
Deriving Software Performance Models from
Architectural Patterns by Graph Transformations

by

Xin Wang

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Science
Information and System Science

Department of Systems and Computer Engineering
Faculty of Engineering

Carleton University
Ottawa, Canada
September, 1999

O Copyright 1999, Xin Wang

National Library 191 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K I A O N 4 Otlawa ON K I A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou
copies of ths thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownershp of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

To my husband Lizhong

Abstract

Performance charactenstics play an important role in defining the quality of software

products, especially in the case of ml-time and distributed systems. The developen of

such systems should be able to assess and understand the performance effects of various

architectural decisions, starting at an early stage, wheo changes are easy and less expen-

sive, and continuing throughout the software life cycle. This can be achieved by con-

structing and analyzing quantitative performance models that capture the interactions

between the main system components and point to the system's performance trouble

spots. This thesis contributes toward bridging the gap between software architecture and

performance analysis. It proposes a systematic approach, and implemented hwo versions

of the proposed approach based on graph transformations, by ushg PROGRES (Pro-

grammed Graph Rewriting System) to build LQN (Layered Queueing Network) perfor-

mance models fiom descriptions of hi@-level software architecture of a system and more

exactly from the architechual patterns used in the system.

Acknowledgments

This thesis would not have been possible without the encouragement, support of many

people. In particular, 1 am very much in debt to my supenisor Professor Dorina C. Petnu,

for motivation when 1 needed it most, and many hours of interesthg discussion. Without

her guidance and helpful suggestions, working on this thesis would have been much more

difficult. Her inspiration and motivation will have a long-lasting impact on my future

endeavor too.

During my studying at Carleton, 1 was able to benefit from the knowledge of many pro-

fessors, staff, former graduate students, research engineen. 1 would like to thank al1 of

them, especially the members of the RADS lab, for their full support, friendship and a

wonderhl worbg environment.

The financial assistance of the Communications and Information Technology Ontario

(CITO) is gratefully acknowledged.

Last but not least, 1 would like to give my special thanks to my husband Lizhong. Without

his consistent suppon and encouragement, I could have never gone this fm.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Background Literature 6

2.1 Software Performance Engineering . 6

2.2 Software Architecturai Pattern . 9

2.3 Layered Queueing Network Mode1 . 11

2.3.1 LQN Mode1 Components . 12

2.3.2 Graphical Representation of an LQN Mode1 14

2.3.3 LQN Parameten . 16

2.3.4 Solving LQN Models . 17

2.3.5 Results of LQN Models . 17

2.4 Unified Modelling Laquage . 18

2.4.1 UMLGoals . 19

2.4.2 UML Major Featwes . 19

2.4.3 UML Collaboration . 21

2.5 Programmed Graph Rewriting System . -22

2.5.1 Components of PROGRES Graph -23

2.5.2 Definition of Graph Schema . 26

2.5.3 Definition of Graph Transformation 27

. 2.5 -4 Components of a PROGRES Program 31

3 From Component/Connector Based (CCB) Descriptions of Software Architec-

ture to LQN Models 34

. 3.1 Component/Connector Based (CCB) Descriptions 35

. 3.2 Some Frequently Used Architectural Patterns -37

. 3.2.1 Pipeline and Filter Pattern 37

. 3.2.2 Client-Semer Pattern -38

. 3 . 2.3 Critical Section Pattern 40

. 3.3 More On Comector Types 41

. 3.4 PROGRES Graph Scbema 43

. 3.5 Transformations from Architectural Patterns to LQN 46

. 3.5.1 General Transformation Principles 46

3.5.2 Pipeline and Filter Pattern . 47

. 3.5.3 Client-Server Pattern 49

. 3.5.4 Critical Section Pattern 51

. 3.5.5 Layered Client-Semer 52

3.6 Control Structure for Graph Transformation 54

4 From UML Descriptions of Software Architecture to LQN Models 59

4.1 Architectural Patterns and UMf, Collaborations 60

. 4.2 Scope of the Thesis Research 64

. 4.3 PROGRES Graph Schema 65

4.4 Transformations h m Architectural Paîtems to LQN -68

. 4.4.1 General Transformation Principles 68

. 4.4.2 Pipeline and Filter Pattern 69

4.4.3 Double Filter Collaboration . -75

. 4.4.4 Client-Server Pattern 78

4.4.5 Critical Section Pattern . 91

. 4.5 Other Production Rules 94

4.5.1 Create Input Graph and Set Attributes 95

. 4.5.2 Transform Al1 Objects to Tasks 95

4.5.3 Transfomi Al1 Operations to Entries 96

. 4.5.4 Get AttributesofAllTasks andEntries -97

4.6 Generating An LQN Mode1 File . 99

4.7 Control Structure for Graph Transformation 101

4.8 Case-Study: A Telecommunication System 102

5 Conclusions 107

5.1 Conclusions . 107

5.2 Future Work . 108

References . 110

Appendirl . 115

Appendix2 . 116

Append ix3 . 117

List of Figures

. Graph representaîions for requests in LQN 15

. Sample LQN mode1 of a database application 16

. Graph representation of a positive node 23

. Graph representation of a negative node -24

. Graph representation of an edge 24

. Graph representation of a path 24

. Graph representation of a restriction 25

. PROGRES graph schema notation 26

. An example of an production nile 29

. An example of a test 30

. An example of a function 30

. An example of an transaction - 3 1

. Notation for CCB description 36

Communication styles in pipeline and filter pattern 38

Communication styles in client-server pattern -40

. Critical section pattern 40

. Client-server connecter types -42

Joint graph schema for the CCB description and LQN mode1 45

Transformation of a PF comection by an asynchronous message to a LQN model

. with asynchronous request -48

Transformation of a PF comection by a shared buffer, where the filter processes

. are ninning on the same processor -48

Transformation of a PF comection by shared buffer, where the filter processes are

. running on different processors -48

Transformation of three direct CS comection instances to LQN (each service

offered by the server is represented by an entry) 50

Transformation of three direct CS connection instances by half forwarding broker

to an LQN mode1 with forwarding arcs . 50

Transformation of three direct CS co~ect ion instances by handle-driven broker to

LQN . 50

Transformation of a critical section pattern, where the client processes are running

on the same processor . 51

Transformation of a cntical section pattern, where the client processes are running

on different processors . 51

. . . Two-step transformation process of server-to server CS direct co~ect ions 53

An example of a whole transfomation process 55

Flow chart of transformation control structure -57

UML collaboration for client-server pattern with a fonvarding broker -63

UML collaboration for client-server pattern with a half-forwarding broker . . . 63

UML collaboration for client-semer pattern with a handle-driven broker 64

Scope of the thesis research . 64

Joint graph schema for architectural pattern and LQN models -67

Transformation of pipeline and filter pattern with a message 69

Transformation of pipeline and filter pattern with a buffer -70

Production rule for pipeline and filters pattern with a message 72

Production nile for pipeline and filters pattern with a buffer 75

Transformation of double filter collaboration 76

Production nile for double filter collaboration -78

Transformation of the client-server pattern with a direct connection 79

Production mle for client-Server pattern with a direct connection 80

Transformation of the client-server pattern with a forwarding broker 83

Transformation of the client-server pattern with a half-forwarding broker 83

Production rule for client-server pattern with a half forwarding broker -86
Production mle for merging two duplicated forwarding broken -87

Transformation of the client-server pattern with a handle-driven broker . . 87

Production rule for client-server pattern with a handle-driven broker . . 90

Production rule for merging two duplicated handle-driven brokers 90

Transformation of critical section pattern . 92

Production rule for cntical section pattern 94

Production rule for transfomihg an OBJECT to a Task 96

Production rule for transfoming an Operation to an Entry 97

Production rule for retrieving attributes of a Task 98

Production rule for retrievhg attributes of an Entry 99

Production rule for retrievlng attributes of an ARC-PARAM 99

UML descriptions of high-level architecture of a telecornmunication system . 103

LQN mode1 of the telecornmunication system 106

vii

List of Abbreviations

CCB ComponenKonnector Based

LHS Lefi-Hand Side

LQN Layered Queueing Network

P R O G E S Programmed Graph Rewriting System

RHS Right-Hand Side

SPE Software Performance Engineering

UML Unified Modelling Language

CHAPTEFI 1 Introduction

1.1 Motivation

Performance is a key criterion in defining the quality of software products, especially in

the case of real-tirne and distributed systems. The goal of cornputer systems engineers is to

get the highest performance for a given cost. As the field of computer design matures, the

computer industry is becoming more cornpetitive, and it is more important than ever to

ensure that the alternative selected provides the best performance trade-off.

Performance evaluation is required at every stage in the Iife cycle of a computer sys-

tem. In order to meet the performance requirements of software systems, the software de-

velopers should be able to assess and understand the effect of various design decisions on

system performance at an early stage, when changes can be made easily and effectively.

Software Performance Engineering (SPE) is a technique that proposes to use quantitative

Chapter 1 : introduction 2

methods and performance models in order to assess the peflomiance effects of different

design and implementation alternatives during the development of a system [Smith90].

SPE promotes the idea that the integration of performance analysis into the software de-

velopment process, fiom the earliest stages to the end, cm insure that the system will meet

its performance objectives. This would eliminate the need for b'Iate-firng'' of performance

problerns, a fiequent practical approach that postpones any performance concems until the

system is completely implemented. Late h e s tend to be very expensive and inefficient,

and the product may never reach its original requirements.

Although the need for SPE is generally recognized by industry, there is still a cognitive

gap between the software and the performance domains. Software developers are con-

cemed with desi-g, implementing and testing the software, but they are not trained in

performance modelling and analysis techniques. The software development teams usually

depend on specialized performance groups to do the performance evaluation work, which

leads to additional communication delays, inconsistencies between design and mode1 ver-

sions and late feedback. Also economical pressure for "shorter time to market' leads to

shorter software development cycles. There is no time lefi for SPE, which traditionally im-

plies "manual' construction of the performance models.

This thesis contributes toward bridging the gap between software architecture and per-

formance analysis. It proposes a systematic approach, based on graph transformations, by

using PROGRES (Programmed Graph Rewriting System) to build LQN (Layered Queue-

ing Network) performance models f'rom descriptions of high-level software architecture of

Chapter 1 : introduction 3

a system.

By autornating the construction of the performance models fiom software architec-

tures, the tirne and effort required for SPE will be considerably reduced, and the consisten-

cy between the mode1 and the system under development more easily maintained. Such a

mode1 will be solved with existing performance analysis tools, producing much faster

feedback for the software development teani.

1.2 Contributions

The research contributions of this thesis are as follows:

Developed a forma1 approach for generating of LQN (Layered Queueing Network)

performance models fiom the hi@-level software architecture of a system, and more

exactly fiom the architectural patterns used in the system.

Implemented two venions of the proposed approach by using an existing p p h gram-

mar tool named PROGRES (Programmed Graph Rewriting System)[Schuen90]. The

first version takes as input the high-level architectures of a system described in an ad-

hoc language based on componentko~ec tor relationships[Allen97]. The second ver-

sion accepts architecniral descriptions expressed in UhdL collaborations [Booch99].

The results of the thesis are presented in two Papen:

D.C. Petriu, X. Wang " D e m g Software Ferforniance Models from Architectural

Patterns by Graph Transformations", Proc.of the 6th International Workshop on The-

Chapter 1 : Introduction 4

ory and Applications of Graph Transformations TAGT'98, Paderborn, Gemany,

November 1998.

D.C. Petriu, X. 'Wang "Fmm UML Descriptions of High-level Software Architecture

to LQN Performance Models", Accepted by AppIicutiom of Graph Transfonnation

with Indurm.ul Relevance, Monastery Rolduc, Kerkrade, The Netherlands, September

1999.

1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 provides an overview of the background information related to this thesis,

such as Software Performance Engineering (SPE), software architectural patterns, Lay-

ered Queueing Network (LQN) model, Unified Modelling Language (UML) and Pro-

grammed Graph Rewriting System (PROGRES).

Chapter 3 descnbes the graph transformations used to build software performance

models (LQN models) for distributed andor concurrent software systems from an archi-

tectural descriptions based on architectural components and connectors which introduced

by Allen and Garlan in [Allen97]. We named this Component/Comector Based(CCB) de-

scription tbroughout the thesis.

Chapter 4 descriis the graph transformations used to build software performance

models (LQN models) from UML (ünified Modelling Language) descriptions of the high-

Chapter 1 : Introduction 5

level architecture of a system, and more exactly fiom the architectural patterns ured in the

system.

Chapter 5 concludes the thesis mearch, summarizes contributions of the thesis and

identifies directions for friture research.

cHAPTER 2 Background Literature

This chapter presents an overview of the background information related to the thesis,

such as Software Performance Engineering (SPE), software architectural patterns, Lay-

ered Queueing Network (LQN) model, Unified Modelling Language (UML) and Pro-

grarnmed Graph Rewriting System (PROGRES).

2.1 Software Performance Engineering

End to end performance of a system refers to the response tirne or throughput as seen by

the users. Performance characteristics play an important role in defining the quality of

software products, especially in the case of real-tirne and distributed systems.

Most of today's software development is still heavily inffuenced by the 'Sit-lote?

Chapter 2: Background Literature 7

performance tuning approach, meaning to postpone the performance concerns until the

system is completely implemented, then trying to ''W' its performance problems at the

late stage. Late fixes tend to be very expensive and inefficient. Performance tuning will re-

quire changes to the program itself, retesting, and in some cases even serious modification

of the design which drives up the costs [Smith90]. In some cases, the product will never

meet its original performance requirements.

Software Performance Engineering (SPE) is a technique introduced in [Smith901 that

proposes to use quantitative methods and performance models in order to assess the per-

formance effects of diffèrent design and implementation alternatives during the develop-

ment of a system. SPE promotes the idea that the integration of pefiormance analysis into

the software development process, from the earliest stages to the end, can insure that the

system will meet its performance objectives.

The benefits of SPE are as follows [Srnith90]:

Increased productivity, due to the fact that the developea' level of efforts are not spent

for an implementation that will later be discarded and that the testing can be focused

on criticai parts of the software.

Improved quality and usefùlness of the resulting software product by selecting suita-

ble design and implementation alternatives, thus avoiding late tuning modifications.

Controlled costs of the supporting hardware and software by identi-g early what

equipment is needed and allowing sufficient t h e for cornpetitive procurement.

Chapter 2: Background Literatw 8

Enhanced productivity d u ~ g the implementation, testing, and early operational

stages by ensuring that sufficient computing power is available.

The sequential steps for SPE performance assessrnent concem as detailed in

[Smith901 are:

1. Build the Software Execution Model, a flow-graph that follows the execution of the

software.

2. Gather resource requirements for every software module, then aggregate the

resource requirements.

3. Map the Software Execution Model io a System Model that contains both the hard-

ware and the software of the system.

4. Solve the mode1 analytically or with simulation. Both best and worst case analysis

are need to be conducted.

If the worst-case performance is satisfactory, go into the s o h a r e development cycle.

If the best-case performance is unsatisfactory, seek feasible alternatives.

Software Performance Engineering (SPE) is proven to be able to insure bat the system

will meet its performance objectives by the means of assessing the performance effects of

different design and implementation alternatives during the developrnent of a system. The

aeed for SPE is generally recognized by industry, but is not widely appiied.

