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Abstract 

Through a combination of testure and porosity. the intrinsic anisotropy of 

niany rocks is orthorhombic. Esperirnentally deterrnining the nine required in- 

dependent elastic coefficients for t his case rernains challenging and t here remains 

rooni for new methodologies. Elastic coefficients are most often found from mea- 

çurements of the phase-wlocity in a variety of directions throughout a material. 

Finding t his phase-velocity. which most simply corresponds to the propagation 

spced of a plane il-ave. is problemat ic. The Î - p met hod is used to direct ly ob- 

tain quasi-P and quasi-S wave phase-speeds within a number of planes through 

a composite material of ort horhombic syrnrnet Q-. -4rrays of specially constructed 

t ransducers (0.65 ,\IHz). designed to preferentially stimulate and receive the one 

q-P a d  tn-O q-S propagation modes. were placed on a rectangular prism of the 

matcrial. Over 680 individual measures of phase specd were obtained and sub- 

sequent ly used in a gcrieralized least-squares inversion for the  required elastic 

coefficienrs. Corresponding tests on isotropic soda-lime g l a s  indicated that the 

coefficients can be determined with an uncertainty of 5 %. 
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Chapter 1 

Introduction 

1.1 Background 

I t  is w 1 l  known that most rocks are anisotropir to some degrce. Despite this fact 

velocity isotropy remains the usual assuniption in conventional seismic reflection 

and rock physics analyses. This velocity anisotropy m q -  be the  result of prefer- 

ential orientation of mineral grains. the  presence of orientaterl cracks of various 

sizes. or the occurrence of thin layering. Seglecting to incorporate anisotropy 

lcads t o  incorrect seismic analyses and the introduction of error. However. our 

undcrstanding of the anisotropic properties of niany setiirnentary rocks is iimited 

and t his ignorance hinders application of more realistic seismic investigations. 

Given that  our increased capacity t o  acquire seismic data  allows for greater 

spatial resolution required for subtle stratigraphie and production related geo- 

physics. it is of increasing importance t hat the intrinsic properties of the materi- 

als tlirough which the seismic waves pass are better understood. In particular. a 

niore complete elastic description of the  niaterials forming the earth is required. 

1Iany u-orkers have attcmpted to  do this previoiisly. but obtaining sufficient in- 

formation on the anisotropy of rocks can be prohibitively costly. In tliis thesis. 

1 describe and test a new methodolog'. wtiiçh will make determination of the 

coniplete set of elast ic constants more practical. 



1.1.1 Sources of velocity anisotropy 

-4s mentioned before. anisotropy in rocks can be caused by a number of different 

factors and only a few will be reviewed bnef l~-  Iiere. In sedirnentary rocks such as 

sliales. the presence of kerogen (the organic material from which oil is derived) 

causes anisot ropy n-hic11 is detectable by t hcl transmission of bot h compressional 

and sliear waves ( h r n i k  k Sur. 1992). AS the  organic-rich s h a h  are cornpacted 

ovcr tirnc. the kerogen forrns thin bedding parallcl Iaminations that rnay be 

observcd in back-scatter SEL1 images. It was found that thcse thin laniinae 

induce a strong velocity anisotropy in the samples taken. In carbonate-bcaring 

deepsea sediments the presence of oriented calcite. a Iiighly anisotropic mineral. 

gives rise to transverse isotrop~- in the rocks (Carlson et al.. 1984). 

Scismic anisotropy is also observed in sfiallo~v crustal rocks and in the upper- 

rnost mantle (Kawasaki k Konno. 195-1: Brocher k Christensen. 1990: Levin e t  

al.. 1996). In the mantle. anisotropy is thought to  be caused by the systematic 

orientations of olivine and pyrosenes. The alignment of olivine grains is thought 

to occiir during the process of deforniation which produces preferentia1 crystal- 

lographic cryst al alignmcnt (Christensen k Salisbiiry. 1979) and manifests itself 

i11 the forrn of signifiant telcscismic compression and shear wave travel time 

ariornalics (Levin et al.. 1996). Due to the distribution of minera1 grains. az- 

imuttial anisotropy occurs. This azimuthal anisotropy is observed also in t h e  

iipperniost mande from Rayteigh and Love n-aves. The correlation between seis- 

niic anisotropy and preferred minera1 orientation is supported bv the cornparison 

of seisrnic reflection da ta  witti laboraton. measurements on cores takcn froni the 

stiidy area (e-g.. Christensen & Salisbury. 1919). 

Labora top  measurements of ultrasonic wave velocities in rnost rock samples 

demonstrâte that  wlocity increases with confining pressure. This effect is at- 

t ributed to the closure of microcracks with increasing pressure (Sayers. 1988: 
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lernik k Sur.  1992: iernik 1993; Johnston k Christensen. 1995). These cracks 

may be formed due to overpressuring in the process of oii and gas generation 

(iérnik. 1993). by jointing within the regional stress fields (Schoenberg Sr Hel- 

big. 1997) or by drilling induced damage (Li & Schmitt. 1998). If the cracks are 

prefcrentially aligned. some forms of anisotropic symmetry are produced. For 

esamplc. introduction of a vertical crack sct i 

n-il1 resrdt in three planes of synimetry and 

Indeed. obsen-ed azimut ha1 variations in the 

conipressional waves (P-v-ave) and shear wavc 

nto a horizontall~. layered rncdium 

produce ort horhombic anisot ropj-a 

ratio of arriva1 times of shear and 

(S-wave) birefringence (split t ing) 

from Iargc earthquakes have bceri taken as m-idence of such cracks in the crust 

(Crampin. 19T8). 

Tt has long been known that the ratio of the wavclength of the wave p r o p  

agating through the medium to the thickncss of the layers through which it is 

passing can have a noticeable effect (Backus. 1962: Levin. 1979: Helbig. 1981: 

Helbig. 1984: Melia k Carlson. 1984: Carcione et al.. 1991: Hornby et al.. 199-4: 

SIarion et al.. 1994: Howm. 1995). This Iayering induced effect is nianifest in 

the  form of transverse isotropy with a rotational asis of symrnetry perpendicular 

to layering (Backus. 1962: Hclbig. 1981: Helbig. 1984: Alelia k Carlson. 1984). 

The existence of such anisotropy \ras known prior to Backus' (1962) theoretical 

studj- and has been confirmed esperimentallj- by Melia 5: Carlson (198-4) who 

rrieasiired the P-wave velocity bot h perpendiciilar and parallel to the layering. 

These esperiments showed that differing layers of isotropic homogerieous materi- 

als cari create an  anisotropic medium. This result is supported bj- vertical seismic 

profiles (I'SP) which show a velocity variation with angle of propagation through 

a Iaj-ercd geolog? (Ricker. 1983: Clirig ai Slettle. 1995: Kebaili & Schmitt. 1996). 



1.1.2 Methods of determining anisotropy 

Thcre have been many previous attempts at  detcrmining the anisotropy of \-ari- 

ous niaterials. C-se of ultrasonic methods of measuring compressional and shear 

elastic wave velocities has been the preferrcd method. One of the earlier at- 

tempts at determining the anisotropy of a material \\-as by AIarkham (1957) who 

deterniined the elastic constants of various metals of cubic and hcsagonal crys- 

ta1 synimetry througli the use of the pulse transmission method. Sirnply. in the 

pulse transmission method the travcl time of a disturbance transmitted through 

knowri thickness of the sample is measured in order to provide the velocity. 

Due to t lieir increasing importance in manufacturing. the anisotropy of arti- 

ficial composite materials lias also been li-el1 studied. Okoye et al. (1996) studied 

a composite consisting of layers of paper and eposy called phenolite. This lay- 

ered material should be t rans\-ersely isotropic. Okoye et al. (1996) measured 

96 P-wave velocities in a direct puise transmission esperiment where the source 

t ransducer was cent rallj- posit ioncd while the receiver n-as moi-ecl aIong a profile 

centcred over the source transducer. Okoye et al. ( 1996) also dei-elopeci an iriver- 

sion procedure to convert the velocities to elast ic constants under the assumpt ion 

of transverse iso t ropy. 

-4nother well s t  udied artificial composite material is phenolic composed of 

lvers  of fibre mats in eposy. This material is similar to phenolite but has an 

orthorhombic symrnety. Phenolic has been studied by Cheadle et al. (1 991). 

Ièstriim (l99.4). and Kebaili k Schmitt (1997). Cheadle et al. (1991) used the 

puIse transmission technique on a specially machined prism of phenolic in order 

to obtain group velocities. iéstrum (1994) took a different approach of measuring 

110th group and phase velocities on a sphere and cube of phenolic respectively. 

Tlicse measurements were used in separate inversions to the elastic constants 

of the stress-strain tensor. which compared well with each other. Kebaili k 



Schmitt (1997) took a more indirect approach by obtaining a series of miniature 

seismograms on a block of phenolic then converting these data to the Ï - p  domain 

using a Radon transfoml from which plane wave velocities were directly found. -4 

slant-stack (Radon) t ransform is a mapping of a tn-O-dimensional function f (x. t )  

from the offset-t irne (x. t ) domain into the intercept time-horizontal slowness 

( Ï  - p) domain. The slant stack (Radon) transform is defined by Robinson 

(1982) and Tatham (198-1): 

F ( 7 . p )  =/= f ( r . T + p x ) d x  
- X  

(1-1) 

n-tiere F is the integration of the amplitudes f (x. t )  along the line .q = r + p x .  -4s 

only P-wave or coinpressional wavc phase velocities were obtained. these could 

not be inverted to obtain the elastic constants. 

Saturally occurring rock has also been studied. One of the earliest studies 

n-as that of Kaarsberg(l959) n-here seismic travel time and s - r + -  measurements 

were done on sediments and shales. Kaarsberg (19.59) found that the velocities 

both paralle1 and perpendicular to  tlic bedding increase with density. This in- 

crease may be caused by prefcrred orientation of the basal planes of clay niineraIs 

parallel to bedding. -4notiier s tudy which involveci cores being taken at various 

angles to the asis of symrnctry of some shales. is that of Johnston k Christensen 

(19%). Csing the pulse transmission technique. the phenornenon of shear wave 

splitting was observed and phase ~elocities werc measured. Through the use of 

phase \-elocity measurements. the elastic constants of the rocks were determined. 

\-ernik k S u r  (1993) and Hornby (1995) similarly measured P-%rave and S-wave 

vclocitics taken in cores parallel. perpendicular. and at 45 degrees to bedding 

and detcrmined the elastic constants of the rocks with pressure. 

Xrts et al. (1991) and Arts (1993) measured P and S wave velocities on 

specially niachined cubes of niarble and limestone using a methoci v e E  similar to 
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the one theoreticallv describeci by van Buskirk et al. (1986). Large piezoelectric 

transducers measured phase velocities for both P and S n-aves. -An ad~an tage  of 

the met hod used is that no n prion' knowledge of the symmetrj- or orientation of 

the  material is required. 

1.1.3 Ambiguit ies in determining anisotropy 

A probleni encountered is d e t h e r  group or phase velocities are being nieasured. 

Bricff y. phase velocit ies arc associated n-i t h the propagation speed of a hypot heti- 

cal plane u-a\-e through the material. Croup. or r-, velocities are associated with 

t hc pat h of the enerQ- flot\- from the source to the receiver. This will be discussecl 

in niore detail in Chapter 2. Phase velocities are usually rieeded for inversion 

back to the elastic constants. In an anisotropic nicdium. groiip velocity is not 

nccessarilj- equal to  phase velocity. Lëlocities taken in directions that are nei- 

ther parallel nor perpendicular to ases of syrnmetry may be neither group nor 

phase velocities. Typically group velocities are mciasured froni a point source to 

a point receiver. Esperimeiitally. sources and  receivers are of finite size calling 

irito doubt t ~ h e t h e r  group velocities are triil?- k i n g  measiircd. Sirnilarly. phase 

velocities are made from plane wave sources to plane wave receivcrs. Typically. 

this is difficiilt t o  achieve in esperiments and inay yield velocities n-hich are not 

phase velocities. In niay cases it may be difficult to know what type of velocities 

arc bcing measured. 

Dellinger k \érnik (1994) have attempted to address this issue. They found 

that rock cores that u-ere neither parallel nor perpendicular to symmetry axes 

yicldecl apparent velocities which were loiver than phase velocities but greater 

than groiip velocities. Dellinger % h r n i k  (1994) showed that in order to measure 

pïiasc velocities in cores. the ratio of the heiglit of the core to the transducer width 

must be less than 3 and to measure group velocities the ratio must be greater 



than 20. So long as these mles of thumb are followed. one can be reasonably 

certain of the type of measurement being taken. -1nother esample is the work 

of Hornby (1996). Cores were cut parallel. perpendicular and at off-ais angles 

to the symmetry of a shale. -At off-asis angles. not only are the cores difficult 

to acqiiire and require a priori knowledgc of SJ-rnrnetq- ases but the velocities 

nieaurcd may bc neither group nor phase. This anibiguity ma>- lead to large and 

unquantifiable errors in the determination of the crit icaily important parameters 

that controi the wave shape an-ay from the axes of syrrimetry. According to 

Dclliriger k Iernik (1994) and Iiebaili 14: Schmitt (1997). in order to obtain direct 

phasc velocity rneasurements. large transducers must be used relative to sample 

sizc. This constraint limits the nurnber of phase velocitu measurements that can 

be practically takcn. which are necessary to deterniine the elastic constants of 

the niaterial. One method of addressing this problem is described bu Iiebaili 

22 Schmitt (1997). They used a Radon transforniation to put a series of s - t 

arrivals into the r - p  domain. The shape of this arriva1 curve in the r - p doniain 

coritains siibstantial information on the anisotropy of the medium. as the pliase 

velocities are ohtaincd as a function of t h  direction of propagation. 

Ir1 this thesis. the mcthodology describcd by Kebaili AL Schmitt (1991) is 

estended and improved wit h the dewloprnent of shear ware t ransducers. Phase 

\-elocity measurements are made on the orthorhombic medium plienolic for a 

niimber of different orientations and an inversion to the elastic constants of the  

rnatcrial is performed. 

1.2 Theory 

The following is a brief summary of the  mathematical mark and a more complete 

description can be found in Lay & Wallace (1995) and Musgrave (1970). It is 

important to discuss the underlying t l i e o ~  of elasticity as it applies to elastic 
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wave aniso t ropy. 

To begin. the stress is related to strain by the stress-strain relationship which 

is given by the generalized Hooke's Law where the Einstein simmation conven- 

tion will be used: 

n-Iicre 

i = 1.2.3: 

J = 1.2.3: 

k = 1.2 .3:  

i = 1.2.3: 

ri,, is the second order stress tensor. 

ckl is t h e  second order strain tensor. and 

c,,k. is the fourth rank elasticity tensor with components of stiffness. 

Since the elasticity tensor c, jkl  has 4 indices. each of which goes froni 1 to 3. 

the clasticity tensor has 81 elements present. 

If one takes the unit cube as an esarnple t hen a,, is the stress or pressure on 

tlic i th  face in the x, direction as shown in Figure 1.1. The ith face is the face on 

t h  unit cube ~ i i o s c  outw-arci normal is parallel to x, direction as c m  be seen in 

Figure 1.2. For convenience. in chapter 2 S. J-. and z will be useci for XI. z?. and 

.r3 respect ively. 

The strain is defined in a similar manner to  the stress ai,. The strain 

ck1 is the strain on the kth surface in the xl direction and will be defined by the 

following formula (Lay & \\allace. 1995) as: 



n-Iiere C;k is the displacement in the x k  direction. 

-1 closer look at  cil. f22. and €33 shows that these strains are distortions in 

the size of the unit cube. 

Thcse are strains normal to the 
(Le. compression or elongat ion) 

surface. 

e l ,  = 2 which is an elongation of 
the  unit cube in the  sl dircction 
r2? = which is an elongation of 
the unit  cube in the sz direction 
c~~ = 3 whicli is an eloiigation of 

, the unit cube in the  sn direction 

-1 closer look at e12. c13. and 61.7 shows that thesc are distortions in the shape 

of the unit cube. 

These are strains parallel 
to the siirface.(i.e. shear) 

1 / ci- = , - (2 + -) ai-q is the slicaring on surface 1 ar 
in t h e  s:! direction 
~ 1 3  = 4 (2 + 2) is the sheariiig on surface 1 
in the  SQ direction 
e2, = - (g + E) is the shearing on surface 2 

\ in the s~ direction 

-4s c m  be easily secn frorn Eqoation 1.3. fn is equal to f k .  (Le.. e,,=c2, and 

so fort h.) This synmetry implies: 

-4 similar symmetry esists for the stress tensor as well where <Ti, is equal to 

aji. This symmetr- of stresses implies: 

ç j k l  = Cjik[ - ( 1.5) 

Csing the syrnmetries in the stress and strain tensors reduces the 81 element 

stress-strain tensor ~ ~ n - 1  to only 36 independent elements. 
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-Arguments of syrnrnetry and thermodynamics (Le., intemal energi- of the 

materid must increase with a strairi) reduces from 81 to 21 the components of 

stiffness (llusgrave. 1970). For the sake of convenience. the c, ,ki  stiffness tensor 

ciin be represented as a symmetric 6 s 6 matris Cm,. 

