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ABSTRACT 

BuckIing and postbuckling analysis of composite Iaminated structures having 

delaminations were studied numerically. The analyses were performed using the 

differential quadrature method of Bellman et al (1 972). Several one- and two-dimensional 

models were developed and showed to be capable of predicting the buckling and 

postbuckling responses of composite beams and plates. 

Prediction of the buckling strength of the delaminated composite beams and the 

examination of the influencing factors were camed out by employing several models. 

The effects of the shear deformation and the bending-stretching coupling were added by 

incorporating a shear deformation beam theory. Different models containing multiple 

through-the-width delaminations, as well as single delamination were studied 

pararnetrically. The accuracy and efficiency of the proposed method were evaluated 

through several case studies. In addition to the effect of shear deformation, bending- 

stretching coupling, the influence of material properties, lamination sequence and fiber- 

orientation, through-the-thickness and through-the-length locations of delaminations on 

buckling and postbuckling responses were investigated. 

Using the differential quadrature method, the buckling response of composite 

laminated plates having a thin elliptical delamination was also studied by employing two- 

dimensional models. Employing the serendipity shape functions, the elliptical 

delarninated region was transformed into a rectangular computational domain with 

clamped boundaries. Subsequently, the differential equilibrium equations of the 

sublaminate were solved based on classical plate theory. In order to reduce the 

computational efforts, and at the same time, to include the effect of the bending stretching 

coupling, the reduced bending stiffhess of the plates was ernployed. Through 

investigating several parameters, such as the shape and size of the delamination, fiber 

orientation, and the bending stretching effect, the integrity of the current methodology 



was compared with other numerical methods, and found to be computationally less 

complex, and numerically more accurate. 

For the postbuckling analysis, the differential quadrature method cornbined with an 

arc-length strategy was used to mode1 the postbuckling anaIysis of composite bearns 

having single or multiple delarninations. The nonlinear Von Karman strain-displacements 

and the exact curvatures were used to formulate the problem. Moreover, geometric 

imperfections in the fom of initial deflections were included in the analysis. Several case 

studies were presented and the effects of parameters such as the nurnber of delaminations, 

the imperfection amplinides and the delamination length were investigated. 

Throughout the course of the research, the di Rerential quadrature resul ts were 

compared with those of published analytical and numencal investigations or with those 

obtained by analyzing problems with the use of the commercial finite element packages. 

The results show that the differential quadrature technique can be used as a powerful, 

reliable, accurate and efficient numerical tool in assessing the buc kling and postbuckling 

responses of delaminated composite structures. Throughout the thesis, we will 

demonstrate several advantages of the method in cornparison to the other popular 

numerical methods such as the f ~ t e  clifference, finite element and boundary element 

methods. Beside the excellent quality of results that c m  be obtained through DQM, the 

method is relatively simple to formulate, and it requires less effort to implement. 

Furthemore, the method consumes relatively less effort, both in terms of computational 

time and also in the user effort in setting up a problem. The only disadvantage at this 

time is its lack of robustness in treating complicated geornetries. This point is  however 

treatable, as one could take advantage of several mesh generation schemes that are 

cornmonly used in alleviating similar anomaly encountered in the finite difference 

rnethod. 



CHAPTER 1 

INTRODUCTION 

1.1. Introductory rernarks 

Laminated composite materials, especially in the form of fiber reinforced plastics, 

are being utilized increasingly in the design of various structural applications. This is 

mostly due to the fact that these matenals enjoy a strength-to-weight ratio advantage over 

the ordinary engineering materials. In spite of theu definite advantages, they suffer fiom 

a major problem, narnely their weak strength in the through-the-thickness direction of 

laminate because of low cohesive strength between the layers. 

The defect could be even worse if the composite contains delamination. 

Delamination in composites may develop during manufacturing because of the 

imperfections andor faulty procedures, or during service, by impact of an extemal object. 

This can significantly reduce the compressive stren,gh and stiffness of the laminate and 

thereby, lowering the buckling load of the laminate when subjected to a compressive 

load, causing growth of such delamination regions. 

Furthermore, the delamination buckling may occur in different types of modal 

shapes. As shown in Figure 1.1, at the critical load level, a compressed beam having a 

single delamination may respond in three possible modes of instability. Delamination 

length and its position through-the-thickness are the two important parameters controlling 

the shape of these modes. If the entire beam buckles before any other mode of deflection 

could take place, the response is referred to as the "global" buckling mode. This usually 

occurs in relatively short and thick delarninated beams. In a global buckling mode, if the 

buckling shape is symmetric with respect to the midspan of the beam, it is identified as 

the "global syrnmetric" mode (Figure 1. la). On the other hand, if the global buckling 
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mode tends to deform into a kinked shape, the buckling shape is called the "global 

antisymmetric" mode (Figure 1-lb). When the delarnination is thin, the first region that 

buckles is the delarninated region. Such a buckling is declared as the "local" buckling 

mode (Figure 1.1~). Finally, in an axially compressed delaminated beam, if both the 

global and local buckling take place at the same time, then the response is referred to as 

the "mixed" buckling mode (Figure 1. ld). The situations for multiply delarninated beams 

are quite similar to the ones discussed for single delarnination. 

(a) Global syrnrnetric mode @) Global antisymmetric mode 

(c) Local mode (d) Mixed mode 

Figure 1.1. Buckling mode shapes for a delaminated composite. 

1.2. Motivation 

From the standpoint of analysis and design, it is of great importance to understand 

the behavior of the larninated composites containing one or several delaminations. The 

problem has been the focus of several research works and consequently, several 

methodologies and solutions have been developed. These methods can be classified under 
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three different categories: (i) experimental, (ii) analytical and (iii) numerical methods. 

The first method is usually costly and time consurning, often requiring special equipment 

and jigs, which makes it unsuitable for use in everyday applications. The second choice, 

in spite of being fast and efficient, is ofien limited to special cases. Because of the 

limitation of the analytical solutions, attention has been focused on the development of 

approximate and numencally oriented methods. The three most popular numerical 

techniques in use for solving partial differential equations are the Finite Difference 

Method (FDM), the Finite Elernent Method (FEM), and the Boundary Element Method 

(BEM). FDM is one of the simplest numencal methods (both in terms of its formulation 

and prograrnrning effort). To obtain aa accurate result, however, considerable effort is 

required for representing (discretking) the domain by a large number of grid points. 

FEM and BEM on the other hand require more ski11 and effort for algorithm development 

and implementation. Other numerical methods such as the Rayleigh-Ritz have also been 

used for solving such problems. Thus, the development of new methods from the 

standpoint of numerical accuracy, ease of formulation and computational efficiency is 

still of prime interest. 

A relatively new numerical technique is the differential quadrature method (DQM). 

Bellman et al (1972) introduced the method in the early seventies for solving linear and 

nonlinear partial differential equations. Differential quadrature has been shown to 

perform extremely well in solving initial and boundary value problems (Bert and Malik 

(1 996a)). 

1.3. Objectives of the thesis 

The main objective of this thesis is to develop a numencal approach, based on the 

differential quadrature method, to analyze the delamination buckling and postbuckling of 

composites. More specificall y the objectives are: 
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To apply the differential quadrature analog to determine the buckling load of 

laminated composite beams having single or multiple delarninations. The effect of 

several parameters on the buckling response of a delaminated composite beam is 

considered, and the results obtained by DQM are compared with data available in the 

literature. The parameters considered are the number, through-the-thickness and 

along the span positions, and length of delaminations, matenal properties and 

stacking sequence of the laminates. 

To identiQ and incorporate the necessary mapping functions, and to apply the 

differential quadrature technique to the buckling analysis of composite plates having 

a thin elliptical delamination. 

To apply DQM to the postbuckling analysis, in conjunction with an arc length 

strategy to solve for the postbuckling response of a composite beam having single or 

multiple delaminations. 

1.4. Layout of the thesis 

The thesis is divided into seven chapters. In Chapter 2, a literature review of the 

past studies on delamination buckling and postbuckling is presented. In this state-of-the- 

art review, we categorize different aspects of the previous studies. This is followed by a 

literature survey on the differential quadrature method and its engineering applications. 

Details of the differential quadrature technique and its fomulations are presented in 

Chapter 3. This includes the definition of the method and the denvation of the weighting 

coefficients for the first and higher order derivatives of single and multi variable 

functions. The chapter also discusses the concept of geometric mapping. Differential 

quadrature analogs of different types of delaminated beams and plates are presented in 

Chapter 4. Differential equilibrium equations of beams, having single or multiple 

delaminations and those of plates having elliptical delaminations, are presented. These 
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are followed by the presentation of the differential quadrature methodology used in 

trmsfomüng the differential equations into an equivalent eigenvalue system. Chapter 5 

addresses the arc-length strategy used in the solution of nonlinear postbuckling problems. 

The same chapter also treats the nodinear postbuckling analysis of composite beams 

having single or multiple delaminations. The details of several case studies used for 

assessing the validity, integrity, accuracy and efficiency of the method are given in 

Chapter 6, followed by the discussion of their results. Finally, Chapter 7 provides some 

conclusions and recommendations for future works. 



CHAPTER 2 

2.1. Introduction 

In this chapter we will present a survey of the previous research on the delamination 

buckling and postbuckling behavior of laminated composite structures. Also, the chapter 

deals with a review of the research that has considered the differential quadrature method 

and its applications. 

2.2. Delamination buckling and postbuckling 

Previous studies on the delamination buckling and postbuckling of laminated 

composite stnictures can be classified within three general categones: experirnental, 

analytical and numerical methods. The experimental methods are usually used to confirm 

the results produced by the other two methods; therefore, in here we will focus on the 

analytical and numencal works and will also mention their experimental validations. 

Later we will further subdivide the works based on different sub-categories, such as: one- 

, two- or three-dimension delamination modeling, single or multiple delaminations, etc. 

2.2.1. Analytical studies 

One of the earliest works in delamination buckling and growth analysis of beams 

was camed out by Chai et al (1981). They studied the behavior of an isotropie 

homogeneous bearn-column under axial compression from a thin film model to the 

general case (when the supporting base laminate buckles globally, so that the zero-slope 

boundary condition for the thin sublaminate becomes invalid). In their model, the 

emphasis was on studying the delamination growth by employing the total energy release 
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rate of the system as a criterion. Perhaps the most important contribution of their work 

was to introduce the four-region model, obtained by dividing the delaminated beam into 

four different sections (Figure 2.1). Simitses et al (1985) also employed a similar model 

to study delamination buckling. They studied the effect of the location, length and 

thickness of delamination on the buckling load of a beam with clamped and simply 

supported ends, having a single across-the-width delamination. The perturbation method 

was used to solve the buckling equation. 

Figure 2.1. The four-region beam model. 

Yin et al (1986) solved buckling and postbuckling problems of a one-dimensional 

beam-plate having an across-the-width delamination located symmetrically at an arbitrary 

depth. Their model was based on a special orthotropic plate with clamped edges and 

different delamination lengths. They obtained a general expression for the postbuckling 

behavior of the beam-plate. Kardomateas and Shmueser (1988) used perturbation 

technique to analyze the compressive stability of a one-dimensional across-the-width 

delaminated orthotropic homogeneous elastic beam. They also considered the transverse 
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shear effect on the buckling load and post-buckling behavior of the beam. Using the 

classical buckling equations, they accounted for the effects of the transverse shear by 

some correction terms. Using a vanational energy approach and a shear-deformation 

theory, Chen (199 1) fomulated the same problem. According to his results, inclusion of 

the shear defonnation causes reduction in the buckling and ultimate strength of 

delaminated composite plates. Kyoung and Kim (1995) used the variational principle to 

calculate the buckling load and delarnination growth of an axially loaded bearn-plate with 

a nonsymmeaic (with respect to the center-span of the beam) delamination. They 

investigated the effects of shear deformation and various geometric parameters on the 

buckling strength and delamination growth of composite beams using their proposed 

solution and also an experimental investigation. 

Chen and Chang (1994) used a first order shear-deformation theory to predict the 

delamination buckling loads for unsymrnetric cross-ply delaminated plates with clamped 

edges. Their one-dimensional model was able to consider bending-extension coupling 

and transverse shear-deformation effects; the former parameter becomes significant in 

short and thick delaminations, while the latter has significant influence on delamination 

buckling loads. 

Kardomateas (1993) and Kardomateas and Pelegri (1994) used perturbation 

techniques to study the initial post buckling and growth behavior of delaminations in 

plates. They also found closed form expressions for the energy release rate and the mixity 

ratio of mode 1 vs. mode II fracture at the delarnination tips. 

Wang et al (1997) used an analytical procedure to determine the buckling load of 

beams having multiple single-delaminations. Free and constrained rnodels based on the 

beam-column theory were used to model the perfect and separated parts. Successive 

corrections made by removing the overlaps lead to physically permissible buckling mode. 
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Reference should be also made to the analysis of Bottega and Maewal(1953) who 

solved the problem of compression loaded homogeneous two layers plate with a centered 

circular delamination. Due to the circumferential symmetry, the problem could be 

reduced to one dimension. They considered nonlinear geometry by using the Von 

Karman nonlinear strain-displacement formulations. The load-deflection was calcuiated 

by an asymptotic expansion for the displacement fields. 

Sirnitses and Chen (1988) investigated the buckhg of a delaminated long 

cylindrical shell or panel under pressure. They divided the panel into four regions and 

assumed a separated solution for each part. It was found that the width and through-the- 

thickness position of delamination greatly affected the buckling load. 

Sheinman and Adan (1 993) used an analytical method to address the postbuckling 

analysis of a multiply delaminated beam. They used a function series composed of local 

and global eigenfunctions of a delarninated beam and applied them to nonlinear 

equilibrium equations. The resulting nonlinear system of algebraic equations was then 

solved numerically. Huang and Kardomateas (1 997) applied a perturbation technique to 

rransfom the nonlinear equations of a bearn having two central, through-the-thickness 

delarninations, under compressive load to a sequence of linear equations. Upon solving 

these equations they found an asymptotic solution of the postbuckling behavior of the 

beam. In both of the above works the contact between the delaminated layers and 

delamination growth was neglected. 

Most of the investigations that have been done on compressive strength of 

composite laminates having single or multiple delarninations, employed the classical 

structural mechanics theory of beams and plates to estimate the buckling loads. Such 

approximate analyses greatly simpliQ the problem. Classical theory, due to its 

limitations, can not account for the effect of boundary conditions at the edges of 

delaminations; neither c m  it accurately represent the influence of different material 
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properties of the sublarninate and substrative. Hence, an exact analysis based on the 

mathematical theory of elasticity seems to be necessary. This approach, however, has its 

own difficulties due to complicated mathematical formulation and solution, specially in 

two or three dimensional problems. As a consequence, less attention has been given to 

such approaches. 

Madenci and Westmann (1991) solved the local buckling problem of a layer 

containing a circular crack while Wang et al (1 99 1) found the solution for local buckling 

of a half-space containing a through-the-width crack by using stability equations derived 

from the mathematical theory of elasticity. Wang and Takao (1995) solved the same 

problem, but with different matenal properties for the layer and the half-space. They 

solved the buckling differential equations by utilizing the Fourier integral transformation 

to establish a system of homogeneous singular integral equations and then solved this 

s ys tem numericali y b y emplo ying the Gauss-C hebys hev integral formula. 

2.2.2. Numerical studies 

Because of the difficulties with the analytical methods used to solve the 

complicated delamination buckling and postbuckling problems, a great deal of attention 

has been given to the numerical solutions. Moreover, the availability of fast computers 

and various numerical algonthms have made this approach quite popular. In this section 

we will review the available numerical treatments of the delamination buckling and 

postbuckling of laminated composite structures. 

Sheinman et a1 (1989) solved the differential equations of a delaminated composite 

beam under arbitrary loading and boundary conditions with a finite difference method. 

Bending-stretching coupling was taken into account which was s h o w  to significantly 

influence the buckling loads. 
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Lee et al (1993) employed a one-dimensional finite element mode1 (based on the 

layenvise plate theory) to solve the buckling of an axially Ioaded composite beam with 

multiple delaminations. The effects of several parameters, such as the number of 

delarninations, the lengths of delarninations, and their through-the-thickness and axial 

positions on the buckling strength of the beams, and their corresponding mode shapes, 

were inves tigated. 

Lim and Parsons (1993) used an energy approach to predict the linearizsd buckling 

of a composite beam with single or multiple delaminations. Lagrange multipliers were 

used to enforce the kinematic constraints and boundary conditions. In their multiple 

delaminations model, al1 delaminations had the same lenboths. They verïfied their results 

with those of finite element method and other published data. 

Suemasu (1993) investigated the compressive buckling stability of composite 

panels with through-the-width, equally spaced multiple delarninations by pefiorming 

numerical and experimental investigations. He used the Rayleigh-Ritz approximation 

technique and considered the Timoshenko type shear effects in his model. The results 

were compared with those of the h i t e  element method and experimental investigations 

conducted on glass/epoxy composite panels. 

Waitcomb (1981) performed a parametric study on the postbuckling response of 

laminated coupons having an across-the-width delamination. He conducted a 

geometrically nonlinear finite element analysis and calculated the stress distributions, 

strain energy release rates and lateral deflections for various delarnination lengths, 

delarnination depths and loading conditions. Kutlu and Chang (1992) developed a finite 

element code based on the updated Lagrangian formulation to compte the compression 

response of laminated composites containing multiple through-the-width delarninations. 

The model was one-dimensional, capable of accounting for multiple delaminations, 

including the interface contact phenomenon and delarnination growth. Extensive 



12 

experiments on T300/976 graphite/epoxy composites were also pelformed which 

validated their analysis 

Sheinman and Soffer (1991) used the finite difference method to solve the 

postbuckling problem of an imperfect composite laminate having a through-the-thiclmess 

delamination. They employed the comrnonly used one-dimensional beam model and 

formulated the response of the bearn by dividing the delaminated beam into four regions. 

Using the Von Kaman kinematic approach, the resulting non-linear differential 

equations were solved by the method of Newton-Raphson. 

Lee et al (1995) used a one-dimensional finite element model (based on the 

layerwise plate theory), to solve the postbuckling problem of a beam having multiple 

delaminations. Their analysis included the effect of imperfections in the form of initial 

global deflection and initial delamination openings. They also adopted a contact analysis 

to prevent the overlapping of the delaminated segments of the beam. Lim (1 994) applied 

a finite element analysis to study the postbuckling and delamination growth of a beam 

having a through-the-thickness delamination. His bearn element was based on the 

Reissner's finite deformation beam theory. The nontinear problem was solved by 

adopting an arc-length algorithm. To prevent the bearn surfaces fiom overlapping, 

nonlinear springs were enforced and an initial imperfection in the f o m  of a percentage of 

the first buckling mode was applied. 

Chai and Babcock (1985) used the Rayleigh-Ritz method to solve the buckling and 

postbuckling problem of a laminated composite plate having elliptical delarnination 

(Figure 2.2). The nonlinear Von Karman plate formulation was used to formulate the 

strain energy, while an energy balance criterion was used for the delarnination growth. 

The delaminated region's thickness was assumed to be small compared to the base 

laminate thickness, so that the transverse displacement and slopes dong the delamination 

boundary could be considered as d l .  Their solution was restricted to a special 
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orthotropic ellipse with the minor-axis parallel to the direction of loading. Their model, 

which used a simple energy balance critenon (G-critenon), exhibited interesting growth 

characteristics for different types of circular and elliptical delaminations in different 

materials. 

Figure 2.2. Plate with eiliptical delamination under compressive Ioad. 

Shivakumar and Whitcomb (1985) presented an analysis for the same problem 

using Rayleigh-Ritz method and checked the results with finite element method. They 

found good agreement between the two methods. The Rayleigh-Ritz method was found 

to be simple and accurate, except for the highly anisotropic delaminated regions. The 

effects of the delamination shape and its orientation, material anisotropy and layup, on 

the buckting strains, were examined. It was shown that under certain conditions, the 

delaminated region would buckle when the laminate was loaded in tension. Heitzer and 

Feucht (1 993) extended the Chai and Babcock (1985) work by taking into account al1 the 

couplings (which could result from an arbitrary nonsymmetric lay up) in the linear and 

nonlinear analyses. In their model, a thin laminate, which included an elliptical 
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delamination, was assurned to have been bonded to an infinitely thick homogeneous base 

laminate. The linear and nonlinear buc'nling problems were solved by Rayleigh-Ritz 

technique with up to 12 and 21 unknown tems, respectively, and the results were 

compared with those of the finite element method. In the nonlinear regime they used the 

Von Karman relations to account for large displacements in the thin film region. The 

energy release rates along the half axes were calculated for two unsymrnetrical laminates 

and showed a monotonous nse with increasing load. The energies steeply decreased 

when the configuration switched to the second buckling mode. Heitzer and Feucht found 

that the Rayleigh-Ritz method, in addition to being too stiff at the higher modes of 

buckling, gives poor results for non-syrnrnetric laminations. 

Davidson (199 1) used the Rayleigh-Ritz method to compute the buckling strains of 

a composite laminate containing an elliptical delamination. The influence of the bending- 

stretching coupling behavior of the delarninated region and the Poisson's ratio mismatch 

between the delaminated and base regions were also investigated. To reduce the 

computational efforts he used the reduced bending stiffhess. The results correlated well 

with those obtained fkorn experiments. In another work, the behavior of elliptical 

delamination in composite plates, under in-plane compressive, shear and themal loads 

was investigated by Peck and Springer (1991), who also considered the contact effects. 

They extended the works of Chai and Babcock (1985) and Shivakumar and Whitcomb 

(1985) to include the transverse shear deformation, postbuckling deformation, contact 

effects, thermal loads and unsyrnrnetnc subiaminates. The Von Karman nonlinear strain- 

displacement formulations and a third order shear deformation theory, along with a 

through-the-thickness linearly varying contact force were used. The results were then 

compared with a series of expenments that were conducted on sandwich plates, made of 

graphite/epoxy laminates bonded to an aluminum honeycomb core, and reasonable 

agreement were obtained. 
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Yin and Jane (1992 part I ,II), have also used the Rayleigh-Ritz method with the 

Von Karman fomulations to compute the buckling loads and postbuckling solutions of 

laminated anisotropic elliptical plates. By considering at least 33 undetermined 

coefficients in the Rayleigh-Ritz technique, they obtained reasonably accurate solutions 

for the membrane forces, bending and twisting moments and point wise energy release 

rates. Chai (1990 part 1 and II) extended the series expansion in the Rayleigh-Ritz method 

up to 77 terms for the analysis of a specially orthotropic plate with elliptical 

delamination. The plate's centrai deflections and bending moments converged quickly, 

even at higher buckling modes, whereas the membrane stresses showed a damped 

oscillatory type behavior as the number of displacement terms was increased. The 

solution was extended to take the point wise body contact into account. It tumed out that 

the stresses changed significantly when the overlap was prevented. 

Whitcomb and Shivakumar (1987) performed a finite element analysis of a post 

buckled rectangular delaminations using a crack closure technique. Using a geometrically 

nonlinear three dimensional fuiite etement analysis, Whitcomb (1989) performed a 

fracture mode separation analysis, which could predict a pronounced mixed mode 

behavior along the crack fiont with large gradients in the modes 1 and II energy release 

rate components (Gr and Gr[) and a negligible third mode energy component (GiiI). The 

requirement of thin delamination was assured by choosing the base laminate to be ten 

times thicker than the sublaminate. 

Chang and Kutlo (1989) developed a finite element code capable of computing the 

postbuckling behavior of composite plates and cylhdrical shells containing multiple 

delarninations. In calculating the energy release rates they found that delamination 

growth was dominated by mode 1 fracture in flat plates and by mode II fracture in 

c ylindrical panels. 
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Yeh and Tan (1994) studied the buckling behavior of composite laminated plates 

with elliptical delarninations, experimentally and analytically, using a nonlinear finite 

element method. To simulate delaminations, they used elliptical Teflon pieces and 

embedded them in the specirnens at the ply interface. Based on the updated Lagrangian 

formulations, they developed a nonlinear fuiite element program (using degenerated sheil 

elements) to analyze the buckling response of the laminated plates, which included large 

displacements and rotations. To evaluate the influence of the delamination size, fiber 

orientation, position of the delaminated region in the thickness direction, and the 

orientation of the major axis of the elliptical delamination with the loading a i s ,  they 

varied these parameters and measured the plate responses both analytically and 

experimentally. 

Kim et al (1996) used a nonlinear finite element formulation to study the buckling 

of a short orthotropic tube having a circurnferential delamination under axial 

compression. The nonlinear finite element program was associated with a quadratic 

programrning procedure to address the contact of delaminated faces. The load-carrying 

capacity of the delaminated tube and the stability of delamination growth were examined 

in terms of buckling load and energy release rate, respectively. Naganarayana and Atluri 

(1996) used nonlinear finite elements (2-noded curved beam and 3-noded shell) to mode1 

the delaminated stiffened laminated shells. To predict the postbuckling behavior, an arc 

lenad strategy was used. By cornputing the energy release rate at the delamination fronts, 

they studied the interaction of the postbuckling structural behavior and the delamination 

growth. 

2.2.3. Classification of delamination buckling research 

Although some of the important works in delamination buckling were reviewed in 

the previous sections, there are several other reported studies in this field. In this section 

we will classi@ them within different categories. 



Table 2.1 presents a list of selected references in which the delamination buckling 

or postbuckling is evaluated based on experimental, analytical or numerical procedures. 

As seen through this table, most of the studies are based on numerical methods. 

Table 2.1. Selected references classified based on the nature of the investigations 

used for the delamination buckling and postbuckling of structures. 

Experimental 

Suernasu ( 1993), 

Peck and Springer 

(199 l), Ferrigno et al 

(1995), ), KGnig et al 

(1 995), Yeh and Lee 

(1995), Wang et al 

(1985 b), KutIu and 

Chang (1992), 

Kardomateas ( 1989), 

Cairns et al (1994), 

Anal ytical 

Simitses et a1 (1985), Chen 

and Chang (1 994), Huang and 

Kardomateas (1997), 

Moshaiov and Marshall 

(1991), Yin (1988), Wang and 

Cheng (1995), Chattopadhyay 

and Gu (1993), Wang et al 

(1997), Chai et al (1981), 

Kyoung and Kim (1 993, 

Kardomateas and Schrnueser 

(1988), Chen (199 1, 1993), 

Yin et al (1986), Kardomateas 

(1989, 1993), Bottega and 

Maetval ( 1 983), Simitses and 

Chen (1988)- Yin and Fei 

(1 988), Suemasu and Majima 

(1 996), Wang and Takao 

(1 995), Kardornateas and 

Pelegri (1993), NiIssin and 

StorLikers (1992), Madenci and 

Westmann (1 99 1)- Wang et al 

(199 l), Cox (1994) 

- - 

Numerical 

Sheinman et al (1989), Suemasu (1993), Lee 

et al (1993, 1995, 1996): Heitzer and Feucht 

(1993), Yin and Jane (1992 a,b), Davidson 

(199 l), Chai (1990 a,b), Peck and Sprinper 

(1 99 1). Chai and Babcock ( 1985), 

Shivakumar and Whitcomb (1985), Kyoung 

et al (1998), Sheinman and Soffer (1990, 

199 l), Sheinman and Adan (1993), Kim 

(1996, 1997), Davidson and Knfchak 

(1995), Moshaiov and Marshall (199 l), 

Ferrigo et a1 (1995), K6nig et al (1995), 

Yeh and Lee (1995), Mukhe rjee et al (199 1). 

Barbero and Reddy ( 199 l), Lim and Parsons 

(1 993, Lirn (1993), Srivatsa et al (1993), 

Naganarayana and Atluri (1 W6), Wang et al 

(1985 a, b), Kutlu and Chang (1992), Chang 

and Kutlu (1 989), Kim et al (1 996), Cairns et 

ai (1993), Yeh an Tan (1994), Whitcomb 

(198 1, 1989), Whitcomb and Shivakumar 

(1987), Gaudenzi (1997), 
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We further classified the works based on the number of geometric dimensionality 

used in the analysis, as presented in Table 2.2. In al1 one-dimensional analyses the 

delamination is across-the-width, while in the two or three dimensional analyses the 

crack is bounded by the intact laminate. This table signifies the appreciable attention that 

has been paid by researchers to the one-dimensional analysis. 

Table 2.2. Selected references on the modeting of the delamination buckling and 

postbuckiing based on the nurnber of dimensions. 

One-dimensional 

Simitses et al (1985), Sheinman et al 

(1989), Suemasu (1993). Lee et a1 (1993, 

1995, 1996), Chen and Chang (1994), 

Kyoung et al (1998), Sheinman and 

Soffer (1990, 199 l), Huang and 

Kardomateas (1997), Sheinman and 

Adan (1993), Kim (1996, l997), 

Davidson and Krafchak ( 1999, 

Moshaiov and Marshall (199 l), Yin 

(1988): Wang and Cheng (l995), Lim 

and Parsons (1 993), Lirn (1993), Wang 

et al (1997), Chai et al (198 l), Wang et 

al (1985 a, b), Kyoung and Kim (1995), 

Kudomateas and Schmueser (1 988), 

Chen (199 1, 1993), Yin et al (1986), 

Kutlu and Chang (1992), Kardomateas 

(1989, 1993), Simitses and Chen (1988), 

Kim et al (1996), Whitcomb (198 l), 

Kardomateas and Pelegri (I994), 

Two-dimensional 

Heitzer and Feucht (1993), 

Yin and Jane (1992 a,b), 

Davidson (199 l), Chai (1990 

a,b), Peck and Springer 

(199 l), Babcock (1985), 

Shivakumar and Whitcomb 

(1985), Wang and Cheng 

(1995), Chattopadhyay and Gu 

(1994), ), K6nig et al (1995), 

Barbero and Reddy ( 199 1), 

Naganarayana and Atluri 

(1996), Cairns et al (1994), 

Three-dimensional 

Kim (l996,1997), 

Femgno et a1 (1995), ), 

K6nig et al (1995), Yeh 

and Lee (1995), 

Mukhe rjee et al (199 l), 

Srivatsa et al (1993), Yeh 

an Tan (1994), Whitcomb 

(1989), 
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Of those works dealing with one-dimensional problems, some have considered the 

problem of multiple delaminations. Table 2.3 categorizes the selected works based on 

single or multiple delaminations. To the author's best knowledge, none of the two- or 

three-dimensional investigations considered a Iaminate with multiple deiaminations. In 

rnost of the two- or three-dimensional analyses the shape of delamination have been 

considered to be circular or elliptical. However, rectangular delamination was considered 

in some references such as Lee (1992) and Yeh and Tan (1995). 

Table 2.3. Selected references classified based on single and multiple delaminations. 