Chapter 2: Background Literature 9

2.2 Software Architectural Pattern

In order to build large systems, software developers have to scope out the system ahead of

tirne and break it up into manageable pieces. They need ways of spec img what the

pieces do and how they communicate with other pieces. Software architecture is the

abstraction that give an insight into the system. It is a notion of overall design apart fiom

implementation.

The hi&-level architecture describes the main system components and theu interac-

tions at a level of abstraction that captures certain characteristics relevant to performance,

such as concurrency, parallelism, contention for software resources (as software serven

and cntical sections), synchronization, senalization, etc. A architectural pattern introduces

a higher-level of abstraction design artifact by describing a specific type of collaboration

between a set of prototypical components playing well defined roles, and helps our under-

standing of complex systems.

According to [Allen97], a software architecture represents a collection of cornputa-

tional components that perform certain functions, together with a collection of connectors

that describe the interactions between components. A component type is described by a

specification defining its functions, and a set of ports representing logical points of inter-

action between the component and its environment. A connector type is defined by a set of

roles explaining the expected behavior of the interacting parties, and a glue specification

showiag how the interactions are coordinated.

Chapter 2: Background Literature 10

A similar, even though less formal, view of a software architecture is describeci in the

form of architectural patterns [Buschmann96], [Shaw96b] which identiQ fiequently used

architectural solutions, such as pipeline and filters, client/server, cliedbrokerf semer, lay-

ers, cntical section, etc.

Architecturai pattems express fundamental structure organization schemas for soft-

ware systems [Buschmann96]. They provide a set of predefined subsystems, specify their

responsibilities, and include rules and guidelines for organizing the relationships between

them. Architectural pattems are high-level patterns in a pattern system. They help soft-

ware developers to speciQ the fundamental structure of an application. Every develop-

ment activity that follows is govemed by this stmcture, e.g. the detailed design of

subsystems, the communication and collaboration between different parts of the system,

and its later extension.

Software architectural pattems are distinct fiom design pattems and idioms that pre-

date them. lâiorns are language-specific, and design panems capture relationships at the

class and object level. Architectural pattems are a M e r step up in granularity, capture re-

lationships at the subsystem level [Shaw96b].

Each architectural pattern describes two inter-related aspects: its structure (what are

the components) and behavior (how they interact). In the case of hi@-level architectural

pattems, the components are usually concurrent entities that execute in different threads of

control, compte for resources, and their interaction may require some synchronization.

Chapter 2: Background Literature 11

This kind of issues contribute to the performance characteristics of the system, and there-

fore must be captured in a performance model.

The thesis defines graph transfomations fiom a number of Frequently used architec-

tural patterns (such as pipeline and filters, clientkerver, client/broker/server, layered cli-

entkerver, critical section, etc.) into LQN models.

2.3 Layered Queueing Network Mode1

Layered Queueing Network (ZQN) was developed as an extension of the well-known

Queueing Network (QN) model. LQN was first independently developed under the name

of Stochastic Rendezvous Networks (SRVN or SRN) in [Woodside89] [Peeiu9lb]

[Petriu94] [WoodsidegSa] [Woodside98] and under the name Method of Layers(M0L)

in[Rolia87] [Rolia92] [Rolia95]. Many features of the two approaches were joined under

the name of LQN [Frank951 [Woodsideg Sb].

The Layered Queueing Network is a model of a network of tasks running on proces-

sors and communicating via a send-receive-reply pattern, in which the sender of a mes-

sage waits for a reply pattern we cal1 a rendemou, a WC, or synchronous messaging. The

tasks may also send messages without reply, known as asynchronous messaging. By mod-

elling a system before it is implemented, perfomance bonlenecks are revealed and it may

be possible to improve the decision of functions between tasks andor the allocation of

tasks to processon[Woodside95b].

Chapter 2: Background Literature 12

The main difference with respect to QN is that in LQN a server may become a client to

other servers while serving its own clients. High-level servers become clients to lower lev-

el servers. Therefore, the solution process will expand the services tirne at higher level

servers due to the inclusion of queueing delays at lower level servers.

The advantages of the layered approach to software analysis are rnentioned in

[Woodsideg Sb]:

It detemiines software queueing effects (requests queued at servers) and competition

between applications.

It identifies software bottlenecks.

It identifies the contribution of different high-level software components to perform-

ance.

The LQN toolset presentec 1 in [Frank951 includes both simulation as we

solvers that merge the best previous approaches[Woodside95b].

2.3.1 LQN Mode1 Components

There are two basic building blocks in a LQN model: tasks and requests.

Task

!Il as analytical

A task is an entity that models a software process execution demand and executes

some work if its processor is available. A task may be either a client task or a semer task.

Chapter 2: Background Literature 13

A client task sen& requests to other tasks. A server task perfonns work on behalf of the

requests fiom its cliegts. A server itself may also be a client to its lower level semen by

making requests to those as part of Ml l ing their own work to the higher level client.

Each task may have different classes of workloads on the processor by representing it with

several entries. Each entry provides a different service pattern and a different workload.

However, al1 entries of one task share a common task queue. The task queue scheduling

disciplines supported by LQN, that controls the order in which requests are processed, is

Fint In Fint Out (FIFO) and Head of Line (HOL).

A server may be a single server, a multiserver or an infinite server. A single server is

modelled as a single task, whicb handles only one request at a tirne. Concurrency in LQN

is modelled by multi-servers and replicated servers. A multiserver contains a multitude of

copies of a task, yet d l copies share one common queue for Uicoming requests. A replicat-

ed server, however, is similar to the multiserver, except that each copy task has its own re

quest queue. An infinite server is modelled as an infinite number of tasks on an infinite

number of processors that can handie an infinite number of requests. For example, Net-

work delays are often modelled as infinite serven.

An LQN server may offer more than one service, each one with it own service t h e

and visit ratio to other severs. Each service is modelled as an entry of the task. It is as-

sumed that al1 the requests for al1 entries of a task are queued in a common task queue.

Chapter 2 : Background Literature 14

The execution of a server entry following the reception of a message by an entry may-

be broken into two parts, the first part named first phase ends when the reply is sent back,

and the second part is the subsequent phases after the reply.

Request

A communication request from a node playing the role of client to a node playing the

role of server can be synchmnous, qnchronous or fonoarding.

A synchmnous request blocks the client until the server sends back the reply.

An rrsynchronous request is a request that the client continues its work in parallel with

the semer.

A fowarding request is similar to a synchronous request from the client's point of

view. The difference is that more than one servers are involved. The first server for-

wards the request to the next semer, and itself is free to do other work, afier the second

server finishes the request, the second server send back the reply to the original client

(instead of sending to the first server which fowards the request). The original client

is blocked until it receives the reply. There can be more than two serven in the for-

warding chain.

23.2 Graphical Representation of an LQN Model

An LQN mode1 is represented as an acyclic graph which includes the follows:

Parallelograms represents software entities (named also tasks).

Ellipses represents hardware devices.

Chapter 2: Background Literature 15

Every khd of service offered by an LQN task is modelled by a task entry, drawn as a

parallelogram "slice".

A r c s represents service requests.

Synchronous requesu are represented by full-head arrows.

Asynchmnous requestr are represented by half-head arrows.

Fonvarding requestr are represented by full-head arrows with a dashed line.

- Synchronous request

Asynchronous request

Fonvarding request

Figure 2.1 : Graph representations for requests in LQN

Figure 2.2 illustrates a simple example of an LQN model for a three-tiered clientherv-

er system: at the top there are two groups of stochastic identical clients. Each clients send

requests for a certain service offered by Application task, which represents the business

layer of the system. Every kind of service offered by an LQN task is modelled by a task

entry, drawn as a parallelogram 'bslice''. An entry has its own execution times and demands

for other services (given as model parameters). In this case, each Application entry re-

quires services fiom two different Databuse entries. Every software task is running on a

given processor shown as a ellipse; more than one tasks c m share the same processor. The

word "luyed" in the name LQN does not imply a smct layering: a task may cal1 other

tasks in the same layer, or skip over layers. Al1 the arcs used in this example represent syn-

chronous requests, where the sender of a request message is blocked until it receives a re-

Chapter 2: Background Literature 16

ply from the provider of service. Although not explicitly illustrated in the LQN notation,

each semer has an implicit message queue where the incoming requests are waiting their

tum to be served. Servers with more than one entries still have a single input queue, where

requests for different entries wait together.

Figure 2.2: Sample LQN model of a database application

2.3.3 LQN Parameters

The most basic parameters needed to build the complete LQN model are:

Siq = mean executioo t h e of task i, during phase p of entry e.

yd, = mean or expected number of synchronous (rendezvous) messages sent from

entry e to entry d during phase p of entiy e.

zdp = mean or expected number of asynchronous (send-no-reply) messages sent from

entry e to entry d during phase p of entry e.

Chapter 2: Background Literature 17

2.3.4 Solving LQN Models

LQN model can be solved with the solving tools provided in the toolset [Franks95]. The

same input file c m be solved by both dyt ica l tools such as lqnr and simulation tools

such as ParaSR W.

The ParaSRYN simulation solver mimics the behavior of the system by conducting a

discrete event simulation, which is expected to be considerably slower than the analytical

solver. However, the simulation is more powerfil, in the sense that it allows for more de-

tails models of the system, whereas the modelling power of the analytical model is lirnited

by mathematical assurnptions.

The Iqns analytical solver technique consists of decomposing the LQN model into

submodels and solving individual sub-models with Mean Value Analysis. Outputs of some

sub-models are fed into other sub-rnodels. Iteration among the sub-models until continues

waiting time results converge for al1 layers. Lqns is also a simulation solver.

2.3.5 Results of LQN Models

Typical results of an LQN model are response times, throughput, utilkation of servers on

behalf of different types of requests, and queueing delays. The LQN results may be used

to identi@ the software andor hardware components that limit the system performance

under different workloads and resource allocations.

Overall, LQN was developed especially for modelling concurrent andor distributed

Cbapter 2: Background Literature 18

software systems. LQN detemiines the delays due to contention, synchronization and sen-

alization at both software and hardware levefs. LQN was applied to a number of concrete

industrial systems and was proven useful for providing insights into performance limita-

tions at software and hardware levels,

2.4 Unified Modelling Language

The Unified Modelling Language (UML) is the industry-standard language for specifjmg,

visualizing, constnicting, and docurnenting the artifacts of software systems. It simplifies

the complex process of software design, making a "blueprint" for construction. [UML]

The Unified Modelling Language &ML) is created by the joint efforts of Grady

Booch, Ivar Jacobsen, and Jim Rumbaugh as a response to the Object Modelling Group's

(OMG) request for a proposal for a standard object-oriented methodology. It is the succes-

sor to the wave of object-onented analysis and design (OOA &D) rnethods that appeared

in the late 80s and 90s.

The UML is a graphical modelling language, not a methodology. It is a language for

expressing the constnicts and relationships of complex systems. UML is more complete

than other methods in its suppon for modelhg complex systems and is pariicularly suited

for including real-the systems.

Chapter 2: Background Literature 19

2.4.1 UMLGoals

According to [UML], the primary goals in the design of the UML are as follows:

Provide users a ready-to-use, expressive visual modelling language so they can

develop and exchange meaaingful models.

Provide extensibility and specialization mechanisms to extend the core concepts.

Be independent of particular programming languages and development processes.

Provide a formal basis for understanding the modelling language.

Encourage the growth of the 00 tools market.

Support higher-level development concepts such as collaborations, frameworks, pat-

terns, and components.

Integrate best practices.

2.4.2 UML Major Features

The major features of UML include [Douglass98]:

Object mode1

Use case and scenarios

Behavioural modelling with state charts

Packaging of various kinds of entities

Representation of tasking and task synchronization

Models of physical topology

Chapter 2: Background Literature 20

Models of source code organization

Support for object-oriented pattern

In terms of the views of a model, the UML defines the following graphical diagrams

ml:

Use case diagram

Class diagram

Behaviour diagrams:

State chartdiagram

Ac tivity diagram

Interaction diagram

Sequence d i a m

Collaboration diagram

lmplementation diagrams:

Component diagram

Deployment diagram

These diagrams provide multiple perspectives of the system under analysis or develop-

ment. The underlying model integrates these perspectives so that a self-consistent system

can be analyzed and built.

Chapter 2: Background Literam 2 1

2.43 UML Collaboration

UML is very nch when it cornes to format. it has a number of different models and dia-

grams that fit the different purpose of the designers. Some of them are on the object and

class level, like class diagram and behaviour diagrams. But as we know architectural pat-

terns are a M e r step up in granularity, capture relationships at the subsystem level

[Shaw96b]. So, the UML feature better suited to describe the software architecture pat-

terns for the purpose of the thesis are UML collaborations.

According to the authors of UML [Booch99], a collaboration is a notation for describ-

h g a mechanism or pattern, whicb represents "a society of classes, interface, and other el-

ements that work together to provide some cooperative behavior that is bigger than the

surn of al1 of its parts." A collaboration has two aspects: structural (usually represented by

a class/object diagram) and behavioral (an interaction diagram). Collaborations can be

used to hide details that are irrelevaut at a certain level of abstraction; these details can be

observed by "zooming" into the coliaboration. The symbol for collaboration is an ellipse

with dashed lines, and may have an "embedded" square showing template classes. Anoth-

er special UML notation employed in this section is that of an active class (object) which

has its own thread of control, represented by a square with thick lines. An active object

may be irnplemented either as a process (identified by the stereotype «process»), or as a

thread. We will discuss more about UML collaborations in chapter 4.

In this thesis we use two descriptions of software architecture, one of the two descrip-

tions of software architecture is using UML collaborations. UML is attractive because it is

Chapter 2: Background Literanue

a standard, and is rapidly gaining acceptance in the software industry. However, UML is a

very rich, sometimes informa1 language, which raises a nurnber of yet unresolved issues.

2.5 Programmed Graph Rewriting System

Graphs play an important role within many areas of applied computer science, and there

exists an abundance of visual languages and enWonments which have graphs as their

underlying data model. Furthemore, rule-based languages and systems have proven to be

well-suited for the description of complex transformation or inference processes on corn-

plex data structures. A graph grammar is a set of productions that generates a language of

terminal graphs and produces nonterminal graphs as intermediate results. A graph rewrit-

ing system is a set of rules that transfomis one instance of a given class of graphs into

another instance of the sarne class of graphs[Schuerr97].

Programmed Graph Rewriting System (PROGRES) was developed by Andy Schuerr

[Schuerr90]. It i s a toolset which is available as a free software for university researches.

PROGRES contains a visual programming language in the sense that it has a graph-orient-

ed data model and a graphical syntax for its most important language constmcts. This sys-

tem and its programming language PROGRES were already used in the following

areas [Sc huerr971:

For specifjmg tools and &ta structures of integrated software engineering environ-

ments for describing process mode11 ing and version contro 1.

As the underlying fundament of a new approach to diagram parsing.

Chapter 2: Background Literature 23

For definhg the semantics of a visual database query Ianguage.

2.5.1 Components of PROGRES Graph

A PROGRES graph consists of labelled nodes and directed labelled edges. The nodes rep

ment different objects, and then can be different node types. The edges represent rela-

tionships between two nodes, and tbere cm be different edge types too. Amibutes may be

attached to nodes only.