The stiffness c,,kl can be transformed to Cm, according to the riilc (Vestruni. 

199-4): 

1 if i=j 
'"= { j - ( i i i )  i f i i  j and 

L-sing this forniula translates the generalized Hooke's Law from O,,, = G j k i E k i  

to the follow-ing forrn: 

n-here Cm,, = C,, and by esamination it m q -  bc noted that  only 21 inciependent 

stiffnesses esist. However. this is the most general case where there is no sym- 

mptry. It is useful to esaniine briefly lion. the elastic tensor Cm, appears with 

iricreasirig symmetry. 

For isotropic symnietry there are 2 independent constants given as the Lame's 

parameter X ancl p (Musgrave. 1 9 i O )  such that: 
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,\laterials of cubic symrnetv have 3 independent constants (Alusgrave. 1970): 

For hcsagonal symmetn  (transverse isotropy) 5 independent constants are 

a b c 0 0 0  
b a c 0 0 0  
c c d O O O  
O O O r O O  
0 0 0 0 c 0  
o o o o o x  

Ortliorhombic symmetry is characterized by 3 rniitually orthogonal planes of 

s~-rnrnet ry and 9 in de pend en^ elast ic constants (,\liisgrave. 1970). 
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In contrast to the previous cases, if no symmete  is present the matenal is 

t reated as t riclinic which is characterized by 21 independent elastic constants 

d e f  
i j k  
rn n o 

P Q r  
q s t 
r t n  

For a variety of reasons. one might espect the symmetry of many rocks to 

be rather Ion-. with orthorhombiç symrnetry being that of the highest symmetry. 

Hou-ever in natural crystals less symmetq can esist. as in the cases of calcite and 

plagioclase feldspar in order of decreasing syrnmetry and requiring an increasing 

nurnber of elastic constants of 7 and 21. respectively. 

Dcterniining the stiffness tensor directly bu act uaily applying large pressures 

and shears to the sample and determining the infinitesimal compressions can be 

clifficrilt. Instead. it is often sinipler to  determine these properties indirectly by 

measilring the elastic wave velocities and densities of the material. 

1.3 Relat ionship between st iffness and anisot ropic 
velocit ies 

Sen-ton's second la\\* States that the sum of the forces applied to the unit cube will 

be eqiial to the mass times the acceleration. In otlier words. the tnass multiplied 

the acceleration in the xi direction is eqiial to the sum of the forces in the x; 

direct ion: 



Take for esamplc in the xl direction Fzl = ma,, = mui .  

This equation simplifies to the following: 

ac, k l  But = O for m=1.2.3 since the niaterial is assumed to be homogeneous 

and the elast ic constants cannot change witli position. 

This rneans: 

u-here p is the density for the unit cube. 

[\%en Equation 1.17 and Equation 1.18 are combined. oiic obtains the foI- 

Ion-hg: 



But. as defined bcfore: 

which implies: 

So. n-hen Equation 1.22 is substituted into Equation 1.20. one obtains the  

followiiig: 

Due to  t h e  simplicity of using plane waves. if one assumes that  the plane 

wave solutions to  this equation are of the  form: 

where v is the phase v e l o c i .  n> = ( n l ,  n2. nn)  is t h e  wave front normal. Trf = 

(.-Il. -A2. -q3) is the amplitude vector. and Z' = (.rl.x2. x3) is the position vector. 

From this ansatz 



2ir . I r  C ; ,  = , - n j - A l r ' ~ ( n r z r - u t )  
X 

. and 

l\-lien Equation 1.26 and Equation 1.29 are substituted in Equation 1.23 one 

grt s the  follolr-ing: 

2 -. (,,?) - q i , i ~ ( n r x r - u t )  - - -cz jkl (y )  , 4 1 e z y ( n r r r  . ? -  

-u t )  
3 k 

Equat ion 1.30 simplifies to: 

p ~ 2 . 4 ,  = c ~ ~ ~ ~ ~ ~ T z ~ - ~ ~  (1.31) 

The following substitution ril = G,blRjT2k is used where Ti( are tlie Christoffel 

equat ions (Slusgrave, 1970). \\Then t his substitution is made into Equation 1.31 

one obt ains the following: 



which implies 

11-hcn wi t ten  in matrix forrn. this equation is an eigenvalue problem. B r  = 

Ar. nhere the eigenvaliies and eigenvecrors of the system are equivalent to  the 

pliase velocities and amplitude vcctors respectively. 

For esample. the case of the orthorhombic medium has the lollowing 2- 

diniensional stiffness matris: 

wtierc t h e  letters a throiigh i represcnt the 9 independent elastic constants. 

For the direction n' = (1.0.0) Eqiiation 1.34 hecomes: 

a 0 0  
(1 -35)  

O O h  -43 -43 

Thrce eigenïectors and corresponding eigenïalues are determined as follows: 
+ 
.-il = (1.0.0) pl2 = a 



4 + + 
n-here --Il is the P-wave or compressional mave polarization !\-hile ,-12 and are 

the two S-wave or shear wave polarizations. 

By being able to forn-ard calculate the phase velocities from the elastic con- 

stants one is able to determine the elastic constants from the phase velocities. 

However. one must still be able to calculate the phase velocities frorn the group 

velocit!- data. In order to do this operation. the Radon transforni \vil1 be em- 

pl*-ed. 

1.4 Radon transform 

-As mentioned previously. a slant-stack (Radon) transforni is a mapping of a two- 

dimensional function f (x. t )  from the offset-time (x. t )  domain into the intercept 

time-horizontal slowness (r - p) domain. The slant stack (Radon) transform is 

cfefined by Robinson (1982) and Tatharn (1984) as : 

F (7. p) = 1-i f (x. r + p z )  dx 

v-ticre F is the integrat ion of the amplit iides f (x. f ) dong the line y = 7 + pz .  

This equation basically means the data are dccomposcd into clifferent plane 

wa\-c cornponents where for each r value on a given horizontal slowness p. the 

an~plititdes of al1 the samplcs along the line giverl by the line y = r + pz is 

sunimed. Since this surnmation is perfornied over slanting lines. the Radon 

transform is occasionally called a slant stack. 

To summarize, offset-time data arc converted to r - p space by the appli- 

cation of the Radon transform where the intercept time T is a function of the 

horizontal sloit-ness p. By combining the information gatliered frorn the two r - p  

cun-es obtained from data gathered in the same plane. the phase velocity v is 

determined as a function of the propagation angle or direction of propagation. 



This met hodolog'- is described in more detail in Chapter 2. 
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Figure 1.1: ou is the stress on the ith face in the x, direction. is the stress on 
the face opposite the ilh face on the unit  cube and is defined as O,, + 2 (-hi). 
Ari is the width of the unit cube in the xi direction. 



X3 Face 3 

Figure 1.2: Face 1 is the face on the unit cube whose outirard normal is parallel 
to direction XI. Face 2 is thc face on the unit cube whose outward normal is 
parallcl to direction x2. Face 3 is the face on the unit cube whose outu-arc1 
normal is parallel to direct ion x3. 



Chapter 2 

Experimental Determination of 
the Elastic Coefficients of 
Anisotropic Materials Wit h the 
Slant-Stack Method 

2.1 Introduction 

\jave speed isot ropy is t hc usual assiimption in rcflect ion seisrnic profiling. Hou-- 

cver. niost rocks are somewhat intrinsical1~- anisotropic due to tes turc  or  aligned 

microcrack damage. Even simple consideration of tliis anisotropy improves the  

resolurion of seismic images. Indeed. neglecting to incorporate anisotropy cari in- 

t rodiice substantial error in the positioning of subsurface reflectors. Despite this 

concern. the lack of understanding of the  wave speed anisotropi- of many rocks 

hinders in part more realistic seismic iniaging and modcling. Hoa-ever. obtaining 

t h  elastic coefficients required for more realistic modeling remains dificult. 

In this chapter. I describe further dcwlopment of an experirnental method 

for nieasuring anisotropic phase velocities in comples media (Kebaili k Schmitt. 

1997) which allows for ttie çomplete determination of the set of elastic coef- 

ficients in materials of orthorhombic symmetry. The method eniploys arrays 

of small. specially constructed transducers that irnpart and receive the quasi-P 



(quasi-compressional) and two quasi-S (quasi-shear) modes. Gathers of traces 

so obtained. in a geometn  reminiscent of a walk-a-n-ay vertical seismic profile 

(1-SP) (Kebaili 5i Schmitt. 1996). are analyzed in t tie 7 - p domain. The advan- 

tage of this procedure is that phase (plane-wat-e) velocit ies. sometimes difficult 

to measure esperimentall. but necessary to charactere a material's elasticits 

are directly obtained. The results of tests of the method on isotropic glass and 

anisotropic composite material indicate its ut i i i t -  Howver. certain shear wave 

arrivals siiggest that in comples. leered materials dispersion may need to be 

corisidercd. 

2.2 Background 

2.2.1 Pulse Transmission and Elasticity 

-4 riiimber of scale dependent factors such as the heterogeneity of lq-ering and the 

orientation of fractures influence seismic wave anisotrop!.. The intrinsic elastic 

properties of the rock are also essential factors needed to  describe anisotropy. 

In the most general case. twenty-one independent coefficients define a material's 

clasticitj-. Such a complete description is difficult to achieve esperimentaIl> 

howe\-er. and most studies on rock presiime on the basis of texture that the rock 

ici cithcr isotropic. transverscly isotropic (TI). or orthorhombic with 2. 5 .  or 9 

independent constants. respectively (e.g.. ,\Iusgrave. 1970). 

Tfiesc elastic constants may in principle be found by measuring the static 

deformation of a test sample. However. quasi-static measurements can be subject 

to substantial error due to  the difficulties encountered in applying stress and 

mcasuring strain: instead. ultrasonic pulse trarismissioii methods have become 

popular in characterizing cornplex composite materials and rock since the work 

of AIarkharn (1957). Briefly in reviey one quasi-P wave and two quasi-S plane- 

waves propagate in any direction through a general homogcneous anisotropic 



medium obeying the  general Hooke's law (e-g . .  see Seighbours & Schacher. 1967). 

where the are the elastic stiffness constants. 

If these are plane waves. the phase velocities and polarization directions are 

the eigenvalues and eigenvectors of : 

riI=ll = p ~ 2 ~ - 4 i  ( 2  -2) 

11-here Ti/ are the Christoffel equations dependent on the elastic constants via: 

ril = c*Jkln,nk 

\l'ben the elastic coefficients are known. the wa .ve speeds in an 

(2.3) 

y direction 

arc determined bu solring Eqiiation (1 .3) .  ConverseIy. the elastic coefficients 

niay be determined by measuring a sufficicnt number of wave speeds. If the 

rriatcrial is known to be isotropic. the elastic coefficients are found by rneasuring 

orily a P and a n  S wave speed in an'- direction. The minimum number of wave- 

specd rncasurements required increases for materials of lower symmetry (more 

iridcpenderit coefficients) and if the directions of symmetry in a gi\-en test piece 

are unknown. 

Sincc the early measurements of hlarkham (1957) on cubic and hexagonal 

riietaIs. riurnerous methods have bcen devcloped for geophysical application. -1 

feu- met hods include pulse transmission through specially machined spheres (Pros 

k Babiiska. 1967: Thill et al.. 1969: Pros (Er Podrouzkova. 1974: Iés t rum.  1994) 

or rnultifaceted prisms (Markham. 195'7: Carlson et ai.. 1981: -Arts e t  al.. 1991: 

Chcadle et al.. 2991: C,éstrum. 1994) but most commonly through carefully 

oriented cylindrical core samples (e-g . .  Kaarsberg. 1959: Vernik Sc S u r ,  1992: 

\èrnik. 1993: Johnston St Christensen. 1995: Hornby. 1996). 



One complication in such analyses is that the phase. or plane wave. veloc- 

ity necessary to determine the elastic coefficient maj- often differ from the more 

easily obtained group (or ray) velocity Essentially an observer at P (Figure 

2.1). detecting the arriva1 of the n-avefront \IV. cun-ed due to the anisotropy of 

the medium. a t  time t after excitation of a source a t  the origin O. determines a 

group velocity d/ t  for the ray along the line between O and P described by angle 

o. Howerer. this observer cannot distinguisli the wavefront i f* from a plane wave 

front F v-ith normal a t  angle 8 that passed throiigh O a t  the tirne of excitation. 

The speed of this plane wave is the same as the corresponding phase velocity the 

magnitude of ivhich is given by D/t. The physical consequences of this difference 

are well documented (e-g.. see Slusgrave, 1970: -4uld. 1973) and introduce am- 

biguitj- to esperimental velocity measurements in anisotropic media (Delliriger 

5- iérnik. 1994: \-estrum. 1994. Kebaili L Schmitt. 1997). \\'ithout careful con- 

sideration of the sample and transducer geometries. it can be difficirlt to knon- 

xhether groitp. phase. or  some intermediate velocity is measured. Group veloc- 

ities ma? be converted to pliase velocities if a sufficient niimber of the former 

are measured to allow a smoot h differcntiation ~ i t h  respect to the propagation 

angle (sce TIiomsen. 1986). Indeed. iés t  rum ( 1994) developed a specialized pro- 

cedure to invert the group velocities obtained in pulse transmission esperiments 

over a sphere and a multifaceted prism of an orthorhombic composite similar 

to that employed here. Okoye et al. (1996) resorted to srnooth polynomial fit- 

t ing of phase velocities observed obtained through a bar of transverselu isotropic 

material in order to minimize the errors. 

2.2.2 Plane-wave Decomposit ion 

S o t  being able to measure phase velocities, in Equation 2.2, adds error to. or  

substantially complicates. the determination of the elastic coefficients in pulse 



transmission rneasurements (Ikstrum. 1994: Okoye et al.. 1996). One approach 

to reduce these problems is to implement a plane-waïe decomposition ria the Î - p  

analysis (Kebaili 5; Schmitt . 1996. 1997) which provides direct 1'- the phase reloc- 

iw as a funct ion of the ray parameter (or horizontal slo\i-ness) p ( 8 )  = sin(l)/u(d) 

n-tiere 6 defines the direction of the normal to the plane wave propagating with 

directionally depcndent phase velocity v. The slowncss parameter p is equivalent 

to the raypath parameter as described b -  the Snell's lari- in Equation 2.4 ts-here 

O1 and 1; are the incident angle and velocity in medium 1 and O? and 1; are the 

incident angle and veiocity in medium 2 .  

siriO1 sin 9- - --- = P (2.4) 
1 ; 1; 

The essential components of t h e  phase wlocity determination nlethod are 

previously described (Iiehaili SI Schmitt. 199'7) and are only outlined here. In the 

technique. the pulsed elastic wavc energy produced froni a niininium of tu-O source 

transducers are detectcd by a coplanar array of receiving transducers mounted 

on t h  adjacent side of the test piece (Figure 2 . 2 4 .  The sets of arriva1 times 

from each of the two transducers yield hypcrboiic-like offset versus travel-tirne 

curves in the x - t domain (Figure 2.2h) which transform to ellipse-like curves 

in the T - p domain (Figure 2 2 ) .  If the block of material is homogeneous. then 

at constant horizontal slowness p the vertical slowness q is (Kebaili k Schmitt. 

1997) : 

where 51 and are the intercept times at  constant p corresponding to the T - p 

cun-es for the sources at offsets zl and ~ 2 :  respectiwly (Figure 2 . 2 ~ ) .  It is worth 

noting that q in an anisotropic material dcpends on the horizontal slowness p and 

is lience also implicitly depcndent on the propagation angle t9 within the plane. 



CH-4 PTER 2. DE TER.3II1V-4TIOX OF EL-4STIC COEFFICIENTS 

The phase velocity v is then 

at t h  phase propagation angle: 

2.2.3 Experimental Method 

Esperiments were carried out on blocks of soda-lime glass and an industrial 

composite of laminated fibre mats in a phenolic cposy. The symmetries of such 

coniposites are relativelu ire11 controlled and as such the- have been used in tests 

1~ riumerous authors (Cheadle et al.. 1991: Karayaka k Kurath. 1994: \'estrum. 

1994: Okoye et  al.. 1996: Kebaili k Schmitt. 1997) 

Silicate glasses are essentially frozen fluids ivith no preferred testural direction 

and provitle a highly isotropie and homogeneous mechanical medium. The 20 

mi s 20 cm s 8 cm block ernploj-ed was prepared from materials used in wall 

ronst riiction. Two adjacent perpendiciilar surfaces w r e  prepared using a surface 

grinder. the Aatriess of the surfaces was measured to be better than 0.1 mm. In 

simple direct pulse transmission. the P- and S-n-ave velocities were measured to  

t ~ e  5690 I 50 m/s and 3440 f 26 m/s. respectively. The error Iras determined 

froni the standard deviation in the data. The bulk density \vas 2600 I LOO 

kg/m3. 

