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Abstract 

In this thesis the characterization of micro-cylinders in a laser trap is 

presented. Using the modified ray optics theory a sophisticated computer 

program has been designed. This program models objects in and near the 

minimum waist region of a laser beam. The equations of torque, moment of 

inertia for a cylinder with flat or spherical end-caps, angular acceleration and 

the damping factor due to the medium are derived and implemented into the 

program. With the program the orientation of a stable trapped micro- 

cylinder is found for different lengths. The optimal design of a cyiinder to 

produce the maximum arnount of torque is determined. The continuous 

rotation of a micro-cylinder using multiple laser beams is also exarnined. 

Using three different experimental set-ups, the "Top-Down", "Bottom-Up" 

and the "Horizontal" designs, the orientation of the cylinders trapped in the 

laser beam is in good agreement with theoretical results. This information 

should aid in the design of micro-motors using cylindrical shaped objects as 

posts and micro-rotors based on a multiple cylinder design as the 

components. In the fbture, the design of micro-systems should be possible 

which will have applications in such fields as the medical, chemical, 

aerospace and any other industry where a decrease in the size of equipment 

is required. 
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Chapter 1 

Introduction 

According to the Canadian Dictionary of the English Language the 

definition of trapping is "to catch in or as if in a trap; ensnare.ll[l] In the 

past 30 years a new type of trap has appeared called an "Optical Trap". An 

optical trap can be defined as an instrument that utilizes laser light to capture 

rnicroscopic particles. 

Johannes Kepler in 1619 [2], had suggested that light could have a 

mechanical effect to explain why the tails of cornets entenng Our solar 

system always pointed away fiom the Sun. The theory behind this 

mechanical eEect was studied extensively. It was two well-hown 

physicists, Maxwell and Einstien, who made major contributions to the 

explanation of this mechanical effect. A theory was in place and in 1901 the 

existence of field momenturn was confirmed experimentally by P. N. 

Lebedev[3]. Lebedev was able to show that the field momentum existed in 

the form of the pressure of light which is now termed 'radiation pressure'. 

Radiation pressure is defined as "the momentum associated with a photon 

[which] can be transferred to objects of finite mass, giving rise to a force and 

causing mechanical motion." [4] 



It is the radiation pressure, which is f'undamental to the operation of 

the laser trap, which led A. Ashkin [5]  to build the fïrst levitation device. 

Radiation pressure is a small force in the range of 10-l2 N for a laser of 100 

mW, which is usually obscured, by other forces such as radiomeûic forces. 

When the particle to be levitated is relatively transparent and submerged into 

a relatively transparent medium the radiometric forces are overcome and the 

radiation forces become the dorninate force which then allows the object to 

be levitated. Ashkin reported the first levitation in 1970. By using two 

opposing laser beams, it was possible to use the principles of levitation to 

capture particles in the central region of the two bearns. By using four 

bearns and a magnetic field it was now possible to look at ultra low 

temperatures of atoms. The work in this field produced the first observation 

of a Bose-Einstien condensate in a dilute atomic gas and the development of 

the first rudimentary atom laser [2] .  The 1997 Nobel Prize was awarded to 

S. Chu, C. Cohen-Tannoudji, and W. D. Phillips for these achievements. 

In 1986 A s h h  et. al. [6] found that it was possible to trap particles 

with just one laser beam, now called "optical tweezers". This great feat 

opened the door for many new possibilities in different fields of science. In 

biology the tweezers c m  manipulate cells [7] for such events as cell-to-ce11 

adhesion. In physics and engineering, micro parts could now be built piece 

by piece instead of being etched out layer by layer in a substrate to create the 

micro-mechanical systems. These micro parts were shown to rotate due to 

the radiation pressure by E. Higurashi et- a1.[8]. Micro-rotors could now be 

created. 

In the development of micro-machines, posts are required to fix the 

rotor in place and still permit rotation. These posts, which are cylindrical in 

shape, also have to be placed before the rotors can be attached. The trapping 



and continuous rotation of cylinders is the basis of this thesis and has not 

been reported in previously published works. With the help of a new 

cornputer program and three diflerent experimental set-ups, the cylinder's 

orientation properties in a focused laser beam will be discussed. The ability 

to translate and rotate the cylinder by a single beam will be experimentally 

demonstrated. Along with the cylinder's orientation, the continuous rotation 

of the cylinder by multiple bearns and the rotation of a rotor by a single 

beam will be examined. Theoreticaily the rotor is designed ffom four 

crossing cylinders at 4 5 O  to its neighbour. The simulations will give a better 

understanding of how cylindrically shaped objects behave in the tweezers 

and help in the design of micro-rotors and micro-systems of the fùture. The 

results of this thesis can also be applied in other fields such as biology where 

several organisms have an overall cylindncal shape. 



Chapter 2 

Theory of Laser Trapping in the Ray (Mie) 

Regime 

In this chapter, the modified ray optics theoretical approach of laser 

trapping is discussed. A sphere will be the object of discussion in the beam 

but any shape can be used provided the features of the object are larger than 

the wavelength, 4. The expressions are first developed in a 2-D space for 

the basic understanding of interactions between the beam and sphere. The 

expressions are then generalized to 3-D space for any object or beam. The 

cornputer modeling of the laser trapping experiments is built on the 

expressions for the 3-D space. 



2.1 Two Dimensional Ray Theory of Laser Trapping of a 

Sphere 

A sphere suspended in a liquid and illuminated by an off center continuous 

wave laser beam will be examined fïrst. In 1970 A. Ashkin demonstrated 

that it was possible to use the forces produced fiom radiation pressure to 

levitate micro-particles once the thermal effects were overcome. One of the 

requirements for levitation is that the medium index of refkaction must be 

lower than the index of refiaction of the sphere. By examining the refiacted 

or reflected photons at the sphere's interface, it will be seen that the sphere is 

drawn towards the laser's central a i s .  The sphere will also be drawn into 

the minimum waist region of the beam when the beam is highly focused. 

Figure 2.1.1 depicts photons interacting at two different positions on 

the sphere. At position (a) the sphere is being struck with more photons than 

at position (b) due to the sphere's top being in a more intense part of the 

beam. The beam's intensity is indicated by the left graph of figure 2.1.1 and 

has a lowest order mode Gaussian profile. 

It was A. H. Compton [9] who first argued that if photons carry 

energy then they must also cary momentum. This can be easily seen fkom 

the equation for energy below: 



where E is the energy and p, c, rn are the momentum, speed of Iight and the 

mass respectfilly. Since photons have no mass the above equation becomes: 

giving the well-known energy-momentum expression for a massless particle 

like the photon. 

Figure 2.1.1 : T W 0  PARALLEL INCIDENT RAYS WON A MICRO-SPHERE. 
+ 

From the change in momentum, d P ,  of two parallel rays (photon 

strearns) entering the sphere at points (a) and (b), it will be show that the 

sphere will have a net change in momentum directed towards the more 

intense part of the beam. 



Figure 2.1 .2 is an enlarged, rotated, diagram of the interaction point 

(a) of figure 2.1.1. 

Incidentphoton / 1 Reflected Photon 

nrned 

ns~h 

Refiacted Photon 

Surface 

Figure 2.1.2: R E F R A ~ G  AND REFLECTING PHOTONS AT 
THE SURFACE OF THE SPHERE. 

The index of refiaction outside, and inside, the sphere are defined as nmd 

A 

and nvh respectively. The normal to the sphere is directed along the Y' axis. 

The angles of incidence, reflection and refkaction are defined as ein, gr, and 

8, where they are related through the following: law of reflection 0,=8,,; law 

of refiaction ninsuiOin=n&et; with n,=nmd and n-,,t,. The symbols €4, Bi., 

n, and ni, represent the angle of reflection, incidence angle, the transrnitted 

index of refkaction and the incident index of refkaction. The mornenturn 

vector of the incident photon is defïned as: 



-b 

where A is Plank's constant, h, divided by 2 R, k in = (kxq, ky ), in the 

2-D space, is the medium dependent propagation vector or wave vector and 

A, is the fkee space wavelength. Expressed in Cartesian coordinates the 

propagation vector becomes: 

The momentum of the 

* A 

k i n  = 2n (sin(0, ) X'- COS (0, ) Y' 

The momenturn of the 

& 

incident photon is then defined as: 

transmitted photon is defined as: 

The momentum difference between the refiacted and incident photon is: 

Using Snell's law: n, si& ) = n, sin(8, ) 

A 

the component dong the X' direction is zero and equation (2.1.7) reduces to: 



27r A 

d e  = -ti - [n, cos(8, ) - n,  cos(^^^ )] Y' 
n o  

With the index of refkaction of the sphere or any object greater than the 

index of refhction of the surrounding medium, the change in momentum of 

A 

the photons is pointing in the negative Y'direction. This is opposite to the 

direction of the normal as indicated by the thick arrow of figure 2.1.2. 

Applying a similar analysis for the reflected photons of momentum 

expressed as: 

A F,, = f i  2z nr )x'+ cos (8, )Y' 
A0 A 1 

the change in momenturn of the reflected photon is: 

A 

By applying the law of reflection, B, = 6, and n,=n, the X'component 

A 

cancels leaving only the Y'component. The simplified expression for 

change in momentum of the reflected photons is: 

4~ nin A 

d e  = h  cos (8, ) Y' 

A 

which is pointing dong the positive Y'direction as indicated by the thick 

arrow of figure 2.1.2. 



When the photon exits the sphere at point (c) of figure 2.1.1 they will 

experience a change in momentum. This change in momentum is: 

A2z A 

d .  = ( n i .  cos (e;,)- n, cos (@;))yr 
4 

where in this case nt and ni,, are now the indices of refiaction for the medium 

and sphere respectively. 

The force that is acting on the sphere can be found from the time rate 

of change of the momentum of the sphere (Newton's second law). The d p  

component is obtained using Newton's third law and is equal to, but 

opposite in sign, to the time rate of change of the photons momentum. 

The force directions at the point's (a) to (d) for a low reflecting sphere are as 

follows: 

A A 

(a): Along the - X axis and along the + Y mis. 

A A 

(b): Along the - X axis and along the - Y  axis. 

A A 

(c): Along the +X mis and dong the + Y  a i s .  

A A 

(d): Along the + X axis and along the - Y axis 



The intensity of the laser beam is greater at the point (a) than at point (b) of 

figure 2.1 .l, which implies that there are more photons per second passing 

point (a). Thus the force îÏom the refkaction and reflection will be greater at 

points (a) and (c) than at points (b) and (d). The sphere experiences a net 

force directed towards the more intense part of the beam. 

In the next section the ray mode1 is expanded to 3-D and the 

restriction of parallel incident rays on the object is removed. This 

examination of the 3-D case is also used in order to develop the complete 

expressions required for the cornputer model. 

2.2 Three Dimensional Approach to Laser Trapping 

A three-dimensional cornputer simulation program of a particle subjected to 

a focused laser beam requires a modified ray theory and was developed by 

R. C. Gauthier [10]. It is possible to use the conventional scattering theory 

[ I l ]  or the pseudo ray optics model [12] to calculate the forces of radiation 

pressure but each has its own limitations. The scattering theory is readily 

applicable to calculate the forces present on a spherical particle in the traps 

but is impractical to apply to irregularly shaped objects. The pseudo ray 

optics model can be used when the object dimensions are larger than the 



wavelength of light but neglects many important properties of trappuig 

systems. The modified ray theory can account for the beam wavefront 

cwature, polarization, reflection-transmission probabilities and the 

conservation of momentum. 

The mode1 begins with a Gaussian mode profile laser beam, 

propagating dong the z-ais, incident ont0 the lower surface of a micro- 

object. The intensity of the laser beam is defined as [13]: 

where Pi,,, is the total power of the laser, Wz is the bearns waist measured a 

distance z fiom the minimum waist location and is related to the minimum 

waist Wo and Rayleigh range z, through the equation: 

The photons fkom the beam passing through an arbitrary point (x,, y,, 

2,) can be approximated as a point ray with direction cosines (1, m, n). This 

point ray has properties, which are different fiom the ray defined in the 

geometncal context of optics. These properties can be found in Appendix 

Al .  The initial point (xs, y,, zJ in this plane and direction cosine (1, m, n) for 

the photons ensures that no one photon is traced more than once when they 



interact with the object. In treating the photon's of the entire beam an initial 

(x, y) reference plane perpendicula. to the z-axis is selected. 

Two methods of obtaining the intercept point of the irregular object 

have been developed. The kst  method of locating the point of intersection, 

by the photons, with any surface of the micro-object is obtained by finding 

the parameter t, which satisfies the following set of equations: 

and at the sarne time the point (x(t), y(t), z(t)) must also be a point on the 

surface of the object. The initial direction cosine of the photons is chosen as 

(0, 0, l), z directed photons. At the intercept point the direction cosines for 

the photons are calcuiated fiom the spherical nature of the wavefront. The 

wavefiont radius of curvature, see figure 2.2.1, can be obtained by solving 

the two next equations for R and dz: 

From these equations the location of the center of curvature for the 

wavefiont, C=&, c,, G), cm be calculated. 



1 Wavefkont 

Figure 2.2.1 : AT THE POINT OF INCIDENCE THE [NCIDENT PHOTON 
DIRECTION COSINES ARE GIVEN BY THE DIRECTiON COSINES 
OF THE RADIAL UNIT VECTOR î , WHICH POINTS FROM THE 
CENTER OF CURVATURE OF THE WAVEFRONT TO THE POMT OF 
INCIDENCE. 

The direction cosines (l(t), m(t), n(t)) of the photon's intercept point are 

taken as directed dong the radius vector î and are computed f?om: 

I f  the intercept point is located before the bearn has propagated through the 

minimum waist then the negative sign is used. 



It is still possible for photons to intersect the micro-object even if the 

Stream of photons with initial direction cosines (O, 0, 1) does not. This is 

possible since the waveffont cwature can direct the photons ont0 the 

sidewalls of the object. If this occurs the intercept point and photon 

direction cosines are obtained by the process of projecting the initial photon 

trajectory and surfaces in the (x, y) plane then finding the intercept of these 

trajectories with these surfaces. The spherical wavefiont for the photon 

direction cosines is then included. The last step is to reverse project the 

intercept point. For these direction cosines to be acceptable they must 

correspond to photons pointing towards the inside of the micro-object's 

body. 

The second method also uses equation 2.2.1, 2.2.2 and 2.2.3 and the 

equation for the surface directly to find the intercept. The initial point (x,, 

y,, z,) is selected in the reference plane. At this point the direction cosines 

are directly determined for the wavefiont radius of curvature. The parameter 

t is incremented slightly giving a second point. The ray is taken as a straight 

line between these two points. The cornputer program can then determine if 

the ray (between these two points) intersects any objectYs surface. If no, the 

process is repeated as the ray is traced through the trap system. If yes, the 

parameter t is decremented and the process is repeated. The parameter I can 



be subdivided as many times as desired with each subdivision increasing the 

ray parameters accuracy at the point of intercept. This technique is 

somewhat simpler to implement that the first presented but requires longer 

computational time but, and most importantly, is applicable to al1 trap 

system designs. The computation routines now utilize the second technique 

exclusively . 

After the intercept point has been obtained on a surface, a momentum 

vector can be determined which characterizes each individual photon: 

where (2, j ,  2)are d t  vectors and n is the index of refiaction of the 

medium. The element of force on the surface can be computed from the 

time rate of change of the momentum of the incident photons as they are 

reflected and refracted at the intercept point. The radiation pressure force on 

the micro-object is generated fiom the vector s u .  of al1 the force elements 

for al1 the interacting photons. 

jL d p  
all interacting 
photons 



The incident, reflected and refracted photon direction cosines will be 

defined as (IU mi. nJ, (I, m, nJ, and (Z, m6 nJ. The momentum transferred 

to the sudace f?om the reflected photons is defined as: 

From the re fracted photons the change in momentum is: 

where nmi is equal to the ratio of the output index afier reeaction to the input 

index before refiaction (rire., = n, 1 nin ). Lncluded in Appendix A.2 are the 

details for obtaining the incident, reflected and refkacted direction cosines 

and the surface normal when the point of intercept is given. It is known that 

the refiacted momentum contribution with respect to the surface will point 

fiom the region of high index of refiaction to the region of lower index of 

refraction. 

To calculate the net force it is considered that there are Ni photons 

with an arbitrary polarization incident per unit tirne, di, at the point of 

intercept. There will be a fiaction of photons that will refiact, Ra,, and a 

fiaction that will reflect, (1-RaV& This implies that the net force of equation 

2.2.7 cm be rewritten as the surn over al1 points of intercept: 



al1 points al1 poinrs 
of intercept of intercept 

The number of photons incident per second at the point of intercept centered 

on an area dA is related to the optical intensity (equation 2.2.1) at the 

intercept point by: 

By taking the cross product of a radial vector and the force element 

vector the torque elernent generated by the interacting photons at a point of 

incidence is obtained. Usually the geometrical center of the object is selected 

as the radial vector's origin but other reference points may be chosen. By 

summing al1 of the torque elements for al1 points of intercept for the photons 

the total torque, with respect to the reference point, is obtained. 

all points all points 
of interception of interception 

It is equations 2.2.10 and 2.2.12 that are the key equations used in the 

levitahon and trapping modeling calculations. 

This concludes the chapter on the pseudo ray optics theory of laser trapping. 

An understanding on laser trapping principles is required before a researcher 

can interpret the observations seen in the laboratory. The next two chapters 



discuss related concepts such as the moment of inertia and rotation of an 

object due to the presence of a torque on a micro-object. 



Chapter 3 

Torque 

In everyday life the world population is constantly hxning objects which 

range fiom door handles to car keys to screwdrivers. To make a bicycle 

move the chain must Unpart a force ont0 the rear sprockets which makes the 

tire rotate. This act of tuming, or rotating, the object requires that a 

tangential force (torque) be applied to it. Ln this chapter the details of torque 

applied to an object will be discussed. in the fust section the expressions 

required to compute the torque on an object are derived. They are 

incorporated into the cornputer model. In the second section the dynamics 

of rotating objects and in particular cylinders, are exarnined. 



3.1 Derivation of the Torque Equation 

One of the final pieces to be added to the workhg version of the computer 

simulation is an dgonthm suitable for rotating an object when a torque is 

present. To help visualize the technique developed, figure 3.1.1 shows an 

irregular object with its center off set with respect to the coordinate origin. 

X 
Figure 3.1.1 : IRREGULAR SWED OBJECT WTH TORQUE MS OF [Î, >,k )  

OFFSET FROM THE COORDINATE ORIGIN. 

When there is a torque applied to a fkee object it will rotate. To obtain the 

new position of the point (a) after rotation requires that the coordinate axis 

be translated ont0 the torque vector axis. Using matrices to describe the 



mathematics, the initial translation is achieved by rnovhg each coordinate 

point by a specific distance. This is written as [14]: 

where X. Y. Z represent the original coordinate system, X ' , Y', Z ' represent 

the final coordinate system position, and M, AY, A2 is the distance the 

coordinate system translated. Figure 3.1.2 shows a picture of a translated 

A 

Once the translation is completed the inital Y axis has to be aligned 

with the torque vector axis. This is accomplished by two rotation matrices 

1 

A 

[15]. The first matrix will rotate an angle of $, around the Z axis such that 

the Y axis will be aligned properly with the torque vector. This is shown in 

figure 3.1.3. The calculation to achieve this is as follows: 



To finish the alignment the axis will then be rotated an angle 8 about the 

I I  

A 

Y axis (see figure 3.1.4): 

Figure 3.1 -2: TRANsLATED COORDINATE AXIS ONT0 TORQUE AXIS. 



I 

A 

Figure 3.1.3 : ROTATION ABOUT AXIS. 

n 

A 

Figure 3.1.4: ROTATION ABOUT Y AXIS. 



When the matrices have been multiplied through the final product is known 

as the forward rotation matrut, which is given below. 

