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ABSTRACT
Buckling and postbuckling analysis of composite laminated structures having
delaminations were studied numerically. The analyses were performed using the
differential quadrature method of Bellman et al (1972). Several one- and two-dimensional
models were developed and showed to be capable of predicting the buckling and

postbuckling responses of composite beams and plates.

Prediction of the buckling strength of the delaminated composite beams and the
examination of the influencing factors were carried out by employing several models.
The effects of the shear deformation and the bending-stretching coupling were added by
incorporating a shear deformation beam theory. Different models containing multiple
through-the-width delaminations, as well as single delamination were studied
parametrically. The accuracy and efficiency of the proposed method were evaluated
through several case studies. In addition to the effect of shear deformation, bending-
stretching coupling, the influence of material properties, lamination sequence and fiber-
orientation, through-the-thickness and through-the-length locations of delaminations on

buckling and postbuckling responses were investigated.

Using the differential quadrature method, the buckling response of composite
laminated plates having a thin elliptical delamination was also studied by employing two-
dimensional models. Employing the serendipity shape functions, the elliptical
delaminated region was transformed into a rectangular computational domain with
clamped boundaries. Subsequently, the differential equilibrium equations of the
sublaminate were solved based on classical plate theory. In order to reduce the
computational efforts, and at the same time, to include the effect of the bending stretching
coupling, the reduced bending stiffness of the plates was employed. Through
investigating several parameters, such as the shape and size of the delamination, fiber

orientation, and the bending stretching effect, the integrity of the current methodology

Xvil



was compared with other numerical methods, and found to be computationally less

complex, and numerically more accurate.

For the postbuckling analysis, the differential quadrature method combined with an
arc-length strategy was used to model the postbuckling analysis of composite beams
having single or multiple delaminations. The nonlinear Von Karman strain-displacements
and the exact curvatures were used to formulate the problem. Moreover, geometric
imperfections in the form of initial deflections were included in the analysis. Several case
studies were presented and the effects of parameters such as the number of delaminations,

the imperfection amplitudes and the delamination length were investigated.

Throughout the course of the research, the differential quadrature results were
compared with those of published analytical and numerical investigations or with those
obtained by analyzing problems with the use of the commercial finite element packages.
The results show that the differential quadrature technique can be used as a powerful,
reliable, accurate and efficient numerical tool in assessing the buckling and postbuckling
responses of delaminated composite structures. Throughout the thesis, we will
demonstrate several advantages of the method in comparison to the other popular
numerical methods such as the finite difference, finite element and boundary element
methods. Beside the excellent quality of results that can be obtained through DQM, the
method is relatively simple to formulate, and it requires less effort to implement.
Furthermore, the method consumes relatively less effort, both in terms of computational
time and also in the user effort in setting up a problem. The only disadvantage at this
time is its lack of robustness in treating complicated geometries. This point is however
treatable, as one could take advantage of several mesh generation schemes that are
commonly used in alleviating similar anomaly encountered in the finite difference

method.
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CHAPTER 1

INTRODUCTION

1.1. Introductory remarks

Laminated composite materials, especially in the form of fiber reinforced plastics,
are being utilized increasingly in the design of various structural applications. This is
mostly due to the fact that these materials enjoy a strength-to-weight ratio advantage over
the ordinary engineering materials. In spite of their definite advantages, they suffer from
a major problem, namely their weak strength in the through-the-thickness direction of

laminate because of low cohesive strength between the layers.

The defect could be even worse if the composite contains delamination.
Delamination in composites may develop during manufacturing because of the
imperfections and/or faulty procedures, or during service, by impact of an external object.
This can significantly reduce the compressive strength and stiffness of the laminate and
thereby, lowering the buckling load of the laminate when subjected to a compressive

load, causing growth of such delamination regions.

Furthermore, the delamination buckling may occur in different types of modal
shapes. As shown in Figure 1.1, at the critical load level, a compressed beam having a
single delamination may respond in three possible modes of instability. Delamination
length and its position through-the-thickness are the two important parameters controlling
the shape of these modes. If the entire beam buckles before any other mode of deflection
could take place, the response is referred to as the “global” buckling mode. This usually
occurs in relatively short and thick delaminated beams. In a global buckling mode, if the
buckling shape is symmetric with respect to the midspan of the beam, it is identified as

the “global symmetric” mode (Figure 1.1a). On the other hand, if the global buckling
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mode tends to deform into a kinked shape, the buckling shape is called the “global
antisymmetric” mode (Figure 1.1b). When the delamination is thin, the first region that
buckles is the delaminated region. Such a buckling is declared as the “local” buckling
mode (Figure 1.1c). Finally, in an axially compressed delaminated beam, if both the
global and local buckling take place at the same time, then the response is referred to as
the “mixed” buckling mode (Figure 1.1d). The situations for multiply delaminated beams

are quite similar to the ones discussed for single delamination.

P P P - P
v— \_/_\
(a) Global symmetric mode (b) Global antisymmetric mode
A e
P ‘_P P P
- — e e
_—
(c) Local mode (d) Mixed mode

Figure 1.1. Buckling mode shapes for a delaminated composite.

1.2. Motivation

From the standpoint of analysis and design, it is of great importance to understand
the behavior of the laminated composites containing one or several delaminations. The
problem has been the focus of several research works and consequently, several

methodologies and solutions have been developed. These methods can be classified under



~
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three different categories: (i) experimental, (ii) analytical and (iii) numerical methods.
The first method is usually costly and time consuming, often requiring special equipment
and jigs, which makes it unsuitable for use in everyday applications. The second choice,
in spite of being fast and efficient, is often limited to special cases. Because of the
limitation of the analytical solutions, attention has been focused on the development of
approximate and numerically oriented methods. The three most popular numerical
techniques in use for solving partial differential equations are the Finite Difference
Method (FDM), the Finite Element Method (FEM), and the Boundary Element Method
(BEM). FDM is one of the simplest numerical methods (both in terms of its formulation
and programming effort). To obtain an accurate result, however, considerable effort is
required for representing (discretizing) the domain by a large number of grid points.
FEM and BEM on the other hand require more skill and effort for algorithm development
and implementation. Other numerical methods such as the Rayleigh-Ritz have also been
used for solving such problems. Thus, the development of new methods from the
standpoint of numerical accuracy, ease of formulation and computational efficiency is

still of prime interest.

A relatively new numerical technique is the differential quadrature method (DQM).
Bellman et al (1972) introduced the method in the early seventies for solving linear and
nonlinear partial differential equations. Differential quadrature has been shown to
perform extremely well in solving initial and boundary value problems (Bert and Malik
(1996a)).

1.3. Objectives of the thesis
The main objective of this thesis is to develop a numerical approach, based on the

differential quadrature method, to analyze the delamination buckling and postbuckling of

composites. More specifically the objectives are:
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1) To apply the differential quadrature analog to determine the buckling load of

laminated composite beams having single or multiple delaminations. The effect of
several parameters on the buckling response of a delaminated composite beam is
considered, and the results obtained by DQM are compared with data available in the
literature. The parameters considered are the number, through-the-thickness and
along the span positions, and length of delaminations, material properties and

stacking sequence of the laminates.

2) To identify and incorporate the necessary mapping functions, and to apply the
differential quadrature technique to the buckling analysis of composite plates having

a thin elliptical delamination.

3) To apply DQM to the postbuckling analysis, in conjunction with an arc length
strategy to solve for the postbuckling response of a composite beam having single or

multiple delaminations.

1.4. Layout of the thesis

The thesis is divided into seven chapters. In Chapter 2, a literature review of the
past studies on delamination buckling and postbuckling is presented. In this state-of-the-
art review, we categorize different aspects of the previous studies. This is followed by a
literature survey on the differential quadrature method and its engineering applications.
Details of the differential quadrature technique and its formulations are presented in
Chapter 3. This includes the definition of the method and the derivation of the weighting
coefficients for the first and higher order derivatives of single and multi variable
functions. The chapter also discusses the concept of geometric mapping. Differential
quadrature analogs of different types of delaminated beams and plates are presented in
Chapter 4. Differential equilibrium equations of beams, having single or multiple

delaminations and those of plates having elliptical delaminations, are presented. These
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are followed by the presentation of the differential quadrature methodology used in

transforming the differential equations into an equivalent eigenvalue system. Chapter 5
addresses the arc-length strategy used in the solution of nonlinear postbuckling problems.
The same chapter also treats the nonlinear postbuckling analysis of composite beams
having single or multiple delaminations. The details of several case studies used for
assessing the validity, integrity, accuracy and efficiency of the method are given in
Chapter 6, followed by the discussion of their results. Finally, Chapter 7 provides some

conclusions and recommendations for future works.



CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

In this chapter we will present a survey of the previous research on the delamination
buckling and postbuckling behavior of laminated composite structures. Also, the chapter
deals with a review of the research that has considered the differential quadrature method

and its applications.

2.2. Delamination buckling and postbuckling

Previous studies on the delamination buckling and postbuckling of laminated
composite structures can be classified within three general categories: experimental,
analytical and numerical methods. The experimental methods are usually used to confirm
the results produced by the other two methods; therefore, in here we will focus on the
analytical and numerical works and will also mention their experimental validations.
Later we will further subdivide the works based on different sub-categories, such as: one-

, two- or three-dimension delamination modeling, single or multiple delaminations, etc.

2.2.1. Analytical studies

One of the earliest works in delamination buckling and growth analysis of beams
was carried out by Chai et al (1981). They studied the behavior of an isotropic
homogeneous beam-column under axial compression from a thin film model to the
general case (when the supporting base laminate buckles globally, so that the zero-slope
boundary condition for the thin sublaminate becomes invalid). In their model, the

emphasis was on studying the delamination growth by employing the total energy release
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rate of the system as a criterion. Perhaps the most important contribution of their work

was to introduce the four-region model, obtained by dividing the delaminated beam into
four different sections (Figure 2.1). Simitses et al (1985) also employed a similar model
to study delamination buckling. They studied the effect of the location, length and
thickness of delamination on the buckling load of a beam with clamped and simply
supported ends, having a single across-the-width delamination. The perturbation method

was used to solve the buckling equation.
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Figure 2.1. The four-region beam model.

Yin et al (1986) solved buckling and postbuckling problems of a one-dimensional
beam-plate having an across-the-width delamination located symmetrically at an arbitrary
depth. Their model was based on a special orthotropic plate with clamped edges and
different delamination lengths. They obtained a general expression for the postbuckling
behavior of the beam-plate. Kardomateas and Shmueser (1988) used perturbation
technique to analyze the compressive stability of a one-dimensional across-the-width

delaminated orthotropic homogeneous elastic beam. They also considered the transverse
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shear effect on the buckling load and post-buckling behavior of the beam. Using the

classical buckling equations, they accounted for the effects of the transverse shear by
some correction terms. Using a variational energy approach and a shear-deformation
theory, Chen (1991) formulated the same problem. According to his results, inclusion of
the shear deformation causes reduction in the buckling and ultimate strength of
delaminated composite plates. Kyoung and Kim (1995) used the variational principle to
calculate the buckling load and delamination growth of an axially loaded beam-plate with
a nonsymmetric (with respect to the center-span of the beam) delamination. They
investigated the effects of shear deformation and various geometric parameters on the
buckling strength and delamination growth of composite beams using their proposed

solution and also an experimental investigation.

Chen and Chang (1994) used a first order shear-deformation theory to predict the
delamination buckling loads for unsymmetric cross-ply delaminated plates with clamped
edges. Their one-dimensional model was able to consider bending-extension coupling
and transverse shear-deformation effects; the former parameter becomes significant in
short and thick delaminations, while the latter has significant influence on delamination

buckling loads.

Kardomateas (1993) and Kardomateas and Pelegri (1994) used perturbation
techniques to study the initial post buckling and growth behavior of delaminations in
plates. They also found closed form expressions for the energy release rate and the mixity

ratio of mode I vs. mode II fracture at the delamination tips.

Wang et al (1997) used an analytical procedure to determine the buckling load of
beams having multiple single-delaminations. Free and constrained models based on the
beam-column theory were used to model the perfect and separated parts. Successive

corrections made by removing the overlaps lead to physically permissible buckling mode.
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Reference should be also made to the analysis of Bottega and Maewal (1983) who

solved the problem of compression loaded homogeneous two layers plate with a centered
circular delamination. Due to the circumferential symmetry, the problem could be
reduced to one dimension. They considered nonlinear geometry by using the Von
Karman nonlinear strain-displacement formulations. The load-deflection was calculated

by an asymptotic expansion for the displacement fields.

Simitses and Chen (1988) investigated the buckling of a delaminated long
cylindrical shell or panel under pressure. They divided the panel into four regions and
assumed a separated solution for each part. It was found that the width and through-the-

thickness position of delamination greatly affected the buckling load.

Sheinman and Adan (1993) used an analytical method to address the postbuckling
analysis of a multiply delaminated beam. They used a function series composed of local
and global eigenfunctions of a delaminated beam and applied them to nonlinear
equilibrium equations. The resulting nonlinear system of algebraic equations was then
solved numerically. Huang and Kardomateas (1997) applied a perturbation technique to
transform the nonlinear equations of a beam having two central, through-the-thickness
delaminations, under compressive load to a sequence of linear equations. Upon solving
these equations they found an asymptotic solution of the postbuckling behavior of the
beam. In both of the above works the contact between the delaminated layers and

delamination growth was neglected.

Most of the investigations that have been done on compressive strength of
composite laminates having single or multiple delaminations, employed the classical
structural mechanics theory of beams and plates to estimate the buckling loads. Such
approximate analyses greatly simplify the problem. Classical theory, due to its
limitations, can not account for the effect of boundary conditions at the edges of

delaminations; neither can it accurately represent the influence of different material
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properties of the sublaminate and substrative. Hence, an exact analysis based on the
mathematical theory of elasticity seems to be necessary. This approach, however, has its
own difficulties due to complicated mathematical formulation and solution, specially in
two or three dimensional problems. As a consequence, less attention has been given to

such approaches.

Madenci and Westmann (1991) solved the local buckling problem of a layer
containing a circular crack while Wang et al (1991) found the solution for local buckling
of a half-space containing a through-the-width crack by using stability equations derived
from the mathematical theory of elasticity. Wang and Takao (1995) solved the same
problem, but with different material properties for the layer and the half-space. They
solved the buckling differential equations by utilizing the Fourier integral transformation
to establish a system of homogeneous singular integral equations and then solved this

system numerically by employing the Gauss-Chebyshev integral formula.

2.2.2. Numerical studies

Because of the difficulties with the analytical methods used to solve the
complicated delamination buckling and postbuckling problems, a great deal of attention
has been given to the numerical solutions. Moreover, the availability of fast computers
and various numerical algorithms have made this approach quite popular. In this section
we will review the available numerical treatments of the delamination buckling and

postbuckling of laminated composite structures.

Sheinman et al (1989) solved the differential equations of a delaminated composite
beam under arbitrary loading and boundary conditions with a finite difference method.
Bending-stretching coupling was taken into account which was shown to significantly

influence the buckling loads.



11
Lee et al (1993) employed a one-dimensional finite element model (based on the

layerwise plate theory) to solve the buckling of an axially loaded composite beam with
multiple delaminations. The effects of several parameters, such as the number of
delaminations, the lengths of delaminations, and their through-the-thickness and axial
positions on the buckling strength of the beams, and their corresponding mode shapes,

were investigated.

Lim and Parsons (1993) used an energy approach to predict the linearized buckling
of a composite beam with single or multiple delaminations. Lagrange multipliers were
used to enforce the kinematic constraints and boundary conditions. In their multiple
delaminations model, all delaminations had the same lengths. They verified their results

with those of finite element method and other published data.

Suemasu (1993) investigated the compressive buckling stability of composite
panels with through-the-width, equally spaced multiple delaminations by performing
numerical and experimental investigations. He used the Rayleigh-Ritz approximation
technique and considered the Timoshenko type shear effects in his model. The results
were compared with those of the finite element method and experimental investigations

conducted on glass/epoxy composite panels.

Whitcomb (1981) performed a parametric study on the postbuckling response of
laminated coupons having an across-the-width delamination. He conducted a
geometrically nonlinear finite element analysis and calculated the stress distributions,
strain energy release rates and lateral deflections for various delamination lengths,
delamination depths and loading conditions. Kutlu and Chang (1992) developed a finite
element code based on the updated Lagrangian formulation to compute the compression
response of laminated composites containing multiple through-the-width delaminations.
The model was one-dimensional, capable of accounting for multiple delaminations,

including the interface contact phenomenon and delamination growth. Extensive
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experiments on T300/976 graphite/epoxy composites were also performed which

validated their analysis

Sheinman and Soffer (1991) used the finite difference method to solve the
postbuckling problem of an imperfect composite laminate having a through-the-thickness
delamination. They employed the commonly used one-dimensional beam model and
formulated the response of the beam by dividing the delaminated beam into four regions.
Using the Von Karman kinematic approach, the resulting non-linear differential

equations were solved by the method of Newton-Raphson.

Lee et al (1995) used a one-dimensional finite element model (based on the
layerwise plate theory), to solve the postbuckling problem of a beam having multiple
delaminations. Their analysis included the effect of imperfections in the form of initial
global deflection and initial delamination openings. They also adopted a contact analysis
to prevent the overlapping of the delaminated segments of the beam. Lim (1994) applied
a finite element analysis to study the postbuckling and delamination growth of a beam
having a through-the-thickness delamination. His beam element was based on the
Reissner’s finite deformation beam theory. The nonlinear problem was solved by
adopting an arc-length algorithm. To prevent the beam surfaces from overlapping,
nonlinear springs were enforced and an initial imperfection in the form of a percentage of

the first buckling mode was applied.

Chai and Babcock (1985) used the Rayleigh-Ritz method to solve the buckling and
postbuckling problem of a laminated composite plate having elliptical delamination
(Figure 2.2). The nonlinear Von Karman plate formulation was used to formulate the
strain energy, while an energy balance criterion was used for the delamination growth.
The delaminated region’s thickness was assumed to be small compared to the base
laminate thickness, so that the transverse displacement and slopes along the delamination

boundary could be considered as null. Their solution was restricted to a special
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orthotropic ellipse with the minor-axis parallel to the direction of loading. Their model,
which used a simple energy balance criterion (G-criterion), exhibited interesting growth

characteristics for different types of circular and elliptical delaminations in different

materials.

Figure 2.2. Plate with elliptical delamination under compressive load.

Shivakumar and Whitcomb (1985) presented an analysis for the same problem
using Rayleigh-Ritz method and checked the results with finite element method. They
found good agreement between the two methods. The Rayleigh-Ritz method was found
to be simple and accurate, except for the highly anisotropic delaminated regions. The
effects of the delamination shape and its orientation, material anisotropy and layup, on
the buckling strains, were examined. It was shown that under certain conditions, the
delaminated region would buckle when the laminate was loaded in tension. Heitzer and
Feucht (1993) extended the Chai and Babcock (1985) work by taking into account all the
couplings (which could result from an arbitrary nonsymmetric lay up) in the linear and

nonlinear analyses. In their model, a thin laminate, which included an elliptical
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delamination, was assumed to have been bonded to an infinitely thick homogeneous base
laminate. The linear and nonlinear buckling problems were solved by Rayleigh-Ritz
technique with up to 12 and 21 unknown terms, respectively, and the results were
compared with those of the finite element method. In the nonlinear regime they used the
Von Karman relations to account for large displacements in the thin film region. The
energy release rates along the half axes were calculated for two unsymmetrical laminates
and showed a monotonous rise with increasing load. The energies steeply decreased
when the configuration switched to the second buckling mode. Heitzer and Feucht found
that the Rayleigh-Ritz method, in addition to being too stiff at the higher modes of

buckling, gives poor results for non-symmetric laminations.

Davidson (1991) used the Rayleigh-Ritz method to compute the buckling strains of
a composite laminate containing an elliptical delamination. The influence of the bending-
stretching coupling behavior of the delaminated region and the Poisson’s ratio mismatch
between the delaminated and base regions were also investigated. To reduce the
computational efforts he used the reduced bending stiffness. The results correlated well
with those obtained from experiments. In another work, the behavior of elliptical
delamination in composite plates, under in-plane compressive, shear and thermal loads
was investigated by Peck and Springer (1991), who also considered the contact effects.
They extended the works of Chai and Babcock (1985) and Shivakumar and Whitcomb
(1985) to include the transverse shear deformation, postbuckling deformation, contact
effects, thermal loads and unsymmetric sublaminates. The Von Karman nonlinear strain-
displacement formulations and a third order shear deformation theory, along with a
through-the-thickness linearly varying contact force were used. The results were then
compared with a series of experiments that were conducted on sandwich plates, made of
graphite/epoxy laminates bonded to an aluminum honeycomb core, and reasonable

agreement were obtained.



15
Yin and Jane (1992 part [ ,II), have also used the Rayleigh-Ritz method with the

Von Karman formulations to compute the buckling loads and postbuckling solutions of
laminated anisotropic elliptical plates. By considering at least 33 undetermined
coefficients in the Rayleigh-Ritz technique, they obtained reasonably accurate solutions
for the membrane forces, bending and twisting moments and point wise energy release
rates. Chai (1990 part I and II) extended the series expansion in the Rayleigh-Ritz method
up to 77 terms for the analysis of a specially orthotropic plate with elliptical
delamination. The plate’s central deflections and bending moments converged quickly,
even at higher buckling modes, whereas the membrane stresses showed a damped
oscillatory type behavior as the number of displacement terms was increased. The
solution was extended to take the point wise body contact into account. It turned out that

the stresses changed significantly when the overlap was prevented.

Whitcomb and Shivakumar (1987) performed a finite element analysis of a post
buckled rectangular delaminations using a crack closure technique. Using a geometrically
nonlinear three dimensional finite element analysis, Whitcomb (1989) performed a
fracture mode separation analysis, which could predict a pronounced mixed mode
behavior along the crack front with large gradients in the modes [ and II energy release
rate components (Gp and Gy) and a negligible third mode energy component (Gy;). The
requirement of thin delamination was assured by choosing the base laminate to be ten

times thicker than the sublaminate.

Chang and Kutlo (1989) developed a finite element code capable of computing the
postbuckling behavior of composite plates and cylindrical shells containing multiple
delaminations. In calculating the energy release rates they found that delamination
growth was dominated by mode I fracture in flat plates and by mode II fracture in

cylindrical panels.
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Yeh and Tan (1994) studied the buckling behavior of composite laminated plates

with elliptical delaminations, experimentally and analytically, using a nonlinear finite
element method. To simulate delaminations, they used elliptical Teflon pieces and
embedded them in the specimens at the ply interface. Based on the updated Lagrangian
formulations, they developed a nonlinear finite element program (using degenerated shell
elements) to analyze the buckling response of the laminated plates, which included large
displacements and rotations. To evaluate the influence of the delamination size, fiber
orientation, position of the delaminated region in the thickness direction, and the
orientation of the major axis of the elliptical delamination with the loading axis, they
varied these parameters and measured the plate responses both analytically and

experimentally.

Kim et al (1996) used a nonlinear finite element formulation to study the buckling
of a short orthotropic tube having a circumferential delamination under axial
compression. The nonlinear finite element program was associated with a quadratic
programming procedure to address the contact of delaminated faces. The load-carrying
capacity of the delaminated tube and the stability of delamination growth were examined
in terms of buckling load and energy release rate, respectively. Naganarayana and Atluri
(1996) used nonlinear finite elements (2-noded curved beam and 3-noded shell) to model
the delaminated stiffened laminated shells. To predict the postbuckling behavior, an arc
length strategy was used. By computing the energy release rate at the delamination fronts,
they studied the interaction of the postbuckling structural behavior and the delamination

growth.
2.2.3. Classification of delamination buckling research
Although some of the important works in delamination buckling were reviewed in

the previous sections, there are several other reported studies in this field. In this section

we will classify them within different categories.
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Table 2.1 presents a list of selected references in which the delamination buckling

or postbuckling is evaluated based on experimental, analytical or numerical procedures.

As seen through this table, most of the studies are based on numerical methods.

Table 2.1. Selected references classified based on the nature of the investigations

used for the delamination buckling and postbuckling of structures.

(1991), Ferrigno et al
(1995), ), Konigetal
(1995), Yeh and Lee
(1995), Wang et al
(1985 b), Kutlu and
Chang (1992),
Kardomateas (1989),
Cairmns et al (1994),

Experimental Analytical Numerical
Suemasu (1993), Simitses et al (1985), Chen Sheinman et al (1989), Suemasu (1993), Lee
Peck and Springer and Chang (1994), Huang and | etal (1993, 1995, 1996), Heitzer and Feucht

Kardomateas (1997),
Moshaiov and Marshall
(1991), Yin (1988), Wang and
Cheng (1995), Chattopadhyay
and Gu (1994), Wang et al
(1997), Chai et al (1981),
Kyoung and Kim (1995),
Kardomateas and Schmueser
(1988), Chen (1991, 1993),
Yin et al (1986), Kardomateas
(1989, 1993), Bottega and
Maewal (1983}, Simitses and
Chen (1988), Yin and Fei
(1988), Suemasu and Majima
(1996), Wang and Takao
(1995), Kardomateas and
Pelegri (1994), Nilssin and
Stordkers (1992), Madenci and
Westmann (1991), Wang et al
(1991), Cox (1994)

(1993), Yin and Jane (1992 a,b), Davidson
(1991), Chai (1990 a,b), Peck and Springer
(1991}, Chai and Babcock (1985),
Shivakumar and Whitcomb (1985), Kyoung
et al (1998), Sheinman and Soffer (1990,
1991), Sheinman and Adan (1993), Kim
(1996, 1997), Davidson and Krafchak
(1995), Moshaiov and Marshall (1991),
Ferrigno et al (1995), Konig et al (1995),
Yeh and Lee (1995), Mukherjee et al (1991),
Barbero and Reddy (1991}, Lim and Parsons
(1993), Lim (1993), Srivatsa et al (1993),
Naganarayana and Atluri (1996), Wang et al
(1985 a, b), Kutlu and Chang (1992), Chang
and Kutlu (1989), Kim et al (1996), Cairns et
al (1994), Yeh an Tan (1994), Whitcomb
(1981, 1989), Whitcomb and Shivakumar
(1987), Gaudenzi (1997),
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We further classified the works based on the number of geometric dimensionality

used in the analysis, as presented in Table 2.2. In all one-dimensional analyses the
delamination is across-the-width, while in the two or three dimensional analyses the
crack is bounded by the intact laminate. This table signifies the appreciable attention that

has been paid by researchers to the one-dimensional analysis.

Table 2.2. Selected references on the modeling of the delamination buckling and

postbuckling based on the number of dimensions.

One-dimensional

Two-dimensional

Three-dimensional

Simitses et al (1985), Sheinman et al
(1989), Suemasu (1993), Lee et al (1993,
1995, 1996), Chen and Chang (1994),
Kyoung et al (1998), Sheinman and
Soffer (1990, 1991), Huang and
Kardomateas (1997), Sheinman and
Adan (1993), Kim (1996,1997),
Davidson and Krafchak (1995),
Moshaiov and Marshall (1991), Yin
(1988), Wang and Cheng (1995), Lim
and Parsons (1993), Lim (1993), Wang
etal (1997), Chai et al (1981), Wang et
al (1985 a, b), Kyoung and Kim (1995),
Kardomateas and Schmueser (1988),
Chen (1991, 1993), Yin et al (1986),
Kutlu and Chang (1992), Kardomateas
(1989, 1993), Simitses and Chen (1988),
Kim et al (1996), Whitcomb (1981),
Kardomateas and Pelegri (1994),

Heitzer and Feucht (1993),
Yin and Jane (1992 a,b),
Davidson (1991), Chai (1990
a,b), Peck and Springer
(1991), Babcock (1985),
Shivakumar and Whitcomb
(1985), Wang and Cheng
(1995), Chattopadhyay and Gu
(1994), ), Konig et al (1995),
Barbero and Reddy (1991),
Naganarayana and Atluri
(1996), Cairmns et al (1994),

Kim (1996,1997),
Ferrigno et al (1995), ),
Konig et al (1995), Yeh
and Lee (1995),
Mukherjee et al (1991),
Srivatsa et al (1993), Yeh
an Tan (1994), Whitcomb
(1989),
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Of those works dealing with one-dimensional problems, some have considered the

problem of multiple delaminations. Table 2.3 categorizes the selected works based on
single or multiple delaminations. To the author’s best knowledge, none of the two- or
three-dimensional investigations considered a laminate with multiple delaminations. In
most of the two- or three-dimensional analyses the shape of delamination have been
considered to be circular or elliptical. However, rectangular delamination was considered

in some references such as Lee (1992) and Yeh and Tan (1995).

Table 2.3. Selected references classified based on single and multiple delaminations.

Single Delamination Multiple Delaminations

Simitses et al (1985), Sheinman et al (1989), Lee et al Suemasu (1993), Lee et al (1993, 1995,
(1993, 1996), Heitzer and Feucht (1993), Yin and Jane | 1996), Kyoung et al (1998), Huang and
(1992 a,b), Davidson (1991}, Chai (1990 a,b), Peck and | Kardomateas (1997), Sheinman and Adan

Springer (1991), Babcock {1985), Shivakumar and (1993), Davidson and Krfchak (1993),
Whitcomb (1985), Chen and Chang (1994), Sheinman | Wang and Cheng (i995), Lim and
and Soffer (1990, 1991), Huang and Kardomateas Parsons (1993), Larsson (1991), Wang et
(1997), Sheinman and Adan (1993), Kim (1996, 1997), | al (1997), Wang et al (1985 a, b), Kutlu
Davidson and Krafchak (1995), Moshaiov and and Chang (1992), Chang and Kutlu

Marshall (1991), Yin (1988), Wang and Cheng (19953), | (1989), Suemasu and Majima (1996),
Ferrigno et al (1995), Chattopadhyay and Gu (1994), ),
Kodnig et al (1995), Yeh and Lee (1995), Mukherjee et
al (1991), Lim and Parsons (1993), Lim (1993),
Srivatsa et al (1993), Wang et al (1985 a, b),
Naganarayana and Atluri (1996), Wang et al (1997),
Chai et al (1981), Kyoung and Kim (1995),
Kardomateas and Schmueser (1988), Chen (1991,
1993), Yin et al (1986}, Kutlu and Chang (1992),
Kardomateas (1989, 1993), Bottega and Maewal
(1983), Simitses and Chen (1988), Kim et al (1996),
Cairns et al (1994), Yeh an Tan (1994),
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Classification of the selected numerical methods based on the nature of their
formulations is presented in Table 2.4. As seen from this table, the Rayleigh-Ritz method

has received a considerable attention.