The composite consists of layers of wo\-en fibre mats bonded with the eposy. 

T ~ v o  directions are defined by the weave of the mats with the directions of t h e  

straight and the woven fibres are termed the warp and weft. respectively. T h e  

layering. warp. and weave reduce the symrnetry to orthorhornbic (Karayaka & 

Kiiratli. 1994) with a substantial anisotropy in planes parallel to the z avis (Fig- 
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tire 2.3) but with weaker anisotropy within the s-y plane. -1 large block 66 s 

27 s 17 cm of this material (grade CE phenolic)  vas milled to provide Bat and 

perpendicular surfaces parallehg the layering. the warp. and the u-eave. The 

niass density of this composite is aven  b -  the manufacturer as 1395 kg/m3 and 

there are approsimately 20 fibre mats per cm thickness within the material. 

One P and two S waw transducers that acteci as bot11 sources and receivers 

were prepared from piezo-electric ceramics. The transducers n-ere made as small 

as possible in order that the transducer dimension effects could be minirnized. P- 

wave transducers were prepared from commonly available PZT-5 (lead zirconate) 

sheets by cutting into 2.0 mm squares using a computer controlled diamond saw 

iised in electronic chip maniifactiiring. These transducers predominantly espand 

in the direction perpendicular to the block (Figure 2.4a). The nominal resonant 

frequency of t hese transducers is 1.0 IIHz. S-wave piezo-elect ric ceramics (EBL 

#3 - Sta-el>- Sensors) with a resonant frequericy of 0.65 I fHz were ciit into 2 mm 

S 3 mm rectangles in two perpendicular directions to make transducers prefer- 

mtially sensitive to the different quasi-S wase polarizations. The two differing 

cuts of S-wave transducers producc displacements parallel to the surface of the 

test piece. referred to hereafter as SI- and SH. t hat are also paraIlel (Figure 2.-lb) 

and ~erpendicular  (Figure 2 . 4 ~ )  to the source-receiver array plane. respectively. 

These designations of P. SI-. and SH polarization should not be taken too lit- 

erally especially when employed over compIes anisotropic media with quasi-P 

and quasi-S polarizations. these designations simply refer to the mode which is 

attcmpted to  be preferentially generated given the esperimental limitations. 

Due to directionality constraints in the outn-ard propagation of energy from 

the source. the S\- transducers were poor transmitters although they were still 

used in reception. The P transducers were found to better generate SV-like 

polarizations and were consequently used for transmitting in both the P and SV 



arr-S. This effect is espected as the P trarisducers act as vertical point sources 

tliat also generate an SI- radiation pattern with substantial energt- a t  oblique 

angles. 

-111 the transducers were mechanically damped to increase their bandividth 

by pot t ing in a urethane-metal powder misture. The P-wave t ransducers were 

mounted on a conductive. mallcable. removable substrate that was cIamped to 

the block. Both SI- and SH transducers were directly glued to the samples using 

conduct ive silver paint. 

The transducers were placed on the sample in a coplanar array as shown 

in Figure 2.2a with two transrnitters on one side a t  a spacing of 2.0 cm 3~ 0.1 

cm. The receiving transducers were rnounted in a linear array on the adjacent 

perpendicirlar surface a t  a spacing of 0.5 cm f 0.1 cm. The source transducers 

were activated with a 300 Lblt. 10 ns rise time spike. The response of the 

receiver transducers to the result ing elastic waves were digitallj- acquired by a 

Iiigh speed sampling oscilloscope at a rate of 8 ns/sample for 110 11s with the 

waveforms transferred via a GPIB bus to a cornputer for archiving and analpis. 

Sonetheless. random noise !vas a significant problem due to the small sizes of 

the transducers. The sample was shielded in a grounded steel bos and high 

frequcncy h i e  filters were included on ail electricai equipment to reduce this 

noise. -4pproximately 2000 individual pulses were stacked 0x1 the oscilloscope to 

irnprove the data yuality. 

Orily simple processing of the ~vavcforms was carried out to reduce the effects 

of trigger noise and spurious reflected and other mode arrivals. The liigh am- 

plitude trigger noise was simply muted as were portions of the trace before and 

after the desired arrivals by modulation with a simple tapered window. These 

data were then bandpass fiitered (bandpass = O 1IHz - 0.15 SIHz - 1.20 AIHz - 

1 . ï 0  11Hz) to remove any of the remaining hi& frcquency noise. 



Esamples of the processed waveforms acquired on  the g l a s  block are shown 

in Figure 2.5. These data generally show that in the isotropic. low-attenuation 

g l a s  the maveforms retain much of the same character with offset and indicate 

t hat consistent signals are generated and received. The r - p t ransform was 

accomplished by a conventional x - t domain slant-stack (-Appendis C). The 

slant-stack of' t h e  P-wave x - t traces obtained on the g l a s  bioclc a t  the depth 

of 2.0 cm is shown in Figure 2.6. The ~ ( p )  values at the first amplitude peak. 

used in Ar ( p )  = ÏZ ( p )  - rl ( p )  in Eqn. 2.5. were picked iteratively. Analysis of 

the shape of this .r - p  curve using Eqns. 2.-5 to 2.7 yields velocities of 572-4 & 64 

rn/s and 3467 I 15 m/s for the P and SH mode transducers. respectimly. The P 

and SH velocities agree to better than 1% with P (5690 f 60 m/s) and S (3440 

k 26 m/s) velocities measured direct1'- through the block as noted earfier. This 

agreement suggests that uncertainties of better than 1.0 X may be espected using 

the r - p technique under well controlled conditions for a homogeneous material 

which. for practical purposes. may be considered lossless (Le.. nondispersive). 

2.3 Results and Discussion 

.\rra?-s w r e  constructed s-ithin 1 different planes on the composite material 

oriented with respect to the testiire in the s-z. the y-z. the s-y and sy-z. a 

diagonal plane containing the z a i s  rotated 45" frorn the s a i s  (Figure 2.7). 

The three different P. SI-. and SH polarizations were obtaineci a t  two different 

source depths in each of these planes resulting in a total of 24 individual sets 

of data composed of 920 source receiver cornbinations. Analysis of the resulting 

Ï-p curves yielded 624 high-quality measurements of the phase velocity of wliich 

only the portion of the results for the s-z plane is presented for illustration. 

The P-wave transducers for the s-z array were arranged with the sources a t  
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3 cm and 4 cm depth on the y-z plane and the receivers mounted on the x-y 

plane (Figure 2.4a). The processed waveforms (Figure 2.8) display a hyperbolic- 

like moveout with increasing offset and show only a modest degree of dispersion. 

The resulting Ï - p transforms (Figure 2.8) have ellipse-like shapes as espected. 

Hoivever. at  Ï = 0 (i-e.. when the vertical slon-ness q = O )  both ellipses intersect 

at 300 ps/m and 310 ps/m which yield at face value horizontal velocities of 3333 

m/s and 3226 m/s. respectively. This discrepancy is not unespected as siich 

angles cannot be truly illuminated within the git-en esperiniental configuration 

and should be taken as indicative of edgc cffects in the transformation. . \ Iodehg 

and esperience with the data  siiggest that with the present arrangement of the 

iirrays the phase velocities obtained betwen phase propagation angles 0 from 5" 

to 70" will be valid. In this plane of investigation. the phase propagation angle is 

the angle from the z axis which describes the direction the plane wave propagates 

in. 

The s - z  plane P vertical slowness q versus horizontal slon-ness p (Figure 2.9a) 

obtained from the i- - p transforms shoivs substantial divergence frorn isotropic 

hhaviour. The hi& degree of velocity anisotropy within the material is shown 

when the q - p plot is con\-erted to v - 9 (Figure 2.9b) wbere over the range 

of phase propagation angles where the reçiilts are valid (5" to 70") the velocity 

iiicreases from 263.0 m/s to 3450 m/s as the propagation direction varies from 

near vertical to subhorizontal. 

11-hile analysis of t hc P mode trarisducers is relatively st raightforward, ob- 

taining results froni the S i v  mode is compiicatcd by the strong coupling between 

the P and S i -  mode with bot h iinavoidably generated at the same time. -AS noted 

earlier, P mode trarisducers wcre used for SV wave generation and this arrange- 

ment introduces problems of directionality (Figure 2.10a) in which a strong P 

wave arrival exists over much of the array. This arrival is foilowed by a later 
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S j -  mode that is substantially n-eaker a t  greater offsets. Again. this result is not 

unespected as the radiation pattern for a vertical point source has strong P am- 

plitudes in the direction of particie motion and SY amplitudes at  more oblique 

angles (e.g.. White. 1983). For this mode. the P and S1- modes produced at  

the 2.0 cm depth werc not sufficiently separated in time to allow for accurate 

vclocity determination and the results shon-n were obtained from sources at  4.0 

and 6.0 cm depths. There is Iittle that can be dotie to ameliorate this aspect as 

the P-SI* coupling is intrinsic to wave propagation in elastic materials. -\t the 

greatcr depths. hon-ever. the two modes are sufficiently distinct to allow the P 

niode to be rnuted. isolating the S i T  arrivals (Figure 2.10b) for transformation 

to the  r - p domain (Figure 2. 1Oc). The  .r - p curve in Figure 2 . 1 0 ~  is quite 

continuous but straightens towards the end. Judging from the continuity of the 

the Î - p cun-e and the level of error in the data  caused by transducer placement 

problems or heterogeneities within the sample. it seems the slant-stack Radon 

transform contains a degree of averaging to reduce this error. Also the 7 - p 

curve straightens out towards the end because the slant stack Radon transform 

was performed past the physical lirnits of the data. In other n-ords. the array 

of receivers estended out a finite distance allowing only a range of angles to be 

investigated. This means a limited the range of p or slowness values may be 

in[-estigated. 

-4 further complication is the shape of the SI- mode waveforms that dis- 

play substantial waveform stretching and increasing complexity \vit h offset. This 

wa\-eform st retching is a t  tributed to dispersion n-hereby the different frequencies 

of the tvaveform travel a t  differing velocities. Some of this complexity is likely 

due to cross-taik between the Sir- and SH mode particle motions. However. the 

composite is primarily a layered medium in which the scale of the layering rela- 

tive to the wavelengths introduced can be important (e.g.. Helbig, 1984: Marion 



et al.. 1994: Rio et al., 1996). The observed n-aveform complesities may be a 

manifestation of the influence of the layering on wave propagation. Esamina- 

tion of these n-aveform effects is deferred in order to  focus on the anisotropy 

determination strategy. 

The SH mode traces are deaner witti a sharp v-aveform (Figure 2.1 l a )  allow- 

ing for a clear T - p transformation (Figure 2.1 lb ) .  The SH mode transducers 

were not subject to the same cross-taIk as seen for the SI- records above. Hom-- 

ever. t here is noticeable spreading of the waveforms n-it h propagation distance 

which is not seen in the case for the glass indicating that there is substantial 

dispersion for the SH mode also. Thoiigh difficult to quantif>-. there appears to  

be slightly less dispersion for the SH mode in the s-y plane. 

P. SI-. and SH phase velocities obtained from the analyses of the complete set 

of r - p  transformations are shown in Figures 2.12 to 2.15. -4s espected. the planes 

containing the z-axis perpendicular ta the lamination are highly anisotropic for 

both P and S modes. The greatest P anisotropy is 23 % in the y-z plane nrhilst 

t h e  greatest SH anisotropy is seen in the y-z plane n-ith 13 %. Both the P and 

SH modes show estremum at phase angles approaching the principle directions. 

Interestingly. within the s-y plane the greatest phase velocity is obsen-ed near 

45=.  

2.3.2 Inversion for Elastic Coefficients 

-A generalized least-squares inversion met hod was developed to obtain the elas- 

tic coefficients from obsen-ed phase velocities and propagation angles. Rela- 

til-ely straightforward inversion methodologies were ernployed (Kincaid ik Ch- 

cney. 1996) and the strategy need only be briefly outlined hcre. Further details 

on the cornputer code ernployed may bc foiind in -\ppendis C. The inversion 

strate=- begins with an initial guess at the elastic coefficients with the assump- 



tion that the density is aireadj- well known. Phase velocities with propagation 

angle are calculated from this seed and the residuals of these n-ith those obsemd 

are minimized using an L2 norm. Both nearest-neighbor and secant methods 

(Kincaid & Cheney. 199G) are iteratively employed. Pseudo-random jumps in 

the values are included to prevent trapping of the inversion in a local minimum. 

This metliod 11-as first tested on a number of synthetic results in 1-hich the phase 

velocities n-ere first fonvard niodeIed on a liypothetical orthorhonibic material. 

In the noise-free case. the elastic coefficients were reproduced to better than 

0.01 %. The influence of various levels of noise. in the sense of both electrical 

effects and transducer misplacement. \vas modeled by the addition of random 

noise to synthetic data. This method shomed the inversion to be accurate within 

an average of 3 % for random errors in velocity of up to 10 % (Appendis C). 

This inversion methodolog-  vas applied to the 624 obtained values of phase 

velocity versus phase angle siimmarized in Figures 2.12 to 2.15. The inversion 

assunlcd the material ivas orthorhombic and that the s-z. s-y. and y-z planes n-ere 

planes of symrnetr>- Two greatly different seed values were used: one in wtiich 

al1 the elastic coefficients were initially zero and another provided by Yestrum 

(1994) on a similar material. The procedurc ~t-as  stopped once 500 iterations of 

the in\-ersion were performeci. The calculation typically required only -448 seconds 

on a 170 SIHz machine using a high level programming language. The inverted 

resurts arc shown in Table 2.1 in the notational style used by Yestrum (1994) 

and a statistical analysis of the results indicate they are accurate to  within 2 %. 

The choice of the seeds )vas not important as both initial guesses approached 

the solution within 300 iterations and the final differencc between the solutions 

differed L>v only 5 l IPa  or by less than 0.2 %. 

One way to test the reliability of the method is to use the resulting elastic 

coefficients to calculate in a forward sense what the phase velocities ivould be. 



These t heoretical phase velocity values are shou-n as lines in Figures 2.12 to 2.15 

for the sake of comparison. The SH wave velocities are generall- well determined 

wirh a masimum discrepancy of 87 m/s between the calculated and observed 

values. The P and SI- mode phase velocities are less well deterinined with the 

greatest error of 182 m/s seen for the P mode in the y-z plane. The reasons 

for this discrepancy are not fully understood but may be due to the dispersion 

present for both the P and SI: n-awforrns. Fiirthcr. the degree of error is espected 

to be higher for the Sl-  mode due to the problems already indicated and because. 

even in the anisotropic medium. these two modes \-il1 preferentially be coupled 

relative to the SH mode it might be espected that this coupling LI-il1 introduce 

error into the P mode determinations. 

Larious types of in\-ersions done by others wit h important differences when 

cornpared with the type of inversion used in this thesis. -4rts et al. (1991) solved 

for al1 21 eIastic constants of the stress-strain tensor in the least-squares sense us- 

ing the measurements of the phase velocities and the corresponding polarizations 

for various directions of propagation. Okoye et al. (1996) assumes that the mate- 

rial is transversely isotropie and applies a smooth polynoniial fitting to the phase 

velocit ies bcfore applj-ing the lcaçt-squares met hod i terat ive15 \,ést rum ( 1994) 

treats the material being studied as triclinic even though studies have shown 

t hat  it  is orthorhombic in nature. Iéstrum's (1904) inversion used is an iterative 

application of Sen-ton's method. The inversion used in this thesis treats the 

niaterial as orthorhombic though it can handle the triclinic case. The inversion 

requires the phase veloci ties \vit h the corresponding polarizations for differing 

directions of propagation. The inversion is applied without the application of a 

smooth polynomial fitting unlike Okoye et al. (1996). The inversion does use the 

application of an iterative least-squares inversion similar to Arts et al. (1991) and 

Okoye et al. (1996) as well as the secant method. similar to Sewton's method 



iised by lës t rum (1994). The inversion makes use of pseudo-random jumps in 

order to prevent entrapment in localized minima in the residuals unlike the use 

of damping factors in Vestrum (1991). 

For an orthorhombic medium. four distinct planes on the sample are investi- 

gated in Figure 2 . 7  The three non-diagonal planes are the only ones necessary 

to determine the 9 elastic constants of the stress-strairi tensor if the planes are 

oricnted d o n g  known axes of syrnrnetry. The diagonal plane is investigated in 

order to help localize the results because axes of s - m m e t n  may not be weil de- 

fineci. If the situation arises that no information about the axes of symmetq  

of the orthorhornbic material is known or that the material is indeed triclinic. a 

morc general approach needs to be taken. The most general approach in order 

to determine the elastic constants requires three planes orieritated along an ar- 

bitrary set of axes and two perpendicular planes running diagonally to this set 

of axes. It is recommended to use an additional third diagonal plane. in order to 

ticlp constrain the results better. for a total of s is  distinct planes to  acciirately 

dctermine the 21 independent elastic constants of the stress-strain tensor. 