A 

Once the Yaxis is digned with the torque vectors, the object can be 

rotated under the influence of the 

defined as: 

7 = 

cosy -siny O' 

[si.y cosy O 
O O 1 

torque present. The torque matrix is 

where the magnitude of the angle y is related to the magnitude of the torque 

vector. AAer the object has been rotated by an angle y under the influence of 

the torque, the object's new orientation must be referred back to the initial 

X, Y, Z coordinate system. The axis de-rotation mamx is the inverse of r A A )  

equation 3.1.2 multiplied by the inverse of equation 3.1.3 which yields: 

cos ( cos 0 - sin / cos q5 sin 0 
sin(cos 0 cos( sin(sin 6 1 (3.1 -6) 

-sine O COS O 



To obtain the coordinate system matrix the forward, torque and de-rotation 

matrices must be multiplied together: 

system = RRM s FRA4 

This produces: 

system = 

where c and s replace cos and sin. The last operation that is required is a 

coordinate translation by the addition of M, AY, A2 to the X ,  Y ,  Z 1" " "1 
elements of the system matrix. The final results of this addition is: 



Each i j set represents an element of the mamx. 

represent the new coordinates of the point (a) d e r  it has been rotated under 

the influence of a torque (see figure 3.1.5). 

Torque Axis 

Figure 3.1.5 : Posmor OF (a) . 
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This was designed into a program in Visual Basic 5.0 for testing before it 

was slightly modified and implemented into the completed version of the 

simulation program. The code for the test program can be found in 

Appendix B. 1. 

3.2 Torque Required to Constantly Rotate an Object 

When a tangential force is applied to a fiee object it will tend to rotate. This 

tangential force, as stated previously, is known as a torque. The simplest 

equation relating torque 7, inertia 1 and angular acceleration a for an object 

that is fkee to rotate about a fixed axis is [16]: 

~ = r a  (3.2.1) 

If the object is not allowed to move fkeely through its surrounding space then 

a damping term must be included in the above equation. An example of this 

would be a spinning cylinder in a viscous medium. It is also possible to 

have a restoring force on the object like a toy airplane's propetler wound up 

against an elastic band. When the propeller is manually rotated it winds up 

an elastic which, when released, acts as a restoring force that turns the 

propeller and allows the toy to fly. This energy storage and release 

technique can in prïnciple be applied to micro-motors. Part of this thesis 



explores the concept of a continuously rotating cylinder in a slightly viscous 

medium. It is  therefore, necessary to rnodiw equation 3.2.1 to account for 

the other factors. 

The modified torque equation then takes on the form of: 

r = l a + b o + k y  ( 3  -2.2) 

where b is the damping factor and k the spring constant. The symbols w and 

yrepresent the angular velocity and the angular position. This equation can 

also be written as a second order differential equation: 

In the design of the cylinder-based micro-rotor, the cylinder is to be rotated 

at a constant velocity. The above equation (3.2.3) was first solved for yil! 

dy( t )  which is the angular velocity. then solved for - 
d f  

To solve for Ht) the method of undetermined coefficients [17] was 

used. In the simulations there is no restoring force, "sprïng constant", 

required so k is equal to zero. Equation 3.2.3 is then written as: 



2 
Y(') and !@ are then replaced with f and Sand al1 terms are divided 

dt dt 

by I: 

6 
The homogeneous equation has roots of <=O and = -- and produces a 

I 

general solution: 

where Cl and Cz are constants to be determined. The particular solution is 

assumed to be a polynomial of the same or higher degree and is assumed to 

be of the form: 

y(t), = ~1~ + Bt + C (3.2.7) 

where A, B, C are constants to be detemiùied. The first and second 

derivative are: 

and are substituting into equation 3.2.4. 

(3.2.8) and (3.2.9) 



Equating the coefficients of like powers of t on both sides of the equation 

yields: 

The t' expression gives A=O since the darnping factor is assumed not zero. 

Using this result in the to expression gives B=&. The t2 expression gives 

directly C=û. Substituting A, B, and C into equation 3.2.7 gives the 

particular solution. 

The final solution of fit) is the addition of the general and particular 

solutions. 

At time t=O we will require that the cylinder be at rest and not rotating. This 

produces the two necessary initial conditions )(0)=0 and * '(O) = 0 required 
dt 

to solve for the constants CI and C2. The fkst derivative of 3.2.13 gives: 



d y ( 4  It is noted that the velocity, - = Oat time implies that the object is 
df 

considered to be at rotational rest before the laser is turned on. This implies 

that there is an initial start-up period before the object achieves a steady state 

velociîy . 

By applying the initial condition of the first derivative to equation 

3.2.14 it is found that: 

Substituting 3.2.15 into 3.2.13 and using the other initial condition the 

constant Cl is found to be: 

Substituting 3.2.15 and 3.2.16 into 3.2.13 gives the complete solution of fit). 

The desired angular velocity equation is the derivative of equation 3.2.17: 

Given the torque r, the rotational rate can be determined provided the 

darnping factor and the inertia are known. The determination of the 
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cylinder's inertia about the pivot axis is the subject of the next chapter. The 

damping factor is obtained starting with the expression for a sphere as a 

guide. The solution for the case of k a  can be found in Appendix B.2. 

For a sphere the dampùig is: 

where q is the viscosity of the medium, r is the radius of the sphere. It was 

assumed that the rotating cylinder was made up of many smaller spheres 

placed in a line and rotated about the cylinder's pivot point. The surn of the 

damping values for al1 the spheres gives an estimate of the damping factor 

for the cylinder. 

where N is the number of spheres in the length. Instead of evaluating for 

discrete spheres, it is possible to integrate over the length. 

where the lirnit of -L to L is fkom one end of the cylinder to the other end of 

the cylinder passing through the center. The integration gives an expression, 

which enables the damping factor to be estimated: 



This chapter presents the theory of the torque of a cylinder where the system 

matrix was determîned to rotate an object under the influence of a torque. 

The angular velocity was then derived where the two constants b and I were 

introduced as the damping factor and the moment of inertia. The damping 

factor was discussed fully but the moment of inertia of a cylinder will be 

discussed in the next chapter due to its complexity. 



Chapter 4 

Moment of Inertia 

To rotate an object such as a cylinder a torque must be applied to it. 

To calculate the degree of rotation (3.2.17) and the rotation rate (3.2.18) 

requires that the moment of inertia about the torque axis be known. In this 

chapter expressions for the moment of inertia of a cylinder with two types of 

ends will be derived. 



4.1 Moment of Inertia 

The general fonn of the moment of inertia for a discrete set of rotating 

masses is defined as [18]: 

2 I = C m i r ; :  (4-1.1) 

where mi is the mass of each element and ri is the distance to the rotation 

axis for each element as shown in Figure 4.1.1. By replacing the sum with 

an integral, 

1 = [r2dm (4. i -2)  

the inertia can be calculated for a continuous body as shown Ui Figure 4.1.2. 

14-- Rotation 

Figure 4.1.1 : ROTATING ELEMENTS Figure 4.1.2: ROTATING BODY ABOUT 
ABOUT A CENTRAL AXIS. A CENTRAL AXIS. 



4.2 Moment of Inertia of a Cylinder 

For a typical cylinder as shown in figure 4.2.1, the value of r was found to 

be: 

Figure 4.2.1 : SIDE VIEW OF VOLUME ELEMENT IN CYLINDER. 

A 

where dv is the volume element, the Zaxis is the rotation axis and the 

cylinder has flat ends. Figures 4.2.2 and 4.2.3 show an end-on and top-down 

view of the position of the volume element. 



Figure 4.2.2: END VIEW OF VOLUME ELEMENT dv, IN CYLINDER. 

The full equation for the moment of inertia then becomes: 

For convenience o is used to represent the volume density. Integrating the 

above equation gives: 

where on;p 'L = M where M is the rnass of the cylinder. 



Figure 4.2.3 : TOP-DOW VLEW OF VOLUME ELEMENT IN CYLNDER. 

The equation for the moment of inertia of a flat end cylinder is: 

4.3 Moment of Inertia of End Caps (Case 1) 

The moment of inertia about the rotation axis of the end-caps must be 

included. There are two cases to consider; the radius of the end-caps is less 

than half of the cylinder length or the radius is greater than half of the 

cylinder's length. This section deals with the first case of the radius being 



less than half the cylinder length. The end-caps that are used in the 

simulation are hemispheres or fiactions of a hemisphere as shown in Figure 

Figure 4.3.1 : SWE VTEW OF CYLINDER WITH SHADED END-CAPS. 

Since the moment of inertia is the sum of the mass times the distance 

squared for each element, it is possible to calculate the moment of inertia for 

each hemisphere separately. The results can then be added to the cylinder 

body to get the total moment of inertia for the entire cylinder. Figures 4.3.2 

and 4.3.3 help give a complete picture of the position of the volume element 

that is used to calculate the moment of inertia, 



Figures 4.3.2 and 4.3.3 : END VIEW AND TOP VIEW OF THE POSITïON OF THE 
VOLUME ELEMENT IN THE CYLiNDER. 

In this case the r fiom equation 4.1.2 that is to be integrated is K shown in 

figures 4.3.1 and 4.3.3. The length K' is the sum of dl and P fiom figure 

4.3.1 . This then implies that : 

K~ = A ~ + K ~ ~  (4.3.1) 



where dl2 = dr2 +dy2 +dz2 and in this case dy = dz= O. The constant P 

can be found fiom figure 4.3.1. 

~ = E C O S @  

where E is the radius of the end-cap. From figure 4.3.2 it can be seen that 

the constant A is defined as: 

A = z s i n #  

where from figure 4.3.1 

z = ~ s i n B  

Substituting equations 4.3.4-4.3 -6 into 4.3.3 gives: 

K = dl(dl + 2 s  cos(@)) + g2 (cos2 (8) + sin2 (8) sin (4) )  (4.3.7) 

B y utilizing equation 4.1.2, where dm = n E sin 6 dB d( dg ,  the equation 

for the moment of inertia takes on the form of: 

Solving this equation produces the following: 



where a is the maximum angle of 8 which is less than or equal to 90° and b 

is the minimum value of the hemisphere found from: 

b = E cos(a) (4.3.1 O) 

The value of b is important as it helps define the thickness of the 

hemisphere. The value of E-b is the thickness of the hemisphere as shown in 

figure 4.3 -3. The volume density is d e h e d  by o. 

4.4 Moment of Inertia of End Caps (Case 2) 

The second case examines the moment of inertia of the end-caps when 

the radius is greater than half the length of the cylinder as shown in figure 

4.4.1. This is required since the expression for K' in equation 4.3.1 is 

different. Using figure 4.3.3 the expression is: 

K' = &COS@ -dl 

The equation of K' then takes on the form oE 

K~ = + (ECOSB - dl)Z (4.4.2) 

The final form of K~ will then be: 

K~ =dl@ - ~ E C O S ~ ) +  E Z ( C O S ~  e + sui2 e sin2 4 )  (4.4.3) 

where A=z sin4 and z=~s in0  as can be seen fkom figures 4.3.2 and 4.4.1. 



Figure 4.4.1: SIDE VIEw OF CYLINDER WITH SHADED END-CAPS. 

When K' is substituted for 2 in equation 4.1.2 and dm is replaced by 

o 6 sin 8d8dq5 dg, the solution for the moment of inertia becomes: 

The moment of inertia for a cylinder with round end-caps would be the sum 

of equations 4.2.4 and 4.3.9 or 4.4.4 for the appropriate radius of curvature 

of the hemisphere on either end. 



The 'Y' will determine whether or not the radius of the end-cap is less than 

or larger than half of the cylinder length. 

These equations have been implemented into the cornputer program as a 

subroutine such that it c m  be called upon when the inertia is required. A 

copy of the routine can be found in Appendix B.3. For these experiments 

the subroutine was used to help calculate the torque on the cylinder about the 

central axis. 

The next two chapters will present the experimental set-ups used, the 

expenmental results and the theoretical results. 

Note: Experimentally it is obsewed that the cylinders rotate about the 

central a i s  as defined in this chapter. For this reason the inertia about this 

mis alone is required. 



Chapter 5 

Experimental Set-up 

There are many designs that can be used to trap particles such as the first 

trap designed by Ashkin [19] where two opposing bearns were used. There 

is also a trap that is designed by using a diffraction grating [20] where the 

interference of the beam is used to trap particles. 

In this chapter three laser trap designs will be presented. The first to 

be discussed is the trap labeled as the "top-down" design. The second trap 

talked about is known as the 'bottom-up" design. The final design is known 

as the 'liorizontal" trap. In the f is t  system there will be a bnef description 

of the components that are used in al1 three designs then a description of the 

procedures used to align the system will follow. Any variance in the 

components or alignment for the other two designs will be discussed in their 

separate sections. 



5.1.1 Setup of 'LTop-Downn Laser Trap 

The first setup irnplemented was the 6ctop-down~' laser trap. The name "top- 

down" is used as the laser cornes in fiom the top and is directed downward. 

This is a standard design that is fairly easy to setup but harder to align 

because it has more components than the other designs. Figure 5.1.1 is an 

illustration of the tram * 

Mirrors - Lens Filter Carncorder 
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Figure 5.1.1 : TOP-DOW LASER TRAP DESIGN. 

The system is placed upon a stable table as the trap is sensitive to vibrations. 

The monochromatic light of the laser is directed by a series of mirrors such 

that it is guided in through the top of the system. The beam travels through 

the beam splitter first. After the beam splitter the beam continues on into the 

objective lens which focuses the beam to a width of approximately 1 p. 



The light source is used to see the particles trapped in the bearn. The 

light travels upwards through the lens system which focuses the light to a 

small point to allow as much light into the objective as possible. The light 

then travels fkom the objective into the bearn splitter where the bearn is 

directed towards the camcorder, which records a video of the objects in the 

trap region. The lens is used to focus the light into the camcorder while the 

filter is used to filter out the laser light otherwise the camcorder will be 

saturated. The computer is used to capture the video images as single 

frames. 

5.1.2 Component Specifications 

For the experiments an Argon-ion laser is used. The wavelength, A,, of the 

laser is 5 15 nm. The maximum power output of the laser is 1.5 watts. The 

mirrors are fkont surface mirrors that are height adjustable. The beam 

splitter is a 50% intensity splitter. The beam splitter is used to direct the 

signal from the light source to the carncorder. The objective that is used is a 

lOOX oïl immersion lens with a numerical aperture (N.A.) of 1.30. The 

container to hold the sarnples is a 5 cm diameter petrie disk. The lens 

system was created using a program that designs optical systems, which was 

invented by R C .  Gauthier. Figure 5.1.2 is a schematic of the lens system. 



There are two lenses used in the system. The first is an asyrnmetric lem 

with the specifications of 27.0 mm diameter and a focal length of 20.0 mm. 

The second lens consists of two plano-convex lenses each with a diameter of 

27.0 mm and a focal length of 26.0 mm put together flat side to flat side. 

1 - 9.7 cm - 1 

Asymrnetrk Two Plano- 
Lens Convex Lenses 

Walls of System 

Figure 5.1.2: LENS SYSTEM FOR LASER TRAP DESIGNS. 

A piece of aluminum was hollowed out using a lathe and both ends where 

machined to fit the two lenses described above. The system is placed 

approximately 20 mm away fiom the light source and approximately 21 mm 

away nom the objective. The light source that is used is a standard 

automobile headlight bulb. Three different types of halogen bulbs were 

tested with a 12V, 65W/55W light fiom Motomaster (ID# 9003 HB2 H4) 

being the most effective. The lens in fiont of the camcorder is used to focus 

and increase the intensity of the signal fkom the beam splitter, which has a 

long focal length of 200 mm. The filter was used to block out the laser light 

fiom the beam splitter so that the camcorder did not become saturated. The 



images are recorded with a camcorder, or a camera, which c m  be connected 

to a VCR where the images are stored. The computer is then used to capture 

pictures fkom the VCR These are d l  the components that are required for a 

single bearn laser trap. 

5.1.3 Alignment Procedures 

A very important step to building a laser trap, besides stability, is the 

alignrnent of al1 the components. The trap can be divided into two sections, 

the trap section and the lighting section. The trap section consists of the 

laser, mirrors, bearn splitter, sample holder and the objective lens. The 

lighting section involves the light source and the lens system. Both need to 

be aligned properly to produce a good working trap that will give quality 

pictures. This section will discuss the procedures to aligning both the trap 

and lightuig sections so that the experirnents can be reproduced if required. 

The alignrnent of the trap is the more crucial of the two sections. If 

any one component is slightly out of alignrnent then the beam will not enter 

the objective lens correctly. The laser beam will not focus to a tight waist 

therefore there will not be a large enough intensity gradient and objects will 

not trap. The first thing to do for the alignment is to make sure that the laser 

is secure and level to the table so that it will not move at al1 if the table is 



bumped or jarred. The mirrom are then set Uito place. The three rnirrors 

also have to be aligned. It is suggested to align the rnirror nearest to the 

laser f k t .  The e s t  mirror is used to deflect the beam straight up to the next 

mirror, which deflects the beam to the third mirror. The third mirror reflects 

the bearn down to the beam splitter. To align the first rnirror it is suggested 

to use a pinhole shutter. The pinhole shutter is parallel to the tabletop and 

attached to two posts such that it can move vertically only as shown in figure 

Figure 5.1.3: ALIGNMENTOFRRSTM~RROR. 
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The shutter is closed which produces a pinhole. The purpose is to deflect the 

beam straight up to the next mirror, which will then be a 4 5 O  angle. If the 
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beam is at a 4S0 angle then the beam should pass through the pinhole at the 

Mirror 
1 - 

top and bottom of the posts. If it is not at a 45O angle then the rnirror must 

be adjusted until it is. This same procedure can be done for the second 



mirror by allowing the shutter to only move horizontally as shown in figure 

Pinhole Shutter 

Laser 

Figure 5.1 -4: ~ I G N M E N T  OF SECOND =OR. 

The final mirror can be aligned by two ways. The shutter c m  be used in the 

sarne way as the first mirror was aligned or a fiont surface mirror can be 

used. The front surface mirror is placed on the tabletop below the third 

mirror. The mirror will reflect the beam back upon itself if the third mirror 

is aligned properly. If it is not then the third rnirror is adjusted until the 

beam does reflect back to the laser. It is easy to do this alignment, as it is 

possible to follow the beam while the mirror is being adjusted. 

The next component to be introduced into the trap section is the beam 

splitter. The beam splitter can translate the beam a small distance parallel to 

the original beam causing the system to be misaligned. The alignment cm 



be done with the small mirror again. By placing the mirror below the beam 

splitter the beam c m  be aligned. 

The next component in the trap system is the sample holder. This is 

the component that is moved around when m g  to find the particles. The 

alignment of the holder is not as critical as the other components but a level 

holder will help prevent the petrie dish from crashhg into the objective Iens. 

Once again the ftont surface mirror can be used for the alignment. It is 

preferred to have the holder on a tilt stage to facilitate its inclination 

adjustments. The holder is attached to a XYZ stage, which allows the petrie 

dish to be moved when objects are being trapped. 

The last and most important part to any trap is the objective lens. The 

objective is the component that focuses the beam to a very small, tight, 

waist, which produces a large enough intensity gradient that is capable of 

trapping objects. The alignment of this component is the most critical. The 

objective is mounted on a XYZ stage so that it has three degrees of fieedom. 

To align the lem the fkont surface mimr is used. The mirror is placed on 

top of the lens as s h o w  in figure 5.1.5 
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Figure 5.1.5: FRONT SURFACE MIRROR PLACED ON TOP OF OBJECTIVE. 
OBJECTIVE IS MOUNTED ON XYZ STAGE AND TILT STAGE iF 
REQUIRED. 

The rnirror will reflect the beam back upon itself. The tilt stage can be used 

to correct the objective if it is on a tilt. This c m  be seen, as the beam will 

reflect off of the rnirror at an angle. Once the beam is aligned the mirror can 

be removed. It is usually found that the beam does not enter the objective 

exactly in the center so the XYZ stage can be used to position the objective. 

Adjusting the XYZ stage will not change the alignment of the objective but 

once the lens is in place the XYZ stage is not to be touched. This completes 

the alignment of the trap system. 

