Deriving Software Performance Models from
Architectural Patterns by Graph Transformations

by

Xin Wang

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements for the degree of
Master of Science
Information and System Science

Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University
Ottawa, Canada
September, 1999

© Copyright 1999, Xin Wang

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Bibliothégque nationale

services bibliographiques

Your file Votre reference

Our file Notra referenca

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-48496-3

Canadi

To my husband Lizhong

Abstract

Performance characteristics play an important role in defining the quality of software
products, especially in the case of real-time and distributed systems. The developers of
such systems should be able to assess and understand the performance effects of various
architectural decisions, starting at an early stage, when changes are easy and less expen-
sive, and continuing throughout the software life cycle. This can be achieved by con-
structing and analyzing quantitative performance models that capture the interactions
between the main system components and point to the system’s performance trouble
spots. This thesis contributes toward bridging the gap between software architecture and
performance analysis. It proposes a systematic approach, and implemented two versions
of the proposed approach based on graph transformations, by using PROGRES (Pro-
grammed Graph Rewriting System) to build LQN (Layered Queueing Network) perfor-
mance models from descriptions of high-level software architecture of a system and more

exactly from the architectural patterns used in the system.

Acknowledgments

This thesis would not have been possible without the encouragement, support of many
people. In particular, I am very much in debt to my supervisor Professor Dorina C. Petriy,
for motivation when I needed it most, and many hours of interesting discussion. Without
her guidance and helpful suggestions, working on this thesis would have been much more
difficult. Her inspiration and motivation will have a long-lasting impact on my future

endeavor too.

During my studying at Carleton, I was able to benefit from the knowledge of many pro-
fessors, staff, former graduate students, research engineers. I would like to thank all of
them, especially the members of the RADS lab, for their full support, friendship and a

wonderful working environment.

The financial assistance of the Communications and Information Technology Ontario

(CITO) is gratefully acknowledged.

Last but not least, I would like to give my special thanks to my husband Lizhong. Without

his consistent support and encouragement, I could have never gone this far.

Contents
1 Introduction 1
LT Motivation. 1
1.2 Contributions L e 3
13 ThesisOutline. 4
2 Background Literature 6
2.1 Software Performance Engineering. 6
2.2 Software Architectural Pattern 9
2.3 Layered Queueing Network Model. 11
23.1 LQNModelComponents. 12
2.3.2 Graphical Representationofan LQNModel 14
233 LQNParameters. e 16
234 SolvingLQNModels. 17
23.5 Resultsof LQNModels. 17
24 Unified ModellingLanguage 18
241 UMLGoals ittt it 19
242 UMLMajorFeatures 19
243 UMLCollaboration. 21
2.5 Programmed Graph Rewriting System 22
2.5.1 Componentsof PROGRESGraph 23
2.5.2 Definitionof GraphSchema 26

2.5.3 Definition of Graph Transformation 27

i
2.5.4 Components of a PROGRESProgram 31

3 From Component/Connector Based (CCB) Descriptions of Software Architec-

ture to LQN Models 34
3.1 Component/Connector Based (CCB) Descriptions 35
3.2 Some Frequently Used ArchitecturalPatterns 37
3.2.1 PipelineandFilterPattern. 37

3.2.2 Client-ServerPattern 38

3.2.3 Critical SectionPattern 40

33 MoreOnConnector Types 41
34 PROGRESGraphSchema 43
3.5 Transformations from Architectural Patterns toLQN 46
3.5.1 General Transformation Principles 46

3.5.2 Pipelineand FilterPattern. 47

353 Client-ServerPattern 49

3.5.4 Critical SectionPattern 51

355 LayeredClient-Server.ot i o 52

3.6 Control Structure for Graph Transformation 54
4 From UML Descriptions of Software Architecture to LQN Models 59
4.1 Architectural Patterns and UML Collaborations 60
42 ScopeoftheThesisResearch. 64
43 PROGRESGraphSchema 65
4.4 Transformations from Architectural Patterns toLQN 68
44.1 General TransformationPrinciples 68
442 Pipelineand FilterPattern. 69
443 Double Filter Collaboration. 75

444 Client-ServerPattern e e 78

445 Crtical SectionPattern 91
45 OtherProductionRules. 94
4.5.1 Create Input Graph and Set Attributes 95
4.5.2 Transform All ObjectstoTasks. 95
4.5.3 Transform All OperationstoEntries 96
4.5.4 Get Attributes of All TasksandEntries. 97
46 Generating AnLQNModelFile 99
4.7 Control Structure for Graph Transformation 101
4.8 Case-Study: A Telecommunication System. 102
Conclusions 107
5.1 Conclusions. 107
32 FutureWork. e 108
Referemces e 110
Appendixl e 115
Appendix2 e e e 116

v

List of Figures

2.1
22
23
24
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
32
33
34
35
3.6
37

38

3.9

Graph representations forrequestsin LQN. 15
Sample LQN model of a database application 16
Graph representation of a positivenode 23
Graph representation of anegativenode 24
Graph representationofanedge 24
Graph representationofapath 24
Graph representationof arestriction 25
PROGRES graph schemanotation 26
An example of an productionrule, 29
Anexampleofatest e 30
Anexampleofafunction. 30
Anexampleofantransaction. 31
Notation for CCB description. 36
Communication styles in pipeline and filterpattern 38
Communication styles in client-serverpattern 40
Critical sectionpattern it ittt 40
Client-server connectortypes « v v v v v v v ot v v e 42
Joint graph schema for the CCB descriptionand LQNmodel 45

Transformation of a PF connection by an asynchronous message to a LQN model
with asynchronousrequest 48
Transformation of a PF connection by a shared buffer, where the filter processes
arerunningonthesameprocessoro, . 48
Transformation of a PF connection by shared buffer, where the filter processes are

running on differentprocessors. oo L 48

3.10

3.11

3.12

3.13

3.14

3.15
3.16
3.17
4.1
4.2
43
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Transformation of three direct CS connection instances to LQN (each service

offered by the server is representedbyanentry) 50
Transformation of three direct CS connection instances by half forwarding broker
to an LQN model with forwardingarcs. 50
Transformation of three direct CS connection instances by handle-driven broker to

Transformation of a critical section pattern, where the client processes are running
onthe sSAME ProCesSOr. i v v v v v vt e e e e e e e 51

Transformation of a critical section pattern, where the client processes are running

ondifferentprocessors oo b))
Two-step transformation process of server-to server CS direct connections . . .53
An example of a whole transformationprocess. 55
Flow chart of transformation control structure 57
UML collaboration for client-server pattern with a forwarding broker. 63
UML collaboration for client-server pattern with a half-forwarding broker . . .63
UML collaboration for client-server pattern with a handle-driven broker64
Scope of the thesisresearch. 64
Joint graph schema for architectural pattemand LQNmodels. 67
Transformation of pipeline and filter pattern withamessage. 69
Transformation of pipeline and filter pattern withabuffer. 70
Production rule for pipeline and filters pattern withamessage. 72
Production rule for pipeline and filters pattern withabuffer. 75
Transformation of double filter collaboration. 76
Production rule for double filter collaboration 78
Transformation of the client-server pattern with a direct connection. 79
Production rule for client-Server pattern with a direct connection 80
Transformation of the client-server pattern with a forwarding broker 83
Transformation of the client-server pattern with a half-forwarding broker. . . .83
Production rule for client-server pattern with a half forwarding broker 86

Production rule for merging two duplicated forwarding brokers 87

4.18
4.19
4.20
421
422
423
4.24
4.25
4.26
4.27
428
4.29

Transformation of the client-server pattern with a handle-driven broker. 87

Production rule for client-server pattern with a handle-driven broker 90
Production rule for merging two duplicated handle-driven brokers 90
Transformation of critical sectionpattern. 92
Production rule for critical sectionpattern 94
Production rule for transforming an OBJECTtoaTask 96
Production rule for transforming an OperationtoanEntry. 97
Production rule for retrieving attributesofaTask 98
Production rule for retrieving attributesofanEntry 99
Production rule for retrieving attributes of an ARC_PARAM 99

UML descriptions of high-level architecture of a telecommunication system . 103

LQN model of the telecommunicationsystem 106

vii

List of Abbreviations

CCB Component/Connector Based

LHS Left-Hand Side

LQN Layered Queueing Network
PROGRES Programmed Graph Rewriting System
RHS Right-Hand Side

SPE Software Performance Engineering

UML Unified Modelling Language

CHAPTER 1 Introduction

1.1 Motivation

Performance is a key criterion in defining the quality of software products, especially in
the case of real-time and distributed systems. The goal of computer systems engineers is to
get the highest performance for a given cost. As the field of computer design matures, the
computer industry is becoming more competitive, and it is more important than ever to

ensure that the alternative selected provides the best performance trade-off.

Performance evaluation is required at every stage in the life cycle of a computer sys-
tem. In order to meet the performance requirements of software systems, the software de-
velopers should be able to assess and understand the effect of various design decisions on
system performance at an early stage, when changes can be made easily and effectively.

Software Performance Engineering (SPE) is a technique that proposes to use quantitative

Chapter 1: Introduction 2

methods and performance models in order to assess the performance effects of different
design and implementation alternatives during the development of a system [Smith90].
SPE promotes the idea that the integration of performance analysis into the software de-
velopment process, from the earliest stages to the end, can insure that the system will meet
its performance objectives. This would eliminate the need for “/ate-fixing” of performance
problems, a frequent practical approach that postpones any performance concerns until the
system is completely implemented. Late fixes tend to be very expensive and inefficient,

and the product may never reach its original requirements.

Although the need for SPE is generally recognized by industry, there is still a cognitive
gap between the software and the performance domains. Software developers are con-
cerned with designing, implementing and testing the software, but they are not trained in
performance modelling and analysis techniques. The software development teams usually
depend on specialized performance groups to do the performance evaluation work, which
leads to additional communication delays, inconsistencies between design and model ver-
sions and late feedback. Also economical pressure for “shorter time to market” leads to
shorter software development cycles. There is no time left for SPE, which traditionally im-

plies “manual” construction of the performance models.

This thesis contributes toward bridging the gap between software architecture and per-
formance analysis. It proposes a systematic approach, based on graph transformations, by
using PROGRES (Programmed Graph Rewriting System) to build LQN (Layered Queue-

ing Network) performance models from descriptions of high-level software architecture of

Chapter 1: Introduction 3

a system.

By automating the construction of the performance models from software architec-
tures, the time and effort required for SPE will be considerably reduced, and the consisten-
cy between the model and the system under development more easily maintained. Such a
model will be solved with existing performance analysis tools, producing much faster

feedback for the software development tean:.

1.2 Contributions

The research contributions of this thesis are as follows:

» Developed a formal approach for generating of LQN (Layered Queueing Network)
performance models from the high-level software architecture of a system, and more

exactly from the architectural patterns used in the system.

» Implemented two versions of the proposed approach by using an existing graph gram-
mar tool named PROGRES (Programmed Graph Rewriting System)[Schuerr90). The
first version takes as input the high-level architectures of a system described in an ad-
hoc language based on component/connector relationships{Allen97]. The second ver-

sion accepts architectural descriptions expressed in UML collaborations [Booch99].

The results of the thesis are presented in two papers:
= D.C. Petriu, X. Wang “Deriving Software Performance Models from Architectural

Patterns by Graph Transformations”, Proc.of the 6th International Workshop on The-

Chapter !: Introduction 4

ory and Applications of Graph Transformations TAGT’98, Paderborn, Germany,

November 1998.

« D.C. Petrniu, X. Wang “From UML Descriptions of High-level Software Architecture
to LQN Performance Models”, Accepted by Applications of Graph Transformation
with Industrial Relevance, Monastery Rolduc, Kerkrade, The Netherlands, September

1999.

1.3 Thesis OQutline

The thesis is organized as follows:

Chapter 2 provides an overview of the background information related to this thesis,
such as Software Performance Engineering (SPE), software architectural patterns, Lay-
ered Queueing Network (LQN) model, Unified Modelling Language (UML) and Pro-

grammed Graph Rewriting System (PROGRES).

Chapter 3 describes the graph transformations used to build software performance
models (LQN models) for distributed and/or concurrent software systems from an archi-
tectural descriptions based on architectural components and connectors which introduced
by Allen and Garlan in [Allen97]. We named this Component/Connector Based(CCB) de-

scription throughout the thesis.

Chapter 4 describes the graph transformations used to build software performance

models (LQN models) from UML (Unified Modelling Language) descriptions of the high-

Chapter 1: Introduction 5

level architecture of a system, and more exactly from the architectural patterns used in the

system.

Chapter 5 concludes the thesis research, summarizes contributions of the thesis and

identifies directions for future research.

CRAPTER 2 Background Literature

This chapter presents an overview of the background information related to the thesis,
such as Software Performance Engineering (SPE), software architectural patterns, Lay-
ered Queueing Network (LQN) model, Unified Modelling Language (UML) and Pro-

grammed Graph Rewriting System (PROGRES).

2.1 Software Performance Engineering

End to end performance of a system refers to the response time or throughput as seen by
the users. Performance characteristics play an important role in defining the quality of

software products, especially in the case of real-time and distributed systems.

Most of today’s software development is still heavily influenced by the “fix-it-later”

Chapter 2: Background Literature 7

performance tuning approach, meaning to postpone the performance concerns until the
system is completely implemented, then trying to ‘/fix” its performance problems at the
late stage. Late fixes tend to be very expensive and inefficient. Performance tuning will re-
quire changes to the program itself, retesting, and in some cases even serious modification
of the design which drives up the costs [Smith90]. In some cases, the product will never

meet its original performance requirements.

Software Performance Engineering (SPE) is a technique introduced in [Smith90] that
proposes to use quantitative methods and performance models in order to assess the per-
formance effects of different design and implementation alternatives during the develop-
ment of a system. SPE promotes the idea that the integration of performance analysis into
the software development process, from the earliest stages to the end, can insure that the

system will meet its performance objectives.

The benefits of SPE are as follows [Smith90]:

» Increased productivity, due to the fact that the developers’ level of efforts are not spent
for an implementation that will later be discarded and that the testing can be focused

on critical parts of the software.

» Improved quality and usefulness of the resulting software product by selecting suita-

ble design and implementation alternatives, thus avoiding late tuning modifications.

» Controlled costs of the supporting hardware and software by identifying early what

equipment is needed and allowing sufficient time for competitive procurement.

Chapter 2: Background Literature 8

* Enhanced productivity during the implementation, testing, and early operational

stages by ensuring that sufficient computing power is available.

The sequential steps for SPE performance assessment concemns as detailed in

[Smith90] are:

1. Build the Software Execution Model, a flow-graph that follows the execution of the

software.

2. Gather resource requirements for every software module, then aggregate the

resource requirements.

3. Map the Software Execution Model to a System Mode! that contains both the hard-

ware and the software of the system.

4. Solve the model analytically or with simulation. Both best and worst case analysis

are need to be conducted.
« If the worst-case performance is satisfactory, go into the software development cycle.

« If the best-case performance is unsatisfactory, seek feasible alternatives.

Software Performance Engineering (SPE) is proven to be able to insure that the system
will meet its performance objectives by the means of assessing the performance effects of
different design and implementation alternatives during the development of a system. The

need for SPE is generally recognized by industry, but is not widely applied.

Chapter 2: Background Literature 9

2.2 Software Architectural Pattern

In order to build large systems, software developers have to scope out the system ahead of
time and break it up into manageable pieces. They need ways of specifying what the
pieces do and how they communicate with other pieces. Software architecture is the
abstraction that give an insight into the system. It is a notion of overall design apart from

implementation.

The high-level architecture describes the main system components and their interac-
tions at a level of abstraction that captures certain characteristics relevant to performance,
such as concurrency, parallelism, contention for software resources (as software servers
and critical sections), synchronization, serialization, etc. A architectural pattern introduces
a higher-level of abstraction design artifact by describing a specific type of collaboration
between a set of prototypical components playing well defined roles, and helps our under-

standing of complex systems.

According to [Allen97], a software architecture represents a collection of computa-
tional components that perform certain functions, together with a collection of connectors
that describe the interactions between components. A component type is described by a
specification defining its functions, and a set of ports representing logical points of inter-
action between the component and its environment. A connector type is defined by a set of
roles explaining the expected behavior of the interacting parties, and a glue specification

showing how the interactions are coordinated.

Chapter 2: Background Literature 10

A similar, even though less formal, view of a software architecture is described in the
form of architectural patterns [Buschmann96], [Shaw96b] which identify frequently used
architectural solutions, such as pipeline and filters, client/server, client/broker/server, lay-

ers, critical section, etc.