-Ut hough the elastic coefficients w r e  readily determined from a number of 

phase velocities in the above inversion. some esperimental prohlems remain. The 

most important is the observation of substantial dispersion. This dispersion is 

evident al1 the records of the P. SI-. and SH mode waveforms seen in Figures 

2.5. 2.8. and 2.10. This dispersion is only weakly. if at all. detectable in the 

nieasiirements on glass. a near1)- ideal. high Q: elastic medium suggesting that 

the dispersion may in part he a consequence of the structure or composition of the 

material. -4nother possible cause is that of a wave travelling through a Iayered 

medium where the ratio of the wavelength of the propagating wave to the layer 

t hickness becomes an important factor. ,At tenuat ion is another possible cause 

of the spreading of waveforms with offset where the higher frequencies would 



be attenuated more than the loir frequencies. This dispersion must have some 

influence on the acciiracy of the r - p met hod of phase velocity determination 

and needs to be considered in the future (see LIartinez k LIcSIechan. 1984). 

Ot her potent ial problems reside nit h the difficulties of cleanly separating different 

arrij-als and the unavoidable P-SL- mode coupling. This is due to the complesities 

in pularization of the different modes in an anisotropic medium (e-g.. Crampin. 

1978) and the related impedections of t he transmit t ing and receiving t ransducers. 

A final problem is that only a limited range of angles may be covered with 

the transducer arrays and for equal spacing of transducers this will introduce a 

sampling bias towards the far offset transducers. 

2 -4 Conclusions 

Phase velocities were determined directly as a function of phase propagation 

angle on an anisotropic composite material of orthorhombic symmetry. Special. 

ncar-point transducers were developetl to impart and receive different elastic wave 

energies. These transducers were designated as P. Si-.  and SH to indicate t h e  

prirnary mode of particle motion to which each different transducer iras sensitive. 

However. it must be noted that such pure modes do  not generally propagate in 

anisotropic media where more cornplex polarizations esist and the designations 

should only be considered as approximate. Clean P and SH modes could be gen- 

erated and received in both glass ancl the test anisotropic composite. However. 

the SI-  mode is complicated by the coupled nature of P and S\- waves and by 

difficulties the directionality of SV mode receivers to  impart the desired wave en- 

erg'- into the medium. Twenty four arrays of t hese t ransducers were constructed 

along 4 strategic planes of the composite material allowing 621 individual P. SL', 

and SH mode phase velocities to be obtained. 11-hen the esperimental approach 

n-as tcsted on a block of soda-lime glaçs. an essentially isotropie. low los .  eiastic 
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medium. the P and S velocities u-ere recovered to better than 1 5% relative to 

conventional pulse transmission tests. In the g l a s  it was difficult to detect any 

dispersion by spreading of the obsemed wn-eforms n-it h increasing propagation 

distance. 

Under the assumption that the test composite material w-is orthorhombic. 

ninc independent elastic constants n-erc obtained by a nonlinear least-squares 

iriversion procedure. Phase wlocities. calculateci in a forward nianner usirig the 

ohtained elastic constarits. indicate that these elastic constants are in generally 

good agreement \vit h the O bserved phase velocities. However. somc discrepancies 

rcrnain and these may be due. in part. to the fact that there is yen- noticeable 

dispersion in al1 the waveform modes (i-e.. pulse spreading with increasing p r o p  

agation distance) particularlj- for the S i -  mode. This dispersion is not accounted 

for in the present Ï - p velocity determination niethod. Further. because of 

csperimental constraints. the predorninant frccluencies of the compressional and 

t h e  shear mode transducers differed at 1.0 1IHz and 0.65 MHz. respectivelu. The 

band clifference toget her \vit li the obsen-ed dispersion efTects possibly account. 

in part. for the discrepancies. Further. it is highly likely that there is some 

srnall scale heterogeneities within the laminatcd composite as a consequence of 

i ts construction and t hese structures could also introduce additional errors to 

ttii! nieasurements. Howewr. the smoothing intrinsic to the i- - p method should 

alleviate the effects of small scale heterogeneities to sorne degree. 

Although part of the maveform spreading u-ith offset may possiblely be due to 

intrinsic attenuation. it is also likcly that part of the effect rnay be a consequence 

of n-at-e propagation t hrough the layered structure of the composite. -Ut hough 

difficult to quantify. t here appears to be less dispersion in the s-y plane waveforms 

suggesting that the observed dispersion is symptomatic of the layering. Indeed, 

such layering induced dispersion is not unespected especially once the dimensions 
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of the  Iqers approach the wavelength of the illuminating elastic wave energ'; 

(e-g.. Helbig. 1984). This situation may be the case in the present material as 

the wavelength of the shear waves approach 2 mm which is only a factor of 4 

greater than the nominal 0.5 mm scale of the layering. Such effects were first 

hinted at esperimentally by SIelia 6- Carlson (1984) on plastic-glass composites. 

Future work will focus on technical development of the technique in order to 

make it lcss cumbersome and so it can be emploj-ed under pressure. One great 

advantage of the present niethodologt- is that it can be applied to samples of 

simple shape such as rectangular prisms and even cylinders. The latter will be 

particularly useful in the contest of determining anisotropy in shales which may 

often assumed to be transversely isotropic using core samples with a minimum 

of additional preparation. Of more fundamental concern. hon-ever. is the po- 

tential for esperimental tests of the trade-off between wave velocit-- anisotropy. 

dispersion. and scale in Iayered anisotropic media: these future esperiments have 

iniplications beyond laboraton. determination of elastic properties. The 7 - p 

rnethod \vil1 aid in such fundamental studics of layered media. 
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Cij (GPa) 1 j / j=2 1 j=3 

Tdble 2.1: Elastic constants of the stress-strain trnsor for a sample of the or- 
thorhombic material phenolic. 
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wavefront W 
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Figure 2.1: Distinction bet~veen group and phase velocities in anisotropic media 
(after Kebaili &L Schmitt. 1997). 
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source 

source 2. 

(a)  Plan vie%- of the plane containing sources and receil-ers with 
ray paths for a homogeneous anisotropic medium. 

l4h 50 100 150 200 250 300 350 
Horizontal Slowness (ps/m) 

(b)  Composite travel-tirne versus offset ( c )  Composite of the r - p transforni of 
(s) curves obtaincd for the two diffcrent the t r a d - t i m e  curves in b) with the de- 
source positions in a). termination of Ar at a given constant 

horizontal slowness p illustrated. 

Figure 2.2: Outline of phase velocity determination method. 
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Figure 2.3: Orientation of the principal directions of the phenolic block relatiw 
to the s-y-z CO-ordinate reference axes employed. 



v ave receiver 

(a) P mode transduccr. 

(b)  S i '  mode transducer. (c) SH mode transducer. 

receiver 

Figure 2.4: Ideal particle motions imparted and received b -  t lie transducers. 
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(a) P source transducer at 2.0 cm depth. (b) S\.- source transducer at  4.0 cm 
depth. 

--y--------- - 
0 . 0 % 7 0  20 30 40 50 60 

Tkavel Time (JAS) 

( c )  SH source transducer at 2.0 cm 
depth. 

Figure 2.5: Ohserved amplitude versus time traces with offset on the glas  block 
for various t ransducers. 
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Figure 2.6: The T - p transform obtained by slant-stacking of Figure 2.3a. 



Figure 2.7: The four planes on the composite block in whicli arraFs were prepared 
and designated as s-z. s-y. y-z. and s-z (i.e.. diagonal). 



(a) Amplitude versus time traces with 
offset for the  2.0 cm deep source 1. 

Pave1 Time (p) 

( c )  -4niplitude versus time traces with 
offset for the  4.0 cm deep source 2. 

Horizontal Slowness (ps/m) 

(b)  T - p  transform of a) from which the 
series of TI (p) is obtained. 

Horizontal Slowness ()rs/m) 

(d) T - p transform of c) from which the 
series of - (p) is obtained. 

Figure 2.8: The complete set of P-polarization results from the s-z plane. 
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Horizontal Slowness (ps/m) 

(a) \,értical slowness q as a function of horizontal slowners 
p. the data obtained are indicated by asterisks symbols. 
the continuous line shon-n for cornparison is the circular 
q - p cun-e that m-ould es i s t  for an isotropic mediuni- 
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Phase Propagation Angle (degrees) 

(b)  Corresponding P phase velocity versus phase propa- 
gation angle 8. 

Figure 2.9: Slownesses and phase velocities obtained from the r - p transforms 
of the s-z plane P transducer traces of Figure 2.8. 
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(a) Cnrnodified S\- mode records for the 
6.0 cm deep source displa-ing strong P 
mode arrids and transducer direction- 
d i t y  .effects. 

(b) lsolated S\' mode arrids after mut- 
ing of  P mode arrivals followed bu peak 
amplitude normalization. 

Horizontal Slowness (ps/m) 

(c) Peak amplitude normalization of the T - p transform via slant- 
stack of (b). 

Figure 2.10: Analysis of x-z plane SIÏ mode arrivals. 
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(a) The SH mode records for the 2.0 cm deep source. 

Horizontal Slowness (p/m) 

(b) The corresponding T - p transformation of (a). 

Figure 2.11: Analpis of s-z plane SH mode arrivais. 
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Figure 2.12: Summary of the pliase velocities versils propagation angle 0 obt ained 
from t lir Ï - p analvsis of tlie arrivals in tlie s-z plane. Symbols represent the 
P-wal-e (circles) . the SLwave (triangles) . and the SH-wave (asterisks) particle 
motion polarizations. The angle 8 is measured from the z-axis. 
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Figure 2.13: Sunimary of the phase relocitics versus propagation angle 0 obtaincd 
from the  r - p analysis of the arrivais in the y-z plane. Symbols represcnt the 
P-tvave (circles). the SI--wave (triangles). and the SH-wave (asterisks) particle 
motion polarizations. The angle 0 is measured froni the z-asis. 
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Figiirc 2.14: Summary of the phase velocities \-ersus propagation angle 0 obtained 
from the .r - p analusis of the arrivals in the sy-z plane. Symbols represent the 
P-wam (circles). the  S\--\rave (triangles). and the SH-wave (asterisks) particle 
motion polzirizations. The angle 0 is measured from the z-axis. 
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Figure 2.15: Summap- of the phase ve-elocitics venus propagation angle 0 obtained 
from t lic T - p arialysis of the arrivals in the s-y plane. SJ-mbols represent the 
P-wavc (circles) . the SI--mave (triangles). and the SH-wave (asterisks) particle 
motion polarizations. The angle 8 is measured from the y-a i s .  



Chapter 3 

Conclusions 

3.1 Determination of phase velocities and the 
elastic coefficients 

Zn this thesis. the technique for deterrnining ivave speed anisotropy. first pre- 

scnted by Kebaili k Schmitt (1996) was further cstended to include tn-O shear 

wave modes. The technique $vas later employed on a block of composite materia1 

which \vas known to be anisotropic by Kebaili k Schmitt (1997). The technique 

was ernployed on a similar block of material and the obsen-ed results w r e  further 

invertecl to obtain the completc clastic description of the material. 

The vclocities were determined using Kebaiii k Schmitt's (1996) slant-stack 

technique. To do this the arrivai times were measured for t~vo coplanar source- 

reçeiver arrays using three differing po!arizations in four different planes: this 

corresporids to 920 source-receiver combinations. The  application of the T - 

p transform to the resulting data sets provided 624 high yuality independent 

phase velocity measurement dependent on the phase propagation angle. Aside 

frorii providing a direct measure of the pliase or plane ivave velocities. usually 

otherir-ise difficult or impossible to determine. the slant-stack methodology has 

a nurnber of additional advantages. First. the measurenients can be carried 

out iri a non-destructive manner on relatively easily machined shapes such as 
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rectangular prisms and cylinders. Second. the slant-stack rnethodology implicitly 

contains a degree of averaging over the entire set of waveforms acquired. This 

stacking help reduce the effects of small heterogeneities within the sample and 

crrors in transducer placement. The advantage of the method in measuring the 

inter\-al anisotropy in vertical seismic profile (1%') csperirnents lias aiready been 

presented in Kebaili k Schmitt (1996). 

Kebaili k Schmitt (1997) mcasured the P-wave anisotropy only on a similar 

composite material. The present work includcd t hese measurements but es- 

tendcd theni 11-it h small shear -SH' and - S i - '  orientation transducers. Cnder the 

assunlpt ion t hat the test material (phenolic) has orthorhombic symmetry. the 

nine independent elastic constants n-erc obtained a nontinear least-squares in- 

version of tlie obsen-ed pliase velocit ies to an uncertainty of het ter t han 2 %. The 

nonlinear least-squares inversion procediire developed in this work is able to in- 

1-ert for the full 21 independent elastic constants that occur for the triclinic case. 

Liniit at ions in transducer coverage alloweci inversion of the 624 phase velocities 

on1~- for the ort horhombic case. 

,An uncspected and additional observation is the waveform spreading or 

stretching seen with increasing offset. This pulse hroadening is syniptornatic 

of a wave speed dispersion and hence attenuation. Thc effect appeared to be 

particularl!- severe for the SV mode propagating in the vertical plane at oblique 

angles to t h e  layers. 

3.2 Future Work 

There are a number of interesting areas of research made possible with devel- 

opments in this thcsis. Immediate and direct future work should iriclude the 

acquisition of data in two additional diagonal planes over the esisting phenolic 

sample in order to determine tlie most general elastic constants for the triclinic 



case where no material synmetry is assumcd. Such an esperiment would confirm 

whether or not the phenolic sample is truly orthorhombic. or more importantly 

resolve whet her the material can be considered as nearly ort horhombic. Aft e r  

this application of this methodology to s-nthetic sarnples. the nest logical s tep 

~ o i i l d  be to apply this methodology to a series of already well-characterized 

rock. Cnfortunately. the elastic properties of rock are often highly dependent 

on the type of porosity and on the esternal confining pressure. Further. when 

rock sarnples are removed froni their native environment. some dri1ling induced 

darnage and stress relief n-il1 tend to damage the core. This may lead to changes 

in the characteristics of the rock. One wa_v to partiaily owrcome this problern is 

to carry out the measurernents under pressure. Future work should focus on the 

techical  development of the technique in order to  make it less cumbersome so 

tIiat thcse esperiments can be carried out efficiently under confining pressures 

( to  atleast 300 NPa) in order to elvaluate the effects of anisotropy change with 

pressure. Uany different types of both sedimentary and igneous rocks need be 

tcsted. 

Anotlier area of future work is studyinp the properties of rocks in the borehole 

tlirough the use of lwertical seisniic profile (\-SP) data. The results from the 

esperiments performed under confining pressure should be cornpareci with the 

r~su l t s  from IvSP data in order to dctermine possible effects caiised bu remor-al 

of ttie rock saniples frorn their native cnvironment. 

On a more fundamental level. it was noted that tliere is spreading in the 

\raveforrn with offset. Hom- tliis spreading of the waveforms with offset affects 

the r - p transform shouId be studied. possibly through numerical inodeling. in 

order to better improve the determination of phase velocities. 

.As mentioned previously. the spreading of the wawform may be due to both 

dispersion and attenuation. Such effects should be studied theoreticaI1y and 



supported by numerical modeling. One of the most interesting areas for future 

application of this technique is in the study of layered media and how elastic 

waws of various frequencies are influenced by propagation through the medium. 

One crucial topic relates to what m- be obscrved w-hen-the wavelength becomes 

similar to the thickness of the layer. In such a situation. the material behaviour 

is na longer employ the esisting efFcctive medium t heories. \\‘ben the wavelength 

of thc propagating wavelet approaches or csceeds the layer thickness. one must 

worry a t~ou t  the scale effects of the propagation through Iayered media. 11.e 

hope to make new contributions to the understanding of the trade-off between 

ariisot ropy and geological scale. 

-4nisotropy in rocks m a -  be the result of preferential orientation of mineral 

grains. the presence of oriented cracks of various sizes. or the occurrence of thin 

Iq-cring. One should int-estigate how these differing sources of anisotropy con- 

tribute to observable effects such as dispersion and attenuation. These differing 

sources of anisotrop~r ma? even contribute to a directional dependence in the dis- 

persion and attenuation. This should b~ investigated by stud~ving materials with 

siniilar symmetry but differing sources of anisotrop>-. The slant-stack technique 

del-eloped here is ideal for such studies. 