To be able to view the objects that are trapped the lighting system 

must be included. It also has to be aligned to be able to get as much light in 



the objective l a s  to produce enough contrast so that a good quality image 

may be captured. For the alignmmt the laser should be off. It will also be 

easier to adjust the light source and lem system if both are mounted on XYZ 

stages. The alignment uses a very simple tool, a piece of paper. After the 

lens system and the light source are introduced to the trap, place a small 

piece of paper on top of the opening of the objective lens. Tum out the 

lights in the room but turn on the light source. When any amount of light 

enters the objective through the bottom of the lens the light should appear as 

a bnght spot on the paper. Adjust the light source and the lens system until 

the spot on the paper is the brightest possible. 

The filter and long focal length lens are adjusted in front of the 

camcorder until the best quality picture is achieved. If the filter that is used 

blocks out d l  of the laser light then there are two techniques that cm be used 

to find the focal spot on the camcorder. The first is to place a shutter in front 

of the camcorder aligned with the beam and then close the shutter to a 

pinhole. The beam can be found by adjusting the camera until the pinhole is 

viewed on the monitor that is receiving the signal fiom the camcorder. 

When closing the shutter viewing the monitor will help determine the 

direction the carncorder is required to move. A faster way of detemiining 

the location of the laser beam on the camcorder is to place the edge of an 



object in the path of the beam that is directed towards the canera and try to 

locate the edge on the monitor. This concludes the alignment of the entire 

top-down laser trap. The next trap to be discussed is the bottom-up trap. 

5.2 Setup of 66Bottom-Up'9 Laser Trap 

The bottom-up trap is designed such that the laser beam will be directed 

upwards through the system. This is the opposite of the top-down design as 

the objective lens is now pointing upwards so the trap region is above the 

objective. This design has an advantage over the top-down design as the 

beam is directed upwards so that the trap will work against gravity 

producing a more effective trap. The schematics of this trap are shown in 

figure 5.2.1. 

A11 the components are the same with the exception of the sample holder and 

two less rnirrors. The difference in the sample holder is that it is not a petrie 

dish that is used. The petrie dish can not be used because the working 

distance of the objective lens is 0.2 mm so the focus would be in the glass. 

To overcome this problem a new sample holder was designed. 
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Figure 5.2.1 : SCHEMATIC OF BOTTOM-UP LASER TRAP DESIGN. 

It was found that microscope slide cover slips have a thickness of 

approximately 0.12 mm which would leave a working distance of 0.08 mm 

or 80 Pm. This is acceptable as the cylinders that are used in the 

experiments have diameters of 5 and 7 p m  and a length of no more than 70 

Fm. The cover slip is attached to a rectangular piece of plastic using silicon, 

and is the base of the sample holder. A 13 mm hole is drilled into plastic to 

forge the walls. 

In the alignment of the components the sarne techniques can be 

applied as was discuss in Section 5.1.3. For the sample ce11 the alignment is 

important as the cover slip is very fiagile and when the ce11 is being moved 

to find cylinders it is extremely easy to break the cover slip if it is not 



aligned properly. A small level such as a line level will make sure that the 

cell is parallel to the table in both directions but to make sure that the ce11 is 

parallel to the objective another technique is used. With the laser on, slowly 

move the ceIl down using the Z stage and watch the lower mirror. As the 

cover slip moves into the focus there will be a Fresnel ring reflected back 

ont0 the mirror. The closer the slip approaches to the focus region, the 

smaller the ring will become. When the ce11 is aligned properly to the 

objective the ring will be a perfect circle that focuses to a point on top of the 

beam. Also when the ce11 is moved past the focus the ring will appear again 

and it too should be a perfect circle if everything is done properly. This 

completes the section on the bottom-up laser trap. The last design to be 

discussed is the 'liorizontal" laser trap. 

5.3 Setup of the LLHorizontal" Laser Trap 

The last design to be considered is described as a "horizontal" laser trap. It 

is called a horizontal laser trap because the laser cornes in horizontally. A 

group at the University of California under the direction of W. Wang was 

able to produce a horizontal trap [19]. The schematic of the horizontal trap 

is given in figure 5.3.1. 
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Figure 5.3.1 : SCHEMA~C OF HORIZONTAL LASER TRAP DESIGN. 

The change made for this trap is the sarnple cell. The design of the ce11 was 

the most difficdt of the whole setup and is shown in figure 5.3.2. 
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A 

~ a t è r  Tight Seal 

Figure 5.3.2: TOP AND SIDE VIEW OF SAMPLE CELL. 



The problem with this ceiI is that the objective cannot be moved relative to 

the sample volume holder. Trying to locate a particle was very difficult and 

relied entirely on them drifthg by the focal region. There was no guarantee 

that the particle would trap with the presence of minute currents in the ce11 

liquid. To over corne these problems a srnall retaining wall was built. The 

wall and cell were made out of a clear piece of plastic. The wall was highly 

polished to allow light to pass through it. It was then attached to a post that 

was rnounted on a XYZ stage so that it had three degrees of fieedom. The 

design is shown in figure 5.3.3. 

The wall is placed in the cell where it was able to move freely by the X Y Z  

stage. The wall is small enough to allow the light f?om the source to pass 

through it without being hindered but large enough to slow down the 

currents in the liquid. 
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Figure 5.3.3 : WALL ATïACHED TO POST WlTH THE DIMENSIONS ON THE EUGHT. 

We also used this holder to move objects into the focal spot of the beam. 

Figure 5.3.4: WALL USED TO MOVE OBJECTS N O  THE FOCAL SPOT OF BEAM. 

For the alignment of the horizontal trap the best tool to use is the front 

surface mirror. The mirror will make sure that the beam cornes back on 



itself. The XYZ stages, which the lem system, objective lens and the light 

source are mounted on, will give the fieedom necessary to ensure that the 

laser will enter the objective correctly and the light source provides enough 

light into the system. This concludes the description and procedures of 

building the three separate laser traps. The next chapter will give the 

experimental results found using the three systems. 



Chapter 6 

Theoretical and Experimental Results 

In a micro-machine the mechanical parts will include components called 

micro-actuators. To secure the actuator in place posts will be required but 

the actuator will still be able to rotate around the post. In the future it will be 

possible to build micro-machines using lasers to position the posts which can 

be cured into place then an actuator can be placed ont0 the post and fixed 

into place producing a micro-rotor. The actuator can be modeled out of 

multiple cylinders with a common center. The posts that would be used are 

cylindrical in shape as well. It has been predicted that the cylinders in a 

laser trap will experience centralizing forces and rotational torques. The 

forces and torques cm be utilized to orient and rotate cylinders. 

In this chapter the orientation of the cyhder in the laser trap and the 

continuous rotation of a cylinder, using multiple bearns, will be presented. 



6.1.1 Cylinder Orientation (Theoretical) 

in the simple modeling of a cylinder in a single bearn, it was observed that 

the cylinder would orient itseif in one of three alignrnents: on its side, 

straight up and down or dong its longest axis which is "corner to corner". 

The orientation is length and radius dependent. Figures 6.1.1 show the three 

di fferent orientations. 

Figure 6.1.1 : THE THREE CYLINDER ORIENTATIONS IN THE MïNMUM W N S T  
REGION; ON THE SIDE, STRAIGHT UP AND D O W  AND ON AN 
ANGLE. 

Simulations were performed to determine the orientation of the cylinder 

length with respect to five different radii. The different radii chosen are 2.5, 



3.5, 5 ,  7, and 10 p. The 2.5 and 3.5 jm radii where chosen since cylinders 

of that size are available in our laboratory and permits experiments to be 

performed and vene the theoretical behavior. 

The 5, 7 and 10 pn radii simulations were performed to extend the data. 

Table 6.1.1 the stable angle for the different length radii cylinders and Bat 

end-caps are presented. 

Table 6.1.1 : ANGLE OF STABILITY FOR THE DIFFERENT LENGTHS VERSUS 
THE RADIUS. 

Length 

Cun 
1 
2 
3 
4 
5 
6 
7 
8 
9 

F 

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 

Angle (0) 

5~ 
90 
90 
89 
79 
69 
64 
59 
54 
50 
44 
30 
22 
17 
12 
8 
6 
2 
1 
O 

, 

2 . 5 ~  
63 
84 
73 
58 
44 
35 
27 
24 
19 
17 
9 
3 
3 
O 
O 
O 
O 
O 
O 

- 

7 ~ m  1 10pm 
90 1 90 
87 84 
89 1 87 
85 90 
77 1 83 
72 I 79 
67 1 76 

3 . 5 ~  

88 
90 
78 
68 
58 
52 
43 
38 
34 
30 
19 
13 
9 
7 
2 
O 
O 
O 
O 

64 
60 

72 
69 

57 
41 
32 
26 
21 
15 
10 

67 
55 
44 
37 
31 
23 
18 

8 
5 
3 

13 
11 
9 



Table 6.1.2 Lists the parameters used for the simulations. 

Table 6.1.2: PARAMETERS FOR SIMULATIONS. 

r 

Beam W aist 
1 

Beam Power 
Upper End Cap Radius 
Lower End Cap Radius 

The results f?om Table 6.1.1 have been graphed and are presented below in 

figure 6.1.2. 

1.25pm 
1 OOmW 
1 OOpm 
1 OOpm 

Figure 6.1.2: PLOT OF THE ANGLE OF STABILKY VERSUS LENGTH OF THE 
CYLINDERFORTHERADIIOF 2.5,3.5,5,7, AND 10 Pm. 



The line of best fit of the three plots c m  be used as a reference for the 

building of micro-rotors. The line represents the angle that the cylinder will 

be stable in the beam for a particular length. This curve will aid in the 

creahon of micro-rotors as the cylinders (posts) can be placed at a pxtîcu1a.r 

position and the desired angle using the laser trap. The medium that it is in 

can then be flushed out and replaced with a solution that is wavelength 

reachve to cure the post in place. This is the first step towards a micro-rotor 

and a micro-actuator. The results given here are for conditions found in the 

expenments. The next section will show an experimental verification that 

the cylinders will orient themselves in one of the three alignments. 

6.1.2 Cylinder Orientation (Experimental) 

In chapter 5 three different laser trap systems were presented. The data 

presented in the previous section needed to be verified so the top-down trap 

was used first. If the laser beam does not have enough power then the 

cylinder will not be picked up. In figures 6.1.3A to 6.1.3C the 2.5 p m  

radius, 13 pm length cylinder, circled in figure 6.1.3A, is drawn towards the 

beam. In figure 6.1.3D the cylinder is starting to be lifted off of the bottom 

of the sarnple ce11 as the end of the cylinder towards the bottom of the 



picture indicates. The cylinder then aligns with the beam in figure 6.1.3E, 

which is a view of the end surface of the cylinder. 

Figure 6.1.3 : ALIGNMENT OF A 2.5 RADIUS CYLINDER IN A LASER BEAM. 



In the above figure spheres can be seen dong with other cylinders. These 

figures show a 2.5 pm radius cylinder with a length of approximately 13 p m  

aligning almost vertically. According to the data in table 6.1.1 the cylinder 

should be on an angle of approximately 12'. It can be seen that the cylinder 

is on a slight angle. If it was aligned perfectly up and down then it should 

have the same rormdness that the spheres have in the picme. The cylinder is 

slightly elongated as the arrow indicates. This elongation is possible if 

either the cylinder has a deformity on the end or if the cylinder is on a slight 

incline. If there is a deformity in the cylinder then it should be seen when 

the cylinder was on its side. This then indicates that the cylinder is on an 

incline. Since the diameter of the cylinder is h o w n  then it is possible to 

determine the length. By measuring the distance @) of the tilted cylinder, it 

is possible to determine the angle of the cylinder. By using elementary 

U 
trigonometry, sin 8 = - which can 

L 

be seen from the diagram to the 

right, the angle for the above cylinder 

was calculated to be 1423". m e n  

measuring D the length of the diameter of the cylinder is subtracted. 



The power of the laser was approximately 100 mW for al1 the data taken 

unless specified. 

In figures 6.1.4A - 6.1.4E a 2.5 p radius cylinder with a length of 

approximately 26 pm is shown. From the theoretical values, the cylinder 

should be on an angle of 3". The calculated angle is 3M.7". 

It shouId be noted that the apparent size of the cylinders in the figures 

Vary which is due to the results being taken on different days. The 

experiment was tom down and rebuilt several times and in each time, the 

camera position was different which results in the different sizes of the 

images. Also, the circled mark in figure 6.1.4D is a burn mark on the 

camera and can be seen in figures 6.1.5, 6.1.6 and 6.1.7. For figures 6.1.3 

and 6.1.8 a different camera was used. 

It was also found that the cylinders would align vertically using the 

bottom-up trap. Figure 6.1 S A  to figure 6.1 .SE shows the sequence of a 3.5 

prn radius, 21 Fm long cylinder aligning vertically. For this length of 

cylinder, the angle that it rests at should be 12". The calculated angle is 

1 l-tl.2". 

Figure 6.1 .SE shows the end of the cylinder where it is hard to tell but 

appears to be on a slight angle as the end is not perfectly round but is more 

oval shaped. This is expected for a cylinder on an angle. 



Figure 6.1.4: VERTICAL ALIGNMENT OF 2.5 p m  RADIUS 26 pm LENGTH 
CYLINDER. 



The horizontal trap was also able to trap the cylinders. In figures 

6.1.6A and 6.1.6B it can be seen that a cylinder drops fiom the top to the 

bottom where it is initially out of focus. As the cylinder enters the trap 

region, figure 6.1.6C, it starts to corne into focus. The cylinder becomes 

ensnared in the trap and the cylinder becomes fully focused, figure 6.1.6D to 

figure 6.1.6F. This cylinder is aligned perpendicdar to the laser beam or 

vertical to the tabletop. The laser could not overcorne gravity to pull it into 

the beam though. 

The horizontal trap is able to hold the cylinders horizontal to the 

tabletop or parallel to the beam. Figures 6.1.7A-6.1.7F shows the cylinder 

corning into the beam and straightens up. in both figures 6.1.6A and 6.1 .7A 

(arrow) the angular line is the searn of the beam splitter 



Figure 6.1 .5:  A L I G N M E N T O F A ~ . ~ ~ R A D W S ,  21 pmLENGTHCYLINDER. 



Figures 6.1.6A-6.1.6D: PERPENDICULAR ALIGNMENT OF CYLINDER TO BEAM 
USING THE HORIZONTAL TRAP. 



Figures 6.1.6E-6.1.6F: PERPENDICULAR AUGNMENT OF CYLINDER wIm 
BEAM USING THE HORIZONTAL TRAP, 

In figure 6.1.7A a trapped cylinder, labeled a and in the square, is in the 

path of a falling cylinder labeled B and in the circle. The cylinder, P, strikes 

the trapped cylinder, figure 6.1.7C, which causes the cylinder, a, to be 

pushed out while at the sarne time the cylinder, P, aligns itself with the 

beam, figure 6.1.7D. The beam momentarily traps cylinder B while a 

experience the force of gravity and starts to fdl. P begins to fa11 as well as 

the beam is unable to keep the cylinder f?om falling out of alignrnent, figures 

6.1.7F-6.1.7H. 



Figures 6.1.7A-6.1.7D: PARALLEL ALIGNMENT OF CYLINDER iWT'H BEAM 
USING THE HORIZONTAL TRAP. 



Figures 6.1.7E-6.1.7H: PARALLEL ALIGNMENT OF CYLINDER WITH BEAM 
USING THE HORIZONTAL TRAP. 



Figures 6.1.6 and 6.1.7 demonstrate that the horizontal trap is capable of 

trapping cylinders. Due to gravity though it is extremely hard to keep the 

cylinders trapped parallel to the beam fiom falling into the perpendicular position 

as seen in figure 6.1.7. 

One of the requirements needed to be able to create micro-machines is the 

ability to move the components to the desired location before they are set into 

place. In figures 6.1 -8A-6.1.K a cylinder is digned in the beam using the top- 

down trap. While straight up and down in the trap the cylinder is moved to 

another location, figures 6.1.8D6.1.8H. This is a 2.5 pn radius cylinder with a 

length of approximately 15 pm. It c m  be seen in figure 6.1.8E that the cylinder is 

also on an angle. The arrow points to the elongation that is seen if the cylinder is 

on a slant othenvise a circle should appear if it is completely vertical. 

Theoretically, the cylinder should be at an angle of approximately go. The 

calculated angle is 1353". 

(A) (BI 
Figures 6.1.8A and 6.1.8B: ALIGNMENTAM) MOVEMENTOF 2 . 5 ~  

RADTUS, 15 Mm LENGTH CYLINDER. 



Figures 6.1.8C-6.1.8H: ALIGNMENT AND MOVEMENT OF A 2.5 pm RADIUS, 
15 Pm LENGTH CYLINDER. 



Figure 6.1.8 demonstrated that it is possible to translate a cylinder while it is 

vertically trapped in the beam. It is also possible to translate a cylinder 

while it is trapped horizontally. Figure 6.1.9 shows a cylinder with a 2.5 p m  

radius and length of 13 pm trapped in the beam. The cylinder is being 

translated around a neighboring cylinder. 

Figure 6.1.9: TRANSLATION OF A 2.5 pm RADRTS, 25 p m  LENGTH 
CYLINDER AROUND ANOTHER CYLINDER. 



Figure 6.1.9: TRANSLATION OF A 2.5 p RADRIS, 13 p m  LENGTH 
CYLINDER AROUM) ANOT'HER CYLINDER. 



This section has shown that the cylinders will line up along two 

possibilities, straight up and down as in figure 6.1.4 and on its longest axis 

as in figures 6.1.3,6.1.5 and 6.1.8. This verifies the theoretical data that was 

presented in the previous section. The theoretical angle at which the 

cylinder is stable was also shown to coincide with the calculated angle from 

the experiments. It has also been shown that it is possible to manipulate the 

cylinder when it is either standing up or on its side. These features are 

important when it cornes to building a micro-machine. The next section will 

look at the torque versus angle that is produced on a cylinder when one of 

five parameters is changed over a specified range. 



6.2 Design of Cylinder 

The previous section has shown that it is physically possible to move and 

align cylinders. This illustrates that cylinders are feasible to be used as posts 

that will be able to secure gears for the developrnent of micro-machines. 

The gear is the mechanical component of a system. If a cylinder is secured 

to a post such that it is sti11 £tee to rotate then the cylinder can be thought of 

as a micro-rotor. 

It was shown in figure 6.1.4 that the cylinder was drawn into the beam 

before it started to vertically align itself. If this cylinder was pimed down 

but free to rotate, then the cylinder would just spin around this point. The 

continuous rotation of a cylinder is now important, as it would demonstrate 

that it would be feasible to produce a micro-rotor, which would be the first 

step to a micro-actuator. 

To produce a rotor with the best design the cylinder will be the 

starting point where several factors will be looked at that will give the 

optimal torque as it rotates. The factors that will be considered are the 

dimensions of the cylinder, the radius of the end-caps and the bearn waist. 

The optimal design of the cylinder requires the least amount of power 

to rotate it but generates the maximum amount of torque. This would mean 

that the power supply to run the machine would last longer making it more 



cost efficient and convenient as the supply would not have to be changed or 

replaced as quickly. 

To fmd this optimal design the computer prograrn was modified to 

include a subroutine that rotates the cylinder at l 0  intervals and then 

calculates the torque the beam would apply to the cylinder. The program is 

designed to modi@ one of five possible parameters at a time; beam waist, 

radius of the cylinder, length of cylinder, top end cap and bottom end cap. 

The subroutine retums the data, which is stored in a file where the program 

EXCEL can be used to plot the results. The code for the subroutine is in 

Appendix C .  1. 

The first parameter to be modified was the beam waist. Figure 6.2.1 

is a surface plot of the torque versus angle for beam waists ranging fiom 0.5 

to 3 prn. The parameters of the cylinder are in the brackets in the title where 

R represents the radius of the cylinder, L is the length, LEC is the lower end 

cap radius and UEC is the upper end cap radius. 