Architectural patterns express fundamental structure organization schemas for soft-
ware systems {Buschmann96]. They provide a set of predefined subsystems, specify their
responsibilities, and include rules and guidelines for organizing the relationships between
them. Architectural patterns are high-level patterns in a pattern system. They help soft-
ware developers to specify the fundamental structure of an application. Every develop-
ment activity that follows is governed by this structure, e.g. the detailed design of
subsystems, the communication and collaboration between different parts of the system,

and its later extension.

Software architectural patterns are distinct from design patterns and idioms that pre-
date them. Idioms are language-specific, and design patterns capture relationships at the
class and object level. Architectural patterns are a further step up in granularity, capture re-

lationships at the subsystem level [Shaw96b].

Each architectural pattern describes two inter-related aspects: its structure (what are
the components) and behavior (how they interact). In the case of high-level architectural
patterns, the components are usually concurrent entities that execute in different threads of

control, compete for resources, and their interaction may require some synchronization.

Chapter 2: Background Literature 11

This kind of issues contribute to the performance characteristics of the system, and there-

fore must be captured in a performance model.

The thesis defines graph transformations from a number of frequently used architec-
tural patterns (such as pipeline and filters, client/server, client/broker/server, layered cli-

ent/server, critical section, etc.) into LQN models.

2.3 Layered Queueing Network Model

Layered Queueing Network (LON) was developed as an extension of the well-known
Queueing Network (QN) model. LQN was first independently developed under the name
of Stochastic Rendezvous Networks (SRVN or SRN) in [Woodside89] {Petriu91b]
[Petriu94] [Woodside95a] [Woodside98] and under the name Method of Layers(MOL)
in[Rolia87] [Rolia92] [Rolia95]. Many features of the two approaches were joined under

the name of LQN [Frank95] [Woodside95b].

The Layered Queueing Network is a model of a network of tasks running on proces-
sors and communicating via a send-receive-reply pattern, in which the sender of a mes-
sage waits for a reply pattern we call a rendezvous, a RPC, or synchronous messaging. The
tasks may also send messages without reply, known as asynchronous messaging. By mod-
elling a system before it is implemented, performance bottlenecks are revealed and it may
be possible to improve the decision of functions between tasks and/or the allocation of

tasks to processors[Woodside95b)].

Chapter 2: Background Literature 12

The main difference with respect to QN is that in LQN a server may become a client to
other servers while serving its own clients. High-level servers become clients to lower lev-
el servers. Therefore, the solution process will expand the services time at higher level

servers due to the inclusion of queueing delays at lower level servers.

The advantages of the layered approach to software analysis are mentioned in

[Woodside95b}:

« It determines software queueing effects (requests queued at servers) and competition

between applications.
¢ [t identifies software bottlenecks.

o It identifies the contribution of different high-level software components to perform-

ance.

The LQN toolset presented in [Frank95] includes both simulation as well as analytical

solvers that merge the best previous approaches[Woodside95b].

2.3.1 LQN Model Components

There are two basic building blocks in a LQN model: tasks and requests.

Task

A task is an entity that models a software process execution demand and executes

some work if its processor is available. A task may be either a client task or a server task.

Chapter 2: Background Literature 13

A client task sends requests to other tasks. A server task performs work on behalf of the
requests from its clients. A server itself may also be a client to its lower level servers by
making requests to those as part of fulfilling their own work to the higher level client.
Each task may have different classes of workloads on the processor by representing it with
several entries. Each entry provides a different service pattern and a different workload.
However, all entries of one task share a common task queue. The task queue scheduling
disciplines supported by LQN, that controls the order in which requests are processed, is

First In First Out (FIFO) and Head of Line (HOL).

A server may be a single server, a multiserver or an infinite server. A single server is
modelled as a single task, which handles only one request at a time. Concurrency in LQN
is modelled by muliti-servers and replicated servers. A multiserver contains a multitude of
copies of a task, yet all copies share one common queue for incoming requests. A replicat-
ed server, however, is similar to the multiserver, except that each copy task has its own re
quest queue. An infinite server is modelled as an infinite number of tasks on an infinite
number of processors that can handle an infinite number of requests. For example, Net-

work delays are often modelled as infinite servers.

Entry

An LQN server may offer more than one service, each one with it own service time
and visit ratio to other severs. Each service is modelled as an entry of the task. It is as-

sumed that all the requests for all entries of a task are queued in a common task queue.

Chapter 2: Background Literature 14

The execution of a server entry following the reception of a message by an entry may-
be broken into two parts, the first part named first phase ends when the reply is sent back,

and the second part is the subsequent phases after the reply.

Request
A communication request from a node playing the role of client to a node playing the
role of server can be synchronous, asynchronous or forwarding.
o A synchronous request blocks the client until the server sends back the reply.
e An asynchronous request is a request that the client continues its work in parallel with
the server.

» A forwarding request is similar to a synchronous request from the client’s point of
view. The difference is that more than one servers are involved. The first server for-
wards the request to the next server, and itself is free to do other work, after the second
server finishes the request, the second server send back the reply to the original client
(instead of sending to the first server which forwards the request). The original client
is blocked until it receives the reply. There can be more than two servers in the for-

warding chain.

2.3.2 Graphical Representation of an LQN Model

An LQN model is represented as an acyclic graph which includes the follows:
» Parallelograms represents software entities (named also tasks).

 Ellipses represents hardware devices.

Chapter 2: Background Literature 15

 Every kind of service offered by an LQN task is modelled by a task entry, drawn as a

parallelogram “slice”.
* Arcs represents service requests.
o Synchronous requests are represented by full-head arrows.
* Asynchronous requests are represented by half-head arrows.

« Forwarding requests are represented by full-head arrows with a dashed line.

v

Synchronous request

N Asynchronous request

___________ > Forwarding request

Figure 2.1: Graph representations for requests in LQN

Figure 2.2 illustrates a simple exampie of an LQN model for a three-tiered client/serv-
er system: at the top there are two groups of stochastic identical clients. Each clients send
requests for a certain service offered by Application task, which represents the business
layer of the system. Every kind of service offered by an LQN task is modelled by a task
entry, drawn as a parallelogram “slice”. An entry has its own execution times and demands
for other services (given as model parameters). In this case, each Application entry re-
quires services from two different Database entries. Every software task is running on a
given processor shown as a ellipse; more than one tasks can share the same processor. The
word “layered” in the name LQN does not imply a strict layering: a task may call other
tasks in the same layer, or skip over layers. All the arcs used in this example represent syn-

chronous requests, where the sender of a request message is blocked until it receives a re-

Chapter 2: Background Literature 16

ply from the provider of service. Although not explicitly illustrated in the LQN notation,
each server has an implicit message queue where the incoming requests are waiting their
turn to be served. Servers with more than one entries still have a single input queue, where

requests for different entries wait together.

Figure 2.2: Sample LQN model of a database application

2.3.3 LQN Parameters

The most basic parameters needed to build the complete LQN model are:
* Siep = Mean execution time of task #, during phase p of entry e.

* yedp = mean or expected number of synchronous (rendezvous) messages sent from

entry e to entry 4 during phase p of entry e.

* Z«p = mean or expected number of asynchronous (send-no-reply) messages sent from

entry e to entry d during phase p of entry e.

Chapter 2: Background Literature 17

2.3.4 Solving LQN Models

LQN model can be solved with the solving tools provided in the toolset [Franks95]. The
same input file can be solved by both analytical tools such as /gns and simulation tools

such as ParaSRVN.

The ParaSRVN simulation solver mimics the behavior of the system by conducting a
discrete event simulation, which is expected to be considerably slower than the analytical
solver. However, the simulation is more powerful, in the sense that it allows for more de-
tails models of the system, whereas the modelling power of the analytical model is limited

by mathematical assumptions.

The Igns analytical solver technique consists of decomposing the LQN model into
submodels and solving individual sub-models with Mean Value Analysis. Outputs of some
sub-models are fed into other sub-models. Iteration among the sub-models until continues

waiting time results converge for all layers. Lgns is also a simulation solver.

2.3.5 Results of LQN Models

Typical results of an LQN model are response times, throughput, utilization of servers on
behalf of different types of requests, and queueing delays. The LQN results may be used
to identify the software and/or hardware components that limit the system performance

under different workloads and resource allocations.

Overall, LQN was developed especially for modelling concurrent and/or distributed

Chapter 2: Background Literature 18

software systems. LQN determines the delays due to contention, synchronization and seri-
alization at both software and hardware levels. LQN was applied to a number of concrete
industrial systems and was proven useful for providing insights into performance limita-

tions at software and hardware levels.

2.4 Unified Modelling Language

The Unified Modelling Language (UML) is the industry-standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems. It simplifies

the complex process of software design, making a “blueprint” for construction. [UML]

The Unified Modelling Language (UML) is created by the joint efforts of Grady
Booch, Ivar Jacobson, and Jim Rumbaugh as a response to the Object Modelling Group’s
(OMGj request for a proposal for a standard object-oriented methodology. It is the succes-
sor to the wave of object-oriented analysis and design (OOA &D) methods that appeared

in the late 80s and 90s.

The UML is a graphical modelling language, not a methodology. It is a language for
expressing the constructs and relationships of complex systems. UML is more complete
than other methods in its support for modelling complex systems and is particularly suited

for including real-time systems.

Chapter 2: Background Literature 19

24.1 UML Goals

According to [UML], the primary goals in the design of the UML are as follows:

Provide users a ready-to-use, expressive visual modelling language so they can

develop and exchange meaningful models.

Provide extensibility and specialization mechanisms to extend the core concepts.
Be independent of particular programming languages and development processes.
Provide a formal basis for understanding the modelling language.

Encourage the growth of the OO tools market.

Support higher-level development concepts such as collaborations, frameworks, pat-

terns, and components.

Integrate best practices.

2.4.2 UML Major Features

The major features of UML include [Douglass98]:

Object model

Use case and scenarios

Behavioural modelling with state charts

Packaging of various kinds of entities
Representation of tasking and task synchronization

Models of physical topology

Chapter 2: Background Literature 20

+ Models of source code organization

» Support for object-oriented pattern

In terms of the views of a model, the UML defines the following graphical diagrams
[UML]:
o Use case diagram
e Class diagram
 Behaviour diagrams:
» State chart diagram
* Activity diagram
¢ Interaction diagram
» Sequence diagram
» Collaboration diagram
 Implementation diagrams:
* Component diagram
» Deployment diagram
These diagrams provide multiple perspectives of the system under analysis or develop-

ment. The underlying model integrates these perspectives so that a self-consistent system

can be analyzed and built.

Chapter 2: Background Literature 21

2.4.3 UML Collaboration

UML is very rich when it comes to format. It has a number of different models and dia-
grams that fit the different purpose of the designers. Some of them are on the object and
class level, like class diagram and behaviour diagrams. But as we know architectural pat-
terns are a further step up in granularity, capture relationships at the subsystem level
[Shaw96b]. So, the UML feature better suited to describe the software architecture pat-

terns for the purpose of the thesis are UML collaborations.

According to the authors of UML [Booch99), a collaboration is a notation for describ-
ing a mechanism or pattern, which represents “a society of classes, interface, and other el-
ements that work together to provide some cooperative behavior that is bigger than the
sum of all of its parts.” A collaboration has two aspects: structural (usually represented by
a class/object diagram) and behavioral (an interaction diagram). Collaborations can be
used to hide details that are irrelevant at a certain level of abstraction; these details can be
observed by “zooming” into the collaboration. The symbol for collaboration is an ellipse
with dashed lines, and may have an “embedded” square showing template classes. Anoth-
er special UML notation employed in this section is that of an active class (object) which
has its own thread of control, represented by a square with thick lines. An active object
may be implemented either as a process (identified by the stereotype <<process>>), or as a

thread. We will discuss more about UML collaborations in chapter 4.

In this thesis we use two descriptions of software architecture, one of the two descrip-

tions of software architecture is using UML collaborations. UML is attractive because it is

Chapter 2: Background Literature 22

a standard, and is rapidly gaining acceptance in the software industry. However, UML is a

very rich, sometimes informal language, which raises a number of yet unresolved issues.

2.5 Programmed Graph Rewriting System

Graphs play an important role within many areas of applied computer science, and there
exists an abundance of visual languages and environments which have graphs as their
underlying data model. Furthermore, rule-based languages and systems have proven to be
well-suited for the description of complex transformation or inference processes on com-
plex data structures. A graph grammar is a set of productions that generates a language of
terminal graphs and produces nonterminal graphs as intermediate results. A graph rewrit-
ing system is a set of rules that transforms one instance of a given class of graphs into

another instance of the same class of graphs[Schuerr97].

Programmed Graph Rewriting System (PROGRES) was developed by Andy Schuerr
[Schuerr90]. It is a toolset which is available as a free software for university researches.
PROGRES contains a visual programming language in the sense that it has a graph-orient-
ed data model and a graphical syntax for its most important language constructs. This sys-
tem and its programming language PROGRES were already used in the following

areas[Schuerr97}]:

» For specifying tools and data structures of integrated software engineering environ-

ments for describing process modelling and version control.

e As the underlying fundament of a new approach to diagram parsing.

Chapter 2: Background Literature 23

+ For defining the semantics of a visual database query language.

2.5.1 Components of PROGRES Graph

A PROGRES graph consists of labelled nodes and directed labelled edges. The nodes rep-
resent different objects, and there can be different node types. The edges represent rela-
tionships between two nodes, and there can be different edge types too. Artributes may be

attached to nodes only.

PROGRES offers the following syntactic constructs for defining the components of a

particular class of graphs and their legal combinations. These are:

» Node types, which determine the static properties of their nodes instances. The decla-

ration of a node can be either positive node (node for short) or negative node.

» A positive node is represented by a solid rectangle. It matches a single node

of the regarded graph, which fulfils all required conditions.

‘1 : NODE

Figure 2.3: Graph representation of a positive node

» A negative node is represented by a crossed-out solid rectangle. A negative
node which matches a node of the regarded graph leads to failure of the pattern
matching processes, a negative node without a match is simply ignored after-

wards.

Chapter 2: Background Literature

‘1 : NODE

Figure 2.4: Graph representation of a negative node

¢ Intrinsic relationships, also called edge types, which are explicitly manipulated and

possessed restrictions concerning the types of their source and targets.

‘1:NODE

forwardin,
—‘—‘H ‘2 : NODE

Figure 2.5: Graph representation of an edge

¢ Derived relationship, which model often needed paths of a given graph, which defined

by the means of path or restriction expression.

¢ A path is a constraint that the two nodes it is attached to must meet, it is a

more complicated relationship than edge types. A Path is represented by

double arrow pointed from one node to the other node.

‘1 : NODE

equal {

‘2 :NODE

Figure 2.6: Graph representation of a path

» A restriction is a constraint that the one node it is attached to must meet, it

is a more complicated relationship than edge types. A restriction is repre-

sented by double arrow pointed to the node.

Chapter 2: Background Literature 25

isMain
% ‘1 : NODE

Figure 2.7: Graph representation of a restriction

Attribute

Attributes are needed to store additional information that is not necessary to be repre-
sented in the graph structure. Attributes represent the information that is local to a particu-

lar node and which has an unimportant structure from the current point of view.

An intrinsic attribute is stored data of a node type that is explicitly manipulated. A de-
rived attribute is stored data of a node that is automatically generated from the intrinsic at-

tributes of a node, or from programmed relationships amongst nodes.

Standard attribute domains like integer, string and boolean together with their func-
tions are a built-in part of the language PROGRES. PROGRES can be extended by adding
external attribute types, as well as new, external function. External function written in C or
Modula-2 can be called within a PROGRES specification. The function are written and
compiles into object modules. Several mandatory functions must be provided for an exter-
nal attribute type. The external attribute types and functions are imported into the PRO-
GRES in the import part of any declaration list. The PROGRES interpreter uses a dynamic

linker (dlI) for binding object-files to the PROGRES executable.

Chapter 2: Background Literature 26

2.5.2 Definition of Graph Schema

The language feature provided by PROGRES to define a static properties of graphs take in
the form of a graph schema which is conceptually similar to a database schema. The graph

schema definition part of a PROGRES specification enables us to specify static properties

of any class of directed, attributed, node and edge labelled graphs.

ttribut
attribute typ¢
node class edge type ﬁ-er{"\/_i'—?o yp

-—— r attribute

subtype o ——— attribute typg
nodetypey = TTTTCUC > intrinsic

subclass of attribute

Figure 2.8: PROGRES graph schema notation

Figure 2.8 illustrates the notation of graph schema.