Single Delamination 

Simitses et al (1985), Sheinman et al (1989), Lee et al 

(1993, 1996), Keitzer and Feucht (1993), Yin and Jane 

(1992 a,b), Davidson (l99I), Chai (1990 a,b), Peck and 

Springer (199 l), Babcock (1985), Shivakumar and 

Whitcomb (1985), Chen and Chang (1994), Sheinman 

and Soffer (1 990, 199 l), Huang and Kardomateas 

(1997), S h e h a n  and Adan (1993), Kim (1996, 1997), 

Davidson and Krafchak (1 995), Moshaiov and 

Marshall (l991), Yin (1988), Wang and Cheng (1995), 

Femgno et al (1995), Chattopadhyay and Gu (1994), ), 

K h i g  et al (1995), Yeh and Lee (1995), Mukhe rjee et 

al (199 l), Lim and Parsons (1993), Lim (1993), 

Srivatsa et al (1993), Wang et a1 (1985 a, b), 

Naganarayana and Atlurî (1 W6), Wang et al (1 997), 

Chai et al (198 l), Kyoung and Kim (1995), 

Kardomateas and Schmueser (l988), Chen (199 1, 

1993), Yin et a1 (1986), Kutlu and Chang (1992), 

Kardomateas (1 989, 1993), Bottega and Maewal 

(1983), Simitses and Chen (1988), Kim et al (1996), 

Cairns et al (1994), Yeh an Tan (1994), 

Multiple Delaminations 

Suemasu (I993), Lee et a1 (1993, 1995, 

1996), Kyoung et al (1998), Huang and 

Kardomateas (1 997), Sheinman and Adan 

(1993), Davidson and Knfchak (1995), 

Wang and Cheng (199j), Lim and 

Parsons (1993), Larsson (1991), Wang et 

al (1997), Wang et al (1985 a, b), Kutlu 

and Chang (1992), Chang and Kutlu 

(I989), Suemasu and Majirna (1996), 



Classification of the selected numerical methods based on the nature of their 

formulations is presented in Table 2.4. As seen fiom this table, the Rayleigh-Ritz method 

bas received a considerable attention. 

Table 2.4. Selected references classifed based on the modeling approaches used in 

the numerical studies. 

Finite 

Difference 

Sheinman et al 

(1989), Sheinman 

and Soffer (1990, 

199 1), 

Finite Element 

Lee et al (1993, 1995, 1996), Kyoung et al 

(1998), Kim (1996, 1997), Davidson and 

Krafchak (1995), Ferrigno et a1 (1995), ), K6nig 

et al (1995), Yeh and Lee (1995), Mukhe rjee et 

a1 (199 l), Barbero and Reddy (199 l), Lim 

(1993)' Srivatsa et a1 (1993), Naganarayana and 

Atluri (1996), Wang et al (1985 a, b), Kutlu and 

Chang (1992), Chang and Kutlu (1989), Kim et 

al (1996), Yeh an Tan (1994), Whitcomb (198 1, 

I989), Whitcomb and Shivakumar (1987, 

Gaudenzi (l997), 

Rayleigh-Ritz 

Suemasu (1 993), Heitzer 

and Feucht (1993), Yin 

and Jane (1992 a,b), 

Davidson (199 l), Chai 

(1990 a,b), Peck and 

Springer (199 I), Babcock 

(1985), Shivakumar and 

Whitcomb (1985), 

Moshaiov and Marshall 

(1991), Wang et al (1985 

a, b), Cairns et a1 ( 1991), 

Based on the nature of the formulation used to represent the problem and the 

incorporation of the bending-stretching coupling effect, Table 2.5 is constructed. 



Table 2.5. Selected references classified based on the theoretical approaches used for 

the modeling of the delamination buckling and postbuckling. 

Classical Lamination Theory 

Sirnitses et al (1985), Sheinman et al 

(1989), Heiaer and Feucht (1993), 

Yin and Jane (1992 a,b), Davidson 

(199 l), Chai (1990 a,b), Babcock 

(1 98S), Shivakumar and Whitcomb 

(1985), Sheinman and Soffer (1990, 

199 L), Huang and Kardomateas 

(1997), Sheinman and Adan (1993), 

Moshaiov and Marshall (199 i), Yin 

(1988), Wang and Cheng (1995), 

Lim and Parsons (1993), Srivatsa et 

al (1993), Wans et al (1997), Chai et 

a1 ( 198 l), Kardomateas and 

Schniueser (1988), Yin et al (1986), 

Simitses and Chen (1988), 

Higher order 

Theory 

Suemasu (1993), Lee et al 

(1 993, 1995, 1996), Peck and 

Springer (199 l), Chen and 

Chang (1994), Kyoung et a1 

(1998), Kim (1996, 1997), 

Chattopadhyay and Gu ( 1994), 

Mukherjee et al (199 l), 

Barbero and Reddy (199 l), 

Lim (1 993), Naganarayana 

and Atluri (1996), Wang et al 

(1 985 a, b), Kyoung and Kim 

(1995), Chen (199 1, 1993), 

Kutiu and Chang ( 1992), 

Cairns et a1 (1994), 

Bending-S tretching 

E ffect 

Sheinman et al (1989), 

Weitzer and Feucht (1 993), 

Davidson (199 l), Peck and 

Springer (199 l), Chen and 

Chang (1994), Kyoung et al 

(1998), Sheuiman and Soffe 

(1 990, 199 l), Lee et al 

(1995), Sheinman and Adan 

(1993), Kim (1 997), Yin 

(1988), Mukherjee et ô1 

( 199 l), Kim (1996), Chen 

(1993), Kutlu and Chang 

(1992), Chen (1993), 

2.3. Differential Quadrature Method 

Differential Quadrature Method (DQM), introduced by Bellman et al (1972), is 

based on the weighted sum of function values as an approximation to the derivatives of 

that function. Bellman et al (1972), (1986) stated that partial derivative of a function 

with respect to a space variable could be approximated by a weighted linear combination 

of function values evaluated at some intermediate points in the domain of that variable. 

Compared to FEM or FDM, DQM is relatively a new method used for solving a system 

of differential equations. In addition to the Less complex algonthm, in cornparison to 
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FEM, DQM also offers increased efficiency of the solution by demanding less number of 

grid points (hence, equations) to mode1 the problem. ïherefore, owing to the improved 

performances of DQM, this method has gained increasing popularity in solving a variety 

of engineering problems. 

One of the areas in which the method has been applied fiequently is in structural 

mechanics. Jang et al (1989) used DQM for the static analysis of smicniral components. 

They applied the method to find the deflection and buckling of beams and plates. Bert et 

al (1988) applied the method to the vibration analysis of beams and plates. Their results 

demonstrated that the method could be employed effectively in structural analysis. 

Kukerti and Farsa (1992), Farsa et a1 (1993) and Farsa and Kukerti (1993) applied 

the method to the fiequency analysis of isotropic, generally orthotropic and anisotropic 

plates. Bert et al (1993), (1994) used DQM for static and free vibration analysis of 

anisotropic plates, while Laura and Gutierrez (1994) used the method in vibration 

analysis of rectangular plates with non-uniform boundary conditions. 

Sherboume and Padney (199 1) and Padney and Sherboume (1 99 1) used DQM to 

analyze the buckling of composite beams and plates. They used different number of grid 

spacing in their analysis. The same problem was addressed by Wang (1995), who also 

used different grid spacing. He found that employing unifom grid spacing could result in 

an inaccurate solution; therefore, caution should be exercised when using such spacing. 

Liew et al (1996) used the method for the analysis of thick symmetric cross-ply 

laminates with fxst order shear deformation while Kang et al (1 996) used it to address the 

vibration and buckling analysis of circular arches. Shu and Du (1997a) used DQM to 

address the analysis of free vibration of laminated composite cylindrical shells. 
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In most of the works done using DQM, the geometry of the problem has been 

considered to be simple. Straight lines and simple rectangles or in general, shapes with 

edges parallel to the curvilinear coordinate axes have been considered in the analysis. Ln 

actual situations, however, there may be irregular domains and thus, the solution strategy 

should be capable of covenng these types of problems. In recent years more studies have 

been done to address this class of problems by rnapping the physical domain into a 

computational domain. In this approach the physical domain, which contains the actual 

shape of the structure, can have c u ~ l i n e a r  edges, while the computational domain would 

have straight edges, so that DQM can be applied to this domain. Lam (1993) used the 

mapping approach to solve some second order problems. Bert and Malik (1996b) used a 

rnapping approac h with cubic serendipity shape functions to analyze the vibration 

problem of some non-rectangular plates. They expressed the f i s t  denvative of a function 

in physical domain based on its differential quadrature in the computational domain, and 

Jacobian of the transformation. They then build the higher order derivatives of the 

function by inter-multiplying the lower order denvatives. Han and Liew (1 997) used a 

mapping with quadratic shape fûnctions to solve the bending of quadrilateral 

ReissnerMindlin plates with curvilinear boundaries. The geometncal mapping was used 

to transform the physical domain (which its edges could have quadratic shapes) into the 

cornputational domain. The main advantage of the Han and Liew work over that of Bert 

and Malik is in the reduction of its numerical procedures. Bert and Malik analysis is, 

however, more efficient when applied to higher order problems. 

Application of DQM in nonlinear analysis of structures has been also reported in 

several studies. Bert et al (1989) analyzed the large deflection problem of a thin 

orthotropic rectangular plate in bending. The three nonlinear differential equations of 

equilibnum of the plate were transformed into differential quadrature form and solved 

numencally using the method of Newton-Raphson. Lin et al (1994) used the sarne 

procedures to solve the problem of large deflection of isotropie plates under thermal 
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loading. In their analysis they used the generalized differential quadrature of Shu and 

Richards (1 992). 

As it can be seen from the definition of DQM, two important factors control the 

quality of the approximation resu!ting fiom the application of DQM. These are (i) the 

values of weighting coefficients and (ii) the positions of the discrete variables. 

In order to determine the weighting coefficients for the first order derivatives, 

Be lhan  et al (1972) used two different approaches. The first approach, which was 

widely adopted in the earlier years, requires that the approximation to the function be 

exact for al1 power polynornials with degree less than or equal to one less than the 

nurnber of the sarnpling points. This results in a set of linear algebraic equations, which is 

solved to obtain the weighting coefficients. The coefficients of the higher order 

denvatives can be obtained by multiplication of lower order matrix coefficients. This 

technique results in a Vandermonde matrix, which becomes ilI-conditioned as the nurnber 

of sampling points are increased. The second approach is to use the roots of the shified 

Legendre polynomials as the coordinates of the grid points in a simple algebraic 

formulation. Most previous applications of differential quadrature use Bellman's first 

method to obtain the weighting coefficients because it lets the coordinate of the gird 

points to be chosen arbitrarily. Quan and Chang (1989) and Shu and Richards (1992) 

derived a recursive formula to obtain these coefficients directly and irrespective of the 

nurnber and positions of the sampling points. In their approach they used the Lagangian 

polynomials as the trial firnctions and found a simple recurrence formula for the 

weighting coefficients. 

The location of the sampling points also plays a significant role in the accuracy of 

the solution of differential equations. Some of the researchers such as Sherboume and 

Pandy (1991) and Farsa et al (1993) have used the equally distanced sampling points. 

This choice is considered to be a convenient and easy method. However, when using 
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equally spaced grids, the solutions become sensitive in several applications such as in 

anisotropic plates (Sherboume and Pandy (1991)) or delaminated beams (Moradi and 

Tahen (1998)). In rnost cases, one can obtain a more accurate solution by choosing a set 

of unequally spaced sampling points. A common method is to select the zeros of 

orthogonal polynomials. Bert et al (1993) used the roots of Chebyshev polynomials as the 

coordinates of the g i d  points. Wang (1995) used several grid spacing such as the 

Gaussian integration points as the sampling points in the buckling analysis of Iaminated 

composites. Moradi and Tahen (1 998) used equally and unequall y spaced sampling 

points in the delamination buckiing analysis of beams. Bert and Malik (1996a) also 

examined the equally spaced grids as well as unequally spaced in several structural 

mechanics applications. 

Another important problem in dealing with DQM is the consideration of the 

boundary conditions in higher order differential equations such as for beams and plates. 

At each boundary point one boundary condition can be satisfied. In the case of fourth or 

higher order differential equations, however, more than one boundary condition should 

be satisfied at each boundary. To solve this problem several strategies have been adopted 

by the researchers. These strategies will be bnefly discussed below. 

Jang et al (1989) proposed the so-called &technique. In this method, points are 

chosen at a small distance 6, adjacent to tlie boundary points. Then, the differential 

quadrature analogue of the two conditions at a boundary is written for the boundary point 

and its adjacent &point. In another approach, Wang and Bert (1993) proposed a method 

in which the weighting coefficient matrices for each order of the derivatives can be 

derived by incorporating the boundary conditions in the differential quadrature 

discretization. Malik and Bert (1996~) also explored the benefits and the limitations of 

this approach for simulating various types of boundary conditions. Shu and Du (1997b, 

c), proposed an approach in which the denvative conditions for the two opposite edges 

are coupled to provide two solutions at two neighbonng points to the edges. The 
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solutions are then substituted into the govenllng equations. Chen et al (1997) proposed a 

method in which the derivatives of the boundary points are approximated in the same 

way as that of the non-boundary points, by extending the size of the weighting matrices 

by two. 



CHAPTER 3 

DIFFERENTIAL QUADRATURE METHOD 

3.1. Introduction 

The concept of the differential quadrature method (DQM) is discussed in this 

chapter. The chapter starts with the defmition of the technique and the methodologies 

available for the evaluation of weighting coefficients for various orders of derivatives. 

Then, the methodology will be extended for the multi-variable functions. Selection of the 

grid points and treatment of the boundary conditions will be discussed, subsequently. 

Finally, the concept of irregular domains will be explained, where the differential 

quadrature will be reformulated by using the mapping of a general curvilinear domain 

into a square domain. 

3.2.1. Differential quadrature formulation for functions with single variable 

As mentioned earlier, DQM was presented for the first time by Bellman et al 

(1972), for solving differential equations. The DQM uses the basis of the quadrature 

method in deriving the derivatives of a function. It follows that the partial derivative of a 

function with respect to a space variable can be approximated by a weighted linear 

combination of fûnction values at some intemediate points in that variable. In order to 

show the mathematical representation of DQM, consider a h c t i o n  f=f(x) on the 

domaina I xd b ; then the nth order differential of the function f at an intermediate point 

xi can be written as: 
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where the domain is divided into N discrete points and c;:' are the weighting coefficients 

of the nth denvative. As it can be seen fiom equation (3. l), two important factors control 

the quality of the approximation, resulting from the application of DQM. These are (i) the 

values of weighting coeficients and (ii) the positions of  the discrete variables. 

In order to determine the weighting coefficients in equation (3.1), fc~) m u t  be 

approximated by some test fûnctions. To select a suitable test function, one needs to 

satisfi the following conditions: 

a) Differentiability; the test function of the differential equation must be 

differentiable at least up to the nth derivative (n referring to the highest order of 

the differential equation). 

b) Smoothness; f must be sufficiently smooth to allow one to write (a) (Bert and 

Malik (1 996a)). 

One way of ensuring that the above conditions are satisfied is to use the attributes of 

the classical quadrature method. That is, choose a test function (in the form of 

polynomials of order N-l) ,  such that the condition of equation (3.1) holds for ail 

polynomials up to N-I order. In the original work of Bellman et al (1 972), they suggested 

two approachcs to fulfill the requirement. The first approach was to use a test function of 

the fonn: 

Substituting (3 -2) in (3.1) with n= 1, leads to the following equation for al1 discrete points: 
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which represents N sets of linear simultaneous equations, and has a unique solution (the 

coefficient matrix c;) is a Vandermonde matrix). From equation (3.3) it is clear that 

The above relation gives the higher order weighting coefficient matrix based on the f ~ s t  

order denvative weighting coefficients. 

The procedure outlined above bears a major problem: as the number of sampling 

points are increased the system of equation (3.3) tends to becomes ill-conditioned 

(because it includes a Vandermonde matrix), and consequently, the weighting 

coefficients obtained by this method become inaccurate. 

The weighting coefficients may be determined explicitly for al1 discrete points, 

irrespective of the number of sampling points. Bellman et al (1972) in their second 

method used the roots of the shifted Legendre polynomials of degree N, as the sampling 

points, and derived the following relation for the fmst order derivative weighting 

coefficients: 

c!!' = p; ( 1 ,  
I /  

i, j = 1, ..., N and j # i 
(x ,  - x i )  P?(x,)  

P; (x) is defmed in tems of the Legendre polynomials by the relation: 
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where i'&) is the Mh order Legendre polynomial for - I  r s s 1. As seen from the 

equation (3.5) the second method uses a simple algebraic formula in calculating cVJ . The 

coefficients for the higher order terms cm be obtained using relation (3.4). 

The first method of Bellman et al in computing the weighting coefficients attracted 

more attention fiom researchen than their second one (Shu and Du (1997b)). This was 

mainly because in the first method the grid points can be selected arbitrarily while in the 

second method, one is restricted to choose only some specific points (the roots of the 

shified Legendre polynornials). As mentioned above, however, using the fust method 

may cause ill-conditioned coefficient matrix and therefore should not be used with high 

number of sampling points (say more than 13 points). 

To overcome these drawbacks sorne researchers used other type of base 

poIynomials. Quan and Chang (1989), Shu (1991) and Shu and Richards (1992) used the 

Lagrange interpolating finctions and derived a recurrence formula which is independent 

of the number and position of sampling points. Using the Lagrange interpolation 

polynomial as the base polynomial 

where 

M(' ) (x )  is the first derivative of M(x). Here xi , i=I,  ..., N are the coordinates of the 

sampling points which rnay be chosen arbitrarily. Then f(x) c m  be expressed by 



Substituthg equation (3.9) Uito (3.1) and using (3.7) results in the following weighting 

coefficients (for more details see Shu (199 1) and Shu and Du (1997b)): 

j=l. j t i  

where 

i j = l  and jti 

The above relations are not restricted to the number or position of the sarnpling points. 

Also there is substantial saving in computational time when the weighting coefficients are 

calculated by these formulae. 

3.2.2. Weighting coefficients for functions with multi-variables 

With the same approach, one can derive the quadrature analog of the multi- 

variables fùnctions. To show it, consider a two-variables function f = f (x, y); the nth 

order derivative of fiinction f with respect to x, the mlh order denvative of function f with 

respect to y and the (n+m)'h order derivative of function f with respect to both x and y at 
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an intermediate discrete point xi and y j  (where i = 1,. . ., N, and j = 1,. . ., N,.) c m  be 

approximated by the weighted linear sum of the function values as: 

where the domain is divided into IV, discrete points in the x-direction and 4 in the y- 

direction. $'and CF' are the weighting coefficients of n" and mth order partial 

derivatives off(x,y) with respect to x and y, respectively. 

3.3. Choice of the sampling points 

The selection of locations of the sampling points plays a significant role in the 

accuracy of the solution of the differential equations. Using equally spaced points can be 

considered to be a convenient and an easy selection method. For a domain specified by 

[a,b] and discretized by Npoints, then the coordinate of any point i can be evaluated by: 

But in most cases, one can obtain a more accurate solution by choosing a set of 

unequally spaced sampling points. A cornmon method is to select the zeros of 

orthogonal polynomials. A simple and good choice c m  be the roots of shifted 

Chebyshev polynomials: 



Also use of zeros of the shified Legendre polynomials have been known to give 

good results, while some authors have chosen the grid points based on trial (Sherbourne 

and Pandey (1991)). Wang (1995) suggested some useful schemes for selecting the 

sarnpling points for structural mechanics problems. In addition to the above grid schemes, 

later we will examine the effect of grid spacing through the use of the following sets of 

grid spacing in the normalized region [0,1] : 

xi = [O, (N - 2) zeros of the shified Legendre polynomial 11 (3.15) 

A common property in these schemes is that the distribution of the sarnpling points is 

more concentrated at the ends of the region (Le. amund O and 1). This can lead to more 

accurate resuIts as suggested by Shu (1 99 1). 

3.4. Treating Boundary Conditions 

Essential and natural boundary conditions can be approximated by DQM; they are 

treated the same way as the differential equations are. In the resulting system of algebraic 

equations fiom DQM, each boundary condition replaces the corresponding field equation. 

Note that at each boundary point only one boundary condition c m  be satisfied. However, 

in the case of fourth order differential equations (such as those for beams and plates) or 
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the higher order, one must satisw more than one boundary condition at each boundary. 

To overcome this problem several strategies have been adopted by the researchers- 

Jang et al (1989) proposed the so-called "6-technique". In this method points are 

selected at a small distance 6 adjacent to the boundary points. Then, the differential 

quadrature analogue of the two conditions at a boundary is written for the actual 

boundary point and its adjacent Gpoint. This technique offers an adequate means of 

applying the double boundary conditions for beams and plates, and has been successfully 

incorporated in the past (Farsa et al (1993), Sherbourne and Pandey (1991)). 

Nevertheless, there exist some drawbacks. First, since the second boundary is not applied 

at the actual boundary points, there is always some degree of error in the solution. 

Second, in order to reduce such an enor, 6 should be selected to be very srnall (say &l0" 

). This may cause some convergence problems, such as the oscillation of the solution. 

In another approach, Wang and Bert (1993) proposed a method in which the 

weighting coefficient matrices for each order derivative can be denved by incorporating 

the boundary conditions in the differential quadrature discretization. This method has 

significant limitations when dealing with the boundary conditions other than simply 

supported or clamped. Malik and Bert (1996~) also explored the benefits and the 

limitations of this method for various types of boundary conditions. Shu and Du (1997b, 

c) proposed another approach in which the derivative representing the two opposite edges 

are coupled to provide two solutions at two neighboring points to the edges. The 

solutions are then substituted into the goveming equations. Shu and Du compared their 

results with those of Wang and Ben, and found that their results were inadequate in most 

cases. Chen et a1 (1997) proposed a method in which the denvatives representing the 

boundary points were approximated in the same way as those of the usual grid points by 

extending the s i x  of the weighting matrices by two. 
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treatment of other type of the boundary conditions require no additional work. Moreover, 

Our delamination buckling analysis indicated that the accuracy obtained by this technique 

in finding the buckling load was excellent. 

3.5. Irregular domains 

Based on its inherent nature, DQM can only consider domains with boundaries 

parallel to the coordinate axes. This means that the domain for a two dimensional 

problem should be rectangular. Thus, in order to solve an arbitrary shaped problem, one 

should map the physical domain into its equivalent rectangular. For this, there are 

currently two approaches. In one, which was suggested by Lam (1993) and Han and Liew 

(1997), the geometric coordinate transformation was employed to transform the 

goveming differential equations and their correspondhg boundary conditions fiom the 

physical to computational domain. Their approach however, is more efficient for 

problems that can be defined by differential equations up to second order. In the second 

approach as suggested by Bert and Malik (1996b) that is also utilized in this study, the 

quadrature rules were reformulated by using the rnapping of a square domain into a 

general curvilinear region. 

3.5.1. Geometric mapping 

A general curvilinear quaddateral domain with cuve  boundaries in the Cartesian x- 

y plane is shown in Figure 3.1. Each side of the plate can be described approximately by 

a cubic function. This domain c m  be mapped into a square domain, -11 5 I 1, -1s q I l  

in the natural 6-q plane by using the following cubic serendipity shape functions (Li et al 

( 1986)) 
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Figure 3.1. Mapping from a) curvilinear quadriiateral physical domain to b) square 

parent computational domain. 

where xi and Yi are the coordinates of the ith boundary node in the x-y plane, and N , ( i  rL) 

are the shape functions given by 



where 5,. and% are the coordinates of the node i in the 6-17 plane. These shape functions 

have a value equal to unity at the ith node and zero at al1 the remaining points. Next, by 

dividing the computational domain into N: by N,  sampling points, we can derive the 

differential quadrature formulation of a function f in this domain. As a result, the first 

order derivatives f2 and f ,  at a discrete point G,qi can be defined as 

where c,:" and c;') are the weighting coefficients for the first order derivatives with 

respect to the 5 at 4 and q at q,, respectively. The first order derivatives with respect to 

the physical coordinates x and y may be obtained fiomJg andAf by using the chain rule 

as 

1 r, =-(-x., -f., +x,  - f q  ) 
IJI 

where 1 J I  is the deteminant of the Jacobian mat& which is 



By substituthg equation (3.20) in (3.2 1 ), the first order partial derivatives off with 

respect to x and y at (x(c, q), ~ 4 5 ,  rl)), c m  be obtained by 

Prescribing each sampling point with a unique index instead of two indices (i and j ) ,  one 

may rewrite equation (3.23) in a more compact form by: 

(1) where Ne, = N: x N, , Cm and are the weighting coefficients for the first order 

derivatives with respect to the x and y and rn and n are 
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As seen fiorn equation (3.24), the weighting coefficient matrices are of the order of fVe,. 

Having the weighting coefficients for the first order partial derivatives, one can easily 

obtain the weighting coefficients for the higher order derivatives. The general formula 

may be written as 

where the fust one represents the rLh order partial derivative off with respect to x, the 

second one represents the sth order partial derivative off with respect to y and the third 

one is the ( r + ~ ) ~ ~  order partial derivative off with respect to both x and y. The weighting 

coefficient matrices of the higher order derivatives can be easily derived fkorn the 

following formulae 



3.5.2. Domain Decomposition 

For problems having complicated domains such as those in delarninated plates or  

beams or plates with cutouts, the concept of domain decomposition may be used for 

solving the problems. With this concept, first the domain is divided into several 

subdomahs (Figure 3.2). A local mesh can be generated for each subdomain with more 

density near the boundaries. Then, the differential quadrature representation of the 

goveming differential equations for each domain can be formulated. In this approach, 

each region may have different number of sampling points. Finally, the boundary 

conditions and the cornpatibility conditions at the subdomain interfaces should be taken 

into consideration and satisfied. 

Figure 3.2. A complicated domain. 



CHAPTER 4 

DIFFERENTIAL QUADRATURE FORMULATION OF 

DELAMINATION BUCKLING 

4.1. Introduction 

In this chapter the differential quadrature analog of some delaminated beams and 

plates under compressive loads will be presented. The objective is to fmd the 

delamination buckling loads for the cases with single and multiple delarninations. For the 

delaminated beam problems with single delamination we have adopted the strategy in 

which the beam is divided into four regions. The extension of the sirnilar approach is 

employed for modeling of laminated composite beams having multiple delaminations. 

The thin delamination mode1 is used for the delaminated plate problems. The DQM will 

be applied to the differential equilibrium equations of each structure. Then appropnate 

boundary and interface compatibility conditions will be considered and treated. The 

results will be a linear system of eigenvalue equations. Solving this system results in 

delamination buckting loads and their corresponding mode shapes. 

In the first part the formulation for the delaminated beams based on the classical 

lamination theory will be presented. This results in a forth order differential equation. 

Next a beam theory based on the first order shear deformation will be used to 

accommodate the effects of shear defornation, which results in a system of second order 

differential equations with two different type of variables. Then, the formulation for the 

general laminate will be presented which, in addition to the effects of shear deformation, 

includes bending-stretching coupling effects. Next, the quadrature analog of laminated 

composite bearns with multiple delaminations will be denved. Finally the two- 

dimensional formulations for a plate having circular or elliptical delamination will be 

presented. 



4.2. Delamination buckiing formulation for beams 

4.2.1. Delamination buckiing for a specially orthotropic beam 

The geometry of the one dimensional delaminated beam-plate is shown in Figure 

4.1. This mode1 contains an across-the-widrh delamination with the length a which is 

located in an arbitrary depth through the thickness of the plate. It is chosen to be 

symmetric with respect to the two restricted ends (The plate ends may have any form of 

constraints such as hinged or clamped). Note fkom Figure 4.1 that the delamination 

divides the beam into four regions. The region above the delamination plane with 

thickness h is referred to as the "upper" sublaminate, and the region below it with 

thickness H is referred to as the "Lower" sublaminate, The sections before and afier 

delamination where the beam is intact are referred to as the "base" laminate. Here we 

consider each of these regions as separate bearns. The governing equations for these 

fields corresponding to the four parts are given by (Sirnitses et al (1985)): 

where Dk is the stiffhess of the eh region given by: 

Pk repcesents the axial force and 4 is the thickness of the kth region. Er is the Young's 

modulus along the x-direction and v is the Poisson's ratio. 
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Figure 4.1. Geometry of a beam with single delamination. 

The boundary conditions for different parts consist of in-plane and transverse 

boundary conditions, compatibility and continuity conditions. They are as follows: 

The in-plane and transverse boundary conditions at both ends are: 

for clarnped support ends: 

for simply supported ends: 



Continuity conditions at delaminated edges consist of transverse, moment, in-plane and 

shear force cont inuity : 



Also applying the axial strain compatibility for the upper and lower sublamuiates, it 

gives : 

dw(0 where - is the rotation angle at the delamination front. Note that for a non-syrnmetric 
d'c 

delamination with respect to the longitudinal beam span, this angle should be replaced by 

dw(l) dw(l+ a) +(-+ 1 . Equation (4.6) represents the postbuckling behavior of the 
- CL. dir 

delarninated bearn. Before the onset of buckling, the values of (2 - )' are imipificant, 

so equation (4.6) reduces to: 

Also, fiom the primary state solution: 



Applying DQM approximation to Equation (4.1) for different regions and at each 

discrete point, one obtains: 

IV, 4 2; lV4 C C ; ~ ' ~ ~  = -- ci:) T~ 
j = 1  Dk j.1 

where c$' and are the weighting coefficients for the second and forth denvatives 

along the non-dirnensionalized X axis, respectively, Tmk is the deflecrion of rhe f point 

in the ph region. Nk is the number of sarnpling points for the ph region (Figure 4.2). 

Figure 4.2. Sampling points for a beam with single delamination. 

The kinematic boundary conditions in Equations (4.4a), (4.4b), (4.5a), (4.5 b), (4.50 and 

(4.5g) are transformed into the following differential quadrature format for a beam 

having clamped edges : 



Using the following relations for M and Q: 

(4.1 Ob) 

(4.1 Oc) 

(4.1 Of) 

and equations (4.5~-e), (4.5h-j) and (4.7), the moment and force boundary conditions at 

the delamination fi-onts become: 



wheret, and l,, (for k = 1,2,3,4) represent the thickness and length of each section, 

respectively. hpos ing  these boundary conditions make some of the equations in (4.9) 

redundant. In order to eliminate such a redundancy, the equations corresponding to 

i = 1,2,(Nk - 1) and N,  in Equation (4.9) c m  be eliminated for a11 regions. Therefore, 

equation (4.9) becomes 

where 

h is the normalized buckling load which is the ratio of the compressive load to the Euler 

buckling load of a beam with clamped ends. 

Combination of Equation (4.13) with the above sixteen boundary conditions gives 

the following system of linear equations 



where the subscripts b and i refer to the locations of the boundary and the interior 

regions, respectively. The vecton (4) and (q) are the normal deflection vectorç 

correspondhg to the boundary and intenor points. By transforming Equation (4.15) into a 

general eigenvalue form one obtains 

where: 

By solving the eigen ue problem represented by Equation (4.16) with the help of 

a standard eigen solver, one will obtain the eigenvalues (Le., the buckhg loads), and the 

eigenvectors {&} (i.e., the mode shapes). 