Beam Waist Scan (R: 5pm, L: IOprn, LEC: IOOpm, UEC: IOOpm) 

P 

Figure 6.2.1 : Data of torque versus angle for beam radii ranging fiom 0.5 
to 3 pm in width. 

Each beam width was then plotted separately also a trend line of a running 

average over a 45" span was found and plotted on the graph. The 45O span 

is used shce a symmeûic rotor of eight points has a separation of 45" or 4 

beams at 45' can be used to rotate a single cylinder. The ninning average 

will determine the greatest torque that will be imparted to the cylinder. 

Figures 6.2.2 and 6.2.3 are plots of the 0.5 pm and 3 p m  waist data taken 

fkom the above graph. 



Beam Waist 0-5 pm (R: Spm, L: 1Opm. LEC: 100pm. UEC: 100pm) 

Figure 6.2.2: 0.5 p m  BEAM WAIST SCAN OF TORQUE VERSUS ANGLE 

Beam Waist 3pm (R: 5pm. L: 1 Opm. LEC: 100pm. UEC: 100pm) 

300 7 

l 
1 

Figure 6.2.3: 3 . 0 0 ~  BEAM WAIST SCAN OF TORQW VERSUS ANGLE. 



The rough plot in both figures could have been smoothed out if more 

rays were used in the simulation but the increase of rays would cause the 

simulations to take longer to m. To Save tirne an optimal number of rays 

was used. The beam waist that was chosen to produce the greatest torque 

was found to be 1.25 W. The plot of this waist is shown below in figure 

6.2.4. Al1 other relevant plots can be found in Appendix C.2. 

Beam Waist i.25pm (R: Spm, 1: 10pm, LEC: 100pm, UEC: 100pm) 

300 , 

Angle (0) 

Figure 6.2.4: 1.25 pl BEAM WAIST SCAN OF T'ORQUE MRSUS ANGLE. 

The plot of the 1.25 pm beam waist has two notable features. The first is 

that the c w e  has the highest and lowest torque values. The greatest torque 

value corresponds to a torque that would push the cylinder out of the beam 

while the negative torque would pull the cylinder back into the beam. The 



second point is that the dope of the average trend line is the largest as 

compared to the other plots. 

After the best size of the beam waist was determined another 

parameter was modified. The parameters that were kept constant were; 

beam waist (B.W.) = 1.25 Pm; radius (R) = 5 pm; the lower end cap (L.E.C.) 

= 100 pm; the upper end cap (U.E.C.) = 100 p. The modified parameter 

was the length (L), which was varied fiom 5 Pm to 100 Pm. There were 

several designs that gave the greatest torque. Starting at 70 pm the average 

trend line and the data line are almost identical with the cylinders ranging up 

to 100 p m  in length. This can be seen in the plot of al1 the data shown on 

the next page. At the arrow a minimum value is reached which is 

maintained approximately the same fiom 70 to 100 Pm. For the optimal 

design of the cylinder the length of 70 p m  was chosen. This length was 

chosen as it was found that in the samples used there were more cylinders in 

the range of 40 to 70 Pm. There were few, if any, with lengths greater than 

70 Fm. The plot of the torque versus angle for the 70 pm cylinder length is 

shown in figure 6.2.6. Other plots can be found in Appendix C.3. 



Length Scan (B.W.: 1.25 Pm; R.: 5 Pm; LEC-: 100 Pm; U.E.C.: 100 prn) 

70 prn Length (B.W.: 1.25 prn; R.: 5 Pm; L.E.C.: 100 Fm; U.E.C.: 100 pm) 

Figure 6.2.5: PLOT OF LENGTH SCAN FROM 5 p m  TO 100 p. 

Figure 6.2.6: TORQUE VERSUS ANGLE FOR A CYLINDER OF LENGM 70 Pm. 



Now that the beam waist has been chosen and the optimal length has been 

determined, the beam waist was varied a second time with the length at 70 

p m  instead of 10 Pm. This was done to ensure that the beam waist of 1.25 

pm was the optimal value. It is possible that another beam waist might 

produce the greatest torque for the 70 pm length. After running the 

simulation, it was found that the 1.25 pm and the 1.50 p m  waist have very 

similar plots, figure 6.2.7 shows the 1.25 pm plot. Neither of these plots 

produce the greatest torque but they both have smooth curves. 

1.25 pm Beam Waist (L-: 70 Fm; R-: 5 Pm; L.E.C.: 100 Pm; U-E.C.: 100 pm) 

250 , 

Angle (0) 

Figure 6.2.7: PLOT OF OPTIMAL BEAM WAIST FROM SIMULATION. 



The c w e  in figure 6.2.7 is smoother when compared to the 1.50 p m  curve 

of figure 6.2.8. The importance is that the laser has to be modulated to 

produce a continuous torque on the cylinder and the smoother the curve, the 

easier it will be to adjust the laser accordingly. Therefore, 1.25 pm is the 

ideal beam waist for the continuous rotation of the cylinder. 

1.50 pm Beam Waist (L: 70 Pm; R.: 5 Pm; L E C :  100 Pm; U.E,C.: 100 pm) 

t 

Angle (8) 

Figure 6.2.8: TORQUE VERSUS ANGLE FOR THE 1.50 prn BEAM WAIST. 

The next parameter to be modified is the radius of the cylinder. It was 

found that a radius of 15 p m  would produce the greatest average torque. 

The plot is shown below in figure 6.2.9 but it is not the ideal radius for a 

micro-gear. The reason will be discussed in the next section. The chosen 



radius is 10 pm, which is shown in figure 6.2.10. Appendix C.4 has other 

relevant plots of the radius scans. 

15 Fm Radius (B.W.: 1.25 Fm; L.: 70 Pm; LEC.: 100 Fm; U.E.C.: 100 pm) 

-3000 ' 
Angle (0) 

Figure 6.2.9: PLOT OF TORQUE VERSUS ANGLE FOR THE 15 p m  RADIUS 
CYLiNDER. 



10 pm Radius (B.W.: 1.25 Pm; L.: 70 Fm; L.E.C.: 100 Pm; U.E.C.: 100 pm) 

Figure 6.2.1 0: PLOT OF DATA FOR A 10 pm RADIUS CYLINDER. 

For the ideal cylinder the parameters of a length of 70 Pm, radius of 10 

with both end-caps having a radius of 100 pm (Flat ends) and a bearn radius 

of 1.25 prn is desired. The flat ends of the cylinder are desired, as the design 

of a micro-gear is more difficult with round end-caps. 

For completeness of the theoretical design the end-cap radii were 

modified. The lower end-cap was fkst modified where it was f o n d  that the 

best end-cap radius was 10 p. For the upper end-cap radius it was found 

that the radius of 15 pn was the optimal. Both plots can be seen on the next 



page in figures 6.2.11 and 6.2.12. Appendices C S  and C.6 have other 

relevant plots of the data for the lower and upper end-caps. 

10 Fm L. E.C. (B. W-: 1.25prn; L.:70 Fm; R.: 10 Pm; U. E. C. 100 pm) 

1000 - 

Figure 6.2.1 1 : OPTIMAL RADIUS OF 10 pm FOR THE LOWER END-CAP. 

The 15 p radius produces the greatest torque but the different radii of the 

end-caps will cause a problem in the design of a micro-rotor given that it is 

not symrnetric. For this reason the radius of the upper end-cap of 10 Pm is 

better suited for the design of the micro-rotor. The 10 p m  plot is shown in 

figure 6.2.13. 



15 pm U. E- C. (8- W.: 1.25 pm; L.: 70 pm; R.: 10 Fm; L. E. C. 10 pm) 

Figure 6.2.1 2 : OPTIMAL RADIUS OF 1 S Pm FOR THE UPPER END-CAP. 

10 pm U. E. C. (B. W.: 1.25 Pm; L-: 70 Pm; R.: 10 Pm: L. E. C. 10 pm) 

4500 

Angle (0) 

Figure 6.2.13 : PLOT OF 10 Fm WPER END-CAP RADIUS SCAN. 



One of the final goals of building a micro-actuator is to have its rotors 

rotating at a continuous speed and this is the topic of the next section. 

The overall best design of a cylinder based rotor has been detennined to be 

one with a length of 70 p, radius of 10 p, lower end-cap of 100 Fm, 

upper end-cap of 100 p m  in a beam with a radius of 1.25 Pm. 

6.3 Continuous Rotation of Cylinder 

In the previous section it was rnentioned that the cylinder radius of 10 

p m  was chosen over the 15 p m  radius. The explanation for this choice can 

be justified fiom equation 3.2.1 8. 

This is the angular velocity equation derived in chapter 3. For a micro- 

actuator the rotors would be required to attain its maximum angular velocity 

as quickly as possible. For this reason the smaller radius of the cylinder is 

desired because the moment of M a  as well as the darnping factor are 

smaller for the 10 prn radius than the 15 W. 



Another factor to consider is the power required in maintaining a 

constant rotational rate. The torque magnitude is linearly related to the 

incident laser beam power. By rearranging the equation, the torque (t) 

required to rotate the cylinder can be detennined provided the angular 

velocity, damping factor (6) and the moment of inertia (0 are known. 

From this the power versus time curve for a constant rotation rate can be 

plotted. Usuig the main program designed by Gauthier, the required torque 

will be calculated fkom equation 6.3.2 by specifjmg a rotational velocity in 

revolutions per second. Based on the current rotational angle of the cylinder 

the program will calculate the actual torque present for this orientation, 

r,,,,,,,d, when the laser beam has a power of 100 mW. Fo&g a ratio of 

these two torque values the power required fiom the beam in order to 

maintain a constant rotational rate can be obtained. 

Prquirai 

When the cylinder starts at 

will be zero implying that 

rest (t = 0) the denominator of equation 6.3 -2 

there would have to be an infinite arnount of 



torque required to instantaneously start the cylinder rotating at the desired 

rotational velocity. From equation 6.3.3 it also indicates that an infinite 

power fiom the laser would be required to generate the infinite torque value. 

The program designed by Gauthier has a sub prograrn uicluded that 

would use a four-beam system to continuously rotate a micro-cylinder. An 

angle of 45 O offsets the four beams as show betow in figure 6.3.1. 

Figure 6.3.1 : MULTIPLE BEAM CONFïGURAnON FOR CONTïNüOUS 
ROTATION OF A MICRO-CYLINDER. 

The program is designed such that the laser beam that is activated is 

dependent upon the orientation of the cylinder. The orientation is defined 



from the plots given in section 6.2. From figure 6.2.9 the greatest absolute 

average torque occurs at 58O. Subtracting 45" fkom the 58" gives the initial 

value of 13", which is the beginnuig value for the average given to 58". The 

program is designed such that between the range of 13" and 58" the laser 

marked as L, will be turned on. This continues in the pattern that between 

58" and 103" Iaser two is tumed on then between 103" and 148" laser three 

is activated, 148" and 193" laser four is activated. This sequencing based on 

cylinder orientation continues on for the full 360" rotation then repeats again 

for additional rotations. 

Three other values are included into the calculation for the power 

required to rotate the cylinder at a constant speed. The fint is the velocity 

that the cylinder is required to rotate. The chosen velocity for the modeling 

is 2 revolutions per second. The next parameter is the limiting power of the 

laser. The final parameter is the darnping factor, which is defked in units of 

inertia. The values of the darnping factor used are 1, 10, 100, 1 O00 and 5000 

times the moment of inertia (1). The cylinders used for these simulations 

have a length of 70 Pm, a radius of 10 p m  and the end-caps have radii of 

100 Pm. 

Starting with the damping factor of 50001, figure 6.3.2 is a plot of the 

power required to rotate the cylinder at a continuous angular velocity of 2 



revolutions per second. It c m  be seen that to start the cylinder fiom rest to 

an instantaneous angular velocity of 2 revolutions per second the power 

required would have to be in the order of 2x10~ mW or 2 MW. 

Power Required versus Time 
b: 5000 1: m: 2 revls: L: 70 crm: R: 10 Pm; End-Caps: 100 pm 

Tirne (s) 

Figure 6.3.2: PoWER REQUIRED TO ROTATE THE CYLINDER AT AN ANGULAR 
v~~ocrrv OF 2 REVOLUTIONS/SECOND. 



Power Required versus Time 
b: 5000 1: o: 2 revis; L: 70 pf?x R: 10 rim: End-Caps: 100 ~im 

1 

O i 
O o. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

Time (s) 

Figure 6.3.3 : ENLARGED PLOT OF POWER REQUIRED VERSUS T[ME . 

By reducing the scale of the power required to 250 mW (figure 6.3.3) it can 

be seen that the power needed to rotate the cylinder decreases rapidly, within 

0.001 S. Each peak represents the initialization of a different laser bearn. 

The first peak would be the second laser while the second peak is the third 

laser and so on. 

Typically in any application the power available to the actuation of 

the rotor will be limited. Figure 6.3.4 demonstrates the power available to 

the actuation when clipped at the upper level of 100 mW. 



Power Available versus Time 
b: 5000 1: oi: 2 revis; L: 70 m R: 10 rim; End-Caps: 100 

20 
l 

i 

O O. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Tirne (s) 

Figure 6.3.4: POWER AVAaABLE TO MAINTAIN 2 REVOLUïlONS PER 
SECOND. 

It cm be seen that it takes 0.002 s before the cylinder is rotating at 2 

revolutions per second. The damping factor is also too great for the cylinder 

as the power available clips at 100 mW periodically. 

By reducing the damping factor fiom 50001 to 10001 the initial power 

to instantaneously accelerate the cylinder to 2 revolutions per second is still 

in the order of 2x10' mW but the power afterwards never goes over 40 mW 

as shown in figure 6.3.5. The power does not "clip" and 2 revolutions per 

second is maintained. 



Power Available versus Time 
b: 1OOO 1: a: 2 revis: L: 70 crrn; R: 10 pm: End-Caps: 100 pm 

! 
I 

7 

O O. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time (s) 

Figure 6.3.5: POWER VERSUS TME FOR 10001 DAMPING. 

When the damping factor is m e r  reduced to LOO1 the power available is 

shown in figure 6.3.6. The reduction of the damping factor by an order of 

magnitude reduces the power available by an order of magnitude as well. If 

the damping factor is reduced to 101 and then to LI it c m  be seen that the 

power also reduces by the same. See figures 6.3.7 and 6.3.8. The plots 6.3.4 

to 6.3.8 demonstrate that the power available linearly scales with the 

damping factor for large t. This observation is expected. The lirnit of the 

toque in equation 6.3. L as t+w is r = bdy(f )  where r ac Po . The initial 
dt 



power to instantaneously start the cylinder at 2 revolutions per second 

rernians the same in al1 plots at 2x10' mW. 

Power Available versus Time 
b: 100 1; 0: 2 revis; L- 70 ~rni; R: 10 pm End-Caps: 100 pm 

5 7 

4.5 -. 
4 -- 

O O, 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Tirne (s) 

Figure 6.3.6: POWER AVALABLE TO MAINTAIN 2 REVOLUTIONS PER 
SECOND. 

The damping factor was calculated to be 2.3~10-l6 ~ r n ~  for the described 

2 micro-cylinder in water using equation 3.3.22, b = O z  TL . It is then 

possible to h d  the power needed and power required starting and 

maintaining a cylinder at any angular velocity in any medium used. The 

four beam system has been considered plausible as A. Ashkùi [21] placed a 

patent on a design which uses four laser bearns aligned in the configuration 

shown in figure 6.3.10. 



In future, the next step is to produce a micro-rotor that can be tested 

using one laser beam. It has been simulated for an eight-point rotor, shown 

below, where the one laser beam was sufficient enough to rotate the rotor. 

Also, it is believed that the testing of a real micro-rotor can be achieved in 

the very near future. It is believed that a micro-actuator is not too far away 

fYom creation as well which will lead into a micro-system. 

Power Available versus Time 
b: 10 1: cu: 2 revis; t: 70 pm: R: 10 rm; EndGaps: 100 pm 

l j  / 1 
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O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Tirne (s) 

Figure 6.3.7: POWER AVAILABLE TO MAINTAIN 2 REVOLUTIONS PER 
SECOND FOR 101. 



Power Available versus Time 
b: 1; QX 2 revis; L: 70 prn: R: 10 pm; End-Caps: 100 - 

1 - \  

O O. 1 0.2 0.3 0.4 0.5 0.6 0-7 0.8 0.9 1 

Time (s) 

Figure 6.3.8: POWER AVAILABLE TO MAINTAIN 2 REVOLUTIONS PER 
SECOND FOR 11. 

Figures 6.3.9 and 6.3.10: MICRO-ROTOR TLJ'RNED BY SINGLE LASER AND 
AsHKIN's FOUR BEAM TRAP. 



Conclusion 

The experimental study of micro-cylinders was cornpleted using three 

different trapping designs, the "Top-Down", "Bottom-Up" and the 

"Horizontal" traps. It is thought that the cylindncal shape will be an 

important part in the creation of a micro-actuator. The equations for the 

angular acceleration, the darnping factor due to the medium, and the 

expressions of torque were derived then implemented into a computer 

prograrn, as they were not available before this thesis. Using the program 

the best designs of a cylinder and laser beam were deterrnined which would 

produce the maximum amount of torque. The dimensions of the cylinder 

were determined to have a length of 70 w, radius of 10 Fm, the end-caps 

had radii of 100 Fm and the laser beam had a waist of 1.25 Fm. 

Usuig a laser trapping system it was shown that the cylinders would 

align at different orientations according to their length, which is in 

agreement with the theoretical results obtained from the sophisticated 

computer program. The calculated angle at which the cylinders become 

stable also agrees with the theoretical results obtained from the program. 

It was also shown theoretically through the prograrn, that the cylinders 

could be continuously rotated using a four-beam system. The simulations 

provided the data for the power that would be required to start a cylinder 



into a specified instantaneous angular velocity also the power required to 

continue the cylinder rotating at the specified angular velocity. It was also 

found that an eight-point rotor would rotate under the influence of a single 

laser beam. 

It is hoped that in the near future that it will be possible to create and 

test a real rotor in the hopes of producïng a micro-actuator, which will lead 

to a micro-system. The activation of the system will d l  be possible through 

the power of laser light. 
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A. 1 Point Ray Clarification 

Chapter 2 presented the concept of the "point ray" which was said to be 

different fiom the geometrical properties of a classical ray in optics. This 

Appendix clarifies the use of the term "point ray" to represent the photons of 

the Gaussian bearn. 

I f  figure A. 1.1, shown below, the waist W(z) of a Gaussian beam 

(Wo=ko=i.O pm) is traced through the minimum region to the far field 

shown as -*- on the graph. 
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Figure A. 1.1 : RELATIVE MAGNITWDE VERSUS AXIS DISTANCE. 

The photons in the minimum region are highly confined due to the small 

size of the waist while the photons are spread over a larger area far fiom the 



waist due to the increased beam width. The photons passing at the minimum 

waist are restricted radially to a spread of dr which is equal to twice the 

waist,. 2 * Wo. If a restriction of this type is irnposed on the position 

coordinate then fiom the Heisenberg Uncertainty Principle there is an 

uncertainty in the momentum component that is associated with the 

coordinate. The minimum uncertainty in the radial component of the 

momenturn vector for the photons in the waist region Wo is obtained from: 

The radial component of the photon's momentum in the minimum waist 

region is then represented by: 

Pr = h k ,  Itidk, (A. 1.2) 

where hk, is the statistical average of the radial momentum component of 

the photons passing through the minimum waist. By fmding the radial 

component of the wave vector, which is perpendicular to the wavefront 

surface in the minimum waist region and at the radial point of interest, the 

statistical average is determhed. The wavefiont is perpendicular to the z 

axis in the minimum waist region which makes k,=O but, there is an 

uncertainty in the value of dk, that is determined by equation A. 1.1. In the 

minimum waist region a hue classical ray is not considered. What is done 



instead is the determination of the statistical average of the photons at a 

point of interest in the focus region where the averaged photon direction and 

momentum is then obtained. If the point of interest is far fiom the minimum 

waist the classical ray tracing techniques c m  be used otherwise these values 

are only used at the point of interest at or near the minimum waist. 