» Rectangle boxes represent node classes which are connect to their superclasses by

means of dashed edges representing “is-a” relationships.

Boxes with round comer represent node types which are connected to their uniquely

defined classes by means of dashed edges representing “type is instance of class” rela-

tionships.

Solid edges between node classes represent edge type definitions.

Circles attached to node classes represent attributes with their names above or below

the connection line segment and their type definition nearby the circle.

Chapter 2: Background Literature 27

Node classes can have common attributes that will be inherited by node types. A node
types is a classification of a node and represents a concrete object. The instance of node
types are the objects in the graph which are manipulated. A node type can inherit from
several node classes (multiple inheritance). PROGRES also enable us to build hierarchies
of node classes by exploiting multiple inheritance as the relation between node classes. As
usual in object-oriented languages, PROGRES uses the “is-a ” notion to express the inher-
itance relation. Multiple inheritance may be used to cut down the size of graph schema

definitions considerably.

2.5.3 Definition of Graph Transformation

The graph schema definition part of a PROGRES specification enables us to specify static
properties of any class of directed, attributed, node and edge labelled graphs. The next step
is graph transformation which can be done using productions, tests, functions and transac-

tions.

Production Rule (Rewriting Rule)

A graph production rule performs a basic graph transformation, by selecting first a
subgraph that matches its left-hand side (subgraph matching step) and repiacing it by its

right-hand side (subgraph replacement step).

The left hand side (LHS) of the production rule describes a sub-graph that must exist
in the graph being manipulated. Constraints on a LHS match can take the form of node at-

tributes value conditions, restrictions on the edges associated with the node(s), or the ex-

Chapter 2: Background Literature

istence of paths of edges between nodes. If a subgraph cannot be selected or the con-

straints are not satisfied then no operations are performed.

The right hand side (RHS) of the production rule defines the node transformations that
take place, which may involve node(edge) additions, node(edge) deletions, node(edge)
type changes, etc. Attribute values of nodes can also be altered by the RHS. The adjacent

edges and attributes of a node are preserved unless explicitly altered by the RHS.

A production rule can take parameters as input and provide output values as well.
Edge types cannot be parameter values although a node type can be a parameter. Output
parameters must have the out keyword when the production (or test) is declared and when-
ever the production is used. This makes it easy to distinguish which parameters are input

and output values.

..

production MergeTask =
EqualTask
*1 : Task : ‘2

: Task

has

..

Chapter 2: Background Literature 29

..

has

--

Figure 2.9: An example of an production rule

Figure 2.9 illustrates a simple production rule to merge two tasks together. In LHS, if a
EqualTask path is found and the rask (node 2) has an entry, then in RHS, one task (node2)

is deleted and the other two nodes remain the same and the task has the entry.

Overall, the general approach of graph transformation using a production rule is as fol-

lowed:
« The matching succeeds if all positive nodes and edges patterns are found and the neg-

ative node pattern do not exist.

* All positive nodes and edges of the left-hand side which have no counterparts in the

right-hand side have to be deleted, including all incident edges of deleted nodes.

* All nodes and edges of the right-hand side with no counterparts in the left-hand side

are added to the host graph.

s Finally, new attribute values are computed by evaluating values (these expressions are

computed before any modification of the host graph is performed).

Chapter 2: Background Literature 30

Test

A test looks like the left-hand side of a production and only does not have a right-hand
side. It does not perform the replacement of the LHS, instead it returns true or false ac-

cording to whether the LHS is found or not.

test DuplicatedTask = (taskl, task2:string)

..

EqualTask

‘1 : Task =I> *2 : Task

1
]
]
]
'
]
i
]
t
:
X has
1
I
¥
1
]
1
1
1
]
1

--

end;

Figure 2.10: An example of a test

Figure 2.10 illustrates a simple resz to find a duplicated task. If found, the test itself

will return Boolean value 1, and otherwise 0.

Function

A function in PROGRES is like a procedure in other languages. It does a piece of work

which does not need a production. It can have parameters and a return value.

function addSize(Val:integer; node:NODE) -> integer=
Val+ node.Size
end;
Figure 2.11: An example of a function

Chapter 2: Background Literature 31

Figure 2.10 illustrates an example of a simple function. It just increases the Size of a

NODE by Val and returns back the new value.

Transaction

A transaction is very much like a procedure in other languages but it either succeeds
in all of its graph operations or it leaves the graph in its initial state. Transactions can have

input parameters, output parameters, local variables and recursively execute.

transaction MergeAllTasks =
loop
MergeTask
end

end;
Figure 2.12: An example of an transaction

Figure 2.11 illustrates an example of a simple transaction. In the transaction, produc-

tion MergeallTask is called in a loop until LHS of the production is not found in the graph.

2.5.4 Components of a PROGRES Program

A program written in PROGRES may have the following components:

» Schema Section contains all the node types, node class and edge types, e.g.:

section DataScheme

node c¢lass NODE
intrinsic
index name : string := *node”;
end;
edge tvpe has : OBJ_TASK -> OP_ENTRY;

« A transaction named MAIN indicates where the program starts from. A PROGRES

Chapter 2: Background Literature 32

program must have one and only one MAIN transaction, e.g.:

transaction MAIN =
UMLtoLON
& writeToFile
end;

« A list of transactions, tests and functions like procedures doing pieces of work.
* A set of production rules specify subgraph transformation.

« A list of imported types and function doing external works like, e.g.:

from RealNumbers jimport

types

Real;

functions

BQPlusQuote : (Real, Real) -> Real,
BOMinusQuote : (Real, Real) -> Real,

Real_StringToValue

(string) -> Real,
Real_ValueToString

(Real) -> string;

end;

Overall, PROGRES is a useful visual programming language and graph rewriting sys-
tem. Related work with generating software performance model by graph transformation
includes generating LQN model from Trace-Based Load Characterization (TLC).

[Hrischuk99]

The above are brief introduction to some background information related to the thesis,
such as Software Performance Engineering (SPE), software architectural patterns, Lay-

ered Queueing Network (LQN) model, Unified Modelling Language (UML) and Pro-

Chapter 2: Background Literature 33

grammed Graph Rewriting System (PROGRES). In this thesis we developed and
implemented a formal approach for generating of LQN (Layered Queueing Network) per-
formance models from the high-level software architecture of a system, and more exactly

from the architectural patterns used in the systems by using PROGRES.

CHAPTER 3 From Component/Connector Based

(CCB) Descriptions of Software
Architecture to LQN Models

This chapter proposes a formal approach to building software performance models for dis-
tributed and/or concurrent software systems from a description of the system’s architec-
ture by using PROGRES graph transformations. The descriptions of high level software
architecture we use in this chapter is based on [Allen97] and we named it Component/
Connector Based (CCB) description. The performance model is based on the Layered
Queueing Network (LQN) formalism, an extension of the well-known Queueing Network
modelling technique [Woodside89] [Petriu91b] [Petriu94] [Woodside95a] [Woodside98]
[Rolia87] [Rolia92] [Rolia95] [Frank95]. The transformation from the architectural
description of a given system to its LQN model is based on PROGRES, a known visual

language and environment for programming with graph rewriting systems[Schuerr90].
The CCB to LQN transformation is the first version developed chronologically. Its

34

Chapter 3: From CCB Descriptions of Architecture to LQN Models 35

main disadvantage is that the language for architectural descriptions is non-standard while
its advantage is that the notation is simple, easy to understand and contains only required
information. The next version presented in chapter 4 uses UML to describe software archi-

tecture.

3.1 Component/Connector Based (CCB) Descriptions

As mentioned in chapter2, the high-level architecture describes the main system compo-
nents and their interactions at a level of abstraction that captures certain characteristics rel-
evant to performance, such as concurrency, parallelism, contention for software resources
(as software servers and critical sections), synchronization, serialization, etc. The emerg-
ing discipline of software architectures is concerned with informal and formal ways of
describing the overall system structure of complex software systems. In [Shaw96a] a per-
spective on this new discipline is presented, in [Shaw96b] and [Buschmann96] a number
of high-level architectural patterns frequently used in today’s software systems are identi-
fied and described, and in [Allen97] a formal foundation for software architectures based

on architectural connections is introduced.

According to [Allen97], a software architecture represents a collection of computa-
tional components that perform certain functions, together with a collection of connectors
that describe the interactions between components. A component type is described by a
specification defining its functions, and a set of ports representing logical points of inter
action between the component and its environment. 4 connector type is defined by a set of

roles explaining the expected behavior of the interacting parties, and a glue specification

Chapter 3: From CCB Descriptions of Architecture to LQN Models 36

showing how the interactions are coordinated. On the other hand, an architectural pattern
describes two inter-related aspects: its structure (what are the components) and behavior
(how they interact). In the case of high-level architectural patterns, the components are
usually concurrent entities that execute in different threads of control, compete for re-
sources, and their interaction may require some synchronization. This kind of issues con-
tribute to the performance characteristics of the system, and therefore must be captured in

a performance model.

We defined an ad-hoc notation (Figure 3.1) for the description of high level software
arciiitecture based on the type of Component/Connector relationship, as in [Allen97] and
the architectural patterns from [Shaw96b} and [Buschmann96]. We refer it as Component/

Connector Based (CCB) descriptions.

® port
> process
~———» synchronous

message
> asynchronous
shared messagc
memo
v o—> date flow

Figure 3.1: Notation for CCB description

In the notation, a process is represented by an ellipse, it can be any active component
with its own thread of control. A shared-memory is represented by a double-bordered rect-
angle, it can be any passive component, e.g. a buffer. A port is represented by a solid dot,

it defines a logical point of interaction between the component and its environment. Ar-

Chapter 3: From CCB Descriptions of Architecture to LQN Models 37

rows with different heads represents synchronous and asynchronous message respectively.

A small arrow with a small circle attached indicates the data flow.

3.2 Some Frequently Used Architectural Patterns

There are a relatively small number of patterns identified in literature that are used to
describe the high-level architecture of a large range of software systems. These patterns
describe the collaboration between concurrent components, which can run on a single
computer or in a distributed environment. We have selected three architectural patterns as
a basis for our discussion: Pipe and Filters, Client-Server and Critical Section architecture.
These patterns are frequently used to build distributed systems, and they present a variety
of interactions between components. We will discuss each pattern more in details in the

next several subsections.

3.2.1 Pipeline and Filter Pattern

The pipeline and filter pattern divides the overall processing task into a number of sequen-
tial steps which are implemented as filters, while the data between filters flows through
unidirectional pipes. Interesting performance problems arise in the case of active filters
[Buschmann96] that are running concurrently. Each filter is implemented as a process or
thread that loops through the following steps: “pulls” the data (if any) from the preceding
pipe, processes it and then “pushes” the results down the pipeline. The way in which the
push and pull operations are implemented may also have performance consequences. Both

cases are shown in Figure 3.2: a) the filters communicate through an asynchronous mes-

Chapter 3: From CCB Descriptions of Architecture to LQN Models 38

sages, and b) the filters communicate through a shared buffer (one pushes and the other

pulls).
O O OO
R ocrray b) shared buffer

Figure 3.2: Communication styles in pipeline and filter pattern

3.2.2 Client-Server Pattern

The Client-Server pattern is one of the most frequently used in today’s distributed sys-
tems, especially since the introduction of new midware technology such as CORBA
[OMG92], which facilitates the connection between clients and servers running on hetero-
geneous platforms across local or wide-area networks. Since the communication between
the architectural components has a crucial effect on performance, different alternatives are
considered in the paper: direct client/server communication through a synchronous mes-

sage and three types of connections mediated by brokers.

In the first case shown in Figure 3.3a, the client sends a synchronous request to the
server, then blocks and waits for the server’s reply. Although the direction of the synchro-
nous message is from the client to the server, the data flow is bi-directional (the request

goes one way and the reply comes the other way).

In the case of a CORBA interface, we distinguish several types of client/server con-

nections [Adler95]. In the forwarding broker pattern from Figure 3.3b, the broker relays a

Chapter 3: From CCB Descriptions of Architecture to LQN Models 39

client’s request to the relevant server, retrieves the response from the server and relays it
back to the client. The forwarding broker is at the center of all communication paths be-
tween clients and servers, and can provide load balancing or restart centrally any failed
transactions. However, there is a price to pay in terms of performance: an interaction be-
tween a client and a server requires four messages, which leads to an excessive network

traffic when the client, broker and server reside on different nodes.

An alternative that reduces the excessive network traffic of the forwarding broker is
the half-forwarding broker from Figure 3.3c, where the server returns the reply directly to
the client. This reduces the number of messages for a client/server interaction to three,
while it retains the main advantages of the forwarding broker (load balancing and central-

ized recovery from failure).

A handle-driven broker (as in Figure 3.3d) returns to the client a handle containing all
the information required to communicate directly with the server. The client may use this
handle to talk directly to the server many times, thus reducing the potential for perfor-
mance degradation. However, the client takes on additional responsibilities, such as check-
ing if the handle is still valid after a while, and recovering from failures. Load balancing is

also more difficult in this case.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 40

 Client >

a) synchronous b) forwarding ¢ half-forwarding d) handle-driven
message broker broker broker

Figure 3.3: Communication styles in client-server pattern

3.2.3 Critical Section Pattern

The Critical Section pattern is composed of a number of processes that share a common
data stored in shared memory (see Figure 3.4) In order to insure the correctness of the
common data, the access must be controlled by semaphores, locks or other similar mecha-
nisms. The serialization brings performance effects, and must be captured in a perform-

ance model.

Critical Section
(shared data)

Figure 3.4: Critical section pattern

Chapter 3: From CCB Descriptions of Architecture to LQN Models 41

3.3 More On Connector Types

After the informal presentation of the chosen architectural patterns and of their perfor-
mance implications, we will review briefly the formal approach to architectural connec-
tions introduced in [Allen97], which is the basis for the graph grammar representation of

software architectures proposed in the next section.

According to [Allen97], software architecture can be defined as a collection of compu-
tational components together with a collection of connectors, which describe the interac-
tions between components. A component type is described as a set of ports and a
specification that describes its function. Each port defines a logical point of interaction be-
tween the component and its environment. A connector type is defined by a set of roles
and a glue specification. The roles describe the expected behavior of the interacting par-
ties, and the glue shows how the interactions are coordinated. The connector specification

is formally described in [Allen97] with a subset of Hoare’s process algebra.

For example, in a CS pattern with CORBA interface (see Figure 3.5) the connector
type is defined by three roles (client, server and broker) and by the glue that shows what
kind of interactions take place between participants, and in which order. Since the three
kinds of brokers shown in Figures 3.3b, 3.3¢ and 3.3d behave and interact differently with
the client and the server parties, each one corresponds to a different connector type. In to-
tal, we have considered four client/server connector types: one direct and three using the

services of a broker. Figure 3.2b illustrates another example of connector type that con-

Chapter 3: From CCB Descriptions of Architecture to LQN Models 42

tains three roles (two filters and a shared buffer). Its glue describes the “push” and “pull”
operations and the constraints for correct behavior (as for example “cannot pull data from

an empty buffer”, “cannot read and write to the buffer at the same time”, etc.)

HdBroker X

a) synchronous b) forwarding c) half-forwarding d) handle-driven
message broker broker broker

Figure 3.5: Client-server connector types

In our work, we first identified the connector types associated to different architectural

patterns, then defined graph transformation rules to transform each connector to an LQN

submodel.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 43

3.4 PROGRES Graph Schema

As mentioned in chapter 2, a feature of the PROGRES language is to define the static
properties of graphs in the form of a graph schema which is conceptually similar to a data-

base schema.

The graph schema for the transformation from CCB to LQN defines the types of nodes
and edges allowed in an input graph (CCB description), an output graph (LQN model) and
an intermediary graph (a combination of both inputl and output graphs).(see Figure 3.6)
The upper part of the figure contains the input schema for architectural descriptions and
the lower part the output schema for LQN models (light-gray nodes). In order to accom-
modate graphs in intermediary transformation stages, the two schemas are joined together
by three nodes shown in dark-gray at the base of the node class hierarchy (NODE,
COMP_TASK, and PORT_ENTRY). Also, some intermediary edge types (ss_d, ss_fwB,
ss_hfB, and ss_hdB) were found to be necessary in the process of transforming server-to-
server CS connections which appear in tiered client/server systems. Such edges are illegal
in both the input and output schemas; they are generated and then deleted during a two-

step transformation process that is presented later in the paper.

