch transposition of the treble part by Tp, and the bass part by T P ~ I ~ ,  the spatial 

distances between the two parts contract instead of remaining invariant. 

Example 4. I3.  First phrase ofphrase group B-f (mm. 4 7-48), derived from linking 
passage (m. 2 9) through mutation, Etude No. d 

The opening of the linking passage between the B- and A'-sections (mm.59-60) also 

derives from a mutation process. This linking passage actually originates in the linking 

passage between the A- and B-sections at mrn.29-30, as shown in example 4.14 and the 

corresponding integer notation. The upper and lower treble parts in m.29 are transposed 

by differing values in m.59, resulting in the treble part's three vertical dyads in m.59 

being a semitone larger than their counterparts in m.29 (see example 4.14a). As well, the 

third vertical dyad is projected downward by an octave. Hence the first two pitches in the 

upper treble voice in m.29 are transposed by Tp2 in m.59 while the final pitch is 



transposed by Tp+ Similarly, the first two pitches in the lower treble voice in m.29 are 

transposed by Tpl while the third pitch is transposed by Tp+ In the bass part, the vertical 

dyads are a semitone smaller in m.59 than their counterparts in m.29 (example 4.14b). 

This decrease is due to the transposition in m.59 of the upper and lower bass voices in 

m.29 by Tpl and TP2, respectively. 

Example 4.14. Opening of linking passage between B- and A '-sections (m. 59) derived 
porn opening of linkingpassage between A- and B-sections (m.29), Etude No.4 

(a) m.29: 

upper treble pcs: 2 8 2 
Iower trebIe pcs: e 0 e 
intervals: I 5  8 15 

(b) m.29: 

upper bass pcs: 4 4 4 4 9  
lower bass pcs: 4 8 9 e e 
intervals: 1 3 8  7 5 t 

As discussed above, a mutated repeat of the A'-section's second subject and episode 

beginning at m.78 delays the statement of subject A'-c' until m.83. In this mutated repeat, 

the treble and bass parts derive their pitches &om the first and second statements of the 

subject in mm.63-64 and mm.72-73. Example 4.15 represents these derived pitches as 

closed noteheads. The dashed barlines isolating these pitches in the example highlight the 

mutation's systematic patterns of derivation. In example 4.15a, the upper treble voice 



Example I. 15. Mutated repeat of subject A '-b ' (derivedmrn subject statements in 
mm. 63-64 and mm. 72-73}, mm. 78- 79, Etude No.4 

(a) upper hcblc voke: 

(b) l o w s  treble voice: 

n~t1.63-64: 

(c) bass part: 

of mm.78-79 derives its pitches from the two statements in mm.63-64 and mrn.72-73 in 

alternation; the upper treble voice in 111.78-79 takes the fust four pitches fiom m.72, then 

the next three pitches from mm.63-64, then the next two f?om m.73, and so on. This 



mutation process thus establishes a pattern of alternating invariant pitches of <4-3-2-1- 1 >. 

In a similar way, the lower treble voice and the bass voice alternate between pitches from 

the two corresponding passages in a pattern of <I-3- 1 - 1 > and <I-2- 1 - 1-4- 1 >, respectively 

(examples 4.15b and c). This mutation process resembles that found in the third subject 

statement of the A-section, where the codat ion  of the subject statements in rnm. 1 and 10 

result in the mutated subject in m. 16. 

Finally, in the fmal section of the etude (rnm.83-89), the musical surface exhibits the 

systematic mutation of the sum tetrachords that conclude each rcpeated subject 

~tatement.~' The first and second sum tetrachords are realized in mm.84, 85, and 88 as 

linear dyads in on the second and third beats, respectively. The systematic replacements 

of the vertical dyads in the sum tetrachords are manifested in the music as the progression 

of the corresponding pitches within the linear treble and bass dyads. Example 4.16 

highlights these progressions in the beamed notes. The notes connected by the upper 

beams in the treble and bass staves represent pitches £?om the first sum tetrachord while 

the notes connected by the lower beams represent pitches fiom the second sum tetrachord. 

In the score, the first pitches in each of the bass's linear dyads (on the second beats of 

1nm.84, 86, 88, and 89) form a long-range descending melodic motion of A=G-G'-F, 

while the second pitches in each of the treble dyads form a long-range ascending melodic 

motion, of B b - ~  ' -c-c '. In the abstract dimension, these two passing motions are 

represented as the replacement of the vertical dyad of thefirst sum tetrachord by another 

of the same sum in each mutated subject repeat. The notes connected by the upper beams 

in the treble and bass staves show these passing motions. The second sum tetrachord in 

each pair is similarly realized at the sulface in the linear dyads of the third beat of mm.84, 

86, and 88: the second pitches in each of the bass and treble dyads form long-range 

melodic motions of D b - ~ h - ~  and D-c'-c ' , respectively. The notes connected by the 

lower beams show these passing motions. 

3 1 This discussion focuses on the second half of each subject statement in m . 8 3 - 8 9  due to the nature of 
the mutation process in this passage. The mutated array segments of the second half of the subject are 
realized systematically at the musical surface, but as  figure 4.13 shows, the first half of the subject is 
truncated in the third statement at m.87, then omitted f?om the fourth statement (m.89). 



Example 4-16. Realization of sum tetrachords as passing motions in mutated repeated 
subject statements ofA1-c ' subsection, rnm.84, 86, 88, and 89, Etude No.4 

nun tetrachard 
dyads connected 22 
by lower beams: 81 

Etude No.4 features textural contrast throughout, but most notably in the B-section, 

where the texture often comprises a complex mixture of linear and vertical dyads which 

form independent passing and neighbour gestures. Example 4.17 illustrates a passage that 

crosses the boundary of the second and third phrases in phrase group B-e, extending from 

mm.42-47. In exarnple 4.17% the treble part combines both sustained vertical dyads and 

linear dyads, both of which contain embedded gestures. The progression of the sustained 

vertical dyads in example 4.17b generates two parallel linear neighbour gestures. These 

are followed by two pairs of dyads of contrasting motion: the first pair's voices unfold in 

contrary motion (preserving the same dyadic sum) while the second pair's voices unfold 

in parallel motion (preserving the same dyadic interval). The Linear dyads in example 

4.17~ contain complementary neighbour gestures of the same component pcs, followed 

by a pair of dyads whose parallel motion preserves the same dyadic interval. 

Example 4.1 7d shows the vertical dyads in the bass in mm.42-47. The first four 

vertical dyads contain a pair of passing gestures in contrary motion (dyads one to three) 

overlapped by a pair of neighbour gestures (dyads two to four). (example 4.1 7e). These 

neighbour gestures coincide with those of the treble vertical dyads in example 4.17b. The 



Example 4.17. Embedded passing and neighbour gestures in vertical and h e a r  dyads, 
mm. 12-47, Etude No. 4 

(a) treble staE, mm.42-47: 

(b) vertical treble dyads 
I 1 I 

(c) Iinear treble dyads: 
C 

(e) bass dyads: 

I !,- 7 I I 
I 

rn ~+ I t  

I I I _  

bass part concludes with three vertical dyads which simultaneously embed both a passing 

and a neighbour gesture. Example 4.18 illustrates how the final three sustained treble 

dyads of the passage (see example 4.17b) also form this combination of gestures, by 

inverting the 7/0 dyad of m.44. Thus, the bass and sustained treble dyads in mm.44-47 

share a symmetrical relationship: the outer voices form a pair of neighbour gestures, 

while the inner voices form a pair of passing gestures in contrary motion. 

Similarly, phrase group B-f (mm.47-58) also contains embedded gestures in its 

textural combination of linear and vertical dyads. Each of the three phrases in phrase 

group B-f has similar opening measures (1nrn.47~5 1, and 55-56, respectively), but then 

the second and third phrases diverge fiom the first in length and content. These 

extensions of the two latter phrases contain the embedded gestures. In the extension of 



Erample 1.18. Corresponding gestures embedded in treble and bass parts, mm. 44-4 7, 
Erude No. 4 

the second phrase (mm.53-55) the treble part alternates its vertical and linear dyads. The 

vertical dyads embed two passing gestures in parallel motion and thus preserve the same 

interval (example 4.19a), while the two linear dyads also proceed in parallel motion, 

preserving the same dyadic interval (example 4.19b). The bass part's vertical dyads 

contain two passing gestures (example 4.19~). These gestures unfold simultaneously with 

and in contrary motion to those embedded in the treble vertical dyads (example 4.19a). 

Example 4.19. Embedded passing gestures, rnm. 52-55, Etude No. 4 

(a) v e m d  aebie dyads: 
1 I 

a!! 
#. ~ i 

I 

r I 
I 1 J 

i 
I , 

I 

The extension of the third phrase of phrase group B-f begins on the last dotted eighth 

value of m.56. Example 4.20 shows how the component pitches in the treble part 

(represented in closed noteheads) proceed in parallel motion, forming three vertical dyads 



of the same interval, as indicated in the corresponding integer notation.32 Simultaneously. 

the component pitches of the bass part (represented in open noteheads) also proceed in 

parallel motion, forming dyads of the same interval. At the third dotted-eighth value of 

m.57, however, the component pitches no longer move simultaneously within their 

respective treble and bass parts. Instead, only the outer voices move together (upper 

treble and lower bass, represented by closed noteheads); they lead to the end of the 

phrase in contrary motion forming three dyads of the same sum. Meanwhile, the inner 

voices move in alternation with one another in contrary motion (lower treble and upper 

bass, represented by open noteheads). Two of the three resulting dyads maintain the 

same sum. 

Example 4 20. Pairs of voices moving in paraZZeZ and contrary motion, mm. 56-58, 
Etude No. 4 

upperaeble: e 2 3 uppertreble: 7 
IoweraeMe: 8 C  lowerb bass:^ 
intend: 3 3 3 sum: 3 

uppzrbaa: 7 1 2 lowertre'eble: 3 
lowerbass: 9 3 4 umerbnss: 1 
intend: t t t sum: 4 

The example excludes from consideration the two linear dyads of C-E in the treble. mrn.56-57, as 
they do not contribute to the progression under discussion. 



The preceding analysis has aimed to show more intricate techniques of array 

realization than were employed in Etude NO. 1. Although the system of twelve-tone 

tonality is highly structured, it does not limit the infinite possibilities of realization for 

the composer. 

Set-theoretical perspectives 

Pitch-class set theory is a u s e l l  tool for reveahg both surface and structural 

relationships in Perle's music composed in the twelve-tone tonality system. The 

following discussion examines passages fiom Etude No. 1 and Etude No.4 from the 

perspective of pc set theory to complement the revelations f?om the perspective of 

twelve-tone tonality. Specifically, the set-theoretical approach highlights distinguishing 

features of the etudes: the palindromic formations in Etude No. 1, and the distinct formal 

units and mutated passages in Etude No.4. Moreover, the set-theoretical inquiries 

contribute additional insights into these etudes. 

Two pc sets of the same sc are considered equivalent on the basis of transposition or 

inversion, as established by Allen Forte (1973). Yet two equivalent pc sets may bear no 

resemblance to one another in their realization at the musical surface. Hence their 

equivalence is primarily an abstraction. Robert Morris (1 995b) extends the notion of 

equivalence to include pitch realizations of pc sets. He has introduced three contextually 

derived measures of equivalence relations which establish finer means of relating sets 

within a sc: the PSC, PCINT, and FB classes. Morris provides examples of each of these 

equivalences in various pitch realizations of given scs, which are reproduced below in 

example 4.2 1 .33 

The fvst of Morris's equivalence relations is PSC (for pitch set-class), in which pitch 

sets of the same sc are considered equivalent if they have identical spacing between their 

adjacent pitch elements when ordered from lowest to highest.34 Example 4.2 l a  gives 

33 Examples 4.21a and c are reproductions of Morris's examples 6 and 10a (1995b); the remaining 
examples 4.2 1 b and 4.2 1 d-h derive fiom Mom-s's related discussions on pp.2 13-2 14,2 17-2 18, and 220. 