Figure A. 1.1 also shows the plot of km dk, and k&kr fkom the 

minimum waist region to the far field region. W(z) was chosen as the radial 

coordinate value for the photons for the calculations displayed in the figure. 

It can be seen that in the minimum waist region the uncertainty dk, is large 

compared to km but as the z coordinate increases past the Rayleigh range the 

uncertainty decreases and km approaches a uniform value. This also results 

in the uncertainty on the radial component of the photon momentum to 

decrease accordïngly. The radial component of the momentum can then be 

obtained for a nearly spherical wavef?ont, at a point in the far field, with an 

uncertainty that is small. This then corresponds to a classical ray that cm be 

propagated using the normal ray tracing techniques since the component 

magnitudes of the wave vector no longer change with increasing z. 

For the difficulty of the conservation of momentum, figure A. 1.1 

shows that the radial component of the wave vector, km, is conserved to the 

limits and accuracy irnposed by the uncertainties. It can be seen that when 



the far field value is extended linearly to the minimum waist region it always 

iies within the limits of &kr. Taking P = fig, beam momentum is conserved 

if the uncertainties in the momentum components are allowed for. It must 

also be stated that it is physically incorrect to tag a photon in the minimum 

waist region and propagate it to the far field region. What is done instead is 

that the average properties of the photons are treated as dictated by quantum 

mechanics. 

The last problem to be looked at is the difficulty with bending ray 

trajectories. This can be overcome if it is accepted that at any point in 

interest not only one photon propagation direction passes by the point but 

photon directions are spread over a solid angle distribution by the 

uncertainty principle. It is the statistical average of these directions that is 

used to determine the direction of a ray at that point only in the bearn. 

R. C. Gauthier addressed the two major problems of conservation of 

momentum and curving of ray trajectories without interacting with matter. 

His modified ray theory overcame the problems that arise when the ray and 

wave theories are mixed in the focal region of Gaussian bearns. This implies 

that in the focal region of a Gaussian beam the classical interpretation of 

ray's propagating in a straight line is not employed. What is done is the 

statistical average of the photons passing through a point can be interpreted 



as a ray passing through the point and have a direction given by the 

statistical average of the photon wave vectors determined at the point. 



A.2 Direction Cosines 

In this section the mathematical details are given for obtaining the reflected 

and refracted photon cosines when given the incident direction cosines, point 

of intercept, and the outward directed surEace normal at the interface. 

For the reflected direction cosines the angle of incidence between the 

photon direction and the surface normal is obtained by taking the dot 

product of the incident wave vector and the outward directed surface normal 

(see figure A.2.1): 

@in = COS-'(]ali + bmi + cnjI) (A.2.I) 

Since the incident wave vector and the surface normal point in the opposite 

directions the absolute value is required. 

The reflected angle for the photons, with respect to the surface normal, is 

given by thelaw of reflection as: 

Bref = 0, (A.2.2) 

It is known that the reflected photons and incident photons al1 lie in the sarne 

plane so, a point on the reflected wave vector can be obtained by finding a 

point (x,, y., h) which is a distance rcos(&J fkom the point of incidence, 

measured along the surface normal. This point is obtained using: 



with 

(xt yf, zf) Reflected K 

Figure A.2.1: GEOMETRY USED TO OBTAIN THE REFLECTED DIRECTION 
COSINES GIVEN THE INCIDENT DIRECTION COSINES AND 
NORMAL AT THE POINT OF INTERCEPT. 

-P 

A vector v , with a length of min(&, is formed which originates at 

(x,, y,, z,) and ends at (x,,, y,, z,,). The vector is perpendicular to the surface 

normal and lies in the plane of incidence. The direction cosines for this 

vector are expressed as: 



The point on the reflected wave vector (x, y, ZJ cm be obtained by: 

The direction cosines of the reflected 

where r is now expressed as: 

wave are then given by: 

=J (x i  -xr)' +(yi +(zi - z , - ) ~  (A.2.8) 

It is the set O,, m,, nr) of equation A.2.7 that is used in equation 2.2.8. 

The refiacted direction cosines are obtained by finding the point 

(xd, yd, zd) which lies on a flat plane surface with a surface normal of (a, b, c) 

and a surface equation of u+by+cz+d=O (see figure A.2.2). This point is 

located at a distance rcos(4,J fiom the point (x,, y,, z,). This point can be 

calculated fiom: 



where td is obtained fiom: 

Figure A.2.2: GEOMETRY USED TO OBTAIN THE REFRACTED DIRECTION 
COSINES GlVEN THE INCIDENT DIRECTION COSINES AND 
NORMAL AT TWE POINT OF INTERCEPT. 

The next step is to obtain the point (x,, y,, zJ which lies on the line joining 

be seen fiom the geometry of figure A.2.2 the length d, cm be obtained 



dt = r )tan(% - 0,) 

where 4 is calculated fiom the law of refraction: 

ni, sui(ûin ) = n, sin(& ) 

The point (x,, y,, 2,) is given by: 

The dire1 ction cosines for the refiacted wa 

with r, now given as: 

.ve are: 

rr =J(xi  - x , ) ~  +(yi +(zi - L ~ ) ~  (A.2.15) 

It is the set fi. m, n J of equation A.2.14 that is used in equation 2.2.9. 



Appendix B 

B.l Computer Simulation of Torque rotation 

Option Explicit 
Global swidth, sheight, swidth30, sheight30 As Double 
Global Pi, xmin, xmax, ymin, yrnax, a, b, c As Double 
Global kill As String 
Global i As integer 
Sub sleeper() 
kill = "no" 
Do 

DoEvents 
Loop While M l =  "no" 

End Sub 
Sub main() 

Pi = 4# * Atn(l#) 
Call plot 
Call plot-la 

End Sub 

Sub plor() 
Form 1 .Pictue 1 .Cls 
Form 1 .Pictue 1 .Print"PZotU 
swidth = Form 1 .Pictue 1 .ScaleWidth 
sheight = Forml . Picture 1 .ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
ymin = -100 
p a x  = 100 
Form 1 .Label 1 .Caption = "x-coordinate" 
Form 1 .LabelZ.Caption = " y-coordinate" 
Form 1 .Label3 .Capion = "2-coordinate" 
Cal1 place-line(-100,0, 100,0,0,255,0)  
Call place-line(0, -100,0, 100,0,0,255) 
For i = -100 To 100 Step 20 



Cal1 place - line(i, 0, i, - p a x  / 20,0,255,0) 
Next i 
For i = -100 To 100 Step 20 
Call place-line(0, i, -xmax / 20, i, O, 0,255) 

Next i 
Call place-text(0, 1 10, "y") 
Call place-text(100, O, "x") 
Call point-set 
Cal1 coord-set 
Cal1 coord-change 
Form 1 .Label6.Caption = "Point's Initial Placement" 
Form 1 .Label l O.Caphon = "Point's Position After Phi Rotation" 

End Sub 

Sub plac<text(x 1, y 1 ,  text) 
Callplace line(xl,yl,xl,yl,255,255,255) 
Form 1 .pic-me 1 .Print text 

End Sub 

Sub place line(x1, y 1, x2, y2, rgbl, rgb2, rgb3) 
Dim pxlTpx2, pyl, py2 As Double 
pxl =((xmax-xmin)/20+xl -xmin)/(xmax-xmin+(xmax-xmin)/ 

1 O )  * swidth 
px2 = ((xmax - xmin) / 20 + x2 - xmin) / (xmax - xmin + (xmax - xmin) / 

10) * swidth 
py 1 = (ymax + (ymax - ymin) / 10 - ((ymax - ymin) / 20 + y 1)) / (ymax - 

ymin + (yrnax - p i n )  / 10) * sheight 
py2=(ymax+(ymax-ymui)/  lO-((ymax-ymin)/2O+y2))/(pax- 

ymin + (ymax - ymïn) / 10) * sheight 
Form 1 .Picture 1 .PSet (px1, pyl), RGB(rgb 1, rgb2, rgb3) 
Form 1 .Picture 1 .Line -@x2, py2), RGB(rgb1, rgb2, rgb3) 

End Sub 

Sub point-set0 
Call place-line(Vd(Form 1 .Text 1 .text), Val(Forrn 1 .TextZtext) - 2, 

Val(Form1 .Text 1 .text), Val(Form1 TextZtext) + 2,255, 0, 0) 
Call place-line(Val(Form1 .Text 1 .text) - 2, Val(Fom1 .TextZ.text), 

Val(Form1 .Text 1 .text) + 2, Val(Form1 .Text2.text), 255, 0, 0) 
End Sub 



Sub coord set0 
Call plac&text(Val(~orml .~extl.text) + 3, Val(Form1 .Text2.text) + 1, "(") 
Call place text(Val(Form1 .Text 1. text) + 5, Val(Form1 .Text2.text), 

~ i x ( V a l ( ~ o k 1  . ~ e x t  1 .text) * 100) / LOO) 
Call place-text(Val(Form 1 .Textl .text) + 20, Val(Form 1 .Text2.text), ",") 
Call place-text(Val(Form1 .Text 1 .text) + 22, Val(Form 1 .Texd.text), 

Fix(Val(Fom 1 .TexQ.text) * 100) / 100) 
Call place-text(Val(Form1 .Text 1 .text) + 40, Val(Form 1 .Text2.text) + 1, 

"Y"' 
End Sub 
Sub plot la0  
Forrn 1 .kicture2.~ls 
Forml .Picture2.Print "Plot" 
Form 1 .Label 1O.Caption = "Point's Position After Translation" 
Form 1 .Texto.text = Fix((Val(Form 1 .Text 1. text) - Val(Form 1 .Text 1 O. text)) 

* 1 O A (Val(Form 1 .Text 1 3. text))) / 10 A (Val(Form 1 .Text 1 3 .text)) 
F o m  1 .Text7.text = Fix((Val(Form 1 .TextZtext) - Val(Form 1 .Text 1 1 .text)) 

* 1 0 A (Val(Form 1 .Text 1 3. text))) / 10 A (Val(Form 1 .Text 1 3. text)) 
Forml .Text&text = Fix((Val(Forrn1 .Text3 .text) - Val(Form 1 .Text 12.text)) 

* 1 O A (Val(Forrn 1 .Text 13 .text))) / 10 A (Val(Form 1 .Text 1 3 .text)) 
swidth = Form 1 .Picture2.ScaleWidth 
sheight = Form 1 .Picture2ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = - 100 
ymax = 100 
Call place line2(-100,0, 100,0,0,255,0) 
Call placeÏine2(0, -100,0, 100,0,0,255) 
For i = - 1 6  To 100 Step 20 
Call place_line2(i, 0, i, -ymax / 20,0,255,0) 

Next i 
For i = - 100 To 100 Step 20 
Cal1 place - line2(0, i, -xmax / 20, i, O, 0,255) 

Next i 
Call place-text2(0, 1 10, "y") 
Call place-text2(100, O, "x") 
Call point-set 1 a 
Call coord-set 1 a 



Call axis-1 a 
Call pIace-text2(Val(For1~il .Text 1O.text) + 3, 1 10, "y"') 
Call place-text2(100, Val(Form1 .Text 1 l .text), "x"') 

End Sub 
Sub point-set l a 0  
Call place lineZ(Val(Form 1 .Text 1 .text), Val(Form 1 .TexQ.text) - 2, 

Val(Form I k x t  1 .text), Val(Form 1 .TextZ.text) + 2,255,0,0)  
Call place-1ine2(Val(Foml .Text 1 .text) - 2, Val(Form 1 .TexQ.text), 

Val(Form1 .Textl .text) + 2, Val(Form1 .TextZtext), 255,0, 0) 
End Sub 

Sub coord-set 1 a0  
Cal1 place - text2(Val(Forml .Text 1 .text) + 3, Val(Form 1 .TexQ.text) + 1, 

"('7 
Call place text2(VaI(Forml.Texti.text) + 5, Val(Forml.Te~t2.text)~ 

~ i x ( ~ a l ( ~ o &  1 .Texto.text) * 100) / 100) 
Call place text2(Val(Form 1 .Text 1 .text) + 23, Val(Form1 .TexQ.text), ",") 
Call place-text2(Val(~orml .Text 1 .text) + 25, Val(Form1 .TexQ.text), 

~ i x ( V a l ( ~ o G 1  .Text7.text) * 100) / 100) 
Cal1 place - text2(Val(Forml.Textl.text) + 45, Val(Form1 .TextZtext) + 1 ,  

"Y) 
End Sub 

Sub ais-la() 
swidth = Fom 1 .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth.30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
ymin = -100 
p a x  = 100 
Ca11 place line2(-100, Val(Forml.Text1 l.text), 100, 

Val(Form1 Yext 1 1 .text), 0, 100,O) 
Call place line2(Val(Foml .Textl O.text), - 100, Val(Form 1 .Text 1 O.text), 

100, O, 0, 100) 
'For i = -100 To 100 Step 20 
'Call place_line2(i, 0, i, -ymax / 20,0,0,255) 

'Next i 
'For i = - 100 To 100 Step 20 



'Cal1 place - line2(0, i, -xmax / 20, i, O, 0,255) 
Next i 

End Sub 

Sub main 2 0  
Cal1 p h c l  b 
Cal1 plot - 2 

End Sub 

Sub plot 1 b() 
~ o r m  1 .Picture 1 .GIS 
Form 1 .Pictue 1 .Print "Plot" 
Form 1 .Label6.Caption = "Point's Position After Translation" 
Form 1 .Text 1 .text = Fix((Val(Form 1 .Texto.text)) * 10 A 

(Val(Form 1 .Text 13. text))) / 10 A (Val(Form 1 .Text 1 3. text)) 
Forml.Text2.text = Fix((Val(Forml.Text7.text)) * 10 A 

(Val(Fonn 1 .Text 13 .text))) / 10 A (Val(Form 1 .Text 13 .text)) 
Form 1 .Text3 .text = Fix((Val(Fom1 .Text&text)) * 10 A 

(Val(Form1 .Text l3.text))) / 10 A (Val(Form1 .Text 13.text)) 
Form 1 .Label 1 .Caption = "x'toordinate" 
Form 1 .LabelZ.Caption = "y'-coordinate" 
Form 1 .Label3 Caption = "2'-coorduiate" 
swidth = Forrn 1 .Picme 1 .ScaleWidth 
sheight = Form l .Picture 1 .ScaIeHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
yrnin = - 100 
p a x  = 100 
Call place line(-100,0, 100,0,0, 100,O) 
Call place-line(O, - 100,0, 100,0,0, 100) 
For i = -100 To 100 Step 20 
Cal1 place - line(i, 0, i, -ymax / 20,0, 100,O) 

Next i 
For i=-100To 100 Step20 
Call place-line(0, i, -xmax / 20, i, O, 0, 100) 

Next i 
Call place text(0, 1 10, "y"') 
Call placeItext(l 00, O, "x'") 



Call point-set lb  
Call coord-set 1 b 

End Sub 

Sub point-set 1 b 0  
Call place4he(Val(Fom 1 .Text 1. text), VaI(Form 1 .Text2. text) - 2, 

Val(Form1 .Text 1 .text), Val(Form1 .Text2.text) + 2, 255,0,0) 
Call place-line(Val(Fom1 .Text 1 .text) - 2, Vd(Form1 .Textt.text), 

Val(Form1 .Text 1 .text) + 2, Val(Form1 .TexQ.text), 255,0,0) 
End Sub 

S ub coord-set 1 bO 
Call place text(Val(Form1 .Text 1 .text) + 3, Val(Form 1 .TexQ.text) + 1, "(") 
Call plac~ext(Val(Foml . ~ e x t  1 .text) + 5, Val(Form1 .TexQ.text), 

Fix(Val(Form1 Text 1 .text) * 100) / 100) 
Call place text(Val(Fom1 .Text 1 .text) + 23, Val(Form 1 .TexQ.text), ",") 
Call place-text(~al(~orml .Text 1 .text) + 25, Val(Form 1 .TexQ.text), 

~ i x ( ~ a l ( ~ o k 1  .Text2.text) * 100) / 100) 
Cal1 place - text(Val(Form1 .Text 1 .text) + 45, Val(Form 1 .TexQ.text) + 1, 

")") 
End Sub 

Sub plot20 
Form 1 .Picture2.Cls 
Form 1 .Picture2.Pnnt "Plot" 
Form 1 .Label 1 O .Caption = "Point's Position Afier Phi Rotation" 
swidth = Foml .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight 1 30 
xmin = - 100 
xmax = 100 
ymin = -100 
ymax = 100 
Call coord change 
Call place%ne2(-100, 0, 100,0,0,255,0) 
Call placeÏine2(0, -lOO,O, 100,0,0,255) 
For i = -166 To LOO Step 20 
Call place-line2(i, 0, i, - p a x  / 20,0,255,0) 

Next i 



For i = -100 To 100 Step 20 
Cal1 place - line2(0, i, -xmax / 20, i, O, 0,255) 

Next i 
Cal1 place text2(0, 110, "y") 
cal1 placëtext2(1~~,  O, "xW) 
Cal1 point-se~ 
cal1 coor&set;? 
Call axis 2 
Call place text2(100 * (-Sin(Pi / 180 * Val(Forml.Text4.text))), 1 10 * 

Cos(Pi / 1 80  * Val(Fom 1 .Text4.text)), "y"') 
Call place-texQ(100 * Cos@ / 180 * Val(Forml.Text4.text)), 1 10 * Sinpi 

/ 1 80 * Val(Form 1 .Text4.text)), "x"') 
End Sub 

Sub place line2(xl, y 1, x2, y2, rgb 1, rgb2, rgb3) 
Dim pxl~px2,  pyl, py2 As Double 
pxl = ((xmax - xmin) / 20 + X I -  Xmùi) / (xmax - xmin + (xmax - xmin) / 

IO) * swidth 
px2 = ((xmax - xmin) / 20 + x2 - xrnin) / (xmax - xmin + (xmax - xmin) / 

10) * swidth 
py1 = ( p a x  + (ymax - p i n )  / 10 - ((ymax - ymin) / 20 + yl)) / (yrnax - 

ymin + (ymax - ymin) / 10) * sheight 
pyZ=(ymax+(ymax-ymin)/ 10 -((ymax-ymin)/20+y2))/(ymax- 

ymin + (ymax - p i n )  / 10) * sheight 
Form 1 .Picture2.PSet (px 1, py 1 ), RGB(rgb 1, rgb2, rgb3) 
Form 1 .PictureZ.Line -(px2, py2), RGB(rgb 1, rgb2, rgb3) 

End Sub 

Sub place_text2(xl, y 1 , text) 
Cal1 place line2(xl, yl, xl, y l ,  255,255,255) 
~ o r m  1 . ~ i ' i e ~ . ~ n n t  text 

End Sub 

Sub poin'_set20 
Call place lineZ(Val(Form 1 .Text 1 .text), Val(Form 1 .Text2. text) - 2, 

val(~orml?extl .text), Val(Form1 .TextZtext) + 2,255,0,0) 
Call place line2(Val(Form 1 .Text 1 . text) - 2, Val(Form 1 .Text2. text), 

~ a l ( ~ o r m 1  Yextl .text) + 2, Val(Form1 .Text2.text), 255,0,0) 
End Sub 



Sub coord-set20 
Cal1 place - text2(Val(Forml .Text 1 .text) + 3, Val(Form 1 .TexQ.text) + 1, 
Y") 
Call place text2(Val(Forml .Text 1 .text) + 5, Val(Form 1 .Texd.text), 

~ i x ( v a l ( ~ o k  1 .Texts.text) * 100) / 100) 
Call place text2(Val(Forml .Text 1 .text) + 23, Val(Form l .Text2. text), " ,") 
Call place-te~t2(Val~orml .Text 1. text) + 25, Val(Form 1 .Text2. text), 

~ix(Val(~o&l .Texti.text) * 100) / 100) 
Cal1 place - text2(Val(Forml .Text 1 .text) + 45, Val(Form 1 .TexQ.text) + 1, 