Perhaps most irnportantly will be the studies of the tradc-off betxeen wave 

vclocity anisotropy. dispersion. and scale in layered anisotropic media. -4 better 

understanding of the characteristics of elastic waves in this regime is crucial 

to hettcr interpretation of seisrnic observations. Some of the results ma)- have 

iniplications towards our view of the earth's structure. 
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Appendix A 

Results from the glass block. 
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(b) Peak amplitude normalization of the T - p transfortn 
via slant-stack of (a). 

P-polarization results from a 2.0 cm depth source on the gIass block. 
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(b) Peak amplitude normalization of the r - p transform 
via slant-stack of (a). 

Figure -4.2: P-polarization results from a -1.0 cm deptli source on the glass block. 
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(a) .Amplitude versus time traces n-ith offset. 
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(b) Peak amplitude normalization of the T - p transform 
via slant-stack of (a) .  

Figure A.3: SI--polarkation results from a 4.0 cm depth source on the glass 
block. 
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(a) Amplitude versus time traces with offset. 
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(b) Peak amplitude normalkation of the r - p transform 
via slant-stack of (a). 

Figure -4.4: SV-polarization results from a 6.0 cm depth source on the glass 
Mock. 
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(a) Amplitude versus time traces n-ith offset. 
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(b) Peak amplitude nonndization of the r - p transform 
via sIant-stack of (a). 

SH-polarization resuits from a 2.0 cm depth source on the glass 
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(a) .-lmplitude versus time traces with offset. 

Horizontal Slowness @dm) 

(b) Peak amplitude normalization of the r - p transforrn 
via slant-stack of (a). 

Figure -4.6: SH-polarization results from a 4.0 cm depth source on the glas 
block. 
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Results from the phenolic block. 
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(a) Amplitude versuc time traces with offset- 
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(b) Peak amplitude norrnaiization of the r - p transform 
1-ia slant-stack of (a). 

Figure B.l: P-polarization results from a 2.0 cm deptli source on the phenolic 
block in the s-z plane. 
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(a) AmpIitude versus time traces with offset. 
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(b) Peak amplitude normaiization of the T - p transforni 
via slant-stack of (a). 

Figure B.2: P-polarization results from a 4.0 cm deptli source on the phenolic 
block in the s-z  plane. 
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(b) Pe'A amplitude normalkation of the T - p transforrn 
via slant-stack of (a). 

Figure B.3: SV-polarization results from a 4.0 cm depth source on the phenolic 
block in the s-z plane. 
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(a) -4mplitudc versus timc traces m-ith offset. 
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(b) Peak amplitude normdization of the r - p transform 
via slant-stack of (a). 

Figure B.4: SI'-polarization results from a 6.0 cm depth source on the phenolic 
Mock in the s-z plane. 
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(a) Amplitude versus time traces with offset. 

Horizontal Slowness @dm) 

(b) Peak amplitude normalization of the T - p transform 
via slant-stack of (a). 

Figure B.5: SH-polarization results from a 2.0 cm depth source on the phcnolic 
block in the s-z plane. 
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(b) Peak amplitude normalization of the r - p transfom 
via slant-stack of (a). 

Figure B.6: SH-polarization results froni a 4.0 cm depth source on the phenolic 
hlock in  the s-z plane. 
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(a) -4rnplitude versus time traces n-ith offset. 
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Horizontal Slowness (ps/rn) 

(b) Peak amplitude normaIization of the r - p transform 
via slant-stack of (a). 

Figure B.7: P-polarization results from a 2.0 cm depth source on the phenolic 
block in the y-z plane. 
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(a) Amplitude versus time traces R-ith offset. 
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(b) Peak amplitude norrnalization of the r - p transforrn 
via slant-stack of (a). 

Figure B.8: P-polarization results from a 4.0 cm depth source on the phenolic 
block in the y-z plane. 
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(a) Amplitude versus time traces with offset. 
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(b)  Peak amplitude normaiization of the r - p transform 
via slant-stack of (a). 

Figure B.9: SV-polarization results from a 4.0 c m  depth source on the phenolic 
block in the y-z plane. 
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(a) Amplitude versus time traces with offset. 
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(b) Peak amplitude normalization of the r - p transforrn 
cia slant-stack of (a). 

Figure B.10: SLpolarizatiori resiilts from a 6.0 cm depth source on the phenolic 
hlock in the y-z plane. 
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(a) ,Amplitude versus time traces m-ith offset. 

Horizontal Slowness (psfm) 

(b)  Peak amplitude normalization of the r - p transform 
ria slant-stack o f  (a). 

Figure B.11: SH-polarization results from a 2.0 cm dept.h soilrce on the phenolic 
bIock in t he  y-z plane. 
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(a) -4rnplitude versus tirne traces n-ith offset. 
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(b) Peak amplitude normaiization of the T - p transfomi 
via slant-stack of (a). 

Figure B. 12: SH-polarization results frorn a 4.0 cm depth source on the phenolic 
hlock in the y-z plane. 



-4PPE.YDIS B. RESCXTS FROM THE PHEXOLIC BLOCK. 

B.3 xy-z plane 



APPEXDIS B. RESLXTS FRON THE PHENOLTC BLOCK 

1 

O0 20 40 60 80 
f ravel Time 0s) 

(a) -4nipIitude versus time traces with offset. 

Horizontal Slowness @dm) 

(b)  Peak arnpIitude normalization of the T - p transform 
via slant-stack of (a). 

Figure B.13: P-polarization resiilts from a 2.0 cm depth source on the phenolic 
block iri the xy-z plane. 



-4 PP E-YDLY B. RES LÏLTS FROJl THE PHEN0 LIC B L OC'Ii. 

l 
- - 

0.021 r 

1 
1 

1 

20 40 60 80 
Travel Time bs) 

(a) Amplitude versiis time traces n-ith offset. 

Horizontal Slowness @dm) 

(b)  Peak amplitude normalization of the r - p transfom 
via slant-stack of (a). 

Figure B. LA: P-polarization results from a 4.0 cm depth source on the phenolic 
t~lock iri the sy-z pIane. 
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(a) Xmplitude versus time traces n-ith offset. 
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(b) Peak miplitude normalization of the T - p transform 
via slant-stack of (a). 

Figurc B.15: Si--polarizatiori results from a 4.0 cm dcpth source on the phenolic 
block in the sy-z pIane. 
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(a) .knplitiide versus tirne traces n-ith offset. 

(b) Peak amplitude normalization of the Ï - p transform 
via slant-stack of (a).  

Fi y r e  B.16: SV-polarization results from a 6.0 cm depth source on the phenolic 
block in the xy-z plane. 



-4PPE';'DL.S B. RESULTS FROM THE PHEXOLIC BLOCK. 

40 60 80 100 120 
Travel Time @à) 
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(b) Peak ampIitude normalization of the r - p transform 
via slant-stack of (a). 

Figure B.17: SH-polarization resiilts from a 2.0 cm depth source on the phenolic 
block in the s - z  plane. 
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(b)  Peak amplitude normalization of the T - p transform 
via slant-stack of (a). 

Figure B.18: SH-polarization results frorn a 4.0 cm depth source on the phenolic 
block in the sy-z plane. 
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(b) Peak amplitude normalization of the T - p transfornl 
ria slant-stack of (a).  

Figure B.19: P-polarization results from a 2.0 cm depth source on the phenolic 
block in the s-y plane. 
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(b) Peak amplitude normalization of the i - p transform 
ria slant-stack of (a). 

Figure B.20: P-polarization results from a 4.0 cm depth source on the phenolic 
biock in the s-y plane. 
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via slant-stack of (a). 

Figure B.21: Si:-polarization results from a 4.0 cm depth source 
block in the x-y plane. 

on the phenolic 
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(b) Peak amplitude normalization of the r - p transform 
via slant-stack of (a). 

Figure B.22: SV-polarization results from a 6.0 cm depth source 
block in the s-y plane. 

on the p h e n o h  
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(a) Amplitude versus time traces n-ith offset. 
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(b)  Peak amplitude normalization of the r - p transform 
via slant-stack of (a). 

Figure B.23: SH-polarization results from a 2.0 cm depth source on the phenolic 
block in the s-y plane. 
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(b) Peak amplitude normalization of the T - p transiorm 
via slant-stack of (a). 

Figure B.2.I: SH-polarization rcsults from a 4.0 c m  depth source on the phenolic 
block in the s-y plane. 



Appendix C 

Radon transform and inversion 

C .  1 Radon transform 

.A slant-stack (Radon) transform is a mapping of a two-dimensional function 

f (z. t )  frorn the offset-time (x. t )  dornain into the intercept time-horizontal slo~v- 

riess (7  - p)  domain. The slant stack (Radon) transform is defined by Robinson 

(1952) and Tatham (1984): 

where F is the integration of the amplitudes f (x. t )  d o n g  the line y = I- + p r .  

This equation basicaliy means the  data is decomposed into different plane 

wave components where for each i- value on a given horizontal slowness p the 

amplitiides of al1 the samplcs dong the line giveri by the line y = T + p z  is 

summed. 

The r - p transform used was that described in Equation C.1 where an 

intercept i- and dope p is chosen and the amplitudes from the x - t domain 

along the line t = r + p z  are summed. S o  special hyperbolic velocity filtering or 

ratio filtering was applied (see Kebaili and Sclimitt. 1997). The T - p transfornr 

prograni was w i t t e n  in the prograrnming language of l fa t lab and is shown as 



C .  1.1 Computer program for r - p transform 

% Written by Marko Mah (May 1997) 

% The purpose of this program is to perform a tau-pee 

% transform on the offset-time data. 

% First ue must load in the data 

% To do this we must determine which files need to be 

% loaded in and hou many 

% nfiles is the number of files to be loaded 

nfiles=input('Hou many traces are to be loaded?'); 

% the follouing determines the filename 

% count is simply a counter 

% filename is the name of the file to be loaded 

for count = 1:nf iles 

temp=intSstr (count1 ; 

if count <= 9 

filename=[Jor03tr0' ,temp, ' .flowlJl ; 



else 

f ilename= ['or03trJ, temp, ' . f 10~1'1 ; 

end 

f id=f open(f ilename) ; 

traceloaded=f read(f id, ' f loat ' ) ; 

f close (f id) ; 

% the following puts traceloaded into a matrix 

% where the al1 the traces uill be stored 

if count==l 

data=traceloaded ; 

else 

data= [data, traceloadedl ; 

end 

end 

clear traceloaded ; 

% the following figures out the size of the data 

Clengthdata, temp] =size (data) ; 

% the following asks for the sampling rate in microsecond (IOA-6 

secs) 

% srate is the sampling rate in seconds 



srate=input(What is the sampling rate in microseconds? '1; 

srate=srate*0.000001; 

% offset1 is the offset at the first trace in metres 

% offsetinc is the distance betueen each trace in metres 

offseti=input ( What is the offset at the f irst trace in metres? 

offsetinc=input()What is the distance between each trace in metr 

es? '1 ; 

% The following asks for input parameters for the tau-pee calcul 

at ions 

% t a u s t a r t  is the tau value you wish to start at 

% tauinc is how large of an increment you want in tau 

% taunum is the number of tau increments you want 

% pstart is the p value you wish to start at 

% pinc is hou large of an increment you vant in p 

% pnum is the number of p increments you want 

taustart=input ('At what tau do you want to start at in secs? '1 ; 

tauinc=input(>How large of an increment in tau do you want in se 

CS? '1;  

taunum=input ( 'How many increments do you want in tau? ' ) ; 



p s t a r t = i n p u t ( ' A t  uhat  p  value do you w a n t  t o  start at i n  secs/me 

t r e ?  ' ) ; 

pinc=input( 'Uov l a r g e  of an increment i n  p do you uant i n  s e c d m  

e t r e ?  ' ) ; 

pnum=input('How many increments do you want i n  p? '1; 

% tpmat r ix  i s  t h e  matrix uhere a l1  t h e  tau-pee values  v i l 1  be he ld  

% o f f s e t  is the o f f s e t  of each trace i n  metres 

% first ve s e l e c t  a t a u  value and do t h e  tau-pee t ransform 

% f o r  a l 1  v a l u e s  of p  before doing t h e  next  value of t a u  

% We are going  t o  keep the  c a ï c u l a t i o n s  i n  the t ime domain 

% as long  as p o s s i b l e  t o  prevent round o f f  e r r o r .  

f o r  count 1=0 : taunum 

% t a u  i s  t h e  t a u  i n  seconds 



f o r  count2=0:pnum 

% p is t h e  p i n  seconds/metre 

% t i m e  is t h e  t i m e  i n  seconds at  which t h e  

% amplitudes v i l 1  be ex t r ac t ed  from t h e  data 

tirne=tau+p*off s e t  ; 

% sample is t h e  sample number at which t h e  

% amplitudes w i l l  be ex t r ac t ed  from t h e  data 

% t he  fo l lou ing  c a l c u l a t e s  t he  tau-pee va lue  

% tpvalue is  t h e  tau-pee value f o r  t h i s  

% p a r t i c u l a r  value of t a u  and pee 

f o r  count3=l :nf i les  

% the fo l lou ing  i f  s ta tement  checks t o  see i f  



% the sample number is less thaa the length of 

% the data and if so extracts the  amplitude 

if sample (1, count31 <= lengthdata 

tpvalue=tpvalue+data(sample (1, count3) , cout3) ; 

end 

end 

% now that the tpvalue has been calculated, the 

% tpvalue must be put into tpmatrix 

end 

end 

% Now that tpmatrix has been created and filled ue must now outp 

ut the data 

for count=l:pnum+l 

if count<=9 

temp=int2str(count); 

name= [ ' 0r03trO ' , temp , ' . tp ' 1 ; 

else 

ternp=int2str(count); 

name=CJor03tr' ,temp, ' .tp'l; 

end 



f id=f open (name, ' v ' ) ; 

furite(fid, tpmatrixC: ,count), 'float') ; 

f close (f id) ; 

end 

time=srate*10-6* Cl : l: lengthdatal ; 

figure 

imagesc (off set, time ,data) ; 

xlabel('0ffset (m) '1; 

ylabel ('Tirne (microseconds) '1 ; 

title('0ffset-Time data') ; 

colormap (gray) 

colorbar 

pend=pstart+pinc*pnum; 

pvalues= [pstart : pinc : pend] ; 

tauend=taustart+tauinc*taunum; 

tauvalues= [taustart : tauinc : tauend] ; 

figure 

imagesc(pvalues,tauvalues,tpmatrix); 

xlabel( 'P (sec/metre) ' ) ; 

ylabel( 'Tau (sec) ' ) ; 
title('Tau-P data') ; 

colormap (gray) 

colorbar 



This Î - p transform was tested on data acquired on a g l a s  block as shown 

in Figures -4.1 to -4.6. The average phase velocities calculated from the i - p 

trarisfornl for the g l a s  blocks are 3724 f 64 m/s. 36-17 i 77 m/s. and 3467 f 

1.5 ni/s for the P. SI-. and SH mode transducers respectively. The P and SH 

vclocities match the simple direct pulse tranmission P- and S-wave velocities of 

5690 i- 60 m/s and 34G f 26 m/s rcspectively to trithin 1 S. The SI- velocities 

had large errors due to problems with errors in the placement of the source 

transduccrs. 

C .  2 Inversion 

The inversion strategy begins u-ith an initial y r s s  at the elastic coefficients with 

the assumption that the density is already well known. Phase velocities with 

propagation angle are calculated from this seed and the residuals of these trith 

those observed are minimized using an L2 norrn. An Li1 norm is where the square 

of the  differences are riserf as opposed to  an L I  norm where the absolute values of 

thc  differences are used. The residual represented bu 6 is defined by the folloiving 

formula: 

n 

E = (Theoretical Phase \élocity - Obsemed Phase \élocit?-)' ( C . 2 )  
i= 1 

where n is the number of obsen-ed phase wlocities. 

After this first initial guess. 3 different niethods ivere employed to reduce the 

rcsidual. The first is a pseiido-least squares met hod applied iterat imly where 

small increments and decrements to the elastic constants are applied in steps. 

The second is where pseudo-random increments or decrements to  the elastic 

constants are applied. The random increments or jumps are incorporated in 



orrier to prevent entrapment in localized minima n-ithin the residuals. The third 

is the secant met hod which is defined by the following formula: 

where n is the position number 

In order to try to determine wiiere the iunction f (s, ) eqiials zero. the y e s s  

s,,, is deterrnined by putt ing a secant h i e  t hrought points ( x n -  ,. f (1,- ) )  and 

(x,. f (r,)) and determining where the line intersects zero. This method onlj- 

works if two points f and f (x,) are already calculated. -4fter apply these 

various methods. a unique solution will more than likely be deterrnined. 

The fdIowing is a surnmary of how the inversion n-orks for the orthorhombic 

case where there are 9 independent elastic constants: 

Step 1: Rcad in data. 

Step 2: Calculate residual from initial guess or sced and set as Ion-est residual 

case. 