34 Integers are used to represent pitches as well as pcs throughout this discussion and in the 
accompanying examples. With regard to pitches, integer 0 represents middle C; other pitches are measured 
in semitones above and below middle C. Hence the integers - 10, -9, and -6 represent the pitches D, E" and 
~"ediatel~ below middle C. This practice follows those of Rahn (1980) and Morris (1987, 199Sb). 



three pitch realizations of sc 3-3; they are all members of the same PSC-class because 

they contain identical spacing £?om their lowest to their highest pitches. PSC-classes 

derive their names corn the intervals between their adjacent pitch elements. Hence these 

three sets of sc 3-3 belong to PSC [13]. 

Example 4.21. Pitch realizations of sets from the same scs that are members of the same 
PSC-class (a), PCM-class @), FB-class (c), dual PSC-class (d) , dual PCINT-class (e) , 
dual FB-classes @, self-dual PSC-class (g), and self-dual PCM-class fi) 

(a) 3-5 sets in PSC [ I  31: (b) 4-229 sets in PCINT [215]: 

r) 

pitches: 5.6.9 

0 3'- 8 - 
7 9  

19.20.23 -21,-20,-17 pcs: 0, 2,6. e 0.2.6.  e 7, 9. 1.6 

(c) 5-21 sets in FB 134781: (d) 4-19 sets in dud PSCs: (e) 3-4 sets in dual PCINTs: 

(0 4-1 8 sets in dual FBs: (g) 6-8 set in selfdud PSC: (h) 4-1 sets in selfdual PCINTs: 

FBs: [349] PSC: 1235321 PCMTs: [111] 

The second relation is identified as P U N T  (for pc INT equivalence).35 In this relation, 

pitches are expressed as pcs; sets of the same sc are considered equivalent if they have 

identical spacing between adjacent pc elements when listed in the most compressed order. 

Example 4.2 1 b gives three pitch realizations of sc 4429, with the pitches listed as pcs. 

All three sets display the same succession of intervals between their adjacent pcs. Since 

the PCINT-class derives its name fkom the interval succession between adjacent pc 

elements, these three sets are members of PCINT (2451. 

- 

35 Morris defmes INT as the list of  a pc-segment's "successive adjacent ordered-intervals" (199Sb, 2 1 1). 



Morris's third equivalence relation is FB (for figured bass). Pitches in this relation are 

also expressed as pcs; sets of the same sc are considered FB-equivalent if their pcs form 

the same collection of intervals with a designated "bass" (the lowest pitch in the pitch 

realization of the sc).j6 The FB relation differs fiom the PCINT relation in that it does not 

measure the intervals between adjacent intervals in an ordered set of pcs. Rather, it 

measures the intervals of a partially ordered pc set, between the lowest pitch (expressed 

as a pc) and each of the remaining pcs. In example 4.21c, the three pitch realizztions of sc 

5-2 1 are members of the same FB-class; in each realization the pitches expressed as pcs 

form the same collection of i n t e d s  with the "bass" (intervals 3,4,7, and 8). The FB- 

class derives its name from these intervals; hence the three pitch realizations of sc 5-21 in 

example 4.2 1 c belong to FB-class [3478]. 

Morris also introduces the related concept of the d u d ,  in which the interval succession 

within a given PSC or PCINT appears in reverse order. Example 4.2 1 (d and e) illustrates 

the dual PSC classes [45e] and [e54] and the dual PCINT classes [47] and [74], 

respectively. Morris uses the formula (k-n) to find the dual of an FB-class, with k as the 

largest integer in the FB-class, and the variable n as each of the other integers in the class. 

In the final step, Morris repiaces the 0 (resulting from k-k) with k itself. Thus, in 

determining the dual of FB [349], the steps are: (9-4=5), (9-3=6), and (9-9=0, with 0 then 

replaced by 9). Hence the dual of FB [349] is [569], as shown in example 4.2 1f (l995b, 

220). Finally, certain PSC and PCINT classes are sew-duals, since their adjacent intervals 

lie in a symmetrical order (examples 4.2 1g and h). 

Together, these equivalence measures form a continuum of associations between pairs 

of sets within a sc. The PSC relation determines equivalence between two realizations of 

a sc based on the intervallic succession between their component pitches, and as such is 

the most concrete measure. The PCINT relation determines equivalence between two 

realizations based on the intervallic succession between their pitches expressed as pcs, 

and is thus a more abstract measure than the PSC. The FB relation is the most abstract 

36 In designating a "bass" note, Moms states: "One pc occurs before all the others in the set. The 
concept of 'before' is interpreted in pitch as lower. Thus the pcs that follow the fust pc can be realized in 
any register of pitch space as long as they are higher than the first pc's realization" (1995b, 2 18). 



measure of the three relations, in that it determines equivalence based on collections of 

intervals formed by unordered pcs in relation to a designated pc. Since they are dependent 

on contextual realization of members of a sc, these three equivalence measures establish 

more limited definitions of equivalence than do the standard measures of transpositional 

and invenional equivalence. As such, the PSC, PCINT, and FB relations may be used 

either to strengthen or diminish the assertion of equivalence between two pitch 

realizations of sets £?om the same sc. 

Etude No.1 

For the set-theoretical analyses of both etudes, the beamed notes in most of the 

musical examples are specifically intended to connect members of pc sets of various 

cardinalities within the same passage. The beams do not represent durational values 

(unless otherwise indicated), nor do they indicate hierarchical structural levels. Instead, 

the outermost beams connect pitches belonging to the same set, while each inner beam 

connects pitches belonging to the same subset. 

Principles of primary segmentation (Forte 1973,83) guide the segmenting practices in 

the following analyses of the etudes. Groups of pcs are segmented as sets on the basis of 

clear thematic elements, simultaneities, adjacencies, distinct linear textures, and register. 

In addition, other such notational clues as rests, dynamics, tempo changes, and pedal 

markings assist in identifying groups of pcs as sets. 

In the earlier discussion of array segments' realizations at the musical surface, 

examples 4.5,4.6, and 4.7 showed how the melodic gestures of Etude No.1 embed 

symmetrical formations of dyadic sums. The linear dyads of m.25 also unfold the array's 

tonic sums in a palindromic arrangement (figure 4.7a). This symmetrical feature is greatly 

enhanced when seen through the lens of pc set theory, which reveals that Etude No. l is 

rich in palindrornic formations of sets. 

The opening gesture of the etude comprises set 6-242, as shown in example 4.22a. The 

particular ordering of the pitches creates a palindrornic arrangement of pairs of subsets 

3-3, 4-1 8, and 5-3 1. Further strengthening the symmetrical relationships, the two sets in 

each sc of this segmentation are inversionally related by the same value (T31), and are also 



Example 422 .  Subsets of 6-242 set in pahndromic formation (a) and in Morris 's 
equivalence relations (b), m. I ,  Etude No. I 

set 1  itches DCS 

members of dual PSC, PCINT, and FB classes (example 4.22b). In addition, the 

symmetrical positioning of the 4-28 tetrachord between two 2-1 dyads makes explicit 

the cyclic intervals of 1 and 9 (of the underlying array i 1 iWi3 i0). 

Example 4.23a illustrates another palindromic formation of scs, found in the passage 

extending fiom the linear gesture at beat two of m.8, through the crossing interval cycles 

of mm.9-10, to the end of the A-section at m. 10.~' In the middle of the crossing interval 

cycles lies the central set of the palindrome, hexachord 6-242 (the same sc as found in the 

opening gesture), which itself contains a nested palindrome of tetrachords. The two 4- 13 

sets flanking the central 4-1 set are inversionally related by the same value (T3I), and also 

'' Pcs not belonging to sets in the palindromic formation have been omitted from the example, with their 
omission indicated by empty measures. 



belong to dual PSC, PCDJT, and FB classes (example 4.23b). Hence the palindromic 

formation within the 6-242 set of m.9 is similar to that of m. 1. In addition, both 6-242 

sets comprise the same pcs, but in a systematically different ordering (compare examples 

4.22a and 4.23a). That is, the pcs in the inner tetrachord and outer dyads of m.9 are the 

reverse of those in m. 1. The 4- 1 set at the center of the 6-242 set in m.9 contains pcs 0, 1, 

2, and 3 .  These pcs appear as the outer interval-1 dyads in the 6-242 palindrome of m. 1. 

As well, the interval-6 dyads immediately outside the 4-1 set in m.9 contain the pcs 0-6 

and 9-3. These pcs together constitute a member of sc 4-28, the same collection of pcs 

that lies at the center of the 6-242 set of m. 1. Thus, by symmetrically repositioning the 

pcs in m.9, the configuration tums "inside out" to form a different palindrome of scs, 

and establishes a close relationship between the two passages. 

Example 4.23. Sets in palindromic formations (a) and in Morris 's equivalence classes 
(b), mm. 8-1 0, Etude No. I 

In the larger palindrome extending from m.8 to m. 10, the two 4- 1 tetrachords 

surrounding the 6-242 hexachord are related by the transpositional value T,. Because 

of their varied realization in the score, however, they are not related further by any of 

Morris's equivalence classes. This weakens somewhat the conjecture of a larger 

set 
4-13 

pcs 
0,1,3,6 

pitches 
0,1,3,6 

PSC 
123 

PCINT 
123 

FB , 
136 



palindromic organization of sets, in contrast to the strong assertion of palindromic 

organization of the 6-242 hexachord at the center of the passage. 

From the perspective of twelve-tone tonality, figure 4.7 above illustrated how the 

dyads in m.25 unfold the tonic sums of the array in a symmetrical fashion. As well, the 

passage divides into two halves, with the dyads of the second half related by T6 to those 

in the first half, both vertically and horizontally (example 4.3). A set-theoretical 

segmentation confirms these relationships in slightly different terms, as shown in 

example 4.24. First, the symmetrically unfolding dyads create a palindrome of 

hexachords, with a pair of literally complementary 6-20 sets surrounding a central 6-1 set 

(example 4.24a). Each 6-20 set contains a nested palindrome of 3-3 sets flanking a central 

4-20 set. Two overlapping 7-21 sets also span the measure, each containing the other's 

literal 5-2 1 complement. 

The set pairs in each half of the passage are not only transpositionally related (by T6), 

they are also inversionally related (by T,I). Further, the set pairs in each half are related 

according to Moms's equivalence classes, as indicated in example 4.24b. The ordering of 

the 3-3 sets emphasizes these multiple relations. In a prograde ordering, the first 3-3 sets 

in each half form a transpositionally related pair, as do the last 3-3 sets. In a symmetrical 

ordering, the first and fourth 3-3 sets form an inversionally related pair that belong to dud  

PSC and PCINT classes, as do the second and third sets. Moreover, the first pair of 3-3 

sets belongs to dual FB classes. The 4-20 and 6-20 set pairs belong to self-dual 

equivalence classes, while the 5-2 1 and 7-2 1 set pairs belong to dual PSC and PCINT 

classes. Thus, fiom the perspectives of both twelve-tone tonality and pc set theory, m.25 

exhibits close relations among its pitch elements, in both prograde and symmetrical 

configurations. 

In the earlier discussion of the passage extending fiom mm.27-3 1, the twelve-tone 

tonal analysis revealed three successive streams of axis-dyad chords with alternating 

secondary difference patterns concurrent with axis-dyad chords showing three 

simultaneous streams of secondary sum patterns (figures 4.4 and 4.5). In addition, the 

neighbour dyads and axis dyads of the axis-dyad chords were shown to correspond with 

the left- and right-hand notation indications. The set-theoretical perspective also 



Example I. 2 4. Sets in palindrornic formations (a) and in Morris 's equivalence classes 
(b), rn.25, Etude No.1 

set pitches PCS P S C ~ ~  PCINT 
7-21 -5,-1,2,3,4,6,10,15,16,22 7,e,2,3,4,6,t,3,4,t 43 1 1245 16 43 11245 16 
7-21 -3,3,4,9,13,15,16,17,20,24 9,3,4,9,1,3,4,5,8,0 615421 134 615421 i34 

highlights the systematic organization underlying these measures, uncovering an intricate 

series of superimposed palindromes undetected in the twelve-tone tonal analysis. This 

organization is more evident by examining the left- and right-hand segments separately. 