"Y"' 
Erid Sub 

Sub axis - 2 0  
swidth = Form 1 .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
m i n  = - 100 
xmax = 100 
ymin = - 100 
ymax = 100 
Cal1 place line2(- 100 * Cospi / 180 * Val(Form1 .Text4.text)), - 100 * 

Sin(Pi / l86* Val(Fom1 .Text4.text)), 100 * Cos(Pi / 180 * 
Val(Form1 .Text4.text)), 100 * Sin(Pi / 180 * Val(Forml .Text4.text)), O, 
100, O) 
Call place line2(-100 * Cos((Pi / 180 * Val(Form 1 Xext4.text)) + Pi / 2), - 

100 * sin(@ / 180 * Val(Form1 .Text4.text)) + Pi / 2), 100 * Cos((Pi 1 180 * 
Val(Form1 .Text4.text)) + Pi 1 2), 100 * Sin((Pi / 180 * 
Val(Form1 .Text4.text)) + Pi / 2), 0,0, 100) 

'For i = - 100 To 100 Step 20 
'Call place-line2(i, 0, i, -ymax / 20,0,0,255) 

'Next i 
'For i = -100 To 100 Step 20 
'Call placeAline2(0, i, -xrnax 1 20, i, O, 0,255) 

'Next i 
End Sub 

Sub coord-change0 



Form 1 .TextB.text = Fix((Val(Fom1 .Text 1 .text) * Cos(Pi / 180 * 
Val(Form 1 .Text4. text)) + Val(Fonn 1 .TexQ.text) * Sin(Pi / 1 80 * 
Val(Form 1 .Text4.text))) * 10 A (Val(Form1 .Text 13.text))) / 10 A 

(Val(Forrn 1 .Text 13 .text)) 
Form 1 .Text7. text = Fix((Val(Fom1 .Text 1. text) * (-Sin(Pi / 1 80 * 

Val(Form1 .Text4.text))) + Val(Form1 .TextZtext) * Cos(Pi / 180 * 
Val(Form1 .Text4.text))) * 10 A (Val(Form1 .Text 13.text))) / 10 A 

(Val(Form 1 .Text 1 3 Aext)) 
Forml .TextB.text = Fix(Val(Fonn1 .Text3 .text) * 10 A 

(Val(Form 1 .Text 1 3. text))) / 10 A (Val(Form 1 .Text L 3. text)) 
End Sub 
Sub main 30 
Cal1 plot 3 
Cal1 plo> 

End Sub 
Sub plot-3() 
Form 1 .Picture 1 .Cls 
Form 1 .Picture 1 .Print "Plot" 
Form 1 .Picture2.Cls 
Forml .Picture2.Print "Plot" 
swidth = Form 1 .Picture l .ScaleWidth 
sheight = Form 1 .Picture 1 .ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
ymin = - 100 
ymax = 100 
Call place line(-100,0, 100,0,0,255,0) 
Call place-line(O, - 100,0, 100,0,0,255) 
  or i = - 1 6  TO 100 Step 20 
Call place-line(i, 0, i, -ymax / 20,0,255,0) 

Next i 
For i = -100 To 100 Step 20 
Call place-line(0, i, -xmax / 20, i, O, 0,255) 

Next i 
Call place text(0, 1 10, "y") 
Call place-ttxt(lOO, O, "x") 
Cal1 pointset 
Call coord-set3 



Call mis-3 
Call place text(100 * (-Sin@ 1 180 * Val(Form 1 .Text4.text))), 1 10 * 

Cos(Pi / 1 80 * Val(Form 1 .Text4.text)), "y"') 
Call place text(100 * Cos(Pi 1 180 * Val(Form1 .Text4.text)), 1 10 * Sin(Pi / 

1 80 * ~a l (6om 1 .Text4.text)), "x"') 
Forrn 1 .Label 1 .Caption = "xl-coordinate" 
Forrn 1 .Labell.Caption = "y1-coordinate" 
Form 1 .Label3 .Caption = "zl-coordinate" 
Forml .Label6.Caption = "Point's Position After Phi Rotation1' 
a = Fix((Val(Form1 .Text 1 .text) * Cos(Pi / 1 80 * Val(Form 1 .Text4. text)) + 

Val(Form1 .Text2.text) * Sin(Pi / 180 * Val(Form1 .Text4.text))) * 10 A 

(Val(Forrn 1 .Text 13 .text))) / 1 O A (Val(Form 1 .Text 1 3 .text)) 
b = Fix((Val(Form 1 .Text 1 .text) * (-Sin(Pi 1 180 * Val(Form1 .Textrl.text))) 

+ Val(Form 1 .TextZ.text) * Cos(Pi / 1 80 * Val(Fom 1 .Text4.text))) * 10 A 

(Val(Form1 .Textl3.text))) / 10 A (Val(Forml.Textl3.text)) 
c = Fix(Val(Form 1 .Text3 .text) * 10 A (Val(Fom 1 .Text 13 .text))) / 1 O A 

(Val(Form 1 .Text 1 3 .text)) 
Form 1 .Text 1 .text = a 
Form 1 .Text2. text = b 
Fom 1 .Text3. text = c 

End Sub 

Sub axis-30 
swidth = Form 1 .Picture 1 .ScaleWidth 
sheight = Fom 1 .Picture 1 .ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xrnax = 100 
p i n  = -100 
p a x  = 100 
Call place line(- 100 * Cos(Pi / 180 * Val(Form1 .Text.Q.text)), - 100 * 

Sin@ / 1 86* Val(Form 1 .Text4.text)), 100 * Cos(Pi 1 180 * 
Val(Form 1 .Text4.text)), 100 * Sin(Pi / 180 * Val(Form 1 .Text4.text)), O, 
100, O) 
Call place line(-100 * Cos((Pi / 180 * Val(Form1 .Text4.text)) + Pi / 2), - 

1 O0 * sin(@ / 180 * Val(Form1 .Text4.text)) + Pi 1 2), 100 * Cos((Pi / 180 * 
Val(Form 1 .Text4. text)) + Pi / 2), 100 * Sin((Pi 1 1 80 * 
Val(Form1 .Text4.text)) + Pi / 2), 0,0, 100) 
'For i = - 100 To LOO Step 20 



'Cal1 place - Iine(i, O, i, - p a x  / 20,0,0,255) 
'Next i 
'For i = - 100 To 100 Step 20 
'Call place-line(0, i, -max / 20, i, O, O, 255) 

Next i 
End Sub 

Sub coordset30 
Ca11 place text(Val(Form 1 .Text 1 .text) + 3, Vai(Form 1 .TexQ.text) + 1, "(") 
Ca11 place-text(Val(~orm 1 .Text 1. text) + 5, Val(Form 1 .Text2 .text), 

~ix(~d(I?o&ni .~ext6.text) * 100) / 100) 
Call place text(Val(Form1 .Text 1 .text) + 23, Val(Forrn 1 .TexQ.text), ",") 
Call place-text(Val(~orm 1 .Text 1. text) + 25, Val(Form l .Text2. text), 

~ i x ( ~ a l ( ~ o &  1 .Text7.text) * 100) 1 100) 
Ca11 place - text(Vai(Fonn 1 .Text 1 .text) + 45, Val(Form 1 .Text2.text) + 1, 

"Y) 
End Sub 

Sub plot 4 0  
F O ~  1 .Picture2.~ls 
Forrn 1 .Picture2.Print "Plot" 
swidth = Forml .Picture2.ScaleWidth 
sheight = Forml .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = -1 00 
p a x  = 100 
Call place-line2(-LOO, 0, 100,0,0,255,0) 
Call place-line2(0, - 100,0, 100,255,0,0) 
For i = -100 To 100 Step 20 
Cal1 place - line2(i, O, i, -ymax / 20,0,255,0) 

Next i 
For i = -100 To 100 Step 20 
Call place-line2(0, i, -max / 20, i, 255,0,0) 

Next i 
Call place-texQ(3, 1 10, "z"") 
Call place text2(100,0, "x"") 
Call pointIset3 



Call coord-set4 
Form 1 .Label%Caption = "xl'-coordinate" 
Form 1 .Label8.Caption = "y"-coordinate" 
Form 1 .Labelg.Caption = "z"-coordinate" 
Form 1 .Label 1O.Caption = "Point's Position Before Theta Rotation" 

End Sub 

Sub mis-40 
swidth = Fonn 1 .Picture2.ScaleWidth 
sheight = Forml .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = -100 
ymax = 100 
Call place_line2(- 100 * Cospi / 180 * Val(Form1 .TextS.text)), - 100 * 

Sin(Pi / 180 * Val(Form 1 .TextS.text)), 100 * Cos(Pi / 180 * 
Val(Fom1 .TextS.text)), 100 * Sin(Pi / 180 * Val(Forml .TextS.text)), O, 0, 
255) 
Call place_line2(- 100 * Cos((Pi 1 180 * Val(Form1 .TextS.text)) + Pi / 2), - 

1 O0 * Sin((Pi / 180 * Val(Form1 .TextS.text)) + Pi / 2), 100 * Cos((Pi / 180 * 
Val(Form 1 .TextS.text)) + Pi / 2), 100 * Sin((Pi / 1 80 * 
Val(Form 1 .TextS.text)) + Pi / 2), 0,0,255) 

For i = - 100 To 100 Step 20 
Cal1 place - line2(i, 0, i, - p a x  / 20, 0, 0, 255) 

Next i 
For i = -100 To 100 Step 20 
Cal1 place - line2(0, i, -xmax / 20, i, O, 0,255) 

Next i 
End Sub 

Sub coord set40 
Call plac~text2(Val(~orml .Text 1 .text) + 3, Val(Form1 .Text3 .text) + 1, 

Y") 
Call place-text2(Val(Forml .Text 1 .text) + 5, Val(Form 1 .Text3 .text), 

Fix(Val(Form 1 .Texts.text) * 100) / 100) 
Cal1 place - text2(Val(Forml .Textl .text) + 23, Val(Form1 .Text3.text), ",") 



Call place-text2(Val(Forml .Text 1 .text) + 25, Val(Form 1 .TexU .text), 
Fix(Val(Form1 .Textg.text) * 100) / 100) 
Call place-text2(Val(Foml .Text 1. text) + 45, Val(Form 1 .Text3 .text) + 1, 

"Y"' 
End Sub 

Sub point-set30 
Call place-line2(Val(Fom 1 .Text 1. text), Val(Form 1 .Text3. text) - 2, 

Val(Form1 .Text 1 .text), Val(Form1 .Text3 .text) + 2, 0,0,255) 
Call place-line2(Val(Forml .Text 1 .text) - 2, Val(Form 1 .Text3 .text), 

Val(Form1 .Text Ltext) + 2' Val(Form 1 .TextXtext), O, 0,255) 
End Sub 

Sub main 40 
Cal1 p l o a  
Call plot-6 

End Sub 

Sub plot-5() 
Form 1 .Picture 1 .Cls 
Form 1 .Picture 1 .Print "Plot" 
swidth = Forml .Picture 1 .ScaleWidth 
sheight = Forml . Picture 1 ScaleHeight 
swidth30 = swidth 1 30 
sheight30 = sheight 1 30 
xmin = - 100 
xmax = 100 
ymin = - 100 
p a x  = 100 
Call place-line(-100,0, 100,0,0, 255,O) 
Call place-line(0, -100,0, 100,255,0,0) 
For i = -100 To 100 Step 20 
Call place-line(i, 0, i, - p a x  1 20,0,255,0) 

Next i 
For i = -100 To 100 Step 20 
Call place-line(0, i, -xmax / 20, i, 255, 0,O) 

Next i 
Call place-text(3, 1 10, "2"') 
Call place-text(l00, O, "x"") 
Call point-set4 



Call coord set5 
a = ~ix(Val(Form1 .~exto.text) * 10 A (Val(Foxm1 .Text 13 .text))) / 10 A 

(Val(Form 1 .Text 13. text)) 
b = Fix(Val(Forml.Text7.text) * 10 A (Val(Forml.Textl3.text))) / 10 A 

(Val(Form 1 .Text 13. text)) 
c = Fix(Val(Form1 .Text8.text) * 10 A (Val(Form1 .Text 13 .text))) / 10 A 

(Val(Form 1 .Text 13. text)) 
Form 1 .Text 1 .text = a 
Forrnl .Text2.text = b 
Form 1 .Text3 .text = c 
Form 1 .Label l .Caption = "x"-coordinate" 
Form 1 .LabelZ.Caption = "yw-coordinate" 
Form 1 . Label3 .Caption = "z"-coordinate" 
Form 1 .Labelo.Caption = "Point's Position Before Theta Rotation" 

End Sub 

Sub point-set40 
Call place line(Val(Form 1 .Text 1 .text), Val(Form 1 .Tex0 .text) - 2, 

Val(Form 1 Yext l .text), Val(Form1 .Text3. text) + 2,0,0,255) 
Call place line(Val(Form1 .Text 1 .text) - 2, VaI(Form1 .Text3 .text), 

Val(Form1 Fext 1 .text) + 2, Val(Form1 .TexU.text), O, 0, 255) 
End Sub 

Sub coord set50 
Cal1 place text(Val(Forml .Textl .text) + 3, Val(Form1 .Text3.text) + 1, "(") 
Call place-text(Val(~orml .Text 1 .text) + 5, Val(Form 1 .Text3 .text), 

~ i x ( ~ a l ( ~ o k 1  .Texto.text) * 100) / 100) 
Call place text(Val(Forml.Text1.text) + 23, Val(Form1 .TextXtext), ",") 
Call place-text(Val(~orml .Text 1 .text) + 25, Val(Form 1 .Text3 .text), 

~ i x ( ~ a l ( ~ o & l  .TextB.text) * 100) / 100) 
Cal1 place - text(Val(Form 1 .Text 1 .text) + 45, Val(Form1 .TexU.text) + 1, 

")"> 
End Sub 
Sub plot-60 
Form 1 .Picture2,Cls 
Form 1 .Picture2.Print "Plot" 
a = Fix((Val(Form1 .Text6. text) * Cospi / 180 * Val(Fom 1 .TextS.text)) + 

Val(Form l .Textg .text) * (-Sin(Pi / 180 * Val(Form1 .TextS. text)))) * 10 A 

(Val(Form 1 .Text 1 3 .text))) / 10 A (Val(Form 1 .Text 13. text)) 



b = Fix(Val(Form1 .Texti'.text) * 10 A (Val(Form1 .Text l3.text))) / 10 A 

(Val(F0x-m 1 .Text 1 3 .text)) 
c = Fix((Val(Form1 .Texto.text) * Sïn(Pi / 180 * Val(Form 1 .TextS .text)) + 

Val(Form 1 .Text8.text) * Cos(Pi / 1 80 * Val(Form 1 .Text5. text))) * 1 0 A 

(Val(Form 1 .Text 1 3 .text))) / 1 0 A (Val(Forrn 1 .Text 1 3. text)) 
FormI .Text6.text = a 
Form 1 .Text7.text = b 
Form I .Text8.text = c 
swidth = Fonn 1 .Picture2.ScaleWidth 
sheight = Forml .PictureZ.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
p i n  = -100 
p a x  = 100 
Call place-line2(-100,0, 100,0,0,255,0) 
Call placeJine2(0, -100, 0, 100,255, 0,O) 
For i = -100 To 100 Step 20 
Call place_line2(i, O, i, - p a x  / 20, O, 255, O) 

Next i 
For i = -100 To 100 Step 20 
Call placeJne2(0, i, -xrnax / 20, i, 0, 255,O) 

Next i 
Call place texQ(3, 100, "z"") 
Call plac~ext2(100, O, "x"") 
Call point set5 
caiï coord set6 
Cal1 axis-5 
Call place-text2(100 * (Sinpi / 180 * Val(Fom 1 .TextS.text))) + 3, 100 * 

Cos(Pi 1 1 80 * Val(Form l .Tex6 .text)), " z""') 
Call place~ext2(100 * Cos(Pi / 180 * Val(Forml.TextS.text)), LOO * - 

S in(Pi / 1 80 * Val(Form 1 .TextS. text)), "x""') 
Form 1 .Label'l.Caption = "xl"-coordinate" 

If )II- Form l .LabelB.Caption = y coordinate" 
Form 1 .Labelg.Caption = "zW'-coordinate" 
Form 1 .Label 1O.Caption = "Point's Position After Theta Rotation" 

End Sub 



Sub point-set50 
Call place-line2(Val(Forrnl .Text 1 .text), Val(Form 1 .Text3 .text) - 2, 

Val(Form1 .Textl .text), Val(Fom1 .Text3.text) + 2,0,0,255) 
Call place line2(Val(Form 1 .Text 1. text) - 2, Val(Form 1 .Text3. text), 

val(~orm1 %xt 1 .text) + 2, Val(Form1 .Text3 .text), O, 0,255) 
End Sub 

Sub coord-set60 
Call place-text2(Val(Form 1 .Text 1 .text) + 3, Val(Form 1 .Text3. text) + 1, 

"(") 
Call place text2(Val(Form 1 .Text 1. text) + 5, Val(Fonn 1 .Text3 .text), 

~ i x ( ~ a l ( F o &  1 .~ext6.text) * 100) / 100) 
Call place text2(Val(Forml .Text 1 .text) + 23, Val(Form 1 .Text3. text), " ,") 
Call place-text2(Val(Forml .Text 1 .text) + 25, Val(Form 1 .Text3 .tact), 

~ i x ( v a l ( ~ o k  1 .TextS.text) * 100) / LOO) 
Cal1 place - text2(Val(Form 1 .Text 1 .text) + 45, Val(Form1 .Text3 .text) + 1, 

"1") 
End Sub 

Sub axisS() 
swidth = Form 1 .Picture2ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
p i n  = -100 
p a x  = 100 
Call place Iine2(-100 * Cos(Pi / 180 * Val(Fom I .TextS.text)), - 100 * - 

Sin(Pi / 1 8<* Val(Form1 .TextS.text)), 100 * Cos@ / 1 80 * 
Val(Forrn 1 .TextS.text)), 100 * -Sin(Pi / 180 * Val(Form 1 .TextS.text)), O, 
255,200) 
Cal1 place_line2(- 100 * Sin((Pi / 180 * Val(Fom l .Text5 .text))), - 100 * 

Cos((Pi / 180 * Val(Form1 .TextS.text))), !O0 * Sin((Pi / 180 * 
Val(Form 1 .TextS .text))), 100 * Cos((Pi / 1 80 * Val(Form 1 .Text5. text))), 
255, O, 200) 

For i = -100 To 100 Step 20 
Cal1 place - line2(i, 0, i, -yrnax / 20,0, 255,O) 

Next i 
For i = -100 To 100 Step 20 



Cal1 place - lineZ(0, i, -xmax / 20, i, 255,0,0) 
Next i 

End Sub 

Sub main-50 
Cal1 plot-7 
Call plot-8 

End Sub 

Sub plot-70 
Form 1 .Picture 1 .Cls 
Fonn 1 .Picture 1 . h t  "Plot" 
swidth = Form 1 .Pictue l .ScaleWidth 
sheight = Forml .Picture 1 ScdeHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = -100 
ymax = 100 
Call place line(400, O, 100,0,0,255,200) 
Call placeÏine(O, -100,0, 100,255,0,200) 
For i =-16-0 To 100 Step 20 
Call place-line(i, 0, i, -ymax /20,0,255,200) 

Next i 
For i = -100 To 100 Step 20 
Cal1 place - line(0, i, - m a x  / 20, i, 255,0, 200) 

Next i 
Cal1 place-text(3, 1 00, "z""') 
Call place-text(100, O, "x""') 
Call point-set6 
Cal1 coord-set7 
a = Fix(Val(Form1 .Texto.text) * 10 A (VaI(Form1 .Text 13.text))) / 10 A 

(Val(Form 1 .Text 13. text)) 
b = Fix(Val(Form1 .Text7.text) * 10 A (Val(Forml.Textl3.text))) / 10 A 

(Val(Form 1 .Text 13 .text)) 
c = Fix(Val(Form1 .Text8.text) * 10 A (Val(Form1 .Text 13.text))) / 10 A 