4.2.2. Delamination buckling formulation for a specially orthotropic beam including 

shear deformation effects 

Here, to include the effect of shear deformation, the sarne four-region model, which 

was considered in the last section is employed. The model contains an across-the-width 
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delamination with the length 'a ' located arbitrarily through the thickness and along the 

span of the beam-plate. Using the shear deformation theory (Whitney (1989)), the 

equilibrium equations for each region can be written as: 

where P,, Q,, M,  and w, are the in-plane force, shear force, moment and the transverse 

deflection of each region k, respectively. By substituthg 

into equations (4.18b) and (4.18c), the governing differential equations reduce to 

where y k  and q are the transverse rotation angle and thickness of the ph region, 

respectively; G = G, is the shear modulus, k, is the shear factor (i.e., :). 
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The boundary conditions for the different regions consist of the in-plane, transverse, 

continuity and compatibility conditions. The in-plane boundary conditions at both ends 

are the same as equations (4.3a,b). Also, for simply supported ends: 

and if the ends are clarnped, then: 

Continuity conditions at the delaminatecl edges consist of the transverse, moment, in- 

plane and shear force continuity. 



It should be noted that the boundary conditions include terms containing the in- 

plane forces which makes the formation of the problern in a matnx form, and hence, the 

solution of the associated eigenvalues, impossible. Therefore, to convert the equilibrium 

and boundary condition equations into its equivalent matrix form, the terms associated 

with the in-plane forces in equahon (4 .22~)~ (4.22e), (4.22h) and (4.22~) must be 

eliminated. Substituthg equations (4.22b), (4.228) and (4.8) into equations (4.22~) and 

(4.22h) gives 



Tw,, - h-, - H'v,, = O 

and with the sarne way 

Tw,, - hw?, - H?, = O 

which essentialiy indicates that the first derivatives of the transverse defonnations at the 

delamination fronts are equal for the n e i g h b o ~ g  regions. Furthemore, applying the 

axial strain compatibility condition for the upper and lower sublaminates results in: 

where ( y ( l )  is the rotation angle at the delamination front. Equation (4.24) represents the 

postbuckling behavior of the delaminated beam. An important point to be noted is that 

by replacing the y term in equation (4.24) with f ( i y ( Z )  + y(!+ a))  , the above equation 

will become capable of treating a nonsyrnmetrical delamination. Before the onset of 

buckling, the magnitude of the (2 - te- is insignificant, hence, equation (1.24) cm be 

reduced hto: 

Applying (4.25) to the moment continuity conditions (equation (4.22~) and (4.22h)) 

at the delarnination fronts results in 



At this stage DQM can be applied to the system of the differential equilibrium 

equations and their boundary conditions, fonning: 

where c;.:) and cj.i'are the weighting coefficients for the first and second denvatives 

along the non dimensional X-axis, respectively; Tx andYjkare the deflection and 

rotation of t h e y  point in the Kh section, respectively; 6,is the Kronecker delta, and s is 

the shear deformation parameter defined by: 

which includes the effect of shear deformation. Defining h as: 



h is called the normalized buckling load. 

The boundary conditions of a bearn-plate with its far edges clamped can be 

represented by : 

(4.3 Oa) 

(4.3 0d) 

(4.30e) 

(4.3 Of) 

(4.3 Og) 

(4.3 Oj) 



where t ,  and 2, , (k = 1,2,3,4) represent the thickness and length of each section. The 

imposition of these boundary conditions makes some of the terms of equations (4.27a) 

and (4.27b) redundant. To eliminate this redundancy, the terms corresponding to 

i = l and N, in equation (4.27a) and (4.27b), for al1 regions have to be omitted. The 

combination of equation (4.27a), (4.2%) and the above sixteen boundary conditions 

produce the following system of eigenvalue equations 

where the subscripts b and i denotes for the boundary and interior points used for writing 

the differential quadrature, respectively. The vectors {Y) and { W} contain the rotations 

and normal defiections corresponding to the boundary and interior points. Transforming 

equation (4.3 1) into a general eigenvalue form in terms of {~}resu l t s  in 

The solution of the above eigenvalue problem by a standard eigen solver, provides 

the eigenvalues, which are the buckling loads, and the eigenvectors (4, which are the 

corresponding buckling mode shapes. 

4.2.3. Delamination buckiing formulation for a general tarninated composite beam 

The delaminated fiber reinforced composite bearn-plate mode1 under consideration 

is shown in Fig 4.1. Using the first order shear deformation lamination theory, the 
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equilibrium equations for the fields corresponding to these four parts are given by 

equations (4.18a-c). Let 

where again yi is the rotation angle, k, is the shear deformation factor and A::' is the 

transverse shear stiffhess defmed as 

and Dk in Equation (4.22) being the effective bending stiffhess (otherwise known as the 

"apparent" or "reduced" flexural stifhess) of the Ph region defined by: 

where A;:) , B::) and 0:;' are the extension, bending-extension and bending stiffness of the 

corresponding regions, respectively, and are defined as: 

One cm,  therefore, rewrite the governing differential equations as: 
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The boundary conditions for the different regions consist of the in-plane and 

transverse as well as the continuity and compatibility conditions. The in-plane and 

transverse boundary conditions at both ends are the same as equations (4.3a,b), (4.2 la-d). 

The continuity conditions at the delaminated edges must be satisfied for the 

transverse deflections, the moments, the in-plane and shear forces which c m  be 

represented at the first delamination front, that is at x = I as equations (4.22a, b and d) 

plus 

and at x = l +a , boundary conditions for the second delamination edge, taken the form 

of that of equations (4.22f, g and i), plus 

In order to prepare the boundary equations for a matrix solution, the ternis 

associated with the in-plane forces of these equations should be eliminated. Using the 
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merhod introduced in the last section and recognizing that the critical buckling load in 

each region can be expressed by: 

one can write 

Furthemore, insuring the axial strain cornpatibility condition for the upper and lower 

sublaminates results in: 

where y(/) is the rotation angle at the delamination front. By replacing the cy term in 

equation (4.4 1) with +(y(Z) + ( 2  +a)) , the above equation will becorne capable of 

treating a nonsymmetrical delamination. Equation (4.4 1 ) represents the postbuckling 

behavior of the delarninated beam-plate. It should be noted that before the onset of 

buckling, the contribution of the - terms is insignificant, therefore, they can be (2)' 
neglected. Equation (4.41) will then reduce to: 
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Applying (4.42) to the moment continuity conditions at the delamination fronts 

result in: 

Application of the DQM to the above systems of differential equilibnum equations 

and their boundary conditions results in a systern of eigenvalue equations. First applying 

DQM to (4.37aYb) yields 

The kinematic boundary conditions for the bearn with clamped edges can be 

presented by the same equations as in (4.30a-f), plus: 



where t, and !,, (k = 1,2,3,4) represent the thickness and length of each region. By using 

these boundary conditions some of the terms of equations (4.44a) and (4.44b) become 

redundant. To eliminate the redundancy, equations corresponding to i = 1 andN, can be 

omitted for al1 regions; hence the combination of (4.44a), (4.44b) and the above sixteen 

boundary conditions can be represented by a system of eigenvalue equations similar to 

the one in (4.3 l), which cm be simplified to the form of (4.32). 

The solution of the eigenvalue problem of equation (4.32), by a standard eigen 

solver produces the bucklhg loads and the associated buckling mode shapes. 
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4.3. Buckling formulation for a larninated composite beam with multiple 

delamination 

In the previous sections the formulations of a beam-plate having a single across-the- 

width delamination were presented. However in most situations, when a composite 

structure is impacted by an external object or due to other phenomena, a number of 

through-the-thickness delarninations rnay occur. In a multi-delaminated bearn, number, 

size, position through-the-thickness and along the longitudinal span of the delaminations 

are some of the parameters that can influence the delamination response of the composite. 

In this section, we derive the differential quadrature formulation of a beam-plate having 

multiple delaminations. 

Figure 4.3. Geometry of a beam with multipie delarninations. 

Figure (4.3) shows the side view of a laminated composite beam, which is assumed 

to have a number of delaminations prior to loading. The delarninations are in arbitrary 

location through-the-thichess, with arbitrary length and position along the bearn span. 

As noted earlier, the sections before and after delamination regions, where the plate is 

intact are named "base" laminates, and the delarninated regions are referred to as the 
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"sublaminates". The delaminations divide the beam into rn geometrically continuous 

regions (shown in the figure as doted Iines). ti and li are the thickness and length of each 

region, respectively. The position of each region along the beam span is defined by ei. 

The beam is under an axial compressive load. Using the first order shear deformation 

theory to treat each region as a separate beam, the governing equilibnum equations 

corresponding to each region cm be written as: 

where wk, yk and Pk are transverse deflection, transverse rotation and the resulting 

compressive force of the eh region, 4;' and Dk are the sti&ess of each region as defmed 

in (4.34) and (4.35). The boundary conditions for a multiply delaminated beam with 

clamped ends consist of the in-plane, transverse, continuity and compatibility conditions 

given b y: 

At the delaminated edges, the geometric boundary conditions consist of vertical 

deformation and rotation compatibility equations as: 



where ij, ..., k are the region numbers surrounding a crack tip. 

The other boundary conditions at delamination fronts consist of the in-plane force, 

shear force and moment equations as follow: 

where z is the distance between the mid-plane of each region and the appropriate 

moment point. Shear force Q and moment M are defined by (4.33) and (4.19a) for each 

region, respectively. 

In order to solve for the buckling load, the axial compressive load P in (4.47f, g) 

should be elirninated. To do this, one can combine the strain compatibility equation for 

the regions between delaminations, the relation between the loads at the critical buckling 

state given by (4.39) and kinematic relations of (4.47~-d). This results in a senes of 

equations such as those given in (4.43 a,b). 

Applying the differential quadrature technique to the differential equilibnum 

equations of ail the regions results in a system of discrete algebraic equations as: 



Applying the differential quadrature to the boundary conditions, together with the 

above equations produce a system of eigenvalue equations. This system c m  be solved in 

the same way as presented in the previous sections to give the delamination buckling 

loads and correspondhg modal shapes. 

In our case sîudies we also consider a modei where al1 the delaminations have equal 

lengths (Figure (4.4)). Some researchers like Suemasu (1993) and Lim and Parsons 

(1993) have used such models. For this case the numbcr of regions, and therefore, the 

efforts required for formulation and solving the problem is reduced extensively. The 

number of regions is reduced to k+3 where k is the number of deIarninations. 

Figure 4.4. Geometry of a beam having multiple delaminations with equal Iength. 
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4.4. Delamination buckling formulation for a general Iaminated composite plate 

In this part the differential quadrature formulation of a composite Iaminated plate 

containing a single elliptical delamination will be presented (Figure 4.5). 

Figure 4.5. Delaminated plate under axial compression. 

The geometry of the problern is shown in Figure 4.6. As shown, the global 

coordinate system x' - y' - z' is oriented such that the x' -mis is along the loading 

direction. The laminate is under a compressive strain E, (a positive value indicates a 

tensile strain) in the x' direction. The delamination, which is Iocated at the center of the 

plate, exists prior to the loading. The delamination, which is assumed to be thin, divides 

the larninate into two regions. The upper thin part, delaminated from the laminate is 

referred to as the "sublarninate" and the remaining part is known as the "base" laminate. 

From the top view the delaminated part is an ellipse with the principal axis of x and y and 

the major and minor semi-axes length of a and b. The local coordinate system x-y is 

rotated at an angle 8, which is called as sublarninate angle, with respect to the load 
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direction x'. y is the angle of fiber orientation in each lamina with respect to x' . The 

thickness of îhe base laminate is considered to be much larger than the sublaminate, so 

the sublaminate boundaries can not be bent. 

\ Y '  

4 Y 
\ X 

Figure 4.6. Geometry of a plate with elliptical delamination. 

4.4.1. Equilibrium equations 

Ln this study the classical laminated plate theory (CLPT) has been used to formulate 

the plate problem. This will result in differential equilibrium equations with denvatives 

up to forth order. Using CLPT, the differential equilibrium equations for a plate can be 

written as (Whitney (1 987)): 



where w represents the out of plane deflection, lx, y,, NT, Mx, bfyy 11.1- are the resultant 

forces and moments obtained by: 

Substituting stress-strain and strain-displacement relations in (4.49a) to (4.49~) yields the 

following equilibrium equations in t ems  of in-plane displacements u and v and out of 

plane deflection w 
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where A, B and D are the stiffbess tems. The first two equations are concemed with the 

in-plane equilibrium while the last one represents the buckling equation. A close look at 

equation (4.5 1c) indicates that the coefficients of in-plane displacements u and v are those 

which are only associated with the bending-stretching coupling terms. So, if one c m  

eliminate these terms fiom (4.51~) then, one can detexmine the buckiing strains by only 

one equation (Le., 4.5 1 c). This will dramatically reduce the computational efforts. 

For symmetnc delaminated plates, BG=O and thus, the extension and bending are 

uncoupled. One therefore, only needs to solve equation (4.51~). But in general, the 

delarninated regions do not possess mid-plane symmetry (even if the laminate is 

symmetric), and therefore, bending-stretching coupling exists. In this case, some 

researchers have recomrnended the reduced bending stifkess approximation (Davidson 

1991). In this approach, the effect of coupling tems B,, is implicitly accounted for by 

reducing the flexural stiffhess rnatrix such as: 

The accuracy of the reduced bending stiffness approximation in analyzing the 

delamination buckling of composite laminates was examined by Dost et al (L988). They 

performed finite element analysis on delaminated composite plates and found that the 

results with reduced bending stifkess agree well with those with the usuaI bending and 

bending-stretching stiffness matrices. Therefore the delamination buckling equations of 

(4.5 la-c) reduce to the following form: 



4.4.2. Loading and Boundary Conditions 

The laminate is loaded by a far field strain E, in the x' direction (where a positive 

si@ refers to a tende strain). Due to the Poisson effect, v,~,,, , a strain with the magnitude 

of -vIam~,.  acts in the y' direction. The in-plane stresses acting on the sublaminate region 

c m  be expressed based on the coordinates x-y. The problem can be reduced to an 

elliptical plate under axial loads as show in Figure (4.7). 

Figure 4.7. Acting forces on the sublaminate. 

Therefore the in-plane stress resultant can be expressed as 

Nx = AII'.r + A12'y + A16', 

Nu = Ai2'x + A 2 2 ~ y  + A2S'v 



where the strains are expresseci with respect to the sublaminate coordinates. These strains 

can be related to the laminate strain E, , its Poisson's ratio v ,  and the sublarninate angle 

0 (see Figure 4.6) by: 

The boundary conditions are assumed to be clamped around its perimeter, which 

can be represented by: 

where n is the nomal direction to the boundary edges. Using directional denvatives, 

equation (4.56b) c m  be written as 

in which n, and n, are direction cosines of n. 



Therefore, the 

axial load having a 

symrnetric elliptical 
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buckling problem of a composite larninated plate under compressive 

thin elliptical delamination can be represented by the buckling of a 

composite laminated plate, with clarnped boundary under general in- 

plane load. In order to solve the problem by DQM, we recall that DQM inherently can 

only consider domains with boundaries parallel to the coordinate axes. This indicates that 

the domain for such two dimensional problems should be in the form of a rectangle. 

Thus, in order to solve the elliptical domain, one should map the actual domain into an 

equivalent computational dornain in the form of a rectangle. For this, we use the method 

suggested by Bert and Malik (1996b) in which the quadrature rules are reformulated by 

mapping of a general curvilinear region into a square domain. 

By using the mapping scheme introduced in Chapter 3, one can transfer the 

elliptical domain into the equivalent computational domain with the dimensions [-1,1]. 

Then applying the DQM to the equation (4.53) yields 

Note that Ne and N,  in the above are the number of grid points in the 5 and q directions 

of the computational rectangular domain, respectively (see Figure 4.8). tl<i is the 

deflection of the grid point laying on the intersection of the ith point in the <-direction and 

$ point in the rl-direction. /3 = a/b , d = E, and 



Figure 4.8. The sarnpüng points in the transformed domain. 

The differential quadrature representation of the boundary conditions of (4.56a) and 

(4.57) can be written as 



where 41 is the angle between normal to the plate b o u n d q  and the x-axis. 

By using these boundary conditions, some of the ternis of equations (4.58) become 

redundant. To eliminate this redundancy, equations corresponding to the first and second 

points around the boundary (Le. i = 1,2, Nt - 1, Ne and j = 1,2, N, - 1, A$ ) can be 

omitted. Therefore, the combination of (4.58) and (4.60) can be represented by a system 

of eigenvalue equations such as the one represented by equation (4.15). Reducing this 

systern of equations to the one with only {q-} as unknowns results in eigenvalue 

problem in the form of equation (4.16). 

The solution of this eigenvalue problem by a standard eigen solver produces the 

buckling strains and the associated buckling mode shapes. 



CHAPTER 5 

POSTBUCKLING ANALYSIS 

5.1. Introduction 

As stated previously, delamination buckling has been a major concem in 

compressive applications of composite matenals. Structures such as beams or plates, 

even in the deIaminated form, have the capability to c a r y  loads beyond their buckling 

lirnits. Such damaged structures may undergo a Iarge amount of postbuckling 

deformation before their final failure. Also, it has been known that introducing a small 

imperfection may change the buckling load and postbuckling response dramatically. 

Consequently, the problem of postbuckling analysis of imperfect composite laminates 

having delaminations has been the focus of several investigations, and as a result several 

methodologies and solutions have been developed. This class of problems is ofien treated 

with numerical methods such as finite elements or finite differences combined with a 

nonlinear soIution strategy. 

In this chapter, the differential quadrature method combined with an arc-length 

strategy is used to mode1 the postbuckling analysis of imperfect laminated composite 

beams having a single or multiple delaminations. Here the contact effect between the 

delaminated parts has been neglected. Also, the delamination growth due to the opening 

of the delaminated sections under the compressive load will not be considered in the 

analysis. First, the arc-length strategy employed in this study will be explained with the 

aid of an exarnple to show the effectiveness of the method. In this example, DQM will be 

applied for the first tirne to analyze the postbuckling response of laminated plates. Then 

the differential quadrature formulation of imperfect laminated composite beam having a 

single or multiple delaminations will be presented. 
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5.2. Arc-Length method 

In the past few years a great deal of effort has been put toward improving the 

nonlinear solution schemes used in treating various nonlinear stability of structural 

responses. The conventional Newton-Raphson iterative algorïthms, which have been used 

extensively to solve nonlinear problems, develop difficulties when tracing the points near 

buclclhg or limit points of the equilibrium path. In these algorithms load controls the 

path; that is, the load is incremented by constant values and the iteration is performed on 

the nodal displacements, only. In these algorithrns, the solution ofien halts near the limit 

points. To resolve this problem, several strategies have been suggested by researchers 

(see for example Clarke and Hancock (1990)). In some of the suggested methods, the 

iterative procedure is controlled by displacement, where a constant displacement 

increment or a combination of, controls the equilibrium path (see Haisler and Stricklin 

(1 977), Batoz (1 979) and Powell and Simons (1 98 1)). 

In addition to the above methods, there is another strategy that uses a constraint to 

Lùnit the load increment. The method, which was introduced by Wempner (197 1) and by 

Riks (1979) independently, uses the arc length of the load-displacement path as the 

constraint equation, and therefore is referred to as the "barc-len,@h" method. The method 

was modified by Crisfield (1981, 1983), thus being referred to as the "modified Riks" 

method. 

There also exist other types of constraint equations such as the "constant external 

work". Clarke and Hancock (1990) performed a detailed study on the available 

incremental iterative strategies for the nonlinear analysis. 



5.2.1. Arc-length formulation 

An arc-length algorithm based on the Forde and Stiemer (1987) work is used to 

solve the nonlinear system of equations resulting from the application of DQM. The 

governing system of equilibrium equations is represented by: 

where F is a nonlinear function of unknown displacements x, P is the fixed load vector 

and h is the loading factor, which controls the applied Ioad (Figure 5.1). 

Figure 5.1. Arc-length incremental scheme. 
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Using a Newton incrernental iterative solution, one cm represent each iteration of 

the equilibiium relation by the following expression: 

K ( ~ ) A U  + F(x")) = AP 

where K is the first derivative of F with respect to 

force/displacernent relationship), and 

= X(»t) (il -x 

(5  -2) 

x (or gradient of the 

The main difference between the arc-length method and the Newton technique is that in 

the Newton method the variables are unknown vector x, while in the former procedure, 

the load factor h is considered as a variable, too. Writing h and x of equations (5.2), and 

(5.3) in incremental forms 

where m represents a point on the load-displacement curve (see figure 5.1). Replacing h 

and x in (5.2) by equations (5.4a,b) yields: 

The incrernental displacement Au can be written as: 
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where 

The first t e m  in equation (5.6) is due to a unit load vector multiplied by M (equation 

5.7a) and the second tem is due to the unbalanced load (equation 5%). In order to find 

the solution we need another equation to account for the unknown AÀ. For this, a general 

scalar equation is used to constrain the load and displacement increments. This equation, 

known as the arc-length equation can be writteo as: 

B is a scaling parameter (with units of displacement) to ensure the correct scale. Equation 

(5.8) holds for every substep in the iterations. When P =1 the method is h o w n  as 

"sphencal arc-length", which was onginally proposed b y Crisfield ( 198 1 ). However, 

using this equation results in a quadratic equation. The selection of one of the roots of 

this equation, which may also have one or two imaginary roots, needs additional 

computational efforts. In our investigation, we have used the method of the "explicit 

iteration on spheres" suggested by Forde and Stiemer (1 987), which gives exactly the 

sarne results as those reported by Cnsfield and yet, it does not use a quadratic equation. 

They used an iterative procedure to derive M as: 
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where, R is a scalar residual. Using equation (5.7) and (5.9) one can obtain Au. The 

solution is updated based on equations (5.4) and (5.5) until the specified convergence is 

reached. The procedure continues up to the desired load. At the beginning of each load 

step, an initial load increment A") should be chosen to ensure the efficiency of the 

algorithm. Ushg  a large load step may cause slow or no convergence, while a small load 

step may cost deficiency of the method. Moreover, using an automatic load increment 

strategy mostly depends on the nature of the problem, and therefore, makes it difficult to 

speciw an exact formula for the load incrementation. In this study the following foxmula 

as suggested by Ramm (198 l), is used for the automatic load incrementation: 

where Jd is the desired number of iterations for convergence, typically between 3 to 5, 

J iç the actual number of iterations required for the mlEh load step and 2'' is the load 

increment for the rn-lth load step. 

5.2.2. Postbuckling analysis of a laminated composite plate 

In this part the DQM and the arc-length method are combined to produce a 

numerical scheme for solving the noniinear postbuckling equations of composite 

structures. To the author's best knowledge, there has been no attempt in the past to 

analyre the postbuckling response of composite plates by DQM. In order to examine the 

applicability of the DQM to the postbuckling analysis of deiaminated structures we will 

first apply it to the postbuckling analysis of a laminated composite plate. 

A thin composite Iaminated plate under compressive load is shown in Figure 5.2. 

Geometrical imperfections in the form of out of plane deflection are assurned to exist 

pnor to the loading. 



Figure 5.2. Geometry of the plate and the appfied load. 

In this shidy, the nonlinear von Karman strain-displacement relations are used to 

express the in-plane strains of the plate. Moreover, the distribution of the through-the- 

thickness strains is assumed to be based on the Kirchhoff-Love plate theory. These 

assumptions result in the following strain-displacement relations: 

(5.1 la) 

(5.1 1b) 

(5.1 1c) 
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where u, v and w represent the displacements of any point on the mid-plane along the x-, 

y- and z-directions, respectively; F is the imperfection function and K are the curvatures, 

defmed as: 

The differential equilibrium equations of a thin laminated plate can be expressed 

in the following forms: 

where N and M represent the resulting forces and moments, respectively. The relation 

between the forces and strains in classical laminated theory can be expressed in vector 

and matrix forms by 

M = B E + D K  

where N and M are the force and moment vectors, respectively, and 

h!2 
(A,,B~,DJ = ~ , ( l , z , n ~ ) d z  i, j = 1,2,6 

-hl7 
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Substituthg (5.1 1) and (5.12) in (5.13) and using (5.14), the differential equations of 

equiiibrium for a symmetric laminate can be expressed in tems of displacements as 

follows: 

For a rectangular plate, sirnply supported along its edges, the boundary conditions are 

expressed by: 



Applying DQM to (5.16) result in: 
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x a .  
where X = - , Y =l P = -, r = 1,. ..,n,, j = 1 , .  n and (F) represents the 

b b a 9 

derivatives of the imperfection fûnction evaluated at X, and Yj. ~ ~ 7 '  and CF' are the 

weighting coefficients for the eh denvative along the non-dimensionalized X and Y oues, 

respectively. Similar expressions can also be found for the boundary conditions noted in 

(5.17). 

Using the arc-length method, one can solve the nonlinear system of equations 

resulting fiom the application of DQM to the system of differential equations and their 

associated boundary conditions and to obtain the response of the plate under increasing 

compressive load. 

5.2.3. Case Studies 

To venQ the analytical formulations presented, several case studies were used to 

evaluate the geometrically nonlinear response of various composite plates. In al1 cases the 

boundaries were assurned to be simply supported, while other boundary conditions can 

easily be implemented. The geometric imperfection fùnctions are represented in terms of 

the buckling mode shape with different amplitudes by: 

To illustrate the application of DQM, two case studies wil1 be discussed here. The 

f i~s t  case study examines the response of a square plate (unit length (a) x unit width @) x 

0.02 unit thick (h)), subjected to an axial compressive stress. The material fomiing the 

plate is orthotropic %th the following properties: 

El 1 = 1 0 4 . 6 ~ 1 0 ~  Pa; Eu  = 8.66~10' Pa; v12 = 0.276; Gi2 = 2 . 9 2 ~ 1 0 ~  Pa 



Three different imperfection amplitudes were applied to the plate and the 

resulting out of plane deformations are s h o w  in Figure 5.3. The equilibrium path 

obtained from a commercial finite elements program (NISA) is also illustrated in the 

same figure. In the figure, the ordinate represents the applied load normalized with 

respect to the buckling load. For DQM, 13x13 grid points were used to discretized the 

plate. As shown by the figure, DQM was capable to predict the post critical response of 

the plate accurately, and efficiently compared to the finite element solution. Also, it c m  

be seen that increasing the amplitude of imperfection drrr?atically influences the 

response of the plate. 

Figure 5.3. Load vs. max. deflection (at x=0.5a, y=0.5a) for the simply 

supported square plate. 
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In the second case study, the postbuckling response of the rectanplar platz (a/b=3, 

h=O.I), of Lanzo et al (19951, was considered. They combined a High-Continuity finite 

elements plate mode1 with the Koiter's asyrnptotic strategy to solve for the buckling and 

postbuckling response of the rectangular plates. The results are shown in Figure 5.4. 

Again the DQM shows excellent agreement with Lanzo et a1.k fmite elements method. 

o Ref [5] 

O 

Figure 5.4. Load vs. max. deflection for the rectangular plate (alb=3, 

~ = 2 . 1 x 1 0 ~ ,  v=0.25, h=0.1). 

5.3. Postbuckling analysis of composite laminated beams having single delamination 

In the following, DQM will be applied to the differential equations descnbing the 

postbuckling response of a delaminated composite beam under axial compression. The 

beam contains a single delamination pnor to the loading. The case of multiple 

delaminations will be also considered later in this chapter. The geometry of a one- 

dimensional delaminated beam-plate used in this investigation is shown in Figure 4.2. 

This mode1 contains an across-the-width delamination with the length 'a', located 
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arbitrarily through the thickness and along the span of the beam. As before, the 

delamination divides the beam into four regions. 

To formulate the problem, we consider each of these regions as separate beams. 

Moreover, it is also assumed that prior to loading the beam has a natural imperfection, 
- 
w , in the form of the beam's preferred buckling mode shape, and the matenal is assumed 

to follow Hookian elasticity. Furthemore, delamination growth and the contact between 

the delaminated regions throughout the loading are neglected. Using the Kirchhoff-Love 

hypothesis, there are two independent variables: the axial displacement, n and the normal 

deflection, W. Wnting the kinematical relationship for each region of the beam, one 

obtains: 

where E is the strain at any depth z in region k, K is the flexural curvature of the 

reference (mîddle) surface and is the axial strain of the same surface defined by 

Using the classical lamination theory the load/moment-strain/curvature relations c m  be 

represented as: 
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where Nand Mare the axial force and the bending moment, respectively, and X I I ,  Bi and 

Dl( are the stifhess properties given by (4.36). The equilibrium equations for each region 

can be written as: 

M,, - N, (w,, + wkG) = 0 

The curvature can be represented exactly by: 

As in the case of the elastic cuve of a beam, the slope w, is very small, and its 

square is negligible, therefore most beam formulations ignore the terni (w, .~ ' .  But by 

neglecting this term when computing the postbuckling response of beams, one can 

introduce a substantial error, as the delaminated regions may undergo large deformations. 

Using the kinerna tical expressions and the equilibrium equations developed above, 

we can &te the non-linear diflerential equations descnbing each region in tems of the 

displacement components, as: 



where dl:.' = D::' - ( B ~ ' ) ' / A : : '  . The boundary conditions are the given values of: 

which are specified at the outside edges and along the interfaces of the regions. Q is the 

shear force and is defined by: 

If the beam is simply supported, its boundary conditions can be written in the form: 

where ePPI is the applied load. 

At the crack tip x = 1 



At x = l+a the continuity conditions are the same as x = 2, except the subscript '4' is 

replaced by ' 1 '. 

Using the non-dimensionalized variable X = .fi and applying the DQM to the 

differential equations and their boundary conditions for al1 the regions results in: 



where C$' are the weighting coefficients for the rth order derivative along the non- 

dimensionalized X a i s ,  qk and Fk are the in-plane and transverse displacements of the 

f h  point in the ph section, respectively and Vis: 

The boundary conditions can be expressed in differential quadrature form as in the 

following: 



(5.3 lc) 

(5.3 le) 





where Pl, Pz and P3 are 

Similar continuity boundary conditions can be applied at x = [+a. Obviously, the 

resulting system of equations is nonlinear. Therefore, an arc-length strategy, as discussed 

in section 5.2, will be used to solve them. 
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5.4. Postbucküng analysis of composite laminated beams having multiple 

delaminations 

Using the same procedure presented for postbuckling analysis of beams with single 

delamination, one can derive the quadrature analog formulation for the case of multiple 

delarninations. Consider a laminated composite beam having a number of through-the- 

width delaminations (Figure 4.3). The delaminations size, its across-the-thickness, and 

dong the beam span locations are chosen arbitrarily. Therefore, the delaminations divide 

- the beam into rn different regions. As before, each region can be considered as a separate 

beam with its own stifiess properties. The assurnptions used in section 5.2 leads to the 

same differential equilibrium equations as (5.25a,b), for all the regions k=l,.  ..,m. The 

boundary conditions for the beam being simply supported, will be 

At the crack tips the continuity boundary conditions require that 



where ij, ..., k are the region numbers surrounding a crack tip and z is the distance between 

the mid-plane of each beam and the appropriate moment point. 

Applying DQM to the diflerential equiIibrium equations and their boundary 

conditions result in a system of nonlinear algebraic equations Li terms of the axial 

deformation u and transverse deflection w of sampling points as the variables. Employing 

the arc-length algorith, th is  system of equations c m  be solved to give the response of 

the delaminated beam under progressive compressive axial Ioad. 