38 Analogous to the abbreviations 't' and 'e' for the integers 10 and 1 1, the abbreviation 'v' is used to 
represent the integer 12 in the PSC column of this table. 



Example 4.25 shows how the series of pcs in the left-hand dyads forms a 7-2 

heptachord, which embeds a palindrome of trichords 3-6 and 3-2. The sets in the 3-6 pair 

are both transpositionally and inversionally related. Their particular pitch realization 

W e r  emphasizes their membership in the same equivalence classes. 

Example 4-25 Segmentation of left-hand line, mm.2 7-3 I ,  Etude No. I 

As illustrated in example 4.26, the right-hand progression comprises a series of 

vertical dyads, pairs of which combine to form discrete 3-2 trichords. The adjacent 

trichords are inversionally related and belong to dual equivalence classes. Pairs of 3-2 

trichords combine to form alternating, overlapping 4- 10 and 4- 1 tetrachords. Since scs 

4- 10 and 4- 1 are inversionally symmetrical scs, all of the sets within the 4- 10 and 4- 1 scs 

are both transpositionally and inversionally related. In addition, since the component 3-2 

trichords are inversionally related, their combination into tetrachords generates 4- 10 and 

4-1 tetrachords belonging to selfaual PSC and PCINT classes. In turn, pairs of these 

tetrachords combine to form alternating, overlapping 6-8 and 6-1 hexachords. (The final 

"partial" 6-1 collection is completed by the tetrachord at the beginning of the passage 

through a wrap-around procedure, suggested by the extended beams at the beginning and 

end of example 4.26.) Each hexachord thus comprises a palindrome of tetrachordal and 

trichordal subsets. Like the tetrachords, the 6-8 and 6-1 hexachords are also inversionally 

syrnmehical, and so all instances of each hexachordal sc in this example are 

transpositionally and inversionally related, and belong to self-dual PSC and PCINT 

classes. Example 4.26b gives the equivalence relations of the first pair of each of the sets 

in the passage. 



Example 4.26. Segmentation of right-hand line, mm. 2 7-3 1, Etude No. 1 

(4 

set lpitches 
I pcs PSC 

The tetrachordal structures are also palindromic. First, each of the tetrachords is 

flanked by juxtaposed 3-2 trichords, as discussed above. In addition, within each 4-10 

structure (which actually comprises six notes) the inner core of the 4-10 tetrachord is 

enclosed by identical vertical icl dyads, as illustrated in example 4.27a. An analogous 

situation obtains in the 4-1 structure, in which the inner core of the 4-1 tetrachord is 

surrounded by identical vertical ic3 dyads (example 4.27b). 



Example 1.2 7. Representative tetrachordal structures in right-hand line of mm.2 7-3 I ,  
Etude No. 1 

Thus, through set-theoretical analysis palindromic formations emerge as a distinctive 

feature of Etude No. 1. Although the twelve-tone tonal analysis alluded to this feature, the 

tools of pc set theory were required to make these these relationships visible. 

Etude No.4 

Etude No.4 does not feature palindromic formations to the same extent as does Etude 

No. 1. Rather, the fourth etude is distinguished by the mutated repeats of many of its 

formal units. PC set theory helps ciarify the effects of mutation. In some cases, the process 

of mutation holds a set invariant in a passage while changing or omitting other sets; in 

other cases, mutation changes the content of a set while still retaining the sc identity; and 

in still other cases, mutation creates an entirely new sc. These effects will be 

demonstrated below. 

First, however, set theory proves useful in de-g the fourth etude's formal units. My 

segmentation reveals a small inventory of sets in each subsection. Example 4.28a shows 

one such segmentation of mm. 1-2, in which two members of sc 4-14 serve as a frame 

around subject A-a. That is, the subject opens with a 4-14 set in the upper treble voice, 

and ends with another 4-14 set in the bass. Although the two sets are inversionally 

related, they are realized quite differently in the score; yet their equivalence is 

strengthened by the fact that both belong to dual FB classes, as illustrated in example 



4.28b. Moreover, members of sc 4-14 frame all statements of the subject, whether exact 

transpositions or mutations. The 3-4 set in the lower treble voice echoes the 3-4 subset in 

the upper treble. The equivalence of these 3-4 sets is unmistakable: both share the same 

pcs and hence belong to the same equivalence classes. The treble concludes with two 

discrete members of sc 3-3, whose realization in the score limits their equivalence to one 

of transposition only. 

Example 4 28. Sets in subject 
Etude N0.4 

A-a (a) and in Morris 3 equivalence classes 

lset 1 pitches 

Episode A-a is also defined by a small inventory of set pairs. Example 4.29a shows the 

first half of this subsection (mm.5-7), which opens with a pair of discrete 3-2 sets in the 

bass followed by a pair of overlapping 3-3 sets. The sets within each pair are 

inversionally equivalent, but in the latter pair the sets also belong to dual equivalence 



Example 4.29. Set pairs in episode A-a (a, b, c, d) and in Morris S equivalence classes 
(e), mm-5-9. Etude No.3 

(a) mrn 5-7 

@) mm.8-9: (c) mm.8-9: (d) 1nm.8-9: 



classes, as evident in example 4.29e?' The two 3-1 1 sets in the treble are equivalent 

under transposition as well as Moms's three equivalence classes. 

Example 4.29 (b, c, and d) gives three different segmentations of mm.8-9, of the 

second half of the episode A-a. Each of these segmentations produces pairs of sc 

members equivalent under either transposition or inversion. In example 4.29 6, the treble 

part contains two linear 3-1 trichords, while the bass contains two 3-6 trichords. The 

trichords in each pair are transpositionally related and belong to the same PSC, PCINT, 

and FB equivalence classes. In example 4 . 2 9 ~ ~  the treble and bass divide into two 6-1 

hexachords. Although the two sets are transpositionally and inversionally related, they are 

not equivalent in any of Morris's equivalence classes. Example 4.29d shows collections 

formed by treble and bass pitches combined. Although the 6-2 1 hexachords are 

inversionally related, they are not entirely equivalent in Morris's classes; the third and 

fourth intervais are reversed, as seen in the PSC and PCINT columns of example 4.29e. 

This results in differing FB classes as well. Within the pair of 6-21 hexachords lies a 

palindrome of 4-24 and 4- 12 tetrachords. Example 4.29e shows that while the 4-24 sets 

are transpositionally related, their respective second and third intervals are reversed. The 

4-12 sets are inversionally related, and diEer in the size of their lowest interval. If, 

however, the final two pitches in the bass had occurred two octaves higher instead (with 

the E as pitch 16 instead of -8), the sets in all three pairs of scs in this last segmentation 

would belong to dual PSC and PCINT classes. But this realization is merely hypothetical. 

Of the three segmentations of mm.8-9 in example 4.29, only example 4.29b produces 

pairs of sets that are equivalent in both concrete and abstract dimensions, as equivalent 

pitch sets and pc sets. 

The linking passage between the B- and A'-sections also comprises a small inventory 

of sets. Following the exchange of subject material between treble and bass in m.59, the 

treble and bass parts then divide into six different voices, which are notated separately in 

example 4.30a. Voices 1-5 are named according to their relative position on the two 

staves, from the top of the upper staff to the bottom of the lower staff. Voice 6 comprises 

39 The 3-2 set in the treble is onIy equivalent under transposition with the first bass 3-2 set, and under 
inversion with the second bass 3-2 set. 



Example 4 30. Notated six-voice texture (a), realigned according to sc correspondence 
(3, c, 4, mrn. 60-62, Etude No. 8 

1 2-1 
voice4: 5-3 voiccS: 5-6 voice 6: 3-1 

the last eighth notes in the fust four triplets, and the second eighth notes in the final two 

triplets. 

All six voices unfold members of different scs, and all but voice 6 contain two discrete 

trichordal subsets. These trichordal subsets group the six individual voices into related 

pairs. The six voices open with 3-1 subsets, as illustrated in example 4.30 (by c, and d). 

All six 3-1 sets are transpositiondly and inversionally equivalent, and belong to the same 

self-dual equivalence classes. Example 4.30b shows how voices 1 and 4 continue with 3- 

3 trichords, which are inversionally related and belong to dual equivalence classes. In 

example 4.30c, voices 2 and 5 continue with 3-4 trichords, which are tranpositionally 

related and belong to the same equivalence classes. In example 4.30d, however, voices 3 

and 6 continue with differing collections (sets 3-1 and 2-1 respectively). Although these 

collections do not form analogous relationships established by the other voice pairs, they 

do bring an elegant conclusion to the B-section in that they represent miniature passing 

and neighbour motions, which occur throughout this entire section. 



The process of mutation is a distinctive feature of Etude No.4, as discussed above 

from the perspective of twelve-tone tonality. As previously defined, mutation involves the 

formation of a new gesture fiom a systematically modified version of an earlier gesture or 

gestures, and may involve reordering of pitch or pc elements, multiple transpositional 

levels, truncation, or extension. The set-theoretical perspective provides another view of 

the varying effects of mutation. In some passages, mutated sets change into sets of 

different scs; in other passages, mutated sets remain in the same scs, despite the change of 

pc content. In still other passages, both effects may occur, either separately or 

simultaneously. 

Example 4.3 1 illustrates the effects of mutation on the third statement of the subject in 

the A-section (mm. 16- 1 7, given in example 4.3 1 c).~* In order to conform to the 

transpositional pattern established between the f i s t  two statements of the subject (TP-,), 

the upper treble voice in m. 16 should proceed at Tp-2 of the opening statement. Instead, 

the upper treble voice restates scs 4-14 and 3-4, scs associated with the previous 

statements of the subject, at the same transpositional level of subject A-b (m. 10). The two 

members of sc 3-3, also associated with the subject, do follow at Tp-2, but are delayed by 

an interpolated 5-10 set. This pentachord juxtaposes a 3-3 trichord with a 3-2 trichord, the 

latter of which is the TP4 transposition of the last three notes of the preceding 4-14 set. 

From the onset of this 3-2 trichord, the subject proceeds uninterrupted in the upper treble 

voice at the expected transpositional level of TP-2 

Mutation also delays the scs associated with the subject in the lower treble (3-4) and 

the bass voices (4-12 and 4-14). Instead, both voices in m.16 alternate pitches drawn from 

their counterparts in m. 1 and m. 10. This alternation results in a 2- 1 dyad which expands 

into a 4-7 tetrachord in the lower treble voice, and in tetrachord 4-22 in the bass, whose 

discrete dyads expand outward to form a member of sc 4-5. The delayed scs from the 

subject then follow at TP-~,  although the bass's 4-12 tetrachord is abbreviated. The repeat 

of the subject proceeds in mm.20-2 1 at Tp-2 in its original form. 

Example 4.1 1 and the accompanying discussion describes this passage in the context of array segnent 
realization. 



Exnmple 1.31. Statements of subject A-a in rnrn.1-2 (a), subject A-b in rnrn.10-II (b), and 
mutated subject A-c in mm. 16- 19 (c), Etude No. 4 

(a) mm. 1-2: 

I I I I 1 I 
4-12 4-14 

(c): mm. 16- 19: 

Example 4.32 illustrates that the opening of phrase group B-e is a mutated repeat of 

the opening of phrase group B-d. In example 4.12 above, each of the individual voices in 

rnm.39-40 was shown to transpose the pitches of its counterpart in rnm.32-33 at 

alternating levels of Tpz and TPl. The transpositions occur simultaneously only in the 

voices of the bass part. Thus, although the mutation results in differing vertical dyads in 

the bass (from interval t to interval 9), the linear trichords remain in the same 3-1 sc. In 



the treble part the transpositional levels do not alternate simultaneously between the 

voices; they also do not conform to the boundaries of the pc set segmentations. 