(Val(Form 1 .Text 13 .text)) 
Forml Text 1 .text = a 
Forml TextZtext = b 



Form 1 .Text3.text = c 
Form 1 .Label 1 Caption = "xl"-coordinate" 
Form 1 .LabelZ.Caption = "y1"-coordinate" 

(1 191- Form 1 .Label3 .Caption = z coordinate" 
Forml .Labelo.Caption = "Point's Position After Theta Rotation" 

End Sub 

Sub point-set60 
Call place line(Val(Form 1 .Text6.text), Val(Form 1 .Textg.text) - 2, 

Val(Form1 ?exto.text), Val(Forrn1 .Textg.text) + 2,0,0,255) 
Call place line(Val(Fom1 .Texto.text) - 2, Val(Form1 .Text8.text), 

Val(Form1 yext6.text) + 2, V a l ~ o r m l  .TextS.text), O, 0, 255) 
End Sub 

Sub coord-set70 
Call place text(Val(Form1 .Text 1 .text) + 3, Val(Form1 .Text3 .text) + 1, "(") 
Call place~xt(Val(~orm 1 .Text 1 .text) + 5, Val(Form1 .Text3 .text), 

Fix(Val(Form 1 .Texto.text) * 100) 1 LOO) 
Call place text(Val(Form 1 .Text 1 .text) + 23, Val(Form 1 .Text3. text), " ,") 
Call place-text(Val(Forrn 1 . ~ e x t  1 .text) + 25, Val(Form 1 .Text3 .text), 

~ i x ( ~ a l ( ~ o L 1  .Textg.text) * 100) / 100) 
Cal1 place - text(Val(Form 1 .Text 1 .text) + 45, Val(Form 1 .Text3 .text) + 1, 

"1") 
End Sub 

Sub plot-80 
Forrn 1 .Picture2.Cls 
Form 1 .Picture2.Print "Plot" 
swidth = Fonnl .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
a = Fix((Val(Forrn1 .Text 1 .text) * Cos@ / 180 * Val(Form 1 .Textg.text)) + 

(Val(Form 1 .Text2.text) * (-Sh(Pi / 1 80 * Val(Form 1 .Text9. text))))) * 10 A 

(Val(Form 1 .Text 1 3. text))) / 10 A (Val(Forrn 1 .Text 1 3. text)) 
b = Fix((Val(Form1 .Text 1 .text) * Sin(Pi / 180 * Val(Form 1 .Text9.text)) + 

(Val(Form 1 .TextZtext) * Cos(Pi / 1 80 * Val(Form 1 .Text9. text)))) * 10 A 

(Val(F0n-n 1 .Text 1 3. text))) / 1 O A (Val(Form 1 .Text 13. text)) 
c = Fix(Val(Form 1 .Tex0 .text) * 10 A (Val(Form 1 .Text 13 .text))) / 10 A 

(Val(Form 1 .Text 13. text)) 
Form 1 .Texto.text = a 
Forml .Text7.text = b 



Fonn I .Textg.text = c 
swidth30 = swidth / 30 
sheight30 = sheight 1 30 
xmin = - 1 O0 
xmax = 100 
p i n  = -100 
ymax = 100 
Call place line2(-100, O, LOO, O, 0, 100,O) 
Call place-line2(0, -100,0, 100, O, 0, 100) 
  or i = -166 TO 100 Step 20 
Call place-line2(i, O, i, - p a x  / 20, O, 100, O) 

Next i 
For i = -100 To 100 Step 20 
Call place-line2(0, i, -max / 20, i, O, 0, 100) 

Next i 
Call place~extî(3, 1 00, "y""') 
Call place-text2(100, O, "x""') 
Call point set7 
Cal1 coofiet9 
Form 1 .Label 10.Caption = "Point's Position After Torque" 

End Sub 

Sub point-set70 
Call place line2(Val(Form 1 .Texto.text), Val(Form 1 .Texti'.text - 2, 

Val(Form1 ?ext6.text), Val(Form1 Xext7.text) + 2,255,0, 0) 
Call place lùieZ(Val(Form1 .Texto.text) - 2, Val(Form1 .Textî.text), 

Val(Form1 Fext6.text) + 2, V a l ~ o m l  .Text7.text), 255,0, 0) 
End Sub 

Sub coord-set90 
Call place-text2(Val(Form 1 .Texto.text) + 3, Val(Forrn 1 .Text7.text) + 1, 

" (" 1 
Call place-text2(Val(Forml Xext6.text) + 5, Val(Form 1 .Text7.text), 

Fix(Val(Form 1 .Texto.text) * 100) / 100) 
Call place-textî(Val(Form1 Text6.text) + 23, Val(Form 1 .Textî.text), " ,") 
Call place text2(Val(Forml .Texto.text) + 25, Val(Form1 .Text7.text), 

~ i x ( v a l ( ~ o &  1 .Text7.text) * 100) / 100) 
Call place-text2(Val(Forml .Texto.text) + 45, Val(Form1 .Text7.text) + 1, 

"1") 



End Sub 

Sub main 6 0  
cal1 plot - 9 
Cal1 p!ot - 10 

End Sub 

Sub plot 9 0  
Form 1 .Picture 1 .Ch 
Forml .Pictue 1 .Print "Plot" 
swidth = Fonnl .Picture 1 .ScaleWidth 
sheight = Form 1 .Pichue 1 .ScaleHeight 
a = Fix(Val(Form1 Xext6.text) * 10 A (Val(Fonn1 .Text 13 .text))) / 10 A 

(Val(Forrn 1 .Text 13. text)) 
b = Fix(Val(Form 1 .Text7. text) * 10 A (Val(Forrn 1 .Text 1 3. text))) / 1 0 A 

(Val(Form 1 .Text 1 3 .text)) 
c = Fix(Val(Form1 .Textg.text) * 10 A (Val(Form1 .Text 13.text))) / 10 A 

(Val(Form I .Text 13 .text)) 
Forml .Text 1 .text = a 
Form 1 .Text2.text = b 
Form 1 .Text3 .text = c 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
ymin = - 100 
p a x  = 100 
Call place line(-100,0, 100,0,0,255,0) 
Call placeÏine(O, - 100,0, 100,0,0,255) 
  or i = -166 TO 100 Step 20 
Cal1 place - luie(i, O, i, -ymax / 20,0,255,0) 

Next i 
For i = -100 To 100 Step 20 
Call placeJne(0, i, -xmax / 20, i, O, 0, 255) 

Next i 
Call place-text(3, 100, "y""') 
Call place-text(100, O, "x""') 
Call pointset9 
Call coord set10 
Form 1 .~abel6 .caption = "Point's Position After Torque" 



End Sub 

Sub point set90 
Cal1 line(Val(Form 1 .Text 1. text), Val(Form 1 .Text2. text) - 2, 

Val(Fom1 Yext 1 .text), Val(Form 1 .TexQ.text) + 2,255,0,0) 
Cal 1 place line(Val(F0rm 1 .Text 1. text) - 2, Val(Fonn 1 .Text2. text), 
~al(~orm1 k x t l  .text) + 2, Val(Forml.Text2.text), 255,0,0) 
End Sub 

Sub coord-set100 
Cal1 place text(Val(Forml.Text6.text) + 3, Val(Form1 .Text7.text) + 1, "(") 
Call place-text(Val(Forml .Text6.text) + 5, Val(Form1 .Text7.text), 

~ i x ( v a l ( ~ o k 1  .Texts.text) * 100) / 100) 
Call place text(Val(Form 1 .Text6.text) + 23, Vai(Form 1 .Text7. text), " ,") 
Call place-text(Val(Form 1 .Text6.text) + 25, Val(Form 1 .Text7. text), 

~ ix (va l (~o& 1 .Text7.text) * 100) / 100) 
Cal1 place - text(Val(Forml.Text6.text) + 45, Val(Form1 Text7.text) + 1, 

")") 
End Sub 

Sub plot-100 
Form 1 .Picture2.Cls 
Form 1 .Picture2.Print "Plot" 
swidth = Forrnl .Picture2,ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = -100 
xmax = 100 
p i n  = -100 
p a x  = 100 
Forml .Texto.text = Fix((Val(Form1 .Text 1 .text) * Cos(Pi / 180 * 

Val(Forrn1 .TextS.text)) + Val(Form1 .Tex&text) * Sin(Pi / 1 80 * 
Val(Form 1 .Text5. text))) * 10 A (Val(Form1 .Text 13. text))) / 10 A 

(Val(Form 1 .Text 1 3 .text)) 
Forml .Text7.text = Fix(Val(Form1 .TextZ.text) * 10 A 

(Val(Form 1 .Text 13. text))) / 1 O A (Val(Fonn 1 .Text 1 3 .text)) 
Forml .TextB.text = Fix((Val(Form1 .Text l .text) * (-Sinpi / 180 * 

Val(Form1 .TextS.text))) + Val(Form1 Text8.text) * Cos(Pi / 180 * 



Val(Form 1 .Text5. text))) * 10 A (Val(F0x-m 1 .Text 1 3. text))) / 1 0 " 
(Val(Form 1 .Text 1 3 .text)) 
Call place line2(-100,0, 100,0,0,255,200) 
Call place-line2(0, -100,0, 100,255,0,200) 
For i = -166 To LOO Step 20 
Cal1 place - line2(i, 0, i, -ymax / 20,0,255,200) 

Next i 
For i = -100 To 100 Step 20 
Cali place - line2(0, i, - m a x  / 20, i, 255, 0, 200) 

Next i 
Call place-text2(3, 1 05, " z""') 
Call place-text2(100, O, "x""') 
Call point-set 10 
Ca11 coord-set 1 1 
Call axis 6 
Forml fo ab el 1O.Caption = "Point's Position After First Return Rotation" 
Form 1 .Label7.Caption = "x"-coordinate" 
Form 1 .Label&Caption = "y"-coordinate" 

If If- Form l .Label9.Caption = z coordinate" 
End Sub 

Sub point-set 100 
Call place line2(Val(Fom 1 .Text 1 .text), Val(Form 1 .Text3. text) - 2, 

~al(~oml?extl . text),  Val(Forml.Text3.text) + 2,0,0,255) 
Call place line2(Val(Fom 1 .Text 1 .text) - 2, Val(Form 1 .Text3. text), 

~ a l ( ~ o r m 1  Fext 1 .text) + 2, Val(Fonn1 .Text3 .text), O, 0,255) 
End Sub 

Sub coord-set 1 1 () 
Cal1 place - text2(Val(Form 1 .Text 1 .text) + 3, Val(Form1 .Text3 .text) + 1, 

Y") 
Call place text2(Val(Forml .Text 1 .text) + 5, Val(Form 1 .Text3 .text), 

F i x ( ~ a l ( ~ o h 1  .Texto.text) * 100) / 100) 
Call place-text2(Val(Form 1 .Text 1 .text) + 23, Val(Form 1 .Text3. text), " ,") 
Call place textS(Val(Form 1 .Text 1 .text) + 25, Val(Fonn 1 .Text3 .text), 

Fix(val(~o& 1 .~extg.text) * 100) / 100) 
Cal1 place - text2(Val(Foml .Text 1 .text) + 45, Val(Form 1 .Text3 .text) + 1, 

"Y"' 
End Sub 



Sub axis-6() 
swidth = Forrn 1 .Picture2.Scale Width 
sheight = Form 1 .PichueZ.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = - 100 
p a x  = 100 
Call place-line2(- 100 * Cos(Pi / 180 * Val(Form 1 .TextS .text)), - 100 * 

Sin(Pi / 180 * Val(Form1 .Texfi .text)), 100 * Cos(Pi / 180 * 
Val(Form 1 .Tex6 text)), 1 00 * Sin(Pi / 1 80 * Val(Form 1 .TextS. text)), O, 
255, O) 
Call place-line2(- 100 * -Sin((Pi 1 180 * Val(Form 1 .TextS .text))), - 100 * 

Cos((Pi / 180 * Val(Form 1 .TextS.text))), 1 O0 * -Sin((Pi / 180 * 
Val(Form 1 .Text5. text))), 1 00 * Cos((Pi / 1 80 * Val(Form 1 .TextS. text))), 
255, O, O) 
Call place-textî(100 * (-Sin(Pi / 180 * Val(Forml.Text5.text))) + 3, 100 * 

Cos(Pi / 180 * Val(Form1 .TextS.text)) + 5, "z"") 
Ca11 place texQ(100 * Cos(Pi / 180 * Val(Form1 .TextS.text)), 100 * Sin(Pi 

1 1 80 * ~ a l ( F o m  1 .~ext5 .text)), "x"") 
'For i = -100 To 100 Step 20 
'Call place-line2(i, 0, i, - p a x  / 20,0,255,0) 

'Next i 
'For i = - 100 To 100 Step 20 
'Call place-line2(0, i, -max / 20, i, 255,0,0) 

'Next i 
End Sub 
Sub m a i 0 0  
Call plot 1 1 
CA plotÏ  - 2 

End Sub 

Sub plot 1 10 
~ o r m  1 .Picture 1 . ~ l s  
Form I .Picture 1 .Print "Plot" 
swidth = Form 1 .Picture 1 .ScaleWidth 
sheight = Form 1 .Pictue 1 .ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 



xmin = -100 
xmax = 100 
p i n  = -100 
p a x  = 100 
Form 1 .Text 1 .text = Fix(Val(Form1 .TextG.text) * 10 A 

(Val(Form 1 .Text 1 3 .text))) / 1 O A (Val(Form 1 .Text 1 3 .text)) 
Form 1 .TexQ.text = Fix(Val(Form1 .Text7.text) * 10 A 

(Val(Form 1 .Text 1 3. text))) / 1 0 A (Val(Form 1 .Text 1 3. text)) 
Form 1 .Text3.text = Fix(Val(Form1 .Text8.text) * 10 A 

(Val(Form 1 .Text 1 3. text))) / 10 A (Val(Form 1 .Text 1 3. text)) 
1 )  (9-  Form 1 .Label 1 Caption = x coordinate" 

Form 1 .LabelZ.Caption = " y"-coordinate" 
Form 1 .Label3 .Caption = "2'-coordinate" 
Call place-line(-100,0, 100,0,0,255,0) 
Call place-line(0, -100,0, 100,255,0,0) 
For i = - 100 To 1 O0 Step 20 
Cal1 place - line(i, 0, i, - p a x  / 20,0, 255,O) 

Next i 
For i = -100 To 100 Step 20 
Cal1 place - line(0, i, -xmax / 20, i, 255,0,0) 

Next i 
Call place-text(3, 105, "z"") 
Call place-text(100 O, "x"") 
Call point-set 1 1 
Cal1 coord-set12 
Forml .Labelo.Caption = "Point's Position M e r  First Return Rotation" 

End Sub 

Sub point-set1 10 
Call place-line(Val(Form 1 .Text 1 .text), Val(Form 1 .Text3. text) - 2, 

Val(Forrn1 .Text Ltext), Val(Form1 .TextXtext) + 2,0,0,255) 
Call place line(Val(Form 1 .Text l .text) - 2, Val(Fom1 .Text3.text), 

~ a l ( ~ o r m  1 %xt 1 .text) + 2, Val(Form1 .Text3 .text), O, O,25 5) 
End Sub 

Sub coord-set 120 
Call place text(Val(Form1 .Text6.text) + 3, Val(Form1 .Text8.text) + 1, "(") 
Call place~text(Val(~orm 1 .Texto.text) + 5, Val(Form 1 .TextB.text), 

Fix(Val(Form 1 .Text 1 .text) * 100) 1 100) 
Call place-text(Val(Form1 .Text6.text) + 23, Val(Form1 .TextB.text), " ,") 



Cal1 place-text(Val(Fonn1 .Texto.text) + 25, Val(Form 1 .TextS.text), 
Fix(Val(Form1 .Text3 .text) * 100) / 100) 
Cal1 place - text(Val(Fom1 .Texto.text) + 45, Val(Form 1 .Text8.text) + 1, 

"Y) 
End Sub 

Sub plot-120 
Form 1 .Picture2.Cls 
Form 1 .Picture2.Print "Plot" 
swidth = Forml .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - f O0 
xmax = 100 
ymin = -100 
p a x  = 100 
Form 1 .Texto.text = Fix((Val(Form 1 .Textl .text) * Cospi / 180 * 

Val(Forrn1 .Text4.text)) + Val(Forml.Text2.text) * -Sin(Pi / 180 * 
Val(Form 1 .Text4.text))) * 10 A (Val(Form 1 .Text 1 3. text))) / 10 A 

(Val(Form 1 .Text 1 3. text)) 
Form 1 .Text7.text = Fix((Val(Form 1 .Text 1 .text) * Sin(Pi / 1 80 * 

Val(Form 1 .Text4.text)) + Val(Form1 .TexQ.text) * Cos(Pi / 1 80 * 
Val(Forrn1 .Text4.text))) * 10 A (Vai(Forrn1 .Text 13.text))) l 10 A 

(Val(Form 1 .Text 13 .text)) 
Form 1 .Text8.text = Fix(Val(Form1 .TexU.text) * 10 A 

(Val(Form 1 .Text 1 3 .text))) / 10 A (Val(Form 1 .Text 1 3. text)) 
Form 1 .Labelil.Caption = "XI-coordinaten 
Form 1 .LabelS.Caphon = "y'-coordinate" 
Forrn 1 .Label9.Caption = "z'-coordinate" 
Call placeJne2(- 100,0, 100,0,0, 100,O) 
Call place line2(0, -100,0, 100,0,0, 100) 
  or i = - 1 0 0  TO 100 Step 20 
Cal1 place - line2(i, O, i, - p a x  / 20,0, 100,O) 

Next i 
For i = -100 To 100 Step 20 
Call place-line2(0, i, -xmax / 20, i, O, 0, 100) 

Next i 
Call place-text2(3, 105, "y"") 
Call place-texQ(100, O, "x"") 



Cail pointset 12 
Call coord-set13 
Call m i s 7  
Form 1 .Label l 0.Caption = "Point's Position After Second Retuni Rotation" 

End Sub 

Sub point set 120 
Call plac~line2(val(Forml .Text 1. text), Val(Form 1 .TexQ.text) - 2, 

Val(Form1 .Text 1 .text), Val(Form1 .TextZ.text) + 2, 255,0, 0) 
Call place-lineZ(Val(Form1 .Text 1. text) - 2, Val(Form 1 .Text2. text), 

Val(Form1 .Text 1 .text) + 2, Val(Forml -Text..text), 255,0,0) 
End Sub 

Sub coord-set 130 
Call p!ace-text2(Val(Form 1 .Text 1 .text) + 3, Val(Form 1 .TexQ.text) + 1, 

"(") 
Call place text2(val(Form 1 .Text 1 .text) + 5, Val(Form 1 .Text2. text), 

~ i x ( ~ a l ( ~ o &  1 .~ext6.text) * 100) / 100) 
Call place-text2(Val(Form 1 .Text 1 .text) + 23, Val(Form 1 .Text2. text), " ,") 
Call place-text2(Val(Forml .Text 1 .text) + 25, Val(Form1 .TexQ.text), 

Fix(Val(Form 1 .Text7.text) * 100) 1 100) 
Call place-text2(Vd(Forml .Textl .text) + 45, Val(Form1 .TexQ.text) + 1, 

")") 
End Sub 

Sub axis-70 
swidth = Forrn 1 .Picture2.ScaleWidth 
sheight = Form 1 .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
ymin = -100 
p a x  = 100 
Call place_line2(- 100 * Cos(Pi / 180 * Val(Form 1 .Text4.text)), - 100 * - 

Sin(Pi / 180 * Val(Form1 .Text4.text)), 100 * Cos(Pi / 180 * 
Val(Form1 .Text4.text)), 100 * -Sin(Pi / 180 * Val(Form1 .Text4.text)), O, 
255, O) 
Call place line2(- 100 * Sin((Pi 1 180 * Val(Form1 .Text4.text))), - 100 * 