CHAPTER 6 

VERIFICATION OF THE DQM 

6.1. Introduction 

In the following chapter, the capability of the DQM in solving the delamination 

buckling and postbuckling problems in lamuiated composite structures will be exarnined. 

The case studies include the buckling analysis of vanous beams containing single or 

multiple delaminations and laminated plates having single elliptical delamination. 

Moreover, postbuckling analysis of bearns with single and multiple delaminations will be 

discussed. For al1 the one-dimensional models, it is assumed that the delaminations are 

across-the-width. The formulations presented in the chapters 4 and 5 were implemented 

into computer prograrns, some of which are presented in appendices. The DQM results 

will be compared with either those in the published literature or those of the fuiite 

element investigations conducted by the author. 

6.2. Case studies for buckiing of a specially orthotropic beam with a single 

deladination 

The formulation presented in the section 4.2.1 was implemented as a cornputer code 

for evaluating the delamination buckling response of a panel containing a through-the- 

width delamination as shown in Figure 4.1. This investigation dernonstrates the capability 

of the selected numerical method. 

6.2.1. Delamination bucküng load 

The results for a clamped beam having a symrnetric delarnination are calculated. 

Table 6.1 tabulates the resulting buckling loads for various delamination lengths ( a / L ) ,  
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and thickness ( h / T )  ratios. In this table the buckling loads are normalized with respect to 

the Euler buckling load for a perfect colurnn, that is: 

where Dl is the flexural stiffness of the first region (base laminate). 

Table 6.1: Normalized buckiing load for the beam-plate with clamped ends. 
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The integrity of the presented method and its capability in treating the delamination 

buckling problems is confirmed by the excellent agreement of the results presented in this 

study with those of Simitses et al (1985). In fact, the discrepancies between our results 

and those in Siaitses et al are less than 0.01%, therefore, they were not rewntten on the 

table. The nonnalized buckling loads are also shown graphically in Figure 6.1. The 

results are derïved using different rotations at the delamination fronts (equation (4.6)). 

O .O 0.2 0.4 O .6 0.8 1 .O 

Delamination Length Ratio 

Figure 6.1. Influence of the delamination length on the buckling load of a beam 

with clamped ends. 

Table 6.2 tabulates the buckling loads obtained by DQM for a specially-orthotropic 

composite laminate containing a delamination at its mid-plane (Le., h/T=0.5). This 
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problem is analyzed for various delamination lena@ ratios (a/L). The buckling loads are 

normalized with respect to the Euler buckling load of a perfect column. The "symmetric" 

and "anti-symmetric" notations in Table 6.2 confonn to the terminology used in 

chapter 1. 

Table 6.2. Cornparison of normalized buckling loads for a beam with single 

delamination, h/T=OS. 

Lee et aL(1993) DQM (present study) 

Simitses Chen Anti- Non- 

a/Z (1985) (1 99 1) Symmetric symmetric S yrnmetric symmetric 

For cornparison, the analytical results of Sirnitses et al (1985) and Chen (1991), 

followed by the results f o m  the finite elemeot layer wise approach of Lee et al (1993) are 

also tabulated. Note that the results reported by Chen were obtained by imposing the 

symmetry condition in the axial direction, while Simitses et al did not apply such an 

imposition. This is an important consideration as the anti-symmetric buckling mode can 

occur at specific d L  ratios (see Figure 15 a d  16 of Lee (1992)); therefore, by imposing 
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the symmetry condition, accurate simulation of the buckling modes for al1 a/L ratios is 

not achievable. The result reported by Lee et al are provided for the two possible 

conditions. Also, note that the "nonsyrnmetrïc" terminology used to identiQ some of the 

DQM results conforms to the terminology used by Simitses et al. As it can be seen, there 

is an excellent agreement between the results obtained by DQM and those of Simitses et 

al, Chen, and Lee et al. Indeed, the DQM results are closer to the results obtained based 

on the analpical solutions (Simitses et al and Chen), than those calculated based on the 

finite element analysis of Lee et al. Aiso note that, while Lee et al used two different 

models to obtain the symmetric and antisymmetric buckling loads, the same results could 

be achieved by DQM by only using different rotations at crack tips. Table 6.3 shows the 

first three buckling loads denved fiom DQM for the same configuration (Le. clamped 

ends and h/T=0.5) and different delamination ratios. 

Table 6.3. Cornparison of the first three normalized buckling loads for a beam with 

single delamination, h/T=0.5. 

Present study Lee et a1.(1993) 

Buckling Load Global Local Anti- 

1 st 2nd 3rd Syrnrnetric Symrnetric symmetnc 

0.9999 1.9486 3.9900 0.9999 15.320 1.9480 

0.9956 1.4358 3.6398 0.9956 6.0963 1 -4360 

0.9638 1.0243 2.5 159 0.963 9 2.7 176 2 .O240 

0.848 1 0.856 1 1.5625 0.5562 1.5358 0.8482 

0.6896 0.7966 1 .O000 0.6898 0.9864 0.7967 

0.541 1 0.6945 0.7926 0.541 3 0.6868 0.7929 

0.43 10 0.5 102 0.7627 0.43 1 1 0.5058 0.7629 

0.3514 0.3903 0.6856 0.3515 0.3883 0.6857 

0.2933 0.3086 0.5946 0.2934 -03077 0.5947 
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Cornparison of these buckling loads with those of Lee et al shows that the first buckling 

loads in Table 6.3 is essentially the minimum value of the three possible mode shapes. 

6.2.2 Number of sampling points 

The influence of the number of sampling points on the predicted results obtained by 

the proposed method was also investigated. The resulting buckling loads as a function of 

the number of sampling points for isotropie beam-plates with clamped edges, having thin 

and thick delaminations are shown in Figure 6.2 and 6.3, respectively. 

6 10 14 18 22 
Nurnber of Sampling Points 

Figure 6.2. Effect of number of sampling points on the buckling load of 

a plate with a thin delamination (h/T=O.l, a/L=0.4). 
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For these case studies, al1 sub-regions had equal number of sarnpling points. As can 

be seen from these figures, the stability of the DQM is excellent and even with lower 

number of sampling points the convergence of the method is good. It can be concluded 

that for obtaining accurate results one needs to discretize each section by o d y  9 to 11 

sampling points. 

6 1 O 14 18 22 

Number of Sampling Points 

Figure 6.3. Effect of number of sampling points on the buckling load 

of a plate with a thick delamination (h/T=0.5, a.Lz0.4). 



6.2.3. Effect of grid spacing 

As rnentioned earlier, there are several possible grid spacing schemes when using 

DQM. In general, in applications that are sensitive to grid spacing, like buckling of 

composite structures, selection of the grid spacing is of critical importance (see Wang 

(1995) and Sherboume and Pandey (1991)). One useful method is to use the &technique 

as used in conventional differential quadrature method (Bert and Malik (1996)). The 

other is to use unequally spaced sampling points. Here we examine the effect of grid 

spacing through the use of the equations (3.13- 17) in the normalized region [0,1]. 

0.1 

0.09 +3.13 +3.14 4 3 . 1 5  4 3 - 1 6  ++3.17 
O - 
p1 -3.13a +3.14a +3.15a +3.16a +3.17a 
C 

n 0.08 
O 
s 
a 
'C3 

0.07 
.I - 
E 2 0.06 

O .O5 
6 1 O 14 18 22 

Nurnber of sampling points 

Figure 6.4. Convegence of DQM with different grid schemes for the case of a 

thin delamination ('a" indicate the &technique was used). 
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It must be noted that none of these schemes use the Gtechnique, while the equation 

of the &technique bears little ciifference with the above relations. The results obtained for 

the various grid spacing schemes, for thin and thick delaminations of the last example are 

shown in Figures 6.4 and 6.5, respectively. The figures illustrate the performance of the 

above mentioned relations with and without the use of the &technique. In these figures, 

suffix "ay' indicates that the relations incorporated the &technique. 

Sarnpling points based on equation: 

- -  -3.13 4 3 - 1 4  +3.15 4 3 - 1 6  +3.17 

Number of sampling points 

Figure 6.5. Convergence of DQM with different grid schemes for the case of 

thick delamination (<Law indicate the Gtechnique was used). 

Figure 6.4 (h/7'=0. l and aL=0.4) indicates that inaccurate buckling loads cm be 

expected when the Gtechnique is not used in conjunction with the uniform grid spacing 

when treating thin delamination problems; while the other grid spacing schemes converge 
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to the analytical solution. It should be noted, however, that when the Gtechnique was 

used, the solutions for a11 grid spacing schemes converged rapidly to the analytical 

solution (when each section was discretized by only 9 grid points). Moreover, the use of 

Chebyshev spacing produces the best convergence among al1 the schemes. 

In the case of thick delamination problems (h/T=0.5 and a/L=0.4), Figure 6.5 

indicates that al1 the grid spacing schemes can produce unacceptable results without the 

use of the &technique (especially, the case with the unifom spacing producing the worst 

results). However, incorporation of the Gtechnique produces fast convergence (with the 

exception of the equal spacing), with eqation (3.14) producing the fastest convergence. 

When using the equal spacing scheme, the results produced by the larger even sampling 

points, (see results for the 24 sarnpling points in Figure 6.5, for example), bear 

considerable error; where the results for the odd sampling points show no discrepancy. 

Therefore, this may be considered as the reason to why most authors use odd number of 

grid points (Bert and Malik (1996a)). 

6.3. Case studies for buckiing of a specialiy orthotropic beam with shear 

deformation having single delamination 

As shown in chapter 4, including the effect of shear deformation in the buckling 

analysis of delaminated bearns affects the results considerably. This result in a system of 

second order differential equation with two different types of variables, namely the 

transverse deflection, w and rotation angle, rp. As a result the grid spacing can be chosen 

without employing the &technique. As in the last section the influence of several 

parameters on the buckling response of laminated bearns was investigated. It \vas 

assumed that the beam-plates' outermost edges were clamped. 



6.3.1. Effect of shear deformation on the buckling load 

One of the parameters investigated in the study was the influence of the shear 

deformation. For this, the resulting buckling response of beams having a symmetric 

delamination with various configurations and a shear deformation factor, ~ 0 . 2 .  are 

shown in Figure 6.6. 

O 0.2 0.4 0.6 0.8 1 
Ddaniination Length Ratio 

Figure 6.6. Buckling Loads for different delamination configurations ( ~ 0 . 2 ) .  
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The variables considered were the length and the through-the-thickness location of 

the delamination. As shown in the figure, the DQM results are in excellent agreement 

with those obtained fkom the analytical solution of Chen (1991), to the extent that the 

differences are indistinguishable. Moreover, as shown, the classical laminate theory 

generally overestimates the buckling response of the composites, especially those with 

shoa delamination length. This phenornenon is more noticeable in Figures 6.7 and 6.8, 

where the buckling strength of beams having h/T = 0.05 and h/T = 0.5, and various 

delamination lengths are calculated for a practical range of shear deformation factors. 

0.0 0.2 0.4 0.6 0.8 1 .O 
Delamination Length Ratio 

Figure 6.7. Effect of shear deformation on the buckiing strength of beam- 

plates with h/T=0.05. 

The figure illustrates that the buckling strength of composites having thicker 

sublaminates (h/T = OS), decreases as their shear deformation increases. This behavior is 
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quite consistent, regardless of the length of delamination, yet it is more significant for 

delaminations with a/L < 0.6. On the other hand, when the sublaminate is thin, the shear 

effect becomes noticeable only at very small delamination lengths (i.e.: an c 0.1). 

0.0 0.2 0.4 0.6 0.8 1 .O 
Delamination Length Ratio 

Figure 6.8. Effect of shear deformation on the buckling strength of beam- 

plates with h/T=0.5. 

6.3.2. Effect of the longitudinal position of delamination 

The influence of the longitudinal delamination position on the buckling response of 

the beams is shown in Figure 6.9 for beam with WT = 0.5. For the delamination lena@ 

ratios 0.2 <a/L < 0.6, the buckling response varies depending on the location of the 

delamination along the span of the beams. As expected, the highest buckling strength is 

obtained when the delamination is at the center of the span of the beam. The behavior is 
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consistent throughout, including in beams with h/T ratios other than 0.5, as illustrated in 

Figure 6.9. 

O O .2 0 -4 0.6 0.8 1 

Longitudinal Position (Xc) of Delamination 

Figure 6.9. Effect of the delamination position on the buckling strength of 

beam-plates with h/T=0.5. 

6.4. Case studies for buckling of a general laminated composite beam having single 

delamination 

The formulations presented in chapter 4 for the buckling analysis of a general 

composite laminated beam with a single delamination were implemented in a cornputer 

program. Several case studies were investigated to insure the integrity and applicability 

of the proposed method. The effect of the material types, stacking sequence, delamination 
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position and delarnination length, on the buckling response of a series of composite 

beam-plates were investigated. 

To assess the overall convergence eficiency of the DQM, the response of two 

delaminated asymmetric cross-ply composite beam-plates (Chen and Chang (1994)), with 

ply sequence of [(go, /O,) 1 /(go,  and [(90/0)~ 1 1(90/0) 1 2  1, and several of 

symrnetric laminates were investigated. The designation V" is used to denote the 

position of delamination through the laminates. The material properties that are of a 

typical graphite/epoxy composite are tabulated in Table 6.4. 

Table 6.4. Material properties of the laminates. 

Material Graphiteiepoxy Glass/epoxy Kevlar/epoxy 

It is assumed that each ply has a thickness of 0.127mrn (0.005in) and the 

delarnination thickness ratio is h/T 4.25. Both laminates have the same A::', A::' and 

D::', but different bending-extension stifiesses (denoted by B,';', where B:;' for the first 

laminate are about four times the values of those of the second laminate). The resulting 

buckling loads of the two laminates for different delamination ratios, a / L ,  are shown 

graphically in Figure 6.10. In this figure the buckling loads are normalized with respect to 

the Euler buckling load of an intact laminate, that is: 



As seen in Figure 6.10, the bending-extension coupling reduces the delamination 

buckling load as the delamination length ratio increases. These results are in excellent 

agreement with the results of analytical and the finite element analysis of Chen and 

Chang (1 994). 

0.0 0.2 0.4 0.6 0.8 1 .O 
Delamination Length Ratio 

Figure 6.10. Delamination buckling load for different delamination lengths. 

6.4.1. Effect of slenderness ratio (UT) 

The effect of the slendemess ratio, LIT,  on the buckling load for 

[(* 4 9 ,  / /(+ 45),,] laminates is shown in Figure 6.11. Note that the bending-extension 
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stiffhess of al1 sublaminates of these laminates are effectively zero. Also shown in the 

figure is the effect of some thick laminates (i.e., L/K20) ,  for which the shear deformation 

effect becomes quite significant. Nevertheless, the laminates that have relatively large 

delamination length (Le., delamination length ratios > 0.4), exhibit similar buckling 

response, regardless of their WT ratios. 

0.0 0.2 0.4 0.6 0.8 1 .O 
Delamination Length Ratio 

Figure 6.11. Effect of slenderness ratio on delamination buckling Ioad. 

6.4.2. Effect of fiber orientation 

The influence of fiber orientation on the buckling strength of a thick delamination 

is shown in Figure 6.12. This investigation considers symmetric laminates of [(+ e),,] 

with a delamination ratio of a/L  = 0 2 ,  al1 having thick delamination (h /T  = +). The 
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buckling loads are normalized with respect to that of an intact  laminate. te. As the 

figure shows, the buckling strength decreases as the fiber orientation angle increases. 

Fiber Orientation Anagle (deg) 

6.12. Effect of fiber orientation on buckiing load for a thick 

delamination h / r  = + 1. 

6.4.3. Effect of the through-the-thickness position of delamination 

Figure 6.13 shows the influence of the through-the-thickness position of the 

delamination in [(k 4 5 ) , ,  ] laminates with ah5 =0.2 and WT= 1 O. The figure illustrates that 

for relatively thick delaminations (Le., h/P0.2),  the buckling strength is independent of 

the through-the-thickness position of the delamination. The same investigation was 

canied out for cross ply [(90/0),,] laminates and the resulting buckling loads are shown 

in Figure 6.14. 



Delamination Thickness Ratio (h/T) 

Figure 6.13. Effect of through-the-depth position of delamination on 

buckling load of [(+ 45),,] laminates. 

0.0 0.1 0.2 0.3 0.4 O .5 0.6 

Delamination Thickness Ratio(h/l) 

Figure 6.14. Effect of through-the-depth position of delamination on 

buckiîng ioad of [(90/0),~] laminates. 
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The buckling load osciliates in the beam-plates with thin delarninations; however, 

the response becomes quite consistent in the beams with thick delamination. 

The effect of the sarne set of parameter for composites having a different ply 

sequence of [(go, /O,),], is shown in Figure 6.15. The results indicate that when the 

delamination is located in between similarly oriented plies, the transition of the buckling 

load is smooth; on the other hand, when the delamination is located in between two 

dissimilarly oriented plies, the buckling response of the composite changes abruptly. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Delamination Thickness Ratio 

Figure 6.15. Effect of through-the-depth position of delamination on 

buckling load of [(go, /O, ), ] laminates. 
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6.4.4. Effect of material properties 

The type of matenals used in formation of the composite was found to also have 

influence on the buckling response. Figure 6.16 illustrates the effects for three different 

types of composites, namely: graphite/epoxy, glass/epoxy and Kevladepoxy, having 

various delamination length ratios (an). Typical mechanical properties for these 

composites are tabulated in Table 6.4. Al1 composites have ply sequence of 

[(90/0), 1 /(90/0),,] with the delamination thickness ratio of h/T=0.25. Normalization of 

the buckling loads in Figure 6.16 was performed with respect to the modulus of 

glasdepoxy. The figure illustrates that the composite having the largest modulus (Le., the 

graphite/epoxy) exhibits the highest buckling capacity regardless of delamination length, 

as it was expected. 

0.0 0.2 0.4 0.6 0.8 1 .O 
Defamination Length Ratio 

Figure 6.16. Effect of material properties on the buckling load. 
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6.4.5. Effect of the longitudinai position of delamination 

The buckling response of [(go , /O, ), 1 graphitelepoxy beam-plates with a 

delamination positioned at various locations along their length is shown in Figure 6.17. 

The figure depias the response of the laminate with thickness ratio of hT=O.5, and 

x, = l +  t a  . The results confirm that the buckling strength is significantly influenced by 

the location of the delamination. As it can be seen fiom Figure 6.17, the phenornenon is 

ais0 a funaion of the delamination fength. The decrease in the buckling strength is morz 

significant in beam-plates with delamination length ratios between 0.2 to 0.6. 

0.0 0.2 0.4 0.6 0 -8 1 .O 

Longitudinal Position (Xc) of Delamination 

Figure 6.17. Effect of the longitudinal position of delamination on buckling load 

for a [(go, /O, ), ] graphite/eposy beam (h/T=O.S). 
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The influence of the longitudinal position of delamination on the buckling response 

of composite beam-plates, as the delarnination position moves through the thickness of 

the bearn-plates is s h o w  in Figure 6.18. Here, the delamination has a length of a/L=0.3. 

It can be seen that the buckling load is affected only in those laminates with relatively 

thick delamination (when the delamination is on the interface of lzth to 1 6 ' ~  plies). 

O 0.2 0.4 0.6 0.8 1 

Longitudinal Position (Xc) of Delamination 

Figure 6.18. Effect of delamination location on bucküng load for [O]3t  laminate. 

6.4.6. Cornparison between DQM and layer-wise mode1 

Throughout this chapter the accuracy of the DQM, compare to fuiite element and 

analytical methods was shown for different delamination buckling models. Also its 
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efficiency was shown through the small number of sampling points needed to model the 

problem. A problem such as the delamination buckling analysis of a composite beam, 

with the inclusion of the shear deformation and bending-stretching coupling effects, 

could be modeled accurately by only 11 sampling points for each region of the model, or 

a total of 88 degrees of freedom (d.o.f), for the entire model. 

The same problem was solved by Lee (1992) who employed a layer-wise finite 

element approach. Ten quadratic one-dimensional elements were used to model the full 

length of the bearn. He used 252 d.0.f for the models without the couplhg stifiess tems 

and 462 d.0.f for the cases including the coupling stifiess terms. Cornparing the d-o-f 

used in the two methods clearly shows the efficiency of the DQM. 

6.5. Case studies for buckling of a beam having multiple delaminations 

In this part we will examine the case where beams having a number of 

delarninations, are subjected to compressive buckling load. As a first case, consider a 

speciaily orthotropic beam having equal length delaminations. The delarninations are 

through-the-width and could be anywhere through the beam longitudinal span. 

6.5.1. Effect of the number of deIaminations on the buckling load 

Figure 6.19 shows the effect of number of delaminations on the buckling strength of 

the beam. This exarnple is reconsidered from Suemasu (1993), where he used Rayleigh- 

Ritz approximation to solve for the buckling response of a multiply delaminated beam. 

The matenal properties are given in Table 6.5. The length and thickness of the beam are 

considered to be 160 mm and 3.8 mm, respectively. The effect of shear deformation is 

accounted by the shear deformation factor S. The number of delaminations is represented 

by N. They divide the clamped-clamped beam into (N+l)  regions with equal thickness. 



1 - 
1 

Delaminations = - - - 3 

* * - - * *  5 

O R-R Suemasu (1993) 

O FEM Suemasu (1993) 

0.2 0.4 0.6 O -8 

Delamination lenght ratio 

Figure 6.19. NormaMed buckling load vs. delamination length ratio for multiple 

delaminations, 

Here the buckling load is normalized with respect to the Euler buckling load of an 

intact beam. As shown in the figure, the results of the DQM are in very good agreement 

with those of the finite element and Rayleigh-Ritz calculations given by Suemasu (1993). 

Increasing the nuinber of delarninations (and therefore reducing the thickness of 

delaminations) reduces the buckiing load. Also the sharp changes in the curvature of all 

the curves are due to the changes in buckiing modes. The first and the last regions of the 

curves are govern by syrnmetric modes while in the mid-region, the antisymmetric modes 

are the dominant modal shapes. 



Table 6.5. Material properties used by Suemasu (1993)- 

Ei 20.2 Gpa 

E2 2 1.0 Gpa 

E; 10.0 Gpa 

tJ 12 o. 16 

u13 0-3 0 

G12 4.15 Gpa 

G I ~  4.0 @a 

6.5.2. EEect of the longitudinal position of delaminations 

The effects of the longitudinal position of delaminations on the buckling load are 

shown in figures 6.20 to 6.23 for different number of delarninations. As expected, the 

maximum buckling loads occur when the delaminations are in the center span of the 

beam. Chana*g the delamination position results in a decrease in the buckling load. This 

effect is more obvious in the case of small delaminations. Also, increasing the number of 

delaminations makes the beam less sensitive to the change in the longitudinal position of 

the delaminations. This is emphasized in Figure 6.24, where the normalized buckling 

loads are shown versus different delamination positions for different number of 

delarninations. 



O O .2 0.4 0.6 0.8 1 

Center of delamination 

Figure 6.20. Effect of the longitudinal position of delamination on the buckling 

strength for a beam with single delamination. 



O 0.2 0.4 0.6 0.8 1 

Center of delamination 

Figure 6.21. Effect of the longitudinal position of delamination on the buckling 

strength for a beam with three delaminations. 



0.4 0.6 

Center of delamination 

Figure 6.22. Effect of the longitudinal position of delamination on the buckling 

strength for a beam with five delaminations. 



O 0.2 0.4 0.6 O. 8 1 

Center of delamination 

Figure 6.23. Effect of the Longitudinal position of delamination on the buckling 

strength for a beam with seven delaminations. 
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Figure 6.24. Cornparison the effect of delamination longitudinal position on the 

buckling strength for a bearn with different number of delaminations 

(a/L=0.2). 
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6.5.3. Effect of the length of delaminations 

i No. of delaminations = -t- 1 

The effect of the different delamination lengths on the buckiing load is s h o w  in 

Figure 6.25. Here we consider clamped-clamped beams having two delaminations with 

different lengths, located symmetricdly with respect to their mid-spans. Moreover, the 

delaminations are positioned syrnmetncally with respect to the mid-plane of the beams. 

While the length of the upper delamination in these beams varies, but the lenath of the 

lower one is fixed (aA=0.3,0.4). The non-dimensional buckling load as a fünction of the 

non-dimensional delamination length of the upper delaminations for the case of thin 

(t/T=0.125) and thick (tR=O.3) delaminations are presented in the figure. The results are 
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compared with those obtained from the finite element analysis conducted using the - 

commercial package MSA (1996). Also, the results for the beams with a single 

delamination are shown in the figure. The figure indicates that as long as the length of the 

lower delamination is less than the length of the upper delamination (Le. a? > a,), the 

buckiing strength of the beam is govemed by the length of the upper delamination. This 

response is similar to the case where the beam hosts a single delamination. 

O 0.2 0.4 0.6 O 

Upper delamination fength ratio 

Figure 6.25. Response of beams hosting multiple delaminations with 

different lengths. 

6.6. Case radies for buckling analysis of composite laminated plates with eiiiptical 

deiamination 

In this part the results of the application of DQM to the buckling analysis of 

laminated composite plates having elliptical delamination is discussed. These exampies 
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are aimed at illustrating the numencal accuracy and efficiency of the proposed method. In 

particular, the differential quadrature results are compared with those of Shivakumar and 

Whitcomb (1985) and Heitzer and Feucht (1993). In both studies the authors used the 

Rayleigh-Ritz method and compared their solutions with the finite element results. 

Using the mapping scheme introduced in chapter 3, the elliptical domain can be 

transferred into the equivalent computational domain. The calculations were canied out 

using cubic serendipity shape fiinctions (even though the eIliptica1 boundaries are 

quadratic, the mapping presented here c m  c a r y  more complicated boundaries). The 

positions of the 12 points needed for this transformation are shown in Figure 6.26. 

Figure 6.26. An eliiptical domain. 

The non-uniform sarnpling points dong with &technique, as suggested by Bert and 

Malik (1996), are used by the following relations (see Figure 4.8): 



Similar sampling points were used for the q-direction. The material properties used here 

are those reported by Shivakurnar and Whitcomb (1985) and Heitzer and Fuecht (1993), 

and are tabulated in TabIe 6.6. 

Table 6.6. Material properties used by Shivakumar and Whitcomb (1985) and 

Heitzer and Feucht (1993). 

Shivakumar and Whitcomb (1 985) Heitzer and Feucht (1 993) 

Aluminum Graphite/epoxy 

El 68.95 GPa 13 1 .O GPa 230.0 GPa 

Ez 68.95 GPa 13.0 GPa 7.0 GPa 

u12 0.3 1 0.34 0.30 

GE 26.32 GPa 6.4 GPa 5.0 GPa 

6.6.1. Effect of the sublaminate width on the buckling strain 

Figure 6.27 shows the buckling strains versus dif5erent values of ellipse semi axis b 

for isotropie and specially orthotropic sublaminates ([O] laminate). The value of a is fixed 

at 25.4 mm, ~ 0 . 5 l m m  and &O0. The finite element and Rayleigh-Ritz reçults by 

Shivakurnar and Whitcomb are also shown in the figure. Their f i t e  element model used 

triangular plate elements with eighteen degree-of-fieedorn to model a quarter of the 
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elliptical plate. A 8x12 mesh was used to model the isotropie and speciaily orthotropic 

sublaminates, while a 8x32 mesh was employed in modeling the anisotropic cases. As 

seen in the Figure 6.27, the DQM results agree well with those of the finite eiements and 

the Rayleigh-Ritz rnethods. 

A FEM 

0 R-R 

- 

O 25 50 75 1 O0 125 

Elfiptical Delamination Semi-axis b (mm) 

Figure 6.27. Effect of sublaminate width on buckling strain for different materiais. 

6.6.2. Effecf of the fiber orientation on the bucWing strain 

The effect of the fiber orientation on the buckling strain for difierent delamination 

aspect ratios (oh) is s h o w  in Figure 6.28. The sublaminate fiber aagie is successively 

mtated from O0 to 90" (with respect to the longitudinal, rlaxis) for threr different aspect 

ratios and the buckling strains are plotted. The finite element resulÿ are denved fiom 

Shivakumar and Whitcomb and ploned in the figure. The compression buckling strain 
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increases with the increasing fiber angle, but at a certain fiber angle the sublaminate can 

buckle under tensile strain (when the base laminate is loaded in tension). This is due to 

the mismatch between the Poisson ratios of the base laminate and the sublaminate (see 

S h i v h a r  and Whitcomb (1985)). As seen h m  the figure, increasing the aspect ratio 

results in an increase in the magnitude of the buckiing strain. 

Figure 6.28. Effeet of fiber angle on buckling strain for different aspect ratios 

(a=25.4 mm). 

0.0075 

Figure 6.29 shows the effect of fiber angle on the buckiing strain for an 

unsymmetric sublaminate. This example revisits the work of Heitrer and Feucht (1993), 

where their composite's sublaminate consisted of two piies, each of thickness 0.005 mm. 

One of the plies was successively rotated up ta 90 degree. The delamination was 

0.005 - -  
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considered to have circular shape with a=l mm. The results computed by DQM along 

with those of the finite elements and Rayleigh-%@ of Heitzer and Feucht are plotted in 

this figure. They used two different meshes to mode1 the circular and the elliptical 

delaminations. The circular mesh consisted of 784 four-noded plate elements and the 

elliptical mesh for the delamination with a=3rnm and b=lrnrn, consisted of 652 three- 

noded plate elements. As for Rayleigh-Ritz method, they used a formulation with 12 and 

21 constants. As seen, the DQM results are in better agreement with the FEM compared 

to the R-R. The inaccuracy in results of the R-R is contributed to the poor expansion of 

the in-plane displacements u and v used in their formulation. On the other hand, the in- 

plane displacements were not used in the DQM formulation @y u s h g  reduced stiffhess 

concept). 

[0,15] [0,30] [0,45] [0,60] [O751 [0,90] 

Sublam inate Sequence 

Figure 6.29. Effect of sublaminate sequence on buckling strain for circular 

delamination (a=1 mm). 
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6.6.3. Higher buclcling modes 

The comparisons between different numencal mediods in computation of higher 

buckling modes are shown in Table 6.7. The first three buckling modes for an elliptical 

delamination (with a=3mrn, b = L m  and ~ 0 . 0 1 )  composed of an unsymmetric [0/90] 

Iayup, oriented at û=90° with respect to the loading direction is presented in this table. 

For the R-R method, only the first buckling mode is acceptable (compare to the finite 

element method) and the method exhibits fictitious higher stifiess for the higher modes. 

DQM, however, produces acceptable results for al1 the buckling modes. 

Table 6.7. Buckiing strains of higher modes for an eiiiptical delamination. 

Mode FEM R-R Error (%) DQM Errer(%) 

6.6.4. Effect of the number of sampling points on the bucküng strain 

Figure 6.30 shows the effect of the nurnber of sampling points on the convergence 

of the buckling strain. The effect of grid spacing is shown for a circular delamination 

with a=lmrn, b=lrnm and an elliptical delamination with a=3mm, b=lmm. In both 

examples, the material is orthotropic, with thickness ~ 0 . 0 l r n m  and fiber angle +O0. 