Table 2.4. Selected references classified based on the modeling approaches used in

the numerical studies.

Finite Finite Element Rayleigh-Ritz
Difference
Sheinman et al Lee et al (1993, 1995, 1996), Kyoung et al Suemasu (1993), Heitzer
(1989), Sheinman | (1998), Kim (1996, 1997), Davidson and and Feucht (1993), Yin
and Soffer (1990, | Krafchak (1995), Ferrigno et al (1995), ), Kénig | and Jane (1992 a,b),
1991), et al (1995), Yeh and Lee (1995), Mukherjee et | Davidson (1991), Chai
al (1991), Barbero and Reddy (1991), Lim (1990 a,b), Peck and

(1993), Srivatsa et al (1993), Naganarayana and | Springer (1991), Babcock
Atluri (1996), Wang et al (1985 a, b), Kutlu and | (1985), Shivakumar and
Chang (1992), Chang and Kutlu (1989), Kimet | Whitcomb (1985),

al (1996), Yeh an Tan (1994), Whitcomb (1981, | Moshaiov and Marshall
1989), Whitcomb and Shivakumar (1987), (1991), Wang et al (1985
Gaudenzi (1997), a, b), Cairmns et al (1994),

Based on the nature of the formulation used to represent the problem and the

incorporation of the bending-stretching coupling effect, Table 2.5 is constructed.



21

Table 2.5. Selected references classified based on the theoretical approaches used for

the modeling of the delamination buckling and postbuckling.

Yin and Jane (1992 a,b), Davidson
(1991), Chai (1990 a,b), Babcock
(1985), Shivakumar and Whitcomb
(1985), Sheinman and Soffer (1990,
1991), Huang and Kardomateas
(1997), Sheinman and Adan (1993),
Moshaiov and Marshall (1991), Yin
(1988), Wang and Cheng (1995),
Lim and Parsons (1993), Srivatsa et
al (1993), Wang et al (1997), Chai et
al (1981), Kardomateas and
Schmueser (1988), Yin et al (1986),
Simitses and Chen (1988),

Springer (1991), Chen and
Chang (1994), Kyoung et al
(1998), Kim (1996, 1997),
Chattopadhyay and Gu (1994),
Mukherjee et al (1991),
Barbero and Reddy (1991),
Lim (1993), Naganarayana
and Atluri (1996), Wang et al
(1985 a, b), Kyoung and Kim
(1995), Chen (1991, 1993),
Kutlu and Chang (1992),
Caims et al (1994),

Classical Lamination Theory Higher order Bending-Stretching
Theory Effect
Simitses et al (1983), Sheinman etal | Suemasu (1993), Lee et al Sheinman et al (1989),
(1989), Heirzer and Feucht (1993), (1993, 1995, 1996), Peck and | Heitzer and Feucht (1993),

Davidson (1991), Peck and
Springer (1991), Chen and
Chang (1994), Kyoung et al
(1998), Sheinman and Soffer
(1990, 1991), Lee et al
(1995), Sheinman and Adan
(1993), Kim (1997), Yin
(1988), Mukherjee et al
(1991), Kim (1996), Chen
(1993), Kutlu and Chang
(1992), Chen (1993),

2.3. Differential Quadrature Method

Differential Quadrature Method (DQM), introduced by Bellman et al (1972), is
based on the weighted sum of function values as an approximation to the derivatives of
that function. Bellman et al (1972), (1986) stated that partial derivative of a function
with respect to a space variable could be approximated by a weighted linear combination
of function values evaluated at some intermediate points in the domain of that variable.
Compared to FEM or FDM, DQM is relatively a new method used for solving a system

of differential equations. In addition to the less complex algorithm, in comparison to
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FEM, DQM also offers increased efficiency of the solution by demanding less number of
grid points (hence, equations) to model the problem. Therefore, owing to the improved
performances of DQM, this method has gained increasing popularity in solving a variety

of engineering problems.

One of the areas in which the method has been applied frequently is in structural
mechanics. Jang et al (1989) used DQM for the static analysis of structural components.
They applied the method to find the deflection and buckling of beams and plates. Bert et
al (1988) applied the method to the vibration analysis of beams and plates. Their results
demonstrated that the method could be employed effectively in structural analysis.

Kukerti and Farsa (1992), Farsa et al (1993) and Farsa and Kukerti (1993) applied
the method to the frequency analysis of isotropic, generally orthotropic and anisotropic
plates. Bert et al (1993), (1994) used DQM for static and free vibration analysis of
anisotropic plates, while Laura and Gutierrez (1994) used the method in vibration

analysis of rectangular plates with non-uniform boundary conditions.

Sherbourne and Padney (1991) and Padney and Sherbourne (1991) used DQM to
analyze the buckling of composite beams and plates. They used different number of grid
spacing in their analysis. The same problem was addressed by Wang (1995), who also
used different grid spacing. He found that employing uniform grid spacing could result in

an inaccurate solution; therefore, caution should be exercised when using such spacing.

Liew et al (1996) used the method for the analysis of thick symmetric cross-ply
laminates with first order shear deformation while Kang et al (1996) used it to address the
vibration and buckling analysis of circular arches. Shu and Du (1997a) used DQM to

address the analysis of free vibration of laminated composite cylindrical shells.
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In most of the works done using DQM, the geometry of the problem has been

considered to be simple. Straight lines and simple rectangles or in general, shapes with
edges parallel to the curvilinear coordinate axes have been considered in the analysis. In
actual situations, however, there may be irregular domains and thus, the solution strategy
should be capable of covering these types of problems. In recent years more studies have
been done to address this class of problems by mapping the physical domain into a
computational domain. In this approach the physical domain, which contains the actual
shape of the structure, can have curvilinear edges, while the computational domain would
have straight edges, so that DQM can be applied to this domain. Lam (1993) used the
mapping approach to solve some second order problems. Bert and Malik (1996b) used a
mapping approach with cubic serendipity shape functions to analyze the vibration
problem of some non-rectangular plates. They expressed the first derivative of a function
in physical domain based on its differential quadrature in the computational domain, and
Jacobian of the transformation. They then build the higher order derivatives of the
function by inter-multiplying the lower order derivatives. Han and Liew (1997) used a
mapping with quadratic shape functions to solve the bending of quadrilateral
Reissner/Mindlin plates with curvilinear boundaries. The geometrical mapping was used
to transform the physical domain (which its edges could have quadratic shapes) into the
computational domain. The main advantage of the Han and Liew work over that of Bert
and Malik is in the reduction of its numerical procedures. Bert and Malik analysis is,

however, more efficient when applied to higher order probiems.

Application of DQM in nonlinear analysis of structures has been also reported in
several studies. Bert et al (1989) analyzed the large deflection problem of a thin
orthotropic rectangular plate in bending. The three nonlinear differential equations of
equilibrium of the plate were transformed into differential quadrature form and solved
numerically using the method of Newton-Raphson. Lin et al (1994) used the same

procedures to solve the problem of large deflection of isotropic plates under thermal
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loading. In their analysis they used the generalized differential quadrature of Shu and

Richards (1992).

As it can be seen from the definition of DQM, two important factors control the
quality of the approximation resulting from the application of DQM. These are (i) the

values of weighting coefficients and (ii) the positions of the discrete variables.

In order to determine the weighting coefficients for the first order derivatives,
Bellman et al (1972) used two different approaches. The first approach, which was
widely adopted in the earlier years, requires that the approximation to the function be
exact for all power polynomials with degree less than or equal to one less than the
number of the sampling points. This results in a set of linear algebraic equations, which is
solved to obtain the weighting coefficients. The coefficients of the higher order
derivatives can be obtained by multiplication of lower order matrix coefficients. This
technique results in a Vandermonde matrix, which becomes ill-conditioned as the number
of sampling points are increased. The second approach is to use the roots of the shifted
Legendre polynomials as the coordinates of the grid points in a simple algebraic
formulation. Most previous applications of differential quadrature use Bellman’s first
method to obtain the weighting coefficients because it lets the coordinate of the gird
points to be chosen arbitrarily. Quan and Chang (1989) and Shu and Richards (1992)
derived a recursive formula to obtain these coefficients directly and irrespective of the
number and positions of the sampling points. In their approach they used the Lagrangian
polynomials as the trial functions and found a simple recurrence formula for the

weighting coefficients.

The location of the sampling points also plays a significant role in the accuracy of
the solution of differential equations. Some of the researchers such as Sherbourne and
Pandy (1991) and Farsa et al (1993) have used the equally distanced sampling points.

This choice is considered to be a convenient and easy method. However, when using
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equally spaced grids, the solutions become sensitive in several applications such as in
anisotropic plates (Sherbourne and Pandy (1991)) or delaminated beams (Moradi and
Taheri (1998)). In most cases, one can obtain a more accurate solution by choosing a set
of unequally spaced sampling points. A common method is to select the zeros of
orthogonal polynomials. Bert et al (1993) used the roots of Chebyshev polynomials as the
coordinates of the grid points. Wang (1995) used several grid spacing such as the
Gaussian integration points as the sampling points in the buckling analysis of laminated
composites. Moradi and Taheri (1998) used equally and unequally spaced sampling
points in the delamination buckling analysis of beams. Bert and Malik (1996a) also
examined the equally spaced grids as well as unequally spaced in several structural

mechanics applications.

Another important problem in dealing with DQM is the consideration of the
boundary conditions in higher order differential equations such as for beams and plates.
At each boundary point one boundary condition can be satisfied. In the case of fourth or
higher order differential equations, however, more than one boundary condition should
be satisfied at each boundary. To solve this problem several strategies have been adopted

by the researchers. These strategies will be briefly discussed below.

Jang et al (1989) proposed the so-called 8-technique. In this method, points are
chosen at a small distance 3, adjacent to the boundary points. Then, the differential
quadrature analogue of the two conditions at a boundary is written for the boundary point
and its adjacent 3-point. In another approach, Wang and Bert (1993) proposed a method
in which the weighting coefficient matrices for each order of the derivatives can be
derived by incorporating the boundary conditions in the differential quadrature
discretization. Malik and Bert (1996¢) also explored the benefits and the limitations of
this approach for simulating various types of boundary conditions. Shu and Du (1997b,
¢), proposed an approach in which the derivative conditions for the two opposite edges

are coupled to provide two solutions at two neighboring points to the edges. The
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solutions are then substituted into the governing equations. Chen et al (1997) proposed a

method in which the derivatives of the boundary points are approximated in the same
way as that of the non-boundary points, by extending the size of the weighting matrices

by two.



CHAPTER 3

DIFFERENTIAL QUADRATURE METHOD

3.1. Introduction

The concept of the differential quadrature method (DQM) is discussed in this
chapter. The chapter starts with the definition of the technique and the methodologies
available for the evaluation of weighting coefficients for various orders of derivatives.
Then, the methodology will be extended for the multi-variable functions. Selection of the
grid points and treatment of the boundary conditions will be discussed, subsequently.
Finally, the concept of irregular domains will be explained, where the differential
quadrature will be reformulated by using the mapping of a general curvilinear domain

into a square domain.
3.2.1. Differential quadrature formulation for functions with single variable

As mentioned earlier, DQM was presented for the first time by Bellman et al
(1972), for solving differential equations. The DQM uses the basis of the quadrature
method in deriving the derivatives of a function. It follows that the partial derivative of a
function with respect to a space variable can be approximated by a weighted linear
combination of function values at some intermediate points in that variable. In order to
show the mathematical representation of DQM, consider a function f=f{x) on the
domaina < x < b; then the n™ order differential of the function f at an intermediate point

x; can be written as:

d"f(x) & i=L...,N
d <" —;cﬂc S(x) ne=l. . 3.1)
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where the domain is divided into NV discrete points and c;” are the weighting coefficients
of the n™ derivative. As it can be seen from equation (3.1), two important factors control
the quality of the approximation, resulting from the application of DQM. These are (i) the

values of weighting coefficients and (i) the positions of the discrete variables.

In order to determine the weighting coefficients in equation (3.1), f{x) must be
approximated by some test functions. To select a suitable test function, one needs to
satisfy the following conditions:

a) Differentiability; the test function of the differential equation must be
differentiable at least up to the n™ derivative (# referring to the highest order of
the differential equation).

b) Smoothness; f must be sufficiently smooth to allow one to write (a) (Bert and
Malik (1996a)).

One way of ensuring that the above conditions are satisfied is to use the attributes of
the classical quadrature method. That is, choose a test function (in the form of
polynomials of order N-I), such that the condition of equation (3.1) holds for all
polynomials up to N-/ order. In the original work of Bellman et al (1972), they suggested
two approaches to fulfill the requirement. The first approach was to use a test function of

the form:
P,.(x) = x* k=1,....N (3.2)

Substituting (3.2) in (3.1) with n=1, leads to the following equation for all discrete points:

N

&
() k-1 _ d( k—l)
ey =—x]

k=1,...,.N
j=l dx = N

yeus
i=1...,

(3.3)
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which represents V sets of linear simultaneous equations, and has a unique solution (the

coefficient matrix c}l.” is a Vandermonde matrix). From equation (3.3) it is clear that

BEGIL oo

The above relation gives the higher order weighting coefficient matrix based on the first

order derivative weighting coefficients.

The procedure outlined above bears a major problem: as the number of sampling
points are increased the system of equation (3.3) tends to becomes ill-conditioned
(because it includes a Vandermonde matrix), and consequently, the weighting

coefficients obtained by this method become inaccurate.

The weighting coefficients may be determined explicitly for all discrete points,
irrespective of the number of sampling points. Bellman et al (1972) in their second
method used the roots of the shifted Legendre polynomials of degree N, as the sampling

points, and derived the following relation for the first order derivative weighting

coefficients:
¢, = S (x"?, L, j=Ll..,N and j=i
(x, —x,)- Py (x,)
(3.5)
RO (1-2x,)
Y 2x,-(x, 1)

Py (x) is defined in terms of the Legendre polynomials by the relation:

P;(x) =P, (1-2x) (3.6)
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where P.(x) is the N* order Legendre polynomial for —[<x<1. As seen from the
N

equation (3.5) the second method uses a simple algebraic formula in calculating c;’. The

coefficients for the higher order terms can be obtained using relation (3.4).

The first method of Bellman et al in computing the weighting coefficients attracted
more attention from researchers than their second one (Shu and Du (1997b)). This was
mainly because in the first method the grid points can be selected arbitrarily while in the
second method, one is restricted to choose only some specific points (the roots of the
shifted Legendre polynomials). As mentioned above, however, using the first method
may cause ill-conditioned coefficient matrix and therefore should not be used with high

number of sampling points (say more than 13 points).

To overcome these drawbacks some researchers used other type of base
polynomials. Quan and Chang (1989), Shu (1991) and Shu and Richards (1992) used the
Lagrange interpolating functions and derived a recurrence formula which is independent
of the number and position of sampling points. Using the Lagrange interpolation

polynomial as the base polynomial

_ M(x) 3
rk(x)— (x—xk)-M“’(xk) ( 7)
where
M((x)= H(x-xj)

" (3.8)

MO =[x -x,)

Jj=Ljzk

MO (x) is the first derivative of M(x). Here x; , i=1,...,N are the coordinates of the

sampling points which may be chosen arbitrarily. Then f{x) can be expressed by



)= a, -n(x) (3.9)

Substituting equation (3.9) into (3.1) and using (3.7) results in the following weighting
coefficients (for more details see Shu (1991) and Shu and Du (1997b)):

X.
eV = H( 2 Lj=L..,N and j=#i
if
(xi_xj)‘H(xj)

¢l

clfl."’ = k[cff’” e - —— 2<k<N-1 (3.10)
X, —X;

JV
cm =— Zc,;.'") m=1...,N-1
J=lj=i
where

TT¢o= T -x) G.11)

Jj=lj=i

The above relations are not restricted to the number or position of the sampling points.
Also there 1s substantial saving in computational time when the weighting coefficients are

calculated by these formulae.
3.2.2. Weighting coefficients for functions with multi-variables

With the same approach, one can derive the quadrature analog of the multi-
variables functions. To show it, consider a two-variables function f = f(x,y); the n™
order derivative of function f with respect to x, the m™ order derivative of function fwith

respect to y and the (n+m)™ order derivative of function Jf with respect to both x and y at
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an intermediate discrete point x; and y; (where /=1...,N_and j=1,...,N_) can be

approximated by the weighted linear sum of the function values as:

,,}’,) Zc(n)f(rkay ) n=1,...,1Vx—1
aym l’yj)—zc(mjf(rt’yk m=1,...,N_V—I (3.12)
a(m—m) - (m) n:l’._.,Nx —1
ax@) l!y/) ;c ZC f(xksyl) m:l,_.‘,Ny—l

where the domain is divided into N, discrete points in the x-direction and N, in the y-

(m) th th

direction. c("’ and ¢

are the weighting coefficients of »° and m~ order partial

derivatives of f (x,y) with respect to x and y, respectively.
3.3. Choice of the sampling points

The selection of locations of the sampling points plays a significant role in the
accuracy of the solution of the differential equations. Using equally spaced points can be

considered to be a convenient and an easy selection method. For a domain specified by

[a,b] and discretized by N points, then the coordinate of any point i can be evaluated by:

x, =a+]ir—_11(b—a) (3.13)

But in most cases, one can obtain a more accurate solution by choosing a set of
unequally spaced sampling points. A common method is to select the zeros of
orthogonal polynomials. A simple and good choice can be the roots of shifted

Chebyshev polynomials:
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X; =a+l[l—c0521—ln}b—a) (3.14)
2 2N

Also use of zeros of the shifted Legendre polynomials have been known to give
good results, while some authors have chosen the grid points based on trial (Sherbourne
and Pandey (1991)). Wang (1995) suggested some useful schemes for selecting the
sampling points for structural mechanics problems. In addition to the above grid schemes,

later we will examine the effect of grid spacing through the use of the following sets of

grid spacing in the normalized region [O,l]:

X, = [O, (V -2) zeros of the shifted Legendre polynomial, 1] (3.15)
x, =1 —cos[(i - ) /(N =D])] i=12,..,N (3.16)
xX; =[0,%(1-cos[(2i—3)7r/(2N—4)]),1] i=23,..,N-1 (3.17)

A common property in these schemes is that the distribution of the sampling points is
more concentrated at the ends of the region (i.e. around 0 and 1). This can lead to more

accurate results as suggested by Shu (1991).

3.4. Treating Boundary Conditions

Essential and natural boundary conditions can be approximated by DQM; they are
treated the same way as the differential equations are. In the resulting system of algebraic
equations from DQM, each boundary condition replaces the corresponding field equation.
Note that at each boundary point only one boundary condition can be satisfied. However,

in the case of fourth order differential equations (such as those for beams and plates) or
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the higher order, one must satisfy more than one boundary condition at each boundary.

To overcome this problem several strategies have been adopted by the researchers.

Jang et al (1989) proposed the so-called “d-technique”. In this method points are
selected at a small distance & adjacent to the boundary points. Then, the differential
quadrature analogue of the two conditions at a boundary is written for the actual
boundary point and its adjacent 8-point. This technique offers an adequate means of
applying the double boundary conditions for beams and plates, and has been successfully
incorporated in the past (Farsa et al (1993), Sherbourne and Pandey (1991)).
Nevertheless, there exist some drawbacks. First, since the second boundary is not applied
at the actual boundary points, there is always some degree of error in the solution.
Second, in order to reduce such an error, § should be selected to be very small (say 8=107

). This may cause some convergence problems, such as the oscillation of the solution.

In another approach, Wang and Bert (1993) proposed a method in which the
weighting coefficient matrices for each order derivative can be derived by incorporating
the boundary conditions in the differential quadrature discretization. This method has
significant limitations when dealing with the boundary conditions other than simply
supported or clamped. Malik and Bert (1996c) also explored the benefits and the
limitations of this method for various types of boundary conditions. Shu and Du (1997b,
¢) proposed another approach in which the derivative representing the two opposite edges
are coupled to provide two solutions at two neighboring points to the edges. The
solutions are then substituted into the governing equations. Shu and Du compared their
results with those of Wang and Bert, and found that their results were inadequate in most
cases. Chen et al (1997) proposed a method in which the derivatives representing the
boundary points were approximated in the same way as those of the usual grid points by

extending the size of the weighting matrices by two.
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treatment of other type of the boundary conditions require no additional work. Moreover,

our delamination buckling analysis indicated that the accuracy obtained by this technique

in finding the buckling load was excellent.

3.5. Irregular domains

Based on its inherent nature, DQM can only consider domains with boundaries
parallel to the coordinate axes. This means that the domain for a two dimensional
problem should be rectangular. Thus, in order to solve an arbitrary shaped problem, one
should map the physical domain into its equivalent rectangular. For this, there are
currently two approaches. In one, which was suggested by Lam (1993) and Han and Liew
(1997), the geometric coordinate transformation was employed to transform the
governing differential equations and their corresponding boundary conditions from the
physical to computational domain. Their approach however, is more efficient for
problems that can be defined by differential equations up to second order. In the second
approach as suggested by Bert and Malik (1996b) that is also utilized in this study, the
quadrature rules were reformulated by using the mapping of a square domain into a

general curvilinear region.

3.5.1. Geometric mapping

A general curvilinear quadrilateral domain with curve boundaries in the Cartesian x-
y plane is shown in Figure 3.1. Each side of the plate can be described approximately by
a cubic function. This domain can be mapped into a square domain, -/IS£ <], -I<n <]
in the natural &-7 plane by using the following cubic serendipity shape functions (Li et al
(1986))
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Figure 3.1. Mapping from a) curvilinear quadrilateral physical domain to b) square

parent computational domain.

where x; and y; are the coordinates of the i™ boundary node in the x-y plane, and N;(&n)

are the shape functions given by

N(&n) =50 +E£E)-(L+n0)-[le> +n?)-10] i=1234
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NEm) =g+nm)--&2) 0+982) i=5678 (3.19)

N(&m=20+£8)-(L-n7)-(1+97.7) i=9,10,1112

where &; andn; are the coordinates of the node i in the &-17 plane. These shape functions
have a value equal to unity at the i node and zero at all the remaining points. Next, by

dividing the computational domain into N: by N, sampling points, we can derive the

differential quadrature formulation of a function f in this domain. As a result, the first

order derivatives f. and f, ata discrete point &;,7; can be defined as

N:
f:Em)=2.C" fy
= (3.20)

N,
frEn)=2.C f,
=1

where C;" and C}" are the weighting coefficients for the first order derivatives with

respect to the & at & and 7 at 7, respectively. The first order derivatives with respect to

the physical coordinates x and y may be obtained from f: and f, by using the chain rule

as
1
fomT=Wa Sy S,

(3.21)

1
£y =m(“x‘q S tx: fn)

where IJ | is the determinant of the Jacobian matrix, which is



Ul=|xs 2, = s 2]

By substituting equation (3.20) in (3.21), the first order partial derivatives of f with

respect to x and y at (x(&,n), y(§,17)),7 can be obtained by

(0, =] ) B s o), Sy }

,

(n), =57

sl

N Nn

=, ), 2 Ci 1y + (e ). > i
Y =1

k=1

|

(3.23)

Prescribing each sampling point with a unique index instead of two indices (i and ;), one

may rewrite equation (3.23) in a more compact form by:

N

S =2.CD 1,

n=l

N:,

(f3)m Z Comnn

=l

where N s =

derivatives with respect to the x and y and m and n are

m=(@{~-1)N.
n=({-1)N,

(3.24)

N.xN,, C{) and C{) are the weighting coefficients for the first order

xmn ymn

+7 i=1,...,N5
+J j=1,...,N,,

(3.25)
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As seen from equation (3.24), the weighting coefficient matrices are of the order of Nz,.

Having the weighting coefficients for the first order partial derivatives, one can easily

obtain the weighting coefficients for the higher order derivatives. The general formula

may be written as

N:zn

iV =2.Co 1,

n=l

Ne,

(SN, =2.C8 1.

n=l

Ny,

S =2.C2 f,

n=l

(3.26)

where the first one represents the " order partial derivative of f with respect to x, the

second one represents the s™ order partial derivative of / with respect to y and the third

one is the (r+s)™ order partial derivative of f with respect to both x and y. The weighting

coefficient matrices of the higher order derivatives can be easily derived from the

following formulae

[Cvir) ]__. [Cin ] [Cir—l)] r=2...
col-keelles]  s=2..

eol=lerlle]  ns=1e

(3.27)
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3.5.2. Domain Decomposition

For problems having complicated domains such as those in delaminated plates or
beams or plates with cutouts, the concept of domain decomposition may be used for
solving the problems. With this concept, first the domain is divided into several
subdomains (Figure 3.2). A local mesh can be generated for each subdomain with more
density near the boundaries. Then, the differential quadrature representation of the
governing differential equations for each domain can be formulated. In this approach,
each region may have different number of sampling points. Finally, the boundary
conditions and the compatibility conditions at the subdomain interfaces should be taken

1nto consideration and satisfied.

Figure 3.2. A complicated domain.
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CHAPTER 4

DIFFERENTIAL QUADRATURE FORMULATION OF
DELAMINATION BUCKLING

4.1. Introduction

In this chapter the differential quadrature analog of some delaminated beams and
plates under compressive loads will be presented. The objective is to find the
delamination buckling loads for the cases with single and multiple delaminations. For the
delaminated beam problems with single delamination we have adopted the strategy in
which the beam is divided into four regions. The extension of the similar approach is
employed for modeling of laminated composite beams having multiple delaminations.
The thin delamination model is used for the delaminated plate problems. The DQM will
be applied to the differential equilibrium equations of each structure. Then appropriate
boundary and interface compatibility conditions will be considered and treated. The
results will be a linear system of eigenvalue equations. Solving this system results in

delamination buckling loads and their corresponding mode shapes.

In the first part the formulation for the delaminated beams based on the classical
lamination theory will be presented. This results in a forth order differential equation.
Next a beam theory based on the first order shear deformation will be used to
accommodate the effects of shear deformation, which results in a system of second order
differential equations with two different type of variables. Then, the formulation for the
general laminate will be presented which, in addition to the effects of shear deformation,
includes bending-stretching coupling effects. Next, the quadrature analog of laminated
composite beams with multiple delaminations will be derived. Finally the two-
dimensional formulations for a plate having circular or elliptical delamination will be

presented.
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4.2. Delamination buckling formulation for beams
4.2.1. Delamination buckling for a specially orthotrepic beam

The geometry of the one dimensional delaminated beam-plate is shown in Figure
4.1. This model contains an across-the-width delamination with the length a which is
located in an arbitrary depth through the thickness of the plate. It is chosen to be
symmetric with respect to the two restricted ends (The plate ends may have any form of
constraints such as hinged or clamped). Note from Figure 4.1 that the delamination
divides the beam into four regions. The region above the delamination plane with
thickness 4 is referred to as the “upper” sublaminate, and the region below it with
thickness H is referred to as the “lower” sublaminate. The sections before and after
delamination where the beam is intact are referred to as the “base™ laminate. Here we
consider each of these regions as separate beams. The governing equations for these

fields corresponding to the four parts are given by (Simitses et al (1985)):

dH%+J)d%%

. ==0 k=12,3,4 4.
dx? kode? @D

D,

where D, is the stiffness of the £ region given by:

E.zt

D, =——xkt — 42
2 -vovy) (4.2)

Py, represents the axial force and # is the thickness of the K region. E, is the Young’'s

modulus along the x-direction and v is the Poisson’s ratio.
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Figure 4.1. Geometry of a beam with single delamination.

The boundary conditions for different parts consist of in-plane and transverse

boundary conditions, compatibility and continuity conditions. They are as follows:

The in-plane and transverse boundary conditions at both ends are:

at x=0 B=-P (4.3a)

at x=L P, =-P (4.3b)

for clamped support ends:

dw,
at x=0 W == 0 (4.4a)
dw
t =L = 4 =
at x We =" 0 | (4.4b)

for simply supported ends:



at x=0 w, = a;:*»:/, = (4.4¢c)
=
at x=L  w,= dc;;“ =0 (4.4d)

Continuity conditions at delaminated edges consist of transverse, moment, in-plane and

shear force continuity:

at x=/

W= w, =W, (4.52)

dw, dw, dw;

dc  dx  dx (4.30)
M,-M,-M,;+P(H2)-P(h/2)=0 (4.5¢)
R-P-P=0 (4.5d)
—Q+0,+0; =0 | (4.5€)
at x=I/+a

W, =w; =w, (4.5%)

dw, dw, dw,

dc dx  dx

(4.5g)



M, +M,—-M,—P,(Hf2)+ P(hf2)=0 (4.5h)
P +B—P,=0 (4.50)
-0, -0;+0, =0 -3

Also applying the axial strain compatibility for the upper and lower sublaminates, it

gives:

1 I dw, Y ;. A-vev)Pha 1 .[ awy g A-veva)Bha o awd) (4.6)
2% | dx Eh 270 dx EH *

where is the rotation angle at the delamination front. Note that for a non-symmetric

dx

delamination with respect to the longitudinal beam span, this angle should be replaced by

,_(dz(l) + d“"(;*' ) ) Equation (4.6) represents the postbuckling behavior of the
X x

[

delaminated beam. Before the onset of buckling, the values of (iﬁ) are insignificant,
X

so equation (4.6) reduces to:

T-h-H-E,_ dw(l) 4.7)
2a-(1-v_v_.) dx ‘

I
v

3

h_
2
Also, from the primary state solution:

!
P =+LpP 4.8
=% | (4.8)
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Applying DQM approximation to Equation (4.1) for different regions and at each

discrete point, one obtains:

A Pll N i:l,,__,N‘_
£4) = k'K .(-2) . 4.9
;CJ]‘- ny]k D/C j=t C’Jk FVJk k= 132,3:4 ( )

where C{;’ and C}’are the weighting coefficients for the second and forth derivatives
along the non-dimensionalized X axis, respectively, W, is the deflection of the ™ point

in the " region. N is the number of sampling points for the ™ region (Figure 4.2).