Cos((Pi / 180 * Val(Form1 .Text4.text))), 100 * Sin((Pi / 180 * 



Call place-text2(100 * Sin(Pi / 180 * Val(Forml.Text4.text)) + 3, 100 * 
Cos(Pi / 1 80 * Val(Form 1 .Text4.text)) + 5, "y"') 
Call place_text2(100 * Cospi / 180 * Val(Form 1 .Text4.text)), 100 * - 

Sin(Pi / 180 * Val(Form1 .Text4.text)), "x"') 
'For i = -100 To 100 Step 20 
'Call place-line2(i, 0, i, - p a x  / 20,0,255,0) 

'Next i 
'For i = -100 To 100 Step 20 
'Call place-line2(0, i, -xmax / 20, i, 255, O, O) 

Next i 
End Sub 

Sub mainJO 
Call plot-1 3 
Call plot-14 

End Sub 

Sub plot-130 
Form 1 .Picture 1 .Cls 
Fonn 1 .Picture 1 .Print "Plot" 
swidth = Form 1 .Picture 1 .ScaleWidth 
sheight = Form 1 .Pichire 1 .ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = 100 
yrnin = - 100 
ymax = 100 
Forml .Text 1 .text = Forml .Text6.text 
Forml .Text2.text = Fonnl .Text7.text 
Form 1 .Text3 .text = Form 1 .Text8.text 
Form 1 .Label 1 Caption = "x'-coordinate" 
Form 1 .Labell.Caption = " y'-coordinate" 
Fom 1 .Label3 Caption = "z'-coordinatel' 
Call place line(-100,0, 100,0,0,255,0) 
Call placeÏine(O, -100,0, 100,0, 0,255) 
~ o r i  = - 1 6 6 ~ 0  100 Step20 
Cal1 place - line(i, O, i, -yrnax / 20,0,255,0) 



Next i 
For i = -100 To 100 Step 20 
Call place-lïne(0, i, -xmax / 20, i, O, 0,255) 

Next i 
Call place-text(3, 105, "y"') 
Call place-text(100, O, "x"') 
Call point-set 13 
Call coord-set 14 
Forml .Label6.Caption = "Point's Position After Second Retum Rotation" 

End Sub 

Sub point-set 130 
Call place line(Val(Form 1 .Text 1 .text), Val(Fom 1 .Text3 .text) - 2, 

Val(Form1 %xt 1 .text), Vd(Form1 .Text3 .text) + 2,255, 0,O) 
Call place line(Val(Form 1 .Text 1 .text) - 2, Val(Form 1 .Text3 .text), 

Val(Form 1 Yext 1 .text) + 2, Val(Form1 .TextXtext), 255,0, 0) 
End Sub 

Sub coord-set 140 
Call place-text(Val(Form1 .Textl .text) + 3, Val(Form1 .Text3 .text) + 1, "(") 
Call place-text(Val(Form1 .Text 1 .text) + 5, Val(Form1 .Text3 .text), 

Call place text(Val(Form1 .Text 1 .text) + 23, Val(Form 1 .Text3. text), ",") 
Cal1 place-text(Val(Form - 1 . ~ e x t  1 .text) + 25, Val(Form 1 .Text3 .text), 

Fix(Val(Form 1 .Text7.text) * 100) / 100) 
Call place text(Val(Forrn 1 .Text 1 .text) + 45, Val(Form 1 .Text3 .text) + 1, 

"Y"' 
End Sub 
Sub plot-140 

Forrn 1 .Picture2.Cls 
Form 1 .Picture2.Print "Plot" 
Form 1 .Label 1O.Caption = "Point's Final Position" 
Form 1 .Texto.text = Fix((Val(Fom1 .Text 1 .text) + Val(Form 1 .Text 1O.text)) 

* 1 O A (Val(Form 1 .Text 13 .text))) / 10 A (Val(Fom 1 .Text 13. text)) 
Form 1 .Text7. text = Fix((VaI(Form1 .Text2. text) + Val(Forrn 1 .Text 1 1 . text)) 

* 10 A (Val(Form1 .Text 13 .text))) / 10 A (Vd(Fom 1 .Text 13 .text)) 
Forml .Textg.text = Fix((Val(Fom1 .TextItext) + Val(Form1 .Text 12.text)) 

* 10 A (Val(Form 1 .Text l3.text))) / 10 A (Val(Form1 .Text 13 .text)) 
Form 1 . Label7.Caption = "x-coordinate" 
Form 1 .Label8 .Caption = "y-coordinate" 



Form 1 .Label9.Caption = "2-coordinate" 
swidth = Forml .Picture2.ScdeWidth 
sheight = Forml .Picture2.ScaleHeight 
swidth30 = swidth / 30 
sheight30 = sheight / 30 
xmin = - 100 
xmax = LOO 
ymin = -100 
ymax = 100 
Call place line2(-100,0, 100,0,0,255,0) 
Call placeÏine2(0, -100,0, 100,0,0,255) 
  or i =-16~0 100 Step 20 
Cal1 place - line2(i, 0, i, -ymax / 20,0, 255,O) 

Next i 
For i = -100 To 100 Step 20 
Cal1 place - line2(0, i, -xrnax / 20, i, O, 0,255) 

Next i 
Call place text2(0, 110, "y") 
Call place-text2(100, O, "x") 
Call point-set14 
cal1 coord - set i s 
End Sub 

Sub point-set140 
Cal 1 place lineZ(Val(Form 1 .Text6.text), Val(Form 1 .Text7. text) - 2, 

Val(Forrn1 ?ext6.text), Val(Form1 .Text7.text) + 2,255,0,0) 
Cali place lineZ(Val(Form 1 .Text6. text) - 2, Val(Form 1 .Text7. text), 

Val(Form1 Fext6.text) + 2, Val(Form 1 .Text7.text), 255,O, 0) 
End Sub 
Sub coord-set 150 
Cal1 place - text2(Val(Foml .Texto.text) + 3, Val(Form1 .Text;l.text) + 1, 

"(") 
Call place text2(Val(Forml .Text6.text) + 5, Val(Form l .Text7.text), 

~ix(~al(~o&l.Text6.text) * 100) / 100) 
Call place text2(Val(Forml .Texto.text) + 23, Val(Form L .Text7.text), ",") 
Call place~text2(~al(~orml .Text6.text) + 25, Val(Form1 .Text7.text), 

Fix(Val(Form 1 .Text7 .text) * 100) / 100) 
Call place-text2(Vd(Forml .Texto.text) + 45, Val(Form1 .TexD.text) + 1, 

"Y"' 
End Sub 



B.2 Solution of Angular Velocity for k# O 



B.3 Code for the Calculatioa of Moment of Inertia 

S ub Inert-a(inert) 
' the moment of inertia for the cylinder is calculated 
Dim intop As Double 
Dim inCent As Double 
Dim tnbot As Double 
Dim Cst As Double 
Dim temp As Double 
Dim R Max As Double 
Dim R - M ~  As Double 
Dim dL As Double 
Dim Theta-max As Double 
Dim U As Double 
U =  1 ' Z Z Z *  10A(-6) 
temp = Radius-Particle(1) / Top-Radius-Cylinder(1) 
If temp >= 1# Then 
Theta - max = Pi / 2# 

EIse 
Theta-ma = Abs(Atn(temp / Sqr(l# - temp " 2))) 

End If 
Cst = Cos(Theta-max) 
R-Max = Top-Radius-Cylinder( 1 ) 
R Min = R Max * Cst 
d c  = sqr((fo-~article(1) - Cx-Top(1)) A 2 + (YoOParticle(l) - Cy - Top(1)) 

A 2 + (Zo-Particle(1) - Cz-Top(1)) A 2) 
If R-Min > Sqr((Radius-Particle(1)) A 2 + (1 / 2 * 

Body-Length-Cylinder(1)) " 2) Then 
pb.Text1S.Text = dL 
intop = ((dL * U) * ( 2 / 3  * (dL * U) * (1 -Cst) * ((RMax * U) A 3 - 

(R-Min * U) A 3) - 1 / 2 * (Sin(Theta_max) A 2) * (@-Max * U) A 4 - 
(R-Min*U)"4)))+ 1 1 5  *((R - Max*U)"S-(R - Min*U)"S) * ( 4 / 3 -  
Cst- 1 / 3  *CstA3)  

Else 
intop = ((dL * U) * (2 / 3 * (dL * U) * (1 - Cst) * ((R Max * U) A 3 - 

(R Min * U) A 3) + 1 / 2 * (Sin(Theta_max) A 2) * ( K M =  * U) A 4 - 
( ~ : ~ i n * U ) " 4 ) ) ) +  1 / 5  *((R - Max*U)"S-(R-Min* U)"5) * ( 4 / 3  - 
Cst- 1 /3 *Cs tA3)  

End If 



temp = Radius-Particle(1) / Bottom-Radius-Cylinder( 1 ) 
If temp >= 1# Then 
Theta - max = Pi / 2# 

Else 
Theta max = Abs(Atn(temp / Sqr(l# - temp A 2))) 

End 1f - 
Cst = Cos(Theta-mm) 
R Max = Bottom - Radius-Cylinder(1) 
 in = R-M~X * cst 
dL = Sqr((Xo-Particle(1) - Cx-Bottom(L)) A 2 + (Yo Partïcle(1) - 

Cy Bottom(1)) A 2 + (20-Particle(1) - CZ-~ottom(l)p 2) 
pb.~ext l 5 . ~ e x t  = dL 
If R Min > Sqr((Radius-Particle(1)) A 2 + (1 / 2 * 

~od<~en~th-c~l inder ( l ) )  A 2) Then 
pb.Text 15.Text = dL 

Inbot = ((CL * U) * (2 / 3 * (dL * U) * (1 - Cst) * ((R Max * U) A 3 - 
(R - Min * U) A 3) - 1 1 2  * (Sin(Theta-max) A 2) * ( ( R M ~ X  - * U) A 4 - 
(R-Min * U) A 4))) + 1 / 5 
Cst- 1 / 3  *CstA3)  
Else 
Inbot = ((dL * U) * (2 / 3 

(R Min*U)"3)+1 /2*  
( ~ 1 ~ i n  * U) A 4))) + 1 / 5 
Cst- 1 / 3  *CstA3)  
End If 

* ((R-MZW * u)"S -@-Min * U)" 5) * (413 - 

* ( d L * U ) * ( l  - c s t )* ( (R_Ma~*U)"3-  
(Sin(Theta max) " 2) * ((R Max * U) " 4 - 
* ((R-MZW-* U) A 5 - (R-M:~ * U) A 5) * (4 1 3 - 

InCent = (Radius-Particle(1) * U) A 2 * (1 / 12 * 
(Body Length Cylinder(1) * U) " 3 + (1 14 * (Radius-Particle(1) * U) A 2 * 
~ o d ~ - ~ e n ~ ~ ~ l i n d e r ( l )  * U)) 

inert = Pi * Density - ParticleJnside(1) * 1000# * (intop + Inbot + InCent) 
* 10 A (-24) 

End Sub 



Appendix C 

C.l Code for Cylinder Parameter Torque Calculations 

Sub mikes-scano 
this subroutine is to calculate the value of the touque 
for the different pararneters such as beam waist 
cylinder waist, radius of endcaps and length of cylinder 
Dim A As Double 
Dim steps As Double 
Dim B As Double 
Dim C As String 
Dim e As Double 
Dim torquevalues As String 
pb.Show 
torquevalues = "f:ùntrappingùndata\" & Parameters-Text l7.Text & ".csv" 
Open torquevalues For Output As # 100 'what is the importance of # 100 
&nt # 100, ------ Il 

Print # 100, "Torque,Results,, File name"; torquevalues 
Pnnt # 1 00, ------- I l  

If counter < 4 Then 'check to see if the right number of boxes checked 
Parameters.Label26.Caption = "Please check off the appropriate number 

of boxes." 
Else 
If Pararneters.Checkl.Value = O Then 'waist parameters (1) 

C = "WaistW 
A = Val(Parameters.Text 1 .Text) 
B = Val(Parameters .Text2.Text) 
steps = Val(Parameters.Text 1 1 .lext) 

Else 
Print # 100, "waist, size, is,,"; Parameters-Text 1 .Text; " " 

End If 
If Parameters.Check2.Value = O Then "radius of beam pararneters (2) 
C = "Radius1' 
A = Val(Parameters.Text3.Text) 
B = Val(Parameters.Text4.Text) 
steps = Val(Parameters.Texf 1 CText) 

Else 



Print # 100, "Beam,radius,is,, "; Pararneters.Text3 .Text; " " 
End If 
If Parameters.Check3.Value = O Then length of cylinder (3) 
C = "Length" 
A = Val(Parameters.Text5 .Text) 
B = Val(Parameters.Text6.Text) 
steps = Val(Parameters .Text 15 .Text) 

Else 
Print # 100, "Length,of,cylinder,is," ; Parameters.Text5 .Text; " " 

End If 
If Parameters.Check4.Value = O Then 'radius of left endcap (4) 
C = "rlefi" 
A = Val(Parameters.Text7.Text) 
B = Val(Parameters.Text8 .Text) 
steps = Val(Parameters.Text l2.Text) 

Else 
Print #LOO, "Radius,of,left,endcap,"; Parameters.Text7.Text; " " 

End If 
If Parameters.Check5 .Value = O Then 'radius of right endcap (5) 
C = l'rright'' 
A = Val(Pararneters.Text9.Text) 
B = Val(Pararneters.Text 1O.Text) 
steps = Val(Parameters.Text 13 .Text) 

Else 
Print #100, "Radius,of,right,endcap,"; Parameters.Text9.Text; " " 

End If 
Pnnt#100, 
Print #100, ",Theta"; " " 
Print #100, C; ","; 'this allows the first space to be unoccupied 

For Theta - Particle(1) = O# To 90# Step l# 'this prints the values of theta 
across 

Print # 100, ThetaJarticle(1); " ," ; 
Next Theta - Pamcle(1) 
Print #100, " " 
For e = A To B Step steps 
Cal1 Inert a(hert) 
 rin nt ~ 0 0 ,  e; ","; 
pb.Text2l .Text = A 
pb.Text22.Text = e 



pb.Text23.Text = B 
pb.Text l7.Text = steps 
For Theta-Particle(1) = OW To 90# Step l# 
pb.Text l6.Text = Theta Particle(1) 
1f ~arame te r s .~heck l .~&e  = O Then '***** (1) ***** 
Waist - Beam(1) = e 

Else 
Waist Beam(1) = Val(Parameters.Text 1 .Text) 

End 1f - 
If Parameters.Check2.Value = O Then '***** (2 )  ***** 
Radius - Particle(1) = e 

Else 
Radius - Particle( 1) = Val(Parameters.Text3 .Text) 

End If 
If Parameters.Check3.Value = O Then '***** (3) ***** 

Body-Length-Cylinder( 1 ) = e 
Else 
Body Length-Cylinder(1) = Val(Parameters.Text5 .Text) 

End 1f- 
If Parameters.Check4.Value = O Then '***** (4) ***** 
Bottom-Radius-Cylinder(1) = e 

Else 
Bottom - Radius-Cylinder(1) = Val(Parameters.Text7.Text) 

End If 
If Parameters.Check5.Value = O Then '***** ( 5 )  ***** 
Top-Radius-Cylinder(1) = e 

EIse 
Top Radius-Cylinder(1) = Val(Parameters.Text9.Text) 

End I? 
Lo Particle(1) = Sin(Theta - Particle(1) * Pi / 180#) 
~ o ~ ~ a r t i c l e ( 1 )  = O# 
No - Particle(1) = Cos(Theta - Particle(1) * Pi / 1 80#) 
Call cylinder~top~bottom_positions(1) 
S top-Calculation = "go" 
Call default-cle Save dynamic 
Call defauit-beam-~~ve-~~amic 
X Y  - Z - Scan-Dynamic = "go" 
Call xyzscan;ininitialqositions~articles 
Call static-calculations 
pb.Refresh 



Pnnt # 100, Torque-Y - Final(1) * 1000000000000#; " ,"; 'units of 
picoNewtons*micrometers 

I f  Stop Calculation 0 "go" Then Exit For 
Cal1 defa~it~afticle load-dynamic 
Cal1 de fault-beamaM1~adodynamic 

Next ThetaJarticle(1) 
Prim # 100, " " 'dom the first column 
I f  Stop - Calculation 0 "go" Then Exit For 

Next e 
Print # 1 00, "Radid,Scan,Nuber,=," ; calculate.Text 1 .Text; " " 
Print # 100, "Radîal,Scan, Waist,=,"; calcdate.Text2.Text; " " 
Print # I 00, " Angular,Scan,step,=," ; calculate.Text3 .Text; " " 
Close 100 
End I f  

End Sub 



C.2 Plots of Torque versus Angle for Beam Waists 

Beam Waist O.7SPm (R: 5pm, L: 10pm, LEC: 1 O O p n ,  UEC: 1 OOpm) 

1 

Angle (6) 

Bearn Waist 1 prn (R: S p ,  L: 10Cirn, LEC: 100Cirn, UEC: 1 O O p )  



Beam Waist 1 . 5 p  (R: 5prn, L: 1OPm, LEC: 10OPm, UEC: 1OOp) 

Beam Waist 2SPm (R: Cicrrn. L: 10pm, LEC: 100pm, UEC: 1 0 0 p )  



C.3 Plot of Torque versus Angle for Cylinder Length 

5 ~ r n  Length (B.W.: 1.25 ~ m ;  R-:5 ~ m :  L.E.C.: 100 ~ r n ;  U.E.C.: 100 Pm) 

15 ~ r n  Length (B.W.: 1.25 ~ r n ;  R.: 5 ~ r n ;  L.E.C.: 100 ~ r n ;  U.E.C.: 100 p) 



30 ~ r n  Length (B.W.: 1.25 ~ m ;  R.: 5 ~ m ;  LEC.: 100 ~ r n ;  U.E.C.: 100 Pm) 

100 prn Length (B.W.: 1.25 pm; R.: 5 ~ m ;  LEC:  100 pn; U.E.C.: 100 

500 

I 
250 1 



C.4 Plots of Torque versus Angle for Cylinder Radius 

Radius Scan (B. W.: 1.25 ~ r n ;  L.: 70 ~ m :  LEC.: 100 ~ r n ;  U.E.C.: 100 p) 

Radius 

5 p Radius (B.W.: 1.25 ~ r n ;  L-: 70 pn; L E C :  100 ~ m ;  U.E.C.: 100 p) 

2000 

i 
1500 1 



30 Pm Radius (B.W.: 1.25 ~ r n ;  L-: 70 ~ r n ;  LEC.: 100 ~ r n ;  U.E.C.: 100 

l 

Angle (0) 

90 Pm Radius (B.W.: 1.25 p; L.: 70 ~ r n ;  L.E.C.: 100 ~ r n :  UEC-:  100 

2000 

i 

lMO i 
(Oo0 1 



C S  Plots of Torque versus Angle for Lower End-Cap 

Radius 

LEC.  Scan (B. W.: 1.25 p; L.: 70 ~rn ;  R.: 10 ~ r n ;  U.E.C.: 100 

20 ~ r n  L. E. C. (B. W.: 1.25 p; L.: 70 pm; R.: 10 pm: U. E. C. 100 pn) 



50 ~ r n  L. E. C. (B. W.: 1 .25~m:  L.: 70 pm; R.: 10 pm; U. E. C. 100 p )  

90Vm L. E.C. (B. W.: 1 . 2 5 ~ m ;  L-:70 ~ m ;  R.: 10pm;U. E X -  100 



C.6 Plots of Torque versus Angle for Upper End-Cap 

Radius 

U.E.C. Scan (B. W.: 1.25 ~rn ;  L.: 70 p; R.: 10 ~rn ;  L- E. C.: 10 p) 

20 ~ r n  U. E. C. (B. W.: 1.25 pm; L.: 70 pm; R-: 10 ~ m ;  L. E. C. 10 



50 pn U. E. C. (B. W.: 125  pm; L-: 70 ~ r n ;  R.: 10 ~ r n ;  L- E- C. 10 

90 ~ r n  U. E. C. (8. W.: 1.25 pm; L.: 70 ~ r n ;  R.: 10 ~ r n ;  L- E- C. 10 