Note that here, the nurnbers indicated on the horizontal axis represent the grid points in 

both horizontal and vertical directions, on the geometry. Therefore, the total numbers of 

grid points are the square of the number noted on the graph. Increasing the density of the 
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meshes, obviously improves the results, however, a 15x 15 grid spacing is adequate for 

producing acceptable solutions. 

iv + a=3 mm, b=l mm 

Number of Sampling Points (nxn) 

Figure 6.30. Effect of the no. of grid points on buckling strain for 

eiiiptical deIamination. 
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6.7. Case studies for postbuckling analysis of laminated composite beams having 

single delamination 

To show the validity of DQM in the postbuckling analysis of composite laminated 

beams with single delamination, sorne case studies were investigated. The f i s t  example 

is taken fkom Sheinman and Soffer (1991). A delaminated beam with the lenad L=4 rn 

and thickness of T=0.08 m is shown in Figure 6.3 1. 

Figure 6.31. Geometry of an imperfect simply supported beam with a single 

An across-the-width delamination with the length of a 4 . 5  rn and thickness k0.0 1 

m is set at the mid-span of the beam (Figure 4.1). An initial imperfection exists in the 

form of ?(x) = w, sin(xx l l) (where wo is the imperfection amplitude). The material is 

isotropic. Figure 6.32 illustrates the resulting load-deflection cuve evaluated at the 

midpoints of the sublaminates for positive imperfection amplitude. In this figure, the 

compressive load is normalized with respect to the Euler buckling load of the beam, as if 

it was intact. As seen in the figure, as the load reaches near the delamination buckling 
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load (P=0.442Pcr), the upper sublaminate starts to deflect in the positive direction and it 

buckles. By increasing the load the lower delamination starts to deflect and finally at a 

load near P=0.67Pcr, the system loses its load-carrying capacity. 

Lower Sublaminate 

O O -2 O -4 0.6 

Normalized Deflection, wK 

Figure 6.32. Load vs. mid-span deflection for wo =1x10". 

The same system produces a totally different response when the imperfection has a 

negative mode. As shown in Figure 6.33, as the load approaches the buckling load, the 

upper sublaminate start to deflect in the negative direction and the lower part gradually 

deflect in the positive direction. This causes the upper part to change its direction and 
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after a while it deflects in the positive direction. In the same graph the DQM results are 

compared with those of Sheinman et al (1993), and the results are in good agreement. 

Upper Sublaminate 

r/ Lower Sublaminate 

- DQM 
x Sheinman et al (1 993) 

Normalized Def lection, w/T 

Figure 6.33. Load vs. mid-point deflection for wo = -lxlo4. 

The response of a series of bearns, each having a different delamination lena&, is 

shown in Figure 6.34. The results show that by increasing the delamination length, the 

buckling load decreases and the instability mode tums to a local buckling mode, and a 

decrease in the final Load carrying capacity of the beam. This observation confirms that of 

Kun (1996). For a&0.2, the beam buckles globally, therefore, the upper and lower parts 

both buckle, alrnost simultaneously. On the other hand, for a relatively large delamination 

length ratio (i.e. dL=0.6), the local buckling precedes the other buckling modes. In this 

case the upper part undergoes a large deformation before the buckling of the lower part. 
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For the intermediate delamination Iength ratios (Le. a/L=0.4), both the upper and lower 

parts undergo considerable amount of deformation and the buckling mode is a 

combination of local and global modes which is usually referred to as mixed buckling 

mode- 

1 ,  

-0.4 -0.3 -0.2 -0.1 O 0.1 O .2 0 -3 

Norrnalized Deflection, wK 

Figure 6.34. Load vs. mid-span deflection for various delamination lengths. 

The effect of compressive load on the axial deformation of beams with different 

delamination length ratios is shown in Figure 6.35. Prior to buckling, the slopes of curves 

of the axial deformation vs. compressive applied load are the same for al1 delamination 

lengths. After the onset of buckling, beams start to lose their stifkess and the dope of the 

curves varies. The diverging in the stiffhess accelerates near the final load capacity. 



0.001 

Axial Shortening, u 

Figure 6.35. Load vs. axial shortening for various delamination lengths. 

The effect of the imperfection amplitude on the load-carrying capacity of the beam 

is shown in Figure 6.36. Here, the same beam as discussed earlier is considered, but with 

different imperfection amplitudes. As seen in the figure, increasing the imperfection 

amplitude results in a significantly different response of the delaminated sublaminates; in 

the case of w, =-lx 10 -  the buckling behavior of the upper and Iower sublaminates are 

almost indistinguishable. 



-0.4 -0.2 O O .2 

Norrnalized Deflection, wK 

Figure 6.36. Load vs. mid-span deflection for various initial imperfections. 

The next example considers a clamped-ended delaminated beam, derived fiom Lee 

(1992). A specially orthotropic composite laminated beam containing a single across-the- 

width delamination at its center with h/T=0.2 and aLk0.3 is under axial compressive 

load. The rnaterial being used is T300/5208 graphite/epoxy, whose properties are given in 

Table 6.8. The thickness-to-span ratio is assurned to be T/L=1/400. The initial 

imperfection is in the fom of 

The response of the beam for an initial imperfection of w, = -1 x10" is shown in Figure 

6.37 and 6.38. As the load approaches its buckling value, the upper sublaminate starts 
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deflecting in the negative direction (Figure 6-37}, while the lower sublaminate gradually 

deflects in the positive direction. This will cause the upper sublaminate to reverse its 

displacement at a load about P=0.7Pcr, and then the layers lose their load-carrying 

capacity at around P=0.8PW. As shown in the figure, the DQM results are in good 

agreement with those extracted fiom Lee. The axial end shortening of the beam is shown 

in Figure 6.38. As the load nears the buckiing load of the delarninated beam, the system 

starts losing its stiffness, and the phenomenon M e r  accelerates as the load progresses 

toward the ultimate capacity of the bearn. 

Table 6.8. Material properties used by Lee (1992). 

T30015208 (S MC-R5 O )  

EI 181.0 GPa 10.9 GPa 

Ez 10.3 GPa 7.58 GPa 

u 11 0-28 0.3 1 

u13 0 .28 O -22 

G L ~  7.17 GPa 2.48 GPa 

G13 7.17 GPa 2.48 GPa 



Upper Sublaminate 

Lower Sublaminate 

- DQM 
x FEM (Lee (1992)) 

-0.4 -0.2 O O -2 O .4 O .6 0.8 

Normalized Deflection, w f ï  

Figure 6.37. Load vs. mid-span deflection for a clamped beam. 



Axial Shortening, u 

Figure 6.38. Load vs. axial shortening for a clamped beam. 
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6.8. Case studies for postbuckling analysis of composite laminated beams having 

multiple delarninations 

To further veriQ the DQM, we also considered bearns with multiple delaminations. 

For this, Lee et al's (1995) laminated composite clamped beam, having two equal lena* 

delaminations, symmetrically located with respect to the beam mid-plane was considered 

(Figure 6.39). The delaminations position, and length are hl/T=0.125, h2/i'=0.125, 

arL=0.3 and a2L=0.3, respectively. The material fomiing the beam was randorn short- 

fiber SMC-RSO composite with properties tabulated in Table 6.8. Dimensions of the 

beam were L=50 mm and T=l mm as used by Kyoung et al (1998) (who considered the 

sarne problem). 

Figure 6.39. A clamped beam with two symmetric delarninations. 

For th is  beam, the first two buckling modes were very close to each other. The 

initial imperfection shape, however, govemed the buckling modes. The first buckling 

mode occurs when the initial imperfection of w, = l x m 3  is used for ody  the upper 



sublaminate (in the shape of the fxst buckling mode). The load-defiection curve is shown 

in Figure 6.40. Here, the second delamination remains closed as if the beam contained 

only the upper delamination- 

Normalized Def lection, wK 
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Figure 6.40. Load vs. mid-span deflection for clamped beam having two 

qmmetric delaminations with imperfection of the first 

buckling mode (W2, W3 and W4 refer to the deflection of 

delaminated regions shown in Figure 6.39). 
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R e  progression of the compressive Ioad through the delaminated region (region 2) 

is s h o w  ui Figure 6.41. Here Pcr2 is the buckling load of the region 2. As seen fiom the 

fi,pre, the increase of the load through the delaminated parts is proportional to the load 

increment up to the buckling point. After buckling, the stifiess in the upper delamination 

decreases, resulting in redistribution of the load among the sublaminates, and keeping the 

load in the upper sublaminate close to the buckling load. 

Load in Region 2 (P$P,& 

Figure 6.41. Variation of the load in region 2 (Figure 6.39) for a clamped 

beam having two symmetric delaminations with imperfection of 

the first buckiing mode. 



Applying an initial imperfection in the form of the second buckling mode (Le., in 

the fom that both upper and lower parts deform in opposite direction) results in opening 

of both upper and lower laminates, as shown in Figure 6.42. 

Normalized Deflection, wK 

Figure 6.42. Load vs. mid-point deflection for clamped beam having hvo 

svmmetric delaminations wïth imperfection of the second 
Y 

buckling mode ( W 2 ,  W3 and W4 refer to the deflection of 

delaminated regions shown in Figure 6.39). 



CHAPTER 7 

CONCLUSIONS 

Delamination buckling and postbuckling responses of composite larninated beams 

and plates were investigated. Using the differential quadrature method, one- and two- 

dimensional models were developed. The models were demonstrated to be capable of 

predicting the exact values of delamination buckling strengths and also accurately 

predicting the postbuckling response of the structures. For that, different configurations, 

such as beams with single and multiple througkhe-width delaminations and plates with 

elliptical delaminaiions were studied. Several parameters, including the effect of shear 

deformation, the bending-stretching coupling, material properties, lamination sequence 

and fiber-orientation, were investigated. Also, the shape, size, number, initial geornetrical 

imperfection, through-the-thickness and through-the-length location of the delaminations 

were studied parametrically. 

Throughout the thesis, the DQM results were compared wvith those of the 

published analytical and numerical works or with those obtained by analyzing problem 

through the use of a commercial finite element package. 

7.2. Conclusions 

Based on the results of the author's hvestigations presented in the previous 

chapters, the following concluding remarks are made: 

1) The thesis reports the first attempt Li applying the differential quadrature analog to 

the delamination buckiing of composite lantinated structures. 



2) DQM was s h o w  to be capable of determining ail possible buckling loads and their 

corresponding modes. 

3) For a forth order differential equation (i.e., differential equilibrium equation of the 

Euler bearn), the use of the &technique was found to enhance the accuracy of the 

solution. For such a problem, the use of the non-equally spaced grid schemes such as 

the Chebyshev or the Legendre, which allocate denser grid spacing near the 

boundaries, is recommended. 

4) While using a grid spacing with an odd number of nodes is highly recomrnended, the 

author's expenence indicates that a relatively low number of grid points can produce 

results with acceptable accuracy in the buckling analysis of delarninated composite 

structures. Mesh densities with 1 1 points per region for beams, and with 15 points per 

dimension for plates were shown to provide accurate results. 

5) In delaminated bearns, through-the-thickness and through-the-length position of the 

delamination can significantly influence their buckling behavior. An increase in the 

thickness of the delaminations with constant leno@ can significantly boost their 

buckling strength. Also in beams with thick delarninations, and 0.2 <a/L  < 0.6, the 

eccentncity of the delarninations (with respect to the bearn mid-span) can 

sonsiderably alter their buckling strength. The buckling strength decreases as the 

delarnination moves away from the mid-length of the beam. 

6) The delamination buckling strength was fomd to be sensitive to the shear 

defonnation. The buckiing strengths are generally lower than those predicted by the 

classical laminate theory (CLT). Including the bending-stretching coupling eEect, 

which is due to the non-syrnmetric laminations, significantly reduces the buckling 

load. 



7) The bucklùig response of composite laminated plates having an elliptical thin 

delamination was also investigated by DQM. Using the serendipity shape functions, 

the physical domain was transferred into a quadrilateral computational domain. Then, 

the differential equilibrium equations of the sublarninate with clarnped boundary 

conditions were forrnulated and solved. The DQM results were compared with those 

of the other numencal methods, and found to be numerically acceptable. The 

accuracy were achieved via Iess complex algorithms, compared to the other numencal 

approaches. 

8) In order to solve for the buckling strains of an elliptical delamination, the author used 

the reduced bending stiffness approach. This resulted in a considerable reduction in 

the computational effort- ln fact, instead of using the in-plane deformations (Le. zi and 

v) along with the out of plane deflection w as unhowns, it was shown that by using 

only one parameter, w, DQM could provide accurate results with minimal 

computational effort. The numencal results obtained as such were in good agreement 

with those obtained by the finite element method. 

9) To the author's best knowledge, the present work is the first attempt in employing the 

DQM in the postbuckling analysis of composites. This was achieved by coupline, the 

differential quadrature method with an arc-length strategy. The developed algorithm 

was applied to the postbuckling analysis of composite laminated plates, and single 

and multiply delaminated beams. The numerical results obtained through several case 

studies reconfinned the excellent performance of the method. 

The method was s h o w  to have al1 the attributes and advantages that other popular 

numerical methods such as FDM, FEM and BEM have. In addition, it was show that 

the method enjoys a mathematical fouidation that is simpler to digest compared to those 

associated with the other numerical methods. Moreover, the implementation of the 
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method into a cornputer code is relatively easier. The efforts needed for setting up a 

problem, and for solving it with DQM is also relatively less in cornpanson to the other 

numerical methods. The only disadvantage of the proposed method at this stage of its 

evolution is that it is not as robust as FEM in accornmodating problems with complicated 

geometnes. This issue is however resolvable, as one can use the same type of remedy 

that is available for treating the sarne anornaly that exists with The FDM. 

7.3. Recommendations for future works 

The presented research was the basic step toward the implementation of differential 

quadrature technique for the buckling and postbuckling analysis of composite laminated 

structures having single or multiple delaminations. Therefore, in order to enhance the 

capability of the proposed approach, the following recommendations for future research 

are offered: 

The presented approach may be employed in the buckling analysis of other larninated 

composite structures having delaminations, such as for composite sheils with 

through-the-width or through-the-circumference delaminations. 

The two-dimensional elliptical delamination mode1 used in this snidy was based on 

the thin delamination approach. A more general approach for considering the position 

of a delamination (Le., through-the-thickness and through-the-plane of d ie  plate) 

should be explored. This requires a domain decomposition approach, and therefore, a 

significant increase in the size of the problem. 

The presented postbuckling analysis of beams having single or multiple 

delaminations did not account for the growth of the delamination. Therefore, a crack 

growth analysis to account for the delamination propagation, and the implementation 

of appropriate failure criteria will be worth an initiative. 



4) Moreover, the presented approaches did not account for contact between delaminated 

regions. Including this effect may change the response of the delaminated beams and 

plates significantly, therefore, research into inclusion of such a phenornenon is highly 

recornmended. 

5) Only the effect of compressive axial loads was considered in the current study. The 

buckIing and postbuckling analyses of delaminated composite structures subjected to 

a combined state of loading, such as combinations of shear, bending, compressive and 

thermal loads are recornrnended. 

6) The fuial matrices resulting from applying DQM to the different problems are non- 

syrnmetric, therefore require non-symmetric solvers. Incorporation of various 

methods for converthg the matrices into syrnmetric matrices is also recommended. 

For this, one may use the idea of energy finite difference approach used in 

conjunction with the fmite difference method. 



Barbero, E. J. and Reddy, J. N., (1991) Modeling of Delamination in Composite 
Laminates Using a Layer-Wise Plate Theory, International Journal of Solids and 
Smctures, vol. 28, pp. 373-388. 

Batoz, J. -L. and Dhatt, G., (1979) Incremental Displacement Algorithms for Nonlinear 
Problems, International Journal for Numerical Methods in En,gi.neering, vol. 14, pp. 
1262- 1267- 

Bellman, R. E., Kashef B. G. and Casti, J., (1972) Differential Quadrature: A Technique 
for Rapid Solution of Nonlinear Partial Differential Equations, J. Cornputer Physics, 
vol. 1 O, pp. 40-52. 

Bellman, R. E. and Roth, R. S., (1986) in: Methods D Aeidel 
Publishing, Dordrecht, Netherlmds. 

Bert, C. W., Jang, S. K. and Stnz, A. G., (1988) Two New Approximate Methods For 
Analyzing Free Vibration of Structural Components, AIAA Journal, vol. 26, pp. 
612-618. 

Ben, C. W., Jang, S. K. and Striz, A. G., (1989) Nonlinear Bending Analysis of 
Oahotropic Rectangular Plates by the Method of Differential Quadrature, 
Computational Mechanics, vol. 5,  pp. 2 17-226. 

Bert, C. W., Wang, X. and Striz, A. G., (1993) Differential Quadrature for Static and Free 
Vibration Analysis of Anisotropic Plates, International Joumal of Solids and 
Structures, vol. 30, pp. 1737-1 744. 

Bert, C. W., Wang, X. and Striz, A. G., (1994) Static and Free Vibration Analysis of 
Beams and Plates by Differential Quadrature Method, Acta Mechanica, vol. 102, 
pp. 1 1-24. 

Bert, C. W. and Malik M., (1996a) Differential Quadrature Method in Computational 
Mechanics: A Review, Applied Mechanics Review, vol. 49, pp. 1-28. 

Bert, C. W. and Malik M., (1996b) The differential Quadrature Method for hegular 
Domains and Application to Plate Vibration, International Journal of Mechanical 
Science, vol. 38, pp. 589-606. 

Bert, C. W. and Malik M., ( 1996~)~  Implementing Multiple Boundary Conditions in the 
DQ Solution of Higher-Order PDE's: Application to Free Vibration of Plates, 



International Journal for Numerical Methods in Engineering, vol. 39, pp. 1237- 
1258. 

Bhirnaraddi, A., (1 992) Buckling and Post-Buckling Behavior of Larninated Plates Using 
the Generalized Nonlinear Formulation, International Journal of Mechanical 
Science, vol. 34, pp. 703-715. 

Bottega, W. J., and Maewal, A., (1983) Delamination Buckling and Growth in 
Laminates, Journal of Applied Mechanics, vol. 50, pp. 184- 189. 

Cairns, D. S., Minpet, P. J., and Abdallah, M. G., (1994) The Influence of Size and 
Location on the Response of Composite Structures with Delaminations Loaded in 
Compression, Proceedings of the 35& WASMEIASCEIAHSIASC Structures, 
Structural Dynamics, and Material Conference, v5, AIAA, New York, NY, USA, 
pp. 28 15-2825. 

Chai, H., Babcock, C. D., and Knauss, G., (1981) One Dimensional Modeling of Failure 
in Laminated Plates by Delamination Buckling, International Joumal of Solids and 
Smictures, vol. 17, pp. 1069- 1 083. 

Chai, H., and Babcock, C. D., (1 985) Two-Dimensional Modeling of Compressive 
Failure in Delaminated Laminates, J. of Composite Materials, vol. 19, pp. 67-98. 

Chai, H., (1990a) Buckling and Post-Buckling Behavior of Elliptical Plates: Part 1- 
Analysis, J. of Applied Mechanics, vol. 57, pp. 981-988. 

Chai, H., (1990b) Buckling and Post-Buckling Behavior of Elliptical Plates: Part II- 
Results, Journal of Applied Mechanics, vol. 57, pp. 989-994. 

Chang, F. K., and Kutlu, Z., (1989) Collapse Analysis of Composite Panels with Multiple 
Delarninations, Proceeding of AIAA/ASME/ASCE/AHS 3 oth Structures, Structural 
Dynamics, and Matenal Conference, Mobile, AL, USA, pp. 989-999. 

Chattopadhyay, A. and Gu, H.,( 1994) New Higher Order Plate Theory in Modeling 
Delamination Buckling of Composite Laminates, A L U  Journal, vol. 32, pp. 1709- 
1716- 

Chen, H. P., (1 99 1) Shear Defornation Theory for Compressive Delamination Buckling 
and Growth, AIAA Journal, vol. 29, pp. 813-819. 

Chen, H. P., (1993) Transverse Shear Effects on Buckling and Postbuckling of Laminated 
and Delarninated Plates, AIAA Joumal, vol. 3 1 ,pp. 163-1 69. 

Chen, H. P. and Chang, W. C., (1994) Delamination Buckling Analysis for Unsymmetrïc 
Composite Laminates, 3gCh International SAMPE Symposium, pp. 2855-2867. 



Chen, W., Stnz, A. G., and Bert, C. W., (1997) A New Approach to the Differential 
Quadrature Method for Forth-Order Equations, International Journal for Numerical 
Methods in Engineering, vol. 40, pp. 1941 -1956. 

Clarke, M. J. and Hancock, G. J., (1990) A Study of Incrernental-Iterative Strategies for 
Non-linear Analysis, International Journal for Numerical Methods in Engineering, 
vol. 29, pp. 1365-1391. 

Cox, B. N., (1994) Delamination and BuckIing in 3D Composites, Joumal of Composite 
Materials, vol. 28, pp. 11 14-1 126. 

Crisfield, M. A., (1981) A fast hcremenütllIterative Soluti~n Procedure That Handles 
Snap Through, Cornputen & Structures, vol. 13, pp. 55-62. 

Crisfield, M. A., (1983) An Arc-length Method Including Line Searches and 
Accelerations, International Joumal for Numerical Methods in Engineering vol. 19, 
pp. 1269-1289. 

Davidson, B. D., (1991) Delamination Buckling: Theory and Experiment, Joumal of 
Composite Materials, vol. 25, pp. 135 1-1378. 

Davidson, B. D. and Krafchak, T. M., (1 995) A Cornparison of Energy Release Rates for 
Locally Buckled Laminates Containïng Symmetrically and Asymrnetrically Located 
Delaminations, Journal of Composite Matenals, vol. 29, pp. 700-7 13. 

Dost, E. F., Ilcewicz, L. B. and Gosse, J. H., (1988) Sublaminate Stability Based 
Modeling of Impact-Damaged Composite Laminates, Proceedings of the Amencan 
Society for Composites, Third Technical Conference on Composite Materials, pp. 
354-363. 

El-Aini, Y .  M., (1975) A Nonlinear Analysis for One-Way Buckling of a Laterally 
Loaded Column, Joumal of Mechanical Engineering Science, vol. 17, pp. 150-1 54. 

Fana, J., Kukerti, A. R., and Bert, C. W., (1993) Fundamental Frequency Analysis of 
Single Specially Orthotropic, Generally Orthotropic and Anisotropic Rectangular 
Layered Plates by the Differential Quadrature Method, Computers & Structures, 
vol. 46, pp. 465-477. 

Farsa, J. and Kukerti, (1993) Fundamental Frequency Analysis of Laminated Rectangular 
Plates by Differential Quadrature Method, International Journal for Numerical 
Methods in Engineering, vol. 36, pp. 2341-2356. 

Femgno A., La Barbera A., and Perugini P., (1995) An engineering assessrnent of the 
static residual strength of composite laminates with impact induced damages: 
integrated procedure based on 3D FEM and 2D theoretical analysis and 



experimental investigations, Proceedings of ICCM- 10, Whistler, B. B., Canada, vol. 
5, pp. 679-686. 

Forde, B. W. R. and Stiemer, S. F., (1987) Irnproved Arc Length Orthogonality Methods 
for Nonlinear Finite Elemenr Analysis, Computers & Structures, vol. 27, pp. 625- 
630 

Gaudenzi, P., (1997) On Delamination Buckling of Composite Laminates Under 
Compressive Load, Composite Structures, vol. 39, pp. 21-30. 

Haisler, W. E. and Stricklin, J. A., (1977) Displacement Incrementation in Nonlinear 
Structural Analysis by the Self-comcting Method, International Joumal for 
Numerical Methods in Engineering, vol. 1 1, pp. 3-1 0. 

Han, J. -B. and Liew, K. M., (1997) An Eight-node Curvilinear Differential Quadrature 
Formulation for Reissner/Mindlin Plates, Computer Methods in Applied Mechanics 
and Engineering, vol. 141, pp. 265-280. 

Heitzer J., and Feucht M., (1993) Buckling and Postbuckling of Thin Elliptical 
Anisotropic Plates, Computers & Structures, vol. 48, pp. 983-992. 

Huang, H. and Kardomateas, G. H., (1997) Post-Buckling Analysis of Multiply 
Delaminated Composite Plates, Journal of Applied Mechanics, vol. 61, pp. 842- 
846. 

Jang, S. K., Bert, C. W., and Striz, A. G., (1989) Application of Differential Quadrature 
to Static Analysis of Structural Components, International Journal for Numerical 
Methods in Engineering, vol. 28, pp. 561-577. 

Kang, K. J., Bert, C. W., and StrK, A. G., (1996) Vibration and Buckling Analysis of 
Circular Arches Using DQM, Computers & Structures, vol. 60, pp. 49-57. 

Kardomateas, G. A. and Schrnueser, D. W., (1988) Buckling and Postbuckling of 
Delaminated Composites Under Compressive Loads Including Transverse Shear 
Effects, AIAA Journal, vol. 26, pp. 337-343. 

Kardomateas, G. A., (1989) Large Deformation Effects in the Postbuckling Behavior of 
Composites with Thin Delaminations, ALAA Journal, vol. 27, pp. 624--63 1. 

Kardomateas, G. A., (1993) The Initial Post-Buckling and Growth Behavior of Intemal 
Delaminations in Composite Plates, Journal of Applied Mechanics, vol. 60, pp. 
903-9 10. 



160 

Kardomateas, G. A., and Pelegri, A. A., (1994) The Stability of Delamination Growth in 
Compressively Loaded Composite Plates, International Journal of Fracture, vol. 65, 
pp. 261-276. 

Kim, Y., Na, M. S., and Im, S., (19961 Delamination Buckling of a Shoa Orthotropic 
Tube Under Axial Compression, Computers & Structures, vol. 58, pp. 173-1 82. 

Kim, H. J., (1 996) E ffect of Delamination on Buckluig Behavior of Quasi-Isotropic 
Laminates, Joumal of Reinforced Plastics and Composites, vol. 15, pp. 1262- 1277. 

Kim, H. J., (1997) Postbuckling Analysis of Composite Laminates with a Delarnination, 
Computers & Structures, vol. 62, pp. 975-983. 

Kukerti, A. R., Farsa, J. , and Bert, C. W., (1992) Fundamental Frequency of Tapered 
Plates by Differential Quadrature, ASCE Joumal of Engineering Mechanics, vol. 
118, pp. 1221-1238. 

Kutlu, Z., and Chang, F., (1992) Modeling Compression Failure of Laminated 
Composites Containhg Multiple Through-the-Width Delaminations, Joumal of 
Composite Materials, vol. 26, pp. 350-387. 

Kyoung, W. M. and Kim, (1995) C. G., Delarnination Buckling and Growth of 
Composite Laminated Plates with Transverse Shear Deformation, Journal of 
Composite Materials, vol. 29, pp. 2047-2068. 

Kyoung, W. M., Kim, C. G., Hong, C. S., and Jun, S. M., (1998) Modeling of Composite 
Laminates with Multiple Delaminations Under Compressive Loading, Journal of 
Composite Materials, vol. 32, pp. 95 1-968. 

Konig, M., Krüger, R., and Rinderknecht, S., (1995) Nurnencal Simulation of 
Delarnination Buckling and Growth, Proceeding of ICCM-10, Whistler, B.C., 
Canada, vol. 1, pp. 269-276. 

Lam, S. S. E., (1993) Application of the Differential Quadrature Method to Two- 
Dimensional Problems with Arbitrary Geometry, Computers & Structures, vol. 47, 
pp. 459-464. 

Lanzo, A. D., Garcea, G. and Casiaro, R., (1995) Asymptotic Post-Buckling Analysis of 
Rectangular Plates by HC Finite Elements, International Joumal for Nurnencal 
Methods in Engineering, vol. 38, pp. 2325-2345. 

Larsson, P., (1 99 1) On Multiple Delamination Buckling and Growth in Composite Plates, 
International Joumal of Solids and Structures, vol. 27, pp. 1623-1637. 



Laura, P. A. A. and Gutierrez, R. H., (1994) Analysis of Vibrating Rectangular Plates 
with Non-Uniform Boundary Conditions by Using the Differential Quadrature 
Method, Journal of Sound and Vibration, vol. 173, pp. 702-706. 

Lee, J., (1 992) Vibration. Buckling and Postbucklin~ of Laminated Composites with 
Delaminations, Ph.D. Thesis, Virginia Polytechnic Lnstinite and State University, 
Blacksburg, VA, USA. 

Lee, J., Gùrdal, Z., and Griffin Jr., O. H., (1993) Layer-Wise Approach for the 
Bifurcation Problem in Laminated Composites with Delaminations, AIAA Journal, 
vol. 3 1, pp. 33 1-338. 

Lee, J., Gürdal, Z., and Griffin Jr., O. H., (1995) Postbuckling of Laminated Composites 
with Delaminations, AIAA Journal, vol. 33, pp. 1963-1 970. 

Lee, J., Gürdal, Z., and G n f h  Jr., O. H., (1996) Buckling and Postbuckling of Circular 
Plates Containhg Concentric Pe~y-Shaped Delaminations, Cornputers & 
Structures, vol. 58, pp. 1045-1054. 

Li, W. Y., Cheung, Y. K., and Tham, L. G., (1986) Spline Finite Strip Analysis of 
General Plates, ASCE Journal of Engineering Mechanics, vol. 112, pp. 43-54. 

Liew, K. M., Han, J. -B., and Xiao, 2. M., (1996) Differential Quadrature Method for 
Thick Symrnetric Cross-Ply Laminates with First-Order Shear Flexibility, 
International Joumal of Solids and Structures, vol. 33, pp. 2647-2658. 

Lim, Y. B. and Parsons, 1. D., (1993) The Linearized Buckling Analysis of a Composite 
Bearn with Multiple Delaminations, International Journal of Solids and Structures, 
vol. 30, pp. 3085-3099. 

Lirn, Y. B., (1994) Buckling and Postbuckling Analysis of Delaminated Bearns Under 
Compressive Loads, Unpublished Ph.D. Thesis, University of Illinois at Urbana- 
Champaign, Iilinois, USA. 

Lin, R. M., Lim, M. K., and Du, H., (1994) Large Deflection Analysis of Plates Under 
Thermal Loading, Cornputer Methods in Applied Mechanics and Engineering, vol. 
117, pp. 381-390. 

Madenci, E., and Westmann, R. A., (1991) Local Delamination Buckling in Layered 
Systems, Joumal of Applied Mechanics, vol. 58, pp. 157-166. 

Moradi, S. and Taheri, F., (1998) Application of the Differential Quadrature Method to 
the Analysis of Delamination Buckling of Composite Bearn-Plates, in: Advances in 
Corn~utational Enfineering Science, Edited by S. N. Atluri and G. Yagawa, Tech 
Science Press, Georgia, USA., pp. 123 8- 1243. 



Moshaiov, A. and Marshall, J., (1991) Analytical Determination of the Cntical Load of 
Delaminated Plates, Joumal of Ship Research, vol. 35, pp. 87-90. 