I

—--L -,
] ' __N, [t N,
] — L N —
) ’ 7
3

Figure 4.2. Sampling points for a beam with single delamination.

The kinematic boundary conditions in Equations (4.4a), (4.4b), (4.5a), (4.5b), (4.5f) and
(4.5g) are transformed into the following differential quadrature format for a beam

having clamped edges:
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- Z W, =0 (4.10a)
Jj=1
ZC‘J’,4W (4.10b)
j=1
Wy,=W,= W (4.10c)
1 N (N 1 (1) 1 < (1
I ZCMH AT ZCU"W ] ZCIﬂW;'J (4.10d)
1 j=I 2 j=1 3 j=I
Wyar=Wy;=W, (4.10e)
Na N3
~Z CYo Wy = —262;3 s = ZCSLWH (4.100)
’ Jj=t 3 j=l 4 =t

Using the following relations for M and Q:

M, =D, d“Vf‘
dx”
; 4.11)
d’w dw
=-D, * 4 p —k
QI. k dx.: k dx

and equations (4.5c-e), (4.5h-j) and (4.7), the moment and force boundary conditions at

the delamination fronts become:

2$ o L8, L ShiE oy 0 i
N1 1,2 173 1. &= -12a
l Jj=l 2 J=1 3 j=l I &2 j=t
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S 2 ) £ ) 6t -ty 15 )
VAR VR jZlcfv:,z = 2 Gl =0 (4.120)
4 Jj=1 ‘> j=1 j= 2 j=

N 3N 3N
G ]ZC.(:.LW (] e (2] e, =0 (@120
L j=

i=1

3 . 3 N, 3 N
P N ‘) 5 ,
(, ) 2 Cow;, (l ] 2. CO W, [[ J > c W, =0 (4.12d)
t4 ) =t 2/ =l 3/ j=l

where, and [, (for £ =1,2,3,4) represent the thickness and length of each section,

respectively. Imposing these boundary conditions make some of the equations in (4.9)
redundant. In order to eliminate such a redundancy, the equations corresponding to

i=12,(N,—1)and N, in Equation (4.9) can be eliminated for all regions. Therefore,

equation (4.9) becomes

& l - ’(N )
4) (2) 4.1
ZC’”‘ i (t) ( J ZC’" Wi k =1,2,3,4 (4.13)

J=t

where

_12PL(1-v,vy)

4.14
4m’ET? (4.14)

A is the normalized buckling load which is the ratio of the compressive load to the Euler

buckling load of a beam with clamped ends.

Combination of Equation (4.13) with the above sixteen boundary conditions gives

the following system of linear equations
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4 AH%}}} l[; 5”% (4.15)

where the subscripts b and i refer to the locations of the boundary and the interior

—
o
>

i

regions, respectively. The vectors {W,,} and {W{}are the normal deflection vectors

corresponding to the boundary and interior points. By transforming Equation (4.15) into a

general eigenvalue form one obtains

(4.16)
INRAY YR
where:
[A' ]= [A.-,- ~ 4y Ay -Ab,-] (4.17a)
[B.]= [Bii ~B, -4y 'Abi] (4.17b)

By solving the eigenvalue problem represented by Equation (4.16) with the help of

a standard eigen solver, one will obtain the eigenvalues (i.e., the buckling loads), and the

eigenvectors {W; } (i.e., the mode shapes).

4.2.2. Delamination buckling formulation for a specially orthotropic beam including

shear deformation effects

Here, to include the effect of shear deformation, the same four-region model, which

was considered in the last section is employed. The model contains an across-the-width
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delamination with the length ‘a’ located arbitrarily through the thickness and along the

span of the beam-plate. Using the shear deformation theory (Whitney (1989)), the

equilibrium equations for each region can be written as:

P..=0 (4.182)
M, -0 =0 k=1234 (4.18b)
Qi —Bw, . =0 (4.18c¢)

where P,,Q,, M, and w, are the in-plane force, shear force, moment and the transverse

deflection of each region &, respectively. By substituting

M, =Dy, (4.19a)
Q. =k,Gr(w, +w..) (4.19b)
into equations (4.18b) and (4.18c), the governing differential equations reduce to

D, . —kGty, +w, . )=0 (4.20a)
kGt (W +w,, ), ~Bow, o =0 (4.20b)

where y; and # are the transverse rotation angle and thickness of the A® region,

respectively; G = G_ is the shear modulus, £; is the shear factor (i.e., ).
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The boundary conditions for the different regions consist of the in-plane, transverse,

continuity and compatibility conditions. The in-plane boundary conditions at both ends

are the same as equations (4.3a,b). Also, for simply supported ends:

at x=0 w=y,,.=0 (4.21a)

at x=L w,=y, =0 (4.21b)

and if the ends are clamped, then:

at x=0 w =y, =0 (4.21¢)

at x=L w,=y,=0 (4.21d)

Continuity conditions at the delaminated edges consist of the transverse, moment, in-

plane and shear force continuity.

At at x=/
w, = w, = w, (4.22a)
Y, =y, =y, | (4.22b)
Dy, . = Dy, — Dywy, + (H[2)P, ~(B/2)P, =0 (4.22¢)

B-P-P =0 (4.22d)
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[c.GTy, + w, )-k,Ghly, +w,. )- k,GHy, +w,_)

(4.22¢)
~ (B~ Pw,, — P, )=0
at x=I/+a
w, =w, = w, (4.22f)
W=y =y, (4.22g)
Dy, . +Dyw,. - D, —(H/2)P, +(h/2)P, =0 (4.22h)
P,+P,—P,=0 (4.22i)
le.Ghly, +w, )+ k,GEy, +w,, )~ £,GTlw, +w,, )]
(4.22j)

- (Pzwz,: +Pw; -P4w4~t)= 0

It should be noted that the boundary conditions include terms containing the in-
plane forces which makes the formation of the problem in a2 matrix form, and hence, the
solution of the associated eigenvalues, impossible. Therefore, to convert the equilibrium
and boundary condition equations into its equivalent matrix form, the terms associated
with the in-plane forces in equation (4.22c), (4.22¢), (4.22h) and (4.22j) must be
eliminated. Substituting equations (4.22b), (4.22¢) and (4.8) into equations (4.22¢) and
(4.22h) gives
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Tw, —hw, —Hw,; =0 (4.23a)

and with the same way
Tw, —hw, —Hw; =0 (4.23b)
which essentially indicates that the first derivatives of the transverse deformations at the

delamination fronts are equal for the neighboring regions. Furthermore, applying the

axial strain compatibility condition for the upper and lower sublaminates results in:

1 o dw, ,
5[ (=2)2dx +

(l-v_v_ )Pa ‘“lJ-a dwy
0" dx E.h T2

) (I1-v_v_ )Pa
-d‘ = X
o Ca YT g

+T-y() (4.24)

where y (/) is the rotation angle at the delamination front. Equation (4.24) represents the
postbuckling behavior of the delaminated beam. An important point to be noted is that
by replacing the y term in equation (4.24) with %(l;/(l)+ w(!/ +a)), the above equation
will become capable of treating a nonsymmetrical delamination. Before the onset of

buckling, the magnitude of the (d—W) term is insignificant, hence, equation (4.24) can be

dx
reduced into:
T-h-H-E,

h
R 2y YO )

Applying (4.25) to the moment continuity conditions (equation (4.22¢) and (4.22h))

at the delamination fronts results in
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E . ThHy(l)
£ =0 4.
2a-(1-v_v,) (4.262)

Dy, . —Dywy, —Dyy; +

E_ThHy(])
x =0 4.2
2a-(1-v_v_) (4.260)

Dyy, +Dyy, . -Dyy, -

At this stage DQM can be applied to the system of the differential equilibrium

equations and their boundary conditions, forming:

s (V(LY & L i=1,...,N
el = Dy _SY. ——> CYW =0 4,
(%) [1) 2 G =8 = 2 G k=1234 27

A 1 A s Ny l:]_,”_,N
COY +—>YCOw =4.1—> CPw, :
jz=l: o s +lk jz=|: & 7 lk jz=l: o s k=1a2’334 (4 27b)

where CJ and C};’ are the weighting coefficients for the first and second derivatives
along the non dimensional X-axis, respectively; W, and¥, are the deflection and

rotation of the f" point in the K" section, respectively; & is the Kronecker delta, and s is

the shear deformation parameter defined by:

4rn*D,
=T 4.2
*Srorr (4.28)

which includes the effect of shear deformation. Defining A as:

P
A= (47°D, /%) (4.29)



A is called the normalized buckling load.
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The boundary conditions of a beam-plate with its far edges clamped can be

represented by:
W,="*¥,=0
Wys=Y¥y,=0
Wy =W, =W;
Yy, =¥,=¥;

t3 M 3 Ny

T2~ 2 R,

1 j=I 2 =1

3 NV Ny

t; 3
LML Yo

4 j=1 2 j=1

t Ny ¢
(1) 2 (1)
l CNu' i Z CU’W

1 j=1 7/1

t 6t, -1, - t,
sch;;\p e L

3 j=l 2

t3 (1) 6tl byl
ZCV;ﬂ —Y¥,;=0

3 J=1 1')

LS o, =0

3 J=1

L t
ZCSiW - ZZCSL»:% ’ZC‘V‘,’,zW =0

4Jl 2/‘

3 J=t

(4.30a)

(4.30b)

(4.30c)

(4.30d)

(4.30e)

(4.30f)

(4.30g)

(4.30h)

(4.301)

4.305)
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wherez, and /,, (k=1,2,3,4) represent the thickness and length of each section. The

imposition of these boundary conditions makes some of the terms of equations (4.27a)
and (4.27b) redundant. To eliminate this redundancy, the terms corresponding to

=1and N, in equation (4.27a) and (4.27b), for all regions have to be omitted. The

combination of equation (4.27a), (4.27b) and the above sixteen boundary conditions

produce the following system of eigenvalue equations

b
7, 4.31)

where the subscripts b and i denotes for the boundary and interior points used for writing
the differential quadrature, respectively. The vectors {¥} and {#} contain the rotations

and normal deflections corresponding to the boundary and interior points. Transforming

equation (4.31) into a general eigenvalue form in terms of {Wf}results in
[a"]-{m} =a[B]- {w} (432)

The solution of the above eigenvalue problem by a standard eigen solver, provides
the eigenvalues, which are the buckling loads, and the eigenvectors {W}, which are the

]

corresponding buckling mode shapes.
4.2.3. Delamination buckling formulation for a general laminated composite beam

The delaminated fiber reinforced composite beam-plate model under consideration

is shown in Fig 4.1. Using the first order shear deformation lamination theory, the
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equilibrium equations for the fields corresponding to these four parts are given by

equations (4.18a-c). Let
O =k AP +w..) (4.33)

where again y; is the rotation angle, 4; is the shear deformation factor and A4i;'is the

transverse shear stiffness defined as

o _ [P o® gy (4.34)

5 T -t /2

and Dy in Equation (4.22) being the effective bending stiffness (otherwise known as the
“apparent” or “reduced” flexural stiffness) of the £ region defined by:

(4.35)

where 4, B! and D{}" are the extension, bending-extension and bending stiffness of the

cerresponding regions, respectively, and are defined as:

(4®,8%,D% )= f’ﬁ ©1,z,2%)-dz (4.36)

el
One can, therefore, rewrite the governing differential equations as:

Do~k AR v, +w,.)=0 (4.37a)
k=1,2,3,4
kA i+ W), ~ Pow e =0 (4.37b)
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The boundary conditions for the different regions consist of the in-plane and

transverse as well as the continuity and compatibility conditions. The in-plane and

transverse boundary conditions at both ends are the same as equations (4.3a,b), (4.21a-d).

The continuity conditions at the delaminated edges must be satisfied for the
transverse deflections, the moments, the in-plane and shear forces which can be
represented at the first delamination front, that is at x =/ as equations (4.22a, b and d)

plus

A(Z)A(3) B(3) B(Z) T R P
Dy,.,~Dyy, —Dyy, +—H| ———p— | 2110 (4.38a)
Wia =DV = D T G A T AP
[sA;IS)(WI_E_W ) k:AS(SZ)(‘Vz’*'WzJ) (3)(W3+W3r)]
(4.38b)
—(Bw,. = Powy, —Pw, )= 0

and at x=/+a , boundary conditions for the second delamination edge, taken the form

of that of equations (4.22f, g and i), plus

A(Z)AO) B(S) B(2) T P P,
D,w, +D. -D _An 'u 1 . 117 = __1’_____3__ -0 4.38
RS T PR P 45
[ksAg;:,)(wl-*-Wl.x)-‘-k (g)(w3+w3.x)_k‘4§;)(y/4+w )]
(4.38d)

- (})ZWZ..\* +‘P3w3,x _})4W4.x): 0

In order to prepare the boundary equations for a matrix solution, the terms

associated with the in-plane forces of these equations should be eliminated. Using the
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method introduced in the last section and recognizing that the critical buckling load in

each region can be expressed by:

A(:) -~
p =" p (4.39)
5

one can write

AP w,, - ‘s’w,_r (;”)w =0 (4.40a)

Dw,  — AW, — APw; =0 (4.40b)

Furthermore, insuring the axial strain compatibility condition for the upper and lower

sublaminates results in:

dw, . Pa [Bf?’ By

dw, ,
=] ( ) dx+—3 (*-—) dx+ =~ +T]-W(1) (4.41)
.[ ( Y = I Al(ls) A9 AD

where y (/) is the rotation angle at the delamination front. By replacing the y term in

equation (4.41) with (q/([)+q/(l +a)) the above equation will become capable of

treating a nonsymmetrical delamination. Equation (4.41) represents the postbuckling

behavior of the delaminated beam-plate. It should be noted that before the onset of
buckling, the contribution of the(—i—:) terms is insignificant, therefore, they can be

neglected. Equation (4.41) will then reduce to:

Y

P, (3) B(Z)
3 _(Bn 1 +T]-W(l) (4.42)

2y T 43 T )Y~ 4
A4, A 45 A5 a

-
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Applying (4.42) to the moment continuity conditions at the delamination fronts

result in:

Dy, —Dyy,, -Dyy; ., +

(4.43a)
AP (8P BD \(BY_BY TVWO_,
AD LAm Al(lz) A‘” AI(;) 2J a
Dy, +Dyyw,—-Dy, —
(4.43Db)

AP (B0 B V(B BY TWa_,
N VI A VRS I

Application of the DQM to the above systems of differential equilibrium equations

and their boundary conditions results in a systern> of eigenvalue equations. First applying
DQM to (4.37a,b) yields

N‘ .=I N
C(”‘P —k, 4% 5. W, +— C(”W 0 PR 4.44
] ,Z. Iz 55( * “Z_[l " ) k=1234 (h.442)

9 P IV k) i= l,...,N
Zc,j‘;qf +—Z CHW -[ )ZC,;’W (4.44b)
i=l

(= ke AT, k=12734

The kinematic boundary conditions for the beam with clamped edges can be

presented by the same equations as in (4.30a-f), plus:
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_ZC( o ZC(U\P 3 Z:Cl(li)3

l j=t 1 s=l } f=1
(4.45a)
AP (B _BY LYBY B T\ly _o
R R O S
D, M
LI TR D e R Yo A
4 =1 7 j=l 3 j=l
(4.45b)
_ADAD (B BY YBY B T, _,
A7 A7 AT AV 47 2 )L
(;) S 1 Aésm S () g7 Ag) S (1)
. Z (l)JlW T ZICIIZ 2= I, ZCusW;s =0 (4.45¢)
2 J= J=
4'_1 3 AV
ﬁiC“)W A:S ZC(I) A:“ZC(I) W =0 (4.45d)
I, = 17477 j4 N3 j3 .
j= L

where ¢, and/,, (k =1,2,3,4) represent the thickness and length of each region. By using
these boundary conditions some of the terms of equations (4.44a) and (4.44b) become
redundant. To eliminate the redundancy, equations corresponding to i =1 and N, can be
omitted for all regions; hence the combination of (4.44a), (4.44b) and the above sixteen

boundary conditions can be represented by a system of eigenvalue equations similar to
the one in (4.31), which can be simplified to the form of (4.32).

The solution of the eigenvalue problem of equation (4.32), by a standard eigen

solver produces the buckling loads and the associated buckling mode shapes.
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4.3. Buckling formulation for a laminated composite beam with multiple

delamination

In the previous sections the formulations of a beam-plate having a single across-the-
width delamination were presented. However in most situations, when a composite
structure is impacted by an external object or due to other phenomena, a number of
through-the-thickness delaminations may occur. In a multi-delaminated beam, number,
size, position through-the-thickness and along the longitudinal span of the delaminations
are some of the parameters that can influence the delamination response of the composite.

In this section, we derive the differential quadrature formulation of a beam-plate having

multiple delaminations.
3
2 4
) T ] m
' [ [
1

~
o

Figure 4.3. Geometry of a beam with multiple delaminations.

Figure (4.3) shows the side view of a laminated composite beam, which is assumed
to have a number of delaminations prior to loading. The delaminations are in arbitrary
location through-the-thickness, with arbitrary length and position along the beam span.
As noted earlier, the sections before and after delamination regions, where the plate is

intact are named “base” laminates, and the delaminated regions are referred to as the
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“sublaminates”. The delaminations divide the beam into m geometrically continuous
regions (shown in the figure as doted lines). #; and /; are the thickness and length of each
region, respectively. The position of each region along the beam span is defined by e..
The beam is under an axial compressive load. Using the first order shear deformation
theory to treat each region as a separate beam, the governing equilibrium equations

corresponding to each region can be written as:

Dy o~k AP, +w,,)=0 (4.46a)
k=1,2,....m
kAP, +w,,) ~Pw, . =0 (4.46b)

where wy, i and Py are transverse deflection, transverse rotation and the resulting
compressive force of the £" region, A{¥ and Dy are the stiffness of each region as defined

in (4.34) and (4.35). The boundary conditions for a multiply delaminated beam with

clamped ends consist of the in-plane, transverse, continuity and compatibility conditions

given by:
at x=0 B=-P w, =y, =0 (4.47a)
at x=L P =-P w, =y, =0 (4.47b)

At the delaminated edges, the geometric boundary conditions consist of vertical

deformation and rotation compatibility equations as:

w,=w.=...=Ww, (4.47c)

V:=V;=...=Y,; (4.474d)
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where i,j,...,k are the region numbers surrounding a crack tip.

The other boundary conditions at delamination fronts consist of the in-plane force,

shear force and moment equations as follow:

P-P —--—P,=0 (4.47¢)
Q-0 =0 —Bw, ~Bw, ——Pw,)=0 (4.471)
M,~M,~~M, +Pz,+Pz,++Pz, =0 (4.47g)

where z is the distance between the mid-plane of each region and the appropriate
moment point. Shear force Q and moment M are defined by (4.33) and (4.19a) for each

region, respectively.

In order to solve for the buckling load, the axial compressive load P in (4.47f, g)
should be eliminated. To do this, one can combine the strain compatibility equation for
the regions between delaminations, the relation between the loads at the critical buckling
state given by (4.39) and kinematic relations of (4.47c-d). This results in a series of

equations such as those given in (4.43a,b).

Applying the differential quadrature technique to the differential equilibrium

equations of all the regions results in a system of discrete algebraic equations as:

N‘
Ci¥, —k A“{a W +—Zc

ifk s“*55
J‘l k Jj=l

G, t=L. N (4.482)
i k=1,...,m ]
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2 = P V (-)l i=1,...,N
ZC&?\P,w——ZCL" i ( p A‘I’lk),z_:c”‘ W, folm (4.48b)

=| L J=l s4733

Applying the differential quadrature to the boundary conditions, together with the
above equations produce a system of eigenvalue equations. This system can be solved in
the same way as presented in the previous sections to give the delamination buckling

loads and corresponding modal shapes.

In our case studies we also consider a modeli where all the delaminations have equal
lengths (Figure (4.4)). Some researchers like Suemasu (1993) and Lim and Parsons
(1993) have used such models. For this case the number of regions, and therefore, the
efforts required for formulation and solving the problem is reduced extensively. The

number of regions is reduced to £+3 where k& is the number of delaminations.

] k+3 | 5

N
‘

Figure 4.4. Geometry of a beam having multiple delaminations with equal length.
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4.4. Delamination buckling formulation for a general laminated composite plate

In this part the differential quadrature formulation of a composite laminated plate

containing a single elliptical delamination will be presented (Figure 4.5).

Figure 4.5. Delaminated plate under axial compression.

The geometry of the problem is shown in Figure 4.6. As shown, the global

coordinate system x'—y’—z' is oriented such that the x’-axis is along the loading

direction. The laminate is under a compressive strain & (a positive value indicates a
tensile strain) in the x’ direction. The delamination, which is located at the center of the
plate, exists prior to the loading. The delamination, which is assumed to be thin, divides
the laminate into two regions. The upper thin part, delaminated from the laminate is
referred to as the “sublaminate” and the remaining part is known as the “base” laminate.
From the top view the delaminated part is an ellipse with the principal axis of x and y and
the major and minor semi-axes length of a and . The local coordinate system x-y is

rotated at an angle 6, which is called as sublaminate angle, with respect to the load
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direction x’. v is the angle of fiber orientation in each lamina with respect to x’'. The
thickness of the base laminate is considered to be much larger than the sublaminate, so

the sublaminate boundaries can not be bent.

Figure 4.6. Geometry of a plate with elliptical delamination.

4.4.1. Equilibrium equations

In this study the classical laminated plate theory (CLPT) has been used to formulate
the plate problem. This will result in differential equilibrium equations with derivatives
up to forth order. Using CLPT, the differential equilibrium equations for a plate can be
written as (Whitney (1987)):

N, +N,, =0 (4.49a)
Ny +N,, =0 (4.49b)

M +M  +M, +N -w +2N ,-w_+N -w, =0 (4.49¢)
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where w represents the out of plane deflection, N;, N,, Ny, M, M,, M., are the resultant

forces and moments obtained by:

W,.¥,.N¥,)=[(e..0,, (4.50a)

(0r,.m,.M)=((..0,0,)zd (4.50b)

Substituting stress-strain and strain-displacement relations in (4.49a) to (4.49c¢) yields the

following equilibrium equations in terms of in-plane displacements « and v and out of

plane deflection w

Agu . + 2Al6u,.r_v + A“uw + AV . + (A, + Ay )vJy + Azév'yy

(4.51a)
—Byw, . —3Bgw,, — (B, +2Bg)w,,, —Byw,, =0
At o +(Apy + Agg Ju o, + Aot ), + AggV o +245v,, + 450V,
(4.51b)
—Blﬁwm (B, + 2366)wvny _3B26w4}:v' —B22W-mf =0
Dy W e +4D W o, +2(D), + 2D )W +4Dyw  +Dyyw
—Bu . —3Bju ., ~ (B, + 2366 Y, —Byu o, (4.51c)

=BV o = (B +2Bg)Vv ., =3BV, —Bnv,, =N w_ +2N w_+Nw
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where 4, B and D are the stiffness terms. The first two equations are concemed with the
in-plane equilibrium while the last one represents the buckling equation. A close look at
equation (4.51c) indicates that the coefficients of in-plane displacements « and v are those
which are only associated with the bending-stretching coupling terms. So, if one can
eliminate these terms from (4.51c) then, one can determine the buckling strains by only

one equation (i.e., 4.51c). This will dramatically reduce the computational efforts.

For symmetric delaminated plates, B;=0 and thus, the extension and bending are
uncoupled. One therefore, only needs to solve equation (4.51c). But in general, the
delaminated regions do not possess mid-plane symmetry (even if the laminate is
symmetric), and therefore, bending-stretching coupling exists. In this case, some
researchers have recommended the reduced bending stiffness approximation (Davidson
1991). In this approach, the effect of coupling terms By, is implicitly accounted for by

reducing the flexural stiffness matrix such as:
[p]=[p]- 841" (5] (4.52)

The accuracy of the reduced bending stiffness approximation in analyzing the
delamination buckling of composite laminates was examined by Dost et al (1988). They
performed finite element analysis on delaminated composite plates and found that the
results with reduced bending stiffness agree well with those with the usual bending and
bending-stretching stiffness matrices. Therefore the delamination buckling equations of

(4.51a-c) reduce to the following form:

Dyw, .+ 4516wm +2(D,, +2D,, MW s
(4.53)

+4D26ww'+ Dﬂw‘ym =Nw_ +2ND,W"V -i-Nywvy_V
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4.4.2. Loading and Boundary Conditions

The laminate is loaded by a far field strain £_ in the x’ direction (where a positive
sign refers to a tensile strain). Due to the Poisson effect, v, , a strain with the magnitude
of —v,, &, acts in the y direction. The in-plane stresses acting on the sublaminate region

can be expressed based on the coordinates x-y. The problem can be reduced to an

elliptical plate under axial loads as shown in Figure (4.7).

y A
t’
mp Nxy
//’—\ Nxy
L SO
\
Nxy \—/
Nx y-l
Ny
Figure 4.7. Acting forces on the sublaminate.
Therefore the in-plane stress resultant can be expressed as
N, =4,¢e +A4,6, + 44, (4.54a)

N, =4, + 4,6, + Aye,, (4.54b)
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N, = A&, + ArE, + Al (4.54¢)

where the strains are expressed with respect to the sublaminate coordinates. These strains

can be related to the laminate strain £, its Poisson’s ratio v,,, and the sublaminate angle

@ (see Figure 4.6) by:

. =(cos’8~v,, sin’B)-¢, (4.552)
g, =(sin*6 -v,, cos’0)-&, (4.55b)
g, =—3(+v,,)-sin28-¢, (4.55¢)

The boundary conditions are assumed to be clamped around its perimeter, which

can be represented by:

w=0 (4.56a)

w, =0 (4.56b)

where n is the normal direction to the boundary edges. Using directional derivatives,

equation (4.56b) can be written as

We-n,+ Wy n, =0 (4.57)

in which n, and n, are direction cosines of .
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Therefore, the buckling problem of a composite laminated plate under compressive

axial load having a thin elliptical delamination can be represented by the buckling of a
symmetric elliptical composite laminated plate, with clamped boundary under general in-
plane load. In order to solve the problem by DQM, we recall that DQM inherently can
only consider domains with boundaries parallel to the coordinate axes. This indicates that
the domain for such two dimensional problems should be in the form of a rectangle.
Thus, in order to solve the elliptical domain, one should map the actual domain into an
equivalent computational domain in the form of a rectangle. For this, we use the method
suggested by Bert and Malik (1996b) in which the quadrature rules are reformulated by

mapping of a general curvilinear region into a square domain.

By using the mapping scheme introduced in Chapter 3, one can transfer the
elliptical domain into the equivalent computational domain with the dimensions [-1,1].

Then applying the DQM to the equation (4.53) yields

A
D, > csw, +4D,6ﬁzc,(3’Zc‘”W +2(D,, +2Dy) B’ ZC}[)ZC%’WWu
k=1

k=1 =1

4D, p’ ZCS’ZC”’W +D.,,p ZC“”W =

N, @.58)
poei j=L...,N, '

m=l

A-a’ [a ZC},C’W + 20 ﬁZcm CooW,, +a, B’ ZC"’W ]

Note that N: and NV, in the above are the number of grid points in the £ and 7 directions
of the computational rectangular domain, respectively (see Figure 4.8). Wj is the
deflection of the grid point laying on the intersection of the i point in the &-direction and

J® point in the n-direction. B =a/b, A=¢, and
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[ =X),xy (4'59)

oz

Nn

o~

T—
H
=~

i=1,2,... N::

Figure 4.8. The sampling points in the transformed domain.

The differential quadrature representation of the boundary conditions of (4.56a) and

(4.57) can be written as



N, N,
cosg- 3 COW, +sing - CLW, =0
k=1 k=l

N N,
cosg- ) CW, +sing-BY CUW, =0
k=l k=1
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i=l1, -’Ns
=2 N -1 (4.60a)
Bt AR RS |
i=2,...,N. -1 (4.60b)
l=2,Nn—l )
Jj=3,..,N_-=-2
I=2.N. -1 (4.60c)

where ¢ is the angle between normal to the plate boundary and the x-axis.

By using these boundary conditions, some of the terms of equations (4.58) become

redundant. To eliminate this redundancy, equations corresponding to the first and second

points around the boundary (ie. i=12,N.-LN, and j=1.2, N,-1N,) can be

omitted. Therefore, the combination of (4.58) and (4.60) can be represented by a system

of eigenvalue equations such as the one represented by equation (4.15). Reducing this

system of equations to the one with only {#,} as unknowns results in eigenvalue

problem in the form of equation (4.16).

The solution of this eigenvalue problem by a standard eigen solver produces the

buckling strains and the associated buckling mode shapes.
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CHAPTER S

POSTBUCKLING ANALYSIS

5.1. Introduction

As stated previously, delamination buckling has been a major concem in
compressive applications of composite materials. Structures such as beams or plates,
even in the delaminated form, have the capability to carry loads beyond their buckling
limits. Such damaged structures may undergo a large amount of postbuckling
deformation before their final failure. Also, it has been known that introducing a small
imperfection may change the buckling load and postbuckling response dramatically.
Consequently, the problem of postbuckling analysis of imperfect composite laminates
having delaminations has been the focus of several investigations, and as a result several
methodologies and solutions have been developed. This class of problems is often treated
with numerical methods such as finite elements or finite differences combined with a

nonlinear solution strategy.