The input schema describes two kinds of software components and their connections:
“process” (active component with its own thread of control) and “shared-memory” (pas-
sive component of either “buffer”” or “criticalSection” types). Each type of component has
different types of ports corresponding to the roles played in various architectural connec-

tions. The edge types in the graph correspond to different connection types. An interesting

Chapter 3: From CCB Descriptions of Architecture to LQN Models 44

example is that of the four Client Server connection types, which are differentiated in the
architectural view only by their different edge type (cs_d, c¢s_fwB, cs_hfB and cs_hdB, re-

spectively).

A note-worthy fact is that the “broker” component is not explicitly shown in the archi-
tectural view (as the broker is not actually part of the software application, but is provided
by the underlying midware). However, a broker has an important impact on the system

performance, so it is explicitly modelled in LQN.

The LQN graph notation presented in chapter 2 and illustrated in Figure 2.2 has
“task " nodes, which are described by the corresponding node types in the output schemna.

As the LQN tasks contain entries, an “entry” type was also added to the schema.

The LQN arcs may represent three types of requests (synchronous, asynchronous and
forwarding); a parameter indicates the average number of visits associated with that re-

quest.

Since PROGRES edges cannot have attributes, we represent an LQN arc by three ele-

ments: an incoming edge, a node carrying the parameter and an outgoing edge.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 45

Multiplicity o integer

SHARED_MEM

~dm
-

COMPONENT]

ServiceTime real

integer Multiplicity T < > \ N e D) sring
\

\ in .
\ L. in AN
\
\
v Syse (A'y") Forwnrd)
\\ < T >
\ N | /7

\ AN /

Y N AN
h -~
~ « o _ARC_PARAM
NbVisists

Figure 3.6: Joint graph schema for the CCB description and LQN model

Chapter 3: From CCB Descriptions of Architecture to LQN Models 46

3.5 Transformations from Architectural Patterns to
LOQN

We have defined transformation rules for each architectural connection type, as illustrated
in Figures 3.7 to 3.15. In order to convey the principle of these transformations, they are
given in a more intuitive, higher-level graphical notation tailored to our problem domain,
rather than in the more detailed PROGRES notation. The PROGRES transformation proc-
ess executes a transaction for every connection instance found in the input architectural
description graph. The transformation process ends when all architectural connections
have been processed. As expected, the performance of the system depends on the perform-
ance attributes of its components and on their interaction. Performance attributes are not
central to the software architecture itself, but must be specified by the user in order to
transform the architecture into a performance model. Such attributes describe the demands
for hardware resources by the software components: allocation of processes to processors,
average execution time for each software component, average demands for other resources
such as I/O devices, communication networks, etc.The final result is an LQN model that
can be written to a file according to a predefined LQN model format [Franks95]. We wiil
discuss more about the control structure of the whole transformation process in section

3.6. Some general transformation approaches are also given in the next subsection.

3.5.1 General Transformation Principles

The general principles of the transformation from CCB description to LQN model are as

follows:

Chapter 3: From CCB Descriptions of Architecture to LQN Models 47

¢ Each architectural component is converted to an LQN task, for which reason a com-
mon base class COMP_TASK was defined in the graph schema for components and
tasks. However, the correspondence between components and tasks is not bijective as
it may seems at first, due to processes implemented in the underlying operating sys-
tem or midware (such as brokers) which are not represented explicitly in the architec-

tural view, but are explicit in the LQN view.

¢ Each input port of a component is converted into an LQN entry. The correspondence

between input ports and entries is not bijective either, due to broker entries.

» The output ports do not have any correspondent in LQN. However, they play a role in
the two-step transformation process of server-to-server connections, as illustrated in

Figure3.15.

3.5.2 Pipeline and Filter Pattern

Figures 3.7, 3.8 and 3.9 show the transformation of the pipeline and filters connection
types, the first using an asynchronous messages and the other two a shared buffer. A regu-
lar arrow with a solid line in the figures represents a synchronous request in an LQN
model. A half arrow represents an asynchronous request and an arrow with a dotted line
represents a forwarding request. We use these arrows in the LQN models throughout the
thesis.The transformation is quite straightforward, only the way LQN models a passive
shared buffer warrants a little discussion. The pipeline connection is represented by an
asynchronous LQN arc, but this does not take into account the serialization delay due to

the constraint that buffer operations must be mutuaily exclusive. A third task is introduced,

Chapter 3: From CCB Descriptions of Architecture to LQN Models 48

with as many entries as the number of different critical sections executed by the tasks
accessing the buffer (two in this case, “push” and “pull™). It is interesting to note that,
although the software architecture in Figures 3.8 and 3.9 is exactly the same, the differ-

ence in the allocation of processes to processors leads to quite different LQN submodels.

> D> = [LT

Figure 3.7: Transformation of a PF connection by an asynchronous message to a LQN
model with asynchronous request

C D - LT

W semaphore

Figure 3.8: Transformation of a PF connection by a shared buffer, where the filter
processes are running on the same processor

VA A4
AT —p

" semaphore
[f [ol [/

Figure 3.9: Transformation of a PF connection by shared buffer, where the filter processes
are running on different processors

Chapter 3: From CCB Descriptions of Architecture to LQN Models 49

3.5.3 Client-Server Pattern

Figures 3.10, 3.11 and 3.12 illustrate the transformation of three Client Server connections
that have similar architectural descriptions, differentiated only by the edge type. However,
their LQN models are quite different, as the connections have very different operating

modes and performance characteristics.

The LQN model for the direct client-server connection is quite straightforward, but

those for broker connections are more interesting.

The half forwarding broker model uses LQN forwarding requests (drawn with dotted
lines) with a special semantic. After accepting a request from a client, the acceptor task
will do some processing, then may decide to forward the request to another task. The for-
warder is free to continue its activity, while the client remains blocked, waiting for a reply.
The second task that continues to serve the request may eventually complete it and send
the reply to the client, or may decide to forward the request to another task. The LQN
model implies that a reply will be sent to the client by the last task in the forwarding chain,
but it does not represent this reply by an arrow. In Figure3.11, the broker is the task that re-
ceives the requests from the clients and forwards them to the appropriate entry of the serv-
er. The broker must have a separate entry for each entry it forwards to, otherwise the

clients would be unable to choose the server entry they need.

The LQN model for the handle-driven broker sends two separate requests, one to the

Chapter 3: From CCB Descriptions of Architecture to LQN Models 50

broker for getting the handle, then another to the desired server entry directly.

C% ? [/7 [/
cs.d cs_d £ *

Figure 3.10: Transformation of three direct CS connection instances to LQN (each service
offered by the server is represented by an entry)

¢s_hfB N cs_hfB #
broker

Figure 3.11: Transformation of three CS connection instances by half forwarding broker
to an LQN model with forwarding arcs

cs_hdB #
cs_hdB cs_hdB

broker server

Figure 3.12: Transformation of three CS connection instances by handle-driven broker to
LQN

Chapter 3: From CCB Descriptions of Architecture to LQN Models 51

3.5.4 Ciritical Section Pattern

Figures 3.13 and 3.14 show the transformation for the Critical Section connection type.
The performance model capture the serialization delays introduced by the constraint that
the common data should be accessed by one client at a time. Similar to the pipeline by
shared buffer, the same software architecture will generate different performance models
depending on whether the clients are running on the same or on different processors. In the
later case, the LQN tasks that represent the critical sections executed by the each client are

co-allocated on the same processor as the respective client.

—

semaphore

Figure 3.13: Transformation of a critical section pattern, where the client processes are
running on the same processor

semaphore

Figure 3.14: Transformation of a critical section pattern, where the client processes are
running on different processors

Chapter 3: From CCB Descriptions of Architecture to LQN Models 52

3.5.5 Layered Client-Server

Figure 3.15 illustrates the handling of servers in layered (also known as “tiered”) client-
server architectures, where a server may require the support of another server while serv-
ing its own clients (the second server’s work gets layered in the first one’s service). Such a
server component is involved in a number of client/server connections, playing the role of
server in ones and the role of client in others. It owns both input ports (corresponding to
the server role) and output ports (corresponding to the client role). The input and output
ports are linked through edges of “intern” type, representing the association between its
client and server roles (as shown in Figure 3.15). The upper part of the figure shows the
two-step transformation from architectural description to LQN for a subsystem with two
servers involved in several client/server connections, and the lower part gives a sequence
of PROGRES derivations for the first step. Each derivation deals with a two-edge link
(shown in thick lines) from an input port of the upper server to an input port of the lower
server. There are five such links in our example, each generating a connection edge of an
intermediary type, as explained before. In the second transformation step, each CS con-
nection between the two server is completely transformed to LQN, depending on the con-

nection type (direct or through a broker).

Also in this case as a layered client/server system, some server nodes play both the
role of server to its own clients, and that of a client to the servers below. This introduces an
additional step in the transformation of server-to-server CS connections (as opposed to cli-

ent-to-server connection). Firstly, the internal mapping between the input and output ports

Chapter 3: From CCB Descriptions of Architecture to LQN Models 53

of the upper server is used to generate an appropriate number of CS request edges (see
Figure3.15.). These edges are of an intermediary type (ss_d, ss_fwB, ss_hfB, or ss_hdB)
and remember the original CS connection type (direct or through a broker). Secondly, the

transformation process is completed for each connection represented by an intermediary

edge as it were a normal client-to-server connection.

five
requests

/1]

b) Sequence of graph transformations for the first transformation step

Figure 3.15: Two-step transformation process of server-to server CS direct connections

Chapter 3: From CCB Descriptions of Architecture to LQN Models 54

3.6 Control Structure for Graph Transformation

A software system contains many components involved in various architectural connec-
tion instances, and a component (such as a process) may play different roles in connec-
tions of various types. Such a process must own an appropriate port for each of the roles it
plays, whereas a port can participate in more than one connection instance of the same
type. PROGRES searches for subgraphs in the underlying input graph that has an one-to-
one correspondence with the given pattern. The transformation process ends when all
architectural connections have been processed.The final result is an LQN model that can

be written to a file according to the predefined LQN model format [Franks95].

The following shows some code from the first version of PROGRES program as an ex-

ample of transformation from CCB descriptions to LQN model.

transaction MAIN=

use swpl, swp2: Process

do
Create3AsyncPipeline (“aaa”, “bbb”, *“ccc”, “ddd”)
AddAsyncPipeline (~“ddd”, “eee”)
InsertBufferToAsyncPipeline (“aaa”, *“bbb”, “buf”)
AddForwardCS (“ccc”, “Server”, “servicel”)
AddRequestForwardCS (“ccc”, “Server”, *“servicel”)
AddExistingClientForwardCS (“ddd”, “Server”,
“service2”)
TransformAllAsyncPipeline
TransformAllAsyncPipelineWithBuffer
TransformAllLayeredDirectCS
TransformAllLayeredForwardCs
TransformAllLayeredHandleDrivencCS
TransformAllDirectCS
TransformAllForwardCs
TransformAllHandleDrivenCS
TransformAllCriticalSection

R R R R R

R ARRRRR R

Chapter 3: From CCB Descriptions of Architecture to LQN Models 55

& Clean
end
end;

transaction TransformAllAsyncPipeline =
loop
TransformAsyncPipeline
end
end;

oooooo

Figure 3.16: An example of a whole transformation process

The piece of program showed in Figure 3.16 does the followings:

First of all, the PROGRES program creates a input graph from scratch according to

CCB description (as in Figure 3.1 to 3.4) using productions.

And then it performs transformation of each pattern in a loop like the second transac-
tion TransformAllasyncPipeline in Figure 3.16. Because there maybe more than one

match for the particular pattern.

Then it repeats the transformation pattern by pattern until there is no match of any pat-

tern is found.

At the last stage of the program will clean all the intermediate nodes and merge all

duplicated nodes.

Intermediate nodes like COMTASK are used in the process of graph transformation

and all of them are transformed to LQN Tasks at the last stage of transformation.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 56

Duplicated nodes can be generated by partial transformation. (e.g. in the transforma-
tion of brokers in client-server connection) Actually the transformation of brokers in cli-
ent-server connection is worth a little discussion. One approach of the transformation is
that generates a new broker task and service entry every time a client-server connection
with brokers is found. This will lead to a result of duplicated broker tasks and also some
duplicated entries. Duplicated tasks and entries can be recognized if they have the same
name (and also taskname for entries) and they can be merged together at the last stage of

the transformation.

Another approach is that during the transformation of client-server connection with
brokers, always check the graph to see if there is already a broker task. If not, add the bro-
ker task, otherwise check to see if the desired service entry exists. If not, add the service
entry and the request arc, otherwise, only add the request arc. Since a lot of checking (e.g.
tests and queries (more complicated tests)) must be done in this case, the transformation is

more complicated. We choose to use the first approach in the transformation in the thesis.

The order of patterns transformed in the transformation does matter in some cases
when the transformations are related. For example, in the case of layered client-server sys-
tems, we have to deal first with the layered client-server transformation (as in Figure
3.15), and then the client-server transformation. However the other patterns which are not

related to layer structures can be done in any order.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 57

The whole transformation process can be illustrated in the following flow chart.

< Input graph >

| Clean and Merge }

y
< Ouputgph >

Figure 3.17: Flow chart of transformation control structure

Due to space limitation, we wiil not discuss in details the graph production rules for

the CCB description to LQN model transformation. However, such a detailed discussion

Chapter 3: From CCB Descriptions of Architecture to LQN Models 58

will be presented in the next chapter for the UML description of software architecture to

LQN performance model transformation.

CHAPTER 4 From UML Descriptions of
Software Architecture to
LQN Models

This chapter proposes a formal approach to build Layered Queueing Network (LQN) per-
formance models from UML descriptions of the high-level architecture of a system, and
more exactly from the architectural patterns used in the system. It is the second version of
the implementation. The difference between this version and the first version in chapter 2
is that we are using UML descriptions of the high-level architecture of a system in this
version. The main advantage of using Unified Modelling Language (UML) is the fact that
UML is the industry-standard language for specifying, visualizing, constructing, and doc-
umenting the artifacts of software systems. The disadvantage is that UML is a rich nota-
tion with many types of diagrams which contains much more information than that
required for developing a performance model, which means that a selection process is nec-
essary to decide what to retain and what to ignore. On the other hand some performance

specific informations (such as resource demands) is missing in UML and has to be pro-

59

Chapter 4: From UML Descriptions of Architecture to LQN Models 60

vided by the user in order to build the performance model. The transformation from UML
architectural description of a given system to its LQN model! is implemented by using the

PROGRES tool [Schuerr90].

4.1 Architectural Patterns and UML Collaborations

As mentioned in chapter2, architectural patterns express fundamental structure organiza-
tion schemas for software systems [Buschmann96]. They provide a set of predefined sub-
systems, specify their responsibilities, and include rules and guidelines for organizing the
relationships between them. Architectural patterns help software developers to specify the

fundamental structure of an application.

This chapter proposes to use high-level architectural patterns, described in UML, as a
basis for transforming a software architecture into a performance model. A subset of fre-
quently used patterns are described in this chapter in the form of UML collaborations.
Some of them have already been described and transformed to LQN models using CCB

description in the previous chapter.

As already mentioned, UML is the industry-standard language for specifying, visual-
izing, constructing, and documenting the artifacts of software systems [Rational]. It be-
comes more and more popular in industry. That is why we considered using UML to
describe the high level software architecture after we did the similar research using an ad-

hoc notation named CCB descriptions.

Chapter 4: From UML Descriptions of Architecture to LQN Models 61

UML is very rich when it comes to format. It has a number of different views and dia-
grams to fit the different purposes of the designers. Since we need to describe architectural
patterns which capture relationships at the subsystem level [Shaw96b] and are a further
step up in granularity from the class and object level, we chose to use a UML feature
named collaboration which is better suited to describe the software architectural patterns

for the purpose of the thesis.

A UML collaboration is not a UML collaboration diagram (which is a type of interac-
tion diagrams) [Booch99]. According to the authors of UML, a collaboration is a notation
for describing a mechanism or pattern, which represents “a society of classes, interface,
and other elements that work together to provide some cooperative behavior that is bigger
than the sum of all of its parts.” [Booch99] A collaboration has two aspects: structural
(usually represented by a class/object diagram) and behavioral (an interaction diagram).
Collaborations can be used to hide details that are irrelevant at a certain level of abstrac-
tion; these details can be observed by “zooming” into the collaboration. The symbol for
collaboration is an ellipse with dashed lines, and may have an “embedded” square show-
ing template classes. (as in Figure 4.1 to 4.3) Another special UML notation employed in
this chapter is that of an active class (object) which has its own thread of control, repre-
sented by a square with thick lines. An active object may be implemented either as a pro-

cess (identified by the stereotype <<process>>), or as a thread.