PROGRES offers the following syntactic constructs for defining the components of a

particular class of graphs and their legal combinations. These are:

Node types, which determine the static properties of their nodes instances. The decla-

ration of a node can be either positive node (node for short) or negative node.

Apositive node is represented by a solid rectangle. It matches a single node

of the regarded graph, which filfils al1 required conditions.

Figure 2.3: Graph representation of a positive node

A negative node is represented by a crossed-out solid rectangle. A negative

node which matches a oode of the regarded graph leads to failure of the pattern

matching processes, a negative node without a match is sirnply ignored afier-

wards.

Chapter 2: Background Literature 24

Figure 2.4: Graph representation of a negative node

Intrinsic relationships, also called edge types, which are explicitly manipuiated and

possessed restrictions conceming the types of their source and targets.

Figure 2.5: Graph representation of an edge

Derived relationship, which mode1 ofken needed paths of a given graph, which defined

by the means ofpath or restriction expression.

A path is a constraint that the two nodes it is attached to must meet, it is a

more complicated relationship than edge types. A Puth is represented by

double m o w pointed from one node to the other node.

Figure 2.6: Graph representation of a path

A restriction is a constraint that the one node it is attached to must meet, it

is a more complicated relationship than edge types. A restriction is repre-

sented by double arrow pointed to the node.

Chapter 2: Background Literature 25

Figure 2.7: Graph representation of a restriction

Atnihres are needed to store additional information that is not necessary to be repre-

sented in the graph structure. Attributes represent the information that is local to a particu-

lar node and which has an unimportant structure fiom the current point of view.

An inm-mic uttribute is stored data of a node type that is explicitly manipulated. A de-

rived atnibute is stored data of a node that is automatically generated from the intrinsic at-

aibutes of a node, or fiorn programmed relationships amongst nodes.

Standard attribute domains iike integer, string and boolean together with their func-

tions are a built-in part of the language PROGRES. PROGRES can be extended by adding

external attribute types, as well as new, extemal function. Extemal fimction written in C or

Modula-2 can be cailed within a PROGRES specfication. The funftion are written and

compiles into object modules. Several mandatory functions must be provided for an exter-

na1 attribute type. The extemal attribute types and fùnctions are imported into the PRO-

GRES in the import part of any declaration list. The PROGRES interpreter uses a dynamic

linker (dll) for binding object-files to the PROGRES executable.

Chapter 2: Background Literature 26

2.5.2 Definition of Graph Schema

The language feature provided by PROGRES to defme a static properties of graphs take in

the fonn of a graph schema which is conceptually similar to a database schema. The graph

schema definition part of a PROGRES specification enables us to speci@ static properties

of any class of directed, amibuted, node and edge labelled graphs.

-
edge type

* - - - - - - - *
subclass of

attribute

-0 attribute typ
intrinsic
attribute

Figure 2.8: PROGRES graph schema notation

Figure 2.8 illustrates the notation of graph schema.

Rectangle boxes represent node classes which are connect to their superclasses by

means of dashed edges representing "is-a" relationships.

Boxes with round corner represent node types which are comected to their uniquely

defined classes by means of dashed edges representing "type is instance of class" rela-

tionships.

Solid edges between node classes represent edge s>pe definitions.

Circles attached to node classes represent arnibutes with their names above or below

the connection line segment and their type definition nearby the circle.

Chapter 2: Background Literature 27

Node classes can have comrnon attributes that will be inherited by node types. A node

types is a classification of a node and represents a concrete object. The instance of node

types are the objects in the graph which are manipulated. A node type can inherit fiom

several node classes (multiple inheritance). PROGRES also enable us to build hiemchies

of node classes by exploithg multiple inheritance as the relation between node classes. As

usual in object-onented laquages, PROGRES uses the "is-a " notion to express the inher-

itance relation. Multiple inheritance may be used to cut down the size of graph schema

definitions considerably.

2.5.3 Definition of Graph Transformation

The graph schema definition part of a PROGRES specification enables us to speciQ static

properties of any class of directed, attributed, node and edge labelled graphs. The next step

is graph transformation which can be done using productions, tests, functions and transac-

tions.

Production Rule (Rewriting Rule)

A graph production rule performs a basic graph transformation, by selecting first a

subgraph that matches its left-hand side (subgraph matching step) and replacing it by its

right-hand side (subgraph replacement step).

The Iefr hand side (WS) of the production rule describes a sub-graph that must exist

in the graph being manipulated. Constraints on a LHS match can take the form of node at-

tributes value conditions, restrictions on the edges associated with the node(s), or the ex-

Chapter 2: Background Literature 28

istence of paths of edges between nodes. If a subgraph cannot be selected or the con-

straints are not satisfied then no operations are perfomed.

The right hand side (RHS' of the production d e defines the node transformations that

take place, which may involve node(edge) additions, node(edge) deletions, node(edge)

type changes, etc. Attribute values of nodes cm also be altered by the RHS. The adjacent

edges and attributes of a node are preserved unless explicitly altered by the RHS.

A production d e can take parameters as input and provide output values as well.

Edge types cannot be parameter values although a node type can be a parameter. Output

parameten must have the out keyword when the production (or test) is declared and when-

ever the production is used. This makes it easy to distinguish which parameten are input

and output values.

groductioq MergeTask =

1
1

I
I
1

I

EqualTask ' 1

I

'1 : Task ,
I 9 ' 2 : Task I

I
I
I
I

I
I
t
t

' 4 : Entry I
I
I
1

Chapter 2: Background Literature 29

Figure 2.9: An example of an production rule

Figure 2.9 illustrates a simple production rule to merge ~o tasks together. In LHS, if a

EqualTask path is found and the task (node 2) has an entry, then in RHS, one task (node2)

is deleted and the other two nodes remain the same and the tusk has the enny.

Overall, the general approach of graph transformation using a production mle is as fol-

lowed:

The matching succeeds if al1 positive nodes and edges patterns are found and the neg-

ative node pattern do not exist.

All positive nodes and edges of the left-hand side which have no counterparts in the

right-hand side have to be deleted, including al1 incident edges of deleted nodes.

Al1 nodes and edges of the right-hand side with no counterparts in the lefi-hand side

are added to the host graph.

Finally, new amibute values are computed by evaluating values (these expressions are

computed before any modification of the host graph is performed).

Chapter 2: Background Literahue 30

Test

A test looks like the lefi-hand side of a production and only does not have a right-hand

side. It does not perfonn the replacement of the LHS, Uistead it r e m s true or false ac-

cording to whether the LHS is found or not.

test DuplicatedTask = (task1,taskS:string)

EqualTask
'1 : Task

' 4 : Entry

end ;

Figure 2.10: An example of a test

Figure 2.10 illustrates a simple test to find a duplicated task. If found, the test itself

will renim Boolean value 1, and othenvise O.

Function

A function in PROGRES is like a procedure in other languages. It does a piece of work

which does not need a production. It cm have parameters and a r e m value.

function addSize(Vakinteger; node:NODE) -> integer=
Val+ node.Size

end ;
Figure 2.1 1 : An example of a function

Chapter 2: Background Literature 3 1

Figure 2.10 illustrates an example of a simple function. It just increases the Size of a

NODE by Val and retums back the new value.

Transaction

A transaction is very much f i e a procedure in other Ianguages but it either succeeds

in al1 of its graph operations or it leaves the graph in its initial state. Transactioos can have

input parameters, output parameters, local variables and recursively execute.

transaction MergeAllTasks =
loop
MergeTask

end
end ;

Figure 2.12: An example of an transaction

Figure 2.1 1 illustrates an example of a simple transaction. In the transaction, produc-

tion MergeaIlTask is called in a loop until LHS of the production is not found in the graph.

2.5.4 Components of a PROGRES Program

A program written in PROGRES may have the following components:

Schema Section contains ail the node types, node cfoss and edge ppes, e.g.:

sect ion DataScheme
pode class NODE

intrinsic
index name : string := %oden;

end ;
edae t w e fias : OBJ-TASK -> OP-ENTRY;

A transaction named MWlV indicates where the program starts hm. A PROGRES

Chapter 2: Background Literature 32

program must have one and only one M4N transaction, e.g.:

transaction MAIN =
UMLtoLQN

6L writeToFile
end ;

A list of iransactiom, tests andfunctions like procedures doing pieces of work.
A set ofproduction d e s specify subgraph transformation.

A list of imported types andjmction doing external works N e , e.g.:

f rom

LYQSs
Real ;

DJnctions
BQPlusQuote : (Real, Real) - > Real,
BQMinusQuote : (Real, Real) -> Real,
Real-StringToValue

: (string) - > Real,
Real-ValueToString

: (Real) - > string;

end ;

Overall, PROGRES is a useful visual programming language and graph rewriting sys-

tem. Related work with generaîing software performance model by graph transformation

includes generating LQN mode1 fiom Trace-Based Load Charactenzation (TLC).

The above are brief introduction to some background information related to the thesis,

such as Software Performance Engineering (SPE), software architectural patterns, Lay-

ered Queueing Network (LQN) model, Unified Modelling Laquage (üA4L) and Pro-

Chapter 2: Background Literature 33

grammed Graph Rewriting System (PROGRES). In this thesis we developed and

implemented a fonnal approach for generating of LQN Gayered Queueing Nebvork) per-

formance models fiom the high-level software architecture of a sysrern, and more exactiy

fiom the architectural patterns used in the systems by using PROGRES.

CHAPTER 3 From Component/Connector Based
(CCB) Descriptions of Software
Architecture to LQN Modeis

This chapter proposes a formal approach to building software performance models for dis-

tributed andor concurrent software systems from a description of the system's architec-

ture by using PROGRES graph transformations. The descriptions of hi@ level software

architecture we use in this chapter is based on [Allen971 and we narned it ComponenV

Connecter Based (CCB) description. The performance model is based on the Layered

Queueing Network (LQN) formalism, an extension of the well-known Queueing Network

modelling technique [Woodside89] [Petriuglb] [Peeiu94] [Woodside95a] [Woodside98]

[RoIia87] [Rolia92] [Rolia95] Frank9 51. The transformation from the architectural

description of a given system to its LQN model is based on PROGRES, a known visual

language and environment for programming with graph rewriting systems[Schuerr90].

The CCB to LQN transfomation is the first version developed chronologically. Its

34

Chapter 3 : From CCB Descriptions of Architecture to LQN Models 35

main disadvantage iç that the language for architectural descriptions is non-standard while

its advantage is that the notation is simple, easy to understand and contains only required

information. The next version presented in chapter 4 uses UML to describe software archi-

tecture.

3.1 Component/Connector Based (CCB) Descriptions

As mentioned in chapter2, the hi&-level architecture describes the main system compo-

nents and their interactions at a level of abstraction that captures certain characteristics rd-

evant to performance, such as concurrency, parallelism, contention for software resources

(as s o f ~ e serven and cntical sections), synchronization, serialization, etc. The emerg-

ing discipline of software architectures is concemed with informal and formal ways of

describing the overall system structure of complex software systems. In [Shaw96a] a per-

spective on this new discipline is presented, in [Shaw96b] and puschmann96] a nurnber

of hi&-level architectural patterns frequently used in today's software systems are identi-

fied and descnbed, and in [Allen971 a formal foundation for software architectures based

on architectural connections is introduced.

According to [Allen97], a software architecture represents a collection of cornputa-

tional components that perfonn certain functions, together with a collection of connectors

that descnbe the interactions between components. A component type is described by a

specification defining its functions, and a set of ports representing logical points of inter

action between the component and its environment. A connecter type is defined by a set of

roles explaining the expected behavior of the interacting parties, and a glue specincation

Chapter 3: From CCB Descriptions of Architecnue to LQN Modefs 36

showing how the interactions are coordinated. On the other hand, an architechirai pattern

describes two inter-related aspects: its stmcture (what are the components) and behavior

@ow they interact). In the case of hi&-level architectural patterns, the components are

usually concurrent entities that execute in different threads of control, compete for re-

sources, and their interaction may require some synchronization. This kind of issues con-

tribute to the perfomiance charactenstics of the system, and therefore must be captured in

a performance model.

We defined an ad-hoc notation (Figure 3.1) for the description of high ievel software

architecture based on the type of Cornponent/Comector relationship, as in [Allen971 and

the architectural patterns fiom [Shaw96b] and [Buschmann96]. We refer it as Componenti

Connector Based (CCB) descriptions.

c-2 process
port

-* synchronous
message

--> asynchronous
message

M date flow

Figure 3.1 : Notation for CCB description

In the notation, a process is represented by an ellipse, it cm be any active component

with its own thread of control. A shared-memory is represented by a double-bordered rect-

angle, it can be any passive component, e.g. a buffer. A port is represented by a solid dot,

it defines a logical point of interaction between the component and its environment. Ar-

Chapter 3: From CCB Descriptions of Architecture to LQN Models 37

rows with different heads represents synchronous and asynchronous message respectively.

A srnaII mow with a small circle attached indicates the data flow,

3.2 Some Frequently Used Architectural Patterns

There are a relatively small number of patterns identified in literature that are used to

describe the hi&-level architecture of a large range of software systems. These patterns

describe the collaboration between concurrent components, which can run on a single

computer or in a distributed environment. We have selected three architectural patterns as

a basis for our discussion: Pipe and Filten, Client-Server and Critical Section architecture.

These pattems are frequently used to build distributed systems, and they present a variety

of interactions between components. We will discuss each pattern more in details in the

next several subsections.

3.2.1 Pipeline and Filter Pattern

The pipeline and filter pattern divides the overall processing task into a number of sequen-

tial steps which are implemented as filters, while the data between filten flows through

unidirectional pipes. Interesting performance problems arise in the case of active filters

[Buschrna~96] that are ninning concurrently. Each filter is implemented as a process or

thread that loops through the following steps: "pulls" the data (if any) fiom the preceding

pipe, processes it and then "pushes" the results d o m the pipeline. The way in which the

push and pull operations are implemented may also have performance consequences. Both

cases are shown in Figure 3.2: a) the filters communkate through an asynchronous mes-

Chapter 3: From CCB Descriptions of Architecture to LQN Modeis 38

sages, and b) the filten communicate through a s h e d buEer (one pushes and the other

pulls).

a) asynchronous
message b) shared buffer

Figure 3.2: Communication styles in pipeline and filter pattern

3.2.2 Client-Server Pattern

The Client-Server pattem is one of the most frequently used in today's distributed sys-

tems, especially since the introduction of new rnidware technology such as CORBA

[OMG92], which facilitates the connection between clients and serven running on hetero-

geneous platforms across local or wide-area networks. Since the communication between

the architectural components has a crucial effect on performance, different alternatives are

considered in the paper: direct clientkerver communication through a synchronous mes-

sage and three types of connections mediated by brokers.

In the first case shown in Figure 3.3a, the client sends a synchronous request to the

server, then blocks and waits for the server's reply. Although the direction of the synchro-

nous message is fiom the client to the server, the data flow is bi-directional (the request

goes one way and the reply cornes the other way).