In this chapter, the differential quadrature method combined with an arc-length
strategy is used to model the postbuckling analysis of imperfect laminated composite
beams having a single or multiple delaminations. Here the contact effect between the
delaminated parts has been neglected. Also, the delamination growth due to the opening
of the delaminated sections under the compressive load will not be considered in the
analysis. First, the arc-length strategy employed in this study will be explained with the
aid of an example to show the effectiveness of the method. In this example, DQM will be
applied for the first time to analyze the postbuckling response of laminated plates. Then
the differential quadrature formulation of imperfect laminated composite beam having a

single or multiple delaminations will be presented.
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5.2. Arc-length method

In the past few years a great deal of effort has been put toward improving the
nonlinear solution schemes used in treating various nonlinear stability of structural
responses. The conventional Newton-Raphson iterative algorithms, which have been used
extensively to solve nonlinear problems, develop difficulties when tracing the points near
buckling or limit points of the equilibrium path. In these algorithms load controls the
path; that is, the load is incremented by constant values and the iteration is performed on
the nodal displacements, only. In these algorithms, the solution often halts near the limit
points. To resolve this problem, several strategies have been suggested by researchers
(see for example Clarke and Hancock (1990)). In some of the suggested methods, the
iterative procedure is controlled by displacement, where a constant displacement
increment or a combination of, controls the equilibrium path (see Haisler and Stricklin

(1977), Batoz (1979) and Powell and Simons (1981)).

In addition to the above methods, there is another strategy that uses a constraint to
limit the load increment. The method, which was introduced by Wempner (1971) and by
Riks (1979) independently, uses the arc length of the load-displacement path as the
constraint equation, and therefore is referred to as the “arc-length” method. The method
was modified by Crisfteld (1981, 1983), thus being referred to as the “modified Riks”
method.

There also exist other types of constraint equations such as the “constant external
work”. Clarke and Hancock (1990) performed a detailed study on the available

incremental iterative strategies for the nonlinear analysis.
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5.2.1. Arc-length formulation

An arc-length algorithm based on the Forde and Stiemer (1987) work is used to
solve the nonlinear system of equations resulting from the application of DQM. The
governing system of equilibrium equations is represented by:

F(x)=AP (5.1)

where F is a nonlinear function of unknown displacements x, P is the fixed load vector

and A is the loading factor, which controls the applied load (Figure 5.1).

I

U
)' 1
\ == AL Au'
road N
| / !
7\.(‘) / P m+l -

-/ ¥

Figure 5.1. Arc-length incremental scheme.
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Using a Newton incremental iterative solution, one can represent each iteration of

the equilibrium relation by the following expression:
KYAu+F(x")=AP (5.2)

where K is the first derivative of F with respect to x (or gradient of the
force/displacement relationship), and

(i+l) -

Au=X x¥ (5.3)

The main difference between the arc-length method and the Newton technique is that in
the Newton method the variables are unknown vector x, while in the former procedure,
the load factor A is considered as a variable, too. Writing A and x of equations (5.2), and

(5.3) in incremental forms

A0 L a0m A Ag (5.4a)

x™ =x" +u® + Au (5.4b)

where m represents a point on the load-displacement curve (see figure 5.1). Replacing A

and x in (5.2) by equations (5.4a,b) yields:

KPAu = (A + 2 + AL)P - F(x) (5.5)

The incremental displacement Au can be written as:

Au = AlAu' + An" (5.6)
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where
Kri)Au[ =P (57&)
K(c‘)Auﬂ - (/l(”” +l‘”)P __F(x(i)) (57b)

The first term in equation (5.6) is due to a unit load vector multiplied by AL (equation
5.7a) and the second term is due to the unbalanced load (equation 5.7b). In order to find
the solution we need another equation to account for the unknown AA. For this, a general
scalar equation is used to constrain the load and displacement increments. This equation,

known as the arc-length equation can be written as:
2 2 2 @7 G
AP =2 ¢ @ u? (5.8)

B is a scaling parameter (with units of displacement) to ensure the correct scale. Equation
(5.8) holds for every substep in the iterations. When 8 =1 the method is known as
“spherical arc-length”, which was originally proposed by Crisfield (1981). However,
using this equation results in a quadratic equation. The selection of one of the roots of
this equation, which may also have one or two imaginary roots, needs additional
computational efforts. In our investigation, we have used the method of the “explicit
iteration on spheres” suggested by Forde and Stiemer (1987), which gives exactly the
same results as those reported by Crisfield and yet, it does not use a quadratic equation.

They used an iterative procedure to derive AA as:

. T
3 R(t)_u(:) Allu

TAL .
A7 +u Au'

(5.9)
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where, R is a scalar residual. Using equation (5.7) and (5.9) one can obtain Au. The
solution is updated based on equations (5.4) and (5.5) until the specified convergence is
reached. The procedure continues up to the desired load. At the beginning of each load
step, an initial load increment A" should be chosen to ensure the efficiency of the
algorithm. Using a large load step may cause slow or no convergence, while a small load
step may cost deficiency of the method. Moreover, using an automatic load increment
strategy mostly depends on the nature of the problem, and therefore, makes it difficult to
specify an exact formula for the load incrementation. In this study the following formula

as suggested by Ramm (1981), is used for the automatic load incrementation:

Iy

A0 = T, (5.10)

m—1

where J; is the desired number of iterations for convergence, typically between 3 to 5,
J._, is the actual number of iterations required for the m-1" load step and 2" is the load

llh

increment for the m-1" load step.

5.2.2. Postbuckling analysis of a laminated composite plate

In this part the DQM and the arc-length method are combined to produce a
numerical scheme for solving the nonlinear postbuckling equations of composite
structures. To the author’s best knowledge, there has been no attempt in the past to
analyze the postbuckling response of composite plates by DQM. In order to examine the
applicability of the DQM to the postbuckling analysis of delaminated structures we will

first apply it to the postbuckling analysis of a laminated composite plate.

A thin composite laminated plate under compressive load is shown in Figure 5.2.
Geometrical imperfections in the form of out of plane deflection are assumed to exist

prior to the loading.
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Figure 5.2. Geometry of the plate and the applied load.

In this study, the nonlinear von Karman strain-displacement relations are used to
express the in-plane strains of the plate. Moreover, the distribution of the through-the-
thickness strains is assumed to be based on the Kirchhoff-Love plate theory. These

assumptions result in the following strain-displacement relations:
2 —
E,=U +3W, +W W +2ZK (5.11a)
_ i 2 —_—
E,=V, +t3W, +W W, +ZK, (5.11b)

Yo SU,FV W W +WW +W W, +2K,, (5.11¢)
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where u, v and w represent the displacements of any point on the mid-plane along the x-,
y- and z-directions, respectively; W is the imperfection function and « are the curvatures,

defined as:

K, =—2w_ (5.12)

KX = —»V‘n ; K-. = _w" .

The differential equilibrium equations of a thin laminated plate can be expressed

in the following forms:

N +N,, =0 (5.13a)
N, .+N,, =0 (5.13b)
M __ +2M_ +M,  +N (Ww+W) , +2N_ (w+W)_ +N (w+w) =0 (5.13¢)

where N and M represent the resulting forces and moments, respectively. The relation
between the forces and strains in classical laminated theory can be expressed in vector
and matrix forms by

N =Ae+Bk (5.14a)

M =Be+Dxk (5.14b)

where N and M are the force and moment vectors, respectively, and

h!2 7 . .
(4;,8,,D)=[ " 0;(Lz,z")dz i,j=12,6 (5.15)
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Substituting (5.11) and (5.12) in (5.13) and using (5.14), the differential equations of

equilibrium for a symmetric laminate can be expressed in terms of displacements as

follows:

Al +w W +w (W +W )+ A4, (vﬁ,}, +w W, +w, (W, + W_x},))-t-

(5.16a)
Agg (u__‘_v v, +w (W, + W'_‘y) tW oW W, (w_}, + W__V) + W,y-w;_v)z 0
A, (“,r_v + waWJ + W,:(W,ry + WJ_V))+ Ay (vw tw o w,o+w, (W-.w + Ww))+

(5.16b)
Ag (u'_ry Vv +w, (W +W ) +w W, + wJ‘},(w‘r +W, )+ wJW_v_‘,)z 0
Dyw . +2(D, + 2D66)W,my + Dzzn{my +
[All ("‘.: + %“”.xz + w.xw.x )+AIZ (v._v +—£—qu2 + W’W‘ )]' (W.!:r + W.n) +

(3.16¢)

2455t 4V + W+ (0, +T,) =TT ) (w4 7,) +

Ly 2 w Ly ? W )] W)=
[A,z(u; tIw, +w W, )+ A4, (v'y +zw,) +ww N(w, +w, )=0

For a rectangular plate, simply supported along its edges, the boundary conditions are

expressed by:
atx=0,a w=0, M =0, N_ =0, N, =P (5.17a)
aty=0b w=0, M, =0, N_=0, N,=0 (5.17b)



Applying DQM to (5.16) result in:

“{az BXU, +(Z BY'W, ]( g ),-j +(i BYW, I[Z BYW, ]+ (er )g]}“"
k=1 k=1

Apﬁ {sz(l)Zc(l)V (ZB(K)Zc(l)W }( ) (ZC(I)W }

(5.18a)

[ZB‘“ZC‘”W ] + (7 )]J}+ A B’ {aZCj,:’U,k +bZB‘”ZC‘“V +
if

m=| k=1 m=]

(:gB;;’W@HZC,‘JW.L] . )J (zcvw} )+

\

[iBf,f’iC},‘,,’Wm HZC“’W ] +(7, )ﬁ}(ic},{)% }W_n)ﬁ}w
k=1 m=l

k=1

—';'—j{aiBg)iC};’Um +(Z B(l)ZCj‘,',,’an} )u +
k=1 m=|

m=l

(ZBQ)W;E,-I(Z;BS’;C‘“W ] (7 X,,)ij}}ﬂ»

n, N/ n,
An{bzcm{zcmw} ){zc;m rzc;z’W.-k}-(vv,,,y),.,}}+

=] k=1

(5.18b)

m=|

n. ay ) ( .
Zéf {az B} Z cou,, + bz B,-(:)Vb- '*{Z C}L)Wm B,-‘kZ)ny- J"' (Wxx ),JJ +
k=l

k=1 /

{HZB,(;)W} ) {ZB“’ZC“’W HZB;;’W‘,. ]+(WX)7 +

m=1



k=1 m=1

{A{ZM%{ZBW} (g aem, }W)J

k=1 k=1

n, { n, 2 n, . .
Alzﬁl[bz ey, +L zcj.pwm] +(zc;;.>wm ](w)}

k=1 \ k=1 k=l

n, \ ny, .
(Z BOW,, + (W )ij +24,.8° -{az CQU, +bD> BV, +
k=1 k=1

k=1 Y,

/ n, . n, . _ -
> By, + ), )-(;Cﬁ’% +), ]_ @), 0), }

\ k=!
{ n, n, .
$ 803 com, +(7), ]+
\ k=l m=1
{Alzﬁ : ain’(kl)Uﬁ + %(i B,.(,:)W‘,,. }- * [i Bi(k})Wki }W\’ )u:| +
k=1 k=l k=1

Azzﬁ2 : ZC}}&)I/H: '*";“(Z Cj’llc)nfik] +

k=1 k=1

1y

{iq}.’% }W)}}(Z CRW, +(Ww),_j]=o

k=1 k=l

Du(z B::)ij ]-i— 2(D,, +2Dg)B 2(; B!.(kz)z C;’i)Wh" ]+ D,,B 4(

n,

> CPW,

k=1

]+

(5.18¢)
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where X:‘_t., Y=%, [3:-2-, i=l..,n, j=1L...,n, and (V?)ﬁrepresents the
a

derivatives of the imperfection function evaluated at X; and ¥;. B’ and C;°' are the

weighting coefficients for the K" derivative along the non-dimensionalized X and Y axes,
respectively. Similar expressions can also be found for the boundary conditions noted in

(5.17).

Using the arc-length method, one can solve the nonlinear system of equations
resulting from the application of DQM to the system of differential equations and their
associated boundary conditions and to obtain the response of the plate under increasing

compressive load.

5.2.3. Case Studies

To verify the analytical formulations presented, several case studies were used to
evaluate the geometrically nonlinear response of various composite plates. In all cases the
boundaries were assumed to be simply supported, while other boundary conditions can
easily be implemented. The geometric imperfection functions are represented in terms of

the buckling mode shape with different amplitudes by:

W=w, sin(-’-’ﬁ}sm[i’%‘?’-) (5.19)
a

To illustrate the application of DQM, two case studies will be discussed here. The
first case study examines the response of a square plate (unit length (a) x unit width (b) x
0.02 unit thick (h)), subjected to an axial compressive stress. The material forming the

plate is orthotropic with the following properties:

E, = 104.6x10° Pa; Ey = 8.66x10° Pa; vi; = 0.276; Gj» = 2.92x10° Pa
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Three different imperfection amplitudes were applied to the plate and the
resulting out of plane deformations are shown in Figure 5.3. The equilibrium path
obtained from a commercial finite elements program (NISA) is also illustrated in the
same figure. In the figure, the ordinate represents the applied load normalized with
respect to the buckling load. For DQM, 13x13 grid points were used to discretized the
plate. As shown by the figure, DQM was capable to predict the post critical response of
the plate accurately, and efficiently compared to the finite element solution. Also, it can
be seen that increasing the amplitude of imperfection dramatically influences the

response of the plate.

2.5

P/Pcr

—w0/h = 0.001

.|||II1¥I|I{!I|||

1
------ w0/h = 0.01
0.5 —-—-w0/h =0.1
) o NISA
0 - ' . v
0 0.02 0.04 0.06 0.08

w

Figure 5.3. Load vs. max. deflection (at x=0.5a, y=0.5a) for the simply
supported square plate.
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In the second case study, the postbuckling response of the rectangular plate (@/6=3,
h=0.1), of Lanzo et al (1995), was considered. They combined a High-Continuity finite
elements plate model with the Koiter’s asymptotic strategy to solve for the buckling and
postbuckling response of the rectangular plates. The results are shown in Figure 5.4.

Again the DQM shows excellent agreement with Lanzo et al.'s finite elements method.

2 -
1.5 -
€ 1-
a —D.QM.
0.5 o Ref[5]
0 1
0 0.05 0.1 0.15 0.2

w

Figure 5.4. Load vs. max. deflection for the rectangular plate (a/b=3,

E=2.1x10°%, v=0.25, h=0.1).

5.3. Postbuckling analysis of composite laminated beams having single delamination

In the following, DQM will be applied to the differential equations describing the
postbuckling response of a delaminated composite beam under axial compression. The
beam contains a single delamination prior to the loading. The case of multiple
delaminations will be also considered later in this chapter. The geometry of a one-
dimensional delaminated beam-plate used in this investigation is shown in Figure 4.2.

This model contains an across-the-width delamination with the length ‘a’, located
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arbitrarily through the thickness and along the span of the beam. As before, the

delamination divides the beam into four regions.

To formulate the problem, we consider each of these regions as separate beams.
Moreover, it is also assumed that prior to loading the beam has a natural imperfection,
W, in the form of the beam's preferred buckling mode shape, and the material is assumed
to follow Hookian elasticity. Furthermore, delamination growth and the contact between
the delaminated regions throughout the loading are neglected. Using the Kirchhoff-Love
hypothesis, there are two independent variables: the axial displacement, u and the normal

deflection, w. Writing the kinematical relationship for each region of the beam, one

obtains:
¥ =gl -z (x) (5.20)
where & ® is the strain at any depth z in region k, x is the flexural curvature of the

reference (midd!e) surface and g is the axial strain of the same surface defined by

X)

= L,,2 W
gy =l FaW +W W, (5.21)

Using the classical lamination theory the load/moment-strain/curvature relations can be

represented as:
N, = AP — BF® (5.22a)

M, =BPel® - Dk ® (5.22b)
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where N and M are the axial force and the bending moment, respectively, and 4, B;; and
D, are the stiffness properties given by (4.36). The equilibrium equations for each region
can be written as:

N, =0 (5.23a)
k~=1,2,3,4
M, . -N.(w, +w,.)=0 (5.23b)

The curvature can be represented exactly by:

w
_ = (5.24)
) (+w,)? )

As in the case of the elastic curve of a beam, the slope w, is very small, and its
square is negligible, therefore most beam formulations ignore the term (wy’. But by
neglecting this term when computing the postbuckling response of beams, one can

introduce a substantial error, as the delaminated regions may undergo large deformations.

Using the kinematical expressions and the equilibrium equations developed above,
we can write the non-linear differential equations describing each region in terms of the

displacement components, as:

(k)( — = )
AU o F W W W W+ W, W,

k=1,2,3.4 (5.25a)

~ B ka(1+(wk.x)2 —3wk.x(wk..u)2
1

2.2 =0
A+ (W )7)
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d® Wi e WL Wi e Wk e _ 3W:_u(1"'4(wu)2) _
S T L TN S L (R C D

k=1,2,3,4 (5.25b)

_ _ G W .
Aﬁ)(“m +'5'(Wm)2 + W W) —Bl(l“ x—_“, Tl (Wee t Wi ) =0
(I+(w,.))

where df) = D{f’ —(B{P)? /A{f’ . The boundary conditions are the given values of:

11

u or N

w or Q (5.26)

wy or M

which are specified at the outside edges and along the interfaces of the regions. Q is the

shear force and is defined by:

Q=M +N(w, +W,) (5:27)
If the beam is simply supported, its boundary conditions can be written in the form:
Atx=0 w,=0 ; M, =0 ; N =P, (5.28a)
Atx=1L w,=0; M,=0; u,=0 (5.28b)
where P, is the applied load.

At the crack tipx =1/



92

U, =, ——w,, ; Uy =1l +5le (3.28¢)
wo=w,=w; W, =W, =Wy, (5.28d)
Ml—MZ—M3+~}—21—N2 —-}21N3 =0 (5.28¢e)
0-0,-0;=0 | (5.281)
N,-N,-N;=0 (5.28g)

At x = [+q the continuity conditions are the same as x = /, except the subscript ‘4’ is

replaced by “1°.

Using the non-dimensionalized variable X = x/L and applying the DQM to the

differential equations and their boundary conditions for all the regions resuits in:

Aff’[lkZC;Z’U +(ZC§2W qugw }

j=1 Jj=l J=1

& — i =2, —1
(ZCEL’W,-k)-(Wn),k ( > cow, ] ), } 22123:‘ (5.29a)

J=t

5 1 |[& 4 3 Y
B”’;?HZC;&M]-V‘ ,—[Zc;:zw ][ZC;,:W ”=o
i k

Jj=l j=l j=1
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1 .
at|[Sicm. oo Sewm | Sewm | Sewm -
j=l & J=1 j=1 j=l
1 ’ 1 )
3L S cow, ||1-4- cow, | vt |-
Hgewm[ofige

{A{f’[l Sepu i Seom, ] (zlc;m](m}—

(5.29b)

J=t Jj=1

) , _ i=3,.,n, -2
Bl‘f’{zcék’W }V}[ZC( W, +(W-H)mJ=O k=1,2,3,4k

J=1

th

where C;; are the weighting coefficients for the 7 order derivative along the non-

dimensionalized X axis, Uy and Wy are the in-plane and transverse displacements of the

/™ point in the &™ section, respectively and ¥ is:

V-_{1+[ILZC§?WJ,CJ (5.30)
k

J=1

The boundary conditions can be expressed in differential quadrature form as in the

following:
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At x=0
w, =0 ; Zc,‘,’gw =0 (5.312)
J=i
PRSI zc:;zw 3o, [, -
l =t I i=l 1 j=l
(5.31b)
5 -1
Bl(:)( ZCl(;l)W ) {l ZCS}W ) =Pnppl
1 Jj=l 1 j=t
Atx=L
W,,=0 ; ch’;w =0 ; U,,=0 (5.31¢)
j=1
Atx=1
t, 1 t, 1
Up=U, ——3—ZC£,‘,’1 w5 Us Zc;‘jl W, (5.31d)
l =l 1 j=t
1 4 1 n3
=Wy i TR CUW, = X C =2 O (531e)
lj-l -; j=1 3 =l
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m y 3 M - 1 2
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P-P,-P =0 (5.31h)

where P;, P> and P; are

A,‘I’ {licﬁ}p +2{2C,‘,‘}l } (ZC,‘,BIW }W\,)”ll

= =1
l ’ (5.32a)
B ) 3
- [Zcfru)lW }/x—
J=l
A7 >~ m ®
P==] LY. ChU,, +5 Zc W, ZC,],W .,
2 j=t Jj=l j=1
(5.32b)
B ) 3
—_—— (:( 3’;’ 12
; ,z:‘ M
A(3)
i 1"[20:,'3U,3+ [Zc:;;wJ (Zc:;;W]( e)s
3 f=I =1
d g (5.32¢)

B® 5: 3

11 (2) 3

- 12 CU3W'.;'3 I3
W

Similar continuity boundary conditions can be applied at x = /[+a. Obviously, the
resulting system of equations is nonlinear. Therefore, an arc-length strategy, as discussed

in section 5.2, will be used to solve them.
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5.4. Postbuckling analysis of composite laminated beams having multiple

delaminations

Using the same procedure presented for postbuckling analysis of beams with single
delamination, one can derive the quadrature analog formulation for the case of multiple
delaminations. Consider a laminated composite beam having a number of through-the-
width delaminations (Figure 4.3). The delaminations size, its across-the-thickness, and
along the beam span locations are chosen arbitrarily. Therefore, the delaminations divide

.the beam into m different regions. As before, each region can be considered as a separate
beam with its own stiffness properties. The assumptions used in section 5.2 leads to the
same differential equilibrium equations as (5.25a,b), for all the regions &=1,...,m. The

boundary conditions for the beam being simply supported, will be

Atx=0 w, =0 ; M=0 ; N =P, (5.332)
Atx=L w,=0 ; M,=0; u =0 (5.33b)
At the crack tips the continuity boundary conditions require that

z¢i+52f-mJ=uj+%wjvr=...=uk+iwm (5.33¢)
W, =W, =...=w (5.33d)
W, SW, = =W (5.33e)

M,~M,—~M,+Nz,+N;z,++Ngz, =0 (5.33f)
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0,-0,—~0, =0 (5.330)

N,=N,=--=N,=0 (5.33g)

where i,j,...,k are the region numbers surrounding a crack tip and z is the distance between

the mid-plane of each beam and the appropriate moment point.

Applying DQM to the differential equilibrium equations and their boundary
conditions result in a system of nonlinear algebraic equations in terms of the axial
deformation u and transverse deflection w of sampling points as the variables. Employing
the arc-length algorithm, this system of equations can be solved to give the response of

the delaminated beam under progressive compressive axial load.
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CHAPTER 6

VERIFICATION OF THE DQM

6.1. Introduction

In the following chapter, the capability of the DQM in solving the delamination
buckling and postbuckling problems in laminated composite structures will be examined.
The case studies include the buckling analysis of various beams containing single or
multiple delaminations and laminated plates having single elliptical delamination.
Moreover, postbuckling analysis of beams with single and multiple delaminations will be
discussed. For all the one-dimensional models, it is assumed that the delaminations are
across-the-width. The formulations presented in the chapters 4 and 5 were implemented
into computer programs, some of which are presented in appendices. The DQM results
will be compared with either those in the published literature or those of the finite

element investigations conducted by the author.

6.2. Case studies for buckling of a specially orthotropic beam with a single

delamination

The formulation presented in the section 4.2.1 was implemented as a computer code
for evaluating the delamination buckling response of a panel containing a through-the-
width delamination as shown in Figure 4.1. This investigation demonstrates the capability

of the selected numerical method.

6.2.1. Delamination buckling load

The results for a clamped beam having a symmetric delamination are calculated.

Table 6.1 tabulates the resulting buckling loads for various delamination lengths (a/L),
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and thickness (4/T ) ratios. In this table the buckling loads are normalized with respect to

the Euler buckling load for a perfect column, that is:

- P

= 2 < 2 6'1
e =D, @)

where D; is the flexural stiffness of the first region (base laminate).

Table 6.1: Normalized buckling load for the beam-plate with clamped ends.

0.02 0.05 0.10 0.20 0.30 0.40 0.5
0.025 0.64000 1.00000 1.00000 1.00000 1.00000 1.00000  1.00000
0.050 0.16000 0.99485 0.89976 1.00000 1.00000 1.00000  1.00000
0.100 0.04000 024994 097994 0.99966 0.99978 0.89987 0.99988
0.150 0.01778 0.11109 0.44347 0.99658 0.99852 0.99880 0.59898
0.200 0.01000 0.06243 0.24954 0.92647 0.99240 0.98505 0.99556
0.250 0.00640 0.03999 0.15974 0.62559  0.96621 0.98354  0.98593
0.300 0.00444 0.02777 0.11094 0.43712 0.85825 0.95434 0.96384
0.350 0.00327 0.02041 0.08152 0.32207 0.87802 0.89118 0.91479
0.400 0.00250 0.01562 0.06242 0.24705 0.53140 0.78832  0.84808
0.450 0.00198 0.01234 0.04933 0.19548  (0.42492 0.57193 0.77446
0.500 0.00160  0.01000 0.03996  0.15855  0.34691 0.56755 0.68958
0.550 0.00132 0.00826 0.03303 0.13118 0.28842 0.48164 0.61060
0.600 0.00111 0.00694 0.02776 0.11034 0.24354 0.41240 0.54115
0.650 0.00085 0.00582 0.02365  0.09411 0.20838 0.35654 0.48159
0.700 0.00082 0.00510 0.02040 0.08122 0.18036 0.31111  0.43098
0.750 0.00071 0.00444 001777 0.07082 0.15766 0.27379  0.38800
0.800 0.00063  0.00391 0.01562 0.06230 0.13801 0.24282  0.35143
0.850 0.00055 0.00346 0.01384 0.05523 0.12352 0.21685 0.32016
0.00049 0.00309 0.01234 0.04930 0.11050 0.19488  0.2933f
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The integrity of the presented method and its capability in treating the delamination

buckling problems is confirmed by the excellent agreement of the results presented in this
study with those of Simitses et al (1985). In fact, the discrepancies between our results
and those in Simitses et al are less than 0.01%, therefore, they were not rewritten on the
table. The normalized buckling loads are also shown graphically in Figure 6.1. The

results are derived using different rotations at the delamination fronts (equation (4.6)).

1.0
—e— h/T=0.02

s 0.8 —a— h/T=0.05
-k —— h/T=0.1
; i —e—h/T=0.2
= - ——h/T=0.3
%067 —%— h/T=0.4
a [ ——h/T=0.5
'c -
8 0471
© |
E [
2024
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Delamination Length Ratio

Figure 6.1. Influence of the delamination length on the buckling load of a beam

with clamped ends.

Table 6.2 tabulates the buckling loads obtained by DQM for a specially-orthotropic

composite laminate containing a delamination at its mid-plane (i.e., #/7=0.5). This
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problem is analyzed for various delamination length ratios (a/L). The buckling loads are

normalized with respect to the Euler buckling load of a perfect column. The “symmetric”
and “anti-symmetric” notations in Table 6.2 conform to the terminology used in

chapter 1.

Table 6.2. Comparison of normalized buckling loads for a beam with single

delamination, h/T=0.5.

Lee et al.(1993) DQM (present study)
Simitses Chen Anti- Non-

a/L  (1983) (1991) Symmetric symmetric Symmetric Symmetric
0.1 0.9999  0.9999 0.9999 1.9480 0.9999 0.9999
0.2 09956  0.9956 0.9956 1.4360 0.9956 0.9956
0.3 0.9638  0.9638 0.9639 1.0240 0.9638 0.9638
0.4  0.8481 0.8561 0.8562 0.8482 0.8561 0.8481
0.5 0.6896  0.6896 0.6898 0.7967 0.6896 0.6896
0.6 0.5411 0.5411 0.5413 0.7929 0.5411 0.5411
0.7 04310 04310 0.4311 0.7629 0.4310 0.4310
0.8 03514 03514 0.3515 0.6857 0.3514 0.3514
0.9 0.2923 0.2933 0.2934 0.5947 0.2933 0.2933

For comparison, the analytical results of Simitses et al (1985) and Chen (1991),
followed by the results form the finite element layer wise approach of Lee et al (1993) are
also tabulated. Note that the results reported by Chen were obtained by imposing the
symmetry condition in the axial direction, while Simitses et al did not apply such an
imposition. This is an important consideration as the anti-symmetric buckling mode can

occur at specific a/L ratios (see Figure 15 and 16 of Lee (1992)); therefore, by imposing
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the symmetry condition, accurate simulation of the buckling modes for all a/L ratios is
not achievable. The result reported by Lee et al are provided for the two possible
conditions. Also, note that the “nonsymmetric” terminology used to identify some of the
DQM results conforms to the terminology used by Simitses et al. As it can be seen, there
is an excellent agreement between the results obtained by DQM and those of Simitses et
al, Chen, and Lee et al. Indeed, the DQM results are closer to the results obtained based
on the analytical solutions (Simitses et al and Chen), than those calculated based on the
finite element analysis of Lee et al. Also note that, while Lee et al used two different
models to obtain the symmetric and antisymmetric buckling loads, the same results could
be achieved by DQM by only using different rotations at crack tips. Table 6.3 shows the
first three buckling loads derived from DQM for the same configuration (i.e. clamped

ends and 4/T=0.5) and different delamination ratios.

Table 6.3. Comparison of the first three normalized buckling loads for a beam with

single delamination, h/T=0.5.