Nonetheless, the mutation process causes similar results in both voices. The first sets in 

both voices in m.39 belong to different scs than those of m.32; the second sets belong to 

the same scs as their counterparts in m.33, and are equivalent under transposition and 

Moms's three equivalence classes. 

Example 4.32- First phrase ofphrase group B-d, rnrn.32-33 (a) and irs mutated repeat in 
the first phrase of phrase group B-d, mm. 39-10 (b), Etude Mo- 4 

(a) mm.32-33: 

4-4 4-4 

In a similar process, the mutated repeat of the A'-section's second subject and episode 

at m.78 involves the derivation of pitches from mrn.63-64 and 72-73 in alternation, 

although in non-wansposed form (see example 4.15 and accompanying discussion). The 

patterns of alternation do not correspond with the pc set boundaries in the bass and lower 

treble voices; thus the mutation process results in the formation of different scs, as shown 

in example 4.3 3. Specifically, the bass's 4- 12 and 4- 14 tetrachords mutate into 6-z3 6 and 

4-3 collections respectively, while the lower treble's 3-4 trichord mutates into a 4-21 5 

collection. The upper treble voice, however, retains its familiar 4-14 set and 3-4 subset, 

since it repeats the first four pitches fkom its counterpart in rn.72. In preceding statements 

of the subject in the upper treble voice, the fifth pitch is tied to the fourth in the upper 

treble voice. But in this mutated repeat the fifth pitch is transposed (in that it derives from 

m.63 rather than m.72), thereby creating a member of a new sc, 5-5, which acts as a 



Example 4 33. Mutated repeat of subject A '-b ', mm. 78- 79, Etude No. 4 

superset to the 4-14 and 3-4. As the pattern of alternation continues, the remaining 

segments in the upper treble voice also mutate into other scs: the 4-4 and 2-2 collections 

replace the expected pair of 3-3 trichords. 

Example 4.34 compares episode A'-b' of mm.74-77 with its mutated repeat in mm.79- 

82. The mutation involves a variety of processes: truncation, transposition and invariance 

in combination, and reordering. First, example 4.34b shows how the pitch material in 

mm.79-80 is a truncated version of that in mm.74-75 (example 4.34a). The treble 4-2 

tetrachord in m.74 contracts into 3-6 trichord in m.79 with the omission of the E'. The 

bass retains the first two pitches and omits the next four, resulting in a 2-3 dyad instead of 

the original 4-7 tetrachord. As well, the 4-12 tetrachord that encompasses both treble and 

bass remains intact, although the 3-5 and 4-29  collections disappear with the omission 

of the bass notes. The subsequent 4-4 set and 3-1 subset are retained in the bass, although 

transposed by TPL. This transposition changes the combined treble and bass collection 

(from the 6-23 9 hexachord in m.75 to the 6-246 hexachord in rn.80). 



Example 1.31. Episode A '-b ', mm. 71-77 (a) and its truncated repeat, mrn- 79-82 (b, c, d), 
Etude No. 4 

(a) m 74: rn 75: m76: m 77: 

4-2 4-24 

(b) m.79: m80: (c) m81: (6) m.82: 

In its mutated repeat of m.76, m.81 omits the first three bass notes and the treble 

dyads, as illustrated in example 4.34~. In addition, Perle repositions the treble part's CS 

in m.76 to the bass part in m.8 1 ; this results in a member of sc 3-7 in the treble. This 

trichord comprises only one invariant pitch (A) f?om its counterpart in m.76; the other 

two pitches (F and D" are transposed by Tpl in m.8 1. At the same time, the bass part's 

5-2 pentachord from m.76 contracts into another member of sc 3-7 in m.8 1 ." Further, the 

collection encompassing both treble and bass at the end of m.76 also changes from 

hexachord 6-248 to 6-246, due to the partial transposition of the treble verticality. Thus, 

the mutation process results in two discrete 6-246 hexachords in mm.80-8 I ; five of the 

six pitches are invariant, while the sixth pitches belong to the same pc @c4). 

I' The two 3-7 sets are equivalent only under transposition. 



Example 4.34d shows that the individual treble and bass scs of m.77 are retained in 

m.82. The treble tetrachordal sets occur in reverse order, however, with the lowest pitch E 

in m.77'~ set 4-24 transposed up an octave in m.82'~ set 4-24. The bass 3-3 set is replaced 

by an inversionally equivalent 3-3 set which holds two of the three pitches invariant. The 

component pitches are reordered so that the invariant pitches occur before the new pitch, 

to simulate the reordering of the sets in the treble part. The single changed pc in rn.82 

results in a new superset (6-237) encompassing the invariant treble and bass scs. 

In the fmal subsection of Etude No.4 (mm.83-89), the mutation of subject A'-c' 

involves truncated, modified repeats of transposed and invariant pitch collections in a 

systematic combination. From the perspective of twelve-tone tonality, these processes are 

described above in both abstract and concrete dimensions: figure 4.13 interprets the 

passage as the reinterpretative modulation of axis-dyad chords followed by sum 

tetrachords with substituted neighbour dyads, while example 4.16 realizes the altered sum 

tetrachords as long-range passing gestures. The pc set segmentation of the same passage 

in example 4.35 below shows the formation of new scs with each mutated repeat of the 

subject. The new scs result &om the combination of invariant and variant pitches: in each 

new sc at least one pitch is retained f?om its corresponding sc in the immediately 

preceding statement, while the remaining pitches are transposed by some combinations of 

Tp and T& .42 

The treble part shows the systematic effects of mutation in its succession of trichordal 

sets in the second half of each subject statement (mm.84, 86, 88, and 89). Each statement 

unfolds a pair of trichords either from the same sc, or from different scs that share 

similarity relations.43 The succession in the bass part involves a more varied collection of 

scs. The difference in their cardinalities precludes any equivalence or similarity in terms 

42 The mutation process generates new scs with each mutated repeat in this final passage, with one 
exception: the mutation of the final treble trichord in m.86 generates an inversionally related member of the 
same sc 3-2 in the corresponding treble trichord in rn.88. 

43 The scs 3-3 and 3-2 (between rnm.84 and 86, and mm.86 and 88) are RI-related; both ofthe sc pairs 
3-2 and 3-1 (mrn.88 and 89) and 4-2 and 4-1 (rnm.86 and 88) are R2-related. 



Example 4-35. Subject A '-c ', rnm.83-81 (a) and its mutated repeats in rnm.85-86 (b), 
mm.87-88 (c), and m.89 (4. Etude No.4 

(c) mtn.87-88: 3-1 4- I - 3-2 

of R relations among the scs, yet they can be shown to be fairly similar to the original sc 

4-14 by utilizing the IcVSIM measure." 

4.4 The IcVSIM values for each pair are: 4-14 / 5-4 (0.943), 4-14 1 4- 10 (0.8 Id), and 4- 14 / 6-2 19 
(0.957). 



Hence, despite the seeming diversity in this passage created by the mutation process, 

the scs form a relatively homogeneous collection in several dimensions: in the concrete 

realization at the musical surface, and in the abstract dimensions of array segments and pc 

scs. Moreover, mutation has been shown to be a significant compositional factor 

throughout this etude; pc set theory offers different yet complementary insights into its 

multifaceted features. 

Perle composed his Six Etudes for Piano within the system of twelve-tone toridity he 

clearly did not avail himself of the tools of pc set theory in their composition. On the 

contrary, Perle spurns pc set theory, stating: "My rejection of Forte's system . . . is based? 

as I've said, on the fact that I find the system irrelevant to my experience as a composer, 

to my perceptions as a listener, and to my discoveries as an analystyy (1 WOb, 152). Perle's 

objections are manifold: he disapproves of the important status accorded the z-relation, 

stating that identical interval vectors is not a sufficient or relevant measure of relatedness 

between sets. In a similar vein Perle rejects the concept of abstract complementation. due 

to the implausibility of its aural perception. Perle's most strenuous objections are directed 

at the recognition of equivalence of pc sets solely on the basis of transposition or 

inversion, regardless of ordering, register, contour, or repeated notes. But Morris's 

equivalence classes are designed to address this contentious issue, allowing the analyst to 

distinguish degrees of equivalence based on pitch realizations of pc sets of the same sc in 

specific contexts. 

Perle's objections to more abstract, less audible relationships could well be directed at 

his own theory of twelve-tone tonality, aimed toward the more hierarchical levels of 

structure such as the synoptic arrays or the three types of tonality. Yet in an earlier article, 

Perle himself expresses a less judgmental attitude: "An analysis is an interpretation, and 

the concept of a single 'correct' analysis is as fallacious as the concept of a single 

'correct' performance. There is no way to categorize and delimit absolutely and 

unequivocally the collection of notes that we are to take as compositionally articulated 



musical entities, or to define, in the relations that we assert among these collections, the 

precise boundary between reasonable and 'top-knot' [i.e. spurious] connections" (1 982? 

377). This statement weakens Perle's later arguments against the more abstract 

relationships of pc set theory, and paves the way for the analyses undertaken in the 

present chapter. 

It is my belief that the two theories need not be mutually exclusive. On the contrary. 

pc set theory may prove to be a potent analytical ally. An analysis which considers 

several perspectives may offer a variety of insights into the work, strengthening some 

assertions and spawning others. This was the aim of the present chapter. Although 

detailed and compelling examinations of Etudes No. 1 and No.4 may be generated 

entirely within the context of Perle's theory, the set-theoretical insights complement. 

supplement, and enhance the conclusions reached f?om the perspective of twelve-tone 

tonality. Together, the two perspectives allow the analyst to develop a more profound 

understanding of the music. 



Chapter Five 

Conclusions 

The propagation of the theory of twelve-tone tonality 

The foundations of the present study are laid in chapter one, beginning with the 

discussion of Perle's analytical studies of twentieth-century works. Perle sees himself as 

continuing in a tradition established by composers who employ interval cycles and 

inversional symmetry. Other theorists have also pursued this approach to analysis, as 

summarized in the chapter. As well, chapter one presents some investigations of interval 

cycles from a theoretical rather than analytical perspective, specifically in the work of 

Robert Morris (1987) and John Clough (1979-80), thereby laying the groundwork for the 

independent investigation of the properties of cyclic sets in chapter three. Finally, chapter 

one reviews other representations of Perle's theory of twelve-tone tonality, which chapter 

two takes as its point of departure. 

The exposition of the theory of twelve-tone tonality in this study differs in a number of 

ways fiom Perle's own exposition. Chapter two reorganizes the topics, presenting them in 

an entirely different order. The chapter omits some topics, shortens some explanations 

while expanding others, and consolidates still others. Chapter two also includes the latest 

additions to the theory, as presented in the second edition of Twelve-Tone Tonality. l 

In unfolding his theory Perle makes distinctions within certain topics; I have omitted 

many of these since they did not prove essential to the present study. These include 

interval-type and sum-type axis-dyad chords (1 977b, 1 19-22), as well as tonic sum 

tetrachords (1 10-22) and tonic cyclic chords (69-72, 110-22).~ Chapter two of the present 

I These latest additions include the topics of  consonant and dissonantfiguration (1996,229-34), 
background andforeground sums and cycles (23 5-40), and synoptic arrays (1 92-97). 