In the case of a CORBA interface, we distinguish several types of client/server con-

nections [Adler95]. In the forwarding broker pattern fiom Figure 3.3b, the broker relays a

Chapter 3: From CCB Descriptions of Architecture to LQN Models 39

client's request to the relevant server, retrieves the response from the server and relays it

back to the client. The forwarding broker is at the center of al1 communication paths be-

tween clients and servers, and cm provide load balancing or restart centrally any failed

transactions. However, there is a price to pay in ternis of performance: an interaction be-

tween a client and a server requires four messages, which leads to an excessive network

traffic when the client, broker and server reside on different nodes.

An alternative that reduces the excessive network traffic of the forwarding broker is

the balf-forwarding broker fiom Figure 3.3c, where the server returns the reply directly to

the client. This reduces the number of messages for a clientkerver interaction to three,

while it retains the main advantages of the forwarding broker (load balancing and central-

ized recovery from failure).

A handle-driven broker (as in Figure 3.3d) returns to the client a handle containing al1

the information required to cornmunicate directly with the server. The client may use this

handle to talk directly to the server many times, thus reducing the potential for perfor-

mance degradation. However, the client takes on additional responsibilities, such as check-

h g if the handle is still valid afier a while, and recovering from failures. Load balancing is

also more difficult in this case.

Chapter 3: Frorn CC% Descriptions of Architecture to LQN Models 40

Client 0
Server 6

a) synchronous
message

b) fonvarding
bro ker

Server 'A
c) ha1 f-forwarding

broker
d) handle-driven

broker

I

Figure 3.3: Communication styles in client-server pattern

3.2.3 Critical Section Pattern

The Critical Section pattem is composed of a number of pmcesses that share a cornmon

data stored in shared memory (see Figure 3.4) In order to insure the correctness of the

common data, the access must be controlled by semaphores, locks or other similar mecha-

nisms. The senalization brings performance effects, and must be captured in a perform-

ance model.

Critical Section
(shared data)

Figure 3.4: Critical section pattern

C hapter 3 : From CCB Descriptions of Architecture to LQN Models 41

3.3 More On Connecter Types

AAer the informal presentation of the chosen architectural patterns and of their perfor-

mance implications, we will review bnefly the formal approach to architectural connec-

tions htroduced in [Allen97], which is the basis for the graph gramrnar representation of

software architectures proposed in the next section.

According to [Allen97], s o b a r e architecture can be defined as a collection of cornpu-

tational components together with a collection of connecton, which describe the interac-

tions between components. A component type is descnbed as a set of ports and a

specification that describes its function. Each port defines a logical point of interaction be-

tween the component and its environment. A connector type is defined by a set of roles

and a glue specification. The roles descnbe the expected behavior of the interacting par-

ties, and the glue shows how the interactions are coordinated. The connector specification

is foxmally described in [Allen971 with a subset of Hoare's process algebra.

For example, in a CS pattern with CORBA interface (see Figure 3.5) the connector

type is defined by three roles (client, server and broker) and by the glue that shows what

kind of interactions take place between participants, and in which order. Since the three

kinds of brokers shown in Figures 3.3b, 3 . 3 ~ and 3.3d behave and interact differently with

the client and the semer parties, each one corresponds to a different connector type. In CO-

tal, we have coasidered four client/server connector types: one direct and three using the

services of a broker. Figure 3.2b illustrates another example of connector type that con-

Chapter 3: From CCB Descriptions of Architecture to LQN Models 42

tains t h e roles (two filten and a shared buffer). Its glue describes the "push" and "pull"

operations and the consaaints for correct behavior (as for example "cannot pull data fiom

an empty buffer", 'bca.nnot read and write to the buffer at the same tirne", etc.)

a) s~nchronous b) fonvarding
message broker

Server

C) half-forwarding
broker

Server

broker

Figure 3.5: Client-server connector types

In our work, we first identified the connector types associated to different architectural

patterns, then d e k e d graph transformation niles to transform each connector to an LQN

submodel.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 43

3.4 PROGRES Graph Schema

As mentioned in chapter 2, a feature of the PROGRES language is to defme the static

properties of graphs in the fom of a graph schema which is conceptually sirnilar to a data-

base schema.

The graph schema for the transformation fiom CCB to LQN defines the types of nodes

and edges allowed in an input graph (CCB description), an output graph (LQN model) and

an intermediary graph (a combination of both input and output graphs).(see Figure 3.6)

The upper part of the figure contains the input schema for architectural descriptions and

the lower part the output schema for LQN models (light-gray nodes). In order to accom-

modate graphs in intermediary transformation stages, the two schemas are joined together

by three nodes shown in dark-gray at the base of the node class hierarchy (NODE.

COMP-TASK, and POR T-ENTR Y). Also, sorne intermediary edge types (ss-d, ssfWB,

ss-hfl, and ss-hdB) were found to be necessary in the process of transfonning server-to-

server CS connections which appear in tiered client/server systems. Such edges are illegal

in both the input and output schernas; they are generated and then deleted during a two-

step transformation process that is presented later in the paper.

The input schema describes two kinds of software components and their connections:

"process" (active component with its owa thread of control) and "shared-rnemory" @as-

sive component of either "hffeer" or "criricalSection" types). Each type of component has

different types of ports comsponding to the roles played in various architecniral connec-

tions. The edge types in the graph correspond to different comection types. An interesthg

Chapter 3: From CCB Descriptions of Architecture to LQN Models 44

example is that of the four Client Server co~ec t ion types, which are differentiated in the

architectural view only by their different edge type (CS-d, csfwB. CS-hjB and CS-hd', re-

spec tivel y).

A note-worthy fact is that the "brokef' component is not explicitly shown in the archi-

techiral view (as the broker is not actually part of the software application, but is provided

by the underlying rnidware). However, a broker has an important impact on the system

performance, so it is explicitly modelled in LQN.

The LQN graph notation presented in chapter 2 and illustrated in Figure 2.2 has

"tusk" nodes, which are described by the corresponding node types in the output schema.

As the LQN tasks contaui entries, an "entry " type was also added to the schema.

The LQN arcs may represeat three types of requests (synchronous, asynchronous and

fonvarding); a parameter indicates the average nurnber of visits associated with that re-

ques t.

Since PROGRES edges cannot have attributes, we represent an LQN arc by three ele-

ments: an incoming edge, a node carrying the parameter and an outgohg edge.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 45

Figure 3.6: Joint graph schema for the CCB description and LQN mode1

Chapter 3: From CCB Descriptions of Architecnrre to LQN Models 46

3.5 Transformations from Architectural Patterns to
LQN

We have defined transformation rules for each architectural comection type, as illustrated

in Figures 3.7 to 3.15. In order to convey the principle of these transformations, they are

given in a more intuitive, higher-level graphical notation tailored to our problem domain,

rather than in the more detailed PROGRES notation. The PROGRES transformation proc-

ess executes a transaction for every connection instance found in the input architectural

description graph. The transformation process ends when al1 architecniral connections

have been processed. As expected, the performance of the system depends on the perform-

ance attributes of its components and on their interaction. Performance attributes are not

central to the software architecture itself, but must be specified by the user in order to

transfomi the architecture into a performance model. Such attributes describe the demands

for hardware resources by the software cornponents: allocation of processes to processors,

average execution time for each software component, average demands for other resources

such as UO devices, communication networks, etc.The final resuit is an LQN model that

can be written to a file according to a predefined LQN mode1 format [Franks95]. We will

discuss more about the control structure of the whole transformation process in section

3.6. Sorne general transfomation approaches are also given in the next subsection.

3.5.1 General Transformation Principles

The general principles of the transformation from CCB description to LQN model are as

follows:

Chapter 3: From CCB Descriptions of Architecture to LQN Models 47

Each architectural component is converted to an LQN task, for which reason a corn-

mon base class COMP-TASK was defined in the graph schema for components and

tasks. However, the correspondence between components and tasks is not bijective as

it may seems at first, due to processes implemented in the underlying operathg sys-

tem or midware (such as brokers) which are not represented explicidy in the architec-

tural view, but are explicit in the LQN view.

Each input port of a component is converted into an LQN entry. The conespondence

between input ports and entries is not bijective either, due to broker entries.

The output ports do not have any correspondent in LQN. However, they play a role in

the two-step transformation process of semer-to-server connections, as illustrated in

Figure3.15.

3.5.2 Pipeline and Filter Pattern

Figures 3.7, 3.8 and 3.9 show the transformation of the pipeline and filters comection

types, the first using an asynchronous messages and the other two a shared buffer. A regu-

lar arrow with a solid line in the figures represents a synchronous request in an LQN

model. A half arrow represents an asynchronous request and an arrow with a dotted line

represents a forwarding request. We use these arrows in the LQN models throughout the

thesis.The transformation is quite straightfonvard, ody the way LQN models a passive

shared bufer warrants a little discussion. The pipeline comection is represented by an

asynchronous LQN arc, but this does not take into account the senalization delay due to

the constraint that buffer operations mut be mutually exclusive. A third task is introduced,

Chapter 3: From CCB Descriptions of Architecture to LQN Models 48

with as many entries as the number of different critical sections executed by the tasks

accessiag the buffer (two in this case, "push" and "pull"). It is interesthg to note that,

although the software architecture in Figures 3.8 and 3.9 is exactly the same, the differ-

ence in the allocation of processes to processors leads to quite different LQN submodels.

Figure 3.7: Transformation of a PF comection by an asynchronous message to a LQN
mode1 with asynchronous request

Figure 3.8: Transformation of a PF comection by a shared buffer, where the filter
processes are ninning on the same processor

Figure 3.9: Transformation of a PF comection by shared buffer, where the filter processes
are running on different processoa

Chapter 3: From CCB Descriptions of Architecture to LQN Modets 49

3.5.3 Client-Semer Pattern

Figures 3.10,3.11 and 3.12 illustrate the transformation of three Client Semer comections

that have similar architectural descriptions, differentiated only by the edge type. However,

their LQN models are quite different, as the connections have very diflerent operating

modes and performance characteristics.

The LQN mode1 for the direct client-server connection is quite straightforward, but

those for broker connections are more interesting.

The half fonvarding broker model uses LQN fonvarding requests (drawn with dotted

lines) with a special semantic. After accepting a request from a client, the acceptor task

will do some processuig, then rnay decide to fonvard the request to another task. The for-

warder is free to continue its activity, while the client remains blocked, waiting for a reply.

The second task that continues to serve the request may eventually complete it and send

the reply to the client, or may decide to foward the request to another task. The LQN

mode1 implies that a reply will be sent to the client by the last task in the forwarding chain,

but it does not represent this reply by an arrow. In Figure3.11, the broker is the task that re-

ceives the requests fiom the clients and fonvards them to the appropriate entry of the serv-

er. The broker must have a separate entry for each entry it forwards to, otherwise the

clients would be unable to choose the server entry they need.

The LQN model for the handle-driven broker sends two separate requests, one to the

Chapter 3: From CCB Descriptions of Architecture to LQN Models 50

broker for getting the handle, then another to the desired server entry directly.

Figure 3.10: Transformation of three direct CS comection instances to LQN (each service
offered by the server is represented by an entry)

broker u
Figure 3.1 1: Transformation of three CS comection instances by half forwarding broker

to an LQN mode1 with forwarding arcs

broker

Figure 3.12: Transformation of three CS connection instances by handle-driven broker to
LQN

Chapter 3: From CCB Descriptions of Architecture to LQN Models 5 1
- - -

3.5.4 Critical Section Pattern

Figures 3.13 and 3.14 show the transformation for the Critical Section co~ec t ion type.

The perfomance mode1 capture the serialization delays introduced by the constraint that

the common data should be accessed by one client at a t he . Similar to the pipeline by

shared buffer, the same software architecture will generate different performance models

depending on whether the clients are ninning on the same or on diflerent processoa. In the

later case, the LQN tasks that represent the critical sections executed by the each client are

CO-allocated on the same processor as the respective client.

Figure 3.13: Transformation of a critical section pattern, where the client processes are
running on the same processor

Figure 3.14: Transfomation of a cntical section pattern, where the client processes are
ninning on different processors

Chapter 3: From CCB Descriptions of Architecture to LQN Models 52

3.5.5 Layered Client-Sewer

Figure 3.1 5 illustrates the handling of servers in layered (also known as "tiered") client-

server architectures, where a server may require the support of another server while serv-

ing its own clients (the second semer's work gets layered in the first one's service). Such a

server component is involved in a number of clieniherver connections. playing the role of

server in ones and the role of client in othea. It owns both input ports (corresponding to

the server role) and output ports (corresponding to the client role). The input and output

ports are linked through edges of "intem" type, representing the association between its

client and server roles (as shown in Figure 3.15). The upper part of the figure shows the

two-step transformation from architectural description to LQN for a subsystem with two

servers involved in several clientlserver connections, and the lower part gives a sequence

of PROGRES denvations for the first step. Each derivation deds with a two-edge link

(shown in thick lines) from an input port of the upper server to an input port of the lower

server. There are five such links in OUT example, each generating a comection edge of an

intermediary type, as explained before. In the second transfomation step, each CS con-

nection between the two server is completely tmsformed to LQN, depending on the con-

nection type (direct or through a broker).

Also in this case as a layered clientlserver system, some semer nodes play both the

role of server to its own clients, and that of a client to the servers below. This introduces an

additional step in the transformation of semer-to-semer CS comections (as opposed to cli-

ent-to-server connection). Firstly, the interna1 mapping between the input and output ports

Chapter 3: From CCB Descriptions of Architecture to LQN Models 53

of the upper server is used to generate an appropriate number of CS request edges (see

Figure3.15.). These edges are of an intennediary type (ss-d, ss-fkB, ss-hfB, or ss-hdB)

and remember the original CS comection type (direct or through a broker). Secondly, the

transformation process is completed for each comection represented by an intemediary

edge as it were a nomal client-to-server comection.

a) Two-step transformation process

b) Sequence of graph transformations for the k t transformation step

Figure 3.1 5: Two-step transformation process of server-to server CS direct connections

Chapter 3: From CCB Descriptions of Architecture to LQN Models 54

3.6 Control Structure for Graph Transformation

A software system contains many components involved in various architechiral connec-

tion instances, and a component (such as a process) may play different roles in connec-

tions of various types. Such a process must own an appropriate port for each of the roles it

plays, whereas a port can participate in more than one connection instance of the sarne

type. PROGRES searches for subgraphs in the underlying input graph that has an one-to-

one correspondence with the given pattern. The transformation process ends when al1

architectural connections have been processed-The final result is an LQN model that can

be written to a file according to the predefined LQN model format Franks951.

The following shows some code from the first version of PROGRES program as an ex-

ample of transformation from CCB descriptions io LQN model.

transaction MAIN=
use swpl, swp2 : Process
do

Create3AsyncPipeline (*aaau, 'bbb", "ccc", Yddd")
& AddAsyncPipeline ("ddd" , "eee")
& InsertBuf f erToAsyncPipeline ("aaaN , "bbb", "buf")
& AddForwardCS ("ccc" , "Servern , "serviceln)
& AddRequestForwardCS ('cccN, 'Serverm, Yservice2")
& AddExistingClientForwardCS ("dddm, "Semer",

uservice2N)
& TransformAllAsyncPipeline
& TransformAllAsyncPipelineWithBuffer
& TransformAllLayeredDirectCS
& TransformAllLayeredForwardCS
& TransformAllLayeredHandleDrivenCS
& Transf ormAllDirectCS
& Transf ormAllForwardCS
& TransformAllHandleDrivenCS
& TransfomAllCriticalSection

Chapter 3: From CCB Descriptions of Architecture to LQN Models 55

& Clean
end

end ;

transaction TransformAllAsyncPipeline =
loop
TransformAsyncPipeline

end
end ;

Figure 3.16: An example of a whole transformation process

The piece of program showed in Figure 3.16 does the foilowings:

First of all, the PROGRES program creates a input p p h from scratch according to

CCB description (as in Figure 3.1 to 3.4) using productions.