Present study Lee et al.(1993)
Buckling Load Global Local Anti-
a/L Ist 2nd 3rd Symmetric Symmetric symmetric
0.1 0.9999 19486  3.9900 0.9999 15.320 1.9480
0.2 0.9956 1.4358  3.6398 0.9956 6.0963 1.4360
0.3 0.9638 1.0243 2.5159 0.9639 2.7176 1.0240
0.4 0.8481  0.8561 1.5625 0.8562 1.5358 0.8482
0.5 0.6896  0.7966 1.0000 0.6898 0.9864 0.7967
0.6 0.5411 0.6945  0.7926 0.5413 0.6868 0.7929
0.7 0.4310 0.5102  0.7627 0.4311 0.5058 0.7629
0.8 0.3514  0.3903 0.6856 0.3515 0.3883 0.6857

0.9 0.2933 0.3086  0.5946 0.2934 03077 0.5947
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Comparison of these buckling loads with those of Lee et al shows that the first buckling

loads in Table 6.3 is essentially the minimum value of the three possible mode shapes.

6.2.2 Number of sampling points

The influence of the number of sampling points on the predicted results obtained by
the proposed method was also investigated. The resulting buckling loads as a function of
the number of sampling points for isotropic beam-plates with clamped edges, having thin

and thick delaminations are shown in Figure 6.2 and 6.3, respectively.
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Figure 6.2. Effect of number of sampling points on the buckling load of
a plate with a thin delamination (h/T=0.1, a/L.=0.4).
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For these case studies, all sub-regions had equal number of sampling points. As can

be seen from these figures, the stability of the DQM is excellent and even with lower
number of sampling points the convergence of the method is good. It can be concluded
that for obtaining accurate results one needs to discretize each section by only 9 to 11

sampling points.
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Figure 6.3. Effect of number of sampling points on the buckling load
of a plate with a thick delamination (h/T=0.5, a/L=0.4).
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6.2.3. Effect of grid spacing

As mentioned earlier, there are several possible grid spacing schemes when using
DQM. In general, in applications that are sensitive to grid spacing, like buckling of
composite structures, selection of the grid spacing is of critical importance (see Wang
(1995) and Sherbourne and Pandey (1991)). One useful method is to use the &-technique
as used in conventional differential quadrature method (Bert and Malik (1996)). The

other is to use unequally spaced sampling points. Here we examine the effect of grid

spacing through the use of the equations (3.13-17) in the normalized region [0,1] .

0.1
Sampling points based on equation:

0.09 1 —~—3.13 —0-3.14 ——3.15 —0—3.16 —%—3.17

——3.13a—8—-3.14a—4—3.15a —e—3.16a —+—3.17a

Normalized buckling load

6 10 14 18 22
Number of sampling points

Figure 6.4. Convegence of DQM with different grid schemes for the case of a

thin delamination (“a” indicate the 5-technique was used).
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[t must be noted that none of these schemes use the d-technique, while the equation
of the 8-technique bears little difference with the above relations. The results obtained for
the various grid spacing schemes, for thin and thick delaminations of the last example are
shown in Figures 6.4 and 6.5, respectively. The figures illustrate the performance of the
above mentioned relations with and without the use of the d-technique. In these figures,

suffix “a” indicates that the relations incorporated the &-technique.

Sampling points based on equation:

——3.13 —4-3.14 —4—3.15 —0—3.16 —3.17

Normalized buckling load

——3.13a -—8—3.14a —4&—3.15a —e—3.16a ——3.17a

6 10 14 18 22
Number of sampling points

Figure 6.5. Convergence of DQM with different grid schemes for the case of

thick delamination (“a” indicate the d-technique was used).

Figure 6.4 (h/T=0.1 and a/L=0.4) indicates that inaccurate buckling loads can be
expected when the 3-technique is not used in conjunction with the uniform grid spacing

when treating thin delamination problems; while the other grid spacing schemes converge
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to the analytical solution. It should be noted, however, that when the 8-technique was
used, the solutions for all grid spacing schemes converged rapidly to the analytical
solution (when each section was discretized by only 9 grid points). Moreover, the use of

Chebyshev spacing produces the best convergence among all the schemes.

In the case of thick delamination problems (A/7=0.5 and a/L=0.4), Figure 6.5
indicates that all the grid spacing schemes can produce unacceptable results without the
use of the 8-technique (especially, the case with the uniform spacing producing the worst
results). However, incorporation of the d-technique produces fast convergence (with the
exception of the equal spacing), with eqation (3.14) producing the fastest convergence.
When using the equal spacing scheme, the results produced by the larger even sampling
points, (see results for the 24 sampling points in Figure 6.5, for example), bear
considerable error; where the results for the odd sampling points show no discrepancy.
Therefore, this may be considered as the reason to why most authors use odd number of

grid points (Bert and Malik (1996a)).

6.3. Case studies for buckling of a specially orthotropic beam with shear

deformation having single delamination

As shown in chapter 4, including the effect of shear deformation in the buckling
analysis of delaminated beams affects the results considerably. This result in a system of
second order differential equation with two different types of variables, namely the
transverse deflection, w and rotation angle, ¢. As a result the grid spacing can be chosen
without employing the &-technique. As in the last section the influence of several
parameters on the buckling response of laminated beams was investigated. It was

assumed that the beam-plates’ outermost edges were clamped.
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6.3.1. Effect of shear deformation on the buckling load

One of the parameters investigated in the study was the influence of the shear
deformation. For this, the resulting buckling response of beams having a symmetric
delamination with various configurations and a shear deformation factor, s=0.2, are

shown in Figure 6.6.
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Figure 6.6. Buckling loads for different delamination configurations (s=0.2).
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The variables considered were the length and the through-the-thickness location of

the delamination. As shown in the figure, the DQM results are in excellent agreement
with those obtained from the analytical solution of Chen (1991), to the extent that the
differences are indistinguishable. Moreover, as shown, the classical laminate theory
generally overestimates the buckling response of the composites, especially those with
short delamination length. This phenomenon is more noticeable in Figures 6.7 and 6.8,
where the buckling strength of beams having #/7 = 0.05 and #/T = 0.5, and various

delamination lengths are calculated for a practical range of shear deformation factors.
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Figure 6.7. Effect of shear deformation on the buckling strength of beam-
plates with h/T=0.05.

The figure illustrates that the buckling strength of composites having thicker

sublaminates (A/T = 0.5), decreases as their shear deformation increases. This behavior is
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quite consistent, regardless of the length of delamination, yet it is more significant for
delaminations with a/L < 0.6. On the other hand, when the sublaminate is thin, the shear

effect becomes noticeable only at very small delamination lengths (i.e.: a/L <0.1).

1.0 T
[ —eo—35=0.0

gost —=—5=0.2

L= A ——s=0.5

€ o f =0.8

< 0.6 ¢ e s=U

Q i

3

@ -

B 04

N [

g I

5921

b4 5

0.0 F—— e e

0.0 0.2 0.4 0.6 0.8 1.0

Delamination Length Ratioc

Figure 6.8. Effect of shear deformation on the buckling strength of beam-
plates with h/T=0.5.

6.3.2. Effect of the longitudinal position of delamination

The influence of the longitudinal delamination position on the buckling response of
the beams is shown in Figure 6.9 for beam with 4/T = 0.5. For the delamination length
ratios 0.2 <a/L< 0.6, the buckling response varies depending on the location of the
delamination along the span of the beams. As expected, the highest buckling strength is

obtained when the delamination is at the center of the span of the beam. The behavior is
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consistent throughout, including in beams with #/7 ratios other than 0.5, as illustrated in

Figure 6.9.
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Figure 6.9. Effect of the delamination position on the buckling strength of
beam-plates with h/T=0.5.

6.4. Case studies for buckling of a general laminated composite beam having single

delamination

The formulations presented in chapter 4 for the buckling analysis of a general
composite laminated beam with a single delamination were implemented in a computer
program. Several case studies were investigated to insure the integrity and applicability

of the proposed method. The effect of the material types, stacking sequence, delamination
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position and delamination length, on the buckling response of a series of composite

beam-plates were investigated.

To assess the overall convergence efficiency of the DQM, the response of two

delaminated asymmetric cross-ply composite beam-plates (Chen and Chang (1994)), with
ply sequence of [(904 /04) / /(904/04 )s]and [(90/0)‘ / /(90/0)[:], and several of

symmetric laminates were investigated. The designation *“//” is used to denote the
position of delamination through the laminates. The material properties that are of a

typical graphite/epoxy composite are tabulated in Table 6.4.

Table 6.4. Material properties of the laminates.

Material Graphite/epoxy Glass/epoxy  Keviar/epoxy
E, (Gpa) 137.9 46 75.8
E; (Gpa) 9.65 13 5.5
G12 (GPa) 5.5 5 2.3
Viz 0.3 0.3 0.34
Go; (GPa) 4.14 4.6 2.

It is assumed that each ply has a thickness of 0.127mm (0.005in) and the
delamination thickness ratio is A/7'=0.25. Both laminates have the same 4, A and
D(}, but different bending-extension stiffnesses (denoted by B, where B for the first
laminate are about four times the values of those of the second laminate). The resulting
buckling loads of the two laminates for different delamination ratios, a/L, are shown
graphically in Figure 6.10. In this figure the buckling loads are normalized with respect to

the Euler buckling load of an intact laminate, that is:
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>3 13” (6_2)

i

As seen in Figure 6.10, the bending-extension coupling reduces the delamination
buckling load as the delamination length ratio increases. These results are in excellent

agreement with the results of analytical and the finite element analysis of Chen and

Chang (1994).
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Figure 6.10. Delamination buckling load for different delamination lengths.

6.4.1. Effect of slenderness ratio (L/T)

The effect of the slendemess ratio,L/T, on the buckling load for

[(i 45), 1 /(£ 45)|2]Iaminates is shown in Figure 6.11. Note that the bending-extension
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stiffness of all sublaminates of these laminates are effectively zero. Also shown in the

figure is the effect of some thick laminates (i.e., L/7<20), for which the shear deformation
effect becomes quite significant. Nevertheless, the laminates that have relatively large
delamination length (i.e., delamination length ratios > 0.4), exhibit similar buckling

response, regardless of their L/T ratios.
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Figure 6.11. Effect of slenderness ratio on delamination buckling load.

6.4.2. Effect of fiber orientation

The influence of fiber orientation on the buckling strength of a thick delamination

is shown in Figure 6.12. This investigation considers symmetric laminates of [(x6),]

with a delamination ratio of a/L =02, all having thick delamination (#/T =%). The
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buckling loads are normalized with respect to that of an intact [OSE]Iaminate. As the

figure shows, the buckling strength decreases as the fiber orientation angle increases.

Normalized Buckling Load

Fiber Orientation Anagle (deg)

Figure 6.12. Effect of fiber orientation on buckling load for a thick

delamination (z/7 = 1 ).

6.4.3. Effect of the through-the-thickness position of delamination

Figure 6.13 shows the influence of the through-the-thickness position of the
delamination in [(+ 45),, | laminates with /L=0.2 and L/T=10. The figure illustrates that

for relatively thick delaminations (i.e., #/7>0.2), the buckling strength is independent of
the through-the-thickness position of the delamination. The same investigation was

carried out for cross ply [(9 0 /0)15] laminates and the resulting buckling loads are shown

in Figure 6.14.
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Figure 6.13. Effect of through-the-depth position of delamination on
buckling load of [(+45),, ] laminates.
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The buckling load oscillates in the beam-plates with thin delaminations; however,

the response becomes quite consistent in the beams with thick delamination.

The effect of the same set of parameter for composites having a different ply

sequence of [(90,/0,),]. is shown in Figure 6.15. The results indicate that when the

delamination is located in between similarly oriented plies, the transition of the buckling
load is smooth; on the other hand, when the delamination is located in between two

dissimilarly oriented plies, the buckling response of the composite changes abruptly.

0.7 1

Normalized Buckling Load

Delamination Thickness Ratio

Figure 6.15. Effect of through-the-depth position of delamination on

buckling load of [(90, /0, ), ] laminates.
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6.4.4. Effect of material properties

The type of materials used in formation of the composite was found to also have
influence on the buckling response. Figure 6.16 illustrates the effects for three different
types of composites, namely: graphite/epoxy, glass/epoxy and Kevlar/epoxy, having
various delamination length ratios (a/L). Typical mechanical properties for these
composites are tabulated in Table 6.4. All composites have ply sequence of

[(9 0/0), 7 /(90 /0)”] with the delamination thickness ratio of #/T=0.25. Normalization of

the buckling loads in Figure 6.16 was performed with respect to the modulus of
glass/epoxy. The figure illustrates that the composite having the largest modulus (i.e., the
graphite/epoxy) exhibits the highest buckling capacity regardless of delamination length,

as it was expected.
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Figure 6.16. Effect of material properties on the buckling load.



120
6.4.5. Effect of the longitudinal position of delamination

The buckling response of |(0,/0,),| graphite/epoxy beam-plates with a

delamination positioned at various locations along their length is shown in Figure 6.17.
- The figure depicts the response of the laminate with thickness ratio of ~/7=0.5, and
x_ =I+%a . The results confirm that the buckling strength is significantly influenced by
the location of the delamination. As it can be seen from Figure 6.17, the phenomenon is
also a function of the delamination length. The decrease in the buckling strength is more

significant in beam-plates with delamination length ratios between 0.2 to 0.6.
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Figure 6.17. Effect of the longitudinal position of delamination on buckling load

for a |(90,/0,), | graphite/epoxy beam (2/T=0.5).
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The influence of the longitudinal position of delamination on the buckling response
of composite beam-plates, as the delamination position moves through the thickness of
the beam-plates is shown in Figure 6.18. Here, the delamination has a length of a/L=0.3.
It can be seen that the buckling load is affected only in those laminates with relatively

thick delamination (when the delamination is on the interface of 12" to 16™ plies).
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Figure 6.18. Effect of delamination location on buckling load for [0];; laminate.

6.4.6. Comparison between DQM and layer-wise model

Throughout this chapter the accuracy of the DQM, compare to finite element and

analytical methods was shown for different delamination buckling models. Also its
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efficiency was shown through the small number of sampling points needed to model the

problem. A problem such as the delamination buckling analysis of a composite beam,
with the inclusion of the shear deformation and bending-stretching coupling effects,
could be modeled accurately by only 11 sampling points for each region of the model, or

a total of 88 degrees of freedom (d.o.f), for the entire model.

The same problem was solved by Lee (1992) who employed a layer-wise finite
element approach. Ten quadratic one-dimensional elements were used to model the full
length of the beam. He used 252 d.o.f for the models without the coupling stiffness terms
and 462 d.o.f for the cases including the coupling stiffness terms. Comparing the d.o.f

used in the two methods clearly shows the efficiency of the DQM.

6.5. Case studies for buckling of a beam having multiple delaminations

In this part we will examine the case where beams having a number of
delaminations, are subjected to compressive buckling load. As a first case, consider a
specially orthotropic beam having equal length delaminations. The delaminations are

through-the-width and could be anywhere through the beam longitudinal span.

6.5.1. Effect of the number of delaminations on the buckling load

Figure 6.19 shows the effect of number of delaminations on the buckling strength of
the beam. This example is reconsidered from Suemasu (1993), where he used Rayleigh-
Ritz approximation to solve for the buckling response of a multiply delaminated beam.
The material properties are given in Table 6.5. The length and thickness of the beam are
considered to be 160 mm and 3.8 mm, respectively. The effect of shear deformation is
accounted by the shear deformation factor s. The number of delaminations is represented

by N. They divide the clamped-clamped beam into (V+/) regions with equal thickness.
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Figure 6.19. Normalized buckling load vs. delamination length ratio for multiple

delaminations.

Here the buckling load is normalized with respect to the Euler buckling load of an
intact beam. As shown in the figure, the results of the DQM are in very good agreement
with those of the finite element and Rayleigh-Ritz calculations given by Suemasu (1993).
Increasing the number of delaminations (and therefore reducing the thickness of
delaminations) reduces the buckling load. Also the sharp changes in the curvature of all
the curves are due to the changes in buckling modes. The first and the last regions of the
curves are govern by symmetric modes while in the mid-region, the antisymmetric modes

are the dominant modal shapes.
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Table 6.5. Material properties used by Suemasu (1993).

E 20.2 Gpa
E, 21.0 Gpa
E; 10.0 Gpa
V2 0.16

VI3 0.30

G 4.15 Gpa
Gi3 4.0 Gpa

6.5.2. Effect of the longitudinal position of delaminations

The effects of the longitudinal position of delaminations on the buckling load are
shown in figures 6.20 to 6.23 for different number of delaminations. As expected, the
maximum buckling loads occur when the delaminations are in the center span of the
beam. Changing the delamination position results in a decrease in the buckling load. This
effect is more obvious in the case of small delaminations. Also, increasing the number of
delaminations makes the beam less sensitive to the change in the longitudinal position of
the delaminations. This is emphasized in Figure 6.24, where the normalized buckling
loads are shown versus different delamination positions for different number of

delaminations.
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Figure 6.20. Effect of the longitudinal pesition of delamination on the buckling

strength for a beam with single delamination.
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Figure 6.21. Effect of the longitudinal position of delamination on the buckling

strength for a beam with three delaminations.
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Figure 6.22. Effect of the longitudinal position of delamination on the buckling

strength for a beam with five delaminations.
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Figure 6.23. Effect of the longitudinal position of delamination on the buckling

strength for a beam with seven delaminations.
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Figure 6.24. Comparison the effect of delamination longitudinal position on the

buckling strength for a beam with different number of delaminations

(a/L=0.2).

6.5.3. Effect of the length of delaminations

The effect of the different delamination lengths on the buckling load is shown in

Figure 6.25. Here we consider clamped-clamped beams having two delaminations with

different lengths, located symmetrically with respect to their mid-spans. Moreover, the

delaminations are positioned symmetrically with respect to the mid-plane of the beams.

While the length of the upper delamination in these beams varies, but the length of the

lower one is fixed (@/L=0.3,0.4). The non-dimensional buckling load as a function of the

non-dimensional delamination length of the upper delaminations for the case of thin

(¢#/T=0.125) and thick (¢/7=0.3) delaminations are presented in the figure. The results are
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compared with those obtained from the finite element analysis conducted using the
commercial package NISA (1996). Also, the results for the beams with a single
delamination are shown in the figure. The figure indicates that as long as the length of the
lower delamination is less than the length of the upper delamination (i.e. a; > a;), the
buckling strength of the beam is governed by the length of the upper delamination. This

response is similar to the case where the beam hosts a single delamination.
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Figure 6.25. Response of beams hosting multiple delaminations with
different lengths.

6.6. Case studies for buckling analysis of composite laminated plates with elliptical

delamination

In this part the results of the application of DQM to the buckling analysis of

laminated composite plates having elliptical delamination is discussed. These examples
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are aimed at illustrating the numerical accuracy and efficiency of the proposed method. In
particular, the differential quadrature results are compared with those of Shivakumar and
Whitcomb (1985) and Heitzer and Feucht (1993). In both studies the authors used the

Rayleigh-Ritz method and compared their solutions with the finite element results.

Using the mapping scheme introduced in chapter 3, the elliptical domain can be
transferred into the equivalent computational domain. The calculations were carried out
using cubic serendipity shape functions (even though the elliptical boundaries are
quadratic, the mapping presented here can carry more complicated boundaries). The

positions of the 12 points needed for this transformation are shown in Figure 6.26.

N

N
~
S

Figure 6.26. An elliptical domain.

The non-uniform sampling points along with d-technique, as suggested by Bert and
Malik (1996), are used by the following relations (see Figure 4.8):
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én‘—[ =l—6; grx: =1

Similar sampling points were used for the n-direction. The material properties used here
are those reported by Shivakumar and Whitcomb (1985) and Heitzer and Fuecht (1993),
and are tabulated in Table 6.6.

Table 6.6. Material properties used by Shivakumar and Whitcomb (1985) and
Heitzer and Feucht (1993).

Shivakumar and Whitcomb (1985) Heitzer and Feucht (1993)

Aluminum Graphite/epoxy
E, 68.95 GPa 131.0 GPa 230.0 GPa
E, 68.95 GPa 13.0 GPa 7.0 GPa
V12 0.31 0.34 0.30
G2 26.32 GPa 6.4 GPa 5.0 GPa

6.6.1. Effect of the sublaminate width on the buckling strain

Figure 6.27 shows the buckling strains versus different values of ellipse semi axis b
for isotropic and specially orthotropic sublaminates ([0] laminate). The value of a is fixed
at 254 mm, =0.51mm and 6=0°. The finite element and Rayleigh-Ritz results by
Shivakumar and Whitcomb are also shown in the figure. Their finite element model used

triangular plate elements with eighteen degree-of-freedom to model a quarter of the
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elliptical plate. A 8x12 mesh was used to model the isotropic and specially orthotropic
sublaminates, while a 8x32 mesh was employed in modeling the anisotropic cases. As

seen in the Figure 6.27, the DQM results agree well with those of the finite elements and

the Rayleigh-Ritz methods.
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Figure 6.27. Effect of sublaminate width on buckling strain for different materials,

6.6.2. Effect of the fiber orientation on the buckling strain

The effect of the fiber orientation on the buckling strain for different delamination
aspect ratios (a/b) is shown in Figure 6.28. The sublaminate fiber angle is successively
rotated from 0° to 90° (with respect to the longitudinal, x -axis) for three different aspect
ratios and the buckling strains are plotted. The finite element results are derived from

Shivakumar and Whitcomb and plotted in the figure. The compression buckling strain

e T G
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increases with the increasing fiber angle, but at a certain fiber angle the sublaminate can
buckle under tensile strain (when the base laminate is loaded in tension). This is due to
the mismatch between the Poisson ratios of the base laminate and the sublaminate (see
Shivakumar and Whitcomb (1985)). As seen from the figure, increasing the aspect ratio

results in an increase in the magnitude of the buckling strain.
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Figure 6.28. Effect of fiber angle on buckling strain for different aspect ratios
(@a=25.4 mm).

Figure 6.29 shows the effect of fiber angle on the buckling strain for an
unsymmetric sublaminate. This example revisits the work of Heitzer and Feucht (1993),
where their composite’s sublaminate consisted of two plies, each of thickness 0.005 mm.

One of the plies was successively rotated up to 90 degree. The delamination was
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considered to have circular shape with a=1 mm. The results computed by DQM along
with those of the finite elements and Rayleigh-Ritz of Heitzer and Feucht are plotted in
this figure. They used two different meshes to model the circular and the elliptical
delaminations. The circular mesh consisted of 784 four-noded plate elements and the
elliptical mesh for the delamination with a=3mm and b=1mm, consisted of 652 three-
noded plate elements. As for Rayleigh-Ritz method, they used a formulation with 12 and
21 constants. As seen, the DQM results are in better agreement with the FEM compared
to the R-R. The inaccuracy in results of the R-R is contributed to the poor expansion of
the in-plane displacements # and v used in their formulation. On the other hand, the in-

plane displacements were not used in the DQM formulation (by using reduced stiffness

concept).
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Figure 6.29. Effect of sublaminate sequence on buckling strain for circular

delamination (¢=1 mm).
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6.6.3. Higher buckling modes

The comparisons between different numerical methods in computation of higher
buckling modes are shown in Table 6.7. The first three buckling modes for an elliptical
delamination (with a=3mm, b=Imm and =0.01) composed of an unsymmetric [0/90]
layup, oriented at 6=90° with respect to the loading direction is presented in this table.
For the R-R method, only the first buckling mode is acceptable (compare to the finite
element method) and the method exhibits fictitious higher stiffness for the higher modes.

DQM, however, produces acceptable results for all the buckling modes.

Table 6.7. Buckling strains of higher modes for an elliptical delamination.

Mode FEM R-R Error (%) DQM Error(%)
1 -3.41x107 -3.51x107 2.9 -3.24x107 4.8
2 -4.76x107 -1.31x10* 63 -4.55x10° 43
3 -6.77x10° -1.84x10™ 64 -6.19x107 8.6

6.6.4. Effect of the number of sampling points on the buckling strain

Figure 6.30 shows the effect of the number of sampling points on the convergence
of the buckling strain. The effect of grid spacing is shown for a circular delamination
with ¢g=1mm, b=Imm and an elliptical delamination with a=3mm, d=1mm. In both
examples, the material is orthotropic, with thickness /=0.0lmm and fiber angle 6=0°.
Note that here, the numbers indicated on the horizontal axis represent the grid points in
both horizontal and vertical directions, on the geometry. Therefore, the total numbers of

grid points are the square of the number noted on the graph. Increasing the density of the
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meshes, obviously improves the results, however, a 15x15 grid spacing is adequate for

producing acceptable solutions.
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Figure 6.30. Effect of the no. of grid points on buckling strain for

elliptical delamination.
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6.7. Case studies for postbuckling analysis of laminated composite beams having

single delamination

To show the validity of DQM in the postbuckling analysis of composite laminated
beams with single delamination, some case studies were investigated. The first example
is taken from Sheinman and Soffer (1991). A delaminated beam with the length L=4 m
and thickness of 7=0.08 m is shown in Figure 6.31.
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Figure 6.31. Geometry of an imperfect simply supported beam with a single

delamination.

An across-the-width delamination with the length of a=1.5 m and thickness 4=0.01
- m is set at the mid-span of the beam (Figure 4.1). An initial imperfection exists in the
form of Ww(x)=w,sin(mx/L) (where wy is the imperfection amplitude). The material is
isotropic. Figure 6.32 illustrates the resulting load-deflection curve evaluated at the
midpoints of the sublaminates for positive imperfection amplitude. In this figure, the
compressive load is normalized with respect to the Euler buckling load of the beam, as if

it was intact. As seen in the figure, as the load reaches near the delamination buckling
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load (P=0.442P,,), the upper sublaminate starts to deflect in the positive direction and it
buckles. By increasing the load the lower delamination starts to deflect and finally at a

load near P=0.67P,,, the system loses its load-carrying capacity.
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Figure 6.32. Load vs. mid-span deflection for w, =1x107.

The same system produces a totally different response when the imperfection has a
negative mode. As shown in Figure 6.33, as the load approaches the buckling load, the
upper sublaminate start to deflect in the negative direction and the lower part gradually

deflect in the positive direction. This causes the upper part to change its direction and
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after a while it deflects in the positive direction. In the same graph the DQM results are

compared with those of Sheinman et al (1993), and the results are in good agreement.
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Figure 6.33. Load vs. mid-point deflection for w, = -1x10~.

The response of a series of beams, each having a different delamination length, is
shown in Figure 6.34. The results show that by increasing the delamination length, the
buckling load decreases and the instability mode turns to a local buckling mode, and a
decrease in the final load carrying capacity of the beam. This observation confirms that of
Kim (1996). For a/L=0.2, the beam buckles globally, therefore, the upper and lower parts
both buckle, almost simultaneously. On the other hand, for a relatively large delamination
length ratio (i.e. a/L=0.6), the local buckling precedes the other buckling modes. In this

case the upper part undergoes a large deformation before the buckling of the lower part.
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For the intermediate delamination length ratios (i-e. @/L=0.4), both the upper and lower
parts undergo considerable amount of deformation and the buckling mode is a

combination of local and global modes which is usually referred to as mixed buckling

mode.
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Figure 6.34. Load vs. mid-span deflection for various delamination lengths.

The effect of compressive load on the axial deformation of beams with different
delamination length ratios is shown in Figure 6.35. Prior to buckling, the slopes of curves
of the axial deformation vs. compressive applied load are the same for all delamination
lengths. After the onset of buckling, beams start to lose their stiffness and the slope of the

curves varies. The diverging in the stiffness accelerates near the final load capacity.
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Figure 6.35. Load vs. axial shortening for various delamination lengths.

The effect of the imperfection amplitude on the load-carrying capacity of the beam
is shown in Figure 6.36. Here, the same beam as discussed earlier is considered, but with
different imperfection amplitudes. As seen in the figure, increasing the imperfection
amplitude results in a significantly different response of the delaminated sublaminates; in

the case of w, =1x107 the buckling behavior of the upper and lower sublaminates are

almost indistinguishable.
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Figure 6.36. Load vs. mid-span deflection for various initial imperfections.

The next example considers a clamped-ended delaminated beam, derived from Lee
(1992). A specially orthotropic composite laminated beam containing a single across-the-
width delamination at its center with #/7=0.2 and a/L=0.3 is under axial compressive
load. The material being used is T300/5208 graphite/epoxy, whose properties are given in
Table 6.8. The thickness-to-span ratio is assumed to be 77L=1/400. The initial

imperfection is in the form of

W:%wo[l—cos[z?ﬂ 6.4)

The response of the beam for an initial imperfection of w, = -1x107 is shown in Figure

6.37 and 6.38. As the load approaches its buckling value, the upper sublaminate starts
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deflecting in the negative direction (Figure 6.37), while the lower sublaminate gradually

deflects in the positive direction. This will cause the upper sublaminate to reverse its
displacement at a load about P=0.7P,, and then the layers lose their load-carrying
capacity at around P=0.8P.. As shown in the figure, the DQM results are in good
agreement with those extracted from Lee. The axial end shortening of the beam is shown
in Figure 6.38. As the load nears the buckling load of the delaminated beam, the system
starts losing its stiffness, and the phenomenon further accelerates as the load progresses

toward the ultimate capacity of the beam.

Table 6.8. Material properties used by Lee (1992).

T300/5208 (SMC-R50)
E, 181.0 GPa 10.9 GPa
E, 10.3 GPa 7.58 GPa
V12 0.28 0.31
L13 0.28 0.22
G 7.17 GPa 2.48 GPa
Gis 7.17 GPa 2.48 GPa
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Figure 6.37. Load vs. mid-span deflection for a clamped beam.
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6.8. Case studies for postbuckling analysis of composite laminated beams having

multiple delaminations

To further verify the DQM, we also considered beams with muitiple delaminations.
For this, Lee et al’s (1995) laminated composite clamped beam, having two equal length
delaminations, symmetrically located with respect to the beam mid-plane was considered
(Figure 6.39). The delaminations position, and length are h;/T=0.125, h»/T=0.125,
a;/L=0.3 and a»/L=0.3, respectively. The material forming the beam was random short-
fiber SMC-R50 composite with properties tabulated in Table 6.8. Dimensions of the
beam were L=50 mm and 7=1 mm as used by Kyoung et al (1998) (who considered the

same problem).
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Figure 6.39. A clamped beam with two symmetric delaminations.