Mukhejee, Y. X., Xie, Z., and Ingraffea, A. R., (1991) Delamination Buckling of 
Laminated Plates, International Journal for Numerical Methods in Engineering, vol. 
32, pp. 1321-1337. 

Naganarayana, B. P. and Atluri, S. N., (1996) A Computational Mode1 for Analysing 
Interactive Buckling and Delamination Growth in Composite Structures, vol. 2 1, 
Part 5, pp. 547-575. 

Nilsson, K. -F. and Storaken, B., (1992) On Interface Crack Growth in Composite 
Plates, Journal of Applied Mechanics, vol. 59, pp. 530-538. 

NISA II user's manual, (1996), Engineering Mechanics Research Corporation, Troy, MI, 
U.S.A. 

Pandey, M. D. and Sherboume, A. N., (1 99 1) Buckling of Anisotropic Composite Plates 
Under Stress Gradient, ASCE Journal of Engineering Mechanics, vol. 1 17, pp. 260- 
275. 

Peck, S. C., and Springer, G. S., (1991) The Behavior of Delamination in Composite 
Plates- Analysis and Experimental Results, J. of Composite Materials, vol. 25, pp. 
907-929. 

Powell, G. and Simons, J., (1981) Improved Iteration Strategy for Nonlinear Structures, 
International Journal for Numerical Methods in Engineering, vol. 17, pp. 1455- 
1467. 

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., (1986), Nurnerical 
Recipes: The Art of Scientific Computin~, Cambridge University Press, NY, USA. 

Quan, J. R. and Chang, C. T., (1989) New hsights in Solving Distributed System 
Equations by The Quadrature Method-1 Analysis, Computers and Chernical 
Engineering, vol. 13, pp. 779-788. 

Rarnrn, E., (1981) Strategies for Tracing the Nonlinear Response Near Limit Points, in 
nonlinear Finite Element Analysis in Stmctural Mechanics, Springer-Verlag, Berlin, 
Germany, pp. 63-89. 

Riks, E., (1979) An Incremental Approach to the Solution of Snapping and Buckling 
Problems, International Journal of Solids and Structures, vol. 15, pp. 529-55 1. 

Sheinman, L, Bass, U., and Ishai, O., (1989) ERect of Delamination on Stability of 
Laminated Composite Strip, Composite Structures, vol. 11, pp. 227-242. 



Sheinman, 1. and Soffer, M., (1990) Effect of Delamination on the Nonlinear Behavior of 
Composite Laminated Beams, Journal of Engineering Materials and Technology, 
vol. 1 12, pp. 393-397. 

Sheinman, 1. and Soffer, M., (199 1) Post-buckling Analysis of Composite Delaminated 
Beams, International Journal of Solids and Structures, vol. 27, pp. 639-646. 

Sheinman, 1. and Adan, M., (1993) Post-buckling Analysis of Multiply Delarninated 
Beams, International Journal of Solids and Structures, vol. 30, pp. 1289- 1300. 

Sherboume, A. N. and Pandey, M. D., (1991) Differential Quadrature Method in The 
Buckling Analysis of Beams and Composite Plates, Computers & Strtictures, vol. 
40, pp. 903-913. 

Shivakumar K. N. and Whitcomb J. D., (1985) Buckling of a Sublaminate in a Quasi- 
Isotropie Composite Laminate, Journal of Composite Matenals, vol. 19, pp. 2- 18. 

Shu, C., (199 1) Generalized Differential-Inte-=al Ouadrature and Application to the 
Simulation of hcompressible Viscous Flows Including Parallel Computation, Ph.D. 
Thesis, University of Glasgow. 

Shu, C. and Richards, B. E., (1992) Application of Generalized Differential Quadrature to 
Solve Two-dimensional Incompressible Navier-Stokes Equations, International 
Joumal for Numerical Methods in Fluids, vol. 15, pp. 79 1-798. 

Shu, C. and Du, H., (1997a) Free Vibration Analysis of Laminated Composite 
Cylindncal Shells by DQM, , vol. , pp. 267-274. 

Shu, C. and Du, H., (1997b) Implementation of Clamped and Simply Supported 
Boundary Conditions in the GDQ Free Vibration Analysis of Beams and Plates, 
International Journal of Solids and Structures, vol. 34, pp. 8 19-835. 

Shu, C. and Du, H., (1997~) A General Approach for Implementing General Boundary 
Conditions in the GDQ Free Vibration Analysis of Plates, International Joumal of 
Solids and Structures, vol. 34, pp. 837-816. 

Simitses, G. J. Sallam, S. N., and Yin, W. L., (1985) Effect of Delamination of Axially 
Loaded Homogeneous Larninated Plates, AIAA Joumal, vol. 23, pp. 1437- 1 4 4 .  

Simitses, G. J. and Chen, Z., (1988) Buckling of Delaminated, Long, Cylinderical Panels 
Under Pressure, Computers & Structures, vol. 2 8, pp. 1 73 - 1 84. 

Srivatsa, K. S., Vidyashankar, B. R., Knshna Murty, A. V., and Vijaykurnar, K., (1993) 
Buckling of Laminated Plates Containhg Delarninations, Computers & Structures, 
vol. 48, pp. 907-912. 



Suemasu, H., (1993) Effects of Multiple Delaminations on Compressive Buckling 
Behaviors of Composite Panels, J. of Composite Materials, vol. 27, pp. L 172-1 192. 

Suemasu, H. and Majima, O., (1996) Multiple Delaminations and Their Seventy in 
Circular Axisymmetric Plates Subjected to Transverse Loading, Journal of 
Composite Materials, vol. 30, pp. 441-453. 

Wang, S. S., Zahian, N. M., and Suemasu, H., (1985) Compressive Stability of 
Delarninated Random Short-Fiber Composites, Part 1- Modeling and Methods of 
Analysis, Journal of Composite Materials, vol. 19, pp. 296-3 16. 

Wang, S. S., Zahlan, N. M., and Suemasu, H., (1985) Compressive Stability of 
Delarninated Random Short-Fiber Composites, Part II- Experimental and Analytical 
Results, Journal of Composite Materials, vol. 19, pp. 3 1 7-3 3 3. 

Wang, X. and Bert, C. W., (1993) A New Approach in Applying Differential Quadrature 
to Static and Free Vibrational Analysis of Bearns and Plates, Journal of Sound and 
Vibration, vol. 162, pp. 566-572. 

Wang, X., (1 995) Differential Quadrature for Buckling Analysis of Laminated Plates, 
Cornputers & Structures, vol. 57, pp. 715-719. 

Wang, J. T., Cheng, S. H., and Lin, C .  C., (1995) Local Buckling of Delaminated Beams 
and Plates Using Continuous Analysis, Journal of Composite Materials, vol. 29, pp. 
1374-1402. 

Wang, J. T., Pu, H., and Lin, C., (1997) BuckIing of Bearn-Plates Having Multiple 
Delaminations, Journal of Composite Materials, vol. 3 1, pp. 1002- 1025. 

Wang, W. X., Shen, W., Takao, Y., Shen, Z., and Chen, P., (1991) An Analysis of 
Compressive Stability of Elastic Solids Containing a Crack Parallel to the Surface, 
Engineering Fracture Mechanics, vol. 40, pp. 1023- 1 O; 3. 

Wang, W. X., and Takao, Y., (1995) Load Buckling of a Layer Bonded to a Half-Space 
with an Interface Crack, Journal of Applied Mechanics, vol. 62, pp. 64-70. 

Wempner, G. A., (1 97 l), Discrete Approximations Related to Nonlinear Theories of 
Solids, International Journal of Solids and Structures, vol. 7, pp. 158 1- 1599. 

Whitcomb J. D., (1981) Finite Element Analysis of Stability Related Delamination 
Growth", Journal of Composite Materials, vol. 15, pp. 403-426. 

Whitcomb, J. D., and Shivakurnar, K. N., (1987) Simin-Energy Release Rate Analysis of 
a Laminate with a Post-Buckled Delamination, In Numerical Methods in Fracture 
Mechanics, Pineridge Press, Swansea, pp. 5 8 1-605. 



Whitcornb, J. D., (1989) 'Three Dirnensional Analysis of a Post-Buckled Ernbedded 
Delamination, Joumal Composite Materials, vol. 23, pp. 862-889. 

Whitney, J. M., (1987) Structural Analysis of Laminated Anisotropic Plates, Technomic, 
USA. 

Yeh, M. K. and Lee, H. C., (1995) Buckling o f  Composite Plates with Rectanguiar 
Delamination, Proceeding of ICCM-10, Whistler, B.C., Canada, vol. 5, pp. 69-76. 

Yeh, M. K., and Tan C. M., (1994) Buckling of Elliptically Delaminated Composite 
Plates, Journal of Composite Materials, vol. 28, pp. 36-52. 

Yin, W. L., Sallam, S. N., and Simitses, G. J., (1986) Ultimate Axial Load Capacity of a 
Delaminated Beam-Plate, AIAA Journal, vol. 24, pp. 123- 12 8. 

Yin, W. L. and Fei, Z., (1988) Delamination Buckling and Growth in a Clamped Circular 
Plate, AIAA Joumal, vol. 26, pp. 438-445. 

Yin, W. -L., (1 988) The Effects of Laminated Structures on Delamination Buckling and 
Growth , Joumal of Composite Materials, vol. 22, pp. 502-5 17. 

Yin, W. -L., and Jane, K. C., (1992) Refined Buckling and Postbuckling Analysis of 
Two-Dimensional Delaminations- 1. Analysis and Validation, International Journal 
of Solids and Structures, vol. 29, pp. 59 1-610. 

Yin, W. -L., and Jane, K. C., (1992) Refmed Buckling and Postbuckling Analysis of 
Two-Dimensional Delaminations- II. Results for Anisotropic Laminates and 
Conclusion, International Joumal of Solids and Structures, vol. 29, pp. 61 1-639. 



APPENDICES 



APPENDIX A l  

SampIe program ONEDSD for the buckling analysis of composite laminated bearns 

having a single delamination. The routines balanc, elmhes, hqr and piksrt are taken from 

Press et a1 (1 986). 

c Program ONEDSD for the buckling analysis of a general laminated 
c composite beam having single delamination. 
C 

c Last update: October 18,1996 
C 

CHARACTER*40 filel - 

& ,s2(2,50,50) ,s3(2,50,50) ,s4(2,50,50) 
DIMENSION wr (100) ,wi (100) 
DIMENSION prnx(50) , ainv (100,100) 
DIMENSION ip(S0,8) 
REALf4 l(4) , t ( 4 )  , ltot,d11(4) , al1 (4) ,a55 (4) ,bll(4) 
OPEN (5, FILE="onedsd. inon, STATUS=tlUNKNOFW1) 
READ (5, *)  filel, file2.f il& file4 
OPEN (1, FILE=f l e .  STATUS=uUNKNOWN1l) 
OPEN (2, FILE=f i l ,  STATUS=nUNKNOWNtl) 
OPEN (3, FILE=f ilel, STATUS=I1UNKNOWNt1) 

C 

c need also nmat.inpn which contains laminate layup. 
G 

READ(l,*)nl,n2,113,n4 !number of sampling points. 
READ(l,*) (t (i) , i = 1 . 4) !t(i)=thickness of each section. 
READ(1, * )  (1 (i) , i = 1 , 4) ! 1 (i) =length of each section. 
CALL matprp ( f ile4) 
OPEN (4, F I L E = % a t .  dat It , STATUS=ttUNKNOWNn) 
D O i = l ,  3 

READ (4, *) al1 (i) ,a55 (i) ,bll (i) , dl1 (i) 
END DO 
all(4) = all(1) 
a55 (4) = a55 (1) 
bll(4) = bll(1) 
d11(4) = dll(1) 
ntot = nl+nS+n3+n4-4 
ltot = l(1) + l(2) +- l(4) 
nbc = 4 
sdf = 5 . / 6 .  

!total number of nodes 
!overall length 

!shear factor 



àetermining the global position of each locâl node. 

computing sampling points in each section. 

CALL position(n1,xl) 
CALL position(n2,xS) 
CALL position(n3,x3) 
CALL position (n4, x4) 

computing coefficients of DQM. 

CALL coefld(xl,sl,S,nl,pmu) 
CALL coefld(x2,~2,2,n2,p~) 
CALL coefld(x3,~3,2,n3,pm) 
CALL coefld(x4,~4,2,n4,pm) 

Applying boundary conditions for al1 the regions. 

Clamped condition of both ends. 

! Zero deflection x=O 
! Zero def lection x=L 
! Zero slope 
! Zero slope 

moment continuity at the intersection of regions 1,2 and 3. 

D O i = l ,  nl 
a{2,ip(irl)) = a(2,ip(ir1)) + sl(lrnl~i~*dll(l)/~(l~ 

END DO 
D O i = l .  n2 

a(2,ip(ir2)) = a(2,ip(i,2)) - s2(l,lri) *d11(2)/1(2) 
END DO 
D O i = l ,  n3 

a(2,ip(ir3)) = a(2,ip(i,3)) - s3 (1,1,i)*d11(3)/1(3) 
END DO 
fac = O,S*al1(2) *a11 (3) * (-bll(2) /a11 (2)+b11(3) /al1 (3) +t (1) ) 

& * (-bll(2) /al1 (2)+bli(3) /a11 ( 3 )  +t (1) /2.) /al1 (1) 
a(2,ip(nlrl)) = a(2,ip(nlIl) )+fac/l(2) 
a(2,ip(n2,2)) = a(2,ip(n2,2)) -fac/l(2) 

shear force continuity at the intersection of regions 1,2 and 3. 



~ 0 i = 1 ,  nl 
a(&c+2,ip(if5)) = a(nbc+2,ip(if5)) + sl(l,nl,i) * (a55 (1) /1(1) 

END DO 
DO i = 1 , n2 

a(nbc+2,ip(if6)) = a(nbct2,ip(i,6)) - s2(lfl,i)*(a55(2)/~(2)) 
END DO 
DO i = 1 , n3 

a(nbc+2,ip(if7)) = a(nbc+2,ip(if7)) - s3(1,11i)*(a55(3)/1(3)) 
END DO 

moment continuity at the intersection of reqions 2,3 and 4 .  

D O i = 1 ,  n4 
a(3,ip(i14)) = a(3,ip(i14)) + s4(lfl,i)*dl1(4)/1(4) 

END DO 
D O i = l ,  n2 

a(3,ip(iI2)) = a(3,ip(i12) - s2(lfn2,i)*dl1(2)/1(2) 
END DO 
D O i = l ,  ri3 

a(3,ip(if3)) = a!3,ip(if3)) - s3(lfn3,i)*dl1(3)/1(3) 
END DO 
a(3,ip(lf4)) = a(3,ip(lf4) 1 -fac/l(2) 
a(3,ip(lI2)) = a(3,ip(1,2) )+-fac/1(2) 

shear force continuity at the intersection of regions 2,3 and 4 .  

D O i = l ,  n4 
a(&c+3,ip(iI8)) = a(nbc+3,ip(if8)) + s4(l,lfi)*(a55(4)/1(4)) 

END DO 
D O i = l ,  n2 

a(nbc+3,ip(if6)) = a(nbc+3,ip(i,6)) - s2(lfn2,i)*(a55(2)/1(2)) 
END DO 
D O i = l ,  n3 

a(nbc+3,ip(i,7)) = a(nbc+3,ip(it7)) - s3 (7,n3,i)*(a55(3)/1(3) 
END DO 

applying the buckling eqations for the rest of the nodes. 

DO i = 2 , nl-1 ! f irst section. 
D O j = l  , n l  

a(7+i1ip(j,I)) = a(7+i,ip(j,l))+sl(2,ifj) 
& *dl1 (1) / (sdf*a55 (1) *1(1) **2) 

a(7+iIip(j15)) = -sl(l,i,j)/~(l) 
IF(j .EQ. i)THEN 

a(7+i,ip(j,l)) = a(7+i,ip(jfl)) - 1. 
END IF 
a(ntot+3+i,ip(jIl)) = sl(l,i, j) 
a(ntot+3+ifip(j,5)) = sl(S,i,j)/l(l) 
b(i-l,ip(j,l)) = sI(2,i,j)*(t(l)/t(I))/(sdf*a55(1)*l(l)) 

END DO 
END DO 
DO i = 2 , n2-1 !second section- 

D O j = l  , n 2  
a(nl+5+ifip(j,2)) = a(nl+5+i,ip(j,2))+s2(2,iIj) 



*dl1(2)/(sdf*a55(2)*1(2)**2) 
a(n1+5+i,ip(j16)) = -s2(lfi,j)/1(2) 
IF(j .EQ. i)THEN 

a(nl+5+ifip(j,2)) = a(nl+5+ifip(jf2)) - 1. 
END IF 
a(ntot+nl+l+i,ip(j,S)) = s2(lIi, j) 
a(ntot+nl+l+i,ip(j,6)) = s2(2,iIj)/1(2) 
b(i+nl-3,ip(jf2)) = ~2(2,i,j)*(t(2)/t(1))/(sdf*a55(2)*1(2)) 

END DO 
END DO 
DO i = 2 , n3-1 ! t h i r d  section. 

D O j = l , n 3  
a(nl+n2+3+ifip(j,3)) = a(nl+n2+3+i,ip(jf3) )+s3(2,if j) 

6; *dl1 (3) / (sdf *a55 ( 3 )  *1(3) * *2 )  
a(nl+n2+3+i,ip(jf7)) = -s3(l,i, j)/1(3) 
IF(j .EQ. i)THEN 

a(nl+n2+3+ifip(j,3)) = a(nl+n2+3+ifip(j,3)) - 1. 
END IF 
a(ntot+nl+n2-l+i,ip(j , 3 ) )  = s3 (l,i, j) 
a(ntot+nl+n2-l+i,ip(j,7)) = s3(2,i, j)/1(3) 
b(i+nl+n2-5,ip(jf3)) = s3(2,ifj)*(t(3)/t(l)) 

& /(sdf*a55 (3)*1(3)) 
END DO 

EhD DO 
DO i = 2 , n4-1 !forth section. 

D O j = l , n 4  
a(nl+n2+n3+l+i,ip(jI4)) = a(n1+n2+n3+l+i,ip(jI4))+s4(2,i,j) 

& *dl1 (4) / (sdfxa55 ( 4 )  *1(4) * * 2 )  
a(n1+n2+n3+l+ifip(j,8)) = -s4(lIi,j)/1(4) 
IF(j .EQ, i)THEN 

a(nl+n2+n3+l+irip(j,4)) = a(nl+n2+n3+l+i,ip(jf4)) - 1. 
END IF 
a(ntot+nl+n2+n3-3+i,ip(j ,4) ) = s4(l,i, j) 
a(ntot+nl+n2+n3-3+i,ip(j, 8) ) = s4 (2,i, j) /1(4) 
b(i+nl+n2+n3-7,ip(j,4)) = s4(2,i, j)*(t(4)/t(l)) 

& / (sdffa55 (4) * l ( O  ) 
END DO 

END DO 
C 

c column pivoting. 
C 

kl = ip(n1,l) 
k2 = ip(1,4) 
k3 = ip(n4,4) 
k4 = ip(nl,5) 
k5 = ip(1,8) 
k6 = ip(n4,8) 
DO i = 1 , 2*ntot 

dummy = a ( i , 2 )  
a(i,2) = a(i,kl) 
a(i,kl) = dummy 
dummy = a(i,3) 
a(i,3) = a(i,k2) 
a(i,k2) = dummy 



dummy = a(i,S) 
a ( i ,  5) = a(i,ntot+l) 
a(i,ntot+l) = d m y  
dummy = a(i,6) 
a(i,6) = a(i,ntot+2) 
a(i,ntot+2) = ~ W Y  
dummy = a(i,7) 
a(i,7) = a(i,ntot+3) 
a (i,ntot+3) = d m y  
dummy = a(i,8) 
a(i,8) = a(i,ntot+4) 
a(i,ntot+4) = d m y  

END DO 
DO i = 1 , ntot-nbc 

durnmy = b L 2 )  
b(i,2) = b(i,kl) 
b(i,kl) = dummy 
dummy = b L 3 )  
b(i,3) = b(i,k2) 
b(i,k2) = dummy 
dummy = b(i,4) 
b(i,4) = b(i,k3) 
b(i,k3) = d m y  

END DO 
C 

c preparing the matrices for the standard eigen solver. 
C 

DO i = 1 , 2*nbc 
DO j = 1 ,  Sfnbc 

ainv(i,j) = a(i,j) 
END DO 

END DO 
C 

CALL gauss j (ainv, 2*nbc, 2*nbc) 
DO i = 1 , 2*nbc 

DO j = 1 ,  2*nbc 
a(i,j) = ainv(i, j) 

END DO 
END DO 

C 

DO i = 1 , 2*nbc 
DO j = 1 , 2* (ntot-nbc) 



DO i = 1 , (ntot-nbc) 
DO j = 1 , (ntot-nbc) 

D O k = l ,  nbc 
b ( i ,  jtribc) = b(i, jtnbc) - b (i,k) *c(k+nbc, jtntot-nbc) 

END DO 
END DO 

END DO 

END DO 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
ainv(i,j) = a(i+2*nbc, j+2*nbc) 

END DO 
END DO 

CALL gaussj (ainv,ntot - n b c , n t o t  -nbc) 

DO i = 1 , ntot-nbc 
DO j = 1 , ntot-nbc 

c(i,j) = O. 
DO k = 1 , ntot-nDc 

c (i, j) = c (i, j) + ainv(i,k) *a (k+2*nbcI j+ntot+nbc) 
END DO 

END DO 
END DO 

DO i = 1 , ntot-nbc 
DO j = 1 , ntot-nbc 

DO k = 1 , ntot-nbc 
a (i+ntot+nbc, j+ntot+nbc) = a (i+ntot+nbc, j+ntot+nbc) 

- a(i+ntot+nbc,k+2*nbc)*c(kIj) 
END DO 

END DO 
END DO 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
ainv(i,j) = b(i,j+nbc) 

END DO 
END DO 



CALL gauss j (ainv, ntot -nbc,ntot-nbc) 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
c(i,j) = O. 
DO k = 1 . ntot-nbc 

c(i,j) = c(i,j) + ainv(i,k)*a(k+-ntot+nbc,j+ntot+nbc) 
END DO 

END DO 
EN13 DO 

calling eigen solver 

C U L  balanc (c,ntot -nbc, ntot-nbc) 
C U L  elmhes(c,ntot-nbc,ntot-nbc) 
CALL hqr(c,ntot-nbc,ntot-nbc,wr,wi) 

sorting the eigenvalues 

CALL piksrt (ntot -nbc,wr) 
DO i = 1 , ntot-nbc 

wr (i) = wr (i) / ( 4 .  * 3.1415926**2*dllO/ltot**2) 
E N D  DO 
WRITE ( *  , *)  'Real eigenvaiues ' 
WRITE (* ,  * )  (wr (i) , i=l,ntot-nbc) 
STOP 
END 

Subroutine global 
each local node. 

Las t update : July 

PILRAMETERS : 
ip(i,j) = global 

j -th 

for determining 

8,1996 

the 

node number of i-th 
section. 

n = number of nodes in each section. 

SUBROUTINE global (nl, n2, n3, n4, ip) 
DIMENSION ip(50,8) 

rotations 

D O i = l ,  nl 
ip(i,l) = i 

END DO 
ip(1,S) = nl 
D O i = 2 ,  n2 

ip(i,2) = nl+i-1 
END DO 
ip(1,3) = nl 
DO i = 2, n3-1 

i p ( i ,  3) = nl+n2+i-2 
END DO 

global 

local 

position 

belong 



ip (n3,3) = nl+n2 -1 
ip(1,4) = nl+n2-1 
D O i = 2 ,  n4 

ip(i,4) = nl+n2tn3+i-4 
END DO 

deflections 

ntot=nl+nS+n3+n4 - 4 
D O i = 1  , n l  

ip(i,5) = itntot 
END DO 
;p(1,6) = nl+ntot - 
D O i = 2 ,  22 

ip (i, 6) = nl+i-l+ntot 
END DO 
ip (l,ï) = nl+ntot 
DO i = 2, n3-1 

ip(i, 7) = nl+nS+i-2+ntot 
END DO 
ip(n3,7) = nl+n2-l+ntot 
ip (1,8) = nl+n2 -l+ntot 
D O i = 2 ,  n4 

ip (i, 8) = nl+n2+n3+i-4+ntot 
END DO 
RETURN 
END 

Subroutine position for computiong the sampling points in each 
section. 

Lzst update: July 8,1996 

S m R O U T I N E  position (n, x) 

DIMENSION x ( * ) 

pi = 3.1415926 
D O i = 2 ,  n -  1 

x(i) = 0 . 5 *  (1. - COS ( (2*i-1) *pi/ (Sfn) ) ) 
END DO 
x(l) = O. 
x(n) = 1. 
RETURN 
END 

Subroutine coefld to cornpute the weighting coefficients. 

Last update: July 8,1996 



Computing the first derivatives of Lagrange polynornials 
in x direction - 

D O i = l , n  !n=number of grid points in x dir. 
pmx(i) = 1. 
D O j = l , n  

IF (i .EQ. j ) CYCLE 
pmx(i) = pmx(i)*(x(i) -x(j)) 

END DO 
E N I  DO 

Determination the weighting coefficients for the first derivative. 

Computing the weight coefficients of successive derivatives. 

DO k = 2 , norder ! norder= highest dervat. ord. in x dir. 
D O i = l , n  

D O j = l , n  
IF (i .EQ. j) CYCLE 
s(k,i,j)=k*(s(k-lIiri) *s(lIiIj) -s(k-l,i,j)/ (x(i-1 -x(j) 1 )  
s(k,i,i) = s(k,i,i) -s(k,i,j) 

END DO 
END DO 

END DO 
RETURN 
END 



APPENDIX A2 

Sarnple program ONEDMD for the buckling analysis of composite laminated 

beams havhg multiple delaminations. The routines: balanc, elmhes, hqr and piksrt are 

taken fiom Press et al (1986). 

Program ONEDMD for the buckling analysis of a general laminatee 
composite beam having multiple delaminations. 

Last update: Jan. 10,1997 

IMPLICIT DOUBLE PRECISION (a-h, O-z) 
DIMENSION a(4OO,400) ,b(400,4OO) ,c(3OO,300) 
DIMENSION xl (20) ,x2 (20) ,x3 (20) ,s1(2,20,20) 

& ,s2(2,20,20) ,s3 (2 ,20,20)  
DIMENSION w r  (300) ,wi (300) 
DIMENSION pmx(SO), ainv(300,300) 
DIMENSION ip(20,20) 
REAL*8 1(10), t (10) ,dl (10) ,dt (10) ,ltot 
OPEN (1, FILE=uonedmlO.inpn, STATUS="OLD") 

l (2) length of delaminations 

READ (1, * )  nod !no, of delamination. 
READ(l,*)nlIri2,n3 !no, of grid spacing in each region. 
READ (1, * )  (t (i) , i = 1 , nod+3) ! t (i) =thickness of each section, 
READ(l,*) (I(i), i = 1 , 3) !l (i)=length of each section. 
READ(1, * )  s 

ntot = nl+(nod+l)*n2+n3-2*(nod+l) ! total number of nodes 
ltot = l(l) +1(2) +1(3) ! overall length 
nbc = 4 
1 (nod+3) =1(3) 
DO i = 2 , nod+2 

1 (i) =1(2) 
END DO 
DO i = 1 , nod+3 

dt(i) = t(i)/t(l) 
dl(i) = ltot/l(i) 

END DO 
sbar = s /  ( 4  .* (3.1415926) **2) 

detemining the global position of each local node. 

C U L  global (nl, n2, n3, nod,ip) 

cornputiong sampling points in each section. 



CALL position(ni,xi) 
CALL position(n2 ,x2) 
CALL position (n3, x3 ) 

computing coefficients of DQM. 

CALL coefld(xl,sl, S,nl,pmx) 
C G L  coef ld (x2, s2,2, n2, pmx) 
C U L  coefld(x3,s3,2,n3,pmx) 

agplying boundary conditions for al1 sections. 
clamped condition of both ends. 

!Zero deflection 
! Zero de£ lection 
!Zero slope 
!Zero slope 

moment continuity at the intersection of 1,2,3,.. and nod+2. 

D O i = l ,  nl 
a(2,ip(if1)) = a(2,ip(ifl)) + sl~lfnl,i)*t(l)**3/l~l~ 

END DO 
DO j = 2 , nod+2 

D O i = l ,  n2 
a 2 i p i  = a 2 i p i  j - s2(l,l,i)*t(j)**3/l(j) 

END DO 
END DO 
sig = O. 
DO i = 2 , nodtl 

DO j = i+l, nodt2 
sig = sig+t(i)*t(j)*(t(i)+t(j)) 

END DO 
END DO 
a(S,ip(nl,l)) = a(2,ip(nl,l) )+3.*sig/1(2) 
a(2,ip(n2,2)) = a(2,ip(n2,2)) -3.*sig/1(2) 

shear force continuity at the intersection of 1,2,3,,. and nod+2. 

D O i = l ,  nl 
a(nbc+2,ip(i,nod+4)) = a(nbc+2,ip(ifnod+4))+ 

& sl(lfnlfi)*(t(l)/~(~) 1 
END DO 
DO j = 2 , nod+2 

D O i = l ,  n2 
a (nbci-2, ip ( i f  j +-nod+3) ) = a (nbc+2, i p  (i , j +nod+3 1 

& -s2(l,lfi)*(t(j)/l(j)) 
END DO 

END DO 

moment continuity at the intersection of 2,3,4,.. and nod+3. 



u u u  u u u 



END DO 
kl = (nod+l)*(n2-2) 
DO i = 2 , n3-I ! last section. 

IF(j .EQ. i)THEN 
a (nltno-3+i+kl, ip (j ,nod+3) ) =a (n1+no-3titklt 

& ip(j,nod+3) 1-1. 