And then it perfonns transformation of each pattem in a loop like the second transac-

tion TransformAllasyncPipeline in Figure 3.16. Because there maybe more than one

match for the particular pattern.

Then it repeats the transformation pattern by pattern d l there is no match of any pat-

tern is found.

At the last stage of the program will clean al1 the intermediate nodes and merge al1

duplicated nodes.

Intemediate nodes like COMTASK are used in the process of graph transformation

and al1 of them are transfomed to LQN Tasks at the Iast stage of transformation.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 56

Duplicuted nodes can be generated by partial transformation. (e.g. in the transforma-

tion of brokers in client-semer connection) Actually the transformation of brokers in cli-

ent-server connection is worth a litîle discussion. One approach of the transformation is

that generates a new broker task and service entry every tirne a client-server comection

with brokers is found. This will lead to a result of duplicated broker tasks and also some

duplicated entries. Duplicated tasks and entries can be recognized if they have the sarne

name (and also taskname for entries) and they c m be merged together at the last stage of

the transformation.

Another approach is that during the transformation of client-server comection with

brokers, always check the graph to see if there is already a broker task. If not, add the bro-

ker task, otherwise check to see if the desired s e ~ c e entry exists. If not, add the service

entry and the request arc, othenvise, only add the request arc. Since a lot of checking (e.g.

tests and queries (more complicated tests)) mu t be done in this case, the transformation is

more complicated. We choose to use the first approach in the transformation in the thesis.

The order of patterns transformed in the transformation does matter in some cases

when the transformations are related. For example, in the case of layered client-server sys-

tems, we have to deal first with the layered client-server transformation (as in Figure

3.19, and then the client-server transformation. However the other patterns which are not

related to layer structures c m be done in any order.

Chapter 3: From CCB Descriptions of Architecture to LQN Models 57

The whole transformation process can be illustrated in the following flow chart.

1 Clean and Merge 1

Figure 3.1 7: Flow chart of transformation control structure

Due to space limitation, we will not discuss in details the graph production mZes for

the CCB description to LQN mode1 transformation. However, such a detailed discussion

Chapter 3: From CCB Descriptions of Architecture to LQN Moàels 58

will be presented in the next chapter for the UML description of s o b a r e architecture to

LQN performance mode1 transformation.

cHAPTER 4 From UML Descriptions of
Software Architecture to
LQN Models

This chapter proposes a formal approach to build Layered Queueing Network (LQN) per-

formance models fiom UML descriptions of the hi&-level architecture of a system, and

more exactly from the architectural patterns used in the system. It is the second version of

the implementation. The difference between this version and the first version in chapter 2

is that we are using UML descriptions of the high-level architecture of a system in this

version. The main advantage of using Unified Modelling Language (LML) is the fact that

UML is the industry-standard laaguage for specifjmg, visualizing, constructing, and doc-

umenting the artifacts of software systems. The disadvantage is that UML is a rich nota-

tion with many types of diagrams which contains much more information than that

required for developing a performance model, which means that a selection process is nec-

essary to decide what to retain and what to ignore. On the other hand some performance

specific informations (such as resource demands) is missing in UML and has to be pro-

Chapter 4: From UML Descriptions of Architecture to LQN Models 60

vided by the user in order to build the performance model. The transformation fiom UML

architecturai description of a given system to its LQN model is hnplemented by using the

PROGRES tool [Schuerr90].

4.1 Architectural Patterns and UML Collaborations

As mentioned in chapter2, architectural patterns express fundamental structure organiza-

tion schemas for software systems [Buschmann96]. They provide a set of predefined sub-

systems, speciQ their responsibilities, and include rules and guidelines for organizing the

relationships between them. Architectural patterns help software developers to specify the

fundamental structure of an application.

This chapter proposes to use high-level architectural patterns, described in UML, as a

bais for transforming a software architecture into a performance model. A subset of fre-

quently used patterns are described in this chapter in the form of UML collaborations.

Some of hem have already been described and transformed to LQN models using CCB

description in the previous chapter.

As already mentioned, LML is the industry-standard language for specifjmg, visual-

izing, constructing, and documenting the artifacts of software systems [Rational]. It be-

cornes more and more popular in industry. That is why we considered using UML to

describe the high level software architecture after we did the similar research using an ad-

hoc notation named CCB descriptions.

Chapter 4: From UML Descriptions of Architecture to LQN Models 6 1

UML is very rich when it cornes to format. It has a number of different views and dia-

gram to fit the different purposes of the designers. Since we need to describe architectural

patterns which capture relationships at the subsystem level [Shaw96b] and are a M e r

step up in granuiarity fkom the class and object level, we chose to use a UML feature

narned collaboration which is better suited to describe the software architectural patterns

for the purpose of the thesis.

A UML collaboration is not a UML collaboration diagram (which is a type of interac-

tion diagrams) [Booch99]. According to the authors of UML, a collaboration is a notation

for describing a mechanism or pattern, which represents "a society of classes, interface,

and other elements that work together to provide some cooperative behavior that is bigger

than the s u m of al1 of its parts." [Booch99] A collaboration has two aspects: structural

(usuaily represented by a class/object diagram) and behavioral (an interaction diagram).

Collaborations can be used to hide details that are irrelevant at a certain level of abstrac-

tion; thrse details can be observed by "zooming" into the collaboration. The symbol for

collaboration is an ellipse with dashed lines, and may have an "embedded" square show-

h g template classes. (as in Figure 4.1 to 4.3) Another special UML notation employed in

this chapter is that of an active class (object) which has its own thread of control, repre-

sented by a square with thick lines. An active object may be implernented either as a pro-

cess (identified by the stereotype «procese>), or as a thread.

Figure 4.1 through 4.3 illustrates UML collaborations for client-broker-server pattern.

They are used as an example to illustrate how UML collaborations describe high level

Chapter 4: From UML Descriptions of Architecture to LQN Models 62
-- ---

software architectural patterns. The UML collaboration of other patterns will be illustrated

in later sections dong with their transformation to LQN models.

Figure 4.1 illustrates the UML collaboration @th the structural and behavioral parts)

for the forwarding broker pattern [Adebayo97], where the broker relays a client's request

to the relevant server, retrieves the response fiom the server and relays it back to the client.

The forwarding broker is at the center of al1 communication paths between clients and

servers, and can provide load balancing or restart centrally any failed transactions. Howev-

er, there is a price to pay in terms of performance: an interaction between a client and a

server requires four messages, which leads to excessive network tmffic when the client,

broker and server reside on different nodes. An alternative that reduces the network trafic

is the half-forwarding broker [Adebayo97] from Figure 4.2, where the server retums the

reply directly to the client. This reduces the number of messages for a cIient/server inter-

action to three, while it retains the main advantages of the forwarding broker (such as load

balancing and centralized recovery fiom failure). A handle-driven [Adebayo97] broker (as

in Figure 4.3) renims to the client a handle containing al1 the information required to corn-

municate directly with the server. The client may use this handle to talk directly to the

server many times, thus reducing the potential for performance degradation. However, the

client takes on additional responsibilities, such as checlcing if the hande is still valid afler

a while, and recovering fiom failures Load balancing is also more difficult in this case.

The small arrows with a srna11 circle in Figure 4.1,4.2 and 4.3 indicate the data flow.

Chapter 4: From UML Descriptions of Architecture to LQN Models 63

rrl;ént-; , C - 1
M , Servet t

Figure 4.1 : UML collaboration for client-server pattern with a fonvarding broker

(hiTent -
& - - 1

0 , Server
0

I 1 L - - - r Broket

Figure 4.2: UML collaboration for client-server pattern wi th a ha1 f-fonuarding bro ker

Chapter 4: From UML Descriptions of Architecture to LQN Models 64

Figure 4.3: UML collaboration for client-semer pattern with a handle-driven broker

4.2 Scope of the Thesis Research

UML
system mode1

I
1
I
1
I
I LQN f

I foramt B e ,
Figure 4.4: Scope of the thesis research

Chapter 4: From UML Descriptions of Architecture to LQN Models 65

Figure 4.4 illustrates the scope of the proposed approach and the part we implemented

using PROGRES, which is included in the grey dotted rectangle. First, the PROGRES

graph for a given system according to the schema from Figure 4.5 is directly generated by

a PROGRES program, then the input graph is transformed by applying the appropriate

rules, into an output graph representhg an LQN model. An LQN model file that can be fed

directly to an LQN solver is also generated by imported functions written in C to the PRO-

GRES program.

It is necessary to mention bat the thesis does not solve the problem of converting

UML notation to a PROGRES input graph. (like the part outside the grey doned rectangle

in Figure 4.4) The transformation of UML diagrams to a PROGMS input graph must be

done in the fiiture in order to integrate the generation of LQN models into an UML CASE

tool.

4.3 PROGRES Graph Schema

The graph schema for the transformation fiom UML collaboration to LQN defines the

types of nodes and edges allowed in an input graph (architectural description), an output

graph @QN model) and an intermediary graph. (a combination of both input and output

graphs, see Figure 4.5) The upper part of the figure contains the input schema for architec-

tural descriptions and the lower part contains the output schema for LQN models (light-

gray nodes). The input schema does not capture al1 the richness of UML, but only those

elements that are necessary for converting a hi&-level architecture into an LQN model.

The advantage of basing the transformation on architectural patterns expressed by

UML collaborations is that such higher-level of abstraction artifacts greatly simpliq the

Chapter 4: From UML Descriptions of Arcbitecm to LQN Models 66

graph schema and the transformation process. The disadvantage is that these artifacts have

to be pre-identified and represented in the schema and in the transformation d e s , which

limits the extensibility of the transformation process. This disadvaatage is somehow miti-

gated by the fact that the number of hi&-level architectural patterns identified in literature

and used in practice is relatively small.

In order to accommodate graphs in intermediary transformation stages, the two sche-

mas are joined together by three nodes iiiustrated in dark-gray at the base of the node class

hierarchy (NODE, OBJ-TASK, and OP-EIVTRY). The collaborations nodes representing

architectural patterns make up a big part of the input schema. Inhentance is useful for

c lass img the different patterns and their variants. "Role" edges, like client or semer,

connect the collaboration nodes to the architectural component nodes, which are active

and passive objects, their operatiom and links. The output schema reflects closely the

LQN graph notation presented in chapter 2. The node types are tmk and entry. The LQN

arcs may represent three types of requests (synchronouî, asynchmnous and forwurding); a

parameter indicates the average number of visits associated with each request. Since PRO-

GRES edges cannot have attributes, we represent an LQN arc by three elernents: an in-

corning edge, a node carrying the parameter (ARC-PARQM) and an outgoing edge.

Chapter 4: From UML Descriptions of Architecture to LQN Models 67

\ I '.
ming i

MultiplicityT 1
Task \

11
\
\
\
\
\
\
\

smng \
\ \
\ \ I /
\
\

- - -
NbViists

Figure 4.5: Joint graph schema for architecm1 pattern and LQN models

Chapter 4: From UML Descriptions of Architecture to LQN Models 6 8

4.4 Transformations from Architectural Patterns to
LQN

Graph transformation niles have been defined for each architectural pattern, following

closely the transformations illustrated in section 4.4.2 through 4.4.5. A PROGRES trans-

action is executed for every architectural pattern found in the input architecturai descrip-

tion graph. The transformation process ends when al1 the patterns have been processed.

As expected, the performance of the system depends on the performance attributes of

its components and on their interaction. Performance attributes are not central to the soft-

ware architecture itself, but must be specified by the user in order to transform the archi-

tecture into a performance model. Such attributes describe the demands for hardware

resources by the software components: allocation of processes to processors, average exe-

cution time for each sofnvare component, average demands for other resources such as I/O

devices, communication networks, etc. In the early design stages of a system, these value

can be either estimated fiom previous experience with similar systems or cm be based on

desired "tirne budgets" allocated to various subsystems. In the case of reusable compo-

nents, the resource demand values can be based on actual measurements.

4.4.1 General Transformation Principles

The general transformation principles from an input to an output graph are as follows:

Each architectural component (Le., object) is converted to an LQN task, for which rea-

son a cornmon base class O N T A S K was dehed in the graph schema. However, the

correspondence between components and tasks is not bijective, as in some cases a sin-

gle object may generate more than one task for the following reasons: to charge cor-

Chapter 4: From UML Descriptions of Architecture to LQN Models 69

rectly the execution times to various processors (Figure 4.7b and 4.2 1 b), or to model

processes that are part of the underlying midware (such as brokers in Figure 4.14,

4.15, and 4.18).

Object operations are usually converted into an LQN entry, with some exceptions as

in Figure 4.7b and 4.2 Ib, when an operation is converted into an entry and a task.

The collaboration nodes fkorn the input graph do not have an LQN equivalent. They

may be remained in the intennediary graph, but will be removed in clean-up proce-

dure.

4.4.2 Pipeline and Filter Pattern

Figure 4.6: Transformation of pipeline and filter pattern with a message

Figures 4.6 and 4.7 illustrate the transformation of two venions of Pipeline and Filters

pattern, the first using asynchronous messages for the pipeline, and the other using a

shared buffer. A regular arrow with a solid Line in the figure represents a synchronous

request in LQN model. A half arrow represents an asynchronous request and a dotted line

Chapter 4: From UML Descriptions of Architecture to LQN Moùels 70

arrow represents a forwarding request. We use these arrows in the LQN models through-

out the thesis. Each active filter becomes an LQN task whose service time includes the

processing time of the filter. The pipeline connecter is modeiled as an asynchronous LQN

request in Figure. 4.6. The CPU times for send/receive system calls are added to the serv-

ice h e s of the two LQN tasks, respectively. A network delay for the message cm be rep

resented in LQN as a delay attached to the arc.

fil ter2

a) Ali the filters arc running on the samc
pmcessor node

b) The filter arc ninning on different
processor nodes

Figure 4.7: Transformation of pipeline and filter pattern with a buffer

In the case of a pipeline with buffer (see Figure 4.7), an asynchronous LQN arc is still

Chapter 4: From UML Descriptions of Architecture to LQN Models 7 1

required, but this does not take into account the serialization delay due to the constraint

that buffer operations must be mutually exclusive. A third task will enforce this constraint.

It has as many entries as the number of operations executed by the tasks accessing the

buffer (two in this case, push and pull). ùi Figure 4.7, exactly the same architectural pat-

tern has two LQN counterparts, due to a ciifference in processor allocation. The execution

of dl buffer operations is charged to the same processor node in Figure 4.7a, and to differ-

ent processor nodes in Figure 4 3 .