For this beam, the first two buckling modes were very close to each other. The
initial imperfection shape, however, governed the buckling modes. The first buckling

mode occurs when the initial imperfection of w, =1x107 is used for only the upper
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sublaminate (in the shape of the first buckling mode). The load-deflection curve is shown

in Figure 6.40. Here, the second delamination remains closed as if the beam contained

only the upper delamination.
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Figure 6.40. Load vs. mid-span deflection for clamped beam having two
symmetric delaminations with imperfection of the first
buckling mode (W2, W3 and W4 refer to the deflection of

delaminated regions shown in Figure 6.39).
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The progression of the compressive load through the delaminated region (region 2)

is shown in Figure 6.41. Here P, is the buckling load of the region 2. As seen from the
figure, the increase of the load through the delaminated parts is proportional to the load
increment up to the buckling point. After buckling, the stiffness in the upper delamination
decreases, resulting in redistribution of the load among the sublaminates, and keeping the

load in the upper sublaminate close to the buckling load.

Applied Load, P/P,
o
N

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Load in Region 2 (P,/P_.,)

Figure 6.41. Variation of the load in region 2 (Figure 6.39) for a clamped
beam having two symmetric delaminations with imperfection of
the first buckling mode.
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Applying an initial imperfection in the form of the second buckling mode (i.e., in

the form that both upper and lower parts deform in opposite direction) results in opening

of both upper and lower laminates, as shown in Figure 6.42.
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Figure 6.42. Load vs. mid-point deflection for clamped beam having two
symmetric delaminations with imperfection of the second
buckling mode (W2, W3 and W4 refer to the deflection of

delaminated regions shown in Figure 6.39).
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CHAPTER 7

CONCLUSIONS

7.1. Summary

Delamination buckling and postbuckling responses of composite laminated beams
and plates were investigated. Using the differential quadrature method, one- and two-
dimensional models were developed. The models were demonstrated to be capable of
predicting the exact values of delamination buckling strengths and also accurately
predicting the postbuckling response of the structures. For that, different configurations,
such as beams with single and multiple through-the-width delaminations and plates with
elliptical delaminations were studied. Several parameters, including the effect of shear
deformation, the bending-stretching coupling, material properties, lamination sequence
and fiber-orientation, were investigated. Also, the shape, size, number, initial geometrical
imperfection, through-the-thickness and through-the-length location of the delaminations

were studied parametrically.

Throughout the thesis, the DQM results were compared with those of the
published analytical and numerical works or with those obtained by analyzing problem
through the use of a commercial finite element package.

7.2. Conclusions

Based on the results of the author’s investigations presented in the previous

chapters, the following concluding remarks are made:

1) The thesis reports the first attempt in applying the differential quadrature analog to

the delamination buckling of composite laminated structures.
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3)

4)

6)
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DQM was shown to be capable of determining all possible buckling loads and their

corresponding modes.

For a forth order differential equation (i.e., differential equilibrium equation of the
Euler beam), the use of the 8-technique was found to enhance the accuracy of the
solution. For such a problem, the use of the non-equally spaced grid schemes such as
the Chebyshev or the Legendre, which allocate denser grid spacing near the

boundaries, is recommended.

While using a grid spacing with an odd number of nodes is highly recommended, the
author’s experience indicates that a relatively low number of grid points can produce
results with acceptable accuracy in the buckling analysis of delaminated composite
structures. Mesh densities with 11 points per region for beams, and with 15 points per

dimension for plates were shown to provide accurate results.

In delaminated beams, through-the-thickness and through-the-length position of the
delamination can significantly influence their buckling behavior. An increase in the
thickness of the delaminations with constant leﬁgth can significantly boost their
buckling strength. Also in beams with thick delaminations, and 0.2 <a/L< 0.6, the
eccentricity of the delaminations (with respect to the beam mid-span) can
considerably alter their buckling strength. The buckling strength decreases as the

delamination moves away from the mid-length of the beam.

The delamination buckling strength was found to be sensitive to the shear
deformation. The buckling strengths are generally lower than those predicted by the
classical laminate theory (CLT). Including the bending-stretching coupling effect,
which is due to the non-symmetric laminations, significantly reduces the buckling
load.
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8)

9)
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The buckling response of composite laminated plates having an elliptical thin
delamination was also investigated by DQM. Using the serendipity shape functions,
the physical domain was transferred into a quadrilateral computational domain. Then,
the differential equilibrium equations of the sublaminate with clamped boundary
conditions were formulated and solved. The DQM results were compared with those
of the other numerical methods, and found to be numerically acceptable. The
accuracy were achieved via less complex algorithms, compared to the other numerical

approaches.

In order to solve for the buckling strains of an elliptical delamination, the author used
the reduced bending stiffness approach. This resulted in a considerable reduction in
the computational effort. In fact, instead of using the in-plane deformations (i.e. ¥ and
v) along with the out of plane deflection w as unknowns, it was shown that by using
only one parameter, w, DQM could provide accurate results with minimal
computational effort. The numerical results obtained as such were in good agreement

with those obtained by the finite element method.

To the author’s best knowledge, the present work is the first attempt in employing the
DQM in the postbuckling analysis of composites. This was achieved by coupling the
differential quadrature method with an arc-length strategy. The developed algorithm
was applied to the postbuckling analysis of composite laminated plates, and single
and multiply delaminated beams. The numerical results obtained through several case

studies reconfirmed the excellent performance of the method.

The method was shown to have all the attributes and advantages that other popular
numerical methods such as FDM, FEM and BEM have. In addition, it was shown that

the method enjoys a mathematical foundation that is simpler to digest compared to those

associated with the other numerical methods. Moreover, the implementation of the
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method into a computer code is relatively easier. The efforts needed for setting up a
problem, and for solving it with DQM is also relatively less in comparison to the other
numerical methods. The only disadvantage of the proposed method at this stage of its
evolution is that it is not as robust as FEM in accommodating problems with complicated
geometries. This issue is however resolvable, as one can use the same type of remedy

that is available for treating the same anomaly that exists with The FDM.

7.3. Recommendations for future works

The presented research was the basic step toward the implementation of differential
quadrature technique for the buckling and postbuckling analysis of composite laminated
structures having single or multiple delaminations. Therefore, in order to enhance the
capability of the proposed approach, the following recommendations for future research

are offered:

1) The presented approach may be employed in the buckling analysis of other laminated
composite structures having delaminations, such as for composite shells with

through-the-width or through-the-circumference delaminations.

2) The two-dimensional elliptical delamination model used in this study was based on
the thin delamination approach. A more general approach for considering the position
of a delamination (i.e., through-the-thickness and through-the-plane of the plate)
should be explored. This requires a domain decomposition approach, and therefore, a

significant increase in the size of the problem.

3) The presented postbuckling analysis of beams having single or multiple
delaminations did not account for the growth of the delamination. Therefore, a crack
growth analysis to account for the delamination propagation, and the implementation

of appropriate failure criteria will be worth an initiative.



4) Moreover, the presented approaches did not account for contact between delaminated

5)

6)

regions. Including this effect may change the response of the delaminated beams and
plates significantly, therefore, research into inclusion of such a phenomenon is highly

recommended.

Only the effect of compressive axial loads was considered in the current study. The
buckling and postbuckling analyses of delaminated composite structures subjected to
a combined state of loading, such as combinations of shear, bending, compressive and

thermal loads are recommended.

The final matrices resulting from applying DQM to the different problems are non-
symmetric, therefore require non-symmetric solvers. Incorporation of various
methods for converting the matrices into symmetric matrices is also recommended.
For this, one may use the idea of energy finite difference approach used in

conjunction with the finite difference method.
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APPENDIX A1l

Sample program ONEDSD for the buckling analysis of composite laminated beams

having a single delamination. The routines balanc, elmhes, hqr and piksrt are taken from

Press et al (1986).

c Program ONEDSD for the buckling analysis of a general laminated
c composite beam having single delamination.

c

c Last update: October 18,1896

c

C

CHARACTER*40 filel

CHARACTER*40 file2,file3,file4

DIMENSION a(200,200),b(100,100),c(100,100)
DIMENSION x1 (50),x2(50),x3(50),x4(50),s1(2,50,50)

& .,s2(2,50,50),s3(2,50,50),s4(2,50,50)
DIMENSION wr (100) ,wi(100)

DIMENSION pmx(50),ainv(100,100)

DIMENSION ip ({50, 8)

REAL*4 1(4),t(4),1tot,dll(4),ail1(4),a55(4),bl1(4)
OPEN (5, FILE="onedsd.inp", STATUS="UNKNOWN")
READ(5,*)filel,file2,file3,filed

OPEN (1, FILE=filel, STATUS="UNKNOWN")

OPEN (2, FILE=file2, STATUS="UNKNOWN")

OPEN (3, FILE=file3, STATUS="UNKNOWN")

need also "mat.inp" which contains laminate lavup.

READ(1,*)nl,n2,n3,n4 !number of sampling points.
READ(1,*) (£(i), i =1 , 4) et (i)=thickness of each section.
READ(1,=*) (1L(i), i 1, 4) t1(i)=length of each section.
CALL matprp(filed)
OPEN (4, FILE="mat.dat", STATUS="UNKNOWN")
DOi=1, 3

READ(4,*)all(i),a55(1i),bl1(i),d11 (1)

END DO

all(4) = all(1l)

a55(4) = a55(1)

bl1(4) = bl1(1)

dll{4) = &11(1)

ntot = nl+n2+n3+n4-4 'total number of nodes
ltot = 1(1) + 1(2) + 1(4) loverall length

nbc = 4

sdf = 5./6. Ishear factor
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di10 di1(1)
poi=1, 4
d11(i) = d11(i) - bili(i)**2/all(i)
END DO
WRITE(*,*)'Dl1 = ',d11(1)

determining the global position of each local node.
CALL global(nl,n2,n3,n4,ip)
computing sampling points in each section.
CALL position(nl,xl)
CALL position(n2,x2)
CALL position(n3,x3)
CALL position{(n4,x4)
computing coefficients of DQM.
CALL coefld(xl,sl1,2,nl,pmnx)
CALL coefld(x2,s2,2,n2,pmx)
CALL coefld(x3,s3,2,n3,pnx)
CALL coefld(x4,s4,2,n4,pnx)

Applying boundary conditions for all the regions.

Clamped condition of both ends.

a(nbc+l,ntot+l) = 1. | Zero deflection x=0
a(2*nbc,2*ntot) = 1. t Zero deflection x=L
a(i,1) = 1. t Zero slope

I

a(nbc,ntot) = 1. Zero slope

moment continuity at the intersection of regions 1,2 and 3.

DO i =1, nil
a(2,ip(i, 1))

END DO

DO i =1, n2
a(2,ip(i,2))

END DO

DO i =1, n3
a(2,ip{(i,3))

END DO

fac = 0.5*%all1(2)*all(3)*(-bl1(2)/all1(2)+bl1(3)/ali(3)+t(1))

& * (-b1l1(2)/a11(2}+b11(3) /a1l (3)+t(1}/2.)/all(l)

al{2,ip(nl,1)) = a(2,ip(nl,1))+fac/1(2)

a(2,ip(n2,2)) = a(2,ip{n2,2))-fac/1(2)

a(2,ip(i,1)) + si(1,n1,i)*d11(1)/1(1)

a(2,ip(i,2)) - s2(1,1,1)*d11(2)/1(2)

a(2,ip(i,3)) - s3(1,1,1i)*d11(3)/1(3)

shear force continuity at the intersection of regions 1,2 and 3.



C
c
C

169

Do i =1, nl

a(nbc+2,ip(i,5)) = a(nbc+2,ip(i,5)) + si(i,nl,i}*(a55(1)/1(1))
END DO
DO i =1, n2

a(nbc+2,ip(i,6)) = a(nbc+2,ip(i,6)) - s2(1,1,i)*(a55(2)/1(2))
END DO
DO i=1, n3

a{nbc+2,ip(i, 7))

a(nbc+2,ip(i, 7)) - s3(1,1,1i)*(a55(3)/1(3))}

END DO

moment continuity at the intersection of regioms 2,3 and 4.

DO i =1, n4

a(3,ip(i,4)) = a(3,ip(i,4)) + s4(1,1,1i)*d11(4)/1(4)
END DO
DO i =1, n2

a{3,ip(i,2)) = a(3,ip(i,2)) - s2(1,n2,i)*d11(2)/1(2)
END DO
DO 1 =1, n3

a(3,ip(i,3))

a{3,ip(i,3)) - s3(1,n3,1)*d11(3)/1(3)

END DO

a(3,ip(1,4))
a(3,ip(1,2))

a(3,ip(1,4))-fac/1(2)
a(3,ip(1,2))+fac/1(2)

shear force continuity at the intersection of regions 2,3 and 4.

DO i =1, n4

a({nbc+3,ip(i,8)) = a(nbc+3,ip(i,8)) + s&(1,1,i)=*(a55{4)/1(4))
END DO
DO 1 =1, n2

a(nbc+3,ip(i,6)) = a(nbe+3,ip(i,6)) - s2(1,n2,1i)*(a55(2)/1(2))
END DO
DO i =1, n3

a(nbc+3,ip(i, 7))}

a(nbc+3,ip(i,7)) - s3(1,n3,1)*(a55(3)/1(3))

END DO

applying the buckling egations for the rest of the nodes.

DO i

=2, nl-1 ifirst section.

DO j =1, ni

a(7+i,ip{j.,1}) a(7+i,ip(3,1))+sl(2,1,3])

& *311 (1) / (sdf*a55(1) *1{1) **2)
a(7+i,ip(j:5)) = -Sl(llilj)/l(l)
IF(j .EQ. i)THEN

a(7+i,ip(j,1)) = a(7+i,ip(j.,1))- 1.
END IF
a(ntot+3+i,ip(j,1)) = si(1,i,3)
a(ntot+3+i,ip(j,5)) = s1(2,1i,3)/1(1)
b(i-1,ip(j,1)) = s1(2,i,3)*(t(1)/t(1))/ (sdf*a55(1)*1(1))
END DO
END DO
DO i =2, n2-1 tsecond section.

DO j =1, n2

a(ni+5+i,ip(j,2)) = a(nl+5+i,ip(j,2))+s2(2,1,3)
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*d11(2)/ (sdf*aS5(2) *1(2) **2)
a(nl+5+i,ip(j,6)) = -s2(1,1,3)/1(2)
IF(j .EQ. i)THEN
a(nl+5+i,ip(j.2)) = a(nl+5+i,ip(3,2)) - 1.
END IF
a(ntot+nl+l+i,ip(j,2)) = s2(1,i,3)
a{ntot+nl+l+i,ip(j,6)) = s2(2,1i,3)/1(2)

b(i+nl-3,ip(3,2)) = s2(2,i,3)*(t(2)/t(1))/ (sdf*a55(2) *1(2))

END DO

END DO

DO

&

i=2, n3-1 tthird section.
DO j =1 , n3
a(nl+n2+3+i,ip(j,3)) = a(nl+n2+3+i,ip(j,3))+s3(2,1,3)
*d11(3)/ (sdfE*a55(3) *1(3) **2)
a(nl+n2+3+i,ip(3,7)) = -s3(1,1,3)/1(3)
IF(j .EQ. i)THEN
a(nl+n2+3+i,ip(3,3)) = a(nl+n2+3+i,ip(j.3)) - 1.
END IF
a(ntot+nl+n2-1+i,ip(3j,3)) s3(1,1,3)
a(ntot+nl+n2-1+i,ip(3j,7}) s3(2,1i,3)/1(3)
b(i+nl+n2-5,ip(j,3)) = s83(2,1,3)*(t(3)/t(1))
/ (sdf*a55(3)*1(3))

[}

END DO

END DO

DO

&

i=2, n4-1 tforth section.
DO j =1 , nd

a(nl+n2+n3+1+i,ip(j.4)) = a(ni+n2+n3+1+i,ip(j,4)})+s4(2,1,3)

*d11(4)/ (sdf*a55(4)*1(4) *x*2)

a(nl+n2+n3+1+i,ip(j,8)) = -s4(1,1i,3)/1(4)
IF(j .EQ. i)THEN

a({nl+n2+n3+1+i,ip(j,4)) = a(nl+n2+n2+1+i,ip(j.,4)) - 1.
END IF
a{ntot+nl+n2+n3-3+i,ip(j,4)) = s4(1,1i,3)
a(ntot+nl+n2+n3-3+i,ip(j,8)) = s4(2,1i,3)/1(4)
b(i+nl+n2+n3-7,ip(j,4}) = s4(2,1,3)*(t(4)/t(1))

/ (sdfE*a55(4)*1(4))
END DO

END DO

column pivoting.

k1
k2
k3
k4
k5
ké
DO

ip(n1,1)
ip(1.,4)
ip(n4,4)
ip(ni1,5)
ip(1,8)
ip(n4, 8)

i =1, 2*ntot
dummy = a (i, 2)
a(i,2) = a(i,kl)
a(i,kl) = dummy
dummy = a(i,3)
a(i,3) = a(i,k2)
a(i,k2) = dummy

[
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dummy = a{i,4)

a(i,4) = a(i,k3)
a(i,k3) = dummy
dummy = a(i,ntot+2)
a(i,ntot+2) = al(i k4)
a(i,k4) = dumny
dummy = a{i,ntot+3)
a(i,ntot+3) = a{i,k5)
a(i,k5) = dummy
dummy = 2 (i,ntot+4)
a(i,ntot+4) = a(i, k6}

a(i,k6) = dummy
dummy = a(i,5)
a(i,5) = a{i,ntot+l)
a(i,ntot+1l) = dummy
dummy = a(i,6)
a(i,6) = a(i,ntot+2)
a(i,ntot+2) = dummy
dummy = a(i,7)
a(i,7) = a(i,ntot+3)
a(i,ntot+3) = dummy
dummy = a(i,8)
a(i,8) = a(i,ntot+4)
a(i,ntot+4) = dummy
END DO

DO i = 1 , ntot-nbc
dummy = b(i,2)
b(i,2) = b(i,k1)
b(i,kl) = dummy
dummy = b(i,3)
b(i,3) = b(i,k2)
b{i,k2} = dummy
dummy = b{i,4)
b(i,4) = b(i,k3)
b(i,k3) = dummy

END DO

preparing the matrices for the standard eigen solver.

DO i =1, 2*nbc
DO j = 1 , 2*nbc
ainv(i,j) = a(i,3j)
END DO
END DO

CALL gaussj (ainv,2*nbc, 2*nbc)
DO i =1, 2*nbc
DO j =1 , 2*nbc
a(i,j) = ainvi{i,j)
END DO
END DO

DO i =1 , 2*nbc
DO j = 1 , 2*(ntot-nbc)



DO k =1 , 2*nbc
c(i,j) = c(i,3) + ainv(i,k)*a(k,j+2*nbc)
END DO
END DO
END DO

DO i = 1 , 2*(ntot-nbc)
DO j = 1 , 2*(ntot-nbc)
DOk =1, 2*nbc
a{i+2*nbc,j+2*nbc) = a{i+2*nbc,j+2*nbc) -
& a(i+2*nbec,k) *c(k,3)
END DO
END DO
END DO

po i =1, (ntot-nbc)
DO j = 1 , (ntot-nbc)
DO k = 1 , nbc
b{i,j+nbc) = b(i,j+nbc) - b (i, k) *c(k+nbc, j+ntot-nbc)
END DO
END DO
END DO

END DO
DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
ainv(i,j) = a(i+2*nbc, j+2*nbc)
END DO
END DO

CALL gaussj (ainv,ntot-nbc,ntot-nbc)

DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
c{i,j) = 0.
DO k = 1 , ntot-nbc
cl{i,j) = c(i,j) + ainv(i,k)=*a(k+2*nbc,j+ntot+nbc)
END DO
END DO
END DO

DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
DO k = 1 , ntot-nbc
a(i+ntot+nbc,j+ntot+nbec) = a(i+ntot+nbc,j+ntot+nbc)
& - a{i+ntot+nbc,k+2*nbc) *c(k, j)
END DO
END DO
END DO
DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
ainv(i,j) = b(i,j+nbc)
END DO
END DO
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CALL gaussj(ainv,ntot-nbc,ntot-nbc)
DO i =1 , ntot-nbc
DO j = 1 , ntot-nbc
c(i,j) = 0.
DO k = 1 , ntot-nbc
c(i,j) = c(i,j) + ainv(i,k)*a(k+ntot+nbc,j+ntot+nbc)
END DO
END DO
END DO

calling eigen solver

CALL balanc(c,ntot-nbc,ntot-nbc)
CALL elmhes(c,ntot-nbc,ntot-nbc)
CALL hqr(c,ntot-nbc,ntot-nbc,wr,wi)

sorting the eigenvalues

CALL piksrt(ntot-nbc,wr)
DO i = 1 , ntot-nbc
wr(i) = wr(i)/(4.%3.1415926**2*d110/1ltot**2)
END DO
WRITE (*,*) 'Real eigenvalues’
WRITE (*,*) {(wr (i) ,i=1,ntot-nbc)
STOP
END

Subroutine global for determining the global position of
each local node.

Last update: July 8,1996

PARAMETERS :

ip(i,j) = global node number of i-th local node belong to
j-th section.

n = number of nodes in each section.

SUBROUTINE global{(nl,n2,n3,n4,ip)
DIMENSION ip (50, 8)

rotations

DO i =1, nl
ip(i,1) = 1

END DO

ip(1,2) =nl

DO i =2, n2
ip(i,2) = ni+i-1

END DO

ip(1,3) = nl

DO i = 2, n3-1
ip{(i, 3) = ni+n2+i-2

END DO
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ip(n3,3) = ni+n2-1
ip(1,4) = nl+n2-1
DO 1 =2, nd

ip(i,4) = nl+n2+n3+i-4
END DO
c
¢ deflections
c
ntot=nl+n2+n3+n4-4
Do i =1, nl
ip(i,5) = i+ntot
END DO
ip(1,6) = nl+ntot
Do i =2, n2
ip(i,6) = nl+i-l+ntot
END DO
ip(1,7) = nl+ntot
DO i = 2, n3-1
ip(i, 7) = nl+n2+i-2+ntot
END DO
ip(n3,7) = nl+n2-l+ntot
ip(1,8) = nl+n2-1l+ntot
DO i =2, n4d
ip(i,8) = nl+n2+n3+i-4+ntot
END DO
RETURN
END
c
c Subroutine position for computiong the sampling points in each
c section.
c
c Last update: July 8,1996
c

SUBROQUTINE position(n,x)
DIMENSION x(*)
3.1415926

=2

, n - 1
0.5*(1. - COS((2%i-1)*pi/(2*n)))

,\
[Sakd
I

Subroutine coefld to compute the weighting coefficients.

Last update: July 8,1996

00000
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SUBROUTINE coefld(x,s,norder,n, pmx)
DIMENSION x(*),s(2,50,50),pmx(*)

Computing the first derivatives of Lagrange polynomials
in x direction .

pDoi=1,n 'n=number of grid points in x dir.
prax (i) = 1.
DO j =1, n
IF (i .EQ. j) CYCLE
pmx (i) = pmx(i)*(x(i)-x(3))
END DO
END DO

Determination the weighting coefficients for the first derivative.

DOi=1,n
DOj =1, n
IF (i .EQ. j) CYCLE
s(1,i,3) = pmx(i)/((x(i)-x(3)) *pmx(]))
s(i,i,1i) s(1,i,i)-s{1,1i,3)
END DO
END DO

Computing the weight coefficients of successive derivatives.

DO k = 2 , norder ! norder= highest dervat. ord. in x dir.
DOi=1,n
DOj=1,n
IF (i .EQ. j) CYCLE
s(k,i,j)=k*(s{k-1,i,i)*s(1,1i,3)-s(k-1,1i,3)/(x(i)-x(3)))
s{k,i,i) = s(k,i,1i)-s(k,1,3)
END DO
END DO
END DO
RETURN
END
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APPENDIX A2

Sample program ONEDMD for the buckling analysis of composite laminated

beams having multiple delaminations. The routines: balanc, elmhes, hqr and piksrt are

taken from Press et al (1986).
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rogram ONEDMD for the buckling analysis of a general laminated
omposite beam having multiple delaminations.

ast update: Jan. 10,1997

IMPLICIT DOUBLE PRECISION(a-h,o-z)

DIMENSION & (400,400),b(400,400),c(300,300)

DIMENSION x1 (20),x2(20),x3(20),s1(2,20,20)
,82(2,20,20),s3(2,20,20)

DIMENSION wr (300),wi(300)

DIMENSION pmx(20),ainv(300,300)

DIMENSICN ip(20,20)

REAL*8 1(10),t(10),d1(10),d4t(10),1tot

OPEN (1, FILE="onedmlO.inp", STATUS="OLD")

1(2) length of delaminations

READ (1, *) nod 'no. of delamination.
READ(1,*)nl,n2,n3 'no. of grid spacing in each region.
READ(1,*)(t(i), 1 = 1 , nod+3) tt(i)=thickness of each section.
READ(1,*)(1(i), 1 =1, 3) t1(i)=1length of each section.
READ(1,*)s

ntot = nl+(nod+1l)*n2+n3-2*(nod+1) ! total number of nodes

ltot = 1(1)+1(2)+1(3) ! overall length

nbc = 4

1 (nod+3)=1(3)
DO i = 2 , nod+2

1(i)=1(2)

END DO

DO i =1 , nod+3
dae{i) = t(i)/c(1)
dl{i) = ltot/1(i)

END DO

sbar = s/(4.%(3.1415926) **2)

determining the global position of each local node.

CALL global{(nl,n2,n3,nod, ip)

computiong sampling points in each section.
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CALL position{nl,xl)
CALL position{n2,x2)
CALL position(n3,x3)

computing coefficients of DQM.
CALL coefld(xl,sl.,2,nl,pmx)
CALL coefld(x2,s2,2,n2,pmx)
CALL coefld(x3,s3,2,n3,pmx)

applying boundary conditions for all sectiomns.
clamped condition of both ends.

a (nbc+1l,ntot+l) = 1. !Zero deflection
a(2*nbc,2*ntot) = 1. !Zero deflection
a(i,1) = 1. IZero slope
a(nbc,ntot) = 1. !Zero slope

moment continuity at the intersection of 1,2,3,.. and nod+2.

DO i =1, nl
a(2,ip(i,1)) = a(2,ip(i,1)) + si(l,nl,i)=*t(1l)**3/1(1)
END DO
DO j = 2 , nod+2
DO 1 =1 , n2
a(2,ip(i,Jj)) = a(2,ip(i,3)) - s2(1,1,i)*c(j)**3/1(3)

END DO
END DO
sig = 0.

DO i = 2 , nod+l
DO j = i+l, nod+2
sig = sig+t(i)*e(F)*(t(i)+t (7))

END DO
END DO
a(2,ip(ni, 1))
a(2,ip(n2,2))

a(2,ip(nl1,1))+3.*sig/1(2)
a(2,ip(n2,2))-3.*sig/1(2)

shear force continuity at the intersection of 1,2,3,.. and nod+2.

DO i =1, nl
a(nbc+2,ip(i,nod+4)) = a(nbc+2,ip(i,nod+4) )+
s s1(1,nl,i)*(t(1l)/1(1))
END DO
DO j = 2 , nod+2
DO i =1, n2
a(nbc+2,ip(i,j+nod+3)) = a(nbc+2,ip(i,j+nod+3))
s -s2(1,1,1)*(e(J)/1(3))
END DO
END DO

moment continuity at the intersection of 2,3,4,.. and nod+3.

DO i =1, n3
a(3,ip(i,nod+3)) = a(3,ip(i,nod+3))
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END DO
k1 = {(nod+1l)*(n2-2)
DO i =2, n3-1 tlast section.

Do j =1, n3
a(nl+no-3+i+kl,ip(j,nod+3)) = a(nl+no-3+i+kl, ip(j,nod+3))
& +s3(2,i,j)*sbar*dl(nod+3)**2*dt(nod+3)**2
a(nl+no-3+i+kl,ip(j,2*(nod+3))) = -s3(1,1,3)/1(nod+3)
IF(j .EQ. 1)THEN
a(nl+no-3+i+kl,ip(j,nod+3))=a(nl+no-3+i+kl,
& ip(j,nod+3))-1.
END IF
a(ntot+nl+nbc-3+i+kl,ip(j.nod+3)) = s3(1,1i,3)
a(ntot+nl+nbc-3+i+kl,ip(j,2* (nod+3))) = s3(2,1,3)/1(nod+3)
b(i+nl-3+kl,ip(j,nod+3)) = s3(2,i,3)*s/1(nod+3)

END DO
END DO
c
c column pivoting.
c
k1 = ip(nl,1)
k2 = ip(l,nod+3)
k3 = ip(n3,nod+3)
k4 = ip(nl,nod+4)
k5 = ip(1l,2* (nod+3))
k6 = ip{n3,2*(nod+3))
DO i =1 , 2*ntot

dummy = a(i,2)

a(i,2) = a(i,kl)
a(i,kl) = dummy
dummy = a(i,3)

a(i,3) = a(i,k2)
a(i,k2) = dumny
dummy = a(i,4)

a(i,4) = a(i,k3)
a(i,k3) = dummy
dummy = a(i,ntot+2)
a(i,ntot+2) = al(i,k4)
a(i,k4) = dummy
dummy = af(i,ntot+3)
a(i,ntot+3) = a(i,k5)
a(i,k5) = dummy
dummy = a(i,ntot+4)
a(i,ntot+4) = al(i,bk6)
a(i,k6) = dummy
dunmy = a(i,5)

a(i,5) = a(i,ntot+l)
a(i,ntot+l) = dummy
dummy = a(i,6)

a(i,6) = a{i,ntot+2)
a(i,ntot+2) = dummy
dummy = a(i,7)

a(i,7) = a(i,ntot+3)

a(i,ntot+3) = dummy
dummy = a(i,8)
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a(i,8) = a(i,ntot+4)
a(i,ntot+4) = dummy
END DO

DO i = 1 , ntot-nbc
dummy = b (i, 2)
b(i,2) = b(i, k1)
b(i,kl) = dummy
dummy = b (i, 3)
b(i,3) = b(i.k2)
b(i,k2) = dummy
dummy = b(i,4)
b(i,4) = b(i,k3)
b(i,k3) = dummy

END DO

preparing the matrices for the standard eigen solver.