' Interval-type and sum-type axis-dyad chords duplicate cyclic intervals and tonic sums, respectively, in 



study also omits discussion of tonic and resultant set forms (47-50) and derived sets (69- 

72).3 In the preface to the second edition of Twelve-Tone Tonality Perle comments that 

these topics are part of a "comprehensive and logical exposition of the system, but] do 

not . . . play a role in the conscious compositional process" (1996, xiv). Also excluded 

fiom consideration in this study is the topic of triadic arrays, which are formed fiom 

three cyclic sets rather than two. Perle devotes a chapter of Twelve-Tone Tonaliy to 

triadic arrays (1 977b, 152-16 l), but notes that "presumably it would be possible to work 

out the implications of triadic sets in terms of analogies with dyadic sets, with their 

respective sum and difference tables, master modes and master keys, tonic and resultant 

set forms [i-e., tonic and resultant cyclic sets], derived sets, and so on. Compositional 

experience to date with triadic sets has not led in the direction of this intimidating 

prospect" (1 55). 

In the first edition of Twelve-Tone Tonality Perle also distinguished between master 

modes (87-94) and master keys (95- 1 O6), which refer to difference and sum alignments of 

arrays within the master array (99). Chapter two of this dissertation does not present the 

concept of master arrays at this level of detail, however, since the distinction does not 

affect the master array designation, nor is it a factor in the analyses of the etudes in 

chapter four. 

Perle presents many of the more abstract topics in his theory from the perspective of 

difference scales and sum scales, configurations that align two transpositionally related 

semitonal scales to yield the same vertical dyadic intervals or two inversionally related 

semitonal scales to yield the same vertical dyadic sums, respectively (80-8 1, passim). As 

described in chapter two of this study, when cyclic sets are combined in arrays they 

produce secondary differences or sums in their vertically aligned dyads. Perle shows how 

these dyads originate in difference or sum scales. Perle then demonstrates how different 

their vertical dyads. Tonic sum tetrachords and tonic cyclic chords duplicate both tonic sums and cyclic 
intervals. 

Cyclic sets that when combined in an array generate tonic awis-dyad chords are called tonic set forms 
(cyclic sets). Cyclic sets that generate non-tonic axis-dyad chords when combined in an array are called 
resultant set forms (cyclic sets). Derived sets are the generators of axis-dyad chords formed from different 
cyclic intervals. Derived sets may also be distinguished as tonic derived sets and resultant derived sets. 



arrays may belong to the same modes, keys, and master arrays on the basis of shared 

origins in difference- or sum-scale alignments. Perle also discusses the implications for 

modulation between arrays by shifting the component scales within the difference or sum 

scales. Hence Perle uses difference scales and sum scales to present the same material 

from a different orientation. For purposes of clarity and brevity the present study omits 

this alternate perspective of twelve-tone tonality. 

Perle makes very few changes to the original material in his second edition of Twelve- 

Tone Tonality. Instead, he elects to add eleven new chapters at the end of the first edition 

(as chapters 3 1-41). Some of these later chapters are intended as "postscripts" to earlier 

chapters, in that they develop or expand the earlier topics. For example, while Perle 

discusses modulation in the first edition (1977b, 36-39, 55-58, 123-132) it is not until the 

second edition that he formally identifies and presents the two modulatory methods as 

modulation through substitution and modulation through reinterprelation (1 996, 198- 

223). In addition, Perle introduces the topic of synoptic key to balance that of synoptic 

mode (1 996, 195-97), which had been labelled master array in the first edition (1977b, 

99). This dissertation explores in detail the topic o f  synoptic key beyond Perle's own 

discussion; it establishes principles governing symmetrical consistency across all the 

parameters of different arrays within a single synoptic key. This topic has not been 

investigated in any of the other expositions of twelve-tone tonality. It is pursued in the 

present study since it is a significant feature in the design of Etude No.4, as discussed in 

chapter four. 

Perle revises his view of mode and key in the postscript chapter 33 of the second 

edition of Twelve-Tone Tonaliiy. In the earlier chapters 9 and 12 mode and key are 

determined as the difference between an array's secondary differences and as the sum of 

an array's secondary sums, respectively (1977b, 29-30,45-46). In the discussion of mode 

and key in chapter 33, however, Perle shifts the emphasis to the more fundamental 

relationship between the array's cyclic sets (1 996, 1 83 -I 85). 

Perle's discussions of topics in the postscript chapters sometimes conflict with related 

discussions in earlier chapters. In chapter 6 Perle first explains how to name cyclic sets 

using the p- and i-designations (1977b, 21). Although he gives precise instructions on the 



assignment of the prefixes p- and i-, Perle states that the order in which they are presented 

is inconsequential; hence, pop7 and p7p0 refer to the same interval-7 cyclic set. h 

chapter 33, however, Perie asserts a specific ordering of the tonic sums so as to generate 

the cyclic intervals consistently (1 996, 1 83). 

A more serious conflict emerges in Perle's revised discussion of his conception of 

tonality in the second edition. In chapter 28 of both editions PerIe determines tonality in 

each cyclic set of an array based on the individual cyclic set surns (1 977b, 145-46; 1996, 

140-41). In the newly added chapter 33 of the second edition, he determines the tonality 

of the array as a whole, according to the aggregate sum of the tonic surns (1996, 190-9 1). 

These two approaches lead to differing designations of tonality. In his discussion in 

chapter 28 of the final passage in Etude No.4, Perle follows the first approach (see 

appendix four, mm.83-89, of the present study); he states that while the tonic sums in the 

arrays change systematically, the pairs of oppositely aligned sums in the arrays each retain 

sums 1 1 and 1. He concludes that the oppositely aligned tonic-sum pairs are each in 

Tonality 1. The analysis in chapter four of this dissertation follows Perle's second 

d e f ~ t i o n  (as given in chapter 33) in determining the tonality of each array in the passage; 

the aggregate sums of the arrays all retain the sum 0, thereby placing them all in Tonality 

0. Although Perle acknowledges in the preface of the second edition that much of the 

material is restated and reformulated, he does not note any contradictions that arise, nor 

does he substantially revise the earlier chapters to correspond more closely with the 

related postscript chapters. 

Chapter three steps outside the context of twelve-tone tonality in its theoretical 

exploration of the nature of cyclic sets. An imbrication process segments the cyclic sets of 

each ic into assocations of  sc families called ICS families. The scs within each of the six 

ICS families share a number of properties due to the origin of the scs as segments of the 

symmetrical configurations of the cyclic sets: common cyclic origin, similar icvs, 

inversional symmetry in scs of even-integer cardinalities, transpositional combination in 

scs of cardinalities greater than three, and equivalence in other modular universes. 

4 In chapter two, n.6, I explain why I disagree with Perle's contention that ordering of the tonic sums in 
the array name is immateriaI. 



In addition, chapter three views the property of transpositional combination from 

another perspective, as a symmetrical expansion of a pc set segmented from the cyclic set. 

This study employs as operands a sc belonging to a specific ICS family and its generating 

cyclic ic in each TC operation. 

In the discussion of similarity relations among the scs in the ICS families, chapter 

three also presents Forte's Rl and R2 relations 6om a different perspective: scs in either 

of these similarity relations possess a symrnetricaZ relationship between the variant entries 

in their icvs. The chapter accordingly introduces another category of similarity relation, 

the RsVM relation, which broadens the definition of similarity to include scs with pairs of 

variant entries in symmetrical relationships in their icvs. The particular ics containing 

these variant entries in the icvs correspond to the ICS families to which they belong, 

thereby providing another means of establishing relations within and among ICS-families. 

The chapter also recognizes another form of pc set equivalence between ICS families, 

based on the mapping of scs into scs in other modular universes. All the Rl-reIated scs 

between the ICS-1 and ICS-5 families map into the same scs in the same modular 

universes, thereby extending the isomorphic relation between the two families. For each 

of the remaining ICS families, those mappings that correspond to the partition categories 

of the scs constitute a "best fit7' in other modular universes. 

Chapter three demonstrates the close associations among the scs resulting fiom 

imbrication of the cyclic sets. In particular, the chapter highlights the isomorphic relations 

that obtain between the scs of the ICS-1 and ICS-5 families in each of the properties of 

inversional symmetry, transpositional combination, R similarity relations, and 

equivalence in other modular universes. Thus, the symmetrical structure of the interval 

cycles has far-reaching implications, affecting relationships formed between and among 

cyclic-based configurations and establishing compelling relationships in several 

dimensions. Chapter three has explored these relationships f?om a purely theoretical 

perspective; conversely, chapter four returns to the context of Perle's theory of twelve- 

tone tonality in its analyses of the first and fourth etudes from Perle's Six Etudes for 

Piano. Hence chapters three and four considered together form a bifurcated structure, 

representing respectively the speculative and analytical branches of thought in this study. 



The analytical methods in chapter four differ in substantial ways from those used by 

other writers. Both Carrabre (1993) and Antokoletz (1992,434-47) provide analyses of 

excerpts of Perle's twelve-tone tonal compositions. Carrabre's short analyses of 

numerous works by Perle complement his chronological exposition of the theory. 

Headlam analyzes the third movement of Perle's Piano Concerto I in varying levels of 

detail (1995), while Rosenhaus aims to show the large-scale harmonic motion in each of 

the four movements in Perle's Wind Quintet No.4 (1995). The analyses in the present 

study show both local and long-range structure and account for every pitch in each of the 

two etudes. The analyses differentiate between the abstract dimension of arrays and array 

segments and their concrete realization at the musical surface. The study also suggests 

some strategies that may have guided the compositional process. Further, the analyses 

view the etudes from two different perspectives, those of twelve-tone tonality and of pc 

set theory. While Headlam also turns to pc set theory, he uses it simply to classify note 

groups as pc sets for easier reference. Conversely, the analyses in the present study 

actively employ set-theoretical techniques and conventions, coupled with Morris's 

extensions of the concept of equivalence within a sc (1 995b). This multifaceted analytical 

approach highlights distinctive features of the etudes. These include the many 

palindrornic formations in Etude No. 1 and the mutated passages in Etude No.4. 

The analyses in chapter four also demonstrate that although the etudes were composed 

entirely within the context of twelve-tone tonality, they display traditional formal designs. 

Both etudes are tripartite in structure with clearly defined sections and subsections, and 

both utilize conventional techniques of motivic development of the twelve-tone tonal 

material. In addition, Perle's use of transposition, inversion, retrograde, rotation, and 

symmetrical progressions reflect his analytical studies of other composers' works, thus 

strengthening his claim of continuing in a lineage of compositional tradition. 



Critical reception of Perle's theory of twelve-tone tonality 

Upon its publication Perle's book Twelve-Tone Tonality was greeted with mixed 

reviews. The negative criticisms mostly address three main issues: intelligibility of the 

text, guidelines for analysis, and musical communication or audibility of relations. Most 

of the reviewers consistently criticize the text for its dense, terse prose. Jonathan Dunsby 

complains of the lack of "narrative flow" and any "substantial connective commentary" 

(1979,364). Reviewers comment that the definitions are sometimes ambiguous and often 

inappropriately placed. Martha MacLean states that, as a result, readers may form 

unfounded assumptions, forcing them to backtrack and reassess earlier information ( I  979, 

123). Stefan Ehrenkreutz argues that definitions should be self-sufficient; in Twelve-Tone 

Tonality they are often difficult to understand outside the given context (1979,34). Bo 

Alphonce notes also that Perle does not sufficiently warn the reader that he uses 

established terms in unconventional ways (1982, 18 1). Most reviewers agree that Perle's 

"Index to Basic Definitions" is woefully inadequate, suggesting that a kl l  index and 

glossary would have been very helpful. Although Perle utilizes boldface font to highlight 

key points throughout the text, some reviewers think the practice was overused and 

frequently extended to relatively superficial statements while more crucial information 

remained in plain text (Dunsby, 1979,364; Ehrenkreutz, 1979,34). Mark DeVoto 

appears to stand alone in finding the text "simply and clearly written." Although he 

acknowledges the theory itself is not easily comprehended, DeVoto attributes the source 

of the diff~culty to Perle's use of relatively new dodecaphonic terms in unfamiliar ways 

(1978,295)- 

Perle responds to some of these criticisms in the second edition of Twelve-Tone 

Tonality. In reply to a reviewer's statement that Perle's book is "very tough reading," 

Perle argues that 

it is not, however, a book for 'reading' in any ordinary sense, any more than a 
traditional harmony textbook would be. I address myself to the concerns of both 
composers and theorists, but these do not always coincide. The composer working in 
the traditional major-minor system did not commence with a Schenkerian graph and 
proceed to elaborate therefrom a composition from its Urlinie through successive 
middleground and foreground details, ultimately deriving, in the final stages of 
creation, the principal motives and rhythmic patterns (1 996, xiii). 