The following Fragments of PROGRES code (Figure 4.8 and 4.9) illustrate the graph

production rules for the two variants of the pattern. The application of a graph production

rule in PROGRES performs first the selection of a subgraph that is matching the lefi-hand

side of the rule and then the replacement of this subpph by the right-hand side of the

rule. The rule shows the details of the transfomation irnplemented (i.e. the nodes and edg-

es that are kept, added or removed, as well as the changes of the uthibutes. In this program

the lefi-hand side of a rule corresponds to an architectural pattern fiom the input graph and

the right-hand side to the LQN submodel for this pattern.

In the case of pipeline with message, the lefi-hand side of the graph consists a PP-

WithMsg node, which is derived fiom COLLABORATION class (node 3), two Active Ob-

ject nodes (node 1 and 2) and two edges upStmFilter and dnSMiIter that indicate the

roles of the objects.

The transformation is pretty straightforward. In the right-hand side, the PPPEthMsg

node does not exist any more because a collaboration node does not have an LQN equiva-

Chapter 4: From UML Descriptions of Architecture to LQN Models

lent. The two Active object remain the same, because they may be comected by other

COLLABORATION nodes too. They will be transformed to LQN taski at the last stage of

transformation afier aU the collaborations are found and transformed. A new Async node

(node 4) is added representing the attributes of a asyncbronous request from node 1 to

node 2 in the LQN model. The franFfer keyword indicates the modifications on attributes

of the right-hand side.

production Transf ormpipeline =

t r ans fe r 4'.frornNarne := 'Lname;
4'.toName := '2.name;
4'.Type := "am;
1' .isEntry := 1;
2'.isEntry := 1;

end ;
Figure 4.8: Production rule for pipeline and filten pattern with a message

In the case of pipeline with buffer (as in Figure 4.7a), where both filten are located on

the same processor, the left-hand side of the graph consists a PPWithBuf node (node 3),

Chapter 4: From UML Descriptions of Architecture to LQN Models 73

two Active Object nodes (node 1 and 2), one Buffer node (node 4) with two Operations

(node 5 and 6) and three edges upStrmFiZter, dnStmFiIter and buffer that indicate the roles

of the objects.

In the nght-hand side, apart from the addition of an Asnyc node (as in Figure 4.8), a

new tas& node (node 4) is added representing the buffer in the left-band side. The two new

en& (node 5 and 6)represent the two mutually exclusive operations (node 5 and 6 in

LHS). Two new Sync node (node 7 and 8) are added representing the anributes of two syn-

chronous requests in LQN model. The transfer keyword below the graph indicates the

modifications of the attributes of the right-hand side. For example, the serviceTime0 of

Opemtion node 5 and 6 in the LHS become the serviceErneE of Enny node 5 and 6 re-

spec tivel y.

It is worth to mention that the condition keyword in this production indicates an addi-

tional condition on any subgraph that matches the LHS in order for the production to be

executed. In this case the condition is both Active object must locate on the same proces-

sor. For the other case (as in Figure 4 3 , where the filters are located on different proces-

sors), the LHS of the production nile is similar except it has a different condition which

means that the two Active object m u t locate on different processors. The RHS of the rule

is bit different too. The tasks will be located on different processors. Since we do not have

a Processor node in the graph schema, we use the Pmcessor attribute instead. So, the Pro-

cessor attributes of the tasks wiil be different.

Chapter 4: From UML Descriptions of Architecture to LQN Modeis 74

1

dnStrmFiIter

'1 : A c t i v e PPbuf f er

r - - - - - - - - - - - * - * - T

I
1

I

I

I
1
I

-COU t :cf n
1' = 11 * 3 ' : Async 2' = ' 2

I

I

arcout I

I

I

I

I

1

I

I
t
I

I
1
1

I

I

I

7' : sync
t

t

t

t

1 I
r
1

condition l8 .processor := 82.processor;
transfer 4'.name := '4.name;

6' .name := '6.name;
5' .name := '5.name;
78.fromName := 'Lname;
7'.toName := '6.name;
88.fromName := '2,name;
8' . toName := '5,name;
3' .fromName := '1.name;
3'.toName := '2,name;
3'.Type := "an;

Chapter 4: From UML Descriptions of Architecture to LQN Models 75

7'.Type := "y";
8 ' . Type : = "yN ;
5 ' .TaslrName := '4,name;
6r,Tas3cName := '4.name;

5 ' . ServiceTimeE:= '5.ServiceTimeO;
6'- ServiceTimeE:= f6.ServiceTimeO;

end ;
Figure 4.9: Production mle for pipeline and filters pattern with a buffer

4.4.3 Double Filter Collaboration

Figure 4.10 represents the transformation for the so-called "double filter" collaboration,

that can be used either in conjunction with a "pipeline witb message", or a "pipeline with

buffer". This collaboration can be generalized for any type of active objects that are shar-

h g the same execution thread. It describes the case of two filters that are ninning in the

sarne process. The LQN mode1 captures the contention of the two objects for the same

execution thread. Since the LQN version used for this thesis did not accept cyclic graphs

for reasons related to deadlock prevention, we represented each passive object filter as a

LQN "dummy" task, therefore treating it as an active object. In order to prevent the

dwnmy tasks from executing simultaneously, a &rd "executive" task serializes the first

two. Al1 filter's processing is charged to the "executive" task entries. The dummy tasks

don? do any real work, and are waiting instead for the executive task to do the work on

their behalf. They are allocated on a dummy processor (not to interfere with the schedul-

h g of the "real" processor node).

Chapter 4: From UML Descriptions of Architecture to LQN Models 76

\ container L \

Figure 4.10: Transformation of double filter collaboration

The following fragment of PROGRES code (Figure 4.1 1) illustrates the graph produc-

tion rules for this collaboration. The left-hand side of the graph consists of a DoubleFilter

node (node 3), two Active Object nodes (node 1 and 2) that represents the two filten, an-

other Active Object node (node3) that represents the container three edges indicate the

roles of the objects.

The transformation is pretty straightforward. In the right-hand side, the DoubleFilter

node does not exist any more because a collaboration does not have an LQN counterpart.

The two Active object (node 1 and 2) become dummy tasks as explained before. In order to

prevent the dummy tasks fkom executing simultaneously, a third execurive task (node 4)

senalizes the first two. Two new erecutive task entries (node 5 and 6) represent the pro-

cessing of the two filters. TWO new Sync node (nodc 7 and 8) are also added representing

the attributes of a synchronous request in the LQN model. The tramfer part below the

Chapter 4: From UML Descriptions of Architecture to LQN Models 77

graph indicates the modifications of the attributes of the right-band side, like update the

name of node 1 and 2 with the "dummy" prefix.

production TransformDoublePilter =

1 I
f i l t e r j \f ilter

container

1 . 4 : Active 1

txansf er l8 .name := MDummyw & ' 1 .name;
S8.name := nDummyw & '2.name;

Chapter 4: From UML Descriptions of Architecm to LQN Modets 7 8

end ;
Figure 4.1 1 : Production rule for double fiIter collaboration

4.4.4 Client-Semer Pattern

4.4.4.1 Client-Server Pattern with Direct Conoection

Figure 4.12 illustrates the transformation to LQN of a direct client-semer connection

through a synchronous communication (rendez-vous), where the client sends a request to

the server and blocks until the reply fkom the server cornes back. A server may offer a

wide range of services (represented here as the semer's object methods) each one with its

own performance attributes (execution tirne and number of visits to other servers). A client

may invoke more than one of these services at different times.

Chapter 4: From UML Descriptions of Architecture to LQN Models 79

Figure 4.12: Transformation of the client-server pattern with a direct connection

m e following fragment of PROGRES code (Figure 4.13) illustrates the graph produc-

tion rule for this case. The left-band side of the graph consists of a CSDirect node (node

3), an Active Object node (node 2) that represents the client, an Operation node that repre-

sents the service provided by the server and two edges (client and service) that indicate the

roles of the objects.

In the right-hand side, the CSDirect node remains in the graph because it rnay be con-

nected io other operations of the sarne server as well. The Operation node (node 4) be-

cornes an E n v . A new Sync node (node 5) is also added representing the attributes of a

synchronous request in the LQN model. Since the server may be offering other services

(i.e. Operatioas) the production will be execute in a loop to transform al1 the operations to

entries. The loop will end when no match of the LHS will be found in the input graph. The

Chapter 4: From UML Descriptions of Architecture to LQN Models 80

tramfer keyword below the graph indicates the modifications of the amibutes of the right-

hand side nodes. For example, the serviceTime0 of Operation node 2 in the LHS become

the serviceTimeE of Entry node 2.

transfer lr.isEntry := 1;

end ;

transaction TransformAllCSDirect=
loop

TransformCSDirect
end

end ;

Figure 4.13 : Production rule for client-Server pattern with a direct comection

Chapter 4: From UML Descriptions of Architecture to LQN Models 8 1

4.4.4.2 Client-Server Connection by Forwarding and Half-Forwarding

Broker

Software developers of client-semer systems are mostly interested in the components that

are part of their application, and less in the details of the underlying midware, operating

system or networking software. The use of UML collaborations cornes in handy, because

it allows us to hide unnecessary deuils. For example, client-semer applications using a

CORBA interface do not have to show explicitly the "broker" component in their architec-

ture (as it is not part of the software application). Instead, a collaboration can be used to

indicate the type of desired client-server comection. However, the performance mode1

will represent explicitly the broker and it's interaction with the client and server counter-

Parts*

Figures 4.14 and 4.15 illustrate the transformation of the client-semer connections

which use the forwarding and half-forwarding broker. Since the architecture does not

show the broker explicitly, the input graphs have similar architectural descriptions, differ-

entiated only by the kind of UML collaboration used. However, their LQN models are

quite different, as the comections have very different operating modes and performance

characteristics.

In the client-semer comection with a forwarding broker case, the broker relays a cli-

ent's request to the relevant server, retrieves the response from the server and relays it back

to the client. The forwarding broker is at the center of al1 communication paths between

Chapter 4: From U M L Descriptions of Architecture to LQN Models 82

clients and servers. The forwarding broker (Figure 4.14) is modelled as an LQN multi-

server with as many entries as server entries. Each fomarding broker replication models a

''virtual" thread that is dedicated to a given client request until the completion of its ser-

vice. (A virtual thread may be implemented either as a thread or as a process). While some

of the broker thread will be blocked, waiting for the semer's reply, other such threads will

accept new client requests. However, al1 m a l threads compete for the same processor

and execute one at a tirne.

In the case of half-fonuarding broker from Figure 4.1 5, where the server r e m s the re-

ply directly to the client. This reduces the number of messages for a client/server interac-

tion to three, while it retains the main advantages of the fonvarding broker (load balancing

and centralized recovery fiom failure). The half-fonvarding broker model (Figure 4.15)

uses LQN forwarding arcs (drawn with dotted Iines) which have a special semantic. AAer

accepting a request fiom a client, the acceptor task will do some processing, then will for-

ward the request to another task. The fonvarder is free to continue its activity, while the

client remains blocked, waiting for the reply. The second task that continues to serve the

request rnay eventually complete it and send the reply directly back to the client, or rnay

decide to forward the request to another task. The LQN semantic implies that a reply will

be sent to the client by the last task in the forwarding chah (but the reply is not represent-

ed as an arc in the model). In Figure 4.15, the fonvarding broker is the task that receives

the requests fiom the clients and forwards them to the appropriate entxy of the server. The

broker must have a separate entry for each entry it fowards to, otherwise the clients would

be unable to choose the server entry they need.

Chapter 4: From UML Descriptions of Architecture to LQN Models 83

The allocation of tasks to processors is not shown in figures, because the transforma-

tion does not depend on it (each LQN task is allocated exactly as its architectural compo-

nent counterpart).

Figure 4.14: Transformation of the client-server pattern with a fonvarding broker

r - - - 1 _ _ , , - 1 Client I
@

H Smer
/

/ [@k ,\ 1

s m i c e b
service 1 (
sewice22)

service sen?ceg secver /ITf
Figure 4.15: Transformation of the client-semer pattern with a half-forwarding broker

Chapter 4: From UML Descriptions of Architecture to LQN Madels 84

The following fragment of PROGRES code (Figure 4.16) illustrates the graph produc-

tion rule for client-semer co~ec t ion with half-forwarding broker. The lefi-hand çide of

the graph has aCSFwdBroker node (aode 3). An Active Object nodes (node 2) that repre-

sents the client, an Operation node that represents the service provided by the server and

two edges (client and service) that indicate the roles of the objects. (The broker does not

appear in the left-hand graph, king hidden in the collaboration)

In the right-hand side, the CSFwdBroker node remains in the graph because it may be

comected to other Operation nodes of the same server. A newfidBroker node that repre-

sents the broker is added (node 6). The Operation node (node 4) becomes an E n r y of the

newfwdBroker n0de.A new Sync node (node 3) and a new Fonvard node are also added

representing the attributes of a synchronous request and a forwarding request, respective-

ly. Since the CSFwdBmker node still exists, if there are other Operation node of the same

server, the production will be execute in a Ioop to transfomi al1 the opentions to entries.

These entries are owned by the sarne task to prevent thern to execute simultaneously.The

transfer section below the graph indicates the modifications of the attributes of the right-

hand side, like the Servicel'ime or name of the entries.

In order to simplify the rule for the transformation of this pattern, a newfwdBroker

node represents the broker and a entry of the broker task are added each time when a

match of the lefl side is found in the graph. This approach was chosen for simplicity to re-

duce the number of production mles and the conditions for their application. However this

will lead to a duplication of thefwdBroker node and its entries. So, when no more matches

Chapter 4: From UML Descriptions of Architecture to LQN Models 85

from the LHS are found a clean-up will be done by the transaction MergeAZZFwdBroke>;

which calls the production MergeFwdBroker (see Figure 4.17) in a loop. The basic idea of

this production is to merge two fwdBokers into one if there is a duplicated fwdbroker is

found.

production TransformCSFwd =

Sclient &'CS-

1 ' 4 : Active I :

- - --- .
t
1

Sclient, 7
arcout a

1
I

t 1 l

arcIn I

1
I

owns I
I

7' : Entry - 6' : FwdBroker I

I

fer 6 .name : = 2 . name & "BrokerN ;
7 . narne : = 4 . name & #BrokerEntryW ;
2°.name := '2.name ;
2 . S e r v i c e T i r n e E : = ' 2 . S e r v i c e T i m e O ;

end ;

Chapter 4: From UML Descriptions of Architecture to LQN Models 86

Figure 4.16: Production rule for client-server pattern with a half forwarding broker

production MergeFwdBroker =

' 3 : Forward 1 1 ' 8 : Forward 1 1
I
I

condition

Chapter 4: From UML Descriptions of Architecture to LQN Models 87

end ;

Figure 4.1 7: Production rule for merging two duplicated forwarding brokers

4.4.4.3 Client-Semer Connection by Handle-Driven Broker

In the case of a Client-Server connection with a handle-driven broker, a handle-driven

broker returns to the client a handle containhg al1 the information required to cornmuni-

cate directly with the server. The client may use this handle to talk directly to the server

many times, thus reducing the potential for performance degradation. The LQN mode1 for

the handle-driven broker sends two separate messages for each client request: one to the

broker for getting the hande, the other directly to the desired server entry. (as in Figure

Figure 4.18: Transformation of the client-server pattern with a handle-âriven broker

0 \
/ I

The following fiagrneni of PROGRES code (Figure 4.19) illustrates the graph produc-

I ..n I
I «proces- I

clienrl I
I

1 ..n
«process»

client2
2

I

/iceZo
' service I (

senice21

Chapter 4: From UML Descriptions of Architecture to LQN Models 88

tion mle for client-semer comection with handle-driven broker case. The lefi-hand side of

the graph has a CSHdBroker node (node 3), an Active Object nodes (node 2) that repre-

sents the client, an Operation node represents the seMce provided by the server and two

edges (client and service) that indicate the roles of the objects. The broker does not ap-

pears in the LHS of the graph, as mentioned before.