Figure 4.1 through 4.3 illustrates UML collaborations for client-broker-server pattern.

They are used as an example to illustrate how UML collaborations describe high level

Chapter 4: From UML Descriptions of Architecture to LQN Models 62

software architectural patterns. The UML collaboration of other patterns will be illustrated

in later sections along with their transformation to LQN models.

Figure 4.1 illustrates the UML collaboration (both the structural and behavioral parts)
for the forwarding broker pattern [Adebayo97], where the broker relays a client’s request
to the relevant server, retrieves the response from the server and relays it back to the client.
The forwarding broker is at the center of all communication paths between clients and
servers, and can provide load balancing or restart centrally any failed transactions. Howev-
er, there is a price to pay in terms of performance: an interaction between a client and a
server requires four messages, which leads to excessive network traffic when the client,
broker and server reside on different nodes. An alternative that reduces the network traffic
is the half-forwarding broker [Adebayo97] from Figure 4.2, where the server returns the
reply directly to the client. This reduces the number of messages for a client/server inter-
action to three, while it retains the main advantages of the forwarding broker (such as load
balancing and centralized recovery from failure). A handle-driven [Adebayo97] broker (as
in Figure 4.3) returns to the client a handle containing all the information required to com-
municate directly with the server. The client may use this handle to talk directly to the
server many times, thus reducing the potential for performance degradation. However, the
client takes on additional responsibilities, such as checking if the handle is still valid after
a while, and recovering from failures Load balancing is also more difficult in this case.

The small arrows with a small circle in Figure 4.1,4.2 and 4.3 indicate the data flow.

Chapter 4: From UML Descriptions of Architecture to LQN Models 63

<<processsT client fwd-broker server
Client. ~ di 1 req_service_k() ' :
. -’ | L}
e service_k() \ !
_ _1 Tlient ~] I I \ !
P [} Server ' i
it (Broker ! <<process>> '
; cocen T fug-broker
« FWD_BROKER - serve othel
~ . 7 requests
~——
~ ~ l
e I I replyQ
~o .4
s [<<process>> !
Server ~ (. server) -re-p;!(l) :
[L [!
service k() ! ! '

Figure 4.1: UML collaboration for client-server pattern with a forwarding broker

l.n
<<process>>
. X
Client. ~
- ”
- r'd
4’- -
_ _y Client ~ I
Pt | Server 1 << >
.’ L Broker . Broker proess
T S =4d~i L -
', HFW_BROKER hfw-broker
N ’
-~ -~ o e -
-
~
Scr;e; ~ <<process>>
S o Server
sevice k()

client hfw-broker server
ireq service_k() ' :
|
req_service_k()'
1
1
serve othe
requests
1
i replyQ
S i
t 1
t }
1 ' !
)]

Figure 4.2: UML collaboration for client-server pattern with a half-forwarding broker

Chapter 4: From UML Descriptions of Architecture to LQN Models

64

I.n
<<Pmess>>
Client ’ 160t
T !
- erver '
e - | Broker | <<process>>
i S
' HD_BROKER / Broker| bd:broker I
~ rd
~ ~
-
~ ~ .
~ <<process>>
Server ~ . . server
servige_k()

client

hd-broker

get_handle()

service k()

[ERppE R —

Figure 4.3: UML collaboration for client-server pattern with a handle-driven broker

4.2 Scope of the Thesis Research

UML

1
system model
|

r

i PROGRES

i production
creation

i

]

PROGRES
input graph

LQN
output graph

LON
foramt file

Figure 4.4: Scope of the thesis research

Chapter 4: From UML Descriptions of Architecture to LQN Models 65

Figure 4.4 illustrates the scope of the proposed approach and the part we implemented
using PROGRES, which is included in the grey dotted rectangle. First, the PROGRES
graph for a given system according to the schema from Figure 4.5 is directly generated by
a2 PROGRES program, then the input graph is transformed by applying the appropriate
rules, into an output graph representing an LQN model. An LQN model file that can be fed
directly to an LQN solver is also generated by imported functions written in C to the PRO-
GRES program.

It is necessary to mention that the thesis does not solve the problem of converting
UML notation to a PROGRES input graph. (like the part outside the grey dotted rectangle
in Figure 4.4) The transformation of UML diagrams to a PROGRES input graph must be
done in the future in order to integrate the generation of LQN models into an UML CASE

tool.

4.3 PROGRES Graph Schema

The graph schema for the transformation from UML collaboration to LQN defines the
types of nodes and edges allowed in an input graph (architectural description), an output
graph (LQN model) and an intermediary graph. (a combination of both input and output
graphs, see Figure 4.5) The upper part of the figure contains the input schema for architec-
tural descriptions and the lower part contains the output schema for LQN models (light-
gray nodes). The input schema does not capture all the richness of UML, but only those

elements that are necessary for converting a high-level architecture into an LQN model.

The advantage of basing the transformation on architectural patterns expressed by

UML collaborations is that such higher-level of abstraction artifacts greatly simplify the

Chapter 4: From UML Descriptions of Architecture to LQN Models 66

graph schema and the transformation process. The disadvantage is that these artifacts have
to be pre-identified and represented in the schema and in the transformation rules, which
limits the extensibility of the transformation process. This disadvantage is somehow miti-
gated by the fact that the number of high-level architectural patterns identified in literature

and used in practice is relatively small.

In order to accommodate graphs in intermediary transformation stages, the two sche-
mas are joined together by three nodes illustrated in dark-gray at the base of the node class
hierarchy (VODE, OBJ_TASK, and OP_ENTRY). The collaborations nodes representing
architectural patterns make up a big part of the input schema. Inheritance is useful for
classifying the different patterns and their variants. “Role” edges, like client or server,
connect the collaboration nodes to the architectural component nodes, which are active
and passive objects, their operations and links. The output schema reflects closely the
LQN graph notation presented in chapter 2. The node types are task and entry. The LQN
arcs may represent three types of requests (synchronous, asynchronous and forwarding); a
parameter indicates the average number of visits associated with each request. Since PRO-
GRES edges cannot have attributes, we represent an LQN arc by three elements: an in-

coming edge, a node carrying the parameter (ARC_PARAM) and an outgoing edge.

Chapter 4: From UML Descriptions of Architecture to LQN Models

67

Forwarding
Broker
alf-forwardi
Haodle-driven
Broker
Di

Yvex

CLIENT_SERVER

i

|
!
|
[
/
Ll

Ganmnr) (fwdBroker Pipeline Pipeline
< ' with Buffer with Message
\ N -
Y
CriticalSection) \(DoubleFuiter P';;E'T'{.;':fs"
13 - - 3
\ a filter x!mr
\ i
1
NonSband) Shared Active \ |
client
\ / server
con / Vo
PASSIVE / Ly - ==
COLLABORATIONG — ~ ~

ServiceTimeO O real

MultipliciyT [/ \
o [Tk

k£
g
:

sting

Figure 4.5: Joint graph schema for architectural pattern

and LQN models

Chapter 4: From UML Descriptions of Architecture to LQN Models 68

4.4 Transformations from Architectural Patterns to
LQN

Graph transformation rules have been defined for each architectural pattern, following
closely the transformations illustrated in section 4.4.2 through 4.4.5. A PROGRES trans-
action is executed for every architectural pattern found in the input architectural descrip-

tion graph. The transformation process ends when all the patterns have been processed.

As expected, the performance of the system depends on the performance attributes of
its components and on their interaction. Performance attributes are not central to the soft-
ware architecture itself, but must be specified by the user in order to transform the archi-
tecture into a performance model. Such attributes describe the demands for hardware
resources by the software components: allocation of processes to processors, average exe-
cution time for each software component, average demands for other resources such as I/0
devices, communication networks, etc. In the early design stages of a system, these value
can be either estimated from previous experience with similar systems or can be based on
desired “ftime budgets” allocated to various subsystems. In the case of reusable compo-

nents, the resource demand values can be based on actual measurements.

4.4.1 General Transformation Principles
The general transformation principles from an input to an output graph are as follows:

« Each architectural component (i.e., object) is converted to an LQN task, for which rea-
son a common base class OBJ_TASK was defined in the graph schema. However, the
correspondence between components and tasks is not bijective, as in some cases a sin-

gle object may generate more than one task for the following reasons: to charge cor-

Chapter 4: From UML Descriptions of Architecture to LQN Models 69

rectly the execution times to various processors (Figure 4.7b and 4.21b), or to model
processes that are part of the underlying midware (such as brokers in Figure 4.14,

4.15, and 4.18).

« Object operations are usually converted into an LQN entry, with some exceptions as

in Figure 4.7b and 4.21b, when an operation is converted into an entry and a task.

¢ The collaboration nodes from the input graph do not have an LQN equivalent. They
may be remained in the intermediary graph, but will be removed in clean-up proce-

dure.

4.4.2 Pipeline and Filter Pattern

B A i

e - o -

7 \
UpStredmFilter ~ DownSweamPFilter * / fiter / 7/ filter2 7
4 \

<<process>> | <<process>>

filter2 filterl

Figure 4.6: Transformation of pipeline and filter pattern with a message

Figures 4.6 and 4.7 illustrate the transformation of two versions of Pipeline and Filters
pattern, the first using asynchronous messages for the pipeline, and the other using a
shared buffer. A regular arrow with a solid line in the figure represents a synchronous

request in LQN model. A half arrow represents an asynchronous request and a dotted line

Chapter 4: From UML Descriptions of Architecture to LQN Models 70

arrow represents a forwarding request. We use these arrows in the LQN models through-

out the thesis. Each active filter becomes an LQN task whose service time includes the

processing time of the filter. The pipeline connector is modelled as an asynchronous LQN

request in Figure. 4.6. The CPU times for send/receive system calls are added to the serv-

ice times of the two LQN tasks, respectively. A network delay for the message can be rep-

resented in LQN as a delay attached to the arc.

-7 {1 "UpStreamFilter
N PIPELINE | DownStreamFilter !
~ WITHBUFFER - cv-w-e-- s
e TTm-e==77 TS~ DownStweamFilter
UpStreamfilter : Buffer T~a
| Buffer <<pr0cessl$'§-l
<<process>> o—> push(sequentiaty > >
filter| A (i — filter2
—
push() pull(sequential pull)

a) All the filters are running on the same b) The filter are running on different
processor node processor nodes

Figure 4.7: Transformation of pipeline and filter pattern with a buffer

In the case of a pipeline with buffer (see Figure 4.7), an asynchronous LQN arc is still

Chapter 4: From UML Descriptions of Architecture to LQN Models 71

required, but this does not take into account the serialization delay due to the constraint
that buffer operations must be mutually exclusive. A third task will enforce this constraint.
It has as many entries as the number of operations executed by the tasks accessing the
buffer (two in this case, push and pull). In Figure 4.7, exactly the same architectural pat-
tern has two LQN counterparts, due to a difference in processor allocation. The execution
of all buffer operations is charged to the same processor node in Figure 4.7a, and to differ-

ent processor nodes in Figure 4.7b.

The following fragments of PROGRES code (Figure 4.8 and 4.9) illustrate the graph
production rules for the two variants of the pattern. The application of a graph production
rule in PROGRES performs first the selection of a subgraph that is matching the left-hand
side of the rule and then the replacement of this subgraph by the right-hand side of the
rule. The rule shows the details of the transformation implemented (i.e. the nodes and edg-
es that are kept, added or removed, as well as the changes of the aztributes. In this program
the left-hand side of a rule corresponds to an architectural pattern from the input graph and

the right-hand side to the LQN submodel for this pattern.

In the case of pipeline with message, the left-hand side of the graph consists a PP-
WithMsg node, which is derived from COLLABORATION class (node 3), two Active Ob-
ject nodes (node 1 and 2) and two edges upStrmFilter and dnStrmFilter that indicate the

roles of the objects.

The transformation is pretty straightforward. In the right-hand side, the PPWithMsg

node does not exist any more because a collaboration node does not have an LQN equiva-

Chapter 4: From UML Descriptions of Architecture to LQN Models 72

lent. The two Active object remain the same, because they may be connected by other
COLLABORATION nodes too. They will be transformed to LQN tasks at the last stage of
transformation after all the collaborations are found and transformed. A new Async node
(node 4) is added representing the attributes of a asynchronous request from node 1 to
node 2 in the LQN model. The transfer keyword indicates the modifications on attributes

of the right-hand side.

production TransformPipeline =

...

‘3 : PPWithMsg

) 1
: !
X — . :
' upStrmFilter dnStrmFilter)
)]
' :
: | :
' ‘l : Active ‘2 : Active !
X f .
! :
: :
X rcOut arcln .
vl o= e —->1 4’ : Async —— 2/ = 42 :
I !
] |
transfer 4’ .fromName := ‘l.name;

4’ .toName := ‘2.name;
4’ .Type := “a”;
1’ .isEntry := 1;
2’ .isEntry := 1;
end;
Figure 4.8: Production rule for pipeline and filters pattern with a message

In the case of pipeline with buffer (as in Figure 4.7a), where both filters are located on

the same processor, the left-hand side of the graph consists a PPWithBuf node (node 3),

Chapter 4: From UML Descriptions of Architecture to LQN Models 73

two Active Object nodes (node 1 and 2), one Buffer node (node 4) with two Operations
(node 5 and 6) and three edges upStrmFilter, dnStrmFilter and buffer that indicate the roles

of the objects.

In the right-hand side, apart from the addition of an Asnyc node (as in Figure 4.8), a
new zask node (node 4) is added representing the buffer in the left-hand side. The two new
entries (node 5 and 6)represent the two mutually exclusive operations (node 5 and 6 in
LHS). Two new Sync node (node 7 and 8) are added representing the attributes of two syn-
chronous requests in LQN model. The transfer keyword below the graph indicates the
modifications of the attributes of the right-hand side. For example, the serviceTimeO of
Operation node 5 and 6 in the LHS become the serviceTimeE of Entry node 5 and 6 re-

spectively.

It is worth to mention that the condition keyword in this production indicates an addi-
tional condition on any subgraph that matches the LHS in order for the production to be
executed. In this case the condition is both Acrive object must locate on the same proces-
sor. For the other case (as in Figure 4.7b, where the filters are located on different proces-
sors), the LHS of the production rule is similar except it has a different condition which
means that the two Active object must locate on different processors. The RHS of the rule
is bit different too. The tasks will be located on different processors. Since we do not have
a Processor node in the graph schema, we use the Processor attribute instead. So, the Pro-

cessor attributes of the tasks wiil be different.

Chapter 4: From UML Descriptions of Architecture to LQN Models

74

production TransformPipelineWithBuf

condition 1l’.processor :=

w7

‘3 : PPWithBuf
upStrmFilter dnStrmFilter
‘1l : Active PPbuffer
y s
own '
5’ operation ‘4 : Buffer = 6’ : Operation
: :
']
' '
rcOut rcln
1' = 1 3’ : Async D1T =2

! i
: arcOut '
' arcout '
: :
: :
! |
' 7' : Sync 8’ Sync :
I :
: arcin arcIn '
' [
'- :
' 6' : Entry 5 Entry X
! :
' '
t '
' '
l :
' '
' 1
’ '

transfer 4’ .name

‘2 .processor;
:= ‘4 .name;

6’ .name := '‘6.name;

5’ .name := ‘5.name;

7' .fromName := ‘1.name;
7’ .toName := ‘6.name;
8’ .fromName := ‘2.name;
8’ .toName := ‘5.name;
3’ .fromName := ‘1.name;
3’ .toName := ‘2.name;

3!

Chapter 4: From UML Descriptions of Architecture to LQN Models 75

7' .Type := “y”;

8’ .Type := “y”;

5’ .TaskName := ‘4.name;

6’ .TaskName := ’‘4.name;

5. ServiceTimeE:= ‘5.ServiceTime0;
6’. ServiceTimeE:= ‘6.ServiceTimeO;

end;
Figure 4.9: Production rule for pipeline and filters pattern with a buffer

4.4.3 Double Filter Collaboration

Figure 4.10 represents the transformation for the so-called “double filter” collaboration,
that can be used either in conjunction with a “pipeline with message”, or a “pipeline with
buffer”. This collaboration can be generalized for any type of active objects that are shar-
ing the same execution thread. It describes the case of two filters that are running in the
same process. The LQN model captures the contention of the two objects for the same
execution thread. Since the LQN version used for this thesis did not accept cyclic graphs
for reasons related to deadlock prevention, we represented each passive object filter as a
LQN “dummy” task, therefore treating it as an active object. In order to prevent the
dummy tasks from executing simultaneously, a ttird “executive” task serializes the first
two. All filter’s processing is charged to the “executive” task entries. The dummy tasks
don’t do any real work, and are waiting instead for the executive task to do the work on
their behalf. They are allocated on a dummy processor (not to interfere with the schedul-

ing of the “real” processor node).