This response neatly sidesteps the original charge; it ignores the fact that theoretical 

writing should be as clear as possible in order to communicate the ideas therein, despite 

the topic's complexity. The present study, therefore, takes the gods of intelligibility and 

accessibility as justification for the omission, expansion, and reordering of the tenets of 

twelve-tone tonality in chapter two. 

Several of the reviewers focus on the need for clear guidelines in determining arrays 

and array segments. Alphonce observes that Perle does not address directly the issue of 

segmentation (1982,203-4). MacLean also questions the basis of succession between 

axis-dyad chords in a single array, since Perle does not avail himself of the conventional 

means of h m o n i c  connection, such as invariant subsets, compIement relations, and total 

intervdlic content (1979, 125). Chapter four of the present study suggests a number of 

potential strategies for connecting array segments within a single array. Ehrenkreutz 

discusses what he deems another problematic area, that of pitch symmetry relations. 

Ehrenkreutz writes: "PerIeYs use of pitch symmetry is further complicated because his 

system is, for the most part, abstractly defined. Among other things, this means that pitch 

and interval relations are defined in terms of PC's and IC's" (1979,35). Chapter four of 

the present study addresses this conflict as well: the chapter distinguishes between 

abstract entities and events and their concrete realization, it illustrates pitch and interval 

relations in the musical examples, and it employs Morris's contextual equivalence 

relations in its set-theoretical observations. 

The third category of negative criticism concerns the audibility of the relations stressed 

by Perle within twelve-tone tonality. Similar to Ehrenkreutz's observations regarding 

pitch symmetry, Alphonce writes that once Perle extends inversional symmetry beyond 

pitches to pcs, the relation is no longer audible. Alphonce directly addresses Perle's stated 

goal of establishing a normative rather than reflexive precompositional reference (1 982, 

202-5). Alphonce acknowledges that structures do not need to be audible in order to serve 

as foundations on which to erect other structures closer to the surface. But if these 

substructures are intended to serve as elements of a normative precornpositional system 



then the listener must be able to recognize the patterns that trigger the h e  of reference. 

Alphonce doubts that this is possible: 

From the analytical point of view it [Twelve-Tone Tonality] is one giant hypothesis. 
Either it takes for granted that twelve-tone tonality is available as a shared 
precompositional norm, or it assumes the existence of extraordinary powers of instant 
pattern recognition in the human brain. The latter assumption offers a challenge to 
Articifial-Intelligence research; the former needs testing in actual listening. My 
impression is that this system, despite its impressive coherence and aesthetic 
attractiveness, does not in itself guarantee an optimal balance between the two 
principles of precompositional norm and reflexive reference (205). 

On the other hand, the same reviewers find many aspects of Twelve-Tone Tonality to 

be praiseworthy. The book contains a wealth of musical examples accompanied by 

provocative commentary. Perle's theory is hailed as a rich and innovative system, 

exhaustive in its detail. MacLean acknowledges Perle's effort to appeal to composers, 

theorists, analysts, and historians (1979, 123). Dunsby concludes that the theory shows 

"outstanding intellectual vision7' (1979,366). Ehrenkreutz views the theory as an example 

of the possibilities that exist for constructing a system that may rival tonality in its 

hierarchical structure and referential qualities (1 979, 3 3). Perhaps the most effusive praise 

is bestowed by Alphonce, who writes that W e  precompositional system Perle suggests 

represents a major intellectual achievement and reveals insights into and a mastery of 

twelve-tone relationships that anyone might envy. The mathematical model that 

represents his pitch-class system exhibits symmetries of breathtaking depth and serene 

beauty" (1982, 180). 

Suggestions for further study 

Many of the findings in this study raise questions that invite further investigation, both 

within and outside the domain of twelve-tone tonality. As discussed above, the question 

remains unanswered as to whether and to what degree twelve-tone entities and relations 

are audible, thereby suggesting a potential line of inquiry for researchers in the field of 

perception and cognition. 



Another issue involves the role of intuition in the development of the various facets of 

twelve-tone tonality in the compositional process. In the chapter "Composing with 

Symmetries" in The Listening Composer, Perle asserts that he never thinks in terms of 

background structures and models while composing (1 WOa, 14 1). In Twelve-Tone 

Tonality Perle provides an analysis of the first movement of his Modal Suite for piano. 

Although he describes the movement in terms of its array, secondary difference 

alignments, and tonic and non-tonic axis-dyad chords, Perle states in a footnote that he 

did not consciously exploit these properties during the compositional process, since the 

piece was written over three decades earlier, in 1940. Rather, he attributes their presence 

in the composition as inherent in the nature of cyclic-set materials (1 977b, 34, n.2 1). In 

the aforementioned chapter in The Listening Composer Perle offers yet another 

interpretation of a specific passage in the same movement, based on his recent forays into 

dissonance, stating that "it is only since dissonant figuration has become an integral 

component of my compositional language that I have been able to offer what I think is a 

reasonable explanation [for a specific pitch, now interpreted as an octave-displaced 

suspension]" (1 990% 16 1-62). In the corresponding footnote, Perle comments that the 

previous interpretation provided in Twelve-Tone Tonality is quite different and less 

convincing (1 62, n. 18). Moreover, Charles Porter reports that in his analysis of Perle's 

Wocturne" in Sonata A Quatb-o Porter discovered the proportion 5:4 pervading the 

parameters of tempo, rhythm, duration, phrase, and form at multiple levels of structure 

(Porter 1995,2 1 7). When Porter presented this finding to Perle, the composer denied 

consciously employing the proportion, other than in the opening measures' alternating 

tempi which express a 5:4 relation. Perle contended: "I never consciously work with 

numerical proportions except as they relate to metronome markings. Whatever other 

instances of the 5:4 proportion there are had to be intuitive" (219, n.5). 

These claims of intuitive, unconscious awareness suggest that investigating earlier 

compositions for evidence of Perle's more recently developed concepts would be a 

fitful endeavor. Such a task may lead the investigator to trace the development of these 

concepts along an evolutionary path through Perle's music, and to speculate on the degree 

of influence they may have had, although at a subconscious level, in the compositional 



process. To a certain extent the present study has begun such an investigation in its 

consideration of the implications of the synoptic key in Etude No.4, which was composed 

before Perle had formulated the concept. 

Further questions arise pertaining to the contribution the recent additions to Perle's 

theory may make to its hierarchical structure. Perle states that if incidental sums and 

differences are observed in a twelve-tone tonal composition, they may imply deeper-level 

sums and differences resulting fiom background cyclic sets or arrays (1 996,237). If such 

background smctures are detected, the analyst may wish to determine the extent of their 

participation and influence at the foreground. The analyst may investigate whether the 

relations between and among parameters established at the foreground intersect with 

those at the middleground and background, analogous to a Schenkerian model, or 

whether they exist as independent sbmtural entities. 

A related investigation would determine the extent to which Perle utilizes dissonant 

figurations. Will they remain as surface interpolations between array segments or will 

they gradually infiltrate the deeper layers of structure, forming gestures of longer range, 

thereby adding another dimension to the hierarchical structure of twelve-tone tonality? 

Together, these questions form part of a larger inquiry into the nature and direction of the 

theory's continuing evolution. 

Perle (1993) has commented on the points of intersection that exist between his theory 

of twelve-tone tonality and the transformational theories of David Lewin, particularly 

with the concept of Klumpenhouwer networks (Lewin 1990). Klumpenhouwer networks 

represent pc sets in terms of the transpositional and inversional relationships among the 

component elements of the set. These networks are u s e l l  in establishing relations among 

pc sets that are neither transpositionally nor inversionally equivalent. Strongly isographic 

networks have isomorphic graphs; that is, their graphs express identical Tn and T,I 

relationships.Two Klumpenhouwer networks whose T, values are identical, but whose 

TnI values have been transposed by the same amount in one network relative to the other, 

are said to be positively isographic. Two Klumpenhouwer networks whose T, values are 

mod-12 complements, and whose TJ values have been transposed by the same amount in 

one network relative to the other, are said to be negatively isographic. 



Perle has said that these same isographic networks relationships exist in twelve-tone 

tonality. He defines a Klumpenhouwer network as "a chord analyzed in terms of its 

dyadic sums and differences" (1993, 300). In Perle's view, strongly isographic trichordal 

networks may be expressed as trichordal segments from the same cyclic set, with the T, 

value representing the cyclic interval and the T.1 values representing the cyclic set's tonic 

sums. Positively and negatively isographic networks are analogous to cyclic set segments 

drawn fiom cyclic sets in the cognate relation (which are inversionally related and which 

share a tonic sum). 

Perle also observes that the tetrachordal Klumpenhouwer networks Lewin discusses in 

his article (Lewin 1990, figure 17) are comparable to the sum tetrachords of twelve-tone 

tonality, which originate in aligned sum scales. He fuaher notes that if the tetrachords 

being compared in the networks are not symmetrical, then they cannot be found as 

tetradic segments of a cyclic set; rather, they can be found as segments of derived sets 

(which combine two alternating cyclic intervals and four tonic sums). In addition, just as 

Lewin shows the various relations among compared sets' elements by reordering them in 

different "modes" of interpretation, Perle reorders the segments to belong to different 

cyclic sets. 

Robert Moms (1998) has also observed the connections between Perle's cyclic sets 

and Lewin's Klumpenhouwer networks. Morris adapts Perle's ic5 cyclic set to serve as an 

example of a compositional space. Morris separates the inversionally related cycles into 

two vertically aligned rows, which he calls a Perle space. Morris draws triangles to form 

sets fiom different scs (of both cardinalities two and three), but which exhibit strong 

isographies as a result of the symmetrical nature of the cyclic set. The horizontal side 

preserves the transposition operation, while the vertical and diagonal sides preserve 

inversional operations. Morris further suggests the possibility of either flipping the 

hiangles (by maintaining a common vertex or side) or moving among the isographic 

triangles to establish stable relationships among sets of differing scs? 

Morris notes that Paul Lansky goes much funher along these lines in his Ph-D. dissertation "Affme 
Music" (1973), which Morris views as a "comprehensive expansion of Perle's twelve-tone tonaIity using 
concepts and techniques fiom matrix aIgebra and a f i e  geometry" (1998, 193, n.38). 



Perle (1993) limits the comections he makes with Lewin's transformational networks 

to comparisons between Klumpenhouwer networks and segments fiom cyclic sets, sum 

scales, and derived sets. Future investigation might extend the transformational 

relationships within the context of twelve-tone tonality beyond array segments. For 

example, the dynamic nature o f  Lewin's transformational graphs suggests that they may 

be well suited to express systematic progressions among arrays, similar to the motion 

between arrays discussed in the analyses of etudes one and four in chapter four of the 

present study. In both etudes arrays transformed into another through various 

combinations of invariance and transposition. 

Another possible application of transformational graphs to Perle's theory of twelve- 

tone tonality would be through the use of Lewids "network of networks" Gewin 1990). 

Such a network might be constructed to reflect the hierarchical structure of twelve-tone 

tonality, for example, in terms of arrays, keys, aggregate sums, and tonalities. 