In the nght-hand side, the CSHdBmker node remains in the graph because it may be

c o ~ e c t e d to other Operation nodes of the same server as well. A newfwdBroker node is

added (node 6). The Operation node (node 4) becomes an Entry of the new fwdsroker

node. Two new Sync node (node 3 and 5) representing the attributes of a synchronous re-

quests are also added. Since the CSHdBmker node still exists, the production will be exe-

cuted in a loop to transform al1 the operations of the same semer to entries. The tranç/er

keyword below the graph indicates the modifications of attributes of the right-hand side.

In order to sirnplifi the nile for the transformation of this pattern, a new HdBroker

node that represents the broker and an entry of the broker task are added each time when a

match of the left side is found in the p p h . This approach will lead to a duplication of Hd-

Bmker node and its entries. Therefore, when no more matches from the left-side are

found, meaning that al1 operations are transformed into entries, a clean-up will be done by

the transaction MergeAlIHdBroker, which calls the production MergeHdBroker (see Fig-

ure 4.20) in a loop. The basic idea of this production is to merge two fwdBokers into one if

there is a duplicated fwdbroker is found. This work is similarly to the clean-up procedure

for the ha1 f- forwarding bro ker explained be fore.

Chamer 4: From UML Descriptions of Architecture to LQN Models 89

production TransformCSHd =

:Csciient I

/arcout / I 3 ' : Sync
I

: l S t : Sync 1 1 7' : Entry
1 I
1 - 1 1

owns

end ;

Chapter 4: From UML Descriptions of Architecture to LQN Models 90

Figure 4.19: Production rule for client-server pattern with a handle-driven broker

production MergeHdBroker =

' 2 : Sync '6 : Sync

1 ' 7 : Entry

condition '4.name = '9.name;
end ;

Figure 4.20: Production nile for merging two duplicated handle-drivea broken

Chapter 4: From UML Descriptions of Architecture to LQN Models 91

4.4.5 Critical Section Pattern

The cntical section pattern applies to cases where two or more active objects share the

same passive object. The constraint {sequential) attached to the methods of the shared

object indicates that the callers must coordinate outside the shared object (for example, by

the means of a semaphore) to insure correct behaviour. The transformation of the critical

section collaboration produces either the mode1 given in Figure 4.2 1 a or 4.2 I b, depending

on the allocation of user processes to processors (similar to the pipeline case). The

premise is that an LQN task cannot change its processor allocation. Since the operations

on the shared object (i.e., cntical sections) may be executed by difierent threads of con-

trols of different users ninning on different processors, each operation is modelled as an

entry that belongs to a different task fi to f~ nuining on its user's processor. However, these

tasks must be prevented from d n g simultaneously, reason for which the semaphore

task was introduced. The performance attributes to be provided for each user must specify

cntical and non-critical execution times separately.

Cbapter 4: From WML Descriptions of Architecrure to LQN Models 92

user 1 L 7 * * *

a) A11 the users are running on the same b) The user are running on different
proccssor processors

Figure 4.2 1 : Transformation of critical section pattern

The following fragment of PROGRES code (Figure 4.22) illustrates the graph produc-

tion mle for the case presented iri this pattern (as in Figure 4.2 1 a, where a11 users are locat-

ed on the sarne processor). The lefi-hand side of the graph consists of a CriticalSection

node (node 3), an Active Object nodes (node 1) represents the acessor, an OBJECT node

Chapter 4: From UML Descriptions of Architecture to LQN Models 93

(node2) that owns an Operution node and three edges (accessor and shared) that indicate

the roies of the objects.

Io the right-hand side, the CriticalSection node remains in the graph because it rnay be

connected to other Operution nodes as well. The Operation node (node 4) becomes an En-

try owned by node 2. A new Sync node (node 5) is also added representhg the attributes of

a synchronous request in LQN model. If there are other Operation nodes for the sarne OB-

JECT exist, the production will be execute in a loop to transfom al1 operations to entries.

The transfer keyword below the graph indicates the modifications of the attributes on the

right-hand side.

The condition keyword in this production indicates an additional condition on any

subgraph that matches the LHS in order for the production to be executed. In this case the

condition is both Active object must locate on the same processor. For the other case (as in

Figure 4.2 1 b, both objects are located on different processors), the LHS of the production

rule is similar except it has a different condition which means that the two Active object

must locate on different processon. The RHS of the rule is bit different too. The tasks will

be located on different processors. Since we do not have a Processor node in the graph

schema, we use the Processor attribute instead. So, the Processor attributes of the tasks

will be different.

Chapter 4: From UML Descriptions of Architecture to LQN Models 94

production TransformCriticalSection =

condition lr.processor := '2.processor;
Lransfer 5' . fromNarne := 'Lname;

5'.toName := '4.name;
5 ' .Type := * y M ;
4 ' .TaskNarne := '2.name;

' 3 : CriticalSection

end ;

1
I

Figure 4.22: Production rule for cntical section pattern

t
I
I I 5 ' : Sync EF~ I

1 accessor
I
1

t
I

.
1
I

lt = '1 pl ;
I

1
t

c - J

4.5 Other Production Rules

So far we have show the production d e s for the main patterns. There are still other

production mles in the program dealing with the creation of the input graph, setting at-

tributes, clean-up procedure, retrieving attributes fiom a11 tasks and entries, writing to file

etc. They will be explained in this section.

Chapter 4: From UML Descriptions of Architecm to LQN Models 95

4.5.1 Create Input Graph and Set Attributes

As mentioned before, in this thesis the input graph is created by using PROGRES produc-

tions. A . input graph is created component by component and pattern by pattern. When

creating an input graph, the performance specific attributes like Servicelime, hitRatio

and Processor cm also be set.

The following example show how to create two Operations with 3-phase ServiceErne

attributes:

CreateOperation (U s e ~ i c e l " , "O", " 0 . 2 " , "0")
& CreateOperation (Y s e r v i c e 2 ' t , "O" , u0.3**, "O")

The following codes show how to create two Active Objects with Processorname, Pro

cessovpe and multiplicity attributes:

CreateActive (" c l i e n t l m , " p r o ~ l ' ~ , "f", "im , 1 0)
& CreateActive (M c l i e n t 2 n , uproc2", "f" , "i" , 2 0)

4.5.2 Transform Al1 Objects to Tasks

This production (Figure 4.23) will be executed at the last stage of the transformation,

when d l the patterns are transformed and there is no need for intermediate nodes any

more. This production will be called in a loop to transfomi al1 the OBJECT node to Task

nodes. The edges associate with OBJECT node still remain associated with the corre-

sponding Task node, due to the redirect keyword fiom the embedding section (If the redi-

rect part would be Mssing, al1 the edges associated with the node in LHS which has no

counterpart in RHS would be deleted).

Chapter 4: From UML Descriptions of Architecture to LQN Models 96

production

embeddinq
redirect -owns->, <-arcIn-, -arcout-> £rom '1 to 1';

transfer P.name := 'l.name;
1°.isEntry := 'LisEntry;
iy.MultiplicityT := '1.MultiplicityO;
îO.Processor := '1.Processor;
l8.ProcType := '1.ProcType;

end ;
Figure 4.23: Production rule for transforming an OBJECT to a Task

4.5.3 Transform Al1 Operations to Entries

This production (Figure 4.24) will be executed at the last stage of the transformation, after

al1 the patterns were transformed. This production will be called in a loop to transfom al1

the Operation node to Enhy node. The edges associate with Operation node still remain in

the same association with the conesponding Entry node.

production TransformOperationToEntry =

Cha~ter 4: From UML Descriptions of Architecture to LQN Models 97

embeddinq
redirect <-owns-, <-a rc In - , - a r c o u t - > from '1 to 1';

transfer ll.name := '1-name;
1' .TaskName := Jl,TaskName;
ll.ServiceTimeEl := '1.ServiceTimeOl;
lt.ServiceTimeE2 := 'l.ServiceTirneO2;
lt.ServiceTimeE3 := 'l.ServiceTime03;

end ;

Figure 4.24: Production rule for transforming an Operation to an Enby

4.5.4 Get Attributes of Al1 Tasks and Entries

These productions (Figure 4.25-4.27) basically retrieve al1 the attributes of al1 Task nodes,

E n t q nodes and ARC-PARAMETER nodes and retum them (Iike the rerirrn keyword

indicates). Later these attributes will be saved in an data structure by calling extemal C

functions. The attributes like tasName, entryName, Servicefime, visitRution, multiplicky

and types of arcs are used to generate the LQN file.

productioq GetTaskAtt(ou t tname, proc, proctype : string
; o u t m : integer)

- -

Chapter 4: From UML Descriptions of Architecture to LQN Models 98

embedding
redirect -owns->, <-arcIn-, -arcout-> from

r e t u r n tname := '1,name;
proc := '1.Processor;
proctype := '1.ProcType;
m := '1.MultiplicityT;

end ;
Figure 4.25: Production d e for retriewig attributes of a TatR

production GetEntryAtt (out enarne. taskname : string ;
out serT1, serT2, s e r T 3 : Real) =

embedding
redirect <-owns-, <-arcIn-, -arcout-> from '1 to 1';

re turn ename : = ' 1. name ;
taskname : = 1. TaskName;
serTl := '1.ServiceTimeEl;
serT2 := 'LServiceTirneE2;
s e r T 3 := 'l.ServiceTimeE3;

end ;

Chapter 4: From UML Descriptions of Architecture to LQN Models 99

Figure 4.26: Production rule for retrieving attnbutes of an Entry

production GetArcAtt (out arctype, f romame, toname :
string ;

out visitl, visit2, visit3 : Real)

return arctype := '3.Type;
fromname := '3,fromName;
toname : = ' 3 . t o N a m e ;
visitl := ' 3 .NbVisitl;

end;

Figure 4.27: Production rule for retrieving amibutes of an ARC-PARQM

4.6 Generating An LQN Mode1 File

PROGRES Program itself provide limited features to deal with output to files. The solu-

tion is to write extemal functions using C programming language and import them into a

PROGRES program. In this case, we want to generate a text file according to a predefined

Chapter 4: From UML Descriptions of Architecture to LQN Models 100

LQN model format Franks951, which cm be used as an input file for existing LQN solv-

ers which can solve the model and provide performance results. Typical results of an LQN

model are response times, throughput, utilization of servers on behalf of different types of

requests, and queueing delays. The LQN results may be used to identify the software and./

or hardware components that limit the system performance under different workloads and

resource allocations.

The following fragment of PROGRES code illustrates how a PROGRES program im-

ports extemal C functions:

from writeLQN import

functions
writeLQNFile : (string) -> integer,
saveEntryAtt :

(integer, string, string, string, string, string) ->
integer ,

saveArcAtt
(integer, string, string, string, string, string,

string) -> integer
saveTaskAt t . .

(integer, string, string, string, inteqer) - > i n t e -
ger ;

end ;

These C function basically Save the attributes of al1 tasks and entries and write them to

a text file according to the predefined LQN input file format. The main transaction in

PROGRES will cal1 these function afier it does al1 the graph transformations.

Chapter 4: From UML Descriptions of Architecture to LQN Models 101

4.7 Control Structure for Graph Transformation

A software system contains many components invoived in various architectural connec-

tion instances (each described by a pattem/collaboration), and a component may play dif-

ferent roles in different patterns. The transformation of the architecture into a performance

model is done in a systematic way, pattern by pattern. PROGRES searches for subgraphs

in the underlying input graph that match the lefi-hand side of the niles for different given

pattern. The transformation process ends when al1 UML collaborations have been proc-

essed.The final result is an LQN model that can be written to a file.

The following shows the sequential steps of the whole transformation in pseudo-code:

Transaction UMLtoLQN
Create input graph;
begin
While (there is pattern 1 in input graph)

Transform it;
While (there is pattern 2 in input graph)

Transform it;
. O

While (there is pattern n in input graph)
Transform it;

Clean collaborations () ;
Merge Tasks;
Merge Entries;
Get Attributes;
Write to LQN file;

end ;

The graph will be in an intermediate stages if not al1 interactions are covered by

known patterns. In this case the user gets an warning message fiom the tool. This problem

can be solved by definhg more patterns.

Chapter 4: From UML Descriptions of Architecture to LQN Models 1 O2

The control structure for this PROGRES program is similar to the control structure we

have discussed in the previous chapter. The whole approach is illustrated with a case-study

in section 4.8.

4.8 Case-Study: A Telecommunication System

This section presents the architecture of an existing telecommunication system which is

responsible for developiog, provisioning and maintaining various intelligent network serv-

ices, as well as for accepting and processing real-time requests for these services (see Fig-

ure 4.28). The system was modelled in LQN, and its performance analysed in

[Shousha98a]. Here we consider only the transformation fiom the systern's UML architec-

ture to its LQN model. The real time scenario modelled in [Shousha98a] starts from the

moment a request arrives to the system and ends after the service was completely proc-

essed and a reply was sent back. As illustrated in Figure 4.27, a request is passed through

several filters of a pipeline: fiom Stack process to IO process to RequestHandler and al1

the way back. The main processing is done by the RequestHandler, which accesses a real-

time database to fetch an execution "script" for the desired service, then executes the steps

of the script accordingly. The script may vary in size and types of operations involved, and

hence the workioad varies largely fiom one type of service to another (by one or two

orden of magnitude). Due to expenence and intuition, the designers decided h m the

beginning to allow for multiple replications of the RequestHandler process in order to

speed up the system. Two shared objects, S M m l and ShMern2, are used by the multiple

RequestHonàZer replications .