DO i =1, 2*nbc
DO j =1 , 2*nbc
ainv(i,j) = a(i,3)
END DO
END DO

CALL gaussj (ainv, 2*nbc, 2*nbc)
DO i1 =1 , 2*nbc
DO j =1 , 2*nbc
a(i,j) = ainv(i,3)
END DO
END DO

DO i =1, 2*nbc
DO j =1 , 2*(ntot-nbc)
DO k = 1 , 2*nbc
c(i,j) = c(i,j) + ainv(i,k)=*a(k,j+2*nbc)
END DO
END DO
END DO

DO i =1 , 2*x(ntot-nbc)
DO j = 1 , 2*(ntot-nbc)
DO k =1 , 2*nbc
a(i+2*nbc,j+2*nbc) = a(i+2*nbc,j+2*nbc) -
& a(i+2*nbc,k) *c(k,3)
END DO
END DO
END DO

DO i =1 , (ntot-nbc)
DO j = 1 , (ntot-nbc)
DO k = 1 , nbc

b(i,j+nbc) = b(i,j+nbec) - b(i,k)*c(k+nbc,j+ntot-nbc)

END DO
END DO
END DO
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END DO
DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
ainv(i,j) = a(i+2*nbc,j+2*nbc)
END DO
END DO
CALL qaussj(ainv,ntot-nbc,ntot-nbc)

DO i =1 , ntot-nbc
DO j = 1 , ntot-nbc
c(i,j) = 0.
DO k = 1 , ntot-nbc
c(i,j) = c(i,j) + ainv (i, k) *a(k+2*nbc, j+ntot+nbc)
END DO
END DO
END DO

DO i = 1 , ntot-nbc
DO j =1 , ntot-nbc
DO k = 1 , ntot-nbc
a(i+ntot+nbc, j+ntot+nbc) = a(i+ntot+nbc,j+ntot+nbc)
& - a(i+ntot+nbc,k+2*nbc)*c(k,])
END DO
END DO
END DO
DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
ainv(i,j) = b(i,j+nbc)
END DO
END DO
CALL gaussi (ainv,ntot-nbc,ntot-nbc)
DO i = 1 , ntot-nbc
DO j = 1 , ntot-nbc
c(i,j) = 0.
DO k = 1 , ntot-nbc
c(i,j) = c(i,j) + ainv(i,k)*a(k+ntot+nbc,j+ntot+nbc)
END DO
END DO
END DO

calling eigen solver

CALL balanc(c,ntot-nbc,ntot-nbc)
CALIL elmhes{c,ntot-nbc,ntot-nbc)
CALL hgr(c,ntot-nbc,ntot-nbc,wr,wi)

sorting the eigenvalues

CALL piksrt (ntot-nbc,wr)
WRITE(*,*) ‘Real eigenvalues'
WRITE(*, *) (wr(i),i=1,ntot-nbc)
STOP

END
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Subroutine global for determining the global position of
each local node.

PARAMETERS :

ip(i,j)=global node number of i*® local node belong to j©
n=number of nodes in each section.

% section.

SUBROUTINE global(nl,n2,n3,nod, ip)
DIMENSION ip (20, *)

rotation
DO i =1, nl
ip(i,1) = 1
END DO
ip(1,2) = nl
DO i = 2 , n2

END
DO

END
ip(
DO

END
deflec

nto
DO

END
DO

END
DO

END
RET
END

ip(i,2) = i+nl-1
DO

j = 3 , nod+2
ip(1,j) = ni

ip(n2,j) = nl+n2-1

Do i=2, n2-1

IF(j .EQ. 3) THEN

ip(i,j) = ip{n2,j-1)+i-1
ELSE
ip(i,j) = ip{n2-1,3j-1)+i-1
END IF
END DO
DO
1,nod+3) = ip{(n2,2)
i=2, n3
ip(i,nod+3) = ip(n2-1,nod+2}+i-1
DO
tion
£ = nl+(nod+1l) *n2+n3-2* (nod+1) ltotal number of nodes
i=1, nl
ip(i,nod+4) = ip(i,1) + ntot
DO
j = 2 , nod+2

DO i =1, n2
ip{i,nod+3+j)
END DO
DO
i=1, n3
ip(i,2* (nod+3})
DO
URN

ip(i,j) + ntot

ip (i,no0d+3)

+ ntot
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APPENDIX A3

Sample program PLATBUC for the buckling analysis of composite laminated

plates having an elliptical delamination. The routines balanc, elmhes, hqr and piksrt are

taken from Press et al (1986).

nannaeoe

n

C
Cc

Program PLATBUC for the buckling analysis of a general laminated
composite rectangular plate having an elliptical delamination.

Last update: Jan. 30, 1998

IMPLICIT DOUBLE PRECISION(a-h,0-2z)

DIMENSION a(400,400),b(400,400),c(400,400)

DIMENSION sx{400,400),sy(400,400),sxx(400,400) ,syv(400,400)
DIMENSION sxxx{400,400),syyy(400,400),s1(50,50),s2(50,50)
DIMENSION sxxxx(400,400),sxyyy(400,400),syyyy(400,400)
DIMENSTON sxxyy (400,400),sxxxy(400,400),sxy(400,400)
DIMENSION wr(400) ,wi(400),x(12),y(12),rx(50),xy(50)
DIMENSION ap({(3,3),bp(3,3),dp(3,3)

DIMENSION pmx(50) ,ainv(400,400)

DIMENSION ip(50,50)

EQUIVALENCE (sx,ainv), (sy,c)

COMMON/setl/x,y

CHARACTER*20 matfile

OPEN (1, FILE="plate.inp", STATUS="UNKNOWN")

OPEN (2, FILE="plate.out", STATUS="UNKNOWN")

OPEN (3, FILE=“"plate.txt", STATUS="UNKNOWN")

READ (1, *)nx,ny 'no. of sampling points in x and y directions.
READ (1, *)ax,ay 'half axes of the ellipse.

RE2D (1, *) teta langle between ellipse and laminate (x') axis.
READ (1, *)matfile 'material properties file.

CLOSE (1)

pi = 2.*DASIN(1.40)

teta = teta*pi/180.40

nbc = 4*(nx + ny - 4) 'number of boundary conditions.

ntot = nx*ny !total number of nodes

beta = ax/ay

call matprp to compute the material properties.

CALL matprp(matfile, ap,bp,dp,umu)

reduced stiffness D= D-B*inv (A)*B

Doi=1, 3
poj=1, 3
ainv(i,j) = ap(i,3)
END DO
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END DO
CALL gaussj (ainv,3,3)
pDoi=1, 3
DO j =1, 3
DOk=1, 3
c(i,j) = c(i,j)+ ainv(i,k) *bp(k,j)
END DO
END DO
END DO
DoOoi=121, 3
DO j =1, 3
DOk=1, 3
dp(i,j) = dp(i,j)- bp(i.k) *c(k,])
END DO
END DO
END DO
IF(dp(1,1) .NE. 0.d0)THEN
dil = dp(1,1)
pDoi=1, 3

DO =1, 3
ap(i,j) = ap(i,j)/di1
bp(i,j) = bp(i,j)/d11
dp(i,j} = dp(i,3j)/d11
END DO
END DO
END IF

ex = DCOS(teta)**2 - umu*DSIN(teta)**2
ey = DSIN(teta)**2 - umu*DCOS (teta) **2

exy = -.5d0*{(1.d40+umu) *DSIN{(2.d0*teta)

pX = -(ap(l,1l) *ex + ap(1,2)*ey + ap(i,3) *exv) INx
py = -(ap(l,2)*ex + ap(2,2)*ey + ap(2,3)*exy) !Ny
pxy = -(ap(l1,3)*ex + ap(2,3)*ey + ap(3,3)*exy) INxy

IF(DABS(px) .LT. 1.4-10) px = 0.40
IF(DABS (py) .LT. 1.4-10) py = 0.40
IF (DABS (pxy) .LT. 1.4-10) pxy = 0.d0

x,y of ellipse

x(1l) = -1.40

x(2) = 0.40

x(3) = 1.40

x(4) = 0.40

x(5) = -1.d0*DCOS (pi/6.)
x(6) = -1.d0*DCOS (pi/3.)
x{(7) = -x(5)

x(8) = -x(6)

x(9) = x(5)

x(10) = x(8)

x(11) = x(7)

x(12) = x(6)

y(1) = 0.40

y(2) = -1.40

y(3) = 0.40

y(4) = 1.40



v(5) = -1.40*DSIN(pi/6.)
v(6) = -1.d40*DSIN(pi/3.)
v(7) = -y(5)
y(8) = -y(6)
y(9) = -y(5)
y(10) = y(6)
v(11) = y(5)
v(12) = -y (6)
CALL global (nx,ny,ip) tglobal position of each local node.
CALL position(nx,rx,1) !sampling points in each dir.
CALL position(ny,ry,1)
CALL coefld(rx,sl,nx,pmx) Tcoefficients of DQM.
CALL coefld(ry.s2,ny,pmx)
c
c compute the coefficients of first order D.Q.
c
DO i =1 , nx
DO 7 =1 , ny
m = ip(i,3)
CALL mapping(rx{i),ry(j).,djac,dxdr,dxds,dydr, dyds)
DOk =1, nx
n = ip(k,3)
sx{m,n) = sx(m,n) + sl{i,k)*dyds/djac
sy{m,n) = sy{m,n) - sl(i,k)*dxds/djac
END DO
DO 1 =1, ny
n = ip(i,1)
sx{m,n) = sx(m,n) - s2(j,1l)*dydr/djac
sy(m,n} = sy(m,n) + s2(j,1)*dxdr/djac
END DO
END DO
END DO
c

c computing the coefficients of higher order derivatives.

DO i = 1 , ntot
DO j =1 , ntot
DO k = 1 , ntot

sxx(i,j) = sxx(i,j) + sx(i,k)*sx(k,])
syy(i,j) = syy(i,j) + sy(i,k)*sy(k,])
sxxx(i,j) = sxxx(i,3) + sx(i,k)*sxx(k,])
syvy(i,3j) = syyy(i.,3) + sy(i,k)=*syy(k,3)
END DO
END DO

END DO
DO i =1 , ntot
DO j = 1 , ntot
DO k =1 , ntot

sxxxx(i,j) = sxxxx(i,j) + sxx(i,k)*sxx(k,j)
syyyy(i,j) = syyyy(i,j) + syy(i,k)*syy(k.])
sxxxy(i,j) = sxxxy(i,j) + sxxx(i,k)*sy(k,]j)
sxyyy(i,j) = sxyyy(i,j) + sx(i,k)*syyy(k,]j)
sxxyy(i,j) = sxxyy(i,j) + sxx(i,k}*syy(k,j)

sxy(i,3) = sxy(i,j) + sy(i,k)*sx(k,])
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END DO
END DO
END DO

applying boundary conditions for clamped plate.

DO i =1 , ntot
DO j = 1 , ntot

a(i,j) = 0.40
END DO
END DO
DO j =1, ny
a(ip(1,7).ip{1,3)) = 1.d40 tZero deflection x=0
a(ip{nx,j).ip(nx,j)) = 1.d40 tZero deflection x=a
END DO
DO i =2, nx-1
a(ip(i,1),ip(i,1)) = 1.40 1Zero deflection y=0

1.40 1Zero deflection y=b

a(ip(i,ny) . .ip(i,ny))
END DO
DO J =2 , ny-1

CALL cmap (rx(2),ry(i}.,xx,vy)

dnom = DSQRT (ay**4*xx**2 + ax*rdryy*x*2)

costl = DCOS(ay**2*xx/dnom)

sintl = DSIN(ax**2*yy/dnom)

CALL cmap (rx({nx-1),ry(j) ,xx,vy)

dnom = DSQRT({ay**4*xx**2 + ax**4ryy**2)

cost2 = DCOS{ay**2*xx/dnom)

sint2 = DSIN(ax**2*yy/dnom)

DOk =1, nx

DOCm=1, ny

a(ip(2,3).ip(k,m)) = costi*sx(ip(2,j).ip(k.m))/ax +
& sintl*sy(ip(2,3) ,ip(k,m})/ay i1Zero rotaticn x=0
a(ip(nx-1,3).,ip(k,m))= cost2*sx(ip(nx-1,j),.ip(k,m})/ax +
& sint2*sy(ip{nx-1,j).,ip(k,m))/ay !Zero rotation x=a
END DO
END DO
END DO

DO i =3 , nx-2
CALL cmap (rx{i) ,rv(2),xx,vy)
dnom = DSQRT (ay**4*xx**2 + ax**dryyr*2})
costl = DCOS(ay**2*xx/dnom)
sintl = DSIN(ax**2*yy/dnom)
CALL cmap (rx(i),ry(ny-1},xx,yy)
dnom = DSQRT (ay**4*xx**2 + axr*4ryyx*2)
cost2 = DCOS (ay**2*xx/dnom)
sint2 = DSIN(ax**2*yy/dnom)
DOk =1, nx
DOm=1, ny
a(ip(i,2),ip(k,m)) = costli*sx(ip(i,2),ip(k,m))/ax +

& sintl*sy(ip(i,2),ip(k,m))/ay IZero rotation y=0
a(ip(i,ny-1).,.ip(k,m)) = cost2*sx(ip(i,ny-1).,ip(k,m))/ax +

& sint2*sy({ip(i,ny-1) ,ip(k,m))/ay !Zero rotation v=b
END DO

END DO
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END DO

applying the buckling egation for internal nodes.

DO k = nbc+l , ntot
DO i =1, nx
DO j =1, ny
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alk,ip(i,3)) = a(k,ip(i,3j)) + dp(1,1)*sxxxx(k,ip(i,j))+

4.d0*dp(1,3) *beta*sxxxy (k,ip(i,j)) +
2.d0*beta**2* (dp(1,2)+2.d0*dp(3,3) ) *sxxyy (k,ip(i,j) )+

4.d0*beta**3*dp(2,3) *sxyyy(k,ip(i,3)) +

beta**4*dp(2,2) *syyvy(k.ip(i,3))
b{k-nbc,ip(i.j)) = b(k-nbc,ip(i,j))+px*sxx(k,ip(i.j))+
2.d0*beta*pxy*sxy(k,ip(i,j)) + beta**2*py*syy(k,ip(i,3]))
END DO
END DO
END DO

R AR

R

computing eigenvalues of A.W = B.W

DO i =1 , nbc 'inv(all)
DO j =1 , nbc
ainv(i,j) = a(i,3)
END DO
END DO
CALL gaussj (ainv,nbc,nbc)
DO i =1 , nbc tinv(all) *al2

DO j = 1 , ntot-nbc
c(i,j) = 0.40
DO k =1 , nbc

c(i,j) = c(i,j) + ainv(i,k)*a(k,j+nbc)
END DO
END DO
END DO
DO i = 1 , ntot-nbc A

DO j = 1 , ntot-nbc
DO k =1 , nbc

a (i+nbc,j+nbc) = a(i+nbc,j+nbc) - a(i+nbc,k)*c(k,])
END DO
END DO
END DO
DO i = 1 , ntot-nbc B

DO j = 1 , ntot-nbc
DO k =1 , nbc
b(i,j+nbc) = b{i,j+nbec) - b(i,k)*c(k,])
END DO
END DO
END DO
DO i =1 , ntot-nbc
DO j = 1 , ntot-nbc
c{(i,j) = a{i+nbc, j+nbc)
ainv(i,j) = b(i,j+nbc)
END DO
END DO
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CALL gaussj (ainv,ntot-nbc,ntot-nbc)
DO i =1 , ntot-nbc linv{B)*A
DO j = 1 , ntot-nbc
a(i,j) = 0.40
DO k = 1 , ntot-nbc
a(i,j) = a(i,j) + ainv(i,k)*c(k,]j)
END DO
END DO
END DO

Solve inv(B)*A for it's eigenvalues

CALL balanc(a,ntot-nbc,ntot-nbc)
CALL elmhes (a,ntot-nbc,ntot-nbc)
CALL hqr(a,ntot-nbc,ntot-nbc,wr,wi)
CALL piksrt(ntot-nbc,wr) !sorting eigenvalues
DO i = 1 , ntot-nbc

wr(i) = wr(i)/ax*=*2
END DO
WRITE(*, *) 'Real eigenvalues'
WRITE(*,*) (wr(i),i=1,ntot-nbc)
WRITE(*, *) 'Imaginary eigenvalues'
WRITE(*,*) (wi(i), i=1,ntot-nbc)
STOP
END

Subroutine global for determining the global position of
each local node.

SUBROUTINE global (nx,ny,ip)
DIMENSION 1ip(50,50)

First put the boundry points
DO i=1, 2 IThe first and the last two columns

DO j =1, ny
ip(i,J) = (i-1)*ny+j

ip{nx-2+i,j) = (i+1) *ny+j
END DO
END DO
DO j =1, 2 iThe first and the last two rows

DO i =3, nx-2
ip(i,j) = 4*ny + (3-1)*(nx-4)+(i-2)
ip(i,ny-2+j) = 4*ny + (j+1)*(nx-4)+(i-2)
END DO
END DO

Then the internal nodes

DO i =3 , nx-2
D0j=3tD-Y'2
ip(i,j) = 4*(nx+ny-4}+(i-3)*(ny-4)+(j-2)
END DO
END DO
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Subroutine position for computiong sampling points in each
direction. It is based on unequally spaced sampling points
with adjacent delta-points.

SUBROUTINE position(n,x, k)
IMPLICIT DOUBLE PRECISION(a-h,0-2)
DIMENSION x(*)
pi = 2.40*DASIN(1.40)
delta = 1.d-5
IF(k .EQ. 1)THEN

DOi=3,n-2

x(1) = - DCOS((i-2)*pi/(n-3))
END DO
x(1) = -1.40
x(2) = +-1.40 + delta
x(n-1) = 1.40 - delta

x(n) = 1.40
ELSE IF (k .EQ. 2)THEN
DO i=2, n-1

x(i) = ((i-1)/DFLOAT(n-1))
END DO
END IF
RETURN
END

SUBROTINE mapping to map the physical domain into computational
domain by using cubic serendipity shape functions.

SUBROUTINE mapping({rc, sc,djac,dxdr,dxds,dydr, dyds}
IMPLICIT DOUBLE PRECISION{(a-h,o-z)
DIMENSION sfd(12,2),x(12),y(12),r(12),s(12)

COMMON/setl/x, vy

DATA r/-1.40,1.40,1.40,-1.40,-.3333333333333,.3333333333333,

& .33333333333333,-.33333333333333,-1.d0,1.40,1.480,-1.40/
DATA s/-1.40,-1.40,1.40,1.40,-1.40,-1.40,1.40,1.40,

& -.33333333333333,-.33333333333333,

& .33333333333333,.33333333333333/

Compute the derivatives of shape functions at rc and sc.

DO i =1, 12
SELECT CASE (i)
CASE(1,2,3,4)

sfd(i,1) = (1.40/32.d0)*(1.d0+sc*s(i}))*(r(i)~*
& (89.d0* (rc**2+sc**2) -10.40) +18.d40*rc*(1.d0+xrc*r(i)))
sfd(i,2) = (1.40/32.40)*(1.d40+xc*r(i))*(s(i)*
& (9.d0* (rc**2+sc**2) -10.d0) +18.40*sc*(1.d0+sc*s(i)))
CASE(5,6,7,8)
sfd(i,1) = (9.d40/32.d40)*(1.d0+sc*s(1))*(9.40*xr(i)~*

& (1.d0-xrc**2) -2.d0*rc*(1.40+9.d0*rc*r(i)))
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sfd(i,2)=(9.d40/32.40) *s (i) *(1.d0+9.d0*rc*r (i) ) *(1.40-rc**2)
CASE(9,10,11,12)

sfd(i,1)=(9.d40/32.40)*r(i)*(1.40+9.d0*sc*s (i)} *(1.d0-sc**2)

s£d(i,2)=(9.d40/32.d0)*(1.d0+rc*r(i))*(9.d0*s (i)~

& (1.40-sc**2) -2.40*sc*(1.40+9.d0*sc*s(i)))
END SELECT
END DO
c
lod Jacobian evaluation at rc and sc.
c
dxdr = 0.d0
dxds = 0.40
dydr = 0.40
dyds = 0.d0
poi=1, 12
dxdr = dxdr + sfd(i,1l)*x(i)
dxds = dxds + s£d(1i,2)*x(1i)
dydr = dydr + sfd(i,1l) *y (i)
dyds = dyds + sfd(i,2)*y (i)
END DO
djac = DABS(dxdr*dyds - dxds*dydr) fJacobian
IF(djac .EQ. 0.)THEN
WRITE(*,100) rc, sc
STOP
END IF
i00 FORMAT (' **** SINGULARITY *x*xt / At point r =',ell.4,
& v,s =',ell. 4, Jacobian is zero')
RETURN
END
c
lod SUBROUTINE cmap to give the physical coordinate from computational
c domain by using cubic Serendipity shape functions.
c
SUBROUTINE cmap(rc,sc,xx,yy)
IMPLICIT DOUBLE PRECISION{(a-h,o-z)
DIMENSION sf£(12),x(12),y(12),r(12),s(12)
COMMON/setl/x,v
DATA r/-1.40,1.80,1.40,-1.40,-.3333333333333,.3333333333333,
& .33333333333333,-.33333333333333,-1.40,1.40,1.40,-1.40/
DATA s/-1.40,-1.40,1.40,1.40,-1.40,-1.40,1.40,1.40,
& -.33333333333333,-.33333333333333,
& .33333333333333,.33333333333333/
c
c Compute shape functions at rc and sc.
C

poi=1, 12
SELECT CASE (i)
CASE(1,2,3,4)
sf(i) = (1.40/32.40)*(1.80+rc*r(i})) *(1.d40+sc*s(i)) *
& (9.40* (re**2+sc**2) -10.40)
CASE(5,6,7,8)
sf(i) = (9.40/32.40)*(1.40+sc*s (1)) *(1.d0-rc**2)~*
& (1.40+9.d0*rc*r (1))
CASE(9,10,11,12)
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sf(i) = (9.40/32.d0)*(1.d0+rc*r{i}))*(1.d0-sc**2)~*

& (1.40+9.d0*sc*s{i))}
END SELECT
END DO
xx = 0.d0 iX coordinate
vy = 0.d0 !y coordinate

poi=1, 12

xx = XX + sf(i)*x(i)
vy = yy + sfE(i)*v (i)
END DO
RETURN
END

subroutine matprp to compute the material properties.

ap(3,3) = extensional stiffness
bp(3,3) = bending-extensional stiffness
dp(3,3) = flexural stiffness

umu = base lamin. Poisson's ratio for time being =.3

SUBROUTINE matprp({matfile, ap,bp,dp,unu)
IMPLICIT DOUBLE PRECISION(a-h,o-z)
CHARACTER*20 matfile
DIMENSION deqg(50),nl1(50),2z(0:50),t(50),ap(3,3),dp(3,3),
& gbar(3,3).,.bp(3,3)
OPEN (1, FILE=matfile, STATUS="UNKNOWN")
READ (1, *)el,e2,gl3,v12
READ (1, *)n
pi = 2.d30*DASIN(1.d0)
DOi=1,n
READ(1,*)nl(i),deg(i), t (i)
deg(i) = deg(i)*pi/180.40
END DO
CLOSE (1)
umu = 0.3d0
v21l = vli2=*e2/el

facl = 1. - v12*v21
qll = el/facl
ql2 = vi2*e2/facl
g2l = vi2*e2/facl
q22 = e2/facl
g33 = gl3
DO i =1 , n+l1
IF(i .EQ. n+l} t{i) = t(n)
z(i-1) = -(({n/2.)-(i-1))*t(i)
END DO
pDoi=1, 3
DO j =1, 3
ap(i,j) = 0.40
bp(i,j)} = 0.40
dp(i,3j) = 0.40
END DO
END DO

DOi=1,n
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gbar(l,1l) =qll1*(DCOS{deg(i))})**4 + g22* (DSIN(deg(i)))**4 +

2.40* (ql2+2.d0*g33) * (DCOS (deg (i) ) *DSIN(deg (i) )} **2

gbar(1,2) =(qll+g22-4.d0*g33) *(DCOS (deg (i) ) *DSIN(deg(i)))**2 +

gl2* (DSIN(deg(i}) *DCOS(deg(i))) **4

gbar(2,2) =qll~*(DSIN{deg(i)))**4 + Q22+ (DCOS(deg(i)))**4 +

2.80*(q12+2.40*q33) * (DCOS (deg (i)} *DSIN(deg(i))) **2

gbar(1,3) =(qll-ql2-2.d40*q33)*DCOS{deg(i))**3*DSIN(deg(i)) +

(q22-9l2-2.40*g33) *DSIN({deg (i) ) **3*DCOS (deg (i))
=(qll-ql2-2.40*q33) *DCOS(deg (i) ) *DSIN(deg(i)) **3 +

(@22-ql2-2.d0*q33) *DSIN(deg (i) ) *DCOS{(deg (i) ) **3
gbar(3,3) =(qll+q22-2.dO*in-Z.dO*q33)*(DCOS(deg(i))*
DSIN(deg(i)})**2 + g33* (DSIN(deg(i))**4+DCOS(deg(i)) **4)

gbar(2,3)
DO j=1, 3
DO k =1 ,
ap(j.k)
bp(j.k)
dp(j.k)
END DO
END DO
END DO
ap(2,1) = ap(1,2)
ap(3,1) = ap(1,3)
ap(3,2) = ap(2,3)
bp(2,1) = bp(1,2)
bp(3,1) = bp(1l,3)
bp(3,2) = bp(2,3)
dp(2,1) = dp(i,2)
dp(3,1) = dp(1,3)
dp(3,2) = dp(2,3)
RETURN

END

3

=ap(j,k) + gbar(j,k)*(z(i)-z(i-1))

=bp(j,k) + 0.5d0*gbar({j,k)*(z(i)**2-z(i-1)=**2)
=dp(j.k)+(1.4d0/3.) *gbar(j,k)*(z(1i)**3-z(i-1)**3)
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APPENDIX A4

Sample program ONEDSDP for the postbuckling analysis of composite laminated
beams having a single delamination. The routines mnewt, lubksb and ludcmp are taken

from Press et al (1986).

c Program ONEDSDP for postbuckling analysis of a composite laminated
c clamped beam having a single delamination.
c
c Last update: Aug. 29, 98
c
o] Routines
c
c mnewt, lubksb, ludcmp (all from numerical recipes book)
o

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION x(250),x0(250) ,xx1 (250) ,xx2(250) ,£fvec(250),a(250,250)

DIMENSION x1(200),s1(4,50,50),x2(100),ul(250),u2(250),xx3(250)

DIMENSION pmx(100),ip(50,8),g9(250,250),xx(250) ,xx4 (250}

& ,indx (250) ,ev (250} ,x00 (250)

REAL*8 ltot,lan0,load,landa,landal,delan

REAL*8 1(4),t(4)

DIMENSION all({4),a55(4),bl11(4),d11(4)

COMMON/setl/1l,t,ltot,sl,nl,n2,n3,n4,aa,ip,xx

COMMON/set2/ nload

COMMON/set3/ all,ab’5,bll,dll

CHARACTER*20 matfile

OPEN (1, FILE="arc.inp", STATUS="UNKNOWN")

OPEN (2, FILE="arc.out", STATUS="UNKNOWN")

OPEN (5, FILE=*"wdef.xls", STATUS="UNKNOWN")

OPEN (6, FILE="udef.xls", STATUS="UNKNOWN")

READ(1,*)nl,n2,n3,n4

READ(1,*) (c(i), 1 =1 , 4) ithickness of each saction.

READ(1,*) (1(i}), i =1 , 4) tlength of each section.

READ (1, *)aa timperfection amplitude

READ (1, *)delta 'load increament

READ (1, *)matfile !material properties file.

READ (1, *)itnum Ino. of iterations.

CLOSE (1)
c

pi = 2.d0*DASIN(1.40)

ltot = 1(1) + 1(2) + 1(4) foverall length

ntot = nl+n2+n3+n4-4 ttotal number of nodes

n = 2*ntot+4 !number of variables.

nload = 19 !position of load n-nload

radmax = 1.,d-1 'Max radious of arc-length

radmin = 2.d4-2 !Min radious of arc-length

prdit = 5. !Desired number of iteration
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icon2
icond = 5
kk = ni/2 +1

iprint=0 print for one run

10 IMax no. of iter.

IMax no.

iprint=1 print at the end of last run (for multiple runs)

iprint = 0

CALL matprp(matfile)
pcr = 4.*pi**2*dll (1) /ltot**2

CALL global(nl,n2,n3,n4,ip)

CALL position(nl,xl)

computing coefficients of DQM.

CALL coefld(xl,sl,4,nl,pnx)

DO i =1, nl

xx (i) = x1(1i)=*1(1)
END DO
DO i =1, n2

xx(ni+i) = 1(1) + x1(i)=*1(2)

END DO
DO i =1, n3

call matprp to compute the material properties.

ICritical load of intact beam

global position of each local node.

computiong sampling points in each section.

position of sampling points along the beam length.

xx(nl+n2+i) = 1(1) + x1(1i)*1(3)

END DO
DO i =1, n4

xx{nl+n2+n3+i) = 1(1) + 1(2)
END DO

Initial starting point.

aal = 1l.d-2*aa
DO i =1 , ntot

x(i) = aal*(ltot - xx{i))
END DO
DO i =1, nl
x(ip(i,5)) = 1l.d-1*aa* (1.
x(ip{(i,6)) = 1.d-1*aa* (1.
x(ip(i,7)) = 1.d-1*aa* (1.
x(ip(i,8)) = 1l.d-1*aa* (1.
END DO

x(ip(n4,4)) = 0.