Outside the domain of twelve-tone tonality, some of the entities introduced in chapter 

three suggest several avenues for further exploration. In its contribution to the study of 

similarity relations the huM relation focuses specifically on symmetrically variable icv 

entries. This invites the analyst to investigate the extent to which this feature manifests 

itself compositionally, a study perhaps similar in scope to Richard Cohn's investigation 

into the properties of transpositional composition and inversional symmetry in Bart6k9s 

music (Cohn 1987, 1988). Another path of inquiry would pursue the question of 

hierarchical degrees of similarity within the RsVM relation, based on the degree to which 

the variable entries differ. Preliminary work in this direction was begun in chapter three 

of the present study, with the application of Isaacson's IcVSIM values to scs in the RsVM 

relation and in Forte's R, relations. 

The ICS families evolved through imbrication of cyclic sets. Imbrication applied to 

other entities of twelve-tone tonality also may generate other types of associations 

between scs. Potential subjects for imbrication might include combinations of different 

interval cycles rather than of the complementary cycles of cyclic sets, or perhaps of 

combinations of cyclic sets as arrays. The assumption is that the resulting associations 

would be influenced by the specific nature of the combination of the imbricated subjects, 



such as whether the arrays imbricated were composed of cyclic sets of the same or 

different icy or of the same or different partitions of ic cycles, and so forth. It is 

imaginable that a network of relations may be constructed through the imbrication of 

these interval-cycle entities. Moreover, each of the ICS families comprises a collection of 

scs in close association. The notion of shared characteristics grouping scs into families 

suggests intersection with the field of sc genera theory (Forte 1988, Parks 1998), inviting 

W e r  investigation. 

This study has taken a multifaceted approach in its presentation of Perle's theory of 

twelve-tone tonality, with the goal of making the theory more accessible and 

comprehensible to the theoretical community. The study has aimed to show the depth and 

potential of the theory, both within and outside its own context. Through the exploration 

of its hdarnental structural entity, the cyclic set, the study has introduced new forms of 

associations and relations among scs, which may prove relevant and powerful in future 

theoretical and analytical discourse. 



Appendix One 

The Cyclic Sets of All Cyclic Intervals (mod 12)' 

first 
part it ion 

pOi0: 0 0 (0 
ilpl: 0 1 (0 
p2i2: 0 2 (0 
i3p3: 0 3 (0 
p4i4: 0 4 (0 
i5p5: 0 5 (0 
p6i6: 0 6 (0 
i7p7: 0 7 (0 
p8i8: 0 8 (0 
i9p9: 0 9 (0 
ptit: 0 t (0 
i e ~ e :  0 e (0 

seventh 
partition 

pOi0: 6 6 (6 
ilpl:  6 7 (6 
p2i2: 6 8 (6 
i3p3: 6 9 (6 
p4i4: 6 t (6 
i5p5: 6 e (6 
p6i6: 6 0 (6 
i7p7: 6 1 (6 
p8iS: 6 2 (6 
i9p9: 6 3 (6 
ptit: 6 4 (6 
i e ~ e :  6 5 (6 

CYCLIC INTERVAL-0 
second 

partition 
I e (I 
1 0 (I 
I 1 (I 
I 2 (I  
1 3 ( I  
I 4 (1 
1 5 ( I  
1 6 (I 
1 7 (1 
I 8 (I 
1 9 (1 
I t (I 

third 
partition 

2 t (2 
2 e (2 
2 0 (2 
2 1 (2 
2 2 ( 2  
2 3 (2 
2 4 (2 
2 5 (2 
2 6 (2 
2 7 (2 
2 8 ( 2  
2 9 (2 

fourth 
partition 

3 9 (3 
3 t (3 
3 e (3 
3 0 (3 
3 1 (3 
3 2 (3 
3 3 (3 
3 4 (3 
3 5 (3 
3 6 (3 
3 7 (3 
3 8 (3 

eighth 
partition 

7 5 (7 
7 6 ( 7 8  
7 7  ( 7 8  
7 8 ( 7 8  
7 9  ( 7 8  
7 t  ( 7 8  
7 e ( 7 8  
7 0 ( 7 8  
7 l ( 7 8  
7 2  ( 7 8  
7 3  ( 7 8  
7 4 ( 7 8  

fifth 
partition 

4 8 (4 
4 9 (-4 
4 t (4 
4 e (4 
4 0 (4 
4 1 (4 
4 2 (4 
# 3 (4 
4 4 (4 
4 5 (4 
4 6 (4 
4 7 (4 

ninth 
partition 

8 4 (8 
5 (8 
6 (8 
7 (8 
8 (8 
9 (8 
t (8 
e (8 
0 (8 
l ( 8  
2 (8 
3 (8 

tenth I eleventh 
partition 

9 3 (9 
9 4 (9 
9 5 (9 
9 6 (9 
9 7 (9 
9 8 (9 
9 9 (9 
9 t (9 
9 e (9 
9 0 (9 
9 1 (9 
9 2 (9 

partition 
t 2 ( t  
t 3 ( t  
t 4 (t 
t 5 (t 
t 6 (t 
t 7 (t 
t s ( t  
t 9 ( t  
t t ( t  
t e (t 
t  0 (t 
t 1 (t 

sixth 
partition 

5 7 (5 
5 8 (5 
5 9 (5 
5 t (5 
5 e (5 
5 0 (5 
5 1 (5 
5 2 (5 
5 3 (5 
5 4 (5 
5 5 (5 
5 6 (5 

twelfth 
partition 

e l (e 
e 2 (e 
e 3 (e 
e 4 (e 
e 5 (e 
e 6 (e 
e 7 (e 
e 8 (e 
e 9 (e 
e t (e 
e e (e 
e 0 (e 

- 

' Each single parenthesis indicates the completion of the full cycle. 



I CYCLIC INTERVAL-1 I 

I CYCLIC INTERVAL-e I 



I CYCLIC INTERVAL-2 I 
first  arti it ion second   art it ion 

I CYCLIC INTERVAL4 I 
first partition 

p 0 i t : O O t  2 8 4 6 6 4 8 2  t (0 
i1pe:O 1 1  3 8 5 6 7 4 9 2  e (0 
p 2 i O : O 2  r 4 8 6 6 8 4  t 2 0 (0 
i 3p l :O  3 1 5  8 7 6 9 4 e 2 1 ( O  
p4i2:O 4 t 6 8  8 6 t 4 0 2 2 (0 
i5p3:O 5 r 7 8 9 6 e 4 1 2  3 (0 
pGi4:O 6 1 8  8 t 6 0 4 2 2 4 (0 
i7p5:O 7 1 9  8 e 6  1 4  3 2 5 (0 
p8i6:O 8 r t 8 0  6  2  4 4 2 6  (0 
i9p7:O 9 t e 8 1 6  3 4 5 2 7 (0 
p t i 8 : O t  r 0 8 2 6 4 4 2 8 ( O  
i e p 9 : O e  t 1 6  3 6 5 4 7 2 9 (0 

second  arti it ion 





I CYCLIC INTERVAL-4 I 
first partition 

pOi4: 0 0 4 8 8 4 (0 
ilp5: 0 1 4 9 8 5 (0 
p2i6: 0 2 4 t 8 6 (0 
i3p7: 0 3 4 e 8 7 (0 
p4i8: 0 4 4 0  6 8 (0 
i5p9: 0 5 1 1 8 9 (0 
p6it: 0 6 4 2 8 t (0 
i7pe: 0 7 4 3 8 e (0 
p8iO: 0 8 4 4 8 0 (0 
i9pl :O 9 4 5 8 1 (0 
pti2: 0 t 1 6 8 2 (0 
iep3: 0 e 1 7  8 3 (0 

second partition third partition 
2 t  6 6 t 2 ( 2  
2 e 6 7 t  3 ( 2  
2 0 6 8 r  4 ( 2  
2 1 6 9 1  5 ( 2  
2 2 6 t  r 6 ( 2  
2 3 6 e t  7 ( 2  
2 4 6 O r  8 ( 2  
2 5 6 1 t 9 ( 2  
2 6 6 2 r  t (2 
2 7 6 3 t  e ( 2  
2 8 6 4 r  O ( 2  
2 9 6 5 r  l ( 2  

fourth aartition 

first partition 
pOi8: 0 0 8 4 4 8 (0 
ilp9: 0 1 8 5 4 9 (0 
p2it: 0 2 8 G 4 t (0 
i3pe: 0 3 8 7 4 e (0 
p4iO: 0 4 8 8 1 0 (0 
i5p l :O 5 8 9 4 1 (0 
p6i2: 0 6 8 t 4 2 (0 
i7p3:O 7 8 e 4 3 (0 
p8i4: 0 8 8 0 4 4 (0 
i9p5: 0 9 8 1 4 5 (0 
pti6: 0 t 8 2 4 6 (0 
iep7: 0 e 8 3 4 7 (0 

second partition 
l e 9 3 5 7 ( 1  
1 0 9 4 5 8 ( 1  
1 1 9 5 5 9 ( 1  
1 2 9 6 5 t  (I 
1 3 9 7 5 e ( I  
1 4 9 8 5 0 ( 1  
1 5 9 9 5 1  (1 
1 6 9 t  5 2 ( 1  
1 7 9 e 5 3 ( 1  
1 8 9 0 5 4 ( 1  
1 9 9 1 5 5 ( 1  
I t  9 2 5 6 ( 1  

third partition 
2 t r  2 6 6 ( 2  
2 e t  3 6 7 ( 2  
2 O t 4 6 8 ( 2  
2 1 1  5 6 9 ( 2  
2 2  6 6 t  (2 
2 3 1 7 6 e ( 2  
2 4 r  8 6 0 ( 2  
2 5 ! 9 6 1 ( 2  
2 6 1  t 6 2 ( 2  
2 7 1  e 6 3 ( 2  
2 8 t  0 6 4 ( 2  
2 9  1 6 5 ( 2  

fourth partition 



CYCLIC INTERVAL-5 
p O p 5 : 0 0 5 7 t  2 3 9 8 4 1 e 6 6 ~ 1 4 8 9 3 2 t  7 5 ( O  
i l i 6 : 0 1 5 8 / 3 3 t  8 5 1 0 6 7 e 2 4 9 9 4 Z e 7 6 ( 0  
p 2 p 7 : 0 2 5 9 t  4 3 e 8 6 1 1 6 8 e 3 4 t  9 5 2 0 7 7 ( O  
i 3 i 8 : 0 3 5 t  t  5 3 0 8 7 1 2 6 9 e 4 4 e 9 6 2 1  7 8 ( O  
p 4 p 9 : 0 4 5 e t  6 3 1 8 8 1 3 6 t  e 5 4 0 9 7 2 2 7 9 ( 0  
i 5 i t : O 5 5 O t  7 3 2 8 9 1 4 6 e e 6 4 1 9 8 2 3 7 t  (0 
p 6 p e : O 6 5 1 t  8 3 3 8 t  1 5 6 O e 7 1 2 9 9 2 4 7 e ( O  
i 7 i O : O 7 5 2 t  9 3 4 8 e 1 6 6 1 e 8 1 3 9 t  2 5 7 O ( O  
p 8 p l : O 8 5 3  t 3 5 8 0 1 7 6 2 e 9 4 4 9 e 2 6 7 1 ( 0  
i 9 i 2 : 0 9 5 4 f  e 3 6 8 1  1 8 6 3 e t  4 5 9 0 2 7 7 2 ( 0  
p t p 3 : O t  5 5 t  0 3 7 8 2 1 9 6 4 e e 4 6 9 1 2 8 7 3 ( 0  
i e i 4 : O e 5 6 t  1 3 8 8 3 1 t  6 5 e O 4 7 9 2 2 9 7 4 ( 0  