Chapter 4: From UML Descriptions of Architecture to LQN Models 76

N
+_ DOUBLEFILTER !/

~

PR .
Il R Container

AN Filter N
Filter> .} <<process>>
\ AY

N \

—\ N llnSm o—

see tee

N\

<£—— PldownS =3

Figure 4.10: Transformation of double filter collaboration

The following fragment of PROGRES code (Figure 4.11) illustrates the graph produc-
tion rules for this collaboration. The left-hand side of the graph consists of a DoubleFilter
node (node 3), two Active Object nodes (node 1 and 2) that represents the two filters, an-
other Active Object node (node3) that represents the container three edges indicate the

roles of the objects.

The transformation is pretty straightforward. In the right-hand side, the DoubleFilter
node does not exist any more because a collaboration does not have an LQN counterpart.
The two Acrive object (node 1 and 2) become dummy tasks as explained before. In order to
prevent the dummy tasks from executing simultaneously, a third executive task (node 4)
serializes the first two. Two new executive task entries (node 5 and 6) represent the pro-
cessing of the two filters. Two new Sync node (node 7 and 8) are also added representing

the attributes of a synchronous request in the LQN model. The transfer part below the

Chapter 4: From UML Descriptions of Architecture to LQN Models 77

graph indicates the modifications of the attributes of the right-hand side, like update the

name of node 1 and 2 with the “dummy” prefix.

production TransformbDoubleFilter =

|
‘3 : DoubleFilter

J
filter— ~filter

. tainer .
‘1l : Active Ton ai t2 Actlvﬁ

'4 : Active

b= 20 = 12
! T
1]
1]
! arcout arcOut '
1]
: :
]]
! 7' : Sync 8’ : Sync !
! l
: arcIn ¢ arcIn * '
; '
]]
' 5r : Entry 6’ : Entry '
1]
X Wowns ownsf '
: '
1 1
]]
: 4+ = 4 X
1 1)
1 '
transfer 1’ .name := “Dummy” & ‘l.name;

2’ .name := “Dummy” & ‘2.name;

5’ .name := ‘l.name;

6’ .name := ‘2.name;

7' .fromName := “Dummy” & ‘l.name;
7’ .toName := ‘1l.name;

Chapter 4: From UML Descriptions of Architecture to LQN Models 78

8’ .fromName := “Dummy” & ‘2.name;
8’ .toName := ‘2.name;

7' .Type := *y”;

8'.Type := *“y”;

5’ .TaskName := ‘4.name;

6’ .TaskName := ’4.name;

4’ .name := ‘4.name & “exec”;

end;
Figure 4.11: Production rule for double filter collaboration

4.4.4 Client-Server Pattern

4.4.4.1 Client-Server Pattern with Direct Connection

Figure 4.12 illustrates the transformation to LQN of a direct client-server connection
through a synchronous communication (rendezvous), where the client sends a request to
the server and blocks until the reply from the server comes back. A server may offer a
wide range of services (represented here as the server’s object methods) each one with its
own performance attributes (execution time and number of visits to other servers). A client

may invoke more than one of these services at different times.

Chapter 4: From UML Descriptions of Architecture to LQN Models 79

_____ [Ciind

- 1Server ¢

td b o o - d

R CS_DIRECT

1.0
<<pr‘ocess>>

\Qr‘viccz() !
servicel ver AviceZO

servicel (8
service2()

Figure 4.12: Transformation of the client-server pattern with a direct connection

The following fragment of PROGRES code (Figure 4.13) illustrates the graph produc-
tion rule for this case. The left-hand side of the graph consists of a CSDirect node (node
3), an Active Object node (node 2) that represents the client, an Operation node that repre-
sents the service provided by the server and two edges (client and service) that indicate the

roles of the objects.

In the right-hand side, the CSDirect node remains in the graph because it may be con-
nected to other operations of the same server as well. The Operation node (node 4) be-
comes an Entry. A new Sync node (node 5) is also added representing the attributes of a
synchronous request in the LQN model. Since the server may be offering other services
(i.e. Operations) the production will be execute in a loop to transform all the operations to

entries. The loop will end when no match of the LHS will be found in the input graph. The

Chapter 4: From UML Descriptions of Architecture to LQN Models 80

transfer keyword below the graph indicates the modifications of the attributes of the right-
hand side nodes. For example, the serviceTimeO of Operation node 2 in the LHS become

the serviceTimeE of Entry node 2.

production TransformCSDirect =

P p—— - - - > W e e a ey

*3 : CShirect

: :
t]
]]
' CSservice :
, CSclient X
1 1
: |
] 1
|]
]]

‘'l : Active ‘2 : Operation

..

..

transfer 1’.isEntry := 1;
5’ .fromName := ‘l.name;
5’ .toName := ‘2.name;
5’ .ServiceTimeE := ‘2.ServiceTimeO;
5'.Type := *“y”;

end;

transaction TransformAllCSDirect=
loop
TransformCSDirect
end
end;

Figure 4.13: Production rule for client-Server pattern with a direct connection

Chapter 4: From UML Descriptions of Architecture to LQN Models 81

4.4.4.2 Client-Server Connection by Forwarding and Half-Forwarding

Broker

Software developers of client-server systems are mostly interested in the components that
are part of their application, and less in the details of the underlying midware, operating
system or networking software. The use of UML collaborations comes in handy, because
it allows us to hide unnecessary details. For example, client-server applications using a
CORBA interface do not have to show explicitly the “broker” component in their architec-
ture (as it is not part of the software application). Instead, a collaboration can be used to
indicate the type of desired client-server connection. However, the performance model
will represent explicitly the broker and it’s interaction with the client and server counter-

parts.

Figures 4.14 and 4.15 illustrate the transformation of the client-server connections
which use the forwarding and half-forwarding broker. Since the architecture does not
show the broker explicitly, the input graphs have similar architectural descriptions, differ-
entiated only by the kind of UML collaboration used. However, their LQN models are
quite different, as the connections have very different operating modes and performance

characteristics.

In the client-server connection with a forwarding broker case, the broker relays a cli-
ent’s request to the relevant server, retrieves the response from the server and relays it back

to the client. The forwarding broker is at the center of all communication paths between

Chapter 4: From UML Descriptions of Architecture to LQN Models 82

clients and servers. The forwarding broker (Figure 4.14) is modelled as an LQN multi-
server with as many entries as server entries. Each forwarding broker replication models a
“virtual” thread that is dedicated to a given client request until the completion of its ser-
vice. (A virtual thread may be implemented either as a thread or as a process). While some
of the broker thread will be blocked, waiting for the server’s reply, other such threads will
accept new client requests. However, all virtual threads compete for the same processor

and execute one at a time.

In the case of half-forwarding broker from Figure 4.15, where the server returns the re-
ply directly to the client. This reduces the number of messages for a client/server interac-
tion to three, while it retains the main advantages of the forwarding broker (load balancing
and centralized recovery from failure). The half-forwarding broker model (Figure 4.15)
uses LQN forwarding arcs (drawn with dotted lines) which have a special semantic. After
accepting a request from a client, the acceptor task will do some processing, then will for-
ward the request to another task. The forwarder is free to continue its activity, while the
client remains blocked, waiting for the reply. The second task that continues to serve the
request may eventually complete it and send the reply directly back to the client, or may
decide to forward the request to another task. The LQN semantic implies that a reply will
be sent to the client by the last task in the forwarding chain (but the reply is not represent-
ed as an arc in the model). In Figure 4.15, the forwarding broker is the task that receives
the requests from the clients and forwards them to the appropriate entry of the server. The
broker must have a separate entry for each entry it forwards to, otherwise the clients would

be unable to choose the server entry they need.

Chapter 4: From UML Descriptions of Architecture to LQN Models 83

The allocation of tasks to processors is not shown in figures, because the transforma-
tion does not depend on it (each LQN task is allocated exactly as its architectural compo-

nent counterpart).

e m - rdi;nt- I
-7 Server
/’ (& _EOECI'_ F il -
' FWD_BROKER | M
\:—.___-‘____,J'i
Client ~ } Ctient
P - Se:rvcr .
.- 1 I..;l
<<process>> : <<prf)c ess> *
¢clientl 1 clien forwarding
: broker

\{r.viceZ() !
servicel STV Avicezo
servicel ﬁvicﬂ/servic?/
servicez(e) server

Figure 4.14: Transformation of the client-server pattern with a forwarding broker

_ _ — _ Client |
e 1Seryer |
’ ’ LBIOKcL 4\‘
', HFW_BROKER ’
~ -~ e s
4 7 it S N N
Client Sq':ver Chgn\t
’ < 1 -
T 1 << l..;l
<<process>> | process>
clientl . clienid
t
)

\kr‘vicczo |) X
servicel server Avicezo L
servicel servicel/ servicey
scrvicel(/ / /s crver

Figure 4.15: Transformation of the client-server pattern with a half-forwarding broker

Chapter 4: From UML Descriptions of Architecture to LQN Models 84

The following fragment of PROGRES code (Figure 4.16) illustrates the graph produc-
tion rule for client-server connection with half-forwarding broker. The left-hand side of
the graph has aCSFwdBroker node (node 3). An Active Object nodes (node 2) that repre-
sents the client, an Operation node that represents the service provided by the server and
two edges (client and service) thar indicate the roles of the objects. (The broker does not

appear in the lefi-hand graph, being hidden in the collaboration)

In the right-hand side, the CSFwdBroker node remains in the graph because it may be
connected to other Operation nodes of the same server. A new fwdBroker node that repre-
sents the broker is added (node 6). The Operation node (node 4) becomes an Entry of the
new fwdBroker node.A new Sync node (node 3) and a new Forward node are also added
representing the attributes of a synchronous request and a forwarding request, respective-
ly. Since the CSFwdBroker node still exists, if there are other Operation node of the same
server, the production will be execute in a loop to transform all the operations to entries.
These entries are owned by the same task to prevent them to execute simultaneously.The
transfer section below the graph indicates the modifications of the attributes of the right-

hand side, like the ServiceTime or name of the entries.

In order to simplify the rule for the transformation of this pattern, a new fwdBroker
node represents the broker and a entry of the broker task are added each time when a
match of the left side is found in the graph. This approach was chosen for simplicity to re-
duce the number of production rules and the conditions for their application. However this

will lead to a duplication of the fwdBroker node and its entries. So, when no more matches

Chapter 4: From UML Descriptions of Architecture to LQN Models 85

from the LHS are found a clean-up will be done by the transaction MergeAdllFwdBroker,
which calls the production MergeFwdBroker (see Figure 4.17) in a loop. The basic idea of
this production is to merge two fwdBokers into one if there is a duplicated fwdbroker is

found.

production TransformCSFwd =

T | T
X ’3 : CSFwdBroker X
: — . ‘4 : Active |
! ' CSservice '
' > 1]
: CSclient ' \ has ' :
']
)]
: 1l : Active ‘2 : Operation ‘
]]

JTTTTTTTTTTTTTT T T T T

]]

! CSclient | !

: 1r =1 l‘— '3 : CSFwdBroker |

| '

E arcOut * !

]]

: 37 : Sync :

] '

' '

' arcln v ,

X owns X

i 7t : Entry —— 6’ : FwdBroker '

1]

]]

X arcOut v '

])

E 5’ : Forward :

1]

X arcln ' '

! has '

1 1

I]

] 1

|]

']

! 1

' i

I t

transfer 6’.name := ‘2.name & “Broker”;
7' .name := ‘4.name & “BrokerEntry”;
2’ .name := ‘2.name ;
2’ .ServiceTimeE := ‘2.ServiceTimeQ;
end;

Chapter 4: From UML Descriptions of Architecture to LQN Models 86

Figure 4.16: Production rule for client-server pattern with a half forwarding broker

production MergeFwdBroker

t 1
, 1 : Sync ‘6 : Sync :
[} t
: arcIn i arcIn ' :
1 '
] 1
' '2 : Entry *7 : Entry '
! :
] | 1
' owns owns X
: | :
1 i
' arcouf arcoOut !
' ‘5 : FwdBroker ‘9 : FwdBroker |,
i :
1 [
! ‘ * '
| *3 : Forward ‘8 : Forward X
1]
" arcln— :
' arcIn .
: :
L] 1
! ‘4 : QOperation '
1 1
1 1

e e h
. 1’ =1 6’ = '6 X
' arcIn .
[] arCIn* 1
: :
' I} -— Nl 1
! 20 =12 owns !
1]
1 [
' arcout ‘ 5+ = 1§ '
‘ :
) 3r = 13 I
] T
] +
] 3
)]
| I
] '
]]
])
]]
‘ :
] []
3]
t]
12 1

]

condition ‘2.name ‘7.name;
‘5.name = '9.name:;

Chapter 4: From UML Descriptions of Architecture to LQN Models 87

end;

Figure 4.17: Production rule for merging two duplicated forwarding brokers

4.4.4.3 Client-Server Connection by Handle-Driven Broker

In the case of a Client-Server connection with a handle-driven broker, a handle-driven

broker returns to the client a handle containing all the information required to communi-

cate directly with the server. The client may use this handle to talk directly to the server

many times, thus reducing the potential for performance degradation. The LQN model for

the handle-driven broker sends two separate messages for each client request: one to the

broker for getting the handle, the other directly to the desired server entry. (as in Figure

4.18)

———-——

Pl N
Clienv < Sérver C‘ﬁqut

-

L4 ~
,

-0 << 1 ;1
es:
<<process>> process>

I
|
]
clientl : clien
]
]

\Q‘rviceZ()

servicel sarver %cel()

servicel(
service22)

Figure 4.18: Transformation of the client-server pattern with a handle-driven broker

The following fragment of PROGRES code (Figure 4.19) illustrates the graph produc-

Chapter 4: From UML Descriptions of Architecture to LQN Models 88

tion rule for client-server connection with handle-driven broker case. The left-hand side of
the graph has a CSHdBroker node (node 3), an Active Object nodes (node 2) that repre-
sents the client, an Operation node represents the service provided by the server and two
edges (client and service) that indicate the roles of the objects. The broker does not ap-

pears in the LHS of the graph, as mentioned before.

In the right-hand side, the CSHdBroker node remains in the graph because it may be
connected to other Operation nodes of the same server as well. A new fwdBroker node is
added (node 6). The Operation node (node 4) becomes an Entry of the new fwdBroker
node. Two new Sync node (node 3 and 5) representing the attributes of a synchronous re-
quests are also added. Since the CSHdBroker node still exists, the production will be exe-
cuted in a loop to transform all the operations of the same server to entries. The transfer

keyword below the graph indicates the modifications of attributes of the right-hand side.

In order to simplify the rule for the transformation of this pattern, a new HdBroker
node that represents the broker and an entry of the broker task are added each time when a
match of the left side is found in the graph. This approach will lead to a duplication of Hd-
Broker node and its entries. Therefore, when no more matches from the left-side are
found, meaning that all operations are transformed into entries, a clean-up will be done by
the transaction MergeAllHdBroker, which calls the production MergeHdBroker (see Fig-
ure 4.20) in a loop. The basic idea of this production is to merge two fwdBokers into one if
there is a duplicated fwdbroker is found. This work is similarly to the clean-up procedure

for the half-forwarding broker explained before.

Chapter 4: From UML Descriptions of Architecture to LQN Models

production TransformCSHd =

T i"'""'"'""""""'""'"'"""‘.
. ‘3 : CSHdBroker .
! 1 'a . . '
: \CSservice 4 : Active E
) .
; CSclient owns :
] 1
E ‘1 : Active 2 : Operation E
I '

'

itk e H

[14 = 1]

X '3 : CSHdBroker '

' | '

: /’/arcOut .