Stcp 3: If there is no change in the elastic constants for 5 iteratioris or if the 

residual is sniall enough. then reduce step size for Step 4. 

Step 4: Increase and decrease each indcpendent elastic constant for the lowst  

rcsidual case by 1 step and calculate rcsiduals. 

Stcp 5:  Increase or decrease each independent elastic constant by a pseudo- 

random step and calculate the residuals. 



Step 6: If residuals from Step 4 and Step 5 are less than the lowest residual case. 

t hen apply secant met hod and recalculate residual. 

Step 7: C'se the elastic constants with the  l ows t  residual as the seed for the next 

loop. 

Step 5: If 500 iterations are performed or residual is lower t han set mark. t hen 

go to Step 9. If not. go to Step 3. 

Step 9: Wite out elastic constarits and  esit. 

The inversion ws wi t t en  in the programming language C with the routines 

jac0bi.c. nruti1.c and nriiti1.h being programs based on routines from Sumerical 

Rccipes (Press e t  al. 1989). 

C.2.1 Computer Programs for Inversion. 

Main Inversion Program 

/* apr28invold.c */ 
/* written by Marko Mah April 28, 1999 */ 
/* for the inversion of phase velocities in an orthorhombic mate 
rial */ 



void jacobi(f1oat  **a, i n t  nd, f l o a t  d u ,  f l o a t  **v, i n t  * m o t )  ; 

void main ( i n t  argc , char  *argv [] ) 

C 

f l o a t  rho;  /* rho i s  t h e  densi ty of t h e  ma te r i a l  i n  kg p e r  m - 3  

*/ 
double c2d[6] [6] ; /* c2d is t h e  2nd o rde r  s t i f f n e s s  t ensor  i n  

pascals  */ 
double c4d[3] 131 [3] [3] ; /* c4d is t h e  4 t h  order  s t i f f n e s s  t e n s  

o r  i n  pasca ls  */ 
i n t  i , j , k , l , m , n , o , p ;  /* i , j , k , l , m , n , o , p  a r e  counters */ 
i n t  nd; /* nd is t h e  s i z e  of t h e  dimension */ 
double tempC31; /* temporary va r i ab les  */ 
f l o a t  planenom[3] [624J; /* contains vec to r  normal t o  t h e  p lan  

e i n  which d a t a  l i e s  */ 
f l o a t  norm[3] [624] ; /* contains vec tor  describing d i r e c t i o n  of 

propagation */ 
f l o a t  **ch; /* **ch s t o r e s  the  C h r i s t o f f e l  symbols */ 
f l o a t  **partmot; /* **partmot is  the  matsix which v i l 1  s t o r e  t 

he p a r t i c l e  motions (eigenvectors) */ 
f l o a t  rhophvelphvel[4] ; /* rhophvelphvel is t h e  vector which w 

il1 s t o r e  t h e  eigenvalues */ 
i n t  n r o t ;  /* m o t  is where the  number of jacobi  ro ta t ions  need 

ed i s  s t o r e d  */ 



f l o a t  phvelC31; /* phvel i s  t h e  vector  which v i l 1  s t o r e  t h e  ph 

ase v e l o c i t i e s  */ 
f l o a t  puavevel C6243 , swavevel[624], shuavevelC6243 ; /* phase 

v e l o c i t i e s  f o r  each po la r i za t ion  */ 
f l o a t  f i l e r e s  C6241 , f ilevelC6241 ; 

double tempaC31, tempb [3] , tempc [3] , tempv [3] ; /* temporary so 

r t i n g  v a r i a b l e s  */ 
double d e c l ,  dec2; /* temporary s o r t i n g  va r i ab les  */ 
char tempname C61 ; 

i n t  wavetype C624 1 ; 

double seedE9l ; /* vhat values you start the  inve r s ion  off  at */ 

double guess C291 [93 ; 

f l o a t  s t e p s i z e  ; 

i n t  numint; 

f l o a t  rands tepl imi t  ; 

i n t  r epea t0 ;  

i n t  changeC283 ; /* vhich e l a s t i c  constant i s  being changed */ 
f l o a t  epsilonC291; /* a measure of the  discrepancies  squared */ 
i n t  sma l l e s t  ; 

f l o a t  templ; /* a temporary va r i ab le  */ 
f l o a t  s l o p e ,  in t e rcep t ;  /* slope and in tercept  as c a l c u l a t e d  b 

y t h e  secant  method */ 

i n t  whichint CS011 ; /* which i t e r a t i o n  is  it */ 
i n t  whichsmallest[5011; /* which is  the  smallest e p s i l o n  f o r  t 

h i s  i t e r a t i o n  */ 
f l o a t  whichepsilonC501]; /* what is t h e  value of t h i s  smallest 



FILE *inputfile. *outputfile; 

/* the following reads in the data */ 

înputf il e=fopen("realdata- txt" , "rw) ; 

for (i=0 ; i<624; i++) ( 

fscanf(inputfile, "%s\t %f\t %f\t %f\t %f\t %f\t %f\t %f\nU, 

tempname , &planenom [O] Ci] , &planenom Cl] Cil , &planenom [2] [il . 
&nom [O] Ci ] ,&nom Cl] Ci] , &nom [2] Ci] , &f ilevel Cil ) ; 

/* fprintfcstderr, " % s \ t % f \ t % f \ t % f \ t % f \ t % f \ t % f \ t % f  

\nu, tempname , planenorm CO] ci 1 , planenom Cl1 Cil , planenorm C23 Cil 

,nom [O] Cil ,nom Cl1 Cil ,norm[2] [il ,f ilevel Cil 1 ; */ 
if (strcmp (tempname , "pwave") ==O) ( 

wavetype Ci] =l; /*  wavetype=l is a P-wave */ 
3 

else if (strcmp(tempname , "shwave")==O)i 

wavetype [i]=2; /* wavetype=2 is a sh-uave */ 

> 
e l s e  if (strcmp (tempname , "svwave") ==O) { 

wavetype Cil =3; /* vavetype=3 is a SV-vave */ 
3 

fclose(inputfi1e); 

/* this is uhere w e  initialize many of the variables */ 



II, 

rho=1395; /* s e t s  t h e  d e n s i t y  of the  material  */ 
p r i n t f  ("rho i s  %f \n" , rho) ; 

nd=3; /* s e t s  the  s i z e  of t h e  dimension */ 

stepsize=lE9;  /* assigns the i n i t i a l  s t eps ize  */ 
numint=O; /* i n i t i a l i t e s  t h e  number of i t e r a t i o n s  t h e  program 

has gone through */ 
randstepl imit=lE9;  /* ass igns  t h e  l i m i t  of t h e  random guess */ 

repeat0=0; /* i n i t i a l i z e s  t h e  number of consecutive repeated r 

e s u l t s  t h e  program has obtained */ 

/* t e l l s  t h e  program which of t h e  9 ( i - e .  O t o  8) e l a s t i c  cons 

t a n t s  t o  change */ 
change [O] =O ; 

change [Il =O ; 

change [2] =O ; 

change [3] = 1 ; 

change [4] = 1 ; 

change [5] =2 ; 

change [6] =2 ; 

change [7] =3 ; 

change [81=3 ; 

change Cg1 =4 ; 

change Cl01 =4; 



change Cl11 =5 ; 

changeCl21 =5; 

change[131=6; 

change Cl41 =6 ; 

change Cl53 =7; 

change Cl61 =7 ; 

change Cl77 =8 ; 

change Cl81 =8 ; 

change Cl91 =O ; 

change [20] = 1 ; 

change C2lJ =2 ; 

change C22]=3 ; 

change [23] =4 ; 

change C24J =5 ; 

change [251=6 ; 

change [26] =7 ; 

change [27] =8 ; 

/* the following calculates t h e  residual epsilon for the seed 

k a r t  value) as taken from Vestrum(l994) */ 
seed [O] =lie  5SSE9 ; 

seed C l ]  =7.220E9 ; 

seed (21 =6.609E9 ; 

seed [3]=15.777E9 ; 

seed C41=6.197E9 ; 



seed[5]=11.751E9; 

seed [61=3.127E9 ; 

seed [7] =3.484E9 ; 

seed C83 =3.804E9 ; 

/* initializes c2d (0->a) with the 9 seed values * /  

c2d COI [O] =seed [Of ; 

c2d [O] [Il =seed Cl1 ; 

c2d [O] [2] =seed [2] ; 

c2dCOI [3] =O; 

c2d [O] C41 =O ; 

c2d [O] [5] =O ; 

c2d [il [il =seed C31 ; 

c2d [il [2] =seed [4] ; 

c2d[1] [3]=O; 

c2d CI] C41 =O ; 

c2d [il [5] =O ; 

c2d t2l ES] =seed [53 ; 

c2d [SI [33 =O ; 

c2d [2] [4] =O ; 

c2d [2] [5]  =O ; 

c2d [3] [3] =seed 161 ; 

c2d [3] 141 =O ; 

c2d [3] [5] =O ; 

c2d [4] [4] =seed C71 ; 

c2d [4] [53 =O ; 

c2d [5] [SI =seed C81 ; 



/* sets c-ij -> c - j i  */ 
c2d Cl] [O] =c2d [O] Cl1 ; 

c2d [2] [O] =c2d [O] [21 ; 

c2d [21 [Il =c2d [Il C21 ; 

c2d C31 [O] =c2d COI C31 ; 

c2d C3 J [II =c2d E33 ; 

c2d C33 [LI =c2d [SI C31 ; 

c2d C41 [O] =c2d [O] C41 ; 

c2d [4] Cl] =c2d [Il [41 ; 

c2d [4] C21 =c2d [2] C41 ; 

c2d C41 [3] =c2d C31 C43 ; 

c2d [5] [O] =c2d [O] [5]  ; 

c2d [5] [l] =c2d Cl1 C51 ; 

c2d C51 C2 J =c2d C21 [51 ; 

c2d [5] [3] =c2d [3] C51 ; 

c2d [5] [4J =c2d C41 C51 ; 

/* the following converts the 2nd-order stiffness tensor to a 
4th-order stiffness tensor */ 
for (i=l; i<=3;  i++)( 

for (j=l; j<=3; j++)I 

for (k=l; k<=3; k++)( 

for (1=1; 1<=3; 1++)( 

if (i==j) 

m=j ; 

else 



> 
3 

/* end of converting the 2nd-order stiffness tensor to a 4th-O 
rder stiffness tensor */ 

/* ch is the matrix that vil1 contain the christofell symbols */ 

/*  initialize ch to a 3 by 3 matrix */ 
ch=dmatrixf(l,3,1,3); / *  dmatrixf 1s a float pointer */ 

/* initalize partmot to a 3 by 3 matrix */ 
partmot=dmatrixf (l,3 ,l, 3) ; 

/* start of first loop to initialize many of the values */ 
for (0=0;0<624;0++){ 

/* first must initialize ch */ 
for (i=l; i<=3; i++){ 



for (j=1; j<=3; j++){ 

chCi] [jl=O.O; 

> 
1 

/* calculates the christoffel symbols */ 

for (i=O; 1<=2; i++)( 

for (j=O; j<=2; j++)C 

for (k=O; k<=2; k++)C 

for (1=0; 1<=2; 1++)( 

ch[(i+l)] C(I+l)I=ch[(i+l)3 C(l+l)l+c4dCil Cj1 [k] [11*no 

rm [ j] [O] *nom Ck] Col ; 

> 
> 

3 

1 

/* Now we must figure out the eigenvalues and eigenvectors */ 
/* the inputs into jacobi are ch and nd */ 
/* ch are the christoffel symbols and nd contains length of 
a dimension */ 
/* rhophvelphvel, parmot, and m o t  are the outputs */ 

jacobikh, nd, rhophvelphvel, partmot, &mot); 

/* the following determines the phase velocity */ 
for (i=0 ; i<=2 ; i++) ( 



phvel [il =sqrt (rhophvelphvel Ci+ 11 /rho) ; 

> 

/ *  the following normalizes the particle motions */ 
for (i=l;i<=3;i++)( 

temp Ci-11 =sqrt (partmot Cl1 Ci] *partmot Cl1 Cil +partmot (21 [il *p 

&mot C23 Cil +partmot C31 Cil *partmot C31 Cil ) ; 

1 

for (i=l; i<=3; i++)( 

for ( j= l ;  j<=3; j++)( 

partmot Cil CjI =partmot Cil Cjl /temp Cj-11 ; 

> 
> 
/* end of normalization of particle motions */ 

/* the following sorts the polarizations */ 
if ((phvelCO1 > phvel Cl] && (phvel CO1 > phvelC21) ) {  

/* case for if P-wave is first entry */ 
t empv [O] =phvel [O] ; 

tempvCl]=phvel Cl] ; 

tempv (23 =phve1[2] ; 

for (i=O;i<=2;i++)( 

tempa [il =partmot Ci+l] Cl] ; 

tempb Ci] =partmot [i+l] [2] ; 

tempc [il =partmot [i+i] [3] ; 

1 

1 



e l s e  i f  (phvel C l ]  >phvel [SI C 

/* case  f o r  i f  P-wave 1s second en t ry  */ 

t empv [O] =phvel C l ]  ; 

tempv C l ]  =phvel [O] ; 

t empv [2] =phvel[2] ; 

f o r  ( i=O;i<=2;i++)(  

tempa C i ]  =partmot [i+13 t21 ; 

tempb [il =partmot [i+l] Cl1 ; 

tempc Cil =partmot Ci+ll C31 ; 

3 

3 

e1se.C 

/* case  f o r  i f  P-uave i s  third e n t r y  */ 
t empv [O] =phvel C21; 

tempv C i  J =phvel fi] ; 

t empv C2 J =phvel [O] ; 

f o r  (i=O;i<=2;i++){ 

tempa [il =partmot Ci+ll L31 ; 

tempb C i ]  =partmot [i+a [2] ; 

tempc Cil =partmot [i+l] [il ; 

1 

) /* end of i f - e l s e i f - e l s e  loop */ 

pwavevel [o]=tempv[O] ; /* s e t s  t h e  P-wave v e l o c i t y  */ 

/+ t a k e s  t h e  dot product betueen t h e  d i r e c t i o n  of propagatio 

n and t h e  p a r t i c l e  motion */ 



f o r  (i=O;i<=Z;i++)( 

temp C i ]  =planenom [il [O] *tempb [il ; 

1 
decl=f  abs (temp CO1 +temp C l ]  +temp C23 ) ; 

f o r  (i=0; i<=2; i++) ( 

temp Ci3 =planenom Cil Co3 *tempc C i ]  ; 

> 
dec2=f abs (temp CO] +temp C l ]  +temp [2] ) ; 

/*  determines which of the  2 remaining po la r i za t ions  a r e  SH-uave 

and SV-wave*/ 

i f  (decl  C d e c l ) (  

svwavevel Col =tempv C l ]  ; 

shwavevel [O] =tempv [2] ; 

> 
e l s e  C 

svwavevel Col =tempv C21; 

shwavevel [O] =tempv [13 ; 

) /*end of i f - e l s e  loop */ 
/* end of  s o r t i n g  out polar iza t ions  */ 

/* determines and ca lcula tes  t h e  r e s i d u a l  squared*/ 

i f  (wavetype Col ==l) € 

f i l e r e s  [O] =(pwavevel[o] -f i l e v e l  Co] 1 * (pwavevel [O] -f i l e v e l  [O 

1 ) ;  



> 
else if (wavetype Co] ==2) < 
f ileres Col =(shwavevel [O] -f ilevel [O] 1 * (shwavevel Co] -f ilevei 
Col > ; 

> 
else if (wavetype Co] ==3) { 

f ileres Co] =(svwavevel [O] -f ilevel [O] > * (svwavevel Co] -f ilevel 
Col > ; 

1 /* end of if-elseif-elseif loop */ 

epsilonCO] += fileresCo]; /* determines the total residual s 
quared for the initial guess */  

) /* end of loop for O to initialize many of variables*/ 

/* the following stores some data to be written out later */ 
whichint [O] =O ; 

whichsmallest [O] =O ; 

whichepsilon [O] =epsilon [O] ; 

/* stop criterion to be used*/ 
while ( (epsilon (O] >IO) && (numint G O O )  ) ( 

numint += 1; /* number of iterations plus 1 */ 



/* adjusts the step size */ 
if (stepsize > lE8)I 

if ((epsilon [O]  <5000000) 1 I (repeat0>3) ) C 

stepsize=lE8; 

> 
3 

/* adjusts the step size */ 

if (repeat0>5) ( 

if (epsilon [O] <3OOOOOO) { 

stepsize=lE7; 

1 

if (epsilon [O] <2000000) { 

stepsize=lEG; 

> 
if (epsilon [O] <i000000) ( 

stepsize=lE5; 

3 

1 

/* initialize your guesses with the seed */ 
for (i=O; i<29; i++)< 

for (j=O; j<9; j++X 

guess [il [j] =seed[j] ; 