CYCLIC INTERVAL-7 
p O p 7 : 0 0 7 5 2 t  9 3 4 8 e 1 6 6 1 e 8 4 3 9 t  2 5 7 ( O  
i l i 8 : O l  7 G Z e 9 4 4 9 2 6 7 1 0 8 5 3 t  t 3 5 8 ( O  
p 2 p 9 : 0 2 7 7 2 0 9 5 4 t  e 3 6 8 1 1 8 6 3 e  4 5 9 ( O  
i 3 i t : O 3 7 8 2 1 9 6 4 e e 4 6 9 1 2 8 7 3 O f  5 5 t  (0 
p 4 p e : O 4 7 9 2 2 9 7 4 O e 5 6 t  1 3 8 8 3 1 t  6 5 e ( O  
i 5 i 0 : 0 5 7 t 2 3 9 8 4 1 c 6 6 e 1 4 8 9 3 2 t  7 5 0 ( 0  
p 6 p l : 0 6 7 e 2 4 9 9 4 2 e 7 6 0 1 5 8 t  3 3  8 5 1 ( O  
i 7 i 2 : 0 7 7 0 2 5 9 t  4 3 e 8 6 1  1 6 8 e 3 4 t  9 . 5 2 ( 0  
p 8 p 3 : 0 8 7 1 2 6 9 e 4 4 e 9 6 2 1 7 8 0 3 5 t  t 5 3 ( O  
i 9 i 4 : 0 9 7 2 2 7 9 0 4 5 e t  6 3 1 8 8 1 3 G t  e 5 4 ( O  
p t p 5 : O t  7 3 2 8 9 1 4 6 e e 6 4 1 9 8 2 3 7 t  O 5 5 ( O  
i e i 6 : O e 7 4 2 9 9 2 3 7 e O 6 5 1 t  8 3 3 8 t  1 . 5 6 ( O  



CYCLIC INTERVAL-6 
first partition second partition 

pOi6: 0 0 6 6 (0 I e 7 5 (1 
i l p 7 : O  1 6 7 ( 0 1  0 7 6 (1 
p2i8 :O 2 6 8 ( 0 1  1 7 7 (1 
i3p9: 0 3 6 9 (0 1 2 7 8 (1 
p4it: 0 4 6 t ( 0 1  3 7 9 (1 
i5pe: 0 5 6 e (0 1 4 7 t ( I  

third partition 

fourth partition fifth partition sixth partition 
pOi6:3 9 9 3 ( 3 4  8 r 2 ( 4 5  7 e l ( 5  
i l p 7 : 3  t 9 4  ( 3 4  9 1 3  ( 4 5  8 e 2 (5 
p 2 i 8 : 3  e 9 5 ( 3 4  t t 4 ( 4 5  9 c. 3 (5 
i 3 p 9 : 3  0 9 6 ( 3 4 e  r 5 ( 4 5  t e 4 (5 
p4it: 3 1 9 7 (3 4  0 1 6 (4 5  e e 5 (5 
i S p e : 3  2 9 8 ( 3 4  1 r 7 ( 4 5  0 e 6 (5 



Appendix Two 

Set Class Membership in ICS Families' 

I la1 trichordal scs: 1 

(b) tetrachordal scs: 
I rcs-r I rcs-:, I rcs-3 I rcs-4 I rcs-5 I rcs-6 

I The symboI J in each row indicates the corresponding set's membership in the ICS-family given in 
the column heading. 



r 

(c) pentachordal scs: 

(d) hexachordal scs: 

5- 1 
5-2 
5-3 
5-6 
5-7 
5- 10 
5-16 
5-20 
5-2 1 
5-23 
5-25 
5-27 
5-32 
5-33 
5-35 

6- 1 
6-24 
6-26 
6-7 
6-8 
6-213 
6-20 
6 -93  
6-226 
6-3 2 
6-3 5 
6-23 8 
6-249 
6-250 

ICS-1 
J 

J 
J 
J 

ICS-2 
J 

J 

J 

J 
J 

ICS-I 
J 
J 
J 

J 

ICS-3 

J 
J 

J 

J 

ICS-2 
J 

J 

J 
J 

ICS-4 

u/ 

J 

ICS-3 

J 

J 

J 
J 

ICS-5 

J 

J 

ICS-6 

ICS-3 

J 

J 

J 

J 

ICS-5 

J 

J 

J 

J 

ICS-6 



(e) heptachordd scs: 

7- 1 
7-2 
7-5 
7-7 
7-14 
7-23 
7-3 1 
7-3 5 

1 

(g) nonachordal scs: 

ICS-I 
J 

J 
J 

(f) octachordal scs: 

9- 1 
9-2 
9-5 
9-7 
9-9 

8- 1 
8-6 
8-9 
8-10 
8 -23 
8-28 1 

ICS-1 
J 

J 

ICS-2 
J 

J 

J 

J 

ICS-1 
J 

J 
J 

I 

ICS-2 
J 

J 
J 

ICS-3 

J 

ICS-4 

ICS-3 

I J I  

ICS-2 
J 
J 

J 
J 

ICS-5 

J 

J 

J 

rcs-3 ICS-4 

ICS-6 

ICS-4 

I 

ICS-5 

J 

J 

ICS-5 

J 
J 

J 

I 

ICS-6 

ECS-6 

I 



Appendix Three 

Annotated Score of Etude No.1 
from George Perle's Six Etudes for Piano (1973-76) 

--I I -.I- - 
ptpe: IOe 192 64 7 738 - - -  ee i9it: 364 63 7 

iei8: OeY 835 r 653 n r  oe9 OS r ptp7: 731 107 

ptpe: 371 
ptp7: 643 r 



t t e  

099 
interval- l cycle: d) 1 23 

r9e 9 t r  

n7 4 8  

I interval- 1 cyclF 56789 
interval-9 cycle: 852e8 









Appendix Four 

Annotated Score of Etude No.4 
from George Perle's Six Etudes for Piano (1973-76) 

Subject A-a: 

Episode A-a: 

11 .f' dim. 1 

Subject A-b: 



Subject A-c: 



Phrase group Bd: 



Phrase goup B e :  



Phrase group B-C 

Link: 



Subject A'-a': 



Subject A'-b': 

Episode A'-b' 



397 le5 

ptpe: 655 

IILUIu --- 
2t5 86 85 001 
928 4 73 eOO 

pOi2: ,It4 pOp1: 394 
iepe: pope: 475 



Appendix Five 

Glossary of Terms in 
Perle's Theory of Twelve-Tone Tonality 

Aggregate sum. The sum of the four tonic sums in an array. 

Array. A construct formed fiom the alignment of two cyclic sets. An array takes its name 
fiom its component cyclic sets. 

Axis dyad. The central vertical dyad in an axis-dyad chord. 

Axis-dyad chord. A collection of six pcs formed by pairing trichordal segments fiom 
each of the cyclic sets in an array. 

Axis note. Any single pc in a cyclic set, flanked on either side by neighbour notes. Axis 
notes and neighbour notes occur in alternation in a cyclic set. 

Axis of symmetry. The central point or line about which pc collections are symmetrically 
positioned. Symmetrically related pc collections have the same sum as the axis of 
symmetry. 

Cognate relation. The relation between inversionally related cyclic sets that share a tonic 
sum. 

Cyclic chord. A construct formed by two neighbour dyads without the intervening axis 
dyad. The horizontal dyads contain the cyclic intervals of the cyclic sets. 

Cyclic interval. The generating interval of a cyclic set. 

Cyclic set. The series of pcs formed by alternating members of inversionally related 
interval cycles. 

Cyclic set sum. The sum of the two tonic sums in a cyclic set. 

Difference alignment. An arrangement of cyclic sets such that the component P-cycles 
and I-cycles are vertically aligned. The vertical dyads yield a consistent pattern of 
alternating secondary differences. 



Interval cycle. An ordered series of pcs based upon a single recurrent interval, which is 
measured by the number of semitones it spans. The interval cycle is completed by 
the return of the initial pc. 

Interval system. A pair of integers denoting the cyclic intervals of an array. 

Key. The symmetrical relationship between an array's cyclic sets in a sum alignment. 
The key is calculated as the sum of oppositely aligned tonic sums in the array, or as 
the sum of the secondary sums of the axis dyad and each of its neighbour dyads in 
an axis-dyad chord. 

Mode. The intervdlic relationship between an array's cyclic sets in a difference 
alignment. The mode is cdculated as the difference between the corresponding 
tonic sums of the cyclic sets, or as the difference between the secondary differences 
of the axis dyad and each of its neighbour dyads in an axis-dyad chord. 

Modulation through reinterpretation. Modulation in which various members of an axis- 
dyad chord are reordered, resulting in a reinterpretation of the axis-dyad chord as a 
segment of a different array. 

Modulation through substitution. Modulation in which either the axis dyad or the 
neighbour dyads of an axis-dyad chord are replaced with others of either the same 
difference or sum. 

Neighbour dyads. The vertical dyads flanking the axis dyad in an axis-dyad chord. 

Neighbour note. A pc to the immediate right or left of an axis note. Axis notes and 
neighbour notes occur in alternation in a cyclic set. 

Secondary differences. The vertical dyadic intervals resulting &om a pair of cyclic sets 
in a difference alignment. 

Secondary sums. The vertical dyadic sums resulting from a pair of cyclic sets in a sum 
alignment. 

Semi-equivalence. The relation between pairs of cyclic sets that have the same tonic 
sums but with opposite p/i designations. Sets so related have the same ordering of 
pcs, but which originate in opposite P and I cycles. Semi-equivalent cyclic sets 
comprise complementary cyclic intervals. 

Semi-inversion. The inversional relation between two cyclic sets of complementary 
intervals or two arrays of complementary interval systems, but whose tonic sum p/i 
designations do not match. 



Semi-transposition. The transpositional relation between two cyclic sets of the same 
cyclic interval or two arrays of the same interval system, but whose tonic sum p/i 
designations do not match. The corresponding tonic sums both differ by an odd 
integer, indicating that the component elements are not transposed by the same 
interval. 

Sum alignment. An arrangement of cyclic sets such that the P-cycle of one cyclic set is 
aligned with the I-cycle of the other, and vice versa. The vertical dyads yield a 
consistent pattern of alternating secondary sums. 

Sum tetrachord. A segment of an array consisting of an axis dyad and only one of its 
neighbour dyads. The horizontal dyads indicate two of the four tonic sums of the 
array. 

Synoptic array. A collection of arrays that share structural similarities in their interval 
systems. 

Synoptic key, master array of. A collection of arrays whose cyclic intervals show the 
same sum. There are seven different master arrays of the synoptic key, from 0 to 6. 

Synoptic mode, master array of. A collection of arrays whose cyclic intervals show the 
same difference. There are seven different master arrays in the synoptic mode, from 
0 to 6. 

Tonality. The symmetrical relation among arrays sharing the same axis of symmetry. 
There are three categories of tonality, based on the transpositional relationship 
between the arrays' symmetrical axes and determined by the arrays' aggregate 
sums. Tonality 0 constitutes all arrays whose aggregate sums are 0,4, or 8 and 
whose axes consist of two repeated even integers. Tonality 1 constitutes all arrays 
whose aggregate sums are represented by an odd integer and whose axes consist of 
an odd and an even integer that differ by 1. Tonality 2 constitutes all arrays 
whose aggregate sums are 2,6, or t and whose axes consist of two repeated odd 
integers. 

Tonic axis-dyad chord. An axis-dyad chord whose axis dyad pcs are present 
simultaneously in a trichordal segment of one of the cyclic sets, and whose 
axis dyad sum duplicates a tonic sum. If the cyclic interval is the same for each 
of the cyclic sets of the array, the pcs of the neighbour dyads are present 
sirnultaneously in a tetradic segment of the other cyclic set. 

Tonic sums. The sums formed by an axis note with each of its adjacent neighbour notes. 
Thc tonic sums are used to name the cyclic set, with each sum preceded by the 
lower-case letter p or i. 
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