1 1

1 CSclient [arcOut :

' 3 Sync :

]]

' arcIn v :

: S’ : Sync 7’ : Entry E

: owns M :

' 1

E arcln 6’ : HdBroker E

: :

' OwWTS '

' 2' Entry —— 4’ = '4 :

: X

\ X

1]

] L]

transfer 6’.name := ‘4.name & “Broker”;
7’ .name := ‘2.name & “BrokerEntry”;
3’ . fromName := ‘1l.name;
3’ .toName := ‘2.name & “BrokerEntry”;
5’ ,fromName := ‘l.name;
5’ .toName := ‘2.name;

2'.name := ‘2.name;

2' .ServiceTimeE := ‘2.SerciveTimeQ;

2’ .TaskName := ‘4 .name;

7' .TaskName := ‘4.name & “Broker”;
end;

Chapter 4: From UML Descriptions of Architecture to LQN Models 90

Figure 4.19: Production rule for client-server pattern with a handle-driven broker

production MergeHdBroker =

Dttt H
' ‘1 : Active ,
' ~arcOut '
[} t
' arcOut i '
]]
])
' *2 : Sync ‘6 : Sync '
]]
] [}
! arclIn ' arcln ' !
i]
! '3 : Entry *7 : Entry X
] i
I ()
: owns ‘ owns A :
]]
X *4 : HdBroker ‘9 : HdBroker X
1]
\ '
1)

T ey o B

: 10 =1 |

: arcout * :

] 1

: 2r = 2 :

1]

) I

; arcin v !

1 '

: 3¢ = 3 :

' owns A !

: 41 - :4 :

L} 1

1 t

; :

T)

' X

condition ‘4.name = ‘9.name;
end;

Figure 4.20: Production rule for merging two duplicated handle-driven brokers

Chapter 4: From UML Descriptions of Architecture to LQN Models 91

4.4.5 Critical Section Pattern

The critical section pattern applies to cases where two or more active objects share the
same passive object. The constraint {sequential} attached to the methods of the shared
object indicates that the callers must coordinate outside the shared object (for example, by
the means of a semaphore) to insure correct behaviour. The transformation of the critical
section collaboration produces either the model given in Figure 4.21a or 4.21b, depending
on the allocation of user processes to processors (similar to the pipeline case). The
premise is that an LQN task cannot change its processor allocation. Since the operations
on the shared object (i.e., critical sections) may be executed by different threads of con-
trols of different users running on different processors, each operation is modelled as an
entry that belongs to a different task fi to fx running on its user’s processor. However, these
tasks must be prevented from running simultaneously, reason for which the semaphore
task was introduced. The performance attributes to be provided for each user must specify

critical and non-critical execution times separately.

Chapter 4: From UML Descriptions of Architecture to LQN Models 92

P-———— 1
1 Accessor

- -

'\ CRITICAL SECTION ,

~

~ -
> -

- — -

Acce's;or t ~ o
e ! Actessor
P d - l ~ -~
‘ .7] IndP
<<process>> . <<process>>
userl : userN
Shayed
]
?0‘ X ‘{()
shared
fl(sequential)
ﬂ(sgguential)

[fn(sequential) ‘

semaphore
and buffer,

a) All the users are running on the same b) The user are running on different
processor processors

Figure 4.21: Transformation of critical section pattern

The following fragment of PROGRES code (Figure 4.22) illustrates the graph produc-
tion rule for the case presented in this pattern (as in Figure 4.21a, where all users are locat-
ed on the same processor). The left-hand side of the graph consists of a CriticalSection

node (node 3), an Active Object nodes (node 1) represents the acessor, an OBJECT node

Chapter 4: From UML Descriptions of Architecture to LQN Models 93

(node2) that owns an Operation node and three edges (accessor and shared) that indicate

the roles of the objects.

In the right-hand side, the CriticalSection node remains in the graph because it may be
connected to other Operation nodes as well. The Operation node (node 4) becomes an En-
try owned by node 2. A new Sync node (node 5) is also added representing the attributes of
a synchronous request in LQN model. If there are other Operation nodes for the same OB-
JECT exist, the production will be execute in a loop to transform all operations to entries.
The transfer keyword below the graph indicates the modifications of the attributes on the

right-hand side.

The condition keyword in this production indicates an additional condition on any
subgraph that matches the LHS in order for the production to be executed. In this case the
condition is both Active object must locate on the same processor. For the other case (as in
Figure 4.21b, both objects are located on different processors), the LHS of the production
rule is similar except it has a different condition which means that the two Active object
must locate on different processors. The RHS of the rule is bit different too. The tasks will
be located on different processors. Since we do not have a Processor node in the graph
schema, we use the Processor attribute instead. So, the Processor attributes of the tasks

will be different.

Chapter 4: From UML Descriptions of Architecture to LQN Models 94

production TransformCriticalSection =

shared .
‘3 : CriticalSection —= ‘4 : Operation ,
: :
1 b
X accessor; owns 1 :
)]
! :] l
! ‘1 : Active *2 : OBJECT !
\ J)
__________________ LT T T EREETEE R,
'3 ; CriticalSection :
; el)
' 57 sync -1 ‘4 Entry :
. accessor A 2
X ar?9ﬂ! owns X
i]
] 1
]]

..

condition 1'.processor := ‘2.processor;
transfer 5’.fromName := ‘l.name;
5/ .toName := ‘4.name;
5’ .Type := “y”;
4’ .TaskName := ‘2.name;
end;
Figure 4.22: Production rule for critical section pattern

4.5 Other Production Rules

So far we have shown the production rules for the main patterns. There are still other
production rules in the program dealing with the creation of the input graph, setting at-
tributes, clean-up procedure, retrieving attributes from all tasks and entries, writing to file

etc. They will be explained in this section.

Chapter 4: From UML Descriptions of Architecture to LQN Models 95

4.5.1 Create Input Graph and Set Attributes

As mentioned before, in this thesis the input graph is created by using PROGRES produc-
tions. An input graph is created component by component and pattern by pattern. When
creating an input graph, the performance specific attributes like ServiceTime, VisitRatio

and Processor can also be set.

The following example show how to create two Operations with 3-phase Servicelime
attributes:

CreateOperation (“servicel”, #“0”, “0.2", “0”)
& CreateQperation (“service2”, #“0”, “0.3”, “0”)

The following codes show how to create two Active Objects with Processorname, Pro
cessortype and multiplicity attributes:

CreateActive (“clientl”, “procl”, “f~, “i”, 10)
& CreateActive (*client2”, “proc2”, #“f~,“i”, 20)

4.5.2 Transform All Objects to Tasks

This production (Figure 4.23) will be executed at the last stage of the transformation,
when all the patterns are transformed and there is no need for intermediate nodes any
more. This production will be called in a loop to transform all the OBJECT node to Task
nodes. The edges associate with OBJECT node still remain associated with the corre-
sponding Task node, due to the redirect keyword from the embedding section (If the redi-
rect part would be missing, all the edges associated with the node in LHS which has no

counterpart in RHS would be deleted).

Chapter 4: From UML Descriptions of Architecture to LQN Models 96

production TransformObjectToTask =

] 1
']
1 I
. 1'1 : OBJECT :
I \
[}]
]]
e
X :
t '
¢ '
|]
X 1’ Task ,
]]
]]
embeddin
redirect -owns->, <-arcIn-, -arcOut-> from ‘1l to 1’;
transfer 1’.name := ‘1l.name;

1’ .isEntry := 'l.isEntry;
17 .MultiplicityT := ‘1.MultiplicityO;

1’ .Processor := ‘l.Processor;
1’ .ProcType := ‘1l.ProcType;
end;
Figure 4.23: Production rule for transforming an OBJECT to a Task

4.5.3 Transform All Operations to Entries

This production (Figure 4.24) will be executed at the last stage of the transformation, after
all the patterns were transformed. This production will be called in a loop to transform all
the Operation node to Entry node. The edges associate with Operation node still remain in

the same association with the corresponding Entry node.

production TransformOperationToEntry =

]]
[} L}
] I
| '1 : Operation |
: :
' [}
] 1

..........................

Chapter 4: From UML Descriptions of Architecture to LQN Models 97

embedding
redirect <-owns-, <-arcIn-, -arcOut-> from ‘1l to 1';
transfer 1’.name := ‘1l.name;
1’ .TaskName := ’‘1.TaskName;
1’ .ServiceTimeEl ‘l1.ServiceTime0Ol;
1’ .ServiceTimeE2 ‘1.ServiceTime02;
1’ .ServiceTimeE3 := ‘1l.ServiceTimeO3;

end;

Figure 4.24: Production rule for transforming an Operation to an Entry

4.5.4 Get Attributes of All Tasks and Entries

These productions (Figure 4.25-4.27) basically retrieve all the attributes of all Task nodes,
Entry nodes and ARC_PARAMETER nodes and return them (like the return keyword
indicates). Later these attributes will be saved in an data structure by calling external C
functions. The attributes like taskName, entryName, ServiceTime, visitRation, multiplicity

and types of arcs are used to generate the LQN file.

production GetTaskAtt(out tname, proc, proctype : string
; out m : integer)

..........................

Chapter 4: From UML Descriptions of Architecture to LQN Models 98

1/ : Active

embedding
redirect -owns->, <-arcIn-, -arcOut-> from ‘1l to 1’;
return tname := ’‘l.name;
proc := 'l.Processor;
proctype := ‘1.ProcType;
m := ‘1. MultiplicityT;
end;
Figure 4.25: Production rule for retrieving attributes of a Task

production GetEntryAtt(out ename, taskname : string ;
out serTl, serT2, serT3 : Real) =

..........................

........................

embedding
redirect <-owns-, <-arcIn-, -arcOut-> from ‘1l to 1';
return ename := ‘l.name;
taskname := ‘1l.TaskName;
serTl := ‘l.ServiceTimeEl;
serT2 := ’‘l.ServiceTimeE2;
serT3 := ‘1.ServiceTimeE3;

end;

Chapter 4: From UML Descriptions of Architecture to LQN Models 99

Figure 4.26: Production rule for retrieving antributes of an Entry

production GetArcAtt(out arctype, fromname, toname
string ;
out visitl, visit2, wvisit3 : Real)

..

rcouf larcIn
‘l : NODE —® *3 : ARC_PARAMETER—®» ‘2 : NODE
J

..

..

--

return arctype := ‘3.Type;
fromname := ‘3.fromName;

toname := ‘3.toName;

visitl := ‘3.Nbvisitl;
visit2 := ‘3 .NbVisit2;
visit3 := ‘3 .NbVisit3;

end;

Figure 4.27: Production rule for retrieving attributes of an ARC_PARAM

4.6 Generating An LQN Model File

PROGRES Program itself provide limited features to deal with output to files. The solu-
tion is to write external functions using C programming language and import them into a

PROGRES program. In this case, we want to generate a text file according to a predefined

Chapter 4: From UML Descriptions of Architecture to LQN Models 100

LQN model format [Franks95], which can be used as an input file for existing LQN solv-
ers which can solve the model and provide performance resuits. Typical results of an LQN
model are response times, throughput, utilization of servers on behalf of different types of
requests, and queueing delays. The LQN results may be used to identify the software and/
or hardware components that limit the system performance under different workloads and

resource allocations.

The following fragment of PROGRES code illustrates how a PROGRES program im-

ports external C functions:

from writeLQN import

functions
writeLQNFile : (string) -> integer,
saveEntryAtt :
(integer, string, string, string, string, string) ->
integer '
saveArcAtt £
(integer, string, string, string, string, string,
string) -> integer
saveTaskAtt
(integer, string, string, string, integer) -> inte-
ger;

end;

These C function basically save the attributes of all tasks and entries and write them to
a text file according to the predefined LQN input file format. The main transaction in

PROGRES will call these function after it does all the graph transformations.

Chapter 4: From UML Descriptions of Architecture to LQN Models 101

4.7 Control Structure for Graph Transformation

A software system contains many components involved in various architectural connec-
tion instances (each described by a pattern/collaboration), and a component may play dif-
ferent roles in different patterns. The transformation of the architecture into a performance
model is done in a systematic way, pattern by pattern. PROGRES searches for subgraphs
in the underlying input graph that match the left-hand side of the rules for different given
pattern. The transformation process ends when all UML collaborations have been proc-

essed.The final result is an LQN model that can be written to a file.

The following shows the sequential steps of the whole transformation in pseudo-code:

Transaction UMLtoLQN
Create input graph;
begin
While (there is pattern 1 in input graph)
Transform it;
While (there is pattern 2 in input graph)
Transform it;
While (there is pattern n in input graph)
Transform it;
Clean collaborations();
Merge Tasks;
Merge Entries;
Get Attributes;
Write to LQON file;
end;

The graph will be in an intermediate stages if not all interactions are covered by
known patterns. In this case the user gets an warning message from the tool. This problem

can be solved by defining more patterns.

Chapter 4: From UML Descriptions of Architecture to LQN Models 102

The control structure for this PROGRES program is similar to the control structure we
have discussed in the previous chapter. The whole approach is illustrated with a case-study

in section 4.8.

4.8 Case-Study: A Telecommunication System

This section presents the architecture of an existing telecommunication system which is
responsible for developing, provisioning and maintaining various intelligent network serv-
ices, as well as for accepting and processing real-time requests for these services (see Fig-
ure 4.28). The system was modelled in LQN, and its performance analysed in
[Shousha98a). Here we consider only the transformation from the system’s UML architec-
ture to its LQN model. The real time scenario modelled in {Shousha98a] starts from the
moment a request arrives to the system and ends after the service was completely proc-
essed and a reply was sent back. As illustrated in Figure 4.27, a request is passed through
several filters of a pipeline: from Stack process to /O process to RequestHandler and all
the way back. The main processing is done by the RequestHandler, which accesses a real-
time database to fetch an execution “script” for the desired service, then executes the steps
of the script accordingly. The script may vary in size and types of operations involved, and
hence the workload varies largely from one type of service to another (by one or two
orders of magnitude). Due to experience and intuition, the designers decided from the
beginning to allow for multiple replications of the RequestHandler process in order to
speed up the system. Two shared objects, ShMem! and ShMem2, are used by the multiple

RequestHandler replications.

Chapter 4: From UML Descriptions of Architecture to LON Models

103

[Db i Poubiter
- € -
K 7 ' SendFilter 1 . . -SC-n(iFl-hEl’ .
\ DOUBLEFHIER/ ‘ QQUBLEF“IER'
ettt . __ _ [UpSamEiier)
! - - UpSamFiiter | e -7 iDnStmFilter 1
! -~ "' DnSumFilter | - . PIPELINE !Buffer '
- - am - ‘ - b o - - w
. /" PIPELINE ’ \ WITH BUFFER ,
1 \ WI'I'H MESSAGE ; ’ Yo P
] PR R \
| ,s —_—_—— ,’
<<processq rocess> «<<process>x -
/, v [0 _1- ~ 1
Yy o—» ..n
< d Y o—» Qin <<process>>
RequestHandler
"—o St u ‘—'0 IQ_Q“I H
\ ,F \\ 4 \\
\\ ’ \ -
v LT_SEm_FﬁtEr V=T _ == Client 1
o~ D%Sth:lth" ," :B‘&%ﬂe r“ﬂ:"“ j ', :LSe:zr j
,"PIPELINE M PIPELINE | _°_ I csDien
\ WITH MESSAGE , \WITH BUFFE -7 ‘. K
=~ N e - = - - -~ . - hd - - I‘ -
- - s
- - /
Pl 7
ShMem1) ShMem2 ,’ <<process>> ,/
7)
alloc(){squential} ' i DataBase
free() {squential} ’, update() {squential } X
]
\ ,’ \‘ 'I
\ ’ \ ,
\ V \ ,
\ == == \ ,
. == <~ Accessor, \ 2 Accessor”
.’ Swed] - iAgeen
‘C CAL SECHON 'CRITICAL SECTION ’

Figure 4.28: UML descriptions of high-level architecture of a telecommunication system

The following is a part of the PROGRES program illustrates the main control structure

of this case.

transaction MAIN =
CreatelnputGraph
& TransformPatterns

Chapter 4: From UML Descriptions of Architecture to LQN Models

& writeToFile
end;

transaction CreatelInputGraph =
CreateDoubleFilter

“Stack”, *“StackIn”, *“StackOut”, %“procl”, “f”)
CreatebDoubleFilter (#I0”", “I0Oin”, “IOout”, “procl”, “f”)

CreateDoubleBuffer (“Buffer”, +“procl”,

Mfl’)

CreateActive (“RequestHandler”, “procl”, *“f”, 10)

CreateServerl (“DataBase”, *“servicel”,

AddpPipeline (“StackIn”, “IOin”)
AddPipeline (“IOout”, *“StackOut”)
AddPipelineWithDoubleBuf

(
&
&
&
& CreateOperation (“servicel”, “0”, “0.8", *“0”)
&
&
&
&

“procl”, “f”)

(“I0in”, “Buffer”, “RequestHandler”)

0

AddPipelineWithDoubleBuf

(“RequestHandler”, “Buffer”, “IOout”)

CreateSharedMem2 (“ShMeml”, %“alloc”,

CreateSharedMeml (“ShMem2”, *“update”,
AddCriticalSection (“RequestHandler”,
AddCriticalSection (“RequestHandler”,
AddCriticalSection (“RequestHandler”,

— R AR R R

transaction TransformPatterns =

TransformAllDoubleFilter

& TransformAllPipeline

& TransformAllPipelineWithBuf

& MergeAllDoubleBuffer

& TransformAllCSDirect

& TransformAllCriticalSection

end;

transaction TransformAllPipeline =
loop
TransformPipeline
end
end;

AddCsSDirect (“RequestHandler”, “servicel”)
“free”, “procl”, “f”

”prOCl", ufn)

“ShMeml”, “alloc”)
“ShMeml”, “free”)
“ShMem2”, *update”

Chapter 4: From UML Descriptions of Architecture to LQN Models 105

transaction writeToFile =

use int : integer

do
DeleteCollaborationNodes
TransformAllObjectToTask
TransformAllOperationToEntry
GetAllTaskAtt
GetAllEntryAtt
GetAllArcAtt
int := writeLQNFile (“testcase.lgn”)

R R R R

end
end;

We create an input graph first, and transform it pattern by pattern until no untrans-
formed node is found in the whole graph. Finally the program saves all the relevant at-

tributes and writes to a file according to the LQN input file format.