3 



/* i n i t i a l i z e s  epsilon vhich holds the residual  squared*/ 

f o r  ( i = l ;  i<29; i++)( 

epsilon C i l  = O .  0 ; 

/* guess [O] [:] contains the  or iginal  guess */ 
/* guess Cl] [O] u i l l  be increased by stepsize and guess [Il C l -  

81 w i l l  remain unchanged */ 
/*  guess [2] [O] v i l 1  be decreased by stepsize and guess [21 C l -  

81 w i l l  remain unchanged */ 
/* guess [3] [1] v i l 1  be increased by stepsize and guess [3] [O, 

2-81 u i l l  remain unchanged */ 
/* guess [4] [l] w i l l  be decreased by stepsize and guess [43 CO, 

2-81 w i l l  remain unchanged */ 
/* . . .  e t c  . . .  */ 
/* guess[18] [81 v i l 1  be decreased by stepsize and guessC181 [ 

0-71 w i l l  remain unchanged */ 

/* change guesses Cl-181 [: 1 */ 
f o r  (i=O; i<9;  i++)( 

k=i*S+l ; 

1=i*2+2 ; 

guess Ck] [il +=stepsize; /* guess */ 
fp r in t f  ( s tder r  , "guess Rd] [%dl =%f \nu, k, i , guess [k] [il ) ; 



guess C l ]  Ci3 -=stepsize ; 

fprintf ( s tde r r  , "guess C%d] Rd] =%f \n" , 1 ,  i ,guess C l ]  [il ) ; 

> 

/* i n i t i a l i z e  the  random guesses */ 
/* guess Cl93 [O3 v i l l  be increased o r  decreased by a random s 

tep and guess Cl91 Cl-81 vi l1  remain unchanged */ 

/* guess[20] C l ]  vill be increased or decreased by a random s 

tep and guessf2OlC0,2-8] v i l l  remain unchanged */ 
/* . . .  e t c  . . -  */ 
/* guessC271 [8]  vil1 be increased or decreased by a random s 

tep and guess C Z ' ]  [O-71 vi l1  remain unchanged */ 

f o r  (i=O; i<9 ;  i++)( 

tempi=((randO /32?'67.O)-O.5; 

guess [19+i] [il += randsteplimit*templ ; 

f printf  ( s tde r r  , "random guess [%dl [%dl is %f \n" , l9+i ,  i , guess 

Cl9+i] [il ; 

> 

/* calculates the  epsilons f o r  guess Cl-271 C :] */ 

f o r  (p=l; ~ ~ 2 8 ;  p++)C 

/*  the following in i t i a l i zes  c2d v i t h  the  guesses */ 

c2d COI [O] =guess [pl CO1 ; 

c2d COI C l ]  =guess [pl C l ]  ; 



c2d CO1 C21 =guess Cpl C21 ; 

c2d CO1 C31 =O ; 

c2d [O] C41 =O ; 

c2d CO3 C51 =O ; 

c2d 111 Cl1 =guess [pl C31; 

c2d Cl1 C21 =guess [pl C41 ; 

c2d Cl1 t31 =O ; 

c2d Cl] C41 =O ; 

c2d Cl] C51 =O ; 

c2d C21 C21 =guess [pl C51 ; 

c2d [2] [3] =O ; 

c2d [2] [4] =O ; 

c2d [2] [5] =O ; 

c2d C31 C33 =guess Cpl C61 ; 

c2d [3] [4] =O ; 

c2d [3] [5] =O ; 

c2d C41 C41 =guess [pl C71 ; 

c2d [4] [5] =O ; 

c2d C51 C51 =guess [pl C81 ; 

/* t h e  following sets c-ij->c-ji */ 
c2d cl] CO1 =c2d [O] [II ; 

c2d C21 COI =c2d COI C21 ; 

c2d C21 Cl] =c2d Cl1 121 ; 

c2d C31 COI =c2d CO1 C31 ; 

c2d C31 Cl] =c2d Cl1 C31 ; 

c2d C31 C21 =c2d C21 C31 ; 





f o r  (0=0 ; oc624 ; O++) ( 

/* f i r s t  must initialize ch */ 
f o r  ( i = l ;  iC=3; i++)( 

f o r  ( j -1;  j<=3; j++)< 

c h r i ]  Cjl=O.0; 

1 

> 

/* c a l c u l a t e s  the c h r i s t o f f e l  symbols */ 
f o r  (i=O; i<=2; i++){ 

f o r  (j=O; j<=2; j++){ 

f o r  (k=O; k<=2; k++)C 

f o r  (1=0; 1<=2; 1++)( 

chE(i+1)1 C(l+l) 1 = c h [ ( i + l ) l  C(1+1) 1 +c4dCil Cjl Ckl C l  

1 *nom [j] Co 1 *nom Ckl Col ; 

1 

3 

3 

3 

/* Nou we must figure ou t  the eigenvalues  and eigenvecto 

rs */ 



/* the inputs into jacobi are ch and nd */ 
/* ch are the christoffel symbols and nd contains length 

of a dimension */ 
/* rhophvelphvel, parmot, and m o t  are the outputs */ 

jacobi(ch, nd, rhophvelphvel, partmot, mot); 

/* the following determines the phase velocity */ 
for (i=O;i<=S;i++){ 

phvel [il =sqrt (rhophvelphvel [i+ll /rho) ; 

3 

/* the following normalizes the particle motions */ 
for (i=l;i<=3;i++)( 

temp Ci-11 =sqrt (partmot Cl] Ci] *partmot Cl] Ci] +partmot [2] [ 

il *partmot C21 Cil +partmot [3] Cil *partmot C31 Ci] ; 

3 

for (i=i ; i<=3 ; i++) { 

for (j=i; j<=3; j++){ 

partmot Cil Cjl =partmot Ci] [j] /tempCj-11 ; 

3 

3 

/* end of normalization of particle motions */ 

/* the following sorts the polarizations */ 

if ((phvel [ O ]  > phvel Cil 1 &% (phvel [O] > phve1[2] 1) { 

/* case for if P-wave is first entry */ 



tempv CO1 =phvel CO1 ; 

tempv Cl] =phvel Cl] ; 

t empv C23 =phve 1 C2 J ; 

for (i=O;i<=2;i++)( 

tempa Ci] =partmot Ci+ll Cl] ; 

tempb Cil =partmot Ci+ll [2] ; 

tempc Cil =partmot Ci+ 11 131 ; 

> 
1 

else if (phvel fl] >phvelC21) { 

/* case for if P-wave is second entry */ 
tempv [O] =phvel [il ; 

tempv Cl1 =phvel [O] ; 

tempv [SI =phvel C21 ; 

for (i=O;i<=2;i++){ 

tempa Ci] =partmot [i+1] C21 ; 

tempb Ci] =partmot [i+i] Cl] ; 

tempc Cil =partmot [i+ll C31 ; 

> 
3 

else{ 

/* case for if P-wave is third entry */ 
t empv CO1 =phvel C21 ; 

tempv Cl1 =phvel Cl1 ; 

t empv C21 =phvel [O] ; 

for (i=O;i<=S;i++){ 

tempaCil =partmot Ci+ll C31 ; 



tempb [il =partmot [i+l] [2] ; 

tempc fi] =partmot C i +  11 Cl1 ; 

1 

) /* end of i f - e l se i f -e l se  loop */ 

pwavevel~o~=tempv[0] ; /* s e t s  t h e  P-wave veloci ty */ 

/* takes t h e  dot  product between t h e  d i rec t ion  of propag 

a t i o n  and t h e  par t ic le  motion */ 

f o r  ( i=0  ; i<=2 ; i++) ( 

temp [il =planenorm[i] [O] *tempb [il ; 

1 

decl=f abs  (temp CO1 +temp[l] +temp t23 ) ; 

f o r  ( i=0  ; i<=2 ; i++) ( 

temp [il =planenorm[i] [O] *tempc Cil ; 

1 

decS=f abs (temp [O] +temp[l] +t emp [2] ) ; 

/* determines which of t he  2 remaining polar iza t ions  are 

SH-wave and SV-uave*/ 

i f  (decl < dec2)C 

svwavevel Col =tempv C l ]  ; 

shwavevel Co] =tempv [2] ; 

3 

else (: 



s w a v e v e l  [O] =tempv [2] ; 

shwavevel [O] =tempv C l ]  ; 

1 /*end of i f - e l s e  loop */ 
/* end of s o r t i n g  out  po la r i za t ions  */ 

/* determines and c a l c u l a t e s  t h e  r e s i d u a l  squared*/ 

i f  (vavetype fo l  ==Il C 

f i l e r e s  Co] = (pwavevel Col -f i l e v e l  Col 1 * (pwavevel Col -f i l e v  

e l  Col > ; 
1 

e l s e  i f  (vavetype Col ==2) { 

f  i l e r e s  Co] = (shwavevel col -f i l e v e l  Co] > * (shwavevel Co] - f i l  

e v e l  Co] ) ; 

3 

else i f  (uavetype Col ==3) { 

f i l e r e s  Co] = (svwavevel Co] -f i l e v e l  [O] > * (svwavevel Co] -fil 

e v e l  [O] ) ; 

/*  end of i f - e l s e i f - e l s e i f  loop */ 

eps i lon  [pl += f  i l e r e s  Col ; /* d e t e m i n e s  the t o t a l  res idu  

a l  squared f o r  t h e  i n i t i a l  guess */ 

1 

/*  end of loop f o r  O */ 

f p r i n t f  ( s t d e r r  , "eps i lon  [%dl i s  %f \n" , p,  eps i lon [p l )  ; 



/* end of loop for p 

/* now to choose the 
smallest=O ; 

for (i=l;i<28;i++)( 

which checks over guess Cl-271 C: 1 */ 

smallest epsilon */ 

if (epsilon Cil <epsilon [smallestl)( 

smallest=i ; 

1 

/* the following determines a guess using the secant method 
based on the srnallest epsilon and then calculates an epsilon 

*/ 
if (srnallest !=  O)( 

slope= (epsilon [smallest] -epsilonCo]) / (guess [srnallestl [chan 

ge Csmallestl 1 -guess CO] [change [smallest] ] ) ; 

fprintf(stderr,"slope is %f\nU, slope); 

intercept=eps ilon [smallest] -slope*guess [smallest ] [change Cs 

mallestll ; 

fprintf(stderr,"intercept is %f\nU,intercept); 

guess [28] [change [smallestl] = (-intercept/slope) ; 

fprintf (stderr . "guess C281 r4dl is %f \n" ,change [smallest] ,gu 
ess C281 [change tsmallest] 1 ) ; 

c2d [O] [O] =guess [28] [O] ; 

c2d [O] C l ]  =guess C281 El] ; 



c2d [il [O] =c2d [O] [il ; 

c2d C21 CO] =c2d [O] [2j ; 

c2d [21 111 =c2d C l ]  C21 ; 

c2d [3] [O] =c2d CO] [3] ; 

c2d [3] C i ]  =c2d C l ]  [3] ; 

c2dC31 C21 =c2d[2] [3] ; 

c2d C43 COI =c2d COI [4] ; 



/* the following converts the 2nd-order stiffness tensor t 
O a 4th-order stiffness tensor */ 
for ( i=l;  i<=3; i++)( 

for (j=l; j<=3; j++){ 

for (k=l ;  k<=3; k++)( 

for (1=1; 1<=3; 1++)( 

if (i==j) 

m = j  ; 

else 

m=9-(i+j) ; 



for (0=0 ; oc624 ; O++) ( 

/* first must initialize ch */ 
for (i=l; i<=3; i++){ 

for (j=l; j<=3; j++){ 

chCi1 Cj]=0.0; 

3 

/* calculates the christoffel symbols +/ 

for (i=O; i<=2; i++)( 

for ( j = O ;  j<=2; j++){ 

for (k=O; k<=2; k++)( 

for (1=0; 1<=2; 1++){ 

chC(i+I)l C(l+l)l=chC(i+l)] C(1+1)1+c4dCil Cj] (k] Cl 

1 *nom [ j [O] *nom [k] [O] ; 

1 

> 

/* Now we must figure out the eigenvalues and eigenvecto 

rs */ 



/* the inputs into jacobi are ch and nd */ 
/* ch are the christoffel symbols and nd contains length 
of a dimension */ 
/* rhophvelphvel. parmot, and nrot are the outputs */ 

jacobi (ch, nd, rhophvelphvel, partmot, h o t )  ; 

/* the folloving determines the phase velocity */ 
for (i=O;i<=2;i++)( 

phvel [il =sqrt (rhophvelphvel [î+l] /rho) ; 

> 

/* the following normalizes the particle motions */ 
for (i=l; i<=3 ; i++) ( 

temp Ci-11 =sqrt (partmot Cl1 Cil *partmot CI] Ci] +partmot C21 [ 

il *partmot C2l Ci3 +partmot C31 Cil *partmot [3] Ci] ) ; 

> 
for (i=l;i<=3;i++){ 

for (j=i; jC=3; j++){ 

partmot Cil Cjl=partmot Cil Cjl /tempCj-11; 

1 

3 

/* end of normalization of particle motions */ 

/* the following sorts the polarizations */ 
if ((phvel CO] > phvelC13 && (phvelCO] > phvel C21)) ( 

/* case for if P-uave is first entry */ 



t empv [O] =phvel CO] ; 

tempvCl] =phvel C l ]  ; 

t empv [2]  =phvel[2] ; 

f o r  ( i = O  ; iC=2 ; i++) { 

tempaci] =partmot [i+l ] C l ]  ; 

tempb fil =partmot [i+l] [21; 

tempc C i l  =partmot [i+l] [3] ; 

1 

1 

e l s e  i f  (phvel C l ]  >phvel[2] ) ( 

/* case f o r  if P-uave is second e n t r y  */ 
tempv CO1 =phvel C l ]  ; 

tempv C l ]  =phvel [O] ; 

t empv [2] =phvel C21 ; 

f o r  (i=O;i<=2;i++)( 

tempaci] =partmot [i+1] 123 ; 

tempb [il =partmot [i+l] C l ]  ; 

tempc C i ]  =partmot [i+l J [3] ; 

1 

1 

else( 

/* case for i f  P-uave is  third entry */ 

t empv [O ] =phvel[2] ; 

tempv Cl1 =phvel Cl1 ; 

t empv [2] =phve 1 CO] ; 

f o r  (i=O;i<=2;i++)( 

tempa [il =partmot [i+l] [3] ; 



tempb C i ]  =partmot [i+1] C21 ; 

tempc Cil =partmot Ci+ll C l ]  ; 

3 

) /* end o f  i f - e l s e i f - e l s e  loop */ 

puavevel Col =tempv CO] ; /* sets t h e  P-wave v e l o c i t y  */ 

/* t a k e s  t h e  dot product between the  d i r e c t i o n  of propag 

a t i o n  and t h e  particle motion */ 

f o r  ( i=O;i<=2; i++)(  

temp C i ]  =planenom [il Co] *tempb L i ]  ; 

> 
dec l=f  abs (temp [O] +temp C l ]  +temp [2] ) ; 

for (i=O ; i<=2 ; i++)  { 

temp Cil =planenom C i ]  [O] *tempc C i  1 ; 

1 
dec2=f abs (temp [O] +tempCl J +temp [2] ) ; 

/* determines  which o f  t h e  2 remaining polarizations are 

SH-uave and SV-uave*/ 

i f  ( d e c l  C dec2)( 

s w a v e v e l  Co] =t empv C l ]  ; 

shuavevel  [O] =tempv [2] ; 

> 
e l s e  ( 



svuavevel Col =tempv [2] ; 

shuavevel Co] =tempv Cl] ; 

3 /*end of if-else loop */ 
/* end of sorting out polarizations */ 

/* determines and calculates the residual squared*/ 
if (uavetype[ol==l)( 

f ileres Col =(puavevel Co] -f ilevel [O] > * (pwavevel [O] -f ilev 

el LOI) ; 
> 
else if havetype Col ==2) { 

f ileres [O] =(shwavevel Co] -f ilevel [O] 1 * (shuavevel [O] -fil 

evei Col > ; 
3 

else if (uavetype [O] ==3) ( 

f ileres Col = (svwavevel [O 1 -f ilevel Col 1 * (svwavevel [O] -fil 
evel Col > ; 

) /* end of if-elseif-elseif loop */ 

epsilon CS81 += f ileres Co] ; 

1 

/* end of loop for O */ 

fprintf (stderr , "epsilon 1281 is %f \nl', epsilon[28] ) ; 

if (epsilon C28l <epsilon Csmallest] > { 



f pr in t f  ( s tderr  , "eps i lon  [28] is  %f \n" , eps i lon  [28] ) ; 

3 

else  ( 

eps i lon  C281 =epsif on CO] ; 