+ x1(i)*1(4a)

DCOS (2. *pi*xx(ip (i, 1)) /1ltot))
DCOS (2.*pi*xx(ip(i,2))/1ltot))
DCOS (2.*pi*xx (ip(i,3)) /1ltot))
DCOS (2.*pi*xx (ip(i,4))/1ltot))

in each arc length search
of bisection in each iter.
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102

112

113

0

x(ip(1,5)) = 0.
x(ip(n4,8)) = 0.
load = 0.

Find a point on the load-disp. curve.

delta
d + delta

deltalC =
load = 1
tolx = 1
tolf = 1
iter 30

CALL mnewt (iter,x,n,tolx, tolf, load)
ux0 = 0.

oa
.d-
.d-

6
6

DO j =1, ni
= ux0 + s1(1,1,3)*x(ip(j.,1))/1{(1)
= wx0 + s1(1,1,j)*x(ip(j,5)}/1(1)
END DO
v = {(1.40+wx0**2)
wbarl = 0.
pl = (all(l)/pcr) *(sigl + .5d0*sig2**2 +sig2*wbarl) -
& (b11(1) /pcr) *wxx0/ (1+sigl**2) **1.5
WRITE (*,*) '--------cmooomooo -
WRITE(*,*)'p at x=0 = *,pl
WRITE (*,%) '~---v---mmmmmoeom- '
IF(iprint .EQ. 0)THEN
WRITE (5, *)ABS (pl), (x{ip(kk,6))/c (1)), (x(ip(kk, 7))/t (1))
WRITE(6,*)DABS (pl) ,x{ip(1,1)})
ELSE
DO WHILE (.NOT. EOF(5))
READ (5, *,ERR=112,END=112) aaal
END DO
WRITE(S5,*)ABS(pl), (x(ip(kk,6))/t{(1)), (x(ip(kk, 7)) /t(1})
DO WHILE (.NOT. EOF({6))
READ (6, *,ERR=113,END=113)aaal
END DO
WRITE(6,*)DABS(pl) ,x(ip(1,1))
END IF
IF(kkk .NE. 1)THEN
kkk = kkk+1
GO TO 102
END IF

Start arc length method.

WRITE (*,*) Start arc length method®
DO ite = 1 , itnum

WRITE(*,2000}ite

WRITE(*,*)' At load ',locad

WRITE (*,1500)delta

DOi=1,n

x00(1i) = x(i)
END DO
iconl = 1
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103

icon3 = 0

tolx =

tolf =

DO i = R
x0(i) = x(1i)

END DO

CALL usrfun(x0,n,a,fvec,1) !stiffness mat. at x0

.d-
.d-

ST,
SRNTN

Solving K.X = delta to find the first u-i and landal.

DO i =1, n
xx4 (i) = 0.40
END DO
xx4 (n-nload) = -1.d40
CALL ludcmp(a,n,np,indx,d)
CALL lubksb(a,n,np,indx, xx4)
uimax = 0.d40
DOi=1,n
uimax = DMAX1 (uimax,DABS (xx4 (i)))
END DO
betal = 1.40
dummy = 0.40
DOi=1,n

x0(i) = x0(i)/uimax 'normalizing
xx4 (1) = xx4 (i) /uimax
dummy = dummy +xx4 (i) **2
END DO
landal = delta/DSQRT (betal**2+dummy) !landal
DO i =1, n
xx1(i) = xx4(i)*landal 'U-1
END DO

dummy4 = 0.
DOi=1,n
dummy4 = dummy4 + xx1(i)=**2

END DO
tl = DSQRT (dummy4 + (betal*landal) **2)
WRITE(*,*)' landa-i = ', landal
WRITE(2,*)' landa-i = ',landal
DO i=1,n

x(1) = (x0{i)+xx1(i))*uimax
END DO

WRITE(*,1530)ite,iconl
CALL usrfun(x,n,a, fvec,1)
DOi=1,n

ul(i) = 0.40
END DO
ul (n-nload) = -1.40
CALL ludcmp(a,n,np, indx,d)
CALL lubksb(a,n,np,indx,ul)
DOi=1,n

ul{i) = ul(i)/uimax UL
END DC
WRITE(*,*)' u-I ',ul(kk+nl)
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c compute UII
c
DOi=1,n
u2(i) = -fvec(i)
END DO
u2(n-nload) = u2(n-nload) - (load+landal)

CALL LUBKSB(a,n,np,indx,u2)
DOi=1,n

u2 (i) = u2(i)/uimax 'UIZL
END DO
WRITE(*,*)*' u-II ',u2(kk+nl)
c
c Compute delan
c
dummyl = 0.d0
dummy2 = 0.d0
DOi=1,n
durimyl = dummyl - xx1(i)*u2(i)
dummy2 = dummy2 + xx1(i)*ul (i)
END DO
delan = dummyl/(betal**2*landal + dummy2)
WRITE(*,*)' first estimate of delan = ',delan
dummy3 = 0.d0
DOi=1,n
xx2{(i) = ul(i)*delan + u2(i)
dummy3 = dummy3 + xx2 (i) **2
END DO
t2 = DSQRT(delta**2 + dummy3 + (betal*delan) **2)
WRITE(*,*)' t-1i t,tl
WRITE(*,*)* t£-i+1 *,t2
r = -(delta**2/t£2)*(t2 - delta) 'r = residual
WRITE(*,*})' Residual = ',r
WRITE(2,*)' Residual = L o
c
¢ New delan
c
delan = (r + dummyl)/(betal**2+*landal + dummy2)
WRITE(*,*)' final estimate of delan = ',delan
105 bOoi=1,n
xx2 (i) = ul(i)*delan + u2 (i)
END DO
c
c Control for the convergence.
c
DOi=1,n
x(i) = (x0(i)+xx1 (i) + xx2(i)) *uimax
END DO
landa = landal + delan
WRITE(*,*)'Comp. Load = ', (load+landa)
CALL corwverge (x,n, (lLoad+landa) , tolx, tolf,indicat)
IF (indicat .EQ. 0)THEN 'indicat=0 converged
WRITE(*,1000)iconl, tolx
c

c check the distance of the new point to the last one.
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C

Check

198

IF(landa .GT. delta) THEN fviclation
DO i =1, n2
WRITE(*,1110)ip(i,1), (x(ip(i,6))/t(1)),ip(i,1)
L (x(ip(1,7)) /(1))

END DO
WRITE(*,*)'landa = ', landa
WRITE(*,*) 'delta = !, delta
WRITE(*, *) 'p=*, (load+landa)
iconi =1
delta = delta/2.d0 'reduction of arc length
GO TO 104
END IF
IF((load+landa) .LT. load) THEN fviolate
WRITE(*,*) 'p=*', (load+landa)
iconl =1
delta = delta/2.d40 {reduction of arc length
GO TO 104
END IF

load = lcad + landa

delta = delta*DSQRT (prdit/iconl)

IF (delta .GT. radmax) delta = radmax
IF (delta .LT. radmin) delta = radmin

ELSE IF{(indicat .EQ. 1)THEN tindicat=1 not converged
DOi=1,n
xx1(i) = xx1(i) + xx2 (i)
END DO
landal = landal + delan
tl = £2
WRITE (*,*) ' Compressive load = ', (load+landal)
ux0 = 0.
wx0 = 0.
PO j =1, nl
ux0 = ux0 + s1(1,1,3) *x(ip(3.1))/1(1)
wx0 = wx0 + s1(1,1,3)*x(ip(3,5))/1(1)
END DO
v = (1.d0+wx0**2)
wbarl = 0.

pl = (all(l)/pcr)*(sigl + .5d0*sig2**2 +sig2*wbarl) -
(b11 (1) /pcr) *wxx0/ {(1l+sigl**2) **1. 5

WRITE(*,*) " ---ceceomcomnannn- '

WRITE(*,*) 'p at x=0 = !',pl

WRITE (%, *) '=----eeccoemmmnmen- '

IF(iconl .GT. icon2)THEN

IF(DABS (pl-p2) .LT. 1.d-5)THEN
WRITE (*, *) 'Convergence based on the value of P!
load = load + landa
delta = delta* (prdit/iconl)
IF (delta .GT. radmax) delte radmax
IF (delta .LT. radmin) delta = radmin
GO TO 107

]
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END IF
IF(icon3 .GT. icon4)THEN
WRITE(*,1520)ite

STOP
END IF
icon3 = icon3 + 1 !number of step reduction
WRITE(*,1510)delta, (delta/2.)
iconl = 1
delta = delta/2.d40 ‘reduction of arc length
GO TO 104
END IF
iconl = iconl + 1
GO TO 103
END IF
107 uxg@ = 0.
wx0 = 0.

DO j =1, nl
ux0 = ux0 + s1(1,1,3)*x(ip(j,1))/1(1)
wx0 = wx0 + s1(1,1,3)*x(ip(3,5))/1(1)

END DO

v = (1.40+wx0**2)

wbarl = 0.

pl = (all(l)/pcr)*(sigl + .5d0*sig2**2 +sig2*wbarl) -
& (b1l (1) /pcr) *wxx0/ (1l+sigl**2)**x1_5

WRITE (*,*) t----cc-mmmmmmaoann -

WRITE(*,*)'p at x=0 = ',pl

WRITE(*,*) ' ----=-----=--«----- '

DO i =1, n2
WRITE(*,1110)ip(i,1), (x{ip(i,6)) /(1)) ,ip(i,1)

& SNx(ip(i,7))/t(1))
END DO
c
c writing the results on exell file.
C
kk = nl/2 +1
IF(iprint .EQ. 0)THEN
WRITE (5, *)ABS(pl), (x(ip(kk,6) )/t (1)), (x(ip(kk,7)) /(1))
WRITE (6, *)DABS(pl) ,x(ip(1,1)) ,DABS (p2)
ELSE
DO WHILE (.NOT. EOF(5))
READ(5,*,ERR=114,END=114)aaal
END DO
114 WRITE(S5,*)ABS(pl), (x(ip(kk,6))/t (1)), (x(ip(kk,7))/t (1))
DO WHILE (.NOT. EOF(6))
READ (6, *,ERR=115,END=115)aaal
END DO
115 WRITE (6, *)DABS (pl) ,x(ip{(1,1))
END IF
WRITE(*,2100)ite
END DO
C
c Formats
C

1000 FORMAT(* Convergence achieved after ',i3,' iterations',/,



& ' Norm of error in £ = ',d415.8,//)
1050 FORMAT(10x, 'Solution :*',/)
1100 FORMAT(5x,'u(',i3,")= ',el3.6,10x,'w(',i3,")= ',el3.6)
1150 FORMAT(/,10x,'Deflections of delaminated regions',/,
& 10x, 'Upper sublaminate',1l0x, 'Lower sublaminate’, /)
1200 FORMAT(Sx,‘'x{',i2,')= ',d1l5.8)
1300 FORMAT(/,' Did not converge within the tolerances',/
& ,' The best solution with error in functions norm of
& ,d15.8,' is: *,/)
1400 FORMAT(5x,'p = ',d15.8)
1450 FORMAT('-----=~-~-c-s--------- v,/.5%x,'P at x=0 = ',d15.8
& /.,5%,'P at x=L/2 = ',d15.8,/, "'~ e - /)
1500 FORMAT(' Arc Length = ',el2.6)

1510 FORMAT(/,' Did not converge with arc length ',£8.5,/
& ,'Reducing the arc length to ',£8.5,/)
1520 FORMAT(/,' Did not converge at the iteratiomn ',i3,/)

1530 FORMAT(//,' At load step ',i3,5x,'iteration no. *',i3,/70('-1'})
2000 FORMAT(20X,'+-----------e---=----- v,/.,20x, 'Start of Ite. no. : !

& 13,/)
2100 FORMAT(20x,'End of Ite. no. : ',13,//7)

STOP

END
c
c Subroutine usrfun to calculate value of function and its gradient.
c
c n number of wvariables
¢ g{{n,n) matrix containing derivatives of each function
c f£(n) vector of functions
c
c
c

SUBRQUTINE usrfun(x,n,qg,£,indi)
IMPLICIT DOUBLE PRECISION (A-H,O0-Z)}
DIMENSION x(*),g(n.,n),£{*),£1(*)
CALL fnc(x,n,f)
IF{indi .EQ. 0)RETURN
DO i =1, n

h = 1.8-6*x (1)

IF(h .EQ. 0.40)h = 1.4-12

x(i) = x{(i) + h
CALL fnc(x,n,fl)
x(i) = x(i) - h
DO j =1, n
g(i,i) = (£1(3) - £(3))/h
END DO
END DO
RETURN
END

Subroutine fnc for computing the values of nonlinear equations
and boundary equations.

nNNOoOQOn

SUBROUTINE fnc(x,n, fvec)
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IMPLICIT DOUBLE PRECISION(a-h,o-z)

INTEGER n,ip(50,8),nk(4),iiu,iiw

DIMENSION x(n), fvec(n)

DIMENSION x1(*),xx(*)

DIMENSION s1(4,50,50)

REAL*8 1(4),t(4),1ltot,dllc(4)

DIMENSION all(4),a55(4),bl1(4),d11(4)
COMMON/setl/1,t,ltot,sl,nl,n2,n3,nd,aa,ip,xx
COMMON/set3/ all,a55,bll,d11

pi = 2.40*DASIN(1.40)

nk(l) = nl
nk(2) = n2
nk(3) = n3
nk(4) = n4

ntot = nl+n2+n3+n4-4
pcr = 4.*pi**2*d11 (1) /ltot**2

FUNCTION EVALUATION

DOk=1, 4
dllc(k) = dll(k)-bli(k)**2/all(k)
DO i =2 , nk(k)-1
SELECT CASE (k)
CASE (1)
iiu = ip(i,k)-1
iiw = ip(i,4+k)-10
CASE (2)
iiu = ip(i,k)-3
iiw = ip(i,4+k)-13
CASE (3)
iiu = ip{(i,k)-5
iiw = ip(i,4+k) -16
CASE (4)
iiu = ip(i,k)-7
iiw = ip(i,4+k)-18

END SELECT
ux = 0.40
uxx = 0.d0
wx = 0.40

wxx = 0.d0

wxxx = 0.d0

wxxxx = 0.d0

DO j =1 , nk(k)
ux = ux + sl(l,i,j)*x(ip(j.k))
uxx = uxx + s1(2,1i,j)*x(ip(j,k))
wx = wx + s1(1,1i,j)*x(ip(j,4+k))
WXX = wxx + s1(2,1i,j)*x(ip(3,4+k))
WXXX = wxxx + s1(3,1,3)*x(ip(j.,4+k))
WXXXX = wxxxx + sl1(4,1i,3)*x(ip(j,4+k))

END DO

ux = ux/1 (k)

uxx = uxx/1l(k)**2

wx = wx/1 (k)

Wxx = wxx/1(k)**2
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wxXXx = wxxx/1(k)**3
wxxxx = wxxxx/1l(k)=**4

c
c IMPERFECTION TERMS
c
wbarl=(pi/ltot) *aa*DSIN(2*pi*xx(ip(i,k))/ltot) (1% derv.
wbar2=2*(pi/ltot) **2*aa*DCOS (2*pi*xx(ip(i,k))
& /ltot) 127 derv.
v = (1.40+wx**2)
c = (wxxx*(1l.+wx**2)-3.d0*wx*wxx**2)/v**2_§
fvec(iiu) =uxx + (wx+wbarl) * (wxx+wbar2) - wbarl=*wbar2
& -{bll (k) /all(k)) *c
IF(i .EQ. 2 )CYCLE
IF(i.EQ.n1l-1 .OR.i.EQ.n2-1 .OR. i.EQ.n3-1.0R.
& i.EQ.n4-1)CYCLE
pa = wxxxx/v**1.5d0 - 9.d0*wxxX*wxX*wx/v**2,5d0 -
& 3.40*wxx**3*(1.d0-4.40*wx**2) /v**3_5d0
fvec(iiw)=pa-((all(k)/dllc(k)) * (ux+0.5d0*wx**2+wx*wbarl)
& - (b1l (k) /dllc (k) ) *wxx/v**1.5) * (wxx+wbar2) !second eq.
END DO
END DO
c
c Boundary conditions at beam edges.
c
ii = 2* (nl+n2+n3+nd-12)
ux = 0.d0
wx = 0.d40
wxx = 0.d0
DO j =1, nl
ux = ux + si(1,1,3)*x(ip(3,1))
wx = wx + s1(1,1,3)*x(ip(3,5))
wxx = wxx + s1(2,1,3)*x(ip(j.5))
END DO
ux = ux/1(1)
wx = wx/1(1)
WXX = wxx/1l(l)**2
wbarl = 0.
fvec(ii+l)=(all (1) /per) * (ux+.5d0*wx**2+wx*wbarl) - !Applied Load
& (b1l (1) /pcr) *wxx/ (1.+wx**2) **1.5
wx = 0.40
DO j =1, nl
wx = wx + s1(1,2,3)*x({ip(j,5))

END DO
fvec (ii+2)
trotation(x=0)=0
wx = 0.40
DO j =1 , n4
wx = wx + s1(1,n4-1,3j)*x(ip(j.8))
END DO

wx

fvec(ii+3) = wx .
Irotation (x=L)=0

fvec(ii+4) = x{(ip(n4,4)) tu{x=L)=0

fvec(ii+S) = x(ip(1,5)) lw({x=0)=0

x(ip(n4,8)) tw{x=L)=0

fvec(ii+6)



wxa = 0.d0
DO j =1 , nl

wxa = wxa + s1(1,nl,j)*x{ip(j,5))/1(1)
END DO
fvec (1i+7)
fvec (ii+8)
wxb = 0.40
DO j =1 , nd

wxb = wxb + s1(1,1,3)*x{ip(j,8))/1(4)
END DO
fvec (ii+9) = x(ip(n2,2)) -x(ip(1,4))-.540*t (3) *wxb
fvec (ii+10) = x(ip(n3,3))-x(ip(1,4))+.5d0*t(2) *wxb

I

X(ip(1,2}) -x(ip(nl,1))-.5d0*t(3) *wxa
x(ip(1,3)) -x(ip(nl,1))+.540*t(2) *wxa

uxl = 0.

ux2 = 0.

ux3 = 0.

wxl = 0.

wxxl = 0.

wxxxl = 0.

wx2 = 0.

wxx2 = 0.

wxxx2 = 0.

wx3 = 0.

wxx3 = 0.

wxxx3 = 0.

bo j =1, nl
uxl = uxl + s1(1l,nl,j)*x(ip(j.1))
wxl = wxl + s1(1,nl,j)*x(ip(j.5))

wxxl = wxxl + s1(2,nl,j)*x(ip(j.5))

wxxxXl = wxxxl + s1(3,ni,j)*x{(ip(3,5))
END DO
uxl uxl/1(1)

wxl = wx1l/1(1)
wXxl = wxx1/1{1)**2
wxxxl = wxxx1/1(1)**3

DO j =1, n2
ux2 = ux2 + sl1(1,1,3)*x(ip(j,2})
wx2 = wx2 + s1(1,1,3)*x(ip(j.6))

wxx2 = wxx2 + sl(2,1,3)*x(ip(3,6))
wxxx2 = wxxx2 + s1(3,1,j)*x(ip(j.6))
END DO
ux2 = ux2/1(2)
wx2 = wx2/1(2)
WXX2 = wWXx2/1(2)**2
Wxxx2 = wxxx2/1(2)**3

DO j =1 , n3
ux3 = ux3 + 51(1lllj)*x(ip(jr3))
wx3 = wx3 + s1(1,1,3)*x(ip(3.,7))

wxx3 = wxx3 + s1(2,1,3)*x(ip(3.7))
wxxx3 = wxxx3 + s1(3,1,3)*x(ip(j,7))
END DO
ux3 ux3/1(3)
wx3 wx3/1(3)
WwxX3 = wxx3/1(3)**2
WxxXx3 = wxxx3/1(3)**3

[
o
ve]

fu2 (x=1)
a3 (x=1)

lu(x=1+a)
tu{x=1+a)



vl = (1.d0+wx1l**2)
v2 = (1.80+wx2**2)
v3 = (1.40+wx3**2)
cl = (wxxxl*(1l.+wxl**2)-3.d0*wxl*wxxl**2)/vi**2 5
c2 = (wxxex2* (1.+wx2**2) -3.d0*wx2*wxx2**2) /v2**2_ 5§
c3 = (wxxx3*(1l.+wx3**2)-3.40*wx3*wxx3**2)/v3**x2_ 5

wbarl = (pi/ltot)*aa*DSIN(2.*pi*xx(ip(nl,1))/ltot)

pl = {(uxl +.5d0*wxl**2 + wxl*wbarl)
p2 = {(ux2 +.5d0*wx2**2 + wx2*wbarl)
p3 = (ux3 +.5d0*wx3**2 + wx3*wbarl)

fvec(ii+11l)=pl-(all(2)/all (1)) *p2-(all(3)/ail(1l))*p3

& -(b11{1)/all{l)) *wxxl/vi+(bl1(2)/all(l)) *wxx2/v2

& +(bl11(3)/all (1)) *wxx3/v3

fvec(ii+12)= cl-(dllic(2)/d1llc(1l))*c2-(dllc(3)/dlic(1))*c3
fvec (ii+13) = wxx1l/v1**1.5-(d11(2)/d11(1)) *wxx2/v2**1.5-

& (d11(3)/d411(1)) *wxx3/v3**1.5-

& 0.5d0*((£(3)*all(2)/d11(1))*p2 -(t(2)*all(3)/d11(1)) *p3)-
& (bl1(1)/d411(1)) *pl+(bl1(2)/d11(1))*p2 + (b11(3)/d11(1})) *p3
fvec(ii+ld) = wx2 - wxl

fvec (ii+15) = wx3 - wxil

ux4d
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uxd4 + s1(1,1,3)*x(ip(j.4))
wxxd = wxx4 + s1(2,1.,3)*x(ip(j.8))
wxxx4 = wxxx4 + s1(3,1,])*x(ip(j,8))

DO j =1 , n4

END DO
uxd = ux4/1(4)
wxd = wx4/1(4)

wxxd = wxxd/1(4)**2

WXXX4 = WwXXxX4/1(a)**3

DO j =1, n2
ux2 = ux2 + sl(1,n2,3)*x(ip(j,2))
wx2 = wx2 + s1(1,n2,3)*x(ip(j,6))
wxx2 = wxx2 + s1(2,n2,j)*x(ip(j,6))
wxxx2 = wxxx2 + s1(3,n2,3j)*x(ip(j,6))

END DO

ux2 = ux2/1(2)

wx2 = wx2/1(2)

WXX2 = wxx2/1(2)**%2

WXXXZ2 = WXXX2/1{2)**3

DC j =1, n3



ux3 = ux3 + sl(1,n3,3)*x(ip(j,3))
wx3 = wx3 + s1(1,n3,j)*x(ip(3,7))
wxx3 = wxx3 + s1(2,n3,j)*x(ip(j,7))
wxxx3 = wxxx3 + s1(3,n3,]j)*x(ip(j.7))

END DO
ux3 = ux3/1(3)
wx3 = wx3/1(3)

wxx3 = wxx3/1(3)**2
wxxx3 = wxxx3/1(3)**3

vd = (1.40+wx4d**2)
v2 = (1.80+wx2**2)
v3 = (1.40+wx3**2)
cd = (wxoxd*(Ll.+wx4**2) -3 . d0*wxd*wxxd**2) /vd**2 5
c2 = (wxxx2* (1l.+wx2**2) -3 .80*wxX2*wxx2**2) /v2**2 .5
c3 = (wxxx3*(1l.+wx3**2)-3.d0*wx3*wxx3**2)/v3**2 5

wbarl = (pi/ltot)*aa*DSIN(2.*pi*xx(ip(ni,2))/ltot)

pd = (ux4 +.5d0*wx4**2 + wxd*wbarl)
p2 = (ux2 +.5d0*wx2**2 + wx2*wbarl)
p3 = (ux3 +.540*wx3**2 + wx3*wbarl)

fvec(ii+16) = p4 - (all(2)/all(4))*p2 - (all(3)/all(4))*p3

& -(b11(4)/ali(4)) *wxx4/va+(bll(2)/all(4)) *wxx2/v2
& +(bl1(3)/all(4)) *wxx3/v3

ftvec (ii+17) =c4-(dllc(2)/dilc({4))*c2-(dllc(3)/d1l1lc(4)) *c3
fvec(ii+18) = wxx4/v4**1.5-(d11(2)/d411(4)) *wxx2/v2**1.5-
& (dl1(3)/d411(4)) *wxx3/v3**1.5-

& .5d0*((t(3)*all(2)/d11(4))*p2 - (t(2)*all(3)/d11(4))*p3) -
& (bl1(4)/d11(4))*p4 +(bl1(2)/d11(4))*p2 + (bl1l(3)/d11(4)) *p3
fvec (ii+19) = wx2 - wx4

fvec (1i+20) = wx3 - wx4

RETURN

END

SUBROUTINE MNEWT (NTRIAL,X,N,TOLX,TOLF,dlinc)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NP=250)
DIMENSION X(n),g(n,n),BETA(np), INDX (np)
COMMON/set2/ nload
DO k = 1 ,ntrial

CALL USRFUN(X,n,qg,beta,2)

DOi=1,n

beta(i) = -beta(i)
END DO
beta(n-nload) = beta(n-nload) - dlinc
ERRF=0.

DO i=1,n
ERRF=ERRF+DABS (BETA(I))

END DO

write(*,*)k,errf

IF (ERRF.LE.TOLF) THEN
RETURN

END IF

CALL LUDCMP (g,N, NP, INDX,D)
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Q000

non

RETURN

END IF
END DO
RETURN
END

Checking the convergence:

indicat = 0 Converged in fvec

indicat = 1 Didn't converge in fvec
SUBROUTINE converge (x,nn,dload, tolx,tolf, indicat)

CALL LUBKSB(g,N,NP, INDX, BETA)
ERRX=0.
DOi=1,n
ERRX=ERRX+DABS (BETA(I))
X(I)=X(I)+BETA(I)
END DO
write(*,*)k,errx
write(*,*)*_____ '
IF (ERRX.LE.TOLX) THEN

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION x(*),fvec(250)
COMMON/set2/ nload

CAL
fve
err
DO

END
IF(

ELS

END
WRI
RET
END

Subroutine global for determining the global position of

L fnc(x,nn, fvec)
c(nn-nload) = fvec{nn-nload)+dload
£=0.

i=1, aon
errf = errf + DABS(fvec(i))

!Not Converged

',errf,indicat

DO
errf .LE. tolf)THEN
indicat = 0 t{Converged
tolx = errt
E
indicat =1
IF
TE(*x,*) " Tolerance in £ =
URN

each local node.

SUB

ROUTINE global(nl,n2,n3,n4,ip)

DIMENSION ip(50,8)

DO

END
DO

END

i=1, nl
ip(i,1) =1
DO

i=1, n2
ip(i,2) = nl+i
DO

206
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DO 1 =1, n3
ip(i, 3) = nl+n2+i
END DO
DO i =1, n4
ip(i,4) = nl+n2+n3+i
END DO
ntotl = nl + n2 + n3 + n4

DO i =1, nl
ip(i,5) = ip(i,1l)+ntotl
END DO
ip(1,6) = ip{(nl,5S)
DO i =2 , n2
ip{(i,6) = ip{(i,2)+ntotl - 1
END DO
ip(1,7) = ip(1,6)
DO i =2, n3-1
ip(i,7) = ip(i,3)+ntotl -2
END DO
ip(n3,7) = ip(n2,6)
ip(1,8) = ip(n2,6)
DO i =2 , né4
ip(i,8) = ip(i,4)+ntotl -4
END DO
RETURN
END

Subroutine position for computiong sampling points in each
section. It is based on unequally spaced sampling points
with adjacent é-points. Points are normalized w.r.t. each
section length.

Reference : Bert, C. W., and Malik, M.,"Differential quadrature
method in computational mechanics: A review", Appl Mech Rev,
vol 49, no 1, Jan 1996, pp 1-28.

SUBROUTINE position(n,x)
IMPLICIT DOUBLE PRECISION(a-h,o-2z)
DIMENSION x(*)
pi = 2.40*DASIN(1.40)
DOi=3,n-2
x(i}) = 0.5*%(1. - COS((2*i-3)*pi/(2*n-4)))
END DO
delta = 1.4-3
x(1) = 0.d40
x(2) = delta
xX(n-1) = 1. - delta
x(n}) = 1.40
RETURN
END



c Subroutine coefld to compute the weighting coefficients.
c
SUBROUTINE coefld(x,s,norder,n, pmx)
IMPLICIT DOUBLE PRECISION(a-h,o-2z2)
DIMENSION x(*),s(4,50,50),pmx(*)
DOi=1,n ! n= number of grid points in x dir.
pmx (i) = 1.
DOj=1,n
IF (i .EQ. j) CYCLE

pmx (i) = pmx(i)*(x(i)-x(j))
END DO
END DO
c
c weighting coefficients for the first order derivative.
c
DO i =1, n
DO j=1,n
IF (i .EQ. j) CYCLE
s(1,i,3) = pmx(i)/ ({x(i)-x(J))*omx(j))
s(1,i,i} = s(1,1i,1i)-s(1,1i,3)
END DO
END DO
c
¢ Computing the weighting coefficients of successive derivatives.
c

DO k = 2 , norder tnorder= highest dervat. ord. in x dir.
DOi=1,n
DOj=1,n
IF (i .EQ. j) CYCLE
s(k,i,j)=k*{(s(k-1,i,i)*s(1,1i,3)-s(k-1,1i,3)/(x(1i)-x(3)))

s(k,i,i) = s(k,i,1i)-s(k,i,3)
END DO
END DO
END DO
RETURN

END