Chapter 4: From UML Descriptions of Architecture to LQN Models 1 03

: b5ubiefic;it'e{
, - i FirstFiIter I

' 1 ScndFilter i
1 C - - - - - -Id
\,DOUBLE FUTER r

/

I \ WITH MESSAGE /'

_ - - - :üpSt;n;Fitërifn;

@ i DnSumFilter I

PIPELME - - - :
WITH BUFFER r

-
- - - c c

Figure 4.28: UML descriptions of high-level architecture of a telecommunica tion system

A - -I - Accessor lr,-,-,

/ , L Set 4 e
Ib - - J , Acccssor ,

/ , S hared \RITICAL SECTION L - - - - J

/

The following is a part of the PROGRES program illustrates the main control structure

of this case.

transaction MAIN =
CreateInputGraph
& TxansformPat terns

Chapter 4: From UML Descriptions of Architecture to LQN Models 104

& writeToFile
end ;

transaction CreateInputGraph =
CreateDoubleFilter
("Stackw, uStackInm, "StackOut", MproclH, "f")
& CreateDoubleFilter ("IO", "IOinw, "IOoutff, 'procl",
& CreateDoubleBuf f er ("Buf f er", "procl*, "f")

& CreateActive (NR~questHandler", uproclM. 'fN , 10)
& Createoperation (Yservicel", "O", "0.8", '0")
& CreateServerl ("DataBase", "servicel", "procl", "f"
& AddPipeline ("StackIn", *IOinff)
& AddPipeline (T O o u t N , uStackOut")

& AddPipelineWithDoubleBuf
("IOinff, "Buffer", "RequestHandlerM)

& AddPipelineWithDoubleBuf
("Req~estHandler~~, "Buf f erw , "IOout")

& AddCSDirect ("RequestHandlerW, "servicelff)

"f")

1

& CreateSharedMemS ("ShMemlU , "al loc" , "f ree" , "procl" , "f"
1
& CreateSharedMeml ("ShMem2", "update" , "procl", "f")
& AddCriticalSection ('RequestHandler", *ShMeml", ualloc")
& AddCriticalSection (uRequestHandlerN, "ShMemlM, *freem)
& AddCriticalSection ("RequestHandlern, "ShMemS", "update"
1

transaction TransformPatterns =
TransformAllDoubleFilter
& TransformAl1Pipeline
& TransformAllPipelineWithBuf
& MergeAUDoubleBuffer
& TransformAllCSDirect
& TransformAllCriticalSection

end ;

transactzon
loop
Transf

end
end;

Transi 0-1

ormPipeline

P i p e line =

Chapter 4: From LNL Descriptions of Architecture to LQN Models 1 05

transaction writeToFile =
use i n t : in teger
do

DeleteCollaborationNodes
& Transf oxmAllOb j ectToTask
& TransformAllOperationToEntry
& GeUlllTaskAtt
& GetAllEntryAtt
& GetAllArcAtt
& int := writeLQNFile (Ytestcase.lqn")

end
end ;

We create an input graph first, and transform it pattern by pattern d l no untrans-

formed node is found in the whole graph. Finally the program saves al1 the relevant at-

tributes and writes to a file according to the LQN input file format.

The case-study system was built to run either on a single-processor or on a multi-pro-

cessor with shared memory. Processor scheduling is such that any process can run on any

fiee processor (i.e., the processors were not dedicated to specific tasks). Figure 4.29 illus-

trates the LQN mode1 of the system obtained by applying the graph transformations de-

scnbed in this chapter.

Chapter 4: From UML Descriptions of Architecture to LQN Models 1 06

Figure 4.29: LQN model of the telecornmunication system

The LQN model file for this case study can be generated by the PROGRES program

using extemal functions written in C programming language. This file can be directly used

as an input file of an LQN solver.The LQN model file for this case snidy will be shown in

Appendix 3.

The LQN model can be solved with existing LQN solvers Ifranks951 either analytical-

ly or with simulation. The performance analysis of the model is outside the scope of the

thesis.

CHAPTER 5 Conclusions

5.1 Conclusions

The purpose of this thesis is to contribute to bridging the gap between sofnvare architec-

ture and performance analysis. By automating the consrniction of the performance models

from software architectures, the time and effort required for SPE will be considerably

reduced, and the consistency between the model and the system under development more

easily maintained.

The thesis proposes an approach to automate the denvation of the structure of an LQN

performance model from the patterns used in the hi&-level architecture of the system.

The proposed approach is based on the graph grammar formalism, and it was irnplemented

by using PROGRES, a known visual language and environment for programming with

graph rewriting systems[Schuerr90]. Two versions of the implementation are presented. In

Chapter 5 : Conclusions 108

the first one we used an ad-hoc language to descnbe the high-level architectural patterns

of the system, whereas in the second we used the new UML standard. The first approach

has the advantage that the notation is "taihr-made" for our needs, and thus contains exact-

ly the kind of information requests for building a performance model. The disadvantage is

obvious due to the fact that notation is ad-hoc, not standard. We tned to overcome this by

using UML in our second version. However, this choice king a new challenge. UML is a

very nch notation that contains many kinds of diagrams and much more information than

we need to express high-level architectures.The approach taken in the thesis is to use only

a subset of UML features for the input graph to the PROGRES transformation program.

This does not solve the problem of accepting UML models as input to our transformation

program, which opens directions for future work.

5.2 Future Work

The matter of this thesis can be further researched in the following direction:

Extend the research with more software architectural patterns of systems witb both

descriptions we have used in this thesis.

Extend the tool with a interface with UML pphical tool to generate the PROGRES

input graph by graphical or textual definition.

Extend the process of building LQN model by taking into account more detailed UML

design documents. Whereas the structure of the LQN mode1 is desired fiom the high-

level architecture of the system, as shown in the thesis, the model parameter could be

Chapter 5: Conclusion

obtained fiom lower-level behavioural views that show what happens inside the higher

level architectural components. By aggregating the resource demands at lower levels

of abstraction, one should be able to obtain the average resource demands of the high

level component (which are the parameten of the performance model, such as execu-

tion times and visit ratios).

References

O. Adebayo, J. Neilson, D. Petriu, "A Perjionnance Study cf Client-

Broker-Server Sysiem ", in Proceedings of CASCON'97, pp 1 16- 130,

R. Adler, "Dishibuted Coordinution Models for Client/Server Cornput-

h g ", IEEE Compter, pp 14-22, Apnl 1995 .Toronto, Canada, Novem-

ber 1997.

R.Allen, D. Garlan, "A Fonnal Basis for Architectural Connection ",

ACM Transactions on Software Engineering Methodology, Vo1.6,

No.3, pp 2 13-249, July 1997.

G.Booch, J.Rumbaugh, IJacobson, The Unified Modeling Language

User Guide, Addison-Wesley, 1999.

[Buschmann96] F. Buschrnann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal, Put-

rem-Orienred SO ftware Architecture: A System o f i a l t e m , Wile y Corn-

puter Publishing, 1996.

[F d 9 5] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, C.M. Wood-

side, '1 Toolset for Pefonnance Engineering and Software Design of

Client-Server System ", Performance Evaluation, Vol. 24, Nb. 1-2, pp

1 17-1 35, November 1995.

[Franks96] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, C.M. Wood-

side. "Per/ormance Analysis of Disnibuted Server Sysiems ". In Pro-

ceedings of the 6th International Conference on Software Quality, pp.

1 5-26, Ottawa, Canada, October 1996.

References 11 1

[Franks98] G. Franks, C.M.Woodside, "Pefomance o/Multi-Level Client-Senter

System with Paralle1 Service Operatiom ", Proceedings of the Fùst

International Workshop on Software and Perfomance, Santa Fe, USA,

pp. 120-130, Oct. 1998.

[Dilley97] J.Dille y, R-Friedich, T. Jin, J.Rolia, 44Me~rernent Tool and Mode Ihg

Techniques for Evaluoting Web Semer Peforrnance '* in Lecture Notes

in Computer Science, vol. 1245, Springer, pp. 155- 168, R.Marie, B.Pla-

teau, M.Calzarosa, G.Rubino (eds), Proc. of 9-th Int. Conference on

Modelling Techniques and Tools for Performance Evaluation, June

1997.

[HesseIgrage98] Mary Hesselgrage, ''Avoiding the Software Per/onnance Crisis ", Proc.

of the Fùst International Workshop on Software and Perfomance,

Santa Fe, USA, pp.78-79, Oct. 1998.

Martin Fowler, UML Distilled. Addison-Wesley, 1998.

Curtis. E. Hrischuk "lmplementing Angio Trace Analysb using the

Graph Rewriting Tool PROGRES"

Curtis. E . Hrischuk, C.Munay Woodside, Jerome A Rolia, and Rod

Iversen, "Trace-based load characterkîation for generating pefor-

mance software rnodels " IEEE Transactions on Software Engineering,

Vo1.25, Nb. 1 ,pp 122- 1 3 5, January 1 999.

Bruce Powel Douglass, Real-time UML, Addison-Wesley, 1998.

J.E.Neilson, C.M.Woodside, D. Petriu, and S. Majumdar, "Sof~are

bo ttleneckina in clien t-server svstems and rendezvous networks " 1 E E E

References

Transactions on Software Engineering, vol. 2 l(19) pp.776-782, Sep-

tember 1995.

[OMG92] Object Management Group, The Cornmon Object Request Bmker:

Architecture and Specifcation, Object Management Group and X/

Open, Framingham, MA and Reading Berkshire

UK, 1992.

[Petriug 81 D. Petriu, X.Wang, "Deriving Sofwre Perjionnance ModeLr /rom

Architectural Patterns by Graph Tr~~nsfonnations", Proc. of the Sixth

International Workshop on Theory and Applications of Graph Trans-

formations TAGT'98, Paderborn, Germany, Nov. 1998.

DL. Petriu, X. Wang "Frorn UML Descriptions of High-level Sofware

Architecture to LQN Peflonnance Models ': Proc. of Applications of

Graph Transformation with Industrial Relevance, Monastery Rolduc,

Kerkrade, The Netherlands, September 1999.

[RoIia87] J.A. Rolia. PerjGmance Estimates for Mulri-tasking So fware Systems.

Master's Thesis. University of Toronto, Canada, January 1987.

[Rolia82] J.A. Rolia. Software Performance Modelling. Ph.D. Dissertation, CSRI

Technical Repomt260, University of Toronto, Canada, January 1 992.

[Rolia95] J.A. Rolia, K.C. Sevcik, "The Method of Layes", IEEE Trans. On

Software Engineering, Vol. 21, Nb. 8, pp 689-700, August 1995.

[Schuerr94] A. Schuerr, "PROGRES: A Pîsual Languuge and Environment for

PROgrumming wilh Gruph Rewrire System", Technical Report AIB

94- 1 1, RWTH Aachen, Germany, 1994.

References 113

A. Schuerr, "Introduction to PROGRES. an uttribute graph grammar

based specification language ", in Graph-Theoretic Concepts in Corn-

puter Science, M. Nagl (ed), Vol. 41 1 of Lecture Notes in Cornputer

Science, pp 15 1 - 165, 1990.

A. Schuerr, "Programmed Graph Replacement Systems ", in Handbook

of Graph Grammars and Computing by Graph Transformation, G.

Rozenberg (ed), pp 479-546, 1997.

A. Schuerr, "PROGRES for Beginners" RWTH Aachen, D-52056

Aachen, Gemany

A. Schuerr, ''A Guideed Tour through the PROGRES Environment"

RWTH Aachen, D-52056 Aachen, Germany

M. Shaw, D. Garlan, S o b r e Architectures: Perspectives on an

Ernerg@ Discipline, Prentice Hall, 1 996.

M. Shaw, "Some Patterns /or Software Architecture" in Pattern Lan-

guages of Program Design 2 (J.Vlissides, J. Coplien, and N. Kerth

eds.), pp.255-269, Addison Wesley, 1996.

C.U. Smith, Perfomance Engineering of So f ~ r e Systems, Addison

Wesley, 1990.

C.Shousha, D.C. Petriu, A. Jalnapurkar, K.Ngo, "Applying Perjr-

mance Modelling to a Telecommunication System ", Proceedings of the

Fust International Workshop on Software and Performance, Santa Fe,

USA, pp.l-6,Oct.1998.

C. Shousha. "App[ying Perfiormance Modelling to a Telecommunication

References

System". M.Eng thesis. Carleton University, Ottawa, Sep, 1998

B. Spitznagel, D.Garlan, ' Yrchitecare-Based Pe$ormance Anabsis ''?

Proc. of the Int. Conference on Software Eng. and Knowledge Eng.

SEKE'98, pp. 146-1 51, 1998.

UML Summary version I. 1 September 1997.

" http://rationa 2. com/UML ".

L.G Williams, C.U.Smith, "Performance Evaluation of S o f ~ r e Archi-

tectures ", Proceedings of the First International Workshop on Software

and Performance, Santa Fe, USA,

pp.164-177, Oct. 1998.

C.M. Woodside. "Throughput Colcuiation for Basic Srochastic Ren-

dervous Networks ". Performance Evaluation, vo1.9(2), pp. 143-160,

Apnl 1988.

C.M. Woodside, LE. Neilson, D.C. Petriu, S. Majurndar, "me Stochas-

tic Rendezvous Network Model for Performance of Synchronous Client-

Semer-like Distibuted S o f i r e ", IEEE Transactions on Cornputers,

Vo1.44, Nb. 1, pp 20-34, Jaouary 1995.

C.M. Woodside, S. Majumdar, JE. Neilson, D.C. Petriu, JA. Rolia,

A.Hubbard, R h Franks "A Guide to Performance Modelling of Dis-

hibuted Client-Semer Software System with Layered Queueing Net-

works ".

' a r y t
arco t

Stackexec
own?-7is

Appendix

Appendix 3: LQN Input File for Case Study

The LQN mode1 file for the case snidy is illustrated below as well. It is generated by the
PROGRES program using extemal functions written in C programming language. This
file can be directly used as an input file of an LQN solver.

- 1
End of General Information

Processor Information: No of processors

p procl f
End of Processor Information

Task Information: No of Tasks

T 11
t DummyStackOut n DummyStackO~tEntry -1 procl m 1
t ShMem2 n update -1 procl rn 1
t DataBase n service1 -1 procl m 1
t Stack n StackOut StackIn -1 procl m 1
t DummyStackIn n DummyStackInEntry -1 procl m 1
t ShMeml n alloc free -1 procl m 1
t Buffer n BufferRead BufferWrite -1 procl rn 1
t IO n IOin IOout -1 procl rn 1
t DummyIOin n DummyIOinEntry -1 procl m 1
t RequestHandler n RequestHandlerEntry -1 procl m 10
t DummyIOout n DummyIOoutEntry -1 procl m 1
End of Task Information

#Entry Information: No. of Entries

Appendix

E 15
s StackOut O 0.1 O -1
s StackIn O 0.1 O -1
s Bu£ ferRead O 0.1 O -1
s RequestHandlerEntry O 0.1 O -1
s DummyIOoutEntry O 0.1 O -1
s DummyStackOutEntry O 0.1 O -1
s DummyStackInEntry O 0.1 O -1
s update O 0.1 O -1
s DummyIOinEntry O 0.1 O -1
s servicel 0.8 O O -1
s alloc O 0.1 O -1
s free O 0.1 O -1
s BufferWrite O 0.1 O -1
s IOin O 0.1 O -1
s IOout O 0.1 O -1
a DummyIOout DummyStackOut O 1 O -1
a RequestHandler RequestHandler O 1 O -1
y DummyStackOut StackOut O 1 O -1
a DummyIOin RequestHandler O 1 O -1
y DummyStackIn StackIn O I O -1
a DummyStackIn DummyIOin O 1 O -1
y IOout BufferRead O 1 O -1
y RequestHandler BufferRead O 1 O - 1
y RequestHandler servicel O 1 O -1
y RequestHandler alloc O 1 O -1
y RequestHandler free O 1 O -1
y RequestHandler update O 1 O -1
y DummyIOout IOout O 1 O -1
y RequestHandler BufferWrite O 1 O -1
y IOin BufferWrite O 1 O -1
y DummyIOin IOin O 1 O -1
#End of Entry Information