END IF 
a (ntot+nl+nbc-3+i+kl, i p  (j ,nod+3) = s3 Il, i, j ) 

a(ntot+nl+nbc-3+i+klIip(j.2*(nod+3) ) )  = s3(2,i,j)/l(nod+3) 
b(itn1-3+kl,ip(j ,nod+3)) = s3 (2,i, j ) *s/l (nod+3) 

END DO 
END DO 

C 
c column pivoting. 
C 

kl = ip(n1,l) 
k2 = ip(l,nod+3) 
k3 = ip (n3 ,nod+3) 
k4 = ip (nl, nod+4) 
k5 = ip(l12*(nod+3)) 
k6 = ip(n3,2*(nod+3)) 
DO i = 1 , 2*ntot 

dummy = a(i,2) 
a(i,2) = a(i,kl) 
a(i,kl) = d m y  
dummy = a(i,3) 
a(i,3) = a(i,k2) 
a(i,k2) = dumrriy 
dummy = a L 4 )  
a(i,4) = a(i,k3) 
a(i,k3) = d m y  
dumy = a(i,ntot+2) 
a(i,ntot+S) = a(i,k4) 
a(i,k4) = dummy 
dummy = a (i, ntot+3) 
a(i,ntot+3) = a(i,kS) 
a(i,k5) = d m y  
dummy = a(i,ntot+4) 
a (i,ntot+4) = a(i,k6) 
a(i,k6) = dummy 
dummy = a(i,5) 
a(i,5) = a(i,ntot+l) 
a(i,ntot+l) = dummy 
dummy = a L 6 )  
a(i,6) = a(i,ntot+2) 
a (i,ntot+S) = d m y  
d m y  = a(i,7) 
a(i,7) = a(i,ntot+3) 
a(i,ntot+3) = dummy 
dummy = a ( i , 8 )  



a(i,8) = a(i,ntot+4) 
a(i,ntot+4) = d ~ m y  

END DO 
DO i = I , ntot-nbc 

dummy = b(i,2) 
b(i,2) = b(i,kl) 
b(i,kl) = d-y 
d m y  = b ( i f 3 )  
b(i,3) = b(i,k2) 
b(i,k2) = drimmy 
dummy = b(i,4) 
b ( i , 4 )  = b(i,k3) 
b(i,k3) = d m y  

END DO 
C 

c preparing the matrices for the standard eigen solver. 
C 

DO i = 1 , 2*nbc 
DO j = 1 ,  2*&c 

ainv(i,j) = a(i,j) 
ELW DO 

END DO 
C 

CALL gauss j (ainv, 2*nbc, 2*nbc) 
DO i = 1 ,  2*nbc 

DO j = 1 , 2*nbc 
a(i,j) = ainv(i,j) 

END DO 
END DO 

DO i = 1 , 2*nbc 
DO j = 1 , 2*(ntot-nbc) 

DO k = 1 , 2*nbc 
c(i,j) = c(i,j) + ainv(ifk)*a(k,j+2*nbc) 

END DO 
END DO 

END DO 
C 

.DO i = 1 , 2*(ntot-nbc) 
DO j = 1 , 2*(ntot-nbc) 

DO k = 1 , 2*nbc 
a(i+2*ribc,j+2*&~) = a(i+2*nbcfj+2*nbc) - 

& a(it2*nb~,k)~c(k,j) 
END DO 

END DO 
END DO 



END DO 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
ainv(i,j) = a(i+2*nbctj+2*nbc) 

END DO 
END DO 
CALL gaussj (airiv,ntot-nbc, ntot-nbc) 

DO i = 1 , ntot-nbc 
DO j = 1 , ntot-nbc 

c(i,j) = O. 
DO k = 1 , ntot-nbc 

c(i, j) = c(Lj) + 

END DO 
END DO 

END DO 

ainv (i, k) *a (k+2*nbc, j tntotfnbc) 

00 i = 1 , ntot-nbc 
DO j = 1 , ntot-nbc 

DO k = 1 , ntot-nbc 
a (i+ntot+nbc, j +ntot+nbc) = a (i+ntot+nbc, J +ntot+nbc) 

& - a (i+ntot+nbc, k+2*nbc) fc(k, j ) 

END DO 
END DO 

END DO 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
ainv(i, j = b (if j+nbc) 

E-m DO 
END DO 
CALL gaussj (ainv,ntot-nbc,ntot-nbc) 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
c(i,j) = O. 
DO k = 1 , ntot-nbc 

c(i,j) = c(i,j) + 
ENi3 DO 

END DO 
END DO 

ainv (if k) *a (k+ntot+nbc, j +ntot+nbc) 

calling eigen solver 

C U L  balanc (cf ntot -nbc,ntot-nDc) 
CALL elmhes ( c f  ntot-nbc,ntot-nbc) 
CALL hqr(c,ntot-nbc,ntot-nbc,wr,wi) 

sorting the eigenvalues 

CALL piksrt (ntot -nbc,wr) 
WRITE ( * , *)  ' Real eigenvalues ' 
WRITE(*, * )  (wr (i) ,i=l,ntot-nbc) 
STOP 
END 



Subroutine global for determining the global position of 
each local node. 

ip (i, j) =global node number of ia local node belong to j section. 

n=number of nodes in each section. 

SUBROUTINE global (nl , n2, n3, nod, ip) 
DIMENSION ip(20, * )  

rotation 

~ 0 i = 1 ,  nl 
ip(i,l) = i 

END DO 
ip(1,2) = nl 
~ 0 i = 2 ,  n2 

ip(i,2) = itnl-1 
END DO 
DO j = 3 , nod+2 

ip(1,j) = nl 
ip(n2,j) = nl+n2-l 
DO i = 2 , n2-1 

I F ( j  .EQ. 3) THEN 
ip(i, j) = ip(n2,j -l)+i-l 

ELSE 
ip(i,j) = ip(n2-l,j-l)+i-l 

END IF 
END DO 

END DO 
ip(l,nod+3) = ip(n2,2) 
D O i = 2 ,  n3 

ip(i,nod+3) = ip(n2-l,nod+2)+i-l 
END DO 

deflection 

ntot = nl+ (nod+l) *n2+n3 -2* (nod+l) ! total number of nodes 
D O i = l ,  nl 

ip(i,nod+4) = ip(i,l) + ntot 
END DO 
DO j = 2 , nod+2 

D O i = l ,  n2 
ip(i,nod+3tj) = ip(i,j) + ntot 

END DO 
END DO 
D O i = l ,  n3 

ip(i12*(nod+3)) = ip(i,nod+3) + ntot 
END DO 
RETURN 
END 



APPENDIX A3 

Sample program PLATBUC for the buckling analysis of composite laminated 

plates having an elliptical delamination. The routines balanc, elmhes, hqr and piksrt are 

taken fiom Press et al (1986). 

Program PtATBUC for the buckling analysis of a generol Laminated 
composite rectangular plate havinç an elliptical delamination. 

Last update: Jan. 30, 1998 

IMPLICIT DOUBLE PRECISION(a-h,o-z) 
DIMENSION a (400,400) ,b (400,400) ,c(4OOI40O) 
DIMENSION ~~(400,400), sy(400r400) ~ ~ ~ ~ ( 4 0 0 ~ 4 0 0 )  syy(400r 400) 
DIMENSION ~ ~ ~ ~ ( 4 0 0 ~ 4 0 0 )  , ~yyy(400~4OO) #SI (50150) ,çS (50, SOI 
DIMENSION sxxxx(4OO ,400) , sxyyy~400,400) , syyyy(400,400) 
DIMENSION sxxyy(400,400) , sxxxy(4001 400) , ~~~(400,400) 
DIMENSION wr(4OO) ,wi(4OO) ,x(12) ,y(12) ,rx(SO) ,ry(SO) 
DIMENSION ap(3,3) ,bp(3,3) ,dp(3,3) 
DIMENSION pm(5O) ,ainv(400,400) 
DIMENSION ip(S0,50) 
EQUIVALENCE (sx, ainv) , (sy, c) 
COMMON/S~~~/X, y 
CHARACTERf20 matfile 
OPEN (1, FILE="plate. inpM , STATUS=~üNmOWN1l) 
OPEN (2, FILE="plate. outt1, STATUS=uüNKNOWNm ) 

OPEN (3, FILE=llplate. txtfl, STATUS=I1UNKNOWNl1 ) 

READ(l,*)nx,ny !no. of sampling points in x and y directions. 
READ(l,*)ax,ay !half axes of the ellipse. 
READ (1, * )  teta !angle between ellipse and laminate (xi) axis. 
READ (1, *)matfile !material properties file. 
CLOSE (1) 
pi = Z.*DASIN(l.dO) 
teta = teta*pi/180 .d0 
nbc = 4*  (nx + ny - 4) !number of boundary conditions. 
ntot = m*ny !total number of nodes 
beta = ax/ay 

cal1 matprp to compute the material properties. 

reduced stif fness D= D-B*inv (A) *B 

D O i = l ,  3 
D O j = I , 3  

ainv(i,j) = ap(i, j) 
END DO 



END DO 
C U L  gauss j (ainv, 3,3 1 
D O i = 1 , 3  

D O j = l , 3  
D O k = l ,  3 

c ( i , j )  = c(i,j)+ ainv(i,k) *bp(k, j) 
END DO 

END DO 
END DO 
D O i = i , 3  

D O j = 1 , 3  
D O k = l ,  3 

dp(i,j) = dp(i,j)- bp(i,k) *c(k,j) 
END DO 

END DO 
END DO 
IF(dp(lr1) .NE- O-d0)THEN 

dl1 = dp(1,l) 
D O i = l , 3  

D O j = l ,  3 
ap(i,j) = ap(i,jl/dil 
bp(i,j) = bp(i,j)/dll 
dp(i,j) = dp(i,j)/dll 

END DO 
END DO 

END IF 
ex = DCOS (teta) * *2  - umu*DSIN(teta) **2 
ey = DSIN(teta) **2 - urnu*DCOS ( t e t a )  * *2 
exy = -.5dO*(l.dO+umu)*DSIN(2.dO*teta) 
px = -(ap(l,l)*ex + ap(1,S) *ey + ap(l,3) *exy) !Nx 
py = -(ap(1,2)*ex + ap(S,S)*ey -t- ap(2,3)*exy) !Ny 
pxy = -(ap(l13)*ex +- ap(2,3)*ey + ap(3,3)*exy) ! ~ x y  
IF (DABS (PX) .LT. 1. d-10) px = O .dO 
IF (DABS (py) . LT. 1. d- 10) py = O. do 
IF(DABS(pxy) .LT. 1.d-IO) pxy = O.dO 

c x,y of ellipse 
C 

x(1) = -1.dO 
x(2) = O.dO 
x ( 3 )  = 1-do 
x(4) = O.dO 
x(5) = -l,dO*DCOS(pi/6.) 
x(6) = -l.dO*DCOS(pi/3.) 
x(7) = - x ( 5 )  
x ( 8 )  = -x(6)  
x(9) = x(5) 
~ ( 1 0 )  = x ( 8 )  
~ ( 1 1 )  = x(7) 
x(12) = x ( 6 )  
y(1) = O.dO 
y ( 2 )  = -1.dO 
y ( 3 )  = O.dO 
y ( 4 )  = l.dO 



y(5) = -1.dO*DSIN(pi/6.) 
y(6) = -l.dO*DSIN(pi/3.) 
y(7) = -y(5) 
y(8) = - y ( 6 )  
y(9) = -y(5) 
~(10) = y(6) 
~ ( 1 1 )  = y(S) 
~ ( 1 2 )  = -y(6) 
CALL global (nx, ny, ip) !global position of each local node. 
CALL position(nx, rx, 1) !sampling points in each dir. 
CALL position(ny,ry,l) 
CALL coefId(rx,sl,nx,pmx) !coefficients of DQM. 
C U L  coef ld (ry, s 2 ,  ny, pmx) 

cornpute the coefficients of first order D.Q. 

D O i = l , n x  
D O j  = l , n y  

m = ip(i,j) 
CALL mapping(rx(i) ,ry(j) , d j ac ,dxd r Idxds ,d~dr ,d~ds )  
D O k = l ,  nx 

n = ip(k, j) 
sx(m,n) = sx (rn,n) + si (i, k) *dyds/djac 
sy(m,n) = sy(m,n) - sl (i, k) *dxds/djac 

END DO 
D O 1 = 1 ,  =y 

n = ip(i,l) 
sx (rn, n) = sx (rn, n) - s2 ( j , 1) *dydr/dj âc 
sy(m,n) = sy (m,n) + s2 (j , 1) *dxdr/djac 

END DO 
END DO 

END DO 

cornputing the coefficients of higher order derivatives. 

DO i = 1 , ntot 
DO j = I , ntot 

DO k = 1 , ntot 
sxx(i,j) = sxx(i,j) + sx(i,k)*sx(k,j) 
syy(i,j) = syy(i,j) + sy(i,k) *sy(k,j) 
sxxx(i, j )  = sxxx(i, j) + sx(i,k) *sxx(k, j) 
syyy(i, j )  = syyy(i, j) + sy(i,k) *syy(k,j) 

END DO 
END DO 

END DO 
DO i = I , ntot 

DO j = 1 , ntot 
DO k = 1 , ntot 



END DO 
END DO 

ZND DO 
C 

! Zero def lection x=O 
!Zero def lection x=a 

!Zero deflection y=O 
!Zero cïeflection y=b 

c a~glying boundary conditions for clamped plate. 
C 

DO i = 1 , ntot 
DO j = 1 , ntot 

a(i,j) = O-dO 
END DO 

END DO 
D O j  = l  , n y  

a(ip(l, j) ,ip(l, j) = 1-do 
a(ip(nx,j) ,ip(nx,j)) = l.dO 

END DO 
DO i = 2 , nx-l 

a(ip(i,l) ,ip(i,l)) = 1.dO 
a(ip(i,ny),ip(i,ny)) = l.dO 

E-m DO 
DO j = 2  , ny-1 

CALL cmap(rx(2),ry(j),xxIyy) 
dnom = DSQRT(ay**4*xx**2 + axf*4*yy**2) 
costl = DCOS (ay**2*xx/dnom) 
sintl = DSIN (ax**2 *yy/dnom) 
CALL cmap(rx(nx-1) ,ry(j) , xx Iyy )  
dnom = DÇQRT(ay**4*xx**2 + ax**4*yyk*2) 
cost2 = DCOS (ay**2*xx/dnom) 
sint2 = DSIN (ax**2 *yy/dnom) 
D O k = l ,  nx 

D o m  = 1 , ny 
a(ip(2, j) ,ip(k,m) = costl*sx(ip(2, j) , i p ( k , m )  )/ax + 

& sintl*sy(ip (2, j ,ip(k,mj ) /ay !Zero rotatioa x=O 
a(ip(nx-1,j) ,ip(k,m) ) =  cost2*sx(ip(nx-1, j) , i p ( k , m )  )/ax + 

& sint2*sy(ip(nx-1, j) ,ip(k,m) ) /ay !Zero rotation x=a 
END DO 

END DO 
END DO 
DO i = 3 , nx-2 

CALL crnap (rx(i) , r y ( 2 )  ,xx,yy) 
dnom = DSQRT (ay**4*xx**2 -t ax**4*yytf 2) 
costl = DCOS (ay**2*xx/dnom) 
sintl = D S I N  (ax* *2 *yy/dnom) 
CALL cmap (rx(i) ,ry(ny-1) ,xxIyy) 
dnom = DSQRT (ay**4*xx**2 + ax**4*yy**2) 
cost2 = DCOS (ay**S*xx/dnom) 
sint2 = DSIN(ax**2*yy/dnom) 
D O k = l ,  nx 

D o m =  1 ,  ny 
a(ip(i,2) ,ip(k,m) = costl*sx(ip(i,2) ,ip(k,m) ) /ax + 

& sintl*sy(ip(i,2) ,ip(k,m) )/ay !Zero rotation y=O 
a(ip(i,ny-I),ip(k,rn)) = cost2*sx(ip(i,ny-l),ip(k,m))/ax + 

& sintZfsy(ip (i,ny-1) , i p  (k,m) ) /ay !Zero rotation y=b 
END DO 

END DO 



E h 9  DO 
C 
c applying the buckling eqation for interna1 nodes- 
C 

DO k = nbc+l , ntot 
D O i = l ,  nx 

D O j = l , n y  
a(k,ip(i,j) = a(k,ip(i,j)) + dp(l,l)*sxxxx(k,ip(i,j))+ 

& 4,d0*dp(l,3)*beta*sxxxy(k,ip(i8j) 1 + 
& 2.dO*beta**2* (dp(l82)+2.d0*dp(3,3)) *sxxyy(k,ip(i, j) 1 + 
& 4.dO*beta**3*dp(2,3) *sxyyy(k,ip(i, j) 1 + 
& beta**4*dp(2,2) *syyyy(k,ip(i,j) ) 

b(k-nbc,ip(i, j)) = b(k-nbc,ip(i, j )  )+px*sxu(k,ip(i, j) ) +  

& 2.dO*beta*pxy*sxy(k, ip(i, j) ) + beta**2*pyfsyy(k, i p ( i ,  j) ) 
END DO 

END DO 
END DO 

C 

c computing eigenvalues of A.W = B.W 
C 

DO i = 1 , nbc 
DO j = 1 , nbc 

ainv(i,j) = a ( i 8  j) 
END DO 

END DO 
CALL gaussj (ainv,nbc,nbc) 
DO i = 1 , nbc 

DO j = 1 , ntot-nbc 
c(i,j) = O.dO 
D O k = l ,  nbc 

c(i,j) = c(i, j) + ainv(i,k)*a(k,j+nbc) 
END DO 

END DO 
END DO 
DO i = 1 , ntot-nbc !A 

DO j = 1 , ntot-nbc 
D O k = l , n b c  

a ( i + n b c ,  j+nbc) = a (i+nbc, j+&c) - a (itnbc, k) *c (k, j 
END DO 

END DO 
END DO 
DO i = 1 , ntot-nbc ! B 

DO j = I , ntot-nbc 
DO k = 1 , nbc 

b(i,j+nbc) = b(i,j+nbc) - b(i,k)*c(k,j) 
END DO 

END DO 
END DO 
DO i = 1 , ntot-nbc 

DO j = I . ntot-nbc 
c(i,j) = a(i+nbc,j+nbc) 
ainv(i, j 1 = b (i, j+nbc) 

END DO 
END DO 

! inv (al11 *al2 



CALL ga-ùssj (ainv,rrtot-nbc,ntot-nbc) 
DO i = 1 , ntot-nbc 

DO j = 1 , ntot-nbc 
a ( i , j )  = O-do 
DO k = 1 , ntot-nbc 

a(i,j) = a(i,j) + ainv(i,k)*c(k,j) 
END DO 

END DO 
END DO 

Solve inv(B)*A for itts eigenvalues 

! inv (B) +A 

CALL balanc (a, ntot-nbc, ntot-nbc) 
CALL elmhes (a, ntot-nbc,ntot-nbc) 
CALL hqr(a,ntot-nbc,ntot-nbc,wr,wi) 
CALL piksrt(ntot-nbc,wr) !sorthg eigenvalues 
DO i = 1 , ntot-nbc 

wr(i) = wr(i)/ax**2 
END DO 
WRITE ( * , * ) Real eigenvalues [ 
WRITE(*,*) (wr(i) ,i=l,ntot-nbc) 
WRITE ( * , * 1 ' Imaginary eigenvalues ' 
WRITE ( * ,  * )  (wi (i) , i=l,ntot-nbc) 
STOP 
END 

Sübroutine global for determining the global position of 
e a c h  local node. 

SUBROUTINE global(nx,ny,ip) 
DIMENSION i p ( 5 0 , 5 0 )  

First put the boundry points 

D O i = 1 , 2  !The first and the last two columns 
D O j = l . n y  

ip(i, j )  = (i-l)*ny+j 
ip(nx-2+i, j) = (i+l) *ny+j 

END DO 
END DO 
D O j = 1 , 2  !The first and the last two rows 

DO i = 3 , nx-2 
ip(i,j) = 4*ny + (j-l)*(nx-4)t(i-2) 
ip(i,ny-2+j) = 4*ny + ( j + l )  * (nx-4)t(i-2) 

END DO 
END DO 

Then the interna1 nodes 

DO i = 3 , nx-2 
DO j = 3 , ny-2 

ip(i, j) = 4*(nx+ny-4)+(i-3) *(ny-4)+(j -2) 
END DO 

E h 3  DO 



Scbroutine position for computiong sampling points in each 
direction. It is based on unequally spaced sampling points 
with adjacent delta-points. 

SUBROUTINE position (n, x, k) 
IXPLICIT DOUBLE PRECISION(a-h,o-z) 
DIMENS ION X ( * ) 
pi = 2.dO*DASIN(l.d0) 
Selta = 1.d-5 
I F ( k  -EQ. 1)THEN 

D O i = 3 , n - 2  
x(i) = - DCOS((i-2)*pi/(n-3)) 

END DO 
x(l) = -1.dO 
x(2) = -1.dO + delta 
x(n-1) = l.dO - delta 
x(n) = l.dO 

ELSE IF (k .EQ. 2) THEN 
DO i = 2 , n-1 

x(i) = ( (i-1) /DFtOAT(n-1)) 
END DO 

END IF 
RZTURN 
c m  

SUSROTINE mapping to map the physical domain into computational 
domain by using c u b i c  serendipity shape functions. 

SUSROUTINE rnapping (rc, SC, djac, dxdr, dxds , dydr,dyds) 
LMPLICIT DOUBLE PRECISION(a-h,o-z) 
DIMENSION sfd(12,2) ,x(12) ,y(12) ~ ( 1 2 )  ,s(l2) 
COMMON/setl/x,y 
DATA r/-l.d0,l.d0,l.dOI-J.d0,-.3333333333333,.3333333333333, 
& .33333333333333,-.33333333333333,-1.d0,1~d0,1.d0,-1.d0/ 
DATA ~/-l.d0,-~.d0,l.d0,1.d0,-l.d0,-l.d0~~.dO,~.do, 
& -.33333333333333,-,33333333333333, 
& .33333333333333,.33333333333333/ 

Comyte the derivatives of shape functions at rc and SC. 

D O i = i ,  12 
SELECT CASE (i) 
CASE(1,2,3,4} 

sfd(i,l) = (l.dO/32.d0) * (l.dO+sc*s (i) * (r(i) * 
& (9 .do* (rc**2+scf*2) -10 -do) +18 .dOfrc* (l,dO+rc*r(i) ) ) 

sfd(i,2) = (l-d0/32.dO)*(l.dO+rc*r(i)) *(s(i) * 
& (9.dOf (rc**2+sc**2) -10 .do) +18.dO*sc* (l.dO+sc*s (i) ) ) 

CASE(5,6,7,8) 
sfd(i,l) = (9.dO/32.dO)*(l.dO+sc*s(i) }*(g.dO*r(i) * 

& (1.d0-rc**2) -2.dO*rc* (l.d0+9 .dO*rc*r(i)) ) )  



! Jacobian 

190 

sfd(i,2) =(9.d0/32.d0) * s  (i) * (1-dOf9 -dOxrc*r(i) ) * (1-60-rc**2) 
CASE(9,10,11,12) 

sfd(i,l)=(9.dO/32.dO) *r(i! * (l.d0+99dO*sc*s (i) ) * (1-do-sc**2) 
sfd(i,2)=(9.dO/32.d0) * (l.dO+rc*r(i)) * (g.dO*s (il * 

& (l.d0-sc**2) -2.d0*sc*(l.d0+9.d0*sc*s(i))) 
END SELECT 

END DO 
C 

c Jacobian evaluation at rc and SC. 
C 

dxdr = O .dO 
dxds = O .dO 
dydr = O. d O  
dyds = O .dO 
D O i = l ,  12 

dxdr = dxdr + sfd(i, 1) * x ( i )  
dxds = dxds + sfd(i,2) * x ( i )  
dydr = dydr + sfd(i,l)*y(i) 
dyds = dyds + sfd(i121*y(i) 

END DO 
dj ac = DABS (dxdrfdyds - dxdsfdydr) 
IF (dj ac . EQ. O. ) THEN 
WRITE (* ,  100) rc, SC 
STOP 
END IF 

100 FORMAT('**** SINGULARITY ****t,/,lAt point r =',e11.4, 
& ,S =1fe11.4,1 Jacobian is zeror) 
RETURN 
END 

C 

c SUBROUTINE cmap to give the physical coordinate from computational 
c dornain by using cubic Serendipity shape functions. 
C 

SUBROUTINE cmap(rc,sc,xx,yy) 
IMPLICIT DOUBLE PRECISION(a-h,o-z) 
DIMENSION sf (12) , x ( l 2 )  ,y(l2) ,r(12) ,s(12) 
COMMON/setl/x,y 
DATA r/-l.d0,l.d0,l.d0,-1.dOI--3333333333333,.33333~3333333, 
& .33333333333333,-.33333333333333I-1.dO,1.dOIl~dOI -l.dO/ 
DATA ~/-l.d0,-l.dO,l.d0,1.d0,-l.d0,-l.d0,l.d0~l.d0, 
& -.33333333333333,--33333333333333, 
& .33333333333333,.33333333333333/ 

C 

c Compute shape functions at rc and SC. 
C 

D O i = l ,  12 
SELECT CASE (i) 
CASE(1,2,3,4) 

sf (il = (l.dO/32 .do) * (l.dO+rc*r (i) ) * (l.dO-s (i) ) * 
& (9 .do* (rc**2+sc**2) -10 .do) 

CASE(5,6,7,8) 
sf (il = (9 .d0/32 .do) * (l.dO+sc*s (il ) * (1 .do-rc**2) * 

& (l.d0+9 .dO*rc*r (i) ) 
CASE(9,10,11,12) 



sf(i) = (g.dO/32.dO) *(l.dO+rc*r(i) *(I.dO-sc**2) * 
& (1-dot9 .dO*sc*s (i) ) 

END SELECT 
END DO 
xx = O.dO !x  coordinote 
yy = O.dO !y coordinate 
D O i = 1 ,  12 

xx = xx + sf(i)*x(i) 
yy = yy f sf (i) *y(i) 

END DO 
RETURN 
END 

subroutine matprp to cornpute the material properties. 

ap(3,3) = extensional stiffness 
bp(3,3) = bending-extensional stiffness 
d p ( 3 , 3 )  = flexural stiffness 
umu = base lamin. Poisson's ratio for time being =.3 

SUBROCTINE matprp(matfile,ap,bprdprmu) 
IMPLICIT DOUBLE PRECISION(a-h,o-z) 
CHARACTER*SO matfile 
DIKZNSION deg(5O) ,n1(50) ,z(0:5O) ,t(50) ,ap(3,3) ,dp(3,3), 

6r qbar(3,3) ,bp(3,3) 
OPEN (1, FILE=matf ile, STATUS=wUNKNOWNu) 
READ(l,*)el,eS,gl3,~12 
READ(1, *ln 
pi = 2.dOxDASIN(l.d0) 
D O i = l , n  

READ(l,*)nl(i) ,deg(i) ,t(i) 
deg(i) = deg(i) *pi/180.d0 

END DO 
CLOSE (1 ) 
m u  = 0.3d0 
v21 = v12*e2/el 
facl = 1. - vl2*v21 
qll = el/facl 
ql2 = v12*e2/facl 
q21 = vl2*e2/facl 
q22 = eS/facl  
q33 = g13 
DO i = 1 , n+l 

IF(i .EQ. n+l) t(i) = t(n) 
z (i-1) = - ( (1112~) - (i-1) ) *t (i) 

END DO 
D O i = l , 3  

D O j = l , 3  
ap(i,j) = O.dO 
bp(i,j) = O.dO 
dp(i,j) = O.dO 

END DO 
END DO 
D O i = l , n  



ap(j,k) =ap(j,k) + qbar(j,k)*(z(i) -z(i-1)) 
bp(j,k) =bp(j,k) + O.SdO*qbar(j,k)*(z(i)**2-z(i-l)**2) 
dp(j,k) =dp(j,k)+(l.d0/3.) *qbar(j,k)*(z(i)**3-z(i-l)**3) 

END DO 
END DO 

END DO 
ap(2,l) = ap(L2) 
ap(3,l) = ap(1,3) 
ap(3,2) = ap(2,3) 
bp(2,l) = b~(lt2) 
bp(3,l) = bp(1,3) 
bp(3,2) = bp(2,3) 
dp(2,l) = dp(l,2) 
dp(3,l) = dp(1,3) 
dp(3,21 = dp(2,3) 
RETURN 
END 



SampIe program ONEDSDP for the postbuckling analysis of composite laminated 

beams having a single delamination. The routines mnewt, lubksb and ludcmp are taken 

from Press et al (2986). 

Program ONEDSDP for postbuckling analysis of a conposite laminated 
clamped beam having a single delamination. 

Last update: Aug. 29, 98 

Routines : 

mnewt, lubksb, ludcnp (al1 £rom numerical reciges book) 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 
DIMENSION ~ ( 2 5 0 )  ,x0 (250) ,xx1(250) ,xx2 (250) ,fvec(250) ,a(250,250) 
DIMENSION xl(200) ,~l(4,50,50) ,x2(100) d(250) ,U2 (250) ,=3 (250) 
DIMENSION pmx(100) , i~ (Sofa) ,g(2501 250) ,xx(250) , X X ~  (250) 

& , indx(25O) ,ev(250) ,x00 (250) 
REAL*8 ltot,lanO,loa~,landa,landal,delan 
REAL*8 l(4) , t (4) 
DIMENSION a11 (4) ,a55 ( 4 )  ,bll(4) ,dl1 (4) 
~0~~ON/setl/l,t,ltot,sl,nl,nS,n3,n4,aa,ip,xx 
COMMON/set2/ nload 
~0~~0N/set3/ al18a55,b11,dll 
CHARACTER*SO matfile 
OPEN (1, FILE=uarc.inpN, STATUS="UNKNOWNv) 
OPEN (2, FILE="arc .outil, STATUS=nUNKNOWN1l ) 

OPEN (5, FILE=ttwdef. xlsn , STATUS=nUNKNOrNNv) 
OPEN (6, FILE="udef. xls ", STATUS="UNKNOWNn ) 
READ(lI*)n1,n2,n3,n4 
READ(l,*) (t(i), i = 1 , 4) !thickness of each section- 
READ(l,*) (l(i}, i = 1 , 4) !length of each section. 

!imperfection amplitude 
!load increament 
!material properties file. 
!no. of iterations. 

READ (1, *)  aa 
READ (1, *)delta 
READ (1, *)matfile 
READ (1, * )  i tnum 
CLOSE (1) 

pi = 2 .dO*DASIN(l.dO) 
ltot = l(1) + l(2) + 1 
ntot = nl+nS+n3+n4-4 
n = 2*ntot+4 
nload = 19 
radmax = 1.d-1 
radmin = 2.d-2 
prdit = 5. 

4 ) !overall length 
!total number of nodes 
!number of variables. 
!position of load n-nload 
!Max radious of arc-length 
!Min radious of arc-length 
!Desired number of iteration 



icon2 = 10 !Max no. of iter. in each arc length search 
icon4 = 5 !Max no. of bisection in each iter. 
kk = nl/2 +1 

iprint=O print for one run 
iprint=l print at the end of last run (for nultiple r uns )  

cal1 rnatprp to cornpute the material properties. 

CALL rnatprp (matfile) 
pcr = 4. *pi**S*dll(l) /1tote*2 ! Critical load of intact b e m  

global position of each local node. 

CALL global (nl, n2, n3, n4, ip) 

computiong sampling points in each section. 

CALL position (nl, xl) 

computing coefficients of DQM. 

CALL coef ld (xl, sl, 4 ,nl,pmx) 

position of sampling points along the beam length. 

D O i = l ,  nl 
xx(i) = xl (il *1(1) 

END DO 
D O i = l ,  n2 

xx(nl+i) = l(1) + xl(i) *l(2) 
END DO 
DO i = 1, n3 

xx(nl+n2+i) = l(1) + xl (il *l(3) 
END DO 
DO i = 1, n4 

xx(nl+n2+n3+i) = l(1) + l(2) + xl (i) *l(4) 
END DO 

Initial starting point. 

aal = 1.d-2*aa 
DO i = 1 , ntot 

x ( i )  = aal* (ltot - xx(i)) 
E-ND DO 
D O i = l ,  nl 

x(ip(i,5) ) = 1.d-l*aa* (1. - DCOS (2-*pi*xx(ip(i,l) /ltot) 
x(ip(i,6) ) = 1.d-l*aa* (1. - DCOS (S.*pi*xx(ip(i,S) /ltot) 
x(ip(i,7)) = 1.d-l*aa*(l. - DCOS(S.*pi+xx(ip(i,3))/ltot) 1 
x(ip(i,8) = 1.d-l*aa* (1. - DCOS(2-*pi+xx(ip(i,4) )/ltot)) 

END DO 
x(ip(n4,4)) = 0, 



x(ip(1,S)) = O. 
x(ip(n4,8)) = 0. 
load = 0. 