The case-study system was built to run either on a single-processor or on a multi-pro-
cessor with shared memory. Processor scheduling is such that any process can run on any
free processor (i.e., the processors were not dedicated to specific tasks). Figure 4.29 illus-
trates the LQN model of the system obtained by applying the graph transformations de-

scribed in this chapter.

Chapter 4: From UML Descriptions of Architecture to LQN Models 106

StackIn
equest
Han dler
g 4

IOout
StacKexec / % update/ﬁ) ataBasy

alloc/ free

Figure 4.29: LQN mode! of the telecommunication system

The LQN model file for this case study can be generated by the PROGRES program
using external functions written in C programming language. This file can be directly used
as an input file of an LQN solver. The LQN model file for this case study will be shown in

Appendix 3.

The LQN model can be solved with existing LQN solvers [Franks95] either analytical-
ly or with simulation. The performance analysis of the model is outside the scope of the

thesis.

CHAPTER 5 Conclusions

5.1 Conclusions

The purpose of this thesis is to contribute to bridging the gap between software architec-
ture and performance analysis. By automating the construction of the performance models
from software architectures, the time and effort required for SPE will be considerably
reduced, and the consistency between the model and the system under development more

easily maintained.

The thesis proposes an approach to automate the derivation of the structure of an LQN
performance model from the patterns used in the high-level architecture of the system.
The proposed approach is based on the graph grammar formalism, and it was implemented
by using PROGRES, a known visual language and environment for programming with

graph rewriting systems[Schuerr90]. Two versions of the implementation are presented. In

107

Chapter 5: Conclusions 108

the first one we used an ad-hoc language to describe the high-level architectural patterns
of the system, whereas in the second we used the new UML standard. The first approach
has the advantage that the notation is “tailor-made” for our needs, and thus contains exact-
ly the kind of information requests for building a performance model. The disadvantage is
obvious due to the fact that notation is ad-hoc, not standard. We tried to overcome this by
using UML in our second version. However, this choice being a new challenge. UML is a
very rich notation that contains many kinds of diagrams and much more information than
we need to express high-level architectures.The approach taken in the thesis is to use only
a subset of UML features for the input graph to the PROGRES transformation program.
This does not solve the problem of accepting UML models as input to our transformation

program, which opens directions for future work.

5.2 Future Work

The matter of this thesis can be further researched in the following direction:

» Extend the research with more software architectural patterns of systems with both
descriptions we have used in this thesis.

» Extend the tool with a interface with UML graphical tool to generate the PROGRES

input graph by graphical or textual definition.

« Extend the process of building LQN model by taking into account more detailed UML
design documents. Whereas the structure of the LQN model is desired from the high-

level architecture of the system, as shown in the thesis, the model parameter could be

Chapter S: Conclusion 109

obtained from lower-level behavioural views that show what happens inside the higher
level architectural components. By aggregating the resource demands at lower levels
of abstraction, one should be able to obtain the average resource demands of the high
level component (which are the parameters of the performance model, such as execu-

tion times and visit ratios).

References

[Adebayo97]

[Adler95]

(Allen97]

[Booch99]

[Buschmann96]

[Franks95]

[Franks96]

O. Adebayo, J. Neilson, D. Petriu, “4 Performance Study of Client-
Broker-Server Systems”, in Proceedings of CASCON’97, pp 116-130,
R. Adler, “Distributed Coordination Models for Client/Server Comput-
ing”, IEEE Computer, pp 14-22, April 1995.Toronto, Canada, Novem-
ber 1997.

R.Allen, D. Garlan, “A Formal Basis for Architectural Connection”,
ACM Transactions on Software Engineering Methodology, Vol.6,
No.3, pp 213-249, July 1997.

G.Booch, J.Rumbaugh, I.Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley, 1999.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal, Pat-
tern-Oriented Software Architecture: A System of Patterns, Wiley Com-
puter Publishing, 1996.

G. Franks, A. Hubbard, S. Majumdar, D. Petriy, J. Rolia, C.M. Wood-
side, “A Toolset for Performance Engineering and Software Design of
Client-Server Systems ", Performance Evaluation, Vol. 24, Nb. 1-2, pp
117-135, November 1995.

G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, C.M. Wood-
side. “Performance Analysis of Distributed Server Systems”. In Pro-
ceedings of the 6th International Conference on Software Quality, pp.

15-26, Ottawa, Canada, October 1996.

110

References

[Franks98]

[Dilley97]

111

G. Franks, C.M.Woodside, “Performance of Multi-Level Client-Server
Systems with Parallel Service Operations"”, Proceedings of the First
International Workshop on Software and Performance, Santa Fe, USA,
pp-120-130, Oct. 1998.

J.Dilley, R.Friedich, T.Jin, J.Rolia, “Measurement Tool and Modelling
Techniques for Evaluating Web Server Performance” in Lecture Notes
in Computer Science, vol.1245, Springer, pp.155-168, R.Marie, B.Pla-
teau, M.Calzarosa, G.Rubino (eds), Proc. of 9-th Int. Conference on
Modelling Techniques and Tools for Performance Evaluation, June

1997.

[Hesselgrage98] Mary Hesselgrage, “Avoiding the Software Performance Crisis”, Proc.

[Fowler98]

[Hrischuk96]

[Hrischuk99]

[Douglass98]

[Neilson95]

of the First International Workshop on Software and Performance,
Santa Fe, USA, pp.78-79, Oct.1998.

Martin Fowler, UML Distilled, Addison-Wesley, 1998.

Curtis. E. Hrischuk “Implementing Angio Trace Analysis using the
Graph Rewriting Tool PROGRES"

Curtis. E. Hrischuk, C.Murray Woodside, Jerome A Rolia, and Rod
Iversen, “Trace-based load characterization for generating perfor-
mance software models” IEEE Transactions on Software Engineering,
Vol.25, Nb.1,pp 122-138, January 1999.

Bruce Powel Douglass, Real-time UML, Addison-Wesley, 1998.

J.E Neilson, C.M.Woodside, D. Petriu, and S. Majumdar, “Software

bottlenecking in client-server systems and rendezvous networks”, IEEE

References

[OMG92]

[Petriu98]

[Petriu99]

[Rolia87]

[Rolia82]

[Rolia95]

[Schuerr94]

112

Transactions on Software Engineering, vol. 21(19) pp.776-782, Sep-
tember 1995.

Object Management Group, The Common Object Request Broker:
Architecture and Specification, Object Management Group and X/
Open, Framingham, MA and Reading Berkshire

UK, 1992.

D. Petriu, X.Wang, “Deriving Software Performance Models from
Architectural Patterns by Graph Transformations”, Proc. of the Sixth
International Workshop on Theory and Applications of Graph Trans-
formations TAGT’98, Paderborn, Germany, Nov. 1998.

D.C. Petriu, X. Wang “From UML Descriptions of High-level Software
Architecture to LON Performance Models”, Proc. of Applications of
Graph Transformation with Industrial Relevance, Monastery Rolduc,
Kerkrade, The Netherlands, September 1999.

J.A. Rolia. Performance Estimates for Multi-tasking Software Systems.
Master’s Thesis. University of Toronto, Canada, January 1987.

J.A. Rolia. Software Performance Modelling. Ph.D. Dissertation, CSRI
Technical Report#260, University of Toronto, Canada, January 1992.
J.A. Rolia, K.C. Sevcik, “The Method of Layers”, [EEE Trans. On
Software Engineering, Vol. 21, Nb. 8, pp 689-700, August 1995.

A. Schuerr, “PROGRES: A Visual Language and Environment for
PROgramming with Graph Rewrite Systems”, Technical Report AIB

94-11, RWTH Aachen, Germany, 1994.

References

[Schuerr90]

{Schuerr97]

[Schuerr97]

[Schuerr97]

[Shaw96a]

[Shaw96b]

[Smith90]

[Shousha98a])

[Shousha98b]

113

A. Schuerr, “Introduction to PROGRES, an attribute graph grammar
based specification language”, in Graph-Theoretic Concepts in Com-
puter Science, M. Nagl (ed), Vol. 411 of Lecture Notes in Computer
Science, pp 151-165, 1990.

A. Schuerr, “Programmed Graph Replacement Systems ", in Handbook
of Graph Grammars and Computing by Graph Transformation, G.
Rozenberg (ed), pp 479-546, 1997.

A. Schuerr, “PROGRES for Beginners” RWTH Aachen, D-52056
Aachen, Germany

A. Schuerr, “A Guideed Tour through the PROGRES Environment”
RWTH Aachen, D-52056 Aachen, Germany

M. Shaw, D. Garlan, Software Architectures: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

M. Shaw, “Some Patterns for Software Architecture” in Pattern Lan-
guages of Program Design 2 (J.Vlissides, J. Coplien, and N. Kerth
eds.), pp.255-269, Addison Wesley, 1996.

C.U. Smith, Performance Engineering of Software Systems, Addison
Wesley, 1990.

C.Shousha, D.C. Petriu, A. Jalnapurkar, K.Ngo, “Applying Perfor-
mance Modelling to a Telecommunication System”, Proceedings of the
First International Workshop on Software and Performance, Santa Fe,
USA, pp.1-6, Oct.1998.

C.Shousha. “Applying Performance Modelling to a Telecommunication

References

[Spitznagel98]

(UML]

[Williams98]

[Woodside88]

[Woodside95a]

[Woodside95b]

114

System”. M.Eng thesis. Carleton University, Ottawa, Sep,1998
B.Spitznagel, D.Garlan, “Architecture-Based Performance Analysis”,
Proc. of the Int. Conference on Software Eng. and Knowledge Eng.
SEKE’98, pp. 146-151, 1998.

UML Summary version 1.1 September 1997.
“http://rational.com/UML".

L.G Williams, C.U.Smith, “Performance Evaluation of Software Archi-
tectures ', Proceedings of the First International Workshop on Software
and Performance, Santa Fe, USA,

pp.164-177, Oct. 1998.

C.M. Woodside. “Throughput Calculation for Basic Stochastic Ren-
dezvous Networks”. Performance Evaluation, vol.9(2), pp. 143-160,
April 1988.

C.M. Woodside, J.E. Neilson, D.C. Petriu, S. Majumdar, “The Stochas-
tic Rendezvous Network Model for Performance of Synchronous Client-
Server-like Distributed Software”, IEEE Transactions on Computers,
Vol.44, Nb.1, pp 20-34, January 1995.

C.M. Woodside, S. Majumdar, J.E. Neilson, D.C. Petriu, JA. Rolia,
A.Hubbard, R.b. Franks “A Guide to Performance Modelling of Dis-
tributed Client-Server Software Systems with Layered Queueing Net-

works”’.

StreamFiler downStreamFiler

[

Active Collaboration N Active
Stackin PPWithMs§ 10In
filter,
fil
Coflaboration Aclive Collaboratio Aclive
DoubleFiiter ¥ Stack Do“hh‘[-“": 10
tontainer
iner '%\.
Active aborali l
StackOut 4 Co;t'm(::;:.
mFilter Slream

downStrea

Opention

alloc

Collaboration
upStreamFilter PPWithBuf
aier trcamFilter
Buffer
InBufler
r Acti
- ctive
Collabonation NODE RequestHandler
DoubleBuffer [12ikcfloubleBuffer
Py cliem
\'\ B:’g‘;, upStregfyFilic
outBufier Coltaboration
F Y PPbufler CSDirect
Collaboration .
PPWIthBuf service
Openation
update
4 owns Active
OBIJECT Database
1 Shmem2
R 1)

shared 4

Collsboration | I"coitaboration

CriticalSection] | CrjicatSectios

I xipuaddy

Apms ase) 10§ ydein nduj STYOHOAJ

xipuaddy

Sl

rcout

Dy ot i} ol
StackOut Async

Dummy |
StacklIn
arcogt
[Synd [Synd
arcly v arcln
StackE 1{StackE2

owr:s\

/w'vns

Stackexec

arcout

Dummylarcout

IOin

Dummy
100ut

argout

|Syn3
arcln

IOEL

IOE2

arcln

arcin
tin

arcout

S

cln

Request
’ :‘ASY“C Handler

CO

I§)m Synq [Sync

argin

arcln

update

DataBase

Shmem

¢ xipuaddy

Apmyg ase) 10§ ydern yndinQ SNIOOUJ

xtpuaddy

911

Appendix 117

Appendix 3: LQN Input File for Case Study

The LQN model file for the case study is illustrated below as well. It is generated by the
PROGRES program using external functions written in C programming language. This
file can be directly used as an input file of an LQN solver.

G

0.00001

100

1

0.9

-1

End of General Information

Processor Information: No of processors
P1
p procl £

End of Processor Information

-1

*

Task Information: No of Tasks

11
DummyStackOut n DummyStackOutEntry -1 procl m 1
ShMem2 n update -1 proclm 1
DataBase n servicel -1 procl m 1
Stack n StackOut StackIn -1 procl m 1
DummyStackIn n DummyStackInEntry -1 procl m 1
ShMeml n alloc free -1 procl m 1
Buffer n BufferRead BufferWrite -1 procl m 1
IO n I0in IOout -1 procl m 1
DummyIOin n DummyIOinEntry -1 procl m 1
RequestHandler n RequestHandlerEntry -1 procl m 10
DummyIOout n DummyIOoutEntry -1 procl m 1
End of Task Information

S o i e SN n g S A S A A e G e

-1

#Entry Information: No. of Entries

-1

118

15

StackOut 0 0.1 0 -1

StackIn 0 0.1 0 -1
BufferRead 0 0.1 0 -1
RequestHandlerEntry 0 0.1 0 -1
DummyIQOoutEntry 0 0.1 0 -1
DummyStackOutEntry 0 0.1 0 -1
DummyStackInEntry 0 0.1 0 -1
update ¢ 0.1 0 -1
DummyIOinEntry 0 0.1 0 -1
servicel 0.8 0 0 -1
alloc 0 0.1 ¢ -1

free 0 0.1 0 -1
BufferWrite 0 0.1 0 -1

IOin 0 0.1 0 -1

IQout 0 0.1 0 -1
DummyIOout DummyStackOut 0 1 0 -1
RequestHandler RequestHandler 0 1 0 -1
DummyStackOut StackOut 0 1 0 -1
DummyIOin RequestHandler 0 1 0 -1
DummyStackIn StackIn 0 1 0 -1
DummyStackIn DummyIOin 0 1 0 -1
IOout BufferRead 0 1 0 -1
RequestHandler BufferRead 0 1 0 -1
RequestHandler servicel 0 1 0 -1
RequestHandler alloc 0 1 0 -1
RequestHandler free 0 1 0 -1
RequestHandler update 0 1 0 -1
DummyIQOout IQout 0 1 0 -1
RequestHandler BufferWrite 0 1 0 -1
I0in BufferWrite 0 1 0 -1
DummyIQin IOin 0 1 0 -1

End of Entry Information