1 

/* end of eps i lon determined by secant method */ 

/* the  fol lowing counts hou many times the seed HAS NOT cha 

nged */ 
i f  (smallest==O) ( 

repeatO += 1; 

1 

e lse  ( 

repeat0=0 ; 

1 

/* the  fo l lowing i n i t i a l i z e s  the  new seed */ 

for (i=O; i < 9 ;  i++)( 

seed C i 7  =guess ~ s m a l l e s t l  Cil ; 

f p r i n t f  ( s tderr  , "seed [%dl =%f \nu, i ,  seed [il ) ; 

> 



epsilon [O] =epsilon [smallest] ; 

/* the folloving stores some data to be uritten out later */ 
whichint [numint] =numint ; 

uhichsmallest [numint] =smallest ; 

whichepsilon [numint] =epsilon [O] ; 

3 

/*  end of uhile loop */ 

/* nov to vrite out whichint, uhichsmallest, and whichepsilon */ 
outputf ile=f open("apr28invold. epsilon", "wtt) ; 

for (i=O; iC501; i++){ 

fprintf(outputfile,"%d\t %d\t %f\n",whichintCi] ,whichsmalles 

t Ci] , uhichepsilon [il ) ; 

> 
f close (outputf ile) ; 

/* now to mite out the seeds */ 
outputf ile=f open ("apr28invold. seed","wtt ) ; 

for (i=O; i<9; i++)( 

fprintf (outputf ile , "seed [%dl =%f \nu, i , seed [il ) ; 

1 

f close (outputf ile) ; 



Subsidiary Cornputer Programs 

/* jacobi . c (Modif ied from Numerical Recipes) */ 
#include <math.h> 

#indude <s td io  . h> 

#include "nruti1.h" 

#def ine ROTATE(a, i, j ,k, 1) g=aCil [ j3  ; h=aCk3 Cl1 ; a[il CjJ=g-s* (h+g 

*tau) ; a[k] Cl] =h+s* (g-h*tau) ; 

void jacobi(f1oat **a, int n, float d[] , float *+v, int *mot) 

C 

int j ,iq,ip,i; 

float tresh, theta, tau, t, Sm, s, h, g, c ,  *b, *z; 

b=vector(l,n) ; 

z=vector(l,n); 

for (ip=l;ip<=n;ip++){ 

for (iq=l;iq<=n;iq++)( 

v [ ip]  [iql =O. O ; 

3 

v [ip] [ipl =l . O ; 

> 
for (ip=l ; ip<=n; ip++) { 

b [ip] =d [ip] =a [ip] [ip] ; 

z[ip]=O .O; 

*nrot=O ; 

for (i=L;i<=SO;i++)( 

sm=O . O ; 
for ( i p = l ;  ip<=n-1; ip++) C 



f o r  ( iq=ip+l  ; iqC=n; iq++) 

s m  += f abs (a [ip] [iq] ) ; 

i f  (srn==O.O)( 

f ree-vector ( z , l ,  n) ; 

f ree -vec tor (b , i ,n )  ; 

re tu rn ;  

1 

i f  ( i<4) 

tresh=O .2*sm/ (n*n) ; 

else 

tresh=O . O  ; 

f o r  ( ip=l ; ip<=n-i ; ip++)(  

f o r  ( iq=ip+l  ; iqC=n; iq++) ( 

g=lOO . O*f abs (a[ipl Ciq] ) ; 

i f  ( i>4  && (f l oa t )  (f abs (d [ip] ) +g) == (f l o a t )  f  abs (d [ip] ) 

&& (f l o a t )  (f abs (d [ iql)  +g) == (f loat) f  abs (d Ciq] ) ) 

a [ip] [iql =O. 0 ; 

e l s e  i f  (f abs (alip'l [iq] ) > t r e s h )  .(: 

h=d [ iq l  -d [ip] ; 

i f  ( (f l o a t  (f abs (hl +g) == (f l o a t  f abs (hl ) 

t=(aCip3 Ciql /h ;  

e l s e  ( 

theta=O .5*h/ (aCip1 [iq] ) ; 

t=l . O/ (f abs ( theta)+sqrt  (1 .O+theta*theta) ) ; 

i f  ( t h e t a  < 0.0) t = - t ;  

> 
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d Cipl =b Cipl ; 

zCipl=O.O; 

> 
1 

nrerror("Too many iterations in rountine jacobi"); 

/* nruti1.c */ 
ginclude Cstdio . h> 

#include <stddef.h> 

#inchde <stdlib.h> 

#define FREE-ARC char * 
#define NR-END O 

/* a modification of the nrutils .c as found in Numerical Recipes 

*/ 
void nrerror (char error-text CI ) 

/* Numerical Recipes standard error handler */ 

fprintf(stderr,"Numerical Resipes ru-time error . . .  \nu); 

fprintf (stderr, "%s\n", error-text) ; 

fprintf(stderr," . . . m u  exiting to system ... \nu); 

exit (1) ; 

> 
f loat *vector(long nl, long nh) 

/ *  allocate a float vector with subscript range v h l .  . .nhl */ 

float *v; 

v= (f loat *)malloc ( (size-t) ( ( n h - n l + l - ~ ~ - ~ ~ ~ )  *sizeof (f loat)) ) ; 



i f  (!VI n re r ro r ( "a1 loca t ion  f a i l u r e  i n  v e c t o r O U ) ;  

r e t u r n  V-nl+NR,END; 

> 
double **dmatrix(long n r l ,  long nrh, long n c l ,  long nch) 

/* a l l o c a t e  a double matr ix  v i t h  s u b s c r i p t  range m [ n r l . .  .=hl [nc 

1. . . nch] */ 

long i, nrow=nrh-nrl+l, ncol=nch-ncl+l; 

double **m; 

/* a l l o c a t e  p o i n t e r s  t o  rows */ 
m= (double **1 malloc ( ( s i ze - t )  ((nrow+NR,END) *sizeof (double*) ) ) ; 

i f  ( !m) nre r ro r ( "a l1oca t ion  f a i l u r e  1 i n  m a t r i x 0  ") ; 

m+=NR,END; 

m - = m l  ; 

/* a l l o c a t e  rows and s e t  po in t e r s  t o  them */ 
m [nrl]  =(double *) malloc ( ( s ize- t )  ( (nrow*ncol+~R,EN~) *s izeof  (do 

uble) )  l ; 

if ( ! m [ n r l ]  > n r e r r ~ r ( ~ ~ a i l o c a t i o n  f a i l u r e  2 i n  m a t r i x 0  "1 ; 

m [nrl]  +=NR,END ; 

m [ml] -=ml ; 

for ( i = n r l + l  ; i<=nrh; i++) m [ i ]  =m[i -11 + m o l ;  

/* r e t u r n  p o i n t e r  t o  a r r a y  of p o i n t e r s  t o  rows */ 
r e t u r n  rn; 

> 
f l o a t  **drnatrixf(long ml ,  long nrh, long 

/* a l l o c a t e  a f l o a t  mat r ix  v i t h  s u b s c r i p t  

. . .nch] */ 

n c l ,  long nch) 

range m C n r 1 . .  .=hl b c 1  



< 
long i, nrow=nrh-nrl+l, ncol=nch-ncl+l; 

float **m; 

/* allocate pointers to rows */ 
m= (f loat **) malloc ( (size-t) ( (nrow+NR-END) *sizeof (f loat*) 1 ) ; 

if (!ml nrerror("al1ocation failure 1 in matrix0"); 

m+=NR,END; 

/* allocate rows and set pointers to them */ 
mCnrl1 =(float *) malloc ( (size-t) ( (nrow*ncol+NR-END) *sizeof (f 10 

at))); 

if ( !mCnrll) nrerror("al1ocation failure 2 in matrix0 "1 ; 

rn Cnrll +=NR,END ; 

m brll -=ncl ; 

for (i=nrl+l; iC=nrh; i++) m [ i ]  -Ci-11 +mol; 

/* return pointer to array of pointers to rous */ 
return m; 

1 

void free,vector(float *v, long nl, long nh) 

/ *  free a float vector allocated with vectoro */ 
< 
free((FREE,ARG) (v+nl-NR-END)); 

> 
void free-dmatrixf(f1oat **m, long ml, long nrh, long ncl, 

long nch) 

/* free a float matrix allocated by dmatrixf 0 */ 
< 



/* n r u t i l - h  (Modified 

#if ndef ,NR,UTILS,H- 

#def ine ,NR,UTILS-H- 

from Numerical Recipes) */ 

f l o a t  *vectorClong n l ,  l o n g  nh); 

doub le  **dmatrix(long ml ,  l o n g  nrh, l ong  n c l ,  long n c h ) ;  

f loat **dmatrixf ( long m l ,  l o n g  n rh .  l ong  n c l ,  long nch) ; 

v o i d  f r ee -vec to r ( f1oa t  *v, l o n g  n l ,  l ong  nh); 

v o i d  n r e r r o r  (char  e r r o r - t e x t  Cl ) ; 

v o i d  f ree -dmat r ix f ( f1oa t  **m. l ong  m l ,  long  n r h ,  long n c l ,  

long nch) ; 

#endi f  /* ,NR,UTILS-H- */ 

C .  2.2 Testing of inversion program 

-1 number of s-nthetic results in whicli the phase velocities were first forn-arc1 

inodt.lec1 on hypothetical isotropie and orthorhornbic materials were gathered. 

The inversion \vas then performed on these synt hetic. noise-free results. The 

clastic coefficients for both materials were determined to bctter than 0.01 CTc as 

shon-n in Tables C.1 anci C.2. In the real world. effects such as random electrical 

noise and transducer misplacement are present. This noise was modeled by the 

addition of the random noise to the synthetic data. The results of the inversion 

of this synthetic data are shown in Table C.l and Tables C.3 to C .E .  

For Table C.1. the elastic constants X and p are Lamé's constants where the 

conipressional and transverse wave velocit ies are defined by Equations C. l  and 

C.5 respectively. 



lnstead of Lamé's constants. the cornpressional and transverse n-ave velocities 

may also be espressed in terms of the bulk rnodulus k and Poisson's ratio a in 

Ecpat ions C.6 and C.7 respect it-eIy. 

In an orthorhombic medium. the material can be described by 9 independent 

constants representecl bu letters a to i which are arranged as follow in the 2- 

dimensional st ress-st rain t ensor: 

c*, = 

- a  b c O O 0 '  
b d e O O O  
c e f O O O  
o o o g o o  
0 0 0 0 h 0  

- 0  0 O O O i d  

For the orthorhombic medium. noise \vas added to the phase velocities and 

the corresponding elastic constants are calculated and summarized in Tables C.3 

to C.12. From analpis of Table C.1 and Tables C.3 to  C.12. it was found that 

for the noise-free case the elastic constants can be determined with an accuracy 

of better thari 0.01 W and that for random errors in velocity of u p  to 10 % the 

plastic constants can be determined with average errors of less than 3 %. 



This inversion rnethod was thcn performed on data acquired on a n  isotropic 

glass block. There were 131 phase velocities calculated for the glass block which 

n-hen inverted and the corresponding statistical analysis yielded the following 

results for the elastic constants: X = 19.225 & 0.961 Gpa and p = 32-780 I 

0.221 GPa. These elastic constants can be similarly espressesed in terms of bulk 

niodulus k and Poisson's ratio o as 41.1 IIZ 1. I GPa and 0.184 & 0.013 respectively. 

These results compare fairly n-el1 with the constants of X = 22.643 & 3.584 

GPa and p = 30.761 * 1.648 GPa as calculated from direct piilse transmission 

n-iea~urements. For an  isotropic medium such as glass. the elastic constants can 

be calculated with an error of less than 5 %. The inversion converged quickly in 

the first 20 iterations and then convergecl rniiçh more slon-ly before stabilizing a t  

170 itcrations (Figure C.l) .  

Tlie sarne inversion methotf u-as performed on data acquired on an  orthorhom- 

bic phenolic block. There were 62-4 phase 1-eiocities calcuiated for the phenolic 

Mock which 11-hen inverted and the corresponding st at ist ical analysis yielded the 

elastic constants as seen in Table 2.1. For an  orthorhombic medium such as phe- 

nolic. the elastic constants can be calciilated within an error of 2 % based upon 

cornparison with an  ideal case wliere errors are actded. The inversion converged 

qiiite qiiickl~. in the first 20 iterations and then convergcd much more slowly 

M o r e  stabilizing a t  450 iterations (Figure C.2)- 
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Table C.1: Inverted elcastic constants for a n  isotropic material as noise is added. 

Soise 
Added 

1 0 %  

Elastic 
Constant 

Table C.2: Inverted elastic constants for an orthorhombic material with O G/c 
noise added. 

A (GPa) 

19.22412 

Inverteci lalue 
( G P 4  

p (GPa) 

32.17794 

dA (GPa) 

0.00004 

bp (GPa) 

0.00004 

1.5.9796 0.0001 1 0.0006 
7.16869 0.00001 0.000 1 
7.19554 0.00006 , 0.0008 

Differencc from 
Theoret ical 
\-due (Gpa) 

Difference from 
Theorect ical 
\alue ((3) 



/ Elastic /I Inverted Value 1 DifTerence from 1 Difference from 1 
1 Constant II (GPa) ( Theoretical / Theorectical 1 

Table C.3: Inl-erted elastic constants for ari orthorhombic material with 1 % 
noise added. 

il 

Elast ic Inverted lalue 
Theoret ical Theorect ical 

0.099 O -6 
o. 044 0.6 

16.031 

Table C.4: Inverted elastic constants for an orthorhombic material with 2 '% 
noise addcd. 

\alue (Gpa) 
0.051 

X'alue (%) 
0.3 



Table C.5: Inverted elastic constants for an orthorhombic rnaterial with 3 I;C 
noise added. 

Elast ic 
Constant 

a 

Difference froni 1 

Inverted Value 
(GPa) 

Elastic 
Constant 

, a 

Table C.6: Inverted elastic constants for an orthorhombic material with 4 
noise added. 

Difference from 
Theoret icd 
Ialue (Gpa) 

Inverted Ialue 
(GPa) 

16.183 

Dif'Ference from 
Theorec t ical 
Value (%) 

16.128 1 0.148 

Difference frorn 
Theoret ical 
Value (Gpa) 

0.203 

0.9 



Tablc C.7: Inverted elastic constants for a n  orthorhombic material with 5 % 
noisc added. 

Elast ic 
Constant 

a 
b 

1 c 

Difference from 
Theorect ical 
Value (%) 
1.6 
1.6 

Inverted Value 
(G Pa) 

16.240 
7.288 

Difference from 
Theoret ical 
Calue (Gpa) 
0.260 
O. 120 

7.413 0.217 1 2.9 



Table C.8: Inverted elastic constants for an orthorhombic n~atcrial with 6 % 
noise added. 

Elastic 
Constant 

I a 

Table C.9: Inverted elastic constants for an orthorhombic material with 7 % 
noise added. 

Inverted \'aliie 

(GPa) 

16.284 

Difference from 
Theoret ical 
iralue (Gpa) 
0.301 

Difference from 
Theorect ical 
Value (%) 
1.9 

EIast ic 
Constant 

a 

Diffcrence from 
Theoret ical 
W u e  (Gpa) 

Inverted Value 
(GPa) 

16.337 

Difference from 
Theorect ical 
Value (%) 

b 
c 

/ d  
e 
f 

g 
11 
I 

0.358 3 i )  

2.3 
4.0 

7.333 
1.492 

O. 166 
O. 296 

15.623 
1.068 
11.421 
3.439 
2.946 
3.840 

0.025 1 0.2 
0.24G 
O. 158 
0.037 
0.054 
0.015 

3.5 
1.4 
1.1 
1.8 
0.4 



Table C.lO: Inverted elastic constarits for an orthorhombic material with 8 %, 

Elastic 
Constant 

1 

a 
b 
c 
d 
e 
f 

noise added. 

Difference froni 
Theoretical 
Value (Gpa) 

0.463 

1 Inverted Value 
I (GPa) 

16.383 
7.359 

Difference from ] 
Thcarect ical 

Difference from 
Theoretical 
Yalue (Gpa) 
0.403 
0.190 

Table C.11: Inverted elastic constants for an orthorhombic material with 9 % 
noise addcd. 

Difference from 
Theorect ical 
Yalue (%) 
2.5 
2.6 
4.3 7.532 0.337 

15.630 
7.034 

0.032 1 0.2 ! 

0.281 
11 -393 1 0.186 

4.0 
1 .G 



EIastic Inverted 1.-d ile 

Theoret ical Theorect ical 
\ l u e  (Gpa) Value ('%) 

Table C.12: Inverted elastic constants for a n  orthorhombic material with 10 % 
rioisc added. 
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Figure C.1: Inversion residuals on da ta  acquired on a glass block. 



- 

- 

- 

O, 1 l I t 

O 1 O0 200 300 400 

J 
500 

l teration 

Figure (2.2: Inversion residuals on data acquired on a phenolic block. 