C 

c Find a point on the load-cïisp. curve. 
C 

delta0 = delta 
102 load = load + d e l t a  

tolx = 1.d-6 
t o l f  = 1 .d-6  
iter = 30 
CALL mnewt (iter, x, n, tolx, toIf, 1oad) 
uxo = O, 
wxo = O, 
D O j = I ,  nl 

uxO = u x O  + sl(l,l,j)*x(ip(j,l))/l(l) 
wx0 = wx0 + s1(l,laj)*x(ip(j,5))/1(1) 

END DO 
v = (l,dO+wx0**2) 
wbarl = 0. 
pl = (all(l)/pcr) *(sigl + .5dOfsig2**2 +sigS*wbarl) - 

& (bll(1) /pcr) *-O/ (lfsigl**2) **l. 5 
~ I T E ( * , * ) l - - - - - - - - - - - - - - - - - - - l  

WRITE(*,*) Ip a t  x=O = Ilpl 
~ I T E ( * , * ) l - - - - - - - - - - - - - - - - - - - l  

IF (iprint , EQ. O) THEN 
WRITE(S,*)mS(pl), (x(ip(kL6) ) / t ( l )  1 ,  (x(ip(kk,7)) /t (1)) 
WRITE(6,*)DABS (pl) ,x(ip(l,l)) 

ELSE 
DO WHILE (.HOT. EOP(5) ) 

READ ( 5 ,  *, ERR=112, END=112) aaal 
END DO 

112 WRITE(S,*)ABS(gl), (x(ip(kk,6) ) / t ( l )  1 ,  (x(ip(kkI7))/t(l)) 
DO WHILE ( . NOT . EOF (6) ) 

READ (6, *,ERR=113, END=113) aaal 
END DO 

113 WRITE (6,')DABS (pl) ,x(ip (1.1) ) 
END IF 
IF(kkk ,NE. 1)THEN 

kkk = kkk+l 
GO TO 102 

END IF 
C 

c Start arc length method. 
C 

WRITE (* ,  * )  1 Start arc length method1 
DO i t e  = 1 , itnum 

WRITE(*,SOOO)ite 
WRITE(*,*)l At load I,load 
WRITE (*, 1500) delta 
D O i = l , n  

x00 (il = x ( i )  
END DO 
iconl = 1 



icon3 = O 
tolx = 5.d-4 
tolf = 5.d-4 
D O i = l , n  

xO(i) = x(i) 
END DO 
CALL usrfun(xO,n,a, fvec, 1) !stiffness mat. at xO 

C 

c Solving K.X = delta to find the first u-i and landzl. 
C 

D O i = l , n  
xx4(i) = O.dO 

END DO 
xx4(n-nload) = -1.dO 
CALL ludcmp(a,n,np,indx,d) 
CALL lubksb (a,n,npfindx,xx4) 
uimax = O.dO 
D O i = l , n  

uimax = DVXl (uimax, DABS (xx4 ( i ) ) ) 
END DO 
betal = 1 .dO 
dummy = O.dO 
D O i = l , n  

xO(i) = xO(i)/uimax 
xx4(i) = xx4 (i)/uimax 
dummy = dummy +xx4 (i) **2 

END DO 
104 landal = delta/DSQRT(betalf*2+dummy) 

D O i = l , n  
xxl(i) = xx4(i)*landal 

END DO 
d m y 4  = 0. 
D O i = l , n  

dummy4 = dummy4 + xxl (i)**2 
END DO 
tl = DSQRT (dummy4 + (betal*landal) "'2) 
WRITE ( * , * ) ' landa - i = ' , landal 
WFtITE(S,*) landa-i = ',landal 

103 D O i = l , n  
x ( i )  = (xO(i)+xxl(i) )*uimax 

END DO 
WRITE(*,1530) ite,iconl 
CALL usrfun(x,n,a, fvec, 1) 
D O i = l , n  

ul(i) = O.dO 
END DO 
ul(n-nload) = -1.dO 
CALL ludcrnp ( a, n , np , indx, d) 
CALL lubksb(a,n,np,indx,ul) 
D O i = l , n  

ul(i) = ul(i)/uirnax 
END DO 
WRITE(*,*) ' u-1 ',ul(kk+nl) 



c compute UII 
C 

D O i = l , n  
u2 (i) = -fvec(i) 

END DO 
u2 (n-nload) = u2 (n-nload) - (loadtlandal) 
CALL LUBKSB (a, n, np, indx, u2 ) 
D O i = l , n  

u2(i) = u2(i)/uimax 
END DO 
WRITE(*,*) l u-II @,u2(kk+nl) 

C 

c Cornpute delan 
C 

dummyl = O .dO 
duïïy2 = O.dO 
D O i = l , n  

dummyl = dummyl - xxl(i)*u2(i) 
dummy2 = d m y 2  + xxl(i)*ul(i) 

END DO 
delan = dummyl/ (betal**2*landal + dummy2) 
WRITE (*, * )  f irst estirnate of delan = l ,  delan 
dummy3 = O .dO 
D O i = l , n  

xx2(i) = ul(i)*delan + u2(i) 
dummy3 = dummy3 + xx2 ( i ) * * 2 

END DO 
t2 = DSQRT(delta**2 + dummy3 + (betalkdelan) **2) 
WRITE(*f*)' t-i !,tl 
WRITE(*,*)' t-i+l ',t2 
r = -(deltae*2/t2)*(t2 - delta) ! r  = residual 
WRITE(*,*) Residual = I ,r 
WRITE (2, * ) Residual = l , r 

C 

c New delan 
C 

delan = (r + dummyl)/(betal**2*landal + dumrny2) 
WRITE (* ,  * )  final estimate of delan = , delan 

105 D O i = l , n  
xx2 (il = ul(i) *delan + u2 (i) 

END DO 
C 

c Control for the convergence. 
C 

D O i = l , n  
x ( i )  = (xO(i)+xxl(i) + xx2(i))*uirnax 

END DO 
landa = landal + delan 
WRITE ( * , * Comp. Load = , ( loadtlanda) 
CALL corverge (x,n, (load+landa) , tolx, tolf, indicat) 
IF(indicat .EQ. 0)THEN !indicat=O converged 

WRITE(*,1000) iconl, tolx 
C 

c check the distance of the new point to the last one. 



IF(1anda .GT. delta) THEN !violation 
D O i = l ,  n2 

~ ~ ~ E ( * , l l l O )  ip(i,l) 8 (x(ip(i,6) /t (1) ) ,ip(i,l) 
, (x(ip(i17) 1 /t(l) 1 

END DO 
WRITE(f,*) Ilanda = ' ,  landa 
WRITE(*,*) 'delta = ' ,  delta 
WRITE ( *  , * )  p= , (loadtlanda) 
iconl = 1 
del ta = del td2. d0 !reduction of arc length 
GO TO 104 

END IF 
I F  ( (loadtlanda) . LT . load) THEN !violate 

WRITE (*, *) 'p=' , (load+landa) 
iconl = 1 
delta = delta/S.dO !reduction O£ arc length 
GO TO 104 

END IF 
load = load + landa 
delta = d e l t a * ~ ~ ~ ~ ~ ( p r d i t / i c o n l )  
IF (delta .GT. radmax) delta = radmax 
IF (delta .LT. radmin) delta = radmin 

ELSE IF(indicat .EQ. 1)THEN !indicat=l not converged 
D O i = l , n  

xxl(i) = xxl (i) + xx2 (i) 
END DO 

C 

c Check 

IF(icon1 .GT. icon2)THEN 
IF (DABS (pl-p2) .LT. 1 .d-5) THEN 

WRITE(*,*) IConvergence based on the value of P t  
load = load + landa 
del ta = del ta* (prdi t/iconl) 
IF (delta .GT. radmax) delta = radmax 
IF (delta .LT. radmin) delta = radmin 
GO TO 107 



END IF 
IF (icon3 . GT . icon4) THEN 

WRITE (* ,  1520) ite 
STOP 

END IF 
icon3 = icon3 + 1 !number of step reduction 
WRITE (*, 1510) delta, (delta/2.) 
iconl = 1 
delta = delta/2.d0 !redtlction of arc length 
GO TO 104 

END IF 
iconl = iconl + 1 
GO TO 103 

END IF 
107 ux0 = O. 

wxo = 0. 
D O j = l .  nl 

UXO = uxO + sI(l,l,j)*x(ip(j,l))/l(l) 
wx0 = wx0 + sl(l,l,j)*x(ip(j,5))/1(1) 

END DO 
v = (l,dO+wxO**2) 
wbarl = 0. 
pl = (al1 (1) /pcr) * (sigl + .SdO*sig2* *2 +sig2*wbarl) - 

& (bll(1) /pcr) *=O/ (itçigl**Z) * *1 .5  
rnpIIE(*, * )  ' - - - - - -  - -  - - - -  - - - - - - -  1 

WRITE (* ,  * )  'g at x=O = I 8 PI 
WRrTE(*,f)t-------------------l 

D O i = l ,  n2 
~ 1 T E ~ * , 1 1 1 ~ ~ i p ~ i . 1 ~  , (x(ip(if6))/t(l)) ,ip(i.l) 

& , (x(ip(if7))/t(l)) 
END DO 

C 

c writing the results on exell file. 
C 

kk = n1/2 +l 
IF(iprint .EQ. OITHEN 

WRITE(5,*)ABS(pl), (x(ip(kk,6) )/t(l)), (x(ip(kk.7) /t(l) 
WRITE(6,*)DABS(pl) ,x(ip(l,l) ,DAM (p2) 

ELSE 
DO WKILE (.NOT. EOF(5)) 

=AD (S. *, EIIR=ll4, END=114) aaal 
END DO 
WRITE(5, *)ABS(pl), (x(ip(kk,6) )/t(l) 1 ,  (x(ip(kk7) )/t(l) 
DO WHILE (.NOT. EOF(6)) 

READ (6, *, ERR=115, END=115) aaal 
END DO 

115 WRITE(6, *)DAX (pl) ,x(ip(l,l)) 
END IF 
WRITE(*,2100) ite 

END DO 
C 

c Formats 

1000 FORMAT(' Convergence achieved after ',i3,' iterationsf ,/, 



& Nom of error in f = l,d15.8,//) 
1050 F0RMAT(lO~,~Solution : > , / )  
1100 FORMAT(5xf lu(', i3, ' 1  = ' ,e13.6,10xf 'w(' ,i3,') = ' ,e13.6) 
1150 FORMAT ( /  , lOx, ' Def lections of delaminated regions , / , 

& 10xflUpper sublaminatel,lOxJILower sublaminater,/) 
1200 FORMAT(Sx, tx(1,i2, l)= ',dlS.8) 
1300 FORMAT(/,' Did not converge within the tolerances',/ 

& , '  The best solution with error in functions nom of 
& fd15.8Jt is: Il/) 

1400 FORMAT(Sx, ' p  = ' ,d15.8) 
1450 F O ~ T ( I - - - - - - - - - - - - - - - - - - - - - I  ,/,5x11P at x=O = ',d15.8 

& , / , 5 x , ' P  at x=L/2 = f,d15,8,/,1---------------------t , / )  
1500 FORMAT(' Arc Length = I(el2.6) 
1510 FORMAT(/,' Did not converge with arc length ',f8.5,/ 

& ,IReducing the arc length to I,f8.5,/) 
1520 FORMAT(/,' Did not converge at the iteration ',i3,/) 
1530 FORMAT ( / / ,  > A-t load step ' ,  i3,5x, 'iteration no. ' ,  i3, /7O ( ' - ' ) ) 
2000 F O = T ( ~ ~ ~ , I - - - - - - - - - - - - - - - - - - - - - I  ,/,20xf1Start of Ite. no. : ' 

6i , i3,/) 
2100 FORMAT(SOx, 'End of Ite. no. 

STOP 
END 

C 

c Subroutine usrfun to calculate 
C 

c n number of variables 

: ',i3,//) 

value of function and its gradient. 

c g(n,n) matrix containing derivatives of each function 
c f (n) vector of functions 
C 

C 

C 

SUBROUTINE usrfun (x, n, g, f , indi) 
IMPLICIT DOUBLE PRECISION (A-R,O-Z) 
DIMENSION x(*) ,g(n,n) ,f(*) ,fl(*) 
CALL fnc (x, n, f) 
IF (indi . EQ . O ) RETURN 
D O i = l , n  

h = l.d-6*x(i) 
I F ( h  .EQ. O.aO)h = 1.d-12 
x ( i )  = x(i) + h 
CALL fnc(x,n, £1) 
x(i) = x(i) - h 
D O j = l , n  

q ( j , i )  = (£l(j) - f(j))/h 
END DO 

END DO 
Rl3TURJS 
END 

C 

C 

c Subroutine f n c  for computing the values of nonlinear equations 
c and boundary equations. 
C 

SUBROUTINE fnc(x,n,fvec) 



IMPLICIT DOUBLE PRECISION(~-~,~-Z) 
INTEGER n ,  ip(S0,8) ,nk(4), iiu,iiw 
DIMENSION x(n) , fvec (n) 
DIMENSION xl(*) ,xx(*) 
DIMENSION SI (4,5O, 50) 
REAL*8 1(4), t (4) ,ltot,dllc(4) 
DIMENSION a11 ( 4 )  , a55 (4) ,b11(4) , dl1 (4) 
~0~~0~/setl/l,t,ltot,çl,nl,n2,n3,n4,aa~ 
COMMON/S~~~/ allIa55,bîl,dll 
pi = 2 .dO*DASIN(l .do) 
nk(l) = nl 
nk(2) = n2 
nk(3) = n3 
nk(4) = n4 
ntot = nl+n2+nS+n4-4 
pcr = 4. *pi**2*dll(l) /ltot**2 

FUNCTION EVALUATION 

D O k = 1 ,  4 
dllc (k) = dl1 (k) -bll (k) **2/all (k) 
DO i = 2 , nk(k)-1 

SELECT CASE (k) 
CASE (1) 

iiu = ip(i,k) -1 
iiw = ip (i, 4+k) -10 

CASE (2) 
iiu = i@(i, k) -3 
iiw = ip (i,$+k) -13 

CASE (3) 
iiu = ip(i,k) -5 
iiw = ip(i,4tk) -16 

CASE ( 4 )  
iiu = ip(i, k) -7 
iiw = ip(i,4+k) -18 

END SELECT 
ux = O.dO 
woc = G.dO 
w x  = O.dO 
wxx = O.dO 
wxxx = O.dO 
wxxxx = O.dO 
DO j = 1 , nk(k) 

= ux + sl(l,i,j)*x(ip(j,k)) 
wcx = uxx + s1(2,iIj)*x(ip(j,k)) 
wx = wx + s1(l,i,j)*x(ip(jI4+k)) 
wxx = wxx + sl(2,iIj)*x(ip(j,4+k)) 
'm = wxxx + sl(3,iIj)*x(ip(j,4+k)) 



wxxx = wxxx/l (k) * * 3  
wxxxx = wxxxx/l (k) * * 4  

C 

c IMPERFECTION TERMS 

wbarl= (pi/ltot) *aafDSIN(2*pi*xx (ip (i, k) ) /ltot 
wbar2=2* (pi/ltot) **2*aafDCOS (Sfpi*xx(ip (i, k) ) 

/ltot) ! s " ~  derv. 
v = (l.dO+wx**2) 
c = (wxxx*(l.+wx**2)-3.dO*wx*wxxf*2)/v**2.5 

1 !Is' derv 

fvec (iiu) =uxx + (wxtwbarl) * (wxx-f-wbar2) - wbarlkwbar2 
- ( ~ 1 1  (k) /al1 (k) ) *c 

IF (i .EQ. 2 )CYCLE 
IF(i.EQ.nl-l .OR.i.EQ.nS-1 .OR. i.EQ.n3-1,OR. 

i.EQ.n4-1)CYCLE 
pa = wxxxx/v**1.5dO - 9.dO*wxxx*wxx*wx/v**2~5dO - 

3.dO*wxx**3*(1.d0-4.dO*wx**2)/~**3.5dO 
fvec (iiw) =pa- ( (al1 (k) /dllc (k) ) * (ux+O. SdO+wx**2+wx*wbarl) 

-(bll(k)/dllc(k))*wxx/v**l-5)*(wxxtwbar2) !second eq. 
END DO 

ErJD DO 
C 

c ~oundary conditions at beam edges. 
C 

ii = 2*(nl+n2+n3+n4-12) 
ux = O.dO 
w% = O.dO 
wxx = O.dO 
D O j = l , n l  

ux = ux + sl(l,l,j)*x(ip(j,l)) 
w x  = w x  + sl(l,l,j)*x(ip(j,5)) 
wxx = w x x  + sl(2,1,j)*x(ip(jIS)) 

END DO 
ux = ux/l(l) 
wx = wx/l(l) 
wxx = wxx/l(l) **2 
wbarl = 0. 
fvec (ii+l) = (al1 (1) /pcr) * (ux+. SdO*wx**2fwx*wba) - !Applied Load 

& (bll(1) /pcr) *wxx/ (l.+wxf*2) **IS 
w% = O.dO 
D O j = l ,  nl 

w x  = w x  + s1(1,2,j)*x(ip(j,5)) 
END DO 
fvec(iic2) = wx 

!rotation(x=O) =O 
wx = O.dO 
~ 0 j = 1 ,  n4 

w x  = wx + sl(l,n4-l,jIfx(ip(j,8)) 
END DO 
£vec(ii+3) = wx 

!rotation (x=L) =O 
fvec(ii+4) = x(ip(n4,4)) 
fvec(ii+5) = x(ip(l,5) ) 
£vec(ii+6) = x(ip (n4,8) ) 



wxa = O ,dO 
D O j  = I f  nl 

wxa = wxa + sl(l,nl, j)*x(ip(j,S) )/1(1) 
END DO 
fvec(iit7) = x(ip(l,2)) -x(ip(nl,l) --SdOft(3) *ma  !u2 (x=f)  
fvec(iit8) = x(ip(l,3) ) -x(ip(nl,l) ) +-SdOft(2) *m !u3 (x=1) 
wxb = O.dO 
D O j  = I f  n4 

wxb = wxb + sl(l,l,j)*x(ip(j,8))/l(4) 
END DO 
fvec(ii+9) = x(ip(n2,2) ) -x(ip(1,4) - - 5 d O f t  (3) *wxb  !u (x=l+a) 
fvec(ii+lO) = x(ip(n3,3)) -x(ip(1,4) )+-5dO*t(2) * w x b  !u (x=l+a) 
uxl= 0. 
Llx2 = o. 
Llx3 = o. 
m l =  o. 
wxxl = o .  
wxxxl= O. 
wx2 = 0. 
wxx2 = o .  
wxxx2 = o .  
wx3 = O. 
wxx3 = O -  
wxxx3 = o. 
DO j = 1 , nl 

uxl = uxl + sl(l,nl, j)*x(ip(j,l)) 
wxl = wxl + sl(l,nl,j)*x(ip(j,5)) 
wxxl = wxxl + sl(2,nltj)*x(ip(jI5)) 
wxxxl = wxxxl + s1(3,nl,j)*x(ip(j,5)) 

END DO 
uxl = uxl/l(l) 
wxl = wxl/l(l) 
wxxl = wxxl/l(l) *f2 
wxxxl = wxxxl/l(l) * "3 

D O j = l , n 2  
ux2 = ux2 + sl(l,l,j)*x(ip(j,2)) 
wx2 = wx2 + sl(l,l,j)*x(ip(j,6)) 
wxx2 = wxx2 + s1(2,l,j)*x(ip(j,6)) 
wxxx2 = wxxx2 + sl(3,l,j)*x(ip(jI6)) 

END DO 
ux2 = ux2/1(2) 
wx2 = wx2/1(2) 
wxx2 = wxx2/1(2) **2 
wxx'r2 = m 2 / 1 ( 2 )  **3 
D O j = I , n 3  

~3 = ux3 + sl(l,l,j)*x(ip(j,3)) 
wx3 = wx3 + sl(l,l,j)*x(ip(j,7)) 
wxx3 = wxx3 + sl(2,1.j)*x(ip(jt7)) 
w 2 c ~ ~ 3  = wxxx3 + sl(3,l,j)*x(ip(jt7)) 

END DO 
ux3 = ux3/1(3) 
wx3 = wx3/f (3) 
wxx3 = wxx3/1(3) **2 
wxxx3 = wxxx3/1(3)**3 



vl = (l.d0+wxl**2) 
v2 = (1-dO+wx2**2) 
v3 = (l,dO+wx3**2) 
cl = ( m l *  (l-+wxl**2) -3.dO*wxl*wxxlf *2)/vl**2.5 
c2 = (wxxx2* (l.+wx2**2) -3 .dO*wx2*wxx2**2) /v2**2.S 
c3 = (wxxx3* (l.+wx3**2) -3.âOfwx3*wxx3**2) /v3**2.5 
wbarl = (pi/ltot) *aa*DS1N(2 .*pi*xx(ip(nl, 1) ) /ltot) 
pl = (uxl +-5dO*wxl**2 + wxl*wbarl) 
p2 = (ux2 +.SdO*wx2**2 + wx2fwbarl) 
p3 = (ux3 +-5dO*wx3**2 +wx3*wbarl) 

C 

fvec(ii+ll) =pl- (a11 (2) /al1 (1) ) *p2- (a11 (3) /al1 (1) ) *p3 
& - (blI(1) /al1 (1) 1 *wmcl/vl+ (bll(21 /al1 (1) ) *wxx2/v2 
& +(b11(3) /al1 (1)) *wxx3/v3 
fvec(ii+12) = cl- (dlIc(2) /dlIc(l) )*CS- (dllc(3) /dllc(l) ) *c3 
fvec (ii+l3) = wxxl/vl**l.5- (dl1 (2 )  /dll(l) ) *wxx2/v2**115- 

& ( a i  ( 3 )  / a l  (1) * ~ ~ 3 / ~ 3 * * 1 . 5 -  
& 0-5dO* ( (t ( 3 )  *ail (2) /dl1 (1) ) *p2 - (t (2) *al1 (3) /dl1 (1) ) *p3) - 
& (bll(1) /dl1 (1) *pl+ (bll(2) /dl1 (1)) *p2  + (bLl(3f /dl1 (1) ) *p3 
fvec(ii+l4) = wx2 - wxl 
fvec(ii+l5) = wx3 - wxl 
ux4 = o.  
ux2 = o. 
ux3 = o. 
wx4 = O. 
wxx4 = o .  
wxxx4 = o .  
wx2 = 0. 
wxx2 = o .  
wxxx2 = 0. 
wx3 = o.  
wxx3 = o .  
wxxx3 = o .  
D O j = l , n 4  

üx4 = ux4 + sl(l,l,j)*x(ip(jr4)) 
wx4 = wx4 + sl(lrl,j)*x(ip(j,8)) 
wxx4 = wxx4 + s1(2,1rj)*x(ip(j,8)) 
wxxx4 = wxxx4 + sl(3,1,j)*x(ip(jr8)) 

END DO 
ux4 = ux4/1(4) 
wx4 = vx4/1(4) 
wxx4 = wxx4/1(4) **2 
wxxx4 = wxxx4/1(4)**3 
D O j = I r n 2  

ux2 = ux2 + sl(lrn2,j)*x(ip(j,2)) 
wx2 = wx2 + sl(l,n2,j)*x(ip(j,6)) 
wxx2 = wxx2 + s1(2,n2,j)*x(ip(jr6)) 
wxxx2 = vmxx2 + sl(3,n2,j)*x(ip(jr6)) 

END DO 
ux2 = ux2/1(2) 
wx2 = wx2/l(2) 
wxx2 = wxx2/1(2) **2 
wxxx2 = wxxx2/1(2) **3 
D O j = l r n 3  



wxxx3 = -3 + s1(3,n3,j)*x(ip(j,7)) 
END DO 

c4 = (wxxx4* (I.+wx4**2) -3.dO*wx4*wxx4**2) /v4**2. 5 
c2 = (wxxx2*(l.+wx2**2)-3.dO*wx2*~~~2**2)/~2**2.5 
c3 = (wxxx3* (l.+wx3**2) -3.dO*wx3*wxx3**2)/v3**2.5 
wbarl = (pi/ltot) *aat~SI~(2 .*pi*xx(ip (nl, 21 ) / l t o t )  
p4 = (-4 +-5dO*wx4* *2 + wx4*wbarl) 
p2 = (ux2 +-SdO*wx2**2 + wxSewbarl) 
03 = (ux3 +-5dO*wx3**2 + wx3fwbarl) 

C 

fvec(ii+l6) = p4 - (a11 (2) /a11 (4) ) *p2 - (a11 (3) /a11 (4) ) *p3 
& - (bll(4) /ail (4) *wxx4/v4+(bll(2) /a15 ( 4 )  ) *wxx2/v2 
& + (bll(3) /al1 ( 4 )  ) *wxx3/v3 
fvec (ii+l7) =c4- (dllc(2) /dllc(4) ) *c2- (dllc ( 3 )  /dllc ( 4 )  1 *c3 
fvec(ii+l8) = wxx4/~4**l.5-(dll(2)/dl1(4))*wxxS/v2**1.5- 

& (dl1 (3) /dl1 ( 4 )  ) +wxx3/v3**11S- 
& ,5dO*((t(3)*a11(2)/dll(4))*p2 - (t(2)*al1(3)/dl1(4))*p3) - 
& (bll(4) /dl1 (4) *p4 +(bll(S) /dl1 (4) 1 *p2 + (b11(3) /dl1 (4) ) *p3 
fvec(ii+l9) = wx2 - wx4 
fvec(ii+20) = wx3 - wx4 
RETURN 
END 

C 

SUBROUTINE MNEWT (NTRIAL, X, NI TOLX,TûLF ,dlinc) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
PARAMETER (NP=2 5 0 ) 
DIMENSION X(n) ,g(n,n) ,BETA(np) INDX(np) 
cOMMON/S~~~/ nload 
DO k = 1 ,ntrial 

CALL USRFUN(X,n,gIbeta,2) 
D O i = l , n  

beta(i) = -beta(i) 
END DO 
beta (n-nload) = beta (n-nload) - dlinc 
ERRF=O . 
D O i = l , n  

ERRF=ERRF+DABS (BETA ( 1) ) 
END DO 
write(*,*)k,errf 
IF (ERRF . LE. TOLF) THEN 

RETURN 
END I F  
CALL LUDCMP(gININPI INDX,D) 



CALL LUBKSB (g , N, NP, INDX, BETA) 
ERRX=O . 
D O i = l , n  

ERRX=EItPX+DABS ( BETA ( 1 ) ) 
X ( 1 )  = X ( I )  + B E T A ( I )  

END DO 
write(*,*)k,errx 
write(*,*)< ' 
IF (EREU. LE. TOLX) THEN 

RETURN 
END IF 

EN13 DO 
RCTrJRN 
END 

Checking the convergence: 

indicat = O Converged in fvec 
indicat = 1 Didntt converge in fvec 

SUBROUTINE converge(x,nn,dload,toI~~tolf,indicat) 
IMPLICIT DOUBLE PRECISION (A-HfO-2) 
DILMENSION x(*) , fvec(250) 
COMKON/set2/ nload 
CALL fnc(x,nn,fvec) 
f vec (nn-nload) = f vec (nn-nload) +dload 
errf =O. 
D O i = I , m  

errf = errf + DABS(fvec(i)) 
END DO 
IF (errf . LE. tolf 1 THEN 

indicat = O !Converged 
tolx = errf 

ELSE 
indicat = 1 !Not Converged 

END IF 
WRITE(*,*) ' Tolerance in f = ',errf,indicat 
RETURN 
END 

Subroutine global for  determining the global position of 
each local node. 

SUBROUTINE global(nl,nS,n3,n4,ip) 
DIMENSION ip(50,8) 

D O i = 1 ,  nl 
ip(i,l) = i 

END DO 
D O i = l ,  n2 

ip(i,2) = nl+i 
END DO 



DO i = 1, n3 
ip (i, 3) = nl+n2+i 

END DO 
D O i = l ,  n4 

ip (i, 4) = nl+n2+n3+i 
END DO 
ntotl = nl + n2 + n3 + n4 

D O i = l , n l  
ip(i,S) = ip(i,l)+ntotl 

END DO 
ip(L61 = ip(nl,5) 
DO i = 2 , n2 

ip(i,6) = ip(i,S)+ntotl - 1 
END DO 
i0(1,7) = ip(1,6) 
DO i = 2 , 113-1 

ip(i,7) = ip(i,3)+ntotl -2 
END DO 
ip(n3,7) = ip(n2,6) 
ip(1,8) = ip(n2,6) 
DO i = 2 , n4 

ip(i,8) = ip(if4)+ntotl - 4  
END DO 
RETURN 
END 

Subroutine position for computiong sampling points in each 
section. It is based on unequally spaced sampling points 
with adjacent 6-points. Points are normalized w.r.t. each 
section length. 

Reference : Bert, C. W., and Malik, M.,ItDifferential. quadrature 
method in cornputational mechanics: A revieww, Appl Mech Rev, 
vol 49, no 1, Jan 1996, pp 1-28. 

SUBROUTINE position (n, x) 
IMPLICIT DOUBLE PRECISLON(a-h,o-z) 
DIMENS ION x ( * ) 
pi = 2,dO*DASIN(l.d0) 
D O i = 3 , n - 2  

x(i) = 0.5*(1. - COS((S*i-3)*pi/(2*n-4))) 
END DO 
delta = 1.d-3 
x(l) = O.dO 
x ( 2 )  = delta 
x(n-1) = 1. - delta 
x(n) = l.dO 
RETURN 
END 



Subroutine coefld to cornpute the weighting coefficients. 

SUBROUTINE coefld(x,s,norder,n,pmx) 
IMPLICIT DOUSLE PRECISION (a-h, O- z) 
DIMENSION x(*) , s  (4.50.50) ,prnx(*) 
D O i = l , n  ! n= number of grid points in x dir. 

pmx(i) = 1. 
D O j = l , n  

IF (i .EQ. j) CYCLE 
pmx(i) = pmx(i) * (x(i) -x(j) ) 

END DO 
END DO 

weighting coefficients for the first order derivative. 

Computing the weighting coefficients of successive derivatives. 

DO k = 2 , norder !norder= highest dervat. ord. in x dir. 
D O i = l , n  

D O j = l , n  
IF (i .EQ. j) CYCLE 
s(k,~,j)=k*(s(k-l,i,i)*s(l.i,j) -s(k-l,i, j)/(x(i) - x ( j ) ) )  
s(k,i,i) = s(k,i,i)-s(k,i,j) 

END DO 
END DO 

END DO 
RETURN 
END 